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Abstract

Industrial processes, such as those in cogeneration plants, involve a large number of
pieces of equipment, machinery, and instruments. Consequently, there are a huge
number of variables involved in them. In addition, they imply very complex non-
linear dynamics. Data from these process variables is often captured and stored,
resulting in a large quantity of data that contains hidden information about the
process behaviour.

The aim of this thesis, is to model and optimise a complex real-life combined heat
and power plant (cogeneration) and a slurry drying process by applying computa-
tional intelligence techniques and using real data from the process. The objective
of cogeneration processes is to extract the maximum possible energy contained in
the fuel by using flue gases produced by engines, gas turbines, or other machines to
generate more electricity, or for use in other processes. This implies economic and
environmental advantages. Combined heat and power processes are a true example
of complex industrial processes. The modelling and dynamic optimisation of com-
plex industrial processes is a hard task due to many factors, including the degree of
complexity, uncertainties, high dimensionality, non-linearity and time delays.

Computational intelligence techniques have proved very successful in dealing with
cogeneration processes, for both modelling and optimisation purposes. Thanks to
this powerful ability to solve and understand numerous complex problems, in recent
decades, computational intelligence techniques have attracted growing interest from
scientific research communities. The main computational intelligence techniques
involved are: artificial neural networks, fuzzy systems, evolutionary systems and
hybrid approaches, i.e., combinations of the previously mentioned approaches.

In this thesis, artificial neural networks and neuro-fuzzy systems have been used
to obtain accurate predictive models for the di�erent systems in the cogeneration
process. A real combined heat and power plant has been modelled using a new
training algorithm for neural networks: extreme learning machine. As well as this,
a new exhaustive hybrid feature selection method has been applied to the plant
with the aim of checking the initial variable selection. The models obtained for
the plant systems have been used used to optimise the combined heat and power
plant and the slurry drying process using a multi-objective function: e�ective elec-
trical e�ciency. The optimisation process has been carried out using two di�erent

25



approaches: a single-objective optimisation based on the gradient descent method,
and a multi-objective optimisation using a genetic algorithm. The optimisation
approaches provide encouraging results with an average increase of 3.05% energy
e�ciency with the gradient descent method, and 4.16% using the non-dominated
sorting genetic algorithm II.
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Chapter 1: Introduction

According to the European Association for the Promotion of Cogeneration (CO-
GEN) [3], “cogeneration (combined heat and power) or CHP, is the simultaneous
production of electricity and heat, both of which are used”. On average, conven-
tional power plants, operate at an e�ciency of just 35%. This means that up to
65% of the potential energy is released as waste heat. More recently, CHP plants
have been designed which can increase this e�ciency up to 80% [4]. The objective
of cogeneration is to use as much of the potential energy contained within a fuel as
possible. In CHP, the flue gases produced by engines, gas turbines, or other ma-
chines are used to generate more electricity or for other process. This reduces costs,
because the total amount of fuel needed to produce both electricity and heat in a
cogeneration plant is less than the total fuel needed to produce the same amount of
electricity and heat in separate technologies (e.g., an electric utility generating plant
and an industrial boiler). These fuel savings also result in less pollution. In light
of these economic and environmental factors cogeneration plants currently play an
important role in some EU countries [3].
Optimising the behaviour of CHP processes is a hard task for many reasons, includ-
ing complexity, uncertainties, high dimensionality, non-linearity and time delays.
Mathematical models with a large number of assumptions are necessary [5, 6, 7] to
simulate these processes, they are often either practically impossible to model or
takes too much computational time and resources. Since such physical models usu-
ally use iterative methods for final solutions they take a long time to yield results,
thus they are impractical for ’real-time’ applications.
Computational intelligence (CI) techniques are a set of methodologies, inspired by
nature, that can deal with problems which are very hard to solve with standard
methods. The most commonly used CI techniques are: artificial neural networks
(ANNs), fuzzy inference systems (FISs), hybrid approaches such as neuro-fuzzy
systems (NFs), and evolutionary systems (ESs). ANNs, are highly interconnected
structures, inspired by the human brain, capable of learning from input-output
samples. They are widely used in industry because they are data driven, adaptive,
respond quickly and are highly accurate if trained with the correct data. FISs, based
on fuzzy set theory, provide a framework to represent imprecise information and to
reason using this kind of information. Neuro-fuzzy systems comprise a synergistic
combination of ANNs and FISs. ANNs enhance the performance of FISs with their
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Chapter 1 Introduction

capacity for learning from input-output samples; this learning is used to adapt FIS
parameters such as a membership function or rules. ESs are based on a heuristic
search that mimics the process of natural selection. CI methods are widely used
for modelling di�erent industrial processes, for example in water treatment [8], steel
production [9] and paper industries [10], or industrial boilers [11, 12], amongst other
uses. They are also very useful to detect and predict faults in industrial processes
[13, 14, 15] and engines [16, 17, 18, 19, 20].
With respect to cogeneration plants, neural/fuzzy techniques are used in many ap-
plications, for example, the design of adaptive load-shedding models [21, 22, 23] or
temperature controllers [24] [25]. Fuzzy systems are used in [26] to identify fail-
ures in a boiler during the cogeneration process and GAs are used to alleviate these
failures. ANNs are used to predict the baseline energy consumption in CHP plants
because they are particularly robust to uncertainties that a�ect the measured values
of input parameters [27]. Furthermore, ANNs have proven to be a useful tool when
using simple models with relatively few variables to predict the power generated in
a cogeneration plant [28, 29]. In [30] the power output was predicted based on ANN
by studying the relationships between the electricity produced in a CHP plant and
the properties of the fuel. Another study [31] predicted power by dividing the pro-
cess into two submodules, each with its own ANN model. Although NF techniques
are used to model cogeneration plant far less frequently than ANNs, some studies
have employed them to obtain a predictive model for two pieces of equipment in
a CHP plant with accurate results [32]. NF algorithms have been used by [33] to
model some parameters of a heat recovery steam generator in a cogeneration and
cooling plant. All the studies mentioned above model cogeneration systems with
accurate prediction results, although only relatively few variables are employed.
Although BP-based ANNs have been successfully applied to solve numerous prob-
lems in cogeneration processes, as much for classification [34] as for regression ap-
plications [35], they present some drawbacks that make them unsuitable for an
increasing number of cutting-edge applications. It is well known that the design
of BP based ANNs is a time-consuming task that depends on the skills of the de-
signer to obtain e�ective solutions. The designer has to select the most suitable
network parameters, optimise the parameters to avoid overfitting, and be aware of
local minima. As a consequence, applications requiring autonomy (i.e. no human
intervention) are di�cult to manage using this approach.
Extreme learning machine (ELM) is a novel learning algorithm for training single
hidden-layer feed-forward neural networks (SLFNs) [36, 37]. It randomly chooses
the input weights of the hidden-layer neurons and analytically determines the out-
put weights through simple matrix computations, therefore featuring a much faster
learning algorithm than most popular learning methods such as back-propagation
[38]. ELM is based on a simple tuning-free algorithm and parameter selection is not
required. Besides, learning with ELM does not present local minima or overfitting
problems. All these characteristics makes ELM very useful dealing with real-life ap-
plications where autonomous control systems and fast adaptation are necessary [39].
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Introduction

A proper example of this kind of applications are complex cogeneration processes
where the e�ciency of the process is to be modelled and optimised in real-time [40].

Some researchers not only deal with CHP modelling but also with the optimisation
of cogeneration processes. The process is modelled in [41] using ANNs, then the
plant is statically optimised using dynamic neural networks (one optimum value per
variable) in order to minimize the fuel mass flow. After ANN and thermodynamic
modelling, [42] developed a static multi-objective optimisation using GAs. In [43] a
mathematical model of the process is created using thermodynamic principles, then
multi-objective optimisation is performed determining static optimum values for the
decision variables using GAs. After thermodynamically modelling a CHP plant, [44]
uses GAs to produce a static multi-objective optimisation in order to obtain the op-
timal operation planning for a CHP process under di�erent scenarios while [45] uses
linear programming (i.e., a mathematical method of solving optimisation problems
by means of linear functions in which the variables involved are subject to linear
constraints). In [46] a combined cooling, heating and power system is statically
optimised using two objective functions under three di�erent scenarios using GAs.
Multi-objective statical optimisation is performed in [47, 48] using Particle swarm
optimisation (PSO). PSO is a population-based optimisation technique inspired by
the social behaviour of birds flocking or fish schooling. Dynamic systems, i.e. sys-
tems that change over time as is the case of the real cogeneration process used in
this study, can be optimised statically with a fixed solution that corresponds to
some average system state (e.g. works referred to in previous literature review),
or dynamically where the solution tries to follow the system change over time. It
is a normal expectation that dynamic optimisation has to give better results than
a static one. Dynamic optimisation is more complex, requires more computation,
more advanced methods, but is superior to static optimisation because it can al-
ways be transformed to the static case simply by neglecting change of the system in
time and selecting a single state as a representative. The main limitation of static
optimisation is that static values are not the best option due to possible changes in
working and atmospheric conditions [49]. Therefore, the best option for the optimi-
sation of a real cogeneration process is to obtain the optimum values for the decision
variables in each time-step of the dataset (i.e., a dynamic optimisation).

In [50] the dynamic single-objective minimization through a network flow model
by using linear programming was achieved. Several optimisation methods, includ-
ing GAs and PSO, are used in [51] to dynamically minimize the operating cost of
the CHP system. A dynamic single-objective optimisation through a mathemati-
cal model was proposed in [52] with the use of an exhaustive search method (i.e.,a
mathematical method that consists in the enumeration of all possible candidates
for the solution and checking whether each candidate satisfies the problem’s state-
ment). In [53] a PSO and fuzzy decision-making system was proposed to optimise a
benchmark cogeneration system. The work carried out in [54] presented a thermo-
dynamic model of the process and dynamically optimised the set points related to
the economically e�cient management of a combined heat, power and cooling plant
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Chapter 1 Introduction

using dynamic programming (a method for solving complex problems by breaking
them down into a collection of simpler sub-problems). This allows to minimize the
total daily cost based on the demand for the process. However, it did not improve
the e�ciency of the process or any of its components.
In summary, the studies cited above deal with the modelling of only one or more
components of the plant, and/or the optimisation of certain parameters of the pro-
cess. In this sense, the main contributions of the thesis are: 1) CI algorithms have
been applied to both modelling and optimization of a CHP process; 2) the modelling
process is performed for all the components of a CHP process; 3) data from a real
plant have been used; 4) the optimisation has been carried out for a multi-objective
function; and 5) it is intended for a continuous on-line operation of the plant.
The present thesis performs the dynamic optimisation of a CHP process using a
global multi-objective function, i.e., the e�ective electrical e�ciency (ÁEE), by de-
termining the optimal values for 12 decision variables for each time-step in a one-
week dataset. The dynamic optimisation procedure was based on gradient descent
methods (GDMs), which searches for optimum value for a minimization problem
with an objective function from a given point [55], and genetic algorithms (GAs),
that mimics the process of natural selection through genetic operators [56].
The CHP plant generates electricity with four internal combustion engines. The flue
gases from the engines are used to generate steam that feeds a steam turbine and
generates more electricity. The heat from the engines is also used in a slurry drying
process. The multi-objective function considers the whole cogeneration and slurry
process while taking into account three goals: to maximize the electrical energy
generated by the engines and steam turbine; to minimize the use of primary energy
i.e., the total fuel used to feed the engines; and to maximize the use of thermal
energy from the engine’s flue gases in the slurry drying process. CI techniques were
employed to model the cogeneration and the slurry treatment process.
The rest of this study is structured as follows:

• Chapter 2 presents an introduction to cogeneration systems including the basic
concepts and how they di�er from traditional power plants. A brief history of
cogeneration is developed. The di�erent cogeneration technologies and prime
movers used are described, and, finally, a description of the cogeneration plant
used in this study and its main components is also explained.

• In Chapter 3 the Computational Intelligence techniques used in this study are
presented, including their basics concepts a brief history. These techniques
are: artificial neural networks, fuzzy inference systems, neuro-fuzzy systems,
and genetic algorithms. Finally, other widely-used computational intelligence
techniques and hybrid approaches are listed.

• In Chapter 4, firstly, the data cleaning process and the selection of the inputs-
output variables are explained. Subsequently, the di�erent approaches to
model the cogeneration process and the slurry drying process are explained,
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and the results are discussed and analysed. Finally, a new exhaustive hybrid
feature selection method is applied to a system of the plant with the aim of
check the initial variable selection.

• Chapter 5 introduces the basics of mathematical optimisation, its formulation
and principles, and a classification of the di�erent optimisation techniques.
Then, the multi-objective function used in this study is explained and the two
optimisation approaches are explained: a single-objective optimisation based
on the gradient descent method, and a multi-objective optimisation using a
genetic algorithm, and its results are discussed and analyzed.

• Finally, Chapter 6 provide the conclusions for the di�erent modelling and
optimisation approaches and the results for this present study.
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Chapter 2: Combined heat and power
processes

2.1 Overview

This chapter begins by presenting an introduction to cogeneration systems including
the basic concepts and how they di�er from traditional power plants. Next, the main
benefits of cogeneration are listed. This is followed by a brief history of how cogen-
eration has been developed, as well as an analysis of the main regulatory legislation
in Europe and United States concerning cogeneration systems. The di�erent cogen-
eration technologies are explained according to the sequence of energy used (topping
and bottoming cycles). Also described are the most widely used prime movers in
cogeneration systems and their fundamentals: internal combustion engines, gas tur-
bines and steam turbines. Finally, there is a description of the cogeneration plant
used in this study and its main components: four internal combustion engines, an
exhaust steam boiler, and a steam turbine. A slurry drying process which uses heat
from the cogeneration process is also explained.

2.2 Introduction

According to the European Association for the Promotion of Cogeneration (CO-
GEN), cogeneration (combined heat and power) or CHP, is the simultaneous pro-
duction of electricity and heat, both of which are used [3]. On average, conventional
power plants, operate at an e�ciency of just 35%. This means that up to 65% of
the potential energy is released as waste heat. More recently, CHP plants have been
designed which can increase this e�ciency up to 80% [57], as shown in Figure 2.1.

33



Chapter 2 Combined heat and power processes

Figure 2.1: E�ciency of traditional power plant versus cogeneration systems.

The objective of cogeneration is to use as much of the potential energy contained
within a fuel as possible. In CHP, the flue gases produced by engines, gas tur-
bines, or other machines are used to generate more electricity, or are used in other
processes. This reduces costs, because the total amount of fuel needed to produce
both electricity and heat in a cogeneration plant is less than the total fuel needed
to produce the same amount of electricity and heat through separate technologies
(e.g., an electricity generating plant and an industrial boiler). This fuel saving also
result in less pollution. In light of these economic and environmental advantages,
cogeneration plants currently play an important role in certain EU countries [3].

2.2.1 Advantages and disadvantages of cogeneration

According to the United States Environmental Protection Agency (EPA) and taking
into account the above-mentioned facts, CHP plays an important role in meeting
energy needs, as well as in reducing the environmental impact of power generation.
Some advantages of CHP systems including [58]:

• E�ciency benefits: CHP requires less fuel to produce a given energy output. It
also avoids the transmission and distribution losses that occur when electricity
travels along power lines, and is more e�cient than separate heat and power
generators. Higher e�ciency translates into lower operating costs, reduced
emissions of all pollutants, increased reliability and power quality, and reduced
grid congestion and distribution losses.

• Reliability benefits: CHP can be designed to provide high-quality electricity
and thermal energy to a site regardless of what might occur on the power grid,
decreasing the impact of outages and improving power quality for sensitive
equipment.

• Environmental benefits: because less fuel is burned to produce each unit of
energy, CHP reduces air pollution and greenhouse gas emissions.
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• Economic benefits: CHP can save facilities considerable money on their energy
bills due to its high e�ciency, and can provide a hedge against unstable energy
costs.

There are of course some drawbacks to CHP systems:

• In order for CHP to be viable it is essential that the demand for heat and
electricity are simultaneous.

• CHP is a local installation therefore high maintenance costs must be paid.

• Building CHP plants typically requires a greater initial investment. Energy
savings eventually give returns, but more money still has to be spent upfront.

2.2.2 Brief history of cogeneration and its current stat

At the beginning of the twentieth century, steam was the main source of mechanical
power. However, as electricity became more controllable, many small “power houses”
that produced steam realised they could also produce and use electricity, and they
adapted their systems to cogenerate both steam and electricity. From 1940–1970,
the concept developed of a centralised electric utility that delivered power to the
surrounding area. Large utility companies quickly became reliable, relatively inex-
pensive sources of electricity, so the small power houses stopped cogenerating and
bought their electricity from the utilities [59].

During the late 1960s and early 1970s, interest in cogeneration began to revive, and
by the late 1970s the need to conserve energy resources became clear. In the United
States, legislation was passed to encourage the development of cogeneration facilities
[60]. This legislation was the Public Utilities Regulatory Policies Act (PURPA) in
1978, and following its coming into force, cogeneration projects multiplied in the
United States [61]. PURPA required utilities to interconnect with and purchase
electricity from “qualified facilities” like cogeneration systems, thus giving industrial
and institutional users access to the grid and the ability to sell back excess electricity.
Shortly after the enactment of PURPA, Congress also created federal tax credits
for CHP investments. Following the enactment of PURPA and CHP tax credits,
cogeneration grew dramatically, with its capacity increasing significatively in two
decades (from about 12 gigawatts in 1978 to 66 gigawatts in 2000).

The years 2006 to 2009 saw much lower levels of cogeneration deployment than
historical growth rates owing, in part, to higher natural gas prices and economic
uncertainty. One factor a�ecting the growth of CHP was the change to PURPA
regulations that resulted from the Energy Policy Act of 2005 [62]. As instructed
by the act, the federal energy regulatory commission (FERC) issued new rules that
no longer required utilities to buy electricity from larger “qualified facilities” when
those facilities have access to competitive electricity markets, and FERC issued
rules to ensure that new CHP “qualified facilities” were not principally electricity-
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generating facilities taking advantage of the incentives o�ered to CHP facilities (so-
called “PURPA machines”)[63].
In Europe, there was little government support in the 1990s because cogeneration
was not seen as new technology and therefore was not covered under “Thermie,” the
European Community’s (EC) Energy Programme. Under Thermie, 40% of the cost
of projects was covered by the EC government [64].
Cogeneration was first promoted at European Union (EU) level in the commission
green paper of 29 November, 2000, “Towards a European strategy for the security
of energy supply” [65]. The paper argued that if the EU’s share of cogeneration,
which only accounted for 11% of total electricity production in the EU in 1998, were
to be increased to 18% by 2010, the ensuing savings could amount to 3-4% of total
gross consumption in the EU 15.
In February 2004, the EU adopted the CHP 2004/8/EC Directive to promote co-
generation in the EU by addressing several problems, including a lack of awareness,
unclear provisions relating to electricity network access, inadequate support from
local and regional authorities, and disparate rules for qualifying CHP as highly ef-
ficient [66]. Most notably, this directive, repealed since the entry into force of the
Energy E�ciency Directive 2012/27/EU (EED) [67], established a common and har-
monised method for calculating the e�ciency of cogeneration plants, and required
member states to carry out an analysis of their national cogeneration potentials.
According to EU 2004/8/EC directive, support can only be granted to cogeneration
plants that save at least 10% of primary energy fuel compared to separated means
of heat and electricity production, those cogeneration plants are then labelled high
e�ciency cogeneration plants.
A few years later, the EU’s 2006 action plan on ’Energy E�ciency for 2007-2012’
proposed further measures to promote cogeneration in the future, acknowledging
that it accounted for only 13% of EU electricity consumption in 2006 [68].
The technology was once again put on the table on 13 November, 2008, when the
Commission launched its second strategic energy review [69]. As implementation
of the cogeneration directive had progressed more slowly than expected, the EU
executive asked member states to further work on removing barriers and facilitating
electricity grid access.
In 2009, EU leaders enacted in legislation the climate strategies and targets set in
2007, in the Renewable Energy Directive 2009/28/EC [70]. The package set three
key targets: a 20% cut in greenhouse gas emissions from 1990 levels, 20% of EU
energy to come from renewables, and a 20% improvement in energy e�ciency. Thes
are also the headline targets of the Europe 2020 strategy for smart, sustainable and
inclusive growth.
In 2011, the EC adopted the ‘Energy E�ciency Plan 2011’ aimed at exploring the
most e�ective measures for achieving the 20% energy e�ciency target by 2020 [71].
CHP is mentioned as one of the sectors that could deliver up to 15-20 million tons
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of oil equivalent per year of primary energy savings and a reduction of 35-50 million
tons per year of carbon dioxide (CO2) emissions, based on an additional economic
potential of around 350 terawatt-hours of electricity output from cogeneration.

