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Chapter 1

Introduction

In this chapter of the industrial context for parallel mechanism will be
given. Moreover, a general overview of the work carried out in this thesis

will be summarized and a final outline will be presented.

1.1 Industrial context

1.1.1 Robots

Since it conception in 1921, robotic systems have been increasingly used in
several fields as their complexity and capabilities improve. This is fostered
by the vast amount of research being focused on this subject from the last
decades.

Robotic systems can be found in areas such as manufacturing and indus-
try, aerospace, vehicles and medical applications. Robots have also evolve
into different types to fit specific use cases. In this way, robots can generally
be classified as:

� Humanoids

3
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� Medical

� Autonomous Vehicles

� Industrial

This thesis is focused around a specific type of robotic systems found
in industrial application. In this field, basically two types of robots can
be found according to the architecture of their kinematic chains: serial or
parallel.

(a) (b)

Figure 1.1. (a) picture of a Unimate PUMA 500 robot and (b) picture of a Kuka
robot.

1.1.1.1 Serial mechanisms

The application for robots was firstly as manipulators to help humans move
objects. The first construction type was to connect succeeding rigid bodies
with joints that allow for a specific relative motion. In this way, the first
robots resembled human arms and hence called anthropomorphic robots.
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As it development advanced, these systems were increasingly being used
in manufacturing facilities to assist human personnel on heavy-duty tasks.
Shown in Fig. 1.1a, the Unimate manufactured by Unimation was the first
robot to be installed in a General Motors plant for die-casting and welding
operations. Nowadays, the KUKA robot in Fig. 1.1b and manufactured
by KUKA robotics [1] is the most commonly found serial robot topology
in industrial applications. The end-effector of this robot is capable of six-
degree-of-freedom motions which allow for any motion.

Several other serial systems exist for industrial application such as the
Scara robot in Fig. 1.2. Simply put, these type of robotic mechanisms have
been adapted to many applications because of their large workspace and
fast motions.

Figure 1.2. Picture of the Scara robot Cobra-800 by Adept [2].

As mentioned by Merlet [3], a spherical (serial) robot with 6 degrees of
freedom would typically have a load-to-robot-mass ratio of between 0.035−
0.064. Moreover, the same ratio for a Scara type robot is in the range of
0.06846− 0.08547.
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Also, it is mentioned that serial mechanisms have positioning accuracy
limitations in terms of absolute accuracy due to the stiffness of the links
and drive clearances. Moreover, the low load-mass ratio and poor accuracy
is a result of the intrinsic serial design [3]. In this regard, each link must
support the load due to the following linkages in the kinematic chain as
well as for the load. As a consequence, each link must be stiffened, which
implicitly increases the system’s weight. What is more, due to the added
mass, a serial mechanism may present significant inertia, centrifugal and
Coriolis forces when high velocity motions are commanded. This may result
in complex compensation techniques by control. Also the absolute accuracy
is affected. As mentioned by Merlet [3], for an arm length of 1 m and a 0.06◦

error in a joint, an end-effector error of 1 mm results.

In summary, relatively low stiffness, limited accuracy and low weight-
to-load ratio are limiting features that motivate the study of their parallel
counterparts.

(a) (b)

Figure 1.3. (a) Picture of the Adept Quattro s800h by Omron/Adept, and (b)
Picture of the Tricept-T9000 by Tricept-PKM.
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1.1.1.2 Parallel mechanisms

Due to the described limitations of serial robotic systems, parallel mech-
anisms have been increasingly getting attention in the industrial context
in recent years. As an example, the parallel manipulator Adept Quattro
in Fig. 1.3a for pick and place [2] is shown. Their relatively low weight
and high stiffness makes them interesting for high performance applica-
tions. Also, they are suitable for machining tasks due to their high mass-
to-stiffness ratio such as the Tricept-T9000 shown in Fig. 1.3b by Tricept
PKM [4].

In the scientific instrumentation field, hexapods like the H-840 by Physik
Intrumente(PI) [5] shown in Fig. 1.4a, have been used due to their high
positioning precision. Additionally, they are also used as excitation tables
to simulate accelerations for vehicle developments applications as shown
in Fig. 1.4b [6]. Without any doubt, parallel mechanisms have become an
interesting option in the industrial robotics field.

(a) (b)

Figure 1.4. (a) Picture of the PI-H840 Hexapod by Physik Instrumente and (b)
Picture of the Hexapod simulation table FF-1-3 by Moog Inc.

Basically, the end-effector of a parallel mechanism is connected to at
least 2 separate links. In this way, the load can be effectively distributed
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on each of the links. This allows for an increase in the stiffness of the system
which also permits to reduce the masses of the linkages. Furthermore, the
inertia, centrifugal and Coriolis forces may be lower than in the case of
serial systems. Therefore, the theoretical capabilities of parallel robots
make them an open area for future research and development.

Despite the potential of parallel mechanisms, much work is needed in
order to place such systems in industrial contexts not only to niche markets.
In fact, Merlet points out the several areas in which research must be done
in order to make their capabilities become a reality[7], such as motion
precision.

When compared with traditional serial systems, the dynamics of parallel
mechanisms are more complex than their serial counterparts due to the
closed chain kinematics. Also, the actuators and control are key elements
for the overall system’s performance, hence their also must be analyzed
from a system integration point of view.

1.2 Motivation and scope of work

As it has been pointed out, to fully realize the capabilities of parallel mech-
anism, an integrated approach must be followed. Many areas, such as con-
trol, actuation, calibration, kinematic and dynamic modeling, are involved
in such system. Actually, in the Fig. 1.5 Merlet [7] defines the mechanism,
control and design and simulation layers present in any parallel mechanism.
Furthermore, each layer involves a series of subsystems. Hence, the inte-
grated approach, more than a design strategy, is a necessity to overcome
the challenges imposed for such complex systems.

It is clear that a mechatronic approach based on reliable models are
important for the conception and design of parallel robots. To serve that
purpose, detailed simulation tools capable of modeling the manipulator,
drives, control dynamics and their interactions in a cost efficient manner
and with reliability are required. In this work, the three layers shown in
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Figure 1.5. The various layers of a parallel robot. (Source: Merlet [7]).

Fig. 1.5 are addressed. However the focus has been placed in the design
layer.

Furthermore, it is proposed a method to obtain a mechatronic model
of parallel mechanisms, which can then be used for their analysis and de-
sign. To this end, the mechanism, actuation system, and the control are
considered in a way that the mechanism dynamics is decoupled from the
actuation system and its effect considered as a disturbance to the actuators.

Also, a procedure to obtain a dynamic model suitable for identification
based on the principle of energy equivalence has been proposed. It is em-
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ployed to obtain the actual values of the dynamic and friction parameters
for parallel planar mechanism, so the mechatronic model can be adjusted.

Moreover, an experimental validation has been carried out in order to
analyze and validate the proposed mechatronic modeling and the identifica-
tion procedures. As for the mechatronic modeling procedure, it was applied
on a planar 5R parallel manipulator and on 2PRU-1PRS Multi-Axial Shak-
ing Table (MAST) mechanism, which was developed in the COMPMECH
research group in the framework of a thesis [8].

Regarding the identification procedure, it was applied to two additional
case studies, a 2-PRR mechanism and a RePlaLink Haptic mechanism de-
veloped by the Department of Mechanism Theory and Dynamics of Ma-
chines of the IGM-RWTH [9].
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1.3 Thesis outline and summary of chapters

In this thesis it is proposed a method for the mechatronic analysis of parallel
kinematics manipulators based on decoupling the dynamics of the actuators
and mechanisms. To that end, this work has been organized as follows:

� In chapter 2 a review of the state of the art has been done to in-
troduce some topics on mechatronics design, motion control, parallel
kinematic machines, dynamic modeling, friction and identification.

� In chapter 3 the proposed procedure to obtain a mechatronic model
of a parallel kinematic mechanism, considering the actuators, control
and mechanism, is presented.

� In chapter 4 two case studies are used to validate the proposed
method to develop a mechatronic model for parallel kinematic mech-
anisms. The first case study is a 5R planar mechanism, and the sec-
ond case study consists of a 2PRU-1PRS Multi-Axial Shaking Table
(MAST).

� In chapter 5 a procedure for the identification of the unknown dy-
namic parameters values of a parallel planar mechanism is described,
where a rigid body model of the mechanism and actuators with fric-
tion is considered.

� In chapter 6 two additional case studies have been used to validate
the identification procedure described in the previous chapter, the
2-PRR and the 5R haptic RePlaLink mechanisms.

� In chapter 7 the contributions, conclusions and future research ob-
tained from the development of this thesis will be presented.

� Finally, in appendix A the control developed in the framework of
this thesis is described, and in appendix B the Jacobians used are
shown.





Chapter 2

State Of The Art

Mechatronics is a branch of the engineering which, in an attempt to ob-
tain better products, it integrates mechanics, electronics, and control

engineering. In this chapter, a review of the state of the art on mechatron-
ics, motion control, parallel kinematic machines, dynamic modeling and
identification will be given.

2.1 Introduction to mechatronics

The term mechatronics was first conceived by Yaskawa Electric Corpora-
tion [10] in 1969. At the moment, they were looking for a concept to de-
scribe the integration of control and mechanical engineering for the design
of servomechanisms they were working on. Nevertheless, a formal defini-
tion has been the subject of several authors and institutions. A popular
mechatronics definition can be summoned to “The synergistic integration
of mechanical engineering with electronics and intelligent computer control
in the design and manufacturing of products and processes” [11, 12].

However, the above definition is somewhat constrained by the word

13
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product. Perhaps, a more precise definition can be “a technology which
combines mechanics with electronics and information technology to form
both functional interaction and spatial integration in components, modules,
products and systems” [13]. This definition highlights the interdisciplinary
nature and components functionalities integration as a result of this design
approach.

Furthermore, in the definition it is mentioned functional interaction as
a way to describe that the functions of a system are distributed among its
components [13]. Considering a machining center as an example, its main
function can be regarded to shape materials with a desired precision. Then,
it is easy to see that the controller strategy, sensors, actuators, software and
mechanical design, all contribute to the machine functionality. Also, with
spatial integration, it is intended to convey the notion that the components
and subsystems are integrated into a single physical unit [13].

Figure 2.1. Mechatronics diagram by the Rensselaer Polytechnic Institute [14].

Whether a given definition is precise or not, a general consensus exists
to regard the mechatronics field as an approach in engineering that looks to
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integrate different disciplines in order to obtain better products, processes
and in general systems. In Fig. 2.1 a diagram by the Rensselaer Polytechnic
Institute represents the description of the mechatronics field [14]. As can be
seen in the scheme, mechatronics is a discipline looking to combine Control
Systems, Computer Science, Mechanical and Electronic Engineering. The
scope of application is comprehensive ranging from consumer products to
aerospace and medical systems.

A milestone in mechatronics was the approval of the norm VDI 2206
in 2004 on the “Design Methodology for Mechatronic Systems” created by
the Association of German Engineers [15]. This norm provides a guideline
for the design of mechatronic systems. It was created to extend existing
guidelines with the latest findings in design research. Also, it integrates
findings in procedures and tools specific to the mechatronic field to support
the design of mechatronic systems [16].

In essence and following the V-model shown in Fig. 2.2 from the guide-
line, first the requirements of the product are established. Then, a prelim-
inary system design phase takes place to define the required mechanical,
electronic and information components. At this point, each domain-specific
component is designed and developed mostly separated with the help of
modeling tools. Afterwards, in the system integration step the obtained
components are integrated together and evaluated to analyze how they af-
fect to each other. The resulted overall system is continuously verified and
validated against the concepts and solution obtained in the system design
step. Finally, and once the design has been verified and validated, the final
product is obtained.

What is important to note is that the mechatronic design approach
does not follow a sequential phase design plan, where a specific component
is first designed and then others are added subsequently. On the contrary,
the components belonging to different engineering branches are designed in
parallel, integrated and evaluated to obtain a better product. This guar-
antees an optimal interaction between the system’s components such as in
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Figure 2.2. V model as a mechatronic design process.

the case for motion control.

2.1.1 Mechatronic modeling

The mechatronic modeling approach has been used before to analyze and
improve the design of complex systems. In this regard, in the work of
Reinhart and Weissenberger [17] it is explained the mechatronic modeling
approach to obtain virtual prototypes of a machine tool, where the struc-
tural components, guideways, controllers, the dynamics of the actuators
and the numeric control are considered using a multibody model and sev-
eral computer-aided design tools , such as 3D-CAD and FEM tools. In this
way, the overall design of the system can be improved “... in early stages
of the design process”, which reduces the effort to obtain a final working
prototype.

Moreover, in the work of Yan et al. [18] the finite element analysis is
applied to a complex servo system of a hard disk drive, which is then used for
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the control design. First, a finite element model was obtained and validated
with experimental tests, afterwards, the resulting model is integrated into
the control model and the closed-loop responses in the frequency domain
of both, the simulation and experiments, are compared. It was shown that
with the approach followed the model can be used for design optimization.

Also, an integrated modeling approach was applied in the work of the
Huo et al. [19] to the development of an ultraprecision milling machine.
To that end, the dynamics of the system, the control, and the machining
process were taken into account in the model, which was afterwards used
to assessed the performance of the machine at the design stage.

Another interesting application of the mechatronic modeling approach
can be appreciated in the work of Brecher et al. [20]. Therein, a me-
chanical model of a parallel kinematics machine tool is constructed using
MSC-ADAMS R©, which is then used to design a Cartesian control that com-
pensates the coupling forces of the actuators. As a result, the position error
in the workspace due to the coupling forces was reduced by approximately
60 %, which also results in better manufactured products. Similarly, in
the work of [21] the modeling of the feed drive of a multi-axis machine
tool was addressed considering inertia, friction and the control. Then, the
performance of a traditional cascaded control, typically used in numeric
control, was compared with a proposed predictive control. It was found an
improvement in the tracking error when a circular trajectory was executed.

From the mentioned works, it can be seen that the mechatronic mod-
eling approach is relevant for the design of complex mechanisms, helping
to improve design at early stages of development. Finally, it is appreciated
the importance of considering the interactions between the different com-
ponents, specially the mechanical design and the motion control, in early
design phases.
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2.2 Motion control

As suggested by its name, motion control is a field within automation that
studies how to perform controlled motions of a specific system such as
robots, milling machines and similar. To achieve such task several subcom-
ponents are involved.

These components usually are a control, in charge of regulating the
system inputs so a desired trajectory is followed; sensors used to measure
a physical quantity, which is then employed in the control to infer the state
of the system; an actuator or a group of them in charge of translating the
input signals to an actual motion, which may be formed by a motor and
transmissions elements; and a communication interface used for the signals
transmissions between the different components. In this section, each of
these elements will be addressed more in detail.

2.2.1 Control

To perform a given motion, some sort of a system must be employed to
follow a desired trajectory in a controlled way and guaranteeing a required
precision. In most robotic systems this is a key component that must be
integrated into the design process.

The process of controlling a motion execution often involves measuring
a variable, such as the position or the velocity of a specific component.
This variable may be named the measured variable. On the other hand,
the control is performed by adjusting another variable, named the control
variable such as the current or voltage supplied to the motors. This may not
necessarily be the same as the measured variable. What is more, the control
is performed taking some signal as the reference for the control action. This
signal is known as the reference or control command . In Fig. 2.3 a scheme
is shown to illustrate a typical motion control process.

The process starts with the command signal received by the controller.
Then, the controller generates a control signal adjusted to the reference and
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Figure 2.3. Illustration of a typical open loop control process.
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Figure 2.4. Illustration of a typical single-loop closed control process.

the state of the process or plant to be controlled. Essentially, two types
of control can be used, namely, open loop and closed loop controllers. As
it is, the control scheme in Fig. 2.3 corresponds to the open loop control
architecture type. In Fig. 2.4 an illustration of a closed loop control is
shown. There, the control action by the controller is generated from an
error signal. This is obtained by substracting the measured signal from
the command reference provided that both signals are referred to the same
process state (e.g. position, velocity, etc). If not such case, a transfer
function TF is used to convert the measured signal units to the command
units by means of a known transformation (e.g. integration, derivation,
etc). The closed loop control type is generally named feedback control since
an output signal is used back to generate a control action.

Open loop controllers are usually employed when not so high precision
output is required or when the system to be controlled presents good open-
loop response as is the case for stepper motors [22]. On the other hand,
feedback controllers are preferred for industrial applications since they pro-
vide robustness against disturbances. To explain this, let us consider the
simple inertial example in Fig. 2.5.
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Figure 2.5. A simple mass system.

The equation of motion for the system in Fig. 2.5 are written as in 2.1.
Also, by applying the Laplace transforms, Eq. 2.1 is transformed to the
frequency domain as shown in 2.2.

Mẍ(t) = F (t) (2.1)

Ms2X(s) = F(s) (2.2)

X(s)

F(s)
=

1

Ms2
(2.3)

Hence, reordering the terms in Eq. 2.2, the single-input-single-output
(SISO) transfer function in Eq. 2.3 is obtained. In control theory, a term
1/s represents an integrative behavior, which implies that the response of
the system due to the inputs is accumulated. Hence, as the system in Eq.
2.3 presents a term 1/s2, its behaves as a double integrator system. In
Fig. 2.6a, the response of the system in Eq. 2.3 due to a step input.

As can be seen, the response of the system deviates from the input and
does not reach a constant value with time, in other words the system is
unstable. Hence, to avoid deviations of a system from the commanded in-
puts in industrial applications, a controller is used to obtain an appropriate
response.
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Figure 2.6. (a) Input-response of the system of Eq. 2.3 without feedback.

2.2.1.1 The PID controller

In most industrial control applications, the proportional-integral-derivative
(PID) is employed. It is a simple controller with a relatively good perfor-
mance, in terms of error compensation.

Its principle of operation consists of calculating a correction action ap-
plied to the plant based on the error with respect to a command or reference.
In Eq. 2.4 the mathematical representation of a PID controller is shown.
The proportional gain Kp is related to the velocity of the system response,
the gain Ki is used to compensate the stationary errors with respect to a
reference value, and the gain Kd is used to stabilize the system.

u(t) = Kpe(t) +Ki

∫ t

0
e(t)dt+Kd

de(t)

dt
(2.4)
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Figure 2.8. Input-response plot of a feedback control loop with a PID controller.

In Fig. 2.8 the input-response plot of a feedback loop with a PID con-
troller is shown. As it can be seen, the response of the system approaches
the input value with time, and also the system can be regarded as stable
system. The time it takes to the response to oscillate within an error δ
from a commands is known as the settling time Ts. Moreover the rise time
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Tr is the time it takes the response to exceed the commanded signal. The
overshoot is the difference between the peak value of the response and the
value of the command at the peack time Tp. These parameters describe
the performance of a system under the action of a PID controller. Further-
more, by increasing or decreasing the values of the proportional, integral
and derivative gains, the performance of a system can be adjusted as de-
sired for a specific application. In this regard, the tuning of a PID control
is addressed in section 2.2.1.4.

2.2.1.2 Single-loop control

In Fig. 2.7 a typical feedback control process was shown. It can be seen that
only a variable was measured and compared with a command reference.
Hence, only one regulation loop takes place, for which they are named
single-loop control. Basically, a single-loop control is the most basic form
of feedback control that can be implemented, and serves as the building
block for more advanced control systems.

What is important to mention is that, a single-loop employs only mea-
surements from a single variable. This result in a somewhat limited con-
trol strategy for some applications. However, such controls can easily be
extended to take additional and useful information into account. As a
consequence, the control performance can be enhanced.

2.2.1.3 Cascade Control

In Fig. 2.9, a scheme of a position-velocity-current cascade controller is
depicted. As can be seen, it consists of subsequent closed loops for different
variables, where the output of one loop is used as the command for the
next immediate inner loop. A cascade control is usually found in industrial
applications, specially for chemical process and for motion control because
it can be easily implemented [23].

Also, cascade controllers increase the performance of single loop con-
trollers by using additional information of other process variables known as
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Figure 2.9. Cascade controller scheme for motion control.

secondary measured variables [23]. In the example in Fig. 2.9, the position
is the primary variable respect to the velocity, which is the secondary one.
As for the current, it acts as the secondary variable relative to the velocity.

It must be mentioned that to fully take advantage of the cascaded con-
trol architecture, the secondary loops must operate faster than primary
loops. The main idea is to reject disturbances occurring at higher frequen-
cies before their effects reach the process in the primary loop.

It is then easy to think that if a process can be controlled with the faster
secondary loop, then there is no need for the primary one. However, often
times the secondary loop can not completely reject the disturbances effects.
Furthermore, other disturbances may still occur outside of the inner loops,
and it is desired to control the primary variable of the process [23].

As for the controllers themselves, the family of proportional-derivative-
integrative (PID) controllers are the most commonly used. For the case
of cascade controllers for motion control, it is normally found that a pro-
portional (P) controller is used for the position control loop, while a (PI)
controller is used for the inner loops. Furthermore, a cascade controller
can be tuned following a zone based approach, where high-frequency dis-
turbances are first resolved.
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2.2.1.4 Tuning of controllers

The tuning of a PID control is important to obtain the correct performance
of the system. In the work by Ellis [24] it is explained how to tune con-
trollers based on a frequency zone approach. In essence with this approach,
high frequency terms are tuned first. Considering a single-loop control, the
steps to tune a PID is as follows:

1. Set all gains to 0.

2. Increase the proportional gain Kp as high as possible without over-
shoot or losing stability.

3. Increase the value of the integral gainKi until an overshoot of between
2− 4% is obtained.

4. Adjust the derivative gain Kd if necessary until the desired perfor-
mance is reached.

The process is similar for a cascade control system. In such controls,
the tuning must me performed from the inner loops first. As a result, inner
loops are made to perform as low-pass filters rejecting higher frequencies
disturbances.

2.2.2 Sensors

Sensors are important components for mechatronic systems since they are
used to infer the state of the system. The sensors measure a physical
quantity, such as an acceleration or force, and it is then converted to a
more convenient signal, like voltage current or a digital signal. In this way
they can be later handled appropriately by other components such as the
control.

The type of sensors used depend greatly on the desired variable to
measure and it is possible to use two different types of sensors for the



26 State Of The Art

Figure 2.10. Scheme of the principle of operation of an encoder.

same purpose. The selection depends on economic factors or on the system
design. Although a vast amount of sensors are available, in this section will
be briefly explained the most important for motion control purposes: the
encoders, tachometers and presence detectors.

2.2.2.1 Encoders

Encoders measure the position of an element and code the measurement
into a digital output. They are usually employed in robotics to obtain the
position of a shaft or arm, in machine tools for positioning systems, and in
motors to control the angular position or linear displacement. The optical
encoder is the most commonly used. Its principle of operation consists of
a light source generating a voltage surge in a photodiode element when
the light passes through a transparent window in a opaque element. In
Fig. 2.10 a simple scheme of a rotary encoder is shown.

T here are two types of encoders, incremental and absolute encoders.
Incremental encoders use the voltage pulses to count each time the light
beam passes through the windows in the opaque material. Additionally,
two diodes are placed in such a way that a phase lag of 90◦ in the pulse
train is attained. In this way, the direction of motion can be inferred. Also,
a third diode known as the index, can be used to count each complete turn
of the disk.
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On the other hand, absolute encoders make use of a printed code pattern
in the opaque material, where each discrete position of the disk corresponds
to one unique pattern segment. Thus, the position in absolute encoders
is defined by a digital word instead of a pulse count as in incremental
encoders. To this end, several windows tracks are employed where each
track corresponds to a bit in the digital word. In Fig. 2.11 an incremental
and absolute encoder schemes are shown.

(a) (b)

Figure 2.11. (a) Scheme of the front of an incremental encoder and (b) of an
absolute encoder.

The absolute encoder in Fig. 2.11b is coded with a binary coding. How-
ever, ambiguous readings may occur when two or more bits are switched
simultaneously in this type of encoders, such as from 1111 to 0000 digital
words [25]. To solve this issue, gray coded encoders can be used, where the
change from one pattern segment to the following involves switching only
one bit [25].

Each of these types of encoders present advantages and drawbacks. On
the one hand, incremental encoders are cheap and relatively simple. How-
ever, the do not retain the position value when the system is powered off.
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As a result a reference point must be seek each time the system is turned
on. On the other hand, absolute encoders do not present this issue but
more tracks are used to obtain the position, and hence more photodiodes
and light sources. Consequently, absolute encoders are more expensive [25].

2.2.2.2 Tachometers

To measure the rotating velocity of given device several technologies can
be applied such as, variable reluctance sensors, rotating magnet sensors,
stroboscopy and Wiegand effect sensors [26]. Nevertheless, incremental en-
coders, digital tachometers and or tachogenerators are commonly employed.

Incremental encoders can be used to measure the velocity if the pulse
train generated is counted in a certain amount of time [27]. The advantage
of this method, is that already available encoders for position measurements
can be reused to obtain a velocity approximation. Digital tachometers use
a similar approach to the one used by incremental encoders in that, by mea-
suring the time between pulses the velocity can be calculated. Nevertheless,
according to de Silva, “... a digital tachometer is a device that employs a
toothed wheel to measure angular velocities ”. In Fig. 2.12 a representation
of a digital tachometer is shown. Two sensing elements are used to detect
the tooths in the wheel. This sensing elements can be optical, when a light
beam is used, or magnetic.

Moreover, tachogenerators can also be used to measure the rotation
velocity of shafts. When a coil rotates inside a magnetic field, a voltage is
induced in the coil. In this way, an electromotive (e.m.f.) force is generated
with an amplitude proportional to the speed of the rotor [26, 27].

2.2.2.3 Presence detectors

In many motion control application it is required to detect when a moving
component reaches a certain point, such as linear guide to find a reference
point or stroke ends like positive or negative limits. To this end, mechan-
ical switches can be used which generate an on-off signal when the switch
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Figure 2.12. Scheme of the principle of operation of digital tachometer.

contact are closed or opened. In addition, optical, ultrasonic and capacitive
sensors can be used

Also, inductive proximity sensors are commonly used in motion control
to detect metallic objects. In Fig. 2.13 a representation of an inductive
sensor is shown. The principle of operation is based on the electromagnetic
induction between two separate coils. The first primary coil is connected
to an AC power supply. This coil in turn induces a voltage in the secondary
coil. When a metallic material is near the sensor, the voltage induced in
the secondary coil changes, hence detecting the presence of the object.

On the other hand, capacitive sensors detect the presence of metallic
or non-metallic objects by the change of capacitance C of the sensor and
described in Eq. 2.5.

C =
kA

d
(2.5)

Where k is the dielectric constant, A is the common area of the capacitor
and d is the distance between the plates of the capacitor.
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Figure 2.13. Scheme of an inductive sensor.

It can be seen in Eq. 2.5 that the proximity of an object can be measured
if the distance d is modified. Also, the presence of an object between
the capacitors plates changes the dielectric constant of the capacitor, thus
modifying the capacitance. Finally, if the facing area between the plates is
changed, the capacitance is also affected which can be used for encoders.

2.2.3 Motors for actuation systems

Motors are essential part of a mechatronic system and specially for the ac-
tuation system. They are employed to convert a source of available energy,
usually electric energy, into mechanical motion. In this section, a brief
introduction of the types of electric motors will be shown.

2.2.3.1 Direct Current Motors

Direct current (DC) motors are the most basic type of motors employed in
industrial applications. Their operating principle is based on the Lorentz
force, by which when an electric current flows through a conductor in the
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presence of magnetic field, the electric charge will experience a force per-
pendicular to the magnetic field and current. In Fig. 2.14a a picture of a
DC motor is shown.

(a) (b)

Figure 2.14. (a) A DC motor (Source: Maxon Motor [28]), and (b) inside of a
bipolar stepper motor. (Source: Pololu Robotics & Electronics [29]).

2.2.3.2 Stepper Motors

These type of motors move in subsequent fixed angular increments, also
known as steps, when a current pulse is supplied to the coils in the armature.
the coils generate a magnetic field that attracts the tooths of a toothed rotor
as can be seen in Fig. 2.14b.

Moreover, stepper motors require a driver controller to properly supply
the current to the coils in sequence. Also, they are know to provide good
open-loop response, which implies that expensive control systems can be
avoided. As a result, they are attractive for low-cost applications.

2.2.3.3 AC servo motors

Alternating current (AC) motors are an alternative to DC motors in indus-
trial applications mainly because of their cost-effectiveness, easy mainte-
nance and reliability. They can be classified as induction or asynchronous
motors and synchronous motors. Their principle of operation is based on
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a magnetic field rotating around the stator of the motor. In this way, the
own rotor’s magnetic field follows the stator’s one, thus causing a rotation.

(a) (b)

Figure 2.15. (a) Picture of the synchronous motor S-1FK7 by Siemens (source:
Siemens [30]) and (b) picture of an induction motor Yaskawa SGM7A (source:
Yaskawa [10]).

As for induction motors, the rotor is wound with a conductor material
in the axial direction. Due to the rotating magnetic field, a current is
induced in the conductors. Hence, a secondary magnetic field is created
that generates a driving torque in the rotor.

Synchronous AC motors also have a rotating field at the stator. How-
ever, a constant magnetic field in the rotor is created, either by energizing
the conductors using an external power source, like an external DC supply,
or by employing permanent magnets. In this way, the rotor is caused to
turn closed to same speed as the magnetic field rotation speed, known as
synchronous speed.

The AC motors are also known as constant velocity machines since they
are insensitive to variations in the load [25]. To obtain position control or
speed control, advanced frequency controller drivers must be employed. In
this way, a wide range of velocity-torque performance can be achieved.
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2.2.3.4 Direct drive

A direct drive is a concept in which the electric motor is used to directly
move system. In Fig. 2.16 a linear motor and a torque motor drive systems
are shown. By employing such drive systems, intermediary transmission
elements, like gearbox or linear guides, can be avoided with the consequent
maintenance cost-reduction, increase in the reliability and precision, and
faster response without backlash. Nevertheless, their behavior is highly
non-linear and sensible to any disturbances, are expensive and a cooling
system is required to dissipate the excessive heat in the air gap.

Stator

Rotor

(a)

Stator

Carriage

(b)

Figure 2.16. (a) Picture of a rotary torque motor TMB + c1 by Etel, and (b)
picture of a linear drive LMS-91 by Etel.

2.2.4 Transmissions

Actuation systems in mechatronic applications generally use transmissions
components to modified the motion, velocity and force or torque output of
the motors to a more appropriate input to drive the intended load. As an
example, rotary motors are used in most applications when the load moves
in a linear motion. In such cases, a conversion from the rotation to the
linear motion is required, for which a linear guide can be used.

Also, transmission components can be used in an actuation system to
match the motor optimum operating point, i.e. velocity and torque, with
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the driven inertia loads, as in the case of a gearbox, pulleys, planetary
gearboxes and harmonic drives.

Gearboxes are the most commonly known transmission elements in
mechatronic applications. In the simple case of a gearbox with two gears in
Fig. 2.17, they consist of two toothed wheels with equal separation between
teeth.

Figure 2.17. Representation of two gears with their angular velocities, and input
torque τ1 and output torque τ2.

It can be seen that the direction of the motion of gear 1 is opposite
to the direction of the gear 2. Furthermore, by using gears with different
diameters a mechanical advantage is obtained. Therefore, the magnitudes
of the torques τ1 and τ2, and the angular velocities ω1 and ω2 are related
by the gear ratio ir as follows:

τ2 =
θ2

θ1
τ1 = irτ1 (2.6)

ω2 =
θ1

θ2
ω1 =

1

ir
ω1 (2.7)
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Additionally, it can be noted that the equivalent of the inertia J2 of the
gear 2 at the input 1 can be found to be as in Eq. 2.8, hence reducing the
inertia significantly. This allows to use a relatively simple motor controller
which are more tolerant to disturbances and hence more stable than direct
drive systems.

J21 =

(
1

ir

)2

J2 (2.8)

Alternative designs of gearbox transmissions can be found for motion
control. As an example, several connected gears are commonly used to
obtain an output with a gear ratio, but such configurations usually take a
relative large space. In contrast, planetary gearboxes can be used to obtain
a certain gear ratio in less space.

Nevertheless, gearboxes generally present backlash where zero torque
transmission occurs [31]. As a consequence, small oscillations result during
operation. Also friction and inertial torque due to the gears, and wear are
common problems that reduce the performance of gear transmissions.

Harmonic drives were originally developed by C. Walton Musser as
strain wave gearing in 1959 [32]. These drives can be used to obtain high
output torque with low velocity zero backlash and reduced weight and space
[31]. They consist of three basic elements: the wave generator, flexispline
and the circular spline. These are shown in Fig. 2.18a and Fig. 2.18b.

The wave generator and the flexspline are the input and output elements
respectively, while the circular spline is fixed and is slighter bigger than the
flexspline. As the ellipsoid wave generator turns, the flexpline (flexible
element) is pushed against the circular spline engaging the teeth of both
components at the major axis of the ellipsoid. Since the circular spline is
bigger than the flexspline, a relative motion between both elements with a
torque output is obtained. The principle of operation of an harmonic drive
is described in Fig. 2.18c.
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(a)

(b)

(c)

Figure 2.18. (a) Picture of the harmonic drive main components (source:
www.waltmusser.org), (b) schematics of the harmonic drive main compo-
nents assembly, and (c) description of the principle of operation (source:
www.harmonicdrive.net).

http://www.waltmusser.org/harmonic-gear.html
http://www.harmonicdrive.net/technology
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2.2.4.1 Rotation to translation conversion

In some application is desired to have linear motions instead of a rotation.
To this end, a linear guide can be used to convert the rotary motion of a
motor to a linear displacement.

The types of linear guides which employ a set of pulleys and a belt are
known as belt drives. In Fig. 2.19a a scheme is shown and in Fig. 2.19b an
example picture is given. As a pulley on one end turns, a tension in the
belt is created causing the other pulley to turn. As a result, tension on the
other side of the belt is created which pulls the carriaged of the belt guide.

(a) (b)

Figure 2.19. (a) scheme of a belt drive and (b) picture of the belt drive ZLW-
0630-OD by Igus [33].

Another way to obtain a linear motion from a rotary motor is by using
lead screw and nut guides. In Fig. 2.19a the schematics of a ballscrew is
presented, and in Fig. 2.20b three examples are shown. They consist of a
bolt and nut system, and the principle of operation is similar to that of a
screw. As the axis of the screw turns, the nut moves in the axis direction.
Moreover, the balls are used to reduce the system friction and tolerances,
thus limiting backlash.
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(a) (b)

Figure 2.20. (a) scheme of a nut with the ball circulation system by Ipiranga
Husillos [34] (b) picture the HTC-SRC ballscrew drives by NSK [35].

2.3 Introduction to parallel kinematic machines

In contrast to serial kinematic mechanisms where rigid bodies are attached
one after the other, in parallel kinematic mechanisms each of the kinematic
chains are connected with an end-effector. The end-effector is the element
of the mechanism where the main tool is placed, and usually defines the
mechanism’s functionality such as a manipulator or machine tool.

Parallel kinematic mechanisms present several advantages when com-
pared with serial systems. The successive placement of the elements in
a serial system results in more weight that is added, which causes elastic
deformation of the previous components. To counter this, elements with
high stiffness are used, thus, further increasing the overall weight of the sys-
tem. Hence, serial systems present lower load-to-weight ratio than parallel
kinematic mechanisms.

In addition, the need to stiffen the components with heavier ones in a se-
rial mechanism, causes that the inertial, Coriolis and gravitational dynamic
effects are increased, what makes the control more complex.
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On the other hand, as in parallel mechanisms the load is distributed
between the links, lighter components can be used. As a result, it is possi-
ble to obtain a comparative more stiff system with a parallel mechanisms
than with a serial one. Furthermore, lighter components results in smaller
nonlinear dynamic effects, which could result relatively simpler control so-
lutions, although other issues, such as forces due to the coupling of the
links, should be taken car of. Another consequence of having lighter com-
ponents is that faster motions can be performed, which is interesting for
pick & place applications, and that they can be also used for applications
requiring a high bandwidth, such as Multi-Axial Shaking Tables

2.3.1 Pick & place mechanisms

As the load/weight ratio of mechanism is lower, the lighter the mechanism
can be, resulting in a reduction of the inertial and Coriolis dynamic forces.
Obviously, this advantage becomes more clear with high velocity motions,
such as in the manipulation of objects in manufacturing chains. In this
regard, a pick & place mechanism is used to grasp an object and moved it
to another position where the object is placed. The Adept Quattro shown in
1.2 is an example of a parallel mechanism used for pick & place operations.

2.3.2 Multi-axial simulation tables

This type of machines are typically formed by a parallel kinematic mech-
anism structure, which is formed by several linkages and a final platform.
In this way, they are able to generate a motion with combined translations
and rotations of the final platform [8].

Multi-Axial machines are common employed for industrial applications
to generate motions with high accelerations or torques at their end-effector
and with several degrees of freedom. Most common applications are for
structural vibration testing, suspension evaluation, and in more general for
applications were products with high accelerations need to be tested. In
this regard, a MAST system can be used to perform dynamic tests for
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structures such as buildings or bridges; or for mechanical components to
evaluate their behavior under vibrations. In these cases, they are regarded
as Multi-Axial Shaking Tables [36–38]. Also, Multi-axial machines are used
as simulation platforms for flight and automotive applications. In such
cases, they are regarded as Multi-Axial Simulation Tables [39, 40].

2.3.3 Control approaches for parallel kinematic machines

The most straightforward way to implement controllers on parallel mecha-
nisms is by reusing existing controllers from serial ones, such as the linear
single-axis control and the computed torque control. Indeed, this is men-
tioned in the work by Paccot et al. [41], where several control alternatives
are reviewed.

2.3.3.1 Linear single-axis control

A common control alternative is the single-axis PID position control shown
in Fig. 2.21, where the inverse kinematic problem of the mechanism is used
to obtain the joints position qd from a path in the workspace Xd. Then,
a PID controller adjusts the inputs to the machine based on the error
between the command qd and the actual position of the system measured
at the joints q. In addition, a feed-forward uff can be used to compensate
inertial forces.

Figure 2.21. Linear single-axis control with feedforwad (Source: Paccot et al.
[41]).
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The main advantage of this control is that they allow to reuse existing
implementations from serial systems [20, 42]. This is an attracting feature
since existent controllers can be adopted and therefore easily used for in-
dustrial applications. Also, this type of control provides relatively good
performance, and the tuning of such controllers is well-known from modern
control theory [41]. Moreover, a linear single-axis control can also be set
to compensate for the dynamics of the mechanism, specially for relatively
low-speed systems [41]. However, when higher velocities are present, non-
linear dynamic effects take importance and hence the accuracy is negatively
affected [42].

In the case of parallel kinematic mechanisms, the dynamics is also non-
linear as a consequence of the coupling between the mechanism’s links [41].
Therefore, the same gain tuning of the controller is not guaranteed to be
optimal in the whole workspace [20, 41]. Solutions to this issue have been
addressed by restricting the workspace [43], path planning [44] and higher
derivatives compensation with feed-forward [45].

In this regard, Wang et al. [46] investigated the use of the dynamic
model of the system to compensate the non-linear dynamics of a parallel
mechanism using feed-forward. It was reported in their work that the track-
ing error is reduced, and that the simulations compensate for the nonlinear
torque caused by the parallel kinematic machine dynamics.

Another issue arise from the presence of the inverse kinematic model
(IKM) and its inherent modeling errors, resulting in joints trajectory errors
which are not observed nor compensated by the control.

2.3.3.2 Computed Torque Control in the joint-space

A control strategy commonly used in serial kinematics is the computed
torque control (CTC) in the joint-space [47]. It uses the inverse dynamic
model to calculate the torque inputs required for a motion of the mechanism
[42]. Additionally, compensation of disturbances such as friction, can also
be done by including a feed-forward [41]. In Fig. 2.22 a general computed
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torque control is shown, where the inver kinematic model is used to obtain
the position, velocity and acceleration of the joints from a path in the
workspaces. Then, the gains kp and kv are used to calculate a compensation
action from the position error eρ and the velocity error eρ̇ respectively.
These are then added to the demanded acceleration q̈ and the output is
used as an input to the dynamic model. Furthermore, the actual joints
positions and velocities are used as well. As a result, the required torque τ
is obtained.

Mechanism / Actuators

Inverse

kinematic

model

+
-

+
-

+
+

+

Figure 2.22. Simplified computed torque control scheme.

For computed torque control, Lagrange’s equations are commonly used
in order to obtain explicit expressions of the dynamics, which are separated
in inertial, Coriolis and gravitational terms, depending on the actuated
joints positions, velocities and accelerations. Moreover, by using the CTC in
the joint-space, the issue of non-optimal tuning of the controllers is avoided
because the non-linearities of the dynamics are taken into account by the
inverse dynamic model (IDM). Therefore, the controllers are guaranteed to
perform appropriately regardless of the workspace [41].

Nevertheless, modeling errors, which are somewhat unavoidable, affect
the stability and motion accuracy of the system, thus affecting the perfor-
mance of CTC controllers [41, 42]. As a solution, the common approach is
to reduced the modeling errors as much as possible. One way is to consider
the disturbances due to the task of the mechanism [48]. Also, a combined
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flexible and rigid body model can be done in order to further reduce mod-
eling errors [49]. Lastly, a parameter identification procedure can also be
done to consider the actual dynamic parameters values of the system [50,
51].

2.3.3.3 Control in the workspace using PID

For a parallel kinematic machine, the performance is limited with a joint-
space control, since the state of a PKM is completely defined by the end-
effector instead of the joints as in serial systems [41, 52]. Hence, for parallel
kinematic mechanisms, Cartesian control, also known as workspace control,
should be used to obtain the best performance.

Figure 2.23. PID control in the workspace (Source: Callegari et al. [53]).
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On the contrary to joint-space control, workspace control, reacts to
the position and orientation error measured directly at the end-effector.
Moreover, the actuators inputs are calculated from the workspace error
using the inverse dynamic model of the mechanism. In Fig. 2.23 the scheme
of a PID control in the workspace with gains Kp, KI and Kd is shown, where
the direct kinematics is used to obtain the position of the robot p from the
actuators measurements d.

A problem with workspace control is that the end-effector position is
often times inaccessible. Hence, measuring technologies like vision, indoor
positioning systems and laser tracking must be used instead, thus increasing
the complexity and the cost of the overall system. A solution is to used
the direct kinematic problem (DKP) to estimate the end-effector position
from the joints positions as it was shown in Fig. 2.23, but this approach
also present some important drawbacks.

Figure 2.24. Scheme of a 5R mechanism with the two possible positions of the
TCP.

A common issue seen in PKM is that a given actuated joint configura-
tion can present different end-effector positions as can be seen in Fig. 2.24
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for a 5R mechanism. Therefore, passive joints may also be measured to
asses the position of the end-effector, or the workspace may be limited to
avoid the singularities. Another problem, as mentioned by Paccot [41], is
that the DKP results in a squared model, which is sensitive to measurement
and calibration distortions and deviations in the kinematic model from the
actual system.

2.3.3.4 Computed torque control in the workspace

The computed torque control can be applied in the workspace with the
same advantages as described previously. In the workspace, the position
and orientation of the mechanism is measured and used to calculate the
forces inputs to the actuators, as shown in Fig. 2.25.

Figure 2.25. Computed torque control in the workpace (Source: Paccot et al.
[41]).

