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Abstract We propose an implementation of symplectic implicit Runge-Kutta
schemes for highly accurate numerical integration of non-stiff Hamiltonian sys-
tems based on fixed point iteration. Provided that the computations are done
in a given floating point arithmetic, the precision of the results is limited by
round-off error propagation. We claim that our implementation with fixed
point iteration is near-optimal with respect to round-off error propagation un-
der the assumption that the function that evaluates the right-hand side of the
differential equations is implemented with machine numbers (of the prescribed
floating point arithmetic) as input and output. In addition, we present a simple
procedure to estimate the round-off error propagation by means of a slightly
less precise second numerical integration. Some numerical experiments are re-
ported to illustrate the round-off error propagation properties of the proposed
implementation.

Keywords Symplectic implicit Runge-Kutta methods · fixed-point iteration ·
stopping criterion · round-off errors

1 Introduction

When numerically integrating an autonomous Hamiltonian system, one typ-
ically monitors the error in the preservation of the Hamiltonian function to
check the precision of the numerical solution. However, severe loss of precision
can actually occur for sufficiently long integration intervals, while displaying
a good preservation of the value of Hamiltonian function. For high precision
numerical integrations, where round-off errors may dominate truncation er-
rors, it is highly desirable both reducing and monitoring the propagation of
round-off errors.
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We propose an implementation of symplectic implicit Runge-Kutta schemes
(such as RK collocation methods with Gaussian nodes) that takes special care
in reducing the propagation of round-off errors. Our implementation is in-
tended to be applied to non-stiff problems, which motivates us to solve the
implicit equations by fixed-point iteration (see for instance [10][4] for numer-
ical tests comparing the efficiency of implementations based on fixed point
iterations and simplified Newton).

We work under the assumption that the (user defined) function that eval-
uates the right-hand side of the differential equations is implemented in such
a way that input and output arguments are machine numbers of some pre-
scribed floating point arithmetic. Our actual implementation includes the op-
tion of computing, in addition to the numerical solution, an estimation of the
propagated round-off error.

The starting point of our implementation is the work of Hairer et al. [5].
There, the authors observe that a standard fixed-point implementation of sym-
plectic implicit RK (applied with compensated summation [6]) exhibits an un-
expected systematic error in energy due to round-off errors, not observed in
explicit symplectic methods. They make the following observations that allow
them to understand that unfavorable error behavior: (a) The implicit Runge-
Kutta method whose coefficients b̃i, ãij are the floating-point representation of
the coefficient bi, ai,j of a symplectic Runge-Kutta method is not symplectic;
(b) The error due to the application at each step of a fixed point iteration
with standard stopping criterion (depending on a prescribed tolerance of the
iteration error) tends to have a systematic character. Motivated by these ob-
servations, they modify the standard implementation of fixed point iteration
which allows them to reduce the effect of round-off errors. No systematic error
in energy is observed in the numerical experiments reported in [5]. However,
we observe in some numerical experiments that the stopping criterion for the
fixed point iteration that they propose fails to work properly in some cases. In
addition, we claim that their implementation is still not optimal with respect
to round-off error propagation.

In Section 3, we propose alternative modifications of the standard fixed
point implementation of symplectic implicit Runge-Kutta methods, which
compare very favorably with that proposed in [5].

We first define a reference implementation with fixed point iteration where
all the arithmetic operations other than the evaluation of the right-hand side
of the system of differential equations are performed in exact arithmetic, and
as many iterations as needed are performed in each step. Such an implemen-
tation, that we call FPIEA (Fixed Point iteration with Exact Arithmetic)
implementation, is based on the following two modifications to the standard
implementation with fixed point iterations: (i) From one hand, we reformulate
each symplectic implicit Runge-Kutta method in such a way that its coeffi-
cients can be approximated by machine numbers while still keeping its sym-
plectic character exactly (Subsection 3.1). (ii) On the other hand, we propose
a modification of the stopping criterion introduced in [5] that is more robust
and is independent of the chosen norm (Subsection 3.2)
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The implementation we present here is based on the FPIEA implemen-
tation, with most multiplications and additions performed (for efficiency rea-
sons) in the prescribed floating point arithmetic, but some of the operations
performed with special care in order to reduce the effect of round-off errors.
In particular, this includes a somewhat non-standard application of Kahan’s
”compensated summation” algorithm [7][6][9], described in detail in Subsec-
tion 3.3.

Finally, in Subsection 3.4, we present a simple procedure to estimate the
round-off error propagation as the difference of the actual numerical solution,
and a slightly less precise second numerical solution. These two numerical
solutions can be computed either in parallel, or sequentially with a lower com-
putational cost than two integrations executed in completely independent way.

In Section 4, we show some numerical experiments to asses the perfor-
mance of our final implementation. Some concluding remarks are presented in
Section 5.