To ensure that this potential is met, the EED adopted in 2012 addresses CHP in
Article 14 ‘Promotion of e�ciency in heating and cooling’ and Article 15 ‘Energy
transformation, transmission and distribution’. The EED can be viewed as a small
step forward compared to the first CHP directive, nevertheless member states are
required to take clear action to promoting CHP wherever it makes economic sense
for developers. However, each country holds the key to appropiate and progressive
implementation of the CHP-related provisions contained in the EED.

In Spain, from 2013 onwards, various legislation on CHP plants (Law 24/2013, RD
413/2014 and Order IET 1045/2014) raised taxes on all power generation by 7%,
as well as on natural gas (which is the primary fuel used by about 90% of Spain’s
CHP plants), while also reducing subsidies for renewable energy and CHP plants
[72, 73, 74]. As a consequence of this, several plants have shut down since the middle
of 2013. The electricity generated by CHP plants has decreased by around 20%
from 2012 to 2015 according to ACOGEN (Spanish Association for the Promotion
of Cogeneration).

To promote cogeneration, Spanish CHP associations propose the following essential
policy actions: the tari�s that were in force in July 2013 must be maintained, and
actions must be taken in the proposed new regime for facilitating the refurbishment
of older cogeneration plants. Both these actions are in line with the need for further
measures on cogeneration introduced in the new EDD and to achieve the Europe
2020 strategy targets.

2.3 Types of CHP systems

Cogeneration systems are normally classified according to their sequence of energy
use and operating schemes [75]. Based on this, cogeneration systems can be classified
as being either topping or bottoming cycle:

• In a topping cycle, the fuel is used first to produce power and then thermal
energy, which is the by-product of the cycle and is used to satisfy process
heat or other thermal requirements, as shown in Figure 2.2. Topping cycle
cogeneration is widely used and is the most popular cogeneration method.
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Figure 2.2: Diagram of a topping cycle.

• In a bottoming cycle, the primary fuel produces high temperature thermal en-
ergy, and the heat rejected from the process is used to generate power through
a recovery boiler and a turbine generator, as shown in Figure 2.3. Bottom-
ing cycles are suitable for manufacturing processes that require heat at high
temperature in furnaces and kilns, and reject heat at significantly high tem-
peratures. Typical areas of application include the cement, steel, ceramic, gas
and petrochemical industries. Bottoming cycle plants are much less common
than topping cycle plants.

Figure 2.3: Diagram of a bottoming cycle.

2.3.1 Prime movers in cogeneration

Prime movers are machines capable of burning a wide variety of fuels, including
natural gas, coal, oil, and alternative fuels, to produce shaft power or mechanical
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energy. Although mechanical energy from the prime mover is most often used to
drive a generator for producing electricity, it can also be used to drive rotating
equipment such as compressors, pumps, and fans. The most widely used prime
movers in cogeneration systems are internal combustion engines, gas turbines, and
steam turbines. They are explained briefly below.

Internal combustion engine

The internal combustion engine is a heat engine that converts the chemical energy
in a fuel into mechanical energy, usually made available on a rotating output shaft
[76]. The fuel’s chemical energy is first converted into thermal energy by means of
combustion or oxidation with air inside the engine. This thermal energy raises the
temperature and pressure of the gases within the engine, and the high-pressure gas
then expands against the mechanical mechanisms of the engine. Mechanical linkages
apply this expansion to a rotating crankshaft, which is the engine’s output. The
crankshaft, in turn, is connected to a transmission and/or power train to transmit
the rotating mechanical energy to the desired final use. For engines this will often
be the propulsion of a vehicle (i.e., automobile, truck, locomotive, marine vessel,
or airplane). Other applications include stationary engines to drive generators or
pumps, and portable engines for things like chain saws and lawn mowers.
Most internal combustion engines are reciprocating engines, having pistons that
reciprocate back and forth in cylinders within the engine (Figure 2.4). The main
four steps in the engine are:

• Firstly, the piston is drawn backwards into the cylinder by the crankshaft.
As the piston moves backwards, the volume of the cylinder increases, which
results in a drop in pressure within the cylinder (i.e., a vacuum is generated).
The pressure soon reaches a critical point, and causes the intake valve to be
“sucked” open. Air-fuel mixture is then “sucked” from the turbocharger into
the cylinder. As soon as the crankshaft starts to revolve the piston forwards
into the cylinder, the volume of the cylinder decreases and the intake valve is
forced closed. This is known as the intake stroke.

• Secondly, the piston continues to move forward and compress the air-fuel mix-
ture that is trapped inside the cylinder. The piston will then keep moving
forward until the crankshaft just about starts to pull back on the piston (at
top dead centre, or the top of the stroke). At this point, the fuel and air in
the cylinder becomes highly compressed. This is the compression stroke.

• Once the piston has compressed the air-fuel mixture, a battery or another
power source causes a single spark to jump the gap of the spark plug. Since
the spark plug is screwed directly into the cylinder of the engine and is in
direct contact with the air and fuel, it causes the air and fuel to explode and
throw the piston backward. This stroke is known as the ignition or power
stroke.
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• Finally, the crankshaft spins 180o and cause the piston to move forwards again.
The push rod and rocker arm then open the exhaust valve so that the remaining
fumes can be forced out by the piston. This is known as the exhaust stroke.

Figure 2.4: Four strokes for an internal combustion engine [1].

Gas turbines

The gas turbine is an internal combustion engine that uses air as the working fluid in
continuous combustion. In the case of the reciprocating internal combustion engine
explained previously, the intake, compression, ignition, and exhaust steps occur in
the same place (cylinder head) at di�erent times as the piston goes up and down. In
a gas turbine, however, these same four steps occur simultaneously but in di�erent
places, and in continuous combustion. As a result of this fundamental di�erence,
the gas turbine engines have sections called the inlet section, the compressor section,
the combustion section and the exhaust section as shown in Figure 2.5.
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Figure 2.5: Diagram of the sections in a gas turbine [1].

Gas turbines comprise a compressor, combustor (or combustion chamber), and tur-
bine. These components work together to produce power or thrust, depending on
the application. To begin the cycle, the compressor rotates and draws in ambient
air. As it is taken in by the compressor, the air is pressurised, in some cases to 40
times atmospheric pressure. The pressurised air then moves into the combustion
chamber where a fuel mixture is ignited, heating it and causing it to expand into
the turbine. As the heated air expands through the turbine it pushes against the
turbine blades which then rotate the turbine shaft. The rotational energy is used
to spin a generator and create electricity. Because they are attached to the same
shaft, the rotation of the turbine also rotates the compressor, keeping the system
operating.

Steam turbines

Steam turbines generate electricity from high pressure steam produced in a boiler.
Thermal energy is extracted from the steam, used to spin the turbine’s blades and
drive a rotating shaft and generator, as shown in Figure 2.6. Since steam is produced
in a separate boiler, the steam turbine can be powered by a variety of fuels: natural
gas, solid waste, coal, woody biomass or agricultural by-products. Steam turbines
work well for industrial facilities where the turbines can generate electricity as a by-
product of excess or waste heat, or where solid or waste fuels are readily available
to use in the boiler.
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Figure 2.6: Diagram of a steam turbine [1].

2.4 CHP plant being evaluated

The CHP plant being evaluated in this thesis is located in Monzón (Huesca), in the
northern Spain [77]. The plant generates electricity via four internal combustion
engines and a steam turbine. Heat from the engines is used to generate steam which
is then used in the turbine and a slurry drying process. The slurry drying process
utilises slurry obtained from nearby farms. The results of this process are organic
fertilizer and water suitable for irrigation. A generalised diagram of the process is
shown in Figure 2.7.
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Figure 2.7: Diagram of a combined heat and power plant with its related equip-
ment. The red circuit represents steam, the purple circuit is the superheated
water circuit, and the green and blue circuits are water circuits.

2.4.1 Engines

The CHP plant has four internal combustion engines. These engines are identical,
each having the same characteristics and a nominal power of 3700 kW. They have
two banks of eight cylinders (see Figure 2.8) and operate with natural gas. The
engines exchange heat with two circuits that take water from cooling towers, as
shown in Figure 2.7. One cooling circuit preheats the air intake to around 35 ºC.
The air intake is then mixed with the natural gas, creating, the required mixture.
Another cooling circuit maintains the temperature of the air-fuel mixture at around
50 ºC. Finally, the mixture is fed into the engines, which generate electricity and
flue gases.
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Figure 2.8: Photograph of one of the four engines at the CHP plant.

The electricity that is generated is sold. The plant owner has determined, as an
economic constraint, that the four engines must operate at at least 94 % of rated
power.
Each engine has a diverter which sends the flue gases to an exhaust steam boiler,
whenever the given engine is operating at greater than 50 % of its rated power, or
to the chimney, if operating at less than 50 % rated power. The engines usually run
at levels above this threshold and so the flue gases are generally sent to the exhaust
steam boiler.

2.4.2 Exhaust steam boiler

The flue gases from the engines are generally sent to the exhaust steam boiler at
a temperature of around 500 ºC. The product of the exhaust steam boiler are (see
Figure 2.9):

• Superheated steam at around 22.5 bar and 400 ºC to feed the steam turbine.
• Superheated water at around 120-125 ºC, which is used in the slurry drying

process.
• Exhaust gases that exit through the chimney at around 120-125 ºC.

The exhaust steam boiler has three di�erent stages. In the first stage the gases from
the engines have the highest temperature, meaning they can transfer more heat than
when the gases are close to the chimney because the gases gradually transfer heat
as they pass through the exhaust steam boiler.
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Figure 2.9: Diagram of an exhaust steam boiler and its related circuits.

In the steam generator tank steam for the steam turbine is generated. For this
purpose, the steam generator tank uses water from the deaerator. The level of
the steam generator is regulated with this water from the deaerator. The water is
preheated in the second stage of the exhaust steam boiler. The steam generator has
a heat circuit which also uses the heat from the second stage. The steam generated
in the steam generator tank goes to the first stage of the exhaust steam boiler to
superheated the steam to around 400 ºC. This is regulated with a diverter which
varies the quantity of gases sent to the first stage. Subsequently, the superheated
steam is sent to the steam turbine.
In the third stage in the exhaust steam boiler superheated water is generated. The
water reaches a temperature of around 90 ºC and leaves the exhaust steam boiler at
around 120-125 ºC. This is regulated with a diverter which either sends more gases
to the third stage, when the superheated water needs more heat, or, alternatively,
to the chimney.

2.4.3 Steam turbine

The superheated steam from the exhaust steam boiler feeds the steam turbine to
generate more electricity, with a nominal power of 1200 kW. The steam turbine
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condenser uses water from the cooling towers to force the steam from the turbine
to condense before recirculating it to the system, and after being preheated again,
in the second stage in the exhaust steam boiler, the water is recirculated to the
deaerator (Figure 2.9).
As with the engines, the power generated from the steam turbine is sold.

2.4.4 Slurry drying process

The slurry from surrounding farms comprises approximately 6% solids. It is first
subjected to a mechanical treatment using rotatory equipment to remove the solid
fraction from the liquid portion (Figure 2.10). The liquid portion is then chemically
treated to reduce the chemical load. The product of the chemical treatment is
then thermally treated to separate the condensable from non-condensable matter
in an evaporator which uses superheated water generated in the exhaust steam
boiler (water at a temperature of around 120 ºC). A tubular heater recirculates the
e�uent to the evaporator and preheats it. The tubular heater takes water from the
cooling circuit that preheats the engine’s air intake. The non-condensable portion is
combined with the solid fraction produced by the mechanical treatment, this is then
sold as fertiliser. The condensable e�uent is condensed again using water from the
cooling towers. Finally, the steriliser uses superheated water to purify the condensed
e�uent and produces water suitable for irrigation.

Figure 2.10: Diagram of the slurry drying process.

46
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algorithms

3.1 Overview

This chapter presents the computational intelligence (CI) techniques that have been
used in this study, including their basics concepts, and a brief history of each. The
CI techniques are: artificial neural networks (ANNs), fuzzy inference systems (FISs),
neuro-fuzzy systems (NFs) (which are hybrid approaches), and genetic algorithms
(GAs). ANNs try to mimic how the human brain learns, and consist of a highly
interconnected system of processing elements called neurons. ANNs are capable of
learning from input-output samples. FISs, based on fuzzy set theory, are inspired
by how the human brain can reason with imprecision, vagueness, and incomplete
information. Neuro-fuzzy systems comprise a synergistic combination of ANNs and
FISs. NFs find the parameters of a fuzzy system by exploiting the learning capability
of ANNs. The idea behind GAs is the natural evolutionary process of biological
organisms. Finally, this chapter lists other widely-used computational intelligence
techniques and hybrid approaches.

3.2 Computational intelligence

Computational intelligence (also called soft computing) comprises a collection of
alternative techniques and methods able to deal with problems that are di�cult
to solve with conventional techniques due to their complexity, high dimensionality,
hard non-linearities, lack of analytical models and vague or imprecise knowledge
[78].
Some of the most important CI techniques are the following:

• Fuzzy logic: fuzzy sets theory was established by Zadeh [79] in the 60s and it
was the base for the development of fuzzy reasoning. Fuzzy logic’s main feature
is its ability to work with imprecise information and as a universal function
approximator [80], [81], [82]. In recent years, fuzzy inference systems have been
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used in a wide area of applications, especially in control mechanisms. A FIS
is formed by an inference mechanism, a set of IF-THEN type linguistic rules
and information converters: a fuzzifier [83] and a defuzi�er [84], [85]. These
converters are needed between the environment, which uses crisp information,
and the fuzzy system in which the information is presented by fuzzy sets.

• Artificial neural networks: these are networks formed by processing elements
(i.e. neurons) as proposed by McCulloch and Pitts in 1943. They are in-
terconnected to emulate living beings’ brains [86]. Their main advantage is
their ability to learn and adapt from data samples [87]. Neural networks are
e�cient in pattern recognition and classification [88], [89], function approxi-
mations [90], data clustering [91] and vector quantization [92].

• Evolutionary algorithms: these are searching or learning algorithms based on
the mechanics of natural selection, genetics and evolution. The most used
paradigm is perhaps the genetic algorithms whose principles were first pub-
lished by Holland in 1962 [93] with the mathematical framework being pre-
sented in 1975 [94]. In genetic algorithms, every chromosome is shown as
a string of binary numbers codifying a possible solution to a problem. The
learning is based on the process of selection and reproduction (where the chro-
mosomes are re- combined simulating sexual reproduction) and mutation, in
which a gene of the chromosome is altered randomly. They are used in opti-
mization, parameter learning (e.g. the parameters of a neural network [95]),
path planning [96], or system control [97].

Many of these techniques exhibit complementary aspects and hence, they very often
provide better performance when combined in a cooperative way rather than acting
exclusively (e.g. neuro- fuzzy systems (NFs), evolutionary-fuzzy systems (EFs), or
neuro-evolutionary systems (NEs)). For example, neuro-fuzzy systems [98], [99] have
the advantage of showing information in a linguistic way, like the fuzzy systems, and
also have the learning abilities of neural networks.

3.3 Artificial neural networks

3.3.1 Introduction to and biological background of artificial
neurons

Artificial neural networks were originally designed to, in some way, model the func-
tionality of the biological neural networks that are part of animal brains. In a
biological brain, a typical neuron collects signals from other neurons through a host
of fine structures known as dendrites (see Figure 3.1). The neuron sends out spikes
of electrical activity through a long, thin stand known as an axon, which splits into
thousands of branches. At the end of each branch, a structure called a synapse
converts the activity from the axon into electrical impulses that inhibit or excite
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Figure 3.1: Diagram showing the components of a biological neuron.

activity from the axon into electrical impulses that inhibit or excite activity in the
connected neurons. When a neuron receives excitation input that is su�ciently large
compared with its inhibitory input, it sends a spike of electrical activity down its
axon. Learning occurs by changing the e�ectiveness of the synapses so that the
influence of one neuron on another is altered.

3.3.2 Brief history of neural networks

The earliest work on artificial neural networks dates back to 1943 when McCulloch
and Pitts introduced the first artificial neural network computing model [86]. Their
neural network was based on simple neurons which were considered binary devices
with fixed thresholds. Their model resulted in simple logic functions such as “a OR
b” and “a AND b”. Reinforcing this concept of neurons and how they work, in 1949
Donald Hebb postulated a new learning paradigm where he pointed out that neural
pathways are strengthened each time they are used [87].
In the 1950s, as the computers advanced into their infancy, it became possible to
model the rudiments of these theories on human thought. Nathalien Rochester at
the IBM research laboratories led the first e�ort to simulate an artificial neural
network. It was during this time that traditional computing began to increase in
popularity, and, the emphasis on computing side-lined neural research. The 1956
Dartmouth Summer Research project on Artificial Intelligence significantly boosted
interest in neural networks [100].
In 1958, Rosenblatt developed the perceptron [101], an algorithm for pattern recog-
nition based on a single layer learning computer network using addition and subtrac-
tion. The original perceptron received two inputs, gave a single output, and used
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threshold function as activation function. The perceptron learned from its mistakes,
i.e., when a sample is not correctly classified, the weights are updated in order to
move the output closer to the target. This is done by adding the input vector to
the weight vector when the error is positive, or subtracting the input vector from
the weight vector when the error is negative.

In 1959, Bernard Widrow and Marcian Ho� at Stanford developed models they called
ADALINE and MADALINE. These models were named for their use of Multiple
ADAptive LINear Elements [102]. The method used for learning was di�erent to
that of the perceptron, they employed the least mean squares (LMS) learning rule,
instead of the perceptron learning method, as well as a linear activation function.
MADALINE was the first neural network to be applied to a real-world problem. It
is an adaptive filter that eliminates echoes on phone lines, and this neural network
is still in commercial use.

In 1969, Marvin Minsky and Seymour Papert demonstrated the limitations of single
layer perceptrons [103], and, as a result, activated considerable prejudice against
this field.

Paul Werbos, in 1974, developed and used the back-propagation learning mbioethod
for multiple layer neural networks [104]. In essence, the back propagation algorithm
is used to train neural networks with multiple layers, a di�erent threshold in the
artificial neuron, and a more robust and capable learning rule. The back-propagation
algorithm e�ectively solved the single layer perceptron problem.

