

### Facultad de Medicina y Odontología

Departamento de Genética, Antropología Física y Fisiología Animal

**Tesis doctoral** 

# Genetic variants involved in Childhood Acute Lymphoblastic Leukemia Susceptibility

Ángela Gutiérrez Camino

Leioa, 2016

Este trabajo ha sido posible gracias a la concesión de una beca predoctoral para Personal Investigador en Formación otorgada por el Departamento de educación, universidades e investigación del Gobierno Vasco y una beca de Investigación de la Fundación Jesús de Gangoiti Barrera.

A mis padres

A Daniel

## Agradecimientos

Me gustaría aprovechar estas líneas para dar las gracias a todas las personas que han estado a mi lado y han hecho posible este proyecto.

En primer lugar, a África, porque hemos conseguido llegar enteras a la meta, aunque no ha sido un camino fácil. Gracias por haberme abierto el camino de la investigación y haber confiado en mí para este proyecto. Idoia, gracias por todo lo que me has enseñado, pero sobre todo por transmitirme tu pasión por este trabajo y por hacerme confiar más en mi misma.

A los doctores y doctoras Aurora Navajas, Aizpea Echebarria, Itziar Astigarraga, Mª Angeles Piñán, Ana Carboné, Purificación García-Miguel, Ana Sastre, Nagore Garcia de Andoin y Javier Uriz. A las enfermeras Silvia, Tere, Marta, Mayte y Begoña. Sin vuestra ayuda no habría sido posible este trabajo.

A Javier Ballesteros y a Borja por vuestra ayuda con la estadística, porque me habéis enseñado a ver su lado bueno.

Thanks to Dr. Marry van den Heuvel-Eibrink and Dr. Robert de Jonge, for opening for me the door to Rotterdam and to all the people in the group for turning my 4 months there in an unforgettable experience, specially Cherina, Pooja, Maja, Pamela, Samira, Gigi, Marianne and all the people in the AKC Department. Also thanks to Marissa for her help and support.

A mis compañeras y amigas. Nerea, mil gracias por haber decidido empezar este camino a mi lado, no sabes lo que significa para mí que me hayas apoyado siempre, porque compartir las cargas las hace menos pesadas. Idoia, gracias por ayudarme a quitarle importancia a las cosas cuando no veía la forma de seguir y por ser un apoyo en los momentos más difíciles. No se cómo hemos conseguido llegar al punto de reírnos cuando las cosas van mal, pero funciona. Eli, muchísimas gracias por tu infinita paciencia, por tu ayuda en los comienzos, y por esa gran boda que pasará a la historia por lo mal que nos lo pasamos <sup>(2)</sup>. Maria y Leire, aunque ha sido relativamente poco el tiempo que hemos trabajado juntas, muchas gracias por vuestra ayuda incondicional, por vuestros ánimos y por haber estado conmigo en algún momento de este camino. A todos los demás compañeros de laboratorio, Ander, Sarai, Julen, Ainara, Nora, Cris, Nerea, Alba, Bea, Ziortza, Jaione y Maitane.

Gracias a nuestro grupo vecino, Buli, Izortze, Amaia, Irati, Leti, Nora, Ainara, Koldo y Teresa, por animar el laboratorio, por los cafés, por las comidas... Gracias porque habéis hecho que me sienta menos sola. Me gustaría agradecer de manera especial a mis amigas porque son el espejo en el que me miro para saber que vamos por el buen camino (o por uno muy malo, depende de cómo se mire <sup>(iiii)</sup>). Marta, Nerea, Elena, Vicky y Silvia, gracias a vosotras todo merece la pena, gracias por ser mi vía de escape y ser el lugar en el que me curo cuando estoy herida.

A César, que llegaste a mi vida para hacerla más bonita en un momento en el que todo era negro. Gracias por entenderme y ayudarme a superar los malos momentos, por enseñarme que para tener días buenos, también hay que tenerlos malos.

A mi familia, que son el pilar fundamental de mi vida. Escribiría páginas y páginas agradeciendo todo el apoyo que recibo, todos los ánimos y todo el cariño. Nada sería posible sin vosotros. Sobre todo gracias a mi abuela, que me cuida tanto, a mis tías, que creen más en mí que yo misma y especialmente a mis padres, a quienes les debo todo. Gracias por enseñarme a luchar y a levantarme cuando me he caído. Nos ha costado, pero lo hemos conseguido.

A Daniel, a quien jamás recuerdo porque nunca olvido.

Y a todos los que me han ayudado de alguna manera pero que, por culpa de mi mala memoria, no están aquí mencionados.

## **Publications**

The work of this thesis is reflected in the following publications:

**Gutierrez-Camino A,** Martín-Guerrero I, Santos B, García de Andoin N, Sastre A, Carboné Bañeres A, Astigarraga I, Navajas A García-Orad A. Involvement of polymorphisms in *IKZF1* and *CEBPE* in childhood Acute Lymphoblastic Leukemia susceptibility (*Under preparation*)

**Gutierrez-Camino A**, Martín-Guerrero I,García de Andoin N, Sastre A Carboné Bañeres A Astigarraga I, Navajas A, García-Orad A. Involvement of SNPs in CDKN2A/B locus in Acute Lymphoblastic Leukemia susceptibility (*Under review in Leukemia and Lymphoma*)

**Gutierrez-Camino A**, Martín-Guerrero I, Dolzan V, Jazbec J, Carbone Bañeres A, Garcia de Andoin N, Sastre A, Astigarraga I, Navajas A, Garcia-Orad A. MicroRNAs SNPS involved in acute lymphoblastic leukemia susceptibility (*Under review in Haematologica*)

**Gutiérrez-Camino A**, López-López E, Martin-Guerrero I, Piñan MA, Garcia-Miguel P, Sánchez-Toledo J, Carboné Bañeres, A. Uriz J, Navajas A, García-Orad, A. Non-coding RNAs-related polymorphisms in pediatric acute lymphoblastic leukemia susceptibility. *Pediatr Res. 2014 Jun;75(6):767-73.* (Pediatrics Q1 19/122 IF: 2.67)

**Gutiérrez-Camino A**, López-López E, Uriz J, Sánchez-Toledo J, Carboné Bañeres A, García-Miguel P, Navajas A, García-Orad, A. Intron 3 of ARID5B gene: a hotspot for Acute Lymphoblastic leukemia susceptibility. *Journal of Cancer Research and Clinical Oncology. 2013. Nov;139(11):1879-86.* (Oncology Q2 84/196 IF: 2.914).

Lopez-Lopez E, **Gutierrez-Camino A**, Martin-Guerrero I, Garcia-Orad A. Re: Novel susceptibility variants at 10p12.31-12.2 for childhood acute lymphoblastic leukemia in ethnically diverse populations. *JNCI-Journal of the National Cancer Institute 2013. Oct 2;105(19):1512.* (Oncology Q1 6/196 IF: 14.33)

Furthermore, during the development of this thesis, I have collaborated in the following projects:

Iparraguirre L, **Gutierrez-Camino A**, Umerez M, Martin-Guerrero I, Astigarraga I, Navajas A, Sastre A, Garcia de Andoin N, Garcia-Ora A. MiR-pharmacogenetics of methotrexate in childhood Acute Lymphoblastic Leukemia *Pharmacogenet Genomics. 2016 Nov;26(11):517-525.* (Pharmacology and Pharmacy Q1 61/255 IF: 3.4)

Lopez-Lopez E, **Gutierrez-Camino A,** Astigarraga I, Navajas A, Echebarria-Barona A, Garcia-Miguel P, Garcia de Andoin N, Lobo C, Guerra-Merino I, Martin-Guerrero I, Garcia-Orad A. Vincristine pharmacokinetics pathway and neurotoxicity during early phases of treatment in pediatric acute lymphoblastic leukemia *Pharmacogenomics. 2016 May;17(7):731-41* (Pharmacology & Pharmacy Q1 47/261 IF: 3.857)

**Gutierrez-Camino A**, Martin-Guerrero I, Lopez-Lopez E, Echebarria-Barona A, Zabalza I, Ruiz I, Guerra-Merino I, Garcia-Orad A. Lack of association of rs924607 TT genotype in CEP72 with vincristine peripheral neuropathy in early phase of pediatric ALL treatment in Spanish

population. *Pharmacogenet Genomics. 2016 Feb;26(2):100-2.* (Pharmacology and Pharmacy Q1 61/255 IF: 3.4)

Martin-Guerrero I, **Gutiérrez-Camino A**, Lopez-Lopez E, Bilbao-Aldaiturriaga N, Pombar-Gómez M, Ardanaz M, Garcia-Orad A. Genetic variants in microRNA processing genes and pre-miRNAs are associated with the risk of Chronic Lymphocytic Leukemia *PLoS One. 2015 Mar 20;10(3):e0118905.* (Multidisciplinary Sciences Q1 8/55 IF: 3.534)

Bilbao-Aldaiturriaga N, **Gutiérrez-Camino A**, Martin-Guerrero I, Pombar-Gómez M, Zalacain-Díez M, Patiño-García A, López-López E, Garcia-Orad A. Polymorphisms in miRNAprocessing genes and their role in osteosarcoma risk. *Pediatr Blood Cancer. 2015 Feb 7.* (Pediatrics Q1 27/122 IF: 2.353)

M.A.H. den Hoed, Lopez-Lopez E, te Winkel M.L., Tissing W, de Rooij J.D,E, **Gutierrez-Camino A**, Garcia-Orad A, den Boer E, Pieters R, Pluijm S.M.F, de Jonge R, and van den Heuvel-Eibrink M.M. Genetic and metabolic determinants of methotrexate induced mucositis in pediatric acute lymphoblastic leukemia. *Pharmacogenomics J. 2014 Nov 4* (Pharmacology & Pharmacy Q1 14/254 IF: 5.513)

**Gutierrez-Camino A**, Lopez-Lopez E, Garcia-Orad A. SLC19A1 hot spot for MTX plasma concentration. *Med Oncol. 2014 Oct;31(10):204* (Oncology Q3 136/202 IF: 2.058)

Lopez-Lopez E, **Gutierrez-Camino A**, Bilbao-Aldaiturriaga N, Pombar-Gómez M, Martin-Guerrero I, Garcia-Orad A. Pharmacogenetics of childhood acute lymphoblastic leukemia. *Pharmacogenomics. 2014 Jul;15(10):1383-98* (Pharmacology & Pharmacy Q1 47/261 IF: 3.857)

Lopez-Lopez E, **Gutiérrez-Camino A**, Piñan MA, Sanchez-Toledo J, Uriz JJ, Ballesteros J, García-Miguel P, Navajas A, Garcia-Orad A Pharmacogenetics of microRNAs and microRNAs biogenesis machinery in pediatric Acute Lymphoblastic Leukemia. *PLoS One. 2014 Mar 10;9(3):e91261*.(Multidisciplinary Sciences Q1 7/56 IF: 3.7)

## Abbreviations

| 3UTR     | 3'UTR regulation                                             |  |  |
|----------|--------------------------------------------------------------|--|--|
| 5UTR     | 5'UTR regulation                                             |  |  |
| ABL1     | Abelson murine leukemia viral oncogene homolog 1             |  |  |
| AF4      | AF4/FMR2 family, member 1                                    |  |  |
| AF9      | Myeloid/lymphoid or mixed-lineage leukemia; translocated to, |  |  |
| AGO      | Argonaute                                                    |  |  |
| ALL      | Acute lymphoblastic leukemia                                 |  |  |
| RUNX1    | Runt-related transcription factor 1                          |  |  |
| ANRIL    | Antisense RNA in the INK4 locus                              |  |  |
| ARID5B   | AT rich interactive domain 5B                                |  |  |
| ARMS     | Amplification-refractory mutation system                     |  |  |
| ASO      | Allele specific oligos                                       |  |  |
| ATXN7L3B | Ataxin 7 like 3B                                             |  |  |
| B- ALL   | B-cell lineage acute lymphoblastic leukemia.                 |  |  |
| BCR      | B-cell receptor                                              |  |  |
| BIB      | Bibliographic                                                |  |  |
| BIM      | BCL2-like 11 (apoptosis facilitator)                         |  |  |
| BRMS1L   | Breast cancer metastasis-suppressor 1-like                   |  |  |
| BTK      | Bruton tyrosine kinase                                       |  |  |
| CACNA1D  | Calcium voltage-gated channel subunit alpha1 D               |  |  |
| CACNG1   | Calcium voltage-gated channel auxiliary subunit gamma 1      |  |  |
| CACNG8   | Calcium voltage-gated channel auxiliary subunit gamma 8      |  |  |
| CD20     | Membrane-spanning 4-domains, subfamily A, member 1           |  |  |
| CD22     | Sialic acid binding Ig-like lectin 2                         |  |  |
| CDK      | Cyclin- dependent kinase                                     |  |  |
| CDKN2A/B | Cyclin-dependent kinase inhibitor 2A/B                       |  |  |
| CEBPB    | CCAAT/enhancer binding protein beta                          |  |  |
| CEBPE    | CCAAT/enhancer binding protein epsilon                       |  |  |
| CeGen    | Spanish national genotyping center.                          |  |  |
| CEP68    | Centrosomal protein 68kda                                    |  |  |
| CG       | Cpg site                                                     |  |  |
| CHAS     | Chromosome analysis suite.                                   |  |  |
| Chrom    | Chromosome                                                   |  |  |
| CI       | Confidence interval                                          |  |  |
| CIMA     | Centre for Applied Medical Research                          |  |  |
| CN State | Copy Number state                                            |  |  |
| CNOT     | CCR4-NOT transcription complex                               |  |  |
| CNS      | Central nervous sistem                                       |  |  |
| CNVs     | Copy number variations.                                      |  |  |
| CPdB     | Consensuspath database                                       |  |  |
| cSNPs    | Coding snps                                                  |  |  |
| CYP1A1   | Cytochrome P450 family 1 subfamily A member 1                |  |  |
| CYP2E1   | Cytochrome P450 family 2 subfamily E member 1                |  |  |
| del      | Deletion                                                     |  |  |

| DGCR8  | Digeorge syndrome critical region gene 8                                     |
|--------|------------------------------------------------------------------------------|
| DICER  | Ribonuclease type III                                                        |
| DNA    | Deoxyribonucleic acid                                                        |
| DROSHA | Double-stranded RNA-specific endoribonuclease                                |
| dsRNA  | Double-stranded RNA                                                          |
| E2A    | Transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47) |
| EBF1   | Early B-cell factor 1                                                        |
| EIF2C1 | Eukaryotic translation initiation factor 2C, 1                               |
| EIF2C2 | Eukaryotic translation initiation factor 2C                                  |
| ENL    | Myeloid/lymphoid or mixed-lineage leukemia; translocated to, 1               |
| eQTL   | Expression quantitative trait locus                                          |
| ERCC2  | Excision repair-complementing group 2                                        |
| ERG    | V-ets erythroblastosis virus E26 oncogene homolog                            |
| ERK    | EPH receptor B2                                                              |
| ETV6   | Ets variant 6                                                                |
| FDR    | False discovery rate                                                         |
| FOXO1A | Forkhead homolog in rhabdomyosarcoma                                         |
| FOXP1  | Fork head-related protein like B                                             |
| GEMIN3 | DEAD (Asp-Glu-Ala-Asp) box polypeptide 20                                    |
| GEMIN4 | Gem (nuclear organelle) associated protein 4                                 |
| GEMIN5 | Gem (nuclear organelle) associated protein 5                                 |
| GRB2   | Growth factor receptor bound protein 2                                       |
| GSTM1  | Glutathione S-transferase M1                                                 |
| GSTT1  | Glutathione S-transferase theta 1                                            |
| GWAS   | Genome wide association study                                                |
| HGP    | Human Genome Project                                                         |
| HIWI   | Piwi-like 1                                                                  |
| HLA    | Human leukocyte antigen                                                      |
| HWE    | Hardy-Weinberg equilibrium                                                   |
| IGL@   | Immunoglobulin lambda locus                                                  |
| IKZF1  | IKAROS gene                                                                  |
| IL3    | Interleukin 3                                                                |
| ISCIII | Instituto de Salud Carlos III                                                |
| KDM5A  | Lysine demethylase 5A                                                        |
| KIF24  | Kinesin family member 24                                                     |
| LD     | Linkage disequilibrium                                                       |
| IncRNA | Long non coding RNA                                                          |
| LRT    | Log-likelihood ratio test                                                    |
| LSO    | Locus specific oligos                                                        |
| MAF    | Minor allele frequency                                                       |
| MAP2K4 | Mitogen-activated protein kinase kinase 4                                    |
| МАРК   | Mitogen-activated protein kinase                                             |
| MDM2   | Mouse double minute 2                                                        |
| MDR1   | ATP-binding cassette, sub-family B (MDR/TAP), member 1                       |
| MFE    | Minimum free energy                                                          |
| МНС    | Major histocompatibility complex                                             |

| miRNA     | Microrna                                                             |  |  |  |
|-----------|----------------------------------------------------------------------|--|--|--|
| MIRTS     | Mirna target site                                                    |  |  |  |
| MLL       | Myeloid/lymphoid or mixed-lineage leukemia                           |  |  |  |
| mRNA      | Messenger RNA                                                        |  |  |  |
| MS4A1     | Cd20                                                                 |  |  |  |
| MTHFR     | 5,10-methylenetetrahydrofolate reductase                             |  |  |  |
| MTR       | Methionine synthase                                                  |  |  |  |
| MTRR      | Methionine synthase reductase                                        |  |  |  |
| N.E.      | Not estimable.                                                       |  |  |  |
| N.S.      | Non-significant                                                      |  |  |  |
| NA        | Not available                                                        |  |  |  |
| ncRNA     | Non coding rnas                                                      |  |  |  |
| NFQ       | Nonfluorescent quencher                                              |  |  |  |
| NQO1      | NAD (P) H quinone oxidoreductase                                     |  |  |  |
| NS        | Non-synonimous                                                       |  |  |  |
| OR        | Odds ratio.                                                          |  |  |  |
| PAX5      | Paired box 5 gene.                                                   |  |  |  |
| PBX1      | Pre-B-cell leukemia homeobox 1                                       |  |  |  |
| PCR       | Polymerase chain reaction                                            |  |  |  |
| PCR-RFLP  | Polymerase chain reaction - restriction fragment length polymorphism |  |  |  |
| PDGFR     | Platelet derived growth factor receptor beta                         |  |  |  |
| РІЗК      | Phosphatidylinositol 3-kinase                                        |  |  |  |
| PIP2      | Phosphatidylinositol-5,4-bisphosphate                                |  |  |  |
| PIP4K2A   | Phosphatidylinositol-5-phosphate 4-kinase, type II, alpha            |  |  |  |
| PLC       | Phospholipase C                                                      |  |  |  |
| pre-miRNA | Precursor mirna                                                      |  |  |  |
| pri-miRNA | Primary mirna                                                        |  |  |  |
| PTDR      | Post-traductional regulation                                         |  |  |  |
| PTEN      | Tumor suppressor and cell cycle regulatory genes.                    |  |  |  |
| Pter      | P terminus                                                           |  |  |  |
| PTPN11    | Protein tyrosine phosphatase, non-receptor type 11                   |  |  |  |
| Qter      | Q terminus                                                           |  |  |  |
| RAN       | Member RAS oncogene family                                           |  |  |  |
| RAP1B     | Member of RAS oncogene family                                        |  |  |  |
| RB1       | Retinoblastoma 1                                                     |  |  |  |
| RFC1      | Reduced folate carrier                                               |  |  |  |
| RFC5      | Replication factor C subunit 5                                       |  |  |  |
| RFLP      | Restriction fragment length polymorphism                             |  |  |  |
| RISC      | RNA-inducing silencing complex                                       |  |  |  |
| RNA       | Ribonucleic Acid                                                     |  |  |  |
| RUNX1     | Runt related transcription factor 1                                  |  |  |  |
| SD        | Standard deviation.                                                  |  |  |  |
| SH2B3     | SH2B adaptor protein 3                                               |  |  |  |
| SHMT1     | Serine hydromethyl transferase.                                      |  |  |  |
| SND1      | Staphylococcal nuclease and tudor domain containing 1                |  |  |  |
| SNP       | Single nucleotide polymorphisms                                      |  |  |  |

| SOS1     | SOS Ras/Rac guanine nucleotide exchange factor 1 |  |  |
|----------|--------------------------------------------------|--|--|
| SR       | Splicing regulation                              |  |  |
| SRF      | Serum response factor                            |  |  |
| ssRNA    | Single stranded RNA                              |  |  |
| TADA2A   | Transcriptional adaptor 2A                       |  |  |
| TAG      | Tagsnp                                           |  |  |
| TARBP2   | TAR (HIV-1) RNA binding protein 2                |  |  |
| ТВР      | Tatabox binding protein                          |  |  |
| TCR      | Transcriptional regulation                       |  |  |
| TEL      | Ets variant 6                                    |  |  |
| TFBS     | Transcription factor binding site                |  |  |
| TNRC6A/B | Trinucleotide repeat containing 6A/B             |  |  |
| TR       | Transcriptional regulation                       |  |  |
| TS       | Thymidylate synthetase                           |  |  |
| UR       | Upstream regulation.                             |  |  |
| WGA      | Whole genome amplification                       |  |  |
| WHO      | World health organization.                       |  |  |
| XPO5     | Exportin 5                                       |  |  |
| XRCC1    | X-Ray repair-cross complementing group 1         |  |  |

## Index

| Inti   | Introduction 29              |                                                         |    |
|--------|------------------------------|---------------------------------------------------------|----|
| ١.     | Acute Lymphoblastic leukemia |                                                         |    |
|        | ١.                           | Introduction                                            | 31 |
|        | II.                          | Definition                                              | 32 |
|        | III.                         | Epidemiology                                            | 33 |
|        | IV.                          | Disease heterogeneity                                   | 36 |
|        | ٧.                           | Etiology                                                | 36 |
|        |                              | a) Environmental factors                                | 37 |
|        |                              | b) Genetic factors                                      | 39 |
| II.    | Low pen                      | etrant variants in Acute lymphoblastic leukemia         | 40 |
|        |                              | a) Candidate gene association studies                   | 42 |
|        |                              | b) Genome-Wide Association Studies (GWAS)               | 44 |
| III.   | Non cod                      | ing regions                                             | 52 |
|        | ١.                           | MiRNAs                                                  | 53 |
|        | II.                          | MiRNA processing genes and Acute Lymphoblastic leukemia | 55 |
|        | III.                         | MiRNAs and Acute Lymphoblastic Leukemia                 | 56 |
| IV.    | Annex 1                      |                                                         | 59 |
|        |                              |                                                         |    |
| Hy     | pothesis a                   | nd Objectives                                           | 67 |
|        | ١.                           | Hypothesis                                              | 69 |
|        | II.                          | Objectives                                              | 71 |
|        |                              |                                                         |    |
|        | iterial and                  | Methods                                                 | /3 |
| I.<br> | Populat                      | ion of the study                                        | /5 |
| 11.    | Studies                      | of genes identified in GWAS                             | // |
|        | l.<br>                       | ARID5B                                                  | 77 |
|        | II.                          | IKZF1                                                   | 80 |
|        | III.                         |                                                         | 83 |
|        | IV.                          | CDKN2A/B                                                | 84 |
|        | V.                           | PIP4K2A                                                 | 87 |
| III.   | Studies                      | of New genetic variations                               | 88 |
|        | Ι.                           | SNPs in genes of processing machinery                   | 88 |
|        | II.                          | SNPs in miRNA genes                                     | 91 |

| IV.        | Data analysis                 | 98  |  |
|------------|-------------------------------|-----|--|
| Resu       | ults/Discussion               | 101 |  |
| I.         | ARID5B gene                   | 103 |  |
| н.         | IKZF1 and CEBPE genes         | 119 |  |
| III.       | CDKN2A/B genes                | 137 |  |
| IV.        | PIP4K2A gene                  | 149 |  |
| V.         | Non-coding RNAs-related genes | 151 |  |
| VI.        | MicroRNAs genes               | 167 |  |
| VII.       | Annex II                      | 195 |  |
|            |                               |     |  |
| Disc       | ussion                        | 223 |  |
| Conclusion |                               |     |  |
| Refe       | References                    |     |  |

**INTRODUCTION** 

## ACUTE LYMPHOBLASTIC LEUKEMIA

#### **INTRODUCTION**

Acute Lymphoblastic Leukemia (ALL) is the most common type of cancer in children, being the leading cause of death by disease in developed countries. Incidence rates for ALL vary several-fold, internationally, with the highes rates occurring in Spain, among Hispanics in Los Angeles, and in Caucasians in Canada and New Zealand (Wantenberg et al., 2008). In fact, in Spain, ALL corresponds to about 36% of all cases of cancer. However, the causation pathways of this disease are poorly understood.

#### DEFINITION

ALL is a neoplasm of precursor cells (lymphoblasts), committed to the B- or T-cell lineage. Acquisition by the precursor of a series of genetic abnormalities disturbs its normal maturation process (Figure 1), leading to differentiation arrest and proliferation of the transformed cell. As a consequence, there is accumulation of an immature B- or T-cell clone, typically composed of small to medium-sized blast cells with scant cytoplasm, moderately condensed to dispersed chromatin and inconspicuous nucleoli. By definition, bone marrow is involved in all cases and peripheral blood is usually affected. Extramedullary involvement is frequent, with particular predilection for the central nervous system, lymph nodes, spleen, liver and testis in males (Swerdlov et al. 2008).



Figure 1: Normal blood cell development. (http://www.cancer.gov/cancertopics/pdq/treatment/childALL/Patient/page1 NCI).

#### **EPIDEMIOLOGY**

Acute Lymphoblastic Leukemia represents the third part of pediatric cancer cases, accounting about 75-80% of all cases of acute leukemia in children. Approximately, 75% of cases occur in children under six years of age and there is a frequency peak between 2 and 5 years (Swerdlov et al. 2008). The worldwide incidence is estimated at 1-4.75/100,000 cases per year. ALL is slightly more common in males than females. Additionally, racial and ethnic differences have been described. Hispanics are more likely to develop acute leukemia than Caucasians and these show higher incidence than African-Americans (Lim et al. 2014).

In Spain, according to the National Child Tumor Registry (RNTI-SEHOP, 1980-2015), the incidence of ALL is 36.6% (CI95%: 34.7-38.6) of all pediatric malignancies in children <14 years old (Figure 2).



Figure 2: ALL incidence in Spain (RNTI-SEHOP).

The 80–85% of all ALL cases are of B-cell lineage (B-ALL) (Silverman et al. 2000). From now on, we are going to focus on this majority subtype.

#### **DISEASE HETEROGENEITY**

One of the main characteristics of B-ALL is its great heterogeneity, with marked differences between individuals at diagnosis, clinical behavior and response to chemotherapeutic agents. The identification of these differences has led to define significant outcome predictors that are currently used to determine a patient's "risk group" and to stratify the intensity of delivered therapy.

Nowadays, the prognostic factors most used in B-ALL risk stratification include age, white blood cell count at diagnosis, extramedullar affection, minimal residual disease and cytogenetics.

Infancy, increasing age (>10 years) and higher white blood cell count are all associated with adverse prognosis. The presence of central nervous system (CNS) disease at diagnosis is also associated with adverse outcome, and requires specific therapy. Additionally, certain cytogenetic abnormalities have been identified as relevant prognostic factors. Based on this knowledge, in 2008 the World Health Organization revised the nomenclature from precursor

B-ALL and established a classification based on 7 specific recurring genetic lesions associated with unique clinical, immunophenotypic, and/or prognostic features (Vardiman et al. 2009) (Table 1) (Figure 3):



Figure 3: B-ALL subtypes by World Health Organization 2008.

- Hyperdiploidy ALL: It is the most common subtype accounting for about 30% of B-ALL cases (Paulsson 2016). It is not seen in infants, and decreases in frequency in older children. Hyperdiploid B-ALL contains a numerical increase in chromosomes, usually without structural abnormalities. Extra copies of chromosomes 21, X, 14 and 4 are the most common and chromosomes 1, 2 and 3 are the least often seen (Heerema et al. 2007). This subtype is associated with favorable outcome.
- 2. *ETV6-RUNX1* ALL: This subtype accounts for about 20-25% of B-ALL cases. It is not seen in infants and decreases in frequency in older children. *ETV6-RUNX1* leukemia is characterized by the translocation t(12;21), also known as *TEL-AML1*, and results in the production of a fusion protein that interferes with normal function of the transcription factor RUNX1, involved in normal hematopoiesis. This leukemia appears to derive from a B-cell progenitor rather than from a hematopoietic stem cell. It is also associated with good prognosis (Swerdlov et al. 2008).
- 3. *E2A-PBX1* ALL: This leukemia accounts for about 6% of all childhood ALL. This ALL is characterized by the translocation t(1;19)(q23;p13.3). The *E2A-PBX* translocation

results in the production of a fusion protein that has an oncogenic role as a transcriptional activator and also likely interferes with the normal function of the transcription factors involved in lymphocyte development. It is associated with intermediated prognosis (Swerdlov et al. 2008).

- 4. MLL ALL: ALL with rearrangements in the gene MLL (11q23) is the most common leukemia in infants <1 year of age. It is less common in older children and increases with age into adulthood. Over 50 fusion partner genes have been identified so far. The most common partner genes are AF4 transcription factor on chromosome 4q21, ENL on chromosome 19p13 and AF9 on chromosome 9p22. In contrast to the previous subtypes, this subtype has a poor prognosis (Swerdlov et al. 2008).</p>
- 5. BCR-ABL ALL: This subtype accounts for 2-4% of childhood ALL. It is formed by t(9;22)(q34;q11), resulting from fusion of BCR at 22q11.2 and the cytoplasmic tyrosine kinase gene ABL1 at 9q34, with production of a BCR-ABL1 fusion protein. It is believed that the cell of origin of t(9;22) ALL is more immature than that of other B-ALL cases (Cobaleda et al. 2000). This subtype is also a prognostically unfavorable group (Swerdlov et al. 2008).
- 6. Hypodiploidy ALL: It accounts for about 5% of ALL overall. All patients by definition show loss of one or more chromosomes, having from 45 chromosomes to near haploid (23-29 chromosomes). Structural abnormalities may be seen in the remaining chromosomes though there are no specific abnormalities that are characteristically associated. It has a poor prognosis (Swerdlov et al. 2008).
- 7. IL3-IGH ALL: This is a rare subtype, accounting for 1% of B-ALL cases. This subtype is characterized by the translocation t(5;14)(q31;q32). The unique characteristic of this neoplasm derives from a functional rearrangement between the *IL3* gene on chromosome 5 and the *IGH* gene on chromosome 14, resulting in overexpression of the *IL3* gene. The prognosis of this subtype is not considered to be different from other cases of ALL (Swerdlov et al. 2008).

| Prognosis        | Cytogenetic abnormalities       |  |
|------------------|---------------------------------|--|
| Favorable or no  | Hyperdiploidy 51-81 chromosomes |  |
|                  | t(12;21) ETV6-RUNX1+            |  |
| ullavorable      | Normal Karyotype                |  |
|                  | Hypodiploidy 30-45 chromosomes  |  |
|                  | Almost tetraploidy 82-94        |  |
| Unfavorable      | chromosomes                     |  |
|                  | Other structural changes not    |  |
|                  | included in the other groups    |  |
|                  | Almost haploidy 24-29           |  |
| Vary unfavorable | chromosomes                     |  |
| very unravorable | t(9;22) BCR/ABL+                |  |
|                  | t(4;11) MLL+                    |  |

Table 1: Most common cytogenetic abnormalities in ALL and their prognostic value.

Interestingly, the existence of biologically different subtypes suggests different etiologies (Inaba et al. 2013, Greaves 2006). For example, in infants ALL is usually associated with *MLL* rearrangement, and the remarkably high concordance rate in monozygotic twins suggests that leukemogenesis is largely complete at birth. By contrast, incidence of other subtypes of B-ALL peaks between 2 and 5 years and has a concordance rate of 10–15%, suggesting that, although initiation in utero usually occurs, other factors are probably necessary for disease emergence (Greaves et al. 2003). However, specific etiology of each subtype is unknown.

#### **ETIOLOGY**

Most of pediatric patients usually exhibit the genetic characteristics aforementioned at time of birth, suggesting a prenatally origin of ALL. These prenatal chromosomal aberrations are likely initiating genetic events, occurring during fetal hematopoiesis and operating within a minimal two-hit disease model. Current evidence indicates that transition to overt disease will occur in only a small proportion of children carrying this pre-leukemic clone, after a sufficient second genetic event which likely occurs postnatally. These initiating events, as well as secondary events, are originated due to unknown causes, but like cancer in general, probably arise from interactions between environmental exposures, genetic (inherited) susceptibility, and chance (Figure 4). The challenge is to identify the relevant exposures and inherited genetic variants contributing to the multistep natural history of acute lymphoblastic leukemia (Greaves 2006, Inaba et al. 2013, Pui et al. 2008).



Figure 4: Representation of the development of B-ALL.

A) Environmental factors

Epidemiological and case-control studies have found more than twenty candidate exposures that contribute to childhood ALL but very few are based on reproducibly significant data or are biologically plausible. Some are of public concern, such us ionising radiation, which is an established causal exposure for childhood ALL, as evidenced by the impact in 1945 of atomic bombs in Japan and by the modestly but significantly elevated risk caused by X-ray pelvimetry during pregnancy (Greaves 1997). Others, such as exposures to electromagnetic fields have been particularly controversial. A meta-analysis suggests that high levels of electromagnetic field radiation are associated with slightly increased risk, but the reliability of this finding is uncertain (Schüz 2011). To prove that exposure to electromagnetic fields never causes ALL is impossible, but at most such radiation might be implicated in only a few cases (Inaba et al. 2013).

Apart from this, infection was the first suggested causal exposure for childhood ALL and remains the strongest candidate. Two specific hypotheses have been proposed and both are supported by epidemiological data (Figure 5):

- 1. Population mixing hypothesis: childhood leukemia may result from an abnormal immune response to specific, although unidentified, infections commonly seen with the influx of infected people into an area previously populated with non-immune, and thus, susceptible individuals (Kinlen 1988).
- 2. Delayed infection hypothesis: childhood leukemia, particularly common B-cell precursor ALL, may be caused by a proliferative stress-induced effect of common infections on the developing immune system of the child. Implicit in this explanation is that an adverse immune response to infections is a result of insufficient priming of the immune system usually influenced by a delay in exposure to common infectious agents during early childhood (Greaves 1988).

Both, the population mixing and delayed infection hypotheses, are compatible with the available evidence, and in some populations, it is possible that both mechanisms may be operative (Urayama et al. 2008).



Figure 5: Infection-base models of leukemia development (Pui et al. 2008).

Nevertheless, causation pathways are likely to be multifactorial and it is probable that the risk of ALL from environmental exposure is influenced by genetic variation (Sherborne et al. 2010)

#### B) Genetic factors

Since years, there are a lot of evidences of the genetic influence in pediatric ALL, such as the early disease onset of the disease; which suggests a strong inherited genetic basis for ALL susceptibility.

In fact, this genetic component is supported by the high risk of ALL associated with Bloom's syndrome, Li-Fraumeni, neurofibromatosis, ataxia telangiectasia and constitutional trisomy 21 (Hsu et al. 2015), most of them caused by rare mutation of high penetrance in genes that predisposes to cancer risk, like *TP53*, *ATM*, *NBN*. In addition, in studies of familial ALL, other rare germline mutations with high penetrance have been identified in *PAX5*, *SH2B3* and *ETV6* (Moriyama et al. 2015a, Shah et al. 2013, Perez-Garcia et al. 2013).

However, the vast majority of childhood ALL is not familial. In contrast, ALL susceptibility is likely influenced by the co-inheritance of multiple low penetrant variants associated with a modestly increased risk of ALL (Papaemmanuil et al. 2009, Moriyama et al. 2015b).

### LOW PENETRANCE VARIANTS IN B-ALL

The low penetrant variants are common genetic variants such as copy number variations (CNV) and single nucleotide polymorphisms (SNP); being these latter the most often used in the association studies. SNPs are single base substitutions of one nucleotide with another, observed in the general population at a frequency greater than 1%. SNPs are the simplest form of DNA variation among individuals occurring throughout the genome at a frequency of about one in 200-300 bp. Recent large-scale studies have identified approximately 15 million SNPs in the human genome (Consortium 2010).

SNPs can be found across human genome in genes as well as in non-genic regions. Within a gene, its location suggests its function. These potentially functional effects include changes in the exonic sequences, alternative splicing, regulation in the promoter region, changes in transcription factor binding sites, or disruption/creation of CpG sites, that could carry changes in the methylation pattern, or microRNA (miRNA) target sites, involved in the downregulation of gene expression at the post-transcriptional level (Figure 6).



Figure 6: Different functions of SNPs on the gene.

Given the high number of SNPs, it is impractical genotyping all existing common variants. SNPs in the same region of DNA form haplotypes that are typically inherited together. The human genome is composed of stretches of high linkage disequilibrium (LD) (regions with a high level of concomitant inheritance), punctuated by recombination hotspots or points of extremely low LD (Gabriel et al. 2002, Goldstein and Weale 2001, Reich et al. 2001). This means that many SNPs located in the same haplotype block are not inherited independently and show correlated genotypes due to linkage disequilibrium (Sachidanandam et al. 2001, Risch and Merikangas 1996), which results in redundancy of information. The knowledge of the haplotype structure of the genomic region of interest allows the selection of a reduced number of SNPs which 'tag' the common haplotypes of a region, resulting in a great reduction of cost and time (Goldstein and Cavalleri 2005, Howie et al. 2006).

Therefore, a tagSNP is a representative SNP in a region of the genome with high LD. Nowadays, the selection of tagSNPs is facilitated by the existence of The International HapMap Project, a multi-country effort to identify and catalogue genetic similarities and differences in human beings (Figure 7).



**Figure 7:** Example of tagSNP a) SNPs identified in DNA samples from multiple individuals. b) Adjacent SNPs that are inherited together are compiled into "haplotypes." c) Detection of "Tag" SNPs within haplotypes that identify uniquely those compiled haplotypes. By genotyping the three tag SNPs shown in this figure, it can be identified which of the four haplotypes shown here are present in each individual.

In B-ALL, SNPs involved in the risk of developing the disease have been studied following two strategies: candidate genes studies and Genome Wide Association Studies or GWAS.

In the candidate gene approach, groups of genes are selected based on their hypothetical function on the disease, while the GWAS approach lacks of hypothesis because the whole genome is analyzed, and sometimes, the results are of difficult interpretation.

#### CANDIDATE GENE STUDIES

Up to date, there is an extensive body of work that examines the contribution of a number of "candidate" pathways to B-ALL susceptibility, and the number of studies continues to increase. In summary, the genetic candidate studies that have been evaluated in B-ALL risk can be delineated in four main pathways: immune system, carcinogen metabolism, folate metabolism and DNA repair.

A) Immune response

Exposure to common infections and the role of immune-related processes have emerged as strong candidate risk factors for ALL. Thus, the human leukocyte antigen (HLA) genes in the major histocompatibility complex (MHC) are among the most studied genes in relation to the risk of developing B-ALL. For instance, germline SNPs at the classical HLA genes of the class II region HLA-DP and HLA-DOA were associated with ALL susceptibility in admixed populations (Chang et al. 2010, Urayama et al. 2012), although a comprehensive analysis of the MHC region in 824 B-ALL cases and 4737 controls of European genetic ancestry did not find statistically significant association signals (Hosking et al. 2011). These results suggest that caution needs to be exercised when examining HLA variants, especially in diverse populations, because of the complex LD and excessive diversity at these loci in different races and ethnic groups (Moriyama et al. 2015b).

#### B) Carcinogen metabolism genes

Since children are particularly vulnerable to environmental toxins because of their greater relative exposure, immature metabolism and higher rate of cell division and growth. Detoxifications enzymes, such as cytochrome P4501A1 (CYP1A1), glutathione S-transferases GSTM1 or GSTT1 have been extensively studied. Other metabolic gene variants investigated included polymorphisms in *NQO1* (NADPH:quinone oxidoreductase), a cytosolic enzyme catalyzing reduction of quinones and prevention of their participation in redox cycling and thus in oxidative stress (Brisson et al. 2015, Han et al. 2013). Variation in *MDR1*, which encodes the

P-glycoprotein, was also studied as a possible risk factor for childhood ALL on the basis that it provides a cellular defense against toxic xenobiotic compounds (Urayama et al. 2013, Zhang et al. 2015). However, a recent meta-analysis summarizing 25 studies with a total of 13 polymorphisms in 8 genes of this pathway observed only modest significant associations with ALL susceptibility for 4 variants in *GSTM1, CYP1A1, CYP2E1* and *NQO1* (Vijayakrishnan and Houlston 2010) (Table 2).

#### C) Folate metabolism genes

Folate and its bioactive metabolic substrates are essential to numerous bodily functions, particularly for their role in DNA methylation and synthesis that aid the rapid cell division and growth requirements associated with pregnancy and early infancy (Lautner-Csorba et al. 2013). Folate deficiency may contribute to carcinogenesis via hypomethylation of important regulatory genes as well as induction of DNA damage through uracil misincorporation during DNA replication (Urayama et al. 2013), thus potentially increasing the risk of chromosomal aberration. Dysfunctional folate metabolism is, therefore, an attractive candidate in the etiology of ALL. Important for folate metabolism are the enzvmes 5.10methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR), methionine synthase reductase (MTRR) serine hydroxymethyltransferase (SHMT), thymidylate synthetase (TS) and reduced folate carrier 1 (RFC1 or SLC19A1) which have been investigated as risk factors for ALL (Li et al. 2015, Fang et al. 2014). Vijayakrishnan et al., in their meta-analysis included 18 studies in which 7 SNP were analyzed in 6 genes related to folate metabolism. SNPs in MTRR, SHMT1 and RFC1 showed significant results (Vijayakrishnan and Houlston 2010) (Table 2).

#### D) DNA repair genes

Childhood ALL results from chromosomal alterations and somatic mutations that disrupt the normal process by which lymphoid progenitor cells differentiate and senesce. These are the result of unrepaired DNA damage. Since repair of DNA damage is critical, alterations in innate DNA repair pathways may play a role in leukemia development (Urayama et al. 2013, Brisson et al. 2015). *XRCC1* (X-Ray repair-cross complementing group 1) plays a role in DNA single strand repair by forming protein complexes with DNA repair associated proteins and polymorphisms in it have been associated with ALL susceptibility (Wang et al. 2015). Variants in other DNA repair genes, including *ERCC2* (excision repair-complementing group 2), have been also evaluated as risk factors for ALL for similar reasons (Liu et al. 2014). *XRCC1* C26304T

was the only SNP that showed statistically significant association in the meta-analysis performed by Vijayakrishnan et al. (Vijayakrishnan and Houlston 2010) (Table 2).

| Gene                  | SNP       | P     |
|-----------------------|-----------|-------|
| Carcinogen matabolism |           |       |
| CYP1A1                | rs4646903 | 0.003 |
| CYP2E1                | rs3813867 | 0.001 |
| GSTM1                 | Deletion  | 0.008 |
| NQO1                  | rs1800566 | 0.03  |
| Folate metabolism     |           |       |
| MTRR                  | rs1805087 | 0.005 |
| RFC1                  | rs1051266 | 0.003 |
| SHMT1                 | rs1979277 | 0.028 |
| DNA repair pathway    |           |       |
| XRCC1                 | rs25487   | 0.001 |

Table 2: SNPs significantly associated with ALL risk in the meta-analysis of Vijayakrishnan et al.

Although some polymorphic variants of these pathways were only examined once, most were evaluated as risk factors in several studies, but often with discordant findings. The 8 SNPs in *GSTM1, MTRR, SHMT1, RFC1, CYP1A1, CYP2E1, NQO1* and *XRCC1* associated with ALL susceptibility had a false-positive probability of 20% (Moriyama et al. 2015b, Vijayakrishnan and Houlston 2010). In addition, in the GWAS performed by Papaemmanuil et al. in 2009, several of these candidate genes were interrogated in their analysis, and despite the limitations of the genotyping platforms, as well as differences in the study cohorts used, they did not find that variants in previously reported genes were associated with the risk of ALL in their study (Papaemmanuil et al. 2009).

#### **GENOME WIDE ASSOCIATION STUDIES (GWAS)**

This approach enables screens of genetic variation across the entire human genome by using a high-throughput genotyping technology with up to a few million genetic markers tested per patient. Therefore, it avoids the possibility of missing the identification of important variants in hitherto unstudied genes. This is possible due to the availability of comprehensive sets of tagging SNPs that capture much of the common sequence variation in the genome and the availability of high-resolution LD maps that allow GWAS for disease associations to be conducted efficiently (Moriyama et al. 2015b, Houlston 2010, Sherborne et al. 2011). Because of the large number of variants tested in GWASs, the required level of significance for association between a variant and a phenotype is generally set very high ( $p>10^{-7}$ ) rather than

the typical level of .05 used for most power calculations. They also require validation in a second, independent series of patients and independent confirmation by another group of researchers. It should be also noted that commercial genotyping platforms that have been used in GWASs predominantly focus on tagSNPs relatively common. Most of these variants are intronic and may not be directly functional; instead, they are in at least partial linkage with other variants that are likely biologically active. As a result, findings from GWASs often require extensive follow-up studies to discover the true causal genetic variants underlying the GWAS signal (Moriyama et al. 2015b, Sherborne and Houlston 2010).

In ALL, there are up to six GWAS that have identified five loci associated with ALL risk with p values much more significant than the values obtained in the candidate gene approach (Table 3).

| Gene      | SNP         | Р                          | Study                               |
|-----------|-------------|----------------------------|-------------------------------------|
|           | rs7073837   | p=1,03 x 10 <sup>-15</sup> |                                     |
|           | rs10740055  | p=1,61x 10 <sup>-14</sup>  | Papaemmanuil et al., 2009,          |
| ARID5B    | rs7089424   | p=1,41 x 10 <sup>-19</sup> | Treviño et al., 2009, Migliorini    |
|           | rs10821936  | p=1,40 x 10 <sup>-15</sup> | Orsi et al., 2013, 70 et al., 2013, |
|           | rs10994982  | p=5,7 x 10 <sup>-9</sup>   | , , ,                               |
|           | rs6964823   | p=1,8 x 10 <sup>-13</sup>  | Panaemmanuil et al 2009             |
|           | rs4132601   | p=9,3 x 10 <sup>-20</sup>  | Treviño et al., 2009, Migliorini    |
| IKZF1     | rsrs6944602 | p=1,5 x 10 <sup>-15</sup>  | et al., 2013, Xu et al., 2013,      |
|           | rs11978267  | p=8,8 x 10 <sup>-11</sup>  | Orsi et al., 2012                   |
|           | rs2239633   | p=5,6 x 10 <sup>-8</sup>   | Papaemmanuil et al., 2009.          |
| CEBPE     | rs10143875  | p=1 × 10 <sup>-3</sup>     | Migliorini et al., 2013, Xu et      |
|           | rs4982731   | $p=1 \times 10^{-12}$      | al., 2013, Orsi et al., 2012        |
|           | rs3731217   | p=1.13 × 10 <sup>-8</sup>  |                                     |
| CDKNA2A/B | rs2811709   | p=1 × 10 <sup>-3</sup>     | Sherborne et al., 2010              |
|           | rs17756311  | p=1 × 10 <sup>-5</sup>     | 0131 et al., 2012                   |
|           | rs7901152   | p=1.89×10 <sup>-8</sup>    |                                     |
|           | rs11013046  | p=2.92×10 <sup>-9</sup>    | Migliorini et al., 2013             |
| PIP4K2A   | rs7088318   | p=1.13×10 <sup>-11</sup>   | Xu et al., 2013                     |
|           | rs7075634   | p=2.06×10 <sup>-10</sup>   |                                     |

Table 3: The most significant SNPs in each loci reported by GWAS studies.

The first two GWAS performed in ALL were carried out by Treviño et al., and Papaemmanuil et al., in 2009. Both GWAS independently identified two significant loci at 10q21.2 containing AT-

rich interactive domain 5B (*ARID5B*) gene, and at 7p12.2 including Ikaros family zinc finger protein 1 (*IKZF1*) gene (Treviño et al. 2009, Papaemmanuil et al. 2009).

The *ARID5B* gene is a member of the ARID family of transcription factors with important role in embryogenesis and growth regulation. The specific role of *ARID5B* in childhood ALL remains unknown but accumulating evidence appears to indicate that *ARID5B* has a role in ALL development. For instance, Arid5b knockout mice exhibit abnormalities in B-lymphocyte development (Lahoud et al. 2001, Paulsson et al. 2010), and ARID5B mRNA expression is upregulated in hematologic malignancies such as acute promyelocytic leukemia (Chang et al. 2008) and acute megakaryioblastic leukemia (Bourquin et al. 2006).

A total of 5 SNPs in *ARID5B* were associated with childhood B-ALL in both studies. The highest association signal was found for rs7089424 in the GWAS performed by Papaemmanuil et al., and it was in high LD with rs10821936, reported by Treviño et al. In addition, *ARID5B* SNPs were found to be more significantly associated with childhood hyperdiploid B-ALL subtype. The association of these SNPs with ALL risk was a novel finding and was confirmed in subsequent studies and different ethnic groups (Han et al. 2010, Healy et al. 2010, Vijayakrishnan et al. 2010, Yang et al. 2010), which supports the hypothesis that *ARID5B* is involved in a general mechanism that contributes to the etiology of childhood ALL. Of note was the fact that all the significant SNPs in *ARID5B* are located in intron 3 or exhibit high LD with intron 3, without a known function. Then, the mechanism(s) by which these SNPs affect the risk of ALL remain to be elucidated and can be diverse. On the one hand, these SNPs may be markers in LD with copy number variation (CNVs) in the region, which have been previously described (Perry et al. 2008, Gusev et al. 2009). On the other hand, SNPs in *ARID5B* might also have a role in transcriptional regulation, thereby affecting the expression of ARID5B or the splicing, generating different isoforms.

The *IKZF1* gene encodes the early lymphoid transcription factor Ikaros, which is a DNA-binding zinc finger transcription factor involved in the development of all lymphoid lineages (Dai et al. 2014). Germline mutant mice expressing only non–DNA binding dominant-negative leukemogenic Ikaros isoforms develop an aggressive form of lymphoblastic leukemia (Georgopoulos et al. 1994). Chromosomal deletions involving *IKZF1* are common (30%) in high-risk/poor prognosis B-cell precursor ALL and are highly prevalent (95%) in ALL with *BCR-ABL1* fusions (Mullighan et al. 2008, Mullighan et al. 2009).

46

In IKZF1, a total of 4 SNPs were associated with childhood B-ALL in both GWAS. The highest association signal was found for rs4132601 in the GWAS performed by Papemmanuil et al., which was in high LD with rs11978267, reported by Treviño et al. A relatively large number of studies have evaluated the association between *IKZF1* rs4132601 polymorphism and ALL risk, but the results have been inconsistent due to limited sample sizes and different study populations (Li et al. 2015). In order to clarify the possible association between rs4132601 and risk of ALL, two meta-analyses were carried out, all of them confirming the existence of association (Li et al. 2015, Dai et al. 2014). In the last year, new studies showing controversial results have been performed (Kreile et al. 2016, Gharbi et al. 2016, Bahari et al. 2016), so it could be interesting to include these data in a new meta-analysis. The SNP rs4132601 maps in the 3'untranslate region (UTR) of IKZF1. Another SNP of the four significant ones, rs6944602, was also localized in this 3'UTR region, suggesting an important role of this region in mRNA stability. In fact, Papaemmanuil et al. found that IKZF1 mRNA expression was significantly associated with rs4132601 genotype in a dose-dependent fashion, with lower expression being associated with risk alleles (Papaemmanuil et al. 2009). However, up to date, this SNP has an unknown function.

The third locus identified was *CEBPE* (CCAAT/enhancer binding protein epsilon), reported by Papaemmanuil et al. at 14q11.2. *CEBPE* is a member of CEBPs family of transcription factors and is involved in terminal differentiation and functional maturation of myeloid cells, especially neutrophils and macrophages (Wang et al. 2015). In childhood ALL, intrachromosomal translocations involving *IGH* and *CEBPE* have been described, resulting in the upregulation of CEBPE expression (Akasaka et al. 2007).

At *CEBPE*, the highest association signal was found for rs2239633. This SNP also showed a strong association with B-hyperdiploid subtype (Wiemels et al. 2016). This finding was replicated in some populations (Prasad et al. 2010, Orsi et al. 2012, Hungate et al. 2016), but not in others (Vijayakrishnan et al. 2010, Healy et al. 2010, Emerenciano et al. 2014). A recent meta-analysis evaluating the association between this polymorphism and the risk of ALL concluded that rs2239633 was associated with the disease (Wang et al. 2015). Nevertheless, some inaccuracies were detected in the study, such as the lack of some important studies (Healy et al. 2010, Ellinghaus et al. 2012). Additionally, the meta-analysis did not include analyses by subtypes and since its publication in 2015 new studies have been published (Kreile et al. 2016, Gharbi et al. 2016) that could help to elucidate if rs2239633 is really associated with the risk of B-ALL. The SNP rs2239633 maps within a 25.7-kb region of LD that

encompasses the gene *CEBPE* and is located in 5'UTR region of the gene. Two other SNPs associated with ALL risk at  $P=10^{-5}$  (rs7157021 and rs10143875) map within this region of LD, providing additional support for 14q11.2 as a susceptibility locus. However, the rs2239633 has an unknown function, suggesting that additional polymorphisms underlie the association peak near *CEBPE*.

Recently, Wiemels et al. performed an imputation-based fine-mapping and functional validation analyses of the chromosome 14q11.2 locus in a multi-ethnic case-control population and identified a SNP, rs2239635 located in the promoter region, more significantly associated with B-ALL risk than the previously reported GWAS hit (Wiemels et al. 2016). The SNP rs2239635 is a cis-eQTL for CEBPE, with an increased gene expression associated with risk allele. However, CEBPE is not required for B-cell maturation or function, opening a question as to why a polymorphism affecting a subtype of pre-B-ALL may be located proximal to the gene. Interestingly, rs2239635 is located within an Ikaros transcription factor binding site, and the risk allele disrupts Ikaros binding near CEBPE. One of Ikaros functions in the normal lymphoid development is to silence CEBPE. Therefore, incomplete suppression of CEBPE by Ikaros due to rs2239635 may lead to lineage confusion, a common feature of leukemogenesis (Yamanaka et al. 1997), and in turn, promote B-ALL. In addition, Wielmens et al. in their study tested the interaction between rs2239635 and rs4132601, the SNP in IKZF1 aforementioned, and found that the combined effect of rs2239635 and rs4132601 risk alleles was greater than it would be expected if they operated independently, in contrast of the independent effect of each locus which had been suggested.

The fourth locus identified was at 9p21.3 associated with B-ALL risk (Sherborne et al. 2010). The locus 9p21.3 is particularly noteworthy since it is deleted in around 30% of childhood ALL patients (Walsh et al. 2015). This region comprises *CDKN2A* and *CDKN2B* genes and a long noncoding RNA (IncRNA) known as *ANRIL* (or *CDKN2B-AS*). *CDKN2A* codifies for INK4-class cyclin dependent kinase (CDK) inhibitors p16<sup>INK4A</sup> and p14<sup>ARF</sup> (Iacobucci et al. 2011). These proteins are tumor suppressors that block cell cycle division during the G1/S phase and inhibit MDM2, respectively. The second gene *CDKN2B* encodes for the tumour suppressor p15<sup>INK4B</sup>, which is also a ciclyn kinase inhibitor. Finally, *ANRIL* has widespread influences on gene expression, impacting the cell cycle by regulating the expression of tumour suppressors p14<sup>ARF</sup>, p15<sup>INK4B</sup> and p16<sup>INK4A</sup> (Congrains et al. 2013).

48

The most significant variant found by Sherborne et al. was rs3731217 in intron 1 of *CDKN2A*, identified in children from the United Kingdom (Sherborne et al. 2010). This association was replicated in several populations such as Germany, Canada (Sherborne et al. 2010) and France (Orsi et al. 2012), but not in others, like Poland (Pastorczak et al. 2011), Hispanic (Chokkalingam et al. 2013) or Thai population (Vijayakrishnan et al. 2010). In 2012, Orsi et al. (Orsi et al. 2012) in another GWAS also associated one variant located in intron 1 of *CDKN2A*, rs2811709, with B-ALL in French children, a variant in low LD with rs3731217 ( $r^2$ <0.8). In a posterior GWAS in 2013, rs17756311 located in *ANRIL*, was identified as the highest associated variant with B-ALL in European Americans, but not in African or Hispanic Americans (Xu et al. 2013). In 2015, three independent studies using genotyping and imputation-based finemapping, pointed to rs3731249 in exon 2 of *CDKN2A* as the hit associated variant that conferred high risk for B-ALL in European and Hispanic children (Xu et al. 2015, Walsh et al. 2015).

Therefore, although there is an obvious implication of CDKN2A/B locus in B-ALL susceptibility, the variants annotated by the different studies are different and are in low LD among them. This may be due to the fact that different variants in each population could alter CDKN2A/B locus function through diverse mechanisms. In fact, it has been suggested that the alleles of rs3731217 create two overlapping cis-acting intronic splice enhancer motifs (CCCAGG and CAGTAC) that may regulate alternative splicing of CDKN2A (Hungate et al. 2016). Regarding rs17756311, Hungate et al. found that a SNP in high LD with it (r<sup>2</sup>>0.8), rs662463 in ANRIL, regulates CDKN2B expression by disrupting a transcription factor binding site (TFBS) for CEBPB (Hungate et al. 2016). Finally, rs3731249 is a missense SNP in CDKN2A which produces an alanine-to-threonine change in amino-acid-sequence, resulting in reduced tumour suppressor function of p16<sup>INK4A</sup> (Xu et al. 2015). Interestingly, this SNP is located in the 3'UTR region of p14<sup>ARF</sup>, where it creates binding site for mir-132-5p and mir-4642 (Gong et al. 2012). Therefore, this SNP could cause the downregulation of CDKN2A/B locus. More than other 40 SNPs in 3'UTR region of CDKN2A and CDKN2B that disrupt or create miRNA binding sites have been described, suggesting their importance in CDKN2A/B regulation. However, studies focused on SNPs in miRNA binding sites are almost absent.

Finally, in 2013, the last locus identified was at 10p12.2, where *PIP4K2A* gene is located (Xu et al. 2013, Migliorini et al. 2013). PIP4K2A is a member of the family of enzymes that catalyze phosphorylation of phosphatidylinositol-5-phosphate to form phosphatidylinositol-5,4-bisphosphate (PIP2), a precursor of the important second messenger molecule, PIP3. Upon B-
cell receptor activation, *PIP4K2A* is directly recruited by BTK to the plasma membrane as a means of stimulating local PIP2 synthesis. Similarly, PIP5K enzymes also interact with the Rho-family small GTP-binding proteins (eg, Rac1) to regulate membrane PIP2 synthesis and PI3K and PLC signaling in B cells (Xu et al. 2013, Migliorini et al. 2013).

In *PIP4K2A*, a total of five SNPs were reported to be associated with B-ALL risk in high LD. The most significant SNP at this locus was rs7088318. In addition, the SNP rs7088318 also showed association with B-hyperdiploid ALL (Xu et al. 2013). However, the only study which tried to confirm this finding in a Hispanic population found no association with B-ALL, although when analyses were limited to hyperdiploid B-ALL, the association approached significance (Walsh et al. 2013).

Another interesting result can be extraced from the previous GWAS. When we examined in detail the exact location of all the SNPs significantly associated with ALL in these GWAS, some of them were located in intergenic regions and not in the genes pointed out in the GWAS. In fact, 37.5% of SNPs found in these GWASs corresponds to intergenic regions (Table 4 and Annex I Table I). In addition, most of the significant SNPs described in GWAS are located in introns or regulatory regions. These data suggest that non-coding regions could play an important role in the risk of ALL. Similar results have been described in GWAs of other cancers.

**Table 4:** The 20 most significant SNPs found in all GWAS.

| SNP        | Location | Р                        | Exact Location         | Reference                |
|------------|----------|--------------------------|------------------------|--------------------------|
| rs7090445  | ARID5B   | 4.98 x 10 <sup>-54</sup> | Intron in ARID5B       | Migliorini et al., 2013  |
| rs7089424  | ARID5B   | 8.41x 10 <sup>-51</sup>  | Intron in ARID5B       | Migliorini et al., 2013  |
| rs4506592  | ARID5B   | 2.68 x 10 <sup>-46</sup> | Intron in ARID5B       | Migliorini et al., 2013  |
| rs10821936 | ARID5B   | 5,88 x 10 <sup>-46</sup> | Intron in ARID5B       | Xu et al., 2013          |
| rs7896246  | ARID5B   | 7,4 x 10 <sup>-43</sup>  | Intron in ARID5B       | Xu et al., 2013          |
| rs10821938 | ARID5B   | 6.44 x 10 <sup>-36</sup> | Intron in ARID5B       | Migliorini et al., 2013  |
| rs7073837  | ARID5B   | 4.12 x 10 <sup>-34</sup> | Intron in ARID5B       | Migliorini et al., 2013  |
| rs11980379 | IKZF1    | 2.91 x 10 <sup>-33</sup> | 3´UTR of IKZF1         | Migliorini et al., 2013  |
| rs4132601  | IKZF1    | 3.74 x 10 <sup>-33</sup> | 3´UTR of IKZF1         | Migliorini et al., 2013  |
| rs7923074  | ARID5B   | 1,13 x 10 <sup>-32</sup> | Intron in ARID5B       | Xu et al., 2013          |
| rs6964969  | IKZF1    | 1,59 x 10 <sup>-29</sup> | -                      | Xu et al., 2013          |
| rs11978267 | IKZF1    | 5,29 x 10 <sup>-24</sup> | Intron in <i>IKZF1</i> | Xu et al., 2013          |
| rs11770117 | IKZF1    | 3,98 x 10 <sup>-23</sup> | -                      | Xu et al., 2013          |
| rs12719019 | IKZF1    | 8,5 x 10 <sup>-23</sup>  | -                      | Xu et al., 2013          |
| rs6952409  | IKZF1    | 1.39 x 10 <sup>-22</sup> | Intron in <i>IKZF1</i> | Migliorini et al., 2013  |
| rs10994982 | ARID5B   | 2,15 x 10 <sup>-20</sup> | Intron in ARID5B       | Xu et al., 2013          |
| rs6944602  | IKZF1    | 1,28 x 10 <sup>-19</sup> | -                      | Xu et al., 2013          |
| rs2239633  | CEBPE    | 1.29 x 10 <sup>-16</sup> | -                      | Migliorini et al., 2013  |
| rs12434881 | CEBPE    | 1,21 x 10 <sup>-15</sup> | 5´UTR of CEBPE         | Xu et al., 2013          |
| rs10740055 | ARID5B   | 1,61 x 10 <sup>-14</sup> | Intron in ARID5B       | Papaemmanuil et al. 2009 |

# NON CODING REGIONS

The Human Genome Project (HGP) revealed in 2001 that the number of genes codifying for proteins are about 20.000-25.000, which corresponds for only 1.5% of the genome approximately, a proportion that increases to 2% if untranslated regions are considered (Esteller 2011).

By the end of the human genome sequencing, new challenges were proposed in order to interpret the data generated by the HGP, and a subsequent Project called ENCODE (Encyclopedia Of DNA Elements) was launched. The Project aimed to prepare a complete catalog which contained all functional elements codified in the human genome, and one of the main conclusions was that about 80% of our genome is transcribed as elements that do not codify for proteins. Early considered "junk DNA", it was determined that a large part of the non-protein coding regions were functional. These elements are non-coding RNAs (ncRNA) (Consortium 2012).

NcRNAs are classified by its length. Among the small non coding RNAs, microRNAs (miRNAs) are the most studied and it is kwnon their involvement in cancer (Sana et al. 2012) (Figure 8).



Figure 8: Transcription of our genome.

#### <u>MIRNAS</u>

MiRNAs comprise a large family of 18-22 nucleotide-long RNAs that have emerged as key regulators of genes at the post-transcriptional level. MiRNAs are transcribed from different locations in the genome by RNA polymerase II into long primary transcripts called pri-miRNAs (dsDNA, 300-5000pb). The pri-miRNAs are characterized by a central region of double-stranded RNA (dsRNA) of about 30-40 nucleotides, a terminal loop and two single stranded RNA (ssRNA) opposite among each other. These pri-miRNAs are processed in the nucleus by the complex formed by DROSHA RNase and DGCR8 containing dsRNA binding domains. DsRNA sequence determines its secondary structure and its binding with processing proteins.

After processing of pri-miRNAs, these smaller molecules (about 70 nucleotides) are known as pre-miRNAs. The pre-miRNAs are exported from the nucleus to the cytoplasm through Exportine5 (XPO5) and RAN GTPase (Bohnsack et al. 2004, Kim 2004) protein. In the cytoplasm, the pre-miRNAs are processed by Dicer (Hutvágner et al. 2001, Merritt et al. 2010) and TARBP2 enzyme, which eliminate the loop, generating a dsRNA molecule known as miRNA duplex (Song et al. 2003). The miRNA duplex is separated to form the mature miRNA as a single strand. The strand selected of the miRNA duplex is incorporated into multiprotein complex known as RISC (RNA-inducing silencing complex), composed of the *EIF2C1* (*AGO1*), *EIF2C2* (*AGO2*), *SND1*, *GEMIN3*, *GEMIN4* and CCR-NOT complex (Inada and Makino 2014) genes. The mature miRNA is transported by the RISC complex to messenger RNAs (mRNAs), target of the regulation (Li et al. 2014). The miRNA binds to messenger RNA complementary bases at the 3' UTR region (Figure 9).

53



Figure 9: miRNA biogenesis and mechanism of action (adapted from (Ryan et al. 2010)).

MiRNAs have a characteristic sequence for target recognition of approximately 7 bp, known as *seed* region. The miRNA acts by specific binding of the *seed* sequence to a complementary target sequence. The regulation mechanism depends on the degree of miRNA-mRNA complementarity: direct cleavage and degradation when the complementarity is perfect; protein translation blocking/inhibition in the case of imperfect base pairing (Gregory et al. 2006).

Since the sequence complementary to a miRNA *seed* is short, a miRNA may degrade or repress translation of many targets mRNA containing complementary sequences to the *seed* region. But there is also the possibility that a gene can be regulated by multiple miRNAs. MiRNAs sharing all or part of the nucleotide sequence of the *seed* region can be grouped into families. Members of the same family of miRNAs are potential regulators of the same set of mRNAs (Lewis et al. 2005, Friedman et al. 2009)

For each miRNA, there are many putative targets predicted by databases such as Mirwalk (http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/) and TARGETSCAN (http://www.targetscan.org/vert\_71/), among others. However, nowadays miRNA targets are not completely defined and few interactions are validated experimentally.

Through this mechanism of regulation, miRNAs could regulate more than 50% of human genes, having an enormous impact on the function of any cell (Johanson et al. 2014), including B-lymphocytes.

Gene regulation mediated by miRNAs can be affected by both, changes in the levels of miRNAs or changes in the binding sequence. MiRNA levels could be altered due to changes in processing genes and/or changes in pre-miRNAs. Therefore, SNPs affecting the proteins involved in miRNA biogenesis may have deleterious effects on the general miRNAome, while SNPs in pre-miRNAs which determine the miRNAs secondary structure, may affect their stability or processing efficiency, affecting their own levels. On the other hand, the miRNA *seed* sequence determines the miRNA binding. Therefore, SNPs in the *seed* region could affect the accurate recognition of its targets (Figure 10) (Ryan et al. 2010).



Figure 10: SNPs in pre-miRNA could a) alter miRNA secondary structure affecting its own levels or b) miRNA binding with its targets.

#### MIRNA PROCESSING GENES AND ACUTE LYMPHOBLASTIC LEUKEMIA

Any alteration in miRNA processing genes could affect the levels of miRNAs. When the expression of members of the Ago family or Dicer are removed, the synthesis of mature miRNAs in mouse models is impaired and B-cell differentiation is affected, highlighting the importance of miRNAs in the formation of B-cells (Marques et al. 2015). For instance, deletion of *EIF2C1* in bone marrow cells was shown to compromise B-lymphoid lineage development

due to impaired miRNA-mediated gene silencing (O'Carroll et al. 2007). Similarly, Dicer ablation in early B-cell progenitors resulted in an almost complete developmental block at the pro- to pre-B-cell transition due to a massive increase in apoptosis (Koralov et al. 2008, Belver et al. 2010).

Several genes of this pathway have been shown to be deregulated in cancer, either because they are over-expressed, as *EIF2C2* (AGO complex) and *TARBP2* (Dicer complex) in prostate cancer, or because they are under-expressed, as DROSHA and Dicer in breast cancer (Huang et al. 2014). Any alteration in these genes could affect miRNA levels, and in turn, the levels of their targets. Therefore, SNPs affecting the proteins involved in miRNA biogenesis may affect the miRNAome. In fact, a SNP in *DROSHA* (rs640831) causes deregulation of 56 miRNAs (Rotunno et al. 2010) in lung cancer. Several SNPs in miRNA processing genes have been described in association with different cancer types (Liu et al. 2014, Kim et al. 2010, Martin-Guerrero et al. 2015, Bilbao-Aldaiturriaga et al. 2015) (Table 5). However, despite all these evidences, there are no studies analyzing SNPs in processing genes associated with childhood B-ALL.

| Gene    | SNP        | Disease                      | Reference                         |
|---------|------------|------------------------------|-----------------------------------|
| XPO5    | rs11077    | Hepatocellular carcinoma     | Liu et al., 2014                  |
| RAN     | rs14035    | Oral cancer                  | Roy R et al., 2014                |
| AGO1    | rs636832   | Lung cancer                  | Kim et al., 2010                  |
| DGCR8   | rs417309   | Breast cancer                | Jiang Y et al., 2013              |
| CEMINIA | rs197412   | Oral cancer                  | Roy R et al., 2014                |
| GEMIN3  | rs197414   | Bladder cancer               | Yang H et al., 2008               |
|         | rs2740348  | Prostate cancer              | Liu J et al., 2012                |
| GEMIN4  | rs7813     |                              |                                   |
|         | rs2740351  | Ovarian cancer               | Liang D et al., 2010              |
| CNOT1   | rs11866002 | Osteosarcoma                 | Bilbao-Aldaiturriaga et al., 2015 |
| DROSHA  | rs3805500  | Chronic Lymphocytic Leukemia | Martín-Guerrero et al., 2015      |
| 2       | rs6877842  |                              |                                   |

**Table 5:** SNPs in processing genes associated with the risk of different cancer types.

#### MIRNA AND ACUTE LYMPHOBLASTIC LEUKEMIA

The role of individual miRNAs expressed in the B-cell lineage was also examined. For instance, the miR-17-92 cluster was shown to have an essential role in B-cell development as its deletion led to the pro- to pre-B-cell transition block (Ventura et al. 2008). The functionally important targets of miR-17-92 comprise pro-apoptotic proteins PTEN and BIM. The pro- to pre-B-cell transition also appears to be regulated by another miRNA, miR-34a (Rao et al. 2010). MiR-34a

is expressed at the highest levels in pro-B cells, and its constitutive expression in the bone marrow leads to a developmental block at the pro- to pre-B-cell stage resulting in a decrease of mature B cells. In contrast, miR-34a knockdown resulted in increased amounts of mature B cells. The key mediator of the miR-34a effect is the transcription factor FOXP1, which was found to be its direct target required for B-cell development (Rao et al. 2010). Therefore, because various miRNAs were shown to act as direct regulators of B-cell development and differentiation, it is not surprising that the deregulation of miRNAs is a common event in B-cell malignancies.

In ALL, several studies have shown the deregulation of miRNAs compared to normal donors (Schotte et al. 2009, Schotte et al. 2011a, Schotte et al. 2011b, Zhang et al. 2009, Ju et al. 2009, Duyu et al. 2014, de Oliveira et al. 2012). A report examining 40 newly diagnosed pre-B-ALL samples showed that in childhood ALL, miR-222, miR-339, and miR-142-3p were overexpressed along with the downregulation of miR-451, miR-373 (Ju et al. 2009). Additionally, a report by Schotte et al. (Schotte et al. 2009) examined miRNAs expression levels in pediatric ALL samples in comparison to normal CD34 positive cells, providing evidence for the upregulation of miR-128a, miR-142, miR-150, miR-181, miR-30e-5p, miR-193, miR-34b, miR-365, miR-582, and miR-708 and the downregulation of miR-100, miR-125b, miR-99a, miR-196b, and miR-let-7e. In a posterior study, using high-throughput sequencing technology, Schotte et al. discovered 153 known miRNAs, 16 novel and 170 candidate novel mature miRNAs and miRNA-star strands only expressed in ALL, whereas 140 known, 2 novel and 82 candidate novel mature miRNAs and miRNA-star strands were unique to normal hematopoietic cells (Schotte et al. 2011a). More recently, additional studies have identified miR-143, miR-145, and miR-223 high expression in normal bone marrow and miR-127, miR-299-5p, and miR-411 high expression in normal CD34 positive cells, differentiating these cells from ALL samples (Schotte et al. 2011b).

In addition, unique miRNA signatures were identified for various ALL subtypes including ETV6-RUNX1, MLL-rearranged, hyperdiploidy, E2A-PBX1 and BCR-ABL (Akbari Moqadam et al. 2014, Schotte et al. 2009, Schotte et al. 2011a, Schotte et al. 2011b). A comparative analysis of MLLrearranged leukemia with precursor B-ALL negative for common cytogenetic aberrations (Bother) in children, demonstrated low expression of miR-193, miR-151-5p, let-7e, miR-30e-5p, miR-34b, miR-582, and miR-708 and high expression of miR-196b. Additionally, MLLrearranged cells displayed lower miR-708 and higher expression of miR-196b when compared to other ALL subtypes (*ETV6-RUNX1*, *BCR-ABL*, *E2A-PBX1*, hyperdiploid, and B-other) (Schotte

57

et al. 2009). Schotte et al. identified unique miRNA expression profiles for each pediatric ALL subtype measuring the expression level of 397 miRNAs in 81 cases of ALL (Schotte et al. 2011b). The authors were able to differentiate many of the major subtypes of ALL, such as *MLL*, *TEL-AML1*, *E2A-PBX1*, and hyperdiploid cells.

Alterations in miRNAs can alter their function affecting their targets genes expression. Genetic variants can modify the miRNA expression levels if they are located in the pre-miRNA or the mRNA-miRNA binding if they are located in the seed region. Therefore, SNPs in miRNA could be involved in B-ALL susceptibility.

Despite all these evidences, only three studies analyzing the involvement of SNPs in miRNAs in the risk of B-ALL have been performed (Hasani et al. 2013, Tong et al. 2014, Tong et al. 2015). Hasani and colleagues studied rs3746444 in miR-499 and rs2910164 in mir-146a and found rs2910164 in mir-146a associated with ALL susceptibility in a Iranian population of 75 children diagnosed with ALL (Hasani et al. 2013). Tong and colleagues in 2014 found association between rs11614913 in mir196a-2 and ALL risk in a Chinese population of 574 pediatric ALL patients, and with the same population, in 2015 found association between rs4938723 in primir-34b. Remarkably, although a relatively low number of SNPs were analyzed in miRNAs and B-ALL susceptibility, significant results were found.