2 Preliminaries

2.1 Numerical integration of ODEs by symplectic IRK schemes

We are mainly interested in the application of symplectic implicit Runge-Kutta
(IRK) methods for the numerical integration of Hamiltonian systems of the
form

d

dt
qj =

∂H(p, q)

∂pj
,

d

dt
pj = −∂H(p, q)

∂qj
, j = 1, . . . , d, (1)

where H : R2d → R. Recall that the Hamiltonian function H(q, p) is a con-
served quantity of the system.

More generally, we consider initial value problems of systems of autonomous
ODEs of the form

d

dt
y = f(y), y(t0) = y0, (2)

where f : RD → RD is a sufficiently smooth map and y0 ∈ RD. In the case of
the Hamiltonian system (1), D = 2d, y = (q1, . . . , qd, p1, . . . , pd).

For the system of differential equations (2), an s-stage implicit Runge-
Kutta method is determined by an integer s and the real coefficients aij (1 6
i, j 6 s), bi (1 6 i 6 s). The approximations yn ≈ y(tn) to the solution y(t)
of (2) at t = tn = t0 + nh for n = 1, 2, 3, . . . are computed as

yn+1 = yn + h

s∑
i=1

bi f(Yn,i), (3)

where the stage vectors Yn,i are implicitly defined at each step by

Yn,i = yn + h

s∑
j=1

aij f(Yn,j), i = 1, . . . , s. (4)
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An IRK scheme is symplectic if an only if [10]

biaij + bjaji − bibj = 0, 1 6 i, j 6 s. (5)

In that case, the IRK scheme conserves exactly all quadratic first integrals of
the original system (2), and if the system is Hamiltonian, under certain as-
sumptions [4], it approximately conserves the value of the Hamiltonian func-
tion H(y) over long time intervals.

2.2 Floating point version of an IRK integrator

Let F ⊂ R be the set of machine numbers of a prescribed floating point system.
Let fl : R −→ F be a map that sends each real number x to a nearest machine
number fl(x) ∈ F.

We assume that instead of the original map f : RD → RD, we have a
computational substitute

f̃ : FD → FD. (6)

Ideally, for each x ∈ FD, f̃(x) := fl(f(x)). In practice, the intermediate com-
putations to evaluate f̃ are typically made using the floating point arithmetic
corresponding to F, which will result in some error ||f̃(x) − fl(f(x))|| caused
by the accumulated effect of several round-off errors.

We aim at efficiently implementing a given symplectic IRK scheme under
the assumption that f : RD → RD is replaced by (6). Hence, the effect of
round-off errors will be present even in the best possible ideal implementation
where exact arithmetic were used for all the computations except for the eval-
uations of the map (6). Our goal is to implement the IRK scheme working
at the prescribed floating point arithmetic, in such a way that the effect of
round-off errors is similar in nature and relatively close in magnitude to that
of such ideal implementation.

2.3 Kahan’s compensated summation algorithm

Obtaining the numerical approximation yn ≈ y(tn), (n = 1, 2, . . .) to the solu-
tion y(t) of the initial value problem (2) defined by (3)–(4) requires computing
the sums

yn+1 = yn + xn, n = 0, 1, 2, . . . , (7)

where

xn = h

s∑
i=1

bi f(Yn,i).

For an actual implementation that only uses a floating point arithmetic
with machine numbers in F, special care must be taken with the additions
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(7). It is worth mentioning that for sufficiently small step-length h, the com-
ponents of xn are smaller in size than those of yn (provided that the com-
ponents of the solution y(t) of (2) remain away from zero). The naive re-
cursive algorithm ŷn+1 := fl(ŷn + fl(xn)), (n = 0, 1, 2, 3 . . .), typically suffers,
for large n, a significant loss of precision due to round-off errors. It is well
known that such a round-off error accumulation can be greatly reduced with
the use of Kahan’s compensated summation algorithm [7] (see also [6], [9]).
Given a sequence {y0, x0, x1, . . . , xn, . . .} ⊂ F of machine numbers, Kahan’s

algorithm is aimed to compute the sums yn = y0 +
∑n−1
`=0 x`, (n > 1,) us-

ing a prescribed floating point arithmetic, more precisely than with the naive
recursive algorithm. In Kahan’s algorithm, machine numbers ỹn representing
the sums yn are computed along with additional machine numbers en in-
tended to capture the error yn − ỹn. The actual algorithm reads as follows:

ỹ0 = y0; e0 = 0;

for l← 0 to n do

Xl = fl(xl + el);
ỹl+1 = fl(ỹl +Xl);

X̂l = fl(ỹl+1 − ỹl);
el+1 = fl(Xl − X̂l);

end
Algorithm 1: Kahan’s compensated summation.

The sums ỹl + el (which in general do not belong to F) are more precise
approximations of the exact sums yl than ỹl ∈ F. In this sense, if y0 6∈ F, the
algorithm (1) should be initialized as ỹ0 := fl(y0) and e0 := fl(y0 − ỹ0) (rather
than e0 = 0).

