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Introduction

This dissertation is devoted to the mathematical theory involved in chaotic
dynamics, with the ultimate target of understanding such dynamics in the
Lorenz system. This way, the foundations concerning dynamical systems
are to be treated as well as a rigorous definition of chaos. Again, the main
motivation of this work is the Lorenz system, thus, we shall give a brief
discussion on the origin of it.

The Lorenz system was initially a crude model of fluid convection, a
physical phenomenon strongly related to weather dynamics. However, its
characteristic dynamical behaviour made it deserve a purely mathemati-
cal attention. Edward Lorenz, mathematician and meteorologist at Mas-
sachusetts Institute of Technology (MIT), came up with this system of dif-
ferential equations: 

ẋ = σ(y − x)

ẏ = ρx− xz − y
ż = xy − βz

(1)

where ρ,σ and β are three positive constants.

Let us briefly discuss the derivation of (1). We are given a fluid embedded
in a strip of width h in the x-z plane. The layer bellow is heated whereas the
top of the strip is cooled down, creating a constant temperature difference
∆T which generates motion in the fluid. Saltzman in 1962 obtained the
equations behind this physical problem. What Lorenz did, is to develop
the work done by Saltzman and use approximation theory to obtain the so
called Lorenz system. A deeper analysis on the original derivation of this
model can be found in [10].

The constants σ and ρ are called the Prandtl number and Rayleigh num-
ber respectively. The Prandtl number is just the ratio of the viscosity and
the thermal diffusion coefficient, while ρ is a more intricate number which
basically depends on the temperature difference ∆T . The third parameter
β has no particular name and it is just a mathematical arrangement.

Although the Lorenz system is strongly related to fluids, it arises in many
other physical problems [11]. In the following section we shall discuss how
to obtain Lorenz-like equations out from a leaking watermill.

v



vi 0.1. One Derivation of the Model

0.1 One Derivation of the Model

Professor W. Malkus at MIT came up with the Lorenz equations when
modelling the motion of a leaky watermill [19].

Let R be the radius of the watermill and m(t, θ) the whole mass of the
watermill consisting uniquely of the water it has in it at time t and angle θ.

The wheel is expected to rotate, so ω(t) will be its angular velocity, and
there will be frictional damping of the system proportional to ω(t).

The flux of water entering the watermill will be constant. We will also
assume that the points on the wheel gain weight proportionally to its height.
Due to the leaks, the watermill loses weight proportionally to m(t, θ). Fi-
nally, the following notation f(t, θ) will mean integration over [0, 2π] in the
θ variable of the function f(t, θ). Thus, m(t, θ) is the total mass of the
watermill.

As we are dealing with a rotational system we must use Newton’s second
law applied to the angular momentum:

∂(R2m(t, θ)ω(t))

∂t
= −gRm(t, θ) cos θ − kR2m(t, θ)ω(t), (2)

where g and k are the modulus of the gravitational force (taken constant)
and the damping coefficient respectively. Now, according to the conditions
given, the differential equations for m(t, θ) are:

d(m(t, θ))

dt
=
∂(m(t, θ))

∂t
+
∂(m(t, θ))

∂θ
· ∂θ(t)
∂t

= A+ 2B sin θ − Cm(t, θ). (3)

In the last equation, A,B and C are all positive constants which represent
a proportion. A represents the water income, B expresses the fact that the
watermill is spinning around and, finally, C illustrates the proportion of
water that leaks out.

If we compute the total mass in equation (2) at time t, we obtain

d

dt
m(t, θ) =

∫ 2π

0
A+ 2B sin θ − Cm(t, θ)dθ = 2πA− Cm(t, θ).

Therefore, m(t, θ) moves towards 2πA/C, where there will be an equilibrium.
Let us suppose that m(t, θ) has reached the value 2πA/C, so that m(t, θ) is
constant. Then, equation (2) becomes:

d(ω(t))

dt
= −

(
gC

2πRA

)
m(t, θ) cos θ − kω(t). (4)
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Now, we can write the differential equations for m(t, θ) cos θ and
m(t, θ) sin θ using equation (2):

d(m(t, θ) sin θ)

dt
=

∫ 2π

0

d(m(t, θ) sin θ)

dt
dθ =∫ 2π

0

(
A sin θ + 2B sin2 θ − Cm(t, θ) sin θ + ω(t)m(t, θ) cos θ

)
dθ =

ω(t)m(t, θ) cos θ − Cm(t, θ) sin θ + 2πB.

In the same way,

d
(
m(t, θ) cos θ

)
dt

=∫ 2π

0

((
∂(m(t, θ))

∂t
+ ω(t)

∂(m(t, θ))

∂θ

)
cos θ − ω(t)m(t, θ) sin θ

)
dθ =∫ 2π

0
A cos θ + 2B sin θ cos θ − Cm(t, θ) cos θ − ω(t)m(t, θ) sin θdθ =

− Cm(t, θ) cos θ − ω(t)m(t, θ) sin θ.

Now we have the following system:
ω̇ = −Kω − C2m cos θ

˙m sin θ = ωm cos θ − C2m sin θ +K
˙m cos θ = −Cm cos θ − ωm sin θ

(5)

where K = 2πB and C2 = gC
2πRA . Let us now show that (5) is a Lorenz-like

system. First we consider consider the following change of variables:

ω = x, ,m cos θ = y, ,m sin θ = z + C3,

where C3 is a constant to be determined. Then, the system can be rewritten
as: 

ẋ = −Kx+ C2y

ẏ = −Cy + (C3 + z)x

ż = K − C (z + C3)− xy

and taking C3 = K
C it yields,

ẋ = −Kx+ C2y

ẏ = −Cy +
(
K
C + z

)
x

ż = −Cz − xy
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One last change of variables:

x = x, , y = y, z = −z

gives, 
ẋ = −Kx+ C2y

ẏ = −Cy +
(
K
C − z

)
x

ż = Cz − xy

which is a Lorenz-like system.

0.2 Dynamical Systems

In order to be able to study the Lorenz system, dynamical systems must be
introduced somehow. Dynamical systems can be regarded as a very specific
kind of functions which transform the domain space. Clearly, dynamical
systems have a lot to do with motion and time dependent systems. Of
course, time can be considered either continuous or discrete. This lead
naturally to discrete dynamical systems and continuous dynamical systems.

Continuous dynamical systems are strongly related to differential equa-
tions. Indeed, the definition of a vector field induces a differential equation
which models the motion of the points in the domain space. Thus, given a
vector field f : Rn −→ Rn and an initial condition x0 we can set a straight-
forward differential equation: {

ẋ(t) = f(x)

x(0) = x0.
(6)

This way, the study of the action of the vector field f is reduced to the
study of Equation (6). Is the solution defined for all t? Does f induce a
transformation on the domain space? How do subsets behave under this
transformation? These are some questions we shall answer further in the
text. For instance, let us take the vector field f : R2 −→ R2 given by:

f(x, y) = (y, x(1− x)2 + y). (7)

This vector field induces a differential equation whose solution is plotted in
Figure 1 along with the vector field.

On the other hand, discrete dynamical systems take time to be discrete.
This fact can be modelled using recurrence relations and therefore finite
difference schemes:

xn+1 = f(xn) (8)

where we know some initial condition x0.
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Figure 1: The red arrows represent the vector field (7) while the blue lines
some solutions to the initial value problem associated to it.

It might seem that the discrete case is a simplification of the continuous
version, and in some sense it is, yet the techniques involved require subtle
mathematics such as metric space topology, set theory as well as symbolic
dynamics. What is more, as we shall see further in this dissertation, discrete
maps constitute an essential tool to study continuous dynamical systems.

The project is fundamentally divided into two sets of chapters:

• Chapters 1 and 2 are dedicated to discrete dynamical systems and to
continuous dynamical systems respectively. In Chapter 1 we shall give
the main results on discrete maps, symbolic dynamics and we will give
a rigorous definition of chaos. On the other hand, in Chapter 2, flows,
invariant sets and the Poincaré map are studied.

• Chapters 3 and 4 focus on the Lorenz system itself. Chapter 3 consti-
tutes a discussion of the most noticeable results concerning the Lorenz
system: Construction of the attractor, the Lorenz map, geometric
models, etc. Chapter 4 is a rather qualitative overview of the problem
of determining the dynamics of the Lorenz system with an eventual
comment on the computer assisted proof of the existence of the Lorenz
attractor.





Chapter 1

Discrete Dynamical Systems

Discrete maps are a specific kind of functions which often lead to very inter-
esting dynamics and that give a useful tool to study continuous dynamical
systems. Discrete dynamical systems are nothing else than continuous func-
tions which are maps as well. In this chapter we shall make no difference
between maps and discrete dynamical systems.

Discrete maps can be regarded as a “simplification” of continuous ones,
however, in the deeper analysis of continuous dynamical systems many dis-
crete maps arise, for example, the Poincaré map.

This way, in order to study the dynamics of the Lorenz equations, it
is necessary first to go through some of the theory of discrete dynamical
systems. In this chapter we give the basic results and definitions we shall
need later.

1.1 Maps: stability and periodicity

Definition 1.1.1. A function whose domain space and range are the same
is called a map.

The strict definition of map does not require any notion of distance,
however, for the sake of coherence from now on we will deal will metric
spaces. If X is a metric space, unless it is specified, d(·, ·) will denote the
respective distance and Bε(x0) = {x ∈ X : d(x0, x) < ε}.

Given a map f : X −→ X, it makes sense to write the following difference
equation:

xn+1 = f(xn), xn ∈ X.

This really means that given an initial value x0 ∈ X, we can consider the
way x0 changes after evaluating f successively. We will denote as fn the
first n evaluations of the function f , this is,

fn =

n︷ ︸︸ ︷
f ◦ . . . ◦ f .

1
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We will assume that f0 is the identity map. This idea leads to the following
definition.

Definition 1.1.2. Given a map f : X −→ X and x0 ∈ X, the set

Γ(x0) = {fn(x0) : n ≥ 0}

is called the orbit of x0 for the map f .

The behaviour as well as the study of discrete maps depend strictly on
the nature of f . Indeed, if we ask a map f to be linear we are actually
dealing with a recurrence relation. If f were not to be linear, the dynamics
become more intricate.

Definition 1.1.3. Let f : X −→ X be a map. The point p ∈ X is said to
be periodic of period k ∈ N if

p = fk(p) and p 6= f r(p), 0 ≤ r < k.

If k = 1, p is called a fixed point.

This definition arises naturally, what is more, periodicity may also refer
to sets of points:

Definition 1.1.4. Given a map f : X −→ X and a k-periodic point p ∈ X
the set {p, f(p), f2(p), . . . , fk−1(p)} is called a periodic orbit of length k.

In systems of differential equations, equilibrium points (those in which
the derivatives vanish) had stability properties. Fixed points of discrete
maps have analogous properties:

Definition 1.1.5. Lef f : X −→ X be a map. A fixed point p ∈ X is said
to be stable if there exists r > 0 such that,

lim
n→∞

fn(x) = p, ∀x ∈ Br(p).

When this does not happen, the fixed point is said to be unstable.

A priori, the function f : X −→ X is not asked to satisfy differentia-
bility conditions. Yet, if X = R, provided with the euclidean topology, we
can ask f to be sufficiently smooth. Thus, we have the following theorem
which shows how to identify stable and unstable points according to their
derivative.

Theorem 1.1.1. Let f : R −→ R be a smooth map and let p ∈ R be a fixed
point for f . If |f ′(p)| < 1, p is stable, whereas if |f ′(p)| > 1, p is unstable.



Chapter 1. Discrete Dynamical Systems 3

Proof. By definition we have,

|f ′(p)| = lim
x→p

|f(x)− f(p)|
|x− p|

< 1

then, there exists ε > 0 such that given x in Bp(ε), there exists λ < 1 such
that

|f(x)− f(p)|
|x− p|

< λ =⇒ |f(x)− p| < λ|x− p| < λε < ε. (1.1)

This means that f(x) is closer to p than x. In particular (1.1) implies that
|f(x)− p| < ε, then we obtain in the same way that,

|f(f(x))− f(f(p))|
|f(x)− f(p)|

< λ.

This last inequality is due to the fact that f(x) lies in Bp(ε). Thus,

|f2(x)− p| < λ|f(x)− p| < λ2|x− p|.

This tells us that f2(x) is even closer to p than f(x). We can now apply
induction to fk(x):

|fk+1(x)− fk+1(p)|
|fk(x)− fk(p)|

< λ =⇒ |fk+1 − p| < λk+1|x− p|, ∀k ∈ N.

This means that,
lim
k→∞

fk(x) = p

if x ∈ Bε(p) and therefore, p is stable. The case for instability analogous
[11].

We note that the case in which |f ′(p)| = 1 is critical, in the sense that
further information is needed to determine the stability or instability. For
example, Figure 1.1 shows stable behaviour of the origin of the function
f(x) = x − x2, whose derivative at the fixed point zero is one; it computes
the evolution of three different initial conditions. This figure is known as
coweb plot. The idea of this plot is to join with straight lines the evolution
of an initial condition: first x0 is joined with f(x0) vertically, then f(x0) is
joined with the diagonal horizontally and so forth.

For fµ(x) = x−x2 (known as the logistic map of parameter 1), although
the derivative does not tell us anything about the stability of the origin, the
actual stability of the origin can be proved. Indeed, for every x0 ∈ [0, 1] the
sequence {x0, f(x0), f2(x0), . . .} is decreasing and bounded, therefore, there
exists a limit. Let us call α to that limit. Then, α should verify α = α−α2,
which implies that α is zero.

The following example shows that not all fixed points at which the deriva-
tive is 1 are stable.
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Figure 1.1: The Logistic Map for µ = 1. The green line is the identity
function and the red plot is the coweb plot.

Example 1.1.1. Let f : R −→ R the map defined by f(x) = ex−1. Clearly,
f(0) = 0, then x = 0 is a fixed point for the map f . We wonder about its
stability computing the derivative:

f ′(x) = ex ⇒ f ′(0) = 1.

Hence, we can say nothing about the stability of the fixed point x = 0.
However, we can do further analysis to show the eventual instability.

We note that f is an increasingly monotone function, thus, if we take
x0 > 0, it follows that f(x0) > x0. Consequently:

f2(x0) > f(x0)⇒ fn(x0) > fn−1(x0) . . .

when n ∈ N. As x0 is arbitrarily close to x = 0, every neighbourhood of
x = 0 possesses an diverging orbit.

