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Resumen

Este resumen contiene un repaso breve de las actividades de investigacion que se han
llevado a cabo durante el desarrollo de la presente tesis doctoral, realizada con la ayuda
predoctoral del Gobierno Vasco (BFI-2011-250) durante los anos 2012-2015 en el depar-
tamento de Fisica Tedrica e Historia de la Ciencia de la UPV/EHU, bajo la direccién
de R.Vera. La primera parte del resumen estd dedicada a explicar los problemas que se
han abordado, cémo se ha hecho o qué métodos se han empleado y qué resultados hemos

obtenido. La lista de publicaciones se incluye en la segunda seccion.

Lineas de investigacion

Esta tesis se enmarca dentro del area de la Relatividad General. El tema central de
estudio son los cuerpos compactos aislados en rotacién, aunque como consecuencia de los
métodos matematicos empleados para su estudio, también ha dado lugar a otros trabajos
estrechamente relacionados con las condiciones de enlace. Todos estos temas se explican

en las siguientes subsecciones.

Cuerpos compactos en rotacion

Una comprensién adecuada de los cuerpos compactos en rotacion en Relatividad General
(RG) es fundamental para muchas situaciones astrofisicas. El tratamiento relativista
original de estrellas compactas en rotacién en equilibrio se debe a Hartle [57], que comenzd
una serie de articulos al respecto en el ano 1967. Su trabajo constituye la base de la
mayoria de los enfoques analiticos para construir modelos numéricos con simetria axial
[104].

El modelo de Hartle describe configuraciones de cuerpos compactos aislados rotando

en equilibrio, esto es, en el régimen estacionario y dentro del marco de la teoria de pertur-
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baciones hasta segundo orden en RG. “Aislado y compacto” quiere decir que la estrella
termina en una superficie que separa su interior, que se suele modelizado como un fluido
(perfecto), de un exterior de vacio, que se escoge asintGticamente plano de manera que
el campo gravitatorio decae a cero a medida que uno se aleja del objeto compacto. El
esquema perturbativo se elabora sobre una configuracién esférica sin rotacion, en otros
términos, sobre “una pelota en el vacio”. Sobre ésta se toman perturbaciones estacionar-
ias y axisimétricas a primer y segundo orden. El modelo de Hartle se construye sobre
una serie de suposiciones implicitas, que resultan razonables en la mayoria de los casos: el
interior del cuerpo es un fluido perfecto con una ecuacion de estado barotrépica, rota uni-
formemente (no hay movimientos convectivos y la rotacién es rigida), y la configuracion
completa admite simetria axial y ecuatorial.

Bajo estas suposiciones, las perturbaciones a primer orden estan descritas por una
unica funcién, que origina el “arrastre” del espaciotiempo (rotational dragging of inertial
frames). Las perturbaciones de segundo orden vienen descritas por tres funciones. Los
valores de estas funciones en la superficie de la estrella, calculados desde el interior dada
una ecuacion de estado y condiciones de regularidad en el origen, se utilizan para obtener
la deformacion y la masa total en términos de la densidad central y la rotacién de la
estrella. El “cambio en la masa”, definido como la contribucién a la masa debido a la
rotaciéon, se calcula mediante la comparacion de las masas del sistema en rotacién y el
estatico dada una densidad central fija.

Sin embargo, al margen de las suposiciones explicitas, el modelo se construye sobre
otra premisa implicita; la continuidad de las funciones que describen las perturbaciones a
través de la superficie de la estrella, en términos de un sistema particular de coordenadas.
El modelo de Hartle se basa esencialmente en enlazar el interior y exterior igualando las
condiciones de contorno en la frontera comtn, la superficie de la estrella. En RG esta
situacién se contempla bajo la teoria de enlace de espaciotiempos. Supongamos dos espa-
ciotiempos con frontera, de forma que las fronteras de uno y otro se puedan identificar,
que sean difeomorfas. Ahora imaginemos que queremos formar un espaciotiempo que
resulte de la unién de estos dos iniciales a través de la frontera comun, de manera que la
geometria esté bien definida en todo el espaciotiempo, incluyendo en la frontera comun, y
que podamos formular las ecuaciones de Einstein (en el &mbito de las distribuciones). Esto
es posible si se cumplen una serie de condiciones geométricas, conocidas como condiciones
de enlace. Se sabe que una vez que dos espaciotiempos las satisfacen, existe un sistema
de coordenadas (conocido como admisible en el sentido Lichnerowicz) en el que las fun-
ciones métricas y sus primeras derivadas son continuas. Sin embargo, desconocemos coémo
este hecho se traslada a un esquema perturbativo. Ni siquiera la continuidad de las fun-

ciones que describen las perturbaciones estéa garantizada a priori. En cualquier caso, una
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eleccién explicita de coordenadas (y gauge) en el cual las perturbaciones satisfacen ciertas
condiciones de continuidad y diferenciabilidad puede constituir una suposicién implicita
que, en principio, podria restar generalidad al modelo. Aun peor, podria ser incorrecta y
conducir a resultados erréneos.

Por otro lado, el tratamiento del enlace de espaciotiempos en el marco de la teoria
de perturbaciones se complica, puesto que donde en el problema exacto habia espaci-
otiempos individuales ahora encontramos familias uniparamétricas de espaciotiempos. La
identificacion de éstos entre si pone de manifiesto una libertad inherente a la teoria de
perturbaciones, conocida como libertad de gauge espaciotemporal. Ademas de esta liber-
tad en la identificacion de espaciotiempos, surge una libertad adicional correspondiente la
identificacion de las fronteras. En [79], M.Mars (USAL) analiz6 este problema de forma
general y consistente, formulando las condiciones de enlace perturbadas hasta segundo or-
den de manera independiente de las coordenadas empleadas y de las libertades inherentes
a la teoria de perturbaciones, sin que tampoco sea necesario recurrir a la formulacion de
cantidades invariantes gauge.

Con el fin de establecer hasta qué punto la hipdtesis original de “continuidad” de las
funciones en el esquema de Hartle tiene consecuencias, disenamos un programa destinado
a poner rigor en el modelo, basdndonos en primeros principios. En nuestro trabajo [95]
empezamos revisando el modelo de Hartle dentro de la teoria presentada en [79]. Hasta
donde somos conscientes, es la primera vez que se emplea [79] para realizar enlaces pertur-
bados a segundo orden. Hemos demostrado que los valores de las funciones que describen
las perturbaciones se pueden ajustar para coincidir en la superficie, tal y como se da por
hecho en el modelo de Hartle, a excepcion de una de las funciones en las perturbaciones
a segundo orden. Esta funcién presenta un salto en la superficie que es proporcional al
valor de la densidad de energia alli. La presion debe anularse en la superficie, como con-
secuencia de las condiciones de enlace, pero no la densidad de energia, en general. Esta
discontinuidad contribuye al calculo del cambio en la masa y por lo tanto, a la masa total
de la configuracion rotante. El resto de las cantidades, como las que originan el arras-
tre del espaciotiempo o determinan la deformacién de la estrella, no necesitan ninguna
modificacién.

La expresion original del cambio en la masa dada en [57], debe ser, por tanto, mod-
ificada con este término adicional. Sin embargo, dado que este término se anula si la
densidad de energia es cero en la superficie, los modelos mas comunes de estrellas de
neutrones, asi como cualquier otro basado en ecuaciones de estado politrépicas (densidad
de energia proporcional a potencias de la presién) no se ven afectados, y el calculo de la
masa de la estrella en rotacion no requiere ninguna correcciéon. Sin embargo, los mode-

los de estrellas en rotacién a la Hartle, en los cuales la densidad de energia no se anula
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en la superficie, tales como estrellas homogéneas (de densidad constante) o de materia
extrana (estrellas de quarks), han de ser corregidos. Los diagramas que tipicamente se
emplean para caracterizar estos cuerpos compactos muestran la masa de la estrella frente
a su densidad central o su radio. Estos se veran modificados por el efecto del término
corrector, pero no es posible estimar a priori si de forma relevante o no. Para ello hemos
retomado el articulo clasico de Chandrasekhar y Miller sobre estrellas homogéneas [30] y
hemos calculado el cambio en la masa con la expresién correcta en [93]. También hemos
estudiado el caso de estrellas de materia extrana, contemplado originalmente por Miller y
Colpi en [34], y aunque obtenemos diferencias considerables, atin no hemos publicado los
resultados. En ambos casos la contribucion del término corrector al cambio en la masa
resulta ser importante y para nada despreciable. Cabe destacar que los c6digos numéricos
desarrollados para la realizacion de este trabajo son facilmente ampliables para situaciones
mas realistas, como pueden ser interiores estelares compuestos por varios fluidos.

En el momento de escribir nuestro articulo [95] no reparamos en que el término cor-
rector a la masa contribuye al limite newtoniano del modelo. En un articulo [96], comple-
mentario a [95], calculamos dicho limite y mostramos cémo ese término aparece, aunque
de manera implicita, en el trabajo original de Chandrasekhar sobre politropos en rotacion
en el marco de la gravedad newtoniana [23]. Como la mayoria de los modelos de estrellas
son politropos, la aparicion de este término habia sido de alguna manera olvidada, incluso
en la revisién del enfoque newtoniano que se presenta en el trabajo de Hartle [57]. Las
condiciones de enlace generales en el marco de la gravedad newtoniana no se formulan en
el trabajo original de Chandrasekhar [23], asi que el modelo se construye asumiendo la
continuidad del potencial y de su derivada a través de la superficie de la estrella sin defor-
mar. Posteriormente, publicé otro articulo [29] aplicando nuevas condiciones de enlace:
continuidad de funciones y derivadas primeras a través de la superficie de la estrella defor-
mada. Sorprendentemente los resultados no se alteraban. En [96] revisamos este asunto
y formulamos las condiciones de enlace newtonianas generales. Al particularizarlas para
un fluido, comprendimos que los resultados de [23] y [29] coinciden, de nuevo, porque en
ambos se emplea un politropo como ecuacién de estado.

Sin embargo, queda un aspecto final argumentado en el articulo original [57] que
necesita ser demostrado rigurosamente: las funciones en las perturbaciones de segundo
orden no contienen sectores con [ > 2 en una expansion en polinomios de Legendre. Este es
un resultado comin al modelo newtoniano para politropos de Chandrasekhar [23] aunque
no fue demostrado rigurosamente hasta 35 anos después, por Kovetz en [72]. De vuelta
al modelo de Hartle [57], este asunto se discute empleando, de nuevo, argumentos que se
basan en el caracter global y la continuidad de las funciones perturbativas, en tanto que la

dependencia angular de éstas queda determinada por su comportamiento en el centro de
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la estrella, donde se exige regularidad, y por su comportamiento muy lejos de la estrella,
donde se pide asintoticidad plana. Nosotros hemos abordado este estudio caracterizando
los problemas para el interior y exterior por separado en términos de los operadores y
funciones adecuadas, las cuales han de satisfacer ciertas condiciones impuestas por el
enlace, ademas de pertenecer a espacios de funciones apropiados. Dicha tarea ha sido
desarrollada en colaboracién con M. Mars (USAL), en un articulo que pronto deberia estar
terminado. En la tesis escrita se incluye la descripcion del problema y demostramos que
efectivamente, la tinica estructura angular posible de las perturbaciones son las propuestas
en [57).

Por ultimo, cabe destacar que el enlace perturbado que se calcula en nuestro trabajo
[95] se lleva a cabo primero en un marco puramente geométrico, sin usar las ecuaciones
de campo. Por lo tanto, puede ser usado en situaciones m&s generales, como en otras
teorias alternativas a la RG para las cuales el modelo de Hartle ya se ha generalizado en

la literatura, y encontrar asi las correspondientes correcciones a la masa.

Condiciones de enlace en teorias cuadraticas de gravedad

Las condiciones de enlace en RG han sido ampliamente investigadas. En [15] se incluye
una presentacion rigurosa del formalismo de enlace de dos espaciotiempos con frontera
a través de la frontera comun, teniendo ésta la libertad de ser una hipersuperficie de
caracter causal arbitrario, e incluso de cambiarlo de punto a punto.

No obstante, aparte de la RG existe un amplio espectro de teorias geométricas de
gravedad alternativas a ésta, candidatas para la explicacién satisfactoria de fenémenos
como, por ejemplo, la energia oscura. Entre el amplio espectro de estas teorias, podriamos
seleccionar dos tipos ampliamente estudiados en la bibliografia. Uno de ellos son las teorias
F(R), que sustituyen el escalar de curvatura R en la Lagrangiana de Einstein-Hilbert de
la RG por una funcién arbitraria de éste, de ahi que sean conocidas por el nombre de
teorias F'(R). El otro tipo de teorfas a las que hacemos alusién se conocen como teorias de
gravedad cuadratica y son aquellas que resultan de considerar una lagrangiana que incluye
invariantes de curvatura cuadraticos. En particular, tenemos términos del tipo R?, Rq, R
V Rapea R siendo estos dos tltimos los tensores de Ricci y Riemann respectivamente.

Entonces, un tema de interés es conocer las condiciones de enlace en este tipo de teorias
de gravedad alternativas a la RG. En primer lugar, permitiria establecer similitudes (o
diferencias) entre la RG y estas teorias modificadas, con lo que podriamos alcanzar una
mejor comprensiéon de éstas. Por otro lado, la correcta modelizacién de cuerpos compactos
en rotacién, en el marco de teorias alternativas, combinada con datos observacionales

constituye una herramienta importante para encontrar restricciones sobre estas teorias,
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bien ajustando los valores de los parametros libres que contengan o en casos mas drasticos,
descartando la validez de la teoria.

En dos articulos recientes [99] y [08] J. M. M. Senovilla (UPV/EHU) ha obtenido las
condiciones de enlace para las teorfas F'(R) generales, asi como las ecuaciones que satisface
la distribucion superficial de materia, generalizando asi las ecuaciones de Israel de la RG.
Cabe destacar que salvando algin caso particular, éstas son comunes a RG y teorias
F(R). De este trabajo se desprenden dos conclusiones importantes que desarrollamos a
continuacion.

La primera de ellas es que el tensor energia momento puede presentar contribuciones
de tipo doble-capa o dipolares (de tipo ¢'). Elaboremos un poco més este punto. Para ello,
consideremos el escenario de la electrodinamica clasica, donde estas contribuciones estan
asociadas a cambios muy abruptos del potencial eléctrico. En particular, un campo dipo-
lar viene generado por una configuracién de cargas positiva y negativa muy concentradas,
separadas por una pequena distancia, tan pequena que matematicamente se formula como
el limite cuando ésta tiende a cero y podemos hablar entonces de una distribuciéon su-
perficial. La correspondiente ecuacion de Poisson, que relaciona derivadas segundas del
potencial eléctrico con la densidad de carga, adecuada para describir esta configuracion
requiere, precisamente, de un perfil de densidad de tipo ¢’. Este objeto matematico es
una distribucién que aplicada a una funcién de prueba, retorna el valor de la derivada
normal de la funcién de prueba alli donde la §’ tiene soporte (bajo integracién, como es
usual en teoria de distribuciones). Es importante destacar aqui que no sélo es relevante el
valor de la funcién de prueba en el soporte de la ¢’, sino que también es necesario conocer
su comportamiento en un entorno.

Volviendo a teorias de gravedad, este tipo de comportamiento no es el esperado, ya
que sélo existen masas positivas, de forma que la gravedad es atractiva. De hecho, en
RG no existen dipolos, lo que resulta razonable. En cambio, las teorias modificadas si
que admiten contribuciones dipolares localizadas en hipersuperficies de enlace. Ademas,
la contribucion de estas doble-capas resulta esencial para que el tensor energia momento
se conserve.

En segundo lugar, cabe destacar que, en general, una soluciéon enlazada en RG de man-
era que no contenga distribuciones de materia superficiales, no sigue siendo una solucién
del mismo tipo en teorfas F'(R), sino que presentard distribuciones superficiales de materia,
y contribuciones del tipo doble-capa.

Motivados por estos resultados, hemos realizado un trabajo analogo para teorias
cuadraticas de gravedad generales [94]. Las conclusiones son similares a las obtenidas
en [99] y [98]. Encontramos que las teorias cuadréticas de gravedad también presentan

contribuciones de tipo dipolo y verificamos la conservacion del tensor energia momento,



IX

para lo cual las doble-capas siguen siendo indispensables. Ademas, generalizamos las
ecuaciones de Israel, que siguen siendo idénticas a las de RG cuando se prescinden de
las contribuciones de tipo doble-capa. De hecho, discutimos los posibles escenarios que
se pueden dar sobre la hipersuperficie de enlace y estudiamos las condiciones para que
se produzca cada uno de ellos. Esta casuistica abarca casos como un buen enlace sin
ningtn tipo de distribucion superficial de energia o dobles capas, que haya distribuciones
superficiales sin dobles capas, o que haya dobles capas puras.

Asimismo, hemos dedicado una serie de secciones a derivar con detalle ciertos resulta-
dos geométricos que se obtienen en teoria de distribuciones, como la identidad de Ricci.
Por otro lado, también discutimos los problemas que ocasiona una técnica habitual en la
bibliografia para enlazar espaciotiempos en el marco de teorfas alternativas, y que consiste
en el uso de coordenadas gaussianas adaptadas a la hipersuperficie de enlace. En estos

casos, la interpretacién de los términos ¢’ no es correcta.
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Introduction

General Relativity (GR) is the theory of gravitation proposed by Einstein 100 years ago,
back in 1915. He came up with the observation that a gravitational field and an accelerat-
ing frame of reference are locally equivalent. Hence, gravity can be locally removed. This
fact suggests that it is definitely not like other interactions, such as the electromagnetism
for instance. Rather than an interaction that occurs in the spacetime, it stands as some-
thing imprinted into the spacetime itself. In absence of forces, test particles move along
extremal curves, known as geodesics, in a 4-dimensional Lorentzian manifold. Einstein’s
field equations relate manifestly the geometry of the spacetime with the distribution of
energy and momentum of matter.

The theory has a great predictive power and it is well supported by observations. For
instance, the so called classical tests account for novel effects with respect to Newtonian
gravity that arise from the analysis of the geodesics in the Schwarschild spacetime. From
the study of null geodesics, one encounters the bending of light by a massive body. The
study of timelike orbits explains the precession of the perihelium of Mercury, and the
study of emission of signals between two static observers reveals the gravitational redshift
effect.

Beyond these classical tests, many others have been proposed. Experimental data
collected from measurements taken at the level of the Solar System is used to constrain
theories of gravity. For instance, restrictions on the PPN (parametrized post Newtonian)
parameters show the best agreement with GR [112]. These mentioned tests are valid to
explore GR in the weak field approximation. However, the strong regime of gravity can
also be explored by tests based on compact binaries and gravitational waves. Hulse and
Taylor received the 1993 Nobel prize for the study of the PSR B19134-16 binary system,
composed by a pulsar and a companion neutron star. Exploring the changes in the radio
emissions of the pulsar, they gave account of the time dilation effect. But the big deal was

the study of the advance of the periastron of the pulsar. Not only they noticed that the
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periastron advanced ~ 4.2 degrees per year, but also that each year the pulsar reached the
periastron earlier than expected. This shrinking of the orbit has been perfectly explained
by the energy loss by emission of gravitational radiation, which constitutes an indirect
detection of gravitational waves.

The first direct detection of gravitational waves has been recently announced, on
February 2016, by the LIGO collaboration [I]. The astrophysical system that emitted the
signal was a binary black hole merger. The analysis of the signal [2] is fully compatible
with GR, although given the limitations of the experiment they have not been able to
determine whether the degrees of polarization of the wave were just the two predicted
by the GR or there exists any other as predicted by alternative theories of gravity. The
hope is that data based on gravitational waves will provide new constraints on theories
of gravity over the next years.

GR has proven to be essential in order to describe successfully high energy astro-
physical events. Most of them, such as the gravitational collapse of massive stars, the
coalescence of binary systems composed of neutron stars and black holes, or the phe-
nomena related to accretion disks require an accurate relativistic description of compact

objects (see [49] for a review of hydrodynamics in GR).

On relativistic stars

Zwicky and Baade adressed in the year 1934 [7] and [6] the possibility of stars composed
mainly of neutrons, born as a result of supernova processes. The mechanisms that generate
thermal pressure and hold ordinary stars against collapse due to gravity is not present in
neutron stars, which support themselves due to the neutron degeneracy pressure. They
described neutron stars as small and very dense objects. In order to have a picture in
mind, we could imagine an spherical object with a typical mass of 1.4M, packed within a
radius of 10 km. Taking into account the mass of the neutron, we can estimate for these
values that these compact objects consist of 10°” neutrons packed together by gravitational
interactions. An estimation of the density results in 6.65 - 10** g cm ™3, which is above the
density of the atomic nucleus 2.3 - 10* g cm=3.

At the same time, in the year 1930, Chandrasekhar claimed that there was a mass
limit for white dwarf stars, at which electron degeneracy pressure was no longer sufficient
to balance the gravitational force. Later on, in the year 1933, he published a series
of works under the title “The equilibrium of distorted polytropes” [23], [24], [25], [26],
where he developed a perturbation formalism over spherically symmetric isolated fluid
balls with a polytropic equation of state (EOS) in Newtonian gravity. These were aimed

at studying modifications in the shape produced by slow rotation or/and tides due to a
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second companion body. In the first one [23], and most relevant for this thesis, slowly and
uniformly rotating equilibrium configurations are constructed. The model of a spherically
symmetric fluid ball with a polytropic equation of state reduces to the study of one
function, called the Emden function. Taking this setting as the background configuration,
perturbations of the Emden potential driven by a slow rotation parameter are developed.

Since the model describes isolated bodies, an exterior vacuum needed to be consid-
ered. The gravitational potential generated by the fluid and the potential of the vacuum
region were matched at the undeformed surface of the star (the spherical boundary) in
[23]. However, Jardetzky pointed out that the matching method was inaccurate [69] and
suggested that the matching should be performed in the distorted surface of the star.
The Newtonian polytropic stars were retaken by Chandrasekhar and Lebovitz in 1961,
to analyze the problem of oscillations and stability in the works [27], [28] and [29]. The
effects of rotation and modes of pulsation, computed in terms of some specific functions
encoded in a superpotential, become completely determined after demanding that this last
is continuous and has a continuous radial derivative, this time at the distorted surface
of the polytrope. They found that the results of the matching were unaltered from [23],
so that they found no difference between imposing the continuity of the functions in the
distorted and undeformed boundary of the star. In this way, they answered the objection
raised by Jardetzky:.

In these models for polytropes the angular velocity couples only to the modes | = 0, 2
of a Legendre polynomials expansion of the gravitational potential (see for instance eq.
(4) in [72]) and it is reasonable to think that the rest of the modes, that are not excited by
rotation, vanish. Nonetheless, this analysis was ommited by Chandrasekhar and Lebovicz,
and was retaken by Kovetz in [72], where a consistent proof was given.

Regarding the analysis of compact objects in General Relativity, Tolman studied in
[107], back in 1939, a variety of static spherically symmetric metrics that included the
Schwarzschild interior solution with constant density. In the same year, Oppenheimer
and Volkoff [90] wrote the equations that describe interior configurations in the standard
form. Their objective was to find a kind of Chandrasekhar limit for neutron stars. They
used the equation of state for a cold Fermi gas and obtained a value for the maximum
mass of ~ 0.7M.

In 1967, Hartle and Sharp published a contribution [63] with the foundations to develop
a relativistic model of stellar rotation. They formulated a relativistic variational principle
for stationary and axially symmetric configurations of matter ruled by a barotropic equa-
tion of state, with a fixed number of baryons and angular momentum. Taking variations
with respect to the fluid flow and the baryon density, they found that the configuration

extremizing their functional rotates rigidly and has a constant injection energy (so that
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it satisfies the hydrostatic equilibrium first integral). This was the starting point of a
remarkable series of, at least, 9 articles, [57], [64], [65], [58], [59], [61], [60], [62], [66], that
settled a whole perturbational approach to describe slowly rotating and oscillating stars
in GR.

Hartle developed in [57] his classical model to describe slowly rotating stars in equi-
librium perturbatibely to second order in some rotation parameter. The model describes
perfect fluid stars, with arbitrary barotropic equation of state, rotating rigidly in equilib-
rium and provides expressions to compute the properties of the compact body, such as the
mass, angular momentum and quadrupole moment or the distortion of the surface due to
rotation. It constitutes the basis of most of the analytical approaches and is widely used
to construct numerical schemes [104] in axial symmetry.

In collaboration with Thorne, Hartle computed explicit numerical solutions for various
equations of state [64] and with Friedman [61] he used the equation of state of a n = 3/2
polytrope. The model was extended to account for the third order perturbations in [59].
The work [58] is aimed at formulating a procedure to compute the mass of rotating
configurations, without the need of computing the second order perturbations (developed
in [57]), and it is claimed to be valid for both differential and uniform rotation. The
remaining works are devoted to study the development of a formalism to treat radial, or
quasiradial, oscillations and to formulate a criterion for the stability of the rotating stars.

Nowadays Hartle’s model stands as one of the most used schemes for the study of
slowly rotating stars. In fact, it is one of the few analytical approaches that we have for the
problem, although the final equations must be solved by numerical integration. Regarding
the slow rotation approximation, Hartle sets a scale [57] of angular velocities given by
QF = \/GTM , where M and a are the mass and radius of the static configuration. The
requirement that angular velocities are much smaller than Q* implies that every particle
in the fluid must move at non-relativistic velocities. The quantity Q* is closely related
with the mass shedding limit, that occurs when the angular velocity of the star reaches the
velocity of a particle in a circular Keplerian orbit at the equator. In the Newtonian regime,
the mass shedding velocity corresponds to (2/3)%2Q* [104], [13]. With the numbers for
neutron stars given above, the frequency corresponds to about f* = Q*/27w = 2000 Hz.

Berti et. al made a quantitative study in [13], and shed some light onto the question
of how slow is the slow rotation approximation. For this, they compared the quadrupole
moment of rotating configurations computed by using numerical approaches for rapidly
rotating stars (CST-rns) to Hartle’s approach, sharing the mass and angular momentum.
Note that these two quantities are enough to adjust the two parameters that must be
specified in Hartle’s model, from where the quadrupole moment can be computed. The

results depend on the equation of state used, but not very strongly (see Table 6 in [13]).



Again, to have some numbers in mind, we can round off the results to think of deviations
that go from 10% to 20% in the value of the quadrupole moment for angular velocities
of 20% of Q* ie. 433Hz with the numbers above. Thus, Hartle’s model is a good
approximation to study typical pulsars, since statistical studies of the angular velocities
reveal neutron stars and pulsars with typical values of hundreds of Hz (see [92] and
references therein). However, the approximation turns out to be inaccurate for rapidly
rotating pulsars, such as PSR J1748-2446ad, the fastest pulsar known rotates at 716 Hz.

The analytical character of Hartle’s model has paved the path to many works that
consist of some generalization of the fluid, vacuum or both. For instance, Bradley et al.
revisited Hartle’s formalism in [16], but they substituted the barotropic equation of state
by the Petrov D condition for the interior region. They concluded that some Petrov type D
perfect fluids can be matched to an asymptotically flat vacuum, under some restrictions
in the parameters of the model (see Figure 2 therein). As expected, Wahlquist is not
among those interiors. However, some of the succesfully matched interiors yielded a
reasonable equation of state, i.e. with subluminal speed of sound. On the other hand,
they also considered the case of non-asymptotically flat vacuum, for which the matching
with perfect fluid interiors was succesfully performed.

Out of the context of General Relativity, Hartle’s model has been generalized to de-
scribe rotating compact objects in alternative theories of gravity, such as F(R) [101],
Einstein-Dilaton-Gauss-Bonnet gravity [91] or Chern-Simons theory [3].

Apart from Hartle’s model, other analytical perturbation methods to describe isolated
rotating compact objects have been developed. For instance, the so called CMMR. ap-
proach [2I] is a double perturbative scheme to describe rotating stars in equilibrium. It
is based on a post Minkowskian expansion, where some parameter A controls the devia-
tion from the flat spacetime, and a slow rotation (or slow deformation) approximation,
controlled by the parameter €2. This latter is analogous to the slow rotation parameter
in Hartle’s model. In this formalism a global spacetime is built by matching a perfect
fluid, with an asymptotically flat vacuum making use of harmonic (and quoharmonic)
coordinates. A hypersurface of vanishing pressure is identified and matching conditions
are imposed there. One of the main advantages of the method is that one can reach high
orders in the rotational approximation. It has been applied to several equations of state:
constant density in [21], polytropes in [84] and linear equations of state [36]. For instance,
in [39] an explicit model for a linear equation of state is computed to orders A%? and Q3.
Thanks to the analiticity of the model, several questions such as the impossibility of i)
matching the perfect fluid interior to a Kerr vacuum and ii) matching the Wahlquist solu-
tion to an asymptotically flat vacuum, have been worked out in [84] and [38] respectively.

For more applications of the CMMR scheme, see [45].
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Out of the perturbation arena, the problem of a rotating star has been studied under
several numerical approaches, such as the Bl and KEH schemes, or the BGSM scheme (see
[104]). Butterworth and Ipster formulated the field equations for the metric potentials as a
set of three elliptic equations plus one quadrature, supplemented with boundary conditions
at infinity that ensure aymptotic flatness [20]. The KEH scheme [70], [7I] formulates
these equations as integral equations by means of the appropriate Green’s functions and
impose the asymptotic flatness conditions truncating the spacetime. The CST scheme [35]
avoids this problem by making a coordinate transformation that compactifies the radial
coordinate, so that higher accuracy is obtained. Stergioulas and Friedman implemented
the CST scheme in the rns code [105], able to compute sequences of rapidly rotating
stars, with uniform rotation. Bonazzola et al. [14] worked in a 3+1 decomposition that
takes advantage of the stationarity of the model, in the so called Maximal Slicing Quasi
[sotropic coordinates.

However, as far as we understand, these models do not describe compact bodies in the
sense that there is not a hypersurface that separates the fluid and vacuum regions. The
fluid extends all over the spacetime, satisfying some suitable decays at infinity, so that

the spacetime is asymptotically flat.

On Hartle’s model

In this thesis we revisit the perturbational approach by Hartle in [57]. Hartle’s scheme
depicts the equilibrium (stationary regime) configurations of rotating isolated compact
bodies in perturbation theory up to second order in GR. “Isolated and compact” means
that the star finishes at a surface that separates its interior from a vacuum exterior,
which is assumed to be asymptotically flat (the gravitational field decays to zero as one
moves away). The perturbative scheme is based on a spherical (non-rotating) background
configuration (a ball in vacuum), on top of which first and second order stationary and
axisymmetric perturbations are computed. Hartle’s model carries some explicit assump-
tions, which are expected to hold eventually in most cases; the interior of the body is a
perfect fluid with a barotropic equation of state, rotates uniformly (no convective motions
and rigid rotation), and the whole configuration admits axial and equatorial symmetries.

Given these assumptions, the first order perturbation is driven by a single function
that accounts for the rotational dragging of inertial frames. The second order is described
by three functions. The values of these functions at the surface of the star, computed from
the interior given an equation of state and conditions at the centre, are used to obtain
the deformation and the total mass in terms of the central density and the rotation of

the star. The “change in mass” dM, defined as the contribution to the mass due to the



rotation, is then computed by comparing the masses between the rotating and the static
configurations given, e.g., a fixed central density.

Apart from the explicit assumptions mentioned above, the model is constructed upon
another implicit premise; the continuity across the surface of the star of those functions
driving the perturbation, in terms of a particular coordinate system (a class, in fact).
Hartle’s scheme is essentially based on joining the interior and the exterior problems by
properly “matching” the boundary conditions at the common boundary, the surface of
the star. In GR that accounts for the matching of the spacetimes concerning the two
problems. It is known that once two spacetimes are matched there exist a coordinate
system (called Lichnerowicz admissible) in which the metric functions and their first
derivatives are continuous.

However, how this fact translates to a perturbative scheme remains to be settled.
Even the continuity of the functions driving the perturbations is not ensured a priori. In
any case, an explicit choice of coordinates (and gauge) in which the perturbations satisfy
certain continuity and differentiability conditions may constitute an implicit assumption
that, in principle, could subtract generality to the model. Worse, it could turn out to be
a wrong choice, and lead to wrong outcomes.

In order to establish up to which extent the original “continuity” assumption had any
consequence, or none at all, we have devised a programme aimed at putting the whole
model on firm grounds, based on first principles. This is the main aim of this thesis. After
the preliminar Chapter [2] devoted to the matching of spacetimes, in Chapter [3] we describe
the general and consistent theory of perturbative matchings to second order devised in
[79], independent of the coordinates and gauges used, with no need of constructing gauge-
independent quantities (which may lead to problems [80]). We have also collected some
results given in [80]. The next chapters, Chapter [5|to , are devoted to revisiting Hartle’s
model within this theory to carry out the perturbed matching to second order. To this
aim, in Chapter |5l we introduce the set up of the perturbed configurations needed for the
(stationary and axially symmetric) geometries that are going to be used for the interior
and exterior regions, together with the perturbed matching hypersurface. We present, in
the form of two propositions, the necessary and sufficient conditions that the first and sec-
ond order perturbations of the geometries at either side and the perturbed hypersurface
must satisfy in order to match. In this first step, the perturbative matching is computed
on a purely geometric setting in a first step, without using any field equations. In Chap-
ter [0] the Einstein’s field equations are obtained in terms of some convenient quantities.
Finally, in Chapter [7| the interior and exterior problems at first and second order are
imposed using Hartle’s model explicit assumptions: perfect fluid interior with barotropic

equation of state rotating rigidly and absent of convective motions, asymptotically flat
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vacuum exterior, and global equatorial symmetry. We also assume, in this chapter, the
angular structure of the perturbations argued in [57]. The particularization of the pre-
vious propositions to Hartle’s setting is then analysed in detail. The result concerning
the interior and exterior problems at second order is finally given in the form of a Theo-
rem, in which the equations the functions at either side must satisfy together with their
corresponding matching conditions are given in full.

We prove that the values of the functions driving the perturbations can be set to
coincide on the surface, as assumed originally in [57], except for one at second order. This
function presents a jump at the surface proportional to the value of the energy there.
The pressure needs indeed vanishing at the surface, as a consequence of the matching,
but not the energy density in general. This jump contributes to the calculation of é M,
and therefore the total mass of the rotating configuration. The rest of the quantities, like
the frame dragging and the deformation of the star, need no modification. The fact that
some relevant second order function may had a jump across the boundary has appeared
previously in [16] (see equation (46) there) and in [46], where a correct expression of 6 M
is given. Nonetheless, the exact relationship of their functions with the original functions
in [57] and thus the discrepancy in the computation of §M in [57], had not been realised
at the moment.

The original expression of dM, therefore, has to be amended with this additional
term. Nevertheless, since that term vanishes whenever the energy density is zero at the
surface, the standard neutron star models, and any other consisting of polytropes in
particular (energy density proportional to the pressure to some power), are not affected
and the computation of the mass of the rotating star needs no correction. However,
rotating star models (based on Hartle’s scheme) with non vanishing energy density at
the surface, such as homogeneous stars or strange quark stars, need a re-calculation of
the curves representing the mass in terms of the central density. Those curves have
been recalculated in Chapter for homogeneous star models, completely described by
Chandrasekhar and Miller in their classical paper [30], and for stars with an equation of
state often used to represent quark matter. This is part of an ongoing work in collaboration
with J.A. Font and N. Sanchis-Gual (UV), where we have developed a numerical code to
compute Hartle’s model with the amended mass for the most common EOS: polytropes,
constant density, linear EOS and tabulated EOS. We expect to complete it soon including
multilayer interiors. The contribution of the amending term to d M has been found to be
far from negligible for constant density stars and strange quark matter stars.

In Chapter [9] we compute the Newtonian limit of the amending term and show how
that term appears indeed, although implicitly, in the original work on Newtonian rotating

polytropes by Chandrasekhar [23]. Since most models are polytropes, the appearance of



that term had been somehow forgotten, even in the review of the Newtonian approach in
Hartle’s work [57]. We also discuss the perturbed Newtonian matching conditions for the
problem of a rotating star, resolving the problem raised by Jardetzky about the matching
procedure in Chandrasekhar’s work.

Still, a final aspect mentioned earlier needs to be rigorously proven given the present
state of things: it is argued in the original paper [57] that the function at first order
perturbations depends only on the radial coordinate and the functions at second order
contain no [ > 2 sectors after an expansion in Legendre polynomials. This is the aim of
Chapter [§] where we provide a proof based on maximum principles. The results therein
generalize those of Kovetz for Newtonian polytropes [72], not only to a relativistic context,
but also for any barotropic equation of state. This work has been done in collaboration
with Marc Mars.

Modified gravity

Apart from the astrophysical phenomena, General Relativity can also be applied to de-
scribe the large structure of the Universe showing good agreements with observations. In
fact, GR started a new branch in science on its own: Cosmology. Nowadays the most
accepted description of the Universe is achieved by the standard or concordance model in
Cosmology, also known by ACDM model. Its main ingredients are a FLRW spacetime,
spatially homogeneous and isotropic. The energy momentum tensor corresponds to a
perfect fluid that incorporates components of radiation and matter, being this baryonic
but mostly non-baryonic cold dark matter, and dark energy. The dark energy compo-
nent, introduced to explain the accelerated expansion of the universe, is encoded in a
cosmological constant type energy momentum. The ACDM model together with its per-
turbations manages to explain most of the current cosmological observations, showing
great compliance with the data. However, there are aspects that remain unclear in this
setting.

In the realm of the “small” and to account for alternative explanations to dark mat-
ter and the acceleration of the rate of expansion, actions more general than the Einstein
Hilbert Lagrangian density (which gives rise to GR) are often considered. One of the
simplest modifications to GR consists of F'(R) theories, where the Ricci scalar R in the
Einstein Hilbert action is substituted by a suitable function F'(R). One of the most rele-
vant models inside this class of theories was proposed by Starobinsky with a Lagrangian
density F(R) = R+ aR? with a > 0. This Lagrangian has good properties from the
point of view of field theory (see [4] and references therein). Other type of modifica-

tion of the Einstein-Hilbert Lagrangian comes from the consideration of other invariants
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constructed from the curvature tensors, for example by means of contractions of the Rie-
mann and the Ricci tensors. In fact, effective actions in string theory contain infinite
series of higher curvature corrections to Einstein-Hilbert action. Among them, in this
thesis we focus on quadratic theories of gravity, with a Lagrangian density of the form
a1 R? 4+ as Ry R + agRapeg R, These can be seen as an effective theory truncated to
second order in the curvature and presents nice properties regarding the quantum regime
[4], [47]. However, these theories include some inconvenient extra degrees of freedom apart
from the graviton. A particular combination of the constants a; = 1, ay = —4, ag = 2
leads to Gauss-Bonnet gravity, whose field equations contain second derivatives of the
metric at most. This theory is equivalent to GR in 4 dimensions but not in higher di-
mensions. Precisely, high dimensional settings are often contemplated in modified gravity
scenarios applied for Cosmology. In these, either the extra dimensions are compactified,
or the physical fields are confined in four dimensional hypersurfaces embedded in a higher
dimensional spacetime. The study of this branes requires a well understanding of the
junction conditions in the corresponding theory of gravity.

The theory of matching of spacetimes in General Relativity, considered a product of
the theory of hypersurfaces in geometry, contemplates the situation where two, a priori,
independent spacetimes are joined across a common boundary to form a single spacetime.
To be able to treat the curvature of spacetime in a distributional sense (at least), one
requires that the metric is C° and piecewise C?. The junction conditions contemplate
the case where a J-type contribution is present in the energy momentum tensor, with
support in some locallized hypersurface. This allows to model thin shells, surface layers
of matter or impulsive gravitational waves. On the other hand, further conditions can be
imposed in order to produce a proper matching, i.e. with an energy momentum tensor
that contains discontinuities at most. This is used to build models of compact bodies
surrounded by vacuum. In [82], a rigorous development of the matching of spacetimes
theory was presented to deal with matching hypersurfaces of general causal character. We
have included a summary of the matching of spacetimes theory in Chapter [2] collecting
some of the results and conclusions regarding general (character-wise) boundaries [82],
[83] and when symmetries are present [108].

In the context of F/(R) theories the junction conditions were developed in [44] by the
use of convenient Gauss coordinates adapted to the matching hypersurface. However,
this approach presents disadvantages, that we discuss in Appendix [Bl A development of
the matching conditions for F(R) using properly distribution theory was not satisfac-
torily done until [99] and [9§], in which the field equations on the shell were provided,
generalizing Israel equations from GR. Two main conclusions drop from these works.

The first one is that, in general, the distributional energy momentum tensor presents

10



a double layer contribution. In analogy with electrostatics, one can think of this as a
dipole contribution. This is surprising, because there are no negative masses. In addition,
the presence of the double layer is needed for the conservation of the energy momentum
tensor. The other relevant conclusion is that, in general, a solution generated by a proper
matching in GR will present surface layers and double layers when set into a F'(R) theory.

Motivated by these results, we have carried out the analogous work for quadratic
theories of gravity [04] mentioned above. We conclude that in these theories double
layers may arise in matching hypersurfaces, and we verify that they are neccesary for
the conservation of the energy momentum tensor. We also find the generalized Israel
conditions, which in absence of double layers hold identical to those in GR. A detailed
case study is performed analyzing the proper matchings, matchings with pure double
layers and matchings with surface distributions. We have included our results regarding
the junction conditions in quadratic theories of gravity in Chapter [I1] supplemented by

Appendix [A] that contains a collection of the most relevant computations used there.

Notation, conventions and terminology

In this section we give the basic notation that will be used all throughout this work.
Further notation is introduced in the body of the text when needed.

In this thesis we will restrict to C* spacetimes: Hausdorff connected oriented n + 1
dimensional C**! manifolds V endowed with a Lorentzian C* metric g. We will use the
signature —, +,...,+.

Following standard definitions and notations we will use:

Equality

by definition :=, or identity: =

The symbol Z denotes the equality of the involved quantities after performing

the pullback onto a hypersurface >.

Indices:
We use greek indices o, 5,7,...=0,1,2,3,...,n for spacetime objects.
Latin indices a,b,c,... = 1,2,3,...,n refer to objects relative to hypersurfaces

The usual symmetrization and antisymmetrization will be denoted by ( ) and [ ]

respectively.

Vectors: U

11
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One-forms: v

Scalar product: (7,%), := v®*w’g,s. One-forms operating on vectors denoted as

v(w)

Exterior product (of one-forms): A such that v Aw = v ® w — w ® v, where ® is

the tensor product.

Exterior derivative: d

Lie derivative with respect a vector field 5 Eg
Covariant differentiation: V

Partial differentiation with respect to = or to an indexed coordinate z*: 9/dx, Oy,

and the subscript ,, or 9/0xz* and ,, respectively.

We will denote partial derivatives with respect to the first argument of a function,

usually the radial coordinate, by a prime.
Riemann tensor: (V,V, —V,V,)wy = R%),,w,
Ricci tensor: Rop = R 40p

We will use |x to denote the restriction of a spacetime object to points on an
embedded hypersurface . If used on a function it can also denote the pullback of
the function to . This should be understood by the context.

Unless otherwise stated, in this thesis we will use G = ¢ = 1. When numerical

solutions are presented, the following values in the S.I. have been used

Mg = 1.9891-10% kg,
G = 6.67384 10" m*kg's72,
c = 299792458 ms™ ',



Matching of spacetimes

A well known problem in electromagnetism consists of finding the relation that the electric
and magnetic fields keep on either side of a given surface that separates two different
regions, even in presence of surface charge distributions or surface currents. Maxwell’s
equations, in the integral form applied in some neighbourhood of the separating surface,
provide the relations of the normal and tangent components of the fields. Thus, the
normal component of the electric field has a discontinuity across the surface proportional
to a surface density of charge, while its tangential component remains continuous. For
the magnetic field the situation is the opposite, its normal component to the separating
surface is continuous and the tangential presents a discontinuity that depends on the
surface current density.

An analogous problem arises in General Relativity when we have two spacetimes with
boundary, independent of each other a priori, and we want to match them across the
common boundary in order to give rise to a matched spacetime. Being the spacetime
Lorentzian, the common boundary is a hypersurface that may have different nature: it
can be timelike, spacelike, null, or even general (i.e. changing from point to point). This
chapter is intended to provide a brief introduction to the theory of matching of spacetimes.
There are many works covering this topic in the literature, see for instance [9} (10}, [15], 32} 40,
67, [73], 88, [106], but they are restricted to hypersurfaces with fixed character (spacelike,
timelike or null everywhere). In the development presented in [78, [82] boundaries of
general character are considered, so that their causal character may vary from point to
point. An appropriate treatment of hypersurfaces of general character requires a geometric
construction based on rigging vectors, which have the property of being transverse to
the hypersurface everywhere. The equations relating the ambient curvature with the
intrinsic curvature of a hypersurface, the so called Gauss-Codazzi equations, must be also
generalized to cover this situation. In the first part of the Chapter, the requirements in

order to have a well constructed geometry around the common boundary are devised.
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2. MATCHING OF SPACETIMES

A second part of the Chapter is devoted to the study of the structure of the curvature
of the matched spacetimes. This must now be described in this framework by tensor
distributions instead of tensors. In particular, the class of metrics that is C? everywhere
except in some hypersurface, where they are CY, is contemplated. Tensor distributions
were identified in [53]. The minimum requirement of continuity of the metric is imposed in
order to formulate the Einstein equations in the distributional sense. An underlying fun-
damental requirement is that we want to avoid product of Dirac-delta type distributions
because these are not well defined in general, unless we resort to more general structures
(see [102] and references therein) that are out of the scope of this thesis. Thus, we restrict
ourselves to the standard distribution theory. A general presentation of the theory can be
found in [31] and a self explanatory introduction in the Appendix of [82] (see also [94]). A
remarkable result in [78] 82] is that the Bianchi identity holds in the distributional sense,
leading to good properties of the energy momentum tensor distribution. Some results
therein can be extended to other theories of gravity, like F'(R) gravity [98] 99, 100], or
quadratic gravity [94], involving higher order field equations. A further chapter (Chapter
will be dedicated to these modified theories of gravity.

2.1 Preliminary junction conditions

Let (V*, g%, 2%) be two (n + 1)-dimensional, C? spacetimes with oriented C* boundaries
»*. Require also that the boundaries ¥©* are identified through some diffeomorphism
® : Y~ — Xt. Then the matched spacetime V is the disjoint union of V* and V~, with
¥~ and X7 identified through ®, and such that the junction conditions (to be introduced)
are satisfied.

V*,97)

Figure 2.1: Two spacetimes (V*, g*) with diffeomorphic boundaries ¥*. These can be
timelike, spacelike or null, and even change from one point to another.

Since X7 and X~ are diffeomorphic, they are also diffeomorphic to an abstract n
dimensional C® manifold, . Let us introduce a local coordinate system {£%} in 3, where

latin indices run from 1 to n, and also in V¥, these denoted by {2z}, with greek indices

14



2.1. Preliminary junction conditions

ranging from 0 to n. The coordinates {z*} and {x~} do not need to be related in any

way. The embeddings from X to V* are given by the C® maps

ot Y — YV, (2.1)

ga - :L,:I:Oé — (I):I:Oé(ga)7

such that ¥* = ®*(X) and the diffeomorphism from X+ to ™ is just & := &~ o®* . The
pullbacks of ®* are denoted by ®** and the pushforwards by d®*. Along this section, no
restrictions are taken about the causal character of the hypersurfaces ¥*. These can be
spacelike, timelike or null, and they are even allowed to change the character from point
to point.

The matching procedure involves two main stages. In the first one, the two spacetimes
(V*, g%, %) are glued through their “common” boundaries and we construct a single
matched spacetime (), g) with a well defined metric everywhere: in the regions V* and
VY~ it corresponds to g7 and ¢~ respectively, being these of class C? and in X7 it is only
C° . This is commonly known as the “gluing” and it entails the preliminary matching
conditions. Once this has been achieved, the second task is devoted to obtain a set of well
defined field equations everywhere, in absence of singular terms. This will be guaranteed
when the so called matching conditions hold.

The boundaries ¥* have been identified pointwise by , but in order to obtain a
well defined geometry it remains to be specified how the tangent spaces at points on ©F
are identified [32]. The equality of the first fundamental forms in ¥* inherited from V*

through ®* allows the identification of the tangent vectors to XF | i.e.
At =0T (g =0 "(¢g7)=h". (2.2)

These are the so called preliminary junction conditions.
These can be written in terms of the coordinates {£?} in X as follows. The image
of the natural basis {0/0£*} at the tangent spaces 1,3 for every p € ¥ gives a set of n

independent tangent vectors in each spacetime {€=} through d®*. Explicitly this is

a0 09 0
e, =dd (8{“) = T ge oo

— oE© 0

=e
- a axia

)

»+

at every point on ¥4. The vectors {€,} provide an explicit expression for the pullback
®* and pushforward d® (in any of V* or V7). A s—contravariant tensor A defined in ¥
with components A% in the basis {9/9£*} can be promoted to the spacetimes V* by

means of the pushforward d®* so that its components in the basis 9/0z%" read

[dq)i(A)]al“'as — Aal...ase:tal e:ﬁ:@s‘ (23)

ap " as
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2. MATCHING OF SPACETIMES

Figure 2.2: The gluing procedure. The boundaries are identified via the embeddings as
Y7 =® o ®TI(XTF). The tangent basis in the spacetimes are given by &, = d®*(0).

Any s-covariant tensor ©F in V* with components @ial...as in the basis {da:ia} can be
projected to ¥ by means of the pullback ®** and its components in the basis d&® read

[@i*(@i)]alm% — Gial...aseial 'eiozs

ap "’ as

Applying this last expression to the metric tensor itself, we obtain the first fundamental

form and the preliminary junction conditions written in the coordinates {{%} as

h;Lb = g;rﬂe:“e;“ﬁ = gojﬁe;aeb_ﬁ =: h,. (2.4)
Once the preliminary junction conditions are satisfied, the tangent vectors {€; } and {é; }
can be identified, and we refer to h™ = h~ simply by h. Then (X, h) is an oriented
manifold with a well defined metric.

Now, in order to identify the full tangent spaces at diffeomorphic points on X+ and
Y7, we need to identify one transverse vector to X1 with another transverse vector to .
We define a transverse vector by means of a normal form N* on ¥+, which is determined
by N*(é&F) =0 for a = 1,...,n as follows. The associated “normal vector”, N*t, Nto =
9P Ng, is not transverse to 37 in general. At null points on X7 it satisfies N+(]\7+) =0,
so that the “normal vector” becomes tangent to 3. Therefore NT% = N*%¢* and the
set {]\7+, e} is not a basis of the tangent space at null points. Thus, we choose a C?
vector field I* which is transverse to X1 everywhere, i.e. N*(I7) % 0. This vector field is
called rigging in the literature [78][82]. This same construction is taken, for the spacetime
V= 97).

We intend to complete the identification of the tangent spaces on X+ by identifying
I+ and [~. This is achieved by imposing first the following conditions

g 2 g T gt e 2 g T e (2.5)
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2.1. Preliminary junction conditions

The first one equates the norms of [* and the second one does the same for the components
of the one-forms [, = [%e®

a’?’

as viewed from the + and — sides. Moreover, the rigging
vectors must agree in their orientation to be properly identified: this accounts to showing
that choosing I* to point towards the interior of VT, a - satisfying can be found
to point towards the exterior of V™. It is only then that we can identify the bases of the
whole n dimensional tangent spaces of VE at ¥, so that {I,&,} = {I*,éF} = {I",&;}.

The “gluing” procedure is summarized in the following Theorem

Theorem 1 (Mars, Senovilla, Vera, 2007 [83]) Let (V*, gF) be two n+1-dimensional
C? oriented spacetimes with boundary, with respective C® boundaries X such that the pre-
liminary matching conditions hold on Y. Assume further that there exist transverse
vector fields = on ot satisfying the scalar product conditions and such that I* points
towards V* and [~ points outwards from V.

Then, there exists a unique, mazimal, C® differentiable structure on V = VT UV~
(with their points on Xt and X~ identified), and a unique continuous metric g which
coincides with g on YVt and with g~ on V™.

Vtuv,g)

(=,h)

Figure 2.3: The matched spacetime (V, g). Now, due to the preliminary matching condi-
tions, there is a well defined metric on X, given by h. In this picture we have identified
the abstract ¥ with the equated images X" and X~ as an embedded hypersurface ¥ in V.

Given any [t with the fixed orientation of the Theorem , the existence of a [~ with
the desired orientation is not guaranteed. The cases for null and non null points at X~

are considered separately in the following lemmas:

Lemma 1 (Mars, Senovilla, Vera, 2007 [83]) Let V* be two spacetimes with
boundary satisfying the preliminary matching conditions . Let = be non null at
p~ € X and set pt = &1 (p7). Choose any transverse vector field f+|p+ pointing towards
V*. Then there is at most one solution of for li|pf pointing outwards from V.
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2. MATCHING OF SPACETIMES

Lemma 2 (Mars, Senovilla, Vera, 2007 [83]) With the same notation as in

Lemmald, assume now that %~ is null at p~. Then the solution of the algebraic equations

at p~ 1s unique, if it exists.

At non-null points the unit normals are riggings, say ™, —nit, n~, —7~. In that case,
Lemma (1] states that given 7it, the solution to (2.5)) with the appropriate orientation for
7~ is unique. Conversely, at null points the system fixes uniquely li, including its
orientation. Moreover, this result does not depend on the choice of f+, and thus, there can
be spacetimes with boundaries containing null points satisfying the preliminary matching
conditions that cannot be glued by any means (see the example in Fig.1 in [83]).
Finally, let us build the dual cobasis to the tangent planes of V* at ¥. To treat the
two + spacetimes at once, we drop the superscripts 4, not to overload the notation. We

choose a normalisation of the normal form with the aid of the rigging as

N

TN

which readily implies that n,l* = 1. The dual bases are completed with the tangent forms
w® defined by

ajo a o __ Sa
wal® =0, whey = 0.

