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Introduction

Motivation

The main goal of this dissertation is to study the problem of convergence of
Fourier series. This problem consists on, given a function f , deciding if its
Fourier series converges to f . What conditions are necessary or sufficient
for that to happen? What do we actually mean with convergence? We are
going to give an answer to these question in this dissertation.

The problem of convergence of Fourier series was first posed in the begin-
ning of the XIX century, and it has evolved with the development if math-
ematical analysis. Several great mathematicians have worked on Fourier
series, and this subject has influenced some of them. It would be bold to
say that Fourier series have shaped the development of history of mathe-
matics, but there is no doubt that it has influenced it in some way.

Abstract

This Final Degree Dissertation is organized as follows.

In Chapter 1, we define the basic concepts about Fourier series. We also
give some basic properties of the Fourier coefficients.

In Chapter 2, we introduce the most classical theorems about conver-
gence of the Fourier series, all of them proved in the XIX century.

In Chapter 3, we study summability of Fourier series. These are alter-
native techniques to obtain the “sum” of the Fourier series.

In Chapter 4, we prove convergence of Fourier series on the spaces Lp,
for 1 < p <∞.

Finally, in Chapter 5, we explain the divergence of Fourier series. We
give a continuous function whose Fourier series is divergent at a point, and
we prove the existence of an L1 function whose Fourier series is divergent
on the L1 norm.
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Historical comment about Fourier series

The problem of Fourier series began with partial differential equations, in
the middle of the XVIII century. More precisely, with the vibrating string
problem. D’Alembert, Euler and Daniel Bernouilli, amongst other math-
ematicians, worked on the solution of the wave equation. Even though
d’Alembert obtain his famous solution to the equation, Bernouilli wrote the
solution as a trigonometric sine. Since then, the theory of Fourier series has
had a huge development, and there are several applications to this theory.

In 1822, Joseph Fourier published his Théorie analytique de la chaleur.
In this book, he studied the propagation of heat in a finite solid. He de-
duced the constitutive equation of the propagation of heat, and he solved
the problem of the distribution of the temperature at a given time if he
knew the distribution at an initial moment. In order to do that, he invented
the method of separation of variables, also known as the Fourier method.
As we know, this method requires writing a given function as the sum of a
trigonometric series.

Fourier did not prove convergence in any form. He opened the problem
of the expansion in a trigonometric series of a given function. There are a
lot of concepts related to this problem, such as integral, sum of series, and
even the mere concept of function. There is not doubt that this problem
influenced the development of the mathematical analysis.

There were a few attempts to prove convergence of the series by Cauchy
and Poisson, but the first theorem was proved by Dirichlet in 1829 (Theorem
2.9). He determined some sufficient conditions that assure the convergence
of the Fourier series of a function to the function itself at a given point.
This is the first of many similar theorems that give sufficient conditions for
convergence. In this dissertation we mention theorems by Camille Jordan
(Theorem 2.11, 1881), Lipschitz (1864, we see it as a consequence of Dini’s
theorem) and Dini (Theorem 2.12, 1880).

Riemann worked, like on most topics in mathematics developed in the
XIX century, on the problem of Fourier series. He developed his theory of
the integral and then applied it to the Fourier series. He realized that if a
function f does not admit integration in the domain, then the Fourier series
of f has not sense. He gave the famous Riemann-Lebesgue lemma 2.3, and
the Riemann-localization principle 2.4.

Not everything result positive, though. Heine pointed out in 1870 that,
at that point, there was not proof that a function had a unique Fourier
series, and that there was no evidence that the Fourier series of a continuous
function had to be uniformly convergent. Even so, both statements were
widely accepted until there appeared a counterexample.

Paul du Bois-Reymond found a continuous function whose Fourier series
is divergent at a point. Not only the series was not uniformly convergent, it
was divergent at a point. After this counterexample, there appeared other
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ones, by Schwarz, Fejér and Lebesgue.
After the disappointing counterexample by du Bois-Reymond, there ap-

peared a new way of summing the series. Fejér proved in 1900 that given a
continuous function f , the sequence of the arithmetic averages of the par-
tial sums of the Fourier series of f converges uniformly to f . This is not
the only way, we also recover the original function with the Abel-Poisson
summability.

In the beginning of the XX century, there appeared new theories in
mathematical analysis. The theory of integration by Lebesgue, the theory
of Hilbert and Banach spaces, for example. In this wider context, there was
much to be done. Lebesgue applied his own theory to the Fourier series,
and he proved his version of the Riemann-Lebesgue lemma 2.3.

With the Lebesgue theory, there appeared the Lp spaces. The first the-
orem in these spaces is called the Parseval identity, which actually was pub-
lished by Parseval in 1806 (even before Fourier’s publication, Theorem 4.2).
Fatou proved in 1906 that it holds for every f ∈ L2. After that came a
negative result by Banach and Steinhaus. They proved in 1918 that there is
no mean convergence, meaning no convergence in L1. The last theorem we
are going to explain we owe it to Marcel Riesz in 1923; this theorem states
that there is convergence in Lp for every 1 < p <∞ (Theorem 4.10).

But there is further history of Fourier series. The stronger theorem
yet about Fourier series was proved by Carleson in 1965. He proved that
the Fourier series of an L2 function converges pointwise to the function for
almost every point. This came as a surprise because, although that theorem
was conjectured around 1913 by Lusin, it was expected to be false. It was
later expanded by Richard Hunt to every 1 < p <∞.





Chapter 1

Trigonometric Fourier Series

1.1 Basic notation

There are many options to define the Fourier series. I have chosen the torus
one. We define the torus T = [−π, π). We can identify T with the unit circle
in C, using the exponential map eix. We will identify the space of functions
defined on the torus T with the space of the periodic functions of period
2π defined on the real line R. We will study both real valued and complex
valued functions.

Another way of understanding this concept is considering in R the fol-
lowing equivalence relation:

x ∼ y ⇔ x− y = 2kπ for some k ∈ Z.

In this case, the torus would be the quotient space T = R/ ∼. Both ways of
understanding the torus are obviously equivalent.

This simplifies the notation, for example, when we talk about the left
or right sided limits of the function at the points x = ±π, or when we talk
about continuity at those points. We will not need to consider the periodic
extension of the original function.

Given a function f ∈ L1(T), we define the Fourier series of f :

∞∑
n=−∞

f̂(n)einx, (1.1)

where f̂(n) is the n-th Fourier coefficient of f , defined in the following way:

f̂(n) =
1

2π

∫
T
f(x)e−inxdx. (1.2)

If there is no confusion about what function f is, we may call cn = f̂(n).
Since we use integrals, we may need to specify what we mean. We are

going to use Lebesgue measure and integral, due to the advantages it carries

1



2 1.1. Basic notation

against the Riemann integral. There will appear the spaces Lp(T), with
1 ≤ p ≤ ∞. These are the usual Lp spaces, along with their usual norms.

We will at least require the function f to be integrable in order to be
able to compute the coefficients. If f were not integrable, the coefficients
would not be defined at all.

This way of describing the Fourier series is equivalent to the traditional
real form of the Fourier series given by

a0
2

+

∞∑
n=1

an cos(nx) + bn sin(nx), (1.3)

where the coefficients are defined in the following way:

an =
1

π

∫
T
f(x) cos(nx)dx, n ≥ 0, (1.4)

bn =
1

π

∫
T
f(x) sin(nx)dx, n ≥ 1. (1.5)

It can easily be checked that this relation holds for all n ∈ Z:

c0 =
a0
2
,

cn =
an − ibn

2
, n ≥ 1,

cn =
a−n + ib−n

2
, n ≤ −1.

We prefer to use the complex form because it is more compact, we only
need one formula and everything lies under a unique sum sign. This way we
only have one type of coefficient and we have a linear map between the space
L1(T) and the space l(Z) of all complex sequences indexed by the integers.

Once we have defined the series, we will establish the notation for the
partial sums. The N -th partial sum of the Fourier series of a function
f ∈ L1(T) is defined in either of the two equivalent ways:

SN (f)(x) =
N∑

n=−N
f̂(n)einx, (1.6)

SN (f)(x) =
a0
2

+
N∑
n=1

an cosnx+ bn sinnx. (1.7)

Our main goal is to study what happens with SN (f) when, given an
“arbitrary” function f on T, we let N tend to infinity.

In this chapter we introduce the first formal definitions of the Fourier
series of a function f defined on T.
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1.2 Trigonometric series

Let f be an integrable function on T. We define the trigonometric Fourier
series of f in the following way:

∞∑
n=−∞

f̂(n)einx, (1.8)

where the coefficients f̂(n) are the Fourier coefficients of f , which are defined
as follows:

f̂(n) =
1

2π

∫
T
f(t)e−int dt. (1.9)

It is clear from the expression (1.9) that the Fourier coefficients are linear
maps from L1(T) to C:

(αf + βg)̂ (n) = αf̂(n) + βĝ(n).

We will try to justify this definitions. Suppose that we have a function
expanded in a trigonometric series of the form

f(x) =

∞∑
n=−∞

cne
inx,

and suppose that we know that the series converges uniformly. In this case,
we can check that the coefficients of the series are precisely the Fourier
coefficients of f :

f̂(k) =
1

2π

∫
T
f(x)e−ikx dx

=
1

2π

∫
T

( ∞∑
n=−∞

cne
inx

)
e−ikx dx

=
1

2π

∞∑
n=−∞

cn

∫
T
e(n−k)ix dx

= ck.

This justifies the choice of the Fourier coefficients. Notice that in order
to do the computations above we do not need the uniform convergence of
the series, we just need to be able to change the order of the sum and the
integral.

Theorem 1.1. If a function f defined on T can be expanded in a trigono-
metric series which converges uniformly to f , then this series is the Fourier
series of f .

Proof. The proof follows from the computations above.
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1.3 Properties of the coefficients

Let f be an integrable function on T:

(i) The sequence {f̂(n) : n ∈ Z} is bounded by∣∣∣f̂(n)
∣∣∣ ≤ 1

π

∫
T
|f(x)| dx.

(ii) Linearity. The coefficients are linear maps on L1(T):

(αf + βg)̂ (n) = αf̂(n) + βĝ(n).

(iii) Derivability. If f is continuously derivable in T, then we can write the
Fourier coefficients of the derivative in terms of the coefficients of f :

(f ′)̂ (n) = inf̂(n), ∀n ∈ Z.

This can easily be proved integrating by parts. It is not really re-
quired that f ′ be continuous, these relations also hold in more general
situations.

The coefficients an and bn of the real form hold these relationships:

a0(f
′) = 0,

an(f ′) = nbn(f), n ≥ 1,

bn(f ′) = −nan(f), n ≥ 1.

(iv) For the real form of the Fourier series:

If f is even (i.e. f(−x) = f(x) in T), then bn = 0 for all n ≥ 1 and we
can write

an =
2

π

∫ π

0
f(x) cosnx dx.

When f is odd (i.e. f(−x) = −f(x) in T), then an = 0 for all n ≥ 0
and we can write

bn =
2

π

∫ π

0
f(x) sinnx dx.

1.4 Bessel inequality

Another basic property of the Fourier series is the so-called Bessel inequal-
ity. This inequality is a much more general inequality and it holds for any
orthogonal system in any Hilbert space. In this case the orthogonal system
will be the basic trigonometric system {eix : k ∈ Z} and the Hilbert space
will be L2(T).
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Let f be a function in L2(T) (which implies f ∈ L1(T) because T has
finite measure). We will show that the trigonometric polynomial of degree
N wich is the best approximation of f in the norm of L2(T) is the N -th
partial sum of its Fourier series. We emphasize that this is only true in that
norm, there are other trigonometric polynomials of the same degree that
approximate f better in other norms. We will come back to this issue later
in this dissertation.

Let pN be a trigonometric polynomial of degree N . That is, pN has the
form:

pN (x) =
N∑

k=−N
cke

ikx.

It follows from the orthogonality of the trigonometric system that the
L2 norm of pN is the following:

||pN ||22 = 2π

N∑
k=−N

|ck|2.

Theorem 1.2. If f ∈ L2(T), then the trigonometric polynomial which best
approximates f in the L2 norm is the N -th partial sum of its Fourier series.

Proof. Let pN be a trigonometric polynomial, and let us see which is the
distance from pN to f :

||f − pN ||22 = 〈f − pN , f − pN 〉 = ||f ||22 + ||pN ||22 − 〈f, pN 〉 − 〈pN , f〉

= ||f ||22 + 2π
N∑

k=−N
|ck|2 − 2π

N∑
k=−N

(
f̂(k)ck + f̂(k)ck

)

= ||f ||22 + 2π
N∑

k=−N

(
|f̂(k)|2 + |ck|2 − |f̂(k)|2 − f̂(k)ck − f̂(k)ck

)

= ||f ||22 − 2π
N∑

k=−N
|f̂(k)|2 + 2π

N∑
k=−N

(f̂(k)− ck)(f̂(k)− ck)

= ||f ||22 − 2π
N∑

k=−N
|f̂(k)|2 + 2π

N∑
k=−N

|f̂(k)− ck|2.

It is clear that the minimum is obtained when

f̂(k) = ck ∀k ∈ Z.

One particular consequence of this theorem is that the L2 norm of the
partial sums is bounded by the L2 norm of f :

||SN (f)||22 =
N∑

k=−N
|f̂(k)|2 ≤ 1

2π
||f ||22.
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Taking the limit as N →∞ we prove the following theorem.

Theorem 1.3 (Bessel inequality). If f ∈ L2(T), then

∞∑
k=−∞

|f̂(n)|2 ≤ 1

2π

∫
T
|f |2 = ||f ||22. (1.10)

In particular, we observe that if f ∈ L2(T) then the sequence of Fourier
coefficients {f̂(k)} tends to zero when |k| tends to infinity. We will prove in
the following chapter that this also happens in L1.

With these simple results, we see that the more natural context of the
Fourier series is the Hilbert space L2(T). But this space was “born” in the
XX century: it is quite modern. The Fourier series are much older than
Hilbert spaces. So the first important theorems about Fourier series do
not use this special structure of function spaces. They focus on classical
properties of functions, such as continuity, derivability and other local or
global properties.

In the next chapter we will discuss these classical results, and we will
move towards younger theories in the later chapters.



