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SUMMARY 
 

 Activation of the PTEN-PI3K-mTORC1 pathway consolidates metabolic programs that 

sustain cell growth, proliferation and promote cancer initiation and progression. In this thesis work 

we describe a novel molecular mechanism by which mTORC1 regulates polyamine dynamics, a 

metabolic route that is essential for oncogenicity. Through the integrative metabolomics analysis 

of a mouse model and human biopsies of prostate cancer, we identified alterations in tumors 

impacting on the production of decarboxylated S-Adenosylmethionine (dcSAM) and polyamine 

synthesis. Mechanistically, we demonstrate that this metabolic rewiring stems from mTORC1-

mediated post-transcriptional control of S-Adenosylmethionine decarboxylase 1 (AMD1). This 

novel molecular regulation was pharmacologically validated in samples from murine pre-clinical 

and human clinical trials with Everolimus. Importantly, we demonstrate that manipulation of AMD1 

levels and activity dictates prostate cancer oncogenicity. The results in this thesis provide 

fundamental information about the complex regulatory landscape controlled by mTORC1 to 

integrate and translate growth signals into an oncogenic metabolic program. 
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I CANCER 

Cancer refers to the uncontrolled proliferation of cells that leads to the formation of an abnormal 

cellular mass, denominated tumor. This term encompasses more than 100 different forms of the 

disease, as virtually every tissue can spawn one or more cancer types (Weinberg, 1996). 

Importantly, each of them requires unique diagnosis and treatment. Nevertheless, a common 

shared feature of tumors is the aberrant proliferation of malignant or transformed cells (Hanahan 

and Weinberg, 2000). 

 According to the World Health Organization (WHO, data collected by the International 

Agency for Research in Cancer (IARC) on the last Globocan 2012 report), cancer is one of the 

leading causes of morbidity and mortality worldwide. Indeed, more than 8 million people die from 

cancer every year, which covers 13% of all deaths worldwide. Of note, new cancer cases are 

estimated to increase in a 70% over the next two decades (http://www.who.int/cancer/en/). In 

Europe, 3.5 million new cases were estimated in 2012. The most common cancer types were 

breast (13.5%), colorectal (13%), prostate (12.1%) and lung (11.9%), representing 50.5% of the 

overall estimated burden of cancer in Europe in 2012 (Ferlay et al., 2013). All these key facts 

underscore the need and relevance for cancer research. 

 

I.1 Cancer hallmarks and tumor progression 

After decades of research, cancer is widely accepted as a primarily genetic disease (Vogelstein 

and Kinzler, 2004). Cancer development is a sequential, multistep and complex process of 

mutations that accumulateleading to transformation and clonal expansion of cells (3 to 7 

mutagenic events are suggested to be required) (Vogelstein and Kinzler, 1993; Hahn and 

Weinberg, 2002). Multiple studies performing comparative analysis of genetic alterations in early 

versus late stage tumors support this notion (Yokota, 2000). Subsequent genetic and epigenetic 

alterations would convert normal cells into premalignant cells, premalignant cells into transformed 

cells and transformed cells into metastatic cells (Fig. I1). Thus, this progressive accumulation of 

(Metastasis)

Adapted from StrattonMR, Campbell PJ and Futreal PA, Nat Rev 2009

Figure I1. Representation of the multi-step tumor progression model. 
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alterations would imply increasing malignancy and aggressiveness of the tumor (Nowell, 2002). 

The cumulative nature of this process and the monoclonal and polyclonal expansion of 

transformed cells, in turn supports the heterogeneity of primary and metastatic tumors (Yokota, 

2000). 

 There are three type of genes whose alteration is considered relevant to tumorigenesis: 

oncogenes, tumor-suppressor genes and genomic stability genes. Both gain of function 

alterations of oncogenes and loss of function alterations of tumor-suppressor genes lead to 

uncontrolled proliferation of cells driving the neoplastic process. Alterations in the third group of 

geneslead to increased mutation rate, which can affect the function of oncogenes and tumor 

suppressors (Nowell, 2002; Vogelstein and Kinzler, 2004). 

 

  

 In an effort to unify and identify common features of cancer cells, Hanahan and Weinberg 

proposed, more than a decade ago, six capabilities that a cell must acquire to engage malignant 

growth: i) self-sufficiency of growth signals, ii) insensitivity to growth-inhibitory signals, iii) evasion 

of apoptosis, iv) limitless replicative potential, v) sustained angiogenesis and vi) tissue invasion 

and metastasis (Hanahan and Weinberg, 2000). In order to acquire these capabilities, it was 

postulated that cells would need to acquire an enabling characteristic: genome instability 

(consequence of the malfunction of genomic integrity control mechanisms), hence increasing 

mutation rate (Nowell, 2002). With the intense research in the field during the following decade, 

increased knowledge regarding tumor initiation, progression and dissemination led to revisiting 

Adapted from Hanahan D and  Weinberg  RA, Cell Rev 2011

Figure I2. Schematic representations showing the revisited hallmarks of cancer by Hanahan and 

Weinberg, 2011. 
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these hallmarks. Together with the aforementioned genomic instability, the inflammatory state of 

premalignant and malignant cells arose as a second enabling characteristic. Indeed, cells of the 

immune system were suggested to act as promoters of tumor progression by producing growth, 

survival and angiogenic factors, extracellular matrix-modifying enzymes, epithelial-mesenchimal 

transition (EMT)-inducing signals and reactive oxygen species (ROS) in the tumor 

microenvironment (Hanahan and Weinberg, 2011). Importantly, two other capabilities of cancer 

cells were introduced in the list of cancer hallmarks due to their relevance in the development of 

the disease: avoiding immune destruction and reprogramming energy metabolism. Increasing 

evidence supports the notion that deregulation of metabolism is a directresponse to growth factor 

signaling (Ward and Thompson, 2012) (Fig. I2). 

 

II PROSTATE CANCER 

II.1 Human and murine prostate physiology 

The prostate is part of the male reproductive system, and is the largest accessory gland in the 

body (Bhavsar et al., 2014).The glandular tissue of the prostate secretes an alkalinefluid that 

helps maintain sperm motility. The smooth muscle of the prostate gland contracts during 

ejaculationto contribute to the expulsion of semen from the urethra (Scandalon VC and Sanders 

T, 2007). For further comprehension of this work we will describe in depth the anatomic and 

histological characteristics of human and murine prostate.  

 The human prostate gland is about 3 cm high by 4 cm wide by 2 cm deep, about thesize 

of a walnut, and it is located just below the urinary bladder. It is conical in shape and surrounds 

the first 2,5 cm of the urethra as it emerges from the bladder (Scandalon VC and Sanders T, 

2007) (Fig. I3A-B). The human prostate is a single organ that forms a pseudocapsule consisting 

of glandular and stromal elements (Bhavsar et al., 2014). In humans, this gland is organized in 

four zones following the branching pattern of the prostate ducts: the central (CZ), which surrounds 

the urethra; the transition zone (TZ), anterior to the urethra, the peripheral (PZ), posterior to the 

urethra and the fibromuscular stroma that separates the prostate from the rectum (Knoblaugh and 

True, 2012) (Fig. I3C). The PZ is relatively accessible for transrectal biopsies to sample the 

prostate for prostatic adenocarcinoma. The PZ is the largest of the zones, encompassing 

approximately 70% of the glandular tissue, while the CZ and the PZ account for approximately 

25% and 5% of the glandular tissue, respectively (Bhavsar et al., 2014).  

 The mouse prostate gland is divided into three distinct lobes: the dorsolateral lobe (DLP), 

which has butterfly shape and surrounds the urethra; the ventral (VP), leaf-shaped, gelatinous 

and located above the urethra and toward midline; and the anterior lobes (AP), located cranial to 

the other lobes and attached to the lesser curvature of the seminal vesicles (Knoblaugh and True, 

2012) (Fig. I3D). Histologically, each of the lobes is surrounded by a thin mesothelium-lined 
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delicate capsule. The glandular prostate is separated from the capsule by loose fibroadipose 

tissue containing major vessels, nerves, and ganglia. The individual mouse prostate lobes are 

composed of a series of branching ducts, which are formed by few layers of spindle cells and 

eosinophilic collagen (Shappell et al., 2004). The individual murine prostate lobes show distinctive 

histological features. The DLP is lined by cuboidal and columnar epithelium, with moderate 

infolding, granular cytoplasm with eosinophilic secretions and basally located uniform nuclei. The 

VP is mostly lined by cuboidal epithelium, with spare infolding, abundant homogeneous pale 

secretions and small basally located nuclei. The AP lobes are lined by cuboidal to columnar 

epithelium with a papillary pattern, contain granular cytoplasm with homogeneous eosinophilic 

secretions and centrally located nuclei (Knoblaugh and True, 2012). 

 Similarly, the human prostate ducts are constituted of cuboidal to columnar epithelium 

composed of a layer of basal cells and a luminal layer of differentiated secretory cells, with small 

subpopulations showing differentiated neuroendocrine (NE) phenotype, which represent less than 

1% of prostate epithelial cells (Shappell et al., 2004; Knoblaugh and True, 2012) (Fig. I3E). 

  

Prostate

Adapted from: http://www.cancer.gov/types/prostate/patient/prostate-

treatment-pdq

Adapted from Knoblaugh S and True L, 

Comparative Anatomy and Histology: A Mouse and 

Human Atlas, Elsevier 2012

Adapted from Shen MM and Abate-ShenC,Genes and Dev 2010

(AP)(VP)

(DLP)

(AP)

(VP)

A B

C ED

Figure I3. Anatomy and histology of male human and murine reproductive system. A, Picture of 

human anatomy showing the localization of the prostate gland. B, Picture of murine anatomy showing the 

different organs constituting the male reproductive system. C-D, Schematics of the anatomy of the different 

zones and lobes of human (C) and murine (D) prostates. E, Schematic depicting the different cellular types 

in a histological section of a human prostate duct. 
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 Importantly, the individual prostate zones or lobes have different embryologic origins and 

can be distinguished not only by the appearance and anatomic features, but by the biological 

functions and susceptibility to pathology (Bhavsar et al., 2014). Of note, although the mouse DLP 

has sometimes been assessed as the most homologous to the human PZ, the developing lobes 

are identifiable only in the embryo in humans. Thus there is no supporting evidence nor 

consensus agreement among pathologists for a direct correlation between the specific mouse 

prostate lobes and the human prostate zones (Shappell et al., 2004). Furthermore, overall, the 

mouse prostate has a modest stromal component compared to that of the human prostate 

(Knoblaugh and True, 2012). Hence, there are fundamental anatomic differences between the 

human and murine prostates that should be considered when studying the neoplastic 

development of this organ. 

 

II.2 Prostate cancer progression model 

In spite of the anatomic and histological differences between the human and murine prostate 

structures, prostate cancer progression occurs in a strikingly similar manner in mice and humans 

(Nardella et al., 2010a).  

 Prostate cancer starts from the accumulation of genetic alterations in the epithelium of the 

prostatic gland, which leads to prostatic intraepithelial neoplasia (PIN) and can progress to high-

grade prostatic intraepithelial neoplasia (HGPIN). The progressive accumulation of further genetic 

insults leads to more aggressive and malignant lesions, which thereby disrupt the basement 

membrane and invade the surrounding stroma, leading to an invasive carcinoma (Nardella et al., 

2010). This carcinoma can stay confined in the prostate or invade other organs, causing 

metastasis and ultimately resulting in lethality (Abate-Shen and Shen, 2002) (Fig. I4). 

  

PIN is characterized by cellular proliferating foci within preexisting ducts and acini with 

cytologic changes, such as nuclear and nucleolar enlargement. In this kind of premalignant 

neoplasia, inversion of the normal epithelial proliferation orientation occurs, cells proliferating from 

the basal cell compartment to the luminal space. PIN progresses into HGPIN, which is usually 

Figure I4. Schematic showing the prostate cancer progression model. 
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multicentric and is commonly found in the PZ. Early stromal invasion, which is the earliest 

evidence of carcinoma, occurs at sites with basal cell disruption in ducts with HGPIN (Bostwick et 

al., 2004). Cancer cells require the acquisition of another capability in order to survive upon loss 

of contact with the basement membrane, evasion of anoikis signals. Anoikis is a programmed cell 

death induced upon cell detachment from extracellular matrix. Resistance to this type of cell death 

is of vital importance in cancer progression (Paoli et al., 2013). Prostate cancer invariably 

metastasizes to bone, although lung, liver and pleura are secondary metastasis sites (Bubendorf 

et al., 2000). 

 

II.3 Prostate cancer pathology and treatment 

II.3.1 Prostate cancer pathology 

According to the last Globocan 2012 report of the IARC, 1.1 million men were diagnosed of 

prostate cancer in 2012 worldwide and the disease caused 307,000 deaths 

(http://www.who.int/cancer/en/). This cancer type is the second most frequent and the fifth cause 

of death from cancer in men worldwide. In Europe it represents the most frequent cancer type in 

men, with 417,000 new cases and 92,000 deaths in 2012 (Ferlay et al., 2013). 

 Age is the main risk factor for prostate cancer. Indeed, it is estimated that approximately 

95% of men older than 70 present benign prostatic hyperplasia (BPH) (Valkenburg and Williams, 

2011). In the same line, PIN and HGPIN incidence positively correlate with age. Indeed, PIN 

shows a frequency of 9% and 22% in men in their 20s and 30s respectively (Bostwick et al., 

2004). However, the etiologic factors related to prostate cancer are various and encompass, apart 

from the age, familiar history, race, diet, lifestyle factors and hormonal influences (Isaacs et al., 

2002). 

 BPH usually arises from the TZ. In contrast, PIN and HGPIN are rarely seen in this zone 

(Shappell et al., 2004) and commonly occur in the PZ. Indeed, the PZ  harbors the majority of 

prostate carcinomas (70%) (Abate-Shen and Shen, 2002). Based on the zonal difference in the 

incidence of BPH and prostate carcinoma and the fact that stromal cell proliferation is a major 

feature of BPH, this benign lesion is not contemplated as the precursor of prostatic invasive 

carcinoma. Instead, PIN is considered the precursor lesion of this disease (Isaacs et al., 2002). 

BPH histological alterations are very common in the TZ and show increasing incidence with age. 

Actually, BPH lesions have been observed in 80-90% of radical prostatectomies (RP) performed, 

while only 20% of significant prostate cancers (PCas) have their origin in the TZ (Shappell et al., 

2004). 
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Prostate cancer is suspected on the basis of digital rectal examination (DRE) and/or 

prostate-specificantigen (PSA) levels (http://uroweb.org/individual-guidelines/oncology-

guidelines/). PSA is a kallikrein-related serine protease produced in normal prostatic tissue with 

the physiological role of liquefying seminal fluid. However, this peptidase is also produced in BPH 

and PCa and is thought to be released into the blood due to disruption of normal prostate 

architecture, especially in PCa where basal layer of cells is lost (Lilja et al., 2008). However, 

definitive diagnosis depends on histological verification of carcinoma in prostate biopsies obtained 

by trans-urethral resection of the prostate (TURP) or prostatectomy (http://uroweb.org/individual-

guidelines/oncology-guidelines/). These biopsies are histopathologically evaluated and classified 

according to two different methods, the Gleason Score and the TNM (Tumor, Node, Metastasis) 

system(Shen and Abate-Shen, 2010). The Gleason Score classifies the tumors according to the 

differentiation level (from 1 to 5) of their most prevalent architecture and assigns a combined 

score, calculated from the sum of the two most common patterns (Mellinger et al., 1967; 

Humphrey, 2004) (Fig. I5). The TNM system encompasses evaluation of the primary tumor 

status, from prostate-confined to invasive (T1-4), absence or presence of lymph node involvement 

(N0 or 1) and absence or presence and degree of metastasis (M0-1a-c) (Ohori et al., 1994; Shen 

and Abate-Shen, 2010) (Fig. I5). 

 

A B

 

Figure I5. Grading systems employed for histopathological evaluation of prostate cancer. A, 

Schematic picture depicting the histological patterns for prostate cancer grading according to Gleason Score 

system.B, Table describing the extent of primary tumor (T), lymph node involvement (N) and 

presence/absence of metastasis according to TNM grading system. 
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II.3.2 Prostate cancer treatment 

Based on the DRE, PSA analysis and the histopathological evaluation of the biopsies, different 

therapeutic options are proposed to the patient following the Guidelines on Prostate Cancer, 

assessed by Urology Associations, and the treatment election is reached in agreement. 

 In general, the treatment options for prostate cancer comprise surgical excision of the 

prostate (RP), radiotherapy (irradiation through externalbeam therapy or implantation of 

radioactive “seeds” - brachytherapy), hormonal therapy (androgen deprivation therapy or 

chemical castration) and chemotherapy (docetaxel) (Shen and Abate-Shen, 2010). 

 In patients with low and intermediate risk PCa, RP or brachytherapy are normally the first-

line therapy. Biochemical recurrence is considered when a gradual increase of PSA is observed 

after first line treatment. Then, chemical castration (androgen deprivation therapy) is suggested. 

In high risk PCa, RP or radiotherapy in combination with hormonal therapy is recommended. If the 

patient exhibits an increase of PSA or appearance of Fluorodeoxyglucose-PET (positron emission 

tomography) positive masses after androgen deprivation, alternative hormonal therapies or 

chemotherapy are recommended. Chemotherapy is usually the therapy of choice when cancer 

develops into metastasis. However, the therapeutic alternatives are subject to individual and 

personalized consideration. For those patients with low risk indolent prostate cancer, active 

surveillance is emerging as the main recommendation, with the aim of minimizing over-treatment 

and treatment-related side-effects (Wadman, 2015). According to this option, patients remain 

under close surveillance to decide on the therapeutic strategy if the cancer progresses 

(http://uroweb.org/individual-guidelines/oncology-guidelines/). Nevertheless, the lack of 

information on long-term outcome and biomarkers for eligibility criteria seeds uncertainty 

regarding this strategy (Chamie et al., 2015). 

 

III PI3K PATHWAY AND CANCER 

III.1 PI3K Pathway 

Phosphoinositide 3-kinases (PI3Ks) are a family of conserved lipid kinases that catalyze the 

phosphorylation of  the 3´-hydroxyl group of phosphatidylinositol and phosphatidylinositides 

(Katso et al., 2001). This reaction unleashes an array of intracellular signaling pathways 

implicated in the control of cellular proliferation, growth, survival, motility and metabolism (Thorpe 

et al., 2015).  

III.1.1 Structural and biochemical characteristics of class I PI3K 

PI3Ks are classified into three classes (I-III) according to substrate specificity and structure. Little 

is known about the functional role of class II and III PI3Ks. In mammals, class I PI3Ks are divided 

into two subfamilies depending on the receptor they respond to. Class IA PI3Ks are activated by 
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growth factor receptor tyrosine kinases (RTKs), while class IB PI3Ks are activated by G-protein-

coupled receptors (GPCRs). We will focus on class IA PI3Ks for in-depth description. 

 Class IA PI3Ks areheterodimers composed of two subunits, the catalytic subunit p110 

and the regulatory subunit p85, which maintains p110 with low-activity in basal conditions and 

functions as an adaptor to couple it to activated protein tyrosine kinases (Hiles et al., 1992). There 

are three highly homologous catalytic subunit isoforms, p110α, p110β and p110δ, which 

associate with any of the five regulatory subunit isoforms: p85α, p55α, p50α, p85β and p55γ (Fig. 

I6). 

 

III.1.2 Signaling downstream class I PI3K 

Growth factors signal through receptor tyrosine kinases, which recruit scaffold and signaling 

proteins (including PI3K) through autophosphorylation of their C-terminal tail. p85-p110 

heterodimer interacts with phosphorylated tyrosines in RTKs, gets activated and converts plasma 

membrane lipid phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2; PIP2] into phosphatidylinositol-

3,4,5-trisphosphate [PI(3,4,5)P3; PIP3]. This lipid phosphorylation is the signal for proteins that 

contain pleckstrin-homology (PH) domains, to be recruited to the plasma membrane and bind to 

PIP3 (Cantley, 2002). Examples of these proteins are serine-threonine kinase AKT (Protein kinase 

B, PKB) and phosphoinositide-dependent kinase 1 (PDK1). Once AKT is phosphorylated by 

PDK1 and mechanistic target of rapamycin (mTOR) complex 2 (mTORC2) and activated, it 

phosphrylates multiple downstream targets, including glycogen synthase kinase 3 (GSK3) and the 

forkhead box family of transcription factors (FOXOs). AKT also activatesmTORC1 through 

phosphorylation of its upstream regulatorsproline-rich AKT substrate40 KDa (PRAS40, activatory 

regulation) and tuberous sclerosis 2 protein (TSC2, inhibitory regulation) (Liu et al., 2009b). The 

control of the intensity and duration of this signaling pathway is controlled by three type of 

phosphatases. Src-homology 2 (SH2)-containing phosphatases (SHIP1 and SHIP2), inositol 

polyphosphate 4-phosphatase type II (INPP4B) and Phosphatase and tensin homolog (PTEN) 

dephosphorylate position 5, 4 or 3 of the inositol ring; respectively (Fig. I7). 

A

B

Adapted from Vanhaesebroeck B, et al, Nat Rev Mol Cell Bio 2010 

Figure I6. Schematic depicting domain structure of the catalytic and regulatory subunits of class I 

PI3Ks. 



Amaia Arruabarrena-Aristorena Doctoral Thesis  
 
 

48 
 

IN
T

R
O

D
U

C
T

IO
N

 

 

III.1.3 Key mediators downstream PI3K 

We will focus in key effectors downstream PI3K for the correct understanding of this work. 

III.1.3.1 AKT 

AKT or PKBα was first discovered in the genome of the retrovirus AKT-8 in murine T-cell 

lymphoma (Alessi et al., 1996). There are three AKT isoforms (AKT1/PKBα, AKT2/PKBβ and 

AKT3/PKBγ), all belonging to the cAMP-dependent, cGMP-dependent and protein kinase C 

(AGC) kinase family (Lawlor and Alessi, 2001). The three distinct isoforms are ubiquitously 

expressed in all cell and tissue types, although AKT3 seems to have a more restricted expression 

pattern (Toker and Yoeli-Lerner, 2006). 

 Upon binding to PIP3, AKT gets phosphorylated and activated by PDK1 and mTORC2, in 

turn phosphorylating a variety of downstream targets to regulate many different cellular processes 

(Cantley, 2002) (Fig. I7). AKT is known to promote cell survival by inhibiting pro-apoptotic 

proteins, such as Bcl-2-associated death promoter protein (BAD) (Datta et al., 1997), or by 

inhibiting the transcription factors FOXO1/3/4 and tumor protein p53 (p53) (Tran et al., 2003). In 

the same line, an important role has been attributed to AKT in cell growth and proliferation 

(Manning and Cantley, 2007). AKT was reported to activate mTORC1 (through the inhibition of 

the negative regulator TSC2 (Inoki et al., 2002; Manning et al., 2002)), as well as to inhibit cyclin-

dependent kinase inhibitors Cyclin-dependent kinase inhibitor p27 (p27Kip1) (Liang et al., 2002) 

Adapted from Engelman JA, Nat Rev Cancer 2009

Figure I7. Signaling downstream class I PI3Ks. Schematic representation of PI3K signaling cascade 

highlighting key downstream kinases and phosphatases. 
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and Cyclin-dependent kinase inhibitor 1 (p21Cip1/WAF1cell) (Zhou et al., 2001), to promote cell growth 

and proliferation. Through the regulation of the aforementioned and other targets, AKT has been 

also implicated in the regulation of angiogenesis, cellular metabolism and cell migration and 

invasion (Manning and Cantley, 2007). Importantly, germline deletion of AKT1 or AKT3 have been 

reported to result in growth defects in vivo (Engelman et al., 2006). 

III.1.3.2 mTOR 

mTOR was first discovered as the target complex of the immunosuppressant rapamycin, in 

complex with peptidyl-prolyl cis-trans isomerase FKBP12 (FKBP12), and it was therefore named 

rapamycin and FKBP12 target (RAFT) (Brown et al., 1994; Sabatini et al., 1994). This complex 

contains two components of 245KDa and 35KDa, which were designated RAFT1 and RAFT2 

respectively. RAFT1 was found to show high homology with yeast proteins TOR1 and TOR2 and 

thereby it was considered the mammalian homolog of yeast TOR proteins (Sabatini et al., 1994). 

 mTOR is a serine/threonine protein kinase that belongs to the PI3K-related kinase (PIKK) 

family and forms two distinct complexes, mechanistic target of rapamycin complex 1 (mTORC1) 

and mTORC2 by interacting with some shared and other specific proteins (Abraham and 

Gibbons, 2007). The shared components of both complexes are the catalytic mTOR subunit, 

mammalian lethal withsec-13 protein 8 (mLST8), DEP domain containing mTOR-interacting 

protein (DEPTOR) and the Tti1/Tel2 complex. However, while mTORC1 specifically interacts with 

regulatory-associated protein of mammalian target of rapamycin (RAPTOR) and proline-rich Akt 

substrate40 KDa (PRAS40), mTORC2 is formed of rapamycin-insensitive companion of mTOR 

(RICTOR), mammalian stress-activated map kinase-interacting protein 1 (mSin1) and protein 

observed with rictor 1 and 2 (protor1/2) (Laplante and Sabatini, 2012) (Fig. I8). 

 This kinase shows a phylogenetically conserved amino acidic sequence that consists of: 

up to 20 HEAT motifs repeated in tandem, a FAT [FRAP (FKBP12–rapamycin-associated 

protein)-ATM (ataxiatelangiectasiamutated)-TRRAP (transactivation/transformation-domain-

associated protein) complex] domain and the catalytic kinase domain, which contains a FKBP12-

rapamycin binding (FRB) domain, a LST8-binding element (LBE) and a FATC (C terminus of 

FRAP-ATM-TRRAP complex) domain (Bjornsti and Houghton, 2004; Saran et al., 2015). 

 Contrary to mTORC1, the knowledge regarding the function and signaling cascade of 

mTORC2 is scarce. While insensitive to nutrients, this mTOR complex responds to growth factors 

through PI3K (Laplante and Sabatini, 2012). mTORC2 regulates cellular processes such us 

growth, proliferation, survival, metabolism, apoptosis, ion transport and cytoskeletal 

rearrangements through the direct phosphorylation of several AGC kinase subfamily members, 

including AKT, serum- and glucocorticoid-induced protein kinase 1 (SGK1) and protein kinase C-α 

(PKCα) (Saran et al., 2015). Although originally thought to be rapamycin insensitive, long term 

treatments have been shown to inhibit mTORC2 in a cell type-dependent fashion (Laplante and 

Sabatini, 2012). 
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 The identification of rapamycin has allowed a deeper characterization of the functions and 

regulation of mTORC1 (Saran et al., 2015). mTORC1 is considered a master sensor of 

extracellular and intracellular nutrient and energy status, capable of translating multiple signals 

into the coordination and regulation of anabolic and catabolic processes to sustain cell growth 

(Dibble and Manning, 2013a). Through transcriptional, translational (Ma and Blenis, 2009) and 

post-translational mechanisms mediated by its downstream targets ribosomal protein S6 kinase 

(S6K) and eukaryotic translation initiation factor 4E-binding protein (4E-BP), mTORC1 stimulates 

the synthesis of macromolecules (lipids, proteins and nucleic acids), promotes the production of 

adenosine triphosphate (ATP), nicotinamide adenine dinucleotide phosphate (NADPH) and 

macromolecule precursors and inhibits degradative processes, such as lipolysis, β-oxidation and 

autophagy (Dibble and Cantley, 2015). 

III.1.3.3 PTEN 

PTEN is a dual lipid and protein phosphatase and one of the phosphatases known to degrade 

PIP3 by dephosphorylating the phosphate group on position D3 of the inositol ring (Blanco-

Aparicio et al., 2007) (Fig. I7). Due to its biochemical function, it plays a primordial role in the 

regulation of the PI3K-AKT-mTORC1 axisand it is involved in multiple cellular processes. Indeed, 

through many of the aforementioned mechanisms, PTEN activity has been related to cell 

metabolism, motility and polarity, self-renewal capacity, tumor microenvironment regulation and 

senescence (Song et al., 2012). Regarding this last mentioned function, Pten loss was reported to 

result in a distinct type of senescence, referred to as Pten-loss-induced cellular senescence 

(PICS) (Alimonti et al., 2010). Importantly, PTEN has been demonstrated to exert relevant 

phosphatase-independent functions in the nucleus (Serra H, 2015; Song et al., 2011a). PTEN has 

been also attributed PI3K-AKT-mTORC1 pathway independent roles. PTEN was shown to exert 

its tumor suppressive effect through c-jun N-terminal kinase (JNK) and IFN-induced double-

stranded RNA-dependent protein kinase (PKR)-eukaryotic translation initiation factor 2 complex 

mTORC1

mTORC2Adapted from Saran U, Foti M and Dufour JF Clin Sci 2015 

Figure I8. mTOR forms two distinct complexes. Schematic representation of mTOR structure and shared 

and specific components of each particular complex. 
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(eIF2α) phosphorylation in an AKT-independent manner (Mounir et al., 2009; Vivanco et al., 

2007). 

 

 

III.2 PI3K Pathway deregulation in cancer 

Hyperactivation of the PI3K pathway is known to contribute to human cancer (Cantley, 2002). 

Human cancer genomic studies revealed that many components of the PI3K pathway are 

frequently affected by germline or somatic mutations in a wide variety of human tumors, 

underscoring the relevance of this signaling cascade in the disease (Liu et al., 2009b). Indeed, 

deregulation of this oncogenic cascadecommonly occurs by activating mutations in growth factor 

receptors, the PIK3CA gene coding for the catalytic subunit p110α or AKT, as well as loss of 

function of the tumor suppressor PTEN or TSC1/2 (Marone et al., 2008). 

 As aforementioned, activating alterations (mutations and amplification) in PI3K are 

frequent in multiple cancer types (Samuels et al., 2004). The oncogenic capacity of class I PI3K 

was first demonstrated in the late 1990s (Thorpe et al., 2015). However, the high incidence of 

mutations of this kinase in human cancers was discovered in 2004, when Samuels and 

colleagues found it to be altered in 32% of colorectal cancers, 27% of glioblastomas and 25% of 

gastric cancers, among others. Furthermore, these mutations were reported to arise late in 

tumorigenesis, suggesting a role in invasiveness (Samuels et al., 2004). Although missense 

mutations have been reported in all p110α domains, mutations in each domain lead to different 

mechanisms of aberrantly activating the pathway. In turn, mutations in the helical domain prevent 

p110α inhibition by p85 or facilitate its interaction with insulin receptor substrate 1 (IRS1), 

mutations in the kinase domain enhance the interaction with lipid membranes, and other 

mutations mimic conformational changes of active PI3K (Thorpe et al., 2015). 

 AKT is also amplified and mutated in cancer (Carracedo and Pandolfi, 2008). In fact, the 

activating mutation E17K in the PH domain of AKT makes it growth factor-independent, leading to 

its aberrant localization to the membrane and the stimulation of downstream signaling (Carpten et 

al., 2007). However, distinct AKT isoforms may show tumor-specific alterations. Indeed, while 

AKT1 amplification has mainly been detected in gastric cancer, somatic mutations on AKT1 have 

been described in breast, colorectal, ovarian, lung, and bladder cancers (Martini et al., 2014). In 

contrast, AKT2 amplification has been frequently detected in ovarian, breast, colorectal, and 

pancreatic tumors, while AKT3 appears amplified in breast and prostate cancers (Agarwal et al., 

2013). Finally, the activating mutation E17K has been identified on AKT3 in melanoma (Davies et 

al., 2008). 

 Importantly, few cancer-related somatic mutations in MTOR have been functionally 

characterized, recently some mutations leading to mTOR hyperactivation and nutrient signaling 
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and resistancehave been reported. In addition, hyperactivation of upstream kinases (PI3K, AKT) 

or growth factor receptors, as well as loss of upstream negative regulators (PTEN, TSC1/2) can 

lead to hyperactivation of mTOR (Dancey, 2010). Oncogenic PI3K-mTORC1 overactivation 

confers addiction to the pathway. Indeed, PTEN loss driven prostate cancer has been reverted by 

tissue-specific mTOR deletion in the mouse prostate (Guertin et al., 2009). 

 Nevertheless, the most common mechanism triggering hyperactivation of PI3K pathway is 

somatic loss of PTEN due to genetic or epigenetic alterations (Thorpe et al., 2015).In fact, when 

PTEN is deleted, mutated or otherwise inactivated, PI3K effectors, in particular AKT, are activated 

in the absence of any other stimulus (Cully et al., 2006). Sequencing of PTEN revealed that it is 

one of the most commonly mutated and deleted tumor suppressors among human cancers 

(Carracedo et al., 2011). In the same line, multiple tumors show alterations in its protein 

expression, in PTEN locus methylation or loss of heterozygosity (Marone et al., 2008). Genetic 

alterations in PTEN encompass from point mutations to large chromosomal deletions (Nardella et 

al., 2010a). These mutations are mostly missense and non-sense localized in exons 5,7 and 8, 

that encode the phosphatase domain (Marone et al., 2008). Of note, PTEN mutations can either 

affect both alleles (specially in endometrial cancer and glioblastoma) or only one allele, as 

observed in glioma, prostate, breast or lung, among others (Nardella et al., 2010a). 

 In prostate cancer, approximately 30% of patients withcastration-resistant prostate cancer 

(CRPC) harbor mutations in PIK3CA (Sarker et al., 2009). However, the relevance of PTEN loss 

of function is better described. In fact, approximately 25% of prostate HG-PINs and 70% of 

prostate cancers at early stage show heterozygous alterations in PTEN (Yoshimoto et al., 2006). 

Of note, prostate tumors tend to select for PTEN heterozygous inactivation at presentation and 

loss the other allele later in the progression of the disease (Carracedo and Pandolfi, 2008). 

  

III.3 Genetic models of Pten loss in vivo 

In line with its implication in a plethora of cellular processes, mutations in PTEN have been 

identified in multiple sporadic malignancies and in cancer-susceptibility syndromes (Nardella et 

al., 2010a). Germline mutations and deletions of PTEN are associated with the development of 

several autosomal dominant syndromes collectively named as PTEN hamartoma tumor 

syndromes (PHTS). PHTS include Cowden syndrome (CS), Bannayan-Riley-Ruvalcaba 

syndrome (BRRS), Lhermitte-Duclos disease (LDD), Proteus syndrome, and Proteus-like 

syndrome (Hollander et al., 2011). These patients suffer from hamartomas with cancer 

predisposition in different organs. Macrocephaly development has also been described in the first 

two syndromes (Nardella et al., 2010a). The relevance of the tumor-suppressor role of PTEN led 

to the development of multiple Pten knockout mouse models with the aim of studying the effects 

of its loss of function in vivo. 
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III.3.1 Genetic models of Pten germline mutations 

In the last decade of the twentieth century, mouse engineering experienced important advances, 

including the development of the genetargetingtechnology. Gene targeting brought the possibility 

of introducing specific mutations by homologous recombination into endogenous genes of 

embryonic stem (ES) cells,and transmitting these changes in the germline through mice breeding 

(Jonkers and Berns, 2002).  

 Homozygous Ptenloss is lethal at day E7.5 post-fertilization, which highlights an essential 

role of Pten in embryonic development (Di Cristofano et al., 1998). In the same line, hypomorphic 

Pten mutants (PtenHy/-) showed a partial rescue of embryonic lethality, leading to some viable 

mice albeit at a lower frequency than expected according to Mendelian ratios (Trotman et al., 

2003). Pten heterozygosity (Pten+/-) was reported to cause dysplastic and hyperplastic alterations 

in prostate, skin and colon resembling CS, BRRS and LDD features. Furthermore, spontaneous 

development of tumors of various histological origins was described in Pten+/- mice (Di Cristofano 

et al., 1998). Importantly, Pten hypomorphic mice showed increased aggressiveness, with 

massive prostatic hyperplasia and invasive PCa (Trotman et al., 2003). In conclusion, these 

“hypomorphic Pten allelic series” revealed that subtle variations in Pten expression levels result in 

dose-dependent pathological alterations (Nardella et al., 2010a). 

 

III.3.2 Genetic models of prostate-specific Pten deletion 

Germline knockouts have been widely employed for the study of gene function in vivo. Although 

these conventional knockouts are useful to ascertain gene function during development, they 

exhibit intrinsic limitations to model postnatal pathologies, mostly due to their whole body range of 

action (Wu et al., 2001). To circumvent the consequence of losing Pten in all cells of the body, 

and to study the impact of Pten loss in a given tissue, conditional tissue-specific Pten knockout 

mouse models were employed (Jonkers and Berns, 2002). Conditional gene knockout 

techniques, such us the Cre-loxP recombination system, bypass some of the limitations of 

conventional gene-targeting. This technique combines the use of the bacteriophage P1 site-

specific DNA recombinase (Cre) and the creation of conditional target alleles in mice expressing 

Cre under the control of cell type-specific or inducible promoters (Wu et al., 2001). Cre excises 

DNA sequences located between two unidirectional loxP recognition sequences ("flox"), leaving 

one loxP site on the linear DNA. 
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 To achieve specific deletion of Pten in the prostate, PtenloxP/loxP mice were crossed with 

Probasin-Cre (PB-Cre) transgenic mice. In PB-Cre transgenic mice Cre recombinase is 

expressed specifically in the prostate epithelium post-puberty due to its regulation by the rat 

Probasin (PB) gene promoter, which is an androgen responsivepromoter (Nardella et al., 2010a). 

Two distinct versions of the PB promoter have been utilized to perform these crosses, PB-Cre 

and PB-Cre4, where in PB-Cre4 mice Cre expression is driven by a composite promoter, 

ARR2PB, which is a more potent derivative of the original rat PB. Indeed, Cre expression under 

ARR2PB promoter led to widespread Pten deletion in the prostate epithelium, prostate 

enlargement and more aggressive invasive PCa with multifocal origin compared to original PB 

promoter driven phenotype (Trotman et al., 2003). We will focus on PB-Cre4 mice phenotype for 

further considerations regarding prostate-specific deletion driven models, which is the model that 

was employed in this thesis work. Homozygous prostate-specific Pten deletion leads to HG-PIN 

development at 9 weeks of age. Moreover, after bypassing Pten loss induced senescence at 11 

weeks of age, these HG-PIN lesions further progress into full penetrance invasive PCa by 6 

months. Although disease aggressiveness increased with time, these mice did not show 

metastatic lesions (Chen et al., 2005) (Fig. I9). 

PbCre+/PbCre, 

Pten Lox/+

Heterozygous
Model

PbCre+/PbCre,
Pten Lox/Lox

Homozygous
Model

IndolentPIN with
only focal lesions

PIN Invasive PCa

3 Mo
PbCre+/PbCre+

, Pten +/+

Wild-Type
Model 6 Mo

6 Mo

3 Mo 6 Mo

Bening
prostate
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Localized
Prostate Cancer
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Figure I9. Prostate-specific Pten knockout mouse model. Representation of the genotype (wild-type, 

heterozygous or homozygous)-phenotype (PIN or PCa) correlation at early (3Mo) and late (6 Mo) stages of 

the disease. 
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IV METABOLIC DEREGULATION AND CANCER 

IV.1 Warburg effect 

The first evidence reporting the deregulation of metabolism in cancer were provided by Otto 

Warburg in the early 1920s (Warburg et al., 1927). This German physiologist observed that tumor 

cells consumed more glucose than normal tissues, which suggested a relevant differential 

characteristic of normal versus cancerous cells (Warburg, 1956a). However, this data was left 

aside for many years in cancer research until the beginning of twenty first century, when reports 

claiming the importance of alterations in metabolic enzymes in cancer pathogenesis started to 

arise (Possemato et al., 2011; Reitman et al., 2011). Increasing evidence claim that oncogenic 

alterations in metabolic enzymes can directly trigger the deregulation of cancer cell metabolism 

(Ward and Thompson, 2012), but it is widely accepted that metabolism in cancer is regulated at 

large by signaling alterations. The consolidation of this field has led to the consideration of the 

deregulation of metabolism in cancer as a hallmark of the disease (Hanahan and Weinberg, 

2011).  

 Normal cells uptake glucose, they convert it into pyruvate and incorporate it in the 

Tricarboxylic Acid Cycle (TCA) to obtain 36 molecules of ATP from a single molecule of glucose 

through oxidative phosphorylation. However, tumoral cells or cells with high proliferation rates 

uptake higher amounts of glucose and convert it into lactate even in the presence of oxygen, 

yielding 4 ATP in a process defined as aerobic glycolysis or “Warburg effect” (Vander Heiden et 

al., 2009). Recently, more information about how the Warburg effect can be energetically 

sustained has been provided. Lactate production from glucose in cancer cells occurs 10-100 

times faster than complete glucose oxidation through oxidative phosphorylation in the 

mitochondria (Shestov et al., 2014). Hence, this inherent difference in kinetics would explain the 

choice for anaerobic glycolysis of cancer cells (Liberti and Locasale, 2016). It is worth noting that 

cells with a higher metabolic rate would also exhibit a selective advantage under limited nutrient 

and energy availability conditions (such as the tumor microenvironment) and conditions of high 

rapid ATP demand (Epstein et al., 2014). 

 Aerobic glycolysis has also been proposed as an adaptation to use glucose for the 

production of anabolic intermediates and NADPH (Vander Heiden et al., 2009). In fact, glycolytic 

intermediates in cancer cells are diverted into branching pathways, such as, pentose phosphate 

pathway (PPP), hexosamine biosynthesis pathway or thede novo serine synthesis (50% of 

glucose) and one carbon (1C) metabolism, in order to obtain biosynthetic precursors (Pavlova 

and Thompson, 2016). 
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IV.2 1C metabolism 

1C metabolism accepts inputs, such as glucose or amino acids and processes them to produce 

outputs for anabolic processes. Thus, this pathway is considered a nutrient status integrator 

(Locasale, 2013).1C metabolism encompasses folate and methionine (Met) cycle. This cyclic 

metabolic network is fueled by a carbon unit from serine (Ser) conversion to glycine (Gly) and 

subsequent glycine cleavage, which then is tranferred through biochemical reactions to other 

metabolic pathways. Folate is reduced by a number of enzymes, leading to the production of 

methyl-tetrahydrofolate (m-THF), which couples folate cycle to Met cycle, and further 

tetrahydrofolate (THF) generation(Amelio et al., 2014). Importantly, virtually all biomolecules 

require substrates from 1C metabolism for their synthesis. 1C metabolism is also connected to 

trans-sulphuration pathway through an intermediate of Met cycle, homocysteine,and is implicated 

in the maintainance of cellular Redox balance, through the NADPH/NADP ratio balance and 

glutathione production, and in the methylation capacity of the cell, throught the regulation of S-

adenosylmethionine (SAM) levels (Locasale, 2013). 

 Ser, one of the fuels of this pathway, can be synthesized de novo, from a glycolisis 

intermediate, 3-phosphoglycerate (3PG) (Locasale, 2013). Importantly, this pathway has been 

shown to correlate with tumorigenesis (Snell, 1984). Indeed, Ser and not Gly, was demonstrated 

to selectively support 1C metabolism and proliferation of cancer cells (Labuschagne et al., 2014). 

Likewise, glycine metabolism, glycine decarboxylase (GLDC) and the glycine-cleavage system 

have also been implicated in cell tranformation and tumorigenesis (Zhang et al., 2012; Wang et 

al., 2009). 

 

IV.3 Other metabolic alterations 

Recent advances in cancer research have proven that deregulation of metabolism in cancer 

extends beyond the previously thought unique objective of adapting to the enhanced anabolic 

processes required for proliferation (Ward and Thompson, 2012). Cancer cells exhibit increased 

uptake of other growth-supporting substrates, like glutamine, which was observed more than 50 

years ago (Eagle, 1955). The transcription factor myc proto-oncogene protein (c-MYC) (often 

amplified in tumors) induces glutamine utilization (Wang et al., 2011), providing nitrogen for purine 

and pyrimidine synthesis, non-essential amino acids and polyamines (Pavlova and Thompson, 

2016), as well as carbons for anaplerosis (a process through which the activity of the tricarboxylic 

acid cycle is sustained by providing additional alpha ketoglutarate).  

 Some cancer cells also exhibit opportunistic modes of nutrient acquisition (Pavlova and 

Thompson, 2016). In fact, mutant RAS-transformed cells recover free amino acids from 

extracellular proteins, through internalization by macropinocytosis and lysosomal degradation 

(Commisso et al., 2013). Remarkably, this mode of aminoacid uptake is inhibited by mTORC1 

(Palm et al., 2015). In the same line, mutant GTPase KRas (KRAS)-expressing cells are more 

prone to elicit entosis, the engulfment and digestion of entire living cells,as a means of amino acid 



Introduction 
 

 
 

57 
 

IN
T

R
O

D
U

C
T

IO
N

 

recovery (Krajcovic et al., 2013). Furthermore, upon inhibition of stearoyl-CoA desaturase (SCD)1 

in hypoxic conditions, these cells are able to scavenge serum fatty acids (Kamphorst et al., 2013). 

 Metabolic reprogramming of cancer cells leads to the production of metabolites such as 

acetyl-CoA, that are substrate for histone acetyl transferases, resulting in increased acetylation of 

growth-related genes and subsequent increased growth (Cai et al., 2011). Thus, the metabolic 

reprogramming in cancer allows the direct transmission of growth signals to metabolic enzymes 

(Pavlova and Thompson, 2016). 

 

V POLYAMINES 

Polyamine metabolism is a physiologically relevant pathway that has been extensively related to 

proliferation. Owing to their multiple roles in essential cellular processes, their concentrations are 

strictly controlled at several levels, by regulation of the enzymes implicated in their synthesis and 

catabolism. This fact underscores the importance of fine-tuning the availability of polyamines. The 

deregulation of these enzymes has been therefore implicated in multiple diseases, and especially 

in cancer pathogenesis. 

V.1 Definition of polyamines 

Polyamines are ubiquitous essential small polycationic molecules derived from amino acids. 

Since Antonie Van Leewenheuk identified some crystals in seminal fluid corresponding to 

spermine (Spm) in 1678, more polyamines have been described, such as putrescine (Put) (in the 

late 1800s), spermidine (Spd) (at the beginning of twentieth century), cadaverine (Cad) and1,3-

diaminopropane (1,3-DAP). The first three are the most common ones, especially in mammals. 

Polyamines contain two amino groups in the case of primary diamines (Put, 1,4-diaminobutane; 

and Cad, 1,5-diaminopentane), while three and four amino groups are present in the structure of 

Spd (N-(3-aminopropyl)butane-1,4-diamine) and Spm (N,N′-bis(3-aminopropyl)butane-1,4-

diamine), respectively. Polyamine content varies among species. For instance, intracellular 

content of Spd (1-3 mM) is higher than Put content (0.1-0.2 mM) in most bacteria, whereas in 

Escherichia coli Put is the predominant polyamine (10-30 mM) (Shah and Swiatlo, 2008). In the 

same line, Cad is mainly present in bacteria and plants, with a reduced abundance in the 

remaining species (Kusano et al., 2008). 

 These positively charged aliphatic hydrocarbon molecules are relevantfor the 

maintenance of essential cellular processes. Indeed, due to their overall positive charge at 

physiological pH, they are known to bind macromolecules with acidic nature, such as nucleic 

acids, proteins and phospholipids (Pegg, 2009a) and cause effects on gene expression, cell 

proliferation and cellular stress (Miller-Fleming et al., 2015). Owing to their high interactive 

capacity, the free polyamine concentration is markedly lower than total polyamine content, which 
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also explains the fact that slight alterations in polyamine levels may have critical consequences 

on cell function (Pegg, 2009a). 

 

V.2 Polyamine functions 

V.2.1 Regulation of gene expression 

Polyamines are able to affect gene expression by different means (Fig. I10).These molecules are 

considered condensation agents that remodel chromatin structure by creating electrostatic bonds 

between desoxyribonucleic acid (DNA) and phosphate charges that stabilize the nucleic acid. In 

the same line, natural and synthetic polyamines precipitate DNA, depending on their 

concentration (Childs et al., 2003). Polyamines regulate the transcription rate of several genes, 

the oncogenic trancription factor c-MYC among them (Kumar et al., 2009). Interestingly, 

amplification of N-myc proto-oncogene protein (N-MYC), another transcription factor from the 

same family,has been reported to induce overexpression of ornithine decarboxylase 1 (ODC1), 

one of the rate-limiting enzymes of the polyamine synthesis pathway, in neuroblastoma (Hogarty 

et al., 2008). This fact emphasizes the presence of feedback loops in polyamine related 

regulation. 

 To try to understand the physiological role of polyamines, their distribution among acidic 

molecules in cells has been determined. Importantly, most polyamines form a ribonucleic acid 

(RNA)-bound complex, as assessed in bovine lymphocytes and rat liver, what suggests that these 

polycations could alter the structure of RNA (Igarashi and Kashiwagi, 2010) and regulate protein 

translation. Indeed, polyamines can induce the translation of a group of genes, named the 

“Polyamine modulon”, both in prokaryotes (Yoshida et al., 2004) and eukaryotes (Nishimura et al., 

2009a). Interestingly, polyamines regulate translation initiation and elongation (Yoshida et al., 

2002) as well as the phosphorylation of factors involved in translation (Landau et al., 2010). 

 

V.2.2 Control of cell proliferation 

Polyamines have been widely related to proliferation and growth (Fig. I10). Apparently, this 

regulation occurs through different mechanisms in prokaryotes and eukaryotes. In prokaryotes, as 

aforementioned, translation of growth-related transcription factors is induced in response to 

polyamines, according to the metabolic conditions. However, polyamines show a putative role in 

cell cycle progression in eukaryotes (Oredsson, 2003), although the exact mechanism underlying 

this activity remains to be elucidated (Miller-Fleming et al., 2015). 
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Another proliferation-related function of polyamines, especially of Spd, is to serve as substrate for 

the unique post-translational modification of eukaryotic translation initiation factor 5A (eIF5A), 

hypusination (Cooper et al., 1982). This exclusive modification is based on the formation of 

hypusine, a basic amino acid, by adding the 4-aminobutyl moiety of Spd to Lys50 in eIF5A (Park 

et al., 2009). The hypusination process consists of two enzymatic steps, deoxyhypusine 

intermediate formation by deoxyhypusine synthase (DHS), which transfers the 4-aminobutyl 

moiety from Spd to Lys50; and hydroxylation of deoxyhypusineby deoxyhypusine hydroxylase 

(DOHH) to form active eIF5A (Park et al., 2009). These two enzymes responsible for hypusination 

and eIF5A are highly conserved from archaea to eukaryotes, which suggests a vital role of this 

translation initiation factor in cell viability. Indeed, deletion of both eIF5A homologues in yeast 

(Hyp2 and Anb2) is lethal (Schnier et al., 1991), as well as eIF5A homozygous deletion in mice 

(Nishimura et al., 2012). Although eIF5A was initially described as a translation initiation factor, it 

was later demonstrated that it does not play an essential role in initiation, but binds to translating 

ribosomes and elongation factors, in an hypusine-dependent manner (Zanelli et al., 2006).  

 Finally, polyamines have been reported to affect signaling pathways by modulating 

phosphorylation of key regulatory proteins, such as kinases (AKT, GSK-3β, cyclin-dependent 

kinase 4, CDK-4), transcription factors (p53), E3 ubiquitin-protein ligases (murine doble minute 2, 

Mdm2) and signaling receptors (EGFR), among others (Pegg, 2009a). 
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Figure I10. Role of polyamines in cell physiology. Schematic representation of the main cellular 

processes and specific functions in which polyamines are involved at physiological level. 
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V.2.3 Implication in cellular stress 

Polyamines have been associated to the protection of cells against multiple types of cellular 

stresses, such as ROS, changes in pH, osmotic pressure and temperature (Miller-Fleming et al., 

2015) (Fig. I10). 

 Due to their polycationic nature, polyamines can function as ROS scavengers, by binding 

to alkyl, hydroxyl and peroxyl radicals and superoxide to protect DNA from oxidative stress 

(Fujisawa and Kadoma, 2005; Ha et al., 1998). Another reported function of polyamines is the 

induction of the defense mechanisms against stress. Evidence supporting this fact have been 

provided in E. coli, where Put and Spd upregulate the transcription of the stress-related 

transcription factors OxyR, SoxRS and RpoS (Tkachenko and Nesterova, 2003); in yeast, where 

overexpression of the polyamine exporter Tpo1 sensitizes cells to H2O2 (Krüger et al., 2013); and 

plants, where polyamines protect Arabidopsis from heat stress (Sagor et al., 2012). Polyamines 

also have the capacity to bind to proteins. This ability allows them, for instance, to bind to porins 

(membrane proteins that form channels) and inhibit them to prevent acidic and osmotic stress(Iyer 

and Delcour, 1997). In response to osmotic stress, polyamines can further act as “osmolytes”, 

accumulating for protection (Groppa and Benavides, 2007) or being excreted to balance charge 

alterations (Schiller et al., 2000). 

 We will focus on naturally occurring polyamines in mammals to delve into their synthesis, 

catabolism and transport. These processes are very tightly controlled through the specialized and 

unconventional means of regulation of the enzymes in polyamine metabolism. 

 

V.3 Polyamine metabolism 

V.3.1 Polyamine synthesis 

Polyamines are synthesized fromtwo proteinogenic amino acids, the essential amino acid 

methionine (Met, M) and the non-essential amino acid arginine (Arg, R). Argis converted into 

ornithine, a non-proteinogenic amino acid that is the real substrate for the synthesis of the first 

polyamine synthesized in the pathway, Put (Lee and MacLean, 2011). There are two rate-limiting 

and equally relevant enzymes implicated in the synthesis of polyamines, ODC1 and S-

adenosylmethionine decarboxylase (AMD1) (Pegg, 2009a) (Fig. I11). Both branches of the 

pathway start with a decarboxylation reaction. Ornithine is decarboxylated by ODC1 to form Put 

(Nowotarski et al., 2013). The other branch of the pathway is fueled with methionine, which is 

converted into SAM, the substrate that is then decarboxylated by AMD1 to form decarboxylated 

S-adenosylmethionine (dcSAM) (Miller-Fleming et al., 2015). This metabolite is the aminopropyl 

donor for the synthesis of the other two polyamines present in mammals,Spd and Spm (Pegg, 

2013). 
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The aminopropyl group is transferred to Put and Spd in consecutive reactions catalyzed by two 

aminopropyltransferases, spermidine synthase (SpdS) and spermine synthase (SpmS), 

respectively (Rhee et al., 2007) (Fig. I11). 

 

 

V.3.2 Polyamine catabolism 

Polyamine concentrationis not only regulated through their synthesis, but also through tightly 

regulatedcatabolic reactions. Polyamine catabolism consists of two main reactions, acetylation 

and oxidation (Fig. I11).  

 Acetylation of Spd and Spm, is catalyzed by Spermidine/spermine N1-acetyltransferase 

(SSAT). This inducible enzyme transfers the acetyl group from acetyl-coenzyme A to the N1 

position of either Spd or Spm (Casero and Marton, 2007), forming N1-acetylspermidine or N1-

acetylspermine. Acetylation of polyamines reduces their positive charge, which decreases their 

ability to bind to macromolecules and makes them prone to be excreted (Pegg, 2013). 

Alternatively, they become substrates for acetylpolyamine oxidase (APAO). Oxidases can be 

classified according to the cofactor they require, flavin adenine dinucleotide (FAD) or copper 

(Cu2+). On the one hand, FAD-dependent oxidases include: APAO, which efficiently acts on N1-

acetylspermine andN1-acetylspermidine and converts them into Spd and Put, respectively; and 

spermine oxidase (SMO), which shows a very high selectivity for spermine. These two enzymes 

generate reactive aldehydes and H2O2 thereby causing oxidative stress (Pegg, 2009a). On the 

other hand, there are Cu2+-containing oxidases, including: diamine oxidase, which degrades 

putrescine into Δ1-pyrroline, ammonia and H2O2; and serum amine oxidase, which transforms 

Spd and Spm to produce amino aldehydes, ammonia and H2O2. Importantly, oxidation products of 
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Figure I11. Methionine cycle and polyamine pathway connection. Schematic representation of the 

metabolic reactions of methionine cycle and polyamine synthesis and catabolism pathways. 
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serum polyamine oxidase or SMO can undergo spontaneous β elimination producing acrolein, a 

metabolite that shows very high toxicity (Pegg, 2013) (Fig. I11). 

 

V.3.3 Polyamine transport 

Polyamine transport may play an important role in the regulation of total polyamine pools through 

their uptake (Casero and Marton, 2007) and excretion (Pegg, 2009a). Despite their central 

function, polyamine-specific transport systems in mammals are not very well understood yet, 

although several mechanisms implying endocytosis have been suggested (Miller-Fleming et al., 

2015) (Fig. I12).  

 

Adapted from Poulin R, Casero RA and Soulet D, Amino Acids 2012
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Soulet et al. proposed a mechanism by which polyamines may be transported into the cell 

through an unknown transporter powered by membrane potential (model 1). Immediately after 

internalization, polyamines would accumulate into polyamine-sequestering vesicles (PSVs) 

through V-ATPase activity-bearing transporters (Soulet et al., 2004). Other models claim the 

implication of glycosaminoglycans (model 2) (Belting et al., 2003) or caveolin-1 (model 3) 

(Uemura et al., 2010) in the internalization process of polyamines. Model 2 only provides an 

explanation for spermine transport and both model 2 and 3 do not solve the steps of polyamine 

release from vesicles (Poulin et al., 2011). In the last years, a number of membrane proteins from 

solute carrier (SLC) and ATP-binding cassette (ABC) protein superfamilies have been suggested 

as putative polyamine transporters, such as SLC22A1 and SLC22A2, SLC3A2, SLC12A8A, 

SLC22A16 and MDR1 (from ABC superfamily) (Abdulhussein and Wallace, 2013). 

 

V.4 Rate Limiting enzymes of the pathway 

The polyamine pathway is tightly regulated by two rate-limiting enzymes implicated in the 

synthesis of these molecules. On the one hand, synthesis of the first polyamine in the synthetic 

pathway from decarboxylation of the amino acid ornithine is catalyzed by ODC1. On the other 

hand, the pathway relies on another important checkpoint control at the production of the other 

main substrate required for polyamine synthesis, dcSAM. This reaction is driven by AMD1, which 

decarboxylates SAM to produce dcSAM. 

V.4.1 ODC1 

ODC1 is the first rate-limiting enzyme in thesynthesis of polyamines.This enzyme requires 

pyridoxal phosphate (PLP) as a cofactor (Pegg, 2009a). An active ODC1 homodimer is the 

responsible for the synthesis of the diamine Put by decarboxylating ornithine (Pegg, 2006). The 

expression of ODC1 is tightly regulated at multiple levels, from transcription to degradation 

(Shantz and Pegg, 1999) (Fig. I13). This enzyme is of key importance for life, as demonstrated by 

Odc1 deletion in vivo, which results in early lethality at E3.5 days post-fertilization (Pendeville et 

al., 2001). 

 At transcriptional level, ODC1 expression responds to multiple stimuli, such as growth 

factors, hormones and tumor promoter signals. At the translational level, ODC1 messenger RNA 

(mRNA) contains both elements that reduce translation efficiency (a 5´untranslated region (UTR) 

Figure I12. Putative mechanism models for polyamine uptake, accumulation and sequestration into 

vesicles in mammalian cells. A, Model adapted from(Soulet et al.2004) illustrating atwo-step mechanism.B, 

Modeladapted from (Belting et al.2003) proposing Spm internalization bound to glycosaminoglycansand 

released from glypican-1 via NO-mediated oxidation. C, Model based on (Uemura et al.2010) suggesting a 

caveolin-1-dependent internalization bound to a potential polyamine receptor. NO, nitric oxide; NOS2, nitric 

oxide synthase-2; PA, polyamines; PUT, putrescine; SPM, spermine. 
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with a strong secondary structure, a small upstream open reading frame, uORF, and a GC-rich 

sequence) (Shantz and Pegg, 1999) and elements that enhance translation (internal ribosome 

entry sites, IRES) (Pyronnet et al., 2000). However, the most unusual and complex regulatory 

step of ODC1 is its degradation. ODC1 shows a half-life of 10-30 minutes, which suggests a very 

tight regulation of protein stability. This decarboxylase is degraded through the proteasome, 

although this process is independent of ubiquitination. Instead, ODC1 depends on antizyme (AZ) 

binding, which has high affinity for ODC1 monomers, for recognition by the proteasome and 

degradation (Coffino, 2001). AZ is encoded by two adjacent ORFs and its synthesis is regulated 

by a +1 frameshift event that happens in high polyamine concentration conditions(Hayashi and 

Murakami, 1995; Nilsson et al., 1997). Importantly, AZ is also regulated by an antizyme inhibitor 

(AZi), which is highly homologous to ODC1 but lacks catalytic activity (Fujita et al., 1982). AZ has 

higher affinity for AZi than ODC1, thus allowing ODC1 dimerization and activation upon AZi 

expression.  

 

 

V.4.2 AMD1 

AMD1 is the second rate limiting enzyme in polyamine synthesis pathway and the responsible for 

dcSAM production. To ensure that AMD1 does not deplete the pool of SAM, which is essential to 

maintain the methylation capacity of the cell (Locasale, 2013), this enzyme is expressed at very 

low levels. dcSAM is an essential substrate for polyamine synthesis, because it donates the 

aminopropyl group for Spd and Spm synthesis. In turn, AMD1 levels are very strictly regulated at 
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Adapted from Miller-Fleming J, et al, J Mol Biol 2015

Figure I13. Ornithine decarboxylase 1 (ODC1) and antizyme (AZ) regulation. A, Schematic picture 

describing ODC1 and AZ regulation by polyamine levels. B,Schematic picture showing the mechanism of 

regulation of ODC1.C, Schematic picture showing the mechanism of regulation of AZ. 
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multiple levels, such as transcription, translation, processing and degradation. Put positively 

regulates AMD1 levels, whereas Spd and Spm negatively regulate the enzyme (Pegg, 2009b). 

The vital relevance of AMD1 is further supported by the fact that homozygous deletion of AMD1 is 

lethal between E3.5 and E6.5 days post-fertilization (Nishimura et al., 2002). 

V.4.2.1 AMD1 regulation 

V.4.2.1.1 AMD1 processing 

This decarboxylase has a pyruvoyl prosthetic group covalently bound. AMD1 is synthesized as an 

inactive proenzyme (proAMD1) of 38 KDa, which requires to undergo an autocatalytic serinolysis 

between glutamic acid 67 and Ser68 (Stanley et al., 1989) to generate the two different subunits 

(a and b) that will in turn dimerize and form the active heterotetramer (Pegg et al., 1998) (Fig. 

I14). This process is activated by Put in mammals (Stanley and Pegg, 1991). 

 

 

 

V.4.2.1.2 AMD1 transcription 

Regulation of AMD1 transcription has not been clarified yet. There is some evidence suggesting 

that AMD1 mRNA levels are upregulatedin response to growth factors and Spd depletion. Indeed, 

human AMD1 promoter has been reported to contain a spd-responsive element (or polyamine-

responsive element, PRE), although the experimental evidence are inconclusive (Pegg et al., 

1998) (Fig. I15). 

 

V.4.2.1.3 AMD1 translation 

E67-S68 Autocatalytic cleavage point

Proenzyme 38 KDa

Cleaved enzyme 30,7 KDa (a) 

Autocatalytic
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b b
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Cleaved pept.  (b)
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Figure I14. AMD1 processing mechanism. Schematic representation of the autocatalytic serinolysisprocess 

that the inactive proenzyme form of AMD1 suffers in order to produce the subunits “a” and “b” that will in turn 

dimerize giving the active mature enzyme. 
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AMD1 translation is regulated by uORFs. AMD1 mRNA contains a small ORF 14 nucleotides 

downstream the 5´ CAP that encodes for the hexapeptide MAGDIS (Hill and Morris, 1992). 