Of course, algorithm (1) also makes sense for D-vectors of machine numbers
ỹ0, e0, x0, x1, . . . , xn ∈ FD. In this setting, algorithm (1) can be interpreted as
a family of maps parametrized by n and D,

Sn,D : F(n+3)D → F2D,

that given the arguments ỹ0, e0, x0, x1, . . . , xn ∈ FD, returns ỹn+1, en+1 ∈ FD
such that ỹn+1 + en+1 is intended to represent the sum (ỹ0 + e0) + x0 + x1 +
· · ·+ xn (with some small error).

3 Proposed implementation of symplectic IRK schemes

3.1 Symplectic schemes with machine number coefficients

If the coefficients bi, aij determining a symplectic IRK are replaced by machine

numbers b̃i, ãij ∈ F that approximate them (say, b̃i := fl(bi), ãij := fl(aij)),
then the resulting IRK scheme typically fails to satisfy the symplecticity con-
ditions (5). This results in a method that does not conserve quadratic first
integrals and exhibits a linear drift in the value of the Hamiltonian function [5].
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Motivated by that, we recast the definition of a step of the IRK method
as follows:

Yn,i = yn +

s∑
j=1

µij Ln,j , Ln,i = hbif(Yn,i), i = 1, . . . , s, (8)

yn+1 = yn +

s∑
i=1

Ln,i, (9)

where

µij = aij/bj , 1 6 i, j 6 s.

Condition (5) now becomes,

µij + µji − 1 = 0, 1 6 i, j 6 s.

The main advantage of the proposed formulation over the standard one is
that the absence of multiplications in the alternative symplecticity condition
makes possible (see Appendix A for the particular case of the 12th order
Gauss collocation IRK method) to find machine number approximations µ̃ij
of µij = aij/bj satisfying exactly the symplecticity condition

µ̃ij + µ̃ji − 1 = 0, 1 6 i, j 6 s. (10)

3.2 Iterative solution of the nonlinear Runge-Kutta equations

The fixed point iteration can be used to approximately compute the solution of
the implicit equations (8) as follows: For k = 1, 2, . . . obtain the approximations

Y
[k]
n,i , L

[k]
n,i of Yn,i, Ln,i (i = 1, . . . , s) as

L
[k]
n,i = hbi f(Y

[k−1]
n,i ), Y

[k]
n,i = yn +

s∑
j=1

µij L
[k]
n,j i = 1, . . . , s. (11)

The iteration may be initialized simply with Y
[0]
i = yn, or by some other

procedure that uses the stage values of the previous steps [4]. If the step-
length h is sufficiently small, these iterations converge to a fixed point that is
solution of the algebraic equations (8).

The situation is different for an actual computational version of these it-
erations, where f is replaced in (11) by its computational substitute (6). The
kth iteration then reads as follows: For i = 1, . . . , s,

f
[k]
n,i = f̃(fl(Y

[k−1]
n,i )), L

[k]
n,i = hbi f

[k]
n,i, Y

[k]
n,i = yn +

s∑
j=1

µij L
[k]
n,j . (12)

In this case, either a fixed point of (12) is reached in a finite number of it-
erations, or the iteration fails (mathematically speaking) to converge. In the
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former case, however (provided that h is small enough for the original itera-
tion (11) to converge), after a finite number of iterations, a computationally
acceptable approximation to the fixed point of (11) is typically achieved, and
the successive iterates remain close to it. According to our experience and the
numerical experiments reported in [5], a computational fixed point is reached
for most steps in a numerical integration with sufficiently small step-length h.

In standard implementations of implicit Runge-Kutta methods, one con-
siders

∆[k] = (Y
[k]
n,1 − Y

[k−1]
n,1 , . . . , Y [k]

n,s − Y [k−1]
n,s ) ∈ Fsd,

(for notational simplicity, we avoid reflecting the dependence of n on ∆[k]),
and stops the iteration provided that ||∆[k]|| 6 tol, with a prescribed vector
norm || · || and iteration error tolerance tol. If the chosen value of tol is too
small, then the iteration may never end when the computational sequence
does not arrive to a fixed point in a finite number of steps. If tol is not small
enough, the iteration will stop too early, which will result in an iteration error
of larger magnitude than round-off errors. Furthermore, as observed in [5],
such iteration errors tend to accumulate in a systematic way.

The remedy proposed in [5] is to stop the iteration either if∆[k] = 0 (that is,
if a fixed point is reached) or if ||∆[k]|| > ||∆[k−1]||. The underlying idea is that
(provided that h is small enough for the original iteration (11) to converge),
typically ||∆[k]|| < ||∆[k−1]|| whenever the iteration error is substantially larger
than round-off errors, and thus ||∆[k]|| > ||∆[k−1]|| may indicate that round-off
errors are already significant.

