A PROPOSAL FOR A SECURED, EFFICIENT AND SCALABLE
LAYER 2 NETWORK VIRTUALISATION MECHANISM

JON MATIAS FRAILE

eman ta zabal zazu

>

Universidad Euskal Herriko
del Pais Vasco Unibertsitatea

Supervisor: Eduardo Jacob Taquet
Department of Communications Engineering
Faculty of Engineering
University of the Basque Country (UPV/EHU)

December 2015

(c)2016 JON MATIAS FRAILE

ABSTRACT

The Internet has become the essential medium for information
and for communication of both social and business interactions.
However, several limitations of the current Internet have been
identified to meet the expectations generated by its resounding
success. In this context, the Future Internet initiative has
emerged as a research effort to overcome these shortcomings.

To solve the limitations of the Internet (some of them due to
its original design), it is necessary to research on novel network
architectures and proposals, either evolutionary or clean-slate
approaches. Moreover, the experimental facilities emerge to
provide a realistic environment to validate these new approaches
at large-scale conditions, and become the fundamental artefact
for robust experimentation and testing of these proposals. As a
design principle, the experimental facility must be orthogonal
to the experimentation and its impact must be reduced to the
minimum. Due to the need of sharing the same infrastructure
and resources to test different networking proposals at the same
time, the network virtualisation is key for success.

There is no unique definition of network virtualisation, since
it depends on the target scenario, which could impose specific
requirements due to its particularities. To properly analyse and
compare the different approaches to network virtualisation a
new taxonomy is proposed. Based on this taxonomy, a survey
of different network virtualisation proposals is presented. As a
result, three main types of virtualization have been identified
and grouped in two categories: node centric and network centric
approaches. In the former, the nodes are exposed as individual
elements to the tenants (researchers in this case); whereas in
the latter, the underlying network infrastructure is abstracted
as a whole. With regard to the node centric approaches, two
types of network virtualisation are proposed: Virtual Node
(vNode) and SDN-enabled Virtualisation (SDNeV). On the one
hand, the vNode solutions expose virtual network devices
with an associated functionality implemented on them. On the
other hand, the SDNeV proposals expose the programmability

of individual (either physical or virtual) network devices.
Concerning the network centric approaches, just a single type
of network virtualisation is proposed: overlay. The overlay
solutions are built on the edge devices, which encapsulate the
external addressing scheme into the addressing space used
internally by the physical infrastructure.

The open innovation in networking demands the pro-
grammability of the networking resources to be exposed
to the researchers. As a consequence, the Software Defined
Networking (SDN) technology becomes the essential enabler
of network innovation by means of the separation of data
and control planes through a standard interface, and thus, the
SDNeV type of network virtualisation is the most appropriate to
build the experimental facilities.

Additionally, the most relevant experimental facilities are
presented, with a special focus on how each of them enables the
research on networking. The survey is divided in two groups:
pre-SDN approaches based on legacy technology and SDN-
enabled facilities. The latter is the relevant group due to the type
of network virtualisation selected.

Based on the previous analyses and the research activities
to be conducted on the experimental facility, a list of
requirements is defined: the isolation between experiments
(including the secured isolation between them), the flexibility to
experiment on novel architectures and clean slate approaches,
the scalability of the facility, the stability of the experiment
slice definition, the transparency of the facility with regard
to the experiments (including the efficiency, avoiding any
overhead), and the support for research on networking. The
available experimental facilities supported by the currently
proposed network virtualisation approaches do not meet all
these requirements. Therefore, a new experimental facility
orthogonal to the experimentation is needed, as well as a new
network virtualisation proposal that transparently supports the
research on novel network architectures and approaches.

One of the responsibilities of any experimental facility
is to deploy new services and resources to enable the
experimentation. In this regard, the ongoing work on Network
Functions Virtualisation (NFV) is relevant to this goal. NFV has
been proposed to innovate in the service delivery arena by using

standard computing virtualisation technology to consolidate in
commodity hardware the functions previously performed by
specific hardware appliances.

The main contributions of this thesis are also the key building
blocks for the experimental facility: Layer 2 Prefix-based
Network Virtualisation (L2PNV), MAC Address Configuration
Protocol (MACP), and Flow-based Network Access Control
(FlowNACQ).

L2PNV is an efficient and scalable network virtualisation
mechanism that relies on the MAC address prefixes to univocally
identify the corresponding virtual network instances. This
proposal is based on a novel MAC addressing scheme, which
reserves part of the MAC address (a prefix) to encode the virtual
instance identifier.

As a consequence of not using the globally administered MAC
addresses, the end devices must update their MAC addresses
to be compliant with the new addressing scheme. Therefore,
a new mechanism, called MACP, is proposed to facilitate the
assignment of MAC addresses. In addition, this proposal could
be also used by other Layer 2 proposals based on alternative
MAC addressing schemes, thus enabling the innovation in this
research direction.

Furthermore, the overall security of both the experimental
facility and the network virtualisation proposal is improved by
adding a new mechanism, called FlowNAC, for fine-grained
access control based on the identity of the users and the policy
defined by the tenants (researchers in this case).

In relation to the aforementioned contributions, new design
principles based on SDN-enabled architectures have been
adopted to implement these proposals as Virtual Network
Functions (VNFs). The goals of using SDN-enabled architectures
for service delivery are to improve the performance of the VNFs
and to facilitate the deployment of these new services (ie.,
MACP and FlowNAC) over the experimental facility.

As a result (and an additional contribution), a new
experimental facility is deployed at the University of the Basque
Country (UPV/EHU), the EHU OpenFlow Enabled Facility
(EHU-OEF), to experimentally validate these approaches. The
main objective of EHU-OEF is to enable the innovation on
networking architectures and proposals.

In this context, LZPNV has been experimentally validated and
its fundamental mechanism for virtualising the network (the
MAC prefix matching) has been evaluated. It has been also
compared to other similar mechanisms, all of them with similar
performance, which indicates that the proposed mechanism
is technically feasible for production on currently available
hardware and software solutions.

Moreover, the performance of MACP and FlowNAC, based
on SDN-enabled architectures, have been also evaluated and
demonstrate the usability of these solutions, with similar order
of magnitude than other comparable proposals.

Each proposal can be used individually (i.e., as a network vir-
tualization solution, as a mechanism to assign MAC addresses,
or as a fine-grained access control solution, respectively) or in
conjunction to build a virtualised platform for experimentation
(as EHU-OEF) or for production (data center, campus and
operator networks).

Additional experimentation has been also conducted in EHU-
OEF with promising results, such as a novel forwarding
mechanism based on MAC prefixes, called Prefix-based
Forwarding Decision (PFD).

As a final remark, this work not only constitutes a valuable
research to propose new network virtualization architectures
leveraging new emerging technologies SDN and NFV, but it also
assists the understanding of past, present and future evolution
of these topics.

RESUMEN

Internet se ha convertido en un medio fundamental como fuente
de informacién y comunicacién tanto para la interaccién social
como de negocios. Sin embargo, se han identificado varias
limitaciones de la actual Internet a la hora de cumplir con
las expectativas generadas debido a su rotundo éxito. En este
contexto, la iniciativa de la Internet del Futuro ha emergido
como un esfuerzo investigador para superar estas limitaciones.
Para solucionar las limitaciones de Internet (algunas son
debidas a su disefio original), es necesario investigar en
arquitecturas y propuestas novedosas, tanto aproximaciones
evolutivas como totalmente rompedoras. Ademads, las platafor-
mas de experimentacién surgen para proporcionar un entorno
realista para validar estas nuevas propuestas a gran escala,
y convertirse en una herramienta fundamental para una
robusta experimentacion y testeo de dichas propuestas. Como
principio de disefio, las plataformas experimentales deben de ser
ortogonales a la experimentacién y su impacto debe reducirse
al minimo. Debido a la necesidad de compartir la misma
infraestructura y recursos para testear simultdneamente diversas
propuestas de red, la virtualizaciéon de red es la clave del éxito.
No hay una definicién tinica para la virtualizacién de red, ya
que ésta depende del escenario objetivo, el cual puede imponer
requerimientos especificos debido a sus particularidades. Para
poder analizar y comparar adecuadamente las diferentes
aproximaciones propuestas para la virtualizaciéon de red, se
propone una taxonomia nueva. Basado en esta taxonomia, se
presenta un estudio de las diversas propuestas realizadas para la
virtualizacién de red. Como resultado de dicho estudio, se han
identificado tres tipos principales de virtualizacion, los cuales
se agrupan en dos grandes grupos: las propuestas centradas
en el nodo, y las centradas en la red. En el primer grupo
los nodos son expuestos como elementos individuales a los
operadores virtuales (que en este caso son los investigadores),
mientras que en el segundo grupo la infraestructura de
red subyacente se abstrae como un todo. Con respecto a

xiit

las aproximaciones centradas en el nodo, se proponen dos
tipos de virtualizacién de red: el Nodo Virtual (vNode) y la
Virtualizacion posibilitada por SDN (SDNeV). Por una parte,
las soluciones de tipo vINode exponen los dispositivos de red
virtualizados con una funcionalidad asociada implementada
sobre el propio dispositivo. Por otro lado, las propuestas de
tipo SDNeV exponen la programabilidad de los dispositivos de
red individuales (tanto fisicos como virtuales). Con respecto a
las aproximaciones centradas en la red, inicamente se propone
un tipo de virtualizaciéon de red: el overlay. Las soluciones
de overlay se construyen sobre los dispositivos de frontera,
los cuales encapsulan el esquema de direccionamiento externo
en el espacio de direccionamiento usado internamente por la
infraestructura fisica.

La innovacién abierta en la red demanda que la progamabil-
idad de los recursos de red se exponga a los investigadores.
Como consecuencia, la tecnologia de Redes Definidas por
Software (Software Defined Networks, SDN) se convierte en
un facilitador esencial para la innovacién en la red mediante
la separacién de los planos de datos y control a través de un
interfaz estandar, y por lo tanto, el tipo de virtualizacién de
red SDNeV es el mdas apropiado para construir las plataformas
experimentales.

Ademas, se presentan las plataformas experimentales mads
relevantes, con un foco especial en la forma en la que cada
una de ellas permite la investigacién en propuestas de red. Este
estudio se divide en dos grandes grupos: las propuestas previas
a SDN basadas en tecnologia tradicional y las plataformas
experimentales activadas por SDN. El segundo grupo es el mds
relevante para el tipo de virtualizacién de red seleccionado.

Apoyado en los andlisis previos y en las actividades de
investigacion a desarrollar sobre la plataforma de experi-
mentacion, se define una lista de requisitos: el aislamiento
entre los experimentos (incluyendo el aislamiento seguro entre
los mismos), la flexibilidad para experimentar en arquitecturas
novedosas y aproximaciones rompedoras, la escalabilidad de
la plataforma, la estabilidad de la definiciéon de la capa de
experimentacion, la transparencia de la plataforma con respecto
a los experimentos (incluyendo la eficiencia de la solucién
evitando cualquier sobrecarga), y el soporte para la investigacién

en propuestas de red. Las plataformas de experimentaciéon
disponibles basadas en las propuestas de virtualizaciéon de
red actuales no cumplen todos estos requisitos. Por lo tanto,
una nueva plataforma de experimentacién ortogonal a la
experimentacién es necesaria, asi como una propuesta de
virtualizacién de red que, de forma transparente, soporte la
investigacion en arquitecturas de red y propuestas novedosas.

Una de las responsabilidades de cualquier plataforma de
experimentacion es desplegar nuevos servicios y recursos para
permitir la experimentacién. En este respecto, el trabajo que se
estd realizando en relacién a la Virtualizaciéon de Funciones de
Red (Network Function Virtualisation, NFV) es relevante para
este objetivo. NFV ha sido propuesto para innovar en el drea de
provisiéon de servicios, mediante el uso de tecnologia estdndar
de virtualizacién de computacién para consolidar en hardware
estdndar las funciones de red previamente desplegadas sobre
aplicaciones hardware especificas.

Las principales contribuciones de esta tesis son también los el-
ementos clave para construir la plataforma de experimentacién:
la Virtualizacién de Red basada en Prefijos de Nivel 2 (Layer
2 Prefix-based Network Virtualisation, L2PNV), un Protocolo
para la Configuraciéon de Direcciones MAC (MAC Address
Configuration Protocol, MACP), y un sistema de Control de
Acceso a Red basado en Flujos (Flow-based Network Access
Control, FlowNAC).

L2PNV es un mecanismo de virtualizacién de red eficiente
y escalable que delega en los prefijos de direccion MAC
la identificacion univoca de las instancias de red virtual
correspondientes. Esta propuesta estd basada en un esquema
de direccionamiento MAC novedoso, el cual reserva parte de la
direccién MAC (un prefijo) para la codificacién del identificador
de la instancia virtual.

Como consecuencia de no usar las direcciones MAC
globalmente administradas, los dispositivos finales tienen que
actualizar sus direcciones MAC para ser compatibles con el
nuevo esquema de direccionamiento. Por lo tanto, se propone un
nuevo mecanismo, llamado MACP, para facilitar la asignacion
de direcciones MAC. Ademds, este mecanismo puede también
ser usado por otras propuestas de Nivel 2 basadas en esquemas

de direccionamiento MAC alternativos, permitiendo de esta
forma la innovacién en esta linea de investigacion.

Por tdltimo, la seguridad global tanto de la plataforma de
experimentaciéon como de la propuesta para la virtualizacién
de red se mejora afiadiendo un nuevo mecanismo, llamado
FlowNAC, para controlar de forma granular el acceso basdndose
en la identidad del usuario y en la politica definida por el
operador de la red virtual (el investigador en este caso).

En relacion con las contribuciones anteriormente citadas,
se adoptan unos nuevos principios de disefio basados en
arquitecturas posibilitadas por SDN para la implementacién
de dichas propuestas como Funciones de Red Virtualizadas
(Virtual Network Functions, VNFs). Los objetivos de usar estas
arquitecturas posibilitadas por SDN para la entrega de servicios
son la mejora del rendimiento de las VNFs y facilitar el
despliegue de estos nuevos servicios (MACP y FlowNAC) sobre
la plataforma de experimentacién.

Como resultado (y una contribuciéon adicional), se ha
desplegado en la Universidad del Pais Vasco (UPV/EHU) una
nueva plataforma experimental, la Plataforma Activada por
OpenFlow de EHU (EHU OpenFlow Enabled Facility, EHU-
OEF), para experimentar y validar estas propuestas. El principal
objetivo de EHU-OEF es permitir la innovacién en arquitecturas
y propuestas de red.

En este contexto, L2PNV se ha validado de forma experi-
mental y su principal mecanismo para virtualizar la red (la
asociacion de prefijos MAC) ha sido evaluado. Este mecanismo
se ha comparado con otros mecanismos similares, todos ellos
con un rendimiento similar, lo que indica que el mecanismo
propuesto es técnicamente viable para su puesta en produccién
con las soluciones hardware y software disponibles actualmente.

Ademas, el rendimiento de MACP y FlowNAC, basados
en arquitecturas posibilitadas por SDN, ha sido evaluado y
demuestra la usabilidad de las soluciones, con un orden de
magnitud parecido a otras propuestas similares.

Cada propuesta puede ser usada de forma individual (como
solucion para la virtualizacion de red, como mecanismo para la
asignaciéon de direcciones MAC, o como una solucién para el
control de acceso granular, respectivamente) o en conjunto para
construir una plataforma virtualizada para la experimentacion

(como EHU-OEF) o para produccién (en redes de centro de
datos, de campus o de operador).

De forma adicional, se han llevado acabo labores de
experimentacién en EHU-OEF con resultados prometedores,
como es el caso de un novedoso mecanismo para la conmutacioén
de tramas basado en prefijos MAC, llamado Decision de
Conmutacion basado en Prefijos (Prefix-based Forwarding
Decision, PFD).

Como apunte final, este trabajo no solo constituye una inves-
tigacion destacable con la propuesta de nuevas arquitecturas
para la virtualizacién de red que se sustentan sobre tecnologias
emergentes como SDN y NFV, sino que ademds permite un
mejor entendimiento del pasado, presente y evolucién futura de
estas lineas de investigacion.

LABURPENA

Internet, informaziorako eta komunikaziorako baliabiderik gar-
rantzitsuena bilakatu da, bai elkarrekintza sozialetarako, baita
negozioetarako ere. Hala ere, gaur egungo Interneten arrakasta
handiak eragindako beharrizanak asetzerakoan, zenbait muga
identifikatu dira. Testuinguru horretan, Etorkizuneko Interneta
edo Future Internet delako ekimena sortu da, muga horiek
gainditu ahal izateko.

Esandako Internetaren muga horiek gainditzeko (zenbait
bere jatorrizko diseinuaren ondorio direnak), beharrezkoa da
sareen arkitektura eta proposamen berriak ikertzea, gutxikako
eboluzio bezala planteatutakoak zein guztiz berritzaileak lirate-
keenak ere. Horrela, proposamen berri horiek eskala-handian
balioztatzeko ingurune errealista modura, esperimentaziorako
plataformak sortu dira, sareen esperimentuak egiteko eta tester-
ako baliabiderik garrantzitsuenak bilakatu direnak. Diseinurako
printzipio bezala, esperimentaziorako plataforma batek zera
jarraitu behar du, esperimentazioarekiko ortogonala izatea eta
bere eragina ahalik eta txikiena izatea. Hortaz, sareetarako
proposamen ezberdinak azpiegitura eta baliabide berdinetan
aldi berean probatu ahal izateko, sare horien birtualizazioa egin
ahal izatea funtsezkoa da.

Ez dago sare-birtualizaziorako definizio bateraturik, er-
abilpen egoeraren araberakoa delako; egoera bakoitzak be-
harrizan zehatzak izan ditzake, bere ezaugarrien araberakoak.
Sare-birtualizaziorako proposamenen azterketa eta alderatzea
egokiro egin ahal izateko, taxonomia berri bat aurkezten dugu
hemen. Taxonomia horretan oinarrituta, sare-birtualizaziorako
proposamenen ikerketa bat azaltzen da ere. Ondorioz, hiru
birtualizazio modu nagusi identifikatu dira, bi kategoriatan
taldekatuak: nodoetan oinarrituak eta sareetan oinarrituak.
Lehenengo birtualizazio moduan, sareko nodoak banakako
elementu bezala aurkezten zaizkie operadore birtualei (kasu
honetan, ikertzaileei); aldiz, bigarrenean, azpiegiturako sarea
guztiz ezkutatzen da. Nodoetan oinarritutako birtualizazioetan,
bi modu proposatu dira: Virtual Node (vNode) modua eta SDN-

Xix

enabled Virtualiation (SDNeV) deiturikoa. Alde batetik, vINode
modukoetan sareko gailu birtualak adierazten dira, bakoitzak
funtzionaltasun bat inplementatua duena beregan. Aldiz,
SDNeV proposamenetan, sareko gailuen (fisikoen zein birtualen)
programagarritasuna ahalbidetzen da. Sareetan oinarritutako
birtualizazioetan, sare-birtualizazio modu bakarra proposatu
da: overlay deiturikoa. Overlay moduko proposamenek ertzeko
gailuak bezala ezagutzen direnak erabiltzen dituzte, kanpoko
helbideratze eskemak azpiegitura fisikoan erabiltzen diren
barne-helbideetan kaptsulatzen dituztenak.

Sareen berrikuntzak, ikertzaileei eskainitako baliabideen
programagarritasuna ahalbidetzea eskatzen du. Ondorioz, Soft-
ware Defined Networking edo SDN teknologia nahitaezkoa
bilakatzen da sareen berrikuntzan datuen eta kontrolaren
planoak interfaze estandarrarekin banandu ahal izateko, eta
horregatik, SDNeV moduko sare-birtualizazioa da egokiena
esperimentaziorako plataformak eraikitzeko.

Gainera, dokumentu honetan gaur egungo esperimentazio-
rako plataformarik garrantzitsuenak aurkezten dira, bakoitzak
sareekiko ikerkuntza nola ahalbidetzen duen zehaztuz. Hortaz,
ikerketa bi ataletan banatua dago: SDN-aurreko proposamenak
(aurreko teknologietan oinarrituak) eta SDN duten platafor-
mak. Azkena da talderik garrantzitsuena, aukeratutako sare-
birtualizaziorako moduaren arabera.

Aurreko azterketetan eta esperimentaziorako plataformetan
egin beharreko ikerkuntza-ekintzetan oinarrituta, zenbait be-
harrizan definitzen dira: esperimentuen arteko isolamendua
(isolamendu segurua barnean hartzen duena), arkitektura berri-
etan eta proposamen guztiz berritzaileetan ikertzeko malguta-
suna, plataformaren eskalagarritasuna, esperimentu bakoitzari
dagokion slice edo geruzaren egonkortasuna, plataformaren es-
perimentuekiko gardentasuna (eraginkortasuna barne, gainkar-
gak ekidinez), eta sareen ikerkuntzarako laguntza. Gaur
egungo sare-birtualizaziorako proposamenetan oinarritutako
plataforma erabilgarriek, ez dituzte aipatutako beharrizan guz-
tiak betetzen. Hortaz, esperimentaziorako plataforma ortogonal
berri bat behar da, eta aldi berean, sare-birtualizaziorako
proposamen berri bat, sareen arkitektura eta proposamen
berrien ikerkuntza modu gardenean ahalbidetzen duena.

Edozein esperimentaziorako plataformak bete beharreko
ezaugarri bat, baliabide eta zerbitzu berriak hedatu ahal
izatea da, esperimentazioa ahalbidetzeko. Zentzu horretan,
Network Functions Virtualisation edo NFV delakoaren inguruko
lanak oso garrantzitsuak dira. NFV, zerbitzuen hornitzea
egiteko modua berritzeko proposatua izan da; konputazioaren
birtualizaziorako teknologia estandarraren bidez, helburu oroko-
rreko hardwaretan lehen neurrira egindako produktuetan
inplementatzen ziren funtzioak gauzatzen ditu.

Tesi honen ekarpenik garrantzitsuenak esperimentaziorako
plataformak eratzeko oinarrizko zatiak dira: Layer 2 Prefix-
based Network Virtualisation (L2PNV) delakoa, MAC Address
Configuration Protocol (MACP) eta Flow-based Network Access
Control (FlowNAC).

L2PNV sare-birtualizaziorako mekanismo eraginkor eta
eskalagarri bat da, MAC helbideen aurrizkietan oinarritzen
dena sareko instantzia birtualak identifikatu ahal izateko.
Proposamen honetan MAC helbideratze eskema berri bat ere
aurkezten da, MAC helbidearen zati bat (aurrizki bat) erabiltzen
duena instantzia birtualen identifikatzaile modura.

MAC helbide globalak ez erabiltzearen ondorio bezala,
amaierako gailuek MAC helbide propioak eguneratu behar
dituzte helbideratze eskema berriarekiko bateragarriak izan
daitezen. Horretarako, beraz, mekanismo berri bat proposatzen
da, MACP deiturikoa, MAC helbideak egokitzeko. Gainera, pro-
posamen hau beste MAC helbideratze eskema alternatiboetan
oinarritutako Layer 2 edo 2. mailako proposamenetan erabili
ahalko litzateke, arlo horretan ikerkuntza berria baliatuz.

Are gehiago, esperimentaziorako plataformaren zein sare-
birtualizazioaren segurtasun
orokorra ere hobetzen da, mekanismo berri bati esker, FlowNAC
deiturikoa; zehaztasun handiko sarbide-kontrola egiten du
horrek, erabiltzaileen identitatean eta operadore birtualen
(ikertzaileen) politiketan oinarrituta.

Aurretik esandako ekarpenekin lotuta, SDN darabilten
arkitekturetan oinarritutako diseinu printzipio berriak erabili
dira proposamen berriak gauzatzeko, Virtual Network Func-
tions (VNFs) direlakoen bitartez. SDN darabilten arkitektura
horiek zerbitzuak hornitzeko erabiltzearen helburua zera da,
VNFen eraginkortasuna hobetzea eta zerbitzu berrien (hots,

MACP eta FlowNAC zerbitzuen) hornikuntza eta hedapena
ahalbidetzea esperimentaziorako plataforman.

Ondorioz (eta tesiaren ekarpen gehigarri bezala), Eu-
skal Herriko Unibertsitatean (UPV/EHUn) esperimentaziorako
plataforma berria hedatu da, EHU OpenFlow Enabled Facility
(EHU-OEF) deiturikoa, proposamen guztiak balioztatu ahal iza-
teko. EHU-OEFren helburu nagusia da sareetarako arkitekturen
eta proposamenen berrikuntza ahalbidetzea.

Testuinguru horretan, L2PNV esperimentuekin balioztatua
izan da eta sare-birtualizaziorako mekanismo nagusia (MAC
helbideen alderatzea) ebaluatua izan da. Antzeko beste mekanis-
moekin ere alderatu izan da, neurriko eraginkortasuna dutenak;
horrek adierazten duena zera da, mekanismoa teknikoki erabil-
garria dela produkzio inguruneetan gaur egungo hardware eta
software elementuekin.

Bestalde, MACP eta FlowNACen eraginkortasuna ebaluatua
izan da SDN darabilten arkitekturetan, eta hortaz, ebazpen
horien erabilgarritasuna demostratua izan da, alderagarriak
diren beste proposamenen antzeko emaitzekin.

Proposamen bakoitza bakarka
erabili daiteke (sare-birtualizaziorako proposamen bezala, MAC
helbideen egokitze-mekanismo modura edo zehaztasun hand-
iko sarbide-kontrolerako, hurrenez hurren) edo guztiak batera,
esperimentaziorako plataforma birtualak sortzeko (EHU-OEF
bezala) edo produkzio inguruneetan (datacenter, campus edo
hornitzaileen sareetan).

EHU-OEF plataforman esperimentazio gehiago ere egin da,
emaitza esanguratsuekin: zehazki, MAC aurrizkietan oinarritu-
tako bidalketa-mekanismo berri bat, Prefix-based Forwarding
Decision (PFD) deiturikoa.

Amaitzeko, lan hau ez da soilik sare-birtualizaziorako
arkitektura berriak proposatzen dituen ikerketa baliotsu bat,
SDN eta NFV teknologia berriak darabiltzana; aldiz, landutako
ikerkuntza lerroen aurreko, egungo eta etorkizuneko egoerak
ulertzeko tresna lagungarria da.

RESUMEN EXTENDIDO

1) CONTEXTUALIZACION

Internet se ha convertido en un medio fundamental como
fuente de informacién y comunicacién tanto para la interaccion
social como de negocios. Sin embargo, se han identificado varias
limitaciones de la actual Internet a la hora de cumplir con
las expectativas generadas debido a su rotundo éxito. En este
contexto, la iniciativa de la Internet del Futuro ha emergido
como un esfuerzo investigador para superar estas limitaciones.

Para solucionar las limitaciones de Internet (algunas son
debidas a su disefio original), es necesario investigar en
arquitecturas y propuestas novedosas, tanto aproximaciones
evolutivas como totalmente rompedoras. Ademads, las platafor-
mas de experimentacion surgen para proporcionar un entorno
realista para validar estas nuevas propuestas a gran escala,
y convertirse en una herramienta fundamental para una
robusta experimentacién y testeo de dichas propuestas. Como
principio de disefio, las plataformas experimentales deben de ser
ortogonales a la experimentacién y su impacto debe reducirse
al minimo. Debido a la necesidad de compartir la misma
infraestructura y recursos para testear simultdneamente diversas
propuestas de red, la virtualizaciéon de red es la clave del éxito.

2) OBJETIVOS DE LA INVESTIGACION

El principal objeto de la investigacion desarrollada en esta
tesis es doble: por una parte, la investigacion en nuevas
arquitecturas y propuestas de red, y por otro lado, facilitar la
posibilidad de investigar en dichas propuestas y arquitecturas
rompedoras. A continuacion se detallan los objetivos concretos
que se van a cubrir:

Despliegue de una plataforma experimental en el campus
de la Universidad del Pais Vasco (UPV/EHU).

xxiit

e Definiciéon de una taxonomia para facilitar la comprensién
y comparativa del estado de arte actual de las diferentes
propuestas para la virtualizacion de red.

¢ Disefio e implementacién de una nueva propuesta para la
virtualizacién de red que cubra los requisitos planteados.

¢ Disefio e implementacién de un mecanismo que facilite
la asignacién de nuevos esquemas de direccionamiento
MAC.

¢ Disefio e implementacién de un mecanismo seguro para
el control de acceso a la plataforma de experimentacion
basado en la identidad de los usuarios y en la politica
definida por los investigadores.

¢ Definicién de los principios bdsicos para el disefio 6ptimo
de nuevos servicios y protocolos como funciones de red
virtualizadas.

3) ANALISIS DEL ESTADO DEL ARTE

No hay una definiciéon tinica para la virtualizacion de red, ya

que ésta depende del escenario objetivo, el cual puede imponer
requerimientos especificos debido a sus particularidades. La
Figura 1 demuestra la arquitectura definida.

6 ViTenant

Yser VI Data Access Point (VIDAP) 1 VI Tenant Access Point (VITAP)

Figura 1: Arquitectura definida para la Virtualizacién de Red

Para poder analizar y comparar adecuadamente las diferentes

aproximaciones propuestas para la virtualizaciéon de red, se

propone una taxonomia nueva. Basado en esta taxonomia, se
presenta un estudio de las diversas propuestas realizadas para
la virtualizacién de red.

Como resultado de dicho estudio, se han identificado tres
tipos principales de virtualizacién, los cuales se agrupan en
dos grandes grupos: las propuestas centradas en el nodo, y las
centradas en la red. En el primer grupo los nodos son expuestos
como elementos individuales a los operadores virtuales (que en
este caso son los investigadores), mientras que en el segundo
grupo la infraestructura de red subyacente se abstrae como
un todo. Con respecto a las aproximaciones centradas en el
nodo, se proponen dos tipos de virtualizacion de red: el
Nodo Virtual (vNode) y la Virtualizacién posibilitada por SDN
(SDNeV). Por una parte, las soluciones de tipo viNode exponen
los dispositivos de red virtualizados con una funcionalidad
asociada implementada sobre el propio dispositivo. Por otro
lado, las propuestas de tipo SDNeV exponen la programabilidad
de los dispositivos de red individuales (tanto fisicos como
virtuales). Con respecto a las aproximaciones centradas en la
red, Ginicamente se propone un tipo de virtualizacién de red:
el overlay. Las soluciones de overlay se construyen sobre los
dispositivos de frontera, los cuales encapsulan el esquema de
direccionamiento externo en el espacio de direccionamiento
usado internamente por la infraestructura fisica.

La innovacién abierta en la red demanda que la progamabil-
idad de los recursos de red se exponga a los investigadores.
Como consecuencia, la tecnologia de Redes Definidas por
Software (Software Defined Networks, SDN) se convierte en
un facilitador esencial para la innovacién en la red mediante
la separacién de los planos de datos y control a través de un
interfaz estandar, y por lo tanto, el tipo de virtualizacion de
red SDNeV es el mas apropiado para construir las plataformas
experimentales.

Ademads, se presentan las plataformas experimentales mds
relevantes, con un foco especial en la forma en la que cada
una de ellas permite la investigacién en propuestas de red. Este
estudio se divide en dos grandes grupos: las propuestas previas
a SDN basadas en tecnologia tradicional y las plataformas
experimentales activadas por SDN. El segundo grupo es el mas
relevante para el tipo de virtualizacién de red seleccionado.

Apoyado en los andlisis previos y en las actividades de
investigacion a desarrollar sobre la plataforma de experi-
mentacion, se define una lista de requisitos: el aislamiento
entre los experimentos (incluyendo el aislamiento seguro entre
los mismos), la flexibilidad para experimentar en arquitecturas
novedosas y aproximaciones rompedoras, la escalabilidad de
la plataforma, la estabilidad de la definicion de la capa de
experimentacion, la transparencia de la plataforma con respecto
a los experimentos (incluyendo la eficiencia de la soluciéon
evitando cualquier sobrecarga), y el soporte para la investigacion
en propuestas de red. Las plataformas de experimentacién
disponibles basadas en las propuestas de virtualizaciéon de
red actuales no cumplen todos estos requisitos. Por lo tanto,
una nueva plataforma de experimentaciéon ortogonal a la
experimentacién es necesaria, asi como una propuesta de
virtualizaciéon de red que, de forma transparente, soporte la
investigacion en arquitecturas de red y propuestas novedosas.

Una de las responsabilidades de cualquier plataforma de
experimentacion es desplegar nuevos servicios y recursos para
permitir la experimentacion. En este respecto, el trabajo que se
estd realizando en relacién a la Virtualizacion de Funciones de
Red (Network Function Virtualisation, NFV) es relevante para
este objetivo. NFV ha sido propuesto para innovar en el area de
provisiéon de servicios, mediante el uso de tecnologia estdndar
de virtualizacién de computacién para consolidar en hardware
estdndar las funciones de red previamente desplegadas sobre
aplicaciones hardware especificas.

4) CONTRIBUCIONES

Las principales contribuciones de esta tesis son también los el-
ementos clave para construir la plataforma de experimentacion:
la Virtualizaciéon de Red basada en Prefijos de Nivel 2 (Layer
2 Prefix-based Network Virtualisation, L2PNV), un Protocolo
para la Configuracion de Direcciones MAC (MAC Address
Configuration Protocol, MACP), y un sistema de Control de
Acceso a Red basado en Flujos (Flow-based Network Access
Control, FlowNAC).

L2PNV es un mecanismo de virtualizacién de red eficiente
y escalable que delega en los prefijos de direccion MAC

la identificaciéon univoca de las instancias de red virtual
correspondientes (Figura 2).

Figura 2: Redes Virtuales definidas por L2PNV

Esta propuesta estd basada en un esquema de direc-
cionamiento MAC novedoso, el cual reserva parte de la direccion
MAC (un prefijo) para la codificacién del identificador de la
instancia virtual (Figura 3).

SUICE 1: 02:00:00:X:x/24 l A*]
SLICE 2: 06:00:00:X:X:%/2a [B]
DESTINATION MAC ADDRESS SOURCE MAC ADDRESS

Figura 3: Definicién de instancia virtual en L2PNV

Como consecuencia de no wusar las direcciones MAC
globalmente administradas, los dispositivos finales tienen que
actualizar sus direcciones MAC para ser compatibles con el
nuevo esquema de direccionamiento, tal y como se muestra
en la Figura 4. Por lo tanto, se propone un nuevo mecanismo,
llamado MACP, para facilitar la asignaciéon de direcciones MAC.

Ademas, este mecanismo puede también ser usado por otras
propuestas de Nivel 2 basadas en esquemas de direccionamiento
MAC alternativos, permitiendo de esta forma la innovacién en
esta linea de investigacion.

[E] Production MAC Address, Globally administered

[meutral virtual MAC Address, Locally administered
[E Experiment virtual MAC Address, Locally administered

L2PNV
-] FlowVisor

End Host

Figura 4: Proceso de asignacién de direcciones MAC a través de
MACP

Por ultimo, la seguridad global tanto de la plataforma de
experimentacién como de la propuesta para la virtualizaciéon
de red se mejora afiadiendo un nuevo mecanismo, llamado
FlowNAC, para controlar de forma granular el acceso basdndose
en la identidad del usuario y en la politica definida por el
operador de la red virtual (el investigador en este caso). El
proceso completo se muestra en la Figura 5.

Dot g -
N =
/40N .
% o
L EAReL Start [muicast) - " eames s1an wriasy,) N - Ebot St muinicasn] | [s_ waoss (L f _
) {5 .. S s T orcson
4 D'A\.i epes () B LI b ©
SEmce =

WP Sepplicant ® Hoxt 4 e

Figura 5: Proceso de autenticacién y autorizacién definido por
FlowNAC

En relaciéon con las contribuciones anteriormente citadas,
se adoptan unos nuevos principios de disefio basados en
arquitecturas posibilitadas por SDN para la implementacién
de dichas propuestas como Funciones de Red Virtualizadas

(Virtual Network Functions, VNFs). Los objetivos de usar estas
arquitecturas posibilitadas por SDN para la entrega de servicios
son la mejora del rendimiento de las VNFs y facilitar el
despliegue de estos nuevos servicios (MACP y FlowNAC) sobre
la plataforma de experimentacion.

5) VALIDACION

Como resultado (y una contribucién adicional), se ha desple-
gado en la Universidad del Pais Vasco (UPV/EHU) una nueva
plataforma experimental (Figura 6), la Plataforma Activada por
OpenFlow de EHU (EHU OpenFlow Enabled Facility, EHU-
OEF), para experimentar y validar estas propuestas. El principal
objetivo de EHU-OEEF es permitir la innovacién en arquitecturas
y propuestas de red.

T T REMOTE
| ACCESS

COMPUTATIONAL Il!.i
RESOURCES

ETSIBILBAC |
s == = == ==

=

w8 rf;i | h -
Wiy i k-'-"lt Tkﬁ [ﬁ
arcess e

sucx s sucez sucew
conmaniion iy ceamsonien) conmmauin gl

COATHDLLE:

Figura 6: Plataforma experimental EHU-OEF

En este contexto, L2PNV se ha validado de forma experi-
mental y su principal mecanismo para virtualizar la red (la
asociacion de prefijos MAC) ha sido evaluado. Este mecanismo
se ha comparado con otros mecanismos similares, todos ellos
con un rendimiento similar, lo que indica que el mecanismo
propuesto es técnicamente viable para su puesta en produccién
con las soluciones hardware y software disponibles actualmente.

Ademas, el rendimiento de MACP y FlowNAC, basados
en arquitecturas posibilitadas por SDN, ha sido evaluado y
demuestra la usabilidad de las soluciones, con un orden de
magnitud parecido a otras propuestas similares.

Cada propuesta puede ser usada de forma individual (como
solucién para la virtualizacion de red, como mecanismo para la
asignacion de direcciones MAC, o como una solucién para el
control de acceso granular, respectivamente) o en conjunto para
construir una plataforma virtualizada para la experimentaciéon
(como EHU-OEF) o para produccién (en redes de centro de
datos, de campus o de operador).

De forma adicional, se han llevado acabo labores de
experimentaciéon en EHU-OEF con resultados prometedores,
como es el caso de un novedoso mecanismo para la conmutaciéon
de tramas basado en prefijos MAC, llamado Decisiéon de
Conmutacion basado en Prefijos (Prefix-based Forwarding
Decision, PFD).

6) CONCLUSIONES

Este apartado detalla la lista completa de contribuciones
aportadas por esta tesis. De forma adicional a las tres
contribuciones anteriormente detalladas, hay otra serie de
contribuciones que caben destacar.

e La plataforma experimental EHU-OEF desplegada en la
Universidad del Pais Vasco (UPV/EHU).

* Una nueva taxonomia para la virtualizacién de red.
o La propuesta L2PNV para virtualizacion de red.

e La propuesta MACP para la asignacion y configuracién de
direcciones MAC.

o La propuesta PFD para la conmutaciéon de tramas basadas
en prefijos MAC.

e La propuesta FlowNAC para el control de acceso granular
a la red basada en flujos.

e Una arquitectura para soluciones NFV apoyada en la
tecnologia SDN.

Los resultados de la presente investigacion han sido
publicados en 17 articulos (12 como primer autor), de los
cuales tres son en revistas con JCR y el resto en conferencias
internacionales. Ademds, se han publicado los resultados en 8
conferencias naciones. Como resultados de la implementacién,
se han presentado también 4 demostradores en conferencias
internaciones. Finalmente, el trabajo presentado ha sido pieza
fundamental en el contexto de dos proyectos europeos (FP7) y 6
proyectos de &mbito nacional.

Como apunte final, este trabajo no solo constituye una inves-
tigacion destacable con la propuesta de nuevas arquitecturas
para la virtualizaciéon de red que se sustentan sobre tecnologias
emergentes como SDN y NFV, sino que ademds permite un
mejor entendimiento del pasado, presente y evolucién futura de
estas lineas de investigacion.