Note that the forms w® depend on the rigging. Due to the identification of the riggings
and tangent vectors, the normal and the tangent forms can also be identified, so that
{n,w'} = {n*,wt} = {n~,w}. Thus, for a given I, the maps T} : T,V — T,%
and A; @ T3% — TxV for all p € ¥ can be defined [78, 82] as follows. T; projects a
s-contravariant tensor © in V to a s-contravariant tensor in ¥ whose components in the
basis {£%} are

[T(©)]" % = @1t Wi (2.6)

o Was s
while A; associates a s-contravariant tensor A in V tangent to ¥ to a s-contravariant
tensor in 3 with components A, ,. in the basis {d{*} as

Ai(A)]aya, = A War..wes (2.7)

ay...as%oq Yoy

In particular, we can use these maps to obtain a 2-contravariant symmetric tensor on
¥ associated to the inverse of the spacetime metric ¢g~!. It reads ¢%° = wgwggaﬁ . Note
however, that g% is not the inverse of hg, in general, since the first fundamental form
is degenerate at points of ¥ where 77 is null. The contraction between them is easily
computed to yield g®°hy. = 62 —n?.. Another relevant contraction is wee? = 0? —nylP =:
he.
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2.1. Preliminary junction conditions

At points where ¥ turns null, if any, h is degenerate and thus it is not possible to define
a connection associated to it. To overcome this we use the connection in V to construct
another in . Consider two vector fields &, 7/ in 3, promote them to the spacetime via
to obtain the respective spacetime vectors X and 57, and take the (spacetime) covariant
derivative of one of them along the other one, Vy)? . In general this vector will have a
component tangent to ¥ and some other component in the direction of the rigging. Take

the tangential part of the derivative and project it to X via (2.6)) to define
Vi (v X>| = TV X). (2.8)

This is called the rigged connection in |78, [82]. It has no torsion, but in general it is not a
metric connection. Its corresponding Christoffel symbols are given in terms of the vectors

€, and the forms w® by
be = wyey Vael = [11(Vge)]", Tj. =T¢,. (2.9)
Introducing the following objects in X
Uy = whey Vol o i=mnuep VI, ke = egefvan@, (2.10)
we can cast the Gauss equation for general hypersurfaces 78], [82]
ng;}weereg = }_%Zbc — Kae U+ KU, (2.11)

-d . . . . .
where IR ;. is the Riemann tensor associated to the connection 1' and the Codazzi

equations (1,2,3 respectively) [78], 82]

Rg)\u 5€g\eu = vCliba - vb'%ca + KbaPe — ReaPb, (212)
wiRG Pener = VUi — VU5 + @05 — 0, Uf, (2.13)
nMRg)\Vlﬁe eb = vagob - v17900, + "Gcb\I/Z - ’ica\I/g‘ (214)

To sum up, we have so far constructed the matched spacetime (V, g) with a hypersur-
face ¥ C V that splits it into the two open sets V* with common boundary E| In each
V* the metric is C?, and C° on . We have also constructed a basis of the tangent space

of V at points of ¥, given by {f, e, } and also for its dual space, given by {n,w*}.

'In the beginning of the chapter we denoted the boundaries of V* and V~ by ¥+ and ¥~ respectively.
These are diffeomorphic to each other and thus to an abstract manifold ¥ (recall ) This abstract
manifold is embedded in the matched spacetime (V,g) as a hypersurface and abusing of notation, we
refer to this hypersurface embedded in V simply by X.
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2. MATCHING OF SPACETIMES

2.2 On the curvature tensors and field equations

Let us now assume that the construction of the matched spacetime summarized above
has been carried out. Then, the Einstein equations are well defined in the distributional
sense. Throughout this section, the indexes «, § will refer to any admissible coordinates
or continuous basis for which [gas] = 0. An introduction with the basic concepts of
the theory of distributions can be found, for instance, in the Appendix of [82] (see also
[74], [106]). For completeness of this brief introduction on the topic, let us include some
definitions and results presented therein in order to keep the exposition of the junction
conditions as self-contained as possible.

Let D(V) be the set of test tensor fields: C™ tensor fields of any order with compact
support in V. Denote by D] the subset of p-covariant g-contravariant tensor fields in
D(V).

Definition 1 (Tensor distribution) The p-covariant q-contravariant tensor distribu-

tions x} are the linear and continuous functionals

Xg : Dg — R
VP ) = (YY) (215)

The set of tensor distributions constitutes a vector space (the sum of tensor distributions
and the product of a tensor distribution with a real number are well defined and are tensor
distributions).

A locally integrable p-covariant g-contravariant tensor field 77 defines uniquely a tensor
distribution 7%} by

ri: Di—R
YP = (T4,YP) = /V Tg g Yoim, (2.16)
being 1 the volume element of (V, g).

Definition 2 (Tensor distribution components) The components of a p-covariant q-
contravariant tensor distribution x in a dual basis {{€,},{0"}} are scalar distributions
xf}‘fgj defined by

<Xgll:_':§§, Y> = <ng V0" ® - - Q0% ® 551 R ® €Bp> 7
where Y s a test function.
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2.2. On the curvature tensors and field equations

Thus the following expression follows
O YY) = (Gl o).

Now that the components of a tensor distribution are defined, we can define the

contraction as

<[C ( )q 1 YZD 1> _< QL. O —1 Q41 ... Oq Yﬁlmﬂj—lﬁj+l-~-ﬁp>.

p— 1 Bj 1;},,3]4’,1 ﬂp Q... 010G 41...0
This definition of contraction is independent of the basis chosen.

Definition 3 (Support of tensor distributions) The support of a tensor distribution

X3 is the complement in'V of the union of all open sets where xi vanishes.

Definition 4 (Tensor product by tensor fields) The tensor product of a tensor dis-
tribution X by a tensor field Ty, defined on a neighbourhood of the support of xi, is the

(p + s)-covariant (q + r)-contravariant tensor distribution acting as follows
T s+
<T Xp’Yr+qp> - <Xp7 T Y p>
where, in any basis, we define

(T, Y)u1~~-up. TPL-Pry X1 -Osfil.--Hp
V1,...V, :

aq...0g " P1...pPrV1...Vg

Sometimes, for this product to make sense it is enough that the tensor field 77 is defined
only on the support of xI. However, this will not be the case when derivatives are involved.

Tensor distributions can be differentiated. The definition is the following

Definition 5 (Covariant derivative of a tensor distribution) The covariant deriva-

tive Vx3 of a (p, q)-tensor distribution x§ is the (p + 1, q)-tensor distribution defined by

<VX;];7 Y(']p+1> = — <XZ> (DY)5> ;
where (DY )i 00 =V, Y 0.

The components of the covariant derivative V7, in any basis, are the scalar distributions

VX 5 acting on test functions as

P

<VPX/311, ,31 Y> - <X N q 8Y+FU Y> <X5117.-.:-7§i710'ﬁi+1~-~ﬁp’ngp >

=1

S ).
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2. MATCHING OF SPACETIMES

This definition of the covariant derivative for tensor distributions agrees with the gener-
alization to a distribution of the covariant derivative of a tensor field, so that VI' = VT.

Back to the problem of the matching of spacetimes, the glued spacetime (V,g) con-
tains a C? metric everywhere except on a hypersurface ¥, where it is only continuous.
Thus, the curvature tensors are not defined in (V,g) as ordinary tensor fields, but as
tensor distributions. In order to characterize them, let us first introduce two important

distributions. The first one is associated to the Heaviside function 8 of X

1 in VT,
f=q% inY, (2.17)
0 inV-.

This function is locally integrable, and therefore it defines a scalar distribution # as

0,Y) = /v vn

Now, a function f discontinuous in X, but differentiable everywhere else and with well
defined limits on X, defines a scalar distribution that can be expressed in terms of the

Heaviside distribution as

f=fT0+f-(1-0), (2.18)

where f* thus corresponds to the restrictions of f to V* respectively.
In order to take the derivative of let us first define a volume element dv on X
by
dv = 1%dvy = 1“Nug,. 5,€" .o dEN A - - -dE™,
with [*dv, > 0, or in other words, dv, points from V=~ to V*. Note that dv, = n,dv by
construction. Thus, the covariant derivative of # is a one-form distribution with support

on X acting as

<vg,?> __ <Q, D}7> —_ [ v,ym= /EYo‘dva - /ZY“nadv,

v+
where we have used Gauss’s theorem in the third equality. It arises a natural scalar

distribution 4% with support on ¥ defined by

(6%,Y) ::/de : (2.19)

This distribution can be multiplied by any smooth and locally integrable tensor field

defined only on Y. Observe in particular, from the above, that
5:=V,0. (2.20)
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2.2. On the curvature tensors and field equations

defines a one covariant distribution & intrinsic to X as

<5,§7> :/EYadva:/EYanadv.

From the identity & = d>n it is obvious that the scalar distribution 6~ depends on the

rigging through the normal form n.

The derivative of (2.18) thus reads [78] 82]
VI =V 04V (L 6) + (115, (2.21)

where we have followed the usual notation to denote the discontinuity of any quantity
with well defined limits on X,

e, [fl(@)= Jim fH@)- lm f(@) (222

Note that the discontinuity function [f] is defined only on X and it is smooth there
by definition (if f* and f~ are). The generalization of the previous constructions from
functions to tensors now follows. Let T" be any (p, ¢)-tensor field which (i) may be dis-
continuous across %, (ii) is differentiable on V* and V~, and (iii) such that 7" and its
covariant derivative have definite limits on ¥ coming from both V* and V~. Using the

notation T for the restriction of T' to V* respectively, we can construct
T:=T"0+T (1-60) inV.
In particular, at each point of X

1
3o _ = . + . _
T :=T|g = 5 (wlgnET (x) +xlgnET (x)) : (2.23)

v+t \a

Since T" in V is locally integrable, in V), it defines a distribution given by
T=T"+T (1-0) . (2.24)

Generalizing (2.21)) appropriately, the covariant derivative of T can be shown to be
182
VT =VTT0+VT (1-0)+[T]® 6 (2.25)

where [T'] is the (p, q)-tensor field defined only on X, called the “jump” or “discontinuity”
of T" at ¥ defined as

Vg € X, T](q) = lim T (x) — lim T (x) . (2.26)
m;q x;q
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2. MATCHING OF SPACETIMES

The index version of ([2.25)) reads

Qj...0q Faq...aq —Q1...Qq Qajg...Qq

The curvature tensors can be defined in a distributional sense. By Theorem [I} the
metric g of V is a C° tensor and therefore it is only differentiable in the distributional

sense. Thus we write it as a function and distribution respectively

g=g0+g(1-0), g=g"-0+(1—-0)-g". (2.28)

Recalling the standard definition of the Christoffel symbols and taking the derivative
of the metric tensor distribution (2.28]) using the general formula (2.21)), plus [gag] = 0,
the Christoffel symbols are found to be (as a distribution)

L3, =T"5 -0+T75 - (1-0). (2.29)

Now the Christoffel symbols can be defined as functions. The scalar distributions ([2.29))

are associated to locally integrable functions given by
I3, = F+,379 +1T75, (1-0). (2.30)
These functions may be discontinuous across ¥ and, as in the general case (2.23)), we have
o 1 +a -«
I8z = ) (r grls +T 5’7'2) : (2.31)
Using now the standard formula the Riemann tensor distribution is defined [78] [82] by
Rfy, = 0305, — 9,15, + I3, 05, — L5,

First of all, we observe that the products of ['’s are well defined because ng are distri-

butions associated to locally integrable functions, and actually they become (upon using

6-0=0)

o _ O P —a nep
EAPE - F+Apr+ﬁug +T /\pF B (1-0)

)
B
On the other hand, we have from ([2.29), as in (2.27):

0,05, = 0, L7500 + 9,075, (1= 0) + [I'5, ] n,6”

so that the final expression for the Riemann tensor distribution reads [78, [82]

—gp,u = R+guy ) Q + R_gp,u ' (l - Q) + (nﬂ[]‘—‘gu] - nV[Fgu]) ’ 527 (232)
= R'G.,-0+R75,, -(1-60)+Hg, 6, (2.33)

24



2.2. On the curvature tensors and field equations

where we have encoded the singular term in (2.32)) in a tensor
Hg/w =, gu] — gu] (2.34)

called, precisely, the singular part of the Riemann tensor distribution. This structure is

shared by the Ricci tensor distribution
Rs, = R, -0+ R g, - (1—0)+ Hg, - 5, (2.35)

where its singular part is Hg, := Hg,

Saws and by the Ricci scalar distribution

R=R"-0+R -(1-0)+H -5, (2.36)
with H := H“,. Finally, the Einstein tensor distribution thus gets the form
Q,Bz/ :G+BV'Q+G_ﬂy' (l—Q)—i-gﬂV-(SE. (2.37)

The singular part of the curvature tensor distribution depends on the discontinuity
of T'g , by (2.34). The next step is to characterize this jump in terms of some geometric
objects related to . To this purpose, let us consider the discontinuity of the derivative

of a function f, which can be decomposed into its transverse and tangent part to X as

[0af] = nal®[05.f] + wodal f]-

Applying this formula to the metric tensor, taking into account [g.s] = 0, we obtain

[8(19#1/] - C;wna )

where (,,,, is a symmetric tensor defined at points on 3, which can be proven not to depend
on the rigging [78, 82]. Thus the discontinuity in the Christoffel symbols reads in terms

of ¢, as

1
[Fiu] = 5(77,“(3 + nl/C;f - naguu)- (238)

Therefore, the explicit decomposition of the object (5 in the basis {n,w}

-

Cop = Cmang + Cong + Chna + Chg, 19¢L5 =0, 1°¢L =0, (2.39)
where the superscript ['is used to indicate that the objects depend on lﬁ, allows us to write
(2.38) as

o) =

o <n°‘n#nycf—i— Qnunl,Cfa + nquVa + n,,gf; - na(fw) . (2.40)

N | —
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2. MATCHING OF SPACETIMES

This latest expression, combined with formula (2.32)), shows explicitly that only the com-

ponent of (.5 (completely) tangent to X enters Hg,,, i.e.
o _L( o T r re re
Hg,, = 5 (n (nuCrp — nygw) +ng(n,C, —n,C i )) ) (2.41)

In order to present the so called junction conditions in terms of geometric objects of X,

we introduce the tensor H,p, in 3 constructed as [78, [82]
Hap = €2 Vals. (2.42)

Note that this object is not necessarily symmetric. In addition, it does not agree as com-
puted from V' or V. and recalling its definition and taking into account that the bases
{fi, €} have been identified for the construction of the continuous basis, the difference

of the "Haib is given by
1
(M) i= Hy — Hyy = —la[Colebel = Sapese]. (243

Although H is a tensor defined on X, we still keep the brackets in order to denote its
difference as computed using the (different) connections of V* respectively. The promotion

of [Hap] to V via Ay is [Hag] = Zﬁ /2. Let us stress some properties of [H,] that can be

observed in (2.43). First, it is proportional to the tangential part Cf;ﬁ of (np. Secondly,

although H,, depends on the choice of the rigging, the difference does not (see Theorem
3.4 in [78] or Theorem 8 in [82]). Finally, [H,s] is a symmetric tensor. The combination of
and the spacetime version of provides an explicit expression for the singular
part of the Riemann tensor distribution in terms of the [H,], which reads

g = n®(Hadn, — Man,) + ns((HeIn, — [Hon,). (2.44)

In view of this expression above, we have

Theorem 2 (Mars, Senovilla, 1993 [82]) The singular part of the Riemann tensor
distribution vanishes if and only if [Hap] = 0, or equivalently, iff [Ha] = 0.

Thus, the condition [H,] = 0 is equivalent to impose that the curvature tensor is free
from singular terms and presents, at most, finite discontinuities on . These are called

the matching conditions, and from the above, they do not depend on the choice of the

rigging.
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2.2. On the curvature tensors and field equations

Similar expressions to (2.44]) can be found for the rest of the curvature tensors, leading

to
Hg, = —[Hpg|n"ng + [Haplnn, + [How|n“ng — [Halngn,, (2.45)
H = —2n°nq[MH5] + 2n°n"[Hag), (2.46)
Goy = —n"na[Mg] — [Halnsn + [Haslnn, + [HaJn"ng +
—9puls ([Hap|nn* — [H]n"n,) . (2.47)

Notice that the necessary conditions for which the Ricci singular part vanishes vary
depending on the causal character of . On the one hand, at points where ¥ is null,
Hyg, vanishes iff n*[H,s3] = [H] = 0 and thus the matching conditions are a larger
set of conditions. On the other hand, at points where ¥ is not null the Ricci singular
part vanishes iff the matching conditions hold. The singular part of the Einstein tensor
distribution vanishes iff the singular part of the Ricci tensor distribution vanishes and
finally, the singular part of the Ricci scalar distribution vanishes iff (77-77)[H2] = [Hasnn?
(see Theorem 3.3 in [78], or the corresponding Theorem 7 in [82]).

Apart from the implications that the matching conditions have on the singular parts of
the curvature tensor distributions, they also impose restrictions on the possible disconti-
nuities that these can present. A detailed study on the continuities and discontinuities in
the curvature tensors is presented in [78| [82] for the case of a four dimensional spacetime,
but the results are independent of the dimensionality of the spacetime. A straightforward
method consists of taking the differences of Gauss-Codazzi equations for general hyper-
surfaces — coming from VT and V~. Recall that these are written in terms of
the objects Wb, ¢, and k, whose differences, when the matching conditions hold, read
[78, 82]

W =0, [pa] =0, [kw) = 0. (2.48)

It can be proven [78, [82] that [['¢] = 0 , and therefore the connection V agrees as taken
from V* and V™~ respectively. It follows that
[RE, Jebe) = 0. (2.49)

aBy

This relation shows that, once the matching conditions hold, the only allowed discontinu-

itites of the Riemann tensor must adopt the form
[Rocﬁ,u,l/] = Bﬁunanp, + Baunﬂnu - Baunﬁn,u - Bﬁp”a”u, (25())
for some symmetric 2-covariant tensor B,z defined on X up to transformations of the type
;5 = Ba,B + nan + ngXa, (2.51)
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2. MATCHING OF SPACETIMES

for an arbitrary one-form X,, so that n 4+ 1 components out of the (n + 1)(n + 2)/2
components of B,s can be removed using this freedom. We can use this freedom to
remove any component of B,s non-tangential to X, fixing completely the one-form X,
by setting X, = —I"1°B,gn,/2 — IS B, sw?. Therefore B,g and its pullback to ¥, i.e.
By, = Baﬁeg‘ef , encode the same information and we can use them indistinctly.

Now the discontinuity of the Ricci tensor can be expressed in terms of By,. An explicit
decomposition in the basis {n,w®} of the suitable trace of yields

[Rag] = 9% Bapnang — 20" Bayn(awpy + n''ny, Bawawp. (2.52)

Note that g* By, = B®. Taking the trace of (2.52)), the jump in the Ricci scalar is found
to be

[R] = 2(g* Bayn*n,, — n"n’Buy). (2.53)

Combining (2.52)) and (2.53)) it is now straightforward to obtain the relation
n®[Gag] = 0. (2.54)

The n+1 equations in are the generalized Israel conditions [67] for general matching
hypersurfaces (when the matching conditions hold).

Thus, we have introduced the curvature tensor distributions relevant in order to ob-
tain the field equations as objects defined in the whole spacetime V. The Einstein field

equations G5 = 871, 5 lead to a distributional energy momentum tensor of the form
IBV = T+5V ’ Q + Tﬁﬁlj ' (l - Q) + TBy * 52' (255)

The tensor fields TF correspond to the energy momentum tensor defined on each region
VE| whereas 7,5 is the singular part, with support on . It is used to model physical
situations like surface layers as crusts in star models [55] or braneworlds [83]. The general-
ized Israel conditions are translated to the energy momentum tensor by means of the field
equations so that n®[T,s] = 0. Note that 7,5 depends on n (only 7,50 is intrinsically
defined).

As a consequence of the matching conditions, it is shown in [78], 82] that it is possible
to construct a local system of coordinates in which the metric is C*. To this aim, consider
a C' change of local system of coordinates x(z’). Note that the preliminary matching
conditions require that the metric is C° and thus under this change of coordinates the
metric is still continuous (at least). However, we are interested in the derivative of the
metric, and thus the following calculation must be understood in the distributional sense,

although I will not denote it explicitly not to overload the expressions. At points of 3,
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2.2. On the curvature tensors and field equations

the transformation of the first derivative of metric is given by

0o pr Oz o ([ 0xF O 0 ([ 0z°
oz’ gz’ P v OxH (Gmﬁ’) T a7 el v OxH (6xa'>
Ozt Oz 02| Ogag
Ozt 0x® 0xP' |y, Oxt

Since we are interested in the jump of this derivative at >, we compute first the bracket

of the derivative of the jacobian transformation to find

o (02 ; 0 [0 ,
- _ a v _ _ B
|:a‘r#, (8xﬂ')] =Nwilg +w, e, = |i_a$a,:| = n#/TB, = nu/nﬁ/T ,

for some arbitrary vector 7%, defined at points of ¥. In the last step the symmetry of

the second derivatives has been used. Hence, the jump in the (primed) derivative of the

0 oxP N oxP i %
v L0z \ Oz 8x5'gaﬂ v [0z \ Oz

99a
|: g 61 = nu, (na’TB’ —|— ’n,B/Ta/ —|— Calﬁl)
b))

(primed) metric yields

0 9o’/ 8’ ox®
oz e’ I

oxH Ox® OxP
ozt Ox® Oxb

+
oxH

Taking into account this last expression, the decomposition of (,/p in tangent and normal
components to X as in (2.39) and the matching conditions given in Theorem [2, that imply
CLs = 0 (recall (2.43)), we find that for a change of coordinates with T, = —('/2n,—(,, the

metric becomes C! at ¥. This result recovers the matching conditions in the Lichnerowicz

sense [73].

Timelike matching hypersurfaces

This framework to match spacetimes does not assume any condition on the causal charac-
ter of the matching hypersurface at any point. However, along this thesis we will restrict
ourselves to matching hypersurfaces that are timelike everywhere. Therefore, any nor-
mal vector 7 is transverse to ©* everywhere, and we can set I+ = i, so that n* (%) =1
and {7, €, } is clearly a basis of T,V at points of 3. The dual tangent space is built now
with respect to 7. According to Lemma (1 given 7 the system provides a unique
solution with the correct orientation for n7~. Moreover, the first fundamental form A,
becomes non degenerate and its inverse is just h®® = ¢g?. The spacetime version of the
first fundamental form, unique due to , is given by the projector to ¥ (defined only
on ¥)

h,uz/ = QW|2 — NNy (256)
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2. MATCHING OF SPACETIMES

Notice that
"y, =0, huph’y = by, ', =n, huvebey = hay

and that

JZ b vp J . T
et = hgyw, ¢ |5, elw; = hb .

Despite all the above, the extrinsic curvatures, or second fundamental forms, inherited
by ¥ from both sides V* will be, in principle, different, because the derivatives of the
metric are not continuous in general. The tensor H,;, defined in (2.42)) corresponds now

to the second fundamental form k,;, defined as

+ . o fot + _ =+
Ky = egey Vang, Ky = K, (2.57)
. . . . :l: I a b i
or written in the spacetime version Ky 1= WWy kg,
+ _ 1p poTE + _ +
Ky = h ,,hMVp Ne, K = Ky

where only tangent derivatives are involved. Obviously n“/ﬁu = 0 by construction, thus
only the n(n + 1)/2 components tangent to > are non-identically vanishing. In terms of
the embeddings (2.1)) these components are given by

. . ( R A & aq>i) (259

Rap = —Ny DEDED ap e PEd

which is adapted to explicit calculations.

Using ([2.58) together with ([2.40) we deduce

— o 1 7 o
Ky — Koy = —1y, [Fﬁg] elef = 3 eher, (2.59)

that is to say, the tangent part of (,, is characterized by the difference of the two +-
second fundamental forms. Thus, defining the jump on ¥ of the second fundamental form
as usual

[KHV] = "i:y - ’i;w nt ["im/] =0 (260)

we can rewrite the singular part of the Riemann tensor distribution (2.41)) as
Hopuw = na([kpu] 0 — [Ks0] np) + ns([Kav] ny — [Kaw] n). (2.61)

Compare this expression with the analogous one given for general hypersurfaces ([2.44]).
It is manifest that the role of [H,z] is now played by the jump of the second fundamental
form. In fact, in order to derive the matching conditions, we can either start from (2.61)

or take the expressions developed for general hypersurfaces and substitute the tensor [H)

30



2.2. On the curvature tensors and field equations

there by [kqp). It can be shown [78, [82] that in general hypersurfaces the proportionality
relation [kq] = (7 - 7)[Ha) holds, and therefore the matching conditions for timelike
hypersurfaces become [k = 0.

The expressions ([2.45)), (2.46)) and (2.47)) that describe the singular parts in the curva-

ture tensor distributions remain valid with the change [Ha] — [Kab), since [Hyp) does not

depend on the choice of I. We include them for completeness. After some simplifications

they read
Hg, = —[rg] — [ralngn, (2.62)
H = -—2[x]), (2.63)
G = —lre] + [Ka](gs0]s — npn), (2.64)
= nﬂgg,, =0. (265)

Note that in General Relativity the singular part 7,5 of the energy momentum tensor
is now tangent to Y due to . In order to compute the jumps of the curvature
tensors in terms of the extrisic curvature, let us remark that the connection V introduced
in for general hypersurfaces is now constructed with respect to a normal vector to
Y, and it is the unique metric connection associated with the first fundamental form h.
The two objects defined in become ¥ = kP and ¢, = 0. Thus, the Gauss equation
takes the standard form

wingeerei = Ezbc — Kacki + Kapk?, (2.66)
while the Codazzi equations (2.12)) and (2.13]) collapse to the single equation

nuRg eﬁe,’)\ez = V. kba — Ve, (2.67)

Av-a

and Codazzi 3 equation ([2.14) vanishes identically.

The aforementioned discontinuities, letting aside that of the Riemann tensor, which

is still given by (2.50)), follow from (2.52)) and (2.53)) just setting ¢** = h*® plus n® = 0.

Alternatively one can take traces of (2.50|) using n®B,s = 0, and they read now
[Rap) = habBabnanﬁ + Babwgwg = Bgnanﬂ + Basnn,,
[R] = 2h** By, = 2B,
[Gag) = (Bap — b Beahay)wiw = Bag — Bbhag,
= n%[Ga] = 0.

The physical interpretation of the matching conditions becomes more clear now. The

independent discontinuities are encoded in the jump of the Einstein tensor, completely

31



2. MATCHING OF SPACETIMES

tangent to X. The field equations propagate (2.71]) to the energy momentum tensor and
we find n®[T,5] = 0. The decomposition of the energy momentum tensor in the basis

{n,w"} at points of 2
Taﬁ _ TJ_nan,B + naT[‘a —+ nﬁT(L —+ TOIJB’ ’n,OCT(L = 0, naTo‘JB =0

holds for of the + and — spacetimes. Thus, the energy density, energy fluxes and pressure
components tangent to X, reflected in the tangent part T C‘Jﬁ of the energy momentum
tensor, are allowed to be discontinuous, encoding in addition all the independent disconti-
nuities. Conversely, the normal pressure to ¥, encoded in T and the energy flux through

>, in Tolz7 must be continuous.

2.3 Matchings preserving the symmetries

In many physical situations it is required that the whole matched spacetime exhibits some
symmetries, and for this, the independent spacetimes to be matched must share these sym-
metries, which, in addition, are asked to be inherited by the matching hypersurface ¥. In
rough words, this amounts to requiring that the restrictions to the matching hypersurface
Y of the generators of the symmetries (wanted to be preserved) in the spacetimes (V*, g%)
are tangent to Y. The precise definition of a matching preserving the symmetries, given
in [10§], is

Definition 6 Let (V,g) be a spacetime arising from the matching of two oriented C?
spacetimes (VE, gF) admitting a Gn+ and G,- local group of symmetries, respectively,
and with respective boundaries X given by the embeddings . Then (V, g) preserves
the symmetry defined by the subgroup G, with m < min{n*,n~} when first, this group
is admitted by both (VE,gF), and second, the differential maps d®* send m vector fields
Ya (A=1,...,m) on X to the restrictions of the generators Xj of G, to oF.

One of the first consequences of the symmetry preserving matchings is that if the

preserved symmetries are generated by conformal Killing vector fields these satisfy

Lemma 3 (Vera, 2002 [108]) Let Ct and (- be two conformal Killing vector fields
acting on (V*,g") and (V~—,g7) respectively, so that Egvigi = atg*t for some functions
a*, allowed to be zero. If (V*,g%) and (V=,g~) are matched across a matching hyper-
surface ¥ = X = X7 diffeomorphic by such that there is a vector field ¥ satisfying
do* () = CEs, then ot |y = a7 |x.

This kind of matchings is appropriate for the study of isolated bodies rotating in

equilibrium: the models are constructed matching a spacetime containing an interior
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2.3. Matchings preserving the symmetries

fluid with an exterior vacuum spacetime. Both are stationary and axially symmetric,
admitting thus a G5 group of isometries acting on 75 surfaces. The matching is asked to
preserve these symmetries. Axial symmetry forces the Gy on 15 groups to be Abelian in
both interior and exterior spacetimes [81]. On the other hand, the orthogonal transitivity
property is only guaranteed in vacuum, although assumed in the fluid region imposing
the circularity condition.

However, the property of orthogonal transitivity of a G5 group in one of the spacetimes
is propagated to the matching hypersurface when the matching preserves the symmetries.
Let us summarize two important results that apply to any two-dimensional GG, local group
of symmetries acting on non null surfaces. For this, consider the generators {§+, 77} and
{£=,7 Y in (V*,g%) and (V—, g7) respectively. Their associated one-forms are {£€7, n*}
and {£7,17} so that the 4-forms €* A ™ Adn™ and €5 An* A d€*, define, through the

Hodge dual , two n — 3-forms that in 4 dimensional spacetimes are just functions.

Theorem 3 (Vera, 2002 [108]) Given a matching preserving the symmetry of a
Gy local conformal group, not necessarily proper, and choosing {5+,77+} and {51, 7} as
the sets of generators of the Gy groups at (V*,g%) and (V~,g~) respectively such that
dd* (7)) = Ei‘zi and d®* () = 77t|g<, for a pair 7, and Ya, of vectors on ¥, then

w(nTAETAAEY) = x(nT A€ AdET),
* (€7 Ant Adnt) e * (& An~ Adn7).

In particular, Theorem [3]implies, when one of the G5 groups, say that of the spacetime

+, acts orthogonally transitively on X the following

Corollary 3.1 (Vera, 2002 [108]) Given a matching preserving a Gy local conformal
group — not necessarily proper — as defined above and such that the G5 acts orthogonally

transitively at one side of 3, say at (V*,g") then
* (n_ NE A dﬁ'_)
* (E’ AN~ A dn’)

A similar result regarding the integrability of (conformal) Killing vectors holds, pro-

[Ied

0,
0.

z

vided that the matching preserves the symmetries. Although it was not presented in [108]

it can be proven using the same construction needed for Theorem [3| It reads

Lemma 4 Given a symmetry preserving matching, let 5i be (conformal) Killing vector
fields in (V*,g%) and (V™,g7) respectively, such that d®*(7) = (|, for some vector 7
in . Then

Ctadet Z¢ Ade. (2.72)
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2. MATCHING OF SPACETIMES

Corollary 3.2 And if 5* 18 integrable, it follows that
¢ Ade 20, (2.73)

Proof: We include here the proof for the result (2.72), which follows the proof of Theorem
given in [I08]. The explicit decomposition of any one-form ¢ at points of ¥ in the cobasis
{n,w"} reads

(o =Zn+Cw?,  Z:=C¢(0), = C(@).

The exterior derivative of ( decomposes as
d¢|s = Agpw” AW’ + Bon A w?,
where we have defined

Aab = é»[aL (Cb}) ) A(ab) = 0;
B, = 20%e8V (s = 172V 1C5 — Eu(Z) + (uel V5l°.

Thus the 3-form resulting from the wedge product at points of ¥ reads
CAdlls = (Cudpe) W AW A w4 (EAw — (By) n A w AW (2.74)

We are interested in computing the difference of this last product as seen from the two
spacetimes + and —. Note first that since the matching preserves the symmetries [¢] = 0,
so that [Z] = [(,] = 0. As a consequence, the tangential derivatives of [Z] and [(,] also

agree on . Recalling the definition of A, this implies [A,,] = 0. Finally, for B, we find
(Bl = 1°€][Vas] + Caa[Vpl®] = 1°€][Valp] + C"[Harl,

and after a little manipulation the first summand can be written as

1€ [VaCs] = 17€[Legas] + (el [Vilal.
Therefore, the difference of as seen from the sides + and — is given by

(€ AdC) = —Call€) [Legap] + 20 [Huc ) A w® A,

which after the imposition of the matching conditions, [Hy] = 0, becomes

[C A dC) = —Cal®e)[Legasln A w® A w.

This expression vanishes by assumption due to Lemma [3] [ |
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Perturbed matching of spacetimes

The previous chapter was devoted to construct a spacetime by joining two spacetimes
across a common boundary. After some development, the matching conditions are for-
mulated as a set of equations involving the first and second fundamental forms, which
depend not only on the spacetimes to be matched but also on the matching hypersurface
itself.

However, there are some problems in GR for which a perturbative approach is con-
venient. For instance, the only known solution of a fluid ball rotating in equilibrium
and immersed in vacuum has been only achieved in perturbation schemes [16], 211, [57].
The matching conditions can be formulated in perturbation theory, but in the process an
additional complication arises. Perturbation theory carries an inherent freedom known
as the gauge freedom that affects, in particular, the fundamental objects of the match-
ing theory, the perturbed first and second fundamental forms. A second freedom of this
type arises from the identification of the boundaries themselves. To sum up, two levels
of gauge freedom are inherent to the perturbations of hypersurfaces and result relevant,
for instance, in the determination of their deformation. A successful theory of perturbed
matchings has to be independent of these freedoms, and free of gauge choices that may
restrict its applicability. This was achieved in full generality in [79], where first and second
order perturbations of hypersurfaces were considered. The analysis of the gauge freedoms,
although already present in [79], is retaken in a subsequent work [80] where also the con-
sequences that symmetries of the background spacetime have in the perturbation method
are studied.

There are other approaches mainly devoted to spherically symmetric background
spacetimes. The classical papers [51l [52] discuss a general framework around spheri-
cal symmetry, but their approach to the matching conditions contains imprecissions (see
[80]). This formalism is revisited in [85] with the aim at justifying the claims in [51],52]. In

[85] the formulation of the matching conditions is built upon a class of (spacetime) gauges
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3. PERTURBED MATCHING OF SPACETIMES

that maps the perturbed matching hypersurface to the background matching hypersur-
face, thus introducing the concept of surface comoving gaugeq’} Although the matching
conditions are eventually provided in terms of (spacetime) gauge independent quantities,
some imprecissions and implicit assumptions are still present, which may give rise to prob-
lems by not properly using the framework, as discussed with detail in [80]. In particular,
these approaches ignore the hypersurface gauge freedom, which may have some subtle
importance, for instance when showing the existence of the perturbed matching.

In [87] the perturbed matching conditions are found for background geometries with
a high degree of symmetry, and in that case the first order matching conditions are
presented in terms of double gauge invariants, i.e. quantities that are both spacetime and
hypersurface gauge invariants. It was shown in [80] that that set of matching conditions is
not sufficient to ensure the perturbed matching, since it does not cover the [ = 0, 1 sectors
of the matching conditions (in a decomposition using spherical harmonics). Perturbations
of hypersurfaces to second order haven been also treated in [II] in the context of cosmic
strings and branes.

In this thesis we will follow the consistent and general theory of perturbed matchings
to second order provided in [79], which formulates the set of matching conditions inde-
pendetly of the gauges used at either side of the matching and provides the deformation
with respect to those gauges.

This chapter is devoted to summarize the main ingredients and results of [79] (and
[80]). It is divided in 5 sections. In first place (Sections and [3.2), we present the
metric perturbations as a problem for two-covariant symmetric tensors defined in a fixed
spacetime (the background) and the deformation of the hypersurfaces encoded in a vector
field defined in an (unperturbed) hypersurface embedded in that background spacetime.
Section is devoted to the construction of tensorial objects, also defined in the unper-
turbed hypersurface in the background spacetime, that represent the perturbed first and
second fundamental forms induced by the metric and hypersurface perturbations. Finally,
the perturbed matching conditions are presented as equations for those tensorial objects
in Section . The last section is devoted to summarize some peculiarities that arise

when the background spacetime has symmetries.

"'We will refer to the gauges used in [85] as “surface comoving gauges”, although in that work this
is referred to as “surface gauges”. We keep the “surface gauge” term when we require also a pointwise
identification. We explain these gauges just after Proposition
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3.1. Metric perturbations

3.1 Metric perturbations

Let us consider a one parameter family of n+ 1 dimensional spacetimes (V., g.) diffeomor-
phic to each other. From this family of spacetimes we single out one element, (Vy, go) as
the background spacetime. For the sake of notation, in most places we drop the subindex
0 to denote objects related to the background, and hence we will refer to this spacetime

simply by (V, g). By assumption there is some e-dependent diffeomorphism ).
VeV —= V.. (3.1)

The diffeomorphism . allows us to define a one parameter family of metrics ﬂ g. on V
related to g.. In terms of the pullback ¢f these can be expressed as g. := ¥¥(g.), so
that ¢ = g.—o. The first and second order perturbation tensors are symmetric 2-covariant
tensors in the spacetime (V, g) defined as follows

d*g.
de?

dg.
K| = K5 =
1 d€ 5207 2

(3.2)

e=0
Perturbation theory to second order consists in the study of these two tensors.

Tensorial objects in contravariant form can also be pushforwarded to (V, g) through

—1
e

the inverse map ¢~ ", so that, for instance, a one parameter family of two contravari-
ant symmetric tensors can be defined on V in terms of the inverse metrics g-' via the

pushforward diy-! so that
(9:) = (aw (5)) (3.3)

Note that (9-")as = Gapgsr (g1 is not g.op. Taking e-derivatives at € = 0 the pertur-
bation of the inverse metrics are found to be

K= —dgzl; |k, R —in’; : B + 267K
e=0 e=0
Note that K;, Ky, K;' and K, ' are all tensors in the background spacetime (V, g) and
thus their indices are raised and lowered with the metric g, or its inverse. In a more
general situation, given a family of covariant tensors 7. in (Ve, g=), a corresponding family
T. can be obtained in the background spacetime (V, g) via the pull back ¥*. Similarly, a
family of contravariant tensors can be pushed forward by d¢)=! in order to define a family
of contravariant tensors in (V, g). Once the T, are constructed in (V, g), the corresponding

first and second order perturbations are defined by
2
T(l) .: dTE 7 T(Q) ‘: d T&-
: = .
de |._, de? |__,
2These are C3, nondegenerate, symmetric, two-covariant tensor fields in V. The construction is C?
with respect to €.

(3.4)
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3. PERTURBED MATCHING OF SPACETIMES

Let us consider the family of tensors g. and its corresponding family of associated con-
nections, V¢. The relation of the covariant derivatives of ¢g. and g(= g.—o), denoting

V := V=0 is given by the standard formula
+C,

V&‘MTﬁa - VUTﬁ Cg EV/LTﬁ7 (35)

ﬁuv

where C.5. = (1/2)9:""(V9ey + VaGeps — Viugep,)- It is convenient to define here the

first and second order perturbations of C.3.. These read

d

i = di:ﬁ7 e S (VoIS + V50 = VoK) (3.6)
e=0
0(2)0‘ o d? 85’7 — 52 _9K ac« (nr
By T de2 — PBy Ip By
e=0
with .
S[C;'y = 5 (VBKQ,OY[ + V,YKQZ - VQKQB,Y) . (37)

Back to relation , it allows us to express the first and second derivatives with respect
to ¢ at € = 0 of the e-covariant derivative of a one parameter family of tensors 7.3 in

terms of objects defined in the background spacetime. We find, explicitly
dve, 1.3

. 1 % 1 v
el v, V5 -1y + TECW) (3.8)
VTG = V, 195 - 10C®; + T5C® o7 cM? 4+ orMicW® (3.9
= |, ~ v st 13 - pu T sC03-9)

We can now obtain the field equations that the perturbation tensors K; and K5 satisfy
in terms of background objects. To this aim, let us apply relation (3.5)) repeatedly to an

arbitrary one form w to find

VeV W = VVws — (V0 Jw, + Ch,Col w, — C.F

E/'“/

(Vpws — Cegpwk)

The antisymmetrization of this last expression in {ur} provides the following relation

between the Riemann tensor of g. and that of g
R,u,uﬁp(g€> = Ruyﬂp<g) - 2V[,u0 V|3 + 2055 C p (311)

Taking the first and second derivatives with respect to € at € = 0 of the previous expression

we find that the perturbations of the Riemann tensor read

dR 5" (g:)
1 p v (1P
R( )MV,B — MT . 2V[“C' V]ﬁ7 (312)
d’R, L (g.)
2 o vB _ (2)P (1) (1) P
R® " = —’&82 B —2v,,0®0 4 acWy cV) (3.13)

38



3.1. Metric perturbations

Now it is direct to find the perturbations of the Ricci tensor

dR,5(9:)
1 _ uB\Ye _ 1)P
T o —2V,CY,
1
= 5 (~VuVaKi = V, VK, +2V,V K ) (3.14)
d*R,5(g:) A
2 _ B\ Ye _ 2)P 1 1P
R, = 5 T —2V, 05 + 40, ),
1 A
= 5 (~VaVsKef = Y,V Ko, + 2V, K, ) +4C0 5,000,
HAV, (CD) K1), (3.15)
and of the Ricci scalar
dR(ge) dgs'uBR ﬂ(gs)
RO .= e/ — Je TrupAIE) — _K"R 1B R
de |, de o 1 s 0 s
= —K1"R,5— 0K+ V,V'K", (3.16)
r® — TR _ &g Ruslge)
de? |, de? —o

= —K)*’R,5— 0Ky, + V, V'K,
F2R PG Ry — Ky (—vuvﬂmg — VY,V + 2vpv(ﬁK15)>
A
4gm8 (C“)B[MC(”;A + v[#(cmzwmg)) , (3.17)

The perturbations of the Riemann tensor and display the same structure
for higher order terms, i.e. the term C® enters exactly as the CV) does in ,
although includes, additionally, inhomogeneous terms coming from the first order.
This structure is propagated to the perturbations of the Ricci tensor , , where
the contributions of K5 (the first line of ), are identical to those of K; in (3.14]).
The same can be observed for the Ricci scalar in and .

With the expressions above, the perturbations of the Einstein tensor read

1

GV = RO =5 (Kig Rt g3, RY) (3.18)
1

G®s, = R®g, — 5 (Kap, R+ g R + 2K, 5,RY) . (3.19)

For a matter configuration described by an energy momentum tensor 7.4,, defining as
usual its first and second order perturbations 7 gu and T7® au respectively, the field
equations read G® Bu = T gu, for i = 1,2. For vacuum, the perturbed field equations
to order i = 1,2 reduce to RV, = 0.

The perturbative approach described so far relies on the identification of V. with V
via some diffeomorphism . However, there exists the freedom of taking any other
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3. PERTURBED MATCHING OF SPACETIMES

different identification. This freedom arises naturally if we take a diffeomorphism in each
manifold V. before the identification of spacetimes, for instance the original identification
, is carried through. Thus, it is clear that the identification is non unique. We can
deal with this situation by taking into consideration a e-dependent diffeomorphism in V
before applying 1.. Let us denote this diffeomorphism in the background spacetime (V, g)
by Q.. It generates a new identification of spacetimes driven by wég) = 1. 0 . and it
induces a new family of tensors ¢ = 1/1§g)*(§5) = Q*(g.) on V. Now, the gauged metric
perturbations are constructed analogously to and denoted by a @) superscript, so

that
2 gég)

(9)
0 ._ 9 _
de?

K,\9) .—
dg ) 2

e=0

Ky (3.20)

e=0
The relation between the perturbation tensors K 1(9), K,9 and K 1, K5 is addressed in

the following proposition, in terms of the first and second order (spacetime) gauge vectors

51 and 52 defined as follows

» 00,
= 21
5 e |._y (3:21)
) ) Qo Y A
S = Vg G, Vo= el )l g (3.22)
s oh he0 Oe -

Proposition 1 (Bruni et al, 1997 [19]; Mars, 2005 [79]) Under a gauge trans-
formation defined by the vectors Si and §2, the first and second order perturbation tensors

transform as

Kl(g)aﬁ = Klaﬁ + £§19057 (323)
K395 = Kong+ L3 0ap + 2L5 Kiap — 251SY Rapsy + 2VaS1' V551,
(3.24)

Note that if S = 0, the gauge transformation of the second order perturbation tensor

becomes linear, in the sense that it is analogous to a first order gauge transformation.

3.2 Perturbation of hypersurfaces

Deformation vectors

Consider now a family of spacetimes with boundary (V., QE,XA]E). The setting for the
description of the deformation of the boundary is constructed as follows. Assume that

the V. are submanifolds of a larger manifold without boundary W., so that for each ¢, f)s

40



3.2. Perturbation of hypersurfaces

Figure 3.1: Graphic description of the spacetime gauge freedom. Let the spacetimes
(f)a, g:) be identified by the diffeomorphism .. It is clear from the picture that § = 1.(q)
and p = 1.(p). Consider now a diffeomorphism €. in the background, so that the point p
in the background spacetime is mapped to ¢ = Q.(p). This defines the new identification

§9), by ¢ = :(q) = ¥ 0 Q.(p) = wég) (p). The gauge transformation is defined to first
order by the vector S;.

is an embedded hypersurface in W.. The whole construction will be independent on the
choice of extension used to construct W.. Assume now that (W., g.) are diffeomorphically
related by some v.. We also assume that Y. are timelike everywhere (in [79] the whole
formalism is developed demanding that these are simply non-null everywhere). Each 3. is
projected to the background spacetime (W = WEZO, g) via the map 1), generating there
a one parameter family of hypersurfaces .. The deformation of ¥y = f]o as € varies, as a
set of points, is encoded in this family of hypersurfaces embedded in W. It is important
to note here that the deformation is referred to an specific choice of gauge, since the whole
construction depends on ..

At this point an additional freedom of the process arises. In order to know how points
in ¥ are mapped to Y., we need to identify the 3. among themselves. This prescription
is known as the hypersurface gauge freedom and it is driven by a map ¢. : ¥ — 3., where
> is an abstract copy of one element of the family, say 3. Now, using the spacetime
identification 1. we construct the family of embeddings ®. := 9! o ¢., which map the
abstract hypersurface ¥ to the embedded hypersurfaces .. Introducing local coordinates

{£%} in ¥, where the index a ranges from 1 to n, and {x®} in W, where a goes from 0 to
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3. PERTURBED MATCHING OF SPACETIMES

Figure 3.2: The hypersurfaces 3. are projected down onto the background (V, g) by the
map 1. to generate the family .. This family describes how the background ¥, changes
as € varies as a set of points on V. But this is not enough to take e-derivatives. We still
need to prescribe how a given point py € ¥y is mapped onto ...

n, we can write the embedding ®. in local form

b, : X —-W
€0 5 2 = BO(E9, ). (3.25)

We single out the embedding ®._, as the unperturbed embedding, so that it embeds X
into (W, g) as 3¢ = ®o(2). The hypersurface ¥ is equipped with a nondegenerate metric
h := ®;(g) and its associated covariant derivative V. We define the tangent basis of ¥ in
W by €, := d®y(0/0¢) and denote by 7 a normal spacelike unit vector to 3. The dual
basis {n,w} is defined as in Chapter 2] The manifold ¥ inherits a second fundamental
form given by x := ®§(Vn). Recall that the projection tensor to the hypersurface £ in
terms of the tangent and dual bases is hf := ejws.

For a fixed point of the hypersurface X, the embedding ®. generates a curve on W as
e varies, that starts at pg = ®o(p) € Xy. The tangent vector to this curve at points of ¥,

and its acceleration, define respectively the first and second order perturbation vectors

Zl and Zg as follows

Proposition 2 (Mars, 2005 [79]) The first and second order perturbation vectors
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3.2. Perturbation of hypersurfaces

Figure 3.3: Take a point p in ». This corresponds to py in ¥y. Via the diffeomorphism
¢e (in gray) that identifies the hypersurfaces S, (in thick blue lines) among themselves,
po is mapped to p., in the spacetime (W, g.). This point p. is now mapped via 9!
(in turquoise) to the background spacetime so that p. = 51)(]35). The embedding ®,,
defined as the composition @, := ¢-! o ¢, identifies pointwise the hypersurfaces 3. (in
blue, dotted) and for a fixed py € ¥ it produces a curve as € varies. The tangent vector

and the acceleration of this curve at py are precisely Zl and Zs.

Z (&) and Zg(ﬁ) of the hypersurface ¥ read

Z3 (&) = % R (3.26)
ze) - T8 amevenzene. e
where (0 (£%) is the local form of the (unperturbed) embedding ®.
Let us decompose 7, and Z, into normal and tangent parts to X, i.e.
Zy =i+ T, Zy=Qii+ T (3.28)

In what follows we may use Z, Q, T to refer to both Zl, Q1, T, or Zg, Q2, To. Also, we
will refer to the vectors T and function @) defined at points on ¥ C V and to the
corresponding vector T* and function ) defined in ¥ by T and (@ indistinctively.

The deformation vectors depend on both spacetime and hypersurface gauges. Let us

describe first their dependence in the latter. We have prescribed how the hypersurfaces
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3. PERTURBED MATCHING OF SPACETIMES

3. are identified among themselves via some diffeomorphism ¢.. The freedom inherent
here relies, again, on the possibility of taking diffeomorphisms within each 3. before
performing the identification among themselves, generating thus a new identification.
This is the essence of the hypersurface gauge freedom and it is best described at the level
of the embedding ®.. Let us then consider a diffeomorphism y. on ¥ previous to the

application of the map ®.. The coordinated form is a e-change of the type éa = éa(fb, £),

Xe @ X— X,
£ — €0 = ¢%(¢ ). (3.29)

As a result, a new family of embeddings @2’“‘)

= @, o x. can be constructed. The gauge
vectors are defined analogously as the spacetime gauge vectors (see (3.22))), but the role
played by the diffeomorphism €. in (3.22)) corresponds now to x.. Thus we introduce the

hypersurface gauge vectors in terms of x. as
ho)

_OXe NG (a(XerhOXg_l)
Note that u; and s are vectors defined on ¥, but can be promoted to spacetime vectors

1_1:1 = 85

+ Vg, 1. (3.30)
e=0

C T e Oh

e=0

(that we shall still denote by w; and ) tangent to Xo.

Proposition 3 (Mars, 2005 [79]) Under a gauge transformation on % defined by

gauge vectors iy and s, 7y and Zy at any point p € Xg transform as

7MW = 7+, (3.31)
Z_éh) = ZQ + 17:2 + Qvﬂ‘l Zl - (’fabuillul{)ﬁﬂ (3'32)

where T is a unit normal, (,7) =1, and Ky, s the second fundamental form of .

It is clear from these rules of transformations that the hypersurface gauge can be used
to set to zero the tangent parts fl /2 of Zl /2. Let us discuss now the normal component of
the perturbation vectors. The transformation rule to first order does not involve
@ at all. A hypersurface gauge change does not modify the hypersurfaces Y. as sets of
points, it just varies how these are identified pointwise, and thus (); is not sensitive to
such changes. However, the effect of a hypersurface gauge transformation is more involved
to second order due to the fact that Z, measures accelerations, including those coming
from the first order perturbations, leading to the not obvious effect that ()5 is not gauge
invariant with respect to ;. Still, shows that ()5 is clearly invariant under a change
driven by . If we include transformations driven by some u; and s, a straightforward

calculation using ((3.31)) and (3.32)) leads to
Qgh) = Q2+ 2t1(Q1) + ﬁaﬁ“?(“? - 2T1(h)ﬁ)'
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3.3. Perturbations of the 1st and 2nd fundamental forms

This result suggests the construction of the (hypersurface) gauge invariant quantity
QQ = QQ + /‘i(fl, T;l) - 27:1(@1) (333)

We consider now the action of the spacetime gauge on the perturbation vectors Z. Recall
the definition of the embedding ®. = ¢)-! o ¢. and consider a change of spacetime gauge
driven by a diffeomorphism Q). in the background spacetime. It follows that the embedding
transforms as ®:7 = @) Yo ¢, = Q7 oyl o, = Q71 o @.. This is the starting point

to show the followmg.

Proposition 4 (Mars, 2005 [79]) Under a spacetime gauge transformation defined by

S, and 52, the first and second order perturbation vectors of ¥ transform as

70 = 7, -5, (3.34)
29 = Zy— Sy —2V; S +2V; S (3.35)

There is a particular class of gauges known as surface comoving gauges where each hy-
persurface Y. agrees with ¥, as a set of points in W, so that the matching hypersurfaces
are seen unperturbed on those gauges. To first order this amounts to requiring )1 = 0,
whereas for the second order it cannot be expressed simply as () = 0 since ()5 carries not
only information about the deformation of the hypersurface to second order but also from
the acceleration of the first order deformation vectmﬂ . Thus, provided )1 = 0 one could
ask for the combination Q2 —n(Vyz ﬁ) to vanish. It is easily checked that this condition
is equivalent to (2 = 0.