# ANNEX I

| SNP        | Gene                  | Function                              | Location | Reference                                             |
|------------|-----------------------|---------------------------------------|----------|-------------------------------------------------------|
| rs2784140  | SLC6A17               | Synonymous codon                      | 1p13.3   | Migliorini et al., 2013                               |
| rs17115122 |                       |                                       | 1p21.3   | Sherborne et al., 2010                                |
| rs10873876 | SIAT7C<br>ST6GALNAC3  | Intron variant                        | 1p31.1   | Treviño et al., 2009                                  |
| rs11211481 | TAL1                  | Intron variant                        | 1p33     | Orsi et al., 2012                                     |
| rs2248907  | PDZK1I<br>PDZK1IP1    | upstream variant 2KB<br>flanking_5UTR | 1p33     | Orsi et al., 2012                                     |
| rs11799849 |                       |                                       | 1p36.12  | Sherborne et al., 2010                                |
| rs6428370  | LOC100996886          | IncRNA                                | 1q31.3   | Treviño et al., 2009                                  |
| rs2405523  | CNIH3                 | Intron variant                        | 1q42.12  | Orsi et al., 2012                                     |
| rs7554607  | RYR2                  | Intron variant                        | 1q43     | Treviño et al., 2009                                  |
| rs1881797  | GCSALM<br>GCSALM-AS1  | Intron variant                        | 1q44     | Treviño et al., 2009                                  |
| rs4853946  | MYT1L                 | Intron variant                        | 2p25.3   | Sherborne et al., 2010                                |
| rs896232   |                       |                                       | 2p25.3   | Sherborne et al., 2010                                |
| rs930372   | ANKRD44               | Intron variant                        | 2q33.1   | Orsi et al., 2012                                     |
| rs12621643 | KCNE4                 | Missense                              | 2q36.1   | Treviño et al., 2009                                  |
| rs12162384 | <i>SLC16A14</i> (20K) | flanking_5UTR                         | 2q36.3   | Orsi et al., 2012                                     |
| rs774588   | ROBO2                 | Intron variant                        | 3p12.3   | Orsi et al., 2012                                     |
| rs267103   | ROBO2                 | Intron variant                        | 3p12.3   | Orsi et al., 2012                                     |
| rs11708509 | <i>OR5K4</i> (2K)     | flanking_3UTR                         | 3q11.2   | Orsi et al., 2012                                     |
| rs9290663  | KCNMB2<br>KCNMB2-AS1  | Intron variant                        | 3q26.32  | Treviño et al., 2009                                  |
| rs2130904  | LOC102723846          | Intron variant                        | 4p15.1   | Sherborne et al., 2010                                |
| rs10002424 |                       |                                       | 4q13.1   | Sherborne et al., 2010                                |
| rs4916794  | <i>СЕТНЗ</i> (110К)   | flanking_3UTR                         | 5q14.3   | Orsi et al., 2012                                     |
|            | LINC01339             | Intron variant                        | 5q14.3   |                                                       |
| rs33584    |                       |                                       | 5q23.1   | Migliorini et al., 2013                               |
| rs405510   |                       |                                       | 5q23.1   | Sherborne et al., 2010                                |
| rs10061417 |                       |                                       | 5q23.1   | Sherborne et al., 2010                                |
| rs1800197  | PROP1                 | Missense                              | 5q35.3   | Sherborne et al., 2010                                |
| rs7448421  | ZNF354B<br>ZFP2 (19K) | Intron variant                        | 5q35.3   | Sherborne et al., 2010                                |
| rs2935505  | <i>СЕТNЗ</i> (150К)   | flanking_3UTR                         | 5q41.3   | Orsi et al., 2012                                     |
|            | LINC01339             | Intron variant                        | 5q41.3   |                                                       |
| rs1870262  | <i>IMPG1</i> (550K)   | flanking_5UTR                         | 6q14.1   | Orsi et al., 2012                                     |
| rs1336767  | NKAIN2; TCBA1         | Intron variant                        | 6q22.31  | Sherborne et al., 2010                                |
| rs11155133 | LOC102723724          | Intron variant                        | 6q24.1   | Treviño et al., 2009                                  |
| rs4716398  | C6orf7<br>ERMARD      | Intron variant                        | 6q27     | Orsi et al., 2012                                     |
| rs7809758  | IKZF1                 | Intron variant                        | 7p12.1   | Migliorini et al., 2013;<br>Papaemmanuil et al., 2009 |
| rs6592961  | IKZF1 (100K)<br>DDC   | Intron variant                        | 7p12.1   | Migliorini et al., 2013                               |
| rs12718572 | IKZF1 (100K)<br>DDC   | Intron variant                        | 7p12.1   | Migliorini et al., 2013                               |

**Annex table 1**: All the SNPs reported by GWAS performed by Papaemmanuil et al., Treviño et al., Sherborne et al., Xu et al. and Migliorini et al. In red, SNPs in intergenic regions or in genes that not codify for proteins.

| SNP        | Gene                  | Function                                | Location | Reference                                                                |
|------------|-----------------------|-----------------------------------------|----------|--------------------------------------------------------------------------|
| rs17133853 | DDC                   | Intron variant                          | 7p12.1   | Xu et al., 2013                                                          |
| rs7791875  | DDC                   | Intron variant                          | 7p12.1   | Xu et al., 2013                                                          |
| rs3823674  | DDC                   | Intron variant                          | 7p12.1   | Xu et al., 2013                                                          |
| rs4947584  | DDC                   | Intron variant                          | 7p12.1   | Xu et al., 2013                                                          |
| rs6944090  | DDC                   | Intron variant                          | 7p12.1   | Xu et al., 2013                                                          |
| rs7808025  | DDC                   | Intron variant                          | 7p12.1   | Xu et al., 2013                                                          |
| rs6592963  | DDC                   | Intron variant                          | 7p12.1   | Xu et al., 2013                                                          |
| rs12535064 | DDC                   | Intron variant                          | 7p12.1   | Xu et al., 2013                                                          |
| rs12538830 | DDC                   | Intron variant                          | 7p12.1   | Xu et al., 2013                                                          |
| rs9918702  | DDC                   | Intron variant                          | 7p12.1   | Xu et al., 2013                                                          |
| rs9791817  | GRB10                 | Intron variant                          | 7p12.1   | Xu et al., 2013                                                          |
| rs4245555  | GRB10                 | Intron variant                          | 7p12.1   | Xu et al., 2013                                                          |
| rs4245556  | GRB10                 | Intron variant                          | 7p12.1   | Xu et al., 2013                                                          |
| rs12540874 | GRB10                 | Intron variant                          | 7p12.1   | Xu et al., 2013                                                          |
| rs4947709  | GRB10                 | Intron variant                          | 7p12.1   | Xu et al., 2013                                                          |
| rs2074778  | GRB10                 | Intron variant                          | 7p12.1   | Xu et al., 2013                                                          |
| rs4947737  | GRB10                 | Intron variant                          | 7p12.1   | Xu et al., 2013                                                          |
| rs2237450  | GRB10                 | Intron variant                          | 7p12.1   | Xu et al., 2013                                                          |
| rs2244372  | GRB10                 | Intron variant                          | 7p12.1   | Xu et al., 2013                                                          |
| rs2244353  | GRB10                 | Intron variant                          | 7p12.1   | Xu et al., 2013                                                          |
| rs3779084  | DDC                   | Intron variant                          | 7p12.1   | Papaemmanuil et al., 2009                                                |
| rs880028   | DDC                   | Intron variant                          | 7p12.1   | Papaemmanuil et al., 2009                                                |
| rs11980379 | IKZF1                 | UTR variant 3 prime                     | 7p12.2   | Migliorini et al., 2013                                                  |
| rs4132601  | IKZF1                 | UTR variant 3 prime                     | 7p12.2   | Migliorini et al., 2013; Orsi et al.,<br>2012; Papaemmanuil et al., 2009 |
| rs6952409  | IKZF1<br>LOC105375275 | Intron variant<br>nc transcript variant | 7p12.2   | Migliorini et al., 2013; Orsi et al.,<br>2012; Papaemmanuil et al., 2009 |
| rs4490786  | IKZF1                 | Intron variant                          | 7p12.2   | Migliorini et al., 2013                                                  |
| rs10499691 | <i>IKZF1</i> (20K)    | flanking_3UTR                           | 7p12.2   | Migliorini et al., 2013                                                  |
| rs11976368 | <i>IKZF1</i> (20K)    | flanking_3UTR                           | 7p12.2   | Migliorini et al., 2013                                                  |
| rs11575553 | <i>IKZF1</i> (50K)    | flanking_3UTR                           | 7p12.2   | Migliorini et al., 2013; Xu et al., 2013                                 |
|            | DDC                   | utr variant 3 prime                     | 7p12.2   |                                                                          |
| rs7809377  | IKZF1                 | Intron variant                          | 7p12.2   | Migliorini et al., 2013                                                  |
| rs7797772  | IKZF1<br>LOC105375275 | Intron variant<br>nc transcript variant | 7p12.2   | Migliorini et al., 2013                                                  |
| rs7781977  | IKZF1                 | Intron variant                          | 7p12.2   | Migliorini et al., 2013                                                  |
| rs11575548 | IKZF1 (60K)<br>DDC    | Intron variant                          | 7p12.2   | Migliorini et al., 2013                                                  |
| rs4917017  | <i>IKZF1</i> (5K)     | flanking_5UTR                           | 7p12.2   | Migliorini et al., 2013                                                  |
| rs10235226 | <i>IKZF1</i> (100K)   | flanking_5UTR                           | 7p12.2   | Xu et al., 2013                                                          |
| rs921909   | <i>IKZF1</i> (100K)   | flanking_5UTR                           | 7p12.2   | Xu et al., 2013                                                          |
| rs921910   | <i>IKZF1</i> (100K)   | flanking_5UTR                           | 7p12.2   | Xu et al., 2013                                                          |
| rs9886239  | <i>IKZF1</i> (6K)     | flanking_5UTR                           | 7p12.2   | Xu et al., 2013                                                          |
| rs11765988 | IKZF1                 | Intron variant                          | 7p12.2   | Xu et al., 2013                                                          |
| rs7800411  | IKZF1                 | Intron variant                          | 7p12.2   | Xu et al., 2013                                                          |

**Annex table 1**: All the SNPs reported by GWAS performed by Papaemmanuil et al., Treviño et al., Sherborne et al., Xu et al. and Migliorini et al. In red, SNPs in intergenic regions or in genes that not codify for proteins (continue).

| SNP        | Gene                  | Function                                     | Location        | Reference                                     |
|------------|-----------------------|----------------------------------------------|-----------------|-----------------------------------------------|
| rs12719039 | IKZF1                 | Intron variant                               | 7p12.2          | Xu et al., 2013                               |
| rs7806674  | IKZF1                 | Intron variant                               | 7p12.2          | Xu et al., 2013                               |
| rs7790846  | IKZF1                 | Intron variant                               | 7p12.2          | Xu et al., 2013                               |
| rs12669559 | IKZF1                 | Intron variant<br>Synonymous codon           | 7p12.2          | Xu et al., 2013                               |
| rs11978267 | IKZF1<br>LOC105375275 | Intron variant nc transcript variant         | 7p12.2          | Xu et al., 2013; Treviño et al., 2009         |
|            |                       | downstream variant                           |                 |                                               |
| rs6964969  | <i>IKZF1</i> (450bp)  | 500B<br>flanking 3LITR                       | 7p12.2          | Xu et al., 2013                               |
| rs6944602  | <i>IKZF1</i> (950bp)  | flanking_3UTR                                | 7p12.2          | Xu et al., 2013; Papaemmanuil et al.,<br>2009 |
| rs11770117 | <i>IKZF1</i> (950bp)  | flanking 3UTR                                | 7p12.2          | Xu et al., 2013                               |
| rs12719019 | <i>IKZF1</i> (3K)     | flanking 3UTR                                | 7p12.2          | Xu et al., 2013                               |
| rs10261922 | <i>DDC</i> (55K)      | flanking 3UTR                                | 7p12.2          | Xu et al., 2013                               |
| rs11575575 | DDC (2K)              | flanking 3UTR                                | ,<br>7p12.2     | Xu et al., 2013                               |
| rs7803247  | DDC                   | Intron variant                               | 7p12.2          | Xu et al., 2013                               |
| rs3887825  | DDC                   | Intron variant                               | 7p12.2          | Xu et al., 2013                               |
| rs12718527 | DDC                   | Intron variant                               | 7p12.2          | Xu et al., 2013                               |
| rs12718528 | DDC                   | Intron variant                               | 7p12.2          | Xu et al., 2013                               |
| rs4580999  | DDC                   | Intron variant                               | 7p12.2          | Xu et al., 2013                               |
| rs10899734 | DDC                   | Intron variant                               | 7p12.2          | Xu et al., 2013                               |
| rs10899735 | DDC                   | Intron variant                               | 7p12.2          | Xu et al., 2013                               |
| rs10899736 | DDC                   | Intron variant                               | 7p12.2          | Xu et al., 2013                               |
| rs11575457 | DDC                   | Intron variant                               | 7p12.2          | Xu et al., 2013                               |
| rs4948196  | DDC                   | Intron variant                               | 7p12.2          | Xu et al., 2013                               |
| rs17152020 | DDC                   | Intron variant                               | 7p12.2          | Xu et al., 2013                               |
| rs1037351  | DDC                   | Intron variant                               | 7p12.2          | Xu et al., 2013                               |
| rs2167364  | DDC                   | Intron variant                               | 7p12.2          | Xu et al., 2013; Treviño et al., 2009         |
| rs4947582  | DDC                   | Intron variant                               | 7p12.2          |                                               |
| rs11575387 | DDC                   | Intron variant                               | 7p12.2          | Xu et al., 2013                               |
| rs6964823  | IKZF1<br>LOC105375275 | Intron variant<br>Nc transcript variant      | 7p12.2          | Papaemmanuil et al., 2009                     |
| rs6945253  |                       |                                              | 7p12.2          | Papaemmanuil et al., 2009                     |
| rs1349492  | DDC                   | Intron variant                               | 7p12.2          |                                               |
| rs6592952  | DDC                   | downstream variant<br>500B<br>intron variant | 7p12.2          | Papaemmanuil et al., 2009                     |
| rs2242041  | DDC                   | Intron variant                               | 7p12.2          | Treviño et al., 2009                          |
| rs6951648  | DDC                   | Intron variant                               | 7p12.2-<br>12.1 | Xu et al., 2013                               |
| rs2107449  | SP4                   | Intron variant                               | 7p15.3          | Migliorini et al., 2013                       |
| rs10249014 | SP4 (2K)              |                                              | 7p15.3          | Migliorini et al., 2013                       |
| rs2390538  | SP4                   | Intron variant                               | 7p15.3          | Migliorini et al., 2013                       |
| rs11764793 | <i>ТЕЅ</i> (19К)      | flanking_5UTR                                | 7q31.2          | Sherborne et al., 2010                        |
| rs11136067 | DUSP4 (100K)          | flanking_5UTR                                | 8p12            | Orsi et al., 2012                             |

**Annex table 1**: All the SNPs reported by GWAS performed by Papaemmanuil et al., Treviño et al., Sherborne et al., Xu et al. and Migliorini et al. In red, SNPs in intergenic regions or in genes that not codify for proteins (continue).

| SNP                             | Gene                    | Function                                | Location | Reference                                                                |
|---------------------------------|-------------------------|-----------------------------------------|----------|--------------------------------------------------------------------------|
| rs667656                        | DUSP4 (70K)             | flanking_5UTR                           | 8p12     | Orsi et al., 2012                                                        |
| rs7835507                       | MSRA                    | Intron variant                          | 8p23.1   | Sherborne et al., 2010                                                   |
| rs6997224                       | MSRA                    | Intron variant                          | 8p23.1   | Sherborne et al., 2010                                                   |
| rs1427050                       | RALYL                   | Intron variant                          | 8q21.2   | Migliorini et al., 2013                                                  |
| rs3935421                       | ССDС26 (160К)           | flanking_3UTR                           | 8q24.21  | Orsi et al., 2012                                                        |
| rs7843653                       | KCNQ3                   | Intron variant                          | 8q24.22  | Orsi et al., 2012                                                        |
| rs10813050                      | LRRN6C (100K)<br>LINGO2 | flanking_5UTR                           | 9p21.1   | Orsi et al., 2012                                                        |
| rs1331876                       | LINGO2                  | Intron variant                          | 9p21.1   | Sherborne et al., 2010                                                   |
| rs3731217                       | CDKN2A                  | Intron variant                          | 9p21.3   | Migliorini et al., 2013; Sherborne et<br>al., 2010                       |
| rs7049105                       | CDKN2B-AS1              | Intron variant                          | 9p21.3   |                                                                          |
| rs10120688                      | CDKN2B-AS1              | Intron variant                          | 9p21.3   | Migliorini et al., 2013                                                  |
| rs2811712                       | CDKN2B-AS1              | Intron variant                          | 9p21.3   | Migliorini et al., 2013                                                  |
| rs1333034                       | CDKN2B-AS1              | Intron variant                          | 9p21.3   | Migliorini et al., 2013                                                  |
| rs10965212                      | CDKN2B-AS1              | Intron variant                          | 9p21.3   | Xu et al., 2013                                                          |
| rs10965215                      | CDKN2B-AS1              | intron variant<br>nc transcript variant | 9p21.3   | Xu et al., 2013                                                          |
| rs662463                        | CDKN2B-AS1              | Intron variant                          | 9p21.3   | Xu et al., 2013                                                          |
| rs10965219                      | CDKN2B-AS1              | Intron variant                          | 9p21.3   | Xu et al., 2013                                                          |
| rs17756311                      | CDKN2B-AS1              | Intron variant                          | 9p21.3   | Xu et al., 2013                                                          |
| rs17694572                      | CDKN2B-AS1              | Intron variant                          | 9p21.3   | Xu et al., 2013                                                          |
| rs10511573                      |                         |                                         | 9p23     | Sherborne et al., 2010                                                   |
| rs1001919                       |                         |                                         | 9q31.2   | Sherborne et al., 2010                                                   |
| rs872863                        | DENND1A                 | Intron variant                          | 9q33.3   | Sherborne et al., 2010                                                   |
|                                 | <i>CRB2</i> (10K)       | flanking_3UTR                           | 9q33.3   |                                                                          |
|                                 | <i>OR2C3</i> (4K)       | flanking_3UTR                           |          |                                                                          |
| rs563507                        | PARD3                   | Intron variant                          | 10p11.21 | Treviño et al., 2009                                                     |
| rs10828317                      |                         |                                         |          |                                                                          |
| has merged<br>into<br>rs2230469 | PIP4K2A                 | Missense                                | 10p12.2  | Migliorini et al., 2013                                                  |
| rs3824662                       | GATA3                   | Intron variant                          | 10p14    | Migliorini et al., 2013                                                  |
| rs569421                        | GATA3                   | Intron variant                          | 10p14    | Migliorini et al., 2013                                                  |
| rs9746                          | GATA3                   | UTR variant 3 prime                     | 10p14    | Migliorini et al., 2013                                                  |
| rs7090445                       | ARID5B                  | Intron variant                          | 10q21.2  | Migliorini et al., 2013                                                  |
| rs7089424                       | ARID5B                  | Intron variant                          | 10q21.2  | Migliorini et al., 2013; Orsi et al.,<br>2012; Papaemmanuil et al., 2009 |
| rs4506592                       | ARID5B                  | Intron variant                          | 10q21.2  | Migliorini et al., 2013                                                  |
| rs10821938                      | ARID5B                  | Intron variant                          | 10q21.2  | Migliorini et al., 2013; Xu et al., 2013                                 |
| rs7073837                       | ARID5B                  | Intron variant                          | 10q21.2  | Migliorini et al., 2013; Xu et al.,<br>2013; Orsi 2012                   |
| rs7087125                       | ARID5B                  | Intron variant                          | 10q21.2  | Migliorini et al., 2013; Xu et al., 2013                                 |
| rs4948491                       | ARID5B                  | Intron variant                          | 10q21.2  | Migliorini et al., 2013                                                  |
| rs7894504                       | ARID5B                  | Intron variant                          | 10q21.2  | Migliorini et al., 2013                                                  |

**Annex table 1**: All the SNPs reported by GWAS performed by Papaemmanuil et al., Treviño et al., Sherborne et al., Xu et al. and Migliorini et al. In red, SNPs in intergenic regions or in genes that not codify for proteins (continue).

| SNP        | Gene                 | Function                                     | Location | Reference                                             |
|------------|----------------------|----------------------------------------------|----------|-------------------------------------------------------|
| rs10740055 | ARID5B               | Intron variant                               | 10q21.2  | Orsi et al., 2012; Papaemmanuil et<br>al., 2009       |
| rs4948488  | ARID5B               | Intron variant                               | 10q21.2  | Xu et al., 2013                                       |
| rs2893881  | ARID5B               | Intron variant                               | 10q21.2  | Xu et al., 2013                                       |
| rs6479778  | ARID5B               | Intron variant                               | 10q21.2  | Xu et al., 2013                                       |
| rs6479779  | ARID5B               | Intron variant                               | 10q21.2  | Xu et al., 2013                                       |
| rs10994982 | ARID5B               | Intron variant                               | 10q21.2  | Xu et al, 2013; Treviño et al., 2009                  |
| rs10994983 | ARID5B               | Intron variant                               | 10q21.2  | Xu et al., 2013                                       |
| rs7923074  | ARID5B               | Intron variant                               | 10q21.2  | Xu et al., 2013                                       |
| rs10821936 | ARID5B               | Intron variant                               | 10q21.2  | Xu et al., 2013; Treviño et al., 2009                 |
| rs7896246  | ARID5B               | Intron variant                               | 10q21.2  | Xu et al., 2013                                       |
| rs9415636  | ARID5B               | Intron variant                               | 10q21.2  | Xu et al., 2013                                       |
| rs11188661 | BLNK                 | Intron variant                               | 10q24.1  | Sherborne et al., 2010                                |
|            | <i>ZNF518A</i> (38K) | flanking_3UTR                                | 10q24.1  |                                                       |
| rs11188664 | BLNK                 | Intron variant                               | 10q24.1  | Sherborne et al., 2010                                |
|            | <i>ZNF518A</i> (40K) | flanking_3UTR                                | 10q24.1  |                                                       |
| rs7084370  |                      |                                              | 10q25.2  | Sherborne et al., 2010                                |
| rs6571245  |                      |                                              | 10q26.3  | Migliorini et al., 2013                               |
| rs3802765  | MAML2                | Intron variant                               | 11q21    | Orsi et al., 2012                                     |
| rs12582396 | <i>DUSP16</i> (20K)  | flanking_5UTR                                | 12p13.2  | Sherborne et al., 2010                                |
|            | <i>CREBL2</i> (34K)  | flanking_5UTR                                | 12p13.2  |                                                       |
| rs10849033 | C12orf5 (5K)         | flanking_3UTR                                | 12p13.32 | Treviño et al., 2009                                  |
| rs10877094 |                      |                                              | 12q14.1  | Sherborne et al., 2010                                |
| rs7971479  | СРМ                  | UTR variant 3 prime                          | 12q15    | Sherborne et al., 2010                                |
|            | MDM2 (8K)            | flanking_3UTR                                | 12q15    |                                                       |
| rs2089222  | MAP1LC3B2            | Intron variant                               | 12q24.22 | Treviño et al., 2009                                  |
|            | KRTHB5               |                                              | 12q24.22 |                                                       |
| rs7984659  | <i>PCDH20</i> (650K) | flanking_5UTR                                | 13q21.31 | Orsi et al., 2012                                     |
| rs7317221  |                      |                                              | 13q21.33 | Sherborne et al., 2010                                |
| rs1832050  | LOC105370342         | Intron variant                               | 13q33.2  | Sherborne et al., 2010                                |
| rs2239633  | СЕВРЕ                | Missense<br>Upstream variant 2KB             | 14q11.2  | Migliorini et al., 2013;<br>Papaemmanuil et al., 2009 |
| rs12434881 | CEBPE                | Intron variant<br>Utr variant 5 prime        | 14q11.2  | Migliorini et al., 2013                               |
| rs761874   | CEBPE (5K)<br>SLC7A8 | nc transcript variant<br>Utr variant 3 prime | 14q11.2  | Migliorini et al., 2013                               |
| rs7157021  | SLC7A8               | nc transcript variant<br>Synonymous codon    | 14q11.2  | Migliorini et al., 2013                               |
|            | <i>CEBPE</i> (10K)   | flanking_5UTR                                | 14q11.2  |                                                       |
| rs10143875 | CEBPE (2K)           | flanking_3UTR                                | 14q11.2  | Migliorini et al., 2013                               |
| rs4982731  | CEBPE (1K)           | flanking_3UTR                                | 14q11.2  | Migliorini et al., 2013; Xu et al., 2013              |
| rs4982729  | CEBPE (10K)          | flanking_3UTR                                | 14q11.2  | Xu et al., 2013                                       |
|            | LOC100128908         | upstream variant 2KB<br>flanking_5UTR        | 14q11.2  |                                                       |
| rs12887958 | CEBPE (4K)           | flanking_3UTR                                | 14q11.2  | Xu et al., 2013                                       |

**Annex table 1**: All the SNPs reported by GWAS performed by Papaemmanuil et al., Treviño et al., Sherborne et al., Xu et al. and Migliorini et al. In red, SNPs in intergenic regions or in genes that not codify for proteins (continue).

| SNP        | Gene                                   | Function                                    | Location | Reference               |
|------------|----------------------------------------|---------------------------------------------|----------|-------------------------|
| rs8015478  | CEBPE (500bp)                          | downstream variant<br>500B<br>flanking_3UTR | 14q11.2  | Xu et al., 2013         |
| rs17794251 | CEBPE (4K)                             | flanking_5UTR                               | 14q11.2  | Xu et al., 2013         |
| rs1394759  | FLJ395<br>FLJ39531 (C15orf54)<br>(10K) | flanking_5UTR                               | 15q14    | Orsi et al., 2012       |
| rs6151562  | BNIP2                                  | Intron variant                              | 15q22.2  | Orsi et al., 2012       |
| rs5021303  | LINGO1                                 | Intron variant                              | 15q24.3  | Sherborne et al., 2010  |
| rs984999   | LOC105371010                           | Intron variant                              | 15q26.3  | Migliorini et al., 2013 |
| rs11647078 | <i>IRX3</i> (175)                      | flanking_5UTR                               | 16q12.2  | Orsi et al., 2012       |
| rs13331075 | CDYL2                                  | Intron variant                              | 16q23.2  | Orsi et al., 2012       |
| rs1366754  | <i>COTL1</i> (5K)                      | flanking_3UTR                               | 16q24.1  | Orsi et al., 2012       |
| rs7224669  | <i>RGS9</i> (150K)                     | flanking_3UTR                               | 17q24.1  | Orsi et al., 2012       |
| rs1879352  |                                        |                                             | 18p11.32 | Treviño et a.l, 2009    |
| rs8088707  | <i>PMAIP1</i> (35K)                    | flanking_3UTR                               | 18q21.32 | Orsi et al., 2012       |
|            | LOC105372151                           | Intron variant                              | 18q21.32 |                         |
| rs567379   |                                        |                                             | 18q22.2  | Sherborne et al., 2010  |
| rs2191566  | ZNF230                                 | Intron variant                              | 19q13.31 | Treviño et al., 2009    |
| rs6509133  | ZNF230 (4K)                            | flanking_3UTR                               | 19q13.31 | Treviño et al., 2009    |
| rs2284378  | RALY                                   | Intron variant                              | 20q11.22 | Sherborne et al., 2010  |
|            | <i>EIF2S2</i> (90K)                    | flanking_3UTR                               | 20q11.22 |                         |
| rs4911414  | <i>RALY</i> (50K)                      | flanking_3UTR                               | 20q11.22 | Sherborne et al., 2010  |
|            | <i>EIF2S2</i> (30K)                    | flanking_5UTR                               | 20q11.22 |                         |
| rs2903908  | NCOA5                                  | Intron variant                              | 20q13.12 | Sherborne et al., 2010  |
|            | <i>SLC12A5</i> (5K)                    | flanking_3UTR                               | 20q13.12 |                         |
| rs6027571  |                                        |                                             | 20q13.33 | Sherborne et al., 2010  |
| rs2822553  | ABCC13                                 | Intron variant                              | 21q11.2  | Orsi et al., 2012       |
| rs9613221  | CRYBB1 (8K)                            | flanking_3UTR                               | 22q12.1  | Sherborne et al., 2010  |
|            | <i>CRYBA4</i> (17K)                    | flanking_5UTR                               | 22q12.1  |                         |
|            | <i>TPST2</i> (700bp)                   | upstream variant 2KB<br>flanking_5UTR       | 22q12.1  |                         |

**Annex table 1**: All the SNPs reported by GWAS performed by Papaemmanuil et al., Treviño et al., Sherborne et al., Xu et al. and Migliorini et al. In red, SNPs in intergenic regions or in genes that not codify for proteins (continue).

# HYPOTHESIS AND OBJECTIVES

# **HYPOTHESIS**

The early disease onset of pediatric B-ALL and the high risk of the disease associated with some congenital genetic disorders, suggest a strong genetic component in its origin. Supporting this idea, several GWAS studies have identified genetic variants at five genes associated with B-ALL susceptibility. When we analyzed in deep these GWAS, we also found genetic variants in non coding region associated with B-ALL risk. Interestingly, miRNAs, non-coding RNAs, are deregulated in B-ALL, and some genetic variants in miRNA genes have been associated with the susceptibility to cancer.

Considering all these evidences, we propose that common genetic variants in coding genes and in non coding genes are involved in B-ALL susceptibility in our Spanish population. The detection of these variants could help to improve the knowledge of this disease.

# **OBJECTIVES**

The main goal of the present study was to prove the strong genetic component in the etiology of childhood B-ALL by identifying genetic susceptibility markers in coding genes and in non coding genes in our Spanish population.

In order to achieve this goal, we proposed the following specific objectives:

- A. To validate the association of genetic variants in B-ALL risk previously proposed in our Spanish population.
  - a) We performed a case-control study in 264 children with B-ALL analyzing the most significant SNPs at *ARID5B*, *IKZF1*, *CEBPE*, *CDKN2A/B* and *PIP4K2A*, previously proposed.
- B. To determine the association of genetic variants in B-ALL risk in miRNA related genes.
  - a) We performed a case-control study in 264 children with B-ALL analyzing 72
     SNPs in 21 miRNA processing genes in our Spanish population.
  - b) We performed a case-control study in 343 children with B-ALL of two cohorts of Spanish and Slovenian patients analyzing 213 SNPs in 203 miRNAs.

**MATERIAL & METHODS** 

# **1. POPULATION OF THE STUDY**

This study included a total of 343 pediatric patients all diagnosed with B-ALL and 815 healthy controls. The samples of B-ALL patients were collected from 2000 to 2011 at the Pediatric Oncology Units of 5 Spanish reference hospitals (University Hospital Cruces, University Hospital Donostia, University Hospital Miguel Servet, University Hospital Vall D'Hebrón and University Hospital La Paz) (n=264) and the Unit of Pediatric Oncology of Hospital "University Children's" of Liubliana, Slovenia (n=79). The control group consisted of Spanish unrelated healthy individuals of C.0001171 collection registred in Instituto de Salud Carlos III (ISCIII) (n=719) and Slovenian cancer non-related controls (n=96).

The study was approved by medical ethical committees (PI2014039 and 62/07/03) and informed consent was obtained by parents or guardians and patients (in case they were <12 years) according to the Declaration of Helsinki.

Clinical data were collected objectively by two independent researchers, blinded to genotypes, from the patients' medical files. Data collected included: immunophenotype, molecular alterations, cytogenetics alterations, age at diagnosis and sex (Table 6).

**Table 6:** Characteristics of the B-ALL patients and controls examined in this study in the Spanish and

|                                  | Spanish       | Cohort      | Slovenia  | n Cohort   |
|----------------------------------|---------------|-------------|-----------|------------|
|                                  | Patients      | Controls    | Patients  | Controls   |
| No. of individuals               | 264           | 719         | 79        | 96         |
| Mean age ± SE, y                 | $4.1 \pm 3.6$ | 52.1 ± 20.5 | 4.7 ± 5.4 | 44.5 ± 9.4 |
| Sex*                             |               |             |           |            |
| Males, n (%)                     | 144 (54.8)    | 356 (49.5)  | 41(51.9)  | 58         |
| Females, n (%)                   | 119 (45.2)    | 363 (50.5)  | 38 (48.1) | 38         |
| Immunophenotype                  |               |             |           |            |
| B-type                           | 260 (98.5)    | -           | 78 (98.7) | -          |
| Biphenotipic                     | 4 (1.5)       | -           | 1 (1.3)   | -          |
| Genetic alterations <sup>#</sup> |               |             |           |            |
| Hyperdiploid                     | 66 (25)       | -           | 9 (11.4)  | -          |
| ETV6-RUNX1                       | 42 (16)       | -           | 12 (15.2) | -          |
| MLL                              | 13 (5)        | -           | 4 (5.1)   | -          |
| BCR-ABL                          | 6 (2.3)       | -           | 1 (1.3)   | -          |
| E2A-PBX1                         | 6 (2.3)       | -           | -         | -          |
| Hypodiploid                      | 3 (1.1)       | -           | 1 (1.3)   | -          |
| Other                            | 2 (0.7)       | -           | 6 (7.6)   | -          |
| No alteration                    | 106 (40.1)    | -           | 48 (60.8) | -          |
| No available                     | 26 (9.8)      | -           | 0         | -          |

Slovenian cohort.

SE: standard error. \*There is no datum of one patient in the Spanish cohort. <sup>#</sup>three of the Spanish patients are both B-hyperdiploid and *ETV6-RUNX1*, one is *BCR-ABL* and B-hyperdiploid, one is *MLL* and B-hyperdiploid and another one is *ETV6-RUNX1* and *MLL*; three Slovenian patients are both B-hyperdiploid and *ETV6-RUNX1*, one is *BCR-ABL* and B-hyperdiploid and another one is *MLL* and B-hyperdiploid.

## 2. STUDIES OF GENES IDENTIFIED IN GWAS

## 2.1 ARID5B gene

#### Polymorphisms selection

With the objective of mapping the whole intron 3 of *ARID5B*, the SNPs were selected based on the following criteria: (1) TagSNPs that were defined using Haploview software version 4.2 (http:// www.broadinstitute.org/haploview/haploview) with an r<sup>2</sup> threshold value of 0.8; (2) SNPs predicted to have functional effects (e.g., putative transcription factor-binding sites and CpG sites) according to the bioinformatic analyses (F-SNP(http://compbio.cs.queensu.ca/F-SNP/), Ensembl (http://www.ensembl.org/index.html), and Genome Browser (http://genome.ucsc.edu/)); (3) SNPs previously reported to be associated with ALL susceptibility. Of these, only SNPs with a reported minor allele frequency (MAF)>10% were analyzed, and this included a total of 10 polymorphisms.

#### Genotype analysis

Genomic DNA was extracted from remission peripheral blood or bone marrow (with<5 % blast cells) using the phenol–chloroform method previously described (Sambrook and Russell 2001) or from saliva samples using Oragene DNA kit (DNA Genotek, Ottawa, Ontario, Canada), according to the manufacturer's instructions.

Genotyping was performed at the General Research Services (SGIker) of the University of the Basque Country using TaqMan Open Array technology (Applied Biosystems), according to the published Applied Biosystems protocol.

TaqMan OpenArray Genotyping Plates contain the selected TaqMan SNP Genotyping Assays pre-loaded and dried down in the through-holes. Each assay contains: a specific fluorescentdye labeled probe for each allele of the target SNP (the probes contain different fluorescent reporter dyes in 5' to differentiate each allele), a forward primer, a reverse primer and a nonfluorescent quencher (NFQ) at the 3'end of each probe.

During PCR, each probe anneals specifically to its complementary sequence between the forward and reverse primer sites. The DNA polymerase can cleave only probes that hybridize to their specific SNP allele (match). Cleavage separates the reporter dye from the quencher

77

dye, substantially increasing fluorescence of the reporter dye. Thus, the fluorescence signals generated during PCR amplification indicate the alleles that are present in the sample. A substantial increase in VIC dye fluorescence indicates homozygosity for allele 1, an increase in FAM dye fluorescence indicates homozygosity for allele 2 and both fluorescence signals indicates heterozygosity (Figure 11). A total of 300 ng of DNA were required from each sample to carry out the analysis.



Figure 11: Results from matches and mismatches between target and probe sequences in TaqMan SNP Genotyping Assays (Livak et al. 1995).

Data were analyzed with Taqman Genotyper software for genotype clustering and calling (Figure 12). Duplicate samples were genotyped across the plates. SNPs showing discordant genotypes were excluded from the analysis.



Figure 12: Genotype clustering and calling with Taqman Genotyper software. AA individuals are marked in red, AG in green and GG in dark blue.

#### Copy number variation (CNV) analysis

Copy number detection was carried out at the Center for Applied Medical Research (CIMA) with the Cytogenetics Whole-Genome 2.7M platform (Affymetrix). This array contains a total number of 2,761,979 copy number probes that enable a high-resolution genome-wide DNA copy number analysis.



**Figure 13:** Amplified, fragmented and marked DNA is hybridized into the array that contains probes representing the whole genome. The intensity of each spot is indicative of the number of copies of each region of the genome.

We started with 100ng of genomic DNA adjusted to a concentration of approximately 33ng/µl, which was denatured and amplified. Amplified DNA was purified using magnetic beads and its purity and concentration (above 0.55µg/µl) was validated with the Nanodrop spectrophotometer. Subsequently, the DNA was enzymatically digested to obtain fragments of 50-100bp. We validated the correct fragmentation by electrophoresis on agarose gel and proceeded to the hybridization to the microarray. Washing and staining of the Cyto-array was carried out with the GeneChip Fluidics Station 450 (Affymetrix) and subsequent scanning using the GeneChip Scanner 3000 (Affymetrix), which generated the raw data of the Cyto-array. The intensity of each spot is indicative of the number of copies of each region of the genome (Figure 13). During the protocol, specific reagents provided in the commercial Cyto-array kit (Cytogenetics Reagent Kit, Affymetrix) were used in each stage.

#### Gene expression

Quantitative real-time PCR (qPCR) was performed using an ABI PRISM 7900HT Fast Real-Time PCR System (Applied Biosystems, Life Technologies, Carlsbad, USA) to detect ARID5B mRNA expression in seven different cell lines, according to the manufacturer's protocol. Briefly, RNA was extracted using Ultraspec (Biotecx, Houston, TX, USA) according to the manufacturer's instructions. Primers and probes for the *ARID5B* gene (Hs01381961\_m1) and the TATAbox binding protein gene (*TBP*) [used as a housekeeping control (Hs00427620\_m1)] were obtained from Applied Biosystems. Of the two transcript variants previously characterized for *ARID5B*, the primers and probes selected for this study were specific for transcript variant 1. This variant contains exons 2 and 3, which limits the region analyzed (Figure 14b) in order to avoid errors due to the quantification of gene expression for both transcripts.



**Figure 14:** Distribution of the ten selected SNPs analyzed within the *ARID5B* gene. A) SNPs analyzed in other studies are underlined. B) Transcript variants of ARID5B and Hs01381961\_m1 were specifically selected to quantify levels of ARID5B variant 1. The vertical markers along the gene indicate exons.

#### 2.2 IKZF1 GENE

#### Selection of polymorphisms

The polymorphism rs4132601 in *IKZF1*, previously reported to be highly associated with ALL susceptibility in the literature, was selected.

#### Genotype analyses

Genomic DNA was extracted from remission peripheral blood or bone marrow using the phenol-chloroform method as previously described (Sambrook and Russell 2001). Genotyping analyses were performed by using PCR followed by restriction analysis. Duplicates were included in each assay. The PCR products were visualized after electrophoresis on 2% agarose gels (Figure 15). Primer sequences and PCR conditions are described in detail in Table 7.



Figure 15: Agarosa gel showing results of rs4132601at *IKZF1*.

| SNP       | Primer Sequences (5'- 3')                            | Genotype<br>method | Restriction<br>Enzyme | Fragment length<br>(bp) according to the<br>genotype                        |
|-----------|------------------------------------------------------|--------------------|-----------------------|-----------------------------------------------------------------------------|
| rs4132601 | F1: TCTGCTCACAGAAGGGTGTG<br>R1: AGGAAAGGGCAAAGCAGTTT | PCR-RFLP           | Mbol                  | <b>GG</b> :203, 86, 57<br><b>GT</b> :260, 203, 86, 57<br><b>TT</b> :260, 86 |

### Systematic review and meta-analysis

*Search strategy*. We performed an exhaustive search to identify studies that examined the association between the rs4132601 at IKZF1 and ALL susceptibility. We used the keywords and subject terms "(IKZF1 or rs4132601) and acute lymphoblastic leukemia" for Pubmed (www.ncbi.nlm.nih.gov/pubmed) searches for articles published until July 2016. All references cited in the studies were then reviewed to possibly identify additional publications.

*Inclusion and exclusion criteria*. Original studies that investigated the association between the rs4132601 polymorphism and ALL risk with sufficient data to calculate crude OR values were

included. Reviews, meta-analyses and studies analyzing other regions or variants were excluded.

*Data extraction*. For each article, we gathered year of publication, first author, country of origin, sample size and genotype frequencies. When it was not possible to extract the genotype data from the article, we contacted the authors to obtain them.

*Quality Assessment*. The quality of included studies was assessed by scoring according to a "methodological quality assessment scale" (Table 8) (Bilbao-Aldaiturriaga et al. 2016). In the scale, five items, including the representativeness of cases, source of controls, sample size, quality control of genotyping methods and Hardy–Weinberg equilibrium (HWE) were carefully checked. Quality scores ranged from 0 to 10 and a higher score indicated better quality of the study. Scores > 5 were considered acceptable.

| Criteria                                                           | Score |
|--------------------------------------------------------------------|-------|
| 1.Representativeness of cases                                      |       |
| ALL diagnosed according to acknowledged criteria                   | 2     |
| Mentioned the diagnosed criteria but not specifically described    | 1     |
| Not described                                                      | 0     |
| 2.Source of controls                                               |       |
| Population or community based                                      | 3     |
| Hospital-based ALL-free controls                                   | 2     |
| Healthy volunteers without total description                       | 1     |
| ALL-free controls with related diseases                            | 0.5   |
| Not described                                                      | 0     |
| 3.Sample size                                                      |       |
| >100                                                               | 2     |
| 25-100                                                             | 1     |
| <25                                                                | 0     |
| 4.Quality control of genotyping methods                            |       |
| Repetition of partial/total tested samples with a different method | 2     |
| Repetition of partial/total tested samples with the same method    | 1     |
| Not described                                                      | 0     |
| 5.Hardy-Weinberg equilibrium (HWE)                                 |       |
| Hardy-Weinberg equilibrium in control subjects                     | 1     |
| Hardy-Weinberg disequilibrium in control subjects                  | 0     |

Table 8. Scale for methodological quality assessment.

## 2.3 CEBPE GENE

### Selection of polymorphisms

The polymorphisms rs2239633 and rs22396635 in *CEBPE*, previously reported to be highly associated with ALL susceptibility in the literature, were selected.

### Genotype analyses

Genomic DNA was extracted from remission peripheral blood or bone marrow using the phenol-chloroform method as previously described (Joseph Sambrook and David W Russell 2001). Genotyping analyses were performed by using amplification-refractory mutation system polymerase chain reaction (ARMS-PCR). Duplicates were included in each assay. The PCR products were visualized after electrophoresis on 2% agarose gels (Figure 16). Primer sequences and PCR conditions are described in detail in Table 9.

Figure 16: Agarosa gel showing results of a) rs2239633 and b) rs2239635.

| SNP       | Primer Sequences (5'- 3')                                                                                   | Genotype<br>method | Fragment length (bp)<br>according to the<br>genotype                      |
|-----------|-------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------|
| rs2239633 | F1: CACCACGCAGGCTCGT<br>R1: CAGTTGGGTCTCACCTCCTC<br>F2: AAGCCCAGGGAGTTAGGAAG<br>R2: GTCCTAGGAACAAGCTCTACACG | ARMS-PCR           | СС: 159, 325<br>СТ: 159, 204, 325<br>ТТ: 204, 325                         |
| rs2239635 | F1: GATTTGGAGTCCCCTGGC<br>R1: CCCCAGAGGGAGAGATGTAAG<br>F2: CCCTGGCCTACACTCAGAGA<br>R2: CACTCCCTGCTGGGAGC    | ARMS-PCR           | <b>CC</b> : 167, 419<br><b>CG</b> : 167, 286, 419<br><b>GG</b> : 286, 419 |

 Table 9: Primers and PCR conditions for the amplification of rs2239633 and rs22396635 in CEBPE.

#### Systematic review and meta-analysis

*Search strategy*. We performed an exhaustive search to identify studies that examined the association between rs2239633 polymorphism of *CEBPE* and ALL susceptibility. We used the keywords and subject terms "(CEBPE or rs2239633 or 14q11.2) and leukemia" for Pubmed (www.ncbi.nlm.nih.gov/pubmed) searches for articles published until July 2016. All references cited in the studies were then reviewed to possibly identify additional publications.

*Inclusion and exclusion criteria, Data extraction* and *Quality Assessment* were done as previously described in section 2.2.

### 2.4 CDKN2A/B locus

#### Selection of polymorphisms

A total of six SNPs at the locus 9p21.3 were selected (Table 10). Selection was done based on the following criteria: (i) four SNPs previously reported to be highly associated with ALL susceptibility in the literature or in high LD defined using the International HapMap Project (release #24; http://hapmap.ncbi.nlm.nih.gov/) (The HapMap Data Coordination Center (DCC), Bethesda, MD) and Haploview software v.4.2 (http://www.broad.mit.edu/mpg/haploview/) (Broad Institute, Cambridge, USA) with an r<sup>2</sup> threshold of 0.8 and a MAF of 10%, (ii) SNPs in miRNA binding sites at 3'UTR of *CDKN2A* and *CDKN2B* with a MAF>10% identified using bioinformatics tools: Ensembl (http://www.ensembl.org/) (Welcome Trust Genome Campus, Cambridge, UK), and miRNASNP (http://bioinfo.life.hust.edu.cn/miRNASNP2/index.php) (College of Life Science and Technology, HUST). Out of 47 SNPs identified in the 3'UTR that disrupt or create a miRNA binding site (Table 11), only two had a MAF>10%.

| SNP       | Gene             | Alleles | Reason for selection                                                            |
|-----------|------------------|---------|---------------------------------------------------------------------------------|
| rs3731222 | CDKN2A           | A>G     | In LD with rs3731217 (Sherborne et al. 2010)                                    |
| rs2811709 | CDKN2A           | G>A     | Bibliography (Orsi et al. 2012)                                                 |
| rs2811712 | ANRIL            | A>G     | In LD with rs662463 and rs17756311 (Xu et al. 2013, Hungate et al.<br>2016)     |
| rs3731249 | CDKN2A           | C>T     | Bibliography (Xu et al. 2015, Walsh et al. 2015, Vijayakrishnan et al.<br>2015) |
| rs1063192 | CDKN2B,<br>ANRIL | T>C     | 3'UTR miRNA binding site                                                        |
| rs3217992 | CDKN2B,<br>ANRIL | G>A     | 3'UTR miRNA binding site                                                        |

| Table 10: SNPs | selected a | and sele | ction criteria |
|----------------|------------|----------|----------------|
|----------------|------------|----------|----------------|

| CDKN2A      |         |          | CDKN2B      |         |        |
|-------------|---------|----------|-------------|---------|--------|
| SNP         | Alleles | MAF      | SNP         | Alleles | MAF    |
| rs111532782 | G>C     | 0.004    | rs1063192*  | T>C     | 0.45   |
| rs113798404 | -       | -        | rs140726127 | A>G     | -      |
| rs121913388 | C>G     | 0.000008 | rs148421170 | C>T     | 0.002  |
| rs142371511 | G>C     | -        | rs148786939 | T>C     | -      |
| rs145697272 | -       | -        | rs150924737 | T>A     | 0.001  |
| rs182558871 | C>A     | 0.001    | rs181736450 | C>A     | -      |
| rs190538376 | G>A     | -        | rs185130567 | T>C     | 0.005  |
| rs200429615 | T>G     | 0.001    | rs187514719 | A>G     | 0.001  |
| rs201314211 | T>G     | -        | rs200344272 | G>A     | -      |
| rs34886500  | C>T     | 0.0001   | rs2285329   | T>C     | -      |
| rs34968276  | C>A     | 0.0001   | rs3217988   | G>A     | -      |
| rs36204273  | G>A     | 0.0001   | rs62637622  | G>A     | -      |
| rs3731249   | G>A     | 0.032    | rs111751296 | -       | -      |
| rs3731253   | C>G     | -        | rs140430251 | -       | -      |
| rs3731255   | C>G     | -        | rs142570894 | C>T     | 0.0003 |
| rs4987127   | G>A     | -        | rs144131923 | -       | -      |
| rs6413463   | T>A     | -        | rs183610933 | T>C     | -      |
| rs11552822  | -       | -        | rs187657501 | T>C     | -      |
| rs121913383 | -       | -        | rs3217983   | C>T     | -      |
| rs121913385 | -       | -        | rs3217990   | C>A     | 0.002  |
| rs137854597 | G>A     | 0.000008 | rs3217992*  | G>A     | 0.4    |
| rs137854599 | -       | -        |             |         |        |
| rs181022755 | -       | -        |             |         |        |
| rs200863613 | C>A     | -        |             |         |        |
| rs3088440   | G>A     | 0.078    |             |         |        |
| rs45476696  | -       | -        |             |         |        |

#### Table 11: SNPs identified in 3'UTR of CDKN2A/B CDKN2B.

SNPs with a MAF>10% are in bold and marked with \*.

#### Genotype analyses

Genomic DNA was extracted from remission peripheral blood or bone marrow using the phenol-chloroform method as previously described (Sambrook and Russell 2001).

Genotyping was performed at the Spanish National Genotyping Center (CeGen) using the GoldenGate Genotyping Assay with Illumina Bead Array System (Illumina Inc., San Diego; USA). In this approach during the liquid phase, allele specific oligos (ASO) are hybridized to genomic DNA, extended and ligated to a locus specific oligo (LSO). PCR is performed using universal primers. The multiplexed products are hybridized to a universal Sentrix Array for detection and analysis. A schematic view of the principle of the assay is shown in Figure 17.


Figure 17: Goldengate assay overview.

Each reaction required a total of 400 ng of DNA. The DNA was re-quantified at the Spanish Genotyping Center using PicoGreen technique (Invitrogen Corp., Carlsbad, CA) and diluted to a final concentration of 50 ng/µl. With this technique, the concentration of DNA is determined by means of a fluorescent dye that binds to double stranded DNA (PicoGreen<sup>®</sup>, Molecular Probes), which is then quantified with a fluorometer.

Data were analyzed with GenomeStudio software for genotype clustering and calling. Duplicate samples and CEPH trios (Coriell Cell Repository, Camden, NJ) were genotyped across the plates. SNPs showing Mendelian allele-transmission errors or showing discordant genotypes were excluded from the analysis.

For rs3731249, the genotyping analyses were performed by using PCR followed by restriction analysis with BstUI enzyme. Duplicates were included in each assay. The PCR products were visualized after electrophoresis on 3% agarose gels (Figure 18). Primer sequences and PCR conditions are described in detail in Table 12.

| <br>(Frind)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0  |     |    |     |       |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|-----|-------|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |     |    |     |       |   |
| k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |     |    | -   |       | - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -  | -   | -  |     |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _  | -   | -  | -   | • • • | - |
| in the second se |    |     |    |     |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ŢŢ | CC, | СТ | PCR |       |   |

Figure 18: Agarose gel showing results for rs3731249 at CDKN2A.

Table 12: Primers and PCR conditions for the amplification of rs3731249 in CDKN2A.

| SNP       | Primer Sequences (5'- 3')                        | Genotype<br>method | Restriction<br>Enzyme | Fragment length (bp)<br>according to the genotype                                                              |
|-----------|--------------------------------------------------|--------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|
| rs3731249 | F1: TGGACCTGGCTGAGGAG<br>R1:TCGGGATTATTTCCCATTTG | PCR-RFLP           | BstUl                 | <b>CC</b> :133, 73, 48, 29,21,2<br><b>CT</b> :181, 133, 73, 48, 29, 21, 2<br><b>TT</b> :181, 73, 48, 29, 21, 2 |

#### 2.5 PIPK42A GENE

#### Polymorphism selection

We decided to select rs7088318 as a tagSNP of the association hotspot at *PIP4K2A* because the four SNPs reported in the article of Xu et al. (Xu et al. 2013) were in linkage disequilibrium with an  $r^2$  greater than 0.8. We made a linkage disequilibrium analysis using Hapmap database and Haploview version 4.2 software (Daly lab at the Broad Institute, Cambridge, MA, USA).

#### Genotyping

Genotyping analyses were performed by ARMS-PCR. Duplicates were included in each assay. The PCR products were visualized after electrophoresis on 2% agarose gels (Figure 19). Primer sequences and PCR conditions are described in detail in Table 13.



Figura 19: Agarose gel showing results for rs7088318 at *PIP4K2A*.

| SNP       | SNP Primer Sequences (5'- 3')                                                                                             |          | Fragment length (bp)<br>according to the<br>genotype |
|-----------|---------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------|
| rs7088318 | F1:CCTATGAAAAGAGAATAATAGAATTTGTTTG<br>R1: CAACCAGTGCCAGTTGTGAC<br>F2: ACAGAGAGGAAAGCCACACG<br>R2: CCGAGAAAGATGAGTTCTCGGTA | ARMS-PCR | TT: 248, 348<br>TG: 248, 163, 348<br>GG: 163, 348    |

 Table 13: Primers used to genotype rs7088318 at PIP4K2A.

#### **3. STUDIES OF NEW GENETIC VARIATIONS**

#### **3.1 SNPS IN GENES OF PROCESSING MACHINERY**

#### Selection of Genes and Polymorphisms

Twenty-one genes involved in miRNA biogenesis and processing, as determined based on available literature and the Patrocles database (http:// www.patrocles.org/; University of Liege, Liège, Belgium), were selected for the analysis (Table 14). For each gene, all of the SNPs with potential functional effects were examined using **F-SNP** (http:// compbio.cs.queensu.ca/F-SNP/; Queen's University, Kingston, Canada), Fast-SNP polymirTS (http://fastsnp.ibms.sinica.edu.tw; Academia Sinica, Taipei, Taiwan), (http://compbio.uthsc.edu/ miRSNP/; University of Tennessee Health Science Center, Memphis, TN), and Patrocles databases. Functional effects were considered to be those that resulted in amino acid changes and/or alternate splicing, those that were located in the promoter region of putative TFB sites, or those that disrupted or created miRNAs binding interactions. SNPs previously included in association studies were also examined. The final selection of SNPs was made based on those having a MAF reater than 5% (i.e., ≥0.05) in European/Caucasian populations (Table 15). A total of 72 SNPs in 21 processing genes were included in the analysis.

| <b>RISC</b> complex | GENIM complex   | GENIM3 |
|---------------------|-----------------|--------|
|                     |                 | GENIM4 |
|                     |                 | GENIM5 |
|                     | AGO             | EIF2C1 |
|                     |                 | EIF2C2 |
|                     |                 | HIWI   |
|                     | CCR-NOT complex | CNOT1  |
|                     |                 | CNOT2  |
|                     |                 | CNOT3  |
|                     |                 | CNOT4  |
|                     |                 | CNOT5  |
|                     |                 | CNOT6  |
|                     | GW182           | TNRC6A |
|                     |                 | TNRC6B |
|                     | SND1            | SND1   |
| DROSHA/DGR8         | DGCR8           | DGCR8  |
|                     | DROSHA          | DROSHA |
| DICER complex       | XPO5            | XPO5   |
|                     | RAN             | RAN    |
|                     | DICER           | DICER  |
|                     | TRBP            | TRBP   |

Table 14: Genes involved in processing and biogénesis of miRNAs.

| Gene           | SNP        | Alleles | Chr | Location  | Function       | Reason for selection |
|----------------|------------|---------|-----|-----------|----------------|----------------------|
|                | rs11644694 | G>A     | 16  | 58557342  | Non-synonymous | NS SR                |
| CNOTI          | rs11866002 |         | 16  | 58587737  | Synonymous     | SR                   |
|                | rs37060    |         | 16  | 58566304  | Intronic       | SR                   |
| CNOT2          | rs10506586 | C > A   | 12  | 70715490  | Non-synonymous | NS, SR               |
| CNOT3          | rs42318    | G > A   | 19  | 54657069  | Non-synonymous | NS                   |
| CNOT4          | rs1003226  | T > C   | 7   | 135046552 | 3'UTR          | SR                   |
|                | rs3763425  | C > T   | 7   | 135195320 | Upstream       | UR                   |
|                | rs3812265  | C > T   | 7   | 135048804 | Non-synonymous | NS, SR               |
| СNОТ6          | rs11738060 | T > A   | 5   | 180004154 | 3'UTR          | MIRTS                |
|                | rs6877400  | T > C   | 5   | 179996111 | Synonymous     | SR                   |
| DGCR8          | rs1640299  | T > G   | 22  | 20098359  | 3'UTR          | BIB                  |
|                | rs35987994 | T > C   | 22  | 20074006  | Non-synonymous | NS                   |
|                | rs3757     | G > A   | 22  | 20099331  | 3'UTR          | MIRTS, BIB           |
|                | rs417309   | G > A   | 22  | 20098544  | 3'UTR          | 3UTR, BIB            |
|                | rs9606248  | A > G   | 22  | 20087539  | Intronic       | BIB                  |
| DICER1         | rs1057035  | T > C   | 14  | 95554142  | 3'UTR          | MIRTS                |
|                | rs1209904  | C > T   | 14  | 95563712  | Intronic       | BIB                  |
|                | rs13078    | T > A   | 14  | 95556747  | 3'UTR          | 3UTR, BIB            |
|                | rs3742330  | A > G   | 14  | 95553362  | 3'UTR          | BIB                  |
| DROSHA         | rs10035440 | T > C   | 5   | 31539463  | Upstream       | BIB                  |
|                | rs10719    | C > T   | 5   | 31401447  | 3'UTR          | 3UTR, BIB            |
|                | rs17408716 | A > G   | 5   | 31467952  | Intronic       | BIB                  |
|                | rs2287584  | T > C   | 5   | 31423007  | Synonymous     | SR, BIB              |
|                | rs3792830  | T>C     | 5   | 31416248  | Intronic       | BIB                  |
|                | rs3805500  | T>C     | 5   | 31462977  | Intronic       | BIB                  |
|                | rs486/329  | A>C     | 5   | 31435627  | Intronic       | BIB                  |
|                | rs493760   | 1>0     | 5   | 31437040  |                | BIB                  |
|                | rs55050/41 | G > A   | 5   | 31515057  | Non-synonymous | INS, SK              |
|                | 15039174   |         | 5   | 31433047  | Intronic       | BIB                  |
|                | 150677642  |         | 5   | 21/01121  | Intronic       | BID                  |
|                | rs7719666  |         | 5   | 31491121  | Intronic       | BIB                  |
|                | rs7735863  | 624     | 5   | 31/865/0  | Intronic       | BIB                  |
| FIF2C1         | rs595961   | 4>G     | 1   | 36367780  | Intronic       | BIB                  |
| LIIZCI         | rs636832   | G > A   | 1   | 36363475  | Intronic       | BIB                  |
| FIF2C2         | rs2292778  | C>T     | 1   | 141568622 | Synonymous     | SR                   |
|                | rs2293939  | G > A   | 1   | 141551407 | Synonymous     | SR                   |
|                | rs4961280  | C > A   | 1   | 141647414 | Upstream       | UR. BIB              |
| DDX20          | rs197388   | T > A   | 1   | 112297482 | Upstream       | UR. BIB              |
| -              | rs197412   | T > C   | 1   | 112308953 | Non-synonymous | NS, BIB              |
|                | rs197414   | C > A   | 1   | 112309123 | Non-synonymous | NS, BIB              |
|                | rs563002   | T > C   | 1   | 112317135 | Downstream     | BIB                  |
| GEMIN4         | rs1062923  | T > C   | 17  | 649067    | Non-synonymous | NS, BIB              |
|                | rs2740348  | G > C   | 17  | 649935    | Non-synonymous | NS, BIB              |
|                | rs34610323 | C > T   | 17  | 648546    | Non-synonymous | NS                   |
|                | rs3744741  | C > T   | 17  | 649232    | Non-synonymous | NS, BIB              |
|                | rs7813     | C > T   | 17  | 648186    | Non-synonymous | NS, BIB              |
|                | rs910924   | C > T   | 17  | 655920    | 5'UTR          | 5UTR, BIB            |
| GEMIN5         | rs1974777  | A > G   | 5   | 154291409 | Non-synonymous | NS                   |
|                | rs6865950  | G > A   | 5   | 154275786 | Non-synonymous | NS                   |
|                | rs816736   | T > C   | 5   | 154271948 | Synonymous     | SR                   |
| PIWIL1         | rs1106042  | G > A   | 12  | 130841638 | Non-synonymous | NS, SR, BIB          |
| RAN            | rs11061209 | G > A   | 12  | 131364988 | Downstream     | BIB                  |
| <b>CA</b> 110- | rs14035    | C>T     | 12  | 131361241 | 3'UTR          | MIRTS, BIB           |
| SMAD5          | rs3/64941  | A>C     | 5   | 135469527 | Non-synonymous | NS, SK               |
| CND1           | rs17151620 | G>A     | 5   | 135469500 |                | SK                   |
| SNUL           | 151/151039 | A>G     | 7   | 127626050 | Intronic       |                      |
|                | rc20005    |         | 7   | 127721507 | Synonymous     |                      |
|                | 15522625   |         | 7   | 127660957 | Intronic       | лс<br>CD             |
| TNRCGA         | rs6407750  | G > A   | 16  | 24801727  | Non-synonymous |                      |
| TNRCA          | rs130010   |         | 22  | 40726182  | 3'LITR         | MIRTS                |
| INACOD         | rs2412621  | T>C     | 22  | 40720105  |                |                      |
|                | rs470113   | A>G     | 22  | 40073939  | 2'LITR         | MIRTS                |
|                | rs4821942  |         | 22  | 40722745  | 3'UTR          | MIRTS                |
|                | rs9611280  | G>A     | 22  | 40552119  | Non-synonymous | NS SR                |
| TARBP2P        | rs784567   | C>T     | 12  | 53894465  | Unstream       | BIB                  |
| XPO5           | rs1106841  | A>C     | 6   | 43496662  | Synonymous     | SR                   |
|                | rs2227301  | G > A   | 6   | 43485283  | Downstream     | BIB                  |

 Table 15: SNPs identified in microRNA processing genes and their selection criteria.

| Table 15: SNPs identified in microRNA processing genes and their selection criteria ( | (continuation). |
|---------------------------------------------------------------------------------------|-----------------|
|---------------------------------------------------------------------------------------|-----------------|

| Gene | SNP        | Alleles | Chr | Location | Function       | Reason for selection |
|------|------------|---------|-----|----------|----------------|----------------------|
|      | rs2257082  | C > T   | 6   | 43492578 | Synonymous     | SR, BIB              |
|      | rs34324334 | C > T   | 6   | 43535018 | Non-synonymous | NS, SR               |
|      | Rs7755135  | C > T   | 6   | 43490809 | 3'UTR          | MIRTS                |

Chr: chromosome; 3UTR: 3'UTR regulation; 5UTR: 5'UTR regulation; BIB: Bibliographic; MIRTS: miRNA target site; NS: Non-synonymous; SR: Splicing regulation; UR: Upstream regulation.

#### **3.2 SNPS IN MICRORNA GENES**

#### Selection of Genes and Polymorphisms

We decided to include all miRNAs with SNPs, due to the fact that they can regulate a wide range of genes that are not completely defined. Therefore, any miRNA could be implicated in the regulation of genes affecting ALL risk. To this purpose, we performed two studies.

In the first study, we selected all the known SNPs in miRNAs at the moment of the selection (Jun 2011) with a MAF>0.01 in European/Caucasoid populations, using Patrocles and Ensembl (http://www.ensembl.org/; Welcome Trust Genome Campus, Cambridge, UK), miRNA SNiPer (http://www.integratomics-time.com/miRNA-SNiPer/) databases and literature review. A total of 46 SNPs present in 42 pre-miRNA genes were selected (Table 16).

| Gene        | SNP        | Alleles | Chr | Location   | Position                  |
|-------------|------------|---------|-----|------------|---------------------------|
| mir-106b    | rs72631827 | G > T   | 7   | 99691652   | Premature                 |
| mir-1178    | rs7311975  | T > C   | 12  | 120151493  | Premature                 |
| mir-1206    | rs2114358  | T > C   | 8   | 129021179  | Premature                 |
| mir-1255b-1 | rs6841938  | G > A   | 4   | 36428048   | Mature                    |
| mir-1265    | rs11259096 | T > C   | 10  | 14478618   | Premature                 |
| mir-1269    | rs73239138 | G > A   | 4   | 67142620   | Mature                    |
| mir-1274a   | rs318039   | C > T   | 5   | 41475766   | Premature                 |
| mir-1282    | rs11269    | G > T   | 15  | 44085909   | Premature                 |
| mir-1294    | rs13186787 | A > G   | 5   | 153726769  | Premature                 |
| mir-1302-4  | rs10173558 | T > C   | 2   | 208133995  | PremiRNA Flanking region  |
| mir-1307    | rs7911488  | A > G   | 10  | 105154089  | Premature                 |
| mir-146a    | rs2910164  | G > C   | 5   | 159912418  | Premature                 |
| mir-149     | rs2292832  | C > T   | 2   | 241395503  | Premature                 |
| mir-154     | rs41286570 | G > A   | 14  | 101526127  | Mature                    |
| mir-16-1    | rs72631826 | T > C   | 13  | 50623143   | Premature                 |
| mir-1908    | rs174561   | T > C   | 11  | 61582708   | Premature                 |
| mir-196a-2  | rs11614913 | C > T   | 12  | 54385599   | Premature                 |
| mir-2053    | rs10505168 | A > G   | 8   | 113655752  | Premature                 |
| mir-2110    | rs17091403 | C > T   | 10  | 115933905  | Premature                 |
| mir-216a    | rs41291179 | A > T   | 2   | 56216090   | Premature                 |
| mir-220a    | rs72631817 | T > C   | Х   | 122696014  | Premature                 |
| mir-222     | rs72631825 | G > A   | Х   | 45606471   | Premature                 |
| mir-27a     | rs895819   | T > C   | 19  | 13947292   | Premature                 |
| mir-300     | rs12894467 | C > T   | 14  | 101507727  | Premature                 |
| mir-423     | rs6505162  | A > C   | 17  | 28444183   | Premature                 |
| mir-449b    | rs10061133 | A > G   | 5   | 54466544   | Mature                    |
| mir-453     | rs56103835 | T > C   | 14  | 101522556  | Premature                 |
| mir-492     | rs2289030  | C > G   | 12  | 95228286   | Premature                 |
| mir-499     | rs3746444  | T>C     | 20  | 33578251   | Seed                      |
| mir-548a-1  | rs12197631 | T>G     | 6   | 18572056   | Premature                 |
| mir-548h-3  | rs9913045  | G > A   | 12  | 13446924   | Mature                    |
| mir-548n-4  | rs73235382 | A > 1   | 8   | 26906437   | Premature                 |
| mir-5//     | 1834115976 |         | 4   | 115577997  | Premature                 |
| mir 505     | 1502370934 | G>A     | 5   | 108090012  | Premature                 |
| mir 602     | rs11014002 |         | 10  | 1283222003 | Premature                 |
| min 604     | 1311014002 | C>T     | 10  | 24504055   | Premature                 |
| mir-604     | rs2368392  |         | 10  | 29834003   | Premature                 |
| mir 605     | 152506595  | 1>0     | 10  | 29655996   | Premature                 |
| mir 609     | rc4010E10  | A>G     | 10  | 102724779  | Maturo                    |
| mir-608     | rc12803015 | 624     | 11  | 65211070   | Premature                 |
| mir-612     | rs550894   | GNT     | 11  | 65211979   | Premature                 |
| mir-618     | rc2682818  |         | 12  | 81320536   | Premature                 |
| mir-62/     | rs1115665/ |         | 1/  | 31/182055  | Premature Flanking region |
| mir-656     | rs58834075 |         | 14  | 101533003  | Premature                 |
| mir-943     | rs1077020  | T>C     | 14  | 1988193    | Premature                 |
|             | 131077020  | 120     | T   | 100101     | richlatare                |

 Table 16: Characteristics of the SNPs located in microRNAs that were analyzed.

Chr: chromosome; Premature: precursor miRNA molecule of 70-100 nucleotides (pre-miRNA); Mature: mature miRNA; Seed: Nucleotides in the position 2-8 of the miRNA that bind mRNA target; Flanking region: Sequence 1 kb upstream and 1kb downstream.

Taking into account that after our previous study the number of annotated miRNAs increased substantially (Kozomara and Griffiths-Jones 2014), we performed a second study in which following the same criteria, a total of 213 SNPs in 2016 miRNAs were selected (Table 17) at the moment of the selection (May 2014).

|    | Gene            | SNP        | Alelles | Chromosome | Location  |
|----|-----------------|------------|---------|------------|-----------|
| 1  | hsa-mir-449b    | rs10061133 | A>G     | 5          | 54466544  |
| 2  | hsa-mir-1302-4  | rs10173558 | T>C     | 2          | 208133995 |
| 3  | hsa-mir-5196    | rs10406069 | G>A     | 19         | 35836530  |
| 4  | hsa-mir-4745    | rs10422347 | C>T     | 19         | 804959    |
| 5  | hsa-mir-548ae-2 | rs10461441 | T>T     | 5          | 57825920  |
| 6  | hsa-mir-2053    | rs10505168 | A>G     | 8          | 113655752 |
| 7  | hsa-mir-4700    | rs1055070  | T>G     | 12         | 121161048 |
| 8  | hsa-mir-943     | rs1077020  | T>T     | 4          | 1988193   |
| 9  | hsa-mir-6074    | rs10878362 | T>T     | 12         | 66417493  |
| 10 | hsa-mir-544b    | rs10934682 | T>G     | 3          | 124451312 |
| 11 | hsa-mir-603     | rs11014002 | T>T     | 10         | 24564653  |
| 12 | hsa-mir-1343    | rs11032942 | T>T     | 11         | 34963459  |
| 13 | hsa-mir-624     | rs11156654 | T>A     | 14         | 31483955  |
| 14 | hsa-mir-5579    | rs11237828 | T>T     | 11         | 79133220  |
| 15 | hsa-mir-1265    | rs11259096 | T>C     | 10         | 14478618  |
| 16 | hsa-mir-196a-2  | rs11614913 | C>T     | 12         | 54385599  |
| 17 | hsa-mir-548at   | rs11651671 | T>T     | 17         | 40646803  |
| 18 | hsa-mir-5092    | rs11713052 | C>G     | 3          | 124870376 |
| 19 | hsa-mir-4792    | rs11714172 | T>G     | 3          | 24562877  |
| 20 | hsa-mir-3192    | rs11907020 | T>C     | 20         | 18451325  |
| 21 | hsa-mir-4653    | rs11983381 | A>G     | 7          | 100802786 |
| 22 | hsa-mir-548a-1  | rs12197631 | T>T     | 6          | 18572056  |
| 23 | hsa-mir-202     | rs12355840 | T>C     | 10         | 135061112 |
| 24 | hsa-mir-3117    | rs12402181 | G>A     | 1          | 67094171  |
| 25 | hsa-mir-1269b   | rs12451747 | T>T     | 17         | 12820632  |
| 26 | hsa-mir-4744    | rs12456845 | T>C     | 18         | 46576058  |
| 27 | hsa-mir-4433    | rs12473206 | T>T     | 2          | 64567916  |
| 28 | hsa-mir-4274    | rs12512664 | A>G     | 4          | 7461769   |
| 29 | hsa-mir-4277    | rs12523324 | T>T     | 5          | 1708983   |
| 30 | hsa-mir-4293    | rs12780876 | T>A     | 10         | 14425204  |
| 31 | hsa-mir-612     | rs12803915 | G>A     | 11         | 65211979  |
| 32 | hsa-mir-4309    | rs12879262 | G>C     | 14         | 103006047 |
| 33 | hsa-mir-300     | rs12894467 | C>T     | 14         | 101507727 |
| 34 | hsa-mir-1294    | rs13186787 | T>T     | 5          | 153726769 |
| 35 | hsa-mir-3152    | rs13299349 | G>A     | 9          | 18573360  |
| 36 | hsa-mir-548ac   | rs1414273  | T>T     | 1          | 117102649 |
| 37 | hsa-mir-3175    | rs1439619  | A>C     | 15         | 93447631  |
| 38 | hsa-mir-5007    | rs1572687  | C>T     | 13         | 55748673  |
| 39 | hsa-mir-3612    | rs1683709  | C>T     | 12         | 128778703 |
| 40 | hsa-mir-5700    | rs17022749 | T>T     | 12         | 94955603  |
| 41 | hsa-mir-2110    | rs17091403 | C>T     | 10         | 115933905 |
| 42 | hsa-mir-4422    | rs17111728 | T>C     | 1          | 55691384  |
| 43 | hsa-mir-1908    | rs174561   | T>C     | 11         | 61582708  |
| 44 | hsa-mir-3143    | rs17737028 | A>G     | 6          | 27115467  |

 Table 17: SNPS selected in miRNA genes.

|    | Gene           | SNP        | Alelles | Chromosome | Location  |
|----|----------------|------------|---------|------------|-----------|
| 45 | hsa-mir-633    | rs17759989 | A>G     | 17         | 61021611  |
| 46 | hsa-mir-3652   | rs17797090 | G>A     | 12         | 104324266 |
| 47 | hsa-mir-4733   | rs17885221 | C>T     | 17         | 29421443  |
| 48 | hsa-mir-5197   | rs2042253  | A>G     | 5          | 143059433 |
| 49 | hsa-mir-605    | rs2043556  | A>G     | 10         | 53059406  |
| 50 | hsa-mir-4511   | rs2060455  | T>T     | 15         | 66011630  |
| 51 | hsa-mir-3620   | rs2070960  | C>T     | 1          | 228284991 |
| 52 | hsa-mir-1206   | rs2114358  | T>C     | 8          | 129021179 |
| 53 | hsa-mir-4494   | rs215383   | G>A     | 12         | 47758032  |
| 54 | hsa-mir-3130-1 | rs2241347  | T>T     | 2          | 207647981 |
| 55 | hsa-mir-4707   | rs2273626  | C>A     | 14         | 23426182  |
| 56 | hsa-mir-492    | rs2289030  | C>G     | 12         | 95228286  |
| 57 | hsa-mir-1229   | rs2291418  | C>T     | 5          | 179225324 |
| 58 | hsa-mir-564    | rs2292181  | G>C     | 3          | 44903434  |
| 59 | hsa-mir-149    | rs2292832  | T>T     | 2          | 241395503 |
| 60 | hsa-mir-604    | rs2368392  | C>T     | 10         | 29834003  |
| 61 | hsa-mir-4432   | rs243080   | C>T     | 2          | 60614572  |
| 62 | hsa-mir-4636   | rs257095   | A>G     | 5          | 9053945   |
| 63 | hsa-mir-1208   | rs2648841  | C>A     | 8          | 129162433 |
| 64 | hsa-mir-3183   | rs2663345  | T>T     | 17         | 925764    |
| 65 | hsa-mir-4804   | rs266435   | C>G     | 5          | 72174432  |
| 66 | hsa-mir-6128   | rs2682818  | C>A     | 12         | 81329536  |
| 67 | hsa-mir-4308   | rs28477407 | C>T     | 14         | 55344901  |
| 68 | hsa-mir-378d-1 | rs28645567 | G>A     | 4          | 5925054   |
| 69 | hsa-mir-4472-1 | rs28655823 | G>C     | 8          | 143257760 |
| 70 | hsa-mir-1255a  | rs28664200 | T>C     | 4          | 102251501 |
| 71 | hsa-mir-146a   | rs2910164  | G>C     | 5          | 159912418 |
| 72 | hsa-mir-5695   | rs2967897  | G>G     | 19         | 13031210  |
| 73 | hsa-mir-4803   | rs3112399  | T>A     | 5          | 71465361  |
| 74 | hsa-mir-577    | rs34115976 | C>G     | 4          | 115577997 |
| 75 | hsa-mir-4669   | rs35196866 | T>T     | 9          | 137271318 |
| 76 | hsa-mir-2278   | rs356125   | G>A     | 9          | 97572244  |
| 77 | hsa-mir-5189   | rs35613341 | C>G     | 16         | 88535407  |
| 78 | hsa-mir-6076   | rs35650931 | G>C     | 14         | 50433227  |
| 79 | hsa-mir-449c   | rs35770269 | A>T     | 5          | 54468124  |
| 80 | hsa-mir-3166   | rs35854553 | A>T     | 11         | 87909673  |
| 81 | hsa-mir-3936   | rs367805   | G>A     | 5          | 131701279 |
| 82 | hsa-mir-6499   | rs3734050  | C>T     | 5          | 150901699 |
| 83 | hsa-mir-499a   | rs3746444  | T>C     | 20         | 33578251  |
| 84 | hsa-mir-5090   | rs3823658  | G>A     | 7          | 102106201 |
| 85 | hsa-mir-4751   | rs4112253  | C>G     | 19         | 54786022  |
| 86 | hsa-mir-96     | rs41274239 | A>G     | 7          | 129414574 |
| 87 | hsa-mir-187    | rs41274312 | G>A     | 18         | 33484792  |
| 88 | hsa-mir-154    | rs41286570 | G>G     | 14         | 101526127 |

Table 17: SNPS selected in miRNA genes (continuation).

|     | Gene                              | SNP        | Alelles | Chromosome | Location  |
|-----|-----------------------------------|------------|---------|------------|-----------|
| 89  | hsa-mir-216a                      | rs41291179 | A>T     | 2          | 56216090  |
| 90  | hsa-mir-122                       | rs41292412 | C>T     | 18         | 56118358  |
| 91  | hsa-mir-3135b                     | rs4285314  | T>T     | 6          | 32717702  |
| 92  | hsa-mir-548ap                     | rs4414449  | T>C     | 15         | 86368898  |
| 93  | hsa-mir-6084                      | rs45530340 | C>C     | 1          | 20960230  |
| 94  | hsa-mir-548ap                     | rs4577031  | A>T     | 15         | 86368959  |
| 95  | hsa-mir-4268                      | rs4674470  | T>C     | 2          | 220771223 |
| 96  | hsa-mir-941-1                     | rs4809383  | C>T     | 20         | 62550780  |
| 97  | hsa-mir-548j                      | rs4822739  | C>G     | 22         | 26951185  |
| 98  | hsa-mir-5680                      | rs487571   | T>T     | 8          | 103137693 |
| 99  | hsa-mir-595                       | rs4909237  | C>T     | 7          | 158325503 |
| 100 | hsa-mir-608                       | rs4919510  | C>G     | 10         | 102734778 |
| 101 | hsa-mir-548al                     | rs515924   | A>G     | 11         | 74110353  |
| 102 | hsa-mir-3671                      | rs521188   | A>G     | 1          | 65523519  |
| 103 | hsa-mir-4424                      | rs56088671 | T>T     | 1          | 178646884 |
| 104 | hsa-mir-323b                      | rs56103835 | T>C     | 14         | 101522556 |
| 105 | hsa-mir-548aw                     | rs56195815 | T>T     | 9          | 135821099 |
| 106 | hsa-mir-5189                      | rs56292801 | G>A     | 16         | 88535341  |
| 107 | hsa-mir-1283-1                    | rs57111412 | T>T     | 19         | 54191743  |
| 108 | hsa-mir-559                       | rs58450758 | T>T     | 2          | 47604866  |
| 109 | hsa-mir-656                       | rs58834075 | C>T     | 14         | 101533093 |
| 110 | hsa-mir-888                       | rs5965660  | T>G     | х          | 145076302 |
| 111 | hsa-mir-3928                      | rs5997893  | G>A     | 22         | 31556103  |
| 112 | hsa-mir-4762                      | rs60308683 | T>T     | 22         | 46156446  |
| 113 | hsa-mir-4326                      | rs6062431  | G>C     | 20         | 61918164  |
| 114 | hsa-mir-4467                      | rs60871950 | G>A     | 7          | 102111936 |
| 115 | hsa-mir-596                       | rs61388742 | T>C     | 8          | 1765425   |
| 116 | hsa-mir-3922                      | rs61938575 | G>A     | 12         | 104985443 |
| 117 | hsa-mir-412                       | rs61992671 | G>A     | 14         | 101531854 |
| 118 | hsa-mir-4772                      | rs62154973 | C>T     | 2          | 103048780 |
| 119 | hsa-mir-585                       | rs62376935 | C>T     | 5          | 168690635 |
| 120 | hsa-mir-4482                      | rs641071   | T>T     | 10         | 106028157 |
| 121 | hsa-mir-3679                      | rs6430498  | G>A     | 2          | 134884700 |
| 122 | hsa-mir-423                       | rs6505162  | T>T     | 17         | 28444183  |
| 123 | hsa-mir-646                       | rs6513496  | T>C     | 20         | 58883534  |
| 124 | hsa-mir-4731                      | rs66507245 | T>T     | 17         | 15154966  |
| 125 | hsa-mir-3622a                     | rs66683138 | T>T     | 8          | 27559214  |
| 126 | hsa-mir-6128                      | rs67042258 | G>A     | 11         | 56511354  |
| 127 | hsa-mir-3167                      | rs670637   | T>T     | 11         | 126858392 |
| 128 | hsa-mir-4642                      | rs67182313 | A>G     | 6          | 44403438  |
| 129 | hsa-mir-4431                      | rs6726779  | T>C     | 2          | 52929680  |
| 130 | hsa-mir-3910-1,<br>hsa-mir-3910-2 | rs67339585 | T>T     | 9          | 94398581  |
| 131 | hsa-mir-3135a                     | rs6787734  | T>T     | 3          | 20179097  |

 Table 17: SNPS selected in miRNA genes (continuation).

|     | Gene            | SNP        | Alelles | Chromosome | Location  |
|-----|-----------------|------------|---------|------------|-----------|
| 132 | hsa-mir-4305    | rs67976778 | T>T     | 13         | 40238175  |
| 133 | hsa-mir-3144    | rs68035463 | C>A     | 6          | 120336327 |
| 134 | hsa-mir-1255b-1 | rs6841938  | T>T     | 4          | 36428048  |
| 135 | hsa-mir-3683    | rs6977967  | A>G     | 7          | 7106636   |
| 136 | hsa-mir-3686    | rs6997249  | T>T     | 8          | 130496365 |
| 137 | hsa-mir-4427    | rs701213   | T>T     | 1          | 233759918 |
| 138 | hsa-mir-378h    | rs702742   | A>G     | 5          | 154209024 |
| 139 | hsa-mir-548aj-2 | rs7070684  | T>T     | 10         | 12172775  |
| 140 | hsa-mir-1283-2  | rs71363366 | C>G     | 19         | 54261549  |
| 141 | hsa-mir-140     | rs7205289  | C>C     | 16         | 69967005  |
| 142 | hsa-mir-2117    | rs7207008  | T>A     | 17         | 41522213  |
| 143 | hsa-mir-4741    | rs7227168  | C>T     | 18         | 20513374  |
| 144 | hsa-mir-3188    | rs7247237  | C>T     | 19         | 18392894  |
| 145 | hsa-mir-3689f   | rs72502717 | T>T     | 9          | 137742597 |
| 146 | hsa-mir-105-2   | rs72631816 | T>A     | х          | 151562938 |
| 147 | hsa-mir-222     | rs72631825 | G>A     | Х          | 45606471  |
| 148 | hsa-mir-16-1    | rs72631826 | T>T     | 13         | 50623143  |
| 149 | hsa-mir-106b    | rs72631827 | G>G     | 7          | 99691652  |
| 150 | hsa-mir-323b    | rs72631831 | G>G     | 7          | 1062656   |
| 151 | hsa-mir-183     | rs72631833 | G>G     | 7          | 129414804 |
| 152 | hsa-mir-3972    | rs72646786 | C>T     | 1          | 17604437  |
| 153 | hsa-mir-3976    | rs72855836 | G>A     | 18         | 5840810   |
| 154 | hsa-mir-4999    | rs72996752 | A>G     | 19         | 8454236   |
| 155 | hsa-mir-4459    | rs73112689 | T>T     | 5          | 53371399  |
| 156 | hsa-mir-1178    | rs7311975  | T>C     | 12         | 120151493 |
| 157 | hsa-mir-647     | rs73147065 | T>T     | 20         | 62574006  |
| 158 | hsa-mir-4532    | rs73177830 | T>T     | 20         | 56470471  |
| 159 | hsa-mir-548h-4  | rs73235381 | T>T     | 8          | 26906402  |
| 160 | hsa-mir-1269a   | rs73239138 | G>A     | 4          | 67142620  |
| 161 | hsa-mir-4739    | rs73410309 | T>T     | 17         | 77681036  |
| 162 | hsa-mir-4474    | rs74428911 | G>T     | 9          | 20502274  |
| 163 | hsa-mir-6504    | rs74469188 | T>C     | 16         | 81644970  |
| 164 | hsa-mir-3615    | rs745666   | C>G     | 17         | 72744798  |
| 165 | hsa-mir-518d    | rs74704964 | C>T     | 19         | 54238208  |
| 166 | hsa-mir-2682    | rs74904371 | C>T     | 1          | 98510847  |
| 167 | hsa-mir-5702    | rs74949342 | C>G     | 2          | 227523436 |
| 168 | hsa-mir-4719    | rs7500280  | T>T     | 16         | 76902847  |
| 169 | hsa-mir-4477a   | rs75019967 | A>A     | 9          | 68415338  |
| 170 | hsa-mir-4742    | rs7522956  | A>C     | 1          | 224585958 |
| 171 | hsa-mir-520f    | rs75598818 | G>A     | 19         | 54185492  |
| 172 | hsa-mir-944     | rs75715827 | T>C     | 3          | 189547735 |
| 173 | hsa-mir-4298    | rs75966923 | C>A     | 11         | 1880730   |
| 174 | hsa-mir-182     | rs76481776 | C>T     | 7          | 129410227 |
| 175 | hsa-mir-4521    | rs76800617 | A>G     | 17         | 8090294   |

Table 17: SNPS selected in miRNA genes (continuation).

|     | Gene           | SNP         | Alelles | Chromosome | Location  |
|-----|----------------|-------------|---------|------------|-----------|
| 176 | hsa-mir-1303   | rs77055126  | T>T     | 5          | 154065348 |
| 177 | hsa-mir-4634   | rs7709117   | A>G     | 5          | 174178774 |
| 178 | hsa-mir-576    | rs77639117  | A>T     | 4          | 110409933 |
| 179 | hsa-mir-4743   | rs78396863  | G>C     | 18         | 46196971  |
| 180 | hsa-mir-6075   | rs78541299  | G>A     | 5          | 1510904   |
| 181 | hsa-mir-6083   | rs78790512  | G>A     | 3          | 124093220 |
| 182 | hsa-mir-4789   | rs78831152  | C>T     | 3          | 175087408 |
| 183 | hsa-mir-4786   | rs78832554  | G>A     | 2          | 240882476 |
| 184 | hsa-mir-4481   | rs7896283   | A>G     | 10         | 12695177  |
| 185 | hsa-mir-1307   | rs7911488   | A>G     | 10         | 105154089 |
| 186 | hsa-mir-597    | rs79397096  | G>A     | 8          | 9599276   |
| 187 | hsa-mir-3976   | rs79512808  | T>G     | 5          | 82136024  |
| 188 | hsa-mir-5707   | rs80128580  | G>A     | 7          | 158384368 |
| 189 | hsa-mir-3176   | rs8054514   | T>G     | 16         | 593277    |
| 190 | hsa-mir-4520a  | rs8078913   | C>T     | 17         | 6558768   |
| 191 | hsa-mir-4698   | rs832733    | T>T     | 12         | 47581629  |
| 192 | hsa-mir-550a-3 | rs850108    | T>T     | 7          | 29720404  |
| 193 | hsa-mir-4751   | rs8667      | G>A     | 19         | 50436371  |
| 194 | hsa-mir-4671   | rs877722    | A>T     | 1          | 234442257 |
| 195 | mir-27a        | rs895819    | T>C     | 19         | 13947292  |
| 196 | hsa-mir-4519   | rs897984    | T>T     | 16         | 30886643  |
| 197 | hsa-mir-5689   | rs9295535   | T>T     | 6          | 10439968  |
| 198 | hsa-mir-3141   | rs936581    | G>A     | 5          | 153975576 |
| 199 | hsa-mir-5186   | rs9842591   | C>A     | 3          | 151283691 |
| 200 | hsa-mir-5680   | rs9877402   | A>G     | 3          | 120768492 |
| 201 | hsa-mir-548h-3 | rs9913045   | T>T     | 17         | 13446924  |
| 202 | hsa-mir-4302   | rs11048315  | G>A     | 12         | 26026988  |
| 203 | hsa-mir-3908   | rs111803974 | T>T     | 12         | 124021017 |
| 204 | hsa-mir-299,   | rs111906529 | T>C     | 14         | 101489703 |
| 205 | hsa-mir-520G   | rs112328520 | C>T     | 19         | 54225501  |
| 206 | hsa-mir1282    | rs11269     | G>G     | 15         | 44085909  |
| 207 | hsa-mir-4532   | rs113808830 | C>T     | 20         | 56470456  |
| 208 | hsa-mir-4479   | rs116932476 | G>A     | 9          | 139781193 |
| 209 | hsa-mir-296    | rs117258475 | G>A     | 20         | 57392686  |
| 210 | hsa-mir-6717   | rs117650137 | G>A     | 14         | 21491532  |
| 211 | hsa-mir-3649   | rs117723462 | T>G     | 12         | 1769533   |
| 212 | hsa-mir-4436B2 | rs163642    | T>T     | 2          | 111042483 |
| 213 | hsa-mir-3689   | rs62571442  | A>G     | 9          | 137742124 |

**Table 17:** SNPS selected in miRNA genes (continuation).

#### Genotype analyses

Genomic DNA was extracted from remission peripheral blood or bone marrow (with <5 % blast cells) using the phenol-chloroform method as previously described (Sambrook and Russell

2001). DNA was quantified using PicoGreen (Invitrogen Corp., Carlsbad, CA). For the first study, SNP genotyping was performed using TaqMan OpenArray Genotyping technology (Applied Biosystems, Carlsbad, CA) according to the published Applied Biosystems protocol. For the second one, the GoldenGate Genotyping Assay with Veracode technology according to the published Illumina protocol was used.

#### **4. DATA ANALYSIS**

#### Association study

To identify any deviation in HWE for the healthy controls, a  $\chi^2$  test was used. The association between genetic polymorphisms in cases and controls, as well as between ALL subtypes and controls, was also evaluated using the  $\chi^2$  or Fisher's exact test. The effect sizes of the associations were estimated by the odds ratio (OR) from univariate logistic regression. The most significant test among codominant, dominant, recessive, and additive genetic models was selected. The results were adjusted for multiple comparisons by the False Discovery Rate (FDR) (Benjamini and Hochberg 1995). In all cases the significance level was set at 5%. Analyses were performed by using R v2.11 software.

#### Meta-analysis study

For the meta-analysis, we used a recessive model. The overall pooled OR and corresponding 95%CI were estimated using Mantel-Haenszel's method, with random effects model. The heterogeneity was quantified using the I<sup>2</sup> statistic (0-25% no heterogeneity, 25-50% moderate heterogeneity, 50-75% large heterogeneity and 75-100% extreme heterogeneity). Begg's funnel plot and Egger's test (Egger et al. 1997) were performed to access the publication bias of literatures in this meta-analysis.

#### Gene-gene interactions

Gene-gene interactions were calculated performing log-likelihood ratio test (LRT) under three genetic models: log-additive (doses dependent effect: major allele homozygotes vs. heterozygotes vs. minor allele homozygotes), dominant (major allele homozygotes vs. heterozygotes + minor allele homozygotes) and recessive (major allele homozygotes + heterozygotes vs. minor allele homozygotes).

98

#### mRNA expression analysis

The qPCR data were analyzed using the comparative CT method (Livak and Schmittgen 2001). In addition, the nonparametric Mann–Whitney test, applied by SPSSTM for Windows19.0 (SPSS, Chicago, IL), was used to determine significance.

#### CNV study

The interpretation of images obtained by scanning the arrays was performed using Chromosome Analysis Suite software (ChAS, Affimetrix, Santa Clara, CA, USA), Affymetrix annotations, and NetAffx versionbuild-3.1.0, and was based on the version NCBIv37 genome (hg19). Filters were applied for ChAS to report only the gains or losses that affected at least 50 markers within 100 kb. When the quality parameters were not optimal, the restriction filters were increased (e.g., 200 markers altered within 200 kb) to avoid false positives.

#### Bioinformatical analysis

#### miRNAs secondary structures prediction

The RNAfold web tool (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi) was used to calculate the minimum free energy (MFE) secondary structures and to predict the most stable secondary structures of the miRNAs showing significant SNPs.

#### Gene targets selection and pathways analysis

MirWalk (Dweep and Gretz 2015) (http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/) database was used to select miRNA targets. Targets predicted by at least 6 different algorithms provided by miRWalk were selected. Enriched pathway analyses of putative target genes were determined with ConsensusPath database (CPdB) (http://consensuspathdb.org/) using the over-representation analysis module. Gene list was analyzed against the default collection of KEGG (http://www.genome.jp/kegg/), Reactome (http://www.reactome.org/) and BioCarta (http://cgap.nci.nih.gov/Pathways/BioCarta\_Pathways) pathways databases. A conservative *p*-value cutoff (0.0001) was used.

### **RESULTS AND DISCUSSION**

#### ORIGINAL PAPER

## Intron 3 of the *ARID5B* gene: a hot spot for acute lymphoblastic leukemia susceptibility

Gutiérrez-Camino A<sup>1</sup>; López-López E<sup>1</sup>; Martín-Guerrero I<sup>1</sup>; Sanchez-Toledo J<sup>2</sup>; García-de Andoin N<sup>3</sup>; Carboné A<sup>4</sup>; García-Miguel P<sup>5</sup>; Navajas A<sup>6</sup>; Garcia-Orad A<sup>1</sup>.