 

During translation of this peptide, when ribosomes reach the translation of last Ser (S) ribosomal 

stalling occurs, blocking the entrance of the ribosome to the AMD1 start codon. Spd and Spm 

stabilize the complex formed by the peptidyl-tRNA associated to the ribosome, inhibiting 

translation of AMD1 (Law et al., 2001; Raney et al., 2002) (Fig. I15). 

 

V.4.2.1.4 AMD1 degradation 

AMD1 in its proenzyme form shows a very short half-life (less than 1 h), and in some species the 

turnover takes less than five minutes. Importantly, the turnover is accelerated when Spd and Spm 

concentrations are high and no further polyamine synthesis is required (Miller-Fleming et al., 

2015). AMD1 degradation occurs through polyubiquitinationvia the 26S proteasome (Yerlikaya 

and Stanley, 2004). In the reaction chain that takes place to produce dcSAM, the last step 

consists on protonation of Cα of the product for the correct release of dcSAM and regeneration of 

the pyruvate. However, under some circumstances, Cα of the prosthetic group is protonated 

leading to the formation of alanine instead of pyruvate and to the release of an aldehyde group. 

This substrate-mediated transamination process irreversibly inactivates AMD1 (Pegg, 2009b). 

Pegg AE, Essays Biochem. 2009

A

B

C

Figure I15. Different levels of AMD1 regulation. A-C, Mechanism of regulation of AMD1 transcription (A), 

translation (B) and degradation (C). 
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Furthermore, this transformation has been suggested to cause conformational changes in the 

enzyme that would make it more accessible to ubiquitination and prone to proteasome-dependent 

degradation (Yerlikaya and Stanley, 2004) (Fig. I15). 

 

V.5 Polyamines and disease 

As a consequence of their multiple and varied physiological roles, polyamines have been 

implicated in a considerable number of pathologies. Nevertheless, there is only one inherited 

human disease directly associated to a genetic alteration in polyamine synthesis pathway, the 

Snyder-Robinson syndrome (SRS). This syndrome is caused by a splice mutation in SpmS gene 

located in chromosome X and characteristic features of this disorder encompass mental 

retardation, osteoporosis, facial asymmetry, hypotonia and movement disorders (Lauren Cason et 

al., 2003). There is also evidence reporting duplication of SsatI gene (encoding for SSAT1) as the 

responsible for keratosis follicularis spinulosa decalvans (KFSD), although further patient studies 

are required to conclude a direct relationship (Pegg, 2009a). 

 Ageing has been shown to negatively correlate with polyamine levels. In line with this fact, 

some age-related neurodegenerative diseases, such as Parkinson´s disease (PD) or Alzheimer´s 

disease (AD) show increased polyamine levels, suggesting a deranged polyamine pathway. 

However, these observations in PD and AD were reported to be polyamine and cell-type specific 

and no causative demonstration has been achieved yet (Miller-Fleming et al., 2015; Minois et al., 

2011). At molecular level, polyamines have been shown to promote α-synuclein (Antony et al., 

2003; Krasnoslobodtsev et al., 2012) and β-amyloid (Luo et al., 2013) aggregation in PD and AD, 

respectively. These results were not unexpected, based on the interaction capacity of polyamines, 

and thus, in vivo experiments showing the extent and relevance of the effect of polyamines on the 

formation of these aggregates are warranted (Minois et al., 2011). In the same line, while some 

polyamines, such as Spm, have been related to ischemic neuronal injury in stroke (Duan et al., 

2011), others, as Put, have been shown neuroprotective effects against epilepsy (Bell et al., 

2011). Polyamines are also associated with inflammatory responses, leading to an overall 

increase in inflammatory conditions, such as pancreatitis (Minois et al., 2011) and the capacity to 

recruit macrophages. Whether polyamines play a pro- or anti-inflammatory role still remains 

elusive (Puntambekar et al., 2011). In the same line, polyamines ameliorate parasitic infection-

related symptoms, probably by improving the adaptive immune response and leading to a 

beneficial outcome of the disease (Nishimura et al., 2009b). 

 Of note, byproducts of polyamine metabolism have been involved in multiple diseases. 

The potential toxic role of acroleinwas already suggested a century ago. Ever since, this aldehyde 

has been associated with neurological damage due to stroke or dementia, neurological disease 

and renal failure (Minois et al., 2011). 
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V.5.1 Polyamines and cancer 

Polyamines have been widely associated to active proliferation and cancer (Gerner and 

Meyskens, 2004a; Soda, 2011). The association of polyamines with this disease was first 

reported by Russell and Snyder in 1968, who demonstrated a dramatic increase of ODC1 in 

STAT-I sarcoma (Russell and Snyder, 1968). Thenceforth, higher polyamine concentration upon 

neoplastic transformation has been reported in a variety of cancer types, such as colorectal, 

breast or prostate cancer (Kingsnorth et al., 1984; Cañizares et al., 1999; Schipper et al., 2000). 

 Expression and activity of polyamine biosynthetic and catabolic enzymes have been 

related to cancer status (Soda, 2011). In this sense, upregulation of ODC1 in the intestinal 

mucosa of familial adenomatous polyposis (FAP) patients is the best described example. In this 

inheritable form of colon cancer, the tumor suppressor adenomatous polyposis coli (APC) 

appears mutated or lost, which upregulates the expression of MYC oncogene, leading to aberrant 

growth and cancer (Gerner and Meyskens, 2004a). ODC1 is a direct transcriptional target of MYC 

(Bello-Fernandez et al., 1993; Peña et al., 1993), and its expression has been correlated with 

colon cancer risk. Moreover, a single-nucleotide polymorphism (SNP) (G315A) in intron 1 of 

ODC1, which lies between two consensus MYC binding sites (E boxes), was reported to affect 

ODC1 transcription, due to the selective binding of the transcriptional repressor and MYC 

antagonist MAD1. Based on this molecular mechanism, it was found that individuals homozygous 

for thisallele showed a reduction in colon polyp development and cancer risk. Of note, aspirin use 

was observed to further decrease colon cancer risk in an allele-independent manner, through the 

activation of SSAT (Martínez et al., 2003). In vivo, ODC1 overexpression alone was not sufficient 

to induce tumorigenesis (Alhonen et al., 1995; Smith et al., 1998), whereas targeted ODC1 

expression to the skin, under the control of K6 keratin promoter, caused increased susceptibility 

to skin tumor development upon different carcinogen induction (Chen et al., 2000; O’Brien et al., 

1997). Of note, the development of skin tumors is polyamine-dependent, as it is reduced upon 

ODC1 inhibition with difluoromethylornithine (DFMO) (Smith et al., 1998), targeted AZ 

overexpression in the skin (Feith et al., 2001) or ODC1 heterozygosity (Guo et al., 2005). 

Likewise, ODC1 has also been related to other oncogenes. This enzyme is necessary to induce 

active H-Ras GTPase-driven oncogenic transformation in vitro (Shantz and Pegg, 1998) and to 

cooperate with H-Ras in the promotion of epidermal tumors in vivo (Smith et al., 1998).  

 Catabolic enzymes such us SSAT1 or SMO have also been related to the disease. These 

enzymes are also under the regulation of mutant KRAS. KRAS inactivates peroxisome 

proliferator-activated receptor gamma (PPARγ), which in turn fails to bind the PPAR response 

element (PPRE) in SSAT1 promoter (Gerner and Meyskens, 2004a). Nonetheless, studies using 

transgenic SSAT1 overexpression exhibit conflicting results. Overexpression of Ssat1 in the skin 

(K6/SSAT) (Coleman et al., 2002) or whole Ssat1 overexpression in combination with 

ApcMin/+mutation (which develop colon cancer) (Tucker et al., 2005) showed increased incidence 

of skin and intestinal tumors, respectively. Conversely, transgenic expression of Sat1 (Pietilä et 

al., 2001) in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model (which 
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develops prostate cancer) (Kee et al., 2004) led to significant reduction in tumor incidence. 

However, germline Ssat1 overexpression is known to cause multiple pleiotropic phenotypes that 

difficult drawing carcinogenesis-related conclusions. Furthermore, contrary to the targeted 

K6/SSAT mice, the SSAT1 transgenic expression in TRAMP mice led to a profound depletion of 

polyamines, through the inhibition of a compensatory increase of polyamine synthesis that would 

support tumor growth (Casero and Pegg, 2009). 

 SMO has recently been linked to carcinogenesis. Increased expression of this polyamine 

catabolic enzyme has been observed in inflammatory-associated cancers. Specifically, infectious 

agents such as enterotoxigenic Bacteroides fragilis (ETBF) and Helicobacter pylori induce an 

inflammatory state that increases colorectal cancer risk (bowel disease and colitis) and colon 

cancer (Ulger Toprak et al., 2006), and gastric cancer (Chaturvedi et al., 2011), respectively. In 

both cases the bacterial infection was demonstrated to increase SMO expression, resulting in 

DNA damage and apoptosis (Xu et al., 2004). This data was validated with the inhibitor of SMO 

MDL72527 and SMO knockdown. In this line, SMO expression was reported to be increased as 

an early event in PCa development, although further studies are warranted in order to assess the 

role of SMO-induced ROS in prostate carcinogenesis (Goodwin et al., 2008). 
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Despite decades of investigation on prostate cancer (PCa), it remains the fifth cause of death 

among men worldwide. This fact underscores the necessity to develop more selective and 

efficient therapies that would ensure disease eradication. Deregulation of energetic metabolism 

has recently been postulated as one of the hallmarks of cancer (Hanahan and Weinberg, 2011). 

This thesis work stems from the interest in deciphering the metabolic cues implicated in PCa 

initiation and progression, and is based in the following hypothesis: Oncogenic events trigger 

the deregulation of metabolism in prostate cancer, thus revealing potential therapeutic 

strategies. 

We based our work on the premise that there is strong conservation in the metabolic 

signals that regulate murine and human PCa pathogenesis. Therefore, we propose to perform a 

discovery study based on integrative metabolomics, starting from a conditional tissue specific 

Pten knockout mouse model of PCa (Chen et al., 2005; Nardella et al., 2010b). We integrated, 

validated and deconstructed this data using PCa patient specimens and PCa cell lines.  

In order to test this hypothesis, we establish the following specific aims: 

 Aim1: To identify metabolic alterations underlying prostate cancer pathogenesis 

To characterize metabolic alterations at the core of PCa, we undertook an integrative 

metabolomics approach. Recent innovation in metabolomics instrumentation and 

development of bioinformatic tools (Patti et al., 2012) offers the opportunity to select the most 

suitable metabolomics approach: 

1.1 Time-of-flight Mass Spectrometry (ToF-MS) to establish the panoramic 

semiquantitative view of prostate cancer metabolism. 

1.2 Liquid Chromatography-Mass Spectrometry (LC/MS) to focus on most altered and 

relevant pathways and analyze them quantitatively. 

1.3 Metabolic Flux Analysis (MFA) to validate the data in a dynamic setting, which 

accurately represents metabolic nature. 

 

 Aim2: To elucidate the molecular mechanism underlying the metabolic regulation 

observed in PCa 

PTEN is a tumor suppressor that regulates the oncogenic PI3K pathway, which has been 

reported to be altered in a large fraction of human cancers (Carracedo and Pandolfi, 2008; 

Engelman et al., 2006). Importantly, alterations in Pten have been observed in up to seventy 

percent of prostate cancers (Song et al., 2012). Hence, our mouse model, driven by the loss 

of Pten, will allow us to study the interconnection between the metabolic alterations observed 

and the hyper-activation of this oncogenic cascade. To ascertain the molecular mechanism 

triggering the metabolic alterations we will rely on two main strategies: 

2.1 Evaluation of transcriptional changes as drivers of the polyamine metabolic switch. 

2.2 Evaluation of post-transcriptional changes as drivers of the polyamine metabolic 

switch. 
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 Aim3: To ascertain the therapeutic potential of targeting the altered metabolic pathway 

and evaluation of prospective therapies 

Based on the need of new selective and efficient therapies that would drive us towards 

precision medicine, we will approach this aim in two ways: 

3.1 Genetic and pharmacological modulation of potential targets in vitro and in vivo to test 

their therapeutic potential. 

3.2 Evaluation of in vivo therapeutic strategies based on the target with highest potential. 
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I IN VIVO AND EX VIVO ASSAYS 

I.1 Analysis of tissue samples 

I.1.1 Analysis of murine samples 

All mouse experiments were carried out following the ethical guidelines established by the 

Biosafety and Animal Welfare Committee at CIC bioGUNE. The procedures employed were 

carried out following the recommendations from AAALAC. Mice were housed under controlled 

environmental conditions, such astime controlled lighting on standard 12:12 light:dark cycles, 

controlled temperature at 22 ± 2ºC and  30-50% relative humidity. Mice were fed regular Chow 

diet ad libitum, unless otherwise specified based on experimental designs. Mice were fasted for 

6h prior to tissue harvest (9 am-3 pm) in order to prevent metabolic alterations due to immediate 

food intake. At experimental end-point, all mice were sacrificed by CO2 inhalation followed by 

cervical dislocation. 

I.1.1.1 Genetically engineered mouse models (GEMM) 

In this thesis work we have studied three genetic alterations in mice: Cre recombinase-dependent 

Pten conditional deletion (Chen et al., 2005), whole body Gnmt mutation (Luka et al., 2006) and 

Cre recombinase expression under the control of androgen-dependent ARR2B Probasin promoter 

(Pb-Cre4). The Pb-Cre4 transgene allowed us to delete Pten in the prostate epithelium at puberty. 

The conditional tissue specific Pten knockout (C57BL6/129sv;Pb-Cre4; Pten lox/lox) model was 

kindly provided by Dr. Pandolfi (Chen et al., 2005). The whole body Gnmt knockout (C57BL6) was 

kindly provided by Dr. Martinez-Chantar (Luka et al., 2006). We generated a mouse line which we 

named PGN by breeding Pten prostate-specific knockout mice (Pb-Cre4Pten lox/lox) and Gnmt 

knockout mice. We intercrossed these two lines for at least three generations to obtain a founder 

colony with mixed homogeneous background. Probasin Cre was always retained in male mice, 

since in females Pb-Cre4 expression in utero can lead to recombination in embryos during 

pregnancy. Prostate Pten-deleted male mice were termed Pten pc+/- (heterozygous) or Pten pc-/-

(homozygous knockout). We generated a mouse colony of Pten pc-/- for metabolomic 

characterization and preclinical studies. Gnmt -/- and wildtype counterparts were generated to 

evaluate the relevance of this gene in prostate cancer (PCa) pathogenesis and metabolism. For 

the PGN line, Pten pc+/- Gnmt +/+ and Pten pc+/- Gnmt -/- mice were generated for pathological and 

metabolomics studies. The time of analysis was based on the experimental design, and it is 

indicated in the results section.  

 

I.1.1.2 Xenograft models in nude mice 

DU145 cells in suspension were injected subcutaneously into immunocompromised 8-10-week-

old male nude mice (Harlan). Measurement of tumor size was performed every two-three days 
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and tumor volume was estimated using the following formula: volume = length x width2 x 0.526. 

Final tumor weight was measured upon tissue harvest at the experimental end point. 

I.1.1.2.1 AMD1 OE in vivo 

DU145 cells transduced with either empty vector (Mock) or AMD1 expressing construct 

(DU145MYC-AMD1-HA WT) (4x 106 cells per condition) in PBS (supplemented with 5µM glucose) 

suspension were mixed at 1:1 ratio with Matrigel (Corning Cat# 354230) in a final volume of 

100µL and injected subcutaneously in two flanks per mouse (6 mice, n=12 per condition). 

I.1.1.2.2 AMD1 Silencing in vivo 

A suspension of DU145 cells (in PBS supplemented with 5µM glucose) transduced with a 

lentiviral inducible vector (TET-pLKO; Addgene Plasmid #21915) containing shRNA for AMD1 

(SIGMATRCN0000078462) (7,5 x 106 cells per condition) was mixed at 2:1 ratio with Matrigel 

(Corning Cat# 354230) in a final volume of 150 µL and injected subcutaneously in two flanks per 

mouse. Injected nude mice were fed regular Chow diet until tumors reached an average volume 

of 150mm3. Then mice (according to cage distribution) were fed doxycycline-containing diet 

(specifications are reflected in the datasheet in Anex) to induce AMD1 silencing or were 

maintained in chow food as control (7 mice, n=14 per condition). 

 

I.1.1.3 Preclinical trials 

I.1.1.3.1 RAD001 treatment in vivo 

The RAD001 preclinical trial was performed following the experimental design in Fig. M1. Two 

month-old Pten pc-/- mice were administered either vehicle (polyethylene glycol, PEG) or RAD001 

(10mg/Kg) six days a week during four weeks by oral gavage. At the experimental end-point, mice 

were euthanized as specified in I.1.1. and tissues of experimental interest were harvested. 

PEG 6days/week
by oral gavage

(n=5)
2Mo 3Mo

2Mo 3Mo

RAD001 
(10mg/Kg) 

6days/week by oral 

gavage (n=5)

Pten pc-/-

AMD1 
levels??

Figure M1. Schematic showing the experimental design of the RAD001 preclinical trial. 
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I.1.1.3.2 SAM486A treatment in vivo 

The SAM486A preclinical trial was performed following the experimental design in Fig. M2. Two 

month-old Pten pc-/- mice were administered either vehicle (0,9% NaCl) or SAM486A (2mg/Kg or 

5mg/Kg) five days a week during four weeks by intraperitoneal injection. At the experimental end-

point, mice were sacrificed as specified in I.1.1. and tissues of experimental interest were 

harvested. 

 

I.1.1.3.3 Methionine restriction in vivo 

Methionine restriction preclinical trials were performed following the experimental design detailed 

in Fig. M3 and Fig. M4 for one month- and four month-long experiments, respectively. Mice were 

weighed weekly to control diet safety. See Annex for diet specifications. At the experimental end-

point, mice were sacrificed as specified in I.1.1. and tissues of experimental interest were 

harvested. 

 

 

Chow Diet
4 weeks
(n=4/3)

2Mo 3Mo

2Mo 3Mo

PIN

???

MetDef Diet
4 weeks
(n=6/5)

Pten pc-/-

Pten pc+/+

Intraperitoneal
0,9% NaCl

5days/week (n=3)
2Mo 3Mo

2Mo 3Mo

PIN

???

Intraperitoneal
SAM486A 
(2mg/Kg) 

5days/week (n=6)

Pten pc-/-

2Mo 3Mo ???

IntraperitonealSAM
486A (5mg/Kg) 

5days/week (n=7)

Figure M2. Schematic showing the experimental design of the SAM486A preclinical trial. 

Figure M3. Schematic showing the experimental design of the methionine restriction preclinical trial 
for four weeks. 
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I.1.2 Analysis of human specimens 

All prostate specimens were obtained upon informed consent and with evaluation and approval 

from the corresponding ethics committee (CEIC code OHEUN11-12 and OHEUN14-14). Sample 

and pathological information from PCa and benign prostatic hyperplasia (BPH) patients used for 

LC/MS was obtained from the Basque biobank for research (BIOEF), andis specified in Table M1. 

The clinical-pathological information about the biopsies from the clinical trial with Everolimus is 

described in Table M2.  

 

Table M1: Detailed data of patient specimens from The Bioef Foundation biobank, describing salple type, 

specific characteristics of the sample and aggressiveness parameters of prostate cancer samples (Gleason 

Score and TNM Classification) 

Patient Sample type Characteristics Gleason  TNM 

Patient 1 BPH Hiperplasia. Squamousmetaplasia foci   

Patient 2 BPH Glandular hiperplasia mixed with estroma   

Patient 3 BPH Glandular hiperplasia   

Patient 4 BPH Glandular hiperplasia   

Patient 5 BPH 60% glandular, 40% estromal hiperplasia   

Patient 6 BPH 40% glandular, 60% estromal hiperplasia   

Patient 7 PCa Prostate adenocarcinoma 7 T2 

Patient 8 PCa Prostate adenocarcinoma with mucinous component 7 T1c 

Patient 9 PCa Prostate adenocarcinoma 7 T2a 

Patient 10 PCa Prostate adenocarcinoma 6 T1c 

Patient 11 PCa Prostate adenocarcinoma 7 T2c 

Patient 12 PCa Prostate adenocarcinoma 6 T2b 

 

 

 

Chow Diet
4 Mo

(n=6/6)
2Mo 6Mo

2Mo 6Mo

PCa

???

MetDef Diet
4 Mo

(n=6/13)

Pten pc-/-

Pten pc+/+

Figure M4. Schematic showing the experimental design of the methionine restriction preclinical 
trial for four months. 
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Table M2: Detailed data of patient biopsies from the clinical trial with Everolimus. 

Patie
nt 

Biopsies Primary 
Tumor 

Localization 
Dose 
(mg) 

Administra-
tion 

Response 
Day Localization 

P1 
Pre-tr. liver Mx 

colon liver Mx 20 weekly PD 
On-tr. liver Mx 

P2 
Pre-tr. breast 

breast liver M 5 daily PD 
On-tr. liver Mx 

P3 
Pre-tr. breast 

breast skin 5 daily PD 
On-tr. breast 

P4 
Pre-tr. breast 

breast skin 20 weekly PD 
On-tr. breast 

P5 
Pre-tr. liver Mx 

colon liver Mx 50 weekly PD 
On-tr. liver Mx 

P6 
Pre-tr. liver Mx 

pancreas liver Mx 50 weekly PD 
On-tr. liver Mx 

P7 
Pre-tr. breast 

breast skin 50 weekly PD 
On-tr. breast 

P8 
Pre-tr. melanoma axila 

melanoma 
axilar lymph 

node 
10 daily PD 

On-tr. melanoma axila 

P9 
Pre-tr. liver Mx 

liver Mx liver Mx 5 daily SD 
On-tr. liver Mx 

P10 
Pre-tr. breast 

breast skin 50 weekly PD 
On-tr. breast 

P11 
Pre-tr. breast 

breast skin 5 daily PD 
On-tr. breast 

P12 
Pre-tr. liver Mx 

liver Mx liver Mx 10 daily PD 
On-tr. liver Mx 

P13 
Pre-tr. maxilar 

H&N maxillar 10 daily NA 
On-tr. maxilar 

P14 
Pre-tr. breast 

breast skin 20 weekly NA 
On-tr. breast 

 

 

I.2 Methods 

I.2.1 Genotyping 

Breeding and tag and tailing was carried out by anmial house personnel. Genotyping was 

performed by technicians in the Carracedo lab, Sonia Fernández and Pilar Sanchez-Mosquera 

(CIC bioGUNE). 

I.2.1.1 Genomic DNA purification from mouse tail 

 Mouse tail samples (0,2-1cm) were lysed in 195uL of lysis buffer [100mM NaCl, 50mM 

Tris-HCl (pH 8.0), 25mM EDTA, 0.5% SDS or 100mM NaCl, 50mM Tris-HCl (pH 8.0), 5mM 

EDTA, 1% SDS] with 5uL of Proteinase K (stock 10mg/ml; Fluka) for 3-6h at 55ºC. 

Once soft tissue was solubilized, 200µl of phenol/chloroform/isoamyl (25:24:1) were added to 

separate DNA (in upper aqueous phase) from denaturalized proteins (in interphase) and RNA and 

lipids (in lower organic phase) by mixing well by inversion and centrifugation for 15 min at 

14,000rpm at room temperature. DNA containing aqueous phase was transferred to new tubes 

and washed/precipitated by adding 15uL sodium acetate (3M) and 400uL of 100% ethanol and 
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incubated at -20ºC overnight to enhance precipitation. Samples were centrifuged 10min at 

14000rpm at 4ºC and supernatant was discarded to dry DNA pellets. Dry pellets were 

resuspended in 50-100uL H2O (up to 500uL for tail fragments of 1cm). 

I.2.1.2 Polymerase Chain Reaction (PCR) for genotyping 

For genotyping, extracted mouse tail DNAs (1μL) were subjected to Polymerase Chain Reactions 

(PCR), optimized with specific primers (specified in Table M3) and PCR programs (See Fig. M5) 

for each gene of interest. All PCR assays were performed with DNA Polymerase Mix 

AccuStart™II PCR SuperMix (Quanta Biosciences).  

 

Table M3: Specific primer sequences used for genotyping mouse colonies. 

 

 

Figure M5. PCR programs followed for mouse tail DNA amplification and genotyping. 

Gene Forward 5´-3´ Reverse 5´-3´ Band size 

Pten TGTTTTTGACCAATTAAAGTAGGCTGTG AAAAGTTCCCCTGCTGATGATTTGT 
Pten pc+:350bp 

Pten pc lox: 480bp 

Cre GGTGCAAGTTGAATAACCGGA CGGTATTGAAACTCCAGCGC 850bp 

Gnmt + GTACCGCAGAGTACAAGGCG CAATCGCAGGAGGAACAGCGC 330bp 

Gnmt - CAATCGCAGGAGGAACAGCGC CTGAATGAACTGCAGGACGAG 1151bp 
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I.2.2 Pathological analysis of prostate tissues 

At the experimental end-point of all in vivogenetic mouse model experiments, one of each 

prostate lobes (AP, DLP and VP) was fixed in 10% neutral buffered formalin and stored at 4ºC for 

24 hours to allow tissue fixation for pathological analysis. All the tissue processing and staining 

steps were performed by Sonia Fernández (CIC bioGUNE). 

I.2.2.1 Tissue processing, paraffin embedding and sectioning 

After 24 hour fixation tissues were dehydrated and infiltrated with paraffin following the steps in 

Table M4. Infiltrated tissues were then embedded in paraffin blocks. 

Table M4: Steps followed to process mice tissues. 

Ice-cold paraffin blocks were sectioned to obtain 3 µm sections, which were then adhered to 

slides for tissue staining and analysis. 

 

I.2.2.2 Slide processing for immunohistochemistry 

Tissue slides were de-paraffined and hydrated, following steps in Table M5, to allow 

immunohistochemical analysis. 

Table M5: Steps followed to process tissue slides for immuhistochemistry. 

 

After the desired staining in each case, slides were dehydrated with 95% and 100% alcohol and 

cleared in xylene for final coverslip mounting with DPX. 

Tray Time Reagent Fuction 

T1 10 min 50% alcohol Dehydration 

T2 1 h 30 min 70% alcohol Dehydration 

T3 1 h 30 min 80% alcohol Dehydration 

T4 1 h 30 min 96% alcohol Dehydration 

T5 1 h 30 min 100% alcohol Dehydration 

T6 1 h 30 min 100% alcohol Dehydration 

T7 1 h 30 min 100% alcohol Dehydration 

T8 45min 
Citrosol or Xylene 

substitute 
Rinse, replace the alcohol with citrosol 

T9 2h Paraffin Replace the citrosol with paraffin 

T10 2h Paraffin Replace the citrosol with paraffin 

Time Repeats Reagent Fuction 

10-15 min Twice Citrosol or Xylene substitute Hydration 

3 min Twice 100% alcohol Hydration 

3 min Twice 95% alcohol Hydration 

3 min Twice dH2O Hydration 
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I.2.2.2.1 Haematoxylin and Eosin (H&E) staining 

Slides were incubated in haematoxylin for 5 min and rinsed in water for 1 min. After haematoxylin 

staining, they were incubated in acid alcohol (70% alcohol, 3% HCl) for 2 seconds for controlled 

leaching of non-specific background coloration and rinsed again in water (1 min). Finally, slides 

were incubated in eosin for 2 min and mounted.  

I.2.2.2.2 Ki67 and RpS6S235-236 staining 

Antigen retrieval was performed with citrate buffer (pH 6) in steamer (30 min). H2O2 was used to 

block the endogenous peroxidase, followed by blocking with goat serum and primary antibody 

[Ki67, Thermo MA5-14520 (1:100); RpS6S235-236, CST #4858 (1:500)] incubation overnight at 4 ºC. 

Goat anti-rabbit IgG antibody [Vector Laboratories, Cat# BA-1000 (1:1000)] was incubated at 

room temperature for 30 min. IHC detection was performed with the VECTASTAIN Elite ABC Kit 

(Cat# PK-6100) from Vector Laboratories and developed with DAB. A schematic of the procedure 

is shown in Fig. M6. 

I.2.2.2.3 AMD1 staining and scoring 

Immunohistochemical analysis of AMD1 [Proteintech, 11052-1-AP (1:100)] was performed using 

DAKO EnVisionTM Flex High pH (Tris/EDTA pH 9) (DAKO) (Technical details are shown in Fig. 

M6) The scoring system was based on the quantification of the percentage of cells negative (0), 

low (1+), medium (2+) or high (3+) immunoreactivity. Subsequently, h-score was calculated as 

follows: H = [percentage of cells 1+] + [2 x (percentage of cells 2+)] + [3 x (percentage of cells 

3+)]. 

 

Figure M6. Schematic of immunohistochemistry procedures. A, Avidin/Biotin Complex (ABC) method. 

B, DAKO EnVision Flex method. 
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I.2.3 Molecular analysis of prostate tissues 

At the experimental end-point of all the in vivo experiments, one of the prostate lobes (AP,DLP 

and VP) was snap frozen in liquid nitrogen immediately after extraction for molecular or 

metabolomic analysis. 

For molecular analysis, prostate tissues were homogenized with Precellys techonology in the 

presence of ceramic beads, using two cycles of 30 seconds at 5000rpm. 

I.2.3.1 Gene expression analysis of murine prostate tissues 

For RNA extraction from prostatic tissue, samples were incubated overnight in the presence of 

RNAlater ICE® (Thermo) at -20ºC.  Prostate tissues were homogenized in the presence of 

TRIzol® reagent (Thermo) and RNA extraction was performed by TRIzol method and subsequent 

Macherey Nagel RNA extraction kit (Ref# 740955.250) (Ugalde-Olano et al., 2015). 

Retrotranscription and gene expression analysis by Real Time-Quantitative-Polymerase Chain 

Reaction (RT-QPCR) were then performed as explained in II.2.4.1.1. and II.2.4.1.2. 

I.2.3.2 Protein expression analysis of murine prostate tissues 

For protein extraction from prostatic tissue, the homogenization was performed in the presence of 

400uL of RIPA lysis buffer containing 2mM phosphatase inhibitors (sodium fluoride, sodium 

orthovanadate and β-glycerophosphate) and two tablets of protease inhibitor cocktail (Roche). 

Protein extraction and western blotting were then performed as explained in II.2.4.2.1. and 

II.2.4.2.2.  

 

I.2.4 Metabolomic analysis of murine prostate tissues 

Prostate tissues for metabolomic analysis were directly shipped frozen in dry ice for metabolite 

extraction by Agios Pharmaceuticals. 

I.2.4.1 Time of Flight-Mass Spectometry (ToF-MS) 

Following normalization to cell number or tissue weight, metabolites were extracted with cold 

80/20 (v/v) methanol/water. Samples were then dried and stored at -80°C until MS analysis. High-

throughput Time-Of-Flight analysis was conducted using flow injection analysis as previously 

described (Fuhrer et al., 2011.).  In short, samples were re-suspended and injected on an Agilent 

1100 coupled with an Agilent 6520 QToF mass spectrometer with an electrospray ionization 

source.  Mobile phase consisted of 60/40 methanol/water with 0.1% formic acid and was used to 

deliver 2µL of each sample to the MS, flowing at 150µL/min.  Data was collected in positive mode 

with 4 GHz HiRes resolving power with internal lock masses.  Data processing was conducted 

with Matlab R2010b.   
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I.2.4.2 Liquid Cromatography-Mass Spectometry (LC/MS) 

Quantitative liquid chromatography/mass spectrometry (LCMS) was conducted as previously 

described (Jha at al., 2015).  A Thermo Accela 1250 pump delivered a gradient of 0.025% 

heptafluorobutyric acid, 0.1% formic acid in water and acetonitrile at 400µL/min.  Stationary phase 

was an Atlantis T3, 3µm, 2.1x150mm column.  A QExactive Mass Spectrometer was used at 

70,000 resolving power to acquire data in full-scan mode.  Data analysis was conducted in 

MAVEN (Melamud et al., 2010) and Spotfire.   

I.2.4.3 Targeted metabolomics by UPLC-MS 

Levels of dcSAM in cell cultures and tissues were analyzed by ultra-high performance liquid-

chromatography coupled to mass spectrometry (UPLC-MS). Briefly, extraction and 

homogenization was done in methanol/acetic acid (80/20 %v/v) Speed-vacuum-dried metabolites 

were solubilized in 100 µL of a mixture of water/acetonitrile (40/60 %v/v) and injected onto the 

UPLC/MS system (Acquity and SYNAPT G2, Waters, Manchester). The extracted ion traces were 

obtained for dcSAM (RT = 3.0’, m/z 355.16) and putrescine (RT = 2.67’, m/z 89.1079). Corrected 

signals were normalized to relative cell number.  

I.2.4.4 Metabolic Flux Analysis (MFA) 

U-13C5-L-methionine was purchased from Cambridge Isotope laboratories and administered 

intravenously (by tail vein injection, performed by Dr. Beraza). A pilot experiment was performed 

to establish final concentrations and time-points. For the pilot experiment, final concentrations of 

100mg/Kg or 400mg/Kg for 3, 6, 10 and 24 hour pulses were tested. From the pilot experiment, 

100mg/Kg dose and two time-points (1hour to detect methionine cycle related metabolites; 

10hours to detect polyamine pathway related metabolites) were set. After 1hour and 10 hour 

pulses with U-13C5-L-methionine mice were sacrificed as specified in I.1.1. and tissues of 

experimental interest were harvested. 
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II IN VITRO ASSAYS 

II.1 Materials 

II.1.1 Cell lines and culture conditions 

Human prostate carcinoma cell lines (PC3, LNCaP, DU145) were purchased from Leibniz-Institut 

DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH), who provided 

authentication certificate, or American Type Culture Collection (ATCC) in the case of RWPE1, 

PWRE1and 22RV1 cell-lines. Virus packaging cell lines 293FT and Phoenix Ampho and C4.2 

were generously provided by the laboratory of Dr. Rosa Barrio and Pier Paolo Pandolfi, 

respectively.PC3, DU145, Phoenix Ampho and 293FT cell lines were cultured in Dulbecco's 

Modified Eagle Medium (DMEM; Gibco Cat# 41966-029), while LNCaP, C4.2 and 22RV1 were 

cultured in RPMI 1640 Medium (Gibco Cat# 61870-010; with GlutaMAX supplement). Both culture 

medias were complemented with 10% inactivated Fetal Bovine Serum (FBS) (Gibco), from same 

lot and previously analyzed to ensure experimental reproducibility, and 1% Penicillin/Streptomycin 

(Gibco) (complete media). RWPE1 and PWR1E benign prostate primary cell lines were cultured 

in Keratinocyte-Serum Free Medium (K-SFM; Gibco Cat# 17005-034), supplemented with human 

recombinant Epidermal Growth Factor 1-53 (EGF 1-53) and Bovine Pituitary Extract (BPE). See 

Table M6 for cell line specifications. 

Table M6: Detailed list of the characteristics of the different PCa cell-lines employed in the work. 

Cell-line Cell type Morphology Derivation 
Pten 

status 
Cultur 
media 

RWPE1 
CRL-

11609TM 

Prostate 
epithelial 

Epithelial 
From the peripheral zone of a 
histologically normal adult human 
prostate transfected with HPV-18 

Positive K-SFM 

PWR1E 
CRL-

11611TM 

Prostate 
epithelial 

Epithelial 
From a normal prostate with mild 
hyperplasia, immortalized with 
Ad12-SV40 

Positive K-SFM 

PC3 
(ACC 465) 

Prostate 
adenocarcin

oma 

Epithelial-
like 

Bone marrow metastasis of grade 
IV prostate cancer after androgen 
suppression therapy 

Negative DMEM 

DU145 
(ACC 261) 

Prostate 
carcinoma 

Epithelial-
like 

From metastatic central nervous 
system lesion 

Positive DMEM 

LNCaP 
(ACC 256) 

Prostate 
carcinoma 

Fibroblastoid 
From supraclavicular lymph node 
metastasis 

Negative RPMI 

C4-2 
Prostate 

carcinoma 
Fibroblastoid LNCaP derived androgen-resistant  Negative RPMI 

22RV1 
CRL-

2505TM 

Prostate 
carcinoma 

Epithelial 
From CWR22 xenograft propagation 
after castration-induced regression 
and relapse 

Positive RPMI 

HEK293FT 
Human 

Embryonic 
Kidney Cells 

Fibroblastoid 
From human primary embryonal 
kidney transformed by adenovirus 
type 5 

Negative DMEM 

HEK293 
Ampho 

Human 
Embryonic 

Kidney Cells 
Fibroblastoid 

From human primary embryonal 
kidney transformed by adenovirus 
type 5 

Negative DMEM 
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 All cell lines were grown at 37ºC in a humidified atmosphere of 5% CO2. Cells were 

regularly cultured in 100mm dishes and split every 2-3 days, maintaining them below 80-90% 

density, up to 30 passages maximum. To split the cells they were incubated in a trypsin-EDTA 

solution (Gibco) at 0.05% for 3-5 minutes at 37ºC and resuspended in fresh complete media. All 

cell-lines were periodically analyzed by PCR for mycoplasma presence and replaced or treated in 

case of positive result.For cell counting, after trypsinization, cells were diluted 1:2 in Trypan Blue 

Dye (Amresco) and 10μL were loaded in a Neubauer chamber to count viable cells by optical 

microscopy (Olympus CKX31). The Trypan Blue dye allows to determine cell viability based in the 

fact that damaged or dead cells show disrupted plasma membrane and allow the internalization of 

the dye staining their cytoplasm in blue, while alive cells remain non-stained. In general 

experiments were performed with technical duplicates or triplicates and a minimum of three 

biological replicates (n=3 minimum). 

Table M7: Approximate cell-number seeded according to each experimental technique. 

 

II.1.2 Drugs 

Information regarding the different inhibitors and drugs used for this thesis work are depicted 

inTable M8. 

Table M8: Commercial information and experimental specifications for the different drugs used throughout 

the thesis work. 

Drug Supplier Dose Function 

Rapamycin 
LC Laboratories 
(Cat.# R-5000) 

20nM Specific mTOR inhibitor 

RAD001 
(Everolimus) 

Provided by Dr. 
Alimonti and Dr. Serra 

10mg/Kg Rapamycin derivative, mTOR inhibitor 

Torin-1 
Tocris Bioscience 

(Cat.#4247) 
125-250nM 

Potent and selective ATP-competitive 
mTORC1 and mTORC2 inhibitor 

MK2206 
Shelleckchem 
(Cat.# S1078) 

500nM Highly selective allosteric pan-AKT inhibitor  

SAM486A Novartis 0.5-1µM Competitive AMD1 inhibitor 

Cicloheximide Sigma 5µg/mL Protein synthesis inhibitor in eukaryotes 

MG132 
Provided by Dr. 

Rodriguez 
5µM 

Potent, membrane-permeable proteasome 
inhibitor 

Assay Cellular density per well Plate type 

 PC3 LNCaP DU145 22RV1  

Protein/RNA extraction 100000 300000 120000  6-well plate 

Growth Curves 5000 30000 7500  12-well plate 

Soft Agar 2500 5000 3000  6-well plate 

Foci Formation   500   

Cell-Cycle  250000   6-well plate 

BrDU Incorportion  40000   12-well plate 

Metabolo
mics 

GNTM OE 350000 1000000 425000 2000000 100mm 

AMD1 acute Silencing 
100000-
110000 

 
120000-
200000 

 
6-well plate 

AMD1 Inducible Silencing   
50000-
100000 

 
6-well plate 

AMD1 OE   200000  6-well plate 
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II.2 Methods 

II.2.1 Cloning 

Different cloning strategies were followed to obtain the lentiviral and retroviral vectors required for 

GNMToverexpression, PTEN (Wild-Type, WT; and C124S) re-expression, and AMD1 

overexpression and silencing. The different strategies are briefly detailed below (See Table M9 

for primer specifications): 

HA-GNMT-TRIPZ: 

PCEP4-GNMT vector was amplified using high-fidelity PCR with the primers specified in Table 

M9 (GNMT01 and GNMT02) to generate a HA-GNMT cassettecontaining the restriction sites for 

AgeI-MluI. GNMT01 and GNMT02 provide Kozak, ATG, and stop sequences, The resulting 

amplicon was subcloned with TOPO Cloning technology. Then, TOPO was digested with AgeI-

MluI and the GNMT bearing fragment was introduced in an inducible TRIPZ vector. 

TRIPZ-YFP-PTEN (WT and C124S, catalytic-dead mutant):  

TRIPZ-FF3shRNA was digested with AgeI-MluI, which releases the tRFP, shRNAmir, and 

barcode from the plasmid backbone.  Vector was gel-purified.  Using PTEN expression clones 

(WT or C124S; from Dr. Pandolfi´s lab), a YFP-GSG-PTEN cassette was created by overlap-

extension PCR using high-fidelity PCR (KAPA Biosystems). Outer primers PTEN03 and PTEN02 

provide Kozak, ATG, and stop sequences.  Inner bridging primers (PTEN04 and PTEN05) join the 

YFP and PTEN portions with a flexible Gly-Ser linker. The final resulting amplicon (~1.9kb) was 

cleaned up, digested with AgeI-MluI, gel-purified and cloned into TRIPZ-FF3shRNA AgeI-MluI.  

Colonies were screened by restriction digest and positives confirmed by Sanger sequencing. 

sh3 AMD1 pLKO Tet ON: 

Lentiviral inducible pLKO Tet ON vector was opened using AgeI-EcoRI (Fermentas/Takara-

Clontech). Specific shRNA sequences for AMD1 were obtained from SIGMA (MISSION® shRNA) 

(see Table M9). Complementary primers were designed, in which an EcoRI site was added in the 

5´end, coinciding with complementary AgeI site in the template sequence. For the annealing, 

11.25 µL of each primerwere added to a 25 µL reaction with 2.5µL 10X annealing buffer (100mM 

NaCl, 50 mM HEPES, pH=7.4). The reaction was added to a preheated thermoblock (95°C), 

allowed to incubate for 5 min, and then the thermoblock was switched off, allowing slow cooling to 

room temperature.2.5 µl of annealed oligos were ligated to 4µl of linearized vector, in a reaction of 

10 µl, with 2 µl of 5x Invitrogen ligase buffer and 1.5 µl of NBE ligase (Invitrogen). After 1hr of 

incubation at room temperature (RT), ligation was transformed into competent XL-10 Gold E. coli 

and selected on Amp plates. Positive colonies were confirmed by restriction digest and Sanger 

sequencing. 
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Table M9: Information about the specific primers utilized for the different cloning approaches. 

 

LNCX-neo (HCX): 

Retroviral expression vector LNCX-neo was opened using HindIII-ClaI (Fermentas/Thermo).  A 

multiple cloning site was created by inserting a double-stranded synthetic oligo pair into the 

HindIII-ClaI site, to create LNCX-neo (HCX). For the annealing, 5µl of each oligo (100 µM stock) 

(Metabion) were added to a 50µl reaction, including 200 mM NaCl, 10 mM Tris-HCl pH 7.9, 20mM 

MgCl2 (2X NEB Buffer 3). The reaction was added to a preheated thermoblock (95 °C), allowed to 

Number Name Purpose Sequence 

GNMT01 
AgeI-HA-

GNMT F 

To produce a PCR product with AgeI 
restriction site in 5´end 

ACCGGTGCCACCatggcttatccttacgacg
tgcctgactacgccATGGTGGACAGCGT
GTACCGGACCCGC 

GNMT02 
HA-GNMT-MluI 

R 

To produce a PCR product with AgeI 
restriction site 

ACGCGTTCAGTCTGTCCTCTTGAG
CACGTGGATG 

PTEN02 MluI.PTEN.rev 
2-step PCR cloning of PTEN WT and 
mutants with YFP tag; for cloning as 
AgeI-MluI into TRIPZ 

gatatcacgcgtTCAGACTTTTGTAATTT
GTGTATGCTGATC 

PTEN03 
AgeI.KozGFP.f

or 

2-step PCR cloning of PTEN WT and 
mutants with YFP tag; for cloning as 

AgeI-MluI into TRIPZ 

agatcaccggtgccaccATGGTGAGCAAG
GGCGAGGAGC 
 

PTEN04 
GFP.GSG.PT

EN.for 
 

2-step PCR cloning of PTEN WT and 
mutants with YFP tag; for cloning as 

AgeI-MluI into TRIPZ 

GGCATGGACGAGCTGTACAAGggca
gcggtATGACAGCCATCATCAAAGAG 
 

PTEN05 
GFP.GSG.PT

EN.rev 
 

2-step PCR cloning of PTEN WT and 
mutants with YFP tag; for cloning as 

AgeI-MluI into TRIPZ 

CTCTTTGATGATGGCTGTCATaccgct
gccCTTGTACAGCTCGTCCATGCC 
 

sh3AMD
T01 

sh3 AMD top 
To introduce the shRNA in the pLKO 

Tet ON vector 

CCGGGTCTCCAAGAGACGTTTCAT
TCTCGAGAATGAAACGTCTCTTGGA
GACTTTTTG 

sh3AMD
B01 

sh3 AMD 
bottom 

To introduce the shRNA in the pLKO 
Tet ON vector 

AATTCAAAAAGTCTCCAAGAGACGT
TTCATTCTCGAGAATGAAACGTCTC
TTGGAGACCCGG 

AC.AMD
01 

HABMSXNC. 
for 

Linker for LNCX; HIII-Age1-Bgl2-
Mlu1-Sal1-Xho1-Not1-Cla1 

AGCTTACCGGTAGATCTACGCGTG
TCGACCTCGAGGCGGCCGCAT 

AC.AMD
02 

HABMSXNC. 
rev 

Llinker for LNCX; HIII-Age1-Bgl2-
Mlu1-Sal1-Xho1-Not1-Cla1 

CGATGCGGCCGCCTCGAGGTCGA
CACGCGTAGATCTACCGGTA 

AC.AMD
07 

BamHI.NheI.M
YC.AMD1.for 

to amplify AMD1/mutants with a N-
terminal MYC tag 

GATCGGATCCGCTAGCGCCACCAT
GGAGCAGAAGCTGATCTCCGAGGA
GGACCTGGGCTCCATGGAAGCTGC
ACATTTTTTCGAA 

AC.AMD
10 

BamHI.SalI.H
A. rev 

 

to amplify AMD1/mutants with C-
terminal HA 

GATCGGATCCGATCGTCGACTCAA
GCGTAATCTGGAACATCGTATGGG
TA 

3336 
AMD1.S298A.

qc. for 
 

to mutate S298 in AMD1 
aaatgtcgcacagtgcttgctGCCccccagaag
attgaaggttttaagc 

3337 
AMD1.S298A.

qc. rev 
 

to mutate S298 in AMD1 gcttaaaaccttcaatcttctggggGGCagc

aagcactgtgcgacattt 

3338 
AMD1.S298D.

qc. for 
 

to mutate S298 in AMD1 
aaatgtcgcacagtgcttgctGACccccagaaga
ttgaaggttttaagc 

3339 
AMD1.S298D.

qc. rev 
to mutate S298 in AMD1 

gcttaaaaccttcaatcttctggggGTCagcaagc
actgtgcgacattt 
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incubate for 5 min, and then the thermoblock was switched off, allowing slow cooling to room 

temperature. Finally, ~100 ng of linearized vector was ligated to 1µl of annealed oligos, in a 

reaction of 10 µl, with 2 µl of 5x T4 DNA ligase buffer and 1µl of T4 DNA ligase (Invitrogen). After 

1h of incubation at RT, ligation was transformed into competent XL-10 Gold E. coli and selected 

on Amp plates. Positive colonies were screened by PCR, confirmed by restriction digest and 

Sanger sequencing. 

LNCX-MYC-AMD1(WT)-HA: 

A retroviral expression construct for N-terminal MYC- and C-terminal HA-tagged AMD1 was 

created.  Primer AC.AMD07 and AC.AMD08 were used to amplify the AMD1 ORF using high-

fidelity PCR (KAPA Biosystems).  The resulting amplicon (~1kb) was digested with BamH1-Sal1, 

and cloned into LNCX-neo (HCX) Bgl2-Sal1. 

LNCX-MYC-AMD1(S298A)-HA (phospho-dead mutant): 

These mutants were created by 2-step overlap extension PCR.  Briefly, oligos AC.AMD07 and 

mutagenic oligos 3337 (or 3339) were used to create a 5’ amplicon, while mutagenic oligos 3336 

(or 3338) and AC.AMD10 were used to create a 3’ amplicon, using AMD1(WT) ORF as a 

template. Amplicons were gel-purified, mixed, elongated using 10 cycles of 

melting/annealing/extension, without amplification.  Outer primers AC.AMD07 and AC.AMD10 

were added and PCR with amplification was carried out for 25 cycles.  The resulting composite 

amplicons were cleaned up, digested with BamH1-Sal1, gel-purified, and then cloned into LNCX-

neo (HCX) Bgl2-Sal1. Colonies were screened by restriction digest and positives confirmed by 

Sanger sequencing. 

 

II.2.2 Virus production and target cell line infection 

Virus production was performed by employing a packaging cellline and the target cellline in which 

the transgene was aimed to be introduced. 

The general protocol was similar for both lentivirus and retrovirus production (Fig. M7): 

 Day1: 

 Morning: Packaging cells were seeded at high density (4x106 cells/100mm plate)  

 Afternoon: Packaging cells were transfected 

 

 Day2: Packaging cells´ media was changed to fresh culture-media and target cell line 

was seeded. 

 

 Day3: Target cells were first infected with virus containing supernatant (SN) from 

packaging cells and fresh media was added to these cells for further virus production 
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 Day4: Second infection of target cells was performed with virus containing SN and 

packaging cells were discarded.  

For infection, SN from packaging cells was filtered with 0.45µm filters and 4mL of fresh 

media were added to a total of 13mL. Protamine sulfate (Stock 8mg/ml) was added to the 

mixture (1:1000 dilution) to increase infection efficiency. 

 

 Day5: Target cells were submitted to selection with the corresponding antibioticin each 

case. 

Figure M7.Schematic showing the experimental design followed for virus production. 

 

II.2.2.1 Transient transfection in HEK293 cells 

Virus production was performed by transient transfection of Human Embryonic Kidney 293 cells 

(HEK293). In transient transfection, the exogenous DNA is not inserted into the genome, and 

hence, it is diluted in subsequent cellular divisions. 

Cells were transfected with packaging vectors and the vector of interest (transfer vector), 

by calcium phosphate method, to produce viral particles. DNA was first diluted in miliQ-water and 

then CaCl2 was added to a final concentration of 125 mM. This DNA solution was then mixed with 

same volume of a 2x HEPES-Buffered Solution (HBS) [50mM HEPES, 280mM NaCl, 10mM KCl, 

1.5mM Na2HPO4. 2H2O, 12mM dextrose, pH=7.05] in the presence of oxygen to facilitate the 

formation of calcium phosphate crystals. These crystals form pores in the cytoplasmic membrane 

allowing exogenous DNA entrance. 

4x106 HEK293 cells were seeded for each transfection and culture media was changed to fresh 

media 16h post-transfection to induce viral particle production. Then, the viral particles produced 

were used to infect target cell lines for genetic modification. 

 

Packaging

cell seeding

Packaging

cell

transfection

Media 

change

Target cell

seeding

D1 D2 D3 D4 D5

1st Infection 2nd Infection Selection
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II.2.2.2 Lentivirus production and target cell-line infection 

Lentivirus production was performed in HEK293FT cells transfected with packaging vectors and 

the vector carrying the transgene (Fig M8). We used lentiviral infection to over-express GNMT 

and to silence AMD1 in PCa cell lines. Depending on the back-bone vector containing our gene or 

shRNA of interest, second generation or third generation packaging vectors were employed. 

Figure M8.Representative image showing packaging system and lentivirus production in HEK293 cells. 

 

II.2.2.2.1 Second Generation Lentivirus production 

GNMT and PTEN (WT and C124S mutant) were introduced in a doxycycline inducible TRIPZ 

vector. TRIPZ vectors are not compatible with third generation packaging systems. Thus, a 

second generation strategy was followed to produce the virus. Second generation lentiviral 

vectors consist of three plasmids normally: the transfer vector, containing all the cis-acting 

sequences required and the transgene to be delivered, and two packaging vectors psPAX2 and 

pVSV-G, which provide the trans-acting factors (Fig. M9). The separation of cis-acting and trans-

acting sequences reduces the probability of recombination producing replication-competent viral 

particles. In this particular case, due to the TRIPZ backbone of the GNMT and PTEN bearing 

vector, as aforementioned, a pTAT vector was needed to help in transcription (See Table M10). 

Figure M9.Informative image showing the fragmentation of the lentiviral genome into a second generation 

packaging system. 
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Second generation lentivirus production was performed following standard protocol 

mentioned in II.2.1. Target cell-lines (PC3, DU145, LNCaP and 22RV1) were submitted to 

puromycin (2ug/mL) selection for 48-72h. 

Table M10: Information regarding the specific vectors employed for second generation lentivirus production. 

 

II.2.2.2.2 Third Generation Lentivirus production 

Third generation virus (Fig. M10) were generated for constitutive and inducible silencing of AMD1 

in DU145 and PC3 cells. A set of five short-hairpin RNA (shRNA) sequences against AMD1 in a 

pLKO backbone were purchased from SIGMA (MISSION® shRNA Bacterial Glycerol Stock). 

Figure M10.Informative image showing the fragmentation of the lentiviral genome into a third generation 

packaging system. 

 The set of shRNAs was validated and two efficient shRNAs were selected for further 

experiments. One of those two selected sequences was then cloned into a doxycycline inducible 

pLKO backbone in collaboration with Dr. Sutherland. pLKO vectors are compatible with third 

generation lentivirus production. Third generation lentivirus require three packaging vectors 

(pRRE, pREV, pVSV-G; which decreases recombination probability and makes them more secure 

to handle than second generation ones) and transfer vector (See Figure M10,11 and Table M11). 

Vector Name Role 
Encoding 

sequences 
Function Origin 

Amount 
transfected 

psPAX2 
Packaging 

vector 

Gag-Pol 
integrase, reverse 

transcriptase, and structural 
proteins 

Dr. James D. 
Sutherland 

1.66µg RRE Rev-responsive element 

Rev 
Enhancer of unspliced viral 

genomic RNA nuclear export 

pVSV-G 
Packaging 

vector 
VSV-G Envelope protein 

Dr. James D. 
Sutherland 

1.66µg 

pTAT 
Helper 
vector 

TAT 
Enhances trancription 

efficiency 
Dr. James D. 
Sutherland 

1.66µg 

HA-GNMT-
TRIPZ 

Transfer 
vector 

GNMT Gene to over-express 
Dr. James D. 
Sutherland 

5µg 

TRIPZ-YFP-
PTEN-WT 

Transfer 
vector 

PTEN-WT Gene to over-express 
Dr. James D. 
Sutherland 

5µg 

TRIPZ-YFP-
PTEN-C124S 

Transfer 
vector 

PTEN-C124S Mutant to over-express 
Dr. James D. 
Sutherland 

5µg 
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Figure M11. Illustrative image explaining the third generation lentiviral production in HEK283 cells and 

posterior infection of target cells. 

   

Table M11: Information regarding the specific vectors employed for third generation lentivirus production 

Vector Name Role 
Encoding 
sequence

s 
Function/Sequence Origin Amount  

pRRE 
Packaging 

vector 

Gag-Pol 
Integrase, reverse 

transcriptase, and structural 
proteins 

Dr. James D. 
Sutherland 

1.66µg 

RRE Rev-responsive element 

pREV 
Packaging 

vector 
Rev 

Enhancer of unspliced viral 
genomic RNA nuclear export 

Dr. James D. 
Sutherland 

1.66µg 

pVSV-G 
Packaging 

vector 
VSV-G Envelope protein 

Dr. James D. 
Sutherland 

1.66µg 

sh3 AMD1-
pLKO 

Transfer 
vector 

shRNA 
against 
AMD1 

CCGGGTCTCCAAGAGACGT
TTCATTCTCGAGAATGAAAC
GTCTCTTGGAGACTTTTTG 

SIGMA 
TRCN0000078

462 
5µg 

sh4 AMD1-
pLKO 

Transfer 
vector 

shRNA 
against 
AMD1 

CCGGCCCATTAAGTAGTGT
TCTATACTCGAGTATAGAAC
ACTACTTAATGGGTTTTTG 

SIGMA 
TRCN0000078

458 
5µg 

sh3 AMD1 
pLKO TeT ON 

Transfer 
vector 

shRNA 
against 
AMD1 

CCGGGTCTCCAAGAGACGT
TTCATTCTCGAGAATGAAAC
GTCTCTTGGAGACTTTTTG 

Dr. James D. 
Sutherland 

5µg 

. 

pVSV-G

pRRE

pREV
pLKO

Adapted from http://www.invivogen.com/review-lentiviral-vectors

HEK293
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II.2.2.2.3 Constitutive Silencing of AMD1 

First attempts to silence AMD1 were performed with SN infection as explained in II.2.1.2. 

However, due to the high silencing efficiency and the aggressive phenotype (high percentage of 

dead) observed upon AMD1 silencing, freshly infected cells were required per experiment, 

because stable growth of AMD1 silenced cells was not viable. 

To optimize the timing per infection, virus was submitted to concentration procedures. 

Concentrated virus aliquots were generated following the time-schedule mentioned in Fig. M7. 

until day 3, in which the SN was collected, filtered and fresh media was added to HEK293FT 

cells. 3 volumes of clarified supernatant were combined with 1 volume of Lenti-X Concentrator 

and, after gently mixing it by inversion, it was incubated at 4ºC until next day SN collection. On 

day 4, same procedure was repeated and SN was incubated at 4ºC for 1-3 hours. SN from both 

days were mixed and centrifuged at 1500G for 45 minutes at 4ºC. After centrifugation, SN was 

discarded and the pellet was resuspended in 400µl of PBS and aliquoted in 20uL aliquots, based 

on previous experience. Once the virus was concentrated, target cells were seeded on day 1 in 

the morning, infected with an aliquot in the afternoon, infected for the second time on day 2 and 

submitted to puromycin (2ug/mL) selection on day 3 for three days. In this ways infection protocol 

was shortened from 5 days to 3 days. 

II.2.2.2.4 Inducible AMD1silencing 

Inducible silencing of AMD1 was performed by SN infection with a third generation system 

following the timing aformentioned in II.2.1. Target cells were submitted to selection pressure with 

puromycin (2ug/mL). Packaging and transfer vector information is mentioned in II.2.1.2.2. (See 

Table M10). 

 

II.2.2.3 Retrovirus production and target cell-line infection 

Retrovirus production was performed transfecting HEK293 Ampho cells. These cells derive from 

HEK 293 cells, but were generated to stably express the viral gag-pol and env genes (Fig. M12), 

allowing rapid production of high-titer replication-incompetent amphotropic retrovirus. Thus, for 

retrovirus generation these packaging cells were transfected with the transfer vector only (Fig. 

M13, right), following the time-line specified in II.2.1. Target DU145 cells were submitted to G418 

(Geneticin) selection (starting from 200ug/mL and scaling the dose to 1mg/mL to reach total 

selection) during 3-4 weeks, because puromycin was used to maintain stable expression of the 

viral genes in HEK293 Ampho cell generation. Retrovirus mediated transduction was performed 

to over-express wild-type and phospho-mutant (S298A) AMD1 in DU145 cells (Table M12). 
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Figure M12.Informative image showing the fragmentation of the retroviral genome into the packaging 

system. 

 

Table M12: Information regarding the specific vectors employed for retrovirus production. 

Vector Name Role 
Encoding 

sequences 
Function Origin 

Amount 
transfected 

LNCX Neo (HCX)  
HABMSXNC linker 

Transfer 
vector 

Empty vector Control cells 
Dr. James D. 
Sutherland 

5µg 

LNCX-MYC-AMD1-
HA 

Transfer 
vector 

AMD1-WT 
Gene to over-

express 
Dr. James D. 
Sutherland 

5µg 

LNCX-MYC-
AMD1S298A-HA 

Transfer 
vector 

AMD1-S298A 
Mutant to over-

express 
Dr. James D. 
Sutherland 

5µg 

 

Figure M13.Informative image showing different retroviral packaging methods. 

Adapted from https://www.addgene.org/viral-vectors/retrovirus/retro-guide/

Adapted from https://www.addgene.org/viral-vectors/retrovirus/retro-guide/
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II.2.3 Cellular analysis 

II.2.3.1 Cell-growth analysis by crystal violet staining 

Cells were seeded in 12 well-plates (5000-8000 cells/well) for days 0, 2, 4 and 6 or 0, 1, 2 and 3 

(depending on the experiment). Each plate was washed with 10% PBS, fixed with 10% formalin 

and stored at 4ºC for further processing of all plates at the same time. Once fixed (> 15 minutes 

with formalin), cells were stained with crystal violet (0,1% crystal violet, 20%) for 40 minutes. After 

washing (4xdH2O) and air drying the plates, precipitates were dissolved with 10% acetic acid for 

30 minutes and absorbance was measured in 96well-plates by spectrophotometer at 595nm. 

 

II.2.3.2 Anchorage-independent growth (Soft agar) 

Anchorage independent growth is considered an aggressiveness parameter, utilized to 

characterize cellular phenotypes in vitro. For cell plating in anchorage independent conditions, 6 

well-plates were previously coated with a lower layer of 0,6% agar (SeaKem LE agarose, 

Lonza)/medium mixture (3mL/well) and stored at 4ºC for at least 30 minutes to let the agar 

solidify. Previous to the upper layer seeding, cells (3000-5000 cells/well) were suspended in a 

0.3% low melting agar/medium mixture and 1,5mL/well were plated. Low melting agar allows to 

maintain the agar/cell mixtureliquified at lower temperature, to avoid harming cells. Plates were 

stored at 4ºC (around 20 mins) to allow the solidificationof upper layer and then incubated at 37ºC 

in a humidified atmosphere of 5% CO2 for 3-4 weeks, until colony detection. 

 

II.2.3.3 Foci formation assay 

Foci formation assay measures the clonogenic capacity of transformed cells (Alvarez et al., 

2014), by means of number of foci formed at very low seeding cellular density. To perform these 

experiments, 500 cells/well were seeded in 6well/plates in adherence and incubated at 37ºC in a 

humidified atmosphere of 5% CO2 for 10 days. Plates were then fixed with 10% formalin solution 

at 4ºC for at least 15 minutes, washed with PBS and stained with crystal violet (0.1% crystal 

violet, 20% methanol) for 40 minutes. After washing (4 x dH2O) and air drying, plates were 

scanned to obtain digitalized images for foci counting. After scanning the plates, crystal violet 

precipitates were dissolvedin 10% acetic acid for 30 minutes and absorbance was measured in 

96 well-plates by spectrophotometer at 595 nm, for cell number quantification. 
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II.2.3.4 DNA synthesis rate analysis by bromo deoxyurdine (BrdU) 

One of the most commonly used techniques to analyze cell proliferation is the incorporation of the 

thymidine pirimidine analogue BrdU (5-bromodeoxyurdine) into newly replicated DNA, based on 

the direct correlation between DNA replication and cell division. 

II.2.3.4.1 BrdU Incorporation 

This analogue when added in culture media gets incorporated into DNA, during DNA replication 

process (Darzynkiewicz and Juan, 2001). Since monoclonal antibodies were developed to target 

incorporated BrdU into DNA (Gratzner, 1982), BrdU has been extensively used to estimate cell 

proliferation by immunofluorescence. In this thesis work BrdU was used in asynchronic cultures. 

Cells were seeded onto coverslips and once adhered BrdU was added to culture media to a final 

concentration of 0,2µg/mL and incubated for 3-4h at 37ºC. After incubation cells were washed 

with PBS and fixed with 4% paraformaldehide (PFA) solution in PBS for 15 minutes. Cells were 

washed twice to eliminate remaining PFA and ¡coverslips were stored in PBS at 4ºC until 

processing. 

