
Machine detection of emotions:
Feature Selection

Final Degree Dissertation

Degree in Mathematics

Leire Santos Moreno

Supervisor:

Raquel Justo Blanco

Maŕıa Inés Torres Barañano

Leioa, 31 August 2016

Contents

Introduction v

1 Introduction to pattern classification 1

1.1 Classification process . 1

1.1.1 Features and patterns 1

1.1.2 Training the classifier 2

1.1.3 Evaluation measures 3

1.1.4 K-fold Cross Validation 4

1.2 Naive Bayes classifier . 5

1.2.1 Two-category Classification 7

1.2.2 Minimum-Error-Rate Classification 8

1.2.3 Classifiers, Discrimination Functions and Decision Sur-
faces . 8

1.2.4 Bayes Decision Theory - Discrete Features 9

2 Dimensionality reduction 11

2.1 Importance of dimensionality reduction 11

2.2 Feature selection . 12

2.2.1 Relevance of a feature 12

2.2.2 Feature selection approach 13

2.2.3 Evaluation measures 14

2.2.4 Search algorithms for feature subset selection 18

2.3 Feature transformation . 22

2.3.1 Principal component analysis (PCA) 22

2.3.2 Linear Discriminant Analysis 24

3 Experiments and results 27

3.1 Corpus . 27

3.2 Scikit learn module . 28

3.3 Multinomial Naive Bayes . 28

3.4 Experiments . 28

3.4.1 Feature selection: filter methods 29

3.4.2 Feature selection: wrapper methods 32

iii

3.4.3 Feature transformation 32
3.5 Conclusions and future work 33

Bibliography 35

A Python scripts 37
A.1 getFeatures . 37
A.2 Experiments . 42

A.2.1 Chi2 . 42
A.2.2 PercentileChi2 . 45
A.2.3 fclassif . 48
A.2.4 Percentile fclassif . 51
A.2.5 Variance Threshold . 54
A.2.6 Sequential Backward Selection 57
A.2.7 Sequential Forward Selection 59
A.2.8 LDA . 64

iv

Introduction

The aim of this project is to study the capacity of machines to detect emo-
tions in written text. Humans are experts at perceiving emotions in oral
language and, although it can be more challenging, even in a written context
our ability to distinguish emotions is astonishing. Nowadays, the amount of
written text generated every second is huge. Thus, achieving that emotion
recognition by machines is a topic in which a lot of research has been done
lately, as it becomes impossible to analyze the emotions manually for very
large databases. Therefore, the present is a challenging but very interesting
and useful issue.

Sarcasm is one of the human emotions that is most difficult to notice, it
can be tough to recognize even for a person. In this work sarcasm recognition
done by machine will be studied, by using statistical pattern classification
techniques to try to classify sentences in Spanish as sarcastic or not sar-
castic. This will be done with a special focus on the part of selecting the
features to carry out the classification, by studying and experimenting with
different dimensionality reduction techniques.

This document is divided into three chapters. In Chapter 1 the main
idea of how a pattern classification is done is explained, starting with the
basic definitions and doing a brief review of the steps needed to achieve the
classification. A concrete type of statistical classifier is also presented, the
Naive Bayes classifier.

Chapter 2 is focussed on the issue of dimensionality reduction. The con-
cept of dimensionality reduction is explained, as well as the benefits that
it provides. Two different families of dimensionality reduction methods are
presented, feature selection and feature transformation, and examples of
methods in both families are given.

Finally, Chapter 3 presents the experiments done. With these experi-
ments, theoretical knowledge is reinforced while dealing with a real problem.
Different dimensionality reduction methods are tested in data taken from
social networks and the results are discussed, in order to determine which
method works better in this precise context.

v

Chapter 1

Introduction to pattern
classification

In this chapter the basic idea of pattern classification is explained. Different
steps of the classification process are analyzed and one type of classifier,
Naive Bayes classifier, is presented.

1.1 Classification process

Classification process is divided into different steps. First of all, features
to be used in the classification need to be extracted. Then, the classifier
is trained and how it works is evaluated. All that process is recursive,
information on how the classifier is working can be used to choose more
appropriate features or to train the classifier differently.

1.1.1 Features and patterns

Definition 1.1.1. (Feature) Let O be an object that can be classified in
one of the following C classes {ω1, ω2, . . . , ωC}. A feature, X, is a random
variable that represents one property of that object and which will help
classifying the object O in one of the possible classes.

When more than one feature can be measured in one object, a feature
vector X is constructed, X = (X1, X2, . . . , Xm) where each Xi is a feature
of the object O for i ∈ {1, 2, . . .m}, with m ∈ N.

Definition 1.1.2. (Pattern) Given O an object that can be classified in C
different classes {ω1, ω2, . . . , ωC} and X = (X1, X2, . . . , Xm) a feature vector
for that object, a pattern is a m-dimensional data vector x = (x1, x2, . . . , xm)
where each of its components xi is a measurement of one feature Xi [3,
Chapter 1]. For each pattern a categorical variable z is defined, the label,
such that if z = i, the object that gave this pattern belongs to class ωi.

1

2 1.1. Classification process

Example 1.1.1. (Based on the example used in [1]) Suppose that the object
O is a fish, that can be classified into two classes: ω1 = salmon or ω2 = sea
bass. Then, the features that can be measured in the fish are the length of
the animal, its width, its weight, the brightness of the scales, the diameter
of the eye, ... Thus, one possible feature vector in this case could be X =
(X1, X2) where X1 is the length of the fish (measured in meters) and X2

the weight (in kilograms).
Now, given a concrete fish, values for the features in X can be measured

for that precise individual and obtain a pattern, for example x = (0.5, 6).
Moreover, if it is known that the fish with that pattern is a salmon, its label
will be z = 1, as it belongs to class ω1.

Remark 1.1.1. In order to classify sentences into sarcastic or not sarcastic,
the features that are going to be used are the counts of words and groups
of words, i.e, how many times each word or each sequence of words appears
in that sentence. This is further developed in Chapter 3.

The process of obtaining a pattern x from an object O is called feature
extraction. It involves measuring the values for the features that are going
to be used in the classification process and this can be done in a wide variety
of ways, which depend on the type of feature measured. For example, in
the case of Example 1.1.1, the values for the length of an individual can be
obtained by photographing the fish and sending the picture to a computer
that uses the it to calculate the length of the animal; while the weight can
be obtained from a digital scale. During this feature extraction process
some type of preprocessing of the data can be done, to help simplifying the
following operations. Moreover, in some cases dimensionality reduction is
done at this step, as it will be explained in Chapter 2.

1.1.2 Training the classifier

The aim of patter recognition is to, given a pattern x for which the label z
is unknown, be able to decide which is the value of z. That is, to classify
the object which generated that pattern in one of the possible classes. The
classifier can be represented as a function Φ that assigns a class from the set
of all the possible classes, Ω, to each object O from the set of all the objects
O.

Φ : O → Ω
O 7→ Φ(O) = ωi

The exact form of the function Φ is determined during the process of
training the classifier.

Definition 1.1.3. (Training set) The training set is a large set of objects
from which a set of patterns {x1,x1, . . . ,xN} is obtained. That training set

Chapter 1. Introduction to pattern classification 3

will be used to design the classifier, that is, to tune the parameters that the
classifier uses.

Remark 1.1.2. The training set can be provided with the corresponding
class for each object. In this way the set that is used for training the classifier
is a set of patterns together with their labels {(x1, z1), (x1, z2), . . . , (xN , zN)}.
This learning process, that involves using the known labels, is called super-
vised learning.

On the other hand, when the labels are not provided, the learning is
called unsupervised learning. There exists also an option in between the
previous two, reinforcement learning, in which the only information provided
while learning is if the label ẑ that the classifier has assigned to a pattern x
is the correct one or not, but the correct label is not provided. Notice that
in the case of having only two categories reinforcement learning is the same
as supervised learning.

Regarding the construction of the classifier, there exist different clas-
sification techniques that can be applied. Statistical pattern recognition
focuses on statistical properties of the data, this is for example the case
of the Naive Bayes [Section 1.2]. Neural network pattern classification is a
close descendant of the statistical approach but in this case the decision is
based on the response of a network of processing units to an input stimuli.
Finally, another classification method is the syntactic pattern recognition,
where rules or grammars decribe the decision [1] [2].

1.1.3 Evaluation measures

Once the classifier is built, it is necessary to have some way to measure how
well it works.

Definition 1.1.4. (Test set) The test set is a set of objects for which the
classes are already known. When a pattern x corresponding to the an object
on the test set is passed to the classifier, the classifier evaluates it and returns
a predicted label ẑ for that pattern. As the real label z is known, z and ẑ
can be compared in order to evaluate the performance of the classifier.

One of the most common ways to evaluate the performance of a classi-
fier is calculating its error rate, that is, the proportion of samples incorrectly
classified. However, many other metrics can be calculated from the confu-
sion matrix. Table 1.1 shows a 2× 2 confusion matrix for the two-category
case in which only two possible categories exist, the positive and the nega-
tive. Table 1.2 shows some of the most common evaluation metrics to assess
the performance of the classifier in the two-category case. Many of those
metrics are also extendable to the multiclass problems [3].

4 1.1. Classification process

True label (z)
Positive Negative

Predicted label (ẑ)
Positive True positive (tp) False positive (fp)
Negative False negative (fn) True negative (tn)

Table 1.1: 2× 2 confusion matrix

Name Definition

Accuracy tp+fp
tp+tn+fp+fn

Error rate 1- Accuracy

False positive rate fp
fp+tn

Recall (or true positive rate) tp
tp+fn

Precision tp
tp+fp

F1 2(precision×recall)
(precision+recall)

Table 1.2: Performance assessment metrics for the two-category case.

Remark 1.1.3. The score that will be used as evaluation measure for the
experiments in this work will be the F1 score. This is the harmonic mean
of precision and recall, which represent respectively the proportion of true
positives in all the predicted positives and the proportion of real positives
that the classifier correctly predicted as positive. It is important, while using
the F1 score, to also check precision and recall, since it is possible to obtain
a high F1 value even if one of those has a low value. Imagine for example,
that half of the labels should be positive and half negative, but the classifier
used states that all of them are positive. Then, the value for precision would
be 1 and the value for recall 0.5, meaning that even if the prediction would
not be correct at all, the F1 score would be 0.667, which apparently is not
so bad.

1.1.4 K-fold Cross Validation

As it has been seen, during the process of classification data examples are
needed in two steps: to train the classifier by choosing the right parameters
and to measure how well the classifier performs. Thus, a large number of
data is needed to conform the training and the test set. Due to the cost
and difficulty of obtaining that data, a process called Cross Validation is
sometimes carried out.

K-fold Cross Validation consists in dividing the available data into K
parts. Then, K experiments will be done and in each of the experiments

Chapter 1. Introduction to pattern classification 5

Figure 1.1: Scheme of Cross Validation process for k = 5. Total data is
divided into 5 parts and five experiments are performed. In each experiment
the green part of the data is used as test set while the rest is used as training
set.

one of the K folds will be the test set while the remaining K − 1 folds con-
form the training set. In this way, all the data is used both for training and
for testing. The true value of an evaluation measure will be calculated as
the average of the value obtained in each experiment. Figure 1.1 shows an
example of the scheme of the Cross Validation process.

The choice of K is done depending on the size of the dataset, taking
into account that a large number of folds gives more accurate results but
needs more computation time, while a smaller K will result into faster but
less accurate outcome. A common choice for K is K = 10 [2]. During the
performance of the experiments in this work, a 10-fold Cross Validation is
applied (see Chapter 3).

1.2 Naive Bayes classifier

Naive Bayes classifier is a type of statistical classifier based on Baye’s theo-
rem and the naive assumption that the variables Xi are independent.

Definition 1.2.1. (State of nature) Given an object O, ω will denote the
state of nature of O, with ω = ωi if the element belongs to the category ωi.
That is, the state of nature is the real class to which the object belongs.

Let P (ωi) denote the prior probability, i.e., how likely it is to have an
element with state of nature ωi. The prior probability can be used to create
a decision rule: if P (ωi) > P (ωj)∀j 6= i, decide ωi. However, this rule
makes sense only for the classification of one object. If more than one ele-
ment need to be classified then all of them would be assigned to the category
with higher prior probability. Thus, more information is needed in order to

6 1.2. Naive Bayes classifier

create a more complex decision rule that will accurately classify the data.

Let X be a feature vector,a random vector whose distribution depends on
the state of nature, then p (x|ωi) is the class-conditional probability density
function for x, or the likelihood of having the pattern x given an object that
belongs to class ωi. Having the pattern x, which is an observed value for X,
and knowing the prior probability for all the states of nature, P (ωj), and
the class-conditional densities for x, the probability of the state of nature
being ωj can be calculated, using Bayes’ formula:

P (ωj |x) =
p (x|ωj)P (ωj)

p (x)
(1.1)

where

p (x) =

c∑
j=1

p (x|ωj)P (ωj) (1.2)

being c the number of different possible states of nature. P (ωj |x) is
called the posterior probability.

Notice that it is the product of the likelihood and the prior probabil-
ity that is the most important determining the posterior probability, the
evidence factor, p (x), can be seen just as a scale factor.

Moreover, Naive Bayes classification assumes that the variables in X are
independent. By making that assumption, the class-conditional probability
can be simplified and written in the following form:

p (x|ωi) =

m∏
i=1

p (xi|ωi) (1.3)

Definition 1.2.2. (Loss function) Let {α1, α2, . . . , αC} be the finite set of
possible actions, where taking the action αi means that ẑ = i, being ẑ
the label estimated by the classifier for a given pattern. The loss function,
λ (αi|ωj), is a function that states how costly each decision is. It describes
the loss incurred by taking the action αi, i.e., deciding that the class for
pattern x is ωi when the state of nature is ωj .

Definition 1.2.3. (Conditional risk) Using the previous definition, the con-
ditional risk can be defined. Given a particular pattern x and assuming that
the decision of the classifier is ẑ = i, that is, the action taken is αi, then the
conditional risk incurred will be

R (αi|x) =

c∑
j=1

λ (αi|ωj)P (ωj |x) (1.4)

Chapter 1. Introduction to pattern classification 7

The aim will be to find a decision rule that minimizes the overall risk.

Definition 1.2.4. (Decision rule) A decision rule is a function α from the
set of all possible patterns to the set of all possible actions {α1, α2, . . . , αC}.
α (x) takes one of the possible values from {α1, α2, . . . , αC}, in other words,
it is the function that states which action to take for every possible pattern.

Definition 1.2.5. (Overall risk) Let α be a decision rule, since R (αi|x) is
the conditional risk associated with αi, the overall risk will be given by

R =

∫
R (α (x) |x) p (x) dx (1.5)

Then, α (x) is chosen so that R (αi (x)) is as small as possible for every x.

This leads to the statement of the Bayes decision rule: To minimize the
overall risk compute the conditional risk R (αi|x) for i = 1, . . . , a and select
the action αi for which it is minimum. The resulting overall risk is called
Bayes risk, denoted R∗, and it is the best performance that can be achieved.
[1]

1.2.1 Two-category Classification

Let us consider the case in which there are only two categories. Then, action
α1 corresponds to deciding that the true state of nature is ω1, and action α2

corresponds to deciding that it is ω2. If λij = λ (αi|ωj) then the conditional
risk can be written as

R (α1|x) = λ11P (ω1|x) + λ12P (ω2|x) and
R (α2|x) = λ21P (ω1|x) + λ22P (ω2|x)

(1.6)

As the decision rule would be to decide ω1 if R (α1|x) < R (α2|x), in
terms of probabilities it can be seen as deciding ω1 if

(λ21 − λ11)P (ω1|x) > (λ12 − λ22)P (ω2|x) (1.7)

Using Bayes’ formula to replace posterior probabilities by prior proba-
bilities and assuming that λ21 > λ11 (as the loss of being correct will be
smaller than the loss of failing), the next equivalent rule is obtained: decide
ω1 if

p (x|ω1)

p (x|ω2)
>

(λ12 − λ22)P (ω2)

(λ21 − λ11)P (ω1)
(1.8)

The left term at (1.8) is called likelihood ratio. Thus, the Bayes decision
rule can be seen as deciding for ω1 if the likelihood ratio exceeds from a
value that does not depend on x.