<sup>1</sup>Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain; <sup>2</sup> Service of Pediatric Oncology and Hematology, University Hospital Vall d' Hebron, VHIR, Barcelona, Spain; <sup>3</sup> Unit of Pediatric Oncohematology, University Hospital Donostia, San Sebastian, Spain; <sup>4</sup>Department of Paediatrics, Hospital Miguel Servet, Zaragoza, Spain; <sup>5</sup>Service of Pediatric Oncohematology, University Hospital La Paz, Madrid, Spain; <sup>6</sup>Unit of Pediatric Hematology/Oncology, University Hospital Cruces, Bilbao, Spain

#### Abstract

Single-nucleotide polymorphisms (SNPs) in AT-rich interactive domain 5B (ARID5B) have been associated with risk for pediatric acute lymphoblastic leukemia (ALL). After reviewing previous studies, we realized that the most significant associations were restricted to intron 3, but the mechanism(s) by which those SNPs affect ALL risk remain to be elucidated. Therefore, the aim of this study was to analyze the association between genetic variants of the intron 3 region of ARID5B and the incidence of B-ALL in a Spanish population. We also aimed to find a functional explanation for the association, searching for copy number variations (CNVs), and changes in ARID5B expression associated with the genotypes of the SNPs. We analyzed 10 SNPs in intron 3 of ARID5B in a Spanish population of 219 B-ALL patients and 397 unrelated controls with the Taqman Open Array platform. CNVs were analyzed in 23 patients and 17 controls using the Cytogenetics Whole-genome 2.7 M platform. Expression of ARID5B transcript 1 was quantified by qPCR and related to SNPs genotype in seven ALL cell lines. Association between intron 3 and B-ALL risk was confirmed for all of the SNPs evaluated in our Spanish population. We could not explain this association by the presence of CNVs. We neither detected changes in the expression of ARID5B isoform associated with the genotype of the SNPs. The intron 3 of ARID5B gene was found to be strongly associated with B-ALL risk in the Spanish population examined. However, neither CNVs nor changes in mRNA expression were found to be responsible for this association.

Keywords Acute lymphoblastic leukemia, Childhood, ARID5B, Susceptibility

103

#### INTRODUCTION

Despite acute lymphoblastic leukemia (ALL) being the most common malignancy in children (Johnston et al. 2010), its etiology remains poorly understood. It is hypothesized that both environmental and genetic factors contribute to the initiation of leukemogenesis (Healy et al. 2010). Recently, single nucleotide polymorphisms (SNPs) in two genetic loci, AT-rich interactive domain 5B (ARID5B) and Ikaros family zinc finger protein 1 (IKZF1), were found to be strongly associated with ALL risk (Treviño et al. 2009, Papaemmanuil et al. 2009). The association of ARID5B with ALL risk was a novel finding, and was confirmed in subsequent studies (Yang et al. 2010, Han et al. 2010, Healy et al. 2010, Prasad et al. 2010, Xu et al. 2012, Vijayakrishnan et al. 2010, Ellinghaus et al. 2012, Orsi et al. 2012, Pastorczak et al. 2011). In some studies, ARID5B SNPs were found to be more significantly associated with childhood hyperdiploid B-ALL (Treviño et al. 2009, Papaemmanuil et al. 2009). When gender-specific effects were considered, contradictory results for these associations have been reported (Orsi et al. 2012, Healy et al. 2010). The association between ARID5B and ALL risk has also been confirmed for different ethnic groups (Healy et al. 2010, Yang et al. 2010, Han et al. 2010, Xu et al. 2012, Vijayakrishnan et al. 2010), which supports the hypothesis that ARID5B is involved in a general mechanism that contributes to the etiology of childhood ALL.

*ARID5B* is a member of the ARID family of transcription factors and has important roles in embryogenesis and growth regulation. Accumulating evidence also appears to indicate that *ARID5B* has a role in ALL development. For example, *Arid5b* knockout mice exhibit abnormalities in B-lymphocyte development (Paulsson et al. 2010, Lahoud et al. 2001), and ARID5B mRNA expression is upregulated in hematologic malignancies such as acute promielocytic leukemia (Chang et al. 2008) and acute megakaryioblastic leukemia (Bourquin et al. 2006). However, the role of *ARID5B* in childhood ALL remains unknown, although alterations in gene function may contribute to an increased risk for this disease (Treviño et al. 2009).

Of note was the fact that all the significant SNPs in *ARID5B* are located in intron 3, or exhibit high linkage disequilibrium ( $r^2 > 0.8$ ) with intron 3, without a known function. In fact, the mechanism(s) by which these SNPs affect the risk of ALL remain to be elucidated.

The mechanism by which these SNPs are associated with an increased risk of ALL can be diverse. On the one hand, it is known that copy number variations (CNVs) have the potential to influence a healthy individual's susceptibility to cancer, possibly by varying the gene dosage of

tumor suppressors or oncogenes (Huang et al. 2012). CNVs have previously been described for this region (Perry et al. 2008, Gusev et al. 2009). So, these SNPs may be markers in linkage disequilibrium with CNVs in the region. Furthermore, alterations in the frequency of SNPs present in the intron 3 of *ARID5B* could be caused by an increase in the frequency of homozygosity due to the localization of CNVs to intron 3. On the other hand, SNPs in *ARID5B* might also have a role in transcriptional regulation, thereby affecting expression of *ARID5B* or the splicing, generating different isoforms. Accordingly, changes in the concentration of different RNA isoforms of certain genes have been described in cancer cells (Pal et al. 2012).

The aim of this study was to analyze the association between genetic variants of the intron 3 region of *ARID5B* and the incidence of B-ALL in a Spanish population. We selected other SNPs with a putative effect and searched for possible functional explanations.

#### METHODS

#### Study subjects and cell lines

In this study, 219 children diagnosed with B-cell precursor ALL (BCP-ALL) between 1995 and 2010 in the Pediatric Oncology Units of five Spanish hospitals (e.g., Hospital Cruces; Hospital Donostia; Hospital La Paz; Hospital Miguel Servet; Hospital Vall d'Hebrón), were enrolled. Controls included 397 unrelated healthy individuals (Table 18). Informed consent was obtained from all participants, or their parents, before samples were collected. Patients were classified with B-hyperdiploid ALL if their DNA index value was > 1.16, and/or their karyotype included more than 50 chromosomes. For 95/219 (43.4%) B-ALL patients, cytogenetic data were not available.

For functional studies, seven B-ALL-derived cell lines were studied: MY, 697, TOM1, TANOUE, REH, NALM20, and SEM.

|                                   | Patients<br>(n = 219) | Controls<br>(n = 397) |
|-----------------------------------|-----------------------|-----------------------|
| Mean age ± SE (y)                 | 5.48 ± 3.48           | 51.16 ± 7.81          |
| Males, n (%)                      | 124 (56.22)           | 202 (51.92)           |
| Females, n (%)                    | 95 (43.37)            | 187 (48.07)           |
| Hyperdiploid, n (%)               | 53 (24.89)            | -                     |
| Absence of hyperdiploid, n (%)    | 85 (39.91)            | -                     |
| Chromosomal Translocations, n(%)  |                       |                       |
| ETV6-RUNX1                        | 27 (12.32)            | -                     |
| MLL                               | 7 (3.19)              | -                     |
| BCR-ABL                           | 4 (1.82)              | -                     |
| E2A-PBX1                          | 1 (0.450)             | -                     |
| Overall 5-year survival, n (%)    | 214 (93.15)           | -                     |
| 5-year event-free survival, n (%) | 188 (85.84)           | -                     |

**Table 18.** Characteristics of the B-ALL patients and controls examined in this study.

SE: standard error.

#### Polymorphism selection

To map the whole intron 3 of *ARID5B*, the SNPs were selected based on the following criteria: (i) TagSNPs that were defined using Haploview software v.4.2 (http://www.broadinstitute.org/haploview/haploview) with an  $r^2$  threshold value of 0.8; (ii) SNPs predicted to have functional effects (e.g., putative transcription factor binding sites and CpG sites) according to bioinformatic analyses (F-SNP, Fast-SNP, Ensembl, and Genome Browser); (iii) SNPs previously reported to be associated with ALL susceptibility. Of these, only SNPs with a reported minor allele frequency (MAF) > 10% or 0.10 were analyzed, and this included a total of 10 polymorphisms (Figure 13A).

#### Genotype analysis

Genomic DNA was extracted from remission peripheral blood or bone marrow (with < 5% blast cells) using the phenol-chloroform method previously described (Lopez-Lopez et al. 2011), or from saliva samples using Oragene DNA kit (DNA Genotek, Ottawa, Ontario, Canada), according to the manufacturer's instructions. Genotyping was performed using TaqMan Open Array technology (Applied Biosystems, Life Technologies, Carlsbad, CA, USA) according to the published Applied Biosystems protocol. Data were analyzed using Taqman Genotyper software for genotype clustering and genotype calling. Duplicate samples were genotyped.

#### Copy number variation (CNV) analysis

Genomic DNA was extracted from lymphocytes isolated with Ficoll-Paque<sup>™</sup> PLUS (GE Healthcare, Uppsala, Sweden) and from remission bone marrow or peripheral blood

(containing < 5% blast cells) from 23 patients diagnosed at Cruces Hospital, and from 17 controls, using QIAamp DNA Blood Mini Kits (Qiagen, Hilden, Germany). Copy number detection was performed using the Cytogenetics Whole-Genome 2.7M platform (Affymetrix, Santa Clara, CA, USA), containing 2,761,979 copy number probes with 735 bp being the median distance between markers. Analyses were performed according to the manufacturer's instructions.

#### Gene expression

Quantitative real-time PCR (qPCR) was performed using an ABI PRISM 7900HT Fast Real-Time PCR System (Applied Biosystems, Life Technologies, Carlsbad, USA) to detect *ARID5B* mRNA expression in seven different cell lines, according to the manufacturer's protocol. Briefly, RNA was extracted using Ultraspec (Biotecx, Houston, TX, USA) according to the manufacturer's instructions. Primers and probes for the *ARID5B* gene (Hs01381961\_m1) and the TATAbox binding protein gene (*TBP*) [used as a housekeeping control (Hs00427620\_m1)], were obtained from Applied Biosystems. Of the two transcript variants previously characterized for *ARID5B*, the primers and probes selected for this study were specific for transcript variant 1. This variant contains exons 2 and 3, which limits the region analyzed (Figure 14B) in order to avoid errors due to the quantifycation of gene expression for both transcripts.

#### Data analysis

Statistical analyses were performed using R software (version v2.14.1).  $\chi^2$  was used to search for any deviation of Hardy-Weinberg equilibrium (HWE) for the healthy controls. The association between genetic polymorphisms in cases and controls, and between Bhyperdiploid ALL and non B-hyperdiploid ALL cases, were evaluated using  $\chi^2$  or Fisher's exact tests. Gender-specific associations were examined using a stratified analysis of male cases versus male controls and female cases versus female controls. The effect sizes of the associations were estimated using odds ratio (OR) values obtained from univariate logistic regression. A co-dominant test was used to determine the statistical significance of each SNP. The results were adjusted for multiple comparisons using the False Discovery Rate (FDR) (Klipper-Aurbach et al. 1995). In all cases the significance level was set at 5%.

In the CNV study, the interpretation of images obtained by scanning the arrays was performed using Chromosome Analysis Suite software (ChAS, Affimetrix, Santa Clara, CA, USA), Affymetrix annotations, and NetAffx version-build-3.1.0, and was based on the version NCBIv37 genome (hg19). Filters were applied for ChAS to report only the gains or losses that affected at least 50 markers within 100 kb. When the quality parameters were not optimal, the restriction filters were increased (e.g., 200 markers altered within 200 kb) to avoid false positives.

The qPCR data were analyzed using the comparative CT method (Livak and Schmittgen 2001). In addition, the nonparametric Mann-Whitney test, applied by  $SPSS^{TM}$  for Windows 19.0 (SPSS, Chicago, IL), was used to determine significance.

#### RESULTS

#### ARID5B SNPs and B-ALL Susceptibility

A total of 576 DNA samples (93.51%) were successfully genotyped. All ten of the SNPs present in intron 3 of *ARID5B* were genotyped satisfactorily. The average genotyping rate for all SNPs was 95.39%. Of these SNPs, only one (rs10740055) was not in HWE in the control population, and therefore, only the other nine SNPs were examined in association studies.

To identify genetic variations associated with B-ALL risk, the genotype frequencies of the nine *ARID5B* SNPs identified were calculated for 219 pediatric B-ALL cases and 397 controls. All of the SNPs were found to be significantly associated with B-ALL risk. Furthermore, after FDR correction, all of the SNPs remained significantly associated with B-ALL susceptibility (Table 19).

| SNP        | Genotype | Controls<br>n (%) | Cases<br>n (%) | OR (CI 95%)      | Р                       | Adjusted P<br>value*    |
|------------|----------|-------------------|----------------|------------------|-------------------------|-------------------------|
|            | TT       | 169 (45.9)        | 55 (27.0)      | Reference        |                         |                         |
| rs10821936 | СТ       | 150 (40.8)        | 90 (44.1)      | 1.84(1.23–2.75)  | 4.5 x 10 <sup>-7</sup>  | 4.5 x 10 <sup>-6</sup>  |
|            | CC       | 49 (13.3)         | 59 (28.9)      | 3.70 (2.28–6.01) |                         |                         |
|            | TT       | 163 (44.1)        | 55 (27.4)      | Reference        | _                       |                         |
| rs7089424  | GT       | 155 (41.9)        | 92 (45.8)      | 1.76(1.18–2.62)  | 2.19 x 10 <sup>-5</sup> | 1.2 x 10 <sup>-4</sup>  |
|            | GG       | 52 (14.1)         | 54 (26.9)      | 3.08(1.89-5.02)  |                         |                         |
|            | CC       | 119 ( 34.1)       | 32 (17.2)      | Reference        | _                       |                         |
| rs7073837  | AC       | 157 (45.0)        | 96 (51.6)      | 2.27 (1.43–3.62) | 5.93 x 10 <sup>-5</sup> | 1.09 x 10 <sup>-4</sup> |
|            | AA       | 73 (20.9)         | 58 (31.2)      | 2.95(1.76-4.97)  |                         |                         |
|            | AA       | 157 (43.0)        | 55 (28.4)      | Reference        |                         |                         |
| rs7087507  | AG       | 154 (42.2)        | 86 (44.3)      | 1.59 (1.06–2.39) | 1.54 x 10 <sup>-4</sup> | 3.8 x 10 <sup>-4</sup>  |
|            | GG       | 54 (14.8)         | 53 (27.3)      | 2.8(1.72–4.56)   |                         |                         |
|            | CC       | 127 (34.4)        | 47 (22.9)      | Reference        |                         |                         |
| rs10821938 | AC       | 170 (46.1)        | 89 (43.4)      | 1.41 (0.93–2.16) | 2.5 x 10 <sup>-4</sup>  | 5.1 x 10 <sup>-4</sup>  |
|            | AA       | 72 (19.5)         | 69 (33.7)      | 2.59(1.62–4.14)  |                         |                         |
|            | CC       | 122 (33.5)        | 44 (21.7)      | Reference        |                         | 2                       |
| rs7923074  | AC       | 171 (47.0)        | 94 (46.3)      | 1.52 (0.99–2.34) | 6.2 x 10 <sup>-4</sup>  | 1.04 x 10 <sup>-3</sup> |
|            | AA       | 71 (19.5)         | 65 (32.0)      | 2.54 (1.57–4.11) |                         |                         |
|            | AA       | 133 (36.2)        | 102 (50.0)     | Reference        |                         |                         |
| rs10761600 | AT       | 181 (49.3)        | 82 (40.2)      | 0.59(0.41–0.85)  | 0.005                   | 0.006                   |
|            | TT       | 53 (14.4)         | 20 (9.80)      | 0.49(0.28–0.87)  |                         |                         |
|            | TT       | 57 (21.8)         | 56 (32.9)      | Reference        |                         |                         |
| rs4131566  | СТ       | 129 (49.2)        | 81 (47.6)      | 0.64 (0.40–1.01) | 0.0124                  | 0.0138                  |
|            | CC       | 76 (29.0)         | 33 (19.4)      | 0.44 (0.25–0.77) | _                       |                         |
|            | AA       | 94 (25.6)         | 67 (34.4)      | Reference        |                         |                         |
| rs10994982 | AG       | 178 (48.5)        | 95 (48.7)      | 0.75 (0.5–1.12)  | 0.018                   | 0.018                   |
|            | GG       | 95 (25.9)         | 33 (16.9)      | 0.49 (0.29-0.81) |                         |                         |

**Table 19:** Distribution of the ARID5B genotypes among B-ALL cases and controls.

OR: Odds ratio; CI: Confidence Interval. \*Adjusted for multiple comparisons using the False Discovery Rate ( $p \le 0.05$ ).

## Association between ARID5B SNP genotype and B-ALL susceptibility according to B-hyperdiploid genetic subtype and gender

Polymorphisms in intron 3 of *ARID5B* have been shown to confer an increased risk for developing B-hyperdiploid ALL. Therefore, SNP genotype frequencies between B-hyperdiploid ALL and non B-hyperdiploid patients were compared. However, no significant difference was found between these two sets of patients (p > 0.05). When B-hyperdiploid ALL patients and controls were compared, a statistically significant association was observed for SNPs rs10821936, rs7089424, rs7087507, and rs4131566 (p < 0.05) (Table 20).

| 6115       |             | Genotype | Controls Cases |          |                  |       |
|------------|-------------|----------|----------------|----------|------------------|-------|
| SNP        | Risk allele |          | n (%)          | n (%)    | OR (CI 95%)      | Р     |
|            |             | TT       | 169 (45.9)     | 14(28.6) | Reference        |       |
| rs10821936 | С           | СТ       | 150 (40.8)     | 21(42.9) | 1.69(0.83-3.44)  | 0.012 |
|            |             | CC       | 49 (13.3)      | 14(28.6) | 3.45 (1.54-7.72) |       |
|            |             | TT       | 163 (44.1)     | 13(26.5) | Reference        |       |
| rs7089424  | G           | GT       | 155 (41.9)     | 22(44.9) | 1.78(0.87-3.66)  | 0.014 |
|            |             | GG       | 52 (14.1)      | 14(28.6) | 3.38(1.49-7.64)  |       |
|            |             | AA       | 157 (43)       | 13(27.7) | Reference        |       |
| rs7087507  | G           | AG       | 154 (42.2)     | 21(44.7) | 1.65 (0.8-3.41)  | 0.042 |
|            |             | GG       | 54 (14.8)      | 13(27.7) | 2.91(1.27-6.66)  |       |
|            |             | CC       | 119 ( 34.1)    | 11(23.9) | Reference        |       |
| rs7073837  | Α           | AC       | 157 (45)       | 20(43.5) | 1.38 (0.64-2.99) | 0.16  |
|            |             | AA       | 73 (20.9)      | 15(32.6) | 2.22(0.97-5.1)   |       |
| rs10821938 |             | CC       | 127 (34.4)     | 10(20.4) | Reference        |       |
|            | A           | AC       | 170 (46.1)     | 25(51)   | 1.87 (0.87-4.03) | 0.09  |
|            |             | AA       | 72 (19.5)      | 14(28.6) | 2.47(1.04-5.84)  |       |
|            |             | CC       | 122 (33.5)     | 11(22.9) | Reference        |       |
| rs7923074  | Α           | AC       | 171 (47)       | 23(47.9) | 1.49 (0.7-3.17)  | 0.18  |
|            |             | AA       | 71 (19.5)      | 14(29.2) | 2.19 (0.94-5.08) |       |
|            |             | CC       | 101 (29)       | 17(35.4) | Reference        |       |
| rs10740055 | С           | AC       | 154 (44.3)     | 24(50)   | 0.93(0.47-1.81)  | 0.15  |
|            |             | AA       | 93 (26.7)      | 7(14.6)  | 0.45 (0.18-1.13) |       |
|            |             | AA       | 133 (36.2)     | 23(47.9) | Reference        |       |
| rs10761600 | А           | AT       | 181 (49.3)     | 21(43.8) | 0.67(0.36-1.26)  | 0.21  |
|            |             | TT       | 53 (14.4)      | 4(8.3)   | 0.44 (0.14-1.32) |       |
| rs4131566  |             | CC       | 76 (29)        | 6(14.6)  | Reference        |       |
|            | Т           | СТ       | 129 (49.2)     | 20(48.8) | 1.96 (0.76-5.1)  | 0.04  |
|            |             | TT       | 57 (21.8)      | 15(36.6) | 3.33 (1.22-9.13) |       |
|            |             | AA       | 94 (25.6)      | 15(32.6) | Reference        |       |
| rs10994982 | А           | AG       | 178 (48.5)     | 25(54.3) | 0.88 (0.44-1.75) | 0.11  |
|            |             | GG       | 95 (25.9)      | 6(13)    | 0.4 (0.15-1.06)  |       |

**Table 20:** Association analysis between B-hyperdiploid ALL patients and controls.

OR: Odds ratio; CI: Confidence Interval.

Due to conflicting reports regarding the possibility of a gender-specific association for B-ALL, the association between *ARID5B* polymorphisms and B-ALL susceptibility in relation to gender was also investigated. In this analysis, *ARID5B* SNPs were more often associated with females than males (Table 21).

|            | Males    |          |          |                  |        | Females  |          |                 |          |
|------------|----------|----------|----------|------------------|--------|----------|----------|-----------------|----------|
|            |          | Controls | Cases    |                  |        | Controls | Cases    |                 |          |
| SNP        | Genotype | n (%)    | n (%)    | OR (CI 95%)      | Ρ      | n (%)    | N (%)n   | OR (CI 95%)     | Р        |
|            | TT       | 79(27.4) | 33(29.5) | Reference        |        | 85(48.3) | 22(23.9) | Reference       |          |
| rs10821936 | СТ       | 82(46.9) | 50(44.6) | 1.46(0.85-2.5)   | 0.008  | 67(38.1) | 40(43.5) | 2.31(1.25-4.25) | 3.75 e-5 |
|            | CC       | 45(25.7) | 29(25.9) | 2.89(1.47-5.69)  |        | 24(13.6) | 30(32.6) | 4.83(2.37-9.85) |          |
|            | TT       | 76(40.9) | 31(27.9) | Reference        |        | 82(46.3) | 24(26.7) | Reference       |          |
| rs7089424  | GT       | 87(46.8) | 55(49.5) | 1.55(0.91-2.65)  | 0.0208 | 67(37.9) | 37(41.1) | 1.89(1.03-3.46) | 0.00118  |
|            | GG       | 23(12.4) | 25(22.5) | 2.66(1.32-5.39)  |        | 28(15.8) | 29(32.2) | 3.54(1.77-7.06) |          |
|            | CC       | 58(33.1) | 19(18.1) | Reference        |        | 60(35.5) | 13(16)   | Reference       |          |
| rs7073837  | AC       | 82(46.9) | 57(54.3) | 2.12(1.14-3.94)  | 0.0174 | 72(42.6) | 39(48.1) | 2.5(1.22-5.11)  | 0.0023   |
|            | AA       | 35(20)   | 29(27.6) | 2.53(1.24-5.17)  |        | 37(21.9) | 29(35.8) | 3.62(1.67-7.83) |          |
|            | AA       | 75(41)   | 33(30.3) | Reference        |        | 78(44.6) | 22(25.9) | Reference       |          |
| rs7087507  | AG       | 83(45.4) | 49(45)   | 1.34(0.78-2.3)   | 0.0342 | 69(39.4) | 37(43.5) | 1.9(1.02-3.53)  | 0.0034   |
|            | GG       | 25(13.7) | 27(24.8) | 2.45(1.24-4.85)  |        | 28(16)   | 26(30.6) | 3.29(1.61-6.72) |          |
|            | CC       | 59(31.9) | 27(23.9) | Reference        |        | 65(36.7) | 20(21.7) | Reference       |          |
| rs10821938 | AC       | 89(48.1) | 52(46)   | 1.28(0.72-2.26)  | 0.1    | 78(44.1) | 37(40.2) | 1.54(0.82-2.91) | 0.0017   |
|            | AA       | 37(20)   | 34(30.1) | 2.01(1.05-3.85)  |        | 34(19.2) | 35(38)   | 3.35(1.68-6.66) |          |
|            | СС       | 58(31.5) | 26(23.4) | Reference        |        | 61(35.3) | 18(19.6) | Reference       |          |
| rs7923074  | AC       | 90(48.9) | 54(48.6) | 1.34(0.76-2.37)  | 0.15   | 78(45.1) | 40(43.5) | 1.74(0.91-3.33) | 0.0024   |
|            | AA       | 36(19.6) | 31(27.9) | 1.92(0.99-3.74)  |        | 34(19.7) | 34(37)   | 3.39(1.67-6.88) |          |
|            | CC       | 48(27.4) | 39(34.5) | Reference        |        | 51(30.7) | 43(47.3) | Reference       |          |
| rs10740055 | AC       | 82(46.9) | 55(48.7) | 0.83(0.48-1.42)  | 0.15   | 69(41.6) | 36(39.6) | 0.62(0.35-1.1)  | 0.0058   |
|            | AA       | 45(25.7) | 19(16.8) | 0.52(0.26-1.03)  |        | 46(27.7) | 12(13.2) | 0.31(0.15-0.66) |          |
|            | AA       | 66(36.1) | 54(48.2) | Reference        |        | 65(36.7) | 48(52.2) | Reference       |          |
| rs10761600 | AT       | 96(52.5) | 43(38.4) | 0.55(0.033-0.91) | 0.058  | 83(46.9) | 39(42.4) | 0.64(0.37-1.08) | 0.00605  |
|            | TT       | 21(11.5) | 15(13.4) | 0.87(0.41-1.86)  |        | 29(16.4) | 5(5.4)   | 0.23(0.08-0.65) |          |
|            | TT       | 36(27.7) | 21(22.8) | Reference        |        | 28(22)   | 31(39.7) | Reference       |          |
| rs4131566  | СТ       | 65(50)   | 46(50)   | 1.21(0.63-2.34)  | 0.5    | 62(48.8) | 35(44.9) | 0.51(0.26-0.98) | 0.0094   |
|            | СС       | 29(22.3) | 25(27.2) | 1.48(0.69-3.16)  |        | 37(29.1) | 12(15.4) | 0.29(0.13-0.67) |          |
|            | AA       | 47(25.5) | 30(27.8) | Reference        |        | 45(25.6) | 37(42.5) | Reference       |          |
| rs10994982 | AG       | 92(50)   | 59(54.6) | 1(0.57-1.76)     | 0.3    | 83(47.2) | 36(41.4) | 0.53(0.29-0.95) | 0.0119   |
|            | GG       | 45(14.5) | 19(17.6) | 0.66(0.33-1.34)  |        | 48(27.3) | 14(16.1) | 0.35(0.17-0.74) |          |

Table 21: Stratified analysis of ALL patients between males and females.

OR: Odds ratio; CI: Confidence Interval.

#### CNV analysis

No CNV or loss-of-heterozygosity (LOH) was detected for intron 3 of *ARID5B* (Figure 20) in 23 B-ALL patients or 17 healthy controls. Furthermore, no CNVs were detected for the entire gene. With regard to the genotyping study, there was also no excess of homozygosis events.



**Figure 20:** Representative genomic profiles of *ARID5B* from one B-ALL patient and one control. The boxed sequence represents the intron 3 region. The weighted log 2 ratio of the copy number state is indicated, and values > 1 represent gains and values < -1 represent losses. The *ARID5B* gene and the probes specific for this gene that were included in the array are shown at the bottom of the image.

Expression analysis

To investigate whether different genotypes of the SNPs selected have a functional effect on *ARID5B* expression, *ARID5B* mRNA levels of transcript variant 1 were detected in seven different B-ALL cell lines using qPCR (Table 22). The cell lines were grouped according to the recessive or dominant genotype model they represented, in order to compare the risk and protection genotypes for 7/9 SNPs (e.g., CC vs. CT+TT in rs10821936; GG vs. GT+TT in rs7089424; AA vs. AC+CC in rs7073837; GG vs. GA+AA in rs7087507; AA vs. AC+CC in rs10821938; AA vs. AC+CC in rs7923074; and AA vs. AG+GG in rs10994982). For SNPs rs10761600 and rs4131566, this was not possible due to a lack of sufficiently different genotypes in the cell lines analyzed. No significant correlation was found between the SNPs studied and the corresponding mRNA levels detected, even for the rs10821936 and rs7089424 genotypes, which are the most significant SNPs previously associated with B-ALL risk (Figure 21).

|            | 697 | SEM | TOM1 | REH | MY | NALM20 | TANOUE |
|------------|-----|-----|------|-----|----|--------|--------|
| rs10821936 | CC  | CC  | TT   | СТ  | СТ | СТ     | СС     |
| rs7089424  | GG  | GG  | тт   | GT  | GT | GG     | GG     |
| rs7073837  | -   | AA  | СС   | AC  | AC | AC     | AA     |
| rs7087507  | GG  | GG  | AA   | AG  | AG | GG     | GG     |
| rs10821938 | AA  | AA  | AA   | AC  | AC | AC     | AA     |
| rs7923074  | AA  | AA  | AA   | AC  | AC | AC     | AA     |
| rs10761600 | AA  | AA  | AA   | AA  | AA | AA     | AA     |
| rs4131566  | -   | -   | -    | СТ  | тт | -      | тт     |
| rs10994982 | AA  | AA  | AA   | AG  | AG | AG     | AA     |

 Table 22: Genotypes of the cell lines analyzed.



**Figure 21:** The correlation between *ARID5B* mRNA levels and A) rs10821936 and B) rs7089424. The horizontal line within each box represents the median value, the length of the box corresponds to the interquartile range, and the whiskers represent 1.5 interquartile ranges.

#### DISCUSSION

After a deep revision of *ARID5B* SNPs associated with ALL susceptibility in two GWAS studies, we observed that these SNPs were all located in intron 3, or exhibited high linkage disequilibrium with intron 3. Moreover, functions for these SNPs had not been identified. Thus, the goal of this study was to evaluate SNPs present in intron 3 of *ARID5B* to cover completely this region previously associated with ALL susceptibility, in order to identify whether other SNPs were more significant, or if putative functional effects of these SNPs could be detected. We performed an association study in a large Spanish population and searched for a functional explanation for the association.

The nine SNPs that were in HWE and were subsequently analyzed, showed significant association with pediatric B-ALL, even after correction by FDR test. Four of these nine SNPs (rs10821936, rs10994982, rs7073837 and rs7089424) had previously been associated with ALL susceptibility in two GWAS (Treviño et al. 2009, Papaemmanuil et al. 2009), and this association was confirmed in additional studies (Prasad et al. 2010, Healy et al. 2010, Yang et al. 2010, Pastorczak et al. 2011, Xu et al. 2012). An association between ALL susceptibility and rs10821938 (Vijayakrishnan et al. 2010) and rs7923074 (Xu et al. 2012) had also previously been demonstrated. Thus, to our knowledge, this is the first study to demonstrate that the SNPs, rs4131566, rs7087507, and rs10761600, are associated with ALL risk. So, our results in a Spanish population confirm the association shown by other authors in other populations.

SNPs present in intron 3 of *ARID5B* have been associated with the risk of developing high hyperdiploid childhood ALL (Treviño et al. 2009, Papaemmanuil et al. 2009, Healy et al. 2010, Xu et al. 2012). However, in the present study, when B-hyperdiploid patients were compared to controls, only four SNPs remain significant with lower p-values, and there was no significant difference in the incidence of B-hyperdiploid ALL and non B-hyperdiploid ALL. These results are consistent with those of Lautner-Csorba et al. (Lautner-Csorba et al. 2012). Taken together, these contradictory results suggest that hyperdiploidy is not an essential factor in *ARID5B*-mediated B-ALL susceptibility.

In this study, *ARID5B* SNPs were more often associated with females than males, and this is in agreement with previous data reported by Orsi et al. (Orsi et al. 2012). However, the role of gender remains controversial. For example, Xu et al. (Xu et al. 2012) and Lautner-Csorba et al. (Lautner-Csorba et al. 2012) found no differences between the incidence of childhood ALL in males versus females, while Healy et al. (Healy et al. 2010) reported a male bias. Therefore,

these contradictory results do not point to a very relevant role of gender in *ARID5B* mediated susceptibility to pediatric B-ALL.

Significant *ARID5B* SNPs have been found in intron regions but their function remains unknown. In the present study, it was investigated whether CNVs could affect this association in intron 3 of *ARID5B*. If CNV was associated with intron 3, the deletion could increase the frequency of homozygous alleles detected, thereby explaining the statistical association. Another possibility is that CNVs, in linkage disequilibrium with SNPs, might influence a healthy individual's susceptibility to cancer, by varying protein size or gene dosage of tumor suppressors or oncogenes (Huang et al. 2012). However, CNV was not observed in either the cases or controls, in intron 3, or within the entire *ARID5B* gene. In addition, no excess homozygosis was detected with statistical analyses. Therefore, it does not appear that CNVs are involved in the B-ALL risk associated with this region.

Treviño et al. proposed that *ARID5B* germline variations could affect susceptibility to B-ALL by altering *ARID5B* function during B-lineage development (Treviño et al. 2009). Hence, to identify a putative function for the nine SNPs identified for *ARID5B, in silico* analysis was employed. For SNPs rs10761600 and rs10994982, no putative function was found. In contrast, putative roles in transcriptional regulation were identified for SNPs rs10821936, rs7073837, rs7089424, rs7087507, and rs1082193. For example, risk alleles of rs10821936 and rs10821938 were reported to eliminate the binding site of different transcriptional factors (NIT2 and CCAAT, respectively) (Lee and Shatkay 2008), which could affect gene expression. In addition, SNPs rs7923074 and rs4131566 were found to localize to CpG sites, and the presence of risk alleles in both cases removed those CpG sites (C→A and C→T, respectively), avoiding the possibility of methylation (Samuelsson et al. 2011). These changes could potentially affect *ARID5B* regulation and expression.

Paulsson et al. suggested that involvement of the *ARID5B* gene in ALL susceptibility may involve gene transcription (Paulsson et al. 2010). Consistent with the latter, aberrant *ARID5B* expression in the developing fetus was shown to halt B-lymphocyte maturation and contribute to leukemogenesis (Healy et al. 2010). To further investigate whether mRNA levels could be altered by the different genotypes of the SNPs examined, mRNA levels of *ARID5B* were assayed in seven B-ALL cell lines. As levels of specific RNA isoforms have been shown to be affected in cancer (Pal et al. 2012), we analyzed specifically an only isoform, the *ARID5B* transcript 1, which contains the region limiting with intron 3. No differences in the mRNA levels of *ARID5B* 

114

transcript 1 were detected in the seven cell lines assayed, according to the genotypes of the SNPs in intron 3 of *ARID5B*. In addition, an *in silico* analysis using miRBase and USCS Genome Browser databases did not identify any validated noncoding RNA genes present in the *ARID5B* intron 3. Thus, the mechanism(s) by which SNPs in intron 3 of *ARID5B* affect B-ALL susceptibility remains unclear.

In conclusion, the intron 3 of *ARID5B* gene was found to be strongly associated with B-ALL risk in the Spanish population examined. However, neither CNV nor changes in mRNA expression were found to be responsible for this association. Therefore, additional functional studies are needed to determine the role of intronic SNPs in *ARID5B*.

#### ACKNOWLEDGMENTS

The authors would like to thank Xabier Agirre for providing us the RNA of the seven cell lines of ALL and Nerea Bilbao for her contribution to this study. Support by SGIker (UPV/EHU) is gratefully acknowledged. This project was supported by RTICS (RD/06/0020/0048), Basque Government (GIC10/71) and UPV/EHU (UFI11/35). AGC was supported by a predoctoral grant from the Gangoiti Barrera Foundation. ELL was supported by a "Fellowship for recent Doctors until their integration in postdoctoral programs" by the Investigation Vice-rector's office of the UPV/EHU.

#### CONFLICT OF INTEREST STATEMENT

The authors reported no potential conflicts of interest.

#### REFERENCES

- Bourquin, J. P., Subramanian, A., Langebrake, C., Reinhardt, D., Bernard, O., Ballerini, P., Baruchel, A., Cavé, H., Dastugue, N., Hasle, H., Kaspers, G. L., Lessard, M., Michaux, L., Vyas, P., van Wering, E., Zwaan, C. M., Golub, T. R. and Orkin, S. H. (2006) 'Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling', *Proc Natl Acad Sci U S A*, 103(9), 3339-44.
- Chang, L. W., Payton, J. E., Yuan, W., Ley, T. J., Nagarajan, R. and Stormo, G. D. (2008) 'Computational identification of the normal and perturbed genetic networks involved in myeloid differentiation and acute promyelocytic leukemia', *Genome Biol*, 9(2), R38.
- Ellinghaus, E., Stanulla, M., Richter, G., Ellinghaus, D., te Kronnie, G., Cario, G., Cazzaniga, G., Horstmann, M., Panzer Grümayer, R., Cavé, H., Trka, J., Cinek, O., Teigler-Schlegel, A., ElSharawy, A., Häsler, R., Nebel, A., Meissner, B., Bartram, T., Lescai, F., Franceschi, C., Giordan, M., Nürnberg, P., Heinzow, B., Zimmermann, M., Schreiber, S., Schrappe, M. and Franke, A. (2012) 'Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia', *Leukemia*, 26(5), 902-9.

- Gusev, A., Lowe, J. K., Stoffel, M., Daly, M. J., Altshuler, D., Breslow, J. L., Friedman, J. M. and Pe'er, I. (2009) 'Whole population, genome-wide mapping of hidden relatedness', *Genome Res*, 19(2), 318-26.
- Han, S., Lee, K. M., Park, S. K., Lee, J. E., Ahn, H. S., Shin, H. Y., Kang, H. J., Koo, H. H., Seo, J. J., Choi, J. E., Ahn, Y. O. and Kang, D. (2010) 'Genome-wide association study of childhood acute lymphoblastic leukemia in Korea', *Leuk Res*, 34(10), 1271-4.
- Healy, J., Richer, C., Bourgey, M., Kritikou, E. A. and Sinnett, D. (2010) 'Replication analysis confirms the association of ARID5B with childhood B-cell acute lymphoblastic leukemia', *Haematologica*, 95(9), 1608-11.
- Huang, L., Yu, D., Wu, C., Zhai, K., Jiang, G., Cao, G., Wang, C., Liu, Y., Sun, M., Li, Z., Tan, W. and Lin, D. (2012) 'Copy number variation at 6q13 functions as a long-range regulator and is associated with pancreatic cancer risk', *Carcinogenesis*, 33(1), 94-100.
- Johnston, W. T., Lightfoot, T. J., Simpson, J. and Roman, E. (2010) 'Childhood cancer survival: a report from the United Kingdom Childhood Cancer Study', *Cancer Epidemiol*, 34(6), 659-66.
- Klipper-Aurbach, Y., Wasserman, M., Braunspiegel-Weintrob, N., Borstein, D., Peleg, S., Assa, S., Karp, M., Benjamini, Y., Hochberg, Y. and Laron, Z. (1995) 'Mathematical formulae for the prediction of the residual beta cell function during the first two years of disease in children and adolescents with insulin-dependent diabetes mellitus', *Med Hypotheses*, 45(5), 486-90.
- Lahoud, M. H., Ristevski, S., Venter, D. J., Jermiin, L. S., Bertoncello, I., Zavarsek, S., Hasthorpe, S., Drago, J., de Kretser, D., Hertzog, P. J. and Kola, I. (2001) 'Gene targeting of Desrt, a novel ARID class DNA-binding protein, causes growth retardation and abnormal development of reproductive organs', *Genome Res*, 11(8), 1327-34.
- Lautner-Csorba, O., Gézsi, A., Semsei, A. F., Antal, P., Erdélyi, D. J., Schermann, G., Kutszegi, N., Csordás, K., Hegyi, M., Kovács, G., Falus, A. and Szalai, C. (2012) 'Candidate gene association study in pediatric acute lymphoblastic leukemia evaluated by Bayesian network based Bayesian multilevel analysis of relevance', *BMC Med Genomics*, 5, 42.
- Lee, P. H. and Shatkay, H. (2008) 'F-SNP: computationally predicted functional SNPs for disease association studies', *Nucleic Acids Res*, 36(Database issue), D820-4.
- Livak, K. J. and Schmittgen, T. D. (2001) 'Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method', *Methods*, 25(4), 402-8.
- Lopez-Lopez, E., Martin-Guerrero, I., Ballesteros, J., Piñan, M. A., Garcia-Miguel, P., Navajas, A. and Garcia-Orad, A. (2011) 'Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia', *Pediatr Blood Cancer*, 57(4), 612-9.
- Orsi, L., Rudant, J., Bonaventure, A., Goujon-Bellec, S., Corda, E., Evans, T. J., Petit, A., Bertrand, Y., Nelken, B., Robert, A., Michel, G., Sirvent, N., Chastagner, P., Ducassou, S., Rialland, X., Hémon, D., Milne, E., Scott, R. J., Baruchel, A. and Clavel, J. (2012) 'Genetic polymorphisms and childhood acute lymphoblastic leukemia: GWAS of the ESCALE study (SFCE)', *Leukemia*, 26(12), 2561-4.
- Pal, S., Gupta, R. and Davuluri, R. V. (2012) 'Alternative transcription and alternative splicing in cancer', *Pharmacol Ther*, 136(3), 283-94.
- Papaemmanuil, E., Hosking, F. J., Vijayakrishnan, J., Price, A., Olver, B., Sheridan, E., Kinsey, S. E., Lightfoot, T., Roman, E., Irving, J. A., Allan, J. M., Tomlinson, I. P., Taylor, M., Greaves, M. and

Houlston, R. S. (2009) 'Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia', *Nat Genet*, 41(9), 1006-10.

- Pastorczak, A., Górniak, P., Sherborne, A., Hosking, F., Trelińska, J., Lejman, M., Szczepański, T., Borowiec, M., Fendler, W., Kowalczyk, J., Houlston, R. S. and Młynarski, W. (2011) 'Role of 657del5 NBN mutation and 7p12.2 (IKZF1), 9p21 (CDKN2A), 10q21.2 (ARID5B) and 14q11.2 (CEBPE) variation and risk of childhood ALL in the Polish population', *Leuk Res*, 35(11), 1534-6.
- Paulsson, K., Forestier, E., Lilljebjörn, H., Heldrup, J., Behrendtz, M., Young, B. D. and Johansson, B. (2010) 'Genetic landscape of high hyperdiploid childhood acute lymphoblastic leukemia', *Proc Natl Acad Sci U S A*, 107(50), 21719-24.
- Perry, G. H., Ben-Dor, A., Tsalenko, A., Sampas, N., Rodriguez-Revenga, L., Tran, C. W., Scheffer, A., Steinfeld, I., Tsang, P., Yamada, N. A., Park, H. S., Kim, J. I., Seo, J. S., Yakhini, Z., Laderman, S., Bruhn, L. and Lee, C. (2008) 'The fine-scale and complex architecture of human copy-number variation', Am J Hum Genet, 82(3), 685-95.
- Prasad, R. B., Hosking, F. J., Vijayakrishnan, J., Papaemmanuil, E., Koehler, R., Greaves, M., Sheridan, E., Gast, A., Kinsey, S. E., Lightfoot, T., Roman, E., Taylor, M., Pritchard-Jones, K., Stanulla, M., Schrappe, M., Bartram, C. R., Houlston, R. S., Kumar, R. and Hemminki, K. (2010) 'Verification of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood', *Blood*, 115(9), 1765-7.
- Samuelsson, J., Alonso, S., Ruiz-Larroya, T., Cheung, T. H., Wong, Y. F. and Perucho, M. (2011) 'Frequent somatic demethylation of RAPGEF1/C3G intronic sequences in gastrointestinal and gynecological cancer', *Int J Oncol*, 38(6), 1575-7.
- Treviño, L. R., Yang, W., French, D., Hunger, S. P., Carroll, W. L., Devidas, M., Willman, C., Neale, G., Downing, J., Raimondi, S. C., Pui, C. H., Evans, W. E. and Relling, M. V. (2009) 'Germline genomic variants associated with childhood acute lymphoblastic leukemia', *Nat Genet*, 41(9), 1001-5.
- Vijayakrishnan, J., Sherborne, A. L., Sawangpanich, R., Hongeng, S., Houlston, R. S. and Pakakasama, S. (2010) 'Variation at 7p12.2 and 10q21.2 influences childhood acute lymphoblastic leukemia risk in the Thai population and may contribute to racial differences in leukemia incidence', *Leuk Lymphoma*, 51(10), 1870-4.
- Xu, H., Cheng, C., Devidas, M., Pei, D., Fan, Y., Yang, W., Neale, G., Scheet, P., Burchard, E. G., Torgerson, D. G., Eng, C., Dean, M., Antillon, F., Winick, N. J., Martin, P. L., Willman, C. L., Camitta, B. M., Reaman, G. H., Carroll, W. L., Loh, M., Evans, W. E., Pui, C. H., Hunger, S. P., Relling, M. V. and Yang, J. J. (2012) 'ARID5B genetic polymorphisms contribute to racial disparities in the incidence and treatment outcome of childhood acute lymphoblastic leukemia', *J Clin Oncol*, 30(7), 751-7.
- Yang, W., Treviño, L. R., Yang, J. J., Scheet, P., Pui, C. H., Evans, W. E. and Relling, M. V. (2010) 'ARID5B SNP rs10821936 is associated with risk of childhood acute lymphoblastic leukemia in blacks and contributes to racial differences in leukemia incidence', *Leukemia*, 24(4), 894-6.

# Involvement of polymorphisms in *IKZF1* and *CEBPE* in childhood Acute Lymphoblastic Leukemia susceptibility

Gutierrez-Camino, A<sup>1</sup>; Martín-Guerrero, I<sup>1</sup>; Santos, B<sup>2</sup>; García de Andoin, N<sup>3,4</sup>; Sastre, A<sup>5</sup>; Carboné Bañeres, A<sup>6</sup>; Astigarraga, I<sup>7,8</sup>; Navajas, A<sup>8</sup>; García-Orad, Á<sup>1, 8</sup>.

<sup>1</sup>Department of Genetics, Physic Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain; <sup>2</sup>Department of Neurosciences, Psychiatry, University of the Basque Country, UPV/EHU, Leioa, Spain; <sup>3</sup>Department of Paediatrics, University Hospital Donostia, San Sebastian, Spain; <sup>4</sup>BioDonostia Health Research Institute, San Sebastian, Spain; <sup>5</sup>Department of Oncohematology, University Hospital La Paz, Madrid, Spain; <sup>6</sup>Department of Paediatrics, University Hospital Miguel Servet, Zaragoza, Spain; <sup>7</sup>Department of Paediatrics, University Hospital Cruces, Barakaldo, Spain; <sup>8</sup>BioCruces Health Research Institute, Barakaldo, Spain.

#### Abstract

The genetic basis of acute lymphoblastic leukemia (ALL) susceptibility is supported by genomewide association studies (GWAS), which have reported up to five loci. Although it has been suggested that each locus has an independent role, recently, it has been shown an interaction between IKZF1 and CEBPE. The highest association signal found at IKZF1 was for rs4132601, which have not been replicated in all studies. Several meta-analyses have been done, but new studies with different results have been performed. At CEBPE locus, the highest association signal was found for rs2239633, replicated in some populations, but not in others. In the last meta-analysis of this SNP, some inaccuracies have been detected. In addition, rs2239633 has an unknown function, suggesting that additional polymorphism underlie the association signal. Recently, a cis-eQTL SNP, rs2239635, more significantly associated with B-ALL risk, has been reported. Therefore, the aim of this study was to determine the involvement of rs4132601 in IKZF1 and rs2239633 and rs2239635 in CEBPE in the susceptibility of B-ALL in a Spanish population of 155 children and 170 controls, compare all relevant studies analyzing rs4132601 and rs2239633 and test the interaction between both SNPs. In this study, all the SNPs were associated with B-ALL susceptibility. In the meta-analysis for rs4132601 (5953 ALL childhood patients and 9807 controls) and rs2239633 (6520 ALL childhood patients and 10748 controls) we found association between both SNPs and ALL susceptibility. Finally, the gene-gene interaction analysis showed association between both genes. These results confirm the involvement of these genes in B-ALL development.

#### Keywords: IKZF1, CEBPE, ALL, susceptibility

#### INTRODUCTION

Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy (Pui and Evans 2006, Greaves 2006). The genetic basis of ALL susceptibility is broadly supported by its association with certain congenital abnormalities (Xu et al. 2013) and, by genome-wide association studies (GWAS), which have reported up to five loci associated with ALL (*ARID5B*, *IKZF1, CEBPE, CDKN2A/B* and *PIP4K2A*) (Papaemmanuil et al. 2009, Treviño et al. 2009, Sherborne et al. 2010, Xu et al. 2013, Migliorini et al. 2013). Although it has been suggested that each locus has an independent role in B-ALL development (Houlston 2010, Pastorczak et al. 2011), Wiemels et al. recently showed an interaction between *IKZF1* and *CEBPE* (Wiemels et al. 2016).

*IKZF1* encodes the early lymphoid transcription factor IKAROS, a transcription factor involved in the development of all lymphoid lineages (Dai et al. 2014). Moreover, alterations in Ikaros directly contribute to the pathogenesis of *BCR–ABL1* ALL (Treviño et al. 2009). The highest association signal found at this locus by diverse GWAS was for rs4132601 (Papaemmanuil et al. 2009). Although several studies have replicated the association between *IKZF1* rs4132601 polymorphism and ALL risk (Prasad et al. 2010, Lautner-Csorba et al. 2012), some studies did not (Healy et al. 2010, Emerenciano et al. 2014). In order to clarify the possible association between rs4132601 and risk of ALL, two meta-analyses were carried out, all of them confirming the existence of association (Li et al. 2015, Dai et al. 2014). In the last year, new studies showing controversial results have been performed (Kreile et al. 2016, Gharbi et al. 2016, Bahari et al. 2016), so it could be interesting to include these data in a new metaanalysis. The SNP rs4132601 maps in the 3'untrasnlate region (UTR) of *IKZF1* and is involved in IKZF1 mRNA expression, with lower expression for the risk allele. However, up to date, this SNP has an unknown function.

*CEBPE* is a member of CEBPs family of transcription factors and is involved in terminal differentiation and functional maturation of myeloid cells, especially neutrophils and macrophages (Wang et al. 2015). In childhood ALL, intrachromosomal translocations involving *IGH* and *CEBPE* have been described, resulting in the upregulation of CEBPE expression (Akasaka et al. 2007). At this locus, the highest association signal was found for rs2239633 and B-ALL susceptibility (Papaemmanuil et al. 2009), which, moreover, showed a strong association with B-hyperdiploid subtype (Chokkalingam et al. 2013). This finding was replicated in some studies (Prasad et al. 2010, Orsi et al. 2012, Hungate et al. 2016), but not in others

120

(Vijayakrishnan et al. 2010, Healy et al. 2010, Emerenciano et al. 2014). A recent meta-analysis evaluating the association between this polymorphism and the risk of ALL concluded that rs2239633 was associated with the disease (Wang et al. 2015), nevertheless, some inaccuracies were detected in the study, such as the lack of the association studies performed by Healy et al., and Ellinghaus et al., (Healy et al. 2010, Ellinghaus et al. 2012). Additionally, the meta-analysis did not include analyses by subtypes and since its publication in 2015 new studies have been published (Kreile et al. 2016, Gharbi et al. 2016) that could help to elucidate if rs2239633 is really associated with the risk of B-ALL. The SNP rs2239633 is located in upstream region of CEBPE (14q11.2), mapping within a 25.7-kb region of high LD. However, rs2239633 has an unknown function, suggesting that additional polymorphisms underlie the association peak near CEBPE. Recently, Wiemels et al. performing imputation-based finemapping and functional validation analyses of this locus identified another polymorphism more significantly associated with B-ALL risk (rs2239635 at the promoter region of CEBPE) (Wiemels et al. 2016). The SNP rs2239635 is a cis-eQTL for CEBPE, showing an increased gene expression for the risk allele. Remarkably, the risk allele of rs2239635 was shown to disrupt the binding of Ikaros, avoiding CEBPE repression. In addition, an interaction between rs2239635 and rs4132601 was suggested (Wiemels et al. 2016).

Therefore, the aim of this study was to determine the involvement of rs4132601 at *IKZF1* and rs2239633 and rs2239635 at *CEBPE* in the susceptibility of B-ALL in Spanish population. Moreover, we performed an updated meta-analysis including all the studies analyzing rs4132601 and rs2239633 published so far. Finally, we tested the interaction between both SNPs.

#### MATERIALS AND METHODS

#### Study Participants

A total of 155 Caucasian children diagnosed with B-ALL between 2000 and 2011 in the Paediatric Oncology Units of four Spanish hospitals (University Hospital Cruces, University Hospital Donostia, University Hospital La Paz and University Hospital Miguel Servet) and 170 unrelated healthy controls were included in this study (Table 23).

121
|                                  | Patients  | Controls    |
|----------------------------------|-----------|-------------|
| No. of individuals               | 155       | 170         |
| Mean age ± SE, y                 | 3.9 ± 3.4 | 37.8 ± 12.8 |
| Sex                              |           |             |
| Males, n (%)                     | 83 (53.5) | 97 (57)     |
| Females, n (%)                   | 72 (46.5) | 73 (43)     |
| Genetic alterations <sup>#</sup> |           |             |
| Hyperdiploid                     | 39 (25.7) | -           |
| ETV6-RUNX1                       | 28 (18.1) | -           |
| MLL                              | 11 (7.1)  | -           |
| BCR-ABL                          | 2 (1.3)   | -           |
| E2A-PBX1                         | 3 (1.9)   | -           |
| Hypodiploid                      | 3 (1.9)   | -           |
| Other                            | 0         | -           |
| No alteration                    | 62 (40.8) | -           |
| No available                     | 13 (8.4)  | -           |

Table 23: Characteristics of study population.

SE: standard error, y: years. <sup>#</sup>Six patients have more than one alteration.

Data were collected objectively, blinded to genotypes, from the patients' medical files. High hyperdiploid (>50 chromosomes) and *ETV6-RUNX1* ALL genetic subtypes were considered also for the analyses. The other subtypes were not included due to the low number of patients in our cohort. Sex and age data were systematically recorded. Informed consent was obtained from all participants, or from their parents prior to sample collection. The study was approved by the local ethics committees (PI2014039) and was carried out according to the Declaration of Helsinki.

# Genotype analyses

Genomic DNA was extracted from remission peripheral blood or bone marrow using the phenol-chloroform method as previously described (Sambrook and Russell 2001). Genotyping analyses were performed by using amplification-refractory mutation system polymerase chain reaction (ARMS)-PCR for rs2239633 and rs2239635 and PCR followed by restriction analysis for rs4132601. Duplicates were included in each assay. The PCR products were visualized after electrophoresis on 2% agarose gels (Figure 15 and 16). Primer sequences and PCR conditions are described in detail in Table 7 and 9.

# Systematic review and meta-analysis

*Search strategy.* We performed an exhaustive search to identify studies that examined the association between the rs4132601 and *IKZF1* and ALL susceptibility and rs2239633

polymorphism of *CEBPE* and ALL susceptibility. We used the keywords and subject terms "(IKZF1 or rs4132601) and acute lymphoblastic leukemia" and "(CEBPE or rs2239633 or 14q11.2) and leukemia" for Pubmed (www.ncbi.nlm.nih.gov/pubmed) searches for articles published until July 2016. All references cited in the studies were then reviewed to possibly identify additional publications.

*Inclusion and exclusion criteria*. Original studies that investigated the association between the rs4132601 and rs2239633 polymorphisms and ALL risk with sufficient data to calculate crude Odd Ratio (OR) values were included. Reviews, meta-analyses and studies analyzing other regions or variants were excluded.

*Data extraction*. For each article, we gathered year of publication, first author, country of origin, sample size and genotype frequencies. When it was not possible to extract the genotype data from the article, we contacted the authors to obtain them.

*Quality Assessment*. The quality of included studies was assessed by scoring according to a "methodological quality assessment scale" (Table 8) (Bilbao-Aldaiturriaga et al. 2016). In the scale, five items, including the representativeness of cases, source of controls, sample size, quality control of genotyping methods and HWE were carefully checked. Quality scores ranged from 0 to 10 and a higher score indicated better quality of the study. Scores > 5 were considered acceptable.

# Statistical analysis

The data were statistically processed by R v2.15 software (http://www.R-project.org). Genotype frequencies in cases and controls were compared using a  $\chi$ 2 test. The deviation from HWE was also calculated by a  $\chi$ 2 test (in the healthy population). The effect sizes of the associations were estimated by the OR from univariate logistic regression using different genetic models. In all cases the significance level was set at 5%. The results were adjusted for multiple comparisons using the FDR (Benjamini and Hochberg 1995). For the meta-analysis, we used a recessive model. The overall pooled OR and corresponding 95%CI were estimated using Mantel-Haenszel's method, with random effects model. The heterogeneity was quantified using the I<sup>2</sup> statistic (0-25% no heterogeneity, 25-50% moderate heterogeneity, 50-75% large heterogeneity and 75-100% extreme heterogeneity). Begg's funnel plot and Egger's test (Egger et al. 1997) were performed to access the publication bias of literatures in this meta-analysis. Gene-gene interactions were calculated performing log-likelihood ratio test (LRT).

# RESULTS

#### Genotyping Results

A total of 155 patients with B-ALL and 170 unrelated healthy controls were included in the study. The genotyping success rate was 95.4%. All SNPs were in HWE in the control cohort.

#### Genotype association study of B-ALL

We found the three SNPs analyzed in *IKZF1* and *CEBPE* significantly associated with B-ALL risk (Table 24). The SNP rs4132601 at *IKZF1* was significantly associated with B-ALL risk under the additive model, displaying a 1.47-fold increased risk of B-ALL for GG genotype (95% CI: 1.04-2.06; P=0.026). In *CEBPE* gene, rs2239633 displayed the most significant value under the dominant model (CC vs CT+TT). The CT+TT genotypes showed a 0.49-fold decreased risk of B-ALL (95% CI: 0.30-0.79; P=0.003). The CC genotype of rs2239635 produced a 1.54 –fold increased risk of B-ALL (95% CI: 0.30-0.79; CI: 1.09-2.17; P=0.012). The three SNPs remained statistically associated with B-ALL risk after FDR correction.

| SNP       | Genotype | N (controls)<br>(N=170) | N(cases)<br>(N=151) | OR (CI 95%)      | Р      |
|-----------|----------|-------------------------|---------------------|------------------|--------|
|           | TT       | 83 (53.9)               | 63 (41.7)           | Additivo         |        |
| rs4132601 | GT       | 58 (37.7)               | 68 (45.0)           | 1 47 (1 04 2 06) | 0.026* |
|           | GG       | 13 (8.4)                | 20 (13.2)           | 1.47 (1.04-2.08) |        |
|           | Т        | 224 (72.7)              | 194 (64.2)          |                  | 0.024* |
|           | G        | 84 (27.3)               | 108 (35.8)          | 1.48 (1.05-2.09) | 0.024  |
|           | CC       | 41 (24.6)               | 59 (40.1)           | Dominant         |        |
| rs2239633 | СТ       | 96 (57.5)               | 67 (45.6)           |                  | 0.003* |
|           | TT       | 30 (18)                 | 21 (14.3)           | 0.49 (0.30-0.79) |        |
|           | С        | 178 (53.3)              | 185 (62.9)          | 0 67 (0 48 0 02) | 0.014* |
|           | Т        | 156 (46.7)              | 109 (37.1)          | 0.07 (0.48-0.92) | 0.014  |
|           | GG       | 92 (55.8)               | 65 (43.3)           | Additivo         |        |
| rs2239635 | GC       | 62 (37.6)               | 66 (44.0)           |                  | 0.012* |
|           | CC       | 11 (6.7)                | 19 (12.7)           | 1.54 (1.09-2.17) |        |
|           | G        | 246 (74.5)              | 196 (65.3)          | 1 EE (1 10 2 10) | 0.011* |
|           | С        | 84 (25.5)               | 104 (34.7)          | 1.55 (1.10-2.19) | 0.011  |

 Table 24: Association results of SNPs in IKZF1 and CEBPE and B-ALL.

Abbreviations: CI, confidence interval; OR, odds ratio; \*Significant after FDR correction.

#### Genotype association study of B-ALL subtypes

When we performed the analysis by subtype, we found that GG genotype increased the risk of developing B-hyperdiploid ALL (OR: 1.97; 95% CI: 1.17-3.32; P=0.01) (Table 25). When we analyzed rs2239633 and rs22396635 at *CEBPE* we found that CT+TT genotypes of rs2239633 decreased the risk of B-hyperdiploid ALL (OR: 0.31; 95% CI: 0.15-0.64; P=0.001) while CC genotype of rs2239635 increased the risk of both B-hyperdiploid ALL (OR: 1.81; 95% CI: 1.08-3.06; P=0.026) and *ETV6-RUNX1* ALL (OR: 2.22; 95% CI: 1.21-4.09; P=0.01) (Table 25). After FDR correction, all the associations remained statistically significant.

|           |                |                                    | B-h                                | yperdiploid Al               | .L     | ET                                | V6-RUNX1 AL                  | L      |
|-----------|----------------|------------------------------------|------------------------------------|------------------------------|--------|-----------------------------------|------------------------------|--------|
| SNP       | Genotype       | N (controls)<br>(N=170)            | N (cases)<br>(N=39)                | OR (CI 95%)                  | Ρ      | N (cases)<br>(N=26)               | OR (CI 95%)                  | Р      |
| rs4132601 | TT<br>GT<br>GG | 83 (53.9)<br>58 (37.7)<br>13 (8.4) | 12 (32.4)<br>18 (48.6)<br>7 (18.9) | Additive<br>1.97 (1.17-3.32) | 0.010* | 14 (53.8)<br>8 (30.8)<br>4 (15.4) | Additive<br>0.74 (0.30-1.8)  | 0.49   |
|           | T<br>G         | 224 (72.7)<br>84 (27.3)            | 42 (56.8)<br>32 (43.2)             | 2.03 (1.20-3.43)             | 0.008* | 36 (69.2)<br>16 (30.8)            | 1.18 (0.62-2.24)             | 0.60   |
| rs2239633 | CC<br>CT<br>TT | 41 (24.6)<br>96 (57.5)<br>30 (18)  | 19 (51.4)<br>15 (40.5)<br>3 (8.19  | Dominant<br>0.31 (0.15-0.64) | 0.001* | 11 (44)<br>11 (44)<br>3 (12)      | Dominant<br>0.41 (0.17-0.98) | 0.050  |
|           | C<br>T         | 178 (53.3)<br>156 (46.7)           | 53 (71.6)<br>21 (28.4)             | 0.45 (0.26-0.78)             | 0.004* | 33 (66)<br>17 (34)                | 0.58 (0.31-1.09)             | 0.09   |
| rs2239635 | GG<br>GC<br>CC | 92 (55.8)<br>62 (37.6)<br>11 (6.7) | 15 (38.5)<br>18 (46.2)<br>6 (15.4) | Additive<br>1.81 (1.08-3.06) | 0.026* | 9 (36)<br>10 (40)<br>6 (24)       | Additive<br>2.22 (1.21-4.09) | 0.010* |
|           | G<br>C         | 246 (74.5)<br>84 (25.5)            | 48 (61.5)<br>30 (38.5)             | 1.83 (1.08-3.07)             | 0.022* | 28 (56)<br>22 (44)                | 2.30 (1.24-4.23)             | 0.007* |

 Table 25: Association results of SNPs IKZF1 and CEBPE and B-hyperdiploid ALL and ETV6-RUNX1 ALL.

Abbreviations: CI, confidence interval; OR, odds ratio; \*Significant after FDR correction.

# Meta-analysis

The search for rs4132601 *IKZF1* provided 234 records. Of these, 210 were discarded after reviewing the abstracts because they did not meet the required criteria for inclusion. The full texts of the remaining 24 studies were examined in detail. Of these, we identified a total of 9 studies that investigated the association between *IKZF1* SNP rs4132601 and ALL risk. After revision of references cited, 3 studies were included (Figure 22). The characteristics of the studies are presented in Table 26. The distribution of genotypes in the controls of each study was in agreement with HWE (p>0.05).



Figure 22: Flow-chart of study selection.

| Table 26: Characteristic of the studies included for rs4132601 at IKZF: |
|-------------------------------------------------------------------------|
|-------------------------------------------------------------------------|

| Study                        | ALL patients | <b>B-ALL patients</b> | Controls | Country      |
|------------------------------|--------------|-----------------------|----------|--------------|
| Gutierrez-Camino 2016        | 151          | 151                   | 154      | Spain        |
| Papaemmanuil et al. 2009 (1) | 503          | 459                   | 1438     | UK           |
| Papaemmanuil et al. 2009 (2) | 404          | 365                   | 960      | UK           |
| Orsi et al. 2012             | 365          | 365                   | 415      | France       |
| Pastorczak et al. 2011       | 389          |                       | 715      | Poland       |
| Prasad et al. 2010(1)        | 1189         | 1189                  | 1501     | German       |
| Prasad et al. 2010 (2)       | 188          | 188                   | 360      | UK           |
| Kreile et al. 2016           | 82           | 82                    | 121      | Latvia       |
| Healy et al. 2010            | 273          | 273                   | 265      | Canada       |
| Ellinghaus et al. 2012       | 1404         | 1404                  | 2674     | German/Italy |
| Gharbi et al. 2016           | 58           |                       | 150      | Tunisia      |
| Bahari et al. 2016           | 110          |                       | 120      | Iran         |
| Vijayakrishnan et al. 2010   | 190          | 172                   | 182      | Thailand     |
| Lin et al. 2014              | 79           | 45                    | 80       | Taiwan       |
| Wang et al. 2013             | 568          |                       | 672      | China        |
| Total                        | 5953         | 4693                  | 9807     |              |

The original search for rs2239633 *CEBPE* provided 81 records. Of these, 65 were discarded after reviewing the abstracts because they did not meet the required criteria for inclusion. The full texts of the remaining 16 studies were examined in detail. Of these, we identified a total of 9 studies that investigated the association between *CEBPE* SNP rs2239633 and ALL risk. After

revision of references cited, 4 studies were included (Figure 23). The characteristics of the studies are presented in Table 27. The distribution of genotypes in the controls of each study was in agreement with HWE (p>0.05).



Figure 23: Flow-chart of study selection.

Table 27: Characteristic of the studies included for rs2239633 at CEBPE.

| Study                        | ALL patients | <b>B-ALL patients</b> | Controls | Country      |
|------------------------------|--------------|-----------------------|----------|--------------|
| Gutierrez-Camino 2016        | 147          | 147                   | 167      | Spain        |
| Papaemmanuil et al. 2009 (1) | 503          | 459                   | 1435     | UK           |
| Papaemmanuil et al. 2009 (2) | 404          | 365                   | 960      | UK           |
| Orsi et al. 2012             | 364          | 364                   | 442      | France       |
| Pastorczak et al. 2011       | 388          |                       | 711      | Poland       |
| Lautner-Csorba et al. 2012   | 541          |                       | 529      | Hungary      |
| Prasad et al. 2012 (1)       | 1193         | 1193                  | 1510     | German       |
| Prasad et al. 2012 (2)       | 183          | 183                   | 352      | UK           |
| Kreile et al. 2016           | 76           | 76                    | 121      | Latvia       |
| Healy et al. 2010            | 278          | 278                   | 266      | Canada       |
| Ellinghaus et al. 2012       | 1382         | 1382                  | 2632     | German/Italy |
| Ross et al. 2013             | 85           | 85                    | 363      | US/Canada    |
| Gharbi et al. 2016           | 58           |                       | 150      | Tunisia      |
| Emerenciano et al. 2014      | 160          | 160                   | 483      | Brazil       |
| Vijayakrishnan et al. 2010   | 190          | 172                   | 182      | Thailand     |
| Wang et al. 2013             | 568          |                       | 445      | China        |
| Total                        | 6520         | 4864                  | 10748    |              |

#### IKZF1 rs4132601 polymorphism

A total of 13 populations including 5953 patients with ALL, 4693 of them with B-ALL, and 9807 controls were analyzed in the meta-analysis. Overall, this SNP was found to be significantly associated with ALL (p<0.0001; OR=1.8; CI 95%=1.56-2.08) (Figure 24A) and B-ALL (p<0.0001; OR=1.9; CI 95%=1.68-2.14) (Figure 24B) under the recessive model. The heterogeneity of studies on this polymorphism was 24.8% in ALL patients, while when analysis was restricted to B-ALL subtype there was no heterogeneity. The individual study's influence on the pooled results was also analyzed showing that no study affected the pooled OR significantly.





Figure 24: Forest plot for meta-analysis of the association between rs4132601 polymorphism and a) ALL risk and b)B-ALL risk.

#### CEBPE rs2239633 polymorphism

The meta-analysis on rs2239633 included a total of 14 studies populations with 6520 ALL patients, 4864 of them with B-ALL, and 10748 controls. Overall, this SNP was found to be significantly associated with ALL (p<0.0001; OR=0.77; CI 95%=0.69-0.86) (Figure 25A) and B-ALL

(p<0.0001; OR=0,75; CI 95%=0.68-0.82) (Figure 25B) under the recessive model. The heterogeneity of studies on this polymorphism was 34% in ALL patients, while when analysis was restricted to B-ALL subtype there was no heterogeneity. The individual study's influence on the pooled results was also analyzed showing that no study affected the pooled OR significantly.

|     |                                    |        | AA    | A      | G+GG  |            | Odds Ratio |      |              |           |
|-----|------------------------------------|--------|-------|--------|-------|------------|------------|------|--------------|-----------|
| a)  | Study                              | Events | Total | Events | Total |            | :1         | OR   | 95%-CI       | W(random) |
|     | Gutierrez-Camino 2016              | 21     | 147   | 30     | 167   |            |            | 0.76 | [0.41:1.40]  | 2.9%      |
|     | Papaemmanuil 2009 (1)              | 78     | 503   | 332    | 1435  |            | -          | 0.61 | [0 47: 0 80] | 9.5%      |
|     | Papaemmanuil 2009 (2)              | 74     | 404   | 205    | 960   |            | - <b>i</b> | 0.83 | [0.61; 1.11] | 8.6%      |
|     | Orsi 2012                          | 61     | 364   | 95     | 442   |            |            | 0.74 | [0.51; 1.05] | 6.8%      |
|     | Pastorczak 2011                    | 93     | 388   | 160    | 711   |            |            | 1.09 | [0.81; 1.45] | 8.7%      |
|     | Lautner-Csorba 2012                | 75     | 541   | 121    | 529   |            | - <b>-</b> | 0.54 | [0.40; 0.75] | 7.9%      |
|     | Prasad 2012 (1)                    | 197    | 1193  | 307    | 1510  |            |            | 0.78 | [0.64; 0.94] | 12.8%     |
|     | Prasad 2012 (2)                    | 26     | 183   | 64     | 352   |            |            | 0.75 | [0.45; 1.22] | 4.1%      |
|     | Healy 2010                         | 13     | 278   | 23     | 266   |            | _          | 0.00 | [0.42, 1.60] | 2.0%      |
|     | Filinghaus 2012                    | 230    | 1382  | 595    | 2632  |            | ri i       | 0.77 | [0.61: 0.85] | 14.4%     |
|     | Ross 2012                          | 19     | 85    | 90     | 363   |            |            | 0.72 | [0.50; 1.53] | 3.4%      |
|     | Gharbi 2016                        | 10     | 58    | 13     | 150   |            |            | 2.20 | [0.90; 5.33] | 1.5%      |
|     | Emerenciano 2014                   | 21     | 160   | 62     | 483   |            |            | 1.03 | [0.60; 1.74] | 3.7%      |
|     | Vijayakrishnan 2010                | 11     | 190   | 9      | 182   |            |            | 1.18 | [0.48; 2.92] | 1.4%      |
|     | Wang 2013                          | 70     | 568   | 82     | 445   |            | -          | 0.62 | [0.44; 0.88] | 7.0%      |
|     | Random effects model               |        | 6520  |        | 10748 |            | 0          | 0.77 | [0.69; 0.86] | 100%      |
|     | Heterogeneity: I-squared=349       | 0      |       |        |       |            |            | _    |              |           |
|     |                                    |        |       |        | 0.0   | 01 01      | 051 2      | 10   |              |           |
|     |                                    |        |       |        |       |            |            |      |              |           |
| 1.1 |                                    |        | AA    | A      | G+GG  |            | Odds Ratio |      |              |           |
| D)  | Study                              | Events | Total | Events | Total |            | :1         | OR   | 95%-CI       | W(random) |
|     | Gutierrez-Camino 2016              | 21     | 147   | 30     | 167   |            | _ <b>_</b> | 0.76 | [0.41; 1.40] | 2.4%      |
|     | Papaemmanuil 2009 (1)              | 70     | 459   | 332    | 1435  |            | -          | 0.60 | [0.45; 0.79] | 10.9%     |
|     | Papaemmanuil 2009 (2)              | 67     | 365   | 205    | 960   |            | <u>_</u>   | 0.83 | [0.61; 1.13] | 9.3%      |
|     | Orsi 2012                          | 61     | 364   | 95     | 442   |            |            | 0.74 | [0.51; 1.05] | 6.9%      |
|     | Prasad 2012 (1)<br>Pracad 2012 (2) | 197    | 1193  | 307    | 352   |            |            | 0.78 | [0.64, 0.94] | 22.3%     |
|     | Kreile 2012 (2)                    | 13     | 76    | 23     | 121   |            |            | 0.75 | [0.43, 1.22] | 1.5%      |
|     | Healy 2010                         | 49     | 278   | 58     | 266   |            | _ <b>i</b> | 0.77 | [0.50: 1.17] | 4.8%      |
|     | Ellinghaus 2012                    | 239    | 1382  | 595    | 2632  |            |            | 0.72 | [0.61: 0.85] | 31.4%     |
|     | Ross 2012                          | 19     | 85    | 90     | 363   |            |            | 0.87 | [0.50; 1.53] | 2.7%      |
|     | Emerenciano 2014                   | 21     | 160   | 62     | 483   |            |            | 1.03 | [0.60; 1.74] | 3.1%      |
|     | Vijayakrishnan 2010                | 11     | 172   | g      | 182   |            |            | 1.31 | [0.53; 3.25] | 1.1%      |
|     | Random effects model               | Ļ      | 4864  |        | 8913  |            | ¢          | 0.75 | [0.68; 0.82] | 100%      |
|     | Heterogeneity: I-squared=0%        | 0      |       |        |       | r <u> </u> |            | _    |              |           |
|     |                                    |        |       |        | 0.0   | 01 0.1     | 0.5 1 2    | 10   |              |           |

Figure 25: Meta-analysis of the association between rs2239633 polymorphism and a) ALL risk and b) B-ALL risk.

# Publication bias

The shapes of funnel plot did not reveal obvious evidence of asymmetry (Figure 26) for both SNPs, and all the p values of Egger's tests were more than 0.05, providing statistical evidence of the funnel plots' symmetry. This indicates that biases from publication may not have influence on the results.



**Figure 26:** Funnel plots of the Egger's test of allele comparison for publication bias. a) rs4132601 in ALL, b) rs4132601 in B-ALL, c) rs2239633 in ALL and d) rs2239633 in B-ALL.

# Gene-gene interactions

Epistasis or gene-gene interactions were evaluated under three genetic models (dominant, recessive and log-additive). In case-control analyses of B-ALL, rs4132601 and rs2239633 displayed significant interaction (p= 0.02) under the recessive model. In B-hyperdiploid patients, we found interaction between rs4132601 and rs2239633 (p=0.03) under the dominant model and between rs4132601 and rs2239635 (p=0.02) under the log-additive model. Finally, in patients carrying *ETV6-RUNX1* translocation we found interaction between rs4132601 and rs2239633 (p=0.03) under the recessive model.

# DISCUSSION

In the current study, we analyzed rs4132601 at *IKZF1* and rs2239633 and rs2239635 at *CEBPE* in 155 children with B-ALL and 170 controls in a Spanish cohort. All the SNPs were associated

with B-ALL susceptibility and B-hyperdiploid subtype. In addition, rs2239635 was associated with *ETV6-RUNX1* ALL. We also performed a meta-analysis with all available data for rs4132601 (5953 ALL childhood patients and 9807 controls) and rs2239633 (6520 ALL childhood patients and 10748 controls) including 13 and 14 studies respectively, and found association between both SNPs and ALL susceptibility. Finally, the gene-gene interaction analysis showed association between both genes.

We found the GG genotype of rs4132601 at *IKZF1* associated with an increased risk of B-ALL. A relatively large number of studies have evaluated the association between IKZF1 rs4132601 polymorphism and ALL susceptibility, but the results have been contradictory. Therefore, we performed a meta-analysis including the results of 13 studies with a total of 5953 children with ALL and 9807 controls. The results showed that GG genotype of rs4132601 at IKZF1 increased the risk of ALL. Furthermore, when the analyses were restricted to the B-ALL group (4693 children with B-ALL), we found a higher risk for B-ALL, indicating a higher effect in this subgroup. In addition, in our study rs4132601 was associated with B-hyperdiploid subtype. This is in line with results reported by Chokkalingam et al (Chokkalingam et al. 2013), which found association in a Hispanic population. IKZF1 is a transcriptional factor involved in lymphoid differentiation, and this SNP, located in 3´UTR region of IKZF1, was associated with a lower expression of the gene (Papaemmanuil et al. 2009), however the functional significance of the IKZF1 polymorphism was not fully elucidated. Recently, thanks to the publication of ENCyclopedia of DNA Elements (ENCODE) (Consortium 2012), which aims to identify all functional elements in the human genome sequence, we have found that rs4132601 is located in a miRNA binding site, in which the G allele creates a binding for mir-4772 and mir-3937 (Gong et al. 2015). The creation of these miRNA binding sites could decrease IKZF1 expression previously described. Therefore, the risk allele G of *IKZF1* creates a miRNA binding site for mir-4772 and mir-3937, and the miRNAs could downregulate the expression of IKZF1.

At *CEBPE* gene, TT genotype of rs2239633 showed the highest association signal, decreasing the risk of B-ALL. This association has been replicated in several studies, but not in others. Our meta-analysis provides a robust evidence for association of the TT genotype with a decrease of ALL risk, as well as with B-ALL risk when the analysis was restricted to this subgroup. In addition, in our study rs2239633 was associated with B-hyperdiploid subtype, which is in agreement with the results reported by Chokkalingam et al., Hsu et al., and Walsh et al. (Chokkalingam et al. 2013, Hsu et al. 2015, Walsh et al. 2013), which found association in the Hispanic population. Regarding rs2239635 polymorphism, CC genotype was associated with an

increased risk of B-ALL, and a higher risk for B-hyperdiploid, which confirm the results of Wiemels et al. (Wiemels et al. 2016). Moreover, the CC genotype of rs2239635 was also associated with *ETV6-RUNX1* subtype, although the results have to be taken with caution due to the low number of patients in this group. Remarkably, Wiemels et al. in their study showed for the first time an interaction between *CEBPE* and *IKZF1*, results that have been replicated in the present study. The risk allele of rs2239635 was shown to disrupt the binding of Ikaros, answering the question as to why *CEBPE*, a critical modulator of mielopoiesis not required for B-cell maturation or function, is involved in B-ALL (Wiemels et al. 2016). Wiemels et al. suggested that lineage commitment for pre-B cells involves the suppression of *CEBPE* by Ikaros may lead to lineage confusion, a common feature of leukemogenesis (Yamanaka et al. 1997).

In conclusion, we have validated the association of rs4132601 at *IKZF1* and rs2239633 and rs2239635 at *CEBPE* and B-ALL susceptibility in the Spanish population and the present metaanalyses indicates that rs4132601 and rs2239633 SNPs are genetic risk factors for B-ALL susceptibility in the different populations. In addition we have confirmed the interaction of *IKZF1* and *CEBPE* genes. These results support the involvement of these genes in B-ALL development.

# ACKNOWLEDGMENTS

This study was funded by the Basque Government (IT661-13), UPV/EHU (UFI11/35) and RTICC (RD12/0036/0060, RD12/0036/0036). AGC was supported by a pre-doctoral grant from the Basque Government.

#### CONFLICT OF INTEREST STATEMENT

None declared

# REFERENCES

Akasaka, T., Balasas, T., Russell, L. J., Sugimoto, K. J., Majid, A., Walewska, R., Karran, E. L., Brown, D. G., Cain, K., Harder, L., Gesk, S., Martin-Subero, J. I., Atherton, M. G., Brüggemann, M., Calasanz, M. J., Davies, T., Haas, O. A., Hagemeijer, A., Kempski, H., Lessard, M., Lillington, D. M., Moore, S., Nguyen-Khac, F., Radford-Weiss, I., Schoch, C., Struski, S., Talley, P., Welham, M. J., Worley, H., Strefford, J. C., Harrison, C. J., Siebert, R. and Dyer, M. J. (2007) 'Five members of the CEBP transcription factor family are targeted by recurrent IGH translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL)', *Blood*, 109(8), 3451-61.

- Bahari, G., Hashemi, M., Naderi, M. and Taheri, M. (2016) 'IKZF1 gene polymorphisms increased the risk of childhood acute lymphoblastic leukemia in an Iranian population', *Tumour Biol*, 37(7), 9579-86.
- Benjamini, Y. and Hochberg, Y. (1995) 'Controlling the false discovery rate: A practical and powerful approach to multiple testing', Soc Series B(
- Bilbao-Aldaiturriaga, N., Askaiturrieta, Z., Granado-Tajada, I., Goričar, K., Dolžan, V., For The Slovenian Osteosarcoma Study Group, Garcia-Miguel, P., Garcia de Andoin, N., Martin-Guerrero, I. and Garcia-Orad, A. (2016) 'A systematic review and meta-analysis of MDM2 polymorphisms in osteosarcoma susceptibility', *Pediatr Res*, 80(4), 472-9.
- Chokkalingam, A. P., Hsu, L. I., Metayer, C., Hansen, H. M., Month, S. R., Barcellos, L. F., Wiemels, J. L. and Buffler, P. A. (2013) 'Genetic variants in ARID5B and CEBPE are childhood ALL susceptibility loci in Hispanics', *Cancer Causes Control*, 24(10), 1789-95.
- Consortium, E. P. (2012) 'An integrated encyclopedia of DNA elements in the human genome', *Nature*, 489(7414), 57-74.
- Dai, Y. E., Tang, L., Healy, J. and Sinnett, D. (2014) 'Contribution of polymorphisms in IKZF1 gene to childhood acute leukemia: a meta-analysis of 33 case-control studies', *PLoS One*, 9(11), e113748.
- Egger, M., Davey Smith, G., Schneider, M. and Minder, C. (1997) 'Bias in meta-analysis detected by a simple, graphical test', *BMJ*, 315(7109), 629-34.
- Ellinghaus, E., Stanulla, M., Richter, G., Ellinghaus, D., te Kronnie, G., Cario, G., Cazzaniga, G., Horstmann, M., Panzer Grümayer, R., Cavé, H., Trka, J., Cinek, O., Teigler-Schlegel, A., ElSharawy, A., Häsler, R., Nebel, A., Meissner, B., Bartram, T., Lescai, F., Franceschi, C., Giordan, M., Nürnberg, P., Heinzow, B., Zimmermann, M., Schreiber, S., Schrappe, M. and Franke, A. (2012) 'Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia', *Leukemia*, 26(5), 902-9.
- Emerenciano, M., Barbosa, T. C., Lopes, B. A., Blunck, C. B., Faro, A., Andrade, C., Meyer, C., Marschalek, R., Pombo-de-Oliveira, M. S. and Leukemia, B. C. S. G. o. I. A. (2014) 'ARID5B polymorphism confers an increased risk to acquire specific MLL rearrangements in early childhood leukemia', *BMC Cancer*, 14, 127.
- Gharbi, H., Ben Hassine, I., Soltani, I., Safra, I., Ouerhani, S., Bel Haj Othmen, H., Teber, M., Farah, A., Amouri, H., Toumi, N. H., Abdennebi, S., Abbes, S. and Menif, S. (2016) 'Association of genetic variation in IKZF1, ARID5B, CDKN2A, and CEBPE with the risk of acute lymphoblastic leukemia in Tunisian children and their contribution to racial differences in leukemia incidence', *Pediatr Hematol Oncol*, 33(3), 157-67.
- Gong, J., Liu, C., Liu, W., Wu, Y., Ma, Z., Chen, H. and Guo, A. Y. (2015) 'An update of miRNASNP database for better SNP selection by GWAS data, miRNA expression and online tools', *Database (Oxford)*, 2015, bav029.
- Greaves, M. (2006) 'Infection, immune responses and the aetiology of childhood leukaemia', *Nat Rev Cancer*, 6(3), 193-203.
- Healy, J., Richer, C., Bourgey, M., Kritikou, E. A. and Sinnett, D. (2010) 'Replication analysis confirms the association of ARID5B with childhood B-cell acute lymphoblastic leukemia', *Haematologica*, 95(9), 1608-11.
- Houlston, R. S. (2010) 'Low-penetrance susceptibility to hematological malignancy', *Curr Opin Genet Dev*, 20(3), 245-50.

