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Introduction

During the last 30 years, the fields of atomic physics and quantum optics have

experienced a huge development. The variety of fields and applications, such as

metrology, spectroscopy, communications, quantum information processing, new

quantum based technologies and so on makes of quantum optics an attractive

topic. The evolution of the techniques has allowed us to reach a point where ma-

nipulations of single atoms are very precise, and allows for the development of

these quantum based applications. The importance and reach of this progress is

recognized and made visible through multiple Nobel Prize awards. In 1989, my

birth year, Norman Ramsey for his work with atomic clocks [1] and Hans Dehmelt

and Wolfgang Paul for developing the ion trapping technique [2, 3] shared the No-

bel Prize in physics. 8 years later, in 1997, the same award was shared by Steven

Chu [4], Claude Cohen-Tannoudji [5] and William Phillips [6] for developing atom

cooling techniques. Another Nobel prize was shared in 2001 by Wolfgang Ketterle

[7], and by Carl Wieman and Eric Cornell [8] for diluting the long before predicted

Bose-Einstein Condensates. In 2005, the honorees were Roy Glauber for his con-

tribution to the theory of optical coherence [9], and John Hall [10] and Theodor

Hänsch [11] for developing precision spectroscopy techniques. Lastly, the 2012

Nobel Prize in physics was also for contributions in the field of quantum optics,

as Serge Haroche [12] and David Wineland [13] won it after their development of

techniques that allow for the precise measurement and control of individual quan-

tum systems. These 5 awards in the last 30 years show clearly the weight of the

field, not only in the physics community, but also in society.

One of the hottest topics in quantum optics is the so called quantum computer,

1



Introduction 2

which is a proposed device that uses quantum phenomena to process informa-

tion based on quantum states (qubits) rather than in classical states (bits), which

should make it much more powerful for certain tasks. A universal quantum com-

puter, equivalent to the classical Turing machine, was theoretically described by

David Deutsch already in year 1985 [14], but it was not until 1995 when Ignacio

Cirac and Peter Zoller proposed a physical scheme where a quantum computer

could actually be built by using trapped ions technology [15]. The basic idea was

to trap ions using electromagnetic fields (Paul traps), and implement the qubits

making use of the internal levels of each ion. These ions interact with each other

through the electric Coulomb force, so the quantum information can be transferred

from one to another. Using lasers, one could induce coupling or entanglement be-

tween ions, what is necessary for logic gate operations. Since then, it has been

proven how such a scheme allows for all basic building blocks of a quantum based

computer architecture, namely, initialization, readout, individual ion manipula-

tion and entanglement. Moreover, in recent years the fidelity achieved has been

high enough [16–18] making trapped ions a good candidate to get a fault-tolerant

quantum computer. The ability to control trapped ions with high precision and

to perform a number of coherent operations with them, places this proposal as a

leading quantum information-processing architecture [19–21].

However, soon after Cirac and Zoller published their letter [15], it became clear

that, although trapped ions were a suitable platform to perform basic operations,

managing a large number of ions within a single trap was to turn into a problematic

task. For that reason, Wineland and coworkers [22, 23] proposed an alternative

scheme, where ions were to be manipulated individually or in small groups in an

interaction region to perform the necessary logic operations and then carried to a

different zone to do the readout. In this scheme, one should have many interaction

regions where operations are happening simultaneously for a large number of ions.

This scheme avoids the need of manipulating many ions within a single trap, but

requires a synchronization between different regions and the ability to control ion

dynamics, without heating or excitation that would cause the loss of the informa-

tion the qubit is carrying. Since then, many works have proposed similar schemes
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or further developed the original one [21, 24–29]. A proof of principle of such

scheme was done in NIST in 2009 [30]. However, it was obvious after this work,

that slow adiabatic processes that would keep the qubit unaffected throughout the

whole process were indeed too slow, as small imperfections in the design of the

trap produce heating and decoherence for processes longer than around 100 µs.

On the other side, fast uncontrolled processes produce diabatic excitations, which

are not desirable either.

A way out is to design the required dynamical processes using the so called

shortcuts-to-adiabaticity [31]. These are processes that drive the system to the

same quantum state that would result from an adiabatic process in times much

shorter than the usually required in adiabatic processes. A bunch of different

techniques exist to design such processes. Some are based in optimizing adiabatic

protocols, so that they find the quickest possible adiabatic route, or they accelerate

a given adiabatic process by manipulating control parameters. Others, transiently

excite the system, but are designed to recover the same initial eigenstate at final

time. Not following the constraints given by the adiabatic theorem allows for

very quick (sometimes arbitrarily quick) drivings, but the proper design of the

Hamiltonian makes possible to get to the same final state.

One of the most used techniques is the “Invariant based inverse engineering”

[32]. This technique relies on first designing the evolution of the quantum system

such that it will reach the final state we are interested in by obliging the invariant

and the Hamiltonian to commute at initial and final time. Then, we inversely

obtain the control parameters that will drive the Hamiltonian according to that

design. This protocol is limited in a sense, because we need an exact dynamical

invariant related to the type of Hamiltonian we want to design. However, if it is

possible to get this invariant, the design of the shortcut protocol is usually simple,

and most importantly, we get analytical results that are straightforward to adapt

when varying the values of the parameters, or when trying to adapt the protocol

to work in the lab. A number of simple dynamical processes for a single atom

were designed using this technique, including atom expansion [32] and transport

[33]. When considering Coulomb interactions between the ions in a chain, it is not
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possible to find an exact invariant, because having a term inverse to the position

makes impossible to find a closed algebra [34]. However, in this Thesis I apply

the invariant-based technique in the regime of small oscillations so that simple

formulae apply. Ways to go beyond that approximation will be also implemented.

In Chapters 1 and 2 I design shortcut protocols to transport ion chains, first

considering equal mass ions and then different mass ions. Ion shuttling is probably

the most sensitive dynamical process in trapped ion architectures, as its adiabatic

process implies the longest final times for the usual parameters involved. In Chap-

ter 3, I design quick phase gates. Quantum logic gates are the core of any quantum

processor device. Here I accelerate a scheme that has already been tested in the

laboratory adiabaticaly. It is based on creating a phase by moving the ions with

nearly homogeneous forces that depend on the internal state of each ion. The

protocol is somewhat similar to the pure transport scenario but with enough pe-

culiarities and added complexities to deserve a separate treatment and chapter.

Chapter 4 addresses the ion chain expansion/compression problem, and Chapter 5

the ion chain separation/merging. These two problems are similar under the nor-

mal mode approximation, although the inversion to the lab Hamiltonian is very

different for both cases. Chapters 6 and 7 are devoted to the ion rotation. In

Chapter 6, the rotation for a single ion is designed, a problem that had not been

addressed yet. In Chapter 7, this analysis is extended to 2-ion chains, both for

equal and different masses. Finally, a short chapter extracts conclusions and gives

a collective view of the thesis.

The thesis is rather long and the mathematics it contains are extensive. For that

reason, I wrote it in such a manner that each chapter is self contained. Although

all of them are related, it is not necessary reading the whole thesis to understand

one particular chapter, so they can be read individually. The notation is consistent

within each chapter, but not necessarily from one chapter to another.



Chapter 1

Fast transport of two ions in an

anharmonic trap

“I didn’t fail the test, I just found 100 ways to do

it wrong.”

Benjamin Franklin

I design fast trajectories of a trap to transport two ions using a shortcut-

to-adiabaticity technique based on invariants. The effects of anharmonicity are

analyzed first perturbatively, with an approximate, single relative-motion mode

description. Then I use classical calculations and full quantum calculations. This

allows to identify discrete transport times that minimize excitation in the presence

of anharmonicity. An even better strategy to suppress the effects of anharmonicity

in a continuous range of transport times is to modify the trajectory using an ef-

fective trap frequency shifted with respect to the actual frequency by the coupling

between relative and center of mass motions.

5
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1.1 Introduction

Quantum information processing based on trapped ions may be applied to a

large number of qubits (and become scalable) by moving the ions between fixed

zones where logic operations are performed [23, 26, 27, 35]. The transport should

be fast, but excitations should also be avoided at the destination site. Different ap-

proaches have been proposed to implement faster-than-adiabatic transport of cold

atoms [33, 36–41]. Diabatic transport of cold neutral atoms was demonstrated

by Guéry-Odelin and coworkers [37] and, recently, fast transport of single or two

trapped ions was also realized by two groups [28, 42, 43]. One of the proposed

approaches makes use of invariants to design trap trajectories without final excita-

tion [31, 33, 40, 41]. It is very flexible and provides by construction, under specific

conditions, a motionally unexcited final transported state. It also allows for further

trajectory optimization taking into account different experimental constraints, and

robustness versus noise [44]. The invariant-based inverse engineering method had

been applied so far to model the fast transport of a single particle [33, 40] and

Bose-Einstein condensates [41]. In this chapter, I extend the theoretical analy-

sis in [33] to two Coulomb-interacting particles within a single trap, focusing on

the effects of a mild anharmonicity which is present in any experimental setting

[36, 45]. In Sec. 1.2, I study the transport of two ions first in a harmonic trap

and then in an anharmonic trap with an added time-dependent linear potential

to compensate the inertial force. The applicability of this compensating method

may be limited so other options are explored. In particular, I consider in Sec. 1.3

the effect of anharmonicity when the trap trajectories are designed for an unper-

turbed (harmonic) trap. This is done using an approximate one-dimensional (1D)

theory combined with perturbation theory. In Sec. 1.4, I study numerically the

full two-dimensional (2D) problem. The chapter ends with a discussion in Sec. 1.5

and the Appendix A on the extension of some of the results to the transport of N

ions.
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1.2 Two-ion transport

1.2.1 Harmonic Trap

Let me examine first the transport of two single-charge ions of mass m in an

effectively 1D harmonic trap that moves from 0 to d in a time tf . Let q1 and q2 be

the coordinates of the two ions with momenta p1 and p2 and Q0(t) the trajectory of

the trap minimum. The Hamiltonian includes a kinetic term, a harmonic potential,

and an interaction potential due to the Coulomb force,

H =
p21

2m
+

1

2
mω2(q1 −Q0)

2

+
p22

2m
+

1

2
mω2(q2 −Q0)

2

+
Cc

q1 − q2
. (1.1)

ω/(2π) is the trap frequency and Cc = e2

4πǫ0
, where e is the electron charge and

ǫ0 the vacuum permittivity. Here and in the following, the time argument of the

trap position will be frequently omitted, i.e., Q0 = Q0(t). I set q1 > q2 because of

the strong Coulomb repulsion. The wave functions of the ions never superpose, so

we may effectively treat the particles as distinguishable and the symmetrization

of the wave function is not necessary as it will not provide any new physical effect.

This assumption is largely accepted when interpreting current experiments.

Let me now introduce coordinates and momenta, as well as corresponding op-

erators, for center of mass (CM) and relative motion,

Q =
1

2
(q1 + q2); P = p1 + p2,

r =
1

2
(q1 − q2); p = p1 − p2.

(1.2)

This gives equal effective masses for relative and CM motions. The generalization

for N ions, see the Appendix A, also holds this property. Substituting the new
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coordinates in Eq. (1.1), the Hamiltonian takes the form

H(Q,P, r, p) =
P 2

2M
+

1

2
Mω2(Q−Q0)

2

+
p2

2M
+

1

2
Mω2r2 +

Cc

2r
, (1.3)

where M = 2m is the total mass. The Hamiltonian is the sum of two terms,

H = Hcm + Hr, where each term depends only on one of the pairs’ coordinate-

momentum. We may thus “separate variables” and find time-dependent solutions

of the Schrödinger equation.

The relative part of the Hamiltonian Hr does not depend on Q0(t) so the rela-

tive motion is not affected by the transport and will remain unexcited. Thus, we

only need to design a trajectory for which the CM is unexcited at final time. This

may be achieved adiabatically or via shortcuts-to-adiabaticity. The CM Hamilto-

nian, Hcm, has the form of a particle of mass M in a harmonic trap, so any of the

shortcut-to-adiabaticy techniques known (using Fast-Forward, optimal control, in-

variants, or their combination [33, 36, 38, 39]) may be applied to find a suitable

Q0(t).

To inverse engineer the trap trajectory making use of invariants, the invariant

is designed first, consistent with a predetermined structure of the Hamiltonian

[33]. The invariant is parametrized by the classical trajectory Qc(t) that satisfies

the classical equation of motion Q̈c + ω2(Qc − Q0) = 0 and boundary conditions

Qc(0) = Q̇c(0) = Q̈c(0) = Q0(0) = 0; Qc(tf ) = Q0(tf) = d; Q̇c(tf ) = Q̈c(tf ) =

0. They imply the initial and final commutativity between the invariant and

the Hamiltonian, and the stability of the solution when the Hamiltonian remains

constant beyond the boundary times. A simple polynomial interpolation gives [33]

Qc = d
(
10s3 − 15s4 + 6s5

)
,

Q0 =
d

ω2t2f

(
60s− 180s2 + 120s3

)

+ d
(
10s3 − 15s4 + 6s5

)
, (1.4)
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where s = t/tf . Each initial eigenstate of Hcm(0) would evolve exactly according

to the “transport mode”

Ψn(Q, t) = e−
i
~
[Ent+

∫ t
0

MQ̇2
c

2
dt′]eiMQ̇cQ/~Φn(Q−Qc), (1.5)

where Φn(x) are the eigenfunctions of the harmonic oscillator and En the corre-

sponding energies. At tf the modes become again eigenstates of the Hamiltonian

H(tf), but at intermediate times they are in general a superposition of several

eigenstates of H(t). Note that, apart from transport between stationary states, it

is also possible to design launching protocols, in which the system begins at rest

and ends up with a given center-of-mass velocity, and, similarly, stopping protocols

[33].

The separability between CM and relative motions is still valid for two ions of

different masses if they oscillate with the same trapping frequency, but it breaks

down if the frequency depends on position Q0, if the two ions experience different

trapping frequencies, or in presence of anharmonicity. We shall concentrate on

this latter case, as it occurs in all traps and affects neutral atoms as well.

1.2.2 Anharmonic Trap

We now consider an additional quartic potential in the Hamiltonian

H =
p1

2

2m
+

1

2
mω2

[
(q1 −Q0)

2 + β(q1 −Q0)
4
]

+
p2

2

2m
+

1

2
mω2

[
(q2 −Q0)

2 + β(q2 −Q0)
4
]

+
Cc

q1 − q2
, (1.6)

where β is a perturbative constant with dimensions [L]−2 that sets the “strength”

of the anharmonicity. Nonrigid transport with a time-dependent trap frequency

or time-dependent anharmonicities due to noise or control limitations is clearly of

interest, but I shall only address here rigid transport as a first simpler step before

considering more ambitious goals.
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In terms of CM and relative coordinates we have

H =
P 2

2M
+

1

2
Mω2[(Q−Q0)

2 + β(Q−Q0)
4]

+
p2

2M
+

1

2
Mω2(r2 + βr4) +

Cc

2r

+ 3Mω2β(Q−Q0)
2r2

= Hcm +Hr +Hc. (1.7)

The first two lines of Eq. (1.7) may be identified as (perturbed) CM and relative

Hamiltonians, Hcm and Hr. Unlike the harmonic trap, there is now a coupling

term Hc (third line) that depends both on Q and r so the variables cannot be

separated. No nontrivial invariants are known for this Hamiltonian [46, 47], so in

principle we cannot inverse-engineer the trap trajectory exactly using invariants.

One approximate option is to design it for the unperturbed harmonic oscillator.

An exact alternative is to apply a linear potential to compensate the inertial force

as in [33, 48, 49].

1.2.3 Compensating Force Approach

In this subsection I introduce an additional time-dependent linear term in the

Hamiltonian to compensate for the effect of the trap motion in the trap frame

and avoid final excitations. This generalizes for two ions the results in [33]. The

extension of the compensating force approach to N ions was discussed by Masuda

in [48] using the Fast-Forward approach, and may also be carried out following

the Appendix A.

Let me first define a unitary transformation [33, 50] that shifts the momentum

and position of the center-of-mass coordinate

U = eiPQ0(t)/~e−iMQ̇0(t)Q/~. (1.8)
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This amounts to changing the reference system from a laboratory frame to the

rest frame of the trap.1

We first rewrite the Hamiltonian in the lab frame as

H(Q−Q0, r, P, p) =
P 2

2M
+

p2

2M
+ U(Q−Q0, r), (1.9)

where U(Q − Q0, r) can be any arbitrary potential. The equation for the trans-

formed (trap frame) wave function |Φ〉 = U|Ψ〉 takes the form2

i~∂t|Φ〉 = Htrap|Φ〉

=

[
H(Q, r, P, p)+M(Q+Q0)Q̈0+

1

2
MQ̇2

0

]
|Φ〉, (1.10)

where Htrap = UHU †+ i~(∂tU)U †. To compensate the inertial termM(Q+Q0)Q̈0

in the trap frame we may apply, in the laboratory frame, the term

−MQQ̈0, (1.11)

or, equivalently, a force mQ̈0 on each particle. To make the term 1
2
MQ̇2

0 dis-

appear, we may perform a further transformation |Φ′(t)〉 = U ′(t)|Φ(t)〉, with

U ′(t) = e
i
~

∫ t
0

1
2
MQ̇2

0dt
′

. This is independent of all operators, so that U ′HtrapU ′†

does not modify the Hamiltonian, but i~(∂tU ′)U ′† = −MQ̇2
0/2. We finally get

i~∂t|Φ′〉 =
[
P 2

2M
+

p2

2M
+ U(Q, r)

]
|Φ′〉. (1.12)

The resulting potential does not depend anymore on time, and any stationary

state in the rest frame of the trap will remain so during transport. This holds for

arbitrary potentials, even if Q and r are coupled, as in Eq. (1.7).

A lower bound for the maximum acceleration of the compensating force is 2d/t2f

[33]. Since the forces that can be applied are typically limited by experimental

constraints, the compensation is not always easy to implement in practice, if at

1 Since P and Q do not commute, alternative orderings are possible but they only change the
Hamiltonian by purely time-dependent terms without physical effect.

2Use e−iMQ̇0Q/~PeiMQ̇0Q/~ = P +MQ̇0 and eiQ0P/~Qe−iQ0P/~ = Q+Q0.
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all. For this reason, I study in the following alternative strategies. First, I shall

design the trap motion for an unperturbed harmonic potential and analyze the

effect of anharmonicity.

1.3 1D approximation

In this section, I discuss a simple approximation that provides valuable hints,

even in analytical form, on the transport behavior of two ions in presence of

anharmonicities. The idea is to freeze the relative motion coordinate at r = re,

the minimum of the potential part that depends on r only. Equivalently, we may

consider a single-mode approximation in which relative-motion excitations are

neglected. Neglecting constant terms, the resulting Hamiltonian has the same form

as the one for the frozen relative coordinate, substituting re and r
2
e by the average

values 〈r〉 and 〈r2〉 in the ground relative-motion mode. With my parameters, the

average and minimum values of r are equal up to the third significant number, so

the difference is negligible and I use for simplicity the frozen values.

With this assumption, and adding a constant term without physical effect, the

Hamiltonian (1.7) becomes

H =
P 2

2M
+

1

2
Mω2[(6βr2e + 1)(Q−Q0)

2 + β(Q−Q0)
4], (1.13)

which we may also write as H = H0 + βH1, where H1 is a perturbation of the

harmonic Hamiltonian H0:

H1 =
1

2
Mω2[6r2e(Q−Q0)

2 + (Q−Q0)
4]. (1.14)
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Let the initial state be |Ψn(0)〉. Using time-dependent perturbation theory, the

final wave vector |Ψ(tf)〉 is given by [33, 44, 51]

|Ψ(tf)〉 = U0(tf , 0)|Ψn(0)〉

− iβ

~

∫ tf

0

dt U0(tf , t)H1(t)|Ψn(t)〉

− β2

~2

∫ tf

0

dt

∫ t

0

dt′ U0(tf , t)H1(t)U0(t, t
′)H1(t

′)|Ψn(t
′)〉

+ O(β3), (1.15)

where U0 is the unperturbed propagator for H0. In terms of the complete set of

transport modes [see Eq. (1.5)] it takes the form

U0(t, t
′) =

∑

j

|Ψj(t)〉〈Ψj(t
′)|. (1.16)

To calculate the fidelity F := |〈Ψn(tf )|Ψ(tf)〉| up to second-order it is useful to

separate the sum into j = n and j 6= n terms in the second order contribution of

Eq. (1.15). When computing |〈Ψn(tf )|Ψ(tf)〉|2, the square of first-order terms is

canceled by the second-order term with j = n. Thus, the fidelity, up to second

order, may finally be written as

F =

(
1−

∑

j 6=n

|f (1)
j,n |2

)1/2

, (1.17)

where f
(1)
j,n = −iβ

~

∫ tf
0
dt 〈Ψj(t)|H1(t)|Ψn(t)〉.3 Due to the orthogonality properties

of the Hermite polynomials, transitions induced by the quadratic perturbation

will only be nonzero for one- and two-level jumps. Instead, the quartic part of

the perturbation will lead to jumps from one to four levels. The f
(1)
j,n transition

amplitudes can be explicitly calculated so that the second-order fidelity is known

analytically, although the form is too lengthy to be displayed here. Simplified

expressions will be provided later. We compare the fidelity in second order with

the exact, numerical one (using the Split-Operator method) in Fig. 1.1, starting

3Similarly, the final average phonon number is 〈j〉 = n+
∑
j 6=n

(j − n)|f (1)
j,n |2.
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Figure 1.1: Fidelity of the anharmonic system vs final time tf following
the inverse engineering trajectory using second-order perturbation theory (blue
thick line), 1D dynamics for the initial ground state of the harmonic oscillator
(red dotted line); 1D dynamics for the initial ground state of the perturbed 1D
Hamiltonian (green dashed line); 2D dynamics for the initial ground state of the
2D Hamiltonian (filled triangles). M = 2m = 29.93 × 10−27 kg corresponding
to 9Be+ ions, ω/(2π) = 20 kHz, d = 370 µm, re = 62 µm and β = 106 m−2.

both with the ground state of the harmonic trap Φ0(0) and the exact ground state

of the anharmonic trap. The results are hardly distinguishable. In the numerical

examples I use the parameters in [42] except for a lower trap frequency to enhance

anharmonic effects. The trap trajectory Q0(t) is chosen as in Eq. (1.4), using

invariant-based engineering for the unperturbed system with a polynomial ansatz

for Qc. The fidelity oscillates, reaching the maximum value of one at discrete

values of tf . The occurrence of maxima is a generic feature that does not depend

on the specific value of β chosen. In the following, I work out a theory to explain

and predict them.

I shall now study the effect of each perturbation separately. The quadratic

perturbation amounts to having designed the trap trajectory with the “wrong”

trap frequency and, as we will see, is the dominant perturbation except for very

short times. The influence of the quartic perturbation was analyzed in [33] but only

with a much less accurate first-order approach. The effect of the two perturbations

is quite different as seen in Fig. 1.2. The quadratic perturbation provides a fidelity

almost identical to that of the total perturbation, reproducing its oscillations and
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Figure 1.2: Fidelity vs final time (tf ) for the second-order perturbation the-
ory, indistinguishable from an exact 1D quantum dynamical calculation (the
initial state is the ground state of the perturbed harmonic oscillator) for the
quadratic perturbation (blue thick line) in Eq. (1.14), and the quartic pertur-

bation (black dashed line) in Eq. (1.14). Same parameters as in Fig. 1.1.

peak times. The quartic perturbation alone leads to a sudden growth in the fidelity

around a critical time tcrf , followed by fidelity 1 for longer final times. To estimate

the behavior of tcrf with respect to transport and potential parameters we note

that the maximum of |Qc(t)−Q0(t)| is 10d/(ω2t2f3
1/2). Comparing the quadratic

and quartic contributions to the potential there, we get

tcrf = α
β1/4d1/2

ω
, (1.18)

where α ≈ 16.5 is adjusted numerically. For the parameters of Fig. 1.2 this occurs

for shorter times than the one corresponding to the first peak of the quadratic

perturbation so the effect of the quartic perturbation is negligible.

Let me now analyze in more detail the quadratic perturbation alone. It implies

one and two vibrational quanta as mentioned before. If we consider only n→ n±1

the results are already very similar to the fidelity in Fig. 1.2. Since one-level

transitions are dominant we can write down an explicit approximate form for the
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Figure 1.3: I plot E0/(E0+Eex), where E0 is the ground-state energy for the
1D Hamiltonian and Eex is the excitation energy after the transport, for the 1D
quantum evolution (blue solid line), 2D quantum evolution (black triangles),
and a single classical trajectory (green dashed line). Same parameters as in Fig.

1.1.

fidelity based on them:

f
(1)
n±1,n =

±360idβr2ee
∓ 1

2
itfω
√
2(1 + n)M~

t5fω
9/2

×
[
6tfω cos

(
tfω

2

)
+ (t2fω

2 − 12) sin

(
tfω

2

)]
, (1.19)

(note the square root scaling with the mass). This amplitude is zero, and the

fidelity one, when

6tfω cos

(
tfω

2

)
+ (t2fω

2 − 12) sin

(
tfω

2

)
= 0. (1.20)

There is a β-independent solution for, approximately, every oscillation period.

This result also follows from a simple classical argument: Consider a classical

trajectory Q̃c(t) satisfying

¨̃
Qc

ω̃2
+ Q̃c −Q0(ω) = 0, (1.21)

where Q0(ω) = Q0(t;ω) is the trap trajectory calculated as before with ω, Eq.

(1.4), and ω̃ = ω
√
1 + 6βr2e is an effective trap frequency, shifted with respect to
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ω because of the relative-CM coupling [see Eq. (1.13)]. Its energy for Q̃c(0) =

˙̃
Qc(0) = 0 is given by

Eex(t) =
1

2
M

˙̃
Q

2

c(t) +
1

2
Mω̃2

[
Q̃c(t)−Q0(t)

]2
. (1.22)

At time tf we have

Eex(tf ) =
7200d2M(ω2 − ω̃2)2

t10f ω
4ω̃8

×
[
6tf ω̃ cos

(
tf ω̃

2

)
+(t2f ω̃

2 − 12) sin

(
tf ω̃

2

)]2
. (1.23)

The condition for a zero is the same as Eq. (1.20) substituting ω → ω̃. This

leads to a very small displacement (and dependence on β) of the zeros for our

parameters. In Fig. 1.3 I represent E0/(E0 + Eex(tf)) which is indistinguishable

from the curve where the excitation energy is calculated with quantum dynamics.

We may conclude unambiguously that the oscillations are not quantum in nature.

Rather than adjusting the transport time to the discrete set of zeros, a better,

more robust strategy that allows for a continuous set of final times is to design the

trap trajectory taking into account the frequency shift. Changing ω → ω̃ in Eq.

