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Abstract

This Thesis covers three research lines of Social Networks. The first proposed re-
seach line is related with Trust. Different ways of feature extraction are proposed
for Trust Prediction comparing results with classic methods. The problem of bad
balanced datasets is covered in this work. The second proposed reseach line is re-
lated with Recommendation Systems. Two experiments are proposed in this work.
The first experiment is about recipe generation with a bread machine. The second
experiment is about product generation based on rating given by users. The third
research line is related with Influence Maximization. In this work a new heuristic
method is proposed to give the minimal set of nodes that maximizes the influence
of the network.
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Chapter 1

INTRODUCTION

This introductory chapter aims to set the stage for the entire Thesis, providing some
of the motivations for the research work performed, and some background ideas on
each of the topics covered by the Thesis. We also try to clarify the contributions
of the Thesis. The Chapter is organized as follows: Section 1.1 gives a brief def-
inition of social systems and associate graphs. Section 1.2 gives some reasoned
motivation as well as a more personal motivation for the works related in the The-
sis. Section 1.3 talks about Trust prediction systems. Section 1.4 refers a general
view on reconmmendation systems. Section 1.5 gives the background on influ-
ence maximization systems. Section 1.6 summarizes the Thesis goals, which have
been uncovered along the years. Section 1.7 details achieved contributions. Sec-
tion 1.7.1 enumerates the publications achieved. Section 1.8 describes the Thesis
organization and content.

1.1 Brief definition

A social network is a social structure made up of a set of actors that are related ac-
cording to some criterion. Actors are represented as nodes and relationships among
them are represented as lines connecting them. Thus, the social network analysis
examines the social structure using Graph Theory and identifying the entities as
"nodes" or "vertices" and relationships as "links" or "edges". We can define a so-
cial network like a graph G = (V,E) being V the set of nodes and E the set of
edges.

1.2 Motivation

Trust, reputation and recommendation systems have become a topic of growing
interest for social network community, and are essential ingredients of web-based
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multi-agent systems. Today it is common to find social network webservices that
propose recommendations to users suggesting new contacts, web pages, or prod-
ucts. Several social networks give users the chance to rate other users or items.
Thus, the knowledge of the system is built from the ratings given by users. This
knowledge might be used by the system to make recommendations. Before giving
recommendations it is important to know how to choose the information to give
the recommendation, in other words, who should the system Trust to collect infor-
mation given by other users of the network. In this way, this Thesis contributes
with methods towards Trust prediction computation as well as recommendation
systems. Another way to enrich the knowledge in a recommendation systems is
the obtained feedback by the user. When a recommendation is given to the user
and this one leaves a positive rating, this fact allows the system to know that this
recommendation corresponds to a good one. Another interesting point related with
recommendation systems and social networks is to detect those nodes that are able
to influent other nodes of the network, in other words, influence maximization.

Following these motivations, this Thesis has been developed along three re-
search lines as is shown in Figure 1.1. The first research line is related with Trust
prediction, the second research line is related with Recommendation Systems and
the third research line is related with Influence Maximization. Next Sections 1.3,
1.4 and 1.5 introduce those background ideas for these research lines.

RECOMMENDATION

SYSTEMS
TRUST

SOC'AL INFLUENCE
MAXIMIZATION

NETWORKS '

Figure 1.1: Thesis research areas

The project SandS http://www.sands-project.eu/ has been the mainframe
where the works of this Thesis have been developed, so that many of the research
lines are due to the participation in this project. The SandS project aimed to develop
some kind of social intelligent system focused on the household appliance control.
Therefore, one of the first issues that were considered was that of recommendation
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preparation, so that control recipes could be considered as the product of social
recommendation. The issue of Trust appears when you consider the different value
of recommendations from diverse system users, due to a diversity of factors, such
as geographic diversity. How to predict which degree of Trust we can deposit in
one user before any interaction takes place? From this question, we developed the
works on Trust prediction. Finally, for a company trying to maximize its influence
in the ecosystem developed from SandS ideas we had the push to explore methods
for Influence Maximization.

1.3 Trust

A social network is a way of representing a social structure by a graph. If two social
actors are related according to some criteria, then an edge connects the nodes rep-
resenting these elements is constructed. Examples of related work with social net-
works could be [68], who proposes a survey on online social networks (OSN) and
[74] propose a novel Trust framework to address the issue of “Can Alice Trust Bob
on a service?” in large online social networks (OSN). They propose the SWTrust
framework to discover short Trusted paths based on Trusted acquaintance chains,
and generate Trusted graphs for online social networks. In Social Networks, Trust
is built from experience along a feedback process.Trust has been a traditional sub-
ject of study in four different areas of knowledge, namely social psychology [1],
philosophy, economics and market research [17], however it is increaslingly be-
coming a subject of research in technological domains, such as ad hoc networks
[2, 26, 31], Medical Sensor Networks [66], Industrial Digital Ecosystems [41], and
e-commerce [98]. There have been some efforts to produce mathematical defini-
tions of Trust [135, 44], however intuitive informal definitions, such as “the degree
of subjective belief about the behaviors of (information from) a particular entity”
[40], or “the expectation that a service will be provided or a commitment will be
fulfilled” [69], are convenient for the purposes of this paper. Trust research can be
organized [8] in four major areas: policy-based Trust, reputation based Trust, gen-
eral models of Trust, and Trust information resources, related with the following
applications: networking, semantic web, computational models, game theory and
agents, software engineering and information resources. This Thesis focus on the
prediction of Trust values in the case of no previous interaction between users.

1.4 Recommendation Systems

A direct application of computational intelligence techniques is found in Recom-
mendation Systems. Recommendations are based on ratings that users give about
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other users or items. In this way, a Recommendation System will suggest new
items based on the Web of Trust (WoT) built from users Trust and product ratings
provided by the users in the system. If a user x Trust user y and user y gives a
positive rating to an item i, the Recommendation System will suggest the item i to
the user u. The more better ratings an item collects from users, the more proba-
bility to be chosen from the Recommendation System to suggest the item to users
through a collaborative filtering. Collaborative because a lot of users take part rat-
ing items and filtering because only the best rated items are chosen to be offered to
users. In contrast, another way for the system to suggest an item is via collaborative
sanctioning. In this case, users may give negative ratings to items. When an item
collects negative ratings, the system remove it as candidate for suggestion to other
users. There are many ways to build a collaborative filtering system. They can be
memory-based filtering, model-based filtering, and hybrids. Memory-based filter-
ing uses user rating data to compute the similarity between users or items. Two
users are similar when they have similar profiles, tastes, interest... According to
this, a way to compute similarity is getting the K-nearest neighborhood in order
to do prediction or recommendation. Content-based filtering focus on ratings of
items. The rating matrix is used by the system to learn how users give their prod-
uct ratings. Based on given ratings, system will look for items that are similar to
items that the user rated positively before. When the WoT is available, the system
may take Trust into account in order to select items that are positively rated from
user who the target user Trust whom and remove those items that are rated by users
distrusted by the target user.

Recommender systems [18] are taking a prominent role in the interaction with
the virtual world incorporated by the myriad of web services used on a daily basis
by the common people. Early realizations included forms of collaborative filtering,
however the advent of the Internet of Things will allow to use implicit, local and
personal information gathered by the surrounding environment of smart objects.
Recommender Systems are currently being applied in many different domains.
Some example applications are: intelligent tourism [20], movie suggestions [21],
electronic marketplaces [32], and university library research [126]. The State of
the Art techniques involved in recommender systems deal with the problem of ac-
curate representation and management of the user profile, requiring computational
tools from many fields of Artificial Intelligence, such as Multi-agent systems, ad-
vanced optimization techniques, clustering of the users data to detect communi-
ties, and advanced knowledge representation and reasoning for the management of
uncertainty. Collaborative filtering social recommender systems [138] use social
network information as additional input for improved recommendation accuracy.
They define two categories of CF-based social recommender systems: matrix fac-
torization based approaches and neighborhood based approaches, providing a com-
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parison among algorithms. Recommender Systems are common in e-commerce for
making personalized marketing. On the other hand, Online Review Systems (ORS)
allow users to provide reviews of products and thus become a user-oriented Rec-
ommender System. To help the user to navigate the reviews, the ORS provides the
possibility to state Trust scores on the reviews, so that reviewers with more posi-
tive Trust scores will merit more attention. The issue, then, is how the observed
Trust scores given by other users may influence the user, and may serve to predict
his own Trust value. Several other works are found in the Recommender Systems
literature. For instance, a Colaborative Filtering with Markoviam random walk for
recommendation systems proposed by [118] on Epinions and Movie-Lens datasets.
Other example is the work proposed by [104] also with Colaborative Filtering for
recommendation. Another one is proposed by [105], a recommender system to see
propagation of Trust in anonymous social networks.

1.5 Influence Maximization

Influence Maximization [38, 77] is stated as the problem of finding the minimal
subset of influential nodes (K-seed nodes) with maximal influence, i.e. that affect
the largest number of nodes in the network, where influence is computed by prop-
agation in the network according to a spread model. The K-seed nodes are the
initially active nodes spreading their influence according to any of the propagation
models discussed above. The most straightforward application is in marketing,
when a new product hits the market, a company may want to select the smallest
group of (most influential) seed customers to provide them the product for free
in order to boost its popularity by propagating it in their social network by word-
of-mouth [54]. Additionally, influence maximization has been applied to design
negotiation strategies addressing persuasion to the most influent agents [103], and
to worm propagation containment in ad networks of smartphones [111].

The analysis of influence propagation through social media started from the
consideration of phenomena such as mobs, riots or strikes [64] as pure physical
phenomena, stripped out of psychological considerations. That is, the quantitative
model considers that individual decisions are taken as the fruit of social pressure
defined by social interactions. The same model applies to propagation of inno-
vations, rumours, and advertising [54], so the topic become naturally part of the
marketing research area. The research question was to determine the appropriate
balance between marketing efforts and word-of-mouth propagation through per-
sonal social networks defined by strong and weak links. Cellular automata formal-
ism allowed to build computational models to explore such questions. The two
basic spread models of influence propagation are the Independent Cascade model
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(ICM) [54], and the Linear Threshold model (LTM) [64].

1.6 Thesis goals

The main goals of this Thesis can be stated as follows:

1. Study of basic social mechanisms such as the propagation of Trust and in-
fluence, and the generation of innovations from social interactions. Each
of these phenomena have different properties and computational solutions.
Hence, they give way to diverse tracks of the Thesis works.

(a) Regarding Trust, we are interested in the prediction of Trust when there
is no preliminar interaction information. Then, the problem is stated as
a classification problem.

(b) The Influence Maximization is a combinatorial optimization problem,
that has been tackled by heuristic approaches.

(c) Social generation of innovation is an emergent phenomena, we are con-
cerned with a specific instance in the framework of the SandS european
project, for the generation of new solutions (recipes) for new problems
(tasks).

(d) Recommendation generation based on social knowledge. These rec-
ommendations encompase product rating.

2. Study of the applications of Machine Learning algorithms in social networks,
for Trust prediction, recommendation systems, and social computing.

3. Study of Computational Intelligence algorithms for social networks, i.e. for
Influence Maximization.

4. An operational goal, wich is required for the Thesis works is the creation of
a computational substrate for experimentation, and validation given by real
and synthetic databases.

1.7 Thesis contributions

Pursuing the above goals, we have achieved several contributions. The main scien-
tific results and contributions from this Thesis are the following:

1. We have formalized a concept of reputation for Trust prediction that allows
the application of machine learning algorithms. The reputation features are
low dimension and capture the essential information for Trust prediction, as
demonstrated empirically.
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1.7.1

We have provided experimental results of Trust prediction over benchmark
databases which prove our approach comparable to state-of-the-art approaches.

We have proposed a heuristic for Influence Maximization that improves over
the classical greedy approach, and other meta-heuristics, such as Genetic
Algorithms, Simulated Annealing, and Harmony Search.

A specific formulation of Harmony Search for Influence Maximization has
been proposed.

In the field of social innovation we have introduced the concept of recipe
generation, in the context of household appliances, and we have provided a
mechanism for the intelligent recommendation of new optimal recipes for
new tasks, based on evolutionary computation and machine learning.

For product recommendation we propose two feature extraction algorithms,
the first one is based on the existing Web of Trust and the other one is based
on the similarity between users build from the product rating matrix. The
product ratings from Trusted/similar users are the basis for the target user
rating prediction by machine learning.

Publications achieved

Grafia M., Nufiez-Gonzalez J.D., Ozaeta L., Kaminska-Chuchmata A., (2015),
“Experiments of Trust Prediction in Social Networks by Artificial Neural
Networks”. Cybernetics and Systems. Vol 46, N 1-2, pp 19-34. Taylor and
Francis.

Nuifiez-Gonzalez J.D., Grafia M., Apolloni B., (2015), “Reputation features
for Trust prediction in social networks”. Neurocomputing. Vol 166, pp 1-7.
Elsevier.

Nuiiez-Gonzalez J.D., Ayerdi B., Graiia M., Wozniak M., (2015) “A new
heuristic for Influence Maximization in Social Networks”. Logic Journal of
the IGPL. Oxford. (submitted)

Grafia M., Nuiiez-Gonzalez J.D., (2015), “An instance of social intelligence
in the internet of things: bread making recipe recommendation by ELM
Regression”. Hybrid Artificial Intelligent Systems. Vol. 9121. pp 16-25.
Springer.

Nuiiez-Gonzalez J.D., Grafa M., (2015), “Graph-Based Learning on Sparse
Data for Recommendation Systems in Social Networks”. Bioinspired Com-
putation in Artificial Systems. Vol. 9108. pp 61-68. Springer.
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Nuiiez-Gonzalez J.D., Grafia M., (2014), “On the effect of high order repu-
tation information on Trust Prediction in Wikipedia’s Vote Network”. Euro-
pean Network Intelligence Conference (ENIC), 2014. pp 59-62. IEEE.

Nuiiez-Gonzalez J.D., Grana M., (2014), “Experiments on Trust Prediction
Based on Reputation Features”. International Joint Conference SOCO’14-
CISIS’14-ICEUTE’ 14. Vol. 299. pp 367-374. Springer.

Nuiiez-Gonzalez J.D., Grana M., (2014), “ELM predicting Trust from repu-
tation in a social network of reviewers”. Extreme Learning Machines 2013:
Algorithms and Applications. Vol. 16. pp 179-187. Springer.

Grafia M., Nufiez-Gonzalez J.D., Apolloni B., (2013), “A discussion on Trust
requirements for a social network of eahoukers”. Hybrid Artificial Intelligent
Systems. Vol. 8073. pp 540-547. Springer.

Thesis organization

The remaining the Thesis is organized as follow:

Chapter 2 shows the State of the Art of the three research lines. The aim
of this chapter is to set the stage for the various applications. Therefore,
we cover in detail the literature for each aspect, including some background
definitions that are used throught the Thesis.

Experimentation on Trust prediction is reported in Chapter 3. We define
and test here our reputation based features, some of them consisting in some
summary statistics in order to show the preponderacy of the selected topic

Chapter 4 deals with recipe generation. Therefore, it includes some specific
background and the specification of the computational pipeline involving a
direct model for satisfaction evaluation and an inverse model for innovation
generation. Experimental results over a synthetic dataset demonstrates the
approach.

Chapter 5 deals with product recommendation systems. Specifically, the
main contribution in this Chapter is the definition of two feature extraction
processes for rating prediction by machine learning. One based on the WoT
of the recommendation system, the other based on user similarity extracted
from the rating matrix.

Chapter 6 deals with computational approaches to Influence Maximization.
A new approach is contributed and empirical experimentation shows its im-
provements.
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* Chapter 7 gathers the conclusions from each of the research lines, thus it
concludes this Thesis proposing new future work.

* Appendix A describes real and synthetic databases used for experimentation.

* Appendix B gathers diverse computational algorithms used in the Thesis
which are not direct contribution of our work, but have been instrumental in
the realization of experiments.
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Chapter 2

State of the art

In this Chapter we gather descriptions of the state of the art of the three research
lines mentioned in the introductory Chapter. The Chapter is structured as folows:
Section 2.1 gives some basic definitions that will be used all along the Thesis.
Section 2.2 presents a view of the state of the art on trust prediction systems, the
subject of Chapter 3. Section 2.3 introduces the problem of social computing for
recipe generation, the subject of Chapter 4. Section 2.4 gives some background
on recommender systems, the subject of Chapter 5. Section 2.5 gives background
information on Influence Maximization, the subject of Chapter 6.

