Pressure/Work Exchanger Boost Pressure

6 %

DOS PASOS CON Intercambiador de Trabajo/Presión

Programa O.I. licenciado a: Cálculo creado por: Proyecto: Caudal bomba alta pres:	Alfonso Alfonso 1419.9	1402.6	m3/hr	Caudal de Permeado: Caudal agua cruda:	33666,67	30300,00 71448.1	
Presión Alim.:	57,2	10,3		Recuperación:	45,0	90,0	
Temp. Agua Alim.:	,	26,0	C(79F)	Recup. total sistema:	,	42,4	%
pH Agua Alim.:	8,10	9,50	, ,	Edad de las Membranas:		3,5	años
Dosis Químico, ppm, ppm	0,4	4,5		Disminución flux %/año:	7,0	7,0	
				Factor de Ensuciamiento	0,80	0,80	
				Incremento paso sales,	10,0	10,0	
				%/año:			
Flux promedio:	8,9	24,5	lm2hr	Tipo de Alimentación:	Agua de mar	 toma abier 	ta

Etapa	Perm. Flujo	Cauda Alim.	al/tubo Conc.	Flux	Beta		Contra. iones	Elemento Tipo	Elem. N?	Arreglo
	m3/hr	m3/hr	m3/hr	l/m2-hr		bar	bar	•		
1-1	1402,8	5,6	3,1	8,9	1,01	56,5	0.0	SWC4B MAX	3864	552x7
2-1	935,5	11,7	3,9	27,2	1,23	8,4	0.0	ESPAB MAX	840	120x7
2-2	327,0	7,8	2,3	19,0	1,23	7,2	0.0	ESPAB MAX	420	60x7

	Agua cruda	Agua luego de ajuste	Agua Alim.	Permeado	Conc.	Rechazo SER
lón	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
Ca	450,0	430,2	442,4	0,010	803,5	782,5
Mg	1400,0	1338,4	1376,3	0,033	2499,7	2434,4
Na	12349,5	11852,6	12184,5	6,493	22046,0	21470,0
K	420,0	403,6	414,8	0,343	749,7	730,1
NH4	0,0	0,0	0,0	0,000	0,0	0,0
Ва	0,000	0,000	0,000	0,000	0,000	0,0
Sr	5,000	4,780	4,915	0,000	8,928	8,7
CO3	20,7	24,4	25,3	0,002	53,1	51,0
HCO3	170,0	164,5	168,5	0,283	286,5	279,6
SO4	3000,0	2868,8	2949,8	0,088	5357,3	5217,3
CI	21980,4	21086,1	21677,2	10,183	39239,9	38214,7
F	1,5	1,4	1,5	0,003	2,7	2,6
NO3	1,0	1,0	1,0	0,022	1,8	1,7
В	5,00	5,04	5,15	0,381	8,60	8,4
SiO2	0,0	0,0	0,0	0,00	0,0	0,0
CO2	0,82	0,61	0,61	0,00	0,00	0,61
TDS	39799,6	38180,7	39251,3	17,84	71057,8	69201,1
Ha	8.10	8.10	8.10	8.43	8.01	

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	23%	23%	48%
SrSO4 / Ksp * 100:	16%	16%	33%
BaSO4 / Ksp * 100:	0%	0%	0%
Sat. SiO2:	0%	0%	0%
Indice Sat. de Langelier	1,36	1,38	1,79
Indice Sat. de Stiff & Davis	0,38	0,41	0,76
Fuerza iónica	0,79	0,78	1,40
Presión osmótica	29,2 bar	28,8 bar	52,2 bar

H.P. Differential of Pressure/Work Exchanger 0.5 bar Fuga de Intercambiador de trabajo/Presión 1 %

Mezcla Volumétrica

bar

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía del producto o rendimiento del sistema es expresada o implícita, a menos que sea proporcionada en una garantía separada firmada por un representante autorizado de Hydranautics. Los cálculos de la presión de alimentación aplicada son las mejores estimaciones para asistir al cliente en el dimensionamiento de la bomba de alta presión y no son una representante autorizato de representante autorizato de representante autorizato de la presión actual de operación durante la vida del producto. Las presión es alimentacion aplicada son inate parantía de la presión actual de operación durante la vida del producto. Las presiónes calculadas contienen un margen de seguridad para assegurar que las bombas de alimentación sena apropiadamente dimensionadas basándose en la información proporcionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son proporcionados para la conveniencia y están basados en varias hipótesis acerca de la calidad y la composición del agua de alimentación. Como la cantidad de reactivos químicos necesarios para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantíza el consumo de reactivos químicos squímicos químicos químicos. Si se requiere una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente (8/63)

