eman ta zabal zazu

o

Universidad Euskal Herriko informatika
del Pais Vasco Unibertsitatea fakultatea

\

facultad de
informatica

Master’s Degree

Computational Engineering and Intelligent Systems

(Department of Computer Science and Artificial Intelligence)

Master thesis

Face Beauty Analysis
via Manifold based Semi-Supervised

Learning

Anne Elorza Deias

Directors
Fadi Dornaika

Ignacio Arganda Carreras

MD

Master eta Doktorego Eskola
Escuela de Mésterqucmyac‘o

Master and Doctoral Sc

Acknowledgements

I would like to thank my directors, Fadi and Ignacio, for their sensible and practical
advices, as well as their extraordinarily prompt responses to all my e-mails, which
must not be taken for granted. My family and closest friends, who are not madly
keen on science, and nonetheless listened attentively to the finest details of this work
(or so did they say). I especially thank Maria, for understanding, Tonina, for trying
to understand, Izaskun, for being there, Uxue, for popping up from time to time,
Lierni and Gaizka, for teaching me the topology of knots and ropes, and Asier, for
our nocturnal discussions about Lebesgue’s integral in neural networks.

Summary

Beauty has always played an important role in society, implicitly influencing the hu-
man interactions of our daily lives and more significant aspects, such as the mate
choice or job interviews. And now, with the progress made in deep learning and fea-
ture extraction, automatic facial beauty analysis has become an emerging research
topic too. However, the subjectivity of beauty still hinders the development in this
area, due to the cost of collecting reliable labeled data, since the beauty score of an
individual has to be determined according to various raters.

To address this problem, we study the performances of four different semi-supervised
manifold based algorithms, which can take advantage of both labeled and unlabeled
data in the training phase, and we use them in two different datasets: SCUT-FBP
and M2B. The learning algorithms are Local and Global Consistency, Flexible Man-
ifold Embedding and Kernel Flexible Manifold Embedding. There is an additional
algorithm, which, unlike the rest of them, instead of performing classification, ob-
tains a non-linear transformation of the data to make the classification easier. All of
these algorithms were designed to work on discrete classes, but we perform regres-
sion, where labels are real numbers. So the first step, in chapter 2, is to analyse how
the algorithms can be adapted to regression and to hypothesize which problems we
could be encountering in this process. Secondly, we empirically test them (chapter
3). The best results are obtained with KFME on both datasets, achieving a mean
average error of 0.0550 (out of 1) and a Pearson correlation of 0.8446 on SCUT-FBP
dataset. With respect to M?B dataset, a mean average error of 0.1357 and a Pear-
son correlation of 0.4469 are achieved on eastern faces, while a mean average error
of 0.1132 and a Pearson correlation of 0.6322 are achieved on western faces. This
dissertation ends with a final chapter discussing the results and proposing new topics
of study for future work.

Contents

1 Introduction
1.1 Motivation
1.2 Related work: Beauty analysis in computer science
1.3 Ourstudy
1.3.1 Datasets
2 Learning algorithms

2.1 Semi-supervised algorithms

2.2

2.1.1
2.1.2
2.1.3
2.14
2.1.5
2.1.6

Mathematical notation of the semi-supervised algorithms . . .
Local and Global Consistency
Flexible Manifold Embedding
Kernel Flexible Manifold Embedding
Flexible Graph-based Semi-supervised Manifold Embedding

Similarity graphso oo

Supervised algorithmso

2.2.1
2.2.2
2.2.3
224

Mathematical notation of the supervised algorithms
1-Nearest Neighbor
Ridge Regression
Support Vector Regression

Empirical study

3.1 General methodology oo

3.2
3.3

3.4

3.1.1
3.1.2

Face features
Model evaluation

Performance metrics
Results on SCUT-FBP dataset

3.3.1
3.3.2
3.3.3
3.3.4
3.3.9
3.3.6
3.3.7

The baselineo
Local and Global Consistency
Flexible Manifold Embedding
Kernel Flexible Manifold Embedding
Flexible Semi-supervised Embedding
Supervised algorithms
Method comparison: Regression Error Characteristic curve . .

Results on M2B dataset

3.4.1
3.4.2
3.4.3
3.4.4

The baseline o
Local and Global Consistency
Flexible Manifold Embedding
Kernel Flexible Manifold Embedding

7

10
11
11

15
15
15
16
19
21
22
24
26
26
26
27
27

40

8 CONTENTS

3.4.5 Flexible Semi-supervised Embedding 42

3.5 Tables 43

4 Conclusion 53
4.1 Discussion of the results 53

4.2 Future work H4

Chapter 1

Introduction

1.1 Motivation

This work is a comparative study of manifold based semi-supervised algorithms ap-
plied to the specific problem of automatic facial beauty assessment. The statement
of the problem can be the following: given a facial image, what would its beauty
score, ranging from 1 to 10, be? Its resolution, instead, is a highly complex matter.

The main problem we will try to address is the scarcity of labeled data regarding
this specific topic, which is due to its subjective nature. It is well known that beauty
lies in the eye of the beholder, so obtaining reliable databases requires a great deal
of human labor. In order to obtain meaningful labels, many raters are needed and,
usually, the ground truth label of an image is considered to be the average score of
all the ratings given by different raters. So, in this context, semi-supervised learning
appears to be particularly appropriate. Unlike supervised learning, which just makes
use of labeled data, this approach utilizes the information underlying the unlabeled
data as well. There exist several ways of taking advantage of unlabeled samples.
In our case, we have chosen graph-based methods, which, roughly speaking, work
under the assumption that similar samples should share similar labels. Thinking
about beauty, it seems quite reasonable to assume that when two faces resemble each
other they should be similarly attractive. This abstract idea can be materialized
by creating a fully-connected weighted graph, in which nodes are samples and the
weights between each pair of nodes represent their similarities. Chapter 2 specifies
this mechanism in greater detail.

As one can imagine, automatic beauty evaluation is not limited to exploiting as much
information as one can and many other issues arise during its study. For example, a
crucial aspect is which features represent best a face or, if one prefers philosophy over
technicity, they may wonder whether a machine will ever be able to learn something
so seemingly human as beauty perception. In the next section, a brief review will be
presented, and we will see that these queries and others have already been made in
the past.

10 CHAPTER 1. INTRODUCTION

1.2 Related work: Beauty analysis in computer
science

The first automatic facial beauty system [1], published in 2001, aimed at classifying
beauty in 4 different classes. Each image was described by 8 ratios (e.g. the ratio of
the horizontal distance between the eyes to the average vertical distance between the
eyes and the mouth), which were supposed to capture the essence of beauty accord-
ing to previous studies made by psychologists and biologists. This means there were
only 8 features, and the performance of the classifier strongly depended on a correct
localization of the eyes and the mouth. The dataset consisted of 80 photos, each of
them had been rated by 12 individuals among the 4 classes, and the ground truth
label was the median of all raters’ ratings. The classifyer was a variant of k-nearest
neighbors.

Since then, many aspects of the research have been developed. The first accurate fa-
cial attractiveness predictor [9, 10] used a high number of features: 98 image features,
90 geometric and 8 related to face simmetry, hair and skin color and skin smooth-
ness. Their study, along with others [4], reinforced the idea that beauty perception
is something a machine can learn. However, together with the still limited size of
the dataset (around 90 images), this study still had another major flaw: the process
of feature extraction was not fully automatic. In fact, the geometric features were
based on landmarks. These were found by an automatic engine capable of identifying
eyes, nose, lips, eyebrows, and head contour; yet some of them failed to be correctly
identified and had to be adjusted manually. This drawback was firstly overcome by
building a family of convolutional neural networks whose input was the raw image
and the output was the score [7].

One of the principal challenges of the research in this field has been to build accu-
rate facial representations, which can be either feature-based, holistic or hybrid. In
the first category one can find geometric, color, texture or other local representa-
tions. Geometric representations use landmark points and consider their positions,
distances between them or ratios of these distances, and some of the studies have also
focused on the relationship between the golden ratio and beauty [16]. On the other
hand, the holistic approach uses the global information of the face, instead of local
features, e.g., using eigenfaces [4]. This approach also includes recent representations
learnt with deep learning [6, 21].

Since 2013, the studies in this area have partly focused on constructing larger and
reliable benchmarks [13, 12, 22]. Many recent works make use of various neural
networks [6, 13, 22, 23]. One paper utilizes semi-supervised learning [6]; more specif-
ically, it uses deep self-taught learning. This strategy combines the semi-supervised
setting with deep learning in order to extract more meaningful features, whereas the
classification remains supervised.

If one wishes a thorough insight into the related work, a complete review can be
found at [11].

1.3. OUR STUDY 11

1.3 Our study

The problem we will be facing will be regression, where labels belong to a continuous
space, namely the interval of possible scores, rather than a restricted set of discrete
classes. For this purpose we will use four semi-supervised manifold based algorithms
(see chapter 2) and a couple of classical supervised algorithms to establish the com-
parison between them, all of which have been implemented in MATLAB!. The two
datasets used in the study are described below.

1.3.1 Datasets

Two different datasets are used in this work: SCUT-FBP dataset [22] and the Multi
Modality-Beauty (M?B) dataset [13]. The former was specifically designed for auto-
matic facial beauty perception and contains high resolution front-on face portraits of
Asian females. On the other hand, the latter was developed to evaluate beauty via
face, dressing and/or voice on both Eastern and Western females and each instance in
the dataset contains information about the three modalities. However, we are only
focusing on the facial images, which unlike the ones in SCUT-FBP dataset, show
very different poses and expressions. This complicates, in consequence, the beauty
assessment, which could be found difficult even by a human rater.

SCUT-FBP dataset

SCUT-FBP dataset contains 500 high resolution front-on face portraits of Asian
females with neutral expressions, simple background and minimal occlusion, as can
be seen in figure 1.1. These characteristics prevent from taking into account irrelevant
factors in the beauty classification task.

The beauty rankings lie on the interval (1, 5) and are the result of averaging various
ratings. The ratings were collected among 75 individuals using a web based tool, as
can be seen in figure 1.2, with an average number of 70 raters per image.

The ratings aproximately follow a normal distribution (figure 1.3) with a small peak
around 4.5. This suddenly high number of beautiful individuals is “artificial”. Even
though in the real world beautiful faces constitute a small percentage of the popu-
lation, more beautiful faces were included in the database to facilitate the beauty
classification task.

Raters’ consistency and self-consistency are checked in different ways by the authors
of the paper. For instance, low standard deviations in the ratings of each image
indicate rater’s agreement in the perception of beauty.

1© 2017 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The
MathWorks, Inc. See https://es.mathworks.com/company/aboutus/policies_statements/
trademarks.html for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

https://es.mathworks.com/company/aboutus/policies_statements/trademarks.html
https://es.mathworks.com/company/aboutus/policies_statements/trademarks.html

12 CHAPTER 1. INTRODUCTION

Figure 1.1: Examples of face portraits of SCUT-FBP dataset from [22].