CONTENTS

1

INTRODUCTION 1
1.1 Contextualisation 1
1.2 Motivation 6
1.3 Research Objectives 8
14 Document Organisation 11
STATE OF THE ART 13
2.1 Network Virtualisation 18
2.1.1 Network Device Architecture 18
2.1.2 Network Virtualisation Architecture 21
2.1.3 Network Virtualisation Definition 26
2.2 Network Virtualisation Taxonomy 28
2.2.1 Network Virtualisation Type 28
2.2.2 Virtual Instance Namespace 32
2.2.3 Data plane Adaptation Mechanism 34
224 VIAP Classification 37
225 Network Topology 39
2.2.6 Virtual Instance Creation Point 42
22.7 Isolationlevel 44
2.3 Network Virtualisation Survey 48
23.1 vNodeapproaches 48
23.2 Overlay approaches 62
2.3.3 SDNeV approaches 88
234 Conclusions from NV survey 108
2.4 Experimental Facilities Survey 111
241 Non-SDN facilities 112
2.4.2 SDN enabled facilities 114
25 Conclusions 123
251 Requirements 123
CONTRIBUTIONS 129
3.1 Layer 2 Prefix-based Network Virtualisation
(L2PNV) . . 129
3.1.1 Requirements 131
312 L2PNVtaxonomy. 131
3.1.3 Virtual network instance isolation based on
MAC prefixes 143

XXXUL

XXXV

| CONTENTS

3.14 Virtual network instance implementation

details, 151

315 Conclusion. 157

3.2 MAC Address Configuration Protocol (MACP) . . . 162

3.2.1 Layer 2 Addressing Challenges 164

322 RelatedWork 167

3.2.3 MACP Architecture 171

324 Conclusion. 180

3.3 Flow-based Network Access Control (FlowNAC) . 181
3.3.1 Contextualisation of Network Access Con-

trolsystems, 182

332 RelatedWork 183

3.3.3 FlowNAC Architecture 187

334 Conclusion. 196

3.4 Summary of the proposed solutions and conclusion 197

4 VALIDATION 199

41 The EHU OpenFlow Enabled Facility (EHU-OEF) . 200

411 Experimental Facility Architecture 201

412 The EHU-OEF Experimental Facility 207

41.3 Using EHU-OEF for experimentation217

42 Analytical Validation 232

42.1 L2PNV Isolation Enforcing process 232
42.2 L2PNV Slice Definition for Legacy Proto-

colsSupport Lo 235

4.3 Experimental Studies 237

43.1 MAC Prefix Matching Performance Numbers238

4.3.2 MACP Performance Numbers 245

4.3.3 FlowNAC Performance Numbers 249

44 Conclusions 253

5 CONCLUSIONS 257

51 Summary 257

5.2 Contributions 259

5.3 Dissemination of results 264

54 FutureWork L. 270

BIBLIOGRAPHY 275

LIST OF FIGURES

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5

Figure 3.1
Figure 3.2

Figure 3.3
Figure 3.4

Figure 3.5
Figure 3.6

Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15

Figure 4.1
Figure 4.2

The SDN layer architecture defined by
RFC7426 20
The general architecture for the cloud laaS 22
The two-layered model for NV architecture 23
The alternatives for data plane adaptation
mechanism 34
The flexibility at slice definition vs. the
flexibility at experiment level
MAC header and Global/Local address bit 136
Slice definition based on MAC prefix as
the VInamespace 143
MAC address prefix (24 bit) and relevant
bits (I/G) and (U/L)
The complete MAC address space in
relation to the relevant bits (I/G) and (U/L)145

The slice collision problem in detail145
Downwards isolation enforcing mecha-
nism in FlowVisor 152
Downwards isolation enforcing mecha-
nismin L2PNV 154
The decision schema implemented at
FlowVisor. 157
The MACP operational model 173
The MACP detailed architecture 176
The MAC PDU in blue and the MACP
PDUingreen 178
The FlowNAC architecture: PAE (stateful)
and PAC (stateless) 188
The FlowNAC Extensions 190
The EAPoL in EAPoL encapsulation 191
The FlowNAC architecture influenced by
SDN o 195
The EHU-OEF three-layered model 203
Physical resources in the EHU-OEEF facil-
ity deployment. 209

XXXV

xxxvi | List of Figures

Figure 4.3
Figure 4.4

Figure 4.5
Figure 4.6

Figure 4.7
Figure 4.8

Figure 4.9
Figure 4.10
Figure 4.11

Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15

Figure 4.16

Figure 4.17

Figure 4.18

Figure 4.19

Figure 4.20

Figure 4.21

The EHU-OEF experimental facility210
Web Portal for EHU-OEEF facility manage-
ment. 211
Slices at the EHU-OEF 215
Deploying strategies to support new
protocols L. 220

Automatic procedures to access the slices . 221
The EHU-OEF slices and running experi-

ments with an isolated control plane225
Authentication and authorisation procedure228
An example of a PFD deployment 230

a) Number of rules when the L2PNV
approach is not used. b) Number of rules

when the L2PNV approachisused 234
Growing of FlowSpaces in the unmodi-
fied FlowVisor 237
Growth of the FlowSpaces in the modified
FlowVisor. 238
Open vSwitch (vanilla) Throughput Per-
formance (Gbps) 241
Open vSwitch (vanilla) Throughput Per-
formance Mpps) 241

I/O Throughput Performance between
Open vSwitch (with DPDK) and NEC
switch (Gbps) 242
I/O Throughput Performance between
Open vSwitch (with DPDK) and NEC
swittch(Mpps) 242
I/O Throughput Performance (zoom)
between Open vSwitch (with DPDK) and
NEC switch Mpps) 243
MAC Address Matching Throughput Per-
formance between Open vSwitch (with
DPDK) and NEC switch (Gbps) 243
MAC Address Matching Throughput Per-
formance between Open vSwitch (with
DPDK) and NEC switch Mpps) 244
MAC Address Matching Throughput Per-
formance (zoom) between Open vSwitch
(with DPDK) and NEC switch (Mpps) . . . 244

Figure 4.22

Figure 4.23

Figure 4.24

Figure 4.25
Figure 4.26

List of Figures | xxxvii

MAC Prefix Matching Throughput Per-
formance between Open vSwitch (with
DPDK) and NEC switch (Gbps) 245
MAC Prefix Matching Throughput Per-
formance between Open vSwitch (with
DPDK) and NEC switch Mpps) 245
MAC Prefix Matching Throughput Per-
formance (zoom) between Open vSwitch
(with DPDK) and NEC switch (Mpps) . . . 246
Results from MACP performance study . . 248
Results from FlowNAC performance study 252

LIST OF TABLES

Table 2.1
Table 2.2
Table 2.3
Table 2.4

Table 2.5
Table 2.6

Table 2.7

Table 2.8

Table 2.9

Table 2.10

Table 2.11

Table 2.12

Table 2.13

Table 2.14

Table 2.15

Table 2.16

Table 3.1

Table 3.2

Table 4.1

XXXVill

VLAN Bridging categorization based on
NV Taxonomy 50
VREF categorization based on NV Taxonomy 54
VINI categorization based on NV Taxonomy 57
P-Flow categorization based on NV Tax-
ONOMY v v v vttt oo 60
VPN categorization based on NV Taxonomy 68
Data Center overlay categorization based

on NV Taxonomy 75
VMware NSX categorization based on NV
Taxonomy 78
NetLord categorization based on NV
Taxonomy 81
Diverter categorization based on NV
Taxonomy 84
PortLand categorization based on NV
Taxonomy 87
FlowVisor categorization based on NV
Taxonomy 92
VeRTIGO categorization based on NV
Taxonomy 96
OpenVirteX categorization based on NV
Taxonomy 100
FlowN categorization based on NV Tax-
ONOMY . .« v vt v ittt e 104
Switchlets categorization based on NV
Taxonomy 107
Comparison of NV Survey based on the
proposed NV taxonomy 109
Fulfilment of requirements by the L2PNV
proposal 159

Comparison of L2PNV to other SDNeV
approaches based on the proposed NV
taxonomy 160
Values from MACP performance study . .248

[ist of Tables | xxxix

Table 4.2 Values from FlowNAC performance study 252

ACRONYMS

ACL Access Control List

DAL Device and resource Abstraction Layer
EHU-OEF EHU OpenFlow Enabled Facility
FlowNAC Flow-based Network Access Control

InP Infrastructure Provider (as defined by the 4WARD FP7
project)

L2PNV Layer 2 Prefix-based Network Virtualisation
MACP MAC Address Configuration Protocol

NAC Network Access Control

NFV Network Functions Virtualization

NIC Network Interface Card

NSAL Network Services Abstraction Layer

NV Network Virtualisation

PFD Prefix-based Forwarding Decision

PFP Physical Facility Provider

PIP Physical Infrastructure Provider (as defined by the
GEYSERS FP7 project)

PNAC Port-based Network Access Control
PR Physical Resources

SDN Software Defined Networking
SDNeV SDN-enabled Virtualization

VFP Virtual Facility Provider

VFO Virtual Facility Operator

x|

VI Virtual Instance
VIAP Virtual Instance Access Point
VIDAP Virtual Instance Data Access Point

VIO Virtual Infrastructure Operator (as defined by the
GEYSERS FP7 project)

VIP Virtual Infrastructure Provider (as defined by the
GEYSERS FP7 project)

VITAP Virtual Instance Tenant Access Point
VM Virtual Machine
VNF Virtual Network Function

VNO virtual network operator (as defined by the 4WARD FP7
project)

vNode Virtual Node

VNP virtual network provider (as defined by the 4WARD FP7
project)

VPN Virtual Private Network
VR Virtual Resources

VRF Virtual Routing and Forwarding

xli

1 INTRODUCTION

This thesis presents results of the research on novel network
architectures and proposals, and about enabling the research
on novel network architectures and proposals. To this aim,
Network Virtualisation (NV) is perceived as the key enabler
to achieve both objectives. More concretely, the main research
topics covered in this thesis are NV, Security, Experimental
Facilities, Software Defined Networking (SDN) and Network
Functions Virtualization (NFV).

Therefore, one of the main contributions from this thesis is a
novel proposal for virtualising the network. To test and validate
this proposal the experimental facility use case is selected as the
main target scenario to consider, due to the fact that it’s one of
the most challenging scenarios for any NV approach.

This introduction first provides background of the research
work, then presents the motivations and research objectives from
this thesis, and finally, outlines the remainder of this document.

1.1 CONTEXTUALISATION

For the recent decades, the Internet has become an universal
enabler for continuous innovation in all areas of IT and human
activity. It is become the essential medium for information and
for communication of both social and business interactions. This
remarkable success has generated higher expectations for future
services, such as reliability, availability and interoperability,
which the Internet may not be capable of addressing properly.
Moreover, the number of nodes is expected to increase beyond
100 billion soon [1], resulting in an even more challenging
situation.

Currently, increasing numbers of users interact with each
other and are acting as real content providers, which has greatly
increased the amount of content stored and transported and has

2

| INTRODUCTION

created another challenging issue for the Internet. The resulting
increase in demand for capacity can no longer be addressed
through overdimensioning. In this context, the Future Internet
(FI) [2] initiative has emerged as a research effort aimed at
generating the tools to overcome the current limitations of
the Internet [3], such as the processing and handling of large
amounts of data, deficiencies of storage and transmission and
restrictions in the ability to control system functions.

In a nutshell, the FI is a set of research activities, projects
and frameworks intended to promote and to develop new
architectures and tools that replace the current Internet.
Significant efforts have been conducted worldwide to develop
the FI. The most relevant funding frameworks and research
projects in the FI arena are detailed in a survey [2] and include
the Future Internet Architecture! in the USA (the NSF FIA
programme built on a prior programme, Future Internet Design,
FIND?), the Future Internet Assembly (FIA) in Europe3and the
AKARI project [4] in Japan.

To solve the current limitations of the Internet, it is necessary
to promote innovation and the success of the FI; however, any
novel proposal demands robust experimentation and tests of
large-scale conditions. In this context, the experimental facilities
emerge to provide a realistic environment to validate these new
approaches. Both GENI [5] in USA and EU FIRE [6] in Europe
are the prime examples of these facilities. There are several
other facilities spread around the world, and each of them had
a different set of requirements, which makes them optimal for
experimentation on the research topics that were considered at
design time.

Deploying an experimental facility is challenging from a
technical standpoint. At a minimum, the facility has to
address the following requirements: (1) the flexibility to
support clean slate proposals imposing the smallest number of
conditions possible, (2) the capacity to run multiple experiments
simultaneously in the same infrastructure, (3) a complete
isolation between experiments (including the secured isolation
between them) and (4) the ability to virtualise the physical

1 NSF Future Internet Architecture: http://www.nets-fia.net/
2 NSF Future Internet Design: http://www.nets-find.net/
3 Future Internet Assembly: http://www. future-internet.eu

http://www.nets-fia.net/
http://www.nets-find.net/
http://www.future-internet.eu

1.1 CONTEXTUALISATION |

infrastructure as needed to share it properly among researchers.
Legacy technology, however, lacks full support for these
requirements. For instance, an implementation based on the
VLAN Bridging standard (IEEE 802.1Q [7]) imposes several
hard restrictions to any novel approach, such as the support
of a broadcast domain, the learning of MAC addresses or the
Spanning Tree Protocol family (i.e., STP, RSTP and MSTP) to
avoid loops. Therefore, a more generic facility without such
restrictions is desirable.

Two of the most important requirements in any experimental
facility are flexibility and isolation. The concept of SDN [8]
provides the flexibility lacking in networking equipment with
behaviour that is defined by hardware or a vendor-dependent
firmware. The SDN technology is an enabler to achieve the
expected flexibility and isolation. This isolation is necessary
for any type of experiment so the experiment is not affected
by external entities. This way, independence and a minimum
variability will be assured. However, the isolation is not an
exclusive requirement for experimental facilities, and there are
other scenarios that could also benefit from it, such as campus,
operator, and data center networks.

SDN has been one of the pillars of innovation in network
infrastructures, allowing the decoupling of the control and
data planes through an open and standard interface that
enables the programmability of the network. OpenFlow [9],
ForCES [10], and I2RS [11] are some examples of SDN technology.
SDN has also contributed to the virtualisation of the network
infrastructure, providing the foundation to isolate, abstract,
and share the network resources. Modifying the behaviour
of networking equipment allows researchers to conduct all
types of experiments involving novel architectures and protocols
to overcome current limitations (e.g., mobility and security
features) with radical new approaches instead of trying to patch
the current Internet with only incremental changes layered on
top of the existing architecture. By means of supporting NV,
different approaches demanding distinct requirements could be
simultaneous deployed in the same infrastructure obtaining the
optimal behaviour from the network.

OpenFlow [12] is one of the most successful SDN technologies.
Created at Stanford University, this technology is currently

3

4

| INTRODUCTION

controlled by the Open Networking Foundation (ONF),
which is composed of hardware vendors, service providers
and telecommunication companies. OpenFlow tries to strip the
high-level routing decisions (control paths/plane) from the fast
packet forwarding (data paths/plane) in a switch or router and
thus moves the control path/plane to a separate controller. The
protocol defines how the OpenFlow Switch and the OpenFlow
Controller communicate by specifying the messages involved.
OpenFlow is a technology designed to achieve flow level
programmability, which is defined as a set of matching fields,
instructions and counters.

To optimise the usage of the network infrastructure, similarly
to the optimisation of computing resources, the idea of
virtualisation has jumped from the host to the network.
Although different definitions have been proposed for NV
depending on the target scenario, such as the VNRG®, [13], [14],
the basic idea behind this concept is the abstraction of the actual
network as a virtual network instance delegated to another
single administrative entity. Many different approaches have
been proposed with dissimilar requirements, but there are some
fundamental properties common to all of them: the sharing of
physical resources concurrently between all the virtual networks,
the isolation between different virtual network instances, and the
abstraction of resources as virtual instances. Depending on the
target scenario (e.g., experimental facility, campus, operator or
data center networks) some additional characteristics could be
included as mandatory. Due to the dissimilar criteria proposed
when organising the NV proposals, in some occasions oriented to
specific scenarios, it could be hard to differentiate and properly
compare all the approaches.

In this context, OpenFlow arises as a promising technology
that enables the virtualisation of the network. In this
case, virtualising a network involves the gathering of all
hardware/software and network functionalities under a single
administrative entity that can delegate parts of those resources,
known as slices. Network virtualisation can be achieved in
OpenFlow by distributing the flows in slices, where the control

Open Networking Foundation (ONF): https://www.opennetworking.org
Virtual Networks Research Group (VNRG): https://irtf.org/concluded/
vnrg

https://www.opennetworking.org
https://irtf.org/concluded/vnrg
https://irtf.org/concluded/vnrg

1.1 CONTEXTUALISATION |

plane associated to each slice is delegated to a different
controller. Thus, exposing the programmability of the virtual
network instance to the corresponding administrative entity.
Due to this capability, using OpenFlow to build the NV approach
is highly beneficial to several areas. For instance, its adoption
in current experimental facilities (e.g., OFELIA [15], GENI [5])
allows several experiments to run at the same time on the same
physical infrastructure. In this scenario, OpenFlow enables new
protocols to be tested without affecting other experiments or
the production traffic. However, the available facilities based on
current NV proposals can affect the experimentation depending
on the target scenario and the actual proposal under test, and
therefore, they present some limitations, including some security
concerns. This effect should be minimised to be as transparent
as possible to the experiments, as if there were no virtual
environment. This also means that the experimental facilities are
designed based on a set of requirements, with the main goal to
be orthogonal to the research itself.

One of the responsibilities of any experimental facility
is to deploy new services and resources to enable the
experimentation. In relation to these supporting activities, the
ongoing work on NFV® must be considered as a hot research
topic in the area of service delivery. Service provisioning
is often based on proprietary hardware appliances, which
imposes some restrictions when trying to deploy new network
services, such as capacity and availability. In this scenario, the
network infrastructure is not flexible enough to accommodate
new services or migrate them to other locations due to
its dependence on the physical appliances. NFV has been
proposed to innovate in the service delivery arena by using
standard computing virtualisation technology to consolidate
in commodity hardware (i.e., standard high volume servers,
storage, and switches) the functions previously performed by
specific hardware appliances. Virtual Network Functions (VNFs),
which compose the service chain, are the basic elements to
achieve the complete virtualisation of service delivery and are
commonly based on computing resources.

Network Functions Virtualisation = (NFV): http://www.etsi.org/
technologies-clusters/technologies/nfv

5

http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/technologies-clusters/technologies/nfv

6

| INTRODUCTION

Major standardisation efforts of the emerging NFV technology
are being led by the European Telecommunications Standards
Institute (ETSI), where the NFV Industry Specification Group
(ISG) has recently published 11 NFV specifications, including
the NFV architecture [16]. The defined architecture focuses on
the aspects unique to virtualisation, such as the transformation
of the management and orchestration of VNFs, rather than
common challenges to both physical and virtualised NFs, such
as the control and operation of the end-to-end network service.
Moreover, the NFV ISG is also coordinating and promoting
public demonstrations of proofs of concept (PoCs)” that illustrate
key aspects of NFVs, such as scalability, multi-tenancy, and
migration issues.

This interest in NFV is twofold. On the one hand, the
deployment of services as VNFs on the experimental facility
could benefit from the outcomes of NFV related proposals. On
the other hand, experimentation of NFV proposals must be
supported by the experimental facility. Moreover, SDN and NFV
are complementary technologies, and each one can leverage off
the other to improve the flexibility and simplicity of networks
and service delivery over them. For this aim, new architectures
and interfaces between them are needed, and several proposals
are emerging (e.g., NFV Proofs of Concept, T-NOVA [17] and
UNIFY [18]).

1.2 MOTIVATION

The motivation of this thesis comes from the analysis of the
aforementioned contextualisation. As previously exposed, the
current Internet presents some architectural limitations that
requires either drastic changes with new radical approaches
or clean slate proposals. One of the keys to success for these
novel solutions is the extensive testing in a realistic scenario to
both validate the approaches and demonstrate their benefits for
real deployments. Although, at least in Europe, the FI initiative
has evolved into different specific research areas (e.g., IoT, 5G,
and Big Data) and the idea of one-for-all experimental facilities

ETSI ISG for NFV, NFV Proofs of Concept: http://www.etsi.org/
technologies-clusters/technologies/nfv/nfv-poc

http://www.etsi.org/technologies-clusters/technologies/nfv/nfv-poc
http://www.etsi.org/technologies-clusters/technologies/nfv/nfv-poc

seems to be quite utopic, the reality is that some kind of
environment for large-scale experimentation would be needed.
The experimental facility is the response to this demand.

Currently, several experimental facilities have been deployed
worldwide (e.g.,, in USA and in Europe). They have been
designed based on a different set of requirements depending
on the target scenario and the focus of experimentation to be
supported. However, these facilities present some limitations for
networking research due to the NV solution adopted. Most of
them rely on VLAN tags to isolate the virtual network instances,
which, for instance, prevents to research on campus and operator
networks (concretely VLAN tags are extensively used on access
networks), since this tag is not further exposed transparently
to the experiment. Moreover, the actual list of requirements
established as preliminary conditions is not fulfiled by any
of those experimental facilities. Due to the target scenarios
to be investigated and the research topics to be covered, the
imposed requirements are: the isolation between experiments
(including the secured isolation between them), the flexibility
to experiment on novel architectures and clean slate approaches,
the scalability of the facility, the stability of the experiment slice
definition, the transparency of the facility with regard to the
experiments (including the efficiency, avoiding any overhead),
and the support for research on networking. Following with
the example of VLAN tags used above: first, the flexibility
is restricted since the VLAN space cannot be exposed to the
experiment (at least, transparently); second, the scalability is
limited for large-scale experimentation (12 bit, up to 4096 slices);
and third, the transparency is compromised both at data plane
and control plane (a tag is added).

As previously mentioned, the NV approach used is closely
related to the ability of the experimental facility to research
on networking. Therefore, one of the most fundamental aspects
to consider when designing the experimental facility to really
support novel architectures and networking proposals, is the
NV solution. There are lots of NV proposals and due to the
different aspects and scenarios that they cover, it is difficult to
properly understand and compare all these proposals. Therefore,
a means to categorize and organise the current state of the art is
desired. Based on this study, a novel NV approach to deal with

8

| INTRODUCTION

all the requirements imposed to the experimental facility is also
needed.

As a research topic on clean slate approaches, the investigation
on novel MAC addressing schemes (such as [19]) has been
considered. As a consequence, on the one hand, the NV solution
must support the experimentation on new addressing schemes.
On the other hand, a mechanism to facilitate the deployment
of these novel schemes is desired. As a result of this research
line, new proposals are expected to demonstrate goodness of
this approach.

Considering the currently deployed experimental facilities,
there are some security concerns that must be overcome.
Concretely, although the isolation within the network is
provided by the NV approach, the data plane access from end
devices to the slice is not properly secured. In those facilities,
is quite simple to introduce data traffic to other slices, since
the end user is the only responsible to properly configure the
access to the slice, and no further check is performed. Therefore,
a mechanism to enhance the overall security of the experimental
facility is needed (mainly related to the data plane, since some
support is available at control plane). The main challenge is how
this access control could be supported and integrated with the
NV solution proposed for the facility.

Also related to this latter idea of how to integrate and deploy
new functionalities and services as VNFs on the experimental
facility, some kind of guidance is desired. Additionally, it could
be beneficial to learn from the NFV related proposals already
demonstrated to improve the design of the facility. Moreover,
the design of new services as VNFs can benefit from leveraging
on SDN technology to improve their adoption by NFV based
platforms.

1.3 RESEARCH OBJECTIVES

The principal objective of this thesis is twofold: the research
on novel network architectures and solutions, and enabling
experimental validation of the proposed solutions. This means
that both the results of the research on networking topics and
an experimental facility on which they could be tested in a

1.3 RESEARCH OBJECTIVES |

realistic environment are expected outcomes from this thesis.
Although it seems that the chronological order is the just the
opposite (first the experimental facility, and then the networking
research), the truth is that building the experimental facility is
really a huge challenge from the networking perspective. As a
consequence, the research on novel networking proposals (e.g.,
a NV approach) has been the key of success to actually assemble
the experimental facility, and vice versa, building the facility to
meet the imposed requirements has driven the research activity.

Based on the previous analysis, there are several aspects to
improve and some limitations to overcome. Therefore, some
concrete research objectives and research questions (RQ) of the
presented research are defined as follows:

e Build a campus-wide experimental facility that covers
all the requirements imposed to enable the research on
novel networking architectures and proposals. The facility
must support the secured isolation between experiments,
be flexible, be scalable, be stable at slice definition,
be transparent to the focus of the experiment, and
basically, support the research on networking approaches
by exposing the programmability of the network to the
researchers. It must also support both experimental and
production traffic over the same physical infrastructure.
Some fundamental pieces (i.e., a NV approach, a secured
access control system and an automatic mechanism for end
host configuration) are needed and detailed as additional
concrete objectives.

e Define a NV taxonomy to facilitate the comprehension
and comparison of the current state of the art of
NV approaches and its evolution. The taxonomy must
document the common characteristics and attributes from
these proposals and clarify them to guide through the
process of understanding the past, current and future
solutions to virtualise the network.

¢ Design and implement a novel NV approach that fulfils all
the imposed requirements. The solution must be efficient,
both by reducing the overhead at data plane (not tunneled)

9

10

| INTRODUCTION

and by being transparent on the end to end communication
(e.g., avoiding push/pop actions).

RQ1: How to design efficient a (SDN based) NV method and
architecture to reduce the overhead at data plane and be
transparent on the end to end communication (optionally) for
dynamically changed user groups and workflows?

Design and implement a mechanism to facilitate the
deployment of novel MAC addressing schemes both for
physical and virtual devices. Due to the fact that the
innovation on MAC addressing schemes is perceived as a
research topic, the distribution/update of MAC addresses
to the end hosts is not solved.

RQ2: What are specific needs of new MAC address scheme to be
efficiently deployed over a network?

Design and implement a secured mechanism to control the
access to the experimental facility based on the identity of
the users and the policies defined by the researchers. This
scheme could be extrapolated to a generic NV approach,
whose aim is not focused on enabling the experimentation.
The control access is focused on the data plane and must
be granular enough (i.e., fine or coarse granularity) to meet
the policy defined by the researchers.

RQ3: How the access to a virtual network could be secured
based on the identity of end users and policies defined by the
corresponding tenant?

Define basic architectural principles for an optimal
design of new services and protocols as VNFs based
on SDN technology to better fit into a facility based on
NFV concepts. Apart from facilitating the adoption of
new services and its deployment on the experimental
facility, other scenarios, such as operator or data center
networks, could benefit from these VNF design principles
to improve and optimise the service delivery in production
environments.

RQ4: Which are the design principles that improves the
performance of VNFs (based on SDN technology) while
minimizing their deployment effort?

1.4 DOCUMENT ORGANISATION |

The specifics and challenges in research on new networking
technologies and the construction of the experimental facility
requires that the above described objectives are addressed in
a complex and integrated way. Accordingly, the experimental
facility relies on the novel NV approach, the mechanism
for deploying alternative MAC addressing schemes, and the
secured access control proposal. Moreover, the innovative
proposals based on new MAC address schemes and the
architectural principles for optimal design of services will be
tested on the experimental facility.

Finally, an additional objective, which is transversal to all the
previous ones, is the experimental validation and performance
evaluation of these proposals under realistic circumstances (i.e.,
tested in the experimental facility).

1.4 DOCUMENT ORGANISATION

The remainder of this document is organised as follows.
Chapter 2 presents the state of the art related to NV and
experimental facilities. It also proposes a novel NV taxonomy
to organise the NV survey analyzed. Then, Chapter 3 details
three novel proposals as individual research contributions of the
presented research: Layer 2 Prefix-based Network Virtualisation
(L2PNV), MAC Address Configuration Protocol (MACP) and Flow-
based Network Access Control (FlowNAC). Afterward, Chapter 4
experimentally validates these proposals and presents the EHU
OpenFlow Enabled Facility (EHU-OEF), which is one of the main
contributions from this thesis. This chapter also analytically
demonstrates the benefits from the L2PNV proposal. Finally,
Chapter 5 summarises the content of this document and details
the main contributions obtained as outcomes from this thesis, as
well as the dissemination of results related to this research work.
To conclude the future work as the next steps for this thesis are
outlined.

11

Z STATE OF THE ART

This chapter focuses on analysing the state of the art related
to Network Virtualisation (NV) (in Sections 2.1, 2.2 and 2.3)
and experimental facilities (in Section 2.4). These two topics
are relevant to contextualise and clearly identify the main
contributions from this thesis. However, prior to introduce both
analyses, the Software Defined Networking (SDN) technology is
also contextualised due to its relevance for the content of this
thesis.

SOFTWARE DEFINED NETWORKING (SDN)

Therefore, some SDN related concepts and previous work
must be introduced. As defined by RFC 7426 [8], SDN is a
programmable networks approach that supports the decoupling
of control and forwarding planes by means of standardised
interfaces.

Although the SDN paradigm has revitalised the idea of
programmable networks, these concepts have been around for
a long time, as confirmed by this survey [20] of programmable
networks published in 1992. In this paper, the authors present
a model for programmable networks and a number of projects
are reviewed based on that model. The idea of programmable
virtual networking is also introduced as closely related to the
network programmability.

A few years later, in 2008, McKeown et al. [12] presented
OpenFlow as a way to enable the innovation in networks based
on similar ideas. By means of OpenFlow, the programmability
of the network is exposed to the researchers to run their
experimental protocols by using the same infrastructure
deployed for the production traffic. The authors introduce
OpenFlow as a useful campus component to build large-
scale testbeds like GENI, and claim a first deployment of a
running OpenFlow network at Stanford University. Afterward,

13

14

| STATE OF THE ART

the complete process of maturing the OpenFlow technology
divided in four phases (from the proof of concept to production
development), the lessons learned and outcomes from real
deployments are presented in [21]. In this process, SDN
demonstrates its potential for different target scenarios, such as
data center networks, service providers, enterprises and home
networks.

Recently, several publications have presented an historical
perspective of SDN and its relation with other programmable
network approaches, such as in [22] and [23].

On the one hand, [22] analyses the past, present and future of
programmable networks (i.e., open signaling; active networking;
DCAN; 4D Project; NETCONF; and Ethane/SANE) and presents
a survey of SDN. The paper details the SDN architecture and
the OpenFlow standard in particular, and examines different
alternatives proposed for implementing SDN-based protocols
and services. The virtualisation is also analysed in the context
of SDN proposals.

On the other hand, [23] also presents an historical approach
to the evolution of programmable networks (i.e., active networks;
separation of control and data planes; and OpenFlow and
network operating systems). This paper also highlights the NV as
a prominent use case for SDN. NV is described as an abstraction
of the network that is decoupled from the underlying physical
equipment, allowing multiple virtual networks share the same
physical infrastructure. The legacy support for NV before SDN
(e.g. VLANs and virtual private networks) is characterised by
two fundamental principles: (1) only the network administrators
are able to create these virtual networks, and (2) the virtual
networks are limited to the already existing network protocols.
Therefore, the innovation in legacy approaches is quite limited.

Apart from this historical view, some other recent publications
have surveyed the last SDN developments, such as in [24] and
[25].

The former [24] presents a comprehensive survey on SDN
(with 579 references). The paper introduces the motivation
for SDN and the most relevant concepts and standardisation
activities (from different SDOs, such as ONF, IETF, IRTE, ITU-
T, BBF, MEF, IEEE and some others) related to this technology.
Then, the key elements of an SDN architecture are presented

STATE OF THE ART |

using a bottom-up layered approach. Moreover, the paper
presents a deep analysis of hardware devices, southbound
and northbound APIs, NV layers, network operating systems
(NOS, also known as SDN controllers), network programming
languages and network applications. The problem of debugging
and troubleshooting in SDN is also covered in the survey.
Furthermore, some ongoing research efforts and challenges are
also envisioned. Also relevant for this thesis, an OpenFlow
security assessment is detailed and some countermeasures are
mentioned for SDN approaches based on OpenFlow. In this
regard, the survey also covers the current proposals for security
applications based on SDN technology.

The latter [25] also presents a survey on SDN based on a
layered taxonomy proposed by the authors (i.e., infrastructure
layer, control layer, application layer, control/infrastructure
layers, application/control layers, and application/control/in-
frastructure layers). First, the SDN architecture and main
components are presented. Then, the paper analyses and
categorizes the most relevant research works related to the
SDN technology based on the proposed taxonomy. The main
issues and research directions are also detailed, as well as some
scenarios where the use of SDN could be beneficial.

NETWORK VIRTUALISATION (NV)

As previously mentioned in the introduction, and also
confirmed by aforementioned surveys, NV is one the most
relevant use cases of the SDN technology. However, there are
other NV proposals based on legacy technology (i.e., limited
to already existing network protocols), which are also widely
used in current deployments. Several NV surveys have been
published as detailed below, but they do not fit the objectives
of this thesis, because either they are fundamentally focused on
legacy approaches or they are specific to a concrete scenario
(e.g. data center networks). Moreover, the already proposed
NV taxonomies do not properly cover all the different NV
approaches presented so far.

In 2009, the authors in [13] (and also in [26]) presented a
state of the art of NV. Nevertheless, the SDN technology was not
yet mature enough at that time, and its relevance on the survey

15

16

| STATE OF THE ART

is marginal. The main contributions from this paper are the NV
architectural principles, the NV design goals and the research
challenges for NV. First, the paper presents the NV architectural
principles, which are coexistence, recursion, inheritance, and
revisitation. Then, the complete list of NV design goals are
detailed, including flexibility, manageability, scalability, isola-
tion, stability /convergence, programmability, heterogeneity, and
legacy support. Finally, the most relevant research challenges for
NV are identified, such as interfacing, signaling/bootstrapping,
resource/topology discovery, resource allocation, admission
control/usage policing, vNodes/vLinks, naming/addressing,
mobility management, monitoring/configuring/fault handling,
security /privacy, interoperability issues, and NV economics.

There are also some other NV surveys focusing on specific
scenarios, such as data center networks. Related to this scenario,
the authors in [27] cover the most relevant NV proposals for data
center networks. They analyse their characteristics and classifies
the different approaches based on different features, such as the
forwarding scheme, bandwidth guarantee support, multi-path
support, and relative bandwidth sharing. Then, the comparison
between the different proposals is presented based on the
following criteria: scalability, fault-tolerance, deployability, QoS
support, and load-balancing.

Moreover, the authors in [28] present a survey in NV and SDN
for cloud computing. This paper analyses the benefits from NV
for this scenario, including the sharing of resources, isolation,
aggregation, dynamics, and easy of management. Then, the
different elements to be considered for the overall NV solution
are detailed, such as the virtual Network Interface Card (NIC),
virtual switch, virtual LANs in the cloud, virtualisation for multi-
site data centers, and network function virtualisation. The SDN
technology is detailed as the latest revolution in networking
innovations and programmable networks, becoming the key
element to build the NV solutions for the cloud. Finally, the
OpenADN proposal is presented.

In relation to the NV analysis presented in this chapter, first of
all, some concepts related to NV and its definition are introduced
in Section 2.1. Based on this, a characterisation and NV taxonomy
is presented in Section 2.2. Finally, some of the most relevant
proposals are analysed in Section 2.3 considering the proposed

taxonomy. This effort does not aim to be a thorough analysis of
all the NV proposals, but a means to detail on the NV taxonomy
and elaborate with specifics.

EXPERIMENTAL FACILITIES

The research efforts on the future internet demand a robust
experimentation and tests at large-scale. The experimental
facilities provides a realistic environment to validate the new
architectures and proposals. A survey of future internet research
activities is presented in [2]. The most relevant activities in
the USA (the FIA and FIND programmes, and the GENI
testbed), Europe (the FIRE testbed), and Japan (the AKARI
project, and the JGN2plus and JGN-X testbeds) are detailed.
In this regard, [6] compares the FIRE initiative with the
GENI testbed, and concludes that while the US approach is to
build a separate network infrastructure for researching, the EU
approach assumes that a large-scale platform cannot be planned
before the new architectural concepts are previously validated.
As a consequence, the progressive federation of testbeds is the
EU approach as shown in [29].

A special issue on Future Internet Testbeds [30] (split across
two volumes: Part I and Part II) focuses on the design, building
and experimentation on the most relevant testbeds worldwide,
such as GENI [5], the G-Lab [31], the Global Lambda Integrated
Facility [32], OFELIA [15], FEDERICA [33], the GEYSERS optical
testbed [34], and SmartSantander [35]. Apart from describing
the architecture and infrastructure of all these Future Internet
testbeds, the special issue also covers the experimentation and
usage of these testbeds. In relation to GENI, a number of
projects that operate over this testbed are also described, such
as the InstaGENI initiative [36], the K-GENI experiment over
GENI and KREONET [37] and the GpENI experimentation [38].
Moreover, the results from some other experiments related to
Smart Grids [39] and the development of an instrumentation and
measurement system called INSTOOLS [40] used in GENI are
also included. Regarding PlanetLab [41], some results from the
experimentation on end-to-end performance in heterogeneous
testbeds are presented in [42]. The SmartSantander paper [35]
also details the experimentation on IoT over this testbed. Finally,

17

18

| STATE OF THE ART

with regard to the research activities at Stanford University, the
process of maturing OpenFlow through real deployments is
detailed in [21].

In the literature there are some other surveys concrete to
a specific research topic, such as [43], which focuses on
experimental facilities for researching on IoT under realistic
conditions. For instance, MoteLab [44] is a testbed for wireless
sensor networks. However, the supporting for experimentation
on wireless technologies and IoT approaches is out of the scope
of this thesis.

In relation to the analysis of the most relevant Experimental
Facilities related to the goal of this thesis detailed in Section 2.4,
the survey has been grouped in two categories: non-SDN facilities
(Section 2.4.1) and SDN enabled facilities (Section 2.4.2).

2.1 NETWORK VIRTUALISATION

Although NV is not a new concept, it has been related to
different approaches and has evolved during the last years,
thus it remains unclear what it really means and the supported
features it must provide. The NV proposals, their characteristics
and which are considered as mandatory features depends on the
scenario and target use case. This document considers NV in its
broader sense, trying to be inclusive with any approach to the
virtualisation of the network.

The remainder of this section is organised as follows. First,
the reference architecture of network devices is presented in
Section 2.1.1. Then, the proposed architecture for NV is detailed
in Section 2.1.2. Finally, the reference definition for NV used in
this document is presented in Section 2.1.3.

2.1.1 Network Device Architecture

Before getting into details, the overall architecture must be
depicted to avoid a partial approach to the NV problem.
Moreover, some features could be assumed to be generic, but
some others could become fundamental depending on the target
scenario, whereas in other scenarios these later features are no

2.1 NETWORK VIRTUALISATION |

mandatory or even relevant. Therefore, the global architecture is
depicted as a reference for the on going discussion.

The architecture presented in [8] (shown in Figure 2.1) is
used as the reference architecture for properly introducing and
describing the possible options to implement NV. Although this
architecture is presented in the context of SDN, it does not mean
that the overall architecture cannot deal with legacy solutions.
What a SDN related architecture introduces is an explicit interface
and separation between the forwarding plane and the control
plane. In legacy systems this separation is not exposed and it
always remains internal to the network device. Moreover, this
architecture clearly claims that there is no distinction between
physical and virtual resources or hardware and software
implementation of those elements described in the document.
It is also important to consider that it follows a network-
device-centric approach, which means that the architecture is
related to a single network device. This is relevant for later on
characterisation, since the abstraction of a complete network is
out of the scope of this RFC.

The document presents the SDN layer architecture for a
network device, which introduces three layers separated by
two abstraction layers. On the bottom, the network device
has two main components, the forwarding plane and the
operational plane, which are mainly related to the control
and management planes respectively. The distinction between
control and management is controversial and out of the scope
of this discussion, but some pointers can be found in the RFC
in section 3.5. The forwarding plane, also known as data plane,
is responsible for handling the packets in the data path based
on the decisions made in the control plane. The operational
plane is responsible for managing the operational state (e.g.
active/inactive, status of ports and so on) of the network device.
The Device and resource Abstraction Layer (DAL) exposes the
forwarding and operational plane through the control plane
southbound interface and the management plane southbound
interface.

On top of the network device and the DAL, the second
layer has two main components, the control plane and the
management plane. The control plane is responsible for making
decisions on how the packets should be forwarded in the

19

20

| STATE OF THE ART

o o
| |
| e + Fomm—————— +
| | Application | | service |
| + + + + |
| Application Plane
O - Y - o
|
* Y *
Network Services Abstraction Layer (NSAL)
* Yo - - Y. *
| |
| Service Interface
| |
o Y o o Y o
| Control Plane Management Plane
O, N S + Fommmm + FommmYmm et
| service | | app | | app | | service |
e S e a e tmmYmmt Fmmm Yt
| | | |
[R R E L S GE—
| Control Abstraction | | Management Abstraction |
| Layer (CAL) | | Layer (MAL) |
* Y * * Y *
| |
o - o o | o
| |
| cp | Mp
| southbound | Ssouthbound
| Interface | Interface
| |
* --Y Yo *
| Device and resource Abstraction Layer (DAL)
* Y Y *
| | | |
| o --Y o + + o Y-m- o
| | Forwarding Plane | | app | | operational Plane |
| o o + + o o |
| Network Device
+. - - - - -+

Figure 2.1: The SDN layer architecture defined by RFC 7426 [8]

data plane, whereas the management plane is responsible for
monitoring, configuring and maintaining the network device.
Due to the relevance that the control plane and its functions has
for the following characterisation, it is worth to mention some
of the responsibilities and functionalities that are assigned to the
control plane: topology discovery and maintenance, packet route
selection (i.e., routing processes) and path failover mechanisms.
Moreover, it is important to distinguish between the control
actions performed through the control plane southbound
interface (detailed above) and the east-west communication
between control entities. The depicted architecture considers
the former communication (i.e., between the control and the
forwarding planes), while the later interface is out of the scope
of this discussion and usually implemented through an in-
band protocol. The Network Services Abstraction Layer (NSAL)

2.1 NETWORK VIRTUALISATION |

exposes northbound both the control and management planes
through a service interface.

On top of the NSAL, the third layer comprises the application
plane, where the behaviour of the network is defined by
applications and services. In the end, the application plane is

the final user of the virtual instance exposed by the NV solution.

One of the main goals of any NV approach is to be as transparent
as possible to the application, so it behaves in the same way as
if it is interacting with a real network instance.

As previously mentioned, this SDN architecture is the
reference for NV solutions characterisation and the main factor
to distinguish between NV approaches.

2.1.2 Network Virtualisation Architecture

As in any other discussion, to clarify the nomenclature used
to discuss the different NV approaches is essential for a proper
understanding. Moreover, some general components and entities
that comprises any NV approach are introduced to avoid any
misunderstanding.

There are several proposals to describe the components and
entities of a NV solution. In the context of the GEYSERS FP7
project!, a generic architecture for the cloud infrastructure as
a service (laaS) provisioning model [45] is proposed, which
details the main actors and functional layers in on-demand
infrastructure services provisioning. The model consists of three
layers (shown in Figure 2.2), each managed by a different actor:
the Physical Infrastructure Provider (as defined by the GEYSERS
FP7 project) (PIP), the Virtual Infrastructure Provider (as defined
by the GEYSERS FP7 project) (VIP) and the Virtual Infrastructure
Operator (as defined by the GEYSERS FP7 project) (VIO). From
a bottom-up perspective, the physical infrastructure is provided
by the PIP, which is virtualised by the viP, and which is finally
operated by the VIO.

There can be several network domains, each normally (but not
always) managed by a single PIP. Each PIP can provide Physical
Resources (PR) to several ViPs, whilst each VIP can request PRs

The GEYSERS Project: http://cordis.europa.eu/project/rcn/93786_en.

html

21

http://cordis.europa.eu/project/rcn/93786_en.html
http://cordis.europa.eu/project/rcn/93786_en.html

22

STATE OF THE ART

Virtual Infrastructure (V1) (operated by VIO1)

User/
— Applic
B

User/
Applic

VI Operator

..... B e B n e

H 1 H i

! VR1 ! VR2 {VR3| | VR4 | VR5i vRs
|
|

—————— T e VI Provider
IProvider1 | {____VIProvider2 1 Layer
i H |

1 T 1
! ! i 1
|

| PIP4 | PI Provider

| [PPt] [pr2] | PP3] P

UserND-A i lL

|
|
Bttt

UserND-BE

I
i
[T |

Figure 2.2: The general architecture for the cloud IaaS [45]

from several PIPs. Both entities are responsible for ensuring that
resources are provided in the range of capacity. The PRs are
virtualised as Virtual Resources (VR) by the abstraction layer.
The VRs are the elements managed by the ViPs and provided
to the VIOs. Each VIP can provide, in this way, VRs to several
VIOs, while each VIO can request VRs from several VIPs. Again,
both entities must ensure that the total capacity of the physical
resources is not exceeded. Between each pair of entities (PIP-VIP
and VIP-VIO) there is an adaptation layer, which is responsible for
hiding the underlying complexity to the upper layer. The virtual
infrastructure requested by users or applications is eventually
managed by the VIO. In this way, each VIO operates a different
virtual network slice, which must be isolated from the others.
Finally, the user is the entity who sends the data packets through
the Virtual Infrastructure.

The 4WARD Virtual Network (VNet) architecture [46], in
the context of the 4WARD FP7 project?, also proposes a
similar set of roles and actors for a NV architecture. The
Infrastructure Provider (as defined by the 4WARD FP7 project)

2 The 4WARD Project: http://www.4ward-project.eu/

http://www.4ward-project.eu/

2.1 NETWORK VIRTUALISATION |

8 VI Tenant

- VI Data Access Point (VIDAP) l VI Tenant Access Point (VITAP)

B T
=

Infrastructure.
Provider

W

Figure 2.3: The two-layered model for NV architecture

(InP), which owns and operates the physical network, the virtual
network provider (as defined by the 4WARD FP7 project) (VNP),
which combines the slices of virtualised infrastructure from InPs
together into a functional VNet, and virtual network operator
(as defined by the 4WARD FP7 project) (VNO), which operates
and manages the instantiated VNets. The end-user is the entity
who inserts the data traffic into the VNet instance.