(1.4) we get an adjusted trajectory Q0(t; ω̃) for which Eex(tf ) = 0 by construction

for any tf . Similarly, Q0(t; ω̃) gives fidelity one for all tf in the 1D model, if only

the quadratic perturbation is considered. In the protocol based on Q0(t; ω̃), the

only disturbance comes from the quartic term that sets the speed limitation given

by Eq. (1.18). Figure 1.4 shows the impressive results of this simple approach. In

practice, ω̃/(2π) may be measured as the effective CM-mode frequency.

Higher, more realistic trap frequencies lead to similar results but for a larger

β. Simple estimates of the fidelity or excitation may be drawn from Eqs. (1.19)

or (1.22). Figure 1.5 depicts the classical excitation energy of Eq. (1.22) for a

realistic trap frequency and different values of β using the (unshifted) ω in Q0(t).

Notice that for these large-β values the times of minimum excitation do change

with β, and that, for the adjusted trajectory Q0(t; ω̃), Eex(tf) = 0 as before.
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Figure 1.4: Fidelity vs final time tf for adjusted trap trajectories Q0(t; ω̃).
The initial condition is the ground state. 1D: blue solid line; 2D: filled triangles.

Same parameters as in Fig. 1.1.

1.4 Full 2D analysis

We have also examined the evolution of the state according to the full two-

dimensional Hamiltonian (1.7), without freezing the relative motion, using a 2D

split-operator method to simulate quantum dynamics. The computation is per-

formed in the trap frame to reduce the numerical grid size. Figure 1.1 shows that

the quantum fidelities of the 1D model are in very good agreement with the fideli-

ties calculated for 2D dynamics. Figure 1.3 shows energy ratios for 1D and 2D

calculations. To compare them on equal footing in 2D, the minima of the poten-

tial and the ground-state relative energy are subtracted. Again, the 1D and 2D

quantum calculations are remarkably close to each other. 2D calculations may also

be found in Fig. 1.4 for the transport designed using a shifted frequency. They

confirm the excellent performance of this strategy with respect to the anharmonic

perturbation.
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Figure 1.5: Motional excitation vs final time. M = 2m = 29.93 × 10−27

kg, ω/(2π) = 2 MHz, d = 370 µm for the three cases and β = 6.4 × 109 m−2,
re = 2.807µm (solid blue line), β = 109 m−2, re = 2.883 µm (red dashed line),
and β = 1010 m−2, re = 2.764 µm (green dotted line). The middle value of β
(6.4×109) is chosen so that at tf = 8 µs the excitation is similar to the one seen
experimentally in [42]. The trap trajectory is given by Eq. (1.4). If instead the

adjusted trajectory Q0(t; ω̃) is used, then Eex(tf ) = 0.

1.5 Discussion

For two ions in a harmonic trap, the relative motion is uncoupled to the CM

motion. They may be transported faster than adiabatically treating the center

of mass as a single particle and applying different shortcuts to adiabaticity. For

anharmonic traps, CM and relative motion are coupled. A 1D model for the CM

has been first worked out based on a single relative-motion mode, or, equivalently,

freezing the relative coordinate. The full 2D quantum calculations show excellent

agreement with this model in the parameter range studied. It is possible to achieve

fast and faithful transport for an arbitrary trap shape by compensating for the

inertial force in the trap frame with a linear potential. That may be difficult

in practice so other strategies to get high fidelities have been explored. For a

quartic anharmonicity the effective 1D potential includes a quartic and a quadratic

perturbation. The latter is usually dominant except for very short transport times.

If the trap trajectory is the one designed for the unperturbed (harmonic) trap, the

quartic perturbation alone implies a sharp increase to one of the fidelity, while
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the quadratic perturbation induces (classical) fidelity oscillations with respect to

the final time tf . Taking into account the shift in the effective trap frequency

due to the coupling, the trap trajectory is much more robust and the effect of the

quadratic perturbation is canceled.

The extension to transport of different-mass ion chains will be studied in Chap-

ter 2. The results of this chapter and its extension in Appendix A were published

in [52], and later used by Pedregosa-Gutiérrez and others in [53] to perform fast

transport of large ion clouds.



Chapter 2

Fast transport of mixed-species

ion chains within a Paul trap

“The key is failing fast and failing cheap.”

Geoff Deane

I investigate the dynamics of mixed-species ion crystals during transport be-

tween spatially distinct locations in a linear Paul trap in the diabatic regime. In a

general mixed-species crystal, all degrees of freedom along the direction of trans-

port are excited by an accelerating well, so unlike the case of same-species ions,

where only the center-of-mass mode is excited, several degrees of freedom have to

be simultaneously controlled by the transport protocol. I design protocols that

lead to low final excitations in the diabatic regime using invariant-based inverse en-

gineering for two different-species ions and also show how to extend this approach

to longer mixed-species ion strings. Fast transport of mixed-species ion strings

can significantly reduce the operation time in certain architectures for scalable

quantum-information processing with trapped ions.

21
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2.1 Introduction

As was mentioned in the previous chapter, a possible scalable architecture for

a quantum processor based on trapped ions implies shuttling of individual or

small groups of ions. In principle, it is permissible to excite the motion of the

ions during transport, as long as all excitations are removed at the end of the

transport [31]. As I will show below, this general approach may lead to transport

durations that are much shorter than what would be possible in an adiabatic

approach. Previous work concentrated on transport of one particle, cold neutral

atom clouds, two ions, or ion clouds [31, 33, 36–43, 52–56]. Here, I extend the

study in Chapter 1 by studying the transport of mixed-species ion chains with

initial and final excitations of the motion close to the ground state. The use of

two different ion species allows for sympathetic cooling of the ion motion of one

species without disturbing the quantum information held by the other species [30].

Another building block utilized in [30, 57] required transport of a four-ion crystal,

where two ions carry the qubit information and the other two are used to cool

the coupled motion of the crystal. I first study the transport of two different-mass

ions, and design protocols to transport them over a distance of 370 µm in durations

significantly smaller than 100 µs leaving them in a low-energy state of motion. My

approach employs invariant based inverse engineering of shortcuts to adiabaticity

[33, 52]. I then extend these techniques to longer ion chains, and specifically a

four-ion chain. I limit the study to two- and four-ion chains since they are enough

to perform one- and two-qubit gates and therefore to build a universal set of gates

while avoiding the problems inherent to longer chains.

2.2 Invariant-based inverse engineering

The invariant-based inverse-engineering method has proved useful for single-

particle transport [33, 40, 55], and for several equal mass ions [52]. For one particle

of mass m in 1D the Hamiltonians that belong to the “Lewis-Leach family” [58]
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may be written in terms of a potential U that moves along α(t), and a force F as

H =
p2

2m
− F (t)q +

1

2
mω2(t)q2 +

1

ρ2(t)
U

[
q − α(t)

ρ(t)

]
, (2.1)

where p is the momentum, ρ is a scaling length parameter, and ω an angular

frequency. This H has the following dynamical invariant:

I =
1

2
m[ρ(p−mα̇)−mρ̇(q − α)]2

+
1

2
mω2

0

(
q − α

ρ

)2

+ U

(
q − α

ρ

)
, (2.2)

provided the functions ρ, α, F and ω satisfy the auxiliary equations

ρ̈+ ω2(t)ρ =
ω2
0

ρ3
, (2.3)

α̈ + ω2(t)α =
F (t)

m
. (2.4)

For the simple case in which the potential is purely harmonic with constant angu-

lar frequency ω(t) = ω0, we have U = 0, F (t) = mω2
0Q0(t), where Q0(t) is the trap

trajectory; α(t) becomes a classical trajectory satisfying a Newton’s equation for

the moving trap, and the scaling length parameter is ρ = 1; therefore, the auxil-

iary equation (2.3) is trivially satisfied. The inverse-engineering strategy imposes

boundary conditions for α at the boundary times tb = {0, tf}, where the transport
starts at t = 0 and ends at t = tf . With α(0) = α̇(tb) = 0, and α(tf ) = d, the

static asymptotic Hamiltonians [H(t ≤ 0) and H(t ≥ tf )] and the invariant com-

mute at the initial and final times. In this manner, the eigenstates of the initial

trap are transported (mapped) via the dynamical modes of the invariant up to the

eigenstates of the final trap. In addition, α̈(tb) = 0 is usually imposed to provide a

continuous trap trajectory at the boundary times. Then α(t) is interpolated and,

by substituting α(t) into Eq. (2.4), we may solve for the trap trajectory Q0(t). In

general, the evolution is diabatic, with transient excitations but no final excitation

by construction.
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2.3 Dynamical normal-mode coordinates

The goal is to transport a chain of ions with different mass between two sites

separated by a distance d in a time tf without final motional excitation. I assume

tight radial confinement so that the transport dynamics of each ion is effectively

one-dimensional, and also that the external trap potential is harmonic. I label

the ions as i = 1, 2, ..., N . They have position coordinates q1, q2, ..., qN and masses

m1, m2, ...mN . With the position of the minimum of the external potential Q0 =

Q0(t), the Hamiltonian is

H =

N∑

i=1

p2i
2mi

+

N∑

i=1

1

2
u0(qi −Q0)

2 +

N−1∑

i=1

N∑

j=i+1

Cc

qi − qj
, (2.5)

where u0 is the spring constant of the external trap, and Cc = e2

4πǫ0
, with ǫ0 the

vacuum permittivity and e the electric charge of an electron. For later use let us

also define the potential V ≡ H −∑N
i=1

p2i
2mi

. I assume that all ions have the same

charge e, and that their locations obey q1 > q2 > · · · > qN , with negligible overlap

of probability densities due to the strong Coulomb repulsion. For equal masses

[52], the dynamics for the center of mass and relative motion are uncoupled. The

motion of the trap only affects the center of mass, whose dynamics is governed by a

Lewis-Leach Hamiltonian (2.1), so that transport without final excitation may be

designed as described for a single particle. However, for ions with different masses,

center of mass and relative motions are coupled. To cope with this coupling I apply

a dynamical normal mode approach that approximately separates the Hamiltonian

into a sum of independent harmonic oscillators. The equilibrium positions {q(0)i },
are found by solving the system {∂V/∂qi = 0} for all ions. For N = 2 the

equilibrium positions are

q
(0)
1 = Q0 + x0/2,

q
(0)
2 = Q0 − x0/2, (2.6)
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where

x0 = 2

(
Cc

4u0

)1/3

. (2.7)

Diagonalizing Vij =
1√

mimj

∂2V
∂qi∂qj

∣∣
{qi,qj}={q(0)i ,q

(0)
j }, we get the eigenvalues

λ± = ω2
1

[
1 +

1

µ
±
√

1− 1

µ
+

1

µ2

]
, (2.8)

where ω1 = (u0/m1)
1/2, and µ = m2/m1, with µ ≥ 1. These eigenvalues are

related to the normal-mode angular frequencies by

Ω± =
√
λ±. (2.9)

The eigenvectors are v± =


 a±

b±


, where

a+ =




1

1 +
(
1− 1

µ
−
√
1− 1

µ
+ 1

µ2

)2
µ




1/2

,

b+ =

(
1− 1

µ
−
√
1− 1

µ
+

1

µ2

)√
µa+,

a− =




1

1 +
(
1− 1

µ
+
√

1− 1
µ
+ 1

µ2

)2
µ




1/2

,

b− =

(
1− 1

µ
+

√
1− 1

µ
+

1

µ2

)√
µa−. (2.10)

Thus, the mass-weighted, dynamical, normal-mode coordinates are

q+ = a+
√
m1

(
q1−Q0−

x0
2

)
+b+

√
µm1

(
q2−Q0+

x0
2

)
,

q− = a−
√
m1

(
q1−Q0−

x0
2

)
+b−

√
µm1

(
q2−Q0+

x0
2

)
,

(2.11)
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and the inverse transformations are

q1 =
1√
m1

(b−q+ − b+q−) +Q0 +
x0
2
,

q2 =
1√
µm1

(−a−q+ + a+q−) +Q0 −
x0
2
. (2.12)

Unlike the usual treatments for static traps [59], one has to consider explicitly the

time dependence of the parameter Q0(t) when writing down the Hamiltonian in

the new coordinates. I apply the change-of-variables unitary operator

U =

∫
dq+dq−dq1dq2|q+, q−〉〈q+, q−|q1, q2〉〈q1, q2|, (2.13)

where the transformation matrix is

〈q+, q−|q1, q2〉 = δ[q1 − q1(q+, q−)]δ[q2 − q2(q+, q−)].

The Hamiltonian in the new frame is H ′ = UHU †− i~U(∂tU †), and the wavefunc-

tion |ψ′〉 = U |ψ〉. For the part UHU †, I substitute the definitions (2.12) in the

Hamiltonian (2.5) for N = 2. For the noninertial term, −i~U(∂tU †), I apply the

chain rule in Eq. (2.12) and Eq. (2.11). Keeping only terms up to the harmonic

approximation,

UHU † =
p2+

2
+

1

2
Ω2

+q
2
+ +

p2−
2

+
1

2
Ω2

−q
2
−,

−i~U(∂tU †) = −P0+p+ − P0−p−, (2.14)

where p± are momenta conjugate to q±, and

P0± = Q̇0(
√
m1a± +

√
µm1b±). (2.15)

The linear-in-momentum terms are cumbersome for a numerical or analytical

treatment, so I apply a further transformation to the frame moving with the

center of the trap and remove them formally [60]. The wave function is trans-

formed as |ψ′′〉 = U|ψ′〉, whereas the corresponding Hamiltonian takes the form

H ′′ = UH ′U † + i~(∂tU)U †. I choose U = e−i(P0+q++P0−q−)/~ to shift the momenta,
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so that each mode Hamiltonian in

H ′′ =
p2+

2
+

1

2
Ω2

+

(
q+ +

Ṗ0+

Ω2
+

)2

+
p2−
2

+
1

2
Ω2

−

(
q− +

Ṗ0−
Ω2

−

)2

(2.16)

belongs to the Lewis-Leach family.

2.4 Inverse engineering for two modes

The invariants corresponding to the Hamiltonians in Eq. (2.16) are known and

the trajectory can be designed to avoid excitations. I also impose Q̇0(tb)(0) = 0

so that |ψ′′(0)〉 = |ψ′(0)〉 and |ψ′′(tf)〉 = |ψ′(tf )〉. Primed and double-primed wave

functions are related to each other by the unitary transformation in such a way

that their initial and final states coincide. The auxiliary equations analogous to

Eq. (2.4) for the modes in Eq. (2.16) are

α̈± + Ω2
±α± = −Ṗ0±, (2.17)

where the α± are the centers of invariant-mode wave functions in the doubly-

primed space [33]. Now, one can design these α± functions to get unexcited

modes after the transport, and from them inverse engineer Ṗ0±. I set the boundary

conditions

α±(tb) = α̇±(tb) = α̈±(tb) = 0. (2.18)

Substituting these conditions into Eq. (2.17), we find Q̈0(tb) = 0 for both modes.

To satisfy all the conditions in Eq. (2.17), I tried a polynomial ansatzQ0(t; {an}) =
∑9

n=0 ant
n. I fixed a0−5 as functions of a6−9 so that Q0(0) = 0, Q0(tf) = d,

Q̇0(tb) = Q̈0(tb) = 0. I then select the solutions α± in Eq. (2.17) that satisfy

α±(tb) = 0, which implies α̈±(tb) = 0, since Ṗ0,±(tb) = 0 in Eq. (2.17). The four

parameters a6−9 are calculated numerically for each tf by solving the system of

four equations α̇±(tb) = 0. Figure 2.1 shows that, for the approximate Hamiltonian
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Figure 2.1: Motional excitation quanta vs. transport duration tf for the two
ions, transported over d = 370 µm using the exact Hamiltonian. The external
potential minimum moves according to the nonic polynomial Q0(t; {an}) set to
satisfy Eq. (2.17) (green dots); the polynomial ansatz trajectory Q0(t; {bn}), Eq.
(2.20), (solid blue line); and the cosine ansatz trajectory Q0(t; {cn}), Eq. (2.21),
(dashed red line). The excitation for the nonic polynomial trajectory Q0(t; {an})
using the uncoupled Hamiltonian (2.16) is also shown (black symbols). The
parameters used are ω1/(2π) = 2 MHz, masses of 9Be+ for the first ion and

24Mg+ for the second. Both ions are initially in the motional ground state.

with two uncoupled modes, the final excitation vanishes (see the black symbols

horizontal line). However, the higher-order terms in the actual Hamiltonian modify

and couple the modes, exciting the system at short transport times (green dots in

Fig. 2.1).

The approach I have just described requires a numerical evaluation of the coef-

ficients to find Q0(t; {an(tf)}) for each tf . Therefore, I considered a different ap-

proximation that yields an analytical solution Q0(t) with Q0(0) = 0, Q0(tf) = d,

and Q̇0(tb) = Q̈0(tb) = 0. The resulting Q0(t) leads to a similar level of final excita-

tion when inserted into the full Hamiltonian as the more accurate approach. I first

rewrite the Hamiltonian (2.5) in the center of mass, Q = (m1/M)q1+(m2/M)q2,
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and relative, r = q1 − q2, coordinates, with M = m1 +m2,

H =
P 2

2M
+

1

2
Mω2(Q−Q0)

2

+
p2

2mr
+

1

2
mrω

2
rr

2 +
Cc

r

+
m2 −m1

2
ω2(Q−Q0)r, (2.19)

where mr = m1m2/M , ω2 = 2u0/M , ω2
r = (m2

1 +m2
2)/(2m1m2)ω

2, and P is the

total momentum. Neglecting the coupling term in (2.19), one can construct trap

trajectories that leave the center of mass unexcited. Rewriting α = Qc, I first

design Qc and then obtain Q0 from Eq. (2.4). The four boundary conditions

Q̇0(tb) = Q̈0(tb) = 0 are consistent with Q
(3)
c (tb) = Q

(4)
c (tb) = 0 along with the

conditions Qc(0) = 0, Qc(tf) = d, Q̇c(tb) = Q̈c(tb) = 0. I assume a polynomial

ansatz Qc(t) = d
∑9

n=0 bns
n that satisfies all conditions and obtain Q0(t) from Eq.

(2.4),

Q0(t) =
d

t2fω
2

9∑

n=0

bnn(n− 1)sn−2 + d
9∑

n=0

bns
n, (2.20)

where s = t/tf and {b0, ..., b9} = {0, 0, 0, 0, 0, 126,−420, 540,−315, 70} for all val-

ues of tf . An alternative ansatz with a sum of Fourier cosines also leads to ana-

lytical expressions:

Qc(t) =
d

256

{
c0 +

3∑

n=1

cn cos

[
(2n− 1)πt

tf

]}
,

Q0(t) =
dπ2

256ω2t2f

3∑

i=1

−cn(2n− 1)2 cos

[
(2n− 1)πt

tf

]

+
d

256

{
c0 +

3∑

n=1

cn cos

[
(2n− 1)πt

tf

]}
, (2.21)

where {c0, ..., c3} = {128,−150, 25,−3}. The resulting trap trajectories (2.20),

(2.21) are simple and explicit and lead to small excitations in a similar range of

parameters as the approach based on normal modes. Some example trajectories

for different transport durations are shown in Fig. 2.2.
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Figure 2.2: Trap trajectories given by Q0(t; {an}) (dashed black line), Eq.
(2.20) (solid blue line), and Eq. (2.21) (dotted red line) for different final times:
(a) tf = 2π/ω1, (b) tf = 10× 2π/ω1; ω1/(2π) = 2 MHz, masses of 9Be+ for the

first ion and 24Mg+ for the second, d = 370 µm.

2.5 Four and N ions

I extend now the normal-mode approach to N -ion chains, with dynamical nor-

mal mode coordinates

qν =
N∑

j=1

aνj
√
mj(qj − δ

(0)
j −Q0), (2.22)

and corresponding momenta pν , where the equilibrium points with respect to the

trap center, δ
(0)
j , are in general found numerically. Generalizing Eq. (2.16) to N
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ions one finds the uncoupled normal-mode Hamiltonian

H ′′ =

N∑

ν=1

p2ν

2
+

N∑

ν=1

1

2
Ω2

ν

(
qν +

Ṗ0ν

Ω2
ν

)2

, (2.23)

where P0ν = Q̇0

∑
j aνjm

1/2
j , and Ων is the angular frequency of the νth normal

mode. The auxiliary equations that have to be satisfied for all ν simultaneously

are

α̈ν + Ω2
ναν = −Ṗ0ν . (2.24)

Further imposing, in analogy to Eq. (2.17), αν(tb) = α̇ν(tb) = α̈ν(tb) = 0 implies

Q̇0(tb) = Q̈0(tb) = 0, exactly as for N = 2. Thus, one may construct approximate

trap trajectories that are in fact identical in form to the ones for N = 2 in Eqs.

(2.20) or (2.21), but with ω =
√
Nu0/M . I found that the final excitations for

a four-ion Be-Mg-Mg-Be chain (see blue solid line in Fig. 2.3), are very similar

to those for Be-Mg shown in Fig. 2.1. One can improve the results even further

by treating ω as a variational free parameter. The dashed red line in Fig. 2.3

shows the final excitation for ω = 0.983
√
4u0/M . The calculations for the four-

ion chain are performed with classical trajectories for the ions, initially at rest

in their equilibrium positions. The corresponding quantum calculation is very

demanding, but it is not expected to deviate significantly from the classical result

[52] in the nearly harmonic regime considered here. For transporting longer ion

chains longer final times will be needed, as more nonharmonic terms and coupling

term would be neglected in the normal-mode approximation.

2.6 Discussion

The approximate approaches I have implemented to transport ions of differ-

ent mass without final excitation may be compared with other approaches: the

“compensating force approach” [33, 39], the transport based on a linear-in-time

displacement of the trap, or a more refined error-function trajectory [27].
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Figure 2.3: Final excitation energy for a Be-Mg-Mg-Be chain transported
over d = 370 µm using the external potential minimum trajectory in Eq. (16)
with ω =

√
4u0/M(blue solid line) and with ω = 0.983

√
4u0/M (dashed red

line). The calculation is based on classical equations of motion with the ions at
rest in their equilibrium positions at t = 0.

Let us first discuss the “compensating force approach” [33, 39]. The idea be-

hind is that the acceleration of the trap induces in the trap frame a noninertial

Hamiltonian term MQQ̈0(t), M being the total mass of the ion chain and Q the

center-of-mass coordinate, that may be exactly compensated by applying a time-

dependent term Hcom = −MQQ̈0(t). This has been discussed for N equal masses

[48, 52, 61] but the result holds for an arbitrary collection of masses in an arbitrary

external potential under rigid transport by noticing that the total potential must

be of the form V (Q−Q0; {rj}), where {rj} represents a set of relative coordinates.

The decomposition of Hcom into terms for each ion, Hcom = −
∑

imiqiQ̈0, implies

that ions of different mass should be subjected to different forces. However, the

available technology in linear Paul traps provides forces proportional to the charge

(equal for all equally-charged ions), so the compensation is a formal result without

a feasible experimental counterpart.

As for the linear displacement of the trap, Q0(t) = td/tf in [0, t], and at rest

otherwise, we have performed numerical calculations of the final excitation energy

for different values of tf and the two ions considered in Sec. 2.3. The excitation

oscillates rapidly, see Fig. 2.4 (a), and the upper envelope reaches 0.1 vibrational
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Figure 2.4: Excitation energy vs. final time for (a) a linear-in-time transport
of two ions, Q0(t) = td/tf and (b) the trap trajectory designed in Eq. (2.20),
(blue-solid line) and an “error function” trap trajectory, Eq. (2.25) (black-
dashed). We find optimal results for σ = 10−6s. Other parameters as in Fig.

1.

quanta of ion 1 for times as large as 9.5 ms. The first excitation minimum with

significant excitation reduction is around 99 µs, see Fig. 2.4 (a). Excitation

minima occur for each mode ν as zeroes of the Fourier transform of Q̇0 at Ων

[27, 37, 42]. For a linear-in-time trap displacement this occurs every mode period.

99 µs is a time when the transform of both modes vanishes. This excitation

minimum, however, is very unstable with respect to small timing errors. In any

case, it is about twenty times larger than the times achieved in Sec. 2.3.
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Finally, I compare the performance of my protocol in Eq. (2.20) with an error-

function trajectory [27]. Imposing a Gaussian form on the velocity Q̇0 gives

Q0(t) = −d
2

erf
(

−2t+tf
2
√
2σ

)

erf
(

tf
2
√
2σ

) +
d

2
, (2.25)

where σ is the width of the Gaussian. In Fig. 2.4 (b) I optimize σ and compare

the excitation for this trajectory with the one in Eq. (2.20). The error-function

trajectory is clearly a good design, but still, the protocol developed in this chapter

outperforms it by a factor of 2.

In summary, I have described protocols for diabatic transport of mixed-species

chains of ions that displace the minimum of a harmonic external potential along

prescribed trajectories. My protocols should allow for diabatic transport over dis-

tances and durations that are relevant for quantum information processing with

minimal final excitation of the ion crystals. In past experiments on scalable quan-

tum information processing, adiabatic transport of mixed-species ion chains has

been one of the most time-consuming processes [30]; therefore, the approaches

described might lead to considerable practical improvements. This work may be

extended in several directions, e.g., to include noise, parameter drifts (as was done

in [62]) and anharmonicities [36, 40, 52], or to optimize the trap trajectories ac-

cording to different criteria [40]. The results of this chapter were published in [63].

Later, in [62], the two ion transport was designed when considering errors in the

frequency or trap position.
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Fast phase gates with trapped

ions

“I think that’s the single best piece of advice: con-

stantly think about how you could be doing things

better and questioning yourself.”

Elon Musk

I implement faster-than-adiabatic two-qubit phase gates using smooth state-

dependent forces. The forces are designed to leave no final motional excitation,

independently of the initial motional state in the harmonic, small-oscillations limit.

They are simple, explicit functions of time and the desired logical phase of the gate,

and are based on quadratic invariants of motion and Lewis-Riesenfeld phases of

the normal modes.

35
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3.1 Introduction

Realizing the full potential of quantum information processing requires a sus-

tained effort to achieve scalability, and to make basic dynamical or logical opera-

tions faster, more accurate and reliable under perturbations. Two-qubit gates are

crucial building blocks in any scheme of universal quantum computing and have

received much attention. An important step forward was the theoretical proposal

of geometric gates with reduced sensitivity to the vibrational quantum numbers

[64–67], with the first experimental realization in [68]. Soon after, Leibfried et al.

