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y ojalá siga siendo aśı por mucho tiempo.
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Resumen

Este resumen contiene un repaso breve de las actividades de investigación que se han

llevado a cabo durante el desarrollo de la presente tesis doctoral, realizada con la ayuda

predoctoral del Gobierno Vasco (BFI-2011-250) durante los años 2012-2015 en el depar-

tamento de F́ısica Teórica e Historia de la Ciencia de la UPV/EHU, bajo la dirección

de R.Vera. La primera parte del resumen está dedicada a explicar los problemas que se

han abordado, cómo se ha hecho o qué métodos se han empleado y qué resultados hemos

obtenido. La lista de publicaciones se incluye en la segunda sección.

Ĺıneas de investigación

Esta tesis se enmarca dentro del área de la Relatividad General. El tema central de

estudio son los cuerpos compactos aislados en rotación, aunque como consecuencia de los

métodos matemáticos empleados para su estudio, también ha dado lugar a otros trabajos

estrechamente relacionados con las condiciones de enlace. Todos estos temas se explican

en las siguientes subsecciones.

Cuerpos compactos en rotación

Una comprensión adecuada de los cuerpos compactos en rotación en Relatividad General

(RG) es fundamental para muchas situaciones astrof́ısicas. El tratamiento relativista

original de estrellas compactas en rotación en equilibrio se debe a Hartle [57], que comenzó

una serie de art́ıculos al respecto en el año 1967. Su trabajo constituye la base de la

mayoŕıa de los enfoques anaĺıticos para construir modelos numéricos con simetŕıa axial

[104].

El modelo de Hartle describe configuraciones de cuerpos compactos aislados rotando

en equilibrio, esto es, en el régimen estacionario y dentro del marco de la teoŕıa de pertur-
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baciones hasta segundo orden en RG. “Aislado y compacto” quiere decir que la estrella

termina en una superficie que separa su interior, que se suele modelizado como un fluido

(perfecto), de un exterior de vaćıo, que se escoge asintóticamente plano de manera que

el campo gravitatorio decae a cero a medida que uno se aleja del objeto compacto. El

esquema perturbativo se elabora sobre una configuración esférica sin rotación, en otros

términos, sobre “una pelota en el vaćıo”. Sobre ésta se toman perturbaciones estacionar-

ias y axisimétricas a primer y segundo orden. El modelo de Hartle se construye sobre

una serie de suposiciones impĺıcitas, que resultan razonables en la mayoŕıa de los casos: el

interior del cuerpo es un fluido perfecto con una ecuación de estado barotrópica, rota uni-

formemente (no hay movimientos convectivos y la rotación es ŕıgida), y la configuración

completa admite simetŕıa axial y ecuatorial.

Bajo estas suposiciones, las perturbaciones a primer orden están descritas por una

única función, que origina el “arrastre” del espaciotiempo (rotational dragging of inertial

frames). Las perturbaciones de segundo orden vienen descritas por tres funciones. Los

valores de estas funciones en la superficie de la estrella, calculados desde el interior dada

una ecuación de estado y condiciones de regularidad en el origen, se utilizan para obtener

la deformación y la masa total en términos de la densidad central y la rotación de la

estrella. El “cambio en la masa”, definido como la contribución a la masa debido a la

rotación, se calcula mediante la comparación de las masas del sistema en rotación y el

estático dada una densidad central fija.

Sin embargo, al margen de las suposiciones expĺıcitas, el modelo se construye sobre

otra premisa impĺıcita; la continuidad de las funciones que describen las perturbaciones a

través de la superficie de la estrella, en términos de un sistema particular de coordenadas.

El modelo de Hartle se basa esencialmente en enlazar el interior y exterior igualando las

condiciones de contorno en la frontera común, la superficie de la estrella. En RG esta

situación se contempla bajo la teoŕıa de enlace de espaciotiempos. Supongamos dos espa-

ciotiempos con frontera, de forma que las fronteras de uno y otro se puedan identificar,

que sean difeomorfas. Ahora imaginemos que queremos formar un espaciotiempo que

resulte de la unión de estos dos iniciales a través de la frontera común, de manera que la

geometŕıa esté bien definida en todo el espaciotiempo, incluyendo en la frontera común, y

que podamos formular las ecuaciones de Einstein (en el ámbito de las distribuciones). Esto

es posible si se cumplen una serie de condiciones geométricas, conocidas como condiciones

de enlace. Se sabe que una vez que dos espaciotiempos las satisfacen, existe un sistema

de coordenadas (conocido como admisible en el sentido Lichnerowicz) en el que las fun-

ciones métricas y sus primeras derivadas son continuas. Sin embargo, desconocemos cómo

este hecho se traslada a un esquema perturbativo. Ni siquiera la continuidad de las fun-

ciones que describen las perturbaciones está garantizada a priori. En cualquier caso, una
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elección expĺıcita de coordenadas (y gauge) en el cual las perturbaciones satisfacen ciertas

condiciones de continuidad y diferenciabilidad puede constituir una suposición impĺıcita

que, en principio, podŕıa restar generalidad al modelo. Aún peor, podŕıa ser incorrecta y

conducir a resultados erróneos.

Por otro lado, el tratamiento del enlace de espaciotiempos en el marco de la teoŕıa

de perturbaciones se complica, puesto que donde en el problema exacto hab́ıa espaci-

otiempos individuales ahora encontramos familias uniparamétricas de espaciotiempos. La

identificación de éstos entre śı pone de manifiesto una libertad inherente a la teoŕıa de

perturbaciones, conocida como libertad de gauge espaciotemporal. Además de esta liber-

tad en la identificación de espaciotiempos, surge una libertad adicional correspondiente la

identificación de las fronteras. En [79], M.Mars (USAL) analizó este problema de forma

general y consistente, formulando las condiciones de enlace perturbadas hasta segundo or-

den de manera independiente de las coordenadas empleadas y de las libertades inherentes

a la teoŕıa de perturbaciones, sin que tampoco sea necesario recurrir a la formulación de

cantidades invariantes gauge.

Con el fin de establecer hasta qué punto la hipótesis original de “continuidad” de las

funciones en el esquema de Hartle tiene consecuencias, diseñamos un programa destinado

a poner rigor en el modelo, basándonos en primeros principios. En nuestro trabajo [95]

empezamos revisando el modelo de Hartle dentro de la teoŕıa presentada en [79]. Hasta

donde somos conscientes, es la primera vez que se emplea [79] para realizar enlaces pertur-

bados a segundo orden. Hemos demostrado que los valores de las funciones que describen

las perturbaciones se pueden ajustar para coincidir en la superficie, tal y como se da por

hecho en el modelo de Hartle, a excepción de una de las funciones en las perturbaciones

a segundo orden. Esta función presenta un salto en la superficie que es proporcional al

valor de la densidad de enerǵıa alĺı. La presión debe anularse en la superficie, como con-

secuencia de las condiciones de enlace, pero no la densidad de enerǵıa, en general. Esta

discontinuidad contribuye al cálculo del cambio en la masa y por lo tanto, a la masa total

de la configuración rotante. El resto de las cantidades, como las que originan el arras-

tre del espaciotiempo o determinan la deformación de la estrella, no necesitan ninguna

modificación.

La expresión original del cambio en la masa dada en [57], debe ser, por tanto, mod-

ificada con este término adicional. Sin embargo, dado que este término se anula si la

densidad de enerǵıa es cero en la superficie, los modelos más comunes de estrellas de

neutrones, aśı como cualquier otro basado en ecuaciones de estado politrópicas (densidad

de enerǵıa proporcional a potencias de la presión) no se ven afectados, y el cálculo de la

masa de la estrella en rotación no requiere ninguna corrección. Sin embargo, los mode-

los de estrellas en rotación à la Hartle, en los cuales la densidad de enerǵıa no se anula
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en la superficie, tales como estrellas homogéneas (de densidad constante) o de materia

extraña (estrellas de quarks), han de ser corregidos. Los diagramas que t́ıpicamente se

emplean para caracterizar estos cuerpos compactos muestran la masa de la estrella frente

a su densidad central o su radio. Estos se verán modificados por el efecto del término

corrector, pero no es posible estimar a priori si de forma relevante o no. Para ello hemos

retomado el art́ıculo clásico de Chandrasekhar y Miller sobre estrellas homogéneas [30] y

hemos calculado el cambio en la masa con la expresión correcta en [93]. También hemos

estudiado el caso de estrellas de materia extraña, contemplado originalmente por Miller y

Colpi en [34], y aunque obtenemos diferencias considerables, aún no hemos publicado los

resultados. En ambos casos la contribución del término corrector al cambio en la masa

resulta ser importante y para nada despreciable. Cabe destacar que los códigos numéricos

desarrollados para la realización de este trabajo son fácilmente ampliables para situaciones

más realistas, como pueden ser interiores estelares compuestos por varios fluidos.

En el momento de escribir nuestro art́ıculo [95] no reparamos en que el término cor-

rector a la masa contribuye al ĺımite newtoniano del modelo. En un art́ıculo [96], comple-

mentario a [95], calculamos dicho ĺımite y mostramos cómo ese término aparece, aunque

de manera impĺıcita, en el trabajo original de Chandrasekhar sobre poĺıtropos en rotación

en el marco de la gravedad newtoniana [23]. Como la mayoŕıa de los modelos de estrellas

son poĺıtropos, la aparición de este término hab́ıa sido de alguna manera olvidada, incluso

en la revisión del enfoque newtoniano que se presenta en el trabajo de Hartle [57]. Las

condiciones de enlace generales en el marco de la gravedad newtoniana no se formulan en

el trabajo original de Chandrasekhar [23], aśı que el modelo se construye asumiendo la

continuidad del potencial y de su derivada a través de la superficie de la estrella sin defor-

mar. Posteriormente, publicó otro art́ıculo [29] aplicando nuevas condiciones de enlace:

continuidad de funciones y derivadas primeras a través de la superficie de la estrella defor-

mada. Sorprendentemente los resultados no se alteraban. En [96] revisamos este asunto

y formulamos las condiciones de enlace newtonianas generales. Al particularizarlas para

un fluido, comprendimos que los resultados de [23] y [29] coinciden, de nuevo, porque en

ambos se emplea un poĺıtropo como ecuación de estado.

Sin embargo, queda un aspecto final argumentado en el art́ıculo original [57] que

necesita ser demostrado rigurosamente: las funciones en las perturbaciones de segundo

orden no contienen sectores con l > 2 en una expansión en polinomios de Legendre. Este es

un resultado común al modelo newtoniano para poĺıtropos de Chandrasekhar [23] aunque

no fue demostrado rigurosamente hasta 35 años después, por Kovetz en [72]. De vuelta

al modelo de Hartle [57], este asunto se discute empleando, de nuevo, argumentos que se

basan en el carácter global y la continuidad de las funciones perturbativas, en tanto que la

dependencia angular de éstas queda determinada por su comportamiento en el centro de
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la estrella, donde se exige regularidad, y por su comportamiento muy lejos de la estrella,

donde se pide asintoticidad plana. Nosotros hemos abordado este estudio caracterizando

los problemas para el interior y exterior por separado en términos de los operadores y

funciones adecuadas, las cuales han de satisfacer ciertas condiciones impuestas por el

enlace, además de pertenecer a espacios de funciones apropiados. Dicha tarea ha sido

desarrollada en colaboración con M. Mars (USAL), en un art́ıculo que pronto debeŕıa estar

terminado. En la tesis escrita se incluye la descripción del problema y demostramos que

efectivamente, la única estructura angular posible de las perturbaciones son las propuestas

en [57].

Por último, cabe destacar que el enlace perturbado que se calcula en nuestro trabajo

[95] se lleva a cabo primero en un marco púramente geométrico, sin usar las ecuaciones

de campo. Por lo tanto, puede ser usado en situaciones más generales, como en otras

teoŕıas alternativas a la RG para las cuales el modelo de Hartle ya se ha generalizado en

la literatura, y encontrar aśı las correspondientes correcciones a la masa.

Condiciones de enlace en teoŕıas cuadráticas de gravedad

Las condiciones de enlace en RG han sido ampliamente investigadas. En [15] se incluye

una presentación rigurosa del formalismo de enlace de dos espaciotiempos con frontera

a través de la frontera común, teniendo ésta la libertad de ser una hipersuperficie de

carácter causal arbitrario, e incluso de cambiarlo de punto a punto.

No obstante, aparte de la RG existe un amplio espectro de teoŕıas geométricas de

gravedad alternativas a ésta, candidatas para la explicación satisfactoria de fenómenos

como, por ejemplo, la enerǵıa oscura. Entre el amplio espectro de estas teoŕıas, podŕıamos

seleccionar dos tipos ampliamente estudiados en la bibliograf́ıa. Uno de ellos son las teoŕıas

F (R), que sustituyen el escalar de curvatura R en la Lagrangiana de Einstein-Hilbert de

la RG por una función arbitraria de éste, de ah́ı que sean conocidas por el nombre de

teoŕıas F (R). El otro tipo de teoŕıas a las que hacemos alusión se conocen como teoŕıas de

gravedad cuadrática y son aquellas que resultan de considerar una lagrangiana que incluye

invariantes de curvatura cuadráticos. En particular, tenemos términos del tipo R2, RabR
ab

y RabcdR
abcd, siendo estos dos últimos los tensores de Ricci y Riemann respectivamente.

Entonces, un tema de interés es conocer las condiciones de enlace en este tipo de teoŕıas

de gravedad alternativas a la RG. En primer lugar, permitiŕıa establecer similitudes (o

diferencias) entre la RG y estas teoŕıas modificadas, con lo que podŕıamos alcanzar una

mejor comprensión de éstas. Por otro lado, la correcta modelización de cuerpos compactos

en rotación, en el marco de teoŕıas alternativas, combinada con datos observacionales

constituye una herramienta importante para encontrar restricciones sobre estas teoŕıas,
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bien ajustando los valores de los parámetros libres que contengan o en casos más drásticos,

descartando la validez de la teoŕıa.

En dos art́ıculos recientes [99] y [98] J. M. M. Senovilla (UPV/EHU) ha obtenido las

condiciones de enlace para las teoŕıas F (R) generales, aśı como las ecuaciones que satisface

la distribución superficial de materia, generalizando aśı las ecuaciones de Israel de la RG.

Cabe destacar que salvando algún caso particular, éstas son comunes a RG y teoŕıas

F (R). De este trabajo se desprenden dos conclusiones importantes que desarrollamos a

continuación.

La primera de ellas es que el tensor enerǵıa momento puede presentar contribuciones

de tipo doble-capa o dipolares (de tipo δ′). Elaboremos un poco más este punto. Para ello,

consideremos el escenario de la electrodinámica clásica, donde estas contribuciones están

asociadas a cambios muy abruptos del potencial eléctrico. En particular, un campo dipo-

lar viene generado por una configuración de cargas positiva y negativa muy concentradas,

separadas por una pequeña distancia, tan pequeña que matemáticamente se formula como

el ĺımite cuando ésta tiende a cero y podemos hablar entonces de una distribución su-

perficial. La correspondiente ecuación de Poisson, que relaciona derivadas segundas del

potencial eléctrico con la densidad de carga, adecuada para describir esta configuración

requiere, precisamente, de un perfil de densidad de tipo δ′. Este objeto matemático es

una distribución que aplicada a una función de prueba, retorna el valor de la derivada

normal de la función de prueba alĺı donde la δ′ tiene soporte (bajo integración, como es

usual en teoŕıa de distribuciones). Es importante destacar aqúı que no sólo es relevante el

valor de la función de prueba en el soporte de la δ′, sino que también es necesario conocer

su comportamiento en un entorno.

Volviendo a teoŕıas de gravedad, este tipo de comportamiento no es el esperado, ya

que sólo existen masas positivas, de forma que la gravedad es atractiva. De hecho, en

RG no existen dipolos, lo que resulta razonable. En cambio, las teoŕıas modificadas śı

que admiten contribuciones dipolares localizadas en hipersuperficies de enlace. Además,

la contribución de estas doble-capas resulta esencial para que el tensor enerǵıa momento

se conserve.

En segundo lugar, cabe destacar que, en general, una solución enlazada en RG de man-

era que no contenga distribuciones de materia superficiales, no sigue siendo una solución

del mismo tipo en teoŕıas F (R), sino que presentará distribuciones superficiales de materia

y contribuciones del tipo doble-capa.

Motivados por estos resultados, hemos realizado un trabajo análogo para teoŕıas

cuadráticas de gravedad generales [94]. Las conclusiones son similares a las obtenidas

en [99] y [98]. Encontramos que las teoŕıas cuadráticas de gravedad también presentan

contribuciones de tipo dipolo y verificamos la conservación del tensor enerǵıa momento,
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para lo cual las doble-capas siguen siendo indispensables. Además, generalizamos las

ecuaciones de Israel, que siguen siendo idénticas a las de RG cuando se prescinden de

las contribuciones de tipo doble-capa. De hecho, discutimos los posibles escenarios que

se pueden dar sobre la hipersuperficie de enlace y estudiamos las condiciones para que

se produzca cada uno de ellos. Esta casúıstica abarca casos como un buen enlace sin

ningún tipo de distribución superficial de enerǵıa o dobles capas, que haya distribuciones

superficiales sin dobles capas, o que haya dobles capas puras.

Asimismo, hemos dedicado una serie de secciones a derivar con detalle ciertos resulta-

dos geométricos que se obtienen en teoŕıa de distribuciones, como la identidad de Ricci.

Por otro lado, también discutimos los problemas que ocasiona una técnica habitual en la

bibliograf́ıa para enlazar espaciotiempos en el marco de teoŕıas alternativas, y que consiste

en el uso de coordenadas gaussianas adaptadas a la hipersuperficie de enlace. En estos

casos, la interpretación de los términos δ′ no es correcta.
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Introduction

General Relativity (GR) is the theory of gravitation proposed by Einstein 100 years ago,

back in 1915. He came up with the observation that a gravitational field and an accelerat-

ing frame of reference are locally equivalent. Hence, gravity can be locally removed. This

fact suggests that it is definitely not like other interactions, such as the electromagnetism

for instance. Rather than an interaction that occurs in the spacetime, it stands as some-

thing imprinted into the spacetime itself. In absence of forces, test particles move along

extremal curves, known as geodesics, in a 4-dimensional Lorentzian manifold. Einstein’s

field equations relate manifestly the geometry of the spacetime with the distribution of

energy and momentum of matter.

The theory has a great predictive power and it is well supported by observations. For

instance, the so called classical tests account for novel effects with respect to Newtonian

gravity that arise from the analysis of the geodesics in the Schwarschild spacetime. From

the study of null geodesics, one encounters the bending of light by a massive body. The

study of timelike orbits explains the precession of the perihelium of Mercury, and the

study of emission of signals between two static observers reveals the gravitational redshift

effect.

Beyond these classical tests, many others have been proposed. Experimental data

collected from measurements taken at the level of the Solar System is used to constrain

theories of gravity. For instance, restrictions on the PPN (parametrized post Newtonian)

parameters show the best agreement with GR [112]. These mentioned tests are valid to

explore GR in the weak field approximation. However, the strong regime of gravity can

also be explored by tests based on compact binaries and gravitational waves. Hulse and

Taylor received the 1993 Nobel prize for the study of the PSR B1913+16 binary system,

composed by a pulsar and a companion neutron star. Exploring the changes in the radio

emissions of the pulsar, they gave account of the time dilation effect. But the big deal was

the study of the advance of the periastron of the pulsar. Not only they noticed that the
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1. Introduction

periastron advanced ∼ 4.2 degrees per year, but also that each year the pulsar reached the

periastron earlier than expected. This shrinking of the orbit has been perfectly explained

by the energy loss by emission of gravitational radiation, which constitutes an indirect

detection of gravitational waves.

The first direct detection of gravitational waves has been recently announced, on

February 2016, by the LIGO collaboration [1]. The astrophysical system that emitted the

signal was a binary black hole merger. The analysis of the signal [2] is fully compatible

with GR, although given the limitations of the experiment they have not been able to

determine whether the degrees of polarization of the wave were just the two predicted

by the GR or there exists any other as predicted by alternative theories of gravity. The

hope is that data based on gravitational waves will provide new constraints on theories

of gravity over the next years.

GR has proven to be essential in order to describe successfully high energy astro-

physical events. Most of them, such as the gravitational collapse of massive stars, the

coalescence of binary systems composed of neutron stars and black holes, or the phe-

nomena related to accretion disks require an accurate relativistic description of compact

objects (see [49] for a review of hydrodynamics in GR).

On relativistic stars

Zwicky and Baade adressed in the year 1934 [7] and [6] the possibility of stars composed

mainly of neutrons, born as a result of supernova processes. The mechanisms that generate

thermal pressure and hold ordinary stars against collapse due to gravity is not present in

neutron stars, which support themselves due to the neutron degeneracy pressure. They

described neutron stars as small and very dense objects. In order to have a picture in

mind, we could imagine an spherical object with a typical mass of 1.4M� packed within a

radius of 10 km. Taking into account the mass of the neutron, we can estimate for these

values that these compact objects consist of 1057 neutrons packed together by gravitational

interactions. An estimation of the density results in 6.65 · 1014 g cm−3, which is above the

density of the atomic nucleus 2.3 · 1014 g cm−3.

At the same time, in the year 1930, Chandrasekhar claimed that there was a mass

limit for white dwarf stars, at which electron degeneracy pressure was no longer sufficient

to balance the gravitational force. Later on, in the year 1933, he published a series

of works under the title “The equilibrium of distorted polytropes” [23], [24], [25], [26],

where he developed a perturbation formalism over spherically symmetric isolated fluid

balls with a polytropic equation of state (EOS) in Newtonian gravity. These were aimed

at studying modifications in the shape produced by slow rotation or/and tides due to a
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second companion body. In the first one [23], and most relevant for this thesis, slowly and

uniformly rotating equilibrium configurations are constructed. The model of a spherically

symmetric fluid ball with a polytropic equation of state reduces to the study of one

function, called the Emden function. Taking this setting as the background configuration,

perturbations of the Emden potential driven by a slow rotation parameter are developed.

Since the model describes isolated bodies, an exterior vacuum needed to be consid-

ered. The gravitational potential generated by the fluid and the potential of the vacuum

region were matched at the undeformed surface of the star (the spherical boundary) in

[23]. However, Jardetzky pointed out that the matching method was inaccurate [69] and

suggested that the matching should be performed in the distorted surface of the star.

The Newtonian polytropic stars were retaken by Chandrasekhar and Lebovitz in 1961,

to analyze the problem of oscillations and stability in the works [27], [28] and [29]. The

effects of rotation and modes of pulsation, computed in terms of some specific functions

encoded in a superpotential, become completely determined after demanding that this last

is continuous and has a continuous radial derivative, this time at the distorted surface

of the polytrope. They found that the results of the matching were unaltered from [23],

so that they found no difference between imposing the continuity of the functions in the

distorted and undeformed boundary of the star. In this way, they answered the objection

raised by Jardetzky.

In these models for polytropes the angular velocity couples only to the modes l = 0, 2

of a Legendre polynomials expansion of the gravitational potential (see for instance eq.

(4) in [72]) and it is reasonable to think that the rest of the modes, that are not excited by

rotation, vanish. Nonetheless, this analysis was ommited by Chandrasekhar and Lebovicz,

and was retaken by Kovetz in [72], where a consistent proof was given.

Regarding the analysis of compact objects in General Relativity, Tolman studied in

[107], back in 1939, a variety of static spherically symmetric metrics that included the

Schwarzschild interior solution with constant density. In the same year, Oppenheimer

and Volkoff [90] wrote the equations that describe interior configurations in the standard

form. Their objective was to find a kind of Chandrasekhar limit for neutron stars. They

used the equation of state for a cold Fermi gas and obtained a value for the maximum

mass of ∼ 0.7M�.

In 1967, Hartle and Sharp published a contribution [63] with the foundations to develop

a relativistic model of stellar rotation. They formulated a relativistic variational principle

for stationary and axially symmetric configurations of matter ruled by a barotropic equa-

tion of state, with a fixed number of baryons and angular momentum. Taking variations

with respect to the fluid flow and the baryon density, they found that the configuration

extremizing their functional rotates rigidly and has a constant injection energy (so that
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it satisfies the hydrostatic equilibrium first integral). This was the starting point of a

remarkable series of, at least, 9 articles, [57], [64], [65], [58], [59], [61], [60], [62], [66], that

settled a whole perturbational approach to describe slowly rotating and oscillating stars

in GR.

Hartle developed in [57] his classical model to describe slowly rotating stars in equi-

librium perturbatibely to second order in some rotation parameter. The model describes

perfect fluid stars, with arbitrary barotropic equation of state, rotating rigidly in equilib-

rium and provides expressions to compute the properties of the compact body, such as the

mass, angular momentum and quadrupole moment or the distortion of the surface due to

rotation. It constitutes the basis of most of the analytical approaches and is widely used

to construct numerical schemes [104] in axial symmetry.

In collaboration with Thorne, Hartle computed explicit numerical solutions for various

equations of state [64] and with Friedman [61] he used the equation of state of a n = 3/2

polytrope. The model was extended to account for the third order perturbations in [59].

The work [58] is aimed at formulating a procedure to compute the mass of rotating

configurations, without the need of computing the second order perturbations (developed

in [57]), and it is claimed to be valid for both differential and uniform rotation. The

remaining works are devoted to study the development of a formalism to treat radial, or

quasiradial, oscillations and to formulate a criterion for the stability of the rotating stars.

Nowadays Hartle’s model stands as one of the most used schemes for the study of

slowly rotating stars. In fact, it is one of the few analytical approaches that we have for the

problem, although the final equations must be solved by numerical integration. Regarding

the slow rotation approximation, Hartle sets a scale [57] of angular velocities given by

Ω∗ ≡
√
GM/a3, where M and a are the mass and radius of the static configuration. The

requirement that angular velocities are much smaller than Ω∗ implies that every particle

in the fluid must move at non-relativistic velocities. The quantity Ω∗ is closely related

with the mass shedding limit, that occurs when the angular velocity of the star reaches the

velocity of a particle in a circular Keplerian orbit at the equator. In the Newtonian regime,

the mass shedding velocity corresponds to (2/3)3/2Ω∗ [104], [13]. With the numbers for

neutron stars given above, the frequency corresponds to about f ∗ = Ω∗/2π = 2000 Hz.

Berti et. al made a quantitative study in [13], and shed some light onto the question

of how slow is the slow rotation approximation. For this, they compared the quadrupole

moment of rotating configurations computed by using numerical approaches for rapidly

rotating stars (CST-rns) to Hartle’s approach, sharing the mass and angular momentum.

Note that these two quantities are enough to adjust the two parameters that must be

specified in Hartle’s model, from where the quadrupole moment can be computed. The

results depend on the equation of state used, but not very strongly (see Table 6 in [13]).
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Again, to have some numbers in mind, we can round off the results to think of deviations

that go from 10% to 20% in the value of the quadrupole moment for angular velocities

of 20% of Ω∗, i.e. 433 Hz with the numbers above. Thus, Hartle’s model is a good

approximation to study typical pulsars, since statistical studies of the angular velocities

reveal neutron stars and pulsars with typical values of hundreds of Hz (see [92] and

references therein). However, the approximation turns out to be inaccurate for rapidly

rotating pulsars, such as PSR J1748-2446ad, the fastest pulsar known rotates at 716 Hz.

The analytical character of Hartle’s model has paved the path to many works that

consist of some generalization of the fluid, vacuum or both. For instance, Bradley et al.

revisited Hartle’s formalism in [16], but they substituted the barotropic equation of state

by the Petrov D condition for the interior region. They concluded that some Petrov type D

perfect fluids can be matched to an asymptotically flat vacuum, under some restrictions

in the parameters of the model (see Figure 2 therein). As expected, Wahlquist is not

among those interiors. However, some of the succesfully matched interiors yielded a

reasonable equation of state, i.e. with subluminal speed of sound. On the other hand,

they also considered the case of non-asymptotically flat vacuum, for which the matching

with perfect fluid interiors was succesfully performed.

Out of the context of General Relativity, Hartle’s model has been generalized to de-

scribe rotating compact objects in alternative theories of gravity, such as F (R) [101],

Einstein-Dilaton-Gauss-Bonnet gravity [91] or Chern-Simons theory [3].

Apart from Hartle’s model, other analytical perturbation methods to describe isolated

rotating compact objects have been developed. For instance, the so called CMMR ap-

proach [21] is a double perturbative scheme to describe rotating stars in equilibrium. It

is based on a post Minkowskian expansion, where some parameter λ controls the devia-

tion from the flat spacetime, and a slow rotation (or slow deformation) approximation,

controlled by the parameter Ω. This latter is analogous to the slow rotation parameter

in Hartle’s model. In this formalism a global spacetime is built by matching a perfect

fluid, with an asymptotically flat vacuum making use of harmonic (and quoharmonic)

coordinates. A hypersurface of vanishing pressure is identified and matching conditions

are imposed there. One of the main advantages of the method is that one can reach high

orders in the rotational approximation. It has been applied to several equations of state:

constant density in [21], polytropes in [84] and linear equations of state [36]. For instance,

in [39] an explicit model for a linear equation of state is computed to orders λ9/2 and Ω3.

Thanks to the analiticity of the model, several questions such as the impossibility of i)

matching the perfect fluid interior to a Kerr vacuum and ii) matching the Wahlquist solu-

tion to an asymptotically flat vacuum, have been worked out in [84] and [38] respectively.

For more applications of the CMMR scheme, see [45].
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Out of the perturbation arena, the problem of a rotating star has been studied under

several numerical approaches, such as the BI and KEH schemes, or the BGSM scheme (see

[104]). Butterworth and Ipster formulated the field equations for the metric potentials as a

set of three elliptic equations plus one quadrature, supplemented with boundary conditions

at infinity that ensure aymptotic flatness [20]. The KEH scheme [70], [71] formulates

these equations as integral equations by means of the appropriate Green’s functions and

impose the asymptotic flatness conditions truncating the spacetime. The CST scheme [35]

avoids this problem by making a coordinate transformation that compactifies the radial

coordinate, so that higher accuracy is obtained. Stergioulas and Friedman implemented

the CST scheme in the rns code [105], able to compute sequences of rapidly rotating

stars, with uniform rotation. Bonazzola et al. [14] worked in a 3+1 decomposition that

takes advantage of the stationarity of the model, in the so called Maximal Slicing Quasi

Isotropic coordinates.

However, as far as we understand, these models do not describe compact bodies in the

sense that there is not a hypersurface that separates the fluid and vacuum regions. The

fluid extends all over the spacetime, satisfying some suitable decays at infinity, so that

the spacetime is asymptotically flat.

On Hartle’s model

In this thesis we revisit the perturbational approach by Hartle in [57]. Hartle’s scheme

depicts the equilibrium (stationary regime) configurations of rotating isolated compact

bodies in perturbation theory up to second order in GR. “Isolated and compact” means

that the star finishes at a surface that separates its interior from a vacuum exterior,

which is assumed to be asymptotically flat (the gravitational field decays to zero as one

moves away). The perturbative scheme is based on a spherical (non-rotating) background

configuration (a ball in vacuum), on top of which first and second order stationary and

axisymmetric perturbations are computed. Hartle’s model carries some explicit assump-

tions, which are expected to hold eventually in most cases; the interior of the body is a

perfect fluid with a barotropic equation of state, rotates uniformly (no convective motions

and rigid rotation), and the whole configuration admits axial and equatorial symmetries.

Given these assumptions, the first order perturbation is driven by a single function

that accounts for the rotational dragging of inertial frames. The second order is described

by three functions. The values of these functions at the surface of the star, computed from

the interior given an equation of state and conditions at the centre, are used to obtain

the deformation and the total mass in terms of the central density and the rotation of

the star. The “change in mass” δM , defined as the contribution to the mass due to the
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rotation, is then computed by comparing the masses between the rotating and the static

configurations given, e.g., a fixed central density.

Apart from the explicit assumptions mentioned above, the model is constructed upon

another implicit premise; the continuity across the surface of the star of those functions

driving the perturbation, in terms of a particular coordinate system (a class, in fact).

Hartle’s scheme is essentially based on joining the interior and the exterior problems by

properly “matching” the boundary conditions at the common boundary, the surface of

the star. In GR that accounts for the matching of the spacetimes concerning the two

problems. It is known that once two spacetimes are matched there exist a coordinate

system (called Lichnerowicz admissible) in which the metric functions and their first

derivatives are continuous.

However, how this fact translates to a perturbative scheme remains to be settled.

Even the continuity of the functions driving the perturbations is not ensured a priori. In

any case, an explicit choice of coordinates (and gauge) in which the perturbations satisfy

certain continuity and differentiability conditions may constitute an implicit assumption

that, in principle, could subtract generality to the model. Worse, it could turn out to be

a wrong choice, and lead to wrong outcomes.

In order to establish up to which extent the original “continuity” assumption had any

consequence, or none at all, we have devised a programme aimed at putting the whole

model on firm grounds, based on first principles. This is the main aim of this thesis. After

the preliminar Chapter 2 devoted to the matching of spacetimes, in Chapter 3 we describe

the general and consistent theory of perturbative matchings to second order devised in

[79], independent of the coordinates and gauges used, with no need of constructing gauge-

independent quantities (which may lead to problems [80]). We have also collected some

results given in [80]. The next chapters, Chapter 5 to 7, are devoted to revisiting Hartle’s

model within this theory to carry out the perturbed matching to second order. To this

aim, in Chapter 5 we introduce the set up of the perturbed configurations needed for the

(stationary and axially symmetric) geometries that are going to be used for the interior

and exterior regions, together with the perturbed matching hypersurface. We present, in

the form of two propositions, the necessary and sufficient conditions that the first and sec-

ond order perturbations of the geometries at either side and the perturbed hypersurface

must satisfy in order to match. In this first step, the perturbative matching is computed

on a purely geometric setting in a first step, without using any field equations. In Chap-

ter 6 the Einstein’s field equations are obtained in terms of some convenient quantities.

Finally, in Chapter 7 the interior and exterior problems at first and second order are

imposed using Hartle’s model explicit assumptions: perfect fluid interior with barotropic

equation of state rotating rigidly and absent of convective motions, asymptotically flat
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vacuum exterior, and global equatorial symmetry. We also assume, in this chapter, the

angular structure of the perturbations argued in [57]. The particularization of the pre-

vious propositions to Hartle’s setting is then analysed in detail. The result concerning

the interior and exterior problems at second order is finally given in the form of a Theo-

rem, in which the equations the functions at either side must satisfy together with their

corresponding matching conditions are given in full.

We prove that the values of the functions driving the perturbations can be set to

coincide on the surface, as assumed originally in [57], except for one at second order. This

function presents a jump at the surface proportional to the value of the energy there.

The pressure needs indeed vanishing at the surface, as a consequence of the matching,

but not the energy density in general. This jump contributes to the calculation of δM ,

and therefore the total mass of the rotating configuration. The rest of the quantities, like

the frame dragging and the deformation of the star, need no modification. The fact that

some relevant second order function may had a jump across the boundary has appeared

previously in [16] (see equation (46) there) and in [46], where a correct expression of δM

is given. Nonetheless, the exact relationship of their functions with the original functions

in [57] and thus the discrepancy in the computation of δM in [57], had not been realised

at the moment.

The original expression of δM , therefore, has to be amended with this additional

term. Nevertheless, since that term vanishes whenever the energy density is zero at the

surface, the standard neutron star models, and any other consisting of polytropes in

particular (energy density proportional to the pressure to some power), are not affected

and the computation of the mass of the rotating star needs no correction. However,

rotating star models (based on Hartle’s scheme) with non vanishing energy density at

the surface, such as homogeneous stars or strange quark stars, need a re-calculation of

the curves representing the mass in terms of the central density. Those curves have

been recalculated in Chapter 10 for homogeneous star models, completely described by

Chandrasekhar and Miller in their classical paper [30], and for stars with an equation of

state often used to represent quark matter. This is part of an ongoing work in collaboration

with J.A. Font and N. Sanch́ıs-Gual (UV), where we have developed a numerical code to

compute Hartle’s model with the amended mass for the most common EOS: polytropes,

constant density, linear EOS and tabulated EOS. We expect to complete it soon including

multilayer interiors. The contribution of the amending term to δM has been found to be

far from negligible for constant density stars and strange quark matter stars.

In Chapter 9 we compute the Newtonian limit of the amending term and show how

that term appears indeed, although implicitly, in the original work on Newtonian rotating

polytropes by Chandrasekhar [23]. Since most models are polytropes, the appearance of
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that term had been somehow forgotten, even in the review of the Newtonian approach in

Hartle’s work [57]. We also discuss the perturbed Newtonian matching conditions for the

problem of a rotating star, resolving the problem raised by Jardetzky about the matching

procedure in Chandrasekhar’s work.

Still, a final aspect mentioned earlier needs to be rigorously proven given the present

state of things: it is argued in the original paper [57] that the function at first order

perturbations depends only on the radial coordinate and the functions at second order

contain no l > 2 sectors after an expansion in Legendre polynomials. This is the aim of

Chapter 8, where we provide a proof based on maximum principles. The results therein

generalize those of Kovetz for Newtonian polytropes [72], not only to a relativistic context,

but also for any barotropic equation of state. This work has been done in collaboration

with Marc Mars.

Modified gravity

Apart from the astrophysical phenomena, General Relativity can also be applied to de-

scribe the large structure of the Universe showing good agreements with observations. In

fact, GR started a new branch in science on its own: Cosmology. Nowadays the most

accepted description of the Universe is achieved by the standard or concordance model in

Cosmology, also known by ΛCDM model. Its main ingredients are a FLRW spacetime,

spatially homogeneous and isotropic. The energy momentum tensor corresponds to a

perfect fluid that incorporates components of radiation and matter, being this baryonic

but mostly non-baryonic cold dark matter, and dark energy. The dark energy compo-

nent, introduced to explain the accelerated expansion of the universe, is encoded in a

cosmological constant type energy momentum. The ΛCDM model together with its per-

turbations manages to explain most of the current cosmological observations, showing

great compliance with the data. However, there are aspects that remain unclear in this

setting.

In the realm of the “small” and to account for alternative explanations to dark mat-

ter and the acceleration of the rate of expansion, actions more general than the Einstein

Hilbert Lagrangian density (which gives rise to GR) are often considered. One of the

simplest modifications to GR consists of F (R) theories, where the Ricci scalar R in the

Einstein Hilbert action is substituted by a suitable function F (R). One of the most rele-

vant models inside this class of theories was proposed by Starobinsky with a Lagrangian

density F (R) = R + αR2, with α > 0. This Lagrangian has good properties from the

point of view of field theory (see [4] and references therein). Other type of modifica-

tion of the Einstein-Hilbert Lagrangian comes from the consideration of other invariants

9



1. Introduction

constructed from the curvature tensors, for example by means of contractions of the Rie-

mann and the Ricci tensors. In fact, effective actions in string theory contain infinite

series of higher curvature corrections to Einstein-Hilbert action. Among them, in this

thesis we focus on quadratic theories of gravity, with a Lagrangian density of the form

a1R
2 + a2RabR

ab + a3RabcdR
abcd. These can be seen as an effective theory truncated to

second order in the curvature and presents nice properties regarding the quantum regime

[4], [47]. However, these theories include some inconvenient extra degrees of freedom apart

from the graviton. A particular combination of the constants a1 = 1, a2 = −4, a3 = 2

leads to Gauss-Bonnet gravity, whose field equations contain second derivatives of the

metric at most. This theory is equivalent to GR in 4 dimensions but not in higher di-

mensions. Precisely, high dimensional settings are often contemplated in modified gravity

scenarios applied for Cosmology. In these, either the extra dimensions are compactified,

or the physical fields are confined in four dimensional hypersurfaces embedded in a higher

dimensional spacetime. The study of this branes requires a well understanding of the

junction conditions in the corresponding theory of gravity.

The theory of matching of spacetimes in General Relativity, considered a product of

the theory of hypersurfaces in geometry, contemplates the situation where two, a priori,

independent spacetimes are joined across a common boundary to form a single spacetime.

To be able to treat the curvature of spacetime in a distributional sense (at least), one

requires that the metric is C0 and piecewise C2. The junction conditions contemplate

the case where a δ-type contribution is present in the energy momentum tensor, with

support in some locallized hypersurface. This allows to model thin shells, surface layers

of matter or impulsive gravitational waves. On the other hand, further conditions can be

imposed in order to produce a proper matching, i.e. with an energy momentum tensor

that contains discontinuities at most. This is used to build models of compact bodies

surrounded by vacuum. In [82], a rigorous development of the matching of spacetimes

theory was presented to deal with matching hypersurfaces of general causal character. We

have included a summary of the matching of spacetimes theory in Chapter 2, collecting

some of the results and conclusions regarding general (character-wise) boundaries [82],

[83] and when symmetries are present [108].

In the context of F (R) theories the junction conditions were developed in [44] by the

use of convenient Gauss coordinates adapted to the matching hypersurface. However,

this approach presents disadvantages, that we discuss in Appendix B. A development of

the matching conditions for F (R) using properly distribution theory was not satisfac-

torily done until [99] and [98], in which the field equations on the shell were provided,

generalizing Israel equations from GR. Two main conclusions drop from these works.

The first one is that, in general, the distributional energy momentum tensor presents

10



a double layer contribution. In analogy with electrostatics, one can think of this as a

dipole contribution. This is surprising, because there are no negative masses. In addition,

the presence of the double layer is needed for the conservation of the energy momentum

tensor. The other relevant conclusion is that, in general, a solution generated by a proper

matching in GR will present surface layers and double layers when set into a F (R) theory.

Motivated by these results, we have carried out the analogous work for quadratic

theories of gravity [94] mentioned above. We conclude that in these theories double

layers may arise in matching hypersurfaces, and we verify that they are neccesary for

the conservation of the energy momentum tensor. We also find the generalized Israel

conditions, which in absence of double layers hold identical to those in GR. A detailed

case study is performed analyzing the proper matchings, matchings with pure double

layers and matchings with surface distributions. We have included our results regarding

the junction conditions in quadratic theories of gravity in Chapter 11, supplemented by

Appendix A that contains a collection of the most relevant computations used there.

Notation, conventions and terminology

In this section we give the basic notation that will be used all throughout this work.

Further notation is introduced in the body of the text when needed.

In this thesis we will restrict to Ck spacetimes: Hausdorff connected oriented n + 1

dimensional Ck+1 manifolds V endowed with a Lorentzian Ck metric g. We will use the

signature −,+, . . . ,+.

Following standard definitions and notations we will use:

Equality

by definition :=, or identity: ≡

The symbol
Σ
= denotes the equality of the involved quantities after performing

the pullback onto a hypersurface Σ.

Indices:

We use greek indices α, β, γ, . . . = 0, 1, 2, 3, . . . , n for spacetime objects.

Latin indices a, b, c, ... = 1, 2, 3, . . . , n refer to objects relative to hypersurfaces

The usual symmetrization and antisymmetrization will be denoted by ( ) and [ ]

respectively.

Vectors: ~v

11



1. Introduction

One-forms: v

Scalar product: (~v, ~w)g := vαwβgαβ. One-forms operating on vectors denoted as

v(~w)

Exterior product (of one-forms): ∧ such that v ∧w = v ⊗w −w ⊗ v, where ⊗ is

the tensor product.

Exterior derivative: d

Lie derivative with respect a vector field ~ξ: L~ξ

Covariant differentiation: ∇

Partial differentiation with respect to x or to an indexed coordinate xα: ∂/∂x, ∂x,

and the subscript ,x, or ∂/∂xα and ,α respectively.

We will denote partial derivatives with respect to the first argument of a function,

usually the radial coordinate, by a prime.

Riemann tensor: (∇ν∇µ −∇µ∇ν)wλ = Rσ
λµνwσ

Ricci tensor: Rαβ ≡ Rσ
ασβ

We will use |Σ to denote the restriction of a spacetime object to points on an

embedded hypersurface Σ. If used on a function it can also denote the pullback of

the function to Σ. This should be understood by the context.

Unless otherwise stated, in this thesis we will use G = c = 1. When numerical

solutions are presented, the following values in the S.I. have been used

M� = 1.9891 · 1030 kg,

G = 6.67384 · 10−11 m3 kg−1 s−2,

c = 299792458 m s−1.
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2

Matching of spacetimes

A well known problem in electromagnetism consists of finding the relation that the electric

and magnetic fields keep on either side of a given surface that separates two different

regions, even in presence of surface charge distributions or surface currents. Maxwell’s

equations, in the integral form applied in some neighbourhood of the separating surface,

provide the relations of the normal and tangent components of the fields. Thus, the

normal component of the electric field has a discontinuity across the surface proportional

to a surface density of charge, while its tangential component remains continuous. For

the magnetic field the situation is the opposite, its normal component to the separating

surface is continuous and the tangential presents a discontinuity that depends on the

surface current density.

An analogous problem arises in General Relativity when we have two spacetimes with

boundary, independent of each other a priori, and we want to match them across the

common boundary in order to give rise to a matched spacetime. Being the spacetime

Lorentzian, the common boundary is a hypersurface that may have different nature: it

can be timelike, spacelike, null, or even general (i.e. changing from point to point). This

chapter is intended to provide a brief introduction to the theory of matching of spacetimes.

There are many works covering this topic in the literature, see for instance [9, 10, 15, 32, 40,

67, 73, 88, 106], but they are restricted to hypersurfaces with fixed character (spacelike,

timelike or null everywhere). In the development presented in [78, 82] boundaries of

general character are considered, so that their causal character may vary from point to

point. An appropriate treatment of hypersurfaces of general character requires a geometric

construction based on rigging vectors, which have the property of being transverse to

the hypersurface everywhere. The equations relating the ambient curvature with the

intrinsic curvature of a hypersurface, the so called Gauss-Codazzi equations, must be also

generalized to cover this situation. In the first part of the Chapter, the requirements in

order to have a well constructed geometry around the common boundary are devised.
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2. Matching of spacetimes

A second part of the Chapter is devoted to the study of the structure of the curvature

of the matched spacetimes. This must now be described in this framework by tensor

distributions instead of tensors. In particular, the class of metrics that is C2 everywhere

except in some hypersurface, where they are C0, is contemplated. Tensor distributions

were identified in [53]. The minimum requirement of continuity of the metric is imposed in

order to formulate the Einstein equations in the distributional sense. An underlying fun-

damental requirement is that we want to avoid product of Dirac-delta type distributions

because these are not well defined in general, unless we resort to more general structures

(see [102] and references therein) that are out of the scope of this thesis. Thus, we restrict

ourselves to the standard distribution theory. A general presentation of the theory can be

found in [31] and a self explanatory introduction in the Appendix of [82] (see also [94]). A

remarkable result in [78, 82] is that the Bianchi identity holds in the distributional sense,

leading to good properties of the energy momentum tensor distribution. Some results

therein can be extended to other theories of gravity, like F (R) gravity [98, 99, 100], or

quadratic gravity [94], involving higher order field equations. A further chapter (Chapter

11) will be dedicated to these modified theories of gravity.

2.1 Preliminary junction conditions

Let (V±, g±,Σ±) be two (n+ 1)-dimensional, C2 spacetimes with oriented C3 boundaries

Σ±. Require also that the boundaries Σ± are identified through some diffeomorphism

Φ : Σ− → Σ+. Then the matched spacetime V is the disjoint union of V+ and V−, with

Σ− and Σ+ identified through Φ, and such that the junction conditions (to be introduced)

are satisfied.

Figure 2.1: Two spacetimes (V±, g±) with diffeomorphic boundaries Σ±. These can be
timelike, spacelike or null, and even change from one point to another.

Since Σ+ and Σ− are diffeomorphic, they are also diffeomorphic to an abstract n

dimensional C3 manifold, Σ. Let us introduce a local coordinate system {ξa} in Σ, where

latin indices run from 1 to n, and also in V±, these denoted by {x±α}, with greek indices
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2.1. Preliminary junction conditions

ranging from 0 to n. The coordinates {x+} and {x−} do not need to be related in any

way. The embeddings from Σ to V± are given by the C3 maps

Φ± : Σ→ V±, (2.1)

ξa → x±
α

= Φ±
α
(ξa),

such that Σ± = Φ±(Σ) and the diffeomorphism from Σ+ to Σ− is just Φ := Φ−◦Φ+−1
. The

pullbacks of Φ± are denoted by Φ±
∗

and the pushforwards by dΦ±. Along this section, no

restrictions are taken about the causal character of the hypersurfaces Σ±. These can be

spacelike, timelike or null, and they are even allowed to change the character from point

to point.

The matching procedure involves two main stages. In the first one, the two spacetimes

(V±, g±,Σ±) are glued through their “common” boundaries and we construct a single

matched spacetime (V , g) with a well defined metric everywhere: in the regions V+ and

V− it corresponds to g+ and g− respectively, being these of class C2 and in Σ± it is only

C0 . This is commonly known as the “gluing” and it entails the preliminary matching

conditions. Once this has been achieved, the second task is devoted to obtain a set of well

defined field equations everywhere, in absence of singular terms. This will be guaranteed

when the so called matching conditions hold.

The boundaries Σ± have been identified pointwise by (2.1), but in order to obtain a

well defined geometry it remains to be specified how the tangent spaces at points on Σ±

are identified [32]. The equality of the first fundamental forms in Σ± inherited from V±

through Φ± allows the identification of the tangent vectors to Σ± , i.e.

h+ := Φ+∗(g+) = Φ−
∗
(g−) =: h−. (2.2)

These are the so called preliminary junction conditions.

These can be written in terms of the coordinates {ξa} in Σ as follows. The image

of the natural basis {∂/∂ξa} at the tangent spaces TpΣ for every p ∈ Σ gives a set of n

independent tangent vectors in each spacetime {~e±a } through dΦ±. Explicitly this is

~e±a := dΦ±
(

∂

∂ξa

)
=
∂Φ±α(ξ)

∂ξa
∂

∂xα

∣∣∣∣
Σ±

= e±
α
a

∂

∂x±α

∣∣∣∣
Σ±
,

at every point on Σ±. The vectors {~ea} provide an explicit expression for the pullback

Φ∗ and pushforward dΦ (in any of V+ or V−). A s−contravariant tensor ∆ defined in Σ

with components ∆a1...as in the basis {∂/∂ξa} can be promoted to the spacetimes V± by

means of the pushforward dΦ± so that its components in the basis ∂/∂x±
α

read

[dΦ±(∆)]α1...αs = ∆a1...ase±
α1

a1
...e±

αs
as . (2.3)
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2. Matching of spacetimes

Figure 2.2: The gluing procedure. The boundaries are identified via the embeddings as
Σ− = Φ− ◦Φ+−1(Σ+). The tangent basis in the spacetimes are given by ~ea

± = dΦ±(∂ξa).

Any s-covariant tensor Θ± in V± with components Θ±α1...αs in the basis {dx±α} can be

projected to Σ by means of the pullback Φ±
∗

and its components in the basis dξa read

[Φ±
∗
(Θ±)]a1...as = Θ±α1...αse

±α1

a1
...e±

αs
as

Applying this last expression to the metric tensor itself, we obtain the first fundamental

form and the preliminary junction conditions written in the coordinates {ξa} as

h+
ab := g+

αβe
+α
a e+β

b

Σ
= g−αβe

−α
a e−βb =: h−ab. (2.4)

Once the preliminary junction conditions are satisfied, the tangent vectors {~e+
a } and {~e−a }

can be identified, and we refer to h+ = h− simply by h. Then (Σ, h) is an oriented

manifold with a well defined metric.

Now, in order to identify the full tangent spaces at diffeomorphic points on Σ+ and

Σ−, we need to identify one transverse vector to Σ+ with another transverse vector to Σ−.

We define a transverse vector by means of a normal form N+ on Σ+, which is determined

by N+(~e+
a ) = 0 for a = 1, ..., n as follows. The associated “normal vector”, ~N+, N+α =

gαβNβ, is not transverse to Σ+ in general. At null points on Σ+, it satisfies N+( ~N+) = 0,

so that the “normal vector” becomes tangent to Σ+. Therefore N+α = N+ae+α
a and the

set { ~N+, ~e+
a } is not a basis of the tangent space at null points. Thus, we choose a C2

vector field ~l+ which is transverse to Σ+ everywhere, i.e. N+(~l+) 6= 0. This vector field is

called rigging in the literature [78, 82]. This same construction is taken, for the spacetime

(V−, g−).

We intend to complete the identification of the tangent spaces on Σ± by identifying
~l+ and ~l−. This is achieved by imposing first the following conditions

g+
µνl

+µl+
ν Σ

= g−µνl
−µl−

ν
, g+

µνl
+µe+ν

a
Σ
= g−µνl

−µe−νa . (2.5)
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2.1. Preliminary junction conditions

The first one equates the norms of l± and the second one does the same for the components

of the one-forms la = lαeαa , as viewed from the + and − sides. Moreover, the rigging

vectors must agree in their orientation to be properly identified: this accounts to showing

that choosing ~l+ to point towards the interior of V+, a ~l− satisfying (2.5) can be found

to point towards the exterior of V−. It is only then that we can identify the bases of the

whole n dimensional tangent spaces of V± at Σ, so that {~l, ~ea} := {~l+, ~e+
a } = {~l−, ~e−a }.

The “gluing” procedure is summarized in the following Theorem

Theorem 1 (Mars, Senovilla, Vera, 2007 [83]) Let (V±, g±) be two n+1-dimensional

C2 oriented spacetimes with boundary, with respective C3 boundaries Σ± such that the pre-

liminary matching conditions (2.2) hold on Σ. Assume further that there exist transverse

vector fields ~l± on Σ± satisfying the scalar product conditions (2.5) and such that ~l+ points

towards V+ and ~l− points outwards from V−.

Then, there exists a unique, maximal, C3 differentiable structure on V = V+ ∪ V−

(with their points on Σ+ and Σ− identified), and a unique continuous metric g which

coincides with g+ on V+ and with g− on V−.

Figure 2.3: The matched spacetime (V , g). Now, due to the preliminary matching condi-
tions, there is a well defined metric on Σ, given by h. In this picture we have identified
the abstract Σ with the equated images Σ+ and Σ− as an embedded hypersurface Σ in V .

Given any ~l+ with the fixed orientation of the Theorem 1, the existence of a ~l− with

the desired orientation is not guaranteed. The cases for null and non null points at Σ−

are considered separately in the following lemmas:

Lemma 1 (Mars, Senovilla, Vera, 2007 [83]) Let V± be two spacetimes with

boundary satisfying the preliminary matching conditions (2.4). Let Σ− be non null at

p− ∈ Σ− and set p+ = Φ−1(p−). Choose any transverse vector field ~l+|p+ pointing towards

V+. Then there is at most one solution of (2.5) for ~l−|p− pointing outwards from V−.

17



2. Matching of spacetimes

Lemma 2 (Mars, Senovilla, Vera, 2007 [83]) With the same notation as in

Lemma 2, assume now that Σ− is null at p−. Then the solution of the algebraic equations

(2.5) at p− is unique, if it exists.

At non-null points the unit normals are riggings, say ~n+, −~n+, ~n−, −~n−. In that case,

Lemma 1 states that given ~n+, the solution to (2.5) with the appropriate orientation for

~n− is unique. Conversely, at null points the system (2.5) fixes uniquely ~l−, including its

orientation. Moreover, this result does not depend on the choice of ~l+, and thus, there can

be spacetimes with boundaries containing null points satisfying the preliminary matching

conditions (2.4) that cannot be glued by any means (see the example in Fig.1 in [83]).

Finally, let us build the dual cobasis to the tangent planes of V± at Σ. To treat the

two ± spacetimes at once, we drop the superscripts ±, not to overload the notation. We

choose a normalisation of the normal form with the aid of the rigging as

n =
N

Nαlα
,

which readily implies that nαl
α = 1. The dual bases are completed with the tangent forms

ωa defined by

ωaαl
α = 0, ωaαe

α
b = δab .

Note that the forms ωa depend on the rigging. Due to the identification of the riggings

and tangent vectors, the normal and the tangent forms can also be identified, so that

{n,ωa} := {n+,ω+a} = {n−,ω−a}. Thus, for a given ~l, the maps Tl : TpV → TpΣ

and Λl : T ∗pΣ → T ∗pV for all p ∈ Σ can be defined [78, 82] as follows. Tl projects a

s-contravariant tensor Θ in V to a s-contravariant tensor in Σ whose components in the

basis {ξa} are

[Tl(Θ)]a1...as = Θα1...αsωa1α1
...ωasαs , (2.6)

while Λl associates a s-contravariant tensor ∆ in V tangent to Σ to a s-contravariant

tensor in Σ with components ∆a1...as in the basis {dξa} as

[Λl(∆)]α1...αs = ∆a1...asω
a1
α1
...ωasαs . (2.7)

In particular, we can use these maps to obtain a 2-contravariant symmetric tensor on

Σ associated to the inverse of the spacetime metric g−1. It reads gab = ωaαω
b
βg

αβ. Note

however, that gab is not the inverse of hab in general, since the first fundamental form

is degenerate at points of Σ where ~n is null. The contraction between them is easily

computed to yield gabhbc = δac −nalc. Another relevant contraction is ωaαe
ρ
a = δρα−nαlρ =:

hρα.
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2.1. Preliminary junction conditions

At points where Σ turns null, if any, h is degenerate and thus it is not possible to define

a connection associated to it. To overcome this we use the connection in V to construct

another in Σ. Consider two vector fields ~x, ~y in Σ, promote them to the spacetime via (2.3)

to obtain the respective spacetime vectors ~X and ~Y , and take the (spacetime) covariant

derivative of one of them along the other one, ∇~Y
~X. In general this vector will have a

component tangent to Σ and some other component in the direction of the rigging. Take

the tangential part of the derivative and project it to Σ via (2.6) to define

∇~y~x :=
(
∇~Y

~X
)
||

= Tl(∇~Y
~X). (2.8)

This is called the rigged connection in [78, 82]. It has no torsion, but in general it is not a

metric connection. Its corresponding Christoffel symbols are given in terms of the vectors

~ea and the forms ωa by

Γabc = ωaρe
α
b∇αe

ρ
c = [Tl (∇~eb~ec)]

a , Γabc = Γacb. (2.9)

Introducing the following objects in Σ

Ψa
b := ωaµe

ν
b∇νl

µ, ϕa := nµe
ν
a∇νl

µ, κab := eαae
β
b∇αnβ, (2.10)

we can cast the Gauss equation for general hypersurfaces [78, 82]

ωdαR
α
βγδe

β
ae

γ
b e
δ
c = R

d

abc − κacΨd
b + κabΨ

d
c , (2.11)

where R
d

abc is the Riemann tensor associated to the connection (2.8), and the Codazzi

equations (1,2,3 respectively) [78, 82]

nµR
µ
βλνe

β
ae

λ
b e
ν
c = ∇cκba −∇bκca + κbaϕc − κcaϕb, (2.12)

ωcµR
µ
βλνl

βeλae
ν
b = ∇aΨ

c
b −∇bΨ

c
a + ϕbΨ

c
a − ϕaΨc

b, (2.13)

nµR
µ
βλνl

βeλae
ν
b = ∇aϕb −∇bϕa + κcbΨ

c
a − κcaΨc

b. (2.14)

To sum up, we have so far constructed the matched spacetime (V , g) with a hypersur-

face Σ ⊂ V that splits it into the two open sets V± with common boundary Σ 1. In each

V± the metric is C2, and C0 on Σ. We have also constructed a basis of the tangent space

of V at points of Σ, given by {~l, ~ea} and also for its dual space, given by {n,ωa}.
1In the beginning of the chapter we denoted the boundaries of V+ and V− by Σ+ and Σ− respectively.

These are diffeomorphic to each other and thus to an abstract manifold Σ (recall (2.1)). This abstract
manifold is embedded in the matched spacetime (V, g) as a hypersurface and abusing of notation, we
refer to this hypersurface embedded in V simply by Σ.
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2. Matching of spacetimes

2.2 On the curvature tensors and field equations

Let us now assume that the construction of the matched spacetime summarized above

has been carried out. Then, the Einstein equations are well defined in the distributional

sense. Throughout this section, the indexes α, β will refer to any admissible coordinates

or continuous basis for which [gαβ] = 0. An introduction with the basic concepts of

the theory of distributions can be found, for instance, in the Appendix of [82] (see also

[74, 106]). For completeness of this brief introduction on the topic, let us include some

definitions and results presented therein in order to keep the exposition of the junction

conditions as self-contained as possible.

Let D(V) be the set of test tensor fields: C∞ tensor fields of any order with compact

support in V . Denote by Dqp the subset of p-covariant q-contravariant tensor fields in

D(V).

Definition 1 (Tensor distribution) The p-covariant q-contravariant tensor distribu-

tions χqp are the linear and continuous functionals

χqp : Dpq → R

Y p
q → χqp(Y

p
q ) :=

〈
χqp, Y

p
q

〉
(2.15)

The set of tensor distributions constitutes a vector space (the sum of tensor distributions

and the product of a tensor distribution with a real number are well defined and are tensor

distributions).

A locally integrable p-covariant q-contravariant tensor field T qp defines uniquely a tensor

distribution T qp by

T qp : Dpq → R

Y p
q →

〈
T qp, Y

p
q

〉
:=

∫
V
T
α1...αq
β1...βp

Y β1...βp
α1...αq

η, (2.16)

being η the volume element of (V , g).

Definition 2 (Tensor distribution components) The components of a p-covariant q-

contravariant tensor distribution χ in a dual basis {{~eµ}, {θµ}} are scalar distributions

χ
α1...αq
β1...βp

defined by〈
χ
α1...αq
β1...βp

, Y
〉

:=
〈
χqp, Y θ

α1 ⊗ · · · ⊗ θαq ⊗ ~eβ1 ⊗ · · · ⊗ ~eβp
〉
,

where Y is a test function.
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2.2. On the curvature tensors and field equations

Thus the following expression follows〈
χqp, Y

p
q

〉
=
〈
χ
α1...αq
β1...βp

, Y β1...βp
α1...αq

〉
.

Now that the components of a tensor distribution are defined, we can define the

contraction as〈
[Ci

j

(
χpq
)
]q−1
p−1, Y

p−1
q−1

〉
=
〈
χ
α1...αi−1µαi+1...αq
β1...βj−1µβj+1...βp

, Y β1...βj−1βj+1...βp
α1...αi−1αi+1...αq

〉
.

This definition of contraction is independent of the basis chosen.

Definition 3 (Support of tensor distributions) The support of a tensor distribution

χqp is the complement in V of the union of all open sets where χqp vanishes.

Definition 4 (Tensor product by tensor fields) The tensor product of a tensor dis-

tribution χqp by a tensor field T rs , defined on a neighbourhood of the support of χqp, is the

(p+ s)-covariant (q + r)-contravariant tensor distribution acting as follows〈
T rs χ

q
p, Y

s+p
r+q

〉
:=
〈
χqp, (T, Y )pq

〉
,

where, in any basis, we define

(T, Y )µ1...µpν1,...νq
:= T ρ1...ρrα1...αs

Y α1...αsµ1...µp
ρ1...ρrν1...νq

.