II.2.3.4.2 BrdU exposure and detection by immunofluorescence (IF) 

BrdU needs to be exposed to detect it with monoclonal antibodies. To this end, coverslips were 

incubated with HCl 2Nfor 5 minutes and quickly washed twice with PBS to further neutralize the 

acid with Borax (Sodium tetraborate 0.1M, pH8.5) for two minutes. Cells were permeabilized with 

Triton X100 0.1% for 5 minutes and 10% goat serum was employed as blocking reagent for 30 

minutes at RT. Primary antibody against BrdU (BD Pharmingen™, Cat# 555627) was incubated 

at 1:100 dilution overnight at 4ºC. The next day, secondary anti-mouse antibody (labelled with 

Alexa Fluor® 594 dye) was incubated at 1:1000 dilution in 10% goat serum for 1h in the dark. 

Finally, cells were stained with DAPI (1:1000 dilution in PBS) for nuclear staining and coverslips 

were mounted onto slides with home-made Mowiol. The slides were stored at 4ºC in the dark until 

analysis with the upright fluorescent microscope Axio Imager D1 (Carl Zeiss). 

 

II.2.3.5 Cell cycle analysis 

Propidium Iodide (PI) is an intercalating fluorescent agent extensively used for cellcycle analysis 

(Krishan, 1975). Harvested cells were suspended in 1mL of PBS and fixed drop by drop with 2.5 

mL of absolute ethanol (70% final ethanol concentration). Samples were incubated overnight at -

20ºC for fixation. Next, cells were centrifuged and suspended in 200-500µL of PI staining solution 

[RNase 25ug/ml (stock 1mg/ml), Triton X-100 0,05%, PI: 1 µg/ml (stock 1mg/ml)]. Samples were 

incubated for 20-40 minutes at 37ºC and analyzed by flowcytometry. 
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II.2.4 Molecular Assays 

Cells were seeded for a final density of around 70-80% in 6 well plates. Plates were washed with 

PBS and processed or snap-frozen in liquid-nitrogen for later protein or RNA extraction, unless 

otherwise specified. 

II.2.4.1 Gene expression analysis 

II.2.4.1.1 RNA extraction and retrotranscription 

RNA was extracted using NucleoSpin® RNA isolation kit from Macherey-Nagel (ref: 

740955.240C) according to manufacturer´s protocol and concentration was determined by 

Nanodrop ND-1000 Spectrophotometer. 

1μg of the obtained RNA was used for complementary DNA (cDNA) synthesis using qScript 

cDNA Supermix from Quanta (ref. 95048). Resulting cDNA was diluted 1/6-1/30 in fresh mQ 

water (depending on the expression levels of each gene) and 1µL was used for RT-QPCR 

reaction. 

 

II.2.4.1.2 Real time quantitative PCR (RT-Q-PCR) 

RT-QPCR was performed using Viia7 system from Life Technologies´. The RT-QPCRs were 

performed according to the following program: 2min at 50ºC and 10min at 95ºC (Hold Stage) 

followed by 40 cycles of 15sec at 95ºC (denaturalization) and 1min for 60ºC (annealing and 

elongation). Polyamine pathway related enzyme gene expression was analyzed with primers and 

probes from Universal Probe Library from Roche. The Universal Probe Library Assay Design 

Center is available on-line in:http://lifescience.roche.com/shop/en/mx/overviews/brand/universal-

probe-library. This tool allows the design of primers and assigns the respective probe needed for 

each reaction in order to build a TaqMan assay. Methionine cycle-related enzyme gene 

expression was analyzed by SYBRGreen Technology and primers were kindly provided by Dr. 

Woodhoo (CIC bioGUNE). For the analysis of reference house-keeping genes (Gapdh, GAPDH 

and β-ACTIN) Taqman Probes were used. Two different master mixes were used to catalyze the 

reaction: FastStart Universal Probe Master (Roche ref. 04914058001) and TaqMan® Universal 

Master Mix II (Life Technologies ref. 4440046). For quantification of changes in gene 

expression,Comparative Ct method was selected. See Table M13 for specific primer sequences 

and references. 
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Table M13: Table detailing the specific primer sequences and probe numbers from Universal Probe Library 
from Roche, specific primers for SYBR technology and references of Taqman technology probes used for 
RT-QPCRs. 

 

II.2.4.2 Protein expression analysis 

II.2.4.2.1 Protein extraction 

Cells were lysed with radioimmunoprecipitation assay (RIPA) buffer (See Table M14 for recipe) 

for protein extraction, based on predicted protein molecular weights smaller than 200KDa.Lysates 

were rocked at 4ºC for 20 minutes, centrifuged at 13500 rpm for 10 minutes and the supernatant 

was recovered. Protein concentration was quantified with PierceTM BCA Protein Assay Kit 

(Thermo Fisher Scientific Cat# 23225), and lowest protein concentration in the sample set was 

used as reference for normalization. Samples were prepared in Laemmli sample buffer.  

Gene Species Technology Forward 5´-3´ Reverse 5´-3´ Probe 

SpmS Mouse UPL Roche CAGCACGCTCGACTTCAA CCAGGTGTGCACTGACTCTG #68 

SpdS Mouse UPL Roche TCCAGTGCGAGATTGATGAG CCCACGTGGAGAGTCAGC #78 

Amd1 Mouse 
UPL Roche 

Taqman 

GACGCATGAATTCTGACTGC 

Mm04207265 

TGGGTCAAGCTCACTCATCA 
 

#47 
 

 Odc1 Mouse UPL Roche GCTAAGTCGACCTTGTGAGGA AGCTGCTCATGGTTCTCGAT #80 

 Sat1 Mouse UPL Roche TCTTGAAGACTTCTTCGTGATGAG CATACTGCTGCAGCGACACT #110 

Paox Mouse UPL Roche ACCGTTCGGGGAGTATACAGT TCGGTAAGTCCTTGGTAGCC #26 

Slc3a2 Mouse UPL Roche CAAAGTGCCAAGAAAAAGAGC CTGAGCAGGGAGGAACCAC #81 

Cbs Mouse SYBR CTTCAGGGACATCCCAGTGT AGCTGCCAGGTACATCTGCT  

Cth Mouse SYBR TGTTAAGGCCTTCCTCAAAA GTCCTTCTCAGGCACAGAGG  

Mthfr Mouse SYBR CAGGTCATCCTCGAAGCTCT AGACCTGGTGAAGCACATCC  

Ms Mouse SYBR CATCCAAGAGTGTGGTGGTG ATAAACGTGGGCTTCACTGG  

Sahh Mouse SYBR CCTGGCATCTCATTCTCAGC CGCCAGCATGTCTGATAAAC  

Bhmt Mouse SYBR GAACTCCCGATGAAGCTGAC CTTTGCACTGGAAAAGAGGG  

Pemt Mouse SYBR AGTTCTCTGCTCCCATCTCG AGTTCTCTGCTCCCATCTCG  

Mat2a Mouse SYBR CTTCCTTCAGAGAGCAGTGCTTT CTTACGCCATACCCCAGAATACA  

Mat2b Mouse SYBR CCAGTGGCACCAGTAATGAG AGCTCTCCATCCACTTCGTC  

Gnmt Mouse 
SYBR 

Taqman 

AAGCCCTCTTCCACCAGC 

Mm 4689 m1 

AGTACAAGGCGTGGTTGCTT 

  

Gnmt 338 Mouse SYBR AAAGGATGGCTCTTTCCTCC GTGCTGACGTAGCCTGTG  

Sardh Mouse 
SYBR 

Taqman 

GACAAAGGACAGCCTGATGG 

M 4657 m 

GCAGGATGTGCTTGATGCT 

  

Gapdh Mouse Taqman Mm99999915_g1   

AMD1 Human 
UPL Roche 

Taqman 

CAGACCTCCTATGATGACCTGA 

Hs00750876s1 

TCAGGTCACGAATTCCACTCT 

 

#72 

 

ODC1 Human UPL Roche 
AAAACATGGGCGCTTACACT 

TGGAATTGCTGCATGAGTTG #3 

GAPDH Human Taqman Hs02758991_g1   

β-ACTIN Human Taqman Hs99999903_m1   
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Table M14: Reagent concentrations used to prepare RIPA buffer for protein extraction 

RIPA Buffer Stock concentration Final concentration 

TrisHCl (pH 7.5) 2 M 50 mM 

NaCl 5 M 150 mM 

EDTA 0.5 M 1 mM 

SDS 10 % 0.10 % 

Sodium Deoxycholate 10 % 1 % 

NP-40 10 % 1 % 

Complete Protease inhibitors  1 pill/50mL 

NaF, NaOv,β-GP 100 mM 1 mM 

 

II.2.4.2.2 Western Blotting (WB) 

Protein lysates were boiled at 95ºC for 5 minutes for denaturalization, resolved in NuPAGE® 

Novex® 4-12% Bis-Tris Midi Protein gels (ref: WG1403BOX) at 180V for 1h 20mins in MES Buffer 

1X or MOPS Buffer 1X and transferred to nitrocellulose membranes at 100V for 1h 45mins. 

The membranes were blocked with 5% non-fat milk prepared in Tris-buffered saline solution 

containing 0,01% Tween-20 (TBS-T) and primary antibodies were incubated at 4ºC over-night 

(o/n). See table M15 for references of antibodies used for Western Blotting. 

Table M15: References and conditions of primary and secondary antibodies employed for western blotting 
and immunoprecipitation. 

Antibody (Clone) Reference Species Dilution 

AMD1 Proteintech 11052-1-AP Rabbit 1:1000 

AKTS473 (D9E) Cell Signaling Technology #4060 Rabbit 1:1000 

AKT Cell Signaling Technology #9272 Rabbit 1:1000 

 RpS6S240/244 Cell Signaling Technology #2215 Rabbit 1:1000 

 RpS6(54D2) Cell Signaling Technology #2317 Mouse 1:1000 

PTEN(6H2.1) CASCADEABM-2052 Mouse 1:1000 

c-MYC (D3N8F) Cell Signaling Technology #13987 Rabbit 1:1000 

HA-tag (16B12) COVANCE Mouse 1:1000 

β-ACTIN SIGMA A5316 Mouse 1:1000 

HSP90 Cell Signaling Technology #4874 Rabbit 1:1000 

α-TUBULIN ? - 1:1000 

Secondary Rabbit ab Jackson ImmunoResearch Rabbit 1:4000 

Secondary Mouse ab Jackson ImmunoResearch Mouse 1:4000 

 

II.2.4.2.3 Protein Immunoprecipitation (IP) Assay 

 Protein immunoprecipitation was performed to analyze AMD1 synthesis rate and for the 

phosphoproteomics study of AMD1 phosphorylation sites. Cell plates were washed with ice cold 

PBS (3 ml/p60; 5mL/p100; 10mL/p150) directly after removing medium and placed on a bed of 

ice. Cells were scrapped with RIPA lysis buffer and protein extraction and quantification was 
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performed as explained in II.2.3.2.1. 1mg of protein incubated diluted in a total volume of 800µL 

using pre-cold IP buffer (See table M16 for recipe) for immunoprecipitation with the primary 

antibody. For endogenous AMD1 precipitation, anti-AMD1 antibody (11052-1-AP, Proteintech) 

and Protein A/G agarose beads (PierceTM Thermo, Cat# 20421) were utilized, while exogenous 

AMD1 was immunoprecipitated with agarose HA-beads (A2095 SIGMA). Beads were centrifuged 

(30 seconds at 10000rpm at 4ºC) and washed with IP buffer (800µL) five times. After last washing 

step beads were dryed with capillary tips and suspended in 2x Laemmli sample buffer for elution 

by boiling them at 95ºC for 5 minutes. Bead supernatants were loaded in a bis-acrylamide gel for 

migration.  

Table M16: Reagent concentrations used to prepare immunoprecipitation buffer. 
 Stock [  ] For 50 mL Final [  ] 

Tris pH 7,6 2 M 1 mL 40 mM 

EDTA pH 8 0.5 M 0.1 mL 1 mM 

MgCl2 1 M 50 uL 1 mM 

NaCl 5 M 1.5 mL 150 mM 

Triton-100 10 % 500 uL 0.1 % 

NaF,Na Orthovanadate, β-GP 100 mM 500 uL/each 1 mM 

Protease Inhibitor Cocktail  1 pill  

 

II.2.4.2.4 AMD1 translation rate by 35S-Met labelling 

For AMD1 synthesis with radio-labelling assay, PC3 and DU145 cells were treated with either 

vehicle (dimethylsulfoxide (DMSO)) or Rapamycin (20 nM) for 20h in 60mm (PC3) and 100 mm 

(DU145) dishes. To asses AMD1 synthesis, cells were starved for 40 min from methionine and 

cystine and radio-labelled for 30 min with a 35S-Met/Cys mix (Cat# NEG772002MC EasyTag™ 

EXPRESS35S Protein Labeling Mix, [35S]-, 2 mCi (74 MBq), Stabilized Aqueous Solution) before 

lysis. Protein lysates were incubated with protein A/G agarose beads (30 uL) for 1h to pre-clear 

non-specific binding to the beads. Precleared lysates were then incubated with anti-AMD1 

polyclonal antibody (11052-1-AP, Proteintech) overnight at 4ºC in 400 µL of RIPA buffer. Next, 

samples were incubated with protein A/G agarose beads for 1h and following immunoprecipitation 

bead washing steps were performed as explained in II.2.3.2.3. Lysate migration was performed in 

a NuPAGE™ (Novex™ 4-12% Bis-Tris Protein Gels, 1.0 mm, 12-well, Life Technologies) precast 

gel, in parallel with Input samples as a control of total AMD1 levels and rapamycin effect. After 

migration, the gel was submitted to fixation in a trichloroacetic acid (TCA) solution [10 % TCA, 10 

% acetic acid, and 30 % ethanol] for 30 minutes and to signal amplification in sodium salicylate (1 

M) for 1h. The gel was then dried (Model 583 gel dryer, BIORAD) and exposed to a film at -80ºC 

for at least 96h (Fig. M12). 

II.2.4.2.5 Polysome Profiling 

Distribution of mRNAs across sucrose gradients was performed as described earlier (Fumagalli et 

al., 2012), except for minor modifications. 
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II.2.4.2.5.1 Sample extraction 

Briefly, 3,5x106 DU145 cells were plated in 150mm plates to ensure a final density no higher than 

50-60%. After 24h, cells were treated with either vehicle (DMSO) or rapamycin (20 nM) for 8 

hours. After treatment, cycloheximide (CHX) was added to the medium at 37ºC for 5 min at a 

concentration of 100 µg/mL. Cells were washed twice with cold PBS supplemented with CHX 

(100 µg/mL), scraped on ice and pelleted by centrifugation at 3000 rpm for 3’. Cell pellets were 

suspended in 250 μl of fresh hypotonic lysis buffer [1.5 mM KCl, 2.5 mM MgCl2, 5mM Tris HCl 

pH7.4, 1 mM dithiothreitol (DTT), 1% sodium deoxycholate, 1 % Triton X-100, 100 μg/ml CHX] 

supplemented with protease inhibitors Cocktail (Roche) and RNAse inhibitor (New England 

Biolabs) at a concentration of 100 U/ml and left on ice for 5 minutes. Cell lysates were cleared of 

debris and nuclei by centrifugation for 5 minutes at 13000 rpm and 4ºC, and the polysomal lysate 

in supernatant was transferred to new tubes. Protein concentrations were determined by BCA 

assay and aliquots of 900 µg-1,5 mg protein in 200 µL (same protein amount and volume among 

conditions per experiment) were prepared. Aliquots were snap frozen in liquid nitrogen, stored at -

80ºC and shipped to Dr. Thomas laboratory in IDIBELL for polysome profiling by Dr. Antonio 

Gentilella. 
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1h
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Figure M12. Schematic of the protocol followed to analyze AMD1 protein synthesis rate. 
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II.2.4.2.5.2 Sample processing 

500 μg of lysate were loaded on 10-50% sucrose linear gradients containing 80 mM NaCl, 

5 mM MgCl2, 20 mM Tris HCl pH7.4, 1 mM DTT, 10 U/ml RNase inhibitor with a BIOCOMP 

gradient master. Gradients were centrifuged on a SW40 rotor for 3 hours at 35000 rpm. Gradients 

were analyzed on a BIOCOMP gradient station and collected in 12 fractions ranging from light to 

heavy sucrose. Fractions were supplemented with SDS at a final concentration of 1% and placed 

for 10 min at 65ºC. To each fraction was added 1ng of firefly luciferase mRNA, followed by 

phenol-chloroform extraction and precipitation with isopropanol. Purified RNAs from each fraction 

were reverse-transcribed and subjected to RT-QPCR. mRNA quantification was normalized to 

firefly mRNA.  

II.2.4.2.6 Phosphoproteomics 

DU145 cells stably expressing Myc-AMD1-HA were plated in 2-3 150mm plates per 

condition to ensure a final density no higher than 50-60% and sufficient protein amount to 

immunoprecipitate ectopic AMD1 and detect the corresponding band by Sypro-Ruby (Invitrogen, 

S12000) gel staining . Cells were treated for 8 hours with rapamycin (20nM) and Torin-1 (250nM) 

prior to immunoprecipitation, 

II.2.4.2.6.1 Sample Preparation 

Cells were washed with PBS on a bed of ice and lysed in 300µL RIPA lysis buffer per plate. 

Plates were scrapped and protein extraction was performed as explained in II.2.3.2.1. Ectopic 

AMD1 was immunoprecipitated as detailed in II.2.3.2.3. Specifically, the IP was performed in a 

total volume of 1mL with 40µL of HA-beads (A2095 SIGMA) for 1hour rolling at 4ºC. Beads were 

washed 5 times with IP Buffer and immunoprecipitate was prepared in 80 µL 2xLaemmli by 

boiling the samples at 95ºC for 5 min. After migrating samples in a 10% Sodium Dodecyl Sulfate 

Polyacrylamide MiniGel, the gel was fixed in fixing solution [10% acetic acid and 30% ethanol, 

fresh prepared] for 30 min and stained overnight with Sypro-Ruby (Invitrogen, S12000) under 

agitation in the dark. Next, the gel was rinsed in unstaining solution and water several times prior 

to image acquisition in theTyphoon Trio scanner (Variable Mode imager) (GE Healthcare life 

sciences). 

 The bands were unstained with several washes of 40% acetonitrile (ACN) in 50 mM 

ammonium bicarbonate. Then the proteins were reduced with 15 mM tris(2-

carboxyethyl)phosphine (TCEP) in 50 mM ammonium bicarbonate for 30 min at room 

temperature and alkylated with 55mM for 30 min in the dark. Proteins were digested overnight at 

37ºC with trypsin. The resulting peptides were desalted and concentrated using homemade 

reversed phase micro-columns filled with Poros Oligo R3 beads (Life Technologies). The samples 

were dried using the Speed-Vac and dissolved in 22 µL of loading buffer (0.1% formic acid).  
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II.2.4.2.6.2 LC-MS/MS analysis 

LC-MS/MS was performed by Pilar Ximenez and Javier Muñoz at CNIO. Peptides were separated 

by reversed-phase chromatography using a nanoLC Ultra system (Eksigent), directly coupled with 

a LTQ-Orbitrap Velos instrument (Thermo Fisher Scientific) via nanoelectrospray source 

(ProxeonBiosystem). Peptides were loaded onto the column (Dr. Maisch, ReproSil-Pur C18-AQ 

GmbH 2.4 µm, 500x0.075 mm), with a previous trapping column step (NS-MP-10 BioSphere C18 

5 µm 120 Å 360/100 µm, L=20 mm, Nanoseparations), during 10 min with a flow rate of 2.5 µl/min 

of loading buffer (0.1% formaldehyde, FA). Elution from the column was made with a 60 min 

linear gradient (buffer A: 4 % ACN, 0.1 % FA; buffer B: 100 % ACN, 0.1 % FA) at 250 nL/min. The 

peptides were directly electrosprayed into the mass spectrometer using a PicoTip emitter (360/20 

OD/ID µm tip ID 10 µm, New Objective), a 1.4 kV spray voltage with a heated capillary 

temperature of 325°C and S-Lens of 60 %. Mass spectra were acquired in a data-dependent 

manner, with an automatic switch between MS and MS/MS scans using a top 5 method with a 

threshold signal of 800 counts. MS spectra were acquired with a resolution of 60000 (FWHM) at 

400 m/z in the Orbitrap, scanning a mass range between 350 and 1500 m/z. Peptide 

fragmentation was performed using collision induced dissociation (CID/CAD) and fragment ions 

were detected in the linear ion trap. The normalized collision energy was set to 35%, the Q value 

to 0.25 and the activation time to 10 ms. The maximum ion injection times for the survey scan and 

the MS/MS scans were 500 ms and 100 ms respectively and the ion target values were set to 

1E6 and 5000, respectively for each scan mode.  

II.2.4.2.6.3 Data analysis 

Data analysis was performed by Pilar Ximenez and Javier Muñoz at CNIO. Raw files were 

analyzed either by Proteome Discoverer (version 1.4.1.2) or by MaxQuant (Cox and Mann, 2008) 

(version 1.5.3.30) against a forward-reverse concatenated human database (UniProtKB/Swiss-

Prot 20,187 sequences), including common contaminants. Carbamidomethylation of cysteines 

was considered as fixed modification whereas oxidation of methionines and phosphorylation on 

serine, threonine and tyrosine residues were set as variable modifications in both Sequest HT and 

Andromeda search engine (v2.2). Sequest HT, in conjunction with Percolator provided the list of 

proteins for Proteome Discoverer. Minimal peptide length was set to 6 amino acids and a 

maximum of two missed-cleavages were allowed. Peptides were filtered at 1% FDR (False 

Discovery Rate). For protein assessment in MaxQuant, at least one peptide provided by 

Andromeda search engine(Cox et al., 2011) with a FDR = 1% was required. Other parameters 

were set as default. Results at peptide label were exported to excel for further analysis. Extracted 

ion Chromatograms (XIC) of the identified phosphopeptides were manually obtained from 

Xcalibur (version 2.2). In order to normalize the XICs to the total protein amount, absolute 

intensities from MaxQuant were considered. 
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II.2.4.3 In-House targeted metabolomic approaches 

All samples were seeded in 6-well plates, unless otherwise specified, to a final density of no more 

than 80% of confluence, adjusting seeding cell numbers per condition to reach similar final 

density. At the experimental end-point, cells were washed three times with ammonium carbonate 

pH=7.4 (adjusted with acetic acid and sodium hydroxide), prepared in High-Performance Liquid 

Chromatography (HPLC) water, snap frozen in liquid nitrogen and stored at -80ºC until 

processing. 

II.2.4.3.1 One carbon Metabolism and Polyamine Pathway analysis by LC/MS in 

vitro 

Cell samples were shipped in frozen plates to Agios Pharmaceuticals, where metabolites were 

extracted and processed by LC/MS as specified in I.2.5.2.  

II.2.4.3.2 dcSAM and polyamine quantification in vitro 

Frozen plates were processed by the metabolomics platform in CIC bioGUNE to extract the 

metabolites and analyze them by UPLC-MS as specified in I.2.5.3. 

II.2.4.3.3 MFA in vitro 

Seeded cells were treated with either vehicle (DMSO) or rapamycin (20nM) in fresh medium for 

30 hours. After the treatment, cells were washed with methionine free (Gibco, Cat. # 21013-024) 

medium (with dialyzed FBS or no serum) and incubated with U-13C5-L-methionine (30 µg/mL) 

resuspended in same methionine-free medium (with dialyzed FBS or no serum) for 15 min to 

detect metabolites related to methionine cycle and 2 hours to detect metabolites related to 

polyamine synthesis pathway. 
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III STATISTICAL ANALYSIS 

All experiments were performed a minimum of three times (biological replicates), except for the 

exploratory experiments, such as metabolomics by ToF-MS, LC/MS, UPLC-MS or preclinical trials 

with mice, that were done once, but with independent biological replicates (n≥3). 

 Values in histograms represent average value, while values in plot graphs show individual 

values, with a line representing the mean in parametric analyses or the median in non-parametric 

analyses . The error bars represent the standard error (Std Er) in the parametric analyses, while 

they depict the interquartile range in non-parametric analyses . The confidence interval (CI) 

established for the statistical analysis was 95% (α=0.05). 

When comparing datasets from cell culture origin, a normal distribution was assumed and the 

statistic used for the analysis was paired or unpaired Student T-test, depending on the existence 

of dependency among samples. However, when analyzing differences among datasets from 

murine or human origin, a Gaussian distribution could not be assumed and thus, non--parametric 

Mann Whitney U-test was chosen for the analysis. Two-tailed analysis were the choice for 

experiments with non-predicted result, while one-tailed analysis was performed for hypothesis 

driven validations. 
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I Integrative metabolic study to uncover metabolic alterations 

underlying prostate cancer (PCa) 

The first aim of this thesis work was to uncover the metabolic alterations underlying the 

pathogenesis of PCa in order to understand the metabolic requirements of cancer cells. 

  

 In the last fifteen years, multiple studies have attempted to tackle this question by 

developing and applying metabolomics technologies to cancer models. These efforts have 

allowed to establish that the metabolome (the compendium of low-molecular weight intermediates 

produced by cellular biochemical reactions) (Oliver et al., 1998) is intrinsically different in normal 

and cancer cells, as well as among different cancer types (Liesenfeld et al., 2013). After the 

genomic and proteomic eras, metabolomics is considered the closest approach to understand 

cellular phenotypes (Liesenfeld et al., 2013). 

 Several metabolomics studies have been performed on cancer patient specimens, to 

elucidate key molecular alterations underlying tumorigenesis that would in turn help to find early 

diagnostic biomarkers (Ren et al., 2015). However, there is intrinsic noise in these analyses, 

coming from the complexity of human samples and inter-individual variability. This highlights the 

challenge of defining consistent and relevant altered pathways. In turn, metabolic studies 

identifying novel metabolic biomarkers remain controversial, such as sarcosine for prostate 

cancer diagnosis (Sreekumar et al., 2009). To avoid such heterogeneity, in this project we 

decided to take advantage of our Pten prostate-specific knockout genetic engineered mouse 

model (GEMM) (Pten pc-/-), that faithfully recapitulates the pathogenesis of the human disease, for 

a profound metabolic study.In order to better understand the development of the disease, we 

analyzed tissue from three different prostate lobes (the ventral, VP; the anterior, AP, and the 

dorsolateral, DLP) and two different ages, three and six month-old mice, as representative of 

early (prostate intraepithelial neoplasia - PIN - lesions) and late (prostate invasive carcinoma -

PCa) disease, respectively (Fig. R1). 

With these representative samples we performed an integrative metabolomics study by 

combining the power of untargeted metabolomics, the resolution of targeted metabolomics and 

the dynamism of isotope-labeled metabolite tracing. 

 

HYPOTHESIS 

Prostate cancer harbors metabolic alterations relevant to the pathogenesis of the 

disease 
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Figure R1. General experimental design of in vivo experiments. Pten pc-/- mice were compared to Pten 
pc+/+ mice at three (when mice develop PIN lesions) and six (when mice develop PCa) months of age. The 

three different lobes (VP, AP and DLP) of mouse prostate were extracted and snap-frozen in liquid N2 for 

metabolomics analysis. 

 

A. High-throughput Flow Injection-Time-of-Flight Mass Spectrometry (FI-ToF-MS) 

We first decided to perform an untargeted metabolic study by Time-of-Flight Mass Spectrometry 

(ToF-MS) to have an overall idea of the metabolic alterations that the loss of Pten could trigger 

during prostate tumorigenesis. We therefore measured hundreds of ionized peptides in an 

unbiased way (Hypothesis-generating approach) (Fig. R2A). 

 In this technique, the flow injection, omitting the usual chromatography, allows to analyze 

more than 1400 samples a day, making possible the analysis of all the samples of the study in a 

day to avoid the variability derived from measurements performed in different days. Furthermore, 

ToF-MS enables the detection and identification of metabolites, based on their mass to charge 

ratio (m/z). However, this technique only provides a semi-quantitative measurement of the altered 

metabolites (Fuhrer et al., 2011). 
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Figure R2. Experimental design of the integrative metabolomic study. The first study was approached 

by untargeted ToF-MS analysis (A). The second study was performed by targeted quantitative LC/MS 

analysis (B). Finally, results were corroborated by a dynamic U-13C5-labeled methionine tracing experiment. 

 

B. Liquid Chromatography / Mass Spectrometry (LC/MS) 

Based on the data obtained by FI-ToF-MS, we then decided to perform a hypothesis driven 

targeted metabolic experiment by LC/MS (Fig. R2B).With this strategy, we aimed at confirming 

the previous observations and obtaining a more accurate quantification. Thus, in this approach we 

only included the altered pathways and related routes detected by ToF-MS, hence decreasing the 

number of metabolites analyzed, and in accordance with the separation limit of the 
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chromatography (Fuhrer et al., 2011). Nevertheless, LC/MS shows very high specificity and 

quantitative reproducibility (Patti et al., 2012), what has promoted its use as a main option of 

choice for numerous metabolic studies (Liesenfeld et al., 2013).This second approach provided 

us with important accurate information and quantification of altered metabolites in PCa. However, 

these data were limited by its static nature. Due to the dynamic nature of metabolism, we 

perceived that these results were insufficient to understand the biochemical cues that drive those 

alterations (Zamboni et al., 2015). In order to overcome this limitation, we sought to apply 

metabolite tracing (Fig. R2C), a technique that allows the interpretation of dynamic metabolic data 

(Feng et al., 2012). 

C. In vivo 13C labeling Metabolic Flux Analysis (MFA) by LC/MS 

The purpose of labeling a metabolite of interest with 13C is to trace the fate of carbons derived 

from that metabolite in the metabolic pathway of choice. In this work we designed an in vivo non-

stationary MFA experiment, which focuses on the kinetics of the labeled isotope propagation 

before reaching isotopic equilibrium (Zamboni et al., 2015) (Fig. R2C). In this way, we have not 

only the measurement of the concentration of each metabolite by LC/MS, but also information 

about the flux from a particular metabolite into the related pathways. The fluxes provide 

directionality to the metabolic analysis, and the combination of 13C vs. 12C abundance for a 

carbon in a metabolite, informs about the reaction that originates the molecule. These knowledge 

is crucial in order to understand the mechanisms for metabolic regulation and in disease vs. 

healthy settings provides very valuable information in order to ascertain potential therapeutic 

targets (Zamboni et al., 2015).  

 

I.1.1 ToF-MS metabolomics. 

As mentioned in the description of the general experimental design followed for the integrative 

metabolomics study (Fig. R2), the first analysis was performed using FI-ToF-MS. In this first 

untargeted metabolomics experiment we analyzed prostate tissues from VP, AP and DLP lobes of 

Pten pc+/+ and Pten pc-/- mice at the age of three and six months in order to have representative 

time points of early (PIN) and advanced (PCa) disease. 

 At first glance, data represented in volcano plots showed multiple increased (Fold Change 

(FC)>1.5; p-value<0.05) and decreased (FC<1.5; p-value<0.05) ions, corresponding to altered 

metabolites (Fig. R3A). Furthermore, the number of altered metabolites increased as the disease 

progressed. However, that increase was variable among the prostate lobes: VP showed a 13.1% 

(61 significantly altered ions/3Mo; 69 significantly altered ions/6Mo) increase in altered 

metabolites in the Pten pc-/- mice compared to Pten pc+/+ (Table S1), while we could observe a 25% 

(80 significantly altered ions /3Mo; 100 significantly altered ions/6Mo) (Fig. R3B) increase in the 

DLP and a further increase of a 110% (60significantly altered ions/3Mo; 126 significantly altered 
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ions/6Mo) (Fig. R3C) in the AP. These results suggest different metabolic impact of Pten deletion 

and prostate tumorigenesis in the different lobes. 

 We identified 156 total metabolites (Fig. R3), based on their mass-to-charge ratio. From 

those, 130 were significantly altered in Pten pc-/- mice compared to Pten pc+/+ , in at least one of the 

lobes and time points. Such a numerous amount of alterations made it complicated to identify at a 

glance the metabolic pathways relevant to the disease. Thus, to further understand the implication 

of the deregulated metabolites observed, we analyzed the data by an enrichment analysis. This 

computational method identified several altered metabolic pathways in the different lobes of Pten 

pc-/- mice. Thus, data was represented as percentage of altered metabolites (Fig. R4). 

 In coherence with our previous observations, VP seemed to follow different disease 

evolution compared to AP and DLP, by means of altered pathway number. Indeed, no significant 

hits arose at three months of age in this lobe and only three metabolic pathways stood out as 

significantly altered at six months (Fig. R4A). These results could be explained by the different 

histological features of the three mouse prostate lobes and the higher similarity between DLP and 

AP. VP is composed of a flat monolayer of luminal cells, DLP shows a slightly stratified simple 

epithelium and AP is the lobe with the most marked papillary structure (Shappell et al., 2004). 

Based on the previous observations and the differential histological structure, we decided to focus 

in AP and DLP lobes for consistency for further analysis. Among the top hits, we observed 

consistent alterations in pathways related to amino acids (aa) (threonine, Thr/T; cysteine, Cys/C; 

glutamate, Glu/E; glutamine, Gln/Q; branched chain aa and Urea cycle), sugar (amino sugars) 

and mitochondrial metabolism (TCA, electron transport chain, ETC; oxidative phosphorylation, 

OXPHOS; and reactive oxygen species, ROS) (Fig. R3A,B). We then decided to consider 

pathways robustly altered in at least three of the four experimental settings: 

 

I.1.1.1 Tricarboxylic Acid Cycle (TCA) 

The Warburg effect establishes that cancer cells exhibit a preference for glycolysis as source of 

energy and metabolic intermediates, alternatively to the TCA, even in the presence of oxygen 

(Vander Heiden et al., 2009; Warburg, 1956b). In this respect, despite the fact that mutations in 

TCA enzymes have been associated to tumorigenesis, it has been found that these metabolic 

alterations stem primarily from the deregulation of oncogenes or tumor suppressors (Desideri et 

al., 2015). The enrichment analysis of the ToF-MS data (Fig. R4, in orange) revealed alterations 

in TCA related metabolites, such as a decrease in succinyl-CoA levels, which correlated with a 

less oxidative phenotype (Cardaci et al., 2012; Torrano et al., 2016). However, many other 

alterations where related to less TCA-specific metabolites, such us nicotinamide adenine 

dinucleotide (NAD) or quinone.  
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Figure R3. ToF-MS study unraveled increasing number of metabolic alterations through PCa 

development. Volcano plots representing each decreased (blue dots) or increased (red dots) ion detected 

by ToF-MS (FC>1.5 and FC<1.5; p-value<0.05) in VP (A), AP (B) and DLP (C) lobes at three months of age 

(left column) and six months of age (right column). Y axis represents negative Log10 of the adjusted p-

values. X axis represents Log2 Pten pc-/- to Pten pc+/+ fold change percentage of altered metabolites. 
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The Warburg effect was originally attributed to mitochondrial dysfunction and ROS production, 

although a causal effect remains unclear (Senyilmaz and Teleman, 2015). Other lines of research 

in the lab are focused in the regulation of this metabolic pathway (Torrano et al., 2016).  

I.1.1.2 Amino Sugar Synthesis Pathway 

Another top hit of the ToF-MS enrichment analysis was the amino sugar synthesis pathway or 

hexosamine biosynthetic pathway (HBP) (Fig. R4, in purple). N-acetylglucosamine (GlcNAc) was 

among the top altered metabolites in this group. GlcNAc is covalently bound to the hydroxyl group 

of serine (Ser, S) or Thr residues inproteins by the O-GlcNAc tranferase (OGT), a post-

translational modification process called O-Glc-N-acylation. Cancer cells have higher glucose 

uptake (Vander Heiden et al., 2009; DeBerardinis et al., 2008; Warburg, 1956b) which favors the 

synthesis of GlcNAc and consequent O-Glc-N-acylation. Indeed, the latter has been suggested as 

a nutrient sensor and metabolic regulator (Hanover et al., 2010; Jóźwiak et al., 2014). Hyper-O-

Glc-N-acylation and/or increased OGT expression have been related to different cancer type 

pathogenesis in multiple publications in the last five years (Ma and Vosseller, 2013), which is in 

line with our data. This pathway was first reported to increase breast cancer aggressiveness (Gu 

et al., 2010), but was later demonstrated to participate in various other cancer types, including 

PCa (Lynch et al., 2012) and pancreatic cancer (Guillaumond et al., 2013). 

I.1.1.3 Branched Chain Amino Acid (BCAA) Metabolism 

BCAA (Fig. R4, in light grey) are leucine (Leu, L), isoleucine (Ile, I) and valine (Val, V), and they 

compose around the 35% of essential amino acids in muscle proteins (O’Connell, 2013). BCAAs 

are first transaminated by the enzyme branched chain aminotransferase to produce branched 

chain ketoacids (BCKA) (O’Connell, 2013). This first reaction requires α-KG for the 

transamination, producing Glu in the reaction, which links BCAA metabolism to the previously 

mentioned TCA, also altered in our data. 

 mTORC1, a master nutrient sensor, depends on amino acid signals to become fully active 

(Bar-Peled and Sabatini, 2014). Furthermore, it has been reported that Sestrin-2, a protein that 

interacts with GATOR-2 complex to inhibit mTORC1, is a Leu sensor, what makes this aminoacid 

(one of the three BCAAs) necessary for mTORC1 activation (Wolfson et al., 2015). These data 

reveal a close relationship between BCAAs and mTORC1 signaling pathway, which confers 

coherence to our data.However, Val was the only altered specific signal among BCAA in the ToF-

MS data and the changes were very mild and inconsistent to make any conclusion. 

I.1.1.4 Serine, Glycine (Gly) and one-carbon (1C) Metabolism 

Ser and Gly (G) metabolism was the most altered pathway in our analysis (Fig. R4, in wine-red). 

Importantly, it remained altered in both lobes and the alteration was conserved along the two 

stages of the disease. 
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Figure R4. ToF-MS enrichment analysis uncovered alterations in amino sugar synthesis pathway, 

BCAA metabolism, TCA and Ser and Gly metabolism in PCa pathogenesis. Enrichment analysis of the 

ToF-MS data at three and six months of age in VP (A), AP (B) and DLP (C). The data is represented as 

percentage of altered metabolites. 

 

 Ser and Gly fuel 1C metabolism, composed of two cyclic pathways, namely folate and 

Met cycle. The two routes are coupled through the production of methyl-tetrahydrofolate (m-THF), 

which donates one carbon to homocysteine (HCys) to generate methionine (Met, M). The name of 

this pathway refers to the fact that these two cycles are fueled with a carbon residue from Ser and 

Gly that afterwards can be followed from one metabolite to another, reaction by reaction. Those 

carbon donors can be incorporated from the extracellular environment, can be synthesized de 

novo (from glucose) in the case of Ser or from other metabolites in the case of Gly (such as 

choline, betaine, dimethylglycine and sarcosine). The metabolic pathways involving Ser, Gly and 

1C metabolism have been related to tumorigenesis in multiple studies (Locasale, 2013). However, 
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carbons incorporated into 1C metabolism can be further followed through many other related 

pathways as the trans-sulphuration pathway, which is linked to Met cycle through HCys; or the 

synthesis of polyamines through the decarboxylation of S-adenosylmethionine (SAM). For 

polyamine synthesis, another carbon source coming from the urea cycle is needed, ornithine 

(Pegg, 2009a). 

 From the 130 differentially altered metabolites upon Pten loss, 107 appeared to be 

significantly increased or decreased in two of the experimental settings, meaning that were 

altered in AP and DLP at three or six months of age, or were altered at both stages of the disease 

in AP or DLP. From those 107 metabolites, 80 showed alterations in three of the four 

experimental settings, meaning that were altered in both lobes, but either AP or DLP did not show 

the alteration at one of the timepoints. Finally, 49 of the significantly altered metabolites showed 

consistent changes in location (both prostate lobes) and time points of the disease, as shown by 

the Venn diagram in Fig. R5A. 

 In order to identify a pathway of relevance through the pathogenesis of the disease, we 

decided to focus on those consistently altered 49 metabolites for further analysis (highlighted in 

Fig. R5B Waterfall). Among those 49 metabolites, the highest decrease was observed in 3-

Hexenedioic acid. This metabolite is an unsaturated dicarboxylic acid inversely correlated with 

fatty acid oxidation (FAO) (Jin and Tserng, 1989), which is coherent with the relevance of FAO in 

various cancerous settings (Wu et al., 2014; Carracedo et al., 2013; Liu, 2006). 

 On the other hand, three metabolites related to polyamine synthesis pathway were the 

top increased metabolites: decarboxylated SAM (dcSAM), N1-Acetylspermine and N1-

Acetylspermidine. dcSAM comes from decarboxylation of SAM, the master methyl donor in the 

cell belonging to Met cycle. dcSAM provides carbons for polyamine synthesis (Locasale, 2013). 

N1-Acetylspermine and N1-Acetylspermidine are acetylated forms of polyamines, a product of 

their catabolism by the enzyme spermidine/spermine N1-acetyltransferase 1 (SSAT1), a key 

regulator of polyamine levels (Pegg, 2008). 

In conclusion, these data suggest an increase in polyamine-related metabolites, from one 

of the essential substrates for their synthesis (dcSAM) to their catabolized form, the acetylated-

polyamines.Polyamines have been widely associated to proliferation, although the mechanism 

underlying their role in cancer remains to be elucidated (Gerner and Meyskens, 2004b). Thus, 

with this data, we focused our efforts on studying alterations in 1C-metabolism and polyamine 

pathway in prostate cancer pathogenesis.To further confirm these data with a more accurate 

quantification of these metabolites we addressed in a second step of our integrative metabolic 

design by LC/MS, as explained in Fig. R2. 
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Figure R5. The inclusion criteria established narrowed the number of consistently altered 

metabolites. A-B, VENN diagram (anterior prostate (AP) and dorsolateral prostate (DLP), A) and Waterfall 

pathway enrichment (AP and DLP, B) from the analysis of altered metabolites in TOF-MS metabolomic 

analysis carried out in Ptenpc-/- vs. Ptenpc+/+ mouse prostate samples at the indicated age (n=4-5). Values in 

(B) represent the average of the Log (Fold change) of the two lobes and two time points (3 and 6 months of 

age) per metabolite. 
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SECTION SUMMARY 

 The untargeted metabolomic study by FI-ToF-MS revealed alterations in 

TCA, amino sugar synthesis pathway, BCAA metabolism and Ser, Gly 

and 1C Metabolism in Pten pc-/-mice compared to Pten pc+/+at both stages 

of the disease. 

 From the integration of alterations in both AP and DLP prostate lobes 

and time-points we could identify 49 consistently altered metabolites, 

among which polyamine pathway related metabolites were 

predominantly increased. 
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I.1.2 LC/MS metabolomic study to quantify metabolic alterations in PCa 

I.1.2.1 LC/MS metabolomics in murine samples 

For the LC/MS study, we included polyamines and related pathways in the set of analysis. As 

previously mentioned, we analyzed AP and DLP tissues of Pten pc+/+ and Pten pc-/- mice at three 

and six months of age. 

I.1.2.1.1 Branched chain amino-acid metabolism 

The ToF-MS analysis showed an enrichment in BCAA metabolism in three of the four conditions 

(six months AP, three months DLP and six months DLP) of the experimental design (Fig. R4B,C). 

Interestingly, valine (BCAA) levels measured by LC/MS were slightly but significantly decreased, 

while leucine and isoleucine (also BCAAs) showed the same trend although without reaching 

statistical significance, in Pten pc-/-mice AP at three months of age. No significant alteration was 

observed in the rest of conditions (Fig. R6A,B). There are different potential explanations for this 

lack of coherence. Firstly, some of the metabolites that arose in the BCAA enrichment could had 

been misidentified. Secondly, other metabolites implicated in BCAA metabolism could be the 

responsible of the enrichment rather than the three BCAA themselves. Lastly, although the 

altered metabolites in Pten pc-/- mice seemed to be enriched in BCAA metabolism, those 

alterations could be quantitatively not significant and relevant enough to appear in the LC/MS 

analysis. 

I.1.2.1.2 Urea cycle 

Although excluded for consideration in our ToF-MS analysis, Urea cycle and arginine (Arg, R) 

metabolism showed significant alterations by LC/MS. Ornithine levels were consistently 

increased, whereas Arg levels were significantly decreased at three months of age in both lobes 

and showed the same tendency at six months of age (Fig. R6A, B). These data suggest a 

decrease in Arg in favor of ornithine production, the substrate for ornithine decarboxylase 1 

(ODC1), to further produce the polyamine putrescine (Put). 

I.1.2.1.3 Methionine cycle 

Met cycle metabolites also showed clear alterations in the LC/MS analysis, confirming the data 

obtained by ToF-MS. Met levels were only slightly decreased in Pten pc-/- mice AP at three months 

of age (Fig. R6A), while they remained unaltered in the rest of conditions.  Notwithstanding, SAM 

levels were consistently increased in both lobes and time-points, whereas we could observe a 

less consistent (due to variability among samples) but clear decrease of SAH levels (Fig. R6A, 

B). SAH levels did not correlate with the increased sarcosine levels. However, this increase could 

be explained by the increase in Gly, one of the substrates of the reaction, catalyzed by GNMT, to 

produce sarcosine. The increase in Gly, together with the increase in betaine observed in Ptenpc-/- 

mice prostates at six months of age compared  to Pten pc+/+, could also be the reflect of higher 
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metabolites in mice treated with either dose of SAM486A compared to vehicle-treated mice (Fig. 

R53). Put levels were dramatically increased in both treatment regimens. The increase in Put 

correlated with the alterations observed in ornithine and Arg, both metabolites of the urea cycle 

implicated in the synthesis of Put. These results indicate that SAM486A induces a robust increase 

in putrescine synthesis, presumably acting on ODC1 activity. The fact that the changes in Put 

occur in the absence of a consistent reduction in dcSAM strongly suggests that this event is not 

due to the intricate compensatory mechanisms of polyamine synthesis, but rather to some direct 

effect of the compound on Put synthesis. Our data was in line with previous in vitro studies 

(Regenass et al., 1994; Svensson et al., 1997), preclinical trials (Dorhout et al., 1995a, 1995b) 

and with some of the mentioned phase I and phase II clinical trials (Millward et al., 2005; Siu et 

al., 2002), in which SAM486A treatment caused an increase in Put. The authors in these studies 

argued that the increase in putrescine was due to a compensatory mechanism rising from the 

decrease in dcSAM. However, although SAM486A treatment was able to decrease Spd and Spm 

levels in the in vitro studies and in the preclinical leukemia trials, none of them had any data about 

dcSAM levels. According to the clinical trials, PA levels showed in most cases very high inter-

patient variability and inconsistency. It should be noted that the analysis of PA pools in those 

cases was done in peripheral blood leucocytes, and not in the target tissue (Eskens et al., 2000). 

Only in one phase I trial were able to confirm a decrease from pre-treatment to post-treatment 

analysis of dcSAM levels in a biopsy of a melanoma patient with apparently very high initial levels 

of dcSAM (Siu et al., 2002). In that particular patient, they were also able to detect decreased 

Put/Spd ratio and a reduction in Spm levels. Interestingly in the phase II melanoma trial 

reductions in Spd levels were also achieved (Millward et al., 2005), suggesting tumor type-specific 

efficacy of the treatment. 

 In our preclinical trial, SAM486A 2mg/Kg dose was not able to alter the levels of PA pools 

or dcSAM (Fig. R53 left). However, the higher dose caused an increase in the putrescine/Spd 

ratio and a mild but significant decrease in Spm levels. In the same line, dcSAM levels showed a 

tendency to decrease (Fig. R53 right). 

 Polyamine synthesis is tightly regulated through multiple feedback mechanisms. We 

speculate that SAM486A might retain structural similarities with SAM and dcSAM to interfere with 

ODC1 regulation, leading to an activation of putrescine synthesis. Our results suggest that local 

dose reached in the tumor tissue is sufficient to activate ODC1, but it does not inhibit AMD1 

efficiently, as shown in the metabolomics analysis. Further research is needed in order to define 

whether such an off-target effect could hamper the therapeutic efficacy of SAM486A and explain 

the poor therapeutic efficacy observed in the preclinical and clinical trials with the compound.  
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III.2.3 Analysis of AMD1 levels in a clinical trial of RAD001 

Our data demonstrated that regulation of AMD1 by mTORC1 is preservedin vivo in mice and that 

AMD1 levels can be modulated upon mTORC1 inhibition with Everolimus (RAD001). To further 

study the extent of our findings, we sought to validate our data in human specimens from a 

clinical trial with RAD001. Thanks to the collaboration with Dr. Baselga and Dr.Tabernero´s 

laboratory at Vall D´Hebron Hospital, we had access to pre- and post-treatment biopsy samples 

from cancer patients with advanced solid tumors treated with either daily (5 or 10 mg) or weekly 

(20 or 50 mg) administration (Fig. R54A) of RAD001 (Tabernero et al., 2008). 

Paired pre- and post-treatment biopsies were processed by IHC to assess AMD1 

immunoreactivity and analyze changes upon RAD001 treatment. To quantify AMD1 protein 

expression,an H-Scoring was performed. Strikingly, 62% of the patient biopsies analyzed 

exhibited a decrease in AMD1 levels upon RAD001 treatment in the tumor (Fig. R54B), as 

appreciable in the decreased immunoreactivity of AMD1 in the post-treatment staining of biopsies 

(Fig. R54C, lower panels) compared to pre-treatment samples (Fig. R54C, upper panels). 

To further analyze whether AMD1 levels were differently altered in the RAD001 treatment 

regimens, we evaluated differential AMD1 immunoreactivity for each regime. Interestingly, AMD1 

levels were significantly decreased only in patients treated with low doses of Everolimus (a 

maximum cumulative dose of 35mg/week; 5mg/day or 20mg/week), but not in response to high 

dose regimens (a minimum cumulative dose of 50mg/week; 10mg/day or 50mg/week) (Fig. 

R55A). Strikingly, the Everolimus regime resulting in AMD1 reduction was the only capable of 

impacting tumor cell proliferation, assessed by Ki67 staining (Fig, R55B). 

Analysis of the phosphorylation level of molecular markers of mTOR pathway showed 

that phosphorylation of all markers downstream mTOR (S6S235/236, S6S240/244, 4EBPT70 and 

eukaryotic initiation factor 4G, eIF4GS1106) was significantly inhibited at the time-points analyzed 

irrespective of the Everolimus regime (Fig.  R55C). This data suggests that AMD1 is a more 

sensitive biomarker of therapeutic efficacy for mTORC1 than other targets evaluated. AKT 

SECTION SUMMARY   

 Methionine deficient diet resulted insufficient to revert the metabolic 

alterations observed in Ptenpc-/- mice and did not show therapeutic 

advantage, compared to regular Chow diet fed mice. 

 Pharmacological AMD1 inhibition with SAM486A in vivo showed no 

efficacy in decreasing dcSAM levels, and lacked therapeutic potential. 
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phosphorylation, which stands upstream mTOR, showed trend to upregulation upon high dose 

administration (Tabernero et al., 2008). This upregulation is caused by a negative feedback loop 

inducing upstream insulin-like growth factor 1 receptor (IGF-1R) signaling, which in term would 

result in AKT activation (O’Reilly et al., 2006; Tabernero et al., 2008). This feedback loop would 

also explain higher polyamine content upon re-phosphorylation of AKT (Rajeeve et al., 2013) and 

the rationale for the attenuation of the clinical activity of this agent . 

 

 

Figure R54. Impact of pharmacological mTORC1 inhibition with RAD001 on AMD1 levels in a clinical 

trial. A, Schematic of the different dose regimens administered in the clinical trial (5-10 mg/day or 20-50 

mg/week) B,Quantification of AMD1 immunoreactivity difference (H-score change) between pre- and post-

treatment biopsies. C, Representative images of AMD1 staining by IHQ in pre- and post-treatment biopsies 

and H-score quantification of each case. ΔH: H-score difference. 

 

 In conclusion,our data led us to hypothesize that the effect on AMD1 upon mTORC1 

inhibitionisresponsible of the reduced cancer cell proliferation and thus, unveil AMD1 as an 

important marker to monitor in mTOR-targeting therapies. 

 

A

P
re

-t
re

a
tm

e
n

t
O

n
-t

re
a
tm

e
n
t

Patient ID#9

H-score = 270

H-score = 210

Patient ID#37

H-score = 180

H-score = 0

Patient ID#10

H-score = 270

H-score = 100

Moderate
35.7%

Moderate
14.3%

Strong
7.1%

Strong
28.6%

No change
14.3%

AMD1 increased on-

treatment with Everolimus

AMD1 decreased on-

treatment with Everolimus

Moderate up 
(0>ΔH>-70)

Strong up 
(ΔH≤-70)

Moderate down
(0<ΔH<70) 

Strong down
(ΔH≥70)

B C

Tabernero J et al, JCO 2008

Adapted from Carracedo A et al, JCI 2008 

(20-50 mg)



Amaia Arruabarrena-Aristorena Doctoral Thesis  
 
 

190 
 

R
E

S
U

L
T

S
 &

 

D
IS

C
U

S
S

IO
N

 I
II
 

Figure R55. Impact of pharmacological mTORC1 inhibition with RAD001 on AMD1 levels in a clinical 

trial. A, Differential AMD1 immunoreactivity (quantified as H-score post-treatment – H-score pre-treatment) 

in each dose regime (5-10 mg/day or 20-50 mg/week). B,Differential AMD1 (left panel) or Ki67 (right 

panel)immunoreactivity (quantified as differential H-score) according to combined low dose regimens (5 

mg/day or 20 mg/week) or combined high dose regimens (10 mg/day or 50 mg/week). C, Differential H-

scores of molecular biomarkers (phospho-AKT, phospho-RpS6, phospho-4EBP1 and phospho-eIF4G) for 

mTOR pathway inhibition according to combined dose regimens mentioned in B. 
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SECTION SUMMARY   

 Regulation of AMD1 levels upon mTORC1 inhibition (Rapamycin, 

RAD001 or Everolimusin vivo) is preserved in human specimens and 

associated to its anti-proliferative activity, enforcing the relevance of this 

enzyme for therapeutic purposes.  
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CONCLUSION III 

 Genetic and pharmacological modulation of AMD1 underscored the 

therapeutic potential of targeting this enzyme 

 Methionine restriction alone and pharmacological AMD1 inhibition with 

SAM486A in vivo did not show any therapeutic benefit against PCa 

development, arguably due to reduced pathway inhibitory effects 

 AMD1 downstream mTORC1 might be a critical component of the 

cytostatic effect of mTORC1inhibitors 

EXPERIMENTAL IMPROVEMENTS AND FUTURE PERSPECTIVES 

 The polyamine rescue experiment could be validated by overexpressing 

AMD1 ectopically and then performing AMD1 silencing with an shRNA 

that targets endogenous, but not exogenous AMD1, mimicking in that 

way endogenous polyamine depletion and further polyamine addition. 

 Methionine restriction beyond 0.15% would be more appropriate to 

evaluate the impact of nutritional manipulation in PCa 

 Combination of SAM486A treatment with DFMO (ODC1 inhibitor) 

couldprevent the increase of putrescine and increase the therapeutic 

benefit in pre-clinical trials 
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I THE REVOLUTION OF OMICS: MILESTONESAND REMAINING 

CHALLENGESIN CANCER RESEARCH 

Omics development and cancer research 

Large-scale profiling methods have been innovatively employed to elucidate metabolic pathways 

implicated in tumor initiation, progression and metastasis (Benjamin et al., 2012). The last of the 

“omics”, metabolomics, has transformed cancer research (Klupczyńska et al., 2015). Previously 

developed “omics”, such as genomics, transcriptomics or proteomics, offered valuable information 

about the expression levels of oncogenes or tumor-suppressors, which led to the discovery of 

altered signaling pathways that play relevant roles in cancer pathogenesis (Stratton et al., 2009; 

Hanash and Taguchi, 2010). However, the information provided by these large-scale profiling 

methods was limited to the quantification of gene alterations and transcript or protein levels, which 

do not necessarily correlate with the enzymatic activities, reaction rates and, in general, metabolic 

dynamics (Holmes et al., 2008). Metabolomics conferred the capacity ofmeasuringmetabolite 

pools, which provide faithful information about substrate, intermediate and product amounts of the 

biochemical reactions that sustain cellular metabolism (Patti et al., 2012). Furthermore, this data 

can provide a speculative idea of the regulation status of involved metabolic enzymes. 

Consequently, metabolomics is considered the OMIC that most closely relates to the phenotype 

(Klupczyńska et al., 2015). 

 The technological blooming of instrumentation offered a broad variety of metabolomic 

techniques, from untargeted screenings to targeted MFA. Steady-state metabolomics provide 

valuable information regarding deregulated metabolic pathways. However, this type of 

metabolomics offers a static view, a snapshot of the metabolome, providing cues about the 

altered biochemical reactions in a particular moment (Zhao and Yang, 2015). The challenge of 

capturing the dynamic essence of metabolism was achieved by the development of metabolic flux 

techniques (Zamboni et al., 2015). Non-stationary metabolic flux analysis provides reaction rate 

information and directionality based on the 13C/12C labeling ratio, and recapitulates more closely 

the dynamism of metabolism (Wiechert and Nöh, 2013).  

 In this work we combined untargeted (ToF/MS), targeted (LC-MS) and MFA 

metabolomics in an integrative metabolomics study to faithfully uncover, narrow down and 

validate the most relevant metabolic alterations underlying PCa pathogenesis in murine and 

human specimens. This approach allowed us to characterize a metabolic wiring showing 

increased flux from methionine cycle towards polyamine metabolic pathway in PCa. Importantly, 

the metabolic routes identified by ToF/MS in the murine prostates, were then validated by LC/MS 

and MFA employing murine, human and cell line samples to elucidate the extent and relevance of 

this metabolic switch in PCa. 
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Challenges and future prospects of metabolomics in eukaryotes  

Despite the informative potential of metabolomics and the valuable information obtained by this 

approach, the technology exhibits limitations and faces challenges in the analysis of samples of 

eukaryotic origin. Contrary to prokaryotic cells, eukaryotic cells arecompartmentalized into 

specialized organelles, with compartment-specific and shared metabolic activities (Wahrheit et al., 

2011). Furthermore, cells have achieved sophisticated mechanisms to separate zones inside 

each compartment, as liquid-liquid phase separation, leading to membraneless 

compartmentalization (Aguzzi and Altmeyer, 2016). Compartmented subcellular structure results 

in numerous cellular metabolic microenvironments (Wahrheit et al., 2011), which allow the 

isolation and regulation of the numerous reactions that take place within a cell. However, 

compartmentalization has a price: the development of communication mechanisms to transmit 

signals and exchange material among the different organelles (Prinz, 2014). In turn, subcellular 

compartmentalization remarkably complicates the interpretation of metabolic networks from whole 

cell lysates (Niklas et al., 2010). Most current techniques obviate this variable and measure 

average labeling and metabolite levels of all mixed compartments in a cell (Buescher et al., 2015).  

 These facts are in support of our results. Indeed, although increased entrance (dcSAM) 

and exit (ac-polyamines) metabolites were detected, polyamine pools did not show consistent 

alterations, but rather remained fairly constant throughout the different experimental approaches 

addressed. In a metaphoric comparison, we could imagine polyamine reservoir as a water tank 

with continuous enter/exit flux, where an increased influx will be immediately compensated with a 

proportional efflux. In a biological context where the influx is increased (in our case Pten loss), the 

metabolomics data would reveal as increased influx and efflux metabolites, without major 

changes in the total pool of the central metabolites. Our hypothesis was reinforced by the 

metabolic flux experiments. The dynamic essence of this technique provided us the opportunity to 

demonstrate the increased production of dcSAM with carbons being incorporated into polyamines 

and subsequently into their acetylated derivatives (Fig. D2). Thus, our results highlight the 

relevance changes in polyamine influx and efflux, rather than total polyamine pools. 

Compartmentalization is particularly relevant when studying polyamine dynamics. Polyamines 

have been suggested to exhibit vesicle sequestration upon cell internalization through yet 

undefined mechanisms (Poulin et al., 2011). Importantly, quick polyamine through yet undefined 

mechanisms (Poulin et al., 2011). Importantly, quick polyamine  import/export capacity from these 

putative vesicles could explain the rapid regulation of polyamine levels in response to exogenous 

alterations. Moreover, most polyamines are found in RNA-bound complexes (Igarashi and 

Kashiwagi, 2010). These two factors combined imply that the free polyamine pool is minor relative 

to total polyamine amounts. In turn, changes in free polyamines that are negligible when 

measuring total polyamine pool size, could exert profoundeffects in cell biology.  
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Figure D1. Schematic representation of polyamine pools according to the observed in Pten pc-/- mice 
and upon AMD1 inhibition with SAM486A. 
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Figure D2. Schematic representation of the hypothesis postulating increased flux through 
polyamine pathway in prostate cancer. The representation reflects the importance of altered enter and 
exit fluxes despite unaltered total polyamine pools. 
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 The considerations postulated herein might be of vital importance for therapies targeting 

polyamine metabolism. Indeed, despite the promising results in vitro and in in vivo models, drugs 

targeting polyamine synthesis enzymes, such as DFMO (ODC1) or SAM486A (AMD1) failed to 

show clear antitumoral benefit in clinical trials (Millward et al., 2005; Vlastos et al., 2005; Pless et 

al., 2004; Siu et al., 2002; Paridaens et al., 2000; Eskens et al., 2000; Loprinzi and Messing, 

1992; Horn et al., 1987). The lack of therapeutic efficacy of these and other polyamine pathway 

modulators could be explained in part by the aforementioned data. By targeting de novo 

polyamine synthesis, these drugs should alter free polyamine levels. However, it is plausible that 

these pools are rapidly equilibrated by polyamine export from sequestrating vesicles. Following 

this rationale, polyamine pathway-targeting therapies might need to be rethinked. Probably, 

specific therapies targeting polyamine vesicle sequestration upon internalization would show 

higher benefit.  

 The possibility of measuring metabolites in a compartment-dependent manner could 

profoundly change our understanding of polyamine pathway regulation. In this work we have 

demonstrated that AMD1 is regulated by mTORC1. This serine-threonine kinase complex is 

reported to localize to the lysosome (Sancak et al., 2010). Based on these data, it is tempting to 

speculate that AMD1 could temporarily localize to the lysosome to be subject to mTORC1-

dependent regulation. 