[69] demonstrated a phase gate of the form

| ↑↑〉 → | ↑↑〉, | ↓↓〉 → | ↓↓〉,

| ↑↓〉 → i| ↑↓〉, | ↓↑〉 → i| ↓↑〉, (3.1)

with two trapped ions of the same species subjected to state-dependent forces,

where each spin-up/down arrow represents an eigenstate of the σz-operator for

one of the ion qubits. Generalizations of this gate with the potential of reduced

gate times were discussed by Garćıa-Ripoll et al. [70, 71], and in [72]. The gate

mechanism satisfies a number of desirable properties: it is insensitive to the initial

motional state of the ions, at least in the small-oscillations regime, where the

motion is inside the Lamb-Dicke regime and the nonlinearities of the Coulomb

coupling are negligible; it depends on “geometric” properties of the dynamics

(phase-space areas), which makes it resistant to certain errors; it allows for close

distances, and thus strong interactions among the ions; and, finally, it may in

principle be driven in short, faster-than-adiabatic times. The forces designed to

make the ions return to their initial motional state in a rotating frame of phase-

space coordinates [66, 67], are different for different qubit state configurations,

leading to qubit-state dependent motional trajectories that produce a differential

phase. Pulsed forces with abrupt kicks were designed [72–75], and also smooth

force evolutions that vanish but have nonvanishing derivatives at boundary times

[71], but in practice no force patterns with infinite derivatives are possible and

smooth envelopes are desirable to minimize experimental errors.
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In this chapter, I revisit the phase gates and tackle the design of smooth forces

as an inverse problem, via Lewis-Riesenfeld invariants [76]. This provides a more

general time dependence than previous proposals to achieve faster than adiabatic

operations. Hereafter, forces are assumed to be induced by off-resonant lasers that

do not change the internal states. However, the basic ideas should be applicable

to Mølmer and Sørensen type gates that flip the qubit spins during gates as well1

[77]. Specifically, I design forces to implement the operation

| ↑↑〉 → eiφ(↑↑)| ↑↑〉, | ↓↓〉 → eiφ(↓↓)| ↓↓〉,

| ↑↓〉 → eiφ(↑↓)| ↑↓〉, | ↓↑〉 → eiφ(↓↑)| ↓↑〉, (3.2)

such that ∆φ ≡ φ(↑↓) + φ(↓↑) − φ(↑↑) − φ(↓↓) = ±π, where the qubits could

be realized with two different species, which may have practical importance to

scale up quantum information processing with trapped ions [78]. Gates of the

form (3.2) are computationally equivalent, up to single-qubit z−rotations to the

standard phase gate diag[1, 1, 1,−1] written in the basis {| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉}
[79].

My analysis demonstrates that invariant-based inverse Hamiltonian design is

not limited to population control, and may be adjusted for phase control as

well2. It was known that the phase of a given mode of the invariant (a time-

dependent eigenstate of the invariant which is also a solution of the time-dependent

Schrödinger equation) could be controlled [32], but the fact that “global phases”,

for a given internal state configuration, of arbitrary motional states can be con-

trolled as well in a simple way had been overlooked. This is interesting for applying

shortcuts to adiabaticity [31] in quantum information processing. In particular,

I will derive ready-to-use, explicit expressions for the state-dependent forces, and

may benefit from the design freedom offered by the invariant-based method to

satisfy further optimization criteria.

1The Mølmer & Sørensen gate [64, 67] can be mathematically described in the same language,
replacing the eigenvectors of σz , | ↑〉 and | ↓〉, by the eigenvectors of σx, |+〉 and |−〉. This allows
for an interchange of methods among the gate (3.2) and the Mølmer & Sørensen gate.

2In all other chapters of this Thesis, I am only worried about conserving populations of each
eigenstate at the end of the studied process, only in this chapter will the phases be controlled to
get a predetermined value at the end of the process.
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To evaluate the actual performance of the phase gate at short times I have

to compute fidelities, excitation energies, and/or their scaling behavior, according

to the dynamics implied by the Hamiltonian including the anharmonicity of the

Coulomb repulsion. This is important, as inversion protocols that work near per-

fectly in the small-oscillations regime, fail for the large amplitudes of ion motion

that occur in fast gates, and only a rough estimate of the domain of validity could

be found in [71]. Here, I have numerically checked the validity of the phase gate up

to gate times less than one oscillation period without assuming the approximations

used in the small-amplitude regime. An additional perturbing effect with respect

to an idealized limit of homogeneous spin-dependent forces is the position depen-

dence of the forces induced by optical beams. This may be serious at the large

motional amplitudes required for short gate times, when the ion motion ampli-

tude becomes comparable to the optical wavelength as I illustrate with numerical

examples.

The analytical theory for small oscillations is worked out in Secs. 3.2, 3.3 and

3.4. Then, I consider in Sec. 3.5 two ions of the same species, which implies some

simplifications, and a physical constraint, namely, equal forces on both ions if they

are in the same internal state, and make the additional assumption that the force is

equal and opposite in the other state (more general forces are treated in Appendix

B). I also consider a more complete Hamiltonian including the anharmonicity of the

Coulomb force and the spatial dependence of the light fields to find numerically the

deviations with respect to ideal results within the small oscillations approximation.

Finally, in Sec. 3.6, I consider phase gates between ions of different species. The

appendices present: generalizations of the results for arbitrary proportionalities

between the state-dependent forces (Appendix B), alternative useful expressions

for the phases (Appendix C), an analysis to determine the worst possible fidelities

(Appendix D), the calculation of the width of the position of one ion in the two-ion

ground state (Appendix E), and alternative inversion protocols (Appendix F).
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3.2 The model

Consider two ions of charge e, masses m1, m2, and coordinates x1, x2, trapped

within the same, radially-tight, effectively one-dimensional (1D) trap. I assume

the position x1 of “ion 1” to fulfill x1 < x2 at all times due to Coulomb repulsion,

with x2 the position of “ion 2”. Qubits may be encoded for each ion in two internal

levels corresponding to “spin up” (| ↑〉) eigenstate of σz, with eigenvalue σz
i = 1,

and “spin down” eigenstate (| ↓〉), with eigenvalue σz
i = −1, i = 1, 2. Off-resonant

lasers induce state-dependent forces that are assumed first to be homogeneous

over the extent of the motional state (Lamb-Dicke approximation). Later in the

chapter, I shall analyze the effect of more realistic position-dependent light fields

when the Lamb-Dicke condition is not satisfied. For a given spin configuration,

↑↑, ↓↓, ↑↓, or ↓↑, the Hamiltonian can be written as

H =
p21
2m1

+
1

2
u0x

2
1 + F1(t; σ

z
1)x1

+
p22
2m2

+
1

2
u0x

2
2 + F2(t; σ

z
2)x2

+
Cc

x2 − x1
− E0, (3.3)

where Cc = e2

4πǫ0
, u0 = m1ω

2
1 = m2ω

2
2, and ǫ0 is the vacuum permittivity. A

constant E0 is added for convenience so that the minimum of

V =
1

2
u0x

2
1 +

1

2
u0x

2
2 +

Cc

x2 − x1
− E0 (3.4)

is at zero energy when x1 and x2 assume their equilibrium positions. The laser-

induced, state-dependent forces may be independent for different ions as they may

be implemented by different lasers on different transitions. For equal-mass ions,

the same lasers, and equal and opposite forces on the qubit eigenstates, they may

simplify to Fi = σz
i F (t). In principle, the proportionality between the force for

the up and the down state could be different, but, as shown in the Appendix B,

the forces for a general proportionality can be related by a simple scaling to the

ones found for the symmetric case Fi = σz
i F (t).
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One can determine normal modes for the zeroth order Hamiltonian

H0 =
p21
2m1

+
p22
2m2

+ V. (3.5)

The equilibrium positions of both ions under the potential V are

x
(0)
1 = − 3

√
Cc

4u0
, x

(0)
2 = 3

√
Cc

4u0
, (3.6)

with equilibrium distance x0 = x
(0)
2 − x

(0)
1 , which yields E0 = 3u0x

2
0/4.

Diagonalizing the mass-scaled curvature matrix Vij =
1√

mimj

∂2V
∂xi∂xj

∣∣
{xi,xj}={x(0)

i ,x
(0)
j },

that describes the restoring forces for small oscillations around the equilibrium po-

sitions, we get the eigenvalues

λ± = ω2
1

[
1 +

1

µ
±
√

1− 1

µ
+

1

µ2

]
, (3.7)

where ω1 = (u0/m1)
1/2 and µ = m2/m1, with µ ≥ 1. The normal-mode angular

frequencies are

Ω± =
√
λ±, (3.8)

and the orthonormal eigenvectors take the form v± =


 a±

b±


, where

a± =




1

1 +
(
1− 1

µ
∓
√
1− 1

µ
+ 1

µ2

)2
µ




1/2

,

b± =

(
1− 1

µ
∓
√

1− 1

µ
+

1

µ2

)√
µa±, (3.9)

fulfill

a2± + b2± = 1,

a+a− + b+b− = 0,

a+b− − a−b+ = 1. (3.10)
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The mass-weighted, normal-mode coordinates are

x+ = a+
√
m1(x1 − x

(0)
1 ) + b+

√
µm1(x2 − x

(0)
2 ),

x− = a−
√
m1(x1 − x

(0)
1 ) + b−

√
µm1(x2 − x

(0)
2 ), (3.11)

and the inverse transformation to the original position coordinates is

x1 =
1√
m1

(b−x+ − b+x−)−
x0
2
,

x2 =
1√
µm1

(−a−x+ + a+x−) +
x0
2
. (3.12)

Finally, the Hamiltonian (3.3), neglecting higher-order anharmonic terms, and

using conjugate “momenta” p± = −i~∂/∂x±,3 takes the form

H = HNM + f̃(t), (3.13)

where

HNM = H+ +H−,

H± =
p2±
2

+
1

2
Ω2

±x
2
± − f±x±,

f̃ =
x0
2
(F2 − F1),

f±(t) = ∓F1b∓√
m1

± F2a∓√
µm1

. (3.14)

The function f̃ depends on time and on the internal states that will determine the

forces. By restricting the calculation to a given spin configuration, the dynamics

may be worked out in terms of HNM alone, i~∂ψNM/∂t = HNMψNM , and the

wave function that evolves with H in Eq. (3.13) is e(−i/~)
∫ t
0 dt′f̃ψNM . Purely time-

dependent terms in the Hamiltonian are usually ignored as they imply global

phases. In the phase-gate scenario, however, they are not really global, since

they depend on the spin configuration. As the spin configuration may be changed

after applying the phase gate, e.g. by resonant interactions, they may lead to

3The dimensions of the mass weighted coordinates are length times square root of mass,
mkg1/2, while the dimensions of the conjugate momenta are kg1/2m/s.
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observable interference effects and, in general, cannot be ignored. However, in

the particular gate operation studied later, the extra phase vanishes at the final

time tf , so I shall focus on the dynamics and phases generated by the Hamiltonian

HNM , which represents two independent forced harmonic oscillators with constant

frequencies. We can now apply Lewis-Riesenfeld theory [76] in an inverse way [31]:

The desired dynamics are designed first, and from the corresponding invariant, the

time-dependent functions in the Hamiltonian are inferred [33]. Note that in the

inverse problem, the oscillators are “coupled”, as only one physical set of forces

that will act on both normal modes of the uncoupled system must be designed

[63].

3.3 One mode

In this section I consider just one mode, and drop the subscripts ± to make

the treatment applicable to both modes. The goal is to find expressions for the

corresponding invariants, dynamics, and phases. The Hamiltonian describing a

harmonic oscillator with mass-weighted position and momentum is written as

H = H0 + V, (3.15)

H0 =
p2

2
+

1

2
Ω2x2, (3.16)

V = −f(t)x. (3.17)

It is possible to find a dynamical invariant of H solving the equation

dI

dt
≡ ∂I

∂t
+

1

i~
[I,H ] = 0. (3.18)

For a moving harmonic oscillator, a simple way to find an invariant is to assume

a quadratic (in position and momentum) ansatz with parameters that may be

determined by inserting the ansatz in Eq. (3.18). This leads to the invariant

I(t) =
1

2
(p− ẏ)2 +

1

2
Ω2(x− y)2, (3.19)
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where the dot means “time derivative”, and the function y(t) must satisfy the

differential (Newton) equation

ÿ + Ω2y = f, (3.20)

so it can be interpreted as a “classical trajectory” (with dimensions kg1/2m) in

the forced harmonic potential [33].

This invariant is Hermitian, and has a complete set of eigenstates. Solving

I(t)ψn(t) = λnψn(t), (3.21)

we get the time-independent eigenvalues

λn = ~Ω

(
1

2
+ n

)
, (3.22)

and the time-dependent eigenvectors

ψn(x, t) = e
i
~
ẏxφn (x− y) , (3.23)

where φn(x) are the nth eigenvectors of the stationary oscillator,

φn(x) =
1√
2nn!

(
Ω

π~

)1/4

e
−Ωx2

2~ Hn

(√
Ω

~
x

)
, (3.24)

and the Hn are Hermite polynomials. The Lewis-Riesenfeld phases θn must satisfy

~
dθn
dt

=

〈
ψn

∣∣∣∣i~
∂

∂t
−H

∣∣∣∣ψn

〉
, (3.25)

so that the wavefunction (3.28) is indeed a solution of the time-dependent Schrödinger

equation. Using Eq. (3.23), they are given by

θn(t) = −1

~

∫ t

0

dt′(λn + ẏ2/2− Ω2y2/2)

= −(n + 1/2)Ωt−G(t), (3.26)
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where

G(t) =
1

2~

∫ t

0

dt′(ẏ2 − Ω2y2). (3.27)

Finally, the solution of the Schrödinger equation for the Hamiltonian H can be

stated in terms of the eigenstate and Lewis-Riesenfeld phases of the invariant as

ψ(x, t) =
∑

n

cne
iθn(t)ψn(x, t). (3.28)

In the following, I consider that f is such that there are particular solutions

y = α of Eq. (3.20) that satisfy at the boundary times tb = 0, tf the boundary

conditions

α(tb) = α̇(tb) = 0. (3.29)

They guarantee that all states Ψn(x, t) = eiα
(±)
n (t)ψn(x, t) end up at the original

positions and at rest,

Ψn(x, tf ) = eiαn(tf )φn (x) . (3.30)

In other words, each initial eigenstate of the Hamiltonian is driven along a path

that returns to the initial state with an added path-dependent phase. Moreover,

I assume that the force vanishes at the boundary times tb = 0, tf , f(tb) = 0, and,

therefore, from Eq. (3.20),

α̈(0) = α̈(tf) = 0. (3.31)

Integrating by parts and using Eq. (3.20) as well as the boundary conditions

α(tb) = 0, the phase factor common to all n takes the form

φ(tf) = −G(tf ) =
1

2~

∫ tf

0

dt′fα. (3.32)

As the phases αn(tf ) in Eq. (3.26) have an extra n-dependent term, an arbitrary

motional state ψ(t) that superposes different n-components does not generally

return to the same initial projective ray. To remedy this, it is useful to consider a

rotating frame, i.e., I define ψI(t) = eiH0t/~ψ(t), so that

ψI(tf) = e−iG(tf )ψI(0), (3.33)
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with total phase −G(tf ) for an arbitrary motional state. To decompose this phase

into dynamical and geometric phases, I first note that

i~
∂ψI

∂t
= VIψI , (3.34)

where VI = −feiH0t/~xe−iH0t/~. The dynamical phase is

φd = −1

~

∫ tf

0

dt〈ψI(t)|VI(t)|ψI(t)〉

= −1

~

∫ tf

0

dt〈ψ(t)|V (t)|ψ(t)〉

=
1

~

∫ tf

0

dtf(t)〈x(t)〉. (3.35)

The expectation value of x corresponds to a classical trajectory, i.e., to a solution

of Eq. (3.20), but not necessarily the one corresponding to α. To describe a

general trajectory, it is useful to define dimensionless positions and momenta as

Y =

√
Ω

2~
y, P =

√
1

2~Ω
p, (3.36)

(similarly for other coordinates such as x or α) as well as complex-plane combina-

tions z = Y + iP .

The general solution of the position and momentum of a classical particle, or

the corresponding expectation values for any quantum state, is compactly given

in complex form as

zg(t) = e−iΩt

{
zg(0) +

i√
2~Ω

∫ t

0

dτeiΩτf

}

= z̃ + z0, (3.37)

where

z̃ ≡ e−itΩzg(0), (3.38)

z0 ≡
√

Ω

2~
y0 + i

√
1

2Ω~
ẏ0, (3.39)
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and y0 is a particular solution satisfying y0(0) = ẏ0(0) = 0. For an f such that

y0(t) = α(t), and thus z0 = zα, the boundary conditions at tf are satisfied as well

in the particular solution [see Eq. (3.29)]. By separating into real and imaginary

parts, it can be seen that

ℜe(z̃) 1√
2Ω~

f =
∂ℑm(zαz̃

∗)

∂t
, (3.40)

so that ∫ tf

0

dtℜe(z̃)f = 0, (3.41)

since zα(tb) = 0. With these results, I rewrite Eq. (3.35) as

φd =
1

~

∫ tf

0

dt

[
α+

√
2~

Ω
ℜe(z̃)

]
f =

1

~

∫ tf

0

dtfα. (3.42)

Therefore, the geometric phase φg is minus the total phase,

φg = φ− φd = − 1

2~

∫ tf

0

dtfα = −φ. (3.43)

It is interesting to use the phase-space trajectory in the rotating frame zr =

eiΩtzg = Xr + iPr to write f〈x〉
~

=
√

2
~Ω
ℜe(zg) = 2ℑm(dzr

dt
z∗r ) = 4dA/dt, where dA

is the differential of area swept in the rotating-phase space, dA/dt = Xr

2
dPr

dt
−Pr

2
dXr

dt
.

Thus, Eq. (3.35) becomes

φd = 4A. (3.44)

Consequently, φg = −2A, and φ = 2A. The area is equal for all trajectories [values

of zg(0)] due to Eq. (3.41), so it may be calculated using zg(0) = 0, i.e., the simple

particular solution zg = zα. Equations (3.43) or (3.44) are known results [71], but

they are relevant for my work, so I have rederived them without using coherent

states or a concatenation of displacement operators [69]. This is convenient when

expressing the wave function directly as a superposition in an orthonormal basis.
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3.4 Invariant-based inverse Hamiltonian design

The results of the previous section may now be combined to inverse engineer

the force. The Hamiltonian HNM involves the two modes so that superscripts or

subscripts have to be added to the functions of the previous section to denote the

mode.

I assume that forces vanish at the boundary times tb = 0, tf , F1(tb) = F2(tb) = 0,

and thus, f±(tb) = 0. In the rotating frame, ψI(t) = eiH
0
NM t/~ψNM(t), where

H0
NM = H0

+ +H0
−,

H0
± =

p2±
2

+
1

2
Ω2

±x
2
±, (3.45)

so that

ψI(tf) = e−i[G−(tf )+G+(tf )]ψI(0). (3.46)

Thus, the phase we are interested in for a given configuration is

φ(tf ) = −[G+(tf ) +G−(tf)]

= − 1

2~

∫ tf

0

dt′(α̇2
+ + α̇2

− − Ω2
+α

2
+ − Ω2

−α
2
−)

=
1

2~

∫ tf

0

dt′(f+α+ + f−α−), (3.47)

see an alternative double-integral expression in Appendix C. The inverse strategy

is to design the α± consistently with the boundary conditions, leaving free param-

eters that are fixed to produce the desired phase. The following section shows this

in detail for equal masses.

3.5 Equal mass ions

For two equal-mass ions, m = m1 = m2, ω = ω1 = ω2, a+ = −b+ = a− =

b− = 1/
√
2, Ω− = ω (center-of-mass mode), and Ω+ =

√
3ω (stretch mode). This
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implies [see Eq. (3.14)] that

f± =
±F2 − F1√

2m
, (3.48)

and F1 and F2 are defined as Fi = σz
i F (t) (see the general case in Appendix B),

so that the following values are found

f+(P ) = f−(A) = 0,

f−(↑↑) = f+(↑↓) = −2F/
√
2m,

f−(↓↓) = f+(↓↑) = 2F/
√
2m, (3.49)

where P stands for parallel spins, and A for antiparallel ones. If both ions have

the same spin, then f+(P ) = 0 and no stretch is induced, but the center-of-mass

(−) mode is transiently excited. In that case, α+(P ) = 0 and

α−(↑↑) = −α−(↓↓), (3.50)

according to Eqs. (3.20) and the established boundary conditions. For opposite

spins α−(A) = 0, and only the stretch (+) mode is transiently excited. In that

case

α+(↑↓) = −α+(↓↑). (3.51)

The phase (3.47) takes two possible forms,

φ(P ) =
1

~

∫ tf

0

dt′
−F√
2m

α−(↑↑),

φ(A) =
1

~

∫ tf

0

dt′
−F√
2m

α+(↑↓). (3.52)

To inverse engineer the phase, I use the ansatz for α+(↑↓) as a sum of Fourier

cosines, with enough parameters to satisfy all boundary conditions,

α+(↑↓; t) = a0 +

4∑

n=1

ai cos

[
(2n− 1)πt

tf

]
. (3.53)

This is an odd function of (t − tf/2), which implies that α̈+(↑↓; t), and thus

f+(↑↓; t), are odd functions too with respect to the middle time of the process
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Figure 3.1: F (t) for two 9Be+ ions in a trap with frequency ω/2π = 2 MHz.
tf = 0.5 µs (solid blue line), tf = 0.8 µs (dotted black line), and tf = 1 µs
(dashed red line). The forces on each ion are state dependent, Fi = σz

i F (t),
i = 1, 2.

tf/2. The parameters a0, a1, and a2 are fixed to satisfy the corresponding boundary

conditions for α+(↑↓) in Eqs. (3.29) and (3.31),

a0 = 0,

a1 = 2a3 + 5a4,

a2 = −3a3 − 6a4. (3.54)

We get f+(↑↓; t) from Eq. (3.20), f+(↑↓; t) = α̈+(↑↓; t)+Ω2
+α+(↑↓; t). Due to the

boundary conditions, f+(0) = f+(tf ) = 0. As f−(↑↑) = f+(↑↓), we may solve Eq.

(3.20) for α−(↑↑; t) satisfying α−(↑↑; tb) = 0 [α̈−(↑↑; tb) = 0 is automatically satis-

fied since f−(↑↑, tb) = 0]. The expression is rather lengthy, but can be considerably

simplified by imposing as well α̇−(↑↑; tb) = 0. This fixes a3 as

a3 = −
5a4(25π

2 − t2fω
2)

49π2 − t2fω
2

. (3.55)
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Figure 3.2: Parametric plots of the quadratures, X =
√

Ω±

2~ α± and

P =
√

1
2~Ω±

α̇±. The quadratures in the rotating frame are defined as Xr =

ℜe(eiΩ±tZ), Pr = ℑm(eiΩ±tZ), where Z = X + iP . The solid blue lines rep-
resent the stretch (+) mode for antiparallel spins and the dashed red lines the
center-of-mass (−) mode for parallel spins. (a) tf = 0.8 µs, (b) tf = 1 µs, (c)
tf = 0.8 µs in the rotating frame, and (d) tf = 1 µs in the rotating frame. The

other parameters are chosen as in Fig. 3.1.

At this point, α+(↑↓; t) and α−(↑↑; t) are left as functions of the parameter a4,

α+(↑↓; t) = 32a4
11π2 + t2fω

2 + (49π2 − t2fω
2) cos 2πt

tf

49π2 − t2fω
2

cos
πt

tf
sin4 πt

tf
,

α−(↑↑; t) = 32a4
11π2 + 3t2fω

2 + (49π2 − 3t2fω
2) cos 2πt

tf

49π2 − t2fω
2

cos
πt

tf
sin4 πt

tf
.

(3.56)
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These are both odd functions with respect to (t− tf/2) and guarantee a vanishing

final excitation in the two modes. They also have vanishing third derivatives at

the time boundaries, and thus imply the continuity in the force derivative at time

boundaries, i.e., Ḟ (tb) = 0. Note that −1
~

∫ tf
0
dt′[f̃(A) − f̃(P )] vanishes [see Eq.

(3.14)] since f̃(P ) = 0 and f̃(A) is also an odd function of t− tf/2.

The differential phase takes the form [see Eq. (3.47)]

∆φ ≡ 2[φ(A)− φ(P )]

=
2

~

∫ tf

0

dt′
F√
2m

[α−(↑↑)− α+(↑↓)]. (3.57)

With the expressions (3.56) for α+(↑↓) and α−(↑↑), the integral can be solved to

give

∆φ =
12a24tfω

2(−2051π4 + 476π2t2fω
2 − 33t4fω

4)

~(−49π2 + t2fω
2)2

. (3.58)

Setting ∆φ = γ, the last free parameter is fixed as

a4 = ± 1

ω
(−147π2 + 3t2fω

2)

√
~

6tf

×
[

γ/2

−2051π4 + 476π2t2fω
2 − 33t4fω

4

]1/2
. (3.59)

The polynomial denominator in the last term is negative for all tf (there are no

real roots) so, to get a real a4, γ must be chosen as a negative number. I choose

γ = −π to implement the gate (3.2). There are real solutions for a4 for all tf , no

matter how small tf is. In this sense, there is no fundamental lower bound for

the method, as long as the small amplitude and Lamb-Dicke approximations are

valid. As for the sign alternatives in a4, the different choices imply sign changes

for the α and the forces. Hereafter and in all figures, I choose the positive sign.
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Figure 3.3: ∆φ for an exact evolution with the Hamiltonian in Eq. (3.3)
(solid blue line), and the target value of this phase (dashed red line). Same

parameters as in Fig. 3.1. The initial motional state is the ground state.

The resulting force takes the form

F (t) =
g1(tf ) + g2(tf ) cos

(
2πt
tf

)
+ g3(tf ) cos

(
4πt
tf

)

t2f

√
2051π4tfω2 − 476π2t3fω

4 + 33t5fω
6

× 2
√
2π~m cos

(
πt

tf

)
sin2

(
πt

tf

)
, (3.60)

where

g1(tf) = 3(401π4 − 36π2t2fω
2 + 3t4fω

4),

g2(tf) = −4(181π4 − 76π2t2fω
2 + 3t4fω

4),

g3(tf) = 2401π4 − 196π2t2fω
2 + 3t4fω

4, (3.61)

which is shown in Fig. 3.1 for different values of tf (all simulations in this section

are for two 9Be+ ions and a trap frequency ω/(2π) = 2 MHz). The results are

qualitatively similar to those found in [71] (also the asymptotic behaviour for short

operation times, F ∼ t
−5/2
f ) with a very different numerical method, but in my

case the expression of F is explicit, has a continuous envelope, and the derivatives

vanish at the edges, adding stability.

With this force, the trajectories of α+(A), and α−(P ), see Eqs. (3.50) and
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Figure 3.4: Worst case infidelity vs final time, which is realized for the initial
state | ↑↓〉 [see Eq. (D.8)]. Same parameters as in Fig. 3.1.

(3.51), are given in Fig. 3.2 for two given times tf in a dimensionless (quadrature)

phase space, and in the rotating frame (the phase is twice the area swept in the

rotating frame, see Sec. 3.3 [71]). If the initial state is the ground state, they

describe, respectively, the dynamics of the stretch mode (for antiparallel spins)

and the center-of-mass mode (for parallel spins). Notice that the trajectories lead

to larger phase-space amplitudes for shorter times.