8 1.2. Naive Bayes classifier

1.2.2 Minimum-Error-Rate Classification

Each state of nature is usually associated with a different one of the c classes.
If αi is the action taken and ωj the true state of nature, then the decision
is correct if i = j and it is an error if i 6= j. It is natural to seek a decision
rule that minimizes the probability of error, i.e., the error rate.

Definition 1.2.6. (Symmetrical loss function) The symmetrical or zero-one
loss function is a loss function defined in the following way:

λ (αi|ωj) =

{
0 i = j

1 i 6= j
(1.9)

In this way, the symmetric loss function assigns no loss to a correct decision
and a unit loss to any error.

When the symmetrical loss function is used, the conditional risk can be
written as follows:

R (αi|x) =
c∑

j=1

λ (αi|ωj)P (ωj |x) =
∑
j 6=i

P (ωj |x) = 1− P (ωi|x) (1.10)

Then, to minimizing the conditional risk is equivalent to maximizing the
posterior probability. This means that the decision rule will be to decide ωi

if P (ωi|x) > P (ωj |x) for all j 6= i.

Remark 1.2.1. Notice that the symmetrical loss function gives the same
importance to all the missclassifications. However, it can happen that one
mistake is worse that other, for example, imagine the case in which blood
tests are carried out to diagnose an infection. Classifying a healthy person
as ill and prescribing she antibiotics she does not need could be bad, but
having an ill person classified as healthy and sent home can lead into serious
worsening and even death.

Thus, it is important to know in each case what is the cost of the different
mistakes, and to choose an appropriate loss function that represents it.

1.2.3 Classifiers, Discrimination Functions and Decision Sur-
faces

Another way to define a classifier is through discriminant functions.

Definition 1.2.7. (Discriminant functions) A function gi from a set of func-
tions {gj}j=1,...,C is called a discriminant function if given a pattern x the
decision taken is

x belongs to ωi ⇔ gi(x) > gj(x)∀j 6= i

[4]

Chapter 1. Introduction to pattern classification 9

Thus, the classifier computes the C discriminant functions and selects
the category corresponding to the greatest result.

In general, discriminant functions for Bayesian classifiers are defined as
gi (x) = −R (αi|x), so that the maximum discriminant function corresponds
to the minimum conditional risk. In this way, the way of choosing the class
for a pattern is the same as the one stated in the Bayes decision rule. How-
ever, for the minimum-error-rate case discriminant functions can simply be
taken as gi (x) = P (ωi|x).

Notice that the choice of the discriminant functions is not unique; adding
or multiplying with a constant (that must be positive in case of multiplica-
tion) or even applying a monotonically increasing function to every gi, does
not change the classification.

Through those discriminant functions, the feature space is divided into
c decision regions, R1, . . . ,Rc. If gi (x) > gj (x) for all j 6= i, then x is in Ri

and the decision rule assigns x to ωi. The regions are separated by decision
boundaries, which are surfaces in the feature space where the values of the
largest discriminant functions are the same. It is necessary to correctly ad-
just the decision boundary, if it is too simple it may not distinguish properly
among two categories. But if the decision boundary is to complex the clas-
sifier may work perfectly in the training set but make more mistakes with
new elements, because it provides a non-general classification, too adjusted
to the training set.

1.2.4 Bayes Decision Theory - Discrete Features

When the feature vector x only takes discrete values, the probability density
function p (x|ωj) becomes singular and then integrals of the form∫

p (x|ωj) dx (1.11)

must be replaced by

p (x|ωj) =
∑
x

P (x|ωj) (1.12)

Then Bayes’ formula is expressed using probabilities instead of probability
densities:

P (ωj |x) =
P (x|ωj)P (ωj)

P (x)
(1.13)

where

10 1.2. Naive Bayes classifier

P (x) =

c∑
j=1

P (x|ωj)P (ωj) (1.14)

The definition of conditional risk R (α|x) is unchanged, as well as the
fundamental Bayes decision rule. Also the discriminant functions remain
the same, except for the replacement of densities p (·) by probabilities P (·).

Chapter 2

Dimensionality reduction

This chapter presents the issue of dimensionality reduction, explaining its
benefits and the different techniques used for the reduction. Some of the
most common methods are also explained.

2.1 Importance of dimensionality reduction

The complexity of a classifier depends strongly on the number of inputs
that it receives. If the input is a feature vector with many dimensions, the
classifier will be more complex than if the feature vector has lower dimen-
sionality. This is why dimensionality reduction is a very important and
interesting part of the process of pattern recognition.

By reducing dimensionality not only complexity of the classifier is re-
duced, other important advantages also derive from having less dimensions
in the feature space:

• Sometimes, if an input is not necessary at all for the classification, it
can be completely removed and, thus, in the future that feature does
not need to be measured. That is, the cost of extracting some features
can be saved.

• With simpler classifiers an improved performance is achieved, as sim-
pler models are more stable and have less variance. That means that
a simpler model will be less depending on factors as noise or the oc-
currence of outliers.

• In some cases, the dimensions can be reduced enough to make it possi-
ble to plot the data and analyze it visually. The advantage of the visual
analysis of the data is that it helps to discover underlying structures.

In conclusion, reducing the number of variables can lead to an improved
classifier performance and a grater understanding of the data. Thus, differ-

11

12 2.2. Feature selection

ent ways of achieving dimensionality reduction have been studied. Given a
set of variables, dimensionality reduction methods can be separated in two
broad categories: feature selection and feature transformation.

On the one hand, feature selection consists on identifying the variables
that do not contribute to the classification task and discarding them. Out
of the total m dimensions only the k that carry most information will be
chosen, where k is a number to be determined.

On the other hand, feature transformation is the process of finding a
transformation from the original m variables into a new set of k variables,
being k less than or equal to m.

In fact, also feature selection methods can be seen as part of feature
transformation. While doing the transformations a set of weights is applied
to the original variables to obtain the new ones, feature selection is the
result of using binary weights for that transformation, instead of continuous
[5, Chapter 6] [3, Chapter 10]. However, in this work those two categories
will be studied separately.

2.2 Feature selection

Feature selection consists on choosing a feature subset in the total feature
space, out of the possible m feature dimensions only k will be chosen. This
k features need to be the best possible feature subset, that is, it must be
the subset that most contributes to accuracy with the least number of di-
mensions. The rest of the features will be discarded and will not be used
for classification.

2.2.1 Relevance of a feature

It is common that a large number of features are not informative, because
they are irrelevant or redundant. Given a feature set X and a feature X in
X , S will denote the set of features excluding X. Then, the relevance of the
feature X can be one of the following four:

Definition 2.2.1. (Strong relevance)
The feature X is strongly relevant if and only if P (ẑ|X,S) 6= P (ẑ|S). That
is, the distribution of the class predictor depends on the feature X.

Definition 2.2.2. (Weak relevance)
The feature X is weakly relevant if and only if P (ẑ|X,S) = P (ẑ|S) and
∃S′ ⊂ S such that P (ẑ|X,S′) 6= P (ẑ|S′). This means that removing X

Chapter 2. Dimensionality reduction 13

from the total set does not affect the class prediction but there exists a sub-
set of features for which it does.

Definition 2.2.3. (Irrelevance)
The feature X is irrelevant if and only if ∀S′ ⊆ S, P (ẑ|X,S′) = P (ẑ|S′).
That is, X is not necessary for class prediction.

Definition 2.2.4. (Redundancy)
To define redundancy Markov Blanket needs to be defined first.

Markov blanket: Let MX be a subset of the features X that does not
contain X. MX is a Markov blanket ofX ifX is conditionally indepen-
dent of X−MX−{X} given MX . That is, if P (X,X −MX − {X}|MX) =
P (X|MX)P (X −MX − {X}|MX). This means that all the informa-
tion that X provides about other features is contained in MX .

Given G ⊂ X a set of features, a feature in G is redundant if and only if it
is weakly relevant and has a Markov blanket in G.

The goal of feature selection is to choose an optimal feature set, and this
will be a feature set that contains only strongly relevant and some weakly
relevant features.

2.2.2 Feature selection approach

With 2m possible subsets of variables, being m the total number of features,
is it impossible (or at least not efficient) to test all of them. Thus, different
techniques exist for feature selection.

A subset selection method is composed of two steps: subset generation,
that is, choosing a feature subset, and evaluation, measuring how ”good”
the selected subset is. The process can be recursive: a subset is chosen, then
it is evaluated and the information obtained is used again to choose another
subset. Image 2.1 is an scheme of the complete process of feature selection.

Thus, each possible feature selection method is a combination of one of
the possible evaluation measures and one of the subset search algorithms.
The methods are usually classified in one of the following three categories:
filter methods, wrapper methods and embedded methods.

Filter methods

This kind of methods use statistical properties of the variables to filter the
ones that provide less information. Feature selection is done before classifi-

14 2.2. Feature selection

Figure 2.1: Scheme of the process of Feature Selection showing the inter-
action between subset generation and subset evaluation. Image based on a
scheme found in [2]

cation, and therefore is independent from the classifier used.

One example of a filter method is the Variance Threshold method, that
consist on removing the features with a variance lower than a fixed threshold.
In the last years also Markov blankets have been used as a filter method,
by searching for the Markov blanket of the class variable. This would be
a minimal set of variables such that all other variables are conditionally
independent of the class variable given the variables in the Markov blanket
[3].

Wrapper methods

These ones are classifier dependent since subsets are evaluated within the
classification process, being the performance of the classifier the measure
used to evaluate the subset. They usually have better performance than
filter methods but are more computationally demanding.

Embedded methods

These are also classifier dependent, they can be seen as the search in the
combined space of feature subsets and classifier models. The decision tree
classifier or the Weighted Naive Bayes classifier are examples of embedded
methods.

2.2.3 Evaluation measures

In order to choose a good feature set, it is necessary to somehow measure
the ability of the candidate set to contribute to the separation of the classes.
Features in the candidate are evaluated either individually or in the context

Chapter 2. Dimensionality reduction 15

of the other features. There are mainly two types of measures, the ones that
rely on the properties of the data and the ones that use a classification rule
as part of the evaluation.

The first ones are used in filter methods, as they only focus on statistical
properties of the variables. The ones that use a classification rule are used
in wrapper and embedded classification methods. In this second approach a
classifier is designed using measurements in the candidate subset. Then, the
performance of the classifier is assessed using some of the metrics described
in Section 1.1.3 and the obtained value is used as subset evaluation measure.
However, in this case the performance of the classifier is not evaluated using
the test set, but a set called validation set which is part of the training set.
Otherwise, the features chosen would be the the ones that fit specially well
the examples on the test set, and the resulting classifier would be very good
for that specific set but not able to generalize. Thus, the chosen feature set
will be the one for which the classifier performs well on a separate validation
set.

Among the measures that relay on the properties of the data, four dif-
ferent categories can be differentiated: feature ranking measures, interclass
distance measures, probabilistic distance measures and probabilistic depen-
dence measures. All of those four families of evaluation criteria are indepen-
dent of the classifier used and therefore they are usually cheaper to imple-
ment than the ones that are classifier dependent. However, the estimation
is also poorer than the one involving classifiers.

Feature ranking

This method is used to rank features individually, it is a simple method that
allows removing irrelevant or redundant features. They are easy to calcu-
late, and the simplest ones are the ones based in correlation.

The Pearson correlation coefficient is used to measure the linear correla-
tion among two variables. Given the variables X and Y with measurements
{xi} and {yi} and means x̄ and ȳ the Pearson correlation coefficient is given
by

ρ (X,Y) =

∑
i∈I (xi − x̄) (yi − ȳ)[∑

i∈I (xi − x̄)2
∑

i∈I (yi − ȳ)2
] (2.1)

When ρ (X,Y) = ±1 then X and Y are completely correlated, so one of
them is redundant and can be eliminated.

However, when relations among features are nonlinear, a nonlinear corre-
lation measure is needed. This is the case of the mutual information. Given

16 2.2. Feature selection

a discrete variable X its entropy is defined as

H (X) = −
∑
x

p(x)log2(p(x)) (2.2)

and the entropy of X after observing Y is defined as

H (X|Y) = −
∑
y

p(y)
∑
x

p(x|y)log2(p(x|y)) (2.3)

Then the mutual information is the additional information aboutX provided
by Y and it represents the decrease in the entropy of X that occurs when
Y is observed

MI (X|Y) = H (X)−H (X|Y) (2.4)

A normalized value of the mutual information can also be given. It is
called symmetrical uncertainty and is given by

SU(X,Y) = 2

(
MI (X|Y)

H (X) +H (Y)

)
(2.5)

This measure gives a value between zero and one, with zero meaning that
the features are independent and one that they are completely correlated.

Mutual information and symmetrical uncertainty allow nonlinear depen-
dence among variables to be detected, and work with discrete features. How-
ever, their disadvantages are that continuous features must be discretized
and that probability density functions must be estimated.

All those measures can be used to rank features individually according
to their relevance. However, for the features that become relevant only in
the context of others, a ranking criteria that takes context into account is
needed. So, there exist measuring methods that take context into consider-
ation, for example, the family of algorithms called Relief [3].

Interclass distance

Interclass distance measures the distance between classes based on the dis-
tances between members of each class.

Given a measure of distance, d(x,y), between two patterns of different
classes (x ∈ ω1 and y ∈ ω2), a measure of the separation between the classes
ω1 and ω2 is defined as

Jas (ω1, ω2) =
1

n1n2

n1∑
i=1

n2∑
j=1

d(xi,yj) (2.6)

Chapter 2. Dimensionality reduction 17

Dissimilarity measure Mathematical form

Divergence JD (ω1, ω2) =
∫

[p (x|ω1)− p (x|ω2)] log
(
p(x|ω1)
p(x|ω2)

)
dx

Chernoff Jc (ω1, ω2) = − log
∫
ps(x|ω1)p

1−s(x|ω2)dx

Bhattacharyya JB (ω1, ω2) = − log
∫

(p(x|ω1)p(x|ω2))
1
2dx

Patrick-Fischer JP (ω1, ω2) =
(∫

[p(x|ω1)p(ω1)− p(x|ω2)p(ω2)]
2
) 1

2

Table 2.1: Probabilistic distance measures

being n1 and n2 the number of patterns belonging to class ω1 and ω2, re-
spectively. For more than two classes the average distance between classes
is defined as

J =
1

2

C∑
i=1

p(ωi)

C∑
j=1

p(ωj)Jas(ωi, ωj) (2.7)

where p(ωi) is the prior probability of class ωi (estimated as pi = ni/n).
Notice that this is simply the total variance, which is not the best criterion
for feature selection. Other, more efficient ways to define J can be found in
[3].

There exist may different ways to define the distance between two pat-
terns, d(x,y), that depend on the type of variable. For example, for binary
variables Russel and Rao1 distance can be defined and for numeric variables
Euclidean distance2 or Chebyshev distance3 could be used.

Probabilistic distance

Probabilistic distance measures are used in the case of having only two cate-
gories, as they measure the distance between two distributions, p(x|ω1) and
p(x|ω2). Some of the most used measures are given in table 2.1. Those
measures will reach a maximum when the classes are disjoint. Their dis-
advantage is the need to estimate the probability density function and its
integral. However, it is common that under certain assumptions the expres-
sions can be evaluated analytically.