Apart from the details and specific functionality associated to
each entity, and some nomenclature distinction, there is almost
a 1:1 mapping between both approaches in relation to the main
roles and business boundaries that could be found in any NV
approach.

A simplified two-layer NV architecture (shown in Figure 2.3)
is proposed for two main reasons, because this simplification
is enough for proper characterisation of NV approaches and
because using two layers is more generic and more proposals
could fit into this model. Some proposals could not be mapped
into a three-layer model, since the differentiation between the
VIP and the VIO (or VNP and VNO) is not always clear or even
considered.

¢ The bottom layer is the physical infrastructure layer, which
provides the actual network devices and physical links to
interconnect them.

— The infrastructure provider is the owner of the
physical resources and is the responsible for creating

23

24

| STATE OF THE ART

the virtual instances exposed to the layer above by
means of some kind of abstraction.

At this layer a virtual instance management functionality is
needed, which is used to define and instantiate the virtual
resources. For simplicity, only one domain is considered in
this architecture.

e The upper layer is the virtual instance domain (Virtual
Instance (VI) domain) and represents all the virtual
instances created over the same physical domain (ie., a
set of physical resources). The VI domain must fulfil some
rules imposed by the NV solution to enforce the isolation
between the instances and allow the sharing of resources,
such as a means to uniquely identify each of the virtual in-
stances. It is assumed that multiple virtual instances could
be sharing the same physical infrastructure, otherwise the
virtualisation overhead makes no sense. A virtual instance
is broader concept than a virtual infrastructure, which not
only refers to an infrastructure or a set of resources, it
could be an abstract view exposed to the upper layer.

— The virtual instance tenant (referred also as tenant to
simplify the notation) is the entity who operates, man-
ages and/or controls the virtual instance, depending
on the type of the virtualisation performed.

— The user is the entity who sends and receives the
data packets by using the appropriate virtual instance
provided for this aim.

There is a relation between the user and the corresponding
tenant that provides the networking service. Due to the
fact that the physical infrastructure is shared between
multiple tenants, the users must be securely bounded to
the associated tenant to avoid unauthorised access to the
network services provided by other tenants.

In this NV architecture, there are two reference points that
need special attention: Virtual Instance Data Access Point
(VIDAP) and Virtual Instance Tenant Access Point (VITAP). The
Virtual Instance Access Point (VIAP) is a generic term that
comprises both reference points.

2.1 NETWORK VIRTUALISATION |

o The virtual instance data access point (VIDAP) is the entry
point for data packets to the virtual instance domain. The
data traffic related to a given user needs a VIDAP to send
and receive data packets to/from the virtual instance. It
is important to highlight that the resources between the
user and the VIDAP are not virtualised per se (or at least,
they are not part of the target VI domain) and need to
be properly analysed to avoid isolation problems on the
virtual instances.

e The virtual instance tenant access point (VITAP) is
the entry point for the tenant to operate, manage
and/or control the virtual instance. Once again, this
interface must be accurately defined, deeply analysed,
and securely exposed to the corresponding tenant. Some
deployments consider an out-of-band network for this
purpose, although there are also in-band solutions.

Both the VIDAP and VITAP need the support of sharing the
corresponding access points in the physical infrastructure.

2.1.2.1 Virtual Instance Namespace

The virtual instance namespace is a key concept for implement-
ing a NV solution. In general, the concept of namespaces appears
to avoid name collisions when different identifiers share the
same name. The namespace introduces the uniqueness to the
identifier by including a distinctive part which adds a context
to the name. The combination of both, the namespace identifier
and the local name, is designed to be unique.

In the context of VN, it is fundamental to uniquely identify
the virtual instance to which a data packet belongs. Therefore,
there must be a kind of an identifier in the data packet that
allows to make such a distinction. In a nutshell, a namespace
refers to the portion of the packet headers (e.g. a field of L2-L7
header, a set of bits from these headers, an address or prefix,
a tag or any combination of them) with a specific function
assigned, the identification of the virtual instance. Since the
physical resources are shared, a predefined namespace must be
assigned to identify the target virtual instance. Each VI domain
must determine the namespace to be used for this task, and it

25

26

| STATE OF THE ART

must be consistent in the domain for all the virtual instances
to avoid collisions. This means that the VIDAP is characterised
by a unique VI namespace value. The adjacent VI domain could
determine another namespace to identify the virtual instances,
which implies that some adaptation function must be performed
at data level between the VIDAPs of each VI domain to ensure
the isolation of each virtual instance when transversing different
domains.

2.1.3 Network Virtualisation Definition

Depending on the target scenario, available technology and
specific needs, the NV concept has evolved and could represent
different abstractions. This means that there is not only a single
valid definition for NV. To avoid confusion on the scope covered
by this document, a NV definition is proposed, which tries to
be generic enough to include the majority of past and future
proposals. The Virtual Networks Research Group® (VNRG) from
the Internet Research Task Force (IRTF) was focused on the
topic of NV, whose activity ended in 2012. The Virtual Network
(VN) was introduced as an instance of a physical network,
which attempts to better utilise the networking resources (e.g.
routers, hosts, links and services) through reusing the physical
infrastructure. Multiple VNs can be instantiated concurrently on
the same single physical network. The isolation between VNs
must be supported, as well as the sharing of the same physical
infrastructure for different purposes. The main fundamental
properties of VNs are: (a) the sharing of resources concurrently
between multiple VN instances, (b) the isolation between VN,
and (c) the abstraction of resources (i.e., virtual resources) that
could not be directly related to the physical one.

Another attempt to define NV is presented in [13] and [26]
(from the same authors) as a means to support the coexistence
of multiple VNs on the same physical substrate. Each VN is a
collection of virtual nodes and virtual links, being essentially
a subset of the underlying physical network resources. In this
work, the authors focus on an operator network as the target

Virtual Networks Research Group (VNRG): https://irtf.org/concluded/
vnrg

https://irtf.org/concluded/vnrg
https://irtf.org/concluded/vnrg

2.1 NETWORK VIRTUALISATION |

scenario, and explain the NV as a decoupling of the role of
a traditional Internet Service Provider (ISP) into two: (a) the
provider of the infrastructure (InP) managing the physical
resources, and (b) the service provider (SP), who aggregates
network resources from different InPs to provide the end-to-end
network service.

In [14], the authors introduced the NV as an abstraction of a
shared physical infrastructure that allows each tenant to define
its own network topology, addressing space, and custom logic
from an isolated set of network resources. The data center is
the target scenario, and the main reason because the arbitrary
definition of network topology is so important. In this type of
scenario, the flexibility and capability of easy migration of VNs
are essential properties.

As previously mentioned, the definition of NV proposed in
this document tries to be generic, inclusive and agnostic from the
target scenario. NV provides the ability to create a logical or virtual
(abstract rather than actual) instance of a network that can be delegated
to a tenant, who represents a single administrative entity. Depending
on the NV solution, the interface to the virtual instance exposed
to the tenant can be different in scope and functionality. Each
virtual instance, also known as virtual network (VN), must be
isolated from the other instances that share the same physical
infrastructure. The main fundamental properties of any NV
solution are:

o The abstraction of the physical infrastructure into a virtual
one.

o The sharing of the physical substrate.

e The isolation of virtual instances.

This NV definition could fit into a wide range of possible target
scenarios, such as operator networks, data center networks,
campus networks and experimental facilities, each of which
could include additional properties as mandatory to deal with
the specifics of the scenario.

One important aspect that is considered fundamental to be
included in any NV proposal is the security related to how the
different entities (i.e., infrastructure provider, VI tenant and user)

27

28

| STATE OF THE ART

are authenticated and authorised to get access to the VI domain
through the reference points (i.e., VIDAP and VITAP) previously
defined. The issue to be addressed is how a VI domain can
assure, for instance, that data packets come from a valid and
authorised user. The same applies to the relation between the
tenant and the VI domain.

2.2 NETWORK VIRTUALISATION TAXONOMY

In a context in which multiple NV solutions are proposed,
a classification system is a fundamental element needed for
proper comparison and understanding of what each proposal is
providing. To this end, a NV taxonomy is presented, which is the
foundation for the following study of the state of the art of NV
proposals. Once again, the taxonomy is designed to be generic
enough to cover past and future proposals, as well as agnostic
to the target scenario. Some proposals for NV classification are
more related to legacy proposals, such as in [13], whereas some
others are related to a specific target scenario (e.g. Data Center),
such as in [27], or a specific technology (e.g. OpenFlow) for
building the NV proposal, such as in [47].

The following subsections introduce and detail the different
aspects to analyse from any NV approach: NV type, VI namespace,
DP mechanism, VIAP classification, network topology, VI creation
point, and isolation level.

2.2.1 Network Virtualisation Type

The NV solutions fall into three main categories that distinguish
the foundation level at which the virtualisation is exposed to
the tenants, and the level at which the network abstraction
is done: SDN-enabled Virtualisation (SDNeV), Virtual Node
(vNode), and Overlay. These three categories can be grouped
in two different approaches: node centric and network centric.
In the former, the nodes are exposed as individual elements
to the tenants; whereas in the latter, the underlying network
infrastructure is abstracted as a whole. In relation to the NV
types, SDNeV and vNode are node centric approaches, while

2.2 NETWORK VIRTUALISATION TAXONOMY |

Overlay is a network centric approach. This categorization
relies on the architecture and interfaces previously described in
Section 2.1.2 that will not be further detailed.

2.2.1.1 Software Defined Networking-enabled Virtualisation (SD-
NeV)

This category refers to those solutions that take advantage
from the separation between the forwarding plane and the
control plane proposed by SDN. This separation enables the
programability of the network by exposing the control plane
southbound interface. The forwarding plane is abstracted
through this interface, then virtualised and exposed to the
different tenants. Since this VN type is built on top of the
control interface, it is related to the network device, which
means that the virtualisation is performed at node level, and
more concretely at the DAL from the network device architecture
defined in RFC 7426 [8]. Since the virtualisation is performed
on top of the DAL, there is no control plane-related functionality
implemented on the virtual instance of the network resource,
which means that this layer must be added by the tenant. This
gives the tenant the freedom to design the behaviour of its
own virtual instances, which also provides a better environment
for innovation and clean slate proposals with novel network
architectures.

In this approach it is essential to properly enforce the isolation
between tenants in the virtualised control interface and avoid
collisions in the forwarding plane by using the appropriate
definition of the VI namespace. Moreover, the access to this
interface must be secured and only authorised tenants must be
allowed.

2.2.1.2 Virtual Node (vNode)

This category refers to those approaches that are built op top
of network devices with an associated functionality that defines
its behaviour. This means that both the forwarding and control
planes are joint together and abstracted as a virtual instance.
A Virtual Node (vNode) is a general term to refer to any

29

30

| STATE OF THE ART

networking functionality that could be provided by the node,
e.g. vSwitch. vRouter, vFirewall and so on. Each physical node
could implement a different behaviour based on the control
plane functionality, which is then virtualised and exposed to the
tenants. The tenants cannot change or update the control logic
provided by the vNode, but they are able to configure the virtual
instance delegated to them. In this category, the virtualisation is
also performed at node level, and more concretely at the NSAL
from the network device architecture defined in RFC 7426 [8].

Since legacy devices (i.e., previous to SDN) do not separate
the forwarding and control planes, the vNode is the typical (or
the only) approach to NV when performed at node level. In this
legacy approaches, the same physical node only implements one
control logic, which is the same for all the vNodes instantiated on
the network device. It is also quite common in this scenarios
that the infrastructure provider and the tenant are the same
entity, which is responsible to properly configure each virtual
instance and avoid collisions. In this case, being the same entity
the security concerns are limited and the interface between the
infrastructure provider and the tenant is not so critical. However,
there are other vNode scenarios in which the roles are played
by different entities and the interface exposed to the tenants is
critical to avoid misconfigurations that could impact in other
tenants. The isolation between the tenants and the security
become critical topics, only authorised tenants can configure
their virtual instance and there must be a mechanism to avoid
collisions. Again, the VI namespace must be clearly defined and
enforced.

2.21.3 Overlay

This category refers to those proposals which are built on top
of another network. In overlay solutions the resource which
is abstracted is the network itself, opposite to the previous
categories in which the abstracted resource is the network device.
These NV approaches do not have the notion of individual
elements exposed by the underlying physical infrastructure,
since the whole infrastructure is abstracted. The virtual instance
is built based on the edge elements (e.g. Network Virtualisation
Edge defined in RFC 7364 [48]) which encapsulate the external

2.2 NETWORK VIRTUALISATION TAXONOMY |

addressing scheme into the addressing space used internally
by the physical infrastructure, and each virtual instance is
implemented as an overlay. The edge nodes are the only
elements that have the notion of both domains and are capable
to properly encapsulate (and de-encapsulate) one domain into
another, which means adding (and removing) the internal

header which makes use of the internal addressing namespace.

Therefore, the virtualisation is performed at the edge, and the
core network is not aware of taking part in any virtualisation
solution. This makes the core network independent from the NV
solution, which means that it does not depend on the number
of virtual instances that are deployed on it. Therefore, the
scalability of overlay approaches is higher than other proposals
in which the number of virtual instances have a direct impact on
the solution. However, this high scalability and independence
between the physical and the virtual instances are not free
and imply on overhead in the data plane. Depending on the
encapsulation procedure used and the size of the packets sent it

could have more or less impact on the effective data throughput.

Since this NV approach is not performed at node level, the
reference architecture defined in RFC 7426 [8] cannot be used
to define the overlay solutions. A network abstraction is out
of the scope of this network device architecture, however, the
underlying infrastructure is built with individual nodes which
could be described through this architecture. In the end, the
underlying network is pure functional (e.g. a switched or
routed network) and both the forwarding and control planes are
present.

2.2.1.4 Conclusions

As a conclusion, three different NV types are proposed to
categorize past and future NV approaches. The first two are
based on a node level abstraction, whereas the third one is based
on a network level abstraction. Moreover, the first approach
allows the tenant to actually define the behaviour of the virtual
node, whereas in the second and the third types the behaviour of

the abstracted element is defined by the infrastructure provider.

Depending on the target scenario, some of the characteristics of
each of this NV types fits better than the others, so this should

31

32

| STATE OF THE ART

be the first decision to make before choosing a concrete NV
proposal.

2.2.2 Virtual Instance Namespace

As previously introduced, a namespace provides the uniqueness
to an identifier and a VI namespace allows to uniquely identify
the virtual instance to which a data packet belongs. The VI
namespace is a parameter of the VI domain and the basis to
avoid collisions between the virtual instances. Therefore, one of
the design decisions to define a NV proposal is to select the VI
namespace to be used, which means that the identification of the
virtual instance will be coded in a portion of the packet headers.
This namespace must be reserved and not be modified or used
for any other aim. Once again, the target scenario could impose
some restrictions to the possible or more appropriate namespace
to be used.

Due to its role of packet classification at data level, the
VI namespace must be part of the packet header, that can
be easily identified when the packet comes into the physical
infrastructure. Then, the classification process must decide
which is the corresponding virtual instance it belongs to. This
process takes place just before the VIDAP, since the VIDAP is the
entry point for those packets which belong to a given virtual
instance. In principle, the VI namespace could be any field from
L2 to L7 headers (e.g. address), any set/combination of bits from
these headers (e.g. prefix) or a specific tag. Therefore, the VIDAP
is characterised by a specific value of the VI namespace, the one
associated to the virtual instance.

e On a node centric approach (i.e., SDN-enabled Virtualiza-
tion (SDNeV) and vNode) it is typical to use a tag as the
VI namespace, e.g. VLAN or MPLS. One of the benefits
is that most of the network devices are able to add and
remove this type of tags. However, this means that the
usage of those tags is then restricted at the virtual instance
level. Although some agreements on the value range of
this tags that could be used by each virtual instance or
the encapsulation of tag-in-tag could be used, this add
complexity at the virtual instance level. In the first case,

2.2 NETWORK VIRTUALISATION TAXONOMY |

the range of values must be enforced and it could be a
restriction for the target scenario. In the second case, it is
not so trivial to use a virtual instance tag by legacy devices,
since this means that each time that the virtual instance
needs to add, remove or modify their own tags the tag of
the VI namespace must be also processed (e.g. additional
pop and push actions are needed on the VI namespace,
which is a feature not widely supported).

Another possible VI namespace for node centric ap-
proaches is the use of the IP prefix. By doing so, each node
could easily identify the associated virtual instance based
on the source IP prefix. However, this approach could be
more feasible when a private IP addressing scheme is used,
than in an operator deployment when assigning public IP
addresses.

e On a network centric approach, when an overlay is used,
the first aspect to decide is the encapsulation mechanism
to be used (e.g. VXLAN [49], NVGRE [50], STT [51],
Geneve [52] and so on). Associated to the encapsulation
solution, the virtual instance identifier is defined, VXLAN
Network Identifier (VNI) in VXLAN, Virtual Subnet
Identifier (VSID) in NVGRE, Context ID in STT or Virtual
Network Identifier (VNI) in Geneve. The overlay approach
is typical in data center scenario (RFC 7364 [48]) due
to its scalability and also due to the presence of L3
datacenter networks. Apart from standard encapsulation
proposals there are other interesting proposals, such as
Segment-oriented Connexion-Less protocol [53] (SCLP),
which claims performance improvements compared to
standard VXLAN.

The above examples are just some of the most used
alternatives selected as VI namespace, but this does not mean
these are the only possibilities. Each proposal must consider
which could be the best suited, depending on the target scenario
and possible restrictions imposed by this scenario.

33

34

| STATE OF THE ART

a) Add/Remove
HEI
b) Rewrite

c) Reserve

Figure 2.4: The alternatives for data plane adaptation mechanism

2.2.3 Data plane Adaptation Mechanism

The NV architecture defines the VI domain as the group of virtual
instances that share the same set of physical resources. The
entry point of data packets to a VI domain is the VIDAP, which
must assure that each packet coming from a user enters in the
corresponding virtual instance. In principle, the VI namespace
must be the key to perform this task, although the VI domain
must assure that its value has been securely set. It must
be highlighted that this namespace is related to the target
virtual instance, which means that some kind of procedure
or mechanism related to the virtualisation solution must be
performed to set the proper value in this namespace. Where and
who is responsible for setting the VI namespace is analysed in
Section 2.2.4.

There are three possible mechanisms (shown in Figure 2.4)
to set the VI namespace value in the data packet: add/remove,
rewrite and reserve. This procedure must take place between the
user and the virtual instance, and must be assured and enforced
at the VIDAP.

2.2.3.1 Add/Remove

The VI namespace can be added on ingress to and removed on
egress from the virtual instance. By means of this mechanism a
new set of bits is added in the user’s packet to identify the target

2.2 NETWORK VIRTUALISATION TAXONOMY |

virtual instance. The most common way of adding this identifier
is using a tag, such as VLAN ID or MPLS, as the VI namespace.
On egress this tag must be removed since its meaning is limited
to the VI domain. When adding a tag the addressing space is
shared between the user and the physical infrastructure, which
means that the actual network devices must forward the packets
based on the addressing scheme used by the users and could
impose some restrictions and scalability issues. In general, any
other field or header, standard or not, could be added as a VI
namespace. The main problem of adding a non standard field is
the impact when transversing standard network devices, which
could discard the packet.

Another typical case of adding a VI namespace is the overlay.
In all the overlay solutions, the packet sent by the user (inner
packet) is encapsulated into a new packet header (outer packet
headers) and the VI namespace is added in the outer packet
header as an additional field to identify the target virtual
instance. The rest of the outer headers are fundamental to
forward the packet through the underlying network to the
appropriate destination, but they are not directly related to
the virtual instance. In this case, the user and the underlying
infrastructure are using independent addressing schemes, which
means that physical network devices can be optimised and
the traffic from virtual instances can be aggregated to avoid
scalability issues. However, this imposes an overhead due to the
encapsulation in the new packet header.

2.2.3.2 Rewrite

The VI namespace can be also rewritten given a new meaning
to the selected namespace. This can be done either because the
namespace does not have a previous meaning for the end-to-end
communication or because the mapping between the previous
value and the VI identifier is stored on ingress and restored on
egress. There are NV solutions that rewrites the entire addressing
space to isolate the user’s addresses from the addresses used
by the virtual instance. This separation allows that users from
different virtual instances can use the same addressing space
without any collision on the VI domain, since the addresses
are rewritten using an alternative value. The main limitation of

35

36

| STATE OF THE ART

this approach comes when this mapping is 1:1 and no possible
aggregation is possible. One possible aggregation could be the
use of IP prefixes (if all the virtual instances has the same prefix
length), which allows to aggregate the mapping and perform
it at prefix level. The aggregation reduces the information that
must be stored to perform the task of namespace rewriting.

2.2.3.3 Reserve

The VI namespace can be reserved to this aim, and the packets
can be sent with the appropriate value already set. This means
that the namespace cannot be modified by any element internal
or external to the virtual instance. The main limitation is that all
the users must be coordinated to avoid collisions because they
are using the incorrect value. Therefore, the users are somehow
aware that they are using a virtual instance, since the value is
set by the source. One possible solution which makes use of this
approach is a VI domain that uses the IP prefix of the source IP
address to identify the virtual instance. The addresses, with the
corresponding IP prefix associated to the target virtual instance,
are assigned depending on the user identity. This procedure
allows to differentiate the packets and the source IP prefix that
is related to the virtual instance. The main benefit from this
approach is that no extra overhead is added and the packets are
not modified (not even rewrite) from the source to its destination
all the path through the VI domain.

2.2.3.4 Conclusions

Although the possibilities for the VI namespace are numerous,
the mechanisms to set the appropriate value in the packet are
just three. As previously mentioned, the VI namespace must
remain stable for the whole VI domain to avoid complex actions
and possible collisions. For a similar reason, the mechanism
chosen for setting the VI identifier must be also coherent in the
VI domain, for instance, if a tag is added (or a field is rewritten)
on the ingress it must be removed on the egress. However, the
exact point at which this process happens could vary from one

2.2 NETWORK VIRTUALISATION TAXONOMY |

side to the other, which is related to the VIAP classification that
is analysed later on.

When the control plane southbound interface is exposed to
the tenants, i.e., the SDNeV type, a similar mechanism could be
needed and the same study applies. Since the actual packets
can be exposed to the tenant through the control interface and
the tenant can also insert packets into the virtual instance, the
VI namespace value must follow the same rules. Then, the VI
namespace can be added/removed, rewritten, or reserved when
the packets go up and down through the control interface. This
process can be transparent or not to the tenant, who must
process the packet due to the virtualisation solution just in
the latter case. If the tenant is not aware of this process, then
the infrastructure provider must perform the appropriate action
in-between the actual forwarding plane and the control plane
built by the tenant. Although introduced here, the exact location
where this mechanisms take place and if the tenant is aware or
not of it are questions related to the VIAP classification analysed
afterward.

2.2.4 VIAP Classification

The VI access point is the reference point that separates the
internal domain, where the NV is performed, from the external

domain, where the physical infrastructure is not virtualised.

Therefore, the VIAP is a generic term that encompasses both
the data plane (VIDAP) and the interface toward the tenant
(VITAP). However, this section is more oriented to the VIDAP
reference point, although similar conclusions could apply when
referring to the VITAP. Regarding the DP mechanisms introduced
previously, the remaining questions are who is responsible for
performing such a process and where does this process takes
place. These two questions are relevant for any NV proposal
since this also defines the relation between the three entities
already identified, i.e. the infrastructure provider, the tenant and
the user.

The are three main types of VIAP that could be present in any

VI domain: transparent, non-transparent and semi-transparent.

This three categories refers to the perception that the outside
entity (i.e. the tenant or the user) has with regards to the virtual

37

38

| STATE OF THE ART

instance, if this entity is aware or not of being part of a VI
domain. Although this seems to be something intangible, the
consequences are clear and concrete as explained below.

2.2.41 Transparent VIAP

This type of VIAP refers to the fact that the external entity is not
aware of taking part into a VI domain, and therefore this entity
does not perform any action on the packets to set the appropriate
value in the predefined VI namespace. As a consequence, the
VIAP is responsible for processing the packet to handle the VI
namespace appropriate for this entity. This means that, although
the mechanism is related to the VI domain, the VIAP must be able
to securely identify the target virtual instance associated to the
external entity who is sending the packets in order to set the
appropriate value in the corresponding namespace. How this
VIAP knows which is the target virtual instance is something
that each NV proposal must also define in relation to the VIAP
definition. In a simplified scenario, all the traffic coming from
a specific physical port could be related to just one virtual
instance.

2.2.4.2 Non-transparent VIAP

In this case, the external entity is aware of the VI domain and
some actions must be performed by this entity in cooperation
with the VIAP in order to properly identify the target virtual
instance for each packet. This means that the VIAP is not
transparent for the external entity who is using the virtualisation
services. Therefore, the external entity is responsible for
processing the packet to handle the VI namespace and set the
VI identifier delegated to this entity. As a consequence, the VI
identifier must be delegated to the external entity through a
process that must be defined by the NV solution. The VIAP is
responsible for enforcing that the packets are authorised and
ensuring that they reach the corresponding virtual instance. This
type of VIAP is less complex since the source of the packets is
identifying the target virtual instance, but a misconfiguration
or a malicious entity could be harder to detect. Preventing

2.2 NETWORK VIRTUALISATION TAXONOMY |

data traffic from one virtual instance accessing a non-authorised
virtual instance is the responsibility of the VIAP, then some
authentication and authorisation process must be performed.

2.2.4.3 Semi-transparent VIAP

This type of VIAP refers to the cases where neither the external
entity nor the VIAP directly performs the packet processing, but
an intermediate process in-between both entities. This is the case
when a certain piece of software/hardware can be configured to
adequately process the packets to handle the VI namespace and
set the corresponding VI identifier. This intermediate process
could be located on the external entity or in another network
device before accessing the VIAP. An example of this type of
VIAP could be a tunneling process running on the hypervisor, or
a network device which implements the edge functionality of an
overlay solution. In any case, this functionality is considered out
of the VI domain and not implemented by the external entity,
who is not conscious of being part of a NV solution.

2.2.4.4 Conclusions

After introducing the three possible types of VIAP, there is one
point that must be clarified. In contrast to the VI namespace and
the DP mechanism that must remain constant for the whole
VI domain, the VIAP type could vary from one access point to
another. This means that the same VI domain could implement,
for instance, transparent and non-transparent VIAPs depending
on the attaching point to the VI domain. There is no contradiction
with the previous reasonings, since in both alternatives the
packets are properly processed before entering in the virtual
instance, and the VI namespace remains coherent in the whole
domain.

2.2.5 Network Topology

One fundamental characteristic of a network that differs from
other resources that are abstracted and virtualised by other type
of virtualisation solutions (e.g. CPU, memory and storage) is the

39

40

| STATE OF THE ART

fact that the network has a topology that affects its behaviour.
For instance, not all the connexions between all the physical
ports of a network have the same capacity or latency, it depends
on different aspects, such as the selected path, the number of
network devices that must be crossed (could be none if the
source and destination port are on the same network device) and
the available resources. In a nutshell, the topology is an essential
attribute of a network.

When considering a NV solution, there are two options with
regard to the network topology exposed to the virtual instance: if
it is exposed or not. This exposition should not be confused with
the fact that the virtual instance defines its own topology. The
point here is if the infrastructure provider presents a topology
from the underlying resources. Both options are analysed below.

2.2.5.1 Network topology exposed

The infrastructure provider exposes the topology of the network
provided to the tenant. This means that the interface between
the infrastructure provider and the tenant is able to exchange
information related to the topology of the underlaying network.
On a node centric approach (i.e., SDNeV and vNode) the topology
could even be exposed dynamically by the network devices to
the tenants, and each tenant could have a different topology
based on the actual network devices included in the virtual
instance.

The exposed network topology could be either physical or
virtual. Depending on the target scenario, one could be more
adequate than the other.

o Physical topology: the topology of a network varies
depending on the layer being analysed, e.g. the optical
topology could be different from the L2 topology, which
could be different from the L3 topology. This means that,
although the physical topology term refers to the idea
that it is the same topology managed by the infrastructure
provider, there is not a single topology view of a network.
In this case, the physical topology exposed to the tenant
will be the same that the infrastructure provider manages

2.2 NETWORK VIRTUALISATION TAXONOMY |

at the level of abstraction that network is virtualised and
exposed to the tenant.

e Virtual topology: taking into account what has been
analysed previously regarding the physical topology,
when exposing a virtual topology to the tenants a new
abstraction layer is added on the infrastructure provider
that is responsible for mapping the virtual topology to
the physical one. This also imposes some overhead on
the VITAP, since this mapping must be enforced and
some functionality must be also performed to hide the
actual topology. Depending on the scenario, the virtual
topology could be defined by the infrastructure provider
and exposed to the tenant, or the other way around, the
tenant could define the topology and the infrastructure
provider must be able to map this virtual topology to
the physical one. Therefore, the virtual topology could be
exposed to or requested by the tenant. The NV solution
must define how this process is performed and how the
topology is described (e.g. a topology language).

2.2.5.2 Network topology not exposed

The topology of the underlying network is not exposed to the
virtual instance. This case is typical when the whole network
is abstracted as in the overlay NV type. When using an overlay,
the underlaying network has its own addressing scheme and
behaviour which is not exposed to the tenants. On the other
hand, the tenants build its own virtual network, with its own
addressing scheme, based on the functionality provided by the
edge devices and tunnels between them. The virtual topology
built by the overlay network is not related to the underlying
infrastructure and is the result of the interconnexion between
the edge devices, while the topology of the underlying network
is managed by the infrastructure provider.

2.2.5.3 Conclusions

The exposure of the network topology is a characteristic of the
NV approach and its relevance depends on the target scenario in

4

42

| STATE OF THE ART

which the NV solution is deployed. There are different reasons
to hide the underlying topology. Sometimes it is a matter of not
exposing the internal details to a third party. In other occasions,
there is the need to be completely unrelated to the deployment
infrastructure to improve the flexibility of the virtual instance to
migrate to another physical infrastructure. However, there are
also some other reasons to expose the underlying topology. For
instance, it the tenant wants to have complete control over the
network (e.g. a network operator) and the sharing of resources
is a matter of sharing costs or a regulatory decision. When
testing novel proposals and generating performance figures, it is
also quite relevant to deal with the actual topology to properly
interpret the results.

2.2.6 Virtual Instance Creation Point

The NV types distinguish between the different possible
foundation levels at which the virtualisation is exposed to the
tenants with regard to the network device architecture detailed
above. However, there is a gap between a reference architecture
and the physical architecture that actually implements the
functionality in the physical elements. The virtual instance
creation point (VICP) is more related to the latter one, which
means that it considers how and where are implemented the
different components and where the needed abstractions take
place to build the virtualisation solution. The point where the
virtual instance is created could impact the possible alternatives
for the characteristics of the NV solution.

Depending on the technology used for virtualising the
network, the options could be further detailed (e.g. as in [47]).
This classification tries to be agnostic to the technology and
these are the most relevant options considered in this analysis,
based on the network device as a reference point: internal, proxy,
external and edge-based.

2.2.6.1 Internal

Virtualisation takes place internally in the network device, which
means it is performed in a distributed manner. Each network

2.2 NETWORK VIRTUALISATION TAXONOMY |

device must implement the needed functionality and, as any
other distributed solution, the consistence of the virtual instance
definition across the whole VI domain is key. Both a SDNev and
a vNode type could fit into this implementation model, and most
of the legacy proposals for NV implementation are based on
this approach, since the network devices are monolithic (i.e., the
forwarding and control planes are bundled).

2.2.6.2 Proxy

Virtualisation takes place in an external element which is
responsible for virtualising the interface between the forwarding
and the control plane. Therefore, this approach is mainly related
to NV solutions based on SDN technology. However, this does not
mean that this category is bound to the SDNeV type of NV, since
a vNode approach could be also built with SDN technology. The
external element, i.e. the proxy, could be just one (centralised) or
a set of elements (distributed). In the latter case, the consistence
of the virtual instance definition would be also critical. In
general, a proxy-based approach is dependent on the actual
protocol used in the control plane, since it needs to properly
abstract, translate and virtualise the protocol.

2.2.6.3 External

Virtualisation takes place outside the network device, where
the control plane resides (i.e., the controller). Once again, this
approach is mainly related to NV solutions based on SDN
technology, and requires the separation between the forwarding
and the control planes, but this does not mean that only SDNev
type of approaches are possible. As in the previous case, a vNode
approach could be also created with SDN technology. In this
case, the functionality associated to the virtualisation process is
implemented on the controller side, and therefore, the approach
could be considered as centralised. However, a SDN solution does
not need to be centralised and there are several proposals that
demonstrate the opposite, such as HyperFlow [54], ONIX [55]
and ONOS [56].

43

44

| STATE OF THE ART

2.2.6.4 Edge-based

Virtualisation takes place in the edge elements of the network.
This is mainly related to the overlay type of NV, which makes
use of the edge nodes to implement the mapping between
the outside domain and the inside (underlying) network. The
virtualisation is implemented in this mapping and all the
internal resources are hidden to the overlay. The appropriate
coordination in the configuration of the edge devices is critical
for the correct implementation of the overlay.

2.2.6.5 Conclusions

The options mentioned above are a generic manner to define
where the virtual instance is physically created. However,
a concrete proposal with a given technology and physical
architecture could enrich this study with more options.
Although, at first sight it seems to be quite related to the NV
type, as previously explained there is not an overlap between
both categories, since both SDNeV and vNode approaches could
be based on SDN technology. The fourth category reflects the
process how the overlays are created, on the edge devices.
This differentiation is also needed because the abstraction is
performed over the whole network, opposite to the individual
network devices as in the other NV types.

2.2.7 Isolation level

One fundamental requirement for any NV solution is the
isolation between the virtual instances, which generically means
that one virtual instance should not interact with or affect the
others. However, this is too generic and there are multiple ways
in which one virtual instance could interfere other instances, as
analysed in FlowVisor [57]. The VI namespace is just one of the
aspects that are related to the isolation of the virtual instances,
since the proper assignment of unique VI identifiers allows to
isolate the data traffic associated to each instance. In a same way,
there are other parameters related to the VI isolation that are
analysed, although not all of them are always covered by the NV

2.2 NETWORK VIRTUALISATION TAXONOMY |

solutions. A list of possible parameters to consider are detailed
below.

2.2.714 QoS support

When virtualising a resource, one important question to answer
to the tenants is how it would perform. Although this is
not always an easy question to answer even with dedicated
resources, a shared resource needs to be controlled somehow
to avoid that one instance is consuming the whole resource or
preventing other instances to get access to the resource. When
dealing with networks, the bandwidth is one of those resources
that is basic to share and which must be properly isolated.
Despite it seems to be easy to isolate quotas of the bandwidth
of the physical links, there are two main concerns. On the
one hand, each system (i.e., network device, vendor, operating
system and so on) could have its own way and capacity to isolate
the bandwidth that could be also based on different criteria
(e.g. priority bits, tags) and, moreover, this does not mean
that it is homogeneous in the whole VI domain. On the other
hand, a virtual instance could be also defined by virtual links,
which could expand several physical links crossing a number of
network devices with different QoS support. As a consequence,
the QoS support could be covered in the NV solution, but
ultimately it will be dependent of the actual deployment. For
instance, in SDN there a standard way to control the QoS queues
of a network device, but there is not a standard way of defining
and managing these queues, this latter aspect being vendor
dependent.

The previous study is mainly related to the data plane,
however, a similar analysis could be done for SDN-based
approaches in relation to the control plane. Since the control
traffic between the network device and the controller makes use
of an actual network for communication (if not co-located), and
even the data packets could be also sent to the controller, this
interface must be also analysed from the QoS point of view. A
similar policy of bandwidth isolation and traffic prioritisation
should be also applied to the control plane southbound interface.
The impact of the control plane load has been analysed as a DoS
attack for SDN solutions [58]. Moreover, some proposals has been

45

46

| STATE OF THE ART

presented to deal with the problem of load distribution at the
control plane [55].

2.2.7.2 Computational resources

The sharing of resources between the virtual instances also
includes computational resources from the network devices and,
if it is the case, from external components (e.g. the controller
in SDN solutions). The forwarding plane could be performed by
software (e.g. CPU) or specific purpose hardware (e.g. ASICs,
NPUs). In any case, there is some additional actions related to
the overall operation of the network device that requires some
computational capacity, such as the internal state keeping and
control plane related process. Depending if it is a SDN device or
not, those control plane processes are different. In the former
case, the network device must handle the requests from the
controller, deploy the new flow entries and forward the slow
path packets (i.e., those packets that cannot be processed by
specialised hardware). In the latter case, the complete control
plane must be running on the network device (as in legacy
devices). In any case, the available CPU and memory resources
must be fairly shared between the virtual instances and proper
isolation mechanisms must be implemented. There is reliable
technology to perform this task, but it must be deployed also on
the network devices. The power consumption or the processing
time devoted to each virtual instance could be other parameters
to consider for measuring the resource sharing.

2.2.7.3 Trdffic isolation

Once again, with regard to the traffic, two alternatives must be
considered, the data traffic and the control traffic, and both of
them must be properly isolated. Concerning the latter, it must be
assured that the control traffic associated to each virtual instance
is securely delivered to the corresponding tenant, as well as
some specific identifiers that must be virtualised (e.g. transaction
id and bulffer id). In relation to the data traffic, the VI namespace
is the key element to assure the isolation. In the context of SDN,
the flowspace is a closely related concept, which is a mean to

2.2 NETWORK VIRTUALISATION TAXONOMY |

define and slice the header space. Moreover, the flow entry is
the most granular way to isolate the traffic in SDN solutions and
it is a valuable and limited resource. Therefore, the number of
flow entries (e.g. TCAM entries) and the number of forwarding
tables (i.e. flowtables) must be fairly divided between the virtual
instances.

2.2.7.4 Topology isolation

In those NV approaches where topology, either virtual or
physical, is exposed to the tenant, it must be assured that only
the delegated topology must be visible by each virtual instance.
This means that the appropriate mechanisms must be enforced
to avoid that a tenant could detect additional network devices
that are not exposed through that topology. Furthermore, all
the network devices exposed through the topology must be
detected by the tenant. This could imply that specific protocols
need to be properly emulated or adapted. In proxy based
approaches, the proxy must consider the topology exposed to
each tenant and implement the needed logic. When dealing with
a virtual topologies, it is quite common to implement specific
logic to interact with network topology discovery mechanisms
and protocols. In this aspect, novel protocols developed for this
purpose, i.e. topology discovery, could be a challenge for NV
proposals.

2.2.7.5 Conclusions

There could be additional parameters relevant for a concrete
NV proposal, with regard to the isolation of the virtual instance,
that could be also added for the proper characterisation of the
approach.

Similarly to some other characteristics, the isolation of
resources could be changeable for the whole VI domain, since
some aspects could depend on the specifics of the network
devices deployed. Therefore, this could be considered as a list of
parameters to analyse by any NV solution that must be adapted
to the actual deployment. How this aspects are fulfiled with

47

48

| STATE OF THE ART

the available hardware depends on the support offered by the
physical resources (e.g. support of QoS queues).

2.3 NETWORK VIRTUALISATION SURVEY

To Be Completed for final version
This introduction needs to be completed for the final version.
The content of this introduction is sketched below.

o Focus on NV proposals, not projects or complete scenario
description

* Not complete survey, for the purpose of understand the
past, current (and future) proposals and the proposed
taxonomy

o Apart from the aforementioned taxonomy, the main
target scenario is added to the analysis, since it has
a fundamental influence on the selected options and
required characteristics

e Scenario could be relevant for design decisions/principles

e The main scenarios considered (although not exclusive):
operator network, data center network, campus network,
and experimental facilities

e Solutions grouped by NV type, and for historical
reasons/better introduction and exposition of differences:
vNode, overlay, and SDNeV.

e Summary Table: NV name + taxonomy + main target
scenario

2.3.1 vNode approaches

Following a similar approach to computing virtualisation
proposals, such as VMware, KVM, Xen or VirtualBox, a network
can be virtualised by means of the individual virtualisation
of the network devices. As a result, each network device is
virtualised and multiple instances of the node logic are isolated

2.3 NETWORK VIRTUALISATION SURVEY |

on the same physical resources. Both virtualisation solutions, i.e.,
computing and network, share the physical network interfaces
between different instances, which means that the traffic must
be somehow classified as belonging to one virtual instance or
another. At this point is where the VI namespace comes into the
scene.

The virtualisation of the network device functionality
(including the control logic) internally in the node falls into
the vNode category. However, this is not the only way of
implementing a vNode solution. Exposing a complete network
device (i.e., forwarding and control planes) to the tenant can be
also implemented through the SDN technology on the external
controller. Both alternatives are analysed through the following
examples.

2.341.1 IEEE 802.1Q - VLAN Bridging

One of the most well know technologies used to virtualise
the network is the IEEE 802.1Q standard [7]. This standard
defines the VLAN Bridging, which is the process that allows
the virtualisation of a bridged IEEE 802 network. This solution
is generically known as VLAN (term defined in RFC 4026 [59]),
but taking into account the previously introduced taxonomy, the
VLAN is just the VI namespace used to identify the associated
virtual instance. Following the same characterisation of NV,
the IEEE 802.1Q introduces a vNode type of approach by the
instantiation of vBridge elements.

The VLAN Bridging network operation is decomposed in the
following elements stacked to provide the virtual instances. At
the bottom, the physical topology provides the capability of
bidirectional connectivity for MAC frames by means of physical
links interconnecting the network nodes. On top of the physical
topology, the active topology is a logical subset of the physical
topology that provides a loop-free topology. There could be
several active topologies on top of the physical one, this also
allows to recover from link failures. The active topology is
typically obtained as a result of a distributed protocol, such as
RSTP, MSTP or SPB. The VLAN topology is built on top of an
active topology as a subset of this latter topology, which includes
those Bridge Ports that are attached to the same virtual instance

49

50

| STATE OF THE ART

identified by the VLAN ID. After building the VLAN topology,
the end stations that take part in this virtual instance must be
located through the station location procedure, which includes
the learning of source addresses. On top of this process, the relay
functionality is implemented, which comprises the following
steps: (1) classification of frames on ingress as belonging to
just one VLAN (based on untagged, priority-tagged or VLAN-
tagged options); (2) forwarding the frame based on the VLAN
topology and station location information (i.e., the result of the
learning process); and (3) queuing of frames on egress and
determination of the appropriate frame format (i.e., untagged
or tagged).