Sometimes, for this product to make sense it is enough that the tensor field T rs is defined

only on the support of χqp. However, this will not be the case when derivatives are involved.

Tensor distributions can be differentiated. The definition is the following

Definition 5 (Covariant derivative of a tensor distribution) The covariant deriva-

tive ∇χqp of a (p, q)-tensor distribution χqp is the (p + 1, q)-tensor distribution defined by

〈
∇χqp, Y p+1

q

〉
:= −

〈
χqp, (DY )pq

〉
,

where (DY )
µ1...µp
ν1...νq = ∇ρY

ρµ1...µp
ν1...νq .

The components of the covariant derivative ∇χqp, in any basis, are the scalar distributions

∇ρχ
α1...αq
β1,...βp

acting on test functions as

〈
∇ρχ

α1...αq
β1,...βp

, Y
〉

=
〈
χ
α1...αq
β1,...βp

, ∂ρY + ΓσσρY
〉
−

p∑
i=1

〈
χ
α1...αq
β1,...,βi−1σβi+1...βp

,ΓσβiρY
〉

+

q∑
j=1

〈
χ
α1...αj−1σαj+1...αq
β1,...,βp

,ΓαjσρY
〉
.
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2. Matching of spacetimes

This definition of the covariant derivative for tensor distributions agrees with the gener-

alization to a distribution of the covariant derivative of a tensor field, so that ∇T = ∇T .

Back to the problem of the matching of spacetimes, the glued spacetime (V , g) con-

tains a C2 metric everywhere except on a hypersurface Σ, where it is only continuous.

Thus, the curvature tensors are not defined in (V , g) as ordinary tensor fields, but as

tensor distributions. In order to characterize them, let us first introduce two important

distributions. The first one is associated to the Heaviside function θ of Σ

θ =


1 in V+,

1
2

in Σ ,

0 in V−.

(2.17)

This function is locally integrable, and therefore it defines a scalar distribution θ as

〈θ, Y 〉 :=

∫
V+

Y η.

Now, a function f discontinuous in Σ, but differentiable everywhere else and with well

defined limits on Σ, defines a scalar distribution that can be expressed in terms of the

Heaviside distribution as

f = f+ · θ + f− · (1− θ), (2.18)

where f± thus corresponds to the restrictions of f to V± respectively.

In order to take the derivative of (2.18) let us first define a volume element dv on Σ

by

dv = lαdvα = lαηαβ1...βne
β1
1 ...e

βn
n dξ

1 ∧ · · ·dξn,

with lαdvα > 0, or in other words, dvα points from V− to V+. Note that dvα = nαdv by

construction. Thus, the covariant derivative of θ is a one-form distribution with support

on Σ acting as〈
∇θ, ~Y

〉
= −

〈
θ,D~Y

〉
= −

∫
V +

∇αY
αη =

∫
Σ

Y αdvα =

∫
Σ

Y αnαdv,

where we have used Gauss’s theorem in the third equality. It arises a natural scalar

distribution δΣ with support on Σ defined by〈
δΣ, Y

〉
:=

∫
Σ

Y dv . (2.19)

This distribution can be multiplied by any smooth and locally integrable tensor field

defined only on Σ. Observe in particular, from the above, that

δ := ∇α θ. (2.20)
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2.2. On the curvature tensors and field equations

defines a one covariant distribution δ intrinsic to Σ as〈
δ, ~Y

〉
=

∫
Σ

Y αdvα =

∫
Σ

Y αnαdv.

From the identity δ = δΣn it is obvious that the scalar distribution δΣ depends on the

rigging through the normal form n.

The derivative of (2.18) thus reads [78, 82]

∇f = ∇f+ · θ +∇f− · (1− θ) + [f ]δ, (2.21)

where we have followed the usual notation to denote the discontinuity of any quantity

with well defined limits on Σ,

∀q ∈ Σ, [f ] (q) ≡ lim
x →
V+

q
f+(x)− lim

x →
V−

q
f−(x) . (2.22)

Note that the discontinuity function [f ] is defined only on Σ and it is smooth there

by definition (if f+ and f− are). The generalization of the previous constructions from

functions to tensors now follows. Let T be any (p, q)-tensor field which (i) may be dis-

continuous across Σ, (ii) is differentiable on V+ and V−, and (iii) such that T and its

covariant derivative have definite limits on Σ coming from both V+ and V−. Using the

notation T± for the restriction of T to V± respectively, we can construct

T := T+θ + T− (1− θ) in V .

In particular, at each point of Σ

TΣ := T |Σ =
1

2

(
lim
x →
V+

Σ
T+(x) + lim

x →
V−

Σ
T−(x)

)
. (2.23)

Since T in V is locally integrable, in V , it defines a distribution given by

T = T+θ + T− (1− θ) . (2.24)

Generalizing (2.21) appropriately, the covariant derivative of T can be shown to be

[82]

∇T = ∇T+θ +∇T−(1− θ) + [T ]⊗ δΣ (2.25)

where [T ] is the (p, q)-tensor field defined only on Σ, called the “jump” or “discontinuity”

of T at Σ defined as

∀q ∈ Σ, [T ] (q) ≡ lim
x →
V+

q
T+(x)− lim

x →
V−

q
T−(x) . (2.26)
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2. Matching of spacetimes

The index version of (2.25) reads

∇µ T
α1...αq
β1...βp

= ∇µT
+α1...αq
β1...βp

θ +∇µT
−α1...αq
β1...βp

(1− θ) +
[
T
α1...αq
β1...βp

]
nµδ

Σ. (2.27)

The curvature tensors can be defined in a distributional sense. By Theorem 1, the

metric g of V is a C0 tensor and therefore it is only differentiable in the distributional

sense. Thus we write it as a function and distribution respectively

g = g+θ + g−(1− θ), g = g+ · θ + (1− θ) · g−. (2.28)

Recalling the standard definition of the Christoffel symbols and taking the derivative

of the metric tensor distribution (2.28) using the general formula (2.21), plus [gαβ] = 0,

the Christoffel symbols are found to be (as a distribution)

Γαβγ = Γ+α
βγ · θ + Γ−

α
βγ · (1− θ). (2.29)

Now the Christoffel symbols can be defined as functions. The scalar distributions (2.29)

are associated to locally integrable functions given by

Γαβγ = Γ+α
βγθ + Γ−

α
βγ (1− θ) . (2.30)

These functions may be discontinuous across Σ and, as in the general case (2.23), we have

Γαβγ|Σ =
1

2

(
Γ+α

βγ|Σ + Γ−
α
βγ|Σ

)
. (2.31)

Using now the standard formula the Riemann tensor distribution is defined [78, 82] by

Rα
βλµ = ∂λΓ

α
βµ − ∂µΓαβλ + ΓαλρΓ

ρ
βµ − ΓαµρΓ

ρ
βλ.

First of all, we observe that the products of Γ’s are well defined because Γαβγ are distri-

butions associated to locally integrable functions, and actually they become (upon using

θ · θ = θ)

ΓαλρΓ
ρ
βµ = Γ+α

λρΓ
+ρ
βµθ + Γ−

α
λρΓ

−ρ
βµ (1− θ)

On the other hand, we have from (2.29), as in (2.27):

∂µΓαβλ = ∂µΓ+α
βλθ + ∂µΓ−

α
βλ (1− θ) +

[
Γαβγ
]
nµδ

Σ

so that the final expression for the Riemann tensor distribution reads [78, 82]

Rα
βµν = R+α

βµν · θ +R−
α
βµν · (1− θ) + (nµ[Γαβν ]− nν [Γαβµ]) · δΣ, (2.32)

= R+α
βµν · θ +R−

α
βµν · (1− θ) +Hα

βµν · δΣ, (2.33)
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2.2. On the curvature tensors and field equations

where we have encoded the singular term in (2.32) in a tensor

Hα
βµν := nµ[Γαβν ]− nν [Γαβµ] (2.34)

called, precisely, the singular part of the Riemann tensor distribution. This structure is

shared by the Ricci tensor distribution

Rβν = R+
βν · θ +R−βν · (1− θ) +Hβν · δΣ, (2.35)

where its singular part is Hβν := Hα
βαν , and by the Ricci scalar distribution

R = R+ · θ +R− · (1− θ) +H · δΣ, (2.36)

with H := Hα
α. Finally, the Einstein tensor distribution thus gets the form

Gβν = G+
βν · θ +G−βν · (1− θ) + Gβν · δΣ. (2.37)

The singular part of the curvature tensor distribution depends on the discontinuity

of Γαβγ, by (2.34). The next step is to characterize this jump in terms of some geometric

objects related to Σ. To this purpose, let us consider the discontinuity of the derivative

of a function f , which can be decomposed into its transverse and tangent part to Σ as

[∂αf ] = nαl
β[∂βf ] + ωaα∂a[f ].

Applying this formula to the metric tensor, taking into account [gαβ] = 0, we obtain

[∂αgµν ] = ζµνnα,

where ζµν is a symmetric tensor defined at points on Σ, which can be proven not to depend

on the rigging [78, 82]. Thus the discontinuity in the Christoffel symbols reads in terms

of ζµν as

[Γαµν ] =
1

2
(nµζ

α
ν + nνζ

α
µ − nαζµν). (2.38)

Therefore, the explicit decomposition of the object ζαβ in the basis {n,ωa}

ζαβ = ζ
~lnαnβ + ζ

~l
αnβ + ζ

~l
βnα + ζ

~l
αβ, lαζ

~l
αβ = 0, lαζ

~l
α = 0, (2.39)

where the superscript ~l is used to indicate that the objects depend on ~l, allows us to write

(2.38) as

[Γαµν ] =
1

2

(
nαnµnνζ

~l + 2nµnνζ
~l
α

+ nµζ
~l
α

ν + nνζ
~l
α

µ − nαζ
~l
µν

)
. (2.40)
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2. Matching of spacetimes

This latest expression, combined with formula (2.32), shows explicitly that only the com-

ponent of ζαβ (completely) tangent to Σ enters Hα
βµν , i.e.

Hα
βµν =

1

2

(
nα(nµζ

~l
νβ − nνζ

~l
µβ) + nβ(nµζ

~l
α

ν − nνζ
~l
α

µ )
)
. (2.41)

In order to present the so called junction conditions in terms of geometric objects of Σ,

we introduce the tensor Hab in Σ constructed as [78, 82]

Hab = eαae
β
b∇αlβ. (2.42)

Note that this object is not necessarily symmetric. In addition, it does not agree as com-

puted from V+ or V−, and recalling its definition and taking into account that the bases

{~l±, ~e±a } have been identified for the construction of the continuous basis, the difference

of the H±ab is given by

[Hab] := H+
ab −H

−
ab = −lα[Γαµν ]e

µ
ae
ν
b =

1

2
ζαβe

α
ae

β
b . (2.43)

Although H is a tensor defined on Σ, we still keep the brackets in order to denote its

difference as computed using the (different) connections of V± respectively. The promotion

of [Hab] to V via Λl is [Hαβ] = ζ
~l
αβ/2. Let us stress some properties of [Hab] that can be

observed in (2.43). First, it is proportional to the tangential part ζ
~l
αβ of ζαβ. Secondly,

although Hab depends on the choice of the rigging, the difference does not (see Theorem

3.4 in [78] or Theorem 8 in [82]). Finally, [Hab] is a symmetric tensor. The combination of

(2.41) and the spacetime version of (2.43) provides an explicit expression for the singular

part of the Riemann tensor distribution in terms of the [Hab], which reads

Hα
βµν = nα([Hβµ]nν − [Hβν ]nµ) + nβ([Hα

ν ]nµ − [Hα
µ]nν). (2.44)

In view of this expression above, we have

Theorem 2 (Mars, Senovilla, 1993 [82]) The singular part of the Riemann tensor

distribution vanishes if and only if [Hαβ] = 0, or equivalently, iff [Hab] = 0.

Thus, the condition [Hab] = 0 is equivalent to impose that the curvature tensor is free

from singular terms and presents, at most, finite discontinuities on Σ. These are called

the matching conditions, and from the above, they do not depend on the choice of the

rigging.
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2.2. On the curvature tensors and field equations

Similar expressions to (2.44) can be found for the rest of the curvature tensors, leading

to

Hβν = −[Hβν ]n
αnα + [Hαβ]nαnν + [Hαν ]n

αnβ − [Hα
α]nβnν , (2.45)

H = −2nαnα[Hβ
β ] + 2nαnβ[Hαβ], (2.46)

Gβν = −nαnα[Hβν ]− [Hα
α]nβnν + [Hαβ]nαnν + [Hαν ]n

αnβ +

−gβν |Σ ([Hαµ]nαnµ − [Hα
α]nµnµ) . (2.47)

Notice that the necessary conditions for which the Ricci singular part vanishes vary

depending on the causal character of Σ. On the one hand, at points where Σ is null,

Hβν vanishes iff nα[Hαβ] = [Hα
α ] = 0 and thus the matching conditions are a larger

set of conditions. On the other hand, at points where Σ is not null the Ricci singular

part vanishes iff the matching conditions hold. The singular part of the Einstein tensor

distribution vanishes iff the singular part of the Ricci tensor distribution vanishes and

finally, the singular part of the Ricci scalar distribution vanishes iff (~n·~n)[Hα
α] = [Hαβ]nαnβ

(see Theorem 3.3 in [78], or the corresponding Theorem 7 in [82]).

Apart from the implications that the matching conditions have on the singular parts of

the curvature tensor distributions, they also impose restrictions on the possible disconti-

nuities that these can present. A detailed study on the continuities and discontinuities in

the curvature tensors is presented in [78, 82] for the case of a four dimensional spacetime,

but the results are independent of the dimensionality of the spacetime. A straightforward

method consists of taking the differences of Gauss-Codazzi equations for general hyper-

surfaces (2.11)-(2.14) coming from V+ and V−. Recall that these are written in terms of

the objects Ψb
a, ϕa and κab, whose differences, when the matching conditions hold, read

[78, 82]

[Ψa
b ] = 0, [ϕa] = 0, [κab] = 0. (2.48)

It can be proven [78, 82] that [Γabc] = 0 , and therefore the connection ∇ agrees as taken

from V+ and V− respectively. It follows that

[Rµ
αβγ]e

β
ae

γ
b = 0. (2.49)

This relation shows that, once the matching conditions hold, the only allowed discontinu-

itites of the Riemann tensor must adopt the form

[Rαβµν ] = Bβνnαnµ +Bαµnβnν −Bανnβnµ −Bβµnαnν , (2.50)

for some symmetric 2-covariant tensor Bαβ defined on Σ up to transformations of the type

B′αβ = Bαβ + nαXβ + nβXα, (2.51)
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2. Matching of spacetimes

for an arbitrary one-form Xα, so that n + 1 components out of the (n + 1)(n + 2)/2

components of Bαβ can be removed using this freedom. We can use this freedom to

remove any component of Bαβ non-tangential to Σ, fixing completely the one-form Xα

by setting Xα = −lµlβBµβnα/2 − lµeβaBµβω
a
α. Therefore Bαβ and its pullback to Σ, i.e.

Bab = Bαβe
α
ae

β
b , encode the same information and we can use them indistinctly.

Now the discontinuity of the Ricci tensor can be expressed in terms of Bab. An explicit

decomposition in the basis {n,ωa} of the suitable trace of (2.50) yields

[Rαβ] = gabBabnαnβ − 2naBabn(αω
b
β) + nµnµBabω

a
αω

b
β. (2.52)

Note that gabBab = Bα
α . Taking the trace of (2.52), the jump in the Ricci scalar is found

to be

[R] = 2(gabBabn
µnµ − nanbBab). (2.53)

Combining (2.52) and (2.53) it is now straightforward to obtain the relation

nα[Gαβ] = 0. (2.54)

The n+1 equations in (2.54) are the generalized Israel conditions [67] for general matching

hypersurfaces (when the matching conditions hold).

Thus, we have introduced the curvature tensor distributions relevant in order to ob-

tain the field equations as objects defined in the whole spacetime V . The Einstein field

equations Gαβ = 8πTαβ lead to a distributional energy momentum tensor of the form

T βν = T+
βν · θ + T−βν · (1− θ) + τβν · δΣ. (2.55)

The tensor fields T± correspond to the energy momentum tensor defined on each region

V±, whereas ταβ is the singular part, with support on Σ. It is used to model physical

situations like surface layers as crusts in star models [55] or braneworlds [83]. The general-

ized Israel conditions are translated to the energy momentum tensor by means of the field

equations so that nα[Tαβ] = 0. Note that ταβ depends on n (only ταβδ
Σ is intrinsically

defined).

As a consequence of the matching conditions, it is shown in [78, 82] that it is possible

to construct a local system of coordinates in which the metric is C1. To this aim, consider

a C1 change of local system of coordinates x(x′). Note that the preliminary matching

conditions require that the metric is C0 and thus under this change of coordinates the

metric is still continuous (at least). However, we are interested in the derivative of the

metric, and thus the following calculation must be understood in the distributional sense,

although I will not denote it explicitly not to overload the expressions. At points of Σ,
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2.2. On the curvature tensors and field equations

the transformation of the first derivative of metric is given by

∂gα′β′

∂xµ′
=

∂xα

∂xα′
gαβ

∣∣∣∣
Σ

∂

∂xµ′

(
∂xβ

∂xβ′

)
+

∂xβ

∂xβ′
gαβ

∣∣∣∣
Σ

∂

∂xµ′

(
∂xα

∂xα′

)
+

∂xµ

∂xµ′
∂xα

∂xα′
∂xβ

∂xβ′

∣∣∣∣
Σ

∂gαβ
∂xµ

Since we are interested in the jump of this derivative at Σ, we compute first the bracket

of the derivative of the jacobian transformation to find[
∂

∂xµ′

(
∂xβ

∂xβ′

)]
= nµ′T

β
β′ + ωaµ′e

ν′

a

∂

∂xν′

[
∂xα

∂xα′

]
= nµ′T

β
β′ = nµ′nβ′T

β,

for some arbitrary vector T β, defined at points of Σ. In the last step the symmetry of

the second derivatives has been used. Hence, the jump in the (primed) derivative of the

(primed) metric yields[
∂gα′β′

∂xµ′

]
=

∂xα

∂xα′
gαβ

∣∣∣∣
Σ

[
∂

∂xµ′

(
∂xβ

∂xβ′

)]
+

∂xβ

∂xβ′
gαβ

∣∣∣∣
Σ

[
∂

∂xµ′

(
∂xα

∂xα′

)]
+

∂xµ

∂xµ′
∂xα

∂xα′
∂xβ

∂xβ′

∣∣∣∣
Σ

[
∂gαβ
∂xµ

]
= nµ′ (nα′Tβ′ + nβ′Tα′ + ζα′β′)

Taking into account this last expression, the decomposition of ζα′β′ in tangent and normal

components to Σ as in (2.39) and the matching conditions given in Theorem 2, that imply

ζ
~l
αβ = 0 (recall (2.43)), we find that for a change of coordinates with Tα = −ζ~l/2nα−ζ

~l
α, the

metric becomes C1 at Σ. This result recovers the matching conditions in the Lichnerowicz

sense [73].

Timelike matching hypersurfaces

This framework to match spacetimes does not assume any condition on the causal charac-

ter of the matching hypersurface at any point. However, along this thesis we will restrict

ourselves to matching hypersurfaces that are timelike everywhere. Therefore, any nor-

mal vector ~n is transverse to Σ± everywhere, and we can set ~l± = ~n±, so that n±(~n±) = 1

and {~n,~ea} is clearly a basis of TpV at points of Σ. The dual tangent space is built now

with respect to ~n. According to Lemma 1, given ~n+ the system (2.5) provides a unique

solution with the correct orientation for ~n−. Moreover, the first fundamental form hab

becomes non degenerate and its inverse is just hab = gab. The spacetime version of the

first fundamental form, unique due to (2.2), is given by the projector to Σ (defined only

on Σ)

hµν = gµν |Σ − nµnν . (2.56)

29



2. Matching of spacetimes

Notice that

nµhµν = 0, hµρh
ρ
ν = hµν , hµµ = n, hµνe

µ
ae
ν
b = hab

and that

eµa = hab ω
b
ν g

νµ|Σ, eµcω
c
ν = hµν .

Despite all the above, the extrinsic curvatures, or second fundamental forms, inherited

by Σ from both sides V± will be, in principle, different, because the derivatives of the

metric are not continuous in general. The tensor Hab defined in (2.42) corresponds now

to the second fundamental form κab, defined as

κ±ab := eαae
β
b∇
±
αnβ, κ±ab = κ±ba, (2.57)

or written in the spacetime version κ±µν := ωaµω
b
νκ
±
ab

κ±µν = hρνh
σ
µ∇±ρ nσ, κ±µν = κ±νµ

where only tangent derivatives are involved. Obviously nµκ±µν = 0 by construction, thus

only the n(n + 1)/2 components tangent to Σ are non-identically vanishing. In terms of

the embeddings (2.1) these components are given by

κ±ab = −n±µ

(
∂2Φµ

±

∂ξa∂ξb
+ Γ±µαβ

∂Φα
±

∂ξa
∂Φβ
±

∂ξb

)
, (2.58)

which is adapted to explicit calculations.

Using (2.58) together with (2.40) we deduce

κ+
ab − κ

−
ab = −nµ

[
Γµρσ
]
eρae

σ
b =

1

2
ζ~nρσe

ρ
ae
σ
b , (2.59)

that is to say, the tangent part of ζµν is characterized by the difference of the two ±-

second fundamental forms. Thus, defining the jump on Σ of the second fundamental form

as usual

[κµν ] := κ+
µν − κ−µν , nµ [κµν ] = 0 (2.60)

we can rewrite the singular part of the Riemann tensor distribution (2.41) as

Hαβµν = nα([κβµ]nν − [κβν ]nµ) + nβ([καν ]nµ − [καµ]nν). (2.61)

Compare this expression with the analogous one given for general hypersurfaces (2.44).

It is manifest that the role of [Hαβ] is now played by the jump of the second fundamental

form. In fact, in order to derive the matching conditions, we can either start from (2.61)

or take the expressions developed for general hypersurfaces and substitute the tensor [Hab]
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2.2. On the curvature tensors and field equations

there by [κab]. It can be shown [78, 82] that in general hypersurfaces the proportionality

relation [κab] = (~n · ~n)[Hab] holds, and therefore the matching conditions for timelike

hypersurfaces become [κab] = 0.

The expressions (2.45), (2.46) and (2.47) that describe the singular parts in the curva-

ture tensor distributions remain valid with the change [Hab]→ [κab], since [Hab] does not

depend on the choice of ~l. We include them for completeness. After some simplifications

they read

Hβν = −[κβν ]− [καα]nβnν , (2.62)

H = −2[κββ], (2.63)

Gβν = −[κβν ] + [καα](gβν |Σ − nβnν), (2.64)

⇒ nβGβν = 0. (2.65)

Note that in General Relativity the singular part ταβ of the energy momentum tensor

(2.55) is now tangent to Σ due to (2.65). In order to compute the jumps of the curvature

tensors in terms of the extrisic curvature, let us remark that the connection ∇ introduced

in (2.8) for general hypersurfaces is now constructed with respect to a normal vector to

Σ, and it is the unique metric connection associated with the first fundamental form h.

The two objects defined in (2.10) become Ψb
a = κba and ϕa = 0. Thus, the Gauss equation

(2.11) takes the standard form

ωdαR
α
βγδe

β
ae

γ
b e
δ
c = R

d

abc − κacκdb + κabκ
d
c , (2.66)

while the Codazzi equations (2.12) and (2.13) collapse to the single equation

nµR
µ
βλνe

β
ae

λ
b e
ν
c = ∇cκba −∇bκca, (2.67)

and Codazzi 3 equation (2.14) vanishes identically.

The aforementioned discontinuities, letting aside that of the Riemann tensor, which

is still given by (2.50), follow from (2.52) and (2.53) just setting gab = hab plus na = 0.

Alternatively one can take traces of (2.50) using nαBαβ = 0, and they read now

[Rαβ] = habBabnαnβ +Babω
a
αω

b
β = Bρ

ρnαnβ +Bαβn
ρnρ, (2.68)

[R] = 2habBab = 2Bα
α , (2.69)

[Gαβ] = (Bab − hcdBcdhab)ω
a
αω

b
β = Bαβ −Bρ

ρhαβ, (2.70)

⇒ nα[Gαβ] = 0. (2.71)

The physical interpretation of the matching conditions becomes more clear now. The

independent discontinuities are encoded in the jump of the Einstein tensor, completely
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2. Matching of spacetimes

tangent to Σ. The field equations propagate (2.71) to the energy momentum tensor and

we find nα[Tαβ] = 0. The decomposition of the energy momentum tensor in the basis

{n,ωa} at points of Σ

Tαβ = T⊥nαnβ + nαT
|
β + nβT

|
α + T

||
αβ, nαT |α = 0, nαT

||
αβ = 0

holds for of the + and − spacetimes. Thus, the energy density, energy fluxes and pressure

components tangent to Σ, reflected in the tangent part T
||
αβ of the energy momentum

tensor, are allowed to be discontinuous, encoding in addition all the independent disconti-

nuities. Conversely, the normal pressure to Σ, encoded in T⊥ and the energy flux through

Σ, in T
|
α, must be continuous.

2.3 Matchings preserving the symmetries

In many physical situations it is required that the whole matched spacetime exhibits some

symmetries, and for this, the independent spacetimes to be matched must share these sym-

metries, which, in addition, are asked to be inherited by the matching hypersurface Σ. In

rough words, this amounts to requiring that the restrictions to the matching hypersurface

Σ of the generators of the symmetries (wanted to be preserved) in the spacetimes (V±, g±)

are tangent to Σ. The precise definition of a matching preserving the symmetries, given

in [108], is

Definition 6 Let (V , g) be a spacetime arising from the matching of two oriented C2

spacetimes (V±, g±) admitting a Gn+ and Gn− local group of symmetries, respectively,

and with respective boundaries Σ± given by the embeddings (2.1). Then (V , g) preserves

the symmetry defined by the subgroup Gm with m ≤ min{n+, n−} when first, this group

is admitted by both (V±, g±), and second, the differential maps dΦ± send m vector fields

~γA (A = 1, ...,m) on Σ to the restrictions of the generators ~K±A of Gm to Σ±.

One of the first consequences of the symmetry preserving matchings is that if the

preserved symmetries are generated by conformal Killing vector fields these satisfy

Lemma 3 (Vera, 2002 [108]) Let ~ζ+ and ~ζ− be two conformal Killing vector fields

acting on (V+, g+) and (V−, g−) respectively, so that L~ζ±g± = α±g± for some functions

α±, allowed to be zero. If (V+, g+) and (V−, g−) are matched across a matching hyper-

surface Σ ≡ Σ+ = Σ− diffeomorphic by (2.1) such that there is a vector field ~γ satisfying

dφ±(~γ) = ~ζ±|Σ, then α+|Σ = α−|Σ.

This kind of matchings is appropriate for the study of isolated bodies rotating in

equilibrium: the models are constructed matching a spacetime containing an interior
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2.3. Matchings preserving the symmetries

fluid with an exterior vacuum spacetime. Both are stationary and axially symmetric,

admitting thus a G2 group of isometries acting on T2 surfaces. The matching is asked to

preserve these symmetries. Axial symmetry forces the G2 on T2 groups to be Abelian in

both interior and exterior spacetimes [81]. On the other hand, the orthogonal transitivity

property is only guaranteed in vacuum, although assumed in the fluid region imposing

the circularity condition.

However, the property of orthogonal transitivity of a G2 group in one of the spacetimes

is propagated to the matching hypersurface when the matching preserves the symmetries.

Let us summarize two important results that apply to any two-dimensional G2 local group

of symmetries acting on non null surfaces. For this, consider the generators {~ξ+, ~η+} and

{~ξ−, ~η−} in (V+, g+) and (V−, g−) respectively. Their associated one-forms are {ξ+,η+}
and {ξ−,η−} so that the 4-forms ξ± ∧ η± ∧ dη± and ξ± ∧ η± ∧ dξ±, define, through the

Hodge dual ?, two n− 3-forms that in 4 dimensional spacetimes are just functions.

Theorem 3 (Vera, 2002 [108]) Given a matching preserving the symmetry of a

G2 local conformal group, not necessarily proper, and choosing {~ξ+, ~η+} and {~ξ−, ~η−} as

the sets of generators of the G2 groups at (V+, g+) and (V−, g−) respectively such that

dΦ± (~γ1) = ~ξ±
∣∣∣
Σ±

and dΦ± (~γ2) = ~η±|Σ±, for a pair ~γ1 and ~γ2, of vectors on Σ, then

?
(
η+ ∧ ξ+ ∧ dξ+

) Σ
= ?

(
η− ∧ ξ− ∧ dξ−

)
,

?
(
ξ+ ∧ η+ ∧ dη+

) Σ
= ?

(
ξ− ∧ η− ∧ dη−

)
.

In particular, Theorem 3 implies, when one of the G2 groups, say that of the spacetime

+, acts orthogonally transitively on Σ the following

Corollary 3.1 (Vera, 2002 [108]) Given a matching preserving a G2 local conformal

group – not necessarily proper – as defined above and such that the G2 acts orthogonally

transitively at one side of Σ, say at (V+, g+) then

?
(
η− ∧ ξ− ∧ dξ−

) Σ
= 0,

?
(
ξ− ∧ η− ∧ dη−

) Σ
= 0.

A similar result regarding the integrability of (conformal) Killing vectors holds, pro-

vided that the matching preserves the symmetries. Although it was not presented in [108]

it can be proven using the same construction needed for Theorem 3. It reads

Lemma 4 Given a symmetry preserving matching, let ~ζ± be (conformal) Killing vector

fields in (V+, g+) and (V−, g−) respectively, such that dΦ±(~γ) = ~ζ±|Σ, for some vector ~γ

in Σ. Then

ζ+ ∧ dζ+ Σ
= ζ− ∧ dζ−. (2.72)
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2. Matching of spacetimes

Corollary 3.2 And if ~ζ+ is integrable, it follows that

ζ− ∧ dζ−
Σ
= 0. (2.73)

Proof: We include here the proof for the result (2.72), which follows the proof of Theorem

3 given in [108]. The explicit decomposition of any one-form ζ at points of Σ in the cobasis

{n,ωa} reads

ζ|Σ = Ξn+ ζaω
a, Ξ := ζ(~l), ζa := ζ(~ea).

The exterior derivative of ζ decomposes as

dζ|Σ = Aabω
a ∧ ωb +Ban ∧ ωa,

where we have defined

Aab := ~e[a

(
ζb]
)
, A(ab) = 0;

Ba := 2lαeβa∇[αζβ] = lαeβa∇αζβ − ~ea(Ξ) + ζαe
β
a∇βl

α.

Thus the 3-form resulting from the wedge product at points of Σ reads

ζ ∧ dζ|Σ = (ζaAbc)ω
a ∧ ωb ∧ ωc + (ΞAab − ζaBb)n ∧ ωa ∧ ωb. (2.74)

We are interested in computing the difference of this last product as seen from the two

spacetimes + and −. Note first that since the matching preserves the symmetries [ζ] = 0,

so that [Ξ] = [ζa] = 0. As a consequence, the tangential derivatives of [Ξ] and [ζa] also

agree on Σ. Recalling the definition of Aab, this implies [Aab] = 0. Finally, for Ba we find

[Ba] = lαeβa [∇αζβ] + ζαe
β
a [∇βl

α] = lαeβa [∇αζβ] + ζb[Hab],

and after a little manipulation the first summand can be written as

lαeβa [∇αζβ] = lαeβa [L~ζgαβ] + ζαeβa [∇βlα].

Therefore, the difference of (2.74) as seen from the sides + and − is given by

[ζ ∧ dζ] = −ζa(lαeβb [L~ζgαβ] + 2ζc[Hbc])n ∧ ωa ∧ ωb,

which after the imposition of the matching conditions, [Hab] = 0, becomes

[ζ ∧ dζ] = −ζalαeβb [L~ζgαβ]n ∧ ωa ∧ ωb.

This expression vanishes by assumption due to Lemma 3.
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3

Perturbed matching of spacetimes

The previous chapter was devoted to construct a spacetime by joining two spacetimes

across a common boundary. After some development, the matching conditions are for-

mulated as a set of equations involving the first and second fundamental forms, which

depend not only on the spacetimes to be matched but also on the matching hypersurface

itself.

However, there are some problems in GR for which a perturbative approach is con-

venient. For instance, the only known solution of a fluid ball rotating in equilibrium

and immersed in vacuum has been only achieved in perturbation schemes [16, 21, 57].

The matching conditions can be formulated in perturbation theory, but in the process an

additional complication arises. Perturbation theory carries an inherent freedom known

as the gauge freedom that affects, in particular, the fundamental objects of the match-

ing theory, the perturbed first and second fundamental forms. A second freedom of this

type arises from the identification of the boundaries themselves. To sum up, two levels

of gauge freedom are inherent to the perturbations of hypersurfaces and result relevant,

for instance, in the determination of their deformation. A successful theory of perturbed

matchings has to be independent of these freedoms, and free of gauge choices that may

restrict its applicability. This was achieved in full generality in [79], where first and second

order perturbations of hypersurfaces were considered. The analysis of the gauge freedoms,

although already present in [79], is retaken in a subsequent work [80] where also the con-

sequences that symmetries of the background spacetime have in the perturbation method

are studied.

There are other approaches mainly devoted to spherically symmetric background

spacetimes. The classical papers [51, 52] discuss a general framework around spheri-

cal symmetry, but their approach to the matching conditions contains imprecissions (see

[80]). This formalism is revisited in [85] with the aim at justifying the claims in [51, 52]. In

[85] the formulation of the matching conditions is built upon a class of (spacetime) gauges
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3. Perturbed matching of spacetimes

that maps the perturbed matching hypersurface to the background matching hypersur-

face, thus introducing the concept of surface comoving gauges1. Although the matching

conditions are eventually provided in terms of (spacetime) gauge independent quantities,

some imprecissions and implicit assumptions are still present, which may give rise to prob-

lems by not properly using the framework, as discussed with detail in [80]. In particular,

these approaches ignore the hypersurface gauge freedom, which may have some subtle

importance, for instance when showing the existence of the perturbed matching.

In [87] the perturbed matching conditions are found for background geometries with

a high degree of symmetry, and in that case the first order matching conditions are

presented in terms of double gauge invariants, i.e. quantities that are both spacetime and

hypersurface gauge invariants. It was shown in [80] that that set of matching conditions is

not sufficient to ensure the perturbed matching, since it does not cover the l = 0, 1 sectors

of the matching conditions (in a decomposition using spherical harmonics). Perturbations

of hypersurfaces to second order haven been also treated in [11] in the context of cosmic

strings and branes.

In this thesis we will follow the consistent and general theory of perturbed matchings

to second order provided in [79], which formulates the set of matching conditions inde-

pendetly of the gauges used at either side of the matching and provides the deformation

with respect to those gauges.

This chapter is devoted to summarize the main ingredients and results of [79] (and

[80]). It is divided in 5 sections. In first place (Sections 3.1 and 3.2), we present the

metric perturbations as a problem for two-covariant symmetric tensors defined in a fixed

spacetime (the background) and the deformation of the hypersurfaces encoded in a vector

field defined in an (unperturbed) hypersurface embedded in that background spacetime.

Section 3.3 is devoted to the construction of tensorial objects, also defined in the unper-

turbed hypersurface in the background spacetime, that represent the perturbed first and

second fundamental forms induced by the metric and hypersurface perturbations. Finally,

the perturbed matching conditions are presented as equations for those tensorial objects

in Section 3.4. The last section (3.5) is devoted to summarize some peculiarities that arise

when the background spacetime has symmetries.

1We will refer to the gauges used in [85] as “surface comoving gauges”, although in that work this
is referred to as “surface gauges”. We keep the “surface gauge” term when we require also a pointwise
identification. We explain these gauges just after Proposition 4.
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3.1. Metric perturbations

3.1 Metric perturbations

Let us consider a one parameter family of n+1 dimensional spacetimes (Vε, ĝε) diffeomor-

phic to each other. From this family of spacetimes we single out one element, (V0, g0) as

the background spacetime. For the sake of notation, in most places we drop the subindex

0 to denote objects related to the background, and hence we will refer to this spacetime

simply by (V , g). By assumption there is some ε-dependent diffeomorphism ψε

ψε : V → Vε. (3.1)

The diffeomorphism ψε allows us to define a one parameter family of metrics 2 gε on V
related to ĝε. In terms of the pullback ψ∗ε these can be expressed as gε := ψ∗ε(ĝε), so

that g = gε=0. The first and second order perturbation tensors are symmetric 2-covariant

tensors in the spacetime (V , g) defined as follows

K1 :=
dgε
dε

∣∣∣∣
ε=0

, K2 :=
d2gε
dε2

∣∣∣∣
ε=0

. (3.2)

Perturbation theory to second order consists in the study of these two tensors.

Tensorial objects in contravariant form can also be pushforwarded to (V , g) through

the inverse map ψ−1
ε , so that, for instance, a one parameter family of two contravari-

ant symmetric tensors can be defined on V in terms of the inverse metrics ĝ−1
ε via the

pushforward dψ−1
ε so that (

g−1
ε

)αβ
:=
(
dψ−1

ε

(
ĝ−1
ε

))αβ
. (3.3)

Note that (g−1
ε )αβ = gαµgβν(g

−1
ε )µν is not gεαβ. Taking ε-derivatives at ε = 0 the pertur-

bation of the inverse metrics are found to be

K−1
1

αβ
:=

dg−1
ε

αβ

dε

∣∣∣∣∣
ε=0

= −Kαβ
1 , K−1

2
αβ

:=
d2g−1

ε
αβ

dε2

∣∣∣∣∣
ε=0

= −K2
αβ + 2K1

ραK1
β
ρ.

Note that K1, K2, K−1
1 and K−1

2 are all tensors in the background spacetime (V , g) and

thus their indices are raised and lowered with the metric g, or its inverse. In a more

general situation, given a family of covariant tensors T̂ε in (Vε, ĝε), a corresponding family

Tε can be obtained in the background spacetime (V , g) via the pull back ψ∗ε . Similarly, a

family of contravariant tensors can be pushed forward by dψ−1
ε in order to define a family

of contravariant tensors in (V , g). Once the Tε are constructed in (V , g), the corresponding

first and second order perturbations are defined by

T (1) :=
dTε
dε

∣∣∣∣
ε=0

, T (2) :=
d2Tε
dε2

∣∣∣∣
ε=0

. (3.4)

2These are C3, nondegenerate, symmetric, two-covariant tensor fields in V. The construction is C2

with respect to ε.

37



3. Perturbed matching of spacetimes

Let us consider the family of tensors gε and its corresponding family of associated con-

nections, ∇ε. The relation of the covariant derivatives of gε and g(= gε=0), denoting

∇ := ∇ε=0, is given by the standard formula

∇ε
µT

α
β = ∇µT

α
β − CενβµTαν + Cε

α
νµT

ν
β , (3.5)

where Cε
α
βγ = (1/2)gε

αµ(∇βgεµγ +∇γgεµβ − ∇µgεβγ). It is convenient to define here the

first and second order perturbations of Cε
α
βγ. These read

C(1)α

βγ :=
dCε

α
βγ

dε

∣∣∣∣
ε=0

=
1

2

(
∇βK1

α
γ +∇γK1

α
β −∇αK1βγ

)
, (3.6)

C(2)α

βγ :=
d2Cε

α
βγ

dε2

∣∣∣∣
ε=0

= Sαβγ − 2K1
α
ρC

(1)ρ

βγ,

with

Sαβγ :=
1

2

(
∇βK2

α
γ +∇γK2

α
β −∇αK2βγ

)
. (3.7)

Back to relation (3.5), it allows us to express the first and second derivatives with respect

to ε at ε = 0 of the ε-covariant derivative of a one parameter family of tensors Tε
α
β in

terms of objects defined in the background spacetime. We find, explicitly

d∇ε
µTε

α
β

dε

∣∣∣∣
ε=0

= ∇µT
(1)α

β − Tαν C(1)ν

βµ + T νβC
(1)α

νµ, (3.8)

d2∇ε
µTε

α
β

dε2

∣∣∣∣
ε=0

= ∇µT
(2)α

β − Tαν C(2)ν

βµ + T νβC
(2)α

νµ − 2T (1)α

νC
(1)ν

βµ + 2T (1)ν

βC
(1)α

νµ,(3.9)

We can now obtain the field equations that the perturbation tensors K1 and K2 satisfy

in terms of background objects. To this aim, let us apply relation (3.5) repeatedly to an

arbitrary one form ω to find

∇ε
ν∇ε

µωβ = ∇ν∇µωβ − (∇νCε
ρ
βµ)ωρ + Cε

λ
βνCε

ρ
λµωρ − Cε

ρ
µν(∇ρωβ − Cελβρωλ)

− 2Cε
ρ
β(µ∇ν)ωρ. (3.10)

The antisymmetrization of this last expression in {µν} provides the following relation

between the Riemann tensor of gε and that of g

R ρ
µνβ (gε) = R ρ

µνβ (g)− 2∇[µCε
ρ
ν]β + 2Cε

λ
β[µCε

ρ
ν]λ. (3.11)

Taking the first and second derivatives with respect to ε at ε = 0 of the previous expression

we find that the perturbations of the Riemann tensor read

R(1) ρ

µνβ :=
dR ρ

µνβ (gε)

dε

∣∣∣∣∣
ε=0

= −2∇[µC
(1)ρ

ν]β, (3.12)

R(2) ρ

µνβ :=
d2R ρ

µνβ (gε)

dε2

∣∣∣∣∣
ε=0

= −2∇[µC
(2)ρ

ν]β + 4C(1)λ

β[µC
(1)ρ

ν]λ. (3.13)
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3.1. Metric perturbations

Now it is direct to find the perturbations of the Ricci tensor

R(1)
µβ :=

dRµβ(gε)

dε

∣∣∣∣
ε=0

= −2∇[µC
(1)ρ

ρ]β

=
1

2

(
−∇µ∇βK1

ρ
ρ −∇ρ∇ρK1βµ + 2∇ρ∇(βK1

ρ
µ)

)
, (3.14)

R(2)
µβ :=

d2Rµβ(gε)

dε2

∣∣∣∣
ε=0

= −2∇[µC
(2)ρ

ρ]β + 4C(1)λ

β[µC
(1)ρ

ρ]λ

=
1

2

(
−∇µ∇βK2

ρ
ρ −∇ρ∇ρK2βµ + 2∇ρ∇(βK2

ρ
µ)

)
+ 4C(1)λ

β[µC
(1)ρ

ρ]λ

+4∇[µ(C(1)η

ρ]βK1
ρ
η), (3.15)

and of the Ricci scalar

R(1) :=
dR(gε)

dε

∣∣∣∣
ε=0

=
dgε

µβRµβ(gε)

dε

∣∣∣∣
ε=0

= −K1
µβRµβ + gµβR1µβ

= −K1
µβRµβ −�K1

ρ
ρ +∇ρ∇µK1

ρ
µ, (3.16)

R(2) :=
d2R(gε)

dε2

∣∣∣∣
ε=0

=
d2gε

µβRµβ(gε)

dε2

∣∣∣∣
ε=0

= −K2
µβRµβ −�K2

ρ
ρ +∇ρ∇µK2

ρ
µ

+2K1
ρβK1

µ
ρRµβ −K1

µβ
(
−∇µ∇βK1

ρ
ρ −∇ρ∇ρK1βµ + 2∇ρ∇(βK1

ρ
µ)

)
+4gµβ

(
C(1)λ

β[µC
(1)ρ

ρ]λ +∇[µ(C(1)ρ

ρ]βK1
ρ
η)
)
, (3.17)

The perturbations of the Riemann tensor (3.12) and (3.13) display the same structure

for higher order terms, i.e. the term C(2) enters (3.13) exactly as the C(1) does in (3.12),

although (3.13) includes, additionally, inhomogeneous terms coming from the first order.

This structure is propagated to the perturbations of the Ricci tensor (3.14), (3.15), where

the contributions of K2 (the first line of (3.15)), are identical to those of K1 in (3.14).

The same can be observed for the Ricci scalar in (3.16) and (3.17).

With the expressions above, the perturbations of the Einstein tensor read

G(1)
βµ = R(1)

βµ −
1

2

(
K1βµR + gβµR

(1)
)
, (3.18)

G(2)
βµ = R(2)

βµ −
1

2

(
K2βµR + gβµR

(2) + 2K1βµR
(1)
)
. (3.19)

For a matter configuration described by an energy momentum tensor Tεβµ, defining as

usual its first and second order perturbations T (1)
βµ and T (2)

βµ respectively, the field

equations read G(i)
βµ = 8πT (i)

βµ, for i = 1, 2. For vacuum, the perturbed field equations

to order i = 1, 2 reduce to R(i)
βµ = 0.

The perturbative approach described so far relies on the identification of Vε with V
via some diffeomorphism (3.1). However, there exists the freedom of taking any other
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3. Perturbed matching of spacetimes

different identification. This freedom arises naturally if we take a diffeomorphism in each

manifold Vε before the identification of spacetimes, for instance the original identification

(3.1), is carried through. Thus, it is clear that the identification is non unique. We can

deal with this situation by taking into consideration a ε-dependent diffeomorphism in V
before applying ψε. Let us denote this diffeomorphism in the background spacetime (V , g)

by Ωε. It generates a new identification of spacetimes driven by ψ
(g)
ε := ψε ◦ Ωε and it

induces a new family of tensors g
(g)
ε = ψ

(g)
ε

∗
(ĝε) = Ω∗ε(gε) on V . Now, the gauged metric

perturbations are constructed analogously to (3.2) and denoted by a (g) superscript, so

that

K1
(g) :=

dg
(g)
ε

dε

∣∣∣∣∣
ε=0

, K2
(g) :=

d2g
(g)
ε

dε2

∣∣∣∣∣
ε=0

. (3.20)

The relation between the perturbation tensors K1
(g), K2

(g) and K1, K2 is addressed in

the following proposition, in terms of the first and second order (spacetime) gauge vectors
~S1 and ~S2 defined as follows

~S1 :=
∂Ωε

∂ε

∣∣∣∣
ε=0

, (3.21)

~S2 := ~V2 +∇~S1

~S1, ~Vε :=
∂(Ωε+h ◦ Ω−1

ε )

∂h

∣∣∣∣
h=0

, ~V2 :=
∂~Vε
∂ε

∣∣∣∣∣
ε=0

. (3.22)

Proposition 1 (Bruni et al, 1997 [19]; Mars, 2005 [79]) Under a gauge trans-

formation defined by the vectors ~S1 and ~S2, the first and second order perturbation tensors

transform as

K1
(g)

αβ = K1αβ + L~S1
gαβ, (3.23)

K2
(g)

αβ = K2αβ + L~S2
gαβ + 2L~S1

K1αβ − 2Sµ1S
ν
1Rαµβν + 2∇αS

µ
1∇βS1µ,

(3.24)

Note that if ~S1 = 0, the gauge transformation of the second order perturbation tensor

becomes linear, in the sense that it is analogous to a first order gauge transformation.

3.2 Perturbation of hypersurfaces

Deformation vectors

Consider now a family of spacetimes with boundary (Vε, ĝε, Σ̂ε). The setting for the

description of the deformation of the boundary is constructed as follows. Assume that

the Vε are submanifolds of a larger manifold without boundaryWε, so that for each ε, Σ̂ε
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3.2. Perturbation of hypersurfaces

Figure 3.1: Graphic description of the spacetime gauge freedom. Let the spacetimes
(V̂ε, ĝε) be identified by the diffeomorphism ψε. It is clear from the picture that q̂ = ψε(q)
and p̂ = ψε(p). Consider now a diffeomorphism Ωε in the background, so that the point p
in the background spacetime is mapped to q = Ωε(p). This defines the new identification

ψ
(g)
ε , by q̂ = ψε(q) = ψε ◦ Ωε(p) ≡ ψ

(g)
ε (p). The gauge transformation is defined to first

order by the vector ~S1.

is an embedded hypersurface in Wε. The whole construction will be independent on the

choice of extension used to constructWε. Assume now that (Wε, ĝε) are diffeomorphically

related by some ψε. We also assume that Σ̂ε are timelike everywhere (in [79] the whole

formalism is developed demanding that these are simply non-null everywhere). Each Σ̂ε is

projected to the background spacetime (W = Ŵε=0, g) via the map ψε, generating there

a one parameter family of hypersurfaces Σε. The deformation of Σ0 ≡ Σ̂0 as ε varies, as a

set of points, is encoded in this family of hypersurfaces embedded in W . It is important

to note here that the deformation is referred to an specific choice of gauge, since the whole

construction depends on ψε.

At this point an additional freedom of the process arises. In order to know how points

in Σ0 are mapped to Σε, we need to identify the Σ̂ε among themselves. This prescription

is known as the hypersurface gauge freedom and it is driven by a map φε : Σ→ Σ̂ε, where

Σ is an abstract copy of one element of the family, say Σ0. Now, using the spacetime

identification ψε we construct the family of embeddings Φε := ψ−1
ε ◦ φε, which map the

abstract hypersurface Σ to the embedded hypersurfaces Σε. Introducing local coordinates

{ξa} in Σ, where the index a ranges from 1 to n, and {xα} in W , where α goes from 0 to
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3. Perturbed matching of spacetimes

Figure 3.2: The hypersurfaces Σ̂ε are projected down onto the background (V , g) by the
map ψε to generate the family Σε. This family describes how the background Σ0 changes
as ε varies as a set of points on V . But this is not enough to take ε-derivatives. We still
need to prescribe how a given point p0 ∈ Σ0 is mapped onto Σε.

n, we can write the embedding Φε in local form

Φε : Σ→W
ξa → xα = Φα(ξa, ε). (3.25)

We single out the embedding Φε=0 as the unperturbed embedding, so that it embeds Σ

into (W , g) as Σ0 = Φ0(Σ). The hypersurface Σ is equipped with a nondegenerate metric

h := Φ∗0(g) and its associated covariant derivative ∇. We define the tangent basis of Σ0 in

W by ~ea := dΦ0(∂/∂ξa) and denote by ~n a normal spacelike unit vector to Σ0. The dual

basis {n,ω} is defined as in Chapter 2. The manifold Σ inherits a second fundamental

form given by κ := Φ∗0(∇n). Recall that the projection tensor to the hypersurface Σ0 in

terms of the tangent and dual bases is hαβ := eαaω
a
β.

For a fixed point of the hypersurface Σ, the embedding Φε generates a curve on W as

ε varies, that starts at p0 ≡ Φ0(p) ∈ Σ0. The tangent vector to this curve at points of Σ0,

and its acceleration, define respectively the first and second order perturbation vectors
~Z1 and ~Z2 as follows

Proposition 2 (Mars, 2005 [79]) The first and second order perturbation vectors
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3.2. Perturbation of hypersurfaces

Figure 3.3: Take a point p in Σ. This corresponds to p0 in Σ0. Via the diffeomorphism
φε (in gray) that identifies the hypersurfaces Σ̂ε (in thick blue lines) among themselves,
p0 is mapped to p̂ε, in the spacetime (Wε, ĝε). This point p̂ε is now mapped via ψ−1

ε

(in turquoise) to the background spacetime so that pε = ψ
(−1)
ε (p̂ε). The embedding Φε,

defined as the composition Φε := ψ−1
ε ◦ φε identifies pointwise the hypersurfaces Σε (in

blue, dotted) and for a fixed p0 ∈ Σ0 it produces a curve as ε varies. The tangent vector

and the acceleration of this curve at p0 are precisely ~Z1 and ~Z2.

~Z1(ξ) and ~Z2(ξ) of the hypersurface Σ read

Zα
1 (ξa) =

∂Φα(ξa, ε)

∂ε

∣∣∣∣
ε=0

, (3.26)

Zα
2 (ξa) =

∂2Φα(ξa, ε)

∂ε2

∣∣∣∣
ε=0

+ Γαβγ(x
(0)(ξa))Zβ

1 (ξa)Zγ
1 (ξa), (3.27)

where x(0)(ξa) is the local form of the (unperturbed) embedding Φ0.

Let us decompose ~Z1 and ~Z2 into normal and tangent parts to Σ0, i.e.

~Z1 = Q1~n+ ~T1, ~Z2 = Q2~n+ ~T2. (3.28)

In what follows we may use ~Z, Q, ~T to refer to both ~Z1, Q1, ~T1 or ~Z2, Q2, ~T2. Also, we

will refer to the vectors Tα and function Q (3.28) defined at points on Σ ⊂ V and to the

corresponding vector T a and function Q defined in Σ by ~T and Q indistinctively.

The deformation vectors depend on both spacetime and hypersurface gauges. Let us

describe first their dependence in the latter. We have prescribed how the hypersurfaces
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3. Perturbed matching of spacetimes

Σ̂ε are identified among themselves via some diffeomorphism φε. The freedom inherent

here relies, again, on the possibility of taking diffeomorphisms within each Σ̂ε before

performing the identification among themselves, generating thus a new identification.

This is the essence of the hypersurface gauge freedom and it is best described at the level

of the embedding Φε. Let us then consider a diffeomorphism χε on Σ previous to the

application of the map Φε. The coordinated form is a ε-change of the type ξ̂a = ξ̂a(ξb, ε),

χε : Σ→ Σ,

ξa → ξ̂a = ξa(ξb, ε). (3.29)

As a result, a new family of embeddings Φ
(h)
ε = Φε ◦ χε can be constructed. The gauge

vectors are defined analogously as the spacetime gauge vectors (see (3.22)), but the role

played by the diffeomorphism Ωε in (3.22) corresponds now to χε. Thus we introduce the

hypersurface gauge vectors in terms of χε as

~u1 :=
∂χε
∂ε

∣∣∣∣
ε=0

, ~u2 :=
∂

∂ε

(
∂(χε+h ◦ χ−1

ε )

∂h

∣∣∣∣
h=0

)∣∣∣∣
ε=0

+∇~u1~u1. (3.30)

Note that ~u1 and ~u2 are vectors defined on Σ, but can be promoted to spacetime vectors

(that we shall still denote by ~u1 and ~u2) tangent to Σ0.

Proposition 3 (Mars, 2005 [79]) Under a gauge transformation on Σ defined by

gauge vectors ~u1 and ~u2, ~Z1 and ~Z2 at any point p ∈ Σ0 transform as

~Z
(h)
1 = ~Z1 + ~u1, (3.31)

~Z
(h)
2 = ~Z2 + ~u2 + 2∇~u1

~Z1 − (κabu
a
1u

b
1)~n, (3.32)

where ~n is a unit normal, (~n, ~n) = 1, and κab is the second fundamental form of Σ0.

It is clear from these rules of transformations that the hypersurface gauge can be used

to set to zero the tangent parts ~T1/2 of ~Z1/2. Let us discuss now the normal component of

the perturbation vectors. The transformation rule to first order (3.31) does not involve

Q1 at all. A hypersurface gauge change does not modify the hypersurfaces Σε as sets of

points, it just varies how these are identified pointwise, and thus Q1 is not sensitive to

such changes. However, the effect of a hypersurface gauge transformation is more involved

to second order due to the fact that ~Z2 measures accelerations, including those coming

from the first order perturbations, leading to the not obvious effect that Q2 is not gauge

invariant with respect to ~u1. Still, (3.32) shows that Q2 is clearly invariant under a change

driven by ~u2. If we include transformations driven by some ~u1 and ~u2, a straightforward

calculation using (3.31) and (3.32) leads to

Q
(h)
2 = Q2 + 2~u1(Q1) + καβu

α
1 (uβ1 − 2T

(h)
1

β).
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This result suggests the construction of the (hypersurface) gauge invariant quantity

Q̂2 := Q2 + κ(~T1, ~T1)− 2~T1(Q1). (3.33)

We consider now the action of the spacetime gauge on the perturbation vectors ~Z. Recall

the definition of the embedding Φε = ψ−1
ε ◦ φε and consider a change of spacetime gauge

driven by a diffeomorphism Ωε in the background spacetime. It follows that the embedding

transforms as Φ
(g)
ε = ψ(g)−1

ε ◦ φε = Ω−1
ε ◦ ψ−1

ε ◦ φε = Ω−1
ε ◦ Φε. This is the starting point

to show the following.

Proposition 4 (Mars, 2005 [79]) Under a spacetime gauge transformation defined by
~S1 and ~S2, the first and second order perturbation vectors of Σ transform as

~Z
(g)
1 = ~Z1 − ~S1, (3.34)

~Z
(g)
2 = ~Z2 − ~S2 − 2∇~Z1

~S1 + 2∇~S1

~S1. (3.35)

There is a particular class of gauges known as surface comoving gauges where each hy-

persurface Σε agrees with Σ0 as a set of points in W , so that the matching hypersurfaces

are seen unperturbed on those gauges. To first order this amounts to requiring Q1 = 0,

whereas for the second order it cannot be expressed simply as Q2 = 0 since Q2 carries not

only information about the deformation of the hypersurface to second order but also from

the acceleration of the first order deformation vector3 . Thus, provided Q1 = 0 one could

ask for the combination Q2−n(∇~T1
~T1) to vanish. It is easily checked that this condition

is equivalent to Q̂2 = 0.

A subclass of this type of gauges are the surface gauges, which are defined by the

vanishing of the full vector ~Z.

3.3 Perturbations of the first and second

fundamental forms

We have endowed the hypersurface Σ, and thus the embedded Σ0, with a metric inherited

from the ambient spacetime (W , g). This same construction holds for Σε for small values

of ε and thus a family of metrics can be defined on Σ by hε = Φ∗ε(gε). Consider now the

3In [79] the second order perturbation vector is chosen to be ~Z2 by convenience, instead of ~W =
∂ε(∂hΨε

h)ε=h=0, where Ψε
h is a diffeomorphism in (V, g) satisfying Φε+h = Ψε

h ◦ Φε. The difference

between them is the acceleration of ~Z1. The point is that ~W , contrary to ~Z2, cannot be expressed solely
in terms of the embeddings Φε and it depends on the diffeomorphism Ψh

ε , which is non-unique. Thus,
~Z2 results more convenient. For clarifying discussions about this issue see the remark notes in Sections
4 and 7 in [79].
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3. Perturbed matching of spacetimes

family of unit normal forms nε to Σε with respect to gε. These define a family of second

fundamental forms in Σ by κε = Φ∗ε(∇εnε). The first and second order perturbations of

the first and second fundamental forms are

h(1) =
dhε
dε

∣∣∣∣
ε=0

, h(2) =
d2hε
dε2

∣∣∣∣
ε=0

, (3.36)

κ(1) =
dkε
dε

∣∣∣∣
ε=0

, κ(2) =
d2kε
dε2

∣∣∣∣
ε=0

. (3.37)

These objects admit explicit expressions in terms of background objects. In order to

present them, it is convenient to decompose the first and second order perturbation tensor

in normal and tangent parts to Σ0

K1αβ = K1
⊥nαnβ +K1

|
αnβ +K1

|
βnα+K1

||
αβ, K2αβ = K2

⊥nαnβ +K2
|
αnβ +K2

|
βnα+K2

||
αβ,

where K1
⊥ = nαnβK1αβ, K1

|
α = nβhµαK1µβ, and K1

||
αβ = hµαh

ν
αK1µν by definition, and

analogous for the second order perturbation tensor.

Proposition 5 (Battye, Carter, 2001 [12]; Mars, 2005 [79]) Let (W , g) be a

C2 spacetime of any dimension and Σ0 an arbitrary non-degenerate hypersurface defined

by an embedding Φ0 : Σ→W. Let h be the induced metric, κ the extrinsic curvature and

~n the unit normal vector to the hypersurface Σ0. If the metric g is perturbed to first order

with K1 and the hypersurface is perturbed to first order with a vector field ~Z1 = Q1~n+ ~T1,

where ~T1 is tangent to Σ0, then the induced metric and extrinsic curvature are perturbed

to first order as

h(1)
ab = L~T1hab + 2Q1κab +K1αβe

α
ae

β
b , (3.38)

κ(1)
ab = L~T1κab −∇a∇bQ1 +Q1(−nµnνRαµβνe

α
ae

β
b + κacκ

c
b) +

1

2
K1
⊥κab − nµC(1)µ

αβe
α
ae

β
b ,

(3.39)

where C(1)µ

αβ is given in (3.6).

Proposition 6 (Mars, 2005 [79]) With the same assumptions and notation as in

Proposition 5, if the metric is perturbed to second order with K2 and the hypersurface is

perturbed to second order with ~Z2 = Q2~n+ ~T2 (with ~T2 orthogonal to ~n) then the induced
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3.4. Perturbed matching conditions

metric and extrinsic curvature are perturbed to second order as

h(2)
ab = L~Z2

hab + 2Q2κab +K2αβe
α
ae

β
b + 2L~T1h

(1)
ab − L~T1L~T1hab +

+ L
2Q1

~
K
|
1−2Q1κ(~T1)−∇~T1

~T1
hab + 2

(
T l1T

m
1 κlm − 2~T1(Q1) + 2Q1K1

⊥
)
κab +

+ 2Q2
1

(
−nµnνRαµβνe

α
ae

β
b + κalκ

l
b

)
+ 2∇Q1∇Q1 − 4Q1nµC

(1)µ

αβe
α
ae

β
b , (3.40)

κ(2)
ab = L~T2κab −∇a∇bQ2 −Q2n

µnνRαµβνe
α
ae

β
b +Q2κalκ

l
b − nµS

µ
αβe

α
ae

β
b +

+ 2L~T1κ
(1)

ab + κab

(
1

2
K2
⊥ − 1

4
(K1

⊥)2 − (K1
|
l +∇lQ1)(K1

|l +∇l
Q1)

+ 2Q1nµn
ρnδC(1)µ

ρδ

)
+
(
K1
⊥nµ + 2K1

|
µ + 2∇µQ1

)
C(1)µ

αβe
α
ae

β
b

− 2Q1nµn
ν
(
∇νC

(1)µ

αβ

)
eαae

β
b − 2nµn

νC(1)µ

ανe
α
a∇bQ1 − 2nµn

νC(1)µ

ανe
α
b∇aQ1

− 2Q1nµC
(1)µ

αβe
α
ae

β
l κ

l
b − 2Q1nµC

(1)µ

αβe
α
b e

β
l κ

l
a

+ Lgrad(~T1(Q1))− 1
2
grad(T l1Tm1 κlm)− 1

2
K1
⊥grad(Q1)+2Q1κ(gradQ1)hab

+
(

2~T1(Q1)− T l1Tm1 κlm −Q1K1
⊥
)(

nµnνRαµβνe
α
ae

β
b − κalκ

l
b

)
− 2Q1Lgrad(Q1)κab

+
1

2

(
∇aQ1∇bK1

⊥ +∇bQ1∇aK1
⊥)− L~T1L~T1κab − L2Q1κ(~T1)+∇~T1

~T1
κab

− Q2
1

(
nµnνnδ(∇δRαµβν)e

α
ae

β
b + 2nµnνRδµανe

δ
l e
α
b κ

l
a + 2nµnνRδµανe

δ
l e
α
aκ

l
b

)
, (3.41)

where S and C(1) are given in (3.6) and (3.7) and, for any tangent vector ~V , (κ(~V ))a =

κabV
b and (grad f)a = hab∂bf .