Notice that if x0 is strictly negative,

lim
n→∞

fn(x0) = 0.

Anyway, as any neighbourhood of x = 0 has diverging orbits; the fixed point
x = 0 is unstable.

In the same way we considered periodic points, we can also consider
periodic orbits, but these are just a consequence of the definition of periodic
points, indeed, let f map X to itself and let p be a period m point, then,

fm(p) = p⇒ fm+1 = f(p)⇒ . . .⇒ f2m(p) = fm(p) = p

This means that an m-periodic point determines a periodic orbit whose
stability can be found out through its derivative.
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Proposition 1.1.2. Let {p0, p1 = f(p0), . . . , pm−1 = fm−1(p0)} be a peri-
odic orbit for the sufficiently smooth map f : R −→ R. Then,

(fm)′(p0) = f ′(p0) . . . f ′(pm−1).

Proof. It suffices to apply the chain rule.

Remark 1.1.1. Periodic points of period n arise when solving the equation
fn(x) = x. This is to say that period n points of the map f are the fixed
points for the map fn.

1.2 Sensitive Dependence on Initial Conditions

A key concept in dynamical systems is the notion of dependence on initial
conditions. If we recall the main article where Lorenz showed his results [10],
the most remarkable fact was that very close initial data lead to extremely
different output. Moreover, a necessary condition for a map to be chaotic is
to have sensitivity to initial conditions.

The following definition gives a first intuition of chaotic dynamics:

Definition 1.2.1. Let X be a metric space, and f : X −→ X a map. A
point p0 ∈ X has sensitive dependence on initial conditions if there exists
R > 0 such that given Bε(p0) there exists a point x in it such that |fk(x)−
fk(p0)| ≥ R, for some k ≥ 1.

Remark 1.2.1. We will say that a map displays sensitivity to initial condi-
tions if it has points which have sensitive dependence on initial conditions.

To illustrate the sensitivity on initial conditions we will consider the map
Mod3 : [0, 1] −→ [0, 1] defined by Mod3(x) = 3x − b3xc, where b·c denotes
the floor function. If we identify the boundary points of [0, 1] we can regard
Mod3 as a continuous function which maps the unit circumference to itself.

Figure 1.2: Plot of Mod3 and the identity map.

This map shows clear sensitive dependence on initial conditions. Indeed,
we can observe this in the following table:
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Mod3(x) = 3x− b3xc
Modn3 (x0) Modn3 (x0 + ε)

x0 = 0.25 x0 = 0.2501
0.75 0.7503
0.25 0.2509
0.75 0.7527
0.25 0.2528
0.75 0.7743
0.25 0.3229
0.75 0.9687
0.25 0.9061

Theorem 1.2.1. Given f : X −→ X, an unstable point has always sensitive
dependence on initial conditions.

Proof. Let p0 be an unstable point under f . By definition of unstable point,
for every neighbourhood Bε(p0) of p0, there exists a integer m such that
fm(x) is not in Bε(p0) for every x in Bε(p0). Then:

d(p0, x) = r0 ⇒ d(fm(p0), x) = λr0, λ > 1.

For instance we can choose λr0.

The map f(x) = 4x(1− x) also has sensitive dependence on initial con-
ditions. The following table shows it.

f4(x) = 4x(1− x)

fn4 (x0) fn4 (x0 + ε)

x0 = 0.5 x0 = 0.501
1 0.9999
0 1.6 · 10−5

0 6.3999 · 10−5

. . . . . .
0 f18

4 (x0) = 0.9683

1.3 The Logistic Map

The logistic map in [0, 1] is a paradigmatic map defined by a simple quadratic
function fµ(x) = µx(1 − x), µ > 0. This function models, for instance,
population growth for discrete time [11]. The logistic map presents very
interesting phenomena and is, traditionally, the first approach to discrete
dynamical systems.

Definition 1.3.1. Let fµ : [0, 1] −→ [0, 1] the function given by fµ(x) =
µx(1− x). Then, fµ is called the logistic map of parameter µ.
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We will focus on the parameters µ ∈ (0, 4] because otherwise fµ would
not map [0, 1] to itself. According to the previous section, the fixed points
of the map will be the result of solving the following equations:

fµ(x) = x⇒ µx(1− x) = x⇒ x ∈ {0, 1− 1/µ} .

Note that if µ is less than 1 the only fixed point is x = 0.
We may wonder about the stability of these fixed points:

f ′µ(x) = µ− µx⇒ f ′µ(0) = µ, f ′µ (1− 1/µ) = 1, ∀µ ∈ (1, 4].

As we saw in Section 1.1, when the derivative in a fixed point is 1, nothing
can be said about the stability of the point. Further study is needed.

Bifurcation on µ

Clearly, the dynamics of fµ will depend strictly on the value of µ. Therefore,
it seems fair to study the stability of fµ according to the parameter µ.

If µ ∈ (0, 1] the origin is a stable point. When we move on to µ > 1, now,
the origin becomes unstable, however, a new fixed point appears, namely,
p = 1− 1/µ. The point 0 is unstable since f ′µ(0) > 1. However,

f ′µ(1− 1/µ) = µ− 2µ(1− 1/µ) = 2− µ.
This shows that p is stable whenever 1 < µ < 3. We can actually add
the value µ = 3 to the stability range of p. We can consider the following
quotient,

fµ(x)− fµ(p)

x− p
=
fµ(x)− p
x− p

= 1− µx. (1.2)

The expression on the right remains in (−1, 1) when 1 < µ ≤ 2 and
x ∈ (0, 1). Certainly, we shall exclude the trivial cases in which x = 0 or
x = 1. Moreover, at 2 < µ ≤ 3 the right hand side of Equation (1.2) remains
in (−1, 1) whenever x ∈ (0, 2/µ). If x ∈ [2/µ, 1], after some iterations we
find that eventually x lies in [1/µ, p]. For this interval we take the second
iteration to build an equation analogous to Equation (1.2):

f2
µ(x)− p
x− p

= (1− µx)(1− µfµ(x)). (1.3)

Now, the right hand side term of the equation above is in (−1, 1) when
x ∈ (1/µ, p). This latter information and the continuity of fµ implie that

lim
n→∞

f2n
µ (x) = p⇒ lim

n→∞
f2n+1
µ (x) = f(p) = p,

from where we obtain that fµ(x) tends to p when x ∈ (0, 1). I recall again
that the cases when x = 0 and x = 1 are not mentioned since these points
eventually move to 0.
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At µ > 3, the fixed point p is no longer stable. However, we can have a
look at the period two points, this is, we have to solve the equation f2

µ(x) =
x. This way,

x =
1 + µ±

√
(µ+ 1)(µ− 3)

2µ

from where we obtain two period two points, q+ and q−. An easy computa-
tion shows that fµ(q+) = q−. Thus, the set {q+, q−} is a periodic orbit. Let
us wonder about its stability. Notice that f2

µ constitutes a map itself, there-
fore, applying Proposition 1.1.2 the derivative will determine the stability:(

f2
µ

)′
(x) = (fµ)′ (q+) (fµ)′ (q−) = −µ+ 2µ+ 4

which if µ ∈ (3, 1 +
√

6) its absolute value is less than 1. This process can
be repeated to obtain this values for higher iterations to the logistic map.

The noticeable issue here is that the initially stable fixed point p ends up
doubling its period. This fact is known as period doubling, and this process
continues for greater values of µ, it suggested in [11] or [20].

The period doubling phenomenon is illustrated in Figure 1.3. Whenever
a period doubling is exhibited, the branches of the figure split into two.

Figure 1.3: Bifucation diagram for the Logistic map fµ.

The Logistic Map f4(x) = 4x(1− x)

This is, of course, a particular case for the general logistic map, yet this
concrete example deserves special attention. We now know that both 0 and
3/4 are fixed points.

We can compute the period two points using the explanations above:

f2
4 (x) = x⇒ 16x− 16x2 − 64x2 + 128x3 − 4x3 = x⇒
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(a) n = 1 (b) n = 2 (c) n = 3

Figure 1.4: Plots of fn4 along with the identity function.

x ∈
{

0, 3/4,
1

8
(5−

√
5),

1

8
(5 +

√
5)

}
.

However, we know that both 0 and 3/4 are period one orbits, therefore,{
1
8(5−

√
5), 1

8(5 +
√

5)
}

is a period two orbit, this is equivalent to see that

f4

(
1
8(5−

√
5)
)

= 1
8(5 +

√
5). The latter can be easily checked.

The plots above show, apparently, that for each positive integer k, fk4
has at most 2k points of period k (some of them will have smaller periods,
for instance, x = 0).

Lemma 1.3.1. Given a positive integer k, fk4 has 2k fixed points.

Proof. The result follows from the fact that x = 1/2 is not a fixed point, f
is surjective, f([0, 1/2]) = [0, 1] and f([1/2, 1]) = [0, 1].

From this lemma we can now prove the following theorem:

Theorem 1.3.2. f4 has period k orbits for each positive integer k.

Proof. Let p be a fixed point of fk4 which is not fixed in fk−1
4 . The existence

of this point follows from the previous proposition. Then,{
p, f4(p), . . . , fk−1

4

}
is a period k orbit.

The interesting fact here is that we are in conditions of using Sharkovskii’s
theorem which is stated at the appendix.

1.4 On the Definition of Chaos

In this section we want to set when a map is considered chaotic. Sensitivity
to initial conditions is something a chaotic system must show. However, this
is not enough to define rigorously a chaotic system. Indeed, the function
f(x) = 5x has sensitivity to initial conditions but we certainly know where
the orbits of this map go without doubt. In order to define chaos, several
concepts must introduced.
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Definition 1.4.1. Let f : X −→ X be a map on a metric space X. Then,
f is said to be topologically transitive if for any given open sets U, V ⊂ X
there is a positive integer k such that fk(U) ∩ V 6= ∅.

Topological transitiveness is strongly related to chaos. Indeed, topolog-
ical transitiveness has a lot to do with dynamical indecomposability [23],
present in the Lorenz attractor. Roughly speaking, this means that the
Lorenz attractor cannot be splitted into smaller invariant pieces.

Definition 1.4.2. A dense orbit Γ for a map f : X −→ X is an orbit which
satisfies that for each open set U in X, U ∩ Γ 6= ∅.

Proposition 1.4.1. A map f : X −→ X which has a dense orbit is also
topologically transitive.

Proof. Let Γ = {fk(x0) ∈ X : k ∈ N} be a dense orbit for the map f .
Let U, V be two open sets in X. As Γ is a dense orbit, for every open
subset S of X there exists a positive integer k0 such that fk0(x0) ∈ S. In
particular, there exist two positive integers nU , nV such that fnU (x0) ∈ U
and fnV (x0) ∈ V respectively. Without loss of generality, we assume that
nU ≤ nV . Then, the result holds, as fk(y0) ∈ V where y0 = fnU (x0) and
k = nV − nU .

Sometimes different maps display similar dynamical behaviour, therefore
we need to be able to identify such phenomenon. This is done through
topological equivalences:

Definition 1.4.3. Two discrete dynamical systems f1 : X1 −→ X1 and
f2 : X2 −→ X2 are said to be topologically equivalent if there exists a
homeomorphism h : X1 −→ X2 such that for every x ∈ X1,

h(f1(x)) = f2(h(x)).

Topological equivalence is a powerful tool to simplify maps, but this
simplification needs to preserve the qualitative features of the original map.
Certainly, the following properties are satisfied:

Proposition 1.4.2. Using the same notation as in the last definition and
assuming that f1 and f2 are topologically equivalent, the following holds:

(i) x is a periodic point of period n for f1 if and only if h(x) is a periodic
point of period n for f2.

(ii) If x1 is a stable point for f1, then h(x1) is stable for f2 and vice versa.

(iii) Topological transitiveness is preserved under topological equivalences.
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Proof. (i). Let p be a periodic point of period n of the map f1. We consider
fn2 (x). Due to the commutativity of the topological equivalences:

fn2 (h(x)) =

n︷ ︸︸ ︷
f2 ◦ . . . ◦ f2(h(x)) = f2 ◦ h(fn−1

1 (x)) = h(fn1 (x)).

Therefore, h(x) is a periodic point of period n in f2.
(ii). Let x1 be now a stable point for f1. This means that:

lim
n→∞

fn1 (x) = x1,

where x ∈ Bε(x1). The natural candidate for limit point is h(x1). As before,

lim
n→∞

f2(h(x)) = lim
n→∞

(f1(x)).

This equality holds thanks to continuity and the commutativity of topolog-
ical equivalences.

(iii). Let us suppose f1 is a transitive map and let U2 and V2 be two
open sets of X2. Let us suppose that

fn2 (U2) ∩ V2 = ∅

for every natural number n. We will eventually arrive to a contradiction.
Since h is a homeomorphism, U1 := h−1(fn2 (U2)) and V1 := h−1(V2) are

open sets of X1. Furthermore, their intersection is empty since if p ∈ U1∩V1,
implies that h(p) ∈ fn(U2) ∩ V2 which is not possible.

As f1 is topologically transitive, there exists a positive integer n0 such
that, fn1

1 (U1) ∩ V1 6= ∅. Let p ∈ fn1
1 (U1) ∩ V1. Then,

p ∈ fn1
1 (U1) ∩ V1 = fn1

1 (h−1(f2(U2))) ∩ h−1(V2)

= fn1
1 (fn1 (h−1(U2))) ∩ h−1(V2) = fn+n1

1 (h−1(U2)) ∩ h−1(V2)

hence,

h(p) ∈ h(fn1
1 (U1)) ∩ V2 = fn+n1

2 (U2) ∩ V2

which contradicts the assumed fact that for every positive integer n fn2 (U2)∩
V2 = ∅.

There are many definitions of chaos [20],[16]. It is clear that sensitive
dependence on initial conditions is crucial in chaos, in fact some authors
take it as part of the definition of chaos, however, there are some others
which do not link chaos to the metric structure of the space.

Sensitive dependence on initial conditions is not preserved under topo-
logical equivalences. Consider, for instance, f1(x) = 5x, defined on (0,∞).
This map displays sensitivity to initial conditions. Let us define h(x) = 1

x ,
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on (0,∞). Then h is a homeomorphism. Now, following the notation above,
the function f2(x) = 1

5x satisfies that h ◦ f1 = f2 ◦ h. However, f2 does not
have sensitivity to initial conditions. For this reason we do not give a metric
definition of chaos.

Definition 1.4.4. A discrete dynamical system is said to be chaotic if it is
transitive and if the periodic points are dense.