In 1982, interest in the field was renewed. John Hopfield presented a paper to the
National Academy of Sciences. His approach was not only to simply model brains
but also to create useful devices [105, 106]. That same year, Fukushima proposed
“Neocognitron”, the first multi-layered network [107]. Reilly and Cooper used “Hy-
brid Network” with multiple layers, each of the layers using a di�erent problem
solving strategy [108]. The self-organising map (SOM) was originally developed by
Kohonen to explore and organise data in an unsupervised way [109, 110]. At the
same time, a joint US-Japan Conference was held on Cooperative /Competitive
Neural Networks [111], which led to more funding and thus further research in the
field.

In 1986, three independent groups of researches worked on how to extend the
Widrow-Ho� rule to multiple layers, obtaining one of the most common ANNs,
the multi-layer perceptron (MLP) [112, 113, 114].

Adaptive resonance theory (ART) was first introduced by Grossberg in 1976 [115].
The development of ART continued into the 1980s and 1990s at the hands of Gross-
berg, Carpenter, and other co-workers, resulting in more advanced network models
[116, 117, 118]. The term “resonance” refers to the state of a neural network in which
a category prototype vector matches closely enough to the current input vector; ART
matching leads to this resonant state, which permits learning. The network learns
only in its resonant state.
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Radial basis function (RBF) networks were first introduced by Broomhead and Lowe
in 1988 [119]. Although the basic idea of RBF was first developed 30 years ago under
the name method of potential function, the work by Broomhead and Lowe opened
up a new frontier in the neural network community.
Nowadays, ANNs have two new trends: extreme learning machines (ELMs) and
deep learning (DL). The extreme learning machine is a novel learning algorithm
for training single hidden-layer feed-forward neural networks (SLFNs), as proposed
in 2004 by Huang et al. [120]. This randomly chooses the input weights of the
hidden-layer neurons and analytically determines the output weights through simple
matrix computations, therefore enabling a much faster learning algorithm than most
popular learning methods such as back-propagation [38]. In 2006, the concept of
deep learning was first proposed by Hinton and Salakhutdinov [121]. Deep learning
is based on a set of algorithms that attempt to model high-level abstractions in data
by using multiple processing layers with complex structures or, otherwise, composed
of multiple non-linear transformations. A deep neural network (DNN) is an ANN
with multiple hidden layers of units between the input and output layers [122, 123].

3.3.3 Artificial neurons

Figure 3.2: Diagram of a simplified model of an artificial neuron.

An artificial neuron is a model whose components have a direct counterpart in the
components of a biological neuron. Figure 3.2 shows the schematic representation of
an artificial neuron. A neuron receives one or more inputs (xi). Each of these inputs
is multiplied by weights (Êi), which are similar to a synapse in a biological neuron.
These weights can be either positive or negative, corresponding to strengthening
or inhibiting the flow of electrical signals. Subsequently, the weighted inputs are
aggregated, resulting in a quantity:

I = b +
nÿ

i=1
xiÊi, (3.1)
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with n being the number of inputs and weights, and b a bias input. The bias term,
b, can be seen as a weight operating on an extra constant input equal to one.

Then, the result of this aggregation is passed through an activation function, �,
making the activation of the neuron continuously value, according to Eq. 3.2.

y = �(I). (3.2)

Artificial neurones use a number of common activation functions. Figure 3.3 shows
several widely-used activation functions. These include threshold functions like in
Fig. 3.3a, that pass the information (usually a +1 signal) only when the net input
I exceeds the threshold . There are also sign functions, as shown in Fig. 3.3b, that
pass negative information (-1) when the net input is less than the threshold, ◊, and
positive information (+1) when the net input is greater than the threshold. One
of the most commonly used activation functions is the sigmoid function, which is a
continuous function that varies gradually between two asymptotic values, typically
between 0 and 1.This function is shown in Fig. 3.3c and is defined by the equation:

Õ(I) = 1
1 + e≠–·I , (3.3)

with – being a coe�cient that adjusts the abruptness of this function as it changes
between the two asymptotic values.

(a) (b) (c)

Figure 3.3: Activation functions for neurons. a) Step activation function, b) Sign
activation function, and c) Sigmoid activation function.

When a neuron fires, its output has a non-zero value and the output of the neuron
is transmitted to the neurons in the next layer. When a neuron is situated in the
output layer, its output is (along with the other outputs from the neurons in the
same layer) the output of the network. By analysing the structure of a neural
network, it can be stated that the information is stored in the weights and biases.
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3.3.4 Artificial neural networks

An artificial neural network can be defined as a data processing system consisting of
a large number of simple, highly interconnected processing elements (artificial neu-
rons) which work in parallel. These neurons communicate by sending information
in the form of activation signals to each other along directed connections. A com-
monly used synonym for “neural network” is “connectionist model”. Furthermore,
the expression “parallel distributed processing (PDP)” can often be found relating
to artificial neural networks [124, 125].

The di�erent kinds of ANNs can be grouped into three generic architectures ac-
cording to their graphs, with neurons situated at the vertices, and weights on the
edges:

1. Single layer feed-forward network: consists of a single layer of weights, where
the input signals are directly connected to the output signals, via the weights.
The synaptic links carrying the weights connect every input to every output,
but not the other way round. This feed-forward network type is shown in
Figure 3.4.

Figure 3.4: Diagram of a Single Layer Feed-forward Network.

2. Multi-layer feed-forward network: consists of multiple layers. This architecture
has an input layer, an output layer, and one or more intermediate layers, the
hidden layers. The computational units of hidden layers are called the hidden
nodes. Hidden layers carry out intermediate computation between the input
layer and the output layer. An example is shown in Figure 3.5.
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Figure 3.5: Diagram of a Multi-Layer Feed-forward Network.

3. Recurrent network: recurrent networks di�er from feed-forward architecture
as they consist of any network with at least one feed-back connection. They
may, or may not, have hidden units. An example is shown in Figure 3.6.

Figure 3.6: Diagram of a Recurrent Neural Network.

One of the most important aspects of ANNs is the learning process, because it can
be stated that ANNs store the information in the weights. The learning process
in ANNs is a result of altering the network’ weights, with some kind of learning
algorithms. The learning algorithms can be classified into three methods:

1. In supervised learning, both the inputs and the outputs are provided. The
network then processes the inputs and compares the resulting outputs against
the desired outputs. Errors are then calculated, causing the system to adjust
the weights which control the network. This process occurs over again and
over as the weights are continuously tweaked.
Back propagation (BP) is a systematic method for training (learning) multi-
layer neural networks, widely used to solve numerous problems. BP was first
proposed in 1974 by Werbos [104]. Subsequently, it was developed in 1982 by
Parker [112], and in 1986 by Rumelhart, Hinton, and Williams [113]. BP is
based on gradient descent methods (GDMs). During the training process the
weights are updated in order to minimize the sum of the squared di�erence
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between the real output (desired output) and the network output. Assuming
that the given training data set has K entries, an error for the ith (1 Æ i Æ K)
entry of the training set data is defined as the sum of the squared errors:

E = 1
2

Kÿ

i=1
(yi ≠ y

Õ

i)2, (3.4)

where E represents the error, and yi and y
Õ
i are respectively the actual and

the desired i-th outputs. Thus the task here is to minimise the overall error
measurement. The connection weight wij is updated according to the Eq.
(3.5). The weight is updated in every k≠th iteration of the GDM algorithm:

wk
ij = wk≠1

ij ≠ ÷
dE

dwij
, (3.5)

where ÷ is the learning rate which is a parameter that a�ects the convergence
speed and stability of weights during learning. ÷ applies a greater or lesser
portion of the respective adjustment to the old weight. If the factor is set to
a large value, then the neural network may learn more quickly, but if there is
a large variability in the input set then the network may not learn very well
or at all [126, 127, 128].
The main strengths and limitations of ANNs trained with BP are shown in
Table 3.1.

Advantages Disadvantages
Capability of learning from data Overfitting of training data
Ability to learn nonlinear

functions Local minima

Robustness and fault
tolerance

Di�cult to adjust network
parameters and network

structure.
Table 3.1: Strengths and limitations of ANNs trained with BP.

2. In unsupervised learning, the network is provided with inputs but not with
desired outputs. The system must then decide itself which features it will
use to group the input data. This is often referred to as self-organisation or
adaption. The Hebbian algorithm [87, 129], ART networks, and self-organising
networks are examples of ANNs that use unsupervised learning [130].

3. Reinforcement learning is a special case of supervised learning, where the exact
desired output is unknown. The teacher only supplies feedback on the success
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or failure of an answer. Reinforcement learning is a learning procedure that
rewards the neural network for its good output result and punishes it for the
bad output result [131, 132].

3.3.5 Extreme learning machine

Extreme learning machines (ELMs) were originally proposed by Huang et al. [38]
for single hidden-layer feed-forward networks (SLFN) and then extended to “gener-
alised” single hidden-layer feed-forward networks where the parameters of the hid-
den layer are randomly generated [133]. Extreme learning machines have attracted
increasing attention recently because they outperform conventional artificial neural
networks in some aspects [36, 37]. ELMs provide a robust learning algorithm, free of
local minima, without overfitting problems and are less dependent on human inter-
vention than ANNs. ELM is appropriate for implementing intelligent autonomous
systems with real-time learning capabilities.

Figure 3.7: Topological structure of a SLFN.

Supposing a SLFN with n inputs, m outputs and L nodes in the hidden layer (see
Figure 3.7), the output y of the SLFNs can be written as:

yj = —jh(x), (3.6)

where —
j

= [—j1, ..., —jl]T is the weight vector connecting the hidden layer and the
j≠th output node, h = [h1, hi..., hL] is the vector formed by the values hi = �(w

i

x+
bi) with �() being the activation function, w

i

= [wi1, . . . , win]T the vector connecting
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the input x = [x1, . . . , xn] with the i≠th hidden node, and bi the bias of the ith
hidden node.

The main di�erence between ELM and traditional learning approaches is that the
hidden layer does not have to be tuned; i.e., it is a randomised layer. This means
that the set of parameters in the hidden nodes (wi, bi), 1 Æ i Æ L, are randomly
generated. They are therefore independent of the application and the training sam-
ples. Learning in ELM is a straightforward procedure that aims to compute the
vector of output weights, —j in (Eq. 3.6), for each output node.

For K arbitrary distinct samples (xk, tk), where xk = [xk
1, . . . , xk

n]T œ Rn are the
input data and tk = [tk

1, tk
2, . . . , tk

m]T œ Rm are the target data, the above linear
equations can be written in matrix form:

H— = T, (3.7)

where H(w1, . . . , wn, b1, . . . , bL, x1, . . . , xk) is given by:

H =

S

WWU

�(w1x1 + b1) . . . �(wLx1 + bL)
... . . .

...
�(w1xk + b1) . . . �(wLxk + bL)

T

XXV

K◊L

. (3.8)

T = [t1, . . . , tK ]TK◊m is a target label vector and — = [—1, ..., —m]TL◊m. The solution of
the above equation is given as: — = H†T, where H† is the Moore-Penrose generalised
inverse of matrix H [134].

3.4 Fuzzy systems

Fuzzy systems are based on the fuzzy set theory proposed by Zadeh in the 1960s [79].
These are systems that can deal with imprecision, vagueness or incomplete infor-
mation. Fuzzy logic is used as a means of representing and manipulating imprecise
data. Fuzzy logic provides an inference morphology that enables approximate hu-
man reasoning capabilities to be applied to knowledge-based systems [135]. The
theory of fuzzy logic provides a mathematical framework for capturing the uncer-
tainties associated with human cognitive processes, such as thinking and reasoning.
Conventional approaches to knowledge representation lack the means for represent-
ing the meaning of fuzzy concepts. As a consequence, the approaches based on first
order logic and classical probability theory do not provide an appropriate conceptual
framework for dealing with the representation of common sense knowledge, as such
knowledge is, by its nature, both lexically imprecise and non-categorical.
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3.4.1 Brief history of fuzzy logic

Fuzzy sets theory was first proposed in 1965 by Lofti A. Zadeh in his paper “Fuzzy
Sets” [136]. Most of the fundamental concepts in fuzzy theory were proposed by
Zadeh in the late 1960s and early 1970s [137, 138, 139, 140, 141, 142]. At the
beginning of this brainstorm, the papers published by Zadeh were not well received
in the West, and in many cases were bitterly dismissed by the more conservative
researchers in the scientific community. However, over time the theory began to
gain supporters, leading to these theories being extended again and again, becoming
firmly rooted amongst the most innovative scientists, particularly top professionals
in Japan, and then South Korea, China and India. Europe and the United States
eventually incorporated this new mathematics, but more slowly.

A big event in the 1970s was the birth of fuzzy controllers for real systems. In
1975, Mamdani and Assilian established the basic framework for fuzzy controllers
and applied fuzzy inference systems to control a steam engine [143, 144]. Later in
1978, Holmblad and Ostergaard developed the first fuzzy controller for a full-scale
industrial process: the fuzzy cement kiln controller [145].

In the 1980s, from a theoretical point of view, this field progressed very slowly. It
was saved by the application of fuzzy control. Japanese engineers, quickly found that
fuzzy controllers were very easy to design and worked very well for many problems.
In 1980, Sugeno began to create Japan’s first fuzzy application-control for a Fuji
Electric water purification plant [146]. In 1983, he began pioneering work on a
fuzzy robot [147]. In the early 1980s, Yasunobu and Miyamoto from Hitachi began
to develop a fuzzy control system for the Sendai subway [148]. They finished the
project in 1987 and created the most advanced subway system on earth.

The success of fuzzy systems in Japan surprised the mainstream researchers in the
United States and Europe. Some still criticise fuzzy theory, but many others have
changed their minds, giving fuzzy theory a chance to be taken seriously.

3.4.2 Basic definitions and terminology

Fuzzy sets and membership functions If X is a collection of objects denoted
generally by x, then fuzzy set A in X is defined as a set of ordered pairs:

A = {(x, µA(x)) |x ‘ X}, (3.9)

where µA (x) is the membership function (MF) for the fuzzy set A. The membership
function maps each element of X to a membership grade between 0 and 1.

There are a number of common MFs as shown in Figure 3.8:
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(a) Triangular MF. (b) Trapezoidal MF.

(c) Sigmoidal MF. (d) Generalized bell MF. (e) Gaussian MF.

Figure 3.8: Examples of the most widely-used membership functions.

• Triangular MFs are defined by three parameters{a, b, c}, the corners of the
underlying MF (see Fig. 3.8a):

triangle (x; a, b, c) =

Y
_____]

_____[

0, x Æ a
x≠a
b≠a , a Æ x Æ b
c≠x
c≠b , b Æ x Æ c

0, c Æ x

. (3.10)

• Trapezoidal MFs are defined by four parameters {a, b, c, d}, the corners of the
underlying MF (see Fig. 3.8b):

trapezoid (x; a, b, c, d) =

Y
________]

________[

0, x Æ a
x≠a
b≠a , a Æ x Æ b

1 b Æ x Æ c
d≠x
d≠c , c Æ x Æ d

0, d Æ x

. (3.11)

• Sigmoidal MFs are defined by two parameters{a, c}, where a adjusts the slope
at the crossover point x = c. This function changes between the two asymp-
totic values 0 and 1 (see Fig. 3.8c):

sigmoid (x; a, c) = 1
1 + e≠a(x≠c) . (3.12)
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• Bell MFs are defined by three parameters {a, b, c}, c being the center, a the
width, and b the slope (see Fig. 3.8d):

bell (x; a, b, c) = 1
1 + |x≠c

a |2b
. (3.13)

• Gaussian MFs are defined by two parameters {c, ‡}, being c the centre, and ‡
the width (see Fig. 3.8e):

gaussian (x, c, ‡) = e≠ 1
2(x≠c

‡ )2

. (3.14)

Linguistic variables Linguistic variables are those variables whose values are not
numbers but words or sentences in a natural or artificial language [149]. The mo-
tivation for the use of words or sentences rather than numbers is that linguistic
characterisations are, in general, less specific than numerical ones. For example,
“speed” is interpreted as a linguistic variable, which can take the values as “slow”,
“fast”, “very fast”, and so on.

A linguistic variable is characterised by a quintuple (x, T (x), X, G, µ) where x is
the name of the variable; T (x) is the term set of x (that is, the set of its linguistic
values); X is the universe of discourse; G is a syntactic rule that generates the terms
in T (x); and M is a semantic rule which associates terms in T (x) to fuzzy sets in
X.

In the previous example, if “speed” is interpreted as a linguistic variable, then its
term set is T (speed) could be:

T (speed) = {slow, fast, very slow, not very fast, ...

too fast, not slow, not very slow and not very fast, ...}, (3.15)

where each term in T (speed) is characterized by a fuzzy set of a universe of discourse
X = [0, 120], as shown in Figure 3.9. In the expression “speed is fast”, the linguistic
value “fast” is applied to the linguistic variable “speed”. On the other hand, in the
expression “speed= 85”, speed is interpreted as a numerical variable, assigning a
numerical value of 85. The syntactic rule refers to the way the linguistic values in
the term set T (speed) are generated. The semantic rule defines the membership
function of each linguistic value of the term set, M . The five MFs for defining the
linguistic variable “speed” are shown in Figure 3.9.
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Figure 3.9: Typical membership functions of the term set T (speed).

Fuzzy rules A linguistic “IF-THEN” fuzzy rule is an expression of the form:

IF x1 is A AND x2 is B THEN y is C, (3.16)

where A and B are linguistic values defined by fuzzy sets. Typically, “x1 is A AND x2 is B”
is known as the antecedent or premise, while “y is C” is the consequence or conclu-
sion. Several example of fuzzy rules are:

• IF speed is “very fast”, THEN driving is “dangerous”.
• IF temperature is “cold” THEN heater is “high”.
• IF temperature is “high” AND humidity is “high” THEN room is “hot”.

3.4.3 Fuzzy inference systems

Fuzzy inference systems (FISs) are based on the concepts of fuzzy set theory. Fuzzy
inference is the process of formulating mapping from a given input to an output
using fuzzy logic. There are two main types of FISs [150]:

• Mamdani inference systems: These are composed of a rule base and inference
mechanism, where the rules are of the IF-THEN type:

Rj : IF x1 is A1j(x1) AND x2 is A2j(x2) AND xn is Anj(xn)
THEN y is Bj, (3.17)

where Rj is the j≠th rule (1 Æ j Æ m), xi (1 Æ i Æ n) are input variables,
y is the output, Aij (xi) are linguistic labels, each associated with a member-
ship function µij (xi), and Bj (y) are linguistic labels, each associated with a
membership function µj (y).
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• Sugeno inference systems: The rules are of the type [79]:

Rj : IF x1 is A1j(x1) AND x2 is A2j(x2) AND xn is Anj(xn)
THEN y = p1jx1 + ... + pnjxn + p0j. (3.18)

In zero-order Sugeno inference systems y = p0j, i.e., p1j, ..., pnj = 0, and in
first order Sugeno inference systems, some pij have non-zero values. The main
di�erence is that the output in Sugeno inference systems is a crisp value and
in Mamdani inference systems it is a fuzzy value.

Figure 3.10: A two input first-order Sugeno fuzzy model with two rules.

Figure 3.10 represents the reasoning mechanism for first order Sugeno-type FIS. The
inference procedure used to derive the conclusion for a specific input xi consists of
two main steps. First, the firing strength or weight wj of each rule is calculated as
follows:

wj =
nŸ

i=1
µij (xi) . (3.19)

After that, the overall inference result, y, is obtained by means of the weighted
average of the consequent:

y =
qm

j=1 wjyj
qm

j=1 wj
. (3.20)

Eqs. (3.19) and (3.20) provide a compact representation of the inference model.

The main strengths and limitations of fuzzy systems are shown in Table 3.2.
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Advantages Disadvantages

Linguistic interpretation Parameters and structures
are di�cult to tune

Capability of learning
nonlinear functions

Previous knowledge from
the process is necessary

Ability to deal with
imprecision, vagueness or
incomplete information.