2.1 Some basic definitions

Let us recall some definitions. A graph is described by a collection V of n vertices
(or nodes) and m edges E that is denoted as G(V,E). An adjacency matrix A with
n X n size represents the nodes of the graph and existing links. Thus, an element
a;j € A from the adjacency matrix will be a;; = 1 if exists an edge that links both
vertices i and j. Sometimes edges have an associated weight, which may be a value
or set of values. The weight matrix W of size n x n contains those weights W =
[wi J']ijl ;wij € R. The degree of a vertex is the number of edges linking it with
other vertices. The matrix representation of the degrees is D = [d; f]?,.i: sdij R
The matrix L that represents the graph Laplacian is defined as L = D —A. There are
some well known measures of graph complexity and structure [106] such as degree
centrality, eigenvector centrality, katz centrality, pagerank, closeness centrality and
betweenness inter alia. Eigenvector centrality [19] is defined as x; = k| ! Y jAijx;
where k; are the eigenvalues of A and «; is the largest of them, A;; is an element
of the adjacency matrix and x is the centrality of vertex j. So, the centrality x; of
vertex i is proportional to the sum of the centralities of i’s neighbors.

11
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2.2 Related works on Trust

Trust is a central issue for users seeking online reliable interaction, whether it
consists of information to make some decision, or simply social interaction [76].
However, user specified trust relations are very sparse, only a very small fraction
of users do provide explicit trust information. Usually, social webservices allow
users to specify publicly or to keep track in private of the trust or distrust on an-
other users, thus creating to a Web of Trust (WoT) embedded in the social service.
Examples of trust-aware services are online recommendation systems, or crowd-
sourcing systems, such as wikipedia. For instance, trust has been proposed to filter
out controversial reviews [132], and in general to improve collaborative filtering in
social networks [30, 36].

2.2.1 Trust Properties

Several Trust Properties are been defined which are worth reviewing before talk-
ing on metrics and models, because they set the stage of the kind of mathematical
model. Transitivity, asymmetry [52] , and personalization-subjectivity [52, 31] as
the three main Trust properties that are relevant to algorithm development. Dynam-
icity, and context-dependency [31], reflexivity [3, 44], non antisymmetry, time-
based aging and distance-based aging [3] may be considered in some context.

Transitivity: in simplified form, mathematical transitivity means that if A — B
and B — C then A — C . The Trust relation does not support transitivity,
quoting [122]: “Alice may Trust Bob about movies, but not Trust him at all to
recommend other people whose opinion about movies is worth considering
or not Trust other people that Bob recommended as much as she Trusts Bob”.
In fact, Trust diminishes [121, 140] as the chain of Trust recommendations
increases in some exponential law of the length of the Trust path.

Asymmetry: Trust does not have to be a symmetrical concept, in other words,
two entities need not have the same degree of Trust in each other. A typical
example is that in a hierarchical environment the degree of Trust between
the supervisor and the employee is different [2, 52].

Personalization-subjectivity: for [52] Trust is inherently a personal opinion. Two
entities A and B could have a different opinion about the Trustworthiness of
another entity C. For [31] an entity A could Trust another entity B with a
certain degree of Trust.

Dinamicity: Trust should be expressed as a continuous variable, rather than as
a binary or even discrete-valued entity. A continuous valued variable can
represent uncertainty better than a binary variable [2, 31].
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Context-dependency: An entity can Trust other entity for some tasks but not for
other tasks [15]. For example, a node A from a network can Trust another
node B to ask for authentication tasks but not for key management tasks.

Reflexitivity: considering internal actions, if agents Trust themselves we have re-
flexivity of the Trust relation [44], which may be stated as the fact that the
Trust value of A on itself for any context is 1 [3].

Non-Antisymmetry: “If A Trust B and B Trust A, that does not indicate that
A=B” [3].

Time-based-aging: “The Trust value of A on B for a specific context C decreases
with the passage of time”. The Trust on a piece of information obtained at t i
time will decrease with the passage of time because in t i+1 some event may
change the value of the associated objects. New pieces of information must
be more Trustable than the older ones [3].

Distance-based-aging: “If node A collects Trust values about B from other nodes
in the network (recommendation), the Trust values collected from closer
nodes should be counted with more weight compared to the values collected
from distant nodes” [3].

2.2.2 Trust Metrics

Trust propagation and computing models are essentially directed graphs [127]
where nodes represent entities and edges trust relations labeled by some trust met-
ric values. Trust management may be centralized (when a central trusted arbiter
gives trust evaluations of the partners), or decentralized (where users are respon-
sible for the calculation of their own trust values for any target). It can also be
distinguished between reactive computation, that calculate trust values when ex-
plicitly required, and proactive, which compute continuously the trust values of the
peers, aiming to avoid delay in trust decisions. Trust computing must be resilient to
attacks, which may consist in node attacks giving arbitrary opinions on a compro-
mised node, or edge attacks inserting false edges in the network. Adding positive
and negative evidence to the trust computation allowing for an accurate and flexible
model. In communication networks, trust computing must be built at the routing
and protocol levels, as the basis for all the upper layers, quoting: “important issues
that should be considered by designers of trust metrics” [140]. Then, there is a part
of an example in Ad Hoc Networks using the given taxonomy. The second part
shows a selection of trust metrics proposed by [140], giving five types of metrics
based on the quoted references:
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* Binary State Metric. This metric uses binary states O and 1 to express trust
and distrust, which in some systems, is only considered as vote or obser-
vation. Therefore, binary state opinions are the building blocks of more
abstract trust computing.

* Discrete Scale Metric. Allows to choose an option in a given range. Once
the choice done, we can convert it to a quantity value, usually discrete.

* Probabilistic Metric usually represents the probability of a evaluated target
participant performing actions as the evaluating participant expects.

* Hybrid or multi-metric trust, i.e. to “use multiple metrics as a trust tuple
to express more comprehensive trust”. For example, [127] uses trust and
confidence to form an opinion space.

* Negative Values: Negative trust value can be interpreted as distrust. “Some
researches state the necessary of negative trust value to express bad impres-
sion. However, introducing negative trust value also brings in vulnerability.
Because generally negative of negative will produce positive result, mali-
cious participants can employ this feature to manipulate trust values in order
to promote their companies trust value” [140].

2.2.3 Trust Models

There are many trust models in the literature. For example, [127, 26, 134, 25, 24]
propose different trust models. We select two models. Marsh’s Model Proposed
by Marsh in 1994 in his Phd, it is considered the first prominent, comprehensive,
formal, computational model of trust [8, 14]. It consists in a set of variables and
ways to combine them arriving to a normalized value in the range [-1, 1]. Marsh
identified three types of trust: basic, over all contexts; general, between two peo-
ple and all their contexts occurring together; and situational, between two people
in a specific context. Bharadwaj’s Model A fuzzy computational model for trust
and reputation concepts is proposed in [14]. Quoting him, “The most appropriate
property to define the symmetric part is the reciprocity while the partner’s experi-
ence defines the asymmetric part. The reciprocity is the mutual favor or revenge
and therefore to model it, we need to find the agreement (both individuals are sat-
isfied or unsatisfied) and disagreement (only one of them is unsatisfied) between
two partners. To do so, we can define two fuzzy subsets on each partner’s ratings
(universe of discourse), namely satisfied and unsatisfied. The membership values
of satisfied and unsatisfied fuzzy subsets for a given encounter always sum up to
one, for example, 70% satisfaction indicates 30% dissatisfaction. From these two
fuzzy sets we can find the agreement and disagreement between the two partners”.
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2.2.4 Applications

Trust is a pervasive concern in human and computational interactions [15, 117].
We must trust the services we receive and we rely on for our work and daily life,
ranging from the use of cars and transports to the use of internet services, or the
interaction between computational agents performing searches or other delegated
tasks. Trust in automation [70] has been identified as a major concern in the devel-
opment of human centered computing, proposing active evaluation of trust strate-
gies to correct unjustified trust or mistrust, and to assess their consequences. In
general terms the trusters face some degree of risk when they decide to accept the
outcome of the trustee. Trust management [95, 94] is related with the prediction
of the expected risk or the affordable level of trust on the basis of all available
information. When the source of information is the opinion of other agents, the
witnesses, the system is based on Reputation. In the field of distributed systems,
such as Ad Hoc communication networks, Social Networks, Online Review Sys-
tems and Recommender Systems, the issue of managing Trust is critical for the
function of the system. Recommender Systems are common in e-commerce for
making personalized marketing. On the other hand, Online Review Systems (ORS)
allow users to provide reviews of products and thus become a user-oriented Rec-
ommender System. To help the user to navigate the reviews, the ORS provides the
possibility to state trust scores on the reviews, so that reviewers with more positive
trust scores will merit more attention. The issue, then, is how the observed trust
scores given by other users may influence the user, and may serve to predict his
own trust value. The truster makes decisions based on trust built on the trustee
part. Positive or negative results will maintain, increase or decrease the trust value.
The cold start problem rises when there is no previous experience about the trustee
behavior. Then, there is a need to predict the trust value from indirect informa-
tion, that is, from reputation information obtained from third party witness. Trust
prediction can be formulated as a classification problem, where feature vectors are
computed from the reputation information extracted from the network. Although
the trust relation between users is not transitive [31, 52, 122], reputation can be ac-
cepted as the best guess information that can be used to predict the trustworthiness
of a trustee. Trust prediction is becoming a central issue in many computational
problems involving the interaction of agents through online services. These agents
can be humans or autonomous computational entities. Much of the Semantic Web
and the Internet of Things will be supported on trusted interactions [8]. Trust can
be built from a history of interactions between a pair of agents, but still the question
of the cold start remains. What is the basic attitude of a truster regarding a trustee
when there is no previous history of interactions? It can be inferred indirectly from
user attributes, i.e. following some homophily reasoning (alike users like similar
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things), or it can be predicted from the trustee reputation.

2.2.5 Supervised approaches

Supervised systems perform feature extraction to train binary classifiers (e.g. Ran-
dom Forest, SVM [107, 87, 81]) for trust prediction. Feature extraction can in-
clude ancillary information [87, 81] trying to cover all possible influences between
users leading to trust. Specifically, in recommendations systems the information
about ratings and review evaluations is used to complement the WoT graph fea-
tures. Some works [107] elaborate on basic philosophical arguments (i.e. trust
antecedent framework for ability, benevolence and integrity) to derive feature ex-
traction procedures in recommendation systems. The classification data is strongly
imbalanced, so that research into the effect of strategies to cope with this issue is
an open research problem. It is also unclear whether the ancillary information is
useful or a source of noise in the classification.

2.2.6 Unsupervised approaches

The unsupervised approaches are either graph based methods of trust propagation
or try to derive user similarity measures from ancillary information. An instance of
graph based trust prediction [4] applies a capacity-first maximal flow algorithm to
identify strong paths leading to trusted user groups. Also, [12] performs graph min-
ing to detect patterns that allow to derive rules for the completion of the ego-graph
of one user with trusted users. Homophily is proposed [123] to regularize previous
unsupervised approaches, such as Pearson Correlation Coefficient, Jaccard coef-
ficient or Matrix Factorization. Low rank matrix factorization searches for small
dimension decompositions of the trust graph adjacency matrix, in fact looking for
compact (trust) communities with early applications in collaborative filtering [80].
Global and local information effect in matrix factorization approaches is examined
in [124]. Generative models [33] try to discover the underlying communities by
latent variable analysis. Finally, the Ant Colony Optimization approach is used in
[13] to perform trust propagation, including the popularity modeling by pheromone
accumulation.

2.2.7 Imbalanced classification problems

Imbalanced classification problems appear when some classes are more frequent
than others, resulting in datasets with significantly more samples for some classes.
Trust prediction often fails in this category of imbalanced problems, if we con-
sider the negative trust class which is much less frequent than the positive or the
neutral, because people tendency is not to explicit the negative trust. Conventional
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classifier building approaches have the problem of bias towards the most frequent
classes. In a Bayesian formulation, classifiers guided by the maximization of the
overall accuracy are biased towards classes with the higher a priori probability.
This implies that minority classes are underestimated. In many real life situations
the minority classes are the interesting ones, such as in target detection, or anomaly
detection problems.

Two ways of dealing with the issue of class imbalance have been developed in
the machine learning community. One assigns different costs to training examples.
Assuming that the minority class has a greater cost associated to error committed
to it allows to drive the learning process towards its more accurate modeling. The
other pre-processes the original dataset, either by over-sampling the minority class
and/or under-sampling the majority class, such as the SMOTE process that will
presented below [28]. Various representatives of these approaches have been eval-
uated in [91, 89] against a collection of benchmarking datasets, reaching the con-
clusion that no method prevails against the others. In other words, no statistically
significant differences were found between methods when taking into account the
complete collection of benchmarking problems. However new lines of work arise
from the study of the intrinsic properties of the datasets [89], or the characteris-
tics of the validation process [90]. Empirical studies on specific domains, such as
software quality, are curried out nowadays [116].

A recent cost sensitive approach is [82] proposing a new cost-sensititive ensem-
ble of decision trees. The approach performs an evolutive search for the optimal
classifier selection and fusion. Base classifiers are cost-sensitive trees, performing
local sequential search at each node. Another evolutionary algorithm approach to
develop cost sensitive Fuzzy rule classifiers is presented in [42] following a Pitts-
burg approach, where each rule corresponds to an individual. Boosted SVM [141]
are ensembles of SVM which are trained in a procedure alternating two steps: solv-
ing the optimal SVM problem for fixed weights of the data samples, and updating
these weights in an external loop. Along these lines, [99] propose the adjustment of
the F-measure for the evaluation of the classification results while performing fine
tuning of the kernel scaling in SVM based approaches. On the other hand, works
on data resampling are less abundant. Recent evolutionary sampling techniques
have been proposed [47] in order to select the best representatives for generalized
sample representation by hyper-rectangles. A heuristic method for selection of bal-
anced datasets minimizing the majority class while maximizing the minority class
is provided in [133].
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2.3 Social computing for Recipe Generation

There is an emerging view of social networks as information and knowledge repos-
itory at the service of the social agents to solve specific problems or to learn pro-
cedures relative to a shared domain of problems. Besides popular web service
implementations, social networks have shown to be useful to spread educational in-
novations. Social computing [130] may be defined as the result of social interaction
when it is oriented towards information processing or decision making. Prelimi-
nary elaborations towards a taxonomy of social computing systems [61] include
the term subconscious intelligent social computing [59, 60, 61, 62] characterized
by some hidden layer of intelligent processes that helps to produce innovative so-
lutions to the problems posed by the social players. The social player asks for the
solution of a problem, i.e. how to wash my laundry composed of items with some
specific dirtiness and according to my preferences? The social framework pro-
vides solutions either from previous reported experiences of other social players or
as innovation generated by the hidden intelligent layer.

Intuitive description of a system In the framework of the Social and Smart
(SandS) project! users are called eahoukers [6]. There are two repositories of
knowledge in the SandS Social Network containing tasks to be carried on the ap-
pliances and the recipes solving them. When a user requires a task to be performed
(blue dashed arrows) there are two possible situations, either the recipe solving
the task is known or not. In the second case, the so called Networked Intelligence
incorporating the hidden intelligent layer is in charge to produce a new recipe to
solve the unknown task. In other words, it is in charge of achieving innovation
(green arrow). The recipe found either way is returned to the appliance (black ar-
rows). In the specific case of the breadmaker appliance, we do not have a proper
task specification, because it is always the same. In some way it can be said that
the specification of the desired satisfaction parameters, i.e. baking, crustines, soft-
ness, fragance, are the task specification. So, real life experiments give us pairs
of (recipe, satisfaction) vector values, which are always the result of setting the
breadmaker parameters and measuring the resulting bread. There is no way in real
life to produce the data in the inverse way, setting the user satisfaction to see what
is the resulting recipe. Therefore, this inverse map must be estimated from the data
gathered in the direct experiments.

The SandS system simplified description introduces the fundamental questions
that we are tackling in this paper by designing a prototype recommender system
for a specific appliance, the breadmaker, and its validation.

"http://www.sands-project.eu/
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* The first question is: how to build a recipe recommendation from the spec-
ification of the user satisfaction? That problem is addressed by building an
Extreme Learning Machine? [73, 72] from the experimental data that imple-
ments the inverse mapping.

* The second question is: how to decide that we need innovation? In other
words, the inverse model may produce a recipe which in fact is far from solv-
ing the problem, so we need to create some new recipe outside the knowl-
edge embedded in the mappings. How we detect that situation? The answer
lies in the application of the direct mapping from recipes to satisfaction, and
measuring the distance between the predicted satisfaction vector and the one
specified by the user.