Corollary 1.4.3. Chaos is preserved under topological equivalences.

Note that the definition above does not make use of metric intuitions,
yet the following result makes a link to sensitivity:

Theorem 1.4.4. Suppose f : X −→ X is a chaotic dynamical system.
Then it has sensitive dependence on initial conditions.

Proof. The proof is thoroughly done in [20]. The idea is, firstly, to observe
that there exists δ > 0 such that for any point x ∈ X there exists a periodic
point whose orbit is of distance at least 4δ from x. Moreover, we can pick two
periodic points with disjoint orbits and because of the triangular inequality,
at least one orbit must be at least 4δ away from x.

Let us fix x ∈ X and a periodic point q such that d(x, q) ≥ 4δ. If ε < δ,
since periodic points are dense, there is a periodic point x0 ∈ Bε(x) of period
n.

Now, we must use transitivity to find a point which is close to x and
simultaneously gets closer to q after several iterations. Thanks to the peri-
odicity of x0, it is possible to build some k0 such that fk0(p) = p ∈ Bε(x)
and that fk0(y) is still close to the orbit of q. However, fk0(x) cannot be
close to both fk0(y) and fk0(p) = p.

This results can be applied to paradigmatic maps, such as the tent map
and the logistic map, where the tent map is

T (x) =

{
2x, 0 ≤ x ≤ 1/2
2− 2x, 1/2 ≤ x ≤ 1

(1.4)

(a) n = 1 (b) n = 2 (c) n = 3

Figure 1.5: Plots of Tn.
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Lemma 1.4.5. The tent map (1.4) and the logistic map f4(x) = 4x(1− x)
are topologically equivalent.

Proof. We define the function h(x) = sin
(
πx
2

)2
, x ∈ [0, 1]. Let us see it is a

homeomorphism. Continuity is evident. In addition, h(1) = 1 and h(0) = 0,
since h is continuous, surjectivity holds. If x1, x2 ∈ [0, 1]:

sin
(πx1

2

)2
= sin

(πx2

2

)2
⇔ sin

(πx1

2

)
= sin

(πx2

2

)
⇒ πx1

2
=
πx2

2
.

Therefore, h is injective.
The inverse function is clearly, h−1(x) = 2

π arcsin
√
x. We now compute:

h(T (x)) = sin(πx)2

and

f4(h(x)) = f4

(
sin
(πx

2

)2
)

= 4 sin
(πx

2

)2
(

1− sin
(πx

2

)2
)

= 4 sin
(πx

2

)2
cos
(πx

2

)2
= sin (πx)2 .

thus, f4 and T are topologically equivalent.

Theorem 1.4.6. The logistic map f4(x) = 4x(1− x), x ∈ [0, 1] is chaotic.

Proof. As f4 is topologically equivalent to the tent map T , it will be enough
to show that T exhibits chaotic behaviour, by Corollary 1.4.3.

We can obtain an explicit expression for Tn:

Tn(x) =

{
2n − 2i, 2i

2n ≤ x ≤
2i+1
2n

2(i+ 1)− 2nx, 2i+1
2n ≤ x ≤

2(i+1)
2n

where i = 0, . . . , 2n−1 − 1. Plugging the extreme points of the intervals we
observe that

[
2i
2n ,

2i+1
2n

]
covers [0, 1] under Tn(x). This means that for each

interval of this kind there exists a solution to the equation

Tn(x) = x

which means that Tn has, at least, a fixed point for each interval. Therefore,
periodic points are dense.

Let Bε(x) be an open neighbourhood of x ∈ [0, 1]. If we make n as
large as we wish, eventually there will be an integer i such that

[
2i
2n ,

2i+1
2n

]
is

contained in Bε(x).
Thus, Tn(Bε(x)) = [0, 1]. As a consequence, given two open sets in [0, 1]

it follows that for an adequate positive integer n, Tn(U) ∩ V 6= ∅, for any
open sets U , V . Then, f4 is chaotic.
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1.5 Cantor Sets and Symbolic Dynamics

Both discrete and continuous dynamics give rise to complex orbits and at-
tracting sets. Some of them are topologically elementary, but many others
show intricate structure.

Definition 1.5.1. A compact set which is totally disconnected and for
which every point is an accumulation point is called a Cantor set.

Symbolic dynamics come from a very intuitive idea. For instance, in
the logistic map for µ = 4, we can divide [0, 1] into two intervals, namely,
[0, 1/2] and (1/2, 1], named after 1 and 0 respectively. Now, given x0 ∈ [0, 1]
the trajectory of x0 under the map can be understood as a binary sequence
{x0,n}n. This is, if x0 lies in [0, 1/2] then x0,0 = 1, if f(x0) lies in (1/2, 1]
then x0,1 = 0, and so forth. For example if x0 = 0.25 its associated sequence
under f4 = 4x(1− x) would be 0111 . . ..

This point of view leads to symbolic dynamics, which is a widely used
tool in the study of dynamical systems [19], [20].

Definition 1.5.2. Let n ∈ N \ {1}, then the space of n symbols Σn is
defined as the set of all the sequences {xk}k = x0x1x2 . . . such that xk ∈
{0, 1, 2, . . . , n− 1}.

Remark 1.5.1. Σn is not a countable set. It suffices to see that all the
binary and infinite sequences are contained in Σ2.

Given Σn we can provide to it a distance:

Lemma 1.5.1. The function d(x, y) =
∑∞

k=0
|xk−yk|
nk

is a distance in Σn.

Proof. Let x, y, z be sequences in Σn. Certainly, d(x, y) is a positive real
number and never diverges. Let us suppose d(x, y) = 0. Since every term of
the sum which defines d(·, ·) is non negative, it holds that xk = yk for every
k ∈ N, this is, x = y. Conversely, if x = y, trivially d(x, y) = 0.

Finally,

d(x, y) =

∞∑
k=0

|xk − yk|
nk

=

∞∑
k=0

|xk − zk + zk − yk|
nk

≤
∞∑
k=0

|xk − yk|
nk

+

∞∑
k=0

|zk − yk|
nk

= d(x, z) + d(y, z)

which is what we wanted to prove.

With this result we obtain that Σn is a metric space.

Proposition 1.5.2. If x, y ∈ Σn, d(x, y) ≤ n−k0 if xi = yi for all i ≤ k0

and d(x, y) ≥ n−k0 if xk′ 6= yk′ for some k′ ≤ k0.
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Proof. First we set that xk = yk, for all k ≤ k0. Then,

d(x, y) =
∑
k>k0

|xk − yk|
nk

≤ 1

nk0+1

∞∑
k=0

n− 1

nk
=

1

nk0
.

If xk′ 6= yk′ for some k′ ≤ k0, we have,

d(x, y) =
∞∑
k=0

|xk − yk|
nk′

≥ 1

nk
≥ 1

nk0

Proposition 1.5.3. Σn is a Cantor set.

Proof. The proof can be found in [20]. To see that Σn is compact [20] shows
that every sequence contains a converging subsequence.

To see that every point in Σn is an accumulation point, let x ∈ Σn. We
define xkj = xj for 0 ≤ j ≤ k and xkk+1 6= xk+1. Then, {xk} converges to x.

Disconnectedness is based on the fact that the function χj0 : Σn −→
{0, . . . n− 1} given by χ(x) = xj0 is continuous.

Definition 1.5.3. The function σ : Σn −→ Σn given by σ (x0x1x2 . . .) =
x1x2 . . . is called the Shift map.

Now, the main target is to show that the dynamics within Σn display
chaos under the Shift map.

Lemma 1.5.4. The Shift map is uniformly continuous in the topology (Σn, d).

Proof. Let x = x0x1 . . ., y = y0y1 . . . be sequences in Σn. We must show
that the distance between the two images is uniformly bounded. Indeed,

d(σ(x), σ(y)) =
∞∑
k=0

|xk+1 − yk+1|
nk

≤ n
∞∑
k=0

|xk − yk|
nk

= nd(x, y).

Lemma 1.5.5. If x ∈ Σn is a periodic point of period m of the Shift map
σ if and only if it is a periodic sequence of period m.

Proof. If x = x0x1x2 . . . is a periodic point of period m of σ, then σm(x) =
x0+mx1+mx2+m . . . = x0x1x2 . . .

Lemma 1.5.6. The Shift map has a countable number of periodic points
which are dense.
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Proof. The periodic points of period m are given by

σm(x) = x,

this is an equation which has nm solutions. Let x ∈ Σn. To prove the density
we have to build a sequence {xk}k in Σn such that {xk} −→ x, as k → ∞.
Indeed, taking xki = xi, 0 ≤ i ≤ k, it is clear that {xk} → x as k →∞.

Lemma 1.5.7. The Shift map has a dense orbit.

Proof. Let y ∈ Σn. We must show that there is a sequence such that after
several evaluations of the Shift map it approaches y as much as we wish.

We define x as follows. The first n terms of x will be 0, 1, 2, . . . , n − 1.
The next n2 terms will be the n2 combinations of the symbols, and so forth.
This way, for all m ∈ N there exists k ∈ N such that σk(x)i = yi for all
i ∈ {1, . . . ,m}. Fixing m ∈ N:

d(y, σk(x)) =
∞∑
i=0

|yi − σk(x)i|
ni

=
∞∑

i=m+1

|yi − σk(x)i|
ni

≤
∞∑

i=m+1

n− 1

ni

= (n− 1)
∞∑

i=m+1

1

ni
≤ n−m

which is what we wanted to see.

Taking into account the previous results, we have the following theorem:

Theorem 1.5.8. The Shift map is chaotic.

Sensitive dependence on initial conditions of the Shift map follows di-
rectly from the previous theorem along with Theorem 1.4.4. Still, this result
can be obtained explicitly:

Proposition 1.5.9. The Shift map displays sensitivity to initial conditions.

Proof. Let ε > 0 and x ∈ Σn. We consider Bε(x). Now, let y ∈ Bε(x) \ {x},
then there exists i0 ∈ N such that xi0 6= yi0 and xi = yi, 0 ≤ i ≤ i0. If we
take δ = |yi0 − xi0 |, then,

d(x, y) < ε and d(σi0(x), σi0(y)) ≥ δ.
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1.6 The Smale Horseshoe

Stephen Smale defined his horseshoe map (Smale horseshoe) in 1963 and
showed that it possessed an invariant set which exhibited chaotic dynamics
[17]. The Smale horseshoe is very much of an artificial map which rarely
would someone expect to find in physical models. However, experience tells
us that many maps display horseshoe map-like behaviour and therefore sim-
ilar dynamics can be expected from them [24].

On D = [0, 1]× [0, 1] we define the following regions:

H0 = {(x, y) ∈ R2 : x ∈ [0, 1], y ∈ [0, 1/µ]}

and,
H1 = {(x, y) ∈ R2 : x ∈ [0, 1], y ∈ [1− 1/µ, 1]}.

Where 0 < λ < 1 and µ > 1. This idea can be translated into mathematical
language. We define the function f : D −→ R2 which is defined by

f(H0) = {(x, y) ∈ R2 : x ∈ [0, λ], y ∈ [0, 1]}

and,
f(H1) = {(x, y) ∈ R2 : y ∈ [0, 1], x ∈ [1− λ, 1]}.

It can be expressed in matrix form. If (x, y) is a point in H0,

f (x, y) =

(
λ 0
0 µ

)(
x
y

)
. (1.5)

Figure 1.6: Scheme of the Horseshoe.

Analogously, if (x, y) is a point in H1,

f ((x, y)) =

(
−λ 0
0 −µ

)(
x
y

)
+

(
1
µ

)
. (1.6)
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We also want to build an inverse image of this function. Of course, the
inverse will take elements on the vertical columns V0 and V1 analogously as
with the horizontal case. V0 and V1 are defined as follows:

V0 = {(x, y) ∈ R2 : y ∈ [0, 1], x ∈ [0, λ]}

V1 = {(x, y) ∈ R2 : y ∈ [0, 1], x ∈ [1− λ, 1]}.

Figure 1.6 sketches the situation; it shows that the horseshoe map is nothing
else than stretching and folding the unit square.

Lemma 1.6.1. With the conditions and notation above:

• Let V be a vertical rectangle, then f(V )∩D consists of two rectangles,
one in V0 and the other in V1, with their widths each being equal to a
factor of λ times the width of V .

• If H is a horizontal rectangle, then f−1(H)∩D consists of two horizan-
tal rectangles, one in H0 and one in H1, with their widths being 1/µ
times the width of H.

1.6.1 Construction of the Invariant Set

If we wonder about all possible iterations of the map f and f−1, we can build
an invariant set Λ which will eventually enclose itself under any iteration of
the maps f or f−1. This is defined as,

Λ =
∞⋂

n=−∞
fn(D). (1.7)

We will now make use of Σ2 = {0, 1} the space of two symbols. Let us
start with the first iteration for f , namely, D ∩ f(D):

D ∩ f(D) =
⋃

s−1∈Σ2

Vs−1 = {(x, y) ∈ D : (x, y) ∈ Vs−1 , s−1 ∈ Σ2}. (1.8)

The second iteration of f is evaluating f on f(D) ∩D, this is,

f(D ∩ f(D)) ∩D = D ∩ f(D) ∩ f2(D) =
⋃

s−2∈Σ2

D ∩ f(Vs−2). (1.9)

Now, due to Lemma 1.6.1, Vs−2 moves on to two rectangles contained in
V0 and V1. Thus,

⋃
s−2∈Σ2

D∩f(Vs−2) =
⋃

s−i∈Σ2,i=1,2

Vs−1 ∩f(Vs−2) = D∩f(D)∩f2(D). (1.10)
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(a) D (b) D ∩ f (D) (c) D∩f (D)∩f2(D)

Figure 1.7: Iterations of f , [13].