Probabilistic dependence measures

Probabilistic dependence measures are equivalent to probabilistic distance
measured but in this case for multiclass problems. They are used to cal-

1drr = number of occurrences of xi = 1 and yi = 1 / total number of occurrences
2de =

[∑p
i=1 (xi − yi)

2] 1
2

3dch = maxi |xi − yi|

18 2.2. Feature selection

Dissimilarity measure Mathematical form

Divergence JD =
∑C

i=1 p (ωi)
∫

[p (x|ωi)− p (x)] log
(
p(x|ωi)
p(x)

)
dx

Chernoff Jc =
∑C

i=1 p (ωi)
(
− log

∫
ps(x|ωi)p

1−s(x)dx
)

Bhattacharyya JB =
∑C

i=1 p (ωi)
(
− log

∫
(p(x|ωi)p(x))

1
2dx

)
Patrick-Fischer JP =

∑C
i=1 p (ωi)

(∫
[p(x|ωi)− p(x)]2

) 1
2

Table 2.2: Probabilistic dependence measures

culate the distance between the class-conditional density, p (x|ωi), and the
probability density function, p (x). If those two are identical, there is no
class information gain by observing x. And if they are very different, then
the dependence of x on the class ωi is high. Table 2.2 gives the probabilistic
dependence measures corresponding to table 2.1. In practice, probabilistic
dependence measures are difficult to apply, because the expressions given in
table 2.2 cannot be evaluated analytically.

2.2.4 Search algorithms for feature subset selection

There exist three categories of search algorithms: complete, sequential and
random search.

Complete search

Complete search methods are the ones that guarantee to find the optimal
subset. It is a complete search method, for instance, the exhaustive search,
that is, evaluating all the possible feature subsets and selecting the best
one. However, this method is extremely costly, and so other ones that do
not need the evaluation of all the possible subsets are sought.

One complete search method that does not require the evaluation of all
the possible subsets is, for example, Branch and bound method. Branch
and bound consists in the creation of a tree in which the nodes represent
all the possible feature subsets. In each level the nodes contain a set with
features that where on the previous node with one of them removed. The
method assumes the monotonicity property, that is, if A and B are two
feature subsets such that A ⊂ B, and the function J represents the chosen
evaluation measure, for Branch and bound method to work it is needed that
J(A) < J(B) (where a higher value for J means a better performance).

The algorithm starts at the least dense parts of the tree, evaluating a
feature subset there. Then it backtracks and goes down other branches until

Chapter 2. Dimensionality reduction 19

it finds a subset worse that the best subset found yet. In that case it will
again backtrack and go down another branch. Thus, although not all subsets
will be evaluated, the optimal one will be found.

Sequential search

In sequential search features are added or removed sequentially. This meth-
ods do not always find the optimal subset, they may get stuck in local
optimal. However, they are simple to implement and produce fast results.

Let S be a feature subset of all the possible features S = {Xi}di=1 where
d ≤ m, being m the number of available features to chose from. And let the
function J represent the chosen evaluation measure for the feature subset.
J(S) is the value of J on the validation sample when only inputs in S are
used (J is checked on a validation set different from the training set to test
the generalization) [5]. Then the following methods describe different types
of sequential search algorithms.

Best individual d

This is the simplest way of choosing d features. Each of the possible m fea-
tures is assigned a score through the evaluation measure J and the features
are ordered so that:

J(X1) ≥ J(X2) ≥ · · · ≥ J(Xm)

Then, the first d features are selected as the feature subset, S = {Xi}di=1.
Notice that this method needs to know in advance how many features are
going to be selected, d. It can produce good subsets but it is not the most
efficient method, specially when features are highly correlated [3].

There exists also a variation of this method in which, instead of choosing
a number d of features to keep, a percentage k is chosen. Thus, the number
d of features to maintain will be k% of the total number of features.

Sequential forward selection

This method starts with a subset with 0 features, S = ∅. Then, features
will be added one by one, choosing at each time the one that improves the
value J(S). For example, assuming that the measure J is the error rate E
the chosen feature will be the one that decreases the error most. This will
go on until any further addition does not decrease the error (or decreases it
only slightly).

20 2.2. Feature selection

That is, for all possible Xi, calculate E(S ∪Xi) and choose the input Xj

that causes least error j = arg min
i

E(S ∪ Xi). If E(S ∪ Xj) < E(S) then

add Xj to S. If adding does not decrease E (or decreases it very little) the
search stops.

This method can be costly, as the system has to be trained and tested
m+ (m− 1) + (m− 2) + ...+ (m− k) times, O(m2). Moreover, it performs
a local search, it does not guarantee finding the optimal subset. Another
disadvantage is that it adds features one by one so, if Xi and Xj are good
together but not by themselves, it may not be able to detect it.

It is also possible to add more that one feature at a time, with the ex-
pense of some more computation. This is a variation of the method called
Generalized sequential forward selection.

Remark 2.2.1. To explain sequential forward selection the evaluation mea-
sure J used has been E, the error rate. In this case is desirable to have a
small error rate. If other measure was used such that higher value represents
better performance (such as Accuracy or F1 value) then the chosen feature
would be the one that most increases the value of J , and the search would
go on until J stopped increasing.

While explaining the Sequential backward selection error rate will be
used again as an example of evaluation measure. However, it is important
to keep in mind that with another kind of evaluation measure, ”increase”
and ”grater” may need to be substituted with ”decrease” and ”smaller”, or
vice versa.

Sequential backward selection

In this case, the initial feature subset S contains all the features. Then, they
are removed one by one, each time choosing to remove the one that makes
the error decrease the most. It may also be allowed to remove a feature if
that action increases the error only a slightly, because, even if the error is
increased, removing one more feature will decrease complexity.

That is, for all possible Xi, calculate E(S − Xi) and choose the input
Xj that causes least error j = arg min

i
E(S − Xi). If E(S − Xj) < E(S)

then remove Xj from S. If removing Xj increases the error considerably,
the search stops.

Complexity of sequential backward selection is the same as in forward,
except that training the system with more features is more costly. For this

Chapter 2. Dimensionality reduction 21

reason, if many features are expected to be useless, it is better to use se-
quential forward selection.

Also in this case, more than one feature can be removed at each time,
in what is known as generalized sequential backward selection.

Bidirectional search

There is a way of using both sequential forward selection and sequential
backward selection and it is called bidirectional search.

In this method sequential forward and backward selection are performed
in parallel, each one starting, correspondingly, from S = ∅ and S the full
feature set. Features already selected by sequential forward selection are not
removed by sequential backward selection, and features already removed by
sequential backward selection are not selected by sequential forward selec-
tion. In this way, it is guaranteed that both methods converge to the same
solution.

Plus-l minus-r selection

This is another type of procedure in which both sequential forward selection
and sequential backward selection are used.

In this case, l features are added by sequential forward selection and then
r removed using sequential backward selection. It is similar to bidirectional
search but in this case feature adding and removing are not done in parallel,
one goes after the other.

If l > r it starts adding l features with sequential forward selection and
then removes r with sequential backward selection. Conversely, if r > l it
will start by removing features.

When the number of features added and removed, l and r change in each
iteration of the search procedure, this is called a floating search.

Randomized search

When randomized search is carried out, feature subsets are randomly gener-
ated or randomness is included in the previous methods. This is very useful
when the space of possible feature subsets is large. It also helps to avoid get-
ting trapped in local optimal subsets, and the benefits of obtaining a good
solution are more than the computational costs of including randomness.

22 2.3. Feature transformation

2.3 Feature transformation

Feature transformation consists on the transformation of the original data
into a lower-dimensional data sets. Unlike in feature selection methods,
feature transformation uses all of the original variables and transforms them
into a smaller set of underlying variables. The transformations studied will
be data adaptive, that is, depending on the data, and both supervised or
unsupervised.

2.3.1 Principal component analysis (PCA)

PCA is the most used feature extraction method. Geometrically, principal
components analysis can be seen as a rotation of the axes into a new set of
orthogonal axes that are ordered by the amount of variation of the original
data in each of the directions of the new axes. Then, the first few new direc-
tions or components will contain almost all the variation of the original data.
Thus, the fist components will be kept while the other ones are discarded,
obtaining in this way an smaller set of variables that, even if they may not
have an interpretation, describe most of the variation of the original data.

In that sense, PCA can also be seen as a projection method, where the
inputs in the original d dimensional space are projected into a new k (k < d)
dimensional space with the minimum loss of information. It is an unsuper-
vised method, that does not use the output information, so the criterion to
be maximized is the variance of the data in the new direction. If x is the
original data, the aim will be to project it in the direction ω such that the
projection of x in the direction of ω, z = ωTx, is the most spread out, has
the most variance.

The vector ω1 that maximizes the variance of z1 = ωT
1 x will be called

principal component. In order to calculate it, ‖ω1‖ = 1 will be required, so
that an unique solution is achieved and the direction becomes the important
factor in the choosing of the principal component. Then, as the variance of
z1 is,

Var(z1) = E[z21]− E[z1]
2 (2.8)

= E[ωT
1 xxTω1]− E[ωT

1 x]E[xTω1] (2.9)

= ωT
1 E[xxT]ω1 − ωT

1 E[x]E[xT]ω1 (2.10)

= ωT
1 (E[xxT]− E[x]E[xT])ω1 (2.11)

= ωT
1 Σω1 (2.12)

where Σ is the covariance matrix of x and E[.] denotes expectation.

Chapter 2. Dimensionality reduction 23

A ω1 such that Var(x1) is maximized while ωT
1 ω1 = 1 is wanted. This

problem can be written as a Lagrange problem in the following way:

max
ω1

ωT
1 Σω1 − α

(
ωT
1 ω1 − 1

)
(2.13)

And taking the derivative with respect to ω1 and setting it equal to 0:

2Σω1 − 2αω1 = 0⇔ Σω1 = αω1 (2.14)

Thus, equation 2.14 is hold if ω1 is an eigenvector of Σ and α is the eigenvalue
that corresponds to ω1. On the other hand, from equation 2.14 also follows
that:

Σω1 = αω1 ⇒ ωT
1 Σω1 = αωT

1 ω1 (2.15)

Taking into account that ωT
1 ω1 = 1 and equality 2.12, it follows that

Var(z1) = α (2.16)

where α is an eigenvalue of Σ. Thus, for the variance to be maximum, α
is chosen as the largest eigenvalue, which implies that ω1 is the eigenvector
corresponding to the largest eigenvalue [5] [3].

Similarly, the second principal component turns out to be the eigenvector
with the second largest eigenvalue. In this way, the directions that maximize
the variance are given by the eigenvectors of the sample covariance matrix
for an observed x, ordered by their corresponding eigenvalues in a decreasing
order.

Once the eigenvalues are ordered, the first k have to be selected an the
other ones discarded. But k is a number chosen by the user, and it is very
much problem specific, making it difficult to select an appropriate value for
it. One way of choosing k is choosing the proportion of variance that needs
to be explained after discarding the rest of eigenvalues.

Definition 2.3.1. (Proportion of variance) When the eigenvectors λi of the
sample covariance matrix for an observed x are sorted in descending order,
the proportion of variance explained by the k principal components is

λ1 + λ2 + · · ·+ λk
λ1 + λ2 + · · ·+ λk + · · ·+ λd

(2.17)

In this way, the proportion of variance to remain explained can be chosen,
for example, a 90% of the variance. Then, the k eigenvalues that explain the
90% of the variance will be kept. [5] However, the user still needs to chose
the proportion of variance with this method. Another approach is to analyze
the Scree graph, which is the plot of the ordered eigenvalues as a function
of the eigenvalue number. This graph usually falls sharply before levelling

24 2.3. Feature transformation

Figure 2.2: Example of an scree graph with an elbow at the fourth compo-
nent. Source: http://www.ibm.com/support/knowledgecenter/SSLVMB
21.0.0/com.ibm.spss.statistics.cs/fac cars scree 01.htm

off at small values (see figure 2.2), creating an ”elbow” that is used as the
cutting point to choose the eingenvectors to keep [3]. Still, this method is
not always reliable either, as the scree graph is not always of that form.

Remark 2.3.1. Before performing PCA transformation, it is recommended
to preprocess the data do that it has 0 mean and variance 1, otherwise the
units in which the different features are measured could alter directions of the
principal components [3]. PCA is also sensitive to outliers in the observed
data.

Remark 2.3.2. PCA is an unsupervised feature transformation method,
it does not use class information. However, there exist different variants
of this method, called Karhunn-Loève expansions, that allow using class
information (see [3]).

2.3.2 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a supervised method for dimension-
ality reduction. LDA consists on finding new directions such that, when the
data is projected in that directions, elements of the same class are next to
each other but far from elements of other classes.

Definition 2.3.2. (Scatter matrices) Given a set of patterns and label vec-
tors X = {xt, rt} such that rti = 1 if xt ∈ Ci and rti = 0 otherwise, the
scatter matrices are defined in the following way:

Chapter 2. Dimensionality reduction 25

Figure 2.3: Example of LDA projection for
a two-dimensional two-class problem. Source:
http://compbio.pbworks.com/w/page/16252905/Microarray%20Dimension%20Reduction

• Within-class scatter matrix: Si =
∑

t r
t
i(x

t −mi)(x
t −mi)

T

• Total within-class scatter matrix: SW =
∑k

i=1 Si

• Between-class scatter matrix: SB =
∑k

i=1Ni(mi −m)(mi −m)T

where:

– Ni =
∑

t r
t
i

– mi := mean of sample from class Ci

– m = 1
K

∑K
i=1 mi

If the original data has m dimensions and the projection is going to be
done into new k dimensions, the aim of LDA is to find W, a m× k matrix
such that the between-class scatter after projection, WTSBW, is large and
the within-class scatter after projection, WTSWW, is small. Thus, W is
chosen so that it maximizes

J(W) =
|WTSBW|
|WTSWW|

(2.18)

It can be proved that the matrix W that maximizes Equation 2.18 is the
m× k matrix that contains the largest eigenvectors of S−1W SB [5].

Chapter 3

Experiments and results

In this chapter the experiments done to test different dimensionality reduc-
tion methods are presented. The data and methods are explained and the
results of the experiments performed are analyzed.

3.1 Corpus

To carry on this experiments labelled sentences from the dataset F1234-m4
were used. That dataset was constructed in the following way: some sen-
tences in Spanish were taken from Meneame website
(https://www.meneame.net) and given to five different people, that were
asked to classify them as sarcastic or not sarcastic. As the sarcasm is some-
times difficult to understand in the written language and can also be am-
biguous, the labels that those five people gave to each post did not always
coincide. F1234-m4 dataset contains only the sentences in which at least
four out of five people agreed.

The features used to classify the sentences are the number of times that
different ngrams appear in each sentence. A ngram is a group of n words.
In this case, unigrams, bigrams and trigrams are counted, i.e., sequences of
one word, two words and three words. Moreover, for each sentence the label
will be 1 in the case of being sarcastic and -1 if it is not sarcastic. Feature
extraction was done through getFeaturesMNM stat.py (see A.1).

There is a total of 2902 posts that generate 230783 features.

Example 3.1.1. Take as an example the following two sentences: ’el verde
es el mejor’, ’qué rica el agua verde’; where the first one is not sarcastic but
the second one is. Then features would be the number of occurrences of the
following ngrams:

27

28 3.2. Scikit learn module

Unigrams: ’el’, ’verde’, ’es’, ’mejor’, ’qué’, ’rica’, ’agua’

Bigrams: ’el verde’, ’verde es’, ’es el’, ’el mejor’, ’qué rica’, ’rica el’, ’el
agua’, ’agua verde’

Trigrams: ’el verde es’, ’verde es el’, ’es el mejor’, ’qué rica el’, ’rica el
agua’, ’el agua verde’

Then the pattern for the first sentence is (2,1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0)
and for the second one (1,1,0,0,1,1,1,0,0,0,0,1,1,1,1,0,0,0,1,1,1). Together
with their corresponding labels this two sentences would be represented as
((2,1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0), -1) and ((1,1,0,0,1,1,1,0,0,0,0,1,1,1,1,0,0,0,1,1,1),1).