M?B dataset

The Multi-Modality Beauty dataset has been developed to study beauty perception
in three different modalities, in dressing, in the face and in the voice, as well as the
global beauty perceived when any of these three aspects are combined. Therefore,
the dataset contains one face photo, one full body photo and one voice snippet of
1240 females belonging to two ethnic groups: westerners and easterners (620 individ-
uals in each group). In addition, each of the females of the dataset is rated, in the
different modalities and their combinations, with various scores in the interval [1, 10].

The ratings were collected among 40 participants, which were split into two groups
depending on their ethnicity, so that each of the participants rated females of their
own ethnic group. The web tool used for this purpose can be seen in figure 1.4.
The ratings were obtained using k-wise comparison, which means that the raters are
asked to order k females according to their beauty, and then these k-wise ratings
were converted into global ratings in the interval [1, 10] by solving an optimization
problem to preserve as many pairwise preferences as possible. The drawback of this
method of collecting the labels is that, opposedly to SCUT-FBP dataset, where we
had the ratings of various raters per image, here we have a unique rating. Thus, we
cannot really measure the uncertainty of each of the labels, even if it seems to be
important, since beauty is not an absolute concept.

1.3. OUR STUDY

Change Portraits ‘

Menu

* Asian Young Female

The mmber of rated portraits: 4

The sum of portraits: 500

Facial beauty assessment
Do you agree that she is beautiful?

Strongly agree
Agree

Uncertain
Disagree

Strongly disagree

Change Last Options |

Figure 1.2: Facial beauty asses system from [22].

30 F N N T L L T
.
* Attractiveness rating
Fitting Gaussian cune
25 -
L]
L]
.
L]
20~ . .
>
8
S 15f . i
g . . 8\
10 -
. .
L] L]
L]
L] L]
5F . -
- L] "
. L] [LN] . .
L " L L]
L] L L] L aee @ L1]
0 er—seb r r - v—v L - -
1 1.5 25 3 3.5 4 4.5 5

Attractiveness rating

Figure 1.3: Histogram of the rating distribution from [22].

13

14

CHAPTER 1. INTRODUCTION

Please click the "Like" button of the female who attracts you from most to least

Figure 1.4: User interface of the attractiveness ranking tool from [13].

Chapter 2

Learning algorithms

In this chapter the mathematical background of the work is presented in two sec-
tions, the first of them regarding semi-supervised learning, where, appart from the
learning algorithms, the construction of the similarity graph is explained. Secondly,
the supervised algorithms are described. Most of the effort is put in the description
of the optimization problem that each algorithm aims at solving, so that the reader
can get the intuition of how the regression is approached and what role each of the
parameters plays. On the contrary, little attention is paid to the intricacies of how
exactly it is solved, so, for a deeper understanding of the specific functioning, one
can see the references.

2.1 Semi-supervised algorithms

In this section, the semi-supervised algorithms used in this work are explained. As
commented in the introduction, the key to exploiting the unlabeled data is the usage
of similarity graphs. Even though we may not know the labels of the unlabeled data,
we train the machine so that unlabeled instances get nearly the same labels as the
labeled instances with which they share a high similarity. Three of the presented
algorithms belong to the family of manifold based label propagation methods, which
are named so because they aim at “propagating” labels from labeled data points to
unlabeled data points according to the intrinsic manifold structures collectively re-
vealed by all the data (we will explain, in the sequel, the meaning of this idea). The
last algorithm, however, is only an embedding method which computes a non-linear
transformation of the data and offers the possibility to reduce its dimensions just
by removing a part of them, like in principal component analysis. Then, this pro-
cess has to be combined with a learning algorithm to perform the regression. Before
proceeding to the description of these algorithms, though, we will briefly explain the
mathematical notation in which they are fundamented.

2.1.1 Mathematical notation of the semi-supervised algo-
rithms

In what follows we will adopt these conventions. Matrices and vectors, as opposed
to scalars, are noted with bold font, and they can be distinguished using capital or

15

16 CHAPTER 2. LEARNING ALGORITHMS

lowercase letters respectively.

X = [X1, X0, X, X415+, X € RPXEFW g the data matrix. D is the num-
ber of features representing each sample, [is the number of labeled instances, u the
number of unlabeled instances and N = [4 u is the total number of samples. The
data matrix is represented by columns, i.e., each x;|Y, is a column feature vector
corresponding to a given sample. x;|'_, are the labeled samples, while xﬂii}ﬁrl are
the unlabeled ones.

Since our problem consists in regression, the labels are real numbers and they can
be represented as a column vector y € R¥*!. The first [rows of y will contain the
labels of the labeled instances, while the last u rows will generally be 0, since they
correspond to unlabeled data. f € RY*! will be the predicted labels. However, the
semi-supervised algorithms we are using were originally developed for classification
tasks, so, when describing classification, C' will be the number of classes. The ground
truth labels Y and the predicted labels F will be matrices in RV*¢ where Y =1if
sample ¢ belongs to class j and Y;; = 0 otherwise.

As already stated, the way of exploiting the information contained in unlabeled data
is considering a similarity graph between samples. For this sake, we have to intro-
duce a similarity matrix S € R¥*¥ (which will be symmetric, so our graph has to
be undirected). Each element S;; of S is the similarity between samples ¢ and j (the
different similarities considered in this particular work will be described below). In
addition, the Laplacian matrix of S, L, is used. L = D — S, where D is the diagonal
matrix whose elements are the row sums of S. Besides, Local and Global Consistency
uses the normalized Laplacian, L = I — D~/2SD /2 where I is the identity matrix
of size N.

Finally, 1,0 € R¥*! note vectors with all elements as 1 and 0 respectively. And
everytime a norm || - || is used, it has to be understood as the usual norm, namely,
the Euclidean norm.

2.1.2 Local and Global Consistency

Local and Global Consistency (LGC) [24] is the simplest algorithm we will be using,
since it was one of the first graph-based label propagation methods. It aims at
predicting the labels of all labeled and unlabeled instances, F, by minimizing the
following function:

-y,

,j=1

+uZ|lf vill*. (2.1)

\/_ ﬁ

where Dj; is the sum of the i-th row of S or, in other words, the sum of the similarities
of sample ¢ with all the other images.

The solution to this problem can be found analytically, deriving correctly the cost
function, and it is (I 4+ L/u)~YY, where I is the identity matrix of N dimensions.

2.1. SEMI-SUPERVISED ALGORITHMS 17

Once solved this problem and obtained a matrix F, the predicted class of an instance
¢ will be the maximum index j of the i-th row of F.

Interpretation of the cost function

The first term is the smoothness constraint, the second term is the fitting constraint
and p is the parameter which controls the trade-off between them. Intuitively, the
label smoothness tries to maintain the intrinsic structure of labeled and unlabeled
samples (we will inmediately see how), while the label fitness is the square of the Eu-
clidean distance between all the ground truth labels Y and all the predicted labels F'.
So this second term just tries to adjust as well as possible the already known labels
to the predicted ones. Simply put, this is the part in charge of the memorization of
the known labels.

The label smoothness, obtained by the term

N
D Sy

3,j=1

2
f

J

fi
VDii \/Dj;

is what allows the algorithm to learn from the unlabeled data as well. If this term did
not exist, the algorithm would just memorize the already existing labels. Generally
speaking, the label smoothness is what makes similar instances share similar labels,
although this is not precisely what the algorithm does. It is exactly what would
happen if D;; and Dj; did not appear in the expression. Why? Assuming that D;;
and Dj;; did not exist, the label smoothness would be

N
> Sylf =117

3,j=1

Y

If two images were very similar, that is if S;; was nearly 1, the difference between
their predicted labels f; and f; would be more penalized because it is pondered by
Sij, whereas if they were very dissimilar, which happens when .S;; tends to be 0, them
having very different labels would almost not increase the cost.

So what is the effect of adding the term D;; to the equation? Let i; and iy be two
labeled instances, the first of them with a high D,,;, associated while the second one
has a low D,,;, associated. Supposing there is an unlabeled instance j very similar to
both of them, that is S;,; and S;,; are nearly 1, what happens to the predicted label
of sample j7 Since D;,;, is high, f;, /1/D;,;, will be low, and, hence, when minimizing

N 2

2> S

,j=1

f, f

J

vDii \/D;;

Y

the influence of 4; over j will be moderate, since f;/,/D;; will tend to be proportional

to f;, but having a small value. On the contrary, since D,,;, is low, £, /1/D;,:, will
be high and thus this term will be very influential with respect to f;.

18 CHAPTER 2. LEARNING ALGORITHMS

Now, recalling the definition of D;; (it is the sum of the i-th row in S), we deduce
that the most influential samples are the ones being the least similar to the rest.

A simple example to understand the role of Dy

To illustrate this explanation, we may consider a very simple similarity graph (see

figure 2.1).
0.9 o 06

Figure 2.1: A simple example to understand the role of D;; in the cost function.

In this example, we can find four individuals A, B, C' and D and the similarities
between them. Each color represents a class, except white color, which indicates
that a node is unlabeled. In our case, A is the only unlabeled node and the rest of
them belong to different classes. The weights of the edges represent the similarities.
One could expect node A to be classified as belonging to the same class as B, since
it is the one with which shares the highest similarity. However, whenever the pa-
rameter g in (2.1) is high enough to predict correctly all the labeled data, node A
is always classified in node C’s class. This is because C' is more influential than B,
since the sum of the similarities of C' with the other nodes is only 0.8, while B’s is 1.5.

Local and Global Consistency and regression

So far, we have commented on the functioning of the algorithm when it acts as a
classifier, but our problem will be regression. So the natural question is whether it
will still work as a regressor and how it should be modified for that purpose. Let y
be the vector of ground truth labels, where unlabeled instances are labeled as 0, and
f the predicted labels. Then equation (2.1) would become

Z S (\/_ \/7) +/~‘Z . (2.2)

i,7=1

Here, we face two problems, which did not exist with classification. The simplest one
is due to the label fitness term, Zf\il(fi — y;)%. If an unlabeled instance i is labeled
as y; = 0, then f; will tend to be 0, hence all the predicted labels will tend to be

2.1. SEMI-SUPERVISED ALGORITHMS 19

really small numbers. In the case of classification this did not happen or, being more
precise, this happened, but it was irrelevant. Why? Because F was a matrix and the
label of a sample ¢ was the index of the highest element in f;, so the absolute values
of f; were irrelevant. However, in regression, the predicted label of an instance 7 is
exactly f;, so having smaller values of f; when ¢ is unlabeled than when it is labeled
becomes a problem. A way of solving this, which we will adopt, is by setting y; to
the mean of the labeled instances when ¢ is unlabeled.