We have observed that Hairer’s strategy works well in general, but in some
cases it stops the iteration too early. Indeed, it works fine for the initial value
problem on a simplified model of the outer solar system (OSS) reported in [5]
with a step-size h of 500/3 days, but it goes wrong with h = 1000/3. Actually,
we have run Hairer’s fortran code and observed that the computed numerical
solution exhibits an error in energy that is considerably larger than round-
off errors. The evolution of relative error in energy is displayed on the left
of Figure 1, which shows a linear growth pattern. We have checked that, for
instance, at the first step,

‖∆[1]‖ > ‖∆[2]‖ > · · · > ‖∆[12]‖ = 3.91× 10−14 ≤ ‖∆[13]‖ = 4.35× 10−14

which causes the iteration to stop at the 13th iteration, which happens to be
too early, since subsequently, ‖∆[13]‖ > ‖∆[14]‖ > ‖∆[15]‖ > ‖∆[16]‖ = 0.

Motivated by that we propose an alternative more stringent stopping cri-

terion: Denote as ∆
[k]
j the jth component (1 6 j 6 sD) of ∆[k] ∈ RsD. The

fixed point iteration (12) is performed for k = 1, 2, . . . until either ∆[k] = 0 or
the following condition is fulfilled for two consecutive iterations:

∀j ∈ {1, . . . , sD}, min
(
{|∆[1]

j |, · · · , |∆
[k−1]
j |} /{0}

)
6 |∆[k]

j |. (13)

http://www.unige.ch/~hairer/preprints/code.tar
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(a) OSS: Hairer’s stopping criterion
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(b) OSS: New stopping criterion

Fig. 1: Evolution of relative error in energy for the outer solar system problem (OSS) with
the original unperturbed initial values in [5] and doubled step-size (h = 1000/3 days). (a)
Hairer’s stopping criterion. (b) New stopping criterion.

If K is the first positive integer such that (13) does hold for both k = K − 1
and k = K, then we compute the approximation yn+1 ≈ y(tn+1) as

yn+1 = yn +

s∑
i=1

L
[K]
n,i .

The iteration typically stops with ∆
[K]
j = 0 for all j. However, when the

iteration stops with ∆
[K]
j 6= 0 for some j, that is, when no computational

fixed point is achieved, we still have to decide if this has been due to the
effect of small round-off errors, or because the step-size is not small enough
for the convergence of the iteration (11). Here is the only point where our
implementation depends on a norm-based standard criterion (with rather loose
absolute and relative error tolerances) to decide if ∆[K] ∈ FsD is small enough.

We have repeated the experiment of OSS with h = 1000/3 by replacing
Hairer’s stopping criterion by our new one. The evolution of the resulting
energy errors are displayed on the right of Figure 1.

3.3 Machine precision implementation of new algorithm

Subsections 3.1 and 3.2 completely determine the FPIEA (Fixed Point Itera-
tion with Exact Arithmetic) implementation referred to in the Introduction.
We next describe in detail our machine precision implementation of the algo-
rithm described (for exact arithmetic) in previous subsection.

Consider appropriate approximations b̃i ∈ F of bi (i = 1, . . . , s), and let
µ̃ij ∈ F (i, j = 1, . . . , s) be approximations of µij satisfying exactly the sym-
plecticity condition (10).
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Given yn ∈ RD, we consider ỹ0 = fl(y0) and e0 = fl(yn − ỹn). For each

n = 0, 1, 2, . . ., we initialize Y
[0]
n,i = yn, and successively compute for k = 1, 2, . . .

f
[k]
n,i = f̃(Y

[k−1]
n,i ), L

[k]
n,i = fl(h b̃i f

[k]
n,i),

Z
[k]
n,i = en+

s∑
j=1

µ̃ij L
[k]
n,j , Y

[k]
n,i = fl

(
ỹn + Z

[k]
n,i

) (14)

until the iteration is stopped at k = K according to the criteria described

in Subsection 3.2. Hence, K is the highest index k such that f
[k]
n,i has been

computed.

In our actual implementation, one can optionally initialize Y
[0]
n,i by inter-

polating from the stage values of previous step, which improves the efficiency
of the algorithm. Nevertheless, in all the numerical results reported Section 4

below, the simpler initialization Y
[0]
n,i = yn is employed.

In (14), we evaluate each Z
[k]
n,i ∈ FD as

Z
[k]
n,i = (· · · ((en + µ̃i,1L

[k]
n,1) + µ̃i,2L

[k]
n,2) + · · ·+ µ̃i,s−1L

[k]
n,s−1) + µ̃i,sL

[k]
n,s

where each multiplication and addition is performed in the prescribed floating
point arithmetic.

We then compute ỹn+1, en+1 ∈ FD such that ỹn+1 + en+1 ≈ y(tn+1) as
follows:

– compute for i = 1, . . . , s the vectors

En,i = h b̃i f
[K]
n,i − L

[K]
n,i . (15)

δn = en +

s∑
i=1

En,i.