3.2 Scikit learn module

In order to carry out all the experiments done, Python programming lan-
guage has been used, together with the Scikit learn module [6]. Scikit learn
is a free software library that provides machine learning tools in Python.
Those tools have been used to build the classifier, to do Cross Validation
and to apply different dimensionality reduction algorithms. However, one
of the methods used, Sequential Forward Selection, was not implemented in
Scikit learn libraries, so an implementation for it has been designed.

3.3 Multinomial Naive Bayes

The classifier used in this experiments is the Multinomial Naive Bayes clas-
sifier. In order to use a Naive Bayes classifier it is necessary to know the
distribution of the data. For text classification, it is usual to assume that the
data is multinationally distributed, as the features are often counts of words.

This type of classifier was already tested in this same data in a previous
final degree dissertation [7]. In that work other classifiers that worked bet-
ter were also studied, however, Multinomial Naive Bayes was shown to work
efficiently and very fast. Thus, and due to the fact that some of the dimen-
sionality reduction methods used are very time consuming, this classifier is
a good option as a first approach to test different dimensionality reduction
methods.

3.4 Experiments

First of all, classification was done without applying any dimensionality re-
duction method. This will be used as a base to later check if dimensionality
reduction methods improve the performance of the classifier or not. As in
all the following experiments, a 10-fold cross validation is performed and the

Chapter 3. Experiments and results 29

result given here is the average of the results obtained in all the 10 folds. The
score used to evaluate the performance of the classification is the F1 score
(see Table 1.2). It is important to remember that while using F1 score as
an evaluation measure, precision and recall values also need to be checked.
Thus, even if those values will not be explicitly written in this work, every
time that an F1 score is presented, precision and recall were also analyzed,
in order to ensure that they are balanced and avoid false impressions of good
performance.

Without introducing any dimensionality reduction method, the average
F1 while performing the classification with 10-fold Cross Validation and us-
ing Multinomial Naive Bayes classifier is 0.72842. For the next experiments
that will be the reference value to know if dimensionality reduction improves
the performance of the classifier or not. Notice that in all the following ex-
periments the conditions (used data, classifier and Cross Validation) are the
same. This is a way to ensure that the possible changes on the outcome
depend only in the dimensionality reduction method applied each time.

During this work, mostly feature selection methods were tested, as well
as one feature transformation method. First of all, some filter type feature
selection methods were applied.

3.4.1 Feature selection: filter methods

The simplest one is Variance Threshold method, that consist on eliminat-
ing all the features with a variance lower than a given value. This method
is applied checking the results for different threshold values (see Appendix
A.2.5). The threshold value that best results gives is, in most of the 10
folds, around 0.18. However, the average F1 when applying this method
is 0.63138, which is lower than the score obtained without dimensionality
reduction.

Next, another type of filter methods was applied. In this case, two very
similar search procedures will be compared, SelectKBest and SelecPercentile,
which represents the two variations of Best individual d explained in Sec-
tion 2.2.4. Both are ranking methods, that order the features based on the
values of a score function and then take the k best features or the k% best
features, respectively. The scores used for ranking are Chi2 and the ANOVA
f-value. Through the experiments described in Appendix A.2.1, Appendix
A.2.2, Appendix A.2.3 and Appendix A.2.4 combinations of those two search
procedures and score functions were tested, checking for different values of
k to see which one gives better results. In the case of SelectPercentile k
moved from 5 to 95 in steps of 5, while for SelectKBest 25 equally spaced
values were taken between 1 and the total number of features, to be used as

30 3.4. Experiments

SelectKBest SelectPercentile

Chi2
F1: 0.73159 F1: 0.69358

Average number of features Average percentage of features
selected: 186467.2 (80.79%) selected: 5.5%

f classif
F1: 0.72898 F1: 0.69443

Average number of features Average percentage of features
selected: 186467.2 (80.79%) selected: 5%

Table 3.1: Outcome of the experiments combining SelectKBest and Select-
Percentile search procedures and Chi2 and f classification score functions.
F1 values and the average best performing number or percentage of features
are represented.

the value of k. Table 3.1 summarizes the outcomes of those experiments.

As it can be seen in Table 3.1, the results are better when using Selec-
tKBest. Using Chi2 score function baseline result is improved, while f classi-
fication maintains baseline value. Whit respect to the search procedure, the
results obtained in Table 3.1 show that with SelectKBest both trials end up
selecting the same number of features, which represents 80.79% of the total
features. On the other hand, SelectPercentile only maintains around 5% of
the total features. Being the two search procedures very similar, it would
be logical for them to select a similar amount of features.

In order to clarify the reason for this difference, the results of the pre-
vious experiments analyzed fold by fold. In the case of SelectPercentile, in
average the best results are obtained with 5% of the features when using f
classification. But if the results of all the 10 folds are checked, it appears
that 5% is not only the average, but the best value in all of the 10 cases.
Moreover, in the case of Chi2, the best result is 5% in all of the cases ex-
cept of one in which it is 10%. Similarly, while checking fold by fold with
SelectKBest, with any of the scores it shows that, even if the average is
obtained with 80% of the features, in eight out of ten folds the best results
were obtained with 99.99% of the features, while the remaining two folds
obtain their best at 4% of the features. This suggested that there could be
two points in which the F1 value is maximum, one with all the features and
one with 4-5% of the features.

To check this hypothesis, more experiments were performed, using both
SelectKBest and SelectPercentile but this time only for f classification score,
as both f classification and Chi2 seemed to give similar results, regarding the
number of features to take for best results. The new experiments focused
on the areas in which the maximum values have appeared, testing for more

Chapter 3. Experiments and results 31

Figure 3.1: F1 score of the classification done as a function of the number
of features kept.

values around 5% of features and next to all features. Figure 3.1 shows
the results of those experiments with SelectKBest search procedure. The
results with SelectPercentile were similar. While checking only with a small
number of features, SelectKBest found the best with an average of 7569.6
features (3.28% of the total features) and had an average F1 of 0.72725.
SelectPercentile had an average F1 of 0.72131 with 3% of the features on
average. On the other hand, while checking only with high amounts of fea-
tures both methods found their best almost at 100% (99.75% and 99.9%)
with F1 values of 0.73102 for SelectKBest and 0.72964 for SelectPercentile.
Thus, it can be said that the best results are achieved either with all the
features (i.e., without performing feature selection) or with only 3% of the
features.

Next step was to check if, while selecting 3% of the features, the features
chosen were the same in all the folds. That is, to find out if those 3%
of features were an specific set of features that contained the information
about the sarcasm or if, on the contrary, they were different from case to
case. Focusing only in the case in which a small number of features was
maintained, there were 2323 that were kept in all the 10 folds. As said
above, on average 7569.6 were preserved, so the common features made an
30.68% of the average kept features. However, the fold that took less features

32 3.4. Experiments

only kept 3693, so it is impossible to have more than 3693 common features.
This means that, from all the features that there could be in common in all
the folds, 62.9% were indeed in common.

3.4.2 Feature selection: wrapper methods

Regarding wrapper type feature selection methods, two of them were tested:
Sequential Backward Selection and Sequential Forward Selection.

Sequential Backward Selection is available in the Scikit Learn library and
using this method the average number of features kept is 230763.3, which is
a 99.99% of the total features. In this way, the average F1 value obtained
was 0.73131. Sequential Forward Selection, on the other hand, was not im-
plemented by Scikit Learn so an implementation had to be done. There are,
in fact, two different results obtained with two different implementations.

The first implementation gave promising results. It obtained a very high
average F1 value of 0.95970, selecting on average 75.78 features. This is
a very interesting outcome, however, the way in which Sequential Forward
Selection was implemented was not completely correct, since it used the test
set as validation set. Thus, a second implementation was designed using a
different validation set. In this second case, the average number of features
is much lower, 34, and the F1 score is only of 0.25205. Even if it was
expected to have a lower F1 score in this second implementation (because
the model is not specifically adapted to the test set as it was in the previous
one), this result is worse than expected. The difference in the number of
chosen features between the two suggests that maybe a different variation of
the Sequential Forward Selection could be used to obtain a better outcome.
That variation stops the process not when the score function decreases, but
when it decreases significantly or does not increase in the next iterations.
This could be useful if, for example, the F1 value with 34 features is 0.25,
with 35 features is 0.24 and with 36 is 0.42.

3.4.3 Feature transformation

Finally, regarding feature transformation, PCA method could not be tested
because the machines used were not able to carry out such a complex process
for the big amount of data in this project. Instead, LDA was performed,
which on average transformed the feature space to one with 230776 dimen-
sions, instead of the original one of 230783 dimensions, and achieved an
average F1 of 0.68328.

Chapter 3. Experiments and results 33

3.5 Conclusions and future work

The results above presented show that, for this concrete case, dimensional-
ity reduction does not improve significantly the performance of the classifier.
Moreover, there are some cases in which applying those methods worsens
the performance, such as when features with low variance are eliminated
or the case of LDA, which is a very costly method that does not improve
performance.

However, even if the performance of the classifier does not improve, it
is important to remember that dimensionality reduction has other benefits,
such as reducing the complexity of the classifier. Thus, it can be said that
applying dimensionality reduction is convenient, specially if the method used
is simple. This is the case of reducing features with SelectKBest or Select-
Percentile and any of the two scores used. Those methods are simple, they
do not need much time to reduce dimensions and they achieve the same per-
formance with only 3% of the original dimensions, making the classification
process much simpler.

As a work for the future, it would be interesting to check the results
obtained with the methods that could not be tested, such as PCA or mu-
tual information. Changing the version of Sequential Forward Selection
algorithm to avoid stopping too soon could also be done. Finally, another
interesting question is to delve into the matter of the common kept features,
to see if there are some special words that could be sarcasm indicators.

Bibliography

[1] Richard O. Duda, Peter E. Hart, David G. Stork, Pattern Classifica-
tion, 2nd ed.

[2] Ricardo Gutierrez-Osuna, CSCE 666: Pattern Analysis lecture notes,
Texas A & M University, 2013.

[3] Andrew R. Webb, Keith D. Cospey, Statistical Pattern Recognition,
3rd ed., Wiley, 2011.

[4] M. Inés Torres, Reconocimiento de formas lecture notes, 2013.

[5] Ethem Alpaydin, Introduction to Machine Learning, MIT Press,
2004.

[6] Scikit-learn.org. (2016). scikit-learn: machine learning in Python
scikit-learn 0.17.1 documentation. [online] Available at: http://scikit-
learn.org/stable/

[7] Jon Kerexeta, Sarkasmoaren detekzioa lineako sare sozialetan, Final
Degree Dissertation directed by Raquel Justo and M. Inés Torres,
2016.

35

Appendix A

Python scripts

A.1 getFeatures

#!/ usr / b in /env python3

vim : t s =4:sw=4: expandtab :

import re
import csv
import n l tk
import j s on
import p i c k l e
import i t e r t o o l s
import argparse
from glob import glob
from pdb import s e t t r a c e
from as t import l i t e r a l e v a l
from operator import i t emge t t e r
from os . path import s p l i t e x t , s p l i t
from n l tk . stem . por t e r import PorterStemmer
from c o l l e c t i o n s import d e f a u l t d i c t , Counter

s a r c c u e s = set () ## s e t () −> To c r e a t e a l i s t wi th no
d u p l i c a t e e lements

n g r a m f i l e s = [’ unigrams . csv ’ , ’ bigrams . csv ’ , ’ t r i g rams . csv ’]

def getLIWC(text) :
with open(’ . . / data / l iwc l ookup . j son ’ , ’ r ’) as f i :

l i w c l u = j son . load (f i)
with open(’ . . / data / l i w c d i c t . cP i ck l e ’ , ’ rb ’) as f i :

l iwc = p i c k l e . load (f i)
r e s u l t s = set ()
for token tup l e in t ex t : ##token=symbol

token = token tup l e [0]
for word in l i w c l u :

37

38 A.1. getFeatures

i f word [−1] == ’ ∗ ’ :
i f token . s t a r t s w i t h (word) :

for ID in l i w c l u [word] :
r e s u l t s . add ((’LIWC− ’+l iwc [ID] [’

cat name ’] ,))
else :

i f token == word :
for ID in l i w c l u [word] :

r e s u l t s . add ((’LIWC− ’+l iwc [ID] [’
cat name ’] ,))

return l i s t (r e s u l t s)

##d e f d e l e t e r e p e a t e d (l i w c f e a t s) :
f o r i in range (l e n (l i w c f e a t s)) :
j=i+1
w h i l e j<l e n (l i w c f e a t s) :
i f l i w c f e a t s [j]== l i w c f e a t s [i] :
d e l l i w c f e a t s [j]
e l s e :
j=j+1

def getLength (t e x t f l a t , s en t ence s) :
d = Counter ()
d [(’LENGTH−t o ta l words ’ ,)] = len (t e x t f l a t)
d [(’LENGTH−t o t a l c h a r ’ ,)] = sum([len (word) for word in

t e x t f l a t])
d [(’LENGTH−t o t a l s e n t e n c e s ’ ,)] = len (s en t ence s)
d [(’LENGTH−ave words pe r s ent ’ ,)] = len (t e x t f l a t) /

f loat (len (s en t ence s))
d [(’LENGTH−ave chars per word ’ ,)] = d [(’LENGTH−

t o t a l c h a r ’ ,)] / f loat (len (t e x t f l a t))
return d

scue debug = set ()

def getLabe l (l p f) :
with open(lp f , encoding=’ utf−8 ’) as f :

l p l = j son . load (f)

lpd = {p [0] : dict (l a b e l=p [1]) for p in l p l } ## p [0]
po s t number , p [1] s a r c s i / sarc no

return lpd

def getFeatures (lpd) :
q = 0
header = set ()
for p in lpd :

Appendix A. Python scripts 39

with open(’C: / Users /SONY/Desktop/Uni/TFG/ mater i a l a /
so f o co / so f o co /Corpus/ ParsedPosts / ’+p+’ . j son ’ ,
encoding=’ utf−8 ’) as f :
pa r s ed pos t = j son . load (f)

p o s t t e x t= [[word . lower () for word in sentence [’
t ex t ’]] for sentence in par sed pos t [’ s en t ence s ’
]]

#post POS = [[’ POS−’+word [1] [’ PartOfSpeech ’] f o r
word in sentence [’ words ’]] f o r sentence in po s t
[’ s e n t e n c e s ’]]

t h e s e are nes ted l i s t s . . .
#POS bigrams = [n l t k . ngrams (t e x t , 2) f o r t e x t in

post POS]
#POS trigrams = [n l t k . ngrams (t e x t , 3) f o r t e x t in

post POS]
so are t h e s e
word unigrams = [n l tk . ngrams (text , 1) for t ex t in

p o s t t e x t] #Estaba comentado o r i g i n a l m e n t e
word bigrams = [n l tk . ngrams (text , 2) for t ex t in

p o s t t e x t]
word tr igrams = [n l tk . ngrams (text , 3) for t ex t in

p o s t t e x t]

f l a t t e n l i s t s
#pos unigrams = l i s t (i t e r t o o l s . chain . f r o m i t e r a b l e (

post POS))
#pos b igrams = l i s t (i t e r t o o l s . chain . f r o m i t e r a b l e (

POS bigrams))
#p o s t r i g r a m s = l i s t (i t e r t o o l s . chain . f r o m i t e r a b l e (

POS trigrams))