 

II THE INTERPLAY OF mTORC1 SIGNALING AND POLYAMINE 

METABOLISM IN CANCER AND BEYOND 

The crosstalk between signaling and metabolism in cancer 

Most oncogenes and tumor suppressor genes discovered during the genomics era encode 

proteins implicated in signal transduction (Ward and Thompson, 2012). In the last decade of the 

twentieth century, cancer research focused on characterizingthe oncogenic or tumor suppressive 

nature of genes based on gain or loss of function analysis with genetic tools. Traditionally, these 

genes have been attributed the capacity to support the acquisition of cancer hallmarks (Hanahan 

and Weinberg, 2000). However, increasing evidence reveal and alternative scenario, where 

oncogenes and tumor suppressors are essential mediators of the metabolic reprogramming, 

leading to the possibility of metabolic regulation as the ancient function of many of these genes 

(Ward and Thompson, 2012). In the same line, downstream aberrantly activated oncogenic 

signals, cell metabolism is reprogrammed to comply with anabolic needs. Nevertheless, 

metabolism also remodels the signaling network through the control of the epigenetic landscape 

(Pavlova and Thompson, 2016). This renewed understanding of cancer hallmarks implies an 

exquisite crosstalk between signaling and metabolism. In this sense, we provide a direct link 

between one of the master sensors that integrates and interprets growth signals, mTORC1, and a 
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metabolic route essential for cell proliferation and survival, the polyamine pathway. In support of 

our data, other metabolic enzymes related to polyamine synthesis and catabolism have previously 

been reported to be under the regulation of oncogenes and tumor suppressor genes. Indeed, the 

other rate limiting enzyme in polyamine synthesis, ODC1, is and established direct target of the 

oncogene c-MYC (Bello-Fernandez et al., 1993; Peña et al., 1993). Moreover, this decarboxylase 

cooperates with the oncogene H-RAS in fibroblast transformation in vitro (Shantz and Pegg, 

1998) and in skin carcinogenesis in vivo (Smith et al., 1998). Likewise, the catabolic enzyme 

SSAT1 has been shown to lie under the control of the oncogene K-RAS (Ignatenko et al., 2004). 

 mTORC1 promotes growth and proliferation depending on the nutrient and energy status 

of the cell (Howell and Manning, 2011). This complex induces anabolic metabolism by 

orchestrating several biosynthetic pathways. Under energy and nutrient-availability conditions, 

mTORC1blocks autophagy by inhibiting a protein complex containing the kinases ULK1/2, which 

is essential for the autophagic process (Yecies and Manning, 2011; Neufeld, 2010). However, 

mTORC1 is also capable of directly regulating the synthesis of macromolecules, such as proteins, 

lipids and nucleic acids (Dibble and Manning, 2013a). The implication of mTORC1 in protein 

synthesis regulation is the best characterized of its functions. Indeed, this master regulator 

controls not only cap-dependent translation through phosphorylation of its targets 4EBP1 and 

S6K, but also protein degradation to ensure protein homeostasis (Zhang et al., 2014; Ma and 

Blenis, 2009). mTORC1 is also implicated in the regulation of lipid homeostasis. In fact, this 

protein complex induces lipid synthesis and storage, while inhibiting processes that imply lipid 

consumption (Ricoult and Manning, 2013). In the same line, mTORC1 induces purine synthesis, 

through the regulation of folate cycle (Ben-Sahra et al., 2016), as well as, de novo pyrimidine 

production by direct phosphorylation of carbamoyl-phosphate synthetase 2 (CAD) by its 
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Figure D3. Scheme depicting the anabolic processes regulated downstream mTORC1, including 
AMD1 regulation and polyamine production. 
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downstream target S6K (Ben-Sahra et al., 2013). In this work we have described a previously 

unidentified branch under the control of mTORC1 (Fig. D3). Based on our preliminary data, this 

regulatory pathway would stem from direct phosphorylation of AMD1, although ongoing validation 

experiments are warranted to validate thisassumption. If our hypothesis is confirmed, AMD1 

would be a direct target immediately downstream mTORC1, together with 4EBP1 and S6K. The 

regulation of AMD1 by mTORC1 is of vital importance since connects a signaling cascade and a 

metabolic pathway, both relevantly implicated in such an essential cellular process as proliferation 

(Dibble and Cantley, 2015; Miller-Fleming et al., 2015). Importantly, this connection also 

intergrates polyamines and the synthesis of macromolecules. Polyamines induce adipogenesis 

(Hyvönen et al., 2013; Ishii et al., 2011) and bind to DNA and RNA affecting their structure and 

stability (Iacomino et al., 2012; Igarashi and Kashiwagi, 2010). Furthermore, Spd is essential for 

eIF5A hypusination, a post-translational modification required for its activation and subsequent 

correct mRNA translation elongation (Park et al., 2009; Cooper et al., 1982). In conclusion, we 

have identified a mTORC1-AMD1-PAs axis, which enriches the metabolic landscape downstream 

mTORC1. 

 

Signaling-metabolism crosstalk beyond cancer 

The fact that polyamine pathway enzymes are so tightly regulated under the control of oncogenes 

and tumor suppressors underscores the relevance of these molecules in cancer and, potentially, 

in physiology. We show that mTORC1 regulates polyamine synthesis to support proliferation. 

Indeed, both mTORC1 signaling and polyamines are involved in relevant processes throughout 

our lifespan. This perspective well correlates with new perspectives on aging, which define this 

vital process as "any change in an organism over time", thus aging being synonymous of change 

rate (Bowen and Atwood, 2004).In view of this, the developmental processes occurring in 

mammals sequentially through lifespan could reasonably be separated into a "positive phase", 

from conception to adulthood; followed by a "negative phase", senescence, from adulthood to 

death (Scalabrino and Ferioli, 1984). 

 Embryonic development and tissue growth are processes that imply high proliferation and 

change rates ("positive phase"). In this context, mTORC1 is of vital importance. In fact, germline 

deletion of mTOR components showed that both mTORC1 and mTORC2 are essential during 

embryogenesis, although mTORC1 is primordial at early stages of the development, whereas 

mTORC2 plays its decisive role at midgestation (Guertin et al., 2009). In fact, mTOR is criticalfor 

gastrulation and tissue growth during organogenesis (Land et al., 2014). Interestingly, polyamines 

are essential during embryonic development. Knockout of both polyamine biosynthetic enzymes 

(AMD1 and ODC1) lead to embryonic lethality at early stages of development (Nishimura et al., 

2002; Pendeville et al., 2001). In the same line, polyamines play a relevant role during pregnancy, 

especially during first half of development (Sooranna et al., 1998). These data support a role for 

mTORC1-AMD1-PAs in early life stages.  
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 The connection of this axis might result less certain in later stages of life, when 

proliferation requirements are reduced. Experimental evidence suggest that mTOR controls aging 

through the regulation of several downstream processes (Blagosklonny and Hall, 2009). 

Researchers in the gerontology field support the notion of non-programmed aging, which 

hypothesizes that aging is the consequence of the incorrect inactivation of the growth program 

(Blagosklonny, 2013). Aging impacts on the entire organism, through the accumulation of damage 

in molecules, cells and tissues over time. Tissue dysfunction in aging has been correlated with a 

switch in cellular status,from reversible G0 quiescence to irreversible G0 senescence, a 

proliferation block driven by mTOR (Demidenko and Blagosklonny, 2008) and named 

"geroconversion". This process leads to hypertrophic cells, due to active mTOR signaling despite  

cell-cycle inhibition (Blagosklonny, 2014). Importantly, both mTORC1 specific and dual mTORC1 

and mTORC2 inhibitors have been demonstrated to efficiently prevent geroconversion, preserving 

proliferative potential (Leontieva et al., 2015; Sousa-Victor et al., 2015; Demidenko et al., 

2009).However, polyamine levels show a sustained inverse correlation with ageing, although 

there is certain tissue specificity. (Nishimura et al., 2006; Scalabrino and Ferioli, 1984). For 

instance, spermidine and spermine levels decreasewith age in mice (Nishimura et al., 2006) and 

humans (Pucciarelli et al., 2012). Strikingly, in this study nona/centenarian people showed an 

enrichment in Spd and Spm concentrations relative to total polyamines, suggesting that 

maintaining these polyamines in aging contribute to longevity (Pucciarelli et al., 2012). This 

evidence supports the notion that polyamines are required for the extension of lifespan. 
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Figure D4. Interplay between PI3K-mTORC1 signaling and polyamine levels. A-B, Crosstalk throughout 
proliferation-related processes in lifespan (A) and cancer (B). 
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  In the search for anti-aging strategies,genetic or pharmacological inhibition of mTOR was 

found to extend lifespan in yeast, nematodes, flies and mice (Harrison et al., 2009; Powers et al., 

2006; Kaeberlein et al., 2005; Kapahi et al., 2004; Jia et al., 2004; Vellai et al., 2003). In turn, 

rapamycin and its derivatives (Rapalogs) have become the best-supported candidates as anti-

aging therapeutics. Likewise, exogenous Spd supplementation was demonstrated to increase the 

lifespan of yeast, flies, worms, human immune cells and to decrease oxidative stress in aging 

mice. In this study Eisenberg and coworkers showed that Spd addition caused general 

hypoacetylation of histone H3 and induced autophagy by promoting acetylation of autophagy-

related autophagy related 7 (ATG7) gene promoter (Eisenberg et al., 2009). Thus, polyamines, 

and especially Spd, have aroused as anti-aging molecules, which can be supplemented in food or 

water to increase their levels in the organism (Minois, 2014). Rapamycin also shares with Spd 

multiple potential mechanisms by which it exerts its anti-aging effect, such as regulation of cell 

growth, autophagy induction and anti-inflammatory mechanisms. Nonetheless, despite its 

encouraging effects rapamycin, it seems unlikely that this drug will be approved for preventive 

use, due to its side effects (Lamming et al., 2013). 

 Our data demonstrate a direct regulation of AMD1 downstream mTORC1, which led us to 

speculate that this axis also operates throughout development and aging. This might be true until 

the axis is disconnected from proliferation. Nevertheless, in conditions where proliferation is 

sustained, such as cancer, the axis might be preserved, as we observed in PCa. In conclusion, 

the analogous activities of PI3K signaling and polyamines, are observed in several facets of life. 

Elucidating this complex relationship would help us better understand physiological processes at 

the cellular and systemic level, and could reveal novel therapeutic avenues for pathological 

alterations related to cell growth and senescence. 

III AMD1 AS A PREDICTIVE BIOMARKER AND TARGET IN 

PROSTATE CANCER 

The combination of established clinical-pathological acquaintance with state-of-the-art molecular 

profiling to achieve diagnostic, prognostic and therapeutic strategies is termed precision medicine 

(Mirnezami et al., 2012). In this regard, genomic technologies have inspired this stratification 

approach, whereas other high throughput technologies that provide better information about the 

phenotype of the tumor remain underdeveloped in this area of research (Friedman et al., 2015). In 

the particular case of PCa, precision medicine is yet far from becoming a reality. Indeed, 

stratification of PCa patients depends on very general parameters, such as PSA, Gleason Score 

and TNM classification, and targeted therapy is limited to the inhibition of androgen signaling. 

Therefore, novel stratification markers and targeted therapies are needed to treat the disease 

once first line therapy (surgery or radiotherapy) fails. This fact underscores the need for reliable 

and reproducible prognostic biomarkers to discriminate patients that would benefit from early 

adjuvant treatment from those requiring more aggressive therapy (Sedelaar and Schalken, 2015). 

Patient derived tumor xenograft (PDTX) models, which maintain the molecular, genetic and 
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histological heterogeneity of the tumor of origin, might represent excellent platforms to predict 

clinical efficacy based on potential biomarkers (Cho et al., 2016; Tentler et al., 2012). 

 In this project we have shown that the rapamycin-derivative Everolimus is capable of 

decreasing AMD1 levels in vivo.Interestingly, a decrease in AMD1 immunoreactivity exhibits 

better association to a decrease in tumor cell proliferation than the rest of mTORC1 activity 

readout proteins (Tabernero et al., 2008), that remained inhibited regardless of Everolimus regime 

and therapeutic effects. Thus, we hypothesize that AMD1 might be a key contributing factor to the 

cytostatic effect triggered by Everolimus. This fact would be of relevance to predict therapeutic 

efficacy, and underscore the relevance of AMD1 as a potential predictive biomarker for response 

to mTORC1inhibition-based therapies. 

 Genetic and pharmacological inhibition of AMD1 in vitro and in xenograft models 

demonstrated the therapeutic potential of targeting this metabolic enzyme for PCa treatment. 

However, in contrast to previous studies showing and antitumoral effect of SAM486A in xenograft 

models (Dorhout et al., 1995a, 1995b), pharmacological inhibition of AMD1 in vivo failed to 

support an antitumoral effect in our PCa model. This drug reached the prostate, but was unable to 

efficiently decrease neither dcSAM, nor polyamine levels. For yet unclear reasons, SAM486A led 

to a dramatic induction of putrescine levels (Fig. R53). One plausible explanation for this effect is 

that SAM486A would not reach prostate cancer cells at sufficient concentration to exert its 

pharmacological activity. In this regard, the emerging field of drug nanoencapsulation might 

provide advantageous alternatives. Nanoparticles (NP) possess unique properties, such as 

nanoscopic size, large surface-to-volume ratio, the capacity to encapsulate large payloads and a 

modifiable external surface. These characteristics provide them with advantages over bulk drugs: 

the possibility of adding targeting-ligands on their surface, efficient navigation through the often 

hostile microenvironments in the body, the capability of co-transporting multiple drugs, controlled 

release of the drug and increased cellular uptake (Davis et al., 2008). Furthermore, NPs offer the 

possibility of targeting them to specific organelles to achieve maximal therapeutic benefit, with 

minimal side-effects (Biswas and Torchilin, 2014). Thus, encapsulation of SAM486A into 

nanoparticles would allow directly targeting the drug to the prostate and would facilitate its 

incorporation, thereby enhancing the probabilities of achieving an effective therapeutic 

concentration. This approach could potentiate the efficacy of this drug. 

 Our data reflects another alternative for targeting AMD1, mTORC1 inhibition. We have 

shown that mTORC1 inhibition with rapamycin and Torin-1 effectively decreases AMD1 protein 

levels and dcSAM production in vitro and in vivo. We propose that Everolimus could show 

therapeutic benefit in patients with high AMD1 levels. Importantly, Everolimus-based 

combinatorial therapy might increase treatment efficacy, decrease the emergence of resistance 

and avoid therapy-induced metastasis (Nastiuk and Krolewski, 2016). Despite the discouraging 

results in the latest attempts to test rapamycin for combination therapies in prostate cancer 

clinical trials (Vaishampayan et al., 2015; Nakabayashi et al., 2012), the elucidation of AMD1 as 
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the plausible downstream effector of mTORC1 raises the alternative of combining Everolimus with 

another polyamine pathway inhibitor, such as the ODC1 inhibitor, difluoromethylornithine (DFMO). 

Previous studies in which DFMO in combination with SAM486A showed beneficial effect against 

leukemic xenografts support this hypothesis. In summary, we believe AMD1 shows predictive 

capacity for mTORC1 inhibition-based therapies and represents a potential target for combination 

therapies in PCa. 
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 The results obtained throughout this thesis work confirm our initial hypothesis and 

demonstrate that oncogenic events trigger the deregulation of metabolism in prostate cancer. The 

results are summarized as follows: 

 Pten loss induces a metabolic switch from methionine cycle towards polyamine synthesis 

pathway in murine and human prostate cancer.  

 Gnmt loss as a single or compound genetic event is not relevant for disease initiation. 

 AMD1 increase upon Pten loss induces the metabolic switch observed in prostate cancer. 

 AMD1 is under the control of mTORC1. 

 We propose the direct phosphorylation of proAMD1 by mTORC1 as the mechanism of 

regulation, leading to stabilization of the proenzyme and subsequent processing. 

 Genetic and pharmacological inhibition of AMD1 exhibits therapeutic potential. 

 

 

GENERAL CONCLUSION 

The results obtained in this thesis work demontrate that the oncogenic loss of 

Pten induces the metabolic deregulation in prostate cancer, through the 

increase of AMD1. Furthermore, we propose a mechanism of AMD1 

regulation downstream mTORC1, which opens new alternatives to target this 

enzyme. 
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beta-aspartyl-L-phenylalanine // 
HMDB11167:.NaCl.H(+) // 339.0723 // 23

4.0000 -1.0534 0.2248 1.0000 -1.0784 0.0001 1.0000 -0.7296 0.0097 1.0000 -1.1763 0.0000 1.0000 -1.2294 0.0000

m759 147.1139

L-Lysine // HMDB00182:.H(+) // 147.1139 // 94 
/// D-Lysine // HMDB03405:.H(+) // 147.1139 // 

94 /// (3S,5S)-3,5-Diaminohexanoate // 
HMDB12115:.H(+) // 147.1139 // 94 /// (3S)-3,6-

Diaminohexanoate // HMDB12114:.H(+) // 
147.1139 // 94 /// Pipecolic acid // 

HMDB00070:.NH4(+) // 147.1139 // 10 /// L-
Pipecolic acid // HMDB00716:.NH4(+) // 

147.1139 // 10 /// N4-Acetylaminobutanal // 
HMDB04226:.NH4(+) // 147.1139 // 10 /// D-

Pipecolic acid // HMDB05960:.NH4(+) // 
147.1139 // 10

4.0000 -1.0879 0.4549 1.0000 -0.8222 0.0000 1.0000 -1.1900 0.0000 1.0000 -0.6566 0.0001 1.0000 -1.6827 0.0000

m1617 219.1481
5-Methoxydimethyltryptamine // 

HMDB02004:.H(+) // 219.1481 // 100 /// 
Gamma-glutamyl-L-putrescine // 

HMDB12230:[+1].H(+) // 219.1481 // 5
4.0000 -1.1083 0.0721 1.0000 -1.0134 0.0000 1.0000 -1.0916 0.0000 1.0000 -1.1595 0.0000 1.0000 -1.1689 0.0000

m144 98.9860
Phosphoric acid // HMDB02142:.H(+) // 98.9860 
// 73 /// Acetic acid // HMDB00042:.H/K.H(+) // 

98.9860 // 8 /// Glycolaldehyde // 
HMDB03344:.H/K.H(+) // 98.9860 // 8

4.0000 -1.1257 0.3138 1.0000 -0.9543 0.0004 1.0000 -0.8140 0.0047 1.0000 -1.2055 0.0000 1.0000 -1.5289 0.0000

Supplementary table. Time of Flight analysis of murine prstate tissue from Pten wt or prostate deficient mice at 3 months (X3M) or 6 moths (X6M) in AP and DLP lobes.
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m510 130.0872

Pipecolic acid // HMDB00070:.H(+) // 130.0872 
// 100 /// L-Pipecolic acid // HMDB00716:.H(+) 
// 130.0872 // 100 /// N4-Acetylaminobutanal 
// HMDB04226:.H(+) // 130.0872 // 100 /// D-
Pipecolic acid // HMDB05960:.H(+) // 130.0872 
// 100 /// trans-1,2-Dihydrobenzene-1,2-diol // 

HMDB01164:.NH4(+) // 130.0872 // 10

4.0000 -1.1554 0.3959 1.0000 -1.0800 0.0001 1.0000 -1.1290 0.0001 1.0000 -0.7275 0.0056 1.0000 -1.6853 0.0000

m4407 491.1316
L-2-Aminoadipate adenylate // 

HMDB06941:.H(+) // 491.1316 // 100 /// 
11beta,20-Dihydroxy-3-oxopregn-4-en-21-oic 

acid // HMDB11651:.(NaCl)2.H(+) // 491.1316 // 
13

4.0000 -1.1949 0.4107 1.0000 -1.3480 0.0000 1.0000 -0.6970 0.0099 1.0000 -1.6632 0.0000 1.0000 -1.0714 0.0001

m965 162.0772

Aminoadipic acid // HMDB00510:.H(+) // 
162.0772 // 87 /// 3-Hexenedioic acid // 

HMDB00393:.NH4(+) // 162.0772 // 10 /// 3-
Methylglutaconic acid // HMDB00522:.NH4(+) // 
162.0772 // 10 /// (E)-2-Methylglutaconic acid 
// HMDB02266:.NH4(+) // 162.0772 // 10 /// 7-
Aminomethyl-7-carbaguanine // HMDB11690:-
H2O.H(+) // 162.0772 // 10 /// Glucosamine // 

HMDB01514:-H2O.H(+) // 162.0772 // 9 /// 
Fructosamine // HMDB02030:-H2O.H(+) // 

162.0772 // 9

4.0000 -1.2200 0.1892 1.0000 -1.1564 0.0000 1.0000 -0.9914 0.0000 1.0000 -1.3016 0.0000 1.0000 -1.4307 0.0000

m1566 214.9955

2-Oxo-3-hydroxy-4-phosphobutanoic acid // 
HMDB06801:.H(+) // 214.9955 // 100 /// 
Ascorbic acid // HMDB00044:.H/K.H(+) // 

214.9955 // 16 /// D-Glucurono-6,3-lactone // 
HMDB06355:.H/K.H(+) // 214.9955 // 16 /// 

Ascorbic acid // HMDB00044:.K(+) // 214.9955 
// 8 /// D-Glucurono-6,3-lactone // 

HMDB06355:.K(+) // 214.9955 // 8 /// 
Cyclohexanone // HMDB03315:.(NaCl)2.H(+) // 

214.9955 // 6

4.0000 -1.2285 0.2206 1.0000 -1.1241 0.0000 1.0000 -1.1637 0.0000 1.0000 -1.0715 0.0000 1.0000 -1.5546 0.0000

m663 142.0268

O-Phosphoethanolamine // HMDB00224:.H(+) 
// 142.0268 // 100 /// Dimethylglycine // 

HMDB00092:.H/K.H(+) // 142.0268 // 10 /// 
Gamma-Aminobutyric acid // 

HMDB00112:.H/K.H(+) // 142.0268 // 10 /// L-
Alpha-aminobutyric acid // 

HMDB00452:.H/K.H(+) // 142.0268 // 10 /// D-
Alpha-aminobutyric acid // 

HMDB00650:.H/K.H(+) // 142.0268 // 10 /// 2-
Aminoisobutyric acid // HMDB01906:.H/K.H(+) 
// 142.0268 // 10 /// (S)-b-aminoisobutyric acid 
// HMDB02166:.H/K.H(+) // 142.0268 // 10 /// 

(R)-b-aminoisobutyric acid // 
HMDB02299:.H/K.H(+) // 142.0268 // 10 /// 3-

Aminoisobutanoic acid // HMDB03911:.H/K.H(+) 
// 142.0268 // 10 /// Dimethylglycine // 

HMDB00092:.K(+) // 142.0268 // 5 /// Gamma-
Aminobutyric acid // HMDB00112:.K(+) // 

142.0268 // 5 /// L-Alpha-aminobutyric acid // 
HMDB00452:.K(+) // 142.0268 // 5 /// D-Alpha-

aminobutyric acid // HMDB00650:.K(+) // 
142.0268 // 5 /// 2-Aminoisobutyric acid // 
HMDB01906:.K(+) // 142.0268 // 5 /// (S)-b-
aminoisobutyric acid // HMDB02166:.K(+) // 

142.0268 // 5 /// (R)-b-aminoisobutyric acid // 
HMDB02299:.K(+) // 142.0268 // 5 /// 3-

Aminoisobutanoic acid // HMDB03911:.K(+) // 
142.0268 // 5

4.0000 -1.2293 0.4047 1.0000 -0.8021 0.0005 1.0000 -1.4331 0.0000 1.0000 -0.9928 0.0000 1.0000 -1.6891 0.0000

m982 163.0750 Safrole // HMDB02333:.H(+) // 163.0750 // 100 4.0000 -1.2307 0.0436 1.0000 -1.2461 0.0000 1.0000 -1.1713 0.0000 1.0000 -1.2748 0.0000 1.0000 -1.2304 0.0000
m3458 389.2524 5,6-Dihydroxyprostaglandin F1a // 

HMDB12109:.H(+) // 389.2524 // 100 4.0000 -1.2369 0.3401 1.0000 -1.6806 0.0000 1.0000 -1.2490 0.0000 1.0000 -1.1608 0.0000 1.0000 -0.8571 0.0004

m264 109.0287

Quinone // HMDB03364:.H(+) // 109.0287 // 
100 /// 1,2-Benzoquinone // HMDB12133:.H(+) 
// 109.0287 // 100 /// Gamma-Butyrolactone // 

HMDB00549:.H/Na.H(+) // 109.0287 // 8 /// 
Oxolan-3-one // HMDB02523:.H/Na.H(+) // 

109.0287 // 8 /// Diacetyl // 
HMDB03407:.H/Na.H(+) // 109.0287 // 8 /// But-

2-enoic acid // HMDB10720:.H/Na.H(+) // 
109.0287 // 8

4.0000 -1.3449 0.1220 1.0000 -1.3798 0.0000 1.0000 -1.3312 0.0000 1.0000 -1.4810 0.0000 1.0000 -1.1875 0.0000

m1276 189.1612
N6,N6,N6-Trimethyl-L-lysine // 

HMDB01325:.H(+) // 189.1612 // 69 /// 
Gabapentin // HMDB05015:.NH4(+) // 189.1612 

// 10
4.0000 -1.3504 0.2480 1.0000 -1.2960 0.0000 1.0000 -1.0984 0.0011 1.0000 -1.3151 0.0000 1.0000 -1.6922 0.0000

m2 55.0189
2-Propyn-1-al // HMDB06803:.H(+) // 55.0189 // 
96 /// Pyruvaldehyde // HMDB01167:-H2O.H(+) 

// 55.0189 // 10 /// Malondialdehyde // 
HMDB06112:-H2O.H(+) // 55.0189 // 10

4.0000 -1.3712 0.1631 1.0000 -1.4370 0.0000 1.0000 -1.1481 0.0000 1.0000 -1.3684 0.0000 1.0000 -1.5314 0.0000

m5505 608.0843
Uridine diphosphate-N-acetylglucosamine // 

HMDB00290:.H(+) // 608.0843 // 98 /// Uridine 
diphosphate-N-acetylgalactosamine // 

HMDB00304:.H(+) // 608.0843 // 98
4.0000 -1.3955 0.5839 1.0000 -1.3068 0.0000 1.0000 -0.6927 0.0080 1.0000 -1.4690 0.0000 1.0000 -2.1137 0.0000
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m1641 221.1175 N-Acetyl-b-glucosaminylamine // 
HMDB01104:.H(+) // 221.1175 // 63 4.0000 -1.4692 0.0633 1.0000 -1.4014 0.0000 1.0000 -1.5496 0.0000 1.0000 -1.4417 0.0000 1.0000 -1.4838 0.0000

m1874 243.0247 Inositol cyclic phosphate // HMDB01125:.H(+) // 
243.0247 // 100 4.0000 -1.4757 0.3377 1.0000 -1.4158 0.0000 1.0000 -1.0751 0.0000 1.0000 -1.5160 0.0000 1.0000 -1.8958 0.0000

m2402 290.0858

N-Succinyl-2-amino-6-ketopimelate // 
HMDB12266:.H(+) // 290.0858 // 100 /// 
Adenosine // HMDB00050:.H/Na.H(+) // 

290.0858 // 38 /// Deoxyguanosine // 
HMDB00085:.H/Na.H(+) // 290.0858 // 38 /// 
Neuraminic acid // HMDB00830:.H/Na.H(+) // 

290.0858 // 33 /// Adenosine // 
HMDB00050:.Na(+) // 290.0858 // 14 /// 
Deoxyguanosine // HMDB00085:.Na(+) // 

290.0858 // 14 /// Neuraminic acid // 
HMDB00830:.Na(+) // 290.0858 // 12

4.0000 -1.4777 0.3933 1.0000 -0.9745 0.0068 1.0000 -1.6864 0.0000 1.0000 -1.8739 0.0000 1.0000 -1.3760 0.0004

m5570 615.1504 Cytidine monophosphate N-acetylneuraminic 
acid // HMDB01176:.H(+) // 615.1504 // 75 4.0000 -1.5080 0.1152 1.0000 -1.5394 0.0000 1.0000 -1.3397 0.0000 1.0000 -1.5527 0.0000 1.0000 -1.6003 0.0000

m4421 492.9931 2 -Deoxyinosine triphosphate // 
HMDB03537:.H(+) // 492.9931 // 100 4.0000 -1.5238 0.4706 1.0000 -1.3615 0.0000 1.0000 -1.0142 0.0000 1.0000 -1.5834 0.0000 1.0000 -2.1360 0.0000

m2504 298.0977 5 -Methylthioadenosine // HMDB01173:.H(+) // 
298.0977 // 100 4.0000 -1.5445 0.3976 1.0000 -1.5381 0.0000 1.0000 -1.0222 0.0022 1.0000 -1.6333 0.0000 1.0000 -1.9844 0.0000

m2313 282.0985 4-Hydroxyphenylacetylglutamine // 
HMDB06061:.H(+) // 282.0985 // 100 4.0000 -1.5930 0.4208 1.0000 -1.9625 0.0000 1.0000 -0.9941 0.0000 1.0000 -1.7774 0.0000 1.0000 -1.6380 0.0000

m38 73.0288
Pyruvaldehyde // HMDB01167:.H(+) // 73.0288 

// 100 /// Malondialdehyde // 
HMDB06112:.H(+) // 73.0288 // 100

4.0000 -1.7501 0.2295 1.0000 -1.6041 0.0000 1.0000 -1.5329 0.0000 1.0000 -1.8233 0.0000 1.0000 -2.0402 0.0000

m1003 165.0765

L-Fucose // HMDB00174:.H(+) // 165.0765 // 
100 /// Rhamnose // HMDB00849:.H(+) // 
165.0765 // 100 /// 1,5-Anhydrosorbitol // 

HMDB02712:.H(+) // 165.0765 // 100 /// Beta-D-
Fucose // HMDB03081:.H(+) // 165.0765 // 100 

/// L-Rhamnulose // HMDB10207:.H(+) // 
165.0765 // 100 /// 2-Deoxygalactopyranose // 
HMDB12327:.H(+) // 165.0765 // 100 /// S-(2-

carboxypropyl)-Cysteamine // 
HMDB02169:[+1].H(+) // 165.0765 // 12 /// 

Galactitol // HMDB00107:-H2O.H(+) // 165.0765 
// 7 /// Sorbitol // HMDB00247:-H2O.H(+) // 
165.0765 // 7 /// Mannitol // HMDB00765:-

H2O.H(+) // 165.0765 // 7 /// L-Iditol // 
HMDB11632:-H2O.H(+) // 165.0765 // 7

4.0000 -1.7919 0.1879 1.0000 -1.8893 0.0000 1.0000 -1.7940 0.0000 1.0000 -1.5283 0.0000 1.0000 -1.9560 0.0000

m1185 183.0504

3-Methyluric acid // HMDB01970:.H(+) // 
183.0504 // 100 /// 9-Methyluric acid // 

HMDB01973:.H(+) // 183.0504 // 100 /// 1-
Methyluric acid // HMDB03099:.H(+) // 
183.0504 // 100 /// 7-Methyluric acid // 

HMDB11107:.H(+) // 183.0504 // 100

4.0000 -1.8532 0.3210 1.0000 -1.5959 0.0000 1.0000 -1.5560 0.0000 1.0000 -2.1519 0.0000 1.0000 -2.1090 0.0000

m7245 876.2956

Lacto-N-fucopentaose III // 
HMDB06576:.H/Na.H(+) // 876.2956 // 63 /// 

Lacto-N-fucopentaose-2 // 
HMDB06577:.H/Na.H(+) // 876.2956 // 63 /// 

Lex-lactose // HMDB06696:.H/Na.H(+) // 
876.2956 // 63 /// Lacto-n-fucopentaose I // 
HMDB06705:.H/Na.H(+) // 876.2956 // 63 /// 

Lacto-N-fucopentaose V // 
HMDB06706:.H/Na.H(+) // 876.2956 // 63

4.0000 -1.8635 1.1104 1.0000 -1.0908 0.0001 1.0000 -1.7322 0.0000 1.0000 -1.1589 0.0000 1.0000 -3.4723 0.0000

m17 62.0606

Ethanolamine // HMDB00149:.H(+) // 62.0606 
// 100 /// L-Serine // HMDB00187:-CO2.H(+) // 

62.0606 // 10 /// D-Serine // HMDB03406:-
CO2.H(+) // 62.0606 // 10 /// O-

Phosphoethanolamine // HMDB00224:-
HPO3.H(+) // 62.0606 // 8

4.0000 -1.8965 0.5065 1.0000 -2.1527 0.0000 1.0000 -1.1403 0.0000 1.0000 -2.2060 0.0000 1.0000 -2.0872 0.0000

m7199 868.1383

Succinyl-CoA // HMDB01022:.H(+) // 868.1383 
// 100 /// Methylmalonyl-CoA // 

HMDB01269:.H(+) // 868.1383 // 100 /// R-
Methylmalonyl-CoA // HMDB02255:.H(+) // 
868.1383 // 100 /// S-Methylmalonyl-CoA // 

HMDB02310:.H(+) // 868.1383 // 100

4.0000 -1.9301 0.2726 1.0000 -1.9944 0.0001 1.0000 -1.7047 0.0017 1.0000 -1.7323 0.0006 1.0000 -2.2890 0.0000

m4582 511.1162

3-Methyl-1-hydroxybutyl-ThPP // 
HMDB06865:.H(+) // 511.1162 // 100 /// 2-

Methyl-1-hydroxybutyl-ThPP // 
HMDB12310:.H(+) // 511.1162 // 100 /// 8-iso-
PGA1 // HMDB02236:.(NaCl)3.H(+) // 511.1162 

// 8 /// Prostaglandin A1 // 
HMDB02656:.(NaCl)3.H(+) // 511.1162 // 8 /// 

Prostaglandin B1 // HMDB02982:.(NaCl)3.H(+) // 
511.1162 // 8

4.0000 -1.9542 0.6627 1.0000 -2.0776 0.0000 1.0000 -1.0114 0.0014 1.0000 -2.1673 0.0000 1.0000 -2.5606 0.0000
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m717 145.0499

3-Hexenedioic acid // HMDB00393:.H(+) // 
145.0499 // 100 /// 3-Methylglutaconic acid // 
HMDB00522:.H(+) // 145.0499 // 100 /// (E)-2-
Methylglutaconic acid // HMDB02266:.H(+) // 
145.0499 // 100 /// 2-Hydroxyadipic acid // 

HMDB00321:-H2O.H(+) // 145.0499 // 10 /// 3-
Hydroxyadipic acid // HMDB00345:-H2O.H(+) // 
145.0499 // 10 /// 3-Hydroxymethylglutaric acid 
// HMDB00355:-H2O.H(+) // 145.0499 // 10 /// 

2(R)-Hydroxyadipic acid // HMDB00368:-
H2O.H(+) // 145.0499 // 10 /// Glucosan // 

HMDB00640:-H2O.H(+) // 145.0499 // 10 /// 
Inositol cyclic phosphate // HMDB01125:-

H3PO4.H(+) // 145.0499 // 8 /// Erythritol // 
HMDB02994:.H/Na.H(+) // 145.0499 // 7 /// D-
Threitol // HMDB04136:.H/Na.H(+) // 145.0499 

// 7

4.0000 -1.9775 0.2866 1.0000 -1.8237 0.0000 1.0000 -1.6594 0.0000 1.0000 -2.1413 0.0000 1.0000 -2.2855 0.0000

m2968 340.1038

6-Hydroxy-5-methoxyindole glucuronide // 
HMDB10362:.H(+) // 340.1038 // 92 /// 5-
Hydroxy-6-methoxyindole glucuronide // 
HMDB10363:.H(+) // 340.1038 // 92 /// 

Topiramate // HMDB05034:.H(+) // 340.1038 // 
44

4.0000 -2.0220 0.5242 1.0000 -1.9965 0.0000 1.0000 -1.3318 0.0000 1.0000 -2.1662 0.0000 1.0000 -2.5935 0.0000

m1584 216.0641

Glycerylphosphorylethanolamine // 
HMDB00114:.H(+) // 216.0641 // 100 /// 

Phenylacetylglycine // HMDB00821:.Na(+) // 
216.0641 // 20 /// Methylhippuric acid // 

HMDB00859:.Na(+) // 216.0641 // 20 /// 2-
Methylhippuric acid // HMDB11723:.Na(+) // 

216.0641 // 20 /// Phenylacetylglycine // 
HMDB00821:.H/Na.H(+) // 216.0641 // 20 /// 

Methylhippuric acid // HMDB00859:.H/Na.H(+) 
// 216.0641 // 20 /// 2-Methylhippuric acid // 
HMDB11723:.H/Na.H(+) // 216.0641 // 20 /// 
Glucosamine-1P // HMDB01109:-CO2.H(+) // 

216.0641 // 6 /// Glucosamine 6-phosphate // 
HMDB01254:-CO2.H(+) // 216.0641 // 6

4.0000 -2.0593 0.5319 1.0000 -2.2906 0.0000 1.0000 -1.2649 0.0000 1.0000 -2.3939 0.0000 1.0000 -2.2876 0.0000

m2129 265.1125 Thiamine // HMDB00235:.H(+) // 265.1125 // 
100 4.0000 -2.1733 0.5043 1.0000 -2.0592 0.0000 1.0000 -1.6429 0.0006 1.0000 -2.1345 0.0000 1.0000 -2.8567 0.0000

m4337 483.0610 Gestrinone // HMDB02720:.(NaCl)3.H(+) // 
483.0610 // 59 4.0000 -2.3934 0.7886 1.0000 -2.4408 0.0000 1.0000 -1.3339 0.0009 1.0000 -2.5615 0.0000 1.0000 -3.2375 0.0000

m1640 221.0784

L-beta-aspartyl-L-serine // HMDB11168:.H(+) // 
221.0784 // 100 /// Guaifenesin // 

HMDB04998:.H/Na.H(+) // 221.0784 // 60 /// 
Guaifenesin // HMDB04998:.Na(+) // 221.0784 

// 13 /// L(-)-Nicotine pestanal // 
HMDB01934:.NaCl.H(+) // 221.0784 // 10 /// 

Anabasine // HMDB04350:.NaCl.H(+) // 
221.0784 // 10 /// 3,4,5-Trimethoxycinnamic 

acid // HMDB02511:-H2O.H(+) // 221.0784 // 5 
/// Trans-2, 3, 4-Trimethoxycinnamate // 
HMDB11721:-H2O.H(+) // 221.0784 // 5

4.0000 -2.5567 0.2958 1.0000 -2.3355 0.0000 1.0000 -2.3063 0.0000 1.0000 -2.6518 0.0000 1.0000 -2.9333 0.0000

m981 163.0612

2-Hydroxyadipic acid // HMDB00321:.H(+) // 
163.0612 // 94 /// 3-Hydroxyadipic acid // 
HMDB00345:.H(+) // 163.0612 // 94 /// 3-

Hydroxymethylglutaric acid // HMDB00355:.H(+) 
// 163.0612 // 94 /// 2(R)-Hydroxyadipic acid // 

HMDB00368:.H(+) // 163.0612 // 94 /// 
Glucosan // HMDB00640:.H(+) // 163.0612 // 94 

/// Fructose 6-phosphate // HMDB00124:-
H3PO4.H(+) // 163.0612 // 7 /// Myo-inositol 1-

phosphate // HMDB00213:-H3PO4.H(+) // 
163.0612 // 7 /// Galactose 1-phosphate // 

HMDB00645:-H3PO4.H(+) // 163.0612 // 7 /// 
Dolichyl phosphate D-mannose // HMDB00994:-

H3PO4.H(+) // 163.0612 // 7 /// Fructose 1-
phosphate // HMDB01076:-H3PO4.H(+) // 
163.0612 // 7 /// Mannose 6-phosphate // 

HMDB01078:-H3PO4.H(+) // 163.0612 // 7 /// D-
Myo-inositol 4-phosphate // HMDB01313:-
H3PO4.H(+) // 163.0612 // 7 /// Glucose 6-
phosphate // HMDB01401:-H3PO4.H(+) // 
163.0612 // 7 /// Glucose 1-phosphate // 

HMDB01586:-H3PO4.H(+) // 163.0612 // 7 /// 
Inositol phosphate // HMDB02985:-H3PO4.H(+) 

// 163.0612 // 7 /// Beta-D-Glucose 6-
phosphate // HMDB03498:-H3PO4.H(+) // 

163.0612 // 7 /// Beta-D-Fructose 6-phosphate 
// HMDB03971:-H3PO4.H(+) // 163.0612 // 7 /// 

D-Tagatose 1-phosphate // HMDB06328:-
H3PO4.H(+) // 163.0612 // 7 /// D-Mannose 1-

4.0000 -3.0721 0.3097 1.0000 -2.8657 0.0000 1.0000 -2.7577 0.0000 1.0000 -3.2591 0.0000 1.0000 -3.4057 0.0000
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m1155 180.0879

7-Aminomethyl-7-carbaguanine // 
HMDB11690:.H(+) // 180.0879 // 100 /// 

Glucosamine // HMDB01514:.H(+) // 180.0879 
// 79 /// Fructosamine // HMDB02030:.H(+) // 

180.0879 // 79 /// 2-Hydroxyadipic acid // 
HMDB00321:.NH4(+) // 180.0879 // 10 /// 3-
Hydroxyadipic acid // HMDB00345:.NH4(+) // 

180.0879 // 10 /// 3-Hydroxymethylglutaric acid 
// HMDB00355:.NH4(+) // 180.0879 // 10 /// 

2(R)-Hydroxyadipic acid // HMDB00368:.NH4(+) 
// 180.0879 // 10 /// Glucosan // 

HMDB00640:.NH4(+) // 180.0879 // 10

4.0000 -3.1365 0.3375 1.0000 -2.9768 0.0000 1.0000 -2.7526 0.0000 1.0000 -3.3053 0.0000 1.0000 -3.5112 0.0000

m727 146.0534
3-Hexenedioic acid // HMDB00393:[+1].H(+) // 
146.0534 // 60 /// 3-Methylglutaconic acid // 

HMDB00522:[+1].H(+) // 146.0534 // 60 /// (E)-
2-Methylglutaconic acid // 

HMDB02266:[+1].H(+) // 146.0534 // 60
4.0000 -8.0329 1.6120 1.0000 -7.3597 0.0001 1.0000 -6.1108 0.0029 1.0000 -9.7047 0.0000 1.0000 -8.9564 0.0000

m3132 356.1582 S-Adenosylmethioninamine // 
HMDB00988:[+1].H(+) // 356.1582 // 28 3.0000 2.2382 0.5438 1.0000 2.1516 0.0004 0.0000 1.5467 0.0169 1.0000 2.8496 0.0000 1.0000 2.4047 0.0002

m6109 682.3244
(3a,5b)-24-oxo-24-[(2-sulfoethyl)amino]cholan-

3-yl-b-D-Glucopyranosiduronic acid // 
HMDB02429:.H/Na.H(+) // 682.3244 // 100

3.0000 1.8443 0.7981 1.0000 1.7312 0.0019 0.0000 1.1363 0.0631 1.0000 1.5269 0.0060 1.0000 2.9828 0.0000

m639 140.0691

Trigonelline // HMDB00875:.H(+) // 140.0691 // 
66 /// 3,4-Dihydroxybenzylamine // 

HMDB12153:.H(+) // 140.0691 // 66 /// Betaine 
// HMDB00043:.Na(+) // 140.0691 // 20 /// L-
Valine // HMDB00883:.Na(+) // 140.0691 // 20 
/// Vaporole // HMDB01382:.Na(+) // 140.0691 

// 20 /// N-Methyl-a-aminoisobutyric acid // 
HMDB02141:.Na(+) // 140.0691 // 20 /// 5-

Aminopentanoic acid // HMDB03355:.Na(+) // 
140.0691 // 20 /// Betaine // 

HMDB00043:.H/Na.H(+) // 140.0691 // 20 /// L-
Valine // HMDB00883:.H/Na.H(+) // 140.0691 // 

20 /// Vaporole // HMDB01382:.H/Na.H(+) // 
140.0691 // 20 /// N-Methyl-a-aminoisobutyric 
acid // HMDB02141:.H/Na.H(+) // 140.0691 // 

20 /// 5-Aminopentanoic acid // 
HMDB03355:.H/Na.H(+) // 140.0691 // 20

3.0000 1.6322 0.7956 0.0000 0.8322 0.0779 1.0000 1.3658 0.0072 1.0000 1.6087 0.0007 1.0000 2.7220 0.0000

m1277 189.1799
N1-Acetylspermidine // HMDB01276:[+1].H(+) // 

189.1799 // 60 /// N8-Acetylspermidine // 
HMDB02189:[+1].H(+) // 189.1799 // 60

3.0000 1.5120 1.1827 0.0000 0.6981 0.0398 1.0000 0.9494 0.0096 1.0000 1.1350 0.0009 1.0000 3.2657 0.0000

m3289 372.3133 Tetradecanoylcarnitine // HMDB05066:.H(+) // 
372.3133 // 65 3.0000 1.3306 0.7064 0.0000 0.6101 0.0218 1.0000 1.3211 0.0000 1.0000 1.0992 0.0001 1.0000 2.2920 0.0000

m1766 232.1551
Isobutyryl-L-carnitine // HMDB00736:.H(+) // 

232.1551 // 100 /// Butyrylcarnitine // 
HMDB02013:.H(+) // 232.1551 // 100

3.0000 1.1760 0.3065 1.0000 1.0555 0.0055 1.0000 1.6064 0.0001 0.0000 0.8906 0.0186 1.0000 1.1516 0.0043

m5934 660.8692 Myo-inositol hexakisphosphate // 
HMDB03502:.H(+) // 660.8692 // 100 3.0000 1.1639 0.3730 1.0000 1.5010 0.0000 0.0000 0.6398 0.0278 1.0000 1.3334 0.0000 1.0000 1.1816 0.0000

m2336 284.1279

N-Phenylacetylphenylalanine // 
HMDB02372:.H(+) // 284.1279 // 100 /// 

Morphinone // HMDB03563:.H(+) // 284.1279 // 
100 /// 2-Methylbutyroylcarnitine // 

HMDB00378:.H/K.H(+) // 284.1279 // 8 /// 
Isovalerylcarnitine // HMDB00688:.H/K.H(+) // 

284.1279 // 8

3.0000 1.0616 0.2792 1.0000 1.0132 0.0015 0.0000 0.7391 0.0327 1.0000 1.0758 0.0008 1.0000 1.4184 0.0000

m3546 398.3281 trans-Hexadec-2-enoyl carnitine // 
HMDB06317:.H(+) // 398.3281 // 100 3.0000 1.0032 0.3887 0.0000 0.4641 0.0530 1.0000 1.1047 0.0000 1.0000 1.0539 0.0000 1.0000 1.3901 0.0000

m6244 701.2895 Pentacarboxyl porphyrinogen III // 
HMDB01957:.H(+) // 701.2895 // 66 3.0000 0.8541 0.4913 1.0000 1.0451 0.0000 0.0000 0.1413 0.6398 1.0000 0.9679 0.0001 1.0000 1.2622 0.0000

m1024 167.0322

Phthalic acid // HMDB02107:.H(+) // 167.0322 // 
59 /// Benzoquinoneacetic acid // 

HMDB02334:.H(+) // 167.0322 // 59 /// 
Terephthalic acid // HMDB02428:.H(+) // 
167.0322 // 59 /// 3-Hexenedioic acid // 

HMDB00393:.Na(+) // 167.0322 // 20 /// 3-
Methylglutaconic acid // HMDB00522:.Na(+) // 
167.0322 // 20 /// (E)-2-Methylglutaconic acid 
// HMDB02266:.Na(+) // 167.0322 // 20 /// 3-
Hexenedioic acid // HMDB00393:.H/Na.H(+) // 
167.0322 // 20 /// 3-Methylglutaconic acid // 

HMDB00522:.H/Na.H(+) // 167.0322 // 20 /// (E)-
2-Methylglutaconic acid // 

HMDB02266:.H/Na.H(+) // 167.0322 // 20

3.0000 0.8229 0.1766 1.0000 0.6706 0.0075 0.0000 0.6714 0.0136 1.0000 1.0002 0.0001 1.0000 0.9492 0.0004

m3009 344.2812 Dodecanoylcarnitine // HMDB02250:.H(+) // 
344.2812 // 94 3.0000 0.7399 0.3188 0.0000 0.3525 0.0298 1.0000 0.8102 0.0000 1.0000 0.6754 0.0001 1.0000 1.1217 0.0000

m3837 429.0170
IDP // HMDB03335:.H(+) // 429.0170 // 69 /// 1-

Phosphatidyl-D-myo-inositol // 
HMDB06953:.H/K.H(+) // 429.0170 // 10 /// 

Homoanserine // HMDB05767:.(NaCl)3.H(+) // 
429.0170 // 5

3.0000 -0.5269 0.6281 1.0000 -0.6840 0.0022 0.0000 0.3839 0.1182 1.0000 -1.0542 0.0000 1.0000 -0.7534 0.0015
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m2422 292.0444

Parathion // HMDB01355:.H(+) // 292.0444 // 
72 /// L-Threoneopterin // 

HMDB00727:.H/K.H(+) // 292.0444 // 29 /// 
Neopterin // HMDB00845:.H/K.H(+) // 292.0444 
// 29 /// Umanopterin // HMDB00877:.H/K.H(+) 

// 292.0444 // 29 /// Hydroxysepiapterin // 
HMDB02109:.H/K.H(+) // 292.0444 // 29

3.0000 -0.6161 0.2475 1.0000 -0.6167 0.0011 0.0000 -0.2706 0.1972 1.0000 -0.8384 0.0000 1.0000 -0.7385 0.0003

m719 145.1052 Proline betaine // HMDB04827:[+1].H(+) // 
145.1052 // 60 3.0000 -0.6973 0.0857 1.0000 -0.6808 0.0001 0.0000 -0.5846 0.0013 1.0000 -0.7433 0.0000 1.0000 -0.7807 0.0000

m5119 565.0325
3-carboxy-1-hydroxypropylthiamine 

diphosphate // HMDB06744:.H/K.H(+) // 
565.0325 // 77

3.0000 -0.7523 0.4224 1.0000 -0.8329 0.0000 0.0000 -0.1619 0.4140 1.0000 -0.8484 0.0000 1.0000 -1.1659 0.0000

m2822 326.0468

Uridine 5 -monophosphate // 
HMDB00288:[+1].H(+) // 326.0468 // 61 /// 

Pseudouridine 5 -phosphate // 
HMDB01271:[+1].H(+) // 326.0468 // 61 /// 

Uridine 2 -phosphate // HMDB11641:[+1].H(+) 
// 326.0468 // 61

3.0000 -0.7582 0.2700 1.0000 -0.8387 0.0000 0.0000 -0.3879 0.0345 1.0000 -1.0320 0.0000 1.0000 -0.7742 0.0000

m6801 791.5228 Solanesyl-PP // HMDB02367:.H(+) // 791.5228 // 
82 3.0000 -0.7654 0.4952 1.0000 -0.9746 0.0001 0.0000 -0.0291 0.9261 1.0000 -0.9552 0.0001 1.0000 -1.1026 0.0000

m3412 384.1488

N-Acetyllactosamine // HMDB01542:.H(+) // 
384.1488 // 100 /// Beta-1,4-mannose-N-
acetylglucosamine // HMDB06535:.H(+) // 

384.1488 // 100 /// Lacto-N-biose I // 
HMDB06575:.H(+) // 384.1488 // 100 /// Poly-N-

acetyllactosamine // HMDB06583:.H(+) // 
384.1488 // 100

3.0000 -0.8025 0.1917 1.0000 -0.8474 0.0000 0.0000 -0.5206 0.0027 1.0000 -0.9028 0.0000 1.0000 -0.9394 0.0000

m3679 413.0477
dADP // HMDB01508:[+1].H(+) // 413.0477 // 94 

/// 1-Phosphatidyl-D-myo-inositol // 
HMDB06953:.H/Na.H(+) // 413.0477 // 37

3.0000 -0.8057 0.6067 1.0000 -0.8729 0.0004 0.0000 0.0714 0.8166 1.0000 -1.1758 0.0000 1.0000 -1.2456 0.0000

m245 106.0497
L-Serine // HMDB00187:.H(+) // 106.0497 // 100 
/// D-Serine // HMDB03406:.H(+) // 106.0497 // 

100
3.0000 -0.8063 0.2701 1.0000 -0.7598 0.0000 0.0000 -0.4763 0.0025 1.0000 -0.8584 0.0000 1.0000 -1.1305 0.0000

m1652 222.0962

N-Acetylgalactosamine // HMDB00212:.H(+) // 
222.0962 // 100 /// N-Acetyl-D-glucosamine // 

HMDB00215:.H(+) // 222.0962 // 100 /// Beta-N-
Acetylglucosamine // HMDB00803:.H(+) // 

222.0962 // 100 /// N-Acetyl-b-D-galactosamine 
// HMDB00853:.H(+) // 222.0962 // 100 /// N-
Acetylmannosamine // HMDB01129:.H(+) // 

222.0962 // 100 /// N-Acetyl-D-mannosamine // 
HMDB11744:.H(+) // 222.0962 // 100 /// 2 -

Deoxysepiapterin // HMDB00389:.H(+) // 
222.0962 // 43

3.0000 -0.8491 0.7314 1.0000 -0.9022 0.0008 0.0000 0.1824 0.5677 1.0000 -1.5104 0.0000 1.0000 -1.1663 0.0001

m2239 276.1574
Epsilon-(gamma-Glutamyl)-lysine // 

HMDB03869:.H(+) // 276.1574 // 75 /// L-a-
glutamyl-L-Lysine // HMDB04207:.H(+) // 

276.1574 // 75
3.0000 -0.8687 0.2529 1.0000 -1.0913 0.0000 0.0000 -0.5061 0.0017 1.0000 -0.9614 0.0000 1.0000 -0.9162 0.0000

m4388 489.1123 Citicoline // HMDB01413:.H(+) // 489.1123 // 
100 3.0000 -0.9818 0.4606 1.0000 -0.8649 0.0000 0.0000 -0.3992 0.0647 1.0000 -1.1921 0.0000 1.0000 -1.4710 0.0000

m2314 282.1202

1-Methyladenosine // HMDB03331:.H(+) // 
282.1202 // 100 /// N6-Methyladenosine // 

HMDB04044:.H(+) // 282.1202 // 100 /// 2 -O-
Methyladenosine // HMDB04326:.H(+) // 

282.1202 // 100 /// 3 -O-Methyladenosine // 
HMDB06023:.H(+) // 282.1202 // 100

3.0000 -1.0661 0.3876 1.0000 -1.2781 0.0004 0.0000 -0.5039 0.2065 1.0000 -1.3605 0.0002 1.0000 -1.1217 0.0033

m7048 838.0606 Diadenosine tetraphosphate // 
HMDB01211:[+1].H(+) // 838.0606 // 60 3.0000 -1.2019 0.6040 1.0000 -1.3157 0.0003 0.0000 -0.4314 0.2786 1.0000 -1.1610 0.0011 1.0000 -1.8993 0.0000

m6788 789.0787
Diguanosine triphosphate // HMDB01379:.H(+) 

// 789.0787 // 100 /// Diguanosine 
tetraphosphate // HMDB01340:-HPO3.H(+) // 

789.0787 // 24
3.0000 -1.2433 0.5731 1.0000 -1.5053 0.0001 0.0000 -0.5055 0.2085 1.0000 -1.1213 0.0020 1.0000 -1.8412 0.0000

m6397 725.0656 Molybdopterin-AMP // HMDB12262:.H(+) // 
725.0656 // 61 3.0000 -1.3239 0.6416 1.0000 -1.7413 0.0000 0.0000 -0.3695 0.2149 1.0000 -1.6446 0.0000 1.0000 -1.5401 0.0000

m7043 837.0612 Diadenosine tetraphosphate // 
HMDB01211:.H(+) // 837.0612 // 100 3.0000 -1.3286 0.4464 1.0000 -1.3268 0.0003 0.0000 -0.7095 0.0786 1.0000 -1.7431 0.0000 1.0000 -1.5349 0.0001

m1193 184.0748

Phosphorylcholine // HMDB01565:.H(+) // 
184.0748 // 67 /// Tryptophanol // 

HMDB03447:.H/Na.H(+) // 184.0748 // 13 /// 3-
Dehydroxycarnitine // HMDB06831:.H/K.H(+) // 

184.0748 // 7 /// Acetylcholine // 
HMDB00895:.H/K.H(+) // 184.0748 // 7

3.0000 -1.3954 1.3083 1.0000 -1.7767 0.0001 0.0000 0.4940 0.3082 1.0000 -2.5256 0.0000 1.0000 -1.7733 0.0001

m5960 664.1161 NAD // HMDB00902:.H(+) // 664.1161 // 100 3.0000 -1.4594 1.1332 1.0000 -1.0161 0.0021 0.0000 -0.1594 0.6934 1.0000 -1.8585 0.0000 1.0000 -2.8035 0.0000
m3563 400.3444 L-Palmitoylcarnitine // HMDB00222:.H(+) // 

400.3444 // 100 2.0000 1.0739 0.4195 0.0000 0.7930 0.0108 0.0000 0.7656 0.0240 1.0000 1.0680 0.0007 1.0000 1.6688 0.0000

m2210 273.1097
5C-aglycone // HMDB04810:.H(+) // 273.1097 // 
99 /// Ubiquinone // HMDB02012:.H/Na.H(+) // 

273.1097 // 48 /// N-Succinyl-L,L-2,6-
diaminopimelate // HMDB12267:-H2O.H(+) // 

273.1097 // 7
2.0000 0.9872 0.3964 0.0000 0.7471 0.0306 1.0000 1.0222 0.0062 0.0000 0.6474 0.0609 1.0000 1.5322 0.0000
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m5354 591.2973

Dimethylprotoporphyrin IX dimethyl ester // 
HMDB00810:.H(+) // 591.2973 // 100 /// 

Protoporphyrinogen IX // 
HMDB01097:.H/Na.H(+) // 591.2973 // 54 /// 

Protoporphyrinogen IX // HMDB01097:.Na(+) // 
591.2973 // 54 /// D-Urobilinogen // 

HMDB04158:.H(+) // 591.2973 // 41 /// I-
Urobilin // HMDB04160:.H(+) // 591.2973 // 41 

/// Lithocholate 3-O-glucuronide // 
HMDB02513:.H/K.H(+) // 591.2973 // 20 /// 

(3a,5b,7a)-23-Carboxy-7-hydroxy-24-norcholan-
3-yl-b-D-Glucopyranosiduronic acid // 

HMDB02430:.Na(+) // 591.2973 // 10 /// 
Deoxycholic acid 3-glucuronide // 

HMDB02596:.Na(+) // 591.2973 // 10 /// 
(3a,5b,7a)-23-Carboxy-7-hydroxy-24-norcholan-

3-yl-b-D-Glucopyranosiduronic acid // 
HMDB02430:.H/Na.H(+) // 591.2973 // 10 /// 

Deoxycholic acid 3-glucuronide // 
HMDB02596:.H/Na.H(+) // 591.2973 // 10 /// 
Stigmastanol // HMDB00494:.(NaCl)3.H(+) // 

591.2973 // 5

2.0000 0.8909 0.5290 0.0000 0.7271 0.0149 0.0000 0.2319 0.5094 1.0000 1.1604 0.0001 1.0000 1.4440 0.0000

m1831 239.0912
3,4,5-Trimethoxycinnamic acid // 

HMDB02511:.H(+) // 239.0912 // 100 /// Trans-
2, 3, 4-Trimethoxycinnamate // 

HMDB11721:.H(+) // 239.0912 // 100
2.0000 0.8765 0.4974 0.0000 0.5354 0.0604 0.0000 0.3860 0.2224 1.0000 1.1522 0.0001 1.0000 1.4325 0.0000

m4123 460.1959
5-Methyltetrahydrofolic acid // 

HMDB01396:.H(+) // 460.1959 // 100 /// 
Dodecanoylcarnitine // 

HMDB02250:.(NaCl)2.H(+) // 460.1959 // 18
2.0000 0.8071 0.4191 0.0000 0.3091 0.1976 0.0000 0.6175 0.0157 1.0000 1.0944 0.0000 1.0000 1.2076 0.0000

m773 148.0382 Indole-5,6-quinone // HMDB06779:.H(+) // 
148.0382 // 87 2.0000 0.7777 0.4078 0.0000 0.3952 0.0433 0.0000 0.5259 0.0129 1.0000 0.8852 0.0000 1.0000 1.3046 0.0000

m1843 240.0945

3,4,5-Trimethoxycinnamic acid // 
HMDB02511:[+1].H(+) // 240.0945 // 60 /// 

Trans-2, 3, 4-Trimethoxycinnamate // 
HMDB11721:[+1].H(+) // 240.0945 // 60 /// N-a-

Acetylcitrulline // HMDB00856:.Na(+) // 
240.0945 // 20 /// N-a-Acetylcitrulline // 

HMDB00856:.H/Na.H(+) // 240.0945 // 20

2.0000 0.7325 0.4390 0.0000 0.4047 0.0937 0.0000 0.3278 0.2197 1.0000 0.9594 0.0001 1.0000 1.2380 0.0000

m3809 426.3551 Elaidic carnitine // HMDB06464:.H(+) // 
426.3551 // 100 2.0000 0.6550 0.4549 0.0000 0.3901 0.1411 0.0000 0.2162 0.4788 1.0000 0.7714 0.0033 1.0000 1.2421 0.0000

m798 150.0274 2-Oxo-4-methylthiobutanoic acid // 
HMDB01553:[+1].H(+) // 150.0274 // 46 2.0000 0.6517 0.3267 0.0000 0.4310 0.0075 0.0000 0.3408 0.0541 1.0000 0.7880 0.0000 1.0000 1.0470 0.0000

m1097 174.0888

2-Oxoarginine // HMDB04225:.H(+) // 174.0888 
// 69 /// N-Methylphenylethanolamine // 
HMDB01387:.Na(+) // 174.0888 // 20 /// 

Phenylpropanolamine // HMDB01942:.Na(+) // 
174.0888 // 20 /// N-Methyltyramine // 

HMDB03633:.Na(+) // 174.0888 // 20 /// N-
Methylphenylethanolamine // 

HMDB01387:.H/Na.H(+) // 174.0888 // 20 /// 
Phenylpropanolamine // 

HMDB01942:.H/Na.H(+) // 174.0888 // 20 /// N-
Methyltyramine // HMDB03633:.H/Na.H(+) // 

174.0888 // 20

2.0000 0.6421 0.2748 0.0000 0.4407 0.0121 0.0000 0.3811 0.0479 1.0000 0.7991 0.0000 1.0000 0.9475 0.0000

m1844 240.1199
Propionylcarnitine // HMDB00824:.H/Na.H(+) // 

240.1199 // 45 /// Propionylcarnitine // 
HMDB00824:.Na(+) // 240.1199 // 26 /// 

Bupropion // HMDB01510:.H(+) // 240.1199 // 
11

2.0000 0.5778 0.3087 0.0000 0.3111 0.0845 0.0000 0.3289 0.0972 1.0000 0.7353 0.0001 1.0000 0.9357 0.0000

m1119 176.0677

Guanidinosuccinic acid // HMDB03157:.H(+) // 
176.0677 // 94 /// Indoleacetic acid // 

HMDB00197:.H(+) // 176.0677 // 34 /// 5-
Hydroxyindoleacetaldehyde // 

HMDB04073:.H(+) // 176.0677 // 34 /// 
Dopamine // HMDB00073:.H/Na.H(+) // 

176.0677 // 20 /// p-Octopamine // 
HMDB04825:.H/Na.H(+) // 176.0677 // 20 /// 

Vanillylamine // HMDB12309:.H/Na.H(+) // 
176.0677 // 20 /// Dopamine // 

HMDB00073:.Na(+) // 176.0677 // 20 /// p-
Octopamine // HMDB04825:.Na(+) // 176.0677 
// 20 /// Vanillylamine // HMDB12309:.Na(+) // 

176.0677 // 20

2.0000 0.5539 0.3066 0.0000 0.3565 0.0137 0.0000 0.2282 0.1551 1.0000 0.8037 0.0000 1.0000 0.8271 0.0000

m2714 316.2498 Decanoylcarnitine // HMDB00651:.H(+) // 
316.2498 // 86 2.0000 0.5290 0.2199 0.0000 0.2131 0.3166 1.0000 0.6676 0.0029 0.0000 0.5457 0.0083 1.0000 0.6897 0.0018

m1508 209.0803
4-Hydroxybenzyl alcohol // HMDB11724:.H(+) // 

209.0803 // 100 /// (R)-2-Benzylsuccinate // 
HMDB12127:.H(+) // 209.0803 // 100

2.0000 0.4966 0.2195 0.0000 0.3447 0.0012 0.0000 0.2900 0.0117 1.0000 0.5907 0.0000 1.0000 0.7611 0.0000

m395 123.0558 Niacinamide // HMDB01406:.H(+) // 123.0558 // 
100 2.0000 0.1739 0.5493 0.0000 0.2399 0.2390 1.0000 -0.5963 0.0058 0.0000 0.3535 0.0775 1.0000 0.6986 0.0011
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m3159 359.1101

Pantetheine 4 -phosphate // HMDB01416:.H(+) 
// 359.1101 // 59 /// N1-(5-Phospho-a-D-

ribosyl)-5,6-dimethylbenzimidazole // 
HMDB03882:.H(+) // 359.1101 // 39 /// Valproic 

acid glucuronide // HMDB00901:.H/K.H(+) // 
359.1101 // 38 /// Octanoylglucuronide // 