A subclass of this type of gauges are the surface gauges, which are defined by the
vanishing of the full vector Z.

3.3 Perturbations of the first and second

fundamental forms

We have endowed the hypersurface 3, and thus the embedded ¥y, with a metric inherited
from the ambient spacetime (W, g). This same construction holds for 3. for small values

of € and thus a family of metrics can be defined on ¥ by h. = ®¥(g.). Consider now the

3In [79] the second order perturbation vector is chosen to be Zy by convenience, instead of W =
0 (0n Y5 )e=n=0, where ¥¢ is a dlffeomorphlsm in (V,g) satlsfymg ¢€+h = U$ o &,. The difference
between them is the acceleration of 21 The point is that W contrary to Zg, cannot be expressed solely
in terms of the embeddings ®. and it depends on the diffeomorphism W% which is non-unique. Thus,

Z» results more convenient. For clarifying discussions about this issue see the remark notes in Sections
4 and 7 in [79).
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3. PERTURBED MATCHING OF SPACETIMES

family of unit normal forms n. to X, with respect to g.. These define a family of second
fundamental forms in ¥ by k. = ®(V°n.). The first and second order perturbations of

the first and second fundamental forms are

dh d?h
h(l) e , h(2) = c , (3.36)
de e=0 d€2 e=0
dk A’k
1 . e (2 — €
K |, K |, (3.37)

These objects admit explicit expressions in terms of background objects. In order to
present them, it is convenient to decompose the first and second order perturbation tensor

in normal and tangent parts to X

Kios = Kitnang + Kilhng+ Kibna + Kl Kopg = Kot nang + Kolng + Koo + Ko,
where K+ = no‘nﬁKlaﬁ, Kﬂa = nﬁthluﬁ, and Kllﬂ = hhh; Ky, by definition, and

analogous for the second order perturbation tensor.

Proposition 5 (Battye, Carter, 2001 [12]; Mars, 2005 [79]) Let (W,g) be a
C? spacetime of any dimension and Yo an arbitrary non-degenerate hypersurface defined
by an embedding g : X — W. Let h be the induced metric, k the extrinsic curvature and
7 the unit normal vector to the hypersurface ¥q. If the metric g is perturbed to first order
with K1 and the hypersurface is perturbed to first order with a vector field 7 = Qlﬁ—i—ﬁ,
where Ty is tangent to Yo, then the induced metric and extrinsic curvature are perturbed

to first order as

MY = Liha +2Q ke + Kiapete), (3.38)
S 1

W = Lz kap — VaVeQ1 + Ql(_nunVRauﬁvegef + Kacky) + §K1L’{ab - nMC(l)Zﬁeg‘ef,

(3.39)

where CW7 5 is given in .

Proposition 6 (Mars, 2005 [79]) With the same assumptions and notation as in
Proposition [3, if the metric is perturbed to second order with Ky and the hypersurface is
perturbed to second order with Ty = Qo1 + T, (with T, orthogonal to 1) then the induced
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3.4. Perturbed matching conditions

metric and extrinsic curvature are perturbed to second order as

WPy = Lz ha+2Qaka + Kaageley + 2Lz Moy — Lz Loz hay +

. lrm o7 L
leK'lszm(T“l)ﬁTHﬂh“b 2 <T1T1 Fum = 211(CQn) + 200K ) Fab

+ 2Q? (—n“n”ngyegef + /fazlif,> +2VQ1VQ1 — 4Qin, C V), seley, (3.40)
K% = Lika—VaVyQa — Qan*n” Roppreel + Qakiakl — n,.Shseq e) +
+ 2ﬁflf€(1)ab + Kab (%Kf — }l(Kf)z - (Kll +le1)(K1| +V Q1)
+ 2Q1nunpn60(1)ﬁ5> + (Kllnu + 2K1L + QVMCL) l)gﬁeaebﬁ
2Qn,n" (V C(l)u )e ey — 277,“ C(l)“ eavle - 2nun”C(1)Zue§‘VGQ1
— ZQInHC’(l) 5€a el Iib — 2Q1nu Beg‘elﬂ !
ﬁgmd(cﬁl(Ql))—%gmd(T{T{nmm)—%Kllgmd(Ql)Jerm(gmdQl)hab

(27(@1) =TT ki — QuEG™ ) (n0” Rapaweel] = kakh) = 2Q1 Lopaai@n it

+ o+ o+

1 - _
5 (Va@iVo K1 + ViQi1 VoK1 ") — L Lo Kap — EQQW(TQ)Jﬁﬁ 7, Kab

- @ (n“n (V(;ng,,)e ey +2n“n”R5W,,e?eb/< +2n“n”R5uwe?e /€b> (3.41)

where S and CY) are given in and and, for any tangent vector V, (k(V))* =
k% VY and (grad f)* = h*®0,f.

3.4 Perturbed matching conditions

The matching of two spacetimes with boundary in the exact sense (as depicted in Chapter
2), say (V*, 97, 27) and (V~, g, %), requires an identification of the boundaries, ¥ and
>7. The identification of the boundaries allows the construction of an abstract manifold
¥ on which the first and second fundamental forms as coming from both sides, ™ and 7,
are pulled back so that they can be compared. If the boundaries are nowhere null (non-
degenerate) the matching conditions (in full, so that the global Riemann tensor shows no
Dirac-delta term) demand the existence of one such identification for which the first and
second fundamental forms AT and k% agree. In particular, ¥ is endowed with the metric
h(=ht =h7).

To study the matching of spacetimes in perturbation theory one can use again the

same picture. We assume two families of spacetimes with boundaryl VE g2 ,Eei) are

4We refer to [79] for a proper discussion on the subtleties involved in the definition of families of
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3. PERTURBED MATCHING OF SPACETIMES

matched across their respective boundaries f]f for each e, so that there exists a cor-
responding family of diffeomorphically related hypersurfaces 3, on which the first and
second fundamental forms from each side are equated, bt = hZ, 4t = #7. The matching
hypersurface of the background configuration is (X, h), where ¥ = 3o and h = fLBL = iza .
The idea is to construct, from those tensors on ﬁlg, corresponding families h= and k% on
(3, h) containing also the information about how Y are perturbed with respect to the
spacetime gauges defined at each side ¢)=, and the hypersurface gauge ¢., which we want
to keep free.

Following the procedure described in Section the corresponding e-families of first
and second fundamental forms in ¥, h¥ = ®F*(¢F) and kT = ®F*(V*ent) are con-
structed. Consider the setting adressed in Figure [3.4] where we have represented the
embeddings & and ®} and the diffecomorphisms ¢, ¢. and ¢} := & o ¢, . Given that
ht = &F*(gH) and ht = ®F*(gF), the tensors hf and hf are related by the diffeomor-

phism ¢.. It can be shown as follows

O (h) = @0 @l (3F) = (B 0. ()
= (67 o (90 00s)" () = 02 (57) = 02" (W) (o))

= (5 toar) (g) = 0 (gh) = it (3.42)

This also applies for the construction with the — spacetimes, so that gb:(izg) = h_. Since
ht = hZ we have that ht = hZ by construction, and analogously for the e—family of
second fundamental forms.

Therefore, the matching conditions for each e consist of imposing
ht =h_, KD =k_. (3.43)

The first and second e derivatives of , evaluated at ¢ = 0, provide the perturbed
matching conditions. The explicit expressions are found in Section [3.3] in Propositions
and [0l We only have to particularise them to the + and — configurations respectively.
Take for instance the + side, then we have to substitute the (required) background quan-
tities, K1, Q1, 7:1, and Ky, (s, Ty by the corresponding background quantities for the +
side, K17, QF, ff , and Ky*, QF, f; in the expressions given in Propositions |5/ and |§|
For the — side, we proceed analogously.

The perturbed matching conditions are formulated in terms of the background config-
uration quantities and K%, Qf, T, = plus KoF, QF, f; in the following Theorem:

spacetimes with boundary. Also, we need only to consider non-degenerate hypersurfaces f)s, without loss
of generality. Their orientation will extend through e by continuity.
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3.4. Perturbed matching conditions

Figure 3.4: The background spacetime (V*, g") and any other representative of the uni-
parametric family (V1,gF). The hypersurface ¥ in (V, ) is projected to (V*,g")

&€ &€

via 7 to obtain the hypersurface 1. On the right hand side, we have Y. and 3, the
abstract copies of ¥F (via ®F) and ¥ (via ®F) respectively. The tensor g induces h}

ia T + + vig ®F
via @7, and g induces h! via ®_.

Theorem 4 (Mars, 2005 [79]) Let (V,g) be a spacetime constructed by joining two
spacetimes with boundary (VT , g7) and (V~, g7) across their corresponding boundaries 3
and Xy . Let Y be an abstract copy of ¥ and ®F : ¥ — V* be the embeddings defining the
background matching. Let also K& and K be first and second order metric perturbations
in VE. The first order perturbed matching conditions are fulfilled if and only if there exist
two scalars QF and two vectors ﬁi on X for which

ij ij» "1(1); = ’f(l)i_j, (3.44)
holds, where hOF and kO are given in Proposition@ after the substitution Q)1 — QT,
T, — T;i, g — g&, K1 - Ki* and € — éf-c. The second order perturbed matching
conditions are satisfied if and only if there exist two scalars QF and two vector fields T;i
on X such that
— " JRLC) R (3.45)

] iy ij 15

where these objects are obtained from Proposition[f after similar substitutions.

Hence, fulfilling the matching conditions requires showing the existence of Zfﬂ and
Z;i, such that equations and are satisfied. Note that the structure of the
linear matching conditions , given the explicit expressions for the perturbed first
and second fundamental forms and is such that only the values of QF and the
differences [ﬁ], but not fﬁ and fl_, can be determined, provided that the background

has been already matched.
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3. PERTURBED MATCHING OF SPACETIMES

Y

Figure 3.5: This scheme combines the settings in Fig. and Fig. and adapts them
into a matching situation. The abstract hypersurfaces 3. are identified among themselves
via ¢., which determines the hypersurface gauge. The maps i)f embed the 3. into the
respective spacetimes (W=, gF). The perturbed matching conditions are formulated
in .

It must be stressed that the objects RV, K k(M) and £® are invariant under space-
time gauge transformations by construction, but they are not hypersurface gauge invari-
ant. However, the set of equations — is gauge invariant under both spacetime
and hypersurface gauge transformations, provided the background is matched [87, [79)].

We discussed how the vectors Z* depend on both the spacetime and the hypersurface
gauges. The hypersurface gauge, common to the two families of hypersurfaces f]i, can be
used to set to zero the tangent part T or f‘, but not both. The spacetime gauge freedom
at either side can be exploited to fix either or both pairs Z;Q and Zf/Q independently a
priori, but this has to be carefully analyzed if additional spacetime gauge choices are
made. In fact, the vectors Z??Q and Zf/Q can be set to zero simultaneously using the
spacetime gauge freedom conveniently.

At either side, say +, we will call a gauge ¢ “surface-comoving” if the hypersurfaces
¥ do not vary, and thus agree with ¥j, as sets of points in V. At first order that is
equivalent to Q7 = 0, but at second order Q5 carries more information coming from the
first order. Recall the introduction of the quantity Q; in Section The gauges referred
to as “surface gauges” in previous works, e.g. [I8] [85], require the vanishing of the whole

perturbation vector Z (more precisely Q@ = 0 and [T'] = 0 is enough).
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3.5 Freedom in the matching due to symmetries

In a general situation [fl /2] are completely determined by the matching conditions. How-
ever, if there are isometries in the background spacetime, this may not be the case.

The following discussion applies to the linear perturbations in any of the spacetimes +.
Consider an isometry in the background spacetime which is preserved by the background
matching, i.e. generated by a Killing vector field gthat is tangent to Xg, so that n(g| $0) =
0. Then, it can be shown, using the commutation of the pullback and the Lie derivative,

that 7, where &y, = d®(7), is an isometry in (X, ha), i.e.

Lhay, = e%e) Legas| =0,

Yo

so that ¥ preserves that symmetry [I08]. A similar calculation [80] shows that also
Lskq = 0. Thus, the perturbed first (3.38) and second fundamental forms, A
and (1, remain invariant under a change on ¥ of the form ffE — T;i + O*7, for any
constants C*, i.e. invariant under a change of the vectors 7" along the direction of any
isometry of the background configuration (preserved by the matching). On the embedded
3o on V this means that the difference transforms as [T)] — [T1] + &7 — €. Since the
linearized matching conditions remain invariant under this class of transformations, [ﬁ]
can slide freely along the directions of the (tangent) isometries. Therefore, an important
consequence is that the matching conditions cannot determine [T}] in these cases [80].
This can be fixed making use of the spacetime gauge freedom, that can be adjusted,
at least partially (in the tangent part to ¥y of any of the gli), to fix [T;] and thus relate
ffL and T;‘ succesfully. Note, again, that the hypersurface gauge cannot help us to fix

[ﬁ], since this is invariant under hypersurface gauge transformations.
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Hartle's model

Hartle’s model [57] constitutes the basis of most of the analytical studies performed to
study slowly rotating stars in General Relativity (GR). The formalism provides a method
to construct numerical schemes in axial symmetry [104]. The model describes the axially
symmetric equilibrium configuration of a rotating isolated compact body and its vacuum
exterior in perturbation theory in GR. The interior of the body is a perfect fluid equipped
with a barotropic equation of state. It does not have convective motions and it rotates
rigidly. This is matched to a stationary and axisymmetric asymptotically flat vacuum
exterior region across a timelike hypersurface, and the whole model is assumed to have
equatorial symmetry. By matching we mean that there is no shell of matter on the surface
of the star. The approach is analytic, and makes use of a perturbative method for slow
rotation around a spherically symmetric static configuration driven by a single parameter
QA

The first order perturbation, driven by a single function w?, accounts for the rotational
dragging of inertial frames. It does not change the shape of the surface of the star. The
second order perturbation, in contrast, does affect the original spherical shape of the body,
in agreement with the fact that this must be independent of the sense of rotation. The
second order perturbation of the metric is described by three functions, A, m and k.
In addition to the change in the shape, these functions provide the relation between the
central density of the star and the change in mass M between the perturbed and the
static background configuration needed to keep the central density of the star unchanged,
in analogy to the Newtonian approach (see [23, 29] or Chapter [J). This is how the
total mass of the rotating configuration is found in terms of the central density of the
star. There is one further property of the compact body determined by the second order

perturbations: the quadrupole moment of the star.

Tn order to ease the comparison with the original paper [57] we will use a superscript 7 to indicate
that any object f here refers to f in [57].
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4. HARTLE’S MODEL

This Chapter is a summary of the original works [57, [65], respecting the notation and

coventions therein as much as possible.

4.1 Hartle’s model in brief

Hartle’s model is a perturbative approach in which the functions in the metric and in the
energy momentum tensor are expanded in powers of the constant angular velocity Qf (the
rotation of the fluid measured by a distant observer). The background configuration is
a static and spherically symmetric fluid ball immersed in an asymptotically flat vacuum.
Provided a barotropic equation of state, i.e. an equation of state for which the energy is
a function of the pressure alone, the only parameter that must be specified to determine
completely the configuration is the value of the central density. The first and second order
perturbations in the rotational model are proportional to ¥ and its square, respectively.
The structure of the equations is such that given an explicit model computed with a
particular value of Q) models for other angular velocities can be found by scaling. A
common choice in the literature to compute a rotational configuration is the velocity close
to the equatorial mass shedding, so that Q7* ~ v/Ma=3, where M accounts for the mass
and a for the radius of the spherical model.

The model is based upon the following metric (to second order) [57]

A

g1 = —e' (1+ 20" (r,0)) dt* + A (1 +2 m* (r, 9)) dr?

+r3(1 +2k" (r,0)) [d6® + sin® 0(dp — w' (r, 0)dt)*] + O(Q?),
(4.1)

written globally in terms of a single set of spherical-like coordinates {t,r, 0, ¢} that covers
both the interior region (star) and the exterior vacuum, so that the domain of the radial
coordinate is r € (0, 00). It is implicitly assumed that in this set of coordinates the metric
is at least continuous. The static and spherically symmetric background is described
in terms of the functions A(r) and v(r). In the background, the common boundary of
the interior and exterior is located at r = a, so that the fluid extends in the region
r € (0,a] and the vacuum in r € [a,00). The first order perturbation is described by the
function w!(r, ) and the second order perturbation by hf(r,0), mf(r,0) and k¥ (r,0).
An additional second order function is used in order to measure the deformation of the
sphericall ball of fluid due to the rotation. It is denoted by &7.

We denote the Einstein’s equations computed in the coordinates {r,8} of by
g(gH)aﬂ = 87,5, where G is the Einstein tensor associated to the metric g and T is
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4.1. Hartle’s model in brief

the energy momentum tensor of a (rigidly rotating) perfect fluid, i.e.
TP = (€ +Pua® + Ps,?,

where £ and P are respectively the total energy density and pressure of the fluid with

unit fluid flow u®. These are expanded as
E(r,0) = E(r) + E@(r,0) + O(Q"Y),  P(r,0) = P(r) + PD(r,0) + O(Q*), (4.2)

where E and P are the energy density and pressure of the static star and E® and P®
denote their perturbations to second order in Q. The lack of a first order term in the
expansions is justified by demanding that the energy density and pressure cannot
depend on the sense of rotation. The vector u, under the assumption of circularity and

rigid rotation, explicitly reads [65]

u = \/_ (gue + 207 g1 + QH2g,,) (0; + QH@%)a
r2e~" sin’ 6

= e V(1 + 5

(QF — w2 — hH) (8, + QM) + O(Q13),

In a perturbation scheme the first contribution that distorts the shape of the star
from its spherical nonrotating background configuration comes from the second order
perturbations. The strategy followed in [57] to determine this deformation consists of
resorting to coordinate systems where the surfaces of constant density are located at a
constant value of the radial coordinate r of . Let us consider the surfaces of constant
density E in the nonrotating configuration. The star ends at a radius r = a where the
pressure vanishes. Therefore, the condition P(a) = 0 selects, through the barotropic
equation of state, the constant energy surface of F(P(a)) that separates the fluid interior
from the vacuum.

In the rotating configuration the surfaces of constant energy density are displaced from
their spherical shape of the background and they are determined by r = f(R, ), where
f satisfies

E(f(R,0),0) = E(R), for R € (0,al. (4.3)

The expansion of f in powers of Q¥ ie. r = f(R,0) = R+ ¥ (R, 0) + O(QF*), defines
€M that accounts for the second order term in Q. Back to the computation of the
deformation of the rotating star, the equation of state is assumed to hold in the rotat-
ing configuration. Therefore, condition (4.3)) can be formulated for the pressure, and it

identifies the constant energy density surface that limits the fluid ball by
P(f(R.0),0) = P(R), (4.4)
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4. HARTLE’S MODEL

which expanded to second order yields
P(R) + PO(R,60) + S€"(R.0) = P(R), (1.5
so that the surfaces of constant pressure, are now identified by
dpP
P3(R,0) + ﬁﬁH(R, 6) = 0. (4.6)

An equivalent treatment for the energy density yields an expression for the surfaces of

constant energy density, given by
dE
EP(R,0) + ﬁ5H(R, 0) = 0. (4.7)

In particular, the surface that separates the rotating fluid from the vacuum is found by
particularizing expression (4.6) to the value R = a obtained from the relation P(a) = 0.
This determines the deformation by

dP
(2) — H =
PP (a,0) + = R (a,0) = 0. (4.8)

Thus, the function £ measures the deviation of the surfaces of constant energy den-
sity (or constant pressure) of the rotating configuration from the spheres in the static
configuration (see figure . In addition, its value at R = a, i.e. £(a,0), determines
the shape of the surface of the star to second order.

4.2 Background configuration

The background configuration for the interior region described by A(r), v(r), E(r) and
P(r) satisfies the equations of general relativistic hydrostatics addressed in [57]. A func-
tion M is defined by

1— % = e M) (4.9)
r
so that the four equations that determine the static configuration are cast in the form
M
d d(?“) = 4mr?E(r), (4.10)
r
dP(r) B (E(r) + P(r))(M(r) + 473 P(r)) (411)
dr r(r—2M(r)) ’ '
(r) _ 2 dP (4.12)
dr E(r)+ P(r) dr

plus a barotropic equation of state E(P). The system can be solved for a given value
of the energy density at the origin. The integration of equation (4.12)) determines the
function v(r) up to an additive constant.
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4.2. Background configuration

33 E(R,6)
A}

Figure 4.1: The left figure shows, in dark green, a surface of constant energy density,
with value F, inside the star in the nonrotating configuration. It is labeled by the radial
coordinate r = R. The right figure shows, in turquoise, a surface with the same value of
the energy density, £(= E), in the rotating configuration. It is labeled now by the radial
coordinate r = R+ ¢ (R, 0).

The exterior asymptotically flat vacuum requires £ = P = 0, thus M(r) = M is a
constant and the metric functions are given by

2M
e/ =M =1 - (4.13)
r

The constant M is recognized as the mass of the nonrotating star by the assumption of
the continuity of the function \(r) at = a. The continuity of v(r) there fixes the additive
constant resulting from the integration of . Finally the assumption P(a) = 0, which
implies the continuity of /(r) at r = a, fixes the radius of the star.

It is useful to define the function

in order to cast the equations for the perturbations in a compact form. In vacuum,
jr) =1

57



4. HARTLE’S MODEL

4.3 First order perturbations

The only first order field equation {¢, p} provides the following PDE for w(r, 6)
19 ([, 0w 4dj o g ger 19 [, OwH
SO () L2 g gy IS 9 (G2l ) 4.14
rtor (r I or ) L (w )+ 25?000 \ 00 (4.14)
The equation for vacuum is recovered by setting j = 1 and e* from (4.13). At this

point wf(r,6) is implicitly assumed in [57] to be C*. Regularity conditions at the origin

together with asymptotic flatness are then used to argue that w® must be a function
of 7 alone, so that the only field equation becomes an ODE for w’(r). The function
o (r) .= QF — wH(r) is introduced in order to cast (4.14) as an homogeneous equation,
that explicitly reads [57]
~H .

%dii (7“43'%) + 4%@11’ =0. (4.15)
This equation is integrated from the origin outwards, given the aforementioned regularity
conditions there. This implies that there is only one parameter that must be provided
to completely determine the interior solution. A convenient choice is the value of &f
at the origin, denoted by &. However, as commented at the beggining of this chapter,
it is customary in the literature to specify the critical angular velocity Q. [64]. The
choice is not relevant, since the solution can be scaled to reflect any of the models, but
it is important to remark that only one (first order) parameter is needed to determine
completely the configuration.

Equation (4.15)) in the vacuum region holds for 7 = 1, which leads to

2J

(:)H(T’) = QH — '["_37

(4.16)

after imposing asymptotic flatness, for some constants Q¥ and J. The constant J corre-
sponds to the total angular momentum of the star [57]. Together with the constant Q7
it characterizes the exterior solution (4.16)). These constants are determined at r = a
assuming the continuity of wf(r) and its first derivative. The explicit relations are
~H
J = éa4 (%)W, Qf = oM (a) + i—‘g] (4.17)
The moment of inertia I is found in terms of these two constants as I = J/Q.

The constant Q7 is described in [57] to be the angular velocity of the fluid measured
by an observer at rest with respecto to (r,6) in the interior region, and w!’(r, §) is the (first
order) angular velocity acquired by a free falling oberver from infinity to (r, ). Thus, the
function @ is, by construction, the coordinate angular velocity of the fluid measured by

the free falling observer.
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4.4. Second order perturbations

4.4 Second order perturbations

The second order perturbation functions are argued in [57] to admit a finite expansion in
Legendre polynomials containing only terms in [ = 0,2 due to the non-dependency of the
first order function w on any angular variable, and from the global equatorial symmetry

of the model. Thus, the second order functions become

W (r,0) = hi(r)+ hi(r)Py(cosh),
m(r,0) = mi(r) +mi(r)Py(cosh),

K9 (r,0) = ki (r)Py(cosb). (4.18)

Note that it is also imposed that the function k& does not have spherical component, so
that & (r) = 0. This fixes the radial coordinate to second order.

According to the discussion at the beggining of this chapter about the determination
of the shape of the star and its relation to the radial coordinates used at each order, the
second order functions should be expressed in terms of the radial coordinate R, instead
of r. However, the second order equations are formally equivalent as computed either
using r or R. This is discussed at p.1018 in [57] and the argument given there consists in
considering the series expansions in Q7 of the field equations expressed in the different

systems of coordinates. In {r, 8} (of (4.1])) one finds
G(r,0) = 8T (r,0) = GP(r,0) = 8T (r,6), (4.19)

where G is the second order term of G, and the same for 7® and 7. Now, the same

expansion is considered in the coordinates {R, 0} to obtain [57]

G(r(R,0),0) = G(R,0)+GP(R,0)+cH(R, €>% _
) Acf(?%,e) g
= 81T (r(R,0),0) = 8rT(R,0)+ 87T (R,0) + 8ncf (R, 9)% |
) STAT(R,0) g

where the perturbed Einstein and energy momentum tensors in the coordinates {R,0}
have been defined as AG and AT respectively. These fulfill

AG(R,0) = 87AT(R,0). (4.20)

Note that in AT any term in £ or P is anihilated because of equations (4.6 and (4.7).

Take for instance, the timelike component of the perturbation of the energy momentum

29



4. HARTLE’S MODEL

tensor

AT, = T (R, ) + €7 (R, 0) 1A 0)

= [e"E® 4+ 2E(e’h™ + 2w™?r? sin® 0) + 2072(P — E)r?sin® 0] + ¢’ (—E® + V' E¢H)
= 2E(e"h 4 2w?r? sin? 0) + 2Q"2(P — E)r?sin®0 + V' B¢, (4.21)
where the two contributions in the first line correspond to the term in brackets and the

term in parenthesis in the second line respectively. The field equations in the background
applied to the left hand side of (4.20) imply

T,
AGy = G2(r.0)+ (R0 "I _ 60p g) 1 sneh (0 PTLT0)
= GP(R,0) + 8re"¢"(R,0)(E + EV) (4.22)

The terms e’/ EEH in (4.21) and cancel out at the time of imposing the field
equations , but the contribution 8me’¢(R,0)E’ in (4.22) survives. By means of
, this term, transported to the right hand side of the field equations, plays the role of
the perturbation of the energy density. This kind of arguments lead to the statement in
[57] (p.1018), as well as in [64] (p.810), that the equations and are formally
equivalent, given the relation for the pressure and for the energy density. In
modern terminology, this is just a consequence of a change of spacetime gauge driven by
a second order vector V, oc €79, (see equation and the related discussion).

Thence, the perturbed field equations given in [57] are computed explicitly by con-
sidering (4 as equations in the coordinates {R, 8} (instead of {r,0}) and substituting
any term in E® of P® by the corresponding expression in ¢ as dictated by (4.6) and
E7).

Thus, the equations and results in [57] for the second order will be presented here in
terms of the radial coordinate r, whose domain of definition is (0, a] U[a, 00), covering the
fluid and the vacuum regions respectively.

There are two further remarks about the field equations to second order. On the
one hand, they do not mix the contributions [ = 0 and [ = 2, so that they can be
studied separately. On the other hand, they propagate the angular structure of the metric

functions to the quantities in the energy momentum tensor, so that one finds
E@(r,0) = ( )+ ( )P2(cos0),
PA(rg) = P(2 (r) + P<2 (r) Py(cos 0),
§h(r,0) = &'(r) + &' (r)Pa(cos ).

The functions involved in the [ = 0 sector are m{ and h{l, coming from the metric, and

¢, measuring the spherical deformation of the star. For convenience, this last function
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4.4. Second order perturbations

is substituted by the pressure perturbation factor defined as ((87) in [57])

PP (r) P'(r)

Hx = 0 — H X 4.23
%) = 5y @)~ B+ P ) (4:23)
The field equations can be arranged to provide a system of first order inhomogeneous

ODE’s for the set {m{, pt’*} and an algebraic equation for hl. The system for {ml, ptI*}

reads ((97) and (98) in [57])

dm! ,dE g 1o (do\? 2 4. dj

— 4 E+ Py + — — | —=r’j= 4.24
dr UL R Y A (el Bl Ul i (4.24)
d Hx* 4 E P 2 H,.2 1
oy’ _AEEP g mer  (gop L
dr r—2M(r) (r—2M(r))? r2

I ﬁj\m)) (fz_f)? N %d% (%) ‘ (4.25)

The boundary conditions are the vanishing of m{f and pf* at the origin. Apart from

ensuring regularity there, these conditions imply PO(Z) (r) = 0asr — 0, so that the central
pressure of the nonrotating configuration is preserved in the rotating model (see below).
The algebraic equation for hff, given by (90) in [57], corresponds to the hydrostatic

equilibrium first integral, which reads explicitly
1
o+ b — 57’26_”&)2 =7, (4.26)

where v is a (second order) constant. Note that v equals the value of Al at the origin,
v = hg' (0).
The set of functions that determines the exterior configuration to second order is

{mll hl}. The field equations are (4.24), with j = 1 and & given by (4.16)), and the
following first order equation for hf

dhg w3
dr— (r—2M)%2 ri(r —2M)
The asymptotically flat vacuum solution thus reads ((105) and (106) in [57])
J2
mg (r) = oM — =, (4.27)
r
oM N J?
r—2M  r3(r—2M)’

hl(r) = (4.28)

for some arbitrary constant d M. This constant is identified as the change in mass due to
the perturbations by taking the limiting behaviour of the spherical part of g in (4.1]) as

r — 00, this is,

A(r),H M+ M
lim g7 = lim &} (1 428 0 ) SEDE-ulhLy (4.29)

r—00 sph r—00 r r
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4. HARTLE’S MODEL

Note that in order to add the quantities M and d M these must have been computed given
common boundary data. This is commonly achieved by using a fixed value of the central
energy density . common to the nonrotating and rotating configurations. In this way, the
total mass (to second order in Q%) can be constructed as My (E.) = M(E.) + dM(E,).

At this point the interior solution {m! pf*} has been completely determined, while
the exterior solution for m{ is determined up to M. In order to fix it, in [57] the interior
and the exterior solutions are related at r = a assuming the continuity of the function
mil. This, using (4.27), fixes the constant §M as ((107) in [57])

2

SM =m{ (a) + % (4.30)

Note that the continuity of hfl cannot be used to obtain 6M, since hf is determined up
to an additive constant () in the interior. The [ = 0 sector also determines the spherical

change in the shape of the star to second order. After using (4.12), (4.9), (4.23]) and
P(a) = 0, this deformation is found to be

&' (a) = —a(a — 2M)pq'*(a) /M. (4.31)

The | = 2 sector involves the functions hi, kX and mil | coming from the metric
perturbation, and the function &4, which will account for the ellipticity of the star. As in
the [ = 0 sector, £ is substituted by pi’* by a relation analogous to (4.23)). Explicitly,

P(r) P'(r)

w0 Byt pey T B P (4:32)

A convenient function v := A& + k! is introduced to substitute kZ. For the fluid config-
uration, the field equations can be arranged as a system of two first order inhomogeneous
ODE'’s for the set {h¥ v} and two algebraic equations for m& and pif*.

The system for h4 and v# is given in [57] by the equations (125) and (126), whose

explicit form is

dvt 1 9 1
dhi! , r 4M H
i N — | 87(E+P)—— ) | h
dr ( V+V’(T—2M)<7T( +P) r3 )> 2
r(r—2M)v' 6 2 (r—2M)/'
2255 (rV 1 9
_ e —— 4.34
3 (2 +(r—2M)V’)w (4:54)

The boundary conditions that ensure regularity at the origin are simply hf = v =0 as

r — 0. The field equations also provide the following algebraic equation for mi’ ((120) in
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4.4. Second order perturbations

[57])
my (T) H 27’3j(7’)j/(7’) ~2 T4j2<7‘) ~ 12
o) —hf(r) — Era— (r) + W' (r). (4.35)

Finally, the equation defining the perturbation of the pressure, or equivalently the [ = 2

component of the hydrostatic equilibrium first integral (90) in [57], provides the following

relation, that determines pi*

TQG_V(T)

3

pi*(r) + hE (r) + &3 (r) = 0. (4.36)

In vacuum only the first three equations apply, and given the asymptotic behaviour

as r — oo the set of functions {hi v mk} is integrated to

R(r)y = KQ? (% — 1) + J? <Mirg + 714> : (4.37)
IMK r J?
of(r) = r(r——QM)Q% (M — 1> — (4.38)
mil(r) B r J? 1 5
o = k) s () (439)

where @) denote the associated Legendre polynomials of the second kind.

The interior solution is determined up to a constant, associated to the homogeneous
solution of the system (4.33|) and (4.34), and the exterior solution is determined up to the
constant K, explicit in the expressions —. These two constants are determined
in [57] assuming that ki and v are continuous at r = a.

There are two physical quantities of interest arising from the [ = 2 sector of the second
order perturbations. On the one hand, the constant K in the vacuum solution is related
to the quadrupole moment of the star @ by (26) in [65]

8KM?  J?

@=—7%—"+731

On the other hand, the ellipticity e of the configuration is related to the pressure pertur-
bation factor pi'* and it can be expressed in terms of £ using the relation (4.32)) as given

by (25¢) in [65]
e= \/—3 (UH(a) — hil(a) + g{ﬂ) (4.40)

a
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Axially symmetric and stationary matchings in
perturbation theory

This is the first one of a series of three chapters , @, and [7)) aimed at putting Hartle’s
model [57] on firm grounds. In these, we construct the model using the perturbation
theory [79] reviewed in Chapter [3]

In this chapter we construct an axially symmetric and stationary configuration by
matching perturbatively to second order two configurations (V*, g*, ©F, {g*}). The back-
ground matched configuration (), g) is chosen to be static and spherically symmetric.
The embedded matching hypersurface Yy is timelike and preserves the symmetries of the
spacetimes. On top of (VT ,¢") and (V~,¢7), axially symmetric and stationary metric
perturbations to first and second order are developed from the families of metrics {g=},
being these stationary, axially and equatorially symmetric. The metric used in Har-
tle’s model is included within {g*} and {g_} respectively. In this chapter we do not
impose field equations of any kind. In this way, the results can be used in more general
situations, such as other theories of gravity for which Hartle’s model has been generalised
already in the literature.

Regarding our assumptions, although the deformation of the boundaries is left as an
unknown, we assume that it is axially symmetric. The perturbed matched spacetime thus
retains the axial symmetry. This requires that the normal components of the deformation
vectors, Q* do not depend on the axial coordinate. Given the axial symmetry of the
background, we can also ask T to have no axial component without loss of generality (see
Section .

The structure of this chapter is the following. Firstly, we identify the neccesary in-
gredients in the perturbation scheme: the background spacetimes (V*, g*) as two generic
static and spherically symmetric spacetimes, the family of tensors {g=} inspired by the
metric ¢! introduced in Hartle’s model, from where the perturbation tensors to
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5. AXIALLY SYMMETRIC AND STATIONARY MATCHINGS IN PERTURBATION THEORY

first and second order are obtained. Our {g¥} are chosen so that the two gauges that
correspond to the two “systems of coordinates” used in the original model are included
within the family.

Secondly, we perform the three matchings order by order. For the background match-
ing we use the formalism introduced in Chapter [2[ and for the perturbed matching we
use the theory from Chapter [3] The results obtained from the perturbed matchings are
summarised in the form of two propositions (Proposition [7| for the first order matching

and Proposition [§ for the second order matching).

5.1 Family of metrics

The original “perturbed” metric in [57] is given by assuming also that £ hasnol = 0
term. In the context of perturbation theory this stands as a specific choice of spacetime
gauge and we will refer to it as the (spacetime) k-gauge. However, the determination of
the matching hypersurface is made in [57] (and most other works in the literature, see e.g.
[16]) by resorting to another spacetime gauge, prescribed through the surfaces of constant
energy density. Since we also want to examine the use of these different spacetime gauges
in the literature, we consider a family of metrics g. that can accommodate both spacetime
gauges. To do that a crossed term in (r,6) is needed.

Let us thus define the following one-parameter family g. of stationary and axisymmet-

ric metrics on (V, g), where g = g._o, taken up to order &

ge = —e"(1+2e%h(r,0)) dt* + X7 (14 2e*m(r,0)) dr® + 2re*e?0, f (1, 0)drdo
+r2(1 + 2e%k(r, 0)) [d6* + sin® O(dyp — ew(r,0)dt)*] + O(?), (5.1)

where t € (—o0,00), 7 > 0, § € (0,7) and ¢ € [0,27). Clearly, an arbitrary function of
r can be added to f(r,#) with no consequences. The appearance of f differentiated is
just a mere convenience. The (unique) axial Killing vector field [81] will be denoted by
7 = 0,, and we will single out the timelike Killing 5 = 0;. The first and second order

metric perturbation tensors, K; = 0.¢9.|._, and Ky = 92g.|._, respectively, take thus the

form
K, = —2r%w(r,0)sin®0dtdy, (5.2)
Ky, = (—46”(’”)h(r, 0) + 2r* sin® 0w (r, 0)) dt* + 4eX"m(r, 0)dr?
+47%k(r, 0)(d6* + sin® 0dp?) + 4re*) Dy f (r, 0)drds, (5.3)

defined on the spherically symmetric and static spacetime background (V, g) with
g=—e"Vdt? + Adr? 4 12(dh? + sin’ 0dp?). (5.4)
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5.1. Family of metrics

The (spacetime) gauge transformations described by S, = Ctd,, with arbitrary con-

3
stant C, at first order and Vy = 2Y (r,0)0,., for an arbitrary Y (r,0), are contained within
the family g.. Under the gauge S = Ct0,, the perturbation tensor K; transforms as

B23)
K9 = —2r% (w — C) sin® Odtdp, (5.5)

while under a change Vy = 2Y (r,0)0,, with S, = Ct0,, K, transforms as |D

/
K, = {_46” (h + %Y) + 2r?sin? O(w — C’)Q} dt* + 4e (m +e73 (Ye/\/Q),> dr®

Y Y
+47° (k + —) (d6* + sin? 0dp?) + 4re 0y (f + —) drdd. (5.6)
r r

We will refer to this class of second order gauge transformations as “radial” gauges.

A (spacetime) gauge whitin the set of these “radial” gauges will be fixed, partially or
completely, whenever the functions appearing in K7, , and /or K3, , are restricted
in any way. The remaining freedom would consist on the possible C' and Y (r,#) that
make the changes to the components of and fit, component-wise, within that
restriction. The k-gauge, as mentioned, consists of imposing that the function k(r,6) in
has no [ = 0 part, and that f = 0. In that case, the restriction on the K59y component
implies that Y (r,#) cannot have [ = 0 part, while the restriction on the Ks,y component
needs that Y'(r,0) does not depend on #. The only possibility is thus Y (r,6) = 0, so
that there is no freedom left. We thus say that the k-gauge fixes completely the “radial”
gauge.

A further second order gauge Vy = 2(t0;, for a constant (3, transforms h in to
h + (. This change reflects onto the freedom in shifting the gravitational potential in
Newtonian theory, and can be used to fix, for instance, h at infinity.

Let us now consider the background spacetimes (V*, g*), with corresponding coor-
dinates {t+,7+,04, ¢+ } and families of metrics g as given in . In what follows we
present the perturbed matching over a spherically symmetric (and static) background
configuration composed by the matching of (V*,¢") and (V~,¢7) across a spherically
symmetric hypersurface .

The structure of the original metric can be clearly recovered by taking f = 0
and noting that the choice of perturbation parameter € is not relevant, since families of
solutions are obtained by scaling. The physics of the model will restrict the scalability
(see Eq. (1) in [57]). Note, however, that the relation between the radial coordinates in
and (either 1) must still be determined in order to be able to compare the
functions in (4.1)) with those in (5.1)).
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5.2 Background configuration

The background configuration is chosen to be globally spherically symmetric and static.
This translates to the fact that the matching of (V*,¢") and (V~, ¢7), through respective
boundaries ¥§ and X, is asked to preserve the symmetries (see Section 3 in [108]), both
the spherical symmetry and staticity. Under that condition the hypersurfaces ¥4 and Xy

to be matched can be eventually cast, without loss of generality, as (see e.g. [80])

Ng = {ti =7, rp =ay, 0, =9, o =9}, (5.7)
Z(; = {t— =7, r-=a-, 0_=1, Y- = ¢}7 (58>

for constants ax > 0. The coordinates {7, 9, ¢} parametrize the manifold ¥, an abstract
copy of any X7 (recall the construction in Section [3.2)), so that ¥ = %f = ¥;.
Note that in this point we are identifying the timelike Killing vectors Eﬂzg, so that

O+ z O,- (where O+ leave g* diagonal). This may seem an assumption, but
in this background configuration is not. In the exterior we single out the integrable
timelike Killing vector 5‘ = 0;- which is unit at infinity. In the matching procedure,
5’ ~|x should be identified, in principle, with any timelike vector field of the + side, i.e.
with any appropriate combination §+|E = a0+|s; + bOp+|s + cOp+|x, for any constants
a, b, c. However, Lemma {4| ensures that the integrability is preserved in the matching
hypersurface, and therefore the only possibility left is that E+ = a0y+. Now, a trivial
change in ¢ is used to absorb the constant a. Therefore we can choose 0+ z 0y- without
loss of generality.

The tangent vectors to ¥ and 3 thus read

éi: : ét{t = ati|2§7 égz = 891’23[7 e_:2t = a@i|2§? (5‘9)

and the corresponding unit normals are

. _)\+(a+) A_(a_)
it =—e 2 Oilsr, M =—€e "2 0 |s, (5.10)

under the condition that 7t points V' inwards and 7~ points V™~ outwards, so that as
ry increases one reaches V', and as r_ increases one gets away of V*. This convention
will be used in what follows in order to call VT the interior and V~ the exterior. The
hypersurfaces ES—L are timelike everywhere, and they are (equally) oriented by construction.

The first and second fundamental forms read
hEdatda® = —e’*@2)dr? 4+ 6% (d¥* + sin® 9d¢?), (5.11)

@) (1
kodrda® = e s <§el’i(“i)l/§[(ai)d72 — ax(d¥? + sin? ﬁd¢2)) . (5.12)
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5.3. First order matching

where a prime denotes differentiation with respect to the corresponding argument, i.e. the
radial coordinate r, or r_ accordingly. The matching conditions h* = h~ and k* = Kk~

are thus equivalent to
v]=0, [V]=0, [\]=0, a:=ay=a_. (5.13)

Recall we use the notation [f] = fﬂzg — [ |y for objects f* defined at either side. For
the sake of brevity, given a pair f* satisfying [f] = 0, we will simply denote by f|x, either
of the equivalent f+|23 or f*|zaL. The background matching hypersurface X is endowed
with the metric h = —e"@dr? + a?(d¥? + sin® ¥d¢?).

5.3 First order matching

Once the static and spherically symmetric background configuration has been constructed
we proceed to study the perturbed matching to first order. As discussed above, the
ingredients needed are the tensors that describe the perturbations at either side, i.e. the
first and second metric perturbation tensors K;* as defined above , plus the two (so
far unknown) perturbation vectors Z;" given in the form . To ease the notation we
will denote by QF and 7% = T7(7,9,0)0, + T2 (7,9, )0 —i—sz(T, v, ¢)0, both the objects
defined on each V* and the corresponding pullback and pushforward quantities that live
on ¥. The same applies for the functions w® in , which will be denoted equivalently
as functions restricted to points on XF C V* and functions on Y whenever that does not
lead to confusion. Since the final perturbed matched spacetime is assumed to preserve
the axial symmetry, it seems natural to think that the functions () and the components
of T will not depend on ¢. Nevertheless, we will take that as an assumption. The first
and second order perturbed matchings are ruled by the particularisation of Theorem
together with Proposition [5]in Chapter [3|to the present setting with the above ingredients.
For completeness, the explicit expressions of the first and second order first and second
fundamental forms are included.

We start by calculating A" and & through expressions and . Let us
recall these are objects defined on ¥, which is timelike. The ingredients needed are the

background embeddings (5.7)), (5.8), with tangent basis (5.9) and unit normals ([5.10)),

plus the first and second fundamental forms of ¥ (5.11) and (5.12)), given that (/5.13)
holds, together with the first order perturbation tensors K;* ((5.2)) restricted to ¥3. The

functions Q7 (r,9) and vectors T;" = T7*(r,9)0, + Tfi(r, )04 + T*(7,9)8y on ¥ in-
herited from each side are left as unknowns. The explicit expressions of ROF and kMF
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5. AXIALLY SYMMETRIC AND STATIONARY MATCHINGS IN PERTURBATION THEORY

read

h(l)fjdxida:j = ev@ (—QTf” + V'(a)e_lei> dr? +2 (—e”(“)TfETﬁ + aQTfE?T) drdy
+2a? (Tliqi — w*(a,¥)) sin® Idrde
+2a(aTiEY — e 5 QE)dY® + 2a° T, sin 9dvde
+2a (aTlﬂ cosv — e’¥Qli sin 19) sin 9dg¢?,

/i(l)iijd:vidxj =

+ —2Ma) ) (q) +7 —Ma) Qli / / 7 12 2
—Q7 . +e 2e T+ +e 2 Ao(a)' (a) — 2V (a) — 2V (a dr
1, 1,7 4 + +

a 1
—2 {Qli,w + e (aTlifi - 56"“5'(&)7?%) } drdy

20675 (—Tffﬁ + —aw'™®(a, ¥) + w(a, 19)) sin® 9drde

1
—2ae"% T, sin® ddvdo
a 1
- {(Qfﬁ + 2(167¥T1ﬂ> cos ) + e MNVQF (§a)\'i(a) — 1) sin 19} sin ¥d¢?,

where the background matching conditions have been used to set vi(a) = v(a),
Vi (a) =7V'(a) and Ay(a) = A(a).

The ordered procedure used to obtain and integrate the differences [h(Y*] and [x(M*]
is the following. First, from [h(1)y4] = 0 we obtain [T1?] s = 0. On the other hand, the
derivative [V 4], = 0 yields [T1?] ., = 0, and therefore [T}?] = b7 + Cy for arbitrary
constants b; and Cy. As a result, [h(V), 4] = 0 reads [w] = b;.

Now, equation [h(M) 9] sin? ¢ — [A() 44] = 0 yields [T}"] cos®) — [T17] 9 sin¥ = 0, which
is integrated into [7)”] = F(7)sin® for some function F(r). Equation [ s3] = 0 now
reads [Q1] = eM¥/2aF cos . On the other hand, the compatibility condition to integrate
(717 is given by 2[h™M 4], — [hV ;]9 = 0, which yields F = —Fv/(a)e’® /2a, and thence
[T\7] = C) — e @a?F cos ¥ for some arbitrary constant C;. We have so far exhausted
the conditions [h(V;;] = 0.

Given the above conditions, equation [k 4] = 0 is now equivalent to [w’] = 0. The
conditions on the metric perturbations have thus been obtained.

Consider the equation [£("),y] = 0, which now reads Fasinda(2e*® —2+a/(a)) = 0.
If 2eM® — 2 + av/(a) # 0 we then have F = 0, which due to its previous equation can

only be satisfied in the trivial case F' = 0. From the above, in particular, [Q;] = 0. Then,

70



5.4. Second order matching

equations [kY 4] = 0 and [Myg] = 0 just provide Q;[N] = 0, from which [V ;] = 0
thus reads Q"] = 0.

The appearance of the constants C; and C5 is a consequence of the isometries present
in the background configuration, and cannot be determined [80] (see Section [3.5). Never-
theless, they can be safely absorbed by using a isomorphic spacetime gauge at one (any)
side, say Si = C18;, + C40,,,, which, by leads to Tit — T — S} and obviously
leaves the metric perturbation tensor K;* unchanged. We can thus set C; = Cy = 0

without loss of generality.

Proposition 7 Let (V, g) be the static and spherically symmetric spacetime resulting from
the matching of (V*,g") and (V=,g7), with g given by with respective & in func-
tions and coordinates, across Eoi, defined by , (@, with a(= ay = a_) > 0, so
that the matching conditions hold and the unit normals are chosen following
the above interior/exterior convention. Consider the metric perturbation tensors K= as
defined in at either side V*, plus two unknown functions Qi (r,9) and two unknown
vectors Tir = T (1,0)0, 4+ T (1,9)8y + T (1,9)8, on L.

The necessary and sufficient conditions that K1 must satisfy to fulfil the first order

matching conditions are

W] = b, (5.14)
W] = 0, (5.15)

where by is an arbitrary constant. Regarding the perturbed matching hypersurface, if
2eM — 2 4 av'(a) # 0 (5.16)
the remaining first order matching conditions read

[T1] = bi70, (5.17)
(@] =0, =0 @Q[]=0. (5.18)

Note that, whenever (5.16]) holds, although [Q1] = 0 is always a necessary condition,
so that QF = Q] = @1, Q; = 0 is not. Indeed, if the background configuration satisfies

[N] = 0 and [v'] = 0, @ can be any arbitrary function of (7,9). Let us remark that
condition (5.16) will be satisfied in all cases we will be interested in (see Section [7.1]).

5.4 Second order matching

We proceed to the perturbed matching to second order. As in the previous procedure for

the first order matching, the ingredients needed are the perturbation tensors at either side,
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5. AXIALLY SYMMETRIC AND STATIONARY MATCHINGS IN PERTURBATION THEORY

i.e. K,T, given by and the two perturbation vectors ZE[ The notation concerning
these objects (both the vectors Z;i and the perturbation tensors K,*) is common to
that used in the first order matching. Again, we assume that the functions ( and the
components of T do not depend on the coordinate ¢.

We shall make use of the results given in Proposition [7|for the first order configuration.
The first and second order perturbed matchings are ruled by the particularisation of
Theorem [] together with Propositions 5] and [6] in Chapter [3] to the present setting with
the above ingredients. For completeness, the explicit expressions of the first and second
order first and second fundamental forms are included.

Let us first compute explicitly the scalar Qz defined in , at each side E§

R e Vét(ai)el’:t(a:l:)
QQi - Qéﬁ +ai€ )\i( i)/Q {T

—2(T70-QY + T 09Q7)-

(TE7)? — sin? 9(T4) — <Tf“9>2}

The above first order matching conditions (5.17)), thus lead to

N

[Qa] = [Qa] + a2 sin Wby (byr — 2T77) — 2(T70,[Q1] + T} 05[Q1]).-

This new Q- will substitute the original ()9 in this section.
The procedure is analogous to that of the previous proof. However, we first consider
the case [N'] # 0 or [V] # 0, so that @1 = 0 necessarily. The explicit expression of h*

reads
hOE dpadat = {—26”@ (T3 + (T7 2)?) + 2a* (T — w*(a, 9))” sin® 9
+2a(TY ,)? — 4e" D h(a, ) + e 5 @) y’(a)@z} dr?
+2{2a*T7 4T} cos ¥'sin 9 — e”(“)TQi;g + GQT;?Z. + 20T TV 4
+20° T2, (T — w(a, ) sin ) — 2e”<a>T{JT{,ﬁ} drdd
+2a* {2 (T{.1) — TETY - — 2w™(a,9)TY) cos ¥
+ (T3°% = 217 ;w*(a,9) — Qwa’%(a, ) sind} sin ddrde
+2 {a2 <Tli¢ cos ¥ + Tf% sin 19)2 —a?sin* I(T7°)° + a*(T7 »)? + *T5Y
—e"(T] 9)* + 2a°k(a, 9) — e_¥aQ§E} dv*
+2a* {QTlei"ﬁ + (Tgif% — 217 yw™(a, 19)) sin? 1)
+2 (Tlif%Tf’l - Tlid’Tfﬁ) cos ¥ sin 19} dody
+2 {a*(T§?)? cos® I sin® O + a®(T})*(1 — 2sin®¥) + oI5 cos I sin )
-+ (2a2k(a, v) — e’yaéﬁ) sin? 19} do?,
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5.4. Second order matching

where we have avoided the use of + for quantities which already coincide at both sides.
Apart from the background quantities A(a), v(a) and v/(a) this also applies to the first
order objects that, in virtue of the matching conditions in Proposition [7], agree on X, i.e.
Tr(1,9) = T (1,9), TPE(7,9) = T (7,9) and W', (a,9) = '(a, V).

From equations [h®),4] = 0 and [h®y,] = 0 we obtain expressions for [T§] , and [T}] ¢
respectively. The integrability conditions are found to be automatically satisfied. The

integration leads to

[T] = 20, (TT + 7T cot ¥) + Dy (5.19)
for some constant D,. Likewise, from [h?) 4] = 0 and [hPyg]sin® 9 — [h®) 4] = 0 we
obtain, respectively, [T¥], and [TY]y. However, since the equation [h® 4] = 0 also

involves [T7] », this time the integrability condition provides a second order PDE for [T7]

that contains only derivatives on 1J. This is integrated to yield
[T7] = —a?F(7)e @ cos ) + G(7) (5.20)

for some functions F(7), conveniently arranged, and G(7). Making use of the expression
(5.20) for [T7], [T¥] can now be integrated in the form

[T7] = (bi7 cos9(by7 — 2T77%) + F () + Cs) sin 0, (5.21)
for some constant C3. Now, using 1) upon [h ] = 0 provides an equation for [Qg],
explicitly

[Qa] = ae2{2[k] + (F(7) + C3) cos 9} (5.22)

The remaining equation from the equality of the second order first fundamental forms
is [n®).;] = 0. From its second derivative [h(z)”]mg = (0 we first obtain a third order

differential equation for F'(7) which can be integrated once in order to obtain
F=e" 9 (a)(—F + H, — Cs)/2a, (5.23)

where the constant of integration H; has been conveniently arranged. Using this relation
back into the equation [h(z)”]ﬁ = 0 we obtain G = 0, and therefore G(1) = —Hot + D
for some constants Hy and D;. Finally, [ ,.] = 0 provides a relation between [h] and
k], namely [h] = 3 Ho + sar/(a) {2 [k] + H, cos V}.