- Hsu, L. I., Chokkalingam, A. P., Briggs, F. B., Walsh, K., Crouse, V., Fu, C., Metayer, C., Wiemels, J. L., Barcellos, L. F. and Buffler, P. A. (2015) 'Association of genetic variation in IKZF1, ARID5B, and CEBPE and surrogates for early-life infections with the risk of acute lymphoblastic leukemia in Hispanic children', *Cancer Causes Control*, 26(4), 609-19.
- Hungate, E. A., Vora, S. R., Gamazon, E. R., Moriyama, T., Best, T., Hulur, I., Lee, Y., Evans, T. J., Ellinghaus, E., Stanulla, M., Rudant, J., Orsi, L., Clavel, J., Milne, E., Scott, R. J., Pui, C. H., Cox, N. J., Loh, M. L., Yang, J. J., Skol, A. D. and Onel, K. (2016) 'A variant at 9p21.3 functionally implicates CDKN2B in paediatric B-cell precursor acute lymphoblastic leukaemia aetiology', *Nat Commun*, 7, 10635.
- Kreile, M., Piekuse, L., Rots, D., Dobele, Z., Kovalova, Z. and Lace, B. (2016) 'Analysis of possible genetic risk factors contributing to development of childhood acute lymphoblastic leukaemia in the Latvian population', Arch Med Sci, 12(3), 479-85.
- Lautner-Csorba, O., Gézsi, A., Semsei, A. F., Antal, P., Erdélyi, D. J., Schermann, G., Kutszegi, N., Csordás, K., Hegyi, M., Kovács, G., Falus, A. and Szalai, C. (2012) 'Candidate gene association study in pediatric acute lymphoblastic leukemia evaluated by Bayesian network based Bayesian multilevel analysis of relevance', *BMC Med Genomics*, 5, 42.
- Li, S., Ren, L., Fan, L. and Wang, G. (2015) 'IKZF1 rs4132601 polymorphism and acute lymphoblastic leukemia susceptibility: a meta-analysis', *Leuk Lymphoma*, 56(4), 978-82.
- Lin, C. Y., Li, M. J., Chang, J. G., Liu, S. C., Weng, T., Wu, K. H., Yang, S. F., Huang, F. K., Lo, W. Y. and Peng, C. T. (2014) 'High-resolution melting analyses for genetic variants in ARID5B and IKZF1 with childhood acute lymphoblastic leukemia susceptibility loci in Taiwan', *Blood Cells Mol Dis*, 52(2-3), 140-5.
- Migliorini, G., Fiege, B., Hosking, F. J., Ma, Y., Kumar, R., Sherborne, A. L., da Silva Filho, M. I., Vijayakrishnan, J., Koehler, R., Thomsen, H., Irving, J. A., Allan, J. M., Lightfoot, T., Roman, E., Kinsey, S. E., Sheridan, E., Thompson, P., Hoffmann, P., Nöthen, M. M., Mühleisen, T. W., Eisele, L., Zimmermann, M., Bartram, C. R., Schrappe, M., Greaves, M., Stanulla, M., Hemminki, K. and Houlston, R. S. (2013) 'Variation at 10p12.2 and 10p14 influences risk of childhood B-cell acute lymphoblastic leukemia and phenotype', *Blood*, 122(19), 3298-307.
- Orsi, L., Rudant, J., Bonaventure, A., Goujon-Bellec, S., Corda, E., Evans, T. J., Petit, A., Bertrand, Y., Nelken, B., Robert, A., Michel, G., Sirvent, N., Chastagner, P., Ducassou, S., Rialland, X., Hémon, D., Milne, E., Scott, R. J., Baruchel, A. and Clavel, J. (2012) 'Genetic polymorphisms and childhood acute lymphoblastic leukemia: GWAS of the ESCALE study (SFCE)', *Leukemia*, 26(12), 2561-4.
- Papaemmanuil, E., Hosking, F. J., Vijayakrishnan, J., Price, A., Olver, B., Sheridan, E., Kinsey, S. E., Lightfoot, T., Roman, E., Irving, J. A., Allan, J. M., Tomlinson, I. P., Taylor, M., Greaves, M. and Houlston, R. S. (2009) 'Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia', *Nat Genet*, 41(9), 1006-10.
- Pastorczak, A., Górniak, P., Sherborne, A., Hosking, F., Trelińska, J., Lejman, M., Szczepański, T., Borowiec, M., Fendler, W., Kowalczyk, J., Houlston, R. S. and Młynarski, W. (2011) 'Role of 657del5 NBN mutation and 7p12.2 (IKZF1), 9p21 (CDKN2A), 10q21.2 (ARID5B) and 14q11.2 (CEBPE) variation and risk of childhood ALL in the Polish population', *Leuk Res*, 35(11), 1534-6.
- Prasad, R. B., Hosking, F. J., Vijayakrishnan, J., Papaemmanuil, E., Koehler, R., Greaves, M., Sheridan, E., Gast, A., Kinsey, S. E., Lightfoot, T., Roman, E., Taylor, M., Pritchard-Jones, K., Stanulla, M., Schrappe, M., Bartram, C. R., Houlston, R. S., Kumar, R. and Hemminki, K. (2010) 'Verification of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood', *Blood*, 115(9), 1765-7.
- Pui, C. H. and Evans, W. E. (2006) 'Treatment of acute lymphoblastic leukemia', *N Engl J Med*, 354(2), 166-78.

- Ross, J. A., Linabery, A. M., Blommer, C. N., Langer, E. K., Spector, L. G., Hilden, J. M., Heerema, N. A., Radloff, G. A., Tower, R. L. and Davies, S. M. (2013) 'Genetic variants modify susceptibility to leukemia in infants: a Children's Oncology Group report', *Pediatr Blood Cancer*, 60(1), 31-4.
- Sambrook, J. and Russell, D. W. (2001) 'Preparation and Analysis of Eukaryotic Genomic DNA' in Molecular cloning: A laboratory manual, 3rd edition ed., Cold Spring Harbor, USA: CSHL Press, 4-12.
- Sherborne, A. L., Hosking, F. J., Prasad, R. B., Kumar, R., Koehler, R., Vijayakrishnan, J., Papaemmanuil, E., Bartram, C. R., Stanulla, M., Schrappe, M., Gast, A., Dobbins, S. E., Ma, Y., Sheridan, E., Taylor, M., Kinsey, S. E., Lightfoot, T., Roman, E., Irving, J. A., Allan, J. M., Moorman, A. V., Harrison, C. J., Tomlinson, I. P., Richards, S., Zimmermann, M., Szalai, C., Semsei, A. F., Erdelyi, D. J., Krajinovic, M., Sinnett, D., Healy, J., Gonzalez Neira, A., Kawamata, N., Ogawa, S., Koeffler, H. P., Hemminki, K., Greaves, M. and Houlston, R. S. (2010) 'Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk', *Nat Genet*, 42(6), 492-4.
- Treviño, L. R., Yang, W., French, D., Hunger, S. P., Carroll, W. L., Devidas, M., Willman, C., Neale, G., Downing, J., Raimondi, S. C., Pui, C. H., Evans, W. E. and Relling, M. V. (2009) 'Germline genomic variants associated with childhood acute lymphoblastic leukemia', *Nat Genet*, 41(9), 1001-5.
- Vijayakrishnan, J., Sherborne, A. L., Sawangpanich, R., Hongeng, S., Houlston, R. S. and Pakakasama, S. (2010) 'Variation at 7p12.2 and 10q21.2 influences childhood acute lymphoblastic leukemia risk in the Thai population and may contribute to racial differences in leukemia incidence', *Leuk Lymphoma*, 51(10), 1870-4.
- Walsh, K. M., Chokkalingam, A. P., Hsu, L. I., Metayer, C., de Smith, A. J., Jacobs, D. I., Dahl, G. V., Loh, M. L., Smirnov, I. V., Bartley, K., Ma, X., Wiencke, J. K., Barcellos, L. F., Wiemels, J. L. and Buffler, P. A. (2013) 'Associations between genome-wide Native American ancestry, known risk alleles and B-cell ALL risk in Hispanic children', *Leukemia*, 27(12), 2416-9.
- Wang, C., Chen, J., Sun, H., Sun, L. and Liu, Y. (2015) 'CEBPE polymorphism confers an increased risk of childhood acute lymphoblastic leukemia: a meta-analysis of 11 case-control studies with 5,639 cases and 10,036 controls', *Ann Hematol*, 94(2), 181-5.
- Wang, Y., Chen, J., Li, J., Deng, J., Rui, Y., Lu, Q., Wang, M., Tong, N., Zhang, Z. and Fang, Y. (2013) 'Association of three polymorphisms in ARID5B, IKZF1 and CEBPE with the risk of childhood acute lymphoblastic leukemia in a Chinese population', *Gene*, 524(2), 203-7.
- Wiemels, J. L., de Smith, A. J., Xiao, J., Lee, S. T., Muench, M. O., Fomin, M. E., Zhou, M., Hansen, H. M., Termuhlen, A., Metayer, C. and Walsh, K. M. (2016) 'A functional polymorphism in the CEBPE gene promoter influences acute lymphoblastic leukemia risk through interaction with the hematopoietic transcription factor Ikaros', *Leukemia*, 30(5), 1194-7.
- Xu, H., Yang, W., Perez-Andreu, V., Devidas, M., Fan, Y., Cheng, C., Pei, D., Scheet, P., Burchard, E. G., Eng, C., Huntsman, S., Torgerson, D. G., Dean, M., Winick, N. J., Martin, P. L., Camitta, B. M., Bowman, W. P., Willman, C. L., Carroll, W. L., Mullighan, C. G., Bhojwani, D., Hunger, S. P., Pui, C. H., Evans, W. E., Relling, M. V., Loh, M. L. and Yang, J. J. (2013) 'Novel Susceptibility Variants at 10p12.31-12.2 for Childhood Acute Lymphoblastic Leukemia in Ethnically Diverse Populations', *J Natl Cancer Inst*.
- Yamanaka, R., Barlow, C., Lekstrom-Himes, J., Castilla, L. H., Liu, P. P., Eckhaus, M., Decker, T., Wynshaw-Boris, A. and Xanthopoulos, K. G. (1997) 'Impaired granulopoiesis, myelodysplasia, and early lethality in CCAAT/enhancer binding protein epsilon-deficient mice', *Proc Natl Acad Sci U S A*, 94(24), 13187-92.

# Involvement of SNPs in CDKN2A/B locus in Acute Lymphoblastic Leukemia susceptibility

Gutierrez-Camino, A<sup>1</sup>; Martín-Guerrero, I<sup>1</sup>; García de Andoin, N<sup>2,3</sup>; Sastre, A<sup>4</sup>; Carboné Bañeres, A<sup>5</sup>; Astigarraga, I<sup>6,7</sup>; Navajas, A<sup>7</sup>; García-Orad, Á<sup>1, 7</sup>.

<sup>1</sup>Department of Genetics, Physic Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain; <sup>2</sup>Department of Paediatrics, University Hospital Donostia, San Sebastian, Spain; <sup>3</sup>BioDonostia Health Research Institute, San Sebastian, Spain; <sup>4</sup>Department of Oncohematology, University Hospital La Paz, Madrid, Spain; <sup>5</sup>Department of Paediatrics, University Hospital Miguel Servet, Zaragoza, Spain; <sup>6</sup>Department of Paediatrics, University Hospital Cruces, Barakaldo, Spain; <sup>7</sup>BioCruces Health Research Institute, Barakaldo, Spain.

# Abstract

CDKN2A/B (9p21.3) locus has been repeatedly associated with childhood acute lymphoblastic leukemia (ALL) susceptibility in several genome wide association studies (GWAS). Despite the clear and evident association of this locus with B-ALL susceptibility, the variants associated in the diverse studies are different and in low linkage disequilibrium (LD). This may be due to the fact that different variants in each population could alter CDKN2A/B locus function through diverse mechanisms. Therefore, the aim of this study was to determine the involvement of SNPs in the CDKN2A/B locus in the susceptibility of B-ALL in a Spanish population. We analysed 6 SNPs in CDKN2A/B locus in blood samples of 217 paediatric patients with B-cell ALL in complete remission and 330 healthy controls. The SNPs rs2811712, rs3731249, rs3217992 and rs2811709 were associated with B-ALL susceptibility. In addition, rs2811712 was associated with B-hyperdiploid ALL. All of them remained statistically significant after FDR correction. These results provide evidence for the influence of genetic variants at CDKN2A/B locus with the risk of developing B-ALL.

Keywords: SNP, CDKN2A/B, acute lymphoblastic leukaemia, susceptibility

#### INTRODUCTION

Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy (Pui and Evans 2006, Greaves 2006). The genetic basis of ALL susceptibility is broadly supported by, on the one hand, its association with certain congenital abnormalities (Xu et al. 2013) and, on the other hand, by genome-wide association studies (GWAS). The two first GWAS identified independently three loci associated with childhood ALL susceptibility: 10q21.2 (*ARID5B*), 7p12.2 (*IKZF1*) (Treviño et al. 2009, Papaemmanuil et al. 2009) and 14q11.2 (*CEBPE*) (Papaemmanuil et al. 2009), results widely validated (Gutiérrez-Camino et al. 2013, Prasad et al. 2010, Vijayakrishnan et al. 2010, Xu et al. 2013). Some of these loci were associated with specific genetic subtypes of ALL, such as locus 10q21.2 (*ARID5B*) and B-hyperdiploid ALL (Treviño et al. 2009, Papaemmanuil et al. 2009). Subsequent GWASs discovered additional susceptibility loci at 10p12.2 (*BMI1-PIP4K2A*) (Xu et al. 2013), validated in some populations (Migliorini et al. 2013), but no in others (Lopez-Lopez et al. 2013), and 9p21.3 (*CDKN2A/B*) (Sherborne et al. 2010).

The locus 9p21.3 (*CDKN2A/B*) is particularly noteworthy since it is deleted in around 30% of childhood ALL patients (Walsh et al. 2015), suggesting the involvement of the genes of this region in leukemogenesis. This region comprises *CDKN2A* and *CDKN2B* genes and a long noncoding RNA (lncRNA) known as *ANRIL* (or *CDKN2B-AS*). *CDKN2A* codifies for INK4-class cyclin dependent kinase (CDK) inhibitors p16<sup>INK4A</sup> and p14<sup>ARF</sup> (lacobucci et al. 2011). These proteins are tumour suppressors that block cell cycle division during the G1/S phase and inhibit *MDM2*, respectively. The second gene *CDKN2B* encodes for the tumour suppressor p15<sup>INK4B</sup>, which is also a cyclin kinase inhibitor. Finally, *ANRIL* has widespread influences on gene expression, impacting the cell cycle by regulating the expression of tumour suppressors p14<sup>ARF</sup>, p15<sup>INK4B</sup> and p16<sup>INK4A</sup> (Congrains et al. 2013).

Despite the clear and evident association of this locus CDKN2A/B with B-ALL susceptibility, the variants associated in the diverse GWAS are different. The first variant identified in children from the United Kingdom in 2010 was rs3731217 (Sherborne et al. 2010), which is located in intron 1 of *CDKN2A*. This association was replicated in several populations such as Germany, Canada (Sherborne et al. 2010) and France (Orsi et al. 2012), but not in others like Poland (Pastorczak et al. 2011), Hispanic (Chokkalingam et al. 2013) or Thai population (Vijayakrishnan et al. 2010). In 2012, Orsi et al. (Orsi et al. 2012) also associated one variant located in intron 1 of *CDKN2A*, rs2811709, with B-ALL in French children, a variant in low linkage disequilibrium (LD) with rs3731217 (r<sup>2</sup><0.8). In a posterior GWAS in 2013, rs17756311 located in *ANRIL*, was

identified as the highest associated variant with B-ALL in European Americans, but not in African or Hispanic Americans (Xu et al. 2013). In 2015, three independent studies using genotyping and imputation-based fine-mapping, pointed to rs3731249 in exon 2 of *CDKN2A* as the hit associated variant that conferred high risk for B-ALL in European and Hispanic children (Xu et al. 2015, Walsh et al. 2015, Vijayakrishnan et al. 2015).

Therefore, although there is an obvious implication of CDKN2A/B locus in B-ALL susceptibility, the variants annotated by these studies are different and are in low LD among them. This may be due to the fact that different variants in each population could alter CDKN2A/B locus function through diverse mechanisms. In fact, it has been suggested that the alleles of rs3731217 create two overlapping cis-acting intronic splice enhancer motifs (CCCAGG and CAGTAC) that may regulate alternative splicing of CDKN2A (Hungate et al. 2016). Regarding rs17756311, Hungate et al. found that a SNP in high LD with it (r<sup>2</sup>>0.8), rs662463 in ANRIL, regulates CDKN2B expression by disrupting a transcription factor binding site (TFBS) for CEBPB (Hungate et al. 2016). Finally, rs3731249 is a missense SNP in CDKN2A which produces an alanine-to-threonine change in amino-acid-sequence, resulting in reduced tumour suppressor function of p16<sup>INK4A</sup> (Xu et al. 2015). Interestingly, this SNP is also located in the 3´UTR region of p14<sup>ARF</sup>, where it creates a binding site for mir-132-5p and mir-4642 (Gong et al. 2012). Therefore, this SNP could cause the downregulation of CDKN2A/B locus. More than other 40 SNPs in 3'UTR region of CDKN2A and CDKN2B that disrupt or create miRNA binding sites have been described, suggesting their importance in CDKN2A/B regulation. However, studies focused on SNPs in miRNA binding sites are almost absent.

Therefore, the aim of this study was to determine the involvement of variants in the CDKN2A/B locus in the susceptibility of B-ALL. For this aim we have analyzed four SNPs previously proposed by the literature and SNPs in miRNA binding sites in a large cohort of Spanish children diagnosed with B-ALL.

# MATERIALS AND METHODS

#### Study Participants

A total of 231 Caucasian children diagnosed with B-ALL between 2000 and 2011 in the Paediatric Oncology Units of four Spanish hospitals (University Hospital Cruces, University Hospital Donostia, University Hospital La Paz and University Hospital Miguel Servet) and 338 unrelated healthy controls were included in this study (Table 28).

Data were collected objectively, blinded to genotypes, from the patients' medical files. The two most common ALL subtypes, B-lineage hyperdiploid ALL with more than 50 chromosomes (B-hyperdiploid) and B-lineage ALL bearing the t(12;21)(p13;q22) translocation leading to an *ETV6-RUNX1* gene fusion, were also analyzed. The other subtypes were not considered due to the low number of patients in our cohort. Sex and age data were systematically recorded (Table 27). Informed consent was obtained from all participants, or from their parents prior to sample collection. The study was approved by the local ethics committees (PI2014039) and was carried out according to the Declaration of Helsinki.

|                                  | Patients    | Controls    |
|----------------------------------|-------------|-------------|
| No. of individuals               | 231         | 338         |
| Mean age ± SE, y                 | 4.04 ± 3.61 | 57.8 ± 28.1 |
| Sex*                             |             |             |
| Males, n (%)                     | 128 (55.7)  | 157 (46.4)  |
| Females, n (%)                   | 102 (44.3)  | 181 (53.6)  |
| Genetic alterations <sup>#</sup> |             |             |
| Hyperdiploid                     | 56 (24.2)   | -           |
| ETV6-RUNX1                       | 37 (16.0)   | -           |
| MLL                              | 13 (5.6)    | -           |
| BCR-ABL                          | 6 (2.6)     | -           |
| E2A-PBX1                         | 6 (2.6)     | -           |
| Hipodiploid                      | 2 (0.9)     | -           |
| Other                            | 1 (0.4)     | -           |
| No alteration                    | 95 (41.1)   | -           |
| No available                     | 21 (9.1)    | -           |

**Table 28**: Characteristics of study population.

SE: standard error, y: years. \*There is no data for one patient. \*Six patients have more than one alteration.

# Selection of polymorphisms

A total of six SNPs at the locus 9p21.3 were selected (Table 10). Selection was done based on the following criteria: (i) four SNPs previously reported to be highly associated with ALL susceptibility in the literature or in high LD defined using the International HapMap Project (release #24; http://hapmap.ncbi.nlm.nih.gov/) (The HapMap Data Coordination Center (DCC), Bethesda, MD) and Haploview software v.4.2 (http://www.broad.mit.edu/mpg/haploview/) (Broad Institute, Cambridge, USA) with an  $r^2$  threshold of 0.8 and a minimum minor allele frequency (MAF) of 0.10, (ii) SNPs in miRNA binding sites of 3'UTR region of CDKN2A and CDKN2B with MAF>10% identified using bioinformatics а tools: Ensembl (http://www.ensembl.org/) (Welcome Trust Genome Campus, Cambridge, UK), and miRNASNP

(http://bioinfo.life.hust.edu.cn/miRNASNP2/index.php) (College of Life Science and Technology, HUST). Among 47 SNPs identified in the 3´UTR region that disrupt or create a miRNA binding site (Table 11), only two had a MAF>10%.

# Genotype analyses

Genomic DNA was extracted from remission peripheral blood or bone marrow using the phenol-chloroform method as previously described (Sambrook and Russell 2001). DNA was quantified using PicoGreen (Invitrogen Corp., Carlsbad, CA).

For each sample, 400 ng of DNA were genotyped using the GoldenGate Genotyping Assay with Veracode technology according to the published Illumina protocol. Data were analyzed with GenomeStudio software for genotype clustering and calling. Duplicate samples and CEPH trios (Coriell Cell Repository, Camden, NJ) were genotyped across the plates. For rs3731249, the genotyping analyses were performed by using PCR followed by restriction analysis with *BstUI* enzyme. Duplicates were included in each assay. The PCR products were visualized after electrophoresis on 3% agarose gels (Figure 18). Primer sequences and PCR conditions are described in detail in Table 12.

#### Statistical analysis

To identify any deviation in Hardy-Weinberg equilibrium (HWE) for the healthy controls, a  $\chi^2$  test was used. The association between genetic polymorphisms in cases and controls, as well as ALL subtypes and controls, was also evaluated using the  $\chi^2$  or Fisher's exact test. The effect sizes of the associations were estimated by the odds ratio from univariate logistic regression. The most significant test among codominant, dominant, recessive, and additive genetic models was selected. The results were adjusted for multiple comparisons using the false discovery rate (FDR) (Benjamini and Hochberg 1995). In all cases, the significance level was set at 5%.

# RESULTS

# Genotyping Results

A total of 231 patients with B-ALL and 338 unrelated healthy controls were available for genotyping. Successful genotyping was achieved for 217 B-ALL patients and 330 controls (96.1%). Of the SNPs, 6/6 (100%) were genotyped satisfactorily. All of them were in HWE in the control cohort.

# Genotype association study of B-ALL

Of the 6 SNPs analyzed, we found 4 significantly associated with B-ALL risk (Table 29 and Figure 27). From them, rs2811712 at *CDKN2B* displayed the most significant value under the log-additive genetic model (AA vs AG vs GG). The GG genotype showed a 1.98-fold increased risk of B-ALL (CI 95%: 1.39-2.82; p=0.0001). The second most significant association signal was found for rs3731249 at *CDKN2A*. In this case, the TT genotype produced a 2.61-fold increased risk of B-ALL (CI 95%: 1.38-4.92; p=0.002). We also found AA genotype of rs3217992 associated with a decreased risk of B-ALL (OR: 0.56; CI 95%: 0.36-0.88; p=0.009). Finally, rs2811709 AA genotype was associated with a 1.7-fold increased risk of B-ALL. All the SNPs remained statistically associated with B-ALL risk after FDR correction. The SNPs rs3731222 and rs1063192 were not associated with B-ALL risk in our population.

| Gene<br>SNP        | Genotype | N (controls)<br>(N=330) | N (cases)<br>(N=217) | OR (CI 95%)      | Р       |
|--------------------|----------|-------------------------|----------------------|------------------|---------|
| ANDU               | AA       | 264 (80.2)              | 143 (66.5)           | Aditivo          |         |
| ANKIL<br>rc2011712 | AG       | 62 (18.8)               | 64 (29.8)            | 1 09 (1 20 2 92) | 0.0001* |
| 152011/12          | GG       | 3 (0.9)                 | 8 (3.7)              | 1.96 (1.59-2.82) |         |
|                    | А        | 590 (89.7)              | 350 (81.4)           | 1 09 (1 20 2 91) | 0.0001* |
|                    | G        | 68 (10.3)               | 80 (18.6)            | 1.90 (1.59-2.01) | 0.0001  |
| CDKN2A             | CC       | 217 (92.7)              | 142 (83)             | Dominant         |         |
| CDKNZA             | СТ       | 16 (6.8)                | 28 (16.4)            |                  | 0.002*  |
| 153/31249          | TT       | 1 (0.4)                 | 1 (0.6)              | 2.01 (1.38-4.92) |         |
|                    | С        | 450 (96.2)              | 312 (91.2)           | 2 4 (1 21 4 20)  | 0.004*  |
|                    | т        | 18 (3.8)                | 30 (8.8)             | 2.4 (1.31-4.38)  | 0.004   |
|                    | GG       | 95 (28.9)               | 72 (33.8)            | Decessive        |         |
| CDKNZD, ANKIL      | AG       | 153 (46.5)              | 108 (50.7)           |                  | 0.009*  |
| 15321/992          | AA       | 81 (24.6)               | 33 (15.5)            | 0.50 (0.50-0.88) |         |
|                    | G        | 343 (52.1)              | 252 (59.2)           |                  | 0.022*  |
|                    | А        | 315 (47.9)              | 174 (40.8)           | 0.75 (0.58-0.90) | 0.023   |
| CDKN2A             | GG       | 203 (79.6)              | 145 (69.7)           | Dominant         |         |
| CDKNZA<br>#2811700 | AG       | 49 (19.2)               | 59 (28.4)            |                  | 0.014*  |
| 152011709          | AA       | 3 (1.2)                 | 4 (1.9)              | 1.7 (1.11-2.39)  |         |
|                    | G        | 455 (89.2)              | 349 (83.9)           | 1 50 (1 00 2 22) | 0.017*  |
|                    | А        | 55 (10.8)               | 67 (16.1)            | 1.58 (1.08-2.32) | 0.017   |
| CDKN2A             | AA       | 246 (74.8)              | 165 (77.5)           | Dominant         |         |
| CDKNZA             | AG       | 78 (23.7)               | 44 (20.7)            |                  | 0.47    |
| 153/31222          | GG       | 5 (1.5)                 | 4 (1.9)              | 0.80 (0.57-1.29) |         |
|                    | А        | 570 (86.6)              | 374 (87.8)           | 0.0 (0.62.1.20)  | 0.57    |
|                    | G        | 88 (13.4)               | 52 (12.2)            | 0.9 (0.02-1.29)  | 0.57    |
|                    | TT       | 125 (38.1)              | 86 (39.8)            | Dominant         |         |
| rc1062102          | СТ       | 162 (49.4)              | 98 (45.4)            |                  | 0.68    |
| 121003192          | CC       | 41 (12.5)               | 32 (14.8)            | 0.93 (0.65-1.32) |         |
|                    | Т        | 412 (62.8)              | 270 (62.5)           | 1 01 /0 78 1 2)  | 0.01    |
|                    | С        | 244 (37.2)              | 162 (37.5)           | 1.01 (0.78-1.3)  | 0.91    |

Table 29: Association results of SNPs in CDKN2A/B and B-ALL.

Abbreviations: CI, confidence interval; OR, odds ratio; \*Significant after FDR correction.



Figure 27: Diagram of CDKN2A/B locus. In bold, the SNPs significantly associated with B-ALL risk in our study.

# Genotype association study of B-ALL subtypes

When we analyzed the 6 SNPs considering B-hyperdiploid ALL and *ETV-RUNX1* ALL subtype, we found association between TT genotype of rs3731249 and B-hyperdiploid ALL (OR:2.62; CI 95%:1.06-6.48; p=0.048), AA genotype of rs3217992 with *ETV6-RUNX1* ALL (OR:0.58; CI 95%:0.34-0.96; p=0.03) and GG genotype of rs2811712 with both B-hyperdiploid (OR:8.69; CI 95%:1.89-40.0; p=0.007) and *ETV6-RUNX1* ALL (OR:2.4; CI 95%:1.15-5.02; p=0.024) (Table 30). After FDR correction, the association between rs2811712 and B-hyperdiploid ALL remained statistically significant (p=0.042).

|                                   |                |                                       | B-h                                 | yperdiploid A                 | LL     | ET                                 | V6-RUNX1 ALI                 | _     |
|-----------------------------------|----------------|---------------------------------------|-------------------------------------|-------------------------------|--------|------------------------------------|------------------------------|-------|
| Gene<br>SNP                       | Genotype       | N (controls)<br>(N=330)               | N (cases)<br>(N=54)                 | OR (CI 95%)                   | Р      | N (cases)<br>(N=54)                | OR (CI 95%)                  | Ρ     |
| ANRIL<br>rs2811712                | AA<br>AG<br>GG | 264 (80.2)<br>62 (18.8)<br>3 (0.9)    | 40 (74.1)<br>10 (18.5)<br>4 (7.4)   | Recessive<br>8.69 (1.89-40.0) | 0.007* | 22 (62.9)<br>12 (34.3)<br>1 (2.9)  | Dominant<br>2.4 (1.15-5.02)  | 0.024 |
|                                   | A<br>G         | 590 (91.2)<br>68 (8.8)                | 90 (90.7)<br>18 (9.3)               | 1.73 (0.98-3.05)              | 0.055  | 56 (80)<br>14 (20)                 | 2.16 (1.14-4.1)              | 0.017 |
| <i>CDKN2A</i><br>rs3731249        | CC<br>CT<br>TT | 217 (92.7)<br>16 (6.8)<br>1 (0.4)     | 39 (83)<br>8 (17)<br>0              | Dominant<br>2.62 (1.06-6.48)  | 0.048  | 28 (90.3)<br>3 (9.7)<br>0          | Dominant<br>1.37 (0.38-4.96) | 0.64  |
|                                   | C<br>T         | 450 (96.2)<br>18 (3.8)                | 86 (91.5)<br>8 (8.5)                | 2.32 (0.98-5.51)              | 0.55   | 59 (95.2)<br>3 (4.8)               | 1.27 (0.36-4.44)             | 0.70  |
| <i>CDKN2A</i><br>rs2811709        | GG<br>AG<br>AA | 203 (79.6)<br>49 (19.2)<br>3 (1.2)    | 38 (70.4)<br>13 (24.1)<br>3 (5.6)   | Additive<br>1.72 (0.98-3.01)  | 0.06   | 23 (67.6)<br>11 (32.4)<br>0        | Dominant<br>1.87 (0.86-4.07) | 0.12  |
|                                   | G<br>A         | 455 (89.2)<br>55 (10.8)               | 89 (82.4)<br>19 (17.6)              | 1.76 (0.99-3.11)              | 0.05   | 57 (83.8)<br>11 (16.2)             | 1.59 (0.79-3.22)             | 0.19  |
| <i>CDKN2B, ANRIL</i><br>rs1063192 | TT<br>CT<br>CC | 125 (38.1)<br>162 (49.4)<br>41 (12.5) | 23 (42.6)<br>24 (44.4)<br>7 (13)    | Dominant<br>0.83 (0.46-1.49)  | 0.53   | 12 (34.3)<br>17 (48.6)<br>6 (17.1) | Dominant<br>1.18 (0.57-2.46) | 0.65  |
|                                   | T<br>C         | 412 (62.8)<br>244 (37.2)              | 70 (64.8)<br>38 (35.2)              | 0.91 (0.59-1.4)               | 0.68   | 41 (58.8)<br>29 (41.4)             | 1.19 (0.72-1.97)             | 0.48  |
| <i>CDKN2A</i><br>rs3731222        | AA<br>AG<br>GG | 246 (74.8)<br>78 (23.7)<br>5 (1.5)    | 41 (77.4)<br>12 (22.6)<br>0         | Dominant<br>0.87 (0.44-1.73)  | 0.68   | 27 (77.1)<br>7 (20)<br>1 (2.9)     | Dominant<br>0.88 (0.38-2.01) | 0.75  |
|                                   | A<br>G         | 570 (86.6)<br>88 (13.4)               | 94 (88.7)<br>12 (11.3)              | 0.82 (0.43-1.57)              | 0.56   | 61 (87.1)<br>9 (12.9)              | 0.95 (0.45-1.99)             | 0.90  |
| CDKN2B, ANRIL<br>rs3217992        | GG<br>AG<br>AA | 95 (28.9)<br>153 (46.5)<br>81 (24.6)  | 17 (31.5)<br>24 (44.4)<br>13 (24.1) | Recessive<br>0.97 (0.5-1.9)   | 0.93   | 15 (44.1)<br>15 (44.1)<br>4 (11.8) | Aditive<br>0.58 (0.34-0.96)  | 0.030 |
|                                   | G<br>A         | 343 (52.1)<br>315 (47.9)              | 58 (53.7)<br>50 (46.3)              | 0.93 (0.62-1.41)              | 0.76   | 45 (66.2)<br>23 (33.8)             | 0.55 (0.32-0.94)             | 0.028 |

Table 30: Association results of SNPs in CDKN2A/B and B-hyperdiploid ALL and ETV6-RUNX1 ALL.

Abbreviations: CI, confidence interval; OR, odds ratio; \*Significant after FDR correction.

# DISCUSSION

In the current study, we analyzed 6 SNPs at the CDKN2A/B locus in 217 children with B-ALL and 330 controls in a Spanish cohort. SNPs rs2811712, rs3731249, rs3217992 and rs2811709 were associated with B-ALL susceptibility. In the subtype analysis, rs2811712 was associated with the risk of developing B-hyperdiploid.

The most significant finding was the association between G allele of rs2811712 and the increased risk of developing B-ALL. This result is in line with most of the studies (Sherborne et al. 2010, Chokkalingam et al. 2013, Migliorini et al. 2013, Hungate et al. 2016). The SNP rs2811712 is in strong LD with two of the previously reported SNPs, rs17756311 ( $r^2$ =0.83) and rs662463 ( $r^2$ =1), both associated with B-ALL risk in European Americans (Xu et al. 2013, Hungate et al. 2016) and African Americans (Hungate et al. 2016), respectively. In the subtype analysis, GG genotype of rs2811712 was also associated with B-hyperdiploid ALL after FDR correction, result that is in line with Chokkalingam et al., study performed in Hispanics (Chokkalingam et al. 2013). These associations could be explained considering that rs2811712

is located in intron 1 of the IncRNA *ANRIL*. SNPs in IncRNA may affect its expression or its structure. In this case, this SNP could interfere with IncRNA folding or by modulating its protein-IncRNA interactions (Boon et al. 2016). *ANRIL* has been shown to regulate *CDKN2A* and *CDKN2B* genes. Specifically, acting in cis, ANRIL binds various Polycomb proteins resulting in histone modification of the *CDKN2A/CDKN2B* locus, and in turn, silencing the cluster (Meseure et al. 2016). In fact, the G allele of rs2811712 was shown to decrease CDKN2B mRNA levels (Consortium 2013). Therefore, the G allele of rs2811712 in *ANRIL* could be involved in the downregulation of the locus, contributing to increased susceptibility to B-ALL.

The second most significant association was found for the T allele of rs3731249, which produced a 2.6-fold increased risk of B-ALL. This association was also described recently by 3 independent studies, all of them pointing out the high impact of this variant, since it confers in all studies between two and three-fold increased risk of B-ALL susceptibility in children of European and Hispanic origin (Xu et al. 2015, Walsh et al. 2015, Vijayakrishnan et al. 2015). rs3731249 localizes to exon 2 of *CDKN2A*, being shared by both p16<sup>INK4A</sup> and p14<sup>ARF</sup>. For the p16<sup>INK4A</sup>, the C-to-T nucleotide substitution resulted in an alanine-to-threonine change (p.A148T). There is evidence that the variant p16<sup>INK4A</sup> (p.148T) is preferentially retained in the nucleus, compromising its ability to inhibit CDK4 and CDK6 in the cytoplasm (Xu et al. 2015) and favouring proliferation, and therefore contributing to the association of ALL risk. In p14<sup>ARF</sup>, rs3731249 is in the 3'UTR region, where the risk allele creates a miRNA binding site for mir132-5p and mir4642 (Gong et al. 2012). These miRNAs could downregulate p14<sup>ARF</sup> expression, and then, attenuate its function as cyclin inhibitor. Therefore, T allele of rs3731249 in *CDKN2A* could be involved in B-ALL through its effect on the function of both p16<sup>INK4A</sup> and p14<sup>ARF</sup>.

The third finding was the association between the A allele of rs3217992 and a decreased B-ALL risk. This SNP is located in a miRNA binding site in *CDKN2B* in which the A allele disrupts the binding for mir-138 and mir-205 (Gong et al. 2015). The loss of binding of these miRNAs could increase *CDKN2B* expression, explaining its protective role. As far as we know, this is the first time that this SNP is associated with B-ALL risk.

Finally, regarding rs2811709, the A allele was associated with an increased in the risk of B-ALL susceptibility in our population. This SNP was also associated with B-ALL risk in two previous studies of children of European origin (Sherborne et al. 2010, Orsi et al. 2012). rs2811709 is a cis-eQTL for *CDKN2B*, with a decreased expression of CDKN2B mRNA for the risk allele (Consortium 2013), which could describe the involvement of rs2811709 in B-ALL.

On the other hand, we found no association between rs3731222 and rs1063192 and B-ALL susceptibility. One of them, rs3731222, is in high LD with rs3731217 ( $r^2$ =1), the SNP identified in the work performed by Sherborne et al. (Sherborne et al. 2010) and replicated in several studies (Migliorini et al. 2013, Orsi et al. 2012). However, we and others could not replicate this association (Pastorczak et al. 2011, Vijayakrishnan et al. 2010). This lack of replication could be due to differences in the variants that are involved in the disease in different populations.

In conclusion, three of the variants previously proposed by the literature, rs2811712, rs3731249 and rs2811709, and a new variant, rs3217992, are associated with B-ALL susceptibility in the Spanish cohort. These results confirmed the implication of CDKN2A/B locus in the development of B-ALL.

# ACKNOWLEDGMENTS

This study was funded by the Basque Government (IT661-13), UPV/EHU (UFI11/35) and RTICC (RD12/0036/0060, RD12/0036/0036). AGC was supported by a pre-doctoral grant from the Basque Government.

#### CONFLICT OF INTEREST STATEMENT

None declared

# REFERENCES

- Benjamini, Y. and Hochberg, Y. (1995) 'Controlling the false discovery rate: A practical and powerful approach to multiple testing', Soc Series B(
- Boon, R. A., Jaé, N., Holdt, L. and Dimmeler, S. (2016) 'Long Noncoding RNAs: From Clinical Genetics to Therapeutic Targets?', *J Am Coll Cardiol*, 67(10), 1214-26.
- Chokkalingam, A. P., Hsu, L. I., Metayer, C., Hansen, H. M., Month, S. R., Barcellos, L. F., Wiemels, J. L. and Buffler, P. A. (2013) 'Genetic variants in ARID5B and CEBPE are childhood ALL susceptibility loci in Hispanics', *Cancer Causes Control*, 24(10), 1789-95.
- Congrains, A., Kamide, K., Ohishi, M. and Rakugi, H. (2013) 'ANRIL: molecular mechanisms and implications in human health', *Int J Mol Sci*, 14(1), 1278-92.

Consortium, G. (2013) 'The Genotype-Tissue Expression (GTEx) project', Nat Genet, 45(6), 580-5.

Gong, J., Liu, C., Liu, W., Wu, Y., Ma, Z., Chen, H. and Guo, A. Y. (2015) 'An update of miRNASNP database for better SNP selection by GWAS data, miRNA expression and online tools', *Database (Oxford)*, 2015, bav029.

- Gong, J., Tong, Y., Zhang, H. M., Wang, K., Hu, T., Shan, G., Sun, J. and Guo, A. Y. (2012) 'Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis', *Hum Mutat*, 33(1), 254-63.
- Greaves, M. (2006) 'Infection, immune responses and the aetiology of childhood leukaemia', Nat Rev Cancer, 6(3), 193-203.
- Gutiérrez-Camino, Á., López-López, E., Martín-Guerrero, I., Sánchez-Toledo, J., García de Andoin, N., Carboné Bañeres, A., García-Miguel, P., Navajas, A. and García-Orad, Á. (2013) 'Intron 3 of the ARID5B gene: a hot spot for acute lymphoblastic leukemia susceptibility', J Cancer Res Clin Oncol, 139(11), 1879-86.
- Hungate, E. A., Vora, S. R., Gamazon, E. R., Moriyama, T., Best, T., Hulur, I., Lee, Y., Evans, T. J., Ellinghaus, E., Stanulla, M., Rudant, J., Orsi, L., Clavel, J., Milne, E., Scott, R. J., Pui, C. H., Cox, N. J., Loh, M. L., Yang, J. J., Skol, A. D. and Onel, K. (2016) 'A variant at 9p21.3 functionally implicates CDKN2B in paediatric B-cell precursor acute lymphoblastic leukaemia aetiology', *Nat Commun*, 7, 10635.
- Iacobucci, I., Sazzini, M., Garagnani, P., Ferrari, A., Boattini, A., Lonetti, A., Papayannidis, C., Mantovani, V., Marasco, E., Ottaviani, E., Soverini, S., Girelli, D., Luiselli, D., Vignetti, M., Baccarani, M. and Martinelli, G. (2011) 'A polymorphism in the chromosome 9p21 ANRIL locus is associated to Philadelphia positive acute lymphoblastic leukemia', *Leuk Res*, 35(8), 1052-9.
- Lopez-Lopez, E., Gutierrez-Camino, A., Martin-Guerrero, I. and Garcia-Orad, A. (2013) 'Re: novel susceptibility variants at 10p12.31-12.2 for childhood acute lymphoblastic leukemia in ethnically diverse populations', *J Natl Cancer Inst*, 105(19), 1512.
- Meseure, D., Vacher, S., Drak Alsibai, K., Nicolas, A., Chemlali, W., Caly, M., Lidereau, R., Pasmant, E., Callens, C. and Bieche, I. (2016) 'Expression of ANRIL - Polycomb Complexes - CDKN2A/B/ARF Genes in Breast Tumors: Identification of a Two-gene (EZH2/CBX7) Signature with Independent Prognostic Value', *Mol Cancer Res*.
- Migliorini, G., Fiege, B., Hosking, F. J., Ma, Y., Kumar, R., Sherborne, A. L., da Silva Filho, M. I., Vijayakrishnan, J., Koehler, R., Thomsen, H., Irving, J. A., Allan, J. M., Lightfoot, T., Roman, E., Kinsey, S. E., Sheridan, E., Thompson, P., Hoffmann, P., Nöthen, M. M., Mühleisen, T. W., Eisele, L., Zimmermann, M., Bartram, C. R., Schrappe, M., Greaves, M., Stanulla, M., Hemminki, K. and Houlston, R. S. (2013) 'Variation at 10p12.2 and 10p14 influences risk of childhood B-cell acute lymphoblastic leukemia and phenotype', *Blood*, 122(19), 3298-307.
- Orsi, L., Rudant, J., Bonaventure, A., Goujon-Bellec, S., Corda, E., Evans, T. J., Petit, A., Bertrand, Y., Nelken, B., Robert, A., Michel, G., Sirvent, N., Chastagner, P., Ducassou, S., Rialland, X., Hémon, D., Milne, E., Scott, R. J., Baruchel, A. and Clavel, J. (2012) 'Genetic polymorphisms and childhood acute lymphoblastic leukemia: GWAS of the ESCALE study (SFCE)', *Leukemia*, 26(12), 2561-4.
- Papaemmanuil, E., Hosking, F. J., Vijayakrishnan, J., Price, A., Olver, B., Sheridan, E., Kinsey, S. E., Lightfoot, T., Roman, E., Irving, J. A., Allan, J. M., Tomlinson, I. P., Taylor, M., Greaves, M. and Houlston, R. S. (2009) 'Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia', *Nat Genet*, 41(9), 1006-10.
- Pastorczak, A., Górniak, P., Sherborne, A., Hosking, F., Trelińska, J., Lejman, M., Szczepański, T., Borowiec, M., Fendler, W., Kowalczyk, J., Houlston, R. S. and Młynarski, W. (2011) 'Role of 657del5 NBN mutation and 7p12.2 (IKZF1), 9p21 (CDKN2A), 10q21.2 (ARID5B) and 14q11.2 (CEBPE) variation and risk of childhood ALL in the Polish population', *Leuk Res*, 35(11), 1534-6.
- Prasad, R. B., Hosking, F. J., Vijayakrishnan, J., Papaemmanuil, E., Koehler, R., Greaves, M., Sheridan, E., Gast, A., Kinsey, S. E., Lightfoot, T., Roman, E., Taylor, M., Pritchard-Jones, K., Stanulla, M.,

Schrappe, M., Bartram, C. R., Houlston, R. S., Kumar, R. and Hemminki, K. (2010) 'Verification of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood', *Blood*, 115(9), 1765-7.

- Pui, C. H. and Evans, W. E. (2006) 'Treatment of acute lymphoblastic leukemia', N Engl J Med, 354(2), 166-78.
- Sambrook, J. and Russell, D. W. (2001) 'Preparation and Analysis of Eukaryotic Genomic DNA' in *Molecular cloning: A laboratory manual*, 3rd edition ed., Cold Spring Harbor, USA: CSHL Press, 4-12.
- Sherborne, A. L., Hosking, F. J., Prasad, R. B., Kumar, R., Koehler, R., Vijayakrishnan, J., Papaemmanuil, E., Bartram, C. R., Stanulla, M., Schrappe, M., Gast, A., Dobbins, S. E., Ma, Y., Sheridan, E., Taylor, M., Kinsey, S. E., Lightfoot, T., Roman, E., Irving, J. A., Allan, J. M., Moorman, A. V., Harrison, C. J., Tomlinson, I. P., Richards, S., Zimmermann, M., Szalai, C., Semsei, A. F., Erdelyi, D. J., Krajinovic, M., Sinnett, D., Healy, J., Gonzalez Neira, A., Kawamata, N., Ogawa, S., Koeffler, H. P., Hemminki, K., Greaves, M. and Houlston, R. S. (2010) 'Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk', *Nat Genet*, 42(6), 492-4.
- Treviño, L. R., Yang, W., French, D., Hunger, S. P., Carroll, W. L., Devidas, M., Willman, C., Neale, G., Downing, J., Raimondi, S. C., Pui, C. H., Evans, W. E. and Relling, M. V. (2009) 'Germline genomic variants associated with childhood acute lymphoblastic leukemia', *Nat Genet*, 41(9), 1001-5.
- Vijayakrishnan, J., Henrion, M., Moorman, A. V., Fiege, B., Kumar, R., da Silva Filho, M. I., Holroyd, A., Koehler, R., Thomsen, H., Irving, J. A., Allan, J. M., Lightfoot, T., Roman, E., Kinsey, S. E., Sheridan, E., Thompson, P. D., Hoffmann, P., Nöthen, M. M., Mühleisen, T. W., Eisele, L., Bartram, C. R., Schrappe, M., Greaves, M., Hemminki, K., Harrison, C. J., Stanulla, M. and Houlston, R. S. (2015) 'The 9p21.3 risk of childhood acute lymphoblastic leukaemia is explained by a rare high-impact variant in CDKN2A', *Sci Rep*, 5, 15065.
- Vijayakrishnan, J., Sherborne, A. L., Sawangpanich, R., Hongeng, S., Houlston, R. S. and Pakakasama, S. (2010) 'Variation at 7p12.2 and 10q21.2 influences childhood acute lymphoblastic leukemia risk in the Thai population and may contribute to racial differences in leukemia incidence', *Leuk Lymphoma*, 51(10), 1870-4.
- Walsh, K. M., de Smith, A. J., Hansen, H. M., Smirnov, I. V., Gonseth, S., Endicott, A. A., Xiao, J., Rice, T.,
  Fu, C. H., McCoy, L. S., Lachance, D. H., Eckel-Passow, J. E., Wiencke, J. K., Jenkins, R. B.,
  Wrensch, M. R., Ma, X., Metayer, C. and Wiemels, J. L. (2015) 'A Heritable Missense
  Polymorphism in CDKN2A Confers Strong Risk of Childhood Acute Lymphoblastic Leukemia and
  Is Preferentially Selected during Clonal Evolution', *Cancer Res*, 75(22), 4884-94.
- Xu, H., Yang, W., Perez-Andreu, V., Devidas, M., Fan, Y., Cheng, C., Pei, D., Scheet, P., Burchard, E. G., Eng, C., Huntsman, S., Torgerson, D. G., Dean, M., Winick, N. J., Martin, P. L., Camitta, B. M., Bowman, W. P., Willman, C. L., Carroll, W. L., Mullighan, C. G., Bhojwani, D., Hunger, S. P., Pui, C. H., Evans, W. E., Relling, M. V., Loh, M. L. and Yang, J. J. (2013) 'Novel Susceptibility Variants at 10p12.31-12.2 for Childhood Acute Lymphoblastic Leukemia in Ethnically Diverse Populations', J Natl Cancer Inst.
- Xu, H., Zhang, H., Yang, W., Yadav, R., Morrison, A. C., Qian, M., Devidas, M., Liu, Y., Perez-Andreu, V., Zhao, X., Gastier-Foster, J. M., Lupo, P. J., Neale, G., Raetz, E., Larsen, E., Bowman, W. P., Carroll, W. L., Winick, N., Williams, R., Hansen, T., Holm, J. C., Mardis, E., Fulton, R., Pui, C. H., Zhang, J., Mullighan, C. G., Evans, W. E., Hunger, S. P., Gupta, R., Schmiegelow, K., Loh, M. L., Relling, M. V. and Yang, J. J. (2015) 'Inherited coding variants at the CDKN2A locus influence susceptibility to acute lymphoblastic leukaemia in children', *Nat Commun*, 6, 7553.

JNCI Journal of the National Cancer Institute Advance Access published September 6, 2013

# CORRESPONDENCE

# Re: Novel susceptibility variants at 10p12.31-12.2 for childhood acute lymphoblastic leukemia in ethnically diverse populations

Lopez-Lopez E<sup>1</sup>; Gutierrez-Camino A<sup>1</sup>; Martin-Guerrero I<sup>1</sup>; Garcia-Orad A<sup>1</sup>

<sup>1</sup>Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain

We have read with interest the contribution by Xu and collaborators (Xu et al. 2013) regarding the study entitled "Novel susceptibility variants at 10p12.31-12.2 for childhood acute lymphoblastic leukemia in ethnically diverse populations".

In this article, the authors carried out the first multiethnic GWAS with pediatric acute lymphoblastic leukemia (ALL) and, besides replicating previously described loci, they have found a new association locus in *PIP4K2A* gene. This association was confirmed in three replication cohorts of different ethnicities (European/American, African/American and Asian/American).

In our group, we tried to replicate this association in a Spanish population of 191 B-ALL patients and 342 unrelated healthy controls in order to verify if this is a general mechanism involved in ALL risk.

We made a linkage disequilibrium (LD) analysis of the 4 SNPs in *PIP4K2A* that were associated with ALL risk in the article by Xu et al, using Hapmap database and Haploview v4.2 software. As the 4 SNPs were in LD with an  $r^2$ > 0.8, we decided to analyze rs7088318, as a tagSNP of this association hotspot. We carried out an allele-specific PCR and carried out the genotyping with a 100% success. Both cases and controls were in Hardy-Weinberg equilibrium. We carried out an association study under the codominant, dominant, recessive and log-additive models. However, we did not replicate the statistically significant association between rs7088318 genotype and ALL risk under any of the inheritance models analyzed (Table 31).

| Table 31: Association | study of PIP4K2A rs7088318 and ALL | . risk |
|-----------------------|------------------------------------|--------|
|                       |                                    |        |

| Genotype       | Controls                            | N cases                             | OR (CI 95%)                                                 | OR (CI 95%)                                | OR (CI 95%)                              | OR (CI 95%)                              |
|----------------|-------------------------------------|-------------------------------------|-------------------------------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------|
|                | N=342                               | N=191                               | Codominant                                                  | Dominant                                   | Recessive                                | Additive                                 |
|                | n (%)                               | n (%)                               | (P)                                                         | (P)                                        | (P)                                      | (P)                                      |
| TT<br>GT<br>GG | 139 (40.6)<br>164 (48)<br>39 (11.4) | 94 (49.2)<br>75 (39.6)<br>22 (11.5) | Reference<br>0.68 (0.46-0.99)<br>0.83 (0.46-1.5)<br>(P=0.1) | Reference<br>0.71 (0.49-1.01)<br>(P=0.056) | Reference<br>1.01 (0.58-1.76)<br>(P=0.9) | Reference<br>0.83 (0.63-1.08)<br>(P=0.1) |

Abbreviations: CI, confidence interval; OR, odds ratio.

Differences in results might be due to differences in genetic composition among populations. In fact, if we have a look at the risk allele frequency (RAF), in our control population it is higher (RAF=0.646) than in the control European/American population analyzed by Xu et al. (RAF=0.59), and similar to what they observed in the case European/American population (RAF=0.65). This peculiarity makes it difficult to find significant differences in frequency between cases and controls.

Therefore, we conclude that SNPs in *PIP4K2A* may be associated with pediatric ALL risk in some populations but it does not seem to be a good susceptibility marker in the Spanish population. Consequently, it does not seem to be a susceptibility marker as general as other previously proposed as SNPs in *ARID5B* or *IKZF1*, which have been replicated in multiple populations.

# FUNDING

This work was supported by Basque Government (IT663-13, SAI10/03 and 2006111015), and UPV/EHU (UFI11/35). ELL was supported by a predoctoral grant from the Basque Government and "Fellowship for recent Doctors until their integration in postdoctoral programs" by the Investigation Vice-rector's office of the UPV/EHU.

#### REFERENCES

Xu, H., Yang, W., Perez-Andreu, V., Devidas, M., Fan, Y., Cheng, C., Pei, D., Scheet, P., Burchard, E. G., Eng, C., Huntsman, S., Torgerson, D. G., Dean, M., Winick, N. J., Martin, P. L., Camitta, B. M., Bowman, W. P., Willman, C. L., Carroll, W. L., Mullighan, C. G., Bhojwani, D., Hunger, S. P., Pui, C. H., Evans, W. E., Relling, M. V., Loh, M. L. and Yang, J. J. (2013) 'Novel Susceptibility Variants at 10p12.31-12.2 for Childhood Acute Lymphoblastic Leukemia in Ethnically Diverse Populations', J Natl Cancer Inst.

Articles

Received 5 August 2013; accepted 1 January 2014; advance online publication 2 April 2014. doi:10.1038/pr.2014.43

# Non-coding RNAs-related polymorphisms in pediatric acute lymphoblastic leukemia susceptibility

Gutierrez-Camino A<sup>1</sup>; Lopez-Lopez E<sup>1</sup>; Martin-Guerrero I<sup>1</sup>; Piñan MA<sup>2</sup>; Garcia-Miguel P<sup>3</sup>; Sanchez-Toledo J<sup>4</sup>; Carbone Bañeres A<sup>5</sup>; Uriz J<sup>6</sup>; Navajas A<sup>7</sup>; Garcia-Orad A<sup>1</sup>.

<sup>1</sup>Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain <sup>2</sup>Department of Hematology and Hemotherapy, University Hospital Cruces, Bilbao, Spain <sup>3</sup>Service of Pediatric Oncohematology, University Hospital La Paz, Madrid, Spain <sup>4</sup>Service of Pediatric Oncology and Hematology, University Hospital Vall d' Hebron, VHIR, Barcelona, Spain <sup>5</sup>Unit of Pediatric Oncohematology, University Hospital Donostia, Sean Sebastian, Spain <sup>7</sup>Unit of Pediatric Hematology/Oncology, University Hospital Cruces, Bilbao, Spain

# Abstract

Evidence for an inherited genetic risk for pediatric acute lymphoblastic leukemia has been provided in several studies. Most of them focused on coding regions. However, those regions represent only 1.5% of the entire genome. In acute lymphoblastic leukemia (ALL), it has been suggested that the expression of microRNAs (miRNAs) is dysregulated, which suggests that they may have a role in ALL risk. Changes in miRNA function may occur through single-nucleotide polymorphisms (SNPs). Therefore, the aim of this study was to evaluate whether polymorphisms in premiRNAs, and/or miRNA-processing genes, contribute to a predisposition for childhood ALL. In this study, we analyzed 118 SNPs in pre-miRNAs and miRNA-processing genes in 213 B-cell ALL patients and 387 controls. We found 11 SNPs significantly associated with ALL susceptibility. These included three SNPs present in miRNA genes (*miR-612, miR-499, and miR-449b*) and eight SNPs present in six miRNA biogenesis pathway genes (*TNRC6B, DROSHA, DGCR8, EIF2C1, CNOT1, and CNOT6*). Among the 118 SNPs analyzed, rs12803915 in *mir-612* and rs3746444 in mir-499 exhibited a more significant association, with a *P* value <0.01. The results of this study indicate that SNP rs12803915 located in pre-mir-612, and SNP

Keywords: miRNAs, biogenesis pathway, SNPs, ALL, susceptibility

151

# INTRODUCTION

Acute lymphoblastic leukemia (ALL) is the most common pediatric hematological malignancy in developed countries. Its etiology is believed to be multifactorial, with both environmental and genetic risk factors being relevant (Ellinghaus et al. 2012). Recently, several studies have provided evidence for an inherited genetic risk for pediatric ALL (Treviño et al. 2009, Papaemmanuil et al. 2009). Most of these studies focused on the coding regions of these genetic components. However, this represents only ~1.5% of the entire genome, and noncoding regions of the genome have also been shown to mediate regulatory functions. For example, microRNAs (miRNAs) are a class of small noncoding RNA molecules that regulate gene expression at the post-transcriptional level by binding to the 3'untranslated region of a target gene (Ryan et al. 2010). This can lead to an inhibition of translation or enhanced degradation of a target mRNA (Figure 28). Primary double-stranded miRNA transcripts (primiRNA) are processed in the nucleus by microprocessor machinery, which includes DROSHA RNase and the double-stranded RNA-binding protein, DGCR8. A hairpin precursor miRNA molecule of 70–100 nucleotides (pre-miRNA) is then produced, and its translocation into the cytoplasm is facilitated by RAN GTPase and Exportin 5 (XPO5). In the cytoplasm, pre-miRNAs are further processed by a protein complex that includes DICER1, TRBP, EIF2C1, EIF2C2, GEMIN3, and GEMIN4, resulting in the production of mature miRNAs (Ryan et al. 2010). It has been predicted that there are more than 1,000 miRNA genes in the human genome (Vinci et al. 2013), and ~30% of human genes are regulated by miRNAs.

In the past few years, it was suggested that miRNAs in ALL are dysregulated. For example, in the study of Zhang et al., (Zhang et al. 2009) up to 171 miRNAs have been found to be differentially expressed between ALL patients and normal donors. These results suggest that dysregulation of these miRNAs may be associated with an increased risk for ALL. Changes in miRNAs function have the potential to affect the expression of a large number of genes, including genes involved in the origin and evolution of pediatric ALL (H. Zhang et al. 2009, Schotte et al. 2011). Changes in miRNA function may occur through genetic variations (Ryan et al. 2010). For example, single-nucleotide polymorphisms (SNPs) present in genes involved in miRNA processing can affect levels of miRNA expression, whereas SNPs in miRNA genes can affect miRNA biogenesis and function. There have been several polymorphisms found to be associated with other malignancies, and a recent pilot study has found an association between rs2910164 in mir-146a and ALL risk (Hasani et al. 2014).

However, despite accumulating evidence that inherited genetic variation can contribute to a predisposition for pediatric ALL and the suggested role of miRNAs in the development of this disease, as well as the role of miRNA-related polymorphisms in cancer risk, the SNPs in miRNA genes and miRNA-processing genes have not been extensively studied in association with pediatric ALL risk. Therefore, the aim of this study was to evaluate whether polymorphisms in pre-miRNAs, and/or miRNA-processing genes, contribute to a predisposition for childhood ALL.



mRNA degradation or translational repression

**Figure 28:** MicroRNA biogenesis pathway. Pre-miRNA, precursor microRNA; Pri-miRNA, primary doublestranded microRNA; RISC, RNA-induced silencing complex.

# METHODS

# **Study Participants**

A total of 213 children (1–15 years) of European origin all diagnosed with precursor B-ALL in the Pediatric Oncology Units of five Spanish hospitals (Hospital Cruces, Hospital Donostia, Hospital Vall d'Hebrón, Hospital La Paz, and Hospital Miguel Servet) were enrolled in this study. These patients were the entire incident population diagnosed and treated in the participating centers between 1995 and 2011. In addition, 387 Spanish healthy individuals of European origin with no previous history of cancer from the collection C.0001171 registered in the Institute of Health Carlos III were enrolled as controls (Table 32). Patients were classified with B-hyperdiploid ALL if the DNA index was > 1.16 and/or the karyotype had more than 50 chromosomes. For 51 cases out of 213 B-ALL patients, cytogenetic data were not available. Informed consent was obtained from all participants, or from their parents, prior to sample collection. The study was approved by the Ethics Committee for Clinical Research and conducted in accordance with the Declaration of Helsinki.

|                                 | Patients | Controls |
|---------------------------------|----------|----------|
| No of individuals (n)           | 213      | 387      |
| Male (n, %)                     | 124 (56) | 199 (51) |
| Female (n, %)                   | 95 (43)  | 187 (48) |
| Mean age ± SE, years            | 5.7± 3.5 | 51.2±7.7 |
| Age at diagnosis                |          |          |
| 1 to 9 years                    | 173 (81) | -        |
| ≥10 years                       | 38 (18)  | -        |
| Leukocytes at diagnosis (WBC)   |          |          |
| <20 (x10 <sup>9</sup> /l)       | 94 (30)  | -        |
| 20 to 200 (x10 <sup>9</sup> /l) | 54 (25)  | -        |
| >200 (x10 <sup>9</sup> /l)      | 6 (3)    | -        |
| Hyperdiploid (n, %)             | 55 (26)  | -        |
| No-hyperdiploid (n, %)          | 107 (50) | -        |
| Chromosomal Translocations      |          |          |
| ETV6-RUNX1                      | 28(13)   | -        |
| MLL                             | 10 (5)   | -        |
| BCR-ABL                         | 5 (2)    | -        |
| E2A-PBX1                        | 3 (1)    | -        |

Table 32: Characteristics of the B-ALL patients and controls examined in this study.

SE: standard error.

# Selection of Genes and Polymorphisms

Twenty-one genes involved in miRNA biogenesis and processing, as determined based on available literature and the Patrocles (http:// www.patrocles.org/; University of Liege, Liège, Belgium) database, were selected for the analysis. For each gene, all of the SNPs with potential functional effects were examined using F-SNP (http:// compbio.cs.queensu.ca/F-SNP/; Queen's University, Kingston, Canada), Fast-SNP (http://fastsnp.ibms.sinica.edu.tw; Academia Sinica, Taipei, Taiwan), polymirTS (http://compbio.uthsc.edu/ miRSNP/; University of Tennessee Health Science Center, Memphis, TN), and Patrocles databases. Functional effects were considered to be those that resulted in amino acid changes and/or alternate splicing, those that were located in the promoter region of putative transcription factor–binding sites, or those that disrupted or created miRNAs binding interactions. SNPs previously included in association studies were also examined. The final selection of SNPs was made based on those having a minor allele frequency greater than 5% (i.e.,  $\geq 0.05$ ) in European/Caucasian populations.

Considering that miRNAs can regulate a wide range of genes and that the number of polymorphisms in miRNAs was affordable, we selected all the known SNPs at the moment of the selection with a minor allele frequency > 0.01 in European/Caucasoid populations, using Patrocles and Ensembl (http://www.ensembl.org/; Welcome Trust Genome Campus, Cambridge, UK) databases and literature review.

# Genotyping

Genomic DNA was extracted from remission (containing less than 5% blast cells) peripheral blood, bone marrow slides or granulocytes isolated with Ficoll-Plaque PLUS (GE Healthcare Life Sciences, Piscataway, NJ), using the phenol–chloroform method (Sambrook and Russell 2001) or from saliva samples using Oragene DNA kit (DNA Genotek, Ottawa, Canada) according to the manufacturer's instructions.

SNP genotyping was performed using TaqMan OpenArray Genotyping technology (Applied Biosystems, Carlsbad, CA) according to the published Applied Biosystems protocol. Initially, 131 SNPs were considered for analysis. After considering compatibility with the Taqman OpenArray platform, 118 SNPs were included in a Taqman OpenArray Plate (Applied Biosystems), and these included 72 SNPs present in 21 genes involved in miRNA biogenesis and 46 SNPs present in 42 pre-miRNA genes (Tables 15 and 16).

Data were analyzed using Taqman Genotyper software (Applied Biosystems) for genotype clustering and genotype calling. Duplicate samples were genotyped across the plates.

#### Statistical Analyses

Statistical analyses were performed using R software (version v2.14.1; Institute for Statistics and Mathematics, Wien, Austria). To identify any deviation in Hardy–Weinberg equilibrium for the healthy controls (n = 387), a  $\chi$ 2 test was used. The association between genetic polymorphisms in B-ALL patients and controls was also evaluated using the  $\chi$ 2 or Fisher's exact test. Fisher's exact test was used if a genotype class had less than five individuals. We also tested the association considering genetic characteristics (hyperdiploid subtype and chromosomal translocations). The effect sizes of the associations were estimated by the odds ratio from univariate logistic regression and multivariate logistic regression to account for the possible confounding effect of sex. The most significant test among codominant (major allele homozygotes vs. heterozygotes and major allele homozygotes vs. minor allele homozygotes), dominant (major allele homozygotes vs. heterozygotes + minor allele homozygotes), recessive (major allele homozygotes + heterozygotes vs. minor allele homozygotes), and additive (doses dependent effect: major allele homozygotes vs. heterozygotes vs. minor allele homozygotes vs. minor allele homozygotes vs. minor allele homozygotes (doses dependent effect: major allele homozygotes vs. heterozygotes vs. minor allele homozygotes) genetic models was selected. In all cases, the significance level was set at 5%. The results were adjusted for multiple comparisons using the Bonferroni correction.

# RESULTS

# Genotyping Results

A total of 213 patients with B-cell ALL (B-ALL) and 387 unrelated healthy controls were available for genotyping. Successful genotyping was achieved for 550 DNA samples (91.67%). Among the SNPs, 106/118 (89.83%) were genotyped satisfactorily. Failed genotyping was due to an absence of PCR amplification, insufficient intensity for cluster separation, poor cluster definition, or an inability to define clusters. The average genotyping rate for all SNPs was 98.12%. Furthermore, of the 106 SNPs genotyped, 14 were not in Hardy–Weinberg equilibrium in the population of 387 healthy controls, and therefore, were not considered for further analysis. In total, 26 SNPs were excluded from the association study (Table 33), leaving 92 SNPs available for association studies.

| SNP        | Gene       | Alleles | Reason for exclusion |
|------------|------------|---------|----------------------|
| rs1003226  | CNOT4      | T > C   | Genotyping failure   |
| rs11738060 | CNOT6      | T > A   | Genotyping failure   |
| rs34610323 | GEMIN4     | C > T   | Genotyping failure   |
| rs73239138 | mir-1269   | G > A   | Genotyping failure   |
| rs318039   | mir-1274a  | C > T   | Genotyping failure   |
| rs72631826 | mir-16-1   | T > C   | Genotyping failure   |
| rs72631825 | mir-222    | G > A   | Genotyping failure   |
| rs12197631 | mir-548a-1 | T > G   | Genotyping failure   |
| rs11014002 | mir-603    | C > T   | Genotyping failure   |
| rs2368392  | mir-604    | C > T   | Genotyping failure   |
| rs11061209 | RAN        | G > A   | Genotyping failure   |
| rs493760   | DROSHA     | T > C   | Genotyping failure   |
| rs42318    | CNOT3      | G > A   | Absence of HWE       |
| rs3757     | DGCR8      | G > A   | Absence of HWE       |
| rs3742330  | DICER1     | A > G   | Absence of HWE       |
| rs7813     | GEMIN4     | C > T   | Absence of HWE       |
| rs910924   | GEMIN4     | C > T   | Absence of HWE       |
| rs816736   | GEMIN5     | T > C   | Absence of HWE       |
| rs2292832  | mir-149    | C > T   | Absence of HWE       |
| rs174561   | mir-1908   | T > C   | Absence of HWE       |
| rs4919510  | mir-608    | C > G   | Absence of HWE       |
| rs11156654 | mir-624    | T > A   | Absence of HWE       |
| rs55656741 | DROSHA     | G > A   | Absence of HWE       |
| rs7719666  | DROSHA     | C > T   | Absence of HWE       |
| rs2413621  | TNRC6B     | T > C   | Absence of HWE       |
| rs470113   | TNRC6B     | A > G   | Absence of HWE       |

 Table 33: SNP excluded from the association study of microRNA processing genes.

HWE: Hardy-Weinberg equilibrium.

# Analysis of Association

To investigate if genetic variation influences the risk of ALL, the 92 polymorphisms successfully genotyped were compared between cases and controls. As shown in Tables 34 and 35, statistically significant associations (p < 0.05) were observed for 11 polymorphisms present in miRNA-related genes. Of these, three were located in pre-miRNAs (Table 34), and eight were located in miRNA-processing genes (Table 35).

| Table 34: Genotype frequencies of | of selected SNPs | present in miRN | VA genes. |
|-----------------------------------|------------------|-----------------|-----------|
|-----------------------------------|------------------|-----------------|-----------|

| miRNA                    | SNP                 | Best<br>fitting<br>model | Genotype   | Controls<br>n (%) | Cases<br>n (%)    | OR (CI 95%)      | Ρ     |
|--------------------------|---------------------|--------------------------|------------|-------------------|-------------------|------------------|-------|
| <i>mir-612</i> rs1280391 |                     |                          | CC         | 232 (67.6)        | 152 (77.6)        |                  |       |
|                          | rs12803915          | Additive                 | СТ         | 100 (29.2)        | 42 (21.4)         | 0.61 (0.42–0.88) | 0.007 |
|                          |                     |                          | TT         | 11 (3.2)          | 2 (1.0)           |                  |       |
| mir-499 rs3746444        |                     | rs3746444 Additive       | AA         | 206 (59.4)        | 138 (69.0)        |                  |       |
|                          | rs3746444           |                          | AG         | 117 (40.6)        | 56 (28.0)         | 0.67 (0.49–0.91) | 0.009 |
|                          |                     | GG                       | 24 (6.9)   | 6 (3.0)           |                   |                  |       |
| mir-449b                 | rs10061133 Dominant | AA                       | 283 (81.8) | 180 (89.6)        | Reference         | 0.012            |       |
|                          |                     | GA/GG                    | 63 (18.2)  | 21 (10.4)         | 0.52 (0.31 –0.89) |                  |       |

Abbreviations: CI, confidence interval; OR, odds ratio.
| Gene   | SNP         | Best<br>fitting<br>model | Genotype | Control<br>n (%) | Case<br>n (%) | OR (CI 95%)       | Ρ     |
|--------|-------------|--------------------------|----------|------------------|---------------|-------------------|-------|
| TNDCCD | ***120010   | Decessive                | TT/CT    | 340 (99.1)       | 181 (95.8)    | Reference         | 0.011 |
| INKCOD | 12129919    | Recessive                | CC       | 3 (0.90)         | 8 (4.2)       | 5.01 (1.31–19.11) | 0.011 |
|        |             |                          | TT       | 274 (78.5)       | 173 (86.5)    |                   |       |
| CNOT6  | rs6877400   | Additive                 | СТ       | 68 (19.8)        | 26 (13.0)     | 0.58 (0.37–0.9)   | 0.011 |
|        |             |                          | CC       | 7 (2.5)          | 1 (0.50)      |                   |       |
|        |             |                          | AA       | 205 (58.9)       | 135 (67.8)    |                   |       |
| DGCR8  | rs9606248   | Additive                 | AG       | 126 (36.3)       | 61 (30.7)     | 0.67 (0.48–0.92)  | 0.012 |
|        |             |                          | GG       | 17 (4.9)         | 3 (1.5)       |                   |       |
|        | rc1640200   |                          | GG/GT    | 267 (76.5)       | 168 (84.4)    | Reference         | 0.025 |
|        | 151040299   | Recessive                | TT       | 82 (23.5)        | 31 (15.6)     | 0.6 (0.38–0.95)   | 0.025 |
| CNOT1  | ***11966002 | Dominant                 | CC       | 134 (38.7)       | 97 (49.2)     | Reference         | 0.017 |
| CNOTI  | 1311800002  | Dominant                 | CT/TT    | 212 (61.3)       | 100 (50.8)    | 0.65 (0.46–0.93)  | 0.017 |
|        |             |                          | TT       | 213 (62.8)       | 108 (54.5)    |                   |       |
| DROSHA | rs10035440  | Additive                 | СТ       | 109 (32.2)       | 72 (36.4)     | 1.38 (1.04–1.83)  | 0.025 |
|        |             |                          | CC       | 17 (5.0)         | 18 (9.1)      |                   |       |
|        |             |                          |          | 311 (99 1)       | 194 (96 5)    | Reference         |       |
|        | rs636832    | Recessive                |          | 3 (0 90)         | 7 (3 5)       | A 1A (1 06-16 2)  | 0.031 |
| EIF2C1 |             |                          | ~~       | 5 (0.90)         | 7 (3.5)       | 4.14 (1.00–10.2)  |       |
|        | rcE0E061    | Pocossivo                | AA/AG    | 329 (97.1)       | 182 (93.3)    | Reference         | 0.046 |
|        | 13333301    | NECESSIVE                | GG       | 10 (2.9)         | 13 (6.7)      | 2.35 (1.01–5.47)  | 0.040 |

Table 35: Genotype frequencies of selected SNPs present in miRNA processing genes.

Abbreviations: CI, confidence interval; OR, odds ratio.

Among the SNPs located in pre-miRNA genes, the SNP that was the most significantly associated with ALL risk was SNP rs12803915 in premature mir-612 (Figure 29a). The A allele for this SNP was found to be protective (OR: 0.61; CI 95%: 0.42–0.88; p = 0.007) in the log-additive (GG vs. GA vs. AA) genetic model. The second most significant association involved SNP rs3746444 in mir-499 (Figure 29b). Moreover, this SNP is located in the seed region of mature miR-499-3p. The G allele of this SNP was found to be protective (OR: 0.67; CI 95%: 0.49–0.91; p = 0.009) in the log-additive (AA vs. AG vs. GG) genetic model. An association with rs10061133 in mir-449b was also identified (Table 34).

These two top SNPs, rs12803915 and rs3746444, were also studied in association with Bhyperdiploid ALL subtype (Tables 36 and 37) and chromosomal translocations, and no significant differences were found.

# A miR-612

agg ggace g g ac eec uceegggggac ucgggggag eg i acucuc aca gac u cu - c Ga a

### B miR-499

| miR-499-5p |
|------------|
|------------|

|           | ccugu | cu | u   | -  | C  | ς ι | 1          | ua a     | a                  | acucc |   |
|-----------|-------|----|-----|----|----|-----|------------|----------|--------------------|-------|---|
| gcccuguco | 2     | gc | ggg | сg | gg | ggc | g <b>u</b> | agacuugc | <b>gugauguuu</b> a |       | u |
|           |       |    |     | П  |    |     |            |          |                    |       | С |
| ugggacgg  | 1     | cg | CCC | gc | СС | ucg | cg         | ucugaacg | <b>cacuAcaa</b> gu |       | u |
|           | uccgu | са | u   | u  | ι  | 1 1 | 1 <b>l</b> | ıg a     | a                  | gcacc |   |
|           |       |    |     |    |    |     |            |          |                    |       |   |

miR-499-3p

Figure 29: Schematic diagram of the hairpin loop structure of the mir-612 and mir-499. The sequence for mature microRNA is in bold. The polymorphisms sites are indicated in capital letters. (a) The A>G polymorphism is located in the loop of mir-612; this variation might alter the secondarv structure. (b) The G>A polymorphism is located in the stem region opposite to the mature mir-499 sequence, which results in a change from A:U pair to G:U mismatch in the stem structure of mir-499 precursor.

Table 36: Association analysis between hyperdiploid ALL patients and non-hyperdiploid ALL patients.

| miRNA   | SNP        | Best fitting<br>model | Genotype             | Hyperdiploid<br>n (%)                        | No-<br>Hyperdiploid<br>n (%)         | OR (CI 95%)      | Ρ    |
|---------|------------|-----------------------|----------------------|----------------------------------------------|--------------------------------------|------------------|------|
|         |            |                       | GG                   | 42 (77.8)                                    | 77 (77.8)                            |                  |      |
| mir-612 | rs12803915 | Additive              | GA                   | 11 (20.4)                                    | 21 (21.2)                            | 1.04 (0.5-2.16)  | 0.91 |
|         |            |                       | AA                   | 1 (1.9)                                      | 1 (1)                                |                  |      |
|         |            |                       | AA                   | 36 (66.7)                                    | 74 (74)                              |                  |      |
| mir-499 | rs3746444  | Additive              | AG                   | 14 (25.9)                                    | 26 (26)                              | 1.71 (0.91-3.20) | 0.03 |
|         |            |                       | GG                   | 4 (7.4)                                      | 0 (0)                                |                  |      |
| mir-499 | rs3746444  | Additive              | AA<br>AA<br>AG<br>GG | 1 (1.9)<br>36 (66.7)<br>14 (25.9)<br>4 (7.4) | 1 (1)<br>74 (74)<br>26 (26)<br>0 (0) | 1.71 (0.91-3.20) | 0.03 |

Abbreviation: PM: pre-miRNA, OR: Odd ratio, CI: Confidence interval

| Table 37: Association anal | vsis hetween hy | nerdinloid ALL    | natients and controls |
|----------------------------|-----------------|-------------------|-----------------------|
| Table Jr. Association anal | ysis between ny | per uipioiu ALL j | patients and controls |

| miRNA   | SNP        | Best fitting model | Genotype | Hyperdiploid<br>n (%) | Controls<br>n (%) | OR (CI 95%)      | Р    |
|---------|------------|--------------------|----------|-----------------------|-------------------|------------------|------|
|         |            |                    | GG       | 42 (77.8)             | 232 (67.6)        |                  |      |
| mir-612 | rs12803915 | Additive           | GA       | 11 (20.4)             | 100 (29.2)        | 0.63 (0.34-1.17) | 0.12 |
|         |            |                    | AA       | 1 (1.9)               | 11 (3.2)          |                  |      |
|         |            |                    | AA       | 36 (66.7)             | 206 (59.4)        |                  |      |
| mir-499 | rs3746444  | Additive           | AG       | 14 (25.9)             | 117 (33.7)        | 0.83 (0.51-1.35) | 0.44 |
|         |            |                    | GG       | 4 (7.4)               | 24 (6.9)          |                  |      |

Abbreviation: OR: Odd ratio, CI: Confidence interval

In the genes of the miRNA-processing components, the most significant SNP was rs139919, a SNP located in the *TNRC6B* gene. In the recessive genetic model, the variant homozygous genotype, CC, of this SNP was associated with a 5.1-fold increase in ALL risk (CI 95%: 1.31– 19.11; p = 0.011). Associations involving rs9606248 and rs1640299 in *DGCR8*, rs11866002 in *CNOT1*, rs6877400 in *CNOT6*, rs10035440 in *DROSHA*, and rs636832 and rs595961 in *EIF2C1* were also identified (Table 35).

All the SNPs remained significantly associated with ALL risk after multivariate logistic regression to account for the possible confounding effect of sex. These SNPs did not reach the significant value when Bonferroni correction was applied.

### DISCUSSION

In this study, 11 SNPs were found to be significantly associated with ALL susceptibility. These included three SNPs present in miRNA genes (miR-612, miR-499, and miR-449b) and eight SNPs present in six miRNA biogenesis pathway genes (*TNRC6B*, *DROSHA*, *DGCR8*, *EIF2C1*, *CNOT1*, and *CNOT6*). Among them, rs12803915 in mir-612 and rs3746444 in mir-499 exhibited a more significant association, with a *P* value <0.01. In spite of not reaching a significant *P* value after the restrictive Bonferroni correction, our results point to a putative role of these SNPs in ALL susceptibility, which could be of lower penetrance.

SNP rs12803915 located in the premature region of mir-612 showed the strongest association with ALL risk, with the A allele being protective (p = 0.007). To our knowledge, this is the first report of this SNP being associated with cancer risk. It has been suggested that a SNP in the premature region of a miRNA could alter its secondary structure and inhibit or enhance primiRNA processing (Salzman and Weidhaas 2013). Therefore, SNPs in miRNAs could lead to dysregulation of miRNA expression (Ryan et al. 2010). Accordingly, it has been shown that SNP rs12803915 significantly decreases mature miR-612 levels, and this may represent a mechanism by which cancer risk is increased (HK et al. 2012). One of the potential targets of mir-612 is *IKZF2* (Friedman et al. 2009), a member of the Ikaros family of zinc-finger proteins. This protein is a hematopoietic-specific transcription factor involved in the regulation of lymphocyte development, and other members of this family have been associated with ALL susceptibility (Treviño et al. 2009, Papaemmanuil et al. 2009). Therefore, the presence of SNP rs12803915 in pre-mir-612 may contribute to an increased susceptibility to ALL based on its capacity to affect the expression of mir-612, as well as its downstream targets, such as *IKZF2*.

The second most significant association identified in this study involved SNP rs3746444 (p = 0.009) located in pre-mir-499. In this case, the G allele was associated with a lower risk for ALL. This SNP has recently been implicated in the etiology of several types of cancer with controversial results. The results of this study are consistent with those of three previous studies, in which the rs3746444 GG genotype was shown to be associated with a decreased risk of cancer (Kim et al. 2012, Liu et al. 2010, DH et al. 2013). By contrast, in six other studies

(Vinci et al. 2013, Xiang et al. 2012, Zhou et al. 2011, Hu et al. 2008, Alshatwi et al. 2012, George et al. 2011), the GG genotype was found to be associated with a higher risk of cancer development. There have also been studies that have found no association between this SNP and cancer risk (Hasani et al. 2014, Akkiz et al. 2011, Catucci et al. 2010, KT et al. 2012, Okubo et al. 2010, Tian et al. 2009). The inconsistency of these results may be due to differences in the carcinogenic mechanisms of different cancers, as well as differences in genetic backgrounds (Yang et al. 2008). Correspondingly, a meta-analysis observed that a tendency for reduced cancer risk was associated with the mir-499 rs3746444 GG genotype in Caucasian populations (Qiu et al. 2012).

This SNP, rs3746444, is located in pre-mir-499, in the premature sequences of mir-499-5p and mir-499-3p and in the seed sequence of mir-499-3p. Therefore, it could have a double effect. On one hand, a SNP located in a pre-miRNA region has the potential to impact the processing of pre-miRNAs into mature miRNAs (DH et al. 2013). Correspondingly, different genotypes of rs3746444 in pre-mir-499 have been associated with dysregulated expression of mir-499-5p in a colorectal cancer model (Vinci et al. 2013). These data are of particular interest considering that mir-499-5p seems to be upregulated in ALL (H. Zhang et al. 2009). On the other hand, SNP rs3746444 is also present in the seed region of a mature mir-499-3p and could be essential for the accurate recognition of target mRNA sequences. Potential targets of mir-499-3p (Friedman et al. 2009) include FOXO1A (a transcription factor that is dysregulated in B-ALL (Andersson et al. 2007)), MS4A1 or CD20 (a B-lymphocyte surface molecule that plays a role in the development and differentiation of B cells into plasma cells), and PBX1 (pre–B-cell leukemia homeobox 1 that is a dysregulated transcription factor in ALL) (Li et al. 2009). Therefore, alterations in the sequence of mir-499-5p and mir-499-3p, which affect expression of these miRNAs and/or the binding of mir-499-3p to target mRNAs, may have functional consequences for ALL.

Among the SNPs located in pre-miRNA genes, other interesting result was that the rs10061133 G allele in mir-449b was associated with a decreased risk of ALL (p = 0.012). To our knowledge, this is the first time that this polymorphism has been associated with cancer risk. Based on its location, this polymorphism is also present in the mature sequence of the miRNA; therefore, it could affect the strength of miRNA–mRNA binding, as well as miRNA levels. This miRNA has also been found to be upregulated in endometrial cancer and bladder cancer (Chung et al. 2012, Catto et al. 2009). However, in this larger population, we have not replicated the

161

association previously found in a small pilot study between rs2910164 in mir-146a and ALL risk (Hasani et al. 2014).

When we analyzed 72 polymorphisms present in miRNA biogenesis pathway, 8 of these were found to be significantly associated with ALL risk. Polymorphism rs139919 in *TNRC6B* was the SNP most highly associated with ALL susceptibility among the miRNA-processing genes, with the CC genotype associated with an increase in ALL risk (p = 0.011). *TNRC6B* encodes an RNA interference machinery component, which contributes to the RNA-induced silencing complex, and is crucial for miRNA-dependent translational repression or degradation of target mRNAs (Tao et al. 2012). Although this SNP has not been analyzed previously, other genetic variants in *TNRC6B* have been associated with prostate cancer risk (Tao et al. 2012, Sun et al. 2009). It has also been suggested that alterations in the expression of *TNRC6B* are due to genetic variations that may affect mRNA levels that are normally regulated by *TNRC6B*, thereby affecting carcinogenesis (Sun et al. 2009).