HMDB10347:.H/K.H(+) // 359.1101 // 38 /// 3-
Oxotetradecanoic acid // 

HMDB10730:.(NaCl)2.H(+) // 359.1101 // 12

2.0000 -0.3685 0.4129 1.0000 -0.6870 0.0056 0.0000 0.1998 0.4906 1.0000 -0.6606 0.0076 0.0000 -0.3261 0.2310

m3216 365.0447
Xanthylic acid // HMDB01554:.H(+) // 365.0447 

// 100 /// 6-Hydroxymelatonin // 
HMDB04081:.(NaCl)2.H(+) // 365.0447 // 9 /// 

Histidylproline diketopiperazine // 
HMDB02053:.(NaCl)2.H(+) // 365.0447 // 5

2.0000 -0.4705 0.4109 0.0000 -0.4361 0.0063 0.0000 0.0936 0.6281 1.0000 -0.7069 0.0000 1.0000 -0.8327 0.0000

m1703 227.0531
Chorismate // HMDB12199:.H(+) // 227.0531 // 

100 /// Prephenate // HMDB12283:.H(+) // 
227.0531 // 100 /// Pyridoxamine // 

HMDB01431:.NaCl.H(+) // 227.0531 // 7
2.0000 -0.5085 0.2040 0.0000 -0.5655 0.0027 0.0000 -0.2061 0.3332 1.0000 -0.6286 0.0009 1.0000 -0.6337 0.0016

m3398 383.1527 Loratadine // HMDB05000:.H(+) // 383.1527 // 
92 2.0000 -0.5227 0.2443 1.0000 -0.7799 0.0000 0.0000 -0.5067 0.0017 1.0000 -0.6064 0.0001 0.0000 -0.1977 0.2265

m3236 367.0660

Phosphoribosyl formamidocarboxamide // 
HMDB01439:.H(+) // 367.0660 // 100 /// 7-

Hydroxy-6-methyl-8-ribityl lumazine // 
HMDB04256:.H/K.H(+) // 367.0660 // 55 /// 

Thiamine monophosphate // 
HMDB02666:.H/Na.H(+) // 367.0660 // 18 /// 

Malvidin // HMDB03201:.H(+) // 367.0660 // 17 
/// Warfarin // HMDB01935:.NaCl.H(+) // 

367.0660 // 12 /// Bisdemethoxycurcumin // 
HMDB02114:.NaCl.H(+) // 367.0660 // 12

2.0000 -0.5452 0.2243 0.0000 -0.5165 0.0144 0.0000 -0.2469 0.3004 1.0000 -0.7709 0.0003 1.0000 -0.6466 0.0040

m46 75.0448

Propionic acid // HMDB00237:.H(+) // 75.0448 
// 100 /// Lactaldehyde // HMDB03052:.H(+) // 

75.0448 // 100 /// 3-Hydroxypropanal // 
HMDB03453:.H(+) // 75.0448 // 100 /// D-

Lactaldehyde // HMDB06458:.H(+) // 75.0448 // 
100 /// Hydroxyacetone // HMDB06961:.H(+) // 

75.0448 // 100

2.0000 -0.5488 0.1776 0.0000 -0.3859 0.0205 1.0000 -0.6118 0.0008 0.0000 -0.4268 0.0102 1.0000 -0.7708 0.0000

m1112 175.1203
L-Arginine // HMDB00517:.H(+) // 175.1203 // 

74 /// D-Arginine // HMDB03416:.H(+) // 
175.1203 // 74 /// N-Methyltryptamine // 

HMDB04370:.H(+) // 175.1203 // 37
2.0000 -0.5522 0.4749 0.0000 -0.3062 0.1121 1.0000 -0.9608 0.0000 0.0000 -0.0040 0.9849 1.0000 -0.9377 0.0000

m1663 223.0760
Flavone // HMDB03075:.H(+) // 223.0760 // 100 

/// L-Cystathionine // HMDB00099:.H(+) // 
223.0760 // 76 /// Allocystathionine // 

HMDB00455:.H(+) // 223.0760 // 76
2.0000 -0.5767 0.3265 0.0000 -0.3722 0.0386 0.0000 -0.2444 0.2215 1.0000 -0.7368 0.0001 1.0000 -0.9534 0.0000

m2537 300.0977

8-Hydroxyguanosine // HMDB02044:.H(+) // 
300.0977 // 70 /// Gamma glutamyl ornithine // 

HMDB02248:.H/K.H(+) // 300.0977 // 13 /// 
Aspartylysine // HMDB04985:.H/K.H(+) // 

300.0977 // 13 /// Alpha-Aspartyl-lysine // 
HMDB04987:.H/K.H(+) // 300.0977 // 13

2.0000 -0.6109 0.1387 1.0000 -0.6262 0.0037 0.0000 -0.4976 0.0342 0.0000 -0.5188 0.0158 1.0000 -0.8010 0.0005

m3606 405.0116 Uridine 5 -diphosphate // HMDB00295:.H(+) // 
405.0116 // 100 2.0000 -0.6647 0.4331 0.0000 -0.2869 0.1403 0.0000 -0.4293 0.0409 1.0000 -0.6740 0.0005 1.0000 -1.2685 0.0000

m3672 412.0435 dADP // HMDB01508:.H(+) // 412.0435 // 100 2.0000 -0.6745 0.2940 0.0000 -0.5700 0.0005 0.0000 -0.3777 0.0334 1.0000 -0.6756 0.0001 1.0000 -1.0749 0.0000

m3828 428.0385

Adenosine 3 ,5 -diphosphate // 
HMDB00061:.H(+) // 428.0385 // 100 /// dGDP 
// HMDB00960:.H(+) // 428.0385 // 100 /// ADP 

// HMDB01341:.H(+) // 428.0385 // 100 /// 
Acetyl adenylate // HMDB06880:.H/K.H(+) // 

428.0385 // 15 /// N-Acetylneuraminic acid 9-
phosphate // HMDB04381:.H/K.H(+) // 

428.0385 // 8 /// N-Acetylneuraminate 9-
phosphate // HMDB06268:.H/K.H(+) // 

428.0385 // 8

2.0000 -0.8815 0.8469 0.0000 -0.4874 0.0231 0.0000 0.0474 0.8640 1.0000 -1.1835 0.0000 1.0000 -1.9026 0.0000

m7051 838.2349 3 -Sialyl-3-fucosyllactose // 
HMDB06606:.NaCl.H(+) // 838.2349 // 72 1.0000 3.2499 1.4786 0.0000 4.7631 0.0000 0.0000 1.4486 0.1753 0.0000 2.6929 0.0052 1.0000 4.0950 0.0001

m966 162.1136
4-Trimethylammoniobutanoic acid // 

HMDB01161:.H(+) // 162.1136 // 92 /// L-
Carnitine // HMDB00062:.H(+) // 162.1136 // 92

1.0000 0.6324 0.2945 0.0000 0.2981 0.3793 0.0000 0.5187 0.1531 0.0000 0.7236 0.0269 1.0000 0.9890 0.0045

m347 118.0869

Betaine // HMDB00043:.H(+) // 118.0869 // 100 
/// L-Valine // HMDB00883:.H(+) // 118.0869 // 

100 /// Vaporole // HMDB01382:.H(+) // 
118.0869 // 100 /// N-Methyl-a-aminoisobutyric 
acid // HMDB02141:.H(+) // 118.0869 // 100 /// 
5-Aminopentanoic acid // HMDB03355:.H(+) // 

118.0869 // 100 /// Senecioic acid // 
HMDB00509:.NH4(+) // 118.0869 // 10 /// Tiglic 
acid // HMDB01470:.NH4(+) // 118.0869 // 10 

/// 2-Ethylacrylic acid // HMDB01862:.NH4(+) // 
118.0869 // 10 /// 3-Methylbutyrolactone // 

HMDB02167:.NH4(+) // 118.0869 // 10 /// 
Aminoadipic acid // HMDB00510:-CO2.H(+) // 

118.0869 // 10 /// 
Glycerylphosphorylethanolamine // 

HMDB00114:-H3PO4.H(+) // 118.0869 // 5

1.0000 0.5917 0.4486 0.0000 0.1205 0.7554 0.0000 0.5510 0.1564 0.0000 0.4948 0.1651 1.0000 1.2004 0.0013
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m983 163.1167
4-Trimethylammoniobutanoic acid // 

HMDB01161:[+1].H(+) // 163.1167 // 60 /// L-
Carnitine // HMDB00062:[+1].H(+) // 163.1167 
// 60 /// 4-Hydroxycyclohexylcarboxylic acid // 

HMDB01988:[+1].NH4(+) // 163.1167 // 6
1.0000 0.5344 0.2489 0.0000 0.2610 0.3734 0.0000 0.4262 0.1753 0.0000 0.6101 0.0310 1.0000 0.8405 0.0053

m2194 271.1394
2-(3-Carboxy-3-(methylammonio)propyl)-L-
histidine // HMDB11654:.H(+) // 271.1394 // 

100
1.0000 0.5287 0.5895 0.0000 -0.1193 0.7340 0.0000 0.4100 0.2531 0.0000 0.5155 0.1096 1.0000 1.3087 0.0002

m1966 252.1045

Muramic acid // HMDB03254:.H(+) // 252.1045 
// 100 /// Deoxyadenosine // HMDB00101:.H(+) 

// 252.1045 // 95 /// 5 -Deoxyadenosine // 
HMDB01983:.H(+) // 252.1045 // 95 /// 

Prolylhydroxyproline // HMDB06695:[+1].Na(+) 
// 252.1045 // 53 /// Deoxyadenosine 

monophosphate // HMDB00905:-HPO3.H(+) // 
252.1045 // 5

1.0000 0.5094 0.1593 0.0000 0.3641 0.0483 0.0000 0.5818 0.0035 0.0000 0.3924 0.0325 1.0000 0.6994 0.0004

m340 117.1033
5-Aminopentanamide // HMDB12176:.H(+) // 

117.1033 // 91 /// 2-Piperidinone // 
HMDB11749:.NH4(+) // 117.1033 // 10

1.0000 0.4978 0.7146 0.0000 -0.0002 0.9994 0.0000 0.1812 0.4887 0.0000 0.2524 0.2728 1.0000 1.5578 0.0000

m1148 179.1051

5-Phenylvaleric acid // HMDB02043:.H(+) // 
179.1051 // 63 /// 4-Hydroxynonenal // 

HMDB04362:.H/Na.H(+) // 179.1051 // 20 /// 
Monoisobutyl phthalic acid // HMDB02056:-

CO2.H(+) // 179.1051 // 6 /// Aminoadipic acid 
// HMDB00510:.NH4(+) // 179.1051 // 5

1.0000 0.4017 0.2877 0.0000 0.2162 0.0816 0.0000 0.1299 0.3554 0.0000 0.4974 0.0001 1.0000 0.7635 0.0000

m2275 279.2305

Alpha-Linolenic acid // HMDB01388:.H(+) // 
279.2305 // 100 /// Gamma-Linolenic acid // 

HMDB03073:.H(+) // 279.2305 // 100 /// 
Palmitic acid // HMDB00220:.H/Na.H(+) // 

279.2305 // 27 /// Trimethyltridecanoic acid // 
HMDB02396:.H/Na.H(+) // 279.2305 // 27

1.0000 0.3686 0.2359 0.0000 0.1503 0.3213 0.0000 0.2494 0.1263 0.0000 0.3825 0.0093 1.0000 0.6924 0.0000

m288 112.0522 Cytosine // HMDB00630:.H(+) // 112.0522 // 61 1.0000 0.3477 0.3367 0.0000 0.2787 0.1714 0.0000 0.4386 0.0458 0.0000 -0.0675 0.7592 1.0000 0.7411 0.0006

m2946 338.0519
Famotidine // HMDB01919:.H(+) // 338.0519 // 

100 /// Dihydrozeatin // 
HMDB12215:.(NaCl)2.H(+) // 338.0519 // 8

1.0000 -0.1275 0.4154 1.0000 -0.6856 0.0023 0.0000 -0.0430 0.8812 0.0000 -0.0992 0.6840 0.0000 0.3177 0.1944

m3599 404.0202

CDP // HMDB01546:.H(+) // 404.0202 // 76 /// 
Molybdopterin precursor Z // 

HMDB11683:.NaCl.H(+) // 404.0202 // 6 /// 
Cyclic GMP // HMDB01314:.NaCl.H(+) // 
404.0202 // 6 /// Guanosine 2 ,3 -cyclic 
phosphate // HMDB11629:.NaCl.H(+) // 

404.0202 // 6

1.0000 -0.2193 0.4499 0.0000 0.0577 0.7833 0.0000 0.2277 0.2857 0.0000 -0.3957 0.0365 1.0000 -0.7667 0.0002

m6727 777.9710 Phosphoribosyl-ATP // HMDB03665:.NaCl.H(+) 
// 777.9710 // 98 1.0000 -0.2217 0.3005 0.0000 -0.0556 0.7277 0.0000 0.0435 0.8135 0.0000 -0.2372 0.1055 1.0000 -0.6373 0.0001

m2641 309.0955

Glutathione // HMDB00125:[+1].H(+) // 
309.0955 // 86 /// Salicin // 

HMDB03546:.H/Na.H(+) // 309.0955 // 30 /// 
Salicin // HMDB03546:.Na(+) // 309.0955 // 30 
/// 2-(3-Carboxy-3-(methylammonio)propyl)-L-
histidine // HMDB11654:.H/K.H(+) // 309.0955 

// 16 /// 2-(3-Carboxy-3-
(methylammonio)propyl)-L-histidine // 

HMDB11654:.K(+) // 309.0955 // 8

1.0000 -0.2512 0.3532 0.0000 0.0554 0.7333 0.0000 -0.0155 0.9366 0.0000 -0.3255 0.0279 1.0000 -0.7193 0.0000

m1146 179.0489 Cysteinylglycine // HMDB00078:.H(+) // 
179.0489 // 100 1.0000 -0.3310 0.3865 0.0000 -0.1361 0.4911 0.0000 0.0512 0.8315 0.0000 -0.3989 0.0337 1.0000 -0.8403 0.0000

m2629 308.0926 Glutathione // HMDB00125:.H(+) // 308.0926 // 
65 1.0000 -0.3717 0.5962 0.0000 0.1154 0.6118 0.0000 0.0661 0.8046 0.0000 -0.5103 0.0158 1.0000 -1.1579 0.0000

m338 117.0536

Alpha-ketoisovaleric acid // HMDB00019:.H(+) // 
117.0536 // 100 /// Methylacetoacetic acid // 

HMDB00310:.H(+) // 117.0536 // 100 /// 
Levulinic acid // HMDB00720:.H(+) // 117.0536 

// 100 /// 2-Oxovaleric acid // HMDB01865:.H(+) 
// 117.0536 // 100 /// 2-Methylacetoacetic acid 

// HMDB03771:.H(+) // 117.0536 // 100 /// 
Glutarate semialdehyde // HMDB12233:.H(+) // 

117.0536 // 100

1.0000 -0.3911 0.1665 0.0000 -0.2850 0.0199 0.0000 -0.2850 0.0329 0.0000 -0.3594 0.0034 1.0000 -0.6353 0.0000

m7631 971.9021 Dolichol-14 // HMDB05181:.H(+) // 971.9021 // 
100 1.0000 -0.4851 0.7255 0.0000 -0.0553 0.8836 0.0000 0.1351 0.7501 0.0000 -0.5315 0.1194 1.0000 -1.4889 0.0001

m48 76.0399 Glycine // HMDB00123:.H(+) // 76.0399 // 100 1.0000 -0.5103 0.2109 0.0000 -0.4254 0.0320 0.0000 -0.2738 0.2145 0.0000 -0.5747 0.0038 1.0000 -0.7674 0.0003

m990 164.0683

4-(3-Pyridyl)-3-butenoic acid // 
HMDB01424:.H(+) // 164.0683 // 84 /// 3-
Methyldioxyindole // HMDB04186:.H(+) // 

164.0683 // 84 /// S-(2-carboxypropyl)-
Cysteamine // HMDB02169:.H(+) // 164.0683 // 

34 /// 2-Hydroxyadipic acid // 
HMDB00321:[+1].H(+) // 164.0683 // 6 /// 3-

Hydroxyadipic acid // HMDB00345:[+1].H(+) // 
164.0683 // 6 /// 3-Hydroxymethylglutaric acid 

// HMDB00355:[+1].H(+) // 164.0683 // 6 /// 
2(R)-Hydroxyadipic acid // 

HMDB00368:[+1].H(+) // 164.0683 // 6 /// 
Glucosan // HMDB00640:[+1].H(+) // 164.0683 

// 6

1.0000 -0.5262 0.0680 0.0000 -0.4609 0.0043 0.0000 -0.5200 0.0029 0.0000 -0.5026 0.0019 1.0000 -0.6212 0.0003

m1441 204.2270 Spermine // HMDB01256:[+1].H(+) // 204.2270 
// 60 1.0000 -1.0216 0.7944 0.0000 -0.6055 0.2158 0.0000 -0.4102 0.4639 0.0000 -0.8957 0.0625 1.0000 -2.1750 0.0000
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m1413 203.2242 Spermine // HMDB01256:.H(+) // 203.2242 // 85 1.0000 -1.1929 0.8880 0.0000 -0.6931 0.1882 0.0000 -0.5782 0.3239 0.0000 -1.0027 0.0527 1.0000 -2.4974 0.0000

m4772 530.2008

O-6-deoxy-a-L-galactopyranosyl-(1->2)-O-b-D-
galactopyranosyl-(1->3)-2-(acetylamino)-2-
deoxy-D-Galactose // HMDB02060:.H(+) // 
530.2008 // 63 /// Lewis X trisaccharide // 

HMDB06568:.H(+) // 530.2008 // 63 /// Lewis a 
trisaccharide // HMDB06582:.H(+) // 530.2008 

// 63

1.0000 -3.2375 0.7342 1.0000 -3.9912 0.0004 0.0000 -2.8848 0.0159 0.0000 -3.6867 0.0009 0.0000 -2.3872 0.0424

m105 89.1076 Putrescine // HMDB01414:.H(+) // 89.1076 // 
100 0.0000 0.9402 0.4181 0.0000 1.1322 0.0703 0.0000 0.8636 0.2127 0.0000 0.3952 0.5532 0.0000 1.3699 0.0392

m651 140.9953

Acetylphosphate // HMDB01494:.H(+) // 
140.9953 // 100 /// Phosphonoacetate // 

HMDB04110:.H(+) // 140.9953 // 100 /// 2-
Ketobutyric acid // HMDB00005:.H/K.H(+) // 

140.9953 // 10 /// Acetoacetic acid // 
HMDB00060:.H/K.H(+) // 140.9953 // 10 /// 2-

Methyl-3-oxopropanoic acid // 
HMDB01172:.H/K.H(+) // 140.9953 // 10 /// 

Succinic acid semialdehyde // 
HMDB01259:.H/K.H(+) // 140.9953 // 10 /// (S)-

Methylmalonic acid semialdehyde // 
HMDB02217:.H/K.H(+) // 140.9953 // 10 /// 4-
Hydroxycrotonic acid // HMDB03381:.H/K.H(+) 

// 140.9953 // 10 /// 2-Ketobutyric acid // 
HMDB00005:.K(+) // 140.9953 // 5 /// 

Acetoacetic acid // HMDB00060:.K(+) // 
140.9953 // 5 /// 2-Methyl-3-oxopropanoic acid 

// HMDB01172:.K(+) // 140.9953 // 5 /// 
Succinic acid semialdehyde // HMDB01259:.K(+) 

// 140.9953 // 5 /// (S)-Methylmalonic acid 
semialdehyde // HMDB02217:.K(+) // 140.9953 

// 5 /// 4-Hydroxycrotonic acid // 
HMDB03381:.K(+) // 140.9953 // 5

0.0000 0.7655 0.0719 0.0000 0.7468 0.0231 0.0000 0.6719 0.0634 0.0000 0.8146 0.0130 0.0000 0.8286 0.0178

m4911 543.4860
7,7 ,8,8 ,11,11 ,12,12 -Hexahydro-y,y-Carotene 

// HMDB02272:.H(+) // 543.4860 // 100 /// 
Phytofluene // HMDB02871:.H(+) // 543.4860 // 
100 /// cis-7,7 ,8,8 ,11,12-Hexahydro-Carotene 

// HMDB02936:.H(+) // 543.4860 // 100
0.0000 0.4255 0.1331 0.0000 0.3364 0.1804 0.0000 0.2938 0.2902 0.0000 0.4943 0.0451 0.0000 0.5775 0.0279

m473 127.0243 Taurine // HMDB00251:[+1].H(+) // 127.0243 // 
59 0.0000 0.4195 0.1145 0.0000 0.3039 0.0366 0.0000 0.3392 0.0322 0.0000 0.5310 0.0003 0.0000 0.5037 0.0012

m3550 399.1471 S-Adenosylmethionine // HMDB01185:.H(+) // 
399.1471 // 39 0.0000 0.3893 0.2899 0.0000 0.5820 0.0087 0.0000 0.5520 0.0222 0.0000 0.4621 0.0367 0.0000 -0.0388 0.8892

m4567 509.3381 Reduced Vitamin K (phylloquinone) // 
HMDB04198:.H/K.H(+) // 509.3381 // 71 0.0000 0.2803 0.2954 0.0000 0.4231 0.0419 0.0000 -0.1292 0.6054 0.0000 0.2759 0.1921 0.0000 0.5516 0.0124

m5550 613.1583 Oxidized glutathione // HMDB03337:.H(+) // 
613.1583 // 100 0.0000 0.2746 0.4037 0.0000 -0.1440 0.7639 0.0000 0.8146 0.0899 0.0000 0.1279 0.7884 0.0000 0.3000 0.5534

m758 147.0765

L-Glutamine // HMDB00641:.H(+) // 147.0765 // 
100 /// Ureidoisobutyric acid // 

HMDB02031:.H(+) // 147.0765 // 100 /// D-
Glutamine // HMDB03423:.H(+) // 147.0765 // 
100 /// Alanylglycine // HMDB06899:.H(+) // 

147.0765 // 100 /// Pyroglutamic acid // 
HMDB00267:.NH4(+) // 147.0765 // 5 /// 

Pyrrolidonecarboxylic acid // 
HMDB00805:.NH4(+) // 147.0765 // 5 /// 

Pyrroline hydroxycarboxylic acid // 
HMDB01369:.NH4(+) // 147.0765 // 5 /// N-

Acryloylglycine // HMDB01843:.NH4(+) // 
147.0765 // 5 /// 1-Pyrroline-4-hydroxy-2-

carboxylate // HMDB02234:.NH4(+) // 147.0765 
// 5

0.0000 0.1792 0.2155 0.0000 0.3585 0.0110 0.0000 0.2934 0.0583 0.0000 0.1924 0.1804 0.0000 -0.1274 0.4267

m2741 318.2966 Phytosphingosine // HMDB04610:.H(+) // 
318.2966 // 100 0.0000 0.1701 0.1084 0.0000 0.3143 0.0835 0.0000 0.1258 0.5599 0.0000 0.1813 0.3331 0.0000 0.0590 0.7913

m2752 319.2575

Allopregnanolone // HMDB01449:.H(+) // 
319.2575 // 60 /// Alloepipregnanolone // 

HMDB01455:.H(+) // 319.2575 // 60 /// 
Epipregnanolone // HMDB01471:.H(+) // 

319.2575 // 60 /// Epimetendiol // 
HMDB06012:.H(+) // 319.2575 // 60 /// 3a-

Hydroxy-5b-pregnane-20-one // 
HMDB06759:.H(+) // 319.2575 // 60 /// 2,6 

dimethylheptanoyl carnitine // 
HMDB06320:.NH4(+) // 319.2575 // 16

0.0000 0.1639 0.1541 0.0000 0.2466 0.1552 0.0000 -0.0670 0.7553 0.0000 0.2456 0.1572 0.0000 0.2303 0.2202
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m3799 425.2859

1b-Hydroxycholic acid // HMDB00307:.H(+) // 
425.2859 // 94 /// 3b,4b,7a,12a-Tetrahydroxy-

5b-cholanoic acid // HMDB00311:.H(+) // 
425.2859 // 94 /// 2b,3a,7a,12a-Tetrahydroxy-

5b-cholanoic acid // HMDB00316:.H(+) // 
425.2859 // 94 /// 3a,7a,12a,19-Tetrahydroxy-

5b-cholanoic acid // HMDB00340:.H(+) // 
425.2859 // 94 /// 3a,6b,7b,12a-Tetrahydroxy-

5b-cholanoic acid // HMDB00367:.H(+) // 
425.2859 // 94 /// 3a,6b,7b,12b-Tetrahydroxy-

5b-cholanoic acid // HMDB00377:.H(+) // 
425.2859 // 94 /// 3a,6b,7a,12a-Tetrahydroxy-

5b-cholanoic acid // HMDB00399:.H(+) // 
425.2859 // 94 /// 1,3,7,12-Tetrahydroxycholan-
24-oic acid // HMDB00433:.H(+) // 425.2859 // 
94 /// 3a,4b,7a,12a-Tetrahydroxy-5b-cholanoic 

acid // HMDB00437:.H(+) // 425.2859 // 94

0.0000 0.1523 0.2659 0.0000 0.2161 0.3004 0.0000 0.2749 0.2253 0.0000 -0.2373 0.2555 0.0000 0.3555 0.1050

m3559 400.1495 S-Adenosylmethionine // HMDB01185:[+1].H(+) 
// 400.1495 // 37 0.0000 0.1274 0.2576 0.0000 0.3584 0.1368 0.0000 0.1476 0.6071 0.0000 0.2404 0.3298 0.0000 -0.2368 0.3771

m1329 195.0091

p-Cresol sulfate // HMDB11635:.H/Na.H(+) // 
195.0091 // 66 /// p-Cresol sulfate // 

HMDB11635:.Na(+) // 195.0091 // 19 /// 
Glycerol 3-phosphate // HMDB00126:.H/Na.H(+) 

// 195.0091 // 11 /// Beta-Glycerophosphoric 
acid // HMDB02520:.H/Na.H(+) // 195.0091 // 
11 /// Hypoxanthine // HMDB00157:.NaCl.H(+) 

// 195.0091 // 7 /// Erythronic acid // 
HMDB00613:.NaCl.H(+) // 195.0091 // 5 /// 
Threonic acid // HMDB00943:.NaCl.H(+) // 

195.0091 // 5

0.0000 0.1093 0.1457 0.0000 -0.0981 0.5921 0.0000 0.2056 0.2861 0.0000 0.1138 0.5346 0.0000 0.2160 0.2530

m3057 349.2395

3b,15b,17a-Trihydroxy-pregnenone // 
HMDB00353:.H(+) // 349.2395 // 100 /// 

3b,17a,21-Trihydroxypregnenone // 
HMDB00382:.H(+) // 349.2395 // 100 /// 3a,21-

Dihydroxy-5b-pregnane-11,20-dione // 
HMDB06755:.H(+) // 349.2395 // 100 /// 11b,21-

Dihydroxy-5b-pregnane-3,20-dione // 
HMDB06757:.H(+) // 349.2395 // 100 /// 17a,21-
Dihydroxypreg-nenolone // HMDB06762:.H(+) // 

349.2395 // 100

0.0000 0.1087 0.2307 0.0000 -0.0469 0.7410 0.0000 -0.1166 0.4355 0.0000 0.2211 0.0876 0.0000 0.3771 0.0059

m524 131.1183 N-Acetylputrescine // HMDB02064:.H(+) // 
131.1183 // 100 0.0000 0.0205 0.0459 0.0000 0.0599 0.5508 0.0000 -0.0458 0.6942 0.0000 0.0324 0.7558 0.0000 0.0356 0.7597

m329 116.0708
L-Proline // HMDB00162:.H(+) // 116.0708 // 

100 /// D-Proline // HMDB03411:.H(+) // 
116.0708 // 100

0.0000 -0.0494 0.1101 0.0000 -0.0141 0.9333 0.0000 -0.0508 0.7857 0.0000 0.0650 0.6862 0.0000 -0.1978 0.2225

m760 147.1694 Spermidine // HMDB01257:[+1].H(+) // 
147.1694 // 60 0.0000 -0.0666 0.2396 0.0000 0.1153 0.6977 0.0000 0.1492 0.6548 0.0000 -0.1835 0.5304 0.0000 -0.3476 0.2483

m731 146.1660 Spermidine // HMDB01257:.H(+) // 146.1660 // 
100 0.0000 -0.0679 0.2470 0.0000 0.1106 0.7334 0.0000 0.1702 0.6358 0.0000 -0.2134 0.4988 0.0000 -0.3387 0.3029

m109 90.1106 Putrescine // HMDB01414:[+1].H(+) // 90.1106 
// 60 0.0000 -0.1182 0.1365 0.0000 -0.1343 0.8058 0.0000 -0.1640 0.7932 0.0000 -0.2480 0.6447 0.0000 0.0733 0.9070

m4640 517.3012

Taurocholic acid // HMDB00036:[+1].H(+) // 
517.3012 // 100 /// Tauroursocholic acid // 

HMDB00889:[+1].H(+) // 517.3012 // 100 /// 
Taurallocholic acid // HMDB00922:[+1].H(+) // 
517.3012 // 100 /// Tauro-b-muricholic acid // 
HMDB00932:[+1].H(+) // 517.3012 // 100 /// 
Taurohyocholate // HMDB11637:[+1].H(+) // 

517.3012 // 100 /// Campesterol // 
HMDB02869:.(NaCl)2.H(+) // 517.3012 // 8 /// 4-
alpha-Methyl-5-alpha-cholest-7-en-3-beta-ol // 
HMDB11605:.(NaCl)2.H(+) // 517.3012 // 8 /// 

(5Alpha)-campestan-3-one // 
HMDB12116:.(NaCl)2.H(+) // 517.3012 // 8

0.0000 -0.1690 0.2887 0.0000 -0.1336 0.5510 0.0000 -0.5839 0.0108 0.0000 0.0690 0.7665 0.0000 -0.0273 0.9189

m868 156.0762 L-Histidine // HMDB00177:.H(+) // 156.0762 // 
100 0.0000 -0.1915 0.2785 0.0000 0.0283 0.9073 0.0000 -0.3185 0.1817 0.0000 0.0483 0.8369 0.0000 -0.5243 0.0217

m123 94.9982 Dimethyldisulfide // HMDB05879:.H(+) // 
94.9982 // 100 0.0000 -0.2167 0.0451 0.0000 -0.2246 0.2218 0.0000 -0.1547 0.4619 0.0000 -0.2244 0.2239 0.0000 -0.2631 0.1813

m1568 215.0535

Quinic acid // HMDB03072:.H/Na.H(+) // 
215.0535 // 63 /// Canavanine // 

HMDB02706:.H/K.H(+) // 215.0535 // 31 /// 
Serotonin // HMDB00259:.H/K.H(+) // 215.0535 

// 7 /// Cotinine // HMDB01046:.H/K.H(+) // 
215.0535 // 7 /// Phosphoguanidinoacetate // 

HMDB03705:.NH4(+) // 215.0535 // 6

0.0000 -0.2375 0.1567 0.0000 -0.2287 0.1955 0.0000 -0.1453 0.4725 0.0000 -0.1148 0.5361 0.0000 -0.4611 0.0125

m799 150.0581 L-Methionine // HMDB00696:.H(+) // 150.0581 
// 100 0.0000 -0.3051 0.2633 0.0000 -0.0742 0.6504 0.0000 -0.5454 0.0010 0.0000 -0.0803 0.6255 0.0000 -0.5204 0.0013

m2237 276.0848 N-Acetylvanilalanine // HMDB11716:.H/Na.H(+) 
// 276.0848 // 77 0.0000 -0.3694 0.1454 0.0000 -0.4848 0.0025 0.0000 -0.1576 0.3890 0.0000 -0.4345 0.0064 0.0000 -0.4006 0.0183

m4162 464.0653 Chondroitin sulfate // HMDB00580:.H(+) // 
464.0653 // 65 0.0000 -0.6532 0.2521 0.0000 -0.8510 0.0151 0.0000 -0.3061 0.4526 0.0000 -0.6282 0.0738 0.0000 -0.8275 0.0265
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Standard Product Form: Pellet
Macronutrients Vitamins
Crude Protein % 14.3 Vitamin A e, f IU/g 6.0
Fat (ether extract) a % 4.0 Vitamin D3 

e, g IU/g 0.6
Carbohydrate (available) b % 48.0 Vitamin E IU/kg 120
Crude Fiber % 4.1 Vitamin K3 (menadione) mg/kg 20
Neutral Detergent Fiber c % 18.0 Vitamin B1 (thiamin) mg/kg 12
Ash % 4.7 Vitamin B2 (riboflavin) mg/kg 6
Energy Density d kcal/g (kJ/g) 2.9 (12.1) Niacin (nicotinic acid) mg/kg 54
Calories from Protein % 20 Vitamin B6 (pyridoxine) mg/kg 10
Calories from Fat % 13 Pantothenic Acid mg/kg 17
Calories from Carbohydrate % 67 Vitamin B12 (cyanocobalamin) mg/kg 0.03
Minerals Biotin mg/kg 0.26
Calcium % 0.7 Folate mg/kg 2
Phosphorus % 0.6 Choline mg/kg 1030
     Non-Phytate Phosphorus % 0.3 Fatty Acids
Sodium % 0.1 C16:0 Palmitic % 0.5
Potassium % 0.6 C18:0 Stearic % 0.1
Chloride % 0.3 C18:1ω9 Oleic % 0.7
Magnesium % 0.2 C18:2ω6 Linoleic % 2.0
Zinc mg/kg 70 C18:3ω3 Linolenic % 0.1
Manganese mg/kg 100 Total Saturated % 0.6
Copper mg/kg 15 Total Monounsaturated % 0.7
Iodine mg/kg 6 Total Polyunsaturated % 2.1
Iron mg/kg 175 Other
Selenium mg/kg 0.23 Cholesterol mg/kg -- 
Amino Acids
Aspartic Acid % 0.9
Glutamic Acid % 2.9
Alanine % 0.9
Glycine % 0.7
Threonine % 0.5
Proline % 1.2
Serine % 0.7
Leucine % 1.4
Isoleucine % 0.6
Valine % 0.7
Phenylalanine % 0.7
Tyrosine % 0.4
Methionine % 0.3
Cystine % 0.3
Lysine % 0.7 f 1 IU vitamin A = 0.3 µg retinol

Histidine % 0.4 g 1 IU vitamin D = 25 ng cholecalciferol

Arginine % 0.8 For nutrients not listed, insufficient data is available to quantify.

Tryptophan % 0.2

0915© 2015 Envigo

Teklad Diets + Madison WI + envigo.com + tekladinfo@envigo.com + (800) 483-5523

b Carbohydrate (available) is calculated by subtracting neutral detergent fiber
  from total carbohydrates.

c Neutral detergent fiber is an estimate of insoluble fiber, including cellulose, 
  hemicellulose, and lignin. Crude fiber methodology underestimates total fiber.

Product Description-  2014 is a fixed formula, non-autoclavable diet 
manufactured with high quality ingredients and designed to promote 
longevity and normal body weight in rodents. 2014 does not contain alfalfa 
or soybean meal, thus minimizing the occurrence of natural 
phytoestrogens. Typical isoflavone concentrations (daidzein + genistein 
aglycone equivalents) range from non-detectable to 20 mg/kg. Exclusion of 
alfalfa reduces chlorophyll, improving optical imaging clarity. Absence of 
animal protein and fish meal minimizes the presence of nitrosamines.  
Also available certified (2014C) and irradiated (2914). For autoclavable 
diet, refer to 2014S (Sterilizable). 

Ingredients (in descending order of inclusion)- Wheat middlings, ground 
wheat, ground corn, corn gluten meal, calcium carbonate, soybean oil, 
dicalcium phosphate, iodized salt, L-lysine, vitamin E acetate, DL-methionine, 
magnesium oxide, choline chloride, manganous oxide, ferrous sulfate, 
menadione sodium bisulfite complex (source of vitamin K activity), zinc oxide, 
copper sulfate, niacin, calcium pantothenate, calcium iodate, pyridoxine 
hydrochloride, riboflavin, thiamin mononitrate, vitamin A acetate, vitamin B12 

supplement, folic acid, cobalt carbonate, biotin, vitamin D3 supplement.

Teklad Global 14% Protein Rodent Maintenance Diet

Teklad Diets are designed and manufactured 
for research purposes only.

Nutrient data represent the best information available, calculated from 
published values and direct analytical testing of raw materials and finished 
product. Nutrient values may vary due to the natural variations in the 
ingredients, analysis, and effects of processing.

d Energy density is a calculated estimate of metabolizable energy  based on the 
  Atwater factors assigning 4 kcal/g to protein, 9 kcal/g to fat, and 4 kcal/g to 
  available carbohydrate. 

e Indicates added amount but does not account for contribution from other 
  ingredients.

a Ether extract is used to measure fat in pelleted diets, while an acid hydrolysis 
  method is required to recover fat in extruded diets. Compared to ether 
  extract, the fat value for acid hydrolysis will be approximately 1% point higher.

2014 



Arginine, % 0.93

Biotin, ppm 0.2

Calcium, % 0.52

Chloride, % 0.73

Choline Chloride, ppm 1,000

Cobalt, ppm 0.0
Copper, ppm 6.0

Fat, % 8.1

Fiber (max), % 5.0

Folic Acid, ppm 2.0

Histidine, % 0.27

Iodine, ppm 0.21

Iron, ppm 37

Isoleucine, % 0.82
Leucine, % 1.11
Lysine, % 1.13

Magnesium, % 0.05

Manganese, ppm 59

Methionine, % 0.15

Pantothenic Acid, ppm 15

Phenylalanine, % 1.16

Phosphorus, % 0.40
Potassium, % 0.36

Protein, % 12.3

Pyridoxine, ppm 5.8

Riboflavin, ppm 6.0

Selenium, ppm 0.11

Sodium, % 0.13

Thiamin Hydrochloride, ppm 6.0

Threonine, % 0.82
Tryptophan, % 0.18

Tyrosine, % 0.00

Valine, % 0.82

Vitamin A, IU/g 4.0

Vitamin B-12, mcg/kg 10

Vitamin D-3 (added), IU/g 1.0
Vitamin E, IU/kg 50.0
Vitamin K (as menadione), ppm 0.50

Zinc, ppm 29

Niacin, ppm 30

Ascorbic Acid, ppm 0.0

Cystine, % 0.00

Minerals

Vitamins

4/8/2011

Fluorine, ppm 0.0

Chromium, ppm 2.0

N U T R I T I O N A L   P R O F I L E 1

1.  Formulation based on calculated values from the latest ingredient analysis 
information.  Since nutrient composition of natural ingredients varies and some 
nutrient loss will occur due to manufacturing processes, analysis will 
differ accordingly.  Nutrients expressed as percent of ration on an As-Fed basis 
except where otherwise indicated.  2.  Energy (kcal/gm) - Sum of decimal 
fractions of protein, fat and carbohydrate x 4,9,4 kcal/gm respectively.

D E S C R I P T I O N
AIN-76A Semi-Purified Diet with 0.15% L-Methionine
Storage conditions are particularly critical to 
TestDiet® products, due to the absence of antioxidants or preservative agents.  To provide 
maximum protection against possible changes during storage, store in a dry, cool location.  Storage 
under refrigeratation (2 ° C) is recommended.  

F E E D I N G   D I R E C T I O N S
Feed ad libitum.  Plenty of fresh, clean water should be available at all times.

I N G R E D I E N T S (%)

Carbohydrates, % 69.9
Energy (kcal/g) 4.01

Molybdenum, ppm 0.00

2

CAUTION: 
Perishable - store properly upon receipt.
For laboratory animal use only; NOT for human 
consumption.

w w w . t e s t d i e t .  c o m 

AIN-76A w/0.15% L-Methionine

Cholesterol, ppm 0

58MK

Product Forms Available* Catalog #

*Other Forms Available On Request

Protein 12.3
Fat (ether extract) 18.1
Carbohydrates 69.6

%kcalFrom:
0.493
0.728
2.794

Linoleic Acid, % 4.57
Linolenic Acid, % 0.07
Arachidonic Acid, % 0.00
Omega-3 Fatty Acids, % 0.07
Total Saturated Fatty A 1.02
Total Monounsaturated 
Fatty Acids, % 1.94

Glycine, % 2.31

Serine, % 0.00

Aspartic Acid, % 0.00
Glutamic Acid, % 3.56

Alanine, % 0.00

Proline, % 0.00

Taurine, % 0.00

Polyunsaturated Fatty Acids, % 4.65

Storage conditions are particularly critical to 
TestDiet® products, due to the absence of 
antioxidants or preservative agents.  To provide maximum protection against possible changes 
during storage, store in a dry, cool location.  Storage under refrigeration (2° C) is recommended.  Maximum shelf life is six months.  
(If long term studies are involved, storing the diet at -20˚ C or colder may prolong shelf life.)  Be 
certain to keep in air tight containers.

Corn Starch 43.4600
Sucrose 20.0000
Corn Oil 8.0000
Dextrin 5.0000
Powdered Cellulose 5.0000
Glutamic Acid 3.5600
AIN-76 Mineral Mix 3.5000
Glycine 2.3300
L-Lysine Hydrochloride 1.4400
L-Phenylalinine 1.1600
L-Arginine-HCl 1.1200
L-Leucine 1.1100
AIN-76A Vitamin Mix 1.0000
L-Isoleucine 0.8200
L-Valine 0.8200
L-Threonine 0.8200
L-Histidine HCl-H2O 0.3300
Choline Bitartrate 0.2000
L-Tryptophan 0.1800
L-Methionine 0.1500

525011/2" Pellet
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a b s t r a c t

Prostate cancer is among the most frequent cancers in men, and despite its high rate of cure, the high num-
ber of cases results in an elevated mortality worldwide. Importantly, prostate cancer incidence is dra-
matically increasing in western societies in the past decades, suggesting that this type of tumor is
exquisitely sensitive to lifestyle changes. Prostate cancer frequently exhibits alterations in the PTEN gene
(inactivating mutations or gene deletions) or at the protein level (reduced protein expression or altered
sub-cellular compartmentalization). The relevance of PTEN in this type of cancer is further supported
by the fact that the sole deletion of PTEN in the murine prostate epithelium recapitulates many of the fea-
tures of the human disease. In order to study the molecular alterations in prostate cancer, we need to over-
come the methodological challenges that this tissue imposes. In this review we present protocols and
methods, using PTEN as proof of concept, to study different molecular characteristics of prostate cancer.

� 2015 Published by Elsevier Inc.
1. Introduction

Prostate cancer (PCa) is among the deadliest forms of cancer
(WHO), and represents the third cause of death by cancer in
men (www.globocan.iarc.fr). The tumor suppressor PTEN is
among the most mutated and lost tumor suppressors in PCa
[1]. Up to 70% of PC as harbor loss of PTEN at presentation. This

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymeth.2015.02.005&domain=pdf
http://www.globocan.iarc.fr
http://dx.doi.org/10.1016/j.ymeth.2015.02.005
mailto:acarracedo@cicbiogune.es
http://dx.doi.org/10.1016/j.ymeth.2015.02.005
http://www.sciencedirect.com/science/journal/10462023
http://www.elsevier.com/locate/ymeth
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tumor suppressor is located at the top of a highly oncogenic sig-
naling pathway, the PI-3 Kinase (PI-3K) cascade, which contains
many other oncogenes and tumor suppressors [2]. In addition,
regulatory feedback loops stem from the PTEN/PI-3K pathway
to ensure cell homeostasis, which decrease the efficacy of single
agent therapies [2,3].

PTEN down-regulation is not restricted to genetic events, and
regulation of its transcription, translation and stability can play
an important role. PTEN is frequently lost in heterozygosity,
whereas mostly advanced cancers exhibit complete loss of the
tumor suppressor. Interestingly, the prostate epithelium is
exquisitely sensitive to the reduction in PTEN levels. This
concept has been formally proven in mice through the use of
genetic interference, which allows a partial reduction of the
expression of the interfered allele [4,5]. While PTEN heterozy-
gous mice present PIN lesions in the prostate with long latency
[6], PTEN hypomorphic mice show progression of the prostate
lesions to invasive cancer at higher penetrance [5]. Importantly,
while a gradual decrease of PTEN promotes prostate cancer
progression, acute and complete PTEN-loss elicits the activation
of a fail-safe senescence response, which is driven by the
up-regulation of the tumor suppressor p53 [7]. This novel type
of senescence is genuinely distinct from the classic oncogene-
induced senescence [8]. Importantly, genetic or environmental
events regulating this process may be key players in the progres-
sion of prostate cancer and therefore attractive targets for anti-
cancer therapy [9,10].

All these evidence point to the need of studying PTEN-depen-
dent pathways in prostate cancer. However, the technical chal-
lenges related to the study of this type of tumor require special
attention, and hence, in this review we aim at describing a series
of methodologies to study prostate cancer biology, with a reference
to the pathway aforementioned.
2. Methods and results

2.1. Preparation of well-diagnosed prostate cancer specimens for
molecular studies

Cancerous lesions in the prostate, unlike in other tissues, are
difficult to identify macroscopically. This poses a challenge when
the aim is to obtain well-diagnosed frozen tissue. To overcome this
limitation, we have set up together with the Basque Biobank
and Basurto University Hospital (OSI-Basurto, Bilbao, Spain), in
D

CA

B

Fig. 1. Preparation of well-diagnosed fresh frozen biopsies. (A–D) Preparation of the pu
surgical piece with eosin (C) and longitudinal separation of the punch with scalpel (D). (E
whole section hematoxylin/eosin staining is shown together with a zoom to show the h
collaboration with the Dept. of Pathology at Mount Sinai, a proce-
dure to obtain this type of specimen.

2.2. Key materials

– A biopsy punch (Miltex Ref. 33–34).

Due to the characteristics of prostate cancer, we established a
procedure by which fresh tissue obtained from radical prostatecto-
my is sliced into left and right lobe (after delimiting the margins of
the surgical piece with ink and fixing the ink with acetic acid). All
prostate specimens were obtained upon informed consent and
with evaluation and approval from the corresponding ethics com-
mittee (CEIC code OHEUN11-12 and OHEUN14-14). From each
lobe, the dermatologic punch is employed to harvest 8 tissue cylin-
ders of 4 mm diameter. The site of the punches is selected blindly
due to the lack of macroscopic alterations associated to cancerous
lesions. However, we did notice that the expertise of the patholo-
gist does influence the rate of success in harvesting cylinders with
cancer. Of note, this approach prevents from damaging the capsule
and a drop of eosin on the site of tissue harvest can help monitor-
ing the histological alterations surrounding the area for diagnostic
purposes. Tissue cylinders are then divided longitudinally with a
scalpel and dedicated to snap-freeze (in liquid nitrogen or isopen-
tane at �80 �C) and to paraffin embedding for diagnostic purposes
(procedure in Fig. 1A–D). Due to the width of the cylinder (4 mm
diameter), the diagnosed tissue fraction will closely represent the
histological properties of the frozen adjacent tissue. In Fig. 1E,
hematoxylin/eosin staining of whole tissue sections from cylinders
with different tumor abundance are shown, together with a zoom
that shows the correct preservation of the histological properties of
the sections. Importantly, this protocol allows us to closely esti-
mate the tumor abundance that we have in the frozen tissue piece,
hence solving an otherwise challenge in the acquisition of frozen
material. The material obtained from this approach is sufficient
to carry out different molecular biology studies, including RNA
preparation (described below), protein extraction and metabolite
profiling (data not shown).

2.3. Molecular biology analysis from frozen tissue: tips for good quality
RNA preparation

Preparation of RNA of high quality from prostate cancer speci-
mens remains a challenge, primarily due to the abundance of
RNAses and proteases in the prostate and prostatic fluid. A variety
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) Histological features of punch biopsies with different abundance of tumoral tissue,
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of protocols have been proposed to maximize the quality and yield
from biopsies of different origin [11–14] (see also protocols from
Prostate Cancer Biorepository Network; SOP N:006 http://www.
prostatebiorepository.org). While real time PCR is a low-demand-
ing approach in terms of RNA integrity, the latest OMIC technolo-
gies, including RNA sequencing, require material in optimal
conditions.

To define the technical needs of an appropriate RNA extraction
strategy, we have tested one main technical implementation (the
use of phenolic extraction agents) and one variable (the presence
of ink and acetic acid in the preparation).

2.4. Key materials

– Trizol (Life Technologies/Invitrogen Ref. 15596-018).
– Total RNA extraction kit (NucleoSpin� miRNA Ref. 740971.10/

50/250).

The protocol is the following, where the alternative procedure
with and without Trizol is underlined (the Trizol-based implemen-
tation is described in the user manual of the NucleoSpin� miRNA
kit):

1. RNAse inhibition and tissue thawing (a minimal amount of tis-
sue of 10 mg is sufficient for the procedure). RNA later ICE (Life
Technologies Ref. AM7030) is used to ensure the maximal inhi-
bition of RNAses and the optimization of tissue homogenization
afterwards. The protocol is based on transferring frozen tissue
(stored dry at �80 �C) to RNA later ICE (also at �80 �C) and
thawing the tissue at �20 �C overnight.

2. Regular lysis buffer. Tissue is transferred to the recommended
volume of NucleoSpin� miRNA lysis buffer.
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Fig. 2. Evaluation of the impact on phenol-based lysis and ink/acetic acid contaminant
absence (A) or presence (B) of Trizol lysis (average RIN values for the samples analyzed
lysis of samples with increasing amount of ink (the intensity of the dark color reflects the
three groups as indicated) (D), and RIN values obtained from the RNA preparation (E). (F)
Ct amplification values in all samples (left panel) and the lack of correlation between Ct
Trizol-based lysis. Tissue is transferred to 400 lL volume of

Trizol. Additional 400 lL are added after homogenization.
3. Homogenization. 5–6 beads/tube (Ceramic Bead Tubes 2.8 mm,

Cat.: 13114-50; MO BIO Laboratories). Homogenization is car-
ried out in Precellys in two cycles of 6000 rpm and 30 s.

4. RNA extraction. Following the manufactureŕs instructions.

RNA extraction. Following homogenization, we add 160 lL of

Chloroform, mix by vortex, incubate 3 minand centrifuge

15 minat 12,000g in tabletop centrifuge. The supernatant

(350–400 lL) is transferred to a new tube and mixed with

1 mL of MX buffer. After vortex, the product is loaded in the

column and the same process indicated in point 4 is followed.

The results obtained from frozen tissues with a stabilizing agent
(RNA later ICE), a total RNA extraction kit, and with or without Tri-
zol implementation are shown in Fig. 2. RNA stabilizing agents and
the standard non-phenol based lysis buffer is not sufficient to pre-
vent the RNA from degrading (Fig. 2A), while Trizol implementa-
tion results in total RNA of optimal quality for transcriptomic
studies (Fig. 2B, RNA Integrity Number – RIN – values in Fig. 2C).
Of note, although small RNAs have not been monitored in this pro-
cedure, the kit presented herein would allow for their isolation.

On the other hand, we have evaluated with an independent
phenol-based RNA extraction kit (Absolutely RNA miRNA KIT.
Cat. 400814, Agilent) whether the presence of ink and acetic acid
from the margins of the non-tumoral prostate tissue could influ-
ence RNA quality. To this end, we selected biopsies containing
increasing amounts of these contaminants (Fig. 2D). The presence
of these agents did not impact the quality of RNA, as quantified
by Agilent Bioanalyzer (Fig. 2E). We further studied if despite
yielding good quality RNA, ink and acetic acid could interfere with
D

 Trizol Trizol

RIN
** A B C D E F

Ink 1 2 3

APDH

s in RNA quality. (A–C) Bioanalyzer analysis of RNA preparations performed in the
are presented in C; ⁄⁄, significance p < 0.01). (D and E) Representative images of the
increasing concentration of ink in the sample of origin, which has been separated in

Real time quantitative PCR of PTEN (two Taqman probes) and GAPDH shows average
values and the increase in ink (right panel).

http://www.prostatebiorepository.org
http://www.prostatebiorepository.org
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the retrotranscription and real time quantitative PCR process. We
predicted that if the ink/acetic acid interferes with the retrotran-
scription or real time PCR, we would observe an increase in the
Ct values of the genes studied in the high ink conditions. However,
evaluation of PTEN expression with two independent Taqman
probes (PTEN 48: Universal Probe library [Roche] #48; primer F:
ggggaagtaaggaccagagac Primer R: tccagatgattctttaacaggtagc; PTEN
60: Universal Probe library [Roche] #60; primer F: gcacaagaggccc-
tagatttc Primer R: cgcctctgactgggaatagt) and GAPDH (REF. Life
Technologies Hs02758991_g1) as housekeeping gene clearly
showed a lack of correlation between the amount of ink and any
alteration in gene expression (Fig. 2F). In summary, phenol-based
RNA extraction coupled to column-based purification significantly
improves RNA quality and the presence of ink/acetic acid in the tis-
sue sample does not influence RNA preparation, retrotranscription,
or real time PCR amplification.

2.5. Monitoring PTEN expression in prostate cancer: an
immunohistochemical (IHC) procedure

Immunodetection of PTEN could become critical in the coming
years to stratify patients and define the best therapeutic strategies
[15,16]. Therefore, good standardized IHC procedures need to be
established. Lotan et al. recently established an immunohisto-
chemical protocol for PTEN [17]. We have employed a different
clone from Cell Signaling Technology PTEN (138G6) and we have
established a sensitive and specific IHC protocol for research
purposes.

2.6. Key material

– Rabbit monoclonal PTEN antibody, clone 138G6 (Cell Signaling
Technology, Ref. 9559).

Antigen retrieval was performed with Tris–EDTA (pH 9) in
microwave (4 min). H2O2 was used to block the endogenous
peroxidase, followed by blocking with goat serum and primary
antibody (1:100) incubation overnight at 4 �C. Goat anti-rabbit
IgG antibody (1:1000) was incubated at room temperature for
30 min. IHC detection was performed with the ABC Kit from Vector
A

C

B

Fig. 3. An immunostaining protocol for PTEN in human prostate cancer specimens. (A
(DU145) and PTEN deficient (PC3) human tumor xenografts. Asterisks indicate stromal c
tissue (BPH) and prostate cancer (PCa) biopsies with PTEN high and low immunoreactiv
Laboratories. This protocol with DAB-based development results in
specific detection of PTEN, which was setup in DU145 (PTEN posi-
tive) and PC3 (PTEN negative) xenograft-derived formalin fixed,
paraffin embedded (FFPE) slides. Sections were counterstained
with hematoxylin.

With this protocol, tumors with known PTEN status (described
above) were correctly identified (Fig. 3A and B). We also stained
human biopsies consisting of benign hyperplasias and prostate
cancer. We could identify PTEN positive epithelia in the hyper-
plasia cases as well as prostate cancer biopsies with and without
detectable PTEN immunoreactivity (Fig. 3C). Of note, we observed
that often the stromal component exhibited greater PTEN expres-
sion that the adjacent epithelial tissue (see asterisks in Fig. 3). In
summary, we present here a protocol that is valuable for the detec-
tion of PTEN in human specimens for research purposes.
2.7. Extracellular vesicle isolation from urine samples of prostate
cancer patients

Due to the close proximity of the prostate to the urinary track,
urine-mediated diagnosis of prostate cancer has remained an
attractive concept. Extracellular vesicles (EVs) have been described
to contain mRNA, protein and metabolites that could be selectively
loaded [18]. Importantly, EVs have been identified in urine and
cancerous alterations in the bladder have been shown to impact
on their composition, suggesting that they could serve as a source
for non-invasive biomarker identification. Since current non-inva-
sive prostate cancer biomarkers have been proven to have limita-
tions [19–21], urine EVs might provide a future source of novel
biomarkers. Here, we describe the current protocol for urine EV
isolation we are employing (a setup carried out by the group of
Dr. Falcón-Pérez).
2.8. Key material

– Ultracentrifuge.

Urine EVs can be isolated through this methodology starting
from 50 mL of urine. Urine is centrifuged in a tabletop centrifuge
and B) Representative immunohistochemical images (200�) of PTEN expressing
ells. (C) Representative micrographs (200�) of PTEN staining in benign hyperplasia
ity, arrows indicate epithelial cells and asterisk depict stromal area.
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at 3000 rpm for 5 min and the supernatant is filtered (0.22 micra)
at the moment of collection, and then frozen at �80 �C. At the time
of processing, urine is subjected to a first centrifugation of 11,500g
for 30 min, and the supernatant is subjected to a second centrifu-
gation of 118,000g for 90 min. The pellet (containing EVs) is then
collected, resuspended in 150 lL of cold PBS and frozen for later
processing. The EV pellet is subjected to RNA extraction, for which
purpose we employ the miRCURY RNA isolation kit (EXIQON, fol-
lowing manufactureŕs instructions, DNAse I – Qiagen – digestion)
and we carried out the retrotranscription with SuperScript III
(Invitrogen). 35 lL of total RNA is isolated, and despite the low
yield of RNA in the preparation (in the range of nanograms),
60–80 lL of cDNA can be prepared for qPCR analysis (Fig. 4A and
B). As proof of concept of the validity of this method, we have
carried out qPCR analysis in 10 benign hyperplasias and 13
prostate cancers (paired samples to the biopsies presented in the
histochemical analysis). We have used as positive control a gene
known to be present in EVs, GAPDH [22] (Fig. 4C).

PTEN has been recently reported to be secreted [23,24], and
PTEN protein abundance in blood exosomes has been suggested
to reflect status of the tumor suppressor in the prostate tumor
([25]. Hence we sought to ascertain to which extent the transcript
abundance of PTEN would be altered in urine EVs from prostate
cancer patients. The results revealed that both PTEN and GAPDH
were present in all EV preparations analyzed at a similar abun-
dance regardless of the benign of the tumoral status. This result
was in discordance with PTEN protein expression, since the urine
samples analyzed include cases that we identified as negative for
PTEN immunoreactivity (displayed in Fig. 3). This lack of differ-
ences could be due to two main factors: first, the content of EVs
in urine might be strongly influenced by bladder cells, perhaps
more than by prostate cells. Second, PTEN is down-regulated at
multiple levels, through mutations, deletions, but also through
post-transcriptional regulation, which would not necessarily
impact on the transcript levels.

3. Discussion

In this methods manuscript, we present approaches that allow
us to study the biology of prostate cancer. While much work
A
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Fig. 4. A method to harvest RNA from urine EVs. (A) Experimental procedure of the EV is
Microscopy (TEM) of the isolated EVs with this approach (scale represents 100 nm). (C) A
quantitative PCR.
remains to be carried out in order to understand the molecular
changes in this disease, we believe that the technological improve-
ments that we present herein could serve as the basis to ensure the
acquisition of (i) fresh and well diagnosed prostate cancer tissue,
(ii) RNA of high quality for OMIC studies, (iii) immunostaining
methodology to ascertain the expression of PTEN in human tissues
and (iv) isolation of urine EVs for molecular studies.

The interaction between pathologists, uro-oncologists and basic
scientists is fundamental in order to reach clinically relevant con-
clusions in prostate cancer research. The fresh tissue preparation
procedure that we present has proven to be sustainable in a
hospital with biobanking support and, importantly, to preserve
the integrity of the surgical material for diagnostic purposes.
Unpublished evidence also suggest that the area/volume ratio of
the biopsy is directly proportional to the quality of the RNA
obtained, and it is therefore plausible that the dimensions of these
punch biopsies will allow molecular studies of the highest quality
requirements. It is worth noting that the surgical material in our
studies was obtained from robotic surgeries, where the warm
ischemia period (the time the surgical piece stays excised and
inside the patient) is of 60–80 min, while the cold ischemia (the
time elapsed from the extraction of the piece to the snap-freeze
of the punch biopsy) is at least of 30 min. These ischemic periods
do not alter the RNA quality of the biopsy (which we consider a
good readout of tissue integrity) and can be achieved in any
urology and pathology service.

Importantly, the molecular studies described herein can greatly
benefit from the analysis of public databases. In the recent years,
bioinformatic platforms have been developed in order to aid in
the analysis of publicly available genomic, epigenomic, transcrip-
tomic and proteomic studies. These platforms now allow quickly
browsing through tens of studies (which imply thousands of sam-
ples) looking at a gene or pathway of interest. Two outstanding
examples of this effort are Oncomine (www.oncomine.org) [26]
and cbioportal (www.cbioportal.org) [27,28]. These sites allow
the researcher to get information about the status of a gene or
genes of interest in a given cancer, the mutational landscape
throughout different cancers, the epigenetic modifications regulat-
ing its expression and the clinical variables associated with its
expression. Therefore, these platforms can serve both as a
Centrifuge
11500 x g

30 min

Centrifuge
118000 x g

90 min

Supernatant

Resuspend pellets in 
150µL of cold PBS and 
freeze

r

GAPDH

olation from urine samples. (B) Representative image by cryo-Transmission Electron
bundance of PTEN (with two probes) and GAPDH transcript in urine EVs by real time

http://www.oncomine.org
http://www.cbioportal.org
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discovery starting point or a clinical validation end point. In sum-
mary, a good balance between experimental approaches with
human cancer specimens and data mining studies can maximize
the relevance of the conclusions met by the researcher.
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ORIGINAL ARTICLE

Pharmacological inhibition of fatty-acid oxidation
synergistically enhances the effect of L-asparaginase in
childhood ALL cells
I Hermanova1, A Arruabarrena-Aristorena2, K Valis3,4, H Nuskova5, M Alberich-Jorda6, K Fiser1, S Fernandez-Ruiz2, D Kavan3,4, A Pecinova5,
M Niso-Santano7,8, M Zaliova1, P Novak3,4, J Houstek5, T Mracek5, G Kroemer7,8,9,10, A Carracedo2,11,12, J Trka1,13 and J Starkova1

L-asparaginase (ASNase), a key component in the treatment of childhood acute lymphoblastic leukemia (ALL), hydrolyzes plasma
asparagine and glutamine and thereby disturbs metabolic homeostasis of leukemic cells. The efficacy of such therapeutic strategy
will depend on the capacity of cancer cells to adapt to the metabolic challenge, which could relate to the activation of
compensatory metabolic routes. Therefore, we studied the impact of ASNase on the main metabolic pathways in leukemic cells.
Treating leukemic cells with ASNase increased fatty-acid oxidation (FAO) and cell respiration and inhibited glycolysis. FAO, together
with the decrease in protein translation and pyrimidine synthesis, was positively regulated through inhibition of the RagB-mTORC1
pathway, whereas the effect on glycolysis was RagB-mTORC1 independent. As FAO has been suggested to have a pro-survival
function in leukemic cells, we tested its contribution to cell survival following ASNase treatment. Pharmacological inhibition of FAO
significantly increased the sensitivity of ALL cells to ASNase. Moreover, constitutive activation of the mammalian target of
rapamycin pathway increased apoptosis in leukemic cells treated with ASNase, but did not increase FAO. Our study uncovers a
novel therapeutic option based on the combination of ASNase and FAO inhibitors.

Leukemia (2016) 30, 209–218; doi:10.1038/leu.2015.213

INTRODUCTION
L-asparaginase (ASNase) is an essential component in the
treatment of childhood acute lymphoblastic leukemia (ALL).1

Intensified use of ASNase increases event-free survival in children
with ALL by 10–15%.2,3 ASNase has the potential to be used in
other types of cancers besides childhood ALL – at present, it is
already used in the treatment protocol of adult T-ALL and
lymphomas.4,5 There are also ongoing in vitro studies on its use in
solid tumors (brain, prostate and ovarian cancers).6–10 Although
ASNase has been in clinical use for the treatment of childhood ALL
for several decades, our knowledge of mechanisms behind its
therapeutic effect is still incomplete. ASNase catalyzes deamina-
tion of asparagine (Asn) and glutamine (Gln).11,12 Intracellular Asn
is typically produced by Asn synthetase (ASNS). The cytotoxic
effect of ASNase on leukemic cells was traditionally explained by
the lower activity of ASNS in leukemic cells compared with healthy
cells.13,14 However, recent studies reported that basal ASNS
expression does not predict resistance to ASNase among ALL
patients15–18 and has no biological or clinical consequences in ALL
patients.19 These findings indicate that the mechanism of action of
ASNase is more complex and cannot be explained by the
expression of a single gene.