Chapter 2

Convergence of Fourier
Series

In this chapter we are first going to study the pointwise convergence of
the Fourier series of a function, and then we will try to give a criterion
for the uniform convergence of the series. Finally, we explain the Gibbs
phenomenon, which appears around jump discontinuities.

2.1 The Dirichlet kernel

We will introduce the Dirichlet kernel, which will simplify the computations
of the partial sums and will be of much help proving the different convergence
theorems.

Definition 2.1 (Dirichlet kernel). For N ≥ 0, the Dirichlet kernel DN is
the following function:

DN (t) =
1

2

N∑
k=−N

eikt. (2.1)

It is very easy to verify that the following equality holds

DN (t) =
sin(N + 1/2)t

2 sin t/2
. (2.2)

Indeed, we just need to use the formula 2 cos θ = eiθ + e−iθ, multiply the
expression (2.1) by sin t/2 and use the trigonometric formula

2 cosnt sin t/2 = [sin(k + 1/2)t− sin(k − 1/2)t] .

We can write the partial sum SN (f) in terms of the Dirichlet kernel:

7



8 2.1. The Dirichlet kernel

SN (f)(x) =

N∑
k=−N

f̂(k)eikx

=

N∑
k=−N

[
1

2π

∫
T
f(t)e−ikt dt

]
eikx

=
1

π

∫
T
f(t)

[
1

2

N∑
k=−N

e−ikteikx

]
dt

=
1

π

∫
T
f(t)

[
1

2
+

N∑
k=1

eik(x−t) + e−ik(x−t)

2

]
dt

=
1

π

∫
T
f(t)

[
1

2
+

N∑
k=1

cos k(x− t)

]
dt

=
1

π

∫
T
f(t)DN (x− t) dt.

The Dirichlet kernel has the following basic properties, that will be of
crucial importance.

Proposition 2.2. The Dirichlet kernel has the following properties:

(i) DN is a 2π-periodic function. We will understand that it is defined in
T.

(ii) DN is even: DN (t) = DN (−t).

(iii)
∫
TDN = π.

Proof. It follows directly from either of the expressions (2.1) or (2.2).

The most important thing about the Dirichlet kernel is that it allows us
to express the partial sums as a convolution:

SN (f) =
1

π
(DN ∗ f). (2.3)

These three properties allow us to express the partial sums in different
ways. For example, since f is defined in T, we understand that it is 2π-
periodic. So we can write

SN (f)(x) =
1

π

∫
T
f(x− t)DN (t) dt. (2.4)

Making a change of variable in the interval (−π, 0), we can obtain this
other formula:

SN (f)(x) =
1

π

∫ π

0
[f(x+ t) + f(x− t)]DN (t) dt. (2.5)
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2.2 The Riemann-Lebesgue lemma and some con-
sequences

The well-known Riemann-Lebesgue lemma owes its name to both Riemann
and Lebesgue. Both of them proved this result in the context of their re-
spective theories of integral. We will show it in the context of the Lebesgue
integral, since most of our work is within that theory.

Lemma 2.3 (Riemann-Lebesgue). Let f be an integrable function in T and
λ ∈ R (not necessarily an integer). Then

lim
λ→∞

∫
T
f(t) sinλt dt = lim

λ→∞

∫
T
f(t) cosλt dt = 0.

Proof. We will prove the limit for the sine. The limit for the cosine is
analogous. We first start with the characteristic function of an interval
(a, b) ⊂ T. In this case∣∣∣∣∫

T
χ(a,b)(t) sin(λt) dt

∣∣∣∣ =

∣∣∣∣∫ b

a
sinλt dt

∣∣∣∣ =

∣∣∣∣cosλb− cosλa

λ

∣∣∣∣ ,
which clearly tends to zero as λ tends to infinity. We deduce that the
result is also true for step functions, which are finite linear combination of
characteristic functions of intervals. We know, from measure theory, that
this would also imply that the result is true for simple functions.

If f is an arbitrary integrable function, then given an ε > 0, there exist
a simple function gε such that∫

T
|f − gε| < ε/2.

We can write∣∣∣∣∫
T
f(t) sinλt dt

∣∣∣∣ ≤ ∫
T
|f(t)− gε(t)|dt+

∣∣∣∣∫
T
gε(t) sinλt dt

∣∣∣∣ .
It turns out that if λ is big enough, the second term is smaller than ε/2.
This completes the proof.

The first consequence of the Riemann-Lebesgue lemma is that the se-
quences of the Fourier coefficients of an integrable function tend to zero.
We saw, using Bessel’s inequality (1.10) that this was true for functions in
L2(T).

Using this lemma, we can prove a very important property of the Fourier
series: the localization property. It means that the behaviour of the Fourier
series of f at a point x0 ∈ T depends only on the behaviour of f in a
neighbourhood of x0. This can be surprising, since the Fourier coefficients
are defined integrating f in the whole torus T.
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Theorem 2.4 (Riemann’s localization principle). Let x0 be a point in T.

(i) If f ∈ L1(T) is a function such that f(x) = 0 for all x ∈ (x0−δ, x0+δ)
and some δ > 0, then

lim
N→∞

SN (f)(x0) = 0.

(ii) If f, g ∈ L1(T) and f(x) = g(x) for all x ∈ (x0 − δ, x0 + δ) and some
δ > 0, then either limN→∞ SN (f)(x0) and limN→∞ SN (g)(x0) both
exist and are equal or neither of them exists.

Proof. (i) From the hypotheses and from the formula (2.4) we have

SN (f)(x0) =
1

π

∫
δ≤|t|<π

f(x0 − t)
2 sin t/2

sin(N + 1/2)tdt.

The function sin t/2 is continuous and does not vanish in the integra-
tion domain. Since f(x0 − t) is integrable, it follows that the function

g(t) =

{
f(x0−t)
2 sin t/2 , δ ≤ |t| < π,

0, |t| ≤ δ,

is integrable in T. Thus, the Riemann-Lebesgue lemma implies that
limN→∞ SN (f)(x0) = 0.

(ii) It is sufficient to notice that (f − g)(x) = 0 in (x0 − δ, x0 + δ), and to
apply (i) to the function f − g.

Another simple but effective consequence of the Riemann-Lebesgue lemma
is a condition for the convergence of the Fourier series at a point.

Theorem 2.5. Let f be an integrable function in T, and suppose that f is
derivable at x0 ∈ T. Then the Fourier series of f converges to f(x0) at x0:

lim
N→∞

SN (f)(x0) = f(x0).

Proof. Using the properties of the Dirichlet kernel from Proposition 2.2, we
shall write

SN (f)(x0)− f(x0) =
1

π

∫
T

[f(x0 + t)− f(x0)]DN (t) dt

=
1

π

∫
T

f(x0 + t)− f(x0)

t

t

2 sin t/2
sin(N + 1/2)tdt.

We know that the first factor is integrable in (−π,−δ) ∪ (δ, π), and it is
bounded in (−δ, δ), since f is derivable in x0. So the first factor is integrable
in T. The second factor is continuous in T. Thus, we can use lemma 2.3 to
conclude that the limit of SN (f)(x0)− f(x0) is 0.

Remark 2.6. If f is not derivable at x0, but its both left-sided and right-
sided derivatives exist, then the conclusion of Theorem 2.5 still holds. This
can easily be checked using expression (2.5).
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2.3 The Dirichlet theorem

The first convergence theorem was given by Dirichlet in 1829. It requires the
function f to be bounded and continuous in T, except for a finite number of
points, and to have a finite number of maxima and minima in T. Later on,
Dirichlet realized that the hypothesis of f being bounded could be replaced
by the hypothesis of |f | having a finite integral in T.

Let f be a piecewise monotone function in T (meaning that we can
decompose T in a finite number of smaller intervals in which f is monotone).
Then f has finite left- and right-limits at every point of T.

We will prove the Dirichlet theorem in a simplified way discovered by
Bonnet. Dirichlet’s original proof is much longer, but not complicated.

Lemma 2.7 (Bonnet 1850). Let g be a non-decreasing and non-negative
function on [a, b], and let h be continuous and with a finite number of sign
changes in [a, b]. Then there exists some c ∈ (a, b) such that

∫ b

a
g(t)h(t) dt = g(b)

∫ b

c
h(t) dt.

Proof. First of all, let us decompose the interval (a, b) in the smaller intervals
(a0, a1), (a1, a2), ..., (ak−1, ak) where h has constant sign. There exist µj ∈
[g(aj−1+), g(aj−)] such that

∫ aj

aj−1

g(t)h(t) dt = µj

∫ aj

aj−1

h(t) dt.

Define H(x) =
∫ b
x h(t) dt, so that

∫ b

a
g(t)h(t) dt =

k∑
j=1

µj [H(aj−1)−H(aj)]

= µ1H(a) +
k−1∑
j=1

(µj+1 − µj)H(aj) + (g(b)− µk)H(b).

Notice that H(b) = 0, so the expression is the same. All the coefficients that
are multiplying H in the expression above are non-negative because g was
non-negative and non-decreasing. So the sum from the third term can be
expressed as the sum of all those coefficients times a number between the
maximum and the minimum of H. Since H is continuous, we know that H
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reaches that value in some c ∈ (a, b):

∫ b

a
g(t)h(t) dt = H(c)

µ1 +

k−1∑
j=1

(µj+1 − µj) + g(b)− µk


= H(c)g(b)

= g(b)

∫ b

c
h(t) dt.

Lemma 2.8. There exists M > 0 such that∣∣∣∣∫ δ

η
DN (t) dt

∣∣∣∣ ≤M,

for every 0 ≤ η ≤ δ ≤ π and for every N ≥ 0.

Proof. We can add and subtract t−1 sin(N + 1/2)t inside the integral and
we obtain∣∣∣∣∫ δ

η

sin(N + 1/2)t

2 sin t/2
dt

∣∣∣∣ ≤ ∫ δ

η

∣∣∣∣ 1

2 sin t/2
− 1

t

∣∣∣∣ dt+

∣∣∣∣∫ δ

η

sin(N + 1/2)t

t
dt

∣∣∣∣ .
The first integral on the second term does not depend on N , and it is
bounded because it is the integral of a continuous function. The second
integral does depend on N . If we make the variable change (N + 1/2)t = x,
we obtain ∣∣∣∣∫ B

A

sinx

x
dx

∣∣∣∣ , (2.6)

where A = η/(N + 1/2) and B = δ/(N + 1/2). So we have to prove that
(2.6) is uniformly bounded for any 0 ≤ A ≤ B <∞. If B ≤ 1, then sin t ≤ t
and the integral is bounded by 1. If A ≥ 1, then we can integrate by parts
and obtain∣∣∣∣∫ B

A

sin t

t
dt

∣∣∣∣ =

∣∣∣∣cosA

A
− cosB

B
−
∫ B

A

cos t

t2
dt

∣∣∣∣ ≤ 1

A
+

1

B
+

1

A
≤ 3.

Finally, if A < 1 < B, then we can bound the integrals in (A, 1) and (1, B)
separately as before.

Theorem 2.9 (Dirichlet, 1829). Let f be a piecewise monotone and bounded
function on T. Then, for every x ∈ T, SN (f)(x) converges to (f(x+) +
f(x−))/2. In particular, if f is continuous at x, then SN (f)(x) converges
to f(x).

Proof. We want to show that

lim
N→∞

∫ π

0
[f(x+ t) + f(x− t)− f(x+)− f(x−)]DN (t) dt = 0. (2.7)
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The function between brackets is a piecewise monotone function such that
its right-side limit at 0 is 0. So we just need to prove that the following
equality holds for every piecewise monotone function g on (0, π) such that
g(0+) = 0:

lim
N→∞

∫ π

0
g(t)DN (t) dt = 0.

We may assume that g is increasing on the first interval at the right of 0,
otherwise change the sign of g. Take ε > 0, and choose δ > 0 such that g
is increasing in (0, δ) and g(δ) < ε/2M (this M is the constant in Lemma
2.8). If we apply both Lemmas 2.7 and 2.8, we obtain∣∣∣∣∫ δ

0
g(t)DN (t) dt

∣∣∣∣ =

∣∣∣∣g(δ)

∫ δ

η
DN (t) dt

∣∣∣∣ ≤ ε

2
.

If we follow the proof of the Localization principle 2.4, we can make the
integral in (δ, π) smaller than ε/2, choosing N big enough. This completes
the proof.

This theorem was the first theorem which proved the pointwise conver-
gence of Fourier series. The hypotheses are quite strong. This theorem also
applies if f is not a bounded function, but it has to be integrable.

Camille Jordan, while studying Fourier series in his work, came up with
a new condition that would assure the pointwise convergence of the Fourier
series. He called that property bounded variation, and it has many appli-
cations in analysis, not necessarily related to the problem of convergence of
Fourier series.

Definition 2.10. Let f be a function on [a, b]. We say that f has bounded
variation if there is some constant C > 0 such that

k∑
i=1

|f(ti)− f(ti−1)| ≤ C (2.8)

for every partition a = t0 < t1 < ... < tk = b of the interval. In this case we
call total variation of f the smallest of those constants C, and we denote it
as V (f).

Real-valued functions of bounded variation have a very surprising prop-
erty: every real-valued function of bounded variation is the difference of two
non-decreasing and bounded functions. Indeed, put V f(x) the total varia-
tion of f in [a, x]. It is cleat that V (f) is a non-decreasing function, and if
x1 < x2, then

V f(x2) ≥ V f(x1) + f(x2)− f(x1)

so V f(x) − f(x) is also a non decreasing function. And writing f = V f −
(V f − f), we prove that statement. For complex-valued functions, we take
into account the real and complex parts separately. In this way, Theorem
2.9 applies also to functions of bounded variation:
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Theorem 2.11 (Dirichlet-Jordan theorem). Let f be a function of bounded
variation on T. Then SN (x) converges to (f(x+) + f(x−))/2 for every
x ∈ T.

2.4 The Dini theorem

There are other theorems that give the pointwise convergence of the Fourier
series. One of them was first proved by Dini in 1880.

This theorem is more general than a previous theorem proved by Lip-
schitz in 1864. This theorem has the hypothesis that f satisfies the local
Lipschitz condition at a point x0. The condition described in the theorem is
known by the name Dini condition and, as the concept of bounded variation,
it was born in the context of Fourier series.