#word unigrams = l i s t (i t e r t o o l s . chain . f r o m i t e r a b l e
(p o s t t e x t)) #Estaba descomentado
o r i g i n a l m e n t e

word unigrams = l i s t (i t e r t o o l s . chain . f r o m i t e r a b l e (
word unigrams)) #Estaba comentado o r i g i n a l m e n t e

word bigrams = l i s t (i t e r t o o l s . chain . f r o m i t e r a b l e (
word bigrams))

word tr igrams = l i s t (i t e r t o o l s . chain . f r o m i t e r a b l e (
word tr igrams))

g e t l i w c f e a t u r e s
#l i w c f e a t s = getLIWC(word unigrams)
#d e l e t e r e p e a t e d (l i w c f e a t s)

40 A.1. getFeatures

merge 1 2 3 grams
#ngrams = word unigrams + word bigrams +

word tr igrams + l i w c f e a t s + pos b igrams +
word tr igrams + p o s t r i g r a m s + pos unigrams

#ngrams = word unigrams + word bigrams +
word tr igrams + l i w c f e a t s + pos b igrams +
p o s t r i g r a m s + pos unigrams

ngrams = word unigrams + word bigrams +
word tr igrams

count up a l l the unique ngrams in t h i s p os t
count = Counter ()
for ngram in ngrams :

header . add (ngram) ## Header i s s e t () so no
r e p e t i t i o n s

count [ngram] += 1

#count += getLength (word unigrams , p o s t t e x t)

lpd [p] [’ ngrams count ’] = count
q+=1
p r i n t (q) Estaba s i n comentar

return header

def makeHeaderIndex (header) :
h e a d e r i n d e x t a b l e = {}
with open(’C: / Users /SONY/Desktop/Uni/TFG/ mater i a l a /

so f o co / so f o co / r e s u l t s /{}/ Feature−I nde x s t a t . dat ’ .
format (args . p o s t s i d) , ’w ’ , encoding=’ utf−8 ’) as f o :
for i , h in enumerate(header) :

h e a d e r i n d e x t a b l e [h] = i # a s s i g n unique index
f o r each f e a t u r e

i f isinstance (h , tuple) : ## i s i n i s t a n c e ,
s i m i l a r to type
f o . wr i t e (”%d:\”\”\”% s \”\”\”\ t ” % (i , ’ ’ .

j o i n (h)))
else :

print (’NO TUPLA, SOCORRO: ’ , h)
f o . wr i t e (”%d:%s \ t ”%(i , h))

return h e a d e r i n d e x t a b l e

i f name == ’ ma in ’ :

pa r s e r = argparse . ArgumentParser ()
pa r s e r . add argument (’ p o s t s i d ’ , help=’ i d e n t i f i c a d o r de l

conjunto de pos t s ’)
args = par s e r . p a r s e a r g s ()

Appendix A. Python scripts 41

l b l p o s t s = getLabe l (’C: / Users /SONY/Desktop/Uni/TFG/
mater i a l a / so f o co / so f o co /Corpus/ l abe l −{}. j s on ’ . format
(args . p o s t s i d))

header = getFeatures (l b l p o s t s)

#header . add ((’LENGTH−t o t a l w o r d s ’ ,))
#header . add ((’LENGTH−t o t a l c h a r ’ ,))
#header . add ((’LENGTH−t o t a l s e n t e n c e s ’ ,))
#header . add ((’LENGTH−a v e w o r d s p e r s e n t ’ ,))
#header . add ((’LENGTH−a v e c h a r s p e r w o r d ’ ,))
#header . add (’SARC CUE WORDS ’)

header = l i s t (header)
#f o r elem in header :
p r i n t (’ header ’ , header)
header . s o r t () # RAQUEL
#s e t t r a c e ()
header . i n s e r t (0 , ’ Label ’)
h e a d e r i n d e x t a b l e = makeHeaderIndex (header)

with open(’C: / Users /SONY/Desktop/Uni/TFG/ mater i a l a /
so f o co / so f o co / r e s u l t s /{}/ r e s u l t s s t a t . txt ’ . format (
args . p o s t s i d) , ’w ’) as f :
for p in sorted (l b l p o s t s) :

i f l b l p o s t s [p] [’ l a b e l ’] == ’ s a r c s i ’ :
f . wr i t e (’ 1\ t ’)

else :
f . wr i t e (’−1\t ’)

t r y :
a s s e r t p in l b l p o s t s
e x c e p t :
These f i l e s have no t e x t /POS or

something e l s e bad happened
p r i n t (” Warning : Bad parse in f i l e : %s .

j son”%s t r (k))

t u p l e p a i r s = []
elems =[]
for ngram in l b l p o s t s [p] [’ ngrams count ’] :

i = h e a d e r i n d e x t a b l e [ngram]
t u p l e p a i r s . append ((i , l b l p o s t s [p] [’

ngrams count ’] [ngram]))
t u p l e p a i r s . s o r t () # svm− l i g h t on ly t a k e s

f e a t u r e s wi th i n c r e a s i n g index v a l u e s
for pa i r in t u p l e p a i r s :

#f . w r i t e (s t r (p a i r [0]) +”:”+ s t r (p a i r [1]) +”

42 A.2. Experiments

”)
#p r i n t (” p a i r ” , p a i r)

f . wr i t e (”%d:%d\ t \ t ”%pa i r)

f . wr i t e (’ \n ’)
print (” Total number o f f e a t u r e s : %d”%len (header))
print (” Total number o f pos t s : %d”%len (l b l p o s t s))

A.2 Experiments

A.2.1 Chi2

#!/ usr / b in /env python3

vim : t s =4:sw=4: expandtab :

from pdb import runca l l , s e t t r a c e
import s k l e a rn . da ta s e t s . svml ight format as svml ight
from s k l e a rn . f e a t u r e s e l e c t i o n import chi2 , Se lectKBest
from s k l e a rn . na ive bayes import MultinomialNB
from s k l e a rn import svm
from s k l e a rn . met r i c s import f 1 s c o r e , p r e c i s i o n s c o r e ,

r e c a l l s c o r e , a c cu racy s co r e
from s k l e a rn . c r o s s v a l i d a t i o n import KFold , S t ra t i f i edKFo ld
from operator import i t emge t t e r
from random import s h u f f l e
from numpy import array
import argparse
import sys

def f i tAndPred i c t (t r a i n I , t e s t I , k , f e a t v e c s , l a b e l s) :
””” do one round o f f i t t i n g to chi2 , making model , and

doing p r e d i c t i o n s
on t e s t ”””
ch2 = SelectKBest (chi2 , k=k)
best = ch2 . f i t (f e a t v e c s [t r a i n I] , l a b e l s [t r a i n I]) #do

chi2 f i t on t r a i n data
#b e s t = r u n c a l l (ch2 . f i t , f e a t v e c s [t r a i n I] , l a b e l s [

t r a i n I]) #do ch i2 f i t on t r a i n data
t e s t f e a t s = best . trans form (f e a t v e c s [t e s t I]) # t e s t

data reduced to same k f e a t u r e s
t r a i n f e a t s = best . trans form (f e a t v e c s [t r a i n I]) # t r a i n

data reduced to same k f e a t u r e s
t r a i n l a b e l s = l a b e l s [t r a i n I] # l a b e l s f o r t h i s sample

s e c t i o n

f i t t e d = c l f . f i t (t r a i n f e a t s , t r a i n l a b e l s) # make NB

Appendix A. Python scripts 43

model on t r a i n data ##c l f i s the c l a s s i f i e r and we
f i t i t to our t r a i n data

pred = f i t t e d . p r e d i c t (t e s t f e a t s) # p r e d i c t l a b e l s f o r
t e s t

return pred

def i t e rK (max k , s t e p s i z e , t r a i n I , t e s t I , i , f e a t v e c s , l a b e l s ,
t e s t l a b e l s) :
””” Search through a l l k , re turn p r e d i c t i o n o f model

wi th
h i g e s t F1”””
f 1 k = []
print (” fo ld−−−−−−−−−−−−−−> ” + str (i))
for k in range (1 , max k , s t e p s i z e) :

pred = f i tAndPred i c t (t r a i n I , t e s t I , k , f e a t v e c s ,
l a b e l s)

i f k != 1 :
f 1 k . append ((f 1 s c o r e (t e s t l a b e l s , pred) , k))
print (”%d f e a t u r e s : f 1=%.4 f ”%(f 1 k [−1] [1] , f 1 k

[− 1] [0]))
k = sorted (f1 k , key=i t emge t t e r (0)) [−1] [1] # t ake

h i g h e s t F1 ##s o r t f 1 k but t e key i s s o r t i t by the
0 . item , t h a t i s the f 1 score .

Then tak e the k t h a t g i v e s the h i g h e s t
F1 , the l a s t k

pred = f i tAndPred i c t (t r a i n I , t e s t I , k , f e a t v e c s , l a b e l s) #
We are going to use t h a t k to do pred

compute s c o r e s
k l i s t . append (k)
return pred

def xval (svm l i gh t in , num folds , num steps =25, g e t b e s t=True ,
k=None) :

global k l i s t

f e a t v e c s , l a b e l s = svml ight . l o a d s v m l i g h t f i l e (
s v m l i g h t i n)

f e a t v e c s i s a sparse mat t h a t has rows :
##(” n o f p os t ” , ” n (i d e n t i f i e r) o f ngram ”) ” n o f

t imes t h a t ngram i s in t h a t po s t ”
l a b e l s i s a l i s t t h a t con ta i ns 1 s and −1s (f o r sarc /

no sarc)

max k=f e a t v e c s . shape [1] ## max k= number o f ngrams (at
most I can tak e max k f e a t u r e s)

print (’MAX K: ’ , max k)

44 A.2. Experiments

s t e p s i z e = max k// num steps

k f = St ra t i f i edKFo ld (l a b e l s , n f o l d s=num folds , s h u f f l e
=Fal se) # make f o l d s

#k f = S t r a t i f i e d K F o l d (l a b e l s , n f o l d s=num folds ,
s h u f f l e=True) # make f o l d s

f 1 = []
accuracy = []
p r e c i s i o n = []
r e c a l l = []
k l i s t = []
i = 1
for t r a i n I , t e s t I in kf : ## f o r each f o l d (the f o l d s don

’ t have the same s i z e)
t e s t l a b e l s = l a b e l s [t e s t I]
i f g e t b e s t : # search though k ’ s f o r b e s t r e s u l t s

This i s my case i f I want to do the f e a t u r e
s e l e c t i o n
pred = iterK (max k , s t e p s i z e , t r a i n I , t e s t I , i ,

f e a t v e c s , l a b e l s , t e s t l a b e l s)
else : ## j u s t do one model f o r k=’ a l l ’ , w i thout FS

pred = f i tAndPred i c t (t r a i n I , t e s t I , k , f e a t v e c s ,
l a b e l s)

f 1 . append (f 1 s c o r e (t e s t l a b e l s , pred))
accuracy . append (ac cu racy s co r e (t e s t l a b e l s , pred))
p r e c i s i o n . append (p r e c i s i o n s c o r e (t e s t l a b e l s , pred))
r e c a l l . append (r e c a l l s c o r e (t e s t l a b e l s , pred))
i+=1

f1 = array (f1) ## c o n v e r t s f1 l i s t i n t o numpy . ndarray
type

accuracy = array (accuracy)
p r e c i s i o n = array (p r e c i s i o n)
r e c a l l = array (r e c a l l)
k l i s t = array (k l i s t)
print (’Avg F1 : ’ + str (f 1 . mean ()))
print (’Avg Accuracy : ’ + str (accuracy . mean ()))
print (’Avg P r e c i s i o n : ’ + str (p r e c i s i o n . mean ()))
print (’Avg Reca l l : ’ + str (r e c a l l . mean ()))
i f g e t b e s t : print (’Avg k : ’ + str (k l i s t . mean ()))
print (f 1)
print (accuracy)
print (p r e c i s i o n)
print (r e c a l l)
print (k l i s t)
return [s c o r e . mean () for s co r e in (f1 , accuracy ,

p r e c i s i o n , r e c a l l)]

Appendix A. Python scripts 45

par s e r = argparse . ArgumentParser ()
#parser . add argument (’ p o s t s i d ’ , h e l p =’ i d e n t i f i c a d o r d e l

conjunto de p o s t s ’)
#parser . add argument (’ nu ’ , h e l p =’ f a c t o r nu para NuSVC (

i n t e r v a l o (0 , 1]) ’ , type=f l o a t , d e f a u l t =0.6)
par s e r . add argument (’−a ’ , ’−−arch ivo ’ , help=’ guardar s a l i d a

en arch ivo ’ , a c t i on=’ s t o r e t r u e ’)
par s e r . add argument (’−−f o l d s ’ , help=’ n m e r o de f o l d s [1 0] ’

, type=int , d e f a u l t =10)
args = par s e r . p a r s e a r g s ()

i f args . a rch ivo :
sys . s tdout = open(’ s tat−MNB−SVM−withFS CHI2 . txt ’ , ’w ’ ,

b u f f e r i n g =1)

print (”Loading datase t . . . ”)
s v m l i g h t i n = ’ r e s u l t s s t a t . txt ’
s t v m l i g h t i n s t o r e s the name o f the r e s u l t s s t a t s

document
in r e s u l t s s t a t : f o r each post , 1 i f sarc/−1 i f not

sarc and the number (i d e n t i f i e r) o f the ngram : how many
t imes apears t h a t ngram in t h a t pos t

i n i t i a l i z e c l a s s i f i e r
c l f = MultinomialNB ()

#c l f = svm .NuSVC(nu=args . nu)

x v a l (s v m l i g h t i n , args . f o l d s) # r e g u l a r Xval
xval (svm l i gh t in , args . f o l d s , g e t b e s t=True , k=’ a l l ’)

A.2.2 PercentileChi2

#!/ usr / b in /env python3

vim : t s =4:sw=4: expandtab :

from pdb import runca l l , s e t t r a c e
import s k l e a rn . da ta s e t s . svml ight format as svml ight
from s k l e a rn . f e a t u r e s e l e c t i o n import chi2 , Se lectKBest
from s k l e a rn . na ive bayes import MultinomialNB
from s k l e a rn import svm
from s k l e a rn . met r i c s import f 1 s c o r e , p r e c i s i o n s c o r e ,

r e c a l l s c o r e , a c cu racy s co r e
from s k l e a rn . c r o s s v a l i d a t i o n import KFold , S t ra t i f i edKFo ld
from operator import i t emge t t e r
from random import s h u f f l e
from numpy import array

46 A.2. Experiments

import argparse
import sys
from s k l e a rn . f e a t u r e s e l e c t i o n import S e l e c t P e r c e n t i l e

def f i tAndPred i c t (t r a i n I , t e s t I , k , f e a t v e c s , l a b e l s) :
””” do one round o f f i t t i n g to chi2 , making model , and

doing p r e d i c t i o n s
on t e s t ”””
ch2 = S e l e c t P e r c e n t i l e (chi2 , k) ## only keeps the b e s t

k% f e a t u r e s accord ing to ch i2
best = ch2 . f i t (f e a t v e c s [t r a i n I] , l a b e l s [t r a i n I]) #do

chi2 f i t on t r a i n data
t e s t f e a t s = best . trans form (f e a t v e c s [t e s t I]) # t e s t

data reduced to same k f e a t u r e s
t r a i n f e a t s = best . trans form (f e a t v e c s [t r a i n I]) # t r a i n

data reduced to same k f e a t u r e s
t r a i n l a b e l s = l a b e l s [t r a i n I] # l a b e l s f o r t h i s sample

s e c t i o n

f i t t e d = c l f . f i t (t r a i n f e a t s , t r a i n l a b e l s) # make NB
model on t r a i n data

pred = f i t t e d . p r e d i c t (t e s t f e a t s) # p r e d i c t l a b e l s f o r
t e s t

return pred

def i t e rK (max k , s t e p s i z e , t r a i n I , t e s t I , i , f e a t v e c s , l a b e l s ,
t e s t l a b e l s) :
””” Search through a l l k , re turn p r e d i c t i o n o f model

wi th
h i g e s t F1”””
f 1 k = []
print (” fo ld−−−−−−−−−−−−−−> ” + str (i))
k=95
while k>=5:

pred = f i tAndPred i c t (t r a i n I , t e s t I , k , f e a t v e c s ,
l a b e l s)

f 1 k . append ((f 1 s c o r e (t e s t l a b e l s , pred) , k))
print (”%d percent o f f e a t u r e s : f 1=%.4 f ”%(f 1 k