The second problem regards the label smoothness,

N f 5\
S’Lj ! - /)
> (e m)

1,7=1

and lies on the terms D;; and D;;. Suppose, as before, that ¢ and j are a labeled
and an unlabeled instance respectively and that S;; ~ 1. If D;; is a large number,
then f;/v/D;; will be low and, therefore, f;/ \/D_j] and, consequently, f; will be low.
A way of tackling this problem consists in normalizing the rows of the similarity
matrix S, i.e., dividing each row by its sum so that D; = 1 for each i. However,
this means that the resulting matrix S,,,,,, could not be symmetric and, thus, the
algorithm cannot be applied. To satisfy the requirement of symmetry, we compute
the following operation:

Snorm + SZOTm

5)

and use this similarity matrix instead of S, whose row sums are roughly 1.

Although these two drawbacks could make the algorithm not suit perfectly our prob-
lem, it is interesting having this algorithm as a starting point to compare its perfor-
mance with the more sophisticated versions of label propagation explained below.

2.1.3 Flexible Manifold Embedding

Similarly to LGC, Flexible Manifold Embedding (FME) [14] estimates the labels F
by minimizing the following cost function:

9(F, W, b) = tr(F"LE)+ 8 tr[(F—Y)" U(F —Y) 4+ 4u(|[W+ X" W+ 17 —F||2),
(2.3)
where U is an indicator matrix, that is a diagonal matrix, with its first [diagonal
elements, corresponding to labeled instances, equal to 1, while the last u diagonal
elements, corresponding to unlabeled instances, are equal to 0. W and b determine
the unknown linear regressor which maps the original samples to the label space.

As with LGC, a closed-form solution, which is the one we will be using, can be found
by setting the derivatives of g with respect to W, b and F as 0 (for more details on
how to obtain it, see [14]). The solution would be

B 1
4w

W = y(vXH X" +I)"'XH,.F

b

(F'1 - W'X1)

20 CHAPTER 2. LEARNING ALGORITHMS

F = 3(fU + L+ pyH, — 1n*Q)~'UY,

with Q = XTX (vXTX, +I)~' and H, =T — (1/(I + u))117.

Flexible Manifold Embedding and regression

As with LGC, this algorithm was originally designed for classification tasks. Nonethe-
less, it can easily be adapted to work as a regressor. If f and y are real-valued vectors
representing the predicted labels and the ground-truth labels, the cost function be-
comes

g(f, w,b) = f'Lf + B(f —y)"U(f —y) + u([w]|* + 7[[XTw + 10— £[]). (2.4)

Interpretation of the cost function

The first term controls the label smoothness, the second one the label fitness and
the last term fits a linear regression between features and labels, where [|w|[? is
a regularaztion term controlling the complexity of the model (thus, avoiding over-
fitting). 3, p and 7y are the parameters controlling the trade-off between all the terms.

In spite of having been analysed in the case of LGC, the first two terms deserve
further comment, since they present certain variations with respect to the previous
algorithm. If we develope the expression f7Lf, it would be

> Sulfi—)

ij=1

This is the same as in LGC if we remove the terms D;; and D;;. So, as explained
before, this term is responsible of making similar images have similar labels.

The second term, the label fitness, (f —y)TU(f —y) would be

whereas in the case of LGC it was

N

Z(fi — i)

=1

So the two problems that arised in the adaptation of LGC to regression vanish in the
case of FME. The first of them is solved by considering the indicator matrix U, so
that the label fitness term forgets about unlabeled data. The second problem, which
was derived from the terms D;; in the cost function, also does not occur, because the
label smoothness term considered is much simpler.

2.1. SEMI-SUPERVISED ALGORITHMS 21

FME and unseen data

A really positive advantage of FME, which distinguishes it from many label propa-
gation methods, e.g., from LGC, is its capacity of dealing with unseen data. Apart
from predicting the labels of the unlabeled data in vector f, it can predict unseen
data using the regression term in 2.4. Given the features of the unseen data X, scen,
its scores would be:

_ T
funseen - Xunseen

w + 1b.

Relationship between LGC and FME

The cost function of LGC in 2.1 can be expressed similarly to the cost function of
FME in 2.3:

¢(F) = tr(FTLF) + ptr[(F = Y)'(F - Y)].

2.1.4 Kernel Flexible Manifold Embedding

Kernel Flexible Manifold Embedding (KFME) [5] is the kernel version of FME and
it was proposed to cope with highly non-linear data (when a linear regression has a
poor performance). The cost function in this case is

g(F, V) = tr(F'LF)+ 8 tr[(F-Y)"U(F-Y)]+a tr(V'KV)+A tr[(KV-F)" (KV-F)],

where K is the kernel matrix of the data X, in which each element K;; is the result
of applying the kernel function to samples ¢ and j. In our case, the kernel will be
Gaussian. This means that

[1xi = ;I

where 02 is a measure of the variability of the data or, more concretely, it is the

mean of the squares of the distances between all pairs of samples. %, is the kernel
parameter, which will take different values.

A closed-form solution can be found again by setting the derivatives of g with respect
to F and V as 0 (for more details, see [14]). The solution is

V = AF
F = 3[fU + L+ aATKA + \(KA - I)"(KA - I)]7'UY,

where A = \/a(I+ \/aK)™!.

Kernel Flexible Manifold Embedding for regression

The cost function can also be defined for vectors of continuous real-valued labels f
and y as follows:

g(f,v) =fTLf + B(f —y)"U(f —y) + av'Kv + A(Kv —)T (Kv — f), (2.5)

22 CHAPTER 2. LEARNING ALGORITHMS

Interpretation of the cost function

The interpretation is analogous to FME. The label smoothnes and label fitness crite-
ria are exactly the same, while the linear regression becomes a non-linear regression
thanks to the kernel trick. So the term (Kv — f)T(Kv — f) controls the loss in the
non-linear regression and v Kv controls the complexity of the model.

KFME and unseen data

Similarly to FME, in KFME one can easily handle unseen data using the regression
term in 2.5. To do so, given a set of unseen samples x{"**“"|™" , one has to build the
kernel matrix of the unseen samples K nseen € R™*Y, where the element (i, 7) is the
kernel function of the unseen sample 7, x{"**“", and the training sample j, x,. Then,

the predicted labels would be

funseen - Kunseenv .

2.1.5 Flexible Graph-based Semi-supervised Manifold Em-
bedding

Given the data matrix X, this algorithm [3] obtains a non-linear embedding by
optimizing a cost function based on several criteria, very similarly to the methods we
have already seen in this chapter. The main difference is that up to the moment we
were obtaining a vector of predictions f or a matrix of classes F and now we have a
feature matrix Z € R¥*N. The objective of this algorithm is to clusterize the data
so that samples belonging to the same classes form a group and samples belonging
to different classes are widely separated. However, since the cost function is not
trivial at all, our starting point will be a very simplified case, where the learning is
supervised and Z “lives” in RY¥*! or, in other words, the projected data points have
only one dimension. Therefore, in the next section we will be assuming that all the
N samples are labeled.

Supervised case with a single dimension

We will start defining the margin of a sample 7. This is the difference between the
mean of the inter-class distances, which measure the distance between sample ¢ and
samples belonging to different classes, and the mean of the intra-class distances, which
measure the distance between sample ¢ and samples belonging to its same class. In
order to clusterize the data as has been commented, it is desirable for margins to be
as large as possible. Assuming the number of dimensions of the non-linear embedding
is 1, or equivalently that the non-linear projection z is a vector in RY (below we will
generalize this to N dimensions), the margin of a sample i belonging to a class Cy, is
mathematically defined as

teCly,

where [, is the number of samples belonging to class C}.

2.1. SEMI-SUPERVISED ALGORITHMS 23

The first term corresponds to the inter-class distance and the second one to the intra-
class distance. However, since we wish to consider all of the samples and not just a
single one, we should maximize the mean margin of all of the samples m.

m = % Z m(i). (2.6)

We will now consider the weighted inter-class and the intra-class graphs G,, and Gy,
where nodes are all the samples. The former will be an undirected graph in which
and edge will exist between two nodes if and only if they belong to the same class,
while the second one will be directed and each edge starting at a node ¢ will end in a
node j belonging to a different class. The weight matrices associated to these graphs
will be

1

— lf’lECkandjECk

Sw_ lk
0 ifieCy andjgéC’k
0 ifieCyandjeC

bo_

[— 1
After some algebraic manipulation (for further detail see [3]), one can express m in
equation 2.6 in terms of S* and S

2 1
m = joDlz — 7ZTMZZ,
where D; = I+ D? (D" is the diagonal matrix whose diagonal elements are the row

sums of S?) and M, = 31+ D + Sb + S — 25w,

ifi € Cp and j & Cy

We would like to maximize the mean margin m. However, there is no solution to
this problem. Why does this happen? Reasoning by contradiction, if we assume z

were a solution which maximizes the margin, that would mean jnglzo — 7Z§MZZO

is as large as possible. However, if we consider a proportional vector z), = Azy with
A > 1, then the margin associated to z) would be

2 1 2 1

2 1
“ziDyzy— 2, Mz = l()\zo)TDl()\zo) l()\ZO)TMl()\ZO) =\? (_ZngZO — —nglzo> :

[l l [
which is A2 times the margin associated to z, and, hence, it is larger. Thus, we have
reached an absurd because we were assuming z, had the largest margin.

This reasoning leads us to a clear conclusion: the search space is too vast to find only
one solution and, in addition, zg and z, are equivalent representations of the data,
since they are proportional, so we should really get rid of the repeated solutions. A
way of restricting the search space and avoiding this problem consists in imposing

z' Dz = 1.

Then, our maximization problem becomes a minimization one with an associated
restriction:
Z = argmin z'Mz st. z'Dz=1.
V4

24 CHAPTER 2. LEARNING ALGORITHMS

Generalization to N dimensions

To generalize the problem above, the first step is to use more dimensions instead of
only 1 and making use of the unlabeled data, which will be done as with the previous
methods, using the label smoothness criterion. So the minimization problem has to
take into account two criteria. Firstly, the label smoothness in various dimensions,

arg mzin tr(Z'LZ),
and, secondly, the maximization of the margin in a semi-supervised setting:

argmzintr(ZTMlZ) st. Z'DZ =1

In this context, M; € RN*N and D, € R¥*N are the augmented forms of M, € R
and D; € R that is

-~ (M; 0 - (D, O

Ml_<0 O) and Dl—(o 0)
The zeros are due to the fact that there is no margin to be calculated for unlabeled
samples. In addition, a regression term is added to the cost function, so that the
non-linear projection Z is as close as possible to a linear embedding. This permits

treating unseen samples, like in FME or KFME, by mapping them to the linear
embedding. Considering all these factors the cost function becomes

e(Z, W, b) = tr(ZTLZ) + A tr(Z"NLZ) + pu(||[W||> + || X"W + 1b” — Z|]?)

st. Z"TD)Z =1

[[W]]? is, again, a regularization term controlling the overfitting. The solution can
be found by generalized eigenvalue decomposition.