We have to impose now the equations for the perturbed second fundamental form,
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5. AXIALLY SYMMETRIC AND STATIONARY MATCHINGS IN PERTURBATION THEORY

[/1(2),1,,] = 0. The explicit expression of H(Q)i:b, included for completeness, is

S N 1 A
5(2)§dazzd:c7 = {—Q;TT + Ze”(a)’A(a)()\i’(a)y'(a) —2(vi"(a) + V"*(a)))QF
+e TN (20 (0, 0) + v/ (a) (207 (0, 0) = m*(a,0) + T57 - + ()7 -)?)

—2e9a(T)7 ;)?) — 2e7 M9 2a5in? 9 (w*(a, V) — Ti%) (aw'(a, V) + w*(a,9) — T1 %) } dr?
+2{M2qsin? 9 (-T2, + T1" - (aw'(a, V) + 2w (a,9)) + 2 cos VTT7 .

+(2 cos ¥(2w* (a, V) — Tid’ + aw'(a,9)) + sind(aw’(a,9) + 2w*(a,9)) o)1) } drde

192 {_Q;:,T’ﬁ 4 M0)/2 (—anﬁJ + M%ﬂﬁ) _ QTlﬂQan _ 2€_>‘(a)/2aT1197TT119’19
L OOy (T T,

+€_,\(a)/2a sin 9(— cos¥(T1"?) » + sin ﬁTfEf%(aw’(a, ¥) + 2w*(a, ) — QTfE(ﬁT))} drdd

+ {272 2qsin* Y(m*(a,9) — 2k*(a, V) — ak*'(a,9)) + 4sind cos Yae*?0y f*(a, )
_%ek(a sin 9(—2 + aX, (a))QF — cos ¥ sinIQF y — 2e~ M 2qsin ¥ cos VT3 (7, 0)
+2asin’® ¥ cos? 9(TE?)? + 4a(cos® ¥ — sin? 19)(T179)2} de?

+2¢M%q {—sin® 9152 y + sin® 9(2w™ (a, ¥) + aw'(a,9))T] 9 + (=217 + sin 20T} »)T°

—sin 2077 T2  } dopddd

+ {2e7 2@ 2q(m* (a,9) — 2k*(a,9) — ak* (a, V) + 293 f*(a, V)
~ e~ Ma) ~

— @y 00— (=2 +aXp(a)Qy — 2 X2y

+2a(2 cos 20(TE?)? + sin 20(T59)? 9 + (1 — cos 20) (T2 4)?)
+e AR () (TT 9)* = 2Q1 790 T] — 2e7 N 2a(TY 5)* = 2Q1 99917 } dV*. (5.24)

Firstly, given that [w'] = 0, the equations [®y4] = 0 and [£?),4] = 0 are automatically
satisfied when (5.19)) is taken into account. We start with the equation [k 4] = 0, which
after using the explicit form of [Zg] obtained from the equations for the first fundamental
form, yields F (2 — 2eM® —av/(a)) = 0. If 2 — 2eM@ — av/(a) # 0, we need F' = 0, and
therefore, from we obtain F' + ('3 = Hy, which substituted on the above expressions
for [T3], [T?] and [Q,] leads to

[Ty] = —HoT + Dy, (5.25)
[137] = (b1 cos¥(by7 — 2T77%) + Hy) sin ), (5.26)
[Qs] = ae™V/2{(2[k] + H, cosV}. (5.27)

On the other hand, the combination of equations [k y4] sin® ¥ — [k 44] = 0, with [T}]
and [Q,] given by (5.26)) and (5.27)) respectively, yields a second order PDE involving [k] —
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5.4. Second order matching

[f], with derivatives on ¥ only, which is integrated to obtain [k] = ¢;(7) cos ¥ + co(T) + [ f]
for some functions ¢;(7) and co(7). However, since [k] . = [f] . = 0, we readily have that

2)

c1(7) = ¢; and ¢y(7) = ¢ must be constants. Now, the equation [k?)g9] = 0 provides an

expression for [m], which left in terms of [k], in particular, can be arranged as equation
below.

The only remaining equation is given by [k?),.] = 0. Using to substitute [m]
in [£®,,] = 0 we obtain a relation between [i'], [k'] and [k] (and QF). That relation is
given explicitly by equation ([5.33)).

Furthermore, from the above expression for [Qg] we clearly also obtain that the dif-
ference [()5] cannot depend on 7. For the same reason, using the above equations for [m]
and [1/], and since either [V] # 0 or [/] # 0, then Q7 (and thus neither Q3 ) cannot
depend on 7.

In the case [\'] = [¢] = 0 we can have, in principle, a non vanishing @Q;(7,9). The
appearance of @Q(7,9) in the expressions for h(2)ij does not change the procedure to
integrate the differences. For that reason, and due to their length, we avoid including the
explicit expressions of h?;; with Q,(7,9) # 0. Equations [h? 4] = 0 and [A?y,] = 0
provide expressions for [T§] . and [T}] g, the integrability conditions are automatically

satisfied, and the integration leads to the expression
2
|:T2¢:| = 2b1 (TlT + TTlﬁ cot 79) + D2 - —67)\(&)/21717'@?,
a

for some constant Dy. Note that this is exactly plus the term in Q. Now, the
remaining equations in the set [h?,] = 0 show no terms involving Q;. Therefore we
obtain the same set of equations (5.20), (5.21), (5.22), (5.23)), G(1) = —Hot + D, for
some constants Hy and Cy, and [h] is given by [h] = $Hy + tav/(a) {2 [k] + H; cos ¥}, as
in the case @; = 0.

The equation [£?,4] = 0 reads the same as in the @, = 0 case, and therefore the

condition F(7) = 0, assuming that 2 — 2eM® — av/(a) # 0, is just recovered. That again
leads to '+ C5 = Hy. As a result [T]], [T¥] and [Qs], are also given by , and
G.27).

Likewise, the combination of equations [£®gy]sin? ¥ — [® 445] = 0 does not depend
on @) either, and therefore [k] = ¢; cos ¥+ co + [ f] all the same, for some constants ¢; and
co. However, the equation [ g4] = 0 does contain a term involving ;. The expression

for [m] in this case is given by

] = a K] — 7 N (@0 + § (aX(a) +2) {2 (4] + H cos )

1
—§(H1 + 2¢1)eM cos 0, (5.28)
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which used in [£® ;] = 0 provides the following expression of [h/]

W) = S/ (a) V] = 17 7] @)+ § (/@) + /() {210 + Hi cos )

1
_Z<Hl + 2¢1)v/ (a)eM® cos . (5.29)

Finally, although equation [/i(z)w] = 0 is automatically satisfied, in this case the equation
[ 4] = 0 provides the condition [w"]Q; = 0.

As in the first order case, the constants D; and D, can be safely absorbed by using a
isomorphic spacetime gauge at one (any) side, say ‘7;“ = D10y, + D10, , keeping 51 = 0.
Clearly S; = V" and therefore by that leads to T — T — S§ and the second
order metric perturbation tensor K," is unchanged. We can thus set D; = Dy = 0
without loss of generality.

We have thus shown the following result.

Proposition 8 Let (V,g) with 3 be the static and spherically symmetric background
matched spacetime as described in Proposition @ and assume that (5.16) is satisfied.
Let it be perturbed to first order by K\* plus QF and T:i so that (f5.14 , 5.15|), 45.1’1),
@ hold. Consider the second order metric perturbation tensor Ko™ as defined in
@ at either side, plus two unknown functions Q;t(T, 1Y) and two unknown vectors T;i =
T3 (7,9)0, + T3 (1,9)09 + T3¢ (1,9)0y on Yo.

If either [N] # 0 or [V"] # 0, so that (Qf =)Q, = 0, the necessary and sufficient

conditions that Ko™ must satisfy to fulfil the second order matching conditions are

[k] = ¢ cosV + ca + [f] (5.30)
h] = %HO + iayl(a) (2[k] + Hi cos 9} (5.31)
m] = a [K] + %—W/Q V05 + i (aX_(a) +2) {2 [K] + H, cos v}

—%(H1 +2¢1)eM® cos ) (5.32)

e NI QF + i (av (a) + v/'(a)) {2 [k] + H} cos ¥}

1
_Z<HI + 2¢1)v/ (a)eM? cos 0, (5.33)

for arbitrary constants ¢y, ¢a, Hy and Hy and function QF (V).

If [N] =0 and [V"] = 0, then [w"]|Q1 = 0 and the above equations are the same except
for two changes in and given respectively by
Q5 = =2 IV(Q? V08 = —e (@) (5.34)
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5.4. Second order matching

In all cases, the relation

[Qz} = aeM®/2 {2 [k] + Hy cos I} (5.35)

must hold, hence [Q2:| cannot depend on T, and the differences [T;ﬂ satisfy

[T7] = —Hoyr,

2
[Tg)] = 20 (T] + 7T cot ¥) — ae_”\(“)ﬂblTQf, (5.36)
[T;] = (blT cos (b7 — 2T;H%) + Hl) sin 9.

Let us remark that in the @)y # 0 case the corresponding equations for [m] and [h],
(5.32) and (5.33)) with the corresponding changes ([5.34]) (see (5.28)) and (5.29))) imply that
if [\"] # 0 or [V""] # 0 then @y cannot depend on 7. On the other hand, the condition

[W']Q1 = 0 will be automatically satisfied in all cases of interest, once the field equations

are imposed, as shown in Chapter [7]
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Field equations up to second order

In this chapter we present the field equations, in perturbation theory up to second order,
corresponding to an axially symmetric, stationary and rigidly rotating perfect fluid ball
with no convective motions. We also add the assumption of equatorial symmetry. We
indicate, in explicit form, how the field equations in [57] are obtained. However, the set
of functions used here to describe the second order perturbations is different from the set
used in [57], although they can be put in correspondence by fixing some gauge freedom
left.

The equations for the fluid depend on the equation of state, and cannot be analitically
solved in general. A further chapter will be devoted to solve some typical models such
as polytropes, realistic stars or constant density stars. The vacuum equations can be
recovered by setting the energy density and pressure equal to zero. The Einstein’s field
equations (EFE’s from now on) for vacuum do admit analytical solutions, not only for the
background which is obviously given by the Schwarzschild solution, but also for the first
and second order perturbations. However, in this chapter we will not relate the interior
(fluid) and exterior (vacuum) solutions. This will be the purpose of the next chapter,
where the combination of the geometrical matching conditions obtained in Chapter |5l and
the information provided by the field equations result in a new set of matching conditions
particularized to the explicit setting of an isolated fluid ball rotating in equilibrium.

To present the equations we will drop the + and — symbols in most places if they
are not necessary. Both regions can be considered to be of perfect fluid type, from which
the vacuum case is recovered trivially. To obtain the field equations, we impose that the

metrics §. satisfy G (Gc)ap = SWTEQ[J» for an energy momentum tensor of the form
Ta = <E5+pa)ﬁa®ﬁa+pagaa (61)

where . is the (unit) fluid flow, and Ee and 156, eigenvalues of Te, the corresponding mass-

energy density and pressure. Note that the fluid vector 4. and corresponding “hatted”
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scalars are objects defined, still, on each (V.,g.). All these objects, in covariant form,
are now pulled back through . down onto (V,g) (see Chapter [3). That defines the
associated families of (tensorial) objects U, := ¢?(4.) and analogously for G, T;, E. and

P. on (V,g), which therefore satisfy

G(gg)a/j = 87TT€ag (62)

with
Ta - (Ea + Pe)Ue X Ua + Pagaa (63>
by construction. The e—derivatives of (6.2) evaluated at e = 0 provide the first and

second order perturbed equations

GY = 8rTW), (6.4)
G® =8rT?, (6.5)

where GV and G® are described in and and the perturbations of the energy
momentum tensor , TM and T® will be specified explicitly in the corresponding
sections for the first and second order (see (6.21)) and (6.27))). It is worth mentioning that
the families of objects do depend on the gauge defined by 1., and thus also the right
and left hand sides of . However, the equations themselves do not depend on
the gauge, in the sense that if are fulfilled in one gauge, they will be satisfied in
any other gauge. Therefore, equations and do not depend on the choice of

gauge. For completeness we include here the transformation of the first and second order

perturbations of the energy momentum tensor in covariant form under a spacetime gauge
(see Lemma 1 in [79])

TOO — 7O oo T, (6.6)
TA6) — TO L LoT 4 Lo LT +2Lg T, (6.7)

In fact, these apply to any 2-covariant tensor and in particular to the Einstein tensor.
Using this, it is straightforward to check that the field equations , are gauge
invariant order by order.

On the other hand, the fluid vector in contravariant form can also be pushforwarded
through 7!, and thus yet obtain another family of vectors @. := dip='(ii.) on (V,g).
Since the normalization u.,1.“ = —1 holds at each (V., g.), we obtain U, u.* = —1 on
(V,g). This can be shown to be equivalent to gmgugo‘ueﬂ = —1, and corresponds to the
normalisation condition that «, must satisfy. We can take now e-derivatives and construct
the expansion of @. as @. = @ + @™ + 1e2a® + O(e?), where all the vector components

depend on r and 6.
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6.1. Field equations of the background

The absence of convective motions translates onto the condition that . lies on the
orbits of the group generated by {7, 3 }, thisis i, o 3 +r(g, r, 0)1 for some function . Rigid
rotation demands that k(e,r,6) does not depend on {r, 0}, so that . are proportional
to (timelike) Killing vector fields [103], i.e. @ = N(r,6,¢)(§ 4 £()i) for some function
k(€), with N(r,0,¢) fixed by the above normalisation. A static background configuration
forces k(0) = 0, since # is parallel to the static Killing vector field 9;+. Therefore k(g) =
eQ+0(g?) for some constant €. This constant (2 is gauge dependent (see below, in Section
. Following [57] we assume that ¢ drives a rotational peturbation, so that only odd

powers enter k(g), so that k(e) = eQ + O(&?). In components this is equivalent to
uf = eQul, ul =u? =0, (6.8)

up to second order. This (gauge-dependent) constant €2 differs from the perturbation
parameter (which we denote by Q) as defined in [57]. In the present scheme the per-
turbation parameter € has been defined abstractly, a priori independently of the rotation
parameter 2.

The energy density and pressure are expanded as
1
E. = E+e¢EW 4 §g2E<2> +O(%), (6.9)

1
P. = P+ePW 4 55213(2) + O(e%). (6.10)
All functions in and (6.10) depend on r and 6. We consider the existence of a

barotropic equation of state for the e-family, independent of €, so that P. is a function of
E. alone. Taking e-derivatives at € = 0, such relations yield a constraint for the first and

second order expansions, which must satisfy, respectively

oP
PO _ g0 o
oE ’
oP 0*P 2
2 _ 77 p@ 2 )
P aEE aEzE = 0. (6.11)

The vacuum equations are obtained by simply setting £. = P. = 0.

6.1 Field equations of the background

The matter content of the interior region of the background configuration is a perfect
fluid, static and spherically symmetric. Its normalized 4-velocity is @ = e™*/20,. The two

field equations providing E and P in terms of the metric functions are

1

N = Z(1—¢)+re'srE, (6.12)
r
1

Vo= —(e*—1)+re’snP, (6.13)
r

81



6. FIELD EQUATIONS UP TO SECOND ORDER

while the pressure isotropy condition, that in terms of the covariant tensors is e*")7T, o —

r?sin? 0T,, = 0, yields the equation
4
2r + V(1 —2) = N2+ /) + - (e} — 1) = 0. (6.14)
r

Let us recall the definitions of Section (which will be useful for the comparison of

the expressions here with those in [57]),

j(r) = e W2 (6.15)
2M
M) s (6.16)
r

The standard way to solve the background configuration consists of changing from the

metric potentials {\, v} to the functions {M, P}. The system given by (6.12) and (6.14)
is now written in the standard form (see (9) and (10) in [90])

dM (r)

—— = 4mrE(), (6.17)
dP(r) _ (E(r)+ P(r))(M(r) + 4xr°P(r))
dr N r(r —2M(r)) . (6.18)

These are the well known TOV equations [90]. They determine the interior configuration
provided a barotropic equation of state, that closes the system, and a value of, say, the
central energy density. The metric potential v is then obtained, up to an additive constant,
integrating equation . Another useful expression for v/ is obtained by writing

in terms of P using ([6.12))-(6.13|), which reads

I//

P'=—Z(E+P). (6.19)

In the vacuum exterior (—) the field equations (6.14)) imply that M (r_) is a constant,
which will be denoted by M as usual, and that

2M
67/\_(7"_) _ el/_(r_) -1 2= = j(?”f) =1. (620)
T_

We will assume M > 0.

6.2 First order

The first order perturbations are ruled by the field equations (6.4). We proceed first to
compute the Lh.s., i.e. the perturbation of the Einstein tensor (3.18)). To this aim, we
need the perturbation of the Ricci tensor R(l)aﬁ, computed using the formula 1) that
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6.2. First order

involves only second derivatives of the K. The only non vanishing component of R(I)ag
is found to be the {t, p}. In addition, it is traceless, and taking into account the structure
of K3, it is easy to see that the first order perturbation of the Ricci scalar given by (3.16]

vanishes. Hence, the only non vanishing component of the linearized Einstein tensor G,

given in (3.18)), is found to be the {¢, p}.
The r.h.s. of (6.4) consist of the first order perturbation of the energy momentum

tensor (6.3]), which reads

TW, 5 = (EY + PMugug + 2(E + P) (WK1 yqus) + u qug) + PP gag + PKiag.
(6.21)

Absence of convective motions and rigid rotation , together with the normalisation
condition to first order
2uauM® + Ky quu’ =0, (6.22)

imply @V = Qe=/29,,. Therefore, the explicit form of T} is found to be

TW, = —g,BY, TW, =g, PV TWy =gpyP?, TW  =g,,PY
TW,, = —r?sin*(QP + (Q — w)E). (6.23)

The imposition of the perturbed field equations (6.4]) provides in the {t,¢} component
EM(r,#) = 0 and from any of the remaining diagonal components we obtain that
PWO(r,0) = 0. The component {t, ¢} of (6.4) provides the following equation for the

function w [57]

0 4,8&) T2je/\ 9 -3 dw 3 . _
o (7’ ]E) + sin39% s 9% +4r°j' (w — Q) = 0. (6.24)

The equation for the exterior vacuum region (—) is recovered by just setting j = 1 in the

above.

Given the regularity condition at the origin, the asymptotic behaviour at infinity
and the matching conditions —, the functions w*(ry,#.) can be shown to be
functions only of the corresponding radial coordinates. This is in agreement with Hartle’s
argument in [57]. We provide a full proof for this in Chapter [, where we show that
w* are, indeed, functions of r* alone. Hence, in the remaining part of this Chapter we

will restrict ourselves to the study of w = w(r) for the fluid and vacuum regions, so that

equation ((6.24) becomes

1d [ ,.dw .
- - 44" —0) =0. .2
—— (mdr)+ jr)w =) =0 (6:25)
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6. FIELD EQUATIONS UP TO SECOND ORDER

This equation is integrated from the origin outwards, with conditions that ensure that
the solution is regular at the origin.
Equation (6.25)) in the vacuum exterior holds for j = 1, and the regular exterior

solution is thus

_2J
w = - + CL)OO,
[
for some constants J [57] and w__ . A spacetime gauge driven by S = wtd, can now

be used to remove w__. We thus fix the first order spacetime gauge in the exterior region
in order to set

(6.26)

6.3 Second order

The procedure is analogous to the first order. The perturbed field equations to second
order are . The second order perturbation of the Ricci tensor and scalar are computed
using the explicit form of K, given in (5.3)) into the formulas and respectively.
With these ingredients, the expression provides the second perturbation of the
Einstein tensor. It contains five nonvanishing components: the diagonal terms plus the
crossed term {r,0}.

The conditions on the fluid flow together with the normalisation condition now
lead to @? = @?10;, where ¥t = e=3/2 {Q%g,, + 20K 11, + Kou/2} .

The second order perturbation of the energy momentum tensor, obtained as usual

from the second derivative T = 9?T.|._, is

T, = (E® 4+ PMNugug + 2(E + P) { (KiapKipou'u” + 20" K y0u™ g + u quV)
+ ' Kauaug) + 2u(y) Kiyaug) + u(2)<auﬁ>} + PPgag + PKyags, (6.27)

where we have made use of E(Y) = P = 0. We have all the ingredients to compute the
field equations that to second order .

A key point in Hartle’s model [57] is that the functions in K,* contain only [ = 0,2
terms in an angular Legendre polynomial expansion . We leave the analysis of this
assumption for Chapter [§, where we will prove that this is, indeed, the only possible
angular structure in K,* given equatorial symmetry and the field equations with the
corresponding boundary conditions (ensuring the regularity of the solutions and satisfying
the matching conditions) for the second order perturbations. However, in order to carry
out the study of the whole angular structure of the perturbations in Chapter |8 we need

to compute the field equations that the functions in K, satisfy in full. To this aim we
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6.3. Second order

expand each function in K5 in Legendre polynomials, those corresponding to [ = 0, 2 plus

the remainder, orthogonal (L) to those two, so that

h(r,0) = ho(r) + ha(r)Psy(cos ) + bt (r,0),
m(r,0) = mo(r) 4+ ma(r)Py(cos ) +m>(r,0),
(r,0) = ko(r) + kao(r)Py(cos 0) + k*(r,0),
(r,0)

f = fo(r)Py(cosB) + f(r,0), (6.28)

where we have defined

ho(r) = %/S B, ha(r) i g/s hise, h-(r,0) = h(r,0) — ho(r) — ha(r) Pa(cos ),

so that the orthogonal components clearly satisfy

AJ#%W:Q éﬁ#%%%:Q (6.29)

and analogously for the rest of the functions. Equatorial symmetry is used only to get rid
of [ = 1. No further restrictions will be imposed on the L functions.

A straightforward calculation shows that the above angular structure assumed on the
functions in K5 is inherited, via the field equations , by the second order energy

momentum tensor. In particular
EQ(r.0) = E7(r) + B (r)Pacosd) + E@(r,0),
PA(r,0) = P (r)+ P (r)Py(cos8) + PPL(r,6). (6.30)

Given that £ = P = 0, the barotropic character of the equation of state to second
order (6.11)) translates onto the condition

E®@pP — POE =0. (6.31)

This relation is automatically satisfied by the [ = 2 and L sectors, but it provides an
independent equation for the [ = 0 sector.
In order to write down the second order field equations in a convenient and compact

form, let us first define the following auxiliary “tilded” functions

- 1
ho = ho — Erl/ko’ o = mg — e 2 (e’\/27‘k‘0)/, (6.32)
- 1 .
hy = hy — §T’V/f2, T 1= my — e 2 (€A/27”f2),, ko = ko — fo,

(6.33)
o= pt lrylfL mt = mt e M2 (eA/QTfL)' L=kt — fL

5 , : , : .
(6.34)
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6. FIELD EQUATIONS UP TO SECOND ORDER

These quantities are clearly invariant under the “radial” gauges class of transformations
since e.g. both h — —ru’k and h — —rv’f are.

We introduce now the above decomposed expressions of the relevant quantities into the
field equations . By construction, the complete set of equations gets decomposed into
the [ = 0,2 and L sectors, which are independent and can thus be considered separately.
Our purpose in the next two subsections is to recover and write down the field equations
as closely as possible to the expressions presented in Chapter [4) or in Sections VII and

VIII in the original reference [57].

The EFEs in the [ = 0 sector

The | = 0 sector of the field equations (6.5) can be shown to provide the following

expressions for the second order energy density and pressurdﬂ

87TE((]2) = % (re_)‘ﬁlo), + grjj'(w — Q)Q ;327"2@’2 + 167 E'ky,

(6.35)
grP? = ;1—2 {e’)‘r% — 1o (871 P + 1)} + zl))rszw’Q + 167 P'ky,

(6.36)

plus an equation for Y of the form A = Fy(hl, 1}, ). A convenient auxiliary definition

of the second order pressure is given by

P® —2rPky P Lk
20E+P)  2(E+P) r—2M(r)

Po = (M(r) + 4rr3P) (6.37)
where ((6.18)) has been used in the equality. This function is well defined at points where
E + P =0 (see below), and corresponds to the (I = 0 part of the) “pressure perturbation
factor” as defined in (£.26)) in Chapter [4] or equation (87) in [57].

On the other hand, the [ = 0 part of equation (6.31)), i.e. Eéz)P' — PéQ)E’ =0,
combined with 1} yields a direct relation between PO(Q) and mg, which written in
terms of “tilded” quantities reads

2 2

o E 1
(re™¥mg) = 4mr? F(E+P)P0+ 127 Jirte = §rgjj'(w — Q)% (6.38)

!These two equatlons correspond to (93) together with (95) and (94) along with (96) in [57], that is
equations (4.24) and (4.25) in Chapter Note that a global 2 factor on the right hand side here comes
from the deﬁmtlons 1@) and ( as compared with the definition of AG in Hartle’s model [57] and
Chapter [4f which already contams the €2 and 1/2 factors.
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6.3. Second order

Now, the aforementioned equation for h” can be rewritten, using and -
—also to substitute the function A by M—, as a first order ODE for 730, that reads

=, Ar(E+P)r’ s (re”Mmg)r? - 1
P = Ny T T = e () <8 P*ﬂ)
AR 1 (PR Y
ey 3( - 2N (r) > : (6.39)

The set of functions that determines the [ = 0 sector can thus be taken to be {Py, 70},
which satisfies the system ((6.38]), (6.39)) given regularity conditions at the origin r = 0.
Equation (6.36)) can be rewritten as

~ 1 ~ 1
hyy — re*mg <87rP + ) = 4mre*(E + P)Py — 126*7’3]%/2 (6.40)

It is now trivial to check that (see (4.26) in Chapter [4] or (90) in [57])
- 1
Po + ho — §r26_”(w - Q) =y, (6.41)

for some constant p, is a first integral of and . This relation shows, in
particular, that Py is well defined in 7, € [0, a]. The constant y is identified in [57] as the
second order to background ratio of the constant injection energy. In analogy with the
Newtonian potential, i (and thus hg) is determined up to an arbitrary additive constant.
This constant will be determined once a condition at infinity plus some continuity across
the boundary of the body are imposed. We will discuss that below. Once that is fixed,
the value of p still depends on one factor, that is, the conditions one may impose on Po
at the origin. The latter depends on how one sets the value of the pressure (and thus
of the energy density) of the rotating configuration at the origin with respect to that of
the static configuration. We are interested in computing the perturbations in terms of
the central energy density and according to the discussion in Chapter [4| regarding the
computation of the change in mass, we impose Py(0) = 0.

The fact that kg is “pure gauge” translates onto the fact that it does not enter the

set of equations, and it is therefore not determined. The quantitites E ) and P

gauge dependent, and can only be computed, from (6.35)) and (6.36|) respectively, once ko

is specified, i.e. by fixing the ‘radial’ gauge. Due to , under a second order gauge
transformation driven by Vy = 2€0, and S, = 0, we have PP = p® 4 2¢P" and
analogously for £®). Given that under the same change, we have ko9 = ko + &/r (see
(5.6))). Therefore, the quantities independent of that choice, and thus the relevant ones,
correspond to Eém —2F'rky and Pé2) —2P'rky. This is the motivation for the introduction
of the auxiliary function P,.
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6. FIELD EQUATIONS UP TO SECOND ORDER

The equations for {hy,7mg} in the vacuum exterior are obtained by using (6.20)

and the first order solution ([6.26) in equations (6.35)), (6.36]) with their left hand sides
and P and F set to zero. The general solutions are given by

ALY~ J?
r_e Mg (r2) = 0M — 5 (6.42)

. - SM J?
iy (1) = hose = ==+ s o (6.43)

where M is an arbitrary constant and hge corresponds to the freedom of shifting the
gravitational potential. It is common to choose hooo = 0, so that hg vanishes at infinity.
This is equivalent to a spacetime gauge driven by Vy = 2hosotO; as shown in Section .

As mentioned above, the function k; remains undetermined.

The EFEs in the [ =2 and L sectors

The Einstein tensor to second order contains five nontrivial components. Hence, apart
from the two field equations that provide the energy density and pressure to second order,
the [ = 2 and L sectors provide three field equations. We take one of them directly as
G®?,g = 87T 4 and for the other two we use the combinations e*™(G® , —T® ) —
r?sin?9(G®,, — T®,,) = 0 and (G?,, — T?,,) — sin?0(GPgg — T®ys) = 0. These
result convenient because the perturbation of the pressure does not enter them.
Let us start considering the last of the three equations, which explicitly reads
o [0 (Wit + (ha(r) + 1ia(r) + fu(r)) Pa(cos6) )

SIHH% sin9 = 07

where we have collected the first order terms in the function

T4j2 12 TS (j2>,
Julr) = === 4 ——=

After taking into account that h* and m' are orthogonal to Py and P, this provides the

(Q—w)®. (6.44)

following two equations
BQ(T) + m2<7") + fw(T’) = 0. (645)
4wt = 0. (6.46)

We consider now the equation G®,4 = 0. After an integration with respect to the

angular coordinate it reads
(2 — 10/)(ha(r) Py(cos 0) + h*) + (2 + rv') (ra(r) Po(cos 0) + m™)
—2r ((fz” + kYY) 4 (B + k) Pa(cos 9)) =0, (6.47)

88



6.3. Second order

where an arbitrary function of integration is found to vanish identically after a projection
to Fy. After having used equations (6.45)) and (6.46)) in order to get rid of the functions
my and mt, (6.47) provides the following pair of equations

~ /
B+ Ky + Vb + % fo = 0, (6.48)
O (ht + kY +vht = 0. (6.49)

Finally, we consider the last independent equation, corresponding to eA(T)(G(Q)W —
T®,,) — r?sin? (G?,, — T?,,.) = 0. This is also separated into three contributions
corresponding to the [ = 0,2 and orthogonal L sectors and thus, it results in three
independent equations, one for each sector. The equation for [ = 0 yields the relation
%’ = Fl(%, my, Mo ), mentioned in the previous section. The corresponding equations for

[ = 2 and orthogonal L sectors are

2 {7‘21/;/2 +4e kg + (r/ (=14 1V) — X + 6> — Q)ilz} + 28 = (/))fe = 0,
!

2/ (arilj_ N (j_ - V_) ;LJ_) < ( '1 % <Sin Hag(ﬁl + %L)) * 2<BJ— " ];l)) -0
j v sin 6
(6.50)

In order to derive the first of the equations we have used to get rid of my and
and its first derivative to substitute &, and &Z.

Finally, we check that the barotropic EOS does not provide any other independent
equation here, contrary to what happens in [ = 0. The expressions for the energy density

and pressure in the sector [ = 2 can be written as

4F" /-
2 ’ _ —v,.2 _ 2
BY =2y, =~ (3he e i@ —)), (6.51)
2 ~
P2(2) —2P'rfy, = —g(E + P) <3h2 +e ' (w — Q)2>
4P/ 7 Ny 2
Y (3h2+e rw=9) ) (6.52)

where in the last equality identities from the background have been used. Note that the
relation holds for E§2) and P2(2) as well as for the combinations Ef) — 2E'r fy and
P —opirf,.

The L part of the pressure and the energy density, after some manipulations using the
three field equations and background identities, are found to be related to the function
h* by

4E' - 4P~
EOL(r,0) — 2E'r - = Thl, P@L(r 0) — 2Py ft = ——ht. (6.53)

V/
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6. FIELD EQUATIONS UP TO SECOND ORDER

Hence, it is straightforward to check that P®)+(r 0)E'(r) — E@L(r,0)P'(r) = 0 holds
identically and we verify that the barotropic EOS equation does not add any new infor-
mation. The expression of the pressure can be written as a hydrostatic equilibrium first
integral for the orthogonal | sector using the background relation , that provides

PEL(r 0) —2P'rf+ -
2(E)+ P +ht=0. (6.54)

Let us conclude this section with a brief summary of the field equations for the [ = 2 and

1 sectors.

The EFEs in the [ = 2 sector

We include this summary in order to present the equations for [ = 2 in the same fashion
as in Chapter [l After the definitions

. rv
v = hg + ko, V=v— (1 + 7) fa, (6.55)

the whole set of equations (6.45)), (6.48)) plus the first equation in (6.49)) are equivalent to
the system

~ 17 I 2 3. 2, Loy p
v = —Vhy+ ;+— —gr]j(w—Q) +83Tw : (6.56)

by = {_1/ - ZXJ(T))V' (87T(E +E) - Mﬁ’ﬁ)) } e rv!(r _ZLZMO"))

1/1 1 .
-3 (—rv’ + /> (5% (w — Q)? (6.57)
plus the algebraic equation for ms

1 1 =
mg = 6r4j2wl2 — g?”g(jQ)l(w — Q)2 — hg. (658)

The convenient “pressure perturbation factor” in this case (see (6.37)) for [ = 0 to

compare) corresponds to the following definition

- PP _opif,
so that (6.52) just reads
|
7)2 + hz + 5671/7”2((.0 — Q)z =0. (660)
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6.3. Second order

This corresponds to (91) in [57], and, together with the above (6.41)) form the [ = 0 and
[ = 2 parts of the first integral u, (86) in [57] (named ~ there).
The interior region is thus determined by the solution of the pair {hF,kF} to the

system (6.56)), (6.57]) given regularity conditions at the origin r, — 0, up to an arbitrary
constant, say A’. Then, my is directly obtained from (6.58)). The function f5(r) does not

enter the equations, and thus it is, as expected, pure gauge.

In the vacuum exterior region only equations ([6.56])-(6.58)) apply. Using (/6.20]), so
that in particular P = 0, and ([6.26]), and imposing regularity at r_ — oo, the whole set

of exterior functions {hy, ky ,7; } is integrated and read

. 2
h; = AQ? (TM‘ - 1) + i_i (% + ri) : (6.61)
. 2M T J?
ky +hy; = A{ —— QM)Q; (M - 1)} - (6.62)
. (15
iy = —AQ? (TM . 1) + 5 (M . E> , (6.63)

where Q}"(z) stand for the associated Legendre functions of the second kind, and A is
an arbitrary constant. The constants A’ and A are to be determined once the relations

between {hi, k3§ } and {h;,k; } on the matching hypersurface ¥ are imposed.

The EFEs in the orthogonal 1 sector

The radial derivative of equation (6.49)) can be used with equation (6.50)) to obtain a PDE
for the single function o := At + k+. We define the auxiliary function

g(r) :=1/(jv"?) (6.64)
in order to write it as
L (185 (r,2)) + 9. (L= )00, 2) + 22t (r,2) = 0
g(T') T g r ’I”U T7Z T2 4 ¥ zv T,Z 7"2 v T,Z — .

An alternative form of this equation is

A 2) = =25 (eAg m)z L (r, 2), (6.65)

r2 r2

where A, is the Laplacian operator associated to the auxiliary metric -y

v = (Mf (erdr? 4 r2dQ?). (6.66)

r2
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6. FIELD EQUATIONS UP TO SECOND ORDER

After defining

vy =20 (2

r2
equation (|6.65)) reads
(A, +V(r)ot(r,2) = 0. (6.67)

The two remaining functions A+ and ' are related to the radial derivative of o+ by
7L =1 Lo
ht=—-m"=-—0,0". (6.68)
v

In the vacuum exterior, the background solutions (6.20) provide g = r_(r_ —
2M)/2M and the function 9+ satisfies equation (6.67)) for the following metric v~ and
potential V'~

r—oMp [ 1 M?
o ) ( dr2 + r%dm) oy S (6.69)

164 1 —2M r_(r_—2M)’

T—

The algebraic equations ((6.68]) read, after using the vacuum solution for v (6.20))

. (r_—2M
W =t = —%&,_ﬁl. (6.70)
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Matching of a perfect fluid with vacuum to
second order

In this Chapter we combine the matching conditions obtained in Chapter |5 with the field
equations for the perfect fluid and vacuum of Chapter [6]

Apart from the boundary conditions for the functions in the metric ¢ and in the
perturbation tensors K; and Ks, the shape of the boundary of the star is determined.

In the first order perturbations, the field equations do no provide much more infor-
mation. In fact, the only field equation provides just the jump in the second derivative
of w. However, the knowledge of the explicit exterior solution helps us to clarify some
aspects about the spacetime gauge to this order. Also, we obtain that the hypersurface
remains unchanged, unless the energy density vanishes at the boundary. In this case the
first order deformation is determined by the second order matching.

Regarding the second order perturbations, the situation becomes more involved. In
first place, we formulate the matching conditions given in Chapter [ffor the tilded functions
introduced in Chapter [6] This is convenient because it allows us to present a set of
matching conditions in which the spurious degrees of freedom from the “radial” family
of spacetime gauges do not appear (they have been absorbed by the tilded functions).
Secondly, we determine the jumps for the relevant functions, i.e. hg (and %), o, ho (and
), ks (and k,) and mmy,. Finally we find that the deformation of the surface of the star
presents a behaviour similar to the one found at first order. Its determination order by
order is only possible if the energy density does not vanish at the surface 3. We present
these results at the end of this Chapter in the form of a Theorem and afterwards we discuss
the way to determine the surface. Let us stress that in the formulation of Theorem 5| we
assume that the functions w® do not depend on the respective angular coordinate and that
the L sector in the second order perturbation vanishes. Nevertheless, we will deal with

these assumptions in Chapter [§ where we show that these restrictions are not needed,
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7. MATCHING OF A PERFECT FLUID WITH VACUUM TO SECOND ORDER

since they arise as a consequence of the matching.

7.1 Background

The matching conditions of the background involve the functions v, A and v/’
The condition [\'] = 0 translates, via and (6.20)), into the equality of the interior
mass M (a) and the exterior constant M. Precisely, the exterior solutions and the
matching of the background imply that having fixed the exterior potential v_(r_)
by , the interior potential loses the freedom of a constant shift since it is fixed by
the condition

vi(a) = —As(a) = log (1 . %) . (7.1)

The remaining condition in ((5.13)) enforces the normal derivatives of the potentials v+ to

agree on X

, 2M
Vi(a) =v(a) = ala — 2M)

Equation (6.13]) relates this (vanishing) jump with the pressure, so that we immediately
find

=:V'(a). (7.2)

(V] = 8maeMV[P] = 0. (7.3)

Finally, the two remaining independent field equations (6.12)), (6.14]) combined with the
matching conditions (5.13]) allow us to express the differences of the derivative of the
functions of the metric in terms of the fluid variables

a2

V] = 8maerV[E] = 87 [E], (7.4)
W) = (1 + —“”2(“)) [%] = (1 + —“”2(“)> M8 [ ]
8#%@] (7.5)

Note first that the jumps in [\'] and [”'] are not independent. On the other hand observe
that for a vacuum exterior, the difference [E] corresponds to the value of the interior
energy density E, on Y, this is [F] = E,(a). We just prefer to keep [E] in some
expressions for the sake of generality, since they apply in the matching of two fluids, and
the notation is, in fact, more compact.

It must be stressed that whereas the matching condition implies, for a vacuum
exterior, that P(r,) must vanish on the embedded ¥, the energy density F(a) at the
boundary stays free, a priori. Its value will be determined, if any, by the equation of

state.
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7.2. First order

For later use, it is easy to show that (5.13) imply that [j] = 0, so that j(a) = 1, and

7] = —1/2[X] (7.6)

by construction.

Finally, let us consider the particular case for which [E] = 0, so that E,(a) = 0.
The matching conditions are obtained directly from — above, but the next order
derivatives of the metric potentials are relevant in order to compute the perturbative

matching conditions. Hence, we include them here for completeness

(V] = aeMV8x[P] = 0, (7.7)
N =["=0,

V'] = 8rae[E'] = 8- _“2 —[E, (7.9)
[l/”/] _ % <1 I a)\;(a)> P‘H] _ 871’?((;1__2?\]4\/)[2) [E/] (710)

7.2 First order

Recall that from Proposition [7| we already have [w] = b; and [w'] = 0. Using these
matching conditions and the field equation (6.25)) and (7.6) we obtain that

W] = V] (lw'(a) + 2wt a) - Q)) | (7.11)

Regarding the determination of the deformation, the condition ({5.16|) of Proposition
is now equivalent to M # 0. The remark made after Proposition [7| can be now stated
in terms of a physical property of the interior and exterior background configuration:
whenever there is a jump in the energy density at the surface, Q7 (= Q) must vanish
necessarily by (5.18). However, if [E] = 0 the function Q:(7,) is not determined, in prin-
ciple, and enters the second order. Nevertheless, as shown in Section [7.3] when analysing
the determination of the surface of the rotating star at second order, (); will necessarily
vanish if [E'] # 0. In Section [7.5 the whole case [E] = 0 is discussed.

On gauges at first order

We discuss next the meaning of the constant b; in ((5.14]), how it is related with gauges, and
its role on the determination of the rotation of the perfect fluid star. Consider a spacetime
gauge change in either (V*, g%) defined by S, = Ctd,, (we drop the =+ for clarity, the two

C# being independent). The rules of transformation of the first order metric perturbation
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tensor , the energy momentum tensor , and of the first order deformation vector
(3.34) imply, respectively, w9 = w — C, Q9 = Q — C and b = b; — C. First, note that
wt — Q is independent with respect to that gauge. This quantity is essentially the & (up
to a sign) defined by Hartle in [57] (see Chapter [4)).

As discussed, the first order matching conditions are invariant under such spacetime
gauges (at either or both sides, with corresponding C* and C), that is, the first order
matching conditions (5.14)), (5.15)), (5.17) and transform to just the same expres-

sions with 9 superscripts.

This first order gauge at either side + is fixed (and completely fixed) once the value
of the respective function w? is fixed at some point (or infinity). The equation for w™ is
usually integrated in the exterior vacuum region assuming that w™ vanishes at r_ — oo.
By doing that 0;- is chosen to represent the “right” observer at infinity. At infinity, the
vector 0, is thus assumed to be both unit and orthogonal, with respect to g. to first
order, to the axial Killing vector d,-. The exterior choice of gauge thus fixes w™, and it
is given by (6.26).

Regarding the interior region, the above spacetime gauge for some C* can then be
used to get rid of one of the two constants that describe the configuration at first order,
either by or €2, but clearly not both. The transformations of b; and €2 suggest building a
quantity defined on ¥, as

Qoo = Q2 — by, (7.12)

invariant under the gauge Si. The meaning of this constant is the following. (2 defines the
rotation of the fluid flow with respect to the interior observer d,+, and b; determines the
tilt on ¥ between that interior observer d;+ and the (already fixed) exterior observer 0;-,
explicitly Oi+ |5, = Oi- |5, —€b10,|5,. The difference 2 thus describes the tilt of the fluid
flow with respect to the continuous extension of the exterior observer to the interior, and
thence, measures the rotation of the fluid with respect to the unit non-rotating observer
at infinity.

The value of the “invariant” quantity w(r) := w™(r) — Q at the boundary can then be
expressed thanks to the condition (5.14) as w*(a) — Q = w™ (a) — Q, i.e.

ot(a) =2J/a* — Q. (7.13)

This yields the desired relation between the @™ (a), integrated via from the origin,
the constant J and the rotation of the star, thus described by .

In [57] the function w is assumed to be “continuous” by construction. In the present
general setting that corresponds to a choice of gauge in the interior region for which b; = 0,

and therefore Q(= Q) corresponds indeed to the rotation of the fluid as measured by

96



7.3. Second order

the unit exterior observer. The relation between 2 and QF is thus explicitly given by
QT = Q.

In contrast, in [I6] the gauge in the interior is chosen so that the interior observer O+
moves with the fluid, i.e. £ = 0 (comoving gauge). Thereby, since the freedom one may
have in the interior driven by S has been already fixed, the price to pay is a rotation in
the matching hypersurface given by the constant by, which corresponds to the parameter

—c482 in [106], so that Q. corresponds to “c,€2” there.

7.3 Second order

We particularize first the matching conditions given in Proposition [§| for the [ = 0,2 and
orthogonal | sectors of the angular expansion of the perturbation functions at
both sides. The field equations in the background allow us to express the differences [X|
and [/] in terms of [E] by direct use of and (7.5). However, we will not use those
relations in some places, nor the explicit form of v_(r_) in the exterior, to keep more
compact expressions. Let us recall that condition ([5.16)) now just reads M # 0 given the
exterior is vacuum.

Clearly, for all pairs f*(ry,01) such that f = fo(r)+ fo(r)Px(cos0) + f*(r,0) we have
[f] = [fo] + [fo] Pa(cos ) + [f1](19). Note that [fo] and [fs] are constants.

Equation is satisfied if and only if ¢; = 0 plus

ko] = 1fa],  [F7](9) = [H]09). (7.14)

The constant ¢y just corresponds to the difference [kol, i.e. [ko] = co.

Likewise, equation (|5.31)) is satisfied if and only if H; = 0 plus

ho] = 22 + Sav/(a) [k (7.15)
[ha] = %GV/(@) [f], (7.16)
(1109) = 5o/ @1F1(9). (1.17)

Equation 1) since ¢; and H; vanish, imposes the following expansion of [Qg](ﬁ)
[Q2](9) = [Q2(0)] + [Q2(2)] Pa(cos V) + [Q3](9)

for some constants [QQ(O)] and [QQ(Q)] and an arbirary function [Q] of ¥, orthogonal to
Py(cos?)) and Py(cosd). Equation ([5.35)) is thus equivalent to

[Q2(0)] = 2ae" (/2 [k (7.18)
[Q2(2)] = 2ae™ /2 [ 3] (7.19)
[Q51(9) = 2ae™ 21 (9), (7.20)
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where here, and in the following expressions, equation is used to set A(a) = —v(a).
Take now the equations and for the differences [m] and [A’]. In the case
[E] # 0 ([N] # 0 and [v"] # 0), for which Q; = 0 necessarily, we recall we have Qf =
Q7 (9) and therefore both QF due to the above, so that

OF(9) = Ot + Qo Pa(cos ) + Q% (9), (7.21)

with constants Qg(io) and Qzé). Thence, equation ([5.32)) holds iff

o] = a k] + 3" N Qaf + 5 (aX.(a) +2) k] (7.2
ma] = a[hg) + 7" X)Quty + 2 (aX_(a) +2)[f] (7.23)

m109) = akH](0) + 1 @PINIQH () + 3 (X-(@) + 2)[F0), (724

while equation ((5.33) does whenever

[hy] = %az/(a) k] + ieu(a)/2 [V”]Q2(+o) - %(al/’(a) +/(a)) [ko] ,
(7.25)
1] = s ()[R + 3P0 + 5@ (a) + v (a) (£
9 7 2 2() T 5 laV- 2]
(7.26)
W) @) = Sar @) 0) + 3P0 0) + 3 (0 @)+ @)10).
(7.27)

In the case [E] = 0, condition [w”]@); = 0 must be satisfied (Proposition , but it
provides no information, since [w”] = 0 as follows from and (7.4). On the other
hand, the equations corresponding to and with the changed terms
contain a term proportional to [E'](Q1)* If [E'] = 0 we recover the above equations
(with [N] = [/] = [E] = 0) and therefore one only needs considering the case [E'] # 0.
In that case the equations imply, analogously, that )1 does not depend on 7 and that it
must satisfy (Q1)? = qo + qaPa(cos¥) + ¢ (9) for some constants gy and ¢» and a function
g+ (9) (orthogonal to Py(cosd) and Py(cos)).

Some remarks are in order now, which will lead us eventually to the determination
of the deformation of the matching hypersurface at second order in any “radial” gauge
~recall that the deformation vectors Z are gauge dependent, and therefore the functions
() describe the deformation with respect to the gauge chosen. The appropriate quantities

are constructed as follows

EO = Q2(0) — 261,6_V(a)/2/€0(a), EQ = Qg(g) — 2ae_”(“)/2f2(a), (728)
=H(0) == Q5 (9) — 2ae™" /2 f*(a, 0),
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on Yo from either side + and —. These three quantities are “radial”’-gauge independent,
since the gauge defined by V, = 2Y(r,0)d, (and S, = Ct0,) induces via the
transformation Q% = Qy + 2YeM®/2 while k9 = k+Y/r and f9 = f+Y/r, see . On
the other hand, the relations - just read

So] =0,  [E]=0, [E]®) =0, (7.29)

meaning that the quantities coincide as computed from either side. How the actual
deformation X1 out from the spherical ¥ is encoded in terms of =y and =, is described
in Section [7.5

The above matching conditions to second order have yet to be combined with the
constraints provided by the field equations at either side. We obtain the final expressions
of the matching conditions to second order using the second order field equations for the
perfect fluid interior and the vacuum exterior next.

Regarding the | = 0 sector, the differences of the field equations do not provide any
constraints to the matching conditions in the sense that the differences [ko] and [k{] remain
arbitrary (constants). This, as expected, is related to the fact that ky is pure gauge. The

[ = 0 matching conditions (7.15]), (7.22) and (7.25)) can be written in terms of the “tilded”
functions (6.32)) and the deformation functions (7.28)) in the case [E] # 0 as follows,

[ho) = % (7.30)
i) = =gl (731)
(o) = 27 [Ele "/ 2q=,, (7.32)
while if [F] = 0 equation ([7.32)) is replaced by
[1ig] = =27 [E']e @ 2aq2, (7.33)

The background matching configuration relations ((7.4)) and ([7.5)) have been used to express
the background difference functions in terms of [E], together with (6.20) to write

M @2M
a—2M a

av'(a) = (7.34)
Recall, from the discussion in Section that the arbitrary shift in the function hg (r_)
was fixed at infinity, demanding that iNLa (r_) vanishes there. The arbitrariness in shifting
izar (ry) corresponds here to the appearance of the free constant Hy. One can always fix
the shift in ﬁar (ry4) in the interior simply by choosing Hy. This just mirrors the fact that
in Newtonian theory the potential is fixed at infinity and then taken to the interior of the

body simply by imposing continuity across the boundary.
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It must stressed, however, that the argument about the “continuity” of ho does not
stand for the other function mg in general. Consider first the difference of equation
for a vacuum exterior combined with the two matching conditions , at hand,
which leads to the relation

CL3 ~

(o] = —47TM[E]7)0(CL), (7.35)
after using the definition (6.37]). Note that this equation holds always, irrespective of the

vanishing (or not) of [E]. Now, in the case [E] # 0, can be finally rewritten as
(2[13]750(@) :) PP (a) = 2aP' (a)ki (a) = — = e " 2[E]Z,. (7.36)
In the [E] = 0 case equation clearly implies o] = 0 and therefore yields
[E'lq0 = 0. (7.37)

The implication of is that the values of the functions mg (a) and 1y (a) coincide
if and only if [E)Py(a) = 0. This fact turns out to be in contradiction with the assumption
made in [57] stating that m{ is “continuous” at the boundary, with consequences on the
determination of §M (see Section [7.5)).

Finally, the field equation at both sides (4) can be used to replace the condition
(7.31)) by (7.36). To sum up, given the Einstein’s field equations hold, in the [ = 0 sector
the set of matching conditions can be given by the two conditions and either (7.32])
or , plus the relation .

In the [ = 2 and orthogonal L sectors things are different, in the sense that the

field equations provide, in principle, further constraints to the matching conditions. We
present the two sectors separately, starting with the [ = 2. Taking the differences of the
field equations , and we obtain three equations for the differences [ms],
k5], [hy] which have to be added to the relations in and and the relations
(7.14) and (7.16) that already determine [ky] and [hy)] trivially. The number of independent

equations turns out to be four plus these two trivial ones, and can be finally cast, when

[E] 7é0 <:> (1 :0)7 as

[ko] =0, [ho] =0, (7.38)

(7.39)
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plus
is) = 41 hata) + grlB) e (- 202+ 00%) (5 - 0 )
(7.40)
i a - 4 d e (27 2
[K5) = —4n[E] S-ha(a) - S7lE] S (a - 2M)e (_ _ Qw) | (7.41)
= et (G o) (7.42)

where we have used, in particular, that

given the exterior region is vacuum. Therefore, for [E] # 0 the set of matching conditions
for the | = 2 sector is composed by only three equations, given by the two in ([7.38)),

and ((7.39). The three relations ([7.40)), (7.41)) and (7.42) are now a consequence of ([7.38|)
and ([7.39)) and the field equations ((6.56)), (6.57) and (6.58) at both sides. Regarding the

[E] = 0 case, the above equations for the [ = 2 sector ([7.38))-(7.42)) hold. However, (7.39)
has to be substituted by [E']¢gx = 0.

For convenience, we present the matching conditions of the L sector in terms of 9.
First, the matching conditions ([7.14]) and ([7.17)) translate into

=0, [k =0, (7.43)
so that, by the definition of v we have
[6+] = 0. (7.44)
The field equation (6.49)) provides, using the previous matching conditions,
[5%](9) = 0. (7.45)
The matching condition with the field equation ((6.50]) results in

V/(a)eu(a)/Q .

[E] {i’ﬁ(ﬁ) +———E (19)} =0. (7.46)
Finally, the two remaining conditions result from the field equations (6.46) and (6.50)),
and they read respectively

[m*](9) = 0, (7.47)

~ 4dra? ~

[h)@0) = =B (9). (7.48)
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If [E] =0, (7.43), (7.44), (7.45) and (7.47) hold, but (7.46) must be replaced by
[E'lg = 0 and (7.48) by [ht'] = 0. We thus have [E']Q; = 0. As a first consequence,

some of the matching conditions above, ([7.38)-(7.42)) for [ = 2 and ([7.43)-(7.45]) plus
(7.47) and (7.48) for the L sector always hold true, irrespective of whether or not [F]
vanishes. Finally, if [E'] # 0 then

Q1 =0. (7.49)

7.4 The matching of the [ = 0,2 sectors

We devote this section to the analysis of the matching of the | = 0,2 sectors. To this
aim we will take as an assumption that w is a function of r alone, so that we are able
to compare our results with the development in Chapter |4| ([57]). We start with the
formulation of a theorem for the perturbed matching to second order of the perfect fluid

and vacuum.