[−1] [1] , f 1 k [− 1] [0]))
k=k−5

k = sorted (f1 k , key=i t emge t t e r (0)) [−1] [1]
pred = f i tAndPred i c t (t r a i n I , t e s t I , k , f e a t v e c s , l a b e l s)
compute s c o r e s
k l i s t . append (k)
return pred

def xval (svm l i gh t in , num folds , num steps =25, g e t b e s t=True ,

Appendix A. Python scripts 47

k=None) :

global k l i s t

f e a t v e c s , l a b e l s = svml ight . l o a d s v m l i g h t f i l e (
s v m l i g h t i n)

max k=f e a t v e c s . shape [1]
print (’MAX K: ’ , max k)
s t e p s i z e = max k// num steps

k f = St ra t i f i edKFo ld (l a b e l s , n f o l d s=num folds , s h u f f l e
=Fal se) # make f o l d s

f 1 = []
accuracy = []
p r e c i s i o n = []
r e c a l l = []
k l i s t = []
i = 1
for t r a i n I , t e s t I in kf :

t e s t l a b e l s = l a b e l s [t e s t I]
i f g e t b e s t : # search though k ’ s f o r b e s t r e s u l t s

pred = iterK (max k , s t e p s i z e , t r a i n I , t e s t I , i ,
f e a t v e c s , l a b e l s , t e s t l a b e l s)

else : # j u s t do one model f o r k
pred = f i tAndPred i c t (t r a i n I , t e s t I , k , f e a t v e c s ,

l a b e l s)

f 1 . append (f 1 s c o r e (t e s t l a b e l s , pred))
accuracy . append (ac cu racy s co r e (t e s t l a b e l s , pred))
p r e c i s i o n . append (p r e c i s i o n s c o r e (t e s t l a b e l s , pred))
r e c a l l . append (r e c a l l s c o r e (t e s t l a b e l s , pred))
i+=1

f1 = array (f1)
accuracy = array (accuracy)
p r e c i s i o n = array (p r e c i s i o n)
r e c a l l = array (r e c a l l)
k l i s t = array (k l i s t)
print (’Avg F1 : ’ + str (f 1 . mean ()))
print (’Avg Accuracy : ’ + str (accuracy . mean ()))
print (’Avg P r e c i s i o n : ’ + str (p r e c i s i o n . mean ()))
print (’Avg Reca l l : ’ + str (r e c a l l . mean ()))
i f g e t b e s t : print (’Avg k : ’ + str (k l i s t . mean ()))
print (f 1)
print (accuracy)
print (p r e c i s i o n)
print (r e c a l l)

48 A.2. Experiments

print (k l i s t)
return [s c o r e . mean () for s co r e in (f1 , accuracy ,

p r e c i s i o n , r e c a l l)]

pa r s e r = argparse . ArgumentParser ()
#parser . add argument (’ p o s t s i d ’ , h e l p =’ i d e n t i f i c a d o r d e l

conjunto de p o s t s ’)
#parser . add argument (’ nu ’ , h e l p =’ f a c t o r nu para NuSVC (

i n t e r v a l o (0 , 1]) ’ , type=f l o a t , d e f a u l t =0.6)
par s e r . add argument (’−a ’ , ’−−arch ivo ’ , help=’ guardar s a l i d a

en arch ivo ’ , a c t i on=’ s t o r e t r u e ’)
par s e r . add argument (’−−f o l d s ’ , help=’ n m e r o de f o l d s [1 0] ’

, type=int , d e f a u l t =10)
args = par s e r . p a r s e a r g s ()

i f args . a rch ivo :
sys . s tdout = open(’ s tat−MNB−SVM−withFS percent i l e CHI2 .

txt ’ , ’w ’ , b u f f e r i n g =1)

print (”Loading datase t . . . ”)
s v m l i g h t i n = ’ r e s u l t s s t a t . txt ’

i n i t i a l i z e c l a s s i f i e r
c l f = MultinomialNB ()

xval (svm l i gh t in , args . f o l d s , g e t b e s t=True , k=’ a l l ’)

A.2.3 fclassif

#! / usr / b in /env python3

vim : t s =4:sw=4: expandtab :

from pdb import runca l l , s e t t r a c e
import s k l e a rn . da ta s e t s . svml ight format as svml ight
from s k l e a rn . f e a t u r e s e l e c t i o n import f c l a s s i f ,

Se lectKBest
from s k l e a rn . na ive bayes import MultinomialNB
from s k l e a rn import svm
from s k l e a rn . met r i c s import f 1 s c o r e , p r e c i s i o n s c o r e ,

r e c a l l s c o r e , a c cu racy s co r e
from s k l e a rn . c r o s s v a l i d a t i o n import KFold , S t ra t i f i edKFo ld
from operator import i t emge t t e r
from random import s h u f f l e
from numpy import array , i n t e r s e c t 1 d
import argparse
import sys
from f u n c t o o l s import reduce

Appendix A. Python scripts 49

def f i tAndPred i c t (t r a i n I , t e s t I , k , f e a t v e c s , l a b e l s) :
””” do one round o f f i t t i n g to chi2 , making model , and

doing p r e d i c t i o n s
on t e s t ”””
f c l a s s = SelectKBest (f c l a s s i f , k=k)
best = f c l a s s . f i t (f e a t v e c s [t r a i n I] . toar ray () , l a b e l s [

t r a i n I]) #do chi2 f i t on t r a i n data
t e s t f e a t s = best . trans form (f e a t v e c s [t e s t I]) # t e s t

data reduced to same k f e a t u r e s
t r a i n f e a t s = best . trans form (f e a t v e c s [t r a i n I]) # t r a i n

data reduced to same k f e a t u r e s
t r a i n l a b e l s = l a b e l s [t r a i n I] # l a b e l s f o r t h i s sample

s e c t i o n

i n d i c e s=best . g e t suppor t ()

f i t t e d = c l f . f i t (t r a i n f e a t s , t r a i n l a b e l s) # make NB
model on t r a i n data

pred = f i t t e d . p r e d i c t (t e s t f e a t s) # p r e d i c t l a b e l s f o r
t e s t

return pred , i n d i c e s

def i t e rK (max k , s t e p s i z e , t r a i n I , t e s t I , i , f e a t v e c s , l a b e l s ,
t e s t l a b e l s) :
””” Search through a l l k , re turn p r e d i c t i o n o f model

wi th
h i g e s t F1”””
f 1 k = []
print (” fo ld−−−−−−−−−−−−−−> ” + str (i))
for k in range (1 , max k , s t e p s i z e) :

pred , i n d i c e s= f i tAndPred i c t (t r a i n I , t e s t I , k ,
f e a t v e c s , l a b e l s) #i dont need i n d i c e s r i g h t now

but i f i on ly put pred i t s t o r e s both pred and
i n d i c e s

i f k != 1 :
f 1 k . append ((f 1 s c o r e (t e s t l a b e l s , pred) , k))
print (”%d f e a t u r e s : f 1=%.4 f ”%(f 1 k [−1] [1] , f 1 k

[− 1] [0]))
k = sorted (f1 k , key=i t emge t t e r (0)) [−1] [1]
pred , good ind i c e s = f i tAndPred i c t (t r a i n I , t e s t I , k ,

f e a t v e c s , l a b e l s)
compute s c o r e s
k l i s t . append (k)
return pred , good ind i c e s

def xval (svm l i gh t in , num folds , num steps =25, g e t b e s t=True ,

50 A.2. Experiments

k=None) :

global k l i s t

f e a t v e c s , l a b e l s = svml ight . l o a d s v m l i g h t f i l e (
s v m l i g h t i n)

max k=f e a t v e c s . shape [1]
print (’MAX K: ’ , max k)
s t e p s i z e = max k// num steps

k f = St ra t i f i edKFo ld (l a b e l s , n f o l d s=num folds , s h u f f l e
=Fal se) # make f o l d s

f 1 = []
accuracy = []
p r e c i s i o n = []
r e c a l l = []
k l i s t = []
i = 1
for t r a i n I , t e s t I in kf :

t e s t l a b e l s = l a b e l s [t e s t I]
i f g e t b e s t :

pred , i n d i c e s = iterK (max k , s t e p s i z e , t r a i n I ,
t e s t I , i , f e a t v e c s , l a b e l s , t e s t l a b e l s)

print (’ i n d i c e s ’)
print (i n d i c e s)
i f i ==1:

s h a r e d i n d i c e s=i n d i c e s
else :

s h a r e d i n d i c e s=i n t e r s e c t 1 d (s h a r e d i n d i c e s ,
i n d i c e s)

else : # j u s t do one model f o r k
pred = f i tAndPred i c t (t r a i n I , t e s t I , k , f e a t v e c s ,

l a b e l s)

f 1 . append (f 1 s c o r e (t e s t l a b e l s , pred))
accuracy . append (ac cu racy s co r e (t e s t l a b e l s , pred))
p r e c i s i o n . append (p r e c i s i o n s c o r e (t e s t l a b e l s , pred))
r e c a l l . append (r e c a l l s c o r e (t e s t l a b e l s , pred))
i+=1

f1 = array (f1)
accuracy = array (accuracy)
p r e c i s i o n = array (p r e c i s i o n)
r e c a l l = array (r e c a l l)
k l i s t = array (k l i s t)
print (’Avg F1 : ’ + str (f 1 . mean ()))
print (’Avg Accuracy : ’ + str (accuracy . mean ()))
print (’Avg P r e c i s i o n : ’ + str (p r e c i s i o n . mean ()))

Appendix A. Python scripts 51

print (’Avg Reca l l : ’ + str (r e c a l l . mean ()))
i f g e t b e s t : print (’Avg k : ’ + str (k l i s t . mean ()))
print (f 1)
print (accuracy)
print (p r e c i s i o n)
print (r e c a l l)
print (k l i s t)
print (’ s h a r e d i n d i c e s ’ , s h a r e d i n d i c e s)
print (’ l ength : ’ , len (s h a r e d i n d i c e s))
for i in s h a r e d i n d i c e s :

print (i)
return [s c o r e . mean () for s co r e in (f1 , accuracy ,

p r e c i s i o n , r e c a l l)]

pa r s e r = argparse . ArgumentParser ()
#parser . add argument (’ p o s t s i d ’ , h e l p =’ i d e n t i f i c a d o r d e l

conjunto de p o s t s ’)
#parser . add argument (’ nu ’ , h e l p =’ f a c t o r nu para NuSVC (

i n t e r v a l o (0 , 1]) ’ , type=f l o a t , d e f a u l t =0.6)
par s e r . add argument (’−a ’ , ’−−arch ivo ’ , help=’ guardar s a l i d a

en arch ivo ’ , a c t i on=’ s t o r e t r u e ’)
par s e r . add argument (’−−f o l d s ’ , help=’ n m e r o de f o l d s [1 0] ’

, type=int , d e f a u l t =10)
args = par s e r . p a r s e a r g s ()

i f args . a rch ivo :
sys . s tdout = open(’ s tat−MNB−SVM−w i t h F S f c l a s s i f i n d i c e s

. txt ’ , ’w ’ , b u f f e r i n g =1)

print (”Loading datase t . . . ”)
s v m l i g h t i n = ’ r e s u l t s s t a t . txt ’

c l f = MultinomialNB ()

xval (svm l i gh t in , args . f o l d s , g e t b e s t=True , k=’ a l l ’)

A.2.4 Percentile fclassif

#! / usr / b in /env python3

vim : t s =4:sw=4: expandtab :

from pdb import runca l l , s e t t r a c e
import s k l e a rn . da ta s e t s . svml ight format as svml ight
from s k l e a rn . f e a t u r e s e l e c t i o n import f c l a s s i f ,

Se lectKBest
from s k l e a rn . na ive bayes import MultinomialNB
from s k l e a rn import svm

52 A.2. Experiments

from s k l e a rn . met r i c s import f 1 s c o r e , p r e c i s i o n s c o r e ,
r e c a l l s c o r e , a c cu racy s co r e

from s k l e a rn . c r o s s v a l i d a t i o n import KFold , S t ra t i f i edKFo ld
from operator import i t emge t t e r
from random import s h u f f l e
from numpy import array
import argparse
import sys
from s k l e a rn . f e a t u r e s e l e c t i o n import S e l e c t P e r c e n t i l e

def f i tAndPred i c t (t r a i n I , t e s t I , k , f e a t v e c s , l a b e l s) :
””” do one round o f f i t t i n g to chi2 , making model , and

doing p r e d i c t i o n s
on t e s t ”””
f c l a s s i f = S e l e c t P e r c e n t i l e (f c l a s s i f , k)
bes t = f c l a s s i f . f i t (f e a t v e c s [t r a i n I] . toar ray () , l a b e l s

[t r a i n I])
t e s t f e a t s = best . trans form (f e a t v e c s [t e s t I])
t r a i n f e a t s = best . trans form (f e a t v e c s [t r a i n I])
t r a i n l a b e l s = l a b e l s [t r a i n I] # l a b e l s f o r t h i s sample

s e c t i o n
print (’ t r a i n f e a t s ’ , t r a i n f e a t s . shape)

f i t t e d = c l f . f i t (t r a i n f e a t s , t r a i n l a b e l s) # make NB
model on t r a i n data

pred = f i t t e d . p r e d i c t (t e s t f e a t s) # p r e d i c t l a b e l s f o r
t e s t

return pred

def i t e rK (max k , s t e p s i z e , t r a i n I , t e s t I , i , f e a t v e c s , l a b e l s ,
t e s t l a b e l s) :
””” Search through a l l k , re turn p r e d i c t i o n o f model

wi th
h i g e s t F1”””
f 1 k = []
print (” fo ld−−−−−−−−−−−−−−> ” + str (i))
k=95
while k>=5:

pred = f i tAndPred i c t (t r a i n I , t e s t I , k , f e a t v e c s ,
l a b e l s)

f 1 k . append ((f 1 s c o r e (t e s t l a b e l s , pred) , k))
print (”%d percent o f f e a t u r e s : f 1=%.4 f ”%(f 1 k

[−1] [1] , f 1 k [− 1] [0]))
k=k−5

k = sorted (f1 k , key=i t emge t t e r (0)) [−1] [1]
pred = f i tAndPred i c t (t r a i n I , t e s t I , k , f e a t v e c s , l a b e l s)
compute s c o r e s
k l i s t . append (k)
return pred