2.1.6 Similarity graphs

Considering that the key to learning from unlabeled data is the similarity between
samples, observing how the choice of the similarity matrix affects the results seems
to be important. For this sake, we have tried three types of similarity matrices based
on feature and score similarities between samples. It is important to recall that a
similarity is a value ranging from 0 (when samples are unalike) to 1 (when they are

alike).

Feature similarities

Given two instances ¢ and j, let x; and x; be their respective features. Then, two
different similarities are considered. Firstly, the Gaussian similarity is given by

|1xi — x|
gauss _ .~ 952

Szg)

2.1. SEMI-SUPERVISED ALGORITHMS 25

were o2 is the mean of ||x; — x;||* for 4,7 = 1,--- ,n. According to the formula,
samples are considered to be similar when their features are close in the Euclidean
distance.

Secondly, the cosine similarity is defined as follows:

XX
cos ||XZH||X]H

This similarity corresponds to the cosine between vectors x; and x;, rescaled so that
it lies on the interval [0, 1], instead of [-1, 1]. So two samples are considered to be
more similar when the angle formed by their respective vectors becomes narrower.
The rescaling to avoid negative similarities is not strictly necessary for all the algo-
rithms. In fact, it is only needed with LGC, because equation 2.1 uses the square
roots of the row sums of the similarity matrix, v/D;;, so these sums cannot be nega-
tive. However, for simplicity, the rescaled cosine similarity is always used.

It is interesting to consider both similarities, since they measure different things.
Even if using hundreds of dimensions makes the geometric sense vanish, how both
similarities differ can be easily noticed, since the cosine similarity does not care about
the norm of the features, while vectors with very different norm values will always
be considered unalike by the Fuclidean or Gaussian similarity.

Score similarity

Given two labeled samples ¢ and j, and their respective labels y; and y;, they will be
similar if the difference between the scores does not exceed a certain threshold 6 > 0.
Mathematically this can be stated as

1 if |yi — vy <0
f]gore — ‘
0 otherwise

This binary similarity is the simplest one which could have been considered and, even
though it will not be studied here, it could be good idea to analyse more complex
score similarities.

Construction of the similarity matrix

Three different types of similarity matrices are built in this study: the similarity
matrix based only on Gaussian feature similarity and matrices which are based on
Gaussian or cosine similarity and score similarity. All of them will depend on the
idea of the k nearest neighbors.

The process is the following:

1. The feature similarities of each pair of samples are computed.

26 CHAPTER 2. LEARNING ALGORITHMS

2. For each of the samples the k nearest neighbors are considered (k = 10 through-
out all the work), while the farthest samples are considered to have 0 similarity.
This can be understood as a directed graph where each node is a sample and
the weight of each edge is the similarity between samples. The edges corre-
sponding to the farthest neighbors are removed. An initial similarity matrix
Sinitial s built based on the directed graph.

3. Since the similarity matrix has to be symmetric, a new similarity matrix S is
built according to the operation:

o initial initial
Sij = max (S, S,

which is the same as converting our directed graph into an undirected one by
considering all the edges bidirectional instead of unidirectional.

When a feature similarity and the score similarity are considered, there is an addi-
tional step between step 1 and step 2. Before selecting the k& nearest neighbors, all
the pairs whose score difference exceeds a given threshold § are removed. Then, in
step 2, for each sample, the k nearest neighbors are selected among the remaining
samples (whose score difference is smaller than ¢).

2.2 Supervised algorithms

In this section, three classical regression algorithms are presented, which will be com-
pared with the semi-supervised algorithms in the next chapter to check whether the
semi-supervised approach provides an improvement.

2.2.1 Mathematical notation of the supervised algorithms

The difference between the semi-supervised algorithms and the supervised algorithms
is that the latter do not use the unlabeled data in training. This affects the notation,
where we will have a clear separation between the training data and the test data. N
will be the number of training data and M the number of test data. Xipaim € RV*P
and Yiqein € RY will note the training data matrix, where samples are represented
as columns, and the labels of the training data, respectively. And the test data and
labels will be Xyeor € RP*M and yy.sr € RM.

2.2.2 1-Nearest Neighbor

k-nearest neighbors (KNN) is a lazy learning algorithm, which means that it does
not have a real training phase, since it simply memorizes the training data. On the
other hand, the prediction step is when the algorithm is actually working. In order
to evaluate a new point, it finds the £ nearest training points and the label assigned
to this new point only depends on the labels of the k& nearest neighbors. In our case,
the number £ of neighbors will be 1, so, when evaluating a new point, the algorithm

2.2. SUPERVISED ALGORITHMS 27

will just find its nearest neighbor and copy its label.

This algorithm is fundamentally based on the concept of nearness; however, this can
be relative, depending on the type of distance considered. In this work, three basic
distances are used: the Euclidean distance, the Minkowski distance and the cosine
distance. Given two real row vectors of size n, x = [z1,--- ,z,] and y = [y1,- -+ , Yn],
each of the distances is defined as follows:

e Fuclidean distance:

dx,y) =+ (x—y)x—y)T.

e Minkowski distance of exponent p € N:

The Euclidean distance is a particular case of the Minkowski distance, when
p=2.

e (Cosine distance: -
dx,y)=1- xy :

(xxT)(yy™)

The cosine distance derives from the cosine similarity and it ranges from 0
(when x = Ay with A > 0) to 2 (when x = Ay with A < 0). It is 1 when the
vectors pointing from the origin of the coordinate system to the points x and
y respectively are orthogonal. So this distance grows with the angle between
the vectors x and y.

2.2.3 Ridge Regression

Ridge regression (RR), named by Hoerl and Kennard [8], is a sophistication of the
least squares method by adding a regularization term. It aims at minimizing the cost
function

B(W) = ||WTXtrain - ytrainH +)‘||W||27

where Xy, usually is the centered and scaled training data, that is, each column
has mean 0 and standard deviation 1. The term ||w]|? controls the complexity of the
model or, in other words, it avoids overfitting.

2.2.4 Support Vector Regression

e-insensitive Suport Vector Regression (e-SVR) [18, 20] is a regression algorithm in
which an instance ¢ with a label y; is considered to be correctly predicted by the
machine if its prediction lies on the interval [y; — €,y; + €]. The regression can be

28 CHAPTER 2. LEARNING ALGORITHMS

linear or non-linear (using the kernel trick). Firstly we will describe the linear case.
Given an instance x, we aim at obtaining a regression function f(x) of the form

f(x)=w'x+0b, withw,x € R” and b € R.

Similarly to Ridge Regression, e-SVR is posed as a minimization problem in which
two terms have to be taken into account. On one hand, the regression fitness (taking
into account that predictions in the interval [y; — €,4; + €] have 0 error) and, on
the other, the complexity of the model given by ||w||>. These conditions can be
comprised in an optimization problem stated as follows:

1
min—||w||2
2

Yi — (WTXi +b) <e

subject to { wWixi 4+ b—y; < ¢

The cost function corresponds to the complexity of the model and the two restrictions
force the samples to be predicted correctly. This statement of the problem, though, is
too rigid, since it does not permit any of the training samples to be predicted outside
the € tube. This can be tackled by adding slack variables §; and & permitting some
deviations in the model:

z
1 .
mlﬂgHWW +CY (G+E)

=1

yi — (Wix; +0) < e+ &
subject to ¢ wix;+b—y; <e+& (2.7)

(' is the constant which controls the trade-off between the complexity and the flex-
ibility of the model. A high C implies that & and & tend to be lower, leading to
a rigid model, where every sample has to be accurately classified and, in addition
|[w||? is not hardly penalized. Therefore, the model tends to overfitting. A low C
means just the opposite, tending the model to underfitting. So a correct choice of the
parameter C' is a vital decision in order to get a good performance of the algorithm.

In figure 2.2 one can see how the regression error of e-SVR, (, is computed, which is
always lower than the real regression error, because predictions are considered to be
correct within the given tolerance e. So a real regression error of e costs 0 and, for
higher errors, (is obtained by substracting a quantity of € to the real error.

Kernel Support Vector Regression

Kernel Support Vector Regression arises to overcome the limitations of the linear re-
gression. Instead of considering the raw features of a sample x, a non-linear mapping
of the features ¢(x), is used before performing the linear regression. Equation 2.7

2.2. SUPERVISED ALGORITHMS 29

A

N L
<

—£ +E

Figure 2.2: The soft margin loss, as shown in [19].

would be expressed as

l
1 *
min ||l +C Y (& + &)
=1
yi — (Who(x;) +0) < e+ §;
subject to ¢ Wio(x;) +b—y <e+ &
&, & =0

The solution can be found thanks to the dual optimization problem, where the use
of an explicit non-linear mapping ¢ is avoided and, instead, a kernel function K
implicitly maps the data non-linearly. Since this algorithm is not the main point of
the work, we will skip the technical explanation regarding this part. So, for further
detail, the reader can see the references [18, 20].

30

CHAPTER 2. LEARNING ALGORITHMS

Chapter 3

Empirical study

3.1 General methodology

As mentioned in section 1.3.1, two datasets are used in our study: SCUT-FBP and
M2B. Most of the experiments have been carried out in SCUT-FBP, since it contains
higher quality photos and, supposedly, it should make the learning easier. Labels in
SCUT-FBP lie on the interval (1, 5), whereas in M?B they lie on [1, 10]. In both
cases, labels are scaled so that they lie on [0.1, 1], dividing by 5 in the first case and
by 10 in the second.

Several of the algorithms used in this study have a number of parameters to be fixed.
In all of these cases a grid search is conducted, that is, given a finite set of possible
values for each parameter, all of the combinations are tried and the one giving the
best error is selected.

All the matlab code used in these experiments is replicable downloading it from the
following link: https://github.com/AnneED/aesthetic-analysis.git.

3.1.1 Face features

Recent studies have proved that extracting features using a pretrained Convolutional
Neural Network (CNN) can provide more than satisfactory results in computer vi-
sion [17], often improving methods using other types of features and even if they are
used in a task which is not exactly the one the network was trained to accomplish.
Therefore, we are adopting this approach for our study, using the VGG-face network
[15], which was trained for face identification and is available for matlab'. Figure 3.1
shows its architecture.

The features are extracted from layer 7, right before the last fully-connected layer
(fc8 in the diagram). Before propagating an image through VGG-face, it must be
resized and the average of the network has to be substracted.

After extracting the features using the CNN, they are organized in a matrix, where
each column represents the 4096 features of an image. The matrix is normalized using

!The network can be downloaded from http://www.vlfeat.org/matconvnet/pretrained/.