– finally, compute

(ỹn+1, en+1) = Ss,D(ỹn, δn, L
[K]
n,1 , . . . , L

[K]
n,s). (16)

If the FMA (fused-multiply-add) instruction is available, it should be used
to compute (15) (with precomputed coefficients hb̃i). The order in which the
terms defining Zn and δn are actually computed in the floating point arithmetic
is not relevant, as the corresponding round-off errors of the small corrections
Zn and δn will have a very marginal effect in the computation of ỹn+1 and
en+1.
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3.4 Round-off error estimation.

We estimate the round-off error propagation of our numerical solution ỹn +
en ≈ y(tn) (n = 1, 2, . . .) by computing its difference with a slightly less
precise secondary numerical solution ŷn+ ên ≈ y(tn) obtained with a modified
version of the machine precision algorithm described in previous section. In

this modified version of the algorithm, the components of each L
[K]
n,i in (16)

are rounded to a machine number with a shorter mantissa. We next give some
more details.

Let p be the number of binary digits of our floating point arithmetic. Given
an integer r > 0 and a machine number x, we define flp−r(x) := fl(2rx+ x)−
2rx. This is essentially equivalent to rounding x to a floating point number
with p− r significant binary digits.

We determine the algorithm for the secondary integration by fixing a pos-
itive integer r < p and modifying (16) in the implementation of the algorithm
described in previous subsection as follows:

(ŷn+1, ên+1) = Ss,D(ŷn, δn,flp−r(L
[K]
n,1), . . . ,flp−r(L

[K]
n,s)).

The proposed round-off error estimation can thus be obtained as the differ-
ence of the primary numerical solution and the secondary numerical solution
obtained with a relatively small value of r (say, r = 3). These two numerical
solutions can be computed in parallel in a completely independent way.

In addition, we have implemented a sequential version with lower CPU
requirements than two integrations executed sequentially in completely inde-
pendent way. The key to do that is the following: At each step, the stage values
Yn,i (i = 1, . . . , s) of both primary and secondary integration will typically be
very close to each other (as far as the estimated round-off error does not grow
too much). Thus, the number of iterations of each step of the secondary in-
tegration can be reduced by using the final stage values Yn,i (i = 1, . . . , s) of

the primary integration as initial values Y
[0]
n,i of the secondary integration.

4 Numerical experiments

We next report some numerical experiments to asses our implementation of
the 6-stage Gauss collocation method of order 12 in the 64-bit IEEE double
precision floating point arithmetic.

4.1 Test problems

We consider two different Hamiltonian problems corresponding to a double
pendulum and the simulation of the outer solar system (considered in [4] and
[5]) respectively. In all the cases, we consider a time-step h that is small enough
for round-off errors to dominate over truncation errors.
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4.1.1 The double pendulum (DP) problem

We consider the planar double pendulum problem: a double bob pendulum
with masses m1 and m2 attached by rigid massless rods of lengths l1 and l2.
This is a non-separable Hamiltonian system with two degrees of freedom, for
which no explicit symplectic Runge-Kutta-type method is available, and hence
Gauss collocation methods are a natural choice [8].

The configuration of the pendulum is described by two angles q = (φ, θ)
(see figure 2): while φ is the angle of the first bob, the second bob’s angle is
defined by ψ = φ+ θ. We denote the corresponding momenta as p = (pφ, pθ).

𝑙1 

𝑙2 

𝑚1 

𝑚2 

𝑥 

𝑦 

𝜙 

𝜓 

 𝑥1, 𝑦1 = (𝑙1 sin𝜙 ,−𝑙1 cos𝜙) 

 𝑥2, 𝑦2 = (𝑙1 sin𝜙 + 𝑙2 sin𝜓 ,−𝑙1 cos𝜙 − 𝑙2 cos𝜓) 

Fig. 2: Double Pendulum.

Its Hamiltonian function H(q, p) is

− l1
2 (m1 +m2) pθ

2 + l2
2 m2 (pθ − pφ)2 + 2 l1 l2 m2 pθ (pθ − pφ) cos(θ)

l1
2 l2

2 m2 (−2 m1 −m2 +m2 cos(2θ))

− g cos(φ) (l1 (m1 +m2) + l2 m2 cos(θ)) + g l2 m2 sin(θ) sin(φ), (17)

and we consider following parameters values

g = 9.8
m

sec2
, l1 = 1.0 m , l2 = 1.0 m , m1 = 1.0 kg , m2 = 1.0 kg.

We take two initial values from [2], the first one of non-chaotic character, and
the second one exhibiting chaotic behaviour:
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1. Non-Chaotic case (NCDP): q(0) = (1.1,−1.1) and p(0) = (2.7746, 2.7746).
We have integrated over Tend = 212 seconds with step-size h = 2−7. The
numerical results will be sampled once every m = 210 steps.