Theorem 2.12 (Dini, 1880). Let f be an integrable function on T, x0 ∈ T
and l ∈ C a complex number such that the function

Φ(t) = f(x0 + t) + f(x0 − t)− 2l

satisfies the condition ∫
(0,δ)

|Φ(t)|
t

dt <∞

for some δ > 0. Then, the Fourier series of f converges to l in x0:

lim
N→∞

SN (f)(x0) = l.

Proof. Using formula (2.5) and the properties of the Dirichlet kernel, we can
write

SN (f)(x0)− l =
1

π

∫ π

0
Φ(t)DN (t) dt =

1

π

∫ π

0

Φ(t)

2 sin t/2
sin(N + 1/2)t dt.

The function
Φ(t)

2 sin t/2
=

Φ(t)

t

t

2 sin t/2

is integrable in (0, δ) because the term on the left is integrable by hypothesis
and the term on the right is bounded. So it is clear that this function
is integrable in (0, π). So we can use Lemma 2.3 and we conclude that
limN→∞ SN (f)(x0) = l.

Remarks 2.13. We notice the following statements.

• If f is continuous at the point x0, then the only option for l is f(x0),
but the mere continuity does not ensure the Dini condition.



Chapter 2. Convergence of Fourier Series 15

• If f satisfies the local Lipschitz condition at x0 ∈ T (and if, of course,
f is integrable in T), then we can apply Theorem 2.12 to obtain the
pointwise convergence of the Fourier series at x0.

• Suppose that f satisfies the uniform Hölder condition of order α on T.
That is, suppose that there exists a positive constant L and α ∈ (0, 1]
such that for every pair of points x, y ∈ T, |f(x)− f(y)| ≤ L|x− y|α.
Then, the Fourier series converges pointwise to f at every point of T.

We have seen two main theorems of pointwise convergence of the Fourier
series. They have very different hypotheses. But neither one is stronger than
the other. There exist functions that satisfy the conditions for one theorem
but not for the other.

The function

f(x) = − 1

log |x/2π|
satisfies the Dirichlet conditions, but it fails the Dini condition at the origin.

Similarly, the function

g(x) = |x|α sin
1

|x|

satisfies the Hölder condition of order α in T, so it satisfies the Dini condition.
But g is not of bounded variation, so we cannot apply the Dirichlet-Jordan
theorem.

2.5 Uniform convergence

The most simple criterion for the uniform convergence of a series of functions
is Weierstrass theorem, which states that given a series of functions, if we can
majorate each term by a constant in a way that the series of the constant is
convergent, then the original series is uniformly convergent. This can easily
be applied to some Fourier series

Proposition 2.14. Let f be a piecewise C1 function on T, meaning that
f is continuous in T and derivable except for a finite number of points and
that the derivative is piecewise continuous and bounded. Then the Fourier
series of f converges uniformly to f

Proof. The relation between f̂ and (f ′)̂ is given in section 1.3:

(f ′)̂ (n) = inf̂(n), ∀n ∈ Z.

Now, using the simple but effective inequality 2ξη ≤ ξ2 + η2 we obtain

|f̂(n)| ≤ 1

2

(
1

n2
+ n2|f̂(n)|2

)
≤ 1

2

(
1

n2
+ |(f ′)̂ (n)|2

)
.
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Using Bessel inequality, we conclude that the series

∞∑
n=−∞

|f̂(n)|

is convergent. So the Fourier series of f is uniformly convergent to f .

Remark 2.15. If the Fourier series of f is uniformly convergent to f ,
then f must be continuous, because the partial sums are all trigonometric
polynomials which are always continuous. So if f is not continuous, there
is no hope for the uniform convergence.

The localization principle says that the behaviour of the series at a point
depends only on the behaviour of the function on a neighbourhood of that
point. We will show that we have a similar result for uniform convergence.
We will begin giving a new version of the Riemann-Lebesgue lemma.

Lemma 2.16. Let f ∈ L1(T) be a bounded function and g a bounded and
piecewise monotone function. Then,

lim
λ→∞

∫
T
f(x+ t)g(t) sinλt dt = 0

uniformly on x.

Proof. We can suppose without loss of generality that f and g are positive.
Let Mf and Mg be the bounds of f and g respectively. Given ε > 0, there
exists a step function h =

∑
mjχIj , where Ij is an interval, that satisfies

0 ≤ h ≤ f and

‖f − h‖1 =

∫
T
f − h ≤ ε

2Mg
.

Thus∫
T
f(x+ t)g(t) sinλt dt

=

∫
T
(f(x+ t)− h(x+ t))g(t) sinλt dt+

∫
T
h(x+ t)g(t) sinλt dt.

On the one hand, the first integral is clearly bounded by ε/2. On the other
hand, for the second integral we have

J∑
j=1

mj

∫
Ij−x

g(t) sinλt dt,

where we can apply the second mean value theorem for integrals (remember
that g was piecewise monotone). We obtain the bound for the second integral

CMfMgJ

λ
.
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We can make that bound smaller than ε/2 choosing λ big enough. This was
all independent from x, so we conclude the proof.

Theorem 2.17. Let f be a function that vanishes on [a, b] ⊂ T. Then the
Fourier series of f tends to zero uniformly on [a+ δ, b− δ], for δ > 0.

Proof. If x ∈ [a+ δ, b− δ], then

SN (f)(x) =
1

π

∫
|t|≥δ

f(x− t)sin(N + 1/2)t

2 sin t/2
dt.

Put g(t) = χ|t|≥δ/ sin t/2. Then we can apply Lemma 2.16 and obtain the
desired result.

Theorem 2.18. Let f be a continuous function on T, and suppose that
f has a piecewise continuous and bounded derivative on [a, b]. Then the
Fourier series of f tends to f uniformly on [a+ δ, b− δ], for δ > 0.

Proof. We just need to define a function g that agrees with f on [a, b] and
that satisfies the conditions for Proposition 2.14 outside of the interval. Then
apply Theorem 2.17 to f − g and we finish the proof.

2.6 The Gibbs phenomenon

The Gibbs phenomenon appears when dealing with real valued functions
that are piecewise continuous and have a (finite) jump discontinuity. For a
complex valued function, we would analyse the real and the imaginary part
of the function separately. For example, let us examine the first few partial
sums of the sign function:

f(x) = sign x =


1 if x > 0,

0 if x = 0,

−1 if x < 0.

The Fourier series of f is, in its real form

4

π

∞∑
k=0

sin(2k + 1)x

2k + 1
.

We can apply the Dirichlet theorem 2.9, and we see that the series con-
verges to f pointwise. There cannot be uniform convergence in T because
the sign function is not continuous. But for any δ > 0 there is uniform
convergence in the closed interval [δ, π − δ], by Theorem 2.18.

In Figure 2.1, there is a representation of SN . We see that in the central
part of each interval we are relatively close to f , and at the discontinuities
we have an overshoot in the oscillations of the partial sum. In Figures 2.2
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-π π

-1

1

Figure 2.1: Graphic of S6.

0.8

1

1.2

Figure 2.2: Detail of the graphic of S30.

and 2.3 we see that this overshoot does not die out. Indeed, it approaches
the value

2

π

∫ π

0

sinx

x
dx ≈ 1.178979744472167.

Let us see that this is true. First we locate the maximum of S2N−1. It
will be at the points at which the derivative vanishes.

d

dx
S2N−1(f)(x) =

4

π

N−1∑
k=0

cos (2k + 1)x =
4

π

sin 2Nx

sinx
.

This derivative vanishes at the points x = kπ/2N, k = 1, 2, ..., 2N − 1. The
second derivative has the same sign as cos 2Nx at those points, so the fist
one is a local minimum, the second one a local maximum and so on.
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0.8

1

1.2

Figure 2.3: Detail of the graphic of S50.

We can use the fundamental theorem of calculus to obtain

S2N−1(f)(x) =
4

π

∫ x

0

sin 2Nt

sin t
dt,

since we have that S2N−1(f)(0) = 0. Thus, we can easily check that the
global maximum is obtained in x = π/2N . We are going to evaluate the
partial sum at this point and we are going to compute the limit as N →∞.
We want to know the value of

lim
N→∞

S2N−1(f)
( π

2N

)
= lim

N→∞

4

π

N−1∑
k=0

sin(2k + 1)π/2N

2k + 1
.

In order to compute this limit, we consider the function g(x) = sinx/x.
We know that it is integrable in the interval (0, π), because it is bounded. We
can write the Riemann sum in the partition xk = kπ/N , for k = 0, ..., N .
We evaluate the Riemann sum in the middle point of each interval. We
obtain

S{xk}(g) =
π

N

N−1∑
k=1

sin(2k + 1)π/2N

(2k + 1)π/2N
=
π

2
S2N−1(f)

( π

2N

)
.

We conclude that the value of the overshoot at the discontinuity is

lim
N→∞

S2N−1(f)
( π

2N

)
=

2

π

∫ π

0

sin t

t
dt = λ.

This phenomenon is known as the Gibbs phenomenon. It also happens
to other functions with jump discontinuities. Let g be a function on T
that has a jump discontinuity at x0. Let 2l = g(x0+) − g(x0−). Then the
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function g − 2lf is continuous at x0, where f is the sign function above.
If g satisfies one of the convergence hypotheses, then the Fourier series of
g − 2lf converges uniformly in a neighbourhood of x0 and, in consequence,
the behaviour of the partial sums of g is the same as the behaviour of the
partial sums of 2lf in that neighbourhood. Thus, the value of the limit of
the overshoot of the partial sums of g will be lλ.

The Gibbs phenomenon was discovered by Wilbraham in 1848, but it
was forgotten until 1898, when Michelson and Stratton designed a tool that
could make graphics of the partial sums of Fourier series. Gibbs successfully
analysed the phenomenon in 1899, and that is why it is called the Gibbs
phenomenon.

The Gibbs phenomenon is one of the causes of ringing artefacts in signal
processing. In this field, an artefact is an error in the perception of a visual
information introduced by the involved techniques. In particular, in digital
image processing, ringing artefacts appear near sharp transitions in a sig-
nal. Some image compressing algorithms use Fourier analysis, so the Gibbs
phenomenon appears every time there is a sharp transition in the image.



Chapter 3

Summability of Fourier series

3.1 Cesàro summability

When we are dealing with number series, we think of the series as a formula
to compute the total “sum” of the terms of the series, whenever it exists.
But we actually obtain that sum as the limit of the partial sums. If the
sequence of partial sums fails to have a limit, we may want to find another
way of giving a meaning to the sum of the series. The first way we study is
called the Cesàro summability.

Given a numerical series
∞∑
k=0

ak,

we define the averages of the partial sums as

σN =
1

N + 1

N∑
n=0

sn =
1

N + 1

N∑
n=0

n∑
k=0

ak =
1

N + 1

N∑
k=0

(
1− k

N + 1

)
ak.

(3.1)

Definition 3.1. We will say that the series
∑∞

k=0 ak is Cesàro summable
to a if

lim
N→∞

σN = a.

In that case, we write
∞∑
k=0

ak = a (C).

Thankfully, one can check that if a series converges to a in the traditional
sense, it is Cesàro summable to a. This way, we have a more general meaning
of the convergence of a series.

21
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Example 3.1. The series
∑∞

n=0(−1)n is divergent, but

∞∑
n=0

(−1)n =
1

2
(C).

We are interested in applying the Cesàro summability to Fourier series.
The partial sums of a Fourier series

∑∞
n=−∞ f̂(n)einx often do not converge

as we would like, but the corresponding Cesàro partial sums may have a
better behaviour. These Cesàro partial sums are

σN (f)(x) =
s0(f)(x) + . . . sN (f)(x)

N + 1
=

N∑
k=−N

(
1− |k|

N + 1

)
f̂(n)eikx. (3.2)

Using formula (1.7) we can express σN (x) in the trigonometric form

σN (f)(x) =
a0(f)

2
+

N∑
k=1

(
1− k

N

)
(ak(f) cos kx+ bk(f) sin kx). (3.3)

We can express the partial Cesàro sum as a convolution, in a similar way as
we did with the partial sum and the Dirichlet kernel in (2.3):

σN (f)(x) =
1

N + 1

N∑
k=0

Sk(f)(x)

=
1

N + 1

N∑
k=0

1

π

∫
T
f(t)Dk(t− x) dt

=
1

π

∫
T
f(t)

(
1

N + 1

N∑
k=0

Dk(t− x)

)
dt.

Using the fact that 2 sin t/2 sin(k + 1/2)t = cos jt− cos(j + 1)t, we obtain

N∑
k=0

Dk(t) =

N∑
k=0

sin(j + 1/2)t

2 sin t/2
=

1− cos(N + 1)t

4(sin t/2)2
=

1

2

(
sin(N + 1)t/2

sin t/2

)2

.

Definition 3.2 (Fejér kernel). For N ≥ 0, the function

FN (t) =
1

N + 1

N−1∑
k=0

DN (t) =
1

2(N + 1)

(
sin(N + 1/2)t/2

sin t/2

)2

(3.4)

is called the Fejér kernel.

In this way, we can write the N−th Cesàro partial sum of the Fourier
series in the following way:
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σN (f)(x) =
1

π

∫
T
f(t)FN (t− x) dt =

1

π
(f ∗ FN )(x). (3.5)

If we use (2.5), we obtain an analogous formula for σN (f):

σN (f)(x) =
1

π

∫ π

0
(f(x+ t)f(x− t))FN (t) dt. (3.6)

Proposition 3.3. The Fejér kernel has the following properties:

(i) FN is a continuous, bounded, even and non-negative function.

(ii)
∫
T FN (t) dt = π for every N .

(iii) For every δ > 0, FN (t) tends uniformly to zero as N tends to infinity
in T \ (−δ, δ).

Proof. The first statement is clear from (3.4).

The second statement is also clear from the fact that FN is the arithmetic
mean of Dirichlet kernels, whose integral is also π.

The third statement follows from the bound

FN (t) ≤ 1

2(N + 1) sin2 δ/2
.

With the help of the Féjer kernel, we are able to obtain summability of
the Fourier series (in the Cesàro meaning, of course) for every continuous
function.

Theorem 3.4 (Fejér). Let f ∈ L1(T) be an integrable function that has
side-limits at the point x0. Then

lim
N→∞

σN (f)(x0) =
1

2
[f(x0+) + f(x0−)] .