31

https://github.com/AnneED/aesthetic-analysis.git
http://www.vlfeat.org/matconvnet/pretrained/

32

CHAPTER 3. EMPIRICAL STUDY

layer (1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
type input conv relu conv relu mpool conv relu conv relu mpool conv relu conv relu conv relu mpool conv
name - convl_l relul _1 convl_2 relul_2 pooll convZ_1 relu2_1 conv2_2 relu2_2 pool2 conv3_1 relu3d_1 conv3_2 relu3_2 conv3_3 relu3_3 pool3 convd_1
support - 3 1 3 1 2 3 1 3 1 2] 1 3 1 3 1 2 3
filt dim - 3 - 64 - - 64 - 128 - - 128 - 256 - 256 - - 256
num filts| - 64 - 64 - - 128 - 128 - - 256 - 256 - 256 - - 512
stride - 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 2 1
pad - 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1
layer 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
type relu cony relu cony relu mpool conv relu conv relu conv relu mpool conv relu conv relu conv softmx
name |relud_l convd_2 relud_2 conv4_3 relud_3 poold conv5_1 relu5_1 conv3_2 relu5_2 conv5_3 relu5_3 pool5 et relu6 fe7 relu? fc8 prob
support 1 3 1 3 1 2 3 1 3 1 3 1 2 7 1 1 1 1 1
filt dim - 512 - 512 - - 512 - 512 - 512 - - 512 - 4096 - 409 -
num filts] - 512 - 512 - - 512 - 512 - 512 - - 4096 - 4096 - 2622 -
stride 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1
pad 1] 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 1] 0 0

Figure 3.1: Architecture of VGG-face from [15].

L2 normalization (each column is divided by its Euclidean norm) and, then, the ma-
trix is reduced from 4096 to 200 features using Principal Component Analysis (PCA).

3.1.2 Model evaluation

In order to have an idea of the effect of different data sizes during the training phase,
which can be particularly interesting considering that we are working in a semi-
supervised setting because there exist limited labeled data for this problem, many
data size configurations are tested. In most of the experiments the labeled data con-
stitute the 50%, the 70% or the 90% of all the data. On the other hand, when using
semi-supervised algorithms the rest of the data is the unlabeled part, which is used
in the training, as well as in the test phase, except for the experiment shown in table
3.10, in which the effect of testing in unseen data is studied.

To have a good estimation of the error of the models, given the training/test percent-
ages, each model is trained 10 times with 10 different splits of the data, sampled using
stratification so that the label distributions are roughly equal in both the training
and the test sets. The error is estimated as the mean of the errors of the 10 splits.
Since our labels are continuous numbers, five “artificial” classes are created to carry
out the stratification easily, as shown in table 3.1. In figures 3.2, 3.3 and 3.4 his-
tograms of the classes are presented. These procedures will be maintained in each
of the experiments unless otherwise indicated. Each model is evaluated using the
performance metrics described in the next section.

3.2 Performance metrics

In order to measure the performance of the different algorithms, four metrics are
taken into account: the mean absolute error (MAE), the root mean square error
(RMSE), the Pearson correlation coefficient (PC) and the e-error.

3.2. PERFORMANCE METRICS 33
Class Interval in Interval in

SCUT-FBP M?B
1 [1,2) [1,3)
2 2, 3) 3, 5)
3 3, 4) [5,7)
4 4,4.5) (7, 8)
5 4.5, 5) [8, 10)

Table 3.1: Transformation of the labels from real numbers to discrete classes.

Classes of SCUT-FBP
350 T T T

300+

250+

200

150

100

50

1 2 3 4 5

Figure 3.2: Histogram of classes in SCUT-FBP dataset.

Mean absolute error

Let y1,v2, -+ ,yn be the ground truth labels and fi, fo,--- , f, the estimated labels,
then the mean absolute error of the prediction is given by:

1 n
n;lly fil

Root mean square error

Let y1,99,- -+ ,y, be the ground truth labels and fi, fo, -+ f, the estimated labels,
then the root mean square error of the prediction is given by:

n

RMSE = | -5 (5

=1

34 CHAPTER 3. EMPIRICAL STUDY

S50 Classes of easterners in M2B

200

150

100

50

1 2 3 4 3

Figure 3.3: Histogram of the classes of the easterners in M?B dataset.

Pearson correlation coefficient

Let y1,99,--- ,y, be the ground truth labels and fi, fo,--- f, the estimated labels,
then the Pearson’s correlation coefficient measures the linear correlation between the
ground truth and the estimated labels and is given by:

PC = Z?:l(yi—g)(fi—f)
> Wi — o)/ 2 (fi =)

Y

where f and 7 are the means of the estimated labels and the ground truth labels
respectively.

The PC is a number in the interval [-1, 1]. It measures to what extent the points
(yi, fi), with ¢ = 1,-- - n, fit in their regression line. A PC around 1 or -1 means that
there is a high linear correlation, where the slope of the regression line is positive, if
the PC is 1, or negative, if the PC is -1. On the other hand, a PC' around 0 means
that there exists no linear correlation.

In our particular case, a PC as close to 1 as possible is desirable, since a perfect
prediction would be one in which f; = y;, in other words, the pairs (y;, f;) lie on the
line y = z.

3.2. PERFORMANCE METRICS 35

550 Classes of westerners in M2B

200

150

100

50

Figure 3.4: Histogram of the classes of the westerners in M?B dataset.

€-error
Let y1,v2, -+ ,yn be the ground truth labels and fi, fo,--- , f, the estimated labels,
then the e-error of the prediction is given by:

(yz' - fz')2

1 & - 2
e-error = — E l—e 20 ,
n <
=1

where o; is the standard deviation of the ratings of all the raters of image .

This error lies on the interval [0, 1). Unlike the MAE and the RMSE, e error takes
into account the ratings of all the raters of each image. Since beauty is a relative
concept, raters may not agree when judging it. What is more, one can consider
two types of faces: the ones which are found attractive by certain people and which
are not by others and the faces which are judged mostly equally by all the raters.
In other words, the ratings of the different raters of a face of the first group will
have a higher standard deviation than the ratings of a face of the second group. So,
if the predictor does not exactly predict the mean of the ratings of a face with a
high standard deviation, the error is considered not to be so relevant, since there
is no human agreement about the rating of that particular face. This is why in the
formula the square difference between the real score and the estimated score (y; — f;)?
is divided by o?.

36 CHAPTER 3. EMPIRICAL STUDY

3.3 Results on SCUT-FBP dataset

3.3.1 The baseline

Table 3.2 shows the performance of an algorithm which, regardless of the face which
it is presented, the score returned by it will be the average of the labels of the training
images. This will be our starting point. While the PC could not be worse, the mean
average error is not so high, since the labels follow a normal distribution and most
of the images are gathered around the average.

3.3.2 Local and Global Consistency

As explained in section 2.1.2, LGC has a parameter which has to be adjusted. In all
the experiments related to LGC, its value is selected among the following so that the
MAE is minimized: {107%,107° 10~ 1072,1072,107%,1, 10, 10%, 103, 10*, 10°, 10°}.

As hypothesized in the previous chapter in section 2.1.2, the “label” given to unla-
beled images, that is, the value of y; when ¢ corresponds to an unlabeled instance,
seems to affect the performance of this algorithm when it comes down to regression.
Table 3.3 confirms this assumption. It shows the performance of the algorithm when
unlabeled instances are “labeled” as 0 or as the mean of the labeled instances. The
similarity matrix used to compute the Laplacian is the simplest one, based only on
Gaussian feature similarity. Being the difference so considerable, we are setting y;
(when i corresponds to an unlabeled instance) as the average in the rest of the ex-
periments regarding LGC.

Table 3.4 shows the results of applying LGC with different training/test sizes and
Laplacians (where 6 = 0.1, when computing the similarity matrices) and table 3.5
shows the effect of similarity graph normalization in LGC when the Laplacian is only
based on feature similarity. Even though the improvement is apparent, which was
forseeable considering the discussion in section 2.1.2; it is not as marked as could be
expected.

3.3.3 Flexible Manifold Embedding

As mentioned in section 2.1.3, FME has three parameters, 3, 4 and to be adjusted.
All of them are selected among {1072,1075,1073, 1,103,105, 10} in order to optimize
the MAE.

Table 3.6 shows the performance of FME considering different data sizes and Lapla-
cians (where 6 = 0.1, when computing the similarity matrices), proving that, in this
case, the results are independent of the Laplacian.

3.3.4 Kernel Flexible Manifold Embedding

As mentioned in section 2.1.4, KFME has three parameters to be adjusted in its
cost function, 5, a and A, as well as a fourth parameter ¢y, which controls the

3.3. RESULTS ON SCUT-FBP DATASET 37

width of the kernel function. f is selected among {0.1, 1,10, 100, 1000, 10000}, «
among {0.0001,0.001,0.01,0.1,1,10}, A among {1, 10,50, 100, 1000} and ¢, among
{1/8,1/4,1/2,1,2,4,8}.

Unexpectedly, being KFME the kernelized version of FME, the first time KFME
was used in this study, the MAE was worse than using the simpler algorithm. More
surprisingly, when the PC was optimized in KFME, it was around 0.85, slightly out-
performing FME. Given this information, we should remember that the PC measures
the linear correlation between two variables or, in other words, how well a regression
line between these two variables would fit. A perfect performance would be one in
which, for each test sample 7, the predicted label is exactly the real label, that is
y; = fi, so the MAE would be 0 and the PC 1, because, if we plot each pair (f;,v;),
it lies on the line y = x. However, having a poor MAE and such a good PC means
that the pairs (f;,y;) almost lie on a perfect line, but since it cannot be y = z, it has
to be a distorted line y = ax + b. In fact, after plotting this in our specific problem,
the result was the corresponding to figure 3.5.

85 X 10°° Initial predictions of KFME
8 O
e
75 (0]
o)
7 =
(%]
2
® 6.5 o
3 o
G 6
% O (23 o O
T o
O 55+
© O 00 0/61) O
O o 8 o) (e
5r o ©Op e
© o (0]
45 % &
o
4 1 1 1 1 1 1 |
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Real labels

Figure 3.5: Initial predictions of KFME.

The way of fixing this problem was just rescaling the output f of the algorithm,
according to the formula:

maX(thm) - min(yn’ain)
max(f) — min(f)

fscaled = min(ytrain> + (f - min(yt’/‘ain)) (31)
Table 3.7 shows the improvement when scaling the output of the algorithm f. The
possible reasons of this need to scale f will be discussed in section 4.1. In addition,
after observing the great difference of scaling the output in KFME, the scaling was
also used in FME, but no improvement was observed in this case.

Table 3.8 shows the performance of KFME using different training/test proportions
and Laplacians based on different similarities (where 6 = 0.1, when computing the

38 CHAPTER 3. EMPIRICAL STUDY

similarity matrices). It seems that using score similarity as well as feature similar-
ity slightly improves the performance, but the difference is not so marked. On the
other hand, table 3.9 shows the results of varying the value of 4 when computing
the Laplacian based on Gaussian feature similarity combined with score similarity.
Although the optimal value seems to be around 0.2, the value of § does not seem to
affect strongly the results.