3.4 Perturbed matching conditions

The matching of two spacetimes with boundary in the exact sense (as depicted in Chapter

2), say (V+, g+,Σ+) and (V−, g−,Σ−), requires an identification of the boundaries, Σ+ and

Σ−. The identification of the boundaries allows the construction of an abstract manifold

Σ on which the first and second fundamental forms as coming from both sides, h± and κ±,

are pulled back so that they can be compared. If the boundaries are nowhere null (non-

degenerate) the matching conditions (in full, so that the global Riemann tensor shows no

Dirac-delta term) demand the existence of one such identification for which the first and

second fundamental forms h± and κ± agree. In particular, Σ is endowed with the metric

h(= h+ = h−).

To study the matching of spacetimes in perturbation theory one can use again the

same picture. We assume two families of spacetimes with boundary 4 (V±ε , ĝ±ε , Σ̂±ε ) are

4We refer to [79] for a proper discussion on the subtleties involved in the definition of families of
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3. Perturbed matching of spacetimes

matched across their respective boundaries Σ̂±ε for each ε, so that there exists a cor-

responding family of diffeomorphically related hypersurfaces Σ̂ε on which the first and

second fundamental forms from each side are equated, ĥ+
ε = ĥ−ε , κ̂+

ε = κ̂−ε . The matching

hypersurface of the background configuration is (Σ, h), where Σ ≡ Σ̂0 and h = ĥ+
0 = ĥ−0 .

The idea is to construct, from those tensors on Σ̂ε, corresponding families h±ε and κ±ε on

(Σ, h) containing also the information about how Σ±0 are perturbed with respect to the

spacetime gauges defined at each side ψ±ε , and the hypersurface gauge φε, which we want

to keep free.

Following the procedure described in Section 3.3 the corresponding ε-families of first

and second fundamental forms in Σ, h±ε = Φ±ε
∗(g±ε ) and κ±ε = Φ±ε

∗(∇±εn±ε ) are con-

structed. Consider the setting adressed in Figure 3.4, where we have represented the

embeddings Φ̂+
ε and Φ+

ε and the diffeomorphisms ψ+
ε , φε and φ+

ε := Φ+
ε ◦ φε . Given that

ĥ+
ε = Φ̂+

ε
∗(ĝ+

ε ) and h+
ε = Φ+

ε
∗(g+

ε ), the tensors ĥ+
ε and h+

ε are related by the diffeomor-

phism φε. It can be shown as follows

φ∗ε(ĥ
+
ε ) = φ∗ε ◦ Φ̂+

ε
∗ (ĝ+

ε

)
= (Φ̂+

ε ◦ φε)∗
(
ĝ+
ε

)
=

(
φ+
ε ◦ (φε)

−1 ◦ φε
)∗ (

ĝ+
ε

)
= φ+

ε
∗ (ĝ+

ε

)
= φ+

ε
∗
(

(ψ̂+
ε )−1∗(g+

ε )
)

=
(
ψ̂+
ε
−1 ◦ φ+

ε

)∗
(g+
ε ) = Φ+

ε
∗(g+

ε ) = h+
ε . (3.42)

This also applies for the construction with the − spacetimes, so that φ∗ε(ĥ
−
ε ) = h−ε . Since

ĥ+
ε = ĥ−ε we have that h+

ε = h−ε by construction, and analogously for the ε−family of

second fundamental forms.

Therefore, the matching conditions for each ε consist of imposing

h+
ε = h−ε , κ+

ε = κ−ε . (3.43)

The first and second ε derivatives of (3.43), evaluated at ε = 0, provide the perturbed

matching conditions. The explicit expressions are found in Section 3.3, in Propositions

5 and 6. We only have to particularise them to the + and − configurations respectively.

Take for instance the + side, then we have to substitute the (required) background quan-

tities, K1, Q1, ~T1, and K2, Q2, ~T2 by the corresponding background quantities for the +

side, K1
+, Q+

1 , ~T+
1 , and K2

+, Q+
2 , ~T+

2 in the expressions given in Propositions 5 and 6.

For the − side, we proceed analogously.

The perturbed matching conditions are formulated in terms of the background config-

uration quantities and K1
±, Q±1 , ~T±1 , plus K2

±, Q±2 , ~T±2 in the following Theorem:

spacetimes with boundary. Also, we need only to consider non-degenerate hypersurfaces Σ̂ε, without loss
of generality. Their orientation will extend through ε by continuity.
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3.4. Perturbed matching conditions

Figure 3.4: The background spacetime (V+, g+) and any other representative of the uni-
parametric family (V+

ε , ĝ
+
ε ). The hypersurface Σ̂+

ε in (V+
ε , ĝ

+
ε ) is projected to (V+, g+)

via ψ+
ε to obtain the hypersurface Σ+

ε . On the right hand side, we have Σ̂ε and Σ, the
abstract copies of Σ̂+

ε (via Φ̂+
ε ) and Σ+

ε (via Φ+
ε ) respectively. The tensor ĝ+

ε induces ĥ+
ε

via Φ̂+
ε , and g+

ε induces h+
ε via Φ+

ε .

Theorem 4 (Mars, 2005 [79]) Let (V , g) be a spacetime constructed by joining two

spacetimes with boundary (V+, g+) and (V−, g−) across their corresponding boundaries Σ+
0

and Σ−0 . Let Σ be an abstract copy of Σ+
0 and Φ±0 : Σ→ V± be the embeddings defining the

background matching. Let also K±1 and K±2 be first and second order metric perturbations

in V±. The first order perturbed matching conditions are fulfilled if and only if there exist

two scalars Q±1 and two vectors ~T±1 on Σ for which

h(1)+

ij = h(1)−
ij, κ(1)+

ij = κ(1)−
ij, (3.44)

holds, where h(1)± and κ(1)± are given in Proposition 5 after the substitution Q1 → Q±1 ,
~T1 → ~T±1 , g → g±, K1 → K1

± and ~ei → ~e±i . The second order perturbed matching

conditions are satisfied if and only if there exist two scalars Q±2 and two vector fields ~T±2
on Σ such that

h(2)+

ij = h(2)−
ij, κ(2)+

ij = κ(2)−
ij, (3.45)

where these objects are obtained from Proposition 6 after similar substitutions.

Hence, fulfilling the matching conditions requires showing the existence of ~Z±1 and
~Z±2 , such that equations (3.44) and (3.45) are satisfied. Note that the structure of the

linear matching conditions (3.44), given the explicit expressions for the perturbed first

and second fundamental forms (3.38) and (3.39) is such that only the values of Q±1 and the

differences [~T1], but not ~T1
+ and ~T1

−, can be determined, provided that the background

has been already matched.

49



3. Perturbed matching of spacetimes

Figure 3.5: This scheme combines the settings in Fig. 3.2 and Fig. 3.4 and adapts them
into a matching situation. The abstract hypersurfaces Σ̂ε are identified among themselves
via φε, which determines the hypersurface gauge. The maps Φ̂±ε embed the Σ̂ε into the
respective spacetimes (W±ε , ĝ±ε ). The perturbed matching conditions (3.43) are formulated
in Σ.

It must be stressed that the objects h(1), h(2), κ(1) and κ(2) are invariant under space-

time gauge transformations by construction, but they are not hypersurface gauge invari-

ant. However, the set of equations (3.44)-(3.45) is gauge invariant under both spacetime

and hypersurface gauge transformations, provided the background is matched [87, 79].

We discussed how the vectors ~Z± depend on both the spacetime and the hypersurface

gauges. The hypersurface gauge, common to the two families of hypersurfaces Σ̂±, can be

used to set to zero the tangent part ~T+ or ~T−, but not both. The spacetime gauge freedom

at either side can be exploited to fix either or both pairs ~Z+
1/2 and ~Z−1/2 independently a

priori, but this has to be carefully analyzed if additional spacetime gauge choices are

made. In fact, the vectors ~Z+
1/2 and ~Z−1/2 can be set to zero simultaneously using the

spacetime gauge freedom conveniently.

At either side, say +, we will call a gauge ψ+
ε “surface-comoving” if the hypersurfaces

Σ+
ε do not vary, and thus agree with Σ+

0 , as sets of points in V+
0 . At first order that is

equivalent to Q+
1 = 0, but at second order Q+

2 carries more information coming from the

first order. Recall the introduction of the quantity Q̂+
2 in Section 3.2. The gauges referred

to as “surface gauges” in previous works, e.g. [18, 85], require the vanishing of the whole

perturbation vector ~Z (more precisely Q = 0 and [~T ] = 0 is enough).
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3.5 Freedom in the matching due to symmetries

In a general situation [~T1/2] are completely determined by the matching conditions. How-

ever, if there are isometries in the background spacetime, this may not be the case.

The following discussion applies to the linear perturbations in any of the spacetimes ±.

Consider an isometry in the background spacetime which is preserved by the background

matching, i.e. generated by a Killing vector field ~ξ that is tangent to Σ0, so that n(~ξ|Σ0) =

0. Then, it can be shown, using the commutation of the pullback and the Lie derivative,

that ~γ, where ~ξ|Σ0 = dΦ(~γ), is an isometry in (Σ, hab), i.e.

L~γhab = eαae
β
b L~ξgαβ

∣∣∣
Σ0

= 0,

so that Σ preserves that symmetry [108]. A similar calculation [80] shows that also

L~γκab = 0. Thus, the perturbed first (3.38) and second (3.39) fundamental forms, h(1)

and κ(1), remain invariant under a change on Σ of the form ~T±1 → ~T±1 + C±~γ, for any

constants C±, i.e. invariant under a change of the vectors T±1 along the direction of any

isometry of the background configuration (preserved by the matching). On the embedded

Σ0 on V this means that the difference transforms as [~T1] → [~T1] + ~ξ+ − ~ξ−. Since the

linearized matching conditions remain invariant under this class of transformations, [~T1]

can slide freely along the directions of the (tangent) isometries. Therefore, an important

consequence is that the matching conditions cannot determine [~T1] in these cases [80].

This can be fixed making use of the spacetime gauge freedom, that can be adjusted,

at least partially (in the tangent part to Σ0 of any of the ~S±1 ), to fix [~T1] and thus relate
~T+

1 and ~T−1 succesfully. Note, again, that the hypersurface gauge cannot help us to fix

[~T1], since this is invariant under hypersurface gauge transformations.
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4

Hartle’s model

Hartle’s model [57] constitutes the basis of most of the analytical studies performed to

study slowly rotating stars in General Relativity (GR). The formalism provides a method

to construct numerical schemes in axial symmetry [104]. The model describes the axially

symmetric equilibrium configuration of a rotating isolated compact body and its vacuum

exterior in perturbation theory in GR. The interior of the body is a perfect fluid equipped

with a barotropic equation of state. It does not have convective motions and it rotates

rigidly. This is matched to a stationary and axisymmetric asymptotically flat vacuum

exterior region across a timelike hypersurface, and the whole model is assumed to have

equatorial symmetry. By matching we mean that there is no shell of matter on the surface

of the star. The approach is analytic, and makes use of a perturbative method for slow

rotation around a spherically symmetric static configuration driven by a single parameter

ΩH1.

The first order perturbation, driven by a single function ωH , accounts for the rotational

dragging of inertial frames. It does not change the shape of the surface of the star. The

second order perturbation, in contrast, does affect the original spherical shape of the body,

in agreement with the fact that this must be independent of the sense of rotation. The

second order perturbation of the metric is described by three functions, hH , mH and kH .

In addition to the change in the shape, these functions provide the relation between the

central density of the star and the change in mass δM between the perturbed and the

static background configuration needed to keep the central density of the star unchanged,

in analogy to the Newtonian approach (see [23, 29] or Chapter 9). This is how the

total mass of the rotating configuration is found in terms of the central density of the

star. There is one further property of the compact body determined by the second order

perturbations: the quadrupole moment of the star.

1In order to ease the comparison with the original paper [57] we will use a superscript H to indicate
that any object fH here refers to f in [57].
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4. Hartle’s model

This Chapter is a summary of the original works [57, 65], respecting the notation and

coventions therein as much as possible.

4.1 Hartle’s model in brief

Hartle’s model is a perturbative approach in which the functions in the metric and in the

energy momentum tensor are expanded in powers of the constant angular velocity ΩH (the

rotation of the fluid measured by a distant observer). The background configuration is

a static and spherically symmetric fluid ball immersed in an asymptotically flat vacuum.

Provided a barotropic equation of state, i.e. an equation of state for which the energy is

a function of the pressure alone, the only parameter that must be specified to determine

completely the configuration is the value of the central density. The first and second order

perturbations in the rotational model are proportional to ΩH and its square, respectively.

The structure of the equations is such that given an explicit model computed with a

particular value of ΩH , models for other angular velocities can be found by scaling. A

common choice in the literature to compute a rotational configuration is the velocity close

to the equatorial mass shedding, so that ΩH∗ ≈
√
Ma−3, where M accounts for the mass

and a for the radius of the spherical model.

The model is based upon the following metric (to second order) [57]

gH = −eν(r)
(
1 + 2hH(r, θ)

)
dt2 + eλ(r)

(
1 + 2

eλ(r)

r
mH(r, θ)

)
dr2

+r2(1 + 2kH(r, θ))
[
dθ2 + sin2 θ(dϕ− ωH(r, θ)dt)2

]
+O(Ω3),

(4.1)

written globally in terms of a single set of spherical-like coordinates {t, r, θ, φ} that covers

both the interior region (star) and the exterior vacuum, so that the domain of the radial

coordinate is r ∈ (0,∞). It is implicitly assumed that in this set of coordinates the metric

(4.1) is at least continuous. The static and spherically symmetric background is described

in terms of the functions λ(r) and ν(r). In the background, the common boundary of

the interior and exterior is located at r = a, so that the fluid extends in the region

r ∈ (0, a] and the vacuum in r ∈ [a,∞). The first order perturbation is described by the

function ωH(r, θ) and the second order perturbation by hH(r, θ), mH(r, θ) and kH(r, θ).

An additional second order function is used in order to measure the deformation of the

sphericall ball of fluid due to the rotation. It is denoted by ξH .

We denote the Einstein’s equations computed in the coordinates {r, θ} of (4.1) by

G(gH)αβ = 8πTαβ, where G is the Einstein tensor associated to the metric gH and T is
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4.1. Hartle’s model in brief

the energy momentum tensor of a (rigidly rotating) perfect fluid, i.e.

T β
α = (E + P)uαu

β + Pδ β
α ,

where E and P are respectively the total energy density and pressure of the fluid with

unit fluid flow uα. These are expanded as

E(r, θ) = E(r) + E(2)(r, θ) +O(ΩH4), P(r, θ) = P (r) + P (2)(r, θ) +O(ΩH4), (4.2)

where E and P are the energy density and pressure of the static star and E(2) and P (2)

denote their perturbations to second order in ΩH . The lack of a first order term in the

expansions (4.2) is justified by demanding that the energy density and pressure cannot

depend on the sense of rotation. The vector ~u, under the assumption of circularity and

rigid rotation, explicitly reads [65]

~u =
√
−(gtt + 2ΩHgtϕ + ΩH2gϕϕ)(∂t + ΩH∂ϕ),

= e−ν/2(1 +
r2e−ν sin2 θ

2
(ΩH − ωH)2 − hH)(∂t + ΩH∂ϕ) +O(ΩH3).

In a perturbation scheme the first contribution that distorts the shape of the star

from its spherical nonrotating background configuration comes from the second order

perturbations. The strategy followed in [57] to determine this deformation consists of

resorting to coordinate systems where the surfaces of constant density are located at a

constant value of the radial coordinate r of (4.1). Let us consider the surfaces of constant

density E in the nonrotating configuration. The star ends at a radius r = a where the

pressure vanishes. Therefore, the condition P (a) = 0 selects, through the barotropic

equation of state, the constant energy surface of E(P (a)) that separates the fluid interior

from the vacuum.

In the rotating configuration the surfaces of constant energy density are displaced from

their spherical shape of the background and they are determined by r = f(R, θ), where

f satisfies

E(f(R, θ), θ) = E(R), for R ∈ (0, a]. (4.3)

The expansion of f in powers of ΩH , i.e. r = f(R, θ) = R + ξH(R, θ) + O(ΩH4), defines

ξH , that accounts for the second order term in ΩH . Back to the computation of the

deformation of the rotating star, the equation of state is assumed to hold in the rotat-

ing configuration. Therefore, condition (4.3) can be formulated for the pressure, and it

identifies the constant energy density surface that limits the fluid ball by

P(f(R, θ), θ) = P (R), (4.4)
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4. Hartle’s model

which expanded to second order yields

P (R) + P (2)(R, θ) +
dP

dR
ξH(R, θ) = P (R), (4.5)

so that the surfaces of constant pressure, are now identified by

P (2)(R, θ) +
dP

dR
ξH(R, θ) = 0. (4.6)

An equivalent treatment for the energy density yields an expression for the surfaces of

constant energy density, given by

E(2)(R, θ) +
dE

dR
ξH(R, θ) = 0. (4.7)

In particular, the surface that separates the rotating fluid from the vacuum is found by

particularizing expression (4.6) to the value R = a obtained from the relation P (a) = 0.

This determines the deformation by

P (2)(a, θ) +
dP

dR

∣∣∣∣
R=a

ξH(a, θ) = 0. (4.8)

Thus, the function ξH measures the deviation of the surfaces of constant energy den-

sity (or constant pressure) of the rotating configuration from the spheres in the static

configuration (see figure 4.1). In addition, its value at R = a, i.e. ξH(a, θ), determines

the shape of the surface of the star to second order.

4.2 Background configuration

The background configuration for the interior region described by λ(r), ν(r), E(r) and

P (r) satisfies the equations of general relativistic hydrostatics addressed in [57]. A func-

tion M is defined by

1− 2M(r)

r
:= e−λ(r), (4.9)

so that the four equations that determine the static configuration are cast in the form

dM(r)

dr
= 4πr2E(r), (4.10)

dP (r)

dr
= −(E(r) + P (r))(M(r) + 4πr3P (r))

r(r − 2M(r))
, (4.11)

dν(r)

dr
= − 2

E(r) + P (r)

dP

dr
, (4.12)

plus a barotropic equation of state E(P ). The system can be solved for a given value

of the energy density at the origin. The integration of equation (4.12) determines the

function ν(r) up to an additive constant.
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4.2. Background configuration

Figure 4.1: The left figure shows, in dark green, a surface of constant energy density,
with value E, inside the star in the nonrotating configuration. It is labeled by the radial
coordinate r = R. The right figure shows, in turquoise, a surface with the same value of
the energy density, E(= E), in the rotating configuration. It is labeled now by the radial
coordinate r = R + ξH(R, θ).

The exterior asymptotically flat vacuum requires E = P = 0, thus M(r) = M is a

constant and the metric functions are given by

eν(r) = e−λ(r) = 1− 2M

r
. (4.13)

The constant M is recognized as the mass of the nonrotating star by the assumption of

the continuity of the function λ(r) at r = a. The continuity of ν(r) there fixes the additive

constant resulting from the integration of (4.12). Finally the assumption P (a) = 0, which

implies the continuity of ν ′(r) at r = a, fixes the radius of the star.

It is useful to define the function

j(r) := e−(λ(r)+ν(r))/2

in order to cast the equations for the perturbations in a compact form. In vacuum,

j(r) = 1.
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4. Hartle’s model

4.3 First order perturbations

The only first order field equation {t, ϕ} provides the following PDE for ω(r, θ)

1

r4

∂

∂r

(
r4j

∂ωH

∂r

)
+

4

r

dj

dr
(ωH − ΩH) +

jeλ

r2

1

sin3 θ

∂

∂θ

(
sin3 θ

∂ωH

∂θ

)
= 0. (4.14)

The equation for vacuum is recovered by setting j = 1 and eλ from (4.13). At this

point ωH(r, θ) is implicitly assumed in [57] to be C1. Regularity conditions at the origin

together with asymptotic flatness are then used to argue that ωH must be a function

of r alone, so that the only field equation becomes an ODE for ωH(r). The function

ω̃H(r) := ΩH − ωH(r) is introduced in order to cast (4.14) as an homogeneous equation,

that explicitly reads [57]

1

r3

d

dr

(
r4j

dω̃H

dr

)
+ 4

dj

dr
ω̃H = 0. (4.15)

This equation is integrated from the origin outwards, given the aforementioned regularity

conditions there. This implies that there is only one parameter that must be provided

to completely determine the interior solution. A convenient choice is the value of ω̃H

at the origin, denoted by ω̃Hc . However, as commented at the beggining of this chapter,

it is customary in the literature to specify the critical angular velocity ΩH
e.s. [64]. The

choice is not relevant, since the solution can be scaled to reflect any of the models, but

it is important to remark that only one (first order) parameter is needed to determine

completely the configuration.

Equation (4.15) in the vacuum region holds for j = 1, which leads to

ω̃H(r) = ΩH − 2J

r3
, (4.16)

after imposing asymptotic flatness, for some constants ΩH and J . The constant J corre-

sponds to the total angular momentum of the star [57]. Together with the constant ΩH ,

it characterizes the exterior solution (4.16). These constants are determined at r = a

assuming the continuity of ωH(r) and its first derivative. The explicit relations are

J =
1

6
a4

(
dω̃H

dr

)
r=a

, ΩH = ω̃H(a) +
2J

a3
. (4.17)

The moment of inertia I is found in terms of these two constants as I = J/ΩH .

The constant ΩH is described in [57] to be the angular velocity of the fluid measured

by an observer at rest with respecto to (r, θ) in the interior region, and ωH(r, θ) is the (first

order) angular velocity acquired by a free falling oberver from infinity to (r, θ). Thus, the

function ω̃H is, by construction, the coordinate angular velocity of the fluid measured by

the free falling observer.
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4.4. Second order perturbations

4.4 Second order perturbations

The second order perturbation functions are argued in [57] to admit a finite expansion in

Legendre polynomials containing only terms in l = 0, 2 due to the non-dependency of the

first order function ω on any angular variable, and from the global equatorial symmetry

of the model. Thus, the second order functions become

hH(r, θ) = hH0 (r) + hH2 (r)P2(cos θ),

mH(r, θ) = mH
0 (r) +mH

2 (r)P2(cos θ),

kH(r, θ) = kH2 (r)P2(cos θ). (4.18)

Note that it is also imposed that the function kH does not have spherical component, so

that kH0 (r) = 0. This fixes the radial coordinate to second order.

According to the discussion at the beggining of this chapter about the determination

of the shape of the star and its relation to the radial coordinates used at each order, the

second order functions should be expressed in terms of the radial coordinate R, instead

of r. However, the second order equations are formally equivalent as computed either

using r or R. This is discussed at p.1018 in [57] and the argument given there consists in

considering the series expansions in ΩH of the field equations expressed in the different

systems of coordinates. In {r, θ} (of (4.1)) one finds

G(r, θ) = 8πT (r, θ)⇒ G(2)(r, θ) = 8πT (2)(r, θ), (4.19)

where G(2) is the second order term of G, and the same for T (2) and T . Now, the same

expansion is considered in the coordinates {R, θ} to obtain [57]

G(r(R, θ), θ) = G(R, θ) +G(2)(R, θ) + ξH(R, θ)
∂G(R, θ)

∂R︸ ︷︷ ︸
∆G(R,θ)

=

= 8πT (r(R, θ), θ) = 8πT (R, θ) + 8πT (2)(R, θ) + 8πξH(R, θ)
∂T (R, θ)

∂R︸ ︷︷ ︸
8π∆T (R,θ)

,

where the perturbed Einstein and energy momentum tensors in the coordinates {R, θ}
have been defined as ∆G and ∆T respectively. These fulfill

∆G(R, θ) = 8π∆T (R, θ). (4.20)

Note that in ∆T any term in E(2) or P (2) is anihilated because of equations (4.6) and (4.7).

Take for instance, the timelike component of the perturbation of the energy momentum
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4. Hartle’s model

tensor

∆Ttt = T
(2)
tt (R, θ) + ξH(R, θ)

∂Ttt(R, θ)

∂R
=
[
eνE(2) + 2E(eνhH + 2ωH2r2 sin2 θ) + 2ΩH2(P − E)r2 sin2 θ

]
+ eν(−E(2) + ν ′EξH)

= 2E(eνhH + 2ωH2r2 sin2 θ) + 2ΩH2(P − E)r2 sin2 θ + ν ′EξH , (4.21)

where the two contributions in the first line correspond to the term in brackets and the

term in parenthesis in the second line respectively. The field equations in the background

applied to the left hand side of (4.20) imply

∆Gtt = G
(2)
tt (R, θ) + ξH(R, θ)

∂Gtt(R, θ)

∂R
= G

(2)
tt (R, θ) + 8πξH(R, θ)

∂Ttt(R, θ)

∂R

= G
(2)
tt (R, θ) + 8πeνξH(R, θ)(E ′ + Eν ′) (4.22)

The terms eνν ′EξH in (4.21) and (4.22) cancel out at the time of imposing the field

equations (4.20), but the contribution 8πeνξH(R, θ)E ′ in (4.22) survives. By means of

(4.7), this term, transported to the right hand side of the field equations, plays the role of

the perturbation of the energy density. This kind of arguments lead to the statement in

[57] (p.1018), as well as in [64] (p.810), that the equations (4.19) and (4.20) are formally

equivalent, given the relation (4.6) for the pressure and (4.7) for the energy density. In

modern terminology, this is just a consequence of a change of spacetime gauge driven by

a second order vector ~V2 ∝ ξH∂r (see equation (6.7) and the related discussion).

Thence, the perturbed field equations given in [57] are computed explicitly by con-

sidering (4.19) as equations in the coordinates {R, θ} (instead of {r, θ}) and substituting

any term in E(2) of P (2) by the corresponding expression in ξH as dictated by (4.6) and

(4.7).

Thus, the equations and results in [57] for the second order will be presented here in

terms of the radial coordinate r, whose domain of definition is (0, a]∪ [a,∞), covering the

fluid and the vacuum regions respectively.

There are two further remarks about the field equations to second order. On the

one hand, they do not mix the contributions l = 0 and l = 2, so that they can be

studied separately. On the other hand, they propagate the angular structure of the metric

functions to the quantities in the energy momentum tensor, so that one finds

E(2)(r, θ) = E
(2)
0 (r) + E

(2)
2 (r)P2(cos θ),

P (2)(r, θ) = P
(2)
0 (r) + P

(2)
2 (r)P2(cos θ),

ξH(r, θ) = ξH0 (r) + ξH2 (r)P2(cos θ).

The functions involved in the l = 0 sector are mH
0 and hH0 , coming from the metric, and

ξH0 , measuring the spherical deformation of the star. For convenience, this last function
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4.4. Second order perturbations

is substituted by the pressure perturbation factor defined as ((87) in [57])

pH0
∗(r) :=

P
(2)
0 (r)

E(r) + P (r)
= − P ′(r)

E(r) + P (r)
ξH0 (r). (4.23)

The field equations can be arranged to provide a system of first order inhomogeneous

ODE’s for the set {mH
0 , p

H
0
∗} and an algebraic equation for hH0 . The system for {mH

0 , p
H
0
∗}

reads ((97) and (98) in [57])

dmH
0

dr
= 4πr2dE

dP
(E + P )pH0

∗ +
1

12
j2r4

(
dω̃

dr

)2

− 2

3
r3j

dj

dr
ω̃2, (4.24)

dpH0
∗

dr
= −4π(E + P )r2

r − 2M(r)
pH0
∗ − mH

0 r
2

(r − 2M(r))2

(
8πP +

1

r2

)
+

r4j2

12(r − 2M(r))

(
dω̃

dr

)2

+
1

3

d

dr

(
r3j2ω̃2

r − 2M(r)

)
. (4.25)

The boundary conditions are the vanishing of mH
0 and pH0

∗ at the origin. Apart from

ensuring regularity there, these conditions imply P
(2)
0 (r) = 0 as r → 0, so that the central

pressure of the nonrotating configuration is preserved in the rotating model (see below).

The algebraic equation for hH0 , given by (90) in [57], corresponds to the hydrostatic

equilibrium first integral, which reads explicitly

pH0
∗ + hH0 −

1

3
r2e−νω̃2 = γ, (4.26)

where γ is a (second order) constant. Note that γ equals the value of hH0 at the origin,

γ = hH0 (0).

The set of functions that determines the exterior configuration to second order is

{mH
0 , h

H
0 }. The field equations are (4.24), with j = 1 and ω̃ given by (4.16), and the

following first order equation for hH0

dhH0
dr

=
mH

0

(r − 2M)2
− 3J2

r4(r − 2M)
.

The asymptotically flat vacuum solution thus reads ((105) and (106) in [57])

mH
0 (r) = δM − J2

r3
, (4.27)

hH0 (r) = − δM

r − 2M
+

J2

r3(r − 2M)
, (4.28)

for some arbitrary constant δM . This constant is identified as the change in mass due to

the perturbations by taking the limiting behaviour of the spherical part of gHrr in (4.1) as

r →∞, this is,

lim
r→∞

gHrr
∣∣
sph

= lim
r→∞

eλ(r)

(
1 + 2

eλ(r)mH
0

r

)
≈ 1 + 2

M + δM

r
. (4.29)
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Note that in order to add the quantities M and δM these must have been computed given

common boundary data. This is commonly achieved by using a fixed value of the central

energy density Ec common to the nonrotating and rotating configurations. In this way, the

total mass (to second order in ΩH) can be constructed as Mtotal(Ec) = M(Ec) + δM(Ec).

At this point the interior solution {mH
0 , p

H
0
∗} has been completely determined, while

the exterior solution for mH
0 is determined up to δM . In order to fix it, in [57] the interior

and the exterior solutions are related at r = a assuming the continuity of the function

mH
0 . This, using (4.27), fixes the constant δM as ((107) in [57])

δM = mH
0 (a) +

J2

a3
. (4.30)

Note that the continuity of hH0 cannot be used to obtain δM , since hH0 is determined up

to an additive constant (γ) in the interior. The l = 0 sector also determines the spherical

change in the shape of the star to second order. After using (4.12), (4.9), (4.23) and

P (a) = 0, this deformation is found to be

ξH0 (a) = −a(a− 2M)pH0
∗(a)/M. (4.31)

The l = 2 sector involves the functions hH2 , kH2 and mH
2 , coming from the metric

perturbation, and the function ξH2 , which will account for the ellipticity of the star. As in

the l = 0 sector, ξH2 is substituted by pH2
∗ by a relation analogous to (4.23). Explicitly,

pH2
∗(r) :=

P
(2)
2 (r)

E(r) + P (r)
= − P ′(r)

E(r) + P (r)
ξH2 (r). (4.32)

A convenient function vH := hH2 +kH2 is introduced to substitute kH2 . For the fluid config-

uration, the field equations can be arranged as a system of two first order inhomogeneous

ODE’s for the set {hH2 , vH} and two algebraic equations for mH
2 and pH2

∗.

The system for hH2 and vH is given in [57] by the equations (125) and (126), whose

explicit form is

dvH

dr
= −ν ′hH2 +

(
1

r
+
ν ′

2

)(
−2

3
r3jj′ω̃2 +

1

6
r4j2ω̃′2

)
, (4.33)

dhH2
dr

=

(
−ν ′ + r

ν ′(r − 2M)

(
8π(E + P )− 4M

r3

))
hH2

− 4

r(r − 2M)ν ′
vH +

r3j2

6

(
rν ′

2
− 1

(r − 2M)ν ′

)
ω̃′2

−2r2jj′

3

(
rν ′

2
+

1

(r − 2M)ν ′

)
ω̃2. (4.34)

The boundary conditions that ensure regularity at the origin are simply hH2 = vH = 0 as

r → 0. The field equations also provide the following algebraic equation for mH
2 ((120) in
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[57])
mH

2 (r)

r − 2M(r)
= −hH2 (r)− 2r3j(r)j′(r)

3
ω̃2(r) +

r4j2(r)

6
ω̃′2(r). (4.35)

Finally, the equation defining the perturbation of the pressure, or equivalently the l = 2

component of the hydrostatic equilibrium first integral (90) in [57], provides the following

relation, that determines pH2
∗

pH2
∗(r) + hH2 (r) +

r2e−ν(r)

3
ω̃2(r) = 0. (4.36)

In vacuum only the first three equations apply, and given the asymptotic behaviour

as r →∞ the set of functions {hH2 , vH ,mH
2 } is integrated to

hH2 (r) = KQ2
2

( r
M
− 1
)

+ J2

(
1

Mr3
+

1

r4

)
, (4.37)

vH(r) =
2MK√
r(r − 2M)

Q1
2

( r
M
− 1
)
− J2

r4
, (4.38)

mH
2 (r)

r − 2M
= KQ2

2

( r
M
− 1
)

+
J2

r3

(
1

M
− 5

r

)
, (4.39)

where Qm
n denote the associated Legendre polynomials of the second kind.

The interior solution is determined up to a constant, associated to the homogeneous

solution of the system (4.33) and (4.34), and the exterior solution is determined up to the

constant K, explicit in the expressions (4.37)-(4.39). These two constants are determined

in [57] assuming that hH2 and vH are continuous at r = a.

There are two physical quantities of interest arising from the l = 2 sector of the second

order perturbations. On the one hand, the constant K in the vacuum solution is related

to the quadrupole moment of the star Q by (26) in [65]

Q =
8KM3

5
+
J2

M
.

On the other hand, the ellipticity e of the configuration is related to the pressure pertur-

bation factor pH2
∗ and it can be expressed in terms of ξH2 using the relation (4.32) as given

by (25c) in [65]

e =

√
−3

(
vH(a)− hH2 (a) +

ξH2 (a)

a

)
. (4.40)
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5

Axially symmetric and stationary matchings in
perturbation theory

This is the first one of a series of three chapters (5, 6, and 7) aimed at putting Hartle’s

model [57] on firm grounds. In these, we construct the model using the perturbation

theory [79] reviewed in Chapter 3.

In this chapter we construct an axially symmetric and stationary configuration by

matching perturbatively to second order two configurations (V±, g±,Σ±0 , {g±ε }). The back-

ground matched configuration (V , g) is chosen to be static and spherically symmetric.

The embedded matching hypersurface Σ0 is timelike and preserves the symmetries of the

spacetimes. On top of (V+, g+) and (V−, g−), axially symmetric and stationary metric

perturbations to first and second order are developed from the families of metrics {g±ε },
being these stationary, axially and equatorially symmetric. The metric (4.1) used in Har-

tle’s model is included within {g+
ε } and {g−ε } respectively. In this chapter we do not

impose field equations of any kind. In this way, the results can be used in more general

situations, such as other theories of gravity for which Hartle’s model has been generalised

already in the literature.

Regarding our assumptions, although the deformation of the boundaries is left as an

unknown, we assume that it is axially symmetric. The perturbed matched spacetime thus

retains the axial symmetry. This requires that the normal components of the deformation

vectors, Q± do not depend on the axial coordinate. Given the axial symmetry of the

background, we can also ask ~T to have no axial component without loss of generality (see

Section 2.3).

The structure of this chapter is the following. Firstly, we identify the neccesary in-

gredients in the perturbation scheme: the background spacetimes (V±, g±) as two generic

static and spherically symmetric spacetimes, the family of tensors {g±ε } inspired by the

metric gH (4.1) introduced in Hartle’s model, from where the perturbation tensors to

65



5. Axially symmetric and stationary matchings in perturbation theory

first and second order are obtained. Our {g±ε } are chosen so that the two gauges that

correspond to the two “systems of coordinates” used in the original model are included

within the family.

Secondly, we perform the three matchings order by order. For the background match-

ing we use the formalism introduced in Chapter 2 and for the perturbed matching we

use the theory from Chapter 3. The results obtained from the perturbed matchings are

summarised in the form of two propositions (Proposition 7 for the first order matching

and Proposition 8 for the second order matching).

5.1 Family of metrics

The original “perturbed” metric in [57] is given by (4.1) assuming also that kH has no l = 0

term. In the context of perturbation theory this stands as a specific choice of spacetime

gauge and we will refer to it as the (spacetime) k-gauge. However, the determination of

the matching hypersurface is made in [57] (and most other works in the literature, see e.g.

[16]) by resorting to another spacetime gauge, prescribed through the surfaces of constant

energy density. Since we also want to examine the use of these different spacetime gauges

in the literature, we consider a family of metrics gε that can accommodate both spacetime

gauges. To do that a crossed term in (r, θ) is needed.

Let us thus define the following one-parameter family gε of stationary and axisymmet-

ric metrics on (V , g), where g = gε=0, taken up to order ε2

gε = −eν(r)
(
1 + 2ε2h(r, θ)

)
dt2 + eλ(r)

(
1 + 2ε2m(r, θ)

)
dr2 + 2reλ(r)ε2∂θf(r, θ)drdθ

+r2(1 + 2ε2k(r, θ))
[
dθ2 + sin2 θ(dϕ− εω(r, θ)dt)2

]
+O(ε3), (5.1)

where t ∈ (−∞,∞), r > 0, θ ∈ (0, π) and ϕ ∈ [0, 2π). Clearly, an arbitrary function of

r can be added to f(r, θ) with no consequences. The appearance of f differentiated is

just a mere convenience. The (unique) axial Killing vector field [81] will be denoted by

~η = ∂ϕ, and we will single out the timelike Killing ~ξ = ∂t. The first and second order

metric perturbation tensors, K1 = ∂εgε|ε=0 and K2 = ∂2
εgε|ε=0 respectively, take thus the

form

K1 = −2r2 ω(r, θ) sin2 θdtdϕ, (5.2)

K2 =
(
−4eν(r)h(r, θ) + 2r2 sin2 θω2(r, θ)

)
dt2 + 4eλ(r)m(r, θ)dr2

+4r2k(r, θ)(dθ2 + sin2 θdϕ2) + 4reλ(r)∂θf(r, θ)drdθ, (5.3)

defined on the spherically symmetric and static spacetime background (V , g) with

g = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdϕ2). (5.4)
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5.1. Family of metrics

The (spacetime) gauge transformations described by ~S1 = Ct∂ϕ, with arbitrary con-

stant C, at first order and ~V2 = 2Y (r, θ)∂r, for an arbitrary Y (r, θ), are contained within

the family gε. Under the gauge ~S1 = Ct∂ϕ, the perturbation tensor K1 transforms as

(3.23)

K1
(g) = −2r2 (ω − C) sin2 θdtdϕ, (5.5)

while under a change ~V2 = 2Y (r, θ)∂r, with ~S1 = Ct∂ϕ, K2 transforms as (3.24)

K2
(g) =

{
−4eν

(
h+

ν ′

2
Y

)
+ 2r2 sin2 θ(ω − C)2

}
dt2 + 4eλ

(
m+ e−

λ
2

(
Y eλ/2

)′)
dr2

+4r2

(
k +

Y

r

)
(dθ2 + sin2 θdϕ2) + 4reλ∂θ

(
f +

Y

r

)
drdθ. (5.6)

We will refer to this class of second order gauge transformations as “radial” gauges.

A (spacetime) gauge whitin the set of these “radial” gauges will be fixed, partially or

completely, whenever the functions appearing in K1, (5.2), and/or K2, (5.3), are restricted

in any way. The remaining freedom would consist on the possible C and Y (r, θ) that

make the changes to the components of (5.5) and (5.6) fit, component-wise, within that

restriction. The k-gauge, as mentioned, consists of imposing that the function k(r, θ) in

(5.3) has no l = 0 part, and that f = 0. In that case, the restriction on theK2θθ component

implies that Y (r, θ) cannot have l = 0 part, while the restriction on the K2rθ component

needs that Y (r, θ) does not depend on θ. The only possibility is thus Y (r, θ) = 0, so

that there is no freedom left. We thus say that the k-gauge fixes completely the “radial”

gauge.

A further second order gauge ~V2 = 2βt∂t, for a constant β, transforms h in (5.6) to

h + β. This change reflects onto the freedom in shifting the gravitational potential in

Newtonian theory, and can be used to fix, for instance, h at infinity.

Let us now consider the background spacetimes (V±, g±), with corresponding coor-

dinates {t±, r±, θ±, ϕ±} and families of metrics g±ε as given in (5.1). In what follows we

present the perturbed matching over a spherically symmetric (and static) background

configuration composed by the matching of (V+, g+) and (V−, g−) across a spherically

symmetric hypersurface Σ0.

The structure of the original metric (4.1) can be clearly recovered by taking f = 0

and noting that the choice of perturbation parameter ε is not relevant, since families of

solutions are obtained by scaling. The physics of the model will restrict the scalability

(see Eq. (1) in [57]). Note, however, that the relation between the radial coordinates in

(4.1) and (5.1) (either r±) must still be determined in order to be able to compare the

functions in (4.1) with those in (5.1).
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5. Axially symmetric and stationary matchings in perturbation theory

5.2 Background configuration

The background configuration is chosen to be globally spherically symmetric and static.

This translates to the fact that the matching of (V+, g+) and (V−, g−), through respective

boundaries Σ+
0 and Σ−0 , is asked to preserve the symmetries (see Section 3 in [108]), both

the spherical symmetry and staticity. Under that condition the hypersurfaces Σ+
0 and Σ−0

to be matched can be eventually cast, without loss of generality, as (see e.g. [80])

Σ+
0 = {t+ = τ, r+ = a+, θ+ = ϑ, ϕ+ = φ}, (5.7)

Σ−0 = {t− = τ, r− = a−, θ− = ϑ, ϕ− = φ}, (5.8)

for constants a± > 0. The coordinates {τ, ϑ, φ} parametrize the manifold Σ, an abstract

copy of any Σ±0 (recall the construction in Section 3.2), so that Σ ≡ Σ+
0 = Σ−0 .

Note that in this point we are identifying the timelike Killing vectors ~ξ±|Σ±0 , so that

∂t+
Σ
= ∂t− (where ∂t± leave g± (5.4) diagonal). This may seem an assumption, but

in this background configuration is not. In the exterior we single out the integrable

timelike Killing vector ~ξ− = ∂t− which is unit at infinity. In the matching procedure,
~ξ−|Σ should be identified, in principle, with any timelike vector field of the + side, i.e.

with any appropriate combination ~ξ+|Σ = a∂t+|Σ + b∂ϕ+|Σ + c∂θ+|Σ, for any constants

a, b, c. However, Lemma 4 ensures that the integrability is preserved in the matching

hypersurface, and therefore the only possibility left is that ~ξ+ = a∂t+ . Now, a trivial

change in t+ is used to absorb the constant a. Therefore we can choose ∂t+
Σ
= ∂t− without

loss of generality.

The tangent vectors to Σ+
0 and Σ−0 thus read

~e±a : ~e±1 = ∂t± |Σ±0 , ~e±3 = ∂θ±|Σ±0 , ~e±2 = ∂ϕ±|Σ±0 , (5.9)

and the corresponding unit normals are

~n+ = −e−
λ+(a+)

2 ∂r+|Σ+
0
, ~n− = −e−

λ−(a−)

2 ∂r−|Σ−0 , (5.10)

under the condition that ~n+ points V+ inwards and ~n− points V− outwards, so that as

r+ increases one reaches V−, and as r− increases one gets away of V+. This convention

will be used in what follows in order to call V+ the interior and V− the exterior. The

hypersurfaces Σ±0 are timelike everywhere, and they are (equally) oriented by construction.

The first and second fundamental forms read

h±abdx
adxb = −eν±(a±)dτ 2 + a2

±(dϑ2 + sin2 ϑdφ2), (5.11)

κ±abdx
adxb = e−

λ±(a±)

2

(
1

2
eν±(a±)ν ′±(a±)dτ 2 − a±(dϑ2 + sin2 ϑdφ2)

)
, (5.12)
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5.3. First order matching

where a prime denotes differentiation with respect to the corresponding argument, i.e. the

radial coordinate r+ or r− accordingly. The matching conditions h+ = h− and κ+ = κ−

are thus equivalent to

[ν] = 0, [ν ′] = 0, [λ] = 0, a := a+ = a−. (5.13)

Recall we use the notation [f ] = f+|Σ+
0
− f−|Σ−0 for objects f± defined at either side. For

the sake of brevity, given a pair f± satisfying [f ] = 0, we will simply denote by f |Σ0 either

of the equivalent f+|Σ+
0

or f−|Σ+
0

. The background matching hypersurface Σ is endowed

with the metric h = −eν(a)dτ 2 + a2(dϑ2 + sin2 ϑdφ2).

5.3 First order matching

Once the static and spherically symmetric background configuration has been constructed

we proceed to study the perturbed matching to first order. As discussed above, the

ingredients needed are the tensors that describe the perturbations at either side, i.e. the

first and second metric perturbation tensors K1
± as defined above (5.2), plus the two (so

far unknown) perturbation vectors ~Z±1 given in the form (3.28). To ease the notation we

will denote by Q± and ~T± = T τ±(τ, ϑ, φ)∂τ +T ϑ±(τ, ϑ, φ)∂ϑ+T φ±(τ, ϑ, φ)∂φ both the objects

defined on each V± and the corresponding pullback and pushforward quantities that live

on Σ. The same applies for the functions ω± in (5.2), which will be denoted equivalently

as functions restricted to points on Σ±0 ⊂ V± and functions on Σ whenever that does not

lead to confusion. Since the final perturbed matched spacetime is assumed to preserve

the axial symmetry, it seems natural to think that the functions Q and the components

of ~T will not depend on φ. Nevertheless, we will take that as an assumption. The first

and second order perturbed matchings are ruled by the particularisation of Theorem 4

together with Proposition 5 in Chapter 3 to the present setting with the above ingredients.

For completeness, the explicit expressions of the first and second order first and second

fundamental forms are included.

We start by calculating h(1) and κ(1) through expressions (3.38) and (3.39). Let us

recall these are objects defined on Σ, which is timelike. The ingredients needed are the

background embeddings (5.7), (5.8), with tangent basis (5.9) and unit normals (5.10),

plus the first and second fundamental forms of Σ (5.11) and (5.12), given that (5.13)

holds, together with the first order perturbation tensors K1
± (5.2) restricted to Σ±0 . The

functions Q±1 (τ, ϑ) and vectors ~T±1 = T τ1
±(τ, ϑ)∂τ + T φ1

±
(τ, ϑ)∂φ + T ϑ1

±
(τ, ϑ)∂ϑ on Σ in-

herited from each side are left as unknowns. The explicit expressions of h(1)± and κ(1)±
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5. Axially symmetric and stationary matchings in perturbation theory

read

h(1)±
ijdx

idxj = eν(a)
(
−2T±1

τ + ν ′(a)e−
λ(a)
2 Q±1

)
dτ 2 + 2

(
−eν(a)T±1

τ
,ϑ + a2T±1

ϑ
,τ

)
dτdϑ

+2a2
(
T±1

φ
,τ − ω±(a, ϑ)

)
sin2 ϑdτdφ

+2a(aT±1
ϑ
,ϑ − e−

λ(a)
2 Q±1 )dϑ2 + 2a2T±1

φ
,ϑ sin2 ϑdϑdφ

+2a
(
aT±1

ϑ cosϑ− e−
λ(a)
2 Q±1 sinϑ

)
sinϑdφ2,

κ(1)±
ijdx

idxj ={
−Q±1 ,ττ + e−

λ(a)
2 eν(a)

(
T±1

τ
,τ + e−

λ(a)
2
Q±1
4

(
λ′±(a)ν ′(a)− 2ν ′′±(a)− 2ν ′2(a)

))}
dτ 2

−2

{
Q±1 ,τϑ + e−

λ(a)
2

(
aT±1

ϑ
,τ −

1

2
eν(a)ν ′(a)T±1

τ
,ϑ

)}
dτdϑ

+2ae−
λ(a)
2

(
−T±1 φ

,τ +
1

2
aω′±(a, ϑ) + ω±(a, ϑ)

)
sin2 ϑdτdφ

−
{
Q±1 ,ϑϑ + 2aT±1

ϑ
,ϑ + e−λ(a)Q±1

(
1

2
aλ′±(a)− 1

)}
dϑ2

−2ae−
λ(a)
2 T±1

φ
,ϑ sin2 ϑdϑdφ

−
{(

Q±1 ,ϑ + 2ae−
λ(a)
2 T±1

ϑ
)

cosϑ+ e−λ(a)Q±1

(
1

2
aλ′±(a)− 1

)
sinϑ

}
sinϑdφ2,

where the background matching conditions (5.13) have been used to set ν±(a) = ν(a),

ν ′±(a) = ν ′(a) and λ±(a) = λ(a).

The ordered procedure used to obtain and integrate the differences [h(1)±] and [κ(1)±]

is the following. First, from [h(1)
ϑφ] = 0 we obtain [T1

φ],ϑ = 0. On the other hand, the

derivative [h(1)
τφ],τ = 0 yields [T1

φ],ττ = 0, and therefore [T1
φ] = b1τ + C2 for arbitrary

constants b1 and C2. As a result, [h(1)
τφ] = 0 reads [ω] = b1.

Now, equation [h(1)
ϑϑ] sin2 ϑ − [h(1)

φφ] = 0 yields [T1
ϑ] cosϑ − [T1

ϑ],ϑ sinϑ = 0, which

is integrated into [T1
ϑ] = F (τ) sinϑ for some function F (τ). Equation [h(1)

ϑϑ] = 0 now

reads [Q1] = eλ(a)/2aF cosϑ. On the other hand, the compatibility condition to integrate

[T1
τ ] is given by 2[h(1)

τϑ],τ − [h(1)
ττ ],ϑ = 0, which yields F̈ = −Fν ′(a)eν(a)/2a, and thence

[T1
τ ] = C1 − e−ν(a)a2Ḟ cosϑ for some arbitrary constant C1. We have so far exhausted

the conditions [h(1)
ij] = 0.

Given the above conditions, equation [κ(1)
τφ] = 0 is now equivalent to [ω′] = 0. The

conditions on the metric perturbations have thus been obtained.

Consider the equation [κ(1)
τϑ] = 0, which now reads Ḟ a sinϑa(2eλ(a)−2 +aν ′(a)) = 0.

If 2eλ(a) − 2 + aν ′(a) 6= 0 we then have Ḟ = 0, which due to its previous equation can

only be satisfied in the trivial case F = 0. From the above, in particular, [Q1] = 0. Then,
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5.4. Second order matching

equations [κ(1)
φφ] = 0 and [κ(1)

ϑϑ] = 0 just provide Q1[λ′] = 0, from which [κ(1)
ττ ] = 0

thus reads Q1[ν ′′] = 0.

The appearance of the constants C1 and C2 is a consequence of the isometries present

in the background configuration, and cannot be determined [80] (see Section 3.5). Never-

theless, they can be safely absorbed by using a isomorphic spacetime gauge at one (any)

side, say ~S+
1 = C1∂t+ + C2∂ϕ+ , which, by (3.34) leads to ~T+

1 → ~T+
1 − ~S+

1 and obviously

leaves the metric perturbation tensor K1
+ unchanged. We can thus set C1 = C2 = 0

without loss of generality.

Proposition 7 Let (V , g) be the static and spherically symmetric spacetime resulting from

the matching of (V+, g+) and (V−, g−), with g± given by (5.4) with respective ± in func-

tions and coordinates, across Σ±0 , defined by (5.7), (5.8), with a(= a+ = a−) > 0, so

that the matching conditions (5.13) hold and the unit normals (5.10) are chosen following

the above interior/exterior convention. Consider the metric perturbation tensors K1
± as

defined in (5.2) at either side V±, plus two unknown functions Q±1 (τ, ϑ) and two unknown

vectors ~T±1 = T±1
τ (τ, ϑ)∂τ + T±1

ϑ(τ, ϑ)∂ϑ + T±1
φ(τ, ϑ)∂φ on Σ0.

The necessary and sufficient conditions that K1
± must satisfy to fulfil the first order

matching conditions are

[ω] = b1, (5.14)

[ω′] = 0, (5.15)

where b1 is an arbitrary constant. Regarding the perturbed matching hypersurface, if

2eλ(a) − 2 + aν ′(a) 6= 0 (5.16)

the remaining first order matching conditions read

[~T1] = b1τ∂φ, (5.17)

[Q1] = 0, Q1[λ′] = 0 Q1[ν ′′] = 0. (5.18)

Note that, whenever (5.16) holds, although [Q1] = 0 is always a necessary condition,

so that Q+
1 = Q−1 ≡ Q1, Q1 = 0 is not. Indeed, if the background configuration satisfies

[λ′] = 0 and [ν ′′] = 0, Q1 can be any arbitrary function of (τ, ϑ). Let us remark that

condition (5.16) will be satisfied in all cases we will be interested in (see Section 7.1).

5.4 Second order matching

We proceed to the perturbed matching to second order. As in the previous procedure for

the first order matching, the ingredients needed are the perturbation tensors at either side,
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5. Axially symmetric and stationary matchings in perturbation theory

i.e. K2
±, given by (5.3) and the two perturbation vectors ~Z±2 . The notation concerning

these objects (both the vectors ~Z±2 and the perturbation tensors K2
±) is common to

that used in the first order matching. Again, we assume that the functions Q2 and the

components of ~T2 do not depend on the coordinate φ.

We shall make use of the results given in Proposition 7 for the first order configuration.

The first and second order perturbed matchings are ruled by the particularisation of

Theorem 4 together with Propositions 5 and 6 in Chapter 3 to the present setting with

the above ingredients. For completeness, the explicit expressions of the first and second

order first and second fundamental forms are included.

Let us first compute explicitly the scalar Q̂2 defined in (3.33), at each side Σ±0

Q̂±2 = Q±2 + a±e
−λ±(a±)/2

{
ν ′±(a±)eν±(a±)

2a±
(T±1

τ )
2 − sin2 ϑ(T±1

φ)
2 − (T±1

ϑ)
2
}

−2(T±1
τ∂τQ

±
1 + T±1

ϑ∂ϑQ
±
1 ).

The above first order matching conditions (5.17), thus lead to

[Q̂2] = [Q2] + ae−λ(a)/2 sin2 ϑb1τ
(
b1τ − 2T+

1
φ
)
− 2(T τ1 ∂τ [Q1] + T ϑ1 ∂ϑ[Q1]).

This new Q̂2 will substitute the original Q2 in this section.

The procedure is analogous to that of the previous proof. However, we first consider

the case [λ′] 6= 0 or [ν ′′] 6= 0, so that Q1 = 0 necessarily. The explicit expression of h(2)±

reads

h(2)±
abdx

adxb =
{
−2eν(a)

(
T±2

τ
,τ + (T τ1 ,τ )

2
)

+ 2a2
(
T±1

φ
,τ − ω±(a, ϑ)

)2
sin2 ϑ

+2a2(T ϑ1 ,τ )
2 − 4eν(a)h(a, ϑ) + e−

λ(a)
2 eν(a)ν ′(a)Q̂2

}
dτ 2

+2
{

2a2T±1
φ
,τT
±
1
φ cosϑ sinϑ− eν(a)T±2

τ
,ϑ + a2T±2

ϑ
,τ + 2a2T ϑ1 ,τT

ϑ
1 ,ϑ

+2a2T±1
φ
,ϑ

(
T±1

φ
,τ − ω±(a, ϑ)

)
sin2 ϑ− 2eν(a)T τ1 ,τT

τ
1 ,ϑ

}
dτdϑ

+2a2
{

2
(
T±1

φ
,τT

ϑ
1 − T±1 φT ϑ1 ,τ − 2ω±(a, ϑ)T ϑ1

)
cosϑ

+
(
T±2

φ
,τ − 2T τ1 ,τω

±(a, ϑ)− 2T ϑ1 ω
±
,ϑ(a, ϑ)

)
sinϑ

}
sinϑdτdφ

+2

{
a2
(
T±1

φ cosϑ+ T±1
φ
,ϑ sinϑ

)2

− a2 sin2 ϑ(T±1
φ)2 + a2(T ϑ1 ,ϑ)2 + a2T±2

ϑ
,ϑ

−eν(a)(T τ1 ,ϑ)2 + 2a2k(a, ϑ)− e−
λ(a)
2 aQ̂±2

}
dϑ2

+2a2
{

2T ϑ1 T
±
1
φ +

(
T±2

φ
,ϑ − 2T τ1 ,ϑω

±(a, ϑ)
)

sin2 ϑ

+2
(
T±1

φ
,ϑT

ϑ
1 − T±1 φT ϑ1 ,ϑ

)
cosϑ sinϑ

}
dφdϑ

+2
{
a2(T±1

φ)2 cos2 ϑ sin2 ϑ+ a2(T ϑ1 )2(1− 2 sin2 ϑ) + a2T±2
ϑ cosϑ sinϑ

+
(

2a2k(a, ϑ)− e−
λ(a)
2 aQ̂±2

)
sin2 ϑ

}
dφ2,
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where we have avoided the use of ± for quantities which already coincide at both sides.

Apart from the background quantities λ(a), ν(a) and ν ′(a) this also applies to the first

order objects that, in virtue of the matching conditions in Proposition 7, agree on Σ0, i.e.

T τ1
±(τ, ϑ) = T τ1 (τ, ϑ), T ϑ1

±(τ, ϑ) = T ϑ1 (τ, ϑ) and ω′±(a, ϑ) = ω′(a, ϑ).

From equations [h(2)
τφ] = 0 and [h(2)

ϑφ] = 0 we obtain expressions for [T φ2 ],τ and [T φ2 ],ϑ

respectively. The integrability conditions are found to be automatically satisfied. The

integration leads to

[T φ2 ] = 2b1(T τ1 + τT ϑ1 cotϑ) +D2 (5.19)

for some constant D2. Likewise, from [h(2)
τϑ] = 0 and [h(2)

ϑϑ] sin2 ϑ − [h(2)
φφ] = 0 we

obtain, respectively, [T ϑ2 ],τ and [T ϑ2 ],ϑ. However, since the equation [h(2)
τϑ] = 0 also

involves [T τ2 ],ϑ, this time the integrability condition provides a second order PDE for [T τ2 ]

that contains only derivatives on ϑ. This is integrated to yield

[T τ2 ] = −a2Ḟ (τ)e−ν(a) cosϑ+G(τ) (5.20)

for some functions F (τ), conveniently arranged, and G(τ). Making use of the expression

(5.20) for [T τ2 ], [T ϑ2 ] can now be integrated in the form

[T ϑ2 ] =
(
b1τ cosϑ(b1τ − 2T+

1
φ) + F (τ) + C3

)
sinϑ, (5.21)

for some constant C3. Now, using (5.21) upon [h(2)
ϑϑ] = 0 provides an equation for [Q̂2],

explicitly

[Q̂2] = aeλ(a)/2{2 [k] + (F (τ) + C3) cosϑ}. (5.22)

The remaining equation from the equality of the second order first fundamental forms

is [h(2)
ττ ] = 0. From its second derivative [h(2)

ττ ],τϑ = 0 we first obtain a third order

differential equation for F (τ) which can be integrated once in order to obtain

F̈ = eν(a)ν ′(a)(−F +H1 − C3)/2a, (5.23)

where the constant of integration H1 has been conveniently arranged. Using this relation

back into the equation [h(2)
ττ ],τ = 0 we obtain G̈ = 0, and therefore G(τ) = −H0τ + D1

for some constants H0 and D1. Finally, [h(2)
ττ ] = 0 provides a relation between [h] and

[k], namely [h] = 1
2
H0 + 1

4
aν ′(a) {2 [k] +H1 cosϑ}.

We have to impose now the equations for the perturbed second fundamental form,
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5. Axially symmetric and stationary matchings in perturbation theory

[κ(2)
ab] = 0. The explicit expression of κ(2)±

ab, included for completeness, is

κ(2)±
ijdx

idxj =

{
−Q̂±2 ,ττ +

1

4
eν(a)−λ(a)(λ±

′(a)ν ′(a)− 2(ν±
′′(a) + ν ′2(a)))Q̂±2

+eν(a)−λ(a)/2
(
2h′±(a, ϑ) + ν ′(a)(2h±(a, ϑ)−m±(a, ϑ) + T±2

τ
,τ + (T1

τ
,τ )

2)

−2e−ν(a)a(T1
ϑ
,τ )

2
)
− 2e−λ(a)/2a sin2 ϑ

(
ω±(a, ϑ)− T±1 φ

,τ

)
(aω′(a, ϑ) + ω±(a, ϑ)− T±1 φ

,τ )
}
dτ 2

+2
{
eλ(a)/2a sin2 ϑ (−T±2 φ

,τ + T1
τ
,τ (aω

′(a, ϑ) + 2ω±(a, ϑ)) + 2 cosϑT±1
φT1

ϑ
,τ

+(2 cosϑ(2ω±(a, ϑ)− T±1 φ
,τ + aω′(a, ϑ)) + sinϑ(aω′(a, ϑ) + 2ω±(a, ϑ)),ϑ)T1

ϑ
)}
dτdφ

+2

{
−Q̂±2 ,τϑ + eλ(a)/2

(
−aT±2 ϑ

,τ +
ν ′(a)eν(a)

2
T±2

τ
,ϑ

)
− 2T1

ϑQ1,τϑϑ − 2e−λ(a)/2aT1
ϑ
,τT1

ϑ
,ϑ

+eν(a)+λ(a)/2ν ′(a)T1
τ
,τT1

τ
,ϑ

+e−λ(a)/2a sinϑ(− cosϑ(T1
ϑ2),τ + sinϑT±1

φ
,ϑ(aω′(a, ϑ) + 2ω±(a, ϑ)− 2T±1

φ
,τ ))
}
dτdϑ

+
{

2e−λ(a)/2a sin2 ϑ(m±(a, ϑ)− 2k±(a, ϑ)− ak±′(a, ϑ)) + 4 sinϑ cosϑaeλ/2∂ϑf
±(a, ϑ)

−1

2
e−λ(a) sin2 ϑ(−2 + aλ′±(a))Q̂±2 − cosϑ sinϑQ̂±2 ,ϑ − 2e−λ(a)/2a sinϑ cosϑT±2

ϑ(τ, ϑ)

+2a sin2 ϑ cos2 ϑ(T±1
φ)2 + 4a(cos2 ϑ− sin2 ϑ)(T ϑ1 )2

}
dφ2

+2eλ/2a
{
− sin2 ϑT±2

φ
,ϑ + sin2 ϑ(2ω±(a, ϑ) + aω′(a, ϑ))T τ1 ,ϑ + (−2T ϑ1 + sin 2ϑT ϑ1 ,ϑ)T±1

φ

− sin 2ϑT ϑ1 T
±
1
φ
,ϑ

}
dφdϑ

+
{

2e−λ(a)/2a(m±(a, ϑ)− 2k±(a, ϑ)− ak±′(a, ϑ) + 2eλ(a)∂2
ϑf
±(a, ϑ))

− Q̂±2 ,ϑϑ −
e−λ(a)

2
(−2 + aλ′±(a))Q̂±2 − 2e−λ(a)/2aT±2

ϑ
,ϑ

+2a(2 cos 2ϑ(T±1
φ)2 + sin 2ϑ(T±1

φ)2
,ϑ + (1− cos 2ϑ)(T±1

φ
,ϑ)2)

+eν(a)−λ(a)/2ν ′(a)(T τ1 ,ϑ)2 − 2Q1,τϑϑT
τ
1 − 2e−λ(a)/2a(T ϑ1 ,ϑ)2 − 2Q1,ϑϑϑT

ϑ
1

}
dϑ2. (5.24)

Firstly, given that [ω′] = 0, the equations [κ(2)
ϑφ] = 0 and [κ(2)

τφ] = 0 are automatically

satisfied when (5.19) is taken into account. We start with the equation [κ(2)
τϑ] = 0, which

after using the explicit form of [~Z2] obtained from the equations for the first fundamental

form, yields Ḟ
(
2− 2eλ(a) − aν ′(a)

)
= 0. If 2 − 2eλ(a) − aν ′(a) 6= 0, we need Ḟ = 0, and

therefore, from (5.23) we obtain F +C3 = H1, which substituted on the above expressions

for [T τ2 ], [T ϑ2 ] and [Q̂2] leads to

[T τ2 ] = −H0τ +D1, (5.25)

[T ϑ2 ] =
(
b1τ cosϑ(b1τ − 2T+

1
φ) +H1

)
sinϑ, (5.26)

[Q̂2] = aeλ(a)/2{(2 [k] +H1 cosϑ}. (5.27)

On the other hand, the combination of equations [κ(2)
ϑϑ] sin2 ϑ− [κ(2)

φφ] = 0, with [T ϑ2 ]

and [Q̂2] given by (5.26) and (5.27) respectively, yields a second order PDE involving [k]−
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5.4. Second order matching

[f ], with derivatives on ϑ only, which is integrated to obtain [k] = c1(τ) cosϑ+ c2(τ) + [f ]

for some functions c1(τ) and c2(τ). However, since [k],τ = [f ],τ = 0, we readily have that

c1(τ) = c1 and c2(τ) = c2 must be constants. Now, the equation [κ(2)
ϑϑ] = 0 provides an

expression for [m], which left in terms of [k], in particular, can be arranged as equation

(5.32) below.