Theorem 5 Let (V, g) with X be the static and spherically symmetric background matched
spacetime configuration, perturbed at either side to first order by the functions w*(ry, 04)
through K,* as defined in plus the unknowns Q¥ (r,9) and T (7,9), as described
mn Proposition@ so that the first order matching conditions and plus
and hold. Let the configuration be perturbed to second order by Ko™ as defined in
, plus the unknowns Q;E(T, v) and fzi(T, V) on X, and assume that the interior region
(+) satisfies the field equations for a perfect fluid with barotropic equation of state and
that the exterior (—) region is asymptotically flat and satisfies the vacuum field equations
up to second order.

The energy density E(ry) and pressure P(r,) of the interior background configuration

are given by and and must satisfy . The background exterior vacuum
solution s given by , and we assume 0 < 2M < a. Consider the convenient

background quantities defined in .
Let 1. be the unit vector fluid corresponding to the interior family of metric tensors

g5 =gt + K" + 32Kyt + O(e%). Assume that U. satisfies for some constant €.
Let J be defined by the first order exterior solution .

Assume finally at both sides (£) that the first order function w depends only on the
radial coordinate, and that the second order functions are decomposed in Legendre poly-
nomials in terms of {ho, ha, mo, Mo, ko, k2, f2} by .

Then

1. The second order pressure P® and energy density E® of the fluid inherit the
same angular dependency, that is, (6.30) hold for some E(()Q) (r), Ef) (), Pé2) (r) and
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P(2)( ). With the help of convenient alternative “tilded” counterparts, defined in

-(-) 0.55) plus (6.57 (W and (-/ the Finstein’s field equations in the interior
can be expressed as the system (0.58 , (-) and (6.41, ' for some constant v for the
set {Py,mg, hi} plus the system (6.56), (6.57), (6.58) for the set {h3, ki, m3}.
The vacuum solution at second order is given by (6.44), (6.45), (6.61]), (6.62) and
where M and A are arbitrary constants.

2. Given the Einstein’s field equations of the previous point are satisfied, the necessary
and sufficient conditions that the metric perturbation tensors Kot must satisfy to
fulfil the second order matching conditions are given by and for the
sets {PE,mE, hE}, with arbitrary constant Hy, and the two equations in for
the sets {h¥, ky,mg

Regarding the deformation of X, expressions and show explicitly how
the quantities =g and =5 are linked in a ‘radial’-gauge invariant manner to the jump in the
pressure at second order across the boundary of the star through the value of the energy
density of the background configuration at ;. Whenever [E] # 0, equations and
- ) directly determine Zy and Z, in terms of Py(a) and hs(a) respectively, which are
quantities that are obtained by integration from the origin. Equations ((7.36]) and ( -
can then be cast as

_ 2a? .
=, = — ﬁeV(a)/on(a% (7.50)
iy jp2a(a —2M) [ - 1 @ [2J ?
=, = vwpeztla— SM) - 0
2 ‘ M (hz(a)+3a—2M <a3 °°>
2a? "
- %ewa)/apﬂa), (7.51)

after using and in the first and second equalities in the latter, respectively.

However, if [E] = 0, since Q; are only defined on ¥y we cannot determine the defor-
mation directly from the above, in the same way () is undetermined in the first order
problem in that case.

This is to be expected. In fact, as an extreme case, when matching two vacuum regions
the matching hypersurface is not determined in general. The idea is that in order to have
a boundary determined by the matching, the energy density must depart from zero as
one moves to the interior, so that the star indeed extends no further than, and up to,
that surface. A sufficient condition is that [E'] # 0. In that case it can be shown that
one can make use of the gauge that follows the surfaces of constant energy density, which
has been used so extensively in the literature, specially in [57]. In order to determine

the deformation one can then extend =y and =5 to the interior, say using some functions
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&o(r4) and &(r) in a convenient way, using that gauge, to finally obtain the deformation
by continuity. This is discussed in the final part of this section, where it is shown, in
particular, that and will hold also when E(a) = 0, under the condition that
the gauge that follows the surfaces of constant energy density exists. This suggests the
fact that equations (7.36)) and (7.39) are expected to appear again at higher orders, in the
same way the condition [E]Q; = 0 of the first order problem appears as [E'](Q1)* = 0 at

second order.

Before performing an exhaustive discussion on the determination of the deformation
of the star to second order, we acommodate Hartle’s model in our setting, establishing the
explicit correspondences between coordinates and gauges used in both methods. Apart
from the obvious interest of comparing our results with those in [57], this will help us to
determine the deformation of ¥ even when [E] = 0. This is accomplished inside a suitable
(surface) gauge, that we denote as the F—gauge. First we discuss its existence and how
to construct it and finally we point out how the deformation of the star is encoded in this

gauge.

7.5 Comparison with Hartle’s results: amending the

Imass

The spacetime gauge used in [57] at first order corresponds to setting b; = 0 here (since w
is assumed to be continuous in [57]), while at second order the starting point is the choice
of gauge that corresponds here to setting k¥ = 0 and f;* = 0. We refer to this choice as
the k-gauge. At some point another spacetime gauge comoving with the deformation is
introduced in [57]. A discussion of the use of that gauge in [57] (also in [I6]) can be found
in Section [T.5

In the k-gauge all the “tilded” functions and equal the non-“tilded”
counterparts, and in the interior region (+), the functions Py and P, are just rescalings of
their respective Péz) and PQ(Q), that is, 750/2 = Pé;;/(Q(E+P)) := Py2. To avoid having to
rewrite all the previous equations without tildes we will simply use the “tilded” functions
in what follows.

Let us first concentrate on the [ = 0 sector. Regarding the interior region, the system
— plus equation for the set {Te*)‘m;{,ﬁg, Ba“}, as functions of r (r, in
fact) coincide one by one with the coupled equations and , plus in
Chapter 4| (or (90), (97) and (100) in [57]) for {md,pt’*, hi'} as functions of R, which
has the same range as r,. To be precise, one can forget about r, and R and just es-

tablish a common variable s, so that the sets of equations in Chapter [6] and in Chapter
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or [57] hold in the range s € (0,a]. Given common conditions at s — 0 the prob-
lem for {re *mg, Py, ho} coincides with the problem for {mf,pf* hl'} and therefore
mi(s) = se &g (s), pi*(s) = Po(s) and hf (s) = ho(s) (up to a free additive constant)
necessarily for s € (0,al, i.e. in the interior region.

In the vacuum exterior region my = mg and hy = ho are given by and l}
respectively. Again, these two expressions correspond to and in Chapter
((105) and (106) in [57]) for m& and hf respectively, in terms of a variable r in the range
r € [a,0).

Therefore, the matching conditions for the function ho given by and , and
for the function my given by , translate directly to matching conditions on ki and
mil. As discussed previously, the free additive constant in Af (and so in hfl) can be used
to set Hy = 0. In an abuse of terminology, the assumption of a “continuous” h{l is thus
consistent.

The function m{ is also assumed to be “continuous” in [57] Section VII, when the
value of m{’(a) as computed from the interior is equated to the expression of m{!(r) in the
exterior at r = a in order to obtain the constant 60 in ([4.30), or (107) in [57]. However,
the correct matching condition is given by , which in the k-gauge, and since [A\] = 0,

can be expressed as

] = 4w (a = 200) B a) (752)

using the notation in Chapter [ [57]. As a result, given the value m{/(a) as computed

from the interior, the value of the change in mass in (6.42)) is given by

SM = m{l(a) + i—j + 47ra—3(a — 2M)E(a)pt*(a). (7.53)

M

The last term corresponds to the jump of the values of mq at the boundary, and it is not
present in the expression for the change of mass ([£.30)), this is (107) in [57] and in the
subsequent works, e.g. [64] [65]. Of course, whenever the density of mass-energy vanishes
at the surface of the star, E(a) = 0, this term has no consequences. This will happen
in many situations, as in the cases of equations of state that imply the vanishing of the
energy density at points where the pressure vanishes, polytropes for instance. In fact, in
the series of papers started by [64] 65] all the equations of state considered satisfy that
condition, and therefore the computation of the change of mass is not affected by the
correction in ([7.53]).

However, in more general situations that is not going to be the case. As an example,
models for quark stars that rely on a non-zero value of E at the surface have been con-

sidered in the literature (see e.g. [34]). In particular, models of stars based on a constant
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background FE' in the interior are affected by that term and the computation of the change
in mass should be corrected.

Let us now jump to the [ = 2 sector. In the interior region the equation plus
the system — for the set {re=*m3, h + ki, hi} as functions of 7, coincide one
by one with equation (4.35)) plus the coupled equations — in Chapter , (120),
(125) and (126) in [57], for {m& v = R + k' hi'} as functions of r, which has the
same range as 7y. The same argument as in the [ = 0 sector shows that the problems
coincide and therefore we can set mk (s) = se iy (s), ki (s) = hy(s) and k¥ (s) = ko(s)
for s € (0,a]. In the vacuum exterior region hy = izg and ky = 1232 are given by
and , which correspond to and respectively in terms of a variable r
in the range r € [a,00). The comparison of with ((91) in [57]) implies the
correspondence pi*(s) = Py(s). The two matching conditions in simply state that
hi and ki are “continuous” on the boundary. The assumption made in [57] regarding
the [ = 2 sector is thus consistent. This “continuity” of h& and k& is finally used in order
to fix the free constants A" and A in the interior and exterior regions respectively, thus
fixing completely the global problem in the [ = 2 sector.

We discuss finally the deformation of the boundary. In [57] the analysis of the defor-
mation needs the introduction of a function 7 (r,0) = & (r) + €2 (r) Py(cos 6) defined in
the whole interior region by imposing P.(R + 2 (R,0),0) = P(R) for R € [0,a] (see
also the discussion in [16]). The deformation is then determined by the values £ (a) and
£l (a).

Let us recall that in the present treatment the deformation is described by =, and
=5, which are determined by equations and whenever E(a) # 0. In the case
E(a) = 0 the deformation can be determined by relying on a particular gauge in order to
define extensions for both 2y and =5. The correspondence of ¥ (r) and &4 (r) as functions
defined in the interior region with quantities in the treatment presented here rely, in fact,
on the construction of those extensions. This is discussed in the next section, where it is
shown how equations and hold in all cases, and that the values £/ (a) and
&8 (a) correspond to

1 — 1 v(a)/2—=
&l(a) = —56”(“)/2:0, &la) = —35¢ @/2%,, (7.54)

(The relative minus sign comes from the orientation of the normal chosen in (5.10]), which
goes as —0,.) Indeed, the former translates, via (7.50)), to equation ([£.31), (117) in [57],
which should in fact be corrected to £X (a) = pi*(a)a(a — 2M) /M, whose value describes
the average expansion of the shape of the star [64, [16]. The combination of the latter with
enters the different definitions of the ellipticity of the star found in the literature
(see e.g. [64], [16]) accordingly. In particular, it provides the expression for the ellipticity
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as defined in [64] by (4.40]), which after using (7.54)) and (7.51)) thus reads

e = —3{/;?2(60—&_]\42]\4 <i12(a)+%a_aZM <i;§—900> )}

On the deformation of the star

We devote this section to discuss the deformation of the surface, and at the same time,
study the relationship of the two gauges used in [57] (also in [16]).

In order to describe the deformation of the surface, motivated by the approaches taken
in Newtonian theory, it has been common in the literature to focus on the surfaces of
constant energy density or, equivalently, of constant pressure given a barotropic equation
of state. This consists after all of a choice of gauge in which the surfaces of constant
energy density (or pressure) in the interior region of the perturbed configuration are
those of constant radial coordinate. This is described in [57] (see also [16]) as a change
from the original coordinate r (the initial gauge corresponds to the k-gauge) to another
R defined by (the inverse of)

{R,0} — {r" =rI(R,0),0} (7.55)
for some function v (R, ) satisfying ! (R,0) = R and
E.(r!(R,9),0) = E(R), (7.56)

where F. is the energy density corresponding to g. (see (6.3))) in the k-gauge. The surfaces
of constant energy density in the perturbed configuration, E., are then those of constant
R, and their values correspond to the values the pressure of the background configuration
E take at those R € (0,a]. In the present terminology that corresponds to moving to
another gauge, to which we refer to as the F-gauge. Note that is imposed for all €
in some neighbourhood around 0, and therefore for all orders. To second order rZ (R, )
is specified in [57] as

r?(R,0) = R+ 2¢"(R,0) + O(e*), (7.57)

where for clarity we write explicitly the perturbation parameter at this point. We do not
comment yet on the existence nor uniqueness of the E-gauge.

In [57) the perturbed surface is then defined as the surface of constant energy density
that equals the value of the energy density at the surface of the static configuration.
Explicitly, 3. is defined to have the form X, : 7 = rf(a, ), which is equivalent to R = a

by construction.
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Let us formulate that condition in the present treatment. Indicating with a (®) when
a (gauge-dependent) quantity or object refers to the E-gauge, the expression ([7.56) can

be cast just as
EME) —

for all orders n > 1 (note E(®(¥) = E). At each order n that condition would determine, in
principle, the F-gauge at the corresponding order. The perturbed matching hypersurface
Y. would then be defined by imposing »® = Yo pointwise. In other words, the perturbed
matching hypersurface is defined by imposing that the E-gauge is, at the same time, a
“surface-comoving” gauge [1]

Given a barotropic equation of state all the above can be stated in terms of the

pressure. The E-gauge is then also determined by
PME — (7.58)

for all n > 1. Since the interior pressure necessarily vanishes at the boundary in the
background configuration, imposing that the F-gauge is also a “surface-comoving” gauge
implies that the whole perturbed pressure computed in the E-gauge vanishes at the per-
turbed boundary. This is the view taken in [I6] and many other works (see e.g. [21) [84]).

Clearly, given a barotropic equation of state, the approach taken in terms of E (say,
approach “E”) and that in terms of P (approach “P”) lead to the same conclusion.
However, their justifications are of different nature, apart from the possible problems of
existence.

Regarding the approach “E”, if E(a) # 0 the fact that the perturbed energy den-
sity attains that value E(a) at the boundary may, in principle and in general, seem to
constitute an assumption. Probably due to this difficulty the approach “P” has seemed
to be preferred in many works since the vanishing of the (perturbed) “pressure” on the
surface is what one would expect on physical grounds. However, that would be an er-
roneous statement as such, and in general, since P. is gauge dependent (see Chapter [7)).
One should, at least, prove in which gauge that should happen. Indeed, the matching
conditions in the exact case restrict the possible jumps of the Einstein tensor across the
surface. However, it remains to be shown how this fact translates to the perturbative
matching scheme in the general case. A general consistent approach should not rely, in
principle, on the use of a result (the vanishing of a “pressure” in a certain gauge) that
has to be proven, in fact, as a consequence of the procedure.

Finally, the definition of the deformation of the star in terms of the E-gauge should

control and take care of the existence (and uniqueness, if needed) of the gauge. For

!The surface comoving gauges and the surface gauges are defined in Chapter |3|just after Proposition

&
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instance, in the simplest case of a constant energy density interior background E(r) =
E(a) = const. the E-gauge cannot be determined using (7.56), and thus, neither the
deformation. Instead, the “P” approach has to be used, for which the F-gauge can be
constructed. This is implicitly done in works focused on stars of constant energy density,
such as [30].

Nevertheless, the determination of ¥ using the F-gauge is well justified if F'(a) = 0 but
E(r) # 0 (> 0 in fact) for € (0, a), since then the perturbed star (perfect-fluid region)
extends up to where E. vanishes, and no further. By the local nature of the matching,
one could relax this condition to E(a — ¢) # 0 for all § > 0 in some neighbourhood of
a. This condition (and analyticity of F(r)) demand that there exists n such that n-th
derivative d"FE/dr™(a) at r = a is non-zero. The implicit function theorem can then be
applied to every differentiation of with respect to € evaluated at € = 0 in order to
show that r(a, ) can be obtained order by order from ((7.56). The full proof is out of
the scope of this thesis and will be presented elsewhere. When needed, we will simply
assume that the E-gauge can be constructed from r = a inwards.

As stressed, in the present treatment no argument about the vanishing of the pressure
of the perturbed configuration P. has been made, nor any specific gauge has been used. In
Sections and it has been shown how the deformation of the boundary, described by
the quantities ()1 of the first order and =y and =5 of the second order, are determined by
Q1 = 0 when E(a) # 0 or E'(a) # 0, and and when F(a) # 0, respectively,
and how that agrees with the results in [57].

In what follows we first show explicitly that the F-gauge is indeed a “surface gauge”
when E(a) # 0, at least to second order. This shows, at the same time, that the usual

)

“vanishing of the pressure at the boundary” in the exact case translates in this perturba-
tive scenario to PE(E) |E(E) = 0, i.e. that the perturbed pressure in the E-gauge must vanish
at the perturbed surfasce (at least to second order). Secondly, we use the definition of the
perturbed surface when F(a) = 0 by means of the E-gauge (approach “E”) to show that,
given the FE-gauge exists (and is unique), then ¢); = 0 and equations and
hold even when E(a) = 0.

Not to overwhelm the notation let us drop the interior + superscripts in the following
when not needed.

As shown in Section , at first order we have E) = PM = 0, and the condition
E(a) # 0 already implies @)1 = 0. Therefore, the family of gauges chosen for the family
satisfies the E-gauge condition to first order. Since (); = 0, Y. coincides at first
order with X, as a set of points. The E-gauge is therefore a “surface-comoving” gauge up
to first order. A hypersurface gauge can be used to fix T = 0, so that the perturbed X,

coincides at first order with ¥y pointwise, so that the E-gauge is, moreover, a “surface”
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gauge up to first order.

Regarding the second order, let us recall that given conditions at the origin (such
that Py(0) vanishes) Py(r) is fully determined by the I = 0 field equations, and P,(r) is
obtained from , once iNLQ(r) is fully determined, in turn, by the [ = 2 field equations
and the condition at the origin and at the boundary » = a coming from the “continuity”

of the functions h, and ky. Now, the E-gauge is selected by fixing ko(r) and f(r) so that
PPE) (r) and PP E)(r) vanish. From (6.37) and (6.59) this is accomplished by imposing

E+P L @ E+P-
Y=Y Po, 2 T T Ps. (7.59)

We are ready to show that if 1} and l’ hold then QgE) = 0. This follows
directly from the definitions ((7.28)), which in the E-gauge read

kP =

Q2E§) ==+ 2ae_”(“)/2kéE)(a), Qgg)) =+ 2a6_”(a)/2f2(E)(a).

Equations ([7.50) and ([7.51)) together with ([7.59) evaluated on r = a readily imply Qg%) =

QQEQS)) = 0. Finally, since we have chosen T, = 0 at first order, then QQE(?)) = QQEQE)) =0

as follow from the definitions (7.28)). It only remains, again, to choose a convenient

hypersurface gauge to second order to fix T 5" = 0 so that the perturbed ¥, coincides with
Yo at second order, not only as a set of points, but pointwise. We have thus shown that
the E-gauge is indeed a “surface gauge” whenever E(a) # 0, at least to second order, as
expected.

Let us consider now the case F(a) = 0 under the conditions that ensure the existence
and construction of the F-gauge. The matching hypersurface ¥, is then determined by
the coincidence of £ and ¥y pointwise (in Vy , mind the + superscript). This condition
is equivalent, up to second order, to QT(E) = Q;(E) = 0 together with a hypersurface
gauge choice such that T = T = 0 at each order. At first order we thus have the
required result by construction. At second order, the equations defining =g/, ([7.28) in the

interior read then
=) = —2ae 2K (@), By = 20O 1P (a),

which combined with (7.59), yield and (7.51).

We must finally address the issue of how Zg/s, given by and , describe
the deformation of the surface. The key is to show how the deformation quantities =/,
defined on X, can be extended to the interior region and how that relates to the change
from the k-gauge to the E-gauge. We start by defining that change in terms of Vy. Let
us, for simplicity, set Si = 0 so that S, = V. Including S, = C't0,, does not add anything
relevant to the analysis. Recall that the k-gauge is defined by k(()k) = (0 and fz(k) = 0. Given
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that the second order change Vi = 2Y (r,0)d, induces (5.6) (with C' = 0), it is immediate
to check (recall the freedom in defining f(r,0)) that the change from the k-gauge to the
E-gauge is accomplished by setting

E+P

Pl

Vo =20 (K" + 7 Py(cos0)) 0, = =2 (Po + PoPs(cost) . (7.60)
where the second equality follows from . Note that the relation kék) = kéE) - 2(E)
holds (recall the radial gauge transformations (.€])). Also, from relations and
we can see that the vector field \_/)2 does not vanish at r = a unless P = 0 there.

On the other hand, given the definition of the second order gauge vectors in ,
the second order gauge Vy = 2Y (r, 0)0, with S =0 corresponds to a diffeomorphism €, :
Vo — Vo of the form (s,0) — (R.(s,0),0) for s € [0, a] defined by R.(s,0) = s+2Y (s, 0).
Given ([7.60]), we thus have

E(s) 4+ P(s)

R.(s,0) =s—¢&° Ps)

(750(3) + Pa(s) Py(cos 6’)) : (7.61)
Let us recall again (see Section that the coordinate R used in [57] ranges from
0 to a, and therefore (7.61)) can be compared with the expression (7.57)) in the form
rf(s,0) = s +e%¢H(s,0) + O(£?) to obtain

E+P /- ~
¢ =— iz (770 + Py Ps(cos 6)) .
Now, this is in agreement with £# = ¢ + ¢X Py(cos ) for 552 = —%péﬁj, as follows

from (90) and (91) in [57] and the correpondences p(},*(s) = Po,2(s) found in Section .
Expression ([7.61)) suggests the construction of two functions in the interior

E+ P
o2 :=2 I

These, evaluated at r = a, and given that (7.50) and (7.51)) hold, lead to

e *Pys. (7.62)

50/2 (a) = E0/2-

The functions §y2 (7.62)) are therefore extensions of Zy/,, as defined in ([7.50) and ([7.51)),

to all the interior region, and are ‘radial’-gauge independent by construction. The infor-
mation of the deformation of the star in the k-gauge is therefore encoded in the functions
§o/2, Whereas in the F-gauge that information lies in the functions k(()E) and fz(E).

Using the correspondence &a(s) = —2e/2¢,(s), so that Zg = —2e7/%¢f1 (a),
the analysis of the deformation of the star in terms of =y and =, follows then from the
discussions in [57] (see also [16]). Note that the minus sign in the correspondence comes
from the choice of the normals as defined in , which point towards the origin.
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On the angular structure of the perturbations

This chapter is aimed at showing that the only possible angular structure of the functions
in the perturbation tensors and is such that w is a function of the radial
coordinate alone and the expansions for the second order functions contain only
the terms [ = 0 and [ = 2, i.e. the orthogonal L sector must vanish. We rely on the
construction made in Chapters 5] to [7] in which we have two problems, the interior and
the exterior, each one characterized by an elliptic operator in the corresponding domain
plus some boundary conditions that arise from the matching procedure. We show that
the only differentiable and regular solutions for the first and second order perturbation
problems are those for which the L sector vanishes.

In [57] the behaviour of the function w(r) was somehow adressed. The argument
given there relies on the assumption of the continuity of this function (and its derivative)
everywhere, including at the boundary that separates fluid and vacuum, in the coordinates
used to write the metric as . Under this assumption, the global problem, i.e. in
the domain r € (0,00), is considered and it is argued that fulfilling the conditions of
regularity at the origin plus “asymptotic flatness” at infinity requires that the function w
cannot depend on the angular coordinate §. The angular structure of the second order
perturbations is also discussed in [57]. First, the non-equatorially symmetric part in
the second order functions in , that corresponds to the odd I’s in an expansion in
Legendre polynomials of the functions involved, is ruled out. After this, the second order
field equations are obtained to find that they contain inhomogeneous terms proportional
to (2 —w)? or to w'? acting as sources only for the [ = 0 and [ = 2 modes of the second
order functions in . The homogeneous problem for the rest of the I’s is circumvented
arguing that in absence of rotation no contributions of such type are found.

The analogous problem in the Newtonian approach for polytropic equations of state
was analyzed by Kovetz in [72]. He revisited the paper by Chandrasekhar [23] to show

that the rotational perturbations to the Emden’s function, that in the politropic model
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are translated into the perturbations of the Newtonian potential and the density profile
(see Chapter [J] for a brief description of polytropes), contain only I = 0,2 modes. The
proof is given for a polytropic index n in the interval 0 < n < 5, although it can be
checked that it holds also for n > 5[[] The present work generalizes the work by Kovetz

in the Newtonian case.

8.1 Notation and considerations

For notational convenience, let us start with a definition of limits of functions we will use

later.

Limit for functions defined on subsets of the real line

Let (a,b) be an open interval in R and p a point in (a,b). Let f be a real valued
function defined on all of (a, b) except possibly at p. It is then said that the limit of f as x
approaches p is L if, for every real ¢ > 0, there exists a real § > 0 such that 0 < |z —p| < 0
and = € (a,b) implies |f(z) — L] < e.

Strong maximum principle and boundary point lemma

We stick to the notation, conventions and definitions regarding elliptic operators from
[54]:

e D denotes a domain (a proper open connected subset in R™). It is not necessarily

bounded.

o L = d(z);2— + b(z)2> + c(z) is elliptic at a point z € D if the coefficient

8(22'(2]'
matrix a¥(z) is positive, i.e. if A(z) and A(z) denote the minimum and maximum

eigenvalues of a”(z) then 0 < A\(2)|¢|* < a"(x)&&; < A(x)|¢|? for all £ € R™ — {0}.
e [ is uniformly elliptic in D if A/ is bounded everywhere in D.
e The condition [b'(z)|/\(z) < const < oo, x € D will be assumed.

e 0, denotes the outward unit normal derivative to 0D.

From the same reference, we include for completeness the boundary point lemma and

the strong maximum principle.

1One of the steps of the proof given in [72] consist of showing that the minimum of a function that
depends on the polytropic index n is positive. The computation must be performed numerically and it
is done in the original reference [72] for 1 < n < 5. However, we have not found any n greater than 5 for
which the minimum becomes negative. It does for 0 < n < 1, which in [72] is treated separately.
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Lemma 5 Boundary point lemma ([57)])
Suppose that L is uniformly elliptic, c = 0 and Lu > 0 in D. Let xy € 0D be such
that

1. u s continuous at xg,
2. u(xg) > u(z) for all x € D,
3. 0D satisfies an interior sphere condition at x.

Then the outer normal derivative of w at xq, if it exists, satisfies the strict inequality

%(mo) >~ 0. (8.1)

If ¢ < 0 and ¢/X\ is bounded, the same conclusion holds provided u(xzg) > 0, and if

u(xg) = 0 the same conclusion holds irrespective of the sign of c.

Theorem 6 Strong maximum principle ([54)])

Let L be uniformly elliptic, ¢ = 0 and Lu > 0(< 0) in a domain D (not necessarily
bounded). Then if u achieves its mazimum (minimum) in the interior of D, u is a
constant. If ¢ < 0 and c¢/X\ is bounded, then u cannot achieve a non-negative maximum
(non-positive minimum) in the interior of D unless it is constant. If ¢ < 0 at some point,

then the constant of the theorem is obuviously zero.

8.2 Lemmas

We define the intervals I = (0, A) and I~ = (A, 00) of the real line for some A > 0. Also,
we will use the notation I} = («, A). The boundaries at A, and «, satisfy the interior

sphere condition trivially.

Lemma 6 In I, let the uniformly elliptic operator L™ be
+ ¢ (R), (8.2)

where b*(R) and c¢™(R) are bounded functions in I}, for all 0 < a < A. Also, ¢c"(R) <0
in IT. Let f € C2(IT)NCY(IT)NCHI* U{A}) that satisfies LT f =0 and f(0) = 0.
Then the following holds

o f(A)>0= 0rf(A) > 0.
e f(A) <0=0rf(A) <O0.

115



8. ON THE ANGULAR STRUCTURE OF THE PERTURBATIONS

o f(A)=0= f(R)=0 YRel" .

Proof: Consider first f(A) > 0. f(0) = 0 implies that for all 6 > 0 there exists ¢ > 0
such that |f(R)| < § whenever R < e. Set § = f(A) > 0. Clearly ¢ < A. Define the
domain Dt C It as Dt = (e, A), non empty by construction, and consider the operator
L* in D*. Since f(R) < f(A) and f € C2(D%), f is nonconstant in D*, and thus, since
bt and ¢ are bounded in D', the strong maximum principle ensures that the function f
does not attain a non-negative maximum in D*. Hence the function f in D' attains its
maximum at R = A. Now, given that f(R) € C°(IF), with f(A) > f(R) for all R € D,
the boundary point lemma states that Ogf|gr=a > 0.

Consider now f(A) < 0. The change f(R) — —f(R) leads to the previous case, since
—f(A) > 0 and thus Orf|p=a < 0.

Assume f(A) = 0 and that f is nonconstant. By the strong maximum principle f
cannot attain a non-negative maximum nor a non-positive minimum in I, for some fixed
value of a. Since the boundary is composed by two points, either f(A) = 0 is the non
negative maximum and f(a) < 0 is the non positive minimum, or f(A) = 0 is the non
positive minimum and f(«) > 0 is the non negative maximum.

Let us consider first f(a) = 0. Since LTf = 0 in a bounded domain I} and f =0
in OI, the function f is zero in I7. Take f(«) > 0. Given f(0) = 0 there exists ¢ < «
for which |f(R < ¢)| < f(a). Now choose B satisfying 0 < B < ¢ to define still another
I;. Since f(B) < f(«) by construction, f does not attain its maximum on 97};. Hence
f must be constant in I}, and zero because f(A) = 0. The same reasoning works for
f(a) <0, setting f — —f. This proves f = 0 in I for all @ € (0, A). Therefore, f =0

in I+ follows by continuity.

|
Lemma 7 In [~ let the uniformly elliptic operator L~ be
[y ) (8.3)
TR dr " ° '

where b~ (R) and ¢~ (R) are bounded functions in 1-. Also, ¢c*(R) < 0 in I~. Let f €
CYHI7)NCY(I~) that satisfies L~ f = 0 and

lim f(R)=0. (8.4)
R—o0

Then the following holds

e f(A) >0=0rf(A) <O.
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o f(A) <0=0rf(A)>0.
o f(A)=0= f(R)=0 VRecl .

Proof: Assume that |f(A)| > 0. A direct application of the strong maximum principle
and the boundary point lemma gives the stated result.

Suppose now f(A) = 0 and that f(Ry) > 0 for some Ry > A. Given the limit
condition (8.4), fix the constant § = f(Ry) and € > Ry such that |f(R > ¢)| < 6. Take
now the interval (A, ¢). By construction 0 = f(A) < |f(e)| < f(Rp). Since the function
is achieving a non negative maximum equal or greater than f(Ry) in (A,¢), f must be
constant in this interval, and zero, because f(A) = 0. If f(Ry) < 0 the same applies to
—f. Then f =01in (A, Ry). This result holds for any Ry > A and therefore for the whole
I~ [ ]

Lemma 8 Consider the problems for {L*, f*} in It and for {L~, f~} in I~ that satisfy

the conditions of Lemmas |6 and [7 respectively. Impose the boundary conditions

[HAT) = (A7) =0, (Orf)"|rr=a+ — (Orf) |r-=a- = 0. (8.5)
Then f*=04in I+ and f~ =0 in I-.
Proof: Suppose fT(A") = f7(A7) > 0. Then by Lemma[6] (Orf)"|g+—a+ > 0. On
the other hand, by Lemma , (Orf)"|r-=4- < 0. Thus, the second matching condition

in (8.5) cannot be fulfilled. The same result follows for fT(A") = f~ (A7) < 0. For
fH(AT) = f~(A7) = 0 Lemmas [f] and [7] lead to the result. u

Lemma 9 Consider the problems for {Ly, fi } in I] = (A1, 00) and for {Ly, fy } in
I; = (As,00) that satisfy the conditions of Lemma @ Impose the boundary conditions

ff(A1> - f;(A2> =0, (aRf)I|R1=A1 + 52(8Rf>5|32=A2 =0 (86)
for some (nonzero) constants 5, Ay, Ay. Then fi =0 in E and fy =0 1in E

Proof: Suppose f; (A;) = f, (A2) > 0. Following Lemmal[7] the derivatives (9rf)1 |ry=a,
and (Orf)s |r,=4, take the same signs. Hence, the second matching condition in
cannot be fulfilled. The same conclusion is reached if f; (A;) = f5 (As) < 0. The
remaining possibility f; (A1) = f5 (A3) = 0, implies that f| =0 in I7 and f; =0in I,
by Lemma [7] [
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8.3 First order problem

Let us define the domains D" : {r, € (0,a) x S?} and D™ : {r_ € (a,00) x S*}, where
S? are the unit round spheres. DT and D~ will correspond to the interior and exterior
problems respectively. We will simply refer by D either one, and denote coordinates
without + generically, if this leads not to confusion.
We define the spherical potential functions G*(r, #) relative to w™(r,0) —Q and w* (r, §)
by
wo == L@gg* wh = LE}’QQJF (8.7)
sin 0 ’ sin
The freedom in the addition of an arbitrary function of r is used to fix G so that G is
orthogonal to the [ = 0 Legendre polynomial Py(cos#) on the unit round sphere, that is,
gng: =0, (8.8)
S2
where 1g: denotes the volume element on S?. The equation for w translates to the
potential G, for either 4, as
AGHVG=0 (8.9)
for the metric v = rie™ (e*dr? 4+ r?dQ?), where dQ* denotes the metric on S?, and with
V(r) = %e” (14 2rej'/j) . The change r* = 3R renders the metric v and potential V

as

v=e" (M R*+9R*D),  V(R)= %e” (1 - 6ReA‘; /é]};; ) : (8.10)

Let us define A := a3/3. The problems for G* given by are thus defined on the spaces

D*, now endowed with the metrics yv*. Each space (D*,7%) can now be decomposed

as I* x Sp where Si are round spheres of radius p(R) = 3¢ /2R and I = (0, A),

I~ = (A, 00). The important feature regarding the space (D*,~T) is that its closure D+
is completed, apart from the sphere of radius p(A), with a point attached to R = 0.

On the unit sphere S? we define the quantities G; at each R by

GI(R) := g GP(cosO)nse. (8.11)

The operator A\, separates into A, = Lr + p~2Ag2, where L is a purely radial second

order differential operator and Age is the Laplacian on the (unit) sphere. The equations

for the radial functions G; are obtained by the integration of equation around S?

and read

/ (A, + V)G Pmg: = 0 (8.12a)
SQ
N (LR - l(l;; b, v) G —0. (8.12b)
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8.3. First order problem

The first and third terms in (8.12b)) follow from the nondependency of Lz and V' on
the angular coordinates, while the second term arises integrating by parts and using
(Agz + (I +1))F, = 0. The equations for the functions G, explicitly read

NI S (P L P YO IR _
LG = 7 dR (R de) + ViZ (e (2 l(l+1))+12Rj(R))gl =0, (8.13)

which hold in the respective I*. The matching conditions for the functions w® (5.14)) and
(5.15)) imply, for their respective G;*, that

QfL|R+:A — G lr=a=0, (Op+G)|r=a— (Or-Gi)lr_—a=0, 1>2, (8.14)

where we have used 7t = —(34)%3e*20p+| pe—4.
From here on, we restrict ourselves to [ > 2. Let us study first the interior problem.

The equation (8.13) for G;" holds in I* and can be rewritten as

20+ 9 i+ + 1 !
LtGH = 9 ( + L) /i (e”(z —I(1+1)) + 12R+‘2.—+) G =0,

dR+2 R_+ ]+ dR+ m
(8.15)
which adapts to the notation of Lemma [6] by identifying
2 gv
VH(Ry) = — +— 8.16
(R = 5+, (5.16)
+ 1 AT it

In order to analyse the behaviour of the functions b (R, ) and ¢™ (R, ) in the operator
LT, let us restrict ourselves to regular interior background configurations in which neither

the pressure nor the energy density diverge and the sum E* + PT > 0. Recall also that

equations (6.12)), (6.13]) and (6.15)) of the background configuration lead to

gt Amer” n n
=Ry ET P S0 (8.18)

The limiting value of the function e*” near the origin is found to be (187 (3R, )2 E; /3)~",
and therefore it remains bounded. Hence b and ¢t are bounded functions, and ¢™(R) <
0,in If.

We require that GT € C?*(D™), and to be once differentiable on the sphere at A
and bounded at the origin. Now, since R, = 0 in D+ is a point, in order to have G*
defined there, the limit limgz+_,0 G cannot depend on the angular coordinate 6, that is,
limp+ 0 G" must be a constant, and because of the orthogonality condition that
constant is zero. All in all, regularity of Gt at D implies

lim G* = 0. (8.19)

R+4)0
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8. ON THE ANGULAR STRUCTURE OF THE PERTURBATIONS

The function G;" (R.) in I is thus extended to the origin (R, = 0) by continuity imposing
G,"(0) = 0, and therefore G, € C*(IT) N C°(I*) N C*(I* U {A}). Hence, the interior
problem for {L*,G;"} in I satisfies the conditions addressed in Lemma [6]

In D=, 77(R_) = 1, and equation just reads

CBGT 2 .dG7 e

LG = mst 5 ap top2@ - W+1)G =0, (8.20)
in the domain I~ = (A, c0). Thus, we identify
AUSIE (8.21)
R .
€>\7 1 IM —1
)= 2-iU+1) = 1- 2 1(1+1)). (8.22
R = gl ) = g (1- 2 214D, B2

We consider background vacuum configurations for which 0 < 2M < a < r_, so that
0 < 2M < (3A)Y* < (3R_)"?, for which b~ and ¢~ are bounded and ¢~ < 0 in ™.

We demand that G~ € C2(D~)NCY(D~). Hence G; € C*(I~)NCY(I~). Apart from
this, we also ask for regularity at infinity. An observation of equation inu=R_"!
reveals that in the limit R — oo < u — 0, regular solutions must vanish for [ # 1, this
is

Rliinm G (R.)=0 I #1. (8.23)
Hence, the exterior problem for {L~, G, } in I~ fulfils the conditions of Lemma .

Recall now the matching conditions . By Lemma , the only possibility is that
G (Ry)=01in IF and G, (R_) = 0 in T~ for [ > 2. It follows from that G(R, 6)
for each R is orthogonal to every Legendre polynomial in the unit sphere except to P;.
This implies, via , that @ is a function of R alone.

Proposition 9 Consider the functions w®(r,0), defined respectively in the interior do-
main DT : It = (0,a) x S,,, where w* is a C*(D%), differentiable once on S, and
bounded in D¥ function, and in the esterior domain D~ : I~ = (a,00) X S,_, where
w™ is a C*(D7) N CYD~) function regular at infinity. Let w* satisfy equation ,
particularized adequately for each domain, and let the two problems be related in r+ = a
by the boundary conditions (5.14) and (5.15). Assume that E+ P > 0 in DT and that
0 < 2M < a. Then, neither of the w® can depend on the corresponding angular coordinate,
that is,

wh=wt(ry), w =w (r). (8.24)
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8.4. Second order problem

8.4 Second order problem

The second order problem reduces to the study of the functions o, defined in Section
by ot := h* 4 kL. These functions satisfy, in the corresponding regions (we drop the
+ here), the equation ([6.67))

(A, + V()i (r,2) =0, (8.25)

written in terms of the auxiliary metric and the radial potential V' that in terms
of the function g(r) (6.64) read

y = (GA/E(T)Y (edr? + r2d0?), (8.26)
Vir) = QT—(;A <6Af2(r))2. (8.27)

Let us remark that the potential V' is positive everywhere in both (interior and exterior)
regions. We need to demand that o-% € C?(D¥) respectively and that they have well
defined normal derivatives at the boundaries.

We consider the interior problem first. In the limit r, — 0, making use of

1 1 21
. + — . - - . )\(7»+) —
fm, g7 (ry) = lim, = <87T(Pc n EC/S)) 2 e ’ (8.28)
the metric v* (8.26)) and the potential VT (8.27) show the following behaviour
~ _a (dry?  dQ?
%—":—>0 =Je ? (87(P. + E./3)) ! ( —; + _6) ’ (8.29)
Ty Ty
R
V*H(ry —0) = 2(8m)*52 (PC + ?) 7y (8.30)

Hence the radial coordinate R, := r;3/3, R € (A :=a3/3,00), is adapted to the area

of the spheres in this limit since

Vi oo = Jo > (87 (Pe + E./3)) ™" (dR.* + 9R.2d9?) (8.31)
252 EN' 1
VTR, — 00) = 9 (PC + ?) j3 (8.32)

Keeping this radial coordinate for the whole interior renders the metric as
v =2 (Ry) (*dR, 2 4+ 9R,2dQ?) (8.33)
with ¢2 (R;) := (3R;)*3eMB+)g, 2(R,), and the potential reads

2€>\+ (R+)

VU = BRy R Ry

(8.34)
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8. ON THE ANGULAR STRUCTURE OF THE PERTURBATIONS

The space (DT, ~") is decomposed as I x Sg, where Sg, are round spheres of radius
3R, 1, and IT = (A, 00). On the other hand, the operator A+ gets decomposed in the

radial and angular differential operators as

34/36—2/\Jr ) . ) 6—)\+/2
— /3 . +_~ - +
Do = (R+ g am) @y | A4 (8.35)

On the unit sphere S? we define the quantities v;" by

v (Ry) = /52 T Py(cos b4 )0t (8.36)

Integrating equation ({8.25)), with the potential given explicitly by (8.34)) and the dif-
ferential operator by (8.35)), around the unit sphere via the formula (8.12a]), the equation

for the v;" results to be

d2vt 4 N\ dot A
U + L ) o+ 1)) =0 (8.37)
dR.2

as

4 j+/ V+”
bV'(Ry)=— —2——2 8.38
where
gt Arer” n .
I = — _(Et4+P
J* (3R+)5/3( t 8,
vt 41— ) + 3R (A (=2 + 3vTRL) — v (10 + 3vT'RY))
vt 18R 2vt ‘

Using the equations for the background (6.12)), (6.13)) and (6.17)), the asymptotic limits of
the functions M, E, P allow us to determine that v*” /v decays to infinity as —5/3R;.
Finally, putting together the behaviour of j™/j™ and v™”/v™" at infinity, we see that
limg, o0 b = —1/3Ry. Exploring equation in this limit we can readily check that
for 1 >1

lim vt =0. (8.39)

Ry—o0
Thus, the interior problem in I for v;" € C?(IT) N C*(I*) satisfies the assumptions in
Lemma [7l
We follow an analogous procedure to treat the exterior problem. First, we perform
the change of radial coordinate R_ := (r_)?/3 and define

1 oM \°
¢3(R7) = 16M4 (1 - (3R)1/3> )
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8.4. Second order problem

so that the metric and the potential become

v = ¢2(R.) <1—$>_ dR_* +9(R_)*dQ%) | , (8.40)
V(R) — % (1—%) | (8.41)

Now (D~,~7) is decomposed as I~ x Sg_ where Sr_ are round spheres of radius 3R_1_
and I~ = (A,00). We define the functions v; integrating the product of o+~ with the
legendre polynomials over the unit sphere, just as the v;" in (8.36]).

The integration of equation around the unit sphere results now in

Po 2 < 2M )‘1 doy 1 2-1(1+1)
+ 2+ 1- + vy =0, (8.42)
dR? E’)R, ( (3R_)1/3 dR_  (B3R_)%*1-— (353\/)11/3 I

J/ N

-~

b= (R-) e~ (R_)
Clearly the functions b~ and ¢~ are bounded in I, since 2M < r_ = (3R_)Y?. In
addition to this, the function ¢~ is negative for [ > 2. Finally, in the limit R_ — oo
equation (8.42) agrees with (8.20). Thus, regular solutions must vanish at infinity,
lim v~ = 0. (8.43)

R_—o

Hence the problem for v;" € C?*(I*) N C*(I) fits in Lemma .
Recall now the matching conditions ([7.44) and ([7.45)) at ¥o. The latter reads

(ﬁvl)+|r+:a - (ﬁvl)_ r-=a — 0= _(8rvl)+|r+:a + (arvl)_|r*:a =0

+ 6 - _

where we have used the explicit form of the normal vectors 7i* and expressed them in
terms of RT and R~ respectively. These result in the matching of the two problems as
described in Lemma |§|7 with 2 = a% Thus, a direct application of Lemma |§| leads to the

result that the functions vli must vanish in I% for all [ > 2. This clearly implies that

7% = 0 in their respective D,

Proposition 10 Consider the functions 0-%(r,0), defined respectively in the interior do-
main D : It = (0,a) x S,.,, where 3% is a C*(D~)NCY(D~) function reqular at the ori-
gin, and in the exterior domain D~ : I~ = (a,00) X S,_, where o+~ is a C?*(D~)NCY(D~)
function reqular at infinity. Let 0T satisfy equation , written in terms of the aux-
iliary metric and the potential , particularized accordingly for each domain.
Assume that E+ P >0 in DT and that 0 < 2M < a. Let the two problems be related in
ry =a > 2M > 0 by the boundary conditions and . Then, v+ =0 in D+

and 0+ =0 in D—.
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8. ON THE ANGULAR STRUCTURE OF THE PERTURBATIONS

A direct application of the field equations lead to the vanishing of the L sector in every
function of the second order perturbation tensor. The field equation now provides
ht = 0, so that &+ also has to vanish, by the definition of . Finally the algebraic
relation implies that m* = 0, so that the full orthogonal sector is ruled out. Then

we conclude

Corollary 10.1 Given the problem set in Chapters |6 and[7, the angular structure of the
functions in the perturbation tensor K, 15 given by

h(r,80) = ho(r)+ he(r)Py(cosf),

k(r,0) = ko(r)+ ko(r)Ps(cosf),

m(r,0) = mo(r) + mao(r)Ps(cosb),

f(r,0) = fa(r)Ps(cos @), (8.44)

where equatorial symmetry has been imposed to rule out the contribution in | =1 in the

expansions above.

We have showed in Propositions [J] and that the matching itself, supported with
regularity conditions at the origin/infinity on the functions involved, determines their
angular behaviour. In view of these results, we can reformulate Theorem [5| without the

assumptions regarding the angular behaviour of the perturbations.

Theorem 7 Let (V, g) with ¥ be the static and spherically symmetric background matched
spacetime configuration, perturbed at either side to first order by the functions w*(ry, 04)
through K,* as defined in plus the unknowns Q¥ (r,9) and T (7,9), as described
mn Propositz’on@ so that the first order matching conditions and plus
and hold. Let the configuration be perturbed to second order by Ko™ as defined in
, plus the unknowns Q;(T, J) and TQi(T, V) on X, and assume that the interior region
(+) satisfies the field equations for a perfect fluid with barotropic equation of state and
that the exterior (—) region is asymptotically flat and satisfies the vacuum field equations
up to second order.

The energy density E(ry) and pressure P(r,.) of the interior background configuration
are given by and and must satisfy . Assume E+ P > 0 in all the fluid.
The background exterior vacuum solution is given by , and we assume 0 < 2M < a.
Consider the convenient background quantities defined in .

Let 1. be the unit vector fluid corresponding to the interior family of metric tensors
g5 =97 + KT + 32Ky + O(e%). Assume that 4. satisfies for some constant §).
Let J be defined by the first order exterior solution .

Then
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8.4. Second order problem

1. At both sides (%) that the first order function w depends only on the radial coordi-

nate, and given equatorial symmetry, the second order functions are decomposed in
Legendre polynomials in terms of {hg, ha, mq, ma, ko, k2, fo} by .

2. The second order pressure P® and energy density E® of the fluid inherit the
same angular dependency, that is, (6.30) hold for some E[()Z)(r), E§2) (r), PO(Q) (r) and
P2(2) (r). With the help of convenient alternative “tilded” counterparts, defined in
— plus and , the Finstein’s field equations in the interior
can be expressed as the system , and for some constant v for the
set {PF,mg, hi} plus the system (6.50), (6.57), (6.58) for the set {h3 ki, m}.
The vacuum solution at second order is given by (0.49), (6.43), (6.01), (0.62) and
where OM and A are arbitrary constants.

3. Given the Einstein’s field equations of the previous point are satisfied, the necessary
and sufficient conditions that the metric perturbation tensors Kot must satisfy to
fulfil the second order matching conditions are given by and for the
sets {7555,77135, /E(j)t}, with arbitrary constant Hy, and the two equations in for
the sets {hi ki mi}.
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The mass in Newtonian gravity and GR

The original treatment aimed at the study of (rigidly) rotating stars in a perturbative
scheme is due to Chandrasekhar for Newtonian gravity, back in 1933 [23]. It was only
in 1967 that Hartle put forward the model within the realm of General Relativity [57].
Although the study in [57] covers any barotropic equation of state, the work in [23]
focuses, from some point onwards, only on polytropic equations of state, i.e. of the form
p=K p1+% for some constants K and n, where p and p denote the pressure and the mass
density of the star. The relationship between the Newtonian and the GR approaches was
presented in [57], and the GR procedure was found to be consistent with the Newtonian
case by taking care of the suitable limit.

However, the computation of the total mass of the rotating configuration as a function
of the central density shown in [57] has to be amended by a term proportional to the value
of the background energy density at the surface of the star, explicitly given by . That
value is zero for certain equations of state (including polytropic EOS), but it does not
vanish necessarily (for instance in models of strange quark stars [34]). As we show next,
that term contributes to the Newtonian limit, and appears indeed, although implicitly,
in the original work by Chandrasekhar [23]. Since most of the models for stars rely on a
polytropic EOS, the appearance of that term had been somehow forgotten, even in the

review of the Newtonian approach in [57].

9.1 The Newtonian star

We first concentrate on the computation of the mass as stated in [23], expand that for
a general case (for any equation of state, so that the density at the interior does not
necessarily vanishes at the boundary of the star), and show how the expressions in [23]

for polytropic equations of state follow indeed. In p.396 of [23] the mass is claimed to be
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9. THE MASS IN NEWTONIAN GRAVITY AND GR

given by
M = 27?//pr2drdu, (9.1)

where p := cos#, and {r,0, ¢} are spherical coordinates, so that r and 6 are the radial
coordinate and azimutal angle on the sphere respectively.

In agreement with the next equation in [23], as we will show later, stands for
the integral over the deformed volume. Indeed, the shape of the star is described in [23]
to be the sphere of the background configuration plus a deformation at first order in a
perturbation parameter v, which corresponds to a second order in the angular velocity
w? over the value of the central density, this last denoted by A in [23], but we will use p.
here. Thus the perturbation parameter v, defined in (10) in [23] is v := w?/27Gp,.

Let us first review just the necessary of the Newtonian treatment in order to obtain
the expression of the total mass of the rotating star, suitable to be computed by solving
the relevant problems at different orders in the perturbation. We follow essentially the
description of the Newtonian approach as made in [57], and will compare with that in

[23] when necessary.

Preliminaries on the Newtonian general approach

The non-rotating static spherically symmetric configuration is described by the mass
density p® (r), pressure p(®(r) and Newtonian potential U (r). The radial variable r
runs from 0 to a in the interior and r > a corresponds to the vacuum exterior. We will
only assume that p(® is smooth in (0,a) and vanishes for all 7 > a. In other words,
p is piecewise differentiable in (0,00), smooth except at a, where p© is allowed to
have a jump. The same applies to p@ (1), except that p(® vanishes at a necessarily, and
it is therefore continuous. From now onwards, the values of p(®(a) and p®’(a) (or any
function explicitly defined in (0, a)) must be understood as the limits of p(*)(s) and p®’(s)
as s — a, i.e. their limits from the interior.

The three equations of structure that govern the configuration are a barotropic equa-
tion of state p(® = p©@(p(®), the hydrostatic equilibrium first integral and the Poisson

equation, i.e.

ol dp(o)(s) (0) 277(0)
= = 47Gpl¥) 2
ol /0 S5 ds ds+ UM (r), VU (r) 7Gp© (r), (9.2)

where the constant v is identified as the chemical potential. We use V? for the flat

Laplacian in spherical coordinates {r, 0, ¢}. The two equations above combined yield

1d [ 7 dp®
i (S N I (0)
e (p(o) = ) ArGp™Y, (9.3)
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9.1. The Newtonian star

which is recognized as the fundamental equation in [23]. In spherically symmetric config-

urations the mass function is given by

MO(r) = 4z /T PO (s)s%ds. (9.4)

Given that M(®(0) = 0 and that regularity at the origin » = 0 implies dU® /dr(0) = 0,

the mass and the potential are related by
duO(r)y G
—— = —MO).
dr r? (r)

The system of three equations can be integrated in terms of boundary conditions at the
origin and thus provide, e.g. , the total mass of the star, Méo) := M) (a), in terms of the
central density p. = p(®(0). We denote that function by M éo)(pc).