The actual internal isolation of vBridge instances can be
configured, since some management decisions determine if
some of the process of the bridge are or can be shared. As an
example, there is a means to define through the management
plane if the MAC learning process is shared by all the VLAN
instances or independent per VLAN. In the former, duplicate
MAC addresses are not possible, whereas in the latter each
VLAN instance could learn the same MAC on different locations
without interactions at the VLAN bridging.

Based on the previously introduced taxonomy, the VLAN
Bridging is categorized as shown in Table 2.1.

NV Taxonomy VLAN Bridging
NV Type vNode - vBridge

Main target scenario campus networks
VI namespace VLAN identifier

DP Adaptation Mechanism add/remove VLAN ‘tags on shared physical
links

transparent with untagged ports (e.g. access

VIAP classification interface), and non-transparent with tagged

ports (e.g. trunk interface)

Network topology subset of physical topology
VI creation point internal to the network device

QoS through PCP (Priority Code Point) field of
Isolation level VLAN tags (priority queues), VLAN associated

topology, MAC learning per VLAN

Table 2.1: VLAN Bridging categorization based on NV Taxonomy.

2.3 NETWORK VIRTUALISATION SURVEY |

The VLAN Bridging is a vNode type of NV, since it builds
virtual instances of bridging (vBridge) that are isolated per
tenant. This solution has been widely deployed in campus
networks as a simple and effective way of creating isolated
broadcast domains. Each network node must be properly
configured to obtain the desired isolation at network level, which
means that the appropriate configuration needs to be distributed
through all the nodes. Thus, the virtual network is created by
individual configuration on each and every network node.

The VLAN identifier is the VI namespace that uniquely
identifies each virtual instance and the common field used
network-wide to univocally define and identify the tenant.

The adaptation mechanism used at data plane is the
addition/removal of the VLAN tags to the user’s frames on
those physical links that are shared between several virtual
instances (by using trunk interfaces). If a physical link is
not shared with other virtual instances, there is no need
to add/remove the VLAN tag, since the whole interface is
dedicated to one virtual instance. Anyway, the network node
must know the VLAN identifier associated to this untagged
interface for proper isolation at node level.

Regarding the classification of the VIAP, there are two possible
options: transparent and non-transparent. The former refers to
those cases in which the interface directly attached to the user is
exclusive to one virtual instance, and then, there is no need to
tag the frames on ingress (i.e., frames are untagged on interfaces
in mode access). The latter refers to those occasions in which
the user needs to tag the frames, either because the physical link
is shared by multiple virtual instances or because it is decided
by the network administrator (i.e., frames must be tagged on
interfaces in mode trunk).

Concerning the network topology, each virtual instance could
use a different active network, but all of them are a loop-free
topology, which is a subset of the physical one. In summary,
the VLAN topology of each virtual instance is a subset of
the physical topology that connects the physical ports of users
associated to the instance. Moreover, this VLAN topology
automatically recovers from link failures if there is an alternative
loop-free tree in the physical topology.

51

52

| STATE OF THE ART

In relation to the VI creation point, the virtual instance is
created internally in the network device. In fact, the VLAN
identifier is also used internally to differentiate the internal
processes, such as the MAC learning (which could be done per
VLAN) or the rely (classification, forwarding and queuing based
on the VLAN identifier).

With regard to the isolation level of the VLAN Bridging
solution, several aspects can be highlighted. Firstly, the QoS
support is defined in the standard, which is related to the
Priority Code Point (PCP) bits included in the VLAN tag. This
PCP bits allows to accordingly process the priority queues in
which the frames are buffered based on its value. Secondly,
the topology associated to each VLAN identifier is isolated
from the others and does not interfere with them. Moreover,
the MAC learning process can be performed per VLAN (by
proper configuration). In principle, the computing resources at
the network node are not typically isolated per VLAN and
the number of leaned MACs are not ordinarily controlled per
instance.

2.3.1.2 Virtual Routing and Forwarding

With regard to the Virtual Routing and Forwarding (VRF)
technology, there is some controversy related to the terminology.
From the IETF perspective, the RFC 4026 [59] introduces the VRF
as "VPN Routing and Forwarding" to refer to the capability of
PE routers to maintain a per-site forwarding table in the Virtual
Private Network (VPN) use case. The virtual table used in each
case is selected depending on its source site. Additionally, in the
context of VPNs based on BGP/MPLS technology (defined by
RFC 4364 [60]), the "VPN Routing and Forwarding" tables (VRFs)
are defined as separate forwarding tables on each PE router (i.e
service provider’s edge router). However, vendors typically refer
to the VRF as "Virtual Routing and Forwarding", not making
explicit reference to the main target use case, the VPNs, being
a more generic concept of creating individual routing and
forwarding tables per virtual instance. In [61] there is an explicit
reference to the VRF acronym, which explains that VRF is used
equally for "VPN Routing and Forwarding" and "Virtual Routing

2.3 NETWORK VIRTUALISATION SURVEY |

and Forwarding" in Cisco literature, although the latter one is
more used by vendors (e.g. Cisco, Juniper, Brocade and so on).

In [62], VRF is defined as an IP technology that enables
the instantiation of multiple routing tables on the same router
simultaneously. Each of these instances are isolated, and allows
to define overlapping IP addresses without conflict between the
different routing tables. It is also mentioned that VRF is also used
to refer to the multiple routing table instances per each VPN that
coexists on a Provider Edge (PE) router, referring to the VPN use
case for VRF mainly related to MPLS core networks. A different
routing protocol could be run between neighbouring routing
instances to individually populate the tables. Then, the concept
of VRF-lite is introduced as an extension of the VRF concept
to the Customer Edge (CE) router, that also supports multiple,
independent and overlapping routing and forwarding tables per
each customer. In this latter case, there is no MPLS functionality
on the CE, and no label exchange is done between the CE
and the PE. In this case, the VRF uses the input interfaces to
differentiate the routes associated to each virtual instance, which
then populate the virtual forwarding tables by attaching one or
more Layer 3 interfaces to each VRF instance. This interfaces
can be physical or logical (e.g. VLAN interface), but they can
only belong to one VRF instance at one time. As an evolution of
the VRF-Lite solution, Cisco introduced the Easy Virtualisation
Network (EVN) [63] to simplify the VRF configuration process by
simply creating a trunk, called Virtual Network (VNET) trunk,
between the routers. The EVN automates the process of uniquely
tagging the packets belonging to each different virtual instance.

Based on the previously introduced taxonomy, the VRF is
generically (no separate study is performed for VRF and VRF-
Lite) categorized as shown in Table 2.2.

The VRF proposal is a vNode type of NV, in which isolated
virtual instances of routing and forwarding tables (vRouter)
are created per tenant. This is a legacy solution widely used
for VPN deployments in operator networks, as an effective
way to share the physical resources from the service provider
(PEs) and the customer (CEs) to create virtual private networks,
initially based on MPLS technology. Later on, this dependence
on the MPLS support was removed, and the use case was also
extended to campus networks, in which the routers can be

53

54

| STATE OF THE ART

easily shared by creating multiple isolated vRouters. Due to
the distributed nature of any NV approach based on network
devices, the proper configuration of each individual node is
fundamental for the coherent virtualisation at network-wide
level. EVN approach tries to simplify and automate precisely
this configuration process.

Regarding the VI namespace, both VLAN identifiers and
MPLS labels are used to identify the virtual instance depending
on the actual implementation (e.g. VRF or VRF-Lite) and the
location (e.g. customer’s site or service provider’s network). For
instance, at the routing protocol level it is also important to
differentiate the virtual instance.

At data plane, the adaptation mechanism depends on if
a tag/label is needed, and in case it is required (when the
interface is shared between several instances), the tag/label is
added/removed on the user’s traffic. When the interface is
associated to just one virtual instance (i.e., the link is not shared),
the add/remove mechanism is not needed and the interface is
uniquely associated to one VRF instance.

With regard to the VIAP classification, both transparent and
non-transparent solutions are possible. When the interface is

NV Taxonomy Virtual Routing and Forwarding

NV Type vNode - vRouter

Main target scenario operator networks and campus networks
VLAN identifier (VRF-Lite) and MPLS labels

VI namespace (VRF)

add/remove VLAN tags/MPLS labels on

DP Adaptation Mechanism shared physical links

transparent with dedicated interfaces, and

VIAP classification non-transparent with logical interfaces (e.g.
VLAN tagged)

Network topology subset of physical topology

VI creation point internal to the network device

QoS mechanisms supported at the MPLS router
and priority queues based on PCP (Priority
Code Point) field of VLAN tags, VRF associated
topology, isolated routing processes

Isolation level

Table 2.2: VRF categorization based on NV Taxonomy.

2.3 NETWORK VIRTUALISATION SURVEY |

exclusively associated to one virtual instance, there is no need
to perform any action on the user’s side and the process is
transparent. On the other hand, when the same interface is
shared between different users (or because of an administrative
decision even if the interface is not shared), each user must
add/remove the appropriate VI identifier to the traffic.

Regarding the network topology, each virtual instance could
have a different topology based on the routing decisions and the
location of the end users associated to each instance. However,
all of them are a subset of the physical topology.

Concerning the VI creation point, the virtual instances are
generated internally in the network device, and individual
routing processes and isolated routing and forwarding tables are
assigned to each instance.

In relation to the isolation level that can be achieved with
the VRF solution, there are some aspects to consider. Firstly, as
previously said, parallel and isolated routing processes are run
per virtual instance. Moreover, the routing and forwarding tables
are virtualised and each VRF instance has its own tables (not
shared). Secondly, the QoS support from legacy technologies
such as MPLS and IEEE 802.1Q (i.e., priority queues) can be
exploited by the VRF instances, and isolated virtual networks
could have different associated SLAs. Additionally, the topology
associated to each VRF is isolated from the others and does not
interfere with them. In principle, the computing resources at the
network node are not commonly isolated per VRF and the size
of routing and forwarding tables are not typically controlled per
instance.

2.3.1.3 Virtual Network Infrastructure (VINI)

The authors in [64] presents a virtual network infrastructure
(VINI), which allows the network researchers to deploy their
novel protocols and services in a realistic scenario. The
infrastructure provides real routing software, network events
and traffic loads to test their proposals over isolated virtual
networks that share the same physical resources at the same
time. It allows to build flexible network topologies, which is
fundamental to evaluate new routing protocols. To achieve this
flexibility, the infrastructure provides a wide variety of nodes

55

56

and links that could be configured to construct the desired
topology. Moreover, the nodes provide the ability to attach
an arbitrary number of interfaces that could be connected to
other nodes. This flexibility is based on the usage of virtual
interfaces, virtual nodes and virtual links. On top of these
flexible topologies, VINI also provides a flexible forwarding
and routing, which implies that the traffic associated to each
virtual instance must be isolated along a particular path, and the
distributed information that dictates how the traffic is forwarded
must be also isolated.

An implementation of VINI in PlanetLab [41], called PL-VINI,
demonstrates the viability of this proposal on a real deployment.
PlanetLab is an overlay testbed that provides virtual servers
(VServers) as lightweight slice of each node available in the
testbed. Then, the computational resources are properly isolated
as VServers in order to create the PL-VINI nodes. The slice
topology is built as as overlay topology that must be exposed
to the tenants and user traffic is tunneled between the virtual
nodes. Moreover, the network isolation on PlanetLab relies on
the VNET [65] module, which multiplexes the incoming and
outgoing traffic and provides the illusion of root-level access
to the underlying network interfaces. This module also allows
to create an arbitrary number of interfaces on the virtual node,
although they could be sharing the same physical interface.
Based on these two building blocks, i.e., VServers and VNET,
the PL-VINI nodes construct the solution. Each PL-VINI node
provides an isolated virtual router to the tenant and is composed
of a routing process and a forwarding data path. On the one
hand, the routing software used to build the control plane is
XORP [XORP], which runs inside User-Mode Linux [UML] to
assure its isolation from other routing processes. On the other
hand, the Click modular software router [Click] is used as
the forwarding engine (and additionally as a network address
translation for egress traffic). In order to build the virtual
network devices attached to the virtual router, a modified
version of Linux TUN/TAP driver is used to isolate the traffic
between different slices on PlanetLab.

Based on the previously introduced taxonomy, the VINI
approach is categorized as shown in Table 2.3.

2.3 NETWORK VIRTUALISATION SURVEY |

The VINI proposal is a vNode type of NV that allows to
create complete virtual routing instances (vRouter) isolated
per tenant. The main aim of this approach is to provide a
framework for network researchers to test and validate new
routing protocols. Therefore, the principal target scenario is the
experimental facilities. In fact, a proof of concept of VINI has
been implemented for PlanetLab (PL-VINI), which is a testbed
for researchers.

There is no specific VI identifier defined to identify the virtual
instance, but UDP tunnels are used to create virtual links
building an overlay, in which the end-to-end tunnel is the means
to isolate the traffic and associate it to the appropriate PL-VINI
instance.

As a consequence of this overlay, the adaptation mechanism
used at data plane is the addition/removal of the UDP tunnel
to identify on the other end the PL-VINI instance. This process
of UDP encapsulation is extended even until the users, which
need to install some software, e.g. OpenVPN, to perform the
proper UDP encapsulation. Moreover, this could be additionally
used to secure the access to the slice, and thus, authenticate

and authorise the access to the virtual instance at data plane.

However, as any other encapsulation mechanism, this adds an
overhead at data level.

NV Taxonomy VLAN Bridging
NV Type vNode - vBridge

Main target scenario campus networks
VI namespace VLAN identifier

add/remove VLAN tags on shared physical
links

transparent with untagged ports (e.g. access
VIAP classification interface), and non-transparent with tagged
ports (e.g. trunk interface)

DP Adaptation Mechanism

Network topology subset of physical topology
VI creation point internal to the network device

QoS through PCP (Priority Code Point) field of
Isolation level VLAN tags (priority queues), VLAN associated

topology, MAC learning per VLAN

Table 2.3: VINI categorization based on NV Taxonomy.

57

58

Accordingly, the VIAP classification is non-transparent, since
the users need to install and configure the tunneling software
on the end device.

In relation to the network topology, the proposal was designed
to provide the ability to define an arbitrary topology. The
flexibility at the network topology is based on an overlay
solution, which though the proper encapsulation, allows
to define virtual links between any physical nodes. As a
consequence the topology is virtualised through the overlay and
exposed to the tenant (i.e., it is not hidden).

With regard to the VI creation point, the PL-VINI instance is
created internally in the VServer node. Virtualisation techniques
such as UML and VNET are used to this aim, allowing isolated
routing and packet forwarding processes.

Regarding the isolation level, there are some features that are
inherited from PlanetLab and not exclusively related to VINI
(e.g. VServer and VNET). As previously mentioned, the both
the routing and forwarding tables and processes are isolated
per tenant based on UML and Click software. The overlay
based on UDP tunnels allows to isolate the topology defined
by each tenant, not interfering with other topologies. However,
the virtual topology would be affected by the underlaying
physical topology on which it is build. This also allows the
routing protocols to be tested under real failures and events.
How this physical failures are propagated into the virtual
topology is not an easy task. Moreover, the virtual links can be
mapped into several underlying physical links, which may be
using different technologies, and not all of them implement a
proper sharing mechanism. This means that the traffic from one
experiment could affect the network conditions from another
experiment. Concerning the computing resources, they are
properly virtualised at the VServer and each vRouter has its own
isolated environment to run the routing processes. Moreover, the
virtual interfaces are properly isolated by VNET.

2.3.1.4 Programmable-Flow

The Programmable-Flow (P-Flow) [66] is a NV solution proposed
by NEC, in which multiple interconnected switches can be
virtualised as a resource pool of networking elements that

2.3 NETWORK VIRTUALISATION SURVEY |

can be dynamically controlled. The forwarding behaviour of
the physical switch devices can be adapted and controlled to
implement Layer 2 to Layer 4 functionalities. In summary, this
technology is based on the separation of the forwarding plane
and control plane and the decoupling of the logical network
design and the physical network operation. In P-Flow the control
plane related functionalities are extracted from the network
device to be implemented in an external entity, the controller,
which typically runs on a server appliance. The OpenFlow
protocol is used to interconnect the controller with the physical
network devices. By using an standard protocol, the P-Flow is
able to support switches from other vendors, including software-
based switches, such as Open vSwitch (OVS).

On the one hand, P-Flow allows to overcome some of the
limitations of other vNode approaches (e.g. IEEE 802.1X or VRF)
based on internal VI creation point, such as the individual
configuration and management of the network devices. On
the other hand, in the case of overlays, they could become
difficult to manage when the interconnexion between end nodes
scales in number of tunnels. By introducing a network level
virtualisation, P-Flow allows to hide the underlying physical
network to expose a simple virtual network view, which is easier
to configure, manage and operate. Then, this virtual network is
decoupled from the physical one, which allows to have multiple
virtual networks sharing the same resources while isolates the
behaviour of each virtual instance.

The separation between the logical and the physical plane
allows P-Flow to introduce a unique network design, in which
a logical abstraction plane capture the high level network
functionality that can be mapped automatically into any under-
lying physical network topology. The high level functionalities
are dynamically created by adding/removing/modifying flow
rules at individual switches through their OpenFlow interface
exposed to the controller. The logical abstraction introduced by
P-Flow is called the Virtual Tenant Network (VTN), a concept
that can be also exported and implemented in other software
projects such as in OpenDaylight (ODL)* (by NEC developers).

OpenDaylight Virtual Tenant Network (VIN): https://wiki.opendaylight.
org/view/OpenDaylight_Virtual_Tenant_Network %28VTN%29:Main

59

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN%29:Main
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN%29:Main

60

| STATE OF THE ART

This VIN application provides a multi-tenant virtual network
on the ODL controller.

Based on the previously introduced taxonomy, the P-Flow
approach is categorized as shown in Table 2.4.

The P-Flow is a vNode type of NV that allows to implement
different logic on the vNode. Some of the control logic available in
P-Flow are: vBridge, vRouter, vExternals, vFilter, and vRedirect.
The vBridge allows to build L2 networks, while the vRouter
is the basic component to build a L3 network. Moreover, the
vExternals allows to interconnect the network to the end points,
which could be either a server (i.e.,, a physical or virtual
machine) or a legacy network device (e.g. router or switch).
The vFilter implements any L2-L4 based Access Control List
(ACL) by the proper definition of the matching on the header
fields and associated action, e.g. allow or deny (implemented
as output or drop). Finally, the vRedirect is associated with a
vFilter, and allows to create an explicit forwarding path from
a vBridge/vRouter to a vExternals. Any of these vNodes are
isolated per tenant and interconnected based on the logical
network design provided by the tenant. This solution is
mainly focused on data center networks as a means to avoid
exposing the physical complexity of a data center (e.g. topology)
to the tenants. Moreover, this approach allows to simplify

NV Taxonomy Programmable-Flow
NV Type vNode

Main target scenario data center networks
VI namespace VLAN identifier

LA h hysical
DP Adaptation Mechanism add/remove VLAN ‘tags on shared physica
links
transparent with untagged ports (i.e., not
VIAP classification shared interface), and non-transparent with

tagged ports (e.g. shared interface)

Network topology virtual topology
VI creation point external in the controller
support existing legacy features, control logic
Isolation level isolated (different behaviours), virtual topology
decoupled

Table 2.4: P-Flow categorization based on NV Taxonomy.

2.3 NETWORK VIRTUALISATION SURVEY |

the management of the network by removing the location-
dependent constrains, for instance in the common scenario of
virtual machine migration, which has a great impact on the
network resources.

Although not explicitly mentioned in technical descriptions
(i.e., it is a product from a vendor), the VLAN identifier is
shown in some deployment scenarios as the VI namespace used
to univocally identify the associated virtual instance and also
the means to uniquely identify the tenant at network-wide
level. This information has been also contrasted with the VIN
implementation in ODL.

Also based on this source of information, the adaptation
mechanism used at data plane is the addition/removal of the
VLAN tags to the frames of the users. This process is needed
when the physical link is shared between multiple virtual
instances, but it is not needed when this interface is dedicated
exclusively to one virtual instance. Although this procedure is
not needed in the latter case, the network node must associate a
VLAN identifier to the untagged interface to properly isolate at
node level.

Regarding the classification of the VIAP, two options are
feasible: transparent and non-transparent. The transparent VIAP
allows untagged frames coming from the user to be uniquely
associated to the target virtual instance by two means: the port
of the physical switch is dedicated exclusively to the virtual
instance or the MAC address is associated to the tenant. The
non-transparent VIAP is used typically when the physical port is
shared between multiple virtual instances, and the user needs to
tag the frames to identify the tenant responsible for their control
and forwarding.

Concerning the network topology, the P-Flow introduces the
VTN as a logical representation of the network that is a virtual
representation that needs to be mapped later on to the physical
infrastructure. This virtual topology representation allows the
virtual instance to be decoupled from the physical deployment,
which is a fundamental requirement in scenarios like data
center networks. The controller is responsible for performing
this mapping between the virtual and physical topologies in a
dynamic way.

61

62

| STATE OF THE ART

In relation to the VI creation point, the virtual instance
is created external to the network device, specifically in the
controller. The mapping between both topologies is just one of
the responsibilities of the controller, it must also implement and
isolate the logic associated to the virtual nodes and then map
this logic to the physical resources.

With regard to the isolation level of the P-Flow approach, it is
built to support existing legacy features, which means that the
QoS support offered by the network devices must be available to
build the solution. Moreover, the control logic associated to the
vNodes must be isolated on the physical devices (i.e., multiple
instances on the same network element) and per tenant (i.e.,
the vNodes from one tenant must not interfere with the vNodes
from other tenants). Additionally, the control logic is different
between vNodes, and this logic must be properly isolated and
no collision in the behaviour must be enforced. As one of its
main contributions, the virtual topology is decoupled (i.e., VIN)
from the physical infrastructure and does not interfere with
other virtual topologies from other tenants. In principle, the
computing resources are not isolated at network node and the
impact on the number of flow entires actually deployed on the
physical resources depends on the mapping algorithm, which
must be optimised on the controller side, but a flow entry quota
is not specify.

2.3.2 Overlay approaches

There are a set of NV approaches that have some common
characteristics and similar overall requirements which are based
on the abstraction of the network as a whole (opposite to
network device abstraction). This means that there is no
exposure of the internals of the underlying network to the
tenants and the solutions are built on top of some functionality
added on the edge network devices (i.e., basically mapping and
encapsulation). All these proposals are categorized as overlay
type of NV for the purposes of this study. As a result, the
underlying network is shared between multiple virtual instances,
which are isolated per tenant. Moreover, the topology is not
exposed and each virtual instance defines its own topology
based on the interconnexion defined between the edge devices.

The addressing space from the underlying network is decoupled
from the addressing space used by the tenants, and the mapping
between both addressing spaces is mapped on the edge device.
Besides, the addressing space from one tenant is isolated from
the addressing space used by another tenant, thus, enforcing the
isolation at tenant level.

The basic idea behind the implementation of an overlay is
straightforward. First of all, a new overlay is provided each
time a virtual network is instantiated. Then, the edge device
that provides access to the underlying network performs the
encapsulation (and de-encapsulation on the egress) on the
packet on the ingress. This encapsulation is defined in such
a way that the destination of the encapsulated packet is the
edge device that must de-encapsulate the packet just before it
is delivered to the final endpoint. The addressing space used
in the encapsulation header is focused on the interconnexion
between the edge devices, and has no knowledge about the
tenant’s addressing space. It is the edge device the entity who
knows how to encapsulate one addressing space into the other
in order to reach the destination endpoints defined by the tenant.
The underlying network forwards the packets based on its own
addressing space (used in the encapsulation header), which
simplifies the core network and improves the scalability of the
solution, since the forwarding process does not need to consider
and learn the information from the tenants. This means that
the number of the virtual instances do not affect the underlying
network.

As previously mentioned, the main common characteristics
of any overlay approach are: there is no topology exposed
to the tenant, the edge device performs the encapsulation/de-
encapsulation of packets, the addressing spaces are isolated, and
the mapping between both addressing spaces is performed on
the edge device. However, there are some differences between
the overlay proposals depending on the target scenario. Here,
there are two main target scenarios that group the following
study: operator networks (RFC 4026 [59]) and data center
networks (RFC 7364 [48]). The former refers to the provider
provisioned VPN that will be referred as VPN approaches,
whereas the latter refers to the overlays for virtual networks for
providing multi-tenancy in large data centers.

63

64

| STATE OF THE ART

One business case that has been a source of revenue for many
operators is the VPN solutions. A VPN can be categorized as an
overlay with some security aspects added (e.g. authentication,
authorisation, cyphering, and integrity), although not all the VPN
solutions cover the security attributes. In any VPN architecture
defined by the IETE such as in RFC 4664 [67] and RFC
4110 [68], there is a Customer Edge device (CE) and a Provider
Edge device (PE), which distinguished between the tenant’s
edge device (CE) and the operator’s edge device (PE) that are
connected and have a specific logic to build the VPN solution.
This solution is related to the operator networks that provide a
means to interconnect distributed sites from the same tenant in
a secure and isolated way by using the operator’s network. A
huge plethora of technologies are available to provide this type
of solution. In order to organise and group all these proposals,
they are further categorized into LIVPN, L2VPN, L3VPN, and
higher-Layer VPN. The L2VPN and L3VPN are the most typical
implementations for provisioning a VPN, which differentiate the
type of connectivity that is transported through the VPN service.
The former defines that a Layer 2 connectivity is provides
between the tenant’s sites, whereas the latter implies that this
connectivity is performed at Layer 3 (i.e., IP). This Layer 2 /
Layer 3 does not refer to the technology used by the underlying
network to forward and isolate (by means of the encapsulation)
the traffic sent to/from the tenants. This means that a L2ZVPN
can be encapsulated for instance on a Layer 2, Layer 3 or Layer 4
header. There are also LIVPN and higher-Layer VPN proposals,
but they are not so common. A LIVPN means that the tenant’s
sites are connected at Layer 1, whereas higher-Layer VPN, such
as SSL VPN, means that the connexion is performed on top of
SSL/TLS (RFC 5246 [69]).

The data center network scenario has its own particularities
that make to different from the VPN service in operator networks.
The multi-tenancy has been one design requirement imposed
to any data center network approach, in which each tenant
is able to define their virtual networks that must be isolated
from other tenants. The solution must scale to hundreds of
thousands of endpoints (i.e., the number of Virtual Machine
(VM)s expected to be deployed in large data centers), and this
requires that the amount of state associated to the tunneling

2.3 NETWORK VIRTUALISATION SURVEY |

mechanism (i.e., the overlay encapsulation) must be less than
in the case of the VPN solutions. Moreover, it is typical to have a
virtualised environment (i.e., computing virtualisation solution)
in which the end users are deployed as VMs in a virtualised
server (e.g. VMware, KVM, Xen, or Virtual Box). In this cases,
the hypervisor responsible for virtualising the hardware of
the servers is a key component to build the network overlay
in data center scenarios. The virtual switches (i.e., software
switches) available in the hypervisor (or sometimes the adjacent
device) are responsible for mapping and encapsulating (and de-
encapsulating) the traffic from the VMs. The main difference with
the previous scenario is that the VMs (and their virtual NICs),
the hypervisor and the data center network are provisioned,
controlled and administered by the same entity. How the virtual
network is implemented is responsibility of the data center
operator and the tenant does not care about it. The tenant
wants an isolated network mainly performing some bridging or
routing functionality between its VMs (i.e., Layer 2 and Layer 3
overlay).

Due to the aforementioned distinction between VPN services
and data center overlays they are analysed separately, then
some standard implementations are mentioned to illustrate
possible solutions. Afterward, some concrete examples are
individually analysed for particular reasons: NSX VMware [70],
NetLord [71], Diverter [72], and PortLand [19]. The NSX
VMware is a complete approach for a data center software
(i.e., computing and networking are integrated in the same
solution). NetLord implements a novel MAC in IP encapsulation
including the VI identifier in the destination IP address. Diverter
performs a MAC address rewrite using VNET module [65]
as the encapsulation mechanism. Finally, PortLand proposes
to forward the frames based on MAC prefixes. Although this
last proposal does not support NV, it is analysed because the
relation of a MAC prefix approach with the Layer 2 Prefix-
based Network Virtualisation (1L2PNV) contribution described in
Section 3.1.

65

66

| STATE OF THE ART

2.3.2.1 Virtual Private Network (VPN)

As previously explained, the VPNs are categorized as an overlay
with some security aspects added. It is considered as an overlay
because the VPN is a virtual network that makes use of the
underlying networking to provide a secure communication
that is built on the edge devices (i.e., the topology is not
exposed). The VPN addressing space is isolated from the
underlying addressing space by some kind of encapsulation,
which is performed on the edge device after some kind of
mapping. Although not all the VPN solutions implements a
secure connexion between the tenant’s sites, the authentication,
authorisation, cyphering and integrity are the most common
security aspects covered by a VPN proposal.

The characterisation of VPN solutions as a NV approach does
not vary so much from one proposal to another, so this study
is performed once and any particularization will be highlighted
if needed. However, in order to clarify the scope of this study,
the VPN proposals covered on it are described. Generically, the
provider provisioned VPN solutions are categorized into LIVPN,
L2VPN, L3VPN and higher-Layer VPNs. Just a few insights on
each category before their analysis as a NV solution that is
mainly focused on L2VPN and L3VPN [73] (there other two
categories are briefly introduced).

The L1VPN (RFC 4847 [74]) is a service that provides Layer 1
connectivity between two or more tenant’s sites that is offered
by a Layer 1 core network. Moreover, the tenant has some kind
of control over the establishment of the connexion and the type
of this Layer 1 connectivity. For clarification, a Layer 1 network
is a transport network that typically performs spatial switching
between fibers, time-division multiplexing (TDM), or lambda
switching. This category of VPN provides high bandwidth, but
less granularity and flexibility than other solutions.

Regarding the higher-Layer VPNs, the National Institute of
Standards and Technology (NIST) from the U.S. Department
of Commerce presented a guide to the SSL VPNs [75]. In this
study they present the justification for higher-Layer VPNs as an
alternative to IPsec (RFC 4303 [76]), and introduce two types of
solutions: SSL portal VPN and SSL tunnel VPN. The former allows
a user to securely access multiple network services through

a single standard SSL/TLS connexion to a Web site, whereas
the latter allows to securely access the same services through a
SSL/TLS tunnel that is running on a typical Web browser with
some active content.

The RFC 4026 [59] is an informational standard that presents
the terminology used in provider provisioned VPNs, mainly
related to L2VPNs and L3VPNs.

The L2VPNs (RFC 4664 [67] and [73]) can be further classified
in two types of services: virtual private wire service (VPWS)
and virtual private LAN service (VPLS). A third category,
IP-only LAN service (IPLS), is a subcategory of the VPLS
service. The VPWS provides a Layer 2 point-to-point service,
whereas the VPLS emulates a LAN service (i.e., multipoint
connectivity). The former could take into account the VLAN
or deliver a transparent port-based service, transported over a
pseudowire. The latter is also based on pseudowire creation
between the PE devices, which also perform MAC address
learning and MAC forwarding similar to a other switch on
the LAN from the user’s perspective. In the case of IPLS, the
MAC forwarding tables are populated through a protocol (rather
than learning) and the ARP is proxied (instead of transparently
forwarded). For this reasons, the IPLS imposes a router as a
CE, instead of a switch possible in VPLS solutions. The actual
technology used to provide those services could be either IP,
MPLS or Ethernet. For instance, there is a set of control protocols
and encapsulation mechanisms available to provide Layer 2
connexions between IP nodes, such as L2TPv3 (RFC 3931 [77]),
PPTP (RFC 2637 [78], although it is not a IETF standard, it was
developed by a vendor consortium) or GRE (RFC 2784 [79],
generic protocol to encapsulate network protocols). The IEEE
also provides technology to deliver L2ZVPN services through the
Provider Bridges (IEEE 802.1ad amendment, also known as Q-in-
Q) and Provider Backbone Bridges (IEEE 802.1ah amendment,
also known as MAC-in-MAC) , which are now part of the
IEEE 802.1Q-2014 standard [7]. The former proposes to add an
additional VLAN tag for the service provider, whereas the latter
proposes to encapsulate the user’s MAC header into a new MAC
header managed by the service provider.

The L3VPNs (RFC 4110 [68], and [73]) can be classified in two
different types of services: CE-based and PE-based. The former

67

68

| STATE OF THE ART

can be deployed by the tenant without any specific support
from the infrastructure provider of the underlying network
beyond the access to Internet. However, in this type of CE-based
L3VPN services the CE device must provide all the functionality
needed to build the VPN. In the latter service, the infrastructure
provider (i.e., the operator of the underlying network) must
configure the PE devices to provide the VPN connexions between
the tenant’s sites. In this case, the CE devices does not need
to perform any special functionality apart from the ordinary
routing functionality. Both the BGP/MPLS IP VPNs and virtual
router IP VPNs solutions are used to build PE-based L2VPNs,
whereas the IPsec VPNs (RFC 4303 [76]) are typically a solution
for CE-based L2VPNs.

Based on the previously introduced taxonomy, the VPNs are
generically categorized as shown in Table 2.5.

The VPNs are generically categorized as an overlay type of
NV, since they build a virtual network over the underlying
infrastructure by means of the edge devices that are isolated per
tenant. Some security support could be added to the overlay,
since it is typically deployed over a shared and unreliable
network (e.g. Internet). The VPNs have been a successful business
service deployed in operator networks as a cheaper alternative
to private networks and leased lines between the tenant’s sites.

NV Taxonomy Virtual Private Network

NV Type overlay

Main target scenario operator networks

VI namespace dependent on the tunneling mechanism
DP Adaptation Mechanism add/remove encapsulation header

VIAP classification transparent in PE-based VPNs, and
non-transparent in CE-based VPNs

Network topology not exposed

VI creation point edge device (either in the PE or in the CE)

QoS support depending on the underlying
Isolation level technology, addressing space is isolated
(between infrastructure provider and tenants)

Table 2.5: VPN categorization based on NV Taxonomy.

2.3 NETWORK VIRTUALISATION SURVEY |

The VI namespace, or the exact manner in which the
virtual instances are uniquely identified, depends on the actual
tunneling technology used to build the VPN, which it is also
related to the type of VPN that is provided and the actual
technology used by the underlying network. As previously
mentioned, there are a lot of possible tunneling technologies
that can be used to provide, for instance, L2ZVPN and L3VPN
services. Each technology provides a means to uniquely identify
the virtual instance (i.e., the VPN tenant) both at the ingress and
at the egress. The study of all these possible encapsulations are
out of the scope of this study, but some of them are: MPLS, GRE,
L2TPv3, PPTP, Q-in-Q, MAC-in-MAC, IPsec and so on.

In all these mechanisms, the data plane adaptation mechanism
is the same, the addition/removal of the encapsulation header
(which is dependent on the technology) to the user’s traffic on
the edge devices. This procedure is implemented on the PE/CE
and some additional functionality would be needed (e.g. MAC
learning, ARP proxy and so on) depending on the VPN solution
and the technology used. This encapsulation mechanism also
provides the ability to isolate the addressing space of the tenants
from the one used by the underlying network.

With regard to the VIAP classification, two possible options
are considered: transparent and non-transparent. On the one
hand, when the VPN is built on the PE devices, the service
is transparent to the users, since all the configuration and
management is performed by the operator. It is on the PE where
the encapsulation process (and some others) takes place. On the
other hand, when the VPN is configured and managed on the CE
devices, the service is not transparent to the users. In this latter
case, the operator does not need to perform any action since the
encapsulation and some other associated processes take place.

Regarding the network topology, as any other overlay solution,
the underlying topology is not exposed to the tenants, since the
network as a whole (including its functionality) is abstracted and
the internal devices are not exposed at all. However, this does
not mean that the overlay could define its own topology based
on the tunnels stablished over the underlying network.

Concerning the creation point of the VI, the virtual instances
are created on the edge devices, either on the PE or on the
CE (depending on the approach). The underlying network is

69

70

| STATE OF THE ART

dedicated to forward the encapsulated packets as any other
packets not related to the VPN and it does not take part in
building the VI instance.

In relation to the isolation level, the different VPN solutions
could make use of the QoS support provided by the underlying
technology (if it is supported). The QoS could be an additional
parameter of the VPN service to be provided. As previously
mentioned, the addressing space is isolated between the tenant
and the infrastructure provides, as well as between the different
tenants (or virtual instances). Finally, the computing resources of
the edge devices could be isolated, although it is not so common
in current implementations.

2.3.2.2 Data Center overlay

Large data center networks are challenging because they need to
scale to hundreds of thousands of endpoints and multi-tenancy
is a mandatory requirement. A overlay-based NV approach has
been proposed to support this multi-tenancy at scale providing
isolated virtual networks (through some king of encapsulation)
that are built on the edge elements of the data center.

RFC 7364 [48] presents the overlays as a mechanism to
implement NV solutions for large data centers. One of the
main particularities of data centers is that the same entity is
responsible for providing computing, storage and networking
resources. With regard to the network, the data center operator
needs to provide the isolated virtual instances to the tenants,
and in this case, these virtual networks are overlays on top
of the underlying infrastructure. Some additional functionality
must be provided to deploy the virtual network instances,
such as the association of the VM’s network interfaces with
the corresponding virtual network. This relationship must
be maintained when the VM is activated, migrated or even
deactivated. In this context, the hypervisor covers a key role
in the adequate interconnexion between the virtual interfaces
and the overlay, thus, the hypervisor becomes the edge element
responsible for encapsulating (and de-encapsulating) the user’s
traffic.

In any multi-tenancy solution, the traffic isolation between
tenants is a key requirement. One tenant must not be able to

access traffic from another tenant. Moreover, the address space
isolation allows to different tenants use the same addressing
scheme on different virtual network instances. This means that
the same network addresses can be used at the same time in
different virtual network instances. Furthermore, the address
space used by the tenants is isolated from the addressing used
by the underlying infrastructure. In order to achieve this level
of isolation, each tenant is able to instantiate one or several
network instances. The only way to sent traffic from one virtual
instance to another is through a security gateway or a shared

router (accessible simultaneously by several virtual instances).

The same control is performed when the traffic from one tenant
needs to exit the virtual network to Internet, it can only be done
through controlled exit points and the corresponding policy.

In general, the way in which the virtual network is
implemented does not matter to the tenant. The important
aspect is that the semantics and performance of the network
service provided (e.g. Layer 2 or Layer 3) is preserved. Then, it
could be implemented by means of a bridged or routed network
(or a combination).

As previously mentioned, the scalability of the solution is an
issue. For instance, some overlay proposals (e.g. L2ZTPv3) require
significant state associated to the tunnel that must be stored
on the endpoints for encapsulating and de-encapsulating the
user’s traffic. The overlay approaches to be used in large data

center networks require less state to be associated to the tunnel.

Scaling the solution to hundreds of thousands of endpoint is
not easy when the associated state is significant. In the end, the
virtual switches provided in the hypervisor must be responsible
for performing the encapsulation and de-encapsulation of all
the user’s traffic, accomplishing a basic function as the overlay

edge component. When the hypervisor is not present (e.g.

physical server) or the virtual switch is nor able to perform
such functionality, the adjacent device will be responsible for
mapping and encapsulating the traffic.

The specific encapsulation mechanism is not relevant for
the categorization of data center overlays as a NV proposal
based on the proposed taxonomy. However, this mechanism is
fundamental from the networking and performance point of
view. The requirements imposed by any of these encapsulations

71

72

| STATE OF THE ART

must be analysed to select the most adequate to be deployed.
Some of the most relevant overlay-based proposals for data
center NV are: VXLAN (RFC 7348 [49]), Geneve [52], NVGRE
(RFC 7637 [50]), and STT [51].

Virtual eXtensible Local Area Network (VXLAN, REC
7348 [49]) is an overly technology that allows to virtualise
Layer 2 networks over Layer 3 networks. It is mainly focused
on data center scenario to enable multi-tenancy support. The
main issues to overcome are: the limitation VLAN space (i.e.,
limit of 4094) to isolate the tenant’s virtual networks at scale
in a data center, the limitation of Spanning Tree Protocol (STP)
to distribute the traffic through redundant paths (i.e., large
number of disabled links), and the inadequate table sizes at
Top of the Rack (ToR) switches that must scale to hundreds of
thousands of VMs. Relying on a Layer 3 network, i.e., IP, and an
encapsulation scheme (VXLAN header) allow to overcome those
problems. Each VXLAN segment (i.e., virtual network instance)
is identified through a 24-bit identifier, the VXLAN Network
Identifier (VNI). The VXLAN header is encapsulated into a
UDP outer header with a destination port (value 4789) assigned
by the JANA for VXLAN. Moreover, VXLAN defines unicast
traffic for VM to VM communication, whereas the broadcast
communication is mapped into multicast traffic. The support
of IP multicast is one of the main limitations of VXLAN. The
fragmentation of VXLAN packets on the source is avoided,
however, intermediate routers could fragment the packets due
to the larger frame size, and Path MTU discovery is proposed
to avoid fragmentation. There are not specific security measures
cover by the standard.

The GRE header encapsulation has been proposed as a
mechanism to support NV by the NV using Generic Routing
Encapsulation (NVGRE, RFC 7637 [50]) standard from the IETF.
The decoupling of virtual networks and addressing space from
the underlying network infrastructure to provide multi-tenancy
is the main objective of NVGRE. The standard is mainly focused
on the data plane aspects of the solution and how it provides
the desired isolation between multiple virtual networks. The
VLAN and RSTP limitations and huge utilisation of the network
capacity in data centers are the main issues to overcome. The
design goals are a location independent addressing scheme, the

scalability of the number of virtual networks, the broadcast
isolation and the preservation of the Layer 2 semantics on the
tenant. The GRE header is directly encapsulated into the IP outer
header and a 24-bit Virtual Subnet Identifier (VSID) is included
to identify the virtual instance. The outer IP header protocol is
0x2F used for GRE encapsulation, and the GRE header protocol
type is 0x6558 to specify that a transparent Ethernet bridging
service is provided. The broadcast and multicast on the virtual
networks can be either mapped into multicast traffic (one per
virtual instance or the same for all the instances) or into N-
way unicast (encapsulated into N unicast packets) to avoid the
requirement of IP multicast support on the underlying network.
The IP fragmentation in NVGRE is avoided through Path MTU
discovery mechanism. IPsec or similar IP-based mechanism are
proposed to mitigate spoofing attacks.