The only remaining equation is given by [κ(2)
ττ ] = 0. Using (5.32) to substitute [m]

in [κ(2)
ττ ] = 0 we obtain a relation between [h′], [k′] and [k] (and Q̂+

2 ). That relation is

given explicitly by equation (5.33).

Furthermore, from the above expression for [Q̂2] we clearly also obtain that the dif-

ference [Q̂2] cannot depend on τ . For the same reason, using the above equations for [m]

and [h′], and since either [λ′] 6= 0 or [ν ′′] 6= 0, then Q̂+
2 (and thus neither Q̂−2 ) cannot

depend on τ .

In the case [λ′] = [ν ′′] = 0 we can have, in principle, a non vanishing Q1(τ, ϑ). The

appearance of Q1(τ, ϑ) in the expressions for h(2)
ij does not change the procedure to

integrate the differences. For that reason, and due to their length, we avoid including the

explicit expressions of h(2)
ij with Q1(τ, ϑ) 6= 0. Equations [h(2)

τφ] = 0 and [h(2)
ϑφ] = 0

provide expressions for [T φ2 ],τ and [T φ2 ],ϑ, the integrability conditions are automatically

satisfied, and the integration leads to the expression[
T φ2

]
= 2b1(T τ1 + τT ϑ1 cotϑ) +D2 −

2

a
e−λ(a)/2b1τQ

+
1 ,

for some constant D2. Note that this is exactly (5.19) plus the term in Q+
1 . Now, the

remaining equations in the set [h(2)
ab] = 0 show no terms involving Q1. Therefore we

obtain the same set of equations (5.20), (5.21), (5.22), (5.23), G(τ) = −H0τ + D1 for

some constants H0 and C1, and [h] is given by [h] = 1
2
H0 + 1

4
aν ′(a) {2 [k] +H1 cosϑ}, as

in the case Q1 = 0.

The equation [κ(2)
τϑ] = 0 reads the same as in the Q1 = 0 case, and therefore the

condition Ḟ (τ) = 0, assuming that 2− 2eλ(a) − aν ′(a) 6= 0, is just recovered. That again

leads to F +C3 = H1. As a result [T τ2 ], [T ϑ2 ] and [Q̂2], are also given by (5.25), (5.26) and

(5.27).

Likewise, the combination of equations [κ(2)
ϑϑ] sin2 ϑ − [κ(2)

φφ] = 0 does not depend

on Q1 either, and therefore [k] = c1 cosϑ+ c2 +[f ] all the same, for some constants c1 and

c2. However, the equation [κ(2)
ϑϑ] = 0 does contain a term involving Q1. The expression

for [m] in this case is given by

[m] = a [k′]− 1

4
e−λ(a) [λ′′] (Q1)2 +

1

4
(aλ′(a) + 2) {2 [k] +H1 cosϑ}

−1

2
(H1 + 2c1)eλ(a) cosϑ, (5.28)
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5. Axially symmetric and stationary matchings in perturbation theory

which used in [κ(2)
ττ ] = 0 provides the following expression of [h′]

[h′] =
1

2
aν ′(a) [k′]− 1

4
e−λ(a) [ν ′′′] (Q1)2 +

1

4
(aν ′′(a) + ν ′(a)) {2 [k] +H1 cosϑ}

−1

4
(H1 + 2c1)ν ′(a)eλ(a) cosϑ. (5.29)

Finally, although equation [κ(2)
ϑφ] = 0 is automatically satisfied, in this case the equation

[κ(2)
τφ] = 0 provides the condition [ω′′]Q1 = 0.

As in the first order case, the constants D1 and D2 can be safely absorbed by using a

isomorphic spacetime gauge at one (any) side, say ~V +
2 = D1∂t+ +D2∂ϕ+ , keeping ~S1 = 0.

Clearly ~S+
2 = ~V +

2 and therefore by (3.35) that leads to ~T+
2 → ~T+

2 − ~S+
2 and the second

order metric perturbation tensor K2
+ is unchanged. We can thus set D1 = D2 = 0

without loss of generality.

We have thus shown the following result.

Proposition 8 Let (V , g) with Σ0 be the static and spherically symmetric background

matched spacetime as described in Proposition 7, and assume that (5.16) is satisfied.

Let it be perturbed to first order by K1
± plus Q±1 and ~T±1 so that (5.14), (5.15), (5.17),

(5.18) hold. Consider the second order metric perturbation tensor K2
± as defined in

(5.3) at either side, plus two unknown functions Q̂±2 (τ, ϑ) and two unknown vectors ~T±2 =

T±2
τ (τ, ϑ)∂τ + T±2

ϑ(τ, ϑ)∂ϑ + T±2
φ(τ, ϑ)∂φ on Σ0.

If either [λ′] 6= 0 or [ν ′′] 6= 0, so that (Q±1 =)Q1 = 0, the necessary and sufficient

conditions that K2
± must satisfy to fulfil the second order matching conditions are

[k] = c1 cosϑ+ c2 + [f ] (5.30)

[h] =
1

2
H0 +

1

4
aν ′(a) {2 [k] +H1 cosϑ} (5.31)

[m] = a [k′] +
1

4
e−λ(a)/2 [λ′] Q̂+

2 +
1

4

(
aλ′−(a) + 2

)
{2 [k] +H1 cosϑ}

−1

2
(H1 + 2c1)eλ(a) cosϑ (5.32)

[h′] =
1

2
aν ′(a) [k′] +

1

4
e−λ(a)/2 [ν ′′] Q̂+

2 +
1

4

(
aν ′′−(a) + ν ′(a)

)
{2 [k] +H1 cosϑ}

−1

4
(H1 + 2c1)ν ′(a)eλ(a) cosϑ, (5.33)

for arbitrary constants c1, c2, H0 and H1 and function Q̂+
2 (ϑ).

If [λ′] = 0 and [ν ′′] = 0, then [ω′′]Q1 = 0 and the above equations are the same except

for two changes in (5.32) and (5.33) given respectively by

[λ′] Q̂+
2 → −e−λ/2 [λ′′] (Q1)2, [ν ′′] Q̂+

2 → −e−λ/2 [ν ′′′] (Q1)2. (5.34)
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5.4. Second order matching

In all cases, the relation [
Q̂2

]
= aeλ(a)/2 {2 [k] +H1 cosϑ} (5.35)

must hold, hence
[
Q̂2

]
cannot depend on τ , and the differences [~T±2 ] satisfy

[T τ2 ] = −H0τ,[
T φ2

]
= 2b1(T τ1 + τT ϑ1 cotϑ)− 2

a
e−λ(a)/2b1τQ

+
1 , (5.36)[

T ϑ2
]

=
(
b1τ cosϑ(b1τ − 2T+

1
φ) +H1

)
sinϑ.

Let us remark that in the Q1 6= 0 case the corresponding equations for [m] and [h],

(5.32) and (5.33) with the corresponding changes (5.34) (see (5.28) and (5.29)) imply that

if [λ′′] 6= 0 or [ν ′′′] 6= 0 then Q1 cannot depend on τ . On the other hand, the condition

[ω′′]Q1 = 0 will be automatically satisfied in all cases of interest, once the field equations

are imposed, as shown in Chapter 7.
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6

Field equations up to second order

In this chapter we present the field equations, in perturbation theory up to second order,

corresponding to an axially symmetric, stationary and rigidly rotating perfect fluid ball

with no convective motions. We also add the assumption of equatorial symmetry. We

indicate, in explicit form, how the field equations in [57] are obtained. However, the set

of functions used here to describe the second order perturbations is different from the set

used in [57], although they can be put in correspondence by fixing some gauge freedom

left.

The equations for the fluid depend on the equation of state, and cannot be analitically

solved in general. A further chapter will be devoted to solve some typical models such

as polytropes, realistic stars or constant density stars. The vacuum equations can be

recovered by setting the energy density and pressure equal to zero. The Einstein’s field

equations (EFE’s from now on) for vacuum do admit analytical solutions, not only for the

background which is obviously given by the Schwarzschild solution, but also for the first

and second order perturbations. However, in this chapter we will not relate the interior

(fluid) and exterior (vacuum) solutions. This will be the purpose of the next chapter,

where the combination of the geometrical matching conditions obtained in Chapter 5 and

the information provided by the field equations result in a new set of matching conditions

particularized to the explicit setting of an isolated fluid ball rotating in equilibrium.

To present the equations we will drop the + and − symbols in most places if they

are not necessary. Both regions can be considered to be of perfect fluid type, from which

the vacuum case is recovered trivially. To obtain the field equations, we impose that the

metrics ĝε satisfy Ĝ(ĝε)αβ = 8πT̂εαβ for an energy momentum tensor of the form

T̂ε = (Êε + P̂ε)ûε ⊗ ûε + P̂εĝε, (6.1)

where ûε is the (unit) fluid flow, and Êε and P̂ε, eigenvalues of T̂ε, the corresponding mass-

energy density and pressure. Note that the fluid vector ûε and corresponding “hatted”
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6. Field equations up to second order

scalars are objects defined, still, on each (Vε, ĝε). All these objects, in covariant form,

are now pulled back through ψε down onto (V , g) (see Chapter 3). That defines the

associated families of (tensorial) objects U ε := ψ∗ε(ûε) and analogously for Gε, Tε, Eε and

Pε on (V , g), which therefore satisfy

G(gε)αβ = 8πTεαβ (6.2)

with

Tε = (Eε + Pε)U ε ⊗U ε + Pεgε, (6.3)

by construction. The ε−derivatives of (6.2) evaluated at ε = 0 provide the first and

second order perturbed equations

G(1) = 8πT (1), (6.4)

G(2) = 8πT (2), (6.5)

where G(1) and G(2) are described in (3.18) and (3.19) and the perturbations of the energy

momentum tensor (6.3), T (1) and T (2) will be specified explicitly in the corresponding

sections for the first and second order (see (6.21) and (6.27)). It is worth mentioning that

the families of objects do depend on the gauge defined by ψε, and thus also the right

and left hand sides of (6.2). However, the equations (6.2) themselves do not depend on

the gauge, in the sense that if (6.2) are fulfilled in one gauge, they will be satisfied in

any other gauge. Therefore, equations (6.4) and (6.5) do not depend on the choice of

gauge. For completeness we include here the transformation of the first and second order

perturbations of the energy momentum tensor in covariant form under a spacetime gauge

(see Lemma 1 in [79])

T (1)(g) = T (1) + L~S1
T, (6.6)

T (2)(g) = T (2) + L~V2T + L~S1
L~S1

T + 2L~S1
T (1). (6.7)

In fact, these apply to any 2-covariant tensor and in particular to the Einstein tensor.

Using this, it is straightforward to check that the field equations (6.4), (6.5) are gauge

invariant order by order.

On the other hand, the fluid vector in contravariant form can also be pushforwarded

through ψ−1
ε , and thus yet obtain another family of vectors ~uε := dψ−1

ε (~̂uε) on (V , g).

Since the normalization ûεαûε
α = −1 holds at each (Vε, ĝε), we obtain Uεαuε

α = −1 on

(V , g). This can be shown to be equivalent to gεαβuε
αuε

β = −1, and corresponds to the

normalisation condition that ~uε must satisfy. We can take now ε-derivatives and construct

the expansion of ~uε as ~uε = ~u+ ε~u(1) + 1
2
ε2~u(2) +O(ε3), where all the vector components

depend on r and θ.
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The absence of convective motions translates onto the condition that ~uε lies on the

orbits of the group generated by {~η, ~ξ}, this is ~uε ∝ ~ξ+κ(ε, r, θ)~η for some function κ. Rigid

rotation demands that κ(ε, r, θ) does not depend on {r, θ}, so that ~uε are proportional

to (timelike) Killing vector fields [103], i.e. ~uε = N(r, θ, ε)(~ξ + κ(ε)~η) for some function

κ(ε), with N(r, θ, ε) fixed by the above normalisation. A static background configuration

forces κ(0) = 0, since ~u is parallel to the static Killing vector field ∂t+ . Therefore κ(ε) =

εΩ+O(ε2) for some constant Ω. This constant Ω is gauge dependent (see below, in Section

6.2). Following [57] we assume that ε drives a rotational peturbation, so that only odd

powers enter κ(ε), so that κ(ε) = εΩ +O(ε3). In components this is equivalent to

uϕε = εΩutε, urε = uθε = 0, (6.8)

up to second order. This (gauge-dependent) constant Ω differs from the perturbation

parameter (which we denote by ΩH) as defined in [57]. In the present scheme the per-

turbation parameter ε has been defined abstractly, a priori independently of the rotation

parameter Ω.

The energy density and pressure are expanded as

Eε = E + εE(1) +
1

2
ε2E(2) +O(ε3), (6.9)

Pε = P + εP (1) +
1

2
ε2P (2) +O(ε3). (6.10)

All functions in (6.9) and (6.10) depend on r and θ. We consider the existence of a

barotropic equation of state for the ε-family, independent of ε, so that Pε is a function of

Eε alone. Taking ε-derivatives at ε = 0, such relations yield a constraint for the first and

second order expansions, which must satisfy, respectively

P (1) − ∂P

∂E
E(1) = 0,

P (2) − ∂P

∂E
E(2) − ∂2P

∂E2
E(1)2

= 0. (6.11)

The vacuum equations are obtained by simply setting Eε = Pε = 0.

6.1 Field equations of the background

The matter content of the interior region of the background configuration is a perfect

fluid, static and spherically symmetric. Its normalized 4-velocity is ~u = e−ν/2∂t. The two

field equations providing E and P in terms of the metric functions are

λ′ =
1

r
(1− eλ) + reλ8πE, (6.12)

ν ′ =
1

r
(eλ − 1) + reλ8πP, (6.13)
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6. Field equations up to second order

while the pressure isotropy condition, that in terms of the covariant tensors is eλ(r)Tϕϕ −
r2 sin2 θTrr = 0, yields the equation

2rν ′′ + ν ′(rν ′ − 2)− λ′(2 + rν ′) +
4

r

(
eλ − 1

)
= 0. (6.14)

Let us recall the definitions of Section 4.2 (which will be useful for the comparison of

the expressions here with those in [57]),

j(r) := e−(λ+ν)/2, (6.15)

1− 2M(r)

r
:= e−λ. (6.16)

The standard way to solve the background configuration consists of changing from the

metric potentials {λ, ν} to the functions {M,P}. The system given by (6.12) and (6.14)

is now written in the standard form (see (9) and (10) in [90])

dM(r)

dr
= 4πr2E(r), (6.17)

dP (r)

dr
= −(E(r) + P (r))(M(r) + 4πr3P (r))

r(r − 2M(r))
. (6.18)

These are the well known TOV equations [90]. They determine the interior configuration

provided a barotropic equation of state, that closes the system, and a value of, say, the

central energy density. The metric potential ν is then obtained, up to an additive constant,

integrating equation (6.13). Another useful expression for ν ′ is obtained by writing (6.14)

in terms of P using (6.12)-(6.13), which reads

P ′ = −ν
′

2
(E + P ). (6.19)

In the vacuum exterior (−) the field equations (6.14) imply that M(r−) is a constant,

which will be denoted by M as usual, and that

e−λ−(r−) = eν−(r−) = 1− 2M

r−
⇒ j(r−) = 1. (6.20)

We will assume M > 0.

6.2 First order

The first order perturbations are ruled by the field equations (6.4). We proceed first to

compute the l.h.s., i.e. the perturbation of the Einstein tensor (3.18). To this aim, we

need the perturbation of the Ricci tensor R(1)
αβ, computed using the formula (3.14) that
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6.2. First order

involves only second derivatives of the K1. The only non vanishing component of R(1)
αβ

is found to be the {t, ϕ}. In addition, it is traceless, and taking into account the structure

of K1, it is easy to see that the first order perturbation of the Ricci scalar given by (3.16)

vanishes. Hence, the only non vanishing component of the linearized Einstein tensor G(1),

given in (3.18), is found to be the {t, ϕ}.
The r.h.s. of (6.4) consist of the first order perturbation of the energy momentum

tensor (6.3), which reads

T (1)
αβ = (E(1) + P (1))uαuβ + 2(E + P )

(
uµK1µ(αuβ) + u(1)

(αuβ)

)
+ P (1)gαβ + PK1αβ.

(6.21)

Absence of convective motions and rigid rotation (6.8), together with the normalisation

condition to first order

2uαu
(1)α +K1αβu

αuβ = 0, (6.22)

imply ~u(1) = Ωe−ν/2∂ϕ. Therefore, the explicit form of T1 is found to be

T (1)
tt = −gttE(1), T (1)

rr = grrP
(1), T (1)

θθ = gθθP
(1), T (1)

ϕϕ = gϕϕP
(1),

T (1)
tϕ = −r2 sin2 θ(ΩP + (Ω− ω)E). (6.23)

The imposition of the perturbed field equations (6.4) provides in the {t, t} component

E(1)(r, θ) = 0 and from any of the remaining diagonal components we obtain that

P (1)(r, θ) = 0. The component {t, ϕ} of (6.4) provides the following equation for the

function ω [57]

∂

∂r

(
r4j

∂ω

∂r

)
+
r2jeλ

sin3 θ

∂

∂θ

(
sin3 θ

∂ω

∂θ

)
+ 4r3j′(ω − Ω) = 0. (6.24)

The equation for the exterior vacuum region (−) is recovered by just setting j = 1 in the

above.

Given the regularity condition at the origin, the asymptotic behaviour at infinity

and the matching conditions (5.14)-(5.15), the functions ω±(r±, θ±) can be shown to be

functions only of the corresponding radial coordinates. This is in agreement with Hartle’s

argument in [57]. We provide a full proof for this in Chapter 8, where we show that

ω± are, indeed, functions of r± alone. Hence, in the remaining part of this Chapter we

will restrict ourselves to the study of ω = ω(r) for the fluid and vacuum regions, so that

equation (6.24) becomes

1

r3

d

dr

(
r4j

dω

dr

)
+ 4j′(r)(ω − Ω) = 0. (6.25)

83



6. Field equations up to second order

This equation is integrated from the origin outwards, with conditions that ensure that

the solution is regular at the origin.

Equation (6.25) in the vacuum exterior holds for j = 1, and the regular exterior

solution is thus

ω− =
2J

r3
−

+ ω−∞,

for some constants J [57] and ω−∞. A spacetime gauge driven by ~S1
− = ω−∞t∂ϕ can now

be used to remove ω−∞. We thus fix the first order spacetime gauge in the exterior region

in order to set

ω− =
2J

r3
−
. (6.26)

6.3 Second order

The procedure is analogous to the first order. The perturbed field equations to second

order are (6.5). The second order perturbation of the Ricci tensor and scalar are computed

using the explicit form of K2 given in (5.3) into the formulas (3.15) and (3.17) respectively.

With these ingredients, the expression (3.19) provides the second perturbation of the

Einstein tensor. It contains five nonvanishing components: the diagonal terms plus the

crossed term {r, θ}.
The conditions on the fluid flow (6.8) together with the normalisation condition now

lead to ~u(2) = ~u(2)t∂t, where ~u(2)t = e−3ν/2 {Ω2gϕϕ + 2ΩK1tϕ +K2tt/2} .
The second order perturbation of the energy momentum tensor, obtained as usual

from the second derivative T (2) = ∂2
εTε|ε=0, is

T (2)
αβ = (E(2) + P (2))uαuβ + 2(E + P )

{(
K1αµK1βνu

µuν + 2uµK1µ(αu
(1)

β) + u(1)
αu

(1)
β

)
+ uµK2µ(αuβ) + 2uµ(1)K1µ(αuβ) + u(2)

(αuβ)

}
+ P (2)gαβ + PK2αβ, (6.27)

where we have made use of E(1) = P (1) = 0. We have all the ingredients to compute the

field equations that to second order (6.5).

A key point in Hartle’s model [57] is that the functions in K2
± contain only l = 0, 2

terms in an angular Legendre polynomial expansion (4.18). We leave the analysis of this

assumption for Chapter 8, where we will prove that this is, indeed, the only possible

angular structure in K2
± given equatorial symmetry and the field equations with the

corresponding boundary conditions (ensuring the regularity of the solutions and satisfying

the matching conditions) for the second order perturbations. However, in order to carry

out the study of the whole angular structure of the perturbations in Chapter 8 we need

to compute the field equations that the functions in K2 satisfy in full. To this aim we
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6.3. Second order

expand each function in K2 in Legendre polynomials, those corresponding to l = 0, 2 plus

the remainder, orthogonal (⊥) to those two, so that

h(r, θ) = h0(r) + h2(r)P2(cos θ) + h⊥(r, θ),

m(r, θ) = m0(r) +m2(r)P2(cos θ) +m⊥(r, θ),

k(r, θ) = k0(r) + k2(r)P2(cos θ) + k⊥(r, θ),

f(r, θ) = f2(r)P2(cos θ) + f⊥(r, θ), (6.28)

where we have defined

h0(r) :=
1

2

∫
S2

hηS2 , h2(r) :=
5

2

∫
S2

hηS2 , h⊥(r, θ) := h(r, θ)− h0(r)− h2(r)P2(cos θ),

so that the orthogonal components clearly satisfy∫
S2

h⊥ηS2 = 0,

∫
S2

h⊥P2ηS2 = 0, (6.29)

and analogously for the rest of the functions. Equatorial symmetry is used only to get rid

of l = 1. No further restrictions will be imposed on the ⊥ functions.

A straightforward calculation shows that the above angular structure assumed on the

functions in K2 is inherited, via the field equations (6.5), by the second order energy

momentum tensor. In particular

E(2)(r, θ) = E
(2)
0 (r) + E

(2)
2 (r)P2(cos θ) + E(2)⊥(r, θ),

P (2)(r, θ) = P
(2)
0 (r) + P

(2)
2 (r)P2(cos θ) + P (2)⊥(r, θ). (6.30)

Given that E(1) = P (1) = 0, the barotropic character of the equation of state to second

order (6.11) translates onto the condition

E(2)P ′ − P (2)E ′ = 0. (6.31)

This relation is automatically satisfied by the l = 2 and ⊥ sectors, but it provides an

independent equation for the l = 0 sector.

In order to write down the second order field equations in a convenient and compact

form, let us first define the following auxiliary “tilded” functions

h̃0 := h0 −
1

2
rν ′k0, m̃0 := m0 − e−λ/2

(
eλ/2rk0

)′
, (6.32)

h̃2 := h2 −
1

2
rν ′f2, m̃2 := m2 − e−λ/2

(
eλ/2rf2

)′
, k̃2 := k2 − f2,

(6.33)

h̃⊥ := h⊥ − 1

2
rν ′f⊥, m̃⊥ := m⊥ − e−λ/2

(
eλ/2rf⊥

)′
, k̃⊥ := k⊥ − f⊥.

(6.34)
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6. Field equations up to second order

These quantities are clearly invariant under the “radial” gauges class of transformations

(5.6) since e.g. both h− 1
2
rν ′k and h− 1

2
rν ′f are.

We introduce now the above decomposed expressions of the relevant quantities into the

field equations (6.5). By construction, the complete set of equations gets decomposed into

the l = 0, 2 and ⊥ sectors, which are independent and can thus be considered separately.

Our purpose in the next two subsections is to recover and write down the field equations

as closely as possible to the expressions presented in Chapter 4, or in Sections VII and

VIII in the original reference [57].

The EFEs in the l = 0 sector

The l = 0 sector of the field equations (6.5) can be shown to provide the following

expressions for the second order energy density and pressure1

8πE
(2)
0 =

4

r2

(
re−λm̃0

)′
+

8

3
rjj′(ω − Ω)2 − 1

3
j2r2ω′2 + 16πrE ′k0,

(6.35)

8πP
(2)
0 =

4

r2

{
e−λrh̃′0 − m̃0

(
8πr2P + 1

)}
+

1

3
r2j2ω′2 + 16πrP ′k0,

(6.36)

plus an equation for h̃′′0 of the form h̃′′0 = F1(h̃′0, m̃
′
0, m̃0). A convenient auxiliary definition

of the second order pressure is given by

P̃0 :=
P

(2)
0 − 2rP ′k0

2(E + P )
=

P
(2)
0

2(E + P )
+

k0

r − 2M(r)

(
M(r) + 4πr3P

)
, (6.37)

where (6.18) has been used in the equality. This function is well defined at points where

E +P = 0 (see below), and corresponds to the (l = 0 part of the) “pressure perturbation

factor” as defined in (4.26) in Chapter 4, or equation (87) in [57].

On the other hand, the l = 0 part of equation (6.31), i.e. E
(2)
0 P ′ − P

(2)
0 E ′ = 0,

combined with (6.35), yields a direct relation between P
(2)
0 and m′0, which written in

terms of “tilded” quantities reads

(
re−λm̃0

)′
= 4πr2E

′

P ′
(E + P )P̃0 +

1

12
j2r4ω′2 − 2

3
r3jj′(ω − Ω)2. (6.38)

1These two equations correspond to (93) together with (95) and (94) along with (96) in [57], that is
equations (4.24) and (4.25) in Chapter 4. Note that a global 2 factor on the right hand side here comes
from the definitions (6.9) and (6.10) as compared with the definition of ∆G in Hartle’s model [57] and
Chapter 4, which already contains the ε2 and 1/2 factors.
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6.3. Second order

Now, the aforementioned equation for h̃′′0 can be rewritten, using (6.36) and (6.38)

—also (6.16) to substitute the function λ by M—, as a first order ODE for P̃0, that reads

P̃0
′ = −4π(E + P )r2

r − 2M(r)
P̃0 −

(re−λm̃0)r2

(r − 2M(r))2

(
8πP +

1

r2

)
+

r4j2

12(r − 2M(r))
ω′2 +

1

3

(
r3j2(ω − Ω)2

r − 2M(r)

)′
. (6.39)

The set of functions that determines the l = 0 sector can thus be taken to be {P̃0, m̃0},
which satisfies the system (6.38), (6.39) given regularity conditions at the origin r = 0.

Equation (6.36) can be rewritten as

h̃′0 − reλm̃0

(
8πP +

1

r2

)
= 4πreλ(E + P )P̃0 −

1

12
eλr3j2ω′2. (6.40)

It is now trivial to check that (see (4.26) in Chapter 4, or (90) in [57])

P̃0 + h̃0 −
1

3
r2e−ν(ω − Ω)2 = µ, (6.41)

for some constant µ, is a first integral of (6.39) and (6.40). This relation shows, in

particular, that P̃0 is well defined in r+ ∈ [0, a]. The constant µ is identified in [57] as the

second order to background ratio of the constant injection energy. In analogy with the

Newtonian potential, h̃0 (and thus h0) is determined up to an arbitrary additive constant.

This constant will be determined once a condition at infinity plus some continuity across

the boundary of the body are imposed. We will discuss that below. Once that is fixed,

the value of µ still depends on one factor, that is, the conditions one may impose on P̃0

at the origin. The latter depends on how one sets the value of the pressure (and thus

of the energy density) of the rotating configuration at the origin with respect to that of

the static configuration. We are interested in computing the perturbations in terms of

the central energy density and according to the discussion in Chapter 4 regarding the

computation of the change in mass, we impose P̃0(0) = 0.

The fact that k0 is “pure gauge” translates onto the fact that it does not enter the

set of equations, and it is therefore not determined. The quantitites E
(2)
0 and P

(2)
0 are

gauge dependent, and can only be computed, from (6.35) and (6.36) respectively, once k0

is specified, i.e. by fixing the ‘radial’ gauge. Due to (6.7), under a second order gauge

transformation driven by ~V2 = 2ξ∂r and ~S1 = 0, we have P (2)(g) = P (2) + 2ξP ′ and

analogously for E(2). Given that under the same change, we have k0
(g) = k0 + ξ/r (see

(5.6)). Therefore, the quantities independent of that choice, and thus the relevant ones,

correspond to E
(2)
0 −2E ′rk0 and P

(2)
0 −2P ′rk0. This is the motivation for the introduction

of the auxiliary function P̃0.
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6. Field equations up to second order

The equations for {h̃−0 , m̃−0 } in the vacuum exterior are obtained by using (6.20)

and the first order solution (6.26) in equations (6.35), (6.36) with their left hand sides

and P and E set to zero. The general solutions are given by

r−e
−λ(r−)m̃−0 (r−) = δM − J2

r3
−
, (6.42)

h̃−0 (r−)− h̃0∞ = − δM

r− − 2M
+

J2

r3
−(r− − 2M)

, (6.43)

where δM is an arbitrary constant and h̃0∞ corresponds to the freedom of shifting the

gravitational potential. It is common to choose h̃0∞ = 0, so that h̃0 vanishes at infinity.

This is equivalent to a spacetime gauge driven by ~V2 = 2h̃0∞t∂t as shown in Section 5.1.

As mentioned above, the function k−0 remains undetermined.

The EFEs in the l = 2 and ⊥ sectors

The Einstein tensor to second order contains five nontrivial components. Hence, apart

from the two field equations that provide the energy density and pressure to second order,

the l = 2 and ⊥ sectors provide three field equations. We take one of them directly as

G(2)
rθ = 8πT (2)

rθ and for the other two we use the combinations eλ(r)(G(2)
ϕϕ − T (2)

ϕϕ)−
r2 sin2 θ(G(2)

rr − T (2)
rr) = 0 and (G(2)

ϕϕ − T (2)
ϕϕ) − sin2 θ(G(2)

θθ − T (2)
θθ) = 0. These

result convenient because the perturbation of the pressure does not enter them.

Let us start considering the last of the three equations, which explicitly reads

sin θ
∂

∂θ

∂θ
(
h̃⊥ + m̃⊥ + (h̃2(r) + m̃2(r) + fω(r))P2(cos θ)

)
sin θ

 = 0,

where we have collected the first order terms in the function

fω(r) := −r
4j2

6
ω′2 +

r3 (j2)
′

3
(Ω− ω)2 . (6.44)

After taking into account that h̃⊥ and m̃⊥ are orthogonal to P0 and P2, this provides the

following two equations

h̃2(r) + m̃2(r) + fω(r) = 0. (6.45)

h̃⊥ + m̃⊥ = 0. (6.46)

We consider now the equation G(2)
rθ = 0. After an integration with respect to the

angular coordinate it reads

(2− rν ′)(h̃2(r)P2(cos θ) + h̃⊥) + (2 + rν ′)
(
m̃2(r)P2(cos θ) + m̃⊥

)
−2r

(
(h̃⊥′ + k̃⊥′) + (h̃′2 + k̃′2)P2(cos θ)

)
= 0, (6.47)
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6.3. Second order

where an arbitrary function of integration is found to vanish identically after a projection

to P0. After having used equations (6.45) and (6.46) in order to get rid of the functions

m̃2 and m̃⊥, (6.47) provides the following pair of equations

h̃′2 + k̃′2 + ν ′h̃2 +
rν ′

2
fω = 0, (6.48)

∂r(h̃
⊥ + k̃⊥) + ν ′h̃⊥ = 0. (6.49)

Finally, we consider the last independent equation, corresponding to eλ(r)(G(2)
ϕϕ −

T (2)
ϕϕ) − r2 sin2 θ(G(2)

rr − T (2)
rr) = 0. This is also separated into three contributions

corresponding to the l = 0, 2 and orthogonal ⊥ sectors and thus, it results in three

independent equations, one for each sector. The equation for l = 0 yields the relation

h̃′′0 = F1(h̃′0, m̃
′
0, m̃0), mentioned in the previous section. The corresponding equations for

l = 2 and orthogonal ⊥ sectors are

2
{
r2ν ′h̃′2 + 4eλk̃2 + (rν ′(−1 + rν ′)− rλ′ + 6eλ − 2)h̃2

}
+ (2eλ − (rν ′)2)fω = 0,

r2ν ′
(
∂rh̃

⊥ −
(
j′

j
+
ν ′′

ν ′

)
h̃⊥
)
− eλ

(
1

sin θ
∂θ

(
sin θ∂θ(h̃

⊥ + k̃⊥)
)

+ 2(h̃⊥ + k̃⊥)

)
= 0.

(6.50)

In order to derive the first of the equations we have used (6.45) to get rid of m̃2 and (6.48)

and its first derivative to substitute k̃′2 and k̃′′2 .

Finally, we check that the barotropic EOS does not provide any other independent

equation here, contrary to what happens in l = 0. The expressions for the energy density

and pressure in the sector l = 2 can be written as

E
(2)
2 − 2E ′rf2 =

4E ′

3ν ′

(
3h̃2 + e−νr2(ω − Ω)2

)
, (6.51)

P
(2)
2 − 2P ′rf2 = −2

3
(E + P )

(
3h̃2 + e−νr2(ω − Ω)2

)
=

4P ′

3ν ′

(
3h̃2 + e−νr2(ω − Ω)2

)
, (6.52)

where in the last equality identities from the background have been used. Note that the

relation (6.31) holds for E
(2)
2 and P

(2)
2 as well as for the combinations E

(2)
2 − 2E ′rf2 and

P
(2)
2 − 2P ′rf2.

The ⊥ part of the pressure and the energy density, after some manipulations using the

three field equations and background identities, are found to be related to the function

h⊥ by

E(2)⊥(r, θ)− 2E ′rf⊥ =
4E ′

ν ′
h̃⊥, P (2)⊥(r, θ)− 2P ′rf⊥ =

4P ′

ν ′
h̃⊥. (6.53)
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6. Field equations up to second order

Hence, it is straightforward to check that P (2)⊥(r, θ)E ′(r) − E(2)⊥(r, θ)P ′(r) = 0 holds

identically and we verify that the barotropic EOS equation does not add any new infor-

mation. The expression of the pressure can be written as a hydrostatic equilibrium first

integral for the orthogonal ⊥ sector using the background relation (6.19), that provides

P (2)⊥(r, θ)− 2P ′rf⊥

2(E + P )
+ h̃⊥ = 0. (6.54)

Let us conclude this section with a brief summary of the field equations for the l = 2 and

⊥ sectors.

The EFEs in the l = 2 sector

We include this summary in order to present the equations for l = 2 in the same fashion

as in Chapter 4. After the definitions

v := h2 + k2, ṽ = v −
(

1 +
rν ′

2

)
f2, (6.55)

the whole set of equations (6.45), (6.48) plus the first equation in (6.49) are equivalent to

the system

ṽ′ = −ν ′h̃2 +

(
1

r
+
ν ′

2

)(
−2

3
r3jj′(ω − Ω)2 +

1

6
j2r4ω′2

)
, (6.56)

h̃′2 =

{
−ν ′ + r

(r − 2M(r))ν ′

(
8π(E + P )− 4M(r)

r3

)}
h̃2 −

4ṽ

rν ′(r − 2M(r))

+
1

6

(
1

2
rν ′ − 1

(r − 2M(r))ν ′

)
r3j2ω′2

−1

3

(
1

2
rν ′ +

1

(r − 2M(r))ν ′

)
r2(j2)′(ω − Ω)2 (6.57)

plus the algebraic equation for m̃2

m̃2 =
1

6
r4j2ω′2 − 1

3
r3(j2)′(ω − Ω)2 − h̃2. (6.58)

The convenient “pressure perturbation factor” in this case (see (6.37) for l = 0 to

compare) corresponds to the following definition

P̃2 :=
P

(2)
2 − 2P ′rf2

2(E + P )
, (6.59)

so that (6.52) just reads

P̃2 + h̃2 +
1

3
e−νr2(ω − Ω)2 = 0. (6.60)
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6.3. Second order

This corresponds to (91) in [57], and, together with the above (6.41) form the l = 0 and

l = 2 parts of the first integral µ, (86) in [57] (named γ there).

The interior region is thus determined by the solution of the pair {h̃+
2 , k̃

+
2 } to the

system (6.56), (6.57) given regularity conditions at the origin r+ → 0, up to an arbitrary

constant, say A′. Then, m̃+
2 is directly obtained from (6.58). The function f2(r) does not

enter the equations, and thus it is, as expected, pure gauge.

In the vacuum exterior region only equations (6.56)-(6.58) apply. Using (6.20), so

that in particular P = 0, and (6.26), and imposing regularity at r− → ∞, the whole set

of exterior functions {h̃−2 , k̃−2 , m̃−2 } is integrated and read

h̃−2 = AQ2
2

(r−
M
− 1
)

+
J2

r3
−

(
1

M
+

1

r−

)
, (6.61)

k̃−2 + h̃−2 = A

{
2M√

r−(r− − 2M)
Q1

2

(r−
M
− 1
)}
− J2

r4
−
, (6.62)

m̃−2 = −AQ2
2

(r−
M
− 1
)

+
J2

r3
−

(
1

M
− 5

r−

)
, (6.63)

where Qm
l (x) stand for the associated Legendre functions of the second kind, and A is

an arbitrary constant. The constants A′ and A are to be determined once the relations

between {h̃+
2 , k̃

+
2 } and {h̃−2 , k̃−2 } on the matching hypersurface Σ are imposed.

The EFEs in the orthogonal ⊥ sector

The radial derivative of equation (6.49) can be used with equation (6.50) to obtain a PDE

for the single function ṽ⊥ := h̃⊥ + k̃⊥. We define the auxiliary function

g(r) := 1/(jν ′2) (6.64)

in order to write it as

1

g(r)
∂r(g(r)∂rṽ

⊥(r, z)) +
eλ

r2
∂z
(
(1− z2)∂zṽ

⊥(r, z)
)

+
2eλ

r2
ṽ⊥(r, z) = 0.

An alternative form of this equation is

∆γ ṽ
⊥(r, z) = −2eλ

r2

(
eλg(r)

r2

)−2

ṽ⊥(r, z), (6.65)

where ∆γ is the Laplacian operator associated to the auxiliary metric γ

γ =

(
eλ/2g(r)

r2

)2

(eλdr2 + r2dΩ2). (6.66)
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6. Field equations up to second order

After defining

V (r) :=
2eλ

r2

(
eλg(r)

r2

)−2

,

equation (6.65) reads

(∆γ + V (r))ṽ⊥(r, z) = 0. (6.67)

The two remaining functions h̃⊥ and m̃⊥ are related to the radial derivative of ṽ⊥ by

h̃⊥ = −m̃⊥ = − 1

ν ′
∂rṽ
⊥. (6.68)

In the vacuum exterior, the background solutions (6.20) provide g = r−(r− −
2M)/2M and the function ṽ⊥ satisfies equation (6.67) for the following metric γ− and

potential V −

γ− =
r−(r− − 2M)3

16M4

(
1

1− 2M
r−

dr2
− + r2

−dΩ2

)
, V − =

8M2

r−(r− − 2M)
. (6.69)

The algebraic equations (6.68) read, after using the vacuum solution for ν (6.20)

h̃⊥− = −m̃⊥− = −r−(r− − 2M)

2M
∂r− ṽ

⊥−. (6.70)
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7

Matching of a perfect fluid with vacuum to
second order

In this Chapter we combine the matching conditions obtained in Chapter 5 with the field

equations for the perfect fluid and vacuum of Chapter 6.

Apart from the boundary conditions for the functions in the metric g and in the

perturbation tensors K1 and K2, the shape of the boundary of the star is determined.

In the first order perturbations, the field equations do no provide much more infor-

mation. In fact, the only field equation provides just the jump in the second derivative

of ω. However, the knowledge of the explicit exterior solution helps us to clarify some

aspects about the spacetime gauge to this order. Also, we obtain that the hypersurface

remains unchanged, unless the energy density vanishes at the boundary. In this case the

first order deformation is determined by the second order matching.

Regarding the second order perturbations, the situation becomes more involved. In

first place, we formulate the matching conditions given in Chapter 5 for the tilded functions

introduced in Chapter 6. This is convenient because it allows us to present a set of

matching conditions in which the spurious degrees of freedom from the “radial” family

of spacetime gauges do not appear (they have been absorbed by the tilded functions).

Secondly, we determine the jumps for the relevant functions, i.e. h̃0 (and h̃′0), m̃0, h̃2 (and

h̃′2), k̃2 (and k̃′2) and m̃2. Finally we find that the deformation of the surface of the star

presents a behaviour similar to the one found at first order. Its determination order by

order is only possible if the energy density does not vanish at the surface Σ0. We present

these results at the end of this Chapter in the form of a Theorem and afterwards we discuss

the way to determine the surface. Let us stress that in the formulation of Theorem 5 we

assume that the functions ω± do not depend on the respective angular coordinate and that

the ⊥ sector in the second order perturbation vanishes. Nevertheless, we will deal with

these assumptions in Chapter 8, where we show that these restrictions are not needed,
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7. Matching of a perfect fluid with vacuum to second order

since they arise as a consequence of the matching.

7.1 Background

The matching conditions of the background (5.13) involve the functions ν, λ and ν ′.

The condition [λ′] = 0 translates, via (6.16) and (6.20), into the equality of the interior

mass M(a) and the exterior constant M . Precisely, the exterior solutions (6.20) and the

matching of the background (5.13) imply that having fixed the exterior potential ν−(r−)

by (6.20), the interior potential loses the freedom of a constant shift since it is fixed by

the condition

ν+(a) = −λ+(a) = log

(
1− 2M

a

)
. (7.1)

The remaining condition in (5.13) enforces the normal derivatives of the potentials ν± to

agree on Σ0

ν ′+(a) = ν ′−(a) =
2M

a(a− 2M)
=: ν ′(a). (7.2)

Equation (6.13) relates this (vanishing) jump with the pressure, so that we immediately

find

[ν ′] = 8πaeλ(a)[P ] = 0. (7.3)

Finally, the two remaining independent field equations (6.12), (6.14) combined with the

matching conditions (5.13) allow us to express the differences of the derivative of the

functions of the metric in terms of the fluid variables

[λ′] = 8πaeλ(a)[E] = 8π
a2

a− 2M
[E], (7.4)

[ν ′′] =

(
1 +

aν ′(a)

2

)
[λ′]

a
=

(
1 +

aν ′(a)

2

)
eλ(a)8π[E]

= 8π
a(a−M)

(a− 2M)2
[E]. (7.5)

Note first that the jumps in [λ′] and [ν ′′] are not independent. On the other hand observe

that for a vacuum exterior, the difference [E] corresponds to the value of the interior

energy density E+ on Σ0, this is [E] = E+(a). We just prefer to keep [E] in some

expressions for the sake of generality, since they apply in the matching of two fluids, and

the notation is, in fact, more compact.

It must be stressed that whereas the matching condition (7.3) implies, for a vacuum

exterior, that P (r+) must vanish on the embedded Σ0, the energy density E(a) at the

boundary stays free, a priori. Its value will be determined, if any, by the equation of

state.
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7.2. First order

For later use, it is easy to show that (5.13) imply that [j] = 0, so that j(a) = 1, and

[j′] = −1/2[λ′] (7.6)

by construction.

Finally, let us consider the particular case for which [E] = 0, so that E+(a) = 0.

The matching conditions are obtained directly from (7.3)-(7.5) above, but the next order

derivatives of the metric potentials are relevant in order to compute the perturbative

matching conditions. Hence, we include them here for completeness

[ν ′] = aeλ(a)8π[P ] = 0, (7.7)

[λ′] = [ν ′′] = 0, (7.8)

[λ′′] = 8πaeλ[E ′] = 8π
a2

a− 2M
[E ′], (7.9)

[ν ′′′] =
1

a

(
1 +

aλ′(a)

2

)
[λ′′] = 8π

a(a− 3M)

(a− 2M)2
[E ′]. (7.10)

7.2 First order

Recall that from Proposition 7 we already have [ω] = b1 and [ω′] = 0. Using these

matching conditions and the field equation (6.25) and (7.6) we obtain that

[ω′′] = [λ′]

(
1

2
ω′(a) +

2

a
(ω+(a)− Ω)

)
. (7.11)

Regarding the determination of the deformation, the condition (5.16) of Proposition

7 is now equivalent to M 6= 0. The remark made after Proposition 7 can be now stated

in terms of a physical property of the interior and exterior background configuration:

whenever there is a jump in the energy density at the surface, Q−1 (= Q+
1 ) must vanish

necessarily by (5.18). However, if [E] = 0 the function Q1(τ, ϑ) is not determined, in prin-

ciple, and enters the second order. Nevertheless, as shown in Section 7.3 when analysing

the determination of the surface of the rotating star at second order, Q1 will necessarily

vanish if [E ′] 6= 0. In Section 7.5 the whole case [E] = 0 is discussed.

On gauges at first order

We discuss next the meaning of the constant b1 in (5.14), how it is related with gauges, and

its role on the determination of the rotation of the perfect fluid star. Consider a spacetime

gauge change in either (V±, g±) defined by ~S1 = Ct∂ϕ (we drop the ± for clarity, the two

C± being independent). The rules of transformation of the first order metric perturbation
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7. Matching of a perfect fluid with vacuum to second order

tensor (3.23), the energy momentum tensor (6.6), and of the first order deformation vector

(3.34) imply, respectively, ωg = ω − C, Ωg = Ω − C and bg1 = b1 − C. First, note that

ω+ −Ω is independent with respect to that gauge. This quantity is essentially the ω̃ (up

to a sign) defined by Hartle in [57] (see Chapter 4).

As discussed, the first order matching conditions are invariant under such spacetime

gauges (at either or both sides, with corresponding C+ and C−), that is, the first order

matching conditions (5.14), (5.15), (5.17) and (5.18) transform to just the same expres-

sions with g superscripts.

This first order gauge at either side ± is fixed (and completely fixed) once the value

of the respective function ω± is fixed at some point (or infinity). The equation for ω− is

usually integrated in the exterior vacuum region assuming that ω− vanishes at r− →∞.

By doing that ∂t− is chosen to represent the “right” observer at infinity. At infinity, the

vector ∂t− is thus assumed to be both unit and orthogonal, with respect to gε to first

order, to the axial Killing vector ∂ϕ− . The exterior choice of gauge thus fixes ω−, and it

is given by (6.26).

Regarding the interior region, the above spacetime gauge for some C+ can then be

used to get rid of one of the two constants that describe the configuration at first order,

either b1 or Ω, but clearly not both. The transformations of b1 and Ω suggest building a

quantity defined on Σ0 as

Ω∞ = Ω− b1, (7.12)

invariant under the gauge ~S1. The meaning of this constant is the following. Ω defines the

rotation of the fluid flow with respect to the interior observer ∂t+ , and b1 determines the

tilt on Σ0 between that interior observer ∂t+ and the (already fixed) exterior observer ∂t− ,

explicitly ∂t+|Σ0 = ∂t−|Σ0− εb1∂ϕ|Σ0 . The difference Ω∞ thus describes the tilt of the fluid

flow with respect to the continuous extension of the exterior observer to the interior, and

thence, measures the rotation of the fluid with respect to the unit non-rotating observer

at infinity.

The value of the “invariant” quantity ω̃(r) := ω+(r)−Ω at the boundary can then be

expressed thanks to the condition (5.14) as ω+(a)− Ω = ω−(a)− Ω∞, i.e.

ω̃+(a) = 2J/a3 − Ω∞. (7.13)

This yields the desired relation between the ω̃+(a), integrated via (6.24) from the origin,

the constant J and the rotation of the star, thus described by Ω∞.

In [57] the function ω is assumed to be “continuous” by construction. In the present

general setting that corresponds to a choice of gauge in the interior region for which b1 = 0,

and therefore Ω(= Ω∞) corresponds indeed to the rotation of the fluid as measured by
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7.3. Second order

the unit exterior observer. The relation between Ω and ΩH is thus explicitly given by

ΩH = εΩ∞.

In contrast, in [16] the gauge in the interior is chosen so that the interior observer ∂t+

moves with the fluid, i.e. Ω = 0 (comoving gauge). Thereby, since the freedom one may

have in the interior driven by ~S1 has been already fixed, the price to pay is a rotation in

the matching hypersurface given by the constant b1, which corresponds to the parameter

−c4Ω in [16], so that Ω∞ corresponds to “c4Ω” there.

7.3 Second order

We particularize first the matching conditions given in Proposition 8 for the l = 0, 2 and

orthogonal ⊥ sectors of the angular expansion of the perturbation functions (6.28) at

both sides. The field equations in the background allow us to express the differences [λ′]

and [ν ′′] in terms of [E] by direct use of (7.4) and (7.5). However, we will not use those

relations in some places, nor the explicit form of ν−(r−) in the exterior, to keep more

compact expressions. Let us recall that condition (5.16) now just reads M 6= 0 given the

exterior is vacuum.

Clearly, for all pairs f±(r±, θ±) such that f = f0(r)+f2(r)P2(cos θ)+f⊥(r, θ) we have

[f ] = [f0] + [f2]P2(cosϑ) + [f⊥](ϑ). Note that [f0] and [f2] are constants.

Equation (5.30) is satisfied if and only if c1 = 0 plus

[k2] = [f2] , [k⊥](ϑ) = [f⊥](ϑ). (7.14)

The constant c2 just corresponds to the difference [k0], i.e. [k0] = c2.

Likewise, equation (5.31) is satisfied if and only if H1 = 0 plus

[h0] =
H0

2
+

1

2
aν ′(a) [k0] (7.15)

[h2] =
1

2
aν ′(a) [f2] , (7.16)

[h⊥](ϑ) =
1

2
aν ′(a)[f⊥](ϑ). (7.17)

Equation (5.35), since c1 and H1 vanish, imposes the following expansion of [Q̂2](ϑ)

[Q̂2](ϑ) = [Q̂2(0)] + [Q̂2(2)]P2(cosϑ) + [Q̂⊥2 ](ϑ)

for some constants [Q̂2(0)] and [Q̂2(2)] and an arbirary function [Q̂⊥2 ] of ϑ, orthogonal to

P0(cosϑ) and P2(cosϑ). Equation (5.35) is thus equivalent to

[Q̂2(0)] = 2ae−ν(a)/2 [k0] (7.18)

[Q̂2(2)] = 2ae−ν(a)/2 [f2] , (7.19)

[Q̂⊥2 ](ϑ) = 2ae−ν(a)/2[f⊥](ϑ), (7.20)
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7. Matching of a perfect fluid with vacuum to second order

where here, and in the following expressions, equation (7.1) is used to set λ(a) = −ν(a).

Take now the equations (5.28) and (5.29) for the differences [m] and [h′]. In the case

[E] 6= 0 ([λ′] 6= 0 and [ν ′′] 6= 0), for which Q1 = 0 necessarily, we recall we have Q̂+
2 =

Q̂+
2 (ϑ) and therefore both Q̂±2 due to the above, so that

Q̂±2 (ϑ) = Q̂2
±
(0) + Q̂2

±
(2)P2(cosϑ) + Q̂⊥2

±(ϑ), (7.21)

with constants Q̂2
±
(0) and Q̂2

±
(2). Thence, equation (5.32) holds iff

[m0] = a [k′0] +
1

4
eν(a)/2[λ′]Q̂2

+
(0) +

1

2
(aλ′−(a) + 2) [k0] (7.22)

[m2] = a [k′2] +
1

4
eν(a)/2[λ′]Q̂2

+
(2) +

1

2
(aλ′−(a) + 2) [f2] , (7.23)

[m⊥](ϑ) = a[k⊥](ϑ) +
1

4
eν(a)/2[λ′]Q̂⊥2

+(ϑ) +
1

2
(aλ′−(a) + 2)[f⊥](ϑ), (7.24)

while equation (5.33) does whenever

[h′0] =
1

2
aν ′(a) [k′0] +

1

4
eν(a)/2[ν ′′]Q̂2

+
(0) +

1

2
(aν ′′−(a) + ν ′(a)) [k0] ,

(7.25)

[h′2] =
1

2
aν ′(a) [k′2] +

1

4
eν(a)/2[ν ′′]Q̂2

+
(2) +

1

2
(aν ′′−(a) + ν ′(a)) [f2] ,

(7.26)[
h⊥′
]

(ϑ) =
1

2
aν ′(a)[k⊥′](ϑ) +

1

4
eν(a)/2[ν ′′]Q̂⊥2

+(ϑ) +
1

2
(aν ′′−(a) + ν ′(a))[f⊥](ϑ).

(7.27)

In the case [E] = 0, condition [ω′′]Q1 = 0 must be satisfied (Proposition 8), but it

provides no information, since [ω′′] = 0 as follows from (7.11) and (7.4). On the other

hand, the equations corresponding to (5.32) and (5.33) with the changed terms (5.34)

contain a term proportional to [E ′](Q1)2. If [E ′] = 0 we recover the above equations

(with [λ′] = [ν ′] = [E] = 0) and therefore one only needs considering the case [E ′] 6= 0.

In that case the equations imply, analogously, that Q1 does not depend on τ and that it

must satisfy (Q1)2 = q0 + q2P2(cosϑ) + q⊥(ϑ) for some constants q0 and q2 and a function

q⊥(ϑ) (orthogonal to P0(cosϑ) and P2(cosϑ)).

Some remarks are in order now, which will lead us eventually to the determination

of the deformation of the matching hypersurface at second order in any “radial” gauge

–recall that the deformation vectors ~Z are gauge dependent, and therefore the functions

Q describe the deformation with respect to the gauge chosen. The appropriate quantities

are constructed as follows

Ξ0 := Q̂2(0) − 2ae−ν(a)/2k0(a), Ξ2 := Q̂2(2) − 2ae−ν(a)/2f2(a), (7.28)

Ξ⊥(ϑ) := Q̂⊥2 (ϑ)− 2ae−ν(a)/2f⊥(a, ϑ),
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7.3. Second order

on Σ0 from either side + and −. These three quantities are “radial”-gauge independent,

since the gauge defined by ~V2 = 2Y (r, θ)∂r (and ~S1 = Ct∂φ) induces via (3.35) the

transformation Q̂g
2 = Q̂2 + 2Y eλ(a)/2, while kg = k+ Y/r and f g = f + Y/r, see (5.6). On

the other hand, the relations (7.18)-(7.20) just read

[Ξ0] = 0, [Ξ2] = 0, [Ξ⊥](ϑ) = 0, (7.29)

meaning that the quantities coincide as computed from either side. How the actual

deformation Σ+
ε out from the spherical Σ0 is encoded in terms of Ξ0 and Ξ2 is described

in Section 7.5.

The above matching conditions to second order have yet to be combined with the

constraints provided by the field equations at either side. We obtain the final expressions

of the matching conditions to second order using the second order field equations for the

perfect fluid interior and the vacuum exterior next.

Regarding the l = 0 sector, the differences of the field equations do not provide any

constraints to the matching conditions in the sense that the differences [k0] and [k′0] remain

arbitrary (constants). This, as expected, is related to the fact that k0 is pure gauge. The

l = 0 matching conditions (7.15), (7.22) and (7.25) can be written in terms of the “tilded”

functions (6.32) and the deformation functions (7.28) in the case [E] 6= 0 as follows,

[h̃0] =
H0

2
, (7.30)

[h̃′0] =
a−M

a(a− 2M)
[m̃0], (7.31)

[m̃0] = 2π[E]e−ν(a)/2aΞ0, (7.32)

while if [E] = 0 equation (7.32) is replaced by

[m̃0] = −2π[E ′]e−ν(a)/2aq2
0. (7.33)

The background matching configuration relations (7.4) and (7.5) have been used to express

the background difference functions in terms of [E], together with (6.20) to write

aν ′(a) =
2M

a− 2M
= e−ν(a) 2M

a
. (7.34)

Recall, from the discussion in Section 6.3, that the arbitrary shift in the function h̃−0 (r−)

was fixed at infinity, demanding that h̃−0 (r−) vanishes there. The arbitrariness in shifting

h̃+
0 (r+) corresponds here to the appearance of the free constant H0. One can always fix

the shift in h̃+
0 (r+) in the interior simply by choosing H0. This just mirrors the fact that

in Newtonian theory the potential is fixed at infinity and then taken to the interior of the

body simply by imposing continuity across the boundary.
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7. Matching of a perfect fluid with vacuum to second order

It must stressed, however, that the argument about the “continuity” of h̃0 does not

stand for the other function m̃0 in general. Consider first the difference of equation (6.36)

for a vacuum exterior combined with the two matching conditions (7.30), (7.31) at hand,

which leads to the relation

[m̃0] = −4π
a3

M
[E]P̃0(a), (7.35)

after using the definition (6.37). Note that this equation holds always, irrespective of the

vanishing (or not) of [E]. Now, in the case [E] 6= 0, (7.32) can be finally rewritten as

(
2[E]P̃0(a) =

)
P

(2)
0 (a)− 2aP ′(a)k+

0 (a) = −M
a2
e−ν(a)/2[E]Ξ0. (7.36)

In the [E] = 0 case equation (7.35) clearly implies [m̃0] = 0 and therefore (7.33) yields

[E ′]q0 = 0. (7.37)

The implication of (7.35) is that the values of the functions m̃+
0 (a) and m̃−0 (a) coincide

if and only if [E]P̃0(a) = 0. This fact turns out to be in contradiction with the assumption

made in [57] stating that mH
0 is “continuous” at the boundary, with consequences on the

determination of δM (see Section 7.5).

Finally, the field equation (6.36) at both sides (±) can be used to replace the condition

(7.31) by (7.36). To sum up, given the Einstein’s field equations hold, in the l = 0 sector

the set of matching conditions can be given by the two conditions (7.30) and either (7.32)

or (7.35), plus the relation (7.36).

In the l = 2 and orthogonal ⊥ sectors things are different, in the sense that the

field equations provide, in principle, further constraints to the matching conditions. We

present the two sectors separately, starting with the l = 2. Taking the differences of the

field equations (6.56), (6.57) and (6.58) we obtain three equations for the differences [m̃2],

[k̃′2], [h̃′2] which have to be added to the relations in (7.23) and (7.26) and the relations

(7.14) and (7.16) that already determine [k̃2] and [h̃2] trivially. The number of independent

equations turns out to be four plus these two trivial ones, and can be finally cast, when

[E] 6= 0 (⇒ Q1 = 0), as

[k̃2] = 0, [h̃2] = 0, (7.38)

[E]

{
h̃2(a)− 1

4
ν ′(a)eν(a)/2Ξ2 +

1

3
a2e−ν(a)

(
2J

a3
− Ω∞

)2
}

= 0,

(7.39)
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plus

[h̃′2] = 4π[E]
a2

M
h̃2(a) +

4

3
π[E]

a2

M
e−2ν(a)

(
(a−M)2 +M2

)(2J

a3
− Ω∞

)2

,

(7.40)

[k̃′2] = −4π[E]
a2

M
h̃2(a)− 4

3
π[E]

a3

M
(a− 2M)e−ν(a)

(
2J

a3
− Ω∞

)2

, (7.41)

[m̃2] =
8

3
πa4[E]e−ν(a)

(
2J

a3
− Ω∞

)2

, (7.42)

where we have used, in particular, that

[j′(ω − Ω)2] = −1

2
[λ′]

(
2J

a3
− Ω∞

)2

= −4πa[E]e−ν(a)

(
2J

a3
− Ω∞

)2

given the exterior region is vacuum. Therefore, for [E] 6= 0 the set of matching conditions

for the l = 2 sector is composed by only three equations, given by the two in (7.38),

and (7.39). The three relations (7.40), (7.41) and (7.42) are now a consequence of (7.38)

and (7.39) and the field equations (6.56), (6.57) and (6.58) at both sides. Regarding the

[E] = 0 case, the above equations for the l = 2 sector (7.38)-(7.42) hold. However, (7.39)

has to be substituted by [E ′]q2 = 0.

For convenience, we present the matching conditions of the ⊥ sector in terms of ṽ⊥.

First, the matching conditions (7.14) and (7.17) translate into

[h̃⊥] = 0, [k̃⊥] = 0, (7.43)

so that, by the definition of v⊥ we have

[ṽ⊥] = 0. (7.44)

The field equation (6.49) provides, using the previous matching conditions,

[ṽ⊥′](ϑ) = 0. (7.45)

The matching condition (7.27) with the field equation (6.50) results in

[E]

{
h̃⊥(ϑ) +

ν ′(a)eν(a)/2

4
Ξ⊥(ϑ)

}
= 0. (7.46)

Finally, the two remaining conditions result from the field equations (6.46) and (6.50),

and they read respectively

[m̃⊥](ϑ) = 0, (7.47)

[h̃⊥′](ϑ) =
4πa2

M
[E]h̃⊥(ϑ). (7.48)

101



7. Matching of a perfect fluid with vacuum to second order

If [E] = 0, (7.43), (7.44), (7.45) and (7.47) hold, but (7.46) must be replaced by

[E ′]q⊥ = 0 and (7.48) by [h⊥′] = 0. We thus have [E ′]Q1 = 0. As a first consequence,

some of the matching conditions above, (7.38)-(7.42) for l = 2 and (7.43)-(7.45) plus

(7.47) and (7.48) for the ⊥ sector always hold true, irrespective of whether or not [E]

vanishes. Finally, if [E ′] 6= 0 then

Q1 = 0. (7.49)

7.4 The matching of the l = 0, 2 sectors

We devote this section to the analysis of the matching of the l = 0, 2 sectors. To this

aim we will take as an assumption that ω is a function of r alone, so that we are able

to compare our results with the development in Chapter 4 ([57]). We start with the

formulation of a theorem for the perturbed matching to second order of the perfect fluid

and vacuum.