Consider now the (perturbed) rotating configuration. The mass density of the rotat-
ing configuration p(r, u) and the gravitational potential U(r, u) are expanded perturba-

tively to first order in v as

plrip) = pO0) +vp®(r,p) + O(?). (9.5)
Ur,0) = UO®) +oUP(r,0) + 0. (9.6)

A new radial coordinate R is now chosen so that it labels surfaces of constant density in

the rotating configuration by [57] (see Chapter {4)

p(r(R, 1), 1) = p”(R). (9.7)

The interior of the rotating star is therefore defined by R € (0,a) by construction, and

its surface located at R = a. The change between R and r must thus have the form
r(R,p) = R+ (R, p) + O(v?) (9.8)

for some (differentiable) function ((R, u), which thus describes the deformation of the
surface [23, 57]. Given that for any f(r, 1) differentiable in r € (0,a) we have

Fr(Rp), ) = f(R, ) +vf' (R, )¢ + Ov?), (9.9)

where the prime denotes differentiation with respect to the first (or only) argument, the
relation ((9.7) provides, in particular,

dp"” (R)

@) _
PP (R, ) = —C(R, ) R

(9.10)
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9. THE MASS IN NEWTONIAN GRAVITY AND GR

Polytrope in [23]

We have described the relevant equations to describe a Newtonian static star. Let us now

specify a polytropic equation of state, i.e. of the form
p=Kp'ta, (9.11)

where K is a constant, closely related to the speed of sound, and n is the polytropic index.
It is useful to replace the density p by an adimensional function €, known as the Emden’s
function, for reasons that will be clear soon. In [23] the radial coordinate r is, instead,
conveniently rescaled to a new radial coordinate £ (eq. (9) in [23]). These substitutions

read explicitly

drG "¢
Now the fundamental equation (9.3)) is written in the form
1d
£2— ) = - 9.13
£2dg ( dg (5:13)
This is known as the Lane-Emden equation of index n. It is integrated from the origin
outwards with the conditions #(0) = 1 and #'(0) = 0. The solution () is named the
Lane-Emden function of index n. The shape of the star is then described in [23] to be

p=pb", p=Kp /e = (Qp” 1) £. (9.12)

the sphere of the background configuration &;. Note that both the density and pressure
vanish there.
The perturbation method in [23] differs a bit in its approach, since the starting point

consists in taking perturbations directly in the Emden’s funcion, generalizing it to
O =0+vU+00?), T=1o(&)+ > Ab;(&)P(u) (9.14)

and then explore how it induces perturbations in the rest of the relevant quantities of the
model, such as the potential, the pressure and the density. We focus in this last one, that,

in analogy with the corresponding expression for the non rotating case in (9.12)), reads
p=pO" = p(0" +vnd" 1) + O(v?). (9.15)

The model is built generalizing the fundamental equation (9.3)) for the rotating case and

imposing continuity of the perturbed potential and its first normal derivative to the back-

ground surface of the star, given by the sphere of radius &. The functions vy and v, are

found to satisfy the problems [23]

; jf(sd”‘@) = L (0) =0, () = 0 (9.16)
d
g (€%) = (e @) wO =0 =0 @7
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9.1. The Newtonian star

The deformation in the polytropic setting corresponds to d§(&;, 1) for some function
d¢(&, 1) that can be extracted from the terms in the v factors in equations (36) and (38)
in [23]. Obviously v((R, u) scales to d&(&, 1) as r scales to & (9) in [23]. Note that d¢
contains v. A direct application of formula results in the relation

ot (df + v%) = 0. (9.18)

This relation is used in [23], evaluated at &;, to determine the deformation once the

function ¥ is known. The final expression provided in [23] results to be

v

e 5 &
d§ (&1, 1) = (&) (2/10(51) + 6 312(&1) + &145(&)

wz(&)PQ(u)> : (9.19)

The change in mass

Let us expand the integral (9.1)) in the rotational parameter v, which reads explicitly

1 a+v((a,p)
M = 277/ / (PO (r) + vpP (1, ) r2drdp + O(v?). (9.20)
~1Jo

For a polytropic equation of state recall that a is in correspondence with &;, the first
zero of Emden’s function with index n and the deformation corresponds to d¢(&;, p). After
using (9.12)), (9.15) and (9.19) for the polytropic equation of state, (9.20) can be shown

(see below) to translate, up to order v, to

NK 1_ 3/2 &1+d&
M = 4x [% ot 1} De / (6™ + vn™ 1) E2dE, (9.21)
m 0

as it stands in p.396 in [23], where d€; denotes the [ = 0 part of d§(&;, i), which equals

déy = —viho(&1)/0' (&) see (9.19). d&; is the expansion of the star, as noted in [23]. Only
the [ = 0 sector contributes to the integral.

In order to obtain (9.21]) and go further let us develop (9.20). Since the Jacobian of

Since €'(&1) < 0 [23], —0'(&1) always appears as |0/(&1)] in [23)].
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9. THE MASS IN NEWTONIAN GRAVITY AND GR

the change (9.8)) is 1 + vd(/IR, the integral ((9.20]) expands as

—27r/ / R2+2UCR)(1+U%)deu+O( 2y

—27r// O(R R2+ZU§R)(1+U—€)deu+(’)(

— //[ R2—|—v< O(R)CR + R?p® %]demO %)

Qv

/ [ R)R* + v (—R%dgg o5 (7 (R)g))] dRdp + O(v?)

-1

_ 2 2 P(O 2 (0)
47r/0 O(R)R*dR — 27v /_1/ R*( 7 de,u—{—Qwv/ a“p(a)C(a, p)dp
+O(v%), (9.22)

where the relation . that defines R has been used in the second equality. The first
term in the final expression (| - corresponds to M© ( ) by (9.4). The second term is
more easily recognised by using , which allows us to write the expression (9.22)) as

M = / (R RQdR+27rv/ / (R, 1) R2dRdy

+27v /1 a?p O (a)¢(a, p)dp + O(v?). (9.23)

From now onwards let us denote by a fy (subindex ) the part of any function f parallel
to the Legendre polynomial Py(u)(= 1). In other words, fo =< [ f(, p)du. We
will also refer to fy as the [ = 0 sector of f. The mass ) thus reads

M = 47?/ PO (s)s2ds + 47rv/ pé2)<8)82d8 + 4mva?p 2 (a)¢o(a) + O(v?). (9.24)
0 0

The fact that only the [ = 0 sector contributes to the integral is now explicit.
For polytropic equations of state, after using (9.12)), (9.15)), (9.14)) and (9.19)), equation
(9.24)) directly translates, up to order v, to

[ DK e o ey Yo(é)
M = 4x [Wpc } {/0 0 §2d§+v/0 nd" Lo 2dé — v (&) 6(&) }7

(9.25)
which is not difficult to show to be equivalent to (9.21)) irrespective of the equation that
the function 6(&) satisfies.

The crucial point here is, let us recall, that the function 0(r) is Emden’s function, for

which 6(&;) = 0 by construction, which is equivalent to p(®)(a) = 0. The above expression
(9.25)) for the total mass is obviously presented in [23] without the last term, which
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9.2. The mass in Newtonian gravity and GR

vanishes (see above (40) in [23]). However, in general, the mass density p(®)(R) of the
background spherical configuration does not have to vanish necessarily at the boundary
R — a. The expression of the total mass in [23], made explicit for a class of equations of
state for which the mass density vanishes at the surface of the star, seems to have misled
many authors to forget the third term in . Even the author himself forgot, many
years later, to include that term when exploring homogeneous (constant p) stars in GR
[30]. The correction to the calculation of the mass of homogeneous stars can now be found
in Chapter (10| (or [03]).

The third term in , proportional to p(®)(a), corresponds, precisely, to the New-
tonian limit of the term in ([7.53]) that amends the “change in mass” computed in [57].
That is shown in the following section, where we very briefly review the equations for the
perturbed configuration needed in both Newtonian gravity and GR.

9.2 The mass in Newtonian gravity and GR

Newtonian gravity

Let us consider the [ = 0 sector of the perturbation of the Newtonian potential (9.6). As
in the background configuration, apart from the given barotropic equation of state, the
perturbation at first order in v is governed by a hydrostatic equilibrium first integral and

a Poisson equation

dAUO(R)  27Gp.R?

(2) _ =
U (R) + Go(R) = s =0, (9:26)
1 d [ _,dUP(R)\ dp)(R)
R (R T) = —AnGGO(R) = m (9.27)

where the Poisson equation for the nonrotating potential has been used in the second
equality. Note that from we have péZ)(R) = —(o(R)dp”(R)/dR, so that the right
hand side of can be also expressed as 47TG,082)(R). It is important to note that the
domains of definition of these equations are given by R € (0, a) for the interior and R > a
for vacuum, and suitable boundary conditions (including regularity at the origin and at
infinity) are imposed accordingly.

It is convenient to change the functions {Ué2), (o} that describe the configuration to a

new set { M®), P}, suitable to be compared with the relativistic model, defined as follows,

M®(R) := 4r / Rpg( $2ds = —4 / Cols (9.28)

0

(0)
() = W) (9.20)

133



9. THE MASS IN NEWTONIAN GRAVITY AND GR

The definition (9.29)) can be expressed in terms of the pressure and density of the back-
ground configuration by differentiating the hydrostatic equilibrium first integral for the
static configuration (first equation in (9.2)), which provides

dU(O)(R)+ 1 dp(R)
dR pO(R) dR

=0,
so that

dR
On the other hand, the second order Poisson equation (9.27)) can be expressed in terms
of the pressure perturbation factor by using (9.30]) to get

1 d AU (R) dp® o) .
2R (R22Z—R = 4”de<o> pOpi(R). (9.31)

G(B) = —p(R) (dp(o)(m) i (R). (9.30)

We can also rewrite the expression for M (9.28)), using (9.30) and (9.29), which in

differential form reads (see (15) in [57])

dM@(R)

75 :47TR2Wp po(R). (9.32)

The equation for p§ is obtained as follows. Combine (9.31]) with (9.32)) to get rid of p§ and
integrate once taking into account that 1(?(0) = 0 by construction, and dUéQ) JdR|r=o =

0 for a regular origin. We thus obtain

PR G

h = ﬁM(Q)(R), (9.33)

in analogy with the background configuration. Finally, take the derivative of the hydro-
static equilibrium first integral ((9.26))

WP(R) , d W) i (9.34)

iR 4R (CO(R) iR 3
and use (9.33)) and (9.29)) to obtain (see (15) in [57])

dpy(R) G 9
R R2M (R) +

The system of equations for the functions {M® pi} is formed by (9.32) and (9.35) on
the domain R € (0,a). As in the background configuration system, this problem allows

ArGp,
3

R. (9.35)

us to integrate {M®) pt} given boundary conditions at the origin. In particular one can

compute M éQ) := M®(a) as a function of the (total) central density p., and thus construct
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9.2. The mass in Newtonian gravity and GR

a function M éQ)(ﬁc). Let us recall that to add this function to the contribution from the
background configuration M g)) (pe) it is, of course, necessary to choose p. = p., so that
pe becomes a parameter of the whole perturbed configuration. That implies choosing
p5(0) = 0.

The total mass of the rotating configuration 7 taking into account ,
and , can be expressed as

M = M) +vMP(a) + 47v )p(o)(a)pz‘)(a) + O(v?). (9.36)

GMO)(a
Note, again, that this sum makes sense once the functions involved are computed given
common boundary data, in terms of a common set of parameters, as for instance p..
Nevertheless, the choice of parameter used to compute those functions is irrelevant for
our purposes. The contribution of the perturbation to the total mass in Newtonian gravity

is given by
4
2 2 a (0) ¥

The second term in the above expression is missing in the first equality of equation (18)
in [57).

General Relativity

The general relativistic treatment of the problem has been extensively treated in Chapters
blto[7l However, we include here the most relevant equations to discuss the change in mass
and compare it with the Newtonian model, even when these have already been presented
in the previous chapters.

We include the metric up to second order in some parameter €, which is esentially
but with the function m scaled to agree with this same function as defined in .

To ease the reading we include it here. It reads

_ () 2 2 Ar) o m(r,0) 2
e "1+ 2eh(r,0))dt* + e <1~|—25 YV dr

+r?(1 + 2e°k(r,0)) (d6” + sin® 0(dyp — ew(r)dt)?) .

We use geometrized units for convenience, so that G = ¢ = 1 unless otherwise stated.
We can fix the (dimensionless) perturbation parameter € in analogy with the formalism
developed in [23] for the Newtonian model. To this aim we set 2 = v = w?/27F(0), where
E(0) is the energy density of the background configuration at the origin, and w is the con-

stant angular velocity of the fluid, as in the Newtonian treatment. Therefore, the quantity
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9. THE MASS IN NEWTONIAN GRAVITY AND GR

that drives the perturbations in [57] is expressed here by Q = /27 E(0)v, whereas the
constant (2 used in Chapter @ is identified with Q = 1/27F(0) in this convention

We shall keep the perturbation parameter € and the constant €2 in this section in order
to ease the comparison with Chapters [6] and [7] although the identifications will be made
explicit when the Newtonian limit is taken.

As in the Newtonian case, we only need focusing on the [ = 0 sector of the solution
for our purposes. The coordinate r is fixed by choosing ky(r) = 0 [57] (see also Chapter
|§| for a discussion on the choice of gauges). The asymptotically flat vacuum solution is

given by (4.13)), (4.16)), (4.27) and (4.28) [57]

2M 2J
Vvae(T) 1— — —Avac(r) vac _
e ——=e . whe(r) g
oM J? J?
h*(r) = — vy =M — — 9.38
0" (r) 7“—2M+T3(T—2M)’ mo™(r) r3’ (9.38)

where M, J and M are constants. In the analysis of the background and first order con-
figurations, M and J are identified as the background mass and the angular momentum,
respectively. The equations governing the background and first order configurations are
used to compute M and J given suitable data at the origin. We refer to the summary in
Chapter {4 for a full account (see also [16, 95]). The constant 01, still to be determined, is
identified with the “change in mass” due to the second order perturbation, or simply the
contribution to the mass at second order, due to the asymptotic behaviour of the angular
independent part of g,, (recall (4.29)). The [ = 0 sector of the (second order) perturbation

interior configuration is completely determined by the pair of functions {mq(r), Po(r)},

with (recall (6.37]))

5 p
Py = 3(E 1 P (9.39)

where E and P are the energy density and pressure of the static background interior,
respectively, and P®)(r, #) the perturbation to the pressure (see for this alternative
definition of the same function pf/* in [57]). The system of equations that {mq, Py} satisfy
is to be fulfilled in the domain r € (0, a), with suitable boundary conditions given byE|

2This value of the angular velocity is set as a standard scale in numerical works (see e.g. [34], where
Q* = \/M/a?3 is chosen). For a constant density star it is easy to check that \/27E(0) = \/3M/2a3 =
V320

3In these two equations from Chapter @ the substitution re~
section.

Amo — mg must be made to follow this
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9.2. The mass in Newtonian gravity and GR

(6.38) and (|6.39)), and read

dmy 9 dE 1 5 dw 2 ,.dj

— = 4 E+ P — —=r°j—= 9.40
dr (B ) PO+ 127" (dr) 3" T (9.40)
dP, (E + P)r? r2mg 1 52 (do\? 1d [ r3j20?
270y _ il et il

dr T oM Py (r—2M)2+127“—2M dr +3dr r—2M)’

(9.41)

where @(r) := w(r) — Q and j(r) := exp[—(v + \)/2].

The value of 6M is determined in terms of interior quantities using the matching
conditions for the exterior and interior problems to second order provided in Chapter [7]
In particular, a function mg(s) for s € (0, 00) constructed by joining mg(s) and my"*(s)

across s = a is not continuous in general, since it presents a jump proportional to E(a).

The result is given in ((7.53))

J? a—2M
5M:%@+§+%fﬂf E(a)Po(a). (9.42)

As in the Newtonian case, the background quantities E(a), M and J, and the pertur-
bation ones, mg(a) and Py(a) are to be computed by solving the corresponding system of
equations given the (common) relevant data at the origin. In [57] the parameter chosen
is the central density p., but, as mentioned above, that choice is not relevant for this

discussion.

Newtonian limit

Our purpose now is to obtain the Newtonian limit of 6 M in and compare it with
the contribution to the mass of the perturbation in the Newtonian approach, M;Q), given
by . First, though, it is convenient to find the Newtonian limit for the system
(9.40) and (9.41)) in order to relate {mg, Py} with the pair {M® pt} from the Newtonian

approach. This is achieved by performing an expansion in powers of 1/c as (see [57])

G o 1 G G
M=GMP 0 (%), Bn=5000 0 (5] Po =500 ().

PO(T)ZC—IQﬁS(T)JrO(C—{l), mo(?")zg ()+O(1>

ct

for some functions g and 75, where p(® (and p.), p{¥ and M©® correspond to the functions

describing the Newtonian background configuration. Note that, concerning the first order
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9. THE MASS IN NEWTONIAN GRAVITY AND GR

(in €), the function @(r) is constant at lowest order in 1/c [57]. Given the system ({9.40))
and (9.41)), the pair {ro, p3} thus satisfies (see (102)-(103) in [57])

W = A4nr WPPO’ (943)
dpg Gmg 4AnGp,
= — . 9.44
dr r? + 3 " ( )

Compare this system of equations with and . The functions arising from the
Newtonian limit {7, §;;} and the functions in the perturbed Newtonian model {M® pi}
satisfy the same equations in the same domain r, R € (0,a). Therefore, the pair {mq, pj}
is equivalent to {M® pi} for 7, R < a. We can now substitute {rg, 5} by {MP® ps} in
the following.
The Newtonian limit for is obtained following procedure above together with
511 = S50 + 0 (%) : (9.45)

c2

for some 31\7, from where 1} becomes

4

— a 1
oM = M®(a) + 4nmp<0>(a)p3(a) +0 <6—4) : (9.46)
S

Comparing this expression with (9.37) we finally find
ST = M)

that is, the Newtonian limit of the contribution (to second order) of the perturbation to
the mass in GR is non zero, and agrees with the same quantity computed in Newtonian

gravity.

9.3 The Newtonian matching conditions

As a final remark, let us comment on the boundary conditions at the surface of the star,
the matching between the interior and exterior problems at each order, involved in the
Newtonian approach. Some objections to the Newtonian matching problem stated in
[23] were raised in [69]. Those were finally solved by Chandrasekhar and Lebovitz in
[29] by properly formulating the matching and producing the same results. However,
[29] concerns, again, only polytropic equations of state, and the matching conditions are
obtained only for that case, which in particular satisfies p(a) = 0.

Let us, for completeness, deduce here the matching conditions for the perturbed New-

tonian potential in the general case, which, as expected, turns out to be compatible with
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the obtaining of the perturbed mass . The only assumption to be made is that
the quantities describing the spherically symmetric static background configuration, p(®
and p© are piecewise differentiable. No particular equation of state is prescribed, and
pl
local nature of the problem (the matching), we only need to demand differentiability in

) is allowed to have a jump (at least) at some value of the radius a. Note that by the

a neighbourhood of a except at a, so that p(® could present jumps at other values of the
radius, for which analogous corresponding matching conditions would apply. In order to
deal with a general jump we will not assume the “outer region” (or “exterior”), defined
by a radius bigger than a, to be vacuum.

The background (static) configuration can be solved by considering two problems, the
interior (r < a) and the exterior (r > a), and deducing the boundary conditions at the
common boundary, i.e. the matching conditions. In fact, only one relevant function needs
to be considered, and we are going to focus on the Newtonian potential. The matching

of the background problem for the Newtonian potentials U.", (r) and U, ©)(r) requires the

int ext
equality of the radial derivative of the potentials at » = a. Clearly the potential itself can
present a jump, but it is customary to take it continuous and fix the value at infinity to
determine its value everywhere. The matching conditions in the background configuration
are thus U’ (a) = U©’_(a), plus the convenient U\ (a) = U)(a).

To deal with a perturbative setting one has to resort to respective families of inte-
rior and exterior problems, defined by some parameter v, with corresponding Newtonian
potentials Uy (1, 1, v) and Ueg (7, pt, v), that match at each v. We fix in v = 0 the back-
ground static configuration. The family of interior problems is set to live, for each v, in

a (connected) surface {r, u} bounded by the curve 3, determined by

Y, {r=~(a,p,v)} with v(a, 1, 0) = a. (9.47)

We are implicitly assuming that (a, p,v) is smooth in all its arguments, and that it
splits the strip {r, u} into two regions for each v. The surfaces for the exterior problems
are taken to be bounded by Y, and lie in the other region. Let us define ((a,p) as
C(a, p) = 0yy(a, p,v)|y=0. Thus, to first order the tangent vector and normal vectors to

>, can be chosen as

L Oy 0

ev_@ﬁr

0

. D
., 09

) nv__’ya

10v 0

Ev+78u 00

—

(9.48)

Y
Xy 2y

where 77 points towards the interior of the body and they are normalized so that (7, 77) =

(€,¢€).
We start with some preliminaries. Consider any function f that depends on v on

two arguments by f(v(a, i, v), 1, v), and that it is differentiable with respect to the three
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9. THE MASS IN NEWTONIAN GRAVITY AND GR

arguments. Let us use d, to denote a derivative with respect to the third argument, and a
prime ’ with respect to the first, and define O (a, u) := f(y(a, p,v), i, v)|o—o = f(a, u,0),
and f@(a, i) == 0, f(v(a, 1, v), f1,v)]y=0. Assume now that f satisfies the equation
f(’)/(a, H, U)a Hs U) =0.
Evaluating the equation at v = 0 we obtain
O (a, 1) = 0, (9.49)

while differentiating with respect to v, and then evaluating at v = 0 we get

F@(a, p) + FOa, p)¢(a,p) =0. (9.50)

The matching of the problems for Uy, (7, i, v) and U (1, g1, v) at each v accounts now, as in
the background configuration, for the equality of the normal derivative of the potentials
at the common boundary ¥,. Again, the potential itself can present a jump (at each
v), but, as customary, we take it continuous. Note that we include this condition for
completeness, but it does not affect the result. We thus take Uyls, = Uenls, and

(Uint)|s, = T(Uezt)|s,, which explicitly read

Uint(’Y(av 2 U)v 22 ?)) = U€It<’7<a7 22 U): 122 U)’ (951>
ﬁ(Umt>(’7(a’7 Hs U)? K, U) = ﬁ<U€xt)(fy(a7 K, U)7 Hs U)? (952)

due to (9.47). Let us finally use the notation [g] := gint|s, — Gext|s, for any object g with
limits at ¥, from the interior, g;,;, and the exterior, ge,:, so that the matching conditions

read
[U](v(a, p, v), p1,v) = 0, (9.53)
[[A(U)](v(a, p, v), p,v) = 0. (9.54)
Observe now that, by (9.48))
_ 10v |oU
[n<U)] (7(0’7 1, U)? 12 U) = _V[U/] (’7(@7 My U), 122 U) + _l an (7(@7 1, U), Iy U)v (955)
v Ou | 00
while the derivative with respect to 6 satisfies
0 _ Oy(a,pv) ou
O#U(v(a,mv), )| = o U (v, 1 0), 1, 0) + | 5| (V@ ,0), 1, 0).

(9.56)
The left hand side of ((9.56) vanishes due to (9.53) because
[a/.LU(’Y(a7 /“L7 U)a :uu U)} = 8#[U] (’Y(a, /~L7 U)a :U’u U) - O
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Note that [U] = const. leads to the same conclusion. Therefore, (9.55)) reads

} ; 1 (o)

[nU] (7(0’7 2 U)? s U) = [TL(U” - = (7 + ; (@) ) [U/] (IY(a? 2 U), Ky U)
once (9.53)) holds. The two conditions (9.53) and (9.54) are thus equivalent to the couple
[U](’Y(G,M,U),M,U) = 0 and [U’](’Y(CL,,U/,U),/L,U) = 0. We have written the matching
conditions as two functions that satisfy the requirements for f above, so it is now just a

matter of applying equations (9.49)) and (9.50|) to both [U] and [U’]. The four equations
thus obtained read

Ul=0= [U%a)=0,  [UP)(a u)= -0 a)(a,p) =0,
U=0= [UYa)=0, [UP(ap)=-[0)a)(a,n),  (9.57)

where we have used that the background potentials U(®’s do not depend on p. Equation
(19.57) yields, after using the Poisson equation at each side,

[U®"(a, ) = =4 G[p V()¢ (a, ). (9.58)

Given only a piecewise differentiability condition on the background configuration, as
described above, the Newtonian perturbed matching conditions (up to first order in v)
around any point s = a are given by the coincidence of U0 (a) at both sides (interior and
exterior), which corresponds to the matching of the background configuration, and ,
the condition at first order.

In particular, if we demand a vacuum exterior, so that p) = 0, we have [P V)(a) =
pggi(a). Furthermore, if pz(-gi(r) has no other jumps (and is smooth in r € (0,a)), then
[P D(a) = pl(g)t(a,) is simply our p(®(a) of the previous sections. Therefore, as expected,
the radial derivative of the Newtonial potential at first order in v suffers a jump at a,
which is proportional to p®(a) for a vacuum exterior. The perturbed mass can now

be computed from the Newtonian potential, and it is straightforward to show that this

jump generates the term proportional to p(¥)(a) in (9.24) (or (9.36))). Let us stress that if

o0 (r) is allowed to have more jumps, say a;, in the interior of the star, the expression of
the total mass would simply contain a term contributing from each corresponding jump
discontinuity [p®](a;).

Finally, it can be shown that the matching condition for A’ (7.31]), which suffers a
jump proportional to the jump of m, agrees with after taking the Newtonian limit.
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The mass of homogeneous stars and strange
stars

The main conclusion derived from our treatment of the problem of an isolated slowly
rotating compact body in Chapters [5| to [7] in practical terms is that the perturbation
functions to first and second order in Hartle’s setting can, indeed, be taken as continuous
at the surface of the star except when the energy density is discontinuous there, in which
case a corresponding discontinuity appears in the radial function mg (the other pertur-
bation functions remaining continuous). The discontinuity in mg is proportional to the
value of the energy density at the surface of the star, i.e. to the discontinuity of the energy
density there. In Chapter [7| an explicit correspondence between Hartle’s and our settings
has been presented, putting emphasis in the outcomes of the model such as the change
in mass and the shape of the star. The single outcome of the model directly affected by
the discontinuity of mg is the change in mass 0 M, defined as the contribution to the mass
due to the rotation. The rest of the outcomes of the model regarding the frame dragging
and the shape of the star are not affected by the discontinuity of my.

The correction to 6M given in , proportional to the energy density evaluated
at the surface of the star, is negligible or just zero when the usual equations of state for
neutron stars are considered, since the pressure and the energy density typically decrease
together and vanish simultaneously at the surface of the star. This is the behaviour shown
by, e.g. polytropic EOS’s. Nevertheless, the correction to the mass may be relevant in
other EOS’s for which the energy density takes a finite value at the boundary, which is
precisely the case of linear equations of state, for instance those used to describe strange
quark stars [34], or constant density (homogeneous) stars.

In this chapter we compute the mass of rotating stars for two equations of state:
constant density and a particular linear EOS, because the mass correcting term will be
relevant there. The results regarding homogeneous stars were published in [93].

In order to explore other EOS’s, we use a code written in Fortran to solve the model
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numerically in three steps, one for the static configuration (TOV) and the other two for
the perturbations. In every step, the corresponding ODE’s are integrated making use of
a classical Runge Kutta method (RK4). Hence, provided the two relevant parameters,
i.e. the central density of the star and an angular velocity, we are able to solve the whole
model and obtain the values of the functions M, P, w, mg, hg, v, hy and my at any
point of the star, labeled by the coordinate r. Furthermore, the values of these functions
at 7 = a allow us to determine the physical properties of the star, such as M, J, 0M,
the quadrupole moment () or the ellipticity e. However, we are interested, more than in
computing single stars, in the physical properties of the families of stars that arise from
letting the central energy density vary in some range, say (E((f), Ec(f )), this last given by
some physical criteria adequated to the particular case under study. This is achieved by
an iterative process. We solve the star corresponding to a certain value of the energy
density, save the physical properties or the values of interest of the star and repeat the
process until we cover the whole range of central densities. In this form, we can visualize
how the mass of the star varies with respect to its radius, or its central density. Some
examples will be shown along this chapter. We included the possibility of working with
different EOS’s, such as polytropes (based on [61]), constant density as in [30], linear
EOS of the type in [34] and tabulated EOS (see for instance [5] or [105]), which has been
useful in order to check the validity of the results, for instance comparing with [I3] or
[61]. However, in this thesis we will restrict ourselves to the study of homogeneous stars
and strange quark matter stars. The numerical code has been developed in collaboration
with Nicolas Sanchis-Gual and José A. Font, from the Universitat de Valencia.

Let us remark that we compute sequences of stars varying the central energy density
with the velocity of rotation fixed to Q = Q* = \/W, as it is usually done in the
literature and it has been discussed in the Introduction. This may seem to contradict
the statement done after introducing the first order equation (6.25)), when we say that we
specify a value of @ at the origin to ensure regularity there. The first order perturbations
are fully determined by one parameter, that we have chosen in Chapter [6] to be, precisely
@ = w(r — 0) = const = 1. In other words, we work in units of @.. Yet, the matching
conditions provide the value of the angular velocity €2 corresponding to this choice of @,
by means of . The key point here is that other models with different velocities of
rotation can be obtained simply by scaling. For example, the model associated to the

critical angular velocity 2* can be obtained by scaling
f.o. o f.o. s.0. o 2 s.0.
fnew = ﬁfold ) new ﬁ old » (101)

where f/:% is any first order quantity associated to a model with an angular velocity Q*
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and fofl'j is the corresponding quantity computed with a velocity 2. The second order

works analogously.

10.1 Homogeneous stars

In this section the particular case of homogeneous stars is studied. This equation of state
may not be realistic in physical terms, but its study is interesting for several reasons. First
of all the spherically symmetric and static configuration can be solved analytically and
hence, the perturbed field equations become simpler. Secondly, it is interesting to know
how noticeable the correction for the change in mass might be in numerical terms. There
are factors in the change in mass that are easy to estimate and, in fact, can be taken as
inputs for the model, as the mass and the size of the static and spherically symmetric star.
In contrast, the perturbation to the pressure is not easily estimated and the model must
be solved to second order. Another important factor is the value of the energy density at
the surface of the star, in the non-rotating configuration, and this is precisely the reason
for having chosen this particular EOS. It is probably one of the most favourable cases
for the correction. Thus, it is reasonable to think that the constant energy EOS may
constitute a numerical bound for the amended change in mass, since for any other of the
usual EOS the value of the energy density at the surface will not be as important as in
the present case.

Homogeneous stars drew the attention of Chandrasekhar and Miller [30], back in
1974. In that work, they use Hartle’s formalism to solve the homogeneous star in the slow
rotating approximation. To this aim, they present the perturbed field equations up to
second order in terms of a suitable radial coordinate adapted to the background solution.
They also provide the boundary conditions that ensure regularity at the center of the
fluid ball order by order. Finally, they solve numerically the perturbed equations and
use Hartle’s formalism in order to determine the value of the constants that characterize
the vacuum solution, such as the angular momentum J (or equivalently the moment of
inertia 1), the change in mass §M or the ellipticity of the surface of the star e, in their
notation. They present first the numerical solution of the first order problem and show
the behaviour of the function @ (see Figures 1 and 7 in [30]) that drives the frame dragging
effect, and the momentum of inertia of the star (Figure 2 therein). Regarding the second
order perturbations, they focus on the calculation of the deformation of the star due to
the rotation. This is described in terms of two components, an homogeneous enlargement
(or contraction) arising from the [ = 0 sector in a Legendre polynomial expansion of the
perturbations and the ellipticity of the surface of the star, originated by the [ = 2 sector

in the aforementioned expansion. The homogeneous component is presented in Figure 3
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(in their paper) as a function of the ratio of the radius of the star to its Schwarzschild
radius (hereafter a/Rg). The ellipticity of the configuration is studied in detail to show,
remarkably, that as a function of a/Rg it is not monotonic and it presents a maximum at
a/Rg = 2.4 (see Figure 5 in [30]).

In this Section we recalculate the value of §M, as described in Chapter [7], for homoge-
neous stars. Let us remark that this correction does not affect the results regarding the
frame dragging effect nor the shape of the rotating stars, fully studied in [30] as mentioned
above. In the present work the results are displayed in an analogous way to [30] to ease
the comparison of tables and figures.

When the energy density E is constant, the equations of structure , that
govern the (static, spherically symmetric) background configuration admit an analytical

solution. In terms of the constant density E and the central pressure P,., that solution is

given by
P+E P.+Z 8wEr,?
3 _ 3, /1 SO (10.2)
P+E P.+E 3
20 ©) 4
N I 2 kel GO B VI C PR SR (10.3)
T+ 3
—1
AN TR O Fot g 1— UL —1+ Pty (10.4)
- P.+E 3 P+E| '

This solution stands for the whole interior region, i.e. from r, = 0 to ry = a. The
vacuum solution is given by and extends from r_ = a to infinity. The two solutions
are related by means of the matching conditions for the background configuration (5.13)).
The continuity of A and v/ implies that M = 47 Ea®/3 and P(a) = 0.

With the background configuration already matched, it is convenient to change from
the interior parameters { £, P.} to the exterior parameters {M,a}. Thence the solution
takes the form as given in [86], 111]. In order to present the results as in [30], the
exterior parameters still have to be scaled with the Schwarzschild radius Rg := 2M so

that they become {Rg,a/Rgs}. Inverting the relation between the parameters one finds

a -1
N SWR% RS ’ c SWR% Rs . '

3 1—(5,%5)_1—1

Equation (10.5)) implies a constraint on the background exterior parameters. In order to

keep the central pressure finite, the following inequality must hold [30]

9 1
<-M < —— 10.
0_4 <a<:>0_a<”37rE (10.6)
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10.1. Homogeneous stars

We want to write the field equations for the fluid as in [30]. For this, two constants

that replace E and a must be introduced as

3 / a?

The constant « is related to the Schwarzschild radius Rg by

0\ 32
a = Rg (R_s) . (10.8)

Hence, given any function in units of «a, it can be easily converted to units of the
Schwarzschild radius by simply scaling it with the proper factor a/Rg. Following the

conventions in [30], the radial coordinate in the interior region is finally substituted by

zi=1—4/1— (T—+>2. (10.9)

«

This change is well defined once the inequality (10.6|) holds. The domain of definition of
this coordinate is « € (0,2/3), and the origin corresponds to x — 0. The radius of the
star is denoted by X, which in terms of & is expressed as X = (2 —x)/3. Finally, in terms

of x the auxiliary function j* reads j© = 2(1 — z)/(k + x).

First order

Considering the background solution — and the definitions introduced so far,
the first order field equation (6.25)) casted for the function &t := Q — w™ for the interior
region is written in terms of the radial coordinate x as

d2 ot ~+

dew
2 o _ry 5\ ~t
FrCE (4" — (3 — bK) — bK) T 41+ k)w™ = 0. (10.10)

—a(2 - a)(x + k)

The behaviour of @™ near the origin is fixed by

41+ k)

ot =af <1 == x) + O(2?). (10.11)
K

The values of @1 (a) and its first derivative w™'(a) allow us to determine the angular

momentum J and the angular velocity 2 by means of (4.17). In terms of the coordinate

z these relations are

J o 52 VX2 - X) (d/w)
SR (a/Rs)® 61 X) ( . )xX (10.12)
Q @X) 2 J
G @ (a/RsP 2l (10-13)
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The quotient of these rescaled J and 2 is used in [30] to compute the momentum of inertia

and the normalized momentum of inertia as

/@R
Q/a.

I/R}
Ma?"

I/R} = i/R = (10.14)

Note that the field equation for the first order (10.10)) and the condition at the origin
(10.11)) are formulated for @ /@7, and thus, depend only on one free parameter, «, from
the background configuration. This parameter k is in fact determined by the ratio of
the radius of the spherical star to the Schwarzschild radius a/Rg by means of and
(10.8]). Hence the model is solved just specifying a value of a/Rg. A sequence of models
with different values of a/Rg is explored and the results for the first order are presented
below.

The first order results are shown in Table [I0.1] which includes the moment of iner-
tia and the value @™ /(J/R¥)|x, for different values of a/Rg. For a solid sphere in the
Newtonian regime, the normalized momentum of inertia i := I /Ma? takes the value 2/5,
which is achieved asymptotically (see Table . The comparison with a sphere makes
sense because the first order perturbations do not change the shape of the star. Hence,
the deviation between this value and the values shown in Table [0l is an effect of the

twisted geometry. These results [[] fully agree with those presented in [30].

Values for a/Rs = 9/8 are not shown because although the perturbations can still be solved [30],
the background solution is not regular.
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10.1. Homogeneous stars

Table 10.1: [ and 4 in units of R¥, and @(a)/(J/R%) for some values of a/Rg.

Second order

a/Rs I i w(a)
1.15  0.5105 0.7720 0.64391
1.2 0.5248 0.7289 0.74818
1.3 0.5657 0.6695 0.85741
1.4 0.6171 0.6296  0.89174
1.5 0.6758 0.6007 0.88714
1.6 0.7406 0.5786 0.86205
1.7 0.8106 0.5610 0.82652
1.8 0.8856 0.5467 0.78622
1.9 0.9653 0.5348  0.74441
2.0 1.049  0.5247 0.70294
2.5 1.534 0.4910 0.52376
3.0 2123 0.4717 0.39700
4.0 3.604  0.4505 0.24623
5.0 5.487  0.4390 0.16625
10.0 2091 0.4182  0.045821
20.0 81.77 0.4088  0.011980
35.0 248.1  0.4050 0.0039848
50.0 504.3  0.4035 0.0019668
100.0 2009  0.4017 0.00049585

The second order field equations P| for the pair {mg, ]5(52)}, (6.38) and (6.39), are written

in terms of the radial coordinate x as [30]

_3dmg
dx

2
_,dP?
dx

(1 —2)((2

—x)z)3/?

(k4 x)?

1
(5(2 — )T

k+1

dx

) +

p(2)

-2

(1—2z)(k

a
+ )

0

2+ (k+ (A —2) 30 —2) 5 |

(k + x)(1 — 2)2x%/2(2 — x)3/2 @ Mo

92— ~+
8( x)x@+dw

8(k(x —1) + 31:)@+2

3(k + x)?

dx

(2 — x)%2?

3(k+ )3

+3(1 —z)(k+ )2

(

dot\?
dx) '

(10.15)

(10.16)

%In this chapter we rescale the function mg of Chapters |5l to [7| by re *mg — mg. This allows us to

compare directly with [30].
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Regularity at the origin and the preservation of the central density demand [30]

mg 32v/2(k + 1)/

a%OH (x—0) = o +0(27?), (10.17)
p(2)
F 8T

0422}""2 (ZE — O) = @ + O(SL’Q) (1018)

C

Once the values of the functions mg and }30(2) in x = X are found, the change in
mass is calculated using expression . In order to present the numerical results, it is
convenient to express 0 M divided by the mass of the background configuration M, and in
units of J2/RE. We also split it into two components, the §M(©) referring to the change
in mass and 6M(©) as the amending term in . These two components, written

in the covenient units read

M © J? & -
- (b LU (i> , (10.19)
M Ry (J /Rs) o Rs
MO 2 p@
M T (i = 1) 0, (10.20)
M R: Rg (J2/RY) o
so that ©) ©)
oM oM oM
= + (10.21)
M M M

The field equations for the second order , and the conditions at the origin
, are formulated for mg /a?@}? and pé2) /a?@F?. Thence, they depend only
on the background parameter s, which as discussed for the first order, can be expressed
in terms of the ratio a/Rg. Hence a sequence of models to second order with different
values of a/Rg is computed below.

The numerical results for the second order are summarized in Table and Figures
and m In Figure m¢ in units of J2/R% and B” in units of J2/R% at ry = a
are shown as functions of a/Rg, i.e. m¢/(J%/R%)|s,(a/Rs) and P /(J2/RY)|s, (a/Rs)
respectively. In order not to overwhelm the notation in the subsequent discussion, let
us refer to these two previous functions as mo,(a/Rs) and Py, (a/Rgs) respectively. As
mentioned in [30] these are not monotonic functions and they both present a maximum,
the first one at a/Rg ~ 1.29 and the second at a/Rg ~ 1.82. Note that the function pgh
is negative for small values of a/Rg and this implies that the average deformation of the
star to second order E| can be either negative or positive, so that the star may show either
contraction or expansion to second order depending on the background parameters. It is

worth noting that mgy and Isou attain values of the same order and the ratio is about 1.63

3The relation of the pressure and the shape of the star is addressed in [57].
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10.1. Homogeneous stars

Table 10.2: The change in mass 6 M (©) /M typical from the literature, the amended change
in mass 0 M /M and the fraction of the correction with respect to the total change in mass
are presented for different values of a/Rg.

R/Rs MO /M sM/M |6M©|/§M

1.15 3.454 2.348 0.4711
1.2 3.412 2.725 0.2524
1.3 3.225 3.506 0.0803
14 2.993 4.246 0.2952
1.5 2.757 4.904 0.4379
1.6 2.533 5.474 0.5372
1.7 2.327 5.954 0.6091
1.8 2.140 6.355 0.6632
1.9 1.971 6.684 0.7051
2.0 1.819 6.951 0.7383
2.5 1.259 7.631 0.8350
3.0 0.9163 7.690 0.8808
4.0 0.5440 7.173 0.9242
5.0 0.3588 6.482 0.9446

10.0 0.09493 4.065 0.9766
20.0 0.02437 2.259 0.9892
35.0 0.008049  1.349 0.9940
50.0 0.003966  0.9608 0.9959
100.0  0.001008  0.4901 0.9979

for big values of a/Rg. For a more detailed discussion we refer the reader to the original
work [30].

Finally, the results including the corrected change in mass and their comparison with
those presented in [30] are shown in Table and Figure In Table some
values of the change in mass as a function of a/Rg are presented. In the second column
the value of 6M(©) /M, which corresponds to the §M /M given in[30], is shown, whereas
the third column includes the correct change in mass and, lastly, the fourth column
shows the fraction of the change in mass that corresponds to the correction. In fact, the
correction becomes the dominant contribution in 6 M as the quotient a/Rg increases. The
behaviour of §M /M is shown for a wide range of the variable a/Rs in Figure[10.2] 6M /M
presents a maximum at a/Rg ~ 2.81 and then decreases more slowly than the 6M(©) /M
presented in [30], which decays monotonically. The original §M(©) /M and the amended
IM /M agree for a/Rg ~ 1.27, where ﬁgh vanishes. Below this point, the star contracts
(in average), and above it, the star expands.

There is a combination of two facts that makes the correction §M/(©) not only notice-

able, but also dominant in homogeneous stars. On the one hand, as shown in Figure [10.1},
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Figure 10.1: The perturbation to the pressure to second order Py,(a/Rs) and mgy(a/Rs).
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Figure 10.2: The original and the amended changes in mass versus the normalized radius
of the static star a/Rg.
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10.2. Strange stars

moy and ISOH are quantities of the same order. On the other hand, in formula (10.21)),
the coefficient with ]50u scales linearly with a/Rg. These results definitely reveal that the
correction to the change in mass is important in homogeneous stars and it can not be

neglected at all.

10.2 Strange stars

Brecher [I7] and Fechner and Joss [48] considered the possibility of stars composed of
quark matter. They computed the macroscopic properties of such stars, using several
equations of state based on models for low mass quarks in quantum chromodynamics.
The two important conclusions derived from [48] are that these quark stars can be stable
and that their macroscopic properties, for instance the mass or the moment of inertia, are
very close to the values shown by standard neutron stars.

Witten explored the possibility of astrophysical objects composed of a quark matter
in [T13]. He proposed that in the core of a neutron star, the pressure is high enough to
allow the formation of quark matter. Once there is presence of quarks in the nucleus, the
equilibrium in strangeness is achieved by weak interaction mechanisms. Then the quark
matter absorbs free neutrons and the final picture ends as a core composed of quark
matter shrouded by an outer layer or crust made of nuclei and electrons (for a description
of the crust see for instance [114]). Even more, Witten suggests the possibility of a pure
quark star, without a crust. Colpi and Miller studied a model of this pure quark star
using Hartle’s model for slow rotation in [34]. As in [113], they proposed the use of the
MIT bag model to account for the microphysics of the star. The MIT bag model supplies

a linear equation of state of the type

P = %(E —4B), FE >4B. (10.22)

Here, P and E are the pressure and energy respectively and B is the bag constant. It
is a phenomenological constant and is usually taken as B ~ 56MeV fm~3, suggested by
hadronic models [42]. This model represents matter with quarks of the type up, down
and strange almost in the same quantity, mixed with the necessary amount of electrons
to guarantee the neutrality of the charge. Equations of state of this kind have also been
studied under the CMMR formalism [21], a treatment based on the post-Minkowskian
and small deformation approximations in [36], 37], as a particular case of the linear EOS.
Although a star fully governed by this EOS might be quite unrealistic, we consider

it in order to compare our results with [34], especially those regarding the change in
mass. Note that a more realistic bilayer interior, or a single combination fluid-crust,

both of them computed via Hartle’s model will suffer from the same problems that we
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address in this Section for Colpi and Miller’s model [34]. This happens because the
(background) hypersurface separating the two fluids will be determined by the equality of
the corresponding pressures. However, the energy densities are not force to agree there,
and thus, the functions mq will still present a jump. This jump provides the initial value
to integrate the function my of the enveloping fluid from the matching hypersurface with
the core outwards and it propagates to the computation of the change in mass when
matching this outer fluid with vacuum.

According to the paper by Witten [I13], the maximum mass for a stable static config-

uration is given by the expression

Mmax 56
=2. _— 10.2
Mg OO\/B(Merm?’)’ (1023)

that for our choice of B = 56.25MeV fm— E| returns a value of M,,.../Ms =~ 2. The
simulations comprise the range of central energies (4.10 - 101gcem=2,3.01 - 10%%gcm—3).
The smallest value of the central energy density in the interval generates a non-rotating
model with almost no mass, of approximately 0.04 solar masses. Nonrotating models with
a central density of about E,. ~ 1.92 - 10! gecm™3 or greater surpass the maximum mass
limit and start to suffer instabilities due to radial perturbations. However, we end the
sequence with a value of the central energy density close to the critical one, but slightly
bigger to observe simply the behaviour of the correcting term. Anyhow, the stability limit
is highlighted in all the figures as well as in the table showing the data. In the figures,
the area in gray delimits the (non-rotating) stability limit.

In order to compare our results with those in [34] we define the fractional change in

mass and the total mass
f=—— Mgy :=M+6M =M1+ f). (10.24)

In the following, we attach three figures from [34] and one table showing the relevant
numerical values with the corrected behaviours of the mass. Figure [10.3| shows the mass
of the configuration against the central energy density, Figure [10.4] adresses the relation
between the mass and the mean radius and in Figure [10.5 we display the fractional
increase in mass computed via Hartle’s model and amended. Let us note that we recover
the results from [34] if we restrict ourselves to Hartle’s model. However, our results show
that the correction to the change in mass is the dominant contribution to it, leading to
higher values of the total mass of the rotating star than those computed in [34]. The

correction is weighted by the value of the energy density at the boundary, whose value is

4We choose this value to match the choice in [34].
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E. (10" gem™3) a/Rs M /Mg 7 f Mia/Ms R%/Rg

4.1 31.6 3.8-107% 1.58-107% 0.974 7.5-1072 41.8
5.72 3.36 1.03 0.162 0.843 1.89 4.23
6.66 2.74 1.35 0.208 0.831 2.48 3.44
6.79 2.69 1.39 0.213 0.830 2.54 3.37
9.35 2.18 1.79 0.286 0.820 3.26 2.72
12.0 2.00 1.94 0.329 0.811 3.52 2.49
14.7 1.92 2.00 0.354 0.801 3.61 2.38

14 1.87 2.03(2.027) 0370  0.789  3.63 2.32
19.2 1.85 2.03 0.377 0.782 3.62 2.29
20.1 1.84  2.03 (2.029) 0.380 0.778 3.61 2.28
22.8 1.82 2.02 0.386 0.767 3.57 2.25
25.5 1.81 2.01 0.390 0.756 3.53 2.23

282 180 ¢ 200 0393  0.746 348 222
30.9 1.79 1.98 0.394 0.736 3.44 2.21

Table 10.3: FE, is the central density common to the static and rotating configura-
tions. a and R® are the static and average perturbed radius, both of them measured in
Scharzschild radius (computed with M). M is the static mass and M, the perturbed
mass. Finally, f# stands for the fractional change in mass computed using Hartle’s model
and f is the same quantity with the corrective term taken into account. M., is computed
with f.

proportional to the bag constant. But this last is comparable to the physically reasonable
central densities, so that the high values of 6 M obtained are well justified.

We can observe from either of the three figures that when we take into account the
corrected change in mass, the total mass is increased drastically due to rotation, if com-
pared with the results in [34] or even with respect to standard neutron stars. In fact,
a quick comparison of the fractional increase of mass with and without the correction
reveals that these differ by factor greater than 2, even inside the range of (non-rotating)
stable configurations. The maximum difference in the predicted total masses is achieved
for a density of E, = 9.85-10* gcm™2, as seen from Fig. and it is almost of one
Solar mass. As a matter of fact, our results could enter in contradiction with the claim
by Fechner and Joss about the indistinguisability of neutrons and quark stars. Note that
most of the stable non-rotating models considered give rise to rotating configurations with

masses greater than 3.3M; which exceeds the maximum mass considered for neutron stars
(see [22] or [104]).
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3.5
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2.5
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Figure 10.3: This figure corresponds to Fig. 1 in [34]. The ratio of the total mass
of the star measured in Solar masses versus the central density of the model, common
to the rotating and static configurations, is shown. The density is measured in units
of gem™, and in logaritmic scale (in base 10). The maximum difference between the
change in mass from [34] and the amended change in mass is indicated and corresponds
to B, = 9.85- 10" gem 3.

amended

3.5

3.0

2.5

Mtotal/M(D

static Hartle’s model

5.90 5.95 6.00 6.05 6.10 6.15

loga

Figure 10.4: This figure corresponds to Fig. 2 in [34]. In the vertical axis we show again
the ratio of the total mass of the star with respect to the Solar mass versus the radius
of the star. In this case, the static radius is used for the corresponding model, whereas
the mean perturbed radius is taken for the perturbations. In both cases, the radius is
measured in units of cm, and in logaritmic scale.
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0.0 :-\

amended
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log f
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Figure 10.5: This figure corresponds to Fig. 3 in [34].We compare the fractional changes
in the mass, for the result given using Hartle’s model and formula . These quantities
have no dimensions. The z—axis measures the central density of the model, with units of
gem ™ and plotted in logaritmic scale.
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11

Junction conditions in quadratic gravity

Quadratic gravity refers to theories generalizing General Relativity (GR) by adding terms
quadratic in the curvature to the Lagrangian density. The motivations for such modifica-
tions go back several decades ago (see the critic paper [97]), and today there is a general
consensus that modern string theory (see e.g. [4]) and other approaches to quantum grav-
ity (see e.g. [89]) present that structure, even with higher powers of the curvature tensor,
in their effective actions.

On the other hand, many times it is convenient to have a description of concentrated
sources, that is, of concentrated matter and energy in gravity theories. These concentrated
sources represent for instance thin shells of matter (or braneworlds, or domain walls) and
impulsive matter or gravitational waves. They can mathematically be modelled by using
distributions, such as Dirac deltas or the like, hence, one has to resort to using tensor
distributions. However, one cannot simply assume that the metric is a distribution because
products of distributions are not well defined in general, and therefore the curvature (and
Einstein) tensor will not be defined. Thus, one must identify the class of metrics whose
curvature is defined as a distribution, and such that the field equations make sense. For
sources on thin shells, the appropriate class of metrics were identified in [67, [75] [T06] in
GR, further discussed in [53]. Essentially, these are the metrics which are smooth except
on localized hypersurfaces where the metric is only continuous.

We carry on a similar program in the most general quadratic theory of gravity, where
extra care must be taken: the field equations, as well as the Lagrangian density, contain
products of Riemann tensors, and, moreover, their second derivatives. Therefore, the sin-
gular distributional part —such as the Dirac deltas— cannot arise in the Riemann tensor
itself, which can have at most finite jumps except in some very excepctional situations.
We identify these and then concentrate on the generic, and more relevant, situation per-
forming a detailed calculation using the rigorous calculus of tensor distributions to obtain

the energy-momentum quantities on the shells. They depend on the extrinsic geometrical
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11. JUNCTION CONDITIONS IN QUADRATIC GRAVITY

properties of the hypersurface supporting it, as well as on the possible discontinuities of
the curvature and their derivatives.

Surprisingly, and as already demonstrated in [98, 99 [T00], a contribution of “dipole”
type also appears in the energy-momentum content supported on the shell. This is what
we call a double layer, in analogy with the terminology used in classical electrodynamics
[68] for the case of electrodipole surface distributions. This analogy make the interpreta-
tion of these double layers somewhat misterious, as there are no negative masses —and
thus no mass dipoles— in gravitation. One of our purposes is to shed some light into this
new mystery. From our results and those in [98, 99, [100], these double layers seem to
arise when abrupt changes in the Einstein tensor occur.

We also find the field equations obeyed by all these energy-momentum quantities,
which generalize the traditional Israel equations [67], and describe the conservation of
energy and momentum. Actually, we explicitly prove that the full energy-momentum
tensor is divergence-free (in the distributional sense) by virtue of the mentioned field
equations.

Previous works on junction conditions in quadratic gravity include [8, 411 [44] [1T0]
—see also [43], [56] for the Gauss-Bonnet case—, but none of them provided the correct
full field equations with matter outside the shell, and they all missed the double-layer
contributions, which are fundamental for the energy-momentum conservation. Maybe
this is due to the extended use of Gaussian coordinates based on the thin shell: this
prevents from making a mathematically sound analysis of the distributional part of the
energy-momentum tensor, as the derivatives of the Dirac delta supported on the shell
seem to be ill-defined in those coordinates.