No learning mechanism

Robustness and fault
tolerance

Table 3.2: Strengths and limitations of fuzzy systems.

3.5 Neuro-fuzzy systems

The term neuro-fuzzy systems (NFs) refers to a combination of techniques from
neural networks and fuzzy systems [151]. Ever since fuzzy systems were applied
industrially, the community has perceived that the development of a fuzzy system
with good performance is not an easy task. The problem of finding membership
functions and appropriate rules is frequently a tiring process of trial and error.
Therefore the idea of applying learning algorithms to fuzzy systems was considered
early on. One of the first studies that proposed a combination of neural network
learning methods with fuzzy system concepts was published in 1985 [152]. Several
other approaches date from the beginning of the 1990s, including those of Jang
[153, 154, 155], Lin and Lee in 1991 [156], Berenji in 1992 [157], and Nauck in 1993
[158, 159]. The majority of the first applications were in the field of process control.
Gradually, it began to be applied to all areas of knowledge, including data analysis,
data classification, imperfection detection, and support to decision-making.
The aim of NF systems is to combine the advantages of both the above-mentioned
approaches (ANNs and FISs). Knowledge of the system is expressed as a linguistic
fuzzy relationship while neural network learning schemes, capable of learning non-
linear mappings of numerical data, are used to train the system. Furthermore, an
NF system is capable of extracting fuzzy knowledge from numerical data. In this
particular work, the well-known adaptive neuro-fuzzy inference system (ANFIS)
algorithm proposed by Jang in 1993 has been used [154].
Figure 3.11 represents the computational ANFIS architecture equivalent to the two
input first-order Sugeno-type FIS shown in Figure 3.10. In the first layer, the inputs
are fuzzified using membership functions, in this case the Gaussian function. In the
second layer, the firing strength is calculated using Eq. (3.19). In layer 3, the firing
strengths of the fuzzy rules are normalised. The next layer produces the output for
each rule. Finally, in layer 5, the overall output is computed using Eq. (3.20). The
topology depicted in Figure 3.11 can be seen as a particular case of ANN.
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Figure 3.11: Scheme of the network-type structure of a fuzzy inference system
similar to that of a neural network with two inputs and one output.

The main di�erence between a standard FIS and an ANFIS is that the parameters
associated with the membership functions are fixed values in a FIS, while in the
ANFIS algorithm, those parameters change throughout the learning process.

ANFIS is trained with a hybrid learning algorithm comprising a GDM process to
find the optimal values for the parameters of the antecedent membership functions,
and the least squares estimation (LSE) process to compute the linear consequent
parameters of the fuzzy rules. The parameters associated with the membership
functions are calculated so as to minimise the error between the calculated output
and the target output. An enhanced ANFIS algorithm with structure learning
capability was used in this study. The rule base is incremental, meanings that the
number of rules increases gradually as long as the model improves its behaviour
[127].

3.6 Genetic algorithms

Genetic algorithms (GAs) are directed random search techniques that mimic the
process of natural selection and evolution. GAs are based on Darwin’s theory of
“survival of the fitness” as set out in The Origin of Species [160]. As in nature, the
fittest species remain intact, while the unfitare are eliminated. In GAs, a population
of candidate solutions available to an optimisation problem evolves towards a better
solution. Each candidate solution has a set of properties which can be mutated and
altered.
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3.6.1 Brief history of genetic algorithms

In the 1950s and 60s several computer scientists independently studied computer-
simulated evolution, including Nils Aall Barricelli [161, 162], Alex Fraser [163], and
Hans-Joachim, among others. Bremermann published a series of papers in the 1960s
that also adopted a population of solutions for optimisation problems, undergoing
recombination, mutation, and selection. Bremermann’s research also included the
elements of modern genetic algorithms [164, 165].

Genetic algorithms became particularly popular thanks to the work of John Holland
in the 1960s [93] and were further developed by Holland, his students and colleagues
at the University of Michigan in the 1970s [166, 167]. In contrast with other evolution
algorithms, Holland’s original goal was not to design algorithms for solving specific
problems, but rather to formally study the phenomenon of adaptation as it occurs
in nature and develop ways in which the mechanisms of natural adaptation might
be imported into computer systems [168]. In 1975, Holland published his book
Adaptation in Natural and Artificial Systems [94], and interest in GAs in the research
community grew, as did their popularity.

As academic interest grew in the early to middle 1980s, genetic algorithms were
applied to a broad range of subjects, such as control systems [169], communication
networks [170], and modelling [171].

3.6.2 Genetic algorithms: basics and genetic operators

In a genetic algorithm, a single candidate solution is called individual, and a popula-
tion is a group of individuals (see Section 3.7). Each step of the simulated evolution
is a generation. The word genome always denotes all the individual’s genetic in-
formation. The smallest fragment of the genome that can be modified during the
evolution is called a gene: a gene can also be seen as the functional unit of inher-
ited characteristics [172]. The objective function (also known as a “fitness function”
in genetic algorithms) measures the e�ectiveness of an individual in solving the
problem. Individuals with high fitness values are more likely to propagate their
characteristics to the next generation.

A simple GA algorithm, as shown in the flowchart in Figure 3.12, proceeds with an
initial population (which may be generated at random or seeded by other heuristics),
and selects parents from this population for mating. Crossover and mutation oper-
ators are applied on the parents to generate new o�spring. And finally, in survivor
selection, a replacement strategy decides if o�spring will replace parents, and which
parents to replace.
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Figure 3.12: Flowchart of a simple genetic algorithm.

Parent selection

Parent Selection is the process of selecting parents which mate and recombine to
create o�spring for the next generation. Parent selection operators give preference
to individuals whose fitted values are better, allowing them to pass on their “genes”
to the next generation of the algorithm. The best solutions are determined using
the objective function, before being passed to the crossover operator. The selection
procedure drives the search to a promising area in a short time period. Also, it is
important to maintain a degree of diversity in the population to avoid premature
convergence and therefore be able to obtain a globally optimal solution. There are
various methods for choosing the best solutions exist, for example, fitness propor-
tionate selection, rank based selection and tournament selection; di�erent methods
may choose di�erent solutions as being “best”. The selection operator may also
simply pass the best solutions from the current generation directly to the next gen-
eration without them being mutated; this is known as elitism or elitist selection.
One of the most popular fitness proportionate selection procedures is roulette wheel
proposed in 1989 by Goldberg [173]. In roulette-wheel selection, each individual in
the population is assigned a roulette wheel slot sized in proportion to its fitness.
Given a population of size K of a variable x, first the fitness fi of each individual
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xi in the population is evaluated. Then, the probability of selecting each member
of the population pi is calculated as:

pi = fi
qK

i=1 f i
. (3.21)

A proportion of the wheel is assigned to each of the possible selections based on
their fitness value as shows Figure 3.13 for five individuals.

Figure 3.13: Roulette wheel selection for five individuals.

After that, a random number is generated r ‘ (0, 1] (similar to the rotating arrow on
a roulette wheel), and selects the individual xi from this corresponding section just
as is shown in Figure 3.13. Then the arrow returns to its original position. This can
be done n times until n individual candidates have been selected.
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Crossover

(a) Single-point crossover method.

(b) Two-points crossover method.

Figure 3.14: Examples of crossover methods.

Crossover is the process of taking more than one existing individuals (parents) picked
from the current population by the selection operator and producing a new individ-
ual solution from them (child). By recombining portions of good solutions, the
genetic algorithm is more likely to create a better solution. Crossover techniques
include single-point crossovers, two-points crossovers, cycle crossovers, and uniform
crossovers. Single-point crossover are the simplest crossover operations. They work
by first randomly picking two individuals formed by the selection procedure. The
participating individuals (parents) are then split at a randomly chosen crossover
point. The tails (the parts beyond the cutting point) are swapped and two further
individuals (children) are generated. Two-point crossover is the same procedure,
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but the parents are split using two crossover points. Single-point and two-point
crossover examples are shown in Figure 3.14

Mutation

(a) Flipping mutation with changes
in bold.

(b) Interchanging mutation with
changes in bold.

(c) Reversing mutation with
changes in bold.

Figure 3.15: Examples of mutation methods.

Mutation is a genetic operator used to maintain genetic diversity from one gen-
eration of genetic algorithm individuals to the next. It is analogous to biological
mutation. Mutation alters one or more gene values in an individual from its initial
state. In mutation, the solution may change entirely from the previous solution.
The purpose of mutation in GAs is to preserve and introduce diversity to prevent
the GA prematurely converging to a local minimum. Hence, GA can reach a better
solution by using mutation. Popular mutation techniques include flipping, inter-
changing, and reversing. Flipping involves changing 0 to 1 and 1 to 0 based on the
mutation chromosome generated. Interchanging involves two random positions of
the string being chosen and the segments corresponding to those positions being
interchanged. In the reversing method a random position is chosen and the section
next to that position are reversed, producing the child chromosome. An example of
each mutation technique mentioned is shown in Figure 3.15 .
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Survivor selection

Survivor selection is often called replacement. Survivor selection determines which
individuals are to be ejected and which are to be kept in the next generation. As
in parent selection, it is important keep individuals whose fitted values are better
and which maintain a degree of diversity. Survivor selection can be divided into two
approaches: aged-based replacement and fitness-based replacement. Aged-based
replacement is based on the premise that each individual is allowed in the population
for a finite generation where it is permitted to reproduce. After that, it is ejected
from the population no matter how good its fitness is. In fitness based selection, the
o�spring tend to replace the least fit individuals in the population. The selection of
the least fit individuals may be done using a variation of any of the selection policies
described before – tournament selection, fitness proportionate selection, etc.

In summary, GAs begin by creating a random initial population. Each individual
represents a point in a search space and a possible solution. The algorithm then
creates a sequence of new populations. For each generation, the algorithm uses the
individuals in the current generation to create the next population through a process
of evolution via the operations of selection, crossover, and mutation. Over successive
generations the GA will converge towards the global (or near global) optimum.

3.7 Other computational intelligence techniques

In this section, other widely-known computational intelligence techniques are listed:
• Simulated annealing (SA): this is a probabilistic method proposed by Kirk-

patrick, Gelatt, and Vecchi in 1983 [174], and by Cerny in 1985 [175]. The
method finds the global minimum of an objective function inspired in the an-
nealing process of solids. The annealing process consist of two steps: first an
increase in the temperature of the heating bath to a maximum value, at which
the solid melts, and a subsequent slow decrease in the temperature until the
particles arrange themselves into the ground state of the solid. The heat causes
the atoms to become unstuck from their initial positions (a local minimum of
internal energy) and wander randomly through states of higher energy, until
they reach a configuration of absolute minimum energy (ground state). The
cooling process should be slow, and enough time needs to be spent at each
temperature to give the atoms su�cient chance of finding configurations of
lower internal energy. If the temperature is not lowered slowly and enough
time is not spent at each temperature, the process can get trapped in a state
of local minimum for the internal energy.

• Evolutionary algorithms (EAs): evolutionary algorithms are a generic population-
based optimisation set of algorithms. They are search methods inspired by
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natural biological evolution. EAs operate on a population of potential solu-
tions applying the principle of “survival of the fittest” to produce ever better
approximations to a solution. The current theory is the sum of several con-
cepts: evolution and natural selection were introduced almost concurrently
and independently by Charles Darwin and Alfred Russel Wallace in 19th cen-
tury [160]. In 1950, the great computer scientist Alan Turing was probably
the first to point out the similarities between the processes of learning and
evolution [176]. Near the end of the same decade, inspiring ideas in that di-
rection began to appear. However, most researchers agree that it was truly
born in the 1960s and 70s, with the appearance of three independent research
lines: genetic algorithms [94], evolutionary strategies (proposed in Germany
by Rechenberg and Schwefel [177]), and evolutionary programming (proposed
by Fogel in 1960 [178]). A fourth paradigm, genetic programming, created by
John Koza [179] and which appeared in the 1990s, must be also considered
both for its novelty and its similarity to the aforementioned ideas. Genetic
algorithms, explained above in Section 3.6 and used in this work, are probably
the most popular technique in evolutionary algorithms.

Two other well-known methods in evolutionary strategies, and explained be-
low, are particle swarm simulation and ant colony optimisation.

• Particle swarm simulation (PSO): this method was introduced in 1995 by
Kennedy and Eberhart [180]. PSO mimics the social behaviour of a flock of
birds or school of fish. Typically, a group of animals that has no leaders will
find food randomly, following the member of the group closest to a food source
(potential solution). Groups achieve the best outcome simultaneously, through
communication between the members who already have a better situation. An
animal which has better conditions will inform its group and the others will
simultaneously move to that place. This happens repeatedly until optimal
conditions are achieved or a food source discovered. The way a PSO algorithm
finds the optimal values follows the example of these animal societies.

Particle swarm optimisation consists of a swarm of particles, where each parti-
cle represent a potential solution in the search space of the objective function,
and each evaluates the objective function at its current location. Each particle
then determines its movement through the search space by combining some
aspect of the history of its own current and best (best-fitness) locations with
those of one or more other members of the swarm, with random perturba-
tions. The next iteration takes place after all the particles have been moved.
PSO shares many similarities with evolutionary computation techniques such
as GAs. As in GA, the PSO approach begin with a randomly generated set
of solutions called the initial population. An optimum solution is then sought
by updating generations.

• Ant colony optimisation (ACO): emulates the food searching behaviour of ants.
It was developed by Dorigo in 1992 [181]. At first, the ants wander around
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randomly. When an ant finds a food source, it walks back to the colony
leaving “markers” (pheromones) that show the path has food. When other
ants come across the markers, they are likely to follow the path with a certain
probability. If they do, they then populate the path with their own markers
as they bring the food back. As more ants find the path, it gets stronger
until there are a couple streams of ants travelling to various food sources near
the colony. Because the ants drop pheromones every time they collect food,
shorter paths are more likely to be stronger, hence optimising the “solution”.
In the meantime, some ants still randomly scout for closer food sources. Once
the food source is depleted, the route is no longer populated with pheromones
and slowly decays [182].

• Support vector machines (SVM): These methods were first introduced by Vap-
nik in the 1960s and received increasing attention in the 1990s [183, 184]. A
support vector machine constructs a hyperplane or set of hyperplanes in high-
or infinite-dimensional space, and can be applied not only to classification
problems but also to the case of regression. Intuitively, good separation is
achieved by the hyperplane furthest from the nearest training-data point of
any class (the so-called functional margin), since in general the larger the
margin the lower the classifiers�s generalisation error, i.e., SVMs find the hy-
perplane that maximises the margin and minimises misclassifications.

• Hybrid approaches: these use more than one CI technique. The goal is to
combine di�erent approaches to benefit from the advantages of each approach,
like in the case of NFs, as explained in Section 3.5. Many hybrid approaches
have emerged in the literature in recent decades [185]. Genetic fuzzy systems
(GFSs) hybrid approaches are widely used. A GFS is basically a Fuzzy System
augmented by a learning process based on a Genetic Algorithms [186, 187].
Other well-known hybrid approaches use evolutionary algorithms to train arti-
ficial neural networks, i.e., neuro-evolutionary systems (NEs) [188, 189]. Fuzzy
PSO (FPSO), uses FIS and PSO together in di�erent ways: PSO is used to
determine the optimal fuzzy parameters of FIS [190, 191], or PSO particles are
selected using a fuzzy variable [192]. Some hybrid approaches use even more
than two methods, such as FISs, ANN, and GAs together [193], or ANNs,
SVMs and GAs [194].
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4.1 Overview

This chapter describes the di�erent CI approaches used to model the whole CHP
plant and the slurry drying process. To facilitate the modelling, a data cleaning
process was first applied to obtain a suitable dataset. Subsequently, the plant was
dealt with as a set of di�erent systems, and the input-output variables for each
system were selected.

After describing this process of obtaining a useable dataset and selecting the input-
output variables for each system, the modelling of the CHP plant and the slurry
drying process is explained using, firstly, artificial neural networks trained with back-
propagation (ANN-BP), and then adaptive neuro-fuzzy inference systems (ANFIS).
After analysing the results, ANN-BP was selected as being more appropriate than
ANFIS for this modelling problem. Next, to overcome certain issues that ANN-BP
has, such as overfitting or local minima, a new training algorithm for ANNs was
used: extreme learning machines (ELM). After this, the modelling of the e�ective
electrical e�ciency of the plant using ELM is described.

Finally, a new hybrid feature selection method, combining a clustering filter with
ELM as the wrapper, is proposed with the aim of verifying the suitability of the
initial feature selection. The method was applied to a particular system: the steam
turbine.

4.2 Data cleaning process and variable selection

Data cleaning is the process of examining data to detect potential errors, missing
data, outliers or unusual values, and other inconsistencies with the aim of clean-
ing and transforming the errors or problems that are found [195]. Used mainly in
databases, the term refers to identifying issues such as incomplete, incorrect, inac-
curate, or irrelevant parts of the data and then replacing, modifying, or deleting this
dirty, or coarse data. The cleaning process was performed using Rapid Miner® and
Weka® software.
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Figure 4.1: Diagram of the system architecture for data collection from the plant.

As explained in Chapter 2, the database used in this work contains real-life data
from the CHP process and slurry drying treatment. This data was provided by
two PLCs (programmable logic controllers) connected to an OPC (open platform
communication) server. This server was linked to an OPTIBAT® tool with client
server software that obtained data each minute and stored this in a database (see
Figure 4.1). The data collected contains variables from the four engines, the refrig-
eration circuits, the exhaust steam boiler, the steam turbine, and the slurry drying
process, with a total of 210 variables. The database obtained in this way contains
information gathered over a one-year period: from December 2012 to November
2013. The lower heating value (LHV) of the natural gas used to feed the engines
was added to the dataset with a sample time of one value per day. This variable
was provided by the natural gas supplying company, Enagas [196]. In addition, the
ambient temperature and humidity were also added, with sample times of one hour.
These two values were provided by Spain’s State Meteorological Agency (AEMET)
of Spain [197]. Hence, the entire initial dataset contained 213 variables.

The following subsections describe the methods used in this study for data visualisa-
tion and variable smoothing. Also described is the variable selection for each system
in the CHP process. The names and meanings of all the variables involved in the
modelling of the CHP plant and the slurry drying process are shown in Appendix I.

4.2.1 Data visualisation

Data visualisation is an easy and useful method for obtaining information from
the process and the variables. To do this, two di�erent approaches can be used:
single-variable graphics and multi-variable graphics.

Single-variable representations as histograms, or box plots, among other possibilities,
involve only one variable. Multi-variable representations are graphic methods that
involve two or more variables; the most common methods include scatter plots, time
series, and multiple time series, among others. The main graphic methods used to
represent variables in this thesis are explained briefly below.

74



4.2 Data cleaning process and variable selection

Time series

A time series can be defined as a sequence of data, typically consisting of successive
measurements collected over a time interval. Initially, the time series of each variable
must be represented with the objective of visually highlighting useful information,
such as the way data is distributed, the manner in which one quantity varies with
another, or if the variables have unusual or missing values.
Non-informative variables, i.e., those that remain constant, were removed from the
original dataset (see Figure 4.2). From that original dataset including 213 variables,
a total of 13 constant variables were removed, resulting in a dataset comprising 200
variables.

Figure 4.2: Example of a constant variable removed from the original dataset.