Appendix A. Python scripts 53

def xval (svm l i gh t in , num folds , num steps =25, g e t b e s t=True ,
k=None) :

global k l i s t

f e a t v e c s , l a b e l s = svml ight . l o a d s v m l i g h t f i l e (
s v m l i g h t i n)

max k=f e a t v e c s . shape [1]
print (’MAX K: ’ , max k)
s t e p s i z e = max k// num steps

k f = St ra t i f i edKFo ld (l a b e l s , n f o l d s=num folds , s h u f f l e
=Fal se) # make f o l d s

f 1 = []
accuracy = []
p r e c i s i o n = []
r e c a l l = []
k l i s t = []
i = 1
for t r a i n I , t e s t I in kf :

t e s t l a b e l s = l a b e l s [t e s t I]
i f g e t b e s t :

pred = iterK (max k , s t e p s i z e , t r a i n I , t e s t I , i ,
f e a t v e c s , l a b e l s , t e s t l a b e l s)

else :
pred = f i tAndPred i c t (t r a i n I , t e s t I , k , f e a t v e c s ,

l a b e l s)

f 1 . append (f 1 s c o r e (t e s t l a b e l s , pred))
accuracy . append (ac cu racy s co r e (t e s t l a b e l s , pred))
p r e c i s i o n . append (p r e c i s i o n s c o r e (t e s t l a b e l s , pred))
r e c a l l . append (r e c a l l s c o r e (t e s t l a b e l s , pred))
i+=1

f1 = array (f1)
accuracy = array (accuracy)
p r e c i s i o n = array (p r e c i s i o n)
r e c a l l = array (r e c a l l)
k l i s t = array (k l i s t)
print (’Avg F1 : ’ + str (f 1 . mean ()))
print (’Avg Accuracy : ’ + str (accuracy . mean ()))
print (’Avg P r e c i s i o n : ’ + str (p r e c i s i o n . mean ()))
print (’Avg Reca l l : ’ + str (r e c a l l . mean ()))
i f g e t b e s t : print (’Avg k : ’ + str (k l i s t . mean ()))
print (f 1)
print (accuracy)

54 A.2. Experiments

print (p r e c i s i o n)
print (r e c a l l)
print (k l i s t)
return [s c o r e . mean () for s co r e in (f1 , accuracy ,

p r e c i s i o n , r e c a l l)]

pa r s e r = argparse . ArgumentParser ()
#parser . add argument (’ p o s t s i d ’ , h e l p =’ i d e n t i f i c a d o r d e l

conjunto de p o s t s ’)
#parser . add argument (’ nu ’ , h e l p =’ f a c t o r nu para NuSVC (

i n t e r v a l o (0 , 1]) ’ , type=f l o a t , d e f a u l t =0.6)
par s e r . add argument (’−a ’ , ’−−arch ivo ’ , help=’ guardar s a l i d a

en arch ivo ’ , a c t i on=’ s t o r e t r u e ’)
par s e r . add argument (’−−f o l d s ’ , help=’ n m e r o de f o l d s [1 0] ’

, type=int , d e f a u l t =10)
args = par s e r . p a r s e a r g s ()

i f args . a rch ivo :
sys . s tdout = open(’ s tat−MNB−SVM−

w i t h F S p e r c e n t i l e f c l a s s i f . tx t ’ , ’w ’ , b u f f e r i n g =1)

print (”Loading datase t . . . ”)
s v m l i g h t i n = ’ r e s u l t s s t a t . txt ’

c l f = MultinomialNB ()

xval (svm l i gh t in , args . f o l d s , g e t b e s t=True , k=’ a l l ’) ## I ’ ve
changed g e t b e s t from f a l s e to t r u e to do f e a t u r e

s e l e c t i o n

A.2.5 Variance Threshold

#! / usr / b in /env python3

vim : t s =4:sw=4: expandtab :

from pdb import runca l l , s e t t r a c e
import s k l e a rn . da ta s e t s . svml ight format as svml ight
from s k l e a rn . f e a t u r e s e l e c t i o n import chi2 , Se lectKBest
from s k l e a rn . na ive bayes import MultinomialNB
from s k l e a rn import svm
from s k l e a rn . met r i c s import f 1 s c o r e , p r e c i s i o n s c o r e ,

r e c a l l s c o r e , a c cu racy s co r e
from s k l e a rn . c r o s s v a l i d a t i o n import KFold , S t ra t i f i edKFo ld
from operator import i t emge t t e r
from random import s h u f f l e
from numpy import array

Appendix A. Python scripts 55

import argparse
import sys
from s k l e a rn . f e a t u r e s e l e c t i o n import VarianceThreshold
from s k l e a rn import p r e p r o c e s s i n g
from numpy import std
from numpy import arange

def i t e rK (max k , s t e p s i z e , t r a i n I , t e s t I , i , f e a t v e c s , l a b e l s ,
t e s t l a b e l s) :
””” Search through a l l k , re turn p r e d i c t i o n o f model

wi th
h i g e s t F1”””
f 1 k = []
print (” fo ld−−−−−−−−−−−−−−> ” + str (i))
for k in arange (0 , max k , s t e p s i z e) : #f o r d i f f e r e n t

v a l u e s f o r the var iance

s e l=VarianceThreshold (th r e sho ld=k)
best=s e l . f i t (f e a t v e c s [t r a i n I] , l a b e l s [t r a i n I])
t e s t f e a t s=best . trans form (f e a t v e c s [t e s t I])
t r a i n f e a t s=best . trans form (f e a t v e c s [t r a i n I])
t r a i n l a b e l s=l a b e l s [t r a i n I]

f i t t e d=c l f . f i t (t r a i n f e a t s , t r a i n l a b e l s)
pred = f i t t e d . p r e d i c t (t e s t f e a t s)

f 1 k . append ((f 1 s c o r e (t e s t l a b e l s , pred) , k))
print (” tak ing out f e a t u r e s with var iance %f : f 1

=%.4 f ”%(f 1 k [−1] [1] , f 1 k [− 1] [0]))

k = sorted (f1 k , key=i t emge t t e r (0)) [−1] [1]

s e l=VarianceThreshold (th r e sho ld=k)
best=s e l . f i t (f e a t v e c s [t r a i n I] , l a b e l s [t r a i n I])
t e s t f e a t s=best . trans form (f e a t v e c s [t e s t I])
t r a i n f e a t s=best . trans form (f e a t v e c s [t r a i n I])
t r a i n l a b e l s=l a b e l s [t r a i n I]

f i t t e d= c l f . f i t (t r a i n f e a t s , t r a i n l a b e l s)
pred= f i t t e d . p r e d i c t (t e s t f e a t s)

k l i s t . append (k)
return pred

def xval (svm l i gh t in , num folds , num steps =25, g e t b e s t=True ,
k=None) :

global k l i s t

56 A.2. Experiments

f e a t v e c s , l a b e l s = svml ight . l o a d s v m l i g h t f i l e (
s v m l i g h t i n)

max k=max(std (f e a t v e c s . toar ray () , a x i s =0)) #I measure
the var iance o f my f e a t u r e s and t ake as max k the
maximum

print (’MAX K: ’ , max k)
s t e p s i z e = max k/ num steps

k f = St ra t i f i edKFo ld (l a b e l s , n f o l d s=num folds , s h u f f l e
=Fal se) # make f o l d s

f 1 = []
accuracy = []
p r e c i s i o n = []
r e c a l l = []
k l i s t = []
i = 1

for t r a i n I , t e s t I in kf :
t e s t l a b e l s = l a b e l s [t e s t I]
i f g e t b e s t :

pred = iterK (max k , s t e p s i z e , t r a i n I , t e s t I , i ,
f e a t v e c s , l a b e l s , t e s t l a b e l s)

else :
#pred = f i t A n d P r e d i c t (t r a i n I , t e s t I , k ,

f e a t v e c s , l a b e l s)

f 1 . append (f 1 s c o r e (t e s t l a b e l s , pred))
accuracy . append (ac cu racy s co r e (t e s t l a b e l s , pred))
p r e c i s i o n . append (p r e c i s i o n s c o r e (t e s t l a b e l s , pred))
r e c a l l . append (r e c a l l s c o r e (t e s t l a b e l s , pred))
i+=1

f1 = array (f1)
accuracy = array (accuracy)
p r e c i s i o n = array (p r e c i s i o n)
r e c a l l = array (r e c a l l)
k l i s t = array (k l i s t)
print (’Avg F1 : ’ + str (f 1 . mean ()))
print (’Avg Accuracy : ’ + str (accuracy . mean ()))
print (’Avg P r e c i s i o n : ’ + str (p r e c i s i o n . mean ()))
print (’Avg Reca l l : ’ + str (r e c a l l . mean ()))
i f g e t b e s t : print (’Avg k : ’ + str (k l i s t . mean ()))
print (f 1)
print (accuracy)
print (p r e c i s i o n)
print (r e c a l l)
print (k l i s t)

Appendix A. Python scripts 57

print ()
return [s c o r e . mean () for s co r e in (f1 , accuracy ,

p r e c i s i o n , r e c a l l)]

pa r s e r = argparse . ArgumentParser ()
#parser . add argument (’ p o s t s i d ’ , h e l p =’ i d e n t i f i c a d o r d e l

conjunto de p o s t s ’)
#parser . add argument (’ nu ’ , h e l p =’ f a c t o r nu para NuSVC (

i n t e r v a l o (0 , 1]) ’ , type=f l o a t , d e f a u l t =0.6)
par s e r . add argument (’−a ’ , ’−−arch ivo ’ , help=’ guardar s a l i d a

en arch ivo ’ , a c t i on=’ s t o r e t r u e ’)
par s e r . add argument (’−−f o l d s ’ , help=’ n m e r o de f o l d s [1 0] ’

, type=int , d e f a u l t =10)
args = par s e r . p a r s e a r g s ()

i f args . a rch ivo :
sys . s tdout = open(’ s tat−MNB−SVM−

withFS removelowvar CHI2 . txt ’ , ’w ’ , b u f f e r i n g =1)

print (”Loading datase t . . . ”)
s v m l i g h t i n = ’ r e s u l t s s t a t . txt ’

c l f = MultinomialNB ()

xval (svm l i gh t in , args . f o l d s , g e t b e s t=True , k=’ a l l ’)

A.2.6 Sequential Backward Selection

#! / usr / b in /env python3

vim : t s =4:sw=4: expandtab :

from pdb import runca l l , s e t t r a c e
import s k l e a rn . da ta s e t s . svml ight format as svml ight
from s k l e a rn . f e a t u r e s e l e c t i o n import chi2 , Se lectKBest
from s k l e a rn . na ive bayes import MultinomialNB
from s k l e a rn import svm
from s k l e a rn . met r i c s import f 1 s c o r e , p r e c i s i o n s c o r e ,

r e c a l l s c o r e , a c cu racy s co r e
from s k l e a rn . c r o s s v a l i d a t i o n import KFold , S t ra t i f i edKFo ld
from operator import i t emge t t e r
from random import s h u f f l e
from numpy import array
import argparse
import sys
from s k l e a rn . f e a t u r e s e l e c t i o n import RFECV

58 A.2. Experiments

def SBS(max k , s t e p s i z e , t r a i n I , t e s t I , i , f e a t v e c s , l a b e l s ,
t e s t l a b e l s) :
””” S e q u e n t i a l backward s e l c t i o n ”””
print (” fo ld−−−−−−−−−−−−−−> ” + str (i))
e s t imator= MultinomialNB ()
s e l e c t o r=RFECV(es t imator)

bes t=s e l e c t o r . f i t (f e a t v e c s [t r a i n I] , l a b e l s [t r a i n I])
t e s t f e a t s=best . trans form (f e a t v e c s [t e s t I])
t r a i n f e a t s=best . trans form (f e a t v e c s [t r a i n I])
t r a i n l a b e l s=l a b e l s [t r a i n I]

f i t t e d = c l f . f i t (t r a i n f e a t s , t r a i n l a b e l s) # make NB
model on t r a i n data

pred = f i t t e d . p r e d i c t (t e s t f e a t s) # p r e d i c t l a b e l s f o r
t e s t I

return pred

def xval (svm l i gh t in , num folds , num steps =25, g e t b e s t=True ,
k=None) :

global k l i s t

f e a t v e c s , l a b e l s = svml ight . l o a d s v m l i g h t f i l e (
s v m l i g h t i n)

max k=f e a t v e c s . shape [1]
print (’MAX K: ’ , max k)
s t e p s i z e = max k// num steps

k f = St ra t i f i edKFo ld (l a b e l s , n f o l d s=num folds , s h u f f l e
=Fal se) # make f o l d s

f 1 = []
accuracy = []
p r e c i s i o n = []
r e c a l l = []
k l i s t = []
i = 1
for t r a i n I , t e s t I in kf :

t e s t l a b e l s = l a b e l s [t e s t I]
i f g e t b e s t :

pred = SBS(max k , s t e p s i z e , t r a i n I , t e s t I , i ,
f e a t v e c s , l a b e l s , t e s t l a b e l s)

else : # j u s t do one model f o r k
#pred = f i t A n d P r e d i c t (t r a i n I , t e s t I , k , f e a t v e c s ,

l a b e l s)

Appendix A. Python scripts 59

f 1 . append (f 1 s c o r e (t e s t l a b e l s , pred))
accuracy . append (ac cu racy s co r e (t e s t l a b e l s , pred))
p r e c i s i o n . append (p r e c i s i o n s c o r e (t e s t l a b e l s , pred))
r e c a l l . append (r e c a l l s c o r e (t e s t l a b e l s , pred))
i+=1

f1 = array (f1)
accuracy = array (accuracy)
p r e c i s i o n = array (p r e c i s i o n)
r e c a l l = array (r e c a l l)
k l i s t = array (k l i s t)
print (’Avg F1 : ’ + str (f 1 . mean ()))
print (’Avg Accuracy : ’ + str (accuracy . mean ()))
print (’Avg P r e c i s i o n : ’ + str (p r e c i s i o n . mean ()))
print (’Avg Reca l l : ’ + str (r e c a l l . mean ()))
i f g e t b e s t : print (’Avg k : ’ + str (k l i s t . mean ()))
print (f 1)
print (accuracy)
print (p r e c i s i o n)
print (r e c a l l)
print (k l i s t)
return [s c o r e . mean () for s co r e in (f1 , accuracy ,

p r e c i s i o n , r e c a l l)]

pa r s e r = argparse . ArgumentParser ()
#parser . add argument (’ p o s t s i d ’ , h e l p =’ i d e n t i f i c a d o r d e l

conjunto de p o s t s ’)
#parser . add argument (’ nu ’ , h e l p =’ f a c t o r nu para NuSVC (

i n t e r v a l o (0 , 1]) ’ , type=f l o a t , d e f a u l t =0.6)
par s e r . add argument (’−a ’ , ’−−arch ivo ’ , help=’ guardar s a l i d a

en arch ivo ’ , a c t i on=’ s t o r e t r u e ’)
par s e r . add argument (’−−f o l d s ’ , help=’ n m e r o de f o l d s [1 0] ’

, type=int , d e f a u l t =10)
args = par s e r . p a r s e a r g s ()

i f args . a rch ivo :
sys . s tdout = open(’ s tat−MNB−SVM−withFS SBS CHI2 . txt ’ , ’

w ’ , b u f f e r i n g =1)

print (”Loading datase t . . . ”)
s v m l i g h t i n = ’ r e s u l t s s t a t . txt ’

c l f = MultinomialNB ()

xval (svm l i gh t in , args . f o l d s , g e t b e s t=True , k=’ a l l ’)

A.2.7 Sequential Forward Selection

#! / usr / b in /env python3

60 A.2. Experiments

vim : t s =4:sw=4: expandtab :

from pdb import runca l l , s e t t r a c e
import s k l e a rn . da ta s e t s . svml ight format as svml ight
from s k l e a rn . f e a t u r e s e l e c t i o n import chi2 , SelectKBest ,

f r e g r e s s i o n
from s k l e a rn . na ive bayes import MultinomialNB
from s k l e a rn import svm
from s k l e a rn . met r i c s import f 1 s c o r e , p r e c i s i o n s c o r e ,

r e c a l l s c o r e , a c cu racy s co r e
from s k l e a rn . c r o s s v a l i d a t i o n import KFold , S t ra t i f i edKFo ld
from operator import i t emge t t e r
from random import s h u f f l e
from numpy import array
import argparse
import sys
from s c ipy . spar s e import ∗
from s c ipy import ∗
from s c ipy . spar s e import hstack

def g e t f 1 (t t r a i n f e a t s , t t r a i n l a b e l s , t t e s t f e a t s ,
t t e s t l a b e l s) :
f i t t e d = c l f . f i t (t t r a i n f e a t s , t t r a i n l a b e l s)
pred = f i t t e d . p r e d i c t (t t e s t f e a t s)
f 1=f 1 s c o r e (t t e s t l a b e l s , pred)
return f 1

def SFS(f e a t v e c s , t r a i n I , t e s t I , l a b e l s , num folds ,
p r i n t s t e p s=True) :
”””
Implementation o f a S e q u e n t i a l Forward S e l e c t i o n

a l gor i thm .
Finds the f e a t u r e s u b s e t us ing SFS and r e t u r n s the

p r e d i c i t o n dor the t e s t p os t wi th t h o s e f e a t u r e s and
the number o f f e a t u r e s used .

