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The asymptotic stability with a prescribed degree of time delayed systems subject to mul-
tiple bounded discrete delays has received important attention in the last years. It is basi-
cally proved that the a-stability locally in the delays (i.e., all the eigenvalues have prefixed
strictly negative real parts located in Res < —a < 0) may be tested for a set of admissible
delays including possible zero delays either through a set of Lyapunov’s matrix inequali-
ties or, equivalently, by checking that an identical number of matrices related to the de-
layed dynamics are all stability matrices. The result may be easily extended to check the
e-asymptotic stability independent of the delays, that is, for all the delays having any val-
ues, the eigenvalues are stable and located in Res < ¢ — 0~. The above referred number of
stable matrices to be tested is 2" for a set of distinct r point delays and includes all possi-
ble cases of alternate signs for summations for all the matrices of delayed dynamics. The
manuscript is completed with a study for prescribed closed-loop spectrum assignment
(or “pole placement”) under output feedback.

Copyright © 2006 M. De la Sen. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Stability results
Consider the time-invariant time-delay system

r

= Aox(t) Z x(t— M), (1.1)

where x € R" is the state vector, iy > 0 (k = 1,2,...,7) are r point constant delays. The
initial conditions of (1.1) are given by any absolutely continuous function ¢ : [-h,0] —
R”, with possibly finite discontinuities on a subset of zero measure of [—h,0], where h =
max; <k<(hk). The system (1.1) is said to be a-symptotically stable locally in the delays
(a-ASLD) for all i € [0,hi] for some a € Ry, he >0 (k= 1,2,...,7) (i.e., all the roots of
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Det(sI — Ag — >j_; Axe™™) = 0 lie in Res < —a < 0), see [1-5]. The following result was
proved in [5].

Result 1.1. The system (1.1) is a-ASLD if there is a real n-matrix P = P” > 0 such that the
following Lyapunov’s matrix inequality holds

PAg+ALP+ [Z +eli (PAy +A,{P)] < -—2aP (1.2)
k=1 m

for m=1,2,...,2"p € [—|pol,0), where [£],, denotes all possible 2" cases of alternating
sign. The system (1.1) is asymptotically stable independent of the delays if

r
PA0+A({P+[Z¢(PAk+A,{P)] <0. (1.3)
k=1 m

Result 1.1 was proved based on the subsequent technical fact also proved in [5].

Fact 1.2. For any set of symmetric constant n-matrices { Tx; k = 0,1,...,r}, the inequality
r
To > ni Tk < —2aP (1.4)
k=1

holds for some « € R, a real n-matrix P = PT >0, and all real #x € [~ em] (k =
1,2,...,r) if and only if it holds at the 2" vertices of the hyper-rectangle:

H:= {11 = (nl,qz,...,r]r)T ER" |k €[ — s nim |5 k = 1,2,...,r}. (1.5)

The following technical lemma will be then used to prove the main results.

LemMaA 1.3. A set of r real matrices A; (i = 1,2,...,1) consists of stability matrices with
stability abscissas (—a;) < 0 if and only if the set of r Lyapunov’s matrix inequalities

AIP+PA; < —2aP; i=1,2,..,1, (1.6)

hold for any real constant o € (0,Min<;<,(a;)] provided that Min(a;),<i<, is sufficiently
large.

Proof. Assume that all the A; are stability matrices with stability abscissas (—a;) < 0 then
(A;+ o;I) are stable matrices and

(AT +0uI) P+ P(Ai+ail) <0 (1.7)
fori=1,2,...,r, all real n-matrix P = PT > 0 then
ATP+PA; < —2a;P < —2aP <0 (1.8)

fori=1,2,...,r and all & > 0 as specified. To prove the converse, consider three cases for
(1.7) to fail and then proceed by contradiction.
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Case 1. Assume (AiT +a;])P+P(A;+o;I) >0 for at least one i € {1,2,...,r}. Thus, (A; +
a;I) is unstable from Lyapunov’s instability theorem and one of its eigenvalues has posi-
tive real part. Thus, the stability abscissa of A; exceeds (—a;) which leads to a contradic-
tion.