In particular, if f is continuous at x0, then

lim
N→∞

σN (f)(x0) = f(x0).

Proof. Let us write, using (3.6) and the second property from Proposition
3.3,

σN (f)(x)− 1

2
[f(x+) + f(x−)] (3.7)

=
1

π

∫ π

0
FN (t) [f(x− t)− f(x−) + f(x+ t)− f(x+)] dt.
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We know the behaviour of the Fejér kernel outside a neighbourhood of zero,
so we split the integral into four parts. First, we take f(x− t)− f(x−):∣∣∣∣∫ π

0
FN (t) [f(x− t)− f(x−)] dt

∣∣∣∣ ≤ ∫ δ

0
+

∫ π

δ
|FN (t) [f(x− t)− f(x−)]| dt

≤ π sup
0≤t≤δ

|f(x− t)− f(x−)|+

(
sup
δ≤t≤π

FN (t)

)(∫
T
|f |+ |f(x−)|

)

Given ε > 0, we can choose δ small enough to make the first term less than
ε/4, because we know that the left-side limit is finite. Once we have this δ
fixed, we can choose N large enough to make the second term smaller than
ε/4, using the third property from Proposition 3.3, and that f ∈ L1(T). If
we make a similar argument for f(x+ t)− f(x+), we bound (3.7) by ε, thus
finishing the proof.

With this proof, we see that the Fejér means have very good behaviour
with continuous functions, while the traditional Fourier series behaves poorly.
If we tried to copy this proof with the Dirichlet kernel, it would fail because
the Dirichlet kernel is not a positive function, and the behaviour of the ab-
solute value is not very good. In particular, the integral of the absolute
value of the Dirichlet kernel is not uniformly bounded in N , as we shall see
in Chapter 5.

But this theorem allows us to prove Dirichlet’s theorem. A theorem
by Hardy (Theorem A.4) says that if a series is Cesàro summable and its
general term an has the property that |nan| is uniformly bounded, then
the series is convergent in the traditional way. If we have a function under
the hypotheses of Dirichlet’s theorem (a piecewise monotone and continuous
function), then its Fourier coefficients have that property (Exercise 1). So
Fejér theorem is stronger than the Dirichlets theorem.

3.2 Abel-Poisson summability

Another way of making a non-convergent numerical series summable is based
on a result by Abel. If a series

∑
an is convergent, then

∑
anr

n is also
convergent for 0 < r < 1, and defines a continuous function S(r). Abel
proved that in this case limr→1− S(r) coincides with the sum of the original
series. But S(r) and its limit can exist even if the original series is not
convergent. This way of summing series is called Abel summability. Poisson
used this fact in order to prove convergence of the Fourier series, but he did
not succeed. We will study this summability for the Fourier series, and it is
called in this context the Abel-Poisson summability.

We want to study the series of the form
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∞∑
k=−∞

f̂(k)eikxr|k|. (3.8)

We want to express it in an integral form. If f ∈ L1(T), then the
coefficients f̂(n) are bounded by the Riemann-Lebesgue lemma. So the series
(3.8) is continuous for 0 < r < 1 and uniformly convergent in 0 ≤ r ≤ 1−ε for
any ε > 0. With these observations, the computations bellow are justified.

∞∑
k=−∞

f̂(k)eikxr|k| =
∞∑

k=−∞

1

2π

∫
T
f(t)e−ikt dt eikxr|k|

=
1

2π

∫
T
f(t)

∞∑
k=−∞

e−ikteikxr|k| dt

=
1

π

∫
T
f(t)

1

2

∞∑
k=−∞

eik(x−t)r|k| dt.

Definition 3.5 (Poisson kernel). We will call Poisson kernel to the function

Pr(t) =
1

2

∞∑
k=−∞

eiktr|k|. (3.9)

This expression is very difficult to work with. We will introduce a more
compact form.

∞∑
k=−∞

eiktr|k| =
0∑

k=−∞
eiktr−k +

∞∑
k=0

eiktrk − 1

=
∞∑
k=0

e−iktrk +
∞∑
k=0

eiktrk − 1

=
1

1− re−it
+

1

1− reit
− 1

=
1− r2

1− 2 cos t+ r2

If we multiply by 1/2, we obtain the formula

Pr(t) =
1− r2

2(1− 2r cos t+ r2)
. (3.10)

With this notation we can write:

∞∑
k=−∞

f̂(k)eikxr|k| =
1

π
(Pr ∗ f)(x). (3.11)
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Proposition 3.6. The Poisson kernel has the following properties:

• Pr is a continuous, bounded, even and non-negative function.

•
∫
T Pr(t) dt = π for every 0 ≤ r < 1.

• For every δ > 0, Pr(t) tends uniformly to zero as r → 1− in T\(−δ, δ).

Proof. The first statement is clear from (3.10) except maybe for the non
negativity. Write 1 − 2r cos t + r2 = (1 − r)2 + 2r(1 − cos t) and now it is
clear that Pr is non-negative.
The second statement can be seen integrating (3.9) term by term, which can
be done because we have uniform convergence.
For the third statement, we can bound the denominator by (1−r)2 +2r(1−
cos δ) if δ ≤ t ≤ π. And now taking the limit as r → 1, the result is clear.

The Poisson kernel has exactly the same properties as the Fejér kernel.
If we analyse the proof of Theorem 3.4, we only use the properties from
Proposition 3.3, so the same conclusion will hold for the Poisson kernel.

Theorem 3.7. Let f ∈ L1(T) be an integrable function that has side-limits
at the point x0. Then

lim
r→1−

(Pr ∗ f)(x0) =
1

2
[f(x0+) + f(x0−)] .

In particular, if f is continuous at x0, then

lim
r→1−

(Pr ∗ f)(x0) = f(x0).

Proof. Let us write the convolution, using a small change of variables and
the fact that Pr is even:

(Pr ∗ f)(x) =

∫
T
Pr(t)f(x− t) dt =

∫ π

0
Pr(t) [f(x+ t) + f(x− t)] dt.

Then,

(Pr ∗ f)(x)− 1

2
[f(x+) + f(x−)] = (3.12)

=
1

π

∫ π

0
Pr(t) [f(x− t)− f(x−) + f(x+ t)− f(x+)] dt.

We know the behaviour of the Poisson kernel outside a neighbourhood of
zero, so we split the integral into four parts. First, we take f(x− t)−f(x−):
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∣∣∣∣∫ π

0
Pr(t) [f(x− t)− f(x−)] dt

∣∣∣∣ ≤ ∫ δ

0
+

∫ π

δ
|Pr(t) [f(x− t)− f(x−)]| dt

≤ π sup
0≤t≤δ

|f(x− t)− f(x−)|+

(
sup
δ≤t≤π

Pr(t)

)∫
T
|f |+ π|f(x−)|.

Given ε > 0, we can choose δ small enough to make the first term less
than ε/4, because we know that the left-side limit is finite. Once we have
this δ fixed, we can choose r close enough to 1 to make the second term
smaller than ε/4, using the third property from Proposition 3.6, and that
f ∈ L1(T). If we make a similar argument for f(x+ t)− f(x+), we bound
(3.12) by ε.

There is a theorem by Frobenius (Exercise 5) that says that if a series is
Cesàro summable then it is Abel summable. So this would mean that Abel
summability is stronger than Cesàro summability, and as a consequence,
Abel-Poisson summabiliy is stronger than Fejér summability, if we consider
Fourier series. But in practice, it is much easier to approximate the limit
of the Fejér means than Poisson means, because the Fejér means have a
discrete set of indices. Also, the Fejér means has only one limit, while the
Poisson means need two limits (first, the series; then r → 1), and it is not
clear if we can change the order of those limits with all the freedom we want.

3.3 Approximate identities

We can do the same thing we did with Cesàro and Abel-Poisson summability
in a more general context using approximate identities. If we take a closer
look to the proofs of Theorems 3.4 and 3.7, we see that we have only use a
few of the properties of the respective kernels. We will make a generalization
of these properties using approximation identities.

We need to introduce the concept of directed sets. Informally, a directed
set I is a set of indices that have a limit. More precisely, it is a set I together
with a collection of subsets {Ai} such that for every (i, j), there exists k with
Ak ⊂ Ai ∩Aj .

If we have a complex valued function f defined on a directed set I, we
say that f has limit L if for every ε > 0, there exists a subset Ajε such that
|f(x)− L| < ε for every x ∈ Ajε .

Example 3.2. The following sets are the most common directed sets

(i) N is a directed set with the subsets Ak = {k, k + 1, ...}. The limit is
the usual one: n→∞.

(ii) The set [0, 1) is also a directed set with the subsets Ak = (1− 1/k, 1).
In this case the limit is r → 1−.
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Definition 3.8. An approximate identity in the circle T is a function k(r, θ)
defined for θ ∈ T and r in some directed index set I, with the following three
properties:

lim
r

1

2π

∫
T
k(r, θ) dθ = 1, (3.13)

∫
T
|k(r, θ)| dθ ≤ C, (3.14)

lim
r

∫
|θ|>δ

|k(r, θ)| dθ = 0, ∀δ > 0, (3.15)

where C is a constant independent of r.

For example, both the Poisson kernel Pr(θ) and the Féjer kernel FN (θ)
are approximate identities.

Proposition 3.9. Suppose that k(r, θ) is an approximate identity.

• If Φ ∈ L∞(T) with limθ→0 Φ(θ) = L, then

lim
r

1

2π

∫
T
k(r, θ)Φ(θ) dθ = L (3.16)

• If, in addition, we have that for every δ > 0 sup|θ|≥δ |k(r, θ)| → 0, then

equality (3.16) holds for all Φ ∈ L1(T) with limθ→0 Φ(θ) = L.

Proof. Take δ > 0. Then, using (3.13) we have

1

2π

∫
T
k(r, θ)Φ(θ) dθ − L =

1

2π

(∫
|θ|>δ

+

∫
|θ|≤δ

)
k(r, θ)(Φ(θ)− L) dθ + o(1).

By (3.15), the first integral tends to zero, for any δ > 0. Given ε > 0, the
second integral can be made less than ε/2 taking δ small enough (Φ ∈ L∞
and use property 3.14), proving the first statement.

In order to prove the second statement, notice that the first integral can
be bounded by sup|θ|>δ |k(r, θ)|(L+ ||Φ||1), which tends to zero by the extra
hypothesis. We can bound the second integral by ε

∫
T |k(r, θ)| dθ taking δ

small enough. This completes the proof.

We want to apply approximate identities to norm convergence. We in-
troduce the following notation: fφ(θ) = f(θ − φ) is the translate of f .

Definition 3.10. A subspace B ⊂ L1(T) is called a homogeneous Banach
subspace if it has the following properties:

• ‖f‖1 ≤ ‖f‖B .
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• The map f → fθ is continuous in the B-norm; that is, for every f ∈ B,

lim
θ→0
‖f − fθ‖B = 0.

• The map f → fθ preserves the B-norm.

For example, the space C(T) with the supremum norm and the spaces
Lp(T) with 1 ≤ p < ∞ are all homogeneous Banach subspaces, but L∞(T)
is not an homogeneous subspace.

Theorem 3.11. If B is a homogeneous Banach subspace of L1(T) and
k(r, θ) is an approximate identity, then for every f ∈ B,

lim
r

∥∥∥∥ 1

2π

∫
T
k(r, φ)fφdφ− f

∥∥∥∥
B

= 0. (3.17)

Proof. Since B is a homogeneous Banach subspace, this norm is smaller
than

1

2π

∫
T
|k(r, φ)| ‖fφ − f‖B dφ,

which tends to zero by Proposition 3.9.

With this theorem, we conclude that the Féjer means converge uniformly
when f is a continuous function, and they also converge in the norm of Lp(T),
when 1 ≤ p <∞.

Corollary 3.12. The space of trigonometric polynomials is dense in the
spaces C(T) and Lp(T) for 1 ≤ p <∞.

Remark 3.13. There is no convergence in L∞ because if there were con-
vergence, it would be uniform convergence. This would imply that the initial
function, an arbitrary function in L∞(T), must be continuous, which is ab-
solutely false.

From this theorem we can also conclude the uniqueness of the Fourier
coefficients of an integrable function:

Corollary 3.14. If f, g ∈ L1(T), such that f̂(n) = ĝ(n) for every n ∈ Z,
then f = g almost everywhere.

Proof. Once again, we can suppose without loss of generality that g ≡ 0.
So then f̂(n) = 0, for every n ∈ Z. Then, using Fejér means, we can
approximate f in L1(T) with a sequence of trigonometric polynomials that
are all zero. So f = 0 almost everywhere.





Chapter 4

Fourier series in Lp(T)

We want to study the convergence of Fourier series in the Lp(T) spaces. In
these spaces we are not interested in pointwise convergence, since it does not
make sense to talk about the value of a function at a point. The elements
of Lp(T) are equivalence classes of functions that agree outside a set of zero
measure. Even so, one can study pointwise convergence in a different way,
the so-called almost everywhere convergence.

We are interested in norm convergence. We will see that there is norm
convergence in Lp(T) when 1 < p < ∞ but there is no convergence, in
general, in both the spaces L1(T) and L∞(T).

4.1 Parseval theorem: Fourier series in L2(T)

We first pay attention to the space L2(T), which is special because it is
a Hilbert space. The main goal of this section is to prove that the ba-
sic trigonometric system

{
eikx : k ∈ Z

}
is a complete orthogonal system in

L2(T), meaning that every function f ∈ L2(T) can be written in a unique
way as a series of eikx, the Fourier series of f .

We first show a general property of the Fourier coefficients. We have
proved this property in the previous chapter, but this is a more direct proof
and it does not use the theory of summability.

Proposition 4.1. Let f, g ∈ L1(T) be two functions such that f̂(k) = ĝ(k)
for every integer k. Then f = g almost everywhere.

Proof. Since the map f −→ f̂ is a linear map, we may suppose that g = 0.
Then f̂(k) = 0 for every integer k.

Let us assume for a second that f is continuous, and write f = u + iv

31
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where u and v are real functions. This way, for any k ∈ Z,

0 = 2πf̂(k) =

∫
T
(u(x) + iv(v))e−ikx dx

=

∫
T
(u(x) cos kx+ v(x) sin kx) dx+ i

∫
T
(v(x) cos kx− u(x) sin kx) dx.