Theorem 5 Let (V , g) with Σ0 be the static and spherically symmetric background matched

spacetime configuration, perturbed at either side to first order by the functions ω±(r±, θ±)

through K1
± as defined in (5.2) plus the unknowns Q±1 (τ, ϑ) and ~T±1 (τ, ϑ), as described

in Proposition 7, so that the first order matching conditions (5.14) and (5.15) plus (5.17)

and (5.18) hold. Let the configuration be perturbed to second order by K2
± as defined in

(5.3), plus the unknowns Q̂±2 (τ, ϑ) and ~T±2 (τ, ϑ) on Σ0, and assume that the interior region

(+) satisfies the field equations for a perfect fluid with barotropic equation of state and

that the exterior (−) region is asymptotically flat and satisfies the vacuum field equations

up to second order.

The energy density E(r+) and pressure P (r+) of the interior background configuration

are given by (6.12) and (6.13) and must satisfy (6.19). The background exterior vacuum

solution is given by (6.20), and we assume 0 < 2M < a. Consider the convenient

background quantities defined in (6.16).

Let ~uε be the unit vector fluid corresponding to the interior family of metric tensors

g+
ε = g+ + εK1

+ + 1
2
ε2K2

+ +O(ε3). Assume that ~uε satisfies (6.8) for some constant Ω.

Let J be defined by the first order exterior solution (6.26).

Assume finally at both sides (±) that the first order function ω depends only on the

radial coordinate, and that the second order functions are decomposed in Legendre poly-

nomials in terms of {h0, h2,m0,m2, k0, k2, f2} by (6.28).

Then

1. The second order pressure P (2) and energy density E(2) of the fluid inherit the

same angular dependency, that is, (6.30) hold for some E
(2)
0 (r), E

(2)
2 (r), P

(2)
0 (r) and
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P
(2)
2 (r). With the help of convenient alternative “tilded” counterparts, defined in

(6.32)-(6.33) plus (6.37) and (6.59), the Einstein’s field equations in the interior

can be expressed as the system (6.38), (6.39) and (6.41) for some constant γ for the

set {P̃+
0 , m̃

+
0 , h̃

+
0 } plus the system (6.56), (6.57), (6.58) for the set {h̃+

2 , k̃
+
2 , m̃

+
2 }.

The vacuum solution at second order is given by (6.42), (6.43), (6.61), (6.62) and

(6.63) where δM and A are arbitrary constants.

2. Given the Einstein’s field equations of the previous point are satisfied, the necessary

and sufficient conditions that the metric perturbation tensors K2
± must satisfy to

fulfil the second order matching conditions are given by (7.30) and (7.35) for the

sets {P̃±0 , m̃±0 , h̃±0 }, with arbitrary constant H0, and the two equations in (7.38) for

the sets {h̃±2 , k̃±2 , m̃±2 }.

Regarding the deformation of Σ0, expressions (7.36) and (7.39) show explicitly how

the quantities Ξ0 and Ξ2 are linked in a ‘radial’-gauge invariant manner to the jump in the

pressure at second order across the boundary of the star through the value of the energy

density of the background configuration at Σ0. Whenever [E] 6= 0, equations (7.36) and

(7.39) directly determine Ξ0 and Ξ2 in terms of P̃0(a) and h̃2(a) respectively, which are

quantities that are obtained by integration from the origin. Equations (7.36) and (7.39)

can then be cast as

Ξ0 = −2a2

M
eν(a)/2P̃0(a), (7.50)

Ξ2 = e−ν(a)/2 2a(a− 2M)

M

(
h̃2(a) +

1

3

a3

a− 2M

(
2J

a3
− Ω∞

)2
)

= −2a2

M
eν(a)/2P̃2(a), (7.51)

after using (7.34) and (6.60) in the first and second equalities in the latter, respectively.

However, if [E] = 0, since Q̂±2 are only defined on Σ0 we cannot determine the defor-

mation directly from the above, in the same way Q1 is undetermined in the first order

problem in that case.

This is to be expected. In fact, as an extreme case, when matching two vacuum regions

the matching hypersurface is not determined in general. The idea is that in order to have

a boundary determined by the matching, the energy density must depart from zero as

one moves to the interior, so that the star indeed extends no further than, and up to,

that surface. A sufficient condition is that [E ′] 6= 0. In that case it can be shown that

one can make use of the gauge that follows the surfaces of constant energy density, which

has been used so extensively in the literature, specially in [57]. In order to determine

the deformation one can then extend Ξ0 and Ξ2 to the interior, say using some functions
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7. Matching of a perfect fluid with vacuum to second order

ξ0(r+) and ξ2(r+) in a convenient way, using that gauge, to finally obtain the deformation

by continuity. This is discussed in the final part of this section, where it is shown, in

particular, that (7.50) and (7.51) will hold also when E(a) = 0, under the condition that

the gauge that follows the surfaces of constant energy density exists. This suggests the

fact that equations (7.36) and (7.39) are expected to appear again at higher orders, in the

same way the condition [E]Q1 = 0 of the first order problem appears as [E ′](Q1)2 = 0 at

second order.

Before performing an exhaustive discussion on the determination of the deformation

of the star to second order, we acommodate Hartle’s model in our setting, establishing the

explicit correspondences between coordinates and gauges used in both methods. Apart

from the obvious interest of comparing our results with those in [57], this will help us to

determine the deformation of Σ0 even when [E] = 0. This is accomplished inside a suitable

(surface) gauge, that we denote as the E−gauge. First we discuss its existence and how

to construct it and finally we point out how the deformation of the star is encoded in this

gauge.

7.5 Comparison with Hartle’s results: amending the

mass

The spacetime gauge used in [57] at first order corresponds to setting b1 = 0 here (since ω

is assumed to be continuous in [57]), while at second order the starting point is the choice

of gauge that corresponds here to setting k±0 = 0 and f±2 = 0. We refer to this choice as

the k-gauge. At some point another spacetime gauge comoving with the deformation is

introduced in [57]. A discussion of the use of that gauge in [57] (also in [16]) can be found

in Section 7.5.

In the k-gauge all the “tilded” functions (6.32) and (6.33) equal the non-“tilded”

counterparts, and in the interior region (+), the functions P̃0 and P̃2 are just rescalings of

their respective P
(2)
0 and P

(2)
2 , that is, P̃0/2 = P

(2)
0/2/(2(E+P )) := P0/2. To avoid having to

rewrite all the previous equations without tildes we will simply use the “tilded” functions

in what follows.

Let us first concentrate on the l = 0 sector. Regarding the interior region, the system

(6.38)-(6.39) plus equation (6.40) for the set {re−λm̃+
0 , P̃0, h̃

+
0 }, as functions of r (r+ in

fact) coincide one by one with the coupled equations (4.24) and (4.25), plus (4.26) in

Chapter 4 (or (90), (97) and (100) in [57]) for {mH
0 , p

H
0
∗, hH0 } as functions of R, which

has the same range as r+. To be precise, one can forget about r+ and R and just es-

tablish a common variable s, so that the sets of equations in Chapter 6 and in Chapter
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4 or [57] hold in the range s ∈ (0, a]. Given common conditions at s → 0 the prob-

lem for {re−λm̃+
0 , P̃0, h̃0} coincides with the problem for {mH

0 , p
H
0
∗, hH0 } and therefore

mH
0 (s) = se−λ(s)m̃0(s), pH0

∗(s) = P̃0(s) and hH0 (s) = h̃0(s) (up to a free additive constant)

necessarily for s ∈ (0, a], i.e. in the interior region.

In the vacuum exterior region m0 = m̃0 and h0 = h̃0 are given by (6.42) and (6.43)

respectively. Again, these two expressions correspond to (4.27) and (4.28) in Chapter 4

((105) and (106) in [57]) for mH
0 and hH0 respectively, in terms of a variable r in the range

r ∈ [a,∞).

Therefore, the matching conditions for the function h̃0 given by (7.15) and (7.30), and

for the function m̃0 given by (7.32), translate directly to matching conditions on hH0 and

mH
0 . As discussed previously, the free additive constant in h̃+

0 (and so in hH0 ) can be used

to set H0 = 0. In an abuse of terminology, the assumption of a “continuous” hH0 is thus

consistent.

The function mH
0 is also assumed to be “continuous” in [57] Section VII, when the

value of mH
0 (a) as computed from the interior is equated to the expression of mH

0 (r) in the

exterior at r = a in order to obtain the constant δM in (4.30), or (107) in [57]. However,

the correct matching condition is given by (7.35), which in the k-gauge, and since [λ] = 0,

can be expressed as

[mH
0 ] = −4π

a3

M
(a− 2M)E(a)pH0

∗(a) (7.52)

using the notation in Chapter 4, [57]. As a result, given the value mH
0 (a) as computed

from the interior, the value of the change in mass in (6.42) is given by

δM = mH
0 (a) +

J2

a3
+ 4π

a3

M
(a− 2M)E(a)pH0

∗(a). (7.53)

The last term corresponds to the jump of the values of m̃0 at the boundary, and it is not

present in the expression for the change of mass (4.30), this is (107) in [57] and in the

subsequent works, e.g. [64, 65]. Of course, whenever the density of mass-energy vanishes

at the surface of the star, E(a) = 0, this term has no consequences. This will happen

in many situations, as in the cases of equations of state that imply the vanishing of the

energy density at points where the pressure vanishes, polytropes for instance. In fact, in

the series of papers started by [64, 65] all the equations of state considered satisfy that

condition, and therefore the computation of the change of mass is not affected by the

correction in (7.53).

However, in more general situations that is not going to be the case. As an example,

models for quark stars that rely on a non-zero value of E at the surface have been con-

sidered in the literature (see e.g. [34]). In particular, models of stars based on a constant
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7. Matching of a perfect fluid with vacuum to second order

background E in the interior are affected by that term and the computation of the change

in mass should be corrected.

Let us now jump to the l = 2 sector. In the interior region the equation (6.58) plus

the system (6.56)-(6.57) for the set {re−λm̃+
2 , h̃

+
2 + k̃+

2 , h̃
+
2 } as functions of r+ coincide one

by one with equation (4.35) plus the coupled equations (4.33)-(4.34) in Chapter 4, (120),

(125) and (126) in [57], for {mH
2 , v

H := hH2 + kH2 , h
H
2 } as functions of r, which has the

same range as r+. The same argument as in the l = 0 sector shows that the problems

coincide and therefore we can set mH
2 (s) = se−λ(s)m̃2(s), hH2 (s) = h̃2(s) and kH2 (s) = k̃2(s)

for s ∈ (0, a]. In the vacuum exterior region h2 = h̃2 and k2 = k̃2 are given by (6.61)

and (6.62), which correspond to (4.37) and (4.38) respectively in terms of a variable r

in the range r ∈ [a,∞). The comparison of (6.60) with (4.36) ((91) in [57]) implies the

correspondence pH2
∗(s) = P̃2(s). The two matching conditions in (7.38) simply state that

hH2 and kH2 are “continuous” on the boundary. The assumption made in [57] regarding

the l = 2 sector is thus consistent. This “continuity” of hH2 and kH2 is finally used in order

to fix the free constants A′ and A in the interior and exterior regions respectively, thus

fixing completely the global problem in the l = 2 sector.

We discuss finally the deformation of the boundary. In [57] the analysis of the defor-

mation needs the introduction of a function ξH(r, θ) = ξH0 (r) + ξH2 (r)P2(cos θ) defined in

the whole interior region by imposing Pε(R + ε2ξH(R, θ), θ) = P (R) for R ∈ [0, a] (see

also the discussion in [16]). The deformation is then determined by the values ξH0 (a) and

ξH2 (a).

Let us recall that in the present treatment the deformation is described by Ξ0 and

Ξ2, which are determined by equations (7.50) and (7.51) whenever E(a) 6= 0. In the case

E(a) = 0 the deformation can be determined by relying on a particular gauge in order to

define extensions for both Ξ0 and Ξ2. The correspondence of ξH0 (r) and ξH2 (r) as functions

defined in the interior region with quantities in the treatment presented here rely, in fact,

on the construction of those extensions. This is discussed in the next section, where it is

shown how equations (7.50) and (7.51) hold in all cases, and that the values ξH0 (a) and

ξH2 (a) correspond to

ξH0 (a) = −1

2
eν(a)/2Ξ0, ξH2 (a) = −1

2
eν(a)/2Ξ2. (7.54)

(The relative minus sign comes from the orientation of the normal chosen in (5.10), which

goes as −∂r.) Indeed, the former translates, via (7.50), to equation (4.31), (117) in [57],

which should in fact be corrected to ξH0 (a) = pH0
∗(a)a(a− 2M)/M , whose value describes

the average expansion of the shape of the star [64, 16]. The combination of the latter with

(7.51) enters the different definitions of the ellipticity of the star found in the literature

(see e.g. [64], [16]) accordingly. In particular, it provides the expression for the ellipticity
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as defined in [64] by (4.40), which after using (7.54) and (7.51) thus reads

e =

√√√√−3

{
k̃2(a)− a− 2M

M

(
h̃2(a) +

1

3

a3

a− 2M

(
2J

a3
− Ω∞

)2
)}

.

On the deformation of the star

We devote this section to discuss the deformation of the surface, and at the same time,

study the relationship of the two gauges used in [57] (also in [16]).

In order to describe the deformation of the surface, motivated by the approaches taken

in Newtonian theory, it has been common in the literature to focus on the surfaces of

constant energy density or, equivalently, of constant pressure given a barotropic equation

of state. This consists after all of a choice of gauge in which the surfaces of constant

energy density (or pressure) in the interior region of the perturbed configuration are

those of constant radial coordinate. This is described in [57] (see also [16]) as a change

from the original coordinate rH (the initial gauge corresponds to the k-gauge) to another

R defined by (the inverse of)

{R, θ} → {rH = rHε (R, θ), θ} (7.55)

for some function rHε (R, θ) satisfying rH0 (R, θ) = R and

Eε(r
H
ε (R, θ), θ) = E(R), (7.56)

where Eε is the energy density corresponding to gε (see (6.3)) in the k-gauge. The surfaces

of constant energy density in the perturbed configuration, Eε, are then those of constant

R, and their values correspond to the values the pressure of the background configuration

E take at those R ∈ (0, a]. In the present terminology that corresponds to moving to

another gauge, to which we refer to as the E-gauge. Note that (7.56) is imposed for all ε

in some neighbourhood around 0, and therefore for all orders. To second order rHε (R, θ)

is specified in [57] as

rHε (R, θ) = R + ε2ξH(R, θ) +O(ε3), (7.57)

where for clarity we write explicitly the perturbation parameter at this point. We do not

comment yet on the existence nor uniqueness of the E-gauge.

In [57] the perturbed surface is then defined as the surface of constant energy density

that equals the value of the energy density at the surface of the static configuration.

Explicitly, Σε is defined to have the form Σε : rH = rHε (a, θ), which is equivalent to R = a

by construction.
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7. Matching of a perfect fluid with vacuum to second order

Let us formulate that condition in the present treatment. Indicating with a (E) when

a (gauge-dependent) quantity or object refers to the E-gauge, the expression (7.56) can

be cast just as

E(n)(E) = 0

for all orders n ≥ 1 (note E(0)(E) = E). At each order n that condition would determine, in

principle, the E-gauge at the corresponding order. The perturbed matching hypersurface

Σε would then be defined by imposing Σ
(E)
ε = Σ0 pointwise. In other words, the perturbed

matching hypersurface is defined by imposing that the E-gauge is, at the same time, a

“surface-comoving” gauge 1.

Given a barotropic equation of state all the above can be stated in terms of the

pressure. The E-gauge is then also determined by

P (n)(E) = 0 (7.58)

for all n ≥ 1. Since the interior pressure necessarily vanishes at the boundary in the

background configuration, imposing that the E-gauge is also a “surface-comoving” gauge

implies that the whole perturbed pressure computed in the E-gauge vanishes at the per-

turbed boundary. This is the view taken in [16] and many other works (see e.g. [21, 84]).

Clearly, given a barotropic equation of state, the approach taken in terms of E (say,

approach “E”) and that in terms of P (approach “P”) lead to the same conclusion.

However, their justifications are of different nature, apart from the possible problems of

existence.

Regarding the approach “E”, if E(a) 6= 0 the fact that the perturbed energy den-

sity attains that value E(a) at the boundary may, in principle and in general, seem to

constitute an assumption. Probably due to this difficulty the approach “P” has seemed

to be preferred in many works since the vanishing of the (perturbed) “pressure” on the

surface is what one would expect on physical grounds. However, that would be an er-

roneous statement as such, and in general, since Pε is gauge dependent (see Chapter 7).

One should, at least, prove in which gauge that should happen. Indeed, the matching

conditions in the exact case restrict the possible jumps of the Einstein tensor across the

surface. However, it remains to be shown how this fact translates to the perturbative

matching scheme in the general case. A general consistent approach should not rely, in

principle, on the use of a result (the vanishing of a “pressure” in a certain gauge) that

has to be proven, in fact, as a consequence of the procedure.

Finally, the definition of the deformation of the star in terms of the E-gauge should

control and take care of the existence (and uniqueness, if needed) of the gauge. For

1The surface comoving gauges and the surface gauges are defined in Chapter 3 just after Proposition
4.
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instance, in the simplest case of a constant energy density interior background E(r) =

E(a) = const. the E-gauge cannot be determined using (7.56), and thus, neither the

deformation. Instead, the “P” approach has to be used, for which the E-gauge can be

constructed. This is implicitly done in works focused on stars of constant energy density,

such as [30].

Nevertheless, the determination of Σε using the E-gauge is well justified if E(a) = 0 but

E(r) 6= 0 (> 0 in fact) for r ∈ (0, a), since then the perturbed star (perfect-fluid region)

extends up to where Eε vanishes, and no further. By the local nature of the matching,

one could relax this condition to E(a − δ) 6= 0 for all δ > 0 in some neighbourhood of

a. This condition (and analyticity of E(r)) demand that there exists n such that n-th

derivative dnE/drn(a) at r = a is non-zero. The implicit function theorem can then be

applied to every differentiation of (7.56) with respect to ε evaluated at ε = 0 in order to

show that rHε (a, θ) can be obtained order by order from (7.56). The full proof is out of

the scope of this thesis and will be presented elsewhere. When needed, we will simply

assume that the E-gauge can be constructed from r = a inwards.

As stressed, in the present treatment no argument about the vanishing of the pressure

of the perturbed configuration Pε has been made, nor any specific gauge has been used. In

Sections 7.2 and 7.3 it has been shown how the deformation of the boundary, described by

the quantities Q1 of the first order and Ξ0 and Ξ2 of the second order, are determined by

Q1 = 0 when E(a) 6= 0 or E ′(a) 6= 0, and (7.50) and (7.51) when E(a) 6= 0, respectively,

and how that agrees with the results in [57].

In what follows we first show explicitly that the E-gauge is indeed a “surface gauge”

when E(a) 6= 0, at least to second order. This shows, at the same time, that the usual

“vanishing of the pressure at the boundary” in the exact case translates in this perturba-

tive scenario to P
(E)
ε |Σ(E)

ε
= 0, i.e. that the perturbed pressure in the E-gauge must vanish

at the perturbed surface (at least to second order). Secondly, we use the definition of the

perturbed surface when E(a) = 0 by means of the E-gauge (approach “E”) to show that,

given the E-gauge exists (and is unique), then Q1 = 0 and equations (7.50) and (7.51)

hold even when E(a) = 0.

Not to overwhelm the notation let us drop the interior + superscripts in the following

when not needed.

As shown in Section 6.2, at first order we have E(1) = P (1) = 0, and the condition

E(a) 6= 0 already implies Q1 = 0. Therefore, the family of gauges chosen for the family

(5.1) satisfies the E-gauge condition to first order. Since Q1 = 0, Σε coincides at first

order with Σ0 as a set of points. The E-gauge is therefore a “surface-comoving” gauge up

to first order. A hypersurface gauge can be used to fix ~T+
1 = 0, so that the perturbed Σε

coincides at first order with Σ0 pointwise, so that the E-gauge is, moreover, a “surface”
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gauge up to first order.

Regarding the second order, let us recall that given conditions at the origin (such

that P̃0(0) vanishes) P̃0(r) is fully determined by the l = 0 field equations, and P̃2(r) is

obtained from (6.60), once h̃2(r) is fully determined, in turn, by the l = 2 field equations

and the condition at the origin and at the boundary r = a coming from the “continuity”

of the functions h̃2 and k̃2. Now, the E-gauge is selected by fixing k0(r) and f2(r) so that

P
(2)
0

(E)(r) and P
(2)
2

(E)(r) vanish. From (6.37) and (6.59) this is accomplished by imposing

k
(E)
0 = −E + P

rP ′
P̃0, f

(E)
2 = −E + P

rP ′
P̃2. (7.59)

We are ready to show that if (7.50) and (7.51) hold then Q
(E)
2 = 0. This follows

directly from the definitions (7.28), which in the E-gauge read

Q̂2
(E)
(0) = Ξ0 + 2ae−ν(a)/2k

(E)
0 (a), Q̂2

(E)
(2) = Ξ2 + 2ae−ν(a)/2f

(E)
2 (a).

Equations (7.50) and (7.51) together with (7.59) evaluated on r = a readily imply Q̂2
(E)
(0) =

Q̂2
(E)
(2) = 0. Finally, since we have chosen ~T1 = 0 at first order, then Q2

(E)
(0) = Q2

(E)
(2) = 0

as follow from the definitions (7.28). It only remains, again, to choose a convenient

hypersurface gauge to second order to fix ~T+
2 = 0 so that the perturbed Σε coincides with

Σ0 at second order, not only as a set of points, but pointwise. We have thus shown that

the E-gauge is indeed a “surface gauge” whenever E(a) 6= 0, at least to second order, as

expected.

Let us consider now the case E(a) = 0 under the conditions that ensure the existence

and construction of the E-gauge. The matching hypersurface Σε is then determined by

the coincidence of Σ
(E)
ε and Σ0 pointwise (in V+

0 , mind the + superscript). This condition

is equivalent, up to second order, to Q
+(E)
1 = Q

+(E)
2 = 0 together with a hypersurface

gauge choice such that ~T+
1 = ~T+

2 = 0 at each order. At first order we thus have the

required result by construction. At second order, the equations defining Ξ0/2 (7.28) in the

interior read then

Ξ0 = −2ae−ν(a)/2k
(E)
0 (a), Ξ2 = −2ae−ν(a)/2f

(E)
2 (a),

which combined with (7.59), yield (7.50) and (7.51).

We must finally address the issue of how Ξ0/2, given by (7.50) and (7.51), describe

the deformation of the surface. The key is to show how the deformation quantities Ξ0/2,

defined on Σ0, can be extended to the interior region and how that relates to the change

from the k-gauge to the E-gauge. We start by defining that change in terms of ~V2. Let

us, for simplicity, set ~S1 = 0 so that ~S2 = ~V2. Including ~S1 = Ct∂ϕ does not add anything

relevant to the analysis. Recall that the k-gauge is defined by k
(k)
0 = 0 and f

(k)
2 = 0. Given
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that the second order change ~V2 = 2Y (r, θ)∂r induces (5.6) (with C = 0), it is immediate

to check (recall the freedom in defining f(r, θ)) that the change from the k-gauge to the

E-gauge is accomplished by setting

~V2 = 2r
(
k

(E)
0 + f

(E)
2 P2(cos θ)

)
∂r = −2

E + P

P ′

(
P̃0 + P̃2P2(cos θ

)
∂r, (7.60)

where the second equality follows from (7.59). Note that the relation k
(k)
2 = k

(E)
2 − f (E)

2

holds (recall the radial gauge transformations (5.6)). Also, from relations (6.19) and (7.2)

we can see that the vector field ~V2 does not vanish at r = a unless P̃ = 0 there.

On the other hand, given the definition of the second order gauge vectors in (3.22),

the second order gauge ~V2 = 2Y (r, θ)∂r with ~S1 = 0 corresponds to a diffeomorphism Ωε :

V0 → V0 of the form (s, θ)→ (Rε(s, θ), θ) for s ∈ [0, a] defined by Rε(s, θ) = s+ε2Y (s, θ).

Given (7.60), we thus have

Rε(s, θ) = s− ε2E(s) + P (s)

P ′(s)

(
P̃0(s) + P̃2(s)P2(cos θ)

)
. (7.61)

Let us recall again (see Section 7.5) that the coordinate R used in [57] ranges from

0 to a, and therefore (7.61) can be compared with the expression (7.57) in the form

rHε (s, θ) = s+ ε2ξH(s, θ) +O(ε3) to obtain

ξH = −E + P

P ′

(
P̃0 + P̃2P2(cos θ)

)
.

Now, this is in agreement with ξH = ξH0 + ξH2 P2(cos θ) for ξH0/2 = −E+P
P ′

pH0/2
∗, as follows

from (90) and (91) in [57] and the correpondences pH0/2
∗(s) = P̃0/2(s) found in Section 7.5.

Expression (7.61) suggests the construction of two functions in the interior

ξ0/2 := 2
E + P

P ′
e−ν/2P̃0/2. (7.62)

These, evaluated at r = a, and given that (7.50) and (7.51) hold, lead to

ξ0/2(a) = Ξ0/2.

The functions ξ0/2 (7.62) are therefore extensions of Ξ0/2, as defined in (7.50) and (7.51),

to all the interior region, and are ‘radial’-gauge independent by construction. The infor-

mation of the deformation of the star in the k-gauge is therefore encoded in the functions

ξ0/2, whereas in the E-gauge that information lies in the functions k
(E)
0 and f

(E)
2 .

Using the correspondence ξ0/2(s) = −2e−ν/2ξH0/2(s), so that Ξ0/2 = −2e−ν/2ξH0/2(a),

the analysis of the deformation of the star in terms of Ξ0 and Ξ2 follows then from the

discussions in [57] (see also [16]). Note that the minus sign in the correspondence comes

from the choice of the normals as defined in (5.10), which point towards the origin.
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On the angular structure of the perturbations

This chapter is aimed at showing that the only possible angular structure of the functions

in the perturbation tensors (5.2) and (5.3) is such that ω is a function of the radial

coordinate alone and the expansions (6.28) for the second order functions contain only

the terms l = 0 and l = 2, i.e. the orthogonal ⊥ sector must vanish. We rely on the

construction made in Chapters 5 to 7 in which we have two problems, the interior and

the exterior, each one characterized by an elliptic operator in the corresponding domain

plus some boundary conditions that arise from the matching procedure. We show that

the only differentiable and regular solutions for the first and second order perturbation

problems are those for which the ⊥ sector vanishes.

In [57] the behaviour of the function ω(r) was somehow adressed. The argument

given there relies on the assumption of the continuity of this function (and its derivative)

everywhere, including at the boundary that separates fluid and vacuum, in the coordinates

used to write the metric as (4.1). Under this assumption, the global problem, i.e. in

the domain r ∈ (0,∞), is considered and it is argued that fulfilling the conditions of

regularity at the origin plus “asymptotic flatness” at infinity requires that the function ω

cannot depend on the angular coordinate θ. The angular structure of the second order

perturbations is also discussed in [57]. First, the non-equatorially symmetric part in

the second order functions in (4.1), that corresponds to the odd l’s in an expansion in

Legendre polynomials of the functions involved, is ruled out. After this, the second order

field equations are obtained to find that they contain inhomogeneous terms proportional

to (Ω− ω)2 or to ω′2 acting as sources only for the l = 0 and l = 2 modes of the second

order functions in (4.1). The homogeneous problem for the rest of the l’s is circumvented

arguing that in absence of rotation no contributions of such type are found.

The analogous problem in the Newtonian approach for polytropic equations of state

was analyzed by Kovetz in [72]. He revisited the paper by Chandrasekhar [23] to show

that the rotational perturbations to the Emden’s function, that in the politropic model
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are translated into the perturbations of the Newtonian potential and the density profile

(see Chapter 9 for a brief description of polytropes), contain only l = 0, 2 modes. The

proof is given for a polytropic index n in the interval 0 ≤ n ≤ 5, although it can be

checked that it holds also for n ≥ 5 1. The present work generalizes the work by Kovetz

in the Newtonian case.

8.1 Notation and considerations

For notational convenience, let us start with a definition of limits of functions we will use

later.

Limit for functions defined on subsets of the real line

Let (a, b) be an open interval in R and p a point in (a, b). Let f be a real valued

function defined on all of (a, b) except possibly at p. It is then said that the limit of f as x

approaches p is L if, for every real ε > 0, there exists a real δ > 0 such that 0 < |x−p| < δ

and x ∈ (a, b) implies |f(x)− L| < ε.

Strong maximum principle and boundary point lemma

We stick to the notation, conventions and definitions regarding elliptic operators from

[54]:

• D denotes a domain (a proper open connected subset in Rn). It is not necessarily

bounded.

• L = aij(x) ∂2

∂xixj
+ bi(x) ∂

∂xi
+ c(x) is elliptic at a point x ∈ D if the coefficient

matrix aij(x) is positive, i.e. if λ(x) and Λ(x) denote the minimum and maximum

eigenvalues of aij(x) then 0 < λ(x)|ξ|2 ≤ aij(x)ξiξj ≤ Λ(x)|ξ|2 for all ξ ∈ Rn − {0}.

• L is uniformly elliptic in D if Λ/λ is bounded everywhere in D.

• The condition |bi(x)|/λ(x) ≤ const <∞, x ∈ D will be assumed.

• ∂ν denotes the outward unit normal derivative to ∂D.

From the same reference, we include for completeness the boundary point lemma and

the strong maximum principle.

1One of the steps of the proof given in [72] consist of showing that the minimum of a function that
depends on the polytropic index n is positive. The computation must be performed numerically and it
is done in the original reference [72] for 1 ≤ n ≤ 5. However, we have not found any n greater than 5 for
which the minimum becomes negative. It does for 0 < n < 1, which in [72] is treated separately.
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Lemma 5 Boundary point lemma ([54])

Suppose that L is uniformly elliptic, c = 0 and Lu ≥ 0 in D. Let x0 ∈ ∂D be such

that

1. u is continuous at x0,

2. u(x0) > u(x) for all x ∈ D,

3. ∂D satisfies an interior sphere condition at x0.

Then the outer normal derivative of u at x0, if it exists, satisfies the strict inequality

∂u

∂ν
(x0) > 0. (8.1)

If c ≤ 0 and c/λ is bounded, the same conclusion holds provided u(x0) ≥ 0, and if

u(x0) = 0 the same conclusion holds irrespective of the sign of c.

Theorem 6 Strong maximum principle ([54])

Let L be uniformly elliptic, c = 0 and Lu ≥ 0(≤ 0) in a domain D (not necessarily

bounded). Then if u achieves its maximum (minimum) in the interior of D, u is a

constant. If c ≤ 0 and c/λ is bounded, then u cannot achieve a non-negative maximum

(non-positive minimum) in the interior of D unless it is constant. If c < 0 at some point,

then the constant of the theorem is obviously zero.

8.2 Lemmas

We define the intervals I+ = (0, A) and I− = (A,∞) of the real line for some A > 0. Also,

we will use the notation I+
α = (α,A). The boundaries at A, and α, satisfy the interior

sphere condition trivially.

Lemma 6 In I+, let the uniformly elliptic operator L+ be

L+ :=
d2

dR2
+ b+(R)

d

dR
+ c+(R), (8.2)

where b+(R) and c+(R) are bounded functions in I+
α , for all 0 < α < A. Also, c+(R) < 0

in I+. Let f ∈ C2(I+) ∩ C0(I+) ∩ C1(I+ ∪ {A}) that satisfies L+f = 0 and f(0) = 0.

Then the following holds

• f(A) > 0⇒ ∂Rf(A) > 0.

• f(A) < 0⇒ ∂Rf(A) < 0.
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• f(A) = 0⇒ f(R) = 0 ∀R ∈ I+.

Proof: Consider first f(A) > 0. f(0) = 0 implies that for all δ > 0 there exists ε > 0

such that |f(R)| < δ whenever R < ε. Set δ = f(A) > 0. Clearly ε < A. Define the

domain D̃+ ⊂ I+ as D̃+ = (ε, A), non empty by construction, and consider the operator

L+ in D̃+. Since f(R) < f(A) and f ∈ C2(D̃+), f is nonconstant in D̃+, and thus, since

b+ and c+ are bounded in D̃+, the strong maximum principle ensures that the function f

does not attain a non-negative maximum in D̃+. Hence the function f in D̃+ attains its

maximum at R = A. Now, given that f(R) ∈ C0(I+), with f(A) > f(R) for all R ∈ D̃+,

the boundary point lemma states that ∂Rf |R=A > 0.

Consider now f(A) < 0. The change f(R)→ −f(R) leads to the previous case, since

−f(A) > 0 and thus ∂Rf |R=A < 0.

Assume f(A) = 0 and that f is nonconstant. By the strong maximum principle f

cannot attain a non-negative maximum nor a non-positive minimum in I+
α , for some fixed

value of α. Since the boundary is composed by two points, either f(A) = 0 is the non

negative maximum and f(α) ≤ 0 is the non positive minimum, or f(A) = 0 is the non

positive minimum and f(α) ≥ 0 is the non negative maximum.

Let us consider first f(α) = 0. Since L+f = 0 in a bounded domain I+
α and f = 0

in ∂I+
α , the function f is zero in I+

α . Take f(α) > 0. Given f(0) = 0 there exists ε < α

for which |f(R < ε)| < f(α). Now choose B satisfying 0 < B < ε to define still another

I+
B . Since f(B) < f(α) by construction, f does not attain its maximum on ∂I+

B . Hence

f must be constant in I+
B , and zero because f(A) = 0. The same reasoning works for

f(α) < 0, setting f → −f . This proves f = 0 in I+
α for all α ∈ (0, A). Therefore, f = 0

in I+ follows by continuity.

Lemma 7 In I−, let the uniformly elliptic operator L− be

L− :=
d2

dR2
+ b−(R)

d

dR
+ c−(R), (8.3)

where b−(R) and c−(R) are bounded functions in I−. Also, c−(R) < 0 in I−. Let f ∈
C2(I−) ∩ C1(I−) that satisfies L−f = 0 and

lim
R→∞

f(R) = 0. (8.4)

Then the following holds

• f(A) > 0⇒ ∂Rf(A) < 0.
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• f(A) < 0⇒ ∂Rf(A) > 0.

• f(A) = 0⇒ f(R) = 0 ∀R ∈ I−.

Proof: Assume that |f(A)| > 0. A direct application of the strong maximum principle

and the boundary point lemma gives the stated result.

Suppose now f(A) = 0 and that f(R0) > 0 for some R0 > A. Given the limit

condition (8.4), fix the constant δ = f(R0) and ε > R0 such that |f(R > ε)| < δ. Take

now the interval (A, ε). By construction 0 = f(A) ≤ |f(ε)| ≤ f(R0). Since the function

is achieving a non negative maximum equal or greater than f(R0) in (A, ε), f must be

constant in this interval, and zero, because f(A) = 0. If f(R0) < 0 the same applies to

−f . Then f = 0 in (A,R0). This result holds for any R0 > A and therefore for the whole

I−.

Lemma 8 Consider the problems for {L+, f+} in I+ and for {L−, f−} in I− that satisfy

the conditions of Lemmas 6 and 7 respectively. Impose the boundary conditions

f+(A+)− f−(A−) = 0, (∂Rf)+|R+=A+ − (∂Rf)−|R−=A− = 0. (8.5)

Then f+ = 0 in I+ and f− = 0 in I−.

Proof: Suppose f+(A+) = f−(A−) > 0. Then by Lemma 6, (∂Rf)+|R+=A+ > 0. On

the other hand, by Lemma 7, (∂Rf)−|R−=A− < 0. Thus, the second matching condition

in (8.5) cannot be fulfilled. The same result follows for f+(A+) = f−(A−) < 0. For

f+(A+) = f−(A−) = 0 Lemmas 6 and 7 lead to the result.

Lemma 9 Consider the problems for {L−1 , f−1 } in I−1 = (A1,∞) and for {L−2 , f−2 } in

I−2 = (A2,∞) that satisfy the conditions of Lemma 7. Impose the boundary conditions

f−1 (A1)− f−2 (A2) = 0, (∂Rf)−1 |R1=A1 + β2(∂Rf)−2 |R2=A2 = 0 (8.6)

for some (nonzero) constants β, A1, A2. Then f−1 = 0 in I−1 and f−2 = 0 in I−2 .

Proof: Suppose f−1 (A1) = f−2 (A2) > 0. Following Lemma 7, the derivatives (∂Rf)−1 |R1=A1

and (∂Rf)−2 |R2=A2 take the same signs. Hence, the second matching condition in (8.6)

cannot be fulfilled. The same conclusion is reached if f−1 (A1) = f−2 (A2) < 0. The

remaining possibility f−1 (A1) = f−2 (A2) = 0, implies that f−1 = 0 in I−1 and f−2 = 0 in I−2 ,

by Lemma 7.
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8.3 First order problem

Let us define the domains D+ : {r+ ∈ (0, a) × S2} and D− : {r− ∈ (a,∞) × S2}, where

S2 are the unit round spheres. D+ and D− will correspond to the interior and exterior

problems respectively. We will simply refer by D either one, and denote coordinates

without ± generically, if this leads not to confusion.

We define the spherical potential functions G±(r, θ) relative to ω−(r, θ)−Ω and ω+(r, θ)

by

ω− − Ω =
1

sin θ
∂θG−, ω+ =

1

sin θ
∂θG+ (8.7)

The freedom in the addition of an arbitrary function of r is used to fix G so that G is

orthogonal to the l = 0 Legendre polynomial P0(cos θ) on the unit round sphere, that is,∫
S2

GηS2 = 0, (8.8)

where ηS2 denotes the volume element on S2. The equation (6.24) for ω translates to the

potential G, for either ±, as

4γG + V G = 0 (8.9)

for the metric γ = r4e−ν
(
eλdr2 + r2dΩ2

)
, where dΩ2 denotes the metric on S2, and with

V (r) = 2
r6
eν
(
1 + 2re−λj′/j

)
. The change r3 = 3R renders the metric γ and potential V

as

γ = e−ν
(
eλdR2 + 9R2dΩ2

)
, V (R) =

2

9R2
eν
(

1 + 6Re−λ
j′(R)

j(R)

)
. (8.10)

Let us define A := a3/3. The problems for G± given by (8.9) are thus defined on the spaces

D±, now endowed with the metrics γ±. Each space (D±, γ±) can now be decomposed

as I± × SR where SR are round spheres of radius ρ(R) = 3e−ν/2R and I+ = (0, A),

I− = (A,∞). The important feature regarding the space (D+, γ+) is that its closure D+

is completed, apart from the sphere of radius ρ(A), with a point attached to R = 0.

On the unit sphere S2 we define the quantities Gl at each R by

Gl(R) :=

∫
S2

GPl(cos θ)ηS2 . (8.11)

The operator 4γ separates into 4γ = LR + ρ−2∆S2 , where LR is a purely radial second

order differential operator and ∆S2 is the Laplacian on the (unit) sphere. The equations

for the radial functions Gl are obtained by the integration of equation (8.9) around S2

and read ∫
S2

(4γ + V )GPlηS2 = 0 (8.12a)

⇒
(
LR −

l(l + 1)

ρ2
+ V

)
Gl = 0. (8.12b)
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8.3. First order problem

The first and third terms in (8.12b) follow from the nondependency of LR and V on

the angular coordinates, while the second term arises integrating by parts and using

(∆S2 + l(l + 1))Pl = 0. The equations for the functions Gl explicitly read

LGl :=
1

R2j

d

dR

(
R2j

dGl
dR

)
+

1

9R2

(
eλ(2− l(l + 1)) + 12R

j′(R)

j(R)

)
Gl = 0, (8.13)

which hold in the respective I±. The matching conditions for the functions ω± (5.14) and

(5.15) imply, for their respective G±l , that

G+
l |R+=A − G−l |R−=A = 0, (∂R+Gl)|R+=A − (∂R−Gl)|R−=A = 0, l ≥ 2, (8.14)

where we have used ~n± = −(3A)2/3eλ/2∂R± |R±=A.

From here on, we restrict ourselves to l ≥ 2. Let us study first the interior problem.

The equation (8.13) for G+
l holds in I+ and can be rewritten as

L+G+
l =

d2G+
l

dR+
2

+

(
2

R+

+
j+′

j+

)
dG+

l

dR+

+
1

9R+
2

(
eλ

+

(2− l(l + 1)) + 12R+
j+′

j+

)
G+
l = 0,

(8.15)

which adapts to the notation of Lemma 6 by identifying

b+(R+) =
2

R+

+
j+′

j+
, (8.16)

c+(R+) =
1

9R+
2

(
eλ

+

(2− l(l + 1)) + 12R+
j+′

j+

)
. (8.17)

In order to analyse the behaviour of the functions b+(R+) and c+(R+) in the operator

L+, let us restrict ourselves to regular interior background configurations in which neither

the pressure nor the energy density diverge and the sum E+ + P+ ≥ 0. Recall also that

equations (6.12), (6.13) and (6.15) of the background configuration lead to

j+′

j+
= − 4πeλ

+

(3R+)1/3
(E+ + P+) ≤ 0. (8.18)

The limiting value of the function eλ
+

near the origin is found to be (1−8π(3R+)2/3E+
c /3)−1,

and therefore it remains bounded. Hence b+ and c+ are bounded functions, and c+(R+) <

0, in I+
α .

We require that G+ ∈ C2(D+), and to be once differentiable on the sphere at A

and bounded at the origin. Now, since R+ = 0 in D+ is a point, in order to have G+

defined there, the limit limR+→0 G+ cannot depend on the angular coordinate θ, that is,

limR+→0 G+ must be a constant, and because of the orthogonality condition (8.8) that

constant is zero. All in all, regularity of G+ at D+ implies

lim
R+→0

G+ = 0. (8.19)
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The function G+
l (R+) in I+ is thus extended to the origin (R+ = 0) by continuity imposing

G+
l (0) = 0, and therefore G+

l ∈ C2(I+) ∩ C0(I+) ∩ C1(I+ ∪ {A}). Hence, the interior

problem for {L+,G+
l } in I+ satisfies the conditions addressed in Lemma 6.

In D−, j−(R−) = 1, and equation (8.13) just reads

L−G−l =
d2G−l
dR−2

+
2

R−

dG−l
dR−

+
eλ−

9R−2
(2− l(l + 1))G−l = 0, (8.20)

in the domain I− = (A,∞). Thus, we identify

b−(R−) =
2

R−
, (8.21)

c−(R−) =
eλ
−

9R−2
(2− l(l + 1)) =

1

9R−2

(
1− 2M

(3R−)1/3

)−1

(2− l(l + 1)). (8.22)

We consider background vacuum configurations for which 0 < 2M < a ≤ r−, so that

0 < 2M < (3A)1/3 ≤ (3R−)1/3, for which b− and c− are bounded and c− < 0 in I−.

We demand that G− ∈ C2(D−)∩C1(D−). Hence G−l ∈ C2(I−)∩C1(I−). Apart from

this, we also ask for regularity at infinity. An observation of equation (8.20) in u ≡ R−
−1

reveals that in the limit R− →∞⇔ u→ 0, regular solutions must vanish for l 6= 1, this

is

lim
R−→∞

G−l (R−) = 0 l 6= 1. (8.23)

Hence, the exterior problem for {L−,G−l } in I− fulfils the conditions of Lemma 7.

Recall now the matching conditions (8.14). By Lemma 8, the only possibility is that

G+
l (R+) = 0 in I+ and G−l (R−) = 0 in I− for l ≥ 2. It follows from (8.11) that G(R, θ)

for each R is orthogonal to every Legendre polynomial in the unit sphere except to P1.

This implies, via (8.7), that ω̃ is a function of R alone.

Proposition 9 Consider the functions ω±(r, θ), defined respectively in the interior do-

main D+ : I+ = (0, a) × Sr+, where ω+ is a C2(D+), differentiable once on Sa and

bounded in D+ function, and in the exterior domain D− : I− = (a,∞) × Sr−, where

ω− is a C2(D−) ∩ C1(D−) function regular at infinity. Let ω± satisfy equation (6.24),

particularized adequately for each domain, and let the two problems be related in r± = a

by the boundary conditions (5.14) and (5.15). Assume that E + P ≥ 0 in D+ and that

0 < 2M < a. Then, neither of the ω± can depend on the corresponding angular coordinate,

that is,

ω+ = ω+(r+), ω− = ω−(r−). (8.24)
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8.4 Second order problem

The second order problem reduces to the study of the functions ṽ⊥±, defined in Section

6.3 by ṽ⊥ := h̃⊥ + k̃⊥. These functions satisfy, in the corresponding regions (we drop the

± here), the equation (6.67)

(∆γ + V (r))ṽ⊥(r, z) = 0, (8.25)

written in terms of the auxiliary metric (6.66) and the radial potential V that in terms

of the function g(r) (6.64) read

γ =

(
eλ/2g(r)

r2

)2

(eλdr2 + r2dΩ2), (8.26)

V (r) =
2eλ

r2

(
eλg(r)

r2

)−2

. (8.27)

Let us remark that the potential V is positive everywhere in both (interior and exterior)

regions. We need to demand that ṽ⊥± ∈ C2(D±) respectively and that they have well

defined normal derivatives at the boundaries.

We consider the interior problem first. In the limit r+ → 0, making use of

lim
r+→0

g+(r+) = lim
r+→0

1

jc

(
1

8π(Pc + Ec/3)

)2
1

r2
+

, lim
r+→0

eλ(r+) = 1, (8.28)

the metric γ+ (8.26) and the potential V + (8.27) show the following behaviour

γ+
r+→0 = j−2

c (8π(Pc + Ec/3))−4

(
dr+

2

r+
8

+
dΩ2

r+
6

)
, (8.29)

V +(r+ → 0) = 2(8π)4j2
c

(
Pc +

Ec
3

)4

r+
6. (8.30)

Hence the radial coordinate R+ := r−3
+ /3, R+ ∈ (Ã := a−3/3,∞), is adapted to the area

of the spheres in this limit since

γ+
R+→∞ = j−2

c (8π(Pc + Ec/3))−4 (dR+
2 + 9R+

2dΩ2
)
, (8.31)

V +(R+ →∞) =
2j2
c

9

(
Pc +

Ec
3

)4
1

R+
2
. (8.32)

Keeping this radial coordinate for the whole interior renders the metric γ+ (8.26) as

γ+ = ψ2
+(R+)

(
eλ(R+)dR+

2 + 9R+
2dΩ2

)
, (8.33)

with ψ2
+(R+) := (3R+)−4/3eλ(R+)g+

2(R+), and the potential reads

V (R+) =
2eλ

+(R+)

(3R+)−2/3g+2(R+)
. (8.34)
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The space (D+, γ+) is decomposed as I+×SR+ where SR+ are round spheres of radius

3R+ψ+ and I+ = (Ã,∞). On the other hand, the operator 4γ+ gets decomposed in the

radial and angular differential operators as

4γ+ =
34/3e−2λ+

g+3

∂

∂R+

(
R+

4/3g+ ∂

∂R+

)
+

(
e−λ

+/2

(3R+)1/3g+

)2

∆+
S2
. (8.35)

On the unit sphere S2 we define the quantities v+
l by

v+
l (R+) :=

∫
S2

ṽ⊥+Pl(cos θ+)η+
S2 . (8.36)

Integrating equation (8.25), with the potential given explicitly by (8.34) and the dif-

ferential operator by (8.35), around the unit sphere via the formula (8.12a), the equation

for the v+
l results to be

d2v+
l

dR+
2

+

(
4

3R+

+
g+′

g+

)
dv+

l

dR+

+
eλ

9R+
2
(2− l(l + 1))v+

l = 0. (8.37)

The coefficient of the first derivative is expanded in terms of the explicit value of g(R+)

as

b+(R+) =
4

3R+

− j+′

j+
− 2

ν+′′

ν+′ , (8.38)

where

j+′

j+
=

4πeλ
+

(3R+)5/3
(E+ + P+),

ν+′′

ν+′ =
4(1− eλ+) + 3R+(λ+′(−2 + 3ν+′R+)− ν+′(10 + 3ν+′R+))

18R+
2ν+′ .

Using the equations for the background (6.12), (6.13) and (6.17), the asymptotic limits of

the functions M , E, P allow us to determine that ν+′′/ν+′ decays to infinity as −5/3R+.

Finally, putting together the behaviour of j+′/j+ and ν+′′/ν+′ at infinity, we see that

limR+→∞ b
+ = −1/3R+. Exploring equation (8.37) in this limit we can readily check that

for l > 1

lim
R+→∞

vl
+ = 0. (8.39)

Thus, the interior problem in I+ for v+
l ∈ C2(I+) ∩ C1(I+) satisfies the assumptions in

Lemma 7.

We follow an analogous procedure to treat the exterior problem. First, we perform

the change of radial coordinate R− := (r−)3/3 and define

ψ2
−(R−) :=

1

16M4

(
1− 2M

(3R−)1/3

)3

,
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8.4. Second order problem

so that the metric and the potential become

γ− = ψ2
−(R−)

[(
1− 2M

(3R−)1/3

)−1

dR−
2 + 9(R−)2dΩ2)

]
, (8.40)

V −(R−) =
32M4

9R−2

(
1− 2M

(3R−)1/3

)−3

. (8.41)

Now (D−, γ−) is decomposed as I−× SR− where SR− are round spheres of radius 3R−ψ−

and I− = (A,∞). We define the functions v−l integrating the product of ṽ⊥− with the

legendre polynomials over the unit sphere, just as the v+
l in (8.36).

The integration of equation (8.25) around the unit sphere results now in

d2v−l
dR2
−

+
2

3R−

(
2 +

(
1− 2M

(3R−)1/3

)−1
)

︸ ︷︷ ︸
b−(R−)

dv−l
dR−

+
1

(3R−)2

2− l(l + 1)

1− 2M
(3R−)1/3︸ ︷︷ ︸

c−(R−)

v−l = 0. (8.42)

Clearly the functions b− and c− are bounded in I−, since 2M < r− = (3R−)1/3. In

addition to this, the function c− is negative for l > 2. Finally, in the limit R− → ∞
equation (8.42) agrees with (8.20). Thus, regular solutions must vanish at infinity,

lim
R−→∞

vl
− = 0. (8.43)

Hence the problem for v+
l ∈ C2(I+) ∩ C1(I+) fits in Lemma 7.

Recall now the matching conditions (7.44) and (7.45) at Σ0. The latter reads

(~nvl)
+|r+=a − (~nvl)

−|r−=a = 0⇒ −(∂rvl)
+|r+=a + (∂rvl)

−|r−=a = 0

⇒ ∂R+v+
l |R+=Ã + a6∂R−v

−
l |R−=A = 0,

where we have used the explicit form of the normal vectors ~n± and expressed them in

terms of R+ and R− respectively. These result in the matching of the two problems as

described in Lemma 9, with β2 = a6. Thus, a direct application of Lemma 9 leads to the

result that the functions v±l must vanish in I± for all l > 2. This clearly implies that

ṽ⊥± = 0 in their respective D±.

Proposition 10 Consider the functions ṽ⊥±(r, θ), defined respectively in the interior do-

main D+ : I+ = (0, a)×Sr+, where ṽ⊥+ is a C2(D−)∩C1(D−) function regular at the ori-

gin, and in the exterior domain D− : I− = (a,∞)×Sr−, where ṽ⊥− is a C2(D−)∩C1(D−)

function regular at infinity. Let ṽ⊥± satisfy equation (8.25), written in terms of the aux-

iliary metric (8.26) and the potential (8.27), particularized accordingly for each domain.

Assume that E + P ≥ 0 in D+ and that 0 < 2M < a. Let the two problems be related in

r± = a > 2M > 0 by the boundary conditions (7.44) and (7.45). Then, ṽ⊥+ = 0 in D+

and ṽ⊥− = 0 in D−.
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8. On the angular structure of the perturbations

A direct application of the field equations lead to the vanishing of the ⊥ sector in every

function of the second order perturbation tensor. The field equation (6.49) now provides

h̃⊥ = 0, so that k̃⊥ also has to vanish, by the definition of ṽ⊥. Finally the algebraic

relation (6.46) implies that m̃⊥ = 0, so that the full orthogonal sector is ruled out. Then

we conclude

Corollary 10.1 Given the problem set in Chapters 6 and 7, the angular structure of the

functions in the perturbation tensor K2 (5.3) is given by

h(r, θ) = h0(r) + h2(r)P2(cos θ),

k(r, θ) = k0(r) + k2(r)P2(cos θ),

m(r, θ) = m0(r) +m2(r)P2(cos θ),

f(r, θ) = f2(r)P2(cos θ), (8.44)

where equatorial symmetry has been imposed to rule out the contribution in l = 1 in the

expansions above.

We have showed in Propositions 9 and 10 that the matching itself, supported with

regularity conditions at the origin/infinity on the functions involved, determines their

angular behaviour. In view of these results, we can reformulate Theorem 5 without the

assumptions regarding the angular behaviour of the perturbations.

Theorem 7 Let (V , g) with Σ0 be the static and spherically symmetric background matched

spacetime configuration, perturbed at either side to first order by the functions ω±(r±, θ±)

through K1
± as defined in (5.2) plus the unknowns Q±1 (τ, ϑ) and ~T±1 (τ, ϑ), as described

in Proposition 7, so that the first order matching conditions (5.14) and (5.15) plus (5.17)

and (5.18) hold. Let the configuration be perturbed to second order by K2
± as defined in

(5.3), plus the unknowns Q̂±2 (τ, ϑ) and ~T±2 (τ, ϑ) on Σ0, and assume that the interior region

(+) satisfies the field equations for a perfect fluid with barotropic equation of state and

that the exterior (−) region is asymptotically flat and satisfies the vacuum field equations

up to second order.

The energy density E(r+) and pressure P (r+) of the interior background configuration

are given by (6.12) and (6.13) and must satisfy (6.19). Assume E+P ≥ 0 in all the fluid.

The background exterior vacuum solution is given by (6.20), and we assume 0 < 2M < a.

Consider the convenient background quantities defined in (6.16).

Let ~uε be the unit vector fluid corresponding to the interior family of metric tensors

g+
ε = g+ + εK1

+ + 1
2
ε2K2

+ +O(ε3). Assume that ~uε satisfies (6.8) for some constant Ω.

Let J be defined by the first order exterior solution (6.26).

Then
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8.4. Second order problem

1. At both sides (±) that the first order function ω depends only on the radial coordi-

nate, and given equatorial symmetry, the second order functions are decomposed in

Legendre polynomials in terms of {h0, h2,m0,m2, k0, k2, f2} by (8.44).

2. The second order pressure P (2) and energy density E(2) of the fluid inherit the

same angular dependency, that is, (6.30) hold for some E
(2)
0 (r), E

(2)
2 (r), P

(2)
0 (r) and

P
(2)
2 (r). With the help of convenient alternative “tilded” counterparts, defined in

(6.32)-(6.33) plus (6.37) and (6.59), the Einstein’s field equations in the interior

can be expressed as the system (6.38), (6.39) and (6.41) for some constant γ for the

set {P̃+
0 , m̃

+
0 , h̃

+
0 } plus the system (6.56), (6.57), (6.58) for the set {h̃+

2 , k̃
+
2 , m̃

+
2 }.

The vacuum solution at second order is given by (6.42), (6.43), (6.61), (6.62) and

(6.63) where δM and A are arbitrary constants.

3. Given the Einstein’s field equations of the previous point are satisfied, the necessary

and sufficient conditions that the metric perturbation tensors K2
± must satisfy to

fulfil the second order matching conditions are given by (7.30) and (7.35) for the

sets {P̃±0 , m̃±0 , h̃±0 }, with arbitrary constant H0, and the two equations in (7.38) for

the sets {h̃±2 , k̃±2 , m̃±2 }.
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9

The mass in Newtonian gravity and GR

The original treatment aimed at the study of (rigidly) rotating stars in a perturbative

scheme is due to Chandrasekhar for Newtonian gravity, back in 1933 [23]. It was only

in 1967 that Hartle put forward the model within the realm of General Relativity [57].

Although the study in [57] covers any barotropic equation of state, the work in [23]

focuses, from some point onwards, only on polytropic equations of state, i.e. of the form

p = Kρ1+ 1
n for some constants K and n, where p and ρ denote the pressure and the mass

density of the star. The relationship between the Newtonian and the GR approaches was

presented in [57], and the GR procedure was found to be consistent with the Newtonian

case by taking care of the suitable limit.

However, the computation of the total mass of the rotating configuration as a function

of the central density shown in [57] has to be amended by a term proportional to the value

of the background energy density at the surface of the star, explicitly given by (7.53). That

value is zero for certain equations of state (including polytropic EOS), but it does not

vanish necessarily (for instance in models of strange quark stars [34]). As we show next,

that term contributes to the Newtonian limit, and appears indeed, although implicitly,

in the original work by Chandrasekhar [23]. Since most of the models for stars rely on a

polytropic EOS, the appearance of that term had been somehow forgotten, even in the

review of the Newtonian approach in [57].

9.1 The Newtonian star

We first concentrate on the computation of the mass as stated in [23], expand that for

a general case (for any equation of state, so that the density at the interior does not

necessarily vanishes at the boundary of the star), and show how the expressions in [23]

for polytropic equations of state follow indeed. In p.396 of [23] the mass is claimed to be
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9. The mass in Newtonian gravity and GR

given by

M = 2π

∫ ∫
ρr2drdµ, (9.1)

where µ := cos θ, and {r, θ, φ} are spherical coordinates, so that r and θ are the radial

coordinate and azimutal angle on the sphere respectively.

In agreement with the next equation in [23], as we will show later, (9.1) stands for

the integral over the deformed volume. Indeed, the shape of the star is described in [23]

to be the sphere of the background configuration plus a deformation at first order in a

perturbation parameter v, which corresponds to a second order in the angular velocity

ω2 over the value of the central density, this last denoted by λ in [23], but we will use ρc

here. Thus the perturbation parameter v, defined in (10) in [23] is v := ω2/2πGρc.

Let us first review just the necessary of the Newtonian treatment in order to obtain

the expression of the total mass of the rotating star, suitable to be computed by solving

the relevant problems at different orders in the perturbation. We follow essentially the

description of the Newtonian approach as made in [57], and will compare with that in

[23] when necessary.

Preliminaries on the Newtonian general approach

The non-rotating static spherically symmetric configuration is described by the mass

density ρ(0)(r), pressure p(0)(r) and Newtonian potential U (0)(r). The radial variable r

runs from 0 to a in the interior and r > a corresponds to the vacuum exterior. We will

only assume that ρ(0) is smooth in (0, a) and vanishes for all r > a. In other words,

ρ(0) is piecewise differentiable in (0,∞), smooth except at a, where ρ(0) is allowed to

have a jump. The same applies to p(0)(r), except that p(0) vanishes at a necessarily, and

it is therefore continuous. From now onwards, the values of ρ(0)(a) and ρ(0)′(a) (or any

function explicitly defined in (0, a)) must be understood as the limits of ρ(0)(s) and ρ(0)′(s)

as s→ a, i.e. their limits from the interior.

The three equations of structure that govern the configuration are a barotropic equa-

tion of state p(0) = p(0)(ρ(0)), the hydrostatic equilibrium first integral and the Poisson

equation, i.e.

γ =

∫ r

0

1

ρ(0)(s)

dp(0)(s)

ds
ds+ U (0)(r), ∇2U (0)(r) = 4πGρ(0)(r), (9.2)

where the constant γ is identified as the chemical potential. We use ∇2 for the flat

Laplacian in spherical coordinates {r, θ, φ}. The two equations above combined yield

1

r2

d

dr

(
r2

ρ(0)

dp(0)

dr

)
= −4πGρ(0), (9.3)
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9.1. The Newtonian star

which is recognized as the fundamental equation in [23]. In spherically symmetric config-

urations the mass function is given by

M (0)(r) = 4π

∫ r

0

ρ(0)(s)s2ds. (9.4)

Given that M (0)(0) = 0 and that regularity at the origin r = 0 implies dU (0)/dr(0) = 0,

the mass and the potential are related by

dU (0)(r)

dr
=
G

r2
M (0)(r).

The system of three equations can be integrated in terms of boundary conditions at the

origin and thus provide, e.g. , the total mass of the star, M
(0)
S := M (0)(a), in terms of the

central density ρc = ρ(0)(0). We denote that function by M
(0)
S (ρc).

Consider now the (perturbed) rotating configuration. The mass density of the rotat-

ing configuration ρ(r, µ) and the gravitational potential U(r, µ) are expanded perturba-

tively to first order in v as

ρ(r, µ) = ρ(0)(r) + vρ(2)(r, µ) +O(v2). (9.5)

U(r, θ) = U (0)(r) + vU (2)(r, θ) +O(v2). (9.6)

A new radial coordinate R is now chosen so that it labels surfaces of constant density in

the rotating configuration by [57] (see Chapter 4)

ρ(r(R, µ), µ) = ρ(0)(R). (9.7)

The interior of the rotating star is therefore defined by R ∈ (0, a) by construction, and

its surface located at R = a. The change between R and r must thus have the form

r(R, µ) = R + vζ(R, µ) +O(v2) (9.8)

for some (differentiable) function ζ(R, µ), which thus describes the deformation of the

surface [23, 57]. Given that for any f(r, µ) differentiable in r ∈ (0, a) we have

f(r(R, µ), µ) = f(R, µ) + vf ′(R, µ)ζ +O(v2), (9.9)

where the prime denotes differentiation with respect to the first (or only) argument, the

relation (9.7) provides, in particular,

ρ(2)(R, µ) = −ζ(R, µ)
dρ(0)(R)

dR
. (9.10)
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9. The mass in Newtonian gravity and GR

Polytrope in [23]

We have described the relevant equations to describe a Newtonian static star. Let us now

specify a polytropic equation of state, i.e. of the form

p = Kρ1+ 1
n , (9.11)

where K is a constant, closely related to the speed of sound, and n is the polytropic index.

It is useful to replace the density ρ by an adimensional function θ, known as the Emden’s

function, for reasons that will be clear soon. In [23] the radial coordinate r is, instead,

conveniently rescaled to a new radial coordinate ξ (eq. (9) in [23]). These substitutions

read explicitly

ρ = ρcθ
n, p = Kρ1+1/n

c θ1+n, r =

(
(1 + n)K

4πG
ρ1/n−1
c

)1/2

ξ. (9.12)

Now the fundamental equation (9.3) is written in the form

1

ξ2

d

dξ

(
ξ2dθ

dξ

)
= −θn. (9.13)

This is known as the Lane-Emden equation of index n. It is integrated from the origin

outwards with the conditions θ(0) = 1 and θ′(0) = 0. The solution θ(ξ) is named the

Lane-Emden function of index n. The shape of the star is then described in [23] to be

the sphere of the background configuration ξ1. Note that both the density and pressure

vanish there.