Case 2. Assume (A,-T +o;I)P+ P(A; + a;I) = 0 for atleastonei € {1,2,...,r}. Consider the
linear and time-invariant system x(f) = (A; + a;I)x(¢) for any bounded x(0) = xo € R®
with a Lyapunov-Razumikhin function candidate V(x) = xT(¢)Px(t), some real matrix
P =PT > 0. It turns out that

V(x)=0= V(x) = V(0) < 00 = ||x(t)|[s = Amin (P"") V(0) >0 (1.9)

for any xo # 0. Thus, it turns out that x(¢) cannot tend to zero as t — o if xy # 0 and then
(Aj+ a;I) is not a stability matrix and thus the stability abscissa of A; is less than (—«;)
what again leads to a contradiction.

Case 3. Assume that (A} +a,I)P + P(A; + o,I) is indefinite. Decompose Ax = A; + AAi
forsome 1 <k <randall 1 <i# k <r. Thus for any positive definite symmetric square
n-matrix Q, there exists a positive definite matrix P such that

(ATP+axl) P+ P(A+0ql)
= (ATP+al)P+P(Ai+ail) + (AALP + PAAk;) +2(a — ;) P (1.10)

= Q-+ (AALP+ PAAL) +2 (o — i) P

with P = [;° e +aD)T Qe(Al +ail) 41 satisfying Q = — (AT P+ a;I)P — P(A; + ail).

Note that Amax(P) < K2/2(p; + ;) for some real constant K > 1 with (—p;) < 0 being
the stability abscissa of A;. Thus,

(ATP+axl)P+P(Ax+arl) <O if Amin(Q) > 2(||AAil], + (@ — @) ) Amax (P)  (1.11)

what is guaranteed if

/lmin(Q) K2
b2 (@~ pita [""f‘“ﬂ +Mg§<IIAAkfIIZ)] (1.12)

which always holds for sufficiently large p; (i.e., for sufficiently stable A;) for given
IAAkill2, i = 1,2,...,1, and, thus, for sufficiently large Min(a;)1 <i<,- 0

The main result of this section is now stated.

THEOREM 1.4. The subsequent items hold as follows.

(i) The system (1.1) is & -SLD for all hy € [0, k] if the 2" -matrices A = Ao+ [D o,
eﬁk"Ak]m + oI are all stability matrices for m = 1,2,...,2" and some real a > 0.

(ii) Assume that Amp = Ag + (> ko1 2pkAklm + al are all stability matrices for pT =
(p1>p25--->pr) with pr = 1, k = 1,2,...,r, and some real o > 0. Then, the system (1.1) is
a-ASLD for all delays hy € [0, k] with hy = (/a)Inpg forallk = 1,2,...,7.
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(iii) Assume that

Amp = A+ [ZipkAk:| +al (1.13)
k=1 m

are all stability matrices for any real constants px >0, k = 1,2,...,r, and some real a > 0.
Thus, all the systems of the form

= Agx(t) + Z Z— x(t—hy) (1.14)

are a-SLD for any prefixed set of real scalars By > 1 (k = 1,2,...,r) and all delays hy €
[0,(/e)InBi]. If B = px > 1 forall k = 1,2,...,r, then (1.1) is a-ASLD.

(iv) IfA, =Ao+ [Zzzl +pr Akl m are all stability matrices with py=1 forallm=1,2,...,2",
k =1,2,...,r, then all the delay systems (1.14) are asymptotically stable independent of the
delays for any set i >1 (k=1,2,...,r). If fx = pr = 1 (k= 1,2,...,7), then (1.1) is asymp-
totically stable independent of delays.

Proof. (i) Consider 2" Lyapunov’s matrix equations

ALP,+P,An=-Q.=-Ql <0 (1.15)
for m = 1,2,...,2". Since A, are stability matrices, then the unique solutions P, to the
Lyapunov’s equatlon are P,,=Pl=|"e AT Quern dr, m=1,2,...,2". On the other hand,

(—Qm) < —2aPy, (or, equivalently, Q,, = 2aP,,) for all m = 1,2,...,2" if

l Min; <j<or [Amin (Qm)]

O<ac< . 1.16
2 Maxzi=2 (Ao (P (110

Note also that for any symmetric positive definite matrices P, and all P > P,,,,

Al P+PAy = ALP, +P,An+ALAP, + AP, Ay
. (1.17)
< QT + (AT AP, + AP,Am) < 0
with AP,, = P — P,; m = 1,2,...,2" satisfying