We can do k = m and k = −m and add both equations, and we will obtain∫
T
u(x) cosmx dx =

∫
T
u(x) sinmxdx = 0,∫

T
v(x) cosmx dx =

∫
T
v(x) sinmxdx = 0,

for every m = 0, 1, 2... So we reduce the problem to the case of a real-valued
continuous function f such that∫

T
f(x) cosmxdx =

∫
T
f(x) sinmxdx = 0, m = 0, 1, 2, ... (4.1)

If f is not identically zero, there exists a point x0 such that f is not zero in
a neighbourhood of x0, due to the continuity of f . We may assume, without
loss of generality, that x0 = 0 and that f(x) ≥ 1/2 in a closed interval
I = [−δ, δ] (taking, for example, the function f(x− x0)/f(x0)).

Take the functions t(x) = 1 + cosx− cos δ and Tn(x) = (t(x))n. Clearly
t(x) ≥ 1 on I and |t(x)| < 1 on T\ I. So Tn(x) ≥ 1 on I while Tn(x)→ 0 on
T \ I if n → ∞. On the one hand, since Tn is as trigonometric polynomial
of degree n, from (4.1) we have∫

T
f(x)Tn(x) dx = 0.

On the other hand, if we use the dominated convergence theorem, we
obtain

lim
n→∞

∫
T−I

f(x)Tn(x) dx = 0.

If we subtract both integrals, we obtain
∫
I f(x)Tn(x) dx = 0 and this con-

tradicts the fact that f(x)Tn(x) ≥ 1/2 on I. So f ≡ 0 in T. This proves the
theorem for any complex-valued f ∈ C(T).

Let us suppose now that f is an arbitrary function of L1(T). Take

F (x) =

∫ x

−π
f(t) dt,

which is a continuous function. Let us compute its Fourier coefficients. If
k = ±1,±2,±3, ..., then
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2πF̂ (k) =

∫
T
F (x)e−ikx dx =

∫
T
e−ikx

(∫ x

−π
f(t) dt

)
dx

=

∫
T
f(t)

(∫ π

t
e−ikx dx

)
dt

=

∫
T
f(t)

e−ikπ − e−ikt

−ik
dt

= 2π

(
e−ikπ

−ik
f̂(0) +

1

ik
f̂(k)

)
= 0,

where we have used Fubini’s theorem and the fact that f̂(k) = 0 for every
k. So F̂ (k) = 0, ∀k ∈ Z \ {0}.

Set now A0 = 1
2π

∫
T F (x) dx, and define G(x) = F (x) − A0. Clearly

Ĝ(k) = 0 for every k ∈ Z, and G is a continuous function. So, using the first
part, we conclude that G = F − A0 ≡ 0. Using Lebesgue’s differentiation
theorem, we know that f(x) = (d/dx)F (x) = 0 almost everywhere, so f ≡ 0.
This completes the proof.

Now we can prove the famous Parseval theorem.

Theorem 4.2 (Parseval). Let f ∈ L2(T). Then the sequence of partial sums
of the Fourier series is convergent to f in the L2 norm and

1

2π

∫
T
|f(θ)|2 dθ =

∑
n∈Z
|f̂(n)|2.

Proof. First of all, let us check that the sequence of partial sum converges.
It is a Cauchy sequence. Indeed,

||SN (f)− SM (f)||22 =

∫
T
|SN (f)− SM (f)|2 dθ = 2π

N∑
|n|=M+1

|f̂(n)|2,

and we know that this tends to zero as N and M tend to infinity because
of Bessel inequality (1.10). Thus the partial sum sequence is a Cauchy
sequence, so it is convergent to some F ∈ L2(T). Now, we will see that
F = f almost everywhere. We will compute the Fourier coefficients of F :

2πF̂ (n) =

∫
T
F (θ)e−inθ dθ

=

∫
T

(F (θ)− SN (f)(θ)) e−inθ dθ +

∫
T
SN (f)(θ)e−inθ dθ.

If N > |n|, then the second integral equals 2πf̂(n). Using the Cauchy-
Schwarz inequality:

2π|F̂ (n)− f̂(n)| ≤
∫
T
|F (θ)− SN (f)(θ)|

∣∣∣e−inθ∣∣∣ dθ ≤ ||F − SN (f)||22
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So taking N →∞, we obtain F̂ (n) = f̂(n) for all n ∈ Z. Using Proposition
4.1, we obtain that f = F in L2(T), so we have proved that the partial sums
converge to f .

Theorem 4.3 (Riesz-Fischer). Let {cn} ∈ l2(Z). Then there exists a unique
function f ∈ L2(T) such that f̂(n) = cn for every n ∈ Z.

Proof. We know, from Proposition 4.1 that if such an f exists, then it is
unique. Consider the sequence {Tn(θ)} in L2(T), where

Tn(θ) =
n∑

m=−n
cme

imθ.

This way, {Tn(θ)} is a Cauchy sequence in L2(T), if M < N :

||TN − TM ||22 =
∑

M≤|m|≤N

|cm|2,

which tends to zero as N and M tend to infinity, because the sequence
was in l2(Z). Call f to the limit of TN in L2(T), and compute its Fourier
coefficients:

2πf̂(n) =

∫
T
f(θ)e−inθ dθ

=

∫
T

(f(θ)− TN (θ)) e−inθ dθ +

∫
T
TN (θ) dθ.

Once again, if N > |n|, then the second integral equals to cn. Thus

2π|f̂(n)− cn| =
∫
T
|f(θ)− TN (θ)| e−inθ dθ,

which tends to zero if N →∞.

With both Theorems 4.2 and 4.3 we have constructed a linear bijective
isometry between the spaces L2(T) and l2(Z):

L2(T) −→ l2(Z)

f 7−→ f̂ .

We now give an application of these theorems, a condition for a function
to be absolutely continuous. Since we are in the space L2(T), such a function
is equal to an actually absolutely continuous function.

Proposition 4.4. Let f ∈ L2(T) such that the Fourier coefficients satisfy
the condition ∑

n∈Z
n2|f̂(n)|2 <∞.

Then there exists a function F absolutely continuous on T such that f = F
almost everywhere. Moreover, F ′ ∈ L2(T) and (F ′)̂ (n) = inf̂(n).
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Proof. We know that the series

g(θ) =
∑
n∈Z

inf̂einθ

defines a function in L2(T), using Theorem 4.3. Moreover, it is clear that

ĝ(0) =

∫
Tg(θ) dθ = 0.

Define the function F in the following way:

F (θ) =

∫ θ

−π
g(φ) dφ.

Clearly, F is an absolutely continuous function, and F ′ = g a.e. Then
ĝ(n) = inF̂ (n) for all n ∈ Z, thus F̂ (n) = f̂(n) for every non-zero integer n.
That means that the function F − f is constant almost everywhere, which
completes the proof.

4.2 An interpolation theorem

In order to study the convergence of Fourier series in the spaces Lp(T), where
p 6= 2, we use interpolation theory. The main result we are going to use we
owe it to M. Riesz and Thorin.

We will first recall some basic properties of the Lp spaces. Let (M,µ) be
a measure space:

• If p0 < p < p1 and f ∈ Lp0(M) ∩ Lp1(M), then f ∈ Lp(M).

• If M has finite measure and f ∈ Lp0(M), then f ∈ Lp(M) for all
p > p0.

• If 0 < p0 < p < p1 <∞ and f ∈ Lp(M) , then there exist f0 ∈ Lp0(M)
and f1 ∈ Lp1(M) such that f = f0 + f1.

Suppose that we have two measure spaces, (M,µ) and (N, ν) and two
pairs of indices, (p0, q0) and (p1, q1), 1 ≤ p0, q0, p1, q1 ≤ ∞. Suppose that we
have two linear and bounded operators

A0 : Lp0(M) −→ Lq0(N),

A1 : Lp1(M) −→ Lq1(N),

with norms ||Ai||pi,qi = ki for i = 0, 1. Furthermore, suppose that they
coincide: A0 = A1 in Lp0(M) ∩ Lp1(M).

In this situation, given a t ∈ (0, 1), we define the indices (pt, qt) using
the convex combinations of the conjugate indices:

1

pt
=

t

p1
+

1− t
p0

;
1

qt
=

t

q1
+

1− t
q0

. (4.2)
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Theorem 4.5 (M. Riesz, Thorin). In the situation above, there exists a
linear operator At : Lpt(M) → Lqt(N) that coincides with A0 and A1 on
Lp0(M) ∩ Lp1(M) and whose norm satisfies

||At||pt,qt ≤ k1−t0 kt1.

Proof. Let f ∈ Lpt(M), where pt is given by the convex combination 4.2 for
some t. Then we can write

f = fχ|f |≤1 + fχ|f |>1,

so we define

Af = A
(
fχ|f |≤1

)
+A

(
fχ|f |>1

)
.

In the space Lq(N), we can compute the norm with the formula

‖h‖q = sup

∫
N
hg dν,

where the supremum is taken over the simple functions g ∈ Lq′ such that
‖g‖q′ ≤ 1. This way, the norm of the operator A is

‖A‖p,q = sup
‖f‖p=1, ‖g‖q′=1

∫
N

(Af)g dν.

We extend the interpolated exponents to the complex plane by defining

1

p(z)
=

z

p1
+

1− z
p0

,
1

q′(z)
=

z

q′1
+

1− z
q′0

, 0 ≤ Re(z) ≤ 1.

If f and g are both simple functions, we write

f =
N∑
j=1

aje
iαjχAj , f =

N∑
j=1

bje
iβjχBj ,

where aj , bj ≥ 0, αj , βj ∈ (0, 2π] and Aj , Bj are pairwise disjoint measur-
able sets of finite measure in M and N respectively. With the help of the
complex indices, we can extend the functions f and g to the strip in the
complex plane. In order to do that we define p = pt and q′ = q′t and we set

φ(·, z) =
N∑
j=1

a
p
p(z)

j eiαjχAj =
N∑
j=1

a
p
p(z)

j Φj ,

ψ(·, z) =

N∑
j=1

b
q′
q′(z)
j eiαjχBj =

N∑
j=1

b
q′
q′(z)
j Ψj ,
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where we have set

Φj = eiαjχAj , Ψj = eiβjχBj .

It is clear that, for each fixed z in the strip 0 ≤ Re(z) ≤ 1, we have φ(·, z) ∈
Lp(M), ψ(·, z) ∈ Lq′(N) and Aφ(·, z) ∈ Lq(N). Therefore, the function

F (z) =

∫
N
Aφ(·, z)ψ(·, z) dν =

N∑
j,k=1

a
p
p(z)

j b
q′
q′(z)
k

∫
N

(AΦj)Ψk dν

is a finite linear combination of exponential functions and, in particular, an
analytic function in the open strip 0 < Re(z) < 1 and it is bounded and
continuous on the closed strip 0 ≤ Re(z) ≤ 1. We need to compute the
norms on the boundary. For example, if z = iy, we have

1

p(iy)
=

1

p0
+

(
1

p1
− 1

p0

)
iy,

and since the Aj are pairwise disjoint,

|φ(·, iy)| =

∣∣∣∣∣∣
N∑
j=1

a
p

p(iy)

j Φj

∣∣∣∣∣∣ =
N∑
j=1

|aj |
p
p0 χAj = |f |

p
p0 .

Thus the norm will be

‖φ(·, iy)‖p0 =
∥∥∥|f |p/p0∥∥∥

p0
= ‖f‖p/p0p0

= 1.

In a similar way, we have

‖φ(·, 1 + iy)‖p1 =
∥∥∥|f |p/p1∥∥∥

p1
= ‖f‖p/p1p1

= 1,

‖ψ(·, iy)‖q′0 =
∥∥∥|g|q′/q′0∥∥∥

q′0
= ‖g‖q

′/q′0
q′0

= 1,

‖ψ(·, 1 + iy)‖q′1 =
∥∥∥|g|q′/q′1∥∥∥

q′1
= ‖g‖q

′/q′1
q′1

= 1.

So if we use Hölder’s inequality, we can obtain from the definition of F (z)
the following bounds

|F (iy)| ≤ ‖Aφ(·, iy)‖q0 ‖ψ(iy)‖q′0 ≤ k0
|F (1 + iy)| ≤ ‖Aφ(·, 1 + iy)‖q1 ‖ψ(1 + iy)‖q′1 ≤ k1

But when z = t ∈ (0, 1), we have φ(x, t) = f(x) and ψ(y, t) = g(y), so that
F (t) =

∫
N (Af)g dν. We are in the situation of the three lines theorem A.7,

so we conclude that |F (t)| ≤ k1−t0 kt1. Summarizing, we have proved that for
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any simple function f ∈ Lpt(M) and for any simple function g ∈ Lq
′
t(N)

such that ‖f‖pt = ‖g‖q′t = 1, we have∫
N

(Af)g dν ≤ k1−t0 kt1.

Due to the density of the simple functions, the operator A is bounded from
Lpt(M) to Lqt(N), and its norm satisfies ‖A‖pt,qt ≤ k

1−t
0 kt1.

This theorem has many applications. We show one of them, in the
context of Fourier series. Consider the measure spaces M = T with the
Lebesgue measure and N = Z with the counting measure. Let A(f)(n) =
1/2π

∫
T f(θ)e−inθ dθ. If we consider (p0, q0) = (1,∞), then A is a bounded

linear operator from L1(T) to L∞(Z), whose norm is ||A||1,∞ = k0 = 1/2π.
Indeed, if f ∈ L1(T), then

||Af ||l∞(Z) = sup
n∈Z
|Af(n)| = sup

n∈Z
|f̂(n)| ≤ 1

2π
||f ||L1(T).

We have that ||A||1,∞ ≤ 1/2π. We can easily check that the bound is
attained with the function f = 1.

Now we choose the pair of indices (p1, q1) = (2, 2). We know, from the
previous section, that in this case, ||A||2,2 = k1 = 1/2π. Let us compute
now the convex combination indices:

1

pt
=
t

1
+

1− t
2

=
1 + t

2
,

1

qt
=

t

∞
+

1− t
2

=
1− t

2
.

It turns out in this case that 1
pt

+ 1
qt

= 1, so they are conjugate exponents.