We are really looking forward to using symbolic dynamics, this way we
will use the following notation:

D ∩ f(D) ∩ f2(D) :=
⋃

s−i∈Σ2,i=1,2

Vs−1s−2

= {(x, y) ∈ D : (x, y) ∈ Vs−1 , f−1((x, y)) ∈ Vs−2 , s−i ∈ Σ2, i = 1, 2}

Using the same reasoning and proceeding inductively,

D ∩ f(D) ∩ . . . ∩ fk(D) =
⋃
f
(
Vs−2...s−k

)
∩ Vs−1 :=

⋃
Vs−1...s−k . (1.11)

These are 2k vertical rectangles each with width λk; thanks to Lemma 1.6.1.
Moreover, each of this rectangles can univocally be determined by a sequence
of symbols in Σ2. We note also that each of these sets including V0 and V1

are compact, thus, the ultimate intersection is non-empty and zero volume,
since λ < 1. Now, letting k tend to infinity,

∞⋂
n=0

fn(D) =
⋃

s−i,i=1,...

f(Vs−2...s−k...) ∩ Vs−1 :=
⋃
Vs−1...s−k.... (1.12)

Now, we need to construct D ∩ f−1(D) ∩ f−2(D) . . . The reasoning is
completely analogous to the previous case, for f−1 acts on the horizontal
rectangles the same way f acts on vertical rectangles. This way,

D ∩ f−1(D) ∩ f−2(D) . . . f−k(D) =
⋃

si∈Σ2,i=0,...,k

Hs0...sk . (1.13)

We note again that at each step k, 2k new rectangles are created, there-
fore, as k tends to infinity, a sequence in Σ2 will univocally determine a
horizontal line in D. As before,
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(a) D (b) D ∩ f−1 (D)
(c) D ∩ f−1 (D) ∩
f−2(D)

Figure 1.8: Interations of f−1, [13].

n=0⋂
−∞

fn(D) =
⋃

si∈Σ2,i=0,...

f(Hs1...sk...) ∩Hs0 := Hs0s1...sk.... (1.14)

Thus, Λ will consist of an infinite set of points which can be labelled
uniquely by a bi-infinite sequence in Σ2. Hence, given a point (x, y) ∈ Λ ,
we define the map S : D −→ Σ2 defined by:

(x, y) 7→ S ((x, y)) = . . . s−k . . . s−1s0s1 . . . sk . . . . (1.15)

Given p ∈ Λ, its dynamics can be easily computed, since the point can
be regarded as a bi-infinite binary sequence which has the information of
both forward and preceding points, namely, fk(p) and f−k(p), k ∈ N.

In order to obtain the sequence associated to fk(p), it seems logical to
apply the Shift map σ, as defined in 1.5.3, k times to the sequence associated
to p. But to assure this latter conjecture, as proved in the previous section,
we need to show that S is, indeed, a homeomorphism.

Proposition 1.6.2. The map S : Λ −→ Σ2 is a homeomorphism.

Proof. The proof can be found in [24].

The previous result implies in particular that Λ has the cardinality of
the continuum. However, we could have also proved that each point in Λ is
an accumulation point in order to use the following result due to Hausdorff:

Theorem 1.6.3. In a complete space, every non-empty set in which each
point is an accumulation point has at least the cardinality of the continuum.

Proof. The proof can be found in [8]. As a remark, in [8], the fact that every
point is an accumulation point is called perfectness.

The following result is what we ultimately wanted to show:
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Theorem 1.6.4. The Smale horseshoe map f displays chaotic dynamics on
D.

Proof. It is enough to observe that S ◦ f = σ ◦ S.

In Chapter 3 we will see that there are models of the Lorenz system
which display horseshoe-like maps and therefore they have attracting sets
which are Cantor sets and display chaotic dynamics.





Chapter 2

Continuous Dynamical
Systems

So far we have introduced some key aspects of chaotic dynamics through dis-
crete dynamical systems. We wish to move forward to continuous dynamical
systems.

2.1 Flows

We will now work with the following general equation:

ẋ(t) = f(x) (2.1)

We will denote by I(x0) the maximal interval of uniqueness and existence
to the initial value problem associated to (2.1) with initial condition x(0) =
x0: {

ẋ(t) = f(x)

x(0) = x0

(2.2)

Definition 2.1.1. Given (2.1), let us assume that f ∈ C1(U), where U is
open in Rn. For every x0 ∈ U , φ(x0, t) denotes the solution to (2.2) and it
is called the flow associated to (2.1).

When the initial condition is fixed and we make t vary on I(x0), φ(t,x0)
can be thought of the motion of a particle, if we take S ⊂ U , (2.2) models
the motion of a fluid volume.

If f is linear, (2.1) can be equivalently written as:

ẋ(t) = Ax, A ∈ Rn×n (2.3)

and therefore, φt(x0) = eAtx0. In fact, the following properties are satisfied
by (2.3):

23
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(i) φ0(x0) = x0

(ii) φs(φt(x0)) = φs+t(x0), s, t ∈ I(x0) = R

(iii) φ0(x0) = x0

These group properties can be easily proved using the definition of the ex-
ponential of a matrix.

We now wish to show that these properties are satisfied for (2.1) in
general. As a consequence, we need to extend the fundamental theorem of
dependence on initial conditions to a global result. This last theorem is
written on the appendix.

We define Ω = {(x0, t) ∈ U ×R : t ∈ I(x0)}. The target is to extend the
cited results up to Ω.

Theorem 2.1.1. Let f ∈ C1(U), where U is an open subset of Rn. Then
φ ∈ C1(Ω) and Ω is open.

Proof. Let (x0, t0) ∈ Ω, then φ(x0, t) is defined for every t ∈ [0, t0]. If we
recall the results of extension of solutions of differential equations, as [0, t0]
is compact in I(x0), there exists t1 ∈ I(x0) such that t1 does not lay in
[0, t0]. Therefore, the solution can be extended to the interval [0, t1].

Again, recalling the results on dependence on initial conditions, as φ(x0, t)
is now defined on a closed interval, there exists δ > 0 such that for all
x1 ∈ Bδ(x0) the associated Cauchy problem is well posed. Then, the solu-
tion is defined in Bδ(x0) × (0, t + ε), for some ε > 0. Thus, for every point
in Ω we have found an open set contained in Ω containing the point.

Now we know that φ is well defined for Ω it is clear that φ ∈ C1(Ω).

Corollary 2.1.2. Let f ∈ Cr(U), U open set in Rn. Then, φ ∈ Cr(Ω).
What is more, if f is analytic φ is analytic.

Theorem 2.1.3. Let f ∈ C1(U), where U is an open set in Rn. Given
(x0, t) ∈ Ω and s ∈ I(φt(x0)), then s+ t ∈ I(x0) and

φs+t(x0) = φs(φt(x0))

Proof. We take 0 < s ∈ I(φt(x0)), t ∈ I(x0) = (a, b). We now define

x : (a, s+ t] −→ U

x(r) =

{
φ(x0, r) if a < r ≤ t
φ(φt(x0), r − t) if t ≤ r ≤ s+ t

Clearly, x(r) is solution to the Cauchy problem. Indeed, if a < r ≤ t,

x(r) = φ(x0, r) = φr(x0)
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which is solution to the problem. On the other hand, t ≤ r ≤ s+ t implies,

x(r) = φ(φt(x0), r − t) = φr−t(φt(x0)).

We have shown that x(r) is solution to the problem, hence, by uniqueness,

x(s+ t) = φs+t(x0) = φ(φt(x0), s).

The proof for s = 0 and s < 0 is analogous.

Theorem 2.1.4. Let f ∈ C1(U), where U is an open set in Rn. Let (x0, t)
be a point in Ω, then there exists δ > 0 such that Bδ(x0) × {t} ⊂ Ω. Then,
the set φt(U) is open and

φ−t(φt(x)) = x, ∀x ∈ Bδ(x0)

and,
φt(φ−t(x)) = x, ∀x ∈ Bδ(x0)

Proof. The proof can be found in [13].

Now we have enough tools in order to define a dynamical system rigor-
ously and eventually link the discrete theory with the continuous one. Given
an open set U ∈ Rn, we have de following definition:

Definition 2.1.2. We consider the following function:

φ : U × R −→ U

(x0, t) 7→ φ(x0, t)

Then, if φ satisfies

(i) φ ∈ C1(U × R).

(ii) φ(x0, 0) = x0, ∀x0 ∈ U .

(iii) φ(φ(x0, s), t) = φ(x0, t+ s), ∀x0 ∈ U and s, t ∈ R.

then we call φ a dynamical system.

Remark 2.1.1. Using the notation above, it is clear that if we initially fix
t ∈ R, φ(x0, t) becomes a function which maps elements of U ⊂ Rn to itself.

Given a dynamical system we can easily build up a C1 vector field f
whose associated initial value problem (2.2) has a solution for all t ∈ R.
Indeed,

f(x) :=
d

dt
φ(x, t = 0).
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The inverse statement is conditionally true. Suppose we have the initial
value problem (2.2). This equation determines a flow which is solution to
the problem. Still this might not be defined for all t, therefore, it might not
be a dynamical system.

The notion of topological equivalence presented in the discrete dynamical
systems can be extended to continuous dynamical systems. In this project
this notion will be subtle but fundamental to show that the Lorenz Attractor
is well defined.

Definition 2.1.3. Let f1, f2 ∈ C1(U), where U is an open set in Rn. This
vector fields lead naturally to the equations

ẋ(t) = f1(x) (2.4)

and,

ẋ(t) = f2(x) (2.5)

Equations (2.4) and (2.5) are said to be topologically equivalent if there exists
an homeomorphism which maps trajectories of (2.4) to trajectories of (2.5)
and it preserves the orientation in time.

Theorem 2.1.5. If f ∈ C1(Rn), the following initial value problem{
ẋ = f(x)

1+‖f(x)‖
x(0) = x0

(2.6)

has a unique solution defined for all t.

This theorem gives a way of defining a continuous dynamical system
from a given regular vector field. This theorem gives sufficient conditions
to see when the previous vector field defines a dynamical system. However,
this latter vector field is topologically equivalent to f :

Proposition 2.1.6. The system (2.6) is topologically equivalent to (2.1).

Proof. We will take h to be the identity homeomorphism. We now take a
change of then time variable in Equation (2.1):

τ =

∫ t

0
(1 + ‖f(x(s))‖) ds.

Thus,

∂x

∂τ
=
∂x

∂t
· ∂t
∂τ

=
∂x

∂t
/
∂τ

∂t
=

f(x)

1 + ‖f(x)‖
.
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Theorem 2.1.7. If f ∈ C1(D) where D is a compact subset of Rn and it
satisfies a global Lipschitz condition

‖f(x)− f(y)‖ ≤M ‖x− y‖ , M > 0

for every x, y ∈ D. Then, for x0 ∈ Rn, the initial value problem (2.2) has
a unique solution defined for t ∈ R .

D. R. J. Chillingworth showed that the existence and uniqueness results
can be stated for compact manifolds [4]:

Theorem 2.1.8. The equation (2.1) for x ∈ D, where D is a compact
manifold, has solutions defined for every t ∈ R.

Proof. Let φ(x0, t) be the global solution for equation (2.1). Let us suppose
that φ is defined for the maximal interval (a, b). We shall see first that
b = ∞. As b is finite we can find a sequence {tn} such that tn → b, as n
tends to infinity.

If φ(x0, tn) = φ(x0, tm) it follows that there is a periodic orbit and
therefore the solution is defined for all t. Hence, φ(x0, tn) 6= φ(x0, tm) for
every n 6= m. As D is compact, there exists an accumulation point y of
the sequence {φ(x0, tn)}. Now, the local existence and uniqueness theorem
shows that unique solutions exist based at any x1 in some neighbourhood
Bε(y).

Now we can choose some tn0 such that b − tn0 < ε and φ(x0, tn0) lies
in Bε(y). Thus, by local uniqueness and the extension lemma, φ(x0, t) is
extendible to a solution curve defined in (a, tn0 + ε), and since tn0 + ε > b
we have contradicted the hypothesis. Therefore, b =∞.

Similar arguments are used to show that a = −∞ [4].

2.2 Limit Sets and Attractors

In order to describe the global behaviour of the Lorenz model, we need to
introduce the concept of attractor. As well as in the discrete theory, different
kinds of orbits can arise in continuous dynamical systems.

Definition 2.2.1. Given p ∈ U , where U is an open set in Rn, p is an
ω-limit point of φ(x0, t) (the flow associated to (2.1)) if there is a sequence
such that {tn} −→ ∞ and that

lim
n→∞

φ(x0, tn) = p

The set of all ω-limit points is called the ω-limit set of φ(x0, t). It is denoted
by ω(φ(x0, t)).
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Theorem 2.2.1. If φ(x0, ·) is a trajectory for (2.1), the ω-limit set of
φ(x0, ·) is a closed subset of U . Moreover, if φ(x0, t) is contained in a closed
and bounded subset of Rn for all t ∈ R, then ω(φ(x0, t)) is non empty,
connected and compact.

Proof. To prove closeness, let {pn} be a sequence of points in ω(φ(x0, t))
such that converges to some p in Rn. Let us see if p lays in ω(φ(x0, t)).
As, for every n, pn ∈ ω(φ(x0, t)), there exists an increasing sequence {tn,k}k
such that:

lim
n→∞

φ(x0, tn,k) = pn

but this is equivalent to,

‖φ(x0, tn,k)− pn‖ <
1

n

where k > K(n) for some K(n) ∈ N. Let us define {tn} = {tn,K(n)}. To
start with, the limit of this last sequence is ±∞ and

‖φ(tn,x0)− p‖ ≤ ‖φ(tn,x0)− pn‖+ ‖p− pn‖ ≤
1

n
+ ‖p− pn‖ −→ 0

as n tends to infinity. Let us suppose that ω(φ(x0, t)) ⊂ K, where K is
compact. Then, ω(φ(x0, t)) is compact, as we have shown that ω(φ(x0, t)) is
closed. Furthermore, ω(φ(x0, t)) is non-empty since if we take any sequence
in U , there exists a subsequence in ω(φ(x0, t)) which converges in ω(φ(x0, t)),
by hypothesis.

To prove connectedness it suffices to assume that ω(φ(x0, t)) is not con-
nected and deriving a contradiction [13].

Theorem 2.2.2. If p ∈ ω(φ(x0, t)) for the flow φ associated to (2.1), then
all other points of φ(p, t) are also ω-limit points of ω(φ(x0, t)).

Proof. Let p ∈ ω(φ(x0, t)). Let p′ be a point on the trajectory φ(p, t), this
is p′ = φ(p, t′), for some t′ ∈ R. Since p is an ω-limit point of φ(x0, t), there
exists a sequence {tn} such that

lim
n→∞

φ(x0, tn) = p.

Thus, using the group properties of dynamical systems,

φ(x0, tn + t′) = φ(φ(x0, tn), t′).

Moreover, since f in (2.1) is C1(U) and x0 ∈ U we can use the continuous
dependence on initial conditions to get:

lim
n→∞

φ(φ(x0, tn), t′) = φ(p, t′) = p′.