The perturbation method in [23] differs a bit in its approach, since the starting point

consists in taking perturbations directly in the Emden’s funcion, generalizing it to

Θ = θ + vΨ +O(v2), Ψ = ψ0(ξ) +
∞∑
j=1

Ajψj(ξ)Pl(µ) (9.14)

and then explore how it induces perturbations in the rest of the relevant quantities of the

model, such as the potential, the pressure and the density. We focus in this last one, that,

in analogy with the corresponding expression for the non rotating case in (9.12), reads

ρ = ρcΘ
n = ρc(θ

n + vnθn−1Ψ) +O(v2). (9.15)

The model is built generalizing the fundamental equation (9.3) for the rotating case and

imposing continuity of the perturbed potential and its first normal derivative to the back-

ground surface of the star, given by the sphere of radius ξ1. The functions ψ0 and ψ2 are

found to satisfy the problems [23]

1

ξ2

d

dξ

(
ξ2dψ0

dξ

)
= −nθn−1ψ0 + 1, ψ0(0) = 0, ψ′0(0) = 0, (9.16)

1

ξ2

d

dξ

(
ξ2dψ2

dξ

)
=

(
−nθn−1 +

6

ξ2

)
ψ2, ψ2(0) = 0, ψ′2(0) = 0. (9.17)
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9.1. The Newtonian star

The deformation in the polytropic setting corresponds to dξ(ξ1, µ) for some function

dξ(ξ, µ) that can be extracted from the terms in the v factors in equations (36) and (38)

in [23]. Obviously vζ(R, µ) scales to dξ(ξ, µ) as r scales to ξ (9) in [23]. Note that dξ

contains v. A direct application of formula (9.10) results in the relation

θn−1

(
dξ + v

Ψ

θ′

)
= 0. (9.18)

This relation is used in [23], evaluated at ξ1, to determine the deformation once the

function Ψ is known. The final expression provided in [23] results to be

dξ(ξ1, µ) = − v

θ′(ξ1)

(
ψ0(ξ1) +

5

6

ξ2
1

3ψ2(ξ1) + ξ1ψ′2(ξ1)
ψ2(ξ1)P2(µ)

)
. (9.19)

The change in mass

Let us expand the integral (9.1) in the rotational parameter v, which reads explicitly

M = 2π

∫ 1

−1

∫ a+vζ(a,µ)

0

(
ρ(0)(r) + vρ(2)(r, µ)

)
r2drdµ+O(v2). (9.20)

For a polytropic equation of state recall that a is in correspondence with ξ1, the first

zero of Emden’s function with index n and the deformation corresponds to dξ(ξ1, µ). After

using (9.12), (9.15) and (9.19) for the polytropic equation of state, (9.20) can be shown

(see below) to translate, up to order v, to

M = 4π

[
(n+ 1)K

4πG
ρ

1
n
−1

c

]3/2

ρc

∫ ξ1+dξ1

0

(θn + vnθn−1ψ0)ξ2dξ, (9.21)

as it stands in p.396 in [23], where dξ1 denotes the l = 0 part of dξ(ξ1, µ), which equals

dξ1 = −vψ0(ξ1)/θ′(ξ1)1, see (9.19). dξ1 is the expansion of the star, as noted in [23]. Only

the l = 0 sector contributes to the integral.

In order to obtain (9.21) and go further let us develop (9.20). Since the Jacobian of

1Since θ′(ξ1) < 0 [23], −θ′(ξ1) always appears as |θ′(ξ1)| in [23].
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9. The mass in Newtonian gravity and GR

the change (9.8) is 1 + v∂ζ/∂R, the integral (9.20) expands as

M = 2π

∫ 1

−1

∫ a

0

ρ(r(R, µ), µ)(R2 + 2vζR)(1 + v
∂ζ

∂R
)dRdµ+O(v2)

= 2π

∫ 1

−1

∫ a

0

ρ(0)(R)(R2 + 2vζR)(1 + v
∂ζ

∂R
)dRdµ+O(v2)

= 2π

∫ 1

−1

∫ a

0

[
ρ(0)(R)R2 + v

(
2ρ(0)(R)ζR +R2ρ(0)(R)

∂ζ

∂R

)]
dRdµ+O(v2)

= 2π

∫ 1

−1

∫ a

0

[
ρ(0)(R)R2 + v

(
−R2ζ

dρ(0)

dR
+

∂

∂R

(
R2ρ(0)(R)ζ

))]
dRdµ+O(v2)

= 4π

∫ a

0

ρ(0)(R)R2dR− 2πv

∫ 1

−1

∫ a

0

R2ζ
dρ(0)

dR
dRdµ+ 2πv

∫ 1

−1

a2ρ(0)(a)ζ(a, µ)dµ

+O(v2), (9.22)

where the relation (9.7) that defines R has been used in the second equality. The first

term in the final expression (9.22) corresponds to M (0)(a) by (9.4). The second term is

more easily recognised by using (9.10), which allows us to write the expression (9.22) as

M = 4π

∫ a

0

ρ(0)(R)R2dR + 2πv

∫ 1

−1

∫ a

0

ρ(2)(R, µ)R2dRdµ

+2πv

∫ 1

−1

a2ρ(0)(a)ζ(a, µ)dµ+O(v2). (9.23)

From now onwards let us denote by a f0 (subindex 0) the part of any function f parallel

to the Legendre polynomial P0(µ)(= 1). In other words, f0(·) := 1
2

∫
f(·, µ)P0(µ)dµ. We

will also refer to f0 as the l = 0 sector of f . The mass (9.23) thus reads

M = 4π

∫ a

0

ρ(0)(s)s2ds+ 4πv

∫ a

0

ρ
(2)
0 (s)s2ds+ 4πva2ρ(0)(a)ζ0(a) +O(v2). (9.24)

The fact that only the l = 0 sector contributes to the integral is now explicit.

For polytropic equations of state, after using (9.12), (9.15), (9.14) and (9.19), equation

(9.24) directly translates, up to order v, to

M = 4π

[
(n+ 1)K

4πG
ρ

1
n
− 1

3
c

]3/2{∫ ξ1

0

θnξ2dξ + v

∫ ξ1

0

nθn−1vψ0ξ
2dξ − vξ2

1θ
n(ξ1)

ψ0(ξ1)

θ′(ξ1)

}
,

(9.25)

which is not difficult to show to be equivalent to (9.21) irrespective of the equation that

the function θ(ξ) satisfies.

The crucial point here is, let us recall, that the function θ(r) is Emden’s function, for

which θ(ξ1) = 0 by construction, which is equivalent to ρ(0)(a) = 0. The above expression

(9.25) for the total mass is obviously presented in [23] without the last term, which
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9.2. The mass in Newtonian gravity and GR

vanishes (see above (40) in [23]). However, in general, the mass density ρ(0)(R) of the

background spherical configuration does not have to vanish necessarily at the boundary

R→ a. The expression of the total mass in [23], made explicit for a class of equations of

state for which the mass density vanishes at the surface of the star, seems to have misled

many authors to forget the third term in (9.24). Even the author himself forgot, many

years later, to include that term when exploring homogeneous (constant ρ) stars in GR

[30]. The correction to the calculation of the mass of homogeneous stars can now be found

in Chapter 10 (or [93]).

The third term in (9.24), proportional to ρ(0)(a), corresponds, precisely, to the New-

tonian limit of the term in (7.53) that amends the “change in mass” computed in [57].

That is shown in the following section, where we very briefly review the equations for the

perturbed configuration needed in both Newtonian gravity and GR.

9.2 The mass in Newtonian gravity and GR

Newtonian gravity

Let us consider the l = 0 sector of the perturbation of the Newtonian potential (9.6). As

in the background configuration, apart from the given barotropic equation of state, the

perturbation at first order in v is governed by a hydrostatic equilibrium first integral and

a Poisson equation

U
(2)
0 (R) + ζ0(R)

dU (0)(R)

dR
− 2πGρcR

2

3
= 0, (9.26)

1

R2

d

dR

(
R2dU

(2)
0 (R)

dR

)
= −4πGζ0(R)

dρ(0)(R)

dR
, (9.27)

where the Poisson equation for the nonrotating potential has been used in the second

equality. Note that from (9.10) we have ρ
(2)
0 (R) = −ζ0(R)dρ(0)(R)/dR, so that the right

hand side of (9.27) can be also expressed as 4πGρ
(2)
0 (R). It is important to note that the

domains of definition of these equations are given by R ∈ (0, a) for the interior and R > a

for vacuum, and suitable boundary conditions (including regularity at the origin and at

infinity) are imposed accordingly.

It is convenient to change the functions {U (2)
0 , ζ0} that describe the configuration to a

new set {M (2), p∗0}, suitable to be compared with the relativistic model, defined as follows,

M (2)(R) := 4π

∫ R

0

ρ
(2)
0 (s)s2ds = −4π

∫ R

0

ζ0(s)
dρ(0)(s)

ds
s2ds, (9.28)

p∗0(R) :=
GM (0)(R)

R2
ζ0(R). (9.29)
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9. The mass in Newtonian gravity and GR

The definition (9.29) can be expressed in terms of the pressure and density of the back-

ground configuration by differentiating the hydrostatic equilibrium first integral for the

static configuration (first equation in (9.2)), which provides

dU (0)(R)

dR
+

1

ρ(0)(R)

dp(0)(R)

dR
= 0,

so that

ζ0(R) = −ρ(0)(R)

(
dp(0)(R)

dR

)−1

p∗0(R). (9.30)

On the other hand, the second order Poisson equation (9.27) can be expressed in terms

of the pressure perturbation factor by using (9.30) to get

1

R2

d

dR

(
R2dU

(2)
0 (R)

dR

)
= 4πG

dρ(0)

dp(0)
ρ(0)p∗0(R). (9.31)

We can also rewrite the expression for M (2), (9.28), using (9.30) and (9.29), which in

differential form reads (see (15) in [57])

dM (2)(R)

dR
= 4πR2dρ

(0)

dp(0)
ρ(0)p∗0(R). (9.32)

The equation for p∗0 is obtained as follows. Combine (9.31) with (9.32) to get rid of p∗0 and

integrate once taking into account that M (2)(0) = 0 by construction, and dU
(2)
0 /dR|R=0 =

0 for a regular origin. We thus obtain

dU
(2)
0 (R)

dR
=

G

R2
M (2)(R), (9.33)

in analogy with the background configuration. Finally, take the derivative of the hydro-

static equilibrium first integral (9.26)

dU
(2)
0 (R)

dR
+

d

dR

(
ζ0(R)

dU (0)(R)

dR

)
− 4πGρc

3
R = 0, (9.34)

and use (9.33) and (9.29) to obtain (see (15) in [57])

dp∗0(R)

dR
= − G

R2
M (2)(R) +

4πGρc
3

R. (9.35)

The system of equations for the functions {M (2), p∗0} is formed by (9.32) and (9.35) on

the domain R ∈ (0, a). As in the background configuration system, this problem allows

us to integrate {M (2), p∗0} given boundary conditions at the origin. In particular one can

compute M
(2)
S := M (2)(a) as a function of the (total) central density ρ̂c, and thus construct
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a function M
(2)
S (ρ̂c). Let us recall that to add this function to the contribution from the

background configuration M
(0)
S (ρc) it is, of course, necessary to choose ρ̂c = ρc, so that

ρc becomes a parameter of the whole perturbed configuration. That implies choosing

p∗0(0) = 0.

The total mass of the rotating configuration (9.24), taking into account (9.4), (9.28)

and (9.29), can be expressed as

M = M (0)(a) + vM (2)(a) + 4πv
a4

GM (0)(a)
ρ(0)(a)p∗0(a) +O(v2). (9.36)

Note, again, that this sum makes sense once the functions involved are computed given

common boundary data, in terms of a common set of parameters, as for instance ρc.

Nevertheless, the choice of parameter used to compute those functions is irrelevant for

our purposes. The contribution of the perturbation to the total mass in Newtonian gravity

is given by

M
(2)
T = M (2)(a) + 4π

a4

GM (0)(a)
ρ(0)(a)p∗0(a). (9.37)

The second term in the above expression is missing in the first equality of equation (18)

in [57].

General Relativity

The general relativistic treatment of the problem has been extensively treated in Chapters

5 to 7. However, we include here the most relevant equations to discuss the change in mass

and compare it with the Newtonian model, even when these have already been presented

in the previous chapters.

We include the metric up to second order in some parameter ε, which is esentially

(5.1) but with the function m scaled to agree with this same function as defined in (4.1).

To ease the reading we include it here. It reads

gε = −eν(r)(1 + 2ε2h(r, θ))dt2 + eλ(r)

(
1 + 2ε2 m(r, θ)

r − 2M

)
dr2

+r2(1 + 2ε2k(r, θ))
(
dθ2 + sin2 θ(dϕ− εω(r)dt)2

)
.

We use geometrized units for convenience, so that G = c = 1 unless otherwise stated.

We can fix the (dimensionless) perturbation parameter ε in analogy with the formalism

developed in [23] for the Newtonian model. To this aim we set ε2 = v = ω2/2πE(0), where

E(0) is the energy density of the background configuration at the origin, and ω is the con-

stant angular velocity of the fluid, as in the Newtonian treatment. Therefore, the quantity

135



9. The mass in Newtonian gravity and GR

that drives the perturbations in [57] is expressed here by ΩH =
√

2πE(0)v, whereas the

constant Ω used in Chapter 6 is identified with Ω =
√

2πE(0) in this convention.2

We shall keep the perturbation parameter ε and the constant Ω in this section in order

to ease the comparison with Chapters 6 and 7, although the identifications will be made

explicit when the Newtonian limit is taken.

As in the Newtonian case, we only need focusing on the l = 0 sector of the solution

for our purposes. The coordinate r is fixed by choosing k0(r) = 0 [57] (see also Chapter

6 for a discussion on the choice of gauges). The asymptotically flat vacuum solution is

given by (4.13), (4.16), (4.27) and (4.28) [57]

eνvac(r) = 1− 2M

r
= e−λvac(r), ωvac(r) =

2J

r3
,

hvac0 (r) = − δM

r − 2M
+

J2

r3(r − 2M)
, m0

vac(r) = δM − J2

r3
, (9.38)

where M , J and δM are constants. In the analysis of the background and first order con-

figurations, M and J are identified as the background mass and the angular momentum,

respectively. The equations governing the background and first order configurations are

used to compute M and J given suitable data at the origin. We refer to the summary in

Chapter 4 for a full account (see also [16, 95]). The constant δM , still to be determined, is

identified with the “change in mass” due to the second order perturbation, or simply the

contribution to the mass at second order, due to the asymptotic behaviour of the angular

independent part of grr (recall (4.29)). The l = 0 sector of the (second order) perturbation

interior configuration is completely determined by the pair of functions {m0(r), P̃0(r)},
with (recall (6.37))

P̃0 :=
P

(2)
0

2(E + P )
, (9.39)

where E and P are the energy density and pressure of the static background interior,

respectively, and P (2)(r, θ) the perturbation to the pressure (see (4.23) for this alternative

definition of the same function pH0
∗ in [57]). The system of equations that {m0, P̃0} satisfy

is to be fulfilled in the domain r ∈ (0, a), with suitable boundary conditions given by 3

2This value of the angular velocity is set as a standard scale in numerical works (see e.g. [34], where
Ω∗ =

√
M/a3 is chosen). For a constant density star it is easy to check that

√
2πE(0) =

√
3M/2a3 =√

3/2 Ω∗.
3In these two equations from Chapter 6, the substitution re−λm0 → m0 must be made to follow this

section.
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(6.38) and (6.39), and read

dm0

dr
= 4πr2(E + P )

dE

dP
P̃0 +

1

12
j2r4

(
dω̃

dr

)2

− 2

3
r3j

dj

dr
ω̃2, (9.40)

dP̃0

dr
= −4π

(E + P )r2

r − 2M
P̃0 −

r2m0

(r − 2M)2
+

1

12

r4j2

r − 2M

(
dω̃

dr

)2

+
1

3

d

dr

(
r3j2ω̃2

r − 2M

)
,

(9.41)

where ω̃(r) := ω(r)− Ω and j(r) := exp[−(ν + λ)/2].

The value of δM is determined in terms of interior quantities using the matching

conditions for the exterior and interior problems to second order provided in Chapter 7.

In particular, a function m0(s) for s ∈ (0,∞) constructed by joining m0(s) and m0
vac(s)

across s = a is not continuous in general, since it presents a jump proportional to E(a).

The result is given in (7.53)

δM = m0(a) +
J2

a3
+ 4πa3a− 2M

M
E(a)P̃0(a). (9.42)

As in the Newtonian case, the background quantities E(a), M and J , and the pertur-

bation ones, m0(a) and P̃0(a) are to be computed by solving the corresponding system of

equations given the (common) relevant data at the origin. In [57] the parameter chosen

is the central density ρc, but, as mentioned above, that choice is not relevant for this

discussion.

Newtonian limit

Our purpose now is to obtain the Newtonian limit of δM in (9.42) and compare it with

the contribution to the mass of the perturbation in the Newtonian approach, M
(2)
T , given

by (9.37). First, though, it is convenient to find the Newtonian limit for the system

(9.40) and (9.41) in order to relate {m0, P̃0} with the pair {M (2), p∗0} from the Newtonian

approach. This is achieved by performing an expansion in powers of 1/c as (see [57])

M =
G

c2
M

(0)
S +O

(
1

c4

)
, E(r) =

G

c2
ρ(0)(r) +O

(
1

c4

)
, P (r) =

G

c4
p(0)(r) +O

(
1

c6

)
,

ω̃(r) = −
√

2πGρc
c

+O
(

1

c3

)
,

P̃0(r) =
1

c2
p̃∗0(r) +O

(
1

c4

)
, m0(r) =

G

c2
m̃0(r) +O

(
1

c4

)
,

for some functions m̃0 and p̃∗0, where ρ(0) (and ρc), p
(0) andM (0) correspond to the functions

describing the Newtonian background configuration. Note that, concerning the first order
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(in ε), the function ω̃(r) is constant at lowest order in 1/c [57]. Given the system (9.40)

and (9.41), the pair {m̃0, p̃
∗
0} thus satisfies (see (102)-(103) in [57])

dm̃0

dr
= 4πr2dρ

(0)

dp(0)
ρp̃∗0, (9.43)

dp̃∗0
dr

= −Gm̃0

r2
+

4πGρc
3

r. (9.44)

Compare this system of equations with (9.32) and (9.35). The functions arising from the

Newtonian limit {m̃0, p̃
∗
0} and the functions in the perturbed Newtonian model {M (2), p∗0}

satisfy the same equations in the same domain r, R ∈ (0, a). Therefore, the pair {m̃0, p̃
∗
0}

is equivalent to {M (2), p∗0} for r, R < a. We can now substitute {m̃0, p̃
∗
0} by {M (2), p∗0} in

the following.

The Newtonian limit for (9.42) is obtained following procedure above together with

δM =
G

c2
δ̃M +O

(
1

c4

)
, (9.45)

for some δ̃M , from where (9.42) becomes

δ̃M = M (2)(a) + 4π
a4

GM
(0)
S

ρ(0)(a)p∗0(a) +O
(

1

c4

)
. (9.46)

Comparing this expression with (9.37) we finally find

δ̃M = M
(2)
T ,

that is, the Newtonian limit of the contribution (to second order) of the perturbation to

the mass in GR is non zero, and agrees with the same quantity computed in Newtonian

gravity.

9.3 The Newtonian matching conditions

As a final remark, let us comment on the boundary conditions at the surface of the star,

the matching between the interior and exterior problems at each order, involved in the

Newtonian approach. Some objections to the Newtonian matching problem stated in

[23] were raised in [69]. Those were finally solved by Chandrasekhar and Lebovitz in

[29] by properly formulating the matching and producing the same results. However,

[29] concerns, again, only polytropic equations of state, and the matching conditions are

obtained only for that case, which in particular satisfies ρ(a) = 0.

Let us, for completeness, deduce here the matching conditions for the perturbed New-

tonian potential in the general case, which, as expected, turns out to be compatible with
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the obtaining of the perturbed mass (9.36). The only assumption to be made is that

the quantities describing the spherically symmetric static background configuration, ρ(0)

and p(0), are piecewise differentiable. No particular equation of state is prescribed, and

ρ(0) is allowed to have a jump (at least) at some value of the radius a. Note that by the

local nature of the problem (the matching), we only need to demand differentiability in

a neighbourhood of a except at a, so that ρ(0) could present jumps at other values of the

radius, for which analogous corresponding matching conditions would apply. In order to

deal with a general jump we will not assume the “outer region” (or “exterior”), defined

by a radius bigger than a, to be vacuum.

The background (static) configuration can be solved by considering two problems, the

interior (r < a) and the exterior (r > a), and deducing the boundary conditions at the

common boundary, i.e. the matching conditions. In fact, only one relevant function needs

to be considered, and we are going to focus on the Newtonian potential. The matching

of the background problem for the Newtonian potentials U
(0)
int (r) and U

(0)
ext(r) requires the

equality of the radial derivative of the potentials at r = a. Clearly the potential itself can

present a jump, but it is customary to take it continuous and fix the value at infinity to

determine its value everywhere. The matching conditions in the background configuration

are thus U (0)′
int(a) = U (0)′

ext(a), plus the convenient U
(0)
int (a) = U

(0)
ext(a).

To deal with a perturbative setting one has to resort to respective families of inte-

rior and exterior problems, defined by some parameter v, with corresponding Newtonian

potentials Uint(r, µ, v) and Uext(r, µ, v), that match at each v. We fix in v = 0 the back-

ground static configuration. The family of interior problems is set to live, for each v, in

a (connected) surface {r, µ} bounded by the curve Σv determined by

Σv : {r = γ(a, µ, v)} with γ(a, µ, 0) = a. (9.47)

We are implicitly assuming that γ(a, µ, v) is smooth in all its arguments, and that it

splits the strip {r, µ} into two regions for each v. The surfaces for the exterior problems

are taken to be bounded by Σv and lie in the other region. Let us define ζ(a, µ) as

ζ(a, µ) := ∂vγ(a, µ, v)|v=0. Thus, to first order the tangent vector and normal vectors to

Σv can be chosen as

~ev =
∂γ

∂µ

∂

∂r

∣∣∣∣
Σv

+
∂

∂θ

∣∣∣∣
Σv

, ~nv = −γ ∂

∂r

∣∣∣∣
Σv

+
1

γ

∂γ

∂µ

∂

∂θ

∣∣∣∣
Σv

, (9.48)

where ~n points towards the interior of the body and they are normalized so that (~n, ~n) =

(~e,~e).

We start with some preliminaries. Consider any function f that depends on v on

two arguments by f(γ(a, µ, v), µ, v), and that it is differentiable with respect to the three
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arguments. Let us use ∂v to denote a derivative with respect to the third argument, and a

prime ′ with respect to the first, and define f (0)(a, µ) := f(γ(a, µ, v), µ, v)|v=0 = f(a, µ, 0),

and f (2)(a, µ) := ∂vf(γ(a, µ, v), µ, v)|v=0. Assume now that f satisfies the equation

f(γ(a, µ, v), µ, v) = 0.

Evaluating the equation at v = 0 we obtain

f (0)(a, µ) = 0, (9.49)

while differentiating with respect to v, and then evaluating at v = 0 we get

f (2)(a, µ) + f (0)′(a, µ)ζ(a, µ) = 0. (9.50)

The matching of the problems for Uint(r, µ, v) and Uext(r, µ, v) at each v accounts now, as in

the background configuration, for the equality of the normal derivative of the potentials

at the common boundary Σv. Again, the potential itself can present a jump (at each

v), but, as customary, we take it continuous. Note that we include this condition for

completeness, but it does not affect the result. We thus take Uint|Σv = Uext|Σv and

~n(Uint)|Σv = ~n(Uext)|Σv , which explicitly read

Uint(γ(a, µ, v), µ, v) = Uext(γ(a, µ, v), µ, v), (9.51)

~n(Uint)(γ(a, µ, v), µ, v) = ~n(Uext)(γ(a, µ, v), µ, v), (9.52)

due to (9.47). Let us finally use the notation [g] := gint|Σv − gext|Σv for any object g with

limits at Σv from the interior, gint, and the exterior, gext, so that the matching conditions

read

[U ](γ(a, µ, v), µ, v) = 0, (9.53)

[~n(U)](γ(a, µ, v), µ, v) = 0. (9.54)

Observe now that, by (9.48)

[~n(U)](γ(a, µ, v), µ, v) = −γ[U ′](γ(a, µ, v), µ, v) +
1

γ

∂γ

∂µ

[
∂U

∂θ

]
(γ(a, µ, v), µ, v), (9.55)

while the derivative with respect to θ satisfies[
∂

∂µ
U(γ(a, µ, v), µ, v)

]
=
∂γ(a, µ, v)

∂µ
[U ′] (γ(a, µ, v), µ, v) +

[
∂U

∂θ

]
(γ(a, µ, v), µ, v).

(9.56)

The left hand side of (9.56) vanishes due to (9.53) because

[∂µU(γ(a, µ, v), µ, v)] = ∂µ[U ](γ(a, µ, v), µ, v) = 0.
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Note that [U ] = const. leads to the same conclusion. Therefore, (9.55) reads

[~nU ](γ(a, µ, v), µ, v) = [~n(U)] = −

(
γ +

1

γ

(
∂γ

∂µ

)2
)

[U ′](γ(a, µ, v), µ, v)

once (9.53) holds. The two conditions (9.53) and (9.54) are thus equivalent to the couple

[U ](γ(a, µ, v), µ, v) = 0 and [U ′](γ(a, µ, v), µ, v) = 0. We have written the matching

conditions as two functions that satisfy the requirements for f above, so it is now just a

matter of applying equations (9.49) and (9.50) to both [U ] and [U ′]. The four equations

thus obtained read

[U ] = 0⇒ [U (0)](a) = 0, [U (2)](a, µ) = −[U (0)′](a)ζ(a, µ) = 0,

[U ′] = 0⇒ [U (0)′](a) = 0, [U (2)′](a, µ) = −[U (0)′′](a)ζ(a, µ), (9.57)

where we have used that the background potentials U (0)’s do not depend on µ. Equation

(9.57) yields, after using the Poisson equation at each side,

[U (2)′](a, µ) = −4πG[ρ(0)](a)ζ(a, µ). (9.58)

Given only a piecewise differentiability condition on the background configuration, as

described above, the Newtonian perturbed matching conditions (up to first order in v)

around any point s = a are given by the coincidence of U (0)′(a) at both sides (interior and

exterior), which corresponds to the matching of the background configuration, and (9.58),

the condition at first order.

In particular, if we demand a vacuum exterior, so that ρ
(0)
ext = 0, we have [ρ(0)](a) =

ρ
(0)
int(a). Furthermore, if ρ

(0)
int(r) has no other jumps (and is smooth in r ∈ (0, a)), then

[ρ(0)](a) = ρ
(0)
int(a) is simply our ρ(0)(a) of the previous sections. Therefore, as expected,

the radial derivative of the Newtonial potential at first order in v suffers a jump at a,

which is proportional to ρ(0)(a) for a vacuum exterior. The perturbed mass can now

be computed from the Newtonian potential, and it is straightforward to show that this

jump generates the term proportional to ρ(0)(a) in (9.24) (or (9.36)). Let us stress that if

ρ(0)(r) is allowed to have more jumps, say ai, in the interior of the star, the expression of

the total mass would simply contain a term contributing from each corresponding jump

discontinuity [ρ(0)](ai).

Finally, it can be shown that the matching condition for h′ (7.31), which suffers a

jump proportional to the jump of m, agrees with (9.58) after taking the Newtonian limit.
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The mass of homogeneous stars and strange
stars

The main conclusion derived from our treatment of the problem of an isolated slowly

rotating compact body in Chapters 5 to 7 in practical terms is that the perturbation

functions to first and second order in Hartle’s setting can, indeed, be taken as continuous

at the surface of the star except when the energy density is discontinuous there, in which

case a corresponding discontinuity appears in the radial function m0 (the other pertur-

bation functions remaining continuous). The discontinuity in m0 is proportional to the

value of the energy density at the surface of the star, i.e. to the discontinuity of the energy

density there. In Chapter 7 an explicit correspondence between Hartle’s and our settings

has been presented, putting emphasis in the outcomes of the model such as the change

in mass and the shape of the star. The single outcome of the model directly affected by

the discontinuity of m0 is the change in mass δM , defined as the contribution to the mass

due to the rotation. The rest of the outcomes of the model regarding the frame dragging

and the shape of the star are not affected by the discontinuity of m0.

The correction to δM given in (7.53), proportional to the energy density evaluated

at the surface of the star, is negligible or just zero when the usual equations of state for

neutron stars are considered, since the pressure and the energy density typically decrease

together and vanish simultaneously at the surface of the star. This is the behaviour shown

by, e.g. polytropic EOS’s. Nevertheless, the correction to the mass may be relevant in

other EOS’s for which the energy density takes a finite value at the boundary, which is

precisely the case of linear equations of state, for instance those used to describe strange

quark stars [34], or constant density (homogeneous) stars.

In this chapter we compute the mass of rotating stars for two equations of state:

constant density and a particular linear EOS, because the mass correcting term will be

relevant there. The results regarding homogeneous stars were published in [93].

In order to explore other EOS’s, we use a code written in Fortran to solve the model
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numerically in three steps, one for the static configuration (TOV) and the other two for

the perturbations. In every step, the corresponding ODE’s are integrated making use of

a classical Runge Kutta method (RK4). Hence, provided the two relevant parameters,

i.e. the central density of the star and an angular velocity, we are able to solve the whole

model and obtain the values of the functions M , P , ω, m0, h0, v, h2 and m2 at any

point of the star, labeled by the coordinate r. Furthermore, the values of these functions

at r = a allow us to determine the physical properties of the star, such as M , J , δM ,

the quadrupole moment Q or the ellipticity e. However, we are interested, more than in

computing single stars, in the physical properties of the families of stars that arise from

letting the central energy density vary in some range, say (E
(i)
c , E

(f)
c ), this last given by

some physical criteria adequated to the particular case under study. This is achieved by

an iterative process. We solve the star corresponding to a certain value of the energy

density, save the physical properties or the values of interest of the star and repeat the

process until we cover the whole range of central densities. In this form, we can visualize

how the mass of the star varies with respect to its radius, or its central density. Some

examples will be shown along this chapter. We included the possibility of working with

different EOS’s, such as polytropes (based on [61]), constant density as in [30], linear

EOS of the type in [34] and tabulated EOS (see for instance [5] or [105]), which has been

useful in order to check the validity of the results, for instance comparing with [13] or

[61]. However, in this thesis we will restrict ourselves to the study of homogeneous stars

and strange quark matter stars. The numerical code has been developed in collaboration

with Nicolas Sanchis-Gual and José A. Font, from the Universitat de València.

Let us remark that we compute sequences of stars varying the central energy density

with the velocity of rotation fixed to Ω = Ω∗ =
√
M/a3, as it is usually done in the

literature and it has been discussed in the Introduction. This may seem to contradict

the statement done after introducing the first order equation (6.25), when we say that we

specify a value of ω̃ at the origin to ensure regularity there. The first order perturbations

are fully determined by one parameter, that we have chosen in Chapter 6 to be, precisely

ω̃c := ω̃(r → 0) = const = 1. In other words, we work in units of ω̃c. Yet, the matching

conditions provide the value of the angular velocity Ω corresponding to this choice of ω̃c

by means of (7.13). The key point here is that other models with different velocities of

rotation can be obtained simply by scaling. For example, the model associated to the

critical angular velocity Ω∗ can be obtained by scaling

f f.o.new =
Ω∗

Ω
f f.o.old , f s.o.new =

(
Ω∗

Ω

)2

f s.o.old , (10.1)

where f f.o.new is any first order quantity associated to a model with an angular velocity Ω∗
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and f f.o.old is the corresponding quantity computed with a velocity Ω. The second order

works analogously.

10.1 Homogeneous stars

In this section the particular case of homogeneous stars is studied. This equation of state

may not be realistic in physical terms, but its study is interesting for several reasons. First

of all the spherically symmetric and static configuration can be solved analytically and

hence, the perturbed field equations become simpler. Secondly, it is interesting to know

how noticeable the correction for the change in mass might be in numerical terms. There

are factors in the change in mass that are easy to estimate and, in fact, can be taken as

inputs for the model, as the mass and the size of the static and spherically symmetric star.

In contrast, the perturbation to the pressure is not easily estimated and the model must

be solved to second order. Another important factor is the value of the energy density at

the surface of the star, in the non-rotating configuration, and this is precisely the reason

for having chosen this particular EOS. It is probably one of the most favourable cases

for the correction. Thus, it is reasonable to think that the constant energy EOS may

constitute a numerical bound for the amended change in mass, since for any other of the

usual EOS the value of the energy density at the surface will not be as important as in

the present case.

Homogeneous stars drew the attention of Chandrasekhar and Miller [30], back in

1974. In that work, they use Hartle’s formalism to solve the homogeneous star in the slow

rotating approximation. To this aim, they present the perturbed field equations up to

second order in terms of a suitable radial coordinate adapted to the background solution.

They also provide the boundary conditions that ensure regularity at the center of the

fluid ball order by order. Finally, they solve numerically the perturbed equations and

use Hartle’s formalism in order to determine the value of the constants that characterize

the vacuum solution, such as the angular momentum J (or equivalently the moment of

inertia I), the change in mass δM or the ellipticity of the surface of the star e, in their

notation. They present first the numerical solution of the first order problem and show

the behaviour of the function ω̃ (see Figures 1 and 7 in [30]) that drives the frame dragging

effect, and the momentum of inertia of the star (Figure 2 therein). Regarding the second

order perturbations, they focus on the calculation of the deformation of the star due to

the rotation. This is described in terms of two components, an homogeneous enlargement

(or contraction) arising from the l = 0 sector in a Legendre polynomial expansion of the

perturbations and the ellipticity of the surface of the star, originated by the l = 2 sector

in the aforementioned expansion. The homogeneous component is presented in Figure 3

145



10. The mass of homogeneous stars and strange stars

(in their paper) as a function of the ratio of the radius of the star to its Schwarzschild

radius (hereafter a/RS). The ellipticity of the configuration is studied in detail to show,

remarkably, that as a function of a/RS it is not monotonic and it presents a maximum at

a/RS = 2.4 (see Figure 5 in [30]).

In this Section we recalculate the value of δM , as described in Chapter 7, for homoge-

neous stars. Let us remark that this correction does not affect the results regarding the

frame dragging effect nor the shape of the rotating stars, fully studied in [30] as mentioned

above. In the present work the results are displayed in an analogous way to [30] to ease

the comparison of tables and figures.

When the energy density E is constant, the equations of structure (6.17), (6.18) that

govern the (static, spherically symmetric) background configuration admit an analytical

solution. In terms of the constant density E and the central pressure Pc, that solution is

given by

P + E
3

P + E
=

Pc + E
3

Pc + E

√
1− 8πEr+

2

3
, (10.2)

e−λ
+(r+) = 1− 2M (0)(r+)

r+

, M (0)(r+) =
4π

3
Er+

3 , (10.3)

eν
+(r+)/2 = eν

+(0)/2

(
−1 +

Pc + E
3

Pc + E

√
1− 8πEr+

2

3

)(
−1 +

Pc + E
3

Pc + E

)−1

. (10.4)

This solution stands for the whole interior region, i.e. from r+ = 0 to r+ = a. The

vacuum solution is given by (6.20) and extends from r− = a to infinity. The two solutions

are related by means of the matching conditions for the background configuration (5.13).

The continuity of λ and ν ′ implies that M = 4πEa3/3 and P (a) = 0.

With the background configuration already matched, it is convenient to change from

the interior parameters {E,Pc} to the exterior parameters {M,a}. Thence the solution

(10.2) takes the form as given in [86, 111]. In order to present the results as in [30], the

exterior parameters still have to be scaled with the Schwarzschild radius RS := 2M so

that they become {RS, a/RS}. Inverting the relation between the parameters one finds

E =
3

8πR2
S

(
a

RS

)−3

, Pc =
3

8πR2
S

(
a

RS

)−3 1−
√

1−
(

a
RS

)−1

3

√
1−

(
a
RS

)−1

− 1

. (10.5)

Equation (10.5) implies a constraint on the background exterior parameters. In order to

keep the central pressure finite, the following inequality must hold [30]

0 ≤ 9

4
M < a⇔ 0 ≤ a <

√
1

3πE
. (10.6)
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10.1. Homogeneous stars

We want to write the field equations for the fluid as in [30]. For this, two constants

that replace E and a must be introduced as

α :=

√
3

8πE
, κ := 3

√
1− a2

α2
− 1. (10.7)

The constant α is related to the Schwarzschild radius RS by

α = RS

(
a

RS

)3/2

. (10.8)

Hence, given any function in units of α, it can be easily converted to units of the

Schwarzschild radius by simply scaling it with the proper factor a/RS. Following the

conventions in [30], the radial coordinate in the interior region is finally substituted by

x := 1−
√

1−
(r+

α

)2

. (10.9)

This change is well defined once the inequality (10.6) holds. The domain of definition of

this coordinate is x ∈ (0, 2/3), and the origin corresponds to x → 0. The radius of the

star is denoted by X, which in terms of κ is expressed as X = (2−κ)/3. Finally, in terms

of x the auxiliary function j+ reads j+ = 2(1− x)/(κ+ x).

First order

Considering the background solution (10.2)-(10.4) and the definitions introduced so far,

the first order field equation (6.25) casted for the function ω̃+ := Ω− ω+ for the interior

region is written in terms of the radial coordinate x as

−x(2− x)(x+ κ)
d2ω̃+

dx2
+ (4x2 − x(3− 5κ)− 5κ)

dω̃+

dx
+ 4(1 + κ)ω̃+ = 0. (10.10)

The behaviour of ω̃+ near the origin is fixed by

ω̃+ = ω̃+
c

(
1 +

4(1 + κ)

5κ
x

)
+O(x2). (10.11)

The values of ω̃+(a) and its first derivative ω̃+′(a) allow us to determine the angular

momentum J and the angular velocity Ω by means of (4.17). In terms of the coordinate

x these relations are

J

ω̃cR3
S

= (a/RS)5/2

√
X(2−X)

6(1−X)

(
d(ω̃/ω̃c)

dx

)
x=X

(10.12)

Ω

ω̃c
=
ω̃(X)

ω̃c
+

2

(a/RS)3

J

ω̃cR3
S

(10.13)
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10. The mass of homogeneous stars and strange stars

The quotient of these rescaled J and Ω is used in [30] to compute the momentum of inertia

and the normalized momentum of inertia as

I/R3
S =

J/ω̃cR
3
S

Ω/ω̃c
, i/R3

S :=
I/R3

S

Ma2
. (10.14)

Note that the field equation for the first order (10.10) and the condition at the origin

(10.11) are formulated for ω̃+/ω̃+
c , and thus, depend only on one free parameter, κ, from

the background configuration. This parameter κ is in fact determined by the ratio of

the radius of the spherical star to the Schwarzschild radius a/RS by means of (10.7) and

(10.8). Hence the model is solved just specifying a value of a/RS. A sequence of models

with different values of a/RS is explored and the results for the first order are presented

below.

The first order results are shown in Table 10.1, which includes the moment of iner-

tia and the value ω̃+/(J/R3
S)|Σ0 for different values of a/RS. For a solid sphere in the

Newtonian regime, the normalized momentum of inertia i := I/Ma2 takes the value 2/5,

which is achieved asymptotically (see Table 10.1). The comparison with a sphere makes

sense because the first order perturbations do not change the shape of the star. Hence,

the deviation between this value and the values shown in Table 10.1 is an effect of the

twisted geometry. These results 1 fully agree with those presented in [30].

1Values for a/RS = 9/8 are not shown because although the perturbations can still be solved [30],
the background solution is not regular.
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10.1. Homogeneous stars

Table 10.1: I and i in units of R3
S, and ω̃(a)/(J/R3

S) for some values of a/RS.

a/RS I i ω̃(a)
1.15 0.5105 0.7720 0.64391
1.2 0.5248 0.7289 0.74818
1.3 0.5657 0.6695 0.85741
1.4 0.6171 0.6296 0.89174
1.5 0.6758 0.6007 0.88714
1.6 0.7406 0.5786 0.86205
1.7 0.8106 0.5610 0.82652
1.8 0.8856 0.5467 0.78622
1.9 0.9653 0.5348 0.74441
2.0 1.049 0.5247 0.70294
2.5 1.534 0.4910 0.52376
3.0 2.123 0.4717 0.39700
4.0 3.604 0.4505 0.24623
5.0 5.487 0.4390 0.16625
10.0 20.91 0.4182 0.045821
20.0 81.77 0.4088 0.011980
35.0 248.1 0.4050 0.0039848
50.0 504.3 0.4035 0.0019668
100.0 2009 0.4017 0.00049585

Second order

The second order field equations 2 for the pair {m+
0 , P̃

(2)
0 }, (6.38) and (6.39), are written

in terms of the radial coordinate x as [30]

α−3dm
+
0

dx
=

(1− x)((2− x)x)3/2

(κ+ x)2(
1

3
(2− x)x

(
dω̃+

dx

)2

+
8(κ+ 1)

3(κ+ x)
ω̃+2

)
, (10.15)

α−2dP̃
(2)
0

dx
= − κ+ 1

(1− x)(κ+ x)
α−2P̃

(2)
0

−2 + (κ+ 1)(1− x)− 3(1− x)2

(κ+ x)(1− x)2x3/2(2− x)3/2
α−3m+

0

+
8(2− x)x

3(κ+ x)2
ω̃+dω̃

+

dx
− 8(κ(x− 1) + x)

3(κ+ x)3
ω̃+2

+
(2− x)2x2

3(1− x)(κ+ x)2

(
dω̃+

dx

)2

. (10.16)

2In this chapter we rescale the function m0 of Chapters 5, to 7 by re−λm0 → m0. This allows us to
compare directly with [30].
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Regularity at the origin and the preservation of the central density demand [30]

m+
0

α3ω̃+
c

2
(x→ 0) =

32
√

2(κ+ 1)x5/2

15κ3
+O(x7/2), (10.17)

P̃
(2)
0

α2ω̃+
c

2
(x→ 0) =

8x

3κ2
+O(x2). (10.18)

Once the values of the functions m+
0 and P̃

(2)
0 in x = X are found, the change in

mass is calculated using expression (7.53). In order to present the numerical results, it is

convenient to express δM divided by the mass of the background configuration M , and in

units of J2/R4
S. We also split it into two components, the δM (O) referring to the change

in mass (4.30) and δM (C) as the amending term in (7.53). These two components, written

in the covenient units read

δM

M

(O)

=
J2

R4
S

(
2

m+
0

(J2/R3
S)

∣∣∣∣
Σ0

+ 2

(
a

RS

)−3
)
, (10.19)

δM

M

(C)

=
J2

R4
S

(
6

(
a

RS

− 1

)
P̃

(2)
0

(J2/R4
S)

∣∣∣∣∣
Σ0

)
, (10.20)

so that
δM

M
=
δM

M

(O)

+
δM

M

(C)

(10.21)

The field equations for the second order (10.15), (10.16) and the conditions at the origin

(10.17), (10.18) are formulated for m+
0 /α

3ω̃+
c

2 and P̃
(2)
0 /α2ω̃+

c
2. Thence, they depend only

on the background parameter κ, which as discussed for the first order, can be expressed

in terms of the ratio a/RS. Hence a sequence of models to second order with different

values of a/RS is computed below.

The numerical results for the second order are summarized in Table 10.2 and Figures

10.1 and 10.2. In Figure 10.1 m+
0 in units of J2/R3

S and P̃
(2)
0 in units of J2/R4

S at r+ = a

are shown as functions of a/RS, i.e. m+
0 /(J

2/R3
S)|Σ0(a/RS) and P̃

(2)
0 /(J2/R4

S)|Σ0(a/RS)

respectively. In order not to overwhelm the notation in the subsequent discussion, let

us refer to these two previous functions as m0\(a/RS) and P̃0\(a/RS) respectively. As

mentioned in [30] these are not monotonic functions and they both present a maximum,

the first one at a/RS ∼ 1.29 and the second at a/RS ∼ 1.82. Note that the function P̃0\

is negative for small values of a/RS and this implies that the average deformation of the

star to second order 3 can be either negative or positive, so that the star may show either

contraction or expansion to second order depending on the background parameters. It is

worth noting that m0\ and P̃0\ attain values of the same order and the ratio is about 1.63

3The relation of the pressure and the shape of the star is addressed in [57].
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10.1. Homogeneous stars

Table 10.2: The change in mass δM (O)/M typical from the literature, the amended change
in mass δM/M and the fraction of the correction with respect to the total change in mass
are presented for different values of a/RS.

R/RS δM (O)/M δM/M |δM (C)|/δM
1.15 3.454 2.348 0.4711
1.2 3.412 2.725 0.2524
1.3 3.225 3.506 0.0803
1.4 2.993 4.246 0.2952
1.5 2.757 4.904 0.4379
1.6 2.533 5.474 0.5372
1.7 2.327 5.954 0.6091
1.8 2.140 6.355 0.6632
1.9 1.971 6.684 0.7051
2.0 1.819 6.951 0.7383
2.5 1.259 7.631 0.8350
3.0 0.9163 7.690 0.8808
4.0 0.5440 7.173 0.9242
5.0 0.3588 6.482 0.9446
10.0 0.09493 4.065 0.9766
20.0 0.02437 2.259 0.9892
35.0 0.008049 1.349 0.9940
50.0 0.003966 0.9608 0.9959
100.0 0.001008 0.4901 0.9979

for big values of a/RS. For a more detailed discussion we refer the reader to the original

work [30].

Finally, the results including the corrected change in mass and their comparison with

those presented in [30] are shown in Table 10.2 and Figure 10.2. In Table 10.2 some

values of the change in mass as a function of a/RS are presented. In the second column

the value of δM (O)/M , which corresponds to the δM/M given in[30], is shown, whereas

the third column includes the correct change in mass (7.53) and, lastly, the fourth column

shows the fraction of the change in mass that corresponds to the correction. In fact, the

correction becomes the dominant contribution in δM as the quotient a/RS increases. The

behaviour of δM/M is shown for a wide range of the variable a/RS in Figure 10.2. δM/M

presents a maximum at a/RS ∼ 2.81 and then decreases more slowly than the δM (O)/M

presented in [30], which decays monotonically. The original δM (O)/M and the amended

δM/M agree for a/RS ∼ 1.27, where P̃0\ vanishes. Below this point, the star contracts

(in average), and above it, the star expands.

There is a combination of two facts that makes the correction δM (C) not only notice-

able, but also dominant in homogeneous stars. On the one hand, as shown in Figure 10.1,
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10. The mass of homogeneous stars and strange stars

Figure 10.1: The perturbation to the pressure to second order P̃0\(a/RS) and m0\(a/RS).

Figure 10.2: The original and the amended changes in mass versus the normalized radius
of the static star a/RS.
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m0\ and P̃0\ are quantities of the same order. On the other hand, in formula (10.21),

the coefficient with P̃0\ scales linearly with a/RS. These results definitely reveal that the

correction to the change in mass is important in homogeneous stars and it can not be

neglected at all.

10.2 Strange stars

Brecher [17] and Fechner and Joss [48] considered the possibility of stars composed of

quark matter. They computed the macroscopic properties of such stars, using several

equations of state based on models for low mass quarks in quantum chromodynamics.

The two important conclusions derived from [48] are that these quark stars can be stable

and that their macroscopic properties, for instance the mass or the moment of inertia, are

very close to the values shown by standard neutron stars.

Witten explored the possibility of astrophysical objects composed of a quark matter

in [113]. He proposed that in the core of a neutron star, the pressure is high enough to

allow the formation of quark matter. Once there is presence of quarks in the nucleus, the

equilibrium in strangeness is achieved by weak interaction mechanisms. Then the quark

matter absorbs free neutrons and the final picture ends as a core composed of quark

matter shrouded by an outer layer or crust made of nuclei and electrons (for a description

of the crust see for instance [114]). Even more, Witten suggests the possibility of a pure

quark star, without a crust. Colpi and Miller studied a model of this pure quark star

using Hartle’s model for slow rotation in [34]. As in [113], they proposed the use of the

MIT bag model to account for the microphysics of the star. The MIT bag model supplies

a linear equation of state of the type

P =
1

3
(E − 4B), E ≥ 4B. (10.22)

Here, P and E are the pressure and energy respectively and B is the bag constant. It

is a phenomenological constant and is usually taken as B ≈ 56MeV fm−3, suggested by

hadronic models [42]. This model represents matter with quarks of the type up, down

and strange almost in the same quantity, mixed with the necessary amount of electrons

to guarantee the neutrality of the charge. Equations of state of this kind have also been

studied under the CMMR formalism [21], a treatment based on the post-Minkowskian

and small deformation approximations in [36, 37], as a particular case of the linear EOS.

Although a star fully governed by this EOS might be quite unrealistic, we consider

it in order to compare our results with [34], especially those regarding the change in

mass. Note that a more realistic bilayer interior, or a single combination fluid-crust,

both of them computed via Hartle’s model will suffer from the same problems that we
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10. The mass of homogeneous stars and strange stars

address in this Section for Colpi and Miller’s model [34]. This happens because the

(background) hypersurface separating the two fluids will be determined by the equality of

the corresponding pressures. However, the energy densities are not force to agree there,

and thus, the functions m0 will still present a jump. This jump provides the initial value

to integrate the function m0 of the enveloping fluid from the matching hypersurface with

the core outwards and it propagates to the computation of the change in mass when

matching this outer fluid with vacuum.

According to the paper by Witten [113], the maximum mass for a stable static config-

uration is given by the expression

Mmax

M�
= 2.00

√
56

B(MeV fm−3)
, (10.23)

that for our choice of B = 56.25MeV fm−3 4 returns a value of Mmax/M� ≈ 2. The

simulations comprise the range of central energies (4.10 · 1014g cm−3, 3.01 · 1015g cm−3).

The smallest value of the central energy density in the interval generates a non-rotating

model with almost no mass, of approximately 0.04 solar masses. Nonrotating models with

a central density of about Ec ≈ 1.92 · 1015 g cm−3 or greater surpass the maximum mass

limit and start to suffer instabilities due to radial perturbations. However, we end the

sequence with a value of the central energy density close to the critical one, but slightly

bigger to observe simply the behaviour of the correcting term. Anyhow, the stability limit

is highlighted in all the figures as well as in the table showing the data. In the figures,

the area in gray delimits the (non-rotating) stability limit.

In order to compare our results with those in [34] we define the fractional change in

mass and the total mass

f :=
δM

M
, Mtotal := M + δM = M(1 + f). (10.24)

In the following, we attach three figures from [34] and one table showing the relevant

numerical values with the corrected behaviours of the mass. Figure 10.3 shows the mass

of the configuration against the central energy density, Figure 10.4 adresses the relation

between the mass and the mean radius and in Figure 10.5 we display the fractional

increase in mass computed via Hartle’s model and amended. Let us note that we recover

the results from [34] if we restrict ourselves to Hartle’s model. However, our results show

that the correction to the change in mass is the dominant contribution to it, leading to

higher values of the total mass of the rotating star than those computed in [34]. The

correction is weighted by the value of the energy density at the boundary, whose value is

4We choose this value to match the choice in [34].
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Ec (1014 g cm−3) a/RS M/M� fH f Mtotal/M� R(2)/RS

4.1 31.6 3.8 · 10−2 1.58 · 10−2 0.974 7.5 · 10−2 41.8
5.72 3.36 1.03 0.162 0.843 1.89 4.23
6.66 2.74 1.35 0.208 0.831 2.48 3.44
6.79 2.69 1.39 0.213 0.830 2.54 3.37
9.35 2.18 1.79 0.286 0.820 3.26 2.72
12.0 2.00 1.94 0.329 0.811 3.52 2.49
14.7 1.92 2.00 0.354 0.801 3.61 2.38
17.4 1.87 2.03 (2.027) 0.370 0.789 3.63 2.32
19.2 1.85 2.03 0.377 0.782 3.62 2.29
20.1 1.84 2.03 (2.029) 0.380 0.778 3.61 2.28
22.8 1.82 2.02 0.386 0.767 3.57 2.25
25.5 1.81 2.01 0.390 0.756 3.53 2.23
28.2 1.80 2.00 0.393 0.746 3.48 2.22
30.9 1.79 1.98 0.394 0.736 3.44 2.21

Table 10.3: Ec is the central density common to the static and rotating configura-
tions. a and R(2) are the static and average perturbed radius, both of them measured in
Scharzschild radius (computed with M). M is the static mass and Mtotal the perturbed
mass. Finally, fH stands for the fractional change in mass computed using Hartle’s model
and f is the same quantity with the corrective term taken into account. Mtotal is computed
with f .

proportional to the bag constant. But this last is comparable to the physically reasonable

central densities, so that the high values of δM obtained are well justified.

We can observe from either of the three figures that when we take into account the

corrected change in mass, the total mass is increased drastically due to rotation, if com-

pared with the results in [34] or even with respect to standard neutron stars. In fact,

a quick comparison of the fractional increase of mass with and without the correction

reveals that these differ by factor greater than 2, even inside the range of (non-rotating)

stable configurations. The maximum difference in the predicted total masses is achieved

for a density of Ec = 9.85 · 1014 g cm−3, as seen from Fig. 10.3 and it is almost of one

Solar mass. As a matter of fact, our results could enter in contradiction with the claim

by Fechner and Joss about the indistinguisability of neutrons and quark stars. Note that

most of the stable non-rotating models considered give rise to rotating configurations with

masses greater than 3.3M� which exceeds the maximum mass considered for neutron stars

(see [22] or [104]).
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Figure 10.3: This figure corresponds to Fig. 1 in [34]. The ratio of the total mass
of the star measured in Solar masses versus the central density of the model, common
to the rotating and static configurations, is shown. The density is measured in units
of g cm−3, and in logaritmic scale (in base 10). The maximum difference between the
change in mass from [34] and the amended change in mass is indicated and corresponds
to Ec = 9.85 · 1014 g cm−3.
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Figure 10.4: This figure corresponds to Fig. 2 in [34]. In the vertical axis we show again
the ratio of the total mass of the star with respect to the Solar mass versus the radius
of the star. In this case, the static radius is used for the corresponding model, whereas
the mean perturbed radius is taken for the perturbations. In both cases, the radius is
measured in units of cm, and in logaritmic scale.
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Figure 10.5: This figure corresponds to Fig. 3 in [34].We compare the fractional changes
in the mass, for the result given using Hartle’s model and formula (7.53). These quantities
have no dimensions. The x−axis measures the central density of the model, with units of
g cm−3 and plotted in logaritmic scale.
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Junction conditions in quadratic gravity

Quadratic gravity refers to theories generalizing General Relativity (GR) by adding terms

quadratic in the curvature to the Lagrangian density. The motivations for such modifica-

tions go back several decades ago (see the critic paper [97]), and today there is a general

consensus that modern string theory (see e.g. [4]) and other approaches to quantum grav-

ity (see e.g. [89]) present that structure, even with higher powers of the curvature tensor,

in their effective actions.

On the other hand, many times it is convenient to have a description of concentrated

sources, that is, of concentrated matter and energy in gravity theories. These concentrated

sources represent for instance thin shells of matter (or braneworlds, or domain walls) and

impulsive matter or gravitational waves. They can mathematically be modelled by using

distributions, such as Dirac deltas or the like, hence, one has to resort to using tensor

distributions. However, one cannot simply assume that the metric is a distribution because

products of distributions are not well defined in general, and therefore the curvature (and

Einstein) tensor will not be defined. Thus, one must identify the class of metrics whose

curvature is defined as a distribution, and such that the field equations make sense. For

sources on thin shells, the appropriate class of metrics were identified in [67, 75, 106] in

GR, further discussed in [53]. Essentially, these are the metrics which are smooth except

on localized hypersurfaces where the metric is only continuous.

We carry on a similar program in the most general quadratic theory of gravity, where

extra care must be taken: the field equations, as well as the Lagrangian density, contain

products of Riemann tensors, and, moreover, their second derivatives. Therefore, the sin-

gular distributional part —such as the Dirac deltas— cannot arise in the Riemann tensor

itself, which can have at most finite jumps except in some very excepctional situations.

We identify these and then concentrate on the generic, and more relevant, situation per-

forming a detailed calculation using the rigorous calculus of tensor distributions to obtain

the energy-momentum quantities on the shells. They depend on the extrinsic geometrical
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11. Junction conditions in quadratic gravity

properties of the hypersurface supporting it, as well as on the possible discontinuities of

the curvature and their derivatives.

Surprisingly, and as already demonstrated in [98, 99, 100], a contribution of “dipole”

type also appears in the energy-momentum content supported on the shell. This is what

we call a double layer, in analogy with the terminology used in classical electrodynamics

[68] for the case of electrodipole surface distributions. This analogy make the interpreta-

tion of these double layers somewhat misterious, as there are no negative masses —and

thus no mass dipoles— in gravitation. One of our purposes is to shed some light into this

new mystery. From our results and those in [98, 99, 100], these double layers seem to

arise when abrupt changes in the Einstein tensor occur.

We also find the field equations obeyed by all these energy-momentum quantities,

which generalize the traditional Israel equations [67], and describe the conservation of

energy and momentum. Actually, we explicitly prove that the full energy-momentum

tensor is divergence-free (in the distributional sense) by virtue of the mentioned field

equations.

Previous works on junction conditions in quadratic gravity include [8, 41, 44, 110]

—see also [43, 56] for the Gauss-Bonnet case—, but none of them provided the correct

full field equations with matter outside the shell, and they all missed the double-layer

contributions, which are fundamental for the energy-momentum conservation. Maybe

this is due to the extended use of Gaussian coordinates based on the thin shell: this

prevents from making a mathematically sound analysis of the distributional part of the

energy-momentum tensor, as the derivatives of the Dirac delta supported on the shell

seem to be ill-defined in those coordinates.

This chapter is structured as follows. The quadratic gravity field equations are intro-

duced in Section 11.2, where the proper junction conditions for the description of thin

shells (layers) are found. This is achieved by using distributional calculus, briefly re-

viewed in Chapter 2. In Section 11.3, the matter content supported on the layer, i.e. the

distributional part of the global energy momentum tensor, is found to contain a “usual”

Dirac-delta term T̃µνδ
Σ together with another contribution of double-layer type as men-

tioned above; the latter is denoted by tµν . Then, both T̃µν and tµν are computed in terms

of geometrical quantities: the curvatures at either side of the layer and the extrinsic and

intrinsic geometry of the hypersurface supporting it. The tensor T̃µν is decomposed into

the proper energy momentum of the shell ταβ, external flux momentum τα and external

pressure (or tension) τ corresponding to the completely tangent, tangent-normal and nor-

mal parts respectively. The double layer energy-momentum tensor distribution is found

to resemble the energy-momentum content of a dipole surface charge distribution with

strength µαβ. This strength depends on the jump of the Einstein –or equivalently the
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Ricci— tensor at the layer. The allowed jumps of the curvature (and its derivatives up to

second order) at the layer are determined in Section 11.4, again from a purely geometrical

perspective.

The general quadratic gravity field equations are obtained in Section 11.5. These are

the inherited field equations on the layer, and they involve ταβ, τα, τ and µαβ together

with jumps on the layer of the spacetime energy-momentum tensor. These fundamental

equations are the generalization of the Israel equations in GR to the general quadratic

gravity theories. The covariant conservation of the full energy-momentum tensor with

its distributional parts is explicitly demonstrated in Section 11.6, where we discuss how

the double layer term is necessary for that. The field equations on the layer are analysed

and further discussed in Section 11.7, where a classification of the junction conditions

in the following cases are presented: proper matching, thin shells with no double layers,

and pure double layers. In particular we find that if there is no double layer, then no

external flux momentum τα nor external tension τ can exist. Finally, in Section 11.8

some comparisons with the general GR case, and particular matchings of spacetimes, are

provided. It is found that any GR solution containing a proper matching hypersurface will

contain a double layer and/or a thin shell at the matching hypersurface if the true theory

is quadratic. Therefore, if any quantum regimes require, excite or switch on quadratic

terms in the Lagrangian density, then GR solutions modelling two regions with different

matter contents will develop thin shells and double layers on their interfaces.

On the other hand, we include, in Appendix B, a discussion about the difficulty, and

in fact inconvenience, of using Gaussian coordinates for dealing with layers in quadratic

Lagrangian theories, as it has been often done in the literature.

11.1 Motivation

A general result proven in [82] is that the second Bianchi identity holds in the distribu-

tional sense:

∇ρR
α
βµν +∇µR

α
βνρ +∇νR

α
βρµ = 0

from where one deduces by contraction

∇βGβµ = 0

for the Einstein tensor distribution. By using (2.37) and the general formula (2.27) this

implies

0 = ∇βGβµ = nβ [Gβµ] δΣ +∇β
(
GβµδΣ

)
. (11.1)
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11. Junction conditions in quadratic gravity

The second summand on the righthand side is computed according to the general formula

(A.21) in Appendix A.1

∇β
(
GβµδΣ

)
= gβρ∇ρ

(
GβµδΣ

)
= gβρ∇σ

(
GβµnρnσδΣ

)
+ gβρhλρ∇λGβµδΣ = hρλ∇λGρµ δΣ

which, via (A.6) finally gives

∇β
(
GβµδΣ

)
=
(
∇βGβµ −KΣ

ρσGρσnµ
)
δΣ .

Introducing this into (11.1) we arrive at

0 = δΣ

(
nβ [Gβµ] +∇βGβµ −

1

2
nµGρσ(K+

ρσ +K−ρσ)

)
which implies, by taking the normal and tangent components, the following relations

(K+
ρσ +K−ρσ)Gρσ = 2nβnµ [Gβµ] = 2nβnµ [Rβµ]− [R], (11.2)

∇βGβµ = −nρhσµ [Gρσ] = −nρhσµ [Rρσ] . (11.3)

(These equations can also be obtained [67] by using part of the Gauss and Codazzi equa-

tions for Σ on both sides, specifically (2.66) and (2.67) in Chapter 2).