The phases within the harmonic (small amplitude) approximation are exact by

construction for arbitrarily short times, but we should compare them with the

phases when the system is driven by the full Hamiltonian (3.3) that contains the

anharmonic Coulomb interaction. To that end, I solve numerically the Schrödinger

equation with the Hamiltonian (3.3) by using the “Split-Operator Method” [80].

First, I fix the initial state as the ground state of the system |Ψ0〉, which is found

by making an initial guess and evolving it in imaginary time [81]. Then, the

Split-Operator method is applied in real time to get the evolution of the wave

function |Ψt〉. Phases are much more sensitive than populations to numerical

errors, so we need a much shorter time step than the one usually required until

the results converge. At the final time, the overlap S = 〈Ψ0|Ψtf 〉, which depends

on the spin configuration, is calculated. The phase of the overlap is defined as

ϕf = arg S ∈ [0, 2π). In the quadratic approximation, this includes a global term
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−(Ω+ +Ω−)tf/2 [see Eq. (3.26)] absent in the rotating frame, that is canceled by

calculating the phase differential between antiparallel and parallel spins, 2[ϕf(↑↓
) − ϕf(↑↑)], displayed in Fig. 3.3. The corresponding infidelities, 1 − |S|2, are
shown in Fig. 3.4 for the worst possible case, which is realized for an initial state

with antiparallel spins (see Appendix D). The numerical results agree with the

ideal result of the quadratic approximation at least up to operation times ten

times smaller than an oscillation period 2π/ω. Shorter times are very demanding

computationally.

A different type of stability check is displayed in Fig. 3.5, where a realistic x-

dependent sinusoidal force on each ion Fi(t) sin (∆kx+ π/2) is considered instead

of the homogeneous one. This force comes about because of the finite wavelength

of the lasers used to generate the forces [69]. Close to the ground state, the

motional wave function of the ion only overlaps with a small part of the optical

wave, which can then be approximated as having a constant gradient over the wave

function (Lamb-Dicke approximation). If the extend of the wave function grows in

more excited motional states, this approximation breaks down and the sinusoidal

shape of the light wave has to be taken into account. For driving a phase gate,

the wave vector difference ∆k is adjusted so that the forces at the equilibrium

positions ±x0/2 are the Fi(t), with an integer number of periods 2π/∆k among

them. ∆k can be adjusted by changing the direction(s) of the beam(s) in laser-

based experiments. I choose ∆k so that the ions in the equilibrium position for

the frequency ω/(2π) = 2 MHz are placed in extrema of the sine function. In Fig.

3.5 (a) and (b), I depict the differential phase and worst case fidelity versus tf

for this x-dependent force, starting in the motional ground state. The two curves

correspond to the ions being eight periods apart at equilibrium, similar to [69],

or four periods apart. As expected, the results degrade for very short times since

the ions explore a broader region, where the forces deviate significantly from Fi(t).

The range of validity of the ideal results (the ones for a homogeneous force) in the

limit tfω << 1 is approximately given by ∆k
ω

√
~

tfm
<< 1, which may be found by

estimating maximal amplitudes of α± in Eq. (3.56), using Eq. (3.12) to calculate

deviations from equilibrium positions and comparing them to half a lattice period
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π/∆k. Note that, for eight periods, the phase does not really converge to the

ideal value even at longer times, when the deviation is quite small compared to

the period of the force. The reason is that the wave function width also implies

that the ions do not strictly experience a homogeneous force, which can lead to

squeezing of the state of motion rather than just a coherent displacement. Starting

with the ground-state wave function in the harmonic approximation (i.e., a product

of ground-state wave functions for each mode), we may calculate the width of the

position of one ion as ∆x = 1
2
(1 + 1/

√
3)1/2

√
~/(mω), see the Appendix E, which

should be compared to π/∆k. For the parameters in Fig. 3.5 (a) and (b), the

ratios ∆x∆k/π are 0.04 (eight oscillations) and 0.02 (four oscillations).

In Fig. 3.5 (c) and (d), I additionally consider that the evolved state begins in

some excited Fock state so that the Lamb-Dicke approximation breaks down more

easily. I only consider excitations of the stretch mode, |n− = 0, n+〉, as the full

Hamiltonian only has nonzero cubic terms for this mode.

I also study the scaling with tf of spontaneous emission due to the fact that

intense off-resonant fields may induce transitions. The transition rate will be

proportional to the intensity of the field, and to the effective potential acting on

the ions, i.e., to |F |. In Fig. 3.6, I have integrated this quantity over time for

different values of tf . Since F ∼ t
−5/2
f , the result scales as t

−3/2
f . Arbitrary units

are used as the scattering probability will depend on different factors, which are

not explicitly considered here such as ∆k or the detuning.

3.6 Different masses

For different mass ions, m1 = m, m2 = µm, and u0 = mω2
1 = µmω2

2. In this

case, due to their different structure, both ions will react to different laser fields,

thus, F1 and F2 can in principle be designed independently, such that F1 = σz
1Fa(t),
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Figure 3.5: Simulation of 2 9Be+ ions with trap frequency ω/(2π) =
2 MHz. Instead of homogeneous forces more realistic x-dependent forces
Fi(t) sin (∆kx+ π/2) are applied. In (a) and (b) the initial motional state is
the ground state. ∆k = 8.67 × 106 m−1: solid (blue) line (ions separated by 8
lattice periods at equilibrium); ∆k = 4.33× 106 m−1: dashed (black) line (ions
separated by four lattice periods). In (a) we display the final phase vs the final
time. In (b) the worst case infidelity (realized for antiparallel spins). In (c) and
(d) the phase and worst case fidelity (corresponding to antiparallel spins) for
different initial excited states are depicted, for a time tf = 0.5 µs and the ions

separated by eight lattice periods.

F2 = σz
2Fb(t) (more general cases are studied in Appendix B), yielding

f±(↑↑) = −f±(↓↓) = ∓ b∓√
m
Fa ±

a∓√
µm

Fb,

f±(↑↓) = −f±(↓↑) = ∓ b∓√
m
Fa ∓

a∓√
µm

Fb, (3.62)

which, as in the previous section, implies that

α±(↓↑) = −α±(↑↓),

α±(↓↓) = −α±(↑↑) (3.63)
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Figure 3.6: S =
∫ tf
0 dt|F (t)| (dots). F (t) is designed for equal mass ions

(9Be+ ions) according to Eq. (3.60) for a trap frequency ω/(2π) = 2 MHz. The

solid line is a fit proportional to t
−3/2
f .

[see Eqs. (3.14) and (3.20)], so if the protocol is designed to satisfy the bound-

ary conditions for the ↑↓ and ↑↑ configurations, it will automatically satisfy the

conditions for the remaining configurations. Inversely, from Eqs. (3.62) and (3.10),

Fa = −
√
m[a−f−(↑↓) + a+f+(↑↓)],

Fb =
√
µm[b−f−(↑↓) + b+f+(↑↓)]. (3.64)

The procedure to design the forces is summarized in the following scheme,

α±(↑↓) 99K f±(↑↓) 99K Fa, Fb 99K f±(↑↑) 99K α±(↑↑). (3.65)

To start with, ansatzes are proposed for α+(↑↓) and α−(↑↓),

α+(↑↓) = a0 +
4∑

n=1

an cos

[
(2n− 1)πt

tf

]
,

α−(↑↓) = 0. (3.66)

It is also possible to design them so as to cancel α+(↑↓) = 0 instead of α−(↑↓), as
discussed in Appendix F. Similar to the previous section, a0, a1, and a2 are fixed
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Figure 3.7: Total final phase ∆φ in Eq. (3.69) vs the final time (solid and
dotted blue lines) for an exact wave function evolving with the Hamiltonian in
Eq. (3.3), and the target value of this phase (dashed red line). The simulation is
done for a 9Be+ and a 25Mg+ ion, initially in the motional ground state, within
a trap of frequency ω1/(2π) = 2 MHz. At final times tf ∼ 0.8 µs and 1.03 µs,
I change solutions [see the discussion below Eq. (3.72)]. The solid line is for

γ = −π and the dashed line for γ = π.

to satisfy the boundary conditions for α+(↑↓) in Eqs. (3.29) and (3.31),

a0 = 0,

a1 = 2a3 + 5a4,

a2 = −3a3 − 6a4. (3.67)

Introducing these ansatzes in Eq. (3.20), expressions for f±(↑↓; t) are found,

in particular f−(↑↓) = 0, and from these, expressions for the control functions

Fa(t), Fb(t) follow according to Eq. (3.64). Since α+(t)(↑↓) is an odd function of

(t− tf/2), the same symmetry applies to Fa(t), Fb(t), and to the spin-dependent

forces F1, F2. Thus, the time integral of f̃ [see Eq. (3.14)] is zero for different

masses as well, and does not contribute to the phase.

Using the last line of Eq. (3.14), the effective forces f±(↑↑) are found. Plugging
these functions into Eq. (3.20), I solve the differential equations imposing the

boundary conditions α±(↑↑; tb) = 0 to fix the integration constants. At this point,

the boundary conditions for α̈±(↑↑; tb) are automatically satisfied, and α̇±(↑↑; 0) =
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Figure 3.8: Parametric plots of the quadratures, X =
√

Ω±

2~ α± and

P =
√

1
2~Ω±

α̇±. The quadratures in the rotating frame are defined as Xr =

ℜe(eiΩ±tZ), Pr = ℑm(eiΩ±tZ), where Z = X + iP at tf = 0.5 µs. The solid
blue lines represent the stretch (+) mode and the dashed red lines the center-of-
mass (−) mode. (a) and (c) represent the phase space trajectory for | ↑↓〉 and
| ↓↑〉, in the normal and the rotating frame respectively, while (b) and (d) rep-
resent the phase space trajectories for | ↑↑〉, in the normal and rotating frames

respectively. The other parameters are chosen as in Fig. 3.7.

α̇±(↑↑; tf) by symmetry. Thus, imposing that the first derivatives vanish at the

boundary times, a3 is fixed as

a3 =
−25π2 + t2fΩ

2
−

49π2 − t2fΩ
2
−

5a4. (3.68)

Once the α± are given for both configurations, such that they do not produce any

excitation in the modes at the final time, the final phase difference is, as in the
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previous section,

∆φ(tf ) = 2[φ(A)− φ(P )]

= −1

~

∑

µ=±

∫ tf

0

dt[α̇2
µ(↑↓)− Ω2

µα
2
µ(↑↓)]

+
1

~

∑

µ=±

∫ tf

0

dt[α̇2
±(↑↑)− Ω2

µα
2
µ(↑↑)]. (3.69)

The integrals can be evaluated, and give a function of a4. This parameter is finally

set by imposing some value to the phase difference, ∆φ(tf ) = γ,

a4 =

√
γ~(1 + (−1 + µ)µ)(−49π2 + t2fΩ

2
−)

2

∆
,

∆ = 6µ(Ω− − Ω+)(Ω− + Ω+)tf [2051π
4 + 11t4fΩ

2
−Ω

2
+ − 119π2t2f (Ω

2
− + Ω2

+)].

(3.70)

The function ∆ has zeros at

t
(0)
f = 0,

t
(1)
f = ±π

√
119(Ω2

− + Ω2
+)− δ

22Ω2
−Ω

2
+

,

t
(2)
f = ±π

√
119(Ω2

− + Ω2
+) + δ

22Ω2
−Ω

2
+

, (3.71)

where

δ =
√
7(2023Ω4

− − 8846Ω2
−Ω

2
+ + 2023Ω4

+). (3.72)

Considering only the positive times, in the intervals
(
t
(0)
f , t

(1)
f

)
and tf > t

(2)
f , ∆

is negative, so I chose γ = −π to make a4, and thus Fa, Fb, real. In the interval(
t
(1)
f , t

(2)
f

)
∆ is positive, so we can choose γ = π.
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Figure 3.9: Infidelity vs final time for the worst case, which corresponds to
antiparallel spins [see Eq. (D.8)]. Same parameters as in Fig. 3.7. The solid

line is for γ = −π and the dashed line for γ = π.

The explicit expressions for the control functions are finally, from Eq. (3.64),

Fa =

[
ga1 + ga2 cos

(
2πt

tf

)
+ ga3 cos

(
4πt

tf

)]

×
8a4a+

√
m cos

(
πt
tf

)
sin2

(
πt
tf

)

−49π2t2f + t4fΩ
2
−

,

Fb = −b+
√
µ

a+
Fa, (3.73)

where

ga1 = 3[401π4 + t4fΩ
2
−Ω

2
+ − 9π2t2f (Ω

2
− + Ω2

+)],

ga2 = 4[−181π4 − t4fΩ
2
−Ω

2
+ + 19π2t2f (Ω

2
− + Ω2

+)],

ga3 = (49π2 − t2fΩ
2
−)(49π

2 − t2fΩ
2
+). (3.74)

Fa, Fb diverge for the final times in Eq. (3.71), so these times must be avoided.

The positions of the divergences depend on the chosen ansatz. In particular, for

a polynomial, rather than cosine ansatz, the only divergence is at tf = 0. I have,

however, kept the cosine ansatz as it needs fewer terms and it simplifies the results

and the treatment of boundary conditions.
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Figure 3.7 shows the phase numerically obtained with the exact Hamiltonian

for 9Be (ion 1) and 25Mg (ion 2) in the Lamb-Dicke limit, beginning in the ground

motional state. Figure 3.8 shows the quadratures for such a protocol at final time

tf = 0.5 µs, and Fig. 3.9 the worst case infidelities at final time, which, as in the

previous section, correspond to initial states with antiparallel spin (see Appendix

D). Around an oscillation period 2π/ω1 = 0.5 µs, the results are slightly worse

than in the previous section for equal mass ions, but still with a high fidelity. For

final times close to t
(1)
f ∼ 0.8 µs and t

(2)
f ∼ 1.03 µs, the solutions change, with a

drop in the stability of the phase (Fig. 3.7) and in the fidelity (Fig. 3.9). The

phase and fidelity improve and stabilize again for times tf > 1.03 µs.

In the limit were both ions are equal, Fa = Fb = F , the results of the previous

section are recovered.

3.7 Discussion

In this chapter, I have designed simple and explicit protocols to perform fast

and high fidelity phase gates with two trapped ions by using the invariant-based

method to bypass adiabaticity. The scheme of the gate expands on methods that

have been already tested in the laboratory. Experimentally, the state-dependent

forces may be created by a standing wave with time-varying intensity produced

by two crossed laser beams, whose amplitude is modulated following a smoothly

designed trajectory to excite motion in both normal modes. In the limit of small

oscillations, we can use both a normal mode harmonic approximation and the

Lamb-Dicke limit and apply the inverse-design method assuming homogeneous

forces. I have also numerically simulated the system dynamics and gate behavior

without these approximations, namely, including the anharmonicity and the posi-

tion dependence of the forces. Good fidelities are obtained at times around 1 µs,

which is a significantly shorter time compared to the best experimental results so

far, and close to the center of mass oscillation period which was assumed to be

0.5 µs in this work. Moreover, state-of-the-art technology allows for higher trap
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frequencies than those used in our simulations, which should further improve the

results. Expressions for the forces have been found for different scenarios, specifi-

cally, for equal or different masses, as well as for different proportionality factors

between the spin-dependent forces.

Extensions of this work are possible in several directions. For example, the

deviations from the ideal conditions may be taken into account to design the

forces. The freedom offered by the approach may also be used to choose stable

protocols with respect to different noises and perturbations.





Chapter 4

Fast expansions and compressions

of trapped-ion chains

“If not now, then when? If not you, then who?”

Kailash Satyarthi

I investigate the dynamics under diabatic expansions/compressions of linear ion

chains. Combining a dynamical normal-mode harmonic approximation with the

invariant-based inverse-engineering technique, I design protocols that minimize the

final motional excitation of the ions. This can substantially reduce the transition

time between high and low trap-frequency operations, potentially contributing to

the development of scalable quantum information processing.

65
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4.1 Introduction

So far, I have only studied ion-transport related problems. In Chapters 1 and

2, I directly studied this problem for equal and different mass situations respec-

tively. In Chapter 3 I designed the accelerated process that creates a π-phase

gate. Physically, this is done by producing a displacement in the ions with state

dependent forces, what makes the theoretical problem similar to that of the trans-

port, but with the additional need of a precise control of the phase. In addition

to ion transport [33, 42, 43, 52, 63, 82], chain expansions/compressions and ion-

chain splitting and recombination [42, 45, 83, 84] are other important dynamical

processes towards building a quantum processor in trapped ions. These opera-

tions can be performed on single or mixed-species ion chains [85], allowing for

sympathetic ion cooling or quantum-logic spectroscopy [86].

The study of ion separation will be done in the following Chapter 5. The phys-

ical operation that I consider here is fast control of the motional frequencies of

the trapped ions, which in the case of multiple ions leads to chain expansions and

compressions. Several elementary protocols benefit from a high trap frequency,

whereas others are better performed with low frequencies. Therefore, a fast tran-

sition between them without inducing final excitations is a worthwhile goal.

Operations that benefit from high motional frequencies (i.e. large potential

curvature, small interion distance, and small Lamb-Dicke parameters) include:

• Doppler laser cooling, since the mean phonon number is lower for tighter

traps [87];

• any operation where a single motional normal mode (NM) of an ion chain

needs to be spectrally resolved, since the NM frequency splitting is propor-

tional to the trap curvature [45];

• operations which make use of motional sidebands and whose fidelity is limited

by off-resonantly driving carrier transitions on the qubit.

On the other hand, operations where a lower motional frequency is desired include:
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• single-ion addressing in a multi-ion crystal;

• resolved sideband cooling, which cools at a rate proportional to the square

of the Lamb-Dicke parameter [88];

• geometric phase gates [69], which are faster for larger Lamb-Dicke parame-

ters.

In many cases a compromise will be optimal, depending on the dominant limita-

tions for a particular experiment.

Fast expansions/compressions without final excitation have been designed in

a number of different ways [31, 32, 39, 89–92]. Invariant-based engineering or

scaling methods [32, 91] were realized experimentally for a noninteracting cold-

atom cloud [93] and a Bose-Einstein condensate [93, 94]. However, the methods

used rely on single particles, BEC dynamics, or equal masses, and are not directly

applicable to an arbitrary interacting ion chain. I propose here a method to

design trap expansions and compressions faster than adiabatically and without

final motional excitation. Specifically I define dynamical normal modes similar to

the ones defined for shuttling ion chains in Ref. [63] and apply invariant-based

inverse-engineering techniques by either exact or approximate methods.

I first discuss two-ion chains in Sec. 4.2, both for ions of equal mass, and ions

of different mass, and then extend the analysis in Sec. 4.3 to longer chains. In the

examples only expansions of the trapping potential are considered, as compressions

may be performed with the same time evolution of the spring constant, only time-

reversed.

4.2 2-ion chain expansion

We will deal with a one-dimensional trap containing an N -ion chain whose

Hamiltonian in terms of the positions {qi} and momenta {pi} of the ions in the
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laboratory frame is

H =

N∑

i=1

p2i
2mi

+

N∑

i=1

1

2
u0(t)q

2
i +

N−1∑

i=1

N∑

j=i+1

Cc

qi − qj
, (4.1)

where Cc = e2

4πǫ0
, with ǫ0 the vacuum permittivity. u0(t) is the common (time-

dependent) spring constant that defines the oscillation frequencies ωj(t)/(2π) for

the different ions in the absence of Coulomb coupling: u0(t) = m1ω
2
1(t) = m2ω

2
2(t) =

· · · = mNω
2
N(t). All ions are assumed to have the same charge e, and be ordered

as q1 > q2 > · · · > qN , with negligible overlap of probability densities as a result

of the Coulomb repulsion. The potential term V (q1, q2) = H −∑i p
2
i /2mi in the

Hamiltonian (4.1) for two ions is minimal at the equilibrium points q
(0)
1 = x0/2,

q
(0)
2 = −x0/2, where x0 ≡ x0(t) = 2 3

√

Cc

4u0(t)
is the equilibrium distance between the

two ions. Instantaneous, mass-weighted, NM coordinates are defined by diagonal-

izing the matrix Vij =
1√

mimj

∂2V
∂qi∂qj

(q
(0)
i , q

(0)
j ) [63]. The time-dependent eigenvalues

are [59]

λ± =

(
1 +

1

µ
±
√

1− 1

µ
+

1

µ2

)
ω2
1, (4.2)

where I have relabeled m1 → m and m2 → µm, and omitted the explicit time

dependences to avoid a cumbersome notation, i.e., λ± ≡ λ±(t) and ω1 ≡ ω1(t).

The time-dependent angular frequencies for each mode are

Ω± ≡ Ω±(t) =
√
λ± =

(
1 +

1

µ
±
√

1− 1

µ
+

1

µ2

)1/2

ω1, (4.3)
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and the eigenvectors corresponding to these eigenvalues are v± = (a±, b±)
T , where

a+ =




1

1 +
(
1− 1

µ
−
√
1− 1

µ
+ 1

µ2

)2
µ




1/2

,

b+ =

(
1− 1

µ
−
√
1− 1

µ
+

1

µ2

)√
µa+,

a− =




1

1 +
(
1− 1

µ
+
√

1− 1
µ
+ 1

µ2

)2
µ




1/2

,

b− =

(
1− 1

µ
+

√
1− 1

µ
+

1

µ2

)√
µa−. (4.4)

The instantaneous, dynamical normal-mode (mass-weighted) coordinates are fi-

nally

q+ = a+
√
m
(
q1 −

x0
2

)
+ b+

√
µm

(
q2 +

x0
2

)
,

q− = a−
√
m
(
q1 −

x0
2

)
+ b−

√
µm

(
q2 +

x0
2

)
. (4.5)

The quantum dynamics of a state |ψ〉 governed by H in the laboratory frame may

be transformed into the moving frame of NM coordinates by the unitary operator

U =

∫
dq+dq−dq1dq2|q+, q−〉〈q+, q−|q1, q2〉〈q1, q2|, (4.6)

where 〈q+, q−|q1, q2〉 = δ[q1−q1(q+, q−)]δ[q2−q2(q+, q−)]. The Hamiltonian in the

dynamical equation for |ψ′〉 = U |ψ〉 is given by

H ′ = UHU † − i~U(∂tU
†) =

=
∑

ν

(
p2ν

2
− p0νpν +

1

2
Ω2

νq
2
ν

)
, (4.7)

where cubic and higher order terms in the coordinates have been neglected, ν = ±,

p± are (mass-weighted) momenta conjugate to q±, and

p0± = −q̇± =
2

3
(−a±

√
m1 + b±

√
m2)

3

√
Cc

4m1ω5
1

ω̇1 (4.8)
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are functions of time with the same dimensions as the mass-weighted momenta.

They appear because of the time dependence of the NM coordinates through x0,

which is a function of ω1(t). These p0± functions act as momentum shifts in a

further unitary transformation which suppresses the terms linear in p±,

U = e−i(p0+q++p0−q−)/~,

|ψ′′〉 = U|ψ′〉,

H ′′ = UH ′U † − i~U(∂tU †) =

=
∑

ν

[
p2ν

2
+

1

2
Ων

(
qν +

ṗ0ν

Ω2
ν

)2
]
. (4.9)

This Hamiltonian corresponds to two effective harmonic oscillators with time-

dependent frequencies and a time-dependent moving center. Note that the “mo-

tion” of the harmonic oscillators is in the normal-mode-coordinate space, and that

the actual center of the external trap in the laboratory frame is fixed. According

to Eqs. (4.3) and (4.8) both the NM harmonic oscillators’ centers (−ṗ0±/Ω
2
±)

and the frequencies (Ω±) depend on ω1(t). This is important as, to solve the

dynamics for given ω1(t), the oscillators are effectively independent. However,

from an inverse-engineering perspective, their time-dependent parameters cannot

be designed independently. This “coupling” is here more involved than for the

transport of two ions in a rigidly moving harmonic trap [63], where p0±(t) take

different forms which depend on the trap position but not on the trap frequency.

A different approach is thus required.

The Lewis-Riesenfeld invariants [76] of the two oscillators are

I± =
1

2
[ρ±(p± − α̇±)− ρ̇±(q± − α±)]

2

+
1

2
Ω2

0±

(
q± − α±
ρ±

)2

, (4.10)

where Ω0± = Ω±(0). The invariants depend on the auxiliary functions ρ± (scaling

factors of the expansion modes) and α± (mass-scaled centers of the dynamical



Chapter 4. Fast expansions and compressions of trapped-ion chains 71

modes of the invariant). They satisfy the auxiliary (Ermakov and Newton) equa-

tions

ρ̈± + Ω2
±ρ± =

Ω2
0±
ρ3±

, (4.11)

α̈± + Ω2
±α± = ṗ0±. (4.12)

Dynamical expansion modes |ψ′′
n±〉 (not to be confused with normal modes) may

be found. These are exact time-dependent solutions of the Schrödinger equation

and also instantaneous eigenstates of the invariant [33],

〈q±|ψ′′
n±〉 = e

i
~

[

ρ̇±q2±
2ρ±

+(α̇±ρ±−α±ρ̇±)
q±
ρ±

]

Φn(σ±)

ρ
1/2
±

, (4.13)

where σ± = q±−α±

ρ±
and Φn(σ±) are the eigenfunctions of the static harmonic oscil-

lator at time t = 0. Within the harmonic approximation the NM wave functions

|ψ′′
±〉 evolve independently with H ′′. They may be written as combinations of the

expansion modes, |ψ′′
±(t)〉 =

∑
n cn±|ψ′′

n±〉 with normalized constant amplitudes.

The average energies of the nth expansion mode for two NM are

E ′′
n± = 〈ψ′′

n±|H ′′|ψ′′
n±〉

=
(2n+ 1)~

4Ω0±

(
ρ̇2± + Ω2

±ρ
2
± +

Ω2
0±
ρ2±

)

+
1

2
α̇2
± +

1

2
Ω2

±(α± − ṗ0±/Ω
2
0±)

2. (4.14)

In numerical examples, the initial ground state is, in the harmonic approximation,

of the form |ψ′′
0+(0)〉|ψ′′

0−(0)〉, so the time-dependent energy is given by E ′′(t) =

E ′′
0+ + E ′′

0−. Note that if we impose both unitary operators U(t) and U(t) to be

1 at t = 0 and tf , the transformed wave function |ψ′′〉 and the laboratory wave

function |ψ〉 will be the same at both these times and the energy E ′′(t = 0, tf)

will be the same as the laboratory-frame energy. Both unitary transformations

satisfy this provided that ω̇1(tb) = 0, where tb = 0, tf , as long as the quadratic

approximation in the Hamiltonian (4.9) is valid.