Which means that p′ is in ω(φ(x0, t)).
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Subsets in Rn can remain behave differently under the action of a flow.
Let us define the concept of invariance:

Definition 2.2.2. A set M ⊂ Rn is invariant if for all x ∈M , there exists
t′ such that φ(x, t) ⊂M for all t > t′.

Invariant sets and trapping regions often exhibit an attractive behaviour,
actually, these sets may attract every trajectory in the phase space.

Definition 2.2.3. A subset M of Rn is said to be a globally attracting if for
every x ∈ Rn, there exists t′ > 0 such that φ(x, t) ∈M for all t > t′.

Corollary 2.2.3. Given a trajectory for (2.1) namely, φ(x0, t), ω(φ(x0, t))
is an invariant subset for the flow defined by (2.1).

Proof. Let p ∈ ω(φ(x0, t)), the there exists a sequence {tn} such that:

lim
n→∞

φ(x0, tn) = p.

We are now wondering if φ(p, t) ∈ ω(φ(x0, t)), for every t ∈ R. But this
holds thanks to the previous theorem.

Definition 2.2.4. Given the equation (2.1), an invariant set A ⊂ U , where
U is an open set in Rn, is said to be an attracting set of (2.1) if there
is an open set V containing A such that for all x ∈ V , φ(x, t) ∈ V and
d(φ(x, t), A) −→ 0 as t tends to infinity.

The next definition is key in dynamical systems and it is what eventually
we would like to find in the Lorenz equations:

Definition 2.2.5. An attractor is an attracting set which contains a dense
orbit.

Definition 2.2.6. A cycle or periodic orbit of (2.1) is any closed curve of
(2.1) which does not contain an equilibrium point.

This definition extends the idea of stable and unstable points in the local
theory. Indeed:

Definition 2.2.7. A periodic orbit Γ is said to be stable if for every ε > 0
there exists an open set N containing Γ such that for all x ∈ N , there exist
t′ > 0 such that d(φ(x, t),Γ) < ε for all t > t′. If this doesn’t hold Γ is
unstable.

Definition 2.2.8. A periodic orbit is said to be asymptotically stable if for
every, x ∈ N ,

lim
t→∞

d(φ(x, t),Γ) = 0.

An ω-limit set which is a periodic orbit is called an ω-limit cycle.
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Proposition 2.2.4. Any ω-limit cycle is an attractor.

Proof. Let Γ be an ω-limit cycle. Certainly, Γ is an attracting set, since
there exists an open set N containing Γ such that for every x ∈ N ,

lim
t→∞

d(φ(x, t),Γ) = 0.

What is more, Γ is dense in itself, therefore, Γ has a dense orbit.

Extension to Arbitrary Sets

We now want to extend the behaviour of flows in arbitrary sets. The ω-limit
set can be extended naturally to arbitrary sets. In fact, these definitions
bellow are essential in order to define coherently the Lorenz attractor.

Lemma 2.2.5. Arbitrary intersections and unions of invariant sets are in-
variant. The closure of an invariant set is invariant.

Proof. Let {Ui}i∈I be a family of invariant sets. We consider the intersec-
tion:

A =
⋂
i∈I

Ui.

Let x0 ∈ A, and let is take its forward orbit φ(x0, t). Clearly, as x0 ∈ Ui for
all i, φ(x0, t) ∈ Ui for all i and t. The union is still more evident.

Let U be an invariant set, and x a point on U . Let us consider a sequence
in U , {xn} which converges to x. Now, as we approach x, there exists N ∈ N,
such that every t ∈ I(x) is in I(xn), whenever n ≥ N . Finally, thanks to
continuity, φ(x, t) = limn→∞ φ(xn, t) ∈ U .

Let us recall that although we are now dealing with arbitrary sets, ω(x)
is a closed and an invariant set. Closeness follows from Theorem 2.2.1 and
invariance follows from Corollary 2.2.3.

Definition 2.2.9. Let φ be the flow of equation (2.1) defined on U ⊂
Rn. If X ⊂ U , the ω-limit set of X, ω(X), is the set of points x0 ∈ U
such that there exists a sequence {tn}n and a sequence {xn}n such that
limn→∞ φ(xn, tn) = x0.

Definition 2.2.10. We define the orbit of a set X as:⋃
t≥0

φ(X, t) =
⋃
x∈X

⋃
t≥0

φ(x, t).

Proposition 2.2.6. Given a flow φ(x, t), defined on U ⊂ Rn and X ⊂ U ,
the set ω(X) is a closed invariant set. Moreover, it is given by:

ω(X) =
⋂
t≥0

φ(
⋃
t≥0

φ(X, t), t).
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Proof. Invariance follows from Lemma 2.2.5. The rest of the proof can be
found in [20].

An analogous result for Theorem 2.2.1 can also be stated.

Proposition 2.2.7. If X is non empty, and
⋃
t≥0 φ(X, t) is compact, then

ω(X) is non empty and compact. If
⋃
t≥0 φ(X, t) is connected, then ω(X) is

also connected.

Definition 2.2.11. A trapping region D is an invariant set such that φ(D, t) ⊂
D.

Proposition 2.2.7 is used in the construction of the Lorenz attractor, in
fact, we will find an invariant compact set D which is actually a trapping
region. The following proposition will be useful.

Proposition 2.2.8. Given a flow φ let D ⊂ Rn be a set which satisfies
φ(D, t) ⊂ D for every t ≥ 0. Then,

ω(D) =
⋂
t≥0

φ(D, t)

is a non empty, invariant, compact and connected attracting set.

Proof. We first observe that, given ε > 0, φ(D, t + ε) ⊂ φ(D, t) ⊂ φ(D, t),
then, ⋂

t≥0

φ(D, t) =
⋂
t≥0

φ(D, t) =
⋂
t≥0

φ(
⋃
t≥0

φ(t,D), t) = ω(D).

It suffices now to apply Proposition 2.2.7 to show compactness, and Lemma
2.2.5 to see invariance.

Let us show that ω(X) is an attracting set. Assume it is not attracting,
then there exists x ∈ D such that

lim
n→∞

d(φ(x, tn), ω(D)) > R > 0.

As φ(x, tn) is in D, there exists a subsequence such that

lim
k→∞

φ(x, tn,k) = y ∈ ω(x).

However, ω(x) ⊂ ω(D), which contradicts the first assumption.

2.3 The Poincaré Map

The concept of Poincaré Map was firstly introduced in 1881 by Henri Poincaré
in his “Memoires sur les courbes définies par une equation différentelle” [14].
Poincaré maps provide a very useful tool in the study of dynamical systems.
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To start with, Poincaré maps reduce the dimension of the problem, for in-
stance, given a three dimensional dynamical system, the Poincaré map is a
two dimensional discrete dynamical system. What is more, Poincaré maps
can (not always) describe the global dynamics of some dynamical systems,
however, in order to do this, further background on numerics is required
[6],[24].

In this dissertation we shall distinguish two kinds of Poincaré maps.
The first one, and the original one, which is constructed strictly to analyse
the stability of periodic orbits, whereas the second one is a rather ad hoc
construction to study global dynamics of a continuous dynamical system.
The difference between these two kinds of Poincaré maps is substantial,
however, they are based of the same intuitive idea.

The first kind of Poincaré map is simpler, and we shall go over the main
definitions and existence theorem. The second kind is much more intricate,
thus, we will just provide an example. However, we are to return to the
second kind of Poincaré maps in the following chapter as this is used in the
study of the dynamics of the Lorenz equations.

We will make an heuristic definition first. We wish to study the be-
haviour of initial conditions when time increases. Given x0 an initial condi-
tion for (2.1), this point lays on a plane Σ. We will ask φ(x0, t) to induce a
periodic orbit Γ of period T , this is, φ(x0, t+ T ) = φ(x0, t) for some T > 0.
If x is an initial condition for (2.1) sufficiently close to x0, φ(x, t) will inter-
sect Σ again, we will call this intersection point P (x). The function which
maps x to P (x) is called the Poincaré Map or first return map.

Theorem 2.3.1. Let U be an open subset of Rn and let f ∈ C1(U). Suppose
that φ(x0, t) is a periodic solution of (2.1) of period T and that the set

Γ = {x ∈ Rn : x = φ(x0, t), 0 ≤ t ≤ T}

is contained in U . We consider the normal plane to Γ at x0:

Σ = {x ∈ Rn : (x− x0) · f(x0) = 0}.

Then, there exists δ > 0 and a unique function τ(x) : Rn −→ R defined and
continuously differentiable ∈ Bδ(x0) such that τ(x0) = T and

φ(x, τ(x)) ∈ Σ, ∀x ∈ Bδ(x0).

Proof. Let x0 ∈ Γ ⊂ U . The idea is to use the implicit function theorem.
We define:

F : U × R −→ R

given by F (x, t) = (φ(x, t) − x0) · f(x0). Now, as it has been proved in
Theorem 2.1.1, φ(x, t) ∈ C1(U) (actually, φ(x, t) ∈ C1(U ×R)) therefore, as
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f ∈ C1(U), it yields that F (x, t) ∈ C1(U × R). Let T be the period of the
orbit, then:

∂F (x0, T )

∂t
=
∂φ(x0, T )

∂t
· f(x0) = f(x0) · f(x0) 6= 0.

This last inequality is due to the fact that x0 is not an equilibrium point. If
it had been so, there would have been no periodic orbit.

Using now the implicit function theorem, there exists δ > 0 such that
there is a differentiable function τ(x) defined on Bδ(x0) that satisfies:

F (x, τ(x)) = (φ(x, τ(x))− x0) · f(x0) = 0

which implies that φ(x, τ(x)) ∈ Σ.

This theorem proves that the following definition is correctly done.

Definition 2.3.1. Let x0 ∈ Rn be an initial condition such that φ(x0, t)
induces the periodic orbit Γ. Let Σ be a transversal section to Γ at x0. If
Bε(x0) is a neighbourhood of x0 such that for every x ∈ Bε(x0) the τ(x)
function in Theorem 2.3.1 is well defined, we define the Poincaré Map as:

P : Σ ∩Bε(x0) −→ Σ

x 7→ φ(x, τ(x))

The Poincaré Map need not be defined on the transversal plane to the
periodic orbit at a certain point x0. It is actually enough to take some
manifold which does not contain the vector field evaluated at x0. Figure 2.1
shows schematically how a starting point x0 flows around until it strikes Σ
again.

Figure 2.1: Sketch of the Poincaré map [13].

Remark 2.3.1. The τ function defined in Theorem 2.3.1 is commonly
known as time-of-flight function. Indeed, this function essentially measures
how much time it takes for a particle to return to Σ.

Corollary 2.3.2. Let Σ be a transversal section to a periodic orbit, and
UΣ an open set in Σ where the Poincaré map P is well defined. Then,
P ∈ C1(UΣ) and it is a diffeomorphism.
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Proof. Differentiability follows from the fact that both φ and τ are differ-
entiable. The existence of the inverse function follows from considering the
change t 7→ −t in Equation (2.1).

Technically, the definition of the Poincaré depends wholly on the ex-
plicit expression of the solution of the differential equations unless powerful
numerical methods are used.

Example 2.3.1. Consider the following differential equation:{
ẋ = x− y − x(x2 + y2)

ẏ = x+ y − y(x2 + y2)
(2.7)

for (x, y) ∈ R2. Let us change variables into polar coordinates. This way,
(2.7) becomes: {

ṙ = r(1− r2)

θ̇ = 1.
(2.8)

This differential equation can be integrated directly. If (r0, θ0) is an initial
condition , the solution is:

θ(t) =t+ θ0 (2.9)

r(t) =

(
1 +

(
1

r0
− 1

)
e−2t

)1/2

. (2.10)

Thus, the flow is:

φ((r0, θ0), t) =

((
1 +

(
1

r0
− 1

)
e−2t

)1/2

, t+ θ0

)
. (2.11)

As θ̇(t) = 1, a periodic orbit will appear when r−r3 = 0, which would imply
that r = 0 or r = ±1. In particular, φ((1, 0), t) is a periodic trajectory which
gives rise to a periodic orbit. Now that we have found a periodic orbit, we
have to choose a transversal section Σ. Let us define:

Σ = {(x.y) ∈ R2 × [0, 2π) : r ∈ (0,+∞), θ = 0}. (2.12)

We shall verify that Σ is indeed a cross section. To show this, we need
to check that the vector field which defines the differential equation is not
parallel to Σ. This is equivalent to see that the normal vector to Σ, n,
multiplied by the vectorfield is non-zero. We can choose without loss of
generality n = (0, 1):

(0, 1) · (r − r3, 1) 6= 0,
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hence Σ is transversal. As θ̇(t) = 1, the τ function from definition 2.3.1 is
τ(t) = 2π. Thus, if we call the Poincaré P :

P (r0, θ0) = φτ(t)(r0, θ0) =

((
1 +

(
1

r2
0

− 1

)
e−4π

)1/2

, 2π

)
. (2.13)

Since the variable which depends only in θ0 is constant, we can reduce the
Poincaré map into a one dimensional map:

P (r0) =

(
1 +

(
1

r2
0

− 1

)
e−4π

)1/2

. (2.14)

We are in conditions of applying the results on the derivatives of discrete
maps. Clearly, r0 = 1 is a fixed point of the Poincaré map, thus, we can
wonder about its stability:

P ′(r0) =
e−4π

1 + e−4π
(

1
r20
− 1
)3/2

r3
0

. (2.15)

hence,

P ′(1) = e−4π < 1. (2.16)

The point 1 is stable for P .

The next example illustrates the second kind of Poincaré map. The dif-
ference is subtle with respect to the previous example. In the example above
we first identified a periodic orbit and then we constructed the Poincaré map.
On the other hand, the following example will not identify any periodic orbit
(there are none) and will take the cross section Σ conveniently.

Example 2.3.2. Let us consider the following damped oscillator:

ẍ+ ẋ+ x = 0, (2.17)

with initial conditions x(0) = 1 and ẋ(0) = 0. This equation can be formu-
lated as a first order differential equation:(

ẋ
ẏ

)
=

(
0 1
−1 −1

)(
x
y

)
. (2.18)

This way, we want to know the evolution of the starting point (1, 0). To do
so, we will make use of the second kind of Poincaré map. Let us take Σ the
cross section defined as:

Σ = {(x, y) ∈ R2 : x > 0, y = 0}. (2.19)
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Figure 2.2: The phase portrait of equation (2.18).