A very important remark is that all formulae in this section are purely geometric,

independent of any field equations, and therefore valid in any theory of gravity based on a

Lorentzian manifold. The translation of equations (11.2) and (11.3) to quantities related

to the energy momentum tensor in General Relativity (2.55) is straigthforward and we

find

(K+
ρσ +K−ρσ)τ ρσ = 2nβnµ [Tβµ] , (11.4)

∇β
τβµ = −nρhσµ [Tρσ] . (11.5)

Let us comment now about other theories of gravity, such as the F (R) theories. In

these, the field equations for a generic theory, without specifying F explicitly, read

F ′(R)Rµν −
1

2
F (R)gµν − F ′′(R)(∇µ∇νR− gµν∇ρ∇ρR)

−F ′′′(R)(∇µR∇νR− gµν∇ρR∇ρR) = κTµν , (11.6)

where κ = 8πG/c4 is the gravitational coupling constant and a prime denotes differen-

tiation with respect to the only argument. Note then that the translation from (11.2),

(11.3) to (11.4), (11.5) is not trivial. However, a remarkable result found in [98] is that

the relations regarding the energy momentum tensor (11.4) and (11.5) hold for theories

with F ′′(R) 6= 0 (see the first Section of the Appendix in [98]). Theories with F ′′(R) = 0
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11.2. Quadratic gravity

are studied in depth in [99], where it is found that (11.4) and (11.5) do not hold in gen-

eral (these become (9) in [99]), but they do if one requires a matching without double

layers. In [98] the fact that (11.4) and (11.5) may hold for any (diffeomorphism invariant)

theory of gravity is left as an open question. Thus, one of the main motivations for the

work developed in this chapter is to go an step further in this conjecture and explore the

quadratic theories of gravity.

11.2 Quadratic gravity

We are going to concentrate on the case of quadratic theories of gravity because, apart

from its own intrinsic interest and as we are going to discuss, they allow for cases where

gravitational double layers arise. Let us consider a quadratic theory of gravity in n + 1

dimensions described by the Lagrangian density

L =
1

2κ

(
R− 2Λ + a1R

2 + a2RµνR
µν + a3RαβµνR

αβµν
)

+ Lmatter, (11.7)

where Λ is the cosmological constant, a1, a2, a3 are three constants selecting the partic-

ular theory, and Lmatter is the Lagrangian density describing the matter fields. Λ−1 and

a1, a2, a3 have physical units of L2. The field equations derived from this Lagrangian read

(see e.g. [47] and references therein)

Gαβ + Λgαβ +G�
αβ = κTαβ, (11.8)

where Tαβ is the energy-momentum tensor of the matter fields derived from Lmatter, Gαβ

is the Einstein tensor and G�
αβ encodes the part that comes from the quadratic terms:

G�
αβ = 2

{
a1RRαβ − 2a3RαµR

µ
β + a3RαρµνRβ

ρµν + (a2 + 2a3)RαµβνR
µν

−
(
a1 +

1

2
a2 + a3

)
∇α∇βR +

(
1

2
a2 + 2a3

)
�Rαβ

}
−1

2
gαβ
{

(a1R
2 + a2RµνR

µν + a3RργµνR
ργµν)− (4a1 + a2)�R

}
, (11.9)

where � := gµν∇µ∇ν is notation for the D’Alembertian in (V , g).

If we want to find the proper junction conditions, or a description of thin shells or

braneworlds in these theories, we have to resort to the distributional calculus (see Chapter

2 and Appendix A). Then, in order to have the Lagrangian density as well as the tensor

G�
αβ well defined in a distributional sense —so that the field equations (11.8) are sensible

mathematically—, one has to avoid any multiplication of singular distributions (such

as “δΣδΣ”). One could also hope for some cancellation of such terms between different
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11. Junction conditions in quadratic gravity

parts of the Lagrangian, and of G�
αβ, and this is discussed in the following subsection for

completeness, but one has to bear in mind that these cancellations are probably ill defined

anyway, and thus not relevant. In order to properly deal with products of distributions

we would need a more general calculus, based e.g. on Colombeau algebras [33, 102], and

hope that those cancellations certainly occur and are well defined.

Dubious possible cancellation of non-linear δΣδΣ terms

Let us start by examining the Lagrangian (11.7) recalling that the different curvature

terms possess now singular parts proportional to δΣ, as given in (2.61) and its contractions

(2.62) and (2.63). One could naively compute the products of these singular parts arising

from the quadratic terms in (11.7) and collect them in a common-factor fashion. The

result would be a term of type

δΣδΣ
(
2κ1[Kρ

ρ ]2 + 2κ2[Kαβ][Kαβ]
)

where we have introduced the abbreviations

κ1 := 2a1 + a2/2, κ2 := 2a3 + a2/2 (11.10)

to be used repeatedly in what follows. Then, one should require the vanishing of the

term in brackets. A similar naive compilation should be performed with the non-linear

distributions arising from the quadratic terms in the field equations (11.9). Imposing

again that the full combination must vanish, and separating the resulting condition into

its normal and tangent parts to Σ we would find{
κ1[Kρ

ρ ]2 + κ2(3[Kµν ][Kµν ]− 2[Kρ
ρ ]2)
}
nαnβ (11.11a)

+ κ1[Kρ
ρ ](2[Kαβ]− [Kρ

ρ ]hαβ) + κ2(2[Kρ
ρ ][Kαβ]− [Kµν ][K

µν ]hαβ) = 0. (11.11b)

The normal (11.11a) and tangent (11.11b) parts must vanish separately. In particular the

trace of the tangent part reads

κ1[Kρ
ρ ]2(2− n) + κ2(2[Kρ

ρ ]2 − n[Kµν ][K
µν ]) = 0. (11.12)

We see directly that κ1 = κ2 = 0 solves (11.11), but in order to find all solutions we

compute the determinant of the system (11.11a) and (11.12). This yields

(3− n)[Kρ
ρ ]2([Kρ

ρ ]2 − [Kµν ][Kµν ]) = 0. (11.13)

Take first [Kρ
ρ ] = 0. Then, (11.11a) = 0 and (11.12) reduce to κ2[Kµν ][K

µν ] = 0. If

[Kρ
ρ ] 6= 0 but [Kρ

ρ ]2 = [Kµν ][Kµν ], (11.11a) = 0 reads (κ1 + κ2)[Kρ
ρ ]2 = 0 and (11.12) is
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11.2. Quadratic gravity

redundant since it becomes (κ1+κ2)[Kρ
ρ ]2(2[Kαβ]−[Kρ

ρ ]hαβ) = 0. Thus, κ1+κ2 = 0 would

follow. Finally, if n = 3 (and [Kρ
ρ ]2 6= 0), (11.11) yields a new possibility not considered

so far, summarized in

[Kαβ] =
1

3
hαβ ⇒ [Kρ

ρ ] = 1, [Kαβ][Kαβ] =
1

3
, κ1 − κ2 = 0. (11.14)

In short, each of the following possibilities would seem to allow for the mutual anni-

hilation of ”δΣδΣ” terms in (11.9) —and in (11.7)—:

1. κ1 = κ2 = 0.

2. [Kρ
ρ ] = 0 and κ2 = 0.

3. [Kρ
ρ ]2 = [Kµν ][K

µν ] = 0.

4. [Kρ
ρ ]2 = [Kµν ][K

µν ] 6= 0 and κ1 + κ2 = 0.

5. If the spacetime is 4-dimensional, κ1 − κ2 = 0 and [Kαβ] = hαβ/3.

Despite we have included this analysis here for completeness, we should not forget

that these cases are not mathematically correct, and therefore they should not be fully

admitted unless a more rigorous study is performed showing its feasibility. To understand

the problems behind these naive calculations, we want to emphasize that there is no known

way to give a sensible meaning to δΣδΣ, let alone to things such as fδΣδΣ. Thus, taking

for granted that combinations of type f1δ
ΣδΣ + f2δ

ΣδΣ are related to (f1 + f2)δΣδΣ is,

at least, dubious. Such difficulties were, for instance, noted in [43] for the Gauss-Bonnet

case —corresponding to the possibility 1 above—, and one has to resort to analyzing thick

shells, that is, layers with a finite width, or to a setting more general than distributions,

such as the theory of nonlinear generalized functions described in [33, 102] and references

therein. The thin shell formalism is simply not available. Therefore, we will abandon this

route for now, and we will concentrate on the generic and well-defined cases analyzed in

the next subsection.

Well defined possibilities: no δΣδΣ terms

The only mathematically well-defined possibilities in the available theory of distributions

for the thin shell formalism, as just argued, are those where no δΣδΣ term ever arises,

leading to two different possibilities if we let aside the case of GR (defined by a1 = a2 =

a3 = 0):
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11. Junction conditions in quadratic gravity

1. If either a2 or a3 is different from zero, then products of the Ricci tensor by itself,

or by the Riemann tensor, appear in (11.9) and these are ill-defined if the singular

parts (2.61) and (2.62) are non-zero. Thus, we must demand that the singular

parts (2.61) and (2.62) vanish which happens, as proven in Chapter 2, if and only

if the jump of the second fundamental form vanishes. Thus, in this situation it is

indispensable to require

[Kµν ] = 0. (11.15)

In this case, all the curvature tensors are tensor distributions associated to tensor

fields with possible discontinuities across the embdedded Σ. Observe that then the

Lagrangian density (11.7) is also a well defined, locally integrable, function.

2. If on the other hand a2 = a3 = 0, then only products of R by itself or by the

Ricci tensor appear in (11.9), and thus it is enough to demand that R is a locally

integrable function without singular part. Hence, in this case it is enough to require

that (2.63) vanishes, that is to say, that the trace of the second fundamental form

has no jump: [Kρ
ρ ] = 0. Observe that, again, the Lagrangian density (11.7) is in

this case a well-defined locally integrable function.

In any of the above two possibilities, expression (11.8) with (11.9) has a remarkable

property: there are no terms quadratic in derivatives of the curvature tensors. Taking

into account that tensor distributions can be covariantly differentiated according to the

rules explained in Chapter 2 and Appendix A, the derivatives of the curvature tensors

may have singular parts and still the field equations (11.8) are mathematically sound.

This opens the door for the existence of matching hypersurfaces which represent double

layers. Case 2 above was extensively treated in [98, 99, 100], where gravitational double

layers were found for the first time. Therefore, we will here concentrate in the more

general case 1, and thus we will assume hereafter that (11.15) holds. Notice that (11.15)

coincide precisely with the matching conditions that are needed in General Relativity to

avoid distributional matter contents, as follows from (2.64) together with the Einstein

field equations.

Once (11.15) is enforced, the lefthand side of the field equations (11.8) can be computed

in the distributional sense. From (2.33) and (11.15) we know that the Riemann tensor

distribution

Rαβµν = R+
αβµνθ +R−αβµν(1− θ),

is actually associated to a locally integrable (and piecewise differentiable) tensor field.

However, this tensor field may be discontinuous across Σ, and thus [Rαβµν ] may be non-

vanishing. This leads, when computing covariant derivatives of Rαβµν , to singular terms
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11.3. Energy-momentum on the layer Σ

proportional δΣ and its derivatives. And these are going to arise in G�
αβ. Thus, the

energy-momentum tensor on the righthand side of (11.8) must be treated as a tensor

distribution and contain such terms, localized on Σ, giving the energy-matter contents of

the thin shell or double layer.

In order to compute this matter content supported on Σ we only have to calculate the

singular part of G�
αβ, because Gαβ in (2.37) vanishes as follows from (11.15) with (2.64).

But the only terms in (11.9) that are relevant for this singular part are ∇α∇βR and

�Rαβ (and its contraction �R). More precisely, we need to obtain the singular part of

the expression

− (2a1 + a2 + 2a3)∇α∇βR + (a2 + 4a3)�Rαβ +

(
2a1 +

1

2
a2

)
�Rgαβ

= − (κ1 + κ2)∇α∇βR + 2κ2�Rαβ + κ1�Rgαβ. (11.16)

This is the purpose of the next section.

11.3 Energy-momentum on the layer Σ

From (2.35) and the assumption (11.15) we know that

Rαβ = R+
αβ θ +R−αβ(1− θ)

from where, using the general formula (2.27) twice we deduce

∇νRαβ = ∇νR
+
αβ θ +∇νR

−
αβ(1− θ) + [Rαβ]nνδ

Σ,

∇µ∇νRαβ = ∇µ∇νR
+
αβ θ +∇µ∇νR

−
αβ(1− θ) + [∇νRαβ]nµδ

Σ

+∇µ

(
[Rαβ]nνδ

Σ
)
. (11.17)

Via contractions here, or directly from (2.36), we also obtain

R = R+θ +R−(1− θ),
∇νR = ∇νR

+θ +∇νR
−(1− θ) + [R]nνδ

Σ,

∇µ∇νR = ∇µ∇νR
+θ +∇µ∇νR

−(1− θ) + [∇νR]nµδ
Σ +∇µ

(
[R]nνδ

Σ
)

(11.18)

as well as

�Rαβ = �R+
αβθ + �R−αβ(1− θ) + nρ[∇ρRαβ]δΣ + gµν∇µ

(
[Rαβ]nνδ

Σ
)
, (11.19)

�R = �R+θ + �R−(1− θ) + nρ[∇ρR]δΣ + gµν∇µ

(
[R]nνδ

Σ
)
. (11.20)
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Thus, we need to control the discontinuities of the Ricci tensor and the scalar cur-

vature, and also to provide an expression for the singular distribution ∇µ

(
[Rαβ]nνδ

Σ
)

supported on Σ. The general formula (A.21) provides

∇µ

(
nν [Rαβ]δΣ

)
= ∇ρ

(
[Rαβ]nµnνn

ρδΣ
)

+
{
hρµ∇ρ(nν [Rαβ])−Kρ

ρ [Rαβ]nµnν
}
δΣ.

At this point we introduce a 4-covariant tensor distribution ∆µναβ with support on Σ,

which takes care of the first summand here and is defined by

∆µναβ := ∇ρ

(
[Rαβ]nµnνn

ρ δΣ
)

or equivalently by 〈
∆µναβ, Y

µναβ
〉

:= −
∫

Σ

[Rαβ]nνnµn
ρ∇ρY

µναβdv.

Note that ∆µναβ = ∆νµαβ = ∆µνβα. In summary, we have

∇µ

(
nν [Rαβ]δΣ

)
= ∆µναβ +

{
nνh

ρ
µ∇ρ[Rαβ] + [Rαβ](Kµν −Kρ

ρ nµnν)
}
δΣ

and therefore (11.17) becomes

∇µ∇νRαβ = ∇µ∇νR
+
αβ θ +∇µ∇νR

−
αβ(1− θ) + ∆µναβ

+
{

[∇νRαβ]nµ + nνh
ρ
µ∇ρ[Rαβ] + [Rαβ](Kµν −Kρ

ρ nµnν)
}
δΣ.

From the general formula (A.19), conveniently generalised, we have

[∇ρRβµ] = nρrβµ + hσρ∇σ[Rβµ], (11.21)

where

rβµ := nρ[∇ρRβµ], rβµ = rµβ (11.22)

are the discontinuities of the normal derivatives of the Ricci tensor. Thus, we finally get

∇µ∇νRαβ = ∇µ∇νR
+
αβ θ +∇µ∇νR

−
αβ(1− θ) + ∆µναβ

+
{
rαβ nνnµ + nµh

ρ
ν∇ρ[Rαβ] + nνh

ρ
µ∇ρ[Rαβ] + [Rαβ](Kµν −Kρ

ρ nµnν)
}
δΣ. (11.23)

Observe that the entire singular part is symmetric in (αβ) and in (µν).

From (11.23) we immediately get all the sought terms. First, by contracting with gαβ

we find [98, 99, 100]

∇µ∇νR = ∇µ∇νR
+ θ +∇µ∇νR

−(1− θ) + ∆µν

+
{
bnνnµ + nµ∇ν [R] + nν∇µ[R] + [R](Kµν −Kρ

ρ nµnν)
}
δΣ (11.24)
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where [99, 100]

b := rρρ = nρ∇ρ[R] (11.25)

measures the discontinuity on the normal derivative of the scalar curvature, and [99]

∆µν := gαβ∆µναβ

is a 2-covariant symmetric tensor distribution with support on Σ acting as follows1

〈
∆µν , Y

µν
〉

:= −
∫

Σ

[R]nνnµn
ρ∇ρY

µνdv; ∆µν = ∇ρ

(
[R]nµnνn

ρδΣ
)
. (11.26)

Similarly, contracting (11.23) with gµν we readily get

�Rαβ = �R+
αβθ + �R−αβ(1− θ) + rαβδ

Σ + gµν∆µναβ (11.27)

where the last distribution acts as follows〈
gµν∆µναβ, Y

αβ
〉

=
〈
∆µναβ, g

µνY αβ
〉

= −
∫

Σ

[Rαβ]nνnµn
ρ∇ρ(Y

αβgµν)dv

= −
∫

Σ

[Rαβ]nρ∇ρY
αβdv; gµν∆µναβ = ∇ρ

(
[Rαβ]nρδΣ

)
.

Finally, by tracing either of (11.24) or (11.27) we easily derive

�R = �R+θ + �R−(1− θ) + b δΣ + ∆, (11.28)

where we have introduced the notation ∆ := gµν∆µν . Note that [98]

〈∆, Y 〉 =
〈
gµν∆µν , Y

〉
= −

∫
Σ

[R]nρ∇ρY dv; ∆ = ∇ρ

(
[R]nρδΣ

)
.

What we have proven is that the distribution G�
αβ takes the following form

G�
αβ = G�+

αβθ +G�−
αβ(1− θ) + G̃αβδ

Σ + Gαβ (11.29)

where

G̃αβ = 2κ2rαβ+κ1bgαβ−(κ1+κ2)
{
bnαnβ + nα∇β[R] + nβ∇α[R] + [R](Kαβ −Kρ

ρ nαnβ)
}
,

(11.30)

and after a trivial rearrangement

Gαβ = κ1

(
gαβ∆−∆αβ

)
+ κ2

(
2gµν∆µναβ −∆αβ

)
. (11.31)

1There are some errata in the formulae for ∆µν and Ωµν in [98], and for tµν in [99, 100]: in all cases
Y must be replaced by Y µν .
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11. Junction conditions in quadratic gravity

From (11.31) we define two new 2-covariant tensor distributions with support on Σ [99]:

Ωαβ := gαβ∆−∆αβ = ∇ρ

(
[R]hαβn

ρδΣ
)

;
〈
Ωαβ, Y

αβ
〉

= −
∫

Σ

[R]hαβ n
ρ∇ρY

αβdv

(11.32)

and

Φαβ := gµν∆µναβ−
1

2
∆αβ−

1

2
Ωαβ = ∇ρ

(
[Gαβ]nρδΣ

)
;
〈
Φαβ, Y

αβ
〉

= −
∫

Σ

[Gαβ]nρ∇ρY
αβdv

(11.33)

(recall that [Gαβ] is tangent to Σ, nα[Gαβ] = 0 (2.54)). With these definitions, (11.31) is

rewritten simply as

Gαβ = (κ1 + κ2)Ωαβ + 2κ2Φαβ; Gαβ = ∇ρ

(
{(κ1 + κ2)[R]hαβ + 2κ2[Gαβ]}nρδΣ

)
.

(11.34)

Given the structure (11.29), the field equations (11.8) can only be satisfied if the

energy-momentum tensor on the righthand side is a tensor distribution with the following

terms

T µν = T+
µνθ + T−µν(1− θ) + T̃µνδ

Σ + tµν (11.35)

where T̃µν is a symmetric tensor field defined only on Σ and tµν is by definition the

singular part of T µν with support on Σ not proportional to δΣ. We perform an orthogonal

decomposition of T̃µν into tangent, normal-tangent and normal parts with respect to Σ

T̃µν = τµν + τµnν + τνnµ + τnµnν (11.36)

with

τµν := hρµh
σ
ν T̃ρσ, τµν = τνµ, nµτµν = 0; τµ := hρµT̃ρνn

ν , nµτµ = 0; τ := nµnνT̃µν

so that

T µν = T+
µνθ + T−µν(1− θ) + (τµν + τµnν + τνnµ + τnµnν) δ

Σ + tµν . (11.37)

Compare this expression with the form of the energy momentum tensor in GR given by

(2.55). Following [99, 100] the proposed names for the objects in (11.37) supported on Σ,

with their respective explicit expressions, are:

1. the energy-momentum tensor ταβ on Σ, given by

κταβ = −(κ1 + κ2)[R]Kαβ + κ1bhαβ + 2κ2rµνh
µ
αh

ν
β. (11.38)

ταβ is the only quantity usually defined in standard shells (see Section 2.2).

170



11.3. Energy-momentum on the layer Σ

2. the external flux momentum τα defined by

κτα = −(κ1 + κ2)∇α[R] + 2κ2rµνn
µhνα. (11.39)

This momentum vector describes normal-tangent components of T µν supported on

Σ. Nothing like that exists in GR. Let us stress that this “external” flux momentum

should not be confused with the “flux momentum” defined in thin shells in GR (see

e.g. [50]).

3. the external pressure or tension τ

κτ = (κ1 + κ2)[R]Kρ
ρ + κ2(2rµνn

µnν − b). (11.40)

Taking the trace of (11.38) one obtains a relation between b, τ and the trace of τµν :

κ (τ ρρ + τ) = (κ1n+ κ2)b (11.41)

The scalar τ measures the total normal pressure/tension supported on Σ. Again,

such a scalar does not exist in GR.

4. the double-layer energy-momentum tensor distribution tαβ, which is defined by

κtαβ = Gαβ = ∇ρ

(
{(κ1 + κ2)[R]hαβ + 2κ2[Gαβ]}nρδΣ

)
(11.42)

or, equivalently, by acting on any test tensor field Y αβ as

κ
〈
tαβ, Y

αβ
〉

= −
∫

Σ

{(κ1 + κ2)[R]hαβ + 2κ2[Gαβ]}nρ∇ρY
αβdv . (11.43)

tαβ is a symmetric tensor distribution of “delta-prime” type: it has support on Σ

but its product with objects intrinsic to Σ is not defined unless their extensions off

Σ are known. As argued in [99, 100], tαβ resembles the energy-momentum content

of double-layer surface charge distributions, or “dipole distributions”, with strength

κµαβ := (κ1 + κ2)[R]hαβ + 2κ2[Gαβ], µαβ = µβα, nαµαβ = 0. (11.44)

We note in passing that

κµρρ = (κ1n+ κ2)[R], κtρρ = (κ1n+ κ2)∆ (11.45)

The appearance of such double layers is remarkable, as “massive dipoles” do not

exist. However, in quadratic theories of gravity they arise, as we have just shown,

in the generic situation when thin shells are considered. In this case, tαβ seems

to represent the idealization of abrupt changes, or jumps, in the curvature of the

space-time.
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11. Junction conditions in quadratic gravity

11.4 Curvature discontinuities

In the next section, we are going to derive the field equations satisfied by the energy-

momentum quantities (11.38), (11.39), (11.40) and (11.44) supported on Σ. To that end,

we have to perform a detailed calculation of the discontinuities of the field equations

(11.8): they obviously include the discontinuities of the energy-momentum tensor Tµν

which must be related to the energy-momentum content concentrated on Σ.

The discontinuity of the lefthand side of (11.8) contains [G�
αβ] (actually, we will only

need nα[G�
αβ]) and this involves discontinuities of quadratic terms in the Riemann tensor,

such as [R2], [RαβR
αβ], [RαβµνR

αβµν ], [RRαβ], [RαµR
µ
β], [RαρµνRβ

ρµν ] and [RαµβνR
µν ], as

well as discontinuities of derivatives of the curvature tensors, such as [∇α∇βR], [�Rαβ]

or [�R]. Thus, we have to use systematically the rules (A.15) and either of (A.19) or

(A.20) supplemented with (11.15), and we also need to have some knowledge on the

discontinuities of the Riemann tensor (and its derivatives).

Discontinuities of the curvature tensors

Thus, let us start by controlling the allowed discontinuities of the Riemann tensor across

Σ. Requirement (11.15) implies that the matching conditions (for timelike hypersurfaces)

introduced in Chapter 2 hold. The implications are then that the jump in the Christof-

fel symbols vanishes [Γαβµ] = 0 (recall the relation between the difference of the second

fundamental forms and Christoffel symbols (2.59)).

The jump of the Riemann tensor is given by the standard formula (2.50). The inde-

pendent n(n + 1)/2 allowed discontinuities for the curvature tensor are encoded in the

symmetric tensor Bαβ, that recall, can be chosen to be fully tangent to Σ. The discon-

tinuities of the Ricci tensor, Ricci scalar and Einstein tensor are given by (2.68), (2.69)

and (2.71). Equivalently to these, we can write

Bβµ = [Rβµ]− 1

2
[R]nβnµ = [Gβµ] +

1

2
hβµ[R], Bµ

µ =
[R]

2
, (11.46)

that tells us that the n(n+1)/2 allowed independent discontinuities of the Riemann tensor

can be chosen to be the discontinuities of the Σ-tangent part of the Einstein tensor (or

equivalently, of the Ricci tensor).

172



11.4. Curvature discontinuities

Discontinuities of terms quadratic in the curvature

Now, let us concern ourselves with the many terms in (11.9) quadratic in curvature tensors.

To start with, using (11.46) with (A.15) we readily obtain

[RαβR
αβ] = 2[Rαβ]RΣ

αβ =

(
Bαβ +

1

2
[R]nαnβ

)
RΣ
αβ, (11.47)

[RRαβ] = RΣ[Rαβ] + [R]RΣ
αβ = RΣ

(
Bαβ +

1

2
nαnβ[R]

)
+RRΣ

αβ, (11.48)

[R2] = 2[R]RΣ. (11.49)

Regarding nα[RαµR
µ
β], let us first consider the contraction nσnµ[Rγ

σRγµ]. The chain of

equalities

nσnµ[Rγ
σRγµ] = 2nσnµRΣγ

σ[Rγµ] = [R]nγnµRΣ
γµ (11.50)

follows from (2.68) (or (11.46)) and (A.15). Half-adding the two ± equations (A.12) and

using the result in (11.50) we derive

nσnµ[Rγ
σRγµ] =

1

2
[R](RΣ −R + (Kρ

ρ)2 −KρσK
ρσ). (11.51)

Analogous procedures using the Gauss equation (A.7) accordingly yield

nσhµν [Rγ
σRγµ] = Bαν(∇βK

βα −∇α
Kρ
ρ) +

1

2
[R](∇αK

α
ν −∇νK

ρ
ρ), (11.52)

nαnβ[RαµβνR
µν ] =

(
2RΣ

µν −Rµν +Kρ
ρKµν −KµσK

σ
ν

)
Bµν , (11.53)

nαhβλ[RαµβνR
µν ] = (∇βKλα −∇λKβα)Bαβ − (∇αK

αβ −∇β
Kρ
ρ)Bβλ. (11.54)

nαnβ[RαρµνRβ
ρµν ] = 4nαnβ[RαµβνR

µν ]− 4RΣ
ρσB

ρσ, (11.55)

nαhβλ[RαρµνRβ
ρµν ] = 2Bαβ(∇αKλβ −∇λKαβ), (11.56)

[RαβµνR
αβµν ] = 2nαnβ[RαρµνRβ

ρµν ] = 8Bαβ(RΣ
αβ −Rαβ +Kρ

ρKαβ −KαρK
ρ
β).

(11.57)

Discontinuities of the first derivative of the curvature tensors

Concerning the covariant derivative of the Riemann tensor, the general formula (A.19)

leads to

[∇ρRαβλµ] = nρrαβλµ + hσρ∇σ[Rαβλµ], (11.58)

where rαβµν is a tensor field defined only on Σ and with the symmetries of a Riemann

tensor. Using the second Bianchi identity for the Riemann tensor the previous formula

implies

n[ρrαβ]λµ + hσ[ρ∇σ[Rαβ]λµ] = 0
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11. Junction conditions in quadratic gravity

which, on using (2.50) and after some calculations, implies the following structure for

rαβµν :

rαβµν = KαµBνβ −KανBµβ +KβνBµα −KβµBνα

+
(
∇µBρν −∇νBρµ

)
(nαh

ρ
β − nβh

ρ
α) +

(
∇αBρβ −∇βBρα

)
(nµh

ρ
ν − nνhρµ)

+ nαnµρβν − nαnνρβµ − nβnµραν + nβnνραµ, (11.59)

where ρβµ is a new symmetric tensor field, defined only on Σ and tangent to Σ, nβρβµ = 0,

which encodes the allowed new independent discontinuities of the covariant derivative of

the Riemann tensor. There are n(n + 1)/2 of those again. As far as we know, relation

(11.59) has only been derived in [82].

Contraction of (11.59) leads to the equation (11.21), but now with an explicit expres-

sion for the discontinuity of the normal derivative of the Ricci tensor which reads, on

using (11.46)

rβν = ρβν +Kρ
ρBβν +

1

2
[R]Kβν −KρβB

ρ
ν −BρβK

ρ
ν

− nβ∇ρ[G
ρ
ν ]− nν∇ρ[G

ρ
β]

+ nβnνρ
α
α, (11.60)

where a natural orthogonal decomposition of rβµ appears: the first line is its complete

tangent part which, given that ρβν entails the allowed new independent discontinuities,

is in itself a symmetric tensor field tangent to Σ codifying those discontinuities. We are

going to denote it by

Rβµ := hρβh
σ
µrρσ = hρβh

σ
µn

λ[∇λRρσ]; (11.61)

the second line is its tangent-normal part, which is completely determined by the covariant

derivative within Σ of the discontinuity of the Einstein tensor

nβhνµrβν = −∇ρ
[Gρµ]; (11.62)

and finally, the third line gives the total normal component of rβµ, which can be related to

the discontinuity (11.25) of the normal derivative of R by simply taking the trace rρρ = b

leading to

rβµn
βnµ =

b

2
+Kρσ[Gρσ]. (11.63)

Using this we get a useful relation for the trace of Rαβ, that does not depend on ραβ

Rα
α =

b

2
−Kρσ[Gρσ]. (11.64)
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11.4. Curvature discontinuities

Discontinuities of the second-order derivatives

Let us now consider the jumps in the second derivatives of the Ricci tensor. The starting

point is equation (11.21). We can find an expression for the second summand there by

differentiating (2.68) along Σ and using the general rule (A.6) (see Appendix A.1),

hσρ∇σ[Rβµ] =
1

2
nβnµ∇ρ[R] + n(µ

(
Kβ)ρ[R]− 2Bβ)λK

λ
ρ

)
+∇ρBβµ. (11.65)

The jumps of the second-order derivatives of the Ricci tensor, due to the general formula

(A.19), can be written as

[∇λ∇ρRβµ] = nλAρβµ + hσλ∇σ[∇ρRβµ] (11.66)

where Aρβµ = Aρ(βµ) is a shorthand for

Aρβµ = nλ[∇λ∇ρRβµ].

The last term hσλ∇σ[∇ρRβµ] can be further expanded by first using (11.21) to obtain

hσλ∇σ[∇ρRβµ] = Kλρrβµ + nρh
σ
λ∇σrβµ + hσλ∇σ

(
hγρ∇γ[Rβµ]

)
and then computing the last summand here, which leads to

hσλ∇σ[∇ρRβµ] = Kλρrβµ + 2n(µKβ)(λ∇ρ)[R] + [R]Kρ(βKµ)λ − 4Kγ
(ρ∇λ)Bγ(βnµ)

+nβnµ

(
1

2
∇λ∇ρ[R]− [R]Kσ

λKρσ + 2Kγ
ρK

σ
λBσγ

)
+
(
∇λK

γ
ρ − nρKσ

λK
γ
σ

) (
[R]hγ(β − 2Bγ(β

)
nµ) −

1

2
nµnβnρK

σ
λ∇σ[R]

+∇λ∇ρBβµ − 2Kγ
ρBγ(βKµ)λ − nρKσ

λ∇σBβµ + nρh
σ
λ∇σrβµ. (11.67)

Let us stress the fact that all the terms in the first two lines in the above expression are

symmetric in (λρ).

Concerning Aρβµ, let us first decompose it into normal and tangential parts by

Aρβµ = nρAβµ + hγρAγβµ, Aβµ := nρAρβµ, Aβµ = Aµβ.

In order to obtain an expression for hγρAγβµ we take the antisymmetric part of (11.66)

with respect to [λρ], and contract with nλ. For the left hand side of (11.66) we use the

Ricci identity applied to the Ricci tensor at both sides V ±, and take the difference of the

limits on Σ, so that

[(∇λ∇ρ −∇ρ∇λ)Rβµ] = [Rγ
βρλRγµ] + [Rγ

µρλRβγ].
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11. Junction conditions in quadratic gravity

For the right hand side of (11.66), after the contraction with nλ, we get

Aρβµ − nλnρAλβµ − nλhσρ∇σ[∇λRβµ] = hγρAγβµ − nλhσρ∇σ[∇λRβµ].

Isolating hγρAγβµ and using (11.67) for the last term of the above equation, it is then

straightforward to obtain

Aρβµ = nρAβµ + nν [Rγ
βρνRγµ] + nν [Rγ

µρνRβγ] + hσρ∇σrβµ

−1

2
nµnβK

σ
ρ∇σ[R]−Kσ

ρ∇σBβµ − [R]Kσ
ρKσ(βnµ) + 2Kσ

ρK
γ
σBγ(βnµ).(11.68)

The expression for [∇λ∇ρRβµ] now follows by combining (11.66) with (11.67) and (11.68).

After little rearrangements, that reads

[∇λ∇ρRβµ] = nλnρAβµ + nλn
ν ([Rγ

βρνRγµ] + [Rγ
µρνRβγ]) + 2n(λhρ)

σ∇σrβµ

−nµnβn(λKρ)
σ∇σ[R]− 2n(λKρ)

σ∇σBβµ − 2[R]n(λKρ)
σKσ(βnµ)

+4n(λKρ)
σKγ

σBγ(βnµ) + 2n(µKβ)(λ∇ρ)[R] + [R]Kρ(βKµ)λ − 4Kγ
(ρ∇λ)Bγ(βnµ)

+nβnµ

(
1

2
∇λ∇ρ[R]− [R]Kσ

λKρσ + 2Kγ
ρK

σ
λBσγ

)
+Kλρrβµ

+∇λK
γ
ρ

(
[R]hγ(β − 2Bγ(β

)
nµ) +∇λ∇ρBβµ − 2Kγ

ρBγ(βKµ)λ. (11.69)

We must stress the fact that there are still terms in (11.69), i.e. Aβµ and rβµ, that are

not completely independent.

The contraction of (11.69) with gρλ yields

[�Rβµ] = Aβµ +Krβµ + nµnβ

(
1

2
�[R]− [R]KρσKρσ + 2KσρKγ

ρBσγ

)
+2n(µh

λ
β)

(
∇ρ[R]Kρ

λ − 2Kγρ∇ρBγλ +
1

2
∇ρK

ρ
λ −∇ρK

ργBγλ

)
+[R]KρβK

ρ
µ + �Bβµ − 2Kγ

ρK
ρ
(µBβ)γ, (11.70)

while contracting with gβµ we obtain [98]

[∇ν∇µR] = Aρρnνnµ + 2n(ν∇µ)b− 2n(νK
λ
µ)∇λ[R] + bKνµ +∇ν∇µ[R]. (11.71)

From any of the previous we readily have

[�R] = Aρρ + bK + �[R]. (11.72)

The energy-momentum quantities (11.38-11.40) will arise from the discontinuities of

the normal components of the lefthand side of (11.8). In other words, we will only need to

consider nα[G�
αβ]. Observe then that Aβµ only appears in [�Rβµ], and since we only need
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11.4. Curvature discontinuities

the terms contracted with the normal once, in particular nβ[�Rβµ], we are only interested

in controlling nβAβµ. This can be done by using the identities 2∇ρR±ρµ = ∇µR
± at both

sides of Σ, and taking the difference after one further differentiation:

nν [∇ν∇ρRρµ] =
1

2
nν [∇ν∇µR]. (11.73)

The lefthand side here comes from (11.66) combined with (11.68) after one contraction,

whereas for the righthand side we simply have to contract (11.71) with nν . Equation

(11.73) is thus found to be equivalent to

nρAρµ + nσ (−[Rγ
σRγµ] + [RγµρσR

γρ]) + hβσ∇σrβµ −Kβσ∇σBβµ

−nµ
(

1

2
[R]KρσK

ρσ −KσβKγ
σBγβ

)
=

1

2

(
Aρρnµ +∇µb−Kλ

µ∇λ[R]
)
. (11.74)

Discontinuities of the quadratic part [G�
αβ]

We are now ready to compute the full nα[G�
αβ]. To keep track of the different terms, we

split the compilation of terms in three parts, corresponding to the terms multiplied by

either of the three constants a1, a2, a3 in (11.9).

• Terms with a1:

The terms in (11.9) that go with a1 are

G�a1
αβ := 2RRαβ − 2∇β∇αR−

1

2
gαβR

2 + 2gαβ�R,

and we can compute their jump using (11.48), (11.71) and (11.72) to obtain

nαnβ[G�a1
αβ] = 2[R]RΣ

αβn
αnβ + 2bKρ

ρ + 2�[R] (11.75)

and

nαhβµ[G�a1
αβ] = 2[R]RΣ

αβn
αhβµ − 2∇µb+ 2Kα

µ∇α[R]. (11.76)

• Terms with a2:

The terms in (11.9) relative to a2 are

G�a2
αβ := 2RαµβνR

µν −∇β∇αR + �Rαβ −
1

2
gαβ (RµνR

µν −�R) .

Before using (11.53) and (11.54) it is convenient to write down nα[�Rαβ] using

(11.70) combined with (11.74), since some terms simplify. With the help of (11.53),
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11. Junction conditions in quadratic gravity

(11.54), (11.71), (11.48) and (11.61-11.63) it is then easy to get

nαnβ[G�a2
αβ] =

b

2
Kρ
ρ + �[R] +

1

4
[R](RΣ −R + (Kρ

ρ)2)− 3

4
[R]KρσK

ρσ

+RρσK
ρσ +∇ρ∇µ[Gρµ] +Bµν(RΣ

µν −Rµν +Kρ
ρKµν), (11.77)

nαhβµ[G�a2
αβ] = −1

2
∇µb+

3

2
Kα
µ∇α[R] + [R]

(
∇αK

α
µ −

1

2
∇µK

)
−∇αRα

µ +Kα
µ∇

ν
[Gνα]

+Bαβ(∇βKαµ −∇µKαβ)−Bαµ∇βK
αβ −Kαβ∇βBαµ. (11.78)

• Terms with a3:

Regarding a3 we have

G�a3
αβ := −4RαµR

µ
β+2RαρµνR

ρµν
β +4RαµβνR

µν−2∇β∇αR+4�Rαβ−
1

2
gαβRργµνR

ργµν .

All terms have already appeared except for the last one, for which we use (11.57).

Straightforward calculations lead to

nαnβ[G�a3
αβ] = 4RαβK

αβ + 4∇α∇β[Gαβ] + 4[Gαρ]K
αβKρ

β + 2�[R]

+4Bαβ(RΣ
αβ −Rαβ +KαβK

ρ
ρ −KαρK

ρ
β), (11.79)

nαhβµ[G�a3
αβ] = +4Kα

µ∇
β
[Gβα]− 4∇αRα

µ + 4Kα
µ∇α[R]− 4∇β(BαµK

αβ)

+2[R]∇αK
α
µ − 4Bβµ∇αK

αβ + 4Bαβ(∇βKαµ −∇µKαβ).(11.80)

Collecting all the above, we finally obtain

nαnβ[G�
αβ] = κ1

{
bKρ

ρ + �[R] +
1

2

(
RΣ −R + (Kρ

ρ)2 −KρσK
ρσ
)}

+κ2

{
2RαβK

αβ + 2∇α∇β[Gαβ] + 2Bαβ(RΣ
αβ −Rαβ +KαβK

ρ
ρ −KαρK

ρ
β)

+2[Gαµ]KαβKµ
β + �[R]

}
(11.81)

nαhβµ[G�
αβ] = κ1

{
[R](∇αK

α
µ −∇µK

ρ
ρ)−∇µb+Kα

µ∇α[R]
}

+κ2

{
−2∇αRα

µ + 2Kα
µ∇

β
[Gβα] + 2Bαβ(∇βKαµ −∇µKαβ) + 2Kα

µ∇α[R]

+ [R]∇αK
α
µ − 2Bαµ∇βK

αβ − 2Kαβ∇βBαµ

}
. (11.82)

Remark: As a final remark, we would like to stress that all the discontinuities com-

puted in this section 11.4 are purely geometrical, and therefore valid in any theory based

on a Lorentzian manifold whenever (11.15) holds.
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11.5 Field equations on the layer Σ

Relations (11.81) and (11.82) are the equations we were looking for, but we wish to rewrite

them in terms of the (derivatives of) the energy-momentum quantities supported on Σ

given in (11.38-11.40) and (11.44). Observe, first of all, that the three relations (11.61),

(11.62) and (11.63) allow us to rewrite the energy-momentum contents supported on Σ

(11.38-11.40) as follows

κταβ = −(κ1 + κ2)[R]Kαβ + κ1bhαβ + 2κ2Rαβ, (11.83)

κτα = −(κ1 + κ2)∇α[R]− 2κ2∇
ρ
[Gρα], (11.84)

κτ = (κ1 + κ2)[R]Kρ
ρ + 2κ2K

ρσ[Gρσ], (11.85)

and using the definition of the double-layer strength (11.44) the last two here can be

rewritten as

τα = −∇ρ
µρα, (11.86)

τ = Kρσµρσ. (11.87)

Now, a direct computation provides the following expressions for some combinations

of derivatives of these objects:

κ
(
∇β

ταβ +Kρ
ρτα +∇ατ

)
= −(κ1 + κ2)

(
Kα

β∇β[R] + [R](∇β
Kαβ −∇αK

ρ
ρ)
)

+κ1∇αb+ 2κ2(∇βRαβ +∇α(Kρσ[Gρσ]) +Kρ
ρ∇

µ
[Gµα]), (11.88)

κ
(
ταβK

αβ −∇α
τα
)

= (κ1 + κ2)(�[R]− [R]KρσK
ρσ) (11.89)

+κ1bK
ρ
ρ + 2κ2(KρσRρσ +∇α∇β

[Gαβ]). (11.90)

Using these, equations (11.82) and (11.81) become respectively (after some rewriting using

(A.8) and (A.9) and (11.8))

κ
(
nαhρβ[Tαρ] +∇α

ταβ +Kρ
ρτβ +∇βτ

)
= 2κ2

{
Kαρ∇β[Gαρ]−Kρ

ρ∇
α
[Gαβ]

+∇ρ([G
αρ]Kαβ)−∇ρ([Gαβ]Kαρ)

}
,

κ
(
nαnβ[Tαβ] +∇α

τα − ταβKαβ
)

= (κ1 + κ2)[R]
(
nαnβRΣ

αβ +KαβK
αβ
)

+2κ2[Gµν ]
(
nαnγRΣ

αµγν +Kρ
µKνρ

)
.

Using now the definition of the strength (11.44) these become

nαhρβ[Tαρ] +∇α
ταβ +Kρ

ρτβ +∇βτ = Kαρ∇βµαρ −Kρ
ρ∇

α
µαβ

+∇ρ(µ
αρKαβ)−∇ρ(µαβK

αρ)

nαnβ[Tαβ] +∇α
τα − ταβKαβ = µµν

(
nαnγRΣ

αµγν +Kρ
µKνρ

)
.
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11. Junction conditions in quadratic gravity

Recalling here the relations (11.86) and (11.87) between τα and τ with the double-layer

strength µαβ, we finally obtain the following field equations

nαhρβ[Tαρ] +∇α
ταβ = −µαρ∇βK

αρ +∇ρ(µ
αρKαβ)−∇ρ(µαβK

αρ), (11.91)

nαnβ[Tαβ]− ταβKαβ = ∇α∇β
µαβ + µµν

(
nαnγRΣ

αµγν +Kρ
µKνρ

)
. (11.92)

These are the fundamental field equations satisfied by the energy-momentum quantities

(11.38) and (11.44) within Σ. They generalize the classical Israel equations of GR [67]

and they are very satisfactory from a physical point of view. They possess an obvious

structure with a clear interpretation as energy-momentum conservation relations. There

are three type of terms in these relations. The first type is given by the corresponding first

summands on the lefthand side. They simply describe the jump of the normal components

of the energy-momentum tensor across Σ. Therefore, they are somehow the main source

for the energy-momentum contents in Σ. The second type of terms are those on the

lefthand side involving ταβ, the energy-momentum tensor in the shell/layer Σ. We want

to remark that the first equation (11.91) provides the divergence of ταβ. Finally, the third

type of terms are those on the righthand side, involving the strength µαβ of a double layer.

These terms act also as sources of the energy-momentum contents within Σ, combined

with extrinsic geometric properties of Σ and curvature components in the space-time.

An alternative version of (11.91), after use of the Codazzi equation (A.10), reads

nαhρβ[Tαρ] +∇α
ταβ = µαρnσRΣ

σαλρh
λ
β +Kαβ∇ρµ

αρ −∇ρ(µαβK
αρ). (11.93)

Note that the allowed jumps in the Riemann tensor (2.50) lead to nσ[Rσαλρ]h
α
γh

λ
βh

ρ
ξ =

0 and therefore the term µαρnσRΣ
σαλρh

λ
β in the last formula can be written simply as

µαρnσRσαλρh
λ
β.

11.6 Energy-momentum conservation

The divergence of the lefthand side of the field equations (11.8) vanishes identically due to

the Ricci and Bianchi identities, and therefore, the conservation equation for the energy-

momentum tensor ∇µT
µν = 0 follows. In our situation, however, we are dealing with

tensor distributions, and with (11.8) considered in a distributional sense. The question

arises if whether or not the energy-momentum tensor distribution (11.37) is covariantly

conserved. We know that the Bianchi and Ricci identities hold for distributions (see Ap-

pendices), hence it is expected that the divergence of the T µν vanishes when distributions

are considered. In this section we prove that this is the case, when taking into account

the fundamental field equations (11.91) and (11.92). The following calculation can be
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11.6. Energy-momentum conservation

alternatively seen, therefore, as an independent derivation of (11.91) and (11.92) —from

the covariant conservation of T µν .

From (11.35) and (2.27) we directly get

∇αTαβ = nα[Tαβ]δΣ +∇α(T̃αβδ
Σ) +∇αtαβ. (11.94)

Let us first compute the middle term on the righthand side. From the orthogonal decom-

position (11.36)

∇α(T̃αβδ
Σ) = ∇α

(
{τβ + τnβ}nαδΣ

)
+∇α

(
{ταβ + ταnβ} δΣ

)
and using the general formula (A.21) the second summand can be expanded to get

∇α(T̃αβδ
Σ) = ∇α

(
{τβ + τnβ}nαδΣ

)
+
(
∇α

ταβ − ταρKαρnβ + ταKαβ + nβ∇
α
τα
)
δΣ

so that with the help of (11.86) we get

∇α(T̃αβδ
Σ) = ∇α

(
{τβ + τnβ}nαδΣ

)
+

(
∇α

ταβ − ταρKαρnβ −Kαβ∇
ρ
µρα − nβ∇

α∇ρ
µαρ
)
δΣ. (11.95)

With respect to the last term in (11.94), on using definitions (11.43) and (11.44) we can

write for any test vector field Y β and using the Ricci identity〈
∇αtαβ, Y

β
〉

= −
〈
tαβ,∇αY β

〉
=

∫
Σ

µαβn
ρ∇ρ∇αY βdv

=

∫
Σ

(
µαβn

ρ
{
∇α∇ρY

β +Rβ
σρ
αY σ

})
dv

=

∫
Σ

µαβn
ρ∇α∇ρY

βdv −
〈
nρµασRΣ

ραβσδ
Σ, Y β

〉
.

The first integral here can be expanded as∫
Σ

µαβn
ρ∇α∇ρY

βdv =

∫
Σ

µαβ
{
∇α(nρ∇ρY

β)−Kαρ∇ρY
β
}
dv

=

∫
Σ

nρ∇ρY
β
(
µασK

ασnβ −∇
α
µαβ
)
dv −

∫
Σ

µαβK
αρ
(
∇ρY

β
+ (nσY

σ)Kρ
β
)
dv

=

∫
Σ

(τnβ + τβ)nρ∇ρY
βdv +

∫
Σ

Y β
(
∇ρ(µαβK

αρ)− nβµασKαρKρ
σ
)
dv

= −
〈
∇α
(
{τβ + τnβ}nαδΣ

)
, Y β

〉
+
〈(
∇ρ(µαβK

αρ)− nβµασKαρKρ
σ
)
δΣ, Y β

〉
so that we arrive at

∇αtαβ = −∇α
(
{τβ + τnβ}nαδΣ

)
+
(
∇ρ(µαβK

αρ)− nβµασKαρKρ
σ − nρµασRΣ

ραβσ

)
δΣ.

(11.96)
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11. Junction conditions in quadratic gravity

Adding up (11.95) and (11.96) to (11.94) we finally obtain

∇αTαβ =
{
nα[Tαβ] +∇α

ταβ − ταρKαρnβ +∇ρ(µαβK
αρ)

−nβµασKαρKρ
σ − nρµασRΣ

ραβσ −Kαβ∇
ρ
µρα − nβ∇

α∇ρ
µαρ
}
δΣ.

The fundamental equations (11.92) and (11.93) prove the vanishing of this expression

leading to

∇αTαβ = 0

as claimed. As remarked in [99, 100], this calculation shows that the double-layer energy-

momentum distribution tαβ is essential to keep energy-momentum conservation. Without

the double-layer contribution the total energy-momentum tensor distribution Tαβ would

not be covariantly conserved.

11.7 Matching hypersurfaces, thin shells and double

layers

Once we have discussed the junction in the case of gravity theories with quadratic terms,

and have obtained the corresponding field equations on Σ, we are in disposition to analyze

their consequences. Before entering into this discussion, it is convenient to remark the

following important result.

Result 1 If there is no double layer (that is µαβ = 0), then there can be neither external

flux momentum τα nor external pressure/tension τ .

This follows directly from expressions (11.86) and (11.87). In other words, there exist

non-vanishing external flux momentum and/or external pressure/tension only if there is

a double layer.

Thus, there are three levels of junction depending on whether or not thin shells and/or

double layers are allowed. We will term them as:

• Proper matching: this is the case where the matching hypersurface Σ does not

support any distributional matter content, describing simply an interface with jumps

in the energy-momentum tensor, so that there are neither thin shells nor double

layers. This situation models, for instance, the gravitational field of stars (non-

empty interior) with a vacuum exterior. Or the case of vacuoles in cosmological

surroundings.

• Thin shells, but no double layer: This is an idealized situation where an enormous

quantity of matter is concentrated on a very thin region mathematically described
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11.7. Matching hypersurfaces, thin shells and double layers

by Σ but no double layer is permitted to exist. Thus, delta-type terms proportional

to δΣ are allowed, and the expression (11.38) provides the energy-momentum tensor

of the thin shell. However, from Result 1 the other possible quantities (11.39) and

(11.40) accompanying δΣ vanish identically. This situation is analogous to that

in GR where only (11.38) appears. The main difference with a generic quadratic

gravity arises in the explicit expression for (11.38), as the field equations turn out

to adopt the same form.

• Double layers: this is the general case with no further assumptions, which describes

a large concentration of matter on Σ, as in the previous case, but accompanied

with a brusque jump in the curvature of the spacetime. Still, there are several sub-

possibilities depending on the vanishing or not of any of (11.38), (11.39) or (11.40).

There is also an extreme possibility, that we term a pure double layer, where the

thin shell is not present but the double layer is: this is the case with all (11.38),

(11.39) and (11.40) vanishing but a non-vanishing (11.43). Nothing like any of these

different possibilities can be described in GR.

We classify the junction condition for these different cases in turn.

Thin shells without double layer

From (11.43) follows that the strength of the double layer µαβ must be set to zero, and

thus from (11.44) we have

(κ1 + κ2)[R]hαβ + 2κ2[Gαβ] = 0 =⇒ (κ2 + nκ1)[R] = 0, (11.97)

which implies that τ and τα both vanish (see Result 1). Hence, only the tangential part

of the distributional energy momentum tensor on Σ survives, given explicitly by (11.83).

Its trace, upon using (11.64), reads

κταα = (nκ1 + κ2)b−Kαβµαβ = (nκ1 + κ2)b. (11.98)

The equations (11.91) and (11.92) in this case read

nαhρβ[Tαρ] = −∇α
ταβ, nαnβ[Tαβ] = ταβK

αβ. (11.99)

Observe that, remarkably, these are identical with the Israel conditions derived in GR.

We have to distinguish whether κ2 = 0 or not.

• κ2 6= 0.
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11. Junction conditions in quadratic gravity

If (nκ1 + κ2) 6= 0 relations (11.97) imply that [R] = 0 and [Gαβ] = 0 in full. Direct

consequences are [Rαβ] = [Rαβµν ] = 0, and the discontinuities in the derivatives are

given by

[∇µRαβλν ] = (nαnλRβν − nαnνRβλ − nβnλRαν + nβnνRαλ)nµ, (11.100)

for some symmetric tensor Rαβ tangent to Σ. From (11.41) we get b = 2Rρ
ρ and

therefore the energy-momentum tensor (11.38) on Σ just reads

κταβ = κ1bhαβ + 2κ2Rαβ.

With regard to the exceptional possibility nκ1 + κ2 = 0, equation (11.97) implies in

particular that the tensor Bαβ is proportional to the first fundamental form. The

explicit relation reads

Bαβ =
1

2n
[R]hαβ,

which for the discontinuity of the Riemann tensor produces

[Rαβλµ] =
[R]

2n
(nαnλhβµ − nλnβhαµ − nµnαhβλ + nµnβhαλ) . (11.101)

Taking contractions in this last expression we find the allowed jumps in the Ricci

and Einstein tensor

[Rαβ] =
[R]

2

(
1

n
hαβ + nαnβ

)
⇒ [Gαβ] =

1− n
2n

[R]hαβ. (11.102)

Note [R] is the only degree of freedom allowed for the discontinuities of the curvature

tensors.

The remaining allowed discontinuities of the derivative of the Ricci tensor are en-

coded in rαβ = nµ[∇µRαβ], so that

[∇µRαβ] = rαβnµ +
1

2

(
nαnβ +

1

n
hαβ

)
∇µ[R] +

(
1− n

2n

)
[R] (nαKβµ + nβKαµ) .

(11.103)

Recalling that b = rαα = nρ[∇ρR] the explicit form of the energy momentum tensor

on Σ can be obtained from (11.83). Due to (11.98), ταβ is traceless. Nevertheless,

the relevance of this exceptional case is probably marginal, as the coupling constants

satisfy a dimensionally dependent condition.

• κ2 = 0.

We have to assume then that κ1 6= 0, as otherwise all the terms (11.38), (11.39) and

(11.40) vanish identically and thus there are no thin shells. Let us also recall that
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11.7. Matching hypersurfaces, thin shells and double layers

a2 and a3 are assumed not to vanish simultaneously, as that case was fully analysed

in [98, 99, 100], so it would be more precise to label this case as a2 = −4a3 with

a1 6= a3.

This case reduces to the condition [R] = 0 (see (11.97)). All the remaining jumps on

the curvature tensor and its derivatives are allowed. The energy-momentum tensor

on Σ is just given by

κταβ = κ1bhαβ, (11.104)

with b = nα[∇αR], and therefore the thin shell Σ only contains, at most, a “cosmo-

logical constant”-type of matter content.

Proper matching hypersurface

In addition to the requirement imposed in the previous case of thin shells, we demand

now that the full T̃αβ vanishes. Thus we have to add ταβ = 0 to the conditions discussed

in the previous Subsection 11.7. In general, from (11.99) we have

nα[Tαβ] = 0 (11.105)

which adopt exactly the same form as in GR and we call the generalized Israel conditions.

They imply the continuity of the normal components of the energy-momentum tensor

across Σ.

Again, we have to distinguish two cases depending on whether κ2 vanishes or not.

• κ2 6= 0.

If (nκ1 + κ2) 6= 0, we already know from the previous section that [R] = 0 and

[Gαβ] = 0. The trace relation (11.98) provides b = 0 and moreover ταβ = 0 implies,

via (11.83), Rαβ = 0. Plugging this information into (11.100) it follows that the

derivatives of the curvature tensors do not present discontinuities.

Result 2 In the generic case with 4a3 + a2 6= 0 and 4a3 + (1 +n)a2 + 4na1 6= 0, the

full set of matching conditions amount to those of GR (agreement of the first and

second fundamental forms on Σ) plus the agreement of the Ricci tensor and its first

derivative on Σ:

[Rαβ] = 0, [∇ρRαβ] = 0. (11.106)

This actually implies that the full Riemann tensor and its first derivatives have no

jumps across Σ:

[Rαβλµ] = 0, [∇ρRαβλµ] = 0.
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11. Junction conditions in quadratic gravity

With regard to the exceptional possibility κ2+nκ1 = 0, the curvature tensors satisfy

(11.101) and (11.102). Now ταβ = 0 provides

Rαβ =
1

2n
((n− 1)[R]Kαβ + bhαβ) ,

and thus rαβ = nρ[∇ρRαβ] gets determined in terms of [R] and b, so that (11.103)

for [∇µRαβ] reads

[∇µRαβ] =

(
1

2n
((n− 1)[R]Kαβ + bhαβ)− 2n(α∇β)[R] +

(
b

2
+

1− n
2n

[R]Kρ
ρ

)
nαnβ

)
nµ

+
1

2

(
nαnβ +

1

n
hαβ

)
∇µ[R] +

(
1− n

2n

)
[R] (nαKβµ + nβKαµ) .

Hence, the entire set of discontinuities of the Riemann tensor and its first derivative

can be written just in terms of [R] and b = nρ[∇ρR], which remain as two free

degrees of freedom. As mentioned before, this case is probably irrelevant due to its

defining condition depending on the dimension n.

• κ2 = 0 but κ1 6= 0.

From the results from the previous section we know that [R] = 0 and the energy

momentum on Σ is given by (11.104). Thus, for a proper matching we find b = 0.

The discontinuity in the derivative is

[∇µRαβ] = nµ
(
[Rρν ]K

ρνnαnβ − 2∇ρ
[Rρ(β]nα) +Rαβ

)
+ ∇µ[Rαβ]− 2Kρ

µ[Rρ(α]nβ),

where also Rρ
ρ = −Kαβ[Rαβ].

• κ1 = κ2 = 0.

Or equivalently a1 = a3 = −a2/4. In this case all the terms (11.38), (11.39) and

(11.40) and (11.43) vanish identically and thus there are no further restrictions other

than [Kab] = 0. The junction conditions are just the same as in GR. This is the case

where the quadratic part of the Lagrangian (11.7) is the Gauss-Bonnet term [76].

The double layer fauna; pure double layers

The generic occurrence in quadratic gravity, as shown above, is that any thin shell comes

accompanied by a double layer, which in turn generically implies the existence of non-

zero external pressure/tension and external flux momentum. However, there are several

special possibilities in which one of these quantities, or all, disappear. This gives rise to a
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11.7. Matching hypersurfaces, thin shells and double layers

fauna of different kinds of double layers. There is also the possibility that the double layer

term (11.43) is non-zero while the remaining distributional part in the energy-momentum

tensor, that is T̃αβδ
Σ, vanishes. In other words, a double layer without a classical thin

shell. We call such a case a pure double layer. In the rest of this section we explore this

novel possibility.

For pure double layers, the vanishing of the external pressure τ plus the energy flux

τα first imply, by virtue of (11.39) and (11.86)

µαβK
αβ = 0, ∇ρ

µρα = 0. (11.107)

In particular, then, the double layer strength is conserved.

The first equation in (11.107) yields

(κ1 + κ2)[R]Kσ
σ + 2κ2K

ρσ[Gρσ] = 0 (11.108)

while the second gives

(κ1 + κ2)∇α[R] + 2κ2∇
ρ
[Gρα] = 0. (11.109)

Equation (11.108) combined with the vanishing of the trace of ταβ provides

(κ1n+ κ2)b = 0 (11.110)

so that, generically — nκ1 + κ2 6= 0 — one has b = 0. A first consequence is that the

jump in the derivative of the Ricci scalar is now tangent to Σ and fully determined by

the tangent derivative of [R]

[∇αR] = ∇α[R]. (11.111)

The vanishing of ταβ, using (11.38), is now equivalent to

κ2Rαβ = (κ1 + κ2)
[R]

2
Kαβ. (11.112)

The expression for the discontinuity of the normal derivative of the Ricci tensor has to be

studied depending on κ2 vanishing or not.

• κ2 6= 0

The relations above allow us to write the discontinuity of the normal derivative of

the Ricci tensor as

rαβ =
1

2

(
1 +

κ1

κ2

)
([R]Kαβ + nβ∇α[R] + nα∇β[R]−K[R]nαnβ),

whereas the tangent part of the derivative keeps its original form given in (11.65).
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11. Junction conditions in quadratic gravity

• κ2 = 0 (and κ1 6= 0).

Equations (11.109) and (11.112) read

∇α[R] = 0, [R]Kαβ = 0, (11.113)

and (11.108) is automatically satisfied. Thus, (11.111) implies [∇αR] = 0. Observe

that since κ2 = 0, (11.44) establishes that the strength of the double layer is pro-

portional to [R]. Hence, in order to have a nonzero µαβ, [R] cannot vanish. Then

Kαβ = 0 necessarily, and the allowed jumps are encoded in [Rαβ] and rαβ.

For completeness, we provide finally the formulas for the exceptional case nκ1 +κ2 = 0

—discarding κ1 = κ2 = 0 for which the double layer simply disappears. The equations

τ = 0, τα = 0 and ταβ = 0 result, respectively, in

(1− n)[R]Kβ
β − 2nKαβ[Gαβ] = 0,

(1− n)∇α[R]− 2n∇ρ
[Gρα] = 0,

(1− n)[R]Kαβ − bhαβ + 2nRαβ = 0.

While the third equation provides Rαβ, the first two constitute constraints on the allowed

jumps of the Ricci tensor that should be analysed in each particular situation. In all

cases, the allowed discontinuity in the derivative of the Ricci tensor can be written as

rαβ = − 1

2n
((1− n)[R]Kαβ − bhαβ)− 1− n

2n

(
nβ∇α[R] + nα∇β[R]

)
+

1

2

(
b+

1− n
n

[R]Kρ
ρ

)
nαnβ.

Observe that now the strength of the double layer is traceless, µρρ = 0 (see e.g.(11.45)).

11.8 Consequences

The proper matching conditions in GR are the agreement of the first and second funda-

mental forms on Σ. Therefore, any matching hypersurface in GR satisfies (11.15), and the

allowed jumps in the energy-momentum tensor are equivalent to non-vanishing disconti-

nuities of the Ricci (and Riemann) tensor. Thus, in GR properly matched space-times

will generally have [Rαβ] 6= 0.

This simple known fact implies that any GR-solution containing a proper matching

hypersurface will contain a double layer and/or a thin shell at the matching hypersurface

if the true theory is quadratic. At least two relevant consequences follow from this fact:

(i) generically, matched solutions in GR are no longer solutions in quadratic theories;
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and (ii) if any quantum regimes require, excite or switch on quadratic terms in the La-

grangian density, then GR solutions modelling two regions with different matter contents

will develop thin shells and double layers on their interfaces. Let us elaborate.