For a single harmonic oscillator without the independent term in Eq. (4.12),
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Figure 4.1: Final excitation energy at tf for the expansion of two 40Ca+ ions,
with respect to the final ground state (quantum) or the final equilibrium energy
(classical). The initial state is the ground state (quantum) or the equilibrium
state (classical) for the initial trap. The dashed red line is the excitation in
the harmonic approximation, using Eq. (4.14) for the NM energies, with the
protocol obtained by the shooting method; the solid blue line (classical) and
black triangles (quantum) are for the same protocol but with the dynamics
driven by the full Hamiltonian (4.1). The dotted green line is for the protocol
(4.16) with the full Hamiltonian. The parameters used are ω0/(2π) = 1.2 MHz

and γ2 = 3.

i.e. with a fixed center, the frequency in a trap expansion was already inverse

engineered in [32]. For this case we can use the same notation as before but no

subindices for the auxiliary functions. α is zero for all times, and in the Ermakov

equation the conditions ρ(0) = 1, ρ(tf ) = γ =
√
ω0/ωf , and ρ̇(tb) = ρ̈(tb) = 0,

suffice to avoid any excitation (since [H(tb), I(tb)] = 0) and ensure continuity of

the oscillator frequency. Any interpolated function ρ(t) satisfying these conditions

provides a valid Ω(t). Similarly, in harmonic transport of an ion (with the trap

moving rigidly from 0 to d with a constant frequency [33]) the auxiliary equation

for ρ becomes trivially satisfied by ρ = 1 and, to avoid excitations and ensure

continuity, α may be any interpolated function satisfying α(0) = 0, α(tf) = d,

α̇(tb) = α̈(tb) = 0 [33]. Instead of these simpler settings, when inverse engineer-

ing the expansion of the ion chain the auxiliary equations (4.11) are nontrivially

coupled and have to be solved consistently with Eq. (4.12), since Ω± and p0± are

functions of the same frequency ω1. In other words, only interpolated auxiliary

functions ρ±(t), α±(t) consistent with the same ω1(t) are valid.
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Figure 4.2: Values of the optimizing free parameters in the two-ion expansion
a10 (solid blue line) and a11 (dashed red line) in the expansion of two 40Ca+

ions starting in the ground state. ω0/(2π) = 1.2 MHz, γ2 = 3.

For both NM, I impose for Eq. (4.11) the boundary conditions (BC) ρ±(0) = 1,

ρ±(tf ) = γ, ρ̇±(tb) = ρ̈±(tb) = 0. Here ω0 = ω1(0) and ωf = ω1(tf). The BC for

the second set of equations are α±(tb) = α̇±(tb) = α̈±(tb) = 0. Eq. (4.12) with

Eq. (4.8) implies that at the boundaries we must have 5
3

ω̇2
1(tb)

w1(tb)
− ω̈1(tb) = 0. This

is satisfied by imposing ω̇1(tb) = 0, ω̈1(tb) = 0. Substituting these conditions in

Eq. (4.11) one finally gets the extra BC ρ
(3)
± (tb) = ρ

(4)
± (tb) = 0.

To engineer the auxiliary functions I proceed as follows: first I design ρ−(t)
1 so

as to satisfy the 10 BC for ρ−(tb) and their derivatives. They could be satisfied

with a ninth-order polynomial, but I shall use higher-order polynomials so that

free parameters are left. These may be chosen to satisfy the equations for the

remaining BC for α± and ρ+. ω1(t) is deduced from the polynomial using Eq.

(4.11) so it becomes a function of the free parameters. There are different ways

to fix the free parameters so as to satisfy the remaining BC and design the other

auxiliary functions. In practice, I have used a shooting method [95]. The BC

used for the shooting are α±(0) = α̇±(0) = ρ̇+ = 0 and ρ+(0) = 1. Note that if

α±(tb) = 0, then α̈±(tb) = 0 since we impose ω̇1(tb) = ω̈1(tb) = 0. The differential

equations (4.11) for ρ+(t) and (4.12) for α± are now solved forward in time.

1I choose ρ− instead of ρ+ since Ω+ > Ω−. The effective trap for the plus (+) mode is thus
tighter and less prone to excitation than the minus (−) mode. Designing first ρ− guarantees
that this ‘weakest’ minus mode will not be excited.
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In the following, one must distinguish between single-species and mixed-species

ion chains. A consequence of having equal mass ions is that α−(t) is 0 at all times

(because the ion chain is symmetric, and thus the center of mass remains static)

so we only have to design the three auxiliary functions ρ±(t) and α+(t). When

both ions are of different species, the chain is not symmetric anymore, so we also

need to design α− taking into account its BC.

The MatLab function “fminsearch” [95] is used to find the free parameters

that minimize the total final energy for the approximate Hamiltonian, E ′′
0+(tf ) +

E ′′
0−(tf) [see Eq. (4.14)]. For equal mass ions, an 11th order polynomial ρ−(t) =
∑11

n=0 ant
n/tnf , i.e. two free parameters, is enough to achieve negligible excitation

in a range of times for which the harmonic approximation is valid. Only two

free parameters are needed to satisfy the BC α+(tf) = α̇+(tf) = 0, whereas

ρ+(tf ) = γ is also nearly satisfied for all values of these free parameters because the

evolution of this scaling factor is close to being adiabatic. ω1(t) is then a function

of the free parameters a10, a11. Figure 4.1 depicts the final excitation energy for

optimized parameters in the harmonic approximation, using Eq. (4.9), and with

the full Hamiltonian (4.1), whereas in Fig. 4.2 the values of the optimizing free

parameters are represented. The quantum simulations (triangles in Fig. 4.1)

are performed starting from the ground state of the Hamiltonian (4.1) at t = 0,

which is calculated numerically. For the corresponding classical simulations I solve

Hamilton’s equations for the two ions in the laboratory frame with Eq. (4.1): the

excitation energy is calculated as the total energy minus the minimal energy of

the ions in equilibrium. The initial conditions correspond as well to the ions in

equilibrium. As the potential is effectively nearly harmonic and the evolution of

wave packet’s width (ρ±) is close to being adiabatic, the classical excitation energy

reproduces accurately the quantum excitation energy, as demonstrated in Fig. 4.1.

Quantum calculations are very demanding, in particular with three or more ions,

so that we shall only perform classical calculations from now on.

For two different ions, we use a 13th order polynomial ρ−(t) =
∑13

n=0 ant
n/tnf ,

which is enough to nearly satisfy α±(tf) = α̇±(tf) = 0 and ρ+(tf ) = γ by finding

suitable values for the four free parameters a10−13. As before, ρ+(tf) = γ is
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Figure 4.3: Final excitation energy for the expansion of a 9Be+-40Ca+ ion
chain (dashed red line) and a 9Be+-40Ca+-9Be+ chain (solid blue line) starting
in the equilibrium configuration. The protocols are optimized with four (for
9Be+-40Ca+) and two (for 9Be+-40Ca+-9Be+) free parameters, see the main

text. ω0/(2π) = 1.2 MHz, γ2 = 3.

nearly satisfied without any special design. Figure 4.3 shows the final excitation

for a chain of two different ions. The excitation is higher than for equal masses.

Both for the equal mass and different mass expansions, the (exact) excitation

energy increases at short times, where the quadratic approximation to set the NM

Hamiltonians fails, see Figs. 4.1 and 4.3. Further simulations indicate that the

larger the ratio between the masses, the higher the excitation.

A less accurate, approximate treatment is based on the simpler polynomial

ansatz ρ− =
∑9

n=0 ant
n without free parameters,2

ρ− = 126(γ − 1)s5 − 420(γ − 1)s6 + 540(γ − 1)s7

− 315(γ − 1)s8 + 70(γ − 1)s9 + 1, (4.15)

s = t/tf . While the BC of ρ+ and α± are in general not accounted for exactly,

an advantage of this procedure is that there is no need to perform any numerical

minimization. This is useful to generalize the method for larger ion chains. For

equal masses, both α− = 0 and ρ−(t) are correctly designed, so that the center of

2As in the transport of two ions [63], an alternative ansatz to the polynomial is ρ−(t) =
1+γ
2 + γ−1

256

∑3
n=1 an cos

(
(2n−1)πt

tf

)
, where an = (−150, 25,−3). In numerical calculations the

polynomial ansatz (4.15) performs slightly better than the cosine-based one.
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Figure 4.4: Final excitation vs final times for expansions of two-equal ions
(solid blue line), four-equal ions (red dots) and eight-equal ions (dash-dotted
black line). The simulations are performed according to the approximate pro-
tocol in Eq. (4.16) and by solving the classical equations of motion for 40Ca+

ions. The initial ion chain is at equilibrium. ω0/(2π) = 1.2 MHz, γ2 = 3.

mass is not excited. From Eq. (4.11), ω1(t) is given by

ω1 =

√
ω2
0

ρ4−
− ρ̈−
A2

−ρ−
, (4.16)

where A− = Ω−/ω1 is a constant [see Eq. (4.3)]. In Fig. 4.1 I compare the

performance of this approximate protocol and the one that satisfies all the BC in

the two-equal-ion expansion.

4.3 N-ion chain expansion

I now proceed to extend the results in the previous section to larger ion chains

governed by the Hamiltonian (4.1). The equilibrium positions can be written in

the form [96]

q
(0)
i (t) = l(t)ui, (4.17)

where

l3(t) =
Cc

u0(t)
(4.18)
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Figure 4.5: Classical trajectories of eight expanding 40Ca+ ions. The evolu-
tion is performed according to Eq. (4.16). ω0/(2π) = 1.2 MHz, γ2 = 3, tf = 4.4

µs.

and the ui are the solutions of the system

ui −
i−1∑

j=1

1

(ui − uj)2
+

N∑

j=i+1

1

(ui − uj)2
= 0. (4.19)

The NM coordinates are thus defined as [85]

qν =
∑

i

aνi
√
mj(qi − q

(0)
i ), (4.20)

where the NM subscript ν runs now from 1 to N . Conventionally the ν are

ordered from the lowest to the highest frequency [96]. As for two ions we de-

fine V (q1, q2, q3, ..., qN) as the coordinate-dependent part of the Hamiltonian (4.1).

The aνi are the components of the νth eigenvector of the symmetric matrix

Vij = 1√
mimj

∂2V
∂qi∂qj

(q
(0)
i , q

(0)
j ), that, together with the eigenvalues λν = Ω2

ν , will

usually be determined numerically [96]. They are normalized as
∑

i a
2
νi = 1. As

u0 is common to all ions, it can be shown that Ων(t) = Aνω1(t), where Aν is a

constant.
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Figure 4.6: Comparison of final excitation quanta (classical simulation as in
Fig. 4.1) vs final time in the expansion of two 40Ca+ ions following the shooting
protocol (solid blue), linear protocol in Eq. (4.24) (dotted green), and cosine
protocol in Eq. (4.25) (dashed red). In (a) I plot in logarithmic scale up to times
where only the shooting protocol reaches the level of 0.1 excitation quanta. In
(b) I extend the analysis up to longer final times, so that the best of the cosine
protocol reaches also 0.1 final excitation quanta. ω0/(2π) = 1.2 MHz, γ2 = 3.

Generalizing the steps leading to Eq. (4.7), the Hamiltonian in a NM frame up

to quadratic terms becomes

H ′ =
∑

ν

[
p2ν

2
+

1

2
Ω2

νq
2
ν + p0νpν

]
, (4.21)

where the pν are momenta conjugate to the qν , and p0ν = −∑i aνi
√
miq̇

(0)
i . As

for two ions, all the p0ν are proportional to ω̇1/ω
5/3
1 . We now apply the unitary

transformation U = e−i
∑

ν p0νqν/~ and find the effective Hamiltonian

H ′′ =
∑

ν

[
p2ν

2
+

1

2
Ω2

ν

(
qν +

ṗ0ν

Ω2
+

)2 ]
. (4.22)
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This Hamiltonian is similar to the one for two ions (4.9). The corresponding set

of auxiliary equations is also similar to Eqs. (4.11) and (4.12),

ρ̈ν + Ω2
νρν =

Ω2
0ν

ρ3ν
,

α̈ν + Ω2
να = ṗ0ν . (4.23)

The BC for inverse engineering read ρν(0) = 1, ρν(tf) = γ, ρ̇ν(tb) = ρ̈ν(tb) = 0,

αν(tb) = α̇ν(tb) = α̈ν(tb) = 0. When introducing the BC for the αν in the set of

Newton’s equations, we get from all of them the same condition ω̇1(tb)
ω1(tb)

+ ω̈1(tb) = 0,

which is satisfied for ω̇1(tb) = ω̈1(tb) = 0.

Figure 4.4 depicts the excitation for expansions of single-species ion chains, with

approximate (nonoptimized) protocols that use Eqs. (4.15) and (4.16), but with

the lowest-frequency mode, ν = 1, instead of the minus (−) mode. The longer

the chain, the lower the fidelity of the protocol, as more terms are neglected in

the NM approximation and more boundary conditions are disregarded. However,

the protocol still provides little excitation at long enough final times in the most

demanding simulation that we examined, N = 8. Figure 4.5 shows the position of

the ions, and the trap frequency along the evolution time for the eight-ion chain,

ending up with a separation between ions twice as large as the initial one, in times

shorter than 4 µs (Fig. 4.4) without any significant final excitation.

In Fig. 4.3 the excitation for an expansion of the two-species chain 9Be+-40Ca+-

9Be+ is depicted. The minimization technique was used with two free parameters,

that is, with an 11th-order polynomial ansatz for ρν=1(t). The excitation is smaller

than for the shorter chain 9Be+-40Ca+ (with a 13th-order polynomial for ρ−) due

to the symmetry in the three-ion chain, which leaves two of the NM static and

unexcited.
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4.4 Discussion

I have designed fast diabatic protocols for the time dependence of the trap

frequency that suppress the final excitation of different ion-chain expansions or

compressions. Unlike the simpler single-ion expansion [32], the inverse design

problem of the trap frequency for an ion chain involves coupled Newton and Er-

makov equations for each dynamical normal mode. I found ways to deal with this

inverse problem by applying a shooting technique in the most accurate protocols,

and effective, simplifying approximations.

These protocols work for process times for which the quadratic approximation

for the Hamiltonian is valid. Longer and more asymmetric chains need larger

times than shorter and symmetrical ones. The examples show that these times

are compatible with current quantum information protocols, so many processes

may benefit by the described trap-frequency time dependencies.

The designed protocols provide a considerable improvement in final time and

excitation energy with respect to simple, naive protocols. For the expansion of

two 40Ca+ considered in Fig. 4.1 I compare in Fig. 4.6 the excitation energy of the

shooting protocol with two simple protocols that drive the frequency ω1 linearly,

ω1(t) = ω0 +
ωf − ω0

tf
t, (4.24)

and following a cosine function,

ω1(t) =
ω0 + ωf

2
+
ω0 − ωf

2
cos

(
πt

tf

)
. (4.25)

The simulations are classical, as described in Sec. 4.2. Figure 4.6 (a) compares

the excitations at short times. For tf ∼ 2.5 µs, the shooting protocol reaches a

low excitation of 0.1 vibrational quanta, four orders of magnitude smaller than

the excitations due to the simple methods. In Fig. 4.6 (b) the excitations are

represented for longer protocol times. The smoother cosine protocol behaves better

than the linear one and finally reaches an excitation of approximately 0.1 quanta
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for tf ∼ 20 µs. That means that the optimized protocol gets an improvement by

a factor of 8 in final time. The results presented on this chapter were published

in [97].





Chapter 5

Fast separation of two trapped

ions

“A creative man is motivated by the desire to

achieve, not by the desire to beat others.”

Ayn Rand

I design fast protocols to separate or recombine two ions in a segmented Paul

trap. By inverse engineering the time evolution of the trapping potential composed

of a harmonic and a quartic term, it is possible to perform these processes in a few

microseconds without final excitation. These times are much shorter than the ones

reported so far experimentally. The design is based on dynamical invariants and

dynamical normal modes. Anharmonicities beyond the harmonic approximation

at potential minima are taken into account perturbatively. The stability versus

an unknown potential bias is also studied.

83
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5.1 Introduction

Separating ion chains is in the toolkit of basic operations required. (Merging

chains is the corresponding reverse operation so we shall only refer to separation

hereafter.) It has been used to implement two-qubit quantum gates [57]; also to

purify entangled states [98, 99], or teleport material qubits [100]. Moreover, as is a

common theme in this thesis, ion chain separation/merging could be an important

operation in the scheme to build an architecture for processing information scalable

to many ions in multisegmented traps [23].

Ion-chain separation is known to be a difficult operation [101]. Experiments

have progressed towards lower final excitations and shorter times but much room

for improvement still remains [26, 42, 84]. Problems identified include anoma-

lous heating, so devising short-time protocols via shortcuts-to-adiabaticity (STA)

techniques was proposed as a way out worth exploring [83]. STA methods intend

to speed up different adiabatic operations [31, 32] without inducing final excita-

tions. An example of an elementary (fast quasi-adiabatic) STA approach [32] was

already applied for fast chain splitting in [42]. Here, I design, using a more gen-

eral and efficient STA approach based on dynamical normal modes (NM) [63, 97],

protocols to effectively separate two equal ions, initially in a common electrostatic

linear harmonic trap, into a final configuration where each ion is in a different

well. The motion is assumed to be effectively one dimensional due to tight radial

confinement. The external potential for an ion at q is approximated as

Vext = α(t)q2 + β(t)q4, (5.1)

which is experimentally realizable with state-of-art segmented Paul Traps [101,

102].

Using dynamical NM [63, 97], a Hamiltonian will be set which is separable in a

harmonic approximation around potential minima. By means of Lewis-Riesenfeld

invariants [76], I shall design first the approximate dynamics of an unexcited split-

ting, taking into account anharmonicities in a perturbative manner, and from that
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inversely find the corresponding protocol, i.e. the α(t) and β(t) functions.

The Hamiltonian of the system of two ions of mass m and charge e is, in the

laboratory frame,

H =
p21
2m

+
p22
2m

+ V,

V = α(t)(q21 + q22) + β(t)(q41 + q42) +
Cc

q1 − q2
, (5.2)

where p1, p2 are the momentum operators for both ions, q1, q2 their position op-

erators, and Cc = e2

4πǫ0
, ǫ0 being the vacuum permittivity. I use on purpose a

c-number notation since I shall also consider classical simulations. The context

will make clear if c−numbers or q−numbers are required. I suppose that, due to

the strong Coulomb repulsion, q1 > q2. By minimizing the potential part of the

Hamiltonian V , I find for the equilibrium distance between the two ions, d(t), the

quintic equation [101]

β(t)d5(t) + 2α(t)d3(t)− 2Cc = 0, (5.3)

which will be quite useful for inverse engineering the ion-chain splitting, even

without an explicit solution for d(t). At t = 0 a single external well is assumed,

β(0) = 0 and α(0) > 0, whereas in the final double-well configuration β(tf) >

0, α(tf) < 0. At some intermediate time ti the potential becomes purely quartic

(α(ti) = 0). My aim is to design the functions α(t) and β(t) so that each of the

Figure 5.1: Scheme of the separation process. At t = 0 (left), both ions are
trapped within the same external harmonic potential. At final time tf (right),
the negative harmonic term, and a quartic term build a double well external
potential. The aim of the process is to set each of the ions in a different well

without any residual excitation.
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ions ends up in a different external well as shown in Fig. 5.1, in times as short as

possible, and without any final excitation.

5.2 Dynamical Normal Modes

To define dynamical NM coordinates, I calculate first at equilibrium (the point

{q(0)1 , q
(0)
2 } in configuration space where the potential is a minimum, ∂V/∂q1 =

∂V/∂q2 = 0) the matrix Vij =
1
m

∂2V
∂qi∂qj

∣∣
eq
. The equilibrium positions are q

(0)
1 = d(t)

2
,

q
(0)
2 = −d(t)

2
, and the matrix takes the form

Vij =
1

m


2α+ 12β d2

4
+ 2Cc

d3
−2Cc

d3

−2Cc

d3
2α+ 12β d2

4
+ 2Cc

d3


 . (5.4)

The eigenvalues are

λ− =
1

m
(2α+ 3βd2),

λ+ =
1

m

(
2α+ 3βd2 +

4Cc

d3

)
, (5.5)

which define the NM frequencies as Ω± =
√
λ± corresponding to center-of-mass

(−) and relative (stretch) motions (+). These relations, with Eq. (5.3) written as

β(t) =
2Cc

d5(t)
− 2α(t)

d2(t)
, (5.6)

allow to write α(t) and d(t) as functions of the NM frequencies:

α(t) =
1

8
m
(
3Ω2

+ − 5Ω2
−
)
, (5.7)

d(t) = 3

√
4Cc

m (Ω2
+ − Ω2

−)
. (5.8)

Substituting these expressions into Eq. (5.6), β(t) may also be written in terms

of NM frequencies.
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The normalized eigenvectors are

v− =
1√
2

(
1

1

)
,

v+ =
1√
2

(
1

−1

)
, (5.9)

which I denote as v± =
(
a±
b±

)
. The (mass-weighted) dynamical NM coordinates are

defined in terms of the laboratory coordinates as

q± = a±
√
m(q1 − q

(0)
1 ) + b±

√
m(q2 − q

(0)
2 ). (5.10)

The unitary transformation of coordinates is

U =

∫
dq+dq−dq1dq2|q+, q−〉〈q+, q−|q1, q2〉〈q1, q2|, (5.11)

where 〈q+, q−|q1, q2〉 = δ[q1−q1(q+, q−)]δ[q2−q2(q+, q−)]. The Hamiltonian in the

dynamical equation for |ψ′〉 = U |ψ〉, where |ψ〉 is the lab-frame time-dependent

wave function evolving with H , is given by

H ′ = UHU † − i~U(∂tU
†) =

=
p2+

2
+

1

2
Ω2

+q
2
+ +

ḋ√
2

√
mp+

+
p2−
2

+
1

2
Ω2

−q
2
−, (5.12)

plus qubic and higher order terms in the potential that we neglect by now (they

will be considered in Sec. 5.4 below). Similarly to [63, 97], I apply a further

unitary transformation U = e−i
√
mḋq+/(

√
2~) to write down an effective Hamiltonian

for |ψ′′〉 = U|ψ′〉 with the form of two independent harmonic oscillators in NM

space, H ′′ = UH ′U † − i~U(∂tU †),

H ′′ =
p2+

2
+

1

2
Ω2

+

(
q+ +

√
md̈√
2Ω2

+

)2

+
p2−
2

+
1

2
Ω2

−q
2
− = H ′′

+ +H ′′
−. (5.13)
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These oscillators have dynamical invariants of the form [76]

I± =
1

2
[ρ±(p± − ẋ±)− ρ̇±(q± − x±)]

2

+
1

2
Ω2

0±

(
q± − x±
ρ±

)2

, (5.14)

where the auxiliary functions ρ± and x+ satisfy

ρ̈± + Ω2
±ρ± =

Ω2
0±
ρ3±

, (5.15)

ẍ+ + Ω2
+x+ = −

√
m

2
d̈, (5.16)

with Ω0± = Ω±(0), and, due to symmetry, x− = 0. In this chapter, I used the

notation x± for the auxiliary function satisfying Newton’s equation instead of α±

as in the rest of the chapters because α is already used to define the harmonic

term in the potential. This is done because it is a tradition in the field to name

the harmonic term as α.

The physical meaning of the auxiliary functions may be grasped from the so-

lutions of the time-dependent Schrödinger equations (for each NM Hamiltonian

H ′′
± in Eq. (5.13)) proportional to the invariant eigenvectors [33]. They form a

complete basis for the space spanned by each Hamiltonian H ′′
± and take the form

〈q±|ψ′′
n±(t)〉 = e

i
~

[

ρ̇±q2±
2ρ±

+(ẋ±ρ±−x±ρ̇±)
q±
ρ±

]

Φn(σ±)

ρ
1/2
±

, (5.17)

where σ± = q±−x±

ρ±
, and Φn(σ±) are the eigenfunctions of the static harmonic

oscillator at time t = 0. Thus, ρ± are scaling factors proportional to the state

“width” in NM coordinates, whereas the x± are the dynamical-mode centers in

the space of NM coordinates. Within the harmonic approximation, there are

dynamical states of the factorized form |ψ′′(t)〉 = |ψ′′
+(t)〉|ψ′′

−(t)〉 for the ion chain

dynamics, where the NM wave functions |ψ′′
±(t)〉 evolve independently with H ′′

±.

They may be written as combinations of the form |ψ′′
±(t)〉 =

∑
n Cn±|ψ′′

n±(t)〉, with
constant amplitudes Cn±. The average energies of the nth-basis states for the two
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NM are E ′′
n± = 〈ψ′′

n±|H ′′
±|ψ′′

n±〉,

E ′′
n− =

(2n+ 1)~

4Ω0−

(
ρ̇2− + Ω2

−ρ
2
− +

Ω2
0−
ρ2−

)
,

E ′′
n+ =

(2n+ 1)~

4Ω0+

(
ρ̇2+ + Ω2

+ρ
2
+ +

Ω2
0+

ρ2+

)

+
1

2
ẋ2+ +

1

2
Ω2

+

(
x+ −

√
md̈√
2Ω2

+

)2

. (5.18)

5.3 Design of the Control Parameters

Once the Hamiltonian and Lewis-Riesenfeld invariants are defined, I proceed

to apply the invariant-based inverse-engineering technique and design shortcuts

to adiabaticity. The results for the simple harmonic oscillator in [32] serve as

a reference, but have to be extended here since the two modes are not really

independent from the perspective of the inverse problem. This is because a unique

protocol, i.e., a single set of α(t) and β(t) functions has to be designed.

I first set the initial and target values for the control parameters α(t) and β(t).

At time t = 0, the external trap is purely harmonic, with (angular) frequency ω0.

From Eq. (5.5), we find that Ω−(0) = ω0 and Ω+(0) =
√
3ω0. The equilibrium

distance is d(0) = 3

√
2Cc

mω2
0
. For the final time, I set a tenfold expansion of the

equilibrium distance, d(tf) = 10d(0), and Ω−(tf) = ω0. This also implies Ω+(tf) =
√
1.002ω0 ≈ Ω−(tf), i.e., the final frequencies of both NM are essentially equal,

the Coulomb interaction is negligible, and the ions can be considered to oscillate

in independent traps.

The inverse problem is somewhat similar to the expansion of a trap with two

equal ions in Ref. [63], but complicated by the richer structure of the external

potential. The Hamiltonian (5.13) and the invariant (5.14) must commute at both

boundary times [H(tb), I(tb)] = 0,

tb = 0, tf , (5.19)
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Figure 5.2: Evolution of (a) α(t); (b) β(t); and (c) d(t). In (d), the NM
frequencies, solid line for the ‘-’ and dashed line for the ‘+’ are depicted. Two
9Be+ ions were separated in the simulation, with ω0/(2π) = 2 MHz, tf = 5.2

µs, α0 = mω2
0/2, and d(0) = 5.80 µm.

to drive initial levels into final levels via a one-to-one mapping. This is achieved

by applying appropriate boundary conditions (BC) to the auxiliary functions ρ±,

x± and their derivatives:

ρ±(0) = 1, ρ±(tf) = γ±, (5.20)

ρ̇±(tb) = ρ̈±(tb) = 0, (5.21)

x+(tb) = ẋ+(tb) = ẍ+(tb) = 0, (5.22)

where γ± =
√

Ω±(0)
Ω±(tf )

. Let me recall that x− = 0 for all times so this parameter

does not have to be considered further.