We call them pt = p and qt = p′. Since T has finite measure, Lp(T) ⊂ L1(T)
and the operator At must agree with A. Using Theorem 4.5, we conclude
that for any 1 ≤ p ≤ 2, A : Lp(T) → Lp

′
(Z) s a bounded operator, where

1/p+ 1/p′ = 1. Equivalently, if 1 ≤ p ≤ 2, for all f ∈ Lp(T) we have

||Af ||p′ =

(∑
n∈Z
|f̂(n)|p′

)1/p′

≤ 1

2π

(∫
T
|f(θ)|p dθ

)1/p

.

This inequality is called Hausdorff-Young inequality, and it is not true for
p > 2.

4.3 The conjugate function and convergence in Lp(T)

Our next ingredient in proving the convergence of Fourier series in these
spaces is the conjugate function. The name “conjugate function” comes
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from complex analysis, and it is related to the Poisson problem in the unit
circle. In this context, the conjugate function operator is defined in the set
P of trigonometric polynomials: H : P −→ P. H is given by the formula

H(
∑
n∈Z

cne
inθ) = −i

∑
n≥1

cne
inθ + i

∑
n≤−1

cne
inθ. (4.3)

This operator, sometimes called the discrete Hilbert transform, can be
used to express the projection operator P , which is defined on P in the
following way:

f =
∑
n∈Z

cne
inθ 7−→ Pf =

∑
n≥1

cne
inθ.

The expression of the projection operator using the conjugate function
is

Pf =
1

2
(f + iHf)− f̂(0).

It can easily be checked that the conjugate function operator is skew-
adjoint, meaning that if f and g are trigonometric polynomials, then∫

T
Hf · g = −

∫
T
f ·Hg. (4.4)

We will express the N -th Fourier partial sum as an operator using the
conjugate function. If f is a trigonometric polynomial, then

eiNθH(e−iNθf) = eiNθH

(∑
n∈Z

cne
i(n−N)θ

)

= eiNθH

(∑
n∈Z

cn+Ne
inθ

)

= eiNθ

−i∑
n≥1

cn+Ne
inθ + i

∑
n≤−1

cn+Ne
inθ


= −i

∑
n≥1

cn+Ne
i(n+N)θ + i

∑
n≤−1

cn+Ne
i(n+N)θ

= −i
∑
n>N

cne
inθ + i

∑
n<N

cne
inθ.

In a similar way, we can check that

e−iNθH(eiNθf) = −i
∑
n>−N

cne
inθ + i

∑
n<−N

cne
inθ.
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If we subtract both expressions, we obtain

eiNθH(e−iNθf)− e−iNθH(eiNθf) = 2i
N∑

n=−N
cne

inθ − icNeiNθ + i−Ne
−iNθ.

This allows us to express the N -th partial sum of the Fourier series of f
using the conjugate function:

SN (f)(θ) =
1

2i

[
eiNθH(e−iNθf)− e−iNθH(eiNθf)

]
(4.5)

+
1

2
f̂(N)eiNθ +

1

2
F̂ (−N)e−iNθ.

Lemma 4.6. The operator H is bounded on L2(T).

Proof. From Parseval theorem 4.2, we have that for any trigonometric poly-
nomial f ,

||Hf ||22 =
1

2π

∑
n6=0

|f̂(n)|2 ≤ 1

2π

∑
n∈Z
|f̂(n)|2 = ‖f‖22 .

With this lemma, we can extend the definition of H to the whole space
L2(T). We can do this because the subspace P of trigonometric polynomials
is dense in L2(T) by Theorem 4.2. So given an arbitrary f ∈ L2(T), we
approximate f with its Fourier partial sums SN (f) and define

H(f) = lim
N→∞

H(SN (f)).

So the operator H is well defined on L2(T), due to its continuity. Since
T has finite measure, we know that Lp(T) ⊂ L2(T) if p > 2, so we have H
defined on the whole space Lp(T) if p > 2. Let us see that it is also bounded.

Lemma 4.7. If k = 2, 3, ... there exists some constant C2k such that if f is
a trigonometric polynomial, then ‖Hf‖2k ≤ C2k ‖f‖2k.

Proof. We begin the proof supposing that f is real valued, and that f̂(0) = 0.
Then its coefficients satisfy that, ∀n ∈ Z,

f̂(−n) = f̂(n).

Thus, Hf is also real. We can write the projection operator:

Pf =
1

2
(f + iHf).

We now expand (Pf)k using the binomial theorem:

(Pf)k =
1

2k
(f + iHf)k =

1

2k

k∑
j=0

(
k

j

)
f j(iHf)k−j .
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We remark that there is no constant term (remember that f had no constant
term, because f̂(0) = 0). So we have

0 =

∫
T
(2Pf)2k =

2k∑
j=0

(
2k

j

)∫
T
f j(iHf)2k−j

When j is odd, f j(iHf)2k−j is purely imaginary. So if we take the real part,
and make the change j = 2r we are left with

0 =
k∑
r=0

(
2k

2r

)
(−1)k−r

∫
T
f2r(Hf)2(k−r)

= (−1)k
∫
T
(Hf)2k +

k∑
r=1

(
2k

2r

)
(−1)k−r

∫
T
f2r(Hf)2(k−r).

Note that since f,Hf ∈ L2k then f2r ∈ Lk/r and (Hf)2(k−r) ∈ Lk/(k−r).
So if we isolate the first term and apply both the triangle and Hölder’s
inequalities:

∫
T
(Hf)2k ≤

k∑
r=1

(
2k

2r

)∫
T
f2r(Hf)2(k−r)

≤
k∑
r=1

[(
2k

2r

)(∫
T
f2k
) r
k
(∫

T
(Hf)2k

) k−r
k

]
.

Take

X :=
‖Hf‖2k
‖f‖2k

=

(∫
T(Hf)2k∫

T f
2k

) 1
2k

.

We have to find C2k independent from f so that X ≤ C2k. We may suppose
that X > 1. If we divide the expression above by ‖f‖2k2k, we have the
polynomial inequality

X2k ≤
k∑
r=1

(
2k

2r

)
X2k−2r. (4.6)

Note that every term in the right hand side of (4.6) is bounded by X2k−2.
So

X2k ≤ X2k−2
k∑
r=1

(
2k

2r

)
= X2k−2(22k − 1).

Then X2 ≤ 22k − 1. So we can choose C2k =
√

22k − 1, finishing the proof
for real valued trigonometric polynomials.
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Since the space of trigonometric polynomials is dense in the space Lp(T)
(Theorem 3.12), we obtain the following result, arguing as we did in L2(T).

Corollary 4.8. The operator H is a bounded linear operator from L2k(T)
to L2k(T) for any k = 1, 2, 3, ...

With all the ingredients ready, we are prepared to prove the boundedness
of the operator H.

Proposition 4.9. H is a bounded operator from Lp(T) to Lp(T) whenever
1 < p <∞.

Proof. If 2 < p < ∞, then there exists k ≥ 1 such that 2 < p < 2k. So,
using the M. Riesz-Thorin interpolation theorem 4.5 we conclude that H is
bounded in Lp(T). If 1 < p < 2, then we will use the duality of the norms
and we will obtain

‖Hf‖p = sup
06=g∈Lp′ (T)

∫
T |gHf |
‖g‖p′

,

where we can take the supremum over the set P of trigonometric polynomials
(since it is dense in Lp

′
(T)). Using (4.4), we manipulate the expression and

obtain

‖Hf‖p = sup
06=g∈Lp′ (T)

|
∫
T gHf |
‖g‖p′

= sup
06=g∈Lp′ (T)

|
∫
T fHg|
‖g‖p′

≤ sup
06=g∈Lp′ (T)

1

‖g‖p′
‖f‖p ‖Hg‖p′

≤ sup
06=g∈Lp′ (T)

‖f‖pCp′ ,

where we have used Hölder’s inequality and the bound of H in Lp
′
(T) (p′ >

2). Thus, we conclude the boundedness of H in Lp(T) if 1 < p < 2.

This proposition can be used to deduce the main convergence result on
the Lp(T) convergence of the Fourier series.

Theorem 4.10 (M. Riesz). Suppose that 1 < p <∞ and f ∈ Lp(T). Then
the Fourier series of f converges in the norm of Lp(T), that is,

lim
N→∞

‖SN (f)− f‖p = 0.

Proof. It is clear that we have convergence on the dense set P of trigono-
metric polynomials. Furthermore, the partial sum operators are uniformly
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bounded in Lp(T):

||SN (f)||p

≤ 1

2

∥∥∥eiNθH(e−iNθf)
∥∥∥
p

+
1

2

∥∥∥e−iNθH(eiNθf)
∥∥∥
p

+
1

2
|f̂(N)|+ 1

2
|f̂(−N)|

≤ Cp ‖f‖p +
1

2π
‖f‖p = (

1

2π
+ Cp) ‖f‖p .

There exists a sequence of trigonometric polynomials {gn}∞n=1 such that
limn→∞ ‖f − gn‖p = 0. Furthermore, we may suppose that the degree of gn
is less or equal than n. Let ε > 0, then there is nε such that ‖f − gn‖p < ε
if n > nε. In that case,

‖Sn(f)− f‖p = ‖f − gn + gn − Sn(f)‖p
≤ ‖f − gn‖p + ‖gn − Sn(f)‖p
= ‖f − gn‖p + ‖Sn(gn − f)‖p

≤ ε+ (
1

2π
+ Cp)ε

= (1 +
1

2π
+ Cp)ε.

Thus, the Fourier series converges to f in the norm of Lp(T).





Chapter 5

Divergence of Fourier series

Throughout this dissertation we have studied the convergence of Fourier
series in different senses and spaces. But we always had some restrictions:

• In order to have pointwise convergence we need, for example, bounded
variation or Hölder condition (Theorems 2.11 and 2.12).

• We have norm convergence in Lp(T) when 1 < p < ∞, but not in
L1(T) or L∞(T).

In this chapter we will try to explain why we need some restrictions, and
that there are cases in which the Fourier series does not behave the way we
would like.

5.1 Pointwise divergence

Paul du Bois-Reymond built an example of a continuous function whose
Fourier series diverges at a point. Once we have such a function, it is easy
to construct other continuous functions with divergence in a finite number of
points. Furthermore, given a set A of measure zero, there exists a continuous
function whose Fourier series diverges in A. This is not a simple task.

Moreover, Kolmogorov gave an example of a function in L1(T) whose
Fourier series is divergent almost everywhere. This example was later im-
proved to divergence everywhere.

We will give an example, first proposed by Schwarz and then simplified
by Lebesgue, of a continuous function with divergent Fourier series at x = 0.

Let {cn} be a sequence that tends to zero and {νn} an increasing sequence
of odd integers. We define

an = ν0ν1...νn,

and let In = [2π/an, 2π/an−1], n = 1, 2, 3, ... We define the function f in the
following way:

45
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• If t ∈ In then

f(t) = cn sin

(
ant

2

)
sin t/2

t
.

• If t = 0 then f(0) = 0.

• If 2π/a0 ≤ t ≤ π, then f(t) = 0.

• And if t > 0 then f(−t) = f(t).

The function f is clearly even, and we can check that f is continuous in
T. Indeed, at the boundary of every In, f has value zero, so it is continuous
in T \ {0}. And it is continuous at t = 0 because the sequence {cn} tends
to zero.

So, using formula (2.5) from Chapter 2, we can write

πSN (f)(0) =

∫ π

0
f(t)

sin(N + 1/2)t

sin t/2
dt =

∞∑
n=1

cn

∫
In

sin(
ant

2
)
sin(N + 1/2)t

t
dt.

In particular, if Nk = (ak−1)/2, (remember that ak was an odd integer),
then

πSNk(f)(0) =

∫ 2π/ak

0
f(t)

sin akt

sin t/2
dt+

k∑
j=1

cj

∫
Ij

sin akt/2 sin ajt/2

t
dt. (5.1)

On the one hand, if we use the inequality | sin at/ sin t| ≤ 2πa we obtain
that the first term∣∣∣∣∣

∫ 2π/ak

0
f(t)

sin akt

sin t/2
dt

∣∣∣∣∣ ≤ πak
2

∫ 2π/ak

0
|f(t)|, dt

and this tends to zero by the Fundamental theorem of calculus. On the
other hand, whenever j < k,∣∣∣∣∣cj

∫
Ij

sin akt/2 sin ajt/2

t
dt

∣∣∣∣∣ ≤ cj
∫
Ij

1

t
dt = cj log νj ;

and when j = k,

ck

∫
Ik

sin2 akt/2

t
dt =

1

2
ck log νk −

1

2
ck

∫
Ik

cos akt

t
dt,

and the last integral is bounded. So we conclude from (5.1) that

πSNk(f)(0) ≥ 1

2
ck log νk −

k−1∑
j=1

cj log νj + rk

 , (5.2)
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where {rk} is a bounded sequence.
We can make this quantity arbitrarily large by choosing wisely the se-

quences {cn} and {νn}. For example, take ck = 2−k and νk = 54
k
. In this

case
ck log νk = 2−k log 52

2k
= 2k log 5

and it is clear from (5.2) that SNk(f) tends to infinity, so SN (f)(0) must be
a divergent sequence.

5.2 Divergence in L∞(T) and L1(T)

The convergence in the spaces Lp(T) when 1 < p < ∞ comes from the
boundedness of the conjugate function operator. We will show that this
operator is not bounded in L1(T).

But let us first explain why we do not have convergence in L∞(T). The
partial sums are always continuous functions. So if we had convergence in the
norm ‖ ‖∞, it would be uniform convergence, so the original function would
be continuous. But not every function on L∞(T) is continuous, neither equal
to a continuous function almost everywhere. So convergence in L∞(T) is
impossible.

In order to study the case of L1(T), we need a classical theorem in func-
tional analysis, the uniform boundedness principle or the Banach-Steinhaus
theorem:

Theorem 5.1 (Uniform Boundedness principle). Let B be a Banach space,
Y a normed vector space and L a collection of bounded linear operators from
B to Y , with the additional property that for each f ∈ B,

{‖Lf‖Y : L ∈ L} <∞. (5.3)

Then the collection L is uniformly bounded, that is,

sup{‖L‖B,Y : L ∈ L} <∞.