Consider, for instance, the case of a perfect fluid matched to a vacuum in GR. As is

well known, the GR matching hypersurface is determined by the condition that

pGR|Σ = 0

where pGR is the isotropic pressure of the fluid in GR. It follows that the Ricci tensor has

a discontinuity of the following type

[Gαβ] = κ%GRuαuβ
∣∣
Σ
, [Rαβ] = κ%GR

(
uαuβ +

1

n− 1
gαβ

)∣∣∣∣
Σ

uα being the unit velocity vector of the perfect fluid. Therefore, using (11.83-11.85) and

(11.43) we see that the very same space-time has, in any quadratic theory of gravity, an

energy-momentum tensor distribution with all type of thin-shell and double-layer terms.

Imagine the situation of a collapsing perfect fluid (to form a black hole, say) with

vacuum exterior. Then one can use any of the known solutions in GR to describe this

situation —the reader may have in mind, for instance, the Oppenheimer-Snyder model.

The GR solution describes this process accurately in the initial and intermediate stages,

when the curvature of the space-time is moderate and the values of a1R
2, a2RαβR

αβ

and a3RαβµνR
αβµν for instance, or other similar quantities, are small enough to render

any quadratic terms in the Lagrangian totally negligible. However, as the collapse pro-

ceeds and one approaches the black hole regions —and later the classical singularity–,

regimes with very high curvatures are reached. Then, the quadratic terms coming from

any quantum corrections (be they from string theory counter-terms, or any other) to the

Einstein-Hilbert Lagrangian start to be important, and actually to dominate, the curva-

ture being enormous. In this regime, the original matching hypersurface becomes actually

a thin double layer.

Of course, the description of a global space-time via a matching is an approximation,

and also the use of tensor distributions is also just another approximation to a real situa-

tion where a gigantic quantity of matter can be concentrated around a very thin region of

the space-time. Nevertheless, both approximations are satisfactory in the sense that they

are believed to actually mimic a realistic situation where the layer is thick and the jumps

in the energy variables are extremely big, but finite. If this is the case, then the above

reasoning seems to imply that, if quadratic theories of gravity are correct, at least in some

extreme regimes, then a huge concentration of matter will develop around the interface

of the interior and the exterior of the collapsing star. And this huge concentration will

generically manifest as a shell with double-layer properties.
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Rotating stars

We have completed a study of the implicit assumptions and/or arguments in the con-

struction of Hartle’s model. The starting point was the use of explicit global coordinates

in which the perturbations are assumed to be at least C1. This leads also to the argu-

ment that the function that drives the first order perturbation depends only on the radial

coordinate and the second order admits a finite expansion in Legendre polynomials. Our

results can be enumerated as follows:

1. We have studied the use of global coordinates in which the metric is at least C1: In

the original work [57], this assumption substituted the matching procedure based on

geometrical methods, not available at the time. We have used the perturbed match-

ing theory to second order [79], separating the problem into the interior/exterior

spacetimes and matching them in two stages: in a first step we have matched per-

turbatively to second order two stationary and axisymmetric spacetimes in purely

geometrical terms. In a second stage we have included the explicit assumptions and

the physics of the model. At this point we also assume the angular structure of the

perturbations argued in [57]. The description of the whole perturbed configuration

up to second order including interior, exterior and matching is collected in Theorem

5.

2. We have concluded that the assumption of continuity of the metric functions, apart

from being inaccurate, leads to wrong results when E(a) 6= 0. In practical terms,

apart from putting Hartle’s model on firm grounds, we have found that the second

order function m̃0 presents a discontinuity in the matching hypersurface Σ0, deter-

mined by r = a, a satisfying P (a) = 0 with P the background pressure, when the

energy density of the background configuration presents a jump there, i.e. E(a) 6= 0,
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12. Conclusions

where E is the background energy density. Since m̃0 encodes the information about

the change in mass due to rotation, the computation of the mass has to be amended

whenever the equation of state allows E(a) 6= 0.

3. We have performed a deep comparison between this consistent framework and Har-

tle’s results and methods. In particular we discuss how and when the matching

determines the deformation of the star.

4. We have verified that the amended change in mass has a correct Newtonian limit. To

this aim, we have checked that it agrees with the change in mass calculated following

the recipe in [23], where the amending term appears implicitly. For completeness,

we formulated the perturbed Newtonian matching conditions for the problem of a

fluid ball rotating in equilibrium.

5. We have studied the structure of the angular behaviour of the perturbations. We

have proven how the field equations plus regularity conditions at the origin/infinity

and the boundary conditions provided by the matching procedure, yield the angular

structure of the perturbations argued in [57].

Chapter 8 concludes with the formulation of Theorem 7, that tells us how to construct

the global stationary axisymmetric rotating model up to second order by taking just

the explicit assumptions in Hartle’s classical model [57], i.e. an interior and exterior

stationary, axially and equatorially symmetric spacetimes, with a perfect fluid with a

barotropic equation of state that rotates rigidly with no convective motions as the interior

matter content, and an asymptotically flat vacuum exterior region.

In the following, we detail some of the work that would complete the results presented

in this thesis regarding the perturbational approach to rotating stars.

1. The explicit assumption of equatorial symmetry is still used to get rid of the l = 1

sector of the perturbations to second order. This part must be studied separately

and has not been covered in this thesis.

2. The purely geometrical perturbed matching can be used to generalize Hartle’s model

to other contexts such as other theories of gravity for which Hartle’s model has been

generalised already in the literature, to find corresponding corrections to the mass

(see the Introduction).

3. A multilayer interior is needed in order to construct a realistic models. A direct

generalization of the results in this thesis provides the theoretical tools to let the

energy density jump in the transition from one layer to another. We started to
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develop a numerical code to check for the change in mass in stars with a core showing

a discontinuity in the energy density with the enveloping layer, for instance a core

governed by a linear equation of state. Some work regarding multilayer interiors in

a perturbative setting has already been done in [45].

4. The mass of rotating stars is central to the study of stability. It would be interesting

to see how the amended change in mass contributes to the stability limits.

On quadratic gravity and double layers

We have applied distribution theory to study the junction conditions in theories of quadratic

gravity. The two main results arising from this work are

1. We have found the junction conditions and generalized Israel equations for sources

localized in a hypersurface Σ.

2. The junction conditions imply the existence of double layers in the matching hyper-

surface, in general.

3. In the abscence of double layers, the generalized Israel equations are identical to the

Israel equations derived in GR. Note however that the junction conditions differ, in

general, from those in GR.

In the view of these conclusions, the two open lines of work follow

1. We have formulated the matching conditions for quadratic theories of gravity, but

due to the intrincate form of their field equations, we have not constructed any

explicit model. In order to understand the role of the double layers, finding a

physically reasonable explicit model where they show up would be of great interest.

2. The Gauss-Bonnet theory escapes our analysis of quadratic theories of gravity and in

fact, it should escape any other work up to date. As seen from the naive study of the

δ2 cancellations, GB seems to get rid of these type of terms without any necessity of

restricting the jump in the second fundamental form. A study based on structures

more general than standard distributions is necessary to properly formulate the

junction conditions for Gauss Bonnet theories, and prove that the outcomes of the

cancellation of the δ2 terms argued in the literature are indeed correct.

193





Appendices

195





A

Useful formulas

In this appendix we include a collection of formulas that are useful in order to carry out the

calculations of Chapter 11. We divide it in four sections. The first one, A.1, is devoted to

introduce the intrinsic connection and curvature tensors of Σ (this is timelike everywhere).

The ambient curvature at points of the embdedded Σ and the intrinsic curvature of Σ are

related in terms of the well known Gauss Codazzi equations. In Section A.2, we address

the formulas needed to compute the jump discontinuities of tensors with well defined

limits at points of the embdedded Σ. We work out the case of jumps of product of tensors

and jumps of derivatives of tensors. In Section A.3 we give a general formula for the

derivative of tensor distributions proportional to the Dirac delta. We end the appendix

showing in A.4 that the Ricci identity holds for tensor distributions associated to tensor

fields continuous at Σ. Furthermore, we also discuss the Ricci identity for the δΣ.

A.1 Concerning Σ and its objects

Consider a hypersurface (Σ, hab) embedded in a n+1-dimensional spacetime (V , gαβ). We

will later use this construction for the + and − sides. Using the dual bases {nµ, eµa} and

{nµ, ωaµ} introduced in Chapter 2, we have

eρa∇ρe
α
b = −Kabn

α + Γ
c

abe
α
c , (A.1)

eρa∇ρω
b
α = −Kb

anα − Γ
b

acω
c
α, (A.2)

eρa∇ρnα = Kabω
b
α (A.3)

where Kab is the second fundamental form introduced in (2.57) and

Γ
c

ab := ωcαe
ρ
a∇ρe

α
b

represent the Christoffel symbols of the Levi-Civita connection associated to the first

fundamental form hab of Σ. In general —unless the jump of the second fundamental form
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vanishes— there will be two versions, one + and one − of all these equations except for

the last one, the connection, which is uniquely defined given that the first fundamental

form agrees on both sides (2.2) or (2.4).

The covariant derivative defined by Γ is denoted by ∇. The relationship between ∇
and ∇ on Σ is ruled by the following formula (given here for a (1, 1)-tensor field Sβα, but

generalizable in the obvious way to arbitrary ranks [82])

ωaβe
α
b e

ρ
c∇ρS

β
α = ∇cS

a

b + (eβbS
ρ
βnρ)K

a
c + (ωaαS

α
ρ n

ρ)Kcb (A.4)

where, for any tensor field S, we denote by S its projection to Σ:

S
a

b := ωaαe
β
bS

α
β . (A.5)

The equivalent “space-time” version of (A.4) is

hγβh
α
δ h

ρ
σ∇ρS

β
α = ∇σS

γ

δ + (hβδS
ρ
βnρ)K

γ
σ + (hγαS

α
ρ n

ρ)Kσδ, (A.6)

where S
γ

δ is the spacetime version of S
a

b , i.e. S
γ

δ := ωbδe
γ
aS

a

b = hγαh
β
δS

α
β .

Denoting by R
d

abc the Riemann tensor of (Σ, hab), the classical Gauss equation reads

(2.66)

ωdαR
α
βγδe

β
ae

γ
b e
δ
c = R

d

abc −KacK
d
b +KabK

d
c , (A.7)

whose contractions are

eαae
γ
cRαγ − nαnγRαβγδe

β
ae

δ
c = Rac −Kd

dKac +KabK
b
c , (A.8)

R− 2nαnβRαβ = R− (Kd
d)2 +KabK

ab (A.9)

where Rac and R denote the Ricci tensor and scalar curvature of (Σ, hab).

Similarly, the classical Codazzi equation reads (2.67)

nµR
µ
αβγe

α
ae

β
b e

γ
c = ∇cKba −∇bKca (A.10)

with contraction

nαRαγe
γ
b = ∇aK

a
b −∇bK

d
d . (A.11)

As mentioned before, generically there will be two versions of each of the previous

equations, one for each ± side of the embdedded Σ if this is a matching hypersurface.

Thus, for instance (and using space-time notation), (A.9) and (A.11) must have the two

versions:

R± − 2R±µνn
µnν = R− (K±ρρ)

2 +K±µνK
±µν , (A.12)

nµR±µρh
ρ
ν = ∇µ

K±µν −∇νK
±ρ

ρ. (A.13)
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On the other hand, equation (A.4) at points of the matching hypersurface (Σ, hab) of the

already glued spacetime V = V+ ∪ V− reads

hγβh
α
δ h

ρ
σ∇ρS

β
α|Σ = ∇σS

γ

δ + (hβδS
ρ
βnρ)K

Σγ
σ + (hγαS

α
ρ n

ρ)KΣ
σδ, (A.14)

where here we use h∇|Σ just to make explicit that h∇ is being restricted to points at

the matching hypersurface Σ using the connection given by (2.30), whose restriction to

Σ is (2.31). Note that whenever both second fundamental forms coincide [Kαβ] = 0 on a

matching hypersurface Σ, equation (A.14) reads just as (A.6).

A.2 Discontinuities

In the computations we need the discontinuities of objects, such as functions and tensor

fields, across Σ. This also implies that we need to control such discontinuities for the

derivatives of those objects, and for their products. Here we provide the general rules.

Let A and B be any two functions possibly discontinuous across Σ. Then

[AB] = A+B+|Σ−A−B−|Σ = A+B+|Σ−A+B−|Σ+A+B−|Σ−A−B−|Σ = A+|Σ[B]+[A]B−|Σ

and an equivalent expression interchanging A ↔ B. Adding these two expressions and

using (2.23) we get

[AB] = AΣ[B] + [A]BΣ. (A.15)

Concerning derivatives, let us start with any function f that may be discontinuous

across Σ. If we compute the tangent derivatives on both sides of Σ we obtain

eµa [∂µf ] = [eµa∂µf ] = eµa∂µf
+|Σ − eµa∂µf−|Σ = ∂af

+|Σ − ∂af+|Σ = ∂a[f ] = eµa∂µ[f ]

and thus, by orthogonal decomposition,

[∂νf ] = Fnν + ωaνe
µ
a∂µ[f ] = Fnν + hµν∂µ[f ] (A.16)

where F is a function defined only on Σ that measures the discontinuity of the normal

derivatives of f across Σ:

F := nν [∂νf ] .

Consider now the case of a one-form tµ, again possibly discontinuous across Σ. A

direct computation using (A.16) and (A.15) produces

eµa [∇µtα] = eµa
[
∂µtα − tρΓρµα

]
= eµa

(
∂µ [tα]− [tρ]Γ

Σρ
µα

)
−tΣρ

[
Γρµα
]
eµa = eµa∇µ [tα]−tΣρ

[
Γρµα
]
eµa .
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Let us remark that the derivative ∇~e is restricted to points on Σ, so that the connection

(2.31) must be used. Therefore

[∇µtα] = nµTα + hνµ∇ν [tα]− tΣρ [Γρνα]hνµ (A.17)

where Tα is a one-form defined only on Σ giving the discontinuity of the normal derivatives

of tα across Σ,

Tα := nµ [∇µtα] ,

and the tangential derivative h∇ is restricted to Σ, although it is not explicitly indicated

not to overwhelm the expressions. The righthand side of (A.17) can be further computed.

First, due to (A.14)

hνµ∇ν [tα] = ∇µ[tα] + nρ[tρ]K
Σ
µα + nαn

ρhνµ∇ν [tρ]

= ∇µ[tα] + nρ[tρ]K
Σ
µα + nα∇µ ([tρ]n

ρ)− nα[tρ]KΣ
ρµ

while, for the last summand in (A.17) we use (2.38) and (2.59)

−tΣρ [Γρνα]hνµ = tΣρ n
ρ[Kµα]− nαtΣρ [Kρ

µ].

Introducing both results into (A.17) we get

[∇µtα] = nµTα +∇µ[tα] + nρ[tρ]K
Σ
µα + nα

(
∇µ ([tρ]n

ρ)− [tρ]KΣ
ρµ

)
+ tΣρ n

ρ[Kµα]− nαtΣρ [Kρ
µ]

= nµTα +∇µ[tα] + nρ[tρKµα] + nα
(
∇µ ([tρ]n

ρ)− [tρK
ρ
µ]
)
. (A.18)

Observe that when there is no jump of the second fundamental form, [Kαβ] = 0 (⇔ [Γρνα] =

0), equations (A.17) and (A.18) read, respectively,

[∇µtα] = nµTα + hνµ∇ν [tα], (A.19)

[∇µtα] = nµTα +∇µ[tα] + nρ[tρ]Kµα + nα
(
∇µ ([tρ]n

ρ)− [tρ]Kρµ

)
. (A.20)

These formulas can be generalized to arbitrary (p, q)-tensor fields T pq in an obvious way.

In that case, the term replacing Tα is simply a tensor field of the same type (and with

the same symmetry and trace properties) as T pq , defined only on Σ and measuring the

discontinuities of the normal derivatives of T pq .

A.3 Derivatives of tensor distributions proportional

to δΣ

Let us consider tensor distributions of type

tα1...αpδ
Σ
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where tα1...αp is any tensor field defined at least on Σ, but not necessarily off Σ (for instance

hµν or nµ are not defined outside Σ). We want to compute the covariant derivative of

such tensor distributions. Then we have〈
∇λ

(
tα1...αpδ

Σ
)
, Y λα1...αp

〉
= −

〈
tα1...αpδ

Σ,∇λY
λα1...αp

〉
= −

〈
δΣ, tα1...αp∇λY

λα1...αp
〉

= −
∫

Σ

tα1...αp∇λY
λα1...αpdv = −

∫
Σ

tα1...αp(nλn
ρ + hρλ)∇ρY

λα1...αpdv.

The first summand here is

−
〈
tα1...αpnλn

ρδΣ,∇ρY
λα1...αp

〉
=
〈
∇ρ

(
tα1...αpnλn

ρδΣ
)
, Y λα1...αp

〉
while the second one has derivatives tangent to Σ and thus

−
∫

Σ

tα1...αph
ρ
λ∇ρY

λα1...αpdv = −
∫

Σ

hρλ∇ρ(tα1...αpY
λα1...αp)dv +

∫
Σ

Y λα1...αphρλ∇ρtα1...αpdv

and using (A.6) for the first integral here

= −
∫

Σ

∇λ(tα1...αpY
λα1...αp)dv −

∫
Σ

KΣρ
ρ nλtα1...αpY

λα1...αpdv +

∫
Σ

Y λα1...αphρλ∇ρtα1...αpdv

=
〈(
hρλ∇ρtα1...αp −KΣρ

ρ nλtα1...αp

)
δΣ, Y λα1...αp

〉
where we have used that, as Y λα1...αp has compact support, the first total divergence term

integrates to zero. Summing up, we have the following basic formula

∇λ

(
tα1...αpδ

Σ
)

= ∇ρ

(
tα1...αpnλn

ρδΣ
)

+
(
hρλ∇ρtα1...αp −KΣρ

ρ nλtα1...αp

)
δΣ. (A.21)

In particular, for the second derivative of θ one gets

∇ν∇µθ = ∇ν(nµδ
Σ) = ∇ρ(nµnνn

ρδΣ) +
(
Kµν −KΣρ

ρnµnν
)
δΣ. (A.22)

Let us do a remark here. Formula (2.25), or (2.27), is precisely the formula one would

derive by using a naif calculation starting from (2.24), applying Leibniz rule and using

(2.20). However, such approach cannot be used when the tensor distribution to be differ-

entiated involves non-tensorial distributions, such as δΣ. For instance, the computation

of the second covariant derivative of θ starting from (2.20) with such approach provides

∇ν∇µθ ��ZZ= ∇νnµ δ
Σ + nµ∇νδ

Σ.

Neither term on the righthand side is well defined due the the fact that nµ exists only

on Σ and therefore its derivatives non-tangent to Σ are not defined at all. Nevertheless,

∇ν∇µθ is certainly well defined as a distribution, and one can see from the formula (A.22),

obtained by following strictly the rules of tensor-distribution derivation and multiplication.
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A.4 Ricci and Bianchi identities

The Bianchi identity holds in the distributional sense, for a proof consult [82]:

∇ρRαβνµ +∇νRαβµρ +∇µRαβρν = 0. (A.23)

Concerning the Ricci identity, let us consider a one-form which may have a discon-

tinuity across Σ. It can be written as 1-covariant tensor and as a one-form distribution

as

tα = t+α θ + t−α (1− θ); tα = t+α θ + t−α (1− θ)

To compute the derivatives, we need to take tα as a distribution. Then, from (2.27) we

first have

∇µtα = ∇µt
+
α θ +∇µt

−
α (1− θ) + [tα]nµδ

Σ

and applying (2.27) to the first part not proportional to δΣ we derive

∇λ∇µtα = ∇λ∇µt
+
α θ +∇λ∇µt

−
α (1− θ) + [∇µtα]nλδ

Σ +∇λ

(
[tα]nµδ

Σ
)
. (A.24)

Formula (A.21) gives the last term here

∇λ

(
[tα]nµδ

Σ
)

= ∇ρ

(
[tα]nµnλn

ρδΣ
)

+
(
nµh

ρ
λ∇ρ[tα] + [tα]Kλµ −KΣρ

ρ nλ[tα]nµ
)
δΣ.

Introducing (A.17) into (A.24) and using this last result we arrive at

(∇λ∇µ −∇µ∇λ)tα = (∇λ∇µ −∇µ∇λ)t
+
α θ + (∇λ∇µ −∇µ∇λ)t

−
α (1− θ)

−tΣρ
(
nλ[Γ

ρ
µα]− nµ[Γρλα]

)
δΣ

and using here the Bianchi identity on both ± regions and expression (2.33) we finally

get

(∇λ∇µ −∇µ∇λ)tα = −tρRρ
αλµ. (A.25)

Of course, this can be extended to tensor fields of any (p, q) type which may have discon-

tinuities across Σ.

What about the Ricci identity for tensor distributions not associated to tensor fields?

The answer now is much more involved, and it must be treated case by case, because

taking covariant derivatives presents several problems. As an illustrative example, let us

analyze the case of the second covariant derivative of δΣ. For the first derivative we have

from (A.21)

∇µδ
Σ = ∇ρ

(
nµn

ρδΣ
)
−KΣρ

ρ nµδ
Σ (A.26)

so that defining a one-form distribution ∆µ with support on Σ as follows

〈∆µ, Y
µ〉 := −

∫
Σ

nµn
ρ∇ρY

µdv; ∆µ = ∇ρ

(
nµn

ρδΣ
)

(A.27)
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we can also write

∇µδ
Σ = ∆µ −KΣρ

ρ nµδ
Σ.

Note, however, that ∆µ, and therefore ∇µδ
Σ too, is only well defined when acting on

test vector fields whose covariant derivative is locally integrable on Σ. Thus, the second

covariant derivative of δΣ is not defined in the general case with a discontinuous connection

Γαµν . To see this, observe that to define ∇λ∇µδ
Σ we need to define ∇λ∆µ, but this should

be according to Definition 5 in Chapter 2〈
∇λ∆µ, Y

λµ
〉

= −
〈
∆µ,∇λY

λµ
〉

(A.28)

and this is ill-defined because∇λY
λµ does not have a locally integrable covariant derivative

in the sense of functions: actually, its covariant derivative can only be defined in the sense

of distributions.

Nevertheless, if the connection is continuous, that is, [Γαµν ] = 0, then (A.28) makes

perfect sense because the covariant derivative ∇ρ∇λY
λµ is a locally integrable tensor field.

Thus, in this case we can write〈
∇λ∆µ, Y

λµ
〉

=

∫
Σ

nµn
ρ∇ρ∇λY

λµdv (A.29)

and we can prove the Ricci identity for distributions such as δΣ. To that end, a straight-

forward if somewhat lengthy calculation, using the Ricci identity under the integral and

the rest of techniques hitherto explained, leads to the following explicit expression:

∇λ∇µδ
Σ = ∇ρ∇σ(nµnλn

ρnσδΣ) +∇ρ{(Kλµ −Kσ
σnλnµ)nρδΣ}+

δΣ{Kσ
σ (Kρ

ρnλnµ −Kλµ) + nρnσRΣ
ρµλσ +Kρ

λKµρ + nλnµK
ρσKρσ}+

δΣnµ{∇ρK
ρ
λ −∇λK

ρ
ρ − nρRΣ

ρλ}

where all the summands are obviously symmetric in (λµ) except for those in the last line

which, by virtue of the contracted Codazzi relation (A.13), become simply nρnσRΣ
ρσnλnµδ

Σ,

so that finally one arrives at the desired result

∇λ∇µδ
Σ −∇µ∇λδ

Σ = 0.
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B

Potential problems with Gaussian coordinates

In the literature on junction conditions [44] or in general when dealing with braneworlds,

it is customary to simplify the difficulties of dealing with tensor distributions by using

Gaussian coordinates based on the matching hypersurface and a classical Dirac delta

“function”. This leads to some subtleties very often ignored and, in fact, to unsolvable

problems if one is to describe gravitational double layers. In this Appendix we clarify

this situation and provide a useful translation between the rigorous and the simplified

methods. Choose local Gaussian coordinates {y, ua} based on the matching hypersurface

Σ given by

Σ : {y = 0}

so that the metric reads locally around Σ as

ds2 = dy2 + gab(y, u
c)dxadxb.

We can identify the local coordinates of Σ as ξa = ua, or in other words, the parametric

representation of Σ and the tangent vector fields ~ea are simply

{y = 0, ua = ξa}, ~ea =
∂

∂ua

∣∣∣∣
y=0

.

The unit normal is in this case

n = dy|y=0

and the first fundamental form (2.4) becomes simply

hab = gab(0, u
c).

In what follows, h denotes the determinant of hab. The two regions matched are repre-

sented by y > 0 and by y < 0. A trivial calculation proves that the second fundamental

forms inherited from both sides are

K±ab = lim
y→0±

∂ygab =⇒ [Kab] = [∂ygab] |y=0.

205



B. Potential problems with Gaussian coordinates

In these coordinates, the Σ-step function (2.17) can be easily identified with the stan-

dard Heaviside step function θ(y). Thus, its covariant derivative is easily computed

∇θ(y) = δ(y)dy

where δ(y) is the Dirac delta “function”. This can be immediately put in correspondence

with (2.20) in such a way that, in this coordinate system

δΣ ↔ δ(y) .

Now, if we multiply δ(y) by any function then

Fδ(y) = F |y=0δ(y)↔ FδΣ = F |ΣδΣ.

Observe, however, that a first subtlety arises: when we apply δ(y) to any test function

Y (xµ), we do not simply get Y |y=0, but we also need to integrate on Σ, that is

〈δ(y), Y 〉 =

∫
y=0

Y (y = 0, uc)
√
−h du1...dun.

This corresponds to (2.19), after the identification dσ =
√
−hdu1...dun.

The discontinuity of the connection (2.38) together with (2.59) can be expressed by

giving the non-zero jumps of the Christoffel symbols

[Γyab] = −[Kab], [Γaby] = [Ka
b]

and similarly (2.61), (2.62) and (2.64) read (only the non-zero components are shown)

Hyayb = −[Kab], Hyy = −[Kc
c ], Hab = −[Kab], Gab = −[Kab] + [Kc

c ]hab

so that, for instance, the Einstein tensor tangent components acquire a term proportional

to δ(y) given by Gabδ(y).

If one needs to compute covariant derivatives of the curvature tensors, or the Einstein

tensor, as distributions, one must deal with terms such as, say, ∇µ(Gabδ(y)). Eventually

one would face the computation of ∇µδ(y). One might naively write

∇δ(y)��ZZ= δ′(y)dy

where δ′(y) is “the derivative” of the Dirac delta. This is clearly ill-defined, because

one does not know how such a δ′(y) should act on test functions (as minus the integral

on Σ of the y-derivative of the test function?). But worse, even if one could find a

proper definition of such a δ′(y), still the formula would miss the second essential term
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appearing in (A.26) which is proportional to δΣ and depends on the extrinsic properties

of the matching hypersurface via the trace of its second fundamental form.

In order to show how to proceed if one insists in using Gaussian coordinates, the

computation of ∇δ(y) must go as follows (here g stands for the determinant of gαβ)〈
∇δ(y), ~Y

〉
= −〈δ(y),∇µY

µ〉 = −
∫
y=0

∇µY
µ
√
−hdnu

= −
∫
y=0

1√
−g

∂µ(
√
−gY µ)

√
−hdnu = −

∫
y=0

1√
−h

∂µ(
√
−hY µ)

√
−hdnu

= −
∫
y=0

(
∂yY

y + ∂aY
a + Y µ 1√

−h
∂µ
√
−h
)√
−hdnu

= −
∫
y=0

(
∂yY

y +
1√
−h

∂a(
√
−hY a) + Y y 1√

−h
∂y
√
−h
)√
−hdnu

= −
∫
y=0

(
∂yY

y + Y yKΣa
a

)√
−hdnu.

In the last step we have used Gauss’ theorem. This formula corresponds to (A.26).

Observe the fact that the extrinsic curvature Kab is not necessarily equal as computed

from either side of y = 0 and therefore it is not univocally defined. Hence, a definite

prescription of what is its value on Σ, that is KΣ
ab, must be provided.

The above subtleties and difficulties when using Gaussian coordinates are probably the

reasons why double layers were not found in quadratic F (R) or other quadratic theories

until they were derived in [98, 99, 100].
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C

Compatibility integrals

We devote this Appendix to include the treatment of the interior problem using the

perturbative framework constructed in [77] for the compatibility of interior problems

with the existence of asymptotically flat vacuum exteriors. As we show next, this is an

alternative way of showing the discontinuity of the function m0.

The compatibility of the interior problems is formulated as a set of integrals on the

interior surface Σ+
0 in terms of the metric (and perturbation tensor) functions written in

Weyl coordinates (and in the Weyl gauge). We first include a brief review of the procedure

in [77].

C.1 The framework: formulation of the

compatibility conditions

Perturbative approach

Consider the exterior (E) family of vacuum spacetimes in Weyl coordinates {t, ϕ, ρ, z},
which are adapted to the stationary and axial Killing vector fields ~ξ = ∂t and ~η = ∂ϕ. 1

Choose the points of the diffeomorphic spacetimes to be identified using the Weyl gauge

(i.e. for equal values of the Weyl coordinates). The family of tensors gε on V thus reads

gEε = −e2Uε(dt+ Aεdϕ)2 + e−2Uε(e2kε(dρ2 + dz2) + ρ2dϕ2), (C.1)

where Uε, Aε and kε are functions smooth in ρ, z and ε.

1We use initially E/I instead of +/− to refer to the exterior and interior in this Appendix to prevent
any possible confussion with previous notation and the use of other sets of coordinates and gauges (Weyl
or otherwise).
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C. Compatibility integrals

The functions in (C.1) (except kε) are defined intrinsically in terms of the correspond-

ing timelike and axial Killing vectors as follows

e2Uε = −(~ξ, ~ξ)gε , Aε =
(~ξ, ~η)gε

(~ξ, ~ξ)gε
. (C.2)

Furthermore, ρ ≥ 0 in (C.1) a scalar, given by

ρ2 = −(~ξ, ~ξ)gε(~η, ~η)gε + (~ξ, ~η)2
gε . (C.3)

The vacuum field equations imply the existence (globally once the exterior is simply

connected) of the so called twist potential that satisfies

dΩε = ∗ε(ξ ∧ dξ) (C.4)

where ∗ε is the Hodge dual with respect to gε, which related to A by

dAε = ρe−4Uε ? dΩε, (C.5)

where now ? denotes the Hodge dual on the {ρ, z} 2-plane defined by dz = − ? dρ

(?2 = −1). In terms of the potentials U and Ω the vacuum field equations reduce to the

Ernst equations [103]

4γUε +
1

2
e−4Uε(dΩε, dΩε)γ = 0 , 4γΩε − 4(dΩε, dUε)γ = 0, (C.6)

for the metric γ = dρ2 + dz2 + ρ2dϕ2, and kε is found by quadratures

kε,ρ = ρ[Uε,
2
ρ−Uε2

,z] , kε,z = 2ρUε,z Uε,ρ .

The boundary, together with the boundary conditions, that supplement the Ernst

equations are put together as follows. Following the construction detailed in Chapter

3, consider now the family of stationary and hypersurfaces ΣE
ε projected onto (VE, gE).

Using the Weyl gauge we specify ΣE
ε : {t = τ, ρ = ρε(µ), z = zε(µ), ϕ = φ}, where {τ, µ, φ}

are the chosen coordinates on Σ0 [77].

Next, take another family of surfaces Sε in the Euclidean space in cylindrical coor-

dinates (E3, γ), where γ = dρ2 + dz2 + ρ2dϕ2. For each ε, Sε is axially symmetric and

compact and it is given by Sε = {ρ = ρε(µ), z = zε(µ), ϕ = φ}, with ρε(µ) and zε(µ) be-

ing the functions that determine ΣE
ε . The only two points {µN , µS}, the north and south

poles of the configuration respectively, where the surface intersects the axis of symmetry

are ρε(µN) = ρε(µS) = 0. At these points, define zN := zε(µN) and zS := zε(µS).

The Ernst equations for each ε live in the domain Dε, with Dε ⊂ E3 being the exterior

region of Sε endowed with the flat metric γ. The boundary data on Sε comes from the
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C.1. The framework: formulation of the compatibility conditions

matching on ΣE
ε with some given interior, that provides values of the functions and their

normal derivatives. The boundary conditions are completed with the asymptotic values

Uε → 1 and Ωε → 0. We are thus dealing with an elliptic system complemented with

Cauchy boundary data. This is an overdetermined problem and we should not expect

solutions to exist for arbitrary data. That expresses the fact that given an arbitrary

stationary and axially symmetric interior metric (even if it is perfect fluid, say), there will

in general be no stationary and axially symmetric vacuum exterior solution matching with

it and also asymptotically flat. The problem we face, then, is the existence for the exterior

problem. After finding the perturbed matching and field equations at first and second

order, the (necessary and sufficient) conditions on the boundary data for the existence of

solutions for the exterior problem at first and second order are obtained. Those conditions

on the boundary data will become conditions on the quantities for the interior problem.

Perturbed Ernst equations

The perturbations of the potentials at each order are written as

Uε(ρ, z) = U(ρ, z) + εU (1)(ρ, z) +
ε2

2
U (2)(ρ, z) +O(ε3)

Ωε(ρ, z) = Ω(ρ, z) + εΩ(1)(ρ, z) +
ε2

2
Ω(2)(ρ, z) +O(ε3),

and equivalently for Aε(ρ, z), where here and in the following we will be using the notation

introduced in Chapter 3, which, note, differs to that used in [77].

The exterior static background metric in Weyl coordinates reads

gE = −e2Udt2 + e−2U
[
e2k
(
dρ2 + dz2

)
+ ρ2dϕ2

]
, (C.7)

where the function U(ρ, z) satisfies (C.6) for ε = 0, i.e. the Laplace equation ∆γU = 0.

Recall we try to avoid the use of 0 subindexes to refer to background quantities. The

domain corresponds to D0 := Dε=0, whose boundary is thus given by S0 = {ρ = ρ0(µ), z =

z0(µ), ϕ = φ} .

Let us stress the fact that the background configuration does not have to be spherically

symmetric necessarily. Although we are interested in a spherically symmetric background,

we briefly describe in the following the general framework for completeness.

Following the definition given for the perturbation tensors (up to second order), in the
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C. Compatibility integrals

Weyl gauge take they the form

KE
1 = −2

[
e2U(U (1)dt2 + A(1)dtdϕ)

+e−2U
(
U (1)ρ2dϕ2 − e2k

(
k(1) − U (1)

) (
dρ2 + dz2

))]
, (C.8)

KE
2 = −2e2U

(
U (2) + 2U (1)2

)
dt2 − 2e2U

(
A(2) + 4A(1)U (1)

)
dtdϕ

−2
[
e2UA(1)2

+ e−2Uρ2
(
U (2) − 2U (1)2

)]
dϕ2

+2e−2Ue2k
[
k(2) − U (2) + 2

(
k(1) − U (1)

)2
] (
dρ2 + dz2

)
. (C.9)

The Ernst equations at each order are then the derivatives of (C.6) with respect to ε

at ε = 0 defined on the background space (D0, γ). The equations for {U (1), Ω(1)} read

4γU
(1) = 0,

4γΩ
(1) − 4

(
dΩ(1), dU

)
γ

= 0,
(C.10)

while for {U (2), Ω(2)} are

4γU
(2) + e−4U

(
dΩ(1), dΩ(1)

)
γ

= 0,

4γΩ
(2) − 4

(
dΩ(2), dU

)
γ
− 8

(
dΩ(1), dU (1)

)
γ

= 0.
(C.11)

It must be stressed that the information about the deformation of ΣE
0 , will be finally

encoded in terms of quantities defined precisely on S0, i.e. ρ(1)(µ), ρ(2)(µ), z(1)(µ), z(2)(µ)

(see below), just as in the general theory of perturbed matchings the matching problem

is encoded in the background matching hypersurface, see Chapter 3.

The equations for the twist potential contain extra terms out of the Laplacian operator

that can be absorbed using an alternative Laplacian operator in terms of the conformally

flat metric γ̃ = e−8Uγ:

4γ̃Ω
(1) = 0,

4γ̃Ω
(2) = 8

(
dΩ(1), dU (1)

)
γ̃
.

Therefore all equations for U (1), U (2), Ω(1), Ω(2) can be collectively written as

4γ̂u = J , (C.12)

where u = u(ρ, z) stands for U , U (1), etc..., and J = J (ρ, z) represents the inhomogeneous

terms in the second order perturbation equations. The metric γ̂ corresponds to either γ,

for the U -equations, or γ̃, for the Ω-equations.
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C.1. The framework: formulation of the compatibility conditions

Boundary data

The boundary data for each of the perturbed Ernst equations is developed to second order.

Asymptotic flatness imposes limρ2+z2→∞ U
(1) = limρ2+z2→∞Ω(1) = limρ2+z2→∞ U

(2) =

limρ2+z2→∞Ω(2) = 0. On the other hand, given the interior at each order, the matching

conditions also provide the values of the functions and their normal derivatives evaluated

on the background matching hypersurface ΣE
0 , and thus on S0 as follows. First we have to

characterize the relevant functions for the perturbative matching from the stationary and

axisymmetric interior. Let be such an interior (VI , gI) given, matched already to (VE, gE)

across static and axially symmetric hypersurfaces ΣI
0 = ΣE

0 . Take a stationary and the

axial Killing vectors in (VI , gI), ~ξ I and ~η I respectively, together with a family of tensors

gIε invariant under such isometries, and compute the functions Vε, Wε and αε > 0 by

Vε =
1

2
log
[
−(~ξI , ~ξI)gIε

]
, dWε = ∗ε(ξI ∧ dξI) , α2

ε = −(~ξI , ~ξI)gIε (
~ηI , ~ηI)gIε + (~ξ, ~η)2

gIε
.

(C.13)

These three functions carry all the necessary (and sufficient) information for the present

problem regarding the interior geometry [109]. Let also a family ΣI
ε be given on (VI , gI),

and thus their (flow of) normals ~nIε, and assume that they match with their corresponding

ΣE
ε , through common coordinates {τ, µ, φ} in Σ0. Assume finally that ~nIε point to the

interior of (VIε , gIε) and have the same norm as ∂µ in Σ0, i.e. (∂µ, ∂µ)hε(= (~e,~e)gEε for

~e = ρ̇ε∂ρ + żε∂ρ). Then, the functions ρε(µ) and zε(µ) that determine ΣE
ε are given by

[77]

żε(µ) = ż0 + εż(1) +
1

2
ε2ż(2) +O(ε3) = −~nIε(αε)|ΣIε (C.14)

ρε(µ) = ρ0 + ερ(1) +
1

2
ε2ρ(2) +O(ε3) = αε|ΣIε . (C.15)

It is convenient to define the following functions in order to achieve compact expressions

for the boundary data.

P1 =
ρ̇0ρ

(1) + ż0z
(1)

ρ̇2
0 + ż2

0

, Q1 =
ρ̇0z

(1) − ż0ρ
(1)

ρ̇2
0 + ż2

0

, P2 =
ρ̇0ρ

(2) + ż0z
(2)

ρ̇2
0 + ż2

0

,

Q2 =
ρ̇0z

(2) − ż0ρ
(2)

ρ̇2
0 + ż2

0

, X0 =
ρ̈0ż0 − z̈0ρ̇0

ρ̇2
0 + ż2

0

, X1 =
ρ̈0ρ̇0 + z̈0ż0

ρ̇2
0 + ż2

0

, (C.16)

where we are using the dot ˙ to denote differentiation with respect to µ.

Also, consider the following functions constructed by the inner products of the axial
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C. Compatibility integrals

and stationary Killing vectors together with their normal and tangent derivatives to ΣI
ε

2

Vε = V + εV (1) +
1

2
ε2V (2) +O(ε3) =

1

2
log
(
−(~ξ I , ~ξ I)gIε

)∣∣∣∣
ΣIε

,

~nVε = ~nV + ε~nV (1) +
1

2
ε2~nV (2) +O(ε3) =

~n Iε (~ξ I , ~ξ I)gIε

2(~ξ I , ~ξ I)gIε

∣∣∣∣∣
ΣIε

, (C.17)

Ẇε = ε ˙W (1) +
1

2
ε2 ˙W (2) +O(ε3) = −

(~ξ I , ~ξ I)2
gIε

αε
~n Iε

(
(~ξ I , ~η I)gIε

(~ξ I , ~ξ I)gIε

)∣∣∣∣∣
ΣIε

,

~nWε = ε~nW (1) +
1

2
ε2~nW (2) +O(ε3) =

(~ξ I , ~ξ I)2
gIε

αε

d

dµ

(
(~ξ I , ~η I)gIε

(~ξ I , ~ξ I)gIε

)∣∣∣∣∣
ΣIε

.

All the objects introduced in this section allow us to construct the functions V (µ), V (1)(µ),

V (2)(µ), ~nV (µ), ~nV (1)(µ), ~nV (2)(µ), W (1)(µ), W (2)(µ), ~nW (1)(µ), ~nW (2)(µ) on Σ0, explic-

itly once gIε and ΣI
ε are given. Note that since the interior background is assumed to

be static, there are no W (µ) nor ~nW (µ) terms. In order to avoid confusion with the

notation, let us stress that ~nV , ~nV (1),... do not denote normal derivatives of V , V (1),...

but functions constructed following (C.17).

Let us also stress the fact here that we have shown the obtaining of the above functions

in terms of a given family ΣI
ε, and therefore, a flow of normals ~nIε. That may not be the

most convenient way, and one can, in fact, consider only the background ΣI
0 and the

deformation vectors ~Z1/2, through the “unknowns” P1, Q1, P2 and Q2 –from which the

ε-derivatives at ε = 0 of ~nIε can be obtained, see [77]–, and construct the above quantities

in terms of this information. Since the “flow” version will suit our needs, which is to

compare to the original perturbative approach in [57], we do not discuss this further.

Proposition IV.1 in [77] then states that gIε and gEε ≡ gE + εKE
1 + 1

2
ε2KE

2 match

perturbatively to second order on Σ
I/E
0 if and only if the following conditions are satisfied

U |ΣE0 = V, ~n(U)|ΣE0 = ~nV, U (1)|ΣE0 = V (1) − P1
dV

dµ
−Q1~nV,

~n(U (1))|ΣE0 = ~nV (1) +
d

dµ

(
Q1
dV

dµ

)
− d (P1~nV )

dµ
+Q1

(
ρ̇0

ρ0

dV

dµ
− ż0

ρ0

~nV

)
,

U (2)|ΣE0 = V (2) − 2P1
dV (1)

dµ
− 2Q1~nV

(1) +
d

dµ

((
P 2

1 −Q2
1

) dV
dµ

)
+
d (2P1Q1~nV )

dµ

+

(
−P2 + P 2

1X1 + 2P1Q1X0 −Q2
1X1 −Q2

1

ρ̇0

ρ0

)
dV

dµ

+

(
−Q2 − P 2

1X0 + 2P1Q1X1 +Q2
1X0 +Q2

1

ż0

ρ0

)
~nV,

2There is a typo in the sign of the last expression of equations (17) in [77]. The corrected expression
is given here.
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C.1. The framework: formulation of the compatibility conditions

~n(U (2))|ΣE0 = ~nV (2) + 2
d

dµ

(
Q1
dV (1)

dµ

)
− 2

d
(
P1~nV

(1)
)

dµ
+ 2Q1

(
ρ̇0

ρ0

dV (1)

dµ
− ż0

ρ0

~nV (1)

)
− d2

dµ2

(
2P1Q1

dV

dµ

)
+

d2

dµ2

( (
P 2

1 −Q2
1

)
~nV
)

+
d

dµ

{[
Q2 +

(
P 2

1 −Q2
1

)
X0 − 2P1Q1

ρ̇0

ρ0

− 2P1Q1X1 −Q2
1

ż0

ρ0

]
dV

dµ

}
+
d

dµ

{ [
−P2 +

(
P 2

1 −Q2
1

)
X1 + 2P1Q1

ż0

ρ0

+ 2P1Q1X0 −Q2
1

ρ̇0

ρ0

]
~nV

}
+

(
Q2 + (P 2

1 −Q2
1)X0 − 2P1Q1

ρ̇0

ρ0

)(
ρ̇0

ρ0

dV

dµ
− ż0

ρ0

~nV

)
+

(
2P1Q1X0 −Q2

1

ρ̇0

ρ0

)(
ρ̇0

ρ0

~nV +
ż0

ρ0

dV

dµ

)
,

Ω(1)|ΣE0 = W (1), ~n(Ω(1))|ΣE0 = ~nW (1),

Ω(2)|ΣE0 = W (2) − 2P1
dW (1)

dµ
− 2Q1~nW

(1),

~n
(
Ω(2)

)
|ΣE0 = ~nW (2) + 2

d

dµ

(
Q1
dW (1)

dµ

)
− 2

d
(
P1~nW

(1)
)

dµ

+2Q1

[(
ρ̇0

ρ0

− 4
dV

dµ

)
dW (1)

dµ
−
(
ż0

ρ0

+ 4~nV

)
~nW (1)

]
In conclusion, this section has been devoted to find the boundary data for the Ernst

problems at each order on the surface S0. For this, given an interior region, and given

also a prescribed deformation of the hypersurface, the steps to follow are

1. Take an explicit interior model with given background hypersurface ΣI
0 and with the

three different products of the axial and stationary Killing vectors, together with

the perturbations of the hypersurface, together with their flow of normal vectors,

compute V , ~nV , P1, Q1,... (were not the deformation prescribed the functions P1,

Q1, P2, Q2 would be left as unknowns).

2. With this quantities at hand, use Proposition IV.1 to build the boundary data for

the exterior problem.

Compatibility conditions

As mentioned, the above boundary conditions overdetermine the elliptic problems, and

therefore compatibility conditions for the boundary data arise in order to ensure exis-

tence. These compatibility conditions were found in [77] for general static and axially
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symmetric backgrounds, and, in particular and more explicitly, for spherically symmetric

backgrounds. For our purposes here we will only need to focus on this last particular case.

Nevertheless, for completeness and to keep a more compact presentation, we review the

conditions in the general case in this subsection.

In order to present the compatibility conditions, we need to define first some auxiliary

objects. The first ingredients needed are two auxiliary regular γ̂-harmonic functions on

D0, one for each case γ̂ = γ (U -problems) and γ̂ = γ̃ (Ω-problems). They are defined

in [77] as functions on D0 that solve the Laplace equation 4γ̂ψ = 0 on D0, admit a

C1 extension to ∂D0 and decay at infinity in such a way that ψ
√
ρ2 + z2 is a bounded

function on D0. The relevant family of γ-harmonic functions on D0 is

ψy(ρ, z) ≡
1√

ρ2 + (z − y)2
, y ∈ (zS, zN). (C.18)

The corresponding family for γ̃ is more involved. It requires first finding a function

solution of the PDE

dZy = (z − y)ψy(ρ, z) dU + ρψy(ρ, z) ? dU, (C.19)

with boundary condition limρ2+z2→∞ Zy = 0. Zy can be explicitly integrated when the

background is spherically symmetric (see below). The appropriate regular γ̃-harmonic

family of functions is [77]

Ψy(ρ, z) =
e2U−2Zy√

ρ2 + (z − y)2
, y ∈ (zS, zN). (C.20)

The remaining auxiliary objects are vector fields, denoted by T1 and T2, related again to

γ and γ̃ respectively, in order to absorb the inhomogeneous terms in (C.12) into surface

integrals by using Gauss’ identity. These vector fields are formulated, in turn, in terms of

three functions S1, S2 and Z
(1)
y that vanish at infinity and are solutions of the PDE’s

dS1 = e−2U+2Zy
[
− (1 + (z − y)ψy) dΩ(1) − ρψy ? dΩ(1)

]
,

(C.21)

dS2 = e−2U−2Zy
[
(1− (z − y)ψy) dΩ(1) − ρψy ? dΩ(1)

]
,

dZ(1)
y = (z − y)ψy dU (1) + ρψy ? dU (1). (C.22)

In terms of those functions, the vectors T1 and T2 take the form

T1 ≡
1

2ρ
S1 ? dS2, (C.23)

T2 ≡ −4

ρ
S2 ? d

(
Z(1)
y + U (1)

)
. (C.24)
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The existence and uniqueness of the solutions to the previous PDE’s is proven in [77].

Given all the definitions introduced in this section, we can quote Theorem V.2 in [77]:

Theorem 8 Let f0, f1 be continuous axially symmetric functions on Σ0. Then,

(i) the Cauchy boundary value problem

4γU
(1) = 0, U (1)|Σ0 = f0, ~n

(
U (1)

)
|Σ0 = f1,

admits a regular solution on D0 if and only if∫ µN

µS

[ψy f1 − f0 ~n(ψy)] ρ0|Σ0
dµ = 0, ∀y ∈ (zS, zN),

(ii) the Cauchy boundary value problem

4γΩ
(1) − 4

(
dΩ(1), dU

)
γ

= 0, Ω(1)|Σ0 = f0, ~n
(
Ω(1)

)
|Σ0 = f1,

admits a regular solution on D0 if and only if∫ µN

µS

[Ψy f1 − f0 ~n(Ψy)] ρ0e
−4U
∣∣
Σ0

dµ = 0, ∀y ∈ (zS, zN),

(iii) the Cauchy boundary value problem

4γU
(2) + e−4U

(
dΩ(1), dΩ(1)

)
γ

= 0, U (2)|Σ0 = f0, ~n
(
U (2)

)
|Σ0 = f1,

admits a regular solution on D0 if and only if∫ µN

µS

[ψy f1 − f0 ~n(ψy)− T1 (~n)] ρ0|Σ0
dµ = 0, ∀y ∈ (zS, zN), (C.25)

and (iv) the Cauchy boundary value problem

4γΩ
(2) − 8

(
dΩ(1), dU (1)

)
γ
− 4

(
dΩ(2), dU

)
γ

= 0, Ω(2)|Σ0 = f0, ~n
(
Ω(2)

)
|Σ0 = f1,

admits a regular solution on D0 if and only if∫ µN

µS

[
(Ψy f1 − f0 ~n(Ψy)) e

−4U − T2 (~n)
]
ρ0

∣∣
Σ0

dµ = 0, ∀y ∈ (zS, zN),

where ψy, Ψy, T1 and T2 are given in (C.18), (C.20), (C.23) and (C.24) respectively.

Let us remark that since the above integrals depend on the parameter y ∈ (zS, zN), each

one gives an infinite set of conditions.
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Spherically symmetric background

The background exterior corresponds to the Schwarzschild exterior geometry. In the usual

spherical coordinates this reads

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
,

These coordinates are related to the Weyl coordinates by

ρ = r sin θ

√
1− 2m

r
, z = (r −m) cos θ. (C.26)

From the definitions of the potentials we get

U =
1

2
log

(
1− 2m

r

)
, Ω = 0. (C.27)

Several of the Ernst equations of the perturbed exterior problem can be explicitly solved.

In these cases, one can use the explicit solutions and their corresponding tangent/normal

derivatives to find restrictions on the boundary data, instead of working with the com-

patibility conditions in integral form.

In particular, Ω(1) can be solved using an expansion in Legendre polynomials Ω(1) =∑∞
l=0 w

(1)
l (x)Pl(cos θ), where

x =
r

M
− 1

is a convenient redefinition of the radial coordinate. The Ernst equation (C.10) is trans-

formed to the Jacobi equation of type {−2, 2}.(
1− x2

)
w

(1)
l,xx − 2 (x− 2)w

(1)
l,x + l (l + 1)w

(1)
l = 0. (C.28)

The solutions are the Jacobi polynomials P
(−2,2)
l (x) plus another family of functions reg-

ular at infinity, which in terms of the associated Legendre functions of the second kind

reads

Fl(x) =
1

(l + 1)(l + 2)

(1− x)

(1 + x)
Q2
l (x). (C.29)

The full solution for the perturbed twist to first order is thus,

Ω(1) =
∞∑
l=0

dlPl(cos θ)Fl(x). (C.30)

Given (C.27), the function Zy (C.19) is found to be [77]

e−Zy =
yx−m cos θ −

√
m2x2 + y2 − 2mxy cos θ −m2 sin2 θ

(y −m)
√
x2 − 1

, (C.31)
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so that ψy together with Ψy can be finally written as [77]

ψy =
1√

m2x2 + y2 − 2mxy cos θ −m2 sin2 θ
,

Ψy =

(
yx−m cos θ −

√
m2x2 + y2 − 2mxy cos θ −m2 sin2 θ

)2

(y −m)2 (x+ 1)2
√
m2x2 + y2 − 2mxy cos θ −m2 sin2 θ

.

This case of a spherically symmetric background is particularly useful when studying, for

example, perturbations of fluid balls.

C.2 Application to Hartle’s model

In this section we apply the framework introduced in the previous section to the original

Hartle’s model. We consider Hartle’s interior configuration describing a rigidly rotating

perfect fluid without convective motions and with a barotropic EOS. This spacetime with

boundary is considered as a candidate to be matched to an Ernst vacuum considered in

the previous section. To elucidate under what circumstances these spacetimes can be

matched (or not), the boundary data (C.1) for the Ernst problem is constructed follow-

ing proposition IV.1 in [77] and compatibility conditions are evaluated in order to find

restrictions on the interior configuration.

We take the family gIε to be (5.1) initially in the k-gauge. The background metric

reads (5.4) and the perturbation tensors are (5.2), (5.3). The projected boundaries ΣI
ε

are taken to have the parametric form

ΣI
ε : {t = τ, ϕ = φ, r = a+ ε2ξH(a, ϑ), θ = π − µ ≡ ϑ},

so that ΣI
0 is the sphere at r = a. The function ξ(a, ϑ) therefore describes the deformation

in this gauge setting (in the k-gauge). For convenience, let us go now to the surface gauge,

using ~S2 = ξ(r, θ)∂r for some function ξ(r, θ) that extends ξ(a, θ). In this new gauge the

second order perturbation tensor K2 reads as (5.6) with, recall k0 = 0, C = 0 and

Y = ξ(r, θ), and ΣI
ε just read

ΣI
ε : {t = τ, ϕ = φ, r = a, θ = π − µ ≡ ϑ}.

In the following, we will use ϑ as the polar angular coordinate of ΣI
ε. Thence, in all the

equations of the previous section C.1 , the dot derivative “ ˙” is equivalent to −∂ϑ. Finally,

to use the previous results (and those in [77]), it is convenient to perform the change

r = M(x+ 1),
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and use a = M(x0 + 1). The background matching hypersurface therefore fixes

ρ0(ϑ) =
√
x2

0 − 1M sinϑ , z0(ϑ) = x0M cosϑ , ~n = −
√
x2

0 − 1∂x. (C.32)

The explicit assumptions of the original model (equatorial symmetry and invariance

under the change {t → −t, ϕ → −ϕ} so that the perutbation is driven by a rotation)

imply that at first order U (1) = 0, and that Ω(2) = 0 at second order.

Since we are interested only at obtaining the discontinuity of m0 we skip the analysis of

the first order. We simply take for granted that the function w depends only on x, and that

the exterior vacuum solution is given already by (6.26). The only contribution to second

order order thus comes from the gravitational potential, and therefore the boundary data

needed to be calculated is U (2)|Σ0 , and ~n(U (2))|Σ0 and only the compatibility integral

(C.25) has to be addressed. Moreover, the fact that ω is a function of x alone simplifies

both the boundary data for the first order required to calculate T1 as well as the second

order boundary data itself. The hydrostatic equations evaluated at the boundary will be

used in the last expressions in order to write the functions of the background in terms of

M , E and P .

In the chosen gauge the one-form normals to ΣI
ε take the simple form ~nε = Nε∂x,

where Nε is determined by the normalisation. Now it is not difficult to compute the

ε-derivatives at ε = 0 of ~nε, and find that the first order normal vanishes and at second

order it reads

~n(2) =

{√
x2

0 − 1

(
m+

ξ′

M

)
+

4πEM2(x0 + 1)3 − x0√
x2

0 − 1

ξ

M

}
∂x

− 1√
x2

0 − 1

d

dϑ
ξ(x0, ϑ)∂θ,

where we have omitted the argument (x0, ϑ) on all the second order functions above not

to overload the expressions. We will stick to this notation through the rest of the section.

With this we can evaluate the expressions (C.14) and (C.15) to first and second order, to

obtain ρ(1) = 0, z(1) = 0,

ρ(2) =

{
M
√
x2

0 − 1(h+ k +
x0√
x2

0 − 1
ξ

}
sinϑ (C.33)

∂ϑz
(2) = −

(
x0(h+ 2k −m) + (x2

0 − 1)(h′ + k′)− 1

sinϑ

∂

∂ϑ

(
ξ

M
cosϑ

)
(C.34)

−(x0 − 1)3(3x0 − 2)M2 sin2 ϑ

2(x0 − 1)
ω2(x0)

)
M sinϑ. (C.35)

The functions P2 and Q2 are obtained from the expressions listed above using (C.16).

The set of quantities neeed up to second order for the boundary data are finally evaluated
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from (C.17) and read

∂ϑW = ∂ϑW
(2) = 0 , ∂ϑW

(1) = (x0 + 1)M sinϑω(x0), (C.36)

~nW = ~nW (2) = 0 , ~nW (1) = −2
√
x2

0 − 1M cosϑω(x0), (C.37)

V =
1

2
log

(
x0 − 1

x0 + 1

)
, V (1) = 0 (C.38)

V (2) = h+
1

x2
0 − 1

ξ

M
− M2(x0 + 1)3 sin2 ϑ

x0 − 1
ω2(x0) (C.39)

~nV = − 1√
x2

0 − 1
, ~nV (1) = 0 (C.40)

~nV (2) =
1

x2
0 − 1

(m− k)−
√
x2

0 − 1h′ +
x0 − 4πEM2(x0 − 1)(x0 + 1)3

(x2
0 − 1)3/2

ξ

M

−M
2(x0 + 1)3(2x0 − 1) sin2 ϑ

(x0 − 1)
√
x2

0 − 1
ω2(x0) (C.41)

To evaluate the second order compatibility integral (C.25) we also need to compute the

vector T1 (C.23). Nevertheless, we need only the contraction of T1 with the normal vector

evaluated at the boundary, which reads

T1(~n) = −1

2
S1Ṡ2, (C.42)

where we have used the fact that (?df)(~n) = −(df)(~e), which on Σ0 reads−∂µf(ρ(µ), z(µ)),

for any f(ρ, z). Moreover, since we will only need to evaluate this expression on the hy-

persurface there is no need to solve the whole PDE for S1 in (C.21). Instead, we project

(C.21) onto Σ0 (applying it to ~e) to obtain Ṡ1 and integrate the ODE along Σ0. After a

straigforward calculation we get

S1|Σ0 = M
(x0 + 1)2

x0 − 1
ω

[
(2x0 − 1) cosµ− x0

Mψ
+

y

2M
(x2

0 + 1)

]
e2Zy − J

M3
(y − 2M),

(C.43)

where, recall, Zy is given by (C.31). The expression for Ṡ2 is obtained directly appyling

dS2 in (C.21) to ~e. The explicit expression of (C.42) is found to be

T1(~n|Σ0
) = −1

2
S1Ṡ2

= M

√
(x0 + 1)3

x0 − 1

{
M

(x0 + 1)2

(x0 − 1)
ω

[
(2x0 − 1) cosµ− x0

Mψ

+
y

2M
(x2

0 + 1)
]
− J

M3
(y − 2M)e−2Zy

}
[
−1

2

√
x0 + 1

x0 − 1
tanµ (1− cos γy)− sin γy)

]
ω cosµ (C.44)
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We have now every ingredient to evaluate the compatibility condition in the integral form

in order to find relations between h, m, k and ξ and their normal derivatives at Σ0. Now,

we assume the angular structure given in (8.44), recalling that k0 = 0, and remove the

radial derivatives of the functions by using the field equations for the interior, explicitly

6.38 for m′0, 6.40 for h′0, 6.58 to relate m2 to h2 and 6.56 with 6.57 for h′2 and k′2. The

integrand is a function of µ linear in the constants m0(a), h0(a), ξ0(a), h2(a), k2(a), and

quadratic in the first order term ω(a) (we go back from x0 to a to recover the initial radial

r for convenience). In short, the structure of the equation after the integration of (C.25)

from the south to the north pole of S0 is the following

Il=0 + (M2 − y2)
{
Il=2 + I(l=1)2

}
= 0, ∀y ∈ (−a+M,a−M) (C.45)

where Il=0 and Il=2 involve only second order terms of the l = 0 and l = 2 sectors

respectively, and I(l=1)2 contains squared first order terms.

The equation Il=0 = 0 just gives

hI0(a) +mI
0(a) + 4π

a2

a− 2M
E(a)ξH0 (a) = 0. (C.46)

This is, of course, just a relation we have produced for the functions in the interior

configuration, we have included a superscript I for clarity. This relation must be satisfied

for the existence of the vacuum (asymptotically flat) exterior, but tells us nothing about

the continuity of these functions. However, we know the exterior solution in the same

class of coordinates (5.3) at second order for the l = 0 sector (see (6.42), (6.43)), which

evaluated at r = a can expressed here as

(a− 2M)mE
0 (a) = δM − J2

a3
,

hE0 (a) = − δM

a− 2M
+

J2

a3(a− 2M)
.

This obviously implies the following relation

hE0 (a) +mE
0 (a) = 0.

Clearly, if hI0(a) = hE0 (a) is to be satisfied, then

mI
0(a) + 4π

a2

a− 2M
E(a)ξH0 (a) = mE

0 (a)

must hold. It is now a matter of checking that these h0 and m0’s (in fact re−λm0)

correspond to those used in Hartle’s framework (4.1) (see Section 7.5), and therefore

the “continuity” of hH0 is incompatible with the “continuity” of mH
0 (recall that λI(a) =
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λE(a)). In terms of mH
0

(I/E)(a) = (a − 2M)m
I/E
0 (a), the jump, using (4.31) in the last

equality

mH
0

(I)(a)−mH
0

(E)(a) = −4πa2E(a)ξH0 (a) = −4π
a3

M
(a− 2M)E(a)pH0

∗(a) (C.47)

which agrees with the previously found jump (7.52).

For completeness we include the results for the l = 2 sector. The part of (C.45)

proportional to (M2 − y2) can be written in terms of h2, k2 and ω. For convenience, the

result is given with the coefficient of k2 normalized to 1, and in terms of the associated

Legendre functions of the second kind and, and for simplicity, of the coordinate x0. It

reads

kI2(x0)−

(
2√
x2

0 − 1

Q1
2(x0)

Q2
2

− 1

)
hI2(x0)

+
M2(x0 + 1)2

4

(
2(x0 + 2)√
x2

0 − 1

Q1
2(x0)

Q2
2(x0)

− 1

)
ω2(x0) = 0. (C.48)

It is direct to check now that hE2 and kE2 yield the very same relation if we combine the

explicit solutions (6.61) and (6.62) to get rid of the constant A therein. Hence, (C.48) is

compatible with the continuity of the functions h2 and k2.
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