2. Chaotic case (CDP): q(0) = (0, 0) and p(0) = (3.873, 3.873). We have
integrated over Tend = 28 seconds with step-size h = 2−7. We sample the
numerical results once every m = 28 steps.

Both initial value problems (NCDP and CDP) will be used to test the evolution
of the global errors as well as to check the performance of the round-off error
estimators. For the long term evolution of the errors in energy, only the NCDP
problem will be considered.

4.1.2 Simulation of the outer solar system (OSS)

We consider a simplified model of the outer solar system (sun, the four outer
planets, and Pluto) under mutual gravitational (non-relativistic) interactions.
This is a Hamiltonian system with 18-degrees of freedom (qi, pi ∈ R3, i =
0, · · · , 5) and Hamiltonian function is

H(q, p) =
1

2

N∑
i=0

‖pi‖2

mi
− G

N∑
0≤i<j≤N

mimj

‖qi − qj‖
. (18)

We have considered the initial values and the values of the constant parameters
(Gmi, i = 0, . . . , 5) taken from [4, page 14]. We have integrated over Tend =
107 days, with step-size h = 500/3 and the numerical results are sampled once
every m = 120 steps.

Observe that (18) is a separable Hamiltonian, i.e., of the form H(p, q) =
T (p)+U(q). It is well known that the efficiency of standard fixed point iteration
can be improved for Hamiltonians systems with separable Hamiltonian by
considering a partitioned version of the fixed point iteration [4]. Nevertheless,
as in [5], here we report the numerical results obtained with the standard
non-partitioned fixed-point iteration. (We have actually checked that similar
results are obtained with the partitioned version of the fixed point iteration,
the main difference being that less iterations are performed at each step.)

4.2 Comparison of different sources of error in energy

The error of a numerical solution ỹn + en ≈ y(tn) (n = 1, 2, . . .) computed
with our double precision (DP) implementation of symplectic IRK schemes is
a combined result of different kinds of errors:

1. The truncation error: The error due to replacing y(tn), n = 1, 2, 3, . . .
(where y(t) is the solution of the initial value problem (2)) by the numerical
approximations yn defined by (9)–(8) (with exact coefficients bi, µij).
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2. The iteration error: In practice a finite number K of fixed point iterations
(11) are applied, and the solution Ln,i, Yn,i (i = 1, . . . , s) of (8) are replaced

by approximations L
[K]
n,i , Y

[K]
n,i . Then, in the FPIEA implementation, the

corresponding numerical solution yn+1 is computed at each step as

yn+1 = yn +

s∑
i=1

L
[K]
n,i .

3. The error due to replacing the original map f : RD → RD by its computa-
tional substitute f̃ : FD → FD. This has a double effect: From one hand,
in most steps, a computational fixed point is achieved in a finite number
K of iterations, which causes an unavoidable iteration error. On the other
hand, replacing f by f̃ adds the effect of some round-off errors.

4. The error due to the application of a different IRK scheme. In our case, we
apply the scheme (9)–(8) with bi replaced by b̃i ∈ F (i = 1, . . . , s) and each
µij replace by double precision approximation µ̃ij ∈ F satisfying condition
(10).

5. The error due to using inexact arithmetic for the operations (other than the
evaluation of f̃) in the machine precision implementation of the algorithm.

We have simulated, for the double pendulum (the non-chaotic case, NCDP)
and the outer solar system (OSS) respectively, the effect that each of the first
four of such sources of errors has in the values of the energy (which of course
is conserved in the exact solution) as follows:

A. In order to estimate the truncation error, we have applied our algorithm
fully implemented in quadruple precision.

B. For the iteration error, we have applied the quadruple precision version of
the algorithm modified so that the fixed point process in the nth step is

stopped at the Kth iteration provided that Y
[K]
n,i and Y

[K−1]
n,i coincide when

rounded to double precision.
C. In addition, we have estimated the effect (in the evolution of the energy) of

the error due to replacing f by f̃ , by considering the quadruple precision
implementation of our algorithm with the double precision version of f̃ .

D. Finally, we have simulated the error due to the application of a RK scheme
with double precision coefficients by applying our quadruple precision im-
plementation with double precision coefficients b̃i, µ̃ij .

We next plot (Fig. 3), for each of the considered initial value problems, the
evolutions of the energy errors corresponding to the items A–D in previous
list. In both cases, we have chosen a step-size h such that truncation errors
are smaller than round-off errors. We observe that the effect of using double
precision coefficients (b̃i, µ̃ij) is also negligible compared to the propagation of
round-off errors. The iteration error is similar in size to round-off errors.
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Fig. 3: We plot the evolution of energy error in logarithmic scale of the next algorithms
implementations: A-algorithm as estimation of truncation error (red), B-algorithm as esti-
mation of iteration error (green), C-algorithm as estimation of the effect of replacing the
exact f by its double precision version f̃ function (black) and D-algorithm as estimation of
the effect of using double precision coefficients (blue).