* The third question is: how to perform innovation? We need to build some
generative process that achieves to create new recipes optimizing expected
satisfaction. The solution proposed in [100] is a stochastic search process
guided by the learned user satisfaction model, specifically an Evolutionary
Strategy approach [55].

A critical issue is the lack of real life data supporting the design and validation of
this architecture. The SandS project failed to build the framework that would allow
users to experience this social interaction, and no actual data was generated before
project completion. So we have to resort to synthetic data in Chapter 4 in order to
show the intended workings of a recipe recommendation system.

2.4 Product Recommendation Systems

Recommender systems [18] are taking a prominent role in the interaction with the
virtual world incorporated by the miriad of webservices used on a daily basis by
the common people. Early realizations included forms of collaborative filtering,
however the advent of the Internet of Things will allow to use implicit, local and
personal information gathered by the sorrounding environment of smart objects.
Recommender Systems are currently being applied in many different domains.
Some example applications are: intelligent tourism [20], movie suggestions [21],
electronic marketplaces [32], and university library research [126]. The State of
the Art techniques involved in recommender systems deal with the problem of ac-
curate representation and management of the user profile, requiring computational
tools from many fields of Artificial Intelligence, such as Multi-agent systems, ad-
vanced optimization techniques, clustering of the users data to detect communi-
ties, and advanced knowledge representation and reasoning for the management of

2Source-code: http://www.ntu.edu.sg/home/egbhuang/elm_codes.html
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uncertainty. Collaborative filtering social recommender systems [138] use social
network information as additional input for improved recommendation accuracy,
falling into two categories of systems: matrix factorization based approaches, and
neighborhood based approaches.

2.4.1 Applications of learning on graphs

Graph-based learning is already being used in other contexts. For instance, [35]
proposes graph-based semisupervised learning graph classifier based on kernel
smoothing. A Sequential Predictions Algorithm (SPA) are used as a graph-based
algorithm which propagates labels across vertices. The work in [134] gives a
graph-based multiprototype competitive learning and its applications to solve parti-
tioning nonlinearly separable datasets. On the other hand, [136] proposes a clustering-
based graph Laplacian framework for value function approximation in reinforce-
ment learning by subsampling in Markov Decision Processes (MDPs) with con-
tinuous state spaces. In patter recognition [23] proposes learning graph match-
ing. In graph matching, patterns are modeled as graphs and pattern recognition
amounts to finding a correspondence between the nodes of different graphs. The
used method for learning graph matching is bistochastic normalization, a state-
of-the-art quadratic assignment relaxation algorithm. Graph-based semisupervised
learning (GSSL) as a paradigm for modeling the manifold structures that may ex-
ist in massive data sources in highdimensional spaces is proposed in [88]. Sparse
canonical correlation analysis [9, 10] has been used in neurosciences to find the
data projection which is best correlated with some measure of interest, in order to
find image biomarkers. It performs Singular Value Descomposition (SVD) for di-
mensionality reduction strategy. The whole approach is called eigenanatomy in the
context of neuroimaging data, identifying generalizable, structural MRI-derived
cortical networks that relate to distinct categories of cognition.

2.4.2 Sparse data and classification

A sparse matrix has most of its elements equal to zero. When dealing with large
matrices, traditional methods to store the array in memory of a computer or for
solving systems of linear equations need a lot of memory and processing time.
Specific algorithms for sparse matrices have been designed and are available, i.e.
the Matlab implementations>. In sparse representation (SR) a signal can be ap-
proximated by a sparse linear combination of dictionary atoms. It is formulated as

follows:

3https://sites.google.com/site/sparsereptool/
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b=xa;+...+xa,+¢€ :AX—|-£,

where A = [ay,...,ax] is called dictionary, a; is a dictionary atom, X is a sparse
coefficient vector, and € is an random error term. The model parameters are A, X, k
. Finding the sparse representation implies solving the problem of finding the linear
combination of atoms in a dictionary with minimal size and reconstruction error.
Each signal can be reconstructed by only one linear combination of atoms, and the
number of non zero coefficients must be as small as possible. Thus, finding the
representation corresponds to the following optimization problem:

1
mini | b—Ax |5 +AT [|x||;s.tx > 0.
X

2.4.3 Applications of sparse representations

Several works focus their interest in solving sparsification problems. We summa-
rize some works about it. For instance, [101] relates sparse coding and Multilayer
Perceptron (MLP) by converting sparse code into convenient vectors for MLP in-
put for classification of any sparse signals. In [11] a Bayesian framework 3-D
human pose estimation from monocular images to get a posterior distribution for
the sparse codes and the dictionaries from labeled training data is proposed. On
the other hand, [16] gives a method that constructs a series of sparse linear SVMs
to generate linear models in order to reduce data dimensionality. A survey of algo-
rithms and results to induce grammars from sparse data sets can be found in[34].
Models of biological neurons to create sparse representations with true zeros for
naturally sparse data are given in [51]. The large-scale matrix factorization prob-
lem is solved via optimization algorithm [97], based on stochastic approximations.
Transfer learning for image classification with sparse prototype representations is
described in [113]. Finally, [128] combines a general Bayesian framework with
Relevance Vector Machines in order to obtain sparse solutions to regression and
classication tasks utilising linear models of the parameters.

2.5 Influence Maximization

Influence Maximization was proven to have NP-complete computational complex-
ity in [77], for both the Independent Cascade model (ICM) [54], and the Linear
Threshold model (LTM) [64] propagation models. In fact, the computational cost
of spreading influence is #P-hard, while the combinatorial search for the mini-max
set of nodes in equivalent to NP-hard problems. They also show that the greedy
search solution is guaranteed to be at worst within (1 —1/¢)% of the optima for



22 CHAPTER 2. STATE OF THE ART

these propagation models, on the basis of previous results for submodular func-
tions. In general the estimation of the influence o (S) of IM-Seed node set S C V
must be carried out by simulation, i.e. repeating the random process of influence
propagation a number of times. Influence o (S) was proven to be a submodular
function for both LTM and ICM propagation models, as well as for their general-
izations. The critical computational load is, therefore, in the estimation of influence
o (S), [67] propose a fast computation of ¢ (S) that stores some of the previously
computed influence sets, so that they do not need to be recomputed each time.
Its disadvantage is the large memory requirements to store the precomputed influ-
ences. Another approach to reduce the time complexity of influence computation is
a a Divide-and-Conquer method [120] applied to Influence Maximization on large-
scale mobile social networks in two steps. First, the large-scale social network is
divided into communities selected according to information diffusion, assuming
ICM propagation model. Second communities are selected to look for influential
nodes by dynamic programming. Further, a model of parallel computation of the
influence spread in each community is proposed. Similar community decomposi-
tion is proposed in [114] where IM-Seed nodes are then selected from the commu-
nities. Another kind of acceleration is preprocessing the graph to obtain the spread
trees which allow efficient computation of influence probabilities. This approach
makes [83] in the context of targeted influence maximization, where some nodes
are the target of the viral marketing, while others are susceptible or immune. Deal-
ing with immune nodes requires some care, but it is not a source of complexity.
Besides, graph communities are useful to reduce influence computation problem
complexity also in [83]. The greedy algorithm has quadratic complexity on the
number of nodes (which can be large in real life social networks), in order to attack
this problem the Cost-Effective Lazy Forward selection) (CELF) method has been
proposed [86], which consists in maintaining an ordered table of nodes and their
marginal gain, so that influence candidates are taken from the top of this list. An
enhancement to CELF, the CELF++ [57] fully exploits influence spread function
submodality. Further, the Simpath algorithm [58] is based on the idea that under
LTM propagation it is possible to compute an estimation of the spread by enumer-
ation of the simple paths emanating of a node. Another optimization comes by
the hand of a new propagation model called credit distribution [56], which avoids
Monte Carlo simulation to achieve estimation of the spread on the basis of propaga-
tion traces. Another optimization considers the number of simple paths departing
from a node as the indicator of spread potential [45] (ASIM), achieving a scalable
algorithm for Influence Maximization under the ICM.

A different approach is the use of heuristics, such as Ant Colony Optimization
(ACO) [39], to search for an almost optimal solution. One approach maps the
influence maximization problem into the problem of finding a cycle of prescribed
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length with maximum influence spread. ACO are well suited to find cycles in
graphs, however the approach only contemplates the selection of IM-Seed nodes,
it does not reduce the complexity of computing influence spread. Another heuristic
search tested is Simulated Annealing [75], where minimal set solution was trivially
encoded as a binary vector and the influence spread was computed by Markov
random simulation.

To avoid the computational load of influence spread, some authors use node
features such as betweenness, diversity of community belonging, or k-shell de-
composition value as indirect measures of influence [43]. In this same line [115]
proposes “supermediators” using as indirect measure of influence the information
spread, which decreases if the supermediators are removed from the network.
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Chapter 3

TRUST PREDICTION

Trust prediction appears in much diverse areas of computational sciences, from
mobile communications to social networks. To tackle this problem we propose
two different classification system approaches in this Chapter. Section 3.2 relates
the results of the experiments using Artificial Neural Networs (ANN) for Trust
prediction. Section 3.3 describe the second aproach proposing a new feature extra-
tion process ensuring that all reputation features are of the same dimension. The
description of the datasets and the computational algorithms are in Appendices A
and B, respectively. Conclusions are gathered in Chapter 7.

3.1 Problem definition

Given a Web of Trust (WoT) associated to some social system, specificed by
weighted graph G = (U,E,T), where there is a trust value 7, € {—1,1} associ-
ated with each edge e € E. We want to predict how a User A would trusts another
User B, positive or negatively, i.e. we want to predict 45 , from our knowledge of
the WoT. Therefore we have a two class classification problem, which can be dealt
with by a variety of available algorithms, given an appropriate feature definition.

3.2 Experiments of trust prediction in social networks by
Artificial Neural Networks

This section describes our first attempt to solve the classification problem using
directly the trust values of the “friends” of the truster user A on the query trustee
B. Formally, we build a feature set F = {tcp|(A,C) € E&(C,B) € E}. As these
feature sets have quite differen sizes, to have feature vectors of the same dimension
we discard elements. Computational experiments test the effect of discarding such
data.

25
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3.2.1 Experimental design

The computational experiments have been designed trying to answer the following
questions:

* How well the ANN classifiers would generalize trust prediction? This ques-
tion is addressed by the application of cross-validation methodology, ensur-
ing that the test set is fully independent of the training set.

* How sensitive are ANN to the future growth of the social database? To an-
swer this question, we have applied several partitions of the data into folds.
The smaller partitions, such as 2-fold cross-validation, correspond to the sit-
uation where the size of the database is expected to double. On the other
hand, the larger number of folds, i.e. 20-fold cross-validation, correspond to
the situation where database size increase is marginal. Specifically, we make
a?2,5,10, 15 and 20-fold cross validation experiments.

* What is the influence of pre-processing procedures, such as SMOTE, on the
generalization results, specially in the minority class of distrusted relations?
For this question, we have repeated all the experiments with and without
SMOTE preprocessing.

* What is the effect of discarding data to obtain constant feature size?.

Regarding the performance measures reported in the experimental results section,
we have focused on the Precision and Recall measures, defined as PRECISION
:$ and RECALL = TPT+7P1«“N’ respectively. We report these values for each of
the classes, trust and distrust, in order to assess the quality of response in each
case. Recall is the classifier true positive prediction ratio relative to the entire
positive class data, while Precision is the classifier true positive prediction ratio
relative to the total positive predictions. Minority classes suffer from small recall

and precision values in imbalanced classification problems.

3.2.2 Experimental results

The figures in this section contain plots of average Precision and Recall for varying
number of folders in the cross-validation process. As said before, small number of
folds can be interpreted as expecting a greater growth of the database between train-
ing and operational phases. A crucial question, because we want to assess whether
predictors built at one moment in time will remain valid in the future. Plots refer to
different classifiers (MP=Multi-Layer Perceptron, SVM=Support Vector Machine,
RBFC=Radial Basis Function Conjugate training, RBFN=k-means plus LSE) and
feature vector dimension (d = 3 or d = 10). Notice that the range of values changes
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Figure 3.1: Average Precision of Trust prediction for diverse numbers of folders.
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Figure 3.2: Average Precision of Distrust prediction for diverse numbers of folders.
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Figure 3.3: Average Recall of Trust prediction for diverse numbers of folders.
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Figure 3.4: Average Recall of Distrust prediction for diverse numbers of folders.
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Figure 3.5: Average Precision of Trust prediction for diverse numbers of folders
after SMOTE preprocessing of the datasets.
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from one plot to another. We have restricted them in order to highlight the differ-
ences between classifiers.

The first collection of experiments are carried out without any balancing pre-
processing of the dataset. Figures 3.1 and 3.2 provide plots of the Precision of the
Trust and Distrust classes, respectively, while figures 3.3 and 3.4 provide plots of
the Recall of the Trust and Distrust classes, respectively. The second collection of
experiments are carried out performing a SMOTE preprocessing of the dataset to
improve imbalanced classes. Figures 3.5 and 3.6 provide plots of the Precision of
the Trust and Distrust classes, respectively, while figures 3.7 and 3.8 provide plots
of the Recall of the Trust and Distrust classes, respectively. In the following we
discuss the most relevant effects that can be appreciated from the figures.

Effect of class imbalance It is quite notorious comparing the Recall plots of
class Trust with those of the class Distrust. Best Recall results for Distrust are
below 60% while for Trust are above 97% in all cases, sometimes quite close to
100%. The difference in Precision between Trust and Distrust classes is not so
dramatic, both are very high. Trust Precision is above 90% for many classifiers,
while the Distrust Precision is 2% down in the best cases, and 10% in the worst
cases.

Effect of SMOTE preprocessing Comparison of results with and without SMOTE
preprocessing show that there is a small decrease in Precision for both Trust and
Distrust classes, though at the same time there is an effect of compression of the
classifier Precision results. Without SMOTE the interval between best and worst
Precision results (removing some outliers) is about 6% for the Trust class and 10%
for the Distrust class, while after SMOTE this interval is reduced to 2% for the
Trust class and 4% for the Distrust class. SMOTE has almost no effect on the Re-
call of Trust class, but there is relatively strong effect on the Recall of the Distrust
class: there is an increase of 7% of the best classifiers, and a big reduction of the
interval between the best and worst classifiers, from more than 10% down to 3%.
This effect is remarkable because SMOTE adds robustness to the choice of classi-
fier and feature vector size. However, the effect of SMOTE is not uniform on all
the classifiers. For instance, focusing in the MLP classifier with feature vectors of
size 10 (red line), its ranking among the classifiers changes if SMOTE is applied in
almost all plots. Another example of this variable effect is the change of ranking
of the RBFN classifier in the plots of Distrust Recall.

Effect of feature vector size The comparison of plots for feature vector sizes 3
an 10 shows that there is a big effect of the number of features, in general general
towards worse results with the smaller set of features. However, there are some
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paradoxical results, such as the plots for Recall of the Trust class (with and without
SMOTE) that show the reverse effect. This may be due a stronger bias towards the
majority class with smaller feature vector. It seems that the SVM is the classifier
less affected by this change of feature size. In general, it seems that 10 features is
enough to obtain good results on the Trust class. However, the observation of the
big performance gaps in the performance measures of the Distrust class suggest
that increasing the feature size would improve results on this class.

Effect of classifier Regarding Precision of both classes and Trust Recall, the
SVM provides the best results (with some exception in the Trust Precision after
SMOTE). The SVM is quite robust to the number of features and cross-validation
folders. Interestingly, in the most difficult issue of Distrust Recall the RBF and
MLP provide better results and are more robust. This may point out to some kind
of overfitting to the most frequent class by the SVM. However, this is not a general
assessment of the performance of SVM as we are using linear kernel SVM.

Effect of the number of folders The number of folders in the cross-validation
process is the way we have to pose the question: the classifier remains valid after
the growth of the system? The smaller number of folders is 2, meaning that we ex-
pect the system to double in size for testing. It can be appreciated a general trend to
improved results as the number of folders increases, meaning that most classifiers
can cope with small additions to the system. In fact, for some plots this parame-
ter seems to have the greatest effect. A very interesting result is the resiliency of
SVM to this parameter: they show almost a flat response in all plots. In general,
this is a very encouraging result, because it allows to expect that current studies
will remain useful in the future. Interestingly, the MLP and RBF architectures also
show this resiliency in the difficult Distrust Recall case, with and without SMOTE
preprocessing.

Comparison with results in the literature Though a rigorous meta-analysis on
the results found in the literature is difficult due to the diversity of approaches,
performance measures and experimental details, we can refer some comparative
results found on the Epinions database which show that the proposed approach is
state-of-the-art. In [124] the Accuracy reported for various sizes of training sets
is in the order of 80% to 90%, we can roughly compare it with the mean of Trust
and Distrust Precisions, finding that our approach improves it. The Precision re-
ported in [12] for Epinions dataset is below 90%, hence our results improve almost
always. In the works of [4] the goal is to recover groups of trusted people, hence
the definition of Precision and Recall is somewhat different because they refer to
the percentage of the collection of n peers tested that are trustworthy, however their
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Figure 3.9: Unconditional reputation features of witnesses {C;} on the trustee B.

results are quite low compared with ours (maximum 20% Precision, 30% Recall).
Best Precision reported in [13] is below 90%. In [81] best Precision and Recall
results are below 80% and 70%, respectively.

3.3 Reputation Features for Trust Prediction in Social Net-
works

This section describes how we extract reputation feature vectors of constant size,
appropriate for machine learning algorithms, invariant to the size of the reputation
sets used in the previous section. We report increasingly good prediction results.

3.3.1 Feature extraction

From the original databases, we perform feature extraction in two different ways to
obtain the reputation feature datasets, which will be published at the group’s web-
site! for independent third party assessment of results and experimentation. From
the original database of triplets, we build several databases of reputation features,
consisting on the observation of the Trust values of related users. Each database
entry is composed of a feature vector of specific dimension and the trust value to
be predicted. Let us introduce some common notation: For each triplet (A, B,t4p)
we construct a list of witness users Lyg = {C|(C,A,tac) € Z N\ (C,B,tcg) € 7},
where Z denotes the original database of triplets. The node A queries its trusted
peers C; about their trust on target trustee B. The computation of the feature ex-
traction took several days due to the large database sizes and the need to perform
exhaustive examinations. We did not record computation times precisely.

Thttp://www.ehu.es/ccwintco/index.php/GIC-experimental-databases
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Figure 3.10: The four possible paths from truster A to trustee B through a witness
C according to the trust labels used for the probabilistic reputation features.

3.3.1.1 Raw reputation vectors of fixed dimension

Figure 3.9 illustrates the reputation features provided by the witness and that are
used to achieve the construction of the feature vector for a given (A, B) pair. Ma-
chine learning classifiers are often working in a data space of specific dimension,
so that feature vectors are of fixed dimension. The set of witness that provide the
reputation values may have any size. To solve this problem, a naive approach to
the construction of the reputation database is as follows: Given feature vector di-
mension d, we discard the triplet (A, B,tap) if |Lap| < d. If |Lag| > d, we perform
a random selection of d witness nodes C obtaining LYz such that |L};| = d . The
input/output pair (X,Y) in the reputation feature database corresponding to triplet
(A,B,tsp) is constructed such as X = {tc g|C € L}z } and Y = 145. We have con-
sidered d = 3 and d = 10 in the present paper, in other words, the input data X is a
matrix of 3 or 10 columns.

3.3.1.2 Probabilistic feature vectors

Another approach to obtain fixed size feature vectors is to consider some func-
tions on the variable size reputation sets obtained from the witness sets, i.e. some
statistics. In this paper we consider probabilistic features which are the conditional
probabilities of the witness trust on the trust of the truster on the witness. They are
computed as follows: For each set of witness Lyp we differentiate the following
sets:
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LéJr = {CELAB‘tAC: +1 Atcp :+l},

Llg ={C € Lagltac=+1Atcp=—1},

LEB_ = {CELAB|tAC: —1Atep = —1}

These sets correspond to the possible kinds of paths linking the truster to the trustee
through some witness. Figure 3.10 illustrates these four possible paths. Then we
can compute the following conditional probabilistic features of the reputation fea-
ture set:

|Lég

|Lag|’

P(tcg=+1|tac =+1) =

|Lés |
P(Z‘CB =—1 ’tAC = +l) = |LAB| ,

_ |Les |
|Lag|’

s
|Lag|

Therefore, we obtain a feature vector of low dimension (i.e. 4) that summa-

P(ZCB =41 |tAC: —1)

P(ICB =—1 |tAC = —1)

rizes the trust information on the witness set. After calculation of the probabilistic
feature vectors in the case of Wikipedia, we remove instances with NaN values, so
that the final feature dataset has 75,760 instances (78.45% of class “1”, and 21.55%
of class “-1”). From the Epinions database, we obtain a dataset with 547,694 in-
stances (89.01% of class “1”, and 10.99% of class “-1”), so that coverage of the
Epinions database is 100% in the experiments.

3.3.2 Experimental work and Results

Machine learning classification algorithm implementations are obtained from Weka?.
Specifically, we have tested Naive Bayes (NB), Multilayer Perceptron (MLP), Ra-
dial Basis Function classifier (RBFC) and network (RBFN), Support Vector Ma-

Zhttp://www.cs.waikato.ac.nz/ml/weka/



36

CHAPTER 3. TRUST PREDICTION

chine (SVM), AdaBoost, and decision tree algorithms JRip and J48. Computa-
tional experiments consist on 10-fold cross-validation over the whole databases.

We report overall average accuracy (OA), and per class recall (R) and precision (P)

measures. The two classes considered are Trust (+1) and Notrust (-1).

3.3.2.1 Results on raw reputation features

In the first experiment, we build classifiers over raw reputation feature vectors of

static size. Feature vectors are composed of the trust (1) and distrust (-1) values of

the witness users towards the trustee. The class distributions are very imbalanced,

which account for the poor recall and precision results of the Notrust class, and the

corresponding low OA. We also report results after the application of database bal-

ancing techniques, i.e. SMOTE, which improve the performance over the Notrust

class.

Results

Table 3.1: Results of cross-validation experiments on the raw reputation features

of the Epinions Database without SMOTE preprocessing - 10 and 3 features.

10 features 3 features
Trust Notrust Trust Notrust
Classif. | OA | R P R | P ] OA[ R P R P
NB 90.02 | 100.0 | 90.0 | 0.0 0.0 || 90.02 | 100.0 | 90.0 | 0.0 0.0
MLP 9380 | 98.8 | 94.6 | 49.0 | 81.5 | 93.41 | 99.3 | 93.7 | 399 | 87.1
RBFC 9390 | 98.9 | 94.6 | 49.24 | 82.7 || 93.41 | 99.3 | 93.8 | 452 | 86.1
RBFN 9375 | 99.5 | 939 | 41.6 | 90.8 || 92.77 | 98.6 | 93.7 | 4040 | 75.8
SVM 9390 | 99.0 | 945 | 47.6 | 84.6 | 93.44 | 99.5 | 93.6 | 38.6 | 89.8
AdaBoost | 93.43 | 984 | 945 | 485 | 77.2 || 93.24 | 98.2 | 945 | 48.9 | 74.6
JRip 93.87 | 98.8 | 94.6 | 49.1 | 823 | 93.44 | 99.5 | 93.6 | 38.6 | 89.8
J48 9386 | 99.0 | 945 | 47.6 | 839 | 93.44 | 99.5 | 93.6 | 38.6 | 89.8
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Table 3.2: Results of cross-validation experiments on the raw reputation features
of the Epinions Database after one SMOTE iteration of database balancing - 10
and 3 features.

10 features 3 features
Trust Notrust Trust Notrust
Classift. | OA | R | P [ R [ P | OA | R P | R | P
NB 85.77 | 88.2 | 94.0 | 74.7 | 58.5 || 90.02 | 100.0 | 90.0 | 0.0 | 0.0
MLP 90.03 | 97.8 | 90.7 | 549 | 849 || 89.45 | 97.5 | 904 | 53.1 | 82.6
RBFC 90.08 | 97.6 | 90.9 | 56.1 | 84.0 || 89.49 | 974 | 904 | 53.6 | 82.3
RBFN 89.84 | 97.3 | 909 | 56.2 | 82.1 || 89.49 | 974 | 904 | 53.6 | 82.3
SVM 90.15 | 98.1 | 90.6 | 54.1 | 86.5 || 89.49 | 974 | 90.4 | 53.6 | 82.3
AdaBoost | 89.74 | 97.5 | 90.7 | 54.8 | 82.8 || 89.49 | 974 | 904 | 53.6 | 82.3
JRip 90.09 | 98.0 | 90.7 | 54.5 | 85.7 || 89.49 | 974 | 904 | 53.6 | 82.3
J48 90.12 | 98.0 | 90.7 | 54.5 | 85.7 || 89.49 | 974 | 904 | 53.6 | 82.3

Table 3.3: Results of cross-validation experiments on the raw reputation features
of the Wikipedia Database without SMOTE preprocessing - 10 and 3 features.

10 features 3 features
Trust Notrust Trust Notrust
Classif. | OA | R P [R|PJOA]|] R P [R]P
NB 90.02 | 100.0 | 90.0 | 0.0 | 0.0 || 90.02 | 100.0 | 90.0 | 0.0 | 0.0
MLP 90.02 | 100.0 | 90.0 | 0.0 | 0.0 || 90.02 | 100.0 | 90.0 | 0.0 | 0.0
RBFC 90.02 | 100.0 | 90.0 | 0.0 | 0.0 || 90.02 | 100.0 | 90.0 | 0.0 | 0.0
RBFN 90.02 | 100.0 | 90.0 | 0.0 | 0.0 || 90.02 | 100.0 | 90.0 | 0.0 | 0.0
SVM 90.02 | 100.0 | 90.0 | 0.0 | 0.0 || 90.02 | 100.0 | 90.0 | 0.0 | 0.0
AdaBoost | 90.02 | 100.0 | 90.0 | 0.0 | 0.0 || 90.02 | 100.0 | 90.0 | 0.0 | 0.0
JRip 90.02 | 100.0 | 90.0 | 0.0 | 0.0 || 90.02 | 100.0 | 90.0 | 0.0 | 0.0
J48 90.02 | 100.0 | 90.0 | 0.0 | 0.0 || 90.02 | 100.0 | 90.0 | 0.0 | 0.0
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Table 3.4: Results of cross-validation experiments on the raw reputation features
of the Wikipedia Database after one SMOTE iteration - 10 and 3 features.

10 features 3 features
Trust Notrust Trust Notrust
Classi.t. | OA | R | P [ R [ P || OA | R P [ R P
NB 75.19 | 81.6 | 84.7 | 56.1 | 50.5 || 90.02 | 100.0 | 90.0 | 0.0 0.0
MLP 76.86 | 93.8 | 79.2 | 26.4 | 58.6 || 75.56 | 95.1 | 774 | 17.2 | 54.0
RBFC 77.04 | 93.1 | 79.7 | 28.9 | 585 || 7598 | 94.8 | 77.9 | 20.0 | 56.0
RBFN 76.87 | 933 | 79.5 | 27.9 | 58.1 || 75.87 | 94.3 | 78.0 | 20.7 | 55.03
SVM 76.87 | 94.0 | 79.1 | 25.7 | 589 || 75.99 | 96.2 | 77.3 | 15.6 | 579
AdaBoost | 76.42 | 95.1 | 782 | 20.6 | 58.5 || 7593 | 943 | 78.1 | 21.0 | 55.3
JRip 76.40 | 91.5 | 79.9 | 31.2 | 552 || 7599 | 96.2 | 77.3 | 156 | 57.9
J48 76.78 | 94.1 | 789 | 25.0 | 58.7 || 7599 | 96.2 | 77.3 | 156 | 57.9

Table 3.5: Results of cross-validation experiments on the raw reputation features
of the Wikipedia Database after two SMOTE iteration - 10 and 3 features.

10 features 3 features
Trust Notrust Trust Notrust
Classi.t. | OA | R | P [ R [ P || OA | R P R]|P
NB 71.31 | 81.2 | 73.6 | 56.5 | 56.5 || 90.02 | 100.0 | 60.0 | 0.0 | 0.0
MLP 71.03 | 758 | 75.8 | 63.9 | 63.9 || 69.84 | 79.1 | 72.9 | 559 | 64.2
RBFC 71.27 | 76.1 | 76.0 | 64.1 | 64.2 || 69.84 | 79.1 | 72.9 | 559 | 64.2
RBFN 70.97 | 69.1 | 79.1 | 73.7 | 61.5 || 69.84 | 79.1 | 72.9 | 559 | 64.2
SVM 70.97 | 70.1 | 79.0 | 73.4 | 61.8 || 69.84 | 79.1 | 72.9 | 559 | 64.2
AdaBoost | 67.46 | 88.9 | 67.3 | 354 | 68.1 || 67.42 | 87.1 | 67.7 | 38.1 | 66.3
JRip 71.27 | 73.2 | 77.6 | 684 | 63.1 || 69.84 | 79.1 | 72.9 | 559 | 64.2
J48 7125 | 72.3 | 78.1 | 69.6 | 62.7 || 69.84 | 79.1 | 72.9 | 559 | 64.2

Tables 3.1 to 3.5 provide results on the Epinions and Wikipedia datasets of raw
reputation features of vector dimension 10 and 3. The effect of database imbal-
ance is stronger for the Wikipedia database. Tables 3.1 and 3.3 present the results
without the application of the SMOTE preprocessing. The OA values are heavily
influenced by the Trust class success, in Epinions the OA average for 10 and 3 fea-
tures (there is not significant difference due to feature size) is 93% in Table 3.1, and
90% in the Wikipedia database. In the latter, results for Notrust class are zero for
all classifiers and feature sizes. The application of SMOTE does not improve the
OA, in fact it goes down to 89% in Epinions (Table 3.2) and to 76% in Wikipedia
(Table 3.4), however there is a clear improvement on the Notrust classification in
recall and precision of Notrust which can compensate the worsening for Trust if the
cost of false Trust is much higher than that of false Notrust. Additional iterations of
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SMOTE do not improve the OA, and continue the decrease/increase of recall and
precision for the Trust/Notrust class, as shown in Table 3.5 where Notrust reaches
73% recall for 10 features and 55% recall for 3 features. The effect of feature size
is also greater for Wikipedia than for Epinions database.

3.3.2.2 Results on probabilistic reputation features

Table 3.6: Average performance results of cross-validation experiments with dif-
ferent classifiers over the probabilistic reputation features. (OA) Overall Accuracy,
(F1) F1 score, (AUC) area under the ROC.

Wikipedia Epinions
OA | F1 | AUC | OA | FI | AUC
NB 100 | 98.3 | 0.973 | 100 | 98.7 | 0.983

MLP 99.99 | 99.1 | 0.981 | 100 | 99.2 | 0.991
RBFC 100 | 98.7 | 0.965 | 100 | 99.3 | 0.971
RBFN 99.99 | 98.6 | 0.966 | 100 | 99.4 | 0.976

AdaBoost | 100 | 99.4 | 0.986 | 100 | 99.7 | 0.989

JRip 99.99 | 98.4 | 0.977 | 100 | 98.8 | 0.975

J48 99.99 | 98.1 | 0.962 | 100 | 98.2 | 0.972
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Figure 3.11: A prori histograms of probabilistic features from Epinions database.
Magenta corresponds to Trust, Blue to Notrust. (a) P(tcg = +1|tac =+1), (b)
P(tcp = —l|tac = +1), (¢) P(tcg = +1|tac = —1), (d) P(tcp = —1[tac = —1).
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Figure 3.12: A priori histograms of probabilistic features from Wikipedia database.
Magenta corresponds to Trust, Blue to Notrust. (a) P(tcg = +1|tac = +1), (b)
P(tcg = —1|tac = +1), (¢) P(tcg = +1|tac = —1), (d) P(tcp = —1 |tac = —1).
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Figure 3.13: Average accuracy obtained with training sets of increasing size ex-
pressed as percentage of the total database to train classifiers. (a) Joint plot of most
classifiers on Epinions and Wikipedia databases. (b) Specific plot of Naive Bayes
results over the Wikipedia database.
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As shown in Table 3.6, carrying a 10-fold cross-validation experiment over the
probabilistic reputation features we achieve performance results close to perfect
measured in average overall accuracy (OA), Flscore (F1), and area under the ROC
(AUC). The differences between the different classifiers are minimal, not signif-
icant in the statistical sense (¢-test). The reason for such spectacular success is
the fact that the probabilistic features are greatly discriminant of the classes in
the problem at hand, as can be appreciated by inspection of figures 3.11 and 3.12
showing the class conditional a priori distributions of the values of each probabilis-
tic feature, where Magenta corresponds to the Trust class and blue to the Notrust
class. In all plots, the separation of classes is very clear making the problem very
easy for conventional classifiers.