We need a lemma before we prove the theorem:

Lemma 5.2. Suppose that (5.3) holds and that

sup{‖L‖B,Y : L ∈ L} =∞ (5.4)

also holds. Then for each n ≥ 1, there exist Ln ∈ L and fn ∈ B such that

‖fn‖ = 4−n (5.5)

‖Lnfn‖ >
2

3
‖Ln‖ ‖fn‖ (5.6)

‖Lnfn‖ > 2(Mn−1 + n) (5.7)

where M0 = 1 and for k ≥ 1, Mk = sup{‖L(f1 + ...+ fk)‖ : L ∈ L}.
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Proof. From (5.4), there exists L1 ∈ L with norm ‖L1‖ > 24. So, from the
definition of the norm of an operator, there must exist f̃1 ∈ B with ||f̃1|| = 1
and ||L1f̃1|| > 2/3 ‖L1‖. If we set f1 = f̃1/4, we have satisfied (5.5), (5.6)
and (5.7) when n = 1.

We shall define the following fn and Ln by induction. If we have already
defined f1, ..., fn−1 and L1, ..., Ln−1, choose Ln ∈ L such that

‖Ln‖ > 3 · 4n(Mn−1 + n),

which is possible by (5.4). With this Ln chosen, there exists f̃n ∈ B with
||f̃n|| = 1 and ||Lnf̃n|| > 2/3 ‖Ln‖. Take fn = f̃n/4 and we have (5.5). Now

‖Lnfn‖ >
2

3
4−n ‖Ln‖ >

2

3
4−n · 3 · 4n(Mn−1 + n) = 2(Mn−1 + n).

So we have proved (5.6) and (5.7) for the value n. And by induction, we
finish the proof.

Now we can complete the proof of the theorem.

Proof of theorem 5.1. We will make the proof by contradiction. If

sup{‖L‖B,Y : L ∈ L} =∞, (5.8)

then we can apply the lemma. We define f =
∑∞

n=1 fn, which is well defined
by (5.5). Note that∥∥∥∥∥LN

( ∞∑
k=n+1

fk

)∥∥∥∥∥ ≤ ‖Ln‖
∞∑

k=n+1

‖fk‖

= ‖Ln‖
∞∑

k=n+1

4−k

= ‖Ln‖
4−n

3
=

1

3
‖Ln‖ ‖fn‖ .

So we can bound ‖Lnf‖ using the triangle inequality:

‖Lnf‖ =

∥∥∥∥∥Ln
(
n−1∑
k=1

fk + fn +

∞∑
k=n+1

fk

)∥∥∥∥∥
≥ ‖Lnfn‖ −

∥∥∥∥∥Ln
(
n−1∑
k=1

fk

)∥∥∥∥∥−
∥∥∥∥∥Ln

( ∞∑
k=n+1

fk

)∥∥∥∥∥
≥ ‖Lnfn‖ −Mn−1 −

1

3
‖Ln‖ ‖fn‖

≥ 1

2
‖Lnfn‖ −Mn−1

≥ n,
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which proves that supn ‖Lnf‖ = ∞. This contradicts (5.8), the proof is
complete.

We want to use the uniform boundedness principle in order to prove the
existence of an L1(T) divergent Fourier series. We need to compute the
norm of the partial sum operator SN , which maps L1(T) to L1(T). First,
we bound ‖SN‖. If f ∈ L1(T), we have

‖SN (f)‖ =
1

π
‖DN ∗ f‖ ≤

1

π
‖DN‖ ‖f‖ ,

so the norm of the operator SN is bounded by ‖DN‖ /π. Second, if we take
the Fejér kernel f = Fn with n ≥ N , we can apply the properties of the
Fejér kernel Proposition 3.3 and write

‖SN (f)‖ =
1

π
‖DN ∗ Fn‖ =

1

π
‖σn(DN )‖ → 1

π
‖DN‖ , n→∞,

because for any fixed N , the Fejér means of DN converge to DN when
n→∞ in L1(T). So we conclude that

‖SN‖1,1 =
1

π
‖DN‖1 . (5.9)

So we just have to compute the L1 norm of the Dirichlet kernel. Well,
we will not actually compute it, we will just show that ‖DN‖1 → ∞, as N
tends to infinity.

Proposition 5.3. Let Ln = ‖Dn‖1 /2π, the Lebesgue constant. Then as
n→∞, Ln = 4 log n/π2 +O(1), meaning

lim
n→∞

π2Ln
4 log n

= 1.

Proof.

Ln =
1

2π

∫
T
|Dn(t)|dt =

1

2π

∫ π

−π

∣∣∣∣sin(n+ 1/2)t

sin(t/2)

∣∣∣∣ dt

=
1

π

∫ π

0

| sin(n+ 1/2)t|
sin(t/2)

dt

=
2

π

∫ π

0

| sin(n+ 1/2)t|
t

dt+O(1)

=
2

π

∫ (n+1/2)π

0

| sin v|
v

dv +O(1).

This computation actually suffices to prove that Ln →∞ as n→∞, which
is what we want. But we will finish the proof anyway. We are reduced to
studying the integral of | sin v|/v in the interval 0 ≤ v ≤ (n + 1/2)π. We
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can decompose this interval in smaller ones of the form (kπ, (k + 1)π) for
0 ≤ k ≤ n plus the last half interval. The integral over that last smaller
interval tends to zero, so we can forget about it. In the remaining terms, we
compute the integral (apart from sign) integrating by parts:

−
∫ (k+1)π

kπ

sin v

v
dv =

(−1)k+1

πk
+

(−1)k+1

π(k + 1)
+

∫ (k+1)π

kπ

cos v

v2
dv

=
2(−1)k+1

πk
+O(

1

k2
).

So we have

Ln =
2

π

n∑
k=1

(
2

πk
+O(k−2)

)
=

4 log n

π2
+O(1).

With this proposition we see that the set of operators {SN : N ≥ 1}
is not uniformly bounded. So by the uniform boundedness principle, there
must exist f ∈ L1(T) such that ‖SNf‖ is not bounded when N → ∞. So
the Fourier series of f will not converge in L1(T). But we have not given
explicitly such a function f , not even in a constructive way.

We have shown that there is not convergence in the whole space L1(T).
But there might be some subspaces of L1(T) in which there is convergence.
The characterization of these subspaces is still an open question and there
are research teams working on this subject.



Appendix A

Further theory

In this appendix, we give a proof of some theorems we have used or men-
tioned through the dissertation. These theorems don’t come exclusively
from the study of Fourier series, but we have used them.

A.1 A result about integration

Theorem A.1 (Second mean value theorem for definite integrals). If G :
[a, b]→ R is a monotonic function and φ[a, b] :→ R is an integrable function,
then there exists x ∈ (a, b) such that

∫ b

a
G(t)φ(t) dt = G(a+)

∫ x

a
φ(t) dt+G(b−)

∫ b

x
φ(t) dt

A.2 About numerical series

Let {ak}k≥1 be a sequence of complex numbers. We denote

sn :=

n∑
j=1

aj , σn :=
1

n

n∑
j=1

sj =
1

n

n∑
j=1

(n− j)aj .

Theorem A.2 (Abel summation by parts). Let {ak}k≥1 and {bk}k≥1 be
two sequences, and An =

∑n
k=1 ak, with A0 = 0. Then

n∑
k=m

akbk =
n∑
m

Ak(bk − bk−1) +Anbn −Am−1bm.

51
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Proof. Since ak = Ak −Ak−1, we have

n∑
k=m

akbk =
n∑

k=m

(Ak −Ak−1)bk =
n∑

k=m

Akbk −
n∑

k=m

Ak−1bk

=
n−1∑
k=m

Akbk +Anbn −

(
n−1∑

k=m−1
Akbk+1

)

=
n∑
m

Ak(bk − bk−1) +Anbn −Am−1bm.

Theorem A.3 (Dirichlet’s test for uniform convergence). Let {fk} and {gk}
be two function sequences in D such that

(i) there exists some M > 0 such that |
∑n

k=1 fk(x)| ≤ n, ∀n ≥ 1, x ∈ D;

(ii) gk+1(x) ≤ gk(x), ∀k, ∀x ∈ D;

(iii) {gk} → 0 uniformly on D.

Then
∑∞

k=1 fkgk is uniformly convergent in D.

Proof. Let’s use the following notation: Fn(x) =
∑n

k=1 fk(x). Then |Fn(x)| ≤
M . We will show that Cauchy’s uniform condition holds: given ε > 0, we
must find nε ≥ 1 such that if n,m > nε, then for every x ∈ D∣∣∣∣∣

n∑
k=1

fk(x)gk(x)−
m∑
k=1

fk(x)gk(x)

∣∣∣∣∣ < ε. (A.1)

Suppose without loss of generality that m ≤ n. Then∣∣∣∣∣
n∑
k=1

fk(x)gk(x)−
m∑
k=1

fk(x)gk(x)

∣∣∣∣∣ =

∣∣∣∣∣
n∑

k=m

fk(x)gk(x)

∣∣∣∣∣ .
Since {gk} is uniformly convergent to zero, there exists nε such that |gk(x)| <
ε if k > nε. If n,m > nε, we use summation by parts:

|
n∑

k=m

fk(x)gk(x)|

=

∣∣∣∣∣
n∑
m

Fk(x)(gk(x)− gk−1(x)) + Fn(x)gn(x)− Fm−1(x)gm(x)

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
m

Fk(x)(gk(x)− gk−1(x))

∣∣∣∣∣+ |Fn(x)gn(x)− Fm−1(x)gm(x)|
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It is clear that the second term can be bounded by 2Mε. We can also bound
the first term:

∣∣∣∣∣
n∑
m

Fk(x)(gk(x)− gk−1(x))

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
m

M(gk(x)− gk−1(x))

∣∣∣∣∣
= M

∣∣∣∣∣
n∑
m

gk(x)− gk−1(x)

∣∣∣∣∣
= M

∣∣∣∣∣
n−1∑
k=m

gk(x)−
n∑

k=m+1

gk(x)

∣∣∣∣∣
= M |gm(x)− gn(x)| < 2Mε.

So the uniform Cauchy condition holds. That means
∑∞

k=1 fk(x)gk(x) is
uniformly convergent.

Theorem A.4 (Hardy). Suppose that {ak}k≥0 is a a sequence of complex
numbers such that k|ak| ≤ C for all k ≥ 0 and some C > 0. Then the
convergence of the Cesàro means implies the convergence of the original
partial sums: If limn σn = a, then limn sn = a.

Proof. Note that if 1 ≤ h, n, then

(n+ h)σn+h − nσn =
n+h∑
j=1

(n+ h+ 1− j)aj −
n∑
j=1

(n+ 1− j)aj

= hsn +
n+h∑
j=n+1

(n+ h+ 1− j)aj .

We now subtract ha from both sides and divide by h, and after a few ma-
nipulations, we obtain:

sn − a =
n+ h

h
(σn+h − a)− n

h
(σn − a)−

n+h∑
j=n+1

n+ h+ 1− j
h

aj .

In the last term we have that |aj | ≤ C/j,≤ c/n. We note that the coefficient
for C is at 1/n. Since there are h terms, we obtain, using the triangle
inequality:

|sn − a| ≤
n+ h

h
|σn+h − a|+

n

h
|σn − a|+

Ch

n
.

Now we choose an ε > 0, and we take h = [εn]. There is an nε such that
|σm − a| < ε if m > nε. if n > nε, we now from the definition of h that
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both the ratios (n + h)/h and n/h are bounded. Also, |σn − a| < ε and
|σn+h − a| < ε. So we have

|sn − a| ≤M1ε/3 +M2ε/3 +
h

n
C.

But by the definition of h, h/n ≤ ε, so we have

|sn − a| ≤M1ε+M2ε+ Cε.

Since ε was arbitrary, this completes the proof.

In the following theorem we stablish the relation between Cesàro summa-
bility and Abel summability. The proof is given in Exercise 5

Theorem A.5 (Frobenius). If the series
∑∞

n=0 an is Cesàro summable to
a, then it is Abel summable to a.

A.3 Some results in Complex Analysis

Theorem A.6 (Maximum modulus principle). Let f be an holomorphic
function in an open connected subset S of the complex plane. Then if f has
a local maximum at some interior point of S, then f is constant. If S is
bounded and f is continuous at the boundary of S, then |f(z)| attains its
maximum on the boundary.

Theorem A.7 (Hadamard’s three lines theorem). Let f(z) be a bounded
function of z = x+ iy defined on the strip

{x+ iy : a ≤ x ≤ b} ,

holomorphic in the interior of the strip and continuous on the hole strip. If

M(x) = sup
y
|f(x+ iy)|,

then logM(x) is a convex function on [a, b]. That means, if x = (1−t)a+tb,
then

M(x) ≤M(a)1−tM(b)t.

Proof. We may suppose that a = 0 and b = 1, applying an affine transfor-
mation if needed. Consider the function F (z) defined by

F (z) = f(z)M(0)z−1M(1)−z.

This way, it can easily be checked that |F (z)| ≤ 1 on the boundary of the
strip. We must show that the inequality also holds in the interior of the
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strip.
The function

Fn(z) = F (z)ez
2/ne−1/n

tends to zero as |z| tends to infinity, and satisfies |Fn(z)| ≤ 1 on the boundary
of the strip. Since Fn is bounded, we can apply the maximum modulus
principle A.6 and we see that |Fn(z)| ≤ 1 on the whole strip. But Fn(z)→
F (z) as n tends to infinity, so we obtain that |F (z)| ≤ 1 on the whole strip.
So

|f(z)|
∣∣M(0)z−1M(1)z

∣∣ ≤ 1.

We can write z = x+ iy = +tb+ iy, and we obtain

|f(x+ iy)|M(0)t−1M(1)−t ≤ 1,

and since this happens for all values of y, we have completed the proof.





Appendix B

Exercises

In this appendix, there are some of the exercises I have made while studying
this topic. Some of them are used in some point in the documents.

B.1 Chapter 1. Trigonometric Fourier series

Exercise 1. Let f be a bounded and piecewise monotone function in T.
Then there exists C > 0 such that for every k ∈ Z

|f̂(k)| ≤ C

k
.