An experiment on unseen data

It could be argued that our study, as yet, has a major flaw, namely, that the unlabeled
data is used both in training and in testing and, therefore, that nobody can ensure
its correct performance on new data. This experiment is an attempt to address the
unseen data case. We are considering the following partition of the data (sampled
with stratification): 200 images will form the labeled data, 200 will be the unlabeled
data and the remaining 100 will be the test data. The algorithm will be trained on
the 400 labeled and unlabeled instances (the 80% of the data) and it will be tested
on the remaining 100 (the 20% of the data), as explained in section 2.1.4, using the
linear regression on the kernel matrix associated to unseen samples.

Table 3.10 shows the best of the models considering all the possible combinations of
parameters. In this case, only one data partition has been considered, instead of the
usual 10 splits, in order to simplify the task. In addition, when scaling the images
as described in equation 3.1, instead of taking the maximum and minimum labels of
the labeled training data, since there are only 200 labeled instances, the maximum
and the minimum of all the data are used.

This experiment shows that KFME can work correctly for unseen images.

3.3.5 Flexible Semi-supervised Embedding

As opposed to the other semi-supervised algorithms, which aim at classification or
direct regression, here we will see the results of using the embedding described in
section 2.1.5, combined with a supervised algorithm. Firstly, we will be using linear
e-SVR and then 1-NN. The algorithm to obtain the embedded features, which we
will be naming “zwb features”, has three parameters, A, u and =, that have to be
adjusted. We are choosing all of them among {107 107%,1073,1,10%,10°,10°}. In
addition, the number of dimensions of the output Z used to represent the data has
to be selected, since, similarly to PCA, the matrix Z can be cropped so that the data
has fewer dimensions. The possible number of dimensions will be ranging from 10 to
500, with a step of 10, and the parameter ty used in the kernel function, which is the
same as in KFME, has to be selected among {1/8,1/4,1/2,1,2,4,8}.

The training/test configuration in e-SVR and in 1-NN will be the same as the la-
beled /unlabeled configuration when using the semi-supervised embedding.

In e-SVR we will be adjusting the parameters C' and €. Since there are 6 or 7 param-
eters to optimize (5 or 6 in the non-linear embedding, depending on whether we are

3.3. RESULTS ON SCUT-FBP DATASET 39

using the kernel version, and 2 in e-SVR) and this can be very time-consuming, firstly
the parameters in the embedding are optimized using the default parameters for
SVR, and then the parameters in e-SVR are optimized. C' and € are selected among
{5,7.5,10,12.5,15,17.5,20, 22.5,25,27.5, 30, 32.5} and {0, 0.005, 0.01,0.02,0.03,0.04},
respectively, after seeing, using a wider search, that the optimal values were around
20 and 0.01. Table 3.11 shows the comparison of applying e-SVR on the raw features
or on the ones obtained with the embedding. Judging by the results, it is not clear
that using the non-linear transformation has a positive effect. However, there is a
slight improvement for the 90%/10% partition and for the non-kernelized variant.
Our future work is to integreate the score similarity in the margin used by the non-
linear projection method.

Experiment on discrete classes

On the other hand, table 3.12 shows a clear improvement when using the non-linear
transformation (if we look at the Euclidean distance), possibly implying that, even
though this embedding works properly on discrete classes, maybe it is not so suitable
for regression problems. In this second case, 3 discrete classes are created: most at-
tractive, average beauty and least attractive. To create these classes only 400 images
are used and the intermediate classes are discarded. In this case, only 1 split of the
data has been considered, instead of repeating the experiment 10 times. Table 3.13
shows the normalized score intervals on which lie each of the classes.

Table 3.12 shows the correct prediction rates of class 1, class 2, class 3 and all of
the samples. When zwb features are used, the parameters are optimized in order to
obtain the best total correct prediction rate. When using the Euclidean distance, the
improvement in the prediction is remarkable, whereas the cosine distance does not
imply a real improvement. However, this has much sense. The graph-based embed-
ding method aims at clusterizing the samples depending on their classes and, for this
purpose, it uses the Euclidean distance, so this is the reason for the 1-NN Euclidean
classifier to work better.

3.3.6 Supervised algorithms

In this section, we will report the performances of three supervised algorithms,
namely, 1-Nearest Neighbor, Ridge Regression and e-insensitive Support Vector Re-
gression, in order to compare them with the semi-supervised case.

Table 3.14 shows the results of 1-NN on the raw features of SCUT-FBP with the Eu-
clidean distance, the cosine distance and the Minkowski distance with the exponent

p = 1. The best results are achieved by the Euclidean distance with a training/test
configuration of 90%/10%.

Table 3.15 shows the results of applying Ridge Regression on SCUT-FBP dataset.
As explained in section 2.2.3, Ridge Regression has a parameter p that has to be
fixed. The different parameters tried for this purpose have been {0.0001, 0.001, 0.01,

40 CHAPTER 3. EMPIRICAL STUDY

0.1, 1, 10, 50, 100, 250, 500, 1000, 5000, 10000}.

Table 3.16 shows the results of applying e-insensitive SVR with a linear and a Gaus-
sian kernel. In the first case, two parameters have to be adjusted, C' and €, which
have been selected among {0.00001, 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7,0.8,0.9, 1, 2, 3, 4, 5, 10, 20, 3} and {0, 0.001, 0.0025, 0.005, 0.01, 0.02, 0.03, 0.04,
0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.15}. In the second case there is an additional kernel
parameter, which has been chosen among {1/2°/1/2%1/8,1/4,1/2,1,2,4,8,2% 25}

3.3.7 Method comparison: Regression Error Characteristic
curve

A way of plotting and comparing a number of regression methods is using the Re-
gression Error Characteristic (REC) curve [2]. Given a regression method and a test
sample ¢ labeled as y; and predicted as f;, the regression error of this test sample can
be either its squared error, (y; — f;)?, or its absolute error, |y; — fi|. We will be using
the latter. We can fix a tolerance value € and count the number of images whose
error is smaller than the tolerance e. This is exactly what the REC curve plots. The
X axis will be a range of tolerances and the Y axis will be the proportion of images
whose error is smaller than this tolerance.

. REC curves
Baseline
NN
09 RR
SVR
LGC
0.8 FME
KFME
0.7
806
[=2}
5]
£
5 05
c
o
204
o
o
0.3
0.2
0.1
0 Il Il Il Il Il I
0 0.05 0.1 0.15 0.2 0.25 0.3
Tolerance

Figure 3.6: REC curves of different methods. The steeper a curve is the better is the
performance of the algorithm.

Figure 3.6 shows the REC curve of the best models of the mean predictor, 1-NN;,
Ridge Regression, Gaussian e-SVR, LGC, FME and KFME in the case where 70% of

3.4. RESULTS ON M?B DATASET 41

the data constitute the labeled part. A steep curve indicates that a greater number
of images has smaller errors and the area over the curve is an estimate of the error.
Hence, a smaller area indicates a better performance.

Having a quick look at the figure, it seems clear that KEFME (in dark blue) outper-
forms all the others. For a more detailed comparison, see table 3.17, which summa-
rizes the best results obtained by each algorithm with a fixed data configuration of

90% /10%.

3.4 Results on M?B dataset

In this section, we will see the results on M2B dataset, with a configuration of 50% of
the samples as labeled data and the other 50% of the samples as the unlabeled/test
data. As stated in the beginning of the chapter, all the experiments are carried out
doing 10 stratified splits of the data, except for table 3.23.

3.4.1 The baseline

Table 3.18 shows the results of an algorithm which returns always the average of
the labels of the training images, regardless of the image which it is presented. The
MAE and the RMSE are much higher than the baseline in SCUT-FBP (table 3.2).
This is due to two facts: firstly, the normalized labels lie on a narrower interval in
SCUT-FBP (the lowest label in SCUT-FBP is 0.2394, while on M?B it is 0.1). In
addition, even though in both datasets the beauty scores roughly follow a Gaussian
distribution, in SCUT-FBP this is much sharper, implying that labels in M?B do not
gather as much around the mean.

3.4.2 Local and Global Consistency

Table 3.19 in M2B is the equivalent to table 3.4 in SCUT-FBP, with the only differ-
ence that in this case the similarity matrix has been normalized after seeing that the
results in SCUT-FBP improved thanks to normalization (table 3.5).

3.4.3 Flexible Manifold Embedding

Table 3.20 represents the results of using FME on M?B under the same conditions
as in 3.6. The results are independent of the type of similarity used to build the
Laplacian matrix.

3.4.4 Kernel Flexible Manifold Embedding

Tables 3.21 and 3.22 are the corresponding to tables 3.8 and 3.9 in SCUT-FBP. It
is not clear which type of similarity graph is the most convenient. In this case, the
choice of § in the similarity graph construction does not truely affect the results (the

42 CHAPTER 3. EMPIRICAL STUDY

slight difference is only appreciated in the last decimal of the PC).

3.4.5 Flexible Semi-supervised Embedding

Tables 3.23 and 3.24 are the corresponding to tables 3.12 and 3.11 in SCUT-FBP.
The three classes used in table 3.23 are described in table 3.25. In this experiment
only the eastern samples have been taken into account. It seems that, contrary to
what happened with SCUT-FBP, in both cases using the non-linear embedding im-
proves the results.

3.5. TABLES 43

3.5 Tables

Data size MAE RMSE PC e-error
50% train / 50% test 0.1009 0.1351 0.0000 0.2586
70% train / 30% test 0.0979 0.1322 0.0000 0.2479
90% train / 10% test 0.0987 0.1309 0.0000 0.2557

Table 3.2: Results of the baseline.

Data size Labels MAE RMSE PC e-error
50% labeled Zero 0.2711 0.3032 0.1002 0.7395
50% unlabeled Mean 0.0940 0.1230 0.4520 0.2417
70% labeled Zero 0.1711 0.2137 0.0976 0.4388
30% unlabeled Mean 0.0876 0.1144 0.5646 0.2212
90% labeled Zero 0.1100 0.1497 0.1153 0.2635
10% unlabeled Mean 0.0850 0.1097 0.6223 0.2134

Table 3.3: Difference between setting y; as 0 or as the mean of the known labels when
1 corresponds to an unlabeled instance.