This chapter is structured as follows. The quadratic gravity field equations are intro-
duced in Section [I11.2] where the proper junction conditions for the description of thin
shells (layers) are found. This is achieved by using distributional calculus, briefly re-
viewed in Chapter 2] In Section the matter content supported on the layer, i.e. the
distributional part of the global energy momentum tensor, is found to contain a “usual”
Dirac-delta term TW(SZ together with another contribution of double-layer type as men-
tioned above; the latter is denoted by ¢,,,. Then, both j:,ﬂ, and ¢, are computed in terms
of geometrical quantities: the curvatures at either side of the layer and the extrinsic and
intrinsic geometry of the hypersurface supporting it. The tensor TVW is decomposed into
the proper energy momentum of the shell 7,4, external flux momentum 7, and external
pressure (or tension) 7 corresponding to the completely tangent, tangent-normal and nor-
mal parts respectively. The double layer energy-momentum tensor distribution is found
to resemble the energy-momentum content of a dipole surface charge distribution with

strength fi,5. This strength depends on the jump of the Einstein —or equivalently the
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Ricci— tensor at the layer. The allowed jumps of the curvature (and its derivatives up to
second order) at the layer are determined in Section [11.4] again from a purely geometrical
perspective.

The general quadratic gravity field equations are obtained in Section [L1.5] These are
the inherited field equations on the layer, and they involve 7,3, 7o, 7 and pp together
with jumps on the layer of the spacetime energy-momentum tensor. These fundamental
equations are the generalization of the Israel equations in GR to the general quadratic
gravity theories. The covariant conservation of the full energy-momentum tensor with
its distributional parts is explicitly demonstrated in Section [11.6] where we discuss how
the double layer term is necessary for that. The field equations on the layer are analysed
and further discussed in Section [11.7] where a classification of the junction conditions
in the following cases are presented: proper matching, thin shells with no double layers,
and pure double layers. In particular we find that if there is no double layer, then no
external flux momentum 7, nor external tension 7 can exist. Finally, in Section [11.8
some comparisons with the general GR case, and particular matchings of spacetimes, are
provided. It is found that any GR solution containing a proper matching hypersurface will
contain a double layer and/or a thin shell at the matching hypersurface if the true theory
is quadratic. Therefore, if any quantum regimes require, excite or switch on quadratic
terms in the Lagrangian density, then GR solutions modelling two regions with different
matter contents will develop thin shells and double layers on their interfaces.

On the other hand, we include, in Appendix [B], a discussion about the difficulty, and
in fact inconvenience, of using Gaussian coordinates for dealing with layers in quadratic

Lagrangian theories, as it has been often done in the literature.

11.1 Motivation

A general result proven in [82] is that the second Bianchi identity holds in the distribu-

tional sense:

Vpﬁaﬁ/w + VMEQBVP + Vvﬁaﬁpu =0
from where one deduces by contraction
B _
ViGg, =0

for the Einstein tensor distribution. By using (2.37) and the general formula ([2.27)) this
implies

0=V’ Gy, =n"[Gp.) 07 + V” (G3.67) . (11.1)
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11. JUNCTION CONDITIONS IN QUADRATIC GRAVITY

The second summand on the righthand side is computed according to the general formula

(A.21)) in Appendix
4 (Gpud™) = 9"V, (Gpud™) = 9"V, (Gpun,m?o™) + gﬁphzvkgﬂuéz = hPV)2Gp 0”
which, via (A.6)) finally gives
V7 (Gsud™) = (vﬂgﬁu - szagponu> 0%
Introducing this into ((11.1)) we arrive at
—38 1 . _
0=¢" <nﬂ (Gl + V' Gou = 5muG” (K, + Kpo)>
which implies, by taking the normal and tangent components, the following relations

(K}, + K,,)G” = 2n"n* [Gg,] = 2n°n* [Rs,] — [R], (11.2)
VW Gon = =01, [Gro] = =178, [Ry) (11.3)
(These equations can also be obtained [67] by using part of the Gauss and Codazzi equa-

tions for ¥ on both sides, specifically (2.66) and (2.67) in Chapter [2).

A very important remark is that all formulae in this section are purely geometric,

independent of any field equations, and therefore valid in any theory of gravity based on a
Lorentzian manifold. The translation of equations ((11.2)) and (11.3]) to quantities related
to the energy momentum tensor in General Relativity (2.55)) is straigthforward and we
find

(K} + K, )77 = 2nn (T4, (11.4)
V5, = —nPh?, [Thol (11.5)

Let us comment now about other theories of gravity, such as the F(R) theories. In

these, the field equations for a generic theory, without specifying F' explicitly, read

/ 1 "
F(R) Ry = SF(R)g — F'(B)(V,, R = 4,9, 1)
_F///(R) (V,MRVVR - gw/vaVpR) = KT/“,, (116)

where x = 87G/c* is the gravitational coupling constant and a prime denotes differen-
tiation with respect to the only argument. Note then that the translation from (|11.2]),
(11.3) to (11.4]), (11.5) is not trivial. However, a remarkable result found in [9§] is that
the relations regarding the energy momentum tensor and hold for theories
with F”(R) # 0 (see the first Section of the Appendix in [98]). Theories with F”(R) =0
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11.2. Quadratic gravity

are studied in depth in [99], where it is found that (11.4) and (11.5) do not hold in gen-
eral (these become (9) in [99]), but they do if one requires a matching without double

layers. In [08] the fact that (11.4)) and (11.5) may hold for any (diffeomorphism invariant)

theory of gravity is left as an open question. Thus, one of the main motivations for the

work developed in this chapter is to go an step further in this conjecture and explore the

quadratic theories of gravity.

11.2 Quadratic gravity

We are going to concentrate on the case of quadratic theories of gravity because, apart
from its own intrinsic interest and as we are going to discuss, they allow for cases where
gravitational double layers arise. Let us consider a quadratic theory of gravity in n + 1

dimensions described by the Lagrangian density

1
2k

L (R—2A+ a1 R? + as R, R + a3 Rapp R*™) + Loatter, (11.7)

where A is the cosmological constant, a,as,as are three constants selecting the partic-
ular theory, and L,qauer is the Lagrangian density describing the matter fields. A~! and
ai, as, as have physical units of L?. The field equations derived from this Lagrangian read

(see e.g. [47] and references therein)
Gap + Ngap + Gog = KTag, (11.8)

where T, is the energy-momentum tensor of the matter fields derived from L,,qtter, Gog

is the Einstein tensor and Ggﬁ encodes the part that comes from the quadratic terms:
G, = 2 { 1 RRos — 23R R + a5 Ry Ry ™ + (a5 + 205) Royy B™

1 1
— (a,l + 5(12 + ag) VQV5R + (5(12 + 2&3) DRa,B}
1
—égaﬁ {(a1R2 + CLQRHVR“V + angWJIVRpww) — (4&1 + CLQ)DR} s (119)
where O := ¢""V,V, is notation for the D’Alembertian in (V, g).

If we want to find the proper junction conditions, or a description of thin shells or
braneworlds in these theories, we have to resort to the distributional calculus (see Chapter
and Appendix [A]). Then, in order to have the Lagrangian density as well as the tensor
G well defined in a distributional sense —so that the field equations (11.8) are sensible
mathematically—, one has to avoid any multiplication of singular distributions (such

as “0%6>”). Ome could also hope for some cancellation of such terms between different
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11. JUNCTION CONDITIONS IN QUADRATIC GRAVITY

parts of the Lagrangian, and of GEB, and this is discussed in the following subsection for
completeness, but one has to bear in mind that these cancellations are probably ill defined
anyway, and thus not relevant. In order to properly deal with products of distributions
we would need a more general calculus, based e.g. on Colombeau algebras [33] 102], and

hope that those cancellations certainly occur and are well defined.

Dubious possible cancellation of non-linear 66> terms

Let us start by examining the Lagrangian (11.7)) recalling that the different curvature

terms possess now singular parts proportional to 6%, as given in (2.61)) and its contractions

(2.62)) and (2.63)). One could naively compute the products of these singular parts arising
from the quadratic terms in (11.7) and collect them in a common-factor fashion. The

result would be a term of type

5707 (261 [K2)? + 212 K o] [K*7))
where we have introduced the abbreviations
K1 = 2a; + ay/2, Ko := 2a3 + ay/2 (11.10)

to be used repeatedly in what follows. Then, one should require the vanishing of the
term in brackets. A similar naive compilation should be performed with the non-linear
distributions arising from the quadratic terms in the field equations . Imposing
again that the full combination must vanish, and separating the resulting condition into

its normal and tangent parts to X we would find

{m1[K2P 4 ko (B[KM[K )] — 2[K)%) } nang (11.11a)
+ w1 [KP](2[Kap] — [K}lhag) + k2 (2[K7][Kap] — [Kw][K" [hag) = 0. (11.11b)

The normal (11.11a)) and tangent (11.11bf) parts must vanish separately. In particular the
trace of the tangent part reads

k[ K0P (2 = n) + k2 (2[K2)? — n[K,,][K*]) = 0. (11.12)

We see directly that k1 = ks = 0 solves (11.11]), but in order to find all solutions we
compute the determinant of the system ((11.11a)) and (11.12)). This yields

(3 = n) (K (K] — [K™][K,w]) = 0. (11.13)

Take first [K/] = 0. Then, (11.11a) = 0 and (11.12) reduce to sg[K,,|[K*] = 0. If
(K] # 0 but [K#]* = [K*][K,,], (11.11a) = 0 reads (k1 + #2)[K%]> = 0 and (11.12) is
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11.2. Quadratic gravity

redundant since it becomes (# +2)[K#]*(2[Kap] = [K]hap) = 0. Thus, k1 +r2 = 0 would
follow. Finally, if n = 3 (and [K¥]* # 0), (11.11) yields a new possibility not considered

so far, summarized in

1 1
[Ka ] - ghaﬁ = [Kﬁ] - 17 [KaBHKaﬁ] = g, K1 — Rg = 0. (11.14)

In short, each of the following possibilities would seem to allow for the mutual anni-

hilation of ”§*§>” terms in —and in —:
1. kK1 =Ky =0.
2. [Kf] =0 and ky = 0.
3. ()2 = [, =0.
4. [KF)? = [KWw|[K*] # 0 and k1 4 kg = 0.
5. If the spacetime is 4-dimensional, k1 — kg = 0 and [K,5] = hag/3.

Despite we have included this analysis here for completeness, we should not forget
that these cases are not mathematically correct, and therefore they should not be fully
admitted unless a more rigorous study is performed showing its feasibility. To understand
the problems behind these naive calculations, we want to emphasize that there is no known
way to give a sensible meaning to 6~6%, let alone to things such as f6>0>. Thus, taking
for granted that combinations of type f10%0% + fo0%6% are related to (f; + f2)d™6% is,
at least, dubious. Such difficulties were, for instance, noted in [43] for the Gauss-Bonnet
case —corresponding to the possibility 1 above—, and one has to resort to analyzing thick
shells, that is, layers with a finite width, or to a setting more general than distributions,
such as the theory of nonlinear generalized functions described in [33, [102] and references
therein. The thin shell formalism is simply not available. Therefore, we will abandon this
route for now, and we will concentrate on the generic and well-defined cases analyzed in
the next subsection.

Well defined possibilities: no §*6* terms

The only mathematically well-defined possibilities in the available theory of distributions
for the thin shell formalism, as just argued, are those where no §>4> term ever arises,
leading to two different possibilities if we let aside the case of GR (defined by a; = ay =
az = 0):
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11. JUNCTION CONDITIONS IN QUADRATIC GRAVITY

1. If either as or as is different from zero, then products of the Ricci tensor by itself,
or by the Riemann tensor, appear in and these are ill-defined if the singular
parts and are non-zero. Thus, we must demand that the singular
parts and vanish which happens, as proven in Chapter , if and only
if the jump of the second fundamental form vanishes. Thus, in this situation it is
indispensable to require

(K] = 0. (11.15)

In this case, all the curvature tensors are tensor distributions associated to tensor
fields with possible discontinuities across the embdedded Y. Observe that then the
Lagrangian density (11.7)) is also a well defined, locally integrable, function.

2. If on the other hand ay; = a3 = 0, then only products of R by itself or by the
Ricci tensor appear in , and thus it is enough to demand that R is a locally
integrable function without singular part. Hence, in this case it is enough to require
that vanishes, that is to say, that the trace of the second fundamental form
has no jump: [K¥] = 0. Observe that, again, the Lagrangian density is in

this case a well-defined locally integrable function.

In any of the above two possibilities, expression with has a remarkable
property: there are no terms quadratic in derivatives of the curvature tensors. Taking
into account that tensor distributions can be covariantly differentiated according to the
rules explained in Chapter [2] and Appendix [A] the derivatives of the curvature tensors
may have singular parts and still the field equations are mathematically sound.
This opens the door for the existence of matching hypersurfaces which represent double
layers. Case 2 above was extensively treated in [08] 99 100], where gravitational double
layers were found for the first time. Therefore, we will here concentrate in the more
general case 1, and thus we will assume hereafter that holds. Notice that
coincide precisely with the matching conditions that are needed in General Relativity to
avoid distributional matter contents, as follows from together with the Einstein
field equations.

Once ((11.15)) is enforced, the lefthand side of the field equations can be computed
in the distributional sense. From and we know that the Riemann tensor
distribution

R

=afuv

=R,0+ R, (1-0),

afur=
is actually associated to a locally integrable (and piecewise differentiable) tensor field.
However, this tensor field may be discontinuous across X, and thus [R,s,,] may be non-

vanishing. This leads, when computing covariant derivatives of R, to singular terms

afpuv?
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11.3. Energy-momentum on the layer X

proportional 6~ and its derivatives. And these are going to arise in QSB. Thus, the
energy-momentum tensor on the righthand side of must be treated as a tensor
distribution and contain such terms, localized on X, giving the energy-matter contents of
the thin shell or double layer.

In order to compute this matter content supported on > we only have to calculate the

singular part of Qgﬁ, because G,p in 1} vanishes as follows from ([11.15)) with 1’
But the only terms in (11.9) that are relevant for this singular part are V,VzR and

OR.p (and its contraction OJR). More precisely, we need to obtain the singular part of

the expression

1
— (2a1 + a2 + 2a3) Vo VR + (az + 4as) OR,s + (2@1 + §a2) OR gap
= — (k1 + K2) Vo VR + 2600R 5 + k10R gap- (11.16)

This is the purpose of the next section.

11.3 Energy-momentum on the layer X
From and the assumption ((11.15)) we know that

R.s = R},0+ R ,(1—0)
from where, using the general formula twice we deduce

ViRys = VuRI0+ VR (1 —0)+[Rapn,o”,
ViViR,s = V,V,R! 04V, V,R 5(1—0)+[V,Rasn,s”
+V,. ([Ragln,o™) . (11.17)

Via contractions here, or directly from ([2.36]), we also obtain

R = RO+ R (1-9),
V,R = V,R"0+ V,R (1-0)+[R]n,d",
V,.V,R = V,V,R'6+V,V,R (1-8)+ [V,Rln,s> +V, ([Rln,d>) (11.18)

as well as

OR,; = OR!,0+ OR_5(1 — 0) +1n[V,Rap0” + "V, ([Rapln6™) | (11.19)
OR =0ORT0+0OR (1 —0) +n’[V,R]6” + ¢V, ([R]n,6™).  (11.20)
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11. JUNCTION CONDITIONS IN QUADRATIC GRAVITY

Thus, we need to control the discontinuities of the Ricci tensor and the scalar cur-
vature, and also to provide an expression for the singular distribution V, ([Rag]nl,éz)
supported on . The general formula (A.21)) provides

Vi (nu[Rapl0”) =V, ([Rag)nun,n’6”) + {n0V ,(ny[Rap]) — K?, [Raglnym, } 5=

At this point we introduce a 4-covariant tensor distribution A, with support on ¥,

which takes care of the first summand here and is defined by

A

Suwap +=

V, ([Raglnum,n’ §%)
or equivalently by
<AMV&6,Y””°‘5> = —/Z[Rag]nynuanpY“”aﬁdv.

Note that A .5 = A A

AW A0 = D, 5, In summary, we have

v.“ (nV[Raﬁ]éz) - éuuaﬁ + {nl’hzvp[‘R&ﬁ] + [Raﬁ](K,LW - KPP n#nl’)} 52

and therefore (|11.17)) becomes

VuViRos =V, VR 0+ V,V,R;(1—0) + A

pvaf

+ {[VoRagln, + nuhV )[Rag) + [Rag)(Kuw — K*pnuny) } 67
From the general formula (A.19)), conveniently generalised, we have
[VoLRsu] = nprsu + hy Vo[ Bgul, (11.21)

where
rau = n"[V,Rgy, T = Tup (11.22)

are the discontinuities of the normal derivatives of the Ricci tensor. Thus, we finally get

Vi ViR =V, VR0 +V,V,R 51— 60) + A

uvaf

+ {ragnuny + n,hEN o [Ragl + 1u,hi N o[ Rag] 4 [Rag) (K — KPpnyny) } 67, (11.23)

Observe that the entire singular part is symmetric in (af) and in (uv).
From ((11.23)) we immediately get all the sought terms. First, by contracting with g®%
we find [98] [99, [100]

V.V,R=V,V,R"0+V,V,R-(1-0)+ 4,
+ {bn,n, +n,V,[R] + n,V,[R] + [R|(K,, — K”,nun,) } 6~ (11.24)
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11.3. Energy-momentum on the layer X

where [99, 100]
bi=r10=nV,[R] (11.25)

measures the discontinuity on the normal derivative of the scalar curvature, and [99]
A “IA

2 =g =pvaf

is a 2-covariant symmetric tensor distribution with support on X acting as followﬂ

s uv

(B, Y) =~ /E [R]n,n,m”V , Y dv; A, =V, ([Rnmn,n*).  (11.26)

Similarly, contracting (11.23]) with g*” we readily get

ORap = ORS 40+ OR_5(1L— 0) 4+ 7650”4+ g™ A as (11.27)
where the last distribution acts as follows
(5" By V) = B V7)== [ [Raslnum, 9,2
= — /E [Ros|n?V ,Y *P du; 9" A es =V, ([Rapln?6™) .
Finally, by tracing either of (11.24)) or (11.27)) we easily derive
OR=0R0+0R (1 —0)+ b5 + A, (11.28)
where we have introduced the notation A := g"’A . Note that [98]
(AY) ={(g"A,,,Y)= /E [RInV,Y dv; A=V, ([Rn"6”) .
What we have proven is that the distribution QSB takes the following form
Gy =G0+ G7o5(1— 0) + Gagd™ + Yag (11.29)

where

Gag = 2KaTapt+r1bgas—(K1+k2) {bnang + naVs[R] + ngVa[R] + [R](Kas — Ky nang) }

(11.30)

and after a trivial rearrangement
Gop = K1 (9apD — Dpg) + K2 (20" A as — Dag) - (11.31)
'There are some errata in the formulae for A, and Q ,, in [98], and for ¢, in [99, T00]: in all cases

Y must be replaced by Y#¥.
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From (11.31) we define two new 2-covariant tensor distributions with support on 3 [99]:

Qus = Gapd — Auy = V, ([Rlhagn?0™);  (Qu5,YP) = — /E[R]haﬁ nPV,Y S dy

(11.32)
and
14 1 1 o (0%
Qaﬁ =g" ém/aﬁ_§éaﬁ_§gaﬁ = vp ([Gaﬁ]npéz) ) <@aﬁ’y ﬁ> = /E[Goéﬁ] anpY Pdv
(11.33)

(recall that [G,p] is tangent to X, n®[Gap] = 0 (2.54)). With these definitions, (11.31]) is

rewritten simply as

Gop = (K1 + K2)Q5 + 2k2P 55 Gos =V, ({(k1 + £2)[Rlhag + 262[Gagl} n?57) .
(11.34)
Given the structure , the field equations can only be satisfied if the
energy-momentum tensor on the righthand side is a tensor distribution with the following
terms
T =ThO+ T, (1~ 0)+ T8> + 1, (11.35)

where T, v 18 a symmetric tensor field defined only on 3 and t,, is by definition the
singular part of T, with support on 3 not proportional to §*. We perform an orthogonal

decomposition of 7}, into tangent, normal-tangent and normal parts with respect to X

T = Ty + Tyny + 70y, + 700, (11.36)
with
Tuy = hﬁhgfpg, Tw = Top, W' =0;  7,:= hﬁfp,,n”, n'r,=0; T:= n“n”ﬁw
so that
I, = T;;Q + T;;/(l —0) + (T + 70y + 1y, + TN, 0+ by (11.37)

Compare this expression with the form of the energy momentum tensor in GR given by
(2.55)). Following [99] [T00] the proposed names for the objects in ([11.37]) supported on ¥,

with their respective explicit expressions, are:

1. the energy-momentum tensor 7,5 on X, given by
KTap = — (K1 + K2)[R] Ko + K1bhag + 2ka7, WA R, (11.38)
Top 1s the only quantity usually defined in standard shells (see Section .
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2. the external flur momentum 7, defined by

KTo = — (K1 + K2) Vo [R] + 2kKa7,,n" By, (11.39)

This momentum vector describes normal-tangent components of T, supported on
Y. Nothing like that exists in GR. Let us stress that this “external” flux momentum

should not be confused with the “flux momentum” defined in thin shells in GR (see
e.g. [50]).

3. the external pressure or tension T
KT = (k1 + k2) [R]K) + Ko (2r,,n*n” —b). (11.40)

Taking the trace of (11.38)) one obtains a relation between b, 7 and the trace of 7,,:

k(TP +7T) = (kin + K2)b (11.41)

The scalar 7 measures the total normal pressure/tension supported on . Again,

such a scalar does not exist in GR.
4. the double-layer energy-momentum tensor distribution t,s, which is defined by
Ktog = Gap = V, ({(k1 + K2)[R]hap + 262[Gap]} n°6™) (11.42)

or, equivalently, by acting on any test tensor field Y*# as
ot YOO) = — / ({51 + #2)[R]hag + 2a[Gug]} 7V ,Y B o (11.43)
)

.5 18 a symmetric tensor distribution of “delta-prime” type: it has support on X
but its product with objects intrinsic to ¥ is not defined unless their extensions off
¥ are known. As argued in [99, 100], £,; resembles the energy-momentum content

of double-layer surface charge distributions, or “dipole distributions”, with strength

Kftap = (K1 + K2)[Rlhap + 262[Gagl,  flap = Hpay, 1 Hap = 0. (11.44)

We note in passing that
ki’ , = (kin + k2)[R], kt?, = (kin + k2)A (11.45)

The appearance of such double layers is remarkable, as “massive dipoles” do not
exist. However, in quadratic theories of gravity they arise, as we have just shown,
in the generic situation when thin shells are considered. In this case, t,5 seems
to represent the idealization of abrupt changes, or jumps, in the curvature of the

space-time.
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11.4 Curvature discontinuities

In the next section, we are going to derive the field equations satisfied by the energy-
momentum quantities (11.38)), (11.39)), (11.40) and supported on Y. To that end,
we have to perform a detailed calculation of the discontinuities of the field equations
: they obviously include the discontinuities of the energy-momentum tensor 7},
which must be related to the energy-momentum content concentrated on .

The discontinuity of the lefthand side of contains [G] (actually, we will only
need n® [G’Sﬁ]) and this involves discontinuities of quadratic terms in the Riemann tensor,
such as [R2), [RapR), [Rupyu RO), [RRag), [RawRE), [Rapy B3 ) and [Ruus, R, as
well as discontinuities of derivatives of the curvature tensors, such as [V,VgR], [OR.g]
or [HR]. Thus, we have to use systematically the rules and either of or
supplemented with , and we also need to have some knowledge on the
discontinuities of the Riemann tensor (and its derivatives).

Discontinuities of the curvature tensors

Thus, let us start by controlling the allowed discontinuities of the Riemann tensor across
Y. Requirement implies that the matching conditions (for timelike hypersurfaces)
introduced in Chapter [2| hold. The implications are then that the jump in the Christof-
fel symbols vanishes [I'j,] = 0 (recall the relation between the difference of the second
fundamental forms and Christoffel symbols (2.59)).

The jump of the Riemann tensor is given by the standard formula . The inde-
pendent n(n + 1)/2 allowed discontinuities for the curvature tensor are encoded in the
symmetric tensor B,g, that recall, can be chosen to be fully tangent to ¥. The discon-
tinuities of the Ricci tensor, Ricci scalar and Einstein tensor are given by ,
and . Equivalently to these, we can write

1 1
Bg, = [Rgu) — é[R]nﬂnu = [Gp,] + ihﬁu[R], Bﬁ = (11.46)

that tells us that the n(n+1)/2 allowed independent discontinuities of the Riemann tensor
can be chosen to be the discontinuities of the ¥-tangent part of the Einstein tensor (or

equivalently, of the Ricci tensor).
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11.4. Curvature discontinuities

Discontinuities of terms quadratic in the curvature

Now, let us concern ourselves with the many terms in (11.9)) quadratic in curvature tensors.

To start with, using ((11.46)) with (A.15)) we readily obtain
1
[RasR™) = 2[R*|R%, = (Baﬂ + 5[R]n%ﬂ) R, (11.47)

1
[RRag] = R¥[Rag] + [R]Rys = R” (Ba/a + §nan5[R]) +RRZ;,  (11.48)

[R?] = 2[R|R*. (11.49)

Regarding n®[R,, ], let us first consider the contraction n”n*[R) R,,]. The chain of
equalities
n’n*[R)R,,] = 2n°n*R*1[R, ] = [RJn"n"R>,, (11.50)

follows from ([2.68)) (or (11.46)) and (A.15). Half-adding the two + equations (A.12)) and
using the result in ((11.50) we derive

1 —
n'n*[RIR,,] = 5[R](RE — R+ (Kf)? = K, o K™). (11.51)

Analogous procedures using the Gauss equation (A.7)) accordingly yield

_ Y 1 _ _
nghﬁ[RzR’W] - Bau(vﬁKﬁa -V K,f) + §[R](vaK3 - VVK;;)» (11'52)
n°n’[Raus R"] = (2R, — Ry + KK, — Ko K7) B, (11.53)
RS Ry B] = (V5 Kne — VaKpa) B — (VoK — V' K?) By, (11.54)
NN [Roppw R™"] = 4n°nP[Rayp, R™) — 4R§UBP", (11.55)
00 [Repu R5™] = 2B (Vo Kxg — VaKag), (11.56)
[Rapu RO) = 2n°n° [ Ropu Rs™| = 8B*P(Rys — Rap + K Kog — Ko K5).
(11.57)

Discontinuities of the first derivative of the curvature tensors

Concerning the covariant derivative of the Riemann tensor, the general formula (A.19))
leads to
[V,DR&BM] = NpTaprp + hZVU[RaBAu]a (11.58)

where 7,4, is a tensor field defined only on ¥ and with the symmetries of a Riemann
tensor. Using the second Bianchi identity for the Riemann tensor the previous formula
implies

pTagine + Polp V7 [Ragau] = 0
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11. JUNCTION CONDITIONS IN QUADRATIC GRAVITY

which, on using (2.50) and after some calculations, implies the following structure for

TaBuv-

Tapw = KapByp — KawBug + KgyBua — KguBya
+ (VMBPV - VVBPM) (”ahg —nghg) + (VochB - vﬁBpa> (nuhy — nyhfy)
t NaNupPpy — NaMwPpu — NNuPav + NN Poys (11.59)

where pg,, is a new symmetric tensor field, defined only on ¥ and tangent to X, n®pg, = 0,
which encodes the allowed new independent discontinuities of the covariant derivative of
the Riemann tensor. There are n(n + 1)/2 of those again. As far as we know, relation
has only been derived in [82].

Contraction of leads to the equation , but now with an explicit expres-
sion for the discontinuity of the normal derivative of the Ricci tensor which reads, on

using (|11.46|)

1
oy = pov+ KiBgy + R Kp, — KpsB) — BysKJ

— n5V,[GY] _nvvp[Gg]
+ ngn,ps, (11.60)

where a natural orthogonal decomposition of 74, appears: the first line is its complete
tangent part which, given that pg, entails the allowed new independent discontinuities,
is in itself a symmetric tensor field tangent to X codifying those discontinuities. We are
going to denote it by

Ry = hGh5roe = hGhIn  [VaR,,): (11.61)

the second line is its tangent-normal part, which is completely determined by the covariant

derivative within X of the discontinuity of the Einstein tensor
n’hrs, = —V'[G,ul; (11.62)
w' By ppls :

and finally, the third line gives the total normal component of rg,, which can be related to
the discontinuity (|11.25) of the normal derivative of R by simply taking the trace r5 = b
leading to

b
raan’nt = 5 + K7[G). (11.63)
Using this we get a useful relation for the trace of Rz, that does not depend on p,z

b
Re =5~ K”[Gl (11.64)
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11.4. Curvature discontinuities

Discontinuities of the second-order derivatives

Let us now consider the jumps in the second derivatives of the Ricci tensor. The starting
point is equation (11.21). We can find an expression for the second summand there by

differentiating (2.68) along > and using the general rule (A.6|) (see Appendix [A.1),
. 1 - _
WiV o [Rgu] = 5nanuV o[ B +ng, (Kp)o[R] — 2BapK)) + V,Bg,. (11.65)

The jumps of the second-order derivatives of the Ricci tensor, due to the general formula

, can be written as
[VaV,Reu] = nyAppu + BV [V, Rpyl (11.66)
where Ay, = Ay(sy is a shorthand for
Appu = n*[VaV, Rg,].
The last term h§{V,[V,Rpg,] can be further expanded by first using to obtain
RSV o[V, Reu) = Knprgu + nphSVoers, + BV, (hzv'y[RBu])

and then computing the last summand here, which leads to

WSV e[V Rau) = Koprgu + 200,50V ) [R] + [R] Ky Ko\ — 4K&)v)‘)B'Y(5nN)

g, (§9TIR] = [RIKS Ko+ 2K KT B )

— o 1 g
+ (VAK; — 1, KSK7) ([R5 — 2B55) nyyy — §nunﬂnpKAvo[R]
+VaV,Bgy, — 2K) By 3Ky — 1, KV, By + nyhS Vo7, (11.67)
Let us stress the fact that all the terms in the first two lines in the above expression are

symmetric in (Ap).

Concerning A,g,,, let us first decompose it into normal and tangential parts by
Apsp = npAgu + hy Aysy, App = nPApgy,  Agu = Apup.

In order to obtain an expression for hjA.s, we take the antisymmetric part of (11.66)
with respect to [Ap], and contract with n*. For the left hand side of (11.66) we use the
Ricci identity applied to the Ricci tensor at both sides V*, and take the difference of the

limits on 2, so that
[(VaV, =V, V) Rpu| = [R7gpaRyp] + [R7 upa R
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11. JUNCTION CONDITIONS IN QUADRATIC GRAVITY

For the right hand side of (11.66)), after the contraction with n*, we get
Apg — 1™, Arg — n)‘hzvg [VaRsu] = h) Ay — n)\hzva[v)\Rﬂu]~

Isolating h}A.s, and using (11.67) for the last term of the above equation, it is then

straightforward to obtain

Appu = npAgy + 1R g Rop] + 0V [RY 0 Ry | + hZVUTﬁu
1

—EnunngSva [R] — K7V, Bg, — [RIKJ Ky gnyy + 2K K] By gn,).(11.68)

The expression for [V,\V,Rg,| now follows by combining (11.66)) with (11.67)) and (11.68]).
After little rearrangements, that reads

VAV, Rs.] = man,Agy, + nan” ([RY gpu Royp] + [R’YMPVRB’Y]) + 2n(\hy) " Vorsy
—nungn( K" Ve Rl — 20K Vo Bgy = 2[RI ) Koy
+4An( K )7 K) Bygngy + 21K WV ) [R] + [RIKps Ky — 4K7(,V ) By sny)

l= =
+ngny <§V,\VP[R] — [RIK Kpo + 2K3K§B07> + KoTsu
+v>\KX ([R]hv(ﬁ - 237(5) M) + ViV, Bgy — 2K, By g K- (11.69)

We must stress the fact that there are still terms in (11.69), i.e. Ag, and rg,, that are
not completely independent.
The contraction of (11.69) with g?* yields

1
[ORs,] = Ay + Krg, + nung <§D[R] — [RIK" K, + 2K"”KgBm)
— — 1— —
+2n(,h3, (vp[R] K} = 2KV, By + 5V, K5 — v,,KmBM>
+[R|K K} +OBg, — 2K, K{, Bg),, (11.70)

while contracting with g?* we obtain [98]
[V.VuR] = Abnyny, + 204,V )b — 204, K\ VA[R] + bK,, + V,V,[R]. (11.71)

From any of the previous we readily have
[OR] = A? + bK +O[R). (11.72)

The energy-momentum quantities (11.38711.40]) will arise from the discontinuities of
the normal components of the lefthand side of ({L1.8]). In other words, we will only need to

consider n®[G]. Observe then that Ag, only appears in [[JRg,], and since we only need
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11.4. Curvature discontinuities

the terms contracted with the normal once, in particular n® [ORg,], we are only interested
in controlling nAg,. This can be done by using the identities QVF’Rfu = V,R* at both

sides of X, and taking the difference after one further differentiation:
1
n’|V,V’R,,| = En”[V,,VMR]. (11.73)

The lefthand side here comes from (11.66|) combined with (11.68|) after one contraction,
whereas for the righthand side we simply have to contract (11.71)) with n”. Equation
(11.73) is thus found to be equivalent to

nAp, +n? (_[R;Rw] + [prchw]) + hﬁovorﬁu - KBUvUBﬂM

1 _ _
n (g[R]KpaKf’” ~ KJBK;BW) = (A, + V- KXVAR). (1L74)

Discontinuities of the quadratic part [GSB]

We are now ready to compute the full na[GEﬁ;]. To keep track of the different terms, we
split the compilation of terms in three parts, corresponding to the terms multiplied by
either of the three constants aq, as,as in (11.9)).

e Terms with aq:

The terms in (11.9)) that go with a; are
al 1
G2 = 2RRap — 2V VR — Egaﬂf# + 29.50R,
and we can compute their jump using ((11.48)), (11.71)) and (11.72) to obtain
n*n®[G7%] = 2[R|R}yn"n” + 20K’ + 200[R] (11.75)

and

n“h[G7eL] = 2[R|R};n k), — 2V b+ 2KV, [R]. (11.76)

e Terms with as:

The terms in ([11.9)) relative to ay are
1
G735 = 2Raupu R — Vg VaR + ORap — 50 (R B — OR).

Before using (11.53) and (11.54)) it is convenient to write down n*[[JR,g| using
(11.70) combined with (11.74)), since some terms simplify. With the help of (11.53]),
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11. JUNCTION CONDITIONS IN QUADRATIC GRAVITY

(11.54), (11.71), (11.48) and (11.61H11.63)) it is then easy to get

[ az b ™ 1 5) 3 o
n*n’[GE] = SKp 4+ O[R] + J[RI(RY = R+ (K))?) = J[RIK K
+R e K +V,V,[G™] + B (R, — Ry + K/K,u), (11.77)
o az l= 3 ay - a l= - « ax7Y
noRf[GRm] = —5 Vb + S KiVa[R] + ] (VQKH — §V,J(> — VoRS + KV Gyl
+B*(NV Koy — V, Kog) — Bay VK — K*N 3B,,. (11.78)

e Terms with as:

Regarding a3 we have
1
GDZSB = _4RauRg+2RO"DMVR5PHV+4ROW5VRMV_QVBVaR+4DRa5_§gocﬁRpwprww.

All terms have already appeared except for the last one, for which we use ((11.57)).

Straightforward calculations lead to

nnf[G7%] = ARK* + AV, V4[G] + 4]Go, | K*°Kf + 20[R)
+4B**(RY; — Rog + KapK! — Ko, K5), (11.79)
a a ah X7 a axy X7 o
nhI[GRE) = +4KV [Gga) — AVAR) + 4KV o [R] — 4V 3(Ba, K*7)

2[RIV K — 4B, Vo K 4+ 4B* (V5 Ko, — V. Kap(11.80)

Collecting all the above, we finally obtain

— 1 —
nn’(Gyy] = K1 {ng +O[R] + 3 (R™— R+ (K?)* — KPUKP")}
+rig {2Rag K + 2V Vs[G*] 4+ 2B (R}5 — Rap + Kap K — Ko, KJ)
+2[Gou| K*KY + TR } (11.81)

nh[Gos) = k1 {[RI(Vo K] = V,.K?) = V,b+ K V,[R]}
+Ky {—Q%Rg + QKWB [Gga) +2B*(VKop — V,Kap) + 2K,V o [R]
+ [RIVo K — 2Bo, V3K* — 2K**VB,,.} . (11.82)

Remark: As a final remark, we would like to stress that all the discontinuities com-
puted in this section [11.4] are purely geometrical, and therefore valid in any theory based
on a Lorentzian manifold whenever ((11.15]) holds.
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11.5. Field equations on the layer X

11.5 Field equations on the layer X

Relations ((11.81)) and ((11.82) are the equations we were looking for, but we wish to rewrite
them in terms of the (derivatives of) the energy-momentum quantities supported on
given in ((11.38111.40) and (11.44). Observe, first of all, that the three relations (11.61]),

(11.62) and (11.63]) allow us to rewrite the energy-momentum contents supported on X
(11.38411.40)) as follows

KTap = — (k1 + K2)[R| Ko + K1bhas + 262 Rag, (11.83)
KTo = — (k1 + F2)Va[R] — 262V [Gpal, (11.84)
KT = (K1 + k2) [R] K] + 262 K7 [G 6], (11.85)

and using the definition of the double-layer strength ({11.44]) the last two here can be

rewritten as

Ta = _vp,u/po“ (1186)
7= K" 1. (11.87)

Now, a direct computation provides the following expressions for some combinations

of derivatives of these objects:
Vil p A2 — BY ivie Y KP
5 (V7 + K07+ Var) = —( + 12) (Kol R] + [RI(V Ko — Vok2))
+1Vab + 265(V R + Va(K7[Go]) + K2V [Grial), (11.88)

K (Tap K0 = V'7,) = (81 + ko) (O[R] — [R] K, K™) (11.89)
+r1bK? + 2k0(KP Ry + V'V [Gap)).- (11.90)

Using these, equations ({11.82]) and (11.81]) become respectively (after some rewriting using

(A.8) and (A.9) and (11.8))
K (nORG[Top) + V' Tag + K75+ V1) = 2k {K*V[Go,) — KAV [Gag
+V,([GY]Kag) = Vo ([Gapl K°) }
K (P [Tos] + V10 — 7asK*) = (k1 + 52)[R)] (n*n’RZ; + KogK*)
+2m[GH] (n°*n Ry, + KIK,,) .

apyy

Using now the definition of the strength (|11.44]) these become
nahg To,) + v“raﬁ + KppTﬁ + ng = Kapvﬁluap - Kﬁ“uaﬁ
"’Vp(ﬂapKaﬁ) - Vp(luaﬁKap)

NP Tos] + V' 7s — Tap K =yt (no‘nVRgM,, + KﬁK,,p) :
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11. JUNCTION CONDITIONS IN QUADRATIC GRAVITY

Recalling here the relations ((11.86|) and ([11.87)) between 7, and 7 with the double-layer
strength (1,3, we finally obtain the following field equations

nOhG[Tap) + YV Tag = —pap VK + V(1 Kag) — V,(papK*),  (11.91)
NN [Tog] — Tas K = VOV o + (n*n"RY,., + K'K,,) . (11.92)

These are the fundamental field equations satisfied by the energy-momentum quantities
and within 3. They generalize the classical Israel equations of GR [67]
and they are very satisfactory from a physical point of view. They possess an obvious
structure with a clear interpretation as energy-momentum conservation relations. There
are three type of terms in these relations. The first type is given by the corresponding first
summands on the lefthand side. They simply describe the jump of the normal components
of the energy-momentum tensor across Y. Therefore, they are somehow the main source
for the energy-momentum contents in ». The second type of terms are those on the
lefthand side involving 7,4, the energy-momentum tensor in the shell/layer ¥. We want
to remark that the first equation provides the divergence of 7,4. Finally, the third
type of terms are those on the righthand side, involving the strength p,s of a double layer.
These terms act also as sources of the energy-momentum contents within ¥, combined

with extrinsic geometric properties of ¥ and curvature components in the space-time.

An alternative version of ((11.91)), after use of the Codazzi equation (A.10]), reads

N W[ Top) + V' Tag = 10" R, 05 + KagV o™ — YV (11as K). (11.93)

Note that the allowed jumps in the Riemann tensor ‘D lead to n? [Rm)\p]hflhghg =
0 and therefore the term ,u""’n"R?aAphg in the last formula can be written simply as

1PN’ Ryq, Aphg.

11.6 Energy-momentum conservation

The divergence of the lefthand side of the field equations vanishes identically due to
the Ricci and Bianchi identities, and therefore, the conservation equation for the energy-
momentum tensor V,T* = 0 follows. In our situation, however, we are dealing with
tensor distributions, and with considered in a distributional sense. The question
arises if whether or not the energy-momentum tensor distribution is covariantly
conserved. We know that the Bianchi and Ricci identities hold for distributions (see Ap-
pendices), hence it is expected that the divergence of the T, vanishes when distributions

are considered. In this section we prove that this is the case, when taking into account
the fundamental field equations (11.91) and ((11.92). The following calculation can be
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11.6. Energy-momentum conservation

alternatively seen, therefore, as an independent derivation of (11.91)) and (11.92)) —from

the covariant conservation of T' .

From ((11.35) and (2.27)) we directly get
VO, 5 = n®[Tugld™ + VO (Tupd™) + Votys. (11.94)

Let us first compute the middle term on the righthand side. From the orthogonal decom-
position ((11.36))

Va(fagéz) = V* ({5 + ™5} na6”) + V* ({Tap + Tang} 67)
and using the general formula the second summand can be expanded to get
Vo‘(fagéz) =V ({Tg + mng} naéz) + (VaTag — TapKng + 7K op + nﬁ“m) 5>
so that with the help of we get

Ve (Topd™) = V° ({75 + g} nad™)
+ (VT = TapKn5 — KagV' fipe — 15V V' lap) 07, (11.95)

With respect to the last term in (11.94]), on using definitions (|11.43) and (11.44)) we can

write for any test vector field Y and using the Ricci identity
(Vs YP) = = (L0, VYY) = /E 1asn’V , VY P dv
= /2 (uagn” {VanYﬁ + Rﬂgpo‘Y”}) dv
= / Lapn?NV OV Y P dv — <npua"R§aﬁU(52,Yﬁ> :
b
The first integral here can be expanded as
/E 110V OV Y Pdv = /E fiag {VE(n*V,Y7) — K*V Y7} dv
= / anpYﬁ (,MCWKCWTLB — Vauag) dv — / Hap K <7p7ﬁ + (ngY")Kp'B) dv
b b
= /(T?’Lg + 75)n?V,Y P dv + / Y# (Vo (ptapK™) — ngpac KK, dv
=—(V° ({275 + gk ngs™),Y?) + <?vp(,ua5Ka”) — Nppac KK,7) 67, Y")
so that we arrive at

Ve, =—V*" ({Tg + g} naéz) + (vp(uagKap) — Ngphao K PK,T — npua”RfaBU) o=,

(11.96)
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11. JUNCTION CONDITIONS IN QUADRATIC GRAVITY

Adding up ([11.95) and (11.96]) to (11.94) we finally obtain

Vazaﬁ = {na[Taﬁ] + VQTQB — TapKapnﬁ —+ vp(luaBKaP)

—Nglac KK, — np/ﬂ”Rfaﬂo — Kaﬁ’)upa — nﬁ“v”uw} 5.

The fundamental equations ((11.92)) and (11.93)) prove the vanishing of this expression
leading to
Vazaﬂ - O

as claimed. As remarked in [99] [100], this calculation shows that the double-layer energy-
momentum distribution ¢, 4 is essential to keep energy-momentum conservation. Without
the double-layer contribution the total energy-momentum tensor distribution 7', ; would

not be covariantly conserved.

11.7 Matching hypersurfaces, thin shells and double

layers

Once we have discussed the junction in the case of gravity theories with quadratic terms,
and have obtained the corresponding field equations on ¥, we are in disposition to analyze
their consequences. Before entering into this discussion, it is convenient to remark the

following important result.

Result 1 If there is no double layer (that is j1a5 = 0), then there can be neither external

flux momentum T, nor external pressure/tension T.

This follows directly from expressions and (I1.87). In other words, there exist
non-vanishing external flux momentum and/or external pressure/tension only if there is
a double layer.

Thus, there are three levels of junction depending on whether or not thin shells and /or

double layers are allowed. We will term them as:

e Proper matching: this is the case where the matching hypersurface > does not
support any distributional matter content, describing simply an interface with jumps
in the energy-momentum tensor, so that there are neither thin shells nor double
layers. This situation models, for instance, the gravitational field of stars (non-
empty interior) with a vacuum exterior. Or the case of vacuoles in cosmological

surroundings.

o Thin shells, but no double layer: This is an idealized situation where an enormous

quantity of matter is concentrated on a very thin region mathematically described
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11.7. Matching hypersurfaces, thin shells and double layers

by > but no double layer is permitted to exist. Thus, delta-type terms proportional
to 6~ are allowed, and the expression provides the energy-momentum tensor
of the thin shell. However, from Result (1| the other possible quantities and
(11.40) accompanying §* vanish identically. This situation is analogous to that
in GR where only appears. The main difference with a generic quadratic
gravity arises in the explicit expression for , as the field equations turn out

to adopt the same form.

e Double layers: this is the general case with no further assumptions, which describes
a large concentration of matter on X, as in the previous case, but accompanied
with a brusque jump in the curvature of the spacetime. Still, there are several sub-
possibilities depending on the vanishing or not of any of (11.38)), (11.39)) or (11.40)).
There is also an extreme possibility, that we term a pure double layer, where the
thin shell is not present but the double layer is: this is the case with all ,

(11.39) and ({11.40]) vanishing but a non-vanishing ([11.43]). Nothing like any of these

different possibilities can be described in GR.

We classify the junction condition for these different cases in turn.

Thin shells without double layer

From ((11.43)) follows that the strength of the double layer p,s must be set to zero, and
thus from ((11.44)) we have

(Fél + HQ)[R]hag + 252[Ga5] =0 — </<L2 + n/ﬁ)[R] = 0, (1197)

which implies that 7 and 7, both vanish (see Result . Hence, only the tangential part
of the distributional energy momentum tensor on ¥ survives, given explicitly by (11.83]).

Its trace, upon using , reads
KT = (nky + K2)b — K pag = (nky + ka)b. (11.98)
The equations and in this case read
nhE[Top) = =V 1ag, 0 [Tag] = Tap K. (11.99)

Observe that, remarkably, these are identical with the Israel conditions derived in GR.

We have to distinguish whether x5 = 0 or not.
® Ko 7é 0.
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If (nky + Kk2) # 0 relations (11.97) imply that [R] = 0 and [G4p] = 0 in full. Direct

consequences are [Rqg] = [Ragu] = 0, and the discontinuities in the derivatives are
given by
[VuRapa] = (namaRpy — nanyRpx — ngnaRaw + ngnuRax)ny, (11.100)

for some symmetric tensor Rqs tangent to X. From (11.41) we get b = 2R/ and
therefore the energy-momentum tensor ((11.38)) on X just reads

KTag = K1bhag + 262 Rap.

With regard to the exceptional possibility nk, + ko = 0, equation (11.97)) implies in
particular that the tensor B,s is proportional to the first fundamental form. The

explicit relation reads
1

aff — %
which for the discontinuity of the Riemann tensor produces

B [R]hag,

R
[Rapau) = % (nanxhg, — nangha, — nunahpy + nunghay) . (11.101)
Taking contractions in this last expression we find the allowed jumps in the Ricci

and Einstein tensor

1—n
2n

[Rag] = @ (1ha5 + nan5> = [Gag] = [R]ha/j. (11.102)

2 \n
Note [R] is the only degree of freedom allowed for the discontinuities of the curvature
tensors.

The remaining allowed discontinuities of the derivative of the Ricci tensor are en-
coded in o5 = n*[V,Rap], so that

1—n

) IR i )
(11.103)

Recalling that b = r$ = n?[V,R| the explicit form of the energy momentum tensor

on X can be obtained from (11.83). Due to (11.98), 744 is traceless. Nevertheless,

the relevance of this exceptional case is probably marginal, as the coupling constants

1 1 —
[VuRa,B] = TagNyu + 5 (nang -+ Ehag) VH[R] + (

2n

satisfy a dimensionally dependent condition.

KQZO.

We have to assume then that k1 # 0, as otherwise all the terms (11.38)), (11.39) and
(11.40) vanish identically and thus there are no thin shells. Let us also recall that
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as and as are assumed not to vanish simultaneously, as that case was fully analysed
in [08, @99, 100], so it would be more precise to label this case as as = —4az with
ay # as.
This case reduces to the condition [R] = 0 (see (L1.97)). All the remaining jumps on
the curvature tensor and its derivatives are allowed. The energy-momentum tensor
on X is just given by

KTap = K1bhag, (11.104)

with b = n*[V,R], and therefore the thin shell ¥ only contains, at most, a “cosmo-

logical constant”-type of matter content.

Proper matching hypersurface

In addition to the requirement imposed in the previous case of thin shells, we demand
now that the full Taﬁ vanishes. Thus we have to add 7,3 = 0 to the conditions discussed
in the previous Subsection [11.7. In general, from ((11.99) we have

n®[Ths] = 0 (11.105)

which adopt exactly the same form as in GR and we call the generalized Israel conditions.
They imply the continuity of the normal components of the energy-momentum tensor
across .

Again, we have to distinguish two cases depending on whether x5 vanishes or not.

® IiQ?éO.

If (nky + k2) # 0, we already know from the previous section that [R] = 0 and
[Gas] = 0. The trace relation (11.98)) provides b = 0 and moreover 7,5 = 0 implies,
via (11.83), R.s = 0. Plugging this information into ([11.100) it follows that the

derivatives of the curvature tensors do not present discontinuities.

Result 2 In the generic case with 4as+ ay # 0 and 4az + (1 +n)as +4nay # 0, the
full set of matching conditions amount to those of GR (agreement of the first and
second fundamental forms on 3) plus the agreement of the Ricci tensor and its first

derivative on X:

[Rag] =0, [V, Res] = 0. (11.106)

This actually implies that the full Riemann tensor and its first derivatives have no

jumps across :
[Ragaa] = 0, [V Ragaul = 0.
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11. JUNCTION CONDITIONS IN QUADRATIC GRAVITY

With regard to the exceptional possibility ko +nk; = 0, the curvature tensors satisfy

(11.101) and (11.102). Now 7,3 = 0 provides

o5 = 5 (0 = DIR]Kas + blas)

and thus 7,5 = n?[V,R.p| gets determined in terms of [R] and b, so that (11.103))
for [V, Rap] reads
1

Vults] = (g (0= DIFIKo + os) = 20Tl + (4 13- FIRE ) s )

1—n

2n

b g (v s ) 0+ (52 ) 1) 4 o).

Hence, the entire set of discontinuities of the Riemann tensor and its first derivative
can be written just in terms of [R] and b = n?[V,R], which remain as two free
degrees of freedom. As mentioned before, this case is probably irrelevant due to its

defining condition depending on the dimension n.

e 1y =0 but xk; # 0.

From the results from the previous section we know that [R] = 0 and the energy
momentum on Y is given by (11.104]). Thus, for a proper matching we find b = 0.

The discontinuity in the derivative is

ViBasl = 1 (B K" nans — 297 [Ryalna + Ra)

+  VulRas] = 2K Ryaln),
where also RS = —K B[ Rags).

° /flan:O.

Or equivalently a1 = a3 = —as/4. In this case all the terms (11.38)), (11.39) and
(11.40f) and vanish identically and thus there are no further restrictions other
than [K,] = 0. The junction conditions are just the same as in GR. This is the case
where the quadratic part of the Lagrangian is the Gauss-Bonnet term [76].

The double layer fauna; pure double layers

The generic occurrence in quadratic gravity, as shown above, is that any thin shell comes
accompanied by a double layer, which in turn generically implies the existence of non-
zero external pressure/tension and external flux momentum. However, there are several

special possibilities in which one of these quantities, or all, disappear. This gives rise to a
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11.7. Matching hypersurfaces, thin shells and double layers

fauna of different kinds of double layers. There is also the possibility that the double layer
term is non-zero while the remaining distributional part in the energy-momentum
tensor, that is Tagéz, vanishes. In other words, a double layer without a classical thin
shell. We call such a case a pure double layer. In the rest of this section we explore this
novel possibility.

For pure double layers, the vanishing of the external pressure 7 plus the energy flux
7o first imply, by virtue of (11.39)) and ((11.86])

fap K =0, Vi1, = 0. (11.107)

In particular, then, the double layer strength is conserved.

The first equation in yields
(k1 + R2)[RIKI + 2k0 K7 [G o) = 0 (11.108)
while the second gives
(K1 + K2)Va[R] + 262V [Gpa] = 0. (11.109)
Equation (11.108]) combined with the vanishing of the trace of 7,5 provides
(kin 4+ Kk2)b =0 (11.110)

so that, generically — nk; + ko # 0 — one has b = 0. A first consequence is that the
jump in the derivative of the Ricci scalar is now tangent to > and fully determined by
the tangent derivative of [R]

[VaR] = V.[R]. (11.111)
The vanishing of 7,4, using (11.38)), is now equivalent to
KkoRap = @
2Rap = (k1 + #2) = Kas. (11.112)

The expression for the discontinuity of the normal derivative of the Ricci tensor has to be

studied depending on ks vanishing or not.

o Ky #0

The relations above allow us to write the discontinuity of the normal derivative of
the Ricci tensor as
1 1

Tag = 5 <1 + 2—2) ([R]Kag + ngva [R] + navg[R] — K[R]nang),

whereas the tangent part of the derivative keeps its original form given in ({11.65)).
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e ko =0 (and k1 # 0).
Equations (11.109)) and (11.112) read

VolR] =0, [R]Kus =0, (11.113)

and (11.108)) is automatically satisfied. Thus, (11.111]) implies [V, R] = 0. Observe
that since kg = 0, (|[11.44]) establishes that the strength of the double layer is pro-

portional to [R]. Hence, in order to have a nonzero fi,s, [R] cannot vanish. Then

K,p = 0 necessarily, and the allowed jumps are encoded in [Rag] and r,s.