The solution to (2.17) is

x(t) = e−t/2

(
cos

(√
3t

2

)
+

√
3

3
sin

(√
3t

2

))
. (2.20)

To determine an explicit formula for the trajectory φ((1, 0), t) of (2.18) it is
enough to compute the derivative of x(t):

y(t) = ẋ(t) = − 2√
3
e−t/2 sin

(√
3t

2

)
. (2.21)

It is clear that the starting point (1, 0) lies in Σ and that it will take a time
of 4π/

√
3 for the trajectory to strike Σ again. Thus, the Poincaré map is

given by:
P ((1, 0)) = φ((1, 0), 4π/

√
3). (2.22)

Several iterations of the Poincaré map suggest that the (1, 0) ends up at the
origin:

P 0((1, 0)) = (1, 0)

P ((1, 0)) = (0.026579 . . . , 0)

P 2((1, 0)) = (0.000706 . . . , 0)

Figure 2.2 shows that the origin of the phase portrait is a stable focus.
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The Lorenz Equations

In this chapter we will work almost exclusively with the Lorenz system (1),
therefore, from now on f will denote the Lorenz vector field. As mentioned
in the introduction, we are interested in the classical parameters, this way,
unless it is claimed explicitly, σ = 10, β = 8/3 and ρ = 28.

3.1 Bifurcation on ρ

For this section, ρ is let to vary on the positive real numbers. This discussion
on ρ > 0 is not petty, since ρ is a coefficient which depends on the dimen-
sionless Rayleigh number. The latter number depends on the temperature
difference which originates the convecting process. Usually, convection is
modelled in laboratories and the Rayleigh number can be changed artifi-
cially.

First of all we will compute the equilibrium points. These arise when we
set the gradient of the flow equal to the zero vector:

σ(y − x) = 0 (3.1)

ρx− xz − y = 0 (3.2)

xy − βz = 0. (3.3)

Clearly, the origin is an equilibrium point. Also, from (3.1) we know that
x = y, therefore using (3.3) and (3.4) :

z = ρ− 1⇒ x = y = ±
√
β(ρ− 1).

If ρ ≤ 1, the only equilibrium point is the origin. Thus, for ρ > 1, the
equilibrium points are:

(0, 0, 0),
(
±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1

)
37
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We first study the behaviour of the origin. Linearising at the origin, we
get to this matrix: −σ σ 0

ρ− z −1 −x
y x −β


(0,0,0)

=

−10 10 0
ρ −1 0
0 0 −8/3

 (3.4)

whose eigenvalues are all negative. Hence, the origin is a hyperbolic equi-
librium point and it is a locally asymptotically stable point. In addition, it
is a globally stable point:

Proposition 3.1.1. If 0 < ρ < 1, the origin is globally stable, i.e., every
trajectory ends up at the origin.

Proof. Let φ be the flow defined by (1).
We shall consider the function V (x, y, z) = ρx2 + σy2 + σz2. V is a

Lyapunov function. Indeed, V ∈ C1(R3) and V (0, 0, 0) = 0. Furthermore,
V (x, y, z) > 0 if (x, y, z) 6= (0, 0, 0). As we wanted to see.

We now take its Lie derivative:

V̇ (x, y, z) =
∂

∂t
V (φ(t, (x, y, z)))

= ∇V (x, y, z) · f(x, y, z)

= (2ρ, 2σy, 2σz) · (σ(y − x), ρx− y − xz, xy − βz)
= . . . = 2σ

(
2ρxy − ρx2 − y2 − βz2

)
= −2σ

(
(ρx− y)2 + βz2

)
< 0.

Therefore, V̇ (x, y, z) < 0, for all (x, y, z) 6= (0, 0, 0). Thus, every trajectory
φ(t, (x, y, z)) ends up at the origin.

Figure 3.1a shows several trajectories converging to the origin.
When ρ = 1, the linearised system leads to the matrix:−10 10 0

1 −1 0
0 0 −8/3


whose eigenvalues are negative but for one which is zero. This phenomenon
is known as pitchfork bifurcation [6].

At ρ > 1, the origin is a hyperbolic equilibrium point with one-dimensional
unstable subspace and a two-dimensional stable manifold. This result comes
from the linearisation matrix (3.4).

Further bifurcation analysis [6] tells us that when ρ > 1 but ρ < σ(σ+β+3)
σ−β−1 ≈

24.7368 the three points are asymptotically stable. See Figure 3.1b.
The value ρh := 24.7368 . . . corresponds to a Hopf bifurcation value,

i.e., when ρ reaches this value the two non-trivial equilibrium points stop
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being asymptotically stable and turn out to be unstable. At this value, the
linearisation matrix possesses two pure imaginary eigenvalues and a negative
eigenvalue.

At ρ > ρh, every non-trivial equilibrium point has a two dimensional
unstable manifold and a stable one dimensional manifold, which is the case
of the classical parameters. Bifurcation is not the main subject of study
here, the interested reader is referred to [13] for further analysis.

(a) ρ = 0.7 (b) ρ = 15

(c) ρ = 28

Figure 3.1: Phase space of the Lorenz equations for different values of ρ.

3.2 Construction of the Lorenz Attractor

As mentioned earlier, we will find a trapping region in which the Lorenz
Attractor lays entirely. A region of this kind was found by Lorenz in [10]
and a deeper discussion on this topic can be found in [19]. Indeed, Figure
3.1c suggests that every trajectory moves forward into a bounded region.

Lemma 3.2.1. If M is a compact subset of Rn, let us consider a real func-
tion L ∈ C1(M). Suppose that there exists R > 0 such that the Lie derivative
of L with respect to f satisfies:

∇(L)(x) · f(x) < 0, L(x) = R.

Then, every connected component of VR = {x ∈M : L(x) ≤ R} is a trapping
region.
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Theorem 3.2.2. There exists a bounded globally trapping region for the
Lorenz System.

Proof. We wish to show that there is a bounded region E such that every
trajectory enters E and never leaves it. We consider the following Lyapunov
function:

V (x, y, z) = ρx2 + σy2 + σ(z − 2ρ)2 (3.5)

which satisfies that

V̇ (x, y, z) =
d

dt
V (φ(t, (x, y, z)))

= ∇V (x, y, z) · f(x, y, z)

= (2ρx, 2σy, 2σ(z − 2ρ)) · (σ(y − x), ρx− y − xz, xy − βz)
= −2σ

(
ρx2 + y2 + βz2 − 2ρβz

)
Clearly, the set of points which satisfies V̇ ≥ 0 is bounded and its bound-

ary is an ellipsoid. Let D be the bounded region in which V̇ is non-negative.
Since it is a closed set and bounded, let M be the maximum of V in D. We
shall now consider the bounded region E in which V ≤M + ε, ε > 0.

If a point (x, y, z) lies in R3 \ E, then (x, y, z) lies in R3 \D. Indeed, if
(x, y, z) ∈ R3\E then V (x, y, z) ≥M+ε, thus, V (x, y, z) > M and (x, y, z) ∈
R3 \ D because M is the maximum. As a consequence, V̇ (x, y, z) > 0, for
all (x, y, z) ∈ R3 \ E.

So we have found a region where the Lyapunov function (3.5) has a
negative derivative, then Lemma 3.2.1 gives the result.

Figure 3.2: The compact subset D
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We have now seen that there is a compact region D in R3 where even-
tually every trajectory enters and never leaves. If we recall Theorem 2.1.8
as f ∈ C1(D) we can assume that the flow determined by equation (3) is
defined for all t ∈ R. Therefore, a forward invariant set Λ can be built:

Λ =
⋂
0≤t

φt(D).

Λ is called The Lorenz Attractor.

Proposition 3.2.3. Λ is the ω-limit set of D and it is, non-empty, invari-
ant, compact and connected attracting set.

Proof. The proof follows directly from Proposition 2.2.8.

Numerical simulations in [6] show that the attractor seems to be a two
dimensional surface. In fact, it can be shown that Λ has zero volume.

Lemma 3.2.4. Given Equation (2.1) and its associated flow φ, we define
the volume of a bounded set U at time t as:

V (t) =

∫
φ(U,t)

1dx.

With this definition,

V̇ (t) =

∫
φ(U,t)

div(f(x))dx.

Proof. The proof can be found in [20].

Intuitively, if V (t) is the volume enclosed by a closed surface S(t) at time
t, V (t+ ∆t) is approximated by V (t) +

∫
St (f · ndA). Therefore,

V̇ (t) =

∫
S(t)

(f · n) dA =

∫
V

div(f). (3.6)

Proposition 3.2.5. Λ has zero volume.

Proof. Taking into account the previous Lemma 3.2.4,

div(f) = −σ − 1− β = −(σ + β + 1) < 0.

Thus,

V̇ (t) = −V (t)(σ + β + 1)⇒ V (t) = V (0)e−(σ+β+1).

This way, as t tends to infinity, any volume is contracted to a zero volume
set in R3.
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Remark 3.2.1. The previous result does not mean that each piece of volume
contracts in every direction, i.e., the contracted volume need not be an
eventual point.

The latter result implies further information on the stability of the sys-
tem. The Lorenz system cannot support unstable equilibrium points nor
unstable closed orbits.

Proposition 3.2.6. Volume contraction is not compatible with unstable
equilibrium points.

Proof. Let G denote a volume contracting vector field. Without loss of
generality, let S be a closed and conveniently small sphere which contains
an unstable equilibrium point. This the dynamics within S are given by
the linearised vector field Gl = (λ1x, λ2y, λ3z), where λ1, λ2 and λ3 are the
strictly positive eigenvalues of the system. Recalling Lemma 3.2.4,

V (t) = V (0)e(λ1+λ2+λ3)t, (3.7)

which contradicts the fact that the system is volume contracting.

Remark 3.2.2. A consequence is that closed orbits cannot be unstable in
the sense that every point in every neighbourhood of the orbit flies away.
Yet it may be unstable and still attracting for some points. This behaviour
would be analogous to that of saddle points.

3.3 The Lorenz Map

In his original paper, Lorenz plotted the y(t) and z(t) components of the
solution on the plane. He observed that as a unit particle entered one of the
spirals, it started to increase its height until it suddenly moved on to the
other spiral.

He suspected, throughout numerical observations, that what made a
particle change spiral is the local maximum on z(t). Figure 3.4 shows the
z(t) function where we can observe clearly the local maxima to which Lorenz
made reference. He also conjectured that there should be a rule, a map
maybe, which relates the n-th local maximum with the next one. This rule
is the so called Lorenz map L [19].

After 6000 iterations he came up with Figure 3.5 which is the plot of the
values of the local maxima in z(t).

Simple observation lead Lorenz to identify his map with the tent map.
Indeed, they seem to be topologically equivalent, therefore, their dynamics
are expected to be similar. This fact, of course, suggests that the Lorenz
map might display chaotic dynamics.
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Figure 3.3: Plot of y(t) vs. z(t), the initial condition is (0, 1, 0).

Moreover, looking at Figure 3.5 again, the Lorenz map looks as if |L′(t)| >
1 for all t. If this were to be true, the Lorenz attractor cannot be a stable
limit cycle, which a priori could be. In fact, there is a more general result.

Remark 3.3.1. If Γ is a closed orbit for (1), and under the assumption that
|L′(t)| > 1, Γ cannot be stable.

Heuristically, if we make a small perturbation on an initial condition in Γ
this will provoke a small perturbation on the periodic orbit {z0, z1, . . . , zm}
in the Lorenz map induced by Γ. Now, using the fact that |L′(t)| > 1, the
accumulation of perturbations in zk is amplified. Therefore, the orbit cannot
be stable.

3.4 A Numerical Method for the Poincaré Map

The idea of the Poincaré map in the Lorenz system is to measure somehow
the deviation of perturbed initial conditions. In this section we shall give a
numerical method in order to compute an approximation of the deviation in
terms of the perturbation of the initial condition. This method is an elemen-
tary one but brings together the main ideas of how to obtain information
about the sensitive dependence of the Lorenz equations.

We recall that the main idea of the Poincaré map is to build a convenient
cross section Σ in order to study how points in Σ return to it after being
moved by the flow.

There is no general formulation for the Poincaré maps, rather each case
deserves special attention. In the case of the Lorenz equations, experiments
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Figure 3.4: Plot of z(t).

in silico done by [19], [6] and [21] suggest taking Σ = {(x, y, z) ∈ R3 : z =
ρ− 1 = 27} as the returning surface. Firstly, notice that the Poincaré map
can be written as P (x0) = φτ(t)(x0) where τ(t) is the τ function given in
Definition 2.1, the so called time-of-flight function, and x0 = (x0, y0, 27) ∈ Σ
is the starting point. Thus,

dφτ(t)(x0)

dτ
= f(φ(x0, τ(t))). (3.8)

If we iterate once the Poincaré map P , P (x0) = x1 = (x1, y1, 27). This
means that x0 will return to Σ after a time τ1. The coordinates x1 and
y1 can be calculated with numerical integration. Notice that the target of
defining the Poincaré map here is not to compute successive iterations of
x0, rather, the successive iteration of a perturbation of x0.

Let us call δx0 = (δx0, δy0, 0) a small perturbation of x0. This pertur-
bation will lead to a small change in the time of flight, namely, δτ . As
a consequence it will generate a small change in the returning point δx1.
We are particularly interested in δx1 = (δx1, δy1, 0). Therefore, we expand
using Taylor series around x0 and τ1 (which are known data):

φτ1+δτ (x0 + δx0) = φτ1(x0) + δτ
d

dt
φτ1(x0) + (Dφτ1) δx0. (3.9)

The term Dφτ1 contains nine partial derivatives which are computed by
solving the following ordinary differential equation:

d

dt
(Dφτ1) = (Df)φτ1

(Dφτ1) . (3.10)



Chapter 3. The Lorenz Equations 45

Figure 3.5: The original plot of the Lorenz map [10].

This way, if we set φ = (φ1, φ2, φ3), (3.10) becomes:

φ′1x φ′1y φ′1z
φ′2x φ′2y φ′2z
φ′3x φ′3y φ′3z

 =

 −σ σ 0
ρ− φ −1 φ1

φ2 φ1 β


φτ1

·

φ1x φ1y φ1z

φ2x φ2y φ2z

φ3x φ3y φ3z

 . (3.11)

We can actually rearrange (3.9) to get rid of the non interesting terms, since
we are just interested in the deviation. Let us set f = (f1, f2, f3):δx1

δy1

0

 = δτ

f1(x1)
f2(x1)
f3(x1)

+Dφτ1

δx0

δy0

0

 . (3.12)

This is a system of equations in three unknowns, thus, δx1, δy1 and δτ can
be calculated in terms of δx0 and δy0. In other words, we have been able
to write the eventual deviation of the first return in terms of the initial
perturbation.

