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Some criteria for asymptotic stability of linear and time-invariant systems with constant
point delays are derived. Such criteria are concerned with the properties of robust stability
related to two relevant auxiliary delay-free systems which are built by deleting the delayed
dynamics or considering that the delay is zero. Explicit asymptotic stability results, easy
to test, are given for both the unforced and closed-loop systems when the stabilizing con-
troller for one of the auxiliary delay-free systems is used for the current time-delay system.
The proposed techniques include frequency domain analysis techniques including the use
of H∞ norms.
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1. Introduction

Time-delay models frequently appear in problems like transportation or population
growth. Also, circuits which include elements with delays have become relevant due to
the increase in performance of VLSI systems. Two typical types of circuits with delays
are transmission lines and partial element equivalent circuits. Stability criteria have been
proposed for such systems from Lyapunov’ s theory or from algebraic formulations. It is
well-known that the stability of linear and time-delay systems is difficult to test because
it is associated with transcendental characteristic equations which possess, in general,
infinitely many characteristic roots; and thus time-delay systems are, in general, infinite-
dimensional (see, for instance, [1–8, 12, 13, 15, 18, 21, 22]). Therefore, many of the ex-
isting stability tests are difficult to apply in practice.

In that context, several approaches for sufficiency-type stability criteria have been es-
tablished in the literature (see, for instance, [1–3, 12, 13, 15, 18, 21]). In general, those
criteria include some free tuning scalar and/or matrix parameters and there is a lot of
work concerned with providing as less conservative stability conditions as possible while
reducing simultaneously the number of tuning parameters (see, for instance, [22] and
references therein). In that paper, stability criteria for linear time-invariant systems with
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multiple delays are established. One of the main results is for stability independence of
delay, namely, all the characteristic roots are guaranteed to lie in Res < 0 for all finite de-
lays (k = 1,2, . . . ,σ). The second main result consists of sufficiency-type conditions for
asymptotic stability dependent on the delays. All the results are derived in the frequency
domain based on the use of Rouché’s theorem for the zeros of a complex variable func-
tion related to another one which is taken as reference on some appropriate domain,
[10, 11, 16, 17, 19, 20]. In this context, the number of zeros of the characteristic quasipoly-
nomial is compared to that of the characteristic polynomials of an auxiliary delay-free
system on the closed right half-plane. If both numbers coincide, then the current system
with delays is globally asymptotically stable provided that the auxiliary delay-free system
is exponentially stable and the delayed dynamics size is sufficiently small characterized in
terms of norms. This auxiliary system plays the role of a nominal system and the delayed
dynamics is considered as a disturbance of those nominal systems in a robustness stabil-
ity context. Two auxiliary delay-free systems having physical interpretations are stated as
potential nominal systems for robustness analysis. One of those systems is obtained by
neglecting the overall delayed dynamics, while the other one is obtained from the current
system for zero delay. The obtained results are extended to the asymptotic stabilization of
the current delay system by a nominal controller which asymptotically stabilizes at least
one of the above-mentioned delay-free systems. If the considered auxiliary delay-free sys-
tem is exponentially stable and the contribution of the unmodeled dynamics to the char-
acteristic equation of the delay system is sufficiently small for all frequencies compared to
that of the auxiliary delay-free system, then such a system remains asymptotically stable.
The basic robust asymptotic stability results are given and commented in Section 3, while
proved in the appendix. Some illustrative examples are given in Section 4 and, finally,
conclusions end the paper.

2. Problem statement

Consider the linear and time-invariant system with σ commensurate delays hi = ih; i =
1,2, . . . ,σ , with state-space description:

ẋ(t)= A0x(t) + ρ
σ∑

i=1

Aix(t− ih) + bu(t), y(t)= cTx(t) (2.1)

for basic delay h ≥ 0, with initial condition ϕ : [−σh,0] → Rn where ϕ is a real vector
piecewise continuous function possibly possessing bounded discontinuities on a subset
of measure zero of [−σh,0]→R, x(t)∈Rn, u(t)∈R, and y(t)∈R are the n-state vector
and scalar input and output at time t, respectively, and b ∈ Rn, c ∈ Rn, and Ai ∈ Rnxn

(i= 1,2, . . . ,σ) are matrices of constant real entries. The scalar parameter ρ quantifies the
amount of delayed dynamics for given not all zero matrices Ai (i= 1,2, . . . ,σ). For ρ = 0
and h= 0, the delayed system (2.1) becomes the auxiliary delay-free systems

ẋ(t)= A0x(t) + bu(t); y(t)= cTx(t), (2.2)

ẋ(t)=
(

A0 + ρ
σ∑

i=1

Ai

)
x(t) + bu(t); y(t)= cTx(t), (2.3)
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respectively. For ρ = 0, the dynamic system (2.3) reduces to (2.2). The main objective
of the subsequent study is to relate the asymptotic stability properties of the system (2.1)
with those of the delay-free system (2.2) provided that it is exponentially stable. The study
is then extended to investigate conditions which ensure that the class of (potentially mem-
oryless, namely, without delayed dynamics) linear controllers that stabilizes the delay-free
system (2.2) also stabilizes (2.1) by stating the problem as a robust stability problem. For
this purpose, the delayed dynamics of (2.1) is considered as a perturbation of that of the
nominal delay-free system (2.2). Parallel robust stability results are obtained by compar-
ing the system (2.1) to the auxiliary system (2.3). It is proved that any controller which
stabilizes (2.2) exponentially, it also stabilizes asymptotically (2.1) for all ρ ∈ [−ρ∗0 ,ρ∗0 ]
and some real ρ∗0 > 0. The following result, which is proved in the appendix, is related to
the input-output description of the system (2.1) compared to the transfer function of the
system (2.2).

Lemma 2.1. The following two items hold.
(i) The transfer function of (2.1) is given by

P(s)= B
(
s,e−hs

)

A
(
s,e−hs

) = P0(s) + ρΔB
(
s,e−hs

)

1 + ρΔA
(
s,e−hs

) , (2.4)

where P0(s)=N(s)/D(s)= cT(sI −A0)−1b is the transfer function of the auxiliary delay-free
system (2.2) and

ΔB
(
s,e−hs

)= B′
(
s,e−hs

)

D(s)
= 1

D(s)

( q∑

i=1

B∗
′

i (s)e−ihs
)
= 1

D(s)

( m∑

k=0

B′k
(
e−hs

)
sk
)

,

ΔA
(
s,e−hs

)= A′
(
s,e−hs

)

D(s)
= 1

D(s)

( q∑

i=1

A∗
′

i (s)e−ihs
)
= 1

D(s)

( n∑

k=0

A′k
(
e−hs

)
sk
)

,

(2.5)

with B∗
′

i (s)=∑m
k=0 b

′
kis

k, B′�(e−hs)=
∑q

k=1 b
′
�ke

−khs for i= 1,2, . . . ,q (≤ nσ); l = 0,1, . . . ,m;
A∗

′
i (s) =∑n

k=0 a
′
kis

k, A′�(e−hs) =
∑q

k=1 a
′
�ke

−khs for i = 1,2, . . . ,q; l = 0,1, . . . ,n; and D(s) =
A∗

0
(s) = det(sI −A0) =∑n

i=0 ai0s
i is a monic polynomial; that is, an0 = 1, the real coeffi-

cients a′(·) and b′(·) being dependent on powers of ρ but converging to real limit values being
independent of ρ as ρ→ 0.

(ii) The transfer function of (2.1) is equivalently given by

P(s)= B
(
s,e−hs

)

A
(
s,e−hs

) = P0(s) + ρΔB
(
s,e−hs

)

1 + ρΔA
(
s,e−hs

) , (2.6)

where P0(s)=N(s)/D(s)= cT(sI −A0− ρ
∑q

i=1 Ai)−1b is the transfer function of the auxil-
iary delay-free system (2.3) with denominator polynomial D(s)= det(sI −A0− ρ

∑q
i=1 Ai);
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and

ΔB
(
s,e−hs

)= 1
D(s)

( q∑

i=1

B∗
′

i (s)
(
e−ihs− 1

)
)
= 1

D(s)

( m∑

k=0

B′k
(
e−hs

)(
sk − 1

)
)

,

ΔA
(
s,e−hs

)= 1
D(s)

( q∑

i=1

A∗
′

i (s)
(
e−ihs− 1

)
)
= 1

D(s)

( n∑

k=0

A′k
(
e−hs

)(
sk − 1

)
)
.

(2.7)

Note from (2.5) into (2.4) that the numerator and denominator quasipolynomials
B(s,e−hs) and A(s,e−hs) of the transfer function of (2.1), that is, P(s), may be expanded
into powers of s, with polynomial coefficients in e−hs, or equivalently, into powers of e−hs

with polynomial coefficients in s. On the other hand, note that there are two equivalent
alternative expressions for P(s) related to the transfer functions of the auxiliary delay-free
systems (2.2) or (2.3), P0(s) (ρ = 0 in (2.1), i.e., the system is free of delayed dynamics)
and P0(s) (h= 0 in (2.1), i.e., the system operates with zero delay), respectively. Those two
characterizations allow the formulations of two alternative sets of robust asymptotic sta-
bility conditions for the unforced and forced (2.1) with respect to the delay-free systems
(2.2) and (2.3).

3. Robust stability results

In this section, some results concerned with robust stability for the unforced system (2.1)
are given provided that one of the delay-free systems (2.2) or (2.3) is exponentially stable.
Some obtained robust stability results are of independent of delay-type while others are
formulated as dependent on the delay ones. The results may be tested in practice with
simple calculations and they are also extended for the closed-loop system obtained from
(2.1) with a linear (nominal) controller which stabilizes either (2.2) or (2.3). In order to
establish and prove the subsequent result, define real constants mA, m′

A, mB, and m′
B as

follows:

mA := Max
1≤i≤q

Sup
ω∈R+

0

(∣∣∣∣
A∗

′′
i ( jω)
D( jω)

∣∣∣∣
)

; mB := Max
1≤i≤q

Sup
ω∈R+

0

(∣∣∣∣
B∗

′′
i ( jω)
N( jω)

∣∣∣∣
)

;

m′
A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q
1− ρ

q+1
0

1− ρ0
Max
1≤i≤q

Sup
ω∈R+

0

(∣∣∣∣
A
∗′′
i ( jω)
D( jω)

∣∣∣∣
)

if ρ0 < 1,

q

( q∑

k=0

ρk0

)
Max
1≤i≤q

Sup
ω∈R+

0

(∣∣∣∣
A
∗′′
i ( jω)
D( jω)

∣∣∣∣
)

if ρ0 ≥ 1;

m′
B =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q
1− ρ

q+1
0

1− ρ0
Max
1≤i≤q

Sup
ω∈R+

0

(∣∣∣∣
B
∗′′
i ( jω)
N( jω)

∣∣∣∣
)

if ρ0 < 1,

q

( q∑

k=0

ρk0

)
Max
1≤i≤q

Sup
ω∈R+

0

(∣∣∣∣
B
∗′′
i ( jω)
N( jω)

∣∣∣∣
)

if ρ0 ≥ 1;

(3.1)
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with N(s)= B∗0 (s) and D(s)= A∗0 (s) being the numerator and denominator polynomials
of P0(s) for the system (2.2). Note by direct inspection of (3.1) that the above constants
are monotonically nondecreasing for all real ρ0 ∈ [0,1)∪ [1,∞) and all positive integer q.
The basic robust stability result compares the global asymptotic stability of (2.1) to the
exponential one of (2.2) and it is established as follows.

Theorem 3.1 (global asymptotic robust stability independence of delay from the stability
of the delay-free system (2.2)). The following items hold.

(i) Assume that the unforced (i.e., u≡ 0) delay-free system (2.2) is stable with no poles on
the imaginary axis (i.e., globally exponentially stable) and with H∞-norm γ0 := ‖P0‖∞ =
Maxω∈R+

0
(|P0( jω)|) <∞ with R+

0 being the set of nonnegative real numbers. Thus, the de-
layed system is globally asymptotically stable independent of delay; that is, for all h∈ [0,∞),
if ρ ∈ [−ρ∗0 ,ρ∗0 ] with ρ∗0 =Min(ρ0,1/ρ′0) > 0, ρ0 > 0 being a design parameter, and ρ′0(ρ0)
being dependent on ρ0 from (3.1) defined by

ρ′0 = γ−1
0

(
mA +m′

A

)
. (3.2)

(ii) Assume that the pair (A0,b) is stabilizable with D(s)=A∗0 (s) with no zeros on the imag-
inary axis and that c(s) is the transfer function of a linear stabilizing feed-forward con-
troller for the transfer function P0(s) of (2.2) to compose the closed-loop transfer function
T0(s)= P0(s)c(s)/(1 +P0(s)c(s)) of H∞-norm γ := ‖T0‖∞. Assume also that P0(s) and P(s)
have both the same number 0≤ nu ≤ n of unstable poles. Thus, the closed-loop delayed sys-
tem of transfer function T(s) = P(s)c(s)/(1 + P(s)c(s)), obtained from (2.1) with the same
controller, remains globally asymptotically stable independent of delay for all ρ ∈ [−ρ∗0 ,ρ∗0 ]
with ρ∗0 =Min(ρ0,1/ρ′0T), ρ0 being a design parameter, and ρ′0 being redefined as

ρ′0T =
⎧
⎪⎨
⎪⎩

(1− γ)
(
mAT +m′

AT

)
+ γ

(
mBT +m′

BT

)
if γ < 1,

(1 + γ)
(
mAT +m′

AT

)
+ γ

(
mBT +m′

BT

)
if γ ≥ 1.

(3.3)

The proof is given in the appendix.
Note that typically, the nominal stabilizing controller of transfer function is delay-

free which implies that it is memoryless, but nothing about is specifically assumed in
the above result. Note also that the numerator and denominator quasipolynomials of
the open-loop and closed-loop transfer functions of (2.1) may be calculated equivalently
as polynomials in s of polynomial coefficients in e−hs, or vice versa. Concerned with a
judicious practical application of Theorem 3.1, note the following from (3.1), (3.2). If
ρ0 ∈ [0,1) and q ≥ 2, then if the value of the design parameter ρ0 becomes increased
(decreased), then that of ρ′0 decreases 8 (increases) so of ρ′0

−1 increases (decreases). Thus,
a practical test from Theorem 3.1 may reduce to choosing ρ0 = 1 and then ρ∗0 = 1/ρ′0. This
strategy works since from the above discussion, a decrease of the value of ρ0 corresponds
with a decrease in that of ρ′−1

0 so that an improved test is not required to increase the value
of a potential ρ∗0 . If ρ0 ≥ 1 then an increase of value in ρ0 implies a decrease in that of ρ′0

−1

so that it suffices a test for ρ′0 with ρ0 = 1. For the design of a feedback system with a linear
potentially memoryless controller (Theorem 3.1(ii)), which also stabilizes (2.2), the same
above conclusion remains valid for stability testing. Note also that Theorem 3.1(ii) may
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be applied either for an unforced exponentially stable (2.2) or for an unstable one with no
critically stable poles. In this second case, the number of unstable poles of the unforced
system (2.2) has to be identical to the number of unstable poles of the unforced system
(2.1) which has then to be finite as assumed in the theorem.

Thus, the subsequent alternative stability result to Theorem 3.1, but formulated as a
dependent on the delays result, is established as follows.

Theorem 3.2 (global asymptotic stability dependent on the delays). The stability results
of items (i), (ii) of Theorem 3.1 also hold, particularized for a basic delay h if the con-
stants mA, m′

A are redefined dependent on delay with the replacements q→ n, A∗i
′′( jω)→

A′′i (e− jωh)ωi, A
∗
i

′′
( jω)→ A

′′
i (e− jωh)ωi; and mB and m′

B of (3.1) are redefined with the re-

placements q→m, B∗i
′′( jω)→ B′′i (e− jωh)ωi, B

∗
i

′′
( jω)→ B

′′
i (e− jωh)ωi.

The proof of Theorem 3.2 is close to that of Theorem 3.1 and sketched in the appendix.
Note that the numerator and denominator polynomials of (2.1) of real coefficients are of
the forms

B
(
s,e−hs

)=
m∑

i=0

q∑

k=0

bike
−khssi =

n∑

i=0

bi0s
i + ρ

m∑

i=1

q∑

k=0

b′
ik

(ρ)e−khssi,

A
(
s,e−hs

)=
n∑

i=0

q∑

k=0

aike
−khssi =

n∑

i=0

ai0s
i + ρ

n∑

i=1

q∑

k=0

a′
ik

(ρ)e−khssi,

(3.4)

where the following decompositions hold:

a′ik(ρ)= a′ik(0) + a′′ik(ρ); b′ik(ρ)= b′ik(0) + b′′ik(ρ), (3.5)

with D(s)=∑n
i=0 ai0s

i and N(s)=∑m
i=0 bi0s

i, and

a′ik(0)= a′′ik, b′ik(0)= b′′ik,

a′′ik(ρ)= ρa′′ik(ρ)= o(ρ), b′′ik(ρ)= ρb′′ik(ρ)= o(ρ).
(3.6)

Thus, an alternative dependent on delay-type asymptotic robust stability condition,
which is weaker than those of Theorem 3.2, may be obtained from the above expressions
by using Lemma A.2 of the appendix for expanding the denominator quasipolynomial
of both the unforced and forced systems with delays (2.1). The key point is the use of
Rouché’s theorem [11, 16, 19] in terms of inequalities for each frequency instead of us-
ing H∞-norms. Also, a slight variant of Theorem 3.2 may be formulated for asymptotic
stability independence of the delays as follows.

Corollary 3.3 (stability independence of the delays). The stability results of items (i), (ii)
of Theorem 3.1 also hold independent of delay if the constants mA, m′

A are redefined depen-

dent on delay with the replacements q→ n, A∗i
′′( jω)→ A∗i

′′(φ)ωi, A
∗
i

′′
( jω)→ A

′′
i (φ)ωi;

and mB and m′
B of (3.1) are redefined with the replacements q→m, B∗i

′′( jω)→ B∗i
′′(φ)ωi,

B
∗
i

′′
( jω) → B

′′
i (φ)ωi and the corresponding simple supreme in (3.1) is taken as double

supreme over ω ∈R+
0 and φ ∈ [0,2π).
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Note that, in order for system (2.1) to be globally asymptotically stable independent
of delay, it should be stable for zero delay. That means that the auxiliary delay-free system
(2.3) has to be globally exponentially stable. Therefore, the stability of (2.3) with transfer
function P0(s) defined in Lemma 2.1(ii) (2.6), rather than that of (2.2), may be used as
necessary condition for the robust stability problem. Thus, close results to Theorems 3.1
and 3.2 are reformulated as follows.

Theorem 3.4 (robust global asymptotic stability from the stability of the delay-free sys-
tem (2.3)). The subsequent items hold.

(i) Assume that the unforced delay-free system (2.3) is stable with no critical poles. Thus,
Theorem 3.1(i) holds for |ρ| ≤ ρ∗0 =Min(ρ0,1/2ρ0

′), ρ0 being a design parameter and ρ′0
satisfying (3.2) with.

- γ0 being redefined as the H∞-norm of the unforced delay-free system (2.3) of transfer
function P0(s).

- The constants (3.1) being redefined from similar expressions for the transfer function
of the unforced system (2.1), compared to that of the system (2.3), via (2.6) (i.e., the
constants mA, m′

A, mB, and m′
B being calculated from upper-bounds of the absolute

values of ΔA( jω,e− jωh) and ΔB( jω,e− jωh) for all ω ∈R+
0 real in (2.6)).

(ii) Assume that the unforced delay-free system (2.3) has no critically stable poles and
that it is stabilizable. Assume also that it is stabilized with a controller of transfer function
c(s) and that the transfer functions P0(s) and P(s) of the unforced systems (2.1) and (2.3)
have both the same number 0 ≤ nu ≤ n of unstable poles. Thus, Theorem 3.1(ii) holds for
|ρ| ≤ ρ∗0 = Min(ρ0,1/2ρ′0), ρ0 being a design parameter, and ρ′0 satisfying (3.3) with the
appropriate redefinition of the real constants in (3.1) as in Theorem 3.1(i), with γ being
redefined as the H∞-norm of the closed-loop transfer function

T0(s)= P0(s)c(s)
1 +P0(s)c(s)

. (3.7)

(iii) Theorem 3.2 ((i)-(ii)) also holds if the constants mA, m′
A are redefined with the re-

placements q→ n, A∗i
′′( jω)→ A′′i (e− jωh)ωi, A

∗
i

′′
( jω)→ Ai

′′
(e− jωh)ωi (for ΔA( jω,e− jωh)

in (2.6); and mB and m′
B of (3.1) are redefined with the replacements q→m, B∗i

′′( jω)→
B′′i (e− jωh)ωi, B

∗
i

′′
( jω)→ B

′′
i (e− jωh)ωi (for ΔB( jω,e− jωh) in (2.6)).

Remarks 3.5. (1) Note that the transfer function of (2.1), defined by a quotient of qua-
sipolynomials, may be expanded into two equivalent ways as reflected in (2.4), (2.5) by
using polynomial coefficients in s and exp(−hs), respectively. This fact is used to cal-
culate the relevant constants for guaranteeing stability in two ways, namely, (3.1) for
Theorem 3.1 and the modified ones referred to in Theorem 3.2. Two related robust stabil-
ity conditions are obtained from each of those theorems provided that (2.2) is exponen-
tially stable. The weakest of the above two conditions might be used in practical situations
to guarantee stability.

(2) The set of all the alternative conditions for robust global asymptotic stability given
by Theorem 3.1, Corollary 3.3, and Theorem 3.4(i) may be checked jointly to conclude
that the weakest one is the strongest sufficiency-type robust stability condition of those
ones given in this section.
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(3) Since Theorem 3.1 refers to stability independence of the delays, if it holds then
the auxiliary delay-free system (2.3) is exponentially stable for the given ρ within some
real interval. Since such an interval includes ρ = 0 zero, then the delay-free system (2.2)
is exponentially stable as well.

4. Some examples

Example 4.1. Assume again that the parametrization of the system (2.1) with σ = 2 is giv-
en by A0=

⌊a0 b0
c0 d0

⌋
with Min(|a0|,|d0|)≥1 being a stability matrix satisfying

∑2
k=1‖Ak‖2<

(γ−1
0 − α)/ρ∗0 , some real α > 0. Thus, the system (2.1) is globally asymptotically stable.

Direct calculation yields

(
sI −A0

)−1 =

⎢⎢⎢⎢⎢⎢⎣

1
s− a0

b0(
s− a0

)(
s−d0

)

c0(
s− a0

)(
s−d0

) 1
s−d0

⎥⎥⎥⎥⎥⎥⎦ , (4.1)

with

γ0 ≤ 1∣∣a0
∣∣ +

1∣∣d0
∣∣ +

∣∣b0
∣∣+

∣∣c0
∣∣

Min2 (∣∣a0
∣∣,
∣∣d0

∣∣) ≤ 2

(
1 +

Max
(∣∣b0

∣∣,
∣∣c0

∣∣)

Min2 (∣∣a0
∣∣,
∣∣d0

∣∣)
)

(4.2)

for which a sufficient condition is γ−1
0 ≥ (1/4)(Max(|a0|,|d0|)/Min2(a2

0,d2
0,|c0|,|d0|)).

Taking again A0 =
⌊

10 30
−9 −25

⌋
, the following stability results hold.

(1) The system is globally asymptotically stable independent of delay from Theorem
3.1 and its characteristic roots lie in Res ≤ −0.1 if ρ′0 ≤ 0.291 which is achieved, for in-
stance, with delayed dynamics given by A1 =

⌊±0.04 b1
0 ±0.017

⌋
, A2 =

⌊±0.28 0
c2 ±0.2

⌋
for arbitrary

finite b1 and c2.
(2) The system is globally asymptotically stable dependent on the delay from Theorem

3.2 with the same A0 as above if ρ = 1.034 for h ∈ [0,hM] with hM = 103 ln1.034/2 =
16.717. This is accomplished, for instance, by the parametrization

A1 =
⌊±0.1 b1

0 ±0.11

⌋
; A2 =

⌊±0.206 0

c ±0.09

⌋
. (4.3)

(3) The system is stable dependent on the delay from Theorem 3.2 with the same A0 as
above and A1 =

⌊±0.045 b1
0 ±0.044

⌋
; A2 =

⌊±0.045 0
c1 ±0.045

⌋
, with h∈ [0,hM] with hM = 103 ln2.3/2

= 416.454.

Example 4.2. Assume that the delay-free dynamics of the system (2.1) with n= 3 is given

by the pair (A0,b) with A0 =
⌊a1 a2 a3

1 0 0
0 1 0

⌋
and bT = (1,0,0) which is controllable, so that it is

stabilizable as well if ak �= 0 for k = 1,2,3. The open-loop characteristic polynomial of the
delay-free system (2.2) is po(s)= s2− a1s2− a2s− a3. Assume that the closed-loop char-
acteristic polynomial is suited to be pc(s)= (s−β1)(s−β2)(s−β3)= s2−α1s2−α2s−α3,
where Reβk < 0 (k = 1,2,3), and

α1 = β1 +β2 +β3; α2 =−
[
β1β2 +

(
β1 +β2

)
β3
]
; α3 = β1β2β3. (4.4)
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Since the delay-free closed-loop dynamics under linear state feedback is defined by the
matrix

Ac = A0 + bKT =

⎢⎢⎢⎢⎢⎣

a1− k1 a2− k2 a3− k3

1 0 0

0 1 0

⎥⎥⎥⎥⎥⎦ , (4.5)

then the controller gain matrix components are

k1 = a1−
(
β1 +β2 +β3

)
;

k2 = a2 +β1β2 +
(
β1 +β2

)
β3;

k3 = a3−β1β2β3.

(4.6)

The H∞-gain of (A0 + bKT) is γ0c ≤ K0/
∏3

k=1 |Reβk| ≤ K0/ρ
3
0 for some real constant

K0 ≥ 1 with the design parameter ρ0 being chosen as the negative stability abscissa of Ac.
Thus, the closed-loop system is globally asymptotically stable dependent on delay for any
set or point delays whose dynamics satisfies

∏3
k=1 |Reβk| > K0

∑σ
k=1‖Ak‖2 and stable and

all delays h ∈ [0, lnkm/α] (Theorem 3.2) for some km ≥ 1 provided that
∏3

k=1 |Reβk| >
K0(km

∑σ
k=1‖Ak‖2 +α). Any controller gain matrix K which generated closed-loop poles

at positions Reβk ≤−ρ0 gives asymptotic stability independent of delay under conditions
ρ3

0 > K0
∑σ

k=1‖Ak‖2 and ρ3
0 > K0(

∑σ
k=1‖Ak‖2 +α), respectively. If (A0,b) is not in the con-

trollable canonical form, then Ackerman’s formula (see, for instance, [11]) may be used
to calculate the gain matrix

K = [0,0,1]
[
b,A0b,A2

0b
]−1[

A3−α1A
2−α2A−α3I

]
αc(A), (4.7)

where αc(A)=−∑3
k=0αks

3−k (α0 =−1) if the objective closed-loop characteristic polyno-

mial is pc(s)=−
∑3

k=0αis
3−i. Now, assume that (A0,b) is stabilizable with A0 =

⌊a1 a2 a3
1 0 0
0 1 0

⌋

and bT = (1,0,0) so that D(s)= p0(s)=Det(sI −A0)= (s2− a1s− a2)(s−β), where s= β
is a stable root which cannot be relocated via linear state-feedback. Now, the suited strictly
Hurwitzian characteristic closed-loop polynomial is pc(s)= (s−β1)(s−β2)(s−β) which
is achieved through linear state-feedback by using the controller gain components k1 =
a1− (β1 + β2 + β); k2 = a2 + β1β2 + (β1 + β2)β; k3 = a3− β1β2β. The conditions for global
asymptotic closed-loop stabilization independent of delay under the presence of σ point
delays are |Reβ| > K0(

∑σ
k=1‖Ak‖2/

∏2
k=1 |Reβk|).

Example 4.3. Now, the stability conditions are manipulated for all frequencies, [14], un-
der the guidelines of Lemma A.2 in the appendix (see also [9, 14]), rather than in terms
of H∞. Consider the delay-free third-order system of characteristic polynomial given by

p0(s)= s3 + a∗1 s+ a∗2 s+ a∗3 (4.8)

which suffers a perturbation caused by delayed dynamics given by

Δp(s)= p(s)− p0(s)= ρ
[(

1 +Δa1s
)
e−hs +

(
Δa21 +Δa22s

)
e−2hs]. (4.9)
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Direct calculus yields

p0( jω)= (
a∗3 − a∗1 ω

2)+ jω
(
a∗2 −ω2);

Δp( jω)= ρe− jhω
{(

1 + jΔa1ω
)

+ e− jhω
(
Δa21 + jΔa22ω

)}
,

(4.10)

so that
∣∣p0( jω)

∣∣2 = (
a∗3 − a∗1 ω

2)2
+
(
a∗2 ω−ω3)2

;

∣∣Δp( jω)
∣∣2 ≤ 2ρ2[(1 +Δa2

1ω
2)+

(
Δa2

21 +Δa2
22ω

2)].
(4.11)

The condition |Δp( jω)| < |p0( jω)|, for all ω ∈R0
+, becomes

F(ω) := ω6 +
(
a∗1

2− 2a∗2
)
ω4 +

[
a∗2

2− 2a∗1 a
∗
3 − 2ρ2(h)

(
Δa2

1 +Δa2
22

)]
ω2

+
[
a∗3

2− 2ρ2(h)
(
1 +Δa2

21

)]
> 0

(4.12)

for all ω ∈R0
+. If the stability conditions of Theorem 3.1 are relaxed according to Lemma

A.2, then all the coefficients of F(ω) have to be positive. Thus, the system of characteristic
equation p(s)= 0 is globally asymptotically stable if the subsequent conditions hold.

(1) p0(s) is strictly Hurwitzian. According to the Routh-Hurwitz criterion, this holds
if and only if a∗i > 0 (i= 1,2,3) and a∗3 < a∗1 a

∗
2 .

(2) F(ω) > 0, for all ω ∈ R+
0 , with all the coefficients being positive, that is, a∗1 > 2a∗2 ;

a∗2
2 > 2a∗1 a

∗
3 (⇒ a∗1 > Max(

√
2a∗2 , 3

√
2a∗3 ,a∗3 /a

∗
2 ) according to the two above constraints) if

ρ2 < Min
(

a∗
2

3

2
(
1 +Δa2

21

) ,
a∗

2

2 − 2a∗1 a
∗
3

2
(
Δa2

1 +Δa2
22

)
)
. (4.13)

Some coefficients of F(ω) may be allowed to be nonpositive and compensated with other
being positive over the whole frequency range [0,∞). Note that a∗

2

1 − 2a∗2 > 0 and a∗
2

3 −
ρ2(h)(1 +Δa2

21) > 0 in order that F(∞) > 0 and F(0) > 0, respectively. The coefficient of
ω2 may be nonpositive with a∗

2

2 ≤ 2a∗1 a
∗
3 . Thus, it is obvious that for ω ∈ [0,1],

F(ω)≥ a∗
2

3 − ρ2(1 +Δa2
21

)− (∣∣a∗
2

2 − 2a∗1 a
∗
3

∣∣+ 2ρ2(h)
(
Δa2

1 +Δa2
22

))
ω2

≥ a∗
2

3 −∣∣a∗
2

2 − 2a∗1 a
∗
3

∣∣+ 2ρ2(h)
(
1 +Δa2

1 +Δa2
21 +Δa2

22

)
> 0,

(4.14)

which is guaranteed if ρ2 < (a∗
2

3 − |a∗2 − 2a∗1 a
∗
3 |)/2(1 +Δa2

1 +Δa2
21 +Δa2

22) provided that
a∗

2

3 > |a∗2 − 2a∗1 a
∗
3 |. For all real ω ≥ 1, note that

F(ω)≥ 1 +
(
a∗

2

1 − 2a∗2
)

+
(
a∗

2

3 −∣∣a∗
2

2 − 2a∗1 a
∗
3

∣∣)− 2ρ2(h)
(
1 +Δa2

1 +Δa2
21 +Δa2

22

)
> 0,

(4.15)

which is guaranteed if ρ2<(1+a∗
2

3 + (a∗1 − 2a∗2 )−|a∗2 − 2a∗1 a
∗
3 |)/2(1 +Δa2

1 +Δa2
21 +Δa2

22)
which is weaker than the condition obtained for ω ∈ [0,1], so that it has not been taken
into account. Thus, the set of conditions for stability are either Conditions 4.4, 4.5 or
Conditions 4.4–4.6 below.
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Conditions 4.4.

a∗i > 0 (i= 1,2,3); a∗
2

1 ≥ 2a∗2 ; a∗1 >
a∗3
a∗2

(
=⇒ a∗1 > Max

(
a∗3
a∗2

,
√

2a∗2
))

.

(4.16)

Conditions 4.5. If a∗
2

2 > 2a∗1 a
∗
3 (⇒ a∗1 > Max(

√
2a∗2 , 3

√
2a∗3 ,a∗3 /a

∗
2 )), then

ρ2 <
1
2

Min
(

a∗
2

3

1 +Δa2
21

,
a∗

2

2 − 2a∗1 a
∗
3

Δa2
1 +Δa2

22

)
. (4.17)

Conditions 4.6. If a∗
2

2 ≤ 2a∗1 a
∗
3 , then

ρ2 <
1
2

Min

(
a∗

2

3

1 +Δa2
21

,
a∗

2

3 −∣∣a∗
2

2 − 2a∗1 a
∗
3

∣∣

1 +
(
Δa2

1 +Δa2
21 +Δa2

22

)
)
. (4.18)

Now, consider

Δp( jω)= ρ
{

cosϕ+Δa1ω sinϕ+Δa21 cos2ϕ+ωΔa22 sin2ϕ

+ j
[(
Δa1 cosϕ+Δa22 cos2ϕ

)− j
(

sinϕ+Δa21 sin2ϕ
)]}

,
(4.19)

with ϕ= hω (see Corollary 3.3) so that after grouping terms, the system is globally asymp-
totically stable if p0(s) is strictly Hurwitzian, that is, all its zeros lie in Res < 0, and

∣∣Δp( jω)
∣∣2 = ρ2{1 +Δa2

21 +
(
Δa2

1 +Δa2
22ω

2)+ 4
(
Δa21 +Δa1Δa22ω

2)(cosϕ− cos3ϕ
)

+ 2
(
Δa21 +Δa1Δa22ω

2)(2cos3ϕ− cosϕ
)}

≤ ρ2{1 +Δa2
21 +

(
Δa2

1 +Δa2
22

)
ω2 + 2

∣∣Δa21 +Δa1Δa22ω
2
∣∣}

<
∣∣p0( jω)

∣∣2 = ω6 +
(
a∗

2

1 − 2a∗2
)
ω4 +

(
a∗

2

2 − 2a∗1 a
∗
3

)
ω2 + a∗

2

3 ,
(4.20)

namely, if

ω6 +
(
a∗

2

1 − 2a∗2
)
ω4 +

[
a∗

2

2 − 2a∗1 a
∗
3 − ρ2(∣∣Δa1

∣∣+
∣∣Δa22

∣∣)2
]
ω2

+
[
a∗

2

3 − ρ2(1 +
∣∣Δa21

∣∣)2
]
> 0, ∀ω ∈R+

0 ,
(4.21)

which holds if |ρ| < ρ∗0 :=Min(|a∗3 |/(1 + |Δa21|),|a∗2

2 − 2a∗1 a
∗
3 |/(|Δa1|+ |Δa22|)), which

guarantees the robust global asymptotic stability of (2.1) independent of the delays.

Conclusions

This paper has addressed sufficiency-type robust stability conditions for linear time-
invariant systems with constant point delays. The delayed dynamics is compared for ro-
bust stability purposes with that of two auxiliary delay-free systems which are, respec-
tively, obtained by either neglecting the delayed dynamics or by considering that the de-
lays are zero. The stability theorems are derived in the frequency domain for systems
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whose delay-free versions are stable. They are based on the use of Rouché’s theorem on
location of the zeros of two analytical functions in prescribed domains and the max-
imum module principle for analytic functions. The sufficiency-type asymptotic stabil-
ity conditions obtained from the stability criteria may be dependent or independent of
the delays. Some examples presented through the paper illustrate the application of the
above-mentioned stability criteria.

Some of the given results are of “independent of delays” type while others are of “de-
pendent on delays” type and both situations have been addressed in this manuscript. It
has been proved that the delayed system is asymptotically stable if the inverse of the H∞
gain of the delay-free dynamical system is sufficiently large compared to the size (in terms
of norms) of the delayed dynamics if the delay-free auxiliary system is exponentially sta-
ble. A set of complementary results has been devoted to investigate the stability properties
under linear delay-free feedback. It is required that the open-loop system be stabilizable
for state linear feedback.

Appendix

Proof of Lemma 2.1. (i) From direct calculus, the transfer function of the system (2.1) is
a rational transcendent complex function defined by

P(s) := cT Adj

(
sI −A0− ρ

σ∑

i=1

Aie
−ihs

)−1

b = B
(
s,e−hs

)

A
(
s,e−hs

) , (A.1)

where the denominator quasipolynomial is

A
(
s,e−hs

)
:= det

(
sI −A0− ρ

σ∑

i=1

Aie
−ihs

)
=

n∑

i=0

Ai
(
e−hs

)
si =

q∑

k=0

A∗k (s)e−khs (A.2a)

=
n∑

i=0

q∑

k=0

aiks
ie−khs =D(s) +

n∑

i=0

q∑

k=1

aiks
ie−khs (A.2b)

and the numerator quasipolynomial is

B
(
s,e−hs

)
:= cT Adj

(
sI −A0− ρ

σ∑

i=1

Aie
−ihs

)
b =

m∑

i=0

Bi
(
e−hs

)
si

=
q∑

k=0

B∗k (s)e−khs =
m∑

i=0

q1∑

k=0

biks
ie−khs,

(A.3)

with q1 ≤ q ≤ nσ , and polynomials

A∗i (s)=
n∑

k=0

akis
k; A�

(
e−hs

)=
q∑

k=1

a�ke
−khs (A.4)
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for i= 0,1, . . . ,n; l = 0,1, . . . ,q1, with D(s) := det(sI −A0)= A∗0 (s)=∑n
k=0 ak0sk being the

characteristic polynomial of the delay-free system (2.2) and

B∗i (s)=
m∑

k=0

bkis
k; B�

(
e−hs

)=
q1∑

k=1

b�ke
−khs (A.5)

for i = 0,1 . . . ,m; l = 0,1, . . . ,q. By zeroing the corresponding exceeding parameters, if
necessary, it may be always assumed in the following with no loss in generality that
q1 = q = nσ . The polynomials Ai(s) (i= 0,1, . . . ,n) and Bk(s) (k = 0,1, . . . ,q) may be cal-
culated recursively as follows:

An−i
(
e−hs

)=−1
i

tr

⌊
Sn−i

(
e−hs

)
(

A0 + ρ
q∑

k=1

Ake
−khs

)⌋
,

Sn−i
(
e−hs

)= Sn−i+1
(
e−hs

)
(

A0 + ρ
q∑

k=1

Ake
−khs

)
+An−i+1

(
e−hs

)
I

(A.6)

for i= 1,2, . . . ,n with initial value Sn−1(e−hs)= I , so that

S−1
(
e−hs

)= S0
(
e−hs

)
(

A0 + ρ
q∑

k=1

Ake
−khs

)
+A0

(
e−hs

)
I = 0, (A.7)

B
(
s,e−hs

)= cT
[

An−1(e−hs
)

+
(
s+A∗n−1(s)

)
An−2(e−hs

)
+ ···+A∗

1
(s)I

]
b

= cT
( n∑

i=0

Si
(
e−hs

)
si
)
b,

(A.8)

where A(e−hs)=∑q
k=0 Ake−khs and the maximum degrees of the polynomials and matrix

polynomial entries in (A.8) are m ≤ n− 1 in s and q in e−hs, respectively. The transfer
function (A.1) becomes

P(s)= cT
(∑n

i=0 Si
(
e−hs

)
si
)
b∑n

i=0Ai
(
e−hs

) =
∑m

i=0Bi
(
e−hs

)
si∑n

i=0Ai
(
e−hs

)
si
=

∑q
k=0B

∗
k (s)e−khs

∑n
k=0B

∗
k (s)e−khs

(A.9a)

which can be calculated explicitly via (A.6)-(A.8). If ρ = 0 then (2.1) is described by the
unforced delay-free auxiliary system of transfer function

P0(s)= cT Adj(sI −A)b
D(s)

= cT
(∑n

i=0 S
0
i s

i
)
b

∑n
i=0A

0
i si

= N(s)
D(s)

, (A.9b)

where D(s)= det(sI −A0) is its characteristic polynomial and S0
i and A0

i are real matrices
and real numbers, respectively, defined recursively by

A0
n−i =−

1
i

tr
[
S0
n−iA0

]
; S0

n−i = S0
n−i+1A0 +A0

n−i+1
I ; i= 1,2, . . . ,n, (A.10)
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with initial value S0
n−1 = I so that S0

−1 = S0
0A0 +A0

0I = 0. Substituting (A.10) into (A.6) via
(A.4), (A.5), one gets for i= 1,2, . . . ,n,

An−i
(
e−hs

)= A0
n−i + ρA′n−i

(
e−hs

)= A0
n−i + ρA′′n−i

(
e−hs

)
+ o(ρ), (A.11a)

Bn−i
(
e−hs

)= cT
(

A0 + ρ
n∑

k=1

Ake
−khs

)�

b

= cT
(
A�

0 + ρ
n∑

k=1

(
�

1

)
A�−1

0 A�
ke
−hs + ρ2

�∑

i=2

n∑

k=1

ρi−2

(
�

k

)
A�−k

0 A�
ke
−ikhs

)
b

= B0
n−i + ρB′n−i

(
e−hs

)= B0
n−i + ρB′′n−i

(
e−hs

)
+ o(ρ),

(A.11b)

with A0
i = ai0; B0

k = bk0 for i= 0,1, . . . ,n and k = 0,1, . . . ,m, since (A.2b) may be rewritten
as

A
(
s,e−hs

)= det

(
sI −A0− ρ

n∑

i=1

Aie
−ihs

)
= A∗0 (s)det

(
I − ρ

(
sI −A0

)−1
n∑

i=1

Aie
−ihs

)

=D(s)

(
1− ρtr

(
sI −A0

)−1
n∑

i=1

Aie
−ihs

)
+ o(ρ)

(A.12)

for all complex s, such that D(s)= A∗0 (s) �= 0 which is the case for all the infinitely many
characteristic roots of (2.1) for all nonzero real ρ since, otherwise, the characteristic equa-
tion of (2.1) would be D(s) = 0 which is impossible for ρ �= 0. In the above expressions,
o(ρ) (“small-o” Landau’s notation) applies for a complex function of s which is bounded
for all finite ρ and s and tends to zero as ρ→ 0. Now, from (A.11), (A.12), the proof of (i)
follows with

ΔA
(
s,e−hs

)=
n∑

i=1

A′i
(
e−hs

)
si =

q∑

i=1

A∗
′

i (s)e−ihs, (A.13a)

ΔB
(
s,e−hs

)=
n∑

i=1

B′i
(
e−hs

)
si =

q∑

i=1

B∗
′

i

(
e−hs

)
e−ihs, (A.13b)

where

A∗
′

i (s)=A∗
′′

i (s) + ρA
∗′′
i (s); i= 1,2, . . . ,q, (A.13c)

B∗
′

i (s)= B∗
′′

i (s) + ρB
∗′′
i (s); i= 1,2, . . . ,q, (A.13d)

A′i
(
e−hs

)= A′′i
(
e−hs

)
+ ρA

′′
i

(
e−hs

)
; i= 1,2, . . . ,n, (A.13e)

B′i
(
e−hs

)= B′′i
(
e−hs

)
+ ρB

′′
i

(
e−hs

)
; i= 1,2, . . . ,m, (A.13f)
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for all real ρ with the coefficients of A
∗′′
i (·), A

′′
i (·) and B

∗′′
i (·), B

′′
i (·) being, in general,

dependent on powers of ρ varying from ρ1 up till ρn and o(ρ) being a bounded complex
function for all finite complex s and real ρ, o(ρ)→ 0 as ρ→ 0 and D(s)= A∗0 (s)= det(sI −
A0) and N(s)= B∗0 (s) for ρ= 0.

(ii) The proof becomes direct by rewriting (A.12) for any complex s such that D(s) �= 0
as

A
(
s,e−hs

)= det

(
sI −A0− ρ

n∑

i=1

Ai− ρ
n∑

i=1

Ai
(
e−ihs− 1

)
)

=D(s)det

(
I − ρ

(
sI −A0− ρ

n∑

i=1

Ai

)−1 n∑

i=1

Ai
(
e−ihs− 1

)
)

=D(s)

(
1− ρtr

(
sI −A0− ρ

n∑

i=1

Ai

)−1 n∑

i=1

Ai
(
e−ihs− 1

)
)

+ o(ρ)

(A.14)

and a parallel identity to (A.8) for B(s,e−hs). �

Remark A.1. It turns out from (A.13) that the transfer function of Lemma 2.1 may be
also equivalently calculated from the polynomials A∗′

(·) (s) and B∗′
(·) (s) since

B
(
s,e−hs

)= B∗0 (s) + ρ
n∑

i=1

q∑

k=1

b′ik(ρ)sie−khs = B∗0 (s) + ρ
n∑

i=1

B′i
(
e−hs

)
si

= B∗0 (s) + ρ
q∑

i=1

B∗
′

i (s)e−ihs =D(s) + ρΔb(s),

A
(
s,e−hs

)= A∗0 (s) + ρ
n∑

i=1

q∑

k=1

a′ik(ρ)sie−khs =D(s) + ρ
n∑

i=1

A′i
(
e−hs

)
si

=D(s) + ρ
q∑

i=1

A∗
′

i (s)e−ihs =D(s) + ρΔa(s).

(A.15)

Thus, the transfer function of (2.1) may be also equivalently expressed as T(s) =
cT(

∑q
i=0 S

∗
i (s)e−ihs)b/

∑q
i=0A

∗
i (s)e−ihs, where S∗i (s), A∗i (s), and A∗

′
i (s) (i = 1,2, . . . ,q) are

polynomials defined similarly to those in (A.6) by replacing e−hs with s accordingly to the
definitions in (A.4), (A.5).

Proof of Theorem 3.1. (i) Assume that for any positive real arbitrary ρ0, |ρ| ≤ ρ0. Note
that if the system (2.1) is considered as a perturbed one with respect to a nominal proper
exponentially stable system (2.2), then (2.1) is globally asymptotically stable if |ρ| ≤ 1/ρ′0,
with ρ′0 being defined in (3.2) and in general dependent on ρ0 for real constants mA and
m′

A being defined in (3.1) from ΔA( jω,e− jωh) and ΔB( jω,e− jωh) in Lemma 2.1(i), since

|ρ|
⌊∣∣∣∣

A∗′( jω)
D( jω)

∣∣∣∣
⌋
≤ |ρ|ρ′0 < 1⇐⇒ |ρ|∣∣A∗′( jω)

∣∣ <
∣∣D( jω)

∣∣ (A.16)
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for all ω ∈R+
0 implies from Rouché’s theorem, [11, 16, 19], that A(s,e−hs) and D(s) have

the same number of unstable zeros; that is, none since the unforced system (2.2) is ex-
ponentially stable. Note that no test in (A.16) is necessary for negative frequencies since
|G(− jω)| = |G( jω)| for any transfer function G(s). Thus, if |ρ|ρ′0 < 1, the proof follows
directly. Otherwise, the proof follows as well since the inequalities in (A.16) are fulfilled
for |ρ| ≤Min(ρ0,1/ρ′0) since the constants mA and m′

A are monotonically nondecreasing
with |ρ|. Now, the system (2.1) remains stable for all

ρ∈ [− ρ∗0 ,ρ∗0
]⊆

(
[− ρ0,ρ0

]∩
[
− 1
ρ′

0

,
1
ρ′

0

])
. (A.17)

(ii) A sufficient condition for the closed-loop system obtained from (2.1), with the
same controller to remain stable irrespective of whether the number of open-loop unsta-
ble of zeros or poles of (2.1) and (2.2) is identical or not, is that the inequality

∣∣∣∣Q0( jω)
A∗′( jω)
D( jω)

+T0( jω)
B∗′( jω)
D( jω)

∣∣∣∣ < 1 (A.18)

holds for all ω ∈ R+
0 from Rouché’s theorem, where Q0(s) = 1− T0(s) is the sensitiv-

ity function of the (nominal) closed-loop system obtained from (2.2) with the same
controller of transfer function c(s). If T0 is stable with no critically stable poles, then
γ = ‖T0‖∞ <∞. Also, Q0(s)= 1−T0(s). Then (A.18) holds for all ω ∈R+

0 if

|ρ|
⌊

(1− γ)
∣∣∣∣
A∗′( jω)
D( jω)

∣∣∣∣+ γ
∣∣∣∣
B∗′( jω)
D( jω)

∣∣∣∣
⌋
≤ |ρ|ρ′0T < 1 if γ < 1,

|ρ|
⌊

(1 + γ)
∣∣∣∣
A∗′( jω)
D( jω)

∣∣∣∣+ γ
∣∣∣∣
B∗′( jω)
D( jω)

∣∣∣∣
⌋
≤ |ρ|ρ′0T < 1 if γ ≥ 1,

(A.19)

and the result follows by calculating the upper bounds for |ΔA( jω,e− jωh)| and |ΔB( jω,
e− jωh)| as ω takes values in R+

0 in a similar way as in (i), by using the new definitions of
the real constants of (3.1) and (3.3) as mAT , mBT , m′

AT , m′
BT , and ρ′0T , from the identities

(A.13d), (A.13e). �

Sketch of proof of Theorem 3.2. It is similar to that of Theorem 3.1 by redefining the con-
stants (3.1) as indicated after substituting (A.13d), (A.13e) into (A.13a), (A.13b) to prove
the stability of (A.9a) by applying Rouché’s theorem on zeros of analytic complex func-
tions to its second right-hand side. Since the redefined constants replacing those in (3.1)
are delay-dependent, the obtained result is dependent on the delays type. �

Sketch of proof of Theorem 3.4. It is similar to that of Theorems 3.1, 3.2 by redefining the
constants (3.1) as indicated and then using a comparison of the transfer function P0(s) of
the delay-free system (2.3) with that of (2.1) (Lemma 2.1(ii)); that is, P(s), since |e− jωh−
1| ≤ 2 for all real ω and all h ≥ 0, which allows quoting the proofs of Theorems 3.1, 3.2
by replacing ρ′0 → (1/2)ρ′0 before guaranteeing similar conditions to (A.19) for stability.

�
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The (dependent on the delays) robust stability conditions of Theorem 3.2 may be
weakened by using the subsequent result that applies Rouché’s theorem for N = n and
M = q and each nonnegative frequency ω.

Lemma A.2 (auxiliary result for weaker robust stability conditions). Consider a quasipoly-
nomial p(s,e−hs)=∑N

i=0

∑M
k=0 pike

−khssi of real coefficients and degrees ∂sp =N and ∂μp =
M with respect to s and μ = e−hs, respectively. Thus, for any imaginary complex number
s= jω with j =√−1 being the imaginary unity, one gets

p
(
jω,e− jωh

)= p1(ω) + j p2(ω)= p0( jω) +Δp
(
jω,e− jωh

)

× (
p10(ω) + j p20(ω)

)
+
(
Δp1(ω) + jΔp2(ω)

)
,

(A.20)

with p0( jω) :=D( jω)= p10(ω) + j p20(ω), and

p1(ω)=
N/2−1∑

i=0

M∑

k=0

(−1)i
(
p2i,k coskωh+ωp2i+1,k sinkωh

)
ω2i +

M∑

k=0

pNkω
N coskωh,

p2(ω)=
N/2−1∑

i=0

M∑

k=0

(−1)i
(
ωp2i+1,k coskωh− p2i,k sinkωh

)
ω2i−

M∑

k=0

pNkω
N sinkωh

(A.21)

if N is even, and

p1(ω)=
(N−1)/2∑

i=0

M∑

k=0

(−1)i
(
p2i,k coskωh+ωp2i+1,k sinkωh

)
ω2i,

p2(ω)=
(N−1)/2∑

i=0

M∑

k=0

(−1)i
(
ωp2i+1,k coskωh− p2i,k sinkωh

)
ω2i

(A.22)

if N is odd and p0(ω)= p10(ω) + j p10(ω), where

p10(ω)=
N∑

i=0

(−1)i
(
pk0 coskωh+ωpk1 sinkωh

)
,

p20(ω)=
N∑

k=0

(−1)i
(
ωpk1 coskωh− pk0 sinkωh

)
.

(A.23)

As a result, p(s,e−hs) is stable (or, so called, strictly Hurwitzian; s, i.e., p(s,e−hs) �= 0) for
Res ≤ 0 if p0(s) =∑n

i=0 pi0s
i is a stable polynomial (i.e.,

∑n
i=0 pi0s

i �= 0 for Res ≤ 0) and,
furthermore,

Δp2
1(ω) +Δp2

2(ω) < p2
10(ω) + p2

20(ω) (A.24)

for all ω ∈ R+
0 . Assume that Δpi(ω) = ρΔp′i (ω) = ρ(Δp′′i (ω) + ρΔp′′i (ω)) for i = 1,2 and

all ω ∈R+
0 . Thus, since Δp2

1(ω) +Δp2
2(ω) > 0 for all ω ∈R+

0 , it always exists from (A.24) a
sufficiently small ρ∗0 > 0 such that p(s,e−hs) is stable for all |ρ| ≤ ρ∗0 .
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Proof. The decomposition into real and imaginary parts of the quasipolynomial becomes
direct from the identity

p
(
jω,e− jωh

)=
N∑

i=0

M∑

k=0

( j)i pikωi(coskωh− j sinkωh
)

(A.25)

since cos(−ϕ)= cosϕ and sin(−ϕ)=−sinϕ; and if i∈ Z+ is any positive integer fulfilling
i = 4̇ then ji = 1 and ji+1 = j; and if 2̇ = i �= 4̇ then ji = −1 and ji+1 = − j. The robust
stability condition follows from Rouché’s theorem for zeros of the complex functions
p0( jω) and p( jω,e− jωh)= p0( jω)+Δp( jω,e− jωh) from the imaginary complex axis to C.

The proof follows directly from Theorem 3.1 and Lemma A.2. �
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