We have also found other SNPs located in genes which produce proteins that contribute to the RNA-induced silencing complex associated with ALL susceptibility. These included two SNPs in *EIF2C1* (rs595961 and rs636832), one SNP in *CNOT1* (rs11866002), and one SNP in *CNOT6* (rs6877400). The SNPs rs595961 and rs636832 in *EIF2C1* have been previously shown to be associated with renal cell carcinoma risk in males (Horikawa et al. 2008) and lung cancer (Kim et al. 2010), respectively. However, to our knowledge, this is the first study to identify an association between the SNPs, rs11866002 in *CNOT 1* and rs6877400 in *CNOT6*, and cancer risk. In addition, it is hypothesized that rs595961, rs11866002, and rs6877400 have putative roles in transcription and/or regulation of splicing events, thereby affecting gene expression. SNPs that affect expression levels of these proteins may have deleterious effects on miRNA–mRNA interactions and may affect cancer development and progression. Correspondingly, *EIF2C1* is frequently lost in human cancers such as Wilms tumor, neuroblastoma, and carcinomas of the breast, liver, and colon (Koesters et al. 1999).

Among the genes of biogenesis machinery, when we studied genes that contribute to the processing of pri-miRNAs to pre-miRNAs, we identified an association between SNPs and ALL risk. These SNPs included rs10035440 in *DROSHA*, and rs9606248 and rs1640299 in *DGCR8*. Interestingly, these three SNPs have putative roles in transcriptional regulation and may affect the expression levels of *DROSHA* or *DGCR8*. As a result, levels of miRNAs could be affected, leading to an increased ALL risk. Consistent with this hypothesis, a differentially expressed

miRNA profile and *DROSHA* gene expression have been observed in relation to another SNP, rs640831, being present in the lung tissue (Rotunno et al. 2010). Furthermore, increased expression of *DROSHA* and *DGCR8* has been shown to dysregulate miRNAs present in the pleomorphic adenomas of the salivary gland (X. Zhang et al. 2009). In contrast, decreased expression of *DROSHA* and *DGCR8* have been shown to accelerate cellular transformation and tumorigenesis (Kumar et al. 2007). Surprisingly, the association of these polymorphisms with the risk to develop other tumors has previously been analyzed (Yang et al. 2008, Horikawa et al. 2008, Sung et al. 2011), and no significant association was found. However, they had not been analyzed in ALL patients until now.

In conclusion, the results of this study indicate that SNP rs12803915 located in pre-mir-612 and SNP rs3746444 located in pre-mir-499 may represent novel markers of B-ALL susceptibility. It would be of great interest to confirm these results in different cohorts of patients. To our knowledge, this is the first extensive study to report miRNA-related SNPs associated with ALL risk.

## STATEMENT OF FINANCIAL SUPPORT

A.G.-C. was supported by a predoctoral grant from the Gangoiti Barrera Foundation, Bilbao, Spain. E.L.-L. was supported by a predoctoral grant of the Basque Government and "Fellowship for recent doctors until their integration in postdoctoral programs" by the Investigation Vicerector's office of the University of Basque Country (UPV/EHU). This project was supported by Spanish Thematic Network of Cooperative Research in Cancer (RD/06/0020/0048), the Basque Government (IT661-13, S-PE12UN060), and UPV/EHU (UFI11/35). Support by SGIker (UPV/EHU) is gratefully acknowledged.

## **CONFLICTS OF INTEREST**

The authors have no conflicts of interest to disclose.

## REFERENCES

- Akkiz, H., Bayram, S., Bekar, A., Akgöllü, E. and Üsküdar, O. (2011) 'Genetic variation in the microRNA-499 gene and hepatocellular carcinoma risk in a Turkish population: lack of any association in a case-control study', Asian Pac J Cancer Prev, 12(11), 3107-12.
- Alshatwi, A. A., Shafi, G., Hasan, T. N., Syed, N. A., Al-Hazzani, A. A., Alsaif, M. A. and Alsaif, A. A. (2012) 'Differential expression profile and genetic variants of microRNAs sequences in breast cancer patients', *PLoS One*, 7(2), e30049.

- Andersson, A., Ritz, C., Lindgren, D., Edén, P., Lassen, C., Heldrup, J., Olofsson, T., Råde, J., Fontes, M., Porwit-Macdonald, A., Behrendtz, M., Höglund, M., Johansson, B. and Fioretos, T. (2007) 'Microarray-based classification of a consecutive series of 121 childhood acute leukemias: prediction of leukemic and genetic subtype as well as of minimal residual disease status', *Leukemia*, 21(6), 1198-203.
- Catto, J. W., Miah, S., Owen, H. C., Bryant, H., Myers, K., Dudziec, E., Larré, S., Milo, M., Rehman, I., Rosario, D. J., Di Martino, E., Knowles, M. A., Meuth, M., Harris, A. L. and Hamdy, F. C. (2009)
   'Distinct microRNA alterations characterize high- and low-grade bladder cancer', *Cancer Res*, 69(21), 8472-81.
- Catucci, I., Yang, R., Verderio, P., Pizzamiglio, S., Heesen, L., Hemminki, K., Sutter, C., Wappenschmidt, B., Dick, M., Arnold, N., Bugert, P., Niederacher, D., Meindl, A., Schmutzler, R. K., Bartram, C. C., Ficarazzi, F., Tizzoni, L., Zaffaroni, D., Manoukian, S., Barile, M., Pierotti, M. A., Radice, P., Burwinkel, B. and Peterlongo, P. (2010) 'Evaluation of SNPs in miR-146a, miR196a2 and miR-499 as low-penetrance alleles in German and Italian familial breast cancer cases', *Hum Mutat*, 31(1), E1052-7.
- Chung, T. K., Lau, T. S., Cheung, T. H., Yim, S. F., Lo, K. W., Siu, N. S., Chan, L. K., Yu, M. Y., Kwong, J., Doran, G., Barroilhet, L. M., Ng, A. S., Wong, R. R., Wang, V. W., Mok, S. C., Smith, D. I., Berkowitz, R. S. and Wong, Y. F. (2012) 'Dysregulation of microRNA-204 mediates migration and invasion of endometrial cancer by regulating FOXC1', *Int J Cancer*, 130(5), 1036-45.
- DH, A., H, R., YK, C., YJ, J., KT, M., K, K., SP, H., SG, H. and NK, K. (2013) 'Association of the miR-146aC>G , miR-149T>C , miR-196a2T>C , and miR-499A>G polymorphisms with gastric cancer risk and survival in the Korean population', 52(Suppl 1:E39-51),
- Ellinghaus, E., Stanulla, M., Richter, G., Ellinghaus, D., te Kronnie, G., Cario, G., Cazzaniga, G., Horstmann, M., Panzer Grümayer, R., Cavé, H., Trka, J., Cinek, O., Teigler-Schlegel, A., ElSharawy, A., Häsler, R., Nebel, A., Meissner, B., Bartram, T., Lescai, F., Franceschi, C., Giordan, M., Nürnberg, P., Heinzow, B., Zimmermann, M., Schreiber, S., Schrappe, M. and Franke, A. (2012) 'Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia', *Leukemia*, 26(5), 902-9.
- Friedman, R. C., Farh, K. K., Burge, C. B. and Bartel, D. P. (2009) 'Most mammalian mRNAs are conserved targets of microRNAs', *Genome Res*, 19(1), 92-105.
- George, G. P., Gangwar, R., Mandal, R. K., Sankhwar, S. N. and Mittal, R. D. (2011) 'Genetic variation in microRNA genes and prostate cancer risk in North Indian population', *Mol Biol Rep*, 38(3), 1609-15.
- Hasani, S. S., Hashemi, M., Eskandari-Nasab, E., Naderi, M., Omrani, M. and Sheybani-Nasab, M. (2014)
   'A functional polymorphism in the miR-146a gene is associated with the risk of childhood acute lymphoblastic leukemia: a preliminary report', *Tumour Biol*, 35(1), 219-25.
- HK, K., L, P.-O. and SJ., C. (2012) 'Common genetic variants in miR-1206 (8q24.2) and miR-612 (11q13.3) affect biogenesis of mature miRNA forms', 7(10), e47454.
- Horikawa, Y., Wood, C. G., Yang, H., Zhao, H., Ye, Y., Gu, J., Lin, J., Habuchi, T. and Wu, X. (2008) 'Single nucleotide polymorphisms of microRNA machinery genes modify the risk of renal cell carcinoma', *Clin Cancer Res*, 14(23), 7956-62.
- Hu, Z., Chen, J., Tian, T., Zhou, X., Gu, H., Xu, L., Zeng, Y., Miao, R., Jin, G., Ma, H., Chen, Y. and Shen, H. (2008) 'Genetic variants of miRNA sequences and non-small cell lung cancer survival', J Clin Invest, 118(7), 2600-8.

- Kim, J. S., Choi, Y. Y., Jin, G., Kang, H. G., Choi, J. E., Jeon, H. S., Lee, W. K., Kim, D. S., Kim, C. H., Kim, Y. J., Son, J. W., Jung, T. H. and Park, J. Y. (2010) 'Association of a common AGO1 variant with lung cancer risk: a two-stage case-control study', *Mol Carcinog*, 49(10), 913-21.
- Kim, W. H., Min, K. T., Jeon, Y. J., Kwon, C. I., Ko, K. H., Park, P. W., Hong, S. P., Rim, K. S., Kwon, S. W., Hwang, S. G. and Kim, N. K. (2012) 'Association study of microRNA polymorphisms with hepatocellular carcinoma in Korean population', *Gene*, 504(1), 92-7.
- Koesters, R., Adams, V., Betts, D., Moos, R., Schmid, M., Siermann, A., Hassam, S., Weitz, S., Lichter, P., Heitz, P. U., von Knebel Doeberitz, M. and Briner, J. (1999) 'Human eukaryotic initiation factor EIF2C1 gene: cDNA sequence, genomic organization, localization to chromosomal bands 1p34p35, and expression', *Genomics*, 61(2), 210-8.
- KT, M., JW, K., YJ, J., MJ, J., SY, C., D, O. and NK, K. (2012) 'Association of the miR-146aC > G , 149C > T , 196a2C > T , and 499A > G polymorphisms with colorectal cancer in the Korean population', 51(Suppl 1:E65-73),
- Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R. and Jacks, T. (2007) 'Impaired microRNA processing enhances cellular transformation and tumorigenesis', *Nat Genet*, 39(5), 673-7.
- Li, Z., Zhang, W., Wu, M., Zhu, S., Gao, C., Sun, L., Zhang, R., Qiao, N., Xue, H., Hu, Y., Bao, S., Zheng, H. and Han, J. D. (2009) 'Gene expression-based classification and regulatory networks of pediatric acute lymphoblastic leukemia', *Blood*, 114(20), 4486-93.
- Liu, Z., Li, G., Wei, S., Niu, J., El-Naggar, A. K., Sturgis, E. M. and Wei, Q. (2010) 'Genetic variants in selected pre-microRNA genes and the risk of squamous cell carcinoma of the head and neck', *Cancer*, 116(20), 4753-60.
- Okubo, M., Tahara, T., Shibata, T., Yamashita, H., Nakamura, M., Yoshioka, D., Yonemura, J., Ishizuka, T., Arisawa, T. and Hirata, I. (2010) 'Association between common genetic variants in premicroRNAs and gastric cancer risk in Japanese population', *Helicobacter*, 15(6), 524-31.
- Papaemmanuil, E., Hosking, F. J., Vijayakrishnan, J., Price, A., Olver, B., Sheridan, E., Kinsey, S. E., Lightfoot, T., Roman, E., Irving, J. A., Allan, J. M., Tomlinson, I. P., Taylor, M., Greaves, M. and Houlston, R. S. (2009) 'Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia', *Nat Genet*, 41(9), 1006-10.
- Qiu, M. T., Hu, J. W., Ding, X. X., Yang, X., Zhang, Z., Yin, R. and Xu, L. (2012) 'Hsa-miR-499 rs3746444 polymorphism contributes to cancer risk: a meta-analysis of 12 studies', *PLoS One*, 7(12), e50887.
- Rotunno, M., Zhao, Y., Bergen, A. W., Koshiol, J., Burdette, L., Rubagotti, M., Linnoila, R. I., Marincola, F. M., Bertazzi, P. A., Pesatori, A. C., Caporaso, N. E., McShane, L. M., Wang, E. and Landi, M. T. (2010) 'Inherited polymorphisms in the RNA-mediated interference machinery affect microRNA expression and lung cancer survival', *Br J Cancer*, 103(12), 1870-4.
- Ryan, B. M., Robles, A. I. and Harris, C. C. (2010) 'Genetic variation in microRNA networks: the implications for cancer research', *Nat Rev Cancer*, 10(6), 389-402.
- Salzman, D. W. and Weidhaas, J. B. (2013) 'SNPing cancer in the bud: microRNA and microRNA-target site polymorphisms as diagnostic and prognostic biomarkers in cancer', *Pharmacol Ther*, 137(1), 55-63.
- Sambrook, J. and Russell, D. W. (2001) 'Preparation and Analysis of Eukaryotic Genomic DNA' in Molecular cloning: A laboratory manual, 3rd edition ed., Cold Spring Harbor, USA: CSHL Press, 4-12.

- Schotte, D., Akbari Moqadam, F., Lange-Turenhout, E. A., Chen, C., van Ijcken, W. F., Pieters, R. and den Boer, M. L. (2011) 'Discovery of new microRNAs by small RNAome deep sequencing in childhood acute lymphoblastic leukemia', *Leukemia*, 25(9), 1389-99.
- Sun, J., Zheng, S. L., Wiklund, F., Isaacs, S. D., Li, G., Wiley, K. E., Kim, S. T., Zhu, Y., Zhang, Z., Hsu, F. C., Turner, A. R., Stattin, P., Liu, W., Kim, J. W., Duggan, D., Carpten, J., Isaacs, W., Grönberg, H., Xu, J. and Chang, B. L. (2009) 'Sequence variants at 22q13 are associated with prostate cancer risk', *Cancer Res*, 69(1), 10-5.
- Sung, H., Lee, K. M., Choi, J. Y., Han, S., Lee, J. Y., Li, L., Park, S. K., Yoo, K. Y., Noh, D. Y., Ahn, S. H. and Kang, D. (2011) 'Common genetic polymorphisms of microRNA biogenesis pathway genes and risk of breast cancer: a case-control study in Korea', *Breast Cancer Res Treat*, 130(3), 939-51.
- Tao, S., Wang, Z., Feng, J., Hsu, F. C., Jin, G., Kim, S. T., Zhang, Z., Gronberg, H., Zheng, L. S., Isaacs, W. B., Xu, J. and Sun, J. (2012) 'A genome-wide search for loci interacting with known prostate cancer risk-associated genetic variants', *Carcinogenesis*, 33(3), 598-603.
- Tian, T., Shu, Y., Chen, J., Hu, Z., Xu, L., Jin, G., Liang, J., Liu, P., Zhou, X., Miao, R., Ma, H., Chen, Y. and Shen, H. (2009) 'A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese', *Cancer Epidemiol Biomarkers Prev*, 18(4), 1183-7.
- Treviño, L. R., Yang, W., French, D., Hunger, S. P., Carroll, W. L., Devidas, M., Willman, C., Neale, G., Downing, J., Raimondi, S. C., Pui, C. H., Evans, W. E. and Relling, M. V. (2009) 'Germline genomic variants associated with childhood acute lymphoblastic leukemia', *Nat Genet*, 41(9), 1001-5.
- Vinci, S., Gelmini, S., Mancini, I., Malentacchi, F., Pazzagli, M., Beltrami, C., Pinzani, P. and Orlando, C. (2013) 'Genetic and epigenetic factors in regulation of microRNA in colorectal cancers', *Methods*, 59(1), 138-46.
- Xiang, Y., Fan, S., Cao, J., Huang, S. and Zhang, L. P. (2012) 'Association of the microRNA-499 variants with susceptibility to hepatocellular carcinoma in a Chinese population', *Mol Biol Rep*, 39(6), 7019-23.
- Yang, H., Dinney, C. P., Ye, Y., Zhu, Y., Grossman, H. B. and Wu, X. (2008) 'Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer', *Cancer Res,* 68(7), 2530-7.
- Zhang, H., Yang, J. H., Zheng, Y. S., Zhang, P., Chen, X., Wu, J., Xu, L., Luo, X. Q., Ke, Z. Y., Zhou, H., Qu, L. H. and Chen, Y. Q. (2009) 'Genome-wide analysis of small RNA and novel MicroRNA discovery in human acute lymphoblastic leukemia based on extensive sequencing approach', *PLoS One*, 4(9), e6849.
- Zhang, X., Cairns, M., Rose, B., O'Brien, C., Shannon, K., Clark, J., Gamble, J. and Tran, N. (2009) 'Alterations in miRNA processing and expression in pleomorphic adenomas of the salivary gland', *Int J Cancer*, 124(12), 2855-63.
- Zhou, B., Wang, K., Wang, Y., Xi, M., Zhang, Z., Song, Y. and Zhang, L. (2011) 'Common genetic polymorphisms in pre-microRNAs and risk of cervical squamous cell carcinoma', *Mol Carcinog*, 50(7), 499-505.

# MicroRNAs SNPS involved in acute lymphoblastic leukemia susceptibility

Gutierrez-Camino A<sup>1</sup>, Martín-Guerrero I<sup>1</sup>, Dolzan V<sup>2</sup>, Jazbec J<sup>3</sup>, Carbone Bañeres A<sup>4</sup>, Garcia de Andoin N<sup>5,6</sup>, Sastre A<sup>7</sup>, Astigarraga I<sup>8,9</sup>, Navajas A<sup>9</sup>, Garcia-Orad A<sup>1,9</sup>

<sup>1</sup>Department of Genetics, Physic Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain; <sup>2</sup>Institute of Biochemistry, Faculty of Medicine, Ljubljana, Slovenia; <sup>3</sup>Department of oncology and haematology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia; <sup>4</sup>Department of Paediatrics, University Hospital Miguel Servet, Zaragoza, Spain; <sup>5</sup>Department of Paediatrics, University Hospital Donostia, San Sebastian, Spain; <sup>6</sup>BioDonostia Health Research Institute, San Sebastian, Spain; <sup>7</sup>Department of Oncohematology, University Hospital La Paz, Madrid, Spain; <sup>8</sup>Department of Paediatrics, University Hospital Cruces, Barakaldo, Spain; <sup>9</sup>BioCruces Health Research Institute, Barakaldo, Spain.

#### Abstract

The genetic basis of acute lymphoblastic leukemia (ALL) susceptibility has been supported by genome-wide association studies. Interestingly, 37.5% of SNPs found in these studies corresponds to intergenic regions, suggesting that non-coding regions, such as microRNAs (miRNAs), could play an important role in ALL risk. MiRNAs regulated more than 50% of human genes, including those involved in B-cell maturation, differentiation and proliferation. SNPs in miRNAs can alter their own levels or function, affecting its target gene expression. In ALL, only three studies of miRNA SNPs have been performed and nowadays the number of annotated miRNAs has increased substantially, therefore, the aim of this study was to determine the role of the currently described miRNAs SNPs in B-ALL susceptibility. We analyzed all variants in pre-miRNAs (MAF>1%) in two independent cohorts from Spain and Slovenia and evaluated the putative functional implication by *in silico* analysis. SNPs rs12402181 in mir3117 and rs62571442 in mir3689d2 were associated with B-ALL risk in both cohorts, possibly through its effect on MAPK signaling pathway. SNP rs10406069 in mir5196 was associated with the risk of developing B-hyperdiploid ALL, possibly by its own levels changes or a direct effect on *CD22* gene. These SNPs could be novel markers for B-ALL susceptibility.

Keywords: SNP, miRNAs, acute lymphoblastic leukaemia, susceptibility

## INTRODUCTION

Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy and a leading cause of death due to disease in children (Pui and Evans 2006, Greaves 2006). The genetic basis of ALL susceptibility has been supported, on one hand, by its association with certain congenital abnormalities (Xu et al. 2013) and, more recently, by several genome-wide association studies (GWAS). These GWAS identified common variants at *ARID5B, IKZF1, CEBPE* and *CDKN2A* influencing ALL risk in children of European descent (Treviño et al. 2009, Papaemmanuil et al. 2009, Xu et al. 2013, Sherborne et al. 2010, Migliorini et al. 2013, Orsi et al. 2012), results that have been repeatedly validated (Gutiérrez-Camino et al. 2013, Healy et al. 2010, Prasad et al. 2010, Ross et al. 2013). Interestingly, 37.5% of SNPs found in these GWASs corresponds to intergenic regions. These data suggest that non-coding regions could play an important role in the risk of ALL.

MicroRNAs (miRNAs) are non-coding RNA that regulate gene expression at the posttranscriptional level by binding to the 3' untranslated region (UTR) of a target mRNA, leading to its translation inhibition or degradation (Ryan et al. 2010). Through this mechanism, miRNAs regulate more than 50% of human genes, having an enormous impact on the function of any cell (Johanson et al. 2014), including B-lymphocytes.

It has been widely shown that miRNAs regulate B-cell maturation and function, controlling Bcell receptor (BCR) signaling, B-cell migration/adhesion, cell–cell interactions in immune niches, and the production and class-switching of immunoglobulins (Marques et al. 2015, Musilova and Mraz 2015). They also contribute to the regulation of important signaling pathways such as tyrosine kinase and Ras signaling (Musilova and Mraz 2015). The deregulation of these pathways has been demonstrated in ALL (Layton Tovar and Mendieta Zerón 2016). In fact, recent studies have found more than 200 miRNAs deregulated in pediatric B-ALL patients (Schotte et al. 2011, Schotte et al. 2009, Zhang et al. 2009, Duyu et al. 2014). All these data show the role of miRNAs in pediatric B-ALL evolution.

Genetic variations in miRNAs can alter their function affecting their targets genes expression. These variants can modify the miRNA expression levels if they are located in the pre-miRNA or the mRNA-miRNA binding if they are located in the seed region. Nowadays, several works have already described polymorphisms in miRNAs associated with the susceptibility to different types of cancer (Xia et al. 2014, Srivastava and Srivastava 2012). Despite all these evidences, only three studies analyzing the involvement of SNPs in miRNAs in the risk of ALL have been performed (Hasani et al. 2013, Tong et al. 2014, Gutierrez-Camino et al. 2014). Hasani and colleagues found rs2910164 in mir-146a associated with ALL susceptibility in a Iranian population of 75 children diagnosed with ALL (Hasani et al. 2013). Tong and colleagues found association between rs11614913 in mir196a-2 and ALL risk in a Chinese population of 574 pediatric ALL patients (Tong et al. 2014). Recently, our group found association between rs12803915 in miR-612, rs3746444 in miR-499 and rs10061133 in miR-449b and B-ALL risk in a Spanish cohort of 213 children (Gutierrez-Camino et al. 2014). Of note is the fact that although a relatively low number of SNPs were analyzed in miRNAs and B-ALL susceptibility, significant results were found.

Considering all these data and that nowadays the number of annotated miRNAs has increased substantially up to 2500 miRNAs approximately (Kozomara and Griffiths-Jones 2014), the aim of this study was to determine the role of the currently described SNPs in miRNAs in the risk of B-ALL. For this aim, we analyzed all variants in pre-miRNAs genes with a minor allele frequency higher than 1% in two independent cohorts of Spanish and Slovenian origin. The putative functional implication of significant variants was evaluated by *in silico* analysis.

## MATERIALS AND METHODS

#### Study Participants

A total of 310 Caucasian children diagnosed with B-ALL and 434 unrelated healthy controls were included in this study (Table 37). The Spanish cohort consisted of 231 children diagnosed with B-ALL between 2000 and 2011 in the Pediatric Oncology Units of four Spanish hospitals (University Hospital Cruces, University Hospital Donostia, University Hospital La Paz and University Hospital Miguel Servet) and 338 unrelated healthy individuals. The Slovenian cohort consisted of 79 Caucasian children diagnosed with B-ALL between 1993 and 2009, at the Department of Hematology and Oncology of the University Children's Hospital Ljubljana and 96 unrelated healthy individuals.

Data were collected objectively, blinded to genotypes, from the patients' medical files. The two most common ALL subtypes (B-lineage hyperdiploid ALL with more than 50 chromosomes (B-hyperdiploid) and B-lineage ALL bearing the t(12;21)/ETV6-RUNX1 fusion) were also analyzed. Sex and age data were systematically recorded from the clinical records (Table 38). Informed consent was obtained from all participants, or from their parents prior to sample collection. The study was approved by the ethics committees (PI2014039 and 62/07/03) and was carried out according to the Declaration of Helsinki.

|                                  | Spanish     | ı cohort    | Slovenia    | n cohort   |
|----------------------------------|-------------|-------------|-------------|------------|
|                                  | Patients    | Controls    | Patients    | Controls   |
| No. of individuals               | 231         | 338         | 79          | 96         |
| Mean age ± SE, y                 | 4.04 ± 3.61 | 57.8 ± 28.1 | 4.65 ± 5.41 | 44.5 ± 9.4 |
| Sex*                             |             |             |             |            |
| Males, n (%)                     | 128 (55.7)  | 157 (46.4)  | 41 (51.9)   | 58 (60.4)  |
| Females, n (%)                   | 102 (44.3)  | 181 (53.6)  | 38 (48.1)   | 38 (39.6)  |
| Genetic alterations <sup>#</sup> |             |             |             |            |
| Hyperdiploid                     | 56 (24.2)   | -           | 9 (11.4)    | -          |
| ETV6-RUNX1                       | 37 (16.0)   | -           | 12 (15.2)   | -          |
| MLL                              | 13 (5.6)    | -           | 4 (5.1)     | -          |
| BCR-ABL                          | 6 (2.6)     | -           | 1 (1.3)     | -          |
| E2A-PBX1                         | 6 (2.6)     | -           | -           | -          |
| Hipodiploid                      | 2 (0.9)     | -           | 1 (1.3)     | -          |
| Other                            | 1 (0.4)     | -           | 6 (7.6)     | -          |
| No alteration                    | 95 (41.1)   | -           | 48 (60.8)   | -          |
| No available                     | 21 (9.1)    | -           | 0           | -          |

Table 38: Characteristic of study population.

SE: standard error, y: years. \*There is no datum for one patient of the Spanish cohort. <sup>#</sup>Six patients have more than one alteration in the Spanish cohort and two of the patients have more than one alteration in the Slovenian cohort.

# Selection of genes and polymorphisms

We selected all the SNPs in pre-miRNAs with a MAF>0.01 in European/Caucasian populations described in the databases until May 2014. We decided to include all miRNAs due to the fact that they can regulate a wide range of genes that are not completely defined. Therefore, any miRNA could be implicated in the regulation of genes affecting ALL risk. Of a total of 1910 SNPs in 969 miRNAs found at the moment of the study, we included all the SNPs with a MAF>0.01, a total of 213 SNPs in 206 pre-miRNAs (Table 16). The SNP selection was performed using miRNA SNiPer (www.integratomics-time.com/miRNA-SNiPer/), NCBI (http://www.ncbi.nlm.nih.gov/snp/) and literature review.

# Genotype analyses

Genomic DNA was extracted from remission peripheral blood or bone marrow (with <5 % blast cells) as previously described (Sambrook and Russell 2001). DNA was quantified using PicoGreen (Invitrogen Corp., Carlsbad, CA).

For each sample, 400 ng of DNA were genotyped using the GoldenGate Genotyping Assay with Veracode technology according to the published Illumina protocol. Data were analyzed

with GenomeStudio software for genotype clustering and calling. Duplicate samples and CEPH trios (Coriell Cell Repository, Camden, NJ) were genotyped across the plates. SNPs showing Mendelian allele-transmission errors or showing discordant genotypes were excluded from the analysis.

# Statistical analysis

To identify any deviation in Hardy-Weinberg equilibrium (HWE) for the healthy controls, a  $\chi^2$  test was used. The association between genetic polymorphisms in cases and controls, as well as ALL subtypes and controls, was also evaluated using the  $\chi^2$  or Fisher's exact test. The effect sizes of the associations were estimated by the odds ratio from univariate logistic regression. The most significant test among codominant, dominant, recessive, and additive genetic models was selected. The results were adjusted for multiple comparisons by the False Discovery Rate (FDR) (Benjamini and Hochberg 1995). In all cases the significance level was set at 5%. Analyses were performed by using R v2.11 software.

# **Bioinformatic analysis**

# miRNAs secondary structures prediction

The RNAfold web tool (http://rna.tbi.univie.ac.at) was used to calculate the minimum free energy (MFE) secondary structures and to predict the most stable secondary structures of the miRNAs showing significant SNPs.

# Gene targets selection and pathways analysis

MirWalk (Dweep and Gretz 2015) (http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/ ) database was used to select miRNA targets. Targets predicted by at least 6 different algorithms provided by miRWalk were selected. Enriched pathway analyses of putative target genes were determined with ConsensusPath database (CPdB) (http://consensuspathdb.org/) (Kamburov et al. 2013) using the over-representation analysis module. Gene list were analyzed against the default collection of KEGG (Kanehisa et al. 2016), Reactome (Fabregat et al. 2016) and BioCarta (http://cgap.nci.nih.gov/Pathways/BioCarta\_Pathways) pathways databases. A conservative *p*-value cutoff (0.0001) was used.

# RESULTS

#### Genotyping Results

Genotyping analyses were performed in 310 patients with B-ALL (231 from Spain and 79 from Slovenia) and 434 unrelated healthy controls (338 from Spain and 96 from Slovenia). Successful genotyping was achieved for 718 of 744 DNA samples (96.5%), 217 children with B-ALL and 330 controls from the Spanish cohort and 75 children with B-ALL and 96 controls from the Slovenian cohort. From the total of 213 SNPs, after eliminating SNPs with genotyping failures (<80%), monomorphic in our population or with deviations from HWE in controls, a total of 135 SNPs (63.4%) were included in the association analysis (Table 39).

| N  | SNP        | Gene            | % Genotyping | MAF   | Alleles | Exclusion criteria              |
|----|------------|-----------------|--------------|-------|---------|---------------------------------|
| 1  | rs10061133 | hsa-mir-449b    | 100.0        | 0.079 | A:G     |                                 |
| 2  | rs10173558 | hsa-mir-1302-4  | 100.0        | 0.123 | T:C     |                                 |
| 3  | rs10406069 | hsa-mir-5196    | 99.3         | 0.209 | G:A     |                                 |
| 4  | rs10422347 | hsa-mir-4745    | 98.2         | 0.082 | C:T     |                                 |
| 5  | rs10461441 | hsa-mir-548ae-2 | 0.0          | 0.0   | T:T     | Genotyping failure              |
| 6  | rs10505168 | hsa-mir-2053    | 99.4         | 0.307 | A:G     |                                 |
| 7  | rs1055070  | hsa-mir-4700    | 99.7         | 0.059 | T:G     |                                 |
| 8  | rs1077020  | hsa-mir-943     | 0.0          | 0.0   | T:T     | Genotyping failure              |
| 9  | rs10878362 | hsa-mir-6074    | 0.0          | 0.0   | T:T     | Genotyping failure              |
| 10 | rs10934682 | hsa-mir-544b    | 100.0        | 0.159 | T:G     |                                 |
| 11 | rs11014002 | hsa-mir-603     | 0.0          | 0.0   | T:T     | Genotyping failure              |
| 12 | rs11032942 | hsa-mir-1343    | 0.0          | 0.0   | T:T     | Genotyping failure              |
| 13 | rs11156654 | hsa-mir-624     | 99.3         | 0.248 | T:A     |                                 |
| 14 | rs11237828 | hsa-mir-5579    | 0.0          | 0.0   | T:T     | Genotyping failure              |
| 15 | rs11259096 | hsa-mir-1265    | 99.9         | 0.056 | T:C     |                                 |
| 16 | rs11614913 | hsa-mir-196a-2  | 99.7         | 0.349 | C:T     |                                 |
| 17 | rs11651671 | hsa-mir-548at   | 0.0          | 0.0   | T:T     | Genotyping failure              |
| 18 | rs11713052 | hsa-mir-5092    | 100.0        | 0.038 | C:G     |                                 |
| 19 | rs11714172 | hsa-mir-4792    | 99.2         | 0.363 | T:G     |                                 |
| 20 | rs11907020 | hsa-mir-3192    | 99.9         | 0.02  | T:C     |                                 |
| 21 | rs11983381 | hsa-mir-4653    | 97.1         | 0.188 | A:G     |                                 |
| 22 | rs12197631 | hsa-mir-548a-1  | 0.0          | 0.0   | T:T     | Genotyping failure              |
| 23 | rs12355840 | hsa-mir-202     | 85.7         | 0.185 | T:C     | No HWE Slovenia<br>No HWE total |
| 24 | rs12402181 | hsa-mir-3117    | 100.0        | 0.135 | G:A     |                                 |
| 25 | rs12451747 | hsa-mir-1269b   | 0.0          | 0.0   | T:T     | Genotyping failure              |
| 26 | rs12456845 | hsa-mir-4744    | 99.9         | 0.036 | T:C     |                                 |
| 27 | rs12473206 | hsa-mir-4433    | 0.0          | 0.0   | T:T     | Genotyping failure              |
| 28 | rs12512664 | hsa-mir-4274    | 99.2         | 0.471 | A:G     |                                 |
| 29 | rs12523324 | hsa-mir-4277    | 0.0          | 0.0   | T:T     | Genotyping failure              |
| 30 | rs12780876 | hsa-mir-4293    | 99.4         | 0.289 | T:A     |                                 |

 Table 39: SNPs selected for the study.

| N  | SNP        | Gene           | % Genotyping | MAF   | Alleles | Exclusion criteria           |
|----|------------|----------------|--------------|-------|---------|------------------------------|
| 31 | rs12803915 | hsa-mir-612    | 99.3         | 0.161 | G:A     |                              |
| 32 | rs12879262 | hsa-mir-4309   | 99.7         | 0.145 | G:C     |                              |
| 33 | rs12894467 | hsa-mir-300    | 99.7         | 0.385 | C:T     |                              |
| 34 | rs13186787 | hsa-mir-1294   | 0.0          | 0.0   | T:T     | Genotyping failure           |
| 35 | rs13299349 | hsa-mir-3152   | 85.5         | 0.348 | G:A     |                              |
| 36 | rs1414273  | hsa-mir-548ac  | 0.0          | 0.0   | T:T     | Genotyping failure           |
| 37 | rs1439619  | hsa-mir-3175   | 86.1         | 0.498 | C:A     |                              |
| 38 | rs1572687  | hsa-mir-5007   | 99.4         | 0.45  | C:T     |                              |
| 39 | rs1683709  | hsa-mir-3612   | 100.0        | 0.199 | C:T     |                              |
| 40 | rs17022749 | hsa-mir-5700   | 0.0          | 0.0   | T:T     | Genotyping failure           |
| 41 | rs17091403 | hsa-mir-2110   | 99.9         | 0.089 | C:T     |                              |
| 42 | rs17111728 | hsa-mir-4422   | 100.0        | 0.068 | T:C     |                              |
| 43 | rs174561   | hsa-mir-1908   | 57.0         | 0.254 | T:C     | Genotyping failure           |
| 44 | rs17737028 | hsa-mir-3143   | 100.0        | 0.008 | A:G     |                              |
| 45 | rs17759989 | hsa-mir-633    | 99.9         | 0.017 | A:G     |                              |
| 46 | rs17797090 | hsa-mir-3652   | 99.9         | 0.109 | G:A     |                              |
| 47 | rs17885221 | hsa-mir-4733   | 99.7         | 0.057 | C:T     |                              |
| 48 | rs2042253  | hsa-mir-5197   | 99.6         | 0.22  | A:G     |                              |
| 49 | rs2043556  | hsa-mir-605    | 99.0         | 0.218 | A:G     |                              |
| 50 | rs2060455  | hsa-mir-4511   | 0.0          | 0.0   | T:T     | Genotyping failure           |
| 51 | rs2070960  | hsa-mir-3620   | 99.2         | 0.061 | C:T     |                              |
| 52 | rs2114358  | hsa-mir-1206   | 99.2         | 0.433 | T:C     |                              |
| 53 | rs215383   | hsa-mir-4494   | 99.2         | 0.178 | G:A     |                              |
| 54 | rs2241347  | hsa-mir-3130-1 | 0.0          | 0.0   | T:T     | Genotyping failure           |
| 55 | rs2273626  | hsa-mir-4707   | 89.0         | 0.471 | A:C     |                              |
| 56 | rs2289030  | hsa-mir-492    | 99.7         | 0.068 | C:G     |                              |
| 57 | rs2291418  | hsa-mir-1229   | 100.0        | 0.03  | C:T     |                              |
| 58 | rs2292181  | hsa-mir-564    | 99.7         | 0.042 | G:C     |                              |
| 59 | rs2292832  | hsa-mir-149    | 0.0          | 0.0   | T:T     | Genotyping failure           |
| 60 | rs2368392  | hsa-mir-604    | 99.4         | 0.248 | C:T     | No HWE Spain                 |
| 61 | rs243080   | hsa-mir-4432   | 98.3         | 0.43  | C:T     |                              |
| 62 | rs257095   | hsa-mir-4636   | 99.7         | 0.154 | A:G     |                              |
| 63 | rs2648841  | hsa-mir-1208   | 98.9         | 0.123 | C:A     |                              |
| 64 | rs2663345  | hsa-mir-3183   | 0.0          | 0.0   | T:T     | Genotyping failure           |
| 65 | rs266435   | hsa-mir-4804   | 99.3         | 0.136 | C:G     |                              |
| 66 | rs2682818  | hsa-mir-618    | 99.3         | 0.131 | C:A     |                              |
| 67 | rs28477407 | hsa-mir-4308   | 100.0        | 0.088 | C:T     |                              |
| 68 | rs28645567 | hsa-mir-378d-1 | 99.7         | 0.015 | G:A     |                              |
| 69 | rs28655823 | hsa-mir-4472-1 | 89.6         | 0.114 | G:C     |                              |
| 70 | rs28664200 | hsa-mir-1255a  | 82.3         | 0.247 | T:C     |                              |
| 71 | rs2910164  | hsa-mir-146a   | 99.9         | 0.249 | G:C     |                              |
| 72 | rs2967897  | hsa-mir-5695   | 100.0        | 0.0   | G:G     | Monomorphic                  |
| 73 | rs3112399  | hsa-mir-4803   | 99.3         | 0.447 | T:A     | No HWE Spain<br>No HWE total |
| 74 | rs34115976 | hsa-mir-577    | 98.9         | 0.196 | C:G     | No HWE Spain                 |

Table 39: SNPs selected for the study (continuation).

| N   | SNP        | Gene           | % Genotyping | MAF   | Alleles | Exclusion criteria              |
|-----|------------|----------------|--------------|-------|---------|---------------------------------|
| 75  | rs35196866 | hsa-mir-4669   | 0.0          | 0.0   | T:T     | Genotyping failure              |
| 76  | rs356125   | hsa-mir-2278   | 99.9         | 0.052 | G:A     |                                 |
| 77  | rs35613341 | hsa-mir-5189   | 99.6         | 0.339 | C:G     | No HWE Spain<br>No HWE total    |
| 78  | rs35650931 | hsa-mir-6076   | 99.9         | 0.094 | G:C     |                                 |
| 79  | rs35770269 | hsa-mir-449c   | 99.6         | 0.345 | A:T     |                                 |
| 80  | rs35854553 | hsa-mir-3166   | 86.5         | 0.068 | A:T     |                                 |
| 81  | rs367805   | hsa-mir-3936   | 99.0         | 0.309 | G:A     |                                 |
| 82  | rs3734050  | hsa-mir-6499   | 99.9         | 0.053 | C:T     |                                 |
| 83  | rs3746444  | hsa-mir-499a   | 99.3         | 0.205 | T:C     |                                 |
| 84  | rs3823658  | hsa-mir-5090   | 99.7         | 0.141 | G:A     |                                 |
| 85  | rs4112253  | hsa-mir-4751   | 99.9         | 0.365 | C:G     |                                 |
| 86  | rs41274239 | hsa-mir-96     | 99.7         | 0.001 | A:G     |                                 |
| 87  | rs41274312 | hsa-mir-187    | 99.7         | 0.006 | G:A     |                                 |
| 88  | rs41286570 | hsa-mir-154    | 100.0        | 0.0   | G:G     | Monomorphic                     |
| 89  | rs41291179 | hsa-mir-216a   | 100.0        | 0.056 | A:T     |                                 |
| 90  | rs41292412 | hsa-mir-122    | 99.9         | 0.002 | C:T     |                                 |
| 91  | rs4285314  | hsa-mir-3135b  | 0.0          | 0.0   | T:T     | Genotyping failure              |
| 92  | rs4414449  | hsa-mir-548ap  | 81.3         | 0.376 | T:C     |                                 |
| 93  | rs45530340 | hsa-mir-6084   | 99.9         | 0.0   | C:C     | Monomorphic                     |
| 94  | rs4577031  | hsa-mir-548ap  | 99.6         | 0.366 | A:T     |                                 |
| 95  | rs4674470  | hsa-mir-4268   | 99.7         | 0.214 | T:C     |                                 |
| 96  | rs4809383  | hsa-mir-941-1  | 86.4         | 0.117 | C:T     | No HWE Spain                    |
| 97  | rs4822739  | hsa-mir-548j   | 99.9         | 0.063 | C:G     |                                 |
| 98  | rs487571   | hsa-mir-5680   | 0.0          | 0.0   | T:T     | Genotyping failure              |
| 99  | rs4909237  | hsa-mir-595    | 99.6         | 0.164 | C:T     |                                 |
| 100 | rs4919510  | hsa-mir-608    | 99.4         | 0.198 | C:G     |                                 |
| 101 | rs515924   | hsa-mir-548al  | 99.3         | 0.1   | A:G     |                                 |
| 102 | rs521188   | hsa-mir-3671   | 100.0        | 0.035 | A:G     |                                 |
| 103 | rs56088671 | hsa-mir-4424   | 0.0          | 0.0   | T:T     | Genotyping failure              |
| 104 | rs56103835 | hsa-mir-323b   | 100.0        | 0.179 | T:C     |                                 |
| 105 | rs56195815 | hsa-mir-548aw  | 0.0          | 0.0   | T:T     | Genotyping failure              |
| 106 | rs56292801 | hsa-mir-5189   | 89.1         | 0.299 | G:A     | Ho HWE Spain<br>No HWE total    |
| 107 | rs57111412 | hsa-mir-1283-1 | 0.0          | 0.0   | T:T     | Genotyping failure              |
| 108 | rs58450758 | hsa-mir-559    | 0.0          | 0.0   | T:T     | Genotyping failure              |
| 109 | rs58834075 | hsa-mir-656    | 99.9         | 0.02  | C:T     |                                 |
| 110 | Rs5965660  | hsa-mir-888    | 99.9         | 0.157 | T:G     | No HWE Spain<br>No HWE Slovenia |
| 111 | rs5997893  | hsa-mir-3928   | 99.3         | 0.319 | G:A     |                                 |
| 112 | rs60308683 | hsa-mir-4762   | 0.0          | 0.0   | T:T     | Genotyping failure              |
| 113 | rs6062431  | hsa-mir-4326   | 98.6         | 0.328 | G:C     |                                 |
| 114 | rs60871950 | hsa-mir-4467   | 98.7         | 0.475 | G:A     |                                 |
| 115 | rs61388742 | hsa-mir-596    | 99.6         | 0.094 | T:C     |                                 |
| 116 | rs61938575 | hsa-mir-3922   | 85.9         | 0.285 | G:A     |                                 |

MAF **Exclusion criteria** Ν SNP Gene % Genotyping Alleles 117 rs61992671 hsa-mir-412 0.493 G:A 99.6 118 rs62154973 hsa-mir-4772 99.2 0.101 C:T No HWE Slovenia 0.066 119 rs62376935 hsa-mir-585 99.4 C:T No HWE total rs641071 hsa-mir-4482 Genotyping failure 120 0.0 0.0 T:T 121 rs6430498 hsa-mir-3679 99.0 0.326 G:A rs6505162 hsa-mir-423 122 0.0 0.0 T:T Genotyping failure rs6513496 hsa-mir-646 123 99.6 0.197 T:C rs66507245 hsa-mir-4731 Genotyping failure 124 0.0 0.0 T:T rs66683138 hsa-mir-3622a 125 0.0 0.0 T:T Genotyping failure 126 rs67042258 hsa-mir-6128 99.4 0.26 G:A 127 rs670637 hsa-mir-3167 94.7 0.0 T:T Monomorphic rs67182313 hsa-mir-4642 99.4 0.182 A:G 128 129 rs6726779 hsa-mir-4431 99.4 0.377 T:C hsa-mir-3910-1, rs67339585 Genotyping failure 130 0.0 0.0 T:T hsa-mir-3910-2 rs6787734 hsa-mir-3135a 131 0.0 0.0 T:T Genotyping failure rs67976778 hsa-mir-4305 0.0 T:T 132 0.0 Genotyping failure 133 rs68035463 hsa-mir-3144 99.4 0.223 C:A 134 rs6841938 hsa-mir-1255b-1 0.0 0.0 T:T Genotyping failure rs6977967 135 hsa-mir-3683 99.9 0.193 A:G 136 rs6997249 hsa-mir-3686 0.0 0.0 T:T Genotyping failure 137 rs701213 hsa-mir-4427 0.0 0.0 T:T Genotyping failure hsa-mir-378h rs702742 99.9 0.101 A:G 138 139 rs7070684 hsa-mir-548aj-2 0.0 0.0 T:T Genotyping failure 140 rs71363366 hsa-mir-1283-2 99.2 0.038 C:G 87.5 rs7205289 141 hsa-mir-140 0.0 C:C Monomorphic 142 rs7207008 hsa-mir-2117 99.3 0.468 T:A 143 rs7227168 hsa-mir-4741 99.3 0.116 C:T rs7247237 hsa-mir-3188 99.2 0.291 C:T 144 145 rs72502717 hsa-mir-3689f 0.0 0.0 T:T Genotyping failure rs72631816 hsa-mir-105-2 100.0 T:T Monomorphic 146 0.0 147 rs72631825 hsa-mir-222 100.0 G:G 0.0 Monomorphic 148 rs72631826 hsa-mir-16-1 99.9 0.0 T:T Monomorphic 149 rs72631827 hsa-mir-106b 99.9 G:G Monomorphic 0.0 150 rs72631831 hsa-mir-323b 100.0 0.0 G:G Monomorphic hsa-mir-183 151 rs72631833 100.0 0.0 G:G Monomorphic hsa-mir-3972 rs72646786 99.3 0.114 C:T 152 No HWE Slovenia rs72855836 hsa-mir-3976 99.6 0.052 153 G:A No HWE total rs72996752 hsa-mir-4999 95.0 154 0.249 A:G 155 rs73112689 hsa-mir-4459 0.0 0.0 T:T Genotyping failure rs7311975 hsa-mir-1178 0.041 156 99.4 T:C

Table 39: SNPs selected for the study (continuation).

0.0

0.0

0.0

0.0

0.0

0.0

T:T

T:T

T:T

Genotyping failure

Genotyping failure

Genotyping failure

rs73147065

rs73177830

rs73235381

157

158

159

hsa-mir-647

hsa-mir-4532

hsa-mir-548h-4

| N   | SNP        | Gene           | % Genotyping | MAF   | Alleles | Exclusion criteria |
|-----|------------|----------------|--------------|-------|---------|--------------------|
| 160 | rs73239138 | hsa-mir-1269a  | 99.4         | 0.247 | G:A     |                    |
| 161 | rs73410309 | hsa-mir-4739   | 0.0          | 0.0   | T:T     | Genotyping failure |
| 162 | rs74428911 | hsa-mir-4474   | 99.9         | 0.01  | G:T     | No HWE Spain       |
| 163 | rs74469188 | hsa-mir-6504   | 85.7         | 0 122 | T·C     | NO HWE total       |
| 164 | rs745666   | hsa-mir-3615   | 99.6         | 0.364 | CiG     |                    |
| 165 | rs74704964 | hsa-mir-518d   | 85.8         | 0.035 | C:T     |                    |
| 166 | rs74904371 | hsa-mir-2682   | 99.6         | 0.029 | C:T     |                    |
| 167 | rs74949342 | hsa-mir-5702   | 100.0        | 0.006 | C:G     |                    |
| 168 | rs7500280  | hsa-mir-4719   | 0.0          | 0.0   | T:T     | Genotyping failure |
| 169 | rs75019967 | hsa-mir-4477a  | 99.9         | 0.0   | A:A     | Monomorphic        |
| 170 | rs7522956  | hsa-mir-4742   | 99.7         | 0.233 | A:C     |                    |
| 171 | rs75598818 | hsa-mir-520f   | 99.7         | 0.027 | G:A     |                    |
| 172 | rs75715827 | hsa-mir-944    | 99.6         | 0.071 | T:C     |                    |
| 173 | rs75966923 | hsa-mir-4298   | 100.0        | 0.029 | C:A     |                    |
| 174 | rs76481776 | hsa-mir-182    | 99.3         | 0.086 | C:T     |                    |
| 175 | rs76800617 | hsa-mir-4521   | 100.0        | 0.023 | A:G     |                    |
| 176 | rs77055126 | hsa-mir-1303   | 0.0          | 0.0   | T:T     | Genotyping failure |
| 177 | rs7709117  | hsa-mir-4634   | 98.6         | 0.446 | A:G     |                    |
| 178 | rs77639117 | hsa-mir-576    | 99.4         | 0.017 | A:T     |                    |
| 179 | rs78396863 | hsa-mir-4743   | 99.4         | 0.011 | G:C     |                    |
| 180 | rs78541299 | hsa-mir-6075   | 100.0        | 0.003 | G:A     |                    |
| 181 | rs78790512 | hsa-mir-6083   | 100.0        | 0.175 | G:A     |                    |
| 182 | rs78831152 | hsa-mir-4789   | 99.7         | 0.091 | C:T     |                    |
| 183 | rs78832554 | hsa-mir-4786   | 99.9         | 0.024 | G:A     |                    |
| 184 | rs7896283  | hsa-mir-4481   | 67.4         | 0.404 | A:G     | Genotyping failure |
| 185 | rs7911488  | hsa-mir-1307   | 2.2          | 0.406 | A:G     | Genotyping failure |
| 186 | rs79397096 | hsa-mir-597    | 100.0        | 0.015 | G:A     |                    |
| 187 | rs79512808 | hsa-mir-3976   | 100.0        | 0.013 | T:G     |                    |
| 188 | rs80128580 | hsa-mir-5707   | 100.0        | 0.026 | G:A     |                    |
| 189 | rs8054514  | hsa-mir-3176   | 99.9         | 0.146 | T:G     |                    |
| 190 | rs8078913  | hsa-mir-4520a  | 94.4         | 0.447 | C:T     |                    |
| 191 | rs832733   | hsa-mir-4698   | 0.0          | 0.0   | T:T     | Genotyping failure |
| 192 | rs850108   | hsa-mir-550a-3 | 0.0          | 0.0   | T:T     | Genotyping failure |
| 193 | rs8667     | hsa-mir-4751   | 93.7         | 0.374 | G:A     |                    |
| 194 | rs877722   | hsa-mir-4671   | 100.0        | 0.125 | A:T     |                    |
| 195 | rs895819   | hsa-mir-27a    | 2.5          | 0.167 | T:C     | Genotyping failure |
| 196 | rs897984   | hsa-mir-4519   | 0.0          | 0.0   | T:T     | Genotyping failure |
| 197 | rs9295535  | hsa-mir-5689   | 0.0          | 0.0   | T:T     | Genotyping failure |
| 198 | rs936581   | hsa-mir-3141   | 99.6         | 0.169 | G:A     |                    |
| 199 | rs9842591  | hsa-mir-5186   | 85.9         | 0.457 | C:A     |                    |
| 200 | rs9877402  | hsa-mir-5680   | 85.7         | 0.052 | A:G     | _                  |
| 201 | rs9913045  | hsa-mir-548h-3 | 0.0          | 0.0   | T:T     | Genotyping failure |
| 202 | rs11048315 | hsa-mir-4302   | 99.4         | 0.127 | G:A     | No HWE total       |

Table 39: SNPs selected for the study (continuation).

Table 39: SNPs selected for the study (continuation).

| N   | SNP         | Gene                         | % Genotyping | MAF   | Alleles | Exclusion criteria |
|-----|-------------|------------------------------|--------------|-------|---------|--------------------|
| 203 | rs111803974 | hsa-mir-3908                 | 0.0          | 0.0   | T:T     | Genotyping failure |
| 204 | rs111906529 | hsa-mir-299, hsa-<br>mir-380 | 99.9         | 0.013 | T:C     |                    |
| 205 | rs112328520 | hsa-mir-520G                 | 99.2         | 0.064 | C:T     |                    |
| 206 | rs11269     | hsa-mir-1282                 | 100.0        | 0.0   | G:G     | Monomorphic        |
| 207 | rs113808830 | hsa-mir-4532                 | 99.4         | 0.102 | C:T     |                    |
| 208 | rs116932476 | hsa-mir-4479                 | 99.4         | 0.008 | G:A     |                    |
| 209 | rs117258475 | hsa-mir-296                  | 99.9         | 0.017 | G:A     |                    |
| 210 | rs117650137 | hsa-mir-6717                 | 100.0        | 0.033 | G:A     |                    |
| 211 | rs117723462 | hsa-mir-3649                 | 100.0        | 0.008 | T:G     |                    |
| 212 | rs163642    | hsa-mir-4436B2               | 0.0          | 0.0   | T:T     | Genotyping failure |
| 213 | rs62571442  | hsa-mir-3689                 | 98.9         | 0.43  | A:G     |                    |

# Genotype association study of B-ALL

From the total of 135 SNPs, we found two SNPs in two miRNAs, rs12402181 at mir3117-3p and rs62571442 at mir3689d2, significantly associated with B-ALL risk in the Spanish population, and validated in the Slovenian cohort (Table 40). In the Spanish cohort, the AA genotype of rs12402181 at mir3117-3p displayed a 1.44-fold increased risk of B-ALL (CI 95%: 1.01-2.08; p = 0.047) under the log-additive genetic model (GG vs AG vs AA). The same effect was observed in the Slovenian cohort (OR: 2.01; CI 95%: 1.02-3.95; p=0.041). When both populations were analyses together, they showed the same trend increasing the p value (OR: 1.53; CI 95%: 1.12-2.09; P = 0.006), showing the A allele as the risk allele (p=0.007).

The second SNP was rs62571442 at mir3689d2. In the Spanish cohort the CT/CC genotype showed a 1.48-fold increased risk of B-ALL (CI 95%: 1.02-2.15; p=0.039). In the Slovenian cohort, a higher p value was observed (OR: 3.57; CI 95%: 1.57-8.12; p=0.001). When both populations were analyzed together, they showed the same tendency (OR: 1.31; CI 95%: 1.06-1.60; p=0.011), being the C allele the risk allele in the total population (p=0.012).

When we analyzed the Spanish cohort independently, other 13 SNPs in 13 miRNAs were significantly associated with B-ALL risk. Among them, TT genotype of rs35854553 in mir3166 displayed the most significant association (OR: 0.35; Cl 95%: 0.18-0.67; p=0.0006). None of these 13 SNPs were replicated in the Slovenian population (Table 41).

|                        |                      |                | Spanish and Slovenian cohort          |                                    |                              | Spanish cohort |                                       |                                      | Slovenian cohort                 |        |                                     |                                     |                               |        |
|------------------------|----------------------|----------------|---------------------------------------|------------------------------------|------------------------------|----------------|---------------------------------------|--------------------------------------|----------------------------------|--------|-------------------------------------|-------------------------------------|-------------------------------|--------|
| Gene<br>(Location)     | SNP<br>(Position)    | Genotype       | N<br>(controls)<br>N=426              | N (cases)<br>N=292                 | OR(CI 95%)                   | Ρ              | N<br>(controls)<br>(N=330)            | N (cases)<br>(N=217)                 | OR(CI 95%)                       | Ρ      | N (controls)<br>(N=96)              | N (cases)<br>(N=75)                 | OR(CI 95%)                    | Ρ      |
| mir3117-3p<br>(1p31.3) | rs12402181<br>(seed) | GG<br>AG<br>AA | 332 (77.9)<br>90 (21.1)<br>4 (0.9)    | 203 (69.5)<br>82 (28.1)<br>7 (2.4) | Additive<br>1.53 (1.12-2.09) | 0.006*         | 257 (77.9)<br>71 (21.5)<br>2 (0.6)    | 155 (71.4)<br>57 (26.3)<br>5 (2.3)   | Additive<br>1.44 (1.01-<br>2.08) | 0.047* | 75 (78.1)<br>19 (19.8)<br>2 (2.1)   | 48 (64)<br>25 (33.3)<br>2 (2.7)     | Dominant<br>2.01 (1.02-3.95)  | 0.041* |
|                        |                      | G<br>A         | 754 (88.5)<br>98 (11.5)               | 488 (83.6)<br>96(16.4)             | 1.51 (1.11-2.05)             | 0.007*         | 585 (88.6)<br>75 (11.4)               | 367 (84.6)<br>67 (15.4)              | 1.42 (0.99-2.02)                 | 0.050* | 169 (88)<br>23 (12)                 | 121<br>(80.7)<br>29 (19.3)          | 1.76 (0.97-3.19)              | 0.06   |
| mir3689d2<br>(9q34.3)  | rs62571442<br>(PM)   | TT<br>CT<br>CC | 147 (35.1)<br>207 (49.4)<br>65 (15.5) | 82 (28.2)<br>145 (49.8)<br>64 (22) | Additive<br>1.32 (1.06-1.64) | 0.011*         | 117 (36.2)<br>151 (46.7)<br>55 (17.0) | 60 (27.8)<br>114 (52.8)<br>42 (19.4) | Dominant<br>1.48 (1.02-2.15)     | 0.039* | 30 (31.2)<br>56 (58.3)<br>10 (10.4) | 22 (29.3)<br>31 (41.3)<br>22 (29.3) | Recessive<br>3.57 (1.57-8.12) | 0.001* |
|                        |                      | T<br>C         | 501 (59.8)<br>337 (40.2)              | 309 (53.1)<br>273 (46.9)           | 1.31 (1.06-1.6)              | 0.012*         | 385 (59.6)<br>261 (40.4)              | 234 (54.2)<br>198 (45.8)             | 1.24 (0.97-1.59)                 | 0.07   | 116 (60.4)<br>76 (39.6)             | 75 (50)<br>75 (50)                  | 1.52 (0.99-2.34)              | 0.054  |

Abbreviation: PM: pre-miRNA, OR: Odd ratio, CI: Confidence interval \*Significant SNPs.

| Gene<br>(Location)    | SNP<br>(Position)  | Genotype       | N (controls)<br>(N=330)               | N (cases)<br>(N=217)                 | OR(CI 95%)                                         | Р      |
|-----------------------|--------------------|----------------|---------------------------------------|--------------------------------------|----------------------------------------------------|--------|
| mir3166<br>(11q14.2)  | rs35854553<br>(PM) | AA<br>AT<br>TT | 232 (83.2)<br>44 (15.8)<br>3 (1.1)    | 183 (93.4)<br>13 (6.6)<br>0          | Dominant<br>0.35 (0.18-0.67)                       | 0.0006 |
| mir3144<br>(6q22.31)  | rs68035463<br>(PM) | CC<br>AC<br>AA | 209 (63.7)<br>107 (32.6)<br>12 (3.7)  | 115 (53.5)<br>82 (38.1)<br>18 (8.4)  | Additive<br>1.51(1.13-2.01)                        | 0.004  |
| mir4745<br>(19p13.3)  | rs10422347<br>(M)  | CC<br>CT<br>TT | 283 (87.3)<br>40 (12.3)<br>1 (0.3)    | 166 (78.3)<br>44 (20.8)<br>2 (0.9)   | Recessive<br>1.91 (1.2-3.04)                       | 0.005  |
| mir5196<br>(19q13.12) | Rs10406069<br>(PM) | GG<br>AG<br>AA | 208 (63.8)<br>103 (31.6)<br>15 (4.6)  | 123 (56.9)<br>90 (41.7)<br>3 (1.4)   | Codominant<br>1.48 (1.03-2.12)<br>0.34 ((0.1-1.19) | 0.010  |
| mir612<br>(11q13.1)   | rs12803915<br>(PM) | GG<br>AG<br>AA | 213 (65.1)<br>104 (31.8)<br>10 (3.1)  | 161 (74.2)<br>54 (24.9)<br>2 (0.9)   | Additive<br>0.65(0.44-0.95)                        | 0.012  |
| mir300<br>(14q32.31)  | rs12894467<br>(PM) | CC<br>CT<br>TT | 148 (45.0)<br>141 (42.9)<br>40 (12.2) | 75 (34.7)<br>114 (52.8)<br>27 (12.5) | Dominant<br>1.54 (1.08-2.19)                       | 0.016  |
| mir595<br>(7q36.3)    | rs4909237<br>(PM)  | CC<br>CT<br>TT | 233 (70.8)<br>90 (27.4)<br>6 (1.8)    | 145 (67.1)<br>59 (27.3)<br>12 (5.6)  | Recessive<br>3.17 (1.17-8.57)                      | 0.018  |
| mir4653<br>(7q22.1)   | rs11983381<br>(PM) | AA<br>AG<br>GG | 227 (69)<br>96 (29.2)<br>6 (1.8)      | 121 (61.1)<br>68 (34.3)<br>9 (4.5)   | Additive<br>1.43 (1.04-1.98)                       | 0.029  |
| mir-2278<br>(9q22.32) | rs356125<br>(PM)   | GG<br>AG<br>AA | 291 (88.2)<br>36 (10.9)<br>3 (0.9)    | 202 (93.5)<br>14 (6.5)<br>0          | Dominant<br>0.52 (0.27-0.98)                       | 0.034  |
| mir4308<br>(14q22.3)  | Rs28477407<br>(PM) | CC<br>CT<br>TT | 281 (85.2)<br>46 (13.9)<br>3 (0.9     | 172 (79.3)<br>45 (20.7)<br>0         | Codominant<br>1.6(1.02-2.5)<br>0                   | 0.037  |
| mir4432               | rs243080<br>(PM)   | CC<br>CT<br>TT | 98 (29.8)<br>175 (53.2)<br>56 (17)    | 69 (32.9)<br>90 (42.9)<br>51 (24.3)  | Recessive<br>1.56 (1.02-2.4)                       | 0.040  |
| mir3683<br>(7p22.1)   | rs6977967<br>(PM)  | AA<br>AG<br>GG | 201 (60.9)<br>113 (34.2)<br>16 (4.8)  | 150 (69.4)<br>57 (26.4)<br>9 (4.2)   | Dominant<br>0.69(0.48-0.99)                        | 0.040  |
| mir4634<br>(5q35.2)   | rs7709117<br>(PM)  | AA<br>AG<br>GG | 104 (31.7)<br>155 (47.3)<br>69 (219   | 50 (23.7)<br>123 (58.3)<br>38 (18)   | Dominant<br>1.49 (1.01-2.22)                       | 0.042  |

 Table 41: Polymorphisms in miRNAs associated with B ALL risk in the Spanish cohort.

Abbreviation: PM: pre-miRNA, : mature, OR: Odd ratio, CI: Confidence interval

In the Slovenian cohort, other 11 SNPs in 10 miRNAs showed association with B-ALL risk, being TT genotype of rs72646786 in mir3972 the most significant (OR: 0.24; Cl 95%: 0.09-0.61; p=0.001). None of these 11 SNPs were replicated in the Spanish population (Table 42).

| Gene<br>(Location)     | SNP<br>(Position)  | Genotype       | N (controls)<br>(N=96)              | N (cases)<br>(N=79)                 | OR(CI 95%)                          | Р      |
|------------------------|--------------------|----------------|-------------------------------------|-------------------------------------|-------------------------------------|--------|
| mir3972<br>(1p36.13)   | rs72646786<br>(PM) | CC<br>CT<br>TT | 70 (72.9)<br>25 (26)<br>1 (1)       | 68 (91.9)<br>4 (5.4)<br>2 (2.7)     | Dominant<br>0.24 (0.09-0.61)        | 0.0011 |
| mir5189<br>(16q24.2)   | rs56292801<br>(PM) | GG<br>AG<br>AA | 51 (53.1)<br>41 (42.7)<br>4 (4.2)   | 33 (44.6)<br>27 (36.5)<br>14 (18.9) | Recessive<br>5.37 (1.69-17.08)      | 0.0017 |
| mir4293<br>(10p13)     | rs12780876<br>(PM) | TT<br>AT<br>AA | 28 (29.2)<br>54 (56.2)<br>14 (14.6) | 36 (48.6)<br>35 (47.3)<br>3 (4.1)   | Additive<br>0.45 (0.27-0.76)        | 0.0018 |
| mir5189<br>(16q24.2)   | rs35613341<br>(PM) | CC<br>CG<br>GG | 49 (51)<br>41 (42.7)<br>6 (6.2)     | 29 (39.2)<br>30 (40.5)<br>15 (20.3) | Recessive<br>3.81 (1.4-10.39)       | 0.005  |
| mir3175<br>(15q26.1)   | rs1439619<br>(PM)  | AA<br>AC<br>CC | 34 (35.4)<br>41 (42.7)<br>21 (21.9) | 8 (16)<br>23 (46)<br>19 (38)        | Additive<br>1.93 (1.19-3.11)        | 0.006  |
| mir5682<br>(3q13.33)   | rs9877402<br>(PM)  | AA<br>AG       | 88 (93.6)<br>6 (6.4)                | 39 (78)<br>11 (22)                  | Codominant<br>4.14 (1.43-11.9)      | 0.007  |
| mir3615<br>(17q25.1)   | rs745666<br>(PM)   | CC<br>CG<br>GG | 40 (41.7)<br>39 (40.6)<br>17 (17.7) | 30 (40)<br>41 (54.7)<br>4 (5.3)     | Recessive<br>0.27 (0.08-0.81)       | 0.010  |
| mir4772<br>(2q12.1)    | rs62154973<br>(M)  | CC<br>CT<br>TT | 69 (71.9)<br>27 (28.1)<br>0         | 60 (83.3)<br>10 (13.9)<br>2 (2.8)   | Codominant<br>0.43 (0.19-0.95)<br>0 | 0.018  |
| mir4520-1<br>(17p13.1) | rs8078913<br>(PM)  | СС<br>СТ<br>TT | 28 (32.2)<br>41 (47.1)<br>18 (20.7) | 10 (16.7)<br>31 (51.7)<br>19 (31.7) | Additive<br>1.7 (1.06-2.74)         | 0.026  |
| mir3166<br>(11q14.2)   | rs35854553<br>(PM) | AA<br>AT       | 86 (89.6)<br>10 (10.4)              | 38 (76)<br>12 (24)                  | Codominant<br>2.72 (1.08-6.83)      | 0.033  |
| mir548AL<br>(11q13.4)  | rs515924<br>(seed) | AA<br>AG<br>GG | 74 (77.1)<br>21 (21.9)<br>1 (1.0)   | 46 (62.2)<br>27 (36.5)<br>1 (1.4)   | Dominant<br>2.05 (1.05-4)           | 0.034  |

Table 42: Polymorphisms in miRNAs associated with B ALL risk in the Slovenian cohort.

Abbreviation: PM: pre-miRNA, M: mature, OR: Odd ratio, CI: Confidence interval

## Genotype association study considering B-ALL subtype

In the Spanish cohort we performed the subtype analysis in B-hyperdiploid group (n=56) and in the group of patients who carried ETV-RUNX1 fusion gene (n=37). In the Slovenian population the analyses were not performed due to the low number of patients in B-hyperdiploid (n=9) and ETV-RUNX1 (n=12) groups.

In the Spanish cohort rs10406069 at mir5196 was the SNP most significantly associated with Bhyperdiploid ALL (OR: 1.78; CI 95%: 1.11-2.85; p=0.0001), with the G allele being the protection allele. This SNP remained statistically significant after FDR correction (p=0.017). Other 10 SNPs showed associations, but they did not reach a significant value after correction (Table 43). Regarding patients carrying ETV6-RUNX1 fusion gene, none of the SNPs reached significant results after correction (Table 44).

| Gene<br>(Location)    | SNP<br>(Position)   | Genotype       | N (controls)<br>N=330                | N (cases)<br>N=54                  | OR (CI 95%)                    | Р       |
|-----------------------|---------------------|----------------|--------------------------------------|------------------------------------|--------------------------------|---------|
| mir5196<br>(19q13.12) | rs10406069<br>(PM)  | GG<br>AG<br>AA | 208 (63.8)<br>103 (31.6)<br>15 (4.6) | 21 (38.9)<br>33 (61.1)<br>0        | Additive<br>1.78 (1.11-2.85)   | 0.0001* |
| mir6128<br>(12q21.31) | rs2682818<br>(PM)   | CC<br>AC<br>AA | 241 (73.3)<br>82 (24.9)<br>6 (1.8)   | 48 (88.9)<br>6 (11.1)<br>0         | Dominant<br>0.34 (0.14-0.83)   | 0.007   |
| mir5090<br>(7q22.1)   | rs3823658<br>(seed) | GG<br>AG<br>AA | 238 (72.1)<br>89 (27)<br>3 (0.9)     | 40 (74.1)<br>10 (18.5)<br>4 (7.4)  | Recessive<br>8.72 (1.9-40.12)  | 0.007   |
| mir4751<br>(19q13.33) | rs8667<br>(PM)      | GG<br>AG<br>AA | 109 (38)<br>133 (46.3)<br>45 (15.7)  | 24 (44.4)<br>28 (51.9)<br>2 (3.7)  | Recessive<br>0.21 (0.05-0.88)  | 0.007   |
| mir1302-4<br>(2q33.3) | rs10173558<br>(PM)  | TT<br>CT<br>CC | 251 (76.1)<br>77 (23.3)<br>2 (0.6)   | 49 (90.7)<br>5 (9.3)<br>0 (0.0)    | Dominant<br>0.32 (0.12-0.84)   | 0.008   |
| mir3683<br>(7p22.1)   | rs6977967<br>(PM)   | AA<br>AG<br>GG | 201 (60.9)<br>113 (34.2)<br>16 (4.8) | 42 (77.8)<br>9 (16.7)<br>3 (5.6)   | Dominant<br>0.45 (0.23-0.88)   | 0.013   |
| mir4742<br>(1q42.11)  | rs7522956<br>(PM)   | AA<br>AC<br>CC | 204 (62)<br>110 (33.4)<br>15 (4.6)   | 26 (48.1)<br>21 (38.9)<br>7 (13)   | Additive<br>1.75 (1.12-2.73)   | 0.014   |
| mir4521<br>(17p13.1)  | rs76800617<br>(PM)  | AA<br>AG       | 315 (95.5)<br>15 (4.5)               | 47 (87)<br>7 (13)                  | Codominant<br>3.13 (1.21-8.07) | 0.027   |
| mir3144<br>(6q22.31)  | rs68035463<br>(PM)  | CC<br>AC<br>AA | 209 (63.7)<br>107 (32.6)<br>12 (3.7) | 29 (53.7)<br>19 (35.2)<br>6 (11.1) | Recessive<br>3.29 (1.18-9.18)  | 0.033   |
| mir4653<br>(7q22.1)   | rs11983381<br>(PM)  | AA<br>AG<br>GG | 227 (69)<br>96 (29.2)<br>6 (1.8)     | 27 (54)<br>22 (44)<br>1 (2)        | Dominant<br>1.9 (1.04-3.47)    | 0.039   |
| mir300<br>(14q32.31)  | rs12894467<br>(PM)  | CC<br>CT<br>TT | 148 (45)<br>141 (42.9)<br>40 (12.2)  | 16 (30.2)<br>28 (52.8)<br>9 (17)   | Dominant<br>1.89 (1.01-3.53)   | 0.040   |

 Table 43: Polymorphism associated with B-hyperdiploid ALL risk in the Spanish population.

Abbreviation: PM: pre-miRNA, OR: Odd ratio, CI: Confidence interval. \*Significant after FDR correction.

| Gene<br>(Location)    | SNP<br>(Position)    | Genotype       | N (controls)<br>(N=330)              | N (cases)<br>(N=35)                 | OR(CI 95%)                           | Р     |
|-----------------------|----------------------|----------------|--------------------------------------|-------------------------------------|--------------------------------------|-------|
| mir595<br>(7q36.3)    | rs4909237<br>(PM)    | CC<br>CT<br>TT | 233 (70.8)<br>90 (27.4)<br>6 (1.8)   | 20 (57.1)<br>11 (31.4)<br>4 (11.4)  | Recessive<br>6.95 (1.86-25.9)        | 0.009 |
| mir4293<br>(10p13)    | rs12780876<br>(PM)   | TT<br>AT<br>AA | 186 (56.9)<br>117 (35.8)<br>24 (7.3) | 14 (40)<br>14 (40)<br>7 (20)        | Additive<br>1.89 (1.15-3.1)          | 0.013 |
| mir300<br>(14q32.31)  | rs12894467<br>(PM)   | CC<br>CT<br>TT | 148 (45)<br>141 (42.9)<br>40 (12.2)  | 16 (45.7)<br>19 (54.3)<br>0         | -                                    | 0.021 |
| mir5186<br>(3q25.1)   | rs9842591<br>(PM)    | CC<br>AC<br>AA | 74 (26.5)<br>147 (52.7)<br>58 (20.8) | 14 (46.7)<br>10 (33.3)<br>6 (20)    | Dominant<br>0.41 (0.19-0.89)         | 0.025 |
| mir4751<br>(19q13.33) | rs8667<br>(PM)       | GG<br>AG<br>AA | 109 (38)<br>133 (46.3)<br>45 (15.7)  | 7 (20)<br>21 (60)<br>7 (20)         | Dominant<br>2.45 (1.03-5.8)          | 0.029 |
| mir1269a<br>(4q13.2)  | rs73239138<br>(M)    | GG<br>AG<br>AA | 193 (59)<br>115 (35.2)<br>19 (5.8)   | 27 (77.1)<br>8 (22.9)<br>0          | Dominant<br>1.00<br>0.43 (0.19-0.97) | 0.030 |
| mir4467<br>(7q22.1)   | rs60871950<br>(M)    | AA<br>AG<br>GG | 88 (26.9)<br>163 (49.8)<br>76 (23.2) | 4 (11.8)<br>18 (52.9)<br>12 (35.3)  | Additive<br>1.75 (1.04-2.93)         | 0.031 |
| mir585<br>(5q35.1)    | rs62376935<br>(seed) | CC<br>CT<br>TT | 297 (90)<br>31 (9.4)<br>2 (0.6)      | 26 (76.5)<br>8 (23.5)<br>0          | Dominant<br>2.77 (1.16-6.61)         | 0.032 |
| mir4789<br>(3q26.31)  | rs78831152<br>(PM)   | CC<br>CT<br>TT | 279 (84.5)<br>49 (14.8)<br>2 (0.6)   | 30 (85.7)<br>3 (8.6)<br>2 (5.7)     | Recessive<br>9.94 (1.36-72.8)        | 0.037 |
| mir4432<br>(2p16.1)   | rs243080<br>(PM      | CC<br>CT<br>TT | 98 (29.8)<br>175 (53.2)<br>56 (17)   | 10 (29.4)<br>13 (38.2)<br>11 (32.4) | Recessive<br>2.33 (1.08-5.06)        | 0.040 |

Table 44: Polymorphisms in miRNAs associated with ETV6-RUNX1 ALL risk in the Spanish population.

Abbreviation: PM: pre-miRNA, M: mature, OR: Odd ratio, CI: Confidence interval.

## **Bioinformatic analysis**

#### miRNAs secondary structures prediction

We analyzed *in silico* the energy change ( $|\Delta\Delta G|$ ) and the secondary structures modifications of the SNPs associated with B-ALL risk (rs12402181 at mir-3117-3p and rs62571442 at mir-3689d2) and the SNP associated with B-hyperdiploid ALL risk (rs10406069 at mir-5196).

The SNP rs12402181 is located in the seed region of mir-3117-3p. The change from G to A allele did not show either and energy change or change in the secondary structure. In the case of rs62571442, located in the pre-miRNA of mir-3689d2, showed an energy change from -31.2 kcal/mol for the T allele to -30.0 kcal/mol for the risk allele C (1.2 kcal/mol). This SNP also produced an evident change in the secondary structure (Figure 30A). Finally, rs10406069 at mir-5196, located in the pre-miRNA, showed an energy change from -53.50 kcal/mol for the G allele to -53.9 kcal/mol for the A allele (-0.4 kcal/mol) and a slight change in the secondary structure (Figure 30B).



# Pathway analysis

In order to evaluate the pathways that could be affected by the miRNAs with the most significant SNPs, we performed a pathway enrichment analysis by using miRWalk and the ConsensusPathDB web tools.

For mir-3117-3p, among the ten most significant pathways, we found the mitogen-activated protein kinase (MAPK) signaling pathway over-represented (p-value of  $4.9 \times 10^{-7}$ ) (Table 45). In this pathway, mir-3117-3p targeted up to 24 genes (Table 46). Moreover, 7 out of top 10 enriched pathways were related with Ras signaling cascade, which is one of the MAPK pathways (Table 45). For mir-3689d2, among the ten most significant pathways, 6 were also related with Ras signaling, and it targeted up to 32 genes involved in MAPK signaling (Table 47 and 48). When we analyzed the putative target genes of both miRNAs together, the association for MAPK signaling pathway increased up to p=5.75x10<sup>-13</sup>, with both miRNAs targeting up to 55 genes of the pathway. Moreover, 8 out of the top 10 pathways are related with Ras cascade (Figure 31 and Table 49).

| Pathway name                                                        | Set size | Candidates | Ρ                      | q-value  | Pathway<br>source |
|---------------------------------------------------------------------|----------|------------|------------------------|----------|-------------------|
| MAPK signaling pathway - Homo sapiens<br>(human)                    | 257      | 24 (9.3%)  | 4.94x10 <sup>-07</sup> | 0.000322 | KEGG              |
| Ras signaling pathway - Homo sapiens (human)                        | 228      | 21 (9.2%)  | 3.24x10 <sup>-06</sup> | 0.00106  | KEGG              |
| Choline metabolism in cancer - Homo sapiens<br>(human)              | 101      | 13 (12.9%) | 7.18x10 <sup>06</sup>  | 0.00149  | KEGG              |
| PDGF signaling pathway                                              | 27       | 7 (25.9%)  | 9.14x10 <sup>06</sup>  | 0.00149  | BioCarta          |
| Renal cell carcinoma - Homo sapiens (human)                         | 66       | 10 (15.2%) | 1.95x10 <sup>05</sup>  | 0.00254  | KEGG              |
| FoxO signaling pathway - Homo sapiens<br>(human)                    | 134      | 14 (10.4%) | 3.61x10 <sup>05</sup>  | 0.00317  | KEGG              |
| ErbB signaling pathway - Homo sapiens<br>(human)                    | 87       | 11 (12.6%) | 4.32x10 <sup>05</sup>  | 0.00317  | KEGG              |
| Signaling by EGFR in Cancer                                         | 15       | 5 (33.3%)  | 4.87x10 <sup>05</sup>  | 0.00317  | Reactome          |
| Constitutive Signaling by Ligand-Responsive<br>EGFR Cancer Variants | 15       | 5 (33.3%)  | 4.87x10 <sup>05</sup>  | 0.00317  | Reactome          |
| Signaling by Ligand-Responsive EGFR Variants<br>in Cancer           | 15       | 5 (33.3%)  | 4.87x10 <sup>05</sup>  | 0.00317  | Reactome          |
| Diseases of signal transduction                                     | 180      | 16 (8.9%)  | 7.45x10 <sup>05</sup>  | 0.00442  | Reactome          |

 Table 45: The enriched patways for mir-3117-3p.

 Table 46: Genes of MAPK signalling pathway targeted by mir-3117-3p.

| Entrez-gene ID | Entrez-gene name                                                                        |
|----------------|-----------------------------------------------------------------------------------------|
| 3845           | KRAS : Kirsten rat sarcoma viral oncogene homolog                                       |
| 5156           | PDGFRA : platelet-derived growth factor receptor, alpha polypeptide                     |
| 6197           | RPS6KA3 : ribosomal protein S6 kinase, 90kDa, polypeptide 3                             |
| 51776          | ZAK : sterile alpha motif and leucine zipper containing kinase AZK                      |
| 6722           | SRF : serum response factor (c-fos serum response element-binding transcription factor) |
| 2317           | FLNB : filamin B, beta                                                                  |
| 23162          | MAPK8IP3 : mitogen-activated protein kinase 8 interacting protein 3                     |
| 6789           | STK4 : serine/threonine kinase 4                                                        |
| 4763           | NF1 : neurofibromin 1                                                                   |
| 6416           | MAP2K4 : mitogen-activated protein kinase kinase 4                                      |
| 8913           | CACNA1G : calcium channel, voltage-dependent, T type, alpha 1G subunit                  |
| 786            | CACNG1 : calcium channel, voltage-dependent, gamma subunit 1                            |
| 5908           | RAP1B : RAP1B, member of RAS oncogene family                                            |
| 10000          | AKT3 : v-akt murine thymoma viral oncogene homolog 3                                    |
| 5922           | RASA2 : RAS p21 protein activator 2                                                     |
| 5923           | RASGRF1 : Ras protein-specific guanine nucleotide-releasing factor 1                    |
| 5924           | RASGRF2 : Ras protein-specific guanine nucleotide-releasing factor 2                    |
| 2885           | GRB2 : growth factor receptor-bound protein 2                                           |
| 1386           | ATF2 : activating transcription factor 2                                                |
| 7046           | TGFBR1 : transforming growth factor, beta receptor 1                                    |
| 59283          | CACNG8 : calcium channel, voltage-dependent, gamma subunit 8                            |
| 9693           | RAPGEF2 : Rap guanine nucleotide exchange factor (GEF) 2                                |
| 5599           | MAPK8 : mitogen-activated protein kinase 8                                              |
| 6654           | SOS1 : son of sevenless homolog 1 (Drosophila)                                          |

| Pathway name                                        | Set size | Candidates | Р                      | q-value              | Pathway<br>source |
|-----------------------------------------------------|----------|------------|------------------------|----------------------|-------------------|
| Axon guidance                                       | 459      | 59 (12.9%) | 4.69x10 <sup>13</sup>  | 4.24e <sup>-10</sup> | Reactome          |
| Developmental Biology                               | 586      | 68 (11.6%) | 9.47x10 <sup>13</sup>  | 4.28e <sup>-10</sup> | Reactome          |
| NGF signalling via TRKA from the plasma<br>membrane | 310      | 43 (13.9%) | 7.24x10 <sup>11</sup>  | 1.84e <sup>-08</sup> | Reactome          |
| Signalling by NGF                                   | 386      | 49 (12.7%) | 8.14x10 <sup>11</sup>  | 1.84e-08             | Reactome          |
| Signaling by PDGF                                   | 301      | 41 (13.6%) | 3.61x10 <sup>10</sup>  | 6.52e-08             | Reactome          |
| Signaling by EGFR                                   | 292      | 40 (13.7%) | 5.03x10 <sup>-10</sup> | 7.57e-08             | Reactome          |
| DAP12 interactions                                  | 298      | 40 (13.4%) | 9.29x10 <sup>-10</sup> | 1.2e-07              | Reactome          |
| Downstream signal transduction                      | 279      | 38 (13.6%) | $1.64 \times 10^{-09}$ | 1.25e-07             | Reactome          |
| Downstream signaling of activated FGFR2             | 267      | 37 (13.9%) | 1.66x10 <sup>-09</sup> | 1.25e-07             | Reactome          |
| Downstream signaling of activated FGFR1             | 267      | 37 (13.9%) | 1.66x10 <sup>-09</sup> | 1.25e-07             | Reactome          |

**Table 47:** The top ten enriched patways for mir-3689d2.

 Table 48: Genes of MAPK signalling pathway targeted by mir-3689d.

| Entrez-gene ID | Entrez-gene name                                                                        |
|----------------|-----------------------------------------------------------------------------------------|
| 5154           | PDGFA : platelet-derived growth factor alpha polypeptide                                |
| 5155           | PDGFB : platelet-derived growth factor beta polypeptide                                 |
| 5159           | PDGFRB : platelet-derived growth factor receptor, beta polypeptide                      |
| 4137           | MAPT : microtubule-associated protein tau                                               |
| 9479           | MAPK8IP1 : mitogen-activated protein kinase 8 interacting protein 1                     |
| 6195           | RPS6KA1 : ribosomal protein S6 kinase, 90kDa, polypeptide 1                             |
| 6722           | SRF : serum response factor (c-fos serum response element-binding transcription factor) |
| 208            | AKT2 : v-akt murine thymoma viral oncogene homolog 2                                    |
| 627            | BDNF : brain-derived neurotrophic factor                                                |
| 5778           | PTPN7 : protein tyrosine phosphatase, non-receptor type 7                               |
| 51347          | TAOK3 : TAO kinase 3                                                                    |
| 5494           | PPM1A : protein phosphatase, Mg2+/Mn2+ dependent, 1A                                    |
| 2768           | GNA12 : guanine nucleotide binding protein (G protein) alpha 12                         |
| 2250           | FGF5 : fibroblast growth factor 5                                                       |
| 10454          | TAB1 : TGF-beta activated kinase 1/MAP3K7 binding protein 1                             |
| 782            | CACNB1 : calcium channel, voltage-dependent, beta 1 subunit                             |
| 10000          | AKT3 : v-akt murine thymoma viral oncogene homolog 3                                    |
| 1850           | DUSP8 : dual specificity phosphatase 8                                                  |
| 1852           | DUSP9 : dual specificity phosphatase 9                                                  |
| 57551          | TAOK1 : TAO kinase 1                                                                    |
| 5609           | MAP2K7 : mitogen-activated protein kinase kinase 7                                      |
| 5532           | PPP3CB : protein phosphatase 3, catalytic subunit, beta isozyme                         |
| 1956           | EGFR : epidermal growth factor receptor                                                 |
| 5058           | PAK1 : p21 protein (Cdc42/Rac)-activated kinase 1                                       |
| 5578           | PRKCA : protein kinase C, alpha                                                         |
| 5579           | PRKCB : protein kinase C, beta                                                          |
| 2002           | ELK1 : ELK1, member of ETS oncogene family                                              |
| 27092          | CACNG4 : calcium channel, voltage-dependent, gamma subunit 4                            |
| 2005           | ELK4 : ELK4, ETS-domain protein (SRF accessory protein 1)                               |
| 5594           | MAPK1 : mitogen-activated protein kinase 1                                              |
| 5595           | MAPK3 : mitogen-activated protein kinase 3                                              |
| 3554           | IL1R1 : interleukin 1 receptor, type I                                                  |



Figure 31: Genes of the MAPK signaling pathway targeted by mir-3117-3p and mir-3689d2 (adapted from KEGG database).

| Pathway name                                        | Set<br>size | Candidates<br>contained | Р                      | q-value              | Pathway<br>source |
|-----------------------------------------------------|-------------|-------------------------|------------------------|----------------------|-------------------|
| Axon guidance                                       | 459         | 83 (18.1%)              | 2.77x10 <sup>-15</sup> | 3.13e <sup>-12</sup> | Reactome          |
| Developmental Biology                               | 586         | 96 (16.4%)              | $1.09 \times 10^{-14}$ | 6.16e <sup>-12</sup> | Reactome          |
| NGF signalling via TRKA from the plasma<br>membrane | 310         | 62 (20.0%)              | 1.1x10 <sup>-13</sup>  | 3.86e <sup>-11</sup> | Reactome          |
| Signalling by NGF                                   | 386         | 71 (18.4%)              | 1.37x10 <sup>-13</sup> | 3.86e <sup>-11</sup> | Reactome          |
| MAPK signaling pathway - Homo sapiens<br>(human)    | 257         | 54 (21.0%)              | 5.75x10 <sup>-13</sup> | 1.3e <sup>-10</sup>  | KEGG              |
| Signaling by EGFR                                   | 292         | 58 (19.9%)              | $9.62 \times 10^{-13}$ | 1.65e <sup>-10</sup> | Reactome          |
| Signaling by PDGF                                   | 301         | 59 (19.6%)              | 1.1x10 <sup>-12</sup>  | 1.65e <sup>-10</sup> | Reactome          |
| Signaling by FGFR3                                  | 270         | 55 (20.4%)              | $1.32 \times 10^{-12}$ | 1.65e <sup>-10</sup> | Reactome          |
| Signaling by FGFR4                                  | 270         | 55 (20.4%)              | $1.32 \times 10^{-12}$ | 1.65e <sup>-10</sup> | Reactome          |
| Signaling by FGFR1                                  | 271         | 55 (20.3%)              | $1.54 \times 10^{-12}$ | $1.74e^{-10}$        | Reactome          |

**Table 49**: Top ten enriched patways for mir-3117-3p and mir-3689d2.

Finally, for mir-5196, we did not find any pathway related with B-hyperdiploid ALL susceptibility (Table 50). However, we found up to 8 genes involved in histone modifications or centromeric chromatid formation (*PTPN11, CEP68, KDM5A, RFC5, TADA2A, BRMS1L, KIF24, ATXN7L3B*) that could be involved in aneuploidy.