When dealing with time series, it is important to detect whether or not there are
missing values. Missing values arise when no data value is stored for a variable in
an observation [198]. Depending on the objective of the data cleaning process, it
may be decided to leave missing data unmodified, or replace this with other values
(for example the mean, median or mode because these are arithmetic measurements
of central tendency). In this work missing values were discarded for the modelling
and optimisation procedure, removing this time period from the original dataset.
As can be seen in Figure 4.2 and Figure 4.3, both variables have time periods with
missing data.
Another important issue is the detection of outliers. An outlier can be defined as a
data point that is distinctly separate from the rest of the data [199]. More formally,
an outlier is a data point that does not follow the trend of the other points. In
Figure 4.3, for the time series of cooling water temperature for the mixture in engine-
A (variable TMixt_EngA ), it can be seen that, on the 12th February, there are two
points with values close to 60 ºC. These two points are clearly outliers because their
values are very di�erent from the usual trend of the time series, whose values range
between 40 and 45 ºC. As with the missing values, any data points considered to be
outliers were removed from the original dataset.
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Figure 4.3: Time series for the variable TMixt_EngA.

In summary, after an exhaustive study of all time series variables, the constant
variables, missing values and outliers were all removed from the original dataset.

Scatter plots

A scatter plot is a graphic representation of bivariate data as a set of points in a plane
that has Cartesian coordinates equal to the corresponding values of the two variables.
Scatter plots show the relationship between two sets of data. Figure 4.4 represents
the relationship between the power generated in the steam turbine (POWST) and
the steam flow feeding that turbine (FSteam). As can be seen, there is a clear positive
association between the two variables, which is consistent with knowledge of the
steam turbine. If the turbine is fed with a higher flow of steam, that steam generates
more power. This allows input variables that correlate well with the output to be
selected.

4.2.2 Variable smoothing

In a signal or variable, noise can be defined as unpredictable variations in the mea-
sured signal from sample to sample. From the time series of the CHP plant variables,
it can be concluded that most of these are a�ected by noise. A successful noise re-
moval solution, or one which at least reduces its influence, is smoothing of the
variables [200]. In this work two di�erent ways to smooth signals have been used:
exponential smoothing and moving average.
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Figure 4.4: Scatter plot of two variables related to the steam turbine in the CHP
plant.

Exponential smoothing

Given any number of samples {xi}K
i=1, the exponential smoothing value si in a

particular measurement of the dataset is given by the formula:

si = – xi + (1 ≠ –) si≠1 0 < – Æ 1, (4.1)

where – is the smoothing factor. In other words, the smoothed value si is a simple
weighted average of the current observation xi and the previous smoothed value si≠1.
The smoothing factor – controls the balance between new and old information: as
– approaches 1, the smoothing retains only the current data point (i.e., the series is
not smoothed at all); as – approaches 0, smoothing retains only the smoothed past
(i.e., the curve is totally flat).

Figure 4.5 shows the exponential smoothing for the superheated water temperature
variable (TH2O_SH) with the smoothing factor – being 0.1. As can be seen, the
smoothed signal (blue line) follows the trend of the original variable but has fewer
peaks.
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Figure 4.5: Exponential smoothing for a temperature variable.

Moving average

Given any number of samples {xi}K
i=1, the moving average is the mean of the previous

n data (sometimes called window size):

si = 1
n

i+n≠1ÿ

j=i

xj. (4.2)

The moving average with a window of 200 previous samples for the flow fed into
the slurry drying evaporator (FEv) is shown in Figure 4.6. This specific variable has
a large number fluctuations and peaks, however, the moving average variable still
follows the main trend of the raw data quite well.
Once the constant variables had been removed in the dataset, di�erent exponential
smoothing and moving averages were obtained for all the variables. The most ap-
propriate smoothing for each variable was selected. The selected parameters for the
exponential smoothing and moving average for the variables involved in the mod-
elling of the CHP plant and the slurry drying process are shown in the Appendix
I.

4.2.3 Variable Selection

Due to the complexity of the whole plant and systems involved, the modelling of the
CHP plant was performed using the di�erent separated systems listed in Table 4.1.
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Figure 4.6: Moving average for the evaporator feed flow.

For each system, the target variable (output) was selected according to knowledge of
the process and the available variables in the database. The input variables for each
system were then obtained by selecting those with the greatest influence on each
system output. To this end, a combination of mathematical techniques and in-depth
knowledge of the process and systems were employed. Some of the mathematical
techniques used were:

• Covariance matrix: this is a matrix that gives the covariance between all pairs
of variables. Covariance is a measure of the extent to which corresponding
elements from two sets of ordered data move in the same direction [201]. The
covariance matrix is symmetrical because the covariance between x and y is
the same as the covariance between y and x. The covariance for two variables
x and y with K samples (1 Æ i Æ K), can be defined as:

‡xy =
qK

i=1(xi ≠ x̄)(yi ≠ ȳ)
K

, (4.3)

where x̄ = 1/K
qK

i=1 xi and ȳ = 1/K
qK

i=1 yi are the mean for the variables x
and y, respectively.

• Correlation matrix: this is a matrix that gives the correlation coe�cients be-
tween all pairs of variables. Like the covariance matrix, the correlation matrix
is symmetrical. One of the most widely used correlation coe�cients is the
linear correlation coe�cient, also known as the Pearson correlation coe�cient.
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The Pearson coe�cient, rxy, for two variables x and y is:

rxy = 1
K

qK
i=1(xi ≠ x̄)(yi ≠ ȳ)

Ò
1
K

qK
i=1(xi ≠ x̄)2

Ò
1
K

qK
i=1(yi ≠ ȳ)2

= ‡xy

sxsy
. (4.4)

sx =
Ò

1
K

qK
i=1(xi ≠ x̄)2 is the standard deviation for the variable x (and sim-

ilarly for the variable y). Correlation is a scaled version of covariance. The
denominator in the expression of the correlation coe�cient amounts to a rescal-
ing of the values of both variables to a standard interval (unlike covariance).
For example, correlation between POWST and FSteam is rxy = 0.95 (clear linear
correlation is shown in Figure 4.4). Due to this clear correlation, FSteam is one
of the inputs selected for the steam turbine.

• Mutual information: this tries to quantify the amount of information shared
between two random variables, x and y. Mutual Information, I, measures how
much the knowledge of one of these variables reduces uncertainty about the
other. If x and y are independent, then the mutual information is 0. The
mutual information for two continuous variables is:

I (X; Y ) =
ÿ

y‘Y

ÿ

x‘X

p(x, y) log

A
p (x, y)

p(x)p(y)

B

, (4.5)

where p(x, y) is the joint probability distribution function of x and y, and
p(x) and p(y) are the marginal probability density function of x and y re-
spectively. For example, the mutual information value between the air intake
temperature engine-A bank1 (variable TB1_A) and the air output temperature
engine-A bank1 (TB1Out_A) is very high. This means that the information
shared between the two variables is very high. For this reason only one of
these, TB1_A, was selected as an input for the engine system. Similarly, for
bank 2 of the engine-A, only the intake temperature TB2_A was selected as an
input. This was also taken into account for the remaining three engines, i.e.,
only the intake air temperature for the banks was selected as an input variable
for the engine systems.

• Principal component Analysis (PCA): this is a mathematical procedure that
uses an orthogonal transformation to convert a number of (possibly) corre-
lated variables into a (smaller) number of uncorrelated variables called prin-
cipal components. The first principal component accounts for as much of the
variability in the data as possible, and each succeeding component accounts
for as much of the remaining variability as possible. The first principal com-
ponent obtained using the CHP plant dataset assigns the greatest importance
to POWST , FSteam , and the water flow to feed the steam generator (FH2O).
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Taking into account all the above mentioned techniques, the knowledge of the CHP
process, and certain complementary experiments, the set of input-output variables
for each model was selected. Table 4.1 shows these variables.

Table 4.1: CHP plant systems and their corresponding variables.

CHP SYSTEM MODEL INPUTS OUTPUT
Cooling Engine-A TH2O_Ex TH2O_TOW POWA TMixt_EngA

Cooling Engine-B TH2O_Ex TH2O_TOW POWB TMixt_EngB

Cooling Engine-C TH2O_Ex TH2O_TOW POWC TMixt_EngC

Cooling Engine-D TH2O_Ex TH2O_TOW POWD TMixt_EngD

Engine-A
TB1_A TB2_A TAmb HAmb LHV

FGas_ATBank1_A TBank2_A TMixt_EngA POWA DIVA

Engine-B
TB1_B TB2_B TAmb HAmb LHV

FGas_BTBank1_B TBank2_B TMixt_EngB POWB DIVB

Engine-C
TB1_C TB2_C TAmb HAmb LHV

FGas_CTBank1_C TBank2_C TMixt_EngC POWC DIVC

Engine-D
TB1_D TB2_D TAmb HAmb LHV

FGas_DTBank1_D TBank2_D TMixt_EngD POWD DIVD

Exhaust Steam Boiler PStGen FFlueGas FSteam

Steam Turbine Condenser TH2O_Tow TST_Cond PCond

Steam Turbine PStGen FSteam PCond POWST

Slurry drying process PEv TH20_SH TH2O_TH TH2O_Ex FCond FEv

4.3 Modelling the CHP systems using
ANN-BP/ANFIS

In this section, the modelling of the CHP plant and the slurry drying process using
ANN-BP and ANFIS is explained.
The multilayer perceptron (MLP) has been selected as a particular neural network
model. It has become the most popular architecture for real-world applications,
mainly due to the development of the back-propagation learning rule, which is an
e�ective and practical learning algorithm [202]. Moreover, MLP is a universal ap-
proximator and hence, it is capable of approximating any measurable function to
any desired degree of accuracy [203]. While neural networks are good at approxi-
mating any measurable function, they are not good at explaining the behavior of
the modelled systems. On the other hand, fuzzy systems which can reason with
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imprecise information, are good at explaining the models but they cannot automat-
ically acquire the rules they use to make those decisions. These limitations have
been a central driving force behind the creation of intelligent hybrid systems where
two or more techniques are combined in a manner that overcomes the limitations of
individual techniques [204], such as the ANFIS used in this work.
To model the CHP plant, first the dataset was divided into two subdatasets: a
training set with data from February, April, June, August, October and December
and a testing set for evaluating the predictability of the models what included the
remaining months. Furthermore, due to the large number of samples available, the
database was resampled every 30 minutes.
The modelling for all the experiments in this approach was carried out using the
OPTIBAT® Trainer tool [205].

Figure 4.7: Training error versus epochs.

4.3.1 ANN-BP and ANFIS parameters and structure

An ANN-BP model and an ANFIS model were prepared for each system using
the input-output variables shown in Table 4.1. In order to select the structure of
the ANN-BP models, some initial tests were carried out using di�erent numbers
of hidden layers. It was concluded that the accuracy did not significantly improve
when increasing the number of hidden layers. Therefore, the simplest option was
selected: single hidden layer. Similarly, some initial tests were conducted to test
di�erent numbers of hidden nodes. It was concluded that when the number of hidden
nodes is large enough, the accuracy of the model does not change significantly with
slight variations in node number. Hence, as a criterion for setting the number of
hidden nodes, the common rule of “twice the number of input variables” was finally
adopted. Regarding the number of epochs for training the models, it is well known
that after a number of epochs, model accuracy does not vary (the error is saturated).
This is illustrated in Figure 4.7 for the Cooling A system, where the training error
is represented after the weights have been updated using Eqs. 3.4 and 3.5 for
each epoch. It can be seen that around epoch number 200 the error stabilises (or
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saturates) because a minimum (local or global) is reached. Therefore, the number
of epochs was set as 2000 times the number of inputs for each system. The error
used in this approach was the mean absolute error MAE = 1

N

qk
i=1 |yi ≠ y

Õ
i|.

Table 4.3: Model parameters and modelling results.

SYSTEM
ANN MODEL ANFIS MODEL

Structure * Epoch Train Error Test Error N0 of rules Train Error Test Error

Cooling Engine-A 3/6/1 6000 0.21 % 0.23% 16 0.21% 0.22%

Cooling Engine-B 3/6/1 6000 0.28 % 0.26% 16 0.23% 0.23%

Cooling Engine-C 3/6/1 6000 0.10% 0.13% 16 0.11% 0.12%

Cooling Engine-D 3/6/1 6000 0.49% 0.33% 16 0.48% 0.30%

Engine-A 10/20/1 20000 0.39% 0.42% 22 0.51% 0.54%

Engine-B 10/20/1 20000 0.41% 0.41% 22 0.5 % 0.51%

Engine-C 10/20/1 20000 0.38% 0.42% 22 0.49% 0.49%

Engine-D 10/20/1 20000 0.38% 0.37% 22 0.51% 0.52%

Recovery Boiler 2/4/1 4000 0.61% 0.63% 12 0.61% 0.62%

ST Condenser 2/4/1 4000 1.01% 0.96% 5 2.27% 1.97%

Steam Turbine 3/6/1 6000 0.67% 0.70% 16 0.75% 0.90%

Slurry Drying Process 5/10/1 10000 2.35% 2.52% 21 2.88% 2.84%

*ANN structure: input layer neurons/hidden layer neurons/output layer neurons

Taking into account everything discussed above, the structure chosen for the ANN-
BP models for all the systems was always similar: the number of neurons in the
input layer was the same as the number of inputs in the model, the number of
neurons in the hidden layer was twice the number of inputs (only one hidden layer),
and a single output neuron was used. The stop criteria is the number of epochs.
The ANFIS models, were structured in such a way that the number of rules was
increased until the error in the model was stabilised or the maximum training time
of 72 hours was reached.
The structure for each model and the number of rules generated for the ANFIS
models are shown in Table 4.3. As can be seen, the structures are always more com-
plex in the ANFIS models than the ANN-BP models. One of the main advantages
of ANFIS systems, which has already been mentioned in Section 3.5, is the linguis-
tic interpretation. However, in this study, linguistic interpretation is quite di�cult
because of the large number of rules.

4.3.2 Experimental results

The training and testing errors obtained, respectively, using ANN-BP and ANFIS,
are shown in Table 4.3 for all systems. The MAE was calculated for each model
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(a) ANN-BP model, real output vs. predictions.

(b) ANFIS model, real output vs. predictions.

Figure 4.8: Graphic results for the ANN and ANFIS models of the cooling engine-A
system.

for both the training and the testing dataset. The testing error represents the
model’s behaviour better than the training error as it contains data that was not
seen during the training of the models. For the reason, the testing error is used to
evaluate the model’s predictive behaviour. We can see that for all the models, the
di�erence between the training error and the testing error was always less than 0.3%.
This means that the models were capable of learning the dynamic of the systems
and making accurate predictions when dealing with unseen data. The accuracy is
similar for both the ANN-BP and ANFIS algorithms.

To graphically illustrate the results of the modelling, Figure 4.8 shows the output of
both the ANN-BP model and the ANFIS model for the cooling engine-A system. In
this system, the output variable is the cooling water temperature for the mixture in
engine-A (TMixt_EngA). Both figures show the real output in blue and the model’s
prediction for the test dataset in red. In both graphics, the predicted results are
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(a) ANN-BP model, real output vs. predictions.

(b) ANFIS model, real output vs. predictions.

Figure 4.9: Graphic results for the ANN-BP and ANFIS models of the engine D
system.

very close to the real output therefore revealing the accuracy of the predicted results.
The behaviour of the four cooling circuits is analogous. For this reason only one is
plotted.
For the engine D system, Figure 4.9 shows both the ANN-BP and ANFIS model
predictions for the system output, the natural gas flow feeding engine D (FGas_A).
As can be seen, the predictions for both models follow the main trend, although
some peaks are not predicted very accurately. Furthermore, the ANN-BP model is
able to predict some areas much better than the ANFIS model, for the example, for
samples between 1000 and 2000. This result is consistent with the testing errors, as
the ANN-BP testing error (0.37%) is lower than the ANFIS error (0.52%), as can
be seen in Table 4.3.
The four engines behave in a similar way so only one is presented.
Figure 4.10 shows the predicted values (red line) and real values (blue line) obtained
with both the ANN-BP and ANFIS systems, for the output of the steam turbine
condenser system: condenser pressure (PCond). In this case, the best test error
0.96% is obtained with ANN-BP, which is clearly better than the 1.97% provided
by ANFIS. Moreover, this di�erence is the largest for any of the systems, as can be
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(a) ANN-BP model, real output vs. predictions.

(b) ANFIS model, real output vs. predictions.

Figure 4.10: Graphic results for the ANN and ANFIS models of the ST condenser
system.

appreciated in the graphics, where it can be seen that the ANFIS model (Fig. 4.10b)
is not able to follow the trend of the system, around sample 2000, as well as the
ANN-BP model (Fig. 4.10a).
The ANN-BP and ANFIS model simulations for the exhaust steam boiler, the steam
turbine and the slurry drying process systems are shown in Figure 4.11. As can be
seen, the conclusions for these three systems are similar to those for the above-
described systems: all the models follow the main trends of the output variables,
although some peaks and ID samples are not very well predicted; for example in
Fig. 4.11f between samples 200 and 400, or in the early samples of the steam turbine
simulations for both the ANN-BP model (Fig. 4.11c) and ANFIS model (Fig. 4.11d).
The graphic representations and numerical results in Table 4.3, demonstrate that
both algorithms were, in general, very accurate. However, when the number of
inputs is high, as in the case of the engines, ANN-BP performs better than ANFIS.
Even if the number of rules is increased, engine systems are better modelled using
ANN-BP. Taking into account the results obtained and the fact that ANFIS has a
more complex structure and poor linguistic interpretation ability, it can be concluded
that for this modelling problem ANN-BP is a better option than ANFIS.
A compressive study of the ANN-BP and ANFIS modelling of the CHP plant can
be found in [206].
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(a) ANN-BP model, real output vs. predic-
tions for the exhaust recovery boiler.

(b) ANFIS model, real output vs. predictions
for the exhaust recovery boiler.

(c) ANN-BP model, real output vs. predic-
tions for the steam turbine.

(d) ANFIS model, real output vs. predictions
for the steam turbine.

(e) ANN-BP model, real output vs. predic-
tions for the slurry drying process.

(f) ANFIS model, real output vs. predictions
for the slurry drying process.

Figure 4.11: Graphic results for the ANN-BP and ANFIS models for the exhaust
steam boiler, the steam turbine and the slurry drying process systems.

4.4 Modelling of the CHP systems using ELM

The conclusion of the previous section is that ANN-BP is a better choice than ANFIS
for modelling the CHP plant. Nevertheless, it is important to take into account the
fact that ANN-BP has some important disadvantages, such as local minima and
the overfitting of training data (Table 3.1). For this reason, this section proposes
modelling the CHP plant and slurry drying process using ELM, explained previously
in Subsection 3.3.5. ELM provides a robust learning algorithm, free of local minima,
with no overfitting problems and is less dependent on human intervention than
ANN-BP.
The year-long dataset was resampled every 10 minutes with the aim of analysing
the training time for a large number of samples. Thus, a training set and a testing
set with almost 19000 data each were obtained.
To model the cogeneration plant, each system was trained with the ELM algorithm
using equations from Subsection 3.3.5 and the input-output variables from Table 4.1.

87



Chapter 4 CHP systems modelling

The number of hidden nodes were varied from 1 up to 100 for each system. Finally,
the best performance of 10 trials of simulations for each system was selected. The
experiments were carried out using the Matlab®tool [207].
For comparison purposes, we have taken into account both the ANN-BP with a sin-
gle hidden-layer, and a Support Vector Machine (SVM) using a radial basis function
kernel. The same topology as in the case of ELM was used for the ANN-BP mod-
elling, but the number of hidden nodes was gradually increased by an interval of 5
up to 100 for comparison purposes. Finally 3000 epochs were selected in each system
training. For the SVM the cost parameter C was chosen equal to the range of output
values of the training data [208]. The kernel parameter “ and the intensive zone Á
values were selected from the most accurate combination of: “ = [2≠7, 2≠6, ..., 27],
and Á = [0.1, 0.2, ..., 0.5]. SVM modelling was carried out using LIBSVM [209].
Table 4.5 compares the overall results among all the models. The table presents
the training and testing accuracy (normalised mean square error (MSE) Eq. 3.4),
training and testing time, and number of nodes.