In fact, the time of flight is rather uninteresting, so we can obtain a
reduced system. From (3.12) we get that

0 = δτf3(x1) + δx0φ3x + δy0φ3y ⇒ δτ = λ1δx0 + λ2δy0, (3.13)

for some real numbers λ1 and λ2. Hence,(
δx1

δy1

)
=

(
f1(x1)(λ1δx0 + λ2δy0)
f2(x1)(λ1δx0 + λ2δy0)

)
+Dφτ1

(
δx0

δy0

)
. (3.14)
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This method strictly depends on the election of x0, therefore it has a
local use only.

3.5 Geometric Models of the Lorenz System

The Geometric Lorenz Model was a concept coined by J. Guckenheimer and
R. F. Williams in [7] and [5]. This concept is essentially a particular way
of studying the dynamics of the Lorenz equations. The key point here is
the analysis of the Poincaré maps defined in different cross sections and the
discrete maps they generate. In this section we shall study how to reduce
the two dimensional Poincaré map into a one dimensional map as well as
the conjectures made by Guckenheimer and Williams in [7].

As mentioned in Section 3.4, the returning plane Σ will be at z = 27.
Σ is non bounded, however, [6] takes an adequate rectangle in Σ such that
each of the saddle points lie in opposite sides of the rectangle. For the sake
of simplicity in notation, we will call this rectangle Σ. Figure 3.6 sketches
the situation, where q+ and q− are the saddle points of the system.

Figure 3.6: Sketch of the returning plane [6].

We note that ż < 0 for every point in Σ, thus, particles in the interior
of Σ move downwards. Moreover, we must now take into account the stable
manifold of the origin. We recall it is a two dimensional manifold and, thus,
it induces a dividing line L in the middle of Σ. This means that every point
which goes through L will eventually converge to the origin. In Figure 3.6, L
would be the vertical line in the middle. Thus, Σ consists of two connected
components, Σ+ and Σ−.

This way, we have reduced the Lorenz equations to a two dimensional
discrete map, namely, P : Σ −→ Σ. Numerical integration results provided
by [6] and [19], show the image of Σ+ and Σ− through P , which is the
triangular regions depicted in Figure 3.6.

One of the main problems now is to reduce even more the dimension
of the map we are dealing with. In order to do that, there must be an
equivalence relation in Σ which allows us to identify lines with points. We
will eventually call this identification the foliation of Σ.
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Figure 3.7: A function f satisfying assumptions H1-H6.

The following discussion is just a brief summary of the mathematics
Guckenheimer and Williams used to study the dynamics of the Geometric
Lorenz Attractor.

Definition 3.5.1. The foliation of Σ is a family of curves F in Σ such that:

(i) L ∈ F .

(ii) If α ∈ F \ {L} then there exists β ∈ F such that P (α) ⊂ β ∈ F .

Thus, the eventual equivalence relation is to identify every point in the
same curve. This way, we will be able to construct a one dimensional model,
f , of the Poincaré map defined of Σ. Let us give the mathematical assump-
tions first:

H1 There exists a change of coordinates (x, y) ∈ Σ such that the curves in
F are given by the vertical lines x =constant, and x = c is the element
L.

H2 f : [0, 1] −→ [0, 1] is a continuous map except for the point x = c.

H3 f is monotonic and strictly increasing on [0, c) and on (c, 1].

H4 limx→c− f(x) = 1, limx→c+ f(x) = 0 and f(c) = 1.

H5 limx→c± f
′(x) =∞ and f ′(x) >

√
2 whenever x 6= c.

H6 For every interval I ⊂ [0, 1] there exists k ∈ N such that fk(I) = [0, 1].

Williams in [25] showed that the fact that f ′(x) >
√

2 implies the sixth
assumption, but we shall make both requirements. As stated before, from
now on, we will work under the assumptions H1-H6. The idea now is to use
symbolic dynamics. Let ϕ : [0, 1] −→ Σ2 be the function given by:

ϕ(x) = s0s1 . . . sk . . . (3.15)
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where si = 0 if f i(x) < c and si = 1 if f i(x) > c. Of course the sequence
may be finite, certainly, if f i(x) = c, the sequence stops.

Lemma 3.5.1. Given x ∈ [0, 1], ϕ is the sequence of an at most one point
in [0, 1].

Proof. If x1 6= x2, then, by assumption H6, there is some k ∈ N such that
fk(x1) < c while fk(x2) > c, or vice versa.

The order in the real number induces order on the sequences, however,
the absent symbols must be taken into account. We shall set that the absent
symbol is always between 0 and 1, for instance:

000 . . . < 00 < 001 . . . . (3.16)

Lemma 3.5.2. If x ∈ [0, 1], ϕ(0) ≤ ϕ(x) ≤ ϕ(1).

We do not know still which sequences of Σ2 correspond to some ϕ(x).
Notice that:

ϕ(f(x)) = σ(ϕ(x)), (3.17)

where σ is the Shift map. It is clear that if x ∈ [0, 1], then f i(x) ∈ [0, 1].
Therefore, for an element in Σ2 to be a sequence for some x we must have
the following condition:

ϕ(0) ≤ σi(ϕ(x)) ≤ ϕ(1), (3.18)

for all i ∈ N ∪ {0}. This latter fact means that ϕ(0) and ϕ(1) determine
which sequences can appear when iterating some x ∈ [0, 1] under f .

Definition 3.5.2. If ϕ(x) is the sequence associated to x, we define ϕ′(x)
to be the sequence which is originated after swapping the symbols in ϕ(x).

Guckenheimer and Williams in [7] proved that two functions satisfying
the initial assumptions are topologically equivalent if their associated se-
quences are related:

Theorem 3.5.3. Let f1 and f2 be two maps satisfying the conditions given
above. Then f1 and f2 are topologically equivalent if and only if ϕf1(0) =
ϕf2(0) and ϕf1(1) = ϕf2(1), or if ϕ′f1(0) = ϕf2(1) and ϕ′f1(1) = ϕf2(0).

Proof. The proof can be found in [7].

This theorem above is the most significant in [7], since this provides the
elementary tool to find simpler models of the Geometric Attractor which
still display the same dynamics.

The mathematical assumptions made earlier are very artificial. However,
[7], [1] and [25] proved that if the Poincaré map can be reduced to an interval
map satisfying assumptions H1-H6, the Lorenz attractor Λ exhibits chaotic
dynamics.
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Remark 3.5.1. We have seen that the original Poincaré map can be reduced
to a one dimensional map after assuming some facts. This depends strictly
on the election of the cross section Σ, [12] provides a counterexample in
which the Poincaré map cannot be reduced.

3.6 The Hénon Map

The Hénon Map is a two dimensional discrete map which was studied by
the french astronomer Michel Hénon [9]. This map was used as a model of
the Poincaré map introduced in the previous section. The model is given by
the following equations: {

xn+1 = 1 + yn −Ax2
n

yn+1 = Bxn
(3.19)

where A > 0 and |B| < 1.
The interesting fact about the Hénon map is that it produces horseshoe-

like images. Figure 3.8 shows it clearly. Thus, if we suppose that the Hénon
map is a fair approximation of the Poincaré map of the Lorenz equations, it
is reasonable to expect that the eventual attractor will be a Cantor set and
it will display chaotic dynamics.

(a) n = 0 (b) n = 1 (c) n = 2

Figure 3.8: Iterations of a square under the Hénon map





Chapter 4

Historical Background and
Comments on Tucker’s Proof

4.1 Historical Remarks

As mentioned on the introduction Edward Lorenz published “A Determin-
istic Nonperiodic Flow” [10] in 1963 in the Journal of the Atmospheric Sci-
ences. Deterministic is very much of a tricky word; what it means is that
there is no stochastic process involved and if we have a solution to the initial
value problem associated to (1), then, we would know exactly the long-term
behaviour of the system. Lorenz was actually looking for periodicity of
the system, what he did not know is that (1) displayed a priori chaotic
behaviour.

This article does not say anything about chaos explicitly, but Lorenz
observed the sensitive dependence on initial condition equation (1): “When
our results concerning the instability of nonperiodic flow are applied to the
atmosphere, which is ostensibly nonperiodic, they indicate that prediction of
the sufficiently distant future is impossible by any method, unless the present
conditions are known exactly.”

Weather forecasting is paradigmatic when talking about chaos, and in
some sense, we should acknowledge that Lorenz provided experimental (nu-
merical) evidence. However, Henri Poincaré was also concerned earlier with
this problem [15]: “Why have meteorologists such difficulty in predicting the
weather with any certainty? [. . . ]a tenth of a degree more or less at any
given point, and the cyclone will burst here and not there, and extend its
ravages over districts that it would otherwise have spared. If they had been
aware of this tenth of a degree, they could have known it beforehand, but the
observations were neither sufficiently precise, and that is the reason why it
all seems due to the intervention of chance. ”

Certainly, Lorenz found evidence of chaotic dynamics but a rigorous
proof of such result was missing. The next remarkable step is the creation

51
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of the so called Geometric Models of the Lorenz equations. As commented
previously, the idea of the geometric models is to use the Poincaré map
in order to obtain global information. J. Guckenheimer and R. F. Williams
provided a proof of the existence of the chaotic attractor under some assump-
tions [7], but still, a general proof was not found. In 1982 Colin Sparrow,
professor at the University of Warwick published a comprehensive survey
on the results regarding the existence of the Lorenz attractor [19]. He fol-
lowed the geometric point of view and provided an exhaustive study of the
problem.

Many years later, in 1998, Stephen Smale published his famous list of
mathematical problems for the 21st century [18], whose fourteenth compo-
nent was the proof of the existence of the Lorenz attractor. The proposed
question was:

Is the dynamics of the ordinary differential equations of Lorenz (1963) that
of the geometric Lorenz attractor of Williams, Guckenheimer and Yorke∗?

This question remained unanswered until 2002, when Warwick Tucker, stu-
dent at Uppsala University gave a computer assisted proof [21]. He proved
the following theorem:

Theorem 4.1.1. For the classical parameter values, the Lorenz equations
support a robust strange attractor A. Furthermore, the flow supports a
unique SRB measure µϕ with supp(µϕ) = A.

4.2 Comments on Tucker’s Proof

We shall focus on the first part of the theorem as it is the one with stronger
relation with the dissertation. The essential concepts in Theorem 4.1.1 are
the strangeness and robustness. Robustness is related to the trapping region
D computed in the previous chapter, indeed, an attractor is said to be robust
if it admits a neighbourhood which is trapping or forward invariant. On the
other hand, strangeness is just the fact that the Lorenz equations exhibit
sensitivity to initial conditions [23].

As Guckenheimer and Sparrow, Tucker goes over the geometric model
studied in Chapter 3. However, the proof of Theorem 4.1.1, provided by
Tucker, is not a traditional proof, it is a computer assisted proof. This means
that Tucker builds an algorithm which, if successfully executed, proves the
existence of the strange attractor.

The approach to this result is done in two sections: the global section
and the local section. The reason why to distinguish two sections is that,

∗James Yorke did not work on the geometric Lorenz attractor, yet he introduced
Lorenz’s work to the mathematical community [21].
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although we wish to know global features of the Lorenz equations, trajec-
tories near the origin behave in such a different way they deserve special
attention. The global approach involves “rigorous numerics” [21] and the
local approach makes use of the normal form theory.

As commonly suggested, Tucker [21] works initially on the cross section
Σ = {(x, y, z) ∈ R3 : z = ρ−1 = 27}. Again, from now on Σ will be referring
to a rectangular surface within Σ. The main results Tucker proves in his
paper are the following:

(i) There exists a region N ⊂ Σ that is forward invariant under the
Poincaré map P .

(ii) There exists a cone C(z) inside the tangent space of Σ at each point z
of N \ Γ such that DP (z)C(z) ⊂ C(P (z)) for every z ∈ N \ Γ.

(iii) Vectors inside this invariant conefield are uniformly expanded by the
derivative DP of the Poincaré map. This is, there exists c > 0 and
δ > 1 such that:

‖DPn(z)v‖ ≥ cδn ‖v‖, for all v in the conefield.

In the following we will describe the proof of (i). The proof of (ii) and
(iii) are nontrivial consequences of (i). We must underline that (i) implies
that there is an attracting set for the Poincaré map while (ii) and (iii) are
concerned with the topological structure of the attractor.

4.2.1 Existence of a Forward Invariant Region

The first thing to notice is that the trajectory of a point in Σ cuts it along
two arcs as shown in Figure 4.1. If we pick one of these arcs we can cover
it with a finite set of squares Ri (see Figure 4.1 again). Tucker does it with
squares of width δ = 0.03. For simplicity, the sides of the squares are parallel
to the sides of Σ. The idea is to prove that the union of Ri are invariant
under P . In order to prove so, Tucker creates an algorithm which needs
computer assistance and strong numerical background. We shall not give
the details of the algorithm, rather a comprehensive overview of it. The
algorithm goes like this:

(i) Take ci the central point of Ri.

(ii) Compute c′i which is the point in the trajectory of ci which intersects
Σ′. Where Σ′ is the cross section {(x, y, z) ∈ R3 : z = 27 − h},
h = 10−3. See Figure 4.2.

(iii) As Ri is taken “sufficiently small” the image on Σ′ of the points of Ri
can be estimated using Taylor expansions. This produces an error of
ε1 = ε1(δ, h). Numerical integration also produces an error ε2.
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Figure 4.1: Intersection of the Lorenz flow through some point in Σ, [23].

(iv) The image on Σ′ of Ri will be contained in a square of side ε1 + ε2
which is a neighbourhood of c′i. See Figure 4.3.

(v) For the sake of accuracy, Tucker subdivides R′i into smaller squares of
size at most δ and deals with them individually.

(vi) Now we create inductively extra cross sections Σ′′,Σ′′′ . . .

The cross sections taken during the algorithm might be vertical, this is due
to numerical reasons which are found in [23] and [21]. However, the idea is
exactly the same.

Thus, if for each rectangle the algorithm finishes at finite time and re-
turns to Σ inside N , then N will be a forward invariant region for the flow.

Figure 4.2: A two dimensional sketch of each step of the algorithm [23].

Rigorous Numerics: Interval Arithmetic

In order to compute the Poincaré map of the Lorenz equations, we recall
that Tucker demanded “rigorous numerics”. We shall now explain the key
idea, which is the so called interval arithmetics.