2-2

6,0

DOS PASOS CON Intercambiador de Trabajo/Presión

	na O.I. li creado			fonso									
Proyect		-		fonso 1419,9	1402,6	m3/hr		l de Perme Il agua crue		33666	6,67	30300,00 71448,1	m3/d m3/d
Presión	Alim.:	-	·.	57,2	10,3	bar	Recup	eración:		2	45,0	90,0	%
Temp. / pH Agu	Agua Ali a Alim.:	m.:		8,10	26,0 9,50	C(79F)		. total siste de las Mem				42,4 3,5	% años
	Químico,	ppm, pp	om	0,4	4,5		Dismir	nución flux de Ensuci	%/año:	(7,0 0,80	7,0 0,80	
							Increm	nento paso			10,0	10,0	
Flux pro	omedio:			8,9	24,5	lm2hr	%/año Tipo d	: e Alimenta	ción:	Agua de mar - toma abierta			ta
Etapa		erm.	Cauda	al/tubo	Flux	r B	Beta	Conc.&C	ontra	Elemen		Elem.	Arreglo
Ещро	F	lujo	Alim.	Conc.			ota	Presio	nes	Tipo		N?	rinogio
1-1		3/hr 02,8	m3/hr 5,6	m3/hr 3,1	l/m2-l 8,9		,01	bar 56,5	bar 0.0	SWC4B N	ЛАX	3864	552x7
2-1 2-2		35,5 27,0	11,7 7,8	3,9 2,3	27,2 19,0		,23 ,23	8,4 7,2	0.0	ESPAB N ESPAB N		840 420	120x7 60x7
									0.0				σολί
etapa	Elem Nº	Alim. pres	Pres gota	Perm flujo	Perm Flux	Beta	Perm sal	Conc. osm	Ca	Mg	e Perm Cl	Ion levels B	SiO2
		Bar	Bar	m3/hr	l/m2h		SDT (ppm)	pres					
				0.0	40.0	4.05		00.0	0.07		70	0.07	0.00
1-1 1-1	1 2	57,2 57,0	0,2 0,1	0,8 0,6	18,8 14,3	1,05 1,04	127,7 155,0	33,3 37,9	0,37 0,44	1,14 1,38	72 87	0,37 0,44	0,00 0,00
1-1 1-1	3	56,9	0,1	0,4	10,5	1,03	187,2	42,1	0,53	1,66	105	0,52	0,00
1-1 1-1	4 5	56,8 56,7	0,1 0,1	0,3 0,2	7,6 5,0	1,02 1,02	223,9 267,1	45,7 48,4	0,64 0,76	1,99 2,37	125 149	0,61 0,71	0,00 0,00
1-1	6	56,6	0,1	0,1	3,5	1,02	313,0	50,6	0,90	2,78	175	0,82	0,00
1-1	7	56,5	0,1	0,1	2,5	1,01	362,7	52,2	1,04	3,22	203	0,93	0,00
2-1 2-1	1 2	10,3 9,8	0,4 0,4	1,3 1,2	31,9 29,3	1,11 1,10	4,6 5,0	0,3 0,4	0,00 0,00	0,01 0,01	2 3	0,16 0,17	0,00 0,00
2-1	3	9,5	0,4	1,1	28,1	1,13	5,0 5,3	0,4	0,00	0,01	3	0,17	0,00
2-1	4	9,2	0,2	1,1	27,0	1,14	5,6	0,5	0,00	0,01	3	0,20	0,00
2-1 2-1	5 6	8,9 8,7	0,2 0,2	1,1 1,0	26,1 25,2	1,16 1,19	6,1 6,8	0,6 0,7	0,00 0,00	0,01 0,01	3 4	0,21 0,23	0,00 0,00
2-1	7	8,6	0,1	1,0	24,3	1,23	7,7	0,8	0,00	0,02	4	0,25	0,00
2-2	1	8,2	0,2	0,9	22,6	1,12	8,4	1,0	0,01	0,02	4	0,24	0,00
2-2 2-2	2 3	8,0 7,8	0,2 0,2	0,9 0,8	21,4 20,3	1,10 1,15	9,2 10,2	1,1 1,3	0,01 0,01	0,02 0,02	5 6	0,26 0,28	0,00 0,00
2-2	4	7,7	0,2	0,8	19,2	1,16	11,5	1,5	0,01	0,02	6	0,20	0,00
2-2	5	7,5	0,1	0,7	18,0	1,18	13,2	1,8	0,01	0,03	7	0,32	0,00
2-2 2-2	6 7	7,4 7,3	0,1 0,1	0,7 0,6	16,5 14,7	1,21 1,24	15,4 18,5	2,2 2,8	0,01 0,01	0,03 0,04	8 10	0,35 0,38	0,00 0,00
Etapa	PND												
	bar												
1-1 2-1	16,7 8,8												
2 1	0,0												