”””

I n i t i a l i z a t i o n
b e s t f 1=0
good f1=0

kf = St ra t i f i edKFo ld (l a b e l s [t r a i n I] , n f o l d s=num folds ,
s h u f f l e=Fal se)

#Take t r a i n and use one par t f o r t r a i n and one f o r
v a l i d a t i o n

for t ra in , t e s t in kf :
t t r a i n I=t r a i n
t t e s t I=t e s t

Appendix A. Python scripts 61

#Only use one o f the p a r t i t i o n , the l a s t in the ’ f o r ’
in t h i s case

t t r a i n l a b e l s=l a b e l s [t t r a i n I]
t t e s t l a b e l s=l a b e l s [t t e s t I]

t e s t f e a t s=f e a t v e c s [t e s t I]

feat number=f e a t v e c s . shape [1]

a l r eady used =[] # In t h i s l i s t the i n d e c e s o f the
columns s e l c e c t e d , not to check them again

#f o r the f i r s t :
cand ida t e s and f1 =[] ## Empty l i s t t h a t l a t e r w i l l be

f i l l e d wi th t u p l e s (f 1 score , candidate , i)
for i in range (feat number) :

candidate=f e a t v e c s . g e t c o l (i)
t t e s t f e a t s=candidate [t t e s t I]
t t r a i n f e a t s=candidate [t t r a i n I]
c a n d i d a t e f 1=g e t f 1 (t t r a i n f e a t s , t t r a i n l a b e l s ,

t t e s t f e a t s , t t e s t l a b e l s)
cand ida t e s and f1 . append ((cand idate f1 , candidate , i)

)
cand ida t e s and f1=sorted (cand idate s and f1 , key=

i t emge t t e r (0)) ##order them by f1
good f1 , good candidate , good i=cand ida t e s and f1 . pop ()

#t ak e the l a s e lement (the one wi th b i g g e s t f 1)

i f good f1 >= b e s t f 1 : # >= because i t can be 0
b e s t f 1=good f1
f e a t s u b s= good candidate
a l r eady used . append (good i)

#f o r the r e s t
I am improving=True
while I am improving and len (a l r eady used) <

feat number : # w h i l e t h e r e i s something to l o o k at
and r e s u l t s improved in the l a s t i t e r a t i o n
cand ida t e s and f1 =[]
for i in range (feat number) :

i f i not in a l r eady used :
candidate=f e a t v e c s . g e t c o l (i)
t t e s t f e a t s=hstack ([f e a t subs , candidate] ,

format=” c s r ”) [t t e s t I] #Take the a l r e a d y
s e l e c t e d and the cand ida te f e a t u r e in
a l l the t e s t p o s t s

t t r a i n f e a t s=hstack ([f e a t subs , candidate] ,
format=” c s r ”) [t t r a i n I]

62 A.2. Experiments

c a n d i d a t e f 1=g e t f 1 (t t r a i n f e a t s ,
t t r a i n l a b e l s , t t e s t f e a t s , t t e s t l a b e l s
)

cand ida t e s and f1 . append ((cand idate f1 ,
candidate , i))

cand ida t e s and f1=sorted (cand idate s and f1 , key=
i t emge t t e r (0)) ##order them by f 1

good f1 , good candidate , good i=cand ida t e s and f1 .
pop () #t ake the l a s e lement (the one wi th
b i g g e s t f1)

i f good f1 > b e s t f 1 :
b e s t f 1=good f1
f e a t s u b s= hstack ([f e a t subs , good candidate])
a l r eady used . append (good i)
i f p r i n t s t e p s :

print (’With ’ , str (f e a t s u b s . shape [1]) , ’
f e a tu r e s , the f1 f o r the v a l i d a t i o n s e t
i s : ’ , b e s t f 1)

else :
I am improving=False

t r a i n f e a t s u b s=f e a t s u b s . t o c s r () [t r a i n I]
t r a i n l a b e l s=l a b e l s [t r a i n I]
t e s t f e a t s=f e a t s u b s . t o c s r () [t e s t I]
f i t t e d = c l f . f i t (t r a i n f e a t s u b s , t r a i n l a b e l s)
pred = f i t t e d . p r e d i c t (t e s t f e a t s) #t r y in the t e s t s e t

n f e a t u r e s u s e d=f e a t s u b s . shape [1]

return pred , n f e a t u r e s u s e d

def xval (svm l i gh t in , num folds , num steps =25, g e t b e s t=True ,
k=None) :

global k l i s t

f e a t v e c s , l a b e l s = svml ight . l o a d s v m l i g h t f i l e (
s v m l i g h t i n)

max k=f e a t v e c s . shape [1]
print (’MAX K: ’ , max k)
s t e p s i z e = max k// num steps

k f = St ra t i f i edKFo ld (l a b e l s , n f o l d s=num folds , s h u f f l e
=Fal se)

f 1 = []

Appendix A. Python scripts 63

accuracy = []
p r e c i s i o n = []
r e c a l l = []
n l i s t = []
i = 1
for t r a i n I , t e s t I in kf :

print (’ f o l d −−−−−−−−−−−> ’ , str (i))
i f g e t b e s t :

pred , n f e a t u r e s = SFS(f e a t v e c s , t r a i n I , t e s t I
, l a b e l s , num folds , p r i n t s t e p s=True)

n l i s t . append (n f e a t u r e s)
else :

#pred = f i t A n d P r e d i c t (t r a i n I , t e s t I , k , f e a t v e c s ,
l a b e l s)

t e s t l a b e l s=l a b e l s [t e s t I]
f 1 . append (f 1 s c o r e (t e s t l a b e l s , pred))
accuracy . append (ac cu racy s co r e (t e s t l a b e l s , pred))
p r e c i s i o n . append (p r e c i s i o n s c o r e (t e s t l a b e l s , pred))
r e c a l l . append (r e c a l l s c o r e (t e s t l a b e l s , pred))
i+=1

f1 = array (f1)
accuracy = array (accuracy)
p r e c i s i o n = array (p r e c i s i o n)
r e c a l l = array (r e c a l l)
n l i s t = array (n l i s t)
print (’Avg F1 : ’ + str (f 1 . mean ()))
print (’Avg Accuracy : ’ + str (accuracy . mean ()))
print (’Avg P r e c i s i o n : ’ + str (p r e c i s i o n . mean ()))
print (’Avg Reca l l : ’ + str (r e c a l l . mean ()))
i f g e t b e s t : print (’Avg n : ’ + str (n l i s t . mean ()))
print (f 1)
print (accuracy)
print (p r e c i s i o n)
print (r e c a l l)
print (n l i s t)
return [s c o r e . mean () for s co r e in (f1 , accuracy ,

p r e c i s i o n , r e c a l l)]

pa r s e r = argparse . ArgumentParser ()
#parser . add argument (’ p o s t s i d ’ , h e l p =’ i d e n t i f i c a d o r d e l

conjunto de p o s t s ’)
#parser . add argument (’ nu ’ , h e l p =’ f a c t o r nu para NuSVC (

i n t e r v a l o (0 , 1]) ’ , type=f l o a t , d e f a u l t =0.6)
par s e r . add argument (’−a ’ , ’−−arch ivo ’ , help=’ guardar s a l i d a

en arch ivo ’ , a c t i on=’ s t o r e t r u e ’)
par s e r . add argument (’−−f o l d s ’ , help=’ n m e r o de f o l d s [1 0] ’

, type=int , d e f a u l t =10)

64 A.2. Experiments

args = par s e r . p a r s e a r g s ()

i f args . a rch ivo :
sys . s tdout = open(’ s tat−MNB−SVM−withFS SFS welldone . txt

’ , ’w ’ , b u f f e r i n g =1)

print (”Loading datase t . . . ”)
s v m l i g h t i n = ’ r e s u l t s s t a t . txt ’

c l f = MultinomialNB ()

xval (svm l i gh t in , args . f o l d s , g e t b e s t=True , k=’ a l l ’)

A.2.8 LDA

#! / usr / b in /env python3

vim : t s =4:sw=4: expandtab :

from pdb import runca l l , s e t t r a c e
import s k l e a rn . da ta s e t s . svml ight format as svml ight
from s k l e a rn . f e a t u r e s e l e c t i o n import f c l a s s i f ,

Se lectKBest
from s k l e a rn . na ive bayes import MultinomialNB
from s k l e a rn import svm
from s k l e a rn . met r i c s import f 1 s c o r e , p r e c i s i o n s c o r e ,

r e c a l l s c o r e , a c cu racy s co r e
from s k l e a rn . c r o s s v a l i d a t i o n import KFold , S t ra t i f i edKFo ld
from operator import i t emge t t e r
from random import s h u f f l e
from numpy import array
import argparse
import sys
from s k l e a rn . lda import LDA
from s k l e a rn . p r e p r o c e s s i n g import MinMaxScaler

def f i tAndPred i c t (t r a i n I , t e s t I , k , f e a t v e c s , l a b e l s) :
””” do one round o f f i t t i n g to chi2 , making model , and

doing p r e d i c t i o n s
on t e s t ”””
lda = LDA(n components=k)
best = lda . f i t (f e a t v e c s [t r a i n I] . toar ray () , l a b e l s [

t r a i n I])
t e s t f e a t s = best . trans form (f e a t v e c s [t e s t I] . toar ray ())

t e s t data reduced to same k f e a t u r e s
t r a i n f e a t s = best . trans form (f e a t v e c s [t r a i n I] . toar ray

()) # t r a i n data reduced to same k f e a t u r e s

Appendix A. Python scripts 65

t r a i n l a b e l s = l a b e l s [t r a i n I] # l a b e l s f o r t h i s sample
s e c t i o n

#Data can be nega t i ve , I need i t p o s i t i v e f o r
MultinomialNB

#Sca le i t :
mm scaler=MinMaxScaler ()
s c a l e=mm scaler . f i t (t r a i n f e a t s)
s c a l e d t e s t f e a t s=s c a l e . t rans form (t e s t f e a t s)
s c a l e d t r a i n f e a t s=s c a l e . t rans form (t r a i n f e a t s)

f i t t e d = c l f . f i t (s c a l e d t r a i n f e a t s , t r a i n l a b e l s)
pred = f i t t e d . p r e d i c t (s c a l e d t e s t f e a t s) # p r e d i c t

l a b e l s f o r t e s t
return pred

def i t e rK (max k , s t e p s i z e , t r a i n I , t e s t I , i , f e a t v e c s , l a b e l s ,
t e s t l a b e l s) :
””” Search through a l l k , re turn p r e d i c t i o n o f model

wi th
h i g e s t F1”””
f 1 k = []
print (” fo ld−−−−−−−−−−−−−−> ” + str (i))
for k in range (1 , max k , s t e p s i z e) :

pred = f i tAndPred i c t (t r a i n I , t e s t I , k , f e a t v e c s ,
l a b e l s)

i f k != 1 :
f 1 k . append ((f 1 s c o r e (t e s t l a b e l s , pred) , k))
print (”%d f e a t u r e s : f 1=%.4 f ”%(f 1 k [−1] [1] , f 1 k

[− 1] [0]))
k = sorted (f1 k , key=i t emge t t e r (0)) [−1] [1]
pred = f i tAndPred i c t (t r a i n I , t e s t I , k , f e a t v e c s , l a b e l s)
compute s c o r e s
k l i s t . append (k)
return pred

def xval (svm l i gh t in , num folds , num steps =25, g e t b e s t=True ,
k=None) :

global k l i s t

f e a t v e c s , l a b e l s = svml ight . l o a d s v m l i g h t f i l e (
s v m l i g h t i n)

max k=f e a t v e c s . shape [1]
print (’MAX K: ’ , max k)
s t e p s i z e = max k// num steps

66 A.2. Experiments

kf = St ra t i f i edKFo ld (l a b e l s , n f o l d s=num folds , s h u f f l e
=Fal se) # make f o l d s

f 1 = []
accuracy = []
p r e c i s i o n = []
r e c a l l = []
k l i s t = []
i = 1
for t r a i n I , t e s t I in kf :

t e s t l a b e l s = l a b e l s [t e s t I]
i f g e t b e s t :

pred = iterK (max k , s t e p s i z e , t r a i n I , t e s t I , i ,
f e a t v e c s , l a b e l s , t e s t l a b e l s)

else :
pred = f i tAndPred i c t (t r a i n I , t e s t I , k , f e a t v e c s ,

l a b e l s)

f 1 . append (f 1 s c o r e (t e s t l a b e l s , pred))
accuracy . append (ac cu racy s co r e (t e s t l a b e l s , pred))
p r e c i s i o n . append (p r e c i s i o n s c o r e (t e s t l a b e l s , pred))
r e c a l l . append (r e c a l l s c o r e (t e s t l a b e l s , pred))
i+=1

f1 = array (f1)
accuracy = array (accuracy)
p r e c i s i o n = array (p r e c i s i o n)
r e c a l l = array (r e c a l l)
k l i s t = array (k l i s t)
print (’Avg F1 : ’ + str (f 1 . mean ()))
print (’Avg Accuracy : ’ + str (accuracy . mean ()))
print (’Avg P r e c i s i o n : ’ + str (p r e c i s i o n . mean ()))
print (’Avg Reca l l : ’ + str (r e c a l l . mean ()))
i f g e t b e s t : print (’Avg k : ’ + str (k l i s t . mean ()))
print (f 1)
print (accuracy)
print (p r e c i s i o n)
print (r e c a l l)
print (k l i s t)
return [s c o r e . mean () for s co r e in (f1 , accuracy ,

p r e c i s i o n , r e c a l l)]

pa r s e r = argparse . ArgumentParser ()
#parser . add argument (’ p o s t s i d ’ , h e l p =’ i d e n t i f i c a d o r d e l

conjunto de p o s t s ’)
#parser . add argument (’ nu ’ , h e l p =’ f a c t o r nu para NuSVC (

i n t e r v a l o (0 , 1]) ’ , type=f l o a t , d e f a u l t =0.42)
par s e r . add argument (’−a ’ , ’−−arch ivo ’ , help=’ guardar s a l i d a

Appendix A. Python scripts 67

en arch ivo ’ , a c t i on=’ s t o r e t r u e ’)
par s e r . add argument (’−−f o l d s ’ , help=’ n m e r o de f o l d s [1 0] ’

, type=int , d e f a u l t =10)
args = par s e r . p a r s e a r g s ()

i f args . a rch ivo :
sys . s tdout = open(’ s tat−MNB−SVM−withFS LDA multinomial .

txt ’ , ’w ’ , b u f f e r i n g =1)

print (”Loading datase t . . . ”)
s v m l i g h t i n = ’ r e s u l t s s t a t . txt ’

c l f = MultinomialNB ()

xval (svm l i gh t in , args . f o l d s , g e t b e s t=True , k=’ a l l ’)