For completeness, we provide finally the formulas for the exceptional case nk; +ro =0
—discarding k; = k9 = 0 for which the double layer simply disappears. The equations

7 =0, 7o = 0 and 7,5 = 0 result, respectively, in

(1=n)[RIK; —2nK*P[Gap) = 0,
(1 —n)V4[R] — 2nV’[G,e] = 0,
(1 —n)[R]Kap — bhog +2nRas = 0.
While the third equation provides R,g3, the first two constitute constraints on the allowed

jumps of the Ricci tensor that should be analysed in each particular situation. In all

cases, the allowed discontinuity in the derivative of the Ricci tensor can be written as

rag = _%((1 — )[R Ko — bhag) — 12_”" (nsValR] +naVs[R])
+% (b+ 1 — n[R]KS) nang.

Observe that now the strength of the double layer is traceless, pf = (see e.g.(11.45))).

11.8 Consequences

The proper matching conditions in GR are the agreement of the first and second funda-
mental forms on Y. Therefore, any matching hypersurface in GR satisfies , and the
allowed jumps in the energy-momentum tensor are equivalent to non-vanishing disconti-
nuities of the Ricci (and Riemann) tensor. Thus, in GR properly matched space-times
will generally have [R,z] # 0.

This simple known fact implies that any GR-solution containing a proper matching
hypersurface will contain a double layer and/or a thin shell at the matching hypersurface
if the true theory is quadratic. At least two relevant consequences follow from this fact:

(i) generically, matched solutions in GR are no longer solutions in quadratic theories;
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and (ii) if any quantum regimes require, excite or switch on quadratic terms in the La-
grangian density, then GR solutions modelling two regions with different matter contents
will develop thin shells and double layers on their interfaces. Let us elaborate.

Consider, for instance, the case of a perfect fluid matched to a vacuum in GR. As is

well known, the GR matching hypersurface is determined by the condition that
pGR|Z — O

where p©* is the isotropic pressure of the fluid in GR. It follows that the Ricci tensor has
a discontinuity of the following type

1
[Gag) = w0 Muqug|,, [Rap] = k0" (uauﬂ + nTQaﬂ)
¥

u® being the unit velocity vector of the perfect fluid. Therefore, using and
(11.43]) we see that the very same space-time has, in any quadratic theory of gravity, an
energy-momentum tensor distribution with all type of thin-shell and double-layer terms.

Imagine the situation of a collapsing perfect fluid (to form a black hole, say) with
vacuum exterior. Then one can use any of the known solutions in GR to describe this
situation —the reader may have in mind, for instance, the Oppenheimer-Snyder model.
The GR solution describes this process accurately in the initial and intermediate stages,
when the curvature of the space-time is moderate and the values of a;R?, agRaﬂRaﬁ
and agRagwR"‘B‘“’ for instance, or other similar quantities, are small enough to render
any quadratic terms in the Lagrangian totally negligible. However, as the collapse pro-
ceeds and one approaches the black hole regions —and later the classical singularity—,
regimes with very high curvatures are reached. Then, the quadratic terms coming from
any quantum corrections (be they from string theory counter-terms, or any other) to the
Einstein-Hilbert Lagrangian start to be important, and actually to dominate, the curva-
ture being enormous. In this regime, the original matching hypersurface becomes actually
a thin double layer.

Of course, the description of a global space-time via a matching is an approximation,
and also the use of tensor distributions is also just another approximation to a real situa-
tion where a gigantic quantity of matter can be concentrated around a very thin region of
the space-time. Nevertheless, both approximations are satisfactory in the sense that they
are believed to actually mimic a realistic situation where the layer is thick and the jumps
in the energy variables are extremely big, but finite. If this is the case, then the above
reasoning seems to imply that, if quadratic theories of gravity are correct, at least in some
extreme regimes, then a huge concentration of matter will develop around the interface
of the interior and the exterior of the collapsing star. And this huge concentration will

generically manifest as a shell with double-layer properties.
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Conclusions

Rotating stars

We have completed a study of the implicit assumptions and/or arguments in the con-
struction of Hartle’s model. The starting point was the use of explicit global coordinates
in which the perturbations are assumed to be at least C'!'. This leads also to the argu-
ment that the function that drives the first order perturbation depends only on the radial
coordinate and the second order admits a finite expansion in Legendre polynomials. Our

results can be enumerated as follows:

1. We have studied the use of global coordinates in which the metric is at least C': In
the original work [57], this assumption substituted the matching procedure based on
geometrical methods, not available at the time. We have used the perturbed match-
ing theory to second order [79], separating the problem into the interior/exterior
spacetimes and matching them in two stages: in a first step we have matched per-
turbatively to second order two stationary and axisymmetric spacetimes in purely
geometrical terms. In a second stage we have included the explicit assumptions and
the physics of the model. At this point we also assume the angular structure of the
perturbations argued in [57]. The description of the whole perturbed configuration

up to second order including interior, exterior and matching is collected in Theorem

Bl

2. We have concluded that the assumption of continuity of the metric functions, apart
from being inaccurate, leads to wrong results when E(a) # 0. In practical terms,
apart from putting Hartle’s model on firm grounds, we have found that the second
order function mq presents a discontinuity in the matching hypersurface ¥, deter-
mined by r = a, a satisfying P(a) = 0 with P the background pressure, when the
energy density of the background configuration presents a jump there, i.e. E(a) # 0,
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where FE is the background energy density. Since mg encodes the information about
the change in mass due to rotation, the computation of the mass has to be amended

whenever the equation of state allows E(a) # 0.

. We have performed a deep comparison between this consistent framework and Har-

tle’s results and methods. In particular we discuss how and when the matching

determines the deformation of the star.

We have verified that the amended change in mass has a correct Newtonian limit. To
this aim, we have checked that it agrees with the change in mass calculated following
the recipe in [23], where the amending term appears implicitly. For completeness,
we formulated the perturbed Newtonian matching conditions for the problem of a

fluid ball rotating in equilibrium.

. We have studied the structure of the angular behaviour of the perturbations. We

have proven how the field equations plus regularity conditions at the origin/infinity
and the boundary conditions provided by the matching procedure, yield the angular

structure of the perturbations argued in [57].

Chapter [§] concludes with the formulation of Theorem [7] that tells us how to construct

the global stationary axisymmetric rotating model up to second order by taking just

the explicit assumptions in Hartle’s classical model [57], i.e. an interior and exterior

stationary, axially and equatorially symmetric spacetimes, with a perfect fluid with a

barotropic equation of state that rotates rigidly with no convective motions as the interior

matter content, and an asymptotically flat vacuum exterior region.

In the following, we detail some of the work that would complete the results presented

in this thesis regarding the perturbational approach to rotating stars.

1. The explicit assumption of equatorial symmetry is still used to get rid of the [ =1
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sector of the perturbations to second order. This part must be studied separately

and has not been covered in this thesis.

. The purely geometrical perturbed matching can be used to generalize Hartle’s model

to other contexts such as other theories of gravity for which Hartle’s model has been
generalised already in the literature, to find corresponding corrections to the mass

(see the Introduction).

. A multilayer interior is needed in order to construct a realistic models. A direct

generalization of the results in this thesis provides the theoretical tools to let the

energy density jump in the transition from one layer to another. We started to



develop a numerical code to check for the change in mass in stars with a core showing
a discontinuity in the energy density with the enveloping layer, for instance a core
governed by a linear equation of state. Some work regarding multilayer interiors in

a perturbative setting has already been done in [45].

4. The mass of rotating stars is central to the study of stability. It would be interesting

to see how the amended change in mass contributes to the stability limits.

On quadratic gravity and double layers

We have applied distribution theory to study the junction conditions in theories of quadratic

gravity. The two main results arising from this work are

1. We have found the junction conditions and generalized Israel equations for sources

localized in a hypersurface .

2. The junction conditions imply the existence of double layers in the matching hyper-

surface, in general.

3. In the abscence of double layers, the generalized Israel equations are identical to the
Israel equations derived in GR. Note however that the junction conditions differ, in

general, from those in GR.
In the view of these conclusions, the two open lines of work follow

1. We have formulated the matching conditions for quadratic theories of gravity, but
due to the intrincate form of their field equations, we have not constructed any
explicit model. In order to understand the role of the double layers, finding a

physically reasonable explicit model where they show up would be of great interest.

2. The Gauss-Bonnet theory escapes our analysis of quadratic theories of gravity and in
fact, it should escape any other work up to date. As seen from the naive study of the
0?2 cancellations, GB seems to get rid of these type of terms without any necessity of
restricting the jump in the second fundamental form. A study based on structures
more general than standard distributions is necessary to properly formulate the
junction conditions for Gauss Bonnet theories, and prove that the outcomes of the

cancellation of the 2 terms argued in the literature are indeed correct.
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Useful formulas

In this appendix we include a collection of formulas that are useful in order to carry out the
calculations of Chapter [11] We divide it in four sections. The first one, [A.1] is devoted to
introduce the intrinsic connection and curvature tensors of ¥ (this is timelike everywhere).
The ambient curvature at points of the embdedded ¥ and the intrinsic curvature of ¥ are
related in terms of the well known Gauss Codazzi equations. In Section [A.2] we address
the formulas needed to compute the jump discontinuities of tensors with well defined
limits at points of the embdedded Y. We work out the case of jumps of product of tensors
and jumps of derivatives of tensors. In Section we give a general formula for the
derivative of tensor distributions proportional to the Dirac delta. We end the appendix
showing in that the Ricci identity holds for tensor distributions associated to tensor

fields continuous at Y. Furthermore, we also discuss the Ricci identity for the 6.

A.1 Concerning > and its objects

Consider a hypersurface (X, hqp) embedded in a n+1-dimensional spacetime (V, gag). We
will later use this construction for the + and — sides. Using the dual bases {n*, e#} and
{nu, wi} introduced in Chapter , we have

ehVoey = —Kgn® + fzbeg‘, (A1)
e’V wt = —Kin, — fzcwg, (A.2)
eZVpna = Kabwg (A3)

where K, is the second fundamental form introduced in (2.57) and
T, = WiehV e
represent the Christoffel symbols of the Levi-Civita connection associated to the first

fundamental form h,;, of 3. In general —unless the jump of the second fundamental form
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vanishes— there will be two versions, one + and one — of all these equations except for

the last one, the connection, which is uniquely defined given that the first fundamental

form agrees on both sides (2.2)) or (2.4)).

The covariant derivative defined by I is denoted by V. The relationship between V
and V on ¥ is ruled by the following formula (given here for a (1,1)-tensor field S?, but

generalizable in the obvious way to arbitrary ranks [82])
whep etV 50 = V.S, + (engnp)Kg + (waSpn’) Ka, (A4)
where, for any tensor field S, we denote by S its projection to X:
S, = wgefsg. (A.5)
The equivalent “space-time” version of is
ARG GV oS8 = VoS5 + (h5 Sn,) K + (h3.Sgn’) Kos, (A.6)

where S} is the spacetime version of Sy, i.e. Sy := wie)S, = hlhf S§.
. —d . . .
Denoting by R,,. the Riemann tensor of (X, hep), the classical Gauss equation reads
(2.66])

Wingéegez g = }_%Zbc - KGCKZ? + Kang7 <A7)

whose contractions are
eqel Roy — no‘nVRaﬁmgeaﬁei = R, — KjKac + Kabe, (A.8)
R—2n°n"Ros = R—(K%?+ KuK® (A.9)

where R,. and R denote the Ricci tensor and scalar curvature of (3, hgp).
Similarly, the classical Codazzi equation reads ([2.67))

TLNRZIB,YGgGEGZ = chba - vaca (Al())
with contraction
n*Roe] = V Ki — VK4, (A.11)

As mentioned before, generically there will be two versions of each of the previous

equations, one for each + side of the embdedded » if this is a matching hypersurface.

Thus, for instance (and using space-time notation), (A.9) and (A.11)) must have the two

versions:

R* = 2R n'n" = R— (K**,)* + K, K*", (A.12)
n'REN, =V"K, —V,K*,. (A.13)
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On the other hand, equation (A.4)) at points of the matching hypersurface (3, hgyp) of the
already glued spacetime V = VT UV~ reads

WIS REN 885 = Vo Sy + (R Shny) K¥7 + (R1S9n) K3, (A.14)

where here we use hV|y just to make explicit that AV is being restricted to points at
the matching hypersurface ¥ using the connection given by , whose restriction to
% is (2.31). Note that whenever both second fundamental forms coincide [K,5] = 0 on a
matching hypersurface ¥, equation (A.14]) reads just as .

A.2 Discontinuities

In the computations we need the discontinuities of objects, such as functions and tensor
fields, across . This also implies that we need to control such discontinuities for the
derivatives of those objects, and for their products. Here we provide the general rules.

Let A and B be any two functions possibly discontinuous across . Then
[AB] = A"BT|xs—A "B |y = A" BT|s—A"B |+ ATB |s—A B |s = AT|s[B]+]|A|B " |s

and an equivalent expression interchanging A <> B. Adding these two expressions and

using ([2.23) we get
[AB] = A*[B] + [A] B*. (A.15)

Concerning derivatives, let us start with any function f that may be discontinuous

across . If we compute the tangent derivatives on both sides of ¥ we obtain
[0, f) = (680, ) = elDuf* |5 — elDuf |5 = Buf *ls — Buf s = Dulf] = e, 1f]
and thus, by orthogonal decomposition,
0] = Fny + wickd,lf) = Fr, + h,f) (A.16)

where F' is a function defined only on ¥ that measures the discontinuity of the normal
derivatives of f across X:
F:=n"[0,f].

Consider now the case of a one-form t,, again possibly discontinuous across 3. A

direct computation using (A.16|) and (A.15]) produces

el [Vuta] = € [Outa — t, 00, ] = €l (9, [ta] — [t IT00)—t> [0, ] €t = eV, [ta] =t [0, ] €.
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Let us remark that the derivative Vz is restricted to points on >, so that the connection
(2.31)) must be used. Therefore

[Vuta] = n,To + BV, [ta] — £ [T6,] B2, (A.17)

o

where T, is a one-form defined only on X giving the discontinuity of the normal derivatives
of t,, across X,
T, :=nt [V”ta] ,

and the tangential derivative hV is restricted to X, although it is not explicitly indicated
not to overwhelm the expressions. The righthand side of (A.17]) can be further computed.
First, due to (A.14))

WVt = Vilta] + nP[t,) K0 + nan”hiV, [t

= Vulta] + 0’ [t Ko + 10V ([to]n”) — nalt’] K,

while, for the last summand in ((A.17) we use ([2.38]) and (2.59))
—t D0 ] bl = P [K o] — nat) [KL).

Introducing both results into (A.17) we get

[Viuta] = nuTo + V,ulta] + np[tp]KEa + 10 (Vi ([tpIn”) - [tp]KpEu) + tfnp[Kua] - nat? (K]

=1, To + Vlta] + 0Pt K] + 16 (V. ([t]07) — [t K1) . (A.18)

Observe that when there is no jump of the second fundamental form, [K,s5] = 0 (< [I%,] =
0), equations (A.17) and (A.18)) read, respectively,

[Vutal = 1,10 + BV, [ta], (A.19)
[Vuta] = n,To + vum + 0[] Ko + N (vu ([tpIn") — [tp]Kpu) . (A.20)

These formulas can be generalized to arbitrary (p, q)-tensor fields TP in an obvious way.
In that case, the term replacing T, is simply a tensor field of the same type (and with
the same symmetry and trace properties) as 77, defined only on ¥ and measuring the

discontinuities of the normal derivatives of Tg’ .

A.3 Derivatives of tensor distributions proportional
to &>

Let us consider tensor distributions of type

tar.ay0
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where t, .o, is any tensor field defined at least on X, but not necessarily off ¥ (for instance
hy, or n, are not defined outside ¥). We want to compute the covariant derivative of

such tensor distributions. Then we have

<V)‘ (to‘l---apéz) 7Y>\0‘1---04p> == <toé1-..ap527 v/\YV)\OH.“O{]D> - <527 ta1...apv)\Y>\al"'ap>

— —/taln_apv/\y)\oq-..omdv — _/ta1...ap(n)\np + hﬁ)vpy)\oq...apdv.
> by

The first summand here is
_ <tmmapn>\np(§27 VPY/\a1...ap> — <Vp (tal...apn/\npéz) ’YAal...ap>

while the second one has derivatives tangent to > and thus

— / taray BV, Y A2 dy = — / PV p(tay..apy Y 207 ) d + / YA ROty dV
b b by

and using (A.6) for the first integral here

— _/v)\(tal...oépy)\al-..ap)dv_/szp n)\taL‘.apY)\almapd/U—'_/Y/\almaphf\vptalmapdv
2 = .

— <(h§vpta1,,.ap — szp n)\tcn...ap) 5E7yz\a1...ap>

where we have used that, as Y**% has compact support, the first total divergence term

integrates to zero. Summing up, we have the following basic formula
Vi (tar..a,6”) = V, (tay..a,man?07) + (BV play..a, — Ky nrtay..a,) 67 (A.21)
In particular, for the second derivative of § one gets

V.V, =V, (n,67) = V,(n,n,n6") + (K, — K™ ,nun,) 6~ (A.22)

Let us do a remark here. Formula (2.25), or (2.27)), is precisely the formula one would

derive by using a naif calculation starting from ([2.24)), applying Leibniz rule and using
. However, such approach cannot be used when the tensor distribution to be differ-
entiated involves non-tensorial distributions, such as 6~. For instance, the computation
of the second covariant derivative of 6 starting from with such approach provides

V., V.0V, n,6" +n,V,56"

Neither term on the righthand side is well defined due the the fact that n, exists only
on Y and therefore its derivatives non-tangent to ¥ are not defined at all. Nevertheless,
V.,V ,0 is certainly well defined as a distribution, and one can see from the formula (A.22]),

obtained by following strictly the rules of tensor-distribution derivation and multiplication.
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A.4 Ricci and Bianchi identities

The Bianchi identity holds in the distributional sense, for a proof consult [82]:

VR, s+ VoRos + VR, =0. (A.23)

afvp aBup afpv

Concerning the Ricci identity, let us consider a one-form which may have a discon-
tinuity across X. It can be written as 1-covariant tensor and as a one-form distribution
as

ta =10 +1,(1-0);  t,=ti0+1,(1-0)
To compute the derivatives, we need to take ¢, as a distribution. Then, from (2.27) we
first have
Vita = Vitg + Vit (1= 0) + [ta]n,6”
and applying (2.27) to the first part not proportional to §* we derive

ViaVut, = VoVl 0 + VaV,ut, (1= 0) + [Vuta]nad™ + Vi ([ta]n.s”) . (A.24)
Formula gives the last term here
Vi ([ta]nud™) =V, ([talnunan®™) + (n, 5V o [ta] + [tal Kay — K75 nalta]n,) 67,
Introducing into and using this last result we arrive at

(VaV, =V, Vat, = (VaV, =V, Va)tg 0+ (VaV, =V, Vi)t (L -0)
—t; (na[[a] = nu[04,]) 6

and using here the Bianchi identity on both + regions and expression we finally
get

(VaV, =V, V)i, = —t,,E‘;M. (A.25)
Of course, this can be extended to tensor fields of any (p, ¢) type which may have discon-
tinuities across 2.

What about the Ricci identity for tensor distributions not associated to tensor fields?
The answer now is much more involved, and it must be treated case by case, because
taking covariant derivatives presents several problems. As an illustrative example, let us
analyze the case of the second covariant derivative of 6~. For the first derivative we have
from ({A.21)

V™ =V, (nm?6>) — K, ’n,6” (A.26)

so that defining a one-form distribution A, with support on ¥ as follows

(A, YH) = — / n,n’V Y dv; A, =V, (nm5) (A.27)
s
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we can also write
s _ Yp 5%
V0= =A, Kp 7,07,

Note, however, that A,, and therefore V,0* too, is only well defined when acting on
test vector fields whose covariant derivative is locally integrable on . Thus, the second
covariant derivative of 6> is not defined in the general case with a discontinuous connection
[',- To see this, observe that to define V AV 0% we need to define VA, but this should
be according to Definition [ in Chapter

(VAL YY) = — (A, VY M) (A.28)

and this is ill-defined because V,Y** does not have a locally integrable covariant derivative
in the sense of functions: actually, its covariant derivative can only be defined in the sense
of distributions.

Nevertheless, if the connection is continuous, that is, [I'},] = 0, then makes
perfect sense because the covariant derivative V,V,Y* is a locally integrable tensor field.

Thus, in this case we can write
(VAA, Y ) = / n,n’V VY Mdv (A.29)
)

and we can prove the Ricci identity for distributions such as §*. To that end, a straight-
forward if somewhat lengthy calculation, using the Ricci identity under the integral and

the rest of techniques hitherto explained, leads to the following explicit expression:
VaV,.0" = V,V,(nmnn’6”) + V,{(Ky, — Kinan,)n’6>} +
SH{KI(Knan, — Ky,) +nPn Ry, + KS Ky, 4+ nan, K77 K o } +
§"n, {V,K§ — VAK! — R}

where all the summands are obviously symmetric in (Au) except for those in the last line
which, by virtue of the contracted Codazzi relation (A.13)), become simply n”n? R> nan, 6>,

e

so that finally one arrives at the desired result

VAV, — V, V6% = 0.
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Potential problems with Gaussian coordinates

In the literature on junction conditions [44] or in general when dealing with braneworlds,
it is customary to simplify the difficulties of dealing with tensor distributions by using
Gaussian coordinates based on the matching hypersurface and a classical Dirac delta
“function”. This leads to some subtleties very often ignored and, in fact, to unsolvable
problems if one is to describe gravitational double layers. In this Appendix we clarify
this situation and provide a useful translation between the rigorous and the simplified
methods. Choose local Gaussian coordinates {y, u®} based on the matching hypersurface
> given by
X {y=0}

so that the metric reads locally around X as
ds® = dy? + gap(y, u®)dada’.

We can identify the local coordinates of ¥ as £* = u®, or in other words, the parametric
representation of > and the tangent vector fields e, are simply

0

= a .
ou|,_

{y = 07 /u’a - 5“}7 ga

The unit normal is in this case
n = dy|y—o
and the first fundamental form (2.4)) becomes simply
hab = gab(07 uc>-

In what follows, h denotes the determinant of h,,. The two regions matched are repre-
sented by y > 0 and by y < 0. A trivial calculation proves that the second fundamental

forms inherited from both sides are

Kji = yli%li Oy Gab = (K| = [8y9ab] ‘y=0'
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B. POTENTIAL PROBLEMS WITH (GAUSSIAN COORDINATES

In these coordinates, the 3-step function (2.17)) can be easily identified with the stan-

dard Heaviside step function 6(y). Thus, its covariant derivative is easily computed

where §(y) is the Dirac delta “function”. This can be immediately put in correspondence
with (2.20]) in such a way that, in this coordinate system

6% < 0(y) .
Now, if we multiply d(y) by any function then
Fé(y) = Fl,=06(y) <> F6* = F|s6>.

Observe, however, that a first subtlety arises: when we apply d(y) to any test function

Y (z#), we do not simply get Y|y:0, but we also need to integrate on ¥, that is
6. Y) = [ V(=0T
y=0

This corresponds to (2.19)), after the identification do = v/—hdu'...du".
The discontinuity of the connection ([2.38) together with (2.59) can be expressed by
giving the non-zero jumps of the Christoffel symbols

[Co] = —[Ka], [T, = K]

and similarly (2.61]), (2.62)) and (2.64) read (only the non-zero components are shown)

Hyayb = _[Kab]7 Hyy = _[Kc]; Hab = _[Kab]7 gab = _[Kab] + [ch]hab

[

so that, for instance, the Einstein tensor tangent components acquire a term proportional
to d(y) given by G (y).

If one needs to compute covariant derivatives of the curvature tensors, or the Einstein
tensor, as distributions, one must deal with terms such as, say, V,(Gud(y)). Eventually

one would face the computation of V,d(y). One might naively write

Vi(y)=d'(y)dy

where ¢'(y) is “the derivative” of the Dirac delta. This is clearly ill-defined, because
one does not know how such a ¢’(y) should act on test functions (as minus the integral
on ¥ of the y-derivative of the test function?). But worse, even if one could find a

proper definition of such a ¢'(y), still the formula would miss the second essential term
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appearing in (A.26)) which is proportional to 6> and depends on the extrinsic properties
of the matching hypersurface via the trace of its second fundamental form.
In order to show how to proceed if one insists in using Gaussian coordinates, the

computation of V§(y) must go as follows (here g stands for the determinant of g,z)

S
<
=g

—~

y),?> = —(5(y),V,.Y") = — / . VY —hd"u

i — [ g (/v
[T [ LTy

—— / (ayyuaayuw = a“\/—h> V—hd"u
y=0

V—h
= —/ 9,Y"Y + Lhaa(\/—hya) + Yy;(?y\/—h) V—hd"u
y=0 -
= — / (0,YY + YYK™%) V/—hd"u.
y=0

V=h V=h

In the last step we have used Gauss’ theorem. This formula corresponds to (A.26)).
Observe the fact that the extrinsic curvature K, is not necessarily equal as computed
from either side of y = 0 and therefore it is not univocally defined. Hence, a definite

prescription of what is its value on X, that is K, must be provided.

ab’
The above subtleties and difficulties when using Gaussian coordinates are probably the
reasons why double layers were not found in quadratic F'(R) or other quadratic theories

until they were derived in [98], 99, [100].
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Compatibility integrals

We devote this Appendix to include the treatment of the interior problem using the
perturbative framework constructed in [77] for the compatibility of interior problems
with the existence of asymptotically flat vacuum exteriors. As we show next, this is an
alternative way of showing the discontinuity of the function my.

The compatibility of the interior problems is formulated as a set of integrals on the
interior surface X7 in terms of the metric (and perturbation tensor) functions written in
Weyl coordinates (and in the Weyl gauge). We first include a brief review of the procedure
in [77].

C.1 The framework: formulation of the

compatibility conditions

Perturbative approach

Consider the exterior (£) family of vacuum spacetimes in Weyl coordinates {t, ¢, p, 2},
which are adapted to the stationary and axial Killing vector fields 5 = 0y and 17 = 0,.
Choose the points of the diffeomorphic spacetimes to be identified using the Weyl gauge

(i.e. for equal values of the Weyl coordinates). The family of tensors ¢g. on V thus reads
gf = —U(dt + Acdp)? + eV (e2F (dp? + d2?) + pPdp?), (C.1)

where U., A. and k. are functions smooth in p, z and e.

'We use initially E/I instead of +/— to refer to the exterior and interior in this Appendix to prevent
any possible confussion with previous notation and the use of other sets of coordinates and gauges (Weyl
or otherwise).
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C. COMPATIBILITY INTEGRALS

The functions in (C.1)) (except k.) are defined intrinsically in terms of the correspond-
ing timelike and axial Killing vectors as follows

GQUE _ _(g; 5)%7 AE _ ( 5 )gs. (CQ)

(€, €)s.

1

=Sy

l

ml

Furthermore, p > 0 in (C.1)) a scalar, given by

— —

PP = —(€,€) 0 (7.1 + (€12 (C.3)

The vacuum field equations imply the existence (globally once the exterior is simply

connected) of the so called twist potential that satisfies
dQ. = % (§ N dE) (C4)

where *. is the Hodge dual with respect to g., which related to A by

dA. = pe V= x dQQ., (C.5)
where now * denotes the Hodge dual on the {p,z} 2-plane defined by dz = — x dp
(x* = —1). In terms of the potentials U and Q the vacuum field equations reduce to the
Ernst equations [103]

1
AU + 56_4U5(d§25, dQ.), =0, AQ. —4(dQ.,dU.), =0, (C.6)

for the metric v = dp? + dz? + p?dp?, and k. is found by quadratures
kz—:up = p[Uz-:ai _UE?z] , k€72 - 2pUsaz Usyp .

The boundary, together with the boundary conditions, that supplement the Ernst
equations are put together as follows. Following the construction detailed in Chapter
, consider now the family of stationary and hypersurfaces 3F projected onto (V¥, g¥).
Using the Weyl gauge we specify XF : {t = 7, p = p.(u), 2 = 2.(n), ¢ = ¢}, where {7, i1, ¢}
are the chosen coordinates on g [77].

Next, take another family of surfaces S. in the Euclidean space in cylindrical coor-
dinates (E3,7), where v = dp? + dz* + p*dp?. For each e, S. is axially symmetric and
compact and it is given by S. = {p = p(1), 2 = 2c(u), = ¢}, with p.(u) and z.(u) be-
ing the functions that determine . The only two points {uy, is}, the north and south
poles of the configuration respectively, where the surface intersects the axis of symmetry
are pe(un) = pe(ps) = 0. At these points, define zy := z.(un) and zg 1= z.(us).

The Ernst equations for each ¢ live in the domain D,, with D, C E? being the exterior

region of S, endowed with the flat metric v. The boundary data on S. comes from the

210



C.1. The framework: formulation of the compatibility conditions

matching on ¥ with some given interior, that provides values of the functions and their
normal derivatives. The boundary conditions are completed with the asymptotic values
U. — 1 and Q. — 0. We are thus dealing with an elliptic system complemented with
Cauchy boundary data. This is an overdetermined problem and we should not expect
solutions to exist for arbitrary data. That expresses the fact that given an arbitrary
stationary and axially symmetric interior metric (even if it is perfect fluid, say), there will
in general be no stationary and axially symmetric vacuum exterior solution matching with
it and also asymptotically flat. The problem we face, then, is the existence for the exterior
problem. After finding the perturbed matching and field equations at first and second
order, the (necessary and sufficient) conditions on the boundary data for the existence of
solutions for the exterior problem at first and second order are obtained. Those conditions

on the boundary data will become conditions on the quantities for the interior problem.

Perturbed Ernst equations

The perturbations of the potentials at each order are written as

2
£
Uelp,2) = Ulp,2)+eUN(p2) + U (p,2) + O(?)

2
g
Qulp,2) = Qlp,2) +e2W(p,2) + 2% (p,2) + O,

and equivalently for A.(p, z), where here and in the following we will be using the notation
introduced in Chapter [3, which, note, differs to that used in [77].

The exterior static background metric in Weyl coordinates reads
g" = —e*Vdt* + eV [ (dp® + d2°) + pPde?] (C.7)

where the function U(p, z) satisfies for e = 0, i.e. the Laplace equation AU = 0.
Recall we try to avoid the use of 0 subindexes to refer to background quantities. The
domain corresponds to Dy := D._g, whose boundary is thus given by Sy = {p = po(p), 2z =
z20(p), 0 = ¢} .

Let us stress the fact that the background configuration does not have to be spherically
symmetric necessarily. Although we are interested in a spherically symmetric background,
we briefly describe in the following the general framework for completeness.

Following the definition given for the perturbation tensors (up to second order), in the

211



C. COMPATIBILITY INTEGRALS

Weyl gauge take they the form

KPP = —2[Y(UWadt* + AVdtdyp)

+e 2 (UD p2dg? — & (KW — UW) (dp? + d=?))] (C.8)
KP — —2c% <U(2) n 2U(1)2> dt* — 2e2V (AP 4+ 440U W) dtdy

_9 |:€2UA(1)2 + e*ZUp2 (U(Z) _ 2U(1)2>} dp?

e g2k [k:(?) — U@ 12 (kD - U(l)ﬂ (dp® + d2?) . (C.9)

The Ernst equations at each order are then the derivatives of (C.6]) with respect to
at € = 0 defined on the background space (D, 7). The equations for {UM, QW] read

A UW =0,
fp W (C.10)
AQW —4(dQW, dU) =0,
ol
while for {U®), Q®)} are
AU 47U (doW doW) =o,
! e ) (C.11)

,
AP — 40P, aU) — 8 (aQW,duW) =o.

It must be stressed that the information about the deformation of X§, will be finally
encoded in terms of quantities defined precisely on Sy, i.e. p™(u), p® (1), 2 (1), 23 (1)
(see below), just as in the general theory of perturbed matchings the matching problem
is encoded in the background matching hypersurface, see Chapter
The equations for the twist potential contain extra terms out of the Laplacian operator
that can be absorbed using an alternative Laplacian operator in terms of the conformally
flat metric 7 = e~ 8Y:
AW =

0,
A:YQ(Q) - 8

(aQ®, dvW)._
’ ¥
Therefore all equations for UM, U®, QW QG can be collectively written as

where u = u(p, ) stands for U, UM, etc..., and J = J(p, z) represents the inhomogeneous
terms in the second order perturbation equations. The metric 4 corresponds to either -,

for the U-equations, or 7, for the 2-equations.
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C.1. The framework: formulation of the compatibility conditions

Boundary data

The boundary data for each of the perturbed Ernst equations is developed to second order.
Asymptotic flatness imposes lim,z; 2 0o U = limyey 2 0o Q1 = lime, 2,0 U® =
lim 24 2500 Q® = 0. On the other hand, given the interior at each order, the matching
conditions also provide the values of the functions and their normal derivatives evaluated
on the background matching hypersurface $¥, and thus on Sy as follows. First we have to
characterize the relevant functions for the perturbative matching from the stationary and
axisymmetric interior. Let be such an interior (W, g') given, matched already to (VE, %)
across static and axially symmetric hypersurfaces X = 2. Take a stationary and the
axial Killing vectors in (W1, g), 5 I'and 77! respectively, together with a family of tensors

gl invariant under such isometries, and compute the functions V., W, and a. > 0 by

(C.13)
These three functions carry all the necessary (and sufficient) information for the present
problem regarding the interior geometry [109]. Let also a family :! be given on (V!, g7),
and thus their (low of) normals 7, and assume that they match with their corresponding
YE through common coordinates {7, u, ¢} in 3y. Assume finally that 7! point to the
interior of (V!,gl) and have the same norm as 9, in %o, i.e. (9y,0u)n.(= (€ €),p for
€ = p:0, + 2:0,). Then, the functions p.(1) and 2.(u) that determine XF are given by
7]

1

so(p) = 20+ ez + 55273(2) +0(e%) = —il(ae)|s (C.14)
1

pe(t) = po+ep!V) + 5@ + O(e") = ey (C.15)

It is convenient to define the following functions in order to achieve compact expressions
for the boundary data.
_ popt) + Zz(V

_ poz(l) — Zop(l) _ pop(2) + 202(2)

Py : ; ) 1 ; ; ) Py : : )
R PR R
z Z 2 Z + 202
O Vi PO Rk V. O .V Bk T RICR T
Py + % Py + 25 Py + %o

where we are using the dot "to denote differentiation with respect to pu.

Also, consider the following functions constructed by the inner products of the axial
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C. COMPATIBILITY INTEGRALS

and stationary Killing vectors together with their normal and tangent derivatives to ! E|

1 1 o o
Vo= VeV 4 2eV@ 1 0() = Slog (—(€7,60,)|
2 2 ) st
1 =T "I7 2l
iV, = AV +enVh 4 ~2av® 4 0(?) = M , (C.17)
. . T T2 STzl
WE — €W(1) + l62w(2) + O(€3> _ (5 75 )gt{ ﬁEI (_) 771 )gg 7
2 Q. ( Ia€[>gg o
1 é?’f,gl 2 —'17 7
AW, = et ® 4 —2AW® + O(s%) = (€805 d (i)
2 o, du ( 1751)9g o

All the objects introduced in this section allow us to construct the functions V' (), V1 (p),
V() @V (), AV (), 7V (), WO (), W (), AW D (), AW (1) on So, explic-
itly once g/ and ! are given. Note that since the interior background is assumed to
be static, there are no W(u) nor W (u) terms. In order to avoid confusion with the
notation, let us stress that 7V, AV ... do not denote normal derivatives of V, V(1) .
but functions constructed following .

Let us also stress the fact here that we have shown the obtaining of the above functions
in terms of a given family 3!, and therefore, a flow of normals 7. That may not be the
most convenient way, and one can, in fact, consider only the background :f and the
deformation vectors 21 /2, through the “unknowns” P, @i, P and () —from which the
e-derivatives at ¢ = 0 of 7i! can be obtained, see [T7]-, and construct the above quantities
in terms of this information. Since the “flow” version will suit our needs, which is to
compare to the original perturbative approach in [57], we do not discuss this further.

Proposition IV.1 in [77] then states that g/ and ¢g® = ¢¥ + eK{ + 1?K¥ match

perturbatively to second order on Zé/ P if and only if the following conditions are satisfied

5 ~ dv B
Ul = Vi i) =iV, Uy =V = A - Quiv,

) ) d [ dV\ d(PaV) podV
Wyy = Fp0 _dahA _
AU sy = AV (Ql d#) T (Po du~ po ) ’

dv )

Uy = V2R T d(2PiV)

dp

; d v
—2QuiV Y + i ((Pf - Q1) @) +

0\ dV

+ <—P2 + PIXy +2PiQ1 Xo — Q1 X, — Q%@) -

po/ dp

+ <—Q2 — PP Xy +2PiQ1 X + Qi X + Q%?) nv,
0

2There is a typo in the sign of the last expression of equations (17) in [77]. The corrected expression
is given here.
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C.1. The framework: formulation of the compatibility conditions

0

d(P,aVM® ; €] ;
e ) PG LIS PV <p0 o ZOﬁV“))
dp po dp Po

d? dV d?
-5 (2P1Q1 ) (e -aav)

BUO)ge = 7V 2L (@1

d ; 301 dV
+@ { l@z + (P —Q3) Xo — 2P1Q1 —2PQ1 X, — leﬂ @}

g ;
+@ { {—P2 + (PP — Q%) X1+ 2P1Q1— +2P Q1 Xy — 2%} ﬁV}

0
( 0 X, — 2P1Q1—) (@ﬂ - @ﬁv)
Po po dp po
(2P1Q1X0 - on) (@ﬁv + — <0 dV)
P Po po dp

(1)|20E =W, ﬁ(Q(l)ﬂzg = aw®

(1) d (P, ®
7 (Q®)|gp = aW® +2— (Qldw )—2 (1;; )

1)
+2Qh K@ - 4ﬂ) w (ZO + 4nV) ﬁW(l)]
Po dp dp Po

In conclusion, this section has been devoted to find the boundary data for the Ernst

problems at each order on the surface Sy. For this, given an interior region, and given

also a prescribed deformation of the hypersurface, the steps to follow are

1. Take an explicit interior model with given background hypersurface ¥f and with the
three different products of the axial and stationary Killing vectors, together with
the perturbations of the hypersurface, together with their flow of normal vectors,
compute V., iV, Py, Q1,... (were not the deformation prescribed the functions P,
Q1, P2, @y would be left as unknowns).

2. With this quantities at hand, use Proposition IV.1 to build the boundary data for
the exterior problem.
Compatibility conditions

As mentioned, the above boundary conditions overdetermine the elliptic problems, and
therefore compatibility conditions for the boundary data arise in order to ensure exis-

tence. These compatibility conditions were found in [77] for general static and axially
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symmetric backgrounds, and, in particular and more explicitly, for spherically symmetric
backgrounds. For our purposes here we will only need to focus on this last particular case.
Nevertheless, for completeness and to keep a more compact presentation, we review the
conditions in the general case in this subsection.

In order to present the compatibility conditions, we need to define first some auxiliary
objects. The first ingredients needed are two auxiliary regular 4-harmonic functions on
Dy, one for each case 4 = « (U-problems) and 4 = 4 (Q-problems). They are defined
in [77] as functions on Dy that solve the Laplace equation Az = 0 on Dy, admit a
C! extension to 0Dy and decay at infinity in such a way that w\/m is a bounded
function on Dy. The relevant family of y-harmonic functions on Dy is

1
P+ (e =y

¢y(p’ Z) = Yy e (ZS’ZN)' <018>

The corresponding family for 4 is more involved. It requires first finding a function
solution of the PDE

dZy = (2 — y)¢y(p, 2) AU + piby(p, 2) *dU, (C.19)

with boundary condition lim2,.2 o Z, = 0. Z, can be explicitly integrated when the
background is spherically symmetric (see below). The appropriate regular 4-harmonic
family of functions is [77]

p2U—22,

U, (p,2) = o p— y € (25, 2n)- (C.20)

The remaining auxiliary objects are vector fields, denoted by 77 and T, related again to
v and 4 respectively, in order to absorb the inhomogeneous terms in (C.12) into surface
integrals by using Gauss’ identity. These vector fields are formulated, in turn, in terms of

three functions S, Sy and Zzsl) that vanish at infinity and are solutions of the PDE’s

dS1 = e 2% [~ (1+ (2 — y),) QY — ph, x dQW]

(C.21)
dS, = eV [(1 — (2 —y)Yy) do® — Py *dQ(l)} )
dZV = (2 =), dUY + pyp, xdUW. (C.22)
In terms of those functions, the vectors T and 15 take the form
T, = L8 «dS (C.23)
1 = 2p 1 25 .
_ 4 4
T, = psg*d(zy +UW). (C.24)
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C.1. The framework: formulation of the compatibility conditions

The existence and uniqueness of the solutions to the previous PDE’s is proven in [77].

Given all the definitions introduced in this section, we can quote Theorem V.2 in [77]:

Theorem 8 Let fy, f1 be continuous axially symmetric functions on ¥y. Then,

(1) the Cauchy boundary value problem
A UW =0, UW sy = fo, i (UMY s, = fi,

admits a regular solution on Dy if and only if

HUN
/ Wy Ji—Jo ﬁ(l/’y)] p0|20 dp =0, Vy € (ZS, ZN)7
"

S

(i1) the Cauchy boundary value problem
AVQ(U _4 (dQ(1)7 dU)W =0, Q(U’EO = fo, i (Q(l)) 5o = f1,

admits a regular solution on Dy if and only if

N
[ h = o) e da =0, V€ (as, 2v),
I

S

(i1i) the Cauchy boundary value problem
AU 4 eV (a0, dV) =0, UPy, = fo, A (UP)]s, = fi,

admits a reqular solution on Dy if and only if

UN
/ [wy fl - fO ﬁ(wy) - Tl (ﬁ)] pU’ZO d:u = 07 vy € (257 ZN)? (C25)

S

and (iv) the Cauchy boundary value problem
A0 —8 (W, W) —4(d2?,dU) =0,  QP|5 =fo, A (QP) 5 = fi,

admits a reqular solution on Dqy if and only if

/uN [(\ij fl - fO ﬁ(‘;[j?)) 674U - T2 (ﬁ>] pO‘EO d:u = 07 \V/y € (’ZS? ZN)?

Hs

where ¥y, U, Ty and Ty are given in (C.18), (C.20), (C.25) and respectively.

Let us remark that since the above integrals depend on the parameter y € (zg, zx), each

one gives an infinite set of conditions.
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Spherically symmetric background

The background exterior corresponds to the Schwarzschild exterior geometry. In the usual

spherical coordinates this reads

r r

2 om\ "
ds?2 = — (1 _ _m) dt® + (1 _ _m) dr? + r? (dﬁ2 + SiIlQ@ngz) ,

These coordinates are related to the Weyl coordinates by

p:rsin9\/1—2—m, z=(r —m)cosb. (C.26)
r

From the definitions of the potentials we get

2m

U= %log <1 — —> , Q2 =0. (C.27)

r

Several of the Ernst equations of the perturbed exterior problem can be explicitly solved.
In these cases, one can use the explicit solutions and their corresponding tangent/normal
derivatives to find restrictions on the boundary data, instead of working with the com-
patibility conditions in integral form.

In particular, Q) can be solved using an expansion in Legendre polynomials Q) =

>0 wl(l)(l“)Pz(COS 6), where
.
-
T

is a convenient redefinition of the radial coordinate. The Ernst equation ((C.10)) is trans-
formed to the Jacobi equation of type {—2,2}.

(1-2?) wl) —2(@—2)wl) +1(+ 1w =0. (C.28)

The solutions are the Jacobi polynomials Pl(_Q’Q)(x) plus another family of functions reg-
ular at infinity, which in terms of the associated Legendre functions of the second kind
reads

1 (1—2x)

Fulw) = I+ +2) (1+x)Q12(‘”)' (C.29)

The full solution for the perturbed twist to first order is thus,

Q) = i d, P,(cos 0)F(x). (C.30)

1=0
Given ((C.27)), the function Z, (C.19) is found to be [77]

yr — mcosf — \/m2x2 + 2 — 2may cos ) — m?sin® 0

e % =

PR , (C.31)
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so that v, together with W, can be finally written as [77]

1
% = —5
Vm2a? 4+ y2 — 2may cos  — m? sin” 0
2
<y:v —mcost — \/m2x2 + y2 — 2may cos  — m?2 sin® 6)
v

(y —m) (x + 1) \/m2x2 + % — 2may cos§ — m2 sin? 0

This case of a spherically symmetric background is particularly useful when studying, for

example, perturbations of fluid balls.

C.2 Application to Hartle’s model

In this section we apply the framework introduced in the previous section to the original
Hartle’s model. We consider Hartle’s interior configuration describing a rigidly rotating
perfect fluid without convective motions and with a barotropic EOS. This spacetime with
boundary is considered as a candidate to be matched to an Ernst vacuum considered in
the previous section. To elucidate under what circumstances these spacetimes can be
matched (or not), the boundary data for the Ernst problem is constructed follow-
ing proposition IV.1 in [77] and compatibility conditions are evaluated in order to find
restrictions on the interior configuration.

We take the family g/ to be initially in the k-gauge. The background metric
reads and the perturbation tensors are , . The projected boundaries !
are taken to have the parametric form

S dt=1,0=0¢,r=a+*¢"(a,9),0 =71 — p =9},

so that ! is the sphere at r = a. The function £(a,¥) therefore describes the deformation
in this gauge setting (in the k-gauge). For convenience, let us go now to the surface gauge,
using Sy = &(r,0)d, for some function &(r,0) that extends £(a, ). In this new gauge the
second order perturbation tensor Ks reads as with, recall ky = 0, C' = 0 and
Y =&(r,0), and X! just read

S lt=ro=¢r=a,0=1—p=9}

In the following, we will use ¥ as the polar angular coordinate of ¥!. Thence, in all the

[AaM]

equations of the previous section [C.1], the dot derivative is equivalent to —dy. Finally,

to use the previous results (and those in [77]), it is convenient to perform the change
r=M(x+1),
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and use a = M (z + 1). The background matching hypersurface therefore fixes

po(¥) = /22 — 1M sin ¥, 20(¥) = 2o M cos ¥, = —\/ 23— 10,. (C.32)

The explicit assumptions of the original model (equatorial symmetry and invariance
under the change {t — —t,¢ — —p} so that the perutbation is driven by a rotation)
imply that at first order UM = 0, and that Q) = 0 at second order.

Since we are interested only at obtaining the discontinuity of mg we skip the analysis of
the first order. We simply take for granted that the function w depends only on x, and that
the exterior vacuum solution is given already by . The only contribution to second
order order thus comes from the gravitational potential, and therefore the boundary data
needed to be calculated is U®)|y,, and 7(U®)|y, and only the compatibility integral
has to be addressed. Moreover, the fact that w is a function of x alone simplifies
both the boundary data for the first order required to calculate T as well as the second
order boundary data itself. The hydrostatic equations evaluated at the boundary will be
used in the last expressions in order to write the functions of the background in terms of
M, E and P.

In the chosen gauge the one-form normals to Eg take the simple form 7, = N.0,,
where N, is determined by the normalisation. Now it is not difficult to compute the
e-derivatives at € = 0 of 77, and find that the first order normal vanishes and at second

order it reads

! 2 3
_,(2) - 2 N 5 > 47TEM (x(] + 1) - ZL’O f
n = T 1{m+—=—)+ = 30,
{ " ( M Vai—1 M

1 d
—————=—¢(70, )0,
where we have omitted the argument (z¢,1) on all the second order functions above not
to overload the expressions. We will stick to this notation through the rest of the section.
With this we can evaluate the expressions ((C.14)) and (C.15]) to first and second order, to
obtain pM =0, 2 =0,

pB = {M X3 — 1(h+k+%§}sim9 (C.33)
$0 -

1 0 (¢
2 - _ _ 2 _ ! N _ =
Oy <x0(h + 2k —m) + (x5 — 1)(h + K) 059 (M cos 19) (C.34)

J— 3 - 2 1 2
_ (w0 =1)°(3z0 — 2)M"sin %2(;,;0)) M sin 9. (C.35)

2((130 - 1)

The functions P, and )y are obtained from the expressions listed above using (C.16]).
The set of quantities neeed up to second order for the boundary data are finally evaluated
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C.2. Application to Hartle’s model

from (C.17) and read

QW =0WP =0,  9yWW = (g + 1) M sin dw (o), (C.36)
AW =aw® =0, AW = —24 /22 — 1M cos Yw(z,), (C.37)
1 -1
Vo= ;log (zo — 1) . V=0 (C.38)
0
1 & M?*(xo+1)>sin®9
@ - p S 2
1% + 1M 1 w?(zo) (C.39)
AV o av® =0 (C.40)
2—1'
1 xg — ATEM? (2o — 1) (20 + 1)® £
(2 0 0 0
Av® = (m—k)— /2% — 10 + (22— 1772 i

3 —1
M? 1)3(22 — 1) sin®J
Mo + B0 — Dsin'd o) (C.41)
(xg — 1)y/22 —1
To evaluate the second order compatibility integral (C.25) we also need to compute the
vector T} (C.23). Nevertheless, we need only the contraction of 77 with the normal vector

evaluated at the boundary, which reads

1.
Tl(ﬁ) — —55152, (042)
where we have used the fact that (xd f)(77) = —(d f)(€), which on ¥ reads —3,,f (p(), z(1)),

for any f(p, z). Moreover, since we will only need to evaluate this expression on the hy-
persurface there is no need to solve the whole PDE for S; in ((C.21)). Instead, we project
(C.21) onto %y (applying it to €) to obtain S; and integrate the ODE along Y. After a

straigforward calculation we get
Y

12
Mw (21’0—1)008/1—&4-—(1’34-1) e —

Sils, =M
tlso 20— 1 My ' 2M

(C.43)

where, recall, Z, is given by 1' The expression for Sy is obtained directly appyling
dSs in (C.21)) to €. The explicit expression of (C.42) is found to be

. L, ¢
N(rls,) = —555%

_ g ot 1) {M(%Jr 1)

Lo
po— (xo_l)w{@xo—l)cosu—m

v L2y 1)] - %(y - 2M)e—22y}

2M
1 1
[—5 o+ N tan p (1 — cos~y,) — sin ’yy)] W CoS (C.44)
Ty —
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C. COMPATIBILITY INTEGRALS

We have now every ingredient to evaluate the compatibility condition in the integral form
in order to find relations between h, m, k and £ and their normal derivatives at 3. Now,
we assume the angular structure given in , recalling that ky = 0, and remove the
radial derivatives of the functions by using the field equations for the interior, explicitly
for my, for hy, to relate my to he and with for hl, and k. The
integrand is a function of u linear in the constants mg(a), ho(a), {o(a), ha(a), ka(a), and
quadratic in the first order term w(a) (we go back from xq to a to recover the initial radial
r for convenience). In short, the structure of the equation after the integration of
from the south to the north pole of S is the following

Lo+ (M? — o) {Izzz +I(l:1)2} =0, Vy € (—a+ M,a— M) (C.45)

where Z;—y and Z,—s involve only second order terms of the [ = 0 and [ = 2 sectors
respectively, and Z;_;y> contains squared first order terms.
The equation Z;—g = 0 just gives

(12

— ME(a)ggf (a) = 0. (C.46)

hi(a) +mi(a) + 4r

This is, of course, just a relation we have produced for the functions in the interior
configuration, we have included a superscript ! for clarity. This relation must be satisfied
for the existence of the vacuum (asymptotically flat) exterior, but tells us nothing about
the continuity of these functions. However, we know the exterior solution in the same

class of coordinates (5.3]) at second order for the [ = 0 sector (see (6.42), (6.43))), which

evaluated at r = a can expressed here as

J2
(a—2M)m&(a) = 6M — =
SM J?

hi(a) = — :
o (@) a—2M * a’(a —2M)

This obviously implies the following relation
hg (@) + mg (a) = 0.
Clearly, if h{(a) = h¥(a) is to be satisfied, then

a2

a—2M

my(a) + 4m E(a)&' (a) = mg (a)

must hold. It is now a matter of checking that these hy and my’s (in fact re‘kmo)

correspond to those used in Hartle’s framework (4.1 (see Section [7.5), and therefore

the “continuity” of h{' is incompatible with the “continuity” of m{! (recall that A (a) =
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C.2. Application to Hartle’s model

AZ(a)). In terms of mH/E)(a) = (a — 2M)mL/(a), the jump, using (4.31) in the last
equality

mi D (a) — mil P (a) = —4xa®E(a)¢ (a) = —47raM(a —2M)E(a)pi*(a) (C.A47)

which agrees with the previously found jump .

For completeness we include the results for the [ = 2 sector. The part of
proportional to (M? — y?) can be written in terms of hy, ks and w. For convenience, the
result is given with the coefficient of ko normalized to 1, and in terms of the associated
Legendre functions of the second kind and, and for simplicity, of the coordinate zy. It

reads

I _ 2 Q3(o) _ I
kQ(xU) <\/ﬁ Q% 1) hz( 0)

M (g +1)° (2(:co +2) Qx(w0) 1) W () = 0. (C.48)

4 Va2 — 1 Q3(wo)

It is direct to check now that h¥ and k¥ yield the very same relation if we combine the

explicit solutions (6.61]) and (6.62)) to get rid of the constant A therein. Hence, (C.48]) is

compatible with the continuity of the functions hy and ks.
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