The Stateless Transport Tunneling (STT) protocol [51] was
proposed as an internet draft to implement a NV solution.
Although it was not finally considered as a standard, STT
was a pragmatic approach which faces the improvement and
acceleration of the encapsulation process relying on hardware
offloading of TCP packets. This proposal has the historical
value of being the core development of Nicira to build data
center overlays with SDN technology. This draft standard was
originally promoted by Nicira and continued at VMware by the
same authors (after the 1 billion acquisition). The main benefits
from STT are: overlapping addresses between multiple tenants,
decoupling of virtual topology from the physical network by
means of an overlay, VM mobility support, scalability of the
number of virtual instances, decoupling of tenant technology
from the underlying technology, and isolation of the physical
devices from the addressing used by the virtual networks. The
novelty of this approach is the usage of a TCP-like outer header
to encapsulate the STT header. However, the encapsulation
process is stateless although it is based on a TCP header, i.e.,
there is no TCP connexion state on the tunnels. The reason for
this is to leverage the offloading capabilities of existing NICs to
accelerate the TCP segmentation processing. The segmentation
is performed as for any other TCP packet, so IP fragmentation
would not be an additional issue. This draft considers the
encapsulation/de-encapsulation process to be performed at the

73

74

virtual switch in the hypervisor, physical switch or some other
appliance. The STT header includes a 64-bit Context identifier
as a generalised way of identify the virtual instance on the
tunnel endpoint, which allows STT to scale to address the large
data center requirements. If the underlying network supports IP
multicast, this capacity can be exploited by STT to encapsulate
broadcast and multicast traffic from the tenants. Although not
specific security aspects are covered by the draft, IPsec is
mentioned as a possible mechanism to add security to STT
packets.

Rather than yet another encapsulation header, Generic Net-
work Virtualisation Encapsulation (Geneve [52]) was designed
as a framework for tunneling specifically designed to meet
the requirements of NV at scale for large data centers. Geneve
supports NV and understands the tunnels as a backplane
between the virtual switches in hypervisors, physical switches
and middleboxes, where the underlying network is an arbitrary
IP network. As design requirements, the data plane is generic
and extensible to support current and future control protocols,
the tunnel must be efficiently implemented in hardware and
software, and it must provide high performance over existing IP
fabrics. As a result, Geneve is a pure tunnel format specification
capable to be adapted to any control protocol and the options are
implemented in Type-Length-Value (TLV) format. The Geneve
header defines a Virtual Network Identifier (VNI) of 24-bits
and is then encapsulated into a UDP outer header that uses a
destination port (value 6081) assigned by the IANA to Geneve.
Geneve tunnels can be unicast or multicast, and opposite
to VXLAN, unicast point-to-point connexions can be used to
transmit broadcast traffic that is previously replicated into
multiple packets. This option removes the limitation of VXLAN
to support IP multicast in the underlying network. Moreover,
NIC offloads are also considered to improve the performance of
the encapsulation process. Path MTU discovery os proposed to
avoid IP fragmentation of Geneve packets. The security issues
are not specifically considered by the proposal.

Due to the scale of large data centers and the expected
load in this scenarios, the performance of the encapsulation
process (beyond the inherent overhead added in the data
plane) is relevant for overlay solutions. In this context, the

2.3 NETWORK VIRTUALISATION SURVEY |

hardware offloading support in the NIC is fundamental, such
as TCP Segmentation Offload (TSO) [TSO], Generic Receive
Offload (GRO) [GRO], Generic Segmentation Offload (GSO)
[GSO] or Large Receive Offload (LSO) [LSO]. [53] analyses
this offloading effect on the aforementioned proposals and
propose Segment-oriented Connexion-less protocol (SCLP) as an
efficient encapsulation process that improves the performance of
VXLAN when using this protocol instead of UDP. The offloading
capabilities for UDP-based and TCP-based encapsulation while
sending and on reception are different, and thus, the overall
performance of each proposal varies. For instance, STT makes
use of TSO, while SCLP exploits GRO capabilities.

Based on the previously introduced taxonomy, the Data
Center overlays are generically categorized as shown in
Table 2.6.

The Data Center overlays are generically categorized as an
overlay type of NV, since the virtual network instances and multi-
tenancy are created by providing isolated overlay networks per
tenant. This type of solutions have been widely deployed in data
center networks as an optimal approach to achieve the multi-
tenancy at scale in large data centers based on IP networks.

The specific VI namespace used to identify the virtual network
instance depends on the technology selected to provide the
overlay. As previously mentioned, there are different possible
overlay technologies, and each of them defines an analogous

NV Taxonomy Data Center overlay

NV Type overlay

Main target scenario data center networks

VI namespace dependent on the tunneling mechanism
DP Adaptation Mechanism add/remove encapsulation header
VIAP classification semi-transparent in the hypervisor
Network topology not exposed

VI creation point edge device (hypervisor)

QoS support depending on the underlying
Isolation level technology, addressing space is isolated
(between infrastructure provider and tenants)

Table 2.6: Data Center overlay categorization based on NV Taxonomy.

75

76

identifier to this aim: VXLAN Network Identifier (VNI) in
VXLAN, Virtual Subnet Identifier (VSID) in NVGRE, Context
ID in STT and Virtual Network Identifier (VNI) in Geneve. This
identifier is used to associate the traffic to the corresponding
virtual network instance at the edge element (e.g. hypervisor).

Therefore, as an overlay technology, the adaptation mech-
anism used at data plane is the addition/removal of the
encapsulation header (different header depending on the
technology) to the user’s traffic on the edge elements. This
procedure could be done at the virtual switch on the hypervisor,
a physical switch or an appliance. Some additional functionality
is needed to learn the user’s MAC address (in Layer 2 services),
create the multicast groups, discover the MTU of end-to-end
paths and some others depending on the technology.

In relation to the classification of the VIAP, the data center
overlays are semi-transparent, since the data plane adaptation is
performed in the hypervisor on the end node, but in a separate
and isolated context. This process is transparent for the user and
the packets are adapted before accessing the underlying network.
The mapping and encapsulation mechanism are implemented in
the virtual switch that is part of the global virtualisation solution
for computing, storage and networking.

With regard to the network topology, the details of the
underlying network are not exposed to the overlay, since the
entire network is abstracted and exposed as a whole to the
tenants. However, the overlay is able to define its own topology
which is constructed by using tunnels through the underlying
network.

Regarding the VI creation point, as any other overlay, the
virtual instances are created on the edge elements (i.e., the
virtual switch in the hypervisor). The underlying network is not
responsible to create the instances and is devoted to forward the
encapsulated packets from one edge element to another.

Concerning the isolation level, the different Data Center
overlay solutions could provide a distinct QoS support
depending on the actual solution and the support provided
by the underlaying infrastructure. Moreover, the addressing
space from the tenants are completely isolated by means of
the encapsulation, as well as the underlying addressing scheme
used by the data center infrastructure provider. Although the

2.3 NETWORK VIRTUALISATION SURVEY |

computing resources delegated to the tenant (i.e., VMs) are
completely isolated on the data center, the computing resources
associated to the networking functionality (i.e., mapping and
encapsulation processes on the edge element) are not typically
isolated on per tenant basis.

2.3.2.3 VMware NSX: the Network Virtualisation Platform (NVP)

The VMware NSX [70] is the unified platform for network
and security virtualisation that joints the best of VMware
vCloud Network and Security (vCNS) and Nicira Network
Virtualisation Platform (NVP). As a result, NSX provides a
set of logical networking elements, such as switches, routers,
firewalls, load balancers, and so on, that can be combined in
any topology with multi-tenancy support and isolation between
virtual instances provided to the tenants. Moreover, all this
support can be exposed through programmable APIs that can
adapted to any cloud management system. Just with this
definition, it seems that this approach is more related to a
vNode type of NV, which in fact it is partially true. However, the
complete solution can also be deployed on top of any physical
IP network fabric, and in order to achieve this support, NSX
makes use of an overlay approach to deal with this underlying
network. Precisely, because of this latter support, NSX could be
also considered as an overlay type of NV. The two elements
are complementary to build the complete NV platform for data
carter scenarios.

In order to better understand the overall picture, two key
components of the NSX architecture must be highlighted: the
hypervisor (i.e., VMware vSwitch) and the controller cluster,
which orchestrates the resources to fulfil the tenant’s requests.
It must be mentioned that VMware focuses on building the
data center solutions based on edge virtualisation software,
the hypervisor. First of all, the controller cluster exposes
a northbound interface to other management platforms (e.g.
vCloud) to receive the logical network descriptions coming
from the tenants. This controller processes the requests and
proactively programs the vSwitches on the hypervisors. On
the one hand, the vNode related logic is implemented on the
vSwitches distributed along the data center (the best location

77

78

| STATE OF THE ART

is selected by the controller cluster). On the other hand, the
distributed nature of the vSwitches requires from an isolated
inter-vSwitch communication, which is solved by means of the
data center overlay approach. This implies that the controller
cluster must dynamically program the overlays through the
appropriate encapsulation tunnels between the hypervisors. STT
and VXLAN technology are currently supported by NSX, which
allows to decouple the addressing space used by the VMs from
the underlying network fabric (i.e., an IP network).

For completeness, NSX also provides Gateway services to
securely control the traffic coming into or going out the data
center. The NSX Gateway nodes are also programmable and
provides services such as MPLS, IP routing, load balancing,
firewall, NAT, and VPN.

Based on the previously introduced taxonomy, the VMware
NSX is categorized as shown in Table 2.7.

The VMware NSX provides a complete solution for data
center NV with a balanced approach between a vNode type and
overlay type of NV. The vNode components deployed on the edge
elements (i.e., the hypervisor) are interconnected by using an

NV Taxonomy VMware NSX
NV Type vNode | overlay
Main target scenario data center networks

flowspace for vNode | VNI or Context ID for

VI namespace
overlay

reservation of flowspace for vNode |

DP A ion Mechani
daptation Mechanism add/remove encapsulation header for overlay

VIAP classification semi-transparent in the hypervisor
virtual topology for vNode | not exposed for
Network topology pologY for vivode P
overlay
VI creation point edge device (hypervisor)

QoS support depending on the underlying
technology, control logic (and computing
resources) from vNodes isolated, virtual
topology decoupled for vNodes, addressing
space is isolated (between infrastructure
provider and tenants)

Isolation level

Table 2.7: VMware NSX categorization based on NV Taxonomy.

2.3 NETWORK VIRTUALISATION SURVEY |

overlay on top of an IP network fabric. This composed solution
covers the needs from data center networks with a software
based approach build on the edge servers.

From the vNode perspective, the VI namespace rely on the
flowspaces (including the internal virtual ports) to identify
the traffic associated to each vNode, whereas from the overlay
perspective, the VI namespace is the VNI (in VXLAN) or the
Context ID (in STT) depending on the encapsulation technology
used.

The data plane adaptation mechanism is the reservation
of the appropriate flowspace in the case of vNodes and the
addition/removal of the encapsulation header in the case of
overlays.

Concerning the VIAP classification, the hypervisor performs
the needed functionality in a semi-transparent way on the edge
servers without any modification on the user side.

In relation to the network topology, the vNode is capable
of defining an arbitrary virtual topology to be built on the
hypervisors, whereas the overlay does not expose any topology
from the underlying network.

With regard to the creation point of the VI, the virtual instance
is created on the edge device in the hypervisor, both the vNode
and the overlay.

Regarding the isolation level, the overlay can make use of the
QoS support provided by the underlying network. Moreover, the
control logic of the vNodes is isolated and isolated computing
resources could be also assigned to each of these vNodes. The
virtual topology defined between the vNodes is decoupled from

the underlying resources and implemented in the hypervisor.

This virtual topology could be physically distributed in several
hypervisors, however, this physical distribution could have no
relation to the virtual one. Finally, the addressing space used by
the tenants is isolated from the underlying infrastructure, as well
as from other tenants.

2.3.2.4 Netlord

NetLord [71] presents a novel architecture for multi-tenancy
support at scale in data centers. It allows to isolate the
addressing space of tenants by encapsulating the user’s traffic on

79

80

| STATE OF THE ART

the edge elements (the hypervisor). One of the main difference
with the previously introduced data center overlays is that
NetLord relies on a Layer 2 fabric (instead of Layer 3). It claims
that NetLord can be deployed over inexpensive commodity
Ethernet switches.

The NetLord Agent (NLA) is a piece of software included
in the hypervisor that is responsible for encapsulating and de-
encapsulating the Layer 2 frames sent by the user to achieve
the isolation and increase the scalability of the solution. An
additional Layer 3 and Layer 2 header is attached by the
NLA to the traffic coming from the VMs, and by means of
this encapsulation, the Layer 2 addresses from the source and
destination VMs are not visible for the underlying Layer 2
network.

The encapsulation details are relevant to understand how
NetLord performs the virtualisation of the network and the
requirements imposed due to this mechanism. First of all,
the virtual interface of the tenant’s VM is identified by three
parameters: the Tenant ID, the MAC address space ID and the
MAC address. This means that each tenant is able to define
multiple addressing schemes, which is the context need to
uniquely identify the MAC address of a VM. When a frame
is sent from one VM which belongs to a tenant, this frame is
encapsulated by the NLA in the following way. On the one hand,
the additional Layer 2 header uses the MAC address of the
ingress switch (that belongs to the underlying network and to
which the server where the VM is running) and the MAC address
of the egress switch (to which the server with the destination
VM is connected) as source and destination MAC addresses
respectively. On the other hand, the additional Layer 3 header
uses the MAC address space ID as the source IP, and encode the
physical output port from the egress switch (toward the server
where the destination VM is running) and the Tenant ID as the
destination IP. At the egress switch a Layer 3 lookup takes place,
and the destination IP is decoded to rewrite the Layer 2 header
as follows: the MAC address of the destination NLA is used
as the destination MAC address, and the MAC address of the
edge switch is used as the source MAC address. On reception,
the NLA de-encapsulates the frame and extracts the Tenant ID,

2.3 NETWORK VIRTUALISATION SURVEY |

MAC address space ID and destination MAC address in order
to forward the user frame to the corresponding destination VM.

In [71] the authors also propose to explore the benefits of
adding SPAIN [80] support in the underlying Layer 2 fabric
to achieve multipath forwarding based on VLAN tagging.
Although this support is orthogonal to the NetLord proposal,
it increases the overall usage of the Layer 2 fabric to reduce
the possible congestion of some links. On the other hand, the
drawback is that this support is very granular on a per-flow basis
and not scalable. Moreover, the NL-ARP is included to combine
the IP routing and ARP functionalities to maintain an NL-ARP
table that maps the user MAC address to the egress switch and
port number. Then, the NLA explores this table to proxy the
ARP requests from VMs and avoid broadcast traffic from users
on the Layer 2 fabric. With regard to the IP fragmentation that
can be an issue when adding an encapsulation header (L2+L3 in
this case), NetLord proposes to control the MTU of the virtual
interfaces though the NLA and use jumbo frames to avoid this
fragmentation. Finally, the proposal claims to be supported by
commodity and inexpensive Ethernet switches on the Layer 2
fabric, however, the support for the IP forwarding (Layer 3
lookup) on the egress switch is not always a feature present on
all switches.

Based on the previously introduced taxonomy, the NetLord
approach is categorized as shown in Table 2.8.

NV Taxonomy NetLord

NV Type overlay

Main target scenario data center networks

VI namespace Tenant ID on L3 destination

DP Adaptation Mechanism add/remove the NetLoad encapsulation header
VIAP classification semi-transparent by the NLA in the hypervisor
Network topology not exposed

VI creation point NLA in the hypervisor (edge-based)

addressing space is isolated per tenant and per
Isolation level MAC address space instance, multipath
support based on SPAIN (complementary)

Table 2.8: NetLord categorization based on NV Taxonomy.

81

82

| STATE OF THE ART

The NV performed by NetLord is an overlay type, since
the virtual instances isolated per tenant are built on the edge
elements (i.e., the NLA) by using an underlying Layer 2 fabric
with an isolated addressing scheme. This solution focuses on
data center networks to provide multi-tenancy at scale that
improves the utilisation of the underlying resources.

The VI namespace is the Tenant ID, which in combination
with the MAC addressing space ID, allows to identify the target
virtual instance associated to the tenant.

The addition/removal of the NetLord header is used as
the adaptation mechanism at data plane level. The NLA is
responsible to perform the encapsulation/de-encapsulation of
user’s frames in the hypervisor, which means that this process
is classified as a semi-transparent VIAP. Moreover, the topology
of the Layer 2 fabric is not exposed to the tenants, which is used
as a forwarding plane that makes use of the outer header to
perform such a process.

In relation to the VI creation point, the NLA software
component deployed on all the hypervisors is responsible for
creating the virtual instance on the edge elements.

With regard to the isolation level, the approach mainly focuses
on isolating the tenant’s addressing space, not only from other
tenants and the underlying fabric, but also from multiple
addressing schemes that can be defined by the tenant (via the
MAC address space ID). Moreover, the cooperation with SPAIN
allows to generate multiple isolated paths between the same
source and destination hypervisors (relying on VLAN tags).
However, there is no QoS support considered in the proposal
and the computing resources are not isolated on per tenant basis
(e.g. the NLA is a shared component).

2.3.2.5 Diverter

Diverter [72] is another proposal for providing an efficient multi-
tenant support in data center networks at scale. It is a software-
based approach to be deployed on the hypervisor that focuses
on partitioning the IP address space to achieve the multi-tenancy.
The means, agreements and user frame processing are quite
different from the previous approaches.

2.3 NETWORK VIRTUALISATION SURVEY |

The virtualisation is performed at Layer 3, based on the IP
addresses, and provides isolated sets of subnets to the tenants.
This means that the addressing space is not completely isolated,
but an agreement on how to distribute the IP addressing space
is assumed to enable the tenant isolation. Concretely, the IP
addresses delegated to the VMs maintain the following format:
10.f.s.h, where f is used to identify the tenant (called farms in
the proposal, the virtual network in the end), s is used to define
the subnet, and h is used to identity the host (vM). This means
that each tenant would have a 10.f.X.X/16 subnet assigned.

The solution is implemented by a software module, called
VNET (a kernel module), which resides in the hypervisor
and intercepts the frames sent by the VMs and process them
appropriately. The basic processing of these frames is the
following. First the an anti-spoofing filter ensures that the VMs
use the proper IP addresses and prefixes (with the correct
tenant identifier) that enforce separation of tenants. Then, the
destination IP address is examined to decide which is the
associated destination hypervisor. A mapping table resolves the
IP addresses of the VM to the MAC address of the associated
hypervisor where the VM resides. This mapping is performed
and maintained by the VNET ARP engine, and if no appropriate
mapping exists in the table, the user’s frame is queued until this
engine resolves the ARP. If the user’s frame needs to be sent to
a remote hypervisor, the source and destination MAC addresses
of the user’s frame are rewritten to the MAC address of source
hypervisor and the MAC address of the remote hypervisor
respectively. As a result, the underlying Layer 2 fabric does not
see any MAC address from the end VMs, but from the edge
hypervisors. Moreover, the frames coming from the VMs does
not increase their size, since the action performed to isolate the
Layer 2 addressing scheme is a rewrite, rather than an addition
of a new outer header. From the possible IP fragmentation in
the underlying network, this adaptation process is transparent
and it does not have an impact. From the security perspective,
the VNET performs an anti-spoofing check before sending the
frames from the VM.

Based on the previously introduced taxonomy, the Diverter
approach is categorized as shown in Table 2.9.

83

84

| STATE OF THE ART

The Diverter approach is an overlay type of NV, since the
underlying Layer 2 fabric is abstracted and a software (ie.,
VNET) deployed on the edge hypervisors is responsible for
building the virtual network instance delegated to the tenant.
This approach focuses on the requirements imposed by data
center networks and provides multi-tenant support at scale.

However, the Diverter proposal is quite different from all the
previous solutions, since the VI namespace used is an IP prefix.
Each tenant is assigned with a unique IP prefix (i.e., 10.£X.X/16,
where the f value identifies the tenant) that cannot be used by
the rest of the tenants.

This adaptation mechanism at data plane actually implies a
kind of reservation process by which each IP prefix is reserved
for each tenant. In fact, this process does not scale too much,
since only 8-bits are used to identify the tenant (i.e., the customer
virtual network or farm, as called by the authors). Moreover, in
conjunction with the reservation of the IP prefix, a rewriting
process of the MAC address of the user’s frames (i.e., the MAC
addresses assigned to the VMs) is performed to adapt these
frames to the underlying Layer 2 fabric.

With regard to the classification of the VIAP, it is considered as
semi-transparent because the adaptation process is performed

NV Taxonomy Diverter
NV Type overlay
Main target scenario data center networks
VI namespace IP prefix

DP Adaptation Mechanism reservation of IP prefix and rewriting of MAC

addresses
VIAP classification semi-transparent by VNET in the hypervisor
Network topology not exposed
VI creation point VNET in the hypervisor (edge-based)

Layer 3 address space not completely isolated

(IP prefix reservation), Layer 2 address space

isolated (Layer 2 fabric isolated from tenant’s
VM)

Isolation level

Table 2.9: Diverter categorization based on NV Taxonomy.

2.3 NETWORK VIRTUALISATION SURVEY |

by the VNET in the hypervisor, neither at the user’s VM nor at
the Layer 2 fabric level.

Regarding the network topology, as any other overlay solution,
the underlying topology is not exposed to the tenant and it is just
used to forward the frames from the source to the destination
hypervisor.

Concerning the creation point of the VI, it is performed by the
VNET in the hypervisor on the edge element.

In relation to the isolation level, the Diverter approach isolates
the Layer 2 address space used by the tenant’s VMs from the
addressing used in the underlying Layer 2 fabric. However,
the Layer 3 address space is not completely isolated and the
isolation is performed by a common agreement on the usage
of IP prefixes. Moreover, the solution does not provide any QoS
support mechanism and the computing resources devoted to the
networking processing are not isolated.

2.3.2.6 PortLand

Just before performing any analysis related to the PortLand
approach [19], it must be highlighted that this proposal does
not support any NV at all. The reason for presenting this study
is because of the usage of MAC address prefixes as a key design
element of one of the contributions of this thesis, and the reason
to include it here is because it focuses on data center networks
to improve the scalability of the Layer 2 fabric.

The PortLand approach presents a fault tolerant and
scalable Layer 2 routing, forwarding, and addressing for data
center networks. It is intended to be plug and play, and
no configuration is needed in the fabric. One fundamental
requirement is the seamless migration of VMs without breaking
the ongoing connexions (i.e., TCP session and application-level
state), which implies that the IP address of the VM must remain
the same. On the one hand, a Layer 3 fabric scale by means of
aggregation (e.g. IP prefix assigned to Top of the Rack switches),
but the IP addresses are modified when migrating the VM
from one ToR to another. In this scenario, a Layer 2 fabric
is an appropriate alternative, however, it has some scalability
issues and not scale well due to the broadcast support and flat
addressing scheme. VLAN segments could limit the broadcast

85

86

| STATE OF THE ART

traffic, but it does not scale properly for large data centers
(e.g. 4094 limit) and manual configuration is needed. Morover,
the fabric must avoid forwarding loops and, in this proposal,
it is related to fat-tree topology data centers (which could be
generalised to traditional multi-rooted tree topology).

PortLand proposes a centralised fabric manager responsible
for maintaining the state of the network configuration (e.g. the
actual topology), the ARP resolution, and fault tolerance and
multicast support. The efficient routing and forwarding, as well
as the support for seamless VM migration, leverage on the
positional Pseudo MAC addresses (PMAC). The solution assigns
one PMAC to each VM that encodes its location in the topology,
while the VM does not need to change their MAC address,
called the Actual MAC address (AMAC). Additionally, the fabric
manager is responsible for AMAC (and IP) to PMAC mapping,
and it also performs a proxy ARP to resolve the VvM’s IP to the
associated PMAC. This means that the VMs resolve the PMAC
of the destination IP through ARP, which is then proxied to the
fabric manager. This process implies that the end VMs are not
completely isolated from the fabric, since they learn the PMACs
instead of the AMACs of the remote VMs.

The PMAC is coded as follows: pod.position.port.vmid, where
the pod number (16-bits) is unique in the fat-tree topology, the
position (8-bits) is the number assigned within the pod, the port
(8-bits) is the number related to the physical host, and the vmid
(16-bits) is the VM identifier. The PMAC is created incrementally
with a timeout and then it could be reassigned.

In relation to the fabric, the forwarding is completely
performed based on the PMACs, which allows to reduce
the forwarding tables through aggregation (only the pod
and position number is learned) since the PMAC encodes
the location through a prefix. The switches are populated
with forwarding entries with longest prefix match against the
destination PMAC. As a result, switches with k ports only
need O(k) state to be stored, although if some load balancing
is needed on per-flow basis it requires some additional state.
PortLand allows the separation of the host location from the
host identifier in a transparent way to the end VMs without any
overhead included in the data plane, since no additional header
is added. Moreover, on the one hand, the ingress switch detects

2.3 NETWORK VIRTUALISATION SURVEY |

new source MAC addresses and notifies the fabric manager to
create an associated PMAC and map it to the corresponding
AMAC and IP, which is then used to reply the ARP requests. On
the other hand, the fabric manager (acting as a controller) inserts
a flow entry on this switch to rewrite the destination PMAC to
the associated AMAC value. When this edge switch performs
the destination MAC rewrite action, it is in fact acting as the
egress switch. Consequently, a VM migration implies to update
the PMAC value, and in order to achieve a seamless migration,
a technique based on sending gratuitous ARPs is proposed to
distribute the PMAC changes to the end VMs.

Based on the previously introduced taxonomy, the PortLand
approach is categorized as shown in Table 2.10 (although this
proposal does not support NV).

As mentioned above, the PortLand approach is not a solution
for NV and focuses on improving the Layer 2 forwarding on
the fabric at scale. Therefore, the NV type, VI namespace, and
VI creation point are not considered in this analysis. The target
scenario is the data center networks, and that is the reason for
including this study here.

In relation to the adaptation mechanism used at data plane,
the egress switches rewrite the destination MAC addresses with
the corresponding AMAC, while the ingress switch does not
need to perform the associated MAC rewrite because the end
VMs learn the PMACs.

NV Taxonomy PortLand

NV Type none

Main target scenario data center networks

VI namespace none

DP Adaptation Mechanism rewrite destination MAC address

VIAP classification transparent on the edge switches

Network topology real topology - Layer 2 forwarding
VI creation point none

NV not supported, Layer 2 addressing not

Isolation level completely isolated (PMAC learned by VMs)

Table 2.10: PortLand categorization based on NV Taxonomy.

87

88

| STATE OF THE ART

With regard to the access point classification, the traffic is
processed transparently on the edge switches and the users are
not aware of it. Regarding the network topology, as a proposal
for improving the Layer 2 forwarding, PortLand deals with the
actual topology of the fabric.

Concerning the isolation level, the main outcome is that there
is no isolation since this is not a proposal for virtualising the
network. However, in relation to the L2 address space, it is not
completely isolated between the users and the fabric, because
the PMACs are learned by the VMs.

The most relevant conclusion of this study is that the usage of
MAC prefixes in PortLand is not related to the virtualisation of
the network, but related to the forwarding on the Layer 2 fabric.

2.3.3 SDNeV approaches

As a result of the separation between the forwarding and control
planes proposed by SDN, a new way of implementing NV is
possible: the SDN-enabled Virtualization (SDNeV). SDN proposes
the definition of a new interface between the forwarding plane
and the control plane, which crystallizes in a protocol that allows
an external entity, the controller, to define the behaviour of
the network devices. With an open/standard protocol, such as
OpenFlow, the vendor lock-in is prevented and both planes (i.e.,
forwarding and control) can be provided by different vendors
while assuring their compatibility.

When building the NV approach based on this separation,
the interface between both planes must be isolated to enable
the virtualisation of the forwarding plane and allow each
tenant to add their own control logic. This interface exposes
the programmability of the network devices to the tenants
and the behaviour defined by one tenant must not interfere
others. Moreover, this interface (i.e., the VITAP) also provides a
means to access the data packets from the control plane (e.g.
receive data packets in the controller or sent data packets by
the controller), which makes it more complex to manage and
properly isolate, since an enforcing mechanism must be set at the
VITAP. Furthermore, as in previous NV approaches, the isolation
at the VIDAP must be also enforced.

2.3 NETWORK VIRTUALISATION SURVEY |

In this type of NV, the individual network devices can be
virtualised through the control interface, in a similar way to
the vNode approaches, but in this case, the control logic is
not part of the network devices and must be added by the
tenants. To achieve the virtualisation of the whole network, a
coherent definition of the virtual instance across the individual
devices is required. On the one hand, a vNode approach can
also be implemented with SDN technology (e.g. Programmable
Flow), however, the control logic is already provided and the
tenant cannot modify it. On the other hand, an overlay can
be also implemented by means of SDN (e.g. Nicira extensions
to Open vSwitch), but it controls the setup of the tunnels and
the mapping on the edge devices, and the control plane is not
exposed to the tenants.

Although the study of SDNeV proposals is mainly related
to OpenFlow-based solutions, this is due to the availability of
NV proposals which relies on this technology rather than a
correlation between SDNeV and OpenFlow. OpenFlow is just one
of the possible protocols to implement SDN solutions, but it is not
the only option (e.g. ForCES, I2RS and some others). However,
OpenFlow has a strong relation with NV since its beginning,
being one of the reasons for developing this protocol [81],
[82], [12], [83]. Moreover, the NV has been a research topic
for this technology and lots of proposals has been presented,
but some other pre-SDN proposals (in relation to the time when
they were presented and the time when the concept of SDN was
introduced) for implementing NV have some similarities and has
been included in this study.

2.3.3.1 FlowVisor

FlowVisor [57] has been one of the most widely used solutions
to virtualise OpenFlow networks and a common way of running
networking related experiments in parallel with production
traffic. It allows multiple isolated logical networks to define
different addressing schemes and forwarding mechanisms while
sharing the same physical infrastructure based on OpenFlow-
enables network devices. The forwarding plane is shared
between the tenants and implement a different control logic
defined by the virtual instance. Compared to computing

89

90

virtualisation, FlowVisor is located between the underlying
hardware and the software that defines its behaviour. Moreover,
as any other operating system it uses an instruction set to
control this hardware, the OpenFlow protocol, which exposes
the programmability of the forwarding plane to the OpenFlow
controller. In this case, FlowVisor allows multiple controllers
(one per instance) to share the control interface, while ensuring
the isolation between the virtual network instances.

The design goals of FlowVisor are the following. The
virtualisation of the network must be transparent to the
controller of the virtual instance, in order to enable the design
of controllers for non-virtualised environments and to debug
network protocols in realistic topologies. It must also isolate the
virtual network instances both at data and control planes. Finally,
the virtual network instance (also known as slice) definition
must be extensible to allocate as many instances as possible.

FlowVisor can be categorized as a specialised OpenFlow
controller acting as a transparent proxy between the OpenFlow-
enabled devices and controllers from the virtual instances.
This means that all the OpenFlow messages are sent through
Flow Visor, which is responsible to enforce the isolation between
the instances on the control plane. As a design requirement, the
virtual instance’s controller does not need any modification, and
assumes that it is directly connected to the network device. The
inspection, rewriting and policing of all the OpenFlow messages
is the mechanism to enforce the isolation and transparency.
FlowVisor ensures that all the messages sent from the controller
to the switches only affect the traffic and resources assigned to
the appropriate slice, whereas the messages from the switches
are analysed to determine the corresponding controller to which
each message should be forwarded. Due to its relation to the
transparent processing of OpenFlow messages, Flow Visor could
be stacked to further virtualise the resources associated to the
tenant.

In Flow Visor a slice is defined as a set of flows that constitute a
well-defined subspace of the complete geometric space of packet
headers, from the physical port to TCP/UDP port numbers.
In this context, a wildcard is a bit mask that can be used to
define a region from this space. As a consequence, the slice can
comprise a set of these regions, even non-contiguous, which is

2.3 NETWORK VIRTUALISATION SURVEY |

called the flowspace. Based on this flowspace, each packet can
be associated to one or another slice depending on the packet
header values. It is important to avoid that two flowspaces
overlap in order to assure the isolation between the virtual
instances.

From the isolation perspective, FlowVisor supports band-
width, topology, computing, flowspace and control plane
isolation between the virtual network instances. Regarding the
bandwidth isolation, FlowVisor considers to use VLAN priority
bits (PCP) or IP’s ToS to assure a minimum QoS to each slice.
Although OpenFlow does not expose properly the QoS support
from the underlying resources, the QoS queues could be used to
implement the isolation at this level. Concerning the topology,
the controllers can rely on OpenFlow to discover the nodes and
links associated to the virtual instance and FlowVisor assures
that each controller only sees the resources corresponding to
its view. Moreover, some well known protocols related to the
topology discovery (e.g. link layer discovery protocol, LLDP) are
properly adapted to only report the assigned virtual topology.
With regard to the composing isolation in the network device,
there is some OpenFlow related load that must be properly
isolated to avoid the over-load of the resource: new flow setup
message, request handling from the controller, forwarding of
slow path packets, and internal state keeping. In relation to
the flowspace isolation, the appropriate rewriting of messages
is performed transparently to assure the isolation between
the slices. Moreover, the number of flow entries per slice is
controlled and each virtual instance cannot exceed a predefined
limit. Finally, the OpenFlow control plane is isolated and
virtualised in a proper way, which implies the rewrite of the
transaction ID or the buffer identifier. Status related messages
are also appropriately duplicated and sent to all the affected
controllers.

In some forums, FlowVisor is considered as a slicing
mechanism, rather than a virtualisation solution, because the
address space and topology are not virtualised. However, the NV
concept used in this study is more generic and the virtualisation
of the addressing and the topology are just a characteristic
that identifies a NV approach, more than a requirement. There
are some target scenarios in which the virtualisation of these

91

92

| STATE OF THE ART

two aspects, i.e., addressing and topology, is fundamental to
properly cover the needs (e.g. in data center networks).

Due to its design goals, FlowVisor as a NV mechanism is quite
open (and flexible) in its definition. Therefore, FlowVisor can
be seen as a framework to construct NV solutions. One reason
for this consideration is the fact that the namespace used for
defining the virtual instance is not fixed, there is not a flowspace
selected for that aim. A concrete NV proposal must define the
VI namespace to avoid possible collisions, and it should not be
delegated to the tenants. As a consequence, there are a lot of
(concrete) NV proposals that are based on FlowVisor.

As previously mentioned, FlowVisor has been used in a lot
of deployments and research projects to build experimental
facilities, such as the Stanford OpenFlow testbed, GENI, GEANT
OpenFlow Facility, FP7 OFELIA, FIBRE and FELIX projects.

Based on the previously introduced taxonomy, FlowVisor is
categorized as shown in Table 2.11.

FlowVisor is categorized as a SDNeV type of NV, since it relies
on OpenFlow to virtualise the forwarding plane of network
devices. As previously mentioned, it could be considered as a
framework for building NV proposals due to its lack of definition
of some basic virtualisation aspects. Its main target scenarios

NV Taxonomy FlowVisor

NV Type SDNeV

Main target scenario campus networks and experimental facilities
VI namespace flexible flowspace

DP Adaptation Mechanism reservation of flowspace

VIAP classification transparent based on the flowspace definition
Network topology subset of physical topology

VI creation point proxy at control plane

QoS through PCP (Priority Code Point) field of
VLAN tags or IP ToS bits (priority queues),
isolated topology, computing isolation on the
OpenFlow-enabled devices, flowspace isolation
enforcing, limit of number of flow entries,
control plane isolation

Isolation level

Table 2.11: FlowVisor categorization based on NV Taxonomy.

2.3 NETWORK VIRTUALISATION SURVEY |

are the campus networks and the experimental facilities, both
scenarios in which FlowVisor has been widely deployed to
experiment through novel networking proposals while enabling
and isolating the production traffic.

The VI namespace is flexible and it has been generically
defined as the flowspace, although it is not a concrete proposal.
The specific flowspace used by the NV approach is relevant to
understand how and where it could be deployed and if there is
any chance to collide between the network instances.

The adaptation mechanism used at data plane is the
reservation of the flowspace assigned to the slice. This means
that, in principle, the data plane is not modified and the
packet header determines the associated virtual instance. This
procedure also implies that the traffic from the users must not
interfere with each other, and FlowVisor must enforces this
isolation.

As a consequence, the classification of the VIAP is transparent
and based on the flowspace definition, which should not collide
with other virtual instances. There are some deployments based
on FlowVisor, that make use of the VLAN identifier as the
flowspace to uniquely identify the virtual instance. In these
cases, such as in OFELIA, the user must configure the data
plane interface to tag the traffic before sending it to the facility.
Moreover, it must be considered that the VLAN tags are also
present in the control plane (i.e., packet_in and packet_out),
which means that the tenant’s controller is aware of this process,
not being completely transparent (one of the design goals
from FlowVisor). Therefore, in this type of solutions, the VIAP
classification is non-transparent, since the user must tag the
traffic. However, generically, FlowVisor relies on transparently
on the flowspace to identify the target slice.

In relation to the topology, FlowVisor assigns a subset of
the physical topology to each slice and it is bundled to the
underlying hardware, although some functionality much be
implemented to isolate the topology and hide some network
devices not assigned to the virtual intense.

With regard to the VI creation point, the virtual instances
are created in the proxy element where the FlowVisor logic
resides. It is typically located on an external device, although
this is not mandatory. When just a single box is performing the

93

94

| STATE OF THE ART

global virtualisation of the network it is considered as a single
point of failure, but FlowVisor also allows to create a distributed
setup with multiple proxies controlling part of the network, as
it has been done within OFELIA with the concept of OpenFlow
islands.

Regarding the isolation level, as previously detailed, FlowVi-
sor considers bandwidth, topology, computing, flowspace, flow
entry and control plane isolation.

2.3.3.2 VeRTIGO

VeRTIGO [84] (ViRtual Topologles Generalisation in OpenFlow
networks) is a proposal for NV which relies on SDN, concretely on
OpenFlow. In fact, it is based on FlowVisor as a network slicing
system, to which VeRTIGO adds the capability to expose virtual
topologies to the tenants. It could be used to either expose a
single abstract node virtualising the whole underlying network
or a logically connected network with an arbitrary topology.

ADVisor [85] is a prior work from the same authors and an
initial implementation of the same concept and written on a
C version of FlowVisor. VeRTIGO is implemented in Java and
extends that work by adding extra features to improve the
virtual topology support. Both proposals basically add virtual
links to FlowVisor.

Depending on the requirements and necessities of the tenant,
VeRTIGO can instantiate either a virtual network with virtual
network devices (i.e., forwarding plane) and virtual links or
a single virtual network device (i.e., forwarding plane) that
collapses the whole underlying network. On the former, the
tenant has full control of the virtual network devices, while
the infrastructure provider must deal with the virtual topology
assigned to the tenant. On the latter, the tenant defines the
routing policies, while the infrastructure provider manages the
underlying resources accordingly and offers different service
level agreements to each tenant, such as maximum latency or
packet loss. In both cases the failures and network congestion
must be addressed by the infrastructure provider.

In a similar way than FlowVisor, VeRTIGO sits between the
underlying network devices and the controllers and interacts via
the control interface based on OpenFlow. The two basic elements

provided by VeRTIGO are the virtual links and the virtual ports,
which are used to construct arbitrary topologies exposed to the
tenants. The virtual links aggregate a set of physical links and
OpenFlow-enabled devices, whereas the virtual ports are just
a virtual identifier for a physical port. In order to virtualise
the physical links, the same physical port can be mapped into
multiple virtual ports, each one associated to a different virtual
link. VeRTIGO uses a database to store the header sequence
associated to the flows of each virtual link, opposite to a
tag-based identification (e.g. VLAN or MPLS) as proposed in
ADVisor.

A set of components have been added to FlowVisor to
implement this abstraction: classifier, node virtualiser, port
mapper, internal controller, storage, VI planner and UI and
Control framework. The classifier identifies is an OpenFlow
message must be forwarded to the tenant’s controller depending
if the incoming port is visible in the associated virtual topology.
The node virtualised is responsible to multiplex the control
channels between the underlying network devices and VeRTIGO,
and then between VeRTIGO and the controller. In this process
the datapath identifiers are remapped. The port mapper is
responsible for abstracting and remapping the physical port
identifiers into the virtual ones. The internal controller is
responsible for those network devices that are hidden to
the controller, which are never communicated to the tenant’s
controller. The storage module concentrates the definition and
configuration of virtual nodes and network topologies. The VT
planner is the component that associates the virtual network
instances to the physical infrastructure and implements the path
selection algorithm to appropriately map the virtual links to
the physical devices and links. Internally, a monitoring module
is responsible for collecting the flows statistics to feed the VT
planner algorithms. Finally, the Ul and Control framework is
provided to simplify the configuration and definition of virtual
topologies and associated requirements, such as the flowspace.

VeRTIGO has been mainly deployed in OpenFlow-based
experimental facilities, such as FP7 OFELIA, to add the capacity
to expose virtual topologies to the tenants in addition to the
capacities provided by FlowVisor to enforce the isolation of
flowspaces to virtualise the physical network devices.

95

96

| STATE OF THE ART

Based on the previously introduced taxonomy, VeRTIGO is
categorized as shown in Table 2.12.

VeRTIGO is a SDNeV type of NV, since the forwarding plane
is virtualised and exposed to the tenants by means of the
proper isolation of the OpenFlow interface. The main target
scenario is the experimental facilities used to test and validate
novel architectures and protocols to overcome the ossification
of Internet. Moreover, the definition of new business models
beyond the basic connectivity is an objective that motivates this
proposal.

Due to its dependency on FlowVisor, several characteristics
are inherited, such as the flexible VI namespace definition, which
relies on the flowspace concept. There is no concrete proposal to
avoid collisions in its definition, and it relies on the policy logic
to check possible isolation issues. The main focus of VeRTIGO
is to uniquely differentiate the traffic associated to each of the
virtual links defined by the tenants. To this aim, the database
storing the header sequence of each flow associated to each
virtual link is proposed to transparently identify the virtual links.
Previously, ADVisor makes use of explicit tagging (e.g. VLAN or
MPLS) to perform this identification.

Additionally, the adaptation mechanism used at data plane is
the reservation of the flowspace defined to identify each slice,
which implies that the traffic does not need to be modified and

NV Taxonomy VeRTIGO
NV Type SDNeV
Main target scenario experimental facilities
flexible flowspace (header sequence database
VI namespace for virtual links, previously VLAN/MPLS in
ADVisor)
DP Adaptation Mechanism reservation of flowspace
VIAP classification transparent based on the flowspace definition
Network topology virtual topology
VI creation point proxy at control plane
Isolation level Flow Visor isolation inherited

Table 2.12: VeRTIGO categorization based on NV Taxonomy.

2.3 NETWORK VIRTUALISATION SURVEY |

the packet headers are analysed to identify the target flowspace
and slice.

Regarding the VIAP classification, it is transparent and no
action or modification is needed on the user’s traffic. This
implies that the flowspace is properly defined and the user’s
traffic only matches its flowspace, which does not collide with
the flowspace from any other slice. The use of VLAN tags to
identify each slice is also possible with similar consequences as
in the case of FlowVisor.

Concerning the network topology, VeRTIGO provides a virtual
topology to each tenant, which could be either a single network
device (forwarding plane) or a fully connected network of
virtual network devices and virtual links.