In this control, the workspace position error e is obtained from the
command and actual positions in the workspace, Xd and X respectively.
Then, a PID controller is used to calculate the compensation action uPID
from the error e. Additionally, an acceleration command uff is added as a
feed-forward to the compensation action uPID, thus resulting in the input
w to the dynamic model IDM . In addition, the position X and the velocity
Ẋ are also introduced in the inverse dynamic model. Finally, the required
input torque Γ is calculated and supplied to the mechanism.

As it can be appreciated, a measurement of the end-effector is needed
for this control. If it cannot be measured, the direct kinematic problem
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can be used to estimate its position and orientation instead. Nevertheless,
the direct kinematic problem issues mentioned previously are also present
in this case.

2.3.4 The problem with parallel kinematic machines

As it has been mentioned, parallel kinematics machines have a potential
for improved accuracy, speed and rigidity [3] compared to serial machines.
Nevertheless, their practicality on industrial settings still demands for more
work on this topic. Many authors have reported a lack of good performance
in their investigations. As an example, Tlusty et al. compared a machin-
ing center with cartesian kinematics with an Hexapod parallel kinematic
machine [54]. It was found that this kind of mechanism presented lower
performance to the machining center in terms of accuracy. In this regard,
it was reported that the transmission of motions due to the parallel struc-
ture caused a lower stiffness of the final platform than the stiffness of a
single strut. As a result, process forces (cutting, weight) cause deflection
on the struts affecting the accuracy of the system. Also, in the work of
Wang and Masory it was found how the tolerances in the manufacturing
process, assembly errors and offsets negatively affected the accuracy of a
Stewart platform [55].

Moreover, as indicated by Paccot et al. [41], two problems arise when
dealing with PKM. Simplifications in the kinematics influence have a nega-
tive impact on the accuracy. Another issue reported deals with the type of
control used with PKM. It was mentioned that, existent control strategies
for serial mechanism are reused. This leads to errors as the state of a PKM
is defined by its end-effector and not its joints.

It is clear that modeling and simulation tools are still required in order to
improve the performance of parallel kinematic systems. Such models should
take the actuators dynamics, mechanisms, controls and their interactions
into account in order to proper simulate the behavior of parallel kinematics
machines. Hence, a mechatronic modeling approach must be taken.
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2.4 Dynamics modeling of parallel kinematic
mechanisms

Much work is found in the kinematics and dynamics modeling for serial
and parallel manipulators as well. Usually, computational tools are used
to assist in the modeling of robotic systems. In this regard, in the work of
Žlajpah [56] an overview of several computational tools commonly used for
simulations, such as Matlab/Simulink and Dymola/Modelica, are shown.
Furthermore, simulation tools allow to understand how a given system
works under specific set of conditions and with different design configu-
rations.

For the dynamics of serial mechanism, it is commonly found that La-
grange, recursive Newton-Euler and Principle of virtual work methods are
employed to obtain the dynamic expressions [57]. Nevertheless, for parallel
mechanism the applicability of such methods is difficult due to the closed
loops kinematics.

Multibody models of the mechanism [58] or the forward dynamic prob-
lem [41] have been applied to obtain a simulation model for parallel mech-
anism. When high loads are present the application of multibody models
is justified since they can model the flexible behavior of the components.
However, costly modeling software packages may become a limiting fac-
tor. Moreover, with both approaches it is common to model the actuators
dynamics assuming a rigid body behavior, as unnecessary more complex
models will result. This may overlook the contribution of flexibilities of the
actuators on the global dynamics of the system.

Also, with the previous mentioned formulations the forces due to the
mechanism cannot be introduced into the control algorithm to perform
computed or feed-forward torque control since the force in the actuators
are not available. For this, the inverse dynamic model (IDM) provides the
required torques or forces in the actuators to perform a given commanded
motion. In fact, the inverse dynamic model has been used in the past for



48 State Of The Art

model based control. In [53] the inverse dynamic model of a 3-RCC robot
is used in a computed torque control and compared with a PID control.
Also Lou [59] employs a model based control to reduced the contouring
error of a 3 degrees of freedom translational parallel mechanism called Or-
thopod. Moreover, Codourey [60] developed a model-based control for a
Delta-Robot based using the IDP. In a similar way, Yang et al. [61] devel-
oped a computed force and velocity control for a 6-DOF parallel mechanism
also employing the inverse dynamics. It can be seen that the inverse dy-
namic problem provides to be useful for advanced control programming,
however finding the inverse dynamic problem can be cumbersome specially
on parallel kinematic systems.

Furthermore, it is usually found that the data given by the manufactur-
ers of the components is not sufficient to build an accurate model. Hence
an identification step is required in order to adjust the system model us-
ing the experimental signals to find estimates of the dynamic and friction
parameters. The latter plays a key role in the dynamics of the system.
In fact, for high precision machining and in motion control, friction is an
important source of uncertainties and disturbances[62], thus it has also to
be considered. The main problem with friction is its nonlinear nature and
some of the parameters are unknown beforehand.

2.4.1 Parallel manipulators dynamics

To obtain the dynamics for mechanisms, formulations such as Newton-
Euler, the principle of virtual work or Lagrangian methods have been ap-
plied. In the following sections, a discussion on these methods will be
given. In addition, other less known methods, such as Gibbs-Appell equa-
tions, the principle of energy equivalence and Boltzmann-Hamel equations
are also discussed.
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2.4.1.1 Newton-Euler

Following the Newton-Euler method the dynamic equations of parallel mech-
anisms can be obtained. In Fig. 2.26 the free body diagram for linkage i th

of a robotic system is shown, where two joints are shown, joints i and i−1.
The moment Mi−1 is the moment that link i − 1 exerts on link i. In the
same way, Fi−1 is the force from link i − 1 applied to link i. In a similar
way, if a link i+ 1 exist, Mi and Fi are the resultant moments and forces
applied to the link i+ 1. This process can be applied to a mechanism with
n links. It can be noticed that no external forces or moment are so far
considered. These can be taken into account by defining

∑
Fei and

∑
Mei

as the sum of the forces and moments respectively and externally applied
to the link i.

Figure 2.26. Free body diagram of link i by Jazar [63].

Moreover, the equation of forces and moments of the ith link with re-
spect to a reference coordinate system O can be written as follows.

OFi−1 −O Fi +
∑

OFei = mi
Oai (2.9)
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OMi−1 −O Mi +
∑

OMei +
(
Odi−1 −O ri

)
×O Fi−1

−
(
Odi −O ri

)
×O Fi = Ii

Oẇi
(2.10)

These two equations are regarded as the equations of motion for the
link i. As it can be seen, to calculate the forces or torques at a given joint
(i.g. an actuated joint), all the reaction forces between joints have to be
calculated. Also, this method presents a recursive nature that is advanta-
geous for computer models. In addition, this method can be used for the
dimensioning and mechanical design of joint components as it provides the
loads requirements for each joint [8, 64].

It is worth mentioning that an interesting approach has been taken
by Oftadeh [65] which employs intermediate variables from the joint-space
and algebraic matrix manipulation tools to obtain explicit dynamic models
for a Gough-Stewart platform. Nevertheless, the applicability of Newton-
Euler methods on parallel mechanisms is difficult as mentioned by Ebert
& Uphoff [66], as the internal forces and moments of the mechanism are
also calculated, causing the “...formulation, implementation and debugging
of the algorithm extremely cumbersome and prone to errors”.

2.4.1.2 Principle of virtual work

The principle of virtual work and the D’Alembert’s principle have been
used for the dynamics analysis, in which a system is regarded to be in
equilibrium if the virtual work done by the forces and moments for a given
virtual displacement is zero [53]. The work of Wang and Gosselin [67] can
be used as a reference, where it is described in detail the application of the
principle of virtual work to analyze the dynamics of parallel mechanisms.
Moreover, two examples are giving to illustrate this approach, a four-bar
planar mechanism and the Gough-Stewart spatial platform.

What is important of this method is that the calculation of the con-
straint forces is avoided, thus resulting in simpler expressions than the
Newton-Euler approach [53, 64]. Furthermore, as the equations of mo-
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tion obtained are simpler and computational efficient, the resulting inverse
dynamic model can be included in robot control implementations.

2.4.1.3 Lagrange approach

With the Lagrange approach the forces and torques at the actuators are
obtained by means of differential equations. To this end, the Lagrangian in
Eq. 2.11 is defined as the kinetic (T ) and potencial (V ) energies difference.

L = T − V (2.11)

To obtain the equation of motion of a system, the Lagrange’s equations
in Eq. 2.12 is applied as follows:

d

dt

(
∂Lmech
∂q̇

)
− ∂Lmech

∂q
= Q. (2.12)

In this equation, q is defined as the generalized coordinates, which are
used to express the kinetic and the potential energies, and the length of
q is the number of degrees of freedom of the system. Moreover Q is the
vector of generalized nonconservative forces. As a result of applying the
Lagrange’s equation, the expression in Eq. 2.13 is obtained.

D (q) q̈ + C (q, q̇) q̇ + G (q) = Q (2.13)

Where D is the inertial matrix, C is the Coriolis and centrifugal forces
matrix, G represents the gravitational matrix and Q is the vector with
the forces and torques for all the actuators. This expression is sometimes
considered as an explicit or detailed form because each physical effect is
obtained separately [68].

This form is important in the context of robotic systems as it is appro-
priate for control implementation. What is more, Eq. 2.13 can be easily
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applied on serial systems, where the joint position inputs are independent
and can be used as generalized coordinates. However for parallel mech-
anism, joint inputs are coupled due to the kinematic constraints. As a
consequence, using them as generalized coordinates would imply calculat-
ing the Lagrange’s multipliers λ′s, which represent the link forces between
joints [68].This results in additional expressions that must be solved for
parallel mechanisms.

In summary, Lagrangian analysis applied for open-chained mechanism
can result in relatively simple expressions. However, when applied on
closed-loop mechanism complex set of equations are commonly obtained
as a result of the Lagrange’s multipliers and trigonometric expressions ap-
pearing for spatial rotations. As an alternative, less known methods of
analytical mechanics can be applied to overcome the difficulties of applying
the methods just mentioned.

2.4.1.4 Gibbs-Appell equations

Considering a rigid body with linear acceleration ap, angular velocity w
and acceleration αp, and inertia matrix Imp with respect to a reference
system fixed to the body, the Gibbs-Appell function S is defined as in Eq.
2.14. This function is also known as the energy of acceleration for a rigid
body because of its similarity with the kinetic energy.

S =
1

2

(
mpa

T
p ap

)
+

1

2

(
αTp Impαp

)
+αTp (w × Impw) (2.14)

It is then possible to obtain the dynamics by differentiation of the Gibbs-
Appell function for a rigid body with respect to the acceleration vector γ̈
like in 2.15 [66], where τ g and τ ext represent the gravitational and external
generalized forces respectively. In other words, the gradient of function S
with respect to γ̈ is:

∂S

∂γ̈
= ∇γ̈(S) = τ g + τ ext = τ (2.15)
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Where,

γ̈ =

{
ap
αp

}
=



ax
ay
az
ẇx
ẇy
ẇz


(2.16)

Hence, the following equations of motion result after performing the
differentiation:

∂S

∂ap
= ma =


fpx
fpy
fpz

 (2.17)

∂S

∂αp
= Impẇ + w × Impw =


mmpx

mmpy

mmpz

 (2.18)

τ = τ g + τ ext =

{
ma

Impẇ + w × Impw

}
(2.19)

2.4.1.5 Description of the principle of energy equivalence and
Boltzmann-Hamel equations

Another way to deal with the dynamic modeling of a given parallel mecha-
nism, is by splitting the whole system into individual components and an-
alyze them separately. Nevertheless, in order to maintain an equal relation
between the assembled mechanism dynamics and the dynamics obtained for
each of its components, an equivalence must be established between them.

In this regard, the principle of energy equivalence has been applied
by Abdellatif and Heimann to obtain an explicit model using Lagrange’s
equations of a Gough-Stewart platform [68]. Basically, each component is
analyzed separately as if they moved in the assembled mechanism, hence
preserving the energy of the system. To this end, the Jacobian matrices for
each component are used.
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As a result, the dynamics of a parallel mechanism can be obtained in
a “... computational efficient manner and without simplifications” [68].
Additionally, Abdelatiff and Heimann provide a study demonstrating that
the resulting dynamic model using the principle of energy equivalence with
Lagrangian formalism, is more efficient than Newton-Euler methods. Fi-
nally, they further state that they were able to implement it on commercial
control boards.

For those reasons, the principle of energy equivalence approach results in
a interesting candidate to develop a mechatronic model for parallel mecha-
nisms, where the control and the performance of the system closely depends
on a computationally efficient dynamic model.

Moreover, as it was mentioned in section 2.4.1.3, using the Lagrange’s
equation can result in complex expressions caused by the chosen general-
ized coordinates. This issue arises particularly in the case of rigid bodies
with spatial rotation, where complex trigonometric expressions are obtained
which are cumbersome to derivate for. This will be further addressed in
section 3.4.2.

To alleviate this problem, quasi-coordinates can be used instead, which
are already used for the Gibbs-Appell equations and for the Boltzmann-
Hamel equations [69]. The latter consists of applying the Lagrange’s for-
malism on system described by such quasi-coordinates.

In section 3.4, the principle of energy equivalence and Boltzmann-Hamel
equations will be reviewed in more detail. Therein, the application of the
principle of energy equivalence on parallel mechanisms will be shown. Fur-
thermore, Boltzmann-Hamel equations will be particularized for a rigid
body with spatial rotation only, since the main advantage is appreciated
for such motions.
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2.4.2 Friction

Although it is frequently modeled as a tangential reaction force resulting
from the contact between two surfaces with relative motion [70], friction
is a complex and nonlinear phenomenon dependent on factors like contact
geometry, surface material, relative velocity and lubrication [70].

In some systems such as in brakes, friction may be desirable to effectively
reduce the velocity of a vehicle by dissipating kinetic energy. However,
for positioning or robotic systems is a source of inaccuracy. Hence, it
is important to consider friction from the beginning of a design stage in
order to properly select the system components, and to reduce its effect on
the system performance, specially its impact on high-precision devices, by
applying friction compensation control techniques.

An alternative is to employ a model-based friction compensation scheme
[70], which consists of adding an estimated friction force to the control signal
as in Fig. 2.27. However, a good model is required for a proper compensa-
tion. A survey of friction models and their application for control purposes
has been written by Armstrong-Hélouvry [71]. Also several authors have
proposed other friction models, each of them with different degrees of com-
plexity. In this regard, friction models can be classified into two categories:
static and dynamic models.

Figure 2.27. Control scheme with friction compensation. (Source: Olsson et al.
[70]).
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2.4.2.1 Classical friction models

Classical friction models assumes that the phenomena remain constant with
time. Classical friction models are usually used for compensations because
of their simplicity [70]. In Fig. 2.28, a representation of the known classical
friction models are shown.

(a) (b)

(c) (d)

Figure 2.28. (b) Coulomb friction model, (b) Coulumb + viscous friction model,
(c) Coulumb + viscous + stiction model (d) Coulomb + viscous friction model
with Stribeck effect [71].

The Coulomb friction model is the most simple. It considers friction as
a force that opposes the motion and is proportional to the normal load as in
equations 2.20 and 2.21, where Ff is the friction force, Fc is the Coulomb
friction force and v is the velocity. Additionally, µ is the coefficient of
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friction and Fn is the normal force to the contact surfaces. This model has
been used by Friedland for compensation in control systems [72]. Therein,
a friction observer has been employed to estimate the value of Fc.

Ff = Fcsgn(v) (2.20)

Where,
Fc = µFn (2.21)

However, the Coulomb friction model can be extended to take the vis-
cous effect in Eq. 2.22 into account as in Fig. 2.28b. Therefore, Ff results
as in Eq. 2.23 where c is the viscous coefficient.

Fv = cv (2.22)

Ff = Fc + Fv = Fcsgn(v) + cv (2.23)

Another experimental observation from Coulomb about friction is that
it reaches a maximum when the relative motion is about to happen, and
then it decreases up to a specific value [70, 73]. In other words, fric-
tion opposes forces applied externally preventing the motion until a value
is reached. This phenomena is known as Stiction and is represented in
Fig. 2.28c.

Lastly, the Stribeck model in Fig. 2.28d considers that friction decreases
continuously within a low velocity range. This is known as the Stribeck
friction and is dependent on the external force Fe and the static force Fs.
Also, a common parameterization of the velocity dependent term, among
others proposed [71], is shown in Eq. 2.25 [70]. Therein, vσ is known as
the Stribeck velocity .

Ff =


Ff (v) if v 6= 0

Fe if v = 0 and |Fe| < Fs

Fssign(Fe) otherwise

(2.24)
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Where,

Ff (v) = Fc + (Fs − Fc)e−|v/vσ |
δσ

+ cv (2.25)

As it is mentioned by Olsson, the above models are somewhat inconve-
nient for simulation and control purposes since it is not known when the
velocity is zero [70]. To solve this, the Karnopp [74] model can be followed
in which a velocity range is defined as the zero velocity interval. If the
actual velocity is within this range, then the output friction force is zero.
However, this may result in stick-slip behavior if the velocity range is too
wide [70]. Also, the friction is not well modeled within the zero velocity
interval.

Another approach to model the friction in the low velocity range is
by approximating the relay behavior in the zero velocity crossing with the
hyperbolic tangent as in Eq. 2.26 [75]. The factor β can be used to moderate
the friction behavior accordingly. As a result, a continuous model at the
zero velocity interval is found. This can be easily seen in Fig. 2.29a.

Ff = Fc tanh(β v) (2.26)

Furthermore, the model in Fig. 2.29a can be extended to consider the
viscous friction and the Stribeck effect as in Eq. 2.27. Also, the behavior
of the model is shown in Fig. 2.29b.

Ff = c v + (Fc + Fcs sech(αv)) tanh(β v) (2.27)

2.4.2.2 Advanced friction models

The aforementioned models are regarded as classical friction models and
rely of convenient simplifications to the actual more complex phenomena.
Although this models may be employed in general applications, for preci-
sions in the micrometer range more advanced models are required [76]. To
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Figure 2.29. (a) Continuous Coulomb friction model and (b) continuous Coulomb
+ viscous + Stribeck friction model.

improve the description of friction. For example, the model by Armstrong
[71] can be employed to take the stiction into account in classical friction
models. With this model, the sticking and sliding conditions are separated
into two separate models and an additional parameter must be used to
select between the two of them.

Also, the Dahl model [77] has been employed for friction compensation
control. It is based on the condition of stress-strain curve of material and
modeled as a differential equation. The first approximation of the model
was not dependent of the velocity but of the displacement. Nevertheless,
Dahl extended the model to include the velocity. Despite this, Olsson
mentions that several extensions to the model have been proposed to include
the stiction and the Stribeck effect as it was not originally considered.

Many other models have been also worked out such as the Bristle and
LuGre models to find even more detailed representations. These two are
based on the microscopic observations of the materials in which asperities
(bristles) are present. This bristles act as springs when two surface are
subjected to a tangential force. Moreover, the LuGre model introduces the
damping and stiffness of the bristles, and the friction force is obtained also
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as a velocity dependent function.

A relatively recent model employed is the Generalized Maxwell-Slip
friction model [76, 78]. A problem with the LuGre model is that it does not
take the adhesive forces into account in presliding conditions. In such cases,
friction behaves as a hysteresis function dependent on the displacement,
leading to complex dynamical behavior.

In essence, the generalized friction model consists of N elastic damped
elements systems as in Fig. 2.30. As a result, the overall friction force is a
sumation of the force on each element as described in Eq. 2.28. Therein, ki
represents the stiffness for each element, σi is the viscoelastic coefficient. In
this way, the term ki zi(t) represents the elastic behavior under sliding con-
ditions, σiżi(t) is the viscous-elastic effect and f(v) represents the viscous
friction. It is worth observing that the number of unknown parameters is
proportional to the number of elements used. Therefore, they must be ex-
perimentally identified by employing nonlinear optimization methods [76].

Figure 2.30. Representation of the Generalized Maxwell-slip friction model
(Source: Al-Bender et al. [76]).
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Ff (t) =
N∑
i=1

(ki zi(t) + σiżi(t)) + f(v) (2.28)

Furthermore, it has been reported that the GMS model is capable of
correctly representing the friction force with good accuracy [79]. Finally,
because of its relatively simplicity, it is a model suitable for simulation
and compensation in control, provided that the unknown parameters are
correctly identified.

2.5 Identification

An essential aspect of the mechatronic design approach is to use accurate
models in order to make appropriate design decisions. In mechatronics ap-
plications and robotics, also model based control is employed to improve
the accuracy and performance of such systems. all these models rely on
dynamic parameters that are estimated from CAD models or analytical
approximations. However, such estimations are often not sufficient to build
detailed models, or simply not information is available for certain phenom-
ena, such as friction or damping. Therefore, once a first prototype has been
built, or several components of the prototype are available and operative,
an experimental identification procedure must be used in order to obtain
accurate values of the unknown parameters, which are then used to fine
tune the models.

In the identification theory, three basic concepts are applied to sys-
tems modeling. White box models consists of a known model structure
and parameters. However, these models rely on parameter values that do
not match the actual ones of the system, and it is also possible that the
model structure is oversimplified. As result, the estimated behavior may
differ from the performance of the actual system. Nevertheless, they are
convenient for initial approximations.

On the other hand, black box models are built from input and output
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measured data of the system. Since only data is used to infer a model of
the system, their parameters may not have a relation to the actual physical
properties. Also, it is required that relatively large sets of data are used to
obtain a reliable model.

A third option between the above discussed type of models are the so
called grey box models. They consist of a previously known model struc-
ture, which can be obtained by analytical methods, but still with unknown
parameters. This type of identification models are key to obtaining model
parameters values with physical meaning from experimental data, after an
identification procedure is applied.

In this regard, a standard identification procedure consists of 6 steps
according to Swevers [80], namely (1) Modeling, (2) Experiment design,
(3) Data acquisition, (4) Signal processing, (5) Parameter estimation and
(6) Model validation. The identification procedure is shown in Fig. 2.31.
The modeling step is where the equations of motion are obtained to describe
the dynamics, as function of the unknown parameters of the system. The
equations of motion are written as in Eq. 2.29.

F = Mq̈ + Cq̇ + G (2.29)

Nevertherless, the identification procedure is greatly simplified if Eq.
2.29 is rewritten in linear form with respect to the unknown parameters
in Φ like in Eq. 2.30 [80, 81]. What is important to note is that the
matrix K depends only on the position q, velocity q̇ and acceleration q̈,
which must be measured, as well as the forces or torques F. Then, a linear
regression can be performed to calculate the unknown parameters grouped
in Φ. Friction can also be included into 2.30 provided that the friction
model is also in linear form.

F = K(q, q̇, q̈)Φ (2.30)

In order to perform a linear regression, a trajectory must be prepared
accordingly for the identification. The experiment design step in Fig. 2.31
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Figure 2.31. Identification procedure for robots. (Source: Swevers et al. [80]).

consists on preparing a trajectory to guarantee that the parameters can be
estimated accurately. For that matter, trajectories can be parameterized
as Fourier series [80], sum of sinusoids [82], or any periodic signal that re-
sults in a sufficient excitation of the dynamic parameters. In any case, the
parameters of the trajectory remain unknown, thus, an optimization rou-
tine is performed to obtain them according to a previously define objective
function, such as the condition number among others [51].
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Once the trajectory is prepared, it is executed on the actual robotic
system where the data acquisition takes place. Afterwards, the signals are
post-processed in the signal processing step to remove noise or other distur-
bances in the signals. Finally, the unknown parameters are estimated using
the experimental signals and the model is updated with the parameters val-
ues. However, to complete the identification process, the updated model
must be validated with another trajectory to verify whether the estimated
parameters are not biased by the signals used for the identification.

The already mentioned steps describe the general procedure used for
identification of the unknown parameters of a given system. On the other
hand, identification methods can be classified in two approaches as de-
scribed by Wu et al. [83]: off-line and on-line identification methods. In
the following, these two approaches will be briefly introduced to establish
a reference for further research based on the work of Wu et al. [83] among
others.

2.5.1 Off-line identification

For off-line identification the inputs and outputs signals are collected and
stored previous to performing any analyzing. In other words, the data is not
analyzed during normal operation of the system. Three essential methods
can be performed in this regard: physical, CAD and identification.

2.5.1.1 Physical experimentation

A way to determine the value of dynamic parameters is by physical inspec-
tion of the system’s components. In this regard, vibration analysis can be
performed on the mechanism links to find the inertial parameters, from the
frequency response functions(FRF). Modal analysis is another alternative
to identify, the damping and stiffness matrices. Furthermore, a minimiza-
tion of the error between the theoretic values and the frequency response
can be done to also calculate the inertial parameters of the system.
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These methods require disassembling the mechanism which is a draw-
back for two reasons. The first problem is that the disassembled system
is not ready for normal operation. This may be assumable in academic
contexts but not in industrial settings. Another problem as reported by
Wu et al. is that the experimentation is a tedious process [83] and deep
knowledge is required.

2.5.1.2 CAD modeling

An alternative to calculate the inertial parameters is by using CAD models
of the system during the design stage, which allows for a priori estimation
of the parameters and preparing of suitable control strategies. Neverthe-
less, the estimation of the parameters in this manner does not considers
deviations due to the manufacturing and assembly processes which may
have an influence. Also, friction plays an important role in robotic systems
and it cannot be obtained from CAD models.

2.5.1.3 Identification procedures

Identification techniques are used to find the values of the unknown inertial
and friction parameters by introducing an input signal, a trajectory in
the case of robotic mechanisms, and collecting the experimental data such
as the torque. Once the experimental signals are obtained and further
post-processed, the parameters are estimated by minimizing an objective
function previously defined.

It has been reported that this approach is easy to implement and the es-
timated parameters are accurate with this approach [42, 83]. Also, the same
procedure has been applied on serial robots, such as the KUKA IR/361 in-
dustrial robot [84] and the PUMA 560 [85], as well as in parallel robots [51,
86, 87].
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2.5.2 On-line identification

On-line approach identification methods are commonly employed for ad-
vanced control algorithms like adaptive control , where the parameters val-
ues are estimated from the available measurements to fit a dynamic model
to the actual dynamic response of the system.

A common issue in off-line identification is that time-varying parame-
ters cannot be taken into account. Also, constrained workspace or motion
limits in position, velocity and acceleration, may restrict the capacity of
identifying some of the parameters due to an improper excitation. In this
regard, adaptive control has been applied to overcome such limitations. In
theory, adaptive control is able to manage situations where modeling un-
certainties are present. In the work by Cazalilla et al., an adaptive control
is employed to improve the performance of a 3-DOF parallel manipulator
[88]. Also in the work of Honegger et al., a non-linear adaptive controller is
developed to identify the dynamic parameters of the inverse dynamic model
and then used for feed-forward compensation [89].

Nevertheless, a drawback of adaptive controllers is that their use may
lead to instability issues that may result in system failures [90]. For this rea-
son, more advanced controllers have been developed such as robust control
and L1 adaptive control theory [91].

2.5.3 Pseudo-linear regression identification with separable
parameters

An off-line approach applied for system identification is by pseudo-linear
regression methods. Assuming a time-varying model of the form of Eq.
2.31, where ρ contains the unknown parameters of the system and η is a
vector with non-linear parameters. It is worth mentioning that ρ and η
must be two disjoint sets.

τ (t | ρ,η) = ρT φ(t,η) (2.31)
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In such problems, it is usual to use a minimization of the nonlinear
functional in Eq. 2.32. Additionally, the latter equation can be also written
as in Eq. 2.33.

r(ρ,η) =
m∑
i=1

(τ (ti)− ρT φ(ti,η))2 (2.32)

r(ρ,η) = ‖τ (ti)−Φ(η)ρ‖2 (2.33)

Where,

Φ(η) =


φ1(t1) φ2(t1) . . . φn(t1)
φ1(t2) φ2(t2) . . . φn(t2)

...
...

...
φ1(tm) φ2(tm) . . . φn(tm)

 (2.34)

Either the parameters in η and in ρ are unknown. Finding the optimal
parameter as in equations 2.32 and 2.33 is not straightforward. However,
the minimization of Eq. 2.33 can be separated in such a way that the
consideration of the parameters in ρ is deferred [92]. To this end, a new
functional equation for minimization can be defined dependent only on the
η parameters as in Eq. 2.35, and the optimal parameters of ρ̂ are somewhat
postponed to be calculated as in Eq. 2.36

r2(η) = ‖
[
I−Φ(η) Φ+(η)

]
τ‖2 (2.35)

ρ̂(η̂) = Φ+(η̂)τ (2.36)

Where I is the identity matrix and Φ+(η) is the Moore-Penrose pseu-
doinverse matrix of Φ(η).

The pseudo-linear regression method here presented has been applied
by Wernholt and Gunnarson [75, 82]. Therein a three step identification
procedure has been used to estimate the rigid body dynamics, friction and
flexibilities parameters of a industrial Robot.
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Chapter 3

Mechatronic Modeling
Procedure

Due to the complexities in the design of parallel kinematic mechanisms,
with their actuators and control, and the different design decisions in-

volving these components, in this work it is proposed a methodology to
develop a mechatronic model which helps in the design process of parallel
kinematic machines. The novelty of the approach taken is that the ma-
nipulator is decoupled from the actuators, which allows for analyzing each
component separately and are easily integrated to study their interactions.
This methodology is specially useful to design mechanisms with high veloc-
ity motions like Pick & Place mechanisms, with large bandwidth such as in
multi-axial simulating tables, or when high loads must be moved.

In Fig. 3.1 a scheme of the mechatronic analysis procedure is shown.
With the mechatronic model developed considering the actuators, control
and the mechanism, tests in the time and frequency domain are carried out.
Regarding the time domain tests, the motor torques are calculated and the
positions and velocities simulations using the model are compared with the
commanded signals. As for the frequency domain tests, the bandwidth of
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the actuators with and without the mechanism attached is calculated. In
this way the calculated torques can be used to properly select the actu-
ation system, and the positioning precision can be assessed. Afterwards,
the actual system can be built, and its performance can be compared with
the model simulations. Nevertheless, when using the theoretic values of the
dynamic parameters, differences between the model and the actual system
may result, specially from the effect of the friction in the system. As a
consequence, an identification procedure is applied to find the actual pa-
rameters values. This is addressed in detail in chapter 5.

Figure 3.1. Representation of the main components of a parallel mechanism and
its interactions.

In this chapter, first some general considerations for the modeling will
be described. Then, the modeling for the actuators will also be consid-
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ered along with the control. Finally, it will be shown the approach taken
to model the dynamics of parallel mechanisms using the methods of the
principle of energy equivalence and Boltzmann-Hamel equations.

3.1 Mechatronic modeling for parallel
mechanisms

Three important subsystems can be identified in a parallel kinematic ma-
chine as in Fig. 3.2: (1) the actuators, (2) the control, and (3) the mech-
anism itself. The forces or torques of the actuators are the inputs of the
mechanism that causes its motion. At the same time, the mechanism mo-
tion and external forces act in opposition to the actuators, hence they are
considered as disturbances.

Figure 3.2. Representation of the main components of a parallel mechanism and
its interactions.
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Additionally, the interaction between the actuators and the control is
also taken into account. By measuring the velocity, using the encoders, and
the current of the actuators, the current commands required to drive the
motors are calculated and supplied to the actuators. In the case that the
control is performed in the joint-space, the positions of the actuators are
also used and a linear single-axis position controller is considered. If a direct
measurement of the position of the end-effector is possible and workspace
control is used, the current commands to the actuators are calculated from
the position measurements.

Figure 3.3. Disturbance model between the manipulator and the actuators.

To obtain the mechatronic model taking these components into account,
in the present work it is proposed to consider the manipulator and the ac-
tuators as two independent subsystems in which their interactions is due to
the Newton’s third law. In this way, the forces required to move the mecha-
nism are considered as disturbances to the actuators, and at the same time
these same forces in opposite direction are the inputs for the mechanism.
In Fig. 3.3, a 3-PRS manipulator with three prismatic actuators are shown.
It can be noted that the manipulator and the actuators have been sepa-
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rated. Thus, the interaction between the actuators and the mechanism is
represented by the Fi forces shown in the figure. In this way, the actuators
which often times may limit the system’s performance and the mechanism
can be modeled separately and in a more detailed manner.

Figure 3.4. Mechatronic model.

Furthermore, the mechatronic model of the manipulator is shown in
Fig. 3.4. Therein (a) represents the actuators, and (b) represents the mech-
anism itself. As for the actuator two subsystems are considered, (a.1) the
dynamics of the actuator considering the electrical part and the mechani-
cal dynamics, and (a.2) the position and velocity control assuming that a
linear-single axis control is used. The mechanical dynamics of the actuators
are modeled using transfer functions as will be shown in sections 3.2.2.1 and



76 Mechatronic Modeling Procedure

3.2.2.2 and represented by the red box inside the (a.1) subsystem. Regard-
ing the control algorithm, it must also be modeled because the control type
and the loops cycle time affect the performance of the system in terms of
trajectory tracking and disturbance rejection.

The mechatronic model of the actuation system is then integrated in
the mechatronic model of the manipulator along with the inverse dynamic
model of the mechanism, see the top-right part of Fig. 3.4. The inverse
kinematic problem (IKP) of the mechanism is used to calculate the joint
positions inputs to the actuators qρ0 , while the direct kinematic problem
(DKP) is used to estimate the actual position of the mechanism’s end-
effector.

Additionally, the influence of the mechanism is included in the mecha-
tronic model with its inverse dynamic model (IDM). To this end, the IDM
has to be solved in such a way that it is expressed in the joint-space coor-
dinates. This has the advantage that the IDM resulting equations can also
be used in the control algorithm.

As it has been described, in the mechatronic model of the manipulators
of Fig. 3.4, the actuator, control and manipulator are considered separately
and then integrated. In this way, any change in the design of any of the
components can be easily modified and its effect on the overall system can
be analyzed.

The following sections are focused on the detailed modeling of each sub-
system. In section 3.2 the modeling of electromechanical actuators will be
discussed, where lumped parameter models of the electrical and mechanical
part are used. Section 3.3 is then dedicated to the modeling of the control
algorithms, considering the joint-space, workspace PID control, and the
computed torque control. Lastly, the modeling of the manipulator dynam-
ics is discussed in section 3.4, where the principle of energy equivalence and
Boltzmann-Hamel equations are explained and applied.
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3.2 Mechatronic model of the electromechanical
actuators

The mechatronic model of the actuators is composed by the actuator’s dy-
namic model and the controller as shown in Fig. 3.5. A lumped parameters
model is used to represent the dynamic behavior of the transmission com-
ponents. In this way, it is possible to take the inertias, flexibilities and
damping of all the components into account. The mechanism and other
effects, such as friction, are considered as disturbances in such models.

Regarding the lumped parameter model, a one DOF model is suitable
for actuators that could be considered as stiff, or that operate in a relatively
low frequency range, or that move a mechanism with a low inertia. On the
other hand, a 2 or N DOF model is required if the damping and flexibility
of its components are not negligible, which happens when moving large
inertias, heavy mechanisms and loads, or moving at high frequencies.

Also, any electromechanical actuator must have at least a current con-
trol, which supplies the required electrical power to drive the motor. For
this reason, the electrical part is taken into account in the model, where
its response is modeled in a transfer function considering the resistance,
inductance, torque constant of the motor and the counter electromotive
constant.

Moreover, depending on the control strategy used, position and veloc-
ity regulation loops can also be present such as in linear single-axis control.
The cycle time is also taken into account, sampling the signals and using
the z-domain for the transfer functions of the system, as the performance
of the system in terms of trajectory tracking and disturbance rejections is
affected by the cycle time. Also, the cycle time affects the torque output. If
a small cycle time is used, smooth torque outputs are obtained. As a con-
sequence, oscillations in the torque caused by the position error corrections
are avoided.
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Actuator

Dynamic

modelController

Mechanism

disturbance

Position loop
Velocity loop

Current loop

Actuator's components

N - DOF actuator's model

Figure 3.5. ith actuator mechatronic model.

Finally, if a prismatic joint driven by a rotary motor configuration is
used, two encoders can be employed to assess the position of the system,
a rotary one for the motor and a linear one for the actuator table. In
such cases it is possible to control directly the linear position ρ, however
sometimes it is only possible to use the information from the motors for
which the linear position must be calculated with the gear ratio, if any, and
the linear guide pitch.

3.2.1 Electrical dynamics of DC motors

Most actuation systems make use of electric motors to convert the electric
energy to mechanical movement. Regarding a DC motor, an electric model
of the actuator can be built with an equivalent RL circuit as shown in Fig.
3.6 [93–95], where L is the inductance of the motor coils, R is the resistance
of the windings, V is the voltage input from the controller and E is the
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back electromotive force due to the spinning of the motor as described by
the Lorentz’s Law.

Figure 3.6. Electric circuit of the actuator.

Using Ohm’s law for resistors, Faraday’s law of induction and Lenz’s
Law for the motor coil, the dynamics in the circuit of Fig. 3.6 are expressed
as in Eq. 3.1.

V (t) = Ri(t) + L
di(t)

dt
+ E (3.1)

Moreover, the voltage E is proportional to the velocity of the motor
and is expressed in Eq. 3.2 where, KE , is the back electromotive constant
of the motor given by the manufacturer.

E = KE θ̇m (3.2)

Applying the Laplace transform and reorganizing the resulting terms,
the transfer function of the electrical part is obtained as in Eq. 3.3.

TFelectric =
I(s)

V (s)− E(s)
=

1

Ls+R
(3.3)

A similar approach can be followed to analyze alternating current (AC)
motors [21], where an equivalent DC electric circuit can be used taking into
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account the root mean squared (RMS) of the voltage and current magni-
tudes.

3.2.2 Dynamics of the motor and the transmission

3.2.2.1 One degree of freedom model

A one degree of freedom or inertial model is suitable to describe an actuator
if its flexibilities can be neglected. For an actuator with a motor inertia J1

and transmission inertia J2, it can be modeled as a rigid body as shown in
Fig. 3.7.

Figure 3.7. One degree of freedom model of the actuator.

The dynamics of this model is described by Eq. 3.4, where τm is the
motor input torque, Jt is the total inertia which is the sum of J1 and J2,
c is the viscous friction and τd represents all the disturbances that may be
present, like the torque due to the mechanism, Coulomb friction and other
effects.

τm = Jtθ̈ + cθ̇ + τd (3.4)

To obtain the transfer function of the mechanical part of the actuator,
the Laplace transform is applied to Eq. 3.4, thus obtaining Eq. 3.5. If
disturbances are present the effective torque τef is used as input to the
transfer function.

TFmechanical =
θ(s)

τef (s)
=

θ(s)

τ(s)− τd(s)
=

1

Jts2 + cs
(3.5)
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Note that the above transfer function outputs the position of the motor.
However, the velocity output is more convenient since it will be embedded
into the velocity regulation loop, see Fig. 3.4. For that, by multiplying by
s the velocity transfer function in Eq. 3.6 is obtained.

θ̇(s)

τef (s)
=

θ̇(s)

τ(s)− τd(s)
=

1

Jts+ c
(3.6)

This transfer function is then included in the electromechanical model
of the actuator represented in Fig. 3.4 by the subsystem (a.1) as in Fig. 3.8,
where the voltage command Vi0 is used with the back electromotive voltage
E to calculate the voltage input V to the transfer function of the electrical
part TFelectric. The output current I is then passed through the torque
constant kt of the motor to calculate the torque input τm. It is used with
the disturbance torque τd to calculate the input to the transfer function
TFmechanical representing the mechanical dynamics of the actuator.

Figure 3.8. Electromechanical model of the actuator with a one degree of freedom
mechanical model.

3.2.2.2 Two degrees of freedom model

As mentioned before, if the flexibilities of the system cannot be neglected,
a two degrees of freedom model as shown in Fig. 3.9 can be used, where the
motor torque τm and the disturbance τd are the inputs, whereas the angular
position θρ is the output. If a linear guide is used to drive the mechanisms,
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a conversion from the rotation angle to the linear displacements is done
taking into account the pitch of the guide, as will be shown in section 3.2.3
Eq. 3.28.

Figure 3.9. Two degrees of freedom model.

Furthermore, the actual angular position in the output θρ is obtained
from the ideal position θρm , and the position variation due to the distur-
bance θρd as in Eq. 3.7. Similarly, the actual velocity θ̇ is obtained from
the motor’s ideal velocity θ̇m and the velocity variation θ̇d also caused by
the disturbance as in Eq. 3.8.

θρ = θρm + θρd (3.7)

θ̇ = θ̇m + θ̇d (3.8)

The aforementioned magnitudes are related by four transfer functions.
The primary transfer function TF1 in Eq. 3.9, relates the angular position
of the motor without disturbance θm and the input torque τm. The actua-
tor’s flexible dynamics are represented by the damping ct and stiffness kt.
Moreover, the inertia of the driving part is represented by J1 whereas J2

represents the inertia of the transmission. The secondary transfer function,
TF2 in Eq. 3.10, relates the ideal angular position θρm with the motor’s
position θm. The remaining transfer functions are used to model the dis-
turbances. On one hand, TF1d in Eq. 3.11 relates the disturbance torque
τd with the angular position disturbance θρd . On the other hand, TF2d in
Eq. 3.12 relates θρd with the position variation at the motor shaft due to
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the disturbance θd.

TF1 =
θm
τm

=
J2s

2 + cts+ kt
s2 (J1J2s2 + (J1 + J2) cts+ (J1 + J2) kt)

(3.9)

TF2 =
θρm
θm

=
cts+ kt

(J2s2 + cts+ kt)
(3.10)

TF1d =
θρd
τd

=
J1s

2 + cts+ kt
s2 (J1J2s2 + (J1 + J2) cts+ (J1 + J2) kt)

(3.11)

TF2d =
θd
θρd

=
cts+ kt

(J1s2 + cts+ kt)
(3.12)

These transfer functions representing the dynamics of the actuators, are
then included in the electromechanical model represented by the subsystem
(a.1) in Fig. 3.4 as follows:

Figure 3.10. Electromechanical model of the actuator with a two degrees of
freedom mechanical model.
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3.2.2.3 N degrees of freedom

A two degrees of freedom model is often sufficient to describe the compli-
ant dynamics of most transmissions. Nevertheless, if less stiff systems are
involved, their flexibilities must be taking into account in the dynamics
by employing higher order models [82]. Moreover, a N degrees of freedom
model like in Fig. 3.11 can also be used to describe the mechanics of the
actuation system if a more precise model is desired, or when information
of intermediary components is wanted.

N - DOF actuator's model

Figure 3.11. Scheme of a N degrees of freedom model.

In a N degrees of freedom model, the dynamic behavior can be described
in matrix form as follows:

Jẍ + cẋ + kx = F (3.13)

Where,

J =


J1 0 0 0

0 J2 0
...

...
. . . 0

0 0 0 Jn

 (3.14)

c =


c1 −c1 0 0 0

−c1 c1 + c2 −c2 0
...

0 −c2 c2 + c3 −c3 0
...

. . .
. . .

. . . −cn−1

0 · · · 0 −cn−1 cn−1

 (3.15)
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k =



k1 −k1 0 0 0

−k1 k1 + k2 −k2 0
...

0 −k2 k2 + k3 −k3
. . . 0

...
. . .

. . . −kn−1

0 · · · 0 −kn−1 kn−1


(3.16)

x =


θ1

θ2
...
θn

 (3.17)

F =


τm
0
...
0

 (3.18)

Moreover, it is convenient to write Eq. 3.13 in the frequency domain by
using the Laplace operator L, thus obtaining the system in Eq. 3.19

M (s)


θ1

θ2
...
θn

 =


τ
0
...
0

 (3.19)

Where,

M (s) =


m1s

2 + c1s+ k1 −c1s− k1 0
−c1s− k1 m2s

2 + (c1 + c2) s+ (k1 + k2) −c2s− k2

−c2s− k2
. . .

. . .
. . . mNs

2 + cN−1s+ kN−1

 (3.20)

From the above system, the following transfer functions are obtained.

TF1 =
x1

F
=

1

m1s2 + c1s+ k1 − (c1s+ k1)TF1−2
(3.21)
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TF2 =
x1

F
=

1

m1s2 + c1s+ k1 − (c1s+ k1)TF1−2
(3.22)

TFN =
xN
xN−1

=
cn−1s+ kn−1

mns2 + cn−1s+ kn−1
(3.23)

These expression are difficult to handle in natural coordinates. However,
by applying modal analysis, the transfer functions can be obtained in a
straightforward way as show in Eq. 3.24 and Eq. 3.25.

TF1 =
x1

F
=

n∑
i=1

(
φ2
i1

s2 + 2ξiωis+ ω2
i

)
(3.24)

TF2 =
xn
x1

=

∑n
i=1

(
φinφi1

s2+2ξiωis+ω2
i

)
∑n

i=1

(
φ2
i1

s2+2ξiωis+ω2
i

) (3.25)

Where φij represents the ith vibration mode of the jth degree of freedom.
Also, ωi and ξi are the natural frequency and relative damping of the ith

vibration mode.

the modal vector can be written in matrix form as follows.

Φ =


φ11 φ21 φ31 · · · φn1

φ12 φ22 φ32 · · · φn2

φ13 φ23 φ33 · · · φn3
...

...
...

. . .
...

φ1n φ2n φ3n · · · φnn

 (3.26)

An alternative to model the dynamics of the actuator with N degrees
of freedom is by using state-space models. Such models are then included
in the mechatronic model as in the case of the 2 degrees of freedom model.
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3.2.3 Conversion due to the transmission

It is usual that an actuator is composed by en electric motor and a trans-
mission to drive a load. Transmissions are used to match the power output
of the actuator to the working range of the electric motor by reducing the
speed and increasing the torque output. Also they may be used to change
from a rotation to a linear motion. In any case, they conversion factor
should be considered.

For actuators with a gearbox and rotary output, Eq. 3.27 is used to
convert the angle of the motor to the angle at the output shaft of the
gearbox with a ir gear ratio.

iR =
1

ir
(3.27)

For actuators with linear guides, Eq. 3.28 can be used to convert the
motor angle to linear position, where p is the pitch of the linear guide.

iR =
p

2πir
(3.28)

3.3 Modeling of the control

In Fig. 3.5 a representation of a general controller is shown. Depending on
the system’s performance requirements and complexity, different types of
controllers can be implemented.

As mentioned in the state of the art, the most common approach re-
garding the control for parallel mechanism, is to try to use methods from
the serial robotics field [41]. Two main control approaches can be followed,
joint-space or workspace control. Each of them presents advantages and
limitations
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3.3.1 Joint-space position control

As shown in Fig. 3.12, in the mechatronic model with joint-space or linear
single-axis control, the position of the manipulator x0 is passed through
the inverse kinematics of the mechanism to obtain the joint commands qρ0

for each actuator. The actual position of the joints qρ is used in the direct
kinematics to calculate the actual positions of the manipulator x. The
actual position is then used in the inverse dynamic model to calculate the
disturbances tρ to the actuators.

Figure 3.12. Mechatronic model with joint-space control scheme.

Regarding each actuator block in Fig. 3.12, the joint-space control
shown in Fig. 3.13 is used, where the position error eρ is calculated from the
joint command qρ0i and the actual joint position qρi . A proportional con-
trol with gain kv is used to obtain the motor velocity command θ̇i0 to the
velocity control loop. In this loop, the velocity error eθ̇ is calculated using

the actual velocity of the motor θ̇i, and then passed through a proportional-
integral (PI) control with gains kP and kI to calculate the current command
Ii0. In the current control loop, the current error eI is calculated with the
actual current Ii. Additionally, a PI control with gains kPC and kIC is
used to obtain the voltage input Vi0 to the electromechanical model of the
actuator.
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Figure 3.13. Joint-space control scheme.

3.3.2 Workspace control

As for the workspace control, it is modeled as shown in Fig. 3.14. The
end-effector position error ex is calculated from the position command x0

and the actual position x. A proportional gain kv is used to calculate
the velocity command of the end-effector ẋ0, which is then passed through
the inverse kinematic problem to obtain the joints velocity commands q̇ρ0 .
Moreover, the actual joint velocities are integrated, and the direct kinematic
problem is used to estimate the position x, which is also used in the inverse
dynamic model to calculate the disturbances to the actuators tρ.

Figure 3.14. Mechatronic model with workspace control.

For the workspace control, the control scheme shown in Fig. 3.15 is
included in each actuator block. In this case, the joint velocity command is
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converted to the motor velocity θ̇i0 using the factor iR described in section
3.2.3. This factor is used again to obtain the actual joint velocity.

Figure 3.15. Control of the ith actuator for the workspace control.

3.3.3 Computed torque control

In Fig. 3.16 a joint-space CTC is shown, where the calculated joint com-
mands using the IKP, are then employed with the actual joints positions
and velocities to calculate the position errors eqρ and velocity errors eq̇ρ .
These errors are passed through the position and the velocity gains kp

and kv respectively, to calculate the compensation accelerations which are
summed to the commanded joint accelerations q̈ρ0

. The inverse dynamic
model is then used to calculate the torque inputs τm for the motors. Also,
the inverse dynamic model for simulation is used to calculate the distur-
bances tρ to the actuators.

Another approach is to use the CTC to control in the workspace as
shown in Fig. 3.17. To this end, the direct kinematic problem is used to
estimate the position of the end-effector.

With the computed torque control in the joint-space or in the workspace,
the actuator control shown in Fig. 3.18 is used, where the torque constant
kt of the motors are employed to convert the torque command τm0 to the
current command Ii0, which is then used as the input to the current control
of the motor.
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Figure 3.16. Mechatronic model with the computed torque control in the joint-
space.

Figure 3.17. Mechatronic model with the computed torque control in the
workspace.

Figure 3.18. Control of the ith actuator for the computed torque control.
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3.4 Modeling of the dynamics of the parallel
mechanism

3.4.1 Principle of energy equivalence

To obtain the dynamic model to be used for the mechatronic models with
the joint-space, workspace or computed torque control, in this work it is
proposed to use the principle of energy equivalence based on the work by
Abdellatiff and Heimann [68]. With this approach, a given mechanism can
be “virtually” split and each subsystem can be analyzed independently by
using the Lagrangian formalism. For this to work, it is required that the
motion conditions for each subsystem must be the same as that of the
assembled system. In summary, the principle of energy equivalence states
that the sum of each subsystem’s energy must be equal to the energy of the
complete system.

Figure 3.19. Scheme of a simple parallel mechanism.

Considering the mechanism in Fig. 3.19, differential equations in terms
of the actuation geometrical kinematic variables (qρ, q̇ρ, q̈ρ), inertial prop-
erties and applied forces by the actuators are required for simulations and
control purposes. In this way, the dynamic problem results in inertial (I),
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gravitational (G) and Coriolis (C) terms that are obtained separately as
in Eq. 3.29.

fρ = Iq̈ρ + C(qρ, q̇ρ) + G(qρ) (3.29)

To obtain the dynamics of a mechanism in this way, the Euler opera-
tor Eqρ [69] can be applied to the Lagrange’s equations of the mechanism
Lmech as shown in Eq. 3.30, where qρ are regarded as the generalized coor-
dinates of the system, and fρ is the generalized forces vector which include
input torques tρ in terms of the input variables qρ, and Qρ represents the
generalized output forces.

Eqρ (Lmech) =
d

dt

∂Lmech
∂q̇ρ

− ∂Lmech
∂qρ

= fρ = tρ + Qρ (3.30)

This equation can be used to simulate the forces or torques depending
on the position, velocity and accelerations variables of the actuators (i.e.
qρ, q̇ρ, q̈ρ). Such equation can easily be obtained for serial systems but it
is a difficult task on parallel mechanisms due to the constraints imposed by
the closed-chain kinematics.

To apply the principle of energy equivalence on the mechanism in Fig.
3.19, the first step is to separate the mechanism assembly into N free-bodies
subsystem as shown in Fig. 3.20, four bodies in this case, b = 1, 2, 3, 4.
Secondly, each body is positioned in space by defining its generalized coor-
dinates qb, and grouped in the set qB as shown in Eq. 3.31.

qB = {q1 q2 q3 q4}T

= {{x1} {x2 y2 α2} {x3 y3 α3} {x4}}T
(3.31)

To maintain the energy equivalence with the original system, all subsys-
tems have to move as if they were assembled. This implies that the virtual
displacement δqb can be written as a function of the generalized coordi-
nates of the assembled mechanism δqρ. Thus, the virtual displacements
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Figure 3.20. Representation of a general mechanism and its coordinates.

are related as in Eq. 3.32 by the Jacobian matrix of the assembled system
J.

δqb =
∂qb
∂qρ

δqρ = J δqρ (3.32)

Moreover, a virtual displacement of a body within the assembly is the
same virtual displacement for that body when it is separated. This is a
result of the assembled motion condition imposed on it. As a consequence,
the virtual displacement for a given body b, can also be related to the
generalized coordinates of the assembled mechanism qρ with its Jacobian
matrix Jb as it is shown in Eq. 3.33, where b = 1, 2, . . . , N and N = 4.

δqb = Jb δqρ (3.33)

Furthermore, the virtual work for the assembled system is defined as
the product of the virtual displacement and the actuation forces as shown
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in Eq. 3.34. Also, the total virtual work δWB of the separated bodies is
the sum of the virtual work for each body b like shown in Eq. 3.35.

δWρ = δqTρ fρ (3.34)

δWB =
N∑
b=1

δWb =

N∑
b=1

δqTb fb (3.35)

Since the virtual displacement for each body is the same as for the
assembled system and under the same forces, then it follows that the sum
of the virtual work for all the bodies is the same to the virtual work of
the assembled system like shown in Eq. 3.36. It is worth mentioning that,
by “virtually disassembling” the system, the joint forces between the solids
also produce work. However, when all the contributions are summed up,
the reaction force on adjacent subsystems get canceled by the virtual work
of the previous one, and thus is not necessary to take them into account.

δWρ =
N∑
b=1

δWb

δqTρ fρ =

N∑
b=1

δqTb fb

(3.36)

Finally, the expression of the input forces in fρ is obtained by substi-
tuting Jb from Eq. 3.33 into 3.36, resulting in

fρ =
N∑
b=1

δqTb
δqTρ

fb =

N∑
b=1

JTb fb (3.37)

The forces fb due to each body are calculated using the Lagrange’s
equations, and then projected into the joint-space using the Jacobian Jb.
The contribution of separate solid are then summed up as it was shown in
Eq. 3.37, thus obtaining fρ.
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3.4.2 Modeling the dynamics of components with spatial
rotation

For bodies with 2 or more spatial rotation degrees of freedom, complex
expressions result when Lagrange’s equations in standard form are applied.
Let us consider the platform with spatial rotation in Fig. 3.21. The three
angular velocity components of w in Eq. 3.38, and its inertia Imp are
written with respect to a reference system attached to the mobile platform
XbYbZb. The mass of the platform is represented by mp.

w = [ωx, ωy, ωz]
T (3.38)

Figure 3.21. Representation of a platform in the space.

The expression of the kinetic energy with respect to a fixed coordinate
system XY Z is written as follows:

T =
1

2
mp

(
v2
px + v2

py + v2
pz

)
+

1

2
wT
pxyzIpxyzwpxyz (3.39)

Where wpxyz is the angular velocity vector relative to the coordinate
system XY Z, which can be obtained from the skew-symmetric matrix S in
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Eq. 3.40. Also, the inertia Ipxyz is written relative to the to the coordinate
system XY Z, and is calculated as in Eq. 3.41 using the rotation matrix R.

wpxyz =


wpx
wpy
wpz

← S = ṘR−1 =

 0 −wpz wpy
wpz 0 −wpx
−wpy wpx 0

 (3.40)

Ipxyz = R Imp RT (3.41)

It can be seen that the rotation matrix R, which relates the coordinate
system XbYbZb to XY Z is obtained from Eq. 3.42, where ψ, θ, φ are the
rotation angles in x, y, z respectively.

R = Ry(θ)Rx(ψ)Rz(φ) =

=

 c(θ)c(φ) + s(ψ)s(θ)s(φ) −c(θ)s(φ) + s(ψ)s(θ)c(φ) c(ψ)s(θ)
c(ψ)s(φ) c(ψ)s(φ) −s(ψ)

−s(θ)c(φ) + s(ψ)c(θ)s(φ) s(θ)s(φ) + s(ψ)c(θ)c(φ) c(ψ)c(θ)


(3.42)

Where, c(α) and s(α) denotes the cosine and sine of the angle α respec-
tively.

As it can be observed, derivation of matrix R will result in too com-
plex expressions when the Lagrange’s equations in standard form are used.
A similar problem arises as a result of using the position and the Eu-
ler’s angles as generalized coordinates. This issue was demonstrated for a
Gough-Stewart platform by Ebert-Uphoff and Kozak [66].

As a solution, it is proposed here to decouple the translation and ro-
tation motions of a component. On one hand, the mass mp at the center
of gravity can be considered to analyze the translation motion with La-
grange’s equations in standard form. On the other hand, the inertia Imp
of the platform is considered to analyze the rotation dynamics around the
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fixed point in the mass center using the angular velocities w, which are
quasi-coordinates.

In simple terms, a quasi-coordinate q̃ is a coordinate without physical
meaning. In contrast, its derivative d

dt q̃ does have a physical meaning [66].
Moreover, in the context of analytical mechanics a quasi-velocity is that
from which a position cannot be obtained by integrating the term. The
importance of using the quasi-coordinates, is that it allows representing
the rotational dynamics of a body using the inertia term Imp relative to a
coordinate system fixed to the body itself, e.g. its center of gravity [68] as
it will be shown.

Moreover the Euler’s angles in Eq. 3.43 (i.e. precession, nutation and
spin) must be used to define the orientation of the platform if energy meth-
ods, such as Lagrange’s equations are used.

qe = {θe, ψe, φe}T (3.43)

The relation between the quasi-velocities ˙̃q = w and the Euler’s angles
qe is shown in equations 3.44 and 3.45. What is important to note is that
the quasi-velocities w are a function of the Euler’s angles and its velocities.

w (q̇e,qe) = Dφ
T q̇e =

 cosφe sin θe sinφe 0
− sinφe sin θe cosφe 0

0 cos θe 1


θ̇e
ψ̇e
φ̇e

 (3.44)

q̇e = Hw; HDφ
T = I (3.45)

However, using quasi-coordinates to obtain the rotation dynamics imply
that Lagrange’s equations in standard form cannot be employed. To that
end, Lagrange’s equations for quasi-coordinates, also known as Boltzmann-
Hamel equations, must be used instead. Despite the advantages of using
Boltzmann-Hamel equations for spatial rotations, they are seldom used and
less known than other analytical dynamics methods. In the next section,
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the Boltzmann-Hamel equations are particularized for the case of spatial
rotation dynamics following the procedure described by Meirovitch [96].

3.4.2.1 Particularization of the Boltzmann-Hamel equations for
spatial rotation dynamics

Boltzmann-Hamel equations are obtained from the Lagrange’s equations
in standard form. In this regard, the dynamics of the platform can be
expressed as in Eq. 3.46, where T and V are recalled to be the kinetic
and potential energy respectively, qe is the vector with the generalized
coordinates, in this case the Euler’s angles, and τqe is the vector with the
generalized forces.

d

dt

(
∂T

∂q̇e

)
−
(
∂T

∂qe

)
+

(
∂V

∂qe

)
= τqe (3.46)

It should be mentioned that a change in notation must be introduced
to make a clear distinction between when true coordinates or when quasi-
coordinates are involved. On one hand, the kinetic energy T (qe, q̇e) is
expressed with respect of the true coordinates. On the other hand, T̄ (qe, ˙̃q)
is expressed with respect to the quasi-coordinates, where ˙̃q = w.

Eq. 3.46 can be expanded to explicitly show the derivatives with respect
to each generalized coordinate. Therefore, Eq. can be written in vector
form as follows.

d

dt





∂T
∂q̇e1

∂T
∂q̇e2

∂T
∂q̇e3



−


∂T
∂q e1

∂T
∂q e2

∂T
∂q e3


+



∂V
∂q e1

∂V
∂q e2

∂V
∂q e3


=


τe1

τe2

τe3

 (3.47)

Considering only the first term, the partial derivative of the kinetic
energy with respect to the jth velocity of the generalized coordinate can be
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written as in Eq. 3.48.

∂T

∂q̇ej
=

3∑
i=1

∂T̄

∂wi

∂wi

∂q̇ej
=

3∑
i=1

dji
∂T̄

∂wi
(3.48)

The term ∂wi
∂q̇ej

corresponds to the element in the ith row and jth column

of matrix Dφ
T . In other words the term dji of matrix Dφ (the transpose

of matrix Dφ
T ). The above equation can then be written in vector form to

account for all the generalized coordinates as follows:

∂T

∂q̇e
= Dφ

∂T̄

∂w
(3.49)

Moreover, the time derivative can be calculated to be:

d

dt

(
∂T

∂q̇e

)
= Dφ

(
d

dt

(
∂T̄

∂w

))
+ Ḋφ

(
∂T̄

∂w

)
(3.50)

Perhaps, the clearest way to express the derivative Ḋφ is by considering
a general element dji of the matrix Dφ and calculating its derivative as
follows.

ḋji(qe1, qe2, qe3) =
∂dji
∂qe1

q̇e1 +
∂dji
∂qe2

q̇e2 +
∂dji
∂qe3

q̇e3

=
[
∂dji
∂qe1

∂dji
∂qe2

∂dji
∂qe3

]
q̇e1
q̇e2
q̇e3


=

{
∂dji
∂qe

}T
q̇e =

({
∂dji
∂qe

}T
q̇e

)T
= q̇Te

{
∂dji
∂qe

}
= q̇Te (∇qedji)

(3.51)
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Where the symbol ∇qe denotes the gradient of the term dji with respect
the generalized coordinates qe. In other words, the partial derivatives of
the element with respect to each generalized coordinate written in vector
form. Therefore, Ḋφ is the matrix whose elements are calculated as in Eq.
3.51, which is briefly written in Eq. 3.52.

Ḋφ =
[
q̇Te {∇qed}

]
=
[
wTHT {∇qed}

]
(3.52)

In this way, the first term of the Boltzmann-Hamel equations can be
calculated. Nevertheless, the partial derivative of the kinetic energy with

respect to the generalized coordinates
(
∂T
∂qe

)
must be addressed. In this

regard, for a body with its mass and inertia considered together, this term
would result as in the first line in Eq. 3.53. The first term in the right hand
side of the equation correspond to the elements of T̄ that depend explicitly
on q. However, on account of considering only the rotation motion, that
term does not exist. As a consequence, the partial derivative results as in
Eq. 3.53.

∂T

∂q
=
∂T̄

∂q
+
∂T̄

∂ ˙̃q

∂ ˙̃q

∂q
= 0 +

∂T̄

∂ ˙̃q

∂ ˙̃q

∂q
=
∂T̄

∂ ˙̃q

∂ ˙̃q

∂q
(3.53)

Moreover, to obtain the expression of the partial derivative in Eq. 3.53
easily, lets consider the partial derivative with respect to one generalized
coordinate qej . It can be seen that the derivative results as follows.

∂T

∂qej
=

3∑
i=1

∂T̄

∂wi

∂wi
∂qej

(3.54)
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Where,

∂wi
∂qej

=
3∑

k=1

∂dki
∂qej

q̇k =
∂d1i

∂qej
q̇e1 +

∂d2i

∂qej
q̇e2 +

∂d3i

∂qej
q̇e3

=

[
∂d1i

∂qej

∂d2i

∂qej

∂d3i

∂qej

]
q̇e

=

{
∂Di

∂qej

}T
q̇e

(3.55)

It is worth clarifying that the term Di in Eq. 3.55 refers to the vector
of the ith column of matrix D. Hence Eq. 3.54 can be rewritten as follows.

∂T

∂qej
=

3∑
i=1

∂T̄

∂wi

∂wi
∂qej

=

{
∂T̄

∂w

}T [
∂D

∂qej

]T
q̇e

=

({
∂T̄

∂w

}T [
∂D

∂qej

]T
q̇e

)T

=

([
∂D

∂qej

]T
q̇e

)T {
∂T̄

∂w

}
= q̇Te

[
∂D

∂qej

]{
∂T̄

∂w

}
(3.56)

It should be noted that,[
∂D

∂qej

]
3×3

6=
{
∂Di

∂qej

}
3×1

(3.57)

Also, it is worth observing that the triple matrix product in Eq. 3.56
results in a scalar, hence it can be expanded to take all the generalized
coordinates into account resulting in a vector as in Eq. 3.58.
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∂T

∂qe
=



q̇Te

[
∂D
∂qe1

]{
∂T̄
∂w

}
q̇Te

[
∂D
∂qe2

]{
∂T̄
∂w

}
q̇Te

[
∂D
∂qe3

]{
∂T̄
∂w

}


=



q̇Te

[
∂D
∂qe1

]
q̇Te

[
∂D
∂qe2

]
q̇Te

[
∂D
∂qe3

]


{
∂T̄

∂w

}
=
[
q̇Te

[
∂D
∂qe

]]{ ∂T̄
∂w

}

(3.58)

Furthermore, substituting Eq. 3.45 into Eq. 3.58 results in

∂T

∂qe
=
[
wTHT

[
∂D
∂qe

]]{ ∂T̄
∂w

}
(3.59)

Finally, it remains to substitute Eq. 3.50 and 3.59 into the Lagrange’s
equations in standard form of Eq. 3.46 to obtain the first version of the
Boltzmann-Hamel equations. As for the potential energy, it has been ne-
glected since only the rotation motion has been considered.

Dφ

(
d

dt

{
∂T̄

∂w

})
+ Ω

{
∂T̄

∂w

}
= τqe (3.60)

Where

Ω = Ḋφ −
[
wTHT

[
∂D
∂qe

]]
=
[
wTHT {∇qed}

]
−
[
wTHT

[
∂D
∂qe

]]
(3.61)

Also, it is worth observing that if Eq. 3.60 is pre-multiplied by HT , the
moments applied with respect to the coordinate system fixed to the body
are obtained as follows.

d

dt

{
∂T̄

∂w

}
+ HTΩ

{
∂T̄

∂w

}
= HT τqe = mmp =


mmpx

mmpy

mmpz

 (3.62)
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It is important to stress that matrix Dφ
T may be rank deficient depend-

ing on the orientation of the rigid body relative to the defined coordinate
system. Such a problem is commonly found with every parametrization of
the orientation and is specially present in the case of rotation angles above
180 deg. Nevertheless, rank deficiency can be avoided by properly choosing
an orientation of the coordinate system that ensures that the singularities
are beyond the actual orientation workspace. This guarantees a full rank
matrix and hence good numerical results. Another approach is to employ
quaternions to express the rotation of the platform. Yet, this would re-
sult in unnecessary more complex dynamic equations for mechanisms with
smaller rotation angles.

3.4.2.2 Projection of the moments onto the joint-space

Boltzmann-Hamel equations have been applied on the Gough-Stewart plat-
form by Abdelatiff [68] and Ebert-Uphoff [66]. In this work, they have been
considered only in the case of rotation motion, which result in the kinetic
energy expression of Eq. 3.63. In this equation, Imp is recalled to be the
inertia matrix with respect to a coordinate system fixed to the platform.

T̄ =
1

2
wT Imp w (3.63)

After applying the Boltzmann-Hamel equations as described, the mo-
ments mmp with respect to a fixed coordinate system in the platform are
obtained as shown in Eq. 3.64.

mmp = Impẇ + w × (Impw) (3.64)

However, the above equation must be expressed in terms of the input
variables qρ of a parallel mechanism to be used for control or simulation.
Therefore, the Jacobian matrix JR, which relates the inputs qρ with the
quasi-velocities w, is used to project the rotation dynamics onto the actu-
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ation system. Thus, Eq. 3.64 is rewritten as follows.

JTRmmp = JTR

[
DφImpẇ + 2ḊφImpw −AT Impw

]
(3.65)

Where

A =

(
∂ẇ

∂q̇e

)
(3.66)

Moreover, the time derivatives of w and q̇e are defined as in equations
3.67 and 3.68. Substituting these into Eq. 3.65 when appropriate, the
rotation dynamics in Eq. 3.69 is obtained with the inertial term Īmp and
the quadratic velocity term cmp clearly separated.

ẇ = ḊT
φ q̇e + DT

φ q̈e (3.67)

q̈e = Jq̈ρ + J̇q̇ρ (3.68)

JTRmmp = JTRImpJRq̈ρ + cmp = Īmpq̈ρ + cmp (3.69)

Where,

cmp =

[
JT
[
DφImpDφ

T
]
J̇+

JT
[
DφImpḊ

T
φ + 2ḊφImpDφ

T −AT ImpDφ
T
]

J

]
q̇ρ

(3.70)

It is important to mention that equations 3.69 and 3.70 are general
and can be applied for any component with spatial rotations. In this way,
only the inertia matrix Imp and matrix JR are required. As a result, the
approach taken is independent of the solids of the system which yields in
a systematic and less error prone method than when the dynamics have to
be derived for each particular system. This means that any component can
be analyzed in this way, provided that the inertia matrix and Jacobians are
appropriately updated.
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3.5 Mechatronic analysis of a parallel kinematics
manipulator

The mechatronic analysis of parallel manipulators can be done in the time
and in the frequency domain. In the time domain, the joint-space and
workspace positions, velocities and accelerations can be analyzed, and by
comparing the simulated and commanded positions, an estimation of the
tracking error can be made. In addition, the simulated total torque can
be decomposed into the required torque to move the mechanism, the re-
quired torque to move only the actuators, and the friction torque once it is
identified. In this way, it can be appreciated if the selected actuators and
transmission are appropriate for a given application.

The mechatronic model can also be used to analyze the performance
of the control. On the one hand, the gains of the position, velocity and
current controllers can be tuned using the model. On the other hand,
it can also be analyzed the effect of the cycle times of each control loop
on the performance of a parallel kinematic manipulator. As a result, a
control can be properly selected, which is important to avoid choosing an
overdimensioned control as lower cycle times increase its cost.

Regarding the frequency domain, what is important to assess is if the
bandwidth of the manipulator, in other words the maximum frequency at
which a controlled motion can be performed, suits the design and applica-
tion requirements. Moreover, the bandwidth of an actuator can be easily
found as its dynamic parameters, such as inertia, stiffness and damping,
are constant. Following the theory of modern control, the transfer function
relating the commanded position and the response of an actuator can be
obtained, which is known as the closed-loop transfer function.

The same approach cannot be applied to parallel kinematics manipula-
tor, since the inertial, Coriolis and gravitational terms are not constant in
the workspace, in other words, nonlinearities are present. For this reason,
to obtain the bandwidth of a manipulator from the workspace variables,
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simulations in the time domain with sinusoidal motions in the workspace
at different frequencies are carried out, and the time delay and amplitude
of the response of the actuators are measured and compared with the com-
manded signals. This approach allows to obtain an estimation of the band-
width of the manipulator at different positions in the workspace. However,
this approach has two drawbacks:

� In general, a sinusoidal motion in the workspace does not correspond
to a sinusoidal motion in the joint-space due to the nonlinearities of
the inverse kinematics.

� The nonlinearities in the inverse kinematics also lead to more complex
harmonic motions than the originally intended in the workspace.

Nevertheless, these drawbacks can be limited by using motions with
reduced amplitudes. If a sinusoidal signal with a small amplitude is com-
manded, the effect of the nonlinearities of the kinematics and dynamics will
also result small. Therefore, to obtain the bandwidth or the closed-loop
transfer function based on tests at several frequencies, the amplitude of the
motions should be taken into account, which depends on the manipulator
design.

3.6 Summary

The mechatronic modeling procedure proposed in this thesis have been de-
scribed through out this chapter. Using this procedure, the mechatronic
model of a parallel kinematic mechanism is obtained, where, the actuators,
the control and the mechanism are taken into account. In this way, the per-
formance of the system can be analyzed using time and frequency domain
tests.

Regarding the actuators, an electromechanical model has been used.
On one hand, the electrical dynamics has been modeled with an RL circuit
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to obtain the transfer function. On the other hand, the dynamics of the
motor and the transmission were modeled by using 1, 2 or N degrees of
freedom models.

Also, the control of a parallel kinematic mechanism has been modeled,
considering joint-space, workspace and computed torque control. It was
shown how the electromechanical model of the actuator is included in these
control strategies.

As for the mechanism, the principle of energy equivalence has been used
to separate the mechanism into several bodies, thus allowing to analyze
each one separately. Furthermore, Lagrange’s equations in standard form
can be used for components with translation and one degrees of freedom
rotation motion. For components with two or more spatial rotation degrees
of freedom, it was shown that complex expressions result when Lagrange’s
equations in standard form are applied. To solve this, quasi-coordinates
were used to describe the rotational dynamics, for which Boltzmann-Hamel
equations were particularized.

Finally, the resulting mechatronic model can then be included in Matlab
/Simulinkr to carry simulations and evaluate the performance of a paral-
lel mechanism. In the following chapter, a experimental validation of the
mechatronic models obtained using the proposed procedure is done using
two case studies.



Chapter 4

Experimental Validation of
the Mechatronic Model

To validate the mechatronic modeling approach proposed in chapter 3,
two case studies are here presented. The first case study is based on

a planar 5R mechanism and the second is a 2-PRU-1PRS spatial Multi-
Axial Simulating Table. The validation has been carried out comparing
the experimental signals of position, velocity and torque obtained with the
simulation results. Furthermore, key findings are further analyzed and
discussed.

4.1 Case study: 5R mechanism

The case study mechanism shown in Fig. 4.1a is a 5R mechanism with
two degrees of freedom and motion in the horizontal plane. It is composed
by four main bars and five revolute joints, two of them used to drive the
system. These active joints located in the OA and OB joints, are separated
by a distance H = 200 mm as shown in Fig. 4.1b. Furthermore, they are
driven by identical rotary servo-actuators composed by an electric motor

109
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Schneider BSH-1401P coupled to a gearbox Neugart PLE-160 with a gear
ratio of 40:1.

(a)

(b)

Figure 4.1. (a) Picture of the 5R mechanism and (b) schematics of the 5R
mechanism.
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The four main bars of the mechanism are manufactured with square
aluminum profiles, with lengths l1 and l4 of 0.6 m and lengths l2 and l3 of
0.7 m. These dimensions result in the workspace shown in Fig. 4.2, where
the green lines represents the permissible working borders and the red lines
remarks the feasible workspace limits.

Figure 4.2. Workspace of the 5R mechanism.

Additionally, since the tool center point of the 5R mechanism is a point,
little space is left for tools or sensors. In order to accommodate a platform
to which elements can be added, another 5R mechanism has been fixed
parallel to the main 5R mechanism to form parallelogram mechanisms at
each bar. In this way, the rotation motion of the platform is constrained,
thus capable only of translation motions. The bars of this mechanism have
been built with carbon fiber tubes to keep a lightweight design.
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Figure 4.3. Kinematic scheme of the 5R mechanism.

4.1.1 Dynamic model of the manipulator

In Fig. 4.3 a kinematic scheme of the mechanism with its main variables
is shown. The actuated joints positions and torques have been grouped
into the vector qρ and τ ρ. To avoid using the actuated joints positions as
generalized coordinates, the position and orientation of a body b is defined
in terms of its center of mass coordinates qb, where, xb and yb are the x
and y position with respect to the reference O, and φb = αb its orientation.

In this way, the principle of energy equivalence can be effectively ap-
plied, thus simplifying the process to obtain the mechanism’s dynamics.
For this reason, the mechanism is separated into b open-chained subsys-
tems where the Lagrange’s equations for each body is defined with their
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specific generalized coordinates qb as follows:

Lb =
mb

2

(
ẋ2
b + ẏ2

b

)
+
Ib
2
φ̇2
b (4.1)

The potential energy has been neglected as the mechanism is set to move
in the horizontal plane. Also, by using Euler’s operator [69] the dynamic
equations are obtained as a function of the known Lagrangian function Lb
and the unknown generalized forces τ b

τ b = E (Lb) =
d

dt

∂Lb
∂q̇b
− ∂Lb
∂qb

=

mb 0 0
0 mb 0
0 0 Ib

 q̈b = Mbq̈b (4.2)

Moreover, since the Jacobian matrix Jb relates the actuated joint veloc-
ities with the velocities of each body q̇b as in Eq. 4.3, it follows that Eq.
4.2 can be rewritten as in Eq. 4.4.

q̇b = Jbq̇ρ (4.3)

τ b = MbJbq̈a + MbJ̇bq̇ρ (4.4)

In order to keep the energy equivalence with the assembled system,
each of the b subsystems must move as if they were part of the mechanism
assembly. Therefore, the virtual work of the assembled system is equal to
the sum of the virtual work of each body as was shown in section 3.4.1.
Consequently, the actuation torques can be written as follows:

τ ρ =

4∑
b=1

JTb τ b (4.5)

Where the contribution of the actuation torques due to the b body τ ρb
can then be written as in Eq. 4.6.

τ ρb = JTb τ b = JTb MbJbq̈ρ + JTb MbJ̇bq̇ρ (4.6)
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Expression 4.6 can be reorganized to explicitly show the inertial Ib,
centrifugal Cb and Coriolis cb terms.

τ ρb = Ibq̈ρ + Cbq̇
2
ρ + cb (4.7)

To obtain the total torque, the individual torques for each subsystem are
simply added resulting in Eq. 4.8, where matrices I, C and c are function
only of the position of the mechanism.

τ ρ =

4∑
b=1

τ ρb =

4∑
b=1

(
Ibq̈ρ + Cbq̇

2
ρ + cb

)
= Iq̈ρ + Cq̇2

ρ + c (4.8)

4.1.2 Dynamic model of the actuation system

A one degree of freedom inertial model has been used to model the actu-
ators. It was found in preliminary tests that the gear ratio is sufficiently
high, which results in a small inertia load and that the flexibilities of the
transmission do not affect the motors. Therefore, the model shown in Eq.
4.9 has been used, where τ is the torque of the motor generated by the
supplied current and τf is the load torque caused by the friction in the
actuators. Moreover, Jt represents the total inertia of the actuator, where
J1 and J2 are the inertia of the motor and the gearbox respectively.

τ − τf = Jtθ̈ = (J1 + J2) θ̈ (4.9)

During preliminary tests it was found that the friction torque should be
considered in the model. This is essential since other authors have proven
that the friction contribution to the resulting torque is significant [70, 71].
Therefore, the non-linear friction model in Eq. 4.10 has been considered
and takes into account the viscous and the Coulomb friction torques. The
hyperbolic tangent dependent on the β factor has been used to make the
friction model continuous regardless of the motor’s direction of motion.

τf = cθ̇ + Fc · tanh(βθ̇) (4.10)
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4.1.2.1 Experimental identification of the friction parameters

Friction parameters c, Fc and β are unknown and dependent on each system
and even may change with time. Thus, a system identification procedure
was applied to identify them, based on minimizing the least-square error
between the experimental data and the model of the system. To this end,
the pseudo-linear regression shown in Eq. 4.11 has been used, where τ̂ is
the estimated torque, ρ is defined as the vector of unknown parameters, ϕ
is the matrix containing the experimental data measured at t samples, and
η is the vector containing the non-linear parameters

τ̂ (t|ρ,η) = ρT ·ϕ(t, η) (4.11)

Where,

ρ =


Jt
c
Fc

 ϕ(t,η) =

 θ̈(t)

θ̇(t)

tanh(βθ̇(t))

 η = {β} (4.12)

The minimization function is written as Eq. 4.13.

VN (ρ,η) =
N∑
t=1

|τ (ti)− ρT ·ϕ(ti,η)|2 = ‖τ −Φ(η)ρ‖2 (4.13)

Eq. 4.13 can be separated into a two step optimization process using the
pseudo-inverse of the matrix Φ [75, 97]. The first step is finding the opti-
mum values of η using the optimization algorithm fminunc from Matlabr.
Afterwards, the optimum values of the vector ρ are calculated as follows.

ρ̂(η̂) ≡ Φ+(η̂)τ (4.14)

On the other hand, the correct identification of the unknown parameters
depends of the data used to perform the linear regression and hence, the
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Figure 4.4. Velocity multiprofile test signal.

trajectory must be used to excite all the dynamic phenomena. For this
reason, the velocity profile shown in Fig. 4.4 has been used. It consists of
the following motions:

1. Sum of sinusoids with frequencies 0.1, 0.3, 0.5 Hz and increasing am-
plitude from 10 rpm to 3700 rpm.

2. Two stages of ascending and descending velocity steps from 10 rpm
to 3700 rpm.

3. Two stages with constant acceleration and deceleration.

4. Two stages of exponentially increasing and decreasing velocity.

The profile velocity was executed on the actual motors and the ex-
perimental signals were obtained from the control system programmed in
Labview with a 7 ms sampling rate. Moreover, the experimental signals
were then post-processed with a Butterworth third order low-pass filter
with a cutoff frequency of 3 Hz.

Finally, after applying the identification procedure, the following pa-
rameters were obtained:
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Table 4.1. Identified parameters values of the 5R actuators.

Parameter Value Units

Jt 13× 10−4
[
kg m2

]
c 1.7× 10−3 [Nm s/rad]
Fc 0.478 [Nm]
β 10.78 −

4.1.3 Mechatronic model of the manipulator

The control arquitecture is a linear single-axis control in the joint-space
where a cascaded PID is used to control the position, velocity and current
supplied to the actuators. The control loops take place in two different
hardware components. On one hand, the position loop is controlled in the
NI-PXI real-time platform shown in Fig. 4.5a with a 20 ms cycle time. The
output from this loop is a velocity reference that is sent via the CANopen
protocol to the actuator’s drivers LXM05A by Schneider Electric shown in
Fig. 4.5b, where the velocity and current control is done. The cycle time
are 250 µs and 62.5 µs for the velocity and current loops respectively. The
position is measured by the encoder of the actuators, which implies that an
indirect method is herein used to measure the position of the end-effector.

(a) (b)

Figure 4.5. (a) Picture of the PXIe-1062 and (b) picture of the motor driver
LXM05A by Schneider Electric.
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The model of the system has been programmed in Matlab/Simulinkr

and is shown in Fig. 4.6. First, the commanded path of the end-effector
is converted to the joint-space by solving the Inverse Kinematics Problem
(IKP). Then, the joint-space position commands are fed to the actuators
models where the control loops have been considered, see Fig. 4.7. The
outputs from the control models are then fed into the direct kinematics
to obtain the simulated position of the end-effector. On the other hand,
the simulated joint positions are passed through the 5R dynamic problem
where the torques required to move the mechanism are obtained. These
torques are at the same time the disturbances to the actuators which must
be then input to the actuators models.

Figure 4.6. Mechatronic model of the 5R manipulator.

The actuators mechatronic model, dynamics and control are shown in
Fig. 4.7 for the second motor. The outer loop is the position loop, it has
a proportional controller with gain kv with a velocity feed-forward and a
low-pass filter. The output of this loop is then fed into the velocity loop
which has a PI controller and a low-pass filter. Since the current loop is
significantly much faster than the other loops, it is replaced by the motor’s
torque constant Kt = 1.43 Nm/A, assuming that the response of the current
loop is instantaneous.
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Figure 4.7. Mechatronic model of the Actuator 2 of Fig. 4.6.

Also, two sources of disturbance are considered, the torque disturbance
from the mechanism Torque disturbance 4, and the friction torque identified
for the actuator in block Friction Disturbance. The plant TF is the transfer
function that represents the identified inertia of the actuator. Additionally,
for the velocity controller the gains were set to kp = 0.14 As/rad and ki =
11.45 A/rad for the proportional and integral parts respectively. Finally, the
different cycle times of all the loops have also taken into account, where
the position cycle time ts pos is 5 ms, and the velocity cycle time ts vel
is 250 µs. Additionally, the discretization time dt is used to model the
electromechanical behavior of the motor and should be set lower than the
velocity cycle time. In Matlab/Simulinkr this must be defined as a multiple
of the velocity cycle time. For this reason, a value of 125 µs, half the velocity
cycle time, was used since a lower discretization innecessary increases the
simulation time.

4.1.4 Experimental tests

Two type of trajectories have been programmed and executed to validate
the mechatronic model, a displacement in X direction and two counterclock-
wise circular trajectory with different feed speeds. The executed trajectories
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in the workspace have been estimated using the direct kinematic problem
to the angular positions measured at the encoders. Also, for the position
loop a low gain value of kv = 3.54 1/s has been used. In this way, apparent
position errors are induced through the controller, allowing to compare the
performance of the actual system with the model simulations.

Regarding the displacement in X direction, it has been programmed
with a trapezoidal velocity profile. The path length is of 1.2 m, the feed
speed is 1 m/s and the acceleration 1 m/s2. The commanded, simulated
and measured TCP trajectory is shown in Fig. 4.8. It can be seen how the
end effector path deviates from the programmed path up to 22 mm due to
the low gain, which is adequately predicted by the simulation.

Figure 4.8. Comparison of the programmed, experimental and simulated paths
in a X displacement.

The deviation of the simulated from the measured path may be due to
the joints clearances, mechanism disturbances, unmodeled friction effects,
and numerical errors in the direct kinematics. Also, differences between
the actual controller in the motor drivers and the modeled control, such
as saturators, filters and feed-forwards, may be a cause for the observed
deviations.
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Regarding the circular displacements, a radius of 0.2 m was programmed
with a constant feed speed of 0.628 m/s for the first circle and a constant
feed speed of 1.256 m/s for the second, thus resulting in half and one circle
per second respectively. Also, the position loop gain was changed to the
optimum value of kv = 19.2 1/s.

In Fig. 4.9 and Fig. 4.10 the position and velocity in the joint-space
for both circles are shown. In the case of the first circular trajectory, it
is observed that the magnitudes of the model present a position deviation
of about 0.25 rev and the experimental of approximately 0.5 rev from the
command. Additionally, the velocities of both actuators for the model
present a time lag of around 0.1 s while the time lag of the experimental
signal is of 0.3 s approximately.
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Figure 4.9. Position and velocity in the joint-space for the circular trajectory
with vf = 0.628 m/s.

As for the circular trajectory with vf = 1.256 m/s, a similar pattern is
observed. The simulated signals present less deviations than the experimen-
tal signals. Regarding the position in Fig. 4.10, deviations of approximately
0.3 rev and 0.7 rev were observed for the simulated and experimental signals
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Figure 4.10. Position and velocity in the joint-space for the circular trajectory
with vf = 1.256 m/s.

respectively. As for the velocity, the time lags observed are of approximately
0.25 s and 0.6 s, which is about the double to the circular trajectory with
vf = 0.628 m/s.

Moreover, in Fig. 4.11 the joint and workspace simulated position, ve-
locity and acceleration are compared with the measured signals from the
actual system. It can be observed that the simulated position presents a
0.2 rev difference with the experimental in the joint-space, while no major
errors are seen in the x direction of the workspace. Also, a time lag of
about 0.5 s is observed in the velocity and acceleration signals of both, the
joint-space and the workspace.

In figures 4.12a and 4.12b the two circle trajectories in the workspace
are shown. It is observed that the deviations of the experimental signals
are higher than the obtained with the model. In fact, up to 40 mm of radial
deviations are appreciated at some points when the circle trajectory with
vf = 1.256 m/s in Fig. 4.12b was executed.
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Figure 4.11. Position, Velocity and Acceleration in the joint-space and in the
workspace.

(a) (b)

Figure 4.12. (a) Position in the workspace for the circular trajectory with vf =
0.628 m/s and (b) for vf = 1.256 m/s.
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In addition, the torque for both circular trajectories was obtained and
shown in figures 4.13 and 4.14. It can be seen that the shape of the simu-
lated torques is similar to the experimental ones, with maximum deviations
of approximately 0.25 Nm.
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Figure 4.13. Torque signals for the circular trajectory with vf = 0.628 m/s.
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Figure 4.14. Torque signals for the circular trajectory with vf = 1.256 m/s.
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4.2 Case study: 2PRU-1PRS MAST mechanism

A MAST parallel mechanism was also considered as a mechatronic design
case study. This mechanism is based on a 2PRU-1PRS parallel mechanism
as shown in Fig. 4.15 and was developed in the framework of the thesis
of Herrero [8]. In Fig. 4.15 the main geometric variables are shown. As
it can be seen, the MAST mechanism is formed by 3 actuated prismatic
joints. The actuated joint ρ2 is located at a distance H = 0.4 m in the Y +

direction from the reference coordinate system X0Y0Z0. The remainder
actuated joints, ρ1 and ρ3, are located symmetrically on the plane XZ
separated by a distance 2H. Moreover, a rotation joint is located on each
prismatic joint allowing the bars of length L = 0.26 m and mass 0.07 kg
to rotate only in their respective plane. An end-platform with a mass of
2.06 kg is located at the end of the bars and connected with spherical joints.
In this configuration, the platform is capable of one translation motion in
the Z direction and two rotations in the space, thus the mechanism presents
3 degrees of freedom.

Figure 4.15. 2PRU-1PRS MAST prototype.
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4.2.1 Dynamic model of the manipulator

To model the mechanism dynamics, the principle of energy equivalence de-
scribed in section 3.4.1 was used. The bars, which move in a vertical plane,
and the translation motion of the platform, were analyzed using Lagrange’s
equations in standard form. On the other hand, The Boltzmann-Hamel
equations were used to study the dynamics of the spatial rotation of the
platform.

4.2.1.1 Bars modeling

To model the bars, first the Lagrangian for each bar is written as in Eq.
4.15, and the Euler’s operator is applied to obtain the equations of motion.

Lb =
mb

2

(
ẋ2
b + ẏ2

b + ż2
b

)
+
Ib
2
φ̇2
b −mbgzb (4.15)

τ b =


0
Fb
0

 = E (Lb) =

mb 0 0
0 mb 0
0 0 Ib

 q̈b +


0
mbg

0

 = Mbq̈b + gb (4.16)

Where,

qb = {xb zb φb}T for bars 1 and 3

qb = {yb zb φb}T for bar 2
(4.17)

In Eq. 4.17, xb, yb and zb are the mass center coordinates of the re-
spective bars, and φb their angular position on the plane. By using the
kinematic relationship q̇b = Jbq̇ρ the expression 4.16 can be obtained with
respect of the prismatic actuated joints coordinates qρ as in Eq. 4.18, where
Jb is the Jacobian of each bar as shown in the appendix B.2.

τ b = MbJbq̈ρ + MbJ̇bq̇ρ + gb (4.18)

qρ = {ρ1 ρ2 ρ3}T (4.19)
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The contribution of the solid b to the actuators torque τ ρb is found by
using Eq. 3.36 which results in:

τ ρb = JTb τ b =
[
JTb MbJb

]
q̈ρ +

[
JTb MbJ̇bq̇ρ

]
+
[
JTb gb

]
(4.20)

Eq. 4.20 can be simplified by operating the matrices and renaming
them. In this way, Eq. 4.21 results.

τ ρb = Ibq̈ρ + cb + ḡb (4.21)

Where Ib and ḡb are the inertia matrix and gravitational vector respec-
tively, and cb is the matrix containing the centrifugal and Coriolis terms.
These terms depend on the position of the mechanism.

4.2.1.2 Platform modeling

Regarding the end platform, the MAST mechanism is capable of con-
strained translation and rotation motions. The translational dynamics has
been analyzed by considering the coordinates of the mass center qG, shown
in Eq. 4.22, as generalized coordinates, an applied external force fG also
at the mass center, and the kinematic relationship with the input variables
through the corresponding Jacobian JG. In this way, equations 4.23 and
4.24 are obtained, where MG is the mass matrix and IG, ḡG and cG are
recalled to be the matrices of inertial, gravitational and Coriolis terms.

qG = [xG, yG, zG]T (4.22)

JTGfG = JTGMGJGq̈ρ + JTGMGJ̇Gq̇ρ + JTGgG (4.23)

JTGfG = IGq̈ρ + cG + ḡG (4.24)

On the other hand, the rotational dynamics around a fixed point is
analyzed by considering an inertial body and applying Boltzmann-Hamel
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equations. A mobile coordinate system is placed at the point P as shown in
Fig. 4.15. Furthermore, the angular velocity w in the moving frame is used
as quasi-velocities for the application of the Boltzmann-Hamel equations.
Since only the rotation motion of the platform around the mass center is
being analyzed, the translation and potential energies are neglected. Hence,
the Lagrangian function of the moving platform results in:

Lmp = T =
1

2
wT Impw (4.25)

Where w is the angular velocity, shown in Eq. 4.26, and Imp is the
inertia tensor of the platform in the local reference system.

w = [ωu, ωv, ωw]T (4.26)

Also, the assembled condition of the platform with the rest of the mech-
anism is provided by the loop-closure and constrained equations. These
relate the angular velocity w with the input variables velocities in q̇ρ as
follows.

w = JRq̇ρ (4.27)

Where the expression of JR is also shown in appendix B.2. Moreover,
from Eq. 3.44 in section 3.4.2, the relation between the Euler’s angle qe
and the angular velocity w is recalled to be as follows:

w (q̇e,qe) = Dφ
T q̇e =

 cosφe sin θe sinφe 0
− sinφe sin θe cosφe 0

0 cos θe 1


θ̇e
ψ̇e
φ̇e

 (4.28)

By substituting Eq. 4.28 into Eq. 4.27, the relationship between the
Euler angles and the inputs can be found to be:

q̇e =
(
DT
)−1

JRq̇ρ = Jq̇ρ (4.29)
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It was also shown in section 3.4.2 that, once the Boltzmann-Hamel
equations are applied, the expression of the rotation dynamics results in:

JTRmmp = JTRImpJRq̈ρ + cmp = Īmpq̈ρ + cmp (4.30)

Where,

cmp =

[
JT
[
DφImpDφ

T
]
J̇+

JT
[
DφImpḊ

T
φ + 2ḊφImpDφ

T −AT ImpDφ
T
]

J

]
q̇ρ

(4.31)

Finally, the dynamic contribution of the legs in Eq. 4.21, and the trans-
lational and rotational dynamic contributions of the platform, Eq. 4.24 and
Eq. 4.30 respectively, can be added to obtain the explicit dynamic equa-
tions of the MAST shown in Eq. 4.32, where tρ are the input forces from
the actuators.

tρ + JTGfG + JTRmmp =[
ILs + IG + Īmp

]
q̈ρ + [cLs + cG + cmp] + [ḡLs + ḡG]

(4.32)

4.2.2 Dynamic model of the actuation system

The prismatic joints of the MAST mechanism are formed by a linear belt
guide Igus R© ZLW-1040-02-S-100-L/R with a 300 mm stroke [33]. The DC
motors model RE-40 by Maxon R© are used and a GP42C gearbox with a 15:1
gear ratio [28] was selected. The linear guide is connected to the gearbox
with a flexible coupling. A picture of the actuation system is shown in Fig.
4.16a.

A two degrees of freedom model, as shown in Fig. 4.16b, was used to
represent the dynamics of each actuator, where J1 and J2 were calculated
as in equations 4.33 and 4.34, considering that the belt is the most flexible
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(a) (b)

Figure 4.16. (a) Picture of the actuator and (b) the two degrees of freedom
model of the actuator.

element of the actuator. Moreover, θ is the angle of the motor and θρ is
the equivalent output angle to the linear displacement ρ as in Eq. 4.35.

J1 = Jmotor + Jgearbox + Jcoupling (4.33)

J2 = Jguide

(
1

ir

)2

+Mload

(
p

2 π ir

)2

(4.34)

θρ = ρ
2πir
p

(4.35)

This model results in four transfer functions. TF1 relates the angular
position of the motor without disturbance θm and the input torque τm, TF2

relates the equivalent ideal angular position of the linear guide θρm with
the motor’s position θm, TF1d relates the disturbance torque τd with the
angular equivalent of the position disturbance in the linear guide θρd , and
TF2d relates θρd with the position variation at the motor shaft due to the
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disturbance θd.

TF1 =
θm
τm

=
J2s

2 + cts+ kt
s2 (J1J2s2 + (J1 + J2) cts+ (J1 + J2) kt)

(4.36)

TF2 =
θρm
θm

=
cts+ kt

(J2s2 + cts+ kt)
(4.37)

TF1d =
θρd
τd

=
J1s

2 + cts+ kt
s2 (J1J2s2 + (J1 + J2) cts+ (J1 + J2) kt)

(4.38)

TF2d =
θd
θρd

=
cts+ kt

(J1s2 + cts+ kt)
(4.39)

The parameters values used in this case are shown in Table 4.2. Since
the stiffness kt and damping ct are unknown, they were experimentally
identified from the frequency response after a modal analysis was carried
out.

Table 4.2. Parameter values of the actuator model.

Parameter Value Units

fn
* 986.5 [Hz]

kt
* 67.702 [Nm/rad]

ct
* 3.00× 10−08 [Nms/rad]

M* 0.076 [kg]

Jmotor
** 1.42× 10−5

[
kgm2

]
Jgearbox

** 1.4× 10−6
[
kgm2

]
Jcoupling

** 4.68× 10−6
[
kgm2

]
Jguide

** 4.524× 10−4
[
kgm2

]
Jbrake

** 1.00× 10−6
[
kgm2

]
*Experimentally identified
**From manufacturer
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For the modal analysis, an accelerometer was placed at the drive car-
riage and an impact test was performed with a PCB-086-C03 modal ham-
mer. The input signals from the hammer and the vibrations registered by
the accelerometer were passed through the OROS-OR35 signal analyzer to
obtain the parameters values. As for the rest of parameters in table 4.2,
they were taken from the manufacturers datasheet [28].

4.2.3 Mechatronic model of the manipulator

A monoarticular local control have been employed for the actuation system.
In such control, each actuator is independently controlled in the joint-space
after the demanded pose of the mechanism is passed through the inverse
kinematic problem where the actuated joint positions commands are ob-
tained. These are then fed into the joint controller, each one with a cas-
caded in position, velocity and current architecture control. In Fig. 4.17 a
scheme with the actual control implementation is shown.

Figure 4.17. Actual controller.

Moreover, the mechatronic model of Fig. 4.18 has been programmed in
Matlab/Simulink, where the inverse kinematics is used to obtain the joint
commands and the inverse dynamics is used to calculate the disturbances
to the actuators. Also, in Fig. 4.19 the mechatronic model of the actuators
is shown, where the 2 DOF model of the actuator is included.
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Figure 4.18. Mechatronic model of the 2PRU-1PRS MAST mechanism.

Figure 4.19. Mechatronic model of the actuator of the 2PRU-1PRS MAST
mechanism.
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4.2.3.1 Frequency domain testing

The magnitude and phase response of the transfer functions in TF1 and
TF2 are show in Fig. 4.20. It was found that the resonant frequency of
the TF2 is approximately located at 900 Hz. Since the intended operating
frequency is set to be in 20 Hz, the system can be consider as stiff.

−100

−50

0

50

100

150

M
a
g
n
it
u
d
e
 (

d
B

)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

−180

−135

−90

−45

0

P
h
a
s
e
 (

d
e
g
)

 

 

Bode Diagram

Frequency  (Hz)

TF1

TF2

Figure 4.20. Bode plot of the two transfer functions of the actuators.

4.2.4 Experimental tests

To validate the model of the MAST mechanism, the bandwidth of the
simulation model was compared with the experimental results obtained
from the prototype, and the modeled and measured torque outputs were
compared.
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4.2.4.1 Bandwidth of the system

The bandwidth of the system has been studied to know up to which fre-
quency the MAST can be controlled to generate excitations. To this end,
pure sinusoidal motions in z, ψ and θ were simulated in the 0.5 − 20 Hz
frequency range using the mechatronic model. For the experimental tests,
the same motions have been commanded to the control using the PXIe with
frequencies set to 0.4, 1, 5, 10 and 20 Hz. A comparison between the simu-
lation and the experimental tests is shown in figures 4.21-4.22. Moreover,
to study the interaction between the actuation system and the mechanism,
the bandwidth with and without the mechanism is compared in Fig. 4.23.
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Figure 4.21. Manipulator closed position loop Bode diagram for the ψ motion.

From Fig. 4.21 and Fig. 4.22 it can be seen that the simulations are
in close correspondence with the experimental results obtained for each
motion. Furthermore, when the two motions are compared, no significant
differences are present in the system’s performance despite the fact that
both motions are different. This leads to the idea that the mechanism does
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Figure 4.22. Manipulator closed position loop Bode diagram for the θ motion.

not exerts a significant influence on the system’s performance. This can be
further analyzed with the z motion.

In Fig. 4.23 the Bode diagram of the closed position loop for the z
motion is shown. The same motion is compared with the MAST attached
and with only the actuators. In this way, it can be easily analyzed the
effect of the mechanism in the system’s response. It is appreciated that
up to 2 Hz both systems behave similarly. However at 2 Hz the magnitude
of their response start diverging. What is more, it has been found that
the actuators without the MAST have a bandwidth about 4 Hz, whereas
with the mechanism the bandwidth is reduced to 3.5 Hz. Thus, it can be
noted that the actuators are the most limiting components and that the
mechanism itself has only a 0.5 Hz effect on the system’s performance.
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Figure 4.23. Manipulator closed position loop Bode diagram for the actuator
model with and without the MAST attached.

4.2.4.2 Time domain tests

Also, in figures 4.24-4.26 the position and the torques are shown for the
three pure motions executed at frequencies 0.4, 5 and 10 Hz . Two set of
model parameters were used to simulate the model and compare the re-
sults with the measurements. The simulation with the parameter set Sim.
Manufac. was constructed with the data as obtained from the manufactur-
ers. On the other hand, it was observed that the manufacturer parameters
did not provided good simulation results. For this reason, the parameters
set Sim. Ident. was constructed by modifying the inertia J1 to J1/1.56
and the Coulomb friction to 7.18 × 10−2 Nm by an adjustment using the
optimization algorithm fminunc from Matlabr. In this way, it is possible
to compare the behavior of the model with the parameters as given by the
manufacturers and with the parameters adjusted. The purpose is to un-
derstand if the manufacturers values provide a sufficiently good estimates.
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Figure 4.24. Position and torque signals comparison for the z motion.
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Figure 4.25. Position and torque signals comparison for the ψ motion.
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Figure 4.26. Position and torque signals comparison for the θ motion.

From the figures, the simulated positions present and maximum devia-
tion of approximately 11% in magnitude and 13% in phase respect to the
experimental signals for the frequencies shown and motions executed. Also,
it can be observed that as the frequencies of the motions are increased, the
magnitude of the response is reduced in accordance with the Bode dia-
grams shown previously. Indeed, at 0.4 Hz the magnitude of the response
was found to be approximately 99.4%, whereas at 5 Hz and 10 Hz the ob-
tained magnitudes were 65.4% and 43.2% respectively. Likewise, the phase
lag between the commands and the actual signals are appropriately esti-
mated by the model when compared with the experimental data. It can be
seen that at 0.4 Hz, 5 Hz and 10 Hz, the phase lags were found to be −6.3◦,
−62.5◦ and −103.7◦ respectively.

Nevertheless and to validate the model, the position response must not
be used alone as the controller’s action may be masquerading dynamic
deviations with the appearance of good positioning results. This effect
can be clearly seen by comparing the position and the torque of the Sim.
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Manufac. model at 0.4 Hz. It is observed that, despite an apparent good
positioning with respect to the experimental data, the simulated torque
differs from the experimental torque obtained by approximately 70%. This
indicates that the dynamics are not correctly represented by this model.

Moreover, the torques obtained from the simulation with the two pa-
rameters set are different. When the data as given by the manufacturer was
introduced, a difference in the torque of approximately 0.10 Nm at 0.4 Hz
can be appreciated as it was pointed out before. This implies that the
Coulomb friction force in the actual system is higher. Also, at a frequency
of 10 Hz, the model estimated 0.1 Nm higher torque than the experimen-
tal signals. Since the acceleration forces increase with the frequencies, it
follows that the actual inertia should be less than the initially estimated
with the manufacturer data. For this reason, the Coulomb friction and the
inertia J1 were adjusted as commented before. In this way, the simula-
tion provided better results than when the parameters set with the original
manufacturer data was used.

On top of that, it is worth observing that even when the inputs are
pure sinusoids, the resulted torques are not sinusoids as well. This effect is
caused by the non-linearities of the dynamics and the friction present in the
actuation system. The latter can be easily identified at lower frequencies
specially at 0.4 Hz, where an almost square signal is appreciated. Finally,
it can also be seen that at 10 Hz the experimental torque are trimmed by
the action of a low-pass filter attributed to the low level controller.

4.3 Conclusions

In this chapter the mechatronic model proposed has been developed for a
5R mechanism which has a planar motion, and for a 2PRU-1PRS MAST
mechanism with spatial motion. In both cases, the mechatronic model has
been developed addressing the actuators and their control, as well as the
mechanisms dynamics.
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As for the actuators of the 5R mechanism, a one degree of freedom model
was used considering the high gear ratio and inertia of the elements. On the
other hand, for the MAST mechanism a two degrees of freedom model with
disturbance was considered for the actuators, resulting in two direct transfer
functions and two additional transfer functions for the disturbances.

Moreover, a experimental identification was carried out to obtain the
unknown values of relevant dynamic parameters, such as friction. In the
case of the 5R mechanism, a pseudo-linear regression was used to minimize
the least-square error between the experimental data and the model to
identify the parameters. As for the MAST, a modal analysis was carried
out to obtain the parameters values.

Regarding the dynamic modeling of the mechanisms, the principle of
energy equivalence, described in section 3.4, was applied. For elements
with only planar motion such as in the 5R and the bars of the MAST,
Lagrange’s equations in standard form were used. In contrast, quasi-
coordinates and Boltzmann-Hamel equations were used to obtain the dy-
namics of the MAST’s end platform rotational motion.

In either case, the resulting mechanism dynamics and the actuator dy-
namic model were used to construct a mechatronic model of the 5R and
the MAST, which were further compared with the actual systems. It was
observed that for both mechanisms the simulations in the time domain pre-
sented a similar behavior to the experimental signals, as can be appreciated
in figures 4.11-4.14 in the case of the 5R mechanism, and figures 4.24-4.26
in the case of the MAST mechanism.

Nevertheless, some deviations were still observed. In the case of the
circular trajectory of the 5R in Fig. 4.9, when the joint positions were
compared with the commanded signals, a deviation of 0.25 rev was obtained
from the model while the actual system resulted in 0.5 rev. Also, a time lag
in the velocity signal of 0.1 s and 0.3 s were obtained from the simulation
and the experimental test respectively. Similarly, for the signals shown in
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Fig. 4.10, deviations from the commanded signal of approximately 0.3 rev
and 0.7 rev can be appreciated in the joint positions of the model and
the experimental tests respectively, while a time lag of 0.25 s and 0.6 s is
appreciated for the model and actual system respectively in the velocity
signal. As can be noted, the actual system errors is about twice the error
performed by the model. Such differences in the following error between
both signals are attributed to unmodeled characteristics of the controller
and the parallel mechanism.

In the case of the MAST mechanism, the results of the joint position
simulations at different frequencies show that the mechatronic model per-
formed similar to the actual system, where deviations on 11% in magnitude
and 13% in phase lag were observed for both sets of parameters values used.
The differences in position between the model and the actual system are
more clearly seen at 10 Hz, where an error of 1.2 rad in position and 0.18 s
in time is appreciated between them.

Also, the simulated and measured torques of the two mechanism evalu-
ated were compared. In the case of the 5R mechanism up to approximately
0.25 Nm of error between the model and the experimental torques are ap-
preciated. On the other hand, for the MAST mechanism, a 70% of error is
observed between the model and the experimental torques when the manu-
facturer parameters Sim. Manufac. were used. This presumably indicated
that a significant deviation existed between the used parameters values in
the model and the physical ones. For this reason, an optimization was car-
ried to obtain the better set of parameters values Sim. ident. compared to
the initially used.

From the results obtained, it can be appreciated that despite the ob-
tained deviations the developed mechatronic models were capable of simu-
lating the behavior of the actual mechanisms. The differences observed can
be attributed to three main possible sources of uncertainties: the controller,
unmodeled dynamic effects and errors in the dynamic parameters values.
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Regarding the controllers, their actual implementation result in rela-
tively complex systems due to the presence of hardware and software func-
tions such as filters and filters parameters, saturators, feed-forward, oscilla-
tors, analog-to-digital converters and similar. In this work, simplifications
of such complex system has been used to model their behavior, since the
actual manufacturer schematics would be required to model them in detail,
which is often not available.

Also, unmodeled mechanical effects, such as clearances, and dynamic
model errors may cause deviations of the performance of the mechatronic
model with respect to an actual system.

Finally, it was shown that the dynamic parameters values from the man-
ufacturer may present uncertainties that can result in significant simulation
errors. This can lead to an erroneous mecatronic analysis since the required
torques can be underestimated, as it was shown in MAST case study. Fur-
thermore, the value of some of the dynamic parameters can change with
time. For this reason, an identification procedure, where dynamic parame-
ters are experimentally identified, is addressed in the following part of this
work.





Part III

Identification
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Chapter 5

Identification of the dynamic
parameters of planar parallel

mechanisms

In simulation and advanced control, having accurate dynamic parame-
ters values is as important as having a proper model of the system. In

mechatronics applications and robotics, model based design and control is
employed to improve the accuracy and performance of such systems. Usu-
ally, these models rely on dynamic parameters that are often obtained or
estimated from the manufacturers data sheets, from CAD models or ana-
lytical approximations. However, such estimations are often not sufficient
to build detailed models, or simply not information is available for certain
phenomena, such as friction. Therefore, an experimental identification pro-
cedure must be used in order to obtain accurate values of the unknown or
uncertain parameters, which are then used to adjust the models.

147
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5.1 Overview of the identification process

The identification process starts by developing an analytical dynamic model
of the mechanism and actuators in such a way that a matrix K, dependent
on gravitational terms, velocities and accelerations, is multiplied by a vector
with the unknown dynamic parameters Φ such as inertias, masses and
friction, hence resulting in the forces and torques of the system as in Eq.
5.1.

KΦ = F (5.1)

By using the described linear model with several measurements of an
identification trajectory, it is possible to perform a linear regression to solve
the system of equations and find the values of the unknown parameters in
Φ.

Once the dynamic parameters are found, a more realistic model of the
system can be built. However, a final validation step is required in order to
verify that the identified model is not biased by the identification trajectory
previously used. The main idea of this step is to evaluate how the identified
model differs from the measured data when a trajectory, other than the one
used for the identification, is executed. The completed process is depicted
in the scheme of Fig. 5.1.

In this regard, a standard identification procedure consists of 6 steps
according to Swevers [80], namely (1) Modeling, (2) Experiment design,
(3) Data acquisition, (4) Signal processing, (5) Parameter estimation and
(6) Model validation. In section 5.2, the modeling step is explained in
which the equations of motions describing the dynamics of the system are
obtained. To that end, a rigid body model of the mechanism and the
actuators is assumed and friction is also considered. Moreover, in that
section the principle of energy equivalence described in 3.4.1 was again used
to obtain the dynamics of the system in a simple and systematic manner,
which can be applied to other mechanisms.
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Figure 5.1. Scheme of the identification process.

The experiment design step is then described in section 5.3, where the
identification trajectory are parameterized as Fourier series, and an opti-
mization is used to obtain a suitable trajectory. Afterwards, the methods
to remove distortions in the experimental signals will be addressed in the
post-processing step in section 5.4. Finally, the method followed to identify
the parameters will be shown in section 5.5.

5.2 Dynamic model for identification in a planar
mechanism using the principle of energy
equivalence

As it was stated before, the objective of the dynamic modeling step consists
of expressing the equations of motions of the system as in Eq. 5.1. Herein it
will be considered a rigid body model of the mechanism and the actuators
with friction.
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5.2.1 Rigid body parameters

It is recalled that the principle of energy equivalence considers that the
sum of the energy of all the subsystems is equivalent to the energy of the
whole system, if all subsystems move as if they were assembled together.
This approach allows analyzing each linkage separately without taking into
account the reaction forces.

The first step consists on splitting the mechanism into N subsystems
like in Fig. 5.2, assuming a planar mechanism in a vertical plane. Solving
the kinematic problem for each subsystem, the velocity and acceleration
relations in equations 5.2 and 5.3 are obtained, where xb and yb are the
coordinates of the mass center, and αb is the orientation of the solid b in
the plane.

Figure 5.2. Representation of a general mechanism and its coordinates.
ẋb
ẏb
α̇b

 = Jb


ρ̇1
...
ρ̇j

 (5.2)
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ẍb
ÿb
α̈b

 = J̇b


ρ̇1
...
ρ̇j

+ Jb


ρ̈1
...
ρ̈j

 (5.3)

Looking in detail equations 5.2 and 5.3, the Jacobian matrix Jb can
be separated in a matrix tJb, that accounts for the transformation of the
linear velocities, and a matrix rJb that accounts for the transformation of
the angular velocities. Hence, equations 5.2 and 5.3 can be rewritten as
follows: 

ẋb
ẏb
α̇b

 =

[
tJb
rJb

]
ρ̇1
...
ρ̇j

 (5.4)


ẍb
ÿb
α̈b

 =

[
tJ̇b
rJ̇b

]
ρ̇1
...
ρ̇j

+

[
tJb
rJb

]
ρ̈1
...
ρ̈j

 (5.5)

The equations of motion of each b subsystem can be obtained using
the Lagrange’s equations as in Eq. 5.6-5.8, where g is the acceleration of
gravity assuming it in direction y.

mbẍb = Fxb (5.6)

mb(ÿb + g) = Fyb (5.7)

Ibα̈b = τb (5.8)

For each b subsystem, the equations of motion can be written as follows:ẍb 0
ÿb 0
0 α̈b

+

0 0
g 0
0 0


mb

Ib

 =


Fxb
Fyb
τb

 (5.9)

This expression can be applied to any component of any planar mech-
anism in a vertical plane under the action of gravity, actuation forces or
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reaction with other solids, as long as springs or dampers are not present.
Furthermore, calling Ωb the acceleration matrix, Gb the gravitational ma-
trix and Γb the vector of forces, equation 5.9 can be rewritten as in Eq.
5.10 for each component.

[
Ωb + Gb

]{mb

Ib

}
= Γb (5.10)

It is worth noting that matrix Ωi is dependent on the mass center ac-
celeration and angular acceleration of each component b. This implies that
those magnitudes have to be measured in order to perform the identifica-
tion of the dynamic parameters. This is somewhat inconvenient and often
unfeasible. The alternative approach is to calculate them from the actuated
joints accelerations using the direct kinematics as in Eq. 5.5. In this way,
the Ωb matrix in Eq. 5.10 can be expressed as follows:

Ωb =



tJ̇b


ρ̇1
...
ρ̇j

+ tJb


ρ̈1
...
ρ̈j

 0

0

0 rJ̇b


ρ̇1
...
ρ̇j

+ rJb


ρ̈1
...
ρ̈j




(5.11)

Applying the principle of energy equivalence, by pre-multiplying Eq.
5.10 with the transpose of the Jacobian matrix Jb, the torque contribution
of the component b to the actuation torques in the assembled mechanism
results. Thus, Eq. 5.12 is obtained.

[
JTb Ωb + JTb Gb

]{mb

Ib

}
= JTb Γb =


F1b

...
Fjb

 (5.12)
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It is worth remembering that JTi 6= tJi. Moreover, to obtain the overall
dynamics of the system, it only remains to expand Eq. 5.12 to add all
the subsystems of the mechanism. In this way, Eq. 5.13 represents the
rigid solid dynamics for the complete system as a function of the dynamic
parameters.

[
Jt1Ω1 + Jt1G1,J

t
2Ω2 + Jt2G2, . . . ,J

t
NΩN + JtNGN

]


m1

I1

m2

I2
...

mN

IN


=

{
Jt1Γ1 + Jt2Γ2 + · · ·+ JtNΓN

}
=

N∑
b=1


F1b

...
Fjb

 =


F1
...
Fj



(5.13)

Calling the matrix in Eq. 5.13 Kc, the vector with Nc unknown param-
eters Φc and the vector of forces Γc, the previous equation can be expressed
as:

KcΦc = Γc (5.14)

It is worth mentioning that some of the parameters in Φc may not have
any significant influence on the system’s dynamics. As an example, solids
with only pure translation motion do not present a torque contribution due
to rotation inertias and likewise, pure rotating components do not have
a direct torque contribution of their mass. Hence, it is unnecessary to
consider the respective dynamic parameters, the mass mb or inertia Ib, and
the linear system in equations 5.13 and 5.14 can be simplified. Moreover,
in such cases its respective column in matrix Kc will be a zero column.
Reordering the parameters in Φc and once the non-significant parameters
and their respective columns are eliminated, the following linear system
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results.
Krb (qρ, q̇ρ, q̈ρ)[j×Nrb]Φrb[Nrb×1]

= Γrb[j×1]
(5.15)

Where, Nrb is the number of significant rigid body dynamic parameters
in Φrb, such that Nrb ≤ Nc. Furthermore, the qρ is defined as follows:

qρ =


ρ1
...
ρj

 (5.16)

5.2.2 Friction parameters

As it was mentioned before, Eq. 5.15 only represents the rigid body dy-
namics of the system. Nevertheless, friction generally plays an important
role in the system dynamics as it has been proven in chapter 4. For this
reason, it must be included in the identification model. Moreover, friction
is a complex non-linear and random process, specially in the low-velocity
range, with many factors involved [62, 70]. For this reason, several authors
have studied it and different friction models have been proposed [71, 76].
Nevertheless, a simple model with Coulomb and viscous friction shown in
Eq. 5.17, will be considered as it has been used before in the work of Dı́az-
Rodŕıguez et al. [51] with a good agreement, and since it can compensate
for most frictional effects at high amplitude excitations [75].

Ffj = sign(ρ̇j) (Fcj + cj ρ̇j) (5.17)

In Eq. 5.17, Fcj represents the Coulomb friction, cj is the viscous
friction coefficient and Ffj is the friction force on the jth actuator. In this
way, it is assumed that all the friction occurs at the actuators. Although
this assumption is not completely accurate, is from the actuators torque
that the friction influence can be measured for the mechanism.
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Also, by considering j actuators, Eq. 5.17 can be written in linear form
to include the friction as follows:[

sign
(
q̇Tρ Ij×j

)
, q̇Tρ Ij×j

]{Fc

c

}
= Kf Φf = Γf (5.18)

Where, I is an identity matrix, qρ is the position vector, Fc and c are
the vectors with the Coulomb and viscous friction parameters respectively,
and Γf is the vector with the friction and inertial forces for all the actuators
as shown in Eq. 5.19.

Fc =


Fc1

...
Fcj

 ; c =


c1
...
cj

 ; Γf =


Ff1

...
Ffj

 (5.19)

Furthermore, the number of unknown friction parameters in Φf to iden-
tify can be defined as Nf = 2j. To include the friction effects in the identi-
fication model, the matrix Kf and the unknown friction parameters vector
Φf should be assembled to the rigid body model as will be shown.

5.2.3 Assembly of the rigid body and friction models

To obtain an identification model including the rigid body and friction
models, matrix Kf and and the unknown friction parameters vector Φf

are simply appended to matrix Krb and Φrb respectively. In this way, the
identification model results as in Eq. 5.20, where the subindex rf indicates
that the rigid body and friction parameters are considered.

[
KrbKf

]{Φrb

Φf

}
=

K(qρ, q̇ρ, q̈ρ)j×NΦ
ΦNΦ×1 =


Frb1 + Ff1

...
Frbj + Ffj

 =


Frf1

...
Frfj

 = Γrf

(5.20)
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Where,
NΦ = Nrb +Nf (5.21)

It is worth observing that Eq. 5.20 usually represents an undetermined
linear system because j < NΦ. However, bearing in mind that matrix
K contains the kinematic data and Γrf contains the force of a time in-
stant for a given motion trajectory, if more samples np are used instead,
an overdetermined system results which must be used to perform a linear
regression. In this way, Eq. 5.20 can be rewritten to account for np points
of an identification trajectory as follows:

W (qρ, q̇ρ, q̈ρ)(j·np)×NΦ
ΦNΦ×1 = Γ(j·np)×1 (5.22)

5.2.4 Procedure to obtain the base parameters of a rank
deficient linear system dynamic model

The model shown in Eq. 5.22 presents all the significant dynamic parame-
ters of the system. However, due to the coupled kinematics loops in parallel
mechanisms, some of the dynamic parameters can not be identified indi-
vidually. The reason is that usually matrix W is not full rank. In such
cases, the unknown parameters can only be identified as Nbase linear com-
binations, such that Nbase < NΦ and Nbase is the rank of matrix W. As a
result, the linear system in Eq. 5.23 results.

Wbase (qρ, q̇ρ, q̈ρ) Φbase = Γ (5.23)

Where the elements in vector Φbase of size Nbase × 1 are known as
the base parameters. Furthermore, Wbase would result in a matrix of size
(np j)×Nbase.

The procedure to calculate those linear combinations is the following.
When matrix W in Eq. 5.22 is rank deficient, its number of non-null
singular values is less than the number of its columns, which indicates
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linear dependencies between them. In this case, the number of dependencies
between columns of W are simply calculated as:

Nlindep = NΦ −Nbase (5.24)

Because of the existing linear dependencies, aNLindep number of columns
of matrix W must be eliminated and the same number of unknown param-
eters in Φ have to be combined with the rest. As a consequence, when W
is rank deficient the dynamic parameters cannot be identified separately.
A solution to this issue is proposed in this thesis and will be appropriately
addressed in section 5.5.

Following the work of Dı́az-Rodŕıguez et al. [51] and Gautier [85], a
procedure to obtain the base parameters based on the singular value de-
composition method (SVD) is herein explained and applied. It is worth
mentioning that the Matlabr command svd has been used in this work to
perform the singular value decomposition.

Defining the SVD as a matrix operator, when it is applied to matrix W
of size m× n, it is decomposed into three matrices as in Eq. 5.26. Matrix
U is a unitary matrix of size m × m, while matrix V is also an unitary
matrix but of size n×n. An square unitary matrix A is remembered to be
defined as:

A AH = AH A = I (5.25)

Where, matrix AH is the conjugate transpose of A and I is the identity
matrix.

Additionally, S is a diagonal matrix where the elements of its diagonal
are non-negative and known as the singular values σk of matrix W. When
matrices U, V and S are multiplied as shown in Eq. 5.27, matrix W is
obtained back.

[U,S,V] = svd(W) (5.26)

W = U · S ·V (5.27)
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It is important to mention that if W is full rank, then all σk > 0 for
1 ≤ k ≤ n, otherwise, null singular values are present indicating rank defi-
ciency and thus linear combination between columns of W. Furthermore,
by multiplying Eq. 5.27 by VH , Eq. 5.28 results, where matrix V is sep-
arated into matrix V1 and V2. What is important in this manipulation
is that the columns in V2 define the linear relations of the columns of
W. However, in cases when matrix W is full rank, then V2 is empty and
V = V1.

W
[
V1Nrb×Nbase

V2Nrb×Nlindep

]
= U · S (5.28)

The objective is to find a solution of the form of Eq. 5.29 in such a
way that V22 is a full rank matrix. When V22 is found the permutation
matrix P results. This process is iterative and starts with the last row of
V2 seeking to construct a matrix V22. Then, the rank of the matrix V22

is evaluated. When the first regular matrix V22 is found, the permutation
matrix P results and the indexes of the columns of W to be eliminated are
also obtained.

PTV2 =

[
V21Nbase×Nlindep

V22Nlindep×Nlindep

]
(5.29)

Finally, Eq. 5.30 is solved to find the base parameters. In it, I is a
square identity matrix of size Nbase ×Nbase to which matrix B in Eq. 5.31
is appended column-wise, thus resulting in matrix IB.

Φbase = (IB ·PT )Φ (5.30)

BNbase×Nlindep = −V21V
−1
22 (5.31)

It can be appreciated that identifying the parameters depends on the
trajectory used for the identification. Therefore, an optimum trajectory has
to be generated in order to accurately identify the dynamic parameters.
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5.3 Trajectory optimization for dynamic
parameters identification

The correct identification of the base parameters in Φbase using Eq. 5.23
depends on the trajectory used. In this regard, matrix Wbase must have
a sufficiently low condition number. The latter, is a measure of the worst
case lost of precision of the estimates [98]. In other words, a large condition
number would result in inaccurate parameters estimates.

As proposed by Swevers et al. [84], Fourier series were chosen to param-
eterize the identification trajectory in position, velocity and acceleration.
In this way, expressions of the position, velocity and acceleration can be
written explicitly. Also, the bandwidth can be limited and a periodic signal
can be used, which is interesting to perform several cycles [99].

The following equations represent the position, velocity and acceleration
of the joints trajectory in Fourier series form. There, nh represent the num-
ber of harmonics of the trajectory, Cji andDji the amplitude of the harmon-
ics of the velocity, ρa0 the initial position and f the fundamental frequency
of the Fourier series for each actuator ρj , where j = 1, · · · , length(qρ).

ρj(t) = ρj0 +

nh∑
i=1

[
Cji

2πf i
sin(2πf i t)− Dji

2πf i
cos(2πf i t)

]
(5.32)

ρ̇j(t) =

nh∑
i=1

[Cji cos(2πf i t) +Dji sin(2πf i t)] (5.33)

ρ̈j(t) =

nh∑
i=1

[−Cji (2πf i) sin(2πf i t) +Dji (2πf i) cos(2πf i t)] (5.34)

5.3.1 Optimization of the trajectory

From the equations above, Cji, Dji, ρj0 , nh and f are initially unknown.
Thus, the optimization procedure herein applied is used to find the values
of the amplitudes and the initial position ρj0 that minimize the condition
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number of matrix Wbase, given that the fundamental frequency f and the
number of harmonics nh of the Fourier series are supplied in advance.

Also, since the range of positions is limited to the joint-space of the
mechanism, and the velocities and acceleration are also limited by the ac-
tuators specification, the optimization process has to be constrained to
these limits. For this reason, a constrained optimization is performed.

Furthermore, it is remembered that the condition number is calculated
as the highest to lowest ratio of the singular values of matrix Wbase. Even
if matrix Wbase is full rank its condition number can be high. In such
cases, the rank of the matrix is forced to be a lower value if an acceptable
condition number is not achieved.

5.3.2 Local and global optimization

In general, local or global optimization procedures can be used to find
the parameters Cji, Dji and ρj0 of the trajectory. A local optimization
algorithm, such as the Matlabr function fmincon can be used to find the
values of the parameters that minimize the objective function, defined as
the condition number of matrix Wbase. An initial set of parameters values
must be used as a seed to start the optimization process, around which the
optimum parameters values are searched for. However, if a local minimum
of the objective function is reached, the resulted optimum parameters values
are not the best. On the other hand, a global optimization algorithm,
such as the Matlabr function patternsearch, can be used instead, as it is
explained in the following section.

5.3.3 Direct search method optimization

Direct search methods of optimization such as the Matlab function pat-
ternsearch, are a global optimization algorithm used to solve problems when
the objective function is not differentiable or is not continuous [100]. Con-
sidering the condition number of matrix Wbase as the objective function to
minimize, the direct search method works as follows. With an initial set
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of parameters values as a seed, the algorithm looks for a set of parameters
values by building a mesh around the current set that minimize the objec-
tive function, which is then used as the starting point for the next iteration.
This process stops if a predefined number of iterations are reached, or if
the variation of the value returned by the objective function in consecutive
iterations is lower than a priori defined tolerance.

5.4 Post-processing

Often times, the experimental signals may present noise or distortions such
as time offsets between the commanded and the measured variables or tran-
sient effects. These have to be eliminated before performing the identifica-
tion because they may significantly influence the condition number of the
matrix Wb and, hence, worsen the robustness of the value of the parameters
to be identified.

In this step, any time offset is eliminated by trimming the signals first.
Also, if the acceleration of the actuators cannot be measured directly, it has
to be calculated using the velocity signal from the encoders using numerical
differentiation. This further introduces noise, the calculated acceleration
signal has to be filtered with a low-pass filter setup accordingly to the noise
in the signal.

5.5 Identification of each individual parameter

As a result of performing the identification using Eq. 5.23, the base param-
eters are obtained which can be written as a sum of the actual system’s pa-
rameters like in Eq. 5.35. Therein, Cbase is the matrix with the coefficients
multiplying each dynamic parameter in Φ within each linear combination
of Φbase. Similarly, Vbase is the vector with the resulting values of each
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base parameters after the identification.

Φbase = CbaseΦ =
c1,1 c1,2 · · · c1,NΦ

c2,1 c2,2 · · · c2,NΦ

...
...

...
cNbase,1 cNbase,2 · · · cNbase,NΦ




Φ1

Φ2
...

ΦNΦ

 =


Vbase1

Vbase2
...

VbaseNbase


(5.35)

The number of rows in matrix Cbase, Nbase, is less than the number of
elements in Φ, hence it is an undetermined linear system. As a result, a
linear regression can not be used to obtain each individual dynamic param-
eter. However, if a set Φt of enough parameters can be estimated or are
known beforehand accurately, then it is possible to extend the system and
solve it to find the values for each parameter. In this way, an estimation of
the parameters Φ̂ can be obtained by solving Eq. 5.36.

CΦ̂ = V =

[
Cbase

Cx

]
Φ̂ =

[
Vbase

Vx

]
(5.36)

Where Φt is defined as the set of Nt trusted parameters and Nx is the
number of required known parameters to make the linear system in Eq.
5.35 determined. Furthermore, Nx is calculated as follows:

Nx = NΦ −Nbase (5.37)

Also, let x to be defined as a subset of Φt like in Eq. 5.38.

x = {x1, x2, · · · , xNx} such that x ⊆ Φt ⊆ Φ (5.38)

It follows that the set x, chosen among Φt, can be used to solve Eq.
5.36 as in Eq. 5.39, where Cx is defined as in Eq. 5.40. Moreover, the term
cxij equals 1 if the chosen trusted parameter xj is the dynamic parameter
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Φ(k), otherwise cxij is equal to 0. Also, the elements Vxj of matrix V are
the values of the chosen trusted parameter.

Φ̂ = C−1V (5.39)

Cx =


cx11 cx12 · · · cx1NΦ

cx21 cx22 · · · cx2NΦ
...

...
...

cxNx1 cxNx2 · · · cxNxNΦ

 (5.40)

Where,

cxij = 1 if xj = Φ(k)

cxij = 0 if xj 6= Φ(k)
(5.41)

Vxj = Φtj (j) (5.42)

If the number of required parameters Nx to build matrix C is less than
the number of trusted parameters Nt, there will be several possible com-
binations of the subset x that can be used to solve Eq. 5.39. In fact, the
number of possible combinations Ncomb can be calculated as follows:

Ncomb =
Nt!

Nx! (Nt −Nx)!
(5.43)

Among all these combinations, some of them may result in a matrix
C without an inverse, in which case matrix C would be rank deficient.
As a consequence, these combinations must be discarded. Moreover, with
every possible combination of the trusted parameters, different values for
the dynamic parameters are obtained. Hence, it is possible to establish a
range in which the actual value for each dynamic parameter lays in. Then,
the problem is to determine the exact value for each parameter from their
respective range.
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Also, negative values could also be obtained by solving the system in Eq.
5.39. Although these values solve the linear system mathematically, they
lack of any physical meaning. Hence, the negative values can be ignored
and the range of values is established to be from the minimum to maximum
positive values for each parameter.

Lastly, to determine an specific value, the mean of the range can be used
or, alternatively, an optimization routine can be applied to find the best
set of parameters values that minimizes the error between estimated force
signals with the estimated parameters and the experimental force signals,
which has been done in this work.

5.6 Summary of the parameters identification
process

In summary, the process to identify the dynamic parameters is described in
Fig. 5.3. The process starts with the definition of the initial Fourier series
parameters ρj0 , Cji, Dji, f, nh. These are the used for the trajectory
optimization using the fmincon or the pattersearch Matlab algorithms.

Upon successful completion of the optimization, matrix Wbase is ob-
tained as well as the base parameters. If the condition number κ(Wbase)
is not lower or equal to a tolerance defined beforehand, then the rank of
matrix Wbase is reduced to find a better condition number and start again
the optimization. Otherwise, the trusted parameters are used to find the
Ncom possible combinations of values for each parameters, which are finally
used to obtain an estimate of the parameters by calculating the mean or
using an optimization method.
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Figure 5.3. Scheme of the parameters identification process.





Chapter 6

Experimental Validation of
the Identification Procedure

In this chapter, an experimental validation of the identification procedure
has been carried out on two case studies. The first case study is a simple 2-

PRR planar mechanism for which the identification was first implemented.
The second case study is a haptic 5R robotic system developed by the IGM-
RWTH for which the identification procedure was performed in the context
of a research internship.

6.1 Case Study 1: 2-PRR Mechanism

The 2-PRR mechanism in Fig. 6.1a was considered as a first case study.
The intended application of this mechanism is foreseen to be for pick &
place purposes. Moreover, this prototype consists of a 2-PRR mechanism
with linear guides IGUS-ZLW-1040 as prismatic joints actuated by a Maxon
RE-40 DC motors with a gearbox GP-32A of 14:1 gear ratio. The linear
guides are coupled to the gearbox with a flexible shaft coupling WAC25
from Helical. Also, the mechanism presents a Four-bar linkage on one

167
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prismatic joint to constrain the rotation motion of the final platform, in
this way the end-effector is only capable of a translation motion in the XY
plane defined in Fig. 6.1.

(a)

(b)

Figure 6.1. (a) Picture and (b) workspace of the 2-PRR mechanism.
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In Fig. 6.1a, it can be appreciated the two linear guides where the
mechanism is attached. Additionally, the 3 bars of the mechanism as well
as the end platform are shown. The three identical bars have a weight of
1.02 kg and a length of 0.654 m. As for the end platform, it has a weight
of 2.5 kg. Furthermore, the bars are joined by shafts and ball bearings,
and the complete mechanism has been manufactured and assembled in the
facilities of the Mechanical Engineering Department.

In Fig. 6.1b the workspace of the mechanism is shown. It can be seen
that the operating workspace is limited between −0.41 m and −0.68 m in
the y direction, and between 0.4 m and 0.86 m in the x direction, with no
singularities within the workspace. In this way, a pick & place task can be
performed in a rectangle of 0.46 m× 0.27 m.

Additionally, in Fig. 6.2 a scheme of the mechanism with the main
kinematics variables is shown, where a = 1.3 m is the distance separating
the origin of the two actuators ρ1 and ρ2, F1 and F2 are the input forces,
d = 95 mm is the distance between the revolute joints, and the orientation
of the bars 3 and 4 is represented by α1 and α2 for the bar 5.

Figure 6.2. Kinematic scheme of the 2-PRR mechanism.
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6.1.1 Rigid body model

To obtain a dynamic model for identification of the 2-PRR mechanism, the
principle of energy equivalence was applied as described in chapter 5. To
that end, the 2-PRR mechanism was separated into the following 6 solids
with their respective dynamic parameters, where m and I are the mass and
inertia respectively:

� Actuator ρ1: m1, I1

� Actuator ρ2: m2, I2

� Bar 3: m3, I3

� Bar 4: m4, I4

� Bar 5: m5, I5

� End platform: m6, I6

Afterwards, the forward kinematics is solved for each solid relating the
mass center positions xb, yb and orientation αb with the coordinates of the
actuated joints ρ1, ρ2 as in equations 6.1 and 6.2. As each actuator is
composed by a rotational motor, a gearbox with gear ratio ir and a linear
guide with pitch p, the force F1 and F2 are calculated from the torque
supplied by the motors τj as in Eq. 6.3. In this way, the masses m1 and
m2 include the inertia of the whole actuators.

ẋb
ẏb
α̇b

 = Jb


ρ̇1

ρ̇2

 =

[
tJb
rJb

]
ρ̇1

ρ̇2

 (6.1)


ẍb
ÿb
α̈b

 = J̇b


ρ̇1

ρ̇2

+ Jb


ρ̈1

ρ̈2

 =

[
tJ̇b
rJ̇b

]
ρ̇1

ρ̇2

+

[
tJb
rJb

]
ρ̈1

ρ̈2

 (6.2)
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Fj = τj ir
2π

p
; j = 1, 2 (6.3)

In equations 6.1 and 6.2, the Jacobians Jb were separated into tJb and
rJb, To account for the transformations of the linear and angular terms
respectively for each solid b. Regarding the dynamics, by considering the
rigid body diagram of the components shown in Fig. 6.3, the equations of
motion are obtained for each solid after applying the Lagrange’s equations
as mentioned in chapter 5, resulting in Eq. 6.4. It is worth remembering
that the joint forces are not taken into account as mentioned in section
3.4.1.

Figure 6.3. Rigid body diagrams of the components of the 2-PRR mechanism.ẍb 0
ÿb 0
0 α̈b

+

0 0
g 0
0 0


Mb

Ib

 =


Fxb
Fyb
τb

 (6.4)
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Furthermore, as described in section 5.2.1, by substituting Eq. 6.2 into
Eq. 6.4, the equation of motion for each body is obtained in terms of the
actuators variables.

tJ̇b

{
ρ̇1

ρ̇2

}
+ tJb

{
ρ̈1

ρ̈2

}
0

0

0 rJ̇b

{
ρ̇1

ρ̇2

}
+ rJb

{
ρ̈1

ρ̈2

}
+

0 0
g 0
0 0




mb

Ib

 =


Fxb
Fyb
τb


(6.5)

By pre-multiplying both sides of the equation by the Jacobian Jb, the
forces and torques are projected onto the joint-space, thus resulting Eq. 6.6
which depends only on the data obtained from the actuators.

[
JTb Ωb + JTb Gb

]{mb

Ib

}
= Kcb

{
mb

Ib

}
= JTb Γb =

{
F1b

F2b

}
(6.6)

Afterwards, adding the contribution of all solids, the rigid body model
of the mechanism results as follows:

KcΦc = Γc (6.7)

Where,
Kc =

[
Kc1 ,Kc2 ,Kc3 ,Kc4 ,Kc5 ,Kc6

]
(6.8)

Γc =

{
F1

F2

}
(6.9)

Φc = {m1, I1,m2, I2,m3, I3,m4, I4,m5, I5,m6, I6}T (6.10)

As some of the dynamic parameters in Φc do not appear in the equations
of motion, such as I1, I2 and I3, they are not taken into account to build the
final dynamic model. Finally, the linear system in Eq. 6.11 represents the
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rigid body dynamics of the 2-PRR mechanism as a function of 9 parameters,
where they have been sorted in masses first and inertias afterwards in Φrb.

Krb (qρ, q̇ρ, q̈ρ)2×9 Φrb9×1 = Γrb2×1 (6.11)

Where,

qρ =

{
ρ1

ρ2

}
(6.12)

Φrb = [m1,m2,m3,m4,m5,m6, I3, I4, I5]T (6.13)

6.1.2 Friction model

To take the friction of the mechanism into account, a viscous + Coulomb
friction model is herein used. Hence, the friction of all the system is assumed
to occur at the actuators. In Eq. 6.14 the friction force on both actuators
is written as a linear system, where Fc represents the Coulomb friction and
c the viscous friction.:

Γf =

[
sign(ρ̇1) 0 ρ̇1 0

0 sign(ρ̇2) 0 ρ̇2

]
Fc1
Fc2
c1

c2

 = Kf ·Φf (6.14)

6.1.3 Identification Model

Subsequently, the friction dynamics are appended to the rigid body dy-
namics obtained in Eq. 6.11, thus resulting in the dynamic model for
identification of Eq. 6.15 with 13 parameters to be identified.

[
KrbKf

]{Φrb

Φf

}
= K (qρ, q̇ρ, q̈ρ)2×13 Φ13×1 =

{
F1

F2

}
(6.15)

By performing a linear regression on Eq. 6.15 the dynamic paramerers
in Φ could be solved if the system was not under-determined. By using
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several points of a trajectory the system can be expanded and thus the
overdetermined linear system in Eq. 6.16 results where np is the number
of points used.

W (qρ, q̇ρ, q̈ρ)(2·np)×13 Φ13×1 = Γ(2·np)×1 (6.16)

In general, the parameters in Φ cannot be identified separately, on
the contrary, they are identified as linear combinations. By following the
procedure described in section 5.2.4, the system with Nbase 6 13 base
parameters in Eq. 6.17 is obtained.

Wbase (qρ, q̇ρ, q̈ρ)(2·np)×Nbase ΦbaseNbase×1
= Γ(2·np)×1 (6.17)

6.1.4 Identification trajectory

Regarding the identification trajectory, following the guidelines described
in section 5.3 and in previous works [84, 99], it is parameterized by using
periodic trajectories in the form of the Fourier series shown in equations
6.18-6.20.

ρj(t) = ρj0 +

nh∑
i=1

[
Cji

2πf i
sin(2πf i t)− Dji

2πf i
cos(2πf i t)

]
(6.18)

ρ̇j(t) =

nh∑
i=1

[Cji cos(2πf i t) +Dji sin(2πf i t)] (6.19)

ρ̈j(t) =

nh∑
i=1

[−Cji (2πf i) sin(2πf i t) +Dji (2πf i) cos(2πf i t)] (6.20)

Where ρj0 is the initial position of the jth actuator, nh is the number of
harmonics, f is the Fourier series fundamental frequency and Cji and Dji

are the sines and cosines amplitudes for each harmonic.

In order to calculate the optimum Cji, Dji and ρj0 parameters, the local
optimization routine fmincon and the global optimization routine Direct
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search method/patternsearch from the Matlab/Optimization toolbox were
considered and further compared. These two methods were studied mainly
because fmincon is a local optimization routine whereas the Direct search
method falls into the global optimization routines category, so the purpose
was to asses which one resulted in better results.

Since the actuators used are similar to the ones used for the MAST
mechanism in section 4.2, a fundamental frequency of 0.4 Hz and 10 har-
monics were used as the bandwidth of the actuators was found to be ap-
proximately 4 Hz. Also the initial values in Table 6.1 for the amplitudes and
initial positions ρ1 = 0.2 m and ρ2 = 0.25 m were used for the optimization.
Furthermore, considering the joint-space of the mechanism in Fig. 6.4, a
0.002 m and 0.0470 m lower position limits for actuators 1 and 2 respec-
tively were used, while a 0.035 m superior limit was used in both cases.
As for the velocity and acceleration limits, 0.57 m/s and 5 m/s2 were used
respectively for both actuators taken from the manufacturer datasheet. As
a result, the trajectory in the joint-space shown in Fig. 6.4 resulted.

Table 6.1. Initial values of the amplitudes for the Fourier series

nh
Act. 1 Act. 2

C1i [m] D1i [m] C2i [m] D2i [m]

1 0.0066 0.0066 0.0060 0.0060

2 0.0033 0.0033 0.0030 0.0030

3 0.0022 0.0022 0.0020 0.0020

4 0.0016 0.0016 0.0015 0.0015

5 0.0013 0.0013 0.0012 0.0012

6 0.0011 0.0011 0.0010 0.0010

7 0.0009 0.0009 0.0009 0.0009

8 0.0008 0.0008 0.0008 0.0008

9 0.0007 0.0007 0.0007 0.0007

10 0.0007 0.0007 0.0006 0.0006
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Figure 6.4. Optimized identification trajectory for the Scissor mechanism.

When the fmincon method was employed a condition number of 28.23
was obtained. Nevertheless, with the Direct search method/patternsearch a
20.78 of condition number resulted. Although in this case the difference is
of only 7.45 points, the Direct search method was selected because provided
a lower condition number.

6.1.5 Identification of the base parameters

The trajectory was executed using the control in the PXIe and the joints
position, velocity were experimentally obtained using the encoder measure-
ments from the motors with a sampling time of 2 ms. The acceleration was
calculated by numerical differentiation of the velocity. Also, the current
was measured to calculate the motors torque using the torque constant
Kt = 30.2 mN m/A from the datasheet. Furthermore, to eliminate noise
and transient effects in the experimental signals, a third order low-pass fil-
ter with a 15 Hz cut-off frequency was used. The forces F1 and F2 were
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calculated using Eq. 6.21, where Ic is the current of the motors, ir = 14 is
the gear ratio, and p = 0.07 m/rev is the pitch of the linear guide. Addi-
tionally, the positions ρ1 and ρ2 were calculated using Eq. 6.22, where θ is
the angle of the motors.

Fi = Kt Iciir
2π

p

∣∣∣∣
i=1,2

(6.21)

ρi = θi
p

2πir

∣∣∣∣
i=1,2

(6.22)

In Fig 6.5 the commanded and experimental positions, velocity and
acceleration signals are shown. It can be seen that the controller presents
a good tracking of the commanded signals, and no major distortions are
observed apart from some acceleration overshoots.
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Figure 6.5. Comparison of the position velocity and acceleration signals of the
identification trajectory signals.



178 Experimental Validation of the Identification Procedure

After the post-processing and executing the identification algorithm in
Matlabr, the base parameters in equations 6.23-6.30 and their values were
obtained. It is observed in the first four base parameters that, despite in-
ertial parameters are present, the main contribution is due to the Coulomb
and viscous friction. Similarly, the base parameter in Eq. 6.28 is approxi-
mately m2 + 0.5m5.

Φbase(1) = 0.0075I5 + 0.0075I4 + 0.0075I3 + Fc1 = 44.6742 (6.23)

Φbase(2) = 0.008I5 + 0.008I4 + 0.008I3 + Fc2 = 41.8721 (6.24)

Φbase(3) = −0.0504I5 − 0.0504I4 − 0.0504I3 + c1 = 6.6274 (6.25)

Φbase(4) = −0.0523I5 − 0.0523I4 − 0.0523I3 + c2 = 2.4461 (6.26)

Φbase(5) = m1 − 0.5m5 + 4.6625I5 + 4.6625I4 + 4.6625I3 = 19.5026 (6.27)

Φbase(6) = m2 + 0.5m5 + 0.0092I5 + 0.0092I4 + 0.0092I3 = 20.8867 (6.28)

Φbase(7) = m6 + 4.6417I5 + 4.6417I4 + 4.6417I3 = 4.7265 (6.29)

Φbase(8) = m5 + m4 + m3 − 9.3088I5 − 9.3088I4 − 9.3088I3 = 2.2236 (6.30)

6.1.6 Identification of the individual parameters

Equations 6.23-6.30 are linear combinations of the individual dynamic pa-
rameters of the mechanism. To obtain the value for each of the 13 param-
eters, the linear combinations are disassembled considering the values of
the trusted dynamic parameters. Since 8 linear combinations were found,
5 extra parameters are required. For the 2-PRR mechanism, I3, I4, I5, m3,
m4, m5 and m6 are considered to be well-known beforehand as they have
been manufactured and weighted in our dependencies. Following Eq. 5.43
up to 21 possible combinations exist to complete the linear system. How-
ever, only 15 of them can be used after removing the combinations which
returned a rank deficient system. After solving all the combinations, the
mean and the standard deviation for each parameter were obtained and are
shown in Table 6.2.
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Table 6.2. Parameters values obtained according to a priori known parameters
set

Parameter Mean Standard deviation Theoretic Units

m1 18.9629 0.7672 23.9744 kg

m2 20.0594 0.6310 23.5028 kg

m3 3.3610 1.4459 1.0267 kg

m4 3.3610 1.4459 1.0267 kg

m5 3.3610 1.4459 1.0267 kg

m6 4.2582 0.0452 2.7750 kg

I3 0.2651 0.1642 0.0366 kgm2

I4 0.2651 0.1642 0.0366 kgm2

I5 0.2651 0.1642 0.0366 kgm2

Fc1 44.6720 0.0012 - N

Fc2 41.8698 0.0013 - N

c1 6.6421 0.0082 - N s/m

c2 2.4614 0.0085 - N s/m

It is observed that the identified parameters in the table present differ-
ences with respect to their theoretical values. The most significant differ-
ences are obtained for the masses and inertia of the bars. The masses of
the bars present an error of 2.3343 kg, while the inertias present a devia-
tion of 0.2285 kgm2. These differences are attributed to two main causes.
On one hand, since the condition number is not 1, it is expected that the
identified parameters values present errors caused by distortions in the mea-
surements. On the other hand, as the mass of the bars are approximately
22 times smaller that the masses m1 and m2, it is possible that the masses
and inertias of the bars do not contribute significantly to the dynamics of
the mechanism, and therefore cannot be appropriately identified as it was
mentioned by Pham and Gautier [101].

After updating the dynamic model with the mean parameters shown in
Table 6.2,the identification trajectory was simulated and compared with the
experimental torque. In Fig. 6.6, it is compared the experimental torque



180 Experimental Validation of the Identification Procedure

0 0.5 1 1.5 2 2.5
−200

−100

0

100

200

300

F
1
 [
N

]

 

 

0 0.5 1 1.5 2 2.5
−400

−200

0

200

400

Time [s]

F
2
 [
N

]

 

 

Experimental

Sim. Mean values

Sim. Base parameters

Figure 6.6. Measured forces vs. simulated forces with the base parameters and
the mean values of the physical parameters.

with the reduced model with the base parameters, and the model with the
mean values. It can be seen that model with the base parameters and the
model with the mean values of the parameters are similar with a maximum
deviation of 20 N between them. Furthermore, when the simulations are
compared to the experimental signal, larger errors are observed with a
maximum peak error of 81 N for a measured torque of 223.3 N.

6.1.7 Experimental validation

To validate the dynamic model with the parameters obtained it is necessary
to use a trajectory different than the used for the identification. In this
regard, a sinusoidal trajectory with a 3.5 Hz frequency, an amplitude of
11.45 mm and 7 cycles was programmed. Also, the control period was set
to 5 ms. In Fig. 6.7, the tested trajectory is shown and compared with the
commanded position signals. It can be seen a difference in amplitudes and
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time delay between the commands and the experimental signals. These
differences were expected as the motion frequency of 3.5 Hz is near the
bandwidth of the actuators.
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Figure 6.7. Commanded and measured validation trajectory for each joint.

In Fig. 6.8 a comparison of the torques in the motors has been car-
ried out between the model with the identified parameters, the model with
the base parameters and the experimental. It can be observed that the
simulated torques are similar to the experimental ones. However, some de-
viations are still present specially for the second actuator. A maximum dif-
ference of approximately 92 N from an actual force of 190 N are appreciated
for the second actuator between the simulations and the measurements. As
for the first actuator, a maximum difference of approximately 75 N from
a measured force of 156 N is observed between the measurements and the
model with the mean values. These deviations are attributed to unmod-
eled dynamic phenomena, such as flexible behavior of the bodies, differences
between the identified dynamic parameters and their real values.
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Figure 6.8. Measured and simulated torque comparison.

6.2 Case Study 2: 5R haptic mechanism

The Reconfigurable Planar Linkage mechanism, also called RePlaLink, is
a 5R parallel robot with a third serial actuator mounted at the TCP. A
representation of the mechanism is shown in Fig. 6.9. As the length of
the lower bars of the mechanism are adjustable, the motors are placed
in two separate horizontal planes on the squared-shaped frame, to avoid
their collision when the mechanism is moved. Also, the horizontal distance
between the main motors is adjustable, and the frame can be rotated to
change the orientation of the working plane. The third actuator is used to
change the orientation of a handle placed at the TCP of the mechanism,
where a force and torque sensors are placed.

The purpose of the RePlaLink is to be used for simulating other me-
chanical devices or mechanism prototypes before manufacturing an actual
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Figure 6.9. Representation of the RePlaLink mechanism and its components.
(Courtesy of the IGM-RWTH Aachen).

device. In this way, the 5R mechanism is configured to simulate virtual
prototypes taking the inputs from an operator. Therefore, it is operated
as a haptic feedback system [9]. In Fig. 6.10 a use case is shown, where an
operator is shown to moved a virtual prototype of a cabinet. Additionally,
in Fig. 6.11 a hypothetical case study is shown, describing an operator in-
teracting with a cabinet with 5 different designs, which the RePlaLink is
intended to simulate.

The purpose of applying the identification procedure on the 5R mech-
anism is twofold. On the one hand, to evaluate further the identification
procedure described with a mechanism different than the 2-PRR. On the
other hand, to obtain a dynamic model considering friction that can be
used for compensation by control.
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Figure 6.10. Representation of the RePlaLink in a general use case. (Courtesy
of the IGM-RWTH Aachen).

Figure 6.11. Representation of a hypothetical case study and four additional al-
ternatives intended for simulation with the RePlaLink. (Courtesy of IGM-RWTH
Aachen).
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6.2.1 Rigid body model

The dynamic model for identification of the 5R haptic mechanism is again
obtained following the procedure of chapter 5. In Fig. 6.12 a scheme of the
mechanism is shown.

Figure 6.12. Scheme of the RePlalink.

To use the principle of energy equivalence, the mechanism was separated
into the following 7 components with their respective dynamic parameters:

� Bar A0-A = m1, I1

� Bar A-D = m2, I2

� Bar B-C = m3, I3



186 Experimental Validation of the Identification Procedure

� Bar B0-B = m4, I4

� Mass D= m5

� Actuator at A0 = I6

� Actuator at B0 = I7

Furthermore, the mass of the handle was not taken into account as its
weight was expected to be negligible compared to the rest of the elements.
The third motor is considered as a concentrated mass located at point
D, and its inertia was not considered for the identification procedure as
it was not operated. Additionally, assuming a rigid body model of the
actuators, the inertia of the main motors is considered at points A0 and B0

in Fig. 6.12. Solving the forward kinematics for each solid, the linear and
angular velocities and accelerations for each solid are obtained as in Eq.
6.31 and Eq. 6.32. 

ẋb
ẏb
α̇b

 = Jb


α̇1

α̇2

 =

[
tJb
rJb

]
α̇1

α̇4

 (6.31)


ẍb
ÿb
α̈b

 = J̇b


α̇1

α̇4

+ Jb


α̈1

α̈4

 =

[
tJ̇b
rJ̇b

]
α̇1

α̇4

+

[
tJb
rJb

]
α̈1

α̈4

 (6.32)

As for the dynamics, considering the rigid body diagram of the compo-
nents of Fig. 6.13, the equations of motion result as in Eq. 6.33. Substitut-
ing equations 6.31 and 6.32 into Eq. 6.33 where appropriate, the equations
of motion are obtained in terms of the actuators variables α1 and α4 as in
Eq. 6.34. ẍb 0

ÿb 0
0 α̈b

+

0 0
g 0
0 0


mb

Ib

 =


Fxb
Fyb
τb

 (6.33)
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Figure 6.13. Rigid body diagrams of the components of the haptic mechanism.

[
JTb Ωb + JTb Gb

]{mb

Ib

}
= KbΦb = JTb Γb =

{
τ1b

τ4b

}
(6.34)

Where,

Ωb =


[tJ̇b]

{
α̇1

α̇4

}
+ [tJb]

{
α̈1

α̈4

}
0

0

0 [rJ̇b]

{
α̇1

α̇4

}
+ [rJb]

{
α̈1

α̈4

}
 (6.35)

Since the mechanism was positioned horizontally, matrices Gb can be
neglected as gravitational forces do not contribute to the dynamics of the
system. Then, the rigid body model of the mechanism considering all the
dynamic parameters results as follows:

KcΦc = Γc (6.36)
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Where,
Kc =

[
Kc1 ,Kc2 ,Kc3 ,Kc4 ,Kc5 ,Kc6 ,Kc7

]
(6.37)

Φc = {m1, I1,m2, I2,m3, I3,m4, I4,m5, I5,m6, I6,m7, I7}T (6.38)

Γc =

{
τ1

τ4

}
(6.39)

However, as m6 and m7 only rotate and I5 does not exist as it is a con-
centrated mass, they do not contribute to the dynamics of the mechanism.
Hence, a total of 11 rigid body parameters were considered to obtain the
rigid body model of Eq. 6.40, where the terms have been grouped into
masses and inertias.

Krb (qρ, q̇ρ, q̈ρ)2×11 Φrb11×1 = Γrb2×1 (6.40)

Where,

qρ =

{
α1

α4

}
(6.41)

Φrb = [m1,m2,m3,m4,m5, I1, I2, I3, I4, I6, I7]T (6.42)

6.2.2 Friction model

Again, the friction of the complete system is also considered at the motors
I6 and I7, as it is from where the measurements are taken. The Coulomb
+ viscous friction model of Eq. 5.17 was used resulting in:

Ff =

[
sign(α̇1) 0 α̇1 0

0 sign(α̇4) 0 α̇4

]
Fc6
Fc7
c6

c7

 = Kf Φf (6.43)
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6.2.3 Identification model

The dynamic model at an instant considering the rigid body dynamics as
well as the friction is written as follows:

K (qρ, q̇ρ, q̈ρ)[2×15]Φ[15×1] =

{
τ1

τ4

}
(6.44)

Where the total of 15 parameters to identify are:

Φ = {m1,m2,m3,m4,m5, I1, I2, I3, I4, I6, I7, Fc6 , Fc7 , c6, c7}T (6.45)

When a trajectory is executed and np points are sampled, an overde-
termined system as in Eq. 6.46 can be built based on Eq. 6.44.

W (qρ, q̇ρ, q̈ρ)(2np)×15 Φ15×1 = Γ(2np)×1 (6.46)

6.2.4 Identification trajectory

To obtain the base parameters, the procedure depicted in section 5.2.4 was
followed, where Fourier series are used to parameterize the identification
trajectory.

The local optimization routine fmincon and the direct search method
patternsearch from the Matlab/Optimization toolbox were used to find the
values of Cji, Dji and αj0 that minimize the condition number of ma-
trix Wbase. Additionally, 0.6981 rad and −0.3142 rad were considered as
lower angular position limits for actuators α1 and α4 respectively. Also,
3.6652 rad and 2.4435 rad were used as the superior angular position limits
for actuators α1 and α4 respectively. The trajectory was also constrained
to be inside the joint-space of the mechanism using the inpolygon Matlabr

function. Moreover, a velocity limit of 2 rad/s and an acceleration limit of
30 rad/s2 were considered for both actuators.

When the function fmincon was used, the optimization failed to obtain a
trajectory within the joint-space of the 5R haptic mechanism as in Fig. 6.14,
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where the thin red line is the trajectory. A possible explanation is that
the routine found a local minimum, which failed to respect the joint-space
constraints.
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Figure 6.14. Failed optimized trajectory (thin red) relative to the joint-space of
the RePlaLink.

In contrast, the global optimization direct search patternsearch func-
tion returned identification trajectories within the joint-space. Various it-
erations were carried to find the fundamental frequency and the number
of harmonics for the Fourier series. From this tests it was found that a
fundamental frequency of 0.45 Hz and 5 harmonics resulted in the lowest
condition number of 62.21, with 2.0944 rad and 1.0472 rad as initial posi-
tions and the initial values for the amplitudes:
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Table 6.3. Initial values of the amplitudes for the Fourier series

nh
Act. 1 Act. 2

C1i [m] D1i [m] C2i [m] D2i [m]

1 0.4533 0.3802 0.4152 0.4263

2 0.4334 0.3760 0.3869 0.4091

3 0.3349 0.3574 0.3470 0.1442

4 0.1488 0.2744 0.3085 0.1124

5 0.1128 0.1152 0.1391 0.0474

In this way, the trajectory for identification in the joint-space of Fig. 6.15
was obtained. It can be seen that the trajectory, thin red line, is within the
joint-space.
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Figure 6.15. Optimized identification trajectory (thin red) relative to the joint-
space of the RePlaLink.
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Moreover, the position, velocity and acceleration of the actuated joints
of the optimized trajectory are shown in Fig. 6.16, where it can be ap-
preciated that the velocities and accelerations are within the established
limits.
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Figure 6.16. Position, velocity and acceleration of the optimized trajectory for
identification.

6.2.5 Identification of the base parameters

The identification trajectory was then executed on the system. The B&R
automation studio was used for the control with a period of 1.2 ms. The
position and the velocity were measured using the encoders of the motors,
and the acceleration was calculated from the velocity signal using numerical
differentiation. As for the torque, it was obtained directly from the control
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application, which is calculated from the current using the torque constant
Kt = 1.08 N m/A of the motors 8LSA45.E1045D200-10 and the gearbox
8GF60-064hh010klmm with gear ratio ir = 10 by B&R. A third order
Butterworth IIR low-pass filter with a 20 Hz cut-off frequency was used to
filter the acceleration and torques.

After executing the identification trajectory in Matlab, a total of 9
base parameters will be identified, which are shown in equations 6.47 to
6.55. It can be noted from equations 6.47 to 6.50 that, although inertial
parameters appear, they are negligible. Therefore, the contributions on
these parameters are due to Coulomb and viscous frictions.

Φbase(1) = Fc1 + 7.4 10−16 I1 + 1.0 10−15 I2

− 6.0 10−15 I3 − 2.7 10−15 I4 + 7.6 10−16 I6 − 2.7 10−15 I7 (6.47)

Φbase(2) = Fc4 + 7.6 10−16 I1 − 4.5 10−16 I2

− 6.1 10−15 I3 − 4.5 10−15 I4 + 6.4 10−16 I6 − 4.3 10−15 I7 (6.48)

Φbase(3) = c1 − 2.4 10−16 I1 + 8.8 10−16 I2 − 2.8 10−15 I3

− 1.7 10−15 I4 − 1.6 10−16 I6 − 1.6 10−15 I7 (6.49)

Φbase(4) = c4 + 4.4 10−16 I1 − 1.4 10−15 I2 + 4.7 10−15 I3

+ 5.3 10−16 I4 + 2.4 10−16 I6 + 6.2 10−16 I7 (6.50)

Φbase(5) = 27.686 I1 + 13.533 I2 + 0.51015 I3 − 2.0 10−13 I4

+ 27.686 I6 − 2.1 10−13 I7 +m1 (6.51)

Φbase(6) = 7.2328 I3 − 6.8439 I2 − 2.1 10−14 I1 + 9.8 10−14 I4

− 2.0 10−14 I6 + 9.8 10−14 I7 +m2 (6.52)
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Φbase(7) = 4.8 10−14 I1 − 3.2 10−14 I2 − 16.299 I3

− 1.4 10−13 I4 + 4.7 10−14 I6 − 1.4 10−13 I7 +m3 (6.53)

Φbase(8) = 66.007 I3 − 2.2 10−13 I2 − 4.4 10−13 I1 + 35.225 I4

− 4.4 10−13 I6 + 35.225 I7 +m4 (6.54)

Φbase(9) = 4.43 I2 − 4.2 10−15 I1 − 0.27833 I3 − 2.3 10−14 I4

− 4.6 10−15 I6 − 2.4 10−14 I7 +m5 (6.55)

After solving the system of equations, the values of the base parameters
in equations 6.47-6.55 were identified to be the followings:

Φbase(1) = 0.9342 (6.56)

Φbase(2) = 0.1672 (6.57)

Φbase(3) = 2.6334 (6.58)

Φbase(4) = 4.7132 (6.59)

Φbase(5) = −3.2871 (6.60)

Φbase(6) = 7.1563 (6.61)

Φbase(7) = −18.0339 (6.62)

Φbase(8) = 54.2796 (6.63)

Φbase(9) = 6.3547 (6.64)

6.2.6 Identification of the individual parameters

In the dynamic model of the 5R haptic mechanism, there are a total of 15
dynamic parameters. Among these, the 10 parameters in Eq. 6.65 were
considered as the trusted parameters since they were measured or obtained
from CAD.

Φt =
{
m1,m2,m3,m4, I1, I2, I3, I4, I6, I7

}T
(6.65)
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Hence, up to 210 possible combinations were found using Eq. 6.66.
Furthermore, a total of 64 combinations were used as the remaining resulted
in a rank deficient matrix C, so they were discarded.

Ncomb =
Nt!

Nx!(Nt −Nx)!
=

10!

6!(4!)
= 210 (6.66)

To estimate the parameters values, two approaches were followed in the
case of the haptic mechanism, the mean of the value ranges obtained from
the combinations, or an optimization with the mean squared error (MSE)
between the experimental torques and the estimated torque as the objective
function. In Table 6.4, each obtained parameter value is presented. The
mean values, standard deviation and the result of the optimization are
included and compared with the theoretical values.

Table 6.4. Parameters values obtained with the identification

Parameter Mean Std. Opt. Theoretical Units

m1 3.2150 0.0000 3.2150 3.2150 kg

m2 15.7692 49.8521 7.4105 4.2540 kg

m3 1.8900 0.0000 1.8900 1.8900 kg

m4 47.9074 280.5484 2.9500 2.9500 kg

m5 5.7803 2.2932 0.0000 0.4000 kg

I1 0.1257 0.0000 0.1257 0.1257 kgm2

I2 0.4938 0.1899 0.8019 0.4062 kgm2

I3 0.6796 0.4937 0.0908 0.0783 kgm2

I4 1.3823 7.9645 0.1060 0.1060 kgm2

I6 0.0041 0.0000 0.0041 0.0041 kgm2

I7 1.2804 7.9645 0.0041 0.0041 kgm2

Fc1 0.9342 0.0000 0.9342 - N m

Fc4 0.1672 0.0000 0.1672 - N m

c1 2.6334 0.0000 2.6334 - N m s/rad

c4 4.7132 0.0000 4.7132 - N m s/rad
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It can be seen that, for some parameters, their mean values present
large standard deviation, such as m2 and m4. The mean of mass m2 was
found to be approximately twice the theoretical value, while the mean of
m4 is approximately 16 larger than its theoretical value. It can also be
appreciated how the results are improved with the optimization. For ex-
ample, the inertia I7 obtained with the optimization equals its theoretical
value, whereas its mean is approximately 300 times larger. However, as for
the inertia I2, the optimization returned twice the theoretical values, which
is worst than its mean value.
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Figure 6.17. Experimental and identified model with optimization torque signals
for both actuators.

In Fig. 6.17, the measured and simulated torques at the output of the
gearbox are shown. It can be appreciated that when the mean values were
used in the dynamic model, it was able to follow the shape of the experi-
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mental data although substantial deviations in amplitude of about 63.5 N m
from a measured torque of 34.8 N m are present. Nevertheless, with the
optimized parameters, the updated model was able to closely follow the
experimental torque, as well as the identified model with base parameters.

Despite having found that set of parameters values that appear to model
the system, a experimental validation has to be carried out in order to asses
if, with the obtained parameters values, it is possible to predict the torque
when a different trajectory is executed.

6.2.7 Experimental validation

A trajectory simulating a four-bar mechanism was programmed with a
1.2 ms control period. In Fig. 6.18 the commanded and executed signal
are presented for both actuators. It can be seen that, the experimental
signal presents a good tracking with respect the commanded signals, and
no significant distortions or time offsets are present.
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Figure 6.18. Commanded validation trajectory for both actuators.
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Also, the acceleration signal was calculated from the experimental veloc-
ity signal with a numerical derivation. Afterwards, the acceleration signals
and torque were filtered with a low pass filter as carried out previously. Fi-
nally, the position, velocity and acceleration were used to construct matrix
K and the identified parameters were used as in Eq. 6.44 to calculate the
torque in the motors. In Fig. 6.19, both, the experimental and simulated
torques at the output of the gearbox are shown for both actuators.
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Figure 6.19. Experimental and simulated torque for the actuators for the vali-
dation trajectory.

It is observed that the torque calculated using the parameters obtained
with the optimization, Sim. Opt. Params., is very similar to the one reg-
istered in the experimental signal, although differences are still present. A
maximum error of approximately 7 Nm was observed for the first actuator
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compared to a measured torque of 4.9 Nm, whereas an error of 8.75 Nm is
appreciated for the second compared to a measured torque of 12.8 Nm. As
for the simulation with the base parameters, Sim. Base Params., it is ob-
served that less errors are obtained. For the first actuator, a maximum error
of 4.2 Nm compared to a measured torque of 4.9 Nm was obtained, while
a maximum error of 6.7 Nm compared to a measured torque of 12.8 Nm is
observed for the second actuator.

6.3 Conclusions

In this chapter, a 2-PRR and a 5R haptic mechanisms were used as case
studies of the identification of rigid body and friction parameters. The
rigid body model of both mechanisms was obtained using the principle of
energy equivalence as described in section 5.2.1. On the other hand, the
total friction of the mechanisms was considered at the actuators, for which
a simple friction model with Coulomb and viscous effects was used.

The resulting rigid body and friction models were assembled together
to obtain a model linear in the unknown dynamic parameters. In that way,
a linear system can be built that can be used for the identification of the
unknown dynamic parameters, such as masses, inertias, and the friction
model parameters.

Moreover, it was mentioned that, as the proper identification of the
parameters depends on the trajectory used, then a trajectory optimiza-
tion was performed in order to minimize the condition number of matrix
Wbase. To that end, the joint-space trajectory was parameterized as Fourier
series, for which the optimum amplitudes and initial positions of the actu-
ators should be found. Two optimization methods were employed in this
regard and their results were further compared, the fmincon local opti-
mization, and the patternsearch global optimization from Matlab. In the
case of the 2PRR mechanism, with the fmincon function resulted a condi-
tion number of 28.23, while a condition number of 20.78 was obtained with
the patternsearch function. The difference obtained between both meth-
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ods was not significant. However, the patternsearch method was used as
it resulted in a lower condition number. As for the 5R haptic mechanism,
the fmincon failed at finding a suitable trajectory for identification within
the joint-space limits of the mechanism. It is believed that the constrained
joint-space of the mechanism results in a difficulty for the optimization al-
gorithm to find a minimum value in the direction of search. In contrast,
with the patternsearch algorithm, an identification trajectory was found
within the joint-space limits of the mechanism with a condition number of
62.2.

Then, the trajectories were executed on the mechanisms and the iden-
tification procedure was used to obtain the base parameters, 8 parameters
for the 2PRR mechanism, and 9 in the case of the 5R haptic mechanism.
Also, in sections 6.1.6 and 6.2.6 a procedure was carried out to find the
values of the unknown parameters based on the trusted parameters of the
system.

In the case of the 2-PRR, it was found that the most significant errors
were obtained for the masses and inertias of the bars with approximately
220 % difference, while the equivalent masses of the actuators were found
with a difference of 20 % with respect to their theoretical value.

As for the haptic mechanism case, the differences between the mean and
the theoretical values for some of the parameters were found even larger
than in the case of the 2-PRR mechanism. As for example, the mass m4

has a deviation of approximately 1500 %. Additionally, large standard de-
viations were obtained for some parameters of the haptic mechanism. This
indicates that the parameters values vary significantly with every feasible
combination.

Hence, it could be assumed that a more accurate value may be found
within the minimum and maximum values obtained with the combinations,
for which an optimization procedure was used to minimize the mean squared
error between the simulated and experimental torques. After it was used,
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the optimization resulted in more precise estimations of the parameters
values with respect to their theoretical values.

Nevertheless, important differences were still appreciated in the identi-
fied parameters for both mechanisms. A source of errors is assumed to be
from the condition number of matrix Wbase for which the base parameters
are calculated. However, an optimization was already used to minimize this
condition number as it was mentioned before. Then, it is possible that the
coupling of the kinematic chains and the available joint-space is limiting the
excitation of the unknown dynamic parameters, thus making more difficult
the identification of the parameters. Therefore, identification procedures
and techniques for lower mobility mechanisms should be further investi-
gated but are beyond the scope of this work. Another possibility is that
the values obtained correspond to a local minimum due to the optimization
algorithm used. Hence, it is also possible to improve the parameters values
results if global optimization algorithms are used instead, but this was not
addressed in this work.

After the identification of the parameters, a validation step was done in
both case studies to evaluate how the dynamic models with the identified
parameters deviate from the dynamics of the actual systems. In this regard,
a different trajectory was executed, and the resulting torques from the
simulation and the experiments were compared. It was found that for the
2-PRR mechanism, a maximum difference of 40 N can be appreciated. On
the other hand, for the haptic mechanism a maximum error of 9 N m was
observed. A cause for these differences are due to errors in the identified
parameters, which has been already discussed. Another source of errors
may be due to unmodeled dynamics or simplifications in the models as
in the case of the haptic mechanisms, where the third actuator was not
considered. However, despite the differences observed, the models can be
used as a first approximation for simulation of the dynamic behavior of the
mechanisms.
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Chapter 7

Contributions, Conclusions
and Future Research

Troughtout this thesis, a method for the mechatronic analysis of paral-
lel kinematic mechanisms has been developed. First, in chapter 2, a

review of the state of the art was conducted over several topics regarding
mechatronics, motion control, parallel kinematics machines, dynamic and
mechatronic modeling, friction and their parameters identification.

In chapter 3, it is proposed a method to develop a mechatronic model
to be used for the mechatronic analysis of parallel kinematic mechanisms,
such as pick & place mechanisms or Multi-Axial Shaking Tables (MAST).
Furthermore, in chapter 4 the proposed method was applied to two case
studies, a 5R planar parallel manipulator and a 2PRU-1PRS spatial MAST
mechanism.

The experimental identification of dynamic parameters of planar mech-
anisms was addressed in chapter 5. In this regard, two additional case
studies were used in chapter 6 for the experimental validation of the iden-
tification procedure, a 2-PRR and the RePlaLink mechanism.
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7.1 Contributions and conclusions

In view of the state of the art and after applying the proposed methodolo-
gies for the mechatronic analysis of parallel kinematics manipulators, the
contributions and conclusions of this thesis are summarized as follows:

� It is proposed a methodology to obtain a mechatronic model of paral-
lel kinematic mechanisms considering the actuators, the control and
the manipulator. A remarkable contribution of the approach taken
is that the manipulator is decoupled from the actuation system and
modeled as a disturbance to the actuators. In this way, alternative
designs of the mechanism, actuator and control, can be easily evalu-
ated.

� With the mechatronic models obtained using the proposed method-
ology, the performance of parallel kinematics mechanism can be as-
sessed in the time and frequency domains, evaluating the motor torque,
position and velocity, as well as the bandwidth of the manipulator.

� The bandwidth of the manipulator can be used to determine if its
design is appropriate for a specific application, such as Multi-Axial
Shaking Tables. This characteristic can be easily found for an actu-
ator since nonlinearities are not present, as its dynamic parameters
remain constant. However, nonlinearities exist in parallel kinematics
manipulators due to their kinematics and workspace position depen-
dent inertial, centrifugal, Coriolis and gravitational terms. Therefore,
in this work an estimation of the bandwidth of parallel manipulators
is made by limiting the amplitudes of the commanded signals, thus
reducing the effects of the nonlinearities of the kinematics and dy-
namics. Furthermore, to obtain the bandwidth of the parallel ma-
nipulator, sinusoidal motions in the workspace were commanded, and
the time delay and amplitude of the response of the actuators were
measured and compared with the commands.
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� The resulting mechatronic model using the approach of this work,
can also be used to evaluate the effect of a parallel mechanism on
the actuation system, thus allowing to obtain important information
for the proper selection of the actuators and its components, such as
motor, gearbox and linear guides.

� A modeling procedure of electromechanical actuators was described,
for which the electrical dynamics were considered and lumped param-
eters models of 1, 2 or higher degrees of freedom were used for the
mechanical dynamics. In that way, inertias, flexibilities, stiffness and
damping can be also taken into account.

� It was shown how the most common control alternatives of joint-
space, workspace and computed torque control can be integrated
into the mechatronic model, thus allowing to evaluate several control
strategies that can assist in determining the most suitable control for
a specific application.

� It was described how to apply the principle of energy equivalence to
obtain expressions of the dynamics of parallel mechanisms. Compo-
nents with planar motion and the translation of the end-effector of
a mechanism, are analyzed using Lagrange’s equations in standard
form. On the other hand, the spatial rotation dynamics of com-
ponents are analyzed using quasi-coordinates and Boltzmann-Hamel
equations, for which a particularization was given. With this ap-
proach, the expression of the dynamics are obtained in a systematic
manner, which is less error prone rather than trying to obtain the
dynamic model for a specific mechanism.

� It was found that by separating the motion of the center of mass
from the spatial rotation motion of a component, its dynamics can
be analyzed more effectively. On one hand, complex trigonometric
expressions appear when Lagrange’s equations are applied to analyze
the spatial rotation motion. On the other hand, if Boltzmann-Hamel
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equations are applied to analyze the motion of the center of mass,
also unnecessary complex expressions appear.

� Two case studies were used to validate the proposed mechatronic
modeling procedure, a 5R planar parallel mechanism and a 2PRU-
1PRS MAST mechanism, for which a comparison between the simula-
tion of their mechatronic models and experimental signals was carried
out. It was shown for both cases that the mechatronic models were
capable of simulating the performance of the actual mechanisms. Ad-
ditionally, three main sources of deviations were identified, the con-
trollers, modeling errors and difference in the dynamic parameters
values with respect to the actual ones.

� An identification procedure of the dynamic parameters of planar par-
allel mechanisms was proposed to adjust the parameters used in the
mechatronic models. To that end and as a contribution, the principle
of energy equivalence was again applied to obtain a dynamic model
for identification of planar mechanisms, considering the rigid body
and Coulomb + viscous friction model parameters. To the best of
the author knowledge, the approach taken has not been addressed
before. Additionally, the procedure to obtain the dynamic model for
identification was described, and also the procedure to obtain the
base parameters of a rank deficient linear system dynamic model was
given. Furthermore, a method to identify the dynamic parameters
separately was described. This method uses the a priori known val-
ues of some dynamic parameters to solve for the unknown ones in the
base parameters. Finally, the identification procedure was applied on
two additional case studies.

� To obtain the identification trajectory for the mechanisms, two opti-
mizations methods were applied, the local optimization method fmin-
con and the global optimization method patternsearch. The resulting
condition number of matrix Wbase was used as a criterion to compare
these two methods. No major differences resulted when the fmincon
and the patternsearch were applied for the 2-PRR mechanism. How-
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ever, it was found that the local optimization function fmincon failed
at finding an optimal trajectory within the joint-space limits. In con-
trast, an identification trajectory was found with the patternsearch
method. It is believed that joint-space limits may be limiting the
excitation of the dynamic parameters, and that the fmincon function
is falling into a local minimum.

� The values of the dynamic parameters of the 2-PRR and the Re-
PlaLink mechanisms were estimated. Moreover, the adjusted dy-
namic model were simulated and compared to the experimental sig-
nals obtained using a validation trajectory. On the one hand, the
dynamic model of the 2-PRR mechanism with the mean value of the
dynamic parameters performed similar to the experimental signals.
On the other hand, it was shown for the RePlaLink that the mean
value of some parameters deviated considerably and could not be use
in the dynamic model of the mechanism. As a solution, an optimiza-
tion was applied to find better estimates of the dynamic parameters
than the mean values. As a result, it was shown for the RePlaLink
that the model with the parameters obtained using the optimization
performed similarly to the experimental signals.

7.2 Future research

Based on the results obtained and the work in this thesis, several areas for
improvement and future research are herein commented:

� In this thesis, simple single-axis controllers have been considered as
the control for the prototypes here studied. It is believed that the
overall system performance should be improved by using more ad-
vanced control alternatives, specially model-based controls like the
computed torque control or adaptive controllers. Furthermore, it can
be noted that the dynamics obtained using the principle of energy
equivalence can result in good candidates to be implemented for dy-
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namic compensation in control. These subjects should be investigated
in future research.

� The mechatronic model here obtained can be used to evaluate alter-
native configurations of actuators components. It would result conve-
nient to introduce the mechatronic model in an automatic procedure
to choose the optimal configuration of the actuators for a given par-
allel kinematic mechanisms with specific performance characteristics
in terms of bandwidth and precision.

� A simple friction model has been here considered. However, more
complex models, such as the Generalized Maxwell-Slip friction model,
can be used to further evaluate if friction can be modeled in detail
with improvements in the performance of mechatronic models.

� In this thesis, a modal test has been used to obtain the parameters
of two degrees of freedom model of the actuators. However, it should
be investigated how to identify such parameters using the actuators
motions and signals.
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Appendix A

Real-Time Position
Controller Development

A custom position controller software has been developed in the frame-
work of this thesis. This development has been carried out to provide

a flexible and scalable controller required for the experimentation on this
thesis which also can be used for future developments and testing. This
controller is based on existing hardware platforms for scientific and engi-
neering applications by National Instrumentsr with real-time capabilities.

A.1 Controller purpose and requirements

In this thesis, the controller named “Lynx” was designed and programmed
to offer the following functions.

� A user-friendly interface to process user inputs.

� Loading of a programmed trajectory by the user.
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� Defining homing settings.

� Controlled execution of a homing trajectory .

� Controlled execution of a programmed trajectory.

� Data acquisition of relevant information of the motors for later anal-
ysis.

A.2 Controller design

A client-server architecture was chosen to provide a clear separation be-
tween priority software processes, which must execute in a deterministic
manner, as a difference to those processes not requiring such constraints.
Fig. A.1 represents the architecture of the controller system.

As it can be appreciated, the controller has two layers. On one hand,
the “high level controller” is in charge of the user-interface in the PC,
processing the user inputs accordingly and presenting the visualization of
important information. Then, the PC communicates with the PXI which is
in charge of the deterministic tasks of the system such as position control
and data acquisition of the actual position, velocity and current from the
motors. The communication between these two is done through TCP/IP
protocol.

On the other hand, the “low-level controller” represented by the EPOS,
is in charge of directly controlling the motors by regulating their velocities
to the velocity commands sent by the PXI through the CANopen protocol.
Also the EPOS are in charge of regulating the current supplied to the
motors at a fixed DC voltage with the current control loop.

The client-server architecture consists of two software distributed ap-
plications, which communicate to each other using the TCP/IP mentioned
previously. The client requests specific services or functions to the server,
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Figure A.1. Controller architecture.

such as moving a motor, configuring the controller parameters or perform-
ing a homing task. On the other hand, the server processes the client’s
requests and performs its functions accordingly, while communicating to
the client important information, such as the state of the motors. More-
over, the implementation of either the client as well as the server software,
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is done in this work following a state machine model [102].

A.2.1 State machine architecture

A software application can be represented by a machine metaphor. In this
way, it can be thought that a particular situation and conditions define a
machine state. Moreover, a machine can have a set of finite states which
describe different situations and conditions. It is said to be finite because
the range of states in which the machine can be in is limited and clearly
differentiated. As an example, let us consider the simple electrical circuit
in Fig. A.2 whose purpose is to light a bulb. The whole circuit is regarded
as the machine and it can be seen that two states are possible, on and
off. The transition between the two states is triggered by the input to the
switch.

Figure A.2. Light bulb circuit representation of a two state machine.

In the control application, several state machines have been employed
to program specific functionalities, such as initialization, operation and
shutdown. In Fig. A.3 a Labview code snippet with a typical state machine
programming is shown.
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Figure A.3. State machine arquitectur code in Labview.

Additionally, a specific state in the main program may have internal
states which are used to activate the control, homing, configuration and jog
tasks or subprograms. These tasks handle more specific functionalities in
the application, such as moving the motors to obtain a reference position
with the homing task, or follow a programmed trajectory with the control
task. As a result, the application is programmed in a modular way which
can be easily extended.

Furthermore, each task follows a master-slave approach. In this regard,
a master loops are used to handle non-important operations specific to the
tasks, like handling requests for tasks, and supplied information to the pro-
cessor loop. Slave loops are used to process the information supplied by
the master in a previously defined manner. In Fig. A.4 a master-slave code
snippet is shown, where the master loop contains an event handler to man-
age requests for the task, a communication object to pass commands to the
slave loop, which performs the actual function of the task, such as moving
a motor. In this work, the master loop of a task is used to communicate the
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Figure A.4. Master-slave arquitecture in Labview.

activation or deactivation of the task to the main program, and the slave
loops is where the task functions are programmed and processed.

A.3 User-interface controller client

The user must have a way to interact with the software to control the
actions of the system. A common approach is to have a command line
interface. Such interfaces usually expose many functionalities to the user.
However, often times they are limited to advanced users as the command
line interface lack of visualization features, which is difficult for regular
users to interact with. In this thesis, the visual interface in Fig. A.5 was
designed to provide a straight-forward user experience. It is divided into
two main panels, the input and status panels.
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Figure A.5. Screenshot of the controller user interface.

A.3.1 The inputs panel

The inputs panel in Fig. A.6 is where user commands related to the con-
figuring and execution of a given task is carried out. It is divided into the
tasks panel, where the configuration, homing, control and jog tasks are se-
lected depending of the required function, and the commands panels where
the specific commands of a given tasks are chosen, such as start or stop the
homing, and load and execute a trajectory.

Only one task is allowed to operate at a time. Hence the commands of a
given task are processed if only the respective task is in an operational state,
indicated by a light green led above the task button. The motivation behind
this design is to avoid inappropriate commands for a specific situation to
be sent to the PXI, which may result in unexpected behavior and possible
dangerous motions.
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Figure A.6. Screenshot of the inputs panel.

A.3.2 The status panel

The status panel shown in Fig. A.7 is where the information concerning the
state and data of the system is visualized. It is divided into three subpanels.

The indicators panel present critical information of the system in a
boolean state. The data management is where the data acquired can be
visualized. Lastly, the mechanism visualization panel is where a represen-
tation of the mechanism is shown. A brief description for each indicator
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meaning and control function in this panel is given:

Figure A.7. Screenshot of the status panel.

� Loading trajectory: This led turns light green if a file with a pro-
grammed trajectory is being loaded into the controller. This is only
possible when the control task is active.

� Ready: This led turns light green after the trajectory has been
loaded completely.
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� Sending trajectory: After a trajectory has been loaded, it must
be downloaded into the PXI where the actual position control takes
place. By pressing the “Send Trajectory” in the tasks command panel,
the trajectory downloading process starts and this indicator turns on.
When the client-PC pushes the last point of the trajectory in the
TCP/IP data stream, hence, successful trajectory downloading, this
indicators switches back off.

� Target reading: The trajectory data sending involves two separate
asynchronous processes in the software. The first process takes place
in the PC and its state is described by the “Sending Trajectory”
led. The second process takes place in the PXI and it is in charge of
receiving the trajectory points. Hence, this LED turns on to indicate
that the target is receiving a trajectory. Upon successfully receiving
all points, this LED switches back off.

� Receiving data: This LED indicates that motor information, such
as position, velocity and current, is being received by the PC.

� Executing: This LED indicates that a trajectory is being executed
by the position control and that the motors have power. The data
management section is where additional functionalities are added to
the software in the form of plug-ins. Such plug-ins are used for per-
forming data operations such as generating, visualizing and/or ex-
porting. The “Vib. Generator” is used for generating a trajectory
for vibrations tests. The “Show Plots” is used to plot the position,
velocity and current data received from the motors. Also, the “Ex-
port data” is used to export the received data from the motors to a
text file for later analysis and/or processing. Lastly, the Mechanism
Visualization is where the mechanism is plotted simultaneously as the
actual prototype is moving.
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A.3.3 States of the user interface application

The functioning of the user interface follows a three step process execution
as shown in Fig. A.8a. In this way, upon receiving a start signal (running
the application), the initialization steps is executed, then the execution
enters into operation state where the main functionalities are handled, and
finally the shutdown state is where a controlled exit is performed, in such
a way as to set variables to a default value, turn off the EPOS and clean
memory.
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Figure A.8. (a) Operating states of the main program for the embedded con-
troller and client application, and (b) state machine model of the user interface
and the embedded controller.
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The application can be modeled by the state machine shown in Fig. A.8b.
There can be seen the following states: initialization, operation, configura-
tion, homing, jog, control and stop. It is worth mentioning that the con-
figuration, homing, jog and control states correspond to tasks with specific
functions within the operation state.

A.3.3.1 Initialization

In the initialization state the global variables of the applications are set to
their default value, such as the IP address, status panel indicators variables
and the stop global variable. Additionally, communication objects, such as
queues, and first-in-first-out memory buffers, FIFO’s.

A.3.3.2 Operation

The operation state is used to receive and process any interface events such
as indicators and buttons pressed. Depending on the user input, specific
tasks, control, can be activated and task-specific commands associated to
each button in the user interface are sent to their respective handlers.

A.3.4 User interface tasks

Four tasks are used to handle the main functions of the system. These
functions are Configuration, Homing, Control and Jog. Furthermore, the
transmit TxComm and receive RxComm communication tasks are used to
handle the client-server communications. On one hand, TxComm is used
to transmit data to the server, and RxComm, is used to receive the data
from the server and route it accordingly.

A.4 Controller server

The PXI runs the hard real-time operating system VXworks provided by
National Instruments [103]. It’s purpose is to provide a deterministic op-
erating system that guarantees that critical tasks, such as the control task
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of the motors, are executed when required and within time tolerances in
the microseconds range. Otherwise, accurate motions would not be guar-
anteed or acquisition data may be lost. Deterministic process execution im-
plies that other unnecessary system processes are avoided, which otherwise
would consume CPU time or memory. For this reason, to avoid the man-
agement of a graphical interface, which would consume system resources,
the server application does not have an user interface. This functionality
in handled by the client-PC.

A.4.1 The main program

The main program is where the functions and execution steps of the server
are programmed. It is coded in a modular way for specific functionalities
similarly to the user interface. Each task correspond to one task or func-
tionality of the controller, such as the control task. In this way, specific
functions of the controller are separated and are only executed when they
are called by the main program upon receiving a command request from
the client-PC, otherwise the task remain in an idle state.

Moreover, the main program is in charge of general purpose tasks such
as initializations, pre-configuring, commands processing, safety operations
and shutdown. In this regard, the main program is designed with the three
states of execution as the user interface and shown in Fig. A.8a. Also, the
server application follows the same state model diagram in Fig. A.8b. The
difference between the user interface and the control server is the specific
functions of the components.

A.4.1.1 Initialization

The initialization is where the pre-configuring of the server program is done
and is executed once the PXI is turned on or the server program is loaded
onto the PXI. In this step, the following actions are carried out:

1. Global variables and functional global variables are created and ini-
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tialized to a pre-defined value.

2. Communication with the client-PC is established using the TCP/IP
network interface.

3. Creation of the FIFO’s used for the state manager and for the tra-
jectory.

4. Creation of the events for the Task Manager, the Acknowledge Opened
Event and Acknowledge Closed Event, which signal when a task has
been activated or deactivated respectively.

5. Error check during the initialization step.

6. Close the initialization step and switch to the operation state if no
errors have occurred, otherwise shutdown the server program.

7. Initialization of the CANopen interface and CANopen SDO’s and
PDO’s objects, which are used to send data packets to the EPOS.

8. Configuration of critical digital inputs for the low level controllers
such as Quick Stop and Negative and Positive limit switches.

A.4.1.2 Operation

The main program enters into the Operation state after successfully com-
pleting the Initialization state, otherwise it is ignored and the systems skips
to Terminate state.

In Operation state is where the commands sent from the client-PC are
processed and handled accordingly to activate or switch tasks. Also, any
task-specific command is here routed to its respective task. The inner
workings of the Operation state also follows the State Machine model.
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A.4.1.3 Terminate

When the control software is turned off or a critical error occurs, the server
program enters into Terminate state to perform a clean stop of all the
processes or tasks in execution. In this way, tasks are safely stopped and
any process is appropriately closed. Also, any memory used by these tasks
and processes is freed. The following steps are taken in this state.

1. Set global variables to default values.

2. Clear any remaining data in the FIFO’s and close their references.

3. Close the reference to the software Events.

4. Close the Client-server communication objects.

5. Shutdown the CANopen slaves and close any reference to CANopen
communication objects.

A.5 Communication protocols and objects

A communication protocol has been developed to pass information between
different parts of the software. The types of communications used in Lynx
are the following.

1. Communication type 0 (CommType0): Used to send open or close
commands to the tasks in the server, to whether activate or deactivate
a task. If a specific tasks receives the command open, it is activated
and the others are locked until the current one is deactivated once a
close command is received. Additionally, a special command to signal
the shutdown of the server is sent this way.

2. Communication type 1 (CommType1): reserved for future function-
alities.
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3. Communication type 2 (CommType2): This communication type is
used to exchange trajectory data from the PC to the server or mea-
surement data from the server to the PC.

4. Communication type 3 (CommType3): reserved for future function-
alities.

5. Communication type 4 (CommType4): used to send task-specific
commands to the server. In this way, the motion execution is trig-
gered as in the control, jog and homing tasks.

In Fig. A.9 the communications in the control are depicted. The com-
munication between the PC and the server are handled by the TxComm
and RxComm tasks in both applications. The TxComm is in charge of
transmitting the data to the RxComm object in the other end through
an ethernet TCP/IP connection. Furthermore, the RxComm object is in
charge of routing the communication commands and data to the appropri-
ate handler, such as the tasks or the state manager.

Contin
uous operation

Continuous operation

Figure A.9. Scheme of the communications between components.



Appendix B

Jacobian Matrices

B.1 Jacobian matrices for the 5R mechanisms

The following equations can be obtained from the kinematic analysis of
point P :

Jx


ẋp

ẏp

 = Jq


α̇1

α̇4

 (B.1)

Where,

Jx =

[
l2cos(α2) l2sin(α2)
l2cos(α3) l2sin(α3)

]
(B.2)

Jq =

[
Jq11 0

0 Jq22

]
(B.3)

Jq11 = l1l2cos(α1)sin(α2)− l1l2sin(α1)cos(α2) (B.4)

Jq22 = l3l4sin(α3)cos(α4)− l3l4cos(α3)sin(α4) (B.5)

229
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Hence, 
ẋp

ẏp

 = J−1
x Jq


α1

α4

 (B.6)

Similarly, the relation between the velocity of point p and the angular
velocity of the passive angles α2, α3 is written as follows:

Jxpas


ẋp

ẏp

 = Jqpas


α̇2

α̇3

 (B.7)

Where,

Jxpas =

[
l1cos(α1) l1sin(α1)
l4cos(α4) l4sin(α4)

]
(B.8)

Jqpas =

[
Jqpas11

0

0 Jqpas22

]
(B.9)

Jqpas11
= l1l2sin(α1)cos(α2)− l1l2cos(α1)sin(α2) (B.10)

Jqpas22
= l3l4cos(α3)sin(α4)− l3l4sin(α3)cos(α4) (B.11)

Hence, 
α̇2

α̇3

 = J−1
qpasJxpas


ẋp

ẏp

 (B.12)

Substituting Eq. B.6 into Eq. B.12, the expression of the angular
velocity of the passive angles with respect to the active angles α1, α4 results
as follows: 

α̇2

α̇3

 = J−1
qpasJxpasJ

−1
x Jq


α̇1

α̇4

 = Jpas


α̇1

α̇4

 (B.13)
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B.1.0.4 Solid 1
ẋ1

ẏ1

α̇1

 = J1


α̇1

α̇4

 =

− l1
2 sin(α1) 0
l1
2 cos(α1) 0

1 0


α̇1

α̇4

 (B.14)

B.1.0.5 Solid 2
ẋ2

ẏ2

α̇2

 = J2


α̇1

α̇4


=

−l1sin(α1)− l2
2 sin(α2)Jpas11 − l2

2 sin(α2)Jpas12

l1cos(α1) + l2
2 cos(α2)Jpass11

l2
2 cos(α2)Jpass12

Jpas11 Jpas12


α̇1

α̇4


(B.15)

B.1.0.6 Solid 3
ẋ3

ẏ3

α̇3

 = J3


α̇1

α̇4


=

− l3
2 sin(α3)Jpas21 −l4sin(α4)− l3

2 sin(α3)Jpas22
l3
2 cos(α3)Jpass21 l4cos(α4) + l3

2 cos(α3)Jpass22

Jpas21 Jpas22


α̇1

α̇4


(B.16)

B.1.0.7 Solid 4
ẋ1

ẏ1

α̇1

 = J1


α̇1

α̇4

 =

0 − l4
2 sin(α4)

0 l4
2 cos(α4)

0 1


α̇1

α̇4

 (B.17)

To obtain the passive angles α3, α4, two circles centered at point A and
B respectively, are used to obtain the two possible solutions of yp, which
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are the intersection points of these two circles. To that end, the equations
of these two circles are written as follows:

(xp − xA)2 + (yp − yA)2 = l22 (B.18)

(xp − xB)2 + (yp − yB)2 = l23 (B.19)

Expanding both equations and subtracting B.18 by B.19, the expression
of xp results as in Eq. B.20.

xp =
l22 − l23 − 2yp(yB − yA)− y2

A + y2
B − x2

A + x2
B

2(xB − xA)
(B.20)

Eq. B.20 can be substituted into Eq. B.18 to find yp, hence obtaining
the the following expression:

φy2
p + βyp + γ = 0 (B.21)

Where,

φ = 1−
(
yA − yB
xB − xA

)2

(B.22)

β =
(yA − yB)

(xB − xA)2
M − 2xA

(yA − yB)

(xB − xA)
− 2yA (B.23)

γ =
M2

4(xB − xA)2
− xA

(xB − xA)
M + y2

A + x2
A − l22 (B.24)

The passive angles are then obtained by using the dot product between←→
AP and the unit vector î in the x direction for α2 as in Eq. B.25, and

between
←→
BP and î for α3 as in Eq. B.26. Also, yp is defined to be the

solution when Eq. B.27 is fulfilled.

α2 = arcos(

−→
AP · î
l2

) (B.25)
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α3 = arcos(

−−→
BP · î
l3

) (B.26)

sign(
−−→
BP ×−→AP )sign(yp) = 1 (B.27)

B.2 Jacobian matrices of the 2PRU-1PRS

From the kinematic analysis of the manipulator [104] the following linear
system results.

Jx


żp
ψ̇

θ̇

 = Jq


ρ̇1

ρ̇2

ρ̇3

 (B.28)

Where,

Jx11 = Lsin(γ1) (B.29)

Jx12 = Lrsin(θ)cos(ψ)cos(γ1) (B.30)

Jx13 = Lrcos(θ)sin(ψ)cos(γ1) + Lrsin(θ − γ1) (B.31)

Jx21 = Lsin(γ2) (B.32)

Jx22 = Lr(sin(ψ)cos(γ2) + cos(θ)cos(ψ)sin(γ2)) (B.33)

Jx23 = Lrsin(θ)sin(ψ)sin(γ1) (B.34)

Jx31 = Lsin(γ3) (B.35)

Jx32 = −Lrsin(θ)cos(ψ)cos(γ3) (B.36)

Jx32 = −Lrcos(θ)sin(ψ)cos(γ3) + Lrsin(θ + γ3) (B.37)

And,

Jq =

Lsin(γ1) 0 0
0 Lsin(γ2) 0
0 0 Lsin(γ3)

 (B.38)

Also, the TCP (point p) of the manipulator can only move in the x and
z directions. Hence, the following relations can be found.
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From bar 1:

ẋp = Lγ̇1sin(γ1) + rθ̇sin(θ) (B.39)

żp = ρ̇1 + Lγ̇1cos(γ1) + rθ̇cos(θ) (B.40)

From bar 2:

− rψ̇sin(ψ) = Lγ̇2sin(γ2) (B.41)

żp = ρ̇2 + Lγ̇2cos(γ2) + rθ̇sin(θ)sin(ψ)− rθ̇cos(θ)cos(ψ) (B.42)

From bar 3:

ẋp = −Lγ̇3sin(γ3)− rθ̇sin(θ) (B.43)

żp = ρ̇3 + Lγ̇3cos(γ3)− rθ̇cos(θ) (B.44)

Moreover, the velocities of the center of mass for each bar can be cal-
culated from the velocities of point p. In the following, the expressions for
the bar 1 will be obtained.

ẋ1 =
1

2

(
ẋp − rθ̇sin(θ)

)
(B.45)

ż1 =
1

2
ρ̇1 +

1

2

(
żp − rθ̇cos(θ)

)
(B.46)

γ̇1 =
1

Lsin(γ1)

(
ẋp − rθ̇sin(θ)

)
(B.47)

(B.48)

Substituting the ẋp and żp by expressions B.39 and B.40 respectively,
the following expression results.
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
ẋ1

ż1

γ̇1

 =

0 −1
2rsin(θ)cos(ψ) −1

2 (rsin(θ) + rcos(θ)sin(ψ))
1
2 0 −1

2rcos(θ)

0 − rsin(θ)cos(ψ)
Lsin(γ1) − rsin(θ)+rcos(θ)sin(ψ)

Lsin(γ1)



żp
ψ̇

θ̇


+


0
ρ̇1

2
0


(B.49)

The above expression can be rewritten as a function of the inputs as
follows.
ẋ1

ż1

γ̇1

 =

0 −1
2rsin(θ)cos(ψ) −1

2 (rsin(θ) + rcos(θ)sin(ψ))
1
2 0 −1

2rcos(θ)

0 − rsin(θ)cos(ψ)
Lsin(γ1) − rsin(θ)+rcos(θ)sin(ψ)

Lsin(γ1)

J−1
x Jq


ρ̇1

ρ̇2

ρ̇3


+


0
ρ̇1

2
0


(B.50)

Finally, the Jacobian matrix for the bar 1 results in:

Jb1 =

0 −1
2rsin(θ)cos(ψ) −1

2 (rsin(θ) + rcos(θ)sin(ψ))
1
2 0 −1

2rcos(θ)

0 − rsin(θ)cos(ψ)
Lsin(γ1) − rsin(θ)+rcos(θ)sin(ψ)

Lsin(γ1)

J−1
x Jq

+

0 0 0
1
2 0 0
0 0 0


(B.51)



236 Jacobian Matrices

With the linear system being:
ẋ1

ż1

γ̇1

 = Jb1


ρ̇1

ρ̇2

ρ̇3

 (B.52)

By following a similar procedure for bars 1 and 2, the linear systems
and their respective Jacobians are obtained.

ẏ2

ż2

γ̇2

 = Jb2


ρ̇1

ρ̇2

ρ̇3

 (B.53)


ẋ3

ż3

γ̇3

 = Jb3


ρ̇1

ρ̇2

ρ̇3

 (B.54)

With,

Jb2 =

0 −1
2rsin(ψ) 0

0 − cos(γ2)
2sin(γ2)rsin(ψ) 0

0 − rsin(ψ)
Lsin(γ2) 0

J−1
x Jq +

0 0 0
0 1 0
0 0 0

 (B.55)

Jb3 =

0 −1
2rsin(θ)cos(ψ) −1

2 (rsin(θ)− rcos(θ)sin(ψ))
1
2 0 1

2rcos(θ)

0 rsin(θ)cos(ψ)
Lsin(γ3) − rsin(θ)+rcos(θ)sin(ψ)

Lsin(γ3)

J−1
x Jq

+

0 0 0
0 0 1

2
0 0 0


(B.56)
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As for the rotation Jacobian of the end effector, the following linear
system relates the angular velocities of point p with the angular velocities
ψ̇ and θ̇.


wx
wy
wz

 =

1 0
0 cos(ψ)
0 −sin(ψ)

{ψ̇
θ̇

}
(B.57)

Moreover, the equation can be expressed as a function of the inputs as
follows. 

wx
wy
wz

 =

1 0
0 cos(ψ)
0 −sin(ψ)

J−1
x Jq|R


ρ̇1

ρ̇2

ρ̇3

 (B.58)

Where J−1
x Jq|R is the submatrix of J−1

x Jq from row 2 and 3, which is the
matrix that relates the rotation motion of point p with the inputs. Hence,
the Jacobian matrix of the end effector results in.

JR =

1 0
0 cos(ψ)
0 −sin(ψ)

J−1
x Jq|R (B.59)

B.3 Jacobian matrices of the 2-PRR

B.3.0.8 Solid 1 
ẋ1

ẏ1

α̇1

 = J1


ρ̇1

ρ̇2

 =

1 0
0 0
0 0


ρ̇1

ρ̇2

 (B.60)

B.3.0.9 Solid M2
ẋ2

ẏ2

α̇2

 = J2


ρ̇1

ρ̇2

 =

0 −1
0 0
0 0


ρ̇1

ρ̇2

 (B.61)
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B.3.0.10 Solid M3
ẋ3

ẏ3

α̇3

 = J3


ρ̇1

ρ̇2

 =

 3/4 −3/4
−A/2 −A/2
B B


ρ̇1

ρ̇2

 (B.62)

Where,

A =
1

2 tan (α)
(B.63)

B =
1

2 sin (α) L
(B.64)

B.3.0.11 Solid 4

The body 4 moves exactly as body 3, thus, its kinematic is the same as
body 3. 

ẋ4

ẏ4

α̇4

 = J4


ρ̇1

ρ̇2

 =

 3/4 −3/4
−A/2 −A/2
B B


ρ̇1

ρ̇2

 (B.65)

B.3.0.12 Solid 5
ẋ5

ẏ5

α̇5

 = J5


ρ̇1

ρ̇2

 =

 1/4 −3/4
−A/2 −A/2
−B −B


ρ̇1

ρ̇2

 (B.66)

B.3.0.13 Solid M6
ẋ6

ẏ6

α̇6

 = J6


ρ̇1

ρ̇2

 =

1/2 −1/2
−A −A
0 0


ρ̇1

ρ̇2

 (B.67)
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In this work a mechatronic model was developed for a parallel Multi-Axial Simulation Table (MAST) 

mechanism. The dynamics of the mechanism was obtained using the principle of energy equivalence 

and Boltzmann–Hamel equations. In this way, the procedure to obtain the explicit dynamic equations is 

simplified and has the advantage of being systematic. Also, the actuators and the control were modeled 

and integrated to simulate and study the system’s positioning and torque. 

A remarkable contribution of this work is that the mechatronic model developed considers the mech- 

anism as a disturbance to the actuators in a decoupled manner, allowing to easily evaluate alternative 

designs of whether the actuators, the mechanism or both. Additionally, the procedure taken has been 

validated with experimental data from an actual MAST prototype. 
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1. Introduction 

In the last twenty years, parallel kinematics machines have 

been increasingly used in several fields due to their high per- 

formance. For instance, hexapods and tripods are being used for 

scientific instrumentation due to their high precision positioning 

in several degrees of freedom [1] . Some solutions present a high 

stiffness-mass ratio and acceleration which makes them suitable 

for light machining tasks [2] in an industrial environment. Also, 

their capability of generating high accelerations makes them inter- 

esting for pick & place [3] or for generating harmonically complex 

motions with great bandwidth, as is the case of excitation tables 

[4] . 

Nevertheless, despite their increasing use, they are still complex 

machines to design, due to their kinematics, dynamics and con- 

trol. That is why a mechatronic approach with model based design 

becomes essential for the conception of these machines. For that 

purpose, complex and detailed simulation tools capable of model- 

ing the manipulator, drives and control dynamics in a cost efficient 

manner are required. 

In that sense, a lot of effort has been putted into model- 

ing the kinematics and dynamics for serial and parallel manip- 

ulators. Žlajpah [5] presents an overview of several computa- 
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tional tools (e.g. Matlab/Simulink, Dymola/Modelica) commonly 

used for simulations purposes focused on robotic systems. As for 

the dynamics, Lagrange and recursive Newton–Euler methods and 

the principle of virtual work are commonly employed to obtain 

the dynamic expressions for serial robotic mechanisms [6] . How- 

ever, their applicability on parallel manipulators becomes a dif- 

ficult task because of the kinematic constraints of the closed 

loops. 

Previous works make use of multi-body models of the mech- 

anism [7] or the forward dynamic problem in order to build a 

mechatronic model. In the first case, it can be justified when high 

loads are applied to the manipulator, because multibody models 

are capable of considering the flexible behavior of the machine 

components. Nevertheless, in that case, expensive software pack- 

ages may be a limiting factor. On the other hand, with both ap- 

proaches the contribution of the actuators to the global dynamics 

is often overlooked, modeling them as a simple inertia and thus 

assuming a rigid body behavior. 

What is more, those formulations can’t be used to introduce 

them in the control algorithm to perform a Compute torque con- 

trol or a Feed-forward torque control. For that task, the inverse 

dynamic problem (IDP) has been traditionally used, as it provides 

the needed torques or forces in the actuators to perform the com- 

manded motion. There are several works where the authors have 

used this approach to implement control schemes such as model- 

based control [8,9] . Codourey [10] , developed a model-based con- 

trol using the IDP to implement a feedforward control for a Delta 

robot. Similarly, Yang et al. [11] developed a computed force and 

http://dx.doi.org/10.1016/j.mechatronics.2016.10.017 
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velocity control for a 6-DOF parallel mechanism also using the in- 

verse dynamics. 

Regarding the method to solve the IDP of parallel mecha- 

nisms, several formulations have been proposed in the past, as 

the Newton–Euler [12,13] , the principle of virtual work [14] or La- 

grangian methods [15] . Likewise, Lagrangian analysis is frequently 

employed for open-chains mechanisms. It’s use in parallel mech- 

anism yields in very large and often complex set of equations 

because of the kinematic constraints due to the closed loops of 

such systems. Also, an interesting approach with Newton–Euler has 

been taken in [13] , where intermediate variables from the joint- 

space and matrix algebraic manipulation tools are used to ob- 

tain explicit dynamic models for a Gough–Stewart platform . In 

general, their applicability on parallel mechanisms is difficult due 

to the kinematic constraints caused by the closed loops [16] . As 

an alternative, with other methods of analytical mechanics (i.e. 

Boltzmann–Hamel equations, quasi-velocities and principle of en- 

ergy equivalence [17] ), the difficulty in finding a dynamic model 

suitable for computer simulations is greatly reduced. 

Moreover, the common approach is to focus on the manipula- 

tor and then include the actuators. However, in several applica- 

tions, especially when the payload and the manipulator are rela- 

tively light, the control cycle time or even the actuators dynamics 

can be more restrictive due to their finite stiffness, which limits 

the bandwidth and thus the dynamic performance of the machine 

in terms of speed, acceleration and trajectory tracking [18–20] . 

In the present work, a procedure for the mechatronic model- 

ing of parallel kinematics machines is proposed, taking into ac- 

count the rigid body dynamics of the manipulator, the compliant 

dynamics of the actuators and the cycle time of the control loops. 

The method is based on decoupling the dynamics of the actuators 

from the manipulator, in such a way that forces needed to move 

the manipulator are considered as a disturbance from the point 

of view of the actuators. This scope allows modeling the manip- 

ulator dynamics using the inverse dynamic problem, relating the 

motion of the actuators with the forces that generate the motion 

of the manipulator. To do so, although any method can be used, 

here it is proposed to use the Principle of energy equivalence and 

the Boltzmann–Hamel equations to compute the IDP. The actua- 

tors modeling and their transmission chain can be performed with 

great detail using a model of several degrees of freedom affected 

by the disturbance forces from the mechanism and the friction. 

Finally, the cycle time of the position, velocity and current con- 

trol loops is taken into account. The whole model has been pro- 

grammed in Matlab Simulink. 

There are several advantages for this procedure. First, it is easy 

to evaluate alternative designs. Given the fact that models of con- 

trol, actuators and manipulator are decoupled and represented by 

blocks, it is possible to replace them with new blocks represent- 

ing alternative configurations. This reduces the time and effort re- 

quired in the design and simulation stage for a given application 

yet being reliable. Second, it is possible to better evaluate the in- 

teraction between control, actuators and mechanism. For example, 

the bandwidth of the actuators alone vs. the bandwidth of the 

whole manipulator can be analyzed. Also, it is possible to isolate 

and evaluate the influence of the dynamic parameters of the ma- 

nipulator or the actuator transmission chain on the tracking er- 

ror. Simulation of the cycle time and its effect on the trajectory 

tracking and the driving forces allows also a better definition of 

the control specifications of the final prototype. Third, the use of 

the inverse dynamic problem results in an explicit set of equations 

that allows a fast computation comparing with multibody tech- 

niques and can be used also to improve the control algorithm if 

needed. Fourth, the use of the Principle of energy equivalence and 

the Boltzmann–Hamel equations allows for a more systematic and 

error free computation of the IDP for parallel mechanisms. 

This article is organized as follows. First, in Section 2 , the pro- 

posed procedure for mechatronic modeling of parallel kinematic 

machines will be detailed. Second, in Section 3 , a case study based 

on a 3PRS mechanism will be given where the aforementioned 

procedures are employed. Third, the results of an experimental val- 

idation will be commented in Section 4 . Finally, the main conclu- 

sions are presented. 

2. Mechatronic modeling for parallel kinematic mechanisms 

The method here proposed for the mechatronic modeling of 

parallel manipulators considers the actuators and the manipula- 

tor as two independent subsystems whose interaction is due to 

the Newton’s third law. That is, from the actuators viewpoint, 

the mechanism generates some forces that work as a disturbance 

against their motion but, at the same time, those forces are the 

input that provides the manipulator’s motion. That interaction is 

represented by F i forces in Fig. 1 in a generic parallel manipulator. 

The result is that the actuators, which often times limit the over- 

all system’s performance, can be modeled in a more detailed fash- 

ion. On the other hand, to include the influence of the mechanism 

in the mechatronic model, the inverse dynamic problem (IDP) is 

solved, with the advantage that those equations can also be used 

in the control algorithm. Also, the control algorithm as in Fig. 2 

and the cycle time of the closed loops has been considered due to 

their impact on the trajectory tracking, bandwidth and disturbance 

rejection. To the best of the authors knowledge, this approach that 

considers the mechanism as a disturbance for the actuators allows 

a deeper analysis of the interaction between control, actuators and 

mechanism and has not been addressed before. 

2.1. Mechatronic model of the manipulator 

In Fig. 1 a mechatronic model of a manipulator is shown. It is 

assumed a joint space position control, where the control reacts 

to the position error measured in the actuated joints ρ. This de- 

cision was taken since it is widely found in general industrial ap- 

plications. However, more complex control algorithm can also be 

employed as will be shown in Section 2.3 . In this way, the end 

platform position commands x 0 are converted to the joint space 

through the inverse kinematic problem. Those q ρ0 
commands are 

then introduced into the mechatronic model of the actuators. As a 

result, the actuators reach a position q ρ and the end platform loca- 

tion x is calculated with the direct kinematic problem. A rigid body 

behavior is here considered for the mechanism. To model the influ- 

ence of the mechanism dynamics on the global behavior, the forces 

t p generated to perform the motion are calculated with the IDP 

once actuators and platform motion are known. Those forces are 

then introduced as a disturbance into the actuators mechatronic 

model, in which a cascaded control in position, velocity and cur- 

rent is assumed. There, the mechanism forces are converted into a 

torque disturbance on the motor, thus acting as an opposition to 

the actuator. 

2.2. Mechatronic model of the actuators 

Regarding the actuator control model, a proportional position 

control with gain k v is considered. If two encoders are used, a ro- 

tary one for the motor and a linear one for the actuator table, it is 

possible to control directly the linear position ρ. The velocity and 

current control loops in Fig. 2 are based on a PI control, where k p , 

k i , k pc and k ic are the proportional and integral gains, respectively 

for each loop. Furthermore, their cycle times can be taken into ac- 

count, sampling the signals and using the z-domain for the transfer 

functions of the system. Also, the response of the electrical part is 

modeled by taking into account the resistance R and inductance L 
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Fig. 1. Mechatronic model of a parallel kinematics machine with joint sace position control: manipulator position in workspace ( x ), manipulator position in joint space ( ρ), 

actuators position at the motor encoders ( θi ), reactions between the manipulator and actuators ( τ), motor torques ( τmi ). 

Fig. 2. ith actuator mechatronic model. 

of the circuit in TF electric , as well as the torque constant k T and the 

counter electromotive constant k E . 

With respect to the mechanical behavior of the actuators, the 

two degrees of freedom model as shown in Fig. 2 has been used, 

where the motor torque τm 

and the disturbance force F are the 

inputs. The latter is converted to a torque disturbance applied to 

the motor by means of Eq. (1) , where p is the pitch of the linear 

guide and i r is the gear ratio of the gearbox. Likewise, the outputs 

are the linear position of the guide ρ , whose angular equivalent is 

θρ , and the motor’s angular velocity ˙ θ . Furthermore, the actual an- 

gular position of the guide is obtained from the ideal position θρm 

and the position variation due to the disturbance θρd 
. Similarly, the 

actual velocity is obtained from the motor’s ideal velocity ˙ θm 

and 

the velocity variation 

˙ θd also caused by the disturbance. 

The aforementioned magnitudes are related by four transfer 

functions ( TF ). The first, TF 1 in Eq. (2) , relates the angular posi- 

tion of the motor without disturbance θm 

and the input torque τm 

. 

The actuator’s flexible dynamics are represented by the damping C t 
and stiffness K t . Moreover, the inertia of the driving part is repre- 

sented by J 1 whereas J 2 represents the inertia of the transmission. 

The second transfer function, TF 2 also in Eq. (2) , relates the equiv- 

alent ideal angular position of the linear guide θρm with the mo- 

tor’s position θm 

. The remaining transfer functions are employed 

to model the disturbances. On one hand, TF 1 d in Eq. (3) relates the 

disturbance torque τ d with the angular equivalent of the position 

disturbance in the linear guide θρd 
. On the other hand, TF 2 d (see 

Eq. (3) ) relates θρd 
with the position variation at the motor’s shaft 

due to the disturbance θd . It should be noted that these transfer 

functions must be derived to match the magnitudes when appro- 

priate. Finally, depending on the transmission complexity and stiff- 

ness, they can be obtained from a one, two, or N degrees of free- 

dom model. The one DoF model is suitable for actuators that could 

be considered as stiff or that operate in a relatively low frequency 

range. Otherwise, a N DoF model is required if the damping and 

flexibility of its components is not negligible. 

i R = 

p 

2 π i r 
(1) 

T F 1 = 

θm 

τm 

= 

J 2 s 
2 + c t s + k t 

s 2 
(
J 1 J 2 s 2 + ( J 1 + J 2 ) c t s + ( J 1 + J 2 ) k t 

)
T F 2 = 

θρm 

θm 

= 

c t s + k t (
J 2 s 2 + c t s + k t 

) (2) 

T F 1 d = 

θρd 

τd 

= 

J 1 s 
2 + c t s + k t 

s 2 
(
J 1 J 2 s 2 + ( J 1 + J 2 ) c t s + ( J 1 + J 2 ) k t 

)
T F 2 d = 

θd 

θρd 

= 

c t s + k t (
J 1 s 2 + c t s + k t 

) (3) 

2.3. Control alternatives 

Despite the approach here proposed has been applied to a joint 

space control, it is also possible to consider other control strate- 

gies. The main problem of the joint space control is that it reacts 

against the position error measured in the actuated joints of the 
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Fig. 3. Mechatronic model for: a) Workspace position control. b) Computed torque control. 

manipulator, so every error in the kinematic chain of the mecha- 

nism is not considered. Nevertheless, it is a convenient alternative 

due to the generally difficult access to a direct measurement of the 

end platform in parallel kinematic machines. 

As opposed to joint-space control schemes, workspace control 

reacts to the position error e x measured directly in the end plat- 

form. This alternative can be modeled as it is shown in Fig. 3 a and 

compared to the joint space alternative. In this case, the position 

control is performed in the manipulator level and not in the actu- 

ator model. As such and upon receiving a workspace position X 0 , 

the error is calculated with the actual position X which is then 

passed through the gain k v . A velocity command 

˙ X 0 results and is 

converted to the actuated joints coordinates ˙ q ρ0 
by using the in- 

verse kinematic problem (IKP). At the same time, the disturbance 

t ρ is calculated and fed into the actuators models along with the 

joint coordinates. Finally the actual joints positions are obtained 

and passed through the direct kinematic problem (DKP) to obtain 

the actual workspace positions X . 

Other control algorithms, such as estimators-based controllers 

or computed torque control (CTC) can also be employed [21] and 

[22] . As an example, a simple scheme for the CTC case is shown in 

Fig. 3 b. First, the command X 0 is converted to position ( q ρ0 
), veloc- 

ity ( ̇ q ρ0 
) and acceleration ( ̈q ρ0 

) at the joints with the IKP. Then, the 

position and velocity errors ( e q ρ , e ˙ q ρ ) are computed and passed 

through the position and velocity gains ( k p , k v ) respectively and 

added to q̈ ρ0 
. Afterwards, the acceleration signal is used in the 

inverse dynamic model (IDP) of the mechanism to obtain the re- 

quired torques τm 

for the actuators. Also, the disturbance t ρ are 

calculated and introduced to the actuators’s models where the ac- 

tual positions, velocities and accelerations in q ρ are obtained. Fi- 

nally, these are then used in the DKP to calculate the workspace 

position of the mechanism. 

2.4. Inverse dynamic problem modeling 

For simulation and control purposes, differential equations in 

terms of the actuation geometrical kinematic variables, mass prop- 

erties and applied forces by the actuators are required. This form 

of dynamic problem results in inertial I G , gravitational ḡ G and Cori- 

olis c G terms obtained separately. 

With the input variables of the mechanism defined as q ρ , each 

link can be expressed with the Lagrange function L mech ( Eq. (4) ) in 

terms of these input variables to apply the Euler operator E q ρ [17] . 

E q ρ ( L mech ) = 

d 

dt 

∂L mech 

∂ ˙ q ρ
− ∂L mech 

∂q ρ
= f ρ = t ρ + Q ρ (4) 

In this equation, f ρ is the generalized forces vector which in- 

clude input torques t ρ in terms of the input variables q ρ , and 

Q ρ represents the generalized output forces. This equation will be 

used to simulate the torque depending on the kinematic variables 

of the actuators. In the case of parallel mechanism, obtaining such 

equation is a difficult task due to the constraints of closed-chains 

kinematics [15] . By using dependent coordinates this problem can 

be simplified. Basically, the mechanism can be separated and each 

of its subsystem can be analyzed independently, as long as the mo- 

tion conditions are the same as the assembled system. This ap- 

proach has been followed before in [23] and [24] using Lagrange 

multipliers λ′ s which have also to be calculated. An alternative is 

to employ the principle of energy equivalence [15] . 

Essentially, it states that the sum of each subsystem’s energy 

is the same as the assembled system energy. This avoids the ad- 

ditional calculus of the Lagrange multipliers. However, in spatial 

rotation such as in the case of the end effector, the kinetic energy 

results in multiplication of angular derivatives terms by trigono- 

metric functions, which yields in a complex expression of L mech . 

To avoid this, quasi-velocities can be used as generalized coordi- 

nates requiring to employ Boltzmann–Hamel equations instead of 

the Euler operator. 

2.4.1. Principle of energy equivalence applied to planar motion 

The mechanism is separated into N free-body subsystems each 

one represented by its generalized coordinates q bi and grouped 

into the set q b . To maintain the energy equivalence with the origi- 

nal system, all subsystems have to move as if they were assembled. 

This condition implies that q b is a function of the generalized co- 

ordinates of the assembled mechanism q ρ . Thus, the virtual dis- 

placements δq b for all subsystems are related with the Jacobians 
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to the virtual displacement δq ρ of the generalized coordinates as 

shown in Eq. (5) . 

δq b = 

∂q b 

∂q ρ
δq ρ = J δq ρ ; δq b i 

= J b i δq ρ i = 1 . . . N 

(5) 

In this equation, J and J b i are the Jacobians for the assembled 

and for each subsystem respectively, which were obtained from the 

kinematic problem. They relate the generalized coordinates of each 

subsystem q b i 
with the ones of the assembled mechanism q ρ . Also, 

the energy equivalence implies that, the virtual work of the assem- 

bly δW ρ is equal to the sum of the virtual work of all subsystems ∑ N 
i =1 δW b i 

. This relation is presented in detail in Eq. (6) . 

δW ρ = δq 

T 
ρf ρ = δW b = 

N ∑ 

i =1 

δW b i 
= 

N ∑ 

i =1 

δq 

T 
b i 

f b i (6) 

Furthermore, by substituting Eq. (6) into Eq. (5) , the forces due 

to the manipulator’s bars f ρ are obtained. 

f ρ = J T f b = 

N ∑ 

i =1 

J T b i f b i (7) 

Finally, when each subsystem is disassembled, joint forces between 

solids arise which also produce virtual work. However, when the 

contributions J T 
b i 

f b i of each subsystem are summed up like in Eq. 

(7) , that virtual work gets canceled by the corresponding reaction 

of the adjacent subsystem, thus it is unnecessary to take them into 

account. 

2.4.2. Boltzmann–Hamel equations applied for spatial rotation 

The end-effector of the 3PRS mechanism herein considered is 

capable of constrained translation and rotation motions. Decou- 

pling both motions, the dynamics can be studied more effectively. 

Regarding the contribution of the platform translation to the global 

dynamics, by considering the coordinates of the center of mass 

as generalized coordinates q G = [ x G , y G , z G ] 
T 
, an applie d external 

force at that point f G , and the kinematic relationship with the in- 

put variables through the corresponding Jacobian J G , Eqs. (8) and 

(9) are obtained, where M G is the mass matrix and I G , ḡ G and c G 
are recalled to be the inertial, gravitational and Coriolis terms ma- 

trices. 

J T G f G = J T G M G J G ̈q ρ + J T G M G ̇
 J G ̇ q ρ + J T G g G (8) 

J T G f G = I G ̈q ρ + c G + ḡ G (9) 

However, when trying to obtain an expression of the rotation 

kinetic energy, complex terms of trigonometric functions multiply- 

ing angular derivatives arises as a result of the spatial rotation of 

the element. This yield in a effort when trying to obtain the ex- 

pressions of the dynamics. By using quasi-velocities as the gener- 

alized coordinates, as opposed to position coordinates, the problem 

can be simplified. Nevertheless, this would imply that Boltzmann–

Hamel equations have to be used instead of Euler’s operator. 

In this work, Boltzmann–Hamel equations are applied to obtain 

the pure rotation dynamics of the final platform. For this, the an- 

gular velocities w with respect to a reference system attached to 

the mobile platform, and the Euler’s angle q e , are expressed as in 

Eqs. (10) and (11) . 

w = [ ω x , ω y , ω z ] 
T (10) 

q e = [ θe , ψ e , φe ] 
T 

(11) 

Furthermore, the relationship between w and ˙ q e can be writ- 

ten as in Eq. (12) , where D φ
T is the projection matrix between 

both vectors. It is important to stress that matrix D φ
T may be rank 

deficient depending on the orientation of the rigid body relative 

to the defined coordinate system. Such a problem is commonly 

found with every parameterization of the orientation and is spe- 

cially present in the case of large rotation angles ( ≥180). Neverthe- 

less, rank deficiency can be avoided by properly choosing an orien- 

tation of the coordinate system that ensures that the singularities 

are beyond the actual orientation workspace. This guarantees a full 

rank matrix and hence good numerical results. Another approach is 

to employ quaternions to express the rotation of the platform. Yet, 

this would result in unnecessary more complex dynamic equations 

for the mechanism herein studied since the maximum permitted 

angle of motion is defined to be 20 °. 

w ( ̇ q e , q e ) = D φ
T ˙ q e = 

[ 

cos φe sin θe sin φe 0 

− sin φe sin θe cos φe 0 

0 cos θe 1 

] 

⎧ ⎨ 

⎩ 

˙ θe 

˙ ψ e 

˙ φe 

⎫ ⎬ 

⎭ 

(12) 

As a result of applying the Boltzmann–Hamel equations as de- 

scribed in [15,16] , the moment due to the rotation of the platform 

m mp is obtained as in Eq. (13) . In this equation, I mp is the inertia 

matrix with respect of a coordinate system fixed to the platform. 

m mp = I mp ˙ w + w × ( I mp w ) (13) 

Furthermore, on account of considering the mechanism as a 

disturbance to the actuators, this moment has to be expressed 

with respect to the input variables. Hence, the Jacobian matrix J R , 

which relates the inputs in q ρ and the velocities w , is used to 

project the rotation dynamics onto the actuation system. Therefore, 

Eq. (13) is operated and rewritten as follows. 

J T R m mp = J R 
T 
[
D φI mp ˙ w + 2 ̇

 D φI mp w − A 

T I mp w 

]
(14) 

Where 

A = 

(
∂ ˙ w 

∂ ˙ q e 

)
(15) 

The time derivatives of w and 

˙ q e are defined as 

˙ w = 

˙ D 

T 
φ ˙ q e + D 

T 
φ q̈ e (16) 

q̈ e = J ̈q ρ + ̇

 J ̇ q ρ (17) 

Finally, by substituting when appropriate into Eq. (14) , the ex- 

pression representing the rotation dynamics is found separated by 

the inertial term Ī mp and the quadratic velocity term c mp . 

J T R m mp = J T R I mp J R ̈q ρ + c mp = ̄I mp ̈q ρ + c mp (18) 

Where, 

c mp = 

[ 
J T 
[
D φI mp D φ

T 
]

˙ J + J T 
[
D φI mp ̇  D 

T 
φ+ 2 ̇

 D φI mp D φ
T −A 

T I mp D φ
T 
]

J 

] 
˙ q ρ

(19) 

It is important to note that Eqs. (18) and (19) do not lack of 

generality and thus can be used for any manipulator, provided that 

I mp and J R are appropriately modified. As a contribution, the pro- 

posed procedure has the advantage of being systematic, which is 

less error prone than when trying to obtain particular dynamic 

equations for a given mechanism. 

3. Case study 

The case study is based on an actual 3PRS Multi-Axial Simula- 

tion Table (MAST) parallel mechanism. A picture of the prototype 

used is shown in Fig. 4 . Moreover, the important geometric vari- 

ables are also shown in Fig. 4 . The dimensions of the actual mech- 

anism are r = 0 . 35 m, L = 0 . 26 m and H = 0 . 4 m. The mass of the 

legs is 0.07 kg and the mass of the platform is 2.06 kg. 
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Fig. 4. 3PRS prototype. 

Fig. 5. Picture of the actuator. 

3.1. Actuators modeling 

The prismatic joints used to drive the mechanism are formed 

by a linear belt guide Igus ® ZLW-1040-02-S-10 0-L/R-30 0 with a 

300 mm stroke [25] , actuated by a Maxon 

® RE-40 DC motor with 

a GP42C gearbox with a 15:1 gear ratio [26] . The linear guide is 

connected to the gearbox with a flexible coupling. A picture of the 

actuation system is shown in Fig. 5 . 

As mentioned previously, the dynamics of the actuators is rep- 

resented by a two degrees of freedom model as in Fig. 2 . In 

Eq. (20) , J 1 is the sum of the inertias of all the components up 

to the input shaft of the linear guide. As for the inertia J 2 , it is 

calculated from the mass of the load M load which is formed by 

the mass of the drive carriage and the inertia of the linear guide 

J guide obtained from the manufacturer. Furthermore the mass M load 

is translated into a rotational inertia as in Eq. (21) . Finally, J t is the 

sum of inertia J 1 and J 2 . 

J 1 = J motor + J gearbox + J coupling (20) 

J 2 = J guide 

(
1 

i r 

)2 

+ M load 

(
p 

2 · π · i r 

)2 

(21) 

Where, 

M load = M dri v e = 2 . 27[ kg] (22) 

Also, the linear guides have Coulomb friction τ f which plays an im- 

portant role specially at low velocities. This parameter is calculated 

with equation Eq. (23) , obtained from the manufacturer’s catalogue 

[25] . 

τ f = 0 . 2 + 

(
4 . 07 × 10 

−2 
)
M load (23) 

It is worth mentioning that K t and C t in Eqs. (2) and (3) are 

unknown parameters. Hence, they must be experimentally identi- 

fied or estimated. To that end, a modal analysis was carried out 

to obtain the unknown parameters value from the frequency re- 

sponse functions. An accelerometer was placed at the drive car- 

riage and an impact test was performed with a PCB-086-C03 

modal hammer. The input signals from the hammer and the vi- 

brations registered by the accelerometer were passed through the 

OROS-OR35 signal analyzer to obtain the parameters values. Addi- 

tionally, J motor , J gearbox , J guide and J coupling were taken from the man- 

ufacturers datasheet [26] . 

3.2. Control and modeling 

The control employed in this study is based in a monoarticular 

local control, where each actuator’s position is independently con- 

trolled. In this way, the control is performed in the joint space. 

Moreover, the demanded pose of the mechanism is first passed 

through the inverse kinematic problem where the joint position 

are obtained. These are then fed into the joint controller, each one 

consisting of a cascaded position, velocity and current control. In 

Fig. 6 a scheme with the actual control implementation is shown. 
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Fig. 6. Actual controller. 

3.3. Mechanism dynamics 

In this section the dynamics of the MAST prototype are ob- 

tained. As for the mechanism bars and the translation dynamics 

of the platform, the principle of energy equivalence depicted in 

Section 2.4.1 will be followed. On the other hand, the rotation 

dynamics of the platform will be analyzed using the Boltzmann–

Hamel equations as explained in Section 2.4.2 . 

3.3.1. Bars modeling 

To model the dynamics of the mechanism’s bars, the Lagrangian 

equation for each one is obtained and then the Euler’s operator is 

applied as in Eq. (4) . In this way, Eq. (24) results, where m b i 
and 

I b i are the mass and inertia of the i th bar respectively, and g is the 

gravitational acceleration. 

f b i = 

{ 

0 

F b i 
0 

} 

= E q b i 
(
L b i 

)
= 

[ 

m b i 
0 0 

0 m b i 
0 

0 0 I b i 

] 

q̈ b i 

+ 

{ 

0 

m b i 
g 

0 

} 

= M b i ̈
q b i 

+ g b i 
(24) 

Moreover, by using the kinematic relationship 

˙ q b i 
= J b i ˙ q ρ Eq. 

(25) is obtained. J b i is the Jacobian of each bar which relates the 

velocity of the center of gravity with the input variables. 

f b i = M b i 
J b i ̈q ρ + M b i 

˙ J b i ˙ q ρ + g b i 
(25) 

The expression of the J b i is shown in the appendix. What is 

more, the contribution of each leg i to the overall mechanism’s 

dynamics f ρb i 
is found by employing Eq. (7) , thus obtaining the 

expression in Eq. (26) . 

f ρb i 
= J T b i f b i = 

[
J T b i M b i 

J b i 

]
q̈ ρ + 

[
J T b i M b i 

˙ J b i ˙ q ρ

]
+ 

[
J T b i g b i 

]
(26) 

Furthermore, Eq. (26) can be simplified by operating the ma- 

trices and renaming them afterwards. In this way, Eq. (27) results. 

f ρb i 
= I b i ̈q ρ + c b i + ḡ b i 

(27) 

Where I b i and ḡ b i are the inertia matrix and gravitational vec- 

tor respectively. These are only functions of the position of the 

mechanism. On the other hand, c b i is the matrix containing ve- 

locity quadratic terms. 

3.3.2. Modeling of the end-effector 

As mentioned before, the MAST mechanism is capable of con- 

strained translation and rotation motions. The translation dynamics 

has been analyzed as described in Section 2.4.2 and following Eqs. 

(8) and (9) . On the other hand, the rotation dynamics is analyzed 

by considering a virtual inertial body and applying Boltzmann–

Hamel equations. A moving coordinate system is placed at the 

point P as shown in Fig. 4 . Furthermore, the angular velocity w 

in the moving frame is used as quasi-velocities for the application 

of the Boltzmann–Hamel equations. Since only the rotation motion 

of the platform is being analyzed, the translation and potential en- 

ergies are neglected. Hence, the Lagrangian function of the moving 

platform results in: 

L mp = T = 

1 

2 

w 

T I mp w (28) 

Where w is the angular velocity, 

w = [ ω x , ω y , ω x ] 
T (29) 

and I mp is the inertia tensor of the platform in the local reference 

system. Also, the assembled condition of the platform with the rest 

of the mechanism is provided by the loop-closure and constrained 

equations. These relate the angular velocity w with the input vari- 

ables velocities in 

˙ q ρ as follows. 

w = J R ̇ q ρ (30) 

Where the expression of J R is shown in the appendix. Moreover, 

by substituting Eq. (12) into Eq. (30) , the relationship between the 

Euler angles and the inputs can be found. 

˙ q e = 

(
D φ

T 
)−1 

J R ̇ q ρ = J ̇ q ρ (31) 

By following the procedure depicted in Section 2.4.2 , and recall- 

ing Eqs. (18) and (19) , the expression of the rotation dynamics is 

obtained. 

J T R m mp = J T R I mp J R ̈q ρ + c mp = ̄I mp ̈q ρ + c mp 

Where, 

c mp = 

[ 
J T 
[
D φI mp D φ

T 
]

˙ J 

+ J T 
[
D φI mp ̇  D 

T 
φ + 2 ̇

 D φI mp D φ
T − A 

T I mp D φ
T 
]

J 

] 
˙ q ρ

3.3.3. Global dynamics 

Finally, the explicit dynamic equations of the 3PRS is obtained 

by adding the dynamic contribution of the legs ( Eq. (27) ), and the 

translational and rotational dynamic contributions of the platform 

( Eqs. (9) and (18) respectively). In this way, Eq. (32) is obtained 

where I Ls , c Ls and g Ls are the inertial, Coriolis and gravitational 

terms of the bars. Similarly, it is recalled that I G and c G repre- 

sent the inertial and Coriolis terms for the translational dynamics 

whereas Ī mp and c mp represent the dynamics due to the rotation. 

t ρ + J T G f G + J T R m mp = 

[
I Ls + I G + ̄I mp 

]
q̈ ρ + [ c Ls + c G + c mp ] 

+ [ ̄g Ls + ḡ G ] (32) 

It can be seen that with the approach followed, the Jacobians 

J bi , J G and J R are obtained from the kinematic analysis in a straight- 

forward way after applying the loop-closure and constrained equa- 

tions. Furthermore, matrices D φ
T and A can be defined for an Euler 

convention, hence, not depending on any specific mechanism. 
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Fig. 7. Bode plot of the two transfer functions of the actuators. 

4. Experimental validation 

To validate the model of the system, the frequency response 

was analyzed and the bandwidth of the simulation model was 

compared with the experimental results obtained from the proto- 

type. Also, the modeled and measured torque outputs were com- 

pared. As a result, the interaction of the mechanism’s and actua- 

tors’s models can be easily studied and compared with experimen- 

tal data. 

4.1. Frequency domain testing 

In Fig. 7 a bode diagram is shown with the magnitude and 

phase response of the transfer functions in Eqs. (2) and (3) using 

the values of Table 1 . It can be seen that the resonant frequency of 

the TF 2 is located at 900 [Hz] approximately, which is significantly 

higher that the intended operating frequency range of the system. 

Also, for a MAST mechanism it is important to study the band- 

width of the system to know up to which frequency could be 

simulated. For this reason, pure sinusoidal motions in z, ψ and θ
were simulated in the 0.5–20 Hz frequency range using the mecha- 

tronic model. For the experimental tests, the same motions have 

been commanded with frequencies set to 0.4, 1, 5 10 and 20 Hz. A 

comparison between the simulation and the experimental tests is 

shown in Figs. 8 and 9 . Moreover, to study the interaction between 

the actuation system and the mechanism, the bandwidth with and 

without the mechanism is compared in Fig. 10 

Table 1 

Parameter values of the actuator model. 

Parameter Value Units 

f n 
a 986 .5 [ Hz ] 

K t 
a 67 .702 

[
Nm 
rad 

]
C t 

a 3 . 00 × 10 −08 
[

Nms 
rad 

]
M 

a 0 .076 [ kg ] 

J motor 
b 1 . 42 × 10 −5 [ kgm 

2 ] 

J gearbox 
b 1 . 4 × 10 −6 [ kgm 

2 ] 

J coupling 
b 4 . 68 × 10 −6 [ kgm 

2 ] 

J guide 
b 4 . 524 × 10 −4 [ kgm 

2 ] 

J brake 
b 1 . 00 × 10 −6 [ kgm 

2 ] 

a Experimentally identified. 
b From manufacturer. 

From Figs. 8 and 9 it can be seen that the simulations are in 

close correspondence with the experimental results obtained for 

each motion. Furthermore, when the two motions are compared, 

no significant differences are present in the system’s performance 

despite the fact that both motions are different. This leads to the 

idea that the mechanism does not exerts a significant influence on 

the system’s performance. This can be further analyzed with the z 

motion in Fig. 10 . 

As mentioned before, in Fig. 10 the response magnitude and 

phase for the z motion is shown. What is more, the same mo- 

tion is compared with the MAST attached and with only the actu- 

ators. In this way, it can be easily analyzed the effect of the mech- 

anism in the system’s response. It is appreciated that up to 2 Hz 
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Fig. 8. Manipulator closed position loop transfer function for the ψ motion. 

Fig. 9. Manipulator closed position loop transfer function for the θ motion. 

both systems behave similarly. However at 2 Hz the magnitude of 

their response start diverging. What is more, it has been found 

that the actuators without the MAST have a bandwidth about 4 

Hz, whereas with the mechanism the bandwidth is reduced to 3.5 

Hz. Thus, it can be noted that the actuators are the most limiting 

components and that the mechanism itself has only a 0.5 Hz effect 

on the system’s performance. 

4.2. Time domain tests 

Finally, in Figs. 11–13 the position and the torques are shown 

for the three pure motions executed at frequencies 0.4, 5 and 

10 Hz. Two set of model parameters were used to simulated the 

model and compare the results with the measurements. The simu- 

lation with the parameter set Sim. Manufac. was constructed with 

the data as obtained from the manufacturers, whereas the simu- 

lation Sim. Ident. was constructed by modifying the inertia J 1 to 

J 1/1.56 and the Coulomb friction modified to 7 . 18 × 10 −2 Nm as it 

will be explained in the next paragraph. 

From the figures, the simulated positions present and maxi- 

mum deviation of approximately 11% in magnitude and 13% in 

phase respect to the experimental signals for the frequencies 

shown and motions executed. Also, it can be observed that as the 

frequencies of the motions are increased, the magnitude of the 
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Fig. 10. Manipulator closed position loop transfer function for the actuator model with and without the MAST attached. 

Fig. 11. Position and torque signals comparison for the z motion. 

response is reduced in accordance with the Bodes shown previ- 

ously. Indeed, at 0.4 Hz the magnitude of the response was found 

to be approximately 99.4%, whereas at 5 Hz and 10 Hz the ob- 

tained magnitudes were 65.4% and 43.2% respectively. Likewise, 

the phase lag between the commands and the actual signals are 

appropriately estimated by the model when compared with the ex- 

perimental data. It can be seen that at 0.4 Hz, 5 Hz and 10 Hz, the 

phase lags were found to be −6 . 3 ◦, −62 . 5 ◦ and −103 . 7 ◦ respec- 

tively. 

Nevertheless and to validate the model, the position response 

must not be used alone as the controller’s action may be mas- 

querading dynamic deviations with the appearance of good posi- 

tioning results. This effect can be clearly seen by comparing the 

position and the torque of the Sim. Manufac. model at 0.4 Hz. It is 

observed that, despite an apparent good positioning with respect 

to the experimental data, the simulated torque differs from the ex- 

perimental torque obtained by approximately 70%. This indicates 

that the dynamics are not correctly represented by this model. 
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Fig. 12. Position and torque signals comparison for the ψ motion. 

Moreover, the torques obtained from the simulation with the 

two parameters set are different. When the data as given by 

the manufacturer was introduced, a difference in the torque of 

approximately 0.10[Nm] at 0.4 Hz can be appreciated as it was 

pointed out before. This implies that the Coulomb friction force 

in the actual system is higher. Also, at a frequency of 10 Hz, the 

model estimated 0.1[Nm] higher torque than the experimental sig- 

nals. Since the acceleration forces increase with the frequencies, it 

follows that the actual inertia should be less than the initially es- 

timated with the manufacturer data. For this reason, the Coulomb 

friction and the inertia J 1 were adjusted as commented before. In 

this way, the simulation provided better results than when the pa- 

rameters set with the original manufacturer data was used. 

On top of that, it is worth observing that even when the inputs 

are pure sinusoids, the resulted torques are not sinusoids as well. 

This effect is caused by the non-linearities of the dynamics and the 

friction present in the actuation system. The latter can be easily 

identified at lower frequencies, specially at 0.4 Hz where an almost 

square signal is appreciated. Finally, it can also be seen that at 10 

Hz the experimental torque are trimmed by the action of a low- 

pass filter attributed to the low level controller. 

5. Conclusions 

In the present work a mechatronic model has been developed 

for a 3PRS parallel manipulator. A key contribution of this work is 

that the mechanism dynamics is integrated as a disturbance ap- 

plied to the actuators. This results in a simple yet reliable model 

that integrates the actuators dynamics with the manipulator model 

in a decoupled manner. In this way, different configurations or de- 

sign of individual components can be easily modified and then 

integrated to evaluate the overall system’s performance without 

compromising reliability of the results. 

Furthermore, the manipulator’s dynamics was described using 

Boltzmann–Hamel equations and the principle of energy equiva- 

lence as shown is Section 3.3 . It was found that, since the transla- 

tion and rotation motions are decoupled, the main advantage of 

Boltzmann–Hamel equations becomes apparent when applied to 

analyze the rotation dynamics. Furthermore, the approach taken 

simplifies obtaining explicit dynamic equations, where complex 

and nonlinear expressions are avoided by making use of the kine- 

matic Jacobians. As a contribution, the proposed procedure has the 

advantage of being systematic, which is less error prone than when 

trying to obtain particular dynamic equations for a given mecha- 

nism. 

Also, the actuators and the control scheme have been modeled. 

They were further integrated into the mechatronic model and its 

performance was compared with an actual prototype of a MAST. 

It was observed that the mechatronic model resulted in an useful 

simulation tool to assess the performance of the system in terms 

of bandwidth. 

Moreover, when the simulations and experimental signals 

where compared, it was observed a reasonably agreement. The 

motor positions of both signals present the same amplitude and 

the phase lag shows a slight difference attributed to the friction 

and other phenomena yet to be explored. Also, it was observed 

that with the parameters values obtained from the manufacturer, 

the model provided fairly good results. However, with the Coulomb 

friction and inertia adjusted, the model provided more accurate re- 

sults. This shows that an identification step should be taken in or- 

der to take into account differences between the theoretic and ac- 

tual values for the parameters. 
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Fig. 13. Position and torque signals comparison for the θ motion. 
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Appendix A. Jacobian matrices 

From the kinematic analysis of the manipulator [27] the follow- 

ing linear system results. 

[ J x ] 

⎧ ⎨ 

⎩ 

˙ z p 
˙ ψ 

˙ θ

⎫ ⎬ 

⎭ 

= [ J q ] 

{ 

˙ ρ1 

˙ ρ2 

˙ ρ3 

} 

(A.1) 

Where, 

J x 11 
= Lsin (γ1 ) (A.2) 

J x 12 
= Lrsin (θ ) cos (ψ) cos (γ1 ) (A.3) 

J x 13 
= Lrcos (θ ) sin (ψ) cos (γ1 ) + Lrsin (θ − γ1 ) (A.4) 

J x 21 
= Lsin (γ2 ) (A.5) 

J x 22 
= Lr(sin (ψ) cos (γ2 ) + cos (θ ) cos (ψ) sin (γ2 )) (A.6) 

J x 23 
= Lrsin (θ ) sin (ψ) sin (γ1 ) (A.7) 

J x 31 
= Lsin (γ3 ) (A.8) 

J x 32 
= −Lrsin (θ ) cos (ψ) cos (γ3 ) (A.9) 

J x 32 
= −Lrcos (θ ) sin (ψ) cos (γ3 ) + Lrsin (θ + γ3 ) (A.10) 

And, 

J q = 

[ 

Lsin (γ1 ) 0 0 

0 Lsin (γ2 ) 0 

0 0 Lsin (γ3 ) 

] 

(A.11) 

Also, the TCP (point p ) of the manipulator can only move in the 

x and z directions. Hence, the following relations can be found. 

From bar 1: 

˙ x p = L ˙ γ1 sin (γ1 ) + r ˙ θsin (θ ) (A.12) 

˙ z p = ˙ ρ1 + L ˙ γ1 cos (γ1 ) + r ˙ θcos (θ ) (A.13) 

From bar 2: 

− r ˙ ψ sin (ψ) = L ˙ γ2 sin (γ2 ) (A.14) 

˙ z p = ˙ ρ2 + L ˙ γ2 cos (γ2 ) + r ˙ θsin (θ ) sin (ψ) − r ˙ θcos (θ ) cos (ψ) 

(A.15) 

From bar 3: 

˙ x p = −L ˙ γ3 sin (γ3 ) − r ˙ θsin (θ ) (A.16) 

˙ z p = ˙ ρ3 + L ˙ γ3 cos (γ3 ) − r ˙ θcos (θ ) (A.17) 

Moreover, the velocities of the center of mass for each bar can 

be calculated from the velocities of point p . In the following, the 

expressions for the bar 1 will be obtained. 

˙ x 1 = 

1 

2 

(
˙ x p − r ˙ θsin (θ ) 

)
(A.18) 

˙ z 1 = 

1 

2 

˙ ρ1 + 

1 

2 

(
˙ z p − r ˙ θcos (θ ) 

)
(A.19) 

˙ γ1 = 

1 

Lsin (γ1 ) 

(
˙ x p − r ˙ θsin (θ ) 

)
(A.20) 
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Substituting the ˙ x p and ˙ z p by expressions A.12 and (A.13) re- 
spectively, the following expression results. 

{ 

˙ x 1 
˙ z 1 
˙ γ1 

} 

= 

⎡ 

⎢ ⎢ ⎣ 

0 − 1 
2 

rsin (θ ) cos (ψ) − 1 
2 ( rsin (θ ) + rcos (θ ) sin (ψ) ) 

1 
2 

0 − 1 
2 

rcos (θ ) 

0 − rsin (θ ) cos (ψ) 
Lsin (γ1 ) 

− rsin (θ )+ rcos (θ ) sin (ψ) 
Lsin (γ1 ) 

⎤ 

⎥ ⎥ ⎦ 

×

⎧ ⎪ ⎨ 

⎪ ⎩ 

˙ z p 
˙ ψ 

˙ θ

⎫ ⎪ ⎬ 

⎪ ⎭ 

+ 

{ 

0 
˙ ρ1 

2 
0 

} 

(A.21) 

The above expression can be rewritten as a function of the in- 
puts as follows. 

{ 

˙ x 1 
˙ z 1 
˙ γ1 

} 

= 

⎡ 

⎢ ⎢ ⎣ 

0 − 1 
2 

rsin (θ ) cos (ψ) − 1 
2 ( rsin (θ ) + rcos (θ ) sin (ψ) ) 

1 
2 

0 − 1 
2 

rcos (θ ) 

0 − rsin (θ ) cos (ψ) 
Lsin (γ1 ) 

− rsin (θ )+ rcos (θ ) sin (ψ) 
Lsin (γ1 ) 

⎤ 

⎥ ⎥ ⎦ 

×
[
J −1 
x J q 

]{ 

˙ ρ1 

˙ ρ2 

˙ ρ3 

} 

+ 

{ 

0 
˙ ρ1 

2 
0 

} 

(A.22) 

Finally, the Jacobian matrix for the bar 1 results in: 

J b 1 = 

⎡ 

⎢ ⎢ ⎣ 

0 − 1 
2 

rsin (θ ) cos (ψ) − 1 
2 ( rsin (θ ) + rcos (θ ) sin (ψ) ) 

1 
2 

0 − 1 
2 

rcos (θ ) 

0 − rsin (θ ) cos (ψ) 
Lsin (γ1 ) 

− rsin (θ )+ rcos (θ ) sin (ψ) 
Lsin (γ1 ) 

⎤ 

⎥ ⎥ ⎦ 

×
[
J −1 
x J q 

]
+ 

[ 

0 0 0 
1 
2 

0 0 
0 0 0 

] 

(A.23) 

With the linear system being { 

˙ x 1 
˙ z 1 
˙ γ1 

} 

= 

[
J b 1 

]{ 

˙ ρ1 

˙ ρ2 

˙ ρ3 

} 

(A.24) 

By following a similar procedure for bars 1 and 2, the linear sys- 

tems and their respective Jacobians are obtained. { 

˙ y 2 
˙ z 2 
˙ γ2 

} 

= 

[
J b 2 

]{ 

˙ ρ1 

˙ ρ2 

˙ ρ3 

} 

(A.25) 

{ 

˙ x 3 
˙ z 3 
˙ γ3 

} 

= 

[
J b 3 

]{ 

˙ ρ1 

˙ ρ2 

˙ ρ3 

} 

(A.26) 

With, 

J b 2 = 

⎡ 

⎢ ⎢ ⎣ 

0 − 1 
2 

rsin (ψ) 0 

0 − cos (γ2 ) 
2 sin (γ2 ) 

rsin (ψ) 0 

0 − rsin (ψ) 
Lsin (γ2 ) 

0 

⎤ 

⎥ ⎥ ⎦ 

[
J −1 
x J q 

]

+ 

[ 

0 0 0 

0 1 0 

0 0 0 

] 

(A.27) 

J b 3 = 

⎡ 

⎢ ⎢ ⎣ 

0 − 1 
2 

rsin (θ ) cos (ψ) − 1 
2 ( rsin (θ ) − rcos (θ ) sin (ψ) ) 

1 
2 

0 

1 
2 

rcos (θ ) 

0 

rsin (θ ) cos (ψ) 
Lsin (γ3 ) 

− rsin (θ )+ rcos (θ ) sin (ψ) 
Lsin (γ3 ) 

⎤ 

⎥ ⎥ ⎦ 

×
[ 

J −1 
x J q 

] 

+ 

[ 

0 0 0 

0 0 

1 
2 

0 0 0 

] 

(A.28) 

As for the rotation Jacobian of the end effector, the following 

linear system relates the angular velocities of point p with the an- 

gular velocities ˙ ψ and 

˙ θ . { 

w x 

w y 

w z 

} 

= 

[ 

1 0 

0 cos (ψ) 
0 −sin (ψ) 

] {
˙ ψ 

˙ θ

}
(A.29) 

Moreover, the equation can be expressed as a function of the 

inputs as follows. { 

w x 

w y 

w z 

} 

= 

[ 

1 0 

0 cos (ψ) 
0 −sin (ψ) 

] [
J −1 
x J q | R 

]{ 

˙ ρ1 

˙ ρ2 

˙ ρ3 

} 

(A.30) 

Where J −1 
x J q | R is the submatrix of J −1 

x J q from row 2 and 3, which 

is the matrix that relates the rotation motion of point p with the 

inputs. Hence, the Jacobian matrix of the end effector results in. 

J R = 

[ 

1 0 

0 cos (ψ) 
0 −sin (ψ) 

] [
J −1 
x J q | R 

]
(A.31) 
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a b s t r a c t 

In this paper, a procedure for the kinematic design of a 3- P RS compliant parallel manipulator of 3 degree 

of freedom is proposed. First, under the assumption of small displacements, the solid body kinematics of 

the 3- P RS has been studied, performing a comprehensive analysis of the inverse and forward kinematic 

problem, and calculating the rotations that the revolute and spherical flexure joints must perform. Then, 

after defining some design requirements and therefore the necessary displacements to fulfill, a design 

process based on the finite element calculations has been stablished, giving the necessary guidelines to 

reach the optimal solution on a 3- P RS compliant mechanism. Also, a prototype has been tested, using 

a coordinate measuring machine to verify its dimensions and the resulting displacements in the end 

effector and the actuated joints. Finally, those measurements have been compared with the FEM and 

the rigid body kinematics predictions, contrasting the validity of those two modelling approaches for the 

kinematic design of compliant mechanisms. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

At present, the requirements of precision and surface finish in 

different areas as scientific, medical, metrological and communi- 

cation fields have led to the necessity of creating new mecha- 

nisms capable of achieving accuracy constraints on the order of 

microns or nanometers. A well-known solution for many of these 

high-tech applications are the compliant mechanisms [1] , which 

allow generating motions with great repeatability, precision, speed 

and a high bandwidth, through the controlled deformation in sev- 

eral points of their monolithic structure. Those flexible points are 

flexure joints, that substitute the traditional joints used in typical 

mechanisms overcoming the problems they usually suffer, as fric- 

tion, clearances, hysteresis and wear. Nevertheless, the main draw- 

back of these mechanisms is a more complex design, because it 

is necessary to control the elastic deformation of the joints, and 

the appearance of parasitic motions together with the desired dis- 

placements. For that reason, it is important to develop approaches 

to study, design and validate these compliant machines, which is 

one of the objectives of the present work. 

Here, the design of a 3- P RS compliant parallel mechanism [2] is 

proposed. It is a fusion of a parallel mechanism [3–6] and a com- 

∗ Corresponding author: Fax: + 34 946014215. 

E-mail address: fran.campa@ehu.eus (F. J. Campa). 

pliant mechanism, so the advantages of both devices can be ob- 

tained: higher mechanical stiffness, higher loading capacity, and 

higher positioning accuracy from the parallel mechanism and the 

zero backlash, no friction, no need for lubrication from the flexure 

devices. The axisymmetric arrangement of a 3- P RS causes that it is 

a common solution among the compliant parallel mechanisms for 

precision operations. 

As a function of the kinematics of the device and the geome- 

try of the joints, it is possible to create a large number of com- 

binations. An example of a 1 degree of freedom (dof) compliant 

device is presented by Kim et al. in [7] , that consists of a single- 

axis flexure-based nano-positioning stage with a range of motion 

up to a millimeter and a compact stage. A reduction of the para- 

sitic movements and an increase of the accuracy are achieved by 

means of their process design, providing an optimization of the 

structure. Others examples of 1 dof compliant devices can be ob- 

served in [8–11] . In the same way, it is possible to develop mech- 

anisms with 2 dof, as for example the stage presented by Wang 

et al. in [12] , where the design of a planar motion stage based on 

flexure elements allows large ranges of motion along x and y di- 

rection without causing over-constraint or significant errors. Also, 

the authors provide some useful steps for designing and analyze 

by FEM compliant devices. Another case of 2 dof compliant mech- 

anism is presented in [13] , where the design of a flexure-based 

XY stage tries to obtain a relatively large range and high scanning 

speed device. Its experimental setup and characterization is shown 

http://dx.doi.org/10.1016/j.mechatronics.2016.08.006 

0957-4158/© 2016 Elsevier Ltd. All rights reserved. 
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Fig. 1. Workpiece and schematic of the hybrid manipulator. 

based on the FEM analysis performed. Also, large number of 3 dof 

mechanisms have been developed in the current literature. For ex- 

ample, an ultra-precision XY θz flexure stage with nanometer accu- 

racy is presented by Kim et al. in [14] . Other sample of this type 

of devices is shown in [15] , where a high-performance three-axis 

serial-kinematic nano-positioning stage for high-bandwidth appli- 

cations is presented by Kenton and Leang. Moreover, the necessary 

steps to achieve a good design, characterization and control are 

presented. Another 3 dof mechanism is presented in [16] , where 

a XYZ compliant parallel manipulator composed by identical spa- 

tial double four-beam modules, is presented. Additional examples 

of this type of devices are presented in [2,17] . To conclude, some 

examples of 6 dof mechanisms are indicated. A micro-scale ma- 

nipulator based on a six-DOF compliant parallel mechanism is pre- 

sented by Liang et al. [18] . This design is featured by piezo-driven 

actuators and integrated force sensor capable of delivering six-DOF 

motions with high precision and providing real-time force infor- 

mation for feedback control. On the other hand, a low stiffness 6 

degrees of freedom compliant precision stage is given in [19] . In 

it, Dunning et al detail the dimensional optimization of the design 

and the process of experimental validation of the prototype. Fur- 

ther instances of 6 dof devices are shown in [20 , 21] . 

The present work will be focused on the kinematics study, 

design process, construction and experimental validation of the 

kinematics of a prototype of the 3- P RS compliant mechanism. 

Firstly, the proposed design approach is explained and developed 

in Sections 2 –5 , where the rigid body kinematics of the 3- P RS 

will be developed, the kinematic requirements for the actuators 

and joints will be calculated and the design process of the flexi- 

ble joints by FEM will be explained. Finally, the experimental pro- 

cedure to verify the kinematics of a developed prototype will be 

shown. To end up, a discussion about the results reached by the 

ideal kinematics of a 3- P RS, the FEM kinematics and the prototype 

will be made. 

2. Procedure for the kinematic design 

The background of the present work is the development of a 

hybrid milling machine of 5 degrees of freedom for milling moulds 

for microlenses, where the spindle is fixed to a portal and the 

workpiece is manipulated by a XY stage under a 3- P RS compli- 

ant parallel mechanism with direct measurement of the platform 

position. The milling of microlenses consists on milling a matrix of 

N × N concave aspherical cavities on one face of a cylindrical work- 

piece of diameters ranging from 10 to 20 mm. The lenses have di- 

ameters from 0.5 mm to 2 mm and a sagittal depth less than 1 mm. 

Hence, in the hybrid manipulator, the XY stage carries out the long 

travel range in X and Y while the parallel kinematics stage has to 

provide mainly the Z motion and, if possible, two rotations around 

X and Y to improve the tool orientation, see Fig. 1 . The XY stage 

also compensates the parasitic motions in X and Y of the parallel 

kinematics stage. 

To obtain the kinematic requirements in terms of displacements 

needed, a standard milling process has been designed, with a ma- 

trix of 4 ×4 cavities in a cylindrical mould of 18 mm. The cavities 

are spherical with a diameter of 2 mm, and are machined in down- 

milling with a spiral down strategy in counter-clock direction. The 

offset between the part and the tool tip for the motions between 

cavities is of 1 mm. As a conclusion, the needed range in X and Y is 

±10 mm and in Z ±2 mm, with the objective of maximize the two 

rotations as much as possible. As there exists commercial solutions 

for the XY stage, the final purpose of this work is the design of the 

compliant parallel stage. A compliant solution has been considered 

as the structural requirements are not very demanding, given the 

fact that the estimated cutting forces of the micromilling process 

are below 1 N, and the travel range can be reached with enough 

precision. The selection of a 3- P RS is due to its stiffness and ther- 

mal properties due to its axisymmetric configuration. 

Hence, the aim of this study is to achieve the kinematic design 

of a 3- P RS compliant parallel manipulator capable of performing 

displacements in Z direction as well as two rotations around X and 

Y axes. To reach this objective, the following procedure has been 

developed. Firstly, the rigid body kinematics of the 3- P RS is solved, 

assuming that under small displacements, there will not appear 

parasitic translations in the compliant joints that change the rota- 

tion center location, hence, the kinematics of the rigid body mech- 

anism will be similar to the compliant one. This assumption is a 

common practice designing compliant mechanisms [7 , 17 , 18] . The 

rigid body kinematics provides the necessary displacements in the 

actuators as well as the displacements that the flexure joints must 

fulfill. Once these requirements are stablished, it is possible to de- 

sign the flexure joints by means of an iterative process based on 

FEM calculations, where the stress in the joints becomes a cru- 

cial design parameter. First, the FEM study is applied to an iso- 

lated flexure joint, to analyze if provides the demanded displace- 

ments, and the behavior of those joints in the whole manipulator 

are again analyzed by FEM, to reach a homogenous distribution of 

the stress in all the joints. In the following sections, each of these 

points will be widely explained, providing the achieved relations, 

the developments for the design and the validation, and the ob- 

tained results, both theoretical as experimental ones. 

3. Rigid body kinematics of the 3- P RS 

The rigid body kinematics has been solved following the work 

from [22] . The notation P, R, S denotes prismatic, revolute and 

spherical joint, respectively. Each limb connects the base to the 

moving platform by a P joint, an R joint and an S joint in sequence, 

where the P joint is actuated by a linear actuator. Thus, the mov- 

ing platform is attached to the base by three identical PRS linkages, 

C i B i , whose length is L , see Fig. 2 . The points B i are located in the 

moving platform in a circumference of radius b , whose center is 

defined as point P . The angles between the legs and the horizontal 

plane are αi . which is equal to 45 º in the default position. Three 

prismatic actuators at 120 º are used; being the joint space coordi- 

nates s i . The location of the actuators in the zero position is de- 

fined by the points A i , placed on a circle of radius a, whose center 

is defined by the point O . 

Two reference systems are defined to solve the kinematics. A 

fixed frame {x,y,z} is located at point O , whose X axis is coincident 

with the slider direction OA 1 and its Z axis is placed vertically. In 

the same way, a moving frame {u, v, w} is laid at point P, whose U 

axis is coincident with the direction PB 1 and its W axis is perpen- 

dicular to the moving platform. 

In the following subsections, the motion capabilities and the 

main parameters of the mechanism will be displayed for a better 

understanding. 
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Fig. 2. Schematic of the 3- P RS manipulator analyzed. 

3.1. Parasitic movements 

The 3- P RS mechanism belongs to the zero torsion parallel 

mechanisms group [23] , and although it is commonly considered 

as a 3 degrees of freedom manipulator, that is, translation in Z and 

rotations around X and Y, the truth is that once a set of input dis- 

placements is introduced, in the platform there appear three small 

coupled motions, two translations in X and Y and a rotation around 

Z. As they are not the desired degrees of freedom, they are usually 

called parasitic motions. In this section, these parasitic movements 

will be calculated as they will be compensated by the XY stage 

below the parallel manipulator. 

To begin with, the position of the center of the moving platform 

is described by the coordinates p x , p y , and p z , and its orientation 

is given by three angles � , θ and φ, which are defined as rotations 

around the X, Y and Z axes of the fixed frame. Therefore, the po- 

sition of the center of the moving platform can be expressed as: 

OP = 

{
p x p y p z 

}T 
(1) 

On the other hand, the zero position of the actuators in the 

fixed frame {x,y,z} is defined by: 

O A 1 = 

{
a 0 0 

}T 

O A 2 = 

{
−a/ 2 a 

√ 

3 / 2 0 

}T 

O A 3 = 

{
−a/ 2 −a 

√ 

3 / 2 0 

}T 

(2) 

Also, it is possible to define the position of the spherical joints 

in the moving frame {u,v,w} by means of the following relations; 

where the sub-index ‘m’ denotes that the vectors are expressed in 

the moving frame. 

P B 1m 

= 

{
b 0 0 

}T 

P B 2m 

= 

{
−b/ 2 b 

√ 

3 / 2 0 

}T 

P B 3m 

= 

{
−b/ 2 −b 

√ 

3 / 2 0 

}T 

(3) 

To transform any vector from the moving frame to the fixed 

frame, it is necessary to know the rotation matrix R that relates 

both systems, which is expressed as follows: 

R = R y (θ ) R x (ψ) R z (φ) = 

[ 

u x v x w x 

u y v y w y 

u z v z w z 

] 

= 

[ 

cθcφ + sψsθsφ −cθsφ + sψsθcφ cψsθ
cψsφ cψcφ −sψ 

−sθcφ + sψcθsφ sθsφ + sψcθcφ cψcθ

] 

(4) 

where c stands for to cosine and s refers to the sine. Also, u, v and 

w are defined as three unit vectors along the U, V and W axes of 

the moving reference system P . 

The position of each spherical joint regarding to the fixed refer- 

ence system can be expressed as: 

O B i = OP + R · P B im 

i = 1 , 2 , 3 (5) 

Developing OB i for each limb, the following three equations are 

obtained: 

O B 1 = 

{
p x + u x b p y + u y b p z + u z b 

}T 

O B 2 = 

{
p x − u x b 

2 
+ 

√ 

3 v x b 
2 

p y − u y b 

2 
+ 

√ 

3 v y b 
2 

p z − u z b 
2 

+ 

√ 

3 v z b 
2 

}T 

O B 3 = 

{
p x − u x b 

2 
−

√ 

3 v x b 
2 

p y − u y b 

2 
−

√ 

3 v y b 
2 

p z − u z b 
2 

−
√ 

3 v z b 
2 

}T 

(6) 

The revolute hinges set that the spherical joints can only move 

in the fixed planes defined by the linear actuators OA i and the legs 

of the manipulator C i B i . Therefore, the following three mechanical 

constraints are imposed to the mechanism: 

O B 1 y = 0 (7) 

O B 2 y = −
√ 

3 O B 2 x (8) 

O B 3 y = 

√ 

3 O B 3 x (9) 

Substituting the expressions of OB i from the Eq. (6) into the 

Eqs. (7) –(9) , and developing these expressions, the following equiv- 

alences are reached: 

p y = −u y b (10) 

p x = 

b 

2 

( u x − v y ) (11) 

u y = v x (12) 

Substituting the expressions of u i and v i from the rotation ma- 

trix R , in Eq. (4) , into Eqs. (10) and ( 11 ), the 3- P RS dependent vari- 

ables or parasitic motions are obtained: 

φ = atan 

(
sin ψ sin θ

cos ψ + cos θ

)
(13) 

p x = 

b 

2 

( cos θcos φ + sin ψ sin θsin φ − cos ψ cos φ) (14) 

p y = −b cos ψ sin φ (15) 

From Eq. (13) it can be stated that for small rotations around Z 

and Y, the parasitic rotation φ will be negligible. 

3.2. Inverse kinematics modeling 

The aim of the inverse kinematic problem is to find the values 

that should take the active joint coordinates of the mechanism s i , 

to reach a given position and orientation of the platform. Firstly, 

referring to Fig. 2 , the following relationships can be obtained. 

A i B i = O B i − O A i i = 1 , 2 , 3 (16) 

Where OB i and OA i are expressed in Eq. (6) and ( 2 ). Also, the ex- 

pression for C i B i can be written as: 

C i B i = L · l i0 = A i B i − A i C i = A i B i − s i · s i0 i = 1 , 2 , 3 (17) 

Where L is the length of the limbs, l i0 represents the unit vector 

along the direction of each leg and the unit vectors s io define the 

positive direction of motion of the actuators and are written as: 

s i0 = − O A i 
O A i 

i = 1 , 2 , 3 (18) 
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Fig. 3. Reference systems for the spherical joints rotation study. 

Rearranging and squaring the components of the Eq. (17) , a 

quadratic equation is found. 

s 2 
i 

− 2 s i · s i0 · A i B i + A i B i · A i B i − L 2 = 0 i = 1 , 2 , 3 (19) 

Solving Eq. (19) allows us to obtain the solutions for the inverse 

kinematic problem. 

s 
i 
= ( s i0 · A i B i ) ±

√ 

( s i0 · A i B i ) 
2 − A i B i · A i B i + L 2 i = 1 , 2 , 3 

(20) 

3.3. Passive coordinates 

In this subsection, the expressions for the angles of the both 

joints will be developed to calculate the rotations that are pro- 

duced in the hinges while the manipulator is performing a pro- 

grammed operation. 

3.3.1. Rotation at revolute joints 

The rotation in the revolute joints as consequence of a displace- 

ment of the manipulator can be obtained solving the following de- 

velopment. Referring to Fig. 2: 

l i0 = 

C i B i 
L 

i = 1 , 2 , 3 

(21) 

Knowing this information, the angles in the revolute joints can 

be calculated using the dot product of s i0 and l i0 , which have been 

shown in Eqs. (17) and ( 18 ). 

αi = acos 
(

l i0 ·s i0 
l i 0 ·s i 0 

)
i = 1 , 2 , 3 (22) 

3.3.2. Rotation at spherical joints 

To study the rotation at the spherical joints, two sets of moving 

frames have been used. The first set, F i = {m i n i l i }, will be fixed to 

the moving platform, and the other, F io = {m i0 n i0 l i0 }, will move 

together with the leg. Both have the origin located at the spheri- 

cal joints B i and overlap in the default position, with m i0 and m i 

parallel to each revolute joint axis and l i0 and l i aligned with each 

limb. A scheme can be seen in Fig. 3 for a pure vertical translation 

of the moving platform. Rotation angles around the m- and n-axes, 

βmi and βni , will make reference to the deflection of the joint and 

rotation around the l-axis, β li, will be the torsional deformation. 

Let’s consider here the following four rotation matrices: R im 

to 

relate F i with {u v w}, R mentioned in Eq. (4) to relate {u v w} 

with {x y z}, R iSjoint reflects the spherical joints rotation and re- 

lates F i with F i0 , and R iRjoint reflects the revolute joints rotation 

and relates F i0 with {x y z}. They meet the following relation: 

R iRjoint · R iSjoint = R · R im 

i = 1 , 2 , 3 (23) 

Hence, to obtain the spherical joint rotation, the angles between 

frames F i and F i0 must be calculated, which means calculating 

R iSjoint as a function of the other matrices: 

R iSjoint = R 

T 
iRjoint 

· R · R im 

i = 1 , 2 , 3 (24) 

To do that, first, vectors m i0 are developed as the characteristic 

vectors of the three planes at 120 º that constrain the motion of 

each leg to each plane. 

m 10 = 

{
0 −1 0 

}T 

m 20 = 

{√ 

3 
2 

1 
2 

0 

}T 

m 30 = 

{
−√ 

3 
2 

1 
2 

0 

}T 

(25) 

Unit vectors l io are calculated as shown in Eq. (21) . Finally, the 

unit vectors n i0 can be obtained by means of the cross product of 

l io and m i0 . 

n i0 = l i0 ∧ m i0 i = 1 , 2 , 3 (26) 

As a result, the rotation matrices R iRjoint that relate the frames 

of the legs F io with the global reference system {x, y, z} are: 

R i Rjoint = 

[
m i0 n i0 l i0 

]
i = 1 , 2 , 3 (27) 

On the other hand, the rotation matrices R im 

, that relate F i and 

{u, v, w} systems, are calculated. The unit vectors for each sys- 

tem F i can be defined by the following expressions in the moving 

frame: 

m 1m 

= 

{
0 −1 0 

}T 

n 1m 

= 

{
sin α0 0 cos α0 

}T 

l 1m 

= 

{
−cos α0 0 sin α0 

}T 

(28) 

m 2m 

= 

{√ 

3 
2 

1 
2 

0 

}T 

n 2m 

= 

{−sin α0 

2 

√ 

3 sin α0 

2 
cos α0 

}T 

l 2m 

= 

{
cos α0 

2 
−√ 

3 cos α0 

2 
sin α0 

}T 

(29) 

m 3m 

= 

{
−

√ 

3 
2 

1 
2 

0 

}T 

n 3m 

= 

{−sin α0 

2 
−√ 

3 sin α0 

2 
cos α0 

}T 

l 3m 

= 

{
cos α0 

2 

√ 

3 cos α0 

2 
sin α0 

}T 

(30) 

Being α0 = 45 º the default value of αi in the proposed case of 

study. Hence, each rotation matrix R im 

has the following expres- 

sion: 

R im 

= 

[
m im 

n im 

l im 

]
i = 1 , 2 , 3 (31) 

Substituting Eq. (31), Eq. (27) and Eq. (4) in Eq. (24) , R iSjoint 

is obtained. On the other hand, this matrix can be developed as 
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Fig. 4. Rotations performed between systems F i and F i0. 

a function of three rotations around all the axes system F io : βmi , 

βni , and β li, see Fig. 4 . The sequence consists of a rotation around 

the m-axis, followed by a rotation around the n-axis and ending 

with a rotation around the l-axis. Therefore, the rotation matrix 

that relates the systems F i with F i0 may also be expressed as the 

product of the above rotation matrices. 

R iSjoint = R mi R ni R li 

= 

⎡ 

⎣ 

c βni c βli −c βni s βli s βni 

s βmi s βni c βli + c βmi s βli −s βmi s βni s βli + c βmi c βli −s βmi c βni 

−c βmi s βni c βli + s βmi s βli c βmi s βni s βli + s βmi c βli c βmi c βni 

⎤ 

⎦ 

(32) 

Equaling the terms of the matrices in Eq. (24) and ( 32 ), the ro- 

tations in the spherical joints are obtained: 

βmi = atan ( −R i −i0 ( 2 , 3 ) / R i −i0 ( 3 , 3 ) ) i = 1 , 2 , 3 

βni = asin ( R i −i0 ( 1 , 3 ) ) 
βli = atan ( −R i −i0 ( 1 , 2 ) / R i −i0 ( 1 , 1 ) ) 

(33) 

3.4. Forward kinematics modeling 

The forward kinematic problem determines the position and 

orientation of the platform with respect to the fixed frame, when 

the values of the actuated joints are known. Referring to Fig. 2 , the 

following equivalences can be obtained by imposing a fixed length, 

L, for each limb of the mechanism: 

O B i − O C i = O B i − ( O A i + A C i ) = C i B i i = 1 , 2 , 3 (34) 

| O B i − O C i | 2 = L 2 (35) 

The developed expressions can be observed in the Appendix A . 

The previous calculated relationships together with the Eqs. (13) –

(15) form a system of six equations which must be solved. As in- 

puts for the system, the displacements of the actuators, s i , and 

the initial position of the platform { p x0 , p y0 , φ0 } are introduced. 

By means of an algebraic-loop solver in Matlab Simulink, the real 

position of the platform p z , � , θ is calculated. These solutions will 

be used as direct feedback to the resolution process, see Fig. 5. 

4. Joint requirements 

As stated in Section 2 , the compliant 3- P RS must be able to 

achieve a Z travel of ±2 mm. With regard to the rotations around 

the X and Y axes, an objective has been set in ensuring minimum 

values of ±0.2 º over the entire range of Z. After taking into ac- 

count the whole footprint of the hybrid manipulator, the modal 

frequencies and the minimum static stiffness needed in the plat- 

form to minimize the legs deflection due to the cutting forces, the 

dimensions selected for the prototype are a length L of the legs of 

109.215 mm, measured between the center points of the two flex- 

ure stages, a distance b from the platform axis to the center of 

the spherical joints of 47.91 mm, and a value of 45 º for the three 

passive angles α in the default position. With 45 º, no amplification 

happens, so the prismatic joints actuators must provide at least a 

travel range of ±2 mm. The section of the legs is 10 ×10 mm 

2 . An 

aluminum alloy 7075 with a Young modulus of 72 GPa, a Poisson’s 

ratio of 0.33 and a density of 2.81 g/cm 

3 has been used for the first 

prototype. 

These requirements have been introduced in the inverse kine- 

matics problem (IKP) and the displacements on the actuators and 

the passive angles in the joints have been calculated. In Fig. 6 , the 

studied positions are shown. As it can be seen in the first three 

graphs, the IKP has been solved with all the possible combinations 

of a Z displacement of ±2 mm and rotations ψ and θ of ±0.2 º. As 

a result, the required displacements of the actuated joints, s i , are 

achieved. They are comprised between −2.15 mm and 2.30 mm, see 

the fourth graph of Fig. 6 . With regard to the rotation of the rev- 

olute joints, αi must reach a variation of ±1.7 º and regarding the 

rotations in the spherical hinges, the angles that must be reached 

are βm 

= ±1.9 º, βn = ±0.2 º and β l = ±0.2 º, see Fig. 7. 

5. FEM based design of the 3- P RS compliant mechanism joints 

To design and analyze the performance of the prototype, sim- 

ulations using ANSYS Workbench FEM software have been made 

and the main features of the flexure stage have been obtained. In 

Fig. 8 an example of the designed stage and the mesh is shown. 

The mesh applied to the mechanism consists of a tetrahedral mesh. 

The nodes size in the flexure joints has been reduced with a ratio 

10:1 respect to the whole structure to obtain more accurate re- 

sults in the areas with a high deformation and stress concentra- 

tion. Quadratic tetrahedrons have been used for the mesh. 

To obtain the final dimensions of the flexure joints, an opti- 

mization process has been developed. The first step has been to 

know the displacement requirements of the joints by means of the 

inverse kinematics, as explained in Section 3 . Once this informa- 

tion is known, the design of the joints can be done [24] , attending 

to the following conditions: a) the joints must be able to achieve 

the required movements, and b) the maximum stress has to be 

controlled to not enter in the plastic zone. The Al 7075 tensile yield 

strength is equal to 503 MPa. A safety factor has been established, 

so a stress greater than 400 MPa has not been overcome. 

To characterize the revolute hinge, one side has been fixed and 

a moment has been applied in the other side. For the spherical 

joint, as in the previous case, one side has been fixed and two 

moments have been applied in the other side. In both cases, the 

fixed side and the applied loads have been located at a distance of 

20 mm from the compliant bodies [25] . The aim is to avoid local 

disturbances by the boundary conditions in the points where the 

measurements have been performed and therefore, a reduction in 

the accuracy of the results. With these configurations, it is pos- 

sible to measure both the maximum stresses and displacements 

supported in the joints, see Fig. 9. 

Once the potential joints are obtained, they are introduced in 

the whole structure. It should be noted that their behavior can 

vary when they are subjected to the working conditions of the 

mechanism. For that reason, the next step has been to calcu- 

late the features of the whole structure. A static structural analy- 

sis has been performed, applying several force steps in the place 

of the actuators. Thanks to this, the relations between the ap- 

plied forces and movements in the actuators and the displace- 

ments on the platform have been calculated. What is more, the 

maximum stress in the structure, which occurs in one of the 

flexure joints, has been controlled to avoid exceeding a stress 

greater than 400 MPa, as in the joints design. Also the maximum 
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Fig. 5. Forward kinematic resolution scheme. 

Fig. 6. Movements on the platform (z, ψ , θ ) and displacements in the actuators (s i ). 

stresses supported in the hinges have been controlled to achieve 

similar values in both revolute and spherical joints. The objec- 

tive is to avoid weaknesses in the structure due to higher effort s 

on specific type of compliant hinge, see Fig. 10 . A relation be- 

tween the maximum stresses supported in the joints comprised 

between 1 ± 0.2 has been stablished as a design condition. Regard- 

ing the computational time, an average joint analysis has taken 

384.3 s and an average analysis for the whole manipulator has 

taken 3846.2 s with an Intel-Core i5-2430 M with 2.4 GHz and 6 GB 

of RAM. 

As design parameters, the radius and thickness for the revo- 

lute joints, and radius, thickness and length for the spherical joints 

have been chosen. Depending of the variation of any of these 

items, new features in the mechanism can be obtained. From the 

authors experience designing a compliant 3- P RS, the influences of 

all of them have been determined. Some useful indications to get 

a new mechanism i + 1 starting from a previous case design i are 

shown in Table 1 . As can be seen, for instance, an increase in the 

thickness of the revolute joint causes a significant increment in the 

stiffness of the structure, by a factor greater than 1.5, while the Z 
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Fig. 7. Rotations in revolute joints ( αi ) and in spherical joints ( βmi , βni , β li ). 

Table 1 

Influence of the design parameters in the structure. 

Fig. 8. 3- P RS compliant mechanism model. 

displacement and the relation of maximum stresses in the joints 

suffer a slighter reduction with a factor of 0.8. By contrast, an in- 

crease in the length of the spherical joint causes a tinier reduction 

of the structural stiffness, an important increase of the Z displace- 

ment and a notable reduction of the relation of maximum stresses. 

Different radii, lengths and thicknesses have been applied to the 

revolute and spherical flexure joints to obtain the desired motions 

Table 2 

Static forces, displacements and stress at the joints. 

Actuator 1 F 1 (N) 20 40 60 

s 1 (mm) 0.935 1.899 2.865 

Actuator 2 F 2 (N) 20 40 60 

s 2 (mm) 0.935 1.899 2.865 

Actuator 3 F 3 (N) 20 40 60 

s 3 (mm) 0.935 1.899 2.865 

Platform z (mm) 0.933 1.896 2.859 

Joints Max. stress (MPa) 169.25 344.01 518.78 

in the platform and to fulfill the imposed conditions. An iterative 

process has been developed and as a result, the optimal structure 

has been obtained. The diagram illustrating the design process can 

be observed in Fig. 11. 

For the revolute hinge, the achieved values have been 

R rev = 8 mm and t rev = 2 mm. Measuring the deformation pro- 

duced in the joint, the rotational stiffness around the Y axis 

is K Rrev = 98.37 Nm/rad. For the spherical joint, the selected di- 

mensions have been l sph = 5 mm, t sph = 3 mm and R sph = 4 mm. 

Also, the flexural stiffness and the torsional stiffness are 

K Rsph = 32.67 Nm/rad and K Tsph = 24.46 Nm/rad. 

As an example, for a Z displacement of the platform, the ob- 

tained results in FEM analysis are shown in Table 2 . Some force 
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Fig. 9. Loading and deformation of the joints. Above: bending of the revolute joint; 

middle and below: bending and torsion of the spherical joint. 

Fig. 10. Stressed areas of the joints during a Z displacement. 

steps have been applied to the actuators and the occurred dis- 

placements in them and on the platform and the maximum stress 

in the mechanism have been measured. Attending to the linear be- 

havior of the values, for a stress of 400 MPa, a displacement in z 

direction equal to 2.205 mm should be achieved. 

6. Experimental methodology 

To validate experimentally the results obtained in the previous 

sections, a prototype has been built, see Fig. 12 . The actuation sys- 

tem of the mechanism consists of three identical actuators based 

on a RE-40 Maxon DC motor with a GP-32A gearbox of 14:1 gear 

ratio. Flexible couplings are used to connect the output shafts of 

the gearboxes to three Igus ZLW-1040-02-S-100 linear belt drives. 

Regarding the control of the device, a PID cascaded position, ve- 

locity and current control has been used, see Fig. 11 . The position 

is controlled in the first stage on a NI-PXIe 1032 with a Real-Time 

operating system. The position control loop is based on a propor- 

tional gain with a value of 2.5s −1 and a 5 ms cycle time. The veloc- 

ity reference, which is the output of this stage, is sent to the mo- 

tor driver Maxon EPOS2 50/5 through a CANOPEN interface, where 

the velocity and current regulation is performed. As for the veloc- 

ity control loop, a PI velocity regulator is employed, whose propor- 

tional gain value is of 0.9Arad 

−1 and the integral gain is of 0.001 

Asrad 

−1 , and 1 ms has been stablished as cycle time. A current ref- 

erence, that is the output of the velocity controller, is handled by 

Fig. 11. Scheme of the design process. 

a PI current controller. The torque constant of the RE-40 motors is 

30.2 ×10 −3 Nm/A. The end platform position commands are con- 

verted to a θ reference into the motors using the IKP and the θ
control is performed. To measure the real position of the manip- 

ulator, an external position measuring device has been used, that 

is, a coordinate measuring machine (CMM) ZEISS MC850 with soft- 

ware ZEISS CALYPSO. 

6.1. Dimensional verification 

Here, the default position of all components has been measured 

[26] . The selected measurements to perform have been: 1) angles 

between the guides, Fig. 1: OA i −OA i + 1 ; 2) position and orientation 

of each base, Fig. 1: points C i ; 3) heights and overhead planes of 

legs, Fig. 1: L i ·sin α0 ; 4) position and orientation of the platform, 

Fig. 1: point P; and actuators position, Fig. 1: points A i . In the 

following paragraphs, the procedure to obtain all of them is ex- 

plained. 

Firstly, the angular position between the guides in XY plane was 

obtained. To do that, several points on each side of the guides were 

measured at the same height, as can be seen in Fig. 13 . With the 

coordinates of these points, two equations for each guide were ob- 

tained, providing the angles between the guides. The measured an- 

gles can be observed in Table 3. 

Secondly, the position and orientation of each base was mea- 

sured. The purpose was to know if the supports where the legs 

of the prototype were attached were in the same plane, see Fig. 

13 . The reference plane (RF) to measure was placed on the surface 

of the CMM to avoid possible inclinations. Several points in each 

base were measured to obtain the average height and the plane 

in which were located. With these planes, tilt and location errors 

could be accounted. In Table 3 , the heights and the angles around 

the X and Y axes of each base are shown. The average height of 
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Fig. 12. Left) developed prototype; Right) control architecture for the motor of the actuation system. 

Fig. 13. Dimensional verification. 

them is 77.472 mm. It will be necessary to calculate the height of 

the prototype. 

Thirdly, the prototype was assembled without the upper plat- 

form and the heights and the overhead planes of the legs were 

measured, see Fig. 13 . The average height of each leg can be ob- 

served in Table 3 . The next step was to perform the complete 

assembly of the prototype and measure both the height and the 

inclination of the platform. To do that, several points were mea- 

sured in the upper surface and in the contour of the platform, see 

Fig. 13 , and the plane surface and the axis of the cylinder of the 

platform were obtained. Intersecting these two elements, the co- 

ordinate center and the height of this point were obtained. Also, 

knowing the equation of the plane, the inclination of the platform 

around the X and Y axes is determined. These results are shown in 

Table 3. 

Finally, the position of the actuators relative to the fixed frame 

was also measured. These values allow knowing the real displace- 

ments of the actuators when a movement is programmed to the 

mechanism. To do that, the backplane location of each base was 

measured, see Fig. 13 . Knowing the equations of the planes and 

the place of coordinate center, the position of the actuators can be 

achieved. These magnitudes can be observed in Table 3. 

In view of the results, the average deviations have been: 

ε OAi-OAi + 1 = 0 º3 ′ 12 ′ ′ in the angles between the guides; 

ε C = 0.254 mm, ε �c = 0 º14 ′ 3 ′ ′ and ε θc = 0 º8 ′ 19 ′ ′ in the posi- 

tion and orientation of the basis; ε L • Sin α = 0.452 mm in the height 

of the legs; ε A = 0.134 mm in the position of the actuators, and 

ε p = 0.164 mm, ε �p = 0 º2 ′ 9 ′ ′ and ε θp = 0 º7 ′ 48 ′ ′ in the position 

and orientation of the platform. These differences between the 

design parameters and the real values are due to the introduced 
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Table 3 

Dimensional verification results. Distances in millimeters angles in DMS notation. 

Guides Basis 

Axes Angles Plane Height ψ θ

Design Error Design Error Design Error Design Error 

OA 1 –OA 2 120 º −0 º 5 ′ 24 ′ ′ C1 77 .500 −0 .080 0 º −0 º 0 ′ 3 ′ ′ 0 º −0 º 0 ′ 10 ′ ′ 
OA 2 –OA 3 120 º −0 º 1 ′ 12 ′ ′ C2 77 .500 −0 .343 0 º 0 º 23 ′ 49 ′ ′ 0 º −0 º 9 ′ 21 ′ ′ 
OA 3 –OA 1 120 º 0 º 3 ′ 0 ′ ′ C3 77 .500 0 .338 0 º 0 º 17 ′ 34 ′ ′ 0 º 0 º 15 ′ 25 ′ ′ 

Legs Actuators 

Leg Height to RF Leg height Actuator Plane A i 

Design Error Design Error Design Error 

H leg1 189 ,728 −0 .031 112 .228 0 .049 Act. 1 194 .232 0 .069 

H leg2 189 ,728 0 .478 112 .228 0 .822 Act. 2 194 .232 0 .069 

H leg2 189 ,728 0 .822 112 .228 0 .484 Act. 3 194 .232 0 .265 

PLATFORM 

Plane Height to RF Prototype height ψ θ

Design Error Design Error Design Error Design Error 

P 197 .228 0 .136 119 .728 0 .164 0 º 0 º 2 ′ 9 ′ ′ 0 º 0 º 7 ′ 48 ′ ′ 

Table 4 

Comparison of CMM, FEM and FKP measurements. 

�s (μm) �z (μm) �ψ (DMS) �θ (DMS) 

�s 1 �s 2 �s 3 CMM FEM FKP CMM FEM FKP CMM FEM FKP 

1395 1531 1306 1471 1408 1384 7 ′ 47 ′ ′ 4 ′ 5 ′ ′ 8 ′ 59 ′ ′ 5 ′ 13 ′ ′ 0 ′ 33 ′ ′ 1 ′ 4 ′ ′ 
777 685 725 714 727 722 2 ′ 41 ′ ′ −0 ′ 45 ′ ′ −1 ′ 38 ′ ′ 0 ′ 16 ′ ′ −1 ′ 30 ′ ′ −3 ′ 23 ′ ′ 
−676 −494 −706 −636 −624 −631 −2 ′ 17 ′ ′ 3 ′ 53 ′ ′ 8 ′ 55 ′ ′ −3 ′ 34 ′ ′ 1 ′ 35 ′ ′ 3 ′ 41 ′ ′ 
−1485 −1175 −1781 −1437 −1478 −1511 9 ′ 8 ′ ′ 11 ′ 5 ′ ′ 26 ′ 6 ′ ′ 4 ′ 21 ′ ′ 0 ′ 6 ′ ′ 0 ′ 11 ′ ′ 

errors during the manufacturing and assembly of the prototype. 

All of them will be considered as starting errors in the following 

developments because a positioning error is introduced in the 

mechanism due to these deviations with regard to the design 

parameters. 

6.2. Kinematics verification 

Here, a series of movements were programmed and the real 

displacements at the platform and actuators were measured by 

means of the CMM measuring external device. Two movements in 

the positive direction of the actuator and other two movements in 

the negative direction were scheduled. 

To perform this task, it was necessary to measure several points 

on the top surface of the end platform and in the backplane of 

each base. Knowing the default position of the prototype and the 

planes containing these measured points and their position, the 

real displacement and rotation of the platform and the displace- 

ments of the actuators were achieved. 

In Table 4 , in the first three columns, the real displacements 

�s 1, �s 2, �s 3 , are shown. These measured movements in the ac- 

tuators were introduced in a FEM analysis of the prototype. As a 

result, the displacements on the platform during the FEM analysis, 

z FEM 

, ψ FEM 

, θ FEM 

, were compared with those measured with the 

CMM, z CMM 

, ψ CMM 

, θCMM 

. Also, to check the validity of the rigid 

body kinematics, the real displacements of the actuators have also 

been introduced into the forward kinematic problem (FKP) and its 

solutions, z FKP , ψ FKP , θ FKP , have been compared with the measure- 

ments from the CMM. All the results can be observed in Table 4. 

In Table 5 , the absolute errors of the FEM and FKP predictions 

regarding the CMM measurements are shown. Comparing the posi- 

tion of the end platform measured by the CMM and the FEM pre- 

dictions, the linear errors in Z direction are always under 70 μm, 

and the angular errors are less than 7 ′ , see Table 5 . Also, while the 

linear error is somewhat proportional to the displacement, grow- 

ing for higher displacements, the angular error behavior is more 

erratic. Due to the fact that the deformation of the mechanism 

is relatively small and linear, the Z displacement is a 1,3% of the 

length of the limbs, the FEM estimations calculated with a static 

analysis should be considered as a good reference, being the main 

uncertainty the quality of the mesh and the parameters of the ma- 

terial. So, the deviations observed can be attributed mainly to the 

measured errors in the prototype due to the manufacturing and 

assembling stage. 

Comparing the CMM measurements with the FKP predictions, 

similar trends are observed. However, it must be noted that the 

linear error in Z grows even higher for larger displacements. It is 

something predictable, as the hypothesis of considering the kine- 

matics of the compliant mechanism as equal to a conventional 

one is known to lose validity for larger deformations of the flex- 

ure joints. Due to the length of the spherical joints, their deflec- 

tion in large displacements introduces not only a rotation around 

their central point, but also a translation of the central point it- 

self, which is not considered in the rigid body kinematics. Here, 

the limit for that hypothesis is observed to be around the millime- 

ter in Z displacement, approximately a 0.9% of the length of the 

limbs. Below that limit, it must be noted that the error of the FKP 

predictions in Z translation is always below 10 μm, very close to 

the predictions of the FEM. 

In order to avoid the prototype imperfections in the calcula- 

tions, it is possible to consider the FEM predictions as optimal re- 

sults to verify the FKP solutions. The comparison between both 

cases is shown in Table 6 . As it was commented previously, sim- 

ilar results are obtained for small displacements, with deviations 

fewer than 8 μm for Z displacements, increasing these differences 

when the introduced movements are larger. Therefore, the validity 

of the FKP model for designing a 3- P RS compliant parallel mecha- 

nism under small displacements is demonstrated, and the limit for 
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Table 5 

Absolute errors in the CMM measurements compared to the FEM and FKP predictions. 

�z (μm) �ψ (DMS) �θ (DMS) 

CMM FEM FKP CMM FEM FKP CMM FEM FKP 

| ε abs | | ε abs | | ε abs | | ε abs | | ε abs | | ε abs | 

1471 63 87 7 ′ 47 ′ ′ 3 ′ 42 ′ ′ 1 ′ 12 ′ ′ 5 ′ 13 ′ ′ 4 ′ 40 ′ ′ 4 ′ 9 ′ ′ 

714 13 8 2 ′ 41 ′ ′ 3 ′ 25 ′ ′ 4 ′ 18 ′ ′ 0 ′ 16 ′ ′ 1 ′ 46 ′ ′ 3 ′ 39 ′ ′ 

−636 12 5 −2 ′ 17 ′ ′ 6 ′ 11 ′ ′ 11 ′ 12 ′ ′ −3 ′ 34 ′ ′ 5 ′ 9 ′ ′ 7 ′ 15 ′ ′ 

−1437 41 74 9 ′ 8 ′ ′ 1 ′ 57 ′ ′ 16 ′ 58 ′ ′ 4 ′ 21 ′ ′ 4 ′ 15 ′ ′ 4 ′ 10 ′ ′ 

Table 6 

Comparison of FEM and FKP predictions. 

�z (μm) �ψ (DMS) �θ (DMS) 

FEM FKP FEM FKP FEM FKP 

| ε abs | | ε abs | | ε abs | 

1408 24 4 ′ 5 ′ ′ 4 ′ 54 ′ ′ 0 ′ 33 ′ ′ 0 ′ 31 ′ ′ 

727 5 −0 ′ 45 ′ ′ 0 ′ 53 ′ ′ −1 ′ 30 ′ ′ 1 ′ 53 ′ ′ 

−624 7 3 ′ 53 ′ ′ 5 ′ 2 ′ ′ 1 ′ 35 ′ ′ 2 ′ 6 ′ ′ 

−1478 33 11 ′ 5 ′ ′ 15 ′ 1 ′ ′ 0 ′ 6 ′ ′ 0 ′ 5 ′ ′ 

its assumptions can be quantified in a 0.9% of the length of the 

limbs. 

7. Conclusions 

In the present work, a procedure for the development, valida- 

tion and evaluation of a 3- P RS compliant parallel manipulator has 

been proposed. To do that, first a study of the solid body kine- 

matics of the mechanism has been performed under the assump- 

tion of small displacements, solving both the inverse and forward 

kinematic problem. The equations of the parasitic displacements as 

well as the necessary rotations on the revolute and spherical flex- 

ure joints are also provided. 

Then, a design approach based on FEM analysis for the design 

of compliant parallel manipulators has been detailed, dividing the 

mechanical design in two stages, first, the design of the flexure 

joints, and then, the evaluation of the whole mechanism. The it- 

erative process to achieve the optimal solution for a 3- P RS compli- 

ant mechanism has been shown, providing useful guidelines that 

relate the overall stiffness, displacement and stresses with the ge- 

ometrical parameters of the flexure joints. 

An experimental validation has been done on a prototype, us- 

ing an external measurement of both the end platform and the 

actuated joints position by means of a coordinate measuring ma- 

chine, verifying first the dimensions of the prototype and then the 

displacements performed. Those results have been compared with 

the FKP and FEM estimations during the design stage. The hypoth- 

esis of using the solid body kinematics for a compliant mecha- 

nism whenever the displacements are small has been experimen- 

tally tested, demonstrating that it provides reliable results if the 

end platform linear displacement is below a 0.9% of the length of 

the limbs. Above that limit, only FEM calculations must be trusted. 
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Appendix 

A. Forward Kinematics Modeling 

Developing Eq. (35) for each leg, the resulting expressions can 

be obtained: 

Expressions for Leg 1 

( O B 1 − O C 1 ) 
2 
x + ( O B 1 − O C 1 ) 

2 
y + ( O B 1 − O C 1 ) 

2 
z − L 2 = 0 (A.1) 

The expressions for the components of OB 1 can be observed in 

Eq. (6) . On the other hand, the vector OC 1 can be defined as: 

O C 1 = 

{ 

a − s 1 
0 

0 

} 

(A.2) 

Therefore, substituting in Eq (A.1) , the following equation is 

reached: 

( p x + b · u x − a + s 1 ) 
2 + ( p y + b · u y ) 

2 + ( p z + b · u z ) 
2 − L 2 = 0 

(A.3) 

Finally, substituting the expressions of the components of the 

rotation matrix showed in Eq. (4) , the resulting equation for Leg 1 

is obtained: 

( p x + b ( cθcφ + sψsθsφ) − a + s 1 ) 
2 + ( p y + bcψsφ) 

2 

+ ( p z + b ( −sθcφ + sψcθsφ) ) 
2 − L 2 = 0 (A.4) 

Expressions for Leg 2 

( O B 2 − O C 2 ) 
2 
x + ( O B 2 − O C 2 ) 

2 
y + ( O B 2 − O C 2 ) 

2 
z − L 2 = 0 (A.5) 

The expressions for the components of OB 2 can be observed in 

Eq. (6) . On the other hand, the vector OC 2 can be defined as: 

O C 2 = 

⎧ ⎨ 

⎩ 

( a − s 2 ) ·
(
− 1 

2 

)
( a − s 2 ) ·

√ 

3 
2 

0 

⎫ ⎬ 

⎭ 

(A.6) 

Therefore, substituting in Eq. (A.5) , the following equation is 

reached: (
p x − b 

2 
· u x + 

√ 

3 b 
2 

· v x + 

a −s 2 
2 

)2 

+ 

(
p y − b 

2 
· u y + 

√ 

3 b 
2 

· v y −
√ 

3 ( a −s 2 ) 
2 

)2 

+ 

(
p z − b 

2 
· u z + 

√ 

3 b 
2 

· v z 
)2 

− L 2 = 0 

(A.7) 

Finally, substituting the expressions of the components of the 

rotation matrix showed in Eq. (4) , the resulting equation for Leg 2 
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is obtained: (
p x − b 

2 ( cθcφ + sψsθsφ) + 

√ 

3 b 
2 ( −cθsφ + sψsθcφ) + 

a −s 2 
2 

)2 

+ 

(
p y − b 

2 ( cψsφ) + 

√ 

3 b 
2 ( cψcφ) −

√ 

3 ( a −s 2 ) 
2 

)2 

+ 

(
p z − b 

2 ( −sθcφ + sψcθsφ) + 

√ 

3 b 
2 ( sθsφ + sψcθcφ) 

)2 

− L 2 = 0 

(A.8) 

Expressions for Leg 3 

( O B 3 − O C 3 ) 
2 
x + ( O B 3 − O C 3 ) 

2 
y + ( O B 3 − O C 3 ) 

2 
z − L 2 = 0 (A.9) 

The expressions for the components of OB 3 can be observed in 

Eq. (6) . On the other hand, the vector OC 3 can be defined as: 

O C 3 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

( a − s 3 ) ·
(
− 1 

2 

)
( a − s 3 ) ·

(
−

√ 

3 
2 

)
0 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(A.10) 

Therefore, substituting in Eq. (A.9) , the following equation is 

reached: (
p x − b 

2 
· u x −

√ 
3 b 
2 

· v x + 

a −s 3 
2 

)2 

+ 

(
p y − b 

2 
· u y −

√ 
3 b 
2 

· v y + 

√ 
3 ( a −s 3 ) 

2 

)2 

+ 

(
p z − b 

2 
· u z −

√ 
3 b 
2 

· v z 
)2 

− L 2 = 0 

(A.11) 

Finally, substituting the expressions of the components of the 

rotation matrix showed in Eq. (4) , the resulting equation for Leg 3 

is obtained: (
p x − b 

2 ( cθcφ + sψsθsφ) −
√ 

3 b 
2 ( −cθsφ + sψsθcφ) + 

a −s 3 
2 

)2 

+ 

(
p y − b 

2 ( cψsφ) −
√ 

3 b 
2 ( cψcφ) + 

√ 

3 ( a −s 3 ) 
2 

)2 

+ 

(
p z − b 

2 ( −sθcφ + sψcθsφ) −
√ 

3 b 
2 ( sθsφ + sψcθcφ) 

)2 

− L 2 = 0 

(A.12) 
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