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía del producto o rendimiento del sistema es expresada o implicita, a menos que sea proporcionada en una garantía separada firmada por un representante autorizado de Hydranautics. Los cálculos de la presión de alimentación aplicada son las mejores estimaciones para asistir al cliente en el dimensionamiento de la bomba de alta de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proporcionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos su proporcionados para la conveneincia y están basados en varias hipótesis acerca de la calidad y la composición del agua de alimentación.

Como la cantidad de reactivos químicos necesarios para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantíza el consumo de reactivos químicos. Si se requiere una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente.

(8/63)

DOS PASOS CON Intercambiador de Trabajo/Presión PASO1

Programa O.I. licenciado a:

(8/63)

Cálculo creado por: Alfonso

Proyecto: Alfonso Caudal de Permeado: 33666,67 m3/d Caudal bomba alta pres: 3117,3 m3/hr Caudal agua cruda: 33666,67 m3/d

Presión Alim.: 57,2 bar Tasa recuperación perm: 45,0 %

Temp. Agua Alim.: 26,0 C(79F)

 pH Agua Alim.:
 8,10
 Edad de las Membranas:
 3,5 años

 Dosis Químico,ppm (100%)
 0,4 H2SO4
 Disminución flux %/año:
 7,0 %

 Factor de Ensuciamiento:
 0,80

Incremento paso sales, 10,0

%/año:

Flux promedio: 8,9 lm2hr Tipo de Alimentación: Agua de mar - toma abierta

Perm. Caudal/tubo Beta Conc.&Contra. Elemento Etapa Flux Elem. Arreglo Flujo Alim. Conc. **Presiones** Tipo N? m3/hr m3/hr I/m2-hr m3/hr bar bar SWC4B MAX 3864 1-1 1402,8 5,6 3,1 8,9 1,01 56,5 0.0 552x7

	Agua cr	uda 1	Agua A	lim. 1	Perme	ado 1	Conc	. 1
lón	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l
Ca	450,0	22,4	442,4	22,1	1,00	0,0	803,5	40,1
Mg	1400,0	115,2	1376,3	113,3	3,10	0,3	2499,7	205,7
Na	12349,5	536,9	12184,5	529,8	131,62	5,7	22046,0	958,5
K	420,0	10,8	414,8	10,6	5,60	0,1	749,7	19,2
NH4	0,0	0,0	0,0	0,0	0,00	0,0	0,0	0,0
Ba	0,000	0,0	0,000	0,0	0,000	0,000	0,000	0,0
Sr	5,000	0,1	4,915	0,1	0,011	0,000	8,928	0,2
CO3	20,7	621,1	25,3	0,8	0,00	0,0	53,1	1,8
HCO3	170,0	2,8	168,5	2,8	2,93	0,0	286,5	4,7
SO4	3000,0	62,5	2949,8	61,5	7,21	0,2	5357,3	111,6
CI	21980,4	620,0	21677,2	611,5	211,62	6,0	39239,9	1106,9
F	1,5	0,1	1,5	0,1	0,03	0,0	2,7	0,1
NO3	1,0	0,0	1,0	0,0	0,07	0,0	1,8	0,0
В	5,00		5,15		0,93		8,60	
SiO2	0,0		0,0		0,00		0,0	
CO2	0,82		0,61		0,61		0,61	
TDS	39799,6		39251,3		364,2		71057,8	
На	8.10		8.10		6.87		8.01	

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	23%	23%	48%
SrSO4 / Ksp * 100:	16%	16%	33%
BaSO4 / Ksp * 100:	0%	0%	0%
Sat. SiO2:	0%	0%	0%
Indice Sat. de Langelier	1,36	1,38	1,79
Indice Sat. de Stiff & Davis	0,38	0,41	0,76
Fuerza iónica	0,79	0,78	1,40
Presión osmótica	29,2 bar	28,8 bar	52,2 bar

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía del producto o rendimiento del sistema es expresada o implicita, a menos que sea proporcionada en una garantía separada firmada por un representante autorizado de Hydranautics. Los cálculos de la presión de alimentación aplicada son las mejores estimaciones para asistir al cliente en el dimensionamiento de la bomba de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proporcionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son proporcionados para la conveniencia y están basados en varias hipótesis acerca de la calidad y la composición del agua de alimentación. Como la cantidad de reactivos químicos necesarios para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantiza el consumo de reactivos químicos. Si se requiere una garantia de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantias no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente.