(ALAP, + APyAm) = —Qu <0 (1.18)

since Ap, is a stability matrix (see the proof of Lemma 1.3). Thus, for any P > P, (m =
1,2,...,2"),

ALP+PAy, < —2aP (1.19)

holds so that P is nonunique and thus the system (1.1) is -SLD from Result 1.1 and all
the set of delays hy (k = 1,2,...,r) satisfy px = " > e > 1, since by > 0,k = 1,2,...,2",
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equivalently is guaranteed if

Maxq<p<or [Amax (Pm)]
‘ 1 1.20
Min; << [Amax(Qm)] NPk ( :

O<tr<TIm <

and the proof of (i) has been completed.

(ii) It follows directly from (i) with px = hga for k = 1,2,...,7 and & > 0.

(iii) Consider the nonunique factorizations pi = yxfk, for any sequences {yx; k =
L,2,...,r}, {fr; k=1,2,...,r}, being only subject to the constraints S > 1 for all k =
1,2,...,r. Thus, it follows from (ii) for px = yifk = hea (k =1,2,...,r) that if the matrices

Amﬁ:A()+|:Zr:iﬁk(i;]]:Ak>:| +al (1.21)

k=1

are all stability matrices for m = 1,2,...,2", then all the systems (1.14) are a-ASLD.
(iv) It follows from (iii) since the asymptotic stability of the systems (1.14) for all
Eossible values of the delays from zero to infinity, with px = ykfx = hxa = 1, « — 0" and

hi =o(a™!) — oo forall k = 1,2,...,7, is guaranteed by testing the 2" given n-matrices for
allm=1,2,...,2". O

Remarks 1.5. (1) Note that the property of a-asymptotic stability locally in the delays
of the system (1.1), which specifies admissibility domains | 0, ] for the delays for k =
1,2,...,r, may be tested by checking if 2" matrices

r —
Am = Ao+ [Z ie’WAk] +al (1.22)
k=1 m

are all stability matrices for m = 1,2,...,2". This property is equivalent to all the matrices

Al = A+ [ > tehk“Ak} (1.23)
k=1

m

to be stability matrices with stability abscissas of at least (—a) < 0.
(2) Note that A, being a stability matrix implies that

Ao = Ag + [Z ieh"“Ak] +apl (1.24)
k=1 m

are all stable for «ap € (0,«] and E,; = ha/ag for k = 1,2,...,r. Thus, the system (1.1) is
also ap-ASLD for all delays hy € [0,hxa/ag] or k = 1,2,...,7. As a result, if the system
(1.1) is a-ASLD for h € [0,h], then it is also ap-ASLD for all &g € (0,&] and delays
hy € [O,Ekoc/oco] fork=1,2,...,r.

(3) Note that all Ay, being stability matrices for any a > 0 implies that Ag and (3} _, Ax)
are both stability matrices. In other words, the delayed dynamics-free auxiliary system
2(t) = Aoz(t) and the delay-free system z(t) = (3.;_, Ak )z(t) are both globally exponen-
tially stable. Both conditions are known to be necessary for stability independent of
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the delays (see [3, 5]) and they are obtained in this context as a direct consequence of
Theorem 1.4.

2. Output-feedback stabilization with prescribed pole placement
Now system (1.1) is considered as forced and with a measurable output

x(t)=A )+ > Aix(t —ih) + bu(t),
X ox(t ; X i u 2.1

y(t) = cTx(t) + du(t),

where h > 0 is now the base delay and h; = ih (i = 1,r). The change of notation and
specification of delays related to a base one h is made by description simplicity reasons.
The transfer function of (2.1) is defined in a standard way by using the Laplace transforms
of the output and input as P(s) = [Y(s)/U(s)]y=o leading to

] -1
P(s)= —% =T (SI - ZAie_ihS> b+d, (2.2)
i=0

where A(s) and B(s) are quasipolynomials defined by

A(s) = det <sI - iAue””)

i=0

q q = (2.3a)
:ZAi(S)efihs_ZA* —hs 1 zzakse ihs
i=0 = i=0 k=0
B(s) = cTAdj (sl - ZAieihs) b+dA(s)
0 (2.3b)