44 CHAPTER 3. EMPIRICAL STUDY
Data size Laplacian MAE RMSE PC €-error
50% labeled Gaussian 0.0940 0.1230 0.4520 0.2417
50(70 unlabeled Gaussian + score 0.0945 0.1211 0.4777 0.2481
¢ Cosine + score 0.0946 0.1212 0.4755 0.2483
Gaussian 0.0876 0.1144 0.5646 0.2212
gg? Eﬁgfge o Gaussian + score 0.0889 0.1115 0.5934 0.2340
0 Cosine + score 0.0889 0.1115 0.5917 0.2341
Gaussian 0.0850 0.1097 0.6223 0.2134
?8? Lﬁ?&ie o Gaussian + score 0.0954 0.1144 0.6423 0.2686
¢ Cosine + score 0.0953 0.1144 0.6417 0.2684
Table 3.4: Results of LGC using different Laplacians.
Data size Laplacian MAE RMSE PC €-error
50% labeled Raw 0.0940 0.1230 0.4520 0.2417
50% unlabeled Normalized 0.0928 0.1217 0.5952 0.2375
70% labeled Raw 0.0876 0.1144 0.5646 0.2212
30% unlabeled Normalized 0.0861 0.1132 0.6905 0.2169
90% labeled Raw 0.0850 0.1097 0.6223 0.2134
10% unlabeled Normalized 0.0830 0.1076 0.7390 0.2090

Table 3.5: Effect of normalizing the similarity matrix in LGC.

3.5. TABLES 45

Data size Laplacian MAE RMSE PC €-error

Gaussian 0.0626 0.0814 0.8162 0.1421

gg? Largzls;iled Gaussian + score 0.0626 0.0814 0.8162 0.1421
¢ Cosine + score 0.0626 0.0814 0.8162 0.1421
Gaussian 0.0563 0.0746 0.8396 0.1219

gg? Eﬁifge | Gaussian + score 0.0563 0.0746 0.8396 0.1219
0 Cosine + score 0.0563 0.0746 0.8396 0.1219
Gaussian 0.0567 0.0723 0.8432 0.1196

?8? ﬁ’lgfsle o Gaussian + score 0.0567 0.0724 0.8429 0.1197
¢ Cosine + score 0.0567 0.0724 0.8429 0.1197

Table 3.6: Performance of FME.

Data size Output scaling MAE RMSE PC €-error
50% labeled Yes 0.0603 0.0784 0.8236 0.1326
50% unlabeled No 0.0912 0.1233 0.7742 0.2284
70% labeled Yes 0.0551 0.0727 0.8435 0.1133
30% unlabeled No 0.0859 0.1142 0.7647 0.2159
90% labeled Yes 0.0554 0.0704 0.8464 0.1119
10% unlabeled No 0.0832 0.1097 0.7957 0.2121

Table 3.7: Effect of scaling the output of KFME (using a Laplacian based on Gaussian

feature similarity).

46 CHAPTER 3. EMPIRICAL STUDY
Data size Laplacian MAE RMSE PC €-error
50% labeled Gaussian 0.0603 0.0784 0.8236 0.1326
50% unlabeled Gaussian -+ score 0.0603 0.0784 0.8243 0.1325
¢ Cosine + score 0.0603 0.0783 0.8242 0.1323
Gaussian 0.0551 0.0727 0.8435 0.1133
?7)8? ﬁiifie o Gaussian + score 0.0550 0.0729 0.8445 0.1140
¢ Cosine + score 0.0550 0.0728 0.8446 0.1138
Gaussian 0.0554 0.0704 0.8464 0.1119
?gg’ Eﬁ;fge o Gaussian + score 0.0561 0.0710 0.8454 0.1140
¢ Cosine + score 0.0560 0.0709 0.8455 0.1138

Table 3.8: Performance of KFME using Laplacians based on different similarities.

Delta MAE RMSE PC €-error
0.005 0.0575 0.0740 0.8385 0.1241
0.03 0.0569 0.0717 0.8475 0.1173
0.05 0.0568 0.0716 0.8454 0.1163
0.08 0.0564 0.0713 0.8451 0.1148
0.10 0.0561 0.0710 0.8454 0.1140
0.13 0.0559 0.0709 0.8453 0.1133
0.17 0.0557 0.0707 0.8458 0.1126
0.20 0.0556 0.0706 0.8462 0.1122

Table 3.9: KFME with different values of § in score similarity (90/10 training/test
partition and Laplacian based on Gaussian feature similarity and score similarity).

MAE
RMSE
PC

€-error

0.0751
0.0926
0.7988
0.1714

Table 3.10: Performance of KFME on unseen data.

47

3.5. TABLES

Data size Features MAE RMSE PC c-error
HO% st Raw 0.0615 0.0792 0.8133 0.1346
50%test Zwb 0.0645 0.0826 0.7962 0.1435

‘ Kernel zwb 0.0601 0.0785 0.8153 0.1293
70% train Raw 0.0563 0.0734 0.8368 0.1180
30VOtest Zwb 0.0564 0.0748 0.8377 0.1219

’ Kernel zwb 0.0563 0.0748 0.8368 0.1217
90% train Raw 0.0572 0.0721 0.8375 0.1169
10%test Zwb 0.0565 0.0726 0.8416 0.1202

’ Kernel zwb 0.0680 0.0887 0.7305 0.1592

Table 3.11: Results of linear e-SVR applied to raw features and those obtained from

the flexible semi-supervised embedding.

Distance Features Total Class 1 Class 2 Class 3
Euclidean Raw 0.5600 0.0952 0.6993 0.1154
Zwb 0.6900 0.2857 0.7974 0.3846
Cosine Raw 0.6000 0.1429 0.7451 0.1154
Zwb 0.7600 0.0000 0.9935 0.0377

Table 3.12: Effect of using 1-NN classifier to the features obtained with the graph-
based embedding. The table depicts the correct classification rates.

Class Interval in Number of
SCUT-FBP images
1 (0.2,0.4) 43
2 (0.45, 0.65) 306
3 (0.7, 1) 53

Table 3.13: Here there are the three discrete classes used in the experiment of table

3.12.

CHAPTER 3. EMPIRICAL STUDY

Data size Laplacian MAE RMSE PC €-error
50% train Euclidean 0.0891 0.1176 0.5924 0.2229
50(70test Minkowski 0.0976 0.1305 0.4450 0.2482
¢ Cosine 0.0902 0.1200 0.6120 0.2228
70% train Euclidean 0.0876 0.1168 0.6052 0.2148
30(; cout Minkowski 0.0934 0.1257 0.4930 0.2331
¢ Cosine 0.0885 0.1176 0.6375 0.2153
90% train Euclidean 0.0909 0.1175 0.5668 0.2310
10% test Minkowski 0.0939 0.1220 0.5136 0.2366
¢ Cosine 0.0891 0.1139 0.6377 0.2208
Table 3.14: Results of 1-NN using different distances.

Data size MAE RMSE PC €-error

50% train / 50% test 0.0814 0.1086 0.5969 0.1984

70% train / 30% test 0.0727 0.0962 0.6867 0.1708

90% train / 10% test 0.0645 0.0827 0.7772 0.1429

Table 3.15: Results of Ridge Regression.

3.5. TABLES 49

Data size Kernel MAE RMSE PC e-error
50% train Linear 0.0615 0.0792 0.8133 0.1346
50%test Gaussian 0.0612 0.0789 0.8170 0.1342
70% train Linear 0.0563 0.0734 0.8368 0.1180
30%test Gaussian 0.0560 0.0729 0.8393 0.1170
90% train Linear 0.0572 0.0721 0.8375 0.1169
10%test Gaussian 0.0561 0.0711 0.8434 0.1151

Table 3.16: Results of using e-SVR with a linear and a Gaussian kernel.

Algorithm MAE RMSE PC e-error
1-NN 0.0891 0.1139 0.6377 0.2208
RR 0.0645 0.0827 0.7772 0.1429
SVR 0.0561 0.0711 0.8434 0.1151
LGC 0.0830 0.1076 0.7390 0.2090
FME 0.0567 0.0723 0.8432 0.1196
KFME 0.0561 0.0710 0.8454 0.1140
Zwb + SVR 0.0680 0.0887 0.7305 0.1592

Table 3.17: Summary of the performances of the algorithms on SCUT-FBP with a
90%/10% data configuration.

Data size MAE RMSE PC
Eastern 0.1536 0.1866 0.0000
Western 0.1512 0.1831 0.0000

Both 0.1524 0.1849 0.0000

Table 3.18: Results of the baseline (M?B dataset).

50 CHAPTER 3. EMPIRICAL STUDY

Data size Laplacian MAE RMSE PC
Gaussian 0.1502 0.1827 0.2051
Bastern Gaussian -+ score 0.1502 0.1837 0.1996
aste Cosine + score 0.1501 0.1837 0.2006
Gaussian 0.1438 0.1742 0.3499
West Gaussian + score 0.1423 0.1741 0.3431
estertt Cosine + score 0.1423 0.1741 0.3433
Gaussian 0.1484 0.1801 0.2290
Both Gaussian + score 0.1484 0.1814 0.2162
Cosine + score 0.1483 0.1813 0.2169

Table 3.19: Results of LGC using different Laplacians (M?B dataset).

Data size Laplacian MAE RMSE PC
Gaussian 0.1352 0.1668 0.4482
East Gaussian -+ score 0.1352 0.1668 0.4482
Astertl Cosine + score 0.1352 0.1668 0.4482
Gaussian 0.1141 0.1422 0.6338
Westorn Gaussian -+ score 0.1141 0.1422 0.6338
Cosine + score 0.1141 0.1422 0.6338
Gaussian 0.1346 0.1665 0.4358
Both Gaussian + score 0.1346 0.1665 0.4358
Cosine + score 0.1346 0.1665 0.4358

Table 3.20: Performance of FME (M?B dataset).

3.5. TABLES

Data size Laplacian MAE RMSE PC
Gaussian 0.1358 0.1671 0.4455
Bastern Gaussian -+ score 0.1357 0.1670 0.4466
aste Cosine + score 0.1357 0.1669 0.4469
Gaussian 0.1132 0.1424 0.6322
West Gaussian + score 0.1134 0.1424 0.6319
estertt Cosine + score 0.1133 0.1419 0.6362
Gaussian 0.1303 0.1624 0.4805
Both Gaussian + score 0.1302 0.1623 0.4806
Cosine + score 0.1302 0.1624 0.4800

51

Table 3.21: Performance of KFME using Laplacians based on different similarities
(M?B dataset, 50%/50% training/test partition).

Delta MAE RMSE PC
0.005 0.1358 0.1668 0.4503
0.03 0.1358 0.1671 0.4457
0.05 0.1358 0.1670 0.4461
0.08 0.1357 0.1670 0.4466

0.1 0.1357 0.1670 0.4466
0.13 0.1357 0.1670 0.4466
0.17 0.1357 0.1670 0.4461
0.2 0.1357 0.1670 0.4462

Table 3.22: KFME with different values of ¢ in score similarity (M?B dataset, Eastern

images, 50/50 training/test partition).

52 CHAPTER 3. EMPIRICAL STUDY
Distance Features Total Class 1 Class 2 Class 3
Buclidean Raw 0.6150 0.0870 0.7580 0.1000

nendea Zwh 0.6450 0.1739 0.7834 0.1000
Cosine Raw 0.6150 0.0870 0.7580 0.1000
Zwb 0.7450 0.0870 0.9299 0.0500

Table 3.23: Effect of using 1-NN classifier to the features obtained with the graph-
based embedding. The table depicts the correct classification rates (M?B dataset).