Proliferating cancer cells are characterized by considerably
different metabolic requirements compared with normal differ-
entiated cells.20,21 Cancer cell metabolism is therefore studied with
a focus on potential therapeutic targets. As metabolic modulators
are widely used for pathologies beyond cancer, drug repurposing
has become a very appealing concept in the field, as exemplified
by metformin, an antidiabetic that has been newly investigated
for its inhibitory effect on cancer progression.22–24 By deaminating
Asn and Gln, ASNase obviously also perturbs metabolism, but
these metabolic consequences have not yet been described. The
main sensor of amino-acid deprivation is mammalian target of
rapamycin (mTOR), which has been associated with the activity of
ASNase.25 Moreover, it has been shown that Gln depletion can
efficiently inhibit downstream mTOR signaling in acute myeloid
leukemia and ovarian cancer cells.26,27 Under nutrient-rich
conditions, mTORC1 promotes cell growth by stimulating
biosynthetic pathways. Meanwhile, cellular catabolism, such as
autophagy, is inhibited. Signaling via mTOR also influences a wide
range of metabolic mechanisms28–31 and the impact of ASNase on
the downstream mTOR targets that are involved in metabolic
processes has not yet been studied thoroughly. This study for the
first time describes the profound effect of ASNase on the
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metabolism of lymphoid leukemic cells that is driven by mTOR.
The characterization of these cellular processes reveals novel
potential targets for the treatment of ALL to enhance the effects of
chemotherapy and improve clinical outcome in patients.

MATERIALS AND METHODS
Cell culture
REH (human B-cell precursor leukemia, ets variant 6/runt-related transcrip-
tion factor 1 (ETV6/RUNX1, TEL/AML1) - positive); NALM-6 (human B-cell
precursor leukemia, TEL/platelet derived growth factor receptor beta 1
(PDGFRB1); (TEL/PDGFRB1) - positive) and RS4;11 (human B-cell precursor
leukemia, mixed-lineage leukemia/AF4/FMR2 family, member 1 (AF4); MLL/
AF4-positive) cell lines were purchased from German Collection of
Microorganisms and Cell Cultures (DSMZ-Deutsche Sammlung von
Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany) and
cultivated according to the producer’s instructions. Cell lines were negative
for mycoplasma contamination.

Patient samples
Bone marrow samples from untreated children initially diagnosed with
B-cell precursor ALL were collected from the Czech Pediatric Hematology
Centers. Within 24 h after aspiration, mononuclear cells were isolated by
density gradient centrifugation using Ficoll-Paque PLUS (GE Healthcare,
Chalfont St Giles, UK). Ethical committee approved the study no. NT12429.
All samples were obtained with the informed consent of the children’s
parents or guardians. Isolated blasts were maintained in Roswell Park
Memorial Institute media with 10% fetal bovine serum (Life Technologies,
Carlsbad, CA, USA) and insulin-transferrin-sodium selenite supplement
(Sigma-Aldrich, St Louis, MO, USA).32 The characteristics of the patients
whose samples were used for western blot analysis (1–3), Annexin
V/4',6-diamidino-2-phenylindole (Annexin V/DAPI) staining (4–8) and
measurement of respiration (9–11) are listed in Supplementary Table 1.

Isolation of B lymphocytes
Human B-Cell Enrichment Cocktail (Stemcell Technologies, Vancouver, BC,
Canada) was used according to the manufacturer’s instructions to isolate B
cells from the buffy coat of healthy donors. B cells were incubated in
Roswell Park Memorial Institute media supplemented with 10% fetal
bovine serum, interleukin-21 (50 ng/ml) andinterleukin-2 (50 ng/ml)
(Sigma-Aldrich). B cells were isolated from three healthy donors.

Electrophoresis and western blotting
Protein lysates were prepared as previously described.19 Proteins
(10–40 µg per well) were resolved by NuPAGE Novex 4–12% Bis-Tris Gels
(Life Technologies) and transferred to a nitrocellulose membrane (Bio-Rad,
Hercules, CA, USA). The membrane was probed overnight with primary
antibodies listed in Supplementary Table 2. The bound antibodies were
detected with the appropriate secondary antibodies (Bio-Rad) conjugated
with horseradish peroxidase and visualized using enhanced chemilumi-
nescence reagent followed by exposure to X-ray film (Kodak, Rochester,
NY, USA). Rapamycin (Sigma-Aldrich) served as a positive control of
mTORC1 inhibition. Densitometry was performed using Image J software.
The densitometry value was normalized against the value for β-actin.

RNA extraction, complementary DNA synthesis and quantitative
real-time PCR
Total cellular RNA was extracted using the RNeasy mini-kit (Qiagen GmbH,
Hilden, Germany) according to the manufacturer’s instructions and
converted to complementary DNA using an iScript complementary DNA
synthesis kit (Bio-Rad). The c-Myc transcript was detected using the Power
SYBR Green PCR Master Mix (Life Technologies). The primer sequences of
c-Myc are listed in Supplementary Table 3. β2 microglobulin served as a
house-keeping gene. PCR reactions were performed in a LightCycler 480
real-time PCR machine (Roche Diagnostics GmbH, Mannheim, Germany).

Assessment of cell death
Cells were treated with ASNase (Medac GmbH, Hamburg, Germany),
etomoxir (Sigma-Aldrich) or both and apoptosis was quantified by Annexin
V-FITC (Exbio Praha, a.s., Czech Republic) and DAPI (Life Technologies) or

propidium iodide (PI) (Miltenyi Biotec, Bergisch Gladbach, Germany)
staining using flow cytometer. Measurements were performed in triplicate.

Combination index (CI) calculation
CI values were calculated using CompuSyn software (www.combosyn.
com). The calculation of dose-effect relationship for each drug we used
was done via serial dilution. CI was calculated from serial dilution of
ASNase and each dose of etomoxir. CI was used to express synergism
(CIo1), additive effect (CI = 1) or antagonism (CI41).33

Assessment of autophagic flux
Cells were treated with ASNase and bafilomycin (Sigma-Aldrich) for 6, 12
and 24 h. Autophagic flux was quantified by western blotting.

Detection of de novo intermediates of pyrimidine synthesis by
UPLC-ToF-MS
The cells were seeded to fresh media and incubated overnight. Next we
treated the cells with ASNase (4 IU/ml) for 24 h. Five million of cells were
harvest for each condition and washed in phosphate-buffered saline. Dried
cell pellets were resuspended in 500 μl of a methanol/water (50/50; v/v%)
mixture containing 10mM acetic acid. After precipitation of the protein
content, the supernatant was evaporated. The dried pellets were
resuspended in 150 μl of water/acetonitrile/formic acid (39.9/60/0.1v/v/v
%) and centrifuged. The resulting extracts were injected into the LC-MS
system using ACQUITY UPLC with Acquity UPLC amide column 1.7 μm
(2.1 × 100mm) and ToF MS, SYNAPT G2 (Waters Corporation, Milford, MA,
USA). Retention time for uridine monophosphate and uridine was 2.95 and
1.68min, respectively. The limit of detection of those compounds: uridine
monophosphate 0.5 μM, uridine 0.05 μM. The measurement was performed
in three independent experiments.

High performance liquid chromatography analysis
High performance liquid chromatography analysis of amino acids was
performed using Waters AccQ-Tag Chemistry Package (WAT052875) on
two pump Beckman Coulter Gold chromatograph with Merck-Hitachi
F-1080 fluorescence detector (ex.250 nm, em. 395 nm). Data were collected
and evaluated with DataApex CSW32 chromatography software.

Glucose-uptake measurement
Cells were washed twice with Krebs-Ringer-4-(2-hydroxyethyl)-1-piperazi-
neethanesulfonic acid buffer (20 mM 4-(2-hydroxyethyl)-1-piperazineetha-
nesulfonic acid, pH 7.4, 136 mM NaCl, 4.7 mM KCl, 1.25mM MgSO4, 1.25mM

CaCl2), resuspended in 900 μl of Krebs-Ringer-4-(2-hydroxyethyl)-1-piper-
azineethanesulfonic acid buffer and incubated for 15min at 37 °C. Next, we
added 100 μl of 10 × START solution (1 mM 2-deoxyglucose, 5 μCi/ml [3H]-
2-deoxyglucose, PerkinElmer Life Sciences, Waltham, MA, USA) and
incubated the cells for 10min at 37 °C. Cells were washed with
phosphate-buffered saline, collected by centrifugation, and the cell pellet
was solubilized in 1ml of 0.03% sodium dodecyl sulphate for 10min at 37 °C.
Radioactivity was measured using a 1900TR liquid scintillation analyzer
(Packard). The measurement was performed in four independent
experiments.

Extracellular lactate
Extracellular lactate was measured using the Lactate Kit (Trinity Biotech,
Bray, Ireland) according to the manufacturer’s directions. Changes in
lactate production were normalized to the protein content. The measure-
ment was performed in five independent experiments.

FAO measurement
Cells were incubated for 4 h in culture medium containing 100 μM palmitic
acid, 1 mM carnitine and 1.7 μCi [9,10(n)-3H]palmitic acid (GE Healthcare) in
the presence or absence of etomoxir (100 μM, Sigma-Aldrich), and the
medium was collected to analyze the amount of released 3H2O that was
formed during the cellular oxidation of [3H]-palmitate.34–36 Medium was
precipitated with 10% TCA, and supernatants were neutralized with 6 M

NaOH and loaded onto ion exchange columns packed with DOWEX
1× 2-400 resin (Sigma-Aldrich). 3H2O was eluted with water and
quantitated by liquid scintillation counting. The oxidation of [3H]-palmitate
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was normalized to the protein content, as determined using a DC Protein
Assay (Bio-Rad). Non-mitochondrial FAO and background signal
(FAO measured in samples after incubation with etomoxir) was extracted,
and mitochondrial FAO (etomoxir counts extracted from total counts) was
presented in nCi/mg protein/h. The measurement was performed in four
independent experiments.

Respiration
The endogenous respiration of intact cells was measured in the culture
medium at 37 °C using Oxygraph-2k-respirometer (OROBOROS Instruments
Corporation, Innsbruck, Austria). Respiratory rates were determined in both
coupled and uncoupled states, the latter after titration of the uncoupler
carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (Sigma-Aldrich).
Inhibition by ATP synthase inhibitor oligomycin (Sigma-Aldrich) was used
to verify dependence of coupled respiration on mitochondrial FoF1-ATP
synthase. The following concentrations of cells and respiratory inhibitors
were applied: 0.4 mg/ml cells, 1 μM oligomycin, 200–300 nM carbonyl
cyanide-4-(trifluoromethoxy)phenylhydrazone and 0.5 μM antimycin A
(respiratory chain inhibitor; Sigma-Aldrich). The measurement was
performed in four (REH, NALM-6) and three (healthy B lymphocytes,
BCP-ALL) independent experiments.

NAD+/NADH ratio
The ratio of oxidized and reduced form of nicotinamide adenine
dinucleotide (NAD+/NADH) was measured using the NAD+/NADH Glo
assay (Promega, Madison, WI, USA) according to the manufacturer’s
protocol. The ratio was measured in three independent experiments.

Lentiviral RagB cell models
We have used Flag pLJM1 RagB wild-type (RagB wt; Addgene plasmid
19313) and Flag pLJM1 RagB 99L (Addgene plasmid 19315) lentiviral
constructs (Addgene, Cambridge, MA, USA).37 Lentiviral particles were
produced as previously described38 and used for the transduction of
NALM-6 cells. Positive clones were selected by puromycin resistance and
further used for experiments.

Statistical analysis
Student’s t-tests were performed in GraphPad Prism software (GraphPad
Software, Inc., San Diego, CA, USA) for statistical analyses.

RESULTS
ASNase treatment extensively alters cellular metabolism
As ASNase disrupts nutrient homeostasis, we studied its effect on
key metabolic pathways in leukemic cells. Effect of applied ASNase
dosage (RS4;11: 0.5 IU/ml; REH, NALM-6: 4 IU/ml) chosen according
to the pharmacokinetics of ASNase39 was confirmed as a change in
extracellular amino-acid levels by high-performance liquid chroma-
tography (Supplementary Figure S1). First, we focused on the
impact of ASNase on FAO. We incubated REH, NALM-6 and RS4;11
B-precursor leukemic cells with ASNase for 18 h and measured the
activity of FAO. ASNase treatment significantly increased FAO in
these cell lines (Figure 1a). The effect of etomoxir on FAO in ALL
cells is shown in Supplementary Figure S2. Next, we determined the
effect of ASNase on glucose metabolism in REH and NALM-6 cells
and observed that ASNase treatment significantly reduced glucose
uptake in both cell lines (Figure 1b). This was accompanied by
decreased lactate production in NALM-6 cells (Supplementary
Figure S3). Lactate production in RS4;11 was also significantly
reduced after ASNase treatment. There were no observable
changes in REH cells; however, the basal lactate level was
substantially lower in REH cells compared with NALM-6 (data not
shown). Furthermore, we determined the levels of the glycolysis
regulator c-Myc and glucose transporter type 1 (GLUT1). As shown
in Supplementary Figure S4, ASNase significantly decreased c-Myc
messenger RNA expression in ALL cell lines with a concomitant
decrease in the protein levels of c-Myc and GLUT1. Consistent with
these results observed in ALL cell lines, we detected decreased

c-Myc protein levels also in some primary ALL cells following
ASNase treatment (Supplementary Figure S4).
Both FAO and glucose oxidation yield NADH, which

is then oxidized by mitochondrial respiratory chain. In the
subsequent experiment we therefore investigated the impact
of ASNase on the mitochondrial respiration in ALL cells.
ASNase significantly increased basal oxygen consumption (routine
respiration) of REH cells (P= 0.0276) (Figure 1c and Supplementary
Figure S5). In the uncoupled state, which serves as a measure of
the maximum capacity of the respiratory chain, we observed a
significant increase in oxygen consumption in ALL cell lines
(Figure 1c and Supplementary Figure S5). More interestingly, we
observed significant increase of the spare respiratory capacity
(uncoupled/coupled respiration) in REH and NALM-6 cell lines
treated with ASNase (Figure 1d). The increase of spare respiratory
capacity was borderline significant (P= 0.062) in RS4;11 cell line.
We found a similar increase in the spare respiratory capacity also
in the primary ALL cells on ASNase treatment (Figure 1d). In
contrast, this was not the case for the control B lymphocytes
isolated from peripheral blood of healthy subjects (Figure 1d),
indicating that the effect of ASNase is specific to leukemic cells.
The increase in the respiratory capacity was not accompanied by a
change in the content of oxidative phosphorylation proteins
(Supplementary Figure S6), meaning that it likely represents a shift
in the balance of available substrates. Indeed, we detected a
significant increase in the NAD+/NADH ratio in ALL cell lines
following ASNase treatment (Supplementary Figure S7).

ASNase modulates pyrimidine synthesis and autophagy via
mTORC1 inhibition
Our previous experiments have shown that ASNase treatment
affects key metabolic pathways in ALL cells. Based on the
sensitivity of mTORC1 to amino-acid levels and the evidence that
ASNase treatment inhibits mTORC1 signaling,25 we hypothesized
that the effect of ASNase on metabolism is driven through
mTORC1. First, we confirmed the effect of ASNase on main
mTORC1 targets. We detected dephosphorylated p-P70S6K and
p-S6 in ALL cell lines and some primary ALL samples treated with
ASNase (Figure 2a and Supplementary Figure S8). Furthermore, we
detected dephosphorylated carbamoyl phosphate synthase II
(p-CAD), suggesting a decrease in the de novo synthesis of
pyrimidines (Figure 2a).40 Similar effect on p-CAD status was also
observed using specific mTOR inhibitor rapamycin (Figure 2a). We
also measured the intermediates of de novo pyrimidine synthesis
using UPLC-ToF-MS in REH and NALM-6 cells treated with ASNase.
In concordance with the dephosphorylation of p-CAD, we
observed significantly decreased synthesis of uridine mono-
phosphate and uridine in REH and NALM-6 cells treated with
ASNase (Figure 2b). Another mechanism that may be activated on
mTORC1 inhibition is autophagy. To investigate whether ASNase
treatment augments autophagic flux, we detected the conversion
of the marker of autophagosome, microtubule-associated protein
light chain 3 (LC3), LC3-I to LC3-II, by western blot. Treatment with
ASNase induced a time-dependent increase in the expression of
LC3-II in the NALM-6 cell line (Figure 2c), indicating that ASNase
activates autophagy. Consistent with increased autophagic flux
following treatment with ASNase, there was a time-dependent
decrease in the level of p62 (selective substrate of autophagy).
LC3-II accumulation following ASNase treatment was intensified in
the NALM-6 cell line after treatment with bafilomycin A1
(Figure 2c). Bafilomycin A1 is an inhibitor of the vacuolar ATPase,
which blocks the fusion of autophagosomes with lysosomes,
leading to an accumulation of autophagosomes.41 This result
confirms that the observed increase in LC3-II after ASNase
treatment was due to increased autophagic flux and not because
of decreased degradation of lipidated LC3.
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ASNase acts through the RagB-mTORC1 pathway
Next, we investigated the mechanism whereby ASNase inhibits
the mTORC1 pathway. The activation of mTORC1 in the presence
of amino acids is mediated by the Rag GTPases (guanosine-
5'-triphosphatases) A, B, C and D. A key event in the amino-acid-
dependent activation of mTORC1 is the conversion of RagA or
RagB from a guanosine-5'-diphosphate (GDP) to guanosine-
5'-triphosphate (GTP)-bound state.31,37,42 To determine whether
ASNase inhibits mTORC1 by the same mechanism as general
amino-acid deprivation, we established RagB wt and RagB mutant
(RagB 99L) cells (Figure 3). The mutation of RagB causes
constitutive activation of mTORC1 by permanent conversion to
GTP and localization of mTOR in the vesicle compartments
regardless of amino-acid deprivation.37 We used a lentiviral
system to achieve permanent expression of RagB in the NALM-6
cell line. The resistance of the mTOR pathway inhibition to

amino-acid deprivation by ASNase treatment was confirmed in
RagB 99L. There was no change in p-S6 level in the RagB 99L cells,
whereas ASNase treatment inhibited p-S6 protein in RagB wt cells.
Concordantly, p-CAD protein was inhibited more extensively in
RagB wt cells than in RagB 99L cells (Figure 3a). Importantly, the
ability to enhance FAO was impaired in RagB 99L cells exposed to
ASNase (Figure 3b). These results suggest that the effect of
ASNase on protein translation, de novo pyrimidine synthesis and
FAO is mediated through the RagB-mTORC1 pathway. By contrast,
c-Myc expression was decreased in both RagB wt and RagB 99L
cells (Figure 3a). Consistent with this result, there was a significant
decrease in the level of extracellular lactate in RagB 99L cells
(Supplementary Figure S9), indicating that ASNase inhibits
glycolysis in a RagB-mTORC1-independent manner. To test
whether c-Myc inhibition following ASNase treatment is mTORC1
independent, we detected the c-Myc protein level in REH and
NALM-6 cells treated with the mTORC1 inhibitor rapamycin.

Figure 1. Effect of ASNase on the metabolism of leukemic cells. (a) ALL cell lines were cultured for 18 h with or without ASNase and the rate of
fatty-acid oxidation was assessed. The concentration of ASNase was 4 IU/ml (REH, NALM-6) and 0.5 IU/ml (RS4;11) The experiment was
performed in quadruplicate. (b) ALL cell lines were cultured overnight with or without ASNase (4 IU/ml). Changes in glucose uptake were
measured by the accumulation of [3H]-2-deoxyglucose in cells. (c) ALL cell lines (d) healthy B lymphocytes and BCP-ALL patient samples were
cultured with or without ASNase for 24 h. The dose of ASNase was 4 IU/ml for all samples except of RS4;11 (0.5 IU/ml). The endogenous
respiratory rates were determined in both coupled and uncoupled states (the latter after titration of the uncoupler FCCP) and also after the
addition of oligomycin. The spare respiratory capacity was calculated. The following concentrations of cells and respiratory inhibitors were
applied: 0.4 mg/ml cells, 1 μM oligomycin, 200–300 nM FCCP. Asterisks represent significant changes. ***Po0.001; **Po0.01; *Po0.05.
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Contrary to the effects of ASNase, inhibition of mTORC1 by
rapamycin did not cause a substantial decrease in c-Myc
(Supplementary Figure S10).
These results suggest that ASNase inhibits protein translation and

DNA synthesis directly through RagB-mTORC1, and inhibition of the
mTORC1 pathway also causes enhancement of FAO. However,
glycolysis seems to be regulated through a different mechanism.

Inhibition of FAO increases the cytotoxic effect of ASNase in ALL
cells
The activation of FAO has been suggested to exert a pro-survival
function in leukemic cells under nutrient stress conditions. We
tested whether the increase of FAO upon ASNase treatment
allows leukemic cells to cope with metabolic stress. We treated
REH and NALM-6 cells with the FAO inhibitor etomoxir, ASNase, or
both drugs, and measured its effect on the viability of the cells.
The concentrations of etomoxir were 25, 50, 100, 200 and 400 μM.

The range of etomoxir was chosen according to previous
publications.43,44 Pharmacological inhibition of FAO in combination
with ASNase increased apoptosis in REH and NALM-6 cells. As
shown in Figure 4a, CI for etomoxir with ASNase were o1,
indicating synergistic mode of action in both cell lines.33 Complete
data on the effect of both drugs are shown in Supplementary
Figure S11. The most effective concentrations of etomoxir in the
combination with ASNase were 100 and 200 μM. Importantly, similar
results were obtained in primary diagnostic ALL patient samples co-
treated with ASNase and etomoxir. Etomoxir increased the
cytotoxic effect of ASNase in ex vivo conditions in four out of five
diagnostic BCP-ALL patient samples (Figure 4b). These results reveal
that increased FAO is crucial for the survival of ALL cells treated
with ASNase. Moreover, cells with the inability to induce FAO
(RagB 99L) were significantly more sensitive to ASNase compared
with RagB wt cells, shown by the cleavage of PARP (Figure 3a) and
the assessment of apoptosis by Annexin V/DAPI staining (Figure 4c).

Figure 2. Effect of ASNase on mTORC1 targets. (a) ALL cell lines were cultured for 24 h with or without ASNase (4 IU/ml). Levels of phospho-
CAD and CAD proteins were measured by immunoblotting, with β-actin used as a loading control. Rapamycin (Rapa; 10 nM) served as a
positive control of mTORC1 inhibition. Phospho-S6 and phospho-CAD proteins were measured in ASNase-treated cells (4 IU/ml; 24 h) from
three different patients by immunoblotting, using β-actin as a loading control. (b) ALL cell lines were cultured for 24 h with or without ASNase
(4 IU/ml). Uridine monophosphate (UMP) and uridine levels were measured using UPLC-ToF-MS. (c) NALM-6 cells were cultured with or
without ASNase (4 IU/ml) in the presence or absence of bafilomycin A1 (BafA1, 100 nM) for 6, 12 and 24 h to analyze autophagic flux. LC3 I/II
and p62 protein levels were measured by immunoblotting, with β-actin used as a loading control. Asterisks represent significant changes.
**Po0.01; *Po0.05.
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Altogether, our results revealed enhanced cytotoxic effect of
ASNase owing to FAO inhibition.

Distinct effect of Asn and Gln on mTOR downstream targets and
FAO activity
At last, we examined the individual roles of Gln and Asn on cellular
processes. We cultured ALL cell lines under four different
conditions: complete media, media without Asn, media without
Gln and complete media treated with ASNase. In REH and NALM-6,
p-S6 and c-Myc protein levels were decreased after cultivation in
media without Asn or Gln but the effect of Gln depletion was
more pronounced in NALM-6 cells. On the other hand, in RS4;11
we detected a substantial reduction of p-S6 and c-Myc in the cells
cultured in media without Asn. Apoptosis detected by cleaved
PARP was not increased by depletion of any amino acid in
NALM-6, whereas in REH and RS4;11 apoptosis was triggered by
Asn depletion. Depletion of either Asn or Gln had similar impact
on p-CAD levels in all studied cell lines (Figure 5a). RS4;11 cells are
dependent on Asn presence as also documented by a significant
increase of FAO in this cell line after cultivation in media without
Asn. FAO was significantly increased after cultivation in
Gln-depleted media in NALM-6 cells (Figure 5b). Cell respiration
did not follow the FAO activation upon individual amino-acid
depletion (Supplementary Figure S12). In general, Gln depletion
causes suppression of NADH production which, in our
experiments, was reflected as the inhibition of maximum capacity
of cell respiration. Moreover, we studied the rescue effect of Asn
and Gln after ASNase treatment. We pre-treated NALM-6 and REH

cell line with ASNase for 8 h and then changed the media to
complete media, media without Asn or without Gln, respectively.
Media without Asn represent addition of Gln and vice versa, media
without Gln represent addition of Asn. After overnight cultivation
we detected mTOR targets (p-S6, S6) and PARP cleavage. Rescue
effect of Asn after ASNase treatment is more evident in REH cells.
There is an increase in p-S6 as well as a decrease of cleaved PARP
compared with addition of Gln in the media. In the NALM-6 cell
line though, p-S6 was increased by addition of either Asn or Gln
after ASNase treatment. Apoptosis was decreased after addition of
both amino acids (Supplementary Figure S13).

DISCUSSION
ASNase was incorporated into the treatment protocol for child-
hood ALL in 1970. Despite the successful use of this drug for
decades, the mechanism underlying its cytotoxic effect remains
surprisingly obscure. ASNase depletes two extracellular amino
acids, Asn and Gln. The depletion of amino acids changes nutrient
availability and consequently influences metabolic signaling.
Metabolic pathways in malignant cells can be rewired depending
on the cellular availability of the nutrients45 and thus participate in
the mechanisms of drug resistance. This study, for the first time,
presents evidence that ASNase triggers extensive metabolic
reprogramming in leukemic cells and reveals the adaptive
activation of pro-survival metabolic pathways following ASNase
treatment. Our data show increased levels of FAO, inhibition of
glycolysis and elevated respiratory activities after ASNase treat-
ment. FAO serves as a source of NADH, FADH2 and acetyl-CoA

Figure 3. Effect of ASNase on RagB wild-type and RagB mutant cells. (a) RagB wild-type (RagB wt) and mutant (RagB 99L) NALM-6 cells were
cultured with or without ASNase (4 IU/ml) for 24 h. Expression levels of phospho-S6, S6, phospho-CAD, CAD, c-Myc, cleaved PARP and RagB
proteins were measured by immunoblotting, with β-actin used as a loading control and quantified by densitometry (lower graph). The
measurement was performed in three independent experiments. (b) RagB wt and RagB 99L cells were cultured overnight with or without
ASNase (4 IU/ml) and the rate of fatty-acid oxidation was measured. The experiment was performed in quadruplicate. Asterisks represent
significant changes. *Po0.05.

L-asparaginase alters metabolism of leukemic cells
I Hermanova et al

214

Leukemia (2016) 209 – 218 © 2016 Macmillan Publishers Limited



feeding the Krebs cycle and mitochondrial oxidative phosphoryla-
tion. Utilization of FAO for energy provision is thus important for
the growth and survival of cancer cells under both normal
and metabolic stress conditions.36,46–50 The metabolic rescue
role of FAO has been described in different tumors such

as diffuse large B-cell lymphoma, multiple myeloma and
glioblastoma.50–52 Moreover, FAO can contribute to chemo-
resistance.51,52 Pharmacological inhibition of FAO showed a
therapeutic benefit in combination with chemotherapy in mouse
models of human myeloid leukemia, suggesting that the shift

Figure 4. Effect of FAO inhibition on ASNase-mediated cytotoxicity. (a) REH and NALM-6 cells were treated with ASNase (1, 2, 4, 8 and 16 IU/ml) in
combination with etomoxir (Eto1, 100 μM; Eto2, 200 μM) for 24 h. The percentage of cell death was determined by Annexin V/PI staining followed
by FACS analysis. Combination indexes (CI) were obtained by entering the resulting specific death values into the CompuSyn program. Fraction
affected (FA; Percentage of Annexin V/PI positive cells)-CI plots indicate that the combinations of ASNase with etomoxir are synergistic (CIo1).
(b) Leukemic blasts isolated from the bone marrow of patients with ALL were cultivated with or without ASNase (4 IU/ml) in the presence or
absence of the FAO inhibitor etomoxir (Eto1, 100 μM; Eto2, 200 μM) for 24 h. (c) RagB wt and RagB 99L NALM-6 cells were cultivated with or
without ASNase (4 IU/ml) for 24 h. The percentage of cell death was determined by Annexin V/DAPI staining followed by FACS analysis. Values
represent the mean of triplicate measurements. Asterisks represent significant changes. ***Po0.001; **Po0.01; *Po0.05.
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toward FAO could be a target for the treatment of hematological
malignancies.43,53 In this study, we combined ASNase and the FAO
inhibitor etomoxir in the treatment of childhood ALL samples for
the first time. Our experiments showed an increase in FAO after
ASNase treatment, providing a rationale for the combination
treatment. Etomoxir-sensitized leukemic cells to ASNase in two
leukemic cell lines in vitro as well as under ex vivo conditions when
treating BCP-ALL patient samples. These data support the
pro-survival effect of FAO in the treatment of ALL cells with
ASNase and demonstrate the potential of this combination
treatment. Previous studies have described a negative association
between mTOR and FAO and a positive relation of mTOR
upregulation with fatty-acid synthesis.54–56 Our results show that
ASNase inhibited mTORC1 through RagB (Ras-related GTPase),
which is a mediator of amino-acid signaling.37 Importantly, in the
presence of ASNase, RagB mutant cells with the constitutively
activated mTOR pathway exhibited a reduction of FAO compared
with the significant FAO elevation observed in RagB wt cells.
Accordingly, RagB mutant cells were significantly more sensitive
to ASNase than RagB wt cells. These results demonstrate that
RagB-mTOR inhibition senses metabolic stress, which induces
FAO. We hypothesize that the limited elevation of FAO after
ASNase treatment in RagB mutant cells was not sufficient to
protect these cells from amino-acid deprivation.
As ASNase treatment inhibited mTORC1, we focused on the

downstream targets of mTORC1 that are involved in cellular
metabolism. ASNase treatment inhibited protein translation and
pyrimidine synthesis in ALL cells as part of the apoptotic process.
Concurrently, leukemic cells treated with ASNase increased
autophagy as has been already shown in other cancer type.10,26

Autophagy may serve to maintain intracellular metabolic home-
ostasis through the degradation of unfolded or aggregated
proteins and organelles.57 Thus, autophagy may serve as another
rescue mechanism by producing amino acids or even fatty acids58

that restore the nutrient balance disrupted by ASNase. Glycolysis
was yet another metabolic pathway affected by ASNase. ASNase
inhibited c-Myc, but it is not clear if this was a direct effect or a
feedback loop resulting from the inhibition of glycolysis. Of
particular note is our finding that treatment with ASNase increases
spare respiration exclusively in leukemic cells. Increase in
respiration may reflect increased flux of nutrients that can be
oxidized by mitochondria. Although this could be both
FAO-dependent and FAO-independent, the observed increase in
FAO (involving the whole pathway from uptake of palmitate from
culture media to its final oxidation to water) argues that at least
substantial part of these fatty acids originated from extracellular
environment and was oxidized by mitochondria. The increased
ratio of NAD+/NADH measured after ASNase treatment further
supports the increased mitochondrial oxidation of reducing
equivalents.
The role of individual amino acids in these cellular processes is

cell line specific. The tested leukemic cell lines differ in their
sensitivity to ASNase and also in ASNS protein level. RS4;11 cells
are the most sensitive with undetectable ASNS protein, REH cells
are intermediate sensitive and have higher ASNS protein levels,
and NALM-6 cells are the most resistant of the studied cell lines
with higher ASNS protein level.19,59 Most importantly, we did not
see any differences in the effect of ASNase in ALL cell lines on
mTOR targets and metabolic processes. Next, we propose that the
higher the sensitivity, the deeper the cells' dependence on Asn.

Figure 5. Effect of Asn and Gln depletion on ALL cells. (a) ALL cell lines were incubated in complete RPMI media (Ctrl), RPMI media without
Asn (–ASN), RPMI media without Gln (−GLN) or complete RPMI media with ASNase for 24 h. The concentration of ASNase was 4 IU/ml
(REH, NALM-6) and 0.5 IU/ml (RS4;11). Levels of phospho-S6, S6, phospho-CAD, CAD, c-Myc, cleaved PARP (cl.PARP), ASNS proteins were
measured by immunoblotting, with β-actin used as a loading control. (b) ALL cell lines were incubated in complete RPMI media (Ctrl), RPMI
media without Asn (−ASN), RPMI media without Gln (−GLN) or complete RPMI media with ASNase for 18 h and the rate of fatty-acid
oxidation was assessed. Asterisks represent significant changes. ****Po0.0001; *Po0.05.
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In other words, the cells’ dependence on Asn is inversely
proportional to the ASNS protein expression. Accordingly, the
rescue effect of Asn was pronounced in sensitive cells (REH) after
ASNase treatment, whereas in NALM-6 cells both amino acids
displayed rescue properties. Our data support previous finding
presenting that glutaminase activity of ASNase is not essential in
anticancer effect of ASNS-negative cancer cells.59

In conclusion, our results demonstrate that ASNase has a strong
effect on the bioenergetics and biosynthesis in leukemic cells. Our
data further show that increased FAO has a pro-survival effect on
leukemic cells. Moreover, our results also suggest that pharmaco-
logical blocking of FAO sensitizes leukemic cells to ASNase
treatment. Metabolic changes similar to those described here in
acute leukemia cells are rather frequent among other cancer
subtypes; therefore, using ASNase in combination with etomoxir
may represent a treatment option not only for ALL but also for
other types of cancers.
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Coordinated activity of VEGF and Notch signals guides the endothelial cell (EC) specification

into tip and stalk cells during angiogenesis. Notch activation in stalk cells leads to proliferation

arrest via an unknown mechanism. By using gain- and loss-of-function gene-targeting

approaches, here we show that PTEN is crucial for blocking stalk cell proliferation down-

stream of Notch, and this is critical for mouse vessel development. Endothelial deletion of

PTEN results in vascular hyperplasia due to a failure to mediate Notch-induced proliferation

arrest. Conversely, overexpression of PTEN reduces vascular density and abrogates the

increase in EC proliferation induced by Notch blockade. PTEN is a lipid/protein phosphatase

that also has nuclear phosphatase-independent functions. We show that both the catalytic

and non-catalytic APC/C-Fzr1/Cdh1-mediated activities of PTEN are required for stalk cells’

proliferative arrest. These findings define a Notch–PTEN signalling axis as an orchestrator of

vessel density and implicate the PTEN-APC/C-Fzr1/Cdh1 hub in angiogenesis.
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V
essel sprouting is a central mechanism of blood vessel
growth1,2 and it relies on the induction of specialized
endothelial cell (EC) populations, each accounting for

distinct functions. At the very front of the sprouts, tip cells
provide guidance and migrate towards gradients of vascular
endothelial growth factor (VEGF)-A, but rarely proliferate2–4.
Instead, trailing stalk cells located at the base of the sprout
proliferate, establish adherent and tight junctions and form the
vascular lumen1,2,5.

The tip cell phenotype is usually associated with high levels of
Delta-like 4 (Dll4), which activate Notch in neighbouring stalk
cells, preventing them from becoming a new tip cell. Notch
signalling is initiated by receptor–ligand recognition between
adjacent cells. This interaction results in two sequential
proteolytic events that release the Notch intracellular domain
(NICD). Subsequently, NICD translocates to the nucleus, where it
forms a complex with the transcriptional factor Rbpj/Cbf1 and
the Mastermind-like proteins to drive target gene expression6,7.
Activation of Notch in ECs leads to cell cycle arrest both in vitro8

and in vivo9–11. However, it is still unclear how Notch exerts its
negative effects on EC proliferation, and the transcriptional
programme that triggers stalk cell function is not
understood2,5,12. Furthermore, it is not clear how stalk cells are
ultimately released from this arrest to provide sufficient cell
numbers for the sprout to elongate and stabilize.

PTEN (phosphate and tensin homologue deleted on
chromosome TEN) is a dual lipid/protein phosphatase, which
is often underexpressed in cancer13–15. The main activity of
PTEN is to dephosphorylate the lipid phosphatidylinositol
3,4,5-trisphosphate (PtdIns(3,4,5)P3) at the 3́-position, thereby
counterbalancing class I phosphoinositide 3-kinase (PI3K)
signalling that mediates growth, cell division, survival,
migration and metabolism13,16–18. Genetic studies in mouse
and zebrafish point to a restrictive role of PTEN in angiogenesis.
Mice lacking PTEN specifically in ECs exhibit cardiac failure and
severe haemorrhages due to defects of the myocardial wall and
impaired mural cell coverage of blood vessels19. Mutant zebrafish
embryos lacking functional PTEN show enhanced angiogenesis20;
whether this is due to a cell-autonomous effect of PTEN in ECs or
is simply a consequence of increased VEGF levels is unclear.
Importantly, the specific functions of PTEN in endothelial
behaviour and vascular patterning remain unknown.

In most cells and tissues, PTEN localizes to the cytoplasm and
the nucleus13,15. There is evidence to suggest that PTEN
has nuclear, non-lipid phosphatase-dependent functions21,22.
Interestingly, PTEN localization is cell cycle-dependent, with
higher levels of nuclear PTEN during the G0–G1 phase than
during the S phase23,24. This is in line with the observation that
nuclear PTEN negatively regulates cell cycle progression13,22.
Indeed, in late mitosis and G1, nuclear PTEN enhances the E3
ligase activity of APC/C by facilitating the association of APC/C
with its activator Fzr1/Cdh1 (encoded by the Fzr1 gene), with no
requirement of its phosphatase activity22. The APC/C-Fzr1/Cdh1
complex controls G1 progression by targeting several proteins for
degradation, including mitotic cyclins (Cyclin-A), mitotic kinases
(Aurora Kinase A (Aurora A) and Polo-like kinase 1 (Plk1)),
proteins involved in chromosome segregation and DNA
replication (Geminin; ref. 25). Despite the large body of
molecular evidence, the role and relevance of nuclear PTEN in
physiology is poorly understood.

Here we report that endothelial PTEN regulates stalk cell
proliferation during vessel development. Our data further identify
PTEN as a key mediator of the antiproliferative responses of
Notch. We show that Dll4/Notch signalling arrests stalk cell
proliferation by inducing expression of PTEN to balance stalk cell
numbers and coordinate patterning. On PTEN deletion, Notch

signalling fails to arrest early stalk cells and result in defective
sprout length and patterning. Our results strongly indicate that
both catalytic and non-catalytic activities of PTEN contribute to
this function, providing evidence for an important in vivo
physiological function for the PTEN-APC/C-Fzr1/Cdh1/axis.

Results
PTEN negatively regulates vascular density in angiogenesis.
To study the EC-autonomous role of PTEN in sprouting
angiogenesis, we crossed Ptenflox/flox mice with PdgfbiCreERT2

transgenic mice that express a tamoxifen-activatable Cre
recombinase in ECs26 (further referred to as PTENiDEC/iDEC) and
assessed postnatal retinal angiogenesis. 4-hydroxytamoxifen
(4-OHT) was administrated in vivo at postnatal day 1 (P1) and
P2, followed by analysis of the retinal vasculature at different time
points. Comparing whole-mount-stained retinas of control
(Ptenflox/flox) to PTENiDEC/iDEC mice at P5 revealed a mild
increase in vessel width (Supplementary Fig. 1a–g). By P7, loss of
PTEN resulted in excessive branching and substantially increased
vessel width (Fig. 1a–d), a phenotype that was further exacerbated
at P10 (Fig. 1h,i). PTENiDEC/iDEC P7 retinas showed efficient
recombination of the Cre-reporter R26-R and depletion of PTEN
in the retinal endothelium (Supplementary Fig. 1h,i), with an
increase in staining for phosphoS6 (pS6), a marker of PI3K
pathway activation (Supplementary Fig. 1j). Isolated mouse lung
ECs (mECs) from PTENiDEC/iDEC mice confirmed that effective
depletion of PTEN protein in mECs was achieved 96 h following
4-OHT administration (Supplementary Fig. 1k,l). To further
characterize the cell-autonomous role of PTEN in ECs, we
therefore focused on the P7 time point. No differences in radial
expansion (Fig. 1e) and in the number of sprouts per 100mm of
leading endothelial membrane were found in PTENiDEC/iDEC

when compared with control retinas (Fig. 1f). Instead, the length
of the sprouts was significantly reduced in the PTENiDEC/iDEC

retinal vasculature compared with controls (Fig. 1g). The
hyperplastic phenotype observed on PTEN loss was validated in
an independent cellular system based on embryoid body (EB)
formation, in which clusters of embryonic stem cells respond to
VEGF by forming vascular tubes27. Compared with wild type
(WT), PTEN null EBs showed increased sprout width and length
(Supplementary Fig. 2a–d), with no differences in the number of
sprouts (Supplementary Fig. 2e).

Next, we sought to address whether regulated elevation in
PTEN expression in vivo would oppose the phenotype induced by
loss of PTEN. To this end, we used super-PTEN transgenic mice
(PTENTG)28, a mouse model that allows moderate organismal
elevation of PTEN levels (two-fold over WT littermates),
including in the vasculature (Supplementary Fig. 1m). PTENTG

retinas exhibited decreased vessel width and increased sprout
length (Fig. 1j,k,m,p), with no changes in the number of branches
(Fig. 1l) and sprouts (Fig. 1o). A slight reduction in radial
expansion was also observed on moderate PTEN overexpression
(Fig. 1n), similar to retinas from mice that are heterozygous for a
kinase-dead p110a PI3K allele29. Neither loss nor gain of PTEN
function resulted in changes in Dll4 or Notch target genes
(Supplementary Fig. 3a–c), further supporting that PTEN is not
required for tip/stalk selection. Analysis of EphB4, EphrinB2 and
Nr2f2 gene expression, key genes involved in arteriovenous
differentiation, did also not reveal any obvious difference between
control and loss and gain of PTEN function in ECs, suggesting
that PTEN signalling does not play a predominant role in this
process (Supplementary Fig. 3d,e).

Taken together, these data uncover a selective role for PTEN in
angiogenesis, regulating vascular density and consequently vessel
growth in vivo.
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PTEN regulates endothelial stalk cell number. Previous data
have shown that constitutive targeting of PTEN in ECs results in
altered mural cell coverage19. Instead, immunostaining with
desmin, a retinal pericyte marker30, did not reveal any obvious
defect in mural cell coverage in PTENiDEC/iDEC retinas compared
with control, consistent with the lack of sprouting defects on
PTEN loss (Supplementary Fig. 3f).

Analysis of PTENiDEC/iDEC retinas stained with a nuclear
endothelial marker (Erg) revealed increased EC numbers in the
angiogenic vasculature (Fig. 2a,b). Conversely, elevated PTEN
expression resulted in reduced EC numbers at the sprouting front
(Fig. 2c,d). We sought to validate whether these differences relate
to changes in EC proliferation. Surprisingly, no difference in the
number of proliferative ECs located in the subfront retinal area,
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Figure 1 | PTEN regulates vascular density. (a,b) Whole-mount visualization of blood vessels by isolectin B4 (IB4) staining of control and PTENiDEC/iDEC

littermates at P7. (c–g) Quantitative analysis of the retinas shown in a,b. (c) Vascular branch points per unit area (nZ6). (d) Vessel width (nZ4). (e)
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were considered statistically significant. Statistical analysis was performed by nonparametric Mann–Whitney test.
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behind the sprouting front, was found on either loss (Fig. 2e,f) or
gain of PTEN function (Fig. 2h,i). This is unexpected, given that
in the growing vasculature ECs with high turnover are located in
this subfront area (Supplementary Fig. 4a,b). To test whether
PTEN regulated proliferation of ECs in other retinal locations,
we focused on the first line of cells located at the sprouting front
where proliferating cells are rarely observed (Supplementary
Fig. 4a,b). Interestingly, a 40% increase in proliferation in
PTENiDEC/iDEC retinas (Fig. 2g) or 60% reduction in PTENTG

retinas (Fig. 2j) compared with control retinas was observed in
ECs at the front. These data point towards a selective role of
PTEN in restricting EC proliferation in cells located at the
sprouting front.

PTEN executes Notch-dependent cell cycle arrest. Given
that the impact of PTEN loss or overexpression in vivo on
proliferation are restricted to the sprouting front that is highly
Notch-dependent9, we hypothesized that a functional connection
exists between these two signalling pathways. Activation of
Notch in mECs, both in vivo and in vitro, resulted in cell cycle
arrest, shown by reduced 5-bromo-2’-deoxyuridine (BrdU)
incorporation (Supplementary Fig. 4c,d and Fig. 3a) and
downregulation of cell cycle regulators including Cyclin D and
A, Plk1, Aurora A and Geminin (Fig. 3b). Interestingly, genetic
manipulation of PTEN levels in ECs altered the antiproliferative
response to Notch activation (Fig. 3c,e). PTENiDEC/iDEC mECs
failed to stop proliferation on Notch activation (Fig. 3c,d),
whereas PTENTG mECs showed a 50% increase in the cell cycle
arrest response (Fig. 3e,f). Consistent with a role of PTEN in
regulating the cell cycle arrest, higher PTEN levels in ECs in vivo
corresponded to nonproliferative cells (Supplementary Fig. 4e,f).
Our results suggest that PTEN is necessary for the growth-
suppressive activity of Notch signalling in ECs and imply that the
PTEN loss-of-function phenotype is the result of an impaired
response to Dll4 stimulation.

Because PTEN is required for the Notch-dependent regulation
of endothelial proliferation, we tested whether PTEN expression
is regulated by Notch. Bioinformatic analysis of the PTEN locus
identified the presence of three Rbpj motifs that are conserved in
both the human and mouse PTEN gene (Fig. 3g). We used
chromatin immunoprecipitation (ChiP) analysis on human ECs
to determine the recruitment of NICD protein to the PTEN
promoter after 2 h of incubation with Dll4. PTEN promoter
occupancy was determined using real-time quantitative PCR
(qPCR) probes that amplify seven regions spanning from � 2,380
to � 590 relative to the transcription initiation site. Our analysis
revealed NICD occupancy in the � 1,492 region, which contains
one of the three predicted Rbpj-binding sites (Fig. 3g). We next
validated the functional significance of Rbpj binding to the
promoter in luciferase reporter assays. Indeed, analysis of PTEN
promoter activity showed activation in response to Dll4 (Fig. 3h)
and on overexpression of the intracellular domain of the Notch
receptor (NICD; Fig. 3i). Importantly, enhanced PTEN promoter
responsiveness to Dll4 was abrogated by the g-secretase inhibitor
dibenzazepine (DBZ; Fig. 3i). Western blot experiments con-
firmed that Dll4 stimulation results in elevated protein levels of
PTEN in human ECs and mECs (Fig. 3j,k). Using lungs as highly
vascularized tissue, we validated that overactivation of Notch
signalling by inhibiting the Notch ligand, Jagged 1 (Jag1)11,
resulted in higher PTEN expression levels (Fig. 3l). Taken together,
these results demonstrate that PTEN is a target gene of Notch
signalling in ECs, which becomes induced by Dll4 stimulation.

PTEN is required for Notch function in vivo. We sought to
confirm the Notch/PTEN functional interaction in vivo. We took

advantage of endothelial Jag1 inactivation, which results in
reduced EC proliferation and decreased vascular branching due to
overactivation of Notch signalling11. We hypothesized that,
if the regulation of the angiogenic process by Notch requires
the increase in PTEN function, loss of PTEN would prevent
the phenotype of Jag1 deletion. We tested this hypothesis in
inducible endothelial-cell-specific PTENiDEC/iDEC;Jag1iDEC/iDEC

double mutants. The vasculature of Jag1iDEC/iDEC retinas
showed reduced endothelial proliferation and reduced vessel
width, confirming previous reports (Fig. 4a–g and Supplementary
Fig. 5a)11. However, concomitant PTEN deletion abrogated the
phenotype observed in Jag1iDEC/iDEC retinas (Fig. 4a–g), while the
phenotype of PTEN loss remained unaffected by Jag1 deletion
(the increase in endothelial proliferation at the spouting front).
Next, we validated our hypothesis in the PTENTG mice by
blocking Notch activation with the g-secretase inhibitor DAPT
(N-[N-(3,5-difluorophenacetly)-L-alanyl]-S-phenylglycine t-butyl
ester) that strongly enhances angiogenesis partially due to
increased EC proliferation9. Remarkably, DAPT-induced
increase in vascular density at the angiogenic front was
abolished by increased levels of PTEN (Fig. 4h,j,m,n and
Supplementary Fig. 5b). However, elevated levels of PTEN did
not prevent the enhanced sprouting caused by DAPT (Fig. 4i,k,l),
further indicating that PTEN is not required for Notch-
dependent tip/stalk selection.

Dual function of PTEN in angiogenesis. To gain insight into the
biological mechanism underlying the role of PTEN in sprouting
angiogenesis, we investigated the contribution of phosphatase-
dependent and -independent activities of PTEN at the organismal
and cellular levels. We observed a compartmentalization of PTEN
in the nucleus and cytoplasm in cultured control cells (Fig. 5a),
whereas PTENiDEC/iDEC mECs showed no nuclear staining with
some residual positivity in the cytoplasm. PTEN depletion
in mECs resulted in increased Akt phosphorylation and in
accumulation of the E3 ubiquitin ligase APC/C-Fzr1/Cdh1
complex substrates Aurora A, Plk1 and Geminin (Fig. 5b).
Control mECs treated with 4-OHT did not show any of the
aforementioned changes (Fig. 5c). In contrast, mECs isolated
from PTENTG lungs showed reduced Akt phosphorylation and
reduced accumulation of E3 ubiquitin ligase APC/C-Fzr1/Cdh1
complex substrates compared with WT cells (Fig. 5d).

To investigate whether increased levels of the APC/C-Fzr1/
Cdh1 targets were only a consequence of increased PI3K activity,
we tested the impact of GDC-0941 (a pan-class I PI3K inhibitor
that blocks p110a, p110b, p110d and p110g; ref. 31). While
pretreatment with GDC-0941 abrogated Akt activation in
PTENiDEC/iDEC mECs (Fig. 5e), it did not modify the levels of
Aurora A and Geminin (Fig. 5e), further corroborating that the
function of PTEN promoting the APC/C-Fzr1/Cdh1 activity is
independent of its ability to inhibit PI3K signalling through its
lipid phosphatase activity22.

As our data indicate that the principal function of PTEN in
sprouting angiogenesis is to regulate EC proliferation, we tested
to what extent phosphatase-dependent and -independent
activities of PTEN participate in this regulation. In vitro
isolated PTENiDEC/iDEC and PTENTG mECs showed increased
and decreased BrdU incorporation, respectively (Fig. 5f and
Supplementary Fig. 6a,b). Inhibition of PI3K activity and Aurora
kinase, one of the main targets of APC/C-Fzr1/Cdh1 (ref. 22),
partially rescued normal proliferation rate in PTENiDEC/iDEC

mECs (Fig. 5f and Supplementary Fig. 6a). A synergistic effect
was observed on pretreatment with both GDC-0941 and VX680,
further implying a dual function of PTEN in this process.
Next, we complemented PTEN-depleted ECs with either WT
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Figure 3 | Notch limits EC proliferation by upregulating PTEN levels. (a) Quantification of in vitro proliferation of mECs and HUVECs plated for 24 h in

vehicle or Dll4-coated dishes, pulsed with BrdU for 2 h and subjected to immunostaining analysis. At least 100 cells per condition were counted (n¼4).

(b) Immunoblot analysis of mECs and HUVECs plated for 24 h in vehicle or Dll4-coated plates using the indicated antibodies (n¼ 3). Molecular weight

marker (kDa) is indicated. (c,e) Quantification of in vitro proliferation by Ki67 immunofluorescence of control and PTENiDEC/iDEC (c) and WT and PTENTG

mEC (e) plated for 24 h in vehicle or Dll4-coated plates. Overall 100 cells per condition were counted (n¼4). (d) Control and PTENiDEC/iDEC or (f) WT and

PTENTG mEC were plated for 24 h in vehicle or Dll4-coated dishes, followed by immunoblot analysis using the indicated antibodies. The quantification of

the relative immunoreactivity of each protein normalized to b-actin is represented as the mean of four different experiments in d,f. Molecular weight marker

(kDa) is indicated. (g) ChIP with the anti-NICD antibody from HUVECs and the analysis of the PTEN locus by qPCR. A pool of two independent

experiments is shown. (h,i) PTEN-luciferase reporter assays were performed in HUVECs with a 2,666-bp PTEN promoter construct (pGL3 PTEN

Hind III-NotI). (h) Cells were plated for 6 h in vehicle or Dll4-coated dishes and (i) HUVECs were transfected with V5-NICD (n¼ 3). (j,k) Immunoblot

analysis of PTEN in lung mECs (j) and in HUVECs (k) plated for 8 or 24 h in vehicle or Dll4-coated plates (n¼4). Molecular weight marker (kDa) is

indicated. (l) Immunoblot analysis of PTEN and Hes in lung lysates from control (n¼ 7) and Jag1iDEC/iDEC (n¼6) pups. Molecular weight marker (kDa) is

indicated. Error bars are s.e.m. *Po0.05 and **Po0.01 were considered statistically significant. ns, not statistically significant. Statistical analysis was

performed by nonparametric Mann–Whitney test.
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(PTENWT), phosphatase-inactive (C124S; PTENC124S; refs 32,33)
or nuclear-excluded (K13,289E; PTENK13,289E) PTEN (ref. 22).
Expression of PTENWT, PTENC124S and PTENK13,289E abrogated
the increase in EC proliferation (Fig. 5g and Supplementary
Fig. 6c) of PTEN null ECs, albeit most prominently seen with
PTENWT. All together, these data indicate that phosphatase-
dependent and -independent activities of PTEN are important to
regulate EC proliferation.

Next, we tested the differential contribution of each of these
functions in vivo, by first analysing the retinas of PTENiDEC/iDEC

on inhibition of class I PI3K activity with GDC-0941. The
hyperplasia induced by PTEN loss was rescued by inhibiting
PtdIns(3,4,5)P3 production (Fig. 6a–d and Supplementary
Fig. 7a), indicating, as expected, an important role of PTEN
lipid phosphatase activity in vascular growth. Next, we assessed
the contribution of phosphatase-independent activity of PTEN to
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endothelial nuclei per unit area assessed by Erg positivity (nZ4). (n) Quantification of number of Ki67-positive cells located at the vascular front expressed

per sprouting front length (n¼6). Scale bars, 100mm (a,h). Error bars are s.e.m. *Po0.05, **Po0.01 and ***Po0.001 were considered statistically

significant. Statistical analysis was performed by nonparametric Mann–Whitney test.
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sprouting angiogenesis by inhibiting Aurora kinase. Strikingly,
the phenotype of PTENiDEC/iDEC was abrogated by Aurora kinase
inhibition (Fig. 6e–h), which is consistent with the contribution
of the phosphatase-independent activity of PTEN to sprouting
angiogenesis in vivo. This was further corroborated by genetic
conditional and inducible deletion of Fzr1 in ECs. Complete
depletion of Fzr1/Cdh1 protein was achieved 48 h post incubation
with 4-OHT (Supplementary Fig. 7b,c). Therefore, pups were
treated with 4-OHT at P5 and P6, followed by analysis of the
retinal vasculature at P7. The retinas of Fzr1iDEC/iDEC showed
increased vascular density and reduced length of sprouts
(Fig. 6i–n) comparable to PTENiDEC/iDEC. All together, these
data suggest that, in ECs, there is a dual contribution of PTEN,
counterbalancing the PI3K signalling pathway through its lipid
phosphatase activity and facilitating the APC/C-Fzr1/Cdh1
complex activity, which has been reported to be independent of
its catalytic function22.

Discussion
Here we report that PTEN in ECs is required in a cell-
autonomous and dose-dependent manner for the control of
vascular density and vessel growth, but is dispensable for the
regulation of the sprouting activity of tip cells. We show that
endothelial PTEN restricts vascular growth by limiting stalk cell
proliferation during sprouting angiogenesis. An important
conclusion from this study is that PTEN is not required in all
ECs to regulate proliferation in vivo, as shown in cultured ECs
(our data and ref. 19). Instead, our results indicate that the
consequence of PTEN loss or overexpression in vivo is restricted
specifically to the zone of the vasculature that is highly
Notch-dependent.

Constitutive targeting of PTEN in ECs leads to embryonic
lethality due to aberrant angiogenesis19. Although these studies
have established that PTEN regulates EC proliferation, the
analysis of vasculature in Tie2Cre-PTENflox/flox embryos did

a

VE-cad

PTEN

p-AKT

Aurora A 

Geminin

Plk1

β-Actin

b d

PdgfbiCreERT 2 : PTENflox/flox

4-OHT

PTENflox/flox

c

+ +– – VE-Cad

PTEN

p-AKT

Aurora A

Geminin

Plk1

β-Actin

WT PTENTG

1 0.2

1

1

1

1

2.2

2.1

1.7

1.6

VE-cad

PTEN

p-AKT

Aurora A

Geminin

β-Actin

4-OHT

1 0.91

1 1

1 0.8

1 1.1

1 1.98

1 0.15

1 0.46

1 0.78

1 0.3

Vehicle

4-OHT 4-OHT

PdgfbiCreERT2 : PTENflox/flox

PTEN : DAPI

PTEN : DAPI

 PTEN

PTEN  

150

50

50
50

25

37

150

50

50
50

25

50

37

150

50

50
50

37

75

50

(kDa) (kDa)

(kDa)Vehicle

VE-cad

PTEN

p-AKT

Aurora A

Geminin

β-Actin

GDC-0941

1 1.2 2.5 2.4

1 1 1.8 1.6

e

PdgfbiCreERT 2 : PTENflox/flox

PdgfbiCreERT 2 : PTENflox/flox

4-OHT

0

10

20

B
rd

U
+
 E

C
s 

pe
r 

to
ta

l E
C

s 
(%

)

VX680
GDC-0941
4-OHT– ––– + +++

– ++–– ++–
+ +––+ +––

*
* *

*

f g

1

0.5

0

**

PTENWT PTENC124S PTENK13,289E

B
rd

U
+
 E

C
s 

pe
r 

to
ta

l E
C

s 
(%

) * *

P=0.09
YFP–

YFP+

150

50

50
50

25
50

(kDa)

*

*

++
++

–
–

–
–

Figure 5 | Catalytic and non-catalytic roles of PTEN regulate EC proliferation. (a) Confocal images of PTEN (green) and DAPI immunofluorescence in

PdgfbiCreERT2; PTENflox/flox mECs treated with vehicle or with 4-OHT for 96 h. Yellow arrows indicate the lack of PTEN staining in the nucleus of PTEN null

cells. Scale bars, 10 mm (n¼ 3). (b–d) Exponentially growing mECs were lysated, followed by immunoblotting using the indicated antibodies. PdgfbiCreERT2;

PTENflox/flox (b) and PTENflox/flox (c) mECs were treated for 96 h with vehicle or 4-OHT. (d) WT and PTENTG mECs were cultured for 48 h before cell lysis

and immunoblotting. (e) PdgfbiCreERT2; PTENflox/flox mECs were treated for 96 h with vehicle or 4-OHT. Before cell lysis, cells were pretreated for 2 h with

GDC-0941 (1mM). The quantification of the relative immunoreactivity of each protein normalized to b-actin is represented as the mean from at least three

different experiments in b–e. Molecular weight marker (kDa) is indicated. (f) Exponentially growing control and PTENiDEC/iDEC mECs were treated for 48 h

with test compounds or vehicle, and then were pulsed with BrdU for 2 h and subjected to immunostaining analysis. Inhibitors and doses used were as

follows: GDC-0941 (pan-class I PI3K inhibitor; 1 mM) and VX680 (Aurora Kinase inhibitor; 0.5 mM). Data shown are means of four independent experiments.

(g) PdgfbiCreERT2; PTENflox/flox mECs were infected with PTENWT, PTENC124S or PTENK13,289E, treated with 4-OHT for 72 h, plated for 48 h in the presence

of doxycycline, pulsed with BrdU for 2 h and subjected to immunostaining analysis. Data shown are the means of six independent experiments. Error bars

are s.e.m. *Po0.05 and **Po0.01 were considered statistically significant. Statistical analysis was performed by nonparametric Mann–Whitney test.
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not allow unravelling precisely how PTEN regulates sprouting
angiogenesis. Furthermore, Hamada et al. were unclear of
whether the aberrant vasculature, which results on PTEN loss,
was a consequence of aberrant PTEN signalling in ECs or simply
a consequence of an altered pro-angiogenic cytokine profile19.
Similarly, zebrafish studies have shown that loss of PTEN leads to
increased VEGF levels and in turn vessel hyperplasia, highlighting
indeed that PTEN also regulates angiogenesis in a paracrine
manner20. Another difference between Hamada et al. and our
study is that constitutive loss of PTEN in ECs also results in
altered mural cell coverage, while induced loss of postnatal

endothelial PTEN does not. These discrepancies suggest that
PTEN may differently regulate angiogenesis in different
vascular beds.

Activation of Notch leads to cell cycle arrest8–11,34. In this
study, we identify PTEN as a critical mediator of Notch
antiproliferative response in stalk cells. If PTEN is not
expressed in ECs, stalk cells become insensitive to the
antiproliferative signals of Notch and exhibit unrestricted
expansion, hence perturbing sprout length and pattern and
eventually resulting in profound hyperplasia. Interestingly, our
results also reveal that stalk cells located further away from the

a
Control Control

AuroraiVehicle

AuroraiVehicle

e

Control + vehicle

Control + PI3Ki
Control + vehicle

Control + aurorai

Control

PI3KiVehicle

Control

PTENiΔEC/iΔEC

PTENiΔEC/iΔEC + vehicle PTENiΔEC/iΔEC + vehicle
PTENiΔEC/iΔEC + PI3Ki PTENiΔEC/iΔEC + aurorai

PTENiΔEC/iΔEC PTENiΔEC/iΔEC PTENiΔEC/iΔEC

PI3KiVehicle

c

0

10

20

V
es

se
l w

id
th

 (
μm

)

*

*
*

d

0

20

40

S
pr

ou
t l

en
gt

h 
(μ

m
)

*

0

10

20

V
es

se
l w

id
th

 (
μm

)

g
*30

0

20

40

S
pr

ou
t l

en
gt

h 
(μ

m
)

h
** P=0.09

b

0

10

20

30

*

*

 N
o.

 o
f b

ra
nc

h 
po

in
ts

 
pe

r 
10

0 
μm

2  

0

10

20

f

**
**

 N
o.

 o
f b

ra
nc

h 
po

in
ts

 
pe

r 
10

0 
μm

2  

i

1

2

0

R
ad

ia
l e

xp
an

si
on

 (
μm

; ×
 1

03
)

30

20

10

0

**
15

10

5

0

V
es

se
l w

id
th

 (
μm

) ** 0.8

0.4

0

20

10

0
S

pr
ou

t l
en

gt
h 

(μ
m

) 30

***

j k l m n

Con
tro

l

Fzr
1
iΔEC/iΔ

EC

Con
tro

l

Fzr
1
iΔEC/iΔ

EC

Con
tro

l

Fzr
1
iΔEC/iΔ

EC

Con
tro

l

Fzr
1
iΔEC/iΔ

EC

Con
tro

l

Fzr
1
iΔEC/iΔ

EC

Fzr1iΔEC/iΔECControl

N
o.

 o
f b

ra
nc

h 
po

in
ts

pe
r 

10
0 

μm
2

N
o.

 o
f s

pr
ou

ts
 p

er
 1

00
 μ

m

Figure 6 | Dual function of PTEN in sprouting angiogenesis. (a) IB4-stained control and PTENiDEC/iDEC P7 retinas (4-OHT administration from P1 to P2)

treated with vehicle or GDC-0941 at P6 and P7. (b–d) Quantitative analysis of the retinas shown in a. (b) Vascular branch points per unit area (nZ4).