Solution. Let M be a bound for f : |f(x)| ≤ M, for all x ∈ T. Since f is
piecewise monotone, we can divide T in smaller intervals:

−π = c0 < c1 < ... < cs = π,

where f is monotone in (ci, ci + 1) for i = 0, ..., s− 1.

|f̂(k)| =
∣∣∣∣ 1

2π

∫
T
f(t)e−ikt dt

∣∣∣∣
=

∣∣∣∣ 1

2π

∫
T
f(t) cos kt dt− i

2π

∫
T
f(t)e−ikt dt

∣∣∣∣
≤
∣∣∣∣ 1

2π

∫
T
f(t) cos kt dt

∣∣∣∣+

∣∣∣∣ 1

2π

∫
T
f(t) sin kt dt

∣∣∣∣
= A+B

Let us begin with the cosine:

A =

∣∣∣∣ 1

2π

∫
T
f(t) cos kt dt

∣∣∣∣ =
1

π

∣∣∣∣∣
s−1∑
i=0

∫ ci+1

ci

f(t) cos kt dt

∣∣∣∣∣
≤ 1

π

s−1∑
i=0

∣∣∣∣∫ ci+1

ci

f(t) cos ktdt

∣∣∣∣ .
57



58 B.1. Chapter 1. Trigonometric Fourier series

From the second mean value theorem for the integral, there exists ξi ∈
(ci, ci+1) such that

∫ ci+1

ci

f(t) cos ktdt = f(ci+1−)

∫ ci+1

ξi

cos kt dt+ f(ci+)

∫ ξi

ci

cos ktdt.

This way, we have

A ≤ 1

π

s−1∑
i=0

∣∣∣∣f(ci+1−)

∫ ci+1

ξi

cos kt dt+ f(ci+)

∫ ξi

ci

cos kt dt

∣∣∣∣
=

1

π

s−1∑
i=0

∣∣∣∣f(ci+1−)
1

k
(sin kci+1 − sin kξi) + f(ci+)

1

k
(sin ξik − sin kci)

∣∣∣∣
≤ 2

πk

s−1∑
i=0

|f(ci+1)− f(ci)| ≤
2

πk

s−1∑
i=0

2M =
1

k

4Ms

π
.

With an analogous computation, we obtain for the sine integral

B ≤ 1

k

4Ms

π
.

Put C = 8Ms/π, which depends only on the function f . We have shown
that for every k ∈ Z,

f̂(k) ≤ C

k
.

Exercise 2. Show that the function

f(x) = |x|α sin
1

|x|
is not of bounded variation in any neighbourhood of 0, if 0 < α < 1.

Solution. Let I be a neighbourhood of zero. We may suppose that I =
(− 1

nπ ,
1
nπ ) for some n ∈ N. Take

ξk =
1

(k + 1/2)π
.

Then, we can bound the total variation of f from below:

V (f) ≥
∞∑
k=n

|f(ξk)|

=

∞∑
k=n

(
1

(k + 1/2)π

)α
≥ 1

π

∞∑
k=n

1

kα
=∞,

since α < 1. So f is not of bounded variation in any neighbourhood of
zero.
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B.2 Chapter 2: Convergence

Exercise 3. We denote

A(T) = {f ∈ L1(T) :
∑
n∈Z
|f̂(n)| <∞},

the space of functions whose Fourier series is absolutely convergent. It is a
normed vector space with norm

‖f‖A =
∑
n∈Z
|f̂(n)|.

Prove the following statements:

(i) if f is continuous, piecewise differentiable and f ′ ∈ L2(T), then f ∈ A;

(ii) if 1/2 < α ≤ 1 and f satisfies the Hölder condition with exponent α,
then f ∈ A;

(iii) if f, g ∈ A, then fg ∈ A and

‖fg‖A ≤ ‖f‖A ‖g‖A .

Solution. (i) We know that (f ′)̂ (n) = inf̂(n). From Parseval theorem
4.2, we have ∥∥f ′∥∥2

2
=
∑
n∈Z
|(f ′)̂ |2 =

∑
n∈Z
|inf̂(n)|2 <∞,

since we know that f ′ ∈ L2(T). Using the Cauchy inequality, we obtain

∑
n6=0

|f̂(n)|2 ≤

∑
n6=0

1

n2

1/2∑
n6=0

|nf̂(n)|2
1/2

<∞.

We conclude that f ∈ A.

(ii) Given δ > 0, we define g(x) = f(x + δ) − f(x). We now compute the
Fourier coefficients of g:

ĝ(n) =
1

2π

∫
T
f(x+ δ)e−inx dx− f̂(n)

=
1

2π

∫
T
f(z)e−in(z−δ) dx− f̂(n) = (einδ − 1)f̂(n).

We now use again the Parseval theorem 4.2, to obtain∑
n∈Z
|(einδ − 1)f̂(n)|2 =

∫
T
|f(x+ δ)− f(x)|2 dx.
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Using now the Hölder condition of f , we have∑
n∈Z
|(einδ − 1)f̂(n)|2 =

∑
n∈Z

(2 sin
δn

2
)2|f̂(n)|2 ≤ 2πC2δ2α,

where C is the Hölder constant, and we have used the fact that |eiz −
1| = |2 sin z/2|. We now take δ = π2−r−2, where r is a non-negative
integer. With r and δ chosen in this way, if 2r−1 < |n| ≤ 2r, we have
1/2 = sinπ/4 ≤ sinnδ/2 ≤ sinπ/2. Thus∑

2r−1<|n|≤2r
|f̂(n)|2 = 2−2rα +O(1),

as r →∞. We use once again the Cauchy inequality

∑
2r−1<|n|≤2r

|f̂(n)| ≤

 ∑
2r−1<|n|≤2r

1

1/2 ∑
2r−1<|n|≤2r

|f̂(n)|2
1/2

= 2r/2

 ∑
2r−1<|n|≤2r

|f̂(n)|2
1/2

= 2r(
1
2
−α) +O(1).

If we take the sum for all values of r, we obtain a geometric series
which is convergent if 1/2 < α ≤ 1:

∞∑
r=1

(2
1
2
−α)r.

Thus, the series ∑
n∈Z
|f̂(n)|

is convergent, meaning that f ∈ A.

(iii) We begin by computing the Fourier coefficients of fg. Notice that
since f, g ∈ A, all the computations bellow are justified.

f(x)g(x) =

( ∞∑
n=−∞

f̂(n)einx

)( ∞∑
k=−∞

ĝ(k)eikx

)

=
∞∑

n=−∞

∞∑
k=−∞

f̂(n)ĝ(k)ei(n+k)x

=

∞∑
n=−∞

∞∑
m=−∞

f̂(n)ĝ(m− n)eimx

=

∞∑
m=−∞

( ∞∑
n=−∞

f̂(n)ĝ(m− n)

)
eimx.
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Thus,

f̂g(m) =
∞∑

n=−∞
f̂(n)ĝ(m− n).

It remains to show that fg ∈ A. This is a simple task:

∞∑
m=−∞

∣∣∣∣∣
∞∑

n=−∞
f̂(n)ĝ(m− n)

∣∣∣∣∣ ≤
∞∑

n=−∞

∞∑
m=−∞

|f̂(n)ĝ(m− n)|

=
∞∑

n=−∞
|f̂(n)|

∞∑
m=−∞

|ĝ(m− n)| = ‖f‖A ‖g‖A <∞.

Exercise 4. Using the Dirichlet kernel, prove that∫ ∞
0

sinx

x
dx =

π

2
.

Solution. We know that∫ π

0
DN (t) dt =

∫ π

0

sin(N + 1/2)t)

2 sin t/2
dt =

π

2
.

We split it into two integrals

π

2
=

∫ π

0

(
sin(N + 1/2)t)

2 sin t/2
+

sin(N + 1/2)t

t
− sin(N + 1/2)t

t

)
dt

=

∫ π

0

t− 2 sin t/2

2t sin t/2
sin(N + 1/2)t dt+

∫ π

0

sin(N + 1/2)t

t
dt.

If the first term in the first integral is bounded, the first integral will tend
to zero as N tends to infinity following the Riemann-Lebesgue lemma 2.3.
Indeed, we just need to show that it is bounded at t = 0. We use the
L’Hôpital rule

lim
t→0

t− 2 sin t/2

2t sin t/2
= lim

t→0

1− cos t/2

2 sin t/2 + t cos t/2

= lim
t→0

−1/2 sin t/2

cos t/2 + cos t/2− t/2 sin t/2
= 0,

thus it is bounded. Hence, the first integral tends to zero. This means
that the second integral must tend to π/2. Making a change of variables we
obtain

lim
N→∞

∫ π

0

sin(N + 1/2)t

t
dt = lim

N→∞

∫ π(N+ 1
2
)

0

sinx

x
dx =

π

2
.

We need to see that

lim
R→+∞

∫ R

0

sinx

x
dx =

π

2
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Let ε > 0 and choose Nε such that, for any N > Nε,

|
∫ π

0

sin(N + 1/2)t

t
dt− π

2
| < ε

2
.

Let M = π(N + 1/2). For R > M choose NR an integer such that |π(NR +
1/2)−R| ≤ π/2. Then∣∣∣∣∫ R

0

sinx

x
dx− π

2

∣∣∣∣ ≤
∣∣∣∣∣
∫ π(NR+1/2)

0

sinx

x
dx− π

2

∣∣∣∣∣+

∣∣∣∣∣
∫ R

π(NR+1/2)

sinx

x
dx

∣∣∣∣∣
≤ ε

2
+ log

R

π(NR + 1/2)
,

where we can make the second term arbitrarily small, choosing R large
enough. Thus, ∫ ∞

0

sinx

x
dx =

π

2
.

B.3 Chapter 3. Summability

Exercise 5. Show that if
∑∞

k=0 ak = a (C), then
∑∞

k=0 ak = a (A).

Solution. We need to show that limx→1
∑∞

n=0 anx
n = a. We start setting

sn =
n∑
k=0

ak, σn =
1

n

n∑
k=0

sk.

Let us write
∑∞

n=0 anx
n in terms of the Césaro means. First we make the

first half of the computation:

∞∑
n=0

snx
n = s0 +

∞∑
n=1

snx
n = a0 +

∞∑
n=1

snx
n

= a0 +

∞∑
n=1

(
n∑
k=0

sk −
n−1∑
k=0

sk

)
xn = σ1 +

∞∑
k=1

((n+ 1)σn+1 − nσn)xn

=

∞∑
n=0

(n+ 1)σn+1x
n −

∞∑
n=1

nσnx
n

= (1− x)

∞∑
n=0

(n+ 1)σn+1x
n.

The second part of the computation is as follows:

∞∑
n=0

anx
n =

∞∑
n=0

(sn − sn−1)xn =
∞∑
n=0

snx
n −

∞∑
n=1

sn−1x
n

= (1− x)
∞∑
n=0

snx
n = (1− x)2

∞∑
n=0

(n+ 1)σn+1x
n.
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We now that
1

(1− x)2
=
∞∑
n=0

(n+ 1)xn,

for |x| < 1. This way, we have

∞∑
n=0

anx
n − a = (1− x)2

∞∑
n=0

(n+ 1)(σn − a)xn.

We will now show that this goes to zero as x→ 1 assuming that σn → a as
n tends to infinity. Let ε > 0, and N ≥ 1 such that |σn − a| < ε if n > N.
We split the preceding sum in two parts, according to N .

∞∑
n=0

anx
n − a = (1− x)2

[
N−1∑
n=0

+
∞∑
n=N

(n+ 1)(σn − a)xn

]
.

The first part is a finite sum, so we can use the triangle inequality.

|S1| ≤ (1− x)2
∑
n=0

(n+ 1)|σn+1 − a|,

uniformly in x. For the second sum, we use the Césaro convergence:

|S2| ≤ (1− x)2
∞∑
n=N

(n+ 1)εxn ≤ ε(1− x)2
∞∑
n=0

(n+ 1)xn = ε.

So we have that∣∣∣∣∣
∞∑
n=0

anx
n − a

∣∣∣∣∣ ≤ (1− x)2
∑
n=0

(n+ 1)|σn+1 − a|+ ε,

which tends to ε when x → 1. Since ε was arbitrarily small, we conclude
that

∑∞
k=0 ak = a (A).

Exercise 6. Let 0 < α ≤ 1, and suppose that f satisfies the Hölder condi-
tion with exponent α

|f(x+ t)− f(x)| < Kα|t|α,

for some suitable Kα. Prove that

|σN (f)(x)− f(x)| ≤ C1
logN

N
, α = 1,

|σN (f)(x)− f(x)| ≤ CαN−α, α < 1,

for some constants Cα.
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Solution. We start making some simple computations. We take N = m− 1
in order to simplify the notation:

σm−1(f)(x)− f(x) =
1

2πm

∫ π

−π

sin2 mt
2

sin2 t
2

(f(x+ t)− f(x)) dt

=
1

πm

∫ π/2

−π/2

sin2mt

sin2 t
(f(x+ 2t)− f(x)) dt

=
1

πm

∫ π/2

0

sin2mt

sin2 t
(f(x+ 2t)− 2f(x) + f(x− 2t)) dt.

We define the function

φ(t) =

∫ t

0
|f(u+ 2u)− 2f(u) + f(x− 2u)|du,

which, since f satisfies the Hölder condition with exponent α, has the prop-
erty

|φ(t)| ≤ 4

α+ 1
tα+1 = Ktα+1.

We start bounding

π|σm−1(f)(x)− f(x)| ≤ 1

m

∫ π/2

0

sin2mt

sin2 t
φ′(t) dt

=
1

m

(∫ 1/m

0
+

∫ π/2

1/m

)
sin2mt

sin2 t
φ′(t) dt.

In the first integral we use the bound sin2mt
sin2 t

≤ m and obtain

1

m

∫ 1/m

0

sin2mt

sin2 t
φ′(t) dt ≤

∫ 1/m

0
(2t)α dt = O(m−α−1).

For the second integral,we use the bound sin2mt
sin2 t

≤ 1/t2 and integration by
parts, obtaining

1

m

∫ π/2

1/m

sin2mt

sin2 t
φ′(t) dt ≤

∫ π/2

1/m

1

mt2
φ′(t) dt

=
4

mπ2
φ(
π

2
)−mφ(

1

m
) +

∫ π/2

1/m

3φ(t)

mt3
dt.

The first two terms in this last inequality are O(1/m), and the last integral
depends on α. If α = 1, then it is O(logm/m), and if α < 1 then it is
O(m−α). This completes the exercise.
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