Table 4.5: Results and characteristics of the models.

system Parameter ELM ANN-BP SVM
Training MSE 0.0314 0.0465 0.0243
Testing MSE 0.0504 0.0507 0.0539

Cooling Training Time (s) 0.0624 14.7109 10.4833
Engine A Testing Time (s) <10≠4 0.0312 4.2432

No. of nodes 18 20 7669
Training MSE 0.1530 0.2286 0.1683
Testing MSE 0.1649 0.2107 0.2139

Cooling Training Time (s) 0.1649 8.2837 11.3257
Engine B Testing Time (s) <10≠4 0.0312 5.6472

No.of nodes 35 10 12236
Training MSE 0.2887 0.0992 0.0673
Testing MSE 0.2845 0.1313 0.1970

Cooling Training Time (s) 0.1716 9.5317 12.7141
Engine C Testing Time (s) <10≠4 0.0312 5.1168

No.of nodes 10 28 10434
Training MSE 0.4104 0.4324 0.4251
Testing MSE 0.2911 0.2973 0.4896

Cooling Training Time (s) <10≠4 5.6472 9.9061
Engine D Testing Time (s) <10≠4 0.0156 1.794

No. of nodes 13 5 10.413

Engine A

Training (MSE) 0.2927 0.1897 0.2047
Testing (MSE) 0.2928 0.2933 0.2879

Training Time (s) 0.1872 31.5434 18.9073
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Testing Time (s) 0.0624 0.0312 8.2837
No.of nodes 38 10 12860

Engine B

Training (MSE) 0.2133 0.2116 0.1699
Testing (MSE) 0.1934 0.2181 0.2098

Training Time (s) 0.2340 9.9373 11.1477
Testing Time (s) 0.0624 0.0312 7.9405

No.of nodes 39 5 12456

Engine C

Training (MSE) 0.2887 0.2324 0.2253
Testing (MSE) 0.2845 0.2929 0.3609

Training Time (s) 0.1716 12.1681 14.1493
Testing Time (s) 0.0624 0.0468 8.9545

No.of nodes 28 15 13357

Engine D

Training (MSE) 0.1595 0.2045 0.1478
Testing (MSE) 0.2210 0.2480 0.3380

Training Time (s) 0.546 15.0541 12.6921
Testing Time (s) 0.1404 0.0312 7.8781

No.of nodes 85 20 12089
Training MSE 0.3407 0.3687 0.2787
Testing MSE 0.5157 0.6036 0.5449

Exhaust Steam Training Time (s) <10≠4 5.0856 16.0057
Boiler Testing Time (s) <10≠4 0.0468 5.7876

No.of nodes 4 5 13607
Training (MSE) 0.3728 0.2478 0.1634

Steam Testing (MSE) 0.2979 0.2751 0.3159
Turbine Training Time (s) <10≠4 16.1617 4.6332

Condenser Testing Time (s) <10≠4 0.0312 1.794
No.of nodes 4 5 2982

Training (MSE) 0.1299 0.2448 0.2484
Testing (MSE) 0.2659 0.3314 0.3024

Steam Training Time (s) 0.0624 9.6097 15.2881
Turbine Testing Time (s) <10≠4 0.0156 6.7704

No.of nodes 8 10 14433
Training (MSE) 0.1123 0.1434 0.0904

Slurry Testing (MSE) 0.0759 0.3645 0.1306
drying Training Time (s) 0.3352 5.0856 13.7749
process Testing Time (s) <10≠4 0.0468 6.1308

No. of nodes 11 5 12105
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(a) ELM performance according to the number of hidden neurons.

(b) ANN-BP performance according to the number of hidden neurons.

Figure 4.12: Stability of ELM and BP according to the number of hidden neurons.

As we can see in Table 4.5, all previous algorithms provide approximately the same
accuracy and perform rather well. However, the training and testing accuracy have
a significantly larger di�erence, in most of cases, for ANN-BP and SVM than for
the ELM models. This can be explained by the fact that ANN-BP and SVM tend
to overfit the training data. The generalisation performance of ELM is very stable
over a wide range of hidden node numbers, as Figure 4.12 shows for the four engine
models, where the average error for each engine is plotted against the number of
hidden nodes.

As a representative example, Figure 4.13 shows the results for the engine-B system.
The real values (blue line) and predicted values (red line) are shown for the test
dataset. As can be seen, the three models are very similar and follow the main
trend of the output variable (FGas_B). However, the models do not predict some of
the peaks very accurately.

On the other hand, ELM needs more hidden nodes than ANN-BP to achieve a similar
performance, while SVM requires many more nodes than either ELM or ANN-BP.
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(a) ELM model, real output vs. predictions.

(b) ANN-BP model, real output vs. predictions.

(c) SVM model, real output vs. predictions.

Figure 4.13: Graphic results for the ELM, ANN-BP, and SVM models of the
engine-D systems.
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For training time, ELM is clearly the fastest learning algorithm in all cases, with a
training period hundreds of times less than ANN-BP and SVM. Also ELM is the
fastest algorithm for testing.

A conclusion that can be drawn from the experimental results, is that the number
of nodes is slightly lower for ANN models. However ELM is very stable over a wide
range hidden node numbers. The experimental results also show that ELM is by
far the fastest, being hundreds of times quicker than SVM and ANN. ELM provides
a robust learning algorithm, free of local minima, and has no overfitting problems.
All these characteristics make ELM the most suitable algorithms for modelling the
CHP plant.

A compressive study of the ANN-BP and ANFIS modelling of the CHP plant can
be found in [40].

4.5 Modelling of the e�ciency using ELM

This section presents the development of a model of the e�ective electrical e�ciency
(ÁEE) for the real cogeneration plant using ELM. E�ciency is a prominent metric
used to evaluate CHP performance and compare it to separated heat and power
(SHP) plants. The most commonly used metric for determining the e�ciency of a
CHP system is ÁEE. This metric is used in this work to measure the performance of
the plant, and is the multi-objective function used in the optimisation chapter.

The e�ective electrical e�ciency of a CHP plant, ÁEE, is defined as:

ÁEE = WE

QF UEL ≠ q(QT H/–) · 100, (4.6)

where – is the e�ciency of conventional technology that would otherwise would
be used to produce the useful thermal energy output if the CHP system did not
exist. The value of –, as established in Article 1 of Spanish Royal Decree 661/2007,
depends on the type of fuel and the manner in which the heat is used (direct/indirect
use). For a gaseous fuel and indirect use of exhaust gases, – is 0.9.

• The net useful power output generated by the four engines and the steam
turbine is:

WE = (POWA + POWB + POWC + POWD) · c1 + POWST , (4.7)

where c1 = 3700kW
100% is the conversion factor to change % to kW .
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• The total fuel (natural gas) input used by the four engines, is defined as:

QF UEL = (FGAS≠A + FGAS≠B + FGAS≠C + FGAS≠D) · c2, (4.8)

where c2 = LHV kW h
m3 is the conversion factor to change m3

h to kW .

• The useful thermal energy used in the slurry process is defined as:

QT H = F Ev · c3, (4.9)

where c3 is the conversion factor to change kg
h to kW , being defined as follows:

c3 =
5730t

month
1000kg

t
3600s

h
825kcal

kg
7.6297m3

h
60min

h
24h

d
30d

month
860kcal

kW h

. (4.10)

The c3 term is obtained taking as reference the performance of the evaporator
for a month because 1-minute readings do not exist for the treated amount
of slurry, so this has to be approximated. The idea is to relate the amount
of slurry treated in the evaporator with the total amount of slurry treated in
the slurry drying process (see Subsection 2.4.4). The total amount of slurry
treated in the process during the reference month was 5730t, and 7.6297m3

h is
the average flow of slurry treated in the evaporator per hour for this reference
month.

The useful heat assimilated from the slurry drying process is 825kcal
kg , for pig

slurry dried with a humidity of 95%. The term 860kcal
kW h relates the thermal

energy to the electrical energy. These two values are established in Annex II of
the European Commission Directive dated 21st December, 2006 (2007/74/EC)
and covered in Article 1 of Spanish Royal Decree 661/2007.

The e�ective electrical e�ciency of the plant was calculated using Eq. 4.6. To
do this, firstly the real e�ective electrical e�ciency of each sample in the dataset
was calculated using real values. That is: WE, QF UEL, and QT H are obtained by
extracting the variables involved directly from the database.

Next, the e�ective electrical e�ciency was obtained in the same way, but using the
predicted values obtained with the ELM models from the previous section, i.e., the
power of the steam turbine used was the predicted value from the steam turbine
model, the natural gas flow was the predicted value from each engine ELM model,
and the thermal energy in the slurry drying process was obtained from the prediction
of its respective ELM model.
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Figure 4.14: Results of the ELM models for e�ective electrical e�ciency.

To illustrate the ELM modelling results, Figure 4.14 shows the e�ective electrical
e�ciency using Eq.4.6 with real data and employing the predictions of the ELM
models. As can be seen, the expected e�ciency follows the trend of the real e�ciency.
The monthly e�ective electrical e�ciency should be greater than 55% on average
to be sold to power utilities at a fixed premium price. This is a premium for clean
energy that is generated. Some zones are less of 55% e�ciency, as between samples
5000 and 6000, but on average, the e�ective electrical e�ciency is greater than this
threshold being 56.4% on average obtained with real values and 56,3% on average
for predicted values.

4.6 A new hybrid feature selection method

An alternative to the variable selection previously developed based on mathematical
methods and knowledge of the plant are automated feature selection methods. In
this section, a new automated exhaustive hybrid feature selection method is pro-
posed. The method was applied to the steam turbine, in order to check the suitability
of the variable selection performed in Subsection 4.2.3.
There are two main categories of feature selection techniques: filter methods and
wrapper methods [210]. The latter select a reduced subset of variables by evaluating
general data characteristics (i.e., the selected learning algorithm is not involved in
the selection process), while the former use the performance of the selected machine-
learning algorithm to evaluate each subset of variables. Filters measure the relevance
of di�erent subsets of features. Usually they order features individually, or as nested
subsets of features, while the filter is assessed by means of statistical tests. They are
robust against overfitting, but may fail to select the most useful features for a given
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classifier. On the other hand, wrappers measure the usefulness of feature subsets.
They perform an exhaustive search of the space of all feature subsets and use cross
validation to evaluate the performance of the classifier. Wrappers are able to find
the most useful features, but they favour overfitting and are very time-consuming.
As will be seen, a combination of both, filter and wrapper, provides an adequate
trade-o� between usefulness and robustness.
The proposed hybrid feature selection method combines a clustering filter based
on the nearest shrunken centroids (NSC) procedure for feature selection in high-
dimensional problems [211], with a wrapper around the ELM algorithm, because it
has been proven to be the most suitable algorithm from all those previously used.
The NSC method is briefly introduced below.

4.6.1 Nearest shrunken centroids method

The NSC method is a modification of the nearest centroid classifier that consid-
ers denoised versions of the centroids as class prototypes. The class centroids are
increasingly shrunken towards the overall centroid and, as they are shrunk, some
features from the initial set no longer contribute to the classification.
xij are the values for the variables i = 1, ..., p, and j = 1, ..., n for the samples. Ck

is the set of indices of the nk samples in class k = 1, ..., K. A t-statistic dik is used
to compare each class k to the overall centroid for each variable i:

dik = x̄ik ≠ x̄i

mk(si + s) , (4.11)

where x̄ik is i-th component of the centroid for class k :

x̄ik =
q

j‘Ck
xij

nk
, (4.12)

where x̄i is the i-th component of the overall centroid:

x̄i =
qn

j=1 xij

n
, (4.13)

and where si is the pooled within-class standard deviation for each variable:

s2
i = 1

n ≠ K

ÿ

k

ÿ

j‘Ck

(xij ≠ x̄ij)2, (4.14)

95



Chapter 4 CHP systems modelling

where s is the median value of the si over the set of variables, and mk =
Ò

1/nk + 1/n.
In the shrinkage, dÕ

ik is reduced by soft-thresholding:

dÕ
ik = sign(dik)(|dik ≠ �|)+, (4.15)

where t+ = t if t > 0 and zero otherwise. — is the shrinkage parameter. The
absolute value of each dÕ

ik is reduced by an amount —, and set to zero if the result
is less than zero. According to Eq. 4.11 the shrunken centroids are calculated as
follows:

x̄Õ
ik = x̄i + mk(si + s) dÕ

ik. (4.16)

As the parameter � increases, dik for some variables are reduced to zero for all
classes, and all centroids x̄ik are shrunk to x̄i as shown Figure 4.15. Those variables
are therefore e�ectively eliminated from the class prediction.

Figure 4.15: Progressive shrinkage of centroids towards the overall centroid ac-
cording to parameter —.

4.6.2 The hybrid method applied to steam turbine feature
selection

The exhaustive hybrid feature selection method proposed combines a clustering
filter based on the nearest shrunken centroids (NSC), with a wrapper around the
ELM algorithm. The method was applied to one of the systems in the CHP plant,
the steam turbine.We will now look at how the method was applied to this steam
turbine.
Firstly, a simple correlation study was performed with the aim of detecting strong
linear relationships between pairs of signals using the dataset containing 200 signals
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after data cleaning tasks. Signals with correlation coe�cients higher than ÎrÎ >
0.98 were removed from the original dataset. Taking into account the correlation
threshold, a total of 12 signals were eliminated. Henceforth a dataset with 188
signals was available on which to apply hybrid feature selection techniques.

The reduced set of 188 signals was further examined in order to gather informative
features.

The output of the steam turbine system is its power, and is a continuous variable.
Through a discretisation process, the range of continuous target variable values is
transformed into a set of intervals that are used as discrete classes. This enables
regression problems to be transformed into classification problems. The discretisa-
tion process used was the k≠means clustering method [212]. This method builds K
intervals that minimise the sum of the distances of each element of an interval to
the interval’s gravity center (the median is used as a centrality statistic). A total of
20 classes were generated.

The shrinkage was applied from — = 0 (no shrinkage and no signals eliminated),
up to — = 40, where only one variable was left with increments of — = 0.14 . The
training and testing root mean squared error (RMSE) were computed for di�erent
— values within this range. The collection of samples was randomly divided into a
training set consisting of 75% of the data, and a test set with the remaining 25%.
Training and prediction were evaluated using both the nearest shrunken centroids
clustering procedure, and the ELM method.

The nearest shrunken centroids classification of a test sample xú = (xú
1, xú

2, ..., xú
p) was

carried out by calculating the standardised distances of sample xú to each shrunken
centroid or prototype of class k:

”k(x) =
pÿ

i=1

(xú
i ≠ x̄Õ

ik)2

(si + s)2 . (4.17)

The prediction for sample xú was then made using a “winner-takes-all” rule that
chooses the class for which the distance ”k is the smallest.
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Table 4.7: Relevant variables obtained by means of the hybrid feature selection
method.

Variables Tag
Description Of The
Variables And Units

TMixt_EngB Cooling water temperature for the mixture in engine-B (ºC)
TEng_Room Gas temperature engines room (ºC)
PCrank_C Crankshaft pressure of engine C (bar)

FSteam Steam flow to the steam turbine (kg/h)
PCond Condenser pressure (bar)

PSt_Gen Steam generator pressure (bar)

ELM training and prediction were performed at each — value over the subset of
active variables. In each case, the average accuracy over 100 trials of ELM was com-
puted to provide more stable results and minimise the randomness e�ect. Figure 4.16
shows the shrinkage results where the ELM performs noticeably well, and some sig-
nificant variables are pointed out (Table 4.7). The minimum ELM test error was
reached for a shrinkage of — = 32.48, with a subset of only 3 variables (PCond,
FSteam, PSt_Gen) from the initial 188 variables. The zone with shrinkage between
— = 32.48 and — = 38.64 is very stable. Next, the variable PCond was eliminated
and the error increased slightly. We can conclude that the subset with lowest testing
error is the most suitable for generating a model to predict the power generated by
the steam turbine. The three variables obtained using the hybrid feature selection
method correspond to the variables initially selected as inputs for the steam turbine
system, thus verifying the fact, that the initial selection of variables was correct.
A compressive study of the ANN-BP and ANFIS modelling of the CHP plant can
be found in [213].

4.7 Conclusions

In this chapter di�erent approaches to modelling the whole CHP plant and slurry
drying process were presented. To facilitate this modelling, data cleaning tasks
were first applied to obtain a suitable dataset. Subsequently, the plant was split
into di�erent systems, and the input-output variables for each system were selected.
Then, for each system in the CHP plant and slurry drying process two models were
developed: one using ANN-BP and another using ANFIS. The results verified that
both the ANFIS and ANN-BP methods are powerful tools when modelling a complex
cogeneration plant and are able to make accurate predictions when dealing with
unseen data. However, when there is a high number of inputs, ANN-BP performs
better than ANFIS. As well as this, ANFIS models always have more complex
structures, and their linguistic interpretation is not possible because the number of
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Figure 4.16: ELM testing accuracy as a function of the shrinkage parameter —,
and the significant variables during the hybrid feature selection method.

rules obtained is very high. It can therefore be concluded that for this modelling
problem ANN-BP is a better option.
In order to overcome some of the ANN-BP drawbacks, such as overfitting and local
minima, the modelling of the CHP plant was developed using a new training algo-
rithm for neural networks: ELM. With the same dataset and variables, models were
also constructed using ANN-BP and SVM using a radial basis function kernel. The
experimental results show that ELM is by far the fastest algorithm, being hundreds
of times quicker than SVM and ANN-BP when to training the models. Also, it is
very stable over a wide range of hidden node numbers, with the quantity of nodes
being similar to that in ANN-BP and much lower than in SVM models. After this,
the e�ective electrical e�ciency of the real CHP process using ELM models was ob-
tained. The results verified that the monthly e�ective electrical e�ciency is greater
than 55% on average, then is sold to power utilities at a fixed premium price.
In the last section, a new hybrid feature selection method that combines a clustering
filter with ELM as wrapper was applied for the steam turbine system to check the
initial variable selection. The results verified that a subset comprising only three
variables was the most suitable, which is consistent with the variables selected in
the previous approaches.
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Chapter 5: Plant optimisation

5.1 Overview

This chapter describes the di�erent approaches used to optimise the cogeneration
plant and the slurry drying process modelled in the previous chapter. For this pur-
pose, firstly, the basics of mathematical optimisation, its formulation and principles
are introduced. Then, the di�erent optimisation techniques that exist are classified
and briefly described. Subsequently, the function to be optimised, the e�ective elec-
tric e�ciency, and its three di�erent objective functions are described: 1) the net
useful power output of the plant, 2) the quantity of natural gas consumed by the four
engines and 3) the useful thermal energy used in the slurry process. Additionally,
the selected decision variables used to change the values and optimise the plant are
explained.

Two di�erent optimisation approaches are used in this thesis: a single-objective
optimisation based on the gradient descent method (GDM), and a multi-objective
optimisation using a genetic algorithm (GA), specifically particular the well-known
non-dominated sorting genetic algorithm II (NSGA-II). The results of both ap-
proaches are explained and analysed.

5.2 Optimisation basics

Mathematical optimisation can be defined as the process of finding the “best” combi-
nation of available parameters (independent variables), which optimises (minimises
or maximises) certain given quantities, possibly subject to some restrictions to the
allowed parameter ranges. The general form of a single-objective optimisation prob-
lem is as follows: given a vector x = (x1, x2, ..., xn) œ RN of decision variables and
f (x) : Rn æ R being the objective function, x is found so that [56]:

min f (x) s.t. x œ X ™ Rn.
x

(5.1)
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The set X is the feasible set of decision vectors. The feasible set X is usually defined
by p equality constraints:

hj(x) = hj (x1, x2, ..., xn) = 0 1 Æ j Æ p, (5.2)

and m inequality constraints:

gi(x) = gi(x1, x2, ..., xn) Æ 0 1 Æ i Æ m. (5.3)

When the problem to be optimised has more than one objective function, the prob-
lem is called multi-objective-optimisation. The general form of multi-objective op-
timisation problems is to find x so that:

min [f1 (x), f2 (x), ..., fk (x)] s.t. x œ X ™ Rn,
x

(5.4)

where k Ø 2 is the number of objectives.

These objective functions form a mathematical description of performance criteria
that usually conflict with one another. Hence, the term optimisation in multi-
objective problems means finding a solution that gives the values of all the objective
functions acceptable to the decision maker. To do this, optimal decisions need to be
made in the presence of trade-o�s between two or more conflicting objectives. Most
real-word problems involve more than one objective, making multiple conflicting
objectives interesting to solve as multi-objectives optimisation problems. An exam-
ple of practical real-word multi-objective optimisation is a route by car involving
two objectives: to minimise both the time needed to make the trip and the fuel
consumption. These two objectives are in conflict. If time is decreased, the speed
during the trip has to be increased and consequently, fuel consumption increases
too.

An element which satisfies all the constraints, xú œ X , is called a feasible solution
(or feasible decision) [214]. A vector [f1 (xú), f2 (xú), ...fk (xú)] œ Rk for a feasible
solution, xú, is the outcome. The feasible region is the set of all the elements that
satisfy all the constraints. When objectives are in conflict the notion of Pareto
optimal solutions must be introduced [215]. An xú œ X vector is said to be a
Pareto optimal for a multi-objective problem, if all other x œ X vectors have a
higher value for at least one of the objective functions fl, with l = 1, 2, ..., k, or have
the same value for all the objective functions. A feasible solution x1 œ X is said to
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be (Pareto) dominant over another solution x2 œ X, (i.e. x1 ª x2) if:

fl(x1) Æ fl(x2) for all l œ {1, 2, ..., k} and
fr(x1) < fr(x2) for at least one r œ {1, 2, ..., k}.

(5.5)

The set of Pareto optimal outcomes is called a Pareto front. Figure 5.1 shows the
Pareto front for the previous example of the road trip optimisation problem with
two objectives (minimisation of both time and fuel) and the trade-o� between the
two objectives. Once the Pareto front has been found, the goal is to find a point
along the Pareto Front that provides suitable trade-o�s that satisfy the di�erent
objectives, and then to select a single solution that satisfies the preferences of the
decision maker.

Figure 5.1: Pareto front for the optimisation problem of minimising time and fuel
consumption for a journey.

Optimisation problems can be classified according to di�erent criteria: type of con-
straints (constrained vs. unconstrained optimisation problems), nature of design
variables (integer programming problem vs real-valued programming optimisation
problem), nature of the equations involved and type (linear programming vs. non-
linear programming optimisation problem), or number of objective functions (single-
objective vs. multi-objective optimisation problem).

There are many optimisation methods available for solving the above problems and
these can be classified into two distinct groups: conventional and advanced tech-
niques. We will examine both groups in the following paragraphs [216, 217]:
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5.2.1 Conventional techniques

Conventional optimisation techniques are useful for single as well as multi dimen-
sional optimisation problems. They are helpful for finding the optimal solution for
continuous and di�erentiable functions. Most of these methods are analytical and
make use di�erential calculus techniques.

• Direct search methods: direct methods are a set of methods that do not re-
quire the evolution of derivatives at any point [218]. The term “direct search”
describes the sequential examination of trial solutions involving comparing
each trial solution with the “best” obtained up to that time, together with a
strategy for determining what the next trial solution will be (as a function of
earlier results). Direct methods can be applied almost immediately to many
nonlinear optimisation problems

• Linear programming: a linear programming problem may be defined as the
problem of maximising or minimising a linear function subject to linear con-
straints. The constraints may be equalities or inequalities [219]. One of the
most widely-used linear programming algorithms is the simplex algorithm. It
provides a systematic way of examining the vertices of the feasible region to
determine the optimal value of the objective function [220].

• Interior points methods: this solves linear and non-linear problems and achieves
optimisation using an iterative method that moves within the feasible region
[221].

• Derivative-based optimisation methods: these are a set of algorithms that re-
quire the evaluation of first derivatives to determine search directions for max-
imising or minimising a function. Steepest descent methods, Newton methods
and the gradient descent method are examples of derivative-based optimisa-
tion methods. The gradient descent method (GDM) is simple and e�ective
and is used in this thesis; it is therefore, explained in the next section.

5.2.1.1 Gradient descent method

GDM is one of the derivative-based optimisation methods mentioned above that
use knowledge of derivative information (gradient) to determine search directions
according to an objective function.

Given an objective function f and a n-dimensional vector x = (x1, x2, ..., xn) œ Rn,
the objective is to find a (possibly local) minimum point x = xú that minimizes
f(x). GDM is an iterative method that e�ciently explores the input space [127].
The next point xk+1 during the search is determined by a step down from the current
point xk in a direction vector d:

xk+1 = xk + ÷kdk (k = 1, 2, 3, ...), (5.6)
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where k denotes the current iteration number and ÷ is the step size. The xk is
intended to converge to a (local) minimum xú

k. The iterative descent methods com-
pute at each step (k) the direction d and the step size ÷. The next point xk+1 should
satisfy the following inequality:

f (xk+1) = f(xk + ÷d) < f(xk). (5.7)

The direction d is determined on the basis of the gradient g(x) of the objective func-
tion, and is obtained with the first derivatives of the objectives function. The gradi-
ent of an objective function f(x) for a n-dimensional vector x = (x1, x2, ..., xn) œ Rn

is defined as:

d(x) = g(x) = Òf(x) =
A

ˆf(x)
ˆx1

,
ˆf(x)
ˆx2

,
ˆf(x)
ˆx3

, ...,
ˆf(x)
ˆxn

B

. (5.8)

Numerical di�erentiation is a useful procedure for obtaining the first derivatives
when the function is not available or even if there is an underlying function but it
is only interesting to know its values for a sampled data set without knowing what
the function is itself. The first derivative of a function f in a uni-dimensional vector
x is defined as:

f Õ = lim
hæ0

f(x + h) ≠ f(x)
h

, (5.9)

where h represents a small change in x.
An example of the GDM process is illustrated in Figure 5.2 where a 2-dimensional
projection of a function f(x) is shown. The blue curves are the contour lines, i.e.,
the regions where the value of the objective function f(x) is constant. The red arrow
originating at point x0 shows the direction of the negative gradient at that point.
The (negative) gradient at a point is orthogonal to the contour line going through
that point. As can be seen, the gradient descent leads to the point where the value
of the function f(x) is minimal.
The ideal objective for the GDM is to find a value of x that satisfies:

g(x) = ˆf(x)
ˆx = 0. (5.10)

However, most of the time, is not possible to solve this equation analytically. The
GDM procedure is repeated until one of the following stopping criteria is achieved:
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Figure 5.2: Directions from the starting point x0 to x4 applying the GDM.

• The value of the objective function is su�ciently small.
• The size of the gradient vector is smaller than a specified value.
• A given computing time is exceeded.
• A stop number of iterations is reached.

5.2.2 Advanced optimisation techniques

Over the past several years, many optimisation methods based on the observation
of certain natural phenomena have been proposed and evaluated. Most of these
methods use statistical concepts and random numbers to advance the search toward a
solution [222]. Some of these optimisation techniques have been explained in Chapter
3 as simulated annealing, particle swarm optimisation, ant colony optimisation, and
one of the most popular (and also used in this thesis): evolutionary algorithms.
Evolutionary algorithms are search methods inspired by the process and mechanisms
of biological evolution. The common underlying idea behind all these techniques is
the same: given a population of individuals (i.e., possible solutions) environmental
pressure leads to natural selection (survival of the fittest). Genetic algorithms are
probably the most popular technique in evolutionary algorithms and were explained
in a general way in Section 3.6, including the genetic algorithm used in this work,
the non-dominated sorting genetic algorithm II (NSGA-II). This algorithm is briefly
explained below.
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5.2.2.1 Non-dominated Sorting Genetic Algorithm II

NSGA-II is an improved version of the well-known “Non-dominated Sorting Genetic
Algorithm” (NSGA) based on the work of Prof. Kalyanmoy Deb for solving single
and multi-objective optimisation problems [2]. NSGA was generally criticised for
its computational complexity, lack of elitism and for a priori choosing the optimal
parameter value for the sharing parameter [223]. NSGA-II provides a solution for
all these mentioned shortcomings.
In NSGA-II, initially a random parent population is created (P0). The population is
sorted based on the domination concept. An individual is said to dominate another
if its objective functions are no worse than the other and at least one of its objective
functions is better than in the other, i.e., if it satisfies Eq.5.5. The first front (F1)
is a completely non-dominant set in the current population, the second front (F2)
is dominated by the individuals in the first front only, and so each front progresses.
Each solution is assigned a rank (or fitness), irank, equal to its non-domination level
(for the F1 front irank = 1, for the F2 front irank = 2, and for the Fk front irank = k).
Thus, minimisation of fitness is assumed. At first, the usual binary tournament
selection, recombination, and mutation operators are used to create an o�spring
population Q0 of size N . Since elitism is introduced by comparing the current
population with the previously found best non-dominated solutions, the procedure
is di�erent after this initial generation.

Figure 5.3: NSGA-II scheme procedure [2] .

Figure 5.3 shows the process for the i ≠ th generation to illustrate the procedure.
Initially a combined population using the current population with previously found
best nondominated solutions Rt = Pt fi Qt is formed. The population Rt is size 2N .
Then, the population Rt is sorted according to non-domination (F1,F2, F3, ...). Since
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all previous and current population members are included in Rt, elitism is ensured.
Now, solutions belonging to the best non-dominated set F1 are the best solutions
in the combined population and must be emphasised more than any other solution
in the combined population. If the size of F1 is smaller than N , all members of
the set F1 for the new population Pt+1 are selected . The remaining members of
the population Pt+1 are chosen from subsequent non-dominated fronts in the order
of their ranking irank. Thus, solutions from set F2 are chosen next, followed by
solutions from set F3, and so on, until no further sets can be accommodated.
Defining Fl as the last nondominated set beyond which no other set can be accom-
modated, the count of solutions in all sets from F1 to Fl would be larger than the
population size. However, the number of population members has to be exactly N .
In this case, the population is sorted using the solutions of the last Fl front according
to the crowded-comparison operator ªn.

Figure 5.4: Crowding distance. Points marked in filled circles are solutions from
the same nondominated front [2].

The crowded-comparison operator ensures diversity among population members us-
ing two parameters: the non-domination rank (irank) previously mentioned and the
crowding distance (idistance). The crowding distance serves as an estimation of the
perimeter of the cuboid formed by using the nearest neighbours as the vertices. The
crowding distance of a point, i, in the objective space is equal to the sum of two
average side lengths in a rectangle composed of adjacent points i ≠ 1 and i + 1, as
shown in Figure 5.4. A large average crowding distance will result in better popu-
lation diversity. The crowded-comparison operator (ªn) defines a partial order ªn

as

i ªn j if (irank < jrank)
or ((irank = jrank)

and (idistance > jdistance)).
(5.11)

Eq.5.11 means that between two solutions with di�erent non-domination ranks, the
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solution with the lower (better) rank is preferred. Otherwise, if both solutions belong
to the same front, then the solution located in a lesser crowded region is preferred.

Thus, when the population size is larger than N , the last Fl front is sorted according
to the crowded-comparison operator ªn in descending order and the best solutions
needed to fill all the population slots are chosen. After sorting the last front Fl,
the new population Pt+1 is obtained. This population Pt+1 of size N is now used
for selection, crossover, and mutation to create a new population Qt+1 of size N .
It is important to note that a binary tournament selection operator is used, but
the selection criterion is now based on the crowded-comparison operator. The set
of non-dominated solutions after all the generations of the procedure is the Pareto
Front.

5.3 CHP plant optimisation

Next, the objective functions for optimising the cogeneration process and the slurry
drying process are introduced and the di�erent approaches and results obtained are
explained. The aim of cogeneration optimisation is to improve plant e�ciency. The
ANN and ANFIS models selected previously, in Section 4.3, for each system of the
plant, were used to simulate the process.

In the present case, the optimisation problem is actually a multi-objective optimi-
sation problem in which three functions need to be optimised: WE, the net useful
power output needs to be maximised (Eq.4.7), QF UEL, the total quantity of natural
gas consumed by the four engines needs to be minimised (Eq.4.8), and QT H , the
useful thermal energy used in the slurry process needs to be maximised (Eq.4.9).

However, since the e�ciency of CHP plants is measured in terms of e�ective electrical
e�ciency (ÁEE), the three above objectives can be formulated as a single optimisation
problem:

ÁEE = WE

QF UEL ≠ QT H

–

100. (5.12)

This expression is explained in depth in Section 4.5.

After carefully studying the process, 12 variables from the entire cogeneration pro-
cess and slurry process were selected as decision variables in the optimisation process.
The decision variables are input parameters whose values can be adjusted to improve
the value of the above objectives. These variables are highlighted with a grey circu-
lar background in Figure 2.7 to identify where are they located in the cogeneration
plant. Figure 5.5 shows the di�erent energy systems of the process with their key
parameters and their relationships with the three objective functions.
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Figure 5.5: Scheme for the energy systems and their relationship with the objective
functions.

To provide reasonable and realistic optimisation, the decision variables must sat-
isfy the following constraints imposed by the plant owner (as for TA/B/C/D_1 and
TA/B/C/D_2 ), or obtained from the real operation variables ranges as for the rest of
the decision variables:

• TA/B/C/D_1 and TA/B/C/D_2 (8 intake air temperatures, 2 for each engine):
30 Æ T Æ 38ºC.

• TH2O_EX(exchange water temperature): 61 Æ TH2O≠Ex Æ 65ºC.
• PSt_Gen(steam generator pressure): 20 Æ PSt≠Gen Æ 22bar.
• PEv(evaporator pressure): 0.13 Æ PEv Æ 0.17bar.
• TH2O_SH (superheated water temperature ): 110 Æ T Æ 125ºC.

Below, the GDM single-objective and NSGA-II multi-objective optimisation ap-
proaches are explained and the results obtained are discussed.

5.4 GDM-based optimisation

In this section, the GDM technique is used to optimise the cogeneration process.
The gradient descent optimisation algorithm calculates the values for the decision
variables in order to obtain the maximum ÁEE for each sample of the dataset being
optimised. As the three objective optimisation functions (WE, QF UEL, and QT H )
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(a) TH2O_SH (superheated water temperature ).

(b) PEv(evaporator pressure).

(c) TH2O_EX(exchange water temperature).

(d) TB1_D (air intake temperature engine D bank 1).

Figure 5.6: Real values (dotted line) versus optimised values (continuous line) for
the selected decision variables using GDM.
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are evaluated using Eq.5.12, it can be stated as a single objective problem. The
experiments in this approach were carried out using the OPTIBAT® Trainer tool
[205].

Figure 5.7: Output for the slurry process model with and without optimisation
(FEv) using GDM.

The GDM optimisation is performed through an exhaustive search, which starts
with an initial set of values for the variables and iteratively moves towards a set of
values that optimises the cost function using Eq.5.6 to obtain the next point and
Eq.5.8 to calculate the direction on the basis of the gradient, as was explained in
Subsection 5.2.1.1.
To carry out the optimisation experiments, a subset with data corresponding to
one week was selected from the one-year-long dataset and was then resampled at
a sample time of ten minutes, (i.e., the values of the variables were read every ten
minutes) with the aim of obtaining su�cient data to procure useful results and not
spending too long to get them. The one-week dataset was arbitrarily selected in
February.
Values for the optimum decision variables were calculated for each sample in the
week-long dataset, as shown in Figure 5.6. As all the air intake temperatures were
very similar, only one is shown here. Also, the steam pressure in the steam generator
is not included because the optimised and real values were practically in agreement
for every dataset.
Figure 5.6a shows the temperature of the superheated water used in the slurry drying
process and it can be observed that, in most cases, the optimised values were slightly
higher than the real values measured in the subset. Figure 5.6b shows the real
evaporator pressure and how the optimisation decreased the pressure, thus helping
to evaporate more slurry. Similarly, the optimisation decreased the temperature of
the exchange water in comparison with the real values (Figure 5.6c). Moreover, with
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(a) Prediction of the power generated by the four
engines and the steam turbine with and without
recommendations (WE).

(b) Prediction of the quantity of fuel used by the
four engines with and without recommendations
(QFUEL).

(c) Prediction of the useful thermal energy used in
the slurry process with and without recommenda-
tions (QTH).

(d) Prediction for the e�ective electrical e�ciency
(ÁEE) with and without recommendations.

Figure 5.8: Terms of the multi-objective function and the multi-objective function
with and without recommendations using GDM. 113
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regard to the air intake temperatures for bank 1 in engine D, the optimised values
were generally equal to the real values, except when the optimised values were 30ºC.
As noted above, a system constraint was that the air intake temperature had to be
between 30 and 38 ºC. Therefore, when the real value was lower than 30 ºC, the
optimised values were, at least, at the lower limit (Figure 5.6d).
Optimisation causes some of the decision variables to change their values and, there-
fore some of the model’s outputs also change. For example, the system whose output
experienced the biggest change was the slurry process. This is shown in Figure 5.7
which predicts that a significantly greater amount of slurry would be treated after
the optimisation process. This is consistent with the optimised values for the super-
heated water temperature, the pressure in the evaporator and the exchange water
temperature, because these all favour an increase in the volume of slurry treated.
Finally, Figure 5.8 represents each term in the ÁEE and the e�ective electrical e�-
ciency, with and without optimisation of the decision variables. The optimisation
causes some of the decision variables to change their values and, therefore, the op-
timisation procedure achieves an average increase in ÁEE of 3.05% with an average
of 69.4% of ÁEE. This improvement mainly derive from the increased the useful
thermal energy used in the slurry drying process, meaning the CHP plant can treat
a greater quantity of slurry.
Although the results obtained using the GDM approach improve the e�ective electri-
cal e�ciency of the process, the optimisation problem is also going to be considered
here using the NSGA-II algorithm explained previously from a multi-objective per-
spective, with three objective functions (WE, QF UEL, and QT H ).

5.5 NSGA-II optimisation

The genetic optimisation algorithm calculates the values for the decision variables in
order to maximise the net useful power output WE, to minimise the total natural gas
consumed by the four engines QF UEL, and to maximise the useful thermal energy
used in the slurry process QT H . The dataset being optimised is the same as that used
in the GDM approach, with data from one week and a sample time of 10 minutes.
The GA optimisation utilises the NSGA-II algorithm, explained above, using the
Matlab® Global Optimisation Toolbox [224]. In particular, the gamultiobj function
is used, where the number of individuals is the population, i.e. the population
size is 15 · number of decision variables (15 · 12 = 180), the maximum number
of generations before the algorithm stops are 200 · number of decision variables
(200 · 12 = 2400), and the crossover fraction is 0.8. The output parameters are the
decision variable values for the Pareto front and the corresponding values of the 3
objectives.
As explained previously, NSGA-II begins by creating a random initial population.
Each individual represents a point in a search space and a possible solution. The
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algorithm then creates a sequence of new populations called generations. For each
new generation, the algorithm uses the individuals in the current generation to
create the next population through a process of evolution via selection, crossover,
and mutation. Over successive generations the NSGA-II will converge towards the
global (or near global) optimum.

The values of the three objectives for these decision variables constitute the Pareto
front. From this set of solutions for the Pareto Front, the user has to select the proper
final solution based on knowledge of the process, requirements, and preferences. For
representation and analysis purposes, the average value of each decision variable
for all the generations at each point of the dataset being optimised was obtained
and selected as the optimum value for each decision variable in this sample of the
dataset. Similarly, the average values of the decision variables are considered the
proper values to be represented in the optimisation procedure.

The values for the optimum decision variables were calculated for each sample in the
dataset being optimised with the NSGA-II, as shown in Figure 5.9. In Figure 5.9a
the temperature of the superheated water used in the slurry drying process is shown,
and it can be seen that, in most cases, the optimised values were higher than the
real values measured in the subset, as in the GDM approach. Figure 5.9b shows the
real evaporator pressure and how optimisation was generally around 0.145-0.155 bar,
i.e., lower than the real values, as in the GDM approach. These optimised values
are consistent with the knowledge of the process, because by increasing the temper-
ature of the superheated water and decreasing the evaporator pressure, the more
slurry can be treated. The temperature values for the exchange water were higher
than real values most of the time (Figure 5.9c), in contrast to the GDM approach.
From knowledge of the process, if the exchange water temperature decreases, engine
refrigeration is better, although a few degrees Celsius di�erence in the exchange wa-
ter is not relevant in engine refrigeration and performance. However, the exchange
water temperature is used to refrigerate the treated slurry too, and the colder the
water, the more slurry is treated. This means that GDM optimisation results are
more consistent with the results expected for the exchange water temperature than
NSGA-II.
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(a) TH2O_SH (superheated water temperature).

(b) PEv(evaporator pressure).

(c) TH2O_EX(exchange water temperature).

(d) TB1_D (air intake temperature engine D bank 1).

(e) PSt_Gen(Steam generator pressure).

Figure 5.9: Real values (dotted line) versus optimised values (continuous line) for
the selected decision variables using NSGA-II.
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Similarly, with regard to the air intake temperatures for bank 1 in engine D, the
optimised values were generally higher than the real values, being around 35ºC
(Figure 5.9d). As all the air intake temperatures were very similar, only one is
shown here. These optimisation values are not the same for both approaches (as
mentioned previously, in the GDM approach only the points outside the of constraint
values changed in the optimisation), but these di�erences do not a�ect engine per-
formance significantly while the values are between the constraint values for the air
intake temperatures (30ºC - 38ºC) and this occurs in both optimisation approaches:
GDM and NSGA-II. For the steam generator pressure, the optimised values are very
stable throughout the week, with values between 21-21.25 bars, unlike in the GDM
approach where the optimisation agreed with real values. In the steam turbine sys-
tem, if the steam generator pressure increases the power generated by the steam
turbine increases too.

Figure 5.10: Output for the slurry process model with and without optimisation
(FEv) using NSGA-II.

The optimisation causes some of the decision variables to change their values and,
therefore some of the model’s outputs also change. The system whose output expe-
rienced the biggest change was the slurry process, as shown in Figure 5.10. Finally,
Figure 5.11 illustrates each term in the ÁEE, with and without optimisation of the
decision variables. In the NSGA-II approach, the optimisation causes all of the
decision variables to change their values and, therefore the procedure achieves an
average increase in ÁEE of 4.16% with an average of 70.5% of ÁEE, slightly better
than with the GDM approach. As in the GDM approach this improvement is mainly
derived from the increase in the useful thermal energy used in the slurry drying pro-
cess, which means that the CHP plant can treat a greater quantity of slurry. With
the NSGA-II optimisation, the fuel used by the engines decreases more than in the
GDM optimisation, although the power generated by the four engines and the steam
turbine increases slightly.
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(a) Prediction of the power generated (WE) by the four en-
gines and the steam turbine with and without recommen-
dations using NSGA-II.

(b) Prediction of the quantity of the fuel used (QFUEL) by
the four engines with and without recommendations.

(c) Prediction of the useful thermal energy used in the slurry
process (QTH) with and without recommendations.

(d) Prediction for the e�ective electrical e�ciency (ÁEE) with
and without recommendations.

Figure 5.11: Terms of the multi-objective function and multi-objective function
(ÁEE) with and without recommendations using NSGA-II.
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A closer analysis of the Pareto front reveals possible explanations for the process
performance observed. As explained previously, a Pareto front is a collection of all
the non-dominated solutions that were retrieved from the final populations during
the study. Figure 5.12 shows the Pareto front for the three objective functions of the
cogeneration plant using the NSGA-II approach. As can be seen , the shape of the
front suggests that most of the Pareto optimal points lie on a plane. From the plane,
it can be concluded for the optimal points that the useful thermal energy used in
the slurry process increases when the power generated by the engines and the steam
turbine increases, and when the fuel used by the engines also increases. This result
is consistent with that expected from the process performance. Interestingly, the
Pareto front is linear, whereas the problem itself is not.

Figure 5.12: Pareto front for the three objectives of the cogeneration optimisation
problem.

5.6 Conclusions

This chapter looks at the optimisation of the cogeneration plant. Two di�erent
optimisation approaches were used: a single-objective optimisation using GDM,
and a multi-objective optimisation using NSGA-II.

The optimisation approaches provide encouraging results with an average increase
of 3.05% optimisation of the energy e�ciency with GDM, and 4.16% using NSGA-
II. These percentages are a good result when dealing with very large, high-cost
industrial processes, such as the CHP plant considered in this work. The dynamic
optimisation has the advantage of adaptating to changes in atmospheric conditions
and working conditions obtaining the maximum energy e�ciency in each time-step.
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Although the variation for some decision variables compared with real values was
di�erent depending on the optimisation algorithm, as for the exchange water tem-
perature variable, the variations for the decision variables most related to the slurry
process agree for both approaches: the superheated water temperature and the evap-
orator pressure. This is important because in both approaches the improvement in
energy e�ciency is produced mainly by an increase in the amount of slurry treated.
Comparing the changes in the decision variables for both approaches, GDM and
NSGA-II (shown in Figure 5.6 and Figure 5.9), it can be seen that the optimisation
values for the decision variables in the NSGA-II approach are very abrupt compared
with the GDM approach. This implies that if the optimisation were carried out in
the CHP process, these could force the system and cause problems. In summary,
the NSGA-II optimisation provides a better average increase in the ÁEE but the
optimisation for the decision variables are abrupt. On the other hand, the GDM
optimisation results provide a slightly lower average increase in the ÁEE but the
optimisation values for the decision variables are more gentle.
From the Pareto front analysis obtained for the three objective functions using the
NSGA-II approach, it can be concluded that most of the optimal points of the front
lie on a plane. The front reveals for the optimal points of the objective functions
a direct relationship between the three objective functions: the net useful power
output WE, the total quantity of natural gas consumed by the four engines QF UEL,
and the useful thermal energy used in the slurry process QT H .
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Chapter 6: Final conclusions and fu-
ture work

This thesis presents several computational intelligence approaches for modelling and
optimising a complex real-life cogeneration process using real data from the whole
process. The main contributions of the thesis are:

• CI algorithms have been applied to both modelling and optimization of a CHP
process.

• The modelling process is performed for all the components of a CHP process.
• Data from a real plant have been used.
• The optimisation has been carried out for a multi-objective function.
• It is intended for a continuous on-line operation of the plant.

The main conclusions and future work proposed in order to continue this research
are enumerated and discussed below.

6.1 Conclusions

After thorough data cleaning to obtain a suitable process dataset and selection of
input-output variables for each system using a combination of mathematical tech-
niques and in-depth knowledge of the process and its systems, di�erent modelling
approaches were developed. The main conclusions from the modelling are:

• The first approach used to model the combined heat and power (CHP) plant
involved an artificial neural networks trained with back-propagation (ANN-
BP) as well as with an adaptive neuro-fuzzy inference system (ANFIS). The
modelling results demonstrated that both algorithms were, in general, very
accurate. However, when the number of inputs was high, as in the case of
the plant’s engines , ANN-BP performed better than ANFIS. Even if the
number of rules was increased, ANN-BP proved better at modelling engine
systems. Taking into account the results obtained and the fact that ANFIS
has a more complex structure and poor linguistic interpretation ability, it can
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be concluded that for this modelling problem ANN-BP is a better option than
ANFIS.

• In order to overcome some disadvantages of ANN-BP, such as overfitting and
local minima, the modelling of the CHP plant was later developed using a new
training algorithm for neural networks: extreme learning machine (ELM). For
comparison purposes, models with similar parameters were also constructed
using ANN-BP and support vector machine (SVM) with a radial basis function
kernel. The experimental results showed that ELM was by far the fastest
algorithm, being hundreds of times quicker than SVM and ANN-BP when
training the models. Also, it was very stable over a wide range of hidden node
numbers, with the quantity of nodes being similar to that in ANN-BP and
much lower than in SVM models.

• To check the initial variable selection, a new hybrid feature selection method
that combining a clustering filter with ELM as wrapper was applied to the
steam turbine system. The results verified that a subset comprising only three
variables was the most suitable. This result was consistent with the variables
selected in previous approaches.

The optimisation of the cogeneration plant was dealt with using the previously de-
veloped cogeneration modelling. The function to be optimised was the e�ective
electrical e�ciency ÁEE , which has three di�erent objective functions: 1) the net
useful power output of the plant, WE, 2) the quantity of natural gas consumed by
the four engines, QF UEL, and 3) the useful thermal energy used in the slurry pro-
cess, QT H . Two di�erent optimisation approaches were employed: a single-objective
optimisation using the gradient descent method (GDM), and a multi-objective opti-
misation using a non-dominated sorting genetic algorithm II (NSGA-II). The main
conclusions from the optimisation are:

• Comparing the changes in the decision variables for both approaches (GDM
and NSGA-II) it can be seen that the optimisation values for the decision
variables in the NSGA-II approach were very abrupt compared with the GDM
approach. This implies that if the optimisation were initiated in the CHP
process, it could force the system and cause problems.

• The variations in the decision variables most closely related to the slurry pro-
cess agreed in both approaches. This is important because in both procedures
the improvement in energy e�ciency was produced mainly by an increase in
the amount of slurry treated.

• The optimisation approaches provided encouraging results with an average
increase of 3.05% in energy e�ciency with GDM, and 4.16% using NSGA-II.
These percentages represent significant results when dealing with very large,
high-cost industrial processes, such as the CHP plant considered in this work.
Dynamic optimisation has the advantage of adapting to changes in atmospheric
and working conditions, obtaining the maximum energy e�ciency in each time-
step.
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• In summary, NSGA-II optimisation provides a better average increase in the
ÁEE but the optimisation for the decision variables was abrupt. On the other
hand, the GDM optimisation involves a slightly lower average increase in the
ÁEE but more gradual values for the decision variables.

• From the Pareto front analysis obtained for the three objective functions using
the NSGA-II approach, it can be concluded that most of the optimal points
from the objective functions of the front lie on a plane. The front reveals a
direct relationship between the optimal points of the three objective functions:
the net useful power output, WE; the total quantity of natural gas consumed
by the four engines, QF UEL; and the useful thermal energy used in the slurry
process QT H .

6.2 Future work

Deep learning is a new area of computational intelligence with deep architectures
like deep neural networks that have many layers of hidden units and it also allows
many more parameters to be used before over-fitting occurs. Some researchers are
looking at with deep neural networks applied to industrial purposes [225, 226], and
it could be interesting to use these to model the di�erent systems and the energy
e�ciency of the cogeneration process used in this work.
Another natural continuation of this study would be to focus on the most recent
computational intelligence techniques for optimising CHP systems. A proper exam-
ple is the electrostatic potential energy evolutionary algorithm [227] (ESPEA). The
ESPEA is a non-dominated sorting type algorithm that is characterised by provid-
ing an excellent distribution of the individuals in the final population. The main
di�erence in the ESPEA compared with NSGA-II is that in the ESPEA algorithm
the population diversity is preserved using the physical phenomena of electrostatic
potential energy. Some initial tests have been developed in [228] for the CHP process
in this study, with encouraging results.
In addition, for the real-life cogeneration plant used in this thesis and taking into
account the model prototypes for the di�erent systems and the optimisation simula-
tions, future work should consider real-time plant optimisation for maximum energy
e�ciency. This would be achieved by installing a prototype in the Optimitive soft-
ware and connecting via OPC to close the plant’s control loop. The main advantage
of the proposed approach is that no new investment or changes in the existing plant
would be required.
Unfortunately, the CHP plant used in this thesis is no longer working due to a
change in the legislation governing premium price in cogeneration plants. Despite
this, the method applied for modelling and optimising the CHP process proposed
herein could be adapted and extrapolated to other industrial processes with high
energy consumption like, for example, paper factories, other energy facilities, or
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cement plants. The dynamic optimisation used in this work has the advantage of
adapting to changes in atmospheric conditions and working conditions, therefore
obtaining the maximum energy e�ciency at each time-step.
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Appendix I: cogeneration variables,
units, and smoothing

TAG Description Units Smoothing
(Parameter)

DivA Diverter engine-A % None

DivB Diverter engine-B % None

DivC Diverter engine-C % None

DivD Diverter engine-D % None

FCond Condensate e�uent flow kg/h Exponential smooting
(– = 0.3)

FEv Evaporator feed flow kg/h Moving average
(window=200)

FFlueGas Flue gases flow kg/h Exponential smooting
(– = 0.5)

FGas_A Natural gas flow engine-A m3/h Exponential smooting
(– = 0.2)

FGas_B Natural gas flow engine-B m3/h Exponential smooting
(– = 0.2)

FGas_C Natural gas flow engine-C m3/h Exponential smooting
(– = 0.2)

FGas_D Natural gas flow engine-D m3/h Exponential smooting
(– = 0.2)

FSteam Steam flow to steam turbine kg/h Exponential smooting
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(– = 0.1)
FH2O Water flow to feed the kg/h Exponential smooting

steam generator (– = 0.2)

HAmb Ambient humidity % None

LHV Low Heating Value kWh/m3 None

PCond Condenser pressure bar Exponential smooting
(– = 0.2)

PCrank_C Crankshaft pressure of bar Exponential smooting
Engine-C (– = 0.1)

PEv Evaporator pressure bar Exponential smooting
(– = 0.2)

POWA Rated power engine-A % Exponential smooting
(– = 0.1)

POWB Rated power engine-B % Exponential smooting
(– = 0.1)

POWC Rated power engine-C % Exponential smooting
(– = 0.1)

POWD Rated power engine-D % Exponential smooting
(– = 0.1)

POWST Power of the ST kW Exponential smooting
(– = 0.1)

PSt_Gen Steam generator pressure bar Exponential smooting
(– = 0.1)

QFuel Natural gas consumed by kW None
the engines

QTH Heat used in the slurry kW None
process

TAmb Ambient temperature ° C None

TB1_A Air intake temperature ° C Exponential smooting
engine-A bank1 (– = 0.2)
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TB1Out_A Air output temperature ° C Exponential smooting
engine-A bank1 (– = 0.2)

TB2_A Air intake temperature ° C Exponential smooting
engine-A bank2 (– = 0.2)

TB1_B Air intake temperature ° C Exponential smooting
engine-B bank1 (– = 0.2)

TB2_B Air intake temperature ° C Exponential smooting
engine-B bank2 (– = 0.2)

TB1_C Air intake temperature ° C Exponential smooting
engine-C bank1 (– = 0.2)

TB2_C Air intake temperature ° C Exponential smooting
engine-C bank2 (– = 0.2)

TB1_D Air intake temperature ° C Exponential smooting
engine-D bank1 (– = 0.2)

TB2_D Air intake temperature ° C Exponential smooting
engine-D bank2 (– = 0.2)

TBank1_A Gases temperature ° C Exponential smooting
engine-A bank 1 (– = 0.1)

TBank2_A Gases temperature ° C Exponential smooting
engine-A bank 2 (– = 0.1)

TBank1_B Gases temperature ° C Exponential smooting
engine-B bank 1 (– = 0.1)

TBank2_B Gases temperature ° C Exponential smooting
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engine-B bank 2 (– = 0.1)

TBank1_C Gases temperature ° C Exponential smooting
engine-C bank 1 (– = 0.1)

TBank2_C Gases temperature ° C Exponential smooting
engine-C bank 2 (– = 0.1)

TBank1_D Gases temperature ° C Exponential smooting
engine-D bank 1 (– = 0.1)

TBank2_D Gases temperature ° C Exponential smooting
engine-D bank 2 (– = 0.1)

TEng_Room Gas temperature engines room ° C Exponential smooting
(– = 0.2)

TH2O_Ex Exchange water temperature ° C Exponential smooting
(– = 0.2)

TH2O_SH Superheated water temperature ° C Exponential smooting
(– = 0.1)

TH2O_TH Water temperature ° C Exponential smooting
tubular heater (– = 0.1)

TH2O_Tow Water temperature ° C Exponential smooting
cooling tower (– = 0.2)

TMixt_EngA Cooling water temperature for ° C Exponential smooting
the mixture in engine-A (– = 0.2)

TMixt_EngB Cooling water temperature for ° C Exponential smooting
the mixture in engine-B (– = 0.2)

TMixt_EngC Cooling water temperature for ° C Exponential smooting
the mixture in engine-C (– = 0.2)
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TMixt_EngD Cooling water temperature for ° C Exponential smooting
the mixture in engine-D (– = 0.2)

TST_Cond Steam temperature ° C Exponential smooting
input condenser (– = 0.1)

WE Power generated by kW None
the engines and the ST

ÁEE E�ective electrical e�ciency % None
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Appendix IV: Nomenclature

ÁEE E�ective Electric E�ciency

CO2 Carbon Dioxide

ACOGEN Spanish Association for the Promotion of Cogeneration

ACO Ant Colony Optimization

ANN-BP Artificial Neural Network trained with Back Propagation

ANNs Artificial Neural Networks

ART Adaptive Resonance Theory

BP Back Propagation

CHP Combined Heat and Power

CI Computational Intelligence

COGEN European Association for the Promotion of Cogeneration

DL Deep Learning

DNN Deep Neural Network
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Nomenclature

EAs Evolutionary algorithms

EC European Community’s

EED Energy E�ciency Directive

EFs Evolutionary Fuzzy Systems

ELMs Extreme Learning Machines

EPA United States Environmental Protection Agency

ESPEA Electrostatic Potential Energy Evolutionary Algorithm

EU European Union

FERC Federal Energy Regulatory Commission

FISs Fuzzy Inference Systems

FPSO Fuzzy Particle Swarm Optimization

GAs Genetic Algorithms

GDM Gradient Descent Method

GFSs Genetic Fuzzy Fystems

LSE Least Squares Estimation

MAE Mean Absolute Error

MF Membership Function

MLP Multiple Layer Perceptron
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Nomenclature

NEs Neuro Evolutionary Systems

NFs Neuro-Fuzzy Systems

NSGA-II Nondominated Sorting Genetic Algorithm-II

NSGA Non-dominated Sorting Genetic Algorithm

PCA Principal Component Analysis

PDP Parallel Distributed Processing

PSO Particle Swarm Simulation

PURPA Public Utilities Regulatory Policies Act

RBF Radial Basis Function

SA Simulated Annealing

SHP Separated Heat and Power

SLFN Single Hidden-layer Feed-forward Neural Network

SOM Self-Organizing Map

SVM Support Vector Machines
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