 Table 50: Top ten enriched patways for mir-5196.

| Pathway name                                             | Set<br>size | Candidates | Ρ                      | q-value | Pathway<br>source |
|----------------------------------------------------------|-------------|------------|------------------------|---------|-------------------|
| Neurotrophin signaling pathway - Homo sapiens<br>(human) | 120         | 15 (12.5%) | 1.05x10 <sup>-05</sup> | 0.00701 | KEGG              |
| AMPK signaling pathway - Homo sapiens<br>(human)         | 124         | 14 (11.3%) | 6.5x10 <sup>-05</sup>  | 0.0184  | KEGG              |

## DISCUSSION

In the current study, rs12402181 in mir-3117 and rs62571442 in mir-3689d2 showed statistically significant association with B-ALL risk in the Spanish cohort, and were validated in the Slovenian population. In the subtype analysis, the most interesting result was the association between rs10406069 in mir-5196 and the risk of developing B-hyperdiploid ALL, which remains statistically significant after FDR correction. Our results point to a putative role of SNPs in B-ALL susceptibility.

The SNP rs12402181 in mir-3117-3p was associated with an increased risk of developing B-ALL under the additive model, being the A allele the risk allele. This result was observed in the Spanish cohort (p=0.047) and validated in the Slovenian population (p=0.041). The association increased when both populations were analyzed together (p=0.006). These results support the

idea that the A allele could represent a risk allele of low penetrance for B-ALL independently of the population studied. rs12402181 is located in the seed region of mir-3117-3p, therefore, the change of the G allele for the A allele could affect the accurate recognition of its target mRNA sequences. Among the target genes of mir-3117-3p, in silico analysis determined that genes of MAPK signaling pathway are over-represented, mainly those of the MAPK/ERK family or classical pathway (Kamburov et al. 2013, Dweep and Gretz 2015, Kanehisa et al. 2016). Interestingly, the genes predicted to be targeted for mir-3117-3p are in the first steps of the cascade (CACNA1D, CACNG1, CACNG8, PDGFR, GRB2, SOS1 and RAS), which in turn could produce the deregulation of the following steps. In addition, it was predicted that the risk allele of this SNP causes the loss of up to 7 target genes in this pathway (CACNA1D, CACNG1, CACNG8, SRF, MAP2K4, RAP1B and GRB2) (Gong et al. 2015), which could lead to an increased in their expression. Aberrant expression of this pathway is a major and highly prevalent oncogenic event in many human cancers (Masliah-Planchon et al. 2015), including childhood ALL (Barbosa et al. 2014, Case et al. 2008). Of note, miRNAs have been suggested to be involved in this process (Masliah-Planchon et al. 2015). In summary, failed recognition between mir-3117-3p and its targets due to the change of the G allele for the A allele of rs12402181 in the seed region could contribute to leukemogenesis by leading to an aberrant activation of the RAS-MAPK pathway.

The second SNP, rs62571442 in mir-3689d2, was associated with an increased risk of B-ALL under the additive model, being the C allele the allele which increased the risk of B-ALL. This result was observed in the Spanish cohort (p=0.039), as well as in the Slovenian population (p=0.001), indicating that this SNP could be a general marker for B-ALL. The change C>T in this SNP, located in the pre-miRNA sequence, modified the secondary structure and induced a positive energy change of 1.2 kcal/mol for the C risk allele. The hairpin structure changes from stable (U:A) to unstable status (C:A). When the SNP decreases the stability, the product of mature miRNA is reduced, which in turn may increase the target gene expression (Gong et al. 2012). In the pathway analysis of mir-3689d2, 6 out of the top 10 enriched pathways were again related to Ras signaling, aforementioned. Therefore, a decreased expression of this miRNA could increase the expression of Ras-related genes.

When pathways analysis for mir-3117-3p and mir-3689d2 were performed together, 8 out of the 10 first pathways were related with Ras signaling, and the association obtained is higher, as expected. Therefore, both miRNAs could contribute to the activation of this pathway: on the one hand, because of the loss of target recognition due to the SNP in the seed region of mir3117-3p, and on the other hand, because of the reduction in mature levels of mir3689d2 due to the risk allele in the hairpin structure. The fact that these SNPs showed the same trend in both populations, indicate that they could be considered as B-ALL markers. It would be interesting to study these associations in other populations.

In the subtype analysis we have found a strong association between rs10406069 AA genotype in mir-5196 and the risk to develop B-hyperdiploid ALL (p=0.0001), remaining significant after FDR correction (p=0.017). The rs10406069 SNP is located in the pre-miRNA, where the A risk allele increased slightly the stability of the hairpin structure ( $\Delta\Delta G$ =-0.4kcal/mol), which in turn may increase mir5196 expression (Gong et al. 2012). In fact, it has already been described that mir-5196 is overexpressed in B-hyperdiploid ALL (Schotte et al. 2011). This overexpression could repress its target genes. Among them, we found, for instance, PTPN11, a gene that encodes for Shp2, a tyrosine phosphatase whose depletion causes chromosome instability (Liu et al. 2012), which could be involved in hyperdiploid ALL. In addition, mir-5196 is hosted in CD22 gene, and it has been suggested that intronic miRNAs may affect the levels of their own host genes (Gao et al. 2012, Hinske et al. 2010). Moreover, this SNP also produces a missense variation (p.Gly745Asp) in exon 12 of CD22, which could affect its function. It has been described that alterations in CD22 could affect the transmission of apoptotic signals in primary leukemic cells from infants with B-ALL (Ma et al. 2012, Uckun et al. 2010). Therefore, rs10406069 A allele could increase the risk of B-hyperdiploid ALL either by repression of its target genes (*PTPN11* and *CD22*) or by its direct effect in *CD22*.

This study has some limitations that might be addressed, such as the relatively high failure rate in genotyping technique. However, this high chance of failure was accepted from the beginning of the study, because despite the predicted low score for genotyping, no other design option to amplify the polymorphisms in question was possible. Another possible weakness is the inaccuracy of the prediction algorithms of the databases used (Lee et al. 2015, Akhtar et al. 2016), but nowadays this limitation has to be assumed.

In conclusion, rs12402181 in mir-3117-3p and rs62571442 in mir-3689d2 could be involved in B-ALL susceptibility through its effect on the regulation of MAPK signaling-related pathways. The SNP rs10406069 in mir-5196 could be implicated in B-hyperdiplod ALL susceptibility by changes in expression levels of its own host gene or a direct effect on *CD22* gene.

## ACKNOWLEDGMENTS

This study was funded by the Basque Government (IT661-13), UPV/EHU (UFI11/35) and RTICC (RD12/0036/0060, RD12/0036/0036). AGC was supported by a pre-doctoral grant from the Basque Government.

## AUTHOR CONTRIBUTIONS

AGC, AGO: performed research, analysed data, and wrote the paper. IMG: performed research and analysed data. AS, AGA, IA, AN, ACB: provided clinical information and patient samples, analysed and interpreted data and wrote the paper.

# **CONFLICT OF INTEREST**

The authors declare no competing financial interests

#### REFERENCES

- Akhtar, M. M., Micolucci, L., Islam, M. S., Olivieri, F. and Procopio, A. D. (2016) 'Bioinformatic tools for microRNA dissection', *Nucleic Acids Res*, 44(1), 24-44.
- Barbosa, T. C., Andrade, F. G., Lopes, B. A., de Andrade, C. F., Mansur, M. B., Emerenciano, M. and Pombo-de-Oliveira, M. S. (2014) 'Impact of mutations in FLT3, PTPN11 and RAS genes on the overall survival of pediatric B cell precursor acute lymphoblastic leukemia in Brazil', *Leuk Lymphoma*, 55(7), 1501-9.
- Benjamini, Y. and Hochberg, Y. (1995) 'Controlling the false discovery rate: A practical and powerful approach to multiple testing', Soc Series B(
- Case, M., Matheson, E., Minto, L., Hassan, R., Harrison, C. J., Bown, N., Bailey, S., Vormoor, J., Hall, A. G. and Irving, J. A. (2008) 'Mutation of genes affecting the RAS pathway is common in childhood acute lymphoblastic leukemia', *Cancer Res*, 68(16), 6803-9.
- Duyu, M., Durmaz, B., Gunduz, C., Vergin, C., Yilmaz Karapinar, D., Aksoylar, S., Kavakli, K., Cetingul, N., Irken, G., Yaman, Y., Ozkinay, F. and Cogulu, O. (2014) 'Prospective evaluation of whole genome microRNA expression profiling in childhood acute lymphoblastic leukemia', *Biomed Res Int*, 2014, 967585.
- Dweep, H. and Gretz, N. (2015) 'miRWalk2.0: a comprehensive atlas of microRNA-target interactions', *Nat Methods*, 12(8), 697.
- Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw, R., Jassal, B., Jupe, S., Korninger, F., McKay, S., Matthews, L., May, B., Milacic, M., Rothfels, K., Shamovsky, V., Webber, M., Weiser, J., Williams, M., Wu, G., Stein, L., Hermjakob, H. and D'Eustachio, P. (2016) 'The Reactome pathway Knowledgebase', *Nucleic Acids Res*, 44(D1), D481-7.
- Gao, X., Qiao, Y., Han, D., Zhang, Y. and Ma, N. (2012) 'Enemy or partner: relationship between intronic micrornas and their host genes', *IUBMB Life*, 64(10), 835-40.

- Gong, J., Liu, C., Liu, W., Wu, Y., Ma, Z., Chen, H. and Guo, A. Y. (2015) 'An update of miRNASNP database for better SNP selection by GWAS data, miRNA expression and online tools', *Database (Oxford)*, 2015, bav029.
- Gong, J., Tong, Y., Zhang, H. M., Wang, K., Hu, T., Shan, G., Sun, J. and Guo, A. Y. (2012) 'Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis', *Hum Mutat*, 33(1), 254-63.
- Greaves, M. (2006) 'Infection, immune responses and the aetiology of childhood leukaemia', *Nat Rev Cancer*, 6(3), 193-203.
- Gutierrez-Camino, A., Lopez-Lopez, E., Martin-Guerrero, I., Piñan, M. A., Garcia-Miguel, P., Sanchez-Toledo, J., Carbone Bañeres, A., Uriz, J., Navajas, A. and Garcia-Orad, A. (2014) 'Noncoding RNArelated polymorphisms in pediatric acute lymphoblastic leukemia susceptibility', *Pediatr Res*, 75(6), 767-73.
- Gutiérrez-Camino, Á., López-López, E., Martín-Guerrero, I., Sánchez-Toledo, J., García de Andoin, N., Carboné Bañeres, A., García-Miguel, P., Navajas, A. and García-Orad, Á. (2013) 'Intron 3 of the ARID5B gene: a hot spot for acute lymphoblastic leukemia susceptibility', J Cancer Res Clin Oncol, 139(11), 1879-86.
- Hasani, S. S., Hashemi, M., Eskandari-Nasab, E., Naderi, M., Omrani, M. and Sheybani-Nasab, M. (2013)
   'A functional polymorphism in the miR-146a gene is associated with the risk of childhood acute lymphoblastic leukemia: a preliminary report', *Tumour Biol*.
- Healy, J., Richer, C., Bourgey, M., Kritikou, E. A. and Sinnett, D. (2010) 'Replication analysis confirms the association of ARID5B with childhood B-cell acute lymphoblastic leukemia', *Haematologica*, 95(9), 1608-11.
- Hinske, L. C., Galante, P. A., Kuo, W. P. and Ohno-Machado, L. (2010) 'A potential role for intragenic miRNAs on their hosts' interactome', *BMC Genomics*, 11, 533.
- Johanson, T. M., Skinner, J. P., Kumar, A., Zhan, Y., Lew, A. M. and Chong, M. M. (2014) 'The role of microRNAs in lymphopoiesis', *Int J Hematol*, 100(3), 246-53.
- Kamburov, A., Stelzl, U., Lehrach, H. and Herwig, R. (2013) 'The ConsensusPathDB interaction database: 2013 update', *Nucleic Acids Res*, 41(Database issue), D793-800.
- Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. and Tanabe, M. (2016) 'KEGG as a reference resource for gene and protein annotation', *Nucleic Acids Res*, 44(D1), D457-62.
- Kozomara, A. and Griffiths-Jones, S. (2014) 'miRBase: annotating high confidence microRNAs using deep sequencing data', *Nucleic Acids Res*, 42(Database issue), D68-73.
- Layton Tovar, C. F. and Mendieta Zerón, H. (2016) 'Intracellular Signaling Pathways Involved in Childhood Acute Lymphoblastic Leukemia; Molecular Targets', *Indian J Hematol Blood Transfus*, 32(2), 141-53.
- Lee, Y. J., Kim, V., Muth, D. C. and Witwer, K. W. (2015) 'Validated MicroRNA Target Databases: An Evaluation', *Drug Dev Res*, 76(7), 389-96.
- Liu, X., Zheng, H. and Qu, C. K. (2012) 'Protein tyrosine phosphatase Shp2 (Ptpn11) plays an important role in maintenance of chromosome stability', *Cancer Res*, 72(20), 5296-306.
- Ma, H., Qazi, S., Ozer, Z., Gaynon, P., Reaman, G. H. and Uckun, F. M. (2012) 'CD22 Exon 12 deletion is a characteristic genetic defect of therapy-refractory clones in paediatric acute lymphoblastic leukaemia', *Br J Haematol*, 156(1), 89-98.

- Marques, S. C., Laursen, M. B., Bødker, J. S., Kjeldsen, M. K., Falgreen, S., Schmitz, A., Bøgsted, M., Johnsen, H. E. and Dybkaer, K. (2015) 'MicroRNAs in B-cells: from normal differentiation to treatment of malignancies', *Oncotarget*, 6(1), 7-25.
- Masliah-Planchon, J., Garinet, S. and Pasmant, E. (2015) 'RAS-MAPK pathway epigenetic activation in cancer: miRNAs in action', *Oncotarget*.
- Migliorini, G., Fiege, B., Hosking, F. J., Ma, Y., Kumar, R., Sherborne, A. L., da Silva Filho, M. I., Vijayakrishnan, J., Koehler, R., Thomsen, H., Irving, J. A., Allan, J. M., Lightfoot, T., Roman, E., Kinsey, S. E., Sheridan, E., Thompson, P., Hoffmann, P., Nöthen, M. M., Mühleisen, T. W., Eisele, L., Zimmermann, M., Bartram, C. R., Schrappe, M., Greaves, M., Stanulla, M., Hemminki, K. and Houlston, R. S. (2013) 'Variation at 10p12.2 and 10p14 influences risk of childhood B-cell acute lymphoblastic leukemia and phenotype', *Blood*, 122(19), 3298-307.
- Musilova, K. and Mraz, M. (2015) 'MicroRNAs in B-cell lymphomas: how a complex biology gets more complex', *Leukemia*, 29(5), 1004-17.
- Orsi, L., Rudant, J., Bonaventure, A., Goujon-Bellec, S., Corda, E., Evans, T. J., Petit, A., Bertrand, Y., Nelken, B., Robert, A., Michel, G., Sirvent, N., Chastagner, P., Ducassou, S., Rialland, X., Hémon, D., Milne, E., Scott, R. J., Baruchel, A. and Clavel, J. (2012) 'Genetic polymorphisms and childhood acute lymphoblastic leukemia: GWAS of the ESCALE study (SFCE)', *Leukemia*, 26(12), 2561-4.
- Papaemmanuil, E., Hosking, F. J., Vijayakrishnan, J., Price, A., Olver, B., Sheridan, E., Kinsey, S. E., Lightfoot, T., Roman, E., Irving, J. A., Allan, J. M., Tomlinson, I. P., Taylor, M., Greaves, M. and Houlston, R. S. (2009) 'Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia', *Nat Genet*, 41(9), 1006-10.
- Prasad, R. B., Hosking, F. J., Vijayakrishnan, J., Papaemmanuil, E., Koehler, R., Greaves, M., Sheridan, E., Gast, A., Kinsey, S. E., Lightfoot, T., Roman, E., Taylor, M., Pritchard-Jones, K., Stanulla, M., Schrappe, M., Bartram, C. R., Houlston, R. S., Kumar, R. and Hemminki, K. (2010) 'Verification of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood', *Blood*, 115(9), 1765-7.
- Pui, C. H. and Evans, W. E. (2006) 'Treatment of acute lymphoblastic leukemia', *N Engl J Med*, 354(2), 166-78.
- Ross, J. A., Linabery, A. M., Blommer, C. N., Langer, E. K., Spector, L. G., Hilden, J. M., Heerema, N. A., Radloff, G. A., Tower, R. L. and Davies, S. M. (2013) 'Genetic variants modify susceptibility to leukemia in infants: a Children's Oncology Group report', *Pediatr Blood Cancer*, 60(1), 31-4.
- Ryan, B. M., Robles, A. I. and Harris, C. C. (2010) 'Genetic variation in microRNA networks: the implications for cancer research.', *Nat Rev Cancer*, 10(6), 389-402.
- Sambrook, J. and Russell, D. (2001) *Molecular cloning: A laboratory manual*, 3rd ed., Cold Spring Harbor, USA: CSHL Press.
- Schotte, D., Akbari Moqadam, F., Lange-Turenhout, E. A., Chen, C., van Ijcken, W. F., Pieters, R. and den Boer, M. L. (2011) 'Discovery of new microRNAs by small RNAome deep sequencing in childhood acute lymphoblastic leukemia', *Leukemia*, 25(9), 1389-99.
- Schotte, D., Chau, J. C., Sylvester, G., Liu, G., Chen, C., van der Velden, V. H., Broekhuis, M. J., Peters, T. C., Pieters, R. and den Boer, M. L. (2009) 'Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia', *Leukemia*, 23(2), 313-22.

- Sherborne, A. L., Hosking, F. J., Prasad, R. B., Kumar, R., Koehler, R., Vijayakrishnan, J., Papaemmanuil, E., Bartram, C. R., Stanulla, M., Schrappe, M., Gast, A., Dobbins, S. E., Ma, Y., Sheridan, E., Taylor, M., Kinsey, S. E., Lightfoot, T., Roman, E., Irving, J. A., Allan, J. M., Moorman, A. V., Harrison, C. J., Tomlinson, I. P., Richards, S., Zimmermann, M., Szalai, C., Semsei, A. F., Erdelyi, D. J., Krajinovic, M., Sinnett, D., Healy, J., Gonzalez Neira, A., Kawamata, N., Ogawa, S., Koeffler, H. P., Hemminki, K., Greaves, M. and Houlston, R. S. (2010) 'Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk', *Nat Genet*, 42(6), 492-4.
- Srivastava, K. and Srivastava, A. (2012) 'Comprehensive review of genetic association studies and metaanalyses on miRNA polymorphisms and cancer risk', *PLoS One*, 7(11), e50966.
- Tong, N., Xu, B., Shi, D., Du, M., Li, X., Sheng, X., Wang, M., Chu, H., Fang, Y., Li, J., Wu, D. and Zhang, Z. (2014) 'Hsa-miR-196a2 polymorphism increases the risk of acute lymphoblastic leukemia in Chinese children', *Mutat Res*, 759, 16-21.
- Treviño, L. R., Yang, W., French, D., Hunger, S. P., Carroll, W. L., Devidas, M., Willman, C., Neale, G., Downing, J., Raimondi, S. C., Pui, C. H., Evans, W. E. and Relling, M. V. (2009) 'Germline genomic variants associated with childhood acute lymphoblastic leukemia', *Nat Genet*, 41(9), 1001-5.
- Uckun, F. M., Goodman, P., Ma, H., Dibirdik, I. and Qazi, S. (2010) 'CD22 EXON 12 deletion as a pathogenic mechanism of human B-precursor leukemia', *Proc Natl Acad Sci U S A*, 107(39), 16852-7.
- Xia, L., Ren, Y., Fang, X., Yin, Z., Li, X., Wu, W., Guan, P. and Zhou, B. (2014) 'Prognostic role of common microRNA polymorphisms in cancers: evidence from a meta-analysis', *PLoS One*, 9(10), e106799.
- Xu, H., Yang, W., Perez-Andreu, V., Devidas, M., Fan, Y., Cheng, C., Pei, D., Scheet, P., Burchard, E. G., Eng, C., Huntsman, S., Torgerson, D. G., Dean, M., Winick, N. J., Martin, P. L., Camitta, B. M., Bowman, W. P., Willman, C. L., Carroll, W. L., Mullighan, C. G., Bhojwani, D., Hunger, S. P., Pui, C. H., Evans, W. E., Relling, M. V., Loh, M. L. and Yang, J. J. (2013) 'Novel Susceptibility Variants at 10p12.31-12.2 for Childhood Acute Lymphoblastic Leukemia in Ethnically Diverse Populations', J Natl Cancer Inst.
- Zhang, H., Yang, J. H., Zheng, Y. S., Zhang, P., Chen, X., Wu, J., Xu, L., Luo, X. Q., Ke, Z. Y., Zhou, H., Qu, L. H. and Chen, Y. Q. (2009) 'Genome-wide analysis of small RNA and novel MicroRNA discovery in human acute lymphoblastic leukemia based on extensive sequencing approach', *PLoS One*, 4(9), e6849.
## ANNEX II

| SNP        | Gene   | Genotype | N (controls) | N(cases)   | OR(CI 95%)        | P dom   |
|------------|--------|----------|--------------|------------|-------------------|---------|
|            |        |          | (N=387)      | (N=213)    |                   |         |
|            |        | TT       | 247 (72.0)   | 138 (73.0) | Dominant          |         |
| rs139919   | TNRC6B | СТ       | 93 (27.1)    | 43 (22.8)  | 1                 | 0.80400 |
|            |        | СС       | 3 (0.9)      | 8 (4.2)    | 0.95 (0.64-1.42)  |         |
|            |        | TT       | 139 (40.4)   | 83 (42.1)  | Dominant          |         |
| rs197412   | DDX20  | СТ       | 152 (44.2)   | 75 (38.1)  | 1                 | 0.6949  |
|            |        | СС       | 53 (15.4)    | 39 (19.8)  | 0.93 (0.65-1.33)  |         |
|            |        | GG       | 283 (81.6)   | 159 (79.1) | Dominant          |         |
| rs636832   | AGO1   | AG       | 61 (17.6)    | 35 (17.4)  | 1                 | 0.48550 |
|            |        | AA       | 3 (0.9)      | 7 (3.5)    | 1.17 (0.76-1.80)  |         |
|            |        | GG       | 231 (67.7)   | 128 (65.0) | Dominant          |         |
| rs6877842  | DROSHA | CG       | 99 (29.0)    | 58 (29.4)  | 1                 | 0.5124  |
|            |        | CC       | 11 (3.2)     | 11 (5.6)   | 1.13 (0.78 -1.64) |         |
|            |        | GG       | 188 (55.6)   | 108 (54.3) | Dominant          |         |
| rs2293939  | AGO2   | AG       | 132 (39.1)   | 77 (38.7)  | 1                 | 0.7614  |
|            |        | AA       | 18 (5.3)     | 14 (7.0)   | 1.06 (0.74-1.50)  |         |
|            |        | CC       | 194 (56.1)   | 110 (55.0) | Dominant          |         |
| rs1209904  | DICER1 | СТ       | 127 (36.7)   | 77 (38.5)  | 1                 | 0.8086  |
|            |        | TT       | 25 (7.2)     | 13 (6.5)   | 1.04 (0.74-1.48)  |         |
|            |        | GG       | 201 (59.1)   | 125 (62.8) | Dominant          |         |
| rs6497759  | TNRC6A | AG       | 117 (34.4)   | 64 (32.2)  | 1                 | 0.3962  |
|            |        | AA       | 22 (6.5)     | 10 5.0     | 0.86 (0.60-1.23)  |         |
|            |        | GG       | 302 (87.3)   | 175 (89.3) | Dominant          |         |
| rs417309   | DGCR8  | AG       | 41 (11.8)    | 20 (10.2)  | 1                 | 0.4874  |
|            |        | AA       | 3 (0.9)      | 1 (0.5)    | 0.82 (0.47-1.43)  |         |
|            |        | CC       | 301 (87.2)   | 173 (86.1) | Dominant          |         |
| rs3764942  | SMAD5  | тс       | 40 (11.6)    | 26 (12.9)  | 1                 | 0.6960  |
|            |        | TT       | 4 (1.2)      | 2 (1.0)    | 1.11 (0.67-1.84)  |         |
|            |        | GG       | 307 (88.2)   | 179 (89.5) | Codominante       |         |
| rs11644694 | CNOT1  | AG       | 41 (11.8)    | 21 (10.5)  | 1                 | 0.6469  |
|            |        |          |              |            | 0.88 (0.5-1.53)   |         |
|            |        | GG       | 208 (59.8)   | 105 (52.2) | Dominant          |         |
| rs37060    | CNOT1  | AG       | 123 (35.3)   | 81 (40.3)  | 1                 | 0.08636 |
|            |        | AA       | 17 (4.9)     | 15 (7.5)   | 1.36 (0.96-1.93)  |         |
|            |        | CC       | 134 (38.7)   | 97 (49.2)  | Dominant          |         |
| rs11866002 | CNOT1  | СТ       | 174 (50.3)   | 80 (40.6)  | 1                 | 0.01742 |
|            |        | Π        | 38 (11.0)    | 20 (10.2)  | 0.65 (0.46-0.93)  |         |
|            |        | CC       | 270 (78.3)   | 143 (74.5) | Dominant          |         |
| rs2740348  | GEMIN4 | CG       | 69 (20.0)    | 47 (24.5)  | 1                 | 0.3213  |
|            |        | GG       | 6 (1.7)      | 2 (1.0)    | 1.23 (0.82-1.86)  |         |
|            |        | AA       | 255 (73.3)   | 144 (73.1) | Dominant          |         |
| rs1062923  | GEMIN4 | AG       | 87 (25.0)    | 45 (22.8)  | 1                 | 0.9638  |
|            |        | GG       | 6 (1.7)      | 8 (4.1)    | 1.01 (0.68-1.50)  |         |

Annex table 1: All the results of SNPs in miRNA processing genes

| Annex table | 1: All the result           | s of SNPs in    | miRNA | processing genes | (continuation) |
|-------------|-----------------------------|-----------------|-------|------------------|----------------|
| Annex tuble | <b>1</b> . / III the result | 5 01 5111 5 111 |       | processing genes | (continuation) |

| SNP       | Gene   | Genotype | N (controls) | N(cases)   | OR(CI 95%)       | P dom   |
|-----------|--------|----------|--------------|------------|------------------|---------|
|           |        |          | (N=387)      | (N=213)    |                  |         |
|           |        | AA       | 113 (33.5)   | 66 (34.6)  | Dominant         |         |
| rs1106841 | XPO5   | AC       | 166 (49.3)   | 98 (51.3)  | 1                | 0.8114  |
|           |        | СС       | 58 (17.2)    | 27 (14.1)  | 0.96 (0.66-1.39) |         |
|           |        | AA       | 125 (37.0)   | 74 (38.9)  | Dominant         |         |
| rs3805500 | DROSHA | AG       | 158 (46.7)   | 87 (45.8)  | 1                | 0.6550  |
|           |        | GG       | 55 (16.3)    | 29 (15.3)  | 0.92 (0.64-1.33) |         |
|           |        | TT       | 156 (45.1)   | 76 (39.8)  | Dominant         |         |
| rs1057035 | DICER1 | СТ       | 152 (43.9)   | 94 (49.2)  | 1                | 0.2348  |
|           |        | СС       | 38 (11.0)    | 21 (11.0)  | 1.24 (0.87-1.78) |         |
|           |        | тт       | 220 (63.8)   | 132 (66.7) | Dominant         |         |
| rs13078   | DICER1 | AT       | 111 (32.2)   | 58 (29.3)  | 1                | 0.4952  |
|           |        | AA       | 14 (4.1)     | 8 (4.0)    | 0.88 (0.61-1.27) |         |
|           |        | GG       | 85 (24.4)    | 44 (22.1)  | Dominant         |         |
| rs1640299 | DGCR8  | TG       | 182 (52.1)   | 124 (62.3) | 1                | 0.55013 |
|           |        | Π        | 82 (23.5)    | 31 (15.6)  | 1.13 (0.75-1.72) |         |
|           |        | GG       | 193 (55.9)   | 113 (58.9) | Dominant         |         |
| rs10719   | DROSHA | AG       | 134 (38.8)   | 64 (33.3)  | 1                | 0.5132  |
|           |        | AA       | 18 (5.2)     | 15 (7.8)   | 0.89 (0.62-1.27) |         |
|           |        | GG       | 304 (88.6)   | 177 (91.7) | Dominant         |         |
| rs1106042 | PIWIL1 | AG       | 36 (10.5)    | 15 (7.8)   | 1                | 0.2524  |
|           |        | AA       | 3 (0.9)      | 1 (0.5)    | 0.70 (0.38-1.30) |         |
|           |        | GG       | 77 (22.8)    | 53 (27.0)  | Dominant         |         |
| rs784567  | TARBP2 | AG       | 181 (53.6)   | 95 (48.5)  | 1                | 0.2712  |
|           |        | AA       | 80 (23.7)    | 48 (24.5)  | 0.80 (0.53-1.19) |         |
|           |        | TT       | 273 (78.4)   | 160 (80.0) | Dominant         |         |
| rs1974777 | GEMIN5 | тс       | 72 (20.7)    | 38 (19.0)  | 1                |         |
|           |        | CC       | 3 (0.9)      | 2 (1.0)    | 0.91 (0.59-1.40) |         |
|           |        | СС       | 138 (40.4)   | 77 (39.3)  | Dominant         |         |
| rs14035   | RAN    | СТ       | 164 (48.0)   | 88 (44.9)  | 1                | 0.8081  |
|           |        | Π        | 40 (11.7)    | 31 (15.8)  | 1.05 (0.73-1.50) |         |
|           |        | CC       | 212 (63.1)   | 136 (70.5) | Dominant         |         |
| rs3812265 | CNOT4  | СТ       | 109 (32.4)   | 49 (25.4)  | 1                | 0.08367 |
|           |        | Π        | 15 (4.5)     | 8 (4.1)    | 0.72 (0.49-1.05) |         |
|           |        | AA       | 90 (25.9)    | 57 (28.8)  | Dominant         |         |
| rs2292778 | AGO2   | AG       | 175 (50.3)   | 90 (45.5)  | 1                | 0.4600  |
|           |        | GG       | 83 (23.9)    | 51 (25.8)  | 0.86 (0.58-1.27) |         |
|           |        | GG       | 202 (58.4)   | 107 (54.3) | Dominant         |         |
| rs2257082 | XPO5   | GA       | 123 (35.5)   | 76 (38.6)  | 1                | 0.3579  |
|           |        | AA       | 21 (6.1)     | 14 (7.1)   | 1.18 (0.83-1.68) |         |
|           |        | Π        | 186 (53.4)   | 108 (54.3) | Dominant         |         |
| rs2287584 | DROSHA | СТ       | 143 (41.1)   | 76 (38.2)  | 1                | 0.8526  |
|           |        | СС       | 19 (5.5)     | 15 (7.5)   | 0.97 (0.68-1.37) |         |

| Annex table 1: All the results of SNPs in miRNA processing genes (continuatio | Annex table | 1: All the result | s of SNPs in | miRNA | processing genes | (continuation |
|-------------------------------------------------------------------------------|-------------|-------------------|--------------|-------|------------------|---------------|
|-------------------------------------------------------------------------------|-------------|-------------------|--------------|-------|------------------|---------------|

| SNP        | Gene   | Genotype | N (controls) | N(cases)   | OR(CI 95%)       | P dom   |
|------------|--------|----------|--------------|------------|------------------|---------|
|            |        |          | (N=387)      | (N=213)    |                  |         |
|            |        | СС       | 260 (74.9)   | 150 (75.0) | Dominant         |         |
| rs3744741  | GEMIN4 | СТ       | 85 (24.5)    | 45 (22.5)  | 1                | 0.98506 |
|            |        | TT       | 2 (0.6)      | 5 (2.5)    | 1.00 (0.67-1.49) |         |
|            |        | СС       | 228 (65.5)   | 139 (69.2) | Dominant         |         |
| rs2227301  | XPO5   | СТ       | 106 (30.5)   | 55 (27.4)  | 1                | 0.3819  |
|            |        | тт       | 14 (4.0)     | 7 (3.5)    | 0.85 (0.58-1.23) |         |
|            |        | AA       | 189 (54.3)   | 103 (52.0) | Dominant         |         |
| rs17151639 | SND1   | AG       | 128 (36.8)   | 83 (41.9)  | 1                | 0.6061  |
|            |        | GG       | 31 (8.9)     | 12 (6.1)   | 1.10 (0.77-1.56) |         |
|            |        | GG       | 276 (79.5)   | 164 (82.8) | Dominant         |         |
| rs6865950  | GEMIN5 | AG       | 69 (19.9)    | 32 (16.2)  | 1                | 0.3459  |
|            |        | AA       | 2 (0.6)      | 2 (1.0)    | 0.81 (0.51-1.27) |         |
|            |        | AA       | 330 (95.1)   | 188 (94.0) | Dominant         |         |
| rs35987994 | DGCR8  | AG       | 16 (4.6)     | 10 (5.0)   | 1                | 0.5830  |
|            |        | GG       | 1 (0.3)      | 2 (1.0)    | 1.24 (0.58-2.65) |         |
|            |        | СС       | 298 (86.9)   | 178 (90.8) | Codominant       |         |
| rs34324334 | XPO5   | СТ       | 45 (13.1)    | 18 (9.2)   | 1                | 0.1645  |
|            |        |          |              |            | 0.67 (0.38-1.19) |         |
|            |        | TT       | 274 (78.5)   | 173 (86.5) | Dominant         |         |
| rs6877400  | CNOT6  | СТ       | 68 (19.5)    | 26 (13.0)  | 1                | 0.01822 |
|            |        | СС       | 7 (2.0 )     | 1 (0.5)    | 0.57 (0.35-0.92) |         |
|            |        | GG       | 263 (76.0)   | 143 (72.2) | Dominant         |         |
| rs7735863  | DROSHA | AG       | 73 (21.1)    | 52 (26.3)  | 1                | 0.3304  |
|            |        | AA       | 10 (2.9)     | 3 (1.5)    | 1.22 (0.82-1.81) |         |
|            |        | СС       | 166 (47.6)   | 91 (47.6)  | Dominant         |         |
| rs639174   | DROSHA | СТ       | 154 (44.1)   | 81 (42.4)  | 1                | 0.9859  |
|            |        | Π        | 29 (8.3)     | 19 (9.9)   | 1.00 (0.70-1.42) |         |
|            |        | π        | 158 (46.2)   | 86 (43.9)  | Dominant         |         |
| rs3764941  | SMAD5  | GT       | 150 (43.9)   | 88 (44.9)  | 1                | 0.6026  |
|            |        | GG       | 34 (9.9)     | 22 (11.2)  | 1.10 (0.77-1.56) |         |
|            |        | AA       | 163 (46.8)   | 98 (48.8)  | Dominant         |         |
| rs3823994  | SND1   | AT       | 157 (45.1)   | 87 (43.3)  | 1                | 0.6648  |
|            |        | Π        | 28 (8.0)     | 16 (8.0)   | 0.93 (0.65-1.31) |         |
|            |        | СС       | 259 (74.6)   | 155 (77.5) | Dominant         |         |
| rs3763425  | CNOT4  | СТ       | 79 (22.8)    | 43 (21.5)  | 1                | 0.4509  |
|            |        | Π        | 9 (2.6)      | 2 (1.0)    | 0.85 (0.57-1.29) |         |
|            |        | AA       | 312 (89.9)   | 176 (88.0) | Dominant         |         |
| rs3792830  | DROSHA | AG       | 34 (9.8)     | 23 (11.5)  | 1                | 0.4899  |
|            |        | GG       | 1 (0.3)      | 1 (0.5)    | 1.22 (0.70-2.11) |         |
|            |        | AA       | 106 (30.4)   | 69 (34.3)  | Dominant         |         |
| rs4867329  | DROSHA | AC       | 166 (47.6)   | 91 (45.3)  | 1                | 0.3388  |
|            |        | СС       | 77 (22.1)    | 41 (20.4)  | 0.83 (0.58-1.21) |         |

| Annex table 1: All the resu | ts of SNPs in miRNA | processing genes | (continuation) |
|-----------------------------|---------------------|------------------|----------------|
|-----------------------------|---------------------|------------------|----------------|

| SNP        | Gene   | Genotype | N (controls) | N(cases)   | OR(CI 95%)       | P dom   |
|------------|--------|----------|--------------|------------|------------------|---------|
|            |        |          | (N=387)      | (N=213)    |                  |         |
|            |        | AA       | 205 (58.9)   | 135 (67.8) | Dominant         |         |
| rs9606248  | DGCR8  | AG       | 126 (36.2)   | 61 (30.7)  | 1                | 0.03725 |
|            |        | GG       | 17 (4.9)     | 3 (1.5)    | 0.68 (0.47-0.98) |         |
|            |        | GG       | 273 (78.4)   | 167 (83.1) | Dominant         |         |
| rs9611280  | TNRC6B | AG       | 70 (20.1)    | 34 (16.9)  | 1                | 0.1856  |
|            |        | AA       | 5 (1.4)      | 0 (0.0)    | 0.74 (0.47-1.16) |         |
|            |        | AA       | 170 (49.4)   | 92 (48.7)  | Dominant         |         |
| rs4821943  | TNRC6B | AG       | 143 (41.6)   | 76 (40.2)  | 1                | 0.8699  |
|            |        | GG       | 31 (9.0)     | 21 (11.1)  | 1.03 (0.72-1.47) |         |
|            |        | AA       | 242 (71.2)   | 137 (71.4) | Dominant         |         |
| rs197388   | DDX20  | AT       | 89 (26.2)    | 48 (25.0)  | 1                | 0.9653  |
|            |        | ττ       | 9 (2.6)      | 7 (3.6)    | 0.99 (0.67-1.47) |         |
|            |        | AA       | 302 (88.3)   | 173 (93.5) | Codominant       |         |
| rs17408716 | DROSHA | AG       | 40 (11.7)    | 12 (6.5)   | 1                | 0.04847 |
|            |        |          |              |            | 0.52 (0.27-1.03) |         |
|            |        | CC       | 246 (71.3)   | 148 (75.5) | Dominant         |         |
| rs17676986 | SND1   | СТ       | 95 (27.5)    | 44 (22.4)  | 1                | 0.2881  |
|            |        | TT       | 4 (1.2)      | 4 (2.0)    | 0.81 (0.54-1.20) |         |
|            |        | GG       | 281 (82.2)   | 169 (86.7) | Dominant         |         |
| rs6884823  | DROSHA | AG       | 54 (15.8)    | 26 (13.3)  | 1                | 0.16814 |
|            |        | AA       | 7 (2.0)      | 0 (0.0)    | 0.71 (0.43-1.17) |         |
|            |        | СС       | 241 (69.1)   | 137 (68.5) | Dominant         |         |
| rs4961280  | AGO2   | CA       | 101 (28.9)   | 53 (26.5)  | 1                | 0.89266 |
|            |        | AA       | 7 (2.0)      | 10 (5.0)   | 1.03 (0.71-1.49) |         |
|            |        | AA       | 242 (71.4)   | 132 (67.7) | Dominant         |         |
| rs595961   | AGO1   | AG       | 87 (25.7)    | 50 (25.6)  | 1                | 0.37098 |
|            |        | GG       | 10 (2.9)     | 13 (6.7)   | 1.19 (0.81-1.74) |         |
|            |        | GG       | 248 (71.7)   | 139 (69.2) | Dominant         |         |
| rs7755135  | XPO5   | AG       | 92 (26.6)    | 57 (28.4)  | 1                | 0.5327  |
|            |        | AA       | 6 (1.7)      | 5 (2.5)    | 1.13 (0.77-1.65) |         |
|            |        | Π        | 217 (62.7)   | 130 (66.0) | Dominant         |         |
| rs563002   | DDX20  | СТ       | 113 (32.7)   | 58 (29.4)  | 1                | 0.4442  |
|            |        | CC       | 16 (4.6)     | 9 (4.6)    | 0.87 (0.60-1.25) |         |
|            |        | TT       | 213 (62.8)   | 108 (54.5) | Dominant         |         |
| rs10035440 | DDX20  | СТ       | 109 (32.2)   | 72 (36.4)  | 1                | 0.05939 |
|            |        | CC       | 17 (5.0)     | 18 (9.1)   | 1.41 (0.99-2.01) |         |

| SNP        | Gene         | Genotype | N (controls) | N(cases)   | OR(CI 95%)       | P dom   |
|------------|--------------|----------|--------------|------------|------------------|---------|
|            |              |          | (N=387)      | (N=213)    |                  |         |
|            |              | CC       | 235 (68.7)   | 134 (67.3) | Dominant         |         |
| rs34115976 | hsa-mir-577  | CG       | 93 (27.2)    | 58 (29.1)  | 1                | 0.7404  |
|            |              | GG       | 14 (4.1)     | 7 (3.5)    | 1.07 (0.73-1.55) |         |
|            |              | CC       | 280 (81.4)   | 153 (76.1) | Dominant         |         |
| rs2682818  | hsa-mir-618  | AC       | 61 (17.7)    | 45 (22.4)  | 1                | 0.1442  |
|            |              | AA       | 3 (0.9)      | 3 (1.5)    | 1.37 (0.90-2.10) |         |
|            |              | CC       | 244 (74.4)   | 144 (76.2) | Dominant         |         |
| rs550894   | hsa-mir-612  | AC       | 76 (23.2)    | 39 (20.6)  | 1                | 0.6480  |
|            |              | AA       | 8 (2.4)      | 6 (3.2)    | 0.91 (0.60-1.38) |         |
|            |              | CC       | 162 (47.1)   | 86 (43.2)  | Dominant         |         |
| rs322825   | hsa-mir-593  | СТ       | 152 (44.2)   | 98 (49.2)  | 1                | 0.3818  |
|            |              | TT       | 30 (8.7)     | 15 (7.5)   | 1.17 (0.82-1.66) |         |
|            |              | CC       | 125 (36.1)   | 67 (34.0)  | Dominant         |         |
| rs12894467 | hsa-mir-300  | СТ       | 165 (47.7)   | 96 (48.7)  | 1                | 0.6193  |
|            |              | TT       | 56 (16.2)    | 34 (17.3)  | 1.10 (0.76-1.58) |         |
|            |              | CC       | 214 (62.8)   | 122 (61.3) | Dominant         |         |
| rs4919510  | hsa-mir-608  | CG       | 108 (31.7)   | 69 (34.7)  | 1                | 0.7376  |
|            |              | GG       | 19 (5.6)     | 8 (4.0)    | 1.06 (0.74-1.52) |         |
|            |              | AA       | 110 (31.6)   | 64 (32.2)  | Dominant         |         |
| rs2114358  | hsa-mir-1206 | AG       | 181 (52.0)   | 100 (50.3) | 1                | 0.8940  |
|            |              | GG       | 57 (16.4)    | 35 (17.6)  | 0.97 (0.67-1.42) |         |
|            |              | TT       | 170 (49.0)   | 83 (41.9)  | Dominant         |         |
| rs895819   | hsa-mir-27a  | СТ       | 137 (39.5)   | 96 (48.5)  | 1                | 0.11082 |
|            |              | CC       | 40 (11.5)    | 19 (9.6)   | 1.33 (0.94-1.89) |         |
|            |              | TT       | 213 (62.8)   | 108 (54.5) | Dominant         |         |
| rs10035440 | C5orf22      | СТ       | 109 (32.2)   | 72 (36.4)  | 1                | 0.05939 |
|            |              | CC       | 17 (5.0)     | 18 (9.1)   | 1.41 (0.99-2.01) |         |
|            |              | CC       | 84 (24.7)    | 55 (28.2)  | Dominant         |         |
| rs6505162  | hsa-mir-423  | AC       | 166 (48.8)   | 98 (50.3)  | 1                | 0.3761  |
|            |              | AA       | 90 (26.5)    | 42 (21.5)  | 0.84 (0.56-1.24) |         |
|            |              | TT       | 202 (61.0)   | 105 (58.0) | Dominant         |         |
| rs2043556  | hsa-mir-605  | СТ       | 112 (33.8)   | 63 (34.8)  | 1                | 0.5060  |
|            |              | CC       | 17 (5.1)     | 13 (7.2)   | 1.13 (0.78-1.64) |         |
|            |              | GG       | 305 (87.9)   | 178 (88.6) | Dominant         |         |
| rs2289030  | hsa-mir-492  | CG       | 39 (11.2)    | 22 (10.9)  | 1                | 0.8172  |
|            |              | CC       | 3 (0.9)      | 1 (0.5)    | 0.94 (0.55-1.61) |         |
|            |              | GG       | 191 (54.7)   | 113 (56.2) | Dominant         |         |
| rs2910164  | hsa-mir-146a | CG       | 128 (36.7)   | 66 (32.8)  | 1                | 0.7348  |
|            |              | CC       | 30 (8.6)     | 22 (10.9)  | 0.94 (0.66-1.34) |         |
|            |              | AA       | 193 (55.5)   | 122 (60.7) | Dominant         |         |
| rs2368393  | hsa-mir-604  | AG       | 129 (37.1)   | 72 (35.8)  | 1                | 0.23117 |
|            |              | GG       | 26 (7.5)     | 7 (3.5)    | 0.81 (0.57-1.15) |         |

| Annex table 2: All the results of SNPs in miRN | IA genes of the first study |
|------------------------------------------------|-----------------------------|
|------------------------------------------------|-----------------------------|

| Annex table 2: All the results of SNPs in miRNA | genes of the first study (continuation) |
|-------------------------------------------------|-----------------------------------------|
|-------------------------------------------------|-----------------------------------------|

| SNP        | Gene           | Genotype | N (controls) | N(cases)   | OR(CI 95%)       | P dom    |
|------------|----------------|----------|--------------|------------|------------------|----------|
|            |                |          | (N=387)      | (N=213)    |                  |          |
|            |                | СС       | 294 (85.7)   | 173 (86.1) | Dominant         |          |
| rs17091403 | hsa-mir-2110   | СТ       | 46 (13.4)    | 26 (12.9)  | 1                | 0.9085   |
|            |                | TT       | 3 (0.9)      | 2 (1.0)    | 0.97 (0.59-1.60) |          |
|            |                | AA       | 161 (48.3)   | 80 (41.2)  | Dominant         |          |
| rs7911488  | hsa-mir-1307   | AG       | 136 (40.8)   | 90 (46.4)  | 1                | 0.1134   |
|            |                | GG       | 36 (10.8)    | 24 (12.4)  | 1.33 (0.93-1.91) |          |
|            |                | TT       | 170 (49.4)   | 90 (45.9)  | Dominant         |          |
| rs10505168 | hsa-mir-2053   | СТ       | 141 (41.0)   | 85 (43.4)  | 1                | 0.4336   |
|            |                | CC       | 33 (9.6)     | 21 (10.7)  | 1.15 (0.81-1.64) |          |
|            |                | TT       | 302 (86.8)   | 174 (87.4) | Codominant       |          |
| rs11259096 | hsa-mir-1265   | СТ       | 46 (13.2)    | 25 (12.6)  | 1                | 0.8259   |
|            |                |          |              |            | 0.94 (0.56-1.59) |          |
|            |                | CC       | 137 (39.7)   | 90 (45.5)  | Dominant         |          |
| rs11614913 | hsa-mir-196a-2 | СТ       | 159 (46.1)   | 79 (39.9)  | 1                | 0.1921   |
|            |                | TT       | 49 (14.2)    | 29 (14.6)  | 0.79 (0.56-1.13) |          |
|            |                | AA       | 334 (96.3)   | 192 (96.5) | Codominant       |          |
| rs13186787 | hsa-mir-1294   | AG       | 13 (3.7)     | 7 (3.5)    | 1                | 0.8907   |
|            |                |          |              |            | 0.94 (0.37-2.39) |          |
|            |                | AA       | 283 (81.8)   | 180 (89.6) | Dominant         |          |
| rs10061133 | hsa-mir-449b   | GA       | 61 (17.6)    | 20 (10.0)  | 1                | 0.01290  |
|            |                | GG       | 2 (0.6)      | 1 (0.5)    | 0.52 (0.31-0.89) |          |
|            |                | TT       | 264 (76.1)   | 156 (80.8) | Dominant         |          |
| rs10173558 | hsa-mir-1302-4 | TC       | 81 (23.3)    | 35 (18.1)  | 1                | 0.1997   |
|            |                | CC       | 2 (0.6)      | 2 1.0      | 0.75 (0.49-1.17) |          |
|            |                | AA       | 198 (56.9)   | 124 (62.3) | Dominant         |          |
| rs1077020  | hsa-mir-943    | AG       | 125 (35.9)   | 62 (31.2)  | 1                | 0.2147   |
|            |                | GG       | 25 (7.2)     | 13 (6.5)   | 0.80 (0.56-1.14) |          |
|            |                | GG       | 343 (99.1)   | 193 (97.5) | Codominante      |          |
| rs11269    | hsa-mir-1282   | TG       | 3 (0.9)      | 5 (2.5)    | 1                | 0.1317   |
|            |                |          |              |            | 2.96 (0.7-12.53) |          |
|            |                | CC       | 232 (67.6)   | 152 (77.6) | Dominant         |          |
| rs12803915 | hsa-mir-612    | TC       | 100 (29.2)   | 42 (21.4)  | 1                | 0.013334 |
|            |                | TT       | 11 (3.2)     | 2 (1.0)    | 0.61 (0.40-0.91) |          |
|            |                | AA       | 206 (59.4)   | 138 (69.0) | Dominant         |          |
| rs3746444  | hsa-mir-499a   | AG       | 117 (33.7)   | 56 (28.0)  | 1                | 0.023822 |
|            |                | GG       | 24 (6.9)     | 6 (3.0)    | 0.66 (0.45-0.95) |          |
|            |                | GG       | 348 (100.0)  | 199 (99.5) | Codominant       |          |
| rs41286570 | hsa-mir-154    | AG       | 0 (0.0)      | 1 (0.5)    | 1                | 0.365    |
|            |                |          |              |            | 0 (0.0)          |          |
|            |                | Π        | 307 (88.7)   | 181 (91.0) | Dominant         |          |
| rs41291179 | hsa-mir-216a   | СТ       | 39 (11.3)    | 16 (8.0)   | 1                | 0.40906  |
|            |                | CC       | 0 (0.0)      | 2 (1.0)    | 0.78 (0.43-1.41) |          |

| SNP        | Gene                | Genotype | N (controls) | N(cases)   | OR(CI 95%)            | P dom   |
|------------|---------------------|----------|--------------|------------|-----------------------|---------|
|            |                     |          | (N=387)      | (N=213)    |                       |         |
|            |                     | GG       | 247 (71.0)   | 134 (67.3) | Dominant              |         |
| rs4909237  | hsa-mir-595         | AG       | 90 (25.9)    | 53 (26.6)  | 1                     | 0.3743  |
|            |                     | AA       | 11 (3.2)     | 12 (6.0)   | 1.19 (0.81-1.73)      |         |
|            |                     | AA       | 230 (66.3)   | 124 (62.9) | Dominant              |         |
| rs56103835 | hsa-mir-323b        | AG       | 104 (30.0)   | 65 (33.0)  | 1                     | 0.4333  |
|            |                     | GG       | 13 (3.7)     | 8 (4.1)    | 1.16 (0.80-1.67)      |         |
|            |                     | GG       | 335 (96.0)   | 189 (95.5) | Dominant              |         |
| rs58834075 | hsa-mir-656         | GA       | 13 (3.7)     | 8 (4.0)    | 1                     | 0.7661  |
|            |                     | AA       | 1 (0.3)      | 1 (0.5)    | 1.14 (0.48-2.68)      |         |
|            |                     | GG       | 146 (43.3)   | 88 (45.6)  | Dominant              |         |
| rs62376934 | hsa-mir-585         | GA       | 140 (41.5)   | 82 (42.5)  | 1                     | 0.6123  |
|            |                     | AA       | 51 (15.1)    | 23 (11.9)  | 0.91 (0.64-1.30)      |         |
|            |                     | AA       | 93 (26.9)    | 45 (22.5)  | Dominant              |         |
| rs6505162  | hsa-mir-423         | AC       | 169 (48.8)   | 101 (50.5) | 1                     | 0.2540  |
|            |                     | CC       | 84 (24.3)    | 54 (27.0)  | 1.27 (0.84-1.90)      |         |
|            |                     | GG       | 301 (86.2)   | 164 (81.6) | Dominant              |         |
| rs6841938  | hsa-mir-1255b-<br>1 | AG       | 44 (12.6)    | 35 (17.4)  | 1                     | 0.1497  |
|            | I                   | AA       | 4 (1.1)      | 2 (1.0)    | 1.41 (0.89-2.26)      |         |
|            |                     | AA       | 343 (99.7)   | 195 (99.0) | Dominant              |         |
| rs72631817 | hsa-mir-220a        | GA       | 1 (0.3)      | 0 (0.0)    | 1                     | 0.2869  |
|            |                     | GG       | 0 (0.0)      | 2 (1.0)    | 3.52 (0.32-<br>39.05) |         |
|            |                     | GG       | 343 (98.8)   | 199 (99.5) | Codominant            |         |
| rs72631827 | hsa-mir-106b        | GT       | 4 (1.2)      | 1 (0.5)    | 1                     | 0.4184  |
|            |                     |          |              |            | 0.43 (0.05-3.88)      |         |
|            |                     | TT       | 342 (98.8)   | 194 (98.5) | Dominant              |         |
| rs7311975  | hsa-mir-1178        | тс       | 4 (1.2)      | 3 1.5      | 1                     | 0.7186  |
|            |                     |          |              |            | 1.32 (0.29-5.97)      |         |
|            |                     | TT       | 301 (97.7)   | 153 (93.3) | Dominant              |         |
| rs73235382 | hsa-mir-548h-4      | тс       | 7 (2.3)      | 10 (6.1)   | 1                     | 0.02019 |
|            |                     | СС       | 0 (0.0)      | 1 (0.6)    | 3.09 (1.17-8.13)      |         |
|            |                     | СС       | 119 (36.5)   | 66 (35.7)  | Dominant              |         |
| rs9913045  | hsa-mir-548h-3      | СТ       | 142 (43.6)   | 69 (37.3)  | 1                     | 0.85157 |
|            |                     | тт       | 65 (19.9)    | 50 (27.0)  | 1.04 (0.71-1.51)      |         |

Annex table 2: All the results of SNPs in miRNA genes of the first study (continuation)

|            |                     |          | 5            | Spanish and Slov | enian population |         |              | Spanish    | population       |         |              | Slovenia  | an population    |         |
|------------|---------------------|----------|--------------|------------------|------------------|---------|--------------|------------|------------------|---------|--------------|-----------|------------------|---------|
| SNP        | Gene                | Genotype | N (controls) | N(cases)         | OR(CI 95%)       | P dom   | N (controls) | N(cases)   | OR(CI 95%)       | P dom   | N (controls) | N(cases)  | OR(CI95%)        | P dom   |
|            |                     |          | (N=426)      | (N=296)          |                  |         | (N=330)      | (N=217)    |                  |         | (N=96)       | (N=79)    |                  |         |
| rs10061133 | hsa-mir-449b        | AA       | 353 (82.9)   | 256 (87.7)       | Dominant         | 0.07486 | 276 (83.6)   | 190 (87.6) | Dominant         | 0.2025  | 77 (80.2)    | 66 (88.0) | CoDominant       | 0.1666  |
|            |                     | AG       | 71 (16.7)    | 34 (11.6)        | 1                |         | 52 (15.8)    | 25 (11.5)  | 1                |         | 19 (19.8)    | 9 (12.0)  | 1                |         |
|            |                     | GG       | 2 (0.5)      | 2 (0.7)          | 0.68 (0.44-1.05) |         | 2 (0.6)      | 2 (0.9)    | 0.73 (0.44-1.19) |         |              |           | 0.55 (0.23-1.3)  |         |
| rs10173558 | mir-1302-4          | TT       | 325 (76.3)   | 227 (77.7)       | Dominant         | 0.65061 | 251 (76.1)   | 173 (79.7) | Dominant         | 0.3133  | 74 (77.1)    | 54 (72.0) | Dominant         | 0.44803 |
|            |                     | СТ       | 98 (23.0)    | 58 (19.9)        | 1                |         | 77 (23.3)    | 41 (18.9)  | 1                |         | 21 (21.9)    | 17 (22.7) | 1                |         |
|            |                     | сс       | 3 (0.7)      | 7 (2.4)          | 0.92 (0.65-1.31) |         | 2 (0.6)      | 3 (1.4)    | 0.81 (0.53-1.23) |         | 1 (1.0)      | 4 (5.3)   | 1.31 (0.65-2.62) |         |
| rs10461441 | hsa-mir-<br>548ae-2 |          |              |                  |                  | ERROR   |              |            |                  | ERROR   |              |           |                  | ERROR   |
| rs10505168 | hsa-mir-2053        | AA       | 212 (49.9)   | 136 (47.1)       | Dominant         | 0.4587  | 167 (50.8)   | 97 (45.1)  | Dominant         | 0.1976  | 45 (46.9)    | 39 (52.7) | Dominant         | 0.4510  |
|            |                     | AG       | 172 (40.5)   | 122 (42.2)       | 1                |         | 130 (39.5)   | 95 (44.2)  | 1                |         | 42 (43.8)    | 27 (36.5) | 1                |         |
|            |                     | GG       | 41 (9.6)     | 31 (10.7)        | 1.12 (0.83-1.51) |         | 32 (9.7)     | 23 10.7    | 1.25 (0.89-1.77) |         | 9 (9.4)      | 8 (10.8)  | 0.79 (0.43-1.45) |         |
| rs1055070  | hsa-mir-4700        | TT       | 370 (87.1)   | 264 (90.7)       | Dominant         | 0.12648 | 281 (85.4)   | 196 (90.3) | Dominant         | 0.01857 | 89 (92.7)    | 68 (91.9) | CoDominant       | 0.8429  |
|            |                     | GT       | 55 (12.9)    | 25 (8.6)         | 1                |         | 48 (14.6)    | 19 (8.8)   | 1                |         | 7 (7.3)      | 6 (8.1)   | 1                |         |
|            |                     | GG       | 0 (0.0)      | 2 (0.7)          | 0.69 (0.42-1.12) |         | 0 (0.0)      | 2 (0.9)    | (0.00)           |         |              |           | 1.12 (0.36-3.49) |         |
| rs1077020  | hsa-mir-943         |          |              |                  |                  | ERROR   |              |            |                  | ERROR   |              |           |                  | ERROR   |
| rs10878362 | hsa-mir-6074        |          |              |                  |                  | ERROR   |              |            |                  | ERROR   |              |           |                  | ERROR   |
| rs10934682 | hsa-mir-544b        | тт       | 307 (72.1)   | 200 (68.5)       | Dominant         | 0.3029  | 240 (72.7)   | 155 (71.4) | Dominant         | 0.7403  | 67 (69.8)    | 45 (60.0) | Dominant         | 0.1820  |
|            |                     | GT       | 110 (25.8)   | 83 (28.4)        | 1                |         | 85 (25.8)    | 58 (26.7)  | 1                |         | 25 (26.0)    | 25 (33.3) | 1                |         |
|            |                     | GG       | 9 (2.1)      | 9 (3.1)          | 1.19 (0.86-1.64) |         | 5 (1.5)      | 4 (1.8)    | 1.07 (0.73-1.56) |         | 4 (4.2)      | 5 (6.7)   | 1.54 (0.82-2.91) |         |
| rs11014002 | hsa-mir-603         |          |              |                  |                  | ERROR   |              |            |                  | ERROR   |              |           |                  | ERROR   |
| rs11032942 | hsa-mir-1343        |          |              |                  |                  | ERROR   |              |            |                  | ERROR   |              |           |                  | ERROR   |
| rs11156654 | mir-624             | TT       | 247 (58.5)   | 167 (57.4)       | Dominant         | 0.7613  | 200 (61.2)   | 127 (58.8) | Dominant         | 0.5817  | 47 (49.5)    | 40 (53.3) | Dominant         | 0.6171  |
|            |                     | AT       | 146 (34.6)   | 98 (33.7)        | 1                |         | 109 (33.3)   | 70 (32.4)  | 1                |         | 37 (38.9)    | 28 (37.3) | 1                |         |
|            |                     | AA       | 29 (6.9)     | 26 (8.9)         | 1.05 (0.77-1.42) |         | 18 (5.5)     | 19 (8.8)   | 1.10 (0.78-1.57) |         | 11 (11.6)    | 7 (9.3)   | 0.86 (0.47-1.57) |         |
| rs11237828 | hsa-mir-5579        |          |              |                  |                  | ERROR   |              |            |                  | ERROR   |              |           |                  | ERROR   |

Annex table 3: All the results for SNPs in miRNA genes in the second study

| SNP        | Gene               | Genotype | N (controls) | N(cases)   | OR(CI 95%)       | P dom   | N (controls) | N(cases)   | OR(CI 95%)       | P dom   | N (controls) | N(cases)  | OR(CI95%)        | P dom  |
|------------|--------------------|----------|--------------|------------|------------------|---------|--------------|------------|------------------|---------|--------------|-----------|------------------|--------|
|            |                    |          | (N=426)      | (N=296)    |                  |         | (N=330)      | (N=217)    |                  |         | (N=96)       | (N=79)    |                  |        |
| rs11259096 | hsa-mir-1265       | Π        | 383 (90.1)   | 256 (87.7) | Dominant         | 0.3038  | 298 (90.3)   | 186 (85.7) | Dominant         | 0.10309 | 85 (89.5)    | 70 (93.3) | CoDominant       | 0.3727 |
|            |                    | СТ       | 41 (9.6)     | 34 (11.6)  | 1                |         | 31 (9.4)     | 29 (13.4)  | 1                |         | 10 (10.5)    | 5 (6.7)   | 1                |        |
|            |                    | СС       | 1 (0.2)      | 2 (0.7)    | 1.28 (0.80-2.06) |         | 1 (0.3)      | 2 (0.9)    | 1.55 (0.92-2.63) |         |              |           | 0.61 (0.2-1.86)  |        |
| rs11614913 | hsa-mir-<br>196a-2 | сс       | 174 (40.9)   | 131 (45.0) | Dominant         | 0.2790  | 130 (39.5)   | 99 (45.6)  | Dominant         | 0.1573  | 44 (45.8)    | 32 (43.2) | Dominant         | 0.7362 |
|            |                    | СТ       | 198 (46.6)   | 124 (42.6) | 1                |         | 156 (47.4)   | 92 (42.4)  | 1                |         | 42 (43.8)    | 32 (43.2) | 1                |        |
|            |                    | тт       | 53 (12.5)    | 36 (12.4)  | 0.85 (0.63-1.14) |         | 43 (13.1)    | 26 (12.0)  | 0.78 (0.55-1.10) |         | 10 (10.4)    | 10 (13.5) | 1.11 (0.60-2.04) |        |
| rs11651671 | hsa-mir-<br>548at  |          |              |            |                  | ERROR   |              |            |                  | ERROR   |              |           |                  | ERROR  |
| rs11713052 | hsa-mir-5092       | СС       | 396 (93.0)   | 269 (92.1) | Dominant         | 0.6754  | 305 (92.4)   | 199 (91.7) | CoDominant       | 0.7604  | 91 (94.8)    | 70 (93.3) | Dominant         | 0.6878 |
|            |                    | CG       | 30 (7.0)     | 22 (7.5)   | 1                |         | 25 (7.6)     | 18 (8.3)   | 1                |         | 5 (5.2)      | 4 (5.3)   | 1                |        |
|            |                    | GG       | 0 (0.0)      | 1 (0.3)    | 1.13 (0.64-1.99) |         |              |            | 1.1 (0.59-2.08)  |         | 0 (0.0)      | 1 (1.3)   | 1.30 (0.36-4.67) |        |
| rs11714172 | hsa-mir-4792       | TT       | 176 (41.6)   | 115 (39.8) | Dominant         | 0.6283  | 126 (38.5)   | 84 (39.3)  | Dominant         | 0.8665  | 50 (52.1)    | 31 (41.3) | Dominant         | 0.1618 |
|            |                    | GT       | 189 (44.7)   | 136 (47.1) | 1                |         | 152 (46.5)   | 100 (46.7) | 1                |         | 37 (38.5)    | 36 (48.0) | 1                |        |
|            |                    | GG       | 58 (13.7)    | 38 (13.1)  | 1.08 (0.79-1.46) |         | 49 (15.0)    | 30 (14.0)  | 0.97 (0.68-1.38) |         | 9 (9.4)      | 8 (10.7)  | 1.54 (0.84-2.84) |        |
| rs11907020 | hsa-mir-3192       | Π        | 405 (95.1)   | 284 (97.6) | CoDominant       | 0.07758 | 309 (93.6)   | 210 (97.2) | CoDominant       | 0.0498  | 96 (100.0)   | 74 (98.7) | CoDominant       | 0.4386 |
|            |                    | СТ       | 21 (4.9)     | 7 (2.4)    | 1                |         | 21 (6.4)     | 6 (2.8)    | 1                |         | 0 (0.0)      | 1 (1.3)   | 1                |        |
|            |                    |          |              |            | 0.48 (0.2-1.13)  |         |              |            | 0.42 (0.17-1.06) |         |              |           | 0 (0.0)          |        |
| rs12197631 | hsa-mir-<br>548a-1 |          |              |            |                  | ERROR   |              |            |                  | ERROR   |              |           |                  | ERROR  |
| rs12355840 | hsa-mir-202        | TT       |              |            |                  | H-W     | 183 (66.1)   | 120 (61.9) | Dominant         | 0.3486  |              |           |                  | H-W    |
|            |                    | СТ       |              |            |                  |         | 78 (28.29    | 65 (33.5)  | 1                |         |              |           |                  |        |
|            |                    | CC       |              |            |                  |         | 16 (5.8)     | 9 (4.6)    | 1.20 (0.82-1.76) |         |              |           |                  |        |
| rs12451747 | hsa-mir-<br>1269b  |          |              |            |                  | ERROR   |              |            |                  | ERROR   |              |           |                  | ERROR  |
| rs12456845 | hsa-mir-4744       | TT       | 400 (94.1)   | 266 (91.1) | CoDominant       | 0.1252  | 311 (94.5)   | 200 (92.2) | CoDominant       | 0.2743  | 89 (92.7)    | 66 (88.0) | CoDominant       | 0.2963 |
|            |                    | СТ       | 25 (5.9)     | 26 (8.9)   | 1                |         | 18 (5.5)     | 17 (7.8)   | 1                |         | 7 (7.3)      | 9 (12.0)  | 1                |        |
|            |                    |          |              |            | 1.56 (0.88-2.77) |         |              |            | 1.47 (0.74-2.92) |         |              |           | 1.73 (0.61-4.89) |        |

Annex table 3: All the results for SNPs in miRNA genes in the second study (continuation)

| SNP        | Gene              | Genotype | N (controls) | N(cases)   | OR(CI 95%)       | P dom   | N (controls) | N(cases)   | OR(CI 95%)       | P dom   | N (controls) | N(cases)  | OR(CI95%)         | P dom    |
|------------|-------------------|----------|--------------|------------|------------------|---------|--------------|------------|------------------|---------|--------------|-----------|-------------------|----------|
|            |                   |          | (N=426)      | (N=296)    |                  |         | (N=330)      | (N=217)    |                  |         | (N=96)       | (N=79)    |                   |          |
| rs12473206 | hsa-mir-4433      |          |              |            |                  | ERROR   |              |            |                  | ERROR   |              |           |                   | ERROR    |
| rs12512664 | hsa-mir-4274      | AA       | 118 (28.0)   | 84 (29.0)  | Dominant         | 0.7706  | 89 (27.3)    | 57 (26.4)  | Dominant         | 0.8147  | 29 (30.2)    | 27 (36.5) | Dominant          | 0.3886   |
|            |                   | AG       | 217 (51.4)   | 132 (45.5) | 1                |         | 170 (52.1)   | 102 (47.2) | 1                |         | 47 (49.0)    | 30 (40.5) | 1                 |          |
|            |                   | GG       | 87 (20.6)    | 74 (25.5)  | 0.95 (0.68-1.33) |         | 67 (20.6)    | 57 (26.4)  | 1.05 (0.71-1.54) |         | 20 (20.8)    | 17 (23.0) | 0.75 (0.40-1.43)  |          |
| rs12523324 | hsa-mir-4277      |          |              |            |                  | ERROR   |              |            |                  | ERROR   |              |           |                   | ERROR    |
| rs12780876 | hsa-mir-4293      | т        | 214 (50.6)   | 150 (51.5) | Dominant         | 0.8019  | 186 (56.9)   | 114 (52.5) | Dominant         | 0.3185  | 28 (29.2)    | 36 (48.6) | Dominant          | 0.009347 |
|            |                   | AT       | 171 (40.4)   | 117 (40.2) | 1                |         | 117 (35.8)   | 82 (37.8)  | 1                |         | 54 (56.2)    | 35 (47.3) | 1                 |          |
|            |                   | AA       | 38 (9.0)     | 24 (8.2)   | 0.96 (0.71-1.30) |         | 24 (7.3)     | 21 (9.7)   | 1.19 (0.84-1.68) |         | 14 (14.6)    | 3 (4.1)   | 0.43 (0.23-0.82)  |          |
| rs12879262 | hsa-mir-4309      | GG       | 305 (71.9)   | 218 (74.7) | Dominant         | 0.4186  | 228 (69.5)   | 155 (71.4) | Dominant         | 0.63136 | 77 (80.2)    | 63 (84.0) | Dominant          | 0.5213   |
|            |                   | CG       | 108 (25.5)   | 70 (24.0)  | 1                |         | 90 (27.4)    | 60 (27.6)  | 1                |         | 18 (18.8)    | 10 (13.3) | 1                 |          |
|            |                   | СС       | 11 (2.6)     | 4 (1.4)    | 0.87 (0.62-1.22) |         | 10 (3.0)     | 2 (0.9)    | 0.91 (0.63-1.33) |         | 1 (1.0)      | 2 (2.7)   | 0.77 (0.35-1.71)  |          |
| rs13186787 | hsa-mir-1294      |          |              |            |                  | ERROR   |              |            |                  | ERROR   |              |           |                   | ERROR    |
| rs13299349 | hsa-mir-3152      | GG       | 158 (42.4)   | 114 (47.3) | Dominant         | 0.2288  | 120 (43.3)   | 91 (47.2)  | Dominant         | 0.4118  | 38 (39.6)    | 23 (47.9) | Dominant          | 0.3411   |
|            |                   | AG       | 163 (43.7)   | 94 (39.0)  | 1                |         | 113 (40.8)   | 74 (38.3)  | 1                |         | 50 (52.1)    | 20 (41.7) | 1                 |          |
|            |                   | AA       | 52 (13.9)    | 33 (13.7)  | 0.82 (0.59-1.13) |         | 44 (15.9)    | 28 (14.5)  | 0.86 (0.59-1.24) |         | 8 (8.3)      | 5 (10.4)  | 0.71 (0.35-1.43)  |          |
| rs1414273  | hsa-mir-<br>548ac |          |              |            |                  | ERROR   |              |            |                  | ERROR   |              |           |                   | ERROR    |
| rs1439619  | hsa-mir-3175      | СС       | 92 (24.7)    | 71 (29.0)  | Dominant         | 0.23527 | 71 (25.6)    | 52 (26.7)  | Dominant         | 0.8010  | 21 (21.9)    | 19 (38.0) | Dominant          | 0.011090 |
|            |                   | AC       | 171 (45.8)   | 123 (50.2) | 1                |         | 130 (46.9)   | 100 (51.3) | 1                |         | 41 (42.7)    | 23 (46.0) | 1                 |          |
|            |                   | AA       | 110 (29.5)   | 51 (20.8)  | 0.80 (0.56-1.15) |         | 76 (27.4)    | 43 (22.1)  | 0.95 (0.62-1.44) |         | 34 (35.4)    | 8 (16.0)  | 2.88 (81.21-6.83) |          |
| rs1572687  | hsa-mir-5007      | СС       | 128 (30.3)   | 86 (29.6)  | Dominant         | 0.8394  | 106 (32.4)   | 64 (29.5)  | Dominant         | 0.4706  | 22 (22.9)    | 22 (29.7) | Dominant          | 0.3159   |
|            |                   | СТ       | 208 (49.2)   | 150 (51.5) | 1                |         | 152 (46.5)   | 113 (52.1) | 1                |         | 56 (58.3)    | 37 (50.0) | 1                 |          |
|            |                   | ΤΤ       | 87 (20.6)    | 55 (18.9)  | 1.03 (0.75-1.43) |         | 69 (21.1)    | 40 (18.4)  | 1.15 (0.79-1.66) |         | 18 (18.8)    | 15 (20.3) | 0.70 (0.35-1.40)  |          |
| rs1683709  | hsa-mir-3612      | СС       | 276 (64.8)   | 183 (62.7) | Dominant         | 0.5619  | 212 (64.2)   | 136 (62.7) | Dominant         | 0.7091  | 64 (66.7)    | 47 (62.7) | Dominant          | 0.5869   |
|            |                   | СТ       | 133 (31.2)   | 99 (33.9)  | 1                |         | 107 (32.4)   | 74 (34.1)  | 1                |         | 26 (27.1)    | 25 (33.3) | 1                 |          |
|            |                   | TT       | 17 (4.0)     | 10 (3.4)   | 1.10 (0.80-1.49) |         | 11 (3.3)     | 7 (3.2)    | 1.07 (0.75-1.53) |         | 6 (6.2)      | 3 (4.0)   | 1.19 (0.63-2.24)  |          |

Annex table 3: All the results for SNPs in miRNA genes in the second study (continuation)

| SNP        | Gene         | Genotype | N (controls) | N(cases)   | OR(CI 95%)       | P dom  | N (controls) | N(cases)   | OR(CI 95%)       | P dom   | N (controls) | N(cases)  | OR(CI95%)         | P dom  |
|------------|--------------|----------|--------------|------------|------------------|--------|--------------|------------|------------------|---------|--------------|-----------|-------------------|--------|
|            |              |          | (N=426)      | (N=296)    |                  |        | (N=330)      | (N=217)    |                  |         | (N=96)       | (N=79)    |                   |        |
| rs17022749 | hsa-mir-5700 |          |              |            |                  | ERROR  |              |            |                  | ERROR   |              |           |                   | ERROR  |
| rs17091403 | hsa-mir-2110 | СС       | 350 (82.2)   | 248 (85.2) | Dominant         | 0.2764 | 268 (81.2)   | 190 (87.6) | Dominant         | 0.04607 | 82 (85.4)    | 58 (78.4) | Dominant          | 0.2346 |
|            |              | СТ       | 71 (16.7)    | 40 (13.7)  | 1                |        | 58 (17.6)    | 24 (11.1)  | 1                |         | 13 (13.5)    | 16 (21.6) | 1                 |        |
|            |              | тт       | 5 (1.2)      | 3 (1.0)    | 0.80 (0.53-1.20) |        | 4 (1.2)      | 3 (1.4)    | 0.61 (0.38-1.00) |         | 1 (1.0)      | 0 (0.0)   | 1.62 (0.73-3.57)  |        |
| rs17111728 | hsa-mir-4422 | TT       | 367 (86.2)   | 255 (87.3) | Dominant         | 0.6477 | 290 (87.9)   | 192 (88.5) | Dominant         | 0.8316  | 77 (80.2)    | 63 (84.0) | Dominant          | 0.5213 |
|            |              | СТ       | 58 (13.6)    | 36 (12.3)  | 1                |        | 39 (11.8)    | 25 (11.5)  | 1                |         | 19 (19.8)    | 11 (14.7) | 1                 |        |
|            |              | СС       | 1 (0.2)      | 1 (0.3)    | 0.90 (0.58-1.40) |        | 1 (0.3)      | 0 (0.0)    | 0.94 (0.55-1.6)  |         | 0 (0.0)      | 1 (1.3)   | 0.77 (0.35-1.71)  |        |
| rs17737028 | hsa-mir-3143 | AA       | 419 (98.4)   | 287 (98.3) | CoDominant       | 0.9435 | 325 (98.5)   | 213 (98.2) | CoDominant       | 0.7692  | 94 (97.9)    | 74 (98.7) | CoDominant        | 0.7074 |
|            |              | AG       | 7 (1.6)      | 5 (1.7)    | 1                |        | 5 (1.5)      | 4 (1.8)    | 1                |         | 2 (2.1)      | 1 (1.3)   | 1                 |        |
|            |              |          |              |            | 1.04 (0.33-3.32) |        |              |            | 1.22 (0.32-4.6)  |         |              |           | 0.64 (0.06-7.14)  |        |
| rs17759989 | hsa-mir-633  | AA       | 408 (96.0)   | 284 (97.3) | CoDominant       | 0.3595 | 318 (96.7)   | 213 (98.2) | CoDominant       | 0.2817  | 90 (93.8)    | 71 (94.7) | Dominant          | 0.7992 |
|            |              | AG       | 17 (4.0)     | 8 (2.7)    | 1                |        | 11 (3.3)     | 4 (1.8)    | 1                |         | 6 (6.2)      | 4 (5.3)   | 1                 |        |
|            |              |          |              |            | 0.68 (0.29-1.59) |        |              |            | 0.54 (0.17-1.73) |         |              |           | 0.85 (0.23-3.11)  |        |
| rs17797090 | hsa-mir-3652 | GG       | 334 (78.4)   | 231 (79.4) | Dominant         | 0.7529 | 251 (76.1)   | 164 (75.9) | Dominant         | 0.9713  | 83 (86.5)    | 67 (89.3) | Dominant          | 0.5678 |
|            |              | AG       | 88 (20.7)    | 59 (20.3)  | 1                |        | 76 (23.0)    | 51 (23.6)  | 1                |         | 12 (12.5)    | 8 (10.7)  | 1                 |        |
|            |              | AA       | 4 (0.9)      | 1 (0.3)    | 0.94 (0.65-1.36) |        | 3 (0.9)      | 1 (0.5)    | 1.01 (0.67-1.51) |         | 1 (1.0)      | 0 (0.0)   | 0.76 (0.30-1.95)  |        |
| rs17885221 | hsa-mir-4733 | СС       | 377 (88.7)   | 260 (89.3) | Dominant         | 0.7876 | 283 (86.0)   | 188 (87.0) | Dominant         | 0.7336  | 94 (97.9)    | 72 (96.0) | CoDominant        | 0.4624 |
|            |              | СТ       | 47 (11.1)    | 30 (10.3)  | 1                |        | 45 (13.7)    | 27 (12.5)  | 1                |         | 2 (2.1)      | 3 (4.0)   | 1                 |        |
|            |              | Π        | 1 (0.2)      | 1 (0.3)    | 0.94 (0.58-1.51) |        | 1 (0.3)      | 1 (0.5)    | 0.92 (0.55-1.52) |         |              |           | 1.96 (0.32-12.03) |        |
| rs2042253  | hsa-mir-5197 | AA       | 248 (58.5)   | 180 (61.9) | Dominant         | 0.3667 | 196 (59.6)   | 136 (63.0) | Dominant         | 0.4272  | 52 (54.7)    | 44 (58.7) | Dominant          | 0.6077 |
|            |              | AG       | 157 (37.0)   | 102 (35.1) | 1                |        | 118 (35.9)   | 72 (33.3)  | 1                |         | 39 (41.1)    | 30 (40.0) | 1                 |        |
|            |              | GG       | 19 (4.5)     | 9 (3.1)    | 0.87 (0.64-1.18) |        | 15 (4.6)     | 8 (3.7)    | 0.87 (0.61-1.23) |         | 4 (4.2)      | 1 (1.3)   | 0.85 (0.46-1.57)  |        |
| rs2043556  | hsa-mir-605  | AA       | 262 (61.6)   | 172 (60.1) | Dominant         | 0.6863 | 203 (61.7)   | 131 (61.5) | Dominant         | 0.9627  | 59 (61.5)    | 41 (56.2) | Dominant          | 0.4882 |
|            |              | AG       | 146 (34.4)   | 98 (34.3)  | 1                |        | 113 (34.3)   | 70 (32.9)  | 1                |         | 33 (34.4)    | 28 (38.4) | 1                 |        |
|            |              | GG       | 17 (4.0)     | 16 (5.6)   | 1.07 (0.78-1.45) |        | 13 (4.0)     | 12 (5.6)   | 1.01 (0.71-1.44) |         | 4 (4.2)      | 4 (5.5)   | 1.24 (0.67-2.31)  |        |