Data size Features MAE RMSE PC
Raw 0.1356 0.1679 0.4397
Bastorn Zwb 0.1350 0.1672 0.4460
aste Kernel zwb 0.1341 0.1670 0.4577
Raw 0.1144 0.1435 0.6239
West Zwb 0.1138 0.1421 0.6349
estern Kernel zwb 0.1125 0.1413 0.6369

Table 3.24: Results of linear e-SVR applied to raw features and those obtained from
the flexible semi-supervised embedding v.

Class Interval in Number of
M?B images
1 [0.1, 0.3) 46
2 (0.44, 0.72) 315
3 (0.85, 1] 41

Table 3.25: The three discrete classes used in the experiment of table 3.12.

Chapter 4

Conclusion

4.1 Discussion of the results

We have seen how to apply different graph-based semi-supervised methods to the
task of automatic beauty assessment, which can be particularly interesting if one
considers the lack of studies based on semi-supervised learning in this area. It has
been proved that three label propagation methods, LGC, FME and KFME, which
were firstly designed to perform classification tasks, can also be adapted, with dif-
ferent degrees of success, to work on regression. LGC produces the worst results,
not only because it is the simplest one of the three, but also due to the number
of problems which arise when adapting the idea to regression (mentioned in section
2.1.2). Contrariwise, KFME has been the best method. It slightly improves the best
PC of the original study on SCUT-FBP [22], which was 0.8187, while ours is 0.8464.

In figure 3.6, one can see a graphical comparison of the algorithms in the case of a
70%/30% training/test data partition on SCUT-FBP dataset, where KFME, which
corresponds to the steepest curve, outperforms the rest of the algorithms. Regarding
the rest of the algorithms, FME seems to work similarly to e-insensitive SVR, which
works slightly better than Ridge Regression. LGC is similar to 1-NN, although it is
a bit better with a 90%/10% configuration.

It is also interesting to remember that a crucial step in this process has been scaling
the output of KFME (recall table 3.7). This need of scaling seems to come from the
mathematical formulation of the problem. If one compares the equations describing
FME and KFME (equations 2.4 and 2.5 in sections 2.1.3 and 2.1.4), it can be noticed
that, while in the regression term of the former there is a constant b, there is no such
variable in KFME, so this could be the reason of producing biased and incorrectly
scaled results.

The last semi-supervised method, the graph-based embedding, has not provided so
satisfactory results in SCUT-FBP, although in M2B the results seem a bit more
promising. As suggested by tables 3.11 and 3.12, the reason could be the fact that
we are working on regression rather than classification. Indeed, if we take into ac-
count that the embedding clusterizes the data into classes (in our case, 5 classes), it
seems very reasonable to assume that this will enhance the performance of a classi-
fication algorithm, because classes are more separated. However, if we consider the

53

54 CHAPTER 4. CONCLUSION

Figure 4.1: Examples of images difficult to rank in M?B dataset.

regression task, this embedding seems to increase just the probability of hitting the
class, but not the probability of predicting the specific label with all its decimals.

If we have a look at the results on M?B dataset, the first thing we will notice is that
they are substantially worse than in SCUT-FBP. A very plausible explanation is the
quality of the data. In my modest opinion, figure 4.1 is sufficiently illustrative of this
fact. Although most of the images are acceptable, images similar to those shown in
the figure can negatively affect the algorithms’ performances.

Table 4.1 shows the comparison between the best MAEs of the original study on M?B
dataset and ours. Our results are multiplied by 10, because we used the normalized
labels (dividing the original labels by 10). Our worst algorithm (LGC) outperforms
their best algorithm, even if both studies have been carried out using the same train-
ing/test proportion. We were using 10 splits with a 50%/50% labeled /unlabeled
configuration, while they were using 2-fold cross validation.

4.2 Future work

Considering that the study of different similarity graphs has not led us to conclusive
results - because sometimes graphs considering only feature similarity work better
than those also taking into account score similarity and vice versa - it could be a good
idea to try more sophisticated similarity graphs. For example, instead of considering
the binary score similarity described in section 2.1.6,

1 if |yi — vy <0
0 otherwise,
where y; and y; are the labels of instances ¢ and j or, in other words, the means of

the ratings of all raters of images i and j respectively, a more elaborated similarity
could be used. For example, the standard deviations of the ratings of each of the

4.2. FUTURE WORK 55

OUR STUDY
Eastern Western

LGC 1.501 1.423
FME 1.352 1.141
KFME 1.357 1.132
Zwb + SVR 1.341 1.125

ORIGINAL STUDY
Eastern Western

1-NN 2.11 1.92
Ridge Regression 1.95 1.87
Neural Network 1.82 1.76
F-A-T 1.80 1.69
DFAT 1.77 1.66

Table 4.1: Comparison between our study on M?B dataset and the original one [13].

samples, o; and o; could be used, leading to a formula such as

_|yi — Yl
f]gore —e 005

So, the a hybrid similarity considering both feature and score information could be
the product of both similarities:

ly: — ;]
___feature 0:0;
Sij = Sij "€ B
where slfjea “"¢ can be either the cosine similarity or the Gaussian feature similarity

described in section 2.1.6.

Future work may also envision revisiting the design of the criterion of the graph-
based non-linear embedding (described in section 2.1.5). Specifically, we would like
to redefine the matrix Mj, so that the margin related term could take into account
the distance in the score space.

56

CHAPTER 4. CONCLUSION

Bibliography

[1] Parham Aarabi et al. “The automatic measurement of facial beauty”. In: Sys-
tems, Man, and Cybernetics, 2001 IEEE International Conference on. Vol. 4.
IEEE. 2001, pp. 2644-2647.

[2] Jinbo Bi and Kristin P Bennett. “Regression error characteristic curves”. In:
Proceedings of the 20th International Conference on Machine Learning (ICML-
03). 2003, pp. 43-50.

[3] Fadi Dornaika and Youssof El Traboulsi. “Learning flexible graph-based semi-
supervised embedding”. In: IEEFE transactions on cybernetics 46.1 (2016), pp. 206
218.

[4] Yael Eisenthal, Gideon Dror, and Eytan Ruppin. “Facial attractiveness: Beauty
and the machine”. In: Neural Computation 18.1 (2006), pp. 119-142.

[5] Youssof El Traboulsi, Fadi Dornaika, and Ammar Assoum. “Kernel flexible
manifold embedding for pattern classification”. In: Neurocomputing 167 (2015),
pp. H17-527.

[6] Junying Gan et al. “Deep self-taught learning for facial beauty prediction”. In:
Neurocomputing 144 (2014), pp. 295-303.

[7] Douglas Gray et al. “Predicting facial beauty without landmarks”. In: Com-
puter Vision-ECCV 2010 (2010), pp. 434-447.

[8] Arthur E Hoerl and Robert W Kennard. “Ridge regression: Biased estimation
for nonorthogonal problems”. In: Technometrics 12.1 (1970), pp. 55-67.

9] Amit Kagian et al. “A humanlike predictor of facial attractiveness”. In: Ad-
vances in Neural Information Processing Systems. 2007, pp. 649-656.

[10] Amit Kagian et al. “A machine learning predictor of facial attractiveness reveal-
ing human-like psychophysical biases”. In: Vision research 48.2 (2008), pp. 235—
243.

[11] Shu Liu et al. “Advances in computational facial attractiveness methods”. In:
Multimedia Tools and Applications 75.23 (2016), pp. 16633-16663.

[12] Yadong Mu. “Computational facial attractiveness prediction by aesthetics-
aware features”. In: Neurocomputing 99 (2013), pp. 59-64.

[13] Tam V Nguyen et al. “Towards decrypting attractiveness via multi-modality

cues”. In: ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM) 9.4 (2013), p. 28.

[14] Feiping Nie et al. “Flexible manifold embedding: A framework for semi-supervised
and unsupervised dimension reduction”. In: IEEFE Transactions on Image Pro-
cessing 19.7 (2010), pp. 1921-1932.

57

22]

23]

[24]

BIBLIOGRAPHY

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, et al. “Deep Face Recog-
nition.” In: BMVC. Vol. 1. 3. 2015, p. 6.

Kendra Schmid, David Marx, and Ashok Samal. “Computation of a face at-
tractiveness index based on neoclassical canons, symmetry, and golden ratios”.
In: Pattern Recognition 41.8 (2008), pp. 2710-2717.

Ali Sharif Razavian et al. “CNN features off-the-shelf: an astounding baseline
for recognition”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition workshops. 2014, pp. 806-813.

Alex J Smola and Bernhard Schélkopf. “A tutorial on support vector regres-
sion”. In: Statistics and computing 14.3 (2004), pp. 199-222.

Alex J Smola and Bernhard Schélkopf. Learning with kernels. GMD-Forschungszentrum

Informationstechnik, 1998.
V Vapnik. The Nature of Statistical Learning Theory. 1995.

Shuyang Wang, Ming Shao, and Yun Fu. “Attractive or not?: Beauty prediction
with attractiveness-aware encoders and robust late fusion”. In: Proceedings of
the 22nd ACM international conference on Multimedia. ACM. 2014, pp. 805—
808.

Duorui Xie et al. “SCUT-FBP: A benchmark dataset for facial beauty per-
ception”. In: Systems, Man, and Cybernetics (SMC), 2015 IEEE International
Conference on. IEEE. 2015, pp. 1821-1826.

Jie Xu et al. “A new humanlike facial attractiveness predictor with cascaded
fine-tuning deep learning model”. In: arXiv preprint arXiv:1511.02465 (2015).

Denny Zhou et al. “Learning with local and global consistency”. In: Advances
i neural information processing systems. 2004, pp. 321-328.

	Introduction
	Motivation
	Related work: Beauty analysis in computer science
	Our study
	Datasets

	Learning algorithms
	Semi-supervised algorithms
	Mathematical notation of the semi-supervised algorithms
	Local and Global Consistency
	Flexible Manifold Embedding
	Kernel Flexible Manifold Embedding
	Flexible Graph-based Semi-supervised Manifold Embedding
	Similarity graphs

	Supervised algorithms
	Mathematical notation of the supervised algorithms
	1-Nearest Neighbor
	Ridge Regression
	Support Vector Regression

	Empirical study
	General methodology
	Face features
	Model evaluation

	Performance metrics
	Results on SCUT-FBP dataset
	The baseline
	Local and Global Consistency
	Flexible Manifold Embedding
	Kernel Flexible Manifold Embedding
	Flexible Semi-supervised Embedding
	Supervised algorithms
	Method comparison: Regression Error Characteristic curve

	Results on M2B dataset
	The baseline
	Local and Global Consistency
	Flexible Manifold Embedding
	Kernel Flexible Manifold Embedding
	Flexible Semi-supervised Embedding

	Tables

	Conclusion
	Discussion of the results
	Future work