The final experiment with the probabilistic reputation features is aimed to test
the ability of the classifier to stand in face of the expected continuous increase in
size of the social network. To that end, we train the classifiers with a small training
set and test them over the remaining database. The smaller the training set, the
earlier in the life of the social network. We repeat the training and testing 10 times
to obtain average values. The figure 3.13 shows the plot of the average accuracy
obtained over the Epinions and Wikipedia reputation features. The percentages of
training data go from 1% up to 99%. With the Epinions database, all classifiers
achieve an accuracy of 100% from the smaller training set 1%. However, with
Wikipedia we find the following:

» AdaBoost gets an accuracy of 100% for all training set sizes.

» NaiveBayes gets an accuracy of 99.2387% with a training size of 1%. In-
creasing training data size until 38% of the database, the accuracy is im-
proved up to 99.2665%. With training sizes greater than 39% the accuracy
reaches 100%. (Figure 3.13(b))

* The remaining classifiers reach an accuracy of 99.99% from a training data
of 1% until 58% with little improvement. For training sizes above 59% the
accuracy is 100%. (Figure 3.13(a)).



Chapter 4

RECIPE GENERATION

This Chapter deals with the problem of generating innovative solutions from the
information gathered by a social network on a specific kind of tasks. By innovative
we mean that the system must be able to generate solutions for previously unseen
instances of the task, and that it may be able to improve over known solutions
to known task instances. The kind of task that we dealt with in the context of the
Thesis are tasks performed by household appliances. In order to do that, the system
must be able to model user satisfaction, wich is the measure of the goodness of the
solution given, and the inverse model, which provides the innovation desired for
a new task. The Chapter is structured as follows: Section 4.1 comments on the
problem definition. Section 4.2 gives a specification for the breadmaker appliance.
Section 4.3 gives some experimental results. Dataset is described in Appendix A.
Finally, conclusions are gathered at Chapter 7.

4.1 Problem definition

In this section we give the specification of the recommendation problem that we try
to solve. The experiment context is the "SandS" European project (http://www.sands-
project.eu/). In this project, Eahoukers (word that refers to easy house workers, in
other words, users) provide a description of a problem dealing with household ap-
pliance usage to the social network. The system gives back a "recipe" that solves
the proposed problem. These recipes are either proposed by the knowledge pro-
vided by other users or by the underlying intelligent layer [63]. Once that recipe is
proposed, user can give the order to the system to execute it in the choosen appli-
ance. Finally, users give a satisfaction of the recipe, this feedback is used to tune
the intelligent layer and/or to personalize the system. In the following we formalize
these definitions in the precise instance of an appliance, the breadmaker. As there
is not real life data to validate our proposal, we have had to build some models
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to generate a synthetic dataset with some degree of arbitrary complexity, so that if
our approach succeeds on this dataset, it can be successful in real life experiments.
Appendix A contains some instances of the dataset and a description of the data
synthesis process.

4.2 Specification of the recipe recommendation problem

This experiment demonstration of the approach is focused on the case of the bread-
maker. It has some specific features that differentiate the way recommendations are
generated. First, there is no task description per se. The user only gives the order
to make the bread stating some expected satisfaction values with the result which
are not stated beforehand. In other words, we only have the recipe and satisfaction
pairs. The recommendation system then has two problems to solve, first it must
learn the map from recipes to satisfaction, in order to predict the user satisfaction.
Second, it must learn the inverse model from satisfaction to recipes in order to
propose the best recipe for the user. It is also possible, once we have this inverse
model, to tune the recipe to specific values of the predicted satisfaction. It may
even possible to work with missing values, that is, to provide a recipe that matches
some of the satisfaction parameters, when the other are left undefined. We have
not touched this aspect in this experiment.

Recipes The baking operation consists of 5 steps carried sequentially: first leav-
ening, second leavening, precooking, cooking and browning. Each step is specified
by a pair [Time, Temperature]. Thus, in this case, the recipe consists in 10 variables

[Pl F10]-

Satisfaction The user give a satisfaction feedback. For the breadmaker, the sat-
isfaction consists in 4 parameters: [fragance,softness,baking,crust]. These pa-
rameters are represented in 4 variables [sy, ..., s4].

Problem specification The problems that we want to solve with this experiment
are two:

* Direct prediction: What will be the satisfaction feedback obtained from the
user for a given recipe?

* Inverse recommendation: Which is the recipe that I need to get a specific
satisfaction?

Let us define:
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* Let be R a recipe described by bread making variables, so [ry,...,r10] =R .
Thus, R € R!? and each r; is normalized in the range [0..1]

* Let be S a satisfaction described by [s1,..,s54] = S . Thus, S € R* and each s j
is a number in the set {0,1,2,3,4,5}

To answer these questions, we define:

* A direct mapping ¢(R) = S to predict the satisfaction of the user with the
quality of the bread resulting from a proposed recipe (first question) ¢ :
RO — R

* The inverse mapping ¢ ! (S) = R that looks for the recipe that would provide
the desired satisfaction parameter values (second question)¢ ~! : R* — R!°

We model the experiment with the numbers and parameters defined before but
numbers and set of variables could be adapted to any other context of similar ex-
perimentation. These mappings are built by ELM because of the quick learning
time which allows frequent updates when the experience of the users increase the
database for learning. Notice that we only have information about experiments
going in the direct prediction sense, i.e. we can try a recipe and ask the user its
satisfaction. It is not possible to obtain experimental data in the other direction.

The first learning experiment is to calculate the regression of satisfaction val-
ues from given recipes. We denote this experiment as ¢(R) — S;. The second
experiment is to calculate the regression o f recipe valuesfrom a given satisfaction,
i.e. to create the recommendation. We denote this experiment as ¢ ' (S) — R;. We
divided the dataset in several datasets according to the application requirements of
the 10-fold cross-validation technique. Figure 4.1 is the pipeline which sumarizes
the process of the experiment.
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Maodels Recipe
generation generation
Satisfaction
calculation
DATASET
o(R) > S ¢(S) > R

Figure 4.1: Pipeline of experiment

4.3 Experimental results

Experiments are carried out using ELM standar code in Matlab!. We select Sine
(’sin’) activation function for executions. We test results with 1 hidden unit un-
til 525 hidden units that are the maximum hidden units allowed without raising a
memory exception. Increasing neurons, square error decreases significantly. Ta-
ble 4.1 shows the average regression error for the direct mapping regression for
each satisfaction parameter obtained in a 10-fold cross-validation experiment for
the two extreme ELM sizes. The best result is equivalent to a relative error, com-
puted dividing the regression error by the variable range which is 5 for all satis-
faction values, is below 0.01. Table 4.2 shows the average regression error for
the inverse mapping regression for each recipe parameter obtained in a 10-fold
cross-validation experiment for the two extreme ELM sizes. The best relative er-
ror, computed dividing the regression error by the variable range which is 1 for all
satisfaction values, is below 0.2, still too high for the purposes of this experiment.

'Source-code: http://www.ntu.edu.sg/home/egbhuang/elm_codes.html
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1 hidden unit 525 hidden units

sl 1.4490 0.4972
s2 1.7756 0.4790
s3 1.6259 0.5639
s4 1.1084 0.4832

Table 4.1: Average cross-validation error results of satifaction prediction for given
recipes: ¢(R) — S

1 hidden unit 525 hidden units

rl 0.4382 0.2816
r2 0.3910 0.2887
r3 0.4298 0.2919
r4 0.4080 0.2659
5 0.4433 0.2923
16 0.4063 0.2837
r7 0.3936 0.2903
r8 0.4743 0.2885
9 0.4308 0.2911
rl0 0.4456 0.2688

Table 4.2: Average cross-validation error results of recipe recommendation for
desired satisfactions: ¢ ~!(S) — R;
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Chapter 5

PRODUCT
RECOMMENDATION

In this Chapter we focus on a central problem in recommendation systems, that of
deciding the kind of features that might be used for the prediction of the rating that
a user will have of a given product, in order to decide if it can be recommended
or not. We consider the specific case of product review webservices, of whom the
Epinions site is a paradigmatic instance. The Epinions site has an associated Web
of Trust (WoT) where users can provide feedback on the confidence of other users
reviews. We consider two kind approaches for feature construction based on the
ratings provided by the users: one is supervised in the sense of using the WoT
reputation structure to build the features, the other is unsupervised in the sense that
features are extracted from an unsupervisedly constructed similarity graph between
users. The structure of the Chapter is as follows: Section 5.1 gives a definition of
the problem that we inted to solve. Section 5.2 describes both feature selection ap-
proaches. Section 5.3 provides the experimental results over the Epinions dataset.
Conclusions are gathered at chapter 7.

5.1 Problem statement

Given a social system with u € U users, and a catalog of items (products) i € /
belonging to several categories C, the ratings of the products by (some of) the
users are stored in a matrix R of size |U| x |I|. The recommendation problem
consists in the prediction of the rating R, ; that a user u would give to a product
i using the information provided by the social system and/or the ratings given by
other users. The problem may be addressed as a regression/classification problems,
using features extracted from the rating matrix R.
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5.2 Feature construction approaches

We propose two approaches to build the product features for recommendation com-
putation and rating prediction. The first one takes into account the WoT associated
to the users social network, using the opinion, specified by their product ratings,
of the users trusted by the target user in order to build a product feature matrix.
The second approach builds an unsupervised similarity graph between users based
on their distances, computed from the knowledge about the product ratings given
by each user stored in matrix R. A Singular Value Decomposition (SVD) of the
R gives a matrix of user eigenvector descriptors which can be used for similarity
computation. The ratings of the most similar users are used to build the product
feature matrix.

5.2.1 Feature matrix based on the Web of Trust

Algorithm 5.1 Algorithm extracting the Web of Trust for each target user.
Given G,(U,T), ratings R
For each target user u; in G,(U,T)
if (31;; € T) then
trustedUsers], < u;
R; <R (u j)
endif

Focusing on the WoT we can get the explicit collection of users that are trusted by
a target user u; : U; = {u),...,u, |t,,, = 1} . Algorithm 5.1 ilustrates the feature
extraction. Graph G, (U,T) is built from the trust assertions #;; € T given by the
users. These communities of trusted users are then the basis for the estimation of
the score prediction. Therefore the input for the training of the regressors doing the
predictions will be the sparse representation of the vectors containing the recom-
mendations. The final step ensures that the ratings of the trusted user are taken into
consideration as the features for recommendation prediction of the user, stored in
matrix R;.
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5.2.2 Feature matrix based on user similarities

Algorithm 5.2 Algorithm for extraction of target user similar users based on rat-
ings.
For each target user u; in G, ({{U UI},R})
For each R, matrix rating for category ¢
yA$T =SVD(R.)
o =¢*+A /*Each row of ® are eigenvectors from a user i
for each user /*Get distances
d(ui,u;) = || @i — @
end
end
end
Select o¢ most similiar users in D,
[SimilarUsers|,. < o similar users
R; < R(u;) for uj in [SimilarUsers],,

In this approach we construct features based on implicit knowledge collected in
the system. We will operate the rating matrix using Singular Value Decomposition
(SVD) that is a method for identifying and ordering the dimensions along which
data points exhibit the most variation. This tool is often used in recommender
systems to predict people’s item ratings. We know that using SVD, rating matrix /
can be stated as follows:

I=yApT

where v is the matrix of eigenvectors of I(I)7, ¢ is the matrix of eigenvectors of
()T1, and we transpose it to get ¢7, and finally A is the matrix of square roots
of non-zero eigenvalues ordered in decreasing order. Having an attribute matrix of
n x p we would add as many zero-columns as necessary to A to keep the proper di-
mensions to allow multiplication of wA ¢ . Thus, computing eigenvectors ® = ¢ A
we get distance matrix D, between nodes (users) calculating the distance between
vectors. This way, we define distance between users as follows:

d(uj,u;) = ||®; — ;|| = Z(‘I’i—q’j)z-

Once we have the distance matrix, we can choose a set of users U, that are the
closest users to the target user u;. Those users are used to build the feature matrix
as well as we will described in the next Section, but instead of having the array of
trusted users we have the array of similar users. Algorithm 5.2 is used to obtain
the array of similar users. For a user u; the ¢ most similar users will be choosen to
perform the feature matrix. The final step ensures that the ratings of these similar
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users are stored in the matrix R; of features for rating prediction.

5.3 Experimental results

Once we have the users whose opinion (ratings) we are interested in, we build
the feature matrix being rows items and columns users ratings. We use the rating
values of trusted/similar users to build a user specific rating matrix R;. Thus, we
have to predict rating values of the target user from data in R;. Because of the high
dimensionality of the matrix, we select 5000 users and 5000 items for experimen-
tation. Items with no rating and users that have not rated any item are removed
from the feature matrix.

The rating prediction is a regression problem instead of a classification prob-
lem. The performance measures taken into account accordingly are: Mean Ab-
solute Error (MAE), Root Mean Squared Error (RMSE), Relative absolute Error
(RAE) and Root Relative Squared Error (RRSE).

Tables 5.1 and 5.2 show the results of built regressors based on Web of Trust
users information, and on distances in hte user attribute space, respectively. We
have tested six different regressors provided in the open source and free Weka

1

software’, some of the approaches are also described in Appendix B:

* Linear Regression which uses the Akaike criterion for model selection, and
is able to deal with weighted instances. Best results with this classifier are
obtained without attribute selection.

* Multilayer Perceptron, which is the most famous artificial neural network
that uses backpropagation to classify instances.

* SMOreg classifier which is an implementation of Support Vector Regression.
» K-nearest neighbours classifier with K=1 gives the best results in this data.

* Random Tree uses constructs a tree that considers K randomly chosen at-
tributes at each node.

* Finally, Additive Regression which is a meta classifier that enhances the per-
formance of a regression base classifier. Each iteration fits a model to the
residuals left by the classifier on the previous iteration. Prediction is accom-
plished by adding the predictions of each classifier. The Additive Regression
version in this paper is Support Vector Regression with a Polynomial Kernel,
and Support Vector Machines as optimization function.

Uhttp://www.cs.waikato.ac.nz/ml/weka
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MAE | RMSE | RAE RRSE
Linear Regression 0.37 0.79 | 32.13% | 56.87%
Multilayer Perceptron 0.59 094 | 51.67% | 67.42%
Support Vector Regression | 0.81 0.34 | 30.09% | 57.96%

KNN 0.36 0.79 | 31.60% | 56.84%
Additive Regression 0.30 0.96 | 25.91% | 68.69%
Random Tree 0.36 0.79 | 31.60% | 56.84%

Table 5.1: Results of features extracted from Web of Trust

MAE | RMSE | RAE RRSE
Linear Regression 0.74 149 | 44.47% | 79.11%
Multilayer Perceptron 0.97 1.64 | 58.15% | 87.23%
Support Vector Regression | 0.56 1.14 | 33.43% | 60.41%

KNN 1.25 1.39 | 85.10% | 84.32%
Additive Regression 0.56 1.14 | 33.43% | 60.41%
Random Tree 0.74 1.49 | 44.47% | 79.11%

Table 5.2: Results of features extracted from user distances

All experiments are tested with fold cross validation. Features extracted from
WoT give better results than features based on user distances. In the first case, in
general, the Mean Absolute Error is over 0.30-0.36 marks. In the second one, in
general, the Mean Absolute Error is over 0.56-0.74 marks. The best classifiers in
both experiments is Additive Regression.
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Chapter 6

INFLUENCE MAXIMIZATION

Influence Maximization (IM) is a problem of economical importance for advertis-
ing and other industries. Its relevance is highlighted in the advent of the social
network web services, which have exploded the amount of information available
about the costumers and their relations. In this Chapter we deal with the heuris-
tic solution of this problem by two specific novel approaches: the formulation of
Harmony Search for Influence Maximization, and a novel heuristic that is closely
related to the classical Greedy Search (GS) approach. We have moved the detailed
description of conventional approaches, i.e. GS, Genetic Algorithm (GA), Simu-
lated Annealing (SA), and Harmony Search (HS) to Appendix B in order to have a
more clear exposition of results.

The structure of the Chapter is as follows: Section 6.1 provides the problem
statement. Section 6.2 details the application of Harmony Search to the solution
of IM. Section 6.3 describes our novel heuristic solution. Section 6.4 provides de-
tailed description of the experimental design and the experimental results obtained.
Conclusions are gathered in Chapter 7.

6.1 Problem statement

Social networks are represented by a weighted directed graph G(V,E,W) where
nodes v € V represent individuals of the community, edges (v,v') € E represent
social relationships between them, and W are the weights of either nodes or edges.
The two basic spread models of influence propagation are the Independent Cascade
model (ICM) [54], and the Linear Threshold model (LTM) [64].