Annex table 3: All the results for SNPs in miRNA genes in the second study (continuation)

| SNP       | Gene               | Genotype | N (controls) | N(cases)   | OR(CI 95%)       | P dom  | N (controls) | N(cases)   | OR(CI 95%)            | P dom  | N (controls) | N(cases)  | OR(CI95%)        | P dom  |
|-----------|--------------------|----------|--------------|------------|------------------|--------|--------------|------------|-----------------------|--------|--------------|-----------|------------------|--------|
|           |                    |          | (N=426)      | (N=296)    |                  |        | (N=330)      | (N=217)    |                       |        | (N=96)       | (N=79)    |                  |        |
| rs2060455 | hsa-mir-4511       |          |              |            |                  | ERROR  |              |            |                       | ERROR  |              |           |                  | ERROR  |
| rs2070960 | hsa-mir-3620       | СС       | 370 (87.3)   | 255 (88.5) | Dominant         | 0.6084 | 295 (89.7)   | 192 (90.1) | CoDominant            | 0.8578 | 75 (78.9)    | 63 (84.0) | CoDominant       | 0.4002 |
|           |                    | СТ       | 54 (12.7)    | 33 (11.5)  | 1                |        | 34 (10.3)    | 21 (9.9)   | 1                     |        | 20 (21.1)    | 12 (16.0) | 1                |        |
|           |                    |          |              |            | 0.89 (0.56-1.41) |        |              |            | 0.95 (0.53-1.68)      |        |              |           | 0.71 (0.32-1.57) |        |
| rs2114358 | hsa-mir-1206       | TT       | 140 (33.0)   | 92 (31.9)  | Dominant         | 0.7639 | 107 (32.5)   | 69 (32.1)  | Dominant              | 0.9165 | 33 (34.7)    | 23 (31.5) | Dominant         | 0.6594 |
|           |                    | СТ       | 200 (47.2)   | 143 (49.7) | 1                |        | 153 (46.5)   | 111 (51.6) | 1                     |        | 47 (49.5)    | 32 (43.8) | 1                |        |
|           |                    | СС       | 84 (19.8)    | 53 (18.4)  | 1.05 (0.76-1.45) |        | 69 (21.0)    | 35 (16.3)  | 1.02 (0.71-1.47)      |        | 15 (15.8)    | 18 (24.7) | 1.16 (0.60-2.22) |        |
| rs215383  | hsa-mir-4494       | GG       | 292 (68.9)   | 196 (68.1) | Dominant         | 0.8189 | 221 (67.4)   | 143 (66.8) | Dominant              | 0.8929 | 71 (74.0)    | 53 (71.6) | Dominant         | 0.7341 |
|           |                    | AG       | 114 (26.9)   | 80 (27.8)  | 1                |        | 90 (27.4)    | 59 (27.6)  | 1                     |        | 24 (25.0)    | 21 (28.4) | 1                |        |
|           |                    | AA       | 18 (4.2)     | 12 (4.2)   | 1.04 (0.75-1.43) |        | 17 (5.2)     | 12 (5.6)   | 1.03 (0.71-1.48)      |        | 1 (1.0)      | 0 (0.0)   | 1.13 (0.57-2.22) |        |
| rs2241347 | hsa-mir-<br>3130-1 |          |              |            |                  | ERROR  |              |            |                       | ERROR  |              |           |                  | ERROR  |
| rs2273626 | hsa-mir-4707       | AA       | 100 (28.7)   | 79 (27.1)  | Dominant         | 0.6560 | 69 (27.4)    | 58 (26.9)  | Dominant              | 0.8979 | 31 (32.3)    | 21 (28.0) | Dominant         | 0.5442 |
|           |                    | AC       | 175 (50.3)   | 143 (49.1) | 1                |        | 130 (51.6)   | 104 (48.1) | 1                     |        | 45 (46.9)    | 39 (52.0) | 1                |        |
|           |                    | СС       | 73 (21.0)    | 69 (23.7)  | 1.08 (0.76-1.53) |        | 53 (21.0)    | 54 (25.0)  | 1.03 (0.68-1.55)      |        | 20 (20.8)    | 15 (20.0) | 1.23 (0.63-2.38) |        |
| rs2289030 | hsa-mir-492        | СС       | 364 (85.4)   | 257 (88.6) | Dominant         | 0.2155 | 283 (85.8)   | 191 (88.8) | Dominant              | 0.2926 | 81 (84.4)    | 66 (88.0) | Dominant         | 0.4958 |
|           |                    | CG       | 61 (14.3)    | 32 (11.0)  | 1                |        | 47 (14.2)    | 23 (10.7)  | 1                     |        | 14 (14.6)    | 9 (12.0)  | 1                |        |
|           |                    | GG       | 1 (0.2)      | 1 (0.3)    | 0.75 (0.48-1.18) |        | 0 (0.0)      | 1 (0.5)    | 0.76 (0.45-1.28)      |        | 1 (1.0)      | 0 (0.0)   | 0.74 (0.30-1.79) |        |
| rs2291418 | hsa-mir-1229       | СС       | 397 (93.2)   | 279 (95.5) | Dominant         | 0.1797 | 307 (93.0)   | 208 (95.9) | Dominant              | 0.1600 | 90 (93.8)    | 71 (94.7) | CoDominant       | 0.7992 |
|           |                    | СТ       | 28 (6.6)     | 13 (4.5)   | 1                |        | 22 (6.7)     | 9 (4.1)    | 1                     |        | 6 (6.2)      | 4 (5.3)   | 1                |        |
|           |                    | тт       | 1 (0.2)      | 0 (0.0)    | 0.64 (0.33-1.25) |        | 1 (0.3)      | 0 (0.0)    | 0.58 (0.26 -<br>1.27) |        |              |           | 0.85 (0.23-3.11) |        |
| rs2292181 | hsa-mir-564        | GG       | 388 (91.3)   | 270 (92.8) | Dominant         | 0.4705 | 303 (92.1)   | 204 (94.4) | Dominant              | 0.2862 | 85 (88.5)    | 66 (88.0) | CoDominant       | 0.913  |
|           |                    | CG       | 36 (8.5)     | 20 (6.9)   | 1                |        | 25 (7.6)     | 11 (5.1)   | 1                     |        | 11 (11.5)    | 9 (12.0)  | 1                |        |
|           |                    | СС       | 1 (0.2)      | 1 (0.3)    | 0.82 (0.47-1.42) |        | 1 (0.3)      | 1 (0.5)    | 0.69 (0.34-1.39)      |        |              |           | 1.05 (0.41-2.69) |        |
| rs2292832 | hsa-mir-149        |          |              |            |                  | ERROR  |              |            |                       | ERROR  |              |           |                  | ERROR  |

Annex table 3: All the results for SNPs in miRNA genes in the second study (continuation)

| SNP        | Gene               | Genotype | N (controls) | N(cases)   | OR(CI 95%)       | P dom   | N (controls) | N(cases)   | OR(CI 95%)       | P dom   | N (controls) | N(cases)  | OR(CI95%)        | P dom   |
|------------|--------------------|----------|--------------|------------|------------------|---------|--------------|------------|------------------|---------|--------------|-----------|------------------|---------|
|            |                    |          | (N=426)      | (N=296)    |                  |         | (N=330)      | (N=217)    |                  |         | (N=96)       | (N=79)    |                  |         |
| rs2368392  | hsa-mir-604        | СС       | 233 (54.8)   | 176 (60.9) | Dominant         | 0.10663 |              |            |                  | H-W     | 47 (49.0)    | 43 (59.7) | Dominant         | 0.1655  |
|            |                    | СТ       | 155 (36.5)   | 101 (34.9) | 1                |         |              |            |                  |         | 42 (43.8)    | 24 (33.3) | 1                |         |
|            |                    | Π        | 37 (8.7)     | 12 (4.2)   | 0.78 (0.57-1.06) |         |              |            |                  |         | 7 (7.3)      | 5 (6.9)   | 0.65 (0.35-1.20) |         |
| rs243080   | hsa-mir-4432       | СС       | 128 (30.2)   | 101 (35.8) | Dominant         | 0.11869 | 98 (29.8)    | 69 (32.9)  | Dominant         | 0.45311 | 30 (31.6)    | 32 (44.4) | Dominant         | 0.08876 |
|            |                    | СТ       | 224 (52.8)   | 123 (43.6) | 1                |         | 175 (53.2)   | 90 (42.9)  | 1                |         | 49 (51.6)    | 33 (45.8) | 1                |         |
|            |                    | Π        | 72 (17.0)    | 58 (20.6)  | 0.77 (0.56-1.07) |         | 56 (17.0)    | 51 (24.3)  | 0.87 (0.60-1.26) |         | 16 (16.8)    | 7 (9.7)   | 0.58 (0.31-1.09) |         |
| rs257095   | hsa-mir-4636       | AA       | 303 (71.3)   | 213 (73.2) | Dominant         | 0.5770  | 236 (71.7)   | 163 (75.1) | Dominant         | 0.3818  | 67 (69.8)    | 50 (67.6) | Dominant         | 0.7564  |
|            |                    | AG       | 107 (25.2)   | 73 (25.1)  | 1                |         | 81 (24.6)    | 52 (24.0)  | 1                |         | 26 (27.1)    | 21 (28.4) | 1                |         |
|            |                    | GG       | 15 (3.5)     | 5 (1.7)    | 0.91 (0.65-1.27) |         | 12 (3.6)     | 2 (0.9)    | 0.84 (0.57-1.24) |         | 3 (3.1)      | 3 (4.1)   | 1.11 (0.58-2.13) |         |
| rs2648841  | hsa-mir-1208       | СС       | 330 (78.0)   | 222 (77.4) | Dominant         | 0.83518 | 251 (76.5)   | 159 (74.6) | Dominant         | 0.6192  | 79 (83.2)    | 63 (85.1) | Dominant         | 0.7272  |
|            |                    | AC       | 87 (20.6)    | 55 (19.2)  | 1                |         | 71 (21.6)    | 45 (21.1)  | 1                |         | 16 (16.8)    | 10 (13.5) | 1                |         |
|            |                    | AA       | 6 (1.4)      | 10 (3.5)   | 1.04 (0.73-1.49) |         | 6 (1.8)      | 9 (4.2)    | 1.11 (0.74-1.65) |         | 0 (0.0)      | 1 (1.4)   | 0.86 (0.37-1.99) |         |
| rs2663345  | hsa-mir-3183       |          |              |            |                  | ERROR   |              |            |                  | ERROR   |              |           |                  | ERROR   |
| rs266435   | hsa-mir-4804       | СС       | 324 (76.2)   | 206 (71.5) | Dominant         | 0.15929 | 250 (76.0)   | 154 (71.6) | Dominant         | 0.2571  | 74 (77.1)    | 52 (71.2) | Dominant         | 0.3883  |
|            |                    | CG       | 97 (22.8)    | 75 (26.0)  | 1                |         | 75 (22.8)    | 55 (25.6)  | 1                |         | 22 (22.9)    | 20 (27.4) | 1                |         |
|            |                    | GG       | 4 (0.9)      | 7 (2.4)    | 1.28 (0.91-1.79) |         | 4 (1.2)      | 6 (2.8)    | 1.25 (0.85-1.85) |         | 0 (0.0)      | 1 (1.4)   | 1.36 (0.68-2.72) |         |
| rs2682818  | hsa-mir-6128       | СС       | 315 (74.3)   | 221 (76.5) | Dominant         | 0.5078  | 241 (73.3)   | 165 (76.7) | Dominant         | 0.3584  | 74 (77.9)    | 56 (75.7) | Dominant         | 0.7344  |
|            |                    | AC       | 103 (24.3)   | 64 (22.1)  | 1                |         | 82 (24.9)    | 46 (21.4)  | 1                |         | 21 (22.1)    | 18 (24.3) | 1                |         |
|            |                    | AA       | 6 (1.4)      | 4 (1.4)    | 0.89 (0.63-1.26) |         | 6 (1.8)      | 4 (1.9)    | 0.83 (0.56-1.24) |         |              |           | 1.13 (0.55-2.32) |         |
| rs28645567 | hsa-mir-<br>378d-1 | GG       | 411 (96.9)   | 284 (97.3) | CoDominant       | 0.7986  | 319 (97.3)   | 211 (97.2) | CoDominant       | 0.9883  | 92 (95.8)    | 73 (97.3) | CoDominant       | 0.5922  |
|            |                    | AG       | 13 (3.1)     | 8 (2.7)    | 1                |         | 9 (2.7)      | 6 (2.8)    | 1                |         | 4 (4.2)      | 2 (2.7)   | 1                |         |
|            |                    |          |              |            | 0.89 (0.36-2.18) |         |              |            | 1.01 (0.35-2.87) |         |              |           | 0.63 (0.11-3.54) |         |
| rs28655823 | hsa-mir-<br>4472-1 | GG       | 273 (77.1)   | 235 (81.3) | Dominant         | 0.1923  | 215 (79.3)   | 178 (82.4) | Dominant         | 0.3922  | 58 (69.9)    | 57 (78.1) | Dominant         | 0.2437  |
|            |                    | CG       | 75 (21.2)    | 49 (17.0)  | 1                |         | 52 (19.2)    | 33 (15.3)  | 1                |         | 23 (27.7)    | 16 (21.9) | 1                |         |
|            |                    | CC       | 6 (1.7)      | 5 (1.7)    | 0.77 (0.53-1.14) |         | 4 (1.5)      | 5 (2.3)    | 0.82 (0.52-1.29) |         | 2 (2.4)      | 0 (0.0)   | 0.65 (0.32-1.35) |         |

Annex table 3: All the results for SNPs in miRNA genes in the second study (continuation)

| SNP        | Gene              | Genotype | N (controls) | N(cases)   | OR(CI 95%)       | P dom  | N (controls) | N(cases)   | OR(CI 95%)       | P dom  | N (controls) | N(cases)  | OR(CI95%)        | P dom    |
|------------|-------------------|----------|--------------|------------|------------------|--------|--------------|------------|------------------|--------|--------------|-----------|------------------|----------|
|            |                   |          | (N=426)      | (N=296)    |                  |        | (N=330)      | (N=217)    |                  |        | (N=96)       | (N=79)    |                  |          |
| rs28664200 | hsa-mir-<br>1255a | π        | 202 (55.0)   | 128 (57.1) | Dominant         | 0.6175 | 151 (55.7)   | 98 (56.0)  | Dominant         | 0.9536 | 51 (53.1)    | 30 (61.2) | Dominant         | 0.3515   |
|            |                   | СТ       | 143 (39.0)   | 87 (38.8)  | 1                |        | 103 (38.0)   | 71 (40.6)  | 1                |        | 40 (41.7)    | 16 (32.7) | 1                |          |
|            |                   | СС       | 22 (6.0)     | 9 (4.0)    | 0.92 (0.66-1.28) |        | 17 (6.3)     | 6 (3.4)    | 0.99 (0.67-1.45) |        | 5 (5.2)      | 3 (6.1)   | 0.72 (0.36-1.45) |          |
| rs2910164  | hsa-mir-146a      | GG       | 240 (56.3)   | 172 (59.1) | Dominant         | 0.4613 | 180 (54.5)   | 125 (57.6) | Dominant         | 0.4809 | 60 (62.5)    | 47 (63.5) | Dominant         | 0.8921   |
|            |                   | CG       | 158 (37.1)   | 95 (32.6)  | 1                |        | 128 (38.8)   | 73 (33.6)  | 1                |        | 30 (31.2)    | 22 (29.7) | 1                |          |
|            |                   | сс       | 28 (6.6)     | 24 (8.2)   | 0.89 (0.66-1.21) |        | 22 (6.7)     | 19 (8.8)   | 0.88 (0.63-1.25) |        | 6 (6.28)     | 5 (6.8)   | 0.96 (0.51-1.79) |          |
| rs2967897  | hsa-mir-5695      |          |              |            |                  | М      |              |            |                  | м      |              |           |                  | М        |
| rs3112399  | hsa-mir-4803      | Π        |              |            |                  | H-W    |              |            |                  | H-W    | 32 (33.7)    | 29 (38.7) | Dominant         | 0.5017   |
|            |                   | AT       |              |            |                  |        |              |            |                  |        | 46 (48.4)    | 29 (38.7) | 1                |          |
|            |                   | AA       |              |            |                  |        |              |            |                  |        | 17 (17.9)    | 17 (22.7) | 0.81 (0.43-1.51) |          |
| rs34115976 | hsa-mir-577       | СС       | 278 (65.6)   | 187 (65.4) | Dominant         | 0.9602 |              |            |                  | H-W    | 55 (57.3)    | 46 (64.8) | Dominant         | 0.3261   |
|            |                   | CG       | 125 (29.5)   | 87 (30.4)  | 1                |        |              |            |                  |        | 38 (39.6)    | 20 (28.2) | 1                |          |
|            |                   | GG       | 21 (5.0)     | 12 (4.2)   | 1.01 (0.74-1.38) |        |              |            |                  |        | 3 (3.1)      | 5 (7.0)   | 0.73 (0.39-1.37) |          |
| rs35196866 | hsa-mir-4669      |          |              |            |                  | ERROR  |              |            |                  | ERROR  |              |           |                  | ERROR    |
| rs35613341 | hsa-mir-5189      | СС       |              |            |                  | H-W    |              |            |                  | H-W    | 49 (51.0)    | 29 (39.2) | Dominant         | 0.123343 |
|            |                   | CG       |              |            |                  |        |              |            |                  |        | 41 (42.7)    | 30 (40.5) | 1                |          |
|            |                   | GG       |              |            |                  |        |              |            |                  |        | 6 (6.2)      | 15 (20.3) | 1.62 (0.87-2.99) |          |
| rs35650931 | hsa-mir-6076      | GG       | 349 (82.1)   | 240 (82.2) | Dominant         | 0.9797 | 278 (84.2)   | 183 (84.3) | Dominant         | 0.9776 | 71 (74.7)    | 57 (76.0) | Dominant         | 0.8495   |
|            |                   | CG       | 72 (16.9)    | 49 (16.8)  | 1                |        | 49 (14.8)    | 32 (14.7)  | 1                |        | 23 (24.2)    | 17 (22.7) | 1                |          |
|            |                   | сс       | 4 (0.9)      | 3 (1.0)    | 0.99 (0.67-1.47) |        | 3 (0.9)      | 2 (0.9)    | 0.99 (0.62-1.59) |        | 1 (1.1)      | 1 (1.3)   | 0.93 (0.46-1.89) |          |
| rs35770269 | hsa-mir-449c      | AA       | 179 (42.2)   | 132 (45.4) | Dominant         | 0.4050 | 137 (41.8)   | 97 (44.9)  | Dominant         | 0.4696 | 42 (43.8)    | 35 (46.7) | Dominant         | 0.7037   |
|            |                   | AT       | 191 (45.0)   | 123 (42.3) | 1                |        | 146 (44.5)   | 91 (42.1)  | 1                |        | 45 (46.9)    | 32 (42.7) | 1                |          |
|            |                   | тт       | 54 (12.7)    | 36 (12.4)  | 0.88 (0.65-1.19) |        | 45 (13.7)    | 28 (13.0)  | 0.88 (0.62-1.24) |        | 9 (9.4)      | 8 (10.7)  | 0.89 (0.48-1.63) |          |

Annex table 3: All the results for SNPs in miRNA genes in the second study (continuation)

| SNP        | Gene         | Genotype | N (controls) | N(cases)    | OR(CI 95%)       | P dom   | N (controls) | N(cases)    | OR(CI 95%)       | P dom   | N (controls) | N(cases)  | OR(CI95%)        | P dom   |
|------------|--------------|----------|--------------|-------------|------------------|---------|--------------|-------------|------------------|---------|--------------|-----------|------------------|---------|
|            |              |          | (N=426)      | (N=296)     |                  |         | (N=330)      | (N=217)     |                  |         | (N=96)       | (N=79)    |                  |         |
| rs367805   | hsa-mir-3936 | GG       | 206 (48.6)   | 139 (48.4)  | Dominant         | 0.9681  | 164 (50.0)   | 108 (50.2)  | Dominant         | 0.9577  | 42 (43.8)    | 31 (43.1) | Dominant         | 0.9284  |
|            |              | AG       | 171 (40.3)   | 121 (42.2)  | 1                |         | 131 (39.9)   | 88 (40.9)   | 1                |         | 40 (41.7)    | 33 (45.8) | 1                |         |
|            |              | AA       | 47 (11.1)    | 27 (9.4)    | 1.01 (0.75-1.36) |         | 33 (10.1)    | 19 (8.8)    | 0.99 (0.70-1.40) |         | 14 (14.6)    | 8 (11.1)  | 1.03 (0.56-1.91) |         |
| rs3734050  | hsa-mir-6499 | СС       | 382 (89.9)   | 259 (88.7)  | Dominant         | 0.6139  | 294 (89.4)   | 193 (88.9)  | CoDominant       | 0.8767  | 88 (91.7)    | 66 (88.0) | CoDominant       | 0.4284  |
|            |              | СТ       | 43 (10.1)    | 33 (11.3)   | 1                |         | 35 (10.6)    | 24 (11.1)   | 1                |         | 8 (8.3)      | 9 (12.0)  | 1                |         |
|            |              |          |              |             | 1.13 (0.7-1.83)  |         |              |             | 1.04 (0.6-1.81)  |         |              |           | 1.5 (0.55-4.1)   |         |
| rs3746444  | hsa-mir-499a | Π        | 265 (62.5)   | 187 (64.7)  | Dominant         | 0.5480  | 201 (61.3)   | 144 (67.0)  | Dominant         | 0.1763  | 64 (66.7)    | 43 (58.1) | Dominant         | 0.25254 |
|            |              | СТ       | 143 (33.7)   | 87 (30.1)   | 1                |         | 113 (34.5)   | 62 (28.8)   | 1                |         | 30 (31.2)    | 25 (33.8) | 1                |         |
|            |              | СС       | 16 (3.8)     | 15 (5.2)    | 0.91 (0.67-1.24) |         | 14 (4.3)     | 9 (4.2)     | 0.78 (0.54-1.12) |         | 2 (2.1)      | 6 (8.1)   | 1.44 (0.77-2.70) |         |
| rs3823658  | hsa-mir-5090 | GG       | 312 (73.2)   | 218 (75.2)  | Dominant         | 0.56194 | 238 (72.1)   | 168 (77.8)  | Dominant         | 0.13650 | 74 (77.1)    | 50 (67.6) | Dominant         | 0.1673  |
|            |              | AG       | 108 (25.4)   | 62 (21.4)   | 1                |         | 89 (27.0)    | 43 (19.9)   | 1                |         | 19 (19.8)    | 19 (25.7) | 1                |         |
|            |              | AA       | 6 (1.4)      | 10 (3.4)    | 0.90 (0.64-1.27) |         | 3 (0.9)      | 5 (2.3)     | 0.74 (0.49-1.10) |         | 3 (3.1)      | 5 (6.8)   | 1.61 (0.82-3.19) |         |
| rs4112253  | hsa-mir-4751 | СС       | 170 (39.9)   | 122 (41.9)  | Dominant         | 0.5893  | 127 (38.5)   | 95 (44.0)   | Dominant         | 0.20156 | 43 (44.8)    | 27 (36.0) | Dominant         | 0.2450  |
|            |              | CG       | 203 (47.7)   | 124 (42.6)  | 1                |         | 162 (49.1)   | 88 (40.7)   | 1                |         | 41 (42.7)    | 36 (48.0) | 1                |         |
|            |              | GG       | 53 (12.4)    | 45 (15.5)   | 0.92 (0.68-1.25) |         | 41 (12.4)    | 33 (15.3)   | 0.80 (0.56-1.13) |         | 12 (12.5)    | 12 (16.0) | 1.44 (0.78-2.68) |         |
| rs41274239 | hsa-mir-96   | AA       | 425 (99.8)   | 290 (100.0) | CoDominant       | 1       | 329 (99.7)   | 216 (100.0) | CoDominant       | 1       |              |           |                  | М       |
|            |              | AG       | 1 (0.2)      | 0 (0.0)     | 1                |         | 1 (0.3)      | 0 (0.0)     | 1                |         |              |           |                  |         |
|            |              |          |              |             | 0 (0.0)          |         |              |             | (0.0)            |         |              |           |                  |         |
| rs41274312 | hsa-mir-187  | GG       | 420 (98.6)   | 288 (99.3)  | CoDominant       | 0.3544  | 325 (98.5)   | 215 (99.5)  | CoDominant       | 0.221   | 95 (99.0)    | 73 (98.6) | CoDominant       | 0.8533  |
|            |              | AG       | 6 (1.4)      | 2 (0.7)     | 1                |         | 5 (1.5)      | 1 (0.5)     | 1                |         | 1 (1.0)      | 1 (1.4)   | 1                |         |
|            |              |          |              |             | 0.49 (0.1-2.43)  |         |              |             | 0.3 (0.04-2.61)  |         |              |           | 1.3 (0.08-21.16) |         |
| rs41286570 | hsa-mir-154  |          |              |             |                  | М       |              |             |                  | М       |              |           |                  | М       |
| rs41291179 | hsa-mir-216a | AA       | 377 (88.5)   | 265 (90.8)  | Dominant         | 0.3312  | 287 (87.0)   | 197 (90.8)  | Dominant         | 0.16643 | 90 (93.8)    | 68 (90.7) | CoDominant       | 0.4523  |
|            |              | AT       | 48 (11.3)    | 24 (8.2)    | 1                |         | 42 (12.7)    | 17 (7.8)    | 1                |         | 6 (6.2)      | 7 (9.3)   | 1                |         |
|            |              | ТТ       | 1 (0.2)      | 3 (1.0)     | 0.78 (0.48-1.29) |         | 1 (0.3)      | 3 (1.4)     | 0.68 (0.39-1.19) |         |              |           | 1.54 (0.5-4.8)   |         |

Annex table 3: All the results for SNPs in miRNA genes in the second study (continuation)

| SNP        | Gene              | Genotype | N (controls) | N(cases)   | OR(CI 95%)       | P dom  | N (controls) | N(cases)    | OR(CI 95%)       | P dom  | N (controls) | N(cases)  | OR(CI95%)        | P dom  |
|------------|-------------------|----------|--------------|------------|------------------|--------|--------------|-------------|------------------|--------|--------------|-----------|------------------|--------|
|            |                   |          | (N=426)      | (N=296)    |                  |        | (N=330)      | (N=217)     |                  |        | (N=96)       | (N=79)    |                  |        |
| rs41292412 | hsa-mir-122       | CC       | 423 (99.5)   | 291 (99.7) | CoDominant       | 0.7916 | 328 (99.4)   | 217 (100.0) | CoDominant       | 0.5205 | 95 (100.0)   | 74 (98.7) | CoDominant       | 0.4412 |
|            |                   | СТ       | 2 (0.5)      | 1 (0.3)    | 1                |        | 2 (0.6)      | 0 (0.0)     | 1                |        | 0 (0.0)      | 1 (1.3)   | 1                |        |
|            |                   |          |              |            | 0.73 (0.07-8.05) |        |              |             | (0.0)            |        |              |           | 0 (0.0)          |        |
| rs4285314  | hsa-mir-<br>3135b |          |              |            |                  | ERROR  |              |             |                  | ERROR  |              |           |                  | ERROR  |
| rs4414449  | hsa-mir-<br>548ap | Π        | 131 (39.6)   | 100 (39.5) | Dominant         | 0.9900 | 107 (43.9)   | 81 (41.3)   | Dominant         | 0.5944 | 24 (27.6)    | 19 (33.3) | Dominant         | 0.4626 |
|            |                   | СТ       | 149 (45.0)   | 118 (46.6) | 1                |        | 106 (43.4)   | 90 (45.9)   | 1                |        | 43 (49.4)    | 28 (49.1) | 1                |        |
|            |                   | CC       | 51 (15.4)    | 35 (13.8)  | 1.00 (0.72-1.40) |        | 31 (12.7)    | 25 (12.8)   | 1.11 (0.76-1.62) |        | 20 (23.0)    | 10 (17.5) | 0.76 (0.37-1.57) |        |
| rs45530340 | hsa-mir-6084      |          |              |            |                  | М      |              |             |                  | м      |              |           |                  | М      |
| rs4577031  | hsa-mir-<br>548ap | AA       | 161 (38.0)   | 117 (40.2) | Dominant         | 0.5473 | 135 (41.2)   | 92 (42.4)   | Dominant         | 0.7742 | 26 (27.1)    | 25 (33.8) | Dominant         | 0.3455 |
|            |                   | AT       | 206 (48.6)   | 145 (49.8) | 1                |        | 154 (47.0)   | 104 (47.9)  | 1                |        | 52 (54.2)    | 41 (55.4) | 1                |        |
|            |                   | π        | 57 (13.4)    | 29 (10.0)  | 0.91 (0.67-1.24) |        | 39 (11.9)    | 21 (9.7)    | 0.95 (0.67-1.35) |        | 18 (18.8)    | 8 (10.8)  | 0.73 (0.38-1.41) |        |
| rs4674470  | hsa-mir-4268      | TT       | 262 (61.6)   | 185 (63.6) | Dominant         | 0.6008 | 212 (64.4)   | 144 (66.4)  | Dominant         | 0.6442 | 50 (52.1)    | 41 (55.4) | Dominant         | 0.6667 |
|            |                   | СТ       | 142 (33.4)   | 90 (30.9)  | 1                |        | 102 (31.0)   | 59 (27.2)   | 1                |        | 40 (41.7)    | 31 (41.9) | 1                |        |
|            |                   | СС       | 21 (4.9)     | 16 (5.5)   | 0.92 (0.68-1.25) |        | 15 (4.6)     | 14 (6.5)    | 0.92 (0.64-1.32) |        | 6 (6.2)      | 2 (2.7)   | 0.87 (0.48-1.61) |        |
| rs4809383  | hsa-mir-941-<br>1 | сс       | 285 (76.4)   | 197 (79.8) | Dominant         | 0.3243 |              |             |                  | H-W    | 73 (76.8)    | 36 (72.0) | Dominant         | 0.5237 |
|            |                   | СТ       | 85 (22.8)    | 46 (18.6)  | 1                |        |              |             |                  |        | 19 (20.0)    | 13 (26.0) | 1                |        |
|            |                   | TT       | 3 (0.8)      | 4 (1.6)    | 0.82 (0.56-1.22) |        |              |             |                  |        | 3 (3.2)      | 1 (2.0)   | 1.29 (0.59-2.81) |        |
| rs4822739  | hsa-mir-548j      | СС       | 377 (88.5)   | 250 (85.9) | CoDominant       | 0.3068 | 293 (88.8)   | 190 (88.0)  | CoDominant       | 0.7684 | 84 (87.5)    | 60 (80.0) | CoDominant       | 0.1837 |
|            |                   | CG       | 49 (11.5)    | 41 (14.1)  | 1                |        | 37 (11.2)    | 26 (12.0)   | 1                |        | 12 (12.5)    | 15 (20.0) | 1                |        |
|            |                   |          |              |            | 1.26 (0.81-1.97) |        |              |             | 1.08 (0.64-1.85) |        |              |           | 1.75 (0.76-4.01) |        |
| rs487571   | hsa-mir-5680      |          |              |            |                  | ERROR  |              |             |                  | ERROR  |              |           |                  | ERROR  |
| rs4919510  | hsa-mir-608       | сс       | 269 (63.1)   | 186 (64.6) | Dominant         | 0.6949 | 201 (60.9)   | 130 (60.5)  | Dominant         | 0.9174 | 68 (70.8)    | 56 (76.7) | Dominant         | 0.3898 |
|            |                   | CG       | 142 (33.3)   | 93 (32.3)  | 1                |        | 115 (34.8)   | 77 (35.8)   | 1                |        | 27 (28.1)    | 16 (21.9) | 1                |        |
|            |                   | GG       | 15 (3.5)     | 9 (3.1)    | 0.94 (0.69-1.28) |        | 14 (4.2)     | 8 (3.7)     | 1.02 (0.72-1.45) |        | 1 (1.0)      | 1 (1.4)   | 0.74 (0.37-1.48) |        |

## Annex table 3: All the results for SNPs in miRNA genes in the second study (continuation)

| SNP        | Gene               | Genotype | N (controls) | N(cases)   | OR(CI 95%)       | P dom  | N (controls) | N(cases)   | OR(CI 95%)       | P dom  | N (controls) | N(cases)  | OR(CI95%)        | P dom    |
|------------|--------------------|----------|--------------|------------|------------------|--------|--------------|------------|------------------|--------|--------------|-----------|------------------|----------|
|            |                    |          | (N=426)      | (N=296)    |                  |        | (N=330)      | (N=217)    |                  |        | (N=96)       | (N=79)    |                  |          |
| rs515924   | hsa-mir-<br>548al  | AA       | 349 (82.3)   | 226 (78.2) | Dominant         | 0.1744 | 275 (83.8)   | 180 (83.7) | Dominant         | 0.9703 | 74 (77.1)    | 46 (62.2) | Dominant         | 0.03468  |
|            |                    | AG       | 73 (17.2)    | 61 (21.1)  | 1                |        | 52 (15.9)    | 34 (15.8)  | 1                |        | 21 (21.9)    | 27 (36.5) | 1                |          |
|            |                    | GG       | 2 (0.5)      | 2 (0.7)    | 1.30 (0.89-1.89) |        | 1 (0.3)      | 1 (0.5)    | 1.01 (0.63-1.61) |        | 1 (1.0)      | 1 (1.4)   | 2.05 (1.05-4.00) |          |
| rs521188   | hsa-mir-3671       | AA       | 391 (91.8)   | 277 (94.9) | Dominant         | 0.1053 | 303 (91.8)   | 204 (94.0) | CoDominant       | 0.33   | 88 (91.7)    | 73 (97.3) | CoDominant       | 0.1023   |
|            |                    | AG       | 35 (8.2)     | 15 (5.1)   | 1                |        | 27 (8.2)     | 13 (6.0)   | 1                |        | 8 (8.3)      | 2 (2.7)   | 1                |          |
|            |                    |          |              |            | 0.6 (0.32-1.13)  |        |              |            | 0.72 (0.36-1.42) |        |              |           | 0.3 (0.06-1.46)  |          |
| rs56088671 | hsa-mir-4424       |          |              |            |                  | ERROR  |              |            |                  | ERROR  |              |           |                  | ERROR    |
| rs56103835 | hsa-mir-323b       | тт       | 288 (67.6)   | 195 (66.8) | Dominant         | 0.8171 | 233 (70.6)   | 147 (67.7) | Dominant         | 0.4775 | 55 (57.3)    | 48 (64.0) | Dominant         | 0.3730   |
|            |                    | СТ       | 127 (29.8)   | 86 (29.5)  | 1                |        | 88 (26.7)    | 63 (29.0)  | 1                |        | 39 (40.6)    | 23 (30.7) | 1                |          |
|            |                    | СС       | 11 (2.6)     | 11 (3.8)   | 1.04 (0.76-1.43) |        | 9 (2.7)      | 7 (3.2)    | 1.14 (0.79-1.66) |        | 2 (2.1)      | 4 (5.3)   | 0.75 (0.41-1.40) |          |
| rs56195815 | hsa-mir-<br>548aw  |          |              |            |                  | ERROR  |              |            |                  | ERROR  |              |           |                  | ERROR    |
| rs56292801 | hsa-mir-5189       | GG       |              |            |                  | H-W    |              |            |                  | H-W    | 51 (53.1)    | 33 (44.6) | Dominant         | 0.269700 |
|            |                    | AG       |              |            |                  |        |              |            |                  |        | 41 (42.7)    | 27 (36.5) | 1                |          |
|            |                    | AA       |              |            |                  |        |              |            |                  |        | 4 (4.2)      | 14 (18.9) | 1.41 (0.77-2.59) |          |
| rs57111412 | hsa-mir-<br>1283-1 |          |              |            |                  | ERROR  |              |            |                  | ERROR  |              |           |                  | ERROR    |
| rs58450758 | hsa-mir-559        |          |              |            |                  | ERROR  |              |            |                  | ERROR  |              |           |                  | ERROR    |
| rs58834075 | hsa-mir-656        | СС       | 410 (96.2)   | 279 (95.9) | CoDominant       | 0.8033 | 322 (97.6)   | 208 (96.3) | CoDominant       | 0.3912 | 88 (91.7)    | 71 (94.7) | Dominant         | 0.4406   |
|            |                    | СТ       | 16 (3.8)     | 12 (4.1)   | 1                |        | 8 (2.4)      | 8 (3.7)    | 1                |        | 8 (8.3)      | 4 (5.3)   | 1                |          |
|            |                    |          |              |            | 1.1 (0.51-2.37)  |        |              |            | 1.55 (0.57-4.19) |        |              |           | 0.62 (0.18-2.14) |          |
| rs5965660  | hsa-mir-888        |          |              |            |                  | H-W    |              |            |                  | H-W    |              |           |                  | H-W      |
| rs5997893  | hsa-mir-3928       | GG       | 210 (49.5)   | 128 (44.3) | Dominant         | 0.1688 | 174 (53.0)   | 107 (50.0) | Dominant         | 0.4875 | 36 (37.5)    | 21 (28.0) | Dominant         | 0.18909  |
|            |                    | AG       | 168 (39.6)   | 127 (43.9) | 1                |        | 121 (36.9)   | 90 (42.1)  | 1                |        | 47 (49.0)    | 37 (49.3) | 1                |          |
|            |                    | AA       | 46 (10.8)    | 34 (11.8)  | 1.23 (0.91-1.67) |        | 33 (10.1)    | 17 (7.9)   | 1.13 (0.80-1.59) |        | 13 (13.5)    | 17 (22.7) | 1.54 (0.80-2.96) |          |
| rs60308683 | hsa-mir-4762       |          |              |            |                  | ERROR  |              |            |                  | ERROR  |              |           |                  | ERROR    |

Annex table 3: All the results for SNPs in miRNA genes in the second study (continuation)

| SNP        | Gene         | Genotype | N (controls) | N(cases)   | OR(CI 95%)       | P dom   | N (controls) | N(cases)   | OR(CI 95%)       | P dom   | N (controls) | N(cases)  | OR(CI95%)        | P dom   |
|------------|--------------|----------|--------------|------------|------------------|---------|--------------|------------|------------------|---------|--------------|-----------|------------------|---------|
|            |              |          | (N=426)      | (N=296)    |                  |         | (N=330)      | (N=217)    |                  |         | (N=96)       | (N=79)    |                  |         |
| rs6062431  | hsa-mir-4326 | GG       | 191 (45.4)   | 148 (51.6) | Dominant         | 0.1049  | 155 (47.5)   | 110 (51.4) | Dominant         | 0.3806  | 36 (37.9)    | 38 (52.1) | Dominant         | 0.06676 |
|            |              | CG       | 172 (40.9)   | 102 (35.5) | 1                |         | 131 (40.2)   | 77 (36.0)  | 1                |         | 41 (43.2)    | 25 (34.2) | 1                |         |
|            |              | СС       | 58 (13.8)    | 37 (12.9)  | 0.78 (0.58-1.05) |         | 40 (12.3)    | 27 (12.6)  | 0.86 (0.61-1.21) |         | 18 (18.9)    | 10 (13.7) | 0.56 (0.30-1.04) |         |
| rs60871950 | hsa-mir-4467 | AA       | 103 (24.3)   | 68 (23.8)  | Dominant         | 0.4494  | 88 (26.9)    | 58 (27.1)  | Dominant         | 0.9609  | 15 (15.6)    | 10 (13.9) | Dominant         | 0.4428  |
|            |              | AG       | 201 (47.5)   | 130 (45.5) | 1                |         | 163 (49.8)   | 96 (44.9)  | 1                |         | 38 (39.6)    | 34 (47.2) | 1                |         |
|            |              | GG       | 119 (28.1)   | 88 (30.8)  | 0.88 (0.63-1.22) |         | 76 (23.2)    | 60 (28.0)  | 0.99 (0.67-1.46) |         | 43 (44.8)    | 28 (38.9) | 1.27 (0.68-2.37) |         |
| rs61388742 | hsa-mir-596  | π        | 343 (80.9)   | 245 (84.2) | Dominant         | 0.2548  | 264 (80.5)   | 183 (84.3) | Dominant         | 0.2496  | 79 (82.3)    | 62 (83.8) | Dominant         | 0.7973  |
|            |              | СТ       | 77 (18.2)    | 43 (14.8)  | 1                |         | 62 (18.9)    | 31 (14.3)  | 1                |         | 15 (15.6)    | 12 (16.2) | 1                |         |
|            |              | СС       | 4 (0.9)      | 3 (1.0)    | 0.80 (0.53-1.18) |         | 2 (0.6)      | 3 (1.4)    | 0.77 (0.49-1.21) |         | 2 (2.1)      | 0 (0.0)   | 0.90 (0.40-2.02) |         |
| rs61938575 | hsa-mir-3922 | GG       | 186 (49.6)   | 128 (52.9) | Dominant         | 0.42435 | 138 (49.3)   | 101 (52.1) | Dominant         | 0.55221 | 48 (50.5)    | 27 (56.2) | Dominant         | 0.5171  |
|            |              | AG       | 165 (44.0)   | 89 (36.8)  | 1                |         | 124 (44.3)   | 71 (36.6)  | 1                |         | 41 (43.2)    | 18 (37.5) | 1                |         |
|            |              | AA       | 24 (6.4)     | 25 (10.3)  | 0.88 (0.63-1.21) |         | 18 (6.4)     | 22 (11.3)  | 0.89 (0.62-1.29) |         | 6 (6.3)      | 3 (6.2)   | 0.79 (0.40-1.60) |         |
| rs61992671 | hsa-mir-412  | GG       | 118 (27.8)   | 67 (23.1)  | Dominant         | 0.1605  | 99 (30.1)    | 53 (24.7)  | Dominant         | 0.1648  | 19 (19.8)    | 14 (18.7) | Dominant         | 0.5267  |
|            |              | AG       | 210 (49.4)   | 145 (50.0) | 1                |         | 157 (47.7)   | 106 (49.3) | 1                |         | 53 (55.2)    | 39 (52.0) | 1                |         |
|            |              | AA       | 97 (22.8)    | 78 (26.9)  | 1.28 (0.91-1.81) |         | 73 (22.2)    | 56 (26.0)  | 1.32 (0.89-1.94) |         | 24 (25.0)    | 22 (29.3) | 0.80 (0.41-1.58) |         |
| rs62154973 | hsa-mir-4772 | СС       | 336 (79.1)   | 243 (84.7) | Dominant         | 0.05724 | 267 (81.2)   | 183 (85.1) | Dominant         | 0.2287  | 69 (71.9)    | 60 (83.3) | Dominant         | 0.07787 |
|            |              | СТ       | 82 (19.3)    | 40 (13.9)  | 1                |         | 55 (16.7)    | 30 (14.0)  | 1                |         | 27 (28.1)    | 10 (13.9) | 1                |         |
|            |              | TT       | 7 (1.6)      | 4 (1.4)    | 0.68 (0.46-1.02) |         | 7 (2.1)      | 2 (0.9)    | 0.75 (0.47-1.20) |         | 0 (0.0)      | 2 (2.8)   | 0.51 (0.24-1.10) |         |
| rs62376935 | hsa-mir-585  | СС       |              |            |                  | H-W     | 297 (90.0)   | 182 (85.0) | Dominant         | 0.08481 |              |           |                  | H-W     |
|            |              | СТ       |              |            |                  |         | 31 (9.4)     | 31 (14.5)  | 1                |         |              |           |                  |         |
|            |              | т        |              |            |                  |         | 2 (0.6)      | 1 (0.5)    | 1.58 (0.94-2.66) |         |              |           |                  |         |
| rs641071   | hsa-mir-4482 |          |              |            |                  | ERROR   |              |            |                  | ERROR   |              |           |                  | ERROR   |
| rs6430498  | hsa-mir-3679 | GG       | 192 (45.3)   | 127 (44.3) | Dominant         | 0.7860  | 145 (44.2)   | 89 (41.6)  | Dominant         | 0.5472  | 47 (49.0)    | 38 (52.1) | Dominant         | 0.6900  |
|            |              | AG       | 185 (43.6)   | 136 (47.4) | 1                |         | 144 (43.9)   | 105 (49.1) | 1                |         | 41 (42.7)    | 31 (42.5) | 1                |         |
|            |              | AA       | 47 (11.1)    | 24 (8.4)   | 1.04 (0.77-1.41) |         | 39 (11.9)    | 20 (9.3)   | 1.11 (0.79-1.58) |         | 8 (8.3)      | 4 (5.5)   | 0.88 (0.48-1.62) |         |

Annex table 3: All the results for SNPs in miRNA genes in the second study (continuation)

| SNP        | Gene                    | Genotype | N (controls) | N(cases)   | OR(CI 95%)       | P dom  | N (controls) | N(cases)   | OR(CI 95%)       | P dom  | N (controls) | N(cases)  | OR(CI95%)        | P dom   |
|------------|-------------------------|----------|--------------|------------|------------------|--------|--------------|------------|------------------|--------|--------------|-----------|------------------|---------|
|            |                         |          | (N=426)      | (N=296)    |                  |        | (N=330)      | (N=217)    |                  |        | (N=96)       | (N=79)    |                  |         |
| rs6505162  | hsa-mir-423             |          |              |            |                  | ERROR  |              |            |                  | ERROR  |              |           |                  | ERROR   |
| rs6513496  | hsa-mir-646             | тт       | 278 (65.3)   | 185 (64.0) | Dominant         | 0.7326 | 215 (65.2)   | 146 (67.9) | Dominant         | 0.5055 | 63 (65.6)    | 39 (52.7) | Dominant         | 0.08835 |
|            |                         | СТ       | 134 (31.5)   | 89 (30.8)  | 1                |        | 104 (31.5)   | 59 (27.4)  | 1                |        | 30 (31.2)    | 30 (40.5) | 1                |         |
|            |                         | СС       | 14 (3.3)     | 15 (5.2)   | 1.06 (0.77-1.44) |        | 11 (3.3)     | 10 (4.7)   | 0.88 (0.61-1.27) |        | 3 (3.1)      | 5 (6.8)   | 1.71 (0.92-3.19) |         |
| rs66507245 | hsa-mir-4731            |          |              |            |                  | ERROR  |              |            |                  | ERROR  |              |           |                  | ERROR   |
| rs66683138 | hsa-mir-<br>3622a       |          |              |            |                  | ERROR  |              |            |                  | ERROR  |              |           |                  | ERROR   |
| rs67042258 | hsa-mir-6128            | GG       | 240 (56.7)   | 144 (49.5) | Dominant         |        | 186 (56.9)   | 112 (51.9) | Dominant         | 0.2493 | 54 (56.2)    | 32 (42.7) | Dominant         | 0.07747 |
|            |                         | AG       | 160 (37.8)   | 129 (44.3) | 1                |        | 125 (38.2)   | 93 (43.1)  | 1                |        | 35 (36.5)    | 36 (48.0) | 1                |         |
|            |                         | AA       | 23 (5.4)     | 18 (6.2)   |                  |        | 16 (4.9)     | 11 (5.1)   | 1.22 (0.87-1.73) |        | 7 (7.3)      | 7 (9.3)   | 1.73 (0.94-3.18) |         |
| rs670637   | hsa-mir-3167            |          |              |            |                  | М      |              |            |                  | М      |              |           |                  | М       |
| rs67182313 | hsa-mir-4642            | AA       | 277 (65.0)   | 200 (69.4) | Dominant         | 0.2173 | 212 (64.2)   | 146 (67.9) | Dominant         | 0.3775 | 65 (67.7)    | 54 (74.0) | Dominant         | 0.3751  |
|            |                         | AG       | 134 (31.5)   | 80 (27.8)  | 1                |        | 106 (32.1)   | 64 (29.8)  | 1                |        | 28 (29.2)    | 16 (21.9) | 1                |         |
|            |                         | GG       | 15 (3.5)     | 8 (2.8)    | 0.82 (0.59-1.13) |        | 12 (3.6)     | 5 (2.3)    | 0.85 (0.59-1.22) |        | 3 (3.1)      | 3 (4.1)   | 0.74 (0.38-1.45) |         |
| rs6726779  | hsa-mir-4431            | тт       | 160 (37.6)   | 110 (38.1) | Dominant         | 0.9106 | 126 (38.2)   | 79 (36.7)  | Dominant         | 0.7348 | 34 (35.8)    | 31 (41.9) | Dominant         | 0.4189  |
|            |                         | СТ       | 215 (50.6)   | 134 (46.4) | 1                |        | 164 (49.7)   | 103 (47.9) | 1                |        | 51 (53.7)    | 31 (41.9) | 1                |         |
|            |                         | СС       | 50 (11.8)    | 45 (15.6)  | 0.98 (0.72-1.34) |        | 40 (12.1)    | 33 (15.3)  | 1.06 (0.75-1.52) |        | 10 (10.5)    | 12 (16.2) | 0.77 (0.41-1.44) |         |
| rs67339585 | MIR3910-1,<br>MIR3910-2 |          |              |            |                  | ERROR  |              |            |                  | ERROR  |              |           |                  | ERROR   |
| rs6787734  | hsa-mir-<br>3135a       |          |              |            |                  | ERROR  |              |            |                  | ERROR  |              |           |                  | ERROR   |
| rs67976778 | hsa-mir-4305            |          |              |            |                  | ERROR  |              |            |                  | ERROR  |              |           |                  | ERROR   |
| rs6841938  | hsa-mir-<br>1255b-1     |          |              |            |                  | ERROR  |              |            |                  | ERROR  |              |           |                  | ERROR   |
| rs6997249  | hsa-mir-3686            |          |              |            |                  | ERROR  |              |            |                  | ERROR  |              |           |                  | ERROR   |
| rs701213   | hsa-mir-4427            |          |              |            |                  | ERROR  |              |            |                  | ERROR  |              |           |                  | ERROR   |

## Annex table 3: All the results for SNPs in miRNA genes in the second study (continuation)

| SNP        | Gene                | Genotype | N (controls) | N(cases)   | OR(CI 95%)       | P dom  | N (controls) | N(cases)   | OR(CI 95%)       | P dom  | N (controls) | N(cases)  | OR(CI95%)        | P dom   |
|------------|---------------------|----------|--------------|------------|------------------|--------|--------------|------------|------------------|--------|--------------|-----------|------------------|---------|
|            |                     |          | (N=426)      | (N=296)    |                  |        | (N=330)      | (N=217)    |                  |        | (N=96)       | (N=79)    |                  |         |
| rs702742   | hsa-mir-378h        | AA       | 342 (80.5)   | 236 (80.8) | Dominant         | 0.9069 | 255 (77.5)   | 175 (80.6) | Dominant         | 0.3785 | 87 (90.6)    | 61 (81.3) | Dominant         | 0.07822 |
|            |                     | AG       | 79 (18.6)    | 54 (18.5)  | 1                |        | 71 (21.6)    | 41 (18.9)  | 1                |        | 8 (8.3)      | 13 (17.3) | 1                |         |
|            |                     | GG       | 4 (0.9)      | 2 (0.7)    | 0.98 (0.67-1.43) |        | 3 (0.9)      | 1 (0.5)    | 0.83 (0.54-1.26) |        | 1 (1.0)      | 1 (1.3)   | 2.22 (0.90-5.45) |         |
| rs7070684  | hsa-mir-<br>548aj-2 |          |              |            |                  | ERROR  |              |            |                  | ERROR  |              |           | Dominant         | ERROR   |
| rs71363366 | hsa-mir-<br>1283-2  | сс       | 391 (92.9)   | 267 (91.8) | CoDominant       | 0.5798 | 307 (93.9)   | 201 (92.6) | CoDominant       | 0.5656 | 84 (89.4)    | 66 (89.2) | Dominant         | 0.9714  |
|            |                     | CG       | 30 (7.1)     | 24 (8.2)   | 1                |        | 20 (6.1)     | 16 (7.4)   | 1                |        | 10 (10.6)    | 8 (10.8)  | 1                |         |
|            |                     |          |              |            | 1.17 (0.67-2.05) |        |              |            | 1.22 (0.62-2.41) |        |              |           | 1.02 (0.38-2.72) |         |
| rs7205289  | hsa-mir-140         |          |              |            | Dominant         | М      |              |            |                  | М      |              |           |                  | М       |
| rs7207008  | hsa-mir-2117        | TT       | 128 (30.1)   | 75 (26.0)  | Dominant         | 0.2352 | 99 (30.1)    | 51 (23.9)  | Dominant         | 0.1161 | 29 (30.2)    | 24 (32.0) | Dominant         | 0.8016  |
|            |                     | AT       | 205 (48.2)   | 147 (51.0) | 1                |        | 162 (49.2)   | 114 (53.5) | 1                |        | 43 (44.8)    | 33 (44.0) | 1                |         |
|            |                     | AA       | 92 (21.6)    | 66 (22.9)  | 1.22 (0.88-1.71) |        | 68 (20.7)    | 48 (22.5)  | 1.37 (0.92-2.03) |        | 24 (25.0)    | 18 (24.0) | 0.92 (0.48-1.77) |         |
| rs7227168  | hsa-mir-4741        | СС       | 333 (78.7)   | 224 (77.2) | Dominant         | 0.6387 | 265 (81.0)   | 171 (79.5) | Dominant         | 0.6663 | 68 (70.8)    | 53 (70.7) | Dominant         | 0.9810  |
|            |                     | СТ       | 86 (20.3)    | 61 (21.0)  | 1                |        | 58 (17.7)    | 40 (18.6)  | 1                |        | 28 (29.2)    | 21 (28.0) | 1                |         |
|            |                     | TT       | 4 (0.9)      | 5 (1.7)    | 1.09 (0.76-1.56) |        | 4 (1.2)      | 4 (1.9)    | 1.10 (0.71-1.69) |        | 0 (0.0)      | 1 (1.3)   | 1.01 (0.52-1.96) |         |
| rs7247237  | hsa-mir-3188        | СС       | 201 (47.6)   | 149 (51.4) | Dominant         | 0.3255 | 158 (48.3)   | 109 (50.2) | Dominant         | 0.6622 | 43 (45.3)    | 40 (54.8) | Dominant         | 0.2203  |
|            |                     | СТ       | 192 (45.5)   | 117 (40.3) | 1                |        | 148 (45.3)   | 90 (41.5)  | 1                |        | 44 (46.3)    | 27 (37.0) | 1                |         |
|            |                     | т        | 29 (6.9)     | 24 (8.3)   | 0.86 (0.64-1.16) |        | 21 (6.4)     | 18 (8.3)   | 0.93 (0.66-1.31) |        | 8 (8.4)      | 6 (8.2)   | 0.68 (0.37-1.26) |         |
| rs72502717 | hsa-mir-<br>3689f   |          |              |            |                  | ERROR  |              |            |                  | ERROR  |              |           |                  | ERROR   |
| rs72631816 | hsa-mir-105-<br>2   |          |              |            |                  | м      |              |            |                  | М      |              |           |                  | М       |
| rs72631825 | hsa-mir-222         |          |              |            |                  | М      |              |            |                  | М      |              |           |                  | М       |
| rs72631826 | hsa-mir-16-1        |          |              |            |                  | М      |              |            |                  | м      |              |           |                  | М       |
| rs72631827 | hsa-mir-106b        |          |              |            |                  | М      |              |            |                  | М      |              |           |                  | М       |
| rs72631831 | hsa-mir-323b        |          |              |            |                  | М      |              |            |                  | М      |              |           |                  | М       |
| rs72631833 | hsa-mir-183         |          |              |            |                  | М      |              |            |                  | М      |              |           |                  | М       |

Annex table 3: All the results for SNPs in miRNA genes in the second study (continuation)

| SNP        | Gene               | Genotype | N (controls) | N(cases)   | OR(CI 95%)       | P dom   | N (controls) | N(cases)   | OR(CI 95%)       | P dom  | N (controls) | N(cases)  | OR(CI95%)        | P dom     |
|------------|--------------------|----------|--------------|------------|------------------|---------|--------------|------------|------------------|--------|--------------|-----------|------------------|-----------|
|            |                    |          | (N=426)      | (N=296)    |                  |         | (N=330)      | (N=217)    |                  |        | (N=96)       | (N=79)    |                  |           |
| rs72646786 | hsa-mir-3972       | СС       | 324 (76.1)   | 236 (82.2) | Dominant         | 0.04706 | 254 (77.0)   | 168 (78.9) | Dominant         | 0.6019 | 70 (72.9)    | 68 (91.9) | Dominant         | 0.0011005 |
|            |                    | СТ       | 96 (22.5)    | 47 (16.4)  | 1                |         | 71 (21.5)    | 43 (20.2)  | 1                |        | 25 (26.0)    | 4 (5.4)   | 1                |           |
|            |                    | π        | 6 (1.4)      | 4 (1.4)    | 0.69 (0.47-1.00) |         | 5 (1.5)      | 2 (0.9)    | 0.90 (0.59-1.36) |        | 1 (1.0)      | 2 (2.7)   | 0.24 (0.09-0.61) |           |
| rs72855836 | hsa-mir-3976       | GG       |              |            |                  | H-W     | 297 (90.5)   | 200 (92.6) | Dominant         | 0.4024 |              |           |                  | H-W       |
|            |                    | AG       |              |            |                  |         | 29 (8.8)     | 15 (6.9)   | 1                |        |              |           |                  |           |
|            |                    | AA       |              |            |                  |         | 2 (0.6)      | 1 (0.5)    | 0.77 (0.41-1.44) |        |              |           |                  |           |
| rs72996752 | hsa-mir-4999       | AA       | 240 (58.0)   | 149 (55.6) | Dominant         | 0.5409  | 197 (60.1)   | 115 (55.3) | Dominant         | 0.2754 | 43 (50.0)    | 34 (56.7) | Dominant         | 0.4269    |
|            |                    | AG       | 145 (35.0)   | 101 (37.7) | 1                |         | 115 (35.1)   | 81 (38.9)  | 1                |        | 30 (34.9)    | 20 (33.3) | 1                |           |
|            |                    | GG       | 29 (7.0)     | 18 (6.7)   | 1.10 (0.81-1.50) |         | 16 (4.9)     | 12 (5.8)   | 1.22 (0.86-1.73) |        | 13 (15.1 )   | 6 (10.0)  | 0.76 (0.39-1.48) |           |
| rs73112689 | hsa-mir-4459       |          |              |            |                  | ERROR   |              |            |                  | ERROR  |              |           |                  | ERROR     |
| rs7311975  | hsa-mir-1178       | Π        | 394 (92.5)   | 263 (91.3) | Dominant         | 0.5734  | 309 (93.6)   | 197 (92.1) | Dominant         | 0.4828 | 85 (88.5)    | 66 (89.2) | Dominant         | 0.8942    |
|            |                    | СТ       | 31 (7.3)     | 24 (8.3)   | 1                |         | 21 (6.4)     | 16 (7.5)   | 1                |        | 10 (10.4)    | 8 (10.8)  | 1                |           |
|            |                    | сс       | 1 (0.2)      | 1 (0.3)    | 1.17 (0.68-2.02) |         | 0 (0.0)      | 1 (0.5)    | 1.27 (0.65-2.47) |        | 1 (1.0)      | 0 (0.0)   | 0.94 (0.36-2.46) |           |
| rs73147065 | hsa-mir-647        |          |              |            |                  | ERROR   |              |            |                  | ERROR  |              |           |                  | ERROR     |
| rs73177830 | hsa-mir-4532       |          |              |            |                  | ERROR   |              |            |                  | ERROR  |              |           |                  | ERROR     |
| rs73235381 | hsa-mir-<br>548h-4 |          |              |            |                  | ERROR   |              |            |                  | ERROR  |              |           |                  | ERROR     |
| rs73239138 | hsa-mir-<br>1269a  | GG       | 243 (57.4)   | 161 (55.3) | Dominant         | 0.5744  | 193 (59.0)   | 120 (55.6) | Dominant         | 0.4240 | 50 (52.1)    | 41 (54.7) | Dominant         | 0.7369    |
|            | 12050              | AG       | 153 (36.2)   | 114 (39.2) | 1                |         | 115 (35.2)   | 87 (40.3)  | 1                |        | 38 (39.6)    | 27 (36.0) | 1                |           |
|            |                    | AA       | 27 (6.4)     | 16 (5.5)   | 1.09 (0.81-1.47) |         | 19 (5.8)     | 9 (4.2)    | 1.15 (0.81-1.63) |        | 8 (8.3)      | 7 (9.3)   | 0.90 (0.49-1.65) |           |
| rs73410309 | hsa-mir-4739       |          |              |            |                  | ERROR   |              |            |                  | ERROR  |              |           |                  | ERROR     |
| rs74428911 | hsa-mir-4474       | GG       |              |            |                  | H-W     |              |            |                  | H-W    | 94 (97.9)    | 71 (95.9) | CoDominant       | 0.4531    |
|            |                    | GT       |              |            |                  |         |              |            |                  |        | 2 (2.1)      | 3 (4.1)   | 1                |           |
|            |                    |          |              |            |                  |         |              |            |                  |        |              |           | 1.99 (0.32-12.2) |           |

Annex table 3: All the results for SNPs in miRNA genes in the second study (continuation)

| SNP        | Gene              | Genotype | N (controls) | N(cases)   | OR(CI 95%)       | P dom  | N (controls) | N(cases)   | OR(CI 95%)       | P dom  | N (controls) | N(cases)  | OR(CI95%)        | P dom   |
|------------|-------------------|----------|--------------|------------|------------------|--------|--------------|------------|------------------|--------|--------------|-----------|------------------|---------|
|            |                   |          | (N=426)      | (N=296)    |                  |        | (N=330)      | (N=217)    |                  |        | (N=96)       | (N=79)    |                  |         |
| rs74469188 | hsa-mir-6504      | Π        | 286 (76.9)   | 188 (77.4) | Dominant         | 0.8888 | 208 (75.1)   | 148 (76.3) | Dominant         | 0.7655 | 78 (82.1)    | 40 (81.6) | Dominant         | 0.9444  |
|            |                   | СТ       | 81 (21.8)    | 51 (21.0)  | 1                |        | 65 (23.5)    | 42 (21.6)  | 1                |        | 16 (16.8)    | 9 (18.4)  | 1                |         |
|            |                   | СС       | 5 (1.3)      | 4 (1.6)    | 0.97 (0.66-1.43) |        | 4 (1.4)      | 4 (2.1)    | 0.94 (0.61-1.44) |        | 1 (1.1)      | 0 (0.0)   | 1.03 (0.42-2.52) |         |
| rs745666   | hsa-mir-3615      | СС       | 171 (40.2)   | 118 (40.7) | Dominant         | 0.9033 | 131 (39.8)   | 88 (40.9)  | Dominant         | 0.7959 | 40 (41.7)    | 30 (40.0) | Dominant         | 0.82587 |
|            |                   | CG       | 191 (44.9)   | 140 (48.3) | 1                |        | 152 (46.2)   | 99 (46.0)  | 1                |        | 39 (40.6)    | 41 (54.7) | 1                |         |
|            |                   | GG       | 63 (14.8)    | 32 (11.0)  | 0.98 (0.72-1.33) |        | 46 (14.0)    | 28 (13.0)  | 0.95 (0.67-1.36) |        | 17 (17.7)    | 4 (5.3)   | 1.07 (0.58-1.98) |         |
| rs74704964 | hsa-mir-518d      | СС       | 346 (93.3)   | 227 (92.7) | CoDominant       | 0.7724 | 262 (94.9)   | 183 (93.4) | CoDominant       | 0.4745 | 84 (88.4)    | 44 (89.8) | CoDominant       | 0.8024  |
|            |                   | СТ       | 25 (6.7)     | 18 (7.3)   | 1                |        | 14 (5.1)     | 13 (6.6)   | 1                |        | 11 (11.6)    | 5 (10.2)  | 1                |         |
|            |                   |          |              |            | 1.1 (0.59-2.06)  |        |              |            | 1.33 (0.61-2.89) |        |              |           | 0.87 (0.28-2.66) |         |
| rs74904371 | hsa-mir-2682      | СС       | 400 (93.9)   | 275 (95.2) | Dominant         | 0.4687 | 310 (93.9)   | 205 (95.8) | Dominant         | 0.3398 | 90 (93.8)    | 70 (93.3) | CoDominant       | 0.9123  |
|            |                   | СТ       | 25 (5.9)     | 14 (4.8)   | 1                |        | 19 (5.8)     | 9 (4.2)    | 1                |        | 6 (6.2)      | 5 (6.7)   | 1                |         |
|            |                   | тт       | 1 (0.2)      | 0 (0.0)    | 0.78 (0.40-1.53) |        | 1 (0.3)      | 0 (0.0)    | 0.68 (0.30-1.52) |        |              |           | 1.07 (0.31-3.66) |         |
| rs74949342 | hsa-mir-5702      | сс       | 420 (98.6)   | 289 (99.0) | CoDominant       | 0.6484 | 324 (98.2)   | 216 (99.5) | CoDominant       | 0.1384 | 96 (100.0)   | 73 (97.3) | Dominant         | 0.1909  |
|            |                   | CG       | 6 (1.4)      | 3 (1.0)    | 1                |        | 6 (1.8)      | 1 (0.5)    | 1                |        | 0 (0.0)      | 2 (2.7)   | 1                |         |
|            |                   |          |              |            | 0.73 (0.18-2.93) |        |              |            | 0.25 (0.03-2.09) |        |              |           | 0 (0.0)          |         |
| rs7500280  | hsa-mir-4719      |          |              |            |                  | ERROR  |              |            |                  | ERROR  |              |           |                  | ERROR   |
| rs75019967 | hsa-mir-<br>4477a |          |              |            |                  | м      |              |            |                  | М      |              |           |                  | М       |
| rs7522956  | hsa-mir-4742      | AA       | 257 (60.5)   | 162 (55.7) | Dominant         | 0.2007 | 204 (62.0)   | 129 (59.7) | Dominant         | 0.5929 | 53 (55.2)    | 33 (44.0) | Dominant         | 0.1454  |
|            |                   | AC       | 150 (35.3)   | 110 (37.8) | 1                |        | 110 (33.4)   | 72 (33.3)  | 1                |        | 40 (41.7)    | 38 (50.7) | 1                |         |
|            |                   | СС       | 18 (4.2)     | 19 (6.5)   | 1.22 (0.90-1.65) |        | 15 (4.6)     | 15 (6.9)   | 1.10 (0.77-1.56) |        | 3 (3.1)      | 4 (5.3)   | 1.57 (0.85-2.88) |         |
| rs75598818 | hsa-mir-520f      | GG       | 404 (95.1)   | 274 (94.2) | Dominant         | 0.5991 | 316 (96.0)   | 209 (96.3) | Dominant         | 0.8746 | 88 (91.7)    | 65 (87.8) | CoDominant       | 0.4115  |
|            |                   | AG       | 20 (4.7)     | 17 (5.8)   | 1                |        | 12 (3.6)     | 8 (3.7)    | 1                |        | 8 (8.3)      | 9 (12.2)  | 1                |         |
|            |                   | AA       | 1 (0.2)      | 0 (0.0)    | 1.19 (0.62-2.30) |        | 1 (0.3)      | 0 (0.0)    | 0.93 (0.38-2.28) |        |              |           | 1.52 (0.56-4.16) |         |

Annex table 3: All the results for SNPs in miRNA genes in the second study (continuation)

| SNP        | Gene         | Genotype | N (controls) | N(cases)   | OR(CI 95%)       | P dom   | N (controls) | N(cases)   | OR(CI 95%)       | P dom   | N (controls) | N(cases)  | OR(CI95%)        | P dom  |
|------------|--------------|----------|--------------|------------|------------------|---------|--------------|------------|------------------|---------|--------------|-----------|------------------|--------|
|            |              |          | (N=426)      | (N=296)    |                  |         | (N=330)      | (N=217)    |                  |         | (N=96)       | (N=79)    |                  |        |
| rs75715827 | hsa-mir-944  | Π        | 363 (85.2)   | 254 (87.9) | Dominant         | 0.3040  | 278 (84.2)   | 189 (88.3) | Dominant         | 0.1784  | 85 (88.5)    | 65 (86.7) | Dominant         | 0.7115 |
|            |              | СТ       | 59 (13.8)    | 35 (12.1)  | 1                |         | 50 (15.2)    | 25 (11.7)  | 1                |         | 9 (9.4)      | 10 (13.3) | 1                |        |
|            |              | СС       | 4 (0.9)      | 0 (0.0)    | 0.79 (0.51-1.24) |         | 2 (0.6)      | 0 (0.0)    | 0.71 (0.42-1.18) |         | 2 (2.1)      | 0 (0.0)   | 1.19 (0.48-2.97) |        |
| rs75966923 | hsa-mir-4298 | СС       | 401 (94.1)   | 278 (95.2) | Dominant         | 0.5301  | 312 (94.5)   | 207 (95.4) | Dominant         | 0.6585  | 89 (92.7)    | 71 (94.7) | CoDominant       | 0.6017 |
|            |              | AC       | 24 (5.6)     | 13 (4.5)   | 1                |         | 17 (5.2)     | 9 (4.1)    | 1                |         | 7 (7.3)      | 4 (5.3)   | 1                |        |
|            |              | AA       | 1 (0.2)      | 1 (0.3)    | 0.81 (0.41-1.58) |         | 1 (0.3)      | 1 (0.5)    | 0.84 (0.38-1.85) |         |              |           | 0.72 (0.2-2.54)  |        |
| rs76481776 | hsa-mir-182  | СС       | 359 (84.7)   | 236 (81.7) | Dominant         | 0.29043 | 275 (83.8)   | 171 (79.9) | Dominant         | 0.24327 | 84 (87.5)    | 65 (86.7) | Dominant         | 0.8718 |
|            |              | СТ       | 60 (14.2)    | 53 (18.3)  | 1                |         | 49 (14.9)    | 43 (20.1)  | 1                |         | 11 (11.5)    | 10 (13.3) | 1                |        |
|            |              | TT       | 5 (1.2)      | 0 (0.0)    | 1.24 (0.83-1.85) |         | 4 (1.2)      | 0 (0.0)    | 1.30 (0.84-2.04) |         | 1 (1.0)      | 0 (0.0)   | 1.08 (0.44-2.65) |        |
| rs76800617 | hsa-mir-4521 | AA       | 409 (96.0)   | 276 (94.5) | Dominant         | 0.353   | 315 (95.5)   | 202 (93.1) | CoDominant       | 0.2391  | 94 (97.9)    | 74 (98.7) | CoDominant       | 0.7074 |
|            |              | AG       | 17 (4.0)     | 16 (5.5)   | 1                |         | 15 (4.5)     | 15 (6.9)   | 1                |         | 2 (2.1)      | 1 (1.3)   | 1                |        |
|            |              |          |              |            | 1.39 (0.69-2.81) |         |              |            | 1.56 (0.75-3.26) |         |              |           | 0.64 (0.06-7.14) |        |
| rs77055126 | hsa-mir-1303 |          |              |            |                  | ERROR   |              |            |                  | ERROR   |              |           |                  | ERROR  |
| rs77639117 | hsa-mir-576  | AA       | 410 (96.7)   | 280 (96.6) | CoDominant       | 0.9152  | 317 (96.6)   | 209 (96.8) | CoDominant       | 0.9425  | 93 (96.9)    | 71 (95.9) | CoDominant       | 0.7458 |
|            |              | AT       | 14 (3.3)     | 10 (3.4)   | 1                |         | 11 (3.4)     | 7 (3.2)    | 1                |         | 3 (3.1)      | 3 (4.1)   | 1                |        |
|            |              |          |              |            | 1.05 (0.46-2.39) |         |              |            | 0.97 (0.37-2.53) |         |              |           | 1.31 (0.26-6.68) |        |
| rs78396863 | hsa-mir-4743 | GG       | 413 (97.6)   | 286 (98.3) | CoDominant       | 0.5498  | 319 (97.6)   | 213 (98.2) | CoDominant       | 0.6354  | 94 (97.9)    | 73 (98.6) | Dominant         | 0.7159 |
|            |              | CG       | 10 (2.4)     | 5 (1.7)    | 1                |         | 8 (2.4)      | 4 (1.8)    | 1                |         | 2 (2.1)      | 1 (1.4)   | 1                |        |
|            |              |          |              |            | 0.72 (0.24-2.13) |         |              |            | 0.75 (0.22-2.52) |         |              |           | 0.64 (0.06-7.24) |        |
| rs78541299 | hsa-mir-6075 | GG       | 423 (99.3)   | 291 (99.7) | CoDominant       | 0.5094  | 327 (99.1)   | 216 (99.5) | CoDominant       | 0.5348  |              |           |                  | М      |
|            |              | AG       | 3 (0.7)      | 1 (0.3)    | 1                |         | 3 (0.9)      | 1 (0.5)    | 1                |         |              |           |                  |        |
|            |              |          |              |            | 0.48 (0.05-4.68) |         |              |            | 0.5 (0.05-4.88)  |         |              |           |                  |        |
| rs78790512 | hsa-mir-6083 | GG       | 291 (68.3)   | 199 (68.2) | Dominant         | 0.9641  | 215 (65.2)   | 144 (66.4) | Dominant         | 0.7709  | 76 (79.2)    | 55 (73.3) | Dominant         | 0.3724 |
|            |              | AG       | 121 (28.4)   | 84 (28.8)  | 1                |         | 103 (31.2)   | 65 (30.0)  | 1                |         | 18 (18.8)    | 19 (25.3) | 1                |        |
|            |              | AA       | 14 (3.3)     | 9 (3.1)    | 1.01 (0.73-1.39) |         | 12 (3.6)     | 8 (3.7)    | 0.95 (0.66-1.36) |         | 2 (2.1)      | 1 (1.3)   | 1.38 (0.68-2.81) |        |

Annex table 3: All the results for SNPs in miRNA genes in the second study (continuation)

| SNP        | Gene              | Genotype | N (controls) | N(cases)   | OR(CI 95%)       | P dom  | N (controls) | N(cases)   | OR(CI 95%)       | P dom  | N (controls) | N(cases)  | OR(CI95%)        | P dom   |
|------------|-------------------|----------|--------------|------------|------------------|--------|--------------|------------|------------------|--------|--------------|-----------|------------------|---------|
|            |                   |          | (N=426)      | (N=296)    |                  |        | (N=330)      | (N=217)    |                  |        | (N=96)       | (N=79)    |                  |         |
| rs78831152 | hsa-mir-4789      | СС       | 354 (83.1)   | 237 (81.7) | Dominant         | 0.6350 | 279 (84.5)   | 177 (82.3) | Dominant         | 0.4947 | 75 (78.1)    | 60 (80.0) | Dominant         | 0.7650  |
|            |                   | СТ       | 68 (16.0)    | 51 (17.6)  | 1                |        | 49 (14.8)    | 36 (16.7)  | 1                |        | 19 (19.8)    | 15 (20.0) | 1                |         |
|            |                   | TT       | 4 (0.9)      | 2 (0.7)    | 1.10 (0.74-1.63) |        | 2 (0.6)      | 2 (0.9)    | 1.17 (0.74-1.86) |        | 2 (2.1)      | 0 (0.0)   | 0.89 (0.42-1.88) |         |
| rs78832554 | hsa-mir-4786      | GG       | 402 (94.6)   | 281 (96.2) | CoDominant       | 0.3024 | 309 (93.6)   | 209 (96.3) | CoDominant       | 0.1621 | 93 (97.9)    | 72 (96.0) | CoDominant       | 0.4696  |
|            |                   | AG       | 23 (5.4)     | 11 (3.8)   | 1                |        | 21 (6.4)     | 8 (3.7)    | 1                |        | 2 (2.1)      | 3 (4.0)   | 1                |         |
|            |                   |          |              |            | 0.68 (0.33-1.43) |        |              |            | 0.56 (0.24-1.3)  |        |              |           | 1.94 (0.32-11.9) |         |
| rs7896283  | hsa-mir-4481      | AA       | 85 (35.1)    | 93 (38.4)  | Dominant         | 0.4507 | 57 (38.8)    | 78 (40.2)  | Dominant         | 0.7890 | 28 (29.5)    | 15 (31.2) | Dominant         | 0.8272  |
|            |                   | AG       | 113 (46.7)   | 108 (44.6) | 1                |        | 68 (46.3)    | 85 (43.8)  | 1                |        | 45 (47.4)    | 23 (47.9) | 1                |         |
|            |                   | GG       | 44 (18.2)    | 41 (16.9)  | 0.87 (0.60-1.26) |        | 22 (15.0)    | 31 (16.0)  | 0.94 (0.61-1.46) |        | 22 (23.2)    | 10 (20.8) | 0.92 (0.43-1.95) |         |
| rs7911488  | hsa-mir-1307      |          |              |            |                  | ERROR  |              |            |                  | ERROR  |              |           |                  | ERROR   |
| rs79397096 | hsa-mir-597       | GG       | 410 (96.2)   | 286 (97.9) | CoDominant       | 0.1832 | 317 (96.1)   | 212 (97.7) | CoDominant       | 0.2834 | 93 (96.9)    | 74 (98.7) | CoDominant       | 0.4283  |
|            |                   | AG       | 16 (3.8)     | 6 (2.1)    | 1                |        | 13 (3.9)     | 5 (2.3)    | 1                |        | 3 (3.1)      | 1 (1.3)   | 1                |         |
|            |                   |          |              |            | 0.54 (0.21-1.39) |        |              |            | 0.58 (0.2-1.64)  |        |              |           | 0.42 (0.04-4.11) |         |
| rs79512808 | hsa-mir-3976      | TT       | 413 (96.9)   | 287 (98.3) | Dominant         | 0.2485 | 322 (97.6)   | 213 (98.2) | Dominant         | 0.6465 | 91 (94.8)    | 74 (98.7) | CoDominant       | 0.1492  |
|            |                   | GT       | 13 (3.1)     | 4 (1.4)    | 1                |        | 8 (2.4)      | 3 (1.4)    | 1                |        | 5 (5.2)      | 1 (1.3)   | 1                |         |
|            |                   | GG       | 0 (0.0)      | 1 (0.3)    | 0.55 (0.20-1.57) |        | 0 (0.0)      | 1 (0.5)    | 0.76 (0.22-2.54) |        |              |           | 0.25 (0.03-2.15) |         |
| rs80128580 | hsa-mir-5707      | GG       | 405 (95.1)   | 276 (94.5) | Dominant         | 0.7441 | 316 (95.8)   | 205 (94.5) | CoDominant       | 0.4919 | 89 (92.7)    | 71 (94.7) | Dominant         | 0.6017  |
|            |                   | AG       | 21 (4.9)     | 15 (5.1)   | 1                |        | 14 (4.2)     | 12 (5.5)   | 1                |        | 7 (7.3)      | 3 (4.0)   | 1                |         |
|            |                   | AA       | 0 (0.0)      | 1 (0.3)    | 1.12 (0.57-2.18) |        |              |            | 1.32 (0.6-2.91)  |        | 0 (0.0)      | 1 (1.3)   | 0.72 (0.20-2.54) |         |
| rs8054514  | hsa-mir-3176      | тт       | 301 (70.8)   | 217 (74.3) | Dominant         | 0.3037 | 227 (68.8)   | 156 (71.9) | Dominant         | 0.4376 | 74 (77.9)    | 61 (81.3) | Dominant         | 0.5808  |
|            |                   | GT       | 118 (27.8)   | 70 (24.0)  | 1                |        | 97 (29.4)    | 57 (26.3)  | 1                |        | 21 (22.1)    | 13 (17.3) | 1                |         |
|            |                   | GG       | 6 (1.4)      | 5 (1.7)    | 0.84 (0.60-1.17) |        | 6 (1.8)      | 4 (1.8)    | 0.86 (0.59-1.26) |        | 0 (0.0)      | 1 (1.3)   | 0.81 (0.38-1.72) |         |
| rs8078913  | hsa-mir-<br>4520a | СС       | 130 (31.2)   | 75 (28.6)  | Dominant         | 0.4679 | 102 (31.0)   | 65 (32.2)  | Dominant         | 0.7772 | 28 (32.2)    | 10 (16.7) | Dominant         | 0.03134 |
|            |                   | СТ       | 206 (49.5)   | 134 (51.1) | 1                |        | 165 (50.2)   | 103 (51.0) | 1                |        | 41 (47.1)    | 31 (51.7) | 1                |         |
|            |                   | тт       | 80 (19.2)    | 53 (20.2)  | 1.13 (0.81-1.59) |        | 62 (18.8)    | 34 (16.8)  | 0.95 (0.65-1.38) |        | 18 (20.7)    | 19 (31.7) | 2.37 (1.05-5.36) |         |

Annex table 3: All the results for SNPs in miRNA genes in the second study (continuation)

| SNP         | Gene               | Genotype | N (controls) | N(cases)   | OR(CI 95%)       | P dom   | N (controls) | N(cases)   | OR(CI 95%)       | P dom   | N (controls) | N(cases)  | OR(CI95%)         | P dom    |
|-------------|--------------------|----------|--------------|------------|------------------|---------|--------------|------------|------------------|---------|--------------|-----------|-------------------|----------|
|             |                    |          | (N=426)      | (N=296)    |                  |         | (N=330)      | (N=217)    |                  |         | (N=96)       | (N=79)    |                   |          |
| rs832733    | hsa-mir-4698       |          |              |            |                  | ERROR   |              |            |                  | ERROR   |              |           |                   | ERROR    |
| rs850108    | hsa-mir-<br>550a-3 |          |              |            |                  | ERROR   |              |            |                  | ERROR   |              |           |                   | ERROR    |
| rs8667      | hsa-mir-4751       | GG       | 142 (37.2)   | 117 (40.2) | Dominant         | 0.4232  | 109 (38.0)   | 84 (38.9)  | Dominant         | 0.8355  | 33 (34.7)    | 33 (44.0) | Dominant          | 0.2189   |
|             |                    | AG       | 183 (47.9)   | 141 (48.5) | 1                |         | 133 (46.3)   | 109 (50.5) | 1                |         | 50 (52.6)    | 32 (42.7) | 1                 |          |
|             |                    | AA       | 57 (14.9)    | 33 (11.3)  | 0.88 (0.64-1.20) |         | 45 (15.7)    | 23 (10.6)  | 0.96 (0.67-1.38) |         | 12 (12.6)    | 10 (13.3) | 0.68 (0.36-1.26)  |          |
| rs877722    | hsa-mir-4671       | AA       | 318 (74.6)   | 230 (78.8) | Dominant         | 0.2002  | 242 (73.3)   | 167 (77.0) | Dominant         | 0.3378  | 76 (79.2)    | 63 (84.0) | CoDominant        | 0.4189   |
|             |                    | AT       | 102 (23.9)   | 58 (19.9)  | 1                |         | 82 (24.8)    | 46 (21.2)  | 1                |         | 20 (20.8)    | 12 (16.0) | 1                 |          |
|             |                    | TT       | 6 (1.4)      | 4 (1.4)    | 0.79 (0.56-1.13) |         | 6 (1.8)      | 4 (1.8)    | 0.82 (0.55-1.23) |         |              |           | 0.72 (0.33-1.59)  |          |
| rs895819    | mir-27a            |          |              |            |                  | ERROR   |              |            |                  | ERROR   |              |           |                   | ERROR    |
| rs897984    | hsa-mir-4519       |          |              |            |                  | ERROR   |              |            |                  | ERROR   |              |           |                   | ERROR    |
| rs9295535   | hsa-mir-5689       |          |              |            |                  | ERROR   |              |            |                  | ERROR   |              |           |                   | ERROR    |
| rs936581    | hsa-mir-3141       | GG       | 299 (70.5)   | 195 (67.0) | Dominant         | 0.31943 | 243 (74.1)   | 156 (71.9) | Dominant         | 0.5716  | 56 (58.3)    | 39 (52.7) | Dominant          | 0.46365  |
|             |                    | AG       | 109 (25.7)   | 92 (31.6)  | 1                |         | 79 (24.1)    | 59 (27.2)  | 1                |         | 30 (31.2)    | 33 (44.6) | 1                 |          |
|             |                    | AA       | 16 (3.8)     | 4 (1.4)    | 1.18 (0.85-1.62) |         | 6 (1.8)      | 2 (0.9)    | 1.12 (0.76-1.64) |         | 10 (10.4)    | 2 (2.7)   | 1.26 (0.68-2.31)  |          |
| rs9842591   | hsa-mir-5186       | СС       | 102 (27.2)   | 81 (33.5)  | Dominant         | 0.09711 | 74 (26.5)    | 64 (33.3)  | Dominant         | 0.11173 | 28 (29.2)    | 17 (34.0) | Dominant          | 0.5500   |
|             |                    | AC       | 198 (52.8)   | 106 (43.8) | 1                |         | 147 (52.7)   | 84 (43.8)  | 1                |         | 51 (53.1)    | 22 (44.0) | 1                 |          |
|             |                    | AA       | 75 (20.0)    | 55 (22.7)  | 0.74 (0.52-1.05) |         | 58 (20.8)    | 44 (22.9)  | 0.72 (0.48-1.08) |         | 17 (17.7)    | 11 (22.0) | 0.80 (0.38-1.66)  |          |
| rs9877402   | hsa-mir-5680       | AA       | 341 (91.7)   | 210 (86.4) | CoDominant       | 0.03931 | 253 (91.0)   | 171 (88.6) | CoDominant       | 0.3941  | 88 (93.6)    | 39 (78.0) | CoDominant        | 0.007147 |
|             |                    | AG       | 31 (8.3)     | 33 (13.6)  | 1                |         | 25 (9.0)     | 22 (11.4)  | 1                |         | 6 (6.4)      | 11 (22.0) | 1                 |          |
|             |                    |          |              |            | 1.73 (1.03-2.91) |         |              |            | 1.3 (0.71-2.38)  |         |              |           | 4.14 (1.43-11.99) |          |
| rs9913045   | hsa-mir-<br>548h-3 |          |              |            |                  | ERROR   |              |            |                  | ERROR   |              |           |                   | ERROR    |
| rs11048315  | MIR4302            | GG       |              |            |                  | H-W     |              |            |                  | H-W     | 71 (74.7)    | 58 (77.3) | Dominant          | 0.6939   |
|             |                    | AG       |              |            |                  |         |              |            |                  |         | 21 (22.1)    | 15 (20.0) | 1                 |          |
|             |                    | AA       |              |            |                  |         |              |            |                  |         | 3 (3.2)      | 2 (2.7)   | 0.87 (0.43-1.77)  |          |
| rs111803974 | MIR3908            |          |              |            |                  | ERROR   |              |            |                  | ERROR   |              |           |                   | ERROR    |

Annex table 3: All the results for SNPs in miRNA genes in the second study (continuation)

| SNP         | Gene              | Genotype | N (controls) | N(cases)   | OR(CI 95%)       | P dom  | N (controls) | N(cases)   | OR(CI 95%)            | P dom  | N (controls) | N(cases)  | OR(CI95%)         | P dom  |
|-------------|-------------------|----------|--------------|------------|------------------|--------|--------------|------------|-----------------------|--------|--------------|-----------|-------------------|--------|
|             |                   |          | (N=426)      | (N=296)    |                  |        | (N=330)      | (N=217)    |                       |        | (N=96)       | (N=79)    |                   |        |
| rs111906529 | MIR299,<br>MIR380 | Π        | 417 (98.1)   | 282 (96.6) | CoDominant       | 0.1995 | 323 (98.2)   | 211 897.2) | CoDominant            | 0.4676 | 94 (97.9)    | 71 (94.7) | CoDominant        | 0.2523 |
|             |                   | СТ       | 8 (1.9)      | 10 (3.4)   | 1                |        | 6 (1.8)      | 6 (2.8)    | 1                     |        | 2 (2.1)      | 4 (5.3)   | 1                 |        |
|             |                   |          |              |            | 1.85 (0.72-4.74) |        |              |            | 1.53 (0.49-4.81)      |        |              |           | 2.65 (0.47-14.86) |        |
| rs112328520 | MIR520G           | сс       | 364 (86.1)   | 257 (88.9) | CoDominant       | 0.2558 | 282 (86.2)   | 194 (89.8) | CoDominant            | 0.2102 | 82 (85.4)    | 63 (86.3) | CoDominant        | 0.8702 |
|             |                   | СТ       | 59 (13.9)    | 32 (11.1)  | 1                |        | 45 (13.8)    | 22 (10.2)  | 1                     |        | 14 (14.6)    | 10 (13.7) | 1                 |        |
|             |                   |          |              |            | 0.77 (0.49-1.22) |        |              |            | 0.71 (0.41-1.22)      |        |              |           | 0.93 (0.39-2.23)  |        |
| rs11269     | mir-1282          |          |              |            |                  | М      |              |            |                       | м      |              |           |                   | М      |
| rs113808830 | MIR4532           | СС       | 340 (80.2)   | 233 (80.3) | Dominant         | 0.9589 | 270 (82.1)   | 180 (83.7) | Dominant              | 0.6169 | 70 (73.7)    | 53 (70.7) | Dominant          | 0.6626 |
|             |                   | СТ       | 80 (18.9)    | 57 (19.7)  | 1                |        | 56 (17.0)    | 35 (16.3)  | 1                     |        | 24 (25.3)    | 22 (29.3) | 1                 |        |
|             |                   | TT       | 4 (0.9)      | 0 (0.0)    | 0.99 (0.68-1.44) |        | 3 (0.9)      | 0 (0.0)    | 0.89 (0.56-1.41)      |        | 1 (1.1)      | 0 (0.0)   | 1.16 (0.59-2.28)  |        |
| rs116932476 | hsa-mir-4479      | GG       | 418 (98.8)   | 284 (97.6) | CoDominant       | 0.2166 | 326 (99.1)   | 211 (97.7) | CoDominant            | 0.1891 | 92 97.9      | 73 97.3   | Dominant          | 0.8194 |
|             |                   | AG       | 5 (1.2)      | 7 (2.4)    | 1                |        | 3 (0.9)      | 5 (2.3)    | 1                     |        | 2 (2.1)      | 2 (2.7)   | 1                 |        |
|             |                   |          |              |            | 2.06 (0.65-6.56) |        |              |            | 2.58 (0.61-<br>10.89) |        |              |           | 1.26 (0.17-9.16)  |        |
| rs117258475 | MIR296            | GG       | 414 (97.4)   | 281 (96.2) | Dominant         | 0.3725 | 320 (97.3)   | 209 (96.3) | Dominant              | 0.5346 | 94 (97.9)    | 72 (96.0) | Dominant          | 0.4624 |
|             |                   | AG       | 11 (2.6)     | 9 (3.1)    | 1                |        | 9 (2.7)      | 7 (3.2)    | 1                     |        | 2 (2.1)      | 2 (2.7)   | 1                 |        |
|             |                   | AA       | 0 (0.0)      | 2 (0.7)    | 1.47 (0.63-3.44) |        | 0 (0.0)      | 1 (0.5)    | 1.36 (0.52-3.58)      |        | 0 (0.0)      | 1 (1.3)   | 1.96 (0.32-12.03) |        |
| rs117650137 | hsa-mir-6717      | GG       | 399 (93.7)   | 271 (92.8) | CoDominant       | 0.6539 | 310 (93.9)   | 202 (93.1) | CoDominant            | 0.6916 | 89 (92.7)    | 69 (92.0) | CoDominant        | 0.8625 |
|             |                   | AG       | 27 (6.3)     | 21 (7.2)   | 1                |        | 20 (6.1)     | 15 (6.9)   | 1                     |        | 7 (7.3)      | 6 (8.0)   | 1                 |        |
|             |                   |          |              |            | 1.15 (0.63-2.07) |        |              |            | 1.15 (0.58-2.3)       |        |              |           | 1.11 (0.36-3.44)  |        |
| rs117723462 | MIR3649           | TT       |              |            | CoDominant       |        | 326 (98.8)   | 212 (97.7) | Dominant              | 0.3326 | 96 (100.0)   | 73 (97.3) | CoDominant        | 0.1909 |
|             |                   | GT       |              |            | 1                |        | 4 (1.2)      | 5 (2.3)    | 1                     |        | 0 (0.0)      | 2 (2.7)   | 1                 |        |
|             |                   |          |              |            |                  |        |              |            | 1.92 (0.51-7.24)      |        |              |           | 0 (0.0)           |        |
| rs163642    | MIR4436B2         |          |              |            |                  | ERROR  |              |            |                       | ERROR  |              |           |                   | ERROR  |

Annex table 3: All the results for SNPs in miRNA genes in the second study (continuation)

Abbreviations: OR Odd Ratio, CI Confidence Interval, M monomorphic, H-W No Hardy-Weimber equilibrium

## DISCUSSION

The main goal of the present study was to prove the strong genetic component in the etiology of childhood B-ALL by identifying genetic susceptibility markers in coding regions as well as non coding regions. To that end, on the one hand we have determined whether the loci previously proposed by the GWAS were associated with B-ALL risk in the Spanish population, and on the other hand, we have determined the involvement of genetic variants in miRNA related genes in the susceptibility of B-ALL.