In relation to the creation point of the VI, a proxy element is
used to build the virtual instances. In order to create arbitrary
topologies it is likely to be located on an external device to have
the full flexibility to either collapse or spread out the virtual
elements.

With regard to the isolation level, as previously detailed, the
main characteristics are inherited from FlowVisor, such as the
bandwidth, topology, computing, flowspace, flow entry and
control plane isolation.

2.3.3.3 OpenVirteX

OpenVirteX [86] is a NV platform that provides to the tenants a
means to define their virtual topology and addressing scheme,
while running their own Network Operating System (NOS)
to control the virtual network devices (i.e., forwarding plane).
Due to the decoupling of the virtual network instance from
the underlying physical network, it allows to add resiliency to
network devices and links, and support the ability to create
network snapshots and the migration of the virtual network.
Similarly to FlowVisor, OpenVirteX sits between the physical
network devices and the control logic (adding very limited
overhead), acting as a proxy in the control plane between
the underlying network and multiple tenants (each with its
own NOS). Opposite to FlowVisor that performs network
slicing, OpenVirteX provides a fully virtualised network with
an arbitrary topology and a full header space to each tenant.

97

98

The main aim of OpenVirteX is to provide an Infrastructure
as a Service (IaaS) solution for SDN devices. As a consequence,
the priorities and requirements are different from previous
proposals, and must enforce strong isolation between virtual
network instances with the ability to snapshot, migrate and
define the slice topology. In this context, the virtual network and
the compute resources could be instantiated at the same time.
SDN provides the proper flexibility and dynamicity to address
the tenants’ demands while improving the utilisation of the
network resources and reducing the management complexity.

OpenVirteX is implemented as a network hypervisor that
allows to provide virtual network instances to their tenants. This
network hypervisor provides virtualised addresses to isolate
the traffic from each tenant, virtual topologies defined by the
tenants, and exposes the network programmability of the virtual
network devices to the tenant’s NOS.

The virtual network requests coming from the tenants via API
calls are processed and passed to the network embedder. By
means of this API, the tenants specify the desired addressing
scheme, topology and a link to the tenant’s NOS. Then, the
embedder maps the virtual resources to the physical ones
using the available information collected from the physical
infrastructure. Once the embedding process is completed,
OpenVirteX instantiates the virtual network on the physical
infrastructure. The embedding process is not the focus of
OpenVirteX and a modular architecture allows to implement
and test different embedding algorithms.

OpenVirteX decouples the virtual elements from the physical
network devices and maintains a mapping between them, which
is in fact the output from the embedder. As a requirement, each
virtual element must be mapped to at least one physical network
element. This mapping does not specify the mechanism to
implement the virtualisation, and each element can implement
(if coherent) in a different manner, for instance using MPLS tags
or MAC rewriting. The virtual network element is just a pointer
to the corresponding physical network element that implement
that resource. Therefore, the virtual network elements can be
disabled, enabled or modified at runtime.

The virtualisation of an arbitrary topology requires special
support from OpenVirteX. As a design limitation, the physical

network device cannot be partitioned into multiple network
elements inside the same instance. Moreover, the LLDP
messages needs to be properly processed by OpenVirteX to
expose the appropriate virtual view to each tenant. This is
achieved by implementing separate LLDP domains for the
physical and each virtual topology. As a consequence, the
LLDP packets in the physical network data plane are limited
to those generated by OpenVirteX, while OpenVirteX maintains
an isolated and virtual LLDP domain for each virtual instance.

Additionally, OpenVirteX provides the ability to define
the addressing scheme used by each tenant, even allowing
concurrent overlapping address spaces. A globally tenant ID
is generated by OpenVirteX to uniquely identify each tenant,
then, each host is mapped to a physical address that encodes
the tenant ID to easily identify its owner. This physical address
is a combination of MAC and IP headers, and then, the MAC
and IP address are rewritten on ingress to isolate Layer 2 and
Layer 3 rules pushed to the network devices. In this way, the
semantics of the rules are not modified, while both Layer 2
and Layer 3 virtual networks are supported. The collision of
the addressing schemes (and therefore, the collision of flow
entries from different virtual instances) is avoided through the
address rewriting. In order to make this enforcing mechanism
transparent to the tenants and users, the traffic is rewritten
on the edge network devices at data plane and the OpenFlow
messages are modified accordingly to implement the same
mapping between the tenant/user addresses and the physical
addresses at control plane. This process imposes some overhead
on both the data and control planes, but it is negligible if a
software-based switch is used on the edge, such as in data center
developments (i.e., virtual switches in server hypervisors).

Apart from enforcing the address rewriting in the control
plane, OpenVirteX is also responsible for mapping other control
functions to the physical network, and some simple control
functions on the virtual network could imply multiple actions on
the physical network. The tenant’s controller must be unaware
of the underlying topology and of sharing the physical resources
with other tenants.

The main features provided by OpenVirteX rely on its loose
coupling with the physical network elements. As a consequence,

99

100

| STATE OF THE ART

the topology can be customized and it does not need to
be limited to a subset of the physical one. Moreover, the
virtual links and nodes can be mapped to different physical
elements to achieve some level of redundancy on the virtual
instance. Furthermore, the virtual network can be dynamically
reconfigured and mapped to alternative resources, since this
mapping is reduced to the manipulation of key-value pairs and
it does not store any networking state. As a consequence, the
virtual instance is portable to other infrastructure providers,
while enabling network persistence and troubleshooting.

Although the experimental facilities is not its main target
scenario, OpenVirteX has been successfully deployed on GENI
to test and validate the development.

Based on the previously introduced taxonomy, OpenVirteX is
categorized as shown in Table 2.13.

OpenVirteX is categorized as a SDNeV type of NV. It provides a
virtual network with an arbitrary topology defined by the tenant
and exposes the control plane of the virtual network devices to
the tenant’s NOS. Therefore, the control logic is defined by the
tenant, who is responsible to program the network behaviour.
The main target scenarios identified for OpenVirteX, and also
the motivation for this novel approach due to the requirements
imposed, are the operator and data center networks.

NV Taxonomy OpenVirteX

NV Type SDNeV

Main target scenario operator and data center networks

VI namespace tenant ID encoded in the physical address
DP Adaptation Mechanism Layer 2/Layer 3 address rewrite
VIAP classification semi-transparent in the hypervisor
Network topology virtual topology

VI creation point proxy at control plane

resources mapping isolated per tenant, virtual
Isolation level topology isolated, addressing scheme isolation,
and control functions isolated per tenant

Table 2.13: OpenVirteX categorization based on NV Taxonomy:.

The VI namespace is the tenant ID which is encoded in the
physical address to uniquely identify the associated virtual
network instance.

In order to let the tenants define its own addressing schemes,
the data plane must be adapted to include this tenant ID in the
physical addresses. Therefore, the edge elements need to rewrite
the Layer2 an Layer 3 addresses to properly isolate the traffic and
identify the corresponding tenant. The same rewriting process
must be also performed on the control plane to be transparent
to the tenant’s NOS.

With regard to the classification of the VIAP, it is semi-
transparent since the virtual switch in the hypervisor must
rewrite the addresses to enforce the isolation at data plane. A
similar consideration could be assumed on the control plane,
since the proxy must rewrite the addresses on the control traffic
to isolate the virtual instances exposed to the tenant’s NOS.

Regarding the topology, OpenVirteX is able to provide a
virtual topology based on the request coming from the tenant.
The only limitation is that a physical network element cannot be
instantiated multiple times on the same instance, that imposes
some restrictions to the virtual instance’s topology depending
on the actual physical infrastructure.

Concerning the VI creation point, the virtual instances are
created in the proxy element based on the embedding process
and the associated mapping between the virtual and the physical
network devices. Moreover, the virtualisation of the addressing
is defined by the proxy, which performs the address rewriting
at control plane and populate the corresponding flow entries on
the edge devices to rewrite the addresses at data plane.

In relation to the isolation level, as previously descibed,
OpenVirteX isolates the mapping of virtual resources to physical
elements per tenant. It also isolates the virtual topology and
implements the appropriate functionality to isolate the LLDP
domain per tenant. The address isolation is also provided and
the same addressing scheme can be used by different tenants
without collisions. Finally, the control functions are adapted and
isolated per virtual instance depending on the corresponding
mapping between the virtual and physical elements.

101

102

| STATE OF THE ART

2.3.3.4 FlowN

FlowN [14] is a NV proposal that provides each tenant with a
virtual network instance with virtualised address space, virtual
topology and control logic defined by the tenant. In order to
efficiently map between the physical and virtual resources, the
latest database technology is used. This mapping is key for any
NV approach and its performance is crucial in real deployments.
In the context of data center networks, exposing the control
interface to the tenants that define their own control logic and
allowing the tenant to define their own topology and addressing
scheme are basic requirements. SDN provides the appropriate
interface to address this requirements and build the NV solution,
while providing an API to popular the tenant’s flow entries,
reporting statistics and topology changes. However, supporting
a huge number of tenants brings some scalability issues that
must be considered, such as maintaining individual topologies
running their own control logic and learning about physical
changes that affect the virtual topology.

FlowN leverage on SDN technology to expose the programma-
bility of the virtual network devices to the tenants. Each tenant
can define its own topology, address space and control logic.
In order to provide an efficient and scalable NV approach,
FlowN relies on the latest database technology to improve
the mapping between the physical and virtual resources.
Moreover, a lightweight controller environment (similar to Linux
containers, LXC) is provided to the tenants to improve the
overall scalability and reduce the resource utilisation. As a
consequence, each tenant is able to run its own controller
application, which implements the control logic defined by the
tenant. Some default applications (e.g. basic switching or routing
logic) are offered to the tenants that does not want to innovate
in this area.

The main performance issues to consider in a SDNeV type of
NV are the overhead and latency introduced in the control plane,
and the scalability issues derived from the mapping process. The
key design decisions in FlowN to overcome this problems are the
following. On the one hand, a shared controller platform (based
on NOX) is provided, instead of separate controller instances per
tenant. Each tenant runs its own application on the controller,

which consists of a set of handlers related to the network events.
Therefore, FlowN is a modified NOX controller that is able to
run several applications with its own address space, virtual
topology and event handlers. The container-based virtualisation
is supported through the mapping at NOX API calls, rather than
at the OpenFlow messages (e.g. FlowVisor). On the other hand,
the database technology is explored to efficiently implement the
mapping process. The mapping between the virtual and physical
spaces can easily become the bottleneck, and FlowN leverage
on the latest advances in database technology to overcome the
scalability issues. Instead of using in-memory data structure to
map the virtual topology to the physical infrastructure, FlowN
relies on a database-style relational model to efficiently perform
the mapping. Each virtual topology has a unique identifier
and stores the mapping information in two tables, the node
assignments to each virtual node and the path assignments to
each virtual link.

Regarding the virtual network topology, the tenants are able
to define an arbitrary topology for their virtual instance. The
topology is described as a set of virtual nodes (VMs or OpenFlow-
enabled network devices) with a set of interfaces interconnected
by virtual links. Each resource can impose some constrains, such
as the number or cores for VMs, the maximum number of flow
entries for network devices, or the bandwidth for virtual links.
Then, an embedding algorithm must be run to map the virtual
description to the physical resources. In FlowN the mappings
are internal to the controller platform and not exposed to
the tenants. By decoupling the virtual topology and physical
infrastructure the basic connectivity could be improved with
some redundancy or failure recovery support.

In relation to the address space, the tenants are able to
define their own addressing scheme and FlowN provides a
virtual address space to each application, rather than dividing
it between the tenants. This allows different tenants to use
the same IP addresses in different virtual instances, while
controlling the full header space. In order to achieve this, FlowN
distinguishes the traffic from different tenants by encapsulating
the incoming packets in the edge network devices with a
transparent and protocol-agnostic header (e.g. VLAN tag),
which is used just to identify the target tenant.

103

104

| STATE OF THE ART

The bandwidth isolation per tenant is also considered
although not implemented due to the limited support available
in OpenFlow and lack of enforcing mechanisms. The embedding
algorithms must be also updated to consider the bandwidth
assigned to each virtual link.

Based on the previously introduced taxonomy, the FlowN
approach is categorized as shown in Table 2.14.

The FlowN approach is a SDNeV type of NV, since it exposes
the programmability of the network devices to the tenant
through isolated API calls in the controller, instead of using the
OpenFlow interface. The main target scenario is the data center
networks and cloud computing.

The VI namespace used in the current implementation is the
VLAN identifier, however, any other header field orthogonal to
the control logic could be used in other deployments. The idea
is to add a unique identifier to all the packets associated to
each virtual network instance in order to easily determine the
corresponding tenant.

Therefore, the data plane adaptation mechanism is the
addition/removal of the VLAN tag (with the proper value) on
the ingress/egress to the network. The VLAN push action is
performed by the first network element, i.e., the edge device,
that receives the packet. Then, the last element in the path to
the destination must perform the VLAN pop action. A similar
action to the VLAN push/pop must be performed by the API

NV Taxonomy FlowN

NV Type SDNeV

Main target scenario data center networks

VI namespace VLAN identifier

DP Adaptation Mechanism add/remove VLAN tags in the edge device
VIAP classification semi-transparent in the hypervisor
Network topology virtual topology

VI creation point external in the controller

bandwidth isolation considered, address space
Isolation level isolated per tenant, virtual topology isolated,
control plane isolated in containers

Table 2.14: FlowN categorization based on NV Taxonomy.

2.3 NETWORK VIRTUALISATION SURVEY |

calls to transparently expose the programmability of the virtual
devices to the tenants.

In relation to the classification of the VIAP, the adaptation
mechanism is semi-transparently performed in the hypervisor
on the edge device (i.e., virtual switch).

With regard to the network topology, each tenant is able to
define their own virtual topology, which is then mapped into
the physical one by the embedding algorithm.

Regarding to the VI creation point, the virtual instance is
created in the external controller and stored in the database. The
VLAN identifier is the key to identify the target tenant’s control
application.

Concerning the isolation level, FlowN considers different
aspects. Firstly, although not yet supported, the bandwidth
isolation is mentioned as future support and the key aspects
to update are identified, i.e., the embedding algorithm and
OpenFlow bandwidth enforcing mechanisms. Moreover, the
address space is isolated per tenant and different tenants can use
the same addressing schemes without collisions. Furthermore,
the virtual topologies are isolated per tenant and internally
separated in the controller. Finally, the control plane is isolated
and exposed to the tenants as API calls (rather than OpenFlow
interface), while the execution environment is similar to a
container running the control logic with its own virtual topology,
address space and event handlers.

2.3.3.5 Switchlets/Tempest

In 1997, [87] presented an approach to virtualise an ATM switch
by allowing different control architectures to be simultaneous
operational in the same ATM network by using the same
physical resources. Each ATM switch can be divided into
switchlets, which encapsulate a subset of the physical resources
of the ATM switch. Through the combination of a group
of switchless from different network devices, a virtual ATM
network can be constructed. This process of isolating resources
from the network devices is the basis to build the virtualisation
of the network resources and fully relies on the ATM technology.
Moreover, the control and management mechanisms are external
to the network device and rely on the Ariel interface, an open

105

106

| STATE OF THE ART

and generic switch control interface, to externally control the
ATM switch behaviour. This interface allows the programability
of the ATM network by exposing the control plane (similar to
the SDN concept introduced some years later), as presented in
Tempest [88] by the same authors. This means that different
control architectures can be simultaneously running and using
the same physical resources, each control plane accessing its
own switchlets. The Switch Divider Controller enables the
virtualisation and isolation of the Ariel interface.

The isolation of switchlets requires the specification of which
resources can be partitioned as a subset of the physical resource,
which include ports, VPI/VCI space, bandwidth, buffer space,
and queueing and scheduling policies. The ports and VPI/VCI
space can be partitioned with different granularity, and the
partitioning of the VCI level (the more general option) is the
one chosen to specify the switchlets. The rest of the resources,
i.e., the bandwidth, buffer space, and queueing and scheduling
policies are combined to define the capacity of the switch. In
this proposal, the QoS details are hidden behind the five service
categories defined by ATM. Therefore, a switchlet is defined as
a set of ports, a range of VPIs, a range of VClIs per VPI, a set of
service categories and the capacity per service category.

Although this technology is obsolete, this approach demon-
strates that some basic concepts of SDNeV virtualisation are
common to other proposals, and that the proposed taxonomy
is applicable to past NV solutions.

Based on the previously introduced taxonomy, the Switchlets
proposal is categorized as shown in Table 2.15.

The Switchlets proposal is a SDNeV type of NV, which allows
to create isolated switchlets controlled by different tenants with
their own control logic. Since the control logic is provided
by the tenants, which means that the programmability is
exposed to them, the type of NV is SDNev (as in Tempest).
However, if the infrastructure provider would be responsible
for providing the control logic and the tenants are only
able to select (and configure) which logic they want, the
approach would be considered as a vNode type of NV
(similar to comparing FlowVisor and Programmable Flow
proposals). This Switchlet approach is mainly oriented to
operator network to deploy different control architectures over

2.3 NETWORK VIRTUALISATION SURVEY |

the same physical infrastructure based on ATM technology.
By properly coordinating the control and management of
individual switchlets, a virtual network can be instantiate and
operate.

The VI namespace relies on the association of ports and
VPI/VCI values to univocally refers to a switchlet instance on
the node.

Therefore, the adaptation mechanism used at the data plane
is performed by the reservation of the proper VPI/VCI values,
which means that the VPI/VCI spaces are divided and assigned
to each virtual instance. Once this values are assigned, they
cannot be reused by another virtual instance at the same time.
Since this values has a local meaning (i.e., hop-by-hop), the
VPI/VCI values must be divided per port.

In relation to the classification of the VIAP, the mechanism
is transparent for the user, since is a similar process to a
generic ATM network without virtualisation. The user needs to
configure the ATM interface with the proper VPI/VCI values,
which is then mapped into the associated switchlet.

With regard to the network topology, the topology of each
virtual instance could be different, depending on the location of
the set of corresponding switchlets that are part of the instance,
but in any case, it is a subset of the physical topology. Moreover,
there should be switchlets on all the physical ATM switches that
interconnect the users. This means that if two switchlets from

NV Taxonomy Switchlets
NV Type SDNeV
Main target scenario operator networks
VI namespace ports and VPI/VCI space
DP Adaptation Mechanism reservation of the VPI/VCI space
VIAP classification transparent though the appropriate VPI/VCI
Network topology subset of physical topology
VI creation point external to the network device
QoS through ATM service categories, isolated
Isolation level control architecture (control and management
mechanisms)

Table 2.15: Switchlets categorization based on NV Taxonomy.

107

108

| STATE OF THE ART

two ATM switches are interconnected through another ATM
switches and the virtual instance does not have a switchlet on the
latter one, there is no connexion between the former switchlets.

Regarding the creation point of the virtual instance, it is
performed external to the ATM switch, where the control plane
resides. It is at the control plane where the Switch Divider
Controller virtualises the ATM switch resources and ensures
their isolation between the different virtual instances.

Concerning the isolation level, this approach allows to use the
service categories defined by ATM to implement QoS at the
virtual instance level. Additionally, the control architecture is
isolated on the external entity, which allows different control and
management mechanisms to be applied on the shared physical
infrastructure. The virtualisation of the computing resources
that run the control architecture is not considered, although it
is possible.

2.3.4 Conclusions from NV survey

The following Table 2.16 summarises the main characteristics
from the different approaches analysed in the Section 2.3 based
on the proposed NV taxonomy described in Section 2.2. The main
conclusions extracted from this table are detailed below.

e Regarding the use of legacy or SDN technology, both vNode
and overlay NV types presents some proposals using either
legacy or SDN technology. For instance, regarding vNode
type, there are some legacy proposals, such as VLAN and
VRF, and some SDN proposals, such as PFlow. With regard
to overlay type, there are some legacy proposals, such
as VPN and DC Overlays, and some SDN proposals, such
as VMware NSX. However, the SDNeV proposals are all
based on SDN technology (including the pre-SDN proposal
Switchlets).

o There are two proposals that could be in two groups
depending on the actual deployment, and one proposal
that is not implementing a NV approach, which is Portland.
One the one hand, VMware NSX could be either an overlay
or a vNode type of approach, with different characteristics

109

2.3 NETWORK VIRTUALISATION SURVEY |

Awouoxey AN pasodoid ay3 uo paseq £saing AN jo uostredwio) :9 g ajqe|

135gns jueualsad ueuaysad HuiA 13sgns - vu““oag Aepano Aepano pajdnodap Aepano 44\ s2d NVIA 22d uonejosi ASojodo)
adeds Suniopua Suniopuz (apona) Zuuses|
unp3ayye aneds yoeoidde aoeds aoeds aoeds Suipsesuoy ssaoud
Suissa.ppe uone|os uoneos! Suissauppe 71 30| jouod 30} jonuod VI ‘urewop uonejosi diyel|
onuod Buissasppe e i . ANEION Sussaippe s = Sussaippe Suissaippe pue Sunnos 3unnos [2A3] uonejos)
andwod d d uoneasasal
woNA 3|qIss0 3Iq1s50 e 5324n053J [euoneINdwo)|
WY ma JanoiR) S01/ddd oN oN Suikpapun SuIAPapun oddns AseSa||uoddns AeSa 0L M8 dd ‘STdIN dod ioddns S0D)|
X X X X X paseq-a3p3
X X X w313
uiod uonean
X X X Axoid od o A
13M3SA X X |ewsaiy|
X X X 3PONA X X |enuip
X X X X X 121sAyd| A3ojodor yiomiaN
X X Aepano X X pasodxa 10N
Eb) NVIA X X juna uasedsues-uou
JosiuadAy JosinuadAy 13NA JosiuadAy JosiuadAy JosiuadAy uaJedsuB-WSS| UORBIYISSEP dVIA|
X X X X d juod jedishyd X ss32e uasedsuen
X X X xya.d d| dedsmoy EYNE)]
ssauppe g1/ 71 JVINISQ SS3IPPR VI 2aumal] e
X X ARX31U0D/INA X X X X X X 3nowsai/ppe 3
ssaippe QRX3U0D/INA L1S ‘JYOAN
/! _ﬂ> uopapod adedsmoy Idedsmoy xyaud gy CPEIVO ¥O JETETED) Puum sjauunl 4an S1RYI0
o Qapueuap Qrueual 2dedsmoy NVPA oedsaweu ||
Josingy X 12qe7 S1dW
X JosINgQY X 3T JHA X QINVIA
X X qeqaueld Auipey | 3
X EUERY X oMU sndwe))|
31e:
X X X X X X X X SHOMIU 121U3) e180 e
X X X X $}J0MI3U J01213d0
3uoN X X X X X Aepano
UUMSIALYA auoN X 3poNA J3IN0YA J3IN0YA 38pugn 3PONA adA1 AN
X X X X X 3UoN ASNQS
SIPIPUMS NMOH XAWIAURDD OOLINAA IOSIAMO | pueTuod JSURAIQ PIOTIAN XSNJemwA AepRA0dd NdA Mmolid INIA A NVIA
A3NGS Aepano 3poNA

110

| STATE OF THE ART

depending on the case. On the other hand, the Switchlets
approach could be either a SDNeV or a vNode type of
NV depending on whether the programmability of the
switchlets is exposed or not to the tenants.

Both the vNode and SDNeV types of NV propose different
approaches to cover all the target scenarios. However, the
overlay type of approaches are mainly oriented to data
center networks (except VPN that is oriented to operator
networks).

Both the overlay and SDNeV types of NV proposals could
use the three types of data plane adaptation mechanism.
It seems that the vNode type of approaches are bound to
an adaptation mechanism based on add /remove. However,
this is not an intrinsic characteristic, and it could be
considered as a common mechanism, but the other
two (rewrite and reserve) are also perfectly valid. As
an example, the vNode approach proposed by VMware
NSX makes use of the reservation of flowspaces as the
mechanism to adapt the data plane.

The overlay type of approaches are characterised by not
exposing the network topology to the tenants, and defining
the VI creation point on edge devices.

The isolation level study is variable and the actual
implementation depends on the specific deployment and
the capabilities offered by the physical infrastructure.

As a general observation, it must be mentioned that
compared with SDN based approaches, the tenant interface
from legacy devices is not always properly isolated,
because it is typical that the same entity performs the
infrastructure provider and the tenant roles. This is also the
reason why the VIAP classification study mainly focuses on
the data plane.

Because its relevance for the L2PNV proposal detailed in
Section 3.1, the SDNeV approaches are further compared.

e The main difference between FlowVisor/OpenVirteX and

FlowN is that the first two exposes the control plane

to an external OpenFlow controller (as the Network
Operating System to build the solution), whereas the
latter allows to define the network behaviour developing a
Control Application to be installed on the single OpenFlow
controller.

The main difference between Flow Visor and OpenVirteX is
the way they enforce the virtual network instance isolation.
FlowVisor reserves a flowspace for each virtual instance
and inspects the OpenFlow control plane to ensure
that each controller only access its assigned flowspace
(described by the policy), both on matching and actions
(OpenFlow version dependent, as well as the flowspace).
However, OpenVirteX defines a simple action (available
on all OpenFlow versions) to be performed on the edge
of the network, an address rewrite (both MAC and IP).
The idea is that this simple action ensure the isolation
and the mapping between tenant’s addresses (virtual) and
infrastructure’s addresses (physical) is a straightforward
process (both at data and control planes).

2.4 EXPERIMENTAL FACILITIES SURVEY

Large-scale networking research has been nearly impossible in
the past due to the unwillingness of many vendors to include
non-standardised technologies in their equipment. Because of
these business decisions, many innovative and remarkable ideas
fall by the wayside due to the lack of infrastructure to test them
properly. The Future Internet initiative has emerged to solve the
current limitations of the Internet in its current incarnation.
During the past decade, the platforms available to researchers
have increased considerably in number. Even before the
appearance of OpenFlow and the Software Defined Networking
concept, several platforms had been deployed, providing a large
scale service to test networking experiments. One essential
requirement for these type of facilities is to remain as generic
as possible to be able to support new, clean slate approaches.
Furthermore, it is mandatory to accept several experiments at
the same time despite having the same resources. In this regard,

111

112

| STATE OF THE ART

the isolation between experiments is fundamental; therefore,
some type of virtualisation of the physical infrastructure is
needed.

2.41 Non-SDN facilities

This section focuses on some of the most relevant pre-SDN
experimental facilities based on legacy technology and provides
an overview of the work conducted up to this point. Due to the
relevance of SDN for the contributions of this thesis, this section
has been reduced to the minimum.

2.4.1.1 The PlanetLab testbed

PlanetLab [89] is an overlay-based testbed that appeared in
mid-2002 and that supports the development of new network
services. This research facility includes more than 600 nodes
spread over the world, and it has been shared by more than
1100 researchers running experiments. It provides virtual servers
(VServers) as lightweight slice of each node available in the
testbed. Then, the computational resources are properly isolated.

PlanetLab provides virtualisation at the application layer
by relying on the IP as a networking technology and
manages the relationship between the owners of the nodes
and the researchers while promoting solidarity in the use
of limited resources. From the network’s point of view, the
slices are defined as a set of VMs running in computer
nodes connected through the Internet, which implies that
researching lower-layer network protocols is not supported.
The distributed virtualisation model implemented in PlanetLab
enforces resource and security isolation allowing experiments
assigned to different slices to run concurrently. This isolation
at network level relies on the VNET [65] module, which
multiplexes the incoming and outgoing traffic. VNET provides
each slice with the illusion of exclusive access to the physical
network device.

The slice management approach used in this facility requires
a trusted intermediary who, on the one hand, will guarantee
node owners the proper management of their resources and,

2.4 EXPERIMENTAL FACILITIES SURVEY |

on the other hand, will provide access to the adequate set
of nodes able to support the users’ services. Through the
trusted intermediary PLC (PlanetLab Central), the node owners
establish what resources will be redistributed among all slices
and which ones will be granted to a specific slice. One of
the most useful services in the facility is its front end, which
researchers can use to create slices from both a GUI and a
programmatic interface. This flexibility greatly simplifies the
creation of the slices.

As an example of experimentation over PlanetLab, the PL-
VINI [64] demonstrates the viability of the VINI proposal
(detailed in Section 2.3.1.3) on a real deployment. Moreover, the
CoMon [90] is presented as a scalable monitoring system for
PlanetLab. Furthermore, in [91] the integration of a wireless
mesh network in PlanetLab is detailed, as well as the results
from an innovative peer-to-peer traffic optimisation technique.

2.4.1.2 The FEDERICA project

In 2008, the FIRE programme in Europe launched the FP7 FED-
ERICA (Federated E-infrastructure Dedicated to European Re-
searchers Innovating in Computing network Architectures) [92]
project as a tool for researchers trying to validate Future
Internet technologies in an existing large-scale facility. The main
goal of this project [33] was to create a Europe-wide research
infrastructure supported by virtualised computing resources
and wired networks, offering virtual testbeds as a service to
researchers.

This facility is based on the NETCONF (Network Configu-
ration) protocol, which enables the configuration of network
devices based on XML (Extensible Markup Language). The
facility is composed of several programmable high-end routers
and switches that can be logically instantiated in the core nodes,
multiprotocol switches that extend virtual links to non-core
nodes and several PCs that run software routers or act as end
users. The connectivity between these entities is established
over the GEANT® pan-European backbone network. Because

GEANT, The European Research and Education Backbone: http://www.geant.
net

113

http://www.geant.net
http://www.geant.net

114

| STATE OF THE ART

the researcher has the ability to manage both the network
and the computer elements, it allows experimentation in the
lower layers; however, the network virtualisation at Layer 2
is based on VLANSs, which are not intended to work with
several technologies without tunnels including Q-in-Q or MAC-
in-MAC.

Regarding the experimentation in FEDERICA, the authors
in [93] summarise the most relevant research projects that have
used this facility to validate their proposals and obtain results
in a realistic environment. As an example, in order to test the
network performance and the isolation between the slices, the
ISOLDA slice was created to measure bandwidth, latency, jitter,
and packet loss parameters in two virtual connexions, each one
using a different VLAN.

2.4.2 SDN enabled facilities

As mentioned in the introduction of this chapter, due to its
relevance for the contributions presented in this thesis, the SDN
technology has a prominent role in this analysis. Therefore,
this section focuses on some of the most relevant SODN-enabled
experimental facilities and provides an overview of the research
activities related to these testbeds.

In all the facilities detailed below, the OpenFlow protocol is
the selected technology to implement the SDN-enabled facility.
Additionally, most of them make use of FlowVisor (detailed
in Section 2.3.3.1) to virtualise and enforce the slice isolation
between the OpenFlow resources. By means of FlowVisor, an
OpenFlow interface is exposed to the researchers, thus, exposing
the programmability of the network to the experiments. Each
slice has its own view of the network nodes and the connectivity
between them, as well as of its own bandwidth fraction on each
link.

2.4.21 The Stanford facility

In 2008, the authors in [12] presented their plans to deploy a
large OpenFlow network in the Computer Science and Electrical
Engineering departments at Stanford University. This idea

2.4 EXPERIMENTAL FACILITIES SURVEY |

finally crystallized in the Stanford Deployment® deployed in the
3A wing of William Gates Building at Stanford University.

The most recent publicly available information states that it
contains six 48-port 1 GE OpenFlow-enabled switches from HP,
NEC and Toroki, 30 WiFi APs based on the ALIX PCEngine
boxes, and 1 NEC WiMAX base-station, which provides
connectivity to their users. At this facility, three different
OpenFlow networks are used to run production, experimental
and demonstration traffic with each of them identified by a
different VLAN tag. Only the demonstration traffic is sliced
in the FlowVisor to avoid interference with production and
research traffic when the FlowVisor is under development. The
facility enforces isolation in the four main slicing dimensions:
bandwidth, topology, device CPU and forwarding tables.

The authors in [21] present the OpenFlow maturing process
over a three-year period. The paper details the four-phased
deployments and demonstrations conducted during that period,
including the first-ever SDN enabled lab, the Stanford Deploy-
ment. These deployments and lessons learned were crucial
to evolve the SDN technology and its ecosystem through the
experimentation. They also influenced the successive versions
of OpenFlow specification, the evolution of its architecture, and
the improvement of performance of several SDN components.

2.4.2.2 The GENI facility

The GENI (Global Environment for Network Innovations) [5]
facility is one of the most important virtual laboratories for
large-scale networking experimentation available to researchers.
This facility is supported by the National Science Foundation
in the United States of America, and aims to allow clean-slate
architectures and proposals to experiment under real conditions
with real users. The research and implementation plan of GENI
consists of continuous spirals, which lasts for 12 months.

GENI [2] is able to build multiple virtualised slices that
contains two key components: the physical network elements
and the global control and management framework to construct

The Standford deployment: http://archive.openflow.org/wp/
stanford-deployment/

115

http://archive.openflow.org/wp/stanford-deployment/
http://archive.openflow.org/wp/stanford-deployment/

116

| STATE OF THE ART

the slices. Therefore, the main activities involved in GENI
testbeds are the deployment of the prototype (by means of
federation) and observe, control and execute the experiments on
it.

There are five competing control frameworks for GENI,
called clusters: Cluster A (Trial Integration Environment based
on DETER, TIED) focusing on federation, trust, and security;
Cluster B (based on PlanetLab) running experiments with VMs
over the Internet; Cluster C (ProtoGENI, based on Emulab)
dealing with network control and management; Cluster D (Open
Resource Control Architecture, ORCA) considering resource
allocation and integration of sensor networks; Cluster E
(Open-Access Research Testbed for Next-Generation Wireless
Networks, ORBIT) dealing with mobile and wireless testbed
networks.

Researchers can allocate configurable resources of the
computer network, including wireless and sensor aggregates, to
create an isolated slice controlled by an OpenFlow controller
and to run experimental protocols or new technologies. GENI
has been deployed in several campus networks and testbeds
where the GENI racks are located. Each one of those racks
includes a computed aggregate to manage programmable VMs
and a network aggregate to manage a programmable Layer 2
switch with OpenFlow features provides connectivity between
GENI backbones. The deployment of these GENI racks in
campus networks allows users to be directly connected to service
experiments.

To provide an easy-to-use interface to configure the slices
while ensuring there is no interference between slices, a man-
agement software named Expedient’ is available to the facility’s
researchers. It consists of several subsystems: aggregate and
components, clearinghouse, research organisations, experiment
support service, opt-in end users, and GENI operation and
management.

Additionally, GENI is connected to the Internet without
interfering with it and enables other users to connect to
experimental services in a simple way. Furthermore, it is
extensible and allows research communities to connect and
to integrate their networks to the facility. Finally, it provides

7 Expedient: http://www.openflow.org/wk/index.php/Expedient

http://www.openflow.org/wk/index.php/Expedient

2.4 EXPERIMENTAL FACILITIES SURVEY |

the mechanisms required to include additional technologies as
well as the support needed for measurement-based quantitative
research.

Two different paradigms can be used to virtualise the network
resources in GENI. The virtual local area networks (VLANS)
is the most basic strategy, which provides a well-known data
isolation level. However, this approach cannot offer performance
isolation or network programmability to the researchers. A more
flexible approach incorporates SDN in the slice via OpenFlow-
enabled network components. In this latter case, similarly as in
the Stanford facility, FlowVisor determines the resources that
belong to each slice. The most common approach is to assign
an IP subnet to a slice, and in the case of non-IP experiments, an
Ethertype identifies the traffic, which implies the configuration
of the end hosts used by the researchers. As a consequence, the
allocated VMs could be interconnected at data plane using IP,
vanilla VLANSs, and VLANs managed by OpenFlow.

2.4.2.3 The OFELIA facility

OFELIA (OpenFlow in Europe: Linking Infrastructure and
Applications) [15] is an experimental facility where researchers
are able to run experiments in an already deployed OpenFlow
network. As a feature added by the SDN technology, it
allows researchers to control and to extend the network itself
dynamically and precisely. The latest reported setup of OFELIA
facility is formed by 10 islands connected to each other.
Regarding the experimentation process, the OFELIA Control
Framework (OCF)® is the management software to use, and it is
based on the Expedient software developed by GENI. One of the
extensions introduced by OCF adds computing resources to the
management framework. Every experiment must be previously
registered and accepted such that it can be run in an isolated
slice that the researcher will be able to manage and to configure.
This slice consists of a set of virtual machines and end hosts
that are deployed on physical servers, an OpenFlow controller

OFELIA Control = Framework (OCF): http://www.fp7-ofelia.eu/
ocf-ofelia-control- framework

117

http://www.fp7-ofelia.eu/ocf-ofelia-control-framework
http://www.fp7-ofelia.eu/ocf-ofelia-control-framework

118

| STATE OF THE ART

(typically located on one of those VMs) and the allocated network
resources.

Concerning the mechanism used to virtualise the control
plane exposed to the experiments, either Flow Visor or VeRTIGO
(detailed in Section 2.3.3.2) are used to slice the experimental
network (a decision made at each island). An Optical Flow Visor
is also available to slice the optical devices.

FlowVisor is the most used mechanism to slice a facility
based on OpenFlow and implement the virtualisation of the
networking resources. This tool is integrated within the OCF
(through the OpenFlow Aggregate Manager component) and
is used by the experimenters to manually select the desired
topology. However, it does not allow to instantiate virtual
topologies (only a subset from the physical topology is possible).
VeRTIGO overcomes this limitation and allows to request a
virtual topology on top of the OFELIA facility. Moreover, the
integration with the OCF allows the automatic setup of arbitrary
topologies defined by the researchers.

After testing different slices schemes, the VLAN based slicing
was proposed for OFELIA to offer the maximum flexibility to
the experiments (although other alternative slicing mechanism
could be used). The reasoning was twofold: the scalability issues
with OpenFlow version 1.0 and the limited number of TCAM
entries on hardware switches available in the facility. To improve
the flexibility offered to the experiments, either one VLAN ID or
a group of VLAN IDs could be assigned to the slice, enabling the
use of VLAN tags at the experiment level. This proposed slicing
mechanism guarantees the isolation at Layer 2 while limiting the
impact on the number of TCAM entries used per slice, and thus,
improving the overall scalability of the facility.

It is important to note that OFELIA and GENI are research
facilities with no production traffic unlike the Stanford facility,
which supports both research and production traffic.

2.4.2.4 The GEANT Testbed as a Service (TaaS) service

Currently, the GEANT Testbed Facility [94] (GTS) is the new
service offered by GEANT to researchers who want to set up and
customize their own experimental platform to test new concepts
in networking. Previously, the GEANT OpenFlow Facility [95]

2.4 EXPERIMENTAL FACILITIES SURVEY |

(GOF) was proposed to offer an OpenFlow based experimental
facility to researchers.

THE GEANT OPENFLOW FACILITY (GOF)

The GEANT OpenFlow Facility (GOF) [95] was deployed
on top of the GEANT backbone network’. The aim was to
demonstrate its potential to deliver Testbed as a Service (TaaS)
capabilities over GEANT. GOF supports the announcement of
the available network and computing resources, a reservation
mechanism and the exposure of both management and control
plane to the researchers.

The GOF PoPs are collocated with five of the GEANT PoPs in
Vienna, Zagreb, London, Amsterdam and Frankfurt. Regarding
the resources deployed in this PoPs, the computing resources
are VMs provided by Xen hypervisor, and the networking
resources are software-based switches based on Open vSwitch
(OVS). The physical topology is a full mesh graph connected
using pseudowires (L2MPLS VPNs) over the GEANT backbone
(avoiding VLAN switching support).

Similarly to OFELIA, GOF assigns one or a range of VLAN IDs
to each slice in order to virtualise the network. As a consequence,
the traffic from each user is identified by the VLAN ID. The
experimentation with VLANSs is only exposed to the researcher
when a set of VLANSs are assigned to the slice.

The GEANT OpenFlow Control Framework (GOCF), which is
an extension of OCF (developed within the OFELIA project), is
located in the Frankfurt PoP. Moreover, FlowVisor is also used
to implement the virtualisation of the network, which is also
located in the same PoP.

THE GEANT TESTBED FACILITY (GTS)

The GEANT Testbed Facility [94] (GTS) is the new production
service from GEANT to deliver TaaS capabilities. The main
advantage over other similar facilities (such as PlanetLab
or GENI) is that a variety of resources is exposed to the
researchers as any resource can be included in GTS through

GEANT, The European Research and Education Backbone: http://www.geant.

net

119

http://www.geant.net
http://www.geant.net

120

the appropriate Resource Control Agents (RCAs), which is
the specific management software developed for that resource.
Moreover, GTS offers the capability to describe the network
topology and virtualised resources to be programmed and
reserved using a Domain Specific Language (DSL). The DSL
description can be saved and reused in larger experiments.
Additionally, DSL allows to pre-define and schedule the testbed
settings, and also specify the start and end times.

The GTS PoPs are collocated with four of the GEANT PoPs
in Amsterdam, Prague, Ljubljana and Bratislava. The GEANT
backbone network is used to interconnect these locations by
means of Virtual Circuits over the GEANT Lambda service.
Currently, the testbeds could be extended beyond the GTS
boundaries through the External Domains Ports.

Regarding the infrastructure, it consist of several servers
with standard operating systems and virtualisation software
(providing VMs), and standard Ethernet switches and hardware
based OpenFlow enabled devices (OpenFlow 1.3 based on
HP5900 devices).

The composition and orchestration of the experiment testbeds
y provided by GTS services. The requests from the users
are translated into resource-specific actions on the virtualised
platforms.

2.4.2.5 The FIBRE facility

The FIBRE [96] (Future Internet testbeds/experimentation
between Brazil and Europe) testbed is a large-scale experimental
facility for researching on Future Internet launched in 2011. The
facility is the result of the federation of experimental facilities
deployed in Brazil and Europe, both at the data plane and the
control and monitoring framework levels.

The federation of different testbeds is beneficial for the
research community to permit experiments that span several
facilities. Concretely, FIBRE is the result of the federation of 13
separate experimental facilitates, known as islands. The main
challenge is to provide a unified view to manage all the exposed
resources. Thus, the management of FIBRE is the main challenge
to overcome, and the control and monitoring framework (CMF)
is the key element to facilitate this task.

2.4 EXPERIMENTAL FACILITIES SURVEY |

As a design decision, FIBRE includes three CMFs: OFELIA
Control Framework (OCF), OMF and ProtoGENI, which
respectively allows to orchestrate three different types of
resources: OpenFlow enabled devices, wireless resources, and
emulated resources. In order to deal with the particularities
of FIBRE, the three CMFs have been extended. As a result,
FIBER offers the possibility to research with heterogeneous
physical resources, including OpenFlow, wireless and optical
communications.

Regarding the OCF (developed within the OFELIA project),
this framework makes use of FlowVisor through the appropriate
Aggregate Manager to handle the slicing of OpenFlow resources,
as flowspaces, and expose them to the corresponding researcher.
In relation to this, there is nothing new or specific to FIBRE.