Inserting the BC for x+(tb) and ẍ+(tb) in Eq. (5.16), we find that d̈(tb) = 0.

Additionally, ḋ(tb) = 0 is to be imposed so that U(tb) = 1. According to Eq. (5.8),

ḋ(tb) = d̈(tb) = 0 by imposing Ω̇±(tb) = Ω̈±(tb) = 0. With ḋ(tb) = d̈(tb) = 0,

the Hamiltonians and wave functions coincide at the boundaries, H ′(tb) = H ′′(tb),
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|ψ′(tb)〉 = |ψ′′(tb)〉, which simplifies the calculation of the excitation energy.

From Eq. (5.15), the NM frequencies may be written as

Ω± =

√
Ω2

0±
ρ4±

− ρ̈±
ρ±
. (5.23)

Thus, the BC Ω̇±(tb) = Ω̈±(tb) = 0 are satisfied by imposing on the auxiliary

functions the additional BC

...
ρ±(tb) =

....
ρ ±(tb) = 0. (5.24)

We may now design ansatzes for the auxiliary functions ρ± that satisfy the ten

BC in Eqs. (5.20,5.21,5.24), plus the BC for x+(tb) and ẋ+(tb) in Eq. (5.22) (since

d̈(tb) = 0, ẍ+(tb) = 0 is then automatically satisfied [see Eq. (5.16)]). Finally,

from the NM frequencies given by Eq. (5.23) we can inverse engineer the control

parameters α(t) and β(t) from Eqs. (5.6), (5.7), and (5.8).

A simple choice for ρ−(t) is a polynomial ansatz of 9th order ρ− =
∑9

i=0 bis
i,

where s = t/tf . Substituting this form in the ten BC in Eqs. (5.20), (5.21), (5.24),

we finally get

ρ− = 126(γ− − 1)s5 − 420(γ− − 1)s6 + 540(γ− − 1)s7

− 315(γ− − 1)s8 + 70(γ− − 1)s9 + 1. (5.25)

For ρ+ I use an 11th order polynomial ρ+ =
∑11

n=0 ans
n to satisfy as well x+(tb) =

ẋ+(tb) = 0. The parameters a0−9 are fixed so that the 10 BC for ρ+ are fulfilled (see

the Appendix G), whereas a10, a11 are left free, and will be numerically determined

by a shooting program [103] (‘fminsearch’ in MATLAB, which uses the Nelder-

Mead simplex method for optimization), so that the remaining BC for x+(tb) and

ẋ+(tb) are also satisfied. Specifically, for each pair {a10, a11}, Ω±(t) and d(t) are

determined from Eqs. (5.8) and (5.15), to solve Eq. (5.16) for x+(t) with initial

conditions x+(0) = ẋ+(0) = 0. The free constants are changed until x+(tf) = 0
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and ẋ+(tf ) = 0 are satisfied. Numerically, a convenient way to find the solution

is to minimize the energy E ′′
n+(tf ) in Eq. (5.18).

Figures 5.2 (a) and (b) depict the control parameters α(t) and β(t) found with

this method, using Eqs. (5.6) and (5.7), for some value of tf and ω0, see the

caption, while Fig. 5.2 (c) represents the equilibrium distance between ions as a

function of time (5.8), and Fig. 5.2 (d) the NM frequencies. In Fig. 5.3 (a) the

excitation energy is shown versus final time for the optimized parameters given in

Fig. 5.3 (b). The initial state is the ground state of the two ions. It is calculated by

propagating an initial guess of the wave function in imaginary time until it relaxes

to the lowest eigenfunction [81]. The excitation energy is Eex = E(tf ) − E0(tf ),

where E(tf) is the final energy, calculated in the lab frame, and E0(tf ) is the final

ground-state energy. The wave function evolution is calculated using the “Split-

Operator Method” with the full Hamiltonian (5.2). If the harmonic approximation

were exact, there would not be any excitation with this STA method, E(tf) =

E ′′
0+(tf)+E ′′

0−(tf) = E0(tf) [see Eq. (5.18)]. The actual result is perturbed by the

anharmonicities and NM couplings. The final ground state is also calculated with

an “imaginary-time evolution”. The corresponding final ground-state energy is

essentially twice the harmonic-oscillator ground-state energy plus the (negligible)

Coulomb repulsion at distance d(tf). For the final times of all the examples,

as it was noted in previous works [52, 63, 63, 83], classical simulations (solving

Hamilton’s equations from the equilibrium configuration instead of Schrödinger’s

equation) give indistinguishable results in the scale of Fig. 5.3 (a).

The excitation energy in Fig. 5.3(a) (solid line) increases at short times since

the harmonic NM approximation fails [63, 97]. However, it goes down rapidly

below one excitation quantum at times which are still rather small compared to

experimental values used so far [42, 84]. In the following section, I shall apply a

perturbative technique to minimize the excitation further.
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Figure 5.3: (a) Final excitation energy vs final time using the inverse-
engineering design of Sec. 5.3 (solid blue), and the design that takes into account
anharmonicities in Sec. 5.4 (dashed red). (b) Values of the free parameters a10
(solid blue) and a11 (dashed red) that minimize the excitation energy for the
11th order polynomial (G.1). (c) Parameters c10 (solid blue), c11 (dashed red)
and c12 (dash-dotted green) that minimize the excitation energy for the 12th
order polynomial (G.2). Two 9Be+ ions were splitted, with ω0/(2π) = 2 MHz.

5.4 Beyond the harmonic approximation

An improvement of the protocol is to consider the perturbation of the higher

order terms neglected in the Hamiltonian (5.13). These “anharmonicities” [59]

are cubic and higher order terms in the Taylor expansion of the Coulomb term

Cc/(q1 − q2),

δV =

∞∑

j=3

δV (j)

=
∞∑

j=3

(−1)jCc

dj+1

[(
q2 − q

(0)
2

)
−
(
q1 − q

(0)
1

)]j
. (5.26)
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In NM coordinates, the terms take the simple form

δV (j) = (−1)j+1 Cc

dj+1

(√
2

m
q+

)j

, (5.27)

which may be regarded as a perturbation to be added to H ′′
+ in Eq. (5.13). (The

perturbation does not couple the center-of-mass and relative subspaces.) To first

order, the excess energy due to these perturbative terms at final time is given by

δE
(j)
n+ = 〈ψ′′

n+(tf)|δV (j)|ψ′′
n+(tf)〉, (5.28)

where the |ψ′′
n+〉 are the unperturbed states in Eq. (5.17). Inverse engineering the

splitting process may now be carried out by considering a 12th order polynomial

for ρ+ (see (G.2)), with three free parameters so as to fix the BC for x+ and

also minimize the excitation energy. In practice, I used MATLAB’s ‘fminsearch’

function for the shooting to minimize E0+(tf )+δE
(3)
0+ as no significant improvement

occurs by including higher order terms. Figure 5.3 (a) compares the performance

of such a protocol with the simpler one with the 11th-order polynomial (G.1).

Figure 5.3 (c) gives the values of optimized parameters at different final times.

5.5 Discussion

A large quartic potential is desirable to control the excitations produced at the

point where the harmonic term changes its sign [83]. At this point, the harmonic

potential switches from confining to repulsive, which reduces the control of the

system and potentially increases diabaticities and heating. In the inverse approach

proposed here, there is no special design of the protocol at this point, but the

method naturally seeks high quartic confinements there. In Fig. 5.2 (b) β reaches

its maximum value right at the time where α changes sign (see Fig. 5.2 (a)).

However, the maximum value that β can reach will typically be limited in a Paul

trap [101]. In Table 5.1 I summarize the different maximal values of β, and critical
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ω0 (MHz) βmax (10−3N/m3) tcrit (µs)

3 44.2 2.9
2 11.4 4.4
1.2 2.082 7.4
0.8 0.539 11.2

Table 5.1: Maximum values of β, and critical times (final times at which exci-
tations below 0.1 quanta are reached) for different values of ω0. The calculations

were performed with the 11th order polynomial for ρ+.

times (final times at which excitations below 0.1 quanta are reached) for different

values of ω0 using the 11th-order polynomial (G.1) for ρ+.

The maximum β decreases with tf , such that the shortest possible tf at a given

maximum tolerable excitation energy is limited by the achievable β. The trap

used in Ref. [84] yields a maximum β of about 10−4 N/m3, at ±10 V steering

range. In a recent experiment reported in [104], where although the purpose

was not ion separation a double well potential was produced, the value used was

β ≈ 5× 10−3 N/m3. The numbers reported in the Table are thus within reach, as

the β coefficients scale with the inverse 4th power of the overall trap dimension,

and technological improvements on arbitrary waveform generators may allow for

operation at an increased voltage range.

Another potential limitation the method could encounter in the laboratory is

due to biases (a linear slope) in the trapping potential, Vext = αq2+βq4+λq, with

λ constant and unknown [83]. Figure 5.4 represents the excitation energy versus

the energy difference between the two final minima of the external potential, ∆E

(also vs λ). To calculate the results, α(t) and β(t) are designed as if λ = 0, but

the dynamics is carried out with a nonzero λ, in particular the initial state is the

actual ground state, including the perturbation. Note that ∆E should be more

than a thousand vibrational quanta to excite the final energy by one quantum. In

Ref. [84] an energy increase of ten phonons at about 150 zN and 80 µs separation
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Figure 5.4: Excitation energy vs. different tilt values of the external potential
in terms of the energy difference between both wells (upper axis) and values of
the λ parameter (lower axis), when using the 11th order polynomial in the

evolution. Same parameters as in Fig. 5.2.

time was reported, so the STA ramps definitely improve the robustness against

bias.

Further experimental limitations may be due to random fluctuations in the

potential parameters, or higher order terms in the external potential. I leave

these important issues for a separate study but note that the structure of the

STA techniques used here is well adapted to deal with noise or perturbations

[44, 56, 105].

Finally, I compare in Fig. 5.5 the performance of the protocols based on the

polynomials (5.25) and (G.1) with a simple non-optimized protocol based on those

experimentally used in [84]. There, the equilibrium distance d is first designed as

d(t) = d(0)+[d(tf)−d(0)]s2 sin(sπ/2), where s = t/tf . From the family of possible

potential ramps consistent with this function, I chose a polynomial that drives α

from α(0) = α0 to α(tf) = −α0/2 (as in Fig. 5.2) and whose first derivatives

are 0 at both boundary times. β is given by Eq. (5.3). For the times analysed

in Fig. 5.5, the method based on Eqs. (5.25) and (G.1) clearly outperforms

the nonoptimized ramp. To get excitations below the single motional excitation
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Figure 5.5: Excitation energy vs. final time comparing the 11th order poly-
nomial (solid blue) and a non optimized trajectory experimentally used in [84]

(dashed red) in the evolution. Same parameters as in Fig. 5.2.

quantum with the nonoptimized protocol, final times as long as tf ∼ 80µs would

be needed, which is in line with current experiments.

I conclude that the method presented here, could bring a clear improvement

with respect to the best results experimentally reported so far [42, 84]. The param-

eters required are realistic in current trapped ions laboratories. The simulations

show that, under ideal conditions, the separation of two ions could be performed

in a few oscillation periods, at times similar to those required for other operations

as transport [63] or expansions [97], studied before in this thesis (Chapters 2 and

4 respectively). The results obtained in this chapter were published in [106].





Chapter 6

Shortcuts to adiabaticity for an

ion in a rotating radially-tight

trap

Merlin: There’s only one thing to it. Learn!

Learn why the world wags, and what wags

it.

Arthur: How could I learn if I couldn’t think?....

Merlin: Yes...thinking, boy, is something you

should definitely get into the habit of

making use of as often as possible.

From the film ”Camelot” (1967)

I engineer the fast rotation of an effectively one-dimensional ion trap for a

predetermined rotation angle and time, avoiding the final excitation of the trapped

ion. Different schemes are proposed with different speed limits that depend on the

control capabilities. I also make use of trap rotations to create squeezed states

without manipulating the trap frequencies.

99
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6.1 Introduction

In this chapter I study rotations of a single ion as depicted in Fig. 6.1. My

aim is to inverse engineer the time dependence of the control parameter(s) to

implement a fast process, free from final excitations. I assume for simplicity that

the ion is trapped in a linear, harmonic trap, tightly confined in a radial direction

so that it moves effectively along a one-dimensional axial direction, hereafter “the

line”. The trapping line is set horizontally and is rotated in a time tf up to an

established final angle (θf = π/2 in all examples) with respect to a vertical axis

that crosses the center of the trap. Such an operation would be useful to drive

atoms through corners and junctions in a scalable quantum processor [107, 108]. It

is also a first step towards the more complicated problem of rotating an ion chain

[107, 109, 110], which would facilitate scalability in linear segmented traps, and

be useful to rearrange the ions, e.g., to locate a cooling ion at the right position in

the chain [110]. Opposite to other operations studied in this thesis, like transport

(Chapters 1 and 2) or expansion (Chapter 4), rotation of a single ion was never

studied before, so I shall first design the rotation process for a single ion in this

chapter, and then I will extend the analysis to ion chains in Chapter 7.

I shall first find the classical Hamiltonian. Let s denote a point on the line.

ti tf

θf

Figure 6.1: Schematic representation of the rotation process. The ion is
confined along a line (where it is subjected to an effective one-dimensional lon-
gitudinal potential), which is rotated by an angle θ up to θf in a time tf , so

that the final state is not excited.
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s may take positive and negative values. A time-dependent trajectory s(t) has

Cartesian, laboratory frame components x = x(s, t), y = y(s, t),

x = s cos(θ),

y = s sin(θ), (6.1)

where θ = θ(t) is the rotation angle. The kinetic energy is K = 1
2
m(ẋ2+ ẏ2), where

m is the ion mass, and the potential energy is assumed by now to be harmonic,

1
2
mω2

0s
2 (this will be relaxed below and in Sec. 6.2), where ω0 is the angular

frequency of the external confining trap in the (longitudinal) direction of the line.

This gives the Lagrangian

L =
1

2
mṡ2 − 1

2
mω2s2, (6.2)

ω2 = ω2
0 − θ̇2. (6.3)

Note that the angular velocity of the rotation θ̇ must be real but could be nega-

tive, whereas ω2 may be positive or negative, making ω purely imaginary in the

later case. Unless stated otherwise, the following physically motivated boundary

conditions are also assumed: the initial and final trap should be at rest, and I also

impose continuity of the angular velocity,

θ(0) = 0, θ(tf ) = θf , (6.4)

θ̇(0) = θ̇(tf ) = 0, (6.5)

ω(0) = ω(tf) = ω0, (6.6)

where the last line follows from the second one using Eq. (6.3). By a Legendre

transformation we finally get the Hamiltonian1

H = ṡ
∂L

∂ṡ
− L =

1

2
mṡ2 +

1

2
mω2s2. (6.7)

At this point, I quantize this Hamiltonian by substituting mṡ by the momentum

1This is easily generalized for a potential U(s), not necessarily harmonic, as H = 1
2mṡ2 +

U(s)− 1
2mθ̇2s2
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operator p and by considering s as the position operator, which becomes a c-

number in coordinate representation,

H =
1

2m
p2 +

1

2
mω2s2. (6.8)

I will from now on work with this quantum Hamiltonian (possibly with a more

general potential) and corresponding quantum states. It represents formally a

harmonic oscillator with time-dependent frequency, but there are significant dif-

ferences with an actual harmonic oscillator when the inverse engineering of ω(t) is

considered. For an actual harmonic oscillator, a fast and safe expansion or com-

pression in a time tf should take the system from an initial value to a final value

of ω without final excitation, in principle without further conditions. By contrast,

in the rotation process, according to Eq. (6.6), the initial and final effective fre-

quencies are the same, but the conditions in Eqs. (6.4) and (6.5) must be satisfied.

This implies an integral constraint on ω,

θ(tf) =

∫ tf

0

θ̇dt′ =

∫ tf

0

[ω2
0 − ω2]1/2dt′, (6.9)

where the square root branch should be chosen to satisfy continuity. One further

difference is that in a physical expansion/compression ω(t) is controlled directly,

whereas in the rotation there are several options. If ω0 is constant, only θ̇(t)

is controlled, so that ω(t) is an ‘effective’ frequency. In general, both ω0 and θ̇

could be controlled as time-dependent functions, see the next section. As for the

final excitation, the expression for the energy of a state that begins in the nth

eigenstate of the trap at rest can be found making use of the Lewis-Riesenfeld

invariants [32, 76], see the corresponding time-dependent wave function in the

Appendix H,

〈H(t)〉n =
(2n+ 1)~

4ω(0)

(
ρ̇2 + ω2(t)ρ2 +

ω(0)2

ρ2

)
. (6.10)

Here ρ is a scaling factor, proportional to the width of the invariant eigenstates,

that satisfies the Ermakov equation

ρ̈+ ω2(t)ρ =
ω2(0)

ρ3
. (6.11)
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To avoid any final excitation, it is required that

ρ(tf) = 1, ρ̇(tf) = 0 (6.12)

for the initial conditions ρ(0) = 1, ρ̇(0) = 0. The boundary conditions for ρ and

Eqs. (6.4), (6.5), (6.6) imply that H(0) = H(tf) commutes with the corresponding

Lewis-Riesenfeld invariant [76], so that the nth initial eigenstate is dynamically

mapped onto itself (but rotated) at time tf . In Eqs. (6.10) and (6.11), both the

excitation energy and the wave packet width are mass independent, so that inverse-

engineered rotation protocols will be independent of the species. In the following

sections, I shall analyze different methods to perform the rotation without final

excitation.

6.2 Control of trap frequency

and angular velocity

If both the trap angular frequency ω0 and the angular velocity θ̇ are control-

lable functions of time, a simple family of solutions to the inverse problem is found

by setting a θ̇(t) that satisfies Eqs. (6.4) and (6.5), and compensating the time

dependence of θ̇2 with a corresponding change in ω2
0(t), so that ω2(t) = ω2(0)

remains constant during the whole process. From the point of view of the effec-

tive harmonic oscillator, ‘nothing happens’ throughout the rotation, so that the

effective state remains unexcited at all times.

I may apply the Lewis-Leach theory of quadratic in momentum invariants

[58, 111] to extend the above results to arbitrary potentials2. The family of Hamil-

tonians

H =
p2

2m
+

1

2
mΩ2s2 +

1

ρ2
U

(
s

ρ

)
, (6.13)

2The theory was first formulated for classical systems in [58] but is applicable to quantum
systems as well [111]. Incidentally, this means that the rotation protocols designed in this chapter
(in this and the following sections) are valid for classical particles as well. The difference appears
only when considering which states are valid or not for classical and quantum particles, e.g.,
when using phase-space formulations of quantum states and classical ensembles.
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where U is an arbitrary function, and Ω depends on time, has the invariant

I =
π2

2m
+

1

2
mΩ2

0s
2 + U

(
s

ρ

)
, (6.14)

where π = ρp−mρ̇s, and Ω0 is a constant, provided the Ermakov equation

ρ̈+ Ω2ρ =
Ω2

0

ρ3
(6.15)

is satisfied. Consider the simple case Ω0 = 0, i.e., from Eq. (6.15),

Ω2(t) = − ρ̈
ρ
. (6.16)

If we set ρ(t) = 1 as a constant for all times, it follows that Ω(t) = 0. However,

as we saw in the previous section, the rotation of a line with the potential U(s)

produces in the line frame a centrifugal term −θ̇2s2m/2. To cancel the total

harmonic term, we have to add to the trap potential a compensating harmonic

term, ω2
cs

2m/2, such that ω2
c = θ̇2. In other words, Ω2 = ω2

c − θ̇2 = 0. The

resulting Hamiltonian and invariant (in this case they are equal) are simply

H = I =
p2

2m
+ U(s), (6.17)

i.e., time independent. No excitation occurs at any time in spite of the fact that

a rotation is taking place.

For some applications, it may be interesting to consider in Eq. (6.13) the more

general case in which ρ depends on time (for example to achieve a squeezed state

as will be studied later in Sec. 6.6), and ω2 = ω2
c − θ̇2, corresponding to an

auxiliary harmonic term and the centrifugal term. The inverse engineering in this

case proceeds by designing θ(t), so that θ̇(0) = θ̇(tf) = 0, and then ρ(t) obeying
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the boundary conditions

ρ(0) = ρ(tf ) = 1, (6.18)

ρ̇(0) = ρ̇(tf ) = 0, (6.19)

ρ̈(0) = ρ̈(tf ) = 0, (6.20)

(or more generally, ρ(tf) = γ) that guarantee the commutation between invariant

and Hamiltonian at boundary times. Once θ and ρ are set, I design the auxiliary

harmonic term considering, as before, Ω0 = 0 in Eq. (6.15):

ω2
c = Ω2 + θ̇2 = − ρ̈

ρ
+ θ̇2. (6.21)

The auxiliary harmonic term vanishes at both boundary times according to the

boundary conditions imposed on ρ̈ and θ̇. In fact Ω2 vanishes as well at the

boundary times so that before and after the rotation the atom is confined only

in the potential U(s). This type of protocols, where both the rotation speed and

the potential have to be controlled (the latter in space and time) may be quite

demanding experimentally. In the rest of the chapter, I shall assume the simpler

scenario in which only the rotation speed θ̇ is controlled, and the trap potential is

purely harmonic with constant angular frequency ω0.

6.3 Bang-bang

It is possible to perform rotations without final excitation satisfying Eqs. (6.4)

and (6.5) keeping θ̇ constant or piecewise constant. Here, I consider the simplest

one-step case,

θ̇(t) =





0, t ≤ 0,

c, 0 < t ≤ tf ,

0, t ≥ tf .

(6.22)

Note that Eqs. (6.5) and (6.6) are only satisfied now as one-sided limits. A bang-

bang approach may admittedly be difficult to implement because of the sharp
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changes involved, but it sets a useful, simple reference for orders of magnitude

estimates of rotation speeds, which may be compared to smoother approaches

that will be presented later. Integrating θ̇, one finds

θf = ctf . (6.23)

For a constant θ̇ = c, ω remains constant from t = 0 to t = tf , and equal to

ω1 = (ω2
0 − c2)1/2, whereas ω = ω0 in the initial and final time regions. For this

configuration, and 0 < t < tf ,

ρ(t) =

√
ω2
0 − ω2

1

ω2
1

sin2(ω1t) + 1, (6.24)

ρ̇(t) =
sin(ω1t) cos(ω1t)(ω

2
0 − ω2

1)

ω1ρ(t)
, (6.25)

to satisfy the boundary conditions ρ(0) = 1, ρ̇(0) = 0. The shortest final time to

satisfy the conditions (6.12) at tf is π/ω1. From Eq. (6.23), this gives the value

of c needed,

c =
θfω0

[π2 + θ2f ]
1/2
, (6.26)

whereas

tf =
π

ω1

=
π√

ω2
0 − c2

=
π

ω0

f, (6.27)

f :=

√

1 +
θ2f
π2
. (6.28)

As c < ω0, the effect of this bang-bang protocol is to expand the effective trap

during the rotation time interval. ρ increases first, and then decreases during

half an oscillation period of the effective trap. This does not, in general, coincide

with half an oscillation period of the actual nonrotating trap π/ω0, because of the

f factor, but it is not too different for relevant values of θf . In particular, for

θf = π/2, f = 1.118. The maximum of ρ(t) at tf/2 is precisely f . For example,

for a frequency ω0/(2π) = 2 MHz, this implies a final time tf = 0.28 µs.
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6.4 Optimal Control by Pontryagin’s maximum

Principle

While the previous bang-bang method with just one time segment provides a

simple guidance, I am also interested in knowing the absolute time minimum that

could in principle be achieved (even if the “optimal” protocol ends up being hardly

realizable). Unlike ordinary expansions/compressions, the shortest time protocol

for bounded control is not of a bang-bang form. To find it, I first rescale the time

with ω0 by setting σ = ω0t for t ∈ [0, tf ]. Now, I set the variables

x1(σ) = ρ(t) = ρ

(
σ

ω0

)
,

x2(σ) =
1

ω0
ρ̇

(
σ

ω0

)
,

x3(σ) =

∫ σ

0

u(τ)dτ, (6.29)

where u(σ) = u(ω0t) =
1
ω0
θ̇(t), with σ ∈ [0, ω0tf ]. Then, one can write a control

system describing the Ermakov equation (6.15) and the constraints in (6.4), (6.5)

and (6.6), and formulate the time-optimal control (OC) problem for rotation of a

quantum particle on a line as

min
u
J =

∫ T

0

1dτ,

such that x′1 = x2,

x′2 =
1

x31
+ (u2 − 1)x1,

x′3 = u, (6.30)

where T = ω0tf , and the prime is a derivative with respect to σ, with the boundary

conditions

x1(0) = 1, x1(T ) = 1,

x2(0) = 0, x2(T ) = 0,

x3(0) = 0, x3(T ) = θf . (6.31)
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Note that I assume that the boundary conditions for u at t = 0 and t = tf can be

fulfilled by the use of a sudden switch.

6.4.1 Unbounded Control

I apply the Pontrygin’s maximum principle [112] to solve the time-OC problem

(6.30), where the Hamiltonian is given by

H(t, x, u, λ) = λ0 + λ1x2 + λ2

[ 1
x31

+ (u2 − 1)x1

]
+ λ3u, (6.32)

in which λ = (λ0, λ1, λ2, λ3) and λ0 is either 0 or 1. The necessary condition

∂H
∂u

= 0 gives

u∗ = − λ3
2λ2x1

, (6.33)

which minimizes the Hamiltonian and where the co-states λ1, λ2, λ3 : [0, T ] → R

satisfy λ′i = −∂H
∂xi

, i = 1, 2, 3, i.e.,

λ′1 =
[ 3
x41

− (u2 − 1)
]
λ2,

λ′2 = −λ1, (6.34)

λ′3 = 0.

Solutions are found by solving the equation system composed by Eqs. (6.30), (6.33)

and (6.34) with the boundary conditions at σ = 0 in Eq. (6.31). We have the

freedom of choosing different initial values for the λi(0) to satisfy the boundary

conditions at T in Eq. (6.31). I applied a shooting method and numerically

minimize [x1(T )−1]2+x2(T )
2+[x3(T )−θf ]2 for these parameters using MATLAB’s

‘fminsearch’ function with θf = π/2 = 1.5708. The best results obtained are for

T = 2.2825, which, for the external trap frequency ω0/(2π) = 2 MHz used in

other examples, implies a final time tf = 0.18 µs. The solution found is not exact,

(x1(T ), x2(T ), x3(T )) = (1.0765, 0.0842, 1.5650), which might be an indication that

the system is not controllable. Figure 6.2 (a) shows the time evolution of u for

this case following Eq. (6.33), but forcing it to be 0 in the boundary times.
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Figure 6.2: Time evolution θ̇(t) for the optimal unbounded (a) and bounded
(b) control. The rotation angle is θf = π

2 .

6.4.2 Bounded Control

Now, consider a bounded control with u(σ) ∈ [0, 1] for all σ ∈ [0, T ]. Because

the Hamiltonian (6.32) is quadratic in u, the OC that minimizes H is of the form

u∗b = min

{
max

{
− λ3
2λ2x1

, 0

}
, 1

}
. (6.35)

The bounded time-OC, and the resulting optimal trajectory, are illustrated in Fig.

6.2 (b). The minimum (dimensionless) time that completes the desired rotation is

T = 11.9984, and the calculated final state following the OC is (x1(T ), x2(T ), x3(T )) =

(1.0083, 0.0382, 1.5708). For ω0/(2π) = 2 MHz, the minimal time is 0.95 µs. Since

u(σ) ∈ [0, 1], ∀ σ ∈ [0, T ], from Eq. (6.30), we see that θ̇ > 0, and hence, the rota-

tion is always forward. In this case, x3 reaches the desired θf = π/2 at σ = 11.9028,

and the control is turned off. Then, the states x1 and x2 are oscillating to reach
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Figure 6.3: Values of the optimizing parameters a4 (thick blue line) and a5
(dashed red line) for different rotation times tf . The trap frequency is ω0/(2π) =

2 MHz, and the final angle θf = π
2 .

the desired terminal state (1, 0). Figure 6.2 (b) shows the time evolution of u for

this solution.

6.5 Smooth inverse engineering

An alternative inversion route, that provides smooth solutions, is depicted in

the following scheme:

θ // θ̇ // ω // E[ρ(tf ), ρ̇(tf)]

minimize E

ee .

First, θ(t) is designed to satisfy Eq. (6.4) and Eq. (6.5) with some free parame-

ters. The corresponding θ̇ and final energy are calculated, and the parameters are

changed until the minimum energy (and excitation) is found.

A convenient choice for θ is a fifth order polynomial ansatz θ =
∑5

n=0 ant
n/tnf .

In order to satisfy the boundary conditions in Eqs. (6.4) and (6.5), we need to

fix parameters a0−3 = (0, 0, a4 + 2a5 + 3θf ,−2a4 − 3a5 − 2θf ). The other two

parameters, a4, a5, are left free in order to satisfy the remaining two boundary

conditions in Eq. (6.12), and suppress the final excitation energy. In practice, I
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Figure 6.4: Final excitation energy vs final time for the optimized protocol
without (solid blue line) and with final squeezing (γ2 = 3, dashed red line). The
trap frequency is ω0/(2π) = 2 MHz, and the final rotation angle θf = π

2 . The
initial state is the ground state of the trap.

solve numerically Eq. (6.11) to find the final energy (6.10) for each pair a4, a5,

and use MATLAB’s ‘fminsearch’ function to find the values of the free parameters

that minimize the final excitation energy.

In Fig. 6.3, the values of the free parameters that result from this process are

given, and in Fig. 6.4 I depict the corresponding excess energy with respect to

the ideal target state (as in previous examples, ω0/(2π) = 2 MHz). Vanishing

residual excitations are found for times shorter than half an oscillation period up

to a time tf ∼ 0.23 µs, not much larger than the unbounded-OC minimum of

0.18 µs. Figure 6.5 depicts the difference between the ideal value of ρ(tf ) and the

actual value, and makes evident the sharp change that marks the shortest time

bang-bang OC(unbounded) OC(bounded) inverse engineering

tf (µs) 0.28 0.18 0.95 0.23

Table 6.1: Minimal rotation times for the different methods. Trap frequency
ω0/(2π) = 2 MHz. In bounded OC, 0 ≤ θ̇ ≤ ω0.
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Figure 6.5: Difference between the ideal and actual value of ρ at the end
of the rotation vs final time for the optimized inverse-engineered protocol for
rotations without (solid blue line) and with final squeezing (γ2 = 3, dashed red
line). The trap frequency is ω0/(2π) = 2 MHz, and the final rotation angle

θf = π
2 .

for which a solution exists. Since I have limited the possible solutions by imposing

a functional form of the function θ(t), this time is larger than the one found via

OC. Note also that the shortest final time is slightly better than the one provided

by the simple bang-bang protocol. Table 6.1 summarizes the results.

6.6 Wave packet squeezing

Consider now a trap rotation with constant trap frequency ω0 satisfying the

conditions (6.4)-(6.6), and ρ satisfying

ρ(0) = 1, ρ̇(0) = 0,

ρ(tf ) = γ, ρ̇(tf ) = 0. (6.36)

Unlike the previous sections, ρ ends in a value γ different from 1.

According to Eq. (H.3), each initial state φn(0) will evolve into e
−i(n+1/2)ω0gφn,sq

at tf , where g = g(tf) =
∫ tf
0
dt′/ρ2(t′), and φn,sq is the normalized eigenstate for
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Figure 6.6: Values of the optimizing parameters a4 (thick blue line) and a5
(dashed red line) for different rotation times to generate a squeezed vaccum
state with γ2 = 3. The trap frequency is ω0/(2π) = 2 MHz, and the rotation

angle θf = π
2 .

the trap with angular frequency ωsq = ω0/γ
2. (This is a virtual trap, let me recall

that the actual trap has angular frequency ω0.)

A coherent state at time t = 0,

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!
|φn(0)〉, (6.37)

will thus evolve into

|ψ(tf)〉 = e−iω0g/2e−|α̃|2/2
∞∑

n=0

α̃n

√
n!
|φn,sq〉, (6.38)

where α̃ = αe−iω0g. This is a coherent state for the virtual frequency ωsq, and

therefore, a minimum-uncertainty product state. However, since the actual trap

has frequency ω0, it is also a squeezed coherent state with respect to the actual trap,

|[r, α̃]〉, see [113], where r = − ln γ, up to a global phase factor. The final and initial

coordinate and momentum widths are related by ∆s,tf = γ∆s,0, ∆p,tf = ∆p,0/γ.

We may rewrite the state at time tf in terms of the squeezing and displacement

operators as

|ψ(tf )〉 = e−iω0g/2S(r)|α̃〉 = e−iω0g/2S(r)D(α̃)|0〉 = e−iω0g/2|[r, α̃]〉, (6.39)
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where S(r) = e
r
2
(a2−a†

2
), a and a† are annihilation and creation operators for the

ω0-harmonic trap, and D(z) = eza
†−z∗a is the displacement operator. Note that

the phase at tf , arg(α̃), is controllable by means of the g-function that depends

on the process history, whereas the squeezing parameter 1/γ is controlled by the

imposed boundary condition. If necessary, a controlled tilt of the squeezed state

in phase space is easy to achieve by letting it evolve, after its formation at tf , in

the fixed, nonrotating trap.

As a simple example, let me consider the generation of squeezed vacuum states

starting from the ground state of the initial trap, so that α = 0. To design the

squeezing process, one may follow a similar procedure as in the previous section,

but minimizing the cost function

F = ˙̃ρ(tf )
2 + ω2(tf )ρ̃(tf)

2 +
ω(0)2

ρ̃(tf )2
,

ρ̃ = ρ− γ + 1, (6.40)

which is minimal for ρ̃(tf) = 1 and ˙̃ρ(tf) = 0, so that ρ(tf ) = γ and ρ̇(tf) = 0.

Since, due to the centrifugal force during the rotation, the wave packet tends to

spread first, the squeezed states with γ > 1 may be achieved in shorter times than

the ones needed without squeezing in the previous section. Figure 6.6 depicts the

free parameters that optimize a rotation with a final squeezed state for the same

parameters in the previous subsection, but γ2 = 3, and Fig. 6.4 the excess energy

with respect to the target state. The excitation in a process with a final moderate

squeezing is smaller than for the simple rotation without squeezing. Figure 6.5

depicts the difference between the target value of the function ρ (proportional to

the width of the wave packet) and its actual value at final time for rotations without

and with squeezing. Again, the minimizations change suddenly to a different

solution that cannot satisfy the conditions at a critical time, see also Figs. 6.3 and

6.6.
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6.7 Discussion

I have worked out different schemes to perform fast rotations of a one-dimensional

trap without any final excitation of the confined particle, which I have considered

to be an ion (for being the common platform in this thesis) throughout, but could

be a neutral particle as well by setting the proper trapping interaction. Apart

from excitation-free rotations, it is also possible to generate squeezed states in a

controllable way. For an arbitrary trap, the fast processes could in principle be

performed in an arbitrarily short time if an auxiliary harmonic potential with time-

dependent frequency could be implemented. In a simpler setting, where only the

rotation speed may be controlled, the rotation time cannot be arbitrarily short, as

demonstrated by inverse engineering or bang-bang approaches, and confirmed by

optimal-control theory. Bang-bang and OC protocols provide useful information

and time bounds, but are difficult to implement experimentally due to the sud-

den kicks required in the angular velocity of the trap. Smooth protocols designed

by invariant-based inverse engineering have also been worked out. They achieve

negligible excitations for times close to the minimum times given by OC theory.

The analysis may be generalized for a two-dimensional trap, but it becomes

considerably more involved [114]. The 1D approximation used here will be valid

for total energies well below the transversal confinement energy E⊥ = ~ω⊥. For

the shortest final times considered in my simulations, excitation energies are never

larger than 2~ω0, so that ω⊥ ≫ ω0 would be enough for their validity.

Rotations are elementary manipulations, which, together with transport, split-

ting and expansions, may help build a scalable quantum information architecture.

In particular, they provide a mechanism for connecting sites by changing trans-

port directions in 2D networks. Rotations have been demonstrated experimentally

for trapped ions [110], and improving the capability to control the parameters

involved is feasible with state-of-the-art trapped-ion technology. To extend the

present analysis to ion chains [110], an approach similar to that in [63, 97, 106]

will be applied in Chapter 7, working out the dynamical modes of the system and

taking into account the dipole-dipole interaction due to the rotation of the charged



Chapter 6. Shortcuts to adiabaticity for an ion
in a rotating radially-tight trap 116

particles. The present results set a first step towards accurately controlling rotat-

ing ion chains, which would allow for fast reordering. The results obtained in this

chapter were published in [115].



Chapter 7

Shortcuts to adiabatic rotation of

two ions on a line

“Our goal is to make the best devices in the world,

not to be the biggest.”

Steve Jobs

I engineer the fast rotation of two trapped ions confined in an effectively one-

dimensional, harmonic trap, for a predetermined rotation angle and time, avoid-

ing final excitation. Different approaches are used when the ions are of the same

species or of different species, but in both cases it is possible to get a clear im-

provement with respect to the adiabatic protocol.

117
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7.1 Introduction

In this chapter, I extend the analysis done in [115] and in Chapter 6, and

study rotations of two ions as depicted in Fig. 7.1. My aim is to inverse engineer

the time-dependence of the control parameter(s) to implement a fast process, free

from final excitations. I assume that the ions are trapped in a linear, harmonic

trap, tightly confined in a radial direction so that they move effectively along

a one-dimensional axial direction, hereafter “the line”. I also assume the ions

to never change the ordering within the trap frame, due to the strong Coulomb

repulsion. The trapping line is set horizontally and is rotated in a time tf up to an

established final angle (θf = π in all examples) with respect to a vertical axis that

crosses the center of the trap. Such an operation was adiabatically performed by

Splatt et al [110], where the objective was simply showing the reordering of small

ion chains was possible, or with an optimized faster approach in [116]. This is

important, for example, when topologically encoding a qubit [117], where the ion

chain reordering is essential. A better experimental control of these rotations will

involve improvements in the filtering, voltage and noise control. In this chapter,

I explore the fundamental limitations for such an operation, more specifically the

time scale that could be reached under the ideal conditions of an effective external

potential that rotates rigidly, with strong radial confinement, so that the two ions

move effectively along a rotating one-dimensional line. I am thus ignoring features

that depend strongly on the electrode configuration, such as the possible effects

of micromotion.

Following the same procedure as in Chapter 6, I shall first find the classical

Hamiltonian from the corresponding classical Lagrangian and then quantize the

result. Let si denote the points on the line where each ion lays. si may take

positive and negative values. A time dependent trajectory si(t) has cartesian (lab

frame) components xi = xi(s, t), yi = yi(s, t),

xi = si cos(θ), yi = si sin(θ), (7.1)
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ti tf

θf

Figure 7.1: Schematic representation of the rotation process studied here.
The atom is confined along a line (where it is subjected to a one-dimensional
potential), which is rotated by an angle θ up to a time tf so that the final state

is not excited.

where θ = θ(t) is the rotation angle. For two equal ions, the kinetic energy is

K = 1
2
m(ẋ21+ ẏ

2
1)+

1
2
m(ẋ22+ ẏ

2
2), and the potential energy is assumed by now to be

harmonic plus a Coulomb interaction between both ions, V = 1
2
u0(s

2
1+s

2
2)+

Cc

s2−s1
,

where u0 = mω2
0 and Cc =

e2

4πǫ0
, ǫ0 being the vacuum permittivity, e the electric

charge of a single electron and ω0 the external harmonic frequency for both ions

in the (longitudinal) direction of the line and m the mass of each ion. This gives

the Lagrangian

L =
1

2
mṡ21 +

1

2
mṡ22 −

1

2
mω2(s21 + s22)−

Cc

s2 − s1
, (7.2)

ω2 = ω2
0 − θ̇2. (7.3)

Note that the angular velocity of the rotation θ̇ must be real but could be negative,

whereas ω2 may be positive or negative, making ω purely imaginary in the later

case. The following physically motivated boundary conditions are also assumed:

the initial and final trap should be at rest, and I also impose continuity of the
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angular velocity,

θ(0) = 0, θ(tf ) = θf , (7.4)

θ̇(0) = θ̇(tf ) = 0, (7.5)

ω(0) = ω(tf) = ω0, (7.6)

where the last line follows from the second one using Eq. (7.3). By a Legendre

transformation we finally get the Hamiltonian

H =
∑

i

ṡi
∂L

∂ṡi
− L =

1

2
m(ṡ21 + ṡ22) +

1

2
mω2(s21 + s22) +

Cc

s2 − s1
. (7.7)

At this point, I quantize this Hamiltonian by substituting mṡi by the momentum

operator pi and by considering si as the position operator, which becomes a c-

number in coordinate representation,

H =
1

2m
(p21 + p22) +

1

2
mω2(s21 + s22) +

Cc

s2 − s1
. (7.8)

I will from now on work with this quantum Hamiltonian and corresponding quan-

tum states. It represents formally two coupled harmonic oscillators with (the

same) time-dependent frequency. For this kind of system, we cannot apply the

usual tools of inverse engineering through dynamical invariants, so I will define

the normal modes to get an approximate Hamiltonian as it was done in previous

chapters.

7.2 Normal modes

In order to get the normal modes [59], we first need to calculate the equilibrium

position of both ions {s(0)i } by solving the equation system {∂V/∂si = 0}, where
V is the potential part in the Hamiltonian (7.8). These are given by

s
(0)
1 = −s(0)2 = −x0

2
, (7.9)
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Figure 7.2: Exact energy excess evolving the full Hamiltonian (7.8) according
to Eq. (7.26) for the parameters c3−6 that minimize the excitation in the normal
modes. (a) represents this excitation in a linear scale, whereas (b) shows the
same excitation in a logarithmic scale. The dotted blue line is for the protocol
using all 4 free parameters to minimize the energy. The short-dashed green line
fixes c6 = 0 and minimizes the energy using 3 parameters. The long-dashed
black line fixes c5 = c6 = 0 and minimizes the energy using 2 parameters. The
dash-dotted orange line fixes c4 = c5 = c6 = 0 and minimizes the energy using
1 parameter. The solid red line fixes is the excitation given by a non-optimized
protocol after fixing c3−6 = 0 in Eq. (7.26). The evolution was done for two
40 Ca+ ions, with an external trap frequency ω0/(2π) = 1.41 MHz and a total

rotation angle θf = π.

where

x0 =

(
2Cc

mω2

)1/3

. (7.10)

Diagonalize the matrix Vij = 1
m

∂2V
∂si∂sj

|{si,sj}={s(0)i ,s
(0)
j }, the eigenvalues are

λ± = (2± 1)ω2. (7.11)

The effective frequencies of the approximated harmonic oscillators in the normal

modes are given by

Ω± =
√
λ±. (7.12)

The eigenvectors v± =


 a±

b±


 are

a+ =
1√
2
, b+ = − 1√

2
;

a− =
1√
2
, b− =

1√
2
. (7.13)
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The (mass-weighted) normal mode coordinates are subsequently defined as,

s+ = a+
√
m(s1 +

x0
2
) + b+

√
m(s2 −

x0
2
),

s− = a−
√
m(s1 +

x0
2
) + b−

√
m(s2 −

x0
2
). (7.14)

To transform the Hamiltonian to the new set of coordinates, we apply the unitary

operator

U =

∫
ds+ds−ds1ds2|s+, s−〉〈s+, s−|s1, s2〉〈s1, s2|, (7.15)

where 〈s+, s−|s1, s2〉 = δ[s1 − s1(s+, s−)]δ[s2 − s2(s+, s−)]. Since what we have is

effectively a two-ion expansion as in [97], the transformation is obtained as it was

there,

H ′ = UHU † − i~U(∂tU
†)

=
∑

ν

(
p2ν
2

− p0νpν +
1

2
Ω2

νs
2
ν

)
, (7.16)

where I only considered terms up to the harmonic in the approximation, ν = ±,

p± are the conjugate momenta of the normal mode coordinates and

p0+ =
2
√
2m

3
3

√
Cc

4mω5
ω̇,

p0− = 0. (7.17)

This latter terms appear after the unitary transformation of the Hamiltonian due

to the time dependence of the equilibrium positions of the ions, x0, as seen in Eq.

(7.10). A further unitary transformation allows us to transform the term linear in

p± into a term linear in s±,

U = e−i(p0+s++p0−s−)/~,

H ′′ =
∑

ν

[
p2ν
2

+
1

2

(
sν +

ṗ0ν
Ω2

ν

)2
]
. (7.18)

This Hamiltonian is effectively the sum of two independent harmonic oscillators,

that expand or compress through the time dependence of Ω± and that have a
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virtual transport through ṗ0±. This Hamiltonian is very similar to the one in [97]

for simple trap expansions, except for ω (the effective lab frequency) being now

given by Eq. (7.3), while in [97] ω was the time-dependent frequency of the external

trap, which was directly controlled in the lab. Here, its time dependence comes

through θ(t), which is our control parameter. Thus, it is not enough to design

an ω that leaves the normal modes unexcited as done in [97]. We additionally

need to inverse engineer this parameter to get an expression of θ that still satisfies

the conditions in Eqs. (7.4) and (7.5). This inverse engineering was already

problematic in Chapter 6 for a single ion rotation, because it implies a square

root, θ̇ =
√
ω2
0 − ω2, which can be imaginary if the effective frequency ω (which,

in principle, has no physical limitation for not being a “real” frequency) happens

to be larger than the external trap frequency ω0.

The Hamiltonian (7.18) has a dynamical invariant [76]

I =
∑

ν

1

2
[ρν(pν − α̇ν)− ρ̇ν(sν − αnu)]

2

+
1

2
Ω2

0ν

(
sν − αnu

ρν

)2

, (7.19)

where ν stands for ± as in previous equations, Ω0± = Ω±(0), and ρ± (scaling

factors of the expansion modes) and α± (classical trajectories of the normal modes)

are auxiliary functions that have to satisfy respectively the Ermakov and Newton

equations,

ρ̈± + Ω2
±ρ± =

Ω2
0±
ρ3±

(7.20)

α̈± + Ω2
±α± = ṗ0±. (7.21)

The Schrödinger equation is solvable, and the wave functions are known and ana-

lytic for such a Hamiltonian [33]

|ψ′′
n±〉 = e

i
~
[
ρ̇±s2±
2ρ±

+(α̇±ρ±−α±ρ̇±)
s±
ρ±

] 1

ρ
1/2
±

Φn(σ±)

, (7.22)
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where σ± = s±−α±

ρ±
and Φn are the eigenfunctions for the static harmonic oscilla-

tors. The average energy for the nth mode are also known [97, 106],

E ′′
n± = 〈ψ′′

n±|H ′′|ψ′′
n±〉

=
(2n+ 1)~

4Ω0±

(
ρ̇2± + Ω2

±ρ
2
± +

Ω2
0±
ρ2±

)

=
1

2
α̇2
± +

1

2
Ω2

±

(
α± − ṗ0±

Ω2
0±

)2

. (7.23)

7.3 Inverse engineering

The usual way of solving the dynamics via invariant-based inverse engineering

is by first imposing commutativity between Hamiltonian and invariant both at

initial t = 0 and final times t = tf . This guarantees that our Hamiltonian will

drive the system in such a way that at final time we will recover the same eigen-

state we had at the beginning, although we might have diabatic excitations at

intermediate times, where the commutation between Hamiltonian and invariant

is not guaranteed. Commutativity at boundary times amounts to imposing the

boundary conditions

ρ̇±(tb) = ρ̈±(tb) = 0,

α̇±(tb) = α̈±(tb) = 0, (7.24)

being tb = 0, tf . Additionally, we impose

ρ±(tb) = 0,

α±(tb) = 0, (7.25)

so that the external trap has the same frequency at the boundary times, ω0(0) =

ω0(tf ). The control parameters are the rotation angle θ and in principle the

external trap frequency ω0, although I will leave ω0 constant for a rigid rotation. To

make sure that the square root that defines the rotation frequency remains positive,

similarly to [115], I proceed by setting an ansatz for θ that satisfies the boundary
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conditions (7.4) and (7.5), and additionally leaves some free parameters. Then, I

solve the differential Eqs. (7.20) and (7.21), and fix the free parameters so that

they satisfy the boundary conditions that leave the normal modes excitationless

[Eqs. (7.24) and (7.25)]. I use several ansatzes with up to 4 free parameters,

θ(t) =
1

16
(32c3 + 80c4 + 144c5 + 224c6 − 9θf) cos

(
πt

tf

)

− 1

16
(48c3 + 96c4 + 160c5 + 240c6 − θf) cos

(
3πt

tf

)

+ c3 cos

(
5πt

tf

)
+ c4 cos

(
7πt

tf

)

+ c5 cos

(
9πt

tf

)
+ c6 cos

(
11πt

tf

)
+
θf
2

(7.26)

This gives us an expression of θ̇, from which we obtain ω as in Eq. (7.3). We

introduce ω in (7.12) to get the normal mode frequencies Ω± and these in Eqs.

(7.20) and (7.21). I proceeded by fixing the values of the free parameters c3−6,

solving the auxiliary Eqs. (7.20) and (7.21) numerically and then recursively

repeating the process for different values in order to find the set of parameters that

minimize a given function. This minimization, known as a shooting process [103],

was done using the MatLab function ‘fminsearch’, and the function we minimized

was the total energy of the ground state of the normal mode [Eq. (7.23)] at final

time E ′′(tf) = E ′′
0+(tf) + E ′′

0−(tf ).

Once the free parameters are defined such that the design of θ minimizes the

excitation energy of the normal modes, the evolution of the quantum state is

calculated with the full Hamiltonian (7.8) to check the performance of the designed

protocol. The method used to do the evolution is the “Split-Operator Method”,

and I chose the ground state as the initial state, which was calculated performing

an evolution in imaginary time [81]. Figure 7.2 shows the final excitation, i.e.,

the excess energy with respect to the initial energy after performing the evolution

of the full Hamiltonian (7.8). In Fig. 7.2 (a), I show this excitation in a linear

scale, and in Fig. 7.2 (b) in a logarithmic scale. The figures demonstrate the

improvement achieved by adding more free parameters. Even when using a single

optimizing parameter, the results are clearly better than the protocol with no
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Figure 7.3: Evolution of the control parameter θ(t) for different final times
when designed using all 4 free parameters. The dashed black line has tf = 1 µs,
and the optimization parameters are c3−6 = (5.134,−5.360, 59.577, 91.234) ×
10−4. The solid blue line has tf = 2 µs, and the optimization parameters are
c3−6 = (3.093, 0.971, 3.386,−6.036) × 10−4. The dotted red line has tf = 3 µs,
and the optimization parameters are c3−6 = (1.400,−0.270, 0.182,−0.117) ×

10−4. Other parameters as in Fig. 7.2.

free parameters. Figure 7.3 shows some examples of the protocol that leads to

these results. The best protocol (4 free parameters) reaches the threshold of 0.1

motional excitation quanta at a final time tf = 1.05 µs, whereas without free

parameters the same threshold is reached at tf = 2.23 µs. That means that using

our shortcut-to-adiabaticity protocol, one can accelerate the rotation of two ions

by a factor of over 2.

7.4 Magnetic vs electric force

In the lab frame, during the rotation, the velocities of the two charged particles

have perpendicular components to their alignment direction, so a magnetic force

appears of magnitude

|Fmag| =
∣∣∣∣
µ0

4π

e2

r2
~v1 × (~v2 × r̂)

∣∣∣∣ , (7.27)
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Figure 7.4: Exact energy excess with the full Hamiltonian (7.32) according to
Eq. (7.26) for the parameters c3−6 that minimize this excitation by a brute-force
approach. The blue line with circles is using all of the 4 optimizing parameters.
The black line with squares is the excitation fixing c3−6 = 0 in Eq. (7.26).
Using 2 and 3 optimizing parameters we get very similar results to those for 4
optimizing parameters. The evolution was done for a 40 Ca+ and a 9Be+ ion,
with an external trap frequency for the Ca+ ion of ω1/(2π) = 1.41 MHz and a

final rotation angle θf = π.

where µ0 is the permeability constant, ~vi the velocity vectors of each ion and ~r =

~r2−~r1 the relative position vector of both ions in the lab frame, ri = (xi, yi). This

is to be compared with the Coulomb interaction, which is the only one considered

so far, and gives a force

|Fel| =
∣∣∣∣
Cc

~r2

∣∣∣∣ . (7.28)

The ratio of these two forces is

R =
|Fmag|
|Fel|

=
µ0

4π
e2

r2
|~v1 × (~v2 × r̂)|

1
4πǫ0

e2

r2

. (7.29)

Using ~v1 = −~v2 = ~r
2
θ̇ and µ0ǫ0 =

1
c2
, being c the speed of light in the vacuum, we

finally get

R =
r2θ̇2

4c2
. (7.30)

In the protocols of the previous section, the maximum values in the simulations are

θ̇max = 5× 106 s−1 and rmax = 5.5× 10−6 m, so Rmax ∼ 1
c2
. For these parameters,

the magnetic interaction is negligible with respect to the electric one.
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7.5 Two different ions

In the scheme of ion chains that have to be reordered, tackling the rotation of

two different ions is of even more interest that the rotation of equal ions. However,

a shortcut cannot be designed using the same method. Even if the masses are

different, the spring constant will be the same for both ions, that is, m1ω
2
1 = m2ω

2
2,

being mi the mass of each ion and ωi the effective external trap frequency. For

this case, the Lagrangian in Eq. (7.2) will be

L =
1

2
m1ṡ

2
1 +

1

2
m2ṡ

2
2

− 1

2
m1ω

2
as

2
1 −

1

2
m2ω

2
bs

2
2 −

Cc

s2 − s1
,

ω2
a = ω2

1 − θ̇2,

ω2
b = ω2

2 − θ̇2. (7.31)

Instead of Eq. (7.8), the Hamiltonian is

H =
p21
2m1

+
p22
2m2

+
1

2
u1s

2
1 +

1

2
u2s

2
2 +

Cc

s2 − s1
, (7.32)

where u1 = m1ω
2
a, u2 = m2ω

2
b . Effectively, this is still an expansion of a two-ion

chain, however, the effective spring constants of both ions are different, unlike in

[97]. For this Hamiltonian, the equilibrium positions of both ions are

s
(0)
1 = −u2

u1
s
(0)
2 ,

s
(0)
2 = 3

√√√√
Cc(

1 + u2

u1

)2
u2

, (7.33)
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Figure 7.5: Position of each of the ions, s1 (Calcium ion) as the solid blue
line and s2 (Berilium ion) in dashed black, at final time tf = 1 µs and for the
optimizing parameters c3−6 = (1.757, 1.824, 1.120,−0.234)×10−2 when evolving

the Hamiltonian (7.32) under the protocol in Eq. (7.26).

which are not symmetrical with respect to the external trap center anymore. The

new eigenvalues of the matrix Vij are

λ± =
u1
2m1

+
u2
2m2

+
(m1 +m2)u1u2
m1m2(u1 + u2)

± 1

2m1m2(u1 + u2)

×
√
16m1m2u21u

2
2+[m1u2(3u1+u2)+m2u1(u1+3u2)]2.

(7.34)

The eigenvectors also have a complicated dependence with u1, u2, that is, they

depend on time. I will not display the explicit expressions here because they

are rather lengthy, but they are analytic. As it happened for example in [106],

when the coefficients a±, b± are time-dependent, the normal mode transformation

leads to crossed terms. That means that we cannot write the Hamiltonian as two

independent time-dependent one-dimensional harmonic oscillators, and thus the

Lewis-Riesenfeld invariants [76] are of no direct use here. Instead, I use a direct

numerical optimization of the protocol using same ansatz for the control θ as in

Eq. (7.26). I try initially random values for the free parameters c3−6, but instead

of some differential equations as for the equal ion case, we solve the full dynamics
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for the Hamiltonian (7.32) and calculate the excess energy. As in Sec. 7.3, using

the function ‘fminsearch’ from MatLab recursively repeat the process for different

values of the free parameters until I get the minimum of the excitation energy. In

Fig. 7.4 I show this final excitation, optimizing the result using 4 free parameters

for the θ as well as the results for no free parameters. The times achieved are

slightly longer than the ones for the protocols based in minimizing the normal mode

energy for equal ions in Sec. 7.3. The best protocol (4 optimizing parameters)

gives an excitation below 0.1 quanta at a final time tf = 1.4 µs, whereas the

protocol with no optimization needs tf = 2.6 µs. That is, we get an improvement

of almost a factor of 2. The computational time required is dramatically longer

than in the previous section, as I had to solve the full dynamics of the system at

every iteration of the shooting method, whereas in the normal mode based method

we only needed to solve a simple system of differential equations at each iteration.

It is important to note that the squeezing plays an important role here, and so it

is not possible to use classical dynamics (which are much faster) to calculate the

energy instead of the quantum dynamics. Figure 7.5 shows the positions of both

ions during the evolution for tf = 1 µs.

7.6 Discussion

In this chapter, I have designed protocols to rotate a linear trap containing

two ions, such that at final time we recover the same state we initially had in the

trap frame. This provides a way to reorder ions without producing any additional

excitation energy. For two equal ions, independent normal modes may be defined,

and Lewis-Riesenfeld invariants may be used to design a protocol that leads to

negligible excitations in times around two oscillation periods of the external trap.

For two different ions, the modes are not independent, so I applied a direct nu-

merical minimization of the excitation energy. This minimization requires a much

longer calculation time. For any of the methods, the shortcut supposes a clear

improvement, which helps in the task of accelerating dynamical processes for a

viable quantum computing architecture based on trapped ions. Possible future
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extensions of this work are considering a time dependent external trap frequen-

cies, or designing the voltage supply evolution for a given trap architechture. Also,

specific protocols could be designed to simultaneously rotate longer chains of ions,

although it is always possible to sequentially rotate them in groups of 2 using the

protocols designed here.





Conclusions

The common thread of this thesis has been the design of various fast dynamical

processes for trapped ions using shortcuts to adiabaticity, with the aim of acceler-

ating these processes such that they reach the desired final state without any final

excitation. The operations studied, namely, transport, 2-qubit phase gates, expan-

sion, ion separation and rotation, are basic elements, or at least useful processes

to implement a scalable quantum processor based on the technology of trapped

ions. Compared to previous work on shortcuts, the contribution of this thesis has

been extending the technique of invariant-based inverse engineering to few-body

systems with Coulomb interactions. This was done by introducing the concept of

”dynamical normal modes” [118] and using Lewis-Riesenfeld invariants for each of

them in a consistent manner, so that only one physical set of control parameters

manages to satisfy the no-final excitation condition for every mode.

All the processes designed here are “experimentally friendly” in the sense that

the Hamiltonians considered are doable in the labs, and that limitations on the

values of the control parameters, and sometimes even typical deviations were con-

sidered. Moreover, the parameter values considered in all the examples are similar

to those they work with in state-of-art laboratories. That gives a fair view of

the validity of the methods here developed, and makes the shortcuts have the

potential of an immediate impact. In fact, many of the works were done in direct

collaboration with several laboratories, and I expect some of these protocols to be

experimentally realized soon.

Possibly, the greatest leap is that brought by the transport protocols, Chapters

1 and 2, and the related phase-gate in Chapter 3. The transport is known to be the
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most time consuming process when adiabatically driven. For both cases I managed

to design protocols that drive the system well bellow the 100 µs threshold that is

usually the limit in ion traps before the anomalous heating turns into a problem,

with final negligible excitation. For different mass ions, 4 − 5 µs were enough,

implying an improvement of over a factor of 20 with respect to the most naive

linear driving. Phase gates were shown to potentially work at even shorter times.

Another challenging operation is the ion separation, studied in Chapter 5. Here,

I showed how the performance of the shortcut protocol depends on the maximum

value certain control parameter (the quartic part of the potential) can reach. For

a range of reasonable maximum values of this parameter, it was shown that it

could work for final times between 3 and 11 µs, whereas an adiabatic protocol

used for comparison needed around 80 µs. The quickest reported time reached in

the lab for similar parameters has been 55 µs, although it had excitation higher (2

quanta per ion) than the one used here as the threshold for negligible excitation

(0.1 quanta). Expansions, in Chapter 4, and rotation, in Chapters 6 and 7, are not

as time consuming protocols. Nevertheless, these chapters show how it is possible

to design shortcut protocols that further improve these final time performances.

In an architecture based on moving trapped ions, one should potentially perform

many repetitions of each operation, so any improvement in the time required, even

if it is by a small factor, has potentially a major impact. During the realization

of this work, there has been a phenomenal progress in the technical ability of the

laboratories to improve on time and spatial resolution of the applied potentials

and on their stability, getting close to the accuracy level needed to implement the

fast protocols.

Shortcuts to adiabaticity contribute to fight decoherence, possibly the most

serious stumbling block towards practical quantum computation and comercial

applications in two ways: Shortening the process time is one of them, as noise

and perturbations have less time for spoiling the quantum state. The other way

is to make use of the ample freedom to design the shortcut so as to make it

more robust versus specific perturbations. I have put the emphasis on the first

aspect, but the route towards increasing the stability has been already explored
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in different systems and could be applied in this context as well. An example is in

Chap. 5, where I have implemented a protocol perturbatively stable with respect

to anharmonicities.

In short, I have demonstrated that shortcut-to-adiabaticity techniques can be

applied to trapped ion systems, and provide useful fast and safe protocols. A

shortcut-toolkit was developed for a number of different dynamical operations

needed for a scalable architecture. Simulations show a clear final time improvement

in all of them, giving this shortcut-toolkit the potential to have an impact in the

effort to develop a scalable quantum processor.
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Appendix A

N-Ion transport

In this Appendix, I show that for N equal ions in a harmonic trap the trap

trajectory appears only in the CM part. In a harmonic trap with N equal ions,

the Hamiltonian is given by N coordinates for the positions of each of the ions

(q1, q2, q3, . . . , qN) and the corresponding momenta

Ĥ({q̂i, p̂i}) =
1

2m

N∑

i=1

p̂2i +
1

2
mω2

N∑

i=1

(q̂i −Q0)
2

+
N−1∑

i=1

N∑

j=i+1

Cc

q̂i − q̂j
. (A.1)

In coordinate space, q1 > q2 > · · · > qN−1 > qN because of the strong Coulomb

repulsion. We now define a CM and relative coordinates and momenta,

Q̂ =
1

N

N∑

i=1

q̂i, P̂ =
N∑

i=1

p̂i,

r̂i =
q̂i − q̂i+1

N
, p̂i = p̂i − p̂i+1,

i = 1, 2, . . . , N − 1, (A.2)
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corresponding to the inverse transformation

q̂i = Q̂ +

N−i∑

j=1

jr̂N−j −
i−1∑

k=1

kr̂k,

p̂i = P̂ +
1

N

N−i∑

j=1

jp̂N−j −
1

N

i−1∑

k=1

kp̂k. (A.3)

The Hamiltonian in the new coordinates is

Ĥ =
P̂ 2

2M
+

1

2
Mω2(Q̂−Q0)

2

+
1

2NM

N∑

i=1



(

N−i∑

j=1

jp̂N−j

)2
+

(
i−1∑

k=1

kp̂k

)2
− 2

N−i∑

j=1

i−1∑

k=1

jkp̂N−j p̂k




+
1

2N
Mω2

N∑

i=1



(

N−i∑

j=1

jr̂N−j

)2
+

(
i−1∑

k=1

kr̂k

)2
− 2

N−i∑

j=1

i−1∑

k=1

jkr̂N−j r̂k




+
Cc

N

(
N−1∑

i=1

1

r̂i
+

N−2∑

i=1

N−1∑

j=i+1

1∑j
k=i r̂k

)
, (A.4)

where M = Nm. As for two ions, the Hamiltonian can be written as the sum of

two terms Ĥ = Ĥcm(Q̂, P̂ )+ Ĥr({r̂i, p̂i}), where Ĥcm has the same form as that of

a single particle driven in a harmonic trap, and Ĥr depends only on N −1 relative

coordinates and their corresponding momenta. It does not depend on the trap

trajectory Q0(t), so this system can be transported without final excitations by

following any shortcut-to-adiabaticity trap trajectory for a particle of mass M .
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Generalization for an arbitrary

force ratio

B.0.1 Equal-mass ions

In the main text we have studied state-dependent forces which are equal and

opposite to each other for up and down spins, Fi = σz
i F (t). However, depending on

laser beam polarization and specific atomic structure, different proportionalities

among the two forces will arise. Let us consider a general force ratio Fi(↑) =

−cF̃ (t) and Fi(↓) = −F̃ (t), where c is a constant. Then, for equal-mass ions,

instead of Eq. (3.49) (corresponding to c = −1), we find, see Eq. (3.48),

f+(↑↑) = f+(↓↓) = 0,

f−(↑↑) = cf−(↓↓) =
2F̃ c√
2m

,

f+(↑↓) = −f+(↓↑) = −1 − c√
2m

F̃ ,

f−(↑↓) = f−(↓↑) =
1 + c√
2m

F̃ . (B.1)

To inverse engineer the forces we start choosing the same ansatz for α+(↓↑) as

in Eq. (3.53). a0 through a2 are also fixed in the same manner to satisfy the

boundary conditions. Using Eq. (3.20) this gives f+(↓↑; t) as a function of a3, a4,
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and in fact all other f± by scaling them according to the Eq. (B.1). As in the

main text, the same a3 in Eq. (3.55) guarantees that α̇±(tb) = 0 for all spin

configurations. Now, using Eq. (3.47) we can write down the phase produced by

each spin configuration. Individually, they depend on c but, adding them all in

∆φ = φ(↑↓) + φ(↓↑)− φ(↑↑)− φ(↓↓), the dependence on c is cancelled, as can be

seen from Eq. (C.1) or Eq. (3.20) and Eq. (B.1). Following the method described

in the main text, imposing ∆φ = γ fixes the remaining parameter a4, so that the

same expression in Eq. (3.59) is found. Using Eqs. (3.49) and (B.1), the generic

control function F̃ is simply proportional to that for c = −1 (see Eq. (3.60)),

F̃ =
2

1− c
F. (B.2)

B.0.2 Different masses

Similarly, for different-mass ions in the generic case both ions could have dif-

ferent proportionality factors for the spin-dependent forces:

F1(↑) = −c1F̃a, F1(↓) = −F̃a,

F2(↑) = −c2F̃b, F2(↓) = −F̃b. (B.3)

Instead of Eq. (3.62), the normal-mode forces are now, see Eq. (3.14),

f±(↑↑) = ± b∓√
m
c1F̃a ∓

a∓√
µm

c2F̃b,

f±(↑↓) = ± b∓√
m
c1F̃a ∓

a∓√
µm

F̃b,

f±(↓↑) = ± b∓√
m
F̃a ∓

a∓√
µm

c2F̃b,

f±(↓↓) = ± b∓√
m
F̃a ∓

a∓√
µm

F̃b. (B.4)
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This implies that the α± are in general all different and the inverse scheme in Eq.

(3.65) is replaced by

α±(↑↓) 99K f±(↑↓) 99K F̃a, F̃b 99K





f±(↑↑) 99K α±(↑↑)
f±(↓↑) 99K α±(↓↑)
f±(↓↓) 99K α±(↓↓).

︸ ︷︷ ︸
functions of c1,c2

(B.5)

Using Eq. (3.10) and Eq. (B.4) we may rewrite the control functions F̃a and F̃b

as

F̃a =
√
m[a−f−(↑↓) + a+f+(↑↓)]/c1,

F̃b =
√
µm[b−f−(↑↓) + b+f+(↑↓)]. (B.6)

As in the special case c1 = c2 = −1 of the main text, we use the ansatzes in Eq.

(3.66) for α±(↑↓), and the parameters in Eq. (3.67). In particular α−(↑↓) = 0

and f−(↑↓) = 0, so F̃a and F̃b are proportional to each other, see Eq. (B.6), and

thus all the f± are proportional to f+(↑↓) according to Eq. (B.4). Thus, from

Newton’s equations, all (nonzero) solutions α+(t) are proportional to each other,

and similarly all (nonzero) α−(t) are proportional to each other. The parameter

choice in Eq. (3.67) assures that α+(tb) = α̇+(tb) = 0 for all configurations. Fixing,

for example α−(↑↑)(tb) = 0, a3 may be fixed as in Eq. (3.68), so that α̇−(tb) = 0,

and therefore α−(tb) = α̇−(tb) = 0 as well for all configurations. Using Eq. (3.47)

to calculate the phases, and imposing ∆φ = γ, the remaining parameter (a4) is

fixed as

a4 = Ca04, (B.7)

where a04 ≡ a4(c1 = c2 = −1) is given in Eq. (3.70) and

C = 2

√ −c1
(c1 − 1)(c2 − 1)

. (B.8)

All coefficients in α+(↑↓) are proportional to a4, so α+(↑↓) is just scaled by the

factor C with respect to the ones for c1 = c2 = −1 in the main text, and f+(↑↓)
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is also scaled by the same factor according to Eq. (3.20). Comparing Eqs. (B.6)

and (3.64), and using f−(↑↓) = 0, we find that

F̃a = −C
c1
Fa,

F̃b = CFb, (B.9)

in terms of the forces Fa, Fb given in Eq. (3.73) for c1 = c2 = −1. All these

functions have odd symmetry with respect to the middle time tf/2 so that there

is no contribution to the phase from the time integral of f̃ , see Eq. (3.14).

Finally let us analyze the limit of equal masses where c1 = c2 = c and µ = 1.

In the main text, this implies c1 = c2 = c = −1 and Fa(µ→ 1) = Fb(µ→ 1) = F ,

in agreement with the physical constraint of using the same laser for both ions.

However, when c 6= 1, F̃a(µ → 1) 6= F̃b(µ → 1), see Eq. (B.9). Physically this

implies the use of two different lasers which is not possible in practice, so equal

masses with c 6= 1 have to be treated separately, as specified in Sec. B.0.1.



Appendix C

Integral expression for the phase

For α±(0) = α̇±(0) = 0, Eq. (3.20) may be solved as α±(t) =
1

Ω±

∫ t

0
dt′f±(t

′) sin[Ω±(t−
t′)], see Eq. (3.37). Thus the phase (3.47) can be also expressed by double integrals

of the form

φ(tf) =
∑

µ=±

∫ tf

0

dt′
∫ t′

0

dt′′fµ(t
′)fµ(t

′′)
sin[Ωµ(t

′ − t′′)]

2~Ωµ

=
∑

µ=±

∫ tf

0

∫ tf

0

dt′dt′′fµ(t
′)fµ(t

′′)
sin(Ωµ|t′ − t′′|)

4~Ωµ
.

(C.1)
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Appendix D

Worst case fidelity

To simplify notation, let us denote the internal state configurations by a generic

index s = ↑↑, ↑↓, ↓↑, ↓↓. Assume an initial state |ψm〉(
∑

s cs|s〉), where
∑ |cs|2 = 1

and the “m” here stands for “motional”. The ideal output state, up to a global

phase factor, is

|ψid〉 =
(
∑

s

cse
iφ(s)|s〉

)
|ψm〉, (D.1)

where

φ(↑↓) + φ(↓↑)− φ(↑↑)− φ(↓↓) = ±π. (D.2)

The actual output state is generally entangled,

|ψac〉 =
∑

s

cse
iφ′(s)|s〉|ψms〉, (D.3)

with a different motional state |ψms〉 for each spin configuration, and actual phases

φ′(s). First we can compute the total overlap

〈ψid|ψac〉 =
∑

s

|cs|2ei[φ
′(s)−φ(s)]〈ψm|ψms〉. (D.4)
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Moreover, writing each motional overlap in the form 〈ψm|ψms〉 = |〈ψm|ψms〉|eiφms =

ǫse
iφms , we have

〈ψid|ψac〉 =
∑

s

|cs|2ǫseiδs = ℜ+ iℑ, (D.5)

where δs ≡ φ′(s)− φ(s) + φms, and

ℜ =
∑

s

|cs|2ǫs cos δs,

ℑ =
∑

s

|cs|2ǫs sin δs. (D.6)

The fidelity is

F = |ℜ+ iℑ|2 = ℜ2 + ℑ2 ≥ ℜ2

= (
∑

s

|cs|2ǫs cos δs)2. (D.7)

Assuming a “good gate”, such that |δs| ≪ 1 for all s, then the fidelity is bounded

from below by the worst possible case,

F ≥ Min[(ǫs cos δs)
2]. (D.8)



Appendix E

Spread of the position of one ion

in the ground state of the two

ions

An approximate analytical wave function for the ground state of the two ions

subjected to the Hamiltonian (3.5), is given by multiplying the ground states of

the two normal modes, see Eq. (3.24),

ψNM =

(
Ω+Ω−
π2~2

)1/4

e−
1
2~

(Ω+x2++Ω−x2−). (E.1)

In laboratory coordinates, and for the specific case of equal mass ions, the nor-

malized ground state is

ψ(x1, x2) =

(
m
√
3ω2

π2~2

)1/4

e−
mω
4~ [(1+

√
3)(x1+

x0
2
)2+(1+

√
3)(x2−x0

2
)2+2(1−

√
3)(x1+

x0
2
)(x2−x0

2
)].

(E.2)
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The expectation values of x1 and x21 are calculated as

〈x1〉 =

∞∫

−∞

∞∫

−∞

dx1dx2x1ψ
2(x1, x2) = −x0

2
,

〈x21〉 =

∞∫

−∞

∞∫

−∞

dx1dx2x
2
1ψ

2(x1, x2) =
x20
4

+
(3 +

√
3)~

12mω
,

(E.3)

so that the wave packet width for ion 1 is

∆x1 =
√
〈x21〉 − 〈x1〉2 =

1

2

√
1 +

1√
3

√
~

mω
. (E.4)



Appendix F

Alternative inversion protocols

An approximate analytical wave function for the ground state of the two ions

subjected to the Hamiltonian (3.5), is given by multiplying the ground states of

the two normal modes, see Eq. (3.24),

ψNM =

(
Ω+Ω−
π2~2

)1/4

e−
1
2~

(Ω+x2++Ω−x2−). (F.1)

In laboratory coordinates, and for the specific case of equal mass ions, the nor-

malized ground state is

ψ(x1, x2) =

(
m
√
3ω2

π2~2

)1/4

e−
mω
4~ [(1+

√
3)(x1+

x0
2
)2+(1+

√
3)(x2−x0

2
)2+2(1−

√
3)(x1+

x0
2
)(x2−x0

2
)].

(F.2)

The expectation values of x1 and x21 are calculated as

〈x1〉 =

∞∫

−∞

∞∫

−∞

dx1dx2x1ψ
2(x1, x2) = −x0

2
,

〈x21〉 =

∞∫

−∞

∞∫

−∞

dx1dx2x
2
1ψ

2(x1, x2) =
x20
4

+
(3 +

√
3)~

12mω
,

(F.3)
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so that the wave packet width for ion 1 is

∆x1 =
√
〈x21〉 − 〈x1〉2 =

1

2

√
1 +

1√
3

√
~

mω
. (F.4)



Appendix G

Ansatz for ρ+

The ansatz for ρ+ that satisfies the BC ρ+(0) = 1, ρ+(tf ) = γ+, ρ̇+(tb) =

ρ̈+(tb) =
...
ρ+(tb) =

....
ρ +(tb) = 0 with two free parameters takes the form

ρ+ = 1− (126− 126γ+ + a10 + 5a11)s
5

+ (420− 420γ+ + 5a10 + 24a11)s
6

− (540− 540γ+ + 10a10 + 45a11)s
7

+ (315− 315γ+ + 10a10 + 40a11)s
8

− (70− 70γ+ + 5a10 + 15a11)s
9

+ a10s
10 + a11s

11. (G.1)

To minimize the perturbation energy in Eq. (5.28), three free parameters are

introduced,

ρ+ = 1− (126− 126γ+ + c10 + 5c11 + 15c12)s
5

+ (420− 420γ+ + 5c10 + 24c11 + 70c12)s
6

− (540− 540γ+ + 10c10 + 45c11 + 126c12)s
7

+ (315− 315γ+ + 10c10 + 40c11 + 105c12)s
8

− (70− 70γ+ + 5c10 + 15c11 + 35c12)s
9

+ c10s
10 + c11s

11 + c12s
12. (G.2)
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Appendix H

Wave functions

The time-dependent wave functions evolving with the Hamiltonian (6.8) take

the form [32, 33, 76]

〈s|ψ(t)〉 =
∑

n

cne
iαn(t)〈s|φn(t)〉 (H.1)

where the cn are constant,

αn(t) = −1

~

∫ t

0

dt′
(n + 1/2)~ω0

ρ2
= −ω0(n+ 1/2)

∫ t

0

dt′
1

ρ2
, (H.2)

〈s|φn(t)〉 = e
im
~
ρ̇q2/(2ρ) 1

ρ1/2
Φn

(
s

ρ

)
, (H.3)

and Φn(x) is the Hermite polynomial solution of the harmonic oscillator with

angular frequency ω0 and with energy eigenvalue (n + 1/2)~ω0, that is, Φn(x) =

1√
2nn!

(mω0

π~
)1/4e

−mω0x
2

2~ Hn(
√

mω0

~
x). Note that 1

ρ1/2
Φn(s/ρ) is just a scaled state that

corresponds to the nth eigenstate of a trap with angular frequency ω0/ρ
2.
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[31] E. Torrontegui, S. Ibáñez, S. Mart́ınez-Garaot, M. Modugno, A. del
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transport of two ions in an anharmonic trap”, Physical Review A 88,

053423 (2013).

http://dx.doi.org/10.1088/1367-2630/14/9/093040
http://dx.doi.org/10.1088/1367-2630/13/7/073026
http://dx.doi.org/10.1063/1.528895
http://dx.doi.org/10.1063/1.1483107
http://dx.doi.org/10.1103/PhysRevA.86.063624
http://dx.doi.org/10.1103/PhysRevA.86.013601
http://dx.doi.org/10.1006/aphy.1997.5720
http://dx.doi.org/10.1103/PhysRevA.85.033605
http://dx.doi.org/10.1103/PhysRevA.88.053423


[53] J. Pedregosa-Gutierrez, C. Champenois, M. R. Kamsap, and M. Knoop,

“Ion transport in macroscopic RF linear traps”, International Journal of

Mass Spectrometry 381-382, 33–40 (2015).

[54] G. Huber, T. Deuschle, W. Schnitzler, R. Reichle, K. Singer, and

F. Schmidt-Kaler, “Transport of ions in a segmented linear Paul trap in

printed-circuit-board technology”, New Journal of Physics 10, 013004

(2008).

[55] H. A. Fürst, M. H. Goerz, U. G. Poschinger, M. Murphy, S. Montangero,

T. Calarco, F. Schmidt-Kaler, K. Singer, and C. P. Koch, “Controlling the

transport of an ion: classical and quantum mechanical solutions”, New

Journal of Physics 16, 075007 (2014).

[56] X.-J. Lu, J. G. Muga, X. Chen, U. G. Poschinger, F. Schmidt-Kaler, and

A. Ruschhaupt, “Fast shuttling of a trapped ion in the presence of noise”,

Physical Review A 89, 063414 (2014).

[57] D. Hanneke, J. P. Home, J. D. Jost, J. M. Amini, D. Leibfried, and D. J.

Wineland, “Realization of a programmable two-qubit quantumprocessor”,

Nature Physics 6, 13–16 (2009).

[58] P. G. L. Lewis, H. Ralph; Leach, “A direct approach to finding exact

invariants for one-dimensional time-dependent classical Hamiltonians”,

Journal of Mathematical Physics 23, 2371 (1982).

[59] G. Morigi and H. Walther, “Two-species Coulomb chains for quantum

information”, The European Physical Journal D 13, 261–269 (2001).
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