4.3 Statistical analysis of errors

In order to make a more robust comparison of the numerical errors due to
round-off errors, we adopt (as in [5]) an statistical approach. We have consid-
ered for each of the three initial value problem, P = 1000 perturbed initial
values by randomly perturbing each component of the initial values with a
relative error of size O(10−6).

We will compare three different fixed point implementations of the 6-stage
Gauss collocation method. In all of them, the same computational substitute
f̃ : FD → FD is used instead of the original map f : RD → RD defining the
ODE (2):

1. The FPIEA (fixed point iteration with exact arithmetic) implementation,
where the techniques described in Subsections 3.1 and 3.2 are applied
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Table 1: Percentage of steps that reach a computational fixed-point and the number
of fixed-point iterations per step for the computations of non-chaotic double pendulum
(NCDP), chaotic double pendulum (CDP), and the outer solar system (OSS) problems. In
columns, we compare three different implementations: FPIEA, DP (double precision) and
Hairer’s Fortran code.

FPIEA DP Hairer
NCDP 98.7% 8.5 98.8% 8.6 98.5% 8.6
CDP 98.9% 8.5 98.9% 8.6 98.4% 8.6
OSS 97.7% 14.4 97.4% 14.2 87.5% 14.1

to implement a fixed point iteration with all arithmetic operations (other
than those used when evaluating f̃) performed in exact arithmetic.

2. Our double precision version (coded in C) of the algorithm implemented
in FPIEA. We will refer to it as DP (double precision).

3. The algorithm proposed in [5], implemented in Hairer’s Fortran code.

From one hand, we want to check if the propagation of round-off errors in
our DP implementation are qualitatively similar and close in magnitude to its
exact arithmetic counterpart FPIEA. On the other hand, we want to see how
our DP implementation compares with Hairer’s code.

In (Table 1) we display the percentage of steps that reach a computational
fixed-point and the average number of fixed-point iterations per step in each
of the referred three implementations when applied to two differenent initial
value problems.

4.3.1 Distribution of energy jumps
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(µ = 5.3 × 10−19, σ = 1.5 × 10−17) (µ = −1.9 × 10−19, σ = 3.5 × 10−18)

Fig. 4: Histograms of KP samples of energy jumps of the DP implementation against
the normal distribution N(µ, δ) for two problems (NCDP and OSS). The horizontal axis is
multiplied by 1015 and vertical axis indicates the frequency

The local error in energy H(yn) − H(yn−1) due to round-off errors, is
”expected” to behave, for a good implementation free from biased errors, like
an independent random variable. Then, provided that the numerical results

http://www.unige.ch/~hairer/preprints/code.tar
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are sampled every m steps, with a large enough sampling frequency m, an
energy jump H(ykm) − H(ymk−m) will behave as an independent variable
with an approximately Gaussian distribution with mean µ (ideally µ = 0) and
standard deviation σ. So that the accumulated difference in energy,

H(ykm)−H(y0) (19)

at the sampled times tmk = kmh would behave like a Gaussian random walk
with standard deviation k

1
2σ = (tmk/(mh))1/2σ. This is sometimes referred

to as Brouwer’s law in the scientific literature [3], from the original work on
the accumulation of round-off errors in the numerical integration of Kepler’s
problem done by Brouwer in [1].

In this sense, we want to check in which extent the (scaled) energy jumps,

(H(ykm)−H(ymk−m))/H(y0) (20)

due to round-off errors after m steps approximately obey a Gaussian distribu-
tion in our double precision (DP) implementation.

If [0, Tend] is the integration interval, and P perturbed initial values are
considered, we have a total number of KP samples of energy jumps, where
K = Tend/(mh). In Figure 4, we plot the histograms of KP samples of energy
jumps obtained with our DP implementation against the normal distribution
N(µ, δ) (where µ and σ are the average and standard deviation of the samples
respectively). For both initial value problems, non-chaotic double pendulum
(NCDP), and the outer solar system (OSS), such histograms fits perfectly well
to their corresponding normal distributions N(µ, δ).

4.3.2 Evolution of mean and standard deviation of errors

We next plot (Fig. 5) the evolution of the mean and standard deviation of
the errors in energy of the FPIEA, DP, and Hairer’s implementations for the
NCDP and OSS problems respectively.

Recall that FPIEA represents the best possible fixed point implementation
of the IRK scheme provided that the double precision version f̃ of the original
f is used. We stress that we have made the stopping criterion of the FPIEA
implementation even more stringent than in the DP implementation: we stop
the fixed point iteration if either ∆[k] = 0 or (13) is fulfilled during ten consec-
utive iterations. This way, we try to avoid the persistence of iteration errors in
the case of steps where no computational fixed point is obtained. (Observe that
whenever ∆[k] = 0, there is no point in performing more fixed point iterations,
as in that case a computational fixed point has been achieved.)