The resources available at each island include OpenFlow
enabled switches (and OpenFlow controllers), a cluster of
compute and storage servers (with virtualisation software), and
a cluster of wireless nodes (also virtualised). Moreover, each
island could add specific resources to make them available to the
researchers, such as optical networks, WiMax nodes and 3G/4G
testbeds.

2.4.2.6 The FELIX facility

The FELIX [97] (FEderated Testbeds for Large-scale Infrastruc-
ture eXperiments) facility aims to enable the experimentation of
Future Internet through the federation advanced programmable
network testbeds deployed in Europe and Japan. FELIX defines
a common framework for federated Future Internet testbeds
to dynamically request resources, manage and control their
interconnexion and monitor the assigned resources.

Each domain is controlled by a dedicated software that
exposes different interfaces to the federation framework, which
is in charge of orchestrating the resources when dealing
with a multi-domain scenario. Each island is a set of
virtualised computing and networking resources under a single
administrative domain, which consists of multiple SDN zones,
each with specific control tools and interfaces (such as Layer
2 switching zone, optical switching zone, OpenFlow controlled
zone, and transit domain zones). The transit network domain

121

122

| STATE OF THE ART

exposes the control of the connectivity services by means of
Network Service Interface (NSI). Finally, a slice is an isolated
subset of virtual computing and networking resources defined
by the researcher.

Both networking and computing resources available at
different facilities are exposed to the researchers. The federated
resources allows to create a virtual infrastructure that spans
several domains. One of the research topics covered by FELIX
is the transit domains, more concretely, the integration of SDN
enabled facilities with transit domains controlled by NSI. This
solution makes possible to dynamically establish and tear-
down network flows across multiple domains that use different
technologies.

On the one hand, the FELIX Space is the management and
control framework that coordinates the creation of the slices over
heterogeneous technologies and multi-domain facilities. In this
context, the Resource Orchestators (RO) orchestrates the end-to-
end provisioning, while the Resource Managers (RM) are used
to manage and control specific type of resources (e.g. Computing
RM). On the other hand, the User Space is able to dynamically
manage and control the resources assigned to the associated
slice.

The architecture defined in FELIX is the result of the analysis
of other relevant research projects, such as OFELIA, FIBRE,
BonFIRE, FED4FIRE, GridARS and RISE. In relation to OFELIA
and FIBRE, the main differences are the idea of a Resource
Orchestrator for multi-domain provisioning and the removal
of human intervention on some configuration and provisioning
operations.

As detailed in [98], most of the architectural components have
been developed from scratch, such as the logic and interfaces
of RO. However, some key artifacts developed by OFELIA have
been used as the starting point. In this regard, several RM
have reused the Aggregate Managers developed in OFELIA. In
addition, some components from the Graphical User Interface
have been reused from OFELIA (which are also based on
Expedient developments).

Regarding the SDN Resource Manager (SDN RM) respon-
sible of configuring and controlling the OpenFlow-enabled
devices, this module interacts with FlowVisor to proxy the

25 CONCLUSIONS |

OpenFlow messages to the appropriate controller (exposing the
programmability of the network to the experiments). As a result,
the slices are properly isolated in a similar way to previously
analysed facilities.

2.5 CONCLUSIONS

This chapter focuses on two different topics: NV and experimen-
tal facilities. On the one hand, with regard to NV, the reference
architecture and definition are presented to contextualise the
terminology and scope in this thesis. Then, a NV taxonomy is
proposed to properly categorize the NV approaches. Finally, a NV
survey is presented and analysed using the proposed taxonomy:.
On the other hand, in relation to the second topic, a survey of the
most relevant experimental facilities in the context of this thesis
is presented.

To conclude, as a result from the analysis of these surveys,
Section 2.5.1 presents the list of requirements to be fulfiled by
the contributions presented in Chapter 3.

2.5.1 Requirements

One of the main contributions from this thesis is a new NV
proposal, which is presented in Section 3.1. As previously
mentioned, even the definition of what the NV really means,
and thus, which are the design principles to consider, depend
on the target scenario, which for the purposes of this thesis
is the experimental facility. Apart from some of the common
requirements imposed to any experimental facility, such as the
isolation between slices (i.e. experiments), flexibility to support
novel approaches (e.g. non-IP proposals) and scalability of the
facility, there are some other requirements imposed to the
NV approach that have their roots in the research activities
conducted in the actual experimental facility, which in this case
are focused on security and access networks technologies. The
complete list of imposed requirements are detailed next.

123

124

| STATE OF THE ART

R1 ISOLATION

One of the most important steps in the design of a shared
experimental facility, such as the EHU OpenFlow Enabled
Facility (EHU-OEF) detailed in Section 4.1, is deciding how to
define the network slices to be experiment-agnostic. The slice
definition must not collide with the network proposals to be
tested. As previously stated in Section 2.3.3.1, the FlowVisor
relies on the same header fields to define its rules as OpenFlow
flows. These rules define the flowspace, which is the set of flows
that make up the slice. Although implementation dependent, the
concept of flowspaces can be generalised to any NV approach
and its possible implementation. The flowspaces can concern
a single layer, either the physical, link, network or transport
layer, or be a combination of all four. The definition of each slice
can be made independently from the others; however, having
a common infrastructure with slices defined at different layers
(i.e. by means of different parameters) can make it challenging
to separate them all. For example, in the case that one slice is
defined as a destination IP address and another slice is defined
as a destination TCP port, there is a conflict between both
slices when a packet goes to that IP address and that TCP port.
Therefore, the slices cannot be completely isolated, and this does
not comply with one of the requirements of the facility. In this
multi-level slice definition, an extra verification step must be
enforced to avoid the collision between slice definitions. As a
consequence, it is easier to use a common layer and an even
parameter (or set of parameters) to define the slice, which further
simplifies the traceability. In this case, it is straightforward to
ensure isolation, the only condition is that each possible value of
that parameter can only be used once.

R2 FLEXIBILITY

Another important requirement imposed by the experimental
facility is the flexibility to support novel approaches. It must
impose as few restrictions as possible to the experiments
conducted over its infrastructure. This flexibility for experiments
collides with the flexibility provided by the NV approach (e.g.
FlowVisor) to define the slices, as shown in Figure 2.5. If

25 CONCLUSIONS |

FlowSpace FlowSpace
4 Experiment Experiment
o
g 3
<
-
2 _

Figure 2.5: The flexibility at slice definition vs. the flexibility at
experiment level

a researcher uses the flexibility at the slice definition, which
requires several parameters and different layers to be used to
define the slice, there would be fewer degrees of freedom (i.e.
the parameters not selected at slice definition) in the experiment.
For example, if the slice is defined by setting a value for all the
parameters from layer 1 to layer 3, the experiment could only
use the layer 4 ports to conduct the experiments because the
rest of the parameters must remain the same in the definition
of the slice. To support clean-slate approaches (e.g. post-IP), it
is better to use the lower layers for slice definition to avoid
the assumption of legacy protocols, such as IP, within the
experiments. Layer 2 is a good compromise to support post-
IP proposals (Layer 3) and to avoid a slice definition based on
physical ports (Layer 1), which is quite restrictive because the
physical links cannot be shared. This means that specific links
and physical ports must be deployed for each slice, which does
scale to the facility size (i.e., just a few experiments would be
possible). A pure optical backbone network (such as NV based
on CE- or PE-based L1VPNs [99]) is discarded for economic
(optical equipment is very expensive) and scalability reasons. As
explained in [100], optical equipment (e.g. OXCs and ROADMs)
is able to switch optical signals at individual wavelength level
(i.e. lambda), which is the highest granularity offered by this
devices to implement the optical NV solution and does not scale
enough.

125

126

R3 SCALABILITY

The scalability of the NV solution is a requirement for any
experimental facility, in order to support a huge number of
researchers and experiments running on it. Moreover, it is also
expected that the proposed NV approach could be deployed
in data center networks, where this requirement is even more
challenging and must scale to hundreds of thousands of tenants.

Regarding the scalability of the implementation some other
considerations must be also taken into account. For instance,
using VLANSs for slicing the facility, the theoretical maximum
number of slices is 4096 (the VLAN identifier has 12 bits);
however, one of the main limitation factors currently in
OpenFlow deployments is the total number of flow entries
supported by the devices [101]. Moreover, when using Flow Visor,
the expansion of the rules explained in [102] impairs the
scalability of the facility.

R4 STABILITY

In general, the definition of the virtual network instance
should remain stable and should not evolve over time. If the
slice definition changes, it is possible that previously deployed
flow entries could not be updated to cover the new flowspace.
For instance, if the slice definition is a list of MAC addresses of
users (listl) and a certain flow entry is deployed and enforced
to listl (with a possible explosion of flow entries), when a new
user is added (listl’), the previously deployed flow entries will
probably not be updated to listl". It could be complex to track all
these changes and some inconsistencies could arise. In order to
avoid this problems and simplify the traceability of the virtual
instance, the slice description must not change from its original
definition.

R5 TRANSPARENCY

The experimental facility must be as transparent as possible
to the experiments and expose the virtual network instance
with the minimum overhead. From the application’s point of
view, which will run on top of the OpenFlow controller, it is

desirable to process the packets in a transparent manner. This
way, the application does not need to be aware of the facility.
This means that packets arriving at the application should not
be tagged with additional fields (e.g. a VLAN tag to identify the
slice) because this could imply that the application needs to be
aware of the corresponding tag. Even more so, some third-party
applications may be unable to adapt (e.g. closed code). To this
end, the data plane should not be modified in the path from the
source to the destination, or at the very least, this modification
should not be exposed to the application. Additionally, the
transparency also makes easier the traceability and DevOps
processes (e.g. root-cause analysis, observability, troubleshooting
and verification).

RO SUPPORT FOR RESEARCH ON NETWORKING

The main goal of EHU-OEF is to allow the research on
networking and enable a facility for testing novel proposals and
network architectures. In this case, this requirement is twofold:
on the one hand, it must expose the network programmability
to support the novel protocols, and on the other hand, it must
support the research on operator networks. In some scenarios,
such as in access networks (e.g., DOCSIS or GPON technologies),
it is typical to make use of VLAN tags and MPLS labels to
identify and aggregate traffic. Thus, to make research possible in
those scenarios, it is necessary to expose the full space of VLANs
and MPLS to the experiments. Consequently, the facility must
support the ability to address VLAN tags and MPLS labels at
the experimental level without any restriction, which requires
the whole VLAN and MPLS space to be available for each
experiment.

127

5 CONCLUSIONS

This chapter concludes with a summary of the content presented
throughout this document in Section 5.1. Then, the main
contributions as the outcomes from this thesis are highlighted
in Section 5.2. Afterward, the dissemination of results related to
the content of this thesis are listed in Section 5.3. Finally, the
future work and research directions are detailed in Section 5.4.

5.1 SUMMARY

The main outcome from this thesis is a Layer 2 Network
Virtualisation (NV) mechanism, which is secured, efficient and
scalable. The security is provided by Flow-based Network
Access Control (FlowNAC), which is an identity based access
control proposal that authenticates and authorises the users
before granting access at data plane level to the virtual network
instance. Moreover, the efficiency is achieved by a transparent
end to end communication (without any additional header/tag
or action performed) that does not add any extra overhead. The
virtual network identifier is coded on the MAC prefix, being a
namespace orthogonal to the networking research supported at
the virtual network instance. The performance numbers from
MAC prefix matching also supports the idea of an efficient
approach to NV. Furthermore, the scalability comes from the
capability of supporting the isolation between the different
virtual network instances. The most important parameter is the
length of this identifier, which in Layer 2 Prefix-based Network
Virtualisation (L2PNV) is configurable. As in EHU OpenFlow
Enabled Facility (EHU-OEF), it could be perfectly defined as 22 bit
length (using the first three bytes for the MAC prefix assigned to
L2PNV), being scalable enough even for the largest data center
scenarios.

257

258

| CONCLUSIONS

The introduction section contextualises this research work
and presents the research questions and objectives covered by
this thesis. It also motivates the need for this research and its
relevance in the current context.

Afterward, the state of the art section analyses the literature
with regard to the two main topics covered in this thesis, the NV
approaches and the current experimental facilities (as the main
target scenario related to the proposed NV approach). In this
regard, a NV taxonomy has been proposed to properly organise
and understand the past, present and future NV proposals
analysed in the NV survey. The conclusions from this analysis
based on the proposed taxonomy are relevant for this work.
A definition for NV in the context of this thesis and a NV
architecture are also presented. The survey of experimental
facilities allows to contextualise the work performed on EHU-OEF.

Once the state of the art is presented, the three individual
contributions are detailed. First, the L2PNV approach is explained
as the main objective from this thesis. Since the main limitation
from L2PNV is the definition of a new MAC addressing scheme,
the MAC Address Configuration Protocol (MACP) protocol
is proposed to facilitate the dynamic assignment of MAC
addresses to either physical or virtual end devices. Finally, the
FlowNAC is proposed as a mechanism to add security at data
plane, by controlling the access to the network at flow level.
In conjunction, the three components are the missing and most
relevant pieces to build the solution.

Then, the validation of the aforementioned contributions is
presented. Basically, two different types of validation have
been performed: experimental and analytical. The EHU-OEF
demonstrates the viability of the proposals and experimentally
validates the proposed experimental facility. EHU-OEF is based
on L2PNV, MACP and FlowNAC. With regard to L2PNV, EHU-OEF
demonstrates that it works fulfiling all the requirements: a
stable definition of slices, the isolation between virtual network
instance, scalable for great number of experiments, flexible
to experiment on novel architectures and proposals, and the
VLAN space is available at experimental level. Moreover, the
deployment of MACP has permitted to assign novel MAC
addressing schemes quite easily. Furthermore, the FlowNAC has
enhanced the facility with a mechanism to secure the access

5.2 CONTRIBUTIONS |

to the experiments at data level. The three proposals have
been experimentally validated on EHU-OEF as necessary building
blocks to construct the facility.

Regarding the analytical validation, the performed studies
demonstrated the reduction of flow entries as a result of
enforcing the isolation between the virtual network instances
(just one MAC prefix per slice), and the reduction of flow entries
as a consequence of using less rules to add support for legacy
protocols at experiment level.

Finally, the complete list of contributions obtained as the
outcomes from this thesis are detailed: the EHU-OEF facility,
the NV taxonomy, the L2PNV proposal, the MACP protocol,
the Prefix-based Forwarding Decision (PFD) approach, the
FlowNAC proposal and the Software Defined Networking (SDN)-
enabled Network Functions Virtualization (NFV) architecture.
Additionally, the dissemination activities related to this research
work are listed grouped by journals with JCR, international
publications, demonstrators, contribution to research projects
and Spanish publications. To conclude, the future work is
presented and separated in future activities and future research
lines.

5.2 CONTRIBUTIONS

This section details the complete list of contributions from this
thesis. As previously demonstrated, apart from the specific
contributions detailed in Chapter 3, there are other additional
contributions that can be considered as a result of this thesis.
Some of them are a direct consequence of writing the actual
document (e.g., the NV taxonomy) and some others are outcomes
from the actual means developed to validate the novel proposals
(e.g., the EHU-OEF facility). It is worth to enumerate all of them:

1. The EHU-OEF facility: the campus-wide experimental
facility deployed on the University of the Basque Country
(UPV/EHU) that fulfils all the imposed requirements is
one of the main contributions of this thesis. An active
and successful facility that incorporates other original
contributions from this thesis and experimentally validates

259

260

| CONCLUSIONS

the research work, is a valuable achievement. In addition,
it has been employed and demonstrated in several demo-
tracks in relevant international conferences and final
reviews from EU projects. As an experimental facility its
value is twofold. On the one hand, it has been the means
to validate the innovative proposals (also used to construct
the facility). On the other hand, the facility has been the
enabler for testing these novel networking proposals, as
well as, for managing the lifecycle of the experiments
performed.

. The NV Taxonomy: although the NV has been a research

topic for years, recently, the emergence of the SDN
technology has shaken its basic principles. Moreover,
depending on the target scenario, the requirements
imposed to the NV solution are different, crystalising in
distinct manners of defining what the NV should be. As
a consequence, most of the NV surveys and proposed
classifications are related to a specific target scenario, or
they are partial studies not considering the latest advances.
Due to all these reasons, a novel NV taxonomy is proposed,
that allows to organise the state of the art related to NV
and its evolution to better understand the past, present
and future proposals. It also allows to properly categorize
the L2PNV approach and clearly identify the contribution
of this work.

. The L2PNV proposal: one of the main contributions of this

thesis, addressing RQ1, is the novel NV approach, which
relies on the MAC address prefix as the virtual instance
namespace to identify the corresponding virtual network
instance. The use of MAC prefixes allows the aggregation
of MAC addresses associated to each virtual instance,
thereby improving the scalability of the solution and
reducing the number of rules to define the virtual network.
Additionally, the virtual instance namespace is orthogonal
to the experiments (or in general, to the namespaces
exposed to the virtual instances), being transparent for
both the data and control planes. Moreover, it does not
introduce any overhead at data plane (neither a tunnel
or a tag is added) or at network device level (no action

5.2 CONTRIBUTIONS |

is required, e.g., push/pop). The isolation is achieved by
simply enforcing a matching on the MAC address field.

. The MACP protocol: this protocol was designed to
overcome the main limitation of L2PNV, i.e. it is based
on a novel MAC addressing scheme, while addressing
RQ2. This means that the globally administered address
assigned by Network Interface Card (NIC) manufacturers,
ending in a flat addressing scheme, are not valid for
this novel NV proposal. As a consequence, the MAC
addresses of end devices must be updated either manually
or automatically depending on the target virtual network
instance. Although the manual configuration is always
possible, and the automatic provisioning of properly
configured virtual interfaces is possible in data center
environments, there is no solution for other target
scenarios with physical NICs, such as campus and operator
networks. As a consequence, a novel protocol for assigning
and dynamically configure MAC addresses is proposed to
fill the gap with a generic approach (valid for both physical
and virtual NICs). As a side effect, the MACP becomes as an
enabler to facilitate the adoption of novel MAC addressing
schemes, used for instance in L2PNV and PFD proposals.

. The PFD approach: as a way to demonstrate the
opportunities that novel MAC addressing schemes could
generate, a novel forwarding mechanism based on MAC
address prefixes is presented. This proposal leverages on
a mechanism for aggregating the MAC addresses of end
devices to reduce the size of the forwarding tables (i.e.
the number of flow entries), and consequently, improve
the overall scalability of Layer 2 networks. Similarly
to L2PNV, the MAC addresses from all the interfaces
must be updated, and once again, MACP becomes the
enabler to facilitate the proper assignment of addresses
to end devices. Moreover, PFD has been deployed and
tested over EHU-OEF following the proposed methodology
for experimentation. Therefore, in addition to a novel
forwarding proposal for campus, operator and data center
networks, PFD has covered two important objectives: (1)
the experimental validation of EHU-OEF to support research

261

262

| CONCLUSIONS

on novel networking proposals, and (2) the relevance
and usefulness of researching on novel MAC addressing
schemes.

. The FlowNAC proposal: this proposal addresses RQ3 and

allows to overcome one of the main security issues of
most of the current experimental facilities, the data plane
access to the facility (the Virtual Instance Data Access
Point (VIDAP) reference point). This topic has been only
partially solved in those cases in which a remote access
to the facility is secured by a Virtual Private Network
(VPN) access. A similar approach is not available when the
access from end devices is internal to the facility (such as
a direct physical connexion or a virtual interface from a
Virtual Machine (VM) deployed on one of the virtualised
servers). FlowNAC provides a granular (fine or coarse
granularity, based on flows) mechanism to authenticate
and authorise individually the access to each network
service (e.g. a virtual network instance) offered by the
network. As a result, on the one hand, the end user is
able to request access to a specific slice, and on the other
hand, the experimental facility is able to control the access
to each slice based on the identity of the user and the
policies defined by the researcher (the owner of the slice).
In a nutshell, FlowNAC provides a secured mechanism
to control the access at the VIDAP reference point (data
plane), similarly to what L2PNV-FlowVisor (through an
OpenFlow interface) provides at the Virtual Instance
Tenant Access Point (VITAP) reference point (control plane)
when securely exposes the programmability of the network
to the researchers (tenants). In this latter case, the secured
solution relies on TLS (based on certificates) on the control
channel and a policy defined on the proxy controller
(i.e. the L2PNV-FlowVisor). In addition to its applicability
to experimental facilities (EHU-OEF) and NV approaches
(L2PNV), FlowNAC was designed as a generic tool to
secure the access to the networks (similar to an stateless
firewall dynamically configured) that can be used in
other scenarios, such as campus, operator and data center
networks.

5.2 CONTRIBUTIONS |

7. The SDN-enabled NFV architecture: as a consequence of
the adoption of some NFV principles in the design of the
experimental facility to simplify the deployment of new
services (as Virtual Network Functions (VNFs)) to support
the research activity, several VNFs have been designed and
developed on EHU-OEF. In this process, the VNF design
has become the key factor to success, evolving from SDN-
agnostic approaches to fully SDN-enabled proposals. As a
result, a set of VNF design principles have been identified,
and a SDN-enabled architecture is proposed to implement
the VNFs based on the separation of stateless and stateful
components to improve the overall performance of the
deployed VNF, thus, addressing RQ4. In relation to this
approach, the FlowNAC case has been used to illustrate the
benefits from this architecture. The modular design allows
not only to improve the performance (stateful processing
at the forwarding engine level) but also to individually
scale each component depending on the actual demand.
The exposure of the network programmability to build the
VNFs is a step forward in this evolution that introduces
new challenges (how to share the forwarding resources),
but has a great future (performance improvements).

Regarding the specific contributions described in Chapter 3,
it is important to highlight that L2PNV, MACP and FlowNAC
have been designed to work independently from each other.
As a consequence of a modular design, the proposals are
more versatile and could be adopted individually in different
scenarios. For instance, MACP could be used for PFD or FlowNAC
could improve the access control in campus networks. However,
as demonstrated by EHU-OEF, the cooperation between them
is worthwhile, thus, L2PNV rely on MACP to facilitate the
assignment of the new MAC addressing scheme and FlowNAC
improves the security of L2PNV adding a novel access control
system.

As demonstrated by this research work (mainly with regard
to L2PNV and PFD), a better use of MAC address namespace
is feasible. The research on novel MAC addressing schemes is
relevant to achieve some improvements in networking (such
as NV, forwarding or scalability). As a result, the Layer 2

263

264

| CONCLUSIONS

can be further enhanced with additional functionalities. In this
regard, MACP becomes the enabler for the innovation in novel
addressing schemes allowing clean slate proposals at Layer 2.

In relation to the objective of researching on networking,
SDN technology is an actual enabler for innovation in different
aspects. First of all, it allows to expose the programmability
of the network devices to researches, which is characteristic
from this technology (it was not possible before) and opens
new possibilities. Additionally, SDN overcomes the kidnapping
of networking innovation by vendors, since they do not allow
external innovation on their products (they implement either
standard proposals or specific vendor features as competitive
advantage). Moreover, SDN allows to reduce the development
cycles of new features (similar to software development) and
both hardware and software based solutions share the same
standard interface.

With regard to the latest advances on NFV concepts, the
approach to experimental facilities could evolve with innovative
architectures and proposals. There are several design principles
(such as isolation, flexibility, scalability, and sharing of resources)
that are common in both cases. In this sense, the outcomes from
the research on NFV can boost the deployment of more advanced
experimental facilities.

5.3 DISSEMINATION OF RESULTS

The complete list of dissemination activities related to the
outcomes of this thesis is detailed below. They are organised in
five categories: (1) journals with JCR, (2) papers on international
conferences, (3) demonstrators on international conferences, (4)
contributions to research projects and (5) papers in Spanish
conferences.

1. Publications in Journals with JCR:

e 2015, "An architecture for dynamic QoS management
at Layer 2 for DOCSIS access
networks using OpenFlow", Computer Networks,
Elsevier (ISSN: 1389-1286) (Impact Factor JCR=1.282);
http:/ /dx.doi.org/10.1016/j.comnet.2015.11.017;

5.3 DISSEMINATION OF RESULTS | 265

Mendiola, A; Fuentes, V; Matias, J; Astorga, J; Toledo,
N; Jacob, E; Huarte, M.

e 2015, "Toward an SDN-enabled NFV architecture”,
Network and Service Vistualization; IEEE Com-
munications Magazine, vol 53, no. 4, pp 187-
193; (ISSN: 0163-6804) (Impact Factor JCR=4.460);
http:/ /dx.doi.org/10.1109/MCOM.2015.7081093; Ma-
tias, J; Garay, J; Toledo, N; Unzilla, J.; Jacob, E.

e 2014, "The EHU-OEF: An OpenFlow-based Layer-2
experimental facility", Special issue on Future Internet
Testbeds
- Part II, vol 63, pp 101-127; Computer Networks,
Elsevier (ISSN: 1389-1286) (Impact Factor JCR=1.282);
http://dx.doi.org/10.1016/j.bjp.2013.11.013; Matias,
J; Mendiola, A.; Toledo, B.; Tornero, B.; Jacob, E.

2. Publications on International Conferences:

o September 2014, "FlowNAC: Flow-based Network
Access Control", Third European Workshop on
Software Defined Networks (EWSDN 2014); Matias, J.;
Garay, J.; Mendiola, A.; Toledo, N.; Jacob, E.; Budapest,
Hungary (September 2014).

o September 2014, "Integrating complex legacy systems
under OpenFlow control: The DOCSIS use", Third
European Workshop on Software Defined Networks
(EWSDN 2014); Fuentes, V.; Matias, J.; Mendiola, A.;
Huarte, M.; Unzilla, J.; Jacob, E.; Budapest, Hungary
(September 2014).

e May 2014, "Deploying a Virtual Network Function
over a SDN infrastructure", Terena Networking Con-
ference (TNC 2014); Jacob, E.; Matias, J.; Mendiola,
A.; Fuentes, V.; Garay, J.; Pinedo, C.; Dublin, Ireland
(Mayo 2014).

e October 2012, "Implementing Layer 2 Network Virtu-
alisation using OpenFlow: Challenges and Solutions",
European Workshop on Software Defined Networks
(EWSDN 2012); Matias, J.; Tornero, B.; Mendiola, A.;
Jacob, E.; Toledo, N.; Darmstadt, Germany (Octubre
2012).

266

| CONCLUSIONS

e June 2012, "Extending Neutrality to Experimental

Facilities", 3rd International Conferences on Access
Networks, Services and Technologies (ACCESS 2012
- InfoWare 2012); Matias, J.; Jacob, E.; Higuero, M.V,;
Toledo, N.; Venecia, Italy (June 2012). Best Paper
Award and invitation for International Journal On
Advances in Network and Services, v6 n 1&2 2013.

May 2012, "Deploying OpenFlow in production at
the University of the Basque Country: Identity based
network infrastructure configuration", TERENA Net-
working Conference 2012 (TNC 2012); Jacob, E.;
Matias,].; Reykjavik, Iceland (May 2012). Selected
Paper for TNC2012 Proceedings (ISBN 978-90-77559-
00-0).

November 2011, "An OpenFlow based Network
Virtualisation Framework for the Cloud", Network
Infrastructure Services as part of Cloud Computing
(NetCloud 2011 - CloudCom 2011); Matias, J.; Jacob,
E.; Demchenko, Y.; Sanchez, D.; Atenas, Greece
(November 2011).

June 2011, "Towards Neutrality in Access Networks: A
NANDO Deployment with OpenFlow", 2nd Interna-
tional Conferences on Access Networks, Services and
Technologies (ACCESS 2011 - InfoWare 2011); Matias,
J.; Jacob, E.; Toledo, N.; Astorga, J.; Luxemburgo (June
2011).

September 2010, "Extending AAA Operational Model
for Profile-based Access Control in Ethernet-based
Neutral Access Networks", 1st International Confer-
ences on Access Networks, Services and Technologies
(ACCESS 2010 - InfoWare 2010); Matias, J.; Jacob, E.;
Demchenko, Y.; de Laat, C.; Gommans, L.; Valencia,
Spain (September 2010).

June 2010, "Access Control for Carrier Ethernet-
based Service Delivery: The Service-Port Policy
Enforcement", TERENA Networking Conference 2010
(TNC 2010); Matias, J.; Jacob, E.; Demchenko, Y.; de
Laat, C.; Vilnius, Lithuania (June de 2010).

5.3 DISSEMINATION OF RESULTS | 267

e June 2009, "Enhancing NGN’s versatility for Multi-
Service support: the Bridging Virtualisation ap-
proach”, 10th International Conference on Telecom-
munications (ConTel 2009); Matias, J.; Jacob, E.;
Aguado, M.; Astorga,].; Zagreb, Croatia (June 2009).

e June 2009, "Network Convergence through Bridging
Virtualisation Tool", TERENA Networking Confer-
ence 2009 (TNC 2009); Matias,].; Jacob, E.; Mélaga,
Spain (June 2009).

e May 2009, "Towards a real convergence for Multi-
play", IEEE International Symposium on Broadband
Multimedia Systems and Broadcasting (BMSB 20009);
Matias, J.; Jacob, E.; Higuero, M.V,; Saiz, P.; Astorga,
J.; Bilbao, Spain (Mayo 2009).

e December 2006, "Adaptation of IEEE 802.1X for
secure session establishment between Ethernet peers”,
Second International Conference on Information
Systems Security (ICISS06); Saiz, P.; Matias, J.; Jacob,
E.; Bustamante, J., Astarloa, A., Kolkata, India
(Diciembre 2006).

3. Demonstrators on International Conferences:

e June 2015, "Exploring the Service/Orchestrator inter-
action: Secure and dynamic deployment of services
based on identity", Demonstrator in the "SDN
Solutions Showcase", Open Networking Summit 2015
(ONS2015); Jacob, E.; Garay, J.; Matias, J.; Woesner, H.;
Sune, M.; Jungel, T.; Santa Clara, EEUU (June 2015).

e April 2015, "Self-deploying Service Graphs over
ELwUD (EHU-OEF Lightweight UNIFY Domain)",
Demonstrator in the 1st IEEE Conference on Network
Softwarization (NetSoft 2015); Garay, J.; Matias, J.;
Mendiola, A.; Astorga, J.; Jacob, E.; London, UK
(April 2015).

e May 2014, "Deploying a Virtual Network Function
over a SDN infrastructure”, Live demonstrator in the
paper presentation at the Terena Networking Confer-
ence (TNC 2014); Jacob, E.; Matias, J.; Mendiola, A.;

268

| CONCLUSIONS

Fuentes, V.; Garay,].; Pinedo, C.; Dublin, Ireland (May
2014).

March 2014, "Enriched slices in EHU-OEF empowered
by NFV: the Access Control VNF use case", Demon-
strator in the "Academic/Research Demo track”,
Open Networking Summit 2014 (ONS2014); Matias, J.;
Garay, J.; Mendiola, A.; Fuentes, V.; Pinedo, C.; Jacob,
E.; Santa Clara, USA (March 2014).

December 2013, "Access Control NFV enforcement at
the EHU-OpenFlow Enabled Facility", Network Func-
tions Virtualisation Demonstrations (NFV-Demo),
IEEE Global Communications Conference (GLOBE-
COM 2013); Matias, J.; Jacob, E.; Pinedo, C.; Mendiola,
A.; Fuentes, V., Garay, J.; Atlanta, USA (December
2013).

4. Contribution to research projects:

e The FP7 UNIFY project ("Unifying Cloud and

Carrier Networks", funded by the European Commis-
sion, FP7-ICT-2013-11, https://www.fp7-unify.eu/,
01/10/2013 - 31/04/2016): the EHU-OEF facility, L2PNV,
MACP and FlowNAC have been demonstrated in
several demo-tracks from international conferences
(i.e., ONS2015, NetSoft2015, TNC2014, and ONS2014)
in the context of this project. EHU-OEF (supported
by L2PNV and MACP) has been used in different de-
velopment activities during the project. Additionally,
the state migration in FlowNAC (as a decoupled VNF:
stateless and stateful) has become one of the use cases
to be demonstrated in the final review of this project.

The FP7 ALIEN project ("Abstraction Layer for
Implementation of Extensions in Programmable Net-
works", funded by the European Commission, http:
//www.fp7-alien.eu/, 01/10/2012 - 30/09/2014): the
EHU-OEF facility was added as an island to the
project’s testbed. It was used during the final
review of the project to demonstrate the DOCSIS
integration in the SDN based facility. Additionally,
EHU-OEF (including L2PNV, FlowNAC and MACP) was

https://www.fp7-unify.eu/
http://www.fp7-alien.eu/
http://www.fp7-alien.eu/

5.3 DISSEMINATION OF RESULTS | 269

used for project related demonstrators, testing of
developments and validation activities.

e The S&N-SEC project ("Despliegue seguro de servi-
cios con Redes Definidas por Software y Virtualisa-
cion de Funciones de Red", funded by the Spanish
Government, MINECO, 01/01/2014 - 31/12/2016):
this project supports the further development of
FlowNAC as a VNF and general security issues related
to SDN and NFV architectures.

e The A3BRAM-NG project ("Autenticacién, Autoriza-
tion y Registro de Actividades en Redes de Acceso
Multiservicio de Nueva Generacién", funded by the
Spanish Government, MICINN TIC2010-21719-C02-
01, 01/01/2011 - 31/12/2013): this project supported
the initial implementation of the FlowNAC proposal.

e The Future Internet (funded by the Basque Govern-
ment, ETORTEK IE08-227, 01/01/2008 - 31/12/2010)
and Future Internet II projects (funded by the
Basque Government, ETORTEK IE11-316, 01/01/2011
- 31/12/2013): these projects partially supported the
initial deployment of the EHU-OEF facility and further
testing of experiments over this experimental facility.

e The RedSOC project (funded by the Basque Gov-
ernment, SAIOTEK, 01/01/2011 - 21/12/2012)): this
project partially supported the initial deployment of
the EHU-OEF facility and the implementation of the
L2PNV and the MACP proposals.

5. Publications on Spanish Conferences:

e November 2012, "Solucién de virtualisacion de
nivel 2 basada en prefijos para plataformas de
experimentacién”, Jornadas Técnicas RedIRIS 2012
(JT2012); Matias, J.; Jacob, E.; Mendiola, A.; Tornero,
B.; Pinedo, C.; Bilbao, Spain (November 2012).

e November 2009, "Sistema para el control de acceso a
red basado en servicios", Jornadas Técnicas RedIRIS
2009; Matias, J.; Jacob, E.; Santiago de Compostela,
Spain (November 2009).

270

| CONCLUSIONS

e October 2008, "Establecimiento dindmico de conex-
iones sobre PBB-TE", XVIII Jornadas Telecom I+D;
Matias, J.; Jacob, E.; Higuero, M.V.; Astorga, J.; Bilbao,
Spain (October 2008).

e October 2007, "Una propuesta basada en IEEE 802.1X
para la autenticacién y configuraciéon de equipos
finales en redes NGN", XVII Jornadas Telecom I+D;
Matias, J.; Jacob, E.; Higuero, M.V,; Saiz, P.; Martinez
de Salinas, J.; Valencia, Spain (October 2007). Third
place in Best Paper Award from the congress.

e September 2007, "Propuesta para la configuracién
dindmica en redes NGN: Extended Configuration
Protocol (ECP)", VI Jornadas de Ingenieria Telemdtica
(Jitel 2007); Matias, J.; Jacob, E.; Higuero, M.V.; Saiz,
P.; Martinez de Salinas,].; Mélaga, Spain (September
2007).

e November 2006, "Modelo de Red Orientado a
Servicios Basado en Ethernet”, XVI Jornadas Telecom
I+D; Matias,]J.; Jacob, E.; Saiz, P, Higuero, M.;
Astarloa, A.; Madrid, Spain (November 2006). Third
place in Best Paper Award from the congress.

» November 2006, "Hacia una arquitectura hardware de
altas prestaciones para securizacién de Ethernet", XVI
Jornadas Telecom I+D; Jacob, E.; Sdiz, P.; Astarloa,
A.; Matias,].; Aguado, M.; Pinedo, C.; Areizaga, E.;
Madrid, Spain (November 2006).

* November 2005, "Problemaética de seguridad en redes
Ethernet extremo a extremo", XV Jornadas Telecom
1+D; Saiz, P, Matias,].; Jacob, E.; Alvarez, A.;
Areizaga, E.; Madrid, Spain (November 2005).

5.4 FUTURE WORK

This section details the foreseen future work as continuation of
the research work presented in this thesis. Due to the difference
in scope and goals, the future work can be separated in future
activities and future research lines. The former details the

54 FUTURE WORK |

expected next steps as the result of the research outcomes from
this thesis, whereas the latter outlines the research directions
identified in this process.

Concerning the future activities, several objectives have been
identified to further disseminate the results from the work
presented in this thesis. The main areas in this regard are
the publication of novel contributions, the standardisation of
the proposals and the adoption of the technology. Although
part of the original contributions have been already published,
which actually validates the originality and relevance of the
ideas proposed in this thesis, there are some other innovative
contributions that have not yet been published. This is in
fact the most relevant next step. Additionally, some of this
ideas are perfectly aligned with ongoing discussion on relevant
standardisation bodies, such as the Internet Engineering Task
Force (IETF). The standardisation of proposals is the best
way for their widely adoption in real deployments, which is
the main challenge for the outcome of any research activity.
Moreover, prior to the adoption of these proposals, the current
developments deserves the optimisation their implementation
and the improvement of performance figures, which also
contributes to justify their need.

With regard to the future research lines identified as the
continuation of this research work, the most immediate ones
are listed next. In relation to EHU-OEF, an upcoming evolution
of the facility more influenced by the latest advances in NFV
architectures is expected. Currently, the basic orchestration
is a limitation for optimal provision of available resources,
and smarter embedding algorithms are awaited. Moreover,
new hardware (both computing and networking resources) is
planned to be deployed extending the current infrastructure.

Regarding the L2PNV approach, there are several research lines
to improve the solution. First of all, it is worth to mention that
the actual proposal described in this thesis is a concrete NV
approach (SDN-enabled Virtualization (SDNeV) type). However,
the idea behind L2PNV is more general, the use of a novel
MAC addressing scheme to virtualise the network based on
MAC prefixes (as the Virtual Instance (VI) namespace) to identify
the virtual network instances. Based on this criteria, other
possible implementations or even other NV types are feasible,

271

272

| CONCLUSIONS

for instance, a Virtual Node (vNode) type of NV that makes
use of MAC prefixes to differentiate the target instance. In
addition, other alternative implementations for the SDNeV type
(not based on FlowVisor) are considered, as a way to overcome
the main limitation of FlowVisor and achieve L2PNV support
beyond OpenFlow 1.0. An implementation based on OpenVirteX
could be a plausible solution, consequently, instead of enforcing
the isolation based on a MAC prefix matching on each and
every device (which requires inspection at the OpenFlow control
channel), a MAC rewrite action performed at the edge devices
would be enough to assure the isolation. In this latter case,
the OpenFlow control channel would be modified to perform
MAC address translation between the virtual (at the tenant)
and physical (at the infrastructure) addresses. Moreover, the
simple matching (MAC prefix) needed at device level could be
optimised and supported by specific hardware acceleration on
the NIC (similarly to SR-IOV technology) to bypass the software
switch provided by virtualisation solutions, and thus, improve
the I/O performance for VNFs deployed on VMs. Also related
to the support for NFV, L2PNV could be considered as a basic
isolation mechanism on which novel steering proposals could
rely.

In relation to FlowNAC, there is an ongoing research activity
to improve the overall security provided to the target scenarios.
According to [135], there are different security mechanisms
(encryption, authentication, authorisation, and auditing) that
can be used to overcome the distinct types of security threats
(interception, interruption, modification, and fabrication). Given
the actual implementation of FlowNAC, the encryption is not
yet available, although the ability to distribute key material
is provided (the key management and the establishment of
security associations is supported by the IEEE 802.1X standard).
In addition, the IEEE 802.1AE standard [136] (MAC Security)
defines the MACsec PDUs and provides connectionless user
data confidentiality, frame data integrity, and data origin
authenticity. FlowNAC could be improved by leveraging on
MACsec to either cypher or protect the integrity of the MAC
frames.

One scenario that requires further investigation is the mobility
of end nodes in EHU-OEF, because of either the migration of VMs

54 FUTURE WORK |

or the mobility of physical machines. L2PNV, MACP and FlowNAC
must be studied in detail to determine how this mobility really
affect the experiments conducted on the facility and how this
effect could be minimised. However, it is important to highlight
that L2PNV does not bound any location information to the MAC
address assigned to the end devices, only the virtual network
instance identifier must be coded on the MAC address. By
contrast, PFD actually codifies the location information on the
MAC addresses in order to aggregate the end devices to reduce
the forwarding table size. In this latter case, the use of gratuitous
ARP (also used in PortLand [19]) could be used to minimise
the impact of mobility scenarios. Depending on the case, a new

MACP process could be needed after the migration of end devices.

In addition, a new FlowNAC process is mandatory to preserve
the security level, but it could be optimised (similarly to secure
handover in IEEE 802.11 networks [137]). The outcomes from
this line of research could be relevant not only for EHU-OEF, but
also for other target scenarios such as campus, operator and data
center networks.

273

BIBLIOGRAPHY

(1]

(2]

3]

(6]

(8]

“New Generation Network Architecture - AKARI
Conceptual Design, AKARI project,” 2007,
http:/ /www.nict.go.jp/photonic_nw /archi/akari/
40tfsk00000cb3t3-att /40tfsk00000cb4g1.pdf.

J. Pan, S. Paul, and R. Jain, “A survey of the research on
future internet architectures,” Communications Magazine,
IEEE, vol. 49, no. 7, pp. 26-36, 2011.

“Future Internet Assembly,” 2011, http:
/ /www.future-internet.eu/uploads/media/
FIArchCurrentInternetLimitationsMarch2011FINAL.pdf.

H. Harai, “Designing new-generation network - overview
of AKARI Architecture Design,” in Communications and
Photonics Conference and Exhibition (ACP), 2009 Asia, nov.
2009, pp. 1 2.

M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott,
D. Raychaudhuri, R. Ricci, and I. Seskar, “GENI: A

federated testbed for innovative network experiments,”
Computer Networks, vol. 61, pp. 5-23, 2014.

A. Gavras, A. Karila, S. Fdida, M. May, and M. Potts,
“Future internet research and experimentation: the FIRE
initiative,” ACM SIGCOMM Computer Communication
Review, vol. 37, no. 3, pp. 89-92, 2007.

“IEEE Standard for Local and metropolitan area networks—
Bridges and Bridged Networks,” IEEE Std 802.1Q-2014,
2014.