(c) Vessel width (nZ4). (d) Sprout length from the tip to the base of the sprout (nZ4). (e) IB4-stained control and PTENiDEC/iDEC P7 retinas (4-OHT

administration from P1 to P2) treated with vehicle or VX680 at P6 and P7. (f–h) Quantitative analysis of the retinas shown in e. (f) Vascular branch points

per unit area (nZ6). (g) Vessel width (nZ6). (h) Sprout length from the tip to the base of the sprout (nZ6). (i) Overview of P7 control and Fzr1iDEC/iDEC

iB4-stained. (j–n) Quantitative analysis of the retinas shown in i. (j) Vascular branch points per unit area (n¼ 11). (k) Vessel width (n¼ 11). (l) Radial

expansion of blood vessels (nZ5). (m) Number of sprouts per vascular front length (n¼ 11). (n) Sprout length from the tip to the base of the sprout

(n¼6). Scale bars, 100mm (a,e,i). Error bars are s.e.m. *Po0.05, **Po0.01 and ***Po0.001 were considered statistically significant. Statistical analysis

was performed by nonparametric Mann–Whitney test.
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front are insensitive to changes in PTEN expression. Given that
these stalk cells at the subfront area are highly proliferative, our
data support the existence of two biological states for stalk cells.
A first state in which stalk cells must remain arrested to ensure
the correct patterning of the sprout, and a second state in which
cells enter the cell cycle to expand the plexus. These two states are
likely the consequence of dynamic changes in Notch signalling,
with high Notch activity in early nonproliferative stalk cells and
low Notch activity in the late proliferative stalk cells. Our data
predict a rise and fall in PTEN levels that will accompany
the early quiescent and late proliferative phases, respectively.
This is supported by the observation that, in WT cultured ECs,
higher PTEN levels are seen 8 h post stimulation with Dll4
compared with 24 h post stimulation. Furthermore, co-staining of
PTEN and 5-ethynyl-20-deoxyuridine (Edu) in the growing
vasculature showed that Edu-negative cells express higher levels
of PTEN than Edu-positive cells, supporting the notion that
PTEN protein levels rise to guarantee cell cycle arrest. Whether
high PTEN cells correspond to high Notch signalling still needs to
be determined. Moya et al. speculated that early and late stalk cell
behaviours might be orchestrated by oscillation in Notch activity.
The authors proposed that Id proteins, members of HLH
proteins, govern these two states by releasing the negative
autoregulatory loop of Hes1 (ref. 35). While our results are
consistent with the idea of two states, they identify PTEN
as the key mediator of early stalk cell function in response
to Notch.

Why and how Notch exerts a unique negative regulation in the
endothelium while driving proliferation in virtually every other
cell type and in cancer has been a mystery5,36. Our data show that
PTEN negatively regulates cell cycle progression in ECs through
conserved pathways. Critically, what our results illustrate is a
novel interaction between Notch and PTEN in ECs. We find that
Notch stimulates PTEN transcription in the endothelium,
an effect that is required for Notch-mediated cell cycle
arrest. Interestingly, in cell types where Notch stimulates cell
cycle progression, PTEN is transcriptionally repressed by
Notch/Hes36–38. The PTEN gene locus contains both Rbpj- and
Hes-binding sites, suggesting that binding to one or another is
what determines the final biological output.

In line with the observation that PTEN restricts stalk cell
proliferation, endothelial gain and loss of PTEN proliferation

phenotypes are reminiscent of gain and loss of Notch function in
stalk cells9–11. However, in response to Notch signalling PTEN
appears to only regulate EC proliferation while it is not required
for tip and stalk specification. This is shown by the observation
that Notch mutants not only show aberrant proliferation
phenotypes in the nascent plexus but also sprouting defects9,11,
while PTEN mutants only show vascular density defects. In the
same line, increased levels of PTEN protect angiogenic ECs
treated with DAPT from uncontrolled proliferation but fail to
prevent excessive tip cell numbers. Conversely, a recent study has
shown that inhibitors of the VEGFR3 kinase activity rescue the
hypersprouting phenotype of Notch loss-of-function mutants,
without reducing EC proliferation39. Taken together, these data
suggest that Notch regulates tip cell numbers and stalk cell
proliferation independently through VEGFR3 and PTEN
pathways, respectively.

The predominant activity of PTEN is the dephosphorylation
of PtdIns(3,4,5)P3 and thus the counteraction of class I
PI3K-mediated functions13,15. However, PTEN also exhibits
PtdIns(3,4,5)P3-independent functions, including protein
phosphatase14 and non-catalytic activities13,15. In this context,
PTEN can be found in the nucleus where it regulates DNA
stability and cell cycle progression22,40. Several reports have
highlighted the relevance of nuclear PTEN in disease22,41–43. To
date, the physiological relevance of nuclear PTEN in vivo remains
elusive. Our results reveal that both lipid phosphatase-dependent
and non-catalytic activities of PTEN regulate stalk cell
proliferation during sprouting angiogenesis. Inhibition of class I
PI3K activity with GDC-0941 or Aurora kinase with VX680
significantly abrogates the phenotype observed on PTEN loss.
However, the observation that pretreatment with either GDC-
0941 or VX680 is not able to completely rescue the hyperplasia
phenotype of PTENiDEC/iDEC retinas and cultured ECs indicates
that both types of activities of PTEN are required to drive the
PTEN response in angiogenesis. Furthermore, genetic deletion of
Fzr1 in ECs recapitulates the phenotype observed on endothelial
loss of PTEN, reinforcing the relevance of nuclear PTEN
facilitating the APC/C-Fzr1/Cdh1 function. Taken together, our
study provides in vivo evidence that nuclear PTEN is not only
involved in disease such as cancer or cerebral ischaemia22,41–43

but is also critical to regulate a fundamental physiological process
such as angiogenesis.
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We and others have previously shown that inhibition of class I
PI3K isoform in vivo does not lead to blockade of EC
proliferation29,44–46. Although contradictory, these observations
may reflect that PTEN principally regulates EC proliferation
independently of its lipid phosphatase activity22. In line with this,
our data also reveal that the regulation of APC/C-Fzr1/Cdh1 by
PTEN seems to play a major role in response to Notch signalling
in angiogenesis. This is shown by the altered APC/C-Fzr1/Cdh1
target expression under conditions of PTEN loss and Notch
activation. This observation, together with the fact that Notch
stimulation in ECs results in phosphorylation of Akt47,48, suggest
that Notch stimulates PTEN nuclear translocation. These findings
would be in agreement with the notion that higher nuclear PTEN
levels are found during G0–G1 phase than during the S
phase23,24. Further experiments are needed to elucidate how
PTEN accumulates in the nucleus on Notch activation.

The unique direction of the coupling of Notch and PTEN in
the endothelium (Fig. 7), and the highly selective effects on the
active vascular front raise the prospect that targeting this
interaction and stimulation of PTEN signalling may be used
therapeutically to render EC quiescence in aberrant tumour
angiogenesis and in turn promote a normalization effect.
Clinically, our results imply that stimulating both arms of PTEN
function in ECs could render a more quiescence phenotype of
highly proliferative tumour ECs2,49. However, inhibition of PI3K
in the tumour stroma not only results in reduced EC proliferation
but also in reduced vascular function47. It is thus tempting to
speculate that promoting nuclear PTEN may offer more
selectivity towards a tight control of EC proliferation.

Methods
Reagents. Sources and catalogue numbers of antibodies were as follows: Cell
Signaling Technology: PTEN (#9559), pS473-Akt (#4060) and pSer240/244-S6
(#2215); BD Pharmingen: p27 (#610242), cyclin-D1 (#556470), BrdU (#347580)
and Aurora A Kinase (#610939); NeoMarkers: Ki67 (#RM-9106-S); Abcam: NICD
(#ab27526), desmin (ab15200) and PTEN (ab32199); Santa Cruz Biotechnology:
VE-cadherin (sc-6458), Geminin (#sc-13015), cyclin-A (#sc-53230), Hes1
(#sc-25392) and Erg (sc-353); Millipore: Plk1 (#06-813) and Fzr1/Cdh1 (#CC43);
Sigma-Aldrich: b-actin (A5441) and a-tubulin (T6074). Isolectin GS-IB4 and
secondary antibodies conjugated to Alexa 488, Alexa 568 and Alexa 633, and
Click-iT EdU Alexa 488 and 647 Imaging Kit were from Molecular Probes. Human
(#1506-D4) and mouse Dll4 (#1389-D4) were from R&D Systems. The GDC-0941
compound was from Chem Express Haoyuan (China). The VX680 (MK-0457)
compound was from Selleckchem (USA). All chemicals, unless otherwise stated,
were from Sigma-Aldrich.

Inducible genetic protocols and pharmacological inhibition in mice. Mice were
kept in individually ventilated cages and cared for according to the guidelines
and legislation of the UK Home Office and Catalan Departament d’ Agricultura,
Ramaderia i Pesca, with procedures accepted by the Ethics Committees of
CRUK-London Research Institute and IDIBELL-CEEA.

To delete PTEN in postnatal vessels, we crossed the PTENflox mice50 into the
transgenic mice expressing the tamoxifen-inducible recombinase CreERT2 under
the control of the endothelial Pdgfb promoter26. To generate PdgfbiCreERT2;
PTENflox/flox and PTENflox/flox littermates, PdgfbiCreERT2; PTENflox/flox were
interbred with PTENflox/flox. Cre activity and gene deletion were induced by
intraperitoneal injection of 25 mg 4-OHT (Sigma, H7904 10 mg ml� 1) in all pups
of the litter at P1 and P2, and retinas were collected at different time points (P5, P7
and P10). Class I PI3K signalling or Aurora kinase was inhibited in half of the pups
by subcutaneous injection at 18:00 pm of P6 and 10:00 am of P7 with 37.5 mg g� 1

GDC-0941 (ref. 31) or with 50 mg g� 1 VX680, respectively, dissolved in
dimethylsulphoxide (DMSO). Retinas were harvested at 18:00 pm of P7.
Control mice were injected with DMSO only.

PTENTG (ref. 28) was maintained in C57/BL6 background and were fed with a
19% protein-extruded rodent diet (Harlan, 2019) in a 1:1 proportion with normal
diet. Notch signalling was inhibited in half of the pups by subcutaneous injection at
P5 and P6, with 100 mg kg� 1 DAPT (Calbiochem, #565770) and retinas being
harvested at P7.

PdgfbiCreERT2; Fzr1flox/flox were interbred with Fzr1flox/flox (ref. 51) to generate
PdgfbiCreERT2; Fzr1flox/flox and Fzr1flox/flox littermates. Pups were injected with
25mg 4-OHT (10 mg ml� 1) at P5 and P6 and dissected at P7.

For combined endothelial-cell-specific loss-of-function of PTEN and Jag1, we
crossed PTENflox/flox (ref. 50) with Jagged1flox/flox (ref. 52) and PdgfbiCreERT2

(ref. 26). To generate PdgfbiCreERT2; PTENflox/flox; Jag1flox/flox (PTENiDEC/iDEC;
Jag1iDEC/iDEC), PdgfbiCreERT2; PTENflox/flox (PTENiDEC/iDEC) and PdgfbiCreERT2;
Jag1flox/flox (Jag1iDEC/iDEC) littermates, two different types of breeding were set up;
PdgfbiCreERT2; PTENflox/flox; Jag1flox/flox were interbred with PTENflox/flox;
Jag1flox/WT or with PTENflox/WT; Jag1flox/flox. Cre activity and gene deletion were
induced by intraperitoneal injection of 25 mg 4-OHT (10 mg ml� 1) in all pups of
the litter, at P1 and P3 and retinas were collected at P7. To assess proliferating ECs,
the pups were injected intraperitoneally with 60 ml of Edu (0.5mg� 1ml� 1) 2 h
before being killed. Edu was dissolved in a 1:1 ratio DMSO:PBS.

Immunofluorescence. Eyes were fixed in 4% paraformaldehye (PFA) for 2 h at
4 �C. For PTEN staining, mice were exsanguinated by transcardiac perfusion of
PBS, followed by perfusion with 4% PFA before dissecting and continuing fixing
the retinas with methanol at � 20 �C. Samples were rehydrated for 30 min at room
temperature (RT). After washing twice in PBS, retinas were permeabilized in PBS
containing 1% bovine serum albumin (BSA) and 0.3% Triton X-100 overnight
(ON) at 4 �C, followed by incubation with primary antibodies (PTEN (Abcam;
1:75), pSer240/244-S6 (1:100), Erg (1:200), desmin (1:200), Hes1 (1:50) and Ki67
(1:50) in permeabilization buffer ON at 4 �C. The following day, the eyes were
washed three times with PBS containing 0.1% Tween (PBT), one time in Pblec
buffer (1% Triton X-100, 1 mM CaCl2, 1 mM MgCl2 and 1 mM MnCl2 in PBS,
pH 6.8) for 30 min and then incubated for 2 h at RT or ON at 4 �C in Pblec buffer
containing Alexa-conjugated secondary antibodies (1:200) and IB4 (1:300), washed
three times further with PBT and flat-mounted on microscope glass slides with
Mowiol. For fixed confocal laser scanning microscopy, we use a Leica SP5. Images
were analysed with Image J Software and Adobe Photoshop CS5.

Embryoid bodies. ES cells were cultured and EBs were generated, as previously
described27. Briefly, ES cells were regularly cultured on a layer of irradiated
DR4 mouse embryonic fibroblast in DMEM glutamax (Life Technologies,
#61965-026) in the presence of 20% fetal bovine serum, HEPES (30 mM), sodium
pyruvate (1.5 mM), monothioglycerol (1.5%) and leukaemia inhibitory factor
(Chemicon#ESG1107, 123 units ml� 1). For vascular sprouting assays, cells were
cultured for two passages without feeders, depleted of leukaemia inhibitory factor
and left in suspension as hanging drops. Four days after, the formed EBs were
transferred to a polymerized collagen I gel with the addition of 60 ng ml� 1 VEGF
(Peprotech). The medium was changed on day 6 and every day thereafter. Overall,
70,000 WT ES cells and 10,000 PTEN� /� ES cells were plated to generate EB.
PTEN� /� ES cells were provided in ref. 53.

Isolation and stimulation of mECs. Mouse lungs were digested with Dispase
(Life Technologies, #17105-041; 4 units ml� 1) for 1 h at 37 �C, followed by positive
selection with antimouse vascular endothelial-cadherin (Pharmingen, #555289)
antibody coated with magnetic beads (Dynal Biotech, #110-35). Cells were
seeded on a 12-well plate, and were coated with gelatin (0.5%) in DMEM/F12
supplemented with 20% fetal calf serum and EC growth factor (PromoCell,
#C30140). After the first passage, the cells were re-purified with vascular
endothelial-cadherin antibody-coated magnetic beads. Cells were cultured until
passage 6. To induce gene deletion, 4-OHT (5 mM) or vehicle (ethanol) was added
to the cultured medium at P4 for 96 h and the medium was replaced every other
day. For Dll4 stimulation, mouse Dll4 (500 mg ml� 1) was immobilized by coating
culture dishes for 1 h at RT, followed by seeding mECs for 6, 8 or 24 h. Mouse and
human Dll4 were used accordingly.

In vitro measurement of mEC cell proliferation. Overall, 104 mECs were plated
in a 24-well plate for 48 h; 2 h before the termination of the experiment, BrdU
(10 mM) was added to the medium. For Ki67 staining, cells were plated for 24 h in
Dll4-coated dishes. Cells were fixed in 4% PFA for 10 min at RT, permeabilized for
10 min with TBS-T (25 mM Tris HCl pH 7.4, 150 mM NaCl, 0.5% Triton X-100),
blocked with TBS-T containing 2% BSA and incubated with primary antibodies
BrdU (1:100) or Ki67 (1:50) at 4 �C ON. The following day, cells were washed three
times with TBS-T and incubated with Alexa-conjugated secondary antibodies for
2 h at RT. DAPI was added in the final wash. Specimens were mounted in Mowiol.
Cells were visualized in a Nikon-80I microscope. For pharmacological inhibition of
class I PI3K and Aurora kinase, GDC-0941 (1 mM) and VX680 (0.5 mM) were
added, respectively, on plating.

Plasmids and transfections. pRK5-Myc-PTEN, C124S pEGFP-PTEN-wt and
pEGFP-PTEN-K13,289E expressing human WT, lipid phosphatase-inactive and
nuclear-excluded PTEN mutants, respectively, were provided in ref. 22. All three
PTEN mutants were subcloned with an N-terminal yellow fluorescent protein
into a modified lentiviral vector TRIPZ. Lentiviral particles were prepared by
transfecting HEK293FT cells with the TRIPZ vector of interest and the packaging
vectors psPAX, VSV-G and pTAT. Viral particles in the supernatant were
concentrated with Lenti-X-concentrator (Clontech). mECs of P2 or P3 from
PdgfbiCreERT2; PTENflox/flox were infected with lentivirus expressing WT PTEN,
PTEN (C124S) or PTEN (K13,289E) in the presence of viralplus transduction
enhancer (Applied Biological Material #G698). For infection, mECs were plated at
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a density of 4� 104 per well of 12-well plate and infected with virus from 293FT
cells 48 h after transfection. After 48 h post infection, mECs were re-plated and
treated with 4-OHT (5 mM) to induce gene deletion for 72 h. Next, 104 mECs were
plated in 24-well plate for 48 h in the presence of doxycycline (4 mM); 2 h before the
termination of the experiment, BrdU (10 mM) was added to the medium. Cells were
then fixed in 4% PFA for 10 min at RT, permeabilized for 10 min with TBS-T
(25 mM Tris HCl pH 7.4, 150 mM NaCl, 0.5% Triton X-100), blocked with TBS-T
containing 2% BSA and incubated with primary antibodies BrdU (1:100) at 4 �C
ON. The following day, cells were washed three times with TBS-T and incubated
with Alexa-conjugated secondary antibodies for 2 h at RT. DAPI was added in the
final wash. Specimens were mounted in Mowiol. Cells were visualized in a Nikon-
80I microscope.

MTS viability assay. mECs were cultured in 96-well plate (2,000 cells per 100 ml
culture medium per well) in the presence of the test compounds (GDC-0941 (1 mM)
and VX680 (0.5 mM)) or the respective controls for 48 h, followed by MTS assay
(Promega, #G5421).

Protein extraction and immunoblotting. mECs, human umbilical vascular ECs
(HUVECs (Lonza #CC-2519)) and lungs were lysed in 50 mM Tris HCl pH 7.4,
5 mM EDTA, 150 mM NaCl, 50 mM NaF and 1% Triton X-100 supplemented with
2 mg ml� 1 aprotinin, 1 mM pepstatin, 1 ng ml� 1 leupeptin, 1 mM phenylmethy-
sulfonylfluoride and 1 mM sodium orthovanadate, followed by clearance of lysates
using microcentrifugation. Supernatants were resolved on a 10% SDS–PAGE gel,
transferred on nitrocellulose membranes and probed with the indicated antibodies.
Detection was performed by enhanced chemiluminescence. Uncropped immuno-
blots and larger blot areas are presented in Supplementary Fig. 8.

qPCR analysis. qPCR was performed using the following proprietary TaqMan
Gene Expression assay FAM/TAMRA primers (Applied Biosystems): Dll4
(Mm00446968_m1), Hes1 (Mm01342805_m1), Hey1 (Mm00468865_m), Nrarp
(Mm00482529_m1), Ephb4 (Mm00438750_m1), Efnb2 (Mm01215897_m1),
Nr2f2 (Mm00772789_m1) and Hprt (Mm00446968_m1). The levels of PTEN
mRNA were measured using SYBR Green I Master (Roche, #04.887.352.001) in the
LightCycler480 system. Primers used are as follow: forward (50-GTTTACCGGCA
GCATCAAAT-30) and reverse (50-CCCCCACTTTAGTGCAC-30).

Luciferase assays. Reporter assays in HUVECs were performed with the Dual
Luciferase Assay System (Promega, #E1910) and a LUMAT LB 9507 luminometer
(BERTHOLD Technologies). HUVECs were grown to 60–70% confluence in
endothelial basal medium (EGM; Lonza #CC-3124) and co-transfected (Trans Pass
V Reagents (New England Biolabs, # M2558S)) with V5-NICD (ref. 54),
PTEN-luciferase reporter (pGL3 PTEN HindIII-NotI) construct37 and the
constitutive Renilla luciferase reporter pGL4.74hRluc/TK (Promega). Twenty-four
hours after, HUVECs were lysed and reporter assays performed according to the
manufacturers’ protocol. To induce Notch activity with Dll4, transfected HUVECs
were re-plated on Dll4-coated dishes 6 h after plasmid infection. Luciferase activity
was measured after an additional 24 h. To inhibit Notch signalling, cells were
pretreated for at least 1 h before stimulating with Dll4 with 0.08 mM DBZ
((S,S)-2-[2-(3,5-Difluorophenly)acetylamino]-N-(5-methyl-6-oxo-6,7-dihydro-
5H-dibenzo[b,d]azepin-7-yl)propionamide).

ChiP assay. To analyse the binding sites for RBPJ located in the PTEN proximal
promoter, we used the Genomatix software. For analysis, the gene bank sequence
used was NG_007466.2, which contains the promoter sequence AF406618.1. Three
putative RBPJ-binding sites located at � 1,914, � 1,492 and � 1,132 positions
relative to transcription initiation site37 were identified. ChiP assay was performed
as previously described55. Briefly, chromatin was isolated from HUVECs
stimulated for 2 h with vehicle or Dll4 (500 ng ml� 1). Crosslinked chromatin was
sonicated for 10 min, to medium-sized powder particles, at 0.5-min intervals, with
a Bioruptor (Diagenode) and precipitated with anti-NCID or control IgG. After
crosslinkage reversal, DNA was used as a template for PCR. qPCR was performed
with SYBR Green I Master (Roche, #04.887.352.001) in the LIghtCycler480 system.
Primers used are described in Supplementary Table 1.
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ABSTRACT
Extracellular vesicles (EV) are emerging structures with promising properties for 

intercellular communication. In addition, the characterization of EV in biofluids is an 
attractive source of non-invasive diagnostic, prognostic and predictive biomarkers. 
Here we show that urinary EV (uEV) from prostate cancer (PCa) patients exhibit 
genuine and differential physical and biological properties compared to benign 
prostate hyperplasia (BPH). Importantly, transcriptomics characterization of uEVs led 
us to define the decreased abundance of Cadherin 3, type 1 (CDH3) transcript in uEV 
from PCa patients. Tissue and cell line analysis strongly suggested that the status of 
CDH3 in uEVs is a distal reflection of changes in the expression of this cadherin in the 
prostate tumor. CDH3 was negatively regulated at the genomic, transcriptional, and 
epigenetic level in PCa. Our results reveal that uEVs could represent a non-invasive 
tool to inform about the molecular alterations in PCa.

INTRODUCTION

In the recent years, the search of biomarkers in urine 
has focused on the characterization of urinary extracellular 
vesicles (uEVs), trying to overcome the complexity and 
variation of this biofluid [1, 2]. Under the denomination 
of uEVs, there is a complex mixture of vesicles, including 
exosomes, microvesicles and apoptotic bodies [3, 4]. 
Although there are no clear markers to distinguish them, 
exosomes are defined as small membrane vesicles with a 

diameter of 40–150 nm formed by inward budding of the 
membrane of late endosomes resulting in the formation 
of multivesicular bodies (MVB) fulfilled of intraluminal 
vesicles. Then, some of these (MVB) fuse to the plasma 
membrane releasing in this manner the exosomes to the 
extracellular milleu [5]. Microvesicles or ectosomes refer 
to plasma membrane shedding vesicles of 0.1–1 μm [6]. 
Apoptotic bodies are assumed to be of bigger size [7]. 
uEVs are released by several tissues along the urinary 
tract and their cargo varies depending on their origin [8]. 
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Evidence of the presence of uEVs belonging to prostate 
has been already reported [9, 10] and the cargo includes 
proteins of prostate origin such as prostate-specific 
membrane antigen (PSMA) [11]. Proteomic analysis of 
uEVs in PCa patients has been recently carried out with 
promising results as a source of biomarkers [12] and the 
use of microRNAs as markers for this disease have been 
also extensively reported and reviewed [13]. Most of 
the studies to date focus on the comparative analysis of 
healthy and PCa patients. This raises the question of the 
existence of biomarkers that can discriminate PCa from 
BPH [14], a pathology that has been shown to interfere 
with well established biomarkers such as prostate-specific 
antigen (PSA) [15]. In the present work, we aimed at 
identifying PCa biomarkers within uEVs through the 
analysis of the uEV transcriptome. We selected transcripts 
with a presence-absence pattern in BPH and PCa, and we 
extensively validated the candidate transcript encoded 
by the Cadherin 3, type 1 gene (CDH3). Importantly, 
we corroborated this observation in a miniaturized assay 
that could facilitate the translation of the results into the 
clinic. Finally, the analysis of mRNA in prostate tumor 
tissue from patients revealed alterations in this gene, 
coherent with genomic transcriptional and epigenetic 
changes, all pointing at the inhibition of CDH3 in PCa. 
Overall, our results support that analysis of uEVs could 
represent a non-invasive method to evaluate and monitor 
PCa alterations. 

RESULTS

Characterization of uEVs from BPH and PCa 
patients

As a first approach, we analyzed the physical 
characteristics of uEVs from patients with BPH and PCa by 
comparing more than 23–30 independent preparations from 
each group (Supplementry Table S1). In order to validate 
the ultracentrifugation procedure [16] for isolation of uEVs, 
the presence of double membrane vesicles by cryo-electron 
microscopy (Figure 1A) and EV markers by western blot [28] 
was confirmed (Supplementary Figure S1). We next analyzed 
uEV size and number in urine of BPH and PCa patients. 
Nanoparticle-tracking analysis (NTA) was performed 
in samples before and after urine ultracentrifugation.  
NTA-estimated particle number was comparable before 
(8.9e10 ± 1.47e10 particles/ml in BPH, and 9.3e10 ± 1.29e10 
particles/ml in PCa; mean ± s.e.m.; n = 5; p > 0.05) and was 
reduced in PCa after ultracentrifugation (2.49e8 ± 2.46e7 
particles/ml in BPH, and 1.56e8 ± 1.69e7 particles/ml in PCa; 
mean ± s.e.m.; p = 0.04) (Figure 1B). However, no significant 
changes were observed in particle size before (217 ± 13.2 nm 
in BPH, and 215.8 ± 6.9 nm in PCa; mean ± s.e.m.; n = 5;  
p > 0.05) or after ultracentrifugation (176.6 ± 6.7 nm in BPH, 
and 182.4 ± 6.9 nm in PCa; mean ± s.e.m.; n = 5; p > 0.05)  
(Figure 1C). It is worth noting that NTA analysis in 

samples before ultracentrifugation could detect non-uEV 
particles and contaminants as positive events (and hence 
explain the larger number and average size) while after 
filtration and ultracentrifugation the values obtained are 
more representative of an uEV-enriched preparation. 
Although no statistically significant differences were 
found, NTA analysis revealed a trend to a different 
size distribution of the uEVs, with a lower abundance 
of small vesicles (0–100 nm) and a greater abundance 
of large (150–200 nm) and very large (250–350 nm) 
vesicles in PCa when compared with BPH (Figure 1D). 
Of note, we observed a size discrepancy between TEM 
and NTA analysis of uEVs. Although it warrants further 
investigation, this fact is probably due to two main 
factors: the technology employed by NTA to determine 
particle size and the potential effect of the TEM sample 
preparation protocol on this parameter.

Further to this characterization, we analyzed the 
changes in cargo in BPH and PCa. RNA concentration per 
vesicle was comparable in BPH and PCa uEVs (0.017 ± 
0.006 ng RNA per million uEVs in BPH and 0.0046 ± 
0.0005 ng RNA per million uEVs in PCa; mean ± s.e.m.; 
n = 9–10; Mann Whitney U p = 0.13). Similarly, we did 
not observe significant differences in protein concentration 
(0.041 ± 0.01 µg protein per million uEVs in BPH and 
0.019 ± 0.003 µg protein per million uEVs in PCa; mean ± 
s.e.m.; n = 9–10; Mann Whitney U p = 0.18). 

Transcriptomic analysis of PCa and BPH uEVs

We next aimed at identifying molecular alterations 
in uEV cargo from PCa patients. It has been recently 
reported that these particles present a genuinely differential 
proteome in patients harboring PCa [12]. However, little 
is known about the transcript content of uEVs and the 
potential of these molecules to inform about the biological 
characteristics of PCa, especially when comparing to 
patients with BPH. To address this question, we extracted 
RNA of uEVs from BPH and PCa patient samples. First, 
we observed lack of overt changes in overall RNA size 
distribution (Figure 2A). Next, we labeled and hybridized 
BPH and PCa uEV-derived RNA into whole genome 
Illumina gene expression microarrays. The results showed 
the detection (detection p-value < 0.01) of 1336 unique 
transcripts in the two groups analyzed (presence in 50% 
of the cases in either group was defined as positive, 
Supplementry Table S3), 1010 in BPH and 956 in PCa 
(Figure 2B). Venn analysis revealed an overlap of 47.1% 
from total unique transcripts in BPH and PCa (Figure 2B).  
We performed a further step in candidate transcript 
selection by identifying genes that were selectively 
detected in one of the two biological settings (BPH or 
PCa, in at least 75% of the cases). Illumina platform 
provides information about the probability of a probe to 
present a signal that is different to background noise, for 
which purpose we established a confidence interval of 
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99% (p < 0.01). The list of differentially detected probes is 
shown in Figure 2C. In addition, we took advantage of the 
microarray analysis in order to define housekeeping genes 
that would have similar abundance in uEVs from BPH 
and PCa patients. To this end, starting from normalized 
signal values, we defined genes with no differential 
abundance (p-value > 0.95 and fold change no greater 
than ± 5%; Supplementry Table S4). From this analysis, 
we selected two transcripts, Eukaryotic Elongation Factor 
1A1 (EEF1A1) and Ribosomal Protein L6 (RPL6), that 
we monitored in subsequent studies. In addition, we also 
included Glyceraldehyde Phosphate Dehydrogenase 
(GAPDH) as a housekeeping gene supported by prior 
studies of our group [16].

Validation of uEV biomarkers of PCa

To ascertain the potential of candidate uEV transcripts, 
we performed qRTPCR from an independent set of 
ultracentrifuge-purified uEV retrotranscribed RNA (using an 
average of 1.5e7 uEVs per reaction). Firstly, the abundance 
of housekeeping transcripts (RPL6, EEF1A1, GAPDH) was 
strongly correlated (Supplementry Figure S2A), reinforcing 
the notion of their value as housekeeping transcripts. The 
use of these controls allowed us to identify 4 cases with 
lack of amplification in all three transcripts, which was 
considered an exclusion criterion for the analysis. Secondly, 
the evaluation of 10 transcripts of interest (From Figure 2C) 
revealed that two candidates, Cadherin 3, type 1 (CDH3) 
and CKLF-Like MARVEL Transmembrane Domain 

Figure 1: Physical characterization of uEVs from PCa and BPH samples. (A) Representatives cryo-TEM micrographs of uEVs 
isolated from BPH and PCa urine samples. Bar, 100 nm. n = 3. (B and C) Box-plots showing number (B) or size (C) of particles isolated 
from each group, indicating the mean and s.e.m. (n = 23 fo BPH and 30 for PCa). (D) Size distribution of the particles isolated from each 
preparation (Mean ± s.e.m. is depicted, n = 23 fo BPH and 30 for PCa). Statistic test: Student t test.
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Containing 3 (CMTM3), exhibited the predicted behavior 
in the validation dataset (Figure 2D). These two transcripts 
were predominantly detected in BPH uEVs, whereas the 
detection rate was below 30% in PCa uEVs. Of note, 
we confirmed that these transcripts were contained in 
uEVs, since they exhibited resistance to RNase treatment 
(Supplementary Figure S2B).

Our results demonstrate that we can identify 
transcripts with differential abundance in PCa uEVs, 
employing 50 mL of urine and using an ultracentrifugation-
based method for uEV isolation [16]. However, biomarker 
identification requires miniaturization of the assay with 
the consequent scaling down of the starting material. To 
refine our detection method, we employed a commercial 
exosomal RNA purification procedure (Norgen Biotek) in 
an independent set of samples that allowed us to reduce 
urine volume to 10 mL. We then performed qRTPCR from 
Norgen-purified retrotranscribed RNA. We evaluated the 
expression level of the two best candidates, CMTM3 and 
CDH3. As shown before, the two housekeeping transcripts 
employed (GAPDH and RPL6) exhibited a strong and 
significant correlation (Supplementry Figure S2C). 
Interestingly, this purification method precluded detection 
of CMTM3, while recapitulated the reduction in CDH3 
with higher sensitivity using normalization against RPL6 
(0.69 ± 0.1; mean ± s.e.m.; p = 0.055) and GAPDH (0.65 
± 0.08; mean ± s.e.m.; p = 0.01) (Figure 2E). 

Taken together, our transcriptomic analysis reveals 
that CDH3 abundance is reduced in PCa uEVs and sets the 
basis for PCa biomarker search based on uEV transcript 
analysis. 

uEVs are indicators of PCa alterations

Our results convincingly show that CDH3 
abundance is reduced in uEVs from PCa patients. On the 
basis of these results, we hypothesized that the alteration 
observed in uEVs might be a reflection of transcriptomic 
changes in the prostate tumor.

In order to confirm our hypothesis, we studied the 
expression of CDH3, in a set of BPH and PCa tissue 
specimens. The results of CDH3 expression analysis 
demonstrated that it was significantly decreased in tissue 
from patients with PCa compared to BPH (0.52 ± 0.12; 
mean ± s.e.m.; p = 0.018), in full coherence with our 
observation in uEVs (Figure 3A). Of note, these results 
could lead to the notion that the association between 
transcriptomic tumor cell landscape and exosome RNA 
cargo correlate at high frequency. However, prior studies 
from our lab showed that known cancer genes, such as 
PTEN, do not exhibit a direct correlation between uEVs 
mRNA abundance and PTEN tumor alterations [16], 
suggesting a selective process in cargo loading into uEVs.  

Next, we ascertained the potential extrapolation 
of this observation to other biological contexts, such 
as a panel of benign prostate cells and metastatic 

prostate cancer cell lines and large human PCa datasets. 
Interestingly, the expression of CDH3 in prostate cell lines 
revealed a down-regulation of the transcript in metastatic 
cancer cell lines (black), compared to benign-immortalized 
cells (grey) (0.17 ± 0.07; mean ± s.e.m.) (Figure 3B). 
Importantly, this observation was confirmed in two datasets 
where the expression of PCa specimens was compared to 
biopsies from healthy patients [24, 25] (Figure 3C) and 
was in full agreement with a previous report [29].

We also monitored the expression levels of other 
transcripts identified in uEVs. On the one hand, CMTM3 
expression, which was shown to be down-regulated in the 
ultracentrifugation uEVs (but not detected with Norgen 
extraction method), showed a significant reduction in 
PCa compared with BPH tissues, but this result was 
not reproduced in publicly available PCa datasets 
and exhibited only a modest trend in PCa cell lines 
(Supplementary Figure S3A–S3C). On the other hand, 
our housekeeping genes RPL6 and EEF1A1 showed no 
consistent alterations throughout the same analytical 
layout (Supplementary Figure S3A–S3C). 

We next ask whether the reduction of CDH3 
expression observed in PCa could be extrapolated to other 
urogenital cancers. Data mining analysis was performed 
in bladder and renal cancer datasets (www.oncomine.
org, [30]). Although there was certain consistency in the 
alteration of CDH3 expression within the same tumor type, 
the directionality of the alterations was not preserved among 
the different tumor types (Supplementary Figure S3D). 

In order to address whether gene expression 
alterations in CDH3 could be translated in a decrease in the 
protein expression, we took advantage on publicly available 
initiatives for immunoreactivity analysis. Proteinatlas 
(www.proteinatlas.org, [31–35]) allows the visualization 
of immunohistochemistry (IHC) staining in a wide array 
of tissues. There was data available for CDH3 staining 
with high quality IHC-specific antibodies. Importantly, 
the staining in normal prostate epithelia corroborated the 
staining of basal prostate epithelial cells, in agreement 
with reports in this and other epithelial tissues [29, 36, 37] 
(Figure 3E, middle panel and Supplementary Figure S3F). 
As predicted, CDH3 expression was decreased in PCa 
specimens. This result was particularly evident in tumor 
samples with adjacent non-neoplastic tissue (Figure 3D). 
Interestingly, CDH3 sub-cellular distribution was altered 
in tumor cells, with a predominant loss of membrane 
immunoreactivity (Figure 3D).

We next asked the molecular cues leading to the 
down-regulation of CDH3 in PCa. On the one hand, we 
studied the genomic and epigenetic changes occurring 
in CDH3 locus. The genomic analysis showed frequent 
shallow deletions of CDH3 in four independent PCa 
datasets (Figure 4A, [24, 25, 38, 39]). Moreover, 
epigenetic analysis of CDH3 promoter indicated increased 
methylation in PCa and a correlation between the 
methylation status of the locus and the transcript abundance 



Oncotarget6839www.impactjournals.com/oncotarget

(Figure 4B, 4C; [38, 39]), in line with a previous report 
[29]). On the other hand, we evaluated the association 
of CDH3 expression with well-known upstream 
regulators. Tp63 is a basal prostate epithelial marker 
which is down-regulated in PCa specimens [40–42], 
and that has been reported to regulate CDH3 expression 
[43]. We found a strong correlation between the mRNA 
expression of Tp63 and CDH3 in prostate specimens, 
which suggests that transcriptional regulation of this 
cadherin downstream p63 is at play in PCa (Figure 4D).  
Altogether, our results indicate that genomic loss, 

transcriptional regulation and promoter methylation 
contribute to the down-regulation of CDH3 in PCa. 

DISCUSSION

Extracellular vesicles including exosomes have 
been detected and characterized in urine [2, 44, 45]. 
These vesicles vary in composition and are associated 
with different diseases [12, 46]. Importantly, recent 
evidence suggests that PCa might exhibit alterations in 
the composition of uEVs [12, 47, 48]. The majority of 

Figure 2: Transcriptomic analysis of uEVs reveals transcripts with differential abundance in BPH and PCa.  
(A) Representative analysis of RNA size distribution obtained from the Bioanalyzer analysis of uEV preparations. n = 4–6. (B) Venn 
diagram depicting the number of unique transcripts identified in each experimental condition (n = 4 for BPH and n = 6 for PCa).  
(C) Transcripts exhibiting a presence-absence pattern in BPH and PCa. The transcripts shown complied with the requirements of being absent 
in one condition and with a minimum presence of 75% of cases in the other. Detection p-value is presented, where a limit was established in  
p < 0.01 in the microarray analysis (significant conditions are highlighted in pink or green in BPH and PCa, respectively). (D) Detection of 
ultracentrifugation-purified candidate uEV transcripts by qRTPCR. Detection was established as consistent amplification in the technical 
settings employed in the assay. n = 7 for BPH and n = 9 for PCa. (E) Transcript abundance of CDH3 relative to GADPH (left) and RPL6 
(right) in Norgen-purified uEVs-associated RNA samples. n = 6–7 for BPH and n = 18 for PCa. FU: fluorescence units. S: seconds. Error 
bar represents s.e.m. a.u. = Arbitrary units. Statistic test: Mann Whitney U test (E).
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Figure 3: CDH3 expression is reduced in PCa specimens. (A) CDH3 expression in tissue biopsies from BPH and PCa. CDH3 
expression relative to GAPDH is shown. n = 14 for BPH and n = 15 for PCa. (B) CDH3 expression in a panel of metastatic prostate cancer 
cell lines (black bars) and benign immortalized prostate cell lines (grey bars) relative to beta-Actin. n = 3. (C) CDH3 expression in two 
PCa datasets (Taylor PCa n = 150, normal n = 29; Grasso PCa n = 76, normal n = 12). (D) Representative images of immunohistochemical 
detection of CDH3 protein in PCa. Middle panel corresponds to a normal area and right panel to high grade PCa (HG PCa). Data source: 
Human Protein Atlas. Statistic test: Mann Whitney U test (A), Student t test (C).
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the studies are carried out comparing healthy individuals 
with PCa patients. It is worth noting that there is an 
increasing incidence of BPH in association with age [14], 
and the interference that this might introduce to biomarker 
identification is poorly understood. To address this 
question, we have performed a transcriptomics analysis 
comparing the mRNA content of uEVs from patients with 
BPH or PCa. The results reveal that urine from these two 
groups have significant alterations in vesicle number. 
Little is known about alterations in EV production in 
different pathologies as compared to the nature of its cargo 
and this aspect warrants further investigation. Importantly, 
we found a markedly different transcriptomics profile 
in uEVs from BPH and PCa. We were able to reduce a 
whole genome analysis (which revealed 1336 transcripts 
detected in uEV preparations) to two candidate transcripts 
(CMTM3 and CDH3) with decreased abundance in PCa. 
Interestingly, the miniaturization of the assay employing 

an alternative purification method revealed that CMTM3 
detection is sensitive to the approach used. This suggests 
that the detection of uEV transcripts might be affected 
by the uEV purification protocol and calls for further 
refinement and characterization of the selectivity and 
specificity of the uEV isolation methods. 

Placental cadherin (P-Cad or CDH3) has been widely 
studied in cancer [37, 49–59]. This protein regulates cell-cell 
adhesion processes and cellular differentiation. Interestingly, 
both oncogenic and tumor suppressive activities of this gene 
have been described in tissue-specific manner [37, 49–59]. 
We observe that CDH3 mRNA levels are down-regulated 
in PCa. This is coherent with preliminary observations 
at the protein level. It has been suggested that CDH3 is 
down-regulated and exerts tumor suppressive functions in 
hepatocellular carcinoma [50] and a prior study reported 
changes of CDH3 in PCa [29]. Our data suggest that CDH3 
may be exerting tumor suppressive activities in PCa.

Figure 4: Evaluation of the molecular events accounting for CDH3 down-regulation in PCa. (A) Analysis of the genomic 
alterations in CDH3 locus in four PCa databases (Taylor n = 93, Grasso n = 61, TCGA n = 258, Broad n = 56). (B and C) Promoter 
methylation analysis from TCGA database evaluating methylation in CDH3 locus (B) n = 49 for normal tissue, n = 101 acinar PCa and  
n = 196 for PCa) and the correlation between methylation status and CDH3 mRNA expression (C) n = 294). (D) Correlation analysis 
between CDH3 and Tp63 expression in two independent datasets. (Grasso, n = 49; Taylor, n = 131; primary tumors). Statistic test: Student 
t Test (B); Pearson´s coefficient (R) (C, D).
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We show that the regulation of CDH3 expression in 
PCa occurs at multiple levels. On the one hand, genomic 
and epigenetic analysis strongly suggests that deletion 
and methylation of the locus accounts for changes 
in expression. On the other hand, we find potential 
regulations at the level of upstream transcriptional 
regulators. Prior studies showed that CDH3 is a basal 
epithelial cell marker [29, 37]. Interestingly, Tp63, 
an upstream regulator of CDH3 [36], presents similar 
behavior to our gene of interest. Tp63 localizes to basal 
epithelial cells and is down-regulated in PCa [40–42, 60]. 
Our correlation analysis in public PCa supports the notion 
that p63 is a transcriptional upstream regulator of CDH3.

Of note, immunoreactivity analysis has provided 
preliminary evidence of mis-localization of CDH3 in PCa 
cells compared to non-tumoral counterparts, Interestingly, 
this alteration is also observed in other cancers and is 
associated to poor prognosis [59].

Altogether, our data show multiple means 
of regulation (genomic loss, DNA methylation, 
transcriptional regulation, and protein mis-localization) 
that could potentially lead to the alteration of CDH3 
function in PCa.

The function of EVs in cell communication and 
cancer aggressiveness has emerged in the past years [61, 62].  
While their use as source of biomarkers is under intense 
investigation, there is limited evidence about their 
potential role as readouts of the tumoral genetic alterations 
[9]. This study informs about the properties of uEVs to 
reflect genetic alterations in the tumor of origin. We 
find that the decrease in abundance of CDH3 in uEVs 
is coherent with mRNA changes in the prostate tumor 
cells. This data opens new avenues in the non-invasive 
characterization of genetic alterations in PCa using uEVs, 
with the consequent potential for patient stratification.

MATERIALS AND METHODS

Patient samples and cell lines analysis

All urine samples were obtained from the Basque 
Biobank for research (BIOEF, http://www.biobancovasco.
org, Basurto University Hospital) upon informed consent 
and with evaluation and approval from the corresponding 
ethics committee (CEIC code OHEUN11-12 and 
OHEUN14-14). Inclusion criteria: For BPH patients, 
samples were obtained from cases with normal PSA, 
with symptomatic alterations (polyuria, distress), and 
that were scheduled for surgery. For PCa cases, samples 
were obtained from patients with primary localized 
cancer diagnosed de novo and that were scheduled for 
radical prostatectomy. Urine (40–100 ml) was collected 
by spontaneous urination between 8–10 AM, in fasting 
conditions. Patient information, tumor characteristics 
and urine volume is described in Supplementry Table S1.  
For prostate tissue specimens, samples were prepared and 

diagnosed as described in [16]. Cell lines were cultured as 
described in [17] and RNA was harvested in conditions of 
exponential growth.

Urine extracellular vesicle purification

uEV isolation by ultracentrifugation was performed 
as described in [16]. Briefly, urine was centrifuged at 
2000 × g for 5 min to remove cell debris and filtered 
through 0.22 μm pore-filter before frozen at −80°C. For 
uEV isolation sample was thawed and subjected to two 
sequential centrifugations of 11500 × g for 30 min and 
second 118000 × g for 90 minutes. The pellet containing 
uEVs was resuspended in 150 μl of cold PBS and frozen 
for later processing. RNase treatment was not performed 
unless otherwise specified.

Western blot

Western blot was performed as described [18], using 
CD26 (Abcam, Cambridge, UK), CD63 (clone H5C6; from 
Developmental Studies Hybridoma Bank, Iowa, US), CD13 
(clone 3D8; from Santa Cruz Biotechnology Inc.), FLT1 
(clone 18; from BD Biosciences) and AQP2 (Sigma-Aldrich) 
antibodies.

Transmission electron microscopy (TEM) 
analysis

For cryo-electron microscopy, uEV preparations 
were directly adsorbed onto glow-discharged holey 
carbon grids (100 Holey carbon film of Cu with mess 
200; Quantifoil®, Germany). Grids were blotted at 95% 
humidity and rapidly plunged into liquid ethane with 
the aid of VITROBOT (Maastricht Instruments BV, 
The Netherlands). Vitrified samples were imaged at 
liquid nitrogen temperature using a JEM-2200FS/CR 
transmission cryo-electron microscope (JEOL, Japan) 
equipped with a field emission gun and operated at an 
acceleration voltage of 200 kV.

Size analysis and size distribution

Size distribution within uEV preparations was 
analyzed by nanoparticle-tracking analysis (NTA) by 
measuring the rate of Brownian motion using a NanoSight 
LM10 system (Malvern, U.K.), which is equipped with 
a fast video capture and particle-tracking software. 
NTA post-acquisition settings were kept constant for all 
samples, and each video was analyzed to give the mean, 
mode, and median vesicle size, as well as an estimation of 
the concentration [19]. For each preparation, two videos of 
30 seconds each were taken. For each video, at least 200 
tracks were completed in post-capture tracking analysis.
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Transcriptomic analysis

Total RNA isolation from uEV was achieved 
by RNeasy columns (Qiagen, Inc). The integrity, size 
and quantification were evaluated in RNA Pico Chips 
(Bioanalyzer; Agilent Technologies). For transcriptomic 
analysis of mRNA-associated uEVs, Illumina whole 
genome (HumanHT-12_V4.0; DirHyb, nt) method was 
used as reported [20]. cRNA synthesis was obtained out of 
2–25 ng of Total RNA, with TargetAmp™ Nano-g™ Biotin-
aRNA Labeling Kit for the Illumina® System (Epicentre, 
Cat# TAN07924) and subsequent amplification, labelling 
and hybridization were performed according to “Whole-
Genome Gene Expression Direct Hybridization” 
Illumina Inc.’s protocol, except the hybridization 
cRNA concentration, which was 285 ng instead of the 
standard 750 ng. Raw expression data were background-
corrected, log2-transformed and quantile-normalized 
using the lumi R package [21], available through the 
Bioconductor repository. Probes with a “detection 
p-value” lower than 0.01 in at least one sample were 
regarded as detected.

Retrotranscription and quantitative real time 
PCR analysis

To extract RNA from uEVs isolated by 
ultracentrifugation, we employed miRCURY™ RNA 
Isolation Kit Cell & Plant (Exiqon). In average, 1.5e7 
vesicles were used per retrotranscription reaction. In 
addition, a set of samples was extracted by Norgen 
Biotek Exosomal RNA purification kit, following 
the manufacturers’ instructions. For cell lines, RNA 
was extracted using NucleoSpin® RNA isolation kit 
from Macherey-Nagel (ref: 740955.240C). cDNA 
was synthesized from 0.1–1 µg of RNA using 
Superscript III (Life Technologies) following the 
manufacturer’s recommendations. For prostate tissue 
samples, RNA was extracted as reported in [16]. 
Quantitative Real Time PCR (Taqman qRTPCR) was 
performed as previously described [18]. Universal 
Probe Library (Roche) primers and probes employed 
are detailed in Supplementary Table S2. β-ACTIN 
(Hs99999903_m1) and GAPDH (Hs02758991_g1)  
housekeeping assays were from Applied Biosystems and 
showed similar results.

DNA methylation

Raw intensity CDH3 DNA methylation was 
extracted from The Cancer Genome Atlas dataset (https://
tcga-data.nci.nih.gov/tcga/) based on Illumina’s 450K 
methylation array. Data analysis from normal tissues  
(n = 49), prostate carcinoma (n = 196) and acinar prostate 
carcinoma (n = 101) were included. A three step-based 
normalization procedure was performed using the lumi 

[21] package available for Bioconductor [22], under 
the R statistical environment [23], consisting in color 
bias adjustment, background level adjustment and 
quantile normalization across arrays, as specified in [21]. 
Methylation level (β-value) for each of the 485, 577 CpG 
sites was calculated as the ratio of methylated signal 
divided by the sum of methylated and unmethylated signals 
plus 100. After normalization step, probes related to X and 
Y chromosomes were removed as well as those containing 
a SNPs with a frequency > 1% (1000 Genome project)  
in the probe sequence or interrogated CpG site.

Bioinformatics analysis and statistics

The following statistical analysis were employed:
Database normalization: all the datasets used for 

the data mining analysis were downloaded from GEO and 
subjected to background correction, log2 transformation 
and quartile normalization. In the case of using a  
pre-processed dataset, this normalization was reviewed 
and corrected if required.

For CDH3 genomic analysis, data from PCa patients 
with copy number alteration information in Taylor [24], 
Grasso [25], Broad/Cornell [26] and Robinson [27] et al. 
datasets was extracted from cbioportal.org. 

Correlation analysis

Pearson correlation test was applied to analyze 
the relation between paired genes. From this analysis, 
Pearson’s coefficient (R) indicates the existing linear 
correlation (dependence) between two variables X and Y, 
giving a value between +1 and −1 (both included), where 
1 is total positive correlation, 0 is no correlation, and −1 
is total negative correlation. The p-value indicates the 
significance of this R coefficient.

Statistical analysis

Data represent mean ± s.e.m. of pooled experiments 
unless otherwise stated. For data mining analysis, ANOVA 
test was used for multi-component comparisons. Student T 
test or Mann Whitney U test for two-group parametric or 
non-parametric comparisons, respectively. The confidence 
level used for all the statistical analyses was of 0.95 (alpha 
value = 0.05). Two-tail statistical analysis was applied for 
experimental design without predicted result and one-tail 
for validation experiments.
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The metabolic co-regulator PGC1α suppresses
prostate cancer metastasis
Veronica Torrano1,18, Lorea Valcarcel-Jimenez1,18, Ana Rosa Cortazar1, Xiaojing Liu2, Jelena Urosevic3,
Mireia Castillo-Martin4,5, Sonia Fernández-Ruiz1, Giampaolo Morciano6, Alfredo Caro-Maldonado1, Marc Guiu3,
Patricia Zúñiga-García1, Mariona Graupera7, Anna Bellmunt3, Pahini Pandya8, Mar Lorente9,
Natalia Martín-Martín1, James David Sutherland1, Pilar Sanchez-Mosquera1, Laura Bozal-Basterra1,
Amaia Zabala-Letona1, Amaia Arruabarrena-Aristorena1, Antonio Berenguer10, Nieves Embade1,
Aitziber Ugalde-Olano11, Isabel Lacasa-Viscasillas12, Ana Loizaga-Iriarte12, Miguel Unda-Urzaiz12,
Nikolaus Schultz13, Ana Maria Aransay1,14, Victoria Sanz-Moreno8, Rosa Barrio1, Guillermo Velasco9,
Paolo Pinton6, Carlos Cordon-Cardo4, JasonW. Locasale2,19, Roger R. Gomis3,15,19 and Arkaitz Carracedo1,16,17,20

Cellular transformation and cancer progression is accompanied by changes in the metabolic landscape. Master co-regulators of
metabolism orchestrate the modulation of multiple metabolic pathways through transcriptional programs, and hence constitute a
probabilistically parsimonious mechanism for general metabolic rewiring. Here we show that the transcriptional co-activator
peroxisome proliferator-activated receptor gamma co-activator 1α (PGC1α) suppresses prostate cancer progression and metastasis.
A metabolic co-regulator data mining analysis unveiled that PGC1α is downregulated in prostate cancer and associated with
disease progression. Using genetically engineered mouse models and xenografts, we demonstrated that PGC1α opposes prostate
cancer progression and metastasis. Mechanistically, the use of integrative metabolomics and transcriptomics revealed that PGC1α
activates an oestrogen-related receptor alpha (ERRα)-dependent transcriptional program to elicit a catabolic state and metastasis
suppression. Importantly, a signature based on the PGC1α–ERRα pathway exhibited prognostic potential in prostate cancer, thus
uncovering the relevance of monitoring and manipulating this pathway for prostate cancer stratification and treatment.

The metabolic switch in cancer encompasses a plethora of discrete
enzymatic activities that must be coordinately altered to ensure the
generation of biomass, reductive power and the remodelling of the
microenvironment1–4. Despite the existence of mutations in metabolic
enzymes5, it is widely accepted that the main trigger for metabolic
reprogramming is the alteration in cancer genes that remodel the
signalling landscape2. Numerous reports provide evidence of the

pathways regulating one or a few enzymes within ametabolic pathway
in cancer. However, the means of coordinated regulation of complex
metabolic networks remain poorly documented.

Master transcriptional co-regulators of metabolism control a
variety of genes that are in charge of remodelling the metabolic
landscape, and their impact in cellular and systemic physiology has
been studied for decades. It is worth noting that these co-regulators,
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Figure 1 PGC1A is downregulated in prostate cancer. (a) Frequency of
alterations (differences greater than twofold versus mean expression of non-
tumoral biopsies) in the expression of 23 master co-regulators of metabolism
in a cohort of 150 PCa patients22. ∗P<0.05, statistically different expression
of the indicated gene in PCa (n= 150) versus normal (n= 29) patient
specimens (according to Supplementary Fig. 1A). (b) Gene expression levels
of PGC1A, PGC1B and HDAC1 in up to four additional PCa data sets
(N, normal; PCa, prostate cancer). Sample sizes: Tomlins et al.23 (N, 23;
PCa, 52); Grasso et al.21 (N, 12; PCa ,76); Lapointe et al.18 (N, 9;
PCa, 17); and Varambally et al.24 (N, 6; PCa, 13). (c) Association of
the indicated genes with disease-free survival (DFS) in two PCa data sets

(low: first quartile distribution; high: fourth quartile distribution. Sample
sizes: TCGA provisional data19,20, primary tumours n=240; Taylor et al.22,
primary tumours n= 131. (d) PGC1A expression in normal prostate (N),
primary tumour (PT) and metastatic (Met) specimens in the Taylor and
Lapointe data sets18,22. Sample sizes: Taylor (N, 29; PT, 131; Met, 19)
and Lapointe (N, 9; PT, 13; Met, 4). (e) Incidence of PGC1A shallow
deletions in three independent data sets (Robinson et al.25, Taylor et al. and
Grasso et al.). Points outlined by circles indicate statistical outliers (d). Error
bars represent minimum and maximum values (b,d). P, P value. Statistical
tests: two-tailed Student’s t-test (a,b), Kaplan–Meier estimator (c) and
ANOVA (d).

through their capacity to interact and regulate diverse transcription
factors, exhibit a unique capacity to control complex and extensive
transcriptional networks, making them ideal candidates to promote
or oppose oncogenic metabolic programs.

The tumour suppressor PTEN is a negative regulator of cell growth,
transformation and metabolism6–9. PTEN and its main downstream

pathway, PI(3)K, have been extensively implicated in prostate cancer
(PCa) pathogenesis and progression10–12. This tumour suppressor
is progressively lost through the progression of PCa, and complete
loss of PTEN is predominant in advanced disease and metastasis8.
Genetically engineered mouse models (GEMMs) recapitulate many
of the features of PCa progression. However, the molecular and
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Figure 2 Combined deletion of Pgc1a and Pten in the murine prostate
epithelia results in prostate cancer progression and dissemination.
(a) Schematic representation of the genetic cross and the time of
analysis. (b,c) Comparison of anterior prostate lobe weights (when both
anterior lobes were analysed, the average weight was calculated and
represented) between genotypes. n=number of mice; pc, prostate-specific
allelic changes; +, wild-type allele; −, deleted allele; WT, any given
genotype resulting in the lack of deletion of Pgc1a or Pten alleles.
(d) Histopathological characterization of the prostate (HGPIN, high-
grade prostatic intraepithelial neoplasia) in the indicated genotypes.

(e) Quantification of the frequency of metastatic lesions in lymph
nodes and liver of Pten-KO (5) and DKO (9) mice. (f) Representative
histological images (×200 magnification) of lymph nodes with (right) and
without (left) metastasis in the indicated genotypes. (g) Representative
immunohistochemical detection (×200 magnification) of Pan-cytokeratin
(panCK)- and androgen receptor (AR)-positive cells in metastatic lymph nodes
of DKO mice. Pten-KO, Ptenpc−/− Pgc1apc+/+; DKO, Ptenpc−/− Pgc1apc−/−.
NS, not significant; ∗∗P < 0.01. H&E, haematoxylin–eosin. Error bars
indicate interquartile range (b,c). Statistical test: two-tailed Mann–Whitney
U-test (b,c).

metabolic bases for PCa metastasis remain poorly understood13–16.
Indeed, complete loss of PTEN in the mouse prostate does not result
in metastasis11, in turn suggesting that additional critical events are
required in this process.

In this study, we designed a bioinformatics analysis to interrogate
multiple PCa data sets encompassing hundreds of well-annotated
specimens. This approach allowed us to define a master regulator of
PCa metabolism that is crucial for the progression of the disease. Our
results identify the peroxisome proliferator-activated receptor gamma
co-activator 1 alpha (PGC1α) as a suppressor of PCa metastasis. This
transcriptional co-activator exerts its function through the regulation
of oestrogen-related receptor alpha (ERRα) activity, in concordance
with the activation of a catabolic program and the inhibition of
PCa metastasis.

RESULTS
A bioinformatics screen identifies PGC1A as a metabolic
co-regulator associated with prostate cancer progression
We approached the study of PCa metabolism applying criteria to
ensure the selection of relevant master regulators that contribute to
the metabolic switch. We focused on transcriptional co-regulators
of metabolism17 that were consistently altered in several publicly
available PCa data sets18–24, and were associated with reduced time
to recurrence and disease aggressiveness. We first evaluated the
expression levels of the metabolic co-regulators in a study comprising
150 PCa specimens and 29 non-pathological prostate tissues (or
controls)22. The analysis revealed 10 co-regulators in the set of
study with significant differential expression in PCa compared with
non-neoplastic prostate tissue (Fig. 1a and Supplementary Fig. 1A).
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We next extended this observation to four additional data sets18,21,23,24

in which there were available data for non-tumoral and PCa tissues.
Only the alteration in PPARGC1A (PGC1A), PPARGC1B (PGC1B)
and HDAC1 expression was further confirmed in most or all sets
(Fig. 1b and Supplementary Fig. 1B). Among these, PGC1A was the
sole co-regulatorwith altered expression associatedwithGleason score
(Supplementary Fig. 1C,D) and disease-free survival (Fig. 1c).

To rule out the possibility that cellular proliferation could
contribute to the alteration of metabolic regulators, we carried out an
additional analysis in which we compared the expression of PGC1A
in PCa versus a benign hyper-proliferative condition (benign prostate
hyperplasia or BPH). The results corroborated that the decrease in
PGC1A expression is associatedwith a cancerous state rather thanwith
a proliferative condition (Supplementary Fig. 1E).

We observed that the expression of PGC1A was progressively
decreased from primary tumours to metastasis (Fig. 1d and
Supplementary Fig. 1F). Strikingly, genomic analysis revealed
shallow deletions of PGC1A exquisitely restricted to metastatic PCa
specimens19–22,25 (Fig. 1e), in full agreement with the notion that there
is a selective pressure to reduce the expression of this transcriptional
co-activator as the disease progresses.

From our analysis, PGC1α emerges as the main master metabolic
co-regulator altered in PCa, with an expression pattern reminiscent of
a tumour suppressor.

Pgc1a deletion in the murine prostate epithelium promotes
prostate cancer metastasis
PGC1α has been widely studied in the context of systemic
metabolism26, whereas its activity in cancer is just beginning to
be understood27–33. To ascertain the role of PGC1α in PCa in vivo,
we conditionally deleted this metabolic co-regulator in the prostate
epithelium34, alone or in combination with loss of the tumour
suppressor Pten11 (Fig. 2a–d and Supplementary Fig. 2A,B). Pgc1a
deletion alone or in the context of Pten heterozygosity did not result
in any differential tissue mass or histological alteration, which led
us to conclude that it is not an initiating event (Fig. 2b,d). However,
compound loss of both Pten and Pgc1a resulted in significantly larger
prostate mass (Fig. 2c), together with a remarkable increase in the
rate of invasive cancer (Fig. 2d). Histological analysis of the prostate
revealed the existence of vascular invasion in double-mutant mice
(DKO), but not in Pten-deleted (Pten-KO) prostates (Supplementary
Fig. 2C). PGC1α regulates the inflammatory response, which could
influence and contribute to the phenotype observed35. However,
we did not observe significant differences in the infiltration of
polymorphonuclear neutrophils and lympho-plasmacytic infiltrates
in our experimental settings (Supplementary Fig. 2D). PGC1α
has been also shown to induce angiogenesis in coherence with
the induction of vascular endothelial growth factor (VEGF)-A
expression36. Pgc1a status in our GEMMs did not alter VEGF-A
expression and microvessel density (Supplementary Fig. 2E,F). We
therefore excluded the possibility that regulation of angiogenesis or
inflammation downstream of PGC1α could drive the phenotype
characterized in this study.

PCa GEMMs faithfully recapitulate many of the features of the
human disease37. A reduced number of mouse models with clinically
relevantmutations show increasedmetastatic potential13–16. Strikingly,

histopathological analysis of our mouse model in the context of
Pten loss revealed that DKO mice—but not Pten-KO counterparts—
presented evidence of metastasis, which was estimated in 44% to
lymph nodes and 20% to liver (Fig. 2e,f and Supplementary Fig. 2G).
Metastatic dissemination was in agreement with the observation of
pan-cytokeratin (panCK)- and androgen receptor (AR)-positive PCa
cell deposits in the lymph nodes of DKO mice (Fig. 2g). Of note,
33% of Pten-KO mice presented small groups of panCK-positive
cells in lymph nodes (without metastatic lesions; Supplementary
Fig. 2H), suggesting that even if these cells are able to reach the
lymph nodes, they lack capacity to establish clinical metastasis.
Interestingly, bone analysis revealed disseminated groups (but not
clinical metastasis) of panCK-positive cells in DKO but not in Pten-
KO mice (Supplementary Fig. 2I–K). Analysis of a small cohort of
Ptenpc−/−; Pgc1apc+/− mice demonstrated that heterozygous loss of
Pgc1a is sufficient to promote aggressiveness, vascular invasion and
metastasis (Supplementary Fig. 2L–N). This observation supports the
notion that single-copy loss of PGC1A (as observed in metastatic
human PCa specimens, Fig. 1e) could be a key contributing factor to
the metastatic phenotype.