The numerical tests in Figure 5 seen to confirm that our DP implementa-
tion is near optimal (that is, close to the FPIEA implementation), both with
respect to the standard deviation and the mean of the errors in energy.

We believe that some small linear drift of the mean energy error may be
unavoidable for the fixed point implementations of IRK schemes in some cases
(such us the NCDP example). This is consistent with the observation that the
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(b) NCDP: detail of mean error.
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Fig. 5: Evolution of mean (µ) and standard deviation (σ) of errors in energy (left) and
detail of the evolution of mean errors in energy (right), for DP implementation (blue),
FPIEA implementation (orange), and Hairer’s implementation (green). Non-Chaotic case
(a,b), and outer solar system case (c, d)

simulated iteration error displaying in Figure 1 is close in magnitude to the
effect of round-off errors.

This is not of course inherent to the symplectic IRK scheme itself. In Fig-
ure 6, we display the results obtained for the NCDP example with a prelimi-
nary implementation of a simplified Newton implementation of the same IRK
scheme as above. No linear drift of the mean energy error seems to appear.
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Fig. 6: Evolution of mean (µ) and standard deviation (σ) of errors in energy of a IRK
implementation with simplified Newton iterations
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To end with the present subsection, we plot (Fig. 7) the evolution of the
(mean and standard deviation of) errors in position of the FPIEA, DP, and
Hairer’s implementations for the NCDP, CDP and OSS problems respectively.
The displayed results seem to confirm our claim of the DP implementation
being a close-to-optimal fixed point implementation of the symplectic IRK
scheme.
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(a) NCDP: mean global error.
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(b) NCDP: standard deviation global
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(c) CDP: mean global error.
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(d) CDP: standard deviation global
error.
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(e) OSS: mean global error.
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(f) OSS: standard deviation global
error.

Fig. 7: Evolutions of Mean (left) and standard deviation (right) of global errors in positions
of DP implementation (blue), FPIEA implementation (orange), and Hairer’s implementation
(green): NCDP (a,b), CDP (c,d) and OSS (e, f)
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4.4 Round-off error estimation

In order to assess the quality of the error estimation technique proposed in
Subsection 3.4, we represent, In Fig. 8, for each of the three considered initial
value problems (with the original unperturbed initial values), the evolution
of the global errors in position of our DP implementation, together with the
evolution of the estimations produced by using our technique applied with
r = 3. In addition, we present for each of the three considered examples, the
evolution of the mean error in positions of the application of our DP algorithm
to P = 1000 perturbed initial value problems, together with the evolution of
the mean of the estimated errors in positions. We believe that the results
indicate that the proposed round-off error estimation procedure is useful for
the purpose of assessing the propagation of round-off errors.
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(d) CDP: P = 1000 perturbed initial
values
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(e) OSS: original initial values
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(f) OSS: P = 1000 perturbed initial
values

Fig. 8: Left: estimation of the round-off error with the original unperturbed initial values.
We compare the evolution of our error estimation (orange) with the evolution of the global
error (blue). Right: evolution of the mean error in positions (blue) of the application of our
DP algorithm to P = 1000 perturbed initial value problems, together with the evolution of
the mean of the estimated errors in positions (orange).
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5 Concluding remarks

Symplectic implicit Runge-Kutta schemes (such as RK collocation methods
with Gaussian nodes) are very appropriate for the accurate numerical integra-
tion of general Hamiltonian systems. For non-stiff problems, implementations
based on fixed-point iterations seem to be more efficient than those based on
Newton method or some of its variants.

We propose an implementation that takes special care in reducing the prop-
agation of round-off errors, and includes the option of computing, in addition
to the numerical solution, an estimation of the propagated round-off error. We
claim that our implementation with fixed point iterations is near optimal, in
the sense that the propagation of round-off errors is essentially no worse than
the best possible implementation with fixed point iteration. Our claim seems
to be confirmed by our numerical experiments.

A key point in our implementation has been the introduction of a new
stopping criterion for the fixed point iteration. We believe that such a stopping
criterion could be also useful in other contexts.

According to our numerical experiments, it seems that, in some cases,
some small linear drift of the mean energy error may be unavoidable for the
fixed point implementations of IRK schemes. Whenever avoiding any drift of
energy error becomes critical it might be preferable to use some Newton based
iteration instead.

The C code of our implicit Runge-Kutta implementation with fixed point
iterations can be downloaded from IRK-FixedPoint Github software repository
or go to the next url: https://github.com/mikelehu/IRK-FixedPoint .
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satisfy 1/2 < |µij | < 2, which implies that µji := 1−µij is a machine number.
This results in machine number coefficients µij that satisfy the symplecticity
conditions (10).

Given h, the coefficients hbi = h × bi are precomputed as follows: for
i = 2, . . . , s− 1, hbi := fl(h× bi), and

hb1 := hbs := (h−
s∑
i=2

hbi)/2.
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