Considering the obtained results in the GWAS in relation with B-ALL susceptibility, up to date, five loci have been proposed to be involved in the disease: *ARID5B*, *IKZF1*, *CEBPE*, *CDKN2A/B* and *PIP4K2A*.

In *ARID5B*, we confirmed the association previously proposed by the all the GWAS (Treviño et al. 2009, Papaemmanuil et al. 2009, Orsi et al. 2012, Migliorini et al. 2013, Xu et al. 2013). Interestingly, this association between *ARID5B* and B-ALL risk was also confirmed for different ethnic groups (Healy et al. 2010, Prasad et al., 2010, Pastorczack et al., 2011, Ross el al, 2012, Lautner-Csorba et al., 2012, Chokkalingam et al., 2013, Yang et al. 2010, Han et al. 2010, Xu et al. 2012, Vijayakrishnan et al. 2010, Lin et al. 2014, Wang et al. 2013, Emerenciano et al. 2014, Kreile et al. 2016, Gharbi et al. 2016, Bahari et al. 2016), which supports the hypothesis that *ARID5B* is involved in a general mechanism that contributes to the etiology of childhood ALL. Of note is that the specific role of *ARID5B* in B-ALL remains to be elucidated, as well as the function of the SNPs associated. By *in silico* analysis, we could determine that rs10821936, rs7073837, rs7089424, rs7087507, and rs10821938 disrupt the binding site of transcriptional factors (Lee and Shatkay 2008) and rs7923074 and rs4131566 removed CpG sites (Samuelsson et al. 2011). These changes could potentially affect *ARID5B* regulation but further functional studies are needed to explain the implication of these SNPs and the *ARID5B* gene in B-ALL susceptibility.

In *IKZF1*, our results have confirmed the association of rs4132601, one of the highest association signals found by GWAS (Treviño et al. 2009, Papaemmanuil et al. 2009, Orsi et al. 2012, Migliorini et al. 2013, Xu et al. 2013), with B-ALL susceptibility in our cohort. Although several studies replicated the association between *IKZF1* rs4132601 polymorphism and ALL risk (Prasad et al. 2010, Vijayakrishnan et al., 2010 Pastorczack et al., 2011, Ross el al, 2012, Ellinghaus et al, 2012, Lautner-Csorba et al., 2012, Linabery et al., 2013, Chokkalingam et al., 2013 Bhandari et al., 2016 Gharbi et al., 2016), some studies did not (Healy et al. 2010, Wang et al., 2013, Emerenciano et al. 2014, Lin et al., 2014, Kennedy et al., 2015, Kreile et al., 2016).

225

In order to clarify the possible association between rs4132601 and risk of ALL we performed a meta-analysis. Our results confirmed that GG genotype of rs4132601 at *IKZF1* increased the risk of B-ALL. This SNP is located in 3'UTR region of *IKZF1*, a region involved in gene regulation. In this line, Papaemmanuil et al. found a significantly decreased expression associated with the G risk allele (Papaemmanuil et al. 2009); however, the functional explanation of this SNP was not fully elucidated. Recently, thanks to the publication of ENCyclopedia of DNA Elements (ENCODE) (Consortium 2012), we have found that rs4132601 is located in a miRNA binding site, in which the G allele creates a binding for mir-4772 and mir-3937 (Gong et al. 2015). The creation of these miRNA binding sites could decrease IKZF1 expression previously described. Therefore, the risk allele G of *IKZF1* creates a miRNA binding site, and the binding of miRNAs could downregulate the expression of IKZF1.

At CEBPE locus, our results confirmed that TT genotype of rs2239633 decreased the risk of B-ALL, previously described by GWAS (Papaemmanuil et al. 2009, Orsi et al. 2012, Migliorini et al. 2013, Xu et al. 2013). Again, this finding were replicated in some populations (Prasad et al. 2010, Han et al., 2010, Lautner-Csorba et al. 2012, Chokkalingam et al., 2013, Gharbi et al., 2016), but not in others (Vijayakrishnan et al., 2010, Healy et al. 2010, Pastorczack et al., 2011, Ross et al. 2013, Wang et al., 2013, Emerenciano et al. 2014, Kennedy et al., 2015, Bhandari et al., 2016, Kreile et al., 2016), and therefore, we conducted a meta-analysis. Our meta-analysis provides a robust evidence for association of the TT genotype and a decreased risk of B-ALL. However, in spite of this clear association, the SNP rs2239633, located 25.7-kb upstream of CEBPE, has an unknown function. Recently, Wiemels et al. identified the SNP rs2239635 located in the promoter region highly associated with B-ALL risk. In line with their results, we also found rs2239635 associated with an increased risk of B-ALL. Interestingly, the risk allele C of rs2239635 disrupts the binding of Ikaros (Wiemels et al. 2016), indicating an interaction between both genes, which has been confirmed in our study. This disruption avoids CEBPE repression and it has been suggested that incomplete suppression of CEBPE by Ikaros may lead to lineage confusion, a common feature of leukemogenesis (Wiemels et al. 2016).

Regarding *CDKN2A/B* locus, in our study, we confirmed the previos association described by the GWAS (Sherborne et al. 2010, Xu et al. 2013, Migliorini et al. 2013). We analyzed 4 SNPs previosly identified and 2 new functional SNPs. The most significant finding was the association between rs2811712, which was confirmed by different studies (Sherborne et al. 2010, Chokkalingam et al. 2013, Migliorini et al. 2013, Hungate et al. 2016). rs2811712 is located in intron 1 of *ANRIL*, which may affect its expression or its structure. *ANRIL* silences *CDKN2A* and

*CDKN2B* genes (Meseure et al. 2016), and therefore, alterations in *ANRIL* function could affect the expression of both genes. The second most significant association was found for the T allele of rs3731249, association that was also described recently by 3 independent studies (Walsh et al. 2015, Xu et al. 2015, Vijayakrishnan et al. 2015). rs3731249 localizes to exon 2 of *CDKN2A*, being shared by both p16<sup>INK4A</sup> and p14<sup>ARF</sup>. The variant p16<sup>INK4A</sup> is preferentially retained in the nucleus, compromising its ability to inhibit CDK4 and CDK6 in the cytoplasm (Xu et al. 2015) and favouring proliferation. In the p14<sup>ARF</sup>, rs3731249 is in the 3'UTR region, where the risk allele creates a miRNA binding site (Gong et al. 2012). It is the same for the third finding at rs3217992, which is also located in a miRNA binding site of *CDKN2B*. MiRNAs could downregulate p14<sup>ARF</sup> and p15<sup>INK4B</sup> expression, and then, attenuate its function as cyclin inhibitor. Finally, we found rs2811709 associated with risk of B-ALL, confirming the results of two previous studies (Sherborne et al. 2010, Orsi et al. 2012). rs2811709 is a cis-eQTL for *CDKN2B*, with a decreased expression of CDKN2B mRNA for the risk allele (Consortium 2013).

Contrary as it was expected, we found no association between rs3731222, in high LD with the first SNP found by Sherborne et al., rs3731217, and B-ALL susceptibility. However, we and others could not replicate this association (Pastorczak et al. 2011, Vijayakrishnan et al. 2010). This may be due to the fact that in each population CDKN2A/B function could be altered by diverse mechanisms, supporting the hypothesis that there are different association signals at *CDKN2A/B* associated with B-ALL risk.

Finally, at *PIP4K2A* locus, we did not validate the association between rs7088318 and B-ALL risk in our population. Although this locus was identified as the fith loci associated with B-ALL in two GWAS independently, the only study that tried to replicate this association (Chokkalingam et al. 2013), could not confirme it. Differences in results might be due to differences in genetic composition among populations. In fact, if we have a look at the risk allele frequency (RAF), in our control population this is higher than in the control European/American population analyzed by Xu et al., and similar to what they observed in the case European/American population (Xu et al. 2013). This peculiarity makes it difficult to find significant differences in frequency between cases and controls. Therefore, SNPs in *PIP4K2A* may be associated with pediatric ALL risk in some populations but it does not seem to be a good susceptibility marker in the Spanish cohort.

However, all the loci reported in ALL GWASs thus far cumulatively accounted for only 8% of genetic variation in ALL risk, suggesting additional susceptibility variants yet to be discovered (Enciso-Mora et al. 2012).

In this line, when we analyzed in deep all the significant SNPs found by GWAS, we observed that almost 40% of significant signals reported were located in non-coding region, suggesting that these regions, such as miRNAs, could play an important role B-ALL risk. MiRNAs regulated more than 50% of human genes, including those involved in B-cell maturation, differentiation and proliferation. Changes in miRNA function may occur through SNPs in miRNA-related genes. For instance, SNPs in genes involved in miRNA processing can affect levels of miRNA expression, whereas SNPs in miRNA genes can affect miRNA biogenesis and function. Therefore, alterations in miRNA function could be involved in the origin of B-ALL.

Regarding miRNA processing genes, we found 8 SNPs in 6 genes associated with B-ALL risk in our population. Among them, the most significant finding was the SNP rs139919 in *TNRC6B*. This gene encodes a RNA interference machinery component, which contributes to the RISC complex, and is crucial for miRNA-dependent translational repression or degradation of target mRNAs (Tao et al. 2012). It has been suggested that alterations in the expression of *TNRC6B* due to genetic variations may affect mRNA levels that are normally regulated by *TNRC6B*, thereby affecting carcinogenesis (Sun et al. 2009). We also found other SNPs located in genes of the RISC complex associated with B-ALL susceptibility. These included two SNPs in *EIF2C1* (rs595961 and rs636832), one SNP in *CNOT1* (rs11866002), and one SNP in *CNOT6* (rs6877400). SNPs that affect expression levels of these proteins may have deleterious effects on miRNA–mRNA interactions and may affect cancer development and progression. Finally, we also found rs10035440 in *DROSHA*, and rs9606248 and rs1640299 in *DGCR8* associated with B-ALL. These three SNPs have putative roles in transcriptional regulation and may affect the expression levels of *DROSHA* or *DGCR8*. As a result, levels of miRNAs could be affected, leading to an increased ALL risk.

Regarding miRNA genes, the SNPs rs12402181 in mir-3117 and rs62571442 in mir-3689d2 showed statistically significant association with B-ALL risk. rs12402181 is located in the seed region of mir-3117-3p, therefore, it could affect the accurate recognition of its target mRNA sequences. Among the target genes of mir-3117-3p, *in silico* analysis determined that genes of MAPK signaling pathway are over-represented, mainly those of the MAPK/ERK family or classical pathway (Kamburov et al. 2013, Dweep and Gretz 2015, Kanehisa et al. 2016).

Remarkably, the genes predicted to be targeted for mir-3117-3p are in the first steps of the cascade, which in turn could produce the deregulation of the following steps. The second SNP, rs62571442 in mir-3689d2 is located in the pre-miRNA sequence and the hairpin structure of the miRNA changes from stable to unstable status with the presence of the risk allele. When the SNP decreases the stability, the product of mature miRNA is reduced, which in turn may increase the target gene expression (Gong et al. 2012). In the pathway analysis of mir-3689d2, enriched pathways were again related to Ras signaling. Therefore, an alteration in the function of both miRNAs could affect the expression of Ras-related genes. Aberrant expression of this pathway is a major and highly prevalent oncogenic event in childhood ALL (Barbosa et al. 2014, Case et al. 2008). Therefore, miRNAs could contribute in this process (Masliah-Planchon et al. 2015).

In summary, we have validated the association of four of the loci proposed by literature at *ARID5B, IKZF1, CEBPE, CDKN2A/B* and B-ALL risk. Searching for new variants associated with B-ALL susceptibility, we found 8 significant SNPs in 6 genes of miRNA processing pathway, and 2 SNPs in mir-3117-3p and mir-3689d2, associated with B-ALL susceptibility.

Therefore, our results support the strong genetic component of B-ALL, which could be due, at least in part, to genetic variants in coding genes as well as in non coding genes.
# **CONCLUSIONS**

# **CONCLUSIONS**

- A. After the analysis of genetic variants previously proposed by the literature as possible candidate risk variants for LLA-B, we have validated four out of five loci in the Spanish population. With these results:
  - a) We confirm the involvement of *ARID5B* as a general susceptibility marker for B-ALL risk.
  - b) We replicate the association of *IKZF1* with B-ALL risk and we propose that rs4132601 could do its effect through the creation of a miRNA binding site.
  - c) We validate the association of *CEBPE* with B-ALL risk, supporting that the alteration of lkaros binding could be the causal effect.
  - d) We replicate the results in *CDKN2A/B* confirming the genetic heterogeneity among different populations in the association at this locus.
- B. Our results in miRNA processing genes identify eight SNPs in six genes of miRNA processing pathway. We propose that these SNPs alter miRNA level and, in turn, affect genes involved in B-ALL susceptibility
- C. In miRNA genes, we identify two SNPs in mir-3117-3p and mir-3689d2 associated with B-ALL risk. These SNPs could alter the miRNA function, and then, affect their target genes in the MAPK signaling pathway, which is involved in ALL.

In summary, our results support a strong genetic component of B-ALL in our Spanish cohort. This genetic component is based on genetic variants in coding genes as well as in non coding genes. We open a new field in B-ALL susceptibility based on the study of non coding regions.

# **REFERENCES**

# Α

- Akhtar, M. M., Micolucci, L., Islam, M. S., Olivieri, F. and Procopio, A. D. (2016) 'Bioinformatic tools for microRNA dissection', *Nucleic Acids Res*, 44(1), 24-44.
- Akasaka, T., Balasas, T., Russell, L. J., Sugimoto, K. J., Majid, A., Walewska, R., Karran, E. L., Brown, D. G., Cain, K., Harder, L., Gesk, S., Martin-Subero, J. I., Atherton, M. G., Brüggemann, M., Calasanz, M. J., Davies, T., Haas, O. A., Hagemeijer, A., Kempski, H., Lessard, M., Lillington, D. M., Moore, S., Nguyen-Khac, F., Radford-Weiss, I., Schoch, C., Struski, S., Talley, P., Welham, M. J., Worley, H., Strefford, J. C., Harrison, C. J., Siebert, R. and Dyer, M. J. (2007) 'Five members of the CEBP transcription factor family are targeted by recurrent IGH translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL)', *Blood*, 109(8), 3451-61.
- Akkiz, H., Bayram, S., Bekar, A., Akgöllü, E. and Üsküdar, O. (2011) 'Genetic variation in the microRNA-499 gene and hepatocellular carcinoma risk in a Turkish population: lack of any association in a case-control study', Asian Pac J Cancer Prev, 12(11), 3107-12.
- Akbari Moqadam, F., Lange-Turenhout, E. A., van der Veer, A., Marchante, J. R., Boer, J. M., Pieters, R. and den Boer, M. (2014) 'MicroRNA signature in BCR-ABL1-like and BCR-ABL1-positive childhood acute lymphoblastic leukemia: similarities and dissimilarities', *Leuk Lymphoma*, 55(8), 1942-5.
- Alshatwi, A. A., Shafi, G., Hasan, T. N., Syed, N. A., Al-Hazzani, A. A., Alsaif, M. A. and Alsaif, A. A. (2012) 'Differential expression profile and genetic variants of microRNAs sequences in breast cancer patients', *PLoS One*, 7(2), e30049.
- Andersson, A., Ritz, C., Lindgren, D., Edén, P., Lassen, C., Heldrup, J., Olofsson, T., Råde, J., Fontes, M., Porwit-Macdonald, A., Behrendtz, M., Höglund, M., Johansson, B. and Fioretos, T. (2007) 'Microarray-based classification of a consecutive series of 121 childhood acute leukemias: prediction of leukemic and genetic subtype as well as of minimal residual disease status', *Leukemia*, 21(6), 1198-203.

#### В

- Bahari, G., Hashemi, M., Naderi, M. and Taheri, M. (2016) 'IKZF1 gene polymorphisms increased the risk of childhood acute lymphoblastic leukemia in an Iranian population', *Tumour Biol*, 37(7), 9579-86.
- Barbosa, T. C., Andrade, F. G., Lopes, B. A., de Andrade, C. F., Mansur, M. B., Emerenciano, M. and Pombo-de-Oliveira, M. S. (2014) 'Impact of mutations in FLT3, PTPN11 and RAS genes on the overall survival of pediatric B cell precursor acute lymphoblastic leukemia in Brazil', *Leuk Lymphoma*, 55(7), 1501-9.
- Belver, L., de Yébenes, V. G. and Ramiro, A. R. (2010) 'MicroRNAs prevent the generation of autoreactive antibodies', *Immunity*, 33(5), 713-22.
- Benjamini, Y. and Hochberg, Y. (1995) 'Controlling the false discovery rate: A practical and powerful approach to multiple testing', Soc Series B(
- Bilbao-Aldaiturriaga, N., Askaiturrieta, Z., Granado-Tajada, I., Goričar, K., Dolžan, V., For The Slovenian Osteosarcoma Study Group, Garcia-Miguel, P., Garcia de Andoin, N., Martin-Guerrero, I. and Garcia-Orad, A. (2016) 'A systematic review and meta-analysis of MDM2 polymorphisms in osteosarcoma susceptibility', *Pediatr Res*, 80(4), 472-9.
- Bilbao-Aldaiturriaga, N., Gutierrez-Camino, A., Martin-Guerrero, I., Pombar-Gomez, M., Zalacain-Diez, M., Patiño-Garcia, A., Lopez-Lopez, E. and Garcia-Orad, A. (2015) 'Polymorphisms in miRNA processing genes and their role in osteosarcoma risk', *Pediatr Blood Cancer*, 62(5), 766-9.
- Bohnsack, M. T., Czaplinski, K. and Gorlich, D. (2004) 'Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs', *RNA*, 10(2), 185-91.
- Boon, R. A., Jaé, N., Holdt, L. and Dimmeler, S. (2016) 'Long Noncoding RNAs: From Clinical Genetics to Therapeutic Targets?', *J Am Coll Cardiol*, 67(10), 1214-26.
- Bourquin, J. P., Subramanian, A., Langebrake, C., Reinhardt, D., Bernard, O., Ballerini, P., Baruchel, A., Cavé, H., Dastugue, N., Hasle, H., Kaspers, G. L., Lessard, M., Michaux, L., Vyas, P., van Wering, E., Zwaan, C. M., Golub, T. R. and Orkin, S. H. (2006) 'Identification of distinct molecular

phenotypes in acute megakaryoblastic leukemia by gene expression profiling', *Proc Natl Acad Sci U S A*, 103(9), 3339-44.

Brisson, G. D., Alves, L. R. and Pombo-de-Oliveira, M. S. (2015) 'Genetic susceptibility in childhood acute leukaemias: a systematic review', *Ecancermedicalscience*, 9, 539.

## С

- Case, M., Matheson, E., Minto, L., Hassan, R., Harrison, C. J., Bown, N., Bailey, S., Vormoor, J., Hall, A. G. and Irving, J. A. (2008) 'Mutation of genes affecting the RAS pathway is common in childhood acute lymphoblastic leukemia', *Cancer Res*, 68(16), 6803-9.
- Catto, J. W., Miah, S., Owen, H. C., Bryant, H., Myers, K., Dudziec, E., Larré, S., Milo, M., Rehman, I., Rosario, D. J., Di Martino, E., Knowles, M. A., Meuth, M., Harris, A. L. and Hamdy, F. C. (2009)
   'Distinct microRNA alterations characterize high- and low-grade bladder cancer', *Cancer Res*, 69(21), 8472-81.
- Catucci, I., Yang, R., Verderio, P., Pizzamiglio, S., Heesen, L., Hemminki, K., Sutter, C., Wappenschmidt, B., Dick, M., Arnold, N., Bugert, P., Niederacher, D., Meindl, A., Schmutzler, R. K., Bartram, C. C., Ficarazzi, F., Tizzoni, L., Zaffaroni, D., Manoukian, S., Barile, M., Pierotti, M. A., Radice, P., Burwinkel, B. and Peterlongo, P. (2010) 'Evaluation of SNPs in miR-146a, miR196a2 and miR-499 as low-penetrance alleles in German and Italian familial breast cancer cases', *Hum Mutat*, 31(1), E1052-7.
- Chang, J. S., Wiemels, J. L., Chokkalingam, A. P., Metayer, C., Barcellos, L. F., Hansen, H. M., Aldrich, M. C., Guha, N., Urayama, K. Y., Scélo, G., Green, J., May, S. L., Kiley, V. A., Wiencke, J. K. and Buffler, P. A. (2010) 'Genetic polymorphisms in adaptive immunity genes and childhood acute lymphoblastic leukemia', *Cancer Epidemiol Biomarkers Prev*, 19(9), 2152-63.
- Chang, L. W., Payton, J. E., Yuan, W., Ley, T. J., Nagarajan, R. and Stormo, G. D. (2008) 'Computational identification of the normal and perturbed genetic networks involved in myeloid differentiation and acute promyelocytic leukemia', *Genome Biol*, 9(2), R38.
- Chokkalingam, A. P., Hsu, L. I., Metayer, C., Hansen, H. M., Month, S. R., Barcellos, L. F., Wiemels, J. L. and Buffler, P. A. (2013) 'Genetic variants in ARID5B and CEBPE are childhood ALL susceptibility loci in Hispanics', *Cancer Causes Control*, 24(10), 1789-95.
- Chung, T. K., Lau, T. S., Cheung, T. H., Yim, S. F., Lo, K. W., Siu, N. S., Chan, L. K., Yu, M. Y., Kwong, J., Doran, G., Barroilhet, L. M., Ng, A. S., Wong, R. R., Wang, V. W., Mok, S. C., Smith, D. I., Berkowitz, R. S. and Wong, Y. F. (2012) 'Dysregulation of microRNA-204 mediates migration and invasion of endometrial cancer by regulating FOXC1', *Int J Cancer*, 130(5), 1036-45.
- Cobaleda, C., Gutiérrez-Cianca, N., Pérez-Losada, J., Flores, T., García-Sanz, R., González, M. and Sánchez-García, I. (2000) 'A primitive hematopoietic cell is the target for the leukemic transformation in human philadelphia-positive acute lymphoblastic leukemia.', *Blood*, 95(3), 1007-13.
- Congrains, A., Kamide, K., Ohishi, M. and Rakugi, H. (2013) 'ANRIL: molecular mechanisms and implications in human health', *Int J Mol Sci*, 14(1), 1278-92.
- Consortium, E. P. (2012) 'An integrated encyclopedia of DNA elements in the human genome', *Nature*, 489(7414), 57-74.
- Consortium, G. (2010) 'A map of human genome variation from population-scale sequencing.', 467(7319)(1061-1073.
- Consortium, G. (2013) 'The Genotype-Tissue Expression (GTEx) project', Nat Genet, 45(6), 580-5.

#### D

- Dai, Y. E., Tang, L., Healy, J. and Sinnett, D. (2014) 'Contribution of polymorphisms in IKZF1 gene to childhood acute leukemia: a meta-analysis of 33 case-control studies', *PLoS One*, 9(11), e113748.
- de Oliveira, J. C., Scrideli, C. A., Brassesco, M. S., Morales, A. G., Pezuk, J. A., Queiroz, R. e. P., Yunes, J. A., Brandalise, S. R. and Tone, L. G. (2012) 'Differential miRNA expression in childhood acute lymphoblastic leukemia and association with clinical and biological features', *Leuk Res*, 36(3), 293-8.

- DH, A., H, R., YK, C., YJ, J., KT, M., K, K., SP, H., SG, H. and NK, K. (2013) 'Association of the miR-146aC>G , miR-149T>C , miR-196a2T>C , and miR-499A>G polymorphisms with gastric cancer risk and survival in the Korean population', 52(Suppl 1:E39-51),
- Duyu, M., Durmaz, B., Gunduz, C., Vergin, C., Yilmaz Karapinar, D., Aksoylar, S., Kavakli, K., Cetingul, N., Irken, G., Yaman, Y., Ozkinay, F. and Cogulu, O. (2014) 'Prospective evaluation of whole genome microRNA expression profiling in childhood acute lymphoblastic leukemia', *Biomed Res Int*, 2014, 967585.
- Dweep, H. and Gretz, N. (2015) 'miRWalk2.0: a comprehensive atlas of microRNA-target interactions', *Nat Methods*, 12(8), 697.

#### Ε

- Egger, M., Davey Smith, G., Schneider, M. and Minder, C. (1997) 'Bias in meta-analysis detected by a simple, graphical test', *BMJ*, 315(7109), 629-34.
- Ellinghaus, E., Stanulla, M., Richter, G., Ellinghaus, D., te Kronnie, G., Cario, G., Cazzaniga, G., Horstmann, M., Panzer Grümayer, R., Cavé, H., Trka, J., Cinek, O., Teigler-Schlegel, A., ElSharawy, A., Häsler, R., Nebel, A., Meissner, B., Bartram, T., Lescai, F., Franceschi, C., Giordan, M., Nürnberg, P., Heinzow, B., Zimmermann, M., Schreiber, S., Schrappe, M. and Franke, A. (2012) 'Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia', *Leukemia*, 26(5), 902-9.
- Emerenciano, M., Barbosa, T. C., Lopes, B. A., Blunck, C. B., Faro, A., Andrade, C., Meyer, C., Marschalek, R., Pombo-de-Oliveira, M. S. and Leukemia, B. C. S. G. o. I. A. (2014) 'ARID5B polymorphism confers an increased risk to acquire specific MLL rearrangements in early childhood leukemia', *BMC Cancer*, 14, 127.
- Esteller, M. (2011) 'Non-coding RNAs in human disease', Nat Rev Genet, 12(12), 861-74.

#### F

- Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw, R., Jassal, B., Jupe, S., Korninger, F., McKay, S., Matthews, L., May, B., Milacic, M., Rothfels, K., Shamovsky, V., Webber, M., Weiser, J., Williams, M., Wu, G., Stein, L., Hermjakob, H. and D'Eustachio, P. (2016) 'The Reactome pathway Knowledgebase', *Nucleic Acids Res*, 44(D1), D481-7.
- Fang, D. H., Ji, Q., Fan, C. H., An, Q. and Li, J. (2014) 'Methionine synthase reductase A66G polymorphism and leukemia risk: evidence from published studies', *Leuk Lymphoma*, 55(8), 1910-4.
- Friedman, R. C., Farh, K. K., Burge, C. B. and Bartel, D. P. (2009) 'Most mammalian mRNAs are conserved targets of microRNAs', *Genome Res*, 19(1), 92-105.

## G

- Gabriel, S. B., Schaffner, S. F., Nguyen, H., Moore, J. M., Roy, J., Blumenstiel, B., Higgins, J., DeFelice, M., Lochner, A., Faggart, M., Liu-Cordero, S. N., Rotimi, C., Adeyemo, A., Cooper, R., Ward, R., Lander, E. S., Daly, M. J. and Altshuler, D. (2002) 'The structure of haplotype blocks in the human genome', *Science*, 296(5576), 2225-9.
- Gao, X., Qiao, Y., Han, D., Zhang, Y. and Ma, N. (2012) 'Enemy or partner: relationship between intronic micrornas and their host genes', *IUBMB Life*, 64(10), 835-40.
- George, G. P., Gangwar, R., Mandal, R. K., Sankhwar, S. N. and Mittal, R. D. (2011) 'Genetic variation in microRNA genes and prostate cancer risk in North Indian population', *Mol Biol Rep*, 38(3), 1609-15.
- Georgopoulos, K., Bigby, M., Wang, J. H., Molnar, A., Wu, P., Winandy, S. and Sharpe, A. (1994) 'The Ikaros gene is required for the development of all lymphoid lineages', *Cell*, 79(1), 143-56.
- Gharbi, H., Ben Hassine, I., Soltani, I., Safra, I., Ouerhani, S., Bel Haj Othmen, H., Teber, M., Farah, A., Amouri, H., Toumi, N. H., Abdennebi, S., Abbes, S. and Menif, S. (2016) 'Association of genetic variation in IKZF1, ARID5B, CDKN2A, and CEBPE with the risk of acute lymphoblastic leukemia in

Tunisian children and their contribution to racial differences in leukemia incidence', *Pediatr Hematol Oncol*, 33(3), 157-67.

- Goldstein, D. B. and Cavalleri, G. L. (2005) 'Genomics: understanding human diversity', *Nature*, 437(7063), 1241-2.
- Goldstein, D. B. and Weale, M. E. (2001) 'Population genomics: linkage disequilibrium holds the key', *Curr Biol*, 11(14), R576-9.
- Gong, J., Liu, C., Liu, W., Wu, Y., Ma, Z., Chen, H. and Guo, A. Y. (2015) 'An update of miRNASNP database for better SNP selection by GWAS data, miRNA expression and online tools', *Database (Oxford)*, 2015, bav029.
- Gong, J., Tong, Y., Zhang, H. M., Wang, K., Hu, T., Shan, G., Sun, J. and Guo, A. Y. (2012) 'Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis', *Hum Mutat*, 33(1), 254-63.
- Greaves, M. (2006) 'Infection, immune responses and the aetiology of childhood leukaemia', Nat Rev Cancer, 6(3), 193-203.
- Greaves, M. F. (1988) 'Speculations on the cause of childhood acute lymphoblastic leukemia', *Leukemia*, 2(2), 120-5.
- Greaves, M. F. (1997) 'Aetiology of acute leukaemia', Lancet, 349(9048), 344-9.
- Greaves, M. F., Maia, A. T., Wiemels, J. L. and Ford, A. M. (2003) 'Leukemia in twins: lessons in natural history', *Blood*, 102(7), 2321-33.
- Gregory, R. I., Chendrimada, T. P. and Shiekhattar, R. (2006) 'MicroRNA biogenesis: isolation and characterization of the microprocessor complex', *Methods Mol Biol*, 342, 33-47.
- Guo, L., Zhao, Y., Zhang, H., Yang, S. and Chen, F. (2014) 'Integrated evolutionary analysis of human miRNA gene clusters and families implicates evolutionary relationships', *Gene*, 534(1), 24-32.
- Gutierrez-Camino, A., Lopez-Lopez, E., Martin-Guerrero, I., Piñan, M. A., Garcia-Miguel, P., Sanchez-Toledo, J., Carbone Bañeres, A., Uriz, J., Navajas, A. and Garcia-Orad, A. (2014) 'Noncoding RNArelated polymorphisms in pediatric acute lymphoblastic leukemia susceptibility', *Pediatr Res*, 75(6), 767-73.
- Gutiérrez-Camino, Á., López-López, E., Martín-Guerrero, I., Sánchez-Toledo, J., García de Andoin, N., Carboné Bañeres, A., García-Miguel, P., Navajas, A. and García-Orad, Á. (2013) 'Intron 3 of the ARID5B gene: a hot spot for acute lymphoblastic leukemia susceptibility', J Cancer Res Clin Oncol, 139(11), 1879-86.
- Gusev, A., Lowe, J. K., Stoffel, M., Daly, M. J., Altshuler, D., Breslow, J. L., Friedman, J. M. and Pe'er, I. (2009) 'Whole population, genome-wide mapping of hidden relatedness', *Genome Res*, 19(2), 318-26.

# Η

- Han, F., Tan, Y., Cui, W., Dong, L. and Li, W. (2013) 'Novel insights into etiologies of leukemia: a HuGE review and meta-analysis of CYP1A1 polymorphisms and leukemia risk', Am J Epidemiol, 178(4), 493-507.
- Han, S., Lee, K. M., Park, S. K., Lee, J. E., Ahn, H. S., Shin, H. Y., Kang, H. J., Koo, H. H., Seo, J. J., Choi, J. E., Ahn, Y. O. and Kang, D. (2010) 'Genome-wide association study of childhood acute lymphoblastic leukemia in Korea', *Leuk Res*, 34(10), 1271-4.
- Hasani, S. S., Hashemi, M., Eskandari-Nasab, E., Naderi, M., Omrani, M. and Sheybani-Nasab, M. (2013)
   'A functional polymorphism in the miR-146a gene is associated with the risk of childhood acute lymphoblastic leukemia: a preliminary report', *Tumour Biol*.
- Healy, J., Richer, C., Bourgey, M., Kritikou, E. A. and Sinnett, D. (2010) 'Replication analysis confirms the association of ARID5B with childhood B-cell acute lymphoblastic leukemia', *Haematologica*, 95(9), 1608-11.
- Heerema, N. A., Raimondi, S. C., Anderson, J. R., Biegel, J., Camitta, B. M., Cooley, L. D., Gaynon, P. S., Hirsch, B., Magenis, R. E., McGavran, L., Patil, S., Pettenati, M. J., Pullen, J., Rao, K., Roulston, D., Schneider, N. R., Shuster, J. J., Sanger, W., Sutcliffe, M. J., van Tuinen, P., Watson, M. S. and Carroll, A. J. (2007) 'Specific extra chromosomes occur in a modal number dependent pattern in pediatric acute lymphoblastic leukemia.', *Genes Chromosomes Cancer*, 46(7), 684-93.
- Hinske, L. C., Galante, P. A., Kuo, W. P. and Ohno-Machado, L. (2010) 'A potential role for intragenic miRNAs on their hosts' interactome', *BMC Genomics*, 11, 533.

- HK, K., L, P.-O. and SJ., C. (2012) 'Common genetic variants in miR-1206 (8q24.2) and miR-612 (11q13.3) affect biogenesis of mature miRNA forms', 7(10), e47454.
- Hosking, F. J., Leslie, S., Dilthey, A., Moutsianas, L., Wang, Y., Dobbins, S. E., Papaemmanuil, E., Sheridan, E., Kinsey, S. E., Lightfoot, T., Roman, E., Irving, J. A., Allan, J. M., Taylor, M., Greaves, M., McVean, G. and Houlston, R. S. (2011) 'MHC variation and risk of childhood B-cell precursor acute lymphoblastic leukemia', *Blood*, 117(5), 1633-40.
- Horikawa, Y., Wood, C. G., Yang, H., Zhao, H., Ye, Y., Gu, J., Lin, J., Habuchi, T. and Wu, X. (2008) 'Single nucleotide polymorphisms of microRNA machinery genes modify the risk of renal cell carcinoma', *Clin Cancer Res*, 14(23), 7956-62.
- Houlston, R. S. (2010) 'Low-penetrance susceptibility to hematological malignancy', *Curr Opin Genet Dev*, 20(3), 245-50.
- Howie, B. N., Carlson, C. S., Rieder, M. J. and Nickerson, D. A. (2006) 'Efficient selection of tagging singlenucleotide polymorphisms in multiple populations', *Hum Genet*, 120(1), 58-68.
- Hsu, L. I., Chokkalingam, A. P., Briggs, F. B., Walsh, K., Crouse, V., Fu, C., Metayer, C., Wiemels, J. L., Barcellos, L. F. and Buffler, P. A. (2015) 'Association of genetic variation in IKZF1, ARID5B, and CEBPE and surrogates for early-life infections with the risk of acute lymphoblastic leukemia in Hispanic children', *Cancer Causes Control*, 26(4), 609-19.
- Hu, Z., Chen, J., Tian, T., Zhou, X., Gu, H., Xu, L., Zeng, Y., Miao, R., Jin, G., Ma, H., Chen, Y. and Shen, H. (2008) 'Genetic variants of miRNA sequences and non-small cell lung cancer survival', *J Clin Invest*, 118(7), 2600-8.
- Huang, L., Yu, D., Wu, C., Zhai, K., Jiang, G., Cao, G., Wang, C., Liu, Y., Sun, M., Li, Z., Tan, W. and Lin, D. (2012) 'Copy number variation at 6q13 functions as a long-range regulator and is associated with pancreatic cancer risk', *Carcinogenesis*, 33(1), 94-100.
- Huang, J. T., Wang, J., Srivastava, V., Sen, S. and Liu, S. M. (2014) 'MicroRNA Machinery Genes as Novel Biomarkers for Cancer', *Front Oncol*, 4, 113.
- Hungate, E. A., Vora, S. R., Gamazon, E. R., Moriyama, T., Best, T., Hulur, I., Lee, Y., Evans, T. J., Ellinghaus, E., Stanulla, M., Rudant, J., Orsi, L., Clavel, J., Milne, E., Scott, R. J., Pui, C. H., Cox, N. J., Loh, M. L., Yang, J. J., Skol, A. D. and Onel, K. (2016) 'A variant at 9p21.3 functionally implicates CDKN2B in paediatric B-cell precursor acute lymphoblastic leukaemia aetiology', *Nat Commun*, 7, 10635.
- Hutvágner, G., McLachlan, J., Pasquinelli, A. E., Bálint, E., Tuschl, T. and Zamore, P. D. (2001) 'A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA', *Science*, 293(5531), 834-8.

- Iacobucci, I., Sazzini, M., Garagnani, P., Ferrari, A., Boattini, A., Lonetti, A., Papayannidis, C., Mantovani, V., Marasco, E., Ottaviani, E., Soverini, S., Girelli, D., Luiselli, D., Vignetti, M., Baccarani, M. and Martinelli, G. (2011) 'A polymorphism in the chromosome 9p21 ANRIL locus is associated to Philadelphia positive acute lymphoblastic leukemia', *Leuk Res*, 35(8), 1052-9.
- Inaba, H., Greaves, M. and Mullighan, C. G. (2013) 'Acute lymphoblastic leukaemia', *Lancet*, 381(9881), 1943-55.
- Inada, T. and Makino, S. (2014) 'Novel roles of the multi-functional CCR4-NOT complex in posttranscriptional regulation', *Front Genet*, 5, 135.

#### J

- Jiang Y, Chen J, Wu J, Hu Z, Qin Z, Liu X, et al. Evaluation of genetic variants in microRNA biosynthesis genes and risk of breast cancer in Chinese women. Int J Cancer. 2013;133(9):2216-24.
- Johanson, T. M., Skinner, J. P., Kumar, A., Zhan, Y., Lew, A. M. and Chong, M. M. (2014) 'The role of microRNAs in lymphopoiesis', *Int J Hematol*, 100(3), 246-53.
- Johnston, W. T., Lightfoot, T. J., Simpson, J. and Roman, E. (2010) 'Childhood cancer survival: a report from the United Kingdom Childhood Cancer Study', *Cancer Epidemiol*, 34(6), 659-66.
- Ju, X., Li, D., Shi, Q., Hou, H., Sun, N. and Shen, B. (2009) 'Differential microRNA expression in childhood B-cell precursor acute lymphoblastic leukemia', *Pediatr Hematol Oncol*, 26(1), 1-10.

## Κ

- Kamburov, A., Stelzl, U., Lehrach, H. and Herwig, R. (2013) 'The ConsensusPathDB interaction database: 2013 update', *Nucleic Acids Res*, 41(Database issue), D793-800.
- Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. and Tanabe, M. (2016) 'KEGG as a reference resource for gene and protein annotation', *Nucleic Acids Res*, 44(D1), D457-62.
- Kim, J. S., Choi, Y. Y., Jin, G., Kang, H. G., Choi, J. E., Jeon, H. S., Lee, W. K., Kim, D. S., Kim, C. H., Kim, Y. J., Son, J. W., Jung, T. H. and Park, J. Y. (2010) 'Association of a common AGO1 variant with lung cancer risk: a two-stage case-control study', *Mol Carcinog*, 49(10), 913-21.
- Kim, V. N. (2004) 'MicroRNA precursors in motion: exportin-5 mediates their nuclear export', Trends Cell Biol, 14(4), 156-9.
- Kim, W. H., Min, K. T., Jeon, Y. J., Kwon, C. I., Ko, K. H., Park, P. W., Hong, S. P., Rim, K. S., Kwon, S. W., Hwang, S. G. and Kim, N. K. (2012) 'Association study of microRNA polymorphisms with hepatocellular carcinoma in Korean population', *Gene*, 504(1), 92-7.
- Kinlen, L. (1988) 'Evidence for an infective cause of childhood leukaemia: comparison of a Scottish new town with nuclear reprocessing sites in Britain', *Lancet*, 2(8624), 1323-7.
- Klipper-Aurbach, Y., Wasserman, M., Braunspiegel-Weintrob, N., Borstein, D., Peleg, S., Assa, S., Karp, M., Benjamini, Y., Hochberg, Y. and Laron, Z. (1995) 'Mathematical formulae for the prediction of the residual beta cell function during the first two years of disease in children and adolescents with insulin-dependent diabetes mellitus', *Med Hypotheses*, 45(5), 486-90.
- Koesters, R., Adams, V., Betts, D., Moos, R., Schmid, M., Siermann, A., Hassam, S., Weitz, S., Lichter, P., Heitz, P. U., von Knebel Doeberitz, M. and Briner, J. (1999) 'Human eukaryotic initiation factor EIF2C1 gene: cDNA sequence, genomic organization, localization to chromosomal bands 1p34p35, and expression', *Genomics*, 61(2), 210-8.
- Koralov, S. B., Muljo, S. A., Galler, G. R., Krek, A., Chakraborty, T., Kanellopoulou, C., Jensen, K., Cobb, B.
   S., Merkenschlager, M., Rajewsky, N. and Rajewsky, K. (2008) 'Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage', *Cell*, 132(5), 860-74.
- Kozomara, A. and Griffiths-Jones, S. (2014) 'miRBase: annotating high confidence microRNAs using deep sequencing data', *Nucleic Acids Res*, 42(Database issue), D68-73.
- Kreile, M., Piekuse, L., Rots, D., Dobele, Z., Kovalova, Z. and Lace, B. (2016) 'Analysis of possible genetic risk factors contributing to development of childhood acute lymphoblastic leukaemia in the Latvian population', Arch Med Sci, 12(3), 479-85.
- KT, M., JW, K., YJ, J., MJ, J., SY, C., D, O. and NK, K. (2012) 'Association of the miR-146aC > G , 149C > T , 196a2C > T , and 499A > G polymorphisms with colorectal cancer in the Korean population', 51(Suppl 1:E65-73),
- Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R. and Jacks, T. (2007) 'Impaired microRNA processing enhances cellular transformation and tumorigenesis', *Nat Genet*, 39(5), 673-7.

## L

- Lahoud, M. H., Ristevski, S., Venter, D. J., Jermiin, L. S., Bertoncello, I., Zavarsek, S., Hasthorpe, S., Drago, J., de Kretser, D., Hertzog, P. J. and Kola, I. (2001) 'Gene targeting of Desrt, a novel ARID class DNA-binding protein, causes growth retardation and abnormal development of reproductive organs', *Genome Res*, 11(8), 1327-34.
- Lautner-Csorba, O., Gézsi, A., Erdélyi, D. J., Hullám, G., Antal, P., Semsei, Á., Kutszegi, N., Kovács, G., Falus, A. and Szalai, C. (2013) 'Roles of genetic polymorphisms in the folate pathway in childhood acute lymphoblastic leukemia evaluated by Bayesian relevance and effect size analysis', *PLoS One*, 8(8), e69843.
- Lautner-Csorba, O., Gézsi, A., Semsei, A. F., Antal, P., Erdélyi, D. J., Schermann, G., Kutszegi, N., Csordás, K., Hegyi, M., Kovács, G., Falus, A. and Szalai, C. (2012) 'Candidate gene association study in pediatric acute lymphoblastic leukemia evaluated by Bayesian network based Bayesian multilevel analysis of relevance', *BMC Med Genomics*, 5, 42.
- Layton Tovar, C. F. and Mendieta Zerón, H. (2016) 'Intracellular Signaling Pathways Involved in Childhood Acute Lymphoblastic Leukemia; Molecular Targets', *Indian J Hematol Blood Transfus*, 32(2), 141-53.

- Lewis, B. P., Burge, C. B. and Bartel, D. P. (2005) 'Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets', *Cell*, 120(1), 15-20.
- Lee, P. H. and Shatkay, H. (2008) 'F-SNP: computationally predicted functional SNPs for disease association studies', *Nucleic Acids Res*, 36(Database issue), D820-4.
- Lee, Y. J., Kim, V., Muth, D. C. and Witwer, K. W. (2015) 'Validated MicroRNA Target Databases: An Evaluation', *Drug Dev Res*, 76(7), 389-96.
- Li, S., Ren, L., Fan, L. and Wang, G. (2015) 'IKZF1 rs4132601 polymorphism and acute lymphoblastic leukemia susceptibility: a meta-analysis', *Leuk Lymphoma*, 56(4), 978-82.
- Li, S., Wang, L., Fu, B., Berman, M. A., Diallo, A. and Dorf, M. E. (2014) 'TRIM65 regulates microRNA activity by ubiquitination of TNRC6', *Proc Natl Acad Sci U S A*, 111(19), 6970-5.
- Li, S. Y., Ye, J. Y., Liang, E. Y., Zhou, L. X. and Yang, M. (2015) 'Association between MTHFR C677T polymorphism and risk of acute lymphoblastic leukemia: a meta-analysis based on 51 casecontrol studies', *Med Sci Monit*, 21, 740-8.
- Li, Z., Zhang, W., Wu, M., Zhu, S., Gao, C., Sun, L., Zhang, R., Qiao, N., Xue, H., Hu, Y., Bao, S., Zheng, H. and Han, J. D. (2009) 'Gene expression-based classification and regulatory networks of pediatric acute lymphoblastic leukemia', *Blood*, 114(20), 4486-93.
- Liang D, Meyer L, Chang DW, Lin J, Pu X, Ye Y, Gu J, Wu X, Lu K. (2010) Genetic variants in MicroRNA biosynthesis pathways and binding sites modify ovarian cancer risk, survival, and treatment response. Cancer Res. 2010 Dec 1;70(23):9765-76.
- Liu J, Wei M, He Y, Liao B, Liao G, Li H (2012) Genetic variants in the microRNA machinery gene GEMIN4 are associated with risk of prostate cancer: a case-control study of the Chinese Han population. DNA Cell Biol.;31(7):1296-302.
- Liu, Z., Li, G., Wei, S., Niu, J., El-Naggar, A. K., Sturgis, E. M. and Wei, Q. (2010) 'Genetic variants in selected pre-microRNA genes and the risk of squamous cell carcinoma of the head and neck', *Cancer*, 116(20), 4753-60.
- Liu, X., Zheng, H. and Qu, C. K. (2012) 'Protein tyrosine phosphatase Shp2 (Ptpn11) plays an important role in maintenance of chromosome stability', *Cancer Res*, 72(20), 5296-306.
- Lim, J. Y., Bhatia, S., Robison, L. L. and Yang, J. J. (2014) 'Genomics of racial and ethnic disparities in childhood acute lymphoblastic leukemia', *Cancer*, 120(7), 955-62.
- Lin, C. Y., Li, M. J., Chang, J. G., Liu, S. C., Weng, T., Wu, K. H., Yang, S. F., Huang, F. K., Lo, W. Y. and Peng, C. T. (2014) 'High-resolution melting analyses for genetic variants in ARID5B and IKZF1 with childhood acute lymphoblastic leukemia susceptibility loci in Taiwan', *Blood Cells Mol Dis*, 52(2-3), 140-5.
- Liu, D., Wu, D., Li, H. and Dong, M. (2014) 'The effect of XPD/ERCC2 Lys751Gln polymorphism on acute leukemia risk: a systematic review and meta-analysis', *Gene*, 538(2), 209-16.
- Liu, S., An, J., Lin, J., Liu, Y., Bao, L., Zhang, W. and Zhao, J. J. (2014) 'Single nucleotide polymorphisms of microRNA processing machinery genes and outcome of hepatocellular carcinoma', *PLoS One*, 9(3), e92791.
- Livak, K. J., Flood, S. J., Marmaro, J., Giusti, W. and Deetz, K. (1995) 'Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization.', *PCR Methods Appl*, 4(6), 357-62.
- Livak, K. J. and Schmittgen, T. D. (2001) 'Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method', *Methods*, 25(4), 402-8.
- Lopez-Lopez, E., Gutierrez-Camino, A., Martin-Guerrero, I. and Garcia-Orad, A. (2013) 'Re: novel susceptibility variants at 10p12.31-12.2 for childhood acute lymphoblastic leukemia in ethnically diverse populations', *J Natl Cancer Inst*, 105(19), 1512.
- Lopez-Lopez, E., Martin-Guerrero, I., Ballesteros, J., Piñan, M. A., Garcia-Miguel, P., Navajas, A. and Garcia-Orad, A. (2011) 'Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia', *Pediatr Blood Cancer*, 57(4), 612-9.

## Μ

Ma, H., Qazi, S., Ozer, Z., Gaynon, P., Reaman, G. H. and Uckun, F. M. (2012) 'CD22 Exon 12 deletion is a characteristic genetic defect of therapy-refractory clones in paediatric acute lymphoblastic leukaemia', *Br J Haematol*, 156(1), 89-98.

- Marques, S. C., Laursen, M. B., Bødker, J. S., Kjeldsen, M. K., Falgreen, S., Schmitz, A., Bøgsted, M., Johnsen, H. E. and Dybkaer, K. (2015) 'MicroRNAs in B-cells: from normal differentiation to treatment of malignancies', *Oncotarget*, 6(1), 7-25.
- Martin-Guerrero, I., Gutierrez-Camino, A., Lopez-Lopez, E., Bilbao-Aldaiturriaga, N., Pombar-Gomez, M., Ardanaz, M. and Garcia-Orad, A. (2015) 'Genetic variants in miRNA processing genes and premiRNAs are associated with the risk of chronic lymphocytic leukemia', *PLoS One*, 10(3), e0118905.
- Masliah-Planchon, J., Garinet, S. and Pasmant, E. (2015) 'RAS-MAPK pathway epigenetic activation in cancer: miRNAs in action', *Oncotarget*.
- Merritt, W. M., Bar-Eli, M. and Sood, A. K. (2010) 'The dicey role of Dicer: implications for RNAi therapy', *Cancer Res*, 70(7), 2571-4.
- Meseure, D., Vacher, S., Drak Alsibai, K., Nicolas, A., Chemlali, W., Caly, M., Lidereau, R., Pasmant, E., Callens, C. and Bieche, I. (2016) 'Expression of ANRIL - Polycomb Complexes - CDKN2A/B/ARF Genes in Breast Tumors: Identification of a Two-gene (EZH2/CBX7) Signature with Independent Prognostic Value', *Mol Cancer Res*.
- Migliorini, G., Fiege, B., Hosking, F. J., Ma, Y., Kumar, R., Sherborne, A. L., da Silva Filho, M. I., Vijayakrishnan, J., Koehler, R., Thomsen, H., Irving, J. A., Allan, J. M., Lightfoot, T., Roman, E., Kinsey, S. E., Sheridan, E., Thompson, P., Hoffmann, P., Nöthen, M. M., Mühleisen, T. W., Eisele, L., Zimmermann, M., Bartram, C. R., Schrappe, M., Greaves, M., Stanulla, M., Hemminki, K. and Houlston, R. S. (2013) 'Variation at 10p12.2 and 10p14 influences risk of childhood B-cell acute lymphoblastic leukemia and phenotype', *Blood*, 122(19), 3298-307.
- Moriyama, T., Relling, M. V. and Yang, J. J. (2015) 'Inherited genetic variation in childhood acute lymphoblastic leukemia', *Blood*, 125(26), 3988-95.
- Mullighan, C. G., Miller, C. B., Radtke, I., Phillips, L. A., Dalton, J., Ma, J., White, D., Hughes, T. P., Le Beau,
   M. M., Pui, C. H., Relling, M. V., Shurtleff, S. A. and Downing, J. R. (2008) 'BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros', *Nature*, 453(7191), 110-4.
- Mullighan, C. G., Su, X., Zhang, J., Radtke, I., Phillips, L. A., Miller, C. B., Ma, J., Liu, W., Cheng, C., Schulman, B. A., Harvey, R. C., Chen, I. M., Clifford, R. J., Carroll, W. L., Reaman, G., Bowman, W. P., Devidas, M., Gerhard, D. S., Yang, W., Relling, M. V., Shurtleff, S. A., Campana, D., Borowitz, M. J., Pui, C. H., Smith, M., Hunger, S. P., Willman, C. L., Downing, J. R. and Group, C. s. O. (2009)
  'Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia', N Engl J Med, 360(5), 470-80.
- Musilova, K. and Mraz, M. (2015) 'MicroRNAs in B-cell lymphomas: how a complex biology gets more complex', *Leukemia*, 29(5), 1004-17.

## 0

- O'Carroll, D., Mecklenbrauker, I., Das, P. P., Santana, A., Koenig, U., Enright, A. J., Miska, E. A. and Tarakhovsky, A. (2007) 'A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway', *Genes Dev*, 21(16), 1999-2004.
- Orsi, L., Rudant, J., Bonaventure, A., Goujon-Bellec, S., Corda, E., Evans, T. J., Petit, A., Bertrand, Y., Nelken, B., Robert, A., Michel, G., Sirvent, N., Chastagner, P., Ducassou, S., Rialland, X., Hémon, D., Milne, E., Scott, R. J., Baruchel, A. and Clavel, J. (2012) 'Genetic polymorphisms and childhood acute lymphoblastic leukemia: GWAS of the ESCALE study (SFCE)', *Leukemia*, 26(12), 2561-4.
- Okubo, M., Tahara, T., Shibata, T., Yamashita, H., Nakamura, M., Yoshioka, D., Yonemura, J., Ishizuka, T., Arisawa, T. and Hirata, I. (2010) 'Association between common genetic variants in premicroRNAs and gastric cancer risk in Japanese population', *Helicobacter*, 15(6), 524-31.

#### Ρ

- Pal, S., Gupta, R. and Davuluri, R. V. (2012) 'Alternative transcription and alternative splicing in cancer', *Pharmacol Ther*, 136(3), 283-94.
- Papaemmanuil, E., Hosking, F. J., Vijayakrishnan, J., Price, A., Olver, B., Sheridan, E., Kinsey, S. E., Lightfoot, T., Roman, E., Irving, J. A., Allan, J. M., Tomlinson, I. P., Taylor, M., Greaves, M. and

Houlston, R. S. (2009) 'Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia', *Nat Genet*, 41(9), 1006-10.

- Pastorczak, A., Górniak, P., Sherborne, A., Hosking, F., Trelińska, J., Lejman, M., Szczepański, T., Borowiec, M., Fendler, W., Kowalczyk, J., Houlston, R. S. and Młynarski, W. (2011) 'Role of 657del5 NBN mutation and 7p12.2 (IKZF1), 9p21 (CDKN2A), 10q21.2 (ARID5B) and 14q11.2 (CEBPE) variation and risk of childhood ALL in the Polish population', *Leuk Res*, 35(11), 1534-6.
- Paulsson, K. (2016) 'High hyperdiploid childhood acute lymphoblastic leukemia: Chromosomal gains as the main driver event', *Mol Cell Oncol*, 3(1), e1064555.
- Paulsson, K., Forestier, E., Lilljebjörn, H., Heldrup, J., Behrendtz, M., Young, B. D. and Johansson, B. (2010) 'Genetic landscape of high hyperdiploid childhood acute lymphoblastic leukemia', *Proc Natl Acad Sci U S A*, 107(50), 21719-24.
- Perry, G. H., Ben-Dor, A., Tsalenko, A., Sampas, N., Rodriguez-Revenga, L., Tran, C. W., Scheffer, A., Steinfeld, I., Tsang, P., Yamada, N. A., Park, H. S., Kim, J. I., Seo, J. S., Yakhini, Z., Laderman, S., Bruhn, L. and Lee, C. (2008) 'The fine-scale and complex architecture of human copy-number variation', Am J Hum Genet, 82(3), 685-95.
- Prasad, R. B., Hosking, F. J., Vijayakrishnan, J., Papaemmanuil, E., Koehler, R., Greaves, M., Sheridan, E., Gast, A., Kinsey, S. E., Lightfoot, T., Roman, E., Taylor, M., Pritchard-Jones, K., Stanulla, M., Schrappe, M., Bartram, C. R., Houlston, R. S., Kumar, R. and Hemminki, K. (2010) 'Verification of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood', *Blood*, 115(9), 1765-7.
- Pui, C. H. and Evans, W. E. (2006) 'Treatment of acute lymphoblastic leukemia', *N Engl J Med*, 354(2), 166-78.
- Pui, C. H., Robison, L. L. and Look, A. T. (2008) 'Acute lymphoblastic leukaemia', *Lancet*, 371(9617), 1030-43.
- Pui, C. H., Sandlund, J. T., Pei, D., Campana, D., Rivera, G. K., Ribeiro, R. C., Rubnitz, J. E., Razzouk, B. I., Howard, S. C., Hudson, M. M., Cheng, C., Kun, L. E., Raimondi, S. C., Behm, F. G., Downing, J. R., Relling, M. V., Evans, W. E. and Hospital, T. T. S. X. a. S. J. C. s. R. (2004) 'Improved outcome for children with acute lymphoblastic leukemia: results of Total Therapy Study XIIIB at St Jude Children's Research Hospital', *Blood*, 104(9), 2690-6.

# Q

Qiu, M. T., Hu, J. W., Ding, X. X., Yang, X., Zhang, Z., Yin, R. and Xu, L. (2012) 'Hsa-miR-499 rs3746444 polymorphism contributes to cancer risk: a meta-analysis of 12 studies', *PLoS One*, 7(12), e50887.

#### R

- Rao, D. S., O'Connell, R. M., Chaudhuri, A. A., Garcia-Flores, Y., Geiger, T. L. and Baltimore, D. (2010) 'MicroRNA-34a perturbs B lymphocyte development by repressing the forkhead box transcription factor Foxp1', *Immunity*, 33(1), 48-59.
- Reich, D. E., Cargill, M., Bolk, S., Ireland, J., Sabeti, P. C., Richter, D. J., Lavery, T., Kouyoumjian, R., Farhadian, S. F., Ward, R. and Lander, E. S. (2001) 'Linkage disequilibrium in the human genome', *Nature*, 411(6834), 199-204.
- Risch, N. and Merikangas, K. (1996) 'The future of genetic studies of complex human diseases', *Science*, 273(5281), 1516-7.
- Ross, J. A., Linabery, A. M., Blommer, C. N., Langer, E. K., Spector, L. G., Hilden, J. M., Heerema, N. A., Radloff, G. A., Tower, R. L. and Davies, S. M. (2013) 'Genetic variants modify susceptibility to leukemia in infants: a Children's Oncology Group report', *Pediatr Blood Cancer*, 60(1), 31-4.
- Rotunno, M., Zhao, Y., Bergen, A. W., Koshiol, J., Burdette, L., Rubagotti, M., Linnoila, R. I., Marincola, F. M., Bertazzi, P. A., Pesatori, A. C., Caporaso, N. E., McShane, L. M., Wang, E. and Landi, M. T. (2010) 'Inherited polymorphisms in the RNA-mediated interference machinery affect microRNA expression and lung cancer survival', *Br J Cancer*, 103(12), 1870-4.

Roy R, De Sarkar N, Ghose S, Paul RR, Pal M, Bhattacharya C, Chowdhury SK, Ghosh S, Roy B. (2014) Genetic variations at microRNA and processing genes and risk of oral cancer. Tumour Biol. 35(4):3409-14

Ryan, B. M., Robles, A. I. and Harris, C. C. (2010) 'Genetic variation in microRNA networks: the implications for cancer research', *Nat Rev Cancer*, 10(6), 389-402.

# S

- Sachidanandam, R., Weissman, D., Schmidt, S. C., Kakol, J. M., Stein, L. D., Marth, G., Sherry, S., Mullikin, J. C., Mortimore, B. J., Willey, D. L., Hunt, S. E., Cole, C. G., Coggill, P. C., Rice, C. M., Ning, Z., Rogers, J., Bentley, D. R., Kwok, P. Y., Mardis, E. R., Yeh, R. T., Schultz, B., Cook, L., Davenport, R., Dante, M., Fulton, L., Hillier, L., Waterston, R. H., McPherson, J. D., Gilman, B., Schaffner, S., Van Etten, W. J., Reich, D., Higgins, J., Daly, M. J., Blumenstiel, B., Baldwin, J., Stange-Thomann, N., Zody, M. C., Linton, L., Lander, E. S., Altshuler, D. and Group, I. S. M. W. (2001) 'A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms', *Nature*, 409(6822), 928-33.
- Salzman, D. W. and Weidhaas, J. B. (2013) 'SNPing cancer in the bud: microRNA and microRNA-target site polymorphisms as diagnostic and prognostic biomarkers in cancer', *Pharmacol Ther*, 137(1), 55-63.
- Sambrook, J. and Russell, D. W. (2001) 'Preparation and Analysis of Eukaryotic Genomic DNA' in Molecular cloning: A laboratory manual, 3rd edition ed., Cold Spring Harbor, USA: CSHL Press, 4-12.
- Sana, J., Faltejskova, P., Svoboda, M. and Slaby, O. (2012) 'Novel classes of non-coding RNAs and cancer', *J Transl Med*, 10, 103.
- Samuelsson, J., Alonso, S., Ruiz-Larroya, T., Cheung, T. H., Wong, Y. F. and Perucho, M. (2011) 'Frequent somatic demethylation of RAPGEF1/C3G intronic sequences in gastrointestinal and gynecological cancer', *Int J Oncol*, 38(6), 1575-7.
- Schotte, D., Akbari Moqadam, F., Lange-Turenhout, E. A., Chen, C., van Ijcken, W. F., Pieters, R. and den Boer, M. L. (2011a) 'Discovery of new microRNAs by small RNAome deep sequencing in childhood acute lymphoblastic leukemia', *Leukemia*, 25(9), 1389-99.
- Schotte, D., Chau, J. C., Sylvester, G., Liu, G., Chen, C., van der Velden, V. H., Broekhuis, M. J., Peters, T. C., Pieters, R. and den Boer, M. L. (2009) 'Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia', *Leukemia*, 23(2), 313-22.
- Schotte, D., De Menezes, R. X., Akbari Moqadam, F., Khankahdani, L. M., Lange-Turenhout, E., Chen, C., Pieters, R. and Den Boer, M. L. (2011b) 'MicroRNA characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia', *Haematologica*, 96(5), 703-11.
- Schüz, J. (2011) 'Exposure to extremely low-frequency magnetic fields and the risk of childhood cancer: update of the epidemiological evidence', *Prog Biophys Mol Biol*, 107(3), 339-42.
- Sherborne, A. L., Hemminki, K., Kumar, R., Bartram, C. R., Stanulla, M., Schrappe, M., Petridou, E., Semsei, A. F., Szalai, C., Sinnett, D., Krajinovic, M., Healy, J., Lanciotti, M., Dufour, C., Indaco, S., El-Ghouroury, E. A., Sawangpanich, R., Hongeng, S., Pakakasama, S., Gonzalez-Neira, A., Ugarte, E. L., Leal, V. P., Espinoza, J. P., Kamel, A. M., Ebid, G. T., Radwan, E. R., Yalin, S., Yalin, E., Berkoz, M., Simpson, J., Roman, E., Lightfoot, T., Hosking, F. J., Vijayakrishnan, J., Greaves, M. and Houlston, R. S. (2011) 'Rationale for an international consortium to study inherited genetic susceptibility to childhood acute lymphoblastic leukemia', *Haematologica*, 96(7), 1049-54.
- Sherborne, A. L., Hosking, F. J., Prasad, R. B., Kumar, R., Koehler, R., Vijayakrishnan, J., Papaemmanuil, E., Bartram, C. R., Stanulla, M., Schrappe, M., Gast, A., Dobbins, S. E., Ma, Y., Sheridan, E., Taylor, M., Kinsey, S. E., Lightfoot, T., Roman, E., Irving, J. A., Allan, J. M., Moorman, A. V., Harrison, C. J., Tomlinson, I. P., Richards, S., Zimmermann, M., Szalai, C., Semsei, A. F., Erdelyi, D. J., Krajinovic, M., Sinnett, D., Healy, J., Gonzalez Neira, A., Kawamata, N., Ogawa, S., Koeffler, H. P., Hemminki, K., Greaves, M. and Houlston, R. S. (2010) 'Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk', *Nat Genet*, 42(6), 492-4.
- Sherborne, A. L. and Houlston, R. S. (2010) 'What are genome-wide association studies telling us about B-cell tumor development?', *Oncotarget*, 1(5), 367-72.
- Silverman, L. B., Declerck, L., Gelber, R. D., Dalton, V. K., Asselin, B. L., Barr, R. D., Clavell, L. A., Hurwitz, C. A., Moghrabi, A., Samson, Y., Schorin, M. A., Lipton, J. M., Cohen, H. J. and Sallan, S. E. (2000)

'Results of Dana-Farber Cancer Institute Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1981-1995)', *Leukemia*, 14(12), 2247-56.

- Song, J. J., Liu, J., Tolia, N. H., Schneiderman, J., Smith, S. K., Martienssen, R. A., Hannon, G. J. and Joshua-Tor, L. (2003) 'The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes', *Nat Struct Biol*, 10(12), 1026-32.
- Sun, J., Zheng, S. L., Wiklund, F., Isaacs, S. D., Li, G., Wiley, K. E., Kim, S. T., Zhu, Y., Zhang, Z., Hsu, F. C., Turner, A. R., Stattin, P., Liu, W., Kim, J. W., Duggan, D., Carpten, J., Isaacs, W., Grönberg, H., Xu, J. and Chang, B. L. (2009) 'Sequence variants at 22q13 are associated with prostate cancer risk', *Cancer Res*, 69(1), 10-5.
- Sung, H., Lee, K. M., Choi, J. Y., Han, S., Lee, J. Y., Li, L., Park, S. K., Yoo, K. Y., Noh, D. Y., Ahn, S. H. and Kang, D. (2011) 'Common genetic polymorphisms of microRNA biogenesis pathway genes and risk of breast cancer: a case-control study in Korea', *Breast Cancer Res Treat*, 130(3), 939-51.
- Srivastava, K. and Srivastava, A. (2012) 'Comprehensive review of genetic association studies and metaanalyses on miRNA polymorphisms and cancer risk', *PLoS One*, 7(11), e50966.
- Swerdlov, S., Campo, E. and Harris, N. (2008) 'WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues',

#### Τ

- Tao, S., Wang, Z., Feng, J., Hsu, F. C., Jin, G., Kim, S. T., Zhang, Z., Gronberg, H., Zheng, L. S., Isaacs, W. B., Xu, J. and Sun, J. (2012) 'A genome-wide search for loci interacting with known prostate cancer risk-associated genetic variants', *Carcinogenesis*, 33(3), 598-603.
- Tian, T., Shu, Y., Chen, J., Hu, Z., Xu, L., Jin, G., Liang, J., Liu, P., Zhou, X., Miao, R., Ma, H., Chen, Y. and Shen, H. (2009) 'A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese', *Cancer Epidemiol Biomarkers Prev*, 18(4), 1183-7.
- Tong, N., Xu, B., Shi, D., Du, M., Li, X., Sheng, X., Wang, M., Chu, H., Fang, Y., Li, J., Wu, D. and Zhang, Z. (2014) 'Hsa-miR-196a2 polymorphism increases the risk of acute lymphoblastic leukemia in Chinese children', *Mutat Res*, 759, 16-21.
- Tong N, Chu H, Wang M, Xue Y, Du M, Lu L, Zhang H, Wang F, Fang Y, Li J, Wu D, Zhang Z, Sheng X. (2016). Pri-miR-34b/c rs4938723 polymorphism contributes to acute lymphoblastic leukemia susceptibility in Chinese children. Leuk Lymphoma. 2016;57(6):1436-41.
- Treviño, L. R., Yang, W., French, D., Hunger, S. P., Carroll, W. L., Devidas, M., Willman, C., Neale, G., Downing, J., Raimondi, S. C., Pui, C. H., Evans, W. E. and Relling, M. V. (2009) 'Germline genomic variants associated with childhood acute lymphoblastic leukemia', *Nat Genet*, 41(9), 1001-5.

# U

- Uckun, F. M., Goodman, P., Ma, H., Dibirdik, I. and Qazi, S. (2010) 'CD22 EXON 12 deletion as a pathogenic mechanism of human B-precursor leukemia', *Proc Natl Acad Sci U S A*, 107(39), 16852-7.
- Urayama, K. Y., Chokkalingam, A. P., Manabe, A. and Mizutani, S. (2013) 'Current evidence for an inherited genetic basis of childhood acute lymphoblastic leukemia', *Int J Hematol*, 97(1), 3-19.
- Urayama, K. Y., Chokkalingam, A. P., Metayer, C., Ma, X., Selvin, S., Barcellos, L. F., Wiemels, J. L., Wiencke, J. K., Taylor, M., Brennan, P., Dahl, G. V., Moonsamy, P., Erlich, H. A., Trachtenberg, E. and Buffler, P. A. (2012) 'HLA-DP genetic variation, proxies for early life immune modulation and childhood acute lymphoblastic leukemia risk', *Blood*, 120(15), 3039-47.
- Urayama, K. Y., Ma, X. and Buffler, P. A. (2008) 'Exposure to infections through day-care attendance and risk of childhood leukaemia', *Radiat Prot Dosimetry*, 132(2), 259-66.

#### V

Vardiman, J. W., Thiele, J., Arber, D. A., Brunning, R. D., Borowitz, M. J., Porwit, A., Harris, N. L., Le Beau, M. M., Hellström-Lindberg, E., Tefferi, A. and Bloomfield, C. D. (2009) 'The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes', *Blood*, 114(5), 937-51.

- Ventura, A., Young, A. G., Winslow, M. M., Lintault, L., Meissner, A., Erkeland, S. J., Newman, J., Bronson, R. T., Crowley, D., Stone, J. R., Jaenisch, R., Sharp, P. A. and Jacks, T. (2008) 'Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters', *Cell*, 132(5), 875-86.
- Vijayakrishnan, J., Henrion, M., Moorman, A. V., Fiege, B., Kumar, R., da Silva Filho, M. I., Holroyd, A., Koehler, R., Thomsen, H., Irving, J. A., Allan, J. M., Lightfoot, T., Roman, E., Kinsey, S. E., Sheridan, E., Thompson, P. D., Hoffmann, P., Nöthen, M. M., Mühleisen, T. W., Eisele, L., Bartram, C. R., Schrappe, M., Greaves, M., Hemminki, K., Harrison, C. J., Stanulla, M. and Houlston, R. S. (2015) 'The 9p21.3 risk of childhood acute lymphoblastic leukaemia is explained by a rare high-impact variant in CDKN2A', *Sci Rep*, 5, 15065.
- Vijayakrishnan, J. and Houlston, R. S. (2010) 'Candidate gene association studies and risk of childhood acute lymphoblastic leukemia: a systematic review and meta-analysis', *Haematologica*, 95(8), 1405-14.
- Vijayakrishnan, J., Sherborne, A. L., Sawangpanich, R., Hongeng, S., Houlston, R. S. and Pakakasama, S. (2010) 'Variation at 7p12.2 and 10q21.2 influences childhood acute lymphoblastic leukemia risk in the Thai population and may contribute to racial differences in leukemia incidence', *Leuk Lymphoma*, 51(10), 1870-4.
- Vinci, S., Gelmini, S., Mancini, I., Malentacchi, F., Pazzagli, M., Beltrami, C., Pinzani, P. and Orlando, C. (2013) 'Genetic and epigenetic factors in regulation of microRNA in colorectal cancers', *Methods*, 59(1), 138-46.

#### W

- Walsh, K. M., Chokkalingam, A. P., Hsu, L. I., Metayer, C., de Smith, A. J., Jacobs, D. I., Dahl, G. V., Loh, M. L., Smirnov, I. V., Bartley, K., Ma, X., Wiencke, J. K., Barcellos, L. F., Wiemels, J. L. and Buffler, P. A. (2013) 'Associations between genome-wide Native American ancestry, known risk alleles and B-cell ALL risk in Hispanic children', *Leukemia*, 27(12), 2416-9.
- Walsh, K. M., de Smith, A. J., Chokkalingam, A. P., Metayer, C., Dahl, G. V., Hsu, L. I., Barcellos, L. F., Wiemels, J. L. and Buffler, P. A. (2013) 'Novel childhood ALL susceptibility locus BMI1-PIP4K2A is specifically associated with the hyperdiploid subtype', *Blood*, 121(23), 4808-9.
- Walsh, K. M., de Smith, A. J., Hansen, H. M., Smirnov, I. V., Gonseth, S., Endicott, A. A., Xiao, J., Rice, T., Fu, C. H., McCoy, L. S., Lachance, D. H., Eckel-Passow, J. E., Wiencke, J. K., Jenkins, R. B., Wrensch, M. R., Ma, X., Metayer, C. and Wiemels, J. L. (2015) 'A Heritable Missense Polymorphism in CDKN2A Confers Strong Risk of Childhood Acute Lymphoblastic Leukemia and Is Preferentially Selected during Clonal Evolution', *Cancer Res*, 75(22), 4884-94.
- Wang, C., Chen, J., Sun, H., Sun, L. and Liu, Y. (2015) 'CEBPE polymorphism confers an increased risk of childhood acute lymphoblastic leukemia: a meta-analysis of 11 case-control studies with 5,639 cases and 10,036 controls', Ann Hematol, 94(2), 181-5.
- Wang, F., Zhao, Q., He, H. R., Zhai, Y. J., Lu, J., Hu, H. B., Zhou, J. S., Yang, Y. H. and Li, Y. J. (2015) 'The association between XRCC1 Arg399Gln polymorphism and risk of leukemia in different populations: a meta-analysis of case-control studies', *Onco Targets Ther*, 8, 3277-87.
- Wang, Y., Chen, J., Li, J., Deng, J., Rui, Y., Lu, Q., Wang, M., Tong, N., Zhang, Z. and Fang, Y. (2013)
   'Association of three polymorphisms in ARID5B, IKZF1 and CEBPE with the risk of childhood acute lymphoblastic leukemia in a Chinese population', *Gene*, 524(2), 203-7.
- Wartenberg , D., Groves, FD. and Adelmand, AS. (2008) 'Acute Lymphoblastic leukemia:Epidemiology and Etiology' in *Hematologic Malignancies: Acute Leukemias.* Springer, Berlin.
- Wiemels, J. L., de Smith, A. J., Xiao, J., Lee, S. T., Muench, M. O., Fomin, M. E., Zhou, M., Hansen, H. M., Termuhlen, A., Metayer, C. and Walsh, K. M. (2016) 'A functional polymorphism in the CEBPE gene promoter influences acute lymphoblastic leukemia risk through interaction with the hematopoietic transcription factor Ikaros', *Leukemia*, 30(5), 1194-7.

- Χ
- Xia, L., Ren, Y., Fang, X., Yin, Z., Li, X., Wu, W., Guan, P. and Zhou, B. (2014) 'Prognostic role of common microRNA polymorphisms in cancers: evidence from a meta-analysis', *PLoS One*, 9(10), e106799.
- Xiang, Y., Fan, S., Cao, J., Huang, S. and Zhang, L. P. (2012) 'Association of the microRNA-499 variants with susceptibility to hepatocellular carcinoma in a Chinese population', *Mol Biol Rep*, 39(6), 7019-23.
- Xu, H., Cheng, C., Devidas, M., Pei, D., Fan, Y., Yang, W., Neale, G., Scheet, P., Burchard, E. G., Torgerson, D. G., Eng, C., Dean, M., Antillon, F., Winick, N. J., Martin, P. L., Willman, C. L., Camitta, B. M., Reaman, G. H., Carroll, W. L., Loh, M., Evans, W. E., Pui, C. H., Hunger, S. P., Relling, M. V. and Yang, J. J. (2012) 'ARID5B genetic polymorphisms contribute to racial disparities in the incidence and treatment outcome of childhood acute lymphoblastic leukemia', *J Clin Oncol*, 30(7), 751-7.
- Xu, H., Yang, W., Perez-Andreu, V., Devidas, M., Fan, Y., Cheng, C., Pei, D., Scheet, P., Burchard, E. G., Eng, C., Huntsman, S., Torgerson, D. G., Dean, M., Winick, N. J., Martin, P. L., Camitta, B. M., Bowman, W. P., Willman, C. L., Carroll, W. L., Mullighan, C. G., Bhojwani, D., Hunger, S. P., Pui, C. H., Evans, W. E., Relling, M. V., Loh, M. L. and Yang, J. J. (2013) 'Novel Susceptibility Variants at 10p12.31-12.2 for Childhood Acute Lymphoblastic Leukemia in Ethnically Diverse Populations', J Natl Cancer Inst.
- Xu, H., Zhang, H., Yang, W., Yadav, R., Morrison, A. C., Qian, M., Devidas, M., Liu, Y., Perez-Andreu, V., Zhao, X., Gastier-Foster, J. M., Lupo, P. J., Neale, G., Raetz, E., Larsen, E., Bowman, W. P., Carroll, W. L., Winick, N., Williams, R., Hansen, T., Holm, J. C., Mardis, E., Fulton, R., Pui, C. H., Zhang, J., Mullighan, C. G., Evans, W. E., Hunger, S. P., Gupta, R., Schmiegelow, K., Loh, M. L., Relling, M. V. and Yang, J. J. (2015) 'Inherited coding variants at the CDKN2A locus influence susceptibility to acute lymphoblastic leukaemia in children', *Nat Commun*, 6, 7553.

## Y

- Yamanaka, R., Barlow, C., Lekstrom-Himes, J., Castilla, L. H., Liu, P. P., Eckhaus, M., Decker, T., Wynshaw-Boris, A. and Xanthopoulos, K. G. (1997) 'Impaired granulopoiesis, myelodysplasia, and early lethality in CCAAT/enhancer binding protein epsilon-deficient mice', *Proc Natl Acad Sci U S A*, 94(24), 13187-92.
- Yang, H., Dinney, C. P., Ye, Y., Zhu, Y., Grossman, H. B. and Wu, X. (2008) 'Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer', *Cancer Res,* 68(7), 2530-7.
- Yang, W., Treviño, L. R., Yang, J. J., Scheet, P., Pui, C. H., Evans, W. E. and Relling, M. V. (2010) 'ARID5B SNP rs10821936 is associated with risk of childhood acute lymphoblastic leukemia in blacks and contributes to racial differences in leukemia incidence', *Leukemia*, 24(4), 894-6.

# Ζ

- Zhang, H., Yang, J. H., Zheng, Y. S., Zhang, P., Chen, X., Wu, J., Xu, L., Luo, X. Q., Ke, Z. Y., Zhou, H., Qu, L. H. and Chen, Y. Q. (2009) 'Genome-wide analysis of small RNA and novel MicroRNA discovery in human acute lymphoblastic leukemia based on extensive sequencing approach', *PLoS One*, 4(9), e6849.
- Zhang, H., Zhang, Z. and Li, G. (2015) 'ABCB1 polymorphism and susceptibility to acute lymphoblastic leukemia: a meta analysis', *Int J Clin Exp Med*, 8(5), 7585-91.
- Zhang, X., Cairns, M., Rose, B., O'Brien, C., Shannon, K., Clark, J., Gamble, J. and Tran, N. (2009) 'Alterations in miRNA processing and expression in pleomorphic adenomas of the salivary gland', *Int J Cancer*, 124(12), 2855-63.
- Zhou, B., Wang, K., Wang, Y., Xi, M., Zhang, Z., Song, Y. and Zhang, L. (2011) 'Common genetic polymorphisms in pre-microRNAs and risk of cervical squamous cell carcinoma', *Mol Carcinog*, 50(7), 499-505.