The cooperative effect observed in our mouse model between loss
of Pten and Pgc1a was supported by the direct correlation of the
two transcripts in patient specimens and the association of PGC1A
downregulationwith PTEN genomic loss (TCGAprovisional data19,20,
Supplementary Fig. 2O).

In summary, our results in GEMMs and patient data sets formally
demonstrate that the downregulation of PGC1α in PCa is an
unprecedented causal event for the progression of the disease and its
metastatic dissemination.

PGC1α suppresses prostate cancer growth and metastasis
To characterize the prostate tumour suppressive activity of PGC1α, we
first evaluated its expression level in well-established PCa cell lines38.
Using previously reported PGC1α-positive and -negative melanoma
cells28, we could demonstrate that PCa cell lines lack detectable
expression of the transcriptional co-activator at the protein level
(Fig. 3a). In agreement with this notion, PGC1α silencing in these
cells failed to impact on the expression of its well-established targets39

(Supplementary Fig. 3A). Importantly, through the analysis of publicly
available data sets22, we could demonstrate that the transcript levels
of PGC1A in metastatic cell lines are comparable to those observed
in human metastatic PCa specimens and vastly reduced compared
with PGC1α-positive melanoma cells (Fig. 3a and Supplementary
Fig. 3B). Despite our efforts to optimize the detection of the protein
with different commercial antibodies, we could not identify an
immunoreactive band that would correspond to PGC1α, in contrast
with other reports40,41. Yet, we cannot rule out that in non-basal
conditions, stimulation of other factors such as AR41 or 5′ AMP-
activated protein kinase (AMPK)40 could lead to the upregulation and
allow detection of PGC1α in PCa cells.

Owing to the lack of PGC1α detection in PCa cellular systems,
we aimed at reconstituting the expression of this gene to levels
achievable in the cancer cell lines previously reported28. By means
of lentiviral delivery of inducible Pgc1α and doxycycline titration,
we reached expression levels of this protein in three PCa cell lines
(AR-dependent—LnCaP—and independent—PC3 and DU145)

648

© 2016 Macmillan Publishers Limited. All rights reserved

NATURE CELL BIOLOGY VOLUME 18 | NUMBER 6 | JUNE 2016



ART ICLES

c d e

0

0.4

0.8

1.2
Soft agar 

∗∗

∗∗

Fo
ld

 c
ha

ng
e

0

0.4

0.8

1.2
Fo

ld
 c

ha
ng

e

0

0.4

0.8

1.2

Fo
ld

 c
ha

ng
e

0

0.4

0.8

1.2

Fo
ld

 c
ha

ng
e

0

0.4

0.8

1.2

Fo
ld

 c
ha

ng
e

PC3 DU145 LnCaP

∗∗

BrdU 

∗

∗∗∗ 

2D growth 2D growth 2D growth

f g–Dox
+Dox

0 7 14 21
Days elapsed

28 35 42
0

20
40
60
80

100

Tu
m

ou
r 

fo
rm

at
io

n
(%

)

P = 0.03

Cells
IC injection

Bone
metastasis

Lung
metastasis

Cells
IT injection

Bone
colonization

j

ba

β-actin 

Dox 0.5 μg ml–1

Melanoma Prostate cancer 

P
G

C
1A

 m
R

N
A

(a
.u

.) 

PGC1α

HSP90

0
0.5
1.0

M
eW

o

HS29
4T
A37

5

HT1
14

100
75

M
ar

ke
r

100
75
50
35

Mr (K)Mr (K)

100
75

TRIPZ–HA–Pgc1a 
LnCaP 

– + M
eW

o

HS29
4T

– + – +
PC3 DU145 

PC3

DU14
5

VCaP

Ln
CaP

C4-
2

22
rV

1

PGC1α

ih k

(i)

(ii)

Colour bar
Min = 2.5 × 106

Max = 1.52 × 109

P = 0.035

P = 0.046

–Dox –Dox –Dox+Dox +Dox +Dox

–Dox +Dox

104
105
106
107
108
109

1010

104
105
106
107
108
109

1010

104

105

106

107

108

109

E
x 

vi
vo

 p
ho

to
n 

flu
x

(lu
ng

)

E
x 

vi
vo

 p
ho

to
n 

flu
x

(h
in

d
 li

m
b

s)

E
x 

vi
vo

 p
ho

to
n 

flu
x

(h
in

d
 li

m
b

s)

P = 0.0007

Lung metastasis Bone metastasis 

P = 0.013

0 10 20 30
0

50

100

Days

–Dox; n = 8
+Dox; n = 6

–Dox; n = 8
+Dox; n = 6

Lu
ng

 m
et

as
ta

si
s-

fr
ee

su
rv

iv
al

P = 0.0003

(ii)

Colour bar
Min = 9,755

Max = 1.27 × 109

(i)

Colour bar
Min = 25,000

Max = 1.98 × 109

(i)

(ii)

0 10 20 30
0

50

100

0

50

100

Days

B
on

e 
m

et
as

ta
si

s-
fr

ee
su

rv
iv

al

P = 0.0231

+
D

ox
–D

ox

+
D

ox
–D

ox

+
D

ox
–D

ox

H
in

d
 li

m
b

 le
si

on
in

ci
d

en
ce

 (%
)

Figure 3 PGC1α exhibits tumour and metastasis suppressive activity in PCa
cell lines. (a) Analysis of PGC1α expression by quantitative rtPCR (top
histogram) and western blot in a panel of prostate cancer cell lines (technical
duplicates are shown), using melanoma cell lines as positive (MeWo)
and negative (HT114, HS294T and A375) controls (n=3, independent
experiments). (b) Representative experiment of PGC1α expression in PC3,
DU145 and LnCaP cell lines after treatment with 0.5 µgml−1 doxycycline
(Dox) (similar results were obtained in three independent experiments).
(c) Relative cell number quantification in Pgc1α-expressing (+Dox, pink) and
-non-expressing (−DOX, black) cells. Data are represented as cell number
at day 6 relative to −Dox cells (n= 12 in PC3; n= 7 in DU145; n= 3
in LnCaP, independent experiments). (d,e) Effect of Pgc1α expression on
anchorage-independent growth (d; n=3, independent experiments) and BrdU
incorporation (e; n=3, independent experiments) in PC3 cells. (f) Evaluation
of tumour formation capacity in xenotransplantation experiments (n=7 mice;
two injections per mouse). (g) Schematic representation of metastasis assay
through intra-cardiac (IC) injection. (h,i) Evaluation of metastatic capacity
of Pgc1α-expressing PC3 cells using IC xenotransplant assays (n=8 mice
for −Dox and n=6 for +Dox). Luciferase-dependent signal intensity (upper
panels) and metastasis-free survival curves (lower panels) of PCa cells in
lungs (h) and limbs (i) were monitored for up to 28 days. Representative
luciferase images are presented, referring to the quantification plots. In

hind limb photon flux analysis, the average signal from two limbs per
mouse is presented. Images (i) and (ii) depict tibia or lung photon flux
images from specimens that are proximal to the median signal in −Dox
and +Dox, respectively. (j) Schematic representation of bone metastasis
assay through intra-tibial (IT) injection. (k) Evaluation of the metastatic
capacity of Pgc1α-expressing PC3 cells using IT xenotransplant assays
(n= 7 mice). Photon flux quantification at 20 days (upper panel) and
incidence of metastatic lesions at the end point (lower panel). Representative
luciferase images are presented, referring to the quantification plots. For
photon flux analysis, the average signal from two limbs per mouse is
presented. For incidence analysis, mice with at least one limb yielding
luciferase signal >50,000 units were considered metastasis-positive. Images
(i) and (ii) depict tibia photon flux images from specimens that are proximal
to the median signal in −Dox and +Dox, respectively. +Dox, Pgc1α-
induced conditions; −Dox, Pgc1α-non-expressing conditions; BrdU, bromo
deoxyuridine; a.u., arbitrary units. Error bars represent s.e.m. (c–e) or
minimum and maximum values (h,i,k). Statistical tests: two-tailed Student’s
t-test (c–e), one-tailed Mann–Whitney U-test (h,i,k (upper panels)), log-rank
test (f,h,i (lower panels)) and Fisher’s exact test (k, lower panels). ∗P<0.05,
∗∗P<0.01, ∗∗∗P<0.001. Statistics source data for Fig. 3k are provided in
Supplementary Table 9. Unprocessed original scans of blots are shown in
Supplementary Fig. 8.
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Figure 4 PGC1α induces a metabolic transcriptional program. (a) KEGG
(Kyoto Encyclopaedia of Genes and Genomes) analysis of the transcriptional
program regulated by PGC1α. The dotted line indicates P = 0.05. (b–d)
Validation of microarray by quantitative rtPCR in PC3 TRIPZ–HA–Pgc1α
cells (b, n=3 for TP53INP2, SOD2, NNT, GSTM4, ETFDH, GOT1, CLYBL,
SUCLA2, MPC1, MPC2, ACAT1 and ACSL4; n= 4 for ATP1B1, ISCU,
SDHA, IDH3A and ACADM; independent experiments; data are normalized
to the −Dox condition, represented by a black dotted line), xenograft

samples (c, −Dox n=11 tumours; +Dox n=6 tumours) and prostate tissue
samples from Pten-KO and DKO mice (d, n=7 mice). +Dox, Pgc1α-induced
conditions; −Dox, Pgc1α-non-expressing conditions; Pten-KO, Ptenpc−/−

Pgc1apc+/+; DKO, Ptenpc−/−, Pgc1apc−/−. ROS, reactive oxygen species; ETC,
electron transport chain; TCA, tricarboxylic acid cycle; Pyr, pyruvate; FA, fatty
acid. Error bars indicate s.e.m. (b) or interquartile range (c,d). Statistical
tests: one-tail Student’s t-test (b); one-tail Mann–Whitney U-test (c,d).
∗P<0.05, ∗∗P<0.01, ∗∗∗P<0.001.

equivalent to that observed in the PGC1α-expressing melanoma
cell line MeWo (Fig. 3b and Supplementary Fig. 3C,D). Next, we
evaluated the cellular outcome of expressing PGC1α in PCa cell
lines. Interestingly, expression of Pgc1α in this context resulted
in a reduction in bi-dimensional and three-dimensional growth
(Fig. 3c,d and Supplementary Fig. 3E), cellular proliferation
(Fig. 3e and Supplementary Fig. 3F) and cell cycle progression
(Supplementary Fig. 3G). Of note, we excluded the possibility that
doxycycline treatment could influence the result of the growth analysis
(Supplementary Fig. 3H). The Pgc1α phenotype was recapitulated
in vivo, where ectopic expression of this gene decreased tumour
formation and growth (Fig. 3f and Supplementary Fig. 3I–K). In
agreement with the GEMM data, we did not observe a contribution
of angiogenesis to the phenotype (Supplementary Fig. 3L–N).

We observed in GEMMs that Pgc1a loss resulted in metastatic
dissemination (Fig. 2). We next sought to study whether Pgc1α
expression could oppose a pre-existing metastatic phenotype. To this
end, we carried out xenotransplant assays in immunocompromised
mice using luciferase-expressing Pgc1α-inducible PC3 cells. Intra-
cardiac injection of these cells (Fig. 3g) revealed that Pgc1α expression
blunted metastatic growth in the lung, and led to a remarkable
decrease in bone colonization (Fig. 3h,i). As an additional approach,
we sought to analyse metastatic tumour re-initiation capacity by
means of local injection of PCa cells at the metastatic site. As PCa
exhibits an osteotropic nature42, we carried out intra-tibial injection

of cells and the appearance of tumour masses in the bone was
monitored43 (Fig. 3j). The results demonstrated that PGC1α exerts
a potent anti-metastatic activity both in bone tumour mass and
metastatic lesions (Fig. 3k). These data provide evidence of the anti-
metastatic potential of PGC1α.

PGC1α determines the oncogenic metabolic wiring in prostate
cancer
PGC1α regulates gene expression through the interaction with
diverse transcription factors26. To define the transcriptional program
associated with the tumour suppressive activity of PGC1α, we
performed gene expression profiling from Pgc1α-expressing versus -
non-expressing PC3 cells. We identified 174 probes with significantly
altered signal encoding genes predominantly related to functions
such as mitochondrial catabolic programs and energy-producing
processes26,44 (Supplementary Table 1 and Fig. 4a), which we
validated by quantitative real-time PCR (rtPCR) (Fig. 4b–d and
Supplementary Fig. 4).

To demonstrate that the tumour suppressive activity of PGC1αwas
indeed accompanied by a global metabolic rewiring, we carried out
integrativemetabolomics.We analysed cell line, xenograft andGEMM
tissue extracts using liquid-chromatography high-resolution mass
spectrometry (LC–HRMS). LC–HRMSmetabolomics and subsequent
biochemical assays confirmed that oxidative processes such as fatty
acid β-oxidation (Fig. 5a–d and Supplementary Fig. 5A–C and
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Figure 5 PGC1α induces a catabolic metabolic program. (a–c) Untargeted
LC–HRMS analysis of differential abundance in metabolites involved in
fatty acid catabolism in Pgc1α-expressing PC3 cells (a, n=4, independent
experiments), xenografts (b, −Dox n=8 tumours; +Dox n=4 tumours) and
GEMMs (c, Pten KO n=3 mice; DKO n=5 mice). (d) Evaluation of the
dehydrogenation of tritiated palmitate (readout of fatty acid β-oxidation) in
Pgc1α-expressing PC3 cells (n= 6, independent experiments). (e) Effect
of Pgc1α expression on the abundance of tricarboxylic acid cycle (TCA)
intermediates measured by LC–HRMS in PC3 cells (n= 4, independent
experiments). (f) Effect of Pgc1α expression on TCA intermediates (mass
isotopomer abundance) after stable 13C–U6-glucose labelling in PC3 cells
(n=3, independent experiments). (g) Oxygen consumption rate (OCR) in
PC3 Pgc1α-expressing cells (n= 7, independent experiments). (h) Basal

mitochondrial ATP production in PC3 cells following Pgc1α expression
(n=20 for −Dox and n=10 for +Dox conditions, independent experiments).
(i) LC–HRMS quantification of ATP abundance in xenografts (left panel,
−Dox n=8 tumours; +Dox n=4 tumours) and GEMMs (right panel, Pten-KO
n=3 mice; DKO n=5 mice). (j) Effect of Pgc1α expression on palmitate
paired mass isotopomer abundance after stable 13C–U6-glucose labelling in
PC3 cells (n=3, independent experiments). (k) Schematic representation
of the main findings of the study. Pyr, pyruvate; AcCoA, acetyl CoA; OAA,
oxaloacetate; Mal, malate; Fum, fumarate; Succ, succinate; Cit, citrate;
ETC, electron transport chain; FA, fatty acids. a.u., arbitrary unit. Error
bars indicate s.e.m. (a,d–h,j) or interquartile range (b,c,i). Statistical tests:
two-tailed Student’s t-test (a,d–h,j); one-tail Mann–Whitney U-test (b,c,i).
∗P<0.05,∗∗P<0.01, ∗∗∗P<0.001.

Supplementary Tables 2–5) and tricarboxylic acid cycle (TCA, Fig. 5e
and Supplementary Fig. 5D) were increased in response to Pgc1α
expression. To quantitatively define the use of glucose in the TCA
cycle, we carried out stable 13C–U6-glucose isotope labelling. This
experimental approach provided definitive evidence of the increased
oxidation of glucose in the mitochondria in Pgc1α-expressing cells

(Fig. 5f). This metabolic wiring was consistent with elevated oxygen
consumption (basal and ATP-producing) and ATP levels following
Pgc1α expression (Fig. 5g–i and Supplementary Fig. 5E–I and
Supplementary Tables 2–5).

We next reasoned that over-activation of mitochondrial oxidative
processes would lead to decreased anabolic routes. On the one hand,
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we monitored the incorporation of carbons from 13C–U6-glucose
into fatty acids (through the export of citrate from TCA to the
cytoplasm45 and conversion to acetyl CoA that is used for de novo
lipid synthesis). Interestingly, we found a significant decrease in 13C
incorporation into palmitate (reflected as 13C carbon pairs) when
Pgc1α was expressed (Fig. 5j and Supplementary Fig. 5J). On the
other hand, we monitored lactate production as a readout of aerobic
glycolysis or ‘the Warburg effect’2, which has been associated with
the anabolic switch. As predicted, Pgc1α-expressing cells exhibited
reduced extracellular lactate levels (Supplementary Fig. 5K). Of note,
lactate production and respiration were unaltered by doxycycline
challenge in non-transduced PC3 cells (Supplementary Fig. 5L,M).
Taken together, our data provide a metabolic basis for the tumour
suppressive potential of PGC1α in PCa, according to which this
metabolic co-regulator controls the balance between catabolic and
anabolic processes (Fig. 5k).

An ERRα-dependent transcriptional program mediates the
prostate tumour suppressive activity of PGC1α
We next aimed to identify the transcription factor that mediated the
activity of PGC1α, and hence we performed a promoter enrichment
analysis. The results revealed a predominant abundance in genes
regulated by ERRα (Fig. 6a). We corroborated these results with
Gene Set Enrichment Analysis (GSEA; normalized enrichment
score= 2.02; nominal P value= 0.0109)46. This transcription factor
controls a wide array of metabolic functions, from oxidative processes
to mitochondrial biogenesis44. We have shown that PGC1α is
indeed capable of regulating functions attributed to ERRα, such as
mitochondrial oxidative metabolism (Figs 4 and 5 and Supplementary
Figs 4 and 5). In addition, we observed that Pgc1a expression led
to increased mitochondrial volume (Supplementary Fig. 6A). To
ascertain the extent towhich the growth inhibitory and anti-metastatic
activity of PGC1α required its ability to interact with ERRα, we took
advantage of a mutant variant of the co-activator (PGC1αL2L3M) that
is unable to interact with this and other nuclear receptors46,47. The
expression of PGC1αL2L3M in PC3 cells (Supplementary Fig. 6B) failed
to upregulate target genes, to reprogram oxidative metabolism, to
inhibit cell growth, and, importantly, to suppress bone metastasis
in intra-tibial xenografts (Fig. 6b–f and Supplementary Fig. 6C).
To further discriminate between PGC1α functions that depend
on ERRα or other nuclear receptors, we undertook a targeted
silencing approach, and we transduced Pgc1α-inducible PC3 cells
with an ERRα-targeting or a scramble short hairpin RNA (shRNA;
Supplementary Fig. 6D). In coherence with the L2L3M mutant
data, ERRα silencing partially blunted the effects of Pgc1α on gene
expression and cell growth (Fig. 6g and Supplementary Fig. 6H). In
vivo, silencing of ERRα in the presence of the ectopically expressed
transcriptional co-activator resulted in a significant increase in bone
metastasis incidence from 40% (in Pgc1α-expressing cells transduced
with scramble shRNA) to full penetrance (Fig. 6h). Of note, the
requirement of ERRα for the effect of PGC1αwas recapitulated in vitro
with a reverse agonist of the transcription factor, namely XCT79048

(Supplementary Fig. 6F–I).
It is worth noting that other metabolic pathways have been

suggested to sustain the metastatic phenotype. Oxidative stress
has been shown to limit metastatic potential in breast cancer

and melanoma29,49. PGC1α regulates the expression of antioxidant
genes, and the enhancement of mitochondrial metabolism can lead
to the production of reactive oxygen species28,29,49 (ROS; Fig. 4b
and Supplementary Table 1). We therefore tested whether ROS
production was modified in our experimental settings and if it could
contribute to the phenotype observed.Mitochondrial and cellular ROS
production were not consistently altered by Pgc1α expression in vitro
(Supplementary Fig. 6J). In addition, lipid peroxidation (which serves
as a readout of ROS production) was unaffected in our xenograft study
(Supplementary Fig. 6K). These results are coherent with the inability
of antioxidants to rescue the proliferative defect elicited by Pgc1α
(Supplementary Fig. 6L).

Our data provide a molecular mechanism by which ERRα
activation downstream of PGC1α promotes a metabolic rewiring that
suppresses PCa proliferation and metastasis.

A PGC1α–ERRα transcriptional signature harbours prognostic
potential
We have shown that reduced PGC1A expression in PCa exhibits
prognostic potential (Fig. 1c). As our data demonstrate that
transcriptional regulation downstream of ERRα is key for the
tumour suppressive activity of this co-activator, we reasoned that the
association of PGC1α with aggressiveness and disease-free survival
should be recapitulated whenmonitoring ERRα target genes (Fig. 7a).
We started the analysis from the list of genes positively regulated
by PGC1α in our cellular system (153 genes, Fig. 7b). As predicted,
the analysis in two independent patient data sets confirmed that the
average signal of the PGC1α gene list was positively correlated with
time to PCa recurrence (Fig. 7c). In addition, we observed a decrease in
the expression of the aforementioned gene list associated with disease
initiation and progression (Supplementary Fig. 7A). Importantly,
comparable results were obtained when we performed the analysis
with the subset of ERRα-target genes within the PGC1α gene set
(73 genes, Supplementary Table 6 and Fig. 7b,d and Supplementary
Fig. 7B). We next sought to curate the gene list to consolidate a
prognostic PGC1α-ERRα gene set.We therefore focused on genes that
exhibited a strong correlation with PGC1A in patient data sets. We
selected genes that were significantly correlated with the co-activator
(R> 0.2; p< 0.05) in at least three out of five studies. The results
unveiled a PGC1α transcriptional signature in patients consisting
of 17 genes, most of which exhibited decreased expression in PCa
versus BPH, and were further downregulated in metastatic disease
(Supplementary Table 7 and Supplementary Fig. 7C,D). Nearly 60%
of these genes were regulated by ERRα (10 genes out of 17) and
were selected for further analysis as a PGC1α–ERRα curated gene
set (Supplementary Table 7). The results revealed reduced PGC1α–
ERRα curated gene set expression as the disease progressed (Fig. 7e).
We next analysed the association of the PGCα–ERRα curated gene
set with disease recurrence. To this end, we compared patients
harbouring primary tumours with ERRα curated gene set average
signal values in the first quartile (Q1, termed signature-positive)
versus the rest (Q2–Q4). Patients with signature-positive tumours
exhibited reduced disease-free survival in two independent data sets
(Fig. 7f). A hazard ratio of 4.2 (Taylor) and 17.8 (TCGA) was
defined for signature-positive patients, whereas signature-negative
individuals presented reduced risk of recurrence, with a hazard ratio
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Figure 6 An ERRα-dependent transcriptional program mediates the tumour
suppressive activity of PGC1α. (a) Promoter enrichment analysis of the
PGC1α transcriptional program. The red dotted line indicates P = 0.05.
(b–d) Effect of Pgc1αWT (WT) or Pgc1αL2L3M (L2L3M) induction on the
expression of the indicated genes (b, quantitative rtPCR; n=8 for IDH3A;
n= 4 for ATP1B1; n= 3 for ACAT1, ISCU, GOT1 and ACADM genes,
independent experiments; data are normalized to each −Dox condition,
represented by a black dotted line), relative cell number by crystal violet
(c, n=7, independent experiments) and oxygen consumption rate (d, OCR,
n=5, independent experiments). (e,f) Evaluation of the metastatic capacity
of PC3 Pgc1αWT (WT)-expressing (upper panels) or PC3 Pgc1αL2L3M (L2L3M)-
expressing (lower panels) cells using intra-tibial xenotransplant assays
(e, photon flux quantification; WT, n= 6 mice; L2L3M, n= 7 mice, two
hind limbs per mouse; f, incidence of metastatic lesions presented as
histograms). Representative luciferase images are presented referring to the
quantification plots. For photon flux analysis, average signal from two limbs
per mouse is presented. For incidence analysis, mice with at least one
limb yielding luciferase signal >50,000 units were considered metastasis-
positive. Images (i) and (ii) depict tibia photon flux images from specimens

that are proximal to the median signal in −Dox and +Dox, respectively.
(g) Relative cell number quantification following ERRα silencing in Pgc1α-
expressing PC3 cells. Data are represented as cell number at day 4 relative
to −Dox cells (n=3, independent experiments). (h) Evaluation of metastatic
capacity of Pgc1α-expressing PC3 cells transduced with SC shRNA or ERRα
shRNA using intra-tibial implantation for 14 days (n=8 mice; two injections
per mouse; incidence of metastatic lesions presented as histograms). For
photon flux analysis (left panel), average signal from two limbs per mouse
is presented. For incidence analysis (right panel), mice with at least one
limb yielding luciferase signal >50,000 units were considered metastasis-
positive. +Dox, Pgc1α-induced conditions; −Dox, Pgc1α-non-expressing
conditions. NS, not significant; SC, Scramble; OCR, oxygen consumption
rate. Error bars represent s.e.m. (b–d,g) or minimum and maximum values
(e,h). Statistical tests: one-tailed Student’s t-test (b–d,g); one-tailed Mann–
Whitney U-test (e,h (left panel)); Fisher’s exact test (f,h (right panel)).
∗ or $P<0.05, ∗∗ or $$P<0.01, ∗∗∗P<0.001. Asterisks indicate statistical
difference between −Dox and +Dox conditions and dollar symbols between
Pgc1αWT and Pgc1αL2L3M or SC shRNA and ERRα shRNA. Statistics source
data for Fig. 6e,h are provided in Supplementary Table 9.
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Figure 7 The PGC1α transcriptional program is associated with prostate
cancer recurrence. (a) Schematic summary of the ERRα-dependent regulation
of the PGC1α transcriptional metabolic program and its association with PCa
progression. Dashed PGC1α outline represents a decrease in abundance.
(b) Venn diagram showing the distribution of PGC1α target genes, ERRα
target genes (from Supplementary Table 6) and genes correlated with
PGC1A expression in PCa patient specimens (from Supplementary Table 7).
(c,d) Correlation between time to recurrence and the average signal of the
genes within the PGC1α-upregulated gene set (c) or the PGC1α-dependent
ERRα-upregulated gene set (d) in the indicated data sets (Taylor22 n=27;
TCGA provisional data set19,20 n=8). Each dot corresponds to an individual
patient specimen. (e) Representation of the average signal of the genes within

the PGC1α–ERRα curated gene set (Supplementary Table 7) in normal tissue
(N; Taylor n=29 and Grasso21 n=12), primary tumour (PT; Taylor n=131
and Grasso n=49) and metastasis specimens (Met; Taylor n=19 and Grasso
n=27), in two independent data sets. Each dot corresponds to an individual
patient specimen. (f) Association of the PGC1α–ERRα signature with disease-
free survival in the indicated patient data sets (Taylor n= 131; TCGA
provisional data set n=240). Q1 indicates patients with signature signal
within the first quartile of primary tumours (Q1) in the corresponding data
set. HR, hazard ratio. Error bars indicate interquartile range. Statistical tests:
Pearson’s coefficient (R) (c,d), ANOVA (e), Student’s t-test (e) and Kaplan–
Meier estimator (f). ∗∗P < 0.01; #P > 0.05. Asterisk indicates statistical
difference versus N; hash indicates statistical difference versus PT.

of 0.23 (Taylor) and 0.05 (TCGA). Furthermore, the frequency of
patients with signature-positive signal values was absent or low in the
normal prostate group and further increased in metastasis compared
with primary tumours (Supplementary Fig. 7E). Taken together,
ERRα-regulated metabolic transcriptional program is associated
with the activity of PGC1α in PCa. This interplay is conserved
in patient specimens and defines a gene signature that harbours
prognostic potential.

DISCUSSION
In this study we provide a comprehensive analysis of master
transcriptional co-regulators of metabolism in PCa. Through the use
of human data mining analysis, GEMMs and cellular systems, our

study presents evidence demonstrating that PGC1α exerts a tumour
suppressive activity opposing PCa metastasis. Interestingly, three out
of ten significantly altered co-regulators (PGC1A, PGC1B and NRIP1,
Fig. 1a) in the Taylor22 PCa data set (two out of three consistently
altered throughout databases, Fig. 1b) converge in the regulation of
a common transcriptional metabolic program, led by ERRα (ref. 44),
and that is associated with the phenotype observed in this study. These
data strongly suggest that such pathway is of critical importance for
the control of aggressiveness properties in PCa. Indeed, our results
demonstrate that a gene set composed of ERRα target genes that are
under the control of PGC1α expression is progressively downregulated
in PCa and metastatic disease, and presents prognostic potential for
the identification of patients at risk of early recurrence.
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The study of the tumour suppressive potential of Pgc1α in
mouse models allowed us to characterize a clinically relevant PCa
GEMM presenting enhanced metastatic dissemination. PGC1α is
added to the shortlist of genetic events that drive metastasis in this
model13–16, and the first to be explicitly linked to the regulation of
the metabolic switch. Overall, our finding is of importance for the
future study of the requirements for PCa metastasis and therefore for
therapeutic purposes.

The sole alteration of PGC1α expression in PCa has a profound
impact on the oncogenicmetabolic switch50. These data are in linewith
the reported activities of this protein inmetabolism andmitochondrial
biogenesis26. Of note, despite the widely accepted fact that the reported
metabolic switch50 has comparable consequences in all cancer
scenarios, the study of PGC1α in other tumour types has also revealed
a selective pressure towards oxidative processes27–29. Previous work
from others and us defined PGC1α signalling as a selective advantage
for breast cancer and melanoma cells4,27–29,51. The contribution of this
co-activator to cellular proliferation differs between tumour types and
experimental systems, promoting growth inmelanoma28 but irrelevant
to breast cancer cells29. Interestingly, in breast circulating tumour
cells, PGC1α expression supportsmetastatic capacity29. Themolecular
pathways regulating these diverse biological features converge in the
activation of ERRα and peroxisome proliferator-activated receptors
(PPAR). Whereas PPAR activation mediates the increase in fatty acid
β-oxidation4, ERRα is responsible for the overall increase in oxidative
metabolism and mitochondrial biogenesis44. Similarly, the activation
of an antioxidant transcriptional program has been suggested to
contribute to anoikis and cancer cell dissemination in a PGC1α-
dependent and independent manner27,28,49,52. In PCa, however, we
demonstrate that the oxidative metabolic program elicited by PGC1α
prevents tumour growth and metastatic dissemination, in the absence
of overt changes in ROS production, inflammatory response or
angiogenic signals. These findings support the notion that the optimal
metabolic wiring for tumour growth and metastasis might differ
depending on the tumour type, the mutational landscape of the
tumour and, potentially, the microenvironment. This would lead to
opposite activities of PGC1α depending on the cancer setting, from
metastatic promoter29 to metastasis suppressor (as we demonstrate in
the present work).

In summary, our study identifies PGC1α as a master regulator of
PCametabolism that opposes the dissemination of the disease. There-
fore, a PGC1α-regulated ERRα-dependent transcriptional program
might open new avenues in the identification of metabolic transcrip-
tional signatures that can be exploited for patient stratification and the
use of metabolism-modulatory therapies. �

METHODS
Methods and any associated references are available in the online
version of the paper.

Note: Supplementary Information is available in the online version of the paper
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METHODS
Reagents. 3-[4-(2,4-Bis-trifluoromethylbenzyloxy)-3-methoxyphenyl]-2-cyano-N -
(5-trifluoromethyl-1,3,4-thiadiazol-2-yl)acrylamide (XCT 790), etomoxir (ETO),
doxycycline hyclate (Dox), oligomycin, N -acetyl-cysteine (NAC) and manganese
(III) tetrakis (4-benzoic acid)porphyrin chloride (MnTBAP) were purchased
from Sigma.

Cell culture. Human prostate carcinoma cell lines LnCaP, DU145 and PC3
were purchased from Leibniz-Institut DSMZ - Deutsche Sammlung von
Mikroorganismen und Zellkulturen GmbH, who provided an authentication
certificate. None of the cell lines used in this study were found in the database of
commonly misidentified cell lines maintained by ICLAC and NCBI Biosample.
Cells were transduced with a modified TRIPZ (Dharmacon) doxycycline-inducible
lentiviral construct in which the RFP and miR30 region was replaced by HA–
Flag–Pgc1a (ref. 51) or HA–Flag–Pgc1aL2L3M (ref. 47). Lentiviral shRNA constructs
targeting PGC1A (TRCN0000001166) and ESRRA (TRCN0000022180) were
purchased from Sigma and a scramble shRNA (hairpin sequence: 5′-CCGGCA
ACAAGATGAAGAGCACCAACTCGAGTTGGTGCTCTTCATCTTGTTG-
3′) was used as the control. For ESRRA shRNAs, the puromycin resistance cassette
was replaced by the hygromycin cassette from pLKO.1 Hygro (Addgene Ref. 24150)
using BamHI and KpnI sites. Melanoma lines were provided by M. D. Boyano53

and A. Buqué and purchased from ATCC. Cell lines were routinely monitored for
mycoplasma contamination and quarantined while treated if positive.

Animals. All mouse experiments were carried out following the ethical guidelines
established by the Biosafety and Welfare Committee at CIC bioGUNE and The
Institutional Animal Care and Use Committee of IRB Barcelona. The procedures
employed were carried out following the recommendations from AAALAC.
Xenograft experiments were performed as previously described54, injecting 106
cells per condition in two flanks per mouse. PC3 TRIPZ–HA–Pgc1a cells were
injected in each flank of nude mice and 24 h post-injections mice were fed with
chow or doxycycline diet (Research diets, D12100402). GEMM experiments were
carried out as reported in a mixed background11,14,55,56 (where the founder colony
was cross-bred for at least three generations before the expansion of experimental
cohorts to ensure a homogenous mixed background). The PtenloxP and Pgc1aloxP
conditional knockout alleles have been described elsewhere11,34. Prostate epithelium-
specific deletion was effected by the Pb–Cre411. Mice were fasted for 6 h before
tissue collection (9:00–15:00) to prevent metabolic alterations due to immediate
food intake.

For intra-tibial and intra-cardiac injections BALB/c nude male mice (Harlan)
of 9–11 weeks of age were used. Before the injections, PC3 Tripz–HA–Pgc1a (WT,
L2L3M, SC shRNA, ERRα shRNA) cell lines were pre-treated for 48 h with PBS or
doxycycline (0.5 µgml−1). Mice injected with cells treated with doxycycline were
also pre-treated for 48 h with 1mgml−1 of doxycycline in drinking water. After
the injections this group of mice was left on continuous doxycycline treatment
(1mgml−1 in drinking water). Before the injections mice were anaesthetized
with a mixture of ketamine (80mg kg−1) and xylazine (8mg kg−1). For intra-tibial
injections, 1×104 cells were resuspended in a final volume of 5 µl of cold PBS and
injected as described previously57. For intra-cardiac injections 2× 105 cells were
resuspended in a final volume of 100 µl of cold PBS and injected as described
previously57. After the injections, tumour development was followed on a weekly
basis by BLI using the IVIS-200 imaging system from Xenogen. Quantification
of bioluminescent images was done with Living Image 2.60.1 software. The
development of metastasis was confirmed by examining in vivo or ex vivo (following
necropsy) bioluminescent images of organs of interest (metastasis positivity in
lesion incidence analysis was defined as tibias with luciferase signals greater than
50,000 units). When comparing cell lines independently transduced with the
luciferase-expressing vector (Fig. 6h), photon flux values per limb were presented as
normalized signal (corrected by basal signal, obtained within 24 h after injection):
Normalized photon flux = (day 14 signal/day 0 signal) × 1,000. For metastasis-
free survival curves, a metastatic event was scored when the measured value of
bioluminescence bypassed 1/10 of the day 0 value.

Patient samples. All samples were obtained from the Basque Biobank for research
(BIOEF, Basurto University hospital) on informed consent and with evaluation and
approval from the corresponding ethics committee (CEIC code OHEUN11-12 and
OHEUN14-14).

Cellular, molecular and metabolic assays. Cell number quantification with crystal
violet58 was performed as referenced. Soft agar assays were performed as previously
described (INSERT REF 60) seeding 5,000 cells per well in 6-well plates.

Western blot was performed as previously described51. Antibodies used: PGC1α
(H300; Santa Cruz Biotechnology sc-13067; dilution 1:1,000); ERRα (E1G1J; Cell
Signaling no. 13826; dilution 1:1,000); β-actin (clone AC-74; Sigma no. A 5316;

dilution 1:2,000); GAPDH (clone 14C10; Cell Signaling no. 2218; dilution 1:1,000);
HSP90 (Cell Signaling; no. 4874; dilution 1:1,000).

RNA was extracted using the NucleoSpin RNA isolation kit from
Macherey-Nagel (ref: 740955.240C). For patients and animal tissues a Trizol-
based implementation of the NucleoSpin RNA isolation kit protocol was used as
reported previously59. For all cases, 1 µg of total RNA was used for cDNA synthesis
using qScript cDNA Supermix from Quanta (ref. 95048). Quantitative real-time
PCR (rtPCR) was performed as previously described51. Universal Probe Library
(Roche) primers and probes employed are detailed in Supplementary Table 8.
β-ACTIN (Hs99999903_m1; Mm0607939_s1) and GAPDH (Hs02758991_g1,
Mm99999915_g1) housekeeping assays from Applied Biosystems showed
similar results (all quantitative rtPCR data presented were normalized using
GAPDH/Gapdh).

Fatty acid oxidationwas performed as previously described51. Lactate production
was measured as referenced60 using the Trinity Biotech lactate measurement kit.

Oxygen consumption rate (OCR) was measured with an XF24 extracellular flux
analyser (Seahorse Bioscience)61. Briefly, 50,000 cells per well were seeded in anXF24
plate, and OCR measurements were normalized to cell number analysed by crystal
violet. Cells were initially plated in 10% FBS DMEM media for 24 h, and 1 h before
measurements, the medium was changed to serum- and bicarbonate-free DMEM,
with glutamine and glucose (10mM).Mitochondrial stress test was carried out using
the following concentration of injected compound: oligomycin (1 µM).

For mitochondrial ATP assays, 50,000 PC3 and DU145 cells were plated onto
13-mmcoverslips and transfectedwith amitochondrial-targeted luciferase chimaera
(mtLuc). Cells were perfused in the luminometer at 37 ◦C with KRB solution
containing 25 µMluciferin and 1mMCaCl2 and supplementedwith 5.5mMglucose.
Under these conditions, the light output of a coverslip of transfected cells was in
the range of 5,000–20,000 c.p.s. for the luciferase construct versus a background
lower than 100 c.p.s. Luminescence was entirely dependent on the presence of
luciferin and was proportional to the perfused luciferin concentration between
20 and 200 µM.

Mitochondrial morphology was assessed by using a cDNA encoding
mitochondrial matrix-targeted DsRed (mtDsRed). Cells were seeded onto 24-mm-
diameter coverslips (thickness between 0.16–0.19mm) (Thermo Scientific) and
24 h later cells were transfected with 2 µg mtDSred (Lipofectamine LTX reagent;
Invitrogen). mtDsRed expression was assessed 36 h later. All of the acquisitions
were performed with a confocal Nikon Eclipse Ti system and fluorescent images
were captured by using NisElements 3.2.

Lipid peroxidation based on MDA detection was assayed in xenograft samples
following the manufacturer’s instructions (MAK085 Sigma-Aldrich).

ROS production was determined by Mitosox and DCF staining as
previously described62.

Histopathological analysis. After euthanasia, histological evaluation of a
haematoxylin and eosin (H&E)-stained section from formalin-fixed paraffin-
embedded tissues of the following organs was performed: prostate gland, lymph
nodes, long bones from lower limbs and other solid organs such as lungs and liver.

Following the consensus reported previously63, prostate gland alterations were
classified into four categories: gland within normal limits; high-grade prostatic
intraepithelial neoplasia (HGPIN); HGPIN with focal micro-invasion; and invasive
carcinoma. Lymphovascular invasion was assessed in all cases wheremicro-invasion
foci or invasive carcinoma were observed.

Lymph node metastasis and the presence of groups of PCa cells in bone marrow
were determined after haematoxylin–eosin (H&E) staining (lymph nodes) and
immunohistochemical identification of cytokeratin (CK) and androgen receptor
(AR)-expressing cells using a panCK rabbit polyclonal antibody (Dako) and AR
rabbit polyclonal antibody (Santa Cruz Biotechnology, sc-816) (lymph nodes and
bone marrow). In the case of bone marrow, cases were classified as ‘dissemination
negative’ when none or few scattered (fewer than five) CK-expressing cells were
identified and ‘dissemination positive’ when more than five or small groups of these
cells were observed.

To assess the inflammatory component in the prostate tissues we performed a
semiquantitative analysis in the glandular and the stromal areas separately for each
of the specimens. We first determined the type of inflammatory cell present in each
tissue compartment: polymorphonuclear neutrophils versus lympho-plasmacytic
infiltrates. Then we performed a quantification of these cells using the following
score system: 0—no inflammatory cells, 1—few cells, 2—moderate amount of cells
and 3—high amount of cells. Scores in between were also determined as 0.5, 1.5 and
2.5. If both types of cell were present in one compartment, we chose the highest as
the final score.

Proliferation was assessed in paraffin-embedded xenografts samples by
using Ki67 antibody (MA5-14520, Thermo Scientific). Microvessel density
was determined and quantified in GEMMs and xenograft samples by the
immunodetection of CD31 (rabbit anti-CD31; Ref. ab28364 Abcam).
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Metabolomics. Liquid-chromatography high-resolution mass spectrometry
(LC–HRMS) metabolomics and stable isotope 13C–U6-glucose labelling was
performed as reported previously64–66. Briefly, for LC–HRMS metabolomics,
PC3 TRIPZ–HA–Flag–Pgc1a cells treated or untreated for 72 h with 0.5 µgml−1
doxycycline were plated at 500,000 cells per well in 6-well plates, and grown
maintaining the doxycycline regime for 42 h before collection. For stable isotope
13C–U6-glucose labelling experiments, 24 h after seeding cells were washed and
exposed to media with serum, without glucose and pyruvate and supplemented
2mM 13C–U6-glucose. After a further 16 h, cells were washed and another
13C–U6-glucose pulse was performed for 2 h before collection.

Transcriptomic analysis. For transcriptomic analysis in PC3 TRIPZ–HA–Flag–
Pgc1α cells, the Illumina whole-genome -HumanHT-12_V4.0 (DirHyb, nt) method
was used as reported previously67.

Promoter enrichment analysis was assessed with the Transcription Factors
(TFs) data set from MSigDB (The Molecular Signature Database; http://www.
broadinstitute.org/gsea/msigdb/collections.jsp). TheTFs data set contains genes that
share a transcription factor-binding site defined in the TRANSFAC (version 7.4,
http://www.gene-regulation.com) database. Each of these gene sets was annotated
by a TRANSFAC record. A hypergeometric test was used to detect enriched data
set categories.

The GSEA was performed using the GenePattern web tool from the Broad
Institute (http://genepattern.broadinstitute.org). The list of PGC1α-upregulated
genes ranked by their fold change was uploaded and analysed against a list of ERRα
target genes46. The number of permutations carried out was 1,000 and the threshold
was 0.05.

Bioinformatic analysis. For database normalization, all of the data sets used for the
data mining analysis were downloaded from GEO, and subjected to background
correction, log2 transformation and quartile normalization. In the case of using a
pre-processed data set, this normalization was reviewed and corrected if required.

Frequency of alteration of metabolic co-regulators (Fig. 1 and Supplementary
Fig. 1A): expression levels of the selected co-regulators were obtained from the
data set reported by Taylor et al.22. A matrix containing signal values and clinical
information was prepared to ascertain the up- or downregulation.We computed the
relative expression of an individual gene and tumour to the expression distribution
in a reference population (patients without prostate tumour or metastasis). The
returned value indicates the number of standard deviations away from the mean
of expression in the reference population (Z-score). Using a fold change of +2 and
−2 as a threshold, we determined the number of samples from the cancer data set
that were up- or downregulated. P values were calculated by comparing the means
of normal of cancerous biopsies.

For quartile analysis in disease-free survival, patients’ biopsies from primary
tumours were organized into four quartiles according to the expression of the gene
of interest in two data sets. The recurrence of the disease was selected as the event
of interest. The Kaplan–Meier estimator was used to perform the test as it takes into
account right-censoring, which occurs if a patient withdraws from a study. On the
plot, small vertical tick marks indicate losses, where a patient’s survival time has
been right-censored. With this estimator we obtained a survival curve, a graphical
representation of the occurrence of the event in the different groups, and a P value
that estimates the statistical power of the differences observed.

For PGC1A genomic analysis, data from prostate cancer patients with copy
number alteration information in Taylor22, Grasso21 and Robinson25 et al. data sets
were extracted from cbioportal.org. Percentage of shallow deletions of primary
tumours and metastatic patients was calculated separately.

For correlation analysis, the Pearson correlation test was applied to analyse
the relationship between paired genes. From this analysis, Pearson’s coefficient (R)
indicates the existing linear correlation (dependence) between two variables X and
Y , giving a value between +1 and −1 (both included), where 1 is total positive
correlation, 0 is no correlation, and −1 is total negative correlation. The P value
indicates the significance of this R coefficient.

Statistics and reproducibility. No statistical method was used to predetermine
sample size. The experiments were not randomized. The investigators were
not blinded to allocation during experiments and outcome assessment. Unless
otherwise stated, data analysed by parametric tests are represented by the mean
± s.e.m. of pooled experiments and median ± interquartile range for experiments

analysed by non-parametric tests. n values represent the number of independent
experiments performed, the number of individual mice or patient specimens.
For each independent in vitro experiment, at least three technical replicates were
used (exceptions: in western blot analysis technical replicates are presented, in
untargetedmetabolomics two technical replicates were used and for 13C–U6-glucose
isotope labelling one technical replicate was used) and a minimum number of
three experiments were performed to ensure adequate statistical power. For data
mining analysis, ANOVA test was used for multi-component comparisons and
Student’s t-test for two component comparisons. In the in vitro experiments, normal
distribution was confirmed or assumed (for n<5) and Student’s t-test was applied
for two-component comparisons. For in vivo experiments, aswell as for experimental
analysis of human biopsies (from Basurto University Hospital) a non-parametric
Mann–Whitney exact test was used, without using approximate algorithms to avoid
different outcomes of statistics packages68. To this end, we applied the formulae
described69 for small-sized groups and Graphpad Prism for large-sized groups. In
the statistical analyses involving fold changes, unequal variances were assumed.
For contingency analysis, Fisher’s exact test was used for two-group comparison
(metastasis incidence) and Chi Square when analysing more than two groups
(analysis of PGC1α–ERRα signature frequency in PCa human specimens). The
confidence level used for all the statistical analyses was of 95% (alpha value= 0.05).
Two-tailed statistical analysis was applied for experimental design without predicted
result, and one-tail for validation or hypothesis-driven experiments.

Accession numbers and data sets. Primary accessions: the transcriptomic data
generated in this publication have been deposited in NCBI’s Gene Expression
Omnibus and are accessible through GEO Series accession number GSE75193.

Referenced accessions: Grasso et al.21, GEO: GSE35988; Lapointe et al.18,
GEO: GSE3933; Taylor et al.22, GEO: GSE21032; Tomlins et al.23, GEO: GSE6099;
Varambally et al.25, GEO: GSE3325.
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Supplementary Figure 1 A, Expression of 23 metabolic co-regulators in 
Taylor1 dataset (N: normal; PCa: prostate cancer). B, Expression of 7 
metabolic co-regulators from figure 1a in four additional prostate cancer 
datasets (N: normal; PCa: prostate cancer). In Varambally2 dataset gene 
expression levels are presented in Log2. In Tomlins3, Grasso4 and Lapointe5 
datasets gene expression levels are presented in median centred Log2. C-D, 
Association of PGC1A expression with Gleason score in TCGA provisional 
data6,7 (C) and Taylor1 datasets (D). E, Analysis of PGC1A expression 

in benign prostatic hyperplasia (BPH) and PCa specimens from Basurto 
University Hospital cohort (qRTPCR, BPH n= 14 patient specimens and 
Cancer n=16 patient specimens). F, PGC1A expression in normal prostate 
(N), primary tumour (PT) and metastatic (Met) specimens in Grasso 
dataset4. Points outlined by circles indicate statistical outliers (A, C, D and 
F). Error bars represent minimum and maximum values (A, B, C, D and F) or 
median with interquartile range (E). Statistic test: two-tailed Student T test 
(A, B), two-tailed Mann Whitney U test (E) and ANOVA (C, D and F).
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Supplementary Figure 2 A, Analysis of Pten and Pgc1a gene expression 
in GEMMs of the indicated genotype (Ptenwt Pgc1awt n=3 mice; Pten pc-/- 
Pgc1apc+/+ n=7 mice; Ptenpc+/+ Pgc1apc-/- n=6 mice; Ptenpc-/- Pgc1apc-/- 
n=12 mice; data is normalized to Gapdh expression). B, Age comparison 
between experimental cohorts (n as in Figure 2d). C, Quantification 
of prostate tissue with histological vascular invasion signs in Pten KO 
(2 mice) and DKO mice (9 mice) (limited to mice with invasive signs). 
D, Histological analysis of inflammatory signs (stromal and glandular 
infiltration) in Pten KO and DKO mice (Pten KO, n=7 mice; DKO, n=12 
mice). E Quantification of Vefga mRNA expression in Pten KO and DKO 
mice (Pten KO, n=7 mice; DKO, n=6 mice; data is normalized to Gapdh 
expression). F, Quantification of microvessel density (MVD) (dot plot, 
left panels) and representative images of CD31 immunodetection (right 
panels) in Pten KO and DKO mice (Pten KO, n=3 mice; DKO, n=5 mice). G, 
Representative haematoxylin and eosin staining depicting liver metastasis 
in DKO (bar=500µm). H, Incidence of small groups of Pan-cytokeratin 
(Pan-CK) positive cells in the lymph nodes of Pten KO mice (6 mice). I-J, 
representative immunohistochemical detection (200X) of Pan-CK positive 

cells in the bone marrow (BM) of Pten KO and DKO (I) and androgen 
receptor (AR) in the bone marrow of DKO (J) (bar=100µm). Pink arrows 
indicate immunoreactive cells. K, Quantification of BM dissemination 
frequency (Pten KO, 6 mice; DKO, 8 mice). L-M, Histopathological 
characterization of the prostate tissue (L) and frequency of vascular 
invasion signs (M, only in mice with invasion signs) in Ptenpc-/-, Pgc1apc+/- 
mice (3 mice). N, Frequency of metastatic lesions in lymph nodes (LN), 
liver and lung of Ptenpc-/-, Pgc1apc+/- mice (3 mice). O, Correlation between 
PGC1A and PTEN gene expression in prostate cancer specimens (left panel) 
and the association of PTEN genomic loss to PGC1A gene expression (right 
panel), in TCGA provisional dataset. pc, prostate-specific allelic changes; 
+, Wildtype allele; -, deleted allele; wt: any given genotype resulting in the 
lack of deletion of Pgc1a and Pten alleles. Pten KO = Ptenpc-/-, Pgc1apc+/+; 
DKO = Ptenpc-/-, Pgc1apc-/-. Stdv: standard deviation of the mean. All error 
bars represent median with interquartile range. p = p-value. a.u: arbitrary 
units. Statistic tests: one-tailed Mann-Whitney U test (A, B), two-tailed 
Mann-Whitney U test (D, E and F); ANOVA (O, right panel); Pearson´s 
coefficient (O, left panel). *p < 0.05, ***p < 0.001. 
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Supplementary Figure 3 A, mRNA expression of PGC1A, ACO2 and HADHA 
by qRTPCR in PC3 cells transduced with scramble shRNA (shSC) or PGC1A-
targeting shRNA (shPGC1A) (n=3). B, PGC1A expression in normal (N, 
n=29), primary tumour (PT, n=131), metastasis (Met, n=19) specimens 
and metastatic cell lines. Data is shown as Log2 mRNA expression. C, 
Densitometry of PGC1α protein expression in MeWo (endogenous) and 
PC3 TRIPZ-HA-Pgc1α (ectopic) cell lines, relative to β-Actin (n=3, 
independent experiments). D, Effect of Pgc1α induction (+Dox) on ACO2 
mRNA expression in PC3 (n=4, independent experiments), DU145 (n=7, 
independent experiments) and LnCaP cells (n=3, independent experiments). 
E-F, Effect of Pgc1α expression on anchorage-independent growth (E, n=3, 
independent experiments) and BrdU incorporation (F, n=3, independent 
experiments) in DU145 cells. G, Effect of Pgc1α expression on cell cycle 
progression in PC3 cells (n=4, independent experiments). H, Effect of 

doxycycline treatment (0.5µg/ml) on cell growth of non-transduced PC3 
cells (n=3, independent experiments). I-J, Pgc1α protein expression and 
cell proliferation by Ki67 immunoreactivity in xenograft samples from Fig. 
3f (- Dox n=14 tumours, + Dox n=6 tumours). K, mRNA expression of ACO2 
and HADHA in xenograft samples from Fig. 3f. (- Dox n=9 tumours, + Dox 
n=6 tumours). L-M, Analysis of VEFGA mRNA expression upon Pgc1α 
induction in PC3 cells (L, n=4, independent experiments) and xenograft 
samples (M, - Dox n=9 tumours and + Dox n=6 tumours). N, Quantification 
of microvessel density (MVD) in xenograft samples (- Dox n=9 tumours 
and + Dox n=7 tumours). Right panels show representative CD31 staining 
micrographs. Error bars indicate s.e.m (A, C, D, E, F, G, H, L) and median 
with interquartile range (J, K, M, N). Statistic tests: two-tailed Student T test 
(A, B, C, D, E, F, G, H, L) and one-tailed Mann-Whitney U test (J, K, M, N). 
*p < 0.05, **p < 0.01, ***p < 0.001.
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Supplementary Figure 4 A-B, Validation of the microarray by qRTPCR in 
DU145 (n=4, independent experiments) and LnCaP (n=3, independent 
experiments) TRIPZ-HA-Pgc1a cells. Gene expression values relative 
to - Dox cells are represented (reference - Dox gene expression values are 

indicated with a dotted line) C, mRNA expression of PGC1α target genes in 
doxycycline-treated (0.5µg/ml) non-transduced PC3 cells (n=3, independent 
experiments). Error bars represent s.e.m. Statistic test: One tail Student T 
test. *p < 0.05, **p < 0.01, ***p < 0.001.
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Supplementary Figure 5 A, Analysis of differential abundance in metabolites 
involved in fatty acid catabolism by untargeted LC-HRMS in DU145 
TRIPZ-HA-Pgc1α cells (n=4, independent experiments). B-C Evaluation 
of the dehydrogenation of 3H-palmitate (readout of β-oxidation) in DU145 
cells upon Pgc1α expression (B, n=3, independent experiments) and, 
in doxycycline-treated (0.5µg/ml) non-transduced PC3 cells (C, n=3, 
independent experiments). Values relative to - Dox cells are presented. D, 
Effect of Pgc1α expression on citrate abundance measured by LC-HRMS 
metabolomics in DU145 cells (n=4, independent experiments). E-F, ATP-
producing OCR (upon complex V inhibition by oligomycin injection) in 
PC3 (E, n=3, independent experiments) and DU145 (F, n=3, independent 
experiments) cells upon Pgc1α expression. G, Basal mitochondrial ATP 
production in DU145 cells upon Pgc1α expression (n=10, independent 
experiments). H-I, LC-HRMS quantification of ADP (H) and AMP (I) 

abundance in PC3 Pgc1α (n=4, independent experiments), DU145 Pgc1α 
(n=4, independent experiments), xenografts (- Dox n=8 tumours; + Dox n=4 
tumours) and GEMMs (Pten KO n=3 mice; DKO n=5 mice). J, Quantification 
of area under the curve (AUC, relative to - Dox) of Palmitate labelling from 
13C-U6-Glucose in PC3 TRIPZ-HA-Pgc1α cells (data related to Fig. 5j, 
n=3, independent experiments). K, Determination of extracellular lactate 
in PC3 TRIPZ-HA-Pgc1α cells (n=3, independent experiments). L-M, 
Lactate production (L) and OCR (M) in doxycycline-treated (0.5µg/ml) non-
transduced PC3 cells (n=3, independent experiments). Error bars represent 
s.e.m., except xenograft and GEMM data in H-I, that represent median 
with interquartile range. Statistic tests: two tailed Student T test (A, B, C, 
D, E, F, G, H (PC3 and DU145), I (PC3 and DU145), J, K, L, M) and one 
tailed Mann Whitney U test (H (Xenografts and GEMMs), I (Xenografts and 
GEMMs)). *p < 0.05, **p < 0.01, ***p < 0.001.
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Supplementary Figure 6 A, Analysis of mitochondrial morphology 
(mitochondrial volume) in PC3 cells upon Pgc1α expression (n=5, 
independent experiments). B, Expression of PGC1αWT and PGC1αL2L3M 
in PC3 cells after treatment with 0.5 μg/ml doxycycline (Dox) (a 
representative experiment with technical replicates is presented, similar 
results were obtained in three independent experiments). C, Basal 
mitochondrial ATP production in PGC1αWT and PGC1αL2L3M PC3 cells 
(n=11, independent experiments). D, Expression of Pgc1α and ERRα 
in doxycycline-treated PC3 TRIPZ-HA-Pgc1α cells transduced with sh-
scramble (shSC) or shERRα (a representative experiment with technical 
replicates is presented, similar results were obtained in three independent 
experiments). E, mRNA expression of PGC1α target genes in doxycycline-
treated PC3 TRIPZ-HA-Pgc1α cells transduced with shSC or shERRα 
(n=4 for ACAT1 and n=5 for IDH3A, ATP1B1, ISCU, GOT1 and ACADM; 
independent experiments). F-I, mRNA expression of PGC1α target genes (F, 
n=3 for ACAT1 and n=4 for ATP1B1 and IDH3A; independent experiments), 
cell number (G, n=4, independent experiments), basal oxygen consumption 
(H, n=3, independent experiments) and basal mitochondrial ATP production 

(I, n= 7 for - Dox + XCT790; n=8 the rest; independent experiments) in 
vehicle (Veh) or XCT790-treated Pgc1α-inducible PC3 cells. J, Evaluation 
of cellular (DCF) and mitochondrial-specific (Mitosox) ROS production in 
Pgc1α-expressing PC3 (left panel; n=4, independent experiments) and 
DU145 (right panel; n=6, independent experiments) cells. K, Evaluation 
of lipid peroxidation in xenograft tissues from Fig. 3f (- Dox n=4 tumours; 
+ Dox n=5 tumours). L, Effect of the indicated antioxidant treatments 
on cell number (relative to day 0) of Pgc1α-expressing PC3 cells (n=3, 
independent experiments). DCF: 2’,7’-dichlorodihydrofluorescein. n.s.: not 
significant. Error bars represent s.e.m. (A, C, E, F, G, H, I, J, L) or median 
with interquartile range (K). Statistic tests: two tailed Student T test (A, C, 
E, F, G, H, I, J, L) or one tailed Student T test (comparison between + Dox 
conditions in C, E, F, G, H, I) and two tailed Mann-Whitney U test (K). */$ 
p < 0.05, **/$$ p < 0.01, ***/$$$ p < 0.001. Asterisks indicate statistic 
between - Dox and + Dox conditions (unless represented otherwise) and 
dollar symbol between either, vehicle (Veh) and XCT790-treated Pgc1α-
expressing cells, shSC and shERRa-transduced Pgc1α-expressing cells or 
Pgc1αWT and Pgc1αL2L3M.
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Supplementary Figure 7 A-B, Representation of the average signal of genes 
within the PGC1α-upregulated gene set (A) (Fig. 7b, blue circle) and within 
the PGC1α-dependent ERRα-upregulated gene set (B) (Fig. 7b, yellow 
circle, Table S6) in the indicated datasets1,4,6,7, in normal (N; Taylor n=29 
and Grasso n=12), primary tumours (PT; Taylor n=131 and Grasso n=49) 
and metastasis (Mets; Taylor n=19 and Grasso n=27). C, qRTPCR mRNA 
expression analysis of PGC1α target genes from C, in benign prostatic 
hyperplasia (BPH) and PCa specimens from Basurto University Hospital 
cohort (BPH n=14 patient specimens; Prostate cancer n=16 patient 
specimens). D, Expression of the indicated genes (from Supplementary Table 
7) in different disease states (N: normal, Lapointe n=9, Taylor n=29 and 

Grasso n=12; PT: primary tumour, Lapointe n= 13, Taylor n=131 and Grasso 
n=49; Met: metastasis, Lapointe n=4, Taylor n=19 and Grasso n=27) in 
three PCa datasets1,4,5. E, Representation of “PGC1α-ERRα Q1 signature” 
frequency within different tumour types (N: normal; PT: primary tumour; 
Met: metastasis) in two datasets1,4 (Taylor: N, n=29; PT, n= 131; Met, n=19; 
Grasso: N, n=12; PT, n=49; Met, n=27). Error bars represent s.e.m. (A, B), 
median with interquartile range (C) and maximum and minimum (D). Statistic 
tests: Statistic tests: ANOVA (A, B, D); two tailed Student T test (A, B), one 
tailed Mann Whitney U test (C), Chi Square (E). Asterisks in A, B indicates 
statistics between normal and metastasis and hash between primary tumours 
and metastasis. p: p-value. */# p < 0.05, **/## p < 0.01, ***p < 0.001.
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Supplementary Figure 8 Unprocessed blots. A, Western blot 
corresponding to Figure 3a. B, Western blot corresponding to Figure 
3b. C, Western blot corresponding to Supplementary Figure 3I. D, 
Western blot corresponding to Supplementary Figure 6B. E, Western blot 

corresponding to Supplementary Figure 6D. Precision Plus Protein™ 
Dual Color Standards (Ref #1610374) markers was used in A-D. Pink 
Pre-stained protein ladder, Nippon Genetics, Cat.No. MWP02, was 
used in E.
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Table titles and legends

Supplementary Table 1 Gene expression profiling in PC3 TRIPZ-HA-Pgc1α cells (Doxycycline vs. No Doxycycline, (0.5µg/ml). 

Supplementary Table 2 Untargeted LC-HRMS metabolomic profiling in PC3 TRIPZ-HA-Pgc1α cells (Doxycycline vs. No Doxycycline, (0.5µg/ml).

Supplementary Table 3 Untargeted LC-HRMS metabolomic profiling in DU145 TRIPZ-HA-Pgc1α cells (Doxycycline vs. No Doxycycline, (0.5µg/ml).

Supplementary Table 4 Untargeted LC-HRMS metabolomic profiling in xenograft-derived tissues (from PC3 TRIPZ-HA-Pgc1α cells) upon induction of Pgc1α 
expression (Doxycycline diet vs. chow). 

Supplementary Table 5 Untargeted LC-HRMS metabolomic profiling in GEMM-derived prostate tissues (Ptenpc-/-, Pgc1apc-/- vs. Ptenpc-/- , Pgc1apc+/+). 

Supplementary Table 6 Definition of ERRα signature within the PGC1α gene list. Genes included in the TGACCTY_V$ERR1_Q2 dataset or identified in the 
study by Stein et al (STEIN_ESRRA_TARGETS8) were considered as ERRα targets. 

Supplementary Table 7 List of Pgc1α-regulated genes in PC3 (Supplementary Table 1) that show significant and consistent correlation with PGC1A in human 
prostate cancer datasets (R>0.2; p<0.05) in at least three out five datasets.

Supplementary Table 8 List of primers and probes (Universal Probe Library, Roche) used in qRTPCR.

Supplementary Table 9 Statistics source data for animal experiments reported in Fig. 3k, and Fig. 6e, h. All data are organized into different sheets and 
named based on the corresponding figure/panel numbers.
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