In the LTM diffusion model, nodes are weighted by a decision threshold w, &€
R, while in the ICM the weights are placed on the edges, they are propagation
probabilities. Nodes can be active or inactive, i.e. they have been influenced or not.
When a node becomes active it is possible to spread influence to an inactive node
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from its neighborhood, and the influence propagation is modeled by an iterative
process.

In the LTM, the node becomes active when the percentage of active neighbors
is above the threshold, i.e. ‘71‘ Y2y a0y (S) > wy, where a,,s € [0,1] is the entry
in the adjacency matrix A such that a,,, = 1 iff (v,V/) € E, and o, () is an indica-
tor function that values 1 iff node v belongs to the influence spread of a IM-seed
set S. When a node v becomes active it is added to the actual influence spread,
ie. 0(S) < o(S)U{v}. In the ICM, the weights w,,, € R are measures of the
strength of the relation, i.e a probabilistic measure of the influence capability of
one node over another. Obviously, we have w,,» = 0 iff a, ,» = 0. Each node acti-
vates its neighbors by carrying out a stochastic decision by Monte Carlo sampling
the Bernoulli distribution defined by edge probability w, /. A variation of the LTM
allows an inactive to become active when the summation of influence degrees on
the incoming links is greater than the node threshold. There are works such as [93]
analyzing the computational complexity of influence maximization problem in the
deterministic LTM.

In both ICM and LTM there is no reversibility of states so that the influence
propagation process will end when no more nodes may become active. In the lit-
erature ICM and LTM propagation models are usually applied separately but some
works subsume both models [110], in some cases new evidences such as trust are
added to the propagation model [102]. In other words, we do not consider viral
propagation models [112] which contemplate infection and recovery of individ-
uals. Study of such models by mean field analysis [92] show that it is possible
to determine the diffusion rate that ensures that the system reaches a steady state
where the infection persists.

The goal of Influence Maximization (IM) [38, 77] is to find the minimal subset
of maximally influential nodes (IM-seed nodes). The influence spread in a graph
G = (V,E) of a subse of nodes S C V is a set function ¢ : 2" — R, which is non-
negative, i.e. 6 (S > 0) for all S C V, monotone, i.e. 6 (S) <o (T) forall SCT,
and submodular, i.e. 6 (SU{v})—06(S) > o (TU{v})—0oc(T) forall S CV and
v € V. The IM problem is therefore posed as

* = minmaxo ().
|S| Scv

It has been shown that IM is NP-complete, hence with computational time growing
exponentially on the problem size, given by the number of nodes, and the density
of the social graph. Exhaustive search and exact solution of the problem is, there-
fore, out of the question so that most published approaches follow some kind of
approximation, aka heuristics or metaheuristics. Ensuing sections present our pro-
posals.
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6.2 Harmony Search

Algorithm 6.1 Harmony Search algorithm adapted to Influence Maximization

1. Given probabilistic social graph G = (V,E,W)
2. Initialize HS parameters and HM,

3. whilet < NI

(a) fori=1...N //Tmprovise new harmony x’ ,
i. if r <HMCR
A X E {x},... M5

B. if r < PAR then x| <— x,+ o; o; ~ U [-BW,BW]|;
ii. otherwise x EX
(b) Evaluate harmony f (x)
(©) If f(x') > f (xHM5)

i. replace x5 in HM, and sort HM.

4. Return best Harmony

Algorithm 6.1 shows a pseudo-code of the HS optimization procedure spe-
cialized for the IM problem resolution. In the first step problem data is read and
algorithm parameters are initialized. The graph where the IM problem is posed can
be a randomly generated graph or a real social network graph. Next, HS algorithm
parameters controlling the optimization process are specified: the harmony mem-
ory size (HMS) specifying the number of solution vectors stored in the harmony
memory, the harmony memory considering rate (HMCR) specifying if a variable
improvisation is extracted from the memory, the pitch adjusting rate (PAR), and ter-
mination criterion (maximum number of searches). In the next step the harmony
memory (HM) is initialized. Next we carry the improvisation of a new harmony.
A new harmony vector, X' = (x},...,x}y) is generated based on memory consider-
ations, pitch adjustments, and randomization. With probability HMCR the value
of the design variable x; is selected from the collection of values in the HM, i.e.
X & {xl, . xMSY where & denotes random selection from a set of values. In
Algorithm 6.1, r ~ U (0, 1) denotes a random number with uniform distribution in
the interval (0,1). If r > HMCR, in other words with probability 1 — HMCR, the
value of the variable is extracted from its range set X;. The new value can be fine
tuned with probability PAR after a positive test with HMCR. i.e. x. = Vi k+mWhere
Vi k+m 18 either the next value of the range set of a discrete variable or a random mu-
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tation in continuous variables. In some implementation, the first variable is always
assigned a value from the history. If there is pitch adjustment for x} , the pitch-
adjusted value of x; (k)) is x} <— x} + o where o is a sample of a random variable
following a uniform distribution U (—BW,NW ), where BW is an arbitrary distance
bandwidth for the continuous design variable. In the next step HM is updated. If
the new harmony vector is better than the worst harmony in the HM in terms of the
objective function value, the new harmony is included in the HM and the existing
worst harmony is excluded from the HM. The HM is then sorted by the objective
function value.

For IM, harmonies are binary vectors encoding the IM-Seed set, that is, a vector
component value is 1 if the corresponding graph node belongs to the seed set,
otherwise it is zero. Influence Maximization is a multi-objective problem, because
we want to achieve two goals: (a) maximize spread, and (b) minimize IM-Seed
size. Given an harmony x and a probabilistic graph G/, the evaluation returns:

f(x,G}) = o (Sy) + 1071810V 5 (V — 8y), (6.1)

where V is the set of nodes in the network, o (Sx) is the number of nodes that have
been visited through the spread model (Independent Cascade Model) and Sy the
number of actives nodes in the harmony x. In this way, the harmony which visits
the largest amount of nodes in the network with the minimum active nodes in the
harmony will be reported as local optimum at the end of the computational process.

6.3 New Heuristic for IM solution

Our proposed new heuristic method starting step is to identify nodes with zero in-
degree, i.e. no incoming edge ending to them, (Sy in step 2). The justification is
that any K-seed set whose influence covers all the graph must include them because
they can not be influenced by any other node. The set of remaining nodes Ry con-
sists of all nodes not in the initial solution Sy nor in its influence spread o (Sp,Ap)
computed using the base adjacency matrix. The set Ry contains all candidate nodes
to enlarge the solution, because the removed nodes add nothing to the influence
spread of the actual solution Sy. Next, the adjacency matrix is simplified removing
edges ending into or departing from nodes removed from Ry, because these edges
will not play any role in ensuing influence computations. The algorithm proceeds
by iterating the following steps until the set of remaining nodes R; is empty. The
first step is to find the node v* with maximal influence in one step o; ({v},A4;),
i.e. paths of lenght 1, using the simplified adjancency matrix A;. The K-seed
solution is increased adding v*, while the set of remaining candidate nodes is de-
creased removing v* and its one step influences. The adjacency matrix is updated
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Algorithm 6.2 Proposed IM heuristic IMH) solution algorithm

1.

7.

Given social graph G = (V,E,W), with adjacency matrix A, = [ai’ V/}

S() = {V ‘Zvl;évaf,_y = O}
Ry=V— {So Jo (S(),Ab)}

_ |0 0 _q: . cem 0 _ b
Ag = [a ] s.t.a,, = 0if v & Ry V'V ¢ Ry; otherwise a,, =a,,

AY

t=0

. iterate until R, = @

(a) v =argmax{o; ({v},A,)}
VER;
(b) St+1 = S[ U {V*}
©) Rip1 =R —{{v}uoi ({v},A)}
d) Ay = [ait,]} s.t. atvj;,l =0ifv¢ R, VV ¢ R;; otherwise atvj;,] =d,,

(e) t+1t+1

Return S,
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accordingly. The heuristic of assuming that maximal one step influences would
correspond to maximal influence spreads is a extreme form of greedines, but that
appears to be effective from the experimental results. At the same time, removing
only one step influences may leave candidate nodes which in fact do not improve
the influence spread when added to the solution, however from the experimental
results, it seems to have little effect. We will denote this heuristic as IMH in the
following.

6.4 Experimental results

In this section we report experimental results comparing the HS, SA, GA, GS al-
gorithms and the proposed IMH. First we comment on the construction of the ex-
perimental graphs. We evaluate the methods comparatively on a large collection
of synthetic graphs of increasing size, and finally we report results on subgraphs
of a real life social network of increasing size. The code and the data for these
experiments can be found in the following site: !.

6.4.1 Graph construction

A social network is defined as a directed graph G(V,E) where V is the set of nodes
that represents the set of users and E the set of edges that represents the set of
relationships among users. Given a directed graph G(V, E) edges are weighted by
wij = 1/degree;,(j), thus the graph becomes a weighted graph G(V,E, W) where
W is the set of weights that are values in the interval [0, 1]. Some of the experi-
ments reported here are done on synthetic graphs. To build such graphs we gen-
erate the random weights of a complete graph, determining the in-degree of each
node. Thus, from the a probabilistic adjacency matrix we generate graph instances
G)(V,E’) where edges will appear according with the probabilistic weight. An
weighted edge with a high weight has more probability to appear in the sampled
graph G,. We define G’ = {G],...,G),} as the set of sample graphs used to test
the diverse IM heuristics. For the experiments referred below, the ICM influence
propagation estimation consists in the average of the propagations over the set of
sample graphs.

6.4.2 Experimentation with synthetic graphs

Figures6.1, 6.2, and 6.6 show a comparison among HS, SA, GA, GS algorithms,
and our proposition IMH. Figure 6.1 plots the K-seed node set size found by the
algorithms for simulated social network graphs of increasing sizes, while influence

"http://www.ehu.eus/ccwintco/index . php?title=Influence_Maximization
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Figure 6.1: Results for increasing size random graphs of GA, SA, HS, Greedy and
New Method measured as the K-seed size found.

spread size is plotted in Figure 6.2. Figure 6.3 plots the ratio of the influence spread

size versus the size of the K-seed set in order to visualize the relative success

of each seed node. Figures 6.1(a), 6.2(a), and 6.6(a) give results for small size
graphs. Figures 6.1(b), 6.2(b), and 6.6(b) give results for big size graphs. We
have not computed SA for large graphs due to its very slow convergence and big

computational times. In all cases, IMH and GS algorithms are always the methods

which achieve the biggest influence spread with the minimal K-seed nodes. Our

method is faster than Greedy algorithm. We give experimental results about speed-

up improvements in another section.
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6.4.3 Experimentation with Epinions database

In order to evaluate the algorithms on a realistic problem, we apply them to the
Web of Trust graph from the Epinions site 2, which is a social webservice where
users provide reviews of products of any kind, ranging from music up to perfumes
or construction hardware. These product reviews are the base for the establishment
of trust relations between users. Trust is a binary variable taking values in {—1,1}:
a truster user can choose to trust (1) or distrust (-1) another, the trustee. Each sam-
ple is a triplet (A, B,z45) composed of two user indexing numbers (no personal data
of any form is included) and the binary Trust value of the first user on the second
user. Therefore, Trust relations define a directed graph, with weighted edges. Ex-
perimentation is done over subnetworks of sizes are in range 10 to 100 and 100
to 700. Figures 6.4, 6.5, and 6.6 show results of experimentation over these Epin-
ions subnetworks. In all cases, the IMH and GS algorithms provide the greatest
spread, while GA and SA provide more compact seed of smaller influence spread.
Looking at the ratios plot in figure 6.6 we find that there is significative difference
between methods. As mentioned in previous experiment, our method is faster than
Greedy algorithm. We propose experimentation about speed-up improvements in
the following section.

6.4.4 Computation time comparison experiments

We propose two experiments to compare the computation time cost of the GS algo-
rithm and the proposed IMH method. The first experiment consists on getting the
minimum k-seed nodes from four different graphs, each of 1000 nodes but with
different edge density. Table 6.1 shows the time spent to get the approaximates
to the optimal K-seed set of influential nodes. When the graph has low density,
reaching the solution is quite fast for GS but the bigger the density is the greater
time the GS requires. In contrast, IMH method achives a solution always under
one second. The experiments were run on a 3GHz 4 core Intel computer.

Density New method  Greedy

0.000011 0.018 sec. 5.587 sec.
0.00011 0.144 sec.  5.817 sec.
0.0011 0.031 sec. > 5 min.
0.011 0.050 sec. > 5 min.

Table 6.1: Comparison of speed using matrix of different density

For the second experiment we keep a small edge density in the graph but we

’http://www.epinions.com/


http://www.epinions.com/

6.4. EXPERIMENTAL RESULTS 65

Minimun seed nodes

s Harmony Seach

Genetic Algorithm

= Simulated Annealing
30 4

Minimun seed nodes
&

e Greedy

20 - e N 2wy method

10 -

10 0 30 40 50 60 o 80 90 100
Number of nodes in the network

(a)

450 4 - .
Minimum seed nodes

350 -

g

250 4 ——Harmany Seach

—Genetic Algorithm

e Simulated Annealing

Minimum seed nodes

g & 8

w———Greedy

e New method

w
Q
L

o

T T T 1
100 200 300 400 S00 600 700

Number of nodes in the network

(b)

Figure 6.4: results for increasing size Epinions subgraphs of GA, SA, HS, Greedy
and New Method measured as the K-seed size.



66 CHAPTER 6. INFLUENCE MAXIMIZATION

1207 Influenced nodes by seed

g

g

e Harmony Seach
m—— Genetic Algorithm

s Simulated Annealing

8

Greedy

Numberof influenced nodes
3
L

==New method

20 1
0 T T T T T T T T T 1
10 20 30 40 50 60 70 80 =l 100
Number of nodes in the network
(a)
700
Influenced nodes by se
600 -
£ 500 -
H
H
bl
% 400 - = Harmony Seach
é —Genetic Algorithm
;-E 300 - =—=Simulated Annealing
-g Greedy
5 200 1 =—=New method
100 4
0 T T T T 1

100 200 300 400 500 600 700
Number of nodes in the network

(b)

Figure 6.5: Results for increasing size Epinions subgraphs of GA, SA, HS, Greedy
and New Method measured as the size of influence spread.



6.4. EXPERIMENTAL RESULTS

67

2,000000 - e -
Sensitivity of seed nodes - spread nodes
1,800000 -|
i)
-
€ 1,600000
ki
g w——Harmony Seach
".,.‘; 1,400000 -| = Genetic Algorithm
-E =—Simulated Annealing
'E 1,200000 | Greedy
2 ——New method
1,000000 -|
0,300000 T T T T . T T T T y
10 20 30 40 S0 & 70 80 90 100
Number of nodes in the Network
(@)
2,000000 - e
Sensitivity of seed nodes - spread nodes
1,300000 -
1,600000 -
il
T 1,400000 -
=
/_
E 1,200000 - s Harm ony Seach
2
E‘ 1,000000 - Genetic Algorithm
E 0,800000 -| —==Simulated Annealing
=
E o, | Greedy
& N ew method
0,400000 -
0,200000
0,000000 : : : : : T )
100 200 300 400 500 600 700

Number of Nodes in the Network

(b)

Figure 6.6: Results for increasing size Epinions graphs of GA, SA, HS, Greedy
and New Method measured as the ratio of influence spread to the K-seed size.



68 CHAPTER 6. INFLUENCE MAXIMIZATION

increase the number of nodes of the graph. We work with 10 graphs from 1000
nodes to 10000 nodes increasing a thousand nodes each time. Table 6.2 shows
spent time to get the minimum k-seed nodes. Being the matrix little (1000 nodes)
the spent time for execution with Greedy is already high enough in comparison
with our method. When the size increase, the Greedy algorithm is getting slower.
In contrast, our method executes the experiment fast under 2.5 seconds with the
biggest matrix.

Sizes New method  Greedy

1000 0.065 sec 3.586 sec
2000 0.119 sec 35.938 sec
3000 0.182 sec > 5 min
4000 0.363 sec > 5 min
5000 0.446 sec > 5 min
6000 0.706 sec > 5 min
7000 1.702 sec > 5 min
8000 1.914 sec > 5 min
9000 2.012 sec > 5 min
10000 2.435 sec > 5 min

Table 6.2: Comparison of speed using matrix of different sizes



Chapter 7

CONCLUSIONS AND FUTURE
WORK

7.1 Conclusions

Thesis general goals where proposed in the Introduction.Three were the proposed
goals of this Thesis. All of them are reached as explained in next Sections 7.1.1,7.1.2
and 7.1.3.

7.1.1 Trust

* Proposed work with Artificial Neural Networks is rather straightforward
compared with other works in the literature: feature vectors are built as
reputation vectors from the trustworthiness assertions of trusted users on
the target trustee. Then, trust prediction becomes a two class classification
problem that can be directly solved by training on the feature dataset. The
approach gives good results, though the problem suffers from the extreme
imbalance of the classes. On a benchmark study on the Epinions data, we
achieve good Precision results for both classes and encouraging results for
the Recall of the less frequent Distrust class. Distrust Recall improves when
applying SMOTE preprocessing. Interestingly, we found that classical ANN
classifiers (MLP and RBF) achieved better results on the most difficult issue
of Distrust Recall, pointing to some bias of the SVM. A rough comparison
with state-of-the-art approaches is favorable to our definition of reputation
features.

* The second work proposed in this research line is a Trust prediction system
based on reputation features obtained from the trust values of witness users.
The system has been demonstrated over two benchmark trust databases in
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the public domain, extracted from the Epinions and Wikipedia sites. We
tested two kinds of features, raw reputation vectors and probabilistic repu-
tation features. The former features lead to classification systems that are
heavily influenced by the database imbalance. Attempts to improve results
applying a SMOTE approach do not improve the overall accuracy, but pro-
vide improvements on the minority class, the Distrust class. The proba-
bilistic reputation features provide excellent results reaching 100% in both
databases. The major inconvenient is that their coverage of the Wikipedia
database is small due to many singularities in the computation of the proba-
bilities. The resiliency of the classifiers based on the probabilistic features to
social network growth has been assessed by performing training experiments
with very small training datasets, achieving optimal results even then.

7.1.2 Recommendation Systems

* We propose the application of regression ELM to build a breadmaker recom-

mender system which is an instance of the social intelligence in the Internet
of Things framework of the SandS European Project. We have proposed a
dataset synthesis procedure to carry the experimental validation of the sys-
tem, due to the lack of real-life data. The experimental results are quite good
for the direct mapping from recipes to satisfaction evaluations, but not so
good for the inverse mapping, which will require a more careful tuning for
the practical application.

We propose methods for Recommendation Systems in Social Networks based
on Colaborative Filtering. Those methods follow the way of using informa-
tion from the Web of Trust built from users trust values and the way of the
intelligent layer of the system. To represent this idea we propose a feature
extraction based on similarities among users. Better results are obtained with
the Web of Trust provided by user explicit statements.

7.1.3 Influence Maximization

* A new heuristic search method for Influence Maximization (IMH) is pro-

posed in this Thesis. It relaxes the influence spread search by consider-
ing only paths of length 1, however it is guaranteed to terminate covering
the entire graph. We provide comparison with other well known heuris-
tics, namely Simulated Annealing, Genetic Algorithm, Harmony Search and
Greedy Search algorithm over a collection of synthetic and real social net-
work graphs. The proposed heuristic method compares with the Greedy
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Search algorithm, providing the largest influence spread results with min-
imum seed nodes, improving other heuristics. Moreover, the proposed IMH
method is always faster than Greedy algorithm.

7.2 Future Work

Next Sections 7.2.1, 7.2.2 and 7.2.3 describe the future work plan for the three
main areas shown in this Thesis. Although different work lines are presented, the
goal is to join all of them as far as possible.

7.2.1 Trust

Further work will involve testing new approaches to cope with imbalanced datasets,
as well as other feature definitions. Also, other knowledge modeling approaches
based on experience may be tested on this data [7, 129, 139]. Future work will
be carried out within the framework of the SandS European project !, where the
authors are working towards the development of a social network of home appli-
ance users (named Eahoukers in the project). The goal is that the eahoukers benefit
from the socially generated knowledge to deal with the home appliances in a do-
mestic environment. Trust prediction is relevant for SandS in three ways: (a) for
the identification of rogue users that may try to sabotage competitors’ appliances,
(b) to assess the quality of the recommendations coming from specific users, and
(c) to build the consensus between users. The Trust prediction system presented
in this Thesis will be useful to assess the recommendations from other users in the
elaboration of appliance use recipes. The final system will be a recommendation
system enhanced by Trust prediction.

7.2.2 Recommendation Systems

Further work will be addressing the computational experiments on real life data,
once it is available from the breadmaking experiments being carried out by other
project partners. It is also possible to open the experimentation to the general public
by the implementation of a social network of breadmaking. This implementation
would be a real test of the idea of subconscious social intelligence, which in this
setting will encompass the application of both direct an inverse mappings.

According to product recommendation, we want to exploit further the sparse
computational methods in order to propose improvements on Recommendation
Systems.

"http://www.sands-project.eu/
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7.2.3 Influence Maximization

Future works will address the formulation of methods, able to deal with very large
social networks, with node sites in the order of hundreds of million nodes as well
as the algorithm is updated to find the node v* with maximal influence in one step
o1 ({v},A;), i.e. paths of lenghts greater or equals than 1.



Appendix A

EXPERIMENTAL DATABASES

Proposed experimentation and contributions along this Thesis is performed han-
dling different databases. Often, the approaches and algorithms from Computa-
tional Intelligence have the validity given by the datasets where they have been
validated. Therefore, detailing these datasets is part of the process of establishing
trust on the algorithms. Both, real-life databases and syntethic databases have been
used for validation of the approaches proposed. Section A.1 presents the real-life
datasets, and Section A.2 presents the synthetic databases.

A.1 Real databases

There are several online and public repositories which allow to download different
databases that can be useful for sytem validation allowing reproducibility of the
results. For this Thesis, we are interested in Social Networks databases. Examples
of repositories are KONECT, Arizona State University’s repository and SNAP.

+ KONECT (the Koblenz Network Collection) ! is s a project to collect large
network datasets of all types in order to perform research in network science
and related fields. KONECT contains 235 network datasets of various types
(directed, undirected, bipartite, weighted, unweighted, signed and rating net-
works). Those networks belong to many different areas such as social net-
works, hyperlink networks, authorship networks, physical networks, inter-
action networks and communication networks. For each dataset an analysis
of it is given. Arizona State University also provides some social networks
datasets 2 about product reviews and trust among users.

" http://konect.uni-koblenz.de/
Zhttp://www.public.asu.edu/~ jtang20/datasetcode/truststudy.htm
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* SNAP (Stanford Network Analysis Platform) 3 is a general purpose network
analysis and graph mining library. There are many dataset about different
areas. Some statiscs are given for each dataset.

Epinions Trust and Rating Network and Wikipedia Voted Network are described
in the following subsections, respectively. Epinions networks datasets are used in
Chapters 3 (Trust), 4 (Recommendation Systems) and 5 (Influence Maximization)
for experimental validation. Experimentation based on Wikipedia Voted Network
in provided in Chapter 3 (Trust).

A.1.1 Epinions

The Epinions site* is a social site where user provide reviews of products of any
kind, from music to perfumes or construction hardware. These reviews are the base
for the establishment of trust relations between users.

Web of Trust Network In Epinions dataset, Trust is specified by a binary vari-
able taking values in {-1,1}: a user can choose to trust (1) another or not (-1).
Negative trust values are not published in the web service, but the anonymized
dataset provided for experimentation, contains also negative Trust values. This
dataset has 841,372 data samples. Each sample is a triplet composed of two user
indexing numbers (no personal data of any form is included) and the binary Trust
value of the first user on the second user. Therefore, Trust relations define a di-
rected graph, with weighted edges. The database is heavily unbalanced: 85.3% of
instances show positive trust (717,667 triplets), versus 14.7% of negative trust in-
stances (123,705 triplets). Giving a formal description, a directed graph G, (U,T)
represents users as nodes and trust links as edges. A link will exist from user u; to
another user u; if the first user trusts/distrusts the second one. On the dataset, each
link among two users is represent in this way: < u;,u; >.

Ratings Network The graph of the rating dataset could be defined as:

G,(UU(CxI),E,R),

where nodes are users U and items / (products), and edges in E are links between
users and items, i.e. E C U x (C xI). Users and items become linked when a
user gives a rating about an item. Edges have a a weight corresponding to the rat-
ing. Thus, the information on the dataset is represented by the triplet ((u, (c,i)),r)

3 http://snap.stanford.edu/
‘http://www.epinions.com/
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means that a user u; gives a rating r to the item i of the category c. There are 27 cat-
egories, because of the importance of the domains in Recommendation Systems,
we define the set of whole items as I = {Ij,...,Ir7} according with the number
of categories. Having the trust network graph and having the 27 rating weighted
graphs, we are able to build classifiers. Each /; is the rating matrix for the items of
the category i. Ratings are values in the range {1..5}. Zero means that no rating is
given for an item.

A.1.2 Wikipedia Voted Network

Wikipedia is a free encyclopedia built by crow-sourcing efforts from volunteers
around the world. A small part of Wikipedia contributors are administrators, who
are users with access to additional technical features supporting Wikipedia main-
tenance. In order for a user to become an administrator a Request for adminship
(RfA) is issued and the Wikipedia community via a public discussion or a vote de-
cides who to promote to adminship. The actual database® employed in this paper
has the following format per voting record:

* E: did the elector result in promotion (1) or not (0)

* T: time election was closed

* U: user id (and screen name) of editor that is being considered for promotion
¢ N: user id (and screen name) of the nominator

* V: vote(1: support, 0: neutral, -1: oppose) user_id time screen_name

For the work in this paper, the trust triplet (A, B,z4p) is built from three attributes:
voting user, voted user and the vote value. Regarding the vote value, we are inter-
ested in two out of of three possible vote values: 1 (support) and -1 (oppose). We
ignore the vote "0". For this reason, we reorganize the database as follows: each
row has the three attributes mentioned before: [UserA,UserB,vote|. In summary,
we obtain a social network trust database containing 103,591 instances (78.83%
for class “1” and 21.17% for class “-17).

A.2 Synthetic databases

These databases are not found in any repository. They have been created by ad
hoc programs for specific experiments. Experimentation based on a data base for

Shttp://snap.stanford.edu/data/wiki-Elec.html


http://snap.stanford.edu/data/wiki-Elec.html

76 APPENDIX A. EXPERIMENTAL DATABASES

recipe generation is reported in Chapter 4 (Recommendation Systems) while exper-
imentation based on a synthetic social network is reported in Chapter 5 (Influence
Maximization).

A.2.1 Non Linear Generation of Recipes

The system reported in Chapter 4 aims to the autonomous intelligent recipe gen-
eration for household appliances. The design faces the obstacle of the lack of
actual data of household appliances working in a controlled environment, there-
fore to show the workings of the proposed system we resort to synthetic datasets.
We generate a dataset of 100,000 instances of recipe satisfaction pairs taking into
consideration the following:

* We consider that there is a non-linear map that models the contribution from
each recipe parameter to each satisfaction parameter value. For the experi-
mental work, we have created arbitrary maps which are shown in Figure A.1.
Each entry (i, j) in the table is a map randomly generated relating recipe pa-
rameter ; with each satisfaction parameters;. Thus, we have 40 models.

* We consider that the satisfaction value is a linear combination of the contri-
butions of the recipe parameters. If a;; is the satisfaction value in variable s;
induce from a given value from recipe variable r;, then:

10
r—1 o,k a; j
S =

r/

using oy as weighting factor of recipe variable and being r’ the normalizing
value to obtain the weighted average. If result has decimal part, we round
the number to the nearest natural one. We have choosen the value of the ¢;
arbitrarily for the experiments reported here.

Once we have models, we are able to generate a synthetic dataset according with
models. To generate a database we generate randomly 100,000 instances of [ry, ..., 710]
then, we use the models to calculate the satisfaction. As example, we show in A.1
the first row of the dataset.

’ Hrl‘r2‘r3‘r4‘r5‘r6‘r7‘r8‘r9‘rlOHsl‘sZ‘s3‘54‘
# /06 030402100408 []03(041 212|212
#i

Table A.1: Example of the content of Dataset
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Figure A.1: Maps specifying the influence of the recipe paramters into the satis-
faction parameters. Each each enty relates a pair of recipe-satisfaction variables.
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A.2.2 Influence Maximization

A social network is defined as a directed graph G(V, E) where V is the set of nodes
that represents the set of users and E the set of edges that represents the set of
relationships among users. Given a directed graph G(V, E) edges are weighted by
wij = 1/degree;,(j). Now the definition of the graph is G(V,E,W) where W is the
set of weights that are values in the range [0..1]. Some of the experiments reported
here are done on synthetic graphs. To build such graphs we generate the random
weights of a complete graph, determining the in-degree of each node. Thus, from
the a probabilistic adjacency matrix we generate graph instances G/(V,E’) where
edges will appear according with the probabilistic weight. An weighted edge with
a high weight has more probability to appear in the sampled graph G;. We define
G ={G],...,G,} as the set of sample graphs used to test the diverse Influence Max-
imization heuristics. For the experiments referred below, the Independet Cascade
Model influence propagation estimation consists in the average of the propagations
over the set of sample graphs.
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COMPUTATIONAL METHODS

This Appendix gathers the description of standard computational methods used
as building blocks of the solutions offered to the problems tackled in several do-
mains. The implementations used are standard ones found in Matlab distributions.
We have organized the Appendix according to the problems tackled in the referred
chapters, so that the Section B.1 contains the description of the methods used for
Trust prediction, Section B.2 contains the methods used for recipe recommenda-
tion, and Section B.3 contains methods used in the solution of the Influence Maxi-
mization problem.

B.1 Computational methods for Trust prediction

In this section we introduce the formal definition of the classifier building methods
that have been applied in the experiments of Trust prediction based on reputation
features reported in Chapter 3. We have applied two Artificial Neural Network
approaches, the Multi-Layer Perceptron and the Radial Basis Function Network,
and a statistical classifier, the well-known Support Vector Machines. We also de-
scribe the SMOTE data preprocessing aiming to cope with imbalanced classifica-
tion problems.

B.1.1 Multilayer Perceptron

The Multilayer Perceptron (MLP) is an artificial neural network (ANN) consisting
of multiple layers, allowing to solve complex discrimination problems that are not
linearly separable, i.e. there is no single hyperplane separating the samples of the
classes, which is the main limitation of the Perceptron (also called Single Percep-
tron). The MLP can be totally or locally connected. In the first case each output of

nn

a neuron of layer "i" is input to all neurons of layer "i + 1" while every neuron in
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the second layer "i" is a number of input neurons (region) layer "i + 1". We restrict
our presentation of this classifier to train the weights of the MLP for a two class
problem. Let the instantaneous error £, be defined as:

1

Ep(W) = 5 (0p — 2k (%)), (B.1)

where y, is the p-th desired output y,, and zx (X,) is the network output when
the p-th training exemplar x,, is input to the MLP composed of K layers, whose
weights are aggregated in the vector w. The output of the j-th node in layer k is
given by:

Ni_1
2, (Xp) = f (Z Wi, j,iTh—1,i (Xp)> : (B.2)

i=0

where z; ; is the output of node j in layer k, N; is the number of nodes in layer &,
wy i 18 the weight which connects the i-th node in layer k — 1 to the j-th node in
layer k, and f (-) is the non-linear sigmoid function, which has a simple derivative:

7@ =D _ @y (@), ®3)

The convention is that zo j (X,) = X, j. Let the total error E7 be defined as

follows:

l
Er(w)=Y E,(W), (B.4)
p=1

where [ is the cardinality of X. Note that E7 is a function of both the training set
and the weights in the network. The back-propagation learning rule is defined as
follows:

aEp (w)
ow

where 0 < 1 < 1, which is the learning rate, the momentum factor « is also a

Aw(t) = -1 +aAw(t—1), (B.5)

small positive number, and w represents any single weight in the network. In the
above equation, Aw (7) is the change in the weight computed at time 7. The momen-
tum term is sometimes used (@ > 0) to improve the convergence of the algorithm
by smoothing the adaptation changes proposed by the simple gradient descent.
The algorithm defined by equation (B.5) is often termed as instantaneous back-
propagation because it computes the gradient based on a single training vector.
Another variation is batch back-propagation, which computes the weight update
using the gradient based on the total error E7. To implement this algorithm we
must give an expression for the partial derivative of E), with respect to each weight
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in the network. For an arbitrary weight in layer k this can be written using the
Chain Rule:

OE, (W) _ IE,(W) dzt;(x,)
aWkJJ aZkJ(Xp) awaJ

. (B.6)

B.1.2 Radial Basis Function

Radial Basis Function networks (RBF) [29] are a type of artificial neural networks
to calculate the output function according to the distance from a point called the
center. As well as multilayer perceptrons, RBFs are a universal approximators too.
The radial basis function is a function whose output is an exponential function of
the Euclidean distance of an input vector x with respect to a center c¢. Each neuron
of the input layer has a radial basis function output and a weight. The output
pattern enters an output neuron which makes the summation of all inputs and gives
an output as a result. The RBF networks have a rigid construction of three layers:
input layer, hidden layer and output layer (unlike other backpropagation networks).
Any arbitrary function g (x) : R” — R can be approximated by a map defined by a
RBF network with a single hidden layer of K units:

K
8o (x) = 2w,¢ (o), [|x—¢]) (B.7)
=

where 0 is the vector of RBF parameters including w;,0; € R, and ¢; € R"; let
us denote W = (wy,wy,... 7wl,,)T, then the vector of RBF parameters can be ex-
pressed as 87 = (WT,crl,clT7 ey GK,CIT(). Each RBF ¢ (-) is defined by its centre
¢; € R" and width 0; € R, and the contribution of each RBF to the network out-
put is weighted by w;. The RBF ¢ (-) is a non-linear function that monotonically
decreases as X moves away from its centre ¢;. The most common RBF used is the
isotropic Gaussian:

) 2
go(x) = iwjexp <_HX_CZJH> _

ZGj

The RBF network can be thought as the composition of two functions
o(x)=Wod(x),

the first one implemented by the RBF units ® : R” — RX performs a data space
transformation which can be a dimensionality reduction or not, depending on whether
K > n. The second function corresponds to a single layer linear Perceptron W :



82 APPENDIX B. COMPUTATIONAL METHODS

RK — R giving the map of the RBF transformed data into the class labels. This ap-
proach corresponds to the RBFN architecture in the experiments. Other approaches
perform a gradient descent of the error function involving all the parameters of the
network simultaneously, this approach corresponds to the RBFC architecture in the
experiments below.

B.1.3 Support Vector Machines

Support Vector Machines (SVM) [131] look for the set of support vectors that allow
to build the optimal discriminating surface in the sense of providing the greatest
margin between the classes'. SVM separates a given set of binary labelled training
data with a hyperplane that is maximally distant from the two classes (known as the
maximal margin hyperplane). The objective is to build a discriminating function
using training data that will correctly classify new examples (x,y). When no linear
separation of the training data is possible, SVMs can work effectively in combina-
tion with kernel techniques using the kernel trick, so that the hyperplane defining
the SVMs corresponds to a non-linear decision boundary in the input space that is
mapped to a linearised higher-dimensional space [131]. In this way, the decision
function can be expressed in terms of the support vectors only:

[ (x) = sign () ouyiK (si,x) +wy) ,

where K(.,.) is a kernel function, ¢; is a weight constant derived from the SVM
process and the s; are the support vectors [131].

Given feature training vectors x; € R,,i = 1,...,[ of samples from the two
classes, and a vector y € R! such that y; € {—1,1} is the class label of sample
X;, in our case, for example, untrusted connections were labelled as -1 and trust
connections as 1. To maximize the classification margin, the SVM approach solves
the following optimization problem:

&

1

1
i=

1
min -w/w+C
w,b,E 2

subject to y; (Wl ¢(x;) +b) > (1—&), & >0,i=1,2,...,n. The dual optimization
problem is

1
min—o’ Qa —e’ a,
a 2

subject to yToc =0,0< o <C,i=1,...,1, where e is the vector of all ones,

I'The implementation used in most studies is included in the libSVM (http: //www.csie.ntu.
edu.tw/~cjlin/1libsvm/) software package.
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C > 0 is the upper bound on the error, Q is an [ x [ positive semi-definite ma-
trix, Qij = yiy;K(xi,x;), and K(x;,x;) = ¢ (x;)7 ¢(x;) is the kernel function that
describes the behavior of the support vectors. Here, the training vectors X; are
mapped into a higher (maybe infinite) dimensional space by the function ¢ (x;). C
is a regularization parameter used to balance the model complexity and the training
erTor.

Depending on the kernel function chosen, different kinds of SVM are defined
with different performance levels, and the choice of the appropriate kernel for a
specific application is a difficult task. In this study two different kernels were
tested: the linear and the radial basis function (RBF) kernel. The linear kernel
function is defined as

K(x;,x;) = 1+x!x;,

this kernel shows good performance for linearly separable data. The RBF kernel is

defined as 5
|[xi — x|

202 )

This kernel is best suited to deal with data that have a class-conditional probability

K(x;,X;) = exp(—

distribution function approaching the Gaussian distribution [22]. The RBF kernel is
largely used in the literature because it corresponds to the mapping into an infinite
dimension feature space, and it can be tuned by its variance parameter ©.

B.14 SMOTE

Umbalanced datasets, where the number of samples for each class is different, so
that one may be greatly underrepresented while other is overrepresented, poses a
number of problems for classification system building and validation. The trivial
solution of making the decision only on the favor of the most frequent class can
provide high accuracy while completely failing for the minority class. Often the
minority class is some specific condition that needs to be detected, so that the cost
of failing in the detection may be much greater than for the majority class. Hence,
some special strategy is required to improve results on the minority class, and spe-
cific performance measures must take into account this phenomena. For instance,
the True Positive Ration (TPR) can be a better measure than the conventional clas-
sification accuracy.

One of the strategies for classification building aimed to improve performacne
is the Synthetic Minority Over-sampling Technique (SMOTE) [28]. which consists
in the generation of new samples of the minority (less frequent) class in order
to obtain a more balanced representation of the classes. Instead of performing a
re-sampling with replacement from the original database, which only introduces
repetitions of the already sampled points in the feature space, SMOTE performs
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interpolation processes in order to generate new sampling points in feature space,
because mere replication of sampling points do not alter the decision boundary. As
a side effect, we are not sure of the actual discrimination functions, so that SMOTE
might be introducing spurious class boundary displacements.

SMOTE works in feature space by the following process for each minority
class sample (or a random subset of them) xq:

1. Select its k minority class nearest neighbors Ny (Xo)

2. Draw the line between each x; € Ny (Xo) and Xo.

(a) compute the new sample picking a random position in this line (random
linear interpolation):

x; = oxo+ (1 — o) x;,

where o ~ U (0, 1) is a random number between 0 and 1.

3. Add the generated samples to the minority class training data.

This process can be tuned specifying the number of nearest neighbors. SMOTE can
be used in combination with majority class under-sampling (removing samples).
Notice that SMOTE may “fill the gaps” in data distributions that show disperse
connected regions.

B.2 Computational methods on Recommendation Systems
for Recipe Generation

In Chapter 4 we use Extreme Learning Machine (ELM) [73, 72] in order to obtain
a quick solution to the training problem of the recipe evaluation method. ELM
provides a simple learning algorithm for Single-Hidden Layer Feedforward Neural
network (SLFN), reducing it to the Moore-Penrose generalized inverse providing
the minimum Least-Squares solution of general linear systems. The hidden layer
weights are given by random sampling, obviating the need of lengthy and difficult
to tune gradient descent learning of the input to hidden layer weights.

B.2.1 Basic ELM

For N arbitrary distinct samples (x;,#;), where input variables are X; = [xi1,Xp2, . . ., Xin]T €
R" and target values are t; = [t;1,t2,. .. ,tl-m]T € R™. The training of a standard
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SLEN with N hidden neurons and activation function g(x) is mathematically mod-
eled as solving the following equation to estimate the value of the SLFN parame-

ters:
hn
Y Big(wi-xj+bi) =tj, j=1,---,N. (B.8)
i=1
where Wi = [w;1,Wi2,...,wis]T is the weight vector connecting the i-th hidden neu-
ron and the input neurons, B; = [Bi1,Bi,---,Bim]! is the weight vector connecting

the i-th hidden neuron and the output neurons, and b; is the threshold of the ith hid-
den neuron. w; - Xj denotes the inner product of w; and x; and An is the number of
hidden neurons. The activation function can be the identity for the so-called linear
kernel approaches, sigmoid for the Multilayer Perceptron approaches, or Gaussian
for Radial Basis Function approaches.

The equation (B.8) can be written in matrix form as:
HB =T, (B.9)

where H, of size N x hn, is the output matrix resulting of the SLFN hidden layer
activated by the input samples, f is the output weight matrix of size hn x m, and
T is the target matrix with size N x m. Training of SLEN is accomplished by
computing the least-squares solution ﬁ of the linear system Hf = T, given by
ﬁ = H'T, where H' is the Moore-Penrose inverse of H.

B.3 Computational methods for Influence Maximization

This section describes the conventional optimization algorithms that have been ap-
plied to compare with our specific proposals for Influence Maximization (IM) in
Chapter 6. We retain the notation associated with the IM statement in the de-
scription of the algorithms, assuming that the objective function is the influence
spread denoted by o (S). The straightforward approach is to perform an exhaus-
tive search, where all possible combinations of IM-Seed node sets are evaluated.
In a exhaustive systematic procedure, a search tree would be traversed where each
node correspond to a solution. For NP-complete problems, such as IM, this and any
other other exact global search methods are unfeasible. Therefore, we must resort
to heuristic approaches, which provide suboptimal but good results in a reasonable
time, such as the greedy search [77], which has quadraticly growing computational
time depending on the number of nodes. In this Appendix we describe the well
known heuristic algorithms: Simulated Annealing, canonical Genetic Algorithm,
Harmony Search (HS). and Greedy Search (GS) algorithm. The objective function
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to maximize is the influence spread, i.e. max {o (S)}. For a given candidate solu-

tion, o (S) is computed by a ICM Monte Carlo approximation specified in Chapter
6. Often the heuristic approaches need some codification of the candidate solution.
The common codification is a vector of binary valued components such that §, =1
iff node v has been included in the IM-Seed solution S. For convenience, the com-
ponents are not explicit in most algorithm presentations. Note that the vector space
dimension is the size of the node set V.

B.3.1 Simulated annealing

Simulated Annealing (SA) was proposed [79, 78, 109] as a general purpose prob-
abilistic metaheuristic for the global optimization of non-convex functions (often
non-differentiable) in large search spaces. It is a nature inspired technique, mim-
icking the heating and cooling process followed to obtain some materials, for ex-
ample high quality steel. SA was shown to provide the global optima under very
strict conditions, and provides good approximations in a reasonable computational
time. It generates a sequence of solutions whose objective function values converge
to the global optimum value. A temperature parameter allows to control the search.
The temperature parameter typically starts off high and is slowly "cooled" or low-
ered in every iteration. At high temperatures, the process accepts state (solution)
changes that deteriorate the objective function to a limited extent. This prevents
the search from getting trapped in local optima at early stages. At decreasing tem-
peratures, it becomes a hill climbing algorithm that only accepts improvements of
the objective function. Algorithm B.1 presents a pseudocode of the Simulated An-
nealing, where S is the current solution, which is a binary codification of the nodes,
one bit per node which is on if the node belongs to the IM-Seed influence set. S,,,,,
is a candidate new solution generated by the neighbour() function from the cur-
rent solution, by randomly changing one of the components to its opposite value.
The acceptance probability P, (E (S),E (Spew),T) is a function of the temperature
T and the difference of the objective function that is the influence spread of the
IM-Seed set o (S) of the current and new candidate states.

B.3.2 Genetic algorithm

Genetic Algorithms (GA) [71, 53] were proposed as a general method for solv-
ing both constrained and unconstrained optimization problems based on a natural
selection process that mimics biological evolution. The algorithm iteratively gen-
erates a population S, of individual candidate IM solutions S; by the application
of genetic operators, crossover and mutation, to the chromosomes in the previous
generation S;_;. At each step, the genetic algorithm randomly selects individuals
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Algorithm B.1 Simulated Annealing algorithm pseudocode

1. s =159
2. For k =0 : k4, (exclusive):
(a) T < temperature(k/kpayx)
(b) Pick a random neighbor, S,,,, < neighbour (S)

(©) If P, (GS,0 (Sew),T) > r, r ~U(0,1)
(d) S < Snew

3. Return s

from the current population and uses them as parents to produce the children for
the next generation. Successive population generations "evolve" toward an optimal
solution 2. In GAs, the number of generations and the population size are critical
parameters, in the experiments they are set proportional to problem complexity, i.e.
number of nodes in the social network, so that effective computation time grows
linearly. A typical GA is as follows: Start with a randomly generated population
So = {S1,-...,Sy}, each chromosome is a candidate solution encoded as a binary
valued vector. Calculate the fitness o (S;) of each chromosome S; in the popula-
tion Sy, the fitness allows to compute the selection probability. At each generation,
create N offspring by crossover and mutation. For crossover, randomly draw a
pair of parent chromosomes from the current population, according to an empiri-
cal probability distribution which is a increasing function of chromosome fitness.
Selection is done “with replacement,” meaning that the same chromosome can be
selected more than once to become a parent. According to crossover probability
pc exchange the bits of the pair randomly to form two offsprings. If no crossover
takes place, form two offspring that are exact copies of their respective parents. For
mutation: Mutate each bit the two offspring at each locus with probability p,, (the
mutation probability), and place the resulting chromosomes in the new population.
Finally, replace the current population with the new population applying an elitist
rule that preserves the best chromosomes of the previous population.

B.3.3 Greedy Search

A straightforward Greedy Search (GS) algorithm achieves a good deterministic
approximation to the optimum solution of IM due to non-negativity, monotonicity
and submodularity of & (-) [77]. The influence spread is a set function ¢ : 2" — R,

Zhttp://www.mathworks.com/discovery/genetic-algorithm. html
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Algorithm B.2 Proposed New Method’s algorithm
1. Given weighted social graph G = (V,E,W)

2. =09
3. Tterate until Ao (v*) =0
(a) Compute Ao (v) ={c (S;U{v})—0c(S)} forallveV -5,
(b) v = arg max {Ao (v)}
ve

(©) Spe1 =S U{v}
) t=t+1

4. Return S,

which is non-negative, i.e. o (S > 0) for all S C V, monotone, i.e. o (S) < o (T)
for all § C T, and submodular, i.e. 6 (SU{v})—0(S) > o (TU{v})—0o(T) for
all § CV and v € V. For this kind of objective functions, it is known that the greedy
search would achieve a solution which is at least 63% of the global optimum [77].

There are two main steps in the Greedy Search specified . First, we compute the
influence spread o (v;) for all nodes in the graph. Second, we compute the iterative
solution generation specified in Algorithm B.2. At the beginning, the solution IM-
Seed node set S is empty. At each step of the greedy search iteration, we look for
the node v* that provides the greatest increase in the influence Ao (v), until there
is no increase in influence whatever the node chosen, i.e. Ao (v*) =0. For the
ease of notation, we assume that o (@) = 0.

B.3.4 Harmony Search

Harmony Search (HS) [48, 85] is a global search heuristic for global optimiza-
tion of non-convex functions inspired in the musical improvisation process. It has
been successfully applied to a variety of problems alone or hybridized with other
methods. Some recent applications follow. The muzzle velocity of an electromag-
netic railgun was optimized applying HS on the variables ranked by a previous
orthogonal design method [27]. The optimization of an electrical transformer de-
sign [65] was achieved by a multi-objective HS endowed with crowding distance
ranking and control parameter tuning by a Ricker map. Parameter tuning by HS of
the proportional integral controllers of a distributed power generation system over-
comes genetic algorithms and gradient descent approaches in [5]. A differential
HS compares favorably with particle filter approaches for face tracking in video
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imagery [46]. A quasi-oppositional HS improves over fuzzified internal control
models [119, 125] for the control of several standard power generation systems.
The design of ensemble classifiers using HS for classifier-as-feature selection is
discussed in [37]. An improved HS is successfully applied or thrust optimization
of dynamic positioning of off-shore oil drilling platforms [137]. The variety of
these applications show the versatility of the HS approach.

In the HS algorithm, each musician (= decision variable) plays (=generates) a
note (= a value) looking for the best harmony (= global optimum) all together. Har-
mony is defined by some objective function which we try to optimize (minimize or
maximize). Since its initial proposal, there have been variations and improvements
of HS in the literature to be applied in different contexts, for instance: discrete de-
sign variables, and global optimization through competition [50, 49, 96, 84, 108].
The optimization problem is specified as follows:

mxin{f(x) Ix=[xeX;i=1,...,N]} (B.10)

where f (x) is the objective function that corresponds to the musical harmony, X; is
the range set of design variable x; (we consider continuous design variables), and N
is the number of design variables. The “harmony memory” (HM) matrix, equation
B.11, is the central data structure of the algorithm containing the current state of
the search, given by the preserved harmony vectors plus their harmony value f (x),

X1 ce XHMS

HM=| oy sy | (B.11)

ordered so that f (x/) > f (x/™1), so that f (x#M5) is the worst harmony value.
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