_ e~ths — ZB* —hs Sl _ Z Zbksk —ihs

0 i=0 k=0

'MQ\

1

with g and q’ being integers satisfying q" < q < rn. For exposition simplicity, it is as-
sumed without loss of generality that q¢" = g. Otherwise, (2.3b) still applies by zeroing the
necessary polynomials B.):

=Dbiss  Ai(s) = D apst (2.4)
i=0 i=0

are polynomials of respective degrees m; and n; (i = 0,q) with m; <mg=m <nand n; <
ny = n for i = 0,q with m = n if and only if d # 0 in (2.1), that is, the plant is not strictly
proper plant and m < n — 1, otherwise. Note that n = ny > Max(m,Max, <;<4(ni,m;))
since the transfer function (2.2)-(2.3) obtained from (2.1) is realizable. Alternative poly-
nomials B (e™) and A} (e ™) are defined in the same way leading to an equivalent de-
scription of (2.1). The following result is the main one of this section.
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THEOREM 2.1 (Spectrum assignment and closed-loop stability). Assume that the transfer
function (2.2)-(2.3) has no pole-zero cancellation and that the property is not lost under zero
delayed dynamics. Thus, the following items hold.

(i) There exist infinitely many polynomial pairs (Ri(s),Si(s)) which satisfy the v nested
Diophantine equations of polynomials:

Ag($)Ri(s) + Bo(s)Si(s Z Ai($)Ri-1(s) + Bi(s)Si-i(s))  fori=0,0—1
1=1
(2.5)

for any integer v > 1. Furthermore, if nyo = 2n — 1, then there is at least a solution (R;(s),
Si(s)), i = 0,v — 1, which satisfies the following degree constraints:

ny=nm—n, mi(s)=n—-1 fori=0,0—1,

(2.6)
Max (n},m — 1) = Max (I’Zm,’,M]?X (g + n,ﬁk)) - n.
1<k=<i

(ii) If Assumptions (1)-(2) hold and n,,g = 2n, then it is possible to build infinitely many
proper rational functions of the form

10 [81(s) = Ao(s)Ao(s)]e s

A ST RO+ Aa(s)Bo(s) e 7

(2.7)

with existing polynomial solution pairs (Ri(s) — Ao(s)Ao(5),Si(s) + Ao(s)Bo(s)) verifying
(2.5) provided that (R;(s),Si(s)) are also solutions to (2.5) where Ao(s) = Ag is any real scalar
(i.e., any polynomial of zero degree) if n > m and Ay (s) is any arbitrary polynomial of ar-
bitrary degree otherwise. If ny,o = 2n — 1, then (2.5) is realizable for Ay(s) = 0 if n > m and
with arbitrary Ao(s) if n =m

(iii) Assume that the controller transfer function K,(s) = S(s)/R(s) takes the subsequent
specific form

o [S1(s) = Ao()Ag(s) e ths
0 [Ri(s) + Ao(s)Bo(s)] e~ + Ry (s)

(2.8)

where (Ri(s),Si(s)) are pairs of polynomials being any solutions to (2.5), i = 0,v— 1, Ag(s)
is chosen according to item (ii), Sy(s) is an arbitrary polynomial of degree not exceeding
(n—1), and

Ny(s
RS = Do
1 v+q R Min(l,q) Min(l,q)
= Aief(lfv)hs > | Awis) - ( > Ai(SRi—i(s)+ > Bi(s)sli(5))
(S) I=v i=Max(v-I-v+1) i=Max(v-1-v)

(2.9)
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Then, the closed-loop spectrum satisfies
A($)R(s) + B($)S(s) = z ()it (2.10)

with the closed-loop being stable with poles in A%(s) = 0 and a closed-loop stable cancel-
lation of the plant poles provided that A% (s) = SV=t A(s)e™s is a strictly Hurwitzian
quasipolynomial satisfying n,,0 = 2n — 1.

(iv) If the suited spectrum satisfies nyo = 2n — 1 and the controller is simplified to have a
transfer function K*(s) = Q(s) (i.e., Ry(s) and S,(s) are zeroed), then the closed-loop spec-
trum is set to the zeros of

v+q  Min(l,q)
{Z > [Ai(s)Rz_i(s)+Bi(s)sz_,-(s)]e”'S} (2.11)

€=v j=Max(0,/-v)

without cancellations of the plant poles.
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