First of all let is consider the initial value problem (2.2), where f ∈ C1.
We denote φ(x, t) the associated flow. It is not natural to have accurate
information on the exact initial conditions of a physical system, rather, one
can take a whole neighbourhood to be the initial condition. Without loss of
generality we can take a n-cube [x0] to be such neighbourhood.
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Figure 4.3: Scheme of the covering squares after one iteration [23].

Thus, we need to replace f by a function F whose variables are intervals:{
ẋ = F([x])

x(0) ∈ [x0]
. (4.1)

This is how, Tucker introduces interval arithmetic.
Let IR denote the set of all closed intervals on R. Elements in IR can be

denoted as [a] = [a0, a1]. With this definitions, natural operations follow. If
[a], [b] ∈ IR:

[a] + [b] = [a0 + b0, a1 + b1]

[a]− [b] = [a0 − b0, a1 − b1]

[a]× [b] = [min{a0b0, a0b1, a1b0, a1b1},max{a0b0, a0b1, a1b0, a1b1}, a1 − b1]

[a]÷ [b] = [a]× [1/b1, 1/b0] if 0 is not in [b].

Remark 4.2.1. Note that the distributive law does not hold:

[−1, 1]× ([−1, 0] + [3, 4]) = [−1, 1]× [2, 4] = [−4, 4]

whereas,

[−1, 1]× [1, 0] + [−1, 1]× [3, 4] = [−1, 1] + [−4, 4] = [−5, 5]

However, there is a weaker notion of distributive law, namely, subdistribuity :

[a]× ([b] + [c]) ⊂ [a]× [b] + [a]× [c]. (4.2)

What is more, IR is a a metric space:

Proposition 4.2.1. The function d : IR× IR −→ R given by

d([a], [b]) = max{|a0 − b0|, |a1 − b1|} (4.3)

is a distance.
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Proof. Let [a], [b], [c] be elements in IR. Clearly, d is a non negative function.
Moreover,

d([a], [b]) = 0⇔ a0 = b0 and a1 = b1 ⇔ [a] = [b].

Finally, the triangular inequality is also satisfied:

d([a], [b]) = max{|a0 − b0|, |a1 − b1|}
≤max{|a0 − c0 + c0 − b0|, |a1 − c1 + c1 − b1|}
= max{|a0 − c0|+ |c0 − b0|, |a1 − c1|+ |c1 − b1|}
=d([a], [c]) + d([b], [c]).

The following property is known as the inclusion monotonic property :

Proposition 4.2.2. If [a], [b], [a′], [b′] ∈ IR, [a] ⊂ [a′] and [b] ⊂ [b′], then,

[a] ~ [b] ⊂ [a′] ~ [b′]. (4.4)

Where ~ denotes any of the previously defined operations. For the division
0 must not be in [b] nor in [b′].

The idea of interval arithmetic is to define interval valued functions. The
concept of range is to be defined first:

Definition 4.2.1. Consider a function f : Rn −→ Rn. Given an n-cube
[a] = [a1]× [a2]× . . . [an], we define the range of f over [a] by

R(f ; [a]) = {f(x) : x ∈ [a]}. (4.5)

Definition 4.2.2. A function F : IRn −→ IRn is an interval extension of
f : Rn −→ Rn if, for all n-cubes [x] ∈ IR, we have R(f ; [x]) ⊂ F([x]).

Example 4.2.1. Monotonic functions can be easily extended, since they
preserve the ordering. For instance, let us see that the function F : IR −→
IR given by:

F ([x]) = e[x] = [ex0 , ex1 ]

is an interval extension of the real exponential function f . Let [x] ∈ IR then,

R(f ; [x]) = {f(y) : y ∈ [x]} = [ex0 , ex1 ] = F([x]).

Thus, F is an interval extension of the real exponential function.

Tucker goes even further and adapts these definitions to the floating-
point arithmetic in order to construct his algorithm. This way if IF denotes
the set of intervals with extremes in floating-point arithmetic, the extension
of function we would be looking for would be of the form F : IF −→ IF.
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Trajectories Close to the Origin

When a trajectory enters a cube of size 0.2 around the origin, other tech-
niques are required. The key concept here is the normal form of a differential
equation. The target of the normal form of a differential equation is to write
(1) in the form ẋ = Ax + F (x) where A is a constant matrix which is asso-
ciated to the linearised system. The normal form of a differential equation
is not necessarily the same to the original one, however, for this purpose,
Tucker refers to the normal form of the Lorenz system as the proper Lorenz
system. The normal form of the Lorenz system is as follows:

ẋ = 11.8x− 0.29(x+ y)z

ẏ = −22.8y + 0.29(x+ y)z

ż = −2.67z + (x+ y)(2.2x− 1.3y)

(4.6)

The reason why to treat the trajectories close to the origin in a different
way is that the algorithm shown above does not work correctly. Thus, when
a trajectory flows into the cube of size 0.2 the algorithm stops and continues
with the same idea but working with the normal form of the differential
equations.

Using the normal form of the Lorenz system when we are close to the
origin allows us to make our computations analitically. This is because equa-
tion (4.6) is virtually linear and it preserves the local properties. Certainly,
if we linearise equation (4.6) we obtain the linearised Lorenz system. More-
over, the eigenvalues associated to the linearisation at the origin are precisely
the coefficients of the linear terms. L.Perko [13] develops the normal form
theory thoroughly.





Afterword

On Computed Assisted Proofs

As mentioned earlier, the proof of the existence of the Lorenz Attractor is
not a classical mathematical proof at all. The proof given by Tucker is a
computer assisted proof or computer aided proof ; this means that Tucker
formulated mathematical theorems in such a way that the assumptions can
be verified with a computer. In general, simple systems of differential equa-
tions may lead to very complicated dynamics which demand computer aided
proofs.

Computer assisted proofs bring the relevance of computing within math-
ematics to the spotlight. Is a computer aided proof a proof itself? Of course,
computer assisted proofs are perfectly rigorous, however, these proofs can-
not be entirely surveyed by a human mathematician. Although rigorous, is
a computer assisted proof less rigorous?

Of course, the existence of the Lorenz Attractor is not the only com-
puter assisted proof. The Four Colour Theorem (FCT) is another example
amongst many others. The publication of the FCT’s proof brought philo-
sophical consequences. Thomas Tymoczko in [22] suggested that the ac-
ceptance of computer assisted proofs implied a change on the definition of
mathematical proof. He argued that a classical proof should have the three
following characteristics:

(i) Proofs are convincing†

(ii) Proofs are surveyable

(iii) Proofs are formalizable

A proof must be convincing since mathematics is a human activity, therefore,
this concept is anthropological. Surveyablity is linked to the capacity of an
external agent to check the proof; it is an epistemological concept. Finally,
formalizability regards the logic of mathematics. As Tymoczko says, “a

†Ludwig Wittgenstein in [26] actually argued that convincingness is the only charac-
teristic of a proof, since science and mathematics are only comprehended under human
coherence.
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proof is formalizable if there is a formal language and theory in which the
informal proof can be embedded into a rigorous formal proof”.

Tymoczko analyses the FCT’s proof and finally concludes that the sur-
veyability of the proof is not guaranteed if a computer is used. We must
note that Tymoczko did not want to show that the proof of FCT was not
really a proof. Rather, he argued that if we were to accept such proof as a
classical proof, we should then face a paradigm shift‡ and change our notion
of proof.

‡The paradigm shift, is a concept coined by Thomas Kuhn which is referred to any
substantial change in the framework of science.



Appendix A

Notes and Exercises on
Chapter 1

Exercise 1. Let {p0, p1, . . .} be an orbit for f4(x) = 4x(1− x). Then,

pn =
1

2
− 1

2
cos (2n arccos(1− 2p0)) . (A.1)

First of all we note that

pi = f i4(p0). (A.2)

To prove (A.1) we will proceed by induction. To start with, let us take
n = 1. On the one hand,

f4(p0) = 4p0(1− p0)

on the other hand,

p1 =
1

2
− 1

2
cos (2 arccos(1− 2p0))

=
1

2
− 1

2

(
cos2(arccos(1− 2p0))− sin2(arccos(1− 2p0))

)
.

Taking into account that sin(arccosx) =
√

1− x2, the expression above
becomes:

. . . =
1

2
− 1

2

(
(1− 2p0)(1− 2p0)− (1− (1− 2p0)2)

)
=

1

2
− 1

2

(
1− 4p0 + 4p0 + 4p2

0 − 1 + 1− 4p0 + 4p2
0

)
= 4p0(1− p0)

=f4(p0).
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Now we assume the result to be true up to n, and we compute pn+1:

pn+1 =4(1− pn)pn

=2(1− cos(2n arccos(1− 2p0)))

(
1− 1

2
(1− cos(2n arccos(1− 2p0)))

)
=(1− cos(2n arccos(1− 2p0)))

(
1

2
+

1

2
cos(2n arccos(1− 2p0))

)
=1− cos2(2n arccos(1− 2p0)).

But cos2 x = (1 + cos 2x)/2, hence,

1− cos2(2n arccos(1− 2p0)) =1− cos2(2n+1 arccos(1− 2p0)) + 1

2
=pn+1.

Exercise 2. Let Mod2 : [0, 1] −→ [0, 1] be the map given by Mod2(x) =
2x− b2xc. Show that it is chaotic.

We have to prove that Mod2 possesses dense periodic points and that it
is topologically transitive. Let us show the topological transitiveness first.
It will be enough to show it has a dense orbit.

Let x ∈ [0, 1] an arbitrary point. We consider the point z ∈ [0, 1] with
the following binary expansion:

z =
∞∑
i=1

ai
2i
⇒ (z)2 = 0.

︷︸︸︷
01
︷ ︸︸ ︷
00011011

︷ ︸︸ ︷
000001010100011101110111 . . . (A.3)

In addition, x can also be expanded binarily:

x =
∞∑
i=1

bi
2i
⇒ 0.b1b2b3 . . . (A.4)

Let ε > 0, then, there exists n0 ∈ N such that 1/n0 < ε. What is more,
b1 . . . bn0 must appear somewhere in the binary expansion of z. Therefore,
there exists k ∈ N such that(

Modk2 = 0.b1b2 . . . bn0ck+n0+1

)
. (A.5)

We shall now look at the difference:

|Modk2(z)− x| =

∣∣∣∣∣
∞∑

i=n0+1

bi
2i
−

∞∑
i=n0+1

ak+i

2i

∣∣∣∣∣ =

∞∑
i=n0+1

1

2i
=

1

n0
< ε.

Thus, the orbit of z is dense.
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We now turn to prove that the periodic points are dense. Let x ∈ [0, 1],
then we can write its binary expansion:

x =

∞∑
i=1

ci
2i
⇒ (x)2 = 0.c1c2 . . . (A.6)

Furthermore,

Modk2(x) = Modk2

( ∞∑
i

ci
2i

)
=

∞∑
i=1

ak+i

2i
. (A.7)

If x is rational, the binary expansion has repeating finite-length-sequences,
therefore, every rational point is periodic and consequently, the periodic
points are dense.

A.0.2 On Sharkovskii’s Theorem

The number of periodic orbit of period k a continuous map has might de-
termine its dynamics. Indeed, Sharkovskii came up with a result which gave
a condition in order to determine the existence of k-periodic orbits in the
map:

Theorem A.0.3. Consider the following ordering of the natural numbers
(see Exercise 3) :

(2n+ 1)20 � (2n+ 1)21 � . . . � 2n � . . . 2 � 1. (A.8)

Let f : I −→ I be a continuous function defined on the interval I and suppose
m � n. If f has a point of at least period n, then f also has periodic points
of at least period m.

The most interesting result is the one that follows. It is the so called
“3 implies chaos” theorem, which is merely a consequence of Sharkovskii
theorem:

Corollary A.0.4. If a continuous map has orbits of period 3, then it has
periodic orbits of any order and it will display chaotic dynamics.

Exercise 3. The fact that (A.8) is indeed an ordering follows from the fact
that all the natural numbers are considered once in the ordering and every
number in the ordering is a natural number. Certainly, all the odd numbers
are taken into account. What is more, every even number N can be written
as 2kq, and this latter expression is considered in (A.8). Conversely, every
number in (A.8) is natural, therefore, there is a one-to-one relation between
the numbers considered in (A.8) and N.

The ordering� is not a well-ordering. For example, S = {3, 5, 7, 9, 11, . . .}
does not have a least element. If it had, it would be an odd number K, but
K � K + 2.





Appendix B

Notes and Examples on
Chapter 2

In Section 2.1 the main target was to define a dynamical system and it has
been necessary to extend the following theorem concerning the dependence
on initial conditions:

Theorem B.0.5. Let U be an open subset of Rn containing x0 and assume
that f ∈ C1(U). Then, there exists an a > 0 and a δ > 0 such that for all
y ∈ Bδ(x0) the initial value problem{

ẋ(t) = f(x)

x(0) = y
(B.1)

has a unique solution u(y, t) with u ∈ C1(G) where G = Bδ(x0) × [−a, a].
Furthermore, for each y ∈ Bδ(x0), u(y, t) is a twice continuously differen-
tiable function of t, when t varies in (−a, a).

B.1 Another Example of Poincaré Map

B.1.1 Example

Consider Σ = {(x, y) ∈ R2 : x ∈ [0, 1], y = 0}, and the following differential
equation: {

ẋ = −y − x
√
x2 + y2

ẏ = −x− y
√
x2 + y2

(B.2)

If we change variables into polar coordinates, system (B.2) becomes:{
ṙ = −r2

θ̇ = 1
. (B.3)
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We will ask system (B.3) to verify the initial condition (r0, θ0) = (1, 0).
Equation (B.3) can be solved directly:

θ̇(t) = 1⇒ θ(t) = t+ θ0 = t

ṙ(t) = −r2(t)⇒ 1

r(t)
= t+ r0 ⇒ r(t) =

1

t+ 1
.

From the solution, we obtain that the trajectories flow around the origin
with a period of 2π. Thus, the flow is defined as:

φ((1, 0), t) = (r(t, θ(t))) =

(
1

t+ 1
, t

)
. (B.4)

However, as we know that the returns occur when θ = kπ, k ∈ N, the
Poincaré map can be simplified into:

rn =
1

1 + 2nπ
. (B.5)

Hence, we can express the (n+ 1)-th term in terms of the previous one:

rn+1 =
1

1 + 2(n+ 1)π
=

1

1 + 2πn+ 2π

=
rn

rn(1 + 2nπ + 2π)
=

rn
1 + 2πrn

.
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