E. Haleplidis, K. Pentikousis, S. Denazis, J. H.
Salim, D. Meyer, and O. Koufopavlou, “Software-
Defined Networking (SDN): Layers and Architecture
Terminology,” RFC 7426 (Informational), Internet
Engineering Task Force, Jan. 2015. [Online]. Available:
http:/ /www.ietf.org /rfc/rfc7426.txt

275

http://www.nict.go.jp/photonic_nw/archi/akari/4otfsk00000cb3t3-att/4otfsk00000cb4g1.pdf
http://www.nict.go.jp/photonic_nw/archi/akari/4otfsk00000cb3t3-att/4otfsk00000cb4g1.pdf
http://www.future-internet.eu/uploads/media/FIArch Current Internet Limitations March2011 FINAL.pdf
http://www.future-internet.eu/uploads/media/FIArch Current Internet Limitations March2011 FINAL.pdf
http://www.future-internet.eu/uploads/media/FIArch Current Internet Limitations March2011 FINAL.pdf
http://www.ietf.org/rfc/rfc7426.txt

276

| BIBLIOGRAPHY

[9]

[10]

[12]

[13]

[14]

[15]

[16]

[17]

“The OpenFlow Switch Specification, Version 1.4.0,”
2015, https://www.opennetworking.org/images/stories/
downloads/sdn-resources/onf-specifications /openflow /
openflow-spec-v1.4.0.pdf.

A. Doria,]J. H. Salim, R. Haas, H. Khosravi, W. Wang,
L. Dong, R. Gopal, and]J. Halpern, “Forwarding
and Control Element Separation (ForCES) Protocol
Specification,” RFC 5810 (Proposed Standard), Internet
Engineering Task Force, Mar. 2010, updated by RFCs
7121, 7391. [Online]. Available: http://www.ietf.org/rfc/
rfc5810.txt

N. Bahadur, S. Kini, and J. Medved, “Routing Information
Base Info Model,” Active Draft, IETF Secretariat, Internet-
Draft draft-ietf-i2rs-rib-info-model-08, 2015.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson,]J. Rexford, S. Shenker, and]. Turner,
“Openflow: enabling innovation in campus networks,”
ACM SIGCOMM Computer Communication Review, vol. 38,
no. 2, pp. 69-74, 2008.

N. Chowdhury and R. Boutaba, “Network virtualization:
state of the art and research challenges,” Communications
Magazine, IEEE, vol. 47, no. 7, pp. 20-26, 2009.

D. Drutskoy, E. Keller, and J. Rexford, “Scalable network
virtualization in software-defined networks,” Internet
Computing, IEEE, vol. 17, no. 2, pp. 20-27, 2013.

M. Sufié, L. Bergesio, H. Woesner, T. Rothe, A. Kopsel,
D. Colle, B. Puype, D. Simeonidou, R. Nejabati, M. Chan-
negowda et al, “Design and implementation of the
OFELIA FP7 facility: The European OpenFlow testbed,”
Computer Networks, vol. 61, pp. 132-150, 2014.

“ETSI GS NFV 002: Network Functions Virtualisation
(NFV); Architectural Framework,” ETSI ISG for NFV, 2014.

G. Xilouris, E. Trouva, E. Lobillo, J. M. Soares, J. Carapinha,
M. McGrath, G. Gardikis, P. Paglierani, E. Pallis,
L. Zuccaro et al., “T-NOVA: a marketplace for virtualized

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
http://www.ietf.org/rfc/rfc5810.txt
http://www.ietf.org/rfc/rfc5810.txt

[18]

[19]

[20]

[21]

[22]

[23]

[24]

BIBLIOGRAPHY |

network functions,” in Networks and Communications
(EuCNC), 2014 European Conference on. 1EEE, 2014, pp.
1-5.

P. Skoldstrom, B. Sonkoly, A. Gulyas, F. Németh, M. Kind,
F.-J. Westphal, W. John,]J. Garay, E. Jacob, D. Jocha et al.,
“Towards unified programmability of cloud and carrier
infrastructure,” in Software Defined Networks (EWSDN),
2014 Third European Workshop on. 1EEE, 2014, pp. 55-60.

R. Niranjan Mysore, A. Pamboris, N. Farrington,
N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya,
and A. Vahdat, “Portland: a scalable fault-tolerant layer 2
data center network fabric,” in ACM SIGCOMM Computer
Communication Review, vol. 39, no. 4. ACM, 2009, pp. 39—
50.

A. T. Campbell, H. G. De Meer, M. E. Kounavis, K. Miki,
J. B. Vicente, and D. Villela, “A survey of programmable
networks,” ACM SIGCOMM Computer Communication
Review, vol. 29, no. 2, pp. 7-23, 1999.

M. Kobayashi, S. Seetharaman, G. Parulkar, G. Appen-
zeller, J. Little,]. Van Reijendam, P. Weissmann, and
N. McKeown, “Maturing of OpenFlow and Software-
defined Networking through deployments,” Computer
Networks, vol. 61, pp. 151-175, 2014.

B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka,
T. Turletti et al., “A survey of software-defined networking:
Past, present, and future of programmable networks,”
Communications Surveys & Tutorials, IEEE, vol. 16, no. 3, pp.
1617-1634, 2014.

N. Feamster,]. Rexford, and E. Zegura, “The road to SDN:
an intellectual history of programmable networks,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 2,
pp- 87-98, 2014.

D. Kreutz, F. M. Ramos, P. Esteves Verissimo, C. Es-
teve Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-
defined networking: A comprehensive survey,” proceedings
of the IEEE, vol. 103, no. 1, pp. 14-76, 2015.

277

278

| BIBLIOGRAPHY

[25] Y. Jarraya, T. Madi, and M. Debbabi, “A survey and
a layered taxonomy of software-defined networking,”

Communications Surveys & Tutorials, IEEE, vol. 16, no. 4, pp.
1955-1980, 2014.

[26] N. M. K. Chowdhury and R. Boutaba, “A survey of
network virtualization,” Computer Networks, vol. 54, no. 5,
pp- 862-876, 2010.

[27] M. E. Bari, R. Boutaba, R. Esteves, L. Z. Granville,
M. Podlesny, M. G. Rabbani, Q. Zhang, and M. E
Zhani, “Data center network virtualization: A survey,”
Communications Surveys & Tutorials, IEEE, vol. 15, no. 2, pp.
909-928, 2013.

[28] R. Jain and S. Paul, “Network virtualization and software
defined networking for cloud computing: a survey,”
Communications Magazine, IEEE, vol. 51, no. 11, pp. 24-31,
2013.

[29]]. Jofre, C. Velayos, G. Landi, M. Giertych, A. C. Hume,
G. Francis, and A. V. Oton, “Federation of the BonFIRE
multi-cloud infrastructure with networking facilities,”
Computer Networks, vol. 61, pp. 184-196, 2014.

[30] J. P. Sterbenz, D. Hutchison, P. Miiller, and C. Elliott,
“Special issue on Future Internet Testbeds - Guest
Editorial,” Computer Networks, 2014.

[31] D. Schwerdel, B. Reuther, T. Zinner, P. Miiller, and P. Tran-
Gia, “Future Internet research and experimentation: The

G-Lab approach,” Computer Networks, vol. 61, pp. 102-117,
2014.

[32] J. Mambretti,]. Chen, and F. Yeh, “Creating environments
for innovation: Designing and implementing advanced
experimental network research testbeds based on the
Global Lambda Integrated Facility and the StarLight
Exchange,” Computer Networks, vol. 61, pp. 118-131, 2014.

[33] M. Campanella and F. Farina, “The FEDERICA infrastruc-
ture and experience,” Computer Networks, vol. 61, pp. 176—
183, 2014.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

B. Belter, J]. R. Martinez,]J. I. Aznar, J. F. Riera,
L. M. Contreras, M. Antoniak-Lewandowska, M. Biancani,
J. Buysse, C. Develder, Y. Demchenko et al., “The GEYSERS
optical testbed: A platform for the integration, validation
and demonstration of cloud-based infrastructure services,”
Computer Networks, vol. 61, pp. 197-216, 2014.

L. Sanchez, L. Munoz, J. A. Galache, P. Sotres, J. R. Santana,
V. Gutierrez, R. Ramdhany, A. Gluhak, S. Krco, E. Theodor-
idis et al., “SmartSantander: IoT experimentation over a
smart city testbed,” Computer Networks, vol. 61, pp. 217-
238, 2014.

N. Bastin, A. Bavier, |. Blaine,]J. Chen, N. Krishnan, J. Mam-
bretti, R. McGeer, R. Ricci, and N. Watts, “The InstaGENI
initiative: An architecture for distributed systems and

advanced programmable networks,” Computer Networks,
vol. 61, pp. 24-38, 2014.

D. Kim, J. Kim, G. Wang, J.-H. Park, and S.-H. Kim, “K-
GENI testbed deployment and federated meta operations
experiment over GENI and KREONET,” Computer Net-
works, vol. 61, pp. 39-50, 2014.

D. Medhi, B. Ramamurthy, C. Scoglio, J. P. Rohrer,
E. K. Cetinkaya, R. Cherukuri, X. Liu, P. Angu,
A. Bavier, C. Buffington et al., “The GpENI testbed:
network infrastructure, implementation experience, and
experimentation,” Computer Networks, vol. 61, pp. 51-74,
2014.

A. Sydney, D. S. Ochs, C. Scoglio, D. Gruenbacher, and
R. Miller, “Using GENI for experimental evaluation of
Software Defined Networking in smart grids,” Computer
Networks, vol. 63, pp. 5-16, 2014.

J. Griffioen, Z. Fei, H. Nasir, X. Wu, J. Reed, and C. Carpen-
ter, “Measuring experiments in GENI,” Computer Networks,
vol. 63, pp. 17-32, 2014.

B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman, “Planetlab: an overlay
testbed for broad-coverage services,” ACM SIGCOMM

279

280

| BIBLIOGRAPHY

[42]

[44]

[45]

[47]

[48]

Computer Communication Review, vol. 33, no. 3, pp. 3-12,
2003.

S. Keranidis, D. Giatsios, T. Korakis, I. Koutsopoulos,
L. Tassiulas, T. Rakotoarivelo, M. Ott, and T. Par-
mentelat, “Experimentation on end-to-end performance
aware algorithms in the federated environment of the
heterogeneous PlanetLab and NITOS testbeds,” Computer
Networks, vol. 63, pp. 48-67, 2014.

A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton,
and T. Razafindralambo, “A survey on facilities for
experimental internet of things research,” Communications
Magazine, IEEE, vol. 49, no. 11, pp. 58-67, 2011.

G. Werner-Allen, P. Swieskowski, and M. Welsh, “Motelab:
A wireless sensor network testbed,” in Proceedings of the 4th
international symposium on Information processing in sensor
networks. 1EEE Press, 2005, p. 68.

Y. Demchenko, J. Van der Ham, V. Yakovenko, C. De Laat,
M. Ghijsen, and M. Cristea, “On-demand provisioning of
Cloud and Grid based infrastructure services for collabora-
tive projects and groups,” in Collaboration Technologies and
Systems (CTS), 2011 International Conference on. 1EEE, 2011,
pp. 134-142.

P. Papadimitriou, O. Maennel, A. Greenhalgh, A. Feld-
mann, and L. Mathy, “Implementing network virtualiza-
tion for a future internet,” in 20th ITC Specialist Seminar
on Network Virtualization-Concept and Performance Aspects,
20009.

P. Skoldstrom and K. Yedavalli, “Network virtualization
and resource allocation in openflow-based wide area net-
works,” in Communications (ICC), 2012 IEEE International
Conference on. 1EEE, 2012, pp. 6622-6626.

T. Narten, E. Gray, D. Black, L. Fang, L. Kreeger,
and M. Napierala, “Problem Statement: Overlays for
Network Virtualization,” RFC 7364 (Informational),
Internet Engineering Task Force, Oct. 2014. [Online].
Available: http:/ /www.ietf.org/rfc/rfc7364.txt

http://www.ietf.org/rfc/rfc7364.txt

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

BIBLIOGRAPHY |

M. Mahalingam, D. Dutt, K. Duda, P. Agarwal,
L. Kreeger, T. Sridhar, M. Bursell, and C. Wright,
“Virtual eXtensible Local Area Network (VXLAN): A
Framework for Overlaying Virtualized Layer 2 Networks
over Layer 3 Networks,” RFC 7348 (Informational),
Internet Engineering Task Force, Aug. 2014. [Online].
Available: http:/ /www.ietf.org/rfc/rfc7348.txt

P. Garg and Y. Wang, “NVGRE: Network Virtualization
Using Generic Routing Encapsulation,” RFC 7637
(Informational), Internet Engineering Task Force, Sep.
2015. [Online]. Available: http://www.ietf.org/rfc/
rfc7637.txt

B. Davie and J. Gross, “A stateless transport tunneling
protocol for network virtualization (STT),” Expired Draft,
IETF Secretariat, Internet-Draft draft-davie-stt-04, 2014.

J. Gross, T. Sridhar, P. Garg, C. Wright, I. Ganga,
P. Agarwal, K. Duda, D. Dutt, and J. Hudson, “Geneve:
Generic Network Virtualization Encapsulation,” Expired
Draft, IETF Secretariat, Internet-Draft draft-ietf-nvo3-
geneve-00, May 2015.

R. Kawashima, S. Muramatsu, H. Nakayama, T. Hayashi,
and H. Matsuo, “SCLP: Segment-oriented Connection-
less Protocol for high-performance software tunneling in
datacenter networks,” in Network Softwarization (NetSoft),
2015 1st IEEE Conference on. IEEE, 2015, pp. 1-8.

A. Tootoonchian and Y. Ganjali, “HyperFlow: A dis-
tributed control plane for OpenFlow,” in Proceedings of the
2010 internet network management conference on Research on
enterprise networking. USENIX Association, 2010, pp. 3-3.

A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and
R. Kompella, “Towards an elastic distributed SDN
controller,” in ACM SIGCOMM Computer Communication
Review, vol. 43, no. 4. ACM, 2013, pp. 7-12.

P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi,
T. Koide, B. Lantz, B. O’Connor, P. Radoslavov, W. Snow
et al., “ONOS: towards an open, distributed SDN OS,” in

281

http://www.ietf.org/rfc/rfc7348.txt
http://www.ietf.org/rfc/rfc7637.txt
http://www.ietf.org/rfc/rfc7637.txt

282

| BIBLIOGRAPHY

[57]

[63]

[64]

Proceedings of the third workshop on Hot topics in software
defined networking. ACM, 2014, pp. 1-6.

R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. Parulkar, “Flowvisor: A
network virtualization layer,” OpenFlow Switch Consortium,
Tech. Rep, 2009.

R. Kandoi and M. Antikainen, “Denial-of-service attacks
in OpenFlow SDN networks,” in Integrated Network
Management (IM), 2015 IFIP/IEEE International Symposium
on. IEEE, 2015, pp. 1322-1326.

L. Andersson and T. Madsen, “Provider Provisioned
Virtual Private Network (VPN) Terminology,” RFC
4026 (Informational), Internet Engineering Task Force,
Mar. 2005. [Online]. Available: http://www.ietf.org/rfc/
rfc4026.txt

E. Rosen and Y. Rekhter, “BGP/MPLS IP Virtual Private
Networks (VPNs),” RFC 4364 (Proposed Standard),
Internet Engineering Task Force, Feb. 2006, updated
by RFCs 4577, 4684, 5462. [Online]. Available: http:
/ /www.ietf.org/rfc/rfc4364.txt

K. Wallace, CCNP Routing and Switching ROUTE 300-101
Official Cert Guide. Cisco Press, 2014.

“Cisco, Cisco Active Network Abstraction 3.7.2 Reference
Guide,” 2015, http://www.cisco.com/c/en/us/td/docs/
net_mgmt/active_network_abstraction/3-7-2 /reference/
guide/ANA372RefGuide/vrf.html.

“Cisco, Easy Virtual Network: Simplifying Layer 3
Network Virtualization,” 2015, http://www.cisco.
com/c/en/us/products/collateral /ios-nx-os-software /
layer-3-vpns-13vpn/whitepaper_c11-638769.pdf.

A. Bavier, N. Feamster, M. Huang, L. Peterson, and
J. Rexford, “In VINI veritas: realistic and controlled
network experimentation,” in ACM SIGCOMM Computer
Communication Review, vol. 36, no. 4. ACM, 2006, pp. 3—
14.

http://www.ietf.org/rfc/rfc4026.txt
http://www.ietf.org/rfc/rfc4026.txt
http://www.ietf.org/rfc/rfc4364.txt
http://www.ietf.org/rfc/rfc4364.txt
http://www.cisco.com/c/en/us/td/docs/net_mgmt/active_network_abstraction/3-7-2/reference/guide/ANA372RefGuide/vrf.html
http://www.cisco.com/c/en/us/td/docs/net_mgmt/active_network_abstraction/3-7-2/reference/guide/ANA372RefGuide/vrf.html
http://www.cisco.com/c/en/us/td/docs/net_mgmt/active_network_abstraction/3-7-2/reference/guide/ANA372RefGuide/vrf.html
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/layer-3-vpns-l3vpn/whitepaper_c11-638769.pdf
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/layer-3-vpns-l3vpn/whitepaper_c11-638769.pdf
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/layer-3-vpns-l3vpn/whitepaper_c11-638769.pdf

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

BIBLIOGRAPHY |

M. Huang, “VNET: PlanetLab virtualized network access,”
Tech. Rep. PDN-05-029, PlanetLab Consortium, Tech.
Rep., 2005.

“NEC ProgrammableFlow: Redefining Cloud Network
Virtualization with OpenFlow (NEC white paper),” 2015,
http:/ /www.necam.com/sdn/doc.cfm?t=WhitePapers.

L. Andersson and E. Rosen, “Framework for
Layer 2 Virtual Private Networks (L2VPNs),” RFC
4664 (Informational), Internet Engineering Task Force,
Sep. 2006. [Online]. Available: http://www.ietf.org/rfc/
rfc4664.txt

R. Callon and M. Suzuki, “A Framework for
Layer 3 Provider-Provisioned Virtual Private Networks
(PPVPNs),” RFC 4110 (Informational), Internet
Engineering Task Force, Jul. 2005. [Online]. Available:
http:/ /www.ietf.org/rfc/rfc4110.txt

T. Dierks and E. Rescorla, “The Transport Layer
Security (TLS) Protocol Version 1.2,” RFC 5246 (Proposed
Standard), Internet Engineering Task Force, Aug. 2008,
updated by RFCs 5746, 5878, 6176, 7465, 7507, 7568,
7627, 7685. [Online]. Available: http://www.ietf.org/rfc/
rfc5246.txt

“VMware NSX Network Virtualization Platform,” 2015,
https:/ /www.vmware.com/files / pdf/products /nsx/
VMware-NSX-Network-Virtualization-Platform-WP.pdf.

J. Mudigonda, P. Yalagandula,]. Mogul, B. Stiekes,
and Y. Pouffary, “NetLord: a scalable multi-tenant
network architecture for virtualized datacenters,” in ACM
SIGCOMM Computer Communication Review, vol. 41, no. 4.
ACM, 2011, pp. 62-73.

A. Edwards, A. Fischer, and A. Lain, “Diverter: a new ap-
proach to networking within virtualized infrastructures,”
in Proceedings of the 1st ACM workshop on Research on
enterprise networking. ACM, 2009, pp. 103-110.

P. Knight and C. Lewis, “Layer 2 and 3 virtual private
networks: taxonomy, technology, and standardization

283

http://www.necam.com/sdn/doc.cfm?t=WhitePapers
http://www.ietf.org/rfc/rfc4664.txt
http://www.ietf.org/rfc/rfc4664.txt
http://www.ietf.org/rfc/rfc4110.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
https://www.vmware.com/files/pdf/products/nsx/VMware-NSX-Network-Virtualization-Platform-WP.pdf
https://www.vmware.com/files/pdf/products/nsx/VMware-NSX-Network-Virtualization-Platform-WP.pdf

284

| BIBLIOGRAPHY

efforts,” Communications Magazine, IEEE, vol. 42, no. 6, pp.
124-131, 2004.

[74] T. Takeda, “Framework and Requirements for Layer
1 Virtual Private Networks,” RFC 4847 (Informational),
Internet Engineering Task Force, Apr. 2007. [Online].
Available: http:/ /www.ietf.org /rfc/rfc4847 .txt

[75] S. Frankel, P. Hoffman, A. Orebaugh, and R. Park, “Guide
to SSL VPNs,” NIST Special Publication, vol. 800, p. 113,
2008.

[76] S. Kent, “IP Encapsulating Security Payload (ESP),” RFC
4303 (Proposed Standard), Internet Engineering Task
Force, Dec. 2005. [Online]. Available: http://www.ietf.
org/rfc/rfc4303.txt

[77] J. Lau, M. Townsley, and I. Goyret, “Layer Two
Tunneling Protocol - Version 3 (L2TPv3),” RFC 3931
(Proposed Standard), Internet Engineering Task Force,
Mar. 2005, updated by RFC 5641. [Online]. Available:
http:/ /www.ietf.org/rfc/rfc3931.txt

[78] K. Hamzeh, G. Pall, W. Verthein, J. Taarud, W. Little, and
G. Zorn, “Point-to-Point Tunneling Protocol (PPTP),” RFC
2637 (Informational), Internet Engineering Task Force,
Jul. 1999. [Online]. Available: http://www.ietf.org/rfc/
rfc2637.txt

[79] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina,
“Generic Routing Encapsulation (GRE),” RFC 2784
(Proposed Standard), Internet Engineering Task Force,
Mar. 2000, updated by RFC 2890. [Online]. Available:
http:/ /www.ietf.org/rfc/rfc2784.txt

[80] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C.
Mogul, “SPAIN: COTS Data-Center Ethernet for Multi-
pathing over Arbitrary Topologies,” in NSDI, 2010, pp.
265-280.

[81] M. Casado, T. Garfinkel, A. Akella, M.]J. Freedman,
D. Boneh, N. McKeown, and S. Shenker, “SANE: A
Protection Architecture for Enterprise Networks,” in
Usenix Security, 2006.

http://www.ietf.org/rfc/rfc4847.txt
http://www.ietf.org/rfc/rfc4303.txt
http://www.ietf.org/rfc/rfc4303.txt
http://www.ietf.org/rfc/rfc3931.txt
http://www.ietf.org/rfc/rfc2637.txt
http://www.ietf.org/rfc/rfc2637.txt
http://www.ietf.org/rfc/rfc2784.txt

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

BIBLIOGRAPHY |

M. Casado, M. J. Freedman, J. Pettit,]J. Luo, N. McKeown,
and S. Shenker, “Ethane: Taking control of the enterprise,”
in ACM SIGCOMM Computer Communication Review,
vol. 37, no. 4. ACM, 2007, pp. 1-12.

R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. M. Parulkar, “Can the
production network be the testbed?” in OSDI, vol. 10, 2010,

pp- 1-6.

R. Doriguzzi Corin, M. Gerola, R. Riggio, F. De Pellegrini,
and E. Salvadori, “Vertigo: Network virtualization and
beyond,” in Software Defined Networking (EWSDN), 2012
European Workshop on. 1EEE, 2012, pp. 24-29.

E. Salvadori, R. Doriguzzi Corin, A. Broglio, and
M. Gerola, “Generalizing virtual network topologies in
OpenFlow-based networks,” in Global Telecommunications
Conference (GLOBECOM 2011), 2011 IEEE. 1EEE, 2011, pp.
1-6.

A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe,
G. Parulkar, E. Salvadori, and B. Snow, “OpenVirteX: Make
your virtual SDNs programmable,” in Proceedings of the
third workshop on Hot topics in software defined networking.
ACM, 2014, pp. 25-30.

J. E. van der Merwe and I. M. Leslie, “Switchlets and
dynamic virtual ATM networks,” in Integrated Network
Management V. Springer, 1997, pp. 355-368.

J. E. Van der Merwe, S. Rooney, 1. Leslie, and S. Crosby,
“The Tempest-a practical framework for network pro-
grammability,” Network, IEEE, vol. 12, no. 3, pp. 20-28,
1998.

L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir,
“Experiences building PlanetLab,” in Proceedings of
the 7th symposium on Operating systems design and
implementation, ser. OSDI '06. Berkeley, CA, USA: USENIX
Association, 2006, pp. 351-366. [Online]. Available:
http:/ /dl.acm.org/citation.cfm?id=1298455.1298489

285

http://dl.acm.org/citation.cfm?id=1298455.1298489

286

| BIBLIOGRAPHY

[90]

[91]

[94]

K. Park and V. S. Pai, “CoMon: a mostly-scalable mon-
itoring system for PlanetLab,” ACM SIGOPS Operating
Systems Review, vol. 40, no. 1, pp. 65-74, 2006.

G. D. Stasi, R. Bifulco, F. P. D’Elia, S. Avallone,
R. Canonico, A. Apostolaras, N. Giallelis, T. Korakis, and
L. Tassiulas, “Experimenting with P2P traffic optimization
for wireless mesh networks in a federated OMF-PlanetLab

environment,” in Wireless Communications and Networking
Conference (WCNC), 2011 IEEE. 1EEE, 2011, pp. 719-724.

P. Szegedi, S. Figuerola, M. Campanella, V. Maglaris,
and C. Cervell6-Pastor, “With Evolution for Revolution:
Managing FEDERICA for Future Internet Research,”
Comm. Mag., vol. 47, no. 7, pp. 34-39, Jul. 2009.
[Online]. Available: http://dx.doi.org/10.1109/MCOM.
2009.5183470

P. Szeged;i, J. F. Riera,]. Garcia-Espin, M. Hidell, P. S§jodin,
P. Séderman, M. Ruffini, D. O’Mahony, A. Bianco,
L. Giraudo et al., “Enabling future internet research: the
FEDERICA case,” Communications Magazine, IEEE, vol. 49,
no. 7, pp. 54-61, 2011.

J. Sobieski, F. Farina, S. Naegele-Jackson, K. Kramaric,
B. Pietrzak, and M. Hazlinsky, “GEANT Testbed Service
External Domain Ports: A Demo on Multiple Domain
Connectivity,” in Software Defined Networks (EWSDN), 2015
Fourth European Workshop on. 1EEE, 2015, pp. 113-114.

“GEANT, GEANT OpenFlow Facility Design,” 2015,
http://geant3.archive.geant.net/Media_Centre/Media_
Library/Media%20Library/GN3-13-003_DJ1-2-1_
Technology-Investigation-of-OpenFlow-and-Testing.pdf.

T. Salmito, L. Ciuffo, I. Machado, M. Salvador, M. Stanton,
N. Rodriguez, A. Abelem, L. Bergesio, S. Sallent, and
L. Baron, “FIBRE-An International Testbed for Future
Internet Experimentation,” in Simpdsio Brasileiro de Redes de
Computadores e Sistemas Distribuidos-SBRC 2014, 2014, pp.
p—969.

http://dx.doi.org/10.1109/MCOM.2009.5183470
http://dx.doi.org/10.1109/MCOM.2009.5183470
http://geant3.archive.geant.net/Media_Centre/Media_Library/Media%20Library/GN3-13-003_DJ1-2-1_Technology-Investigation-of-OpenFlow-and-Testing.pdf
http://geant3.archive.geant.net/Media_Centre/Media_Library/Media%20Library/GN3-13-003_DJ1-2-1_Technology-Investigation-of-OpenFlow-and-Testing.pdf
http://geant3.archive.geant.net/Media_Centre/Media_Library/Media%20Library/GN3-13-003_DJ1-2-1_Technology-Investigation-of-OpenFlow-and-Testing.pdf

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]
[105]

BIBLIOGRAPHY |

G. Carrozzo, R. Monno, B. Belter, R. Krzywania, K. Pen-
tikousis, M. Broadbent, T. Kudoh, A. Takefusa, A. Vieo-
Oton, C. Fernandez et al., “Large-scale SDN experiments
in federated environments,” in Smart Communications
in Network Technologies (SaCoNeT), 2014 International
Conference on. 1EEE, 2014, pp. 1-6.

“The FELIX architecture for large scale SDN and
NSI experiments (FELIX white paper),” 2015,
http:/ /www.ict-felix.eu/wp-content/uploads/2015/

04 /FELIX-whitepaper-architecture-final. pdf.

K. Shiomoto, I. Inoue, and E. Oki, “Network virtualization
in high-speed huge-bandwidth optical circuit switching
network,” in INFOCOM Workshops 2008, IEEE. 1EEE, 2008,

pp- 1-6.

R. Nejabati, E. Escalona, S. Peng, and D. Simeonidou,
“Optical network virtualization,” in Optical Network Design
and Modeling (ONDM), 2011 15th International Conference on.
IEEE, 2011, pp. 1-5.

K. Kannan and S. Banerjee, “Compact TCAM: Flow
entry compaction in TCAM for power aware SDN,” in
Distributed Computing and Networking. Springer, 2013, pp.
439-444.

R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. Parulkar, “Can the
Production Network be the Testbed?” in Proceedings of
the 9th USENIX conference on Operating systems design and
implementation, ser. OSDI'10. USENIX Association, 2010,
pp- 1-6. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1924943.1924969

“Big Virtual Switch and OpenStack, Big Switch Net-
works,” 2015, http://www.bigswitch.com/sites/default/
files/sdn_resources/openstack_aag.pdf.

“IEEE Standard for Ethernet,” IEEE 802.3-2012, 2012.

C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and
A. W. Moore, “OFLOPS: An Open Framework for

287

http://www.ict-felix.eu/wp-content/uploads/2015/04/FELIX-whitepaper-architecture-final.pdf
http://www.ict-felix.eu/wp-content/uploads/2015/04/FELIX-whitepaper-architecture-final.pdf
http://dl.acm.org/citation.cfm?id=1924943.1924969
http://dl.acm.org/citation.cfm?id=1924943.1924969
http://www.bigswitch.com/sites/default/files/sdn_resources/openstack_aag.pdf
http://www.bigswitch.com/sites/default/files/sdn_resources/openstack_aag.pdf

288

| BIBLIOGRAPHY

OpenFlow Switch Evaluation,” in Proceedings of the 13th
international conference on Passive and Active Measurement,
ser. PAM’12. Berlin, Heidelberg: Springer-Verlag, 2012,
pp- 85-95. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-28537-0_9

[106] J.-W. Hu, W.-Y. Huang, H.-M. Tseng, H.-L. Lee, L.-C. Ku,

[107]

[108]

[109]

[110]

[111]

[112]

S.-C. Lin, T.-L. Liu, and C.-S. Yang, “Future Internet in
Taiwan: Design and Research Activities over TWAREN
Network,” in Innovative Mobile and Internet Services in
Ubiquitous Computing (IMIS), 2012 Sixth International
Conference on. 1EEE, 2012, pp. 329-333.

W.-Y. Huang, J.-W. Hu, S.-C. Lin, T.-L. Liu, P.-W. Tsai,
C.-S. Yang, F. I. Yeh,]J. H. Chen, and J. J. Mambretti,
“Design and Implementation of an Automatic Network
Topology Discovery System for the Future Internet Across
Different Domains,” in Advanced Information Networking
and Applications Workshops (WAINA), 2012 26th International
Conference on. 1EEE, 2012, pp. 903-908.

P. Kutch, “PCI-SIG SR-IOV primer: An introduction to
SR-IOV technology,” Intel application note, pp. 321211-002,
2011.

N. Chowdhury, E-E. Zaheer, and R. Boutaba, “iMark: An
identity management framework for network virtualiza-
tion environment,” in Integrated Network Management, 2009.
IM’09. IFIP/IEEE International Symposium on. 1EEE, 2009,
pp- 335-342.

“IEEE Organizationally Unique Identifier (OUI),” 2015,
http:/ /standardsoui.ieee.org/oui.txt.

“Metro Ethernet Forum (MEF) Technical Specifications,”
2015, https:/ /www.mef.net/carrier-ethernet/
technical-specifications.

R. Droms, “Dynamic Host Configuration Protocol,” RFC
2131 (Draft Standard), Internet Engineering Task Force,
Mar. 1997, updated by RFCs 3396, 4361, 5494, 6842.
[Online]. Available: http:/ /www.ietf.org/rfc/rfc2131.txt

http://dx.doi.org/10.1007/978-3-642-28537-0_9
http://dx.doi.org/10.1007/978-3-642-28537-0_9
http://standardsoui.ieee.org/oui.txt
https://www.mef.net/carrier-ethernet/technical-specifications
https://www.mef.net/carrier-ethernet/technical-specifications
http://www.ietf.org/rfc/rfc2131.txt

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

BIBLIOGRAPHY |

“IEEE Standards for Local Area Networks: Carrier Sense
Multiple Access With Collision Detection (CSMA /CD)
Access Method and Physical Layer Specifications,” IEEE
802.3-1985, 1985.

“VMware vSphere 6.0, MAC address
management,” 2015, https:/ /pubs.vmware.com/
vsphere-60/topic/com.vmware.ICbase/PDF/
vsphere-esxi-vcenter-server-601-networking-guide.pdf.

R. Droms, J. Bound, B. Volz, T. Lemon, C. Perkins, and
M. Carney, “Dynamic Host Configuration Protocol for
IPv6 (DHCPv6),” RFC 3315 (Proposed Standard), Internet
Engineering Task Force, Jul. 2003, updated by RFCs 4361,
5494, 6221, 6422, 6644, 7083, 7227, 7283, 7550. [Online].
Available: http:/ /www.ietf.org/rfc/rfc3315.txt

S. Thomson, T. Narten, and T. Jinmei, “IPv6 Stateless
Address Autoconfiguration,” RFC 4862 (Draft Standard),
Internet Engineering Task Force, Sep. 2007, updated by
REC 7527. [Online]. Available: http://www.ietf.org/rfc/
rfc4862.txt

K. Benton, L.]J. Camp, and C. Small, “Openflow
vulnerability assessment,” in Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined
networking. ACM, 2013, pp. 151-152.

“IEEE Standard for Local and metropolitan area networks
- Port-Based Network Access Control,” IEEE 802.1X-2010,
2010.

“eXtensible Access Control Markup Language (XACML)
Version 3.0. 22 January 2013,” OASIS Standard, 2013.

P. Congdon, M. Sanchez, and B. Aboba, “RADIUS
Attributes for Virtual LAN and Priority Support,” RFC
4675 (Proposed Standard), Internet Engineering Task
Force, Sep. 2006. [Online]. Available: http://www.ietf.
org/rfc/rfc4675.txt

, “RADIUS Filter Rule Attribute,” RFC 4849 (Proposed
Standard), Internet Engineering Task Force, Apr. 2007.
[Online]. Available: http:/ /www.ietf.org/rfc/rfc4849.txt

289

https://pubs.vmware.com/vsphere-60/topic/com.vmware.ICbase/PDF/vsphere-esxi-vcenter-server-601-networking-guide.pdf
https://pubs.vmware.com/vsphere-60/topic/com.vmware.ICbase/PDF/vsphere-esxi-vcenter-server-601-networking-guide.pdf
https://pubs.vmware.com/vsphere-60/topic/com.vmware.ICbase/PDF/vsphere-esxi-vcenter-server-601-networking-guide.pdf
http://www.ietf.org/rfc/rfc3315.txt
http://www.ietf.org/rfc/rfc4862.txt
http://www.ietf.org/rfc/rfc4862.txt
http://www.ietf.org/rfc/rfc4675.txt
http://www.ietf.org/rfc/rfc4675.txt
http://www.ietf.org/rfc/rfc4849.txt

290

| BIBLIOGRAPHY

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

A. K. Nayak, A. Reimers, N. Feamster, and R. Clark, “Reso-
nance: dynamic access control for enterprise networks,” in
Proceedings of the 1st ACM workshop on Research on enterprise
networking. ACM, 2009, pp. 11-18.

Y. Yamasaki, Y. Miyamoto,]J. Yamato, H. Goto, and
H. Sone, “Flexible access management system for campus
VLAN based on OpenFlow,” in Applications and the Internet
(SAINT), 2011 IEEE/IPS] 11th International Symposium on.
IEEE, 2011, pp. 347-351.

S. Kinoshita, T. Watanabe, J. Yamato, H. Goto, and H. Sone,
“Implementation and evaluation of an OpenFlow-based
access control system for wireless LAN roaming,” in
Computer Software and Applications Conference Workshops
(COMPSACW), 2012 IEEE 36th Annual. 1EEE, 2012, pp.
82-87.

J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans,
G. Gross, B. de Bruijn, C. de Laat, M. Holdrege,
and D. Spence, “AAA Authorization Framework,” RFC
2904 (Informational), Internet Engineering Task Force,
Aug. 2000. [Online]. Available: http://www.ietf.org/rfc/
rfc2904. txt

B. Aboba and M. Beadles, “The Network Access
Identifier,” RFC 2486 (Proposed Standard), Internet
Engineering Task Force, Jan. 1999, obsoleted by RFC 4282.
[Online]. Available: http://www.ietf.org/rfc/rfc2486.txt

D. Ferraiolo, J. Cugini, and D. R. Kuhn, “Role-based access
control (RBAC): Features and motivations,” in Proceedings
of 11th annual computer security application conference, 1995,
pp- 241-48.

E. Yuan and J. Tong, “Attributed based access control
(ABAC) for web services,” in Web Services, 2005. ICWS
2005. Proceedings. 2005 IEEE International Conference on.
IEEE, 2005.

N. Gude, T. Koponen,]. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker, “Nox: Towards an
Operating System for Networks,” SIGCOMM Comput.

http://www.ietf.org/rfc/rfc2904.txt
http://www.ietf.org/rfc/rfc2904.txt
http://www.ietf.org/rfc/rfc2486.txt

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

BIBLIOGRAPHY |

Commun. Rev., vol. 38, no. 3, pp. 105-110, Jul. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1384609.
1384625

C. Argyropoulos, D. Kalogeras, G. Androulidakis, and
V. Maglaris, “PaFloMon - A Slice Aware DPassive
Flow Monitoring Framework for OpenFlow Enabled
Experimental Facilities,” in Software Defined Networking
(EWSDN), 2012 European Workshop on, 2012, pp. 97-102.

“Spirent, How to test 10 Gigabit Ethernet performance
(white paper),” 2012, http:/ /www.spirent.com/~/media/
White%?20Papers/Broadband /PAB/How_to_Test_10G_
Ethernet_WhitePaper.pdf.

S. Bradner, “Benchmarking Terminology for Network
Interconnection Devices,” RFC 1242 (Informational),
Internet Engineering Task Force, Jul. 1991, updated by
RFC 6201. [Online]. Available: http://www.ietf.org/rfc/
rfc1242.txt

“Intel Open Network Platform Server Release 1.5
Performance Test Report,” 2015, https://download.01.
org/packet-processing/ONPS1.5/Intel_ONP_Server_
Release_1.5_Performance_Test_Report_Rev1.2.pdf.

M. H. Mazlan, S. H. S. Ariffin, M. Balfagih, S. N. M. Has-
nan, and S. Haseeb, “Latency evaluation of authentication
protocols in centralized 802.11 architecture,” 2012.

A. S. Tanenbaum and M. Van Steen, Distributed Systems.
Prentice-Hall, 2007.

“IEEE Standard for Local and metropolitan area networks -
Media Access Control (MAC) Security,” IEEE Std 802.1AE-
2006, 2006.

T. C. Clancy, “Secure handover in enterprise WLANS:
CAPWAP, HOKEY, and IEEE 802.11 r,” Wireless Commu-
nications, IEEE, vol. 15, no. 5, pp. 80-85, 2008.

291

http://doi.acm.org/10.1145/1384609.1384625
http://doi.acm.org/10.1145/1384609.1384625
http://www.spirent.com/~/media/White%20Papers/Broadband/PAB/How_to_Test_10G_Ethernet_WhitePaper.pdf
http://www.spirent.com/~/media/White%20Papers/Broadband/PAB/How_to_Test_10G_Ethernet_WhitePaper.pdf
http://www.spirent.com/~/media/White%20Papers/Broadband/PAB/How_to_Test_10G_Ethernet_WhitePaper.pdf
http://www.ietf.org/rfc/rfc1242.txt
http://www.ietf.org/rfc/rfc1242.txt
https://download.01.org/packet-processing/ONPS1.5/Intel_ONP_Server_Release_1.5_Performance_Test_Report_Rev1.2.pdf
https://download.01.org/packet-processing/ONPS1.5/Intel_ONP_Server_Release_1.5_Performance_Test_Report_Rev1.2.pdf
https://download.01.org/packet-processing/ONPS1.5/Intel_ONP_Server_Release_1.5_Performance_Test_Report_Rev1.2.pdf

	Abstract
	Resumen
	Laburpena
	Resumen Extendido
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Contextualisation
	1.2 Motivation
	1.3 Research Objectives
	1.4 Document Organisation

	2 State of the Art
	2.1 Network Virtualisation
	2.1.1 Network Device Architecture
	2.1.2 Network Virtualisation Architecture
	2.1.3 Network Virtualisation Definition

	2.2 Network Virtualisation Taxonomy
	2.2.1 Network Virtualisation Type
	2.2.2 Virtual Instance Namespace
	2.2.3 Data plane Adaptation Mechanism
	2.2.4 VIAP Classification
	2.2.5 Network Topology
	2.2.6 Virtual Instance Creation Point
	2.2.7 Isolation level

	2.3 Network Virtualisation Survey
	2.3.1 vNode approaches
	2.3.2 Overlay approaches
	2.3.3 SDNeV approaches
	2.3.4 Conclusions from NV survey

	2.4 Experimental Facilities Survey
	2.4.1 Non-SDN facilities
	2.4.2 SDN enabled facilities

	2.5 Conclusions
	2.5.1 Requirements

	3 Contributions
	3.1 Layer 2 Prefix-based Network Virtualisation (L2PNV)
	3.1.1 Requirements
	3.1.2 L2PNV taxonomy
	3.1.3 Virtual network instance isolation based on MAC prefixes
	3.1.4 Virtual network instance implementation details
	3.1.5 Conclusion

	3.2 MAC Address Configuration Protocol (MACP)
	3.2.1 Layer 2 Addressing Challenges
	3.2.2 Related Work
	3.2.3 MACP Architecture
	3.2.4 Conclusion

	3.3 Flow-based Network Access Control (FlowNAC)
	3.3.1 Contextualisation of Network Access Control systems
	3.3.2 Related Work
	3.3.3 FlowNAC Architecture
	3.3.4 Conclusion

	3.4 Summary of the proposed solutions and conclusion

	4 Validation
	4.1 The EHU OpenFlow Enabled Facility (EHU-OEF)
	4.1.1 Experimental Facility Architecture
	4.1.2 The EHU-OEF Experimental Facility
	4.1.3 Using EHU-OEF for experimentation

	4.2 Analytical Validation
	4.2.1 L2PNV Isolation Enforcing process
	4.2.2 L2PNV Slice Definition for Legacy Protocols Support

	4.3 Experimental Studies
	4.3.1 MAC Prefix Matching Performance Numbers
	4.3.2 MACP Performance Numbers
	4.3.3 FlowNAC Performance Numbers

	4.4 Conclusions

	5 Conclusions
	5.1 Summary
	5.2 Contributions
	5.3 Dissemination of results
	5.4 Future Work

	Bibliography