DOS PASOS CON Intercambiador de Trabajo/Presión PASO2

Programa O.I. licenciado a:

(8/63)

Cálculo creado por: Alfonso

Provecto: Alfonso Caudal de Permeado: 30300,00 m3/d Presión Alim.: 10,3 bar Tasa recuperación perm: 90,0 % Temp. Agua Alim.: 26,0 C(79F)

pH Agua Alim.: 9,50 Edad de las Membranas: 3,5 años Dosis Químico, ppm (100%) NaOH Disminución flux %/año: 7,0 % 4,5 Factor de Ensuciamiento: 0,80

Incremento paso sales, 10,0

%/año:

Flux promedio: 24,5 lm2hr Tipo de Alimentación: Agua de mar - toma abierta

Etapa	Perm.	Cauda	al/tubo	Flux	Beta	Conc.&	Contra.	Elemento	Elem.	Arreglo
	Flujo	Alim.	Conc.			Pres	iones	Tipo	N?	
	m3/hr	m3/hr	m3/hr	l/m2-hr		bar	bar			
2-1	935,5	11,7	3,9	27,2	1,23	8,4	0.0	ESPAB MAX	840	120x7
2-2	327,0	7,8	2,3	19,0	1,24	7,2	0.0	ESPAB MAX	420	60x7

	Agua cruda 2		Agua A	Alim. 2	Perme	ado 2	Conc. 2	
lón	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l
Ca	1,0	0,0	1,0	0,0	0,010	0,0	9,9	0,5
Mg	3,1	0,3	3,1	0,3	0,033	0,0	30,7	2,5
Na	131,6	5,7	131,6	5,7	6,493	0,0	1257,8	54,7
K	5,6	0,1	5,6	0,1	0,343	0,0	52,9	1,4
NH4	0,0	0,0	0,0	0,0	0,000	0,0	0,0	0,0
Ba	0,000	0,0	0,000	0,0	0,000	0,0	0,000	0,0
Sr	0,011	0,0	0,011	0,0	0,000	0,0	0,110	0,0
CO3	0,0	0,0	0,5	0,0	0,002	0,0	16,3	0,5
HCO3	3,0	0,0	3,3	0,1	0,283	0,0	19,2	0,3
SO4	7,2	0,2	7,2	0,2	0,088	0,0	71,3	1,5
CI	211,6	6,0	211,6	6,0	10,183	0,0	2024,6	57,1
F	0,0	0,0	0,0	0,0	0,003	0,0	0,3	0,0
NO3	0,1	0,0	0,1	0,0	0,022	0,0	0,5	0,0
В	0,93		0,93		0,38		5,91	
SiO2	0,0		0,0		0,000		0,0	
CO2	0,61		0,00		0,00		0,00	
TDS	364,2		365,0	·	17,84	_	3489,5	
рH	6,9		9,50		8,45		10,26	

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	0%	0%	0%
SrSO4 / Ksp * 100:	0%	0%	0%
BaSO4 / Ksp * 100:	0%	0%	0%
Sat. SiO2:	0%	0%	0%
Indice Sat. de Langelier	-4,21	-1,41	1,35
Indice Sat. de Stiff & Davis	-4,14	-1,35	1,26
Fuerza iónica	0,01	0,01	0,06
Presión osmótica	0,3 bar	0,3 bar	2,7 bar

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía del producto o rendimiento del sistema es expresada o implícita, a menos que sea proporcionada en una garantía separada firmada por un representante autorizado de Hydranautics. Los cálculos de la presión de alimentación aplicada son las mejores estimaciones para asistir al cliente en el dimensionamiento de la bomba de alta presión y no son una representante autorizato de representante autorizato de representante autorizato de la presión actual de operación durante la vida del producto. Las presión es alimentacion aplicada son inate parantía de la presión actual de operación durante la vida del producto. Las presiónes calculadas contienen un margen de seguridad para assegurar que las bombas de alimentación sena apropiadamente dimensionadas basándose en la información proporcionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son proporcionados para la conveniencia y están basados en varias hipótesis acerca de la calidad y la composición del agua de alimentación. Como la cantidad de reactivos químicos necesarios para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantíza el consumo de reactivos químicos squímicos químicos químicos. Si se requiere una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente