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CHAPTER1
Resumen

1.1 Estructura del presente trabajo

El presente trabajo está estructurado como una colección de diferentes contribuciones del
autor al campo de la tecnoloǵıa de los aceleradores de part́ıculas aśı como a una aplicación
derivada de este campo. Se cubren los dos dominios fundamentales de este ámbito, las cavi-
dades de radiofrecuencia y los imanes; en el primero se describirá como el conocimiento de
de las cavidades de radiofrecuencia ha sido utilizado para desarrollar un nuevo tipo de sensor
de posición, que presenta una combinación de sensibilidad y ancho de banda que no puede
ser igualada por ningún otro medio. En el campo de los imanes se describirán un par de apli-
caciones, el desarrollo de un espectrómetro de gran apertura y a los cuadrupolos de imanes
permanentes.

El uso de cuadrupolos de imanes permanentes (PMQ) para crear las estructuras de focal-
ización dentro de un acelerador basado en tubos de deriva (DTL) presenta muchas ventajas.
Pueden ser más puequeños que los los cuadrupolos electromagn’eticos y no requieren una
fuente de alimentación externa, por ello la implementación del sistema total puede ser mucho
más simple. Por otra parte, el menor tamaño del cuadrupolo permite reducir el diámetro de
tubo de deriva y su tallo, reduciendo por tanto las pérdidas de radiofrecuencia. El principal
inconveniente de los PMQ es la imposibilidad de ajustar su gradiente tras el montaje del tubo
de deriva. ELYTT Energy ha diseñado y construido un conjunto de PMQs para ESS-B. Los
imanes fueron construidos con una excelente concordancia entre los cálculos y las medidas.
La tecnoloǵıa desarrollada en este proyecto se empleó para construir los PMQ de los últimos
tanques de linac de tubos de deriva de la cadena de inyección del complejo de aceleradores
del CERN. Este diseño emplea una estructura muy económica usando 8 bloques de imanes
permanentes del mismo tamaño.

También se publica en este trabajo una contribución a la teoría de la ecuación de Hill en el
dominio complejo. La generalización que se presenta en esta obra permite emplear un método
de variable compleja para resolver el problema de las oscilaciones betatrón de un haz.

1.2 Objetivos y vista general de la tesis

La tesis comienza con una breve descripción de la tecnoloǵıa de los aceleradores de part́ıculas
cargadas y de sus dos técnicas fundamentales, las cavidades de radiofrecuencia (RF) y los
imanes. En el primer caṕıtulo se hace una descripción del efecto del campo electromagnético
en los haces de part́ıculas y de discute el principal problema al que se enfrenta el diseñador
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de un acelerador.
El segundo caṕıtulo trata de las cavidades de RF y como son utilizadas para acelerar el

haz. Se presenta un desarrollo derivado del trabajo en este campo, en el que el cambio
de sintonización de una cavidad debido al desplazamiento de sus paredes es utilizado para
determinar el valor de este movimiento, aśı se obtiene un sensor muy eficaz.

Dado que el trabajo trata en gran parte del uso de cuadrupolos de imanes permanentes
(PMQ) en aceleradores lineales (linacs) se relizará, en el tercer caṕıtulo una breve introducción
a la dinámica longitudinal en este tipo de máquinas. Solo se dará una pincelada de un campo
muy amplio.

El siguiente caṕıtulo tratará de la mecánica transversal del haz y especialmente de la parte
lineal de esta mecánica, esto es de las perturbaciones en primer orden de la trayectoria ideal.
Se presentará la teoŕıa clásica de las matrices de transporte y de los parámetros de Twiss.
El tratamiento de los parámetros de Twiss se realiza empleando formas cuadráticas para
transportar el haz de un lugar a otro, un método, en mi opinión más simple que el tratamiento
que suele emplearse en la mayoŕıa de los libros de texto sobre la materia. Se realiza aśı mismo
una contribución original a la teoŕıa lineal, expandiendo algunos resultados que se conoćıan
desde los años 50 del siglo pasado, sobre la representación compleja de del espacio de fase
ocupado por un haz. El formalismo se resuelve totalmente y se identifica la naturaleza de
la transformación compleja que sufre el espacio de fases. Esta identificación permite obtener
algunos resultados que están ocultos en el formalismo convencional. Además, en este caṕıtulo
se explica como el autor desarrolló un espectrómetro de gran apertura mediante un dipolo de
gran aceptancia.

La descripción matemática del campo magnético en la apertura de un imán es el objeto del
siguiente caṕıtulo. Se muestra el formalismo convencional y se desarrollan los procedimiento
complejos para obtener los armónicos del campo magnético a partir de la distribución espacial
de la magnetización. Aśı mismo se obtienen múltiples soluciones para el campo producido por
algunas distribuciones simples. Se explica como se relaciona la simetŕıa de los imanes con la
simetŕıa del campo y el resultado se resume en un par de matrices que relacionan los armónicos
del campo con la simetŕıa de los imanes. Finálmente se explica porqué la representación 2D
es en este caso mucho más efectiva que en los imanes dominados por corrientes de trasporte.

El siguiente caṕıtulo se dedica a los materiales empleados en los PMQ tanto para los
imanes permanentes como para los retenedores. Se da una breve introducción a la ciencia del
magnetismo en los materiales y como estas propiedades se relacionan con su uso en los PMQ.
También se discute la importancia del vaćıo en la elección de los materiales.

Los últimos 3 caṕıtulos se dedican al diseño y construcción de los PMQ para el linac4 del
CERN (excepto los del primer tanque). El primero de estos caṕıtulos muestra las especifica-
ciones de los imanes y las opciones de diseño que hemos considerado. Se muestra el diseño
final, que cumple las especificaciones y es especialmente simple de construir.

En el siguiente caṕıtulo se muestra como se miden los bloques de imanes permanentes
usando dos métodos diferentes. El primero mide el campo en una nube de puntos sobre el
bloque de imán permanente. Las medidas en la nube son ajustadas mediante un método de
mı́nimos cuadrados a los resultados de un programa de elementos fińıtos. El otro método
emplea un conjunto de bobinas en las que se induce tensión mediante el desplazamiento de
los bloques.
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El último caṕıtulo explica como ordenar los bloques de imanes permanentes para obtene
cuadrupolos de alta calidad a partir de bloques no tan buenos. Se explica como medir los
cuadrupolos mediante varios métodos y que medidas correctivas adoptar en caso de que el
imán medido no esté en tolerancia.
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CHAPTER2
Abstract

2.1 Structure of the present work

The present work is structured as a collection of different contributions of the author to
the field of accelerator technologies and an interesting spin-off of this field. The two main
domains of the accelerator technologies are covered, RF cavities and magnets; in the former
it will be described how the knowledge of RF cavities may be used to develop a new type
of position sensor, which a combination of accuracy and band-width that probably cannot
be matched by any other medium, in the latter a couple of applications related to a large
aperture spectrograph and to the theory of permanent magnet quadrupoles will be described.

The use of permanent magnet quadrupoles (PMQ) to create the focusing lattice inside
a drift tube linac (DTL) has many advantages. They can be smaller than electromagnetic
quadrupoles and do not require an external power supply; moreover, the implementation of
the complete system is simplified to a large extent. The smaller dimension of the quadrupole
allows a reduction in the diameter of the drift tube and the stem, thus reducing RF losses.
The main disadvantage of PMQs is the impossibility of tuning the integrated gradient of the
quadrupole after building the drift tube. ELYTT Energy designed and built a set of PMQs
for ESS-B. These magnets were then built and measured, with excellent match between the
calculations and the measurements. The technology developed was then used to build all the
focusing quadrupoles for the later tanks of the Drift Tube Linac of Linac4 [5] at the LHC
injection chain. This design used a very economical design made of 8 identical blocks of
permanent magnet material.

A contribution to the theory of the Hill equation in the complex domain is as well published
for the first time in the present work. The generalization presented here, allows the complex
method of solution of the Hill equation to be fully related to the theory of the betatron
movement of particles in a beam.

2.2 Objectives and overview of the thesis

The thesis will start with a short description of the charged particle accelerator technology and
its two main technologies, radiofrequency (RF) cavities and magnets. In this first chapter
a brief description of the effect of the electromagnetic field in the beam particles will be
presented and also the main challenges that the accelerator design faces will be discussed.

The second chapter deals with the RF cavities and how they are used to accelerate the
beam. An original spin-off of this field is presented, in which the tuning of the cavity with
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the displacement of its walls is used to determine the extent of this displacement, creating a
highly effective sensor.

Because the use work treats to a large extent on the use of Permanent Magnet Quadrupoles
(PMQ) in linear accelerators (linacs) a short introduction to the longitudinal dynamics of a
beam in this type of accelerator is presented in the third chapter. Only a very limited version
is presented in order to give a hint of the vast field of this subject.

The following chapter covers the transversal mechanics of the accelerator and specially the
linear part of it, i.e. the first order perturbation with respect to the ideal trajectory. Here,
the classical transport matrix and Twiss parameters theories are presented. The treatment
of the Twiss parameters is based on matrix quadratic forms transforming phase space, which
is in my opinion a simpler approach than the one found in most text books. An original
contribution is made to the linear theory by expanding some results that were known since
the 1950s in order to represent the phase space occupied by the beam by a single complex
number, the formalism is completely solved and the nature of the transformation is identified.
This identification allows to obtain some results that are very cumbersome to achieve in the
classical formalism. In addition in this chapter, it is explained how the author developed a
magnet to be used for spectrographic purposes, and that provides a huge acceptance of the
beam.

The mathematical description of the magnetic field in a magnet aperture is shown in the
following chapter. The conventional complex formalism is used. The analytical procedure
to obtain the field harmonics development from the spatial distribution of magnetization is
explained, and a significant amount of work is provided to obtain the field of simple perma-
nent magnet geometries. It is explained how the symmetry in the magnets is related to the
symmetry in the field, and this result is summarized in a pair of matrices that relates the
field harmonics to the magnet symmetries. Finally, it is explained why the 2D representation
of the permanent magnets provide a much better representation of the actually 3D structures
than in the case of using transport currents.

One chapter is dedicated to the materials used in the PMQs for the permanent magnets
and holders. A very short introduction to science of magnetic materials is provided and how
its properties are related to the use in the PMQs. It is necessary, as well to discuss the effect
of the material properties in vacuum.

The last 3 chapters are related to the design and manufacturing of the linac4 PMQ for
CERN (except for tank 1). The first of these chapters provides the specification of the magnets
and the available design options. A final design is shown, that satisfies the requirement and
is simple to build.

In the following chapter, it is shown how the permanent magnets blocks are measured using
two different methods, one measures the magnetic field at a cloud of points above the magnet
using a Hall probe and the correlates, by a best fitting method, the measurements to the
expected values using a Finite Element Method program. The other method uses a set of
coils in which voltage is induced by displacing the magnet blocks.

The last chapters explains how the permanent magnet blocks may be sorted in order to
provide high quality quadrupoles from lower quality permanent magnet blocks. It is explained
how the quadrupoles may be measured, using several methods and which corrective measure-
ments may be adopted in case the measurements show the magnets is not yet in tolerance.
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CHAPTER3
Introduction to Accelerator Technologies

3.1 Introduction to accelerator technology

Since its beginning in the late 19th century, accelerator technology has evolved into a rich
field, covering many applications requiring a wide range of beam energy, current, particle
type and accuracy. Basically, a particle accelerator is a device that increases the energy of a
beam of charged particles through the use of electromagnetic fields. The beams may be used
in many fields of science and technology as nuclear research, high energy physics, medicine,
material science, security, etc, ...

The size of the accelerators spans many orders of magnitude in all the significant parameters,
with energies from a few keV for a cathodic ray tube to the 7 TeV per beam of the LHC. The
current may vary as well from single particles to many kA as used in some fusion devices.
The particles may vary from electrons to ions of the heaviest elements to complete molecules.

It is interesting that such a rich zoo of applications may be understood on the basis of
a few key concepts, some of which will be described in the present work. The discipline of
accelerator physics has two basic roots, the electromagnetic field theory, which will describe
the forces acting on the beam, and the theoretical mechanics, which will describe how the
beam will behave under such forces.

Typically, there are two different tasks in handling the beam, acceleration and confinement
and transport. Acceleration can only be performed by the use of the electrical field, as the
Lorentz force due to the magnetic field is always perpendicular to the velocity and therefore,
no work may be performed by it on the particle. Confinement and transport may be performed
either by the magnetic field or the electrical field, and both types of accelerators are widely
used, with the electrical field being used towards the lower end of the energy.

3.2 Types of particle accelerators

The accelerators may be classified depending on several parameters. Here, we will use two
criteria, the nature of the electrical field that will accelerate the particles and the geometry
of the beam as it is carried along the accelerator. Lets start with the first one.

3.2.1 Electrostatic and RF accelerators

As we have seen, only the electrical field may accelerate the particles, on the other hand the
electrical field may be DC or AC. In the first case, a constant voltage is created at a certain
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point of the structure where the particles are born, the particles will be accelerated according
to the direction of the electrical field to a target, typically at ground potential or even at a
potential opposite to the source one. This approach is very simple conceptually, but it has
the inconvenient of requiring large voltages that are difficult to handle due to the risk of
unwanted electrical flash overs.

Most accelerators start with an electrostatic accelerator, the particle source, 1. An example
of an ion source may be seen in fig. 3.1. The most important feature is that the particles
must be created already at the highest voltage of the accelerator, as their kinetic energy will
be increased as the voltage decreases towards ground.

HV DC
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Ground

 Grounded

beam pipe

Plasma

chamber

Plasma 

formation

equipment

Grounded lenses

Isolation

transformer

HV DC

-75 kV

HV DC
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isolating

tupe

HV DC

-75 kV

Grounded Faraday cage

Figure 3.1 – Example of a negative ion electrostatic accelerator. All parts under voltage are in
red, while all grounded parts are in blue

The high electrical voltage may be created in many different ways, with power electronics
using typically voltage multipliers, the so called Cockcroft-Walton accelerators, or by me-
chanical charge transport, Van de Graf accelerators. In both cases, voltage confinement is
the main challenge the designers of the accelerator must fight with.

Whatever the procedure used to obtain and confine the high voltage, electrostatic accel-
erators allow to obtain a continuous beam of well defined energy. They are used in many
industrial applications, below 1 MeV with large currents and above several MeV for nuclear
and material science applications in which the stability and very low energy or momentum
spread of the beam is required.

RF accelerators use the alternating electrical field of an electromagnetic wave to provide
energy to a particle in a sequence of steps. As in the electromagnetic wave the electrical field
changes from positive to negative, the accelerating structure must be designed so as to screen
the particle from the decelerating field while it is exposed to the accelerating field. This type
of structure may be seen in fig. 3.2.

RF acceleration has the big advantage of being able to add unlimited energy to the particles
while limiting the voltage inside the structure to a level that may be handled. The main
inconvenient is that the accelerating structure is more complex and RF power is required in

1The most important exception being the electron RF sources, where the electrons are extracted from an
appropriate cathode from the electrical field of a microwave cavity where it is inserted
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Figure 3.2 – Schematic representation of a standing wave RF accelerating structure. The small
rectangles represent the part of the structure where no electrical field is present.
On the left, the accelerating articles are in the region where the electrical field is
present. During the electrical field phase reversal, right, the particles are screened
from the decelerating field. The net effect is a rectification of the electrical field as
seen by the particles.

the structure. Actually, RF accelerator technology took off after WWII, when the development
of radar made RF hardware easily available.

In addition to the standing wave structures, for ultrarelativistic particles, usually electrons,
it is possible to accelerate the beam by the use of a traveling wave similar to the one present
in a waveguide. In this case, the relative phase between the electromagnetic wave and the
particle may be kept in the accelerating region for a significant length.

3.2.2 Linear and circular accelerators

In the previous section, we have seen that for higher energies, RF accelerators must be used
in order to avoid large voltages to ground. Nevertheless, in most cases, a single accelerating
gap cannot provide enough voltage to increase the energy of the beam to the desired energy.
Therefore, it is necessary for the particles to pass through several accelerating gaps. There
are two solutions for this, in the first one, the beam follows a roughly straight trajectory
and traverses several independent accelerating structures, whose phases are tuned to provide
acceleration to the beam in each of them, this type of structure is called a linear accelerator
or linac. In the second approach the beam is made to follow a curved trajectory which
passes several times through the same accelerating structure, this structure is called a circular
accelerator, of which there are many variants. A comparison between a linear accelerator and
a circular one is schematically shown in fig. 3.3.

11



J. Lucas 3.2. Types of particle accelerators

Figure 3.3 – Schematic comparison between a linac, left, and a circular accelerator, right. The
RF cavities are represented as a cosinus wave with the particle mounted on the
relative phase

3.2.3 Types of circular accelerators

As we will see in Chapter 6, the trajectory of a particle of momentum p and charge e in a
magnetic field B has a curvature radius, ρ, defined by,

B ρ =
p

e
(3.1)

, where the ratio between the momentum and the charge is known as the magnetic rigidity.
The main consequence of eq. 3.1 is that as the particle gains energy and therefore momentum,
either the radius of curvature, the applied field or both must change. If the field does not
change the particle must describe a trajectory of increasing radius of curvature, spiraling
from the inside of the accelerator towards the outside. The archetypal accelerator using this
principle is the cyclotron, 2. In the cyclotron, the beam is accelerated continuously from the
center towards the periphery by a constant magnetic field and RF power. The operation of
the conventional cyclotron is made possible by the fact that in non relativistic conditions, the
frequency of revolution of a particle is independent of the energy, and therefore, the particles
may be resonantly accelerated in a continuous way. At higher energies, relativistic effects
cause that the revolution frequency decreases below what it is necessary to maintain the
accelerating resonance.

To quantify this statement, we can calculate the orbiting frequency of a particle in a constant
magnetic field, the so called cyclotron frequency, expressing the momentum as a function of
velocity and the relativistic γ and taking into account that the length of the orbit is 2πρ, the
cyclotron frequency will be,

ωc =
eB

γm
(3.2)

In this expression, we can see that at low energies, where γ ≈ 1, the cyclotron frequency
is constant and an accelerating resonance may be obtained easily. At higher energies, it is
possible to keep the resonance by modulating the average magnetic field at a certain orbit
radius so that the increase on the average field cancels the increase of γ, this approach is
called isochronous cyclotron. Nevertheless, the increase of the average magnetic field cannot
be obtained just by a higher azimuthally constant field, as the vertical stability of the particle
movement requires actually a radially decreasing magnetic field. For isochronous cyclotrons,

2A different accelerator with this type of structure is the microtron [51]
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it is essential to have azimuthal variation of the field to provide the vertical focusing through
the principle of strong focusing allowing for a radially increasing average magnetic field.

In the second approach to circular accelerators, the orbit is kept constant and the magnetic
field is increased to cope with the increasing magnetic rigidity. This type of accelerator is
called a synchrotron. This principle allows to reach higher energies than any other, as the
small volume on which the magnetic field must be created make possible to increase the
diameter of the orbit to much larger values than in a cyclotron, in which the magnetic field
must extent over the whole surface where the beam is. Actually, for a cyclotron the cost
of generating the magnetic field scales as the third power of the energy, as the magnetic
flux acting on the beam must return through the third dimension. On the contrary, for a
synchrotron, the cost of creating the magnetic field only increases linearly with the energy.

Grounded D

RF D

RF power
supply

Extraction

Figure 3.4 – Schematic representation of a ciclotron

A hybrid approach to the compensation of the increase of the magnetic rigidity is the
synchrocyclotron, in which the effect of the relativistic decrease of the cyclotron frequency is
compensated by a temporal modulation of the RF frequency.

An interesting property of the cyclotron, shared with the linac, is that the acceleration
proceeds in a continuous way, this allows to accelerate a large average current of the beam. On
the other hand, the synchrotron may handle a large instantaneous current but a low average
current, as the acceleration must be performed over a extended period of time, required to
increase the magnetic field. An analogy exists with the comparison between an elevator and
mechanic stairs, as the former must load people on one floor and unload them on another the
amount of people transferred is lower than in the latter. In the same way, mechanical stairs
are not optimal for transferring people through many floors, as they are more expensive in
this case. Therefore linacs and cyclotrons are used for applications where moderate energy
but high beam current is required like the International Fusion Material Irradiation Facility,
IFMIF [23], the European Spallation Source, ESS [22], the accelerator production of tritium,
APT [15], the aceelerator driven system MYRRHA [16] or the Spallation Neutron Source [40].

On the other hand the high energy (per particle) frontier is the domain of the synchrotrons
with the LHC being the highest performer at present day, [14], [28].
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CHAPTER4
RF resonant cavities: application for high

accuracy sensors

In this chapter we want to describe a very interesting application that was developed by the
author as a spin-off of the work in the accelerator field. The main idea is to use the strong
dependency of a high-Q resonant cavity with respect to its geometry in order to use it as a
displacement sensor. As anybody that must tune a RF cavity to the desired frequency may
confirm the smallest geometrical imperfection will displace the resonant frequency beyond the
acceptable limits. The question is then, why not to use this characteristic to our advantage?
A quick review of the bibliography, both academic and industrial showed that this field was
almost unexplored and it was quickly decided to build a prototype that performed successfully.
The idea was successfully carried out from the technical point of view and a patent was
achieved on the novel idea of using resonant RF cavities for very accurate displacement sensing
[38].

In this chapter, I will describe first what a resonant cavity is and how they are used in
the field of particle accelerators, our starting point. We will then proceed to explain how a
resonant cavity may be used as a displacement detector and which properties will be optimal
for this application. We will finally describe the prototype and the result of the experimental
set up.

4.1 What is a resonant cavity?

In its most basic definition, a resonant cavity is a closed volume surrounded by highly conduct-
ing walls. In this volume, an electromagnetic standing wave is established by some external
circuit which couples to the cavity through a small aperture. Inside the volume of the cavity
there is a dielectric medium or vacuum. At each point inside the cavity, the Maxwell equations
will be fulfilled and it is possible to have a self sustaining electromagnetic cycle in which the
displacement currents create a magnetic field and the variation of the magnetic field induces
electrical field. By using the same derivation than for a free space electromagnetic wave, it
is possible to obtain that the fields inside the cavity will satisfy the wave equation, both for
the electric and the magnetic field.
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∇2 ~B =
1
c2

∂2 ~B

∂t2
(4.1)

∇2 ~E =
1
c2

∂2 ~E

∂t2
(4.2)

If we are only interested in the steady state of the cavity, we can replace the vectors by
phasors and the time derivative by multiplication by jω. In this case, the wave equations are
replaced by Helmholtz equations, i.e.

∇2 ~B + k2 ~B = 0 (4.3)

∇2 ~E + k2 ~E = 0 (4.4)

, where k is the free space wave number ω/c. These equations have to be compatible with
the boundary conditions on the walls of the cavity.

The electric and magnetic fields in the volume of the cavity are sustained by surface charge
densities, σq and surface current densities js. The surface charge density and current density
are related to the fields near the surface of the cavity by the boundary equations,

~E =
σq

ǫ
~n (4.5)

~B = µ0
~js × ~n (4.6)

, where ~n is the surface normal pointing inwards to the cavity at each surface point.
It may be proved [53], that the set of Helmholtz equations 4.3, 4.4, coupled with the

boundary conditions of eqs. 4.5 and 4.6 form and eigenvalue and eigenvector problem in
which the solutions only exist for a set of discrete values of the wave number k.

It is possible to analyze the operation of the cavity in two complementary ways, in one
of them, the electromagnetic fields play the main role and the surface currents and charges
are derived from them; in the second way, the surface currents and charges are the principal
elements and the electromagnetic fields are derived from them. This second way bears some
reminiscence to the low frequency approach of lumped components (capacitors and inductors)
and it is very attractive for separated function cavities, in which the electric and magnetic
fields are mostly separated inside the volume of the cavity.

An absolutely lovely description of a RF cavity as a series of superposition of electric and
magnetic fields being alternatively generated one from the other and creating the correct
solution to the Helmholtz equations for a pillbox geometry may be found in the Feynman
lectures [29].

A typical case of resonant cavity is a transmission line in which both extremities are closed
by a conducting wall. In this case, the cavity may be seen as two traveling waves interfering
at the extremities to comply with the material boundary conditions. Only at a set of discrete
frequencies will the forward and backward waves provide the appropriate cancellation of the
desired components of the electrical and magnetic field.
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All cavities will have some type of losses, either due to non perfect walls or to lossy dielectric
materials in the volume of the cavity. In this circumstance, a self supporting oscillation at
a certain resonant frequency will have a decreasing amplitude, as the electromagnetic energy
is dissipated. The losses are usually characterized by the resonator quality factor Q , which
is proportional to the ratio between the electromagnetic energy of the cavity and the loss of
energy over one period,

Q = 2π
U

∆U
=

ωU

< P >
(4.7)

, where < P > is the average loss of energy over a cycle. The decay of energy in the
resonator will be determined by the differential equation,

dU

dt
+
ω

Q
U = 0 (4.8)

,and therefore the decay will be an exponential of time constant Q/ω.

4.2 Application of resonant cavities for sensors

Anyone who has been working with high Q radiofrequency cavities knows how difficult is to
stabilize the resonance frequency to the design one. In a particle accelerator, every cavity
must resonate at exactly the same frequency and with the appropriate phase in order to
accelerate the beam synchronously. This is achieved by means of a vector control of the
power coupling and with a mechanical tuner to modify the geometry of the cavity in order
to adjust the resonance to the desired value. It is very typical that a small deformation of
the cavity, due for instance to a temperature change, fully detunes the cavity and requires a
displacement of the tuner in the millimeter range.

The idea of using RF to determine the displacement, as shown in [26] and [8], of a system
came originally from the collaboration between the Basque Country University (BCU) and
ELYTT Energy to develop a very simple high-Q resonant structure to be used as a test
bench for the 324 MHz low level that the BCU was developing for the Rutherford Appleton
Laboratory. This structure had to be small in order to be easily handled on a table top
set-up. The easiest way to lower the frequency of a pillbox cavity is to electrically load it,
obtaining a re-entrant structure. This type of structure is very sensitive to a variation of the
gap, i.e. the region where the electrical field is confined. A drawing of the cavity that was
finally built is shown in fig. 4.1. In this cavity a radial tuner is used to adjust the resonance
frequency to the desired value. It was very appealing how sensitive the resonance frequency
was to the smallest deformation of the lid. As the group of the BCU that was developing
the low level RF for the Rutherford Appleton Laboratory was involved at the same time in
micro-positioning systems, it came naturally a question on the possibility of using the tuning
of RF cavities to measure micro displacements in the range of tens of nanometers.

Some advantages of the this type of sensor are:

1. It may have a very high resolution when a high Q cavity is used as the resonator.

2. Very large stroke compared with other sensors of equivalent resolution.
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Figure 4.1 – Dummy Cavity used for the developing the control of the RAL low level RF system

3. Low sensibility to thermal variations if used in differential mode (see below).

4. Low sensibility to electromagnetic noise as the cavity is a perfect screen to EMI.

5. It may be low cost as the RF electronics involved may be mass produced and the
machining tolerances are moderate. A possible interface electronics is explained in [7]
and [6]

6. The signal between the electronics and the sensor may be transmitted over very large
distance with a coaxial line. As the signal is frequency coded, it is interference immune.

7. The sensor is extremely rough. There are no complicated mechanical movements.

8. Because of the large operating frequency of the sensor, it is possible to detect signals of
very large band-width. It would be possible to detect signal with variations in the MHz
range by using a cavity tuned to resonate in the GHz range

This section describes the developments performed along the path described in the previous
paragraph. First the theory of the small gap re-entrant cavity is explained, and we give the
reasons to choose this geometry among others for the linear displacement transducer. Then
we describe the differential sensor, in which the displacement modifies at the same time two
cavities but in different direction, increasing the frequency of one cavity and decreasing the
other one. We then describe the mechanical structure of the prototype and the results of the
measurements. Finally, we give some ideas of the direction of future developments.
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4.2.1 Detailed design

General theory of the separated field cavity

In order to obtain a large variation of the cavity parameters, it is necessary that the electric
part of the cavity is modified in a substantial way. We will ask to the resonant cavity the
following properties:

1. A large sensitivity to the variation of the resonant frequency to the displacement

2. A high Q so that the resonance frequency is well defined

3. The resonant frequency should be in the region of hundred of MHz to a few GHz for
easy measurement

4. Low sensitivity to temperature variations

5. Easy integration of the displacement coupler to the cavity geometry

Figure 4.2 – Model of a separated field cavity

In the separated field cavity the electrical field is concentrated around the small gap and
is axial. The magnetic field is azimuthal and almost the whole flux is contained in the region
r1 < r < r2. As the region in the gap sees a constant flux variation (not varying with r1),
and the gap is uniform, the electrical field is constant in the gap region. On the other hand,
the variation of the magnetic field, will be defined by the displacement current as:

∂Bφ

∂r
+
Bφ

r
= jωµ0ǫ0Ez (4.9)

This equation may be solved to find that the magnetic field increases linearly in the gap
region and decreases hyperbolically in the outer region. The qualitative shape of the field is
shown in fig. 4.3.
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r

r

Ez

Bφ

r1 r2

B1

Figure 4.3 – Qualitative shape of the electrical and the magnetic field in the separated field
cavity

If we use the magnetic field at r1 to normalize the field and call it B1, we will have the
following expression for the magnetic field:

B =







B1r/r1 if r < r1,
B1r1/r if r > r1

(4.10)

The total flux in the cavity will be:

Φ =
∫ r2

r1

Bldr = B1lr1 ln (r2/r1) (4.11)

The stored energy will be:

U =
∫ r2

r1

B2

2µ0
l2πrdr =

B2
1r

2
1lπ

µ0
ln (r2/r1) (4.12)

Because the electric field in the gap is constant, we can say that the total displacement
current in the gap is:

Id = jωǫ0Eπr
2
1 (4.13)

We can use Ampere’s law to determine the electric field from B1:

B1

µ0
2πr1 = ǫ0jωEπr

2
1 (4.14)

Giving,

E =
V

g
=

−jB1

µ0ǫ0ωr1
=

−jB1c
2

ωr1
(4.15)

Eq. 4.15 provides the voltage in the gap required to produce the right amount of displace-
ment current to sustain the total magnetic flux in the outer region. The variation of this flux
will create the same voltage, so that:
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V = −dΦ
dt

= −jωΦ = −jωr1l ln (r2/r1) (4.16)

Equating both expressions of the gap voltage, we can obtain the resonance frequency:

f0 =
c

r1

√

2g
l ln (r2/r1)

(4.17)

To obtain the Q factor of the cavity, we need the losses as a function of B1. In order to
calculate the losses we perform the following surface integral in all the surfaces of the cavity:

P =
Rs

2µ2
0

∫

A
|B|dS =

πRsB
2
1r1

µ2
0

(

l +
lr1

r2
+
r1

2
+ 2r1 ln (r2/r1)

)

(4.18)

Rs is the surface resistance of the material at a frequency of ω, and its value is:

Rs =
√

ωµ0ρ

2
(4.19)

where ρ is the resistivity of the material.
The value of the quality factor will be:

Q = ω
U

P
=

ωµ0 ln (r2/r1)l

Rs

(

l
r1

+ l
r2

+ 1
2 + 2 ln (r2/r1)

) (4.20)

With the calculated expressions in hand, it is possible to make a design to optimize the
sensitivity of the sensor. In fig. 4.4, we have varied the radius of the gap region r1 and we
have calculated the resonance frequency and the quality factor. As we may see, the quality
factor steadily decreases with increasing r1; while the resonance frequency has a minimum
when r2 = 2r1.
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Figure 4.4 – Parametric properties of the cavity as r1 varies. The other values are r2 = 25 mm,
l=25 mm, and g=0.2 mm.

For the present design, we have adopted a value of 15 mm for r1, a smaller value would
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have provided a larger Q, which may be interesting to improve the sensitivity of the device.
It would be possible, as well, to improve the quality factor by having a different shape of
the inductive part of the cavity. This is due to the fact that the losses are due to the effect
of the magnetic field on the conductive wall, and therefore is related to the surface of the
inductive part. On the other hand, maintaining the same resonant frequency, depends only
on the volume of the inductive part. From this two facts, the optimal shape of the inductive
part is a torus of circular section. This is the typical shape, for instance, of the re-entrant
cavities in particle accelerators.

Design with Superfish

To validate the analytic design, the cavity has been simulated with a FEM program. The
Superfish program fro LANL has been chosen for this purpose [54]. The input program,
for Superfish is written using a Perl macro that writes the Superfish file. In such a way,
parametric capabilities are added to the Superfish input language and it is possible to perform
an optimization of the cavity geometry. The output of the Superfish simulation is shown in
fig. 4.5.

Sensor de posicion  F = 518.93157 MHz                                                                                     

C:\CYGWIN\HOME\HP_ADMINISTRATOR\BASKOTRON\SENSORVICTOR\SUPERFISH\SENSOR.AF  2−23−2009  12:50:12
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Figure 4.5 – Superfish plot of the cavity

The FEM model is in excellent agreement with the analytical results of the previous section.
The model may be run with different values of the capacitive gap in order to check the
sensitivity of the resonant frequency to the axial position of the shaft. For a central frequency
of 518.93 MHz, the resonance shifts up to 530.82 MHz for a 10 µm increase of the gap (nominal
200 µm) and decreases to 506.69 MHz for a 10 µm reduction of the gap. This values reproduce
very well the expected value of 1.3 MHz/µm.

Operation in differential mode

It is possible to build the sensor in differential mode. In such a way, the displacement to be
measured causes the frequency of two cavities to be changed in opposite direction, in one of
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them the frequency increases, while in the other the frequency decreases. The displacement
is then induced from the frequency difference between both cavities. Two advantages derive
from this approach, the first is that the sensor is less sensitive to temperature variations, as
the thermal expansion will change the frequency of both cavities in the same direction. The
second advantage is that the sensitivity increases by a factor of 2.

In fig. 4.6, we may see an example of a differential mode sensor.

g

l

r1

r2

Figure 4.6 – Schematic view of the differential mode operation

Parameter determination

In order to model the cavity, in this section we will determine the equivalent circuit parameters
of each individual cavity. The circuital model will be very useful to calculate the required
coupling of the circuit to the feeding line. From the transmission line point of view, the cavity
must be coupled so that it looks like a matched load to the characteristic impedance of the
coaxial line. This matching is made easier if the cavity is represented by a circuital equivalent.

We will require the four following magnitudes of the cavity near the resonant frequency to
be reproduced by the equivalent circuit: The values provided by Superfish are:

1. The resonant frequency

2. The on-axis voltage (integral of the electric field)

3. The stored magnetic and electric energy

4. The losses

These magnitudes are provided by the electromagnetic field solver program. The following
equations allow to obtain the equivalent circuit parameters:
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J. Lucas 4.2. Application of resonant cavities for sensors

U =
1
2
CV 2 (4.21)

f0 =
1

2π
√
LC

(4.22)

R =
Q0

2πf0C
(4.23)

Which may be used to obtain the circuital parameters

C =
2U
V 2

= 28.03pF (4.24)

L =
1

C (2πf0)2 = 3.35nH (4.25)

R =
Q0

2πf0C
= 37kΩ (4.26)

We can now use these parameters to calculate the antenna area in order to match the
cavity to the 50 Ω feeding transmission line. The transformer ratio of the coupling between
the antenna and the cavity will be the ratio of the total cavity flux to the flux link by the
antenna area Aloop. In a cavity which has virtually no electric field in the inductive region,
the magnetic induction will satisfy:

B(r) = B2
r2

r
(4.27)

Where B2 is the field at the outer radius r2. Let r1 be the radius of the cavity at the end
of the electric part and l the length of the magnetic part. The total flux will be:

Φ =
∫∫

s
B2
r2

r
dzdr = B2r2l log

r2

r1
(4.28)

If the antenna is small and it is located near the outer radius, where the field is B2, the link
flux will be B2Aloop. Therefore the transformer ratio between the antenna and the cavity will
be:

n =
r2l

Aloop
log

r2

r1
(4.29)

For our cavity, we would like:

Z0 = R′ =
R

n2
(4.30)

Where the prime on the resistance, means that it has been transferred to the feeding line.
From this equation, we can calculate that a transformer ratio of 27 is desired, and from eq.
4.29, an antenna loop area of 19.1 mm2 is required.
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4.2.2 Surface roughness

The rule of thumb is that the surface roughness (specified as Ra) must be a quarter of the
skin depth at the given frequency and material. The skin depth is given as:

δs =
√

ρ

ωµ
(4.31)

In our case (500 MHz and copper) this implies a value of 0.73 µ m, which we will round to
the more standard Ra0.8 in the inside of the cavity, while for the outside the specified value
is Ra3.2.

4.2.3 Relationship between the quality factor of the cavity and the sensitivity of

the sensor

It is possible to take a logarithmic derivative of the resonance frequency with respect to the
gap to obtain:

∆f
f0

=







1
2

∆g
g , for the standard re-entrant cavity,

∆g
g , for the differential re-entrant cavity,

(4.32)

In order to be detectable, this frequency variation must be larger than f0/Q, and therefore,
we must state that the resolution of the sensor will be in the order of:

∆g ≥







2g
Q , for the standard re-entrant cavity,
g
Q , for the differential re-entrant cavity,

(4.33)

This result is rather pessimistic, and should only indicate a minimum resolution of the sen-
sor, as with appropriate filtering, it should be possible to determine the resonance frequency
well inside the bandwidth of the resonator. In any case, it is a clear indicator that a high Q
is desirable in order to improve the resolution of the sensor.

Another interesting point is the possibility of using superconducting cavities with quality
factors in the order of 109, [43]. In this type of sensor, the accuracy will be limited by the
measurement equipment and not by the resonator itself. A collateral advantage of the use of
superconducting cavities would be the stable operation of both, the cavities and the samples
at cryogenic temperature.

4.2.4 Technical Implementation and experimental results

Technical Implementation

This section describes the technical implementation of the sensor calculated in the previous
sections. Fig. 4.7 shows a technical drawing of the cross section of the magnet, while fig. 4.8
shows an isometric view of the sensor.

The main body and the movable central part are made of high conductivity copper. For
the connection rods, we built an initial prototype using a machinable ceramics, but it showed
to be brittle and difficult to join to the movable part. We then built the connecting rods in a
technical plastic, which showed far better mechanical behavior. Nevertheless, the plastic has
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worse thermal behavior (a much larger thermal expansion coefficient) and is less stiff, what
probably exacerbates the stick-slip effect.

The central part and the movable part has an ISO 286 H7/h6 fitting, which provides an
evanescent wave in the small coaxial channel between both parts effectively decoupling the
two differential cavities.

Figure 4.7 – Section of the sensor. 1 and 2 form the main body of the sensor, 3 is the mov-
able central part, 4 is the plastic connection rod which is used to transmit the
displacement, 5 is the SMA coaxial coupler.

The coupling of RF to the cavity is made by two loops per cavity built at the end of an
SMA connector. These connectors may be seen in fig. 4.8.

Experimental Set Up

The prototype has been built and measured in the experimental set-up of fig. 4.9. The sensor
is attached to two rings that are fixed to an optical bench. The displacement of the sensor
is controlled with a micrometer. In future sensor, it is planned that the actuator will be a
piezoelectric, whose displacement may be controlled in the range of the tens of nanometers.
Unfortunately, the stick-slip effect and the high rigidity of the prototype have made impossible
to perform these measurements with the present design.

Averaging over large displacements (as they are the caused by the micrometer), the sensor
behaves as expected, see fig. 4.10.

4.2.5 Membrane design

As we have mentioned before, the stick-slip movement made impossible the measurement of
displacements in the order of the tens of nanometers, which is the theoretical limit of the
sensor. In order to solve this problem, we are developing a second prototype based in a
membrane which is deformed by the force transmitted through the movable part. Although

26



J. Lucas

Figure 4.8 – Isometric view of the sensor. 5 is the SMA coupler, 6 the bolts used to fix the
coupler to the main body and 7,8 the nuts and bolts used to put together the two
parts of the main body.

the rigidity of the sensor will be larger, the displacement will be smother. A CAD model of
the membrane actuator is shown in fig. 4.11.

This sensor should be capable of detecting the displacement of the connecting rod without
the stick-slip effect observed in the previous prototype. As a drawback a larger force will be
required to deform the membrane in order to create a certain frequency shift.

A very interesting spin-off of this design would be a differential pressure sensor. In this
case, the displacement of the transducer would be caused by a non-conducting, low dielectric
losses fluid. It should be possible to obtain extremely accurate measurements of the pressure
in very rough environments.
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Figure 4.9 – Experimental set up

Figure 4.10 – Results of the measurements
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Figure 4.11 – Membrane based design
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CHAPTER5
Acceleration in drift tube linacs and

longitudinal beam dynamics

The objective of this chapter is to describe the environment in which the PMQs will operate
and to describe the alternatives existing for the transverse focusing in an accelerating structure.
We will start by looking at how the electrical field is generated in a RF cavity, we will then
describe how the particles are accelerated by an electrical field, and how this field is practically
applied in an accelerating gap. Afterwards, we will give a very rude description of a drift tube
linac and we will end the chapter with a more detailed description of the longitudinal dynamics
in a series of accelerating gaps.

5.1 Application of resonant cavities for particle accelerators

The particles will pass through most cavities in a longitudinal channel defining the beam
trajectory. The effect of the cavity in the beam will be determined by the characteristics
of the electrical, and to a lesser extent the magnetic, fields along this longitudinal channel.
These properties are the on-axis ones of the cavity. When the cavity is used for accelerating
particles, the most important parameter of the cavity is the on-axis voltage, which may be
defined as the maximum integrated electrical field on the axis of the beam passage. Other
cavity parameters may then be related to the on-axis voltage.

In order to relate the losses in the cavity to the on axis voltage, the losses are modeled as
due to a resistance placed in parallel to the voltage of the gap, i.e., a shunt resistance. In
a more quantitative way, the shunt impedance rS gives an idea of the amount of power that
must be dissipated in order to establish a certain on-axis voltage V0.

rs =
V 2

0

P
= Q

V 2
0

ωU
(5.1)

Very often the value used for rs is half that of eq. 5.1. In this case, the shunt impedance is
the same that the actual shunt impedance in the cavity equivalent circuit. 1. This expression
does not take into account the effectiveness of the created voltage, as the real acceleration
should include not only the voltage but the transit time factor, see eq. 5.12, which will be
defined in the next chapter. This is provided by the effective shunt impedance, r.

1Electrical engineers should be aware that in the microwave world, most often the peak value of the oscillating
magnitudes is used instead of the rms value. Therefore the discrepancy of a factor 2, to obtain the power.
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r =
(V0T (β))2

P
= rsT

2 (β) (5.2)

It is obvious that the effective shunt impedance of the cavity will depend on the particle
speed through the time transit factor. The r over Q parameter is the ratio of the effective
shunt impedance and the quality factor, it is only a function of the geometry, and it is
independent of the material used for building the cavity.

r

Q
=

(V0T )2

ωU
(5.3)

With the above definitions is possible to obtain a cavity equivalent circuit near each resonant
mode. The equivalent circuit is shown in fig. 5.1.

 L  C rs

V0

 L  C rs

V0

AC
Ibeam

Figure 5.1 – Left, parallel equivalent circuit of an unloaded resonant cavity near a certain mode.
Right, the same cavity but loaded with the beam current and including power
injection from a source through a magnetic coupling.

The equivalent parameters may be obtained from a FEM simulation by equating the res-
onant frequency to 1/

√
LC, the total stored energy to 1/2CV 2

0 , when the on-axis field is
normalized to provide V0 and using the shunt impedance of 5.1.

Any practical cavity will require some power injection through an aperture, and in the case
of accelerator cavities, the component of the beam current at the resonant frequency will
apply a load to the cavity. The equivalent circuit is shown as well in fig. 5.1

5.2 Acceleration in a RF gap

As it is well know, the acceleration of a charged particle must be performed by the electrical
field. The magnetic field, as it creates a force perpendicular to the velocity, cannot change the
particle energy. Performing the scalar product of the Lorentz law by the velocity, we obtain,

~v · d~p
dt

= −q~v · ~E = q~v ·
(

∂ ~A

∂t
+ ∇V

)

(5.4)

It is interesting to note, that the electrical field may be created either from static charges
or a changing magnetic field. This second case of acceleration is used in the betatron or in the
induction linac, and it is expressed in eq. 5.4 by the time derivative of the vector potential.

We should now move to the more general case of the acceleration of one particle as it moves
along a gap in a radiofrequency structure. The variation of voltage per unit length of a certain
particle will be the electrical field seen by that particle at a certain position and instant.
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dV

dz
= E(z, r, t) (5.5)

We will assume that the particle is traveling very near the axis and that the on-axis field
may be decomposed in a time variation of angular frequency ω and an spatial component
corresponding to the maximum temporal value of the field. In this case, we can write

dV

dz
= e(z) cos (ωt+ φs) (5.6)

The limits of the integral must extend to a region where the electrical field of the gap is
negligible. This formalism may be extended to a multi-gap structure, in which case the limits
would be outside of the RF cavity.

We have introduced a synchronous phase to model particles that are not at the origin when
the peak field is maximum. φs may be seen as the phase of a given particle at the origin. We
will suppose, in addition, that the variation of energy in the gap is relatively small, so that
the particle will be at a certain average velocity in the gap that we will call v. Under this
assumption, the particle will be at position z at time z/v and the expression for the voltage
variation in the gap may be integrated in z.

∆V =
∫

e(z) cos
(

ω
z

v
+ φs

)

dz =
∫

e(z) cos
(

ω
z

v

)

cosφsdz −
∫

e(z) sin
(

ω
z

v

)

sinφsdz

(5.7)
We will know express the voltage gain equation in complex form,

∆V = ℜ
(

ejφs

∫

e(z) exp
(

j
ω

v
z

)

dz

)

(5.8)

We easily recognize the Fourier transform of the electrical field2, that we will denote as e.

∆V = ℜ
(

ejφse

(

ω

v

))

(5.9)

Usually the magnitude ω/v is expressed in a slightly different way,

ω

v
=

2πf
v

=
2π
βλ

(5.10)

Where βλ is the space that a particle traverse during an RF time. In addition, we will take
the modulus of the expression given by eq. 5.9 to obtain,

∆Vmax =
∣

∣

∣

∣

e

(

2π
βλ

)∣

∣

∣

∣

(5.11)

As an example of the use of the Fourier transform and eq.5.11 we will use the case of a
double spoke cavity that was calculated by the author for a preliminary design of ESS-Bilbao
[1], [41]. The main dimensions of the cavity may be seen in 5.2.

2Depending on the convention adopted, a normalizing factor 1/
√

2π is used in the definition of the Fourier
transform. This factor is useful in order to have more symmetrical inverse Fourier transform. We prefer
not to use it here for clarity
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The RF problem of the resonant mode in the cavity was solved and the on-axis electrical
field could be extracted. This electrical field was scaled to obtain the maximum allowed
electrical field in the cavity surface. The result may be seen on the left of fig. 5.3. Once this
electrical field is obtained, it is possible to calculate the maximum accelerating voltage as a
function of the particle velocity by using eq. 5.11. The result is shown on the right of fig. 5.3.

Figure 5.2 – Main dimensions [mm] of the designed double spoke
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Figure 5.3 – DSR Cavity. Left, on-axis peak voltage of the cavity. Right, available accelerating
gradient in the range of interest.

Although equation 5.11 is very general and may be used for obtaining the accelerating
voltage for a large range of problems, normally a simpler approach is taken for a single gap
acceleration. Typically, the gap is supposed symmetrical around the point z = 0, so that the
sinus term may be drop from eq. 5.7. We define then a transit time factor T , which will
depend on the particle velocity as,

T (β) =

∫

e(z) cos
(

2π
βλz

)

dz
∫

e(z) dz
(5.12)
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With this definition, the acceleration in the gap will be,

∆E = eV0T (β) cosφs (5.13)

, which is called the Panoffsky equation. In spite of its simplicity, the Panoffsky equation
summarizes the effect of the accelerating gap on any given particle by quantifying the different
effects affecting the acceleration, the strength of the coupling of the particles of the beam to
the electrical field, e, the absolute strength of the accelerating gap, V0, the adequacy of the
matching of the particle speed to the gap size, T and finally the relative phase between the
pass of the particle through the gap center and the electrical phase.

5.3 Structure of a linac

Normally a single gap or even a single cavity is not enough to boost the energy of the beam
to the desired energy. For this, a structure of several cavities placed along a linac or a circular
accelerator, as was described in the introduction is required. A linac is an accelerator in
which the particles are not recirculated through the same cavities several times. Each gap
in a linac will receive a beam of a certain energy and will provide a well defined increase of
energy. With this boost of energy, the particle will reach the center of the next accelerating
gap at the required time.

In any multi-gap accelerating structure, it is necessary that each bucket is at the center of
a gap during the phase when the electric field is positive. As we will see later, the reference
particle passes through the center of each gap at a constant phase, receiving just enough
acceleration to pass through the center of the next gap at the same electric field phase.
Depending of the type of RF structure, the relative phase between adjacent gaps is not
necessarily zero (or 2π), therefore some of the gaps will be empty of particles. The RF
structure may be classified according to the phase advance per gap. This situation is shown
in fig. 5.4.

Figure 5.4 – Different cases of phase advance per gap

Although not all the gaps are occupied at any certain time, the buckets will be accelerated
in all the gaps, as the structure must be build so that the time to reach any empty gap is
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equal to the time required for the field to change to the accelerating synchronous phase. A
principle that we will define later as the zeroth order of the longitudinal dynamic.

It is important to note that the widely used expression βλ, just represents the distance
traversed by the beam in a single RF period, in this sense, λ must be understood as the free
space wave length of an electromagnetic wave of frequency ω = c/λ.

The distance between gaps must be increased along the linac to cope with the increasing
value of the particle speed, β. For ions and low energy electrons, this means that the profile
of the particles speed is linked to the linac gap position and dimension along its structure.
Nevertheless, for ultra-relativistic particles, as it is normally the case for electrons, the gap
may be kept constant, as the increase of energy is not associated to a significant acceleration,
as the speed is saturated to value of the light one.

The linac design requires then to calculate the acceleration at each gap and to distribute the
different gaps at the appropriate position. In practice this requires a software, like Parmila
or GenDTL [21], that may import the data of a RF analysis program, normally SUPERFISH
[54], and transport the beam along the accelerating structure. These codes, normally also
allow to compute the transversal behavior of the beam along the linac, a subject to be treated
on the next chapter.

PMQs are typically used in drift tube linacs (DTL) structures. The basic structure of a
DTL may be seen in fig. 5.5. The structure is resonating in a 2π mode, i.e. the field repeats
a complete cycle when the bunch is in the next accelerating gap. During the field reversal,
the particles are screened from the decelerating field by a drift tube, in which the absolute
value of the electrical field is very low. In such a way, the neat effect is accelerating.

5

E
1 2 3 4 5

1 2

E

3 4

Figure 5.5 – Basic structure of a DTL. Up, position of the particle bunches during the accelerat-
ing phase of the electrical field. Down, position of the particle bunches during the
decelerating phase of the electrical field

As it is indicated in fig. 5.5, the length and spacing of the drift tubes must be increased
along with the velocity of the particles, so that the particles are at the same phase of the
electrical field when they are at the center of the gap.
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5.4 Longitudinal dynamics

5.4.1 A trick to get the relativistic derivatives

It is quite often necessary to obtain the relationship between the variation of the different
relativistic parameter. How does the velocity change with energy?, or the momentum with
velocity? In this section, a method is presented that allow to quickly calculate these deriva-
tives.

First of all, we should consider that the velocity, the total energy and the momentum are
represented by the adimensional relativistic parameters, β, γ and βγ, respectively, because
we can write,

v = βc (5.14)

E = γmc2 (5.15)

p = βγmc (5.16)

Then, all the relativistic parameters may be related to the rapidity, u by the following
equations,

β = tanh u (5.17)

γ = cosh u (5.18)

βγ = sinhu (5.19)

And it is much quicker to obtain the desired relationships by passing through the rapidity.
For example, for the analysis of the longitudinal dynamics, we need to know how the speed
of a particle changes with its energy, we can proceed in the following way,

dβ

dγ
=
dβ/du

dγ/du
=

1/cosh2u

sinhu
=

1
βγ3

(5.20)

Obtaining this expression without using the rapidity would require significantly more al-
gebra. In addition, the rapidity is very interesting in itself, as it represents the hyperbolic
angle that appears in the Lorentz transform and it is an additive parameter when combining
relativistic boosts. A lovely description of this subject may be seen in [20]. Of course, solving
relativistic problems using hyperbolic triangles instead of Lorentz transforms is technically
inferior, but it has the appeal of the graphical methods, in which the relationship between
several magnitudes is easier to appreciate. A similar problem occurs when solving spherical
triangles using the Bessel formulae instead of vectors on the unit sphere. The first approach
has the advantage of giving a visual interpretation of the problem, at the expense of having
an incertitude on the quadrant of the inverse trigonometric functions.
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5.4.2 Equations of the longitudinal dynamics

The longitudinal dynamics of a linac analyzes the difference in energy and phase of transit
through an accelerating particle of an arbitrary particle with respect to the synchronous
particle. The synchronous particle is defined as the one that passes through the accelerating
gaps at the synchronous phase, φs, and has just the right energy, Es, to reach the following
gap again at the synchronous phase. The fact that the linac is built in such a way that a
certain (synchronous) particle arrives always at every gap on the same phase is the zeroth
order dynamics of the longitudinal movement3. For all other particles we define the phase
error, δφ, and the energy error, δE, so that their phase of arrival and energy at a certain gap
is given by 4,

φ = φs + δφ (5.21)

E = Es + δE (5.22)

The longitudinal dynamics equations provide us with two relationships, how does the energy
error of a particle change for a certain phase error and how does the phase error change for a
certain energy error. For answering the first question we introduce eq. 5.22 in the Panoffsky
equation,

∆E = qTV0 cos (φs + δφ) = qTV0 cosφs cos δφ− qTV0 sin φs sin δφ (5.23)

The obtain the change of δE, we have to subtract the energy gain of the synchronous
particle,

∆δE = ∆E − ∆Es = ∆E0 [cosφs (cos δφ− 1) − sinφs sin δφ] (5.24)

, which answers the first of the questions. We have called ∆E0 to the maximum available
energy gain per gap.

For answering the second question we will consider that the distance between gaps is lg
and the radiofrequency has an angular velocity of ωRF , in this case, the difference in time to
arrive to the gap between the synchronous and the arbitrary particle will be,

δt =
lg
c

(

1
β

− 1
βs

)

=
lg
c

βs − β

βsβ
= − lg

c

δβ

βsβ
= − lg

c

dβ/dγ · δγ
βsβ

= − lg
c

δγ

βsβ2γ3
(5.25)

, in which we have used eq. 5.20. The variation in phase will be then,

∆δφ = − lgωRF

c

δγ

βsβ2γ3
= − lgωRF

c

δE

mc2βsβ2γ3
(5.26)

3In the same way that the fact that a certain particle passes through the center of the quadrupoles and it is
bent by the nominal angle by the dipoles is the zeroth order dynamics of the transverse movement

4We use the letter δ to represent the error with respect to the synchronous particle in order to reserve d as
the derivative of this error and ∆ to the variation of the error
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For a 2π type cavity, lg is βsλ and eq. 5.26 may be expressed as,

∆δφ = −2π
δE

mc2β2γ3
≈ −πδE

E
(5.27)

, where the approximation is to the non-relativistic case, in which γ → 1 and E → 1/2mc2β2.
We will use in the following the non relativistic equation, although it is very simple to revert to
the fully correct one by replacing the kinetic energy by the right term of eq. 5.27. Nevertheless,
we retain the approximate expression because it provides a very neat and easy to remember
quantification of the phase shift with energy error, i.e. a one per one error in energy gives a
phase increment of −π.

Eqs. 5.24 and 5.27 form a set of coupled equations that provide the behavior of all particles
having an error on energy or phase with respect to the synchronous particle. In fig. 5.6, we
can see a tracking performed on a certain structure for several values of energy error. As we
may see, above a certain energy error, the particle is lost.
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Figure 5.6 – Tracking of a set of particles with different energy errors. The nominal energy is
20 MeV, the acceleration per gap 50 keV and the synchronous phase -30◦.

To analyze what is happening, we will replace the difference equations 5.24 and 5.27 by
a pair of coupled differential equations, supposing that the gap number n is a continuous
variable.

dδE

dn
= ∆E0 [cosφs (cos δφ − 1) − sin φs sin δφ] (5.28)

dδφ

dn
= −πδE

E
(5.29)

This coupled system may be obtained from the Hamiltonian of eq. 5.30 assuming that δφ
and δE are the generalized coordinate and momentum respectively.
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H = −∆E0 [cosφs (sin δφ− δφ) + sin φs cos δφ] − π

2E
δE2 (5.30)

Because the Hamiltonian is not explicitly dependent on n, it will be a constant of movement,
and therefore we can plot in the phase space curves of constant H that will be the trajectories
of the particles. This is made in fig. 5.7.
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Figure 5.7 – Longitudinal phase space for E=20 MeV, ∆E0=50 kEV and φs = −30◦. The
separatrix is explicitly indicated.

There are two types of trajectories, some of them are trapped and rotate around the syn-
chronous point, the other trajectories are not trapped and have an unbounded change of δφ.
Both trajectory families are separated by a singular trajectory which is called the separatrix.
All the points inside the separatrix will have a stable oscillation around the synchronous tra-
jectory, while all the other points will be lost during the acceleration. The area inside the
separatrix is called the bucket and defines the acceptance of the accelerating structure in the
longitudinal dynamics. To obtain the equation of the separatrix, we use the fact that it is the
phase space trajectory that passes trough the unstable stationary point of the Hamiltonian,
which is located on the apex of the separatrix. In this points, the differential equations are
zero, so that the point is stationary,

dδE

dn
= ∆E0 [cosφs (cos δφ− 1) − sin φs sin δφ] = 0 (5.31)

dδφ

dn
= −πδE

E
= 0 (5.32)

This is fulfilled when δE is zero and δφ is −2φs. We will call this value as δφα. The fact
that this solution corresponds to an unstable stationary point may be proved by the fact that
the Jacobian matrix of the differential equation set has two eigenvalues of opposite sign at
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(δφα, 0), and it is therefore a saddle point [30]. The value of the Hamiltonian function t the
separatrix is,

Hα = −∆E0 (2φs cosφs − sinφs) (5.33)

, and the implicit equation defining it will be,

Hα = −∆E0 [cosφs (sin δφ− δφ) + sin φs cos δφ] − π

2E
δE2 (5.34)

The area of the bucket will be reduced with the synchronous phase approaching zero, so that
cosφs → 1. In other words, if we try to get the maximum energy gain per gap, the longitudinal
acceptance will be zero , and only the synchronous particle will be accelerated. In fig. 5.8,
we can observe the reduction of the phase space area as the synchronous phase approaches
zero, where the maximum energy boost of the synchronous particle may be reached.
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Figure 5.8 – Several separatrices for E0=20 MeV, ∆E=50 keV. The values of φs are -36◦, -30◦

and -20◦

The same situation may be seen in the accelerating voltage plot of fig. 5.9. We may observe
there the symmetry of the synchronous phase and the apex of the separatrix. Obviously, a
particle that sits at the apex and has zero energy error receives just the energy to stay in the
same position after one gap, but in an unstable way.
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Figure 5.9 – Accelerating voltage over phase. The stable region for δE =0 is indicated in red.
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CHAPTER6
Transverse dynamics

In any accelerator system, the beam will have a certain amount of transverse momentum that
if not controlled will cause the beam to increase in size until the mechanical aperture of the
system is exceeded and the beam is lost to the walls of the vacuum chamber. In order to
avoid the loss of the beam, it is necessary to study and control this lateral expansion of the
particles. This is the subject of the transverse dynamics.

In this chapter, we will study the main equations ruling the transversal movement of the
particles. We will start by providing the equations that control the displacement of the
particles with respect to the ideal trajectory that the beam designer has planned for its
accelerator. We will analyze, as well the effect of this movement on complete regions of phase
space, and not only for any single particle.

A significant contribution of the present work is on the complex formalism of linear beam
dynamics. The fact that the two degrees of freedom defining a phase space ellipse in beam
dynamics may be grouped in just one complex number has been known since a long time.
Nevertheless, to the author’s knowledge, only the transformation of the phase ellipse through
a drift space or a thin lens has been obtained. In this work, a general formulation is presented,
the relationship with the commonly used Twiss parameters is given and some interesting uses
of this new formulation are proposed.

The chapter will end with one application of the transversal beam dynamics, the analysis
of ion species using a magnetic spectrograph. I will describe the design of a spectrograph of
extremely large acceptance, that was designed by the author using a fully non-linear method.

6.1 The magnetic and electrical rigidity

6.1.1 The magnetic rigidity

From the magnetic term of Lorentz’s law, the variation of the momentum with time may be
expressed as,

d~p

dt
= q~v × ~B (6.1)

We can replace the derivative with respect to time by the derivative with respect to the
trajectory length, s.

d~p

ds

ds

dt
=
d~p

ds
v = q~v × ~B (6.2)
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As the velocity vector may be expressed as the product of its modulus v and the unitary
tangent vector ~τ , we can write,

d~p

ds
= q~τ × ~B (6.3)

The first term may be simplified by expressing, again, the momentum as its modulus times
the unitary tangent vector and applying Frenet’s first equation of curves and the fact that
the modulus of the momentum does not change because the magnetic field cannot modify the
energy of the particle,

d~p

ds
=
d ~(pτ)
ds

= p
d~τ

ds
+ τ

dp

ds
= p

~n

ρ
(6.4)

Where ~n is the unitary normal vector and ρ is the radius of curvature. The magnetic
induction may be separated in its tangential component Bt, colinear with ~τ , and its normal
component, Bn, colinear with ~n.

We obtain finally,

Bnρ =
p

q
= ηm (6.5)

Eq. 6.5 allows to define a new magnitude, the magnetic rigidity ηm; which is the quotient
of the momentum and the charge and represents how the inertia of the particle will oppose
to being bent, 1/ρ, by a given magnetic field, Bn, perpendicular to the trajectory.

6.1.2 The electrical rigidity

A similar calculation may be performed for the effect of the electrical field on the particle
trajectory.

d~p

dt
= q ~E (6.6)

The derivation is slightly longer because the electrical field may change the modulus of the
momentum of the particle. We will have now,

(

dp

ds
~τ + p

d~τ

ds

)

v = q ~E (6.7)

We can now separate eq. 6.7 into its normal and tangential components, ~E = Et~τ + En~n.

v
dp

ds
= qEt (6.8)

pv

ρ
= qEn (6.9)

Eq. 6.8 is only the projection of the electrical field in the direction of the trajectory, the only
component doing work on the particle; while eq. 6.9 describes how the shape of the trajectory
changes. We can define an electrical rigidity, ηe in analogy with the magnetic rigidity.
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ηe = Enρ =
pv

q
(6.10)

It is interesting to note that in the non-relativistic regime, pv is twice the kinetic energy
of the particle, which in turn is proportional to the total accelerating voltage, V , seen by
the particle from the source times the charge. As the charge cancels in the numerator and
the denominator the electrical rigidity is 2V , independently of the charge or the mass of the
particle. This is a very interesting property of electrostatic lenses, that are often used at
low energies. In this case, if the voltage of the lenses is proportional to the voltage used
to accelerate the particles, the beam dynamics will not depend on the beam energy. This
solution is very cost effective, as the lenses voltage may be obtained by resistive dividers from
the main high voltage power supply.

In the relativistic case, the expression is a bit more complicated,

ηe =
pv

q
=
mc2γβ2

q
=
mc2

q

(

γ − 1
γ

)

= V
2mc2 + T

mc2 + T
(6.11)

From where is evident that at low energies ηe ≈ 2V while at ultrarelativistic energies,
ηe ≈ V .

6.2 The paraxial particle equations

It is customary in beam analysis to define a reference particle that has the following properties,

1. It has exactly the nominal magnetic rigidity, so that it is bent by the dipoles exactly
the nominal angle

2. It passes exactly through the center of the quadrupoles, so that they have no effect on
the reference particle

Although it is not a common use, we will call the analysis of the trajectory of the reference
particle, the zeroth order dynamic. The analysis of the movement of all other particles will be
made on a moving system which has its z axis in the direction of the reference particle velocity,
and the x and y axes in a plane perpendicular to the velocity. Normally, x is contained in the
horizontal plane and y is vertical, although this is not always the case, specially for transfer
lines, in which a vertical displacement of the reference trajectory is often required.

The reference system we will be using may be seen in fig. 6.1. The reference system is
moving with the synchronous particle, the z axis is parallel to the trajectory, the x axis is the
plane in which the particle is being bent (the dispersive plane as we will see later), and the y
axis is perpendicular to the other two.

We will use, as well, the paraxial approximation, which is used when the longitudinal
component of the momentum is much larger than the transverse ones. In that case, the
curvature is equivalent to the second derivative of the transverse displacement with respect
to the longitudinal coordinate,

d2x

dz2
≈ −1

ρ
(6.12)
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x

z

ρ

y

Figure 6.1 – Definition of the axes used in the derivation of the equations of movement

In addition, only the longitudinal velocity couples with the magnetic field to produce
Lorentz force,

Fx = −βcBy (6.13)

Fy = βcBx (6.14)

The magnetic field may be expanded to first order around the synchronous particle, because
there is no bending of the synchronous particle in the y axis, By0 = 0.

Bx = Bx0 +
∂Bx

∂x
x+

∂Bx

∂y
y (6.15)

By =
∂By

∂x
x+

∂By

∂y
y (6.16)

Because we want to express the equations of movement with respect to a rotating system,
the one defined by the synchronous particle, we have to include two types of inertial forces,
the centrifugal force and the Coriolis force. The angular velocity of the synchronous system
is,

~Ω = −ω~ = −βc

ρ
~ (6.17)

For computing the effect of the Coriolis force, we need to know the value of the relative
velocity of the particle with respect to the non-inertial frame. The relative velocity is due to
the off-axis components of the speed and to the fact that a particle at synchronous speed but
not located at the proper radius ρ, will have a difference between the drag velocity at this
point and the actual velocity. The relative velocity will be,

~vr =
dx

dt
~ı+

dy

dt
~− ωx~k (6.18)

The last term in eq. 6.18 is the one due to the mismatch between the frame velocity at the
particle radius, ω (ρ+ x), and the actual velocity of the particle, which is the synchronous
one, ωρ.
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The Coriolis force may then be computed as,

~Fcor = 2γm~vr × ~Ω = −2γm
(

dx

dt
~ı+

dy

dt
~− ωx~k

)

× ω~j = −2γm
(

ω
dx

dt
~k + xω2~i

)

(6.19)

The Coriolis force due to the relative velocity, dx/dt , may be neglected, because it is
oriented in the longitudinal direction. The Coriolis force due to the relative velocity, dy/dt ,
is zero, because the relative velocity and the frame angular velocity are parallel. The effect of
the offset in the x axis is very important, ant it is the cause of the focusing effect of a dipole
on the dispersive plane.

On the other hand, the centrifugal force has an important contribution, it is pointing
outwards and it it given by,

~Fcent = γmω2 (ρ+ x)~ı (6.20)

The interesting point is that the excess of centrifugal force due to the off-axis displacement
has half the value of the due to the Coriolis force and is pointing inwards, i.e. it is a focusing
force.

So that the total effect of the transverse inertial force will be,

~Finert = γmω2 (ρ− x)~ı (6.21)

The first term is the one canceled exactly by the Lorentz forces at the reference trajectory,
will the second term is the focusing force due to the bending of the beam in the dispersive
plane.

Once we have determined the forces, we will now derive the equation of motion, the time
derivatives, may be replaced by derivatives along the trajectory as,

dx

dt
=
dx

dz

dz

dt
= βc

dx

dz
(6.22)

d2x

dt2
=
d2x

dz2

(

dz

dt

)2

= (βc)2 d
2x

dz2
(6.23)

The equations of movement will be,

d2~r

dt2
= ~FLorentz + ~Finert (6.24)

The Lorentz forces may be obtained from the field expansion given in eq. 6.15. If we take
into account the cancellation of the main term of the centrifugal force with the Lorentz force
in the reference trajectory, we arrive to the following equations,

γm (βc)2 d
2x

dz2
= −

(

∂By

∂x
x+

∂By

∂y
y

)

eβc− γm

(

βc

ρ

)2

x (6.25)

γm (βc)2 d
2y

dz2
=
(

∂Bx

∂x
x+

∂Bx

∂y
y

)

eβc (6.26)
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We can now express the equations of movement in terms of the magnetic rigidity, which is
the ratio between the particle momentum and the electrical charge. The result is,

d2x

dz2
+
(

∂By/∂x

ηm
+

1
ρ2

)

x+
∂By/∂y

ηm
y = 0 (6.27)

d2y

dz2
− ∂Bx/∂y

ηm
y − ∂Bx/∂x

ηm
x = 0 (6.28)

We will introduce the effect of a small difference in magnetic rigidity with respect to the
reference one, taking logarithmic derivatives with respect to the basic equation of the radius
of curvature of the reference particle, Bρ = ηm, we obtain

∆ρ
ρ

=
∆ηm

ηm
(6.29)

, so that the change of curvature radius will be to first approximation,

∆ρ = ρ
∆ηm

ηm
= ρδ (6.30)

, where δ is the relative error of magnetic rigidity. Because we are in para-axial approximation,
we can approximate the change in the second derivative of the transverse displacement in the
dispersive plane to the change in the radius of curvature. Taking a variation with respect to
eq. 6.12,

∆

(

d2x

dz2

)

=
∆ρ
ρ2

=
δ

ρ
(6.31)

We can introduce now, the additional term given in eq. 6.31 into eq. 6.27 to obtain the
complete set of equations in first approximation,

d2x

dz2
+
(

∂By/∂x

ηm
+

1
ρ2

)

x+
∂By/∂y

ηm
y =

δ

ρ
(6.32)

d2y

dz2
− ∂Bx/∂y

ηm
y − ∂Bx/∂x

ηm
x = 0 (6.33)

Most accelerators are design to minimize the terms coupling the displacement in the x and
y planes. This is not the case when solenoids or skew quadrupoles are used, but it is normally
a good approximation in most transfer lines and circular accelerators using quadrupoles and
combined function dipoles. In this case, the equations of movement reduce to the simpler,

d2x

dz2
+
(

∂By/∂x

ηm
+

1
ρ2

)

x =
δ

ρ
(6.34)

d2y

dz2
− ∂Bx/∂y

ηm
y = 0 (6.35)

These equations are similar to the harmonic oscillator, but with a recovering term that
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depends on the position of the transfer line. It is interesting to note that in absence of bending,
the recovery terms in x and y axis have the same value but opposite sign. In addition, it
is important to realize that the lack of a first derivative term in the ordinary differential
equation leads to the conservation of the Wronskian of the equation solution pairs.

The equation of the movement on the dispersive plane is a non homogeneous type and there-
fore will be composed of a general solution of the homogeneous equation plus an individual
solution of the homogeneous equation. For the individual solutions of the homogeneous equa-
tion, we will take the one with has initial conditions, x (z1) = 1 and x′ (z1) = 0, which is the
cosine like solution C(z) and the one which has initial conditions x (z1) = 0 and x′ (z1) = 1,
which is the sine like solution, S(z). For the particular solution of the complete equation we
will take the one which has x (z1) = 0 and x′ (z1) = 0, and we will take advantage of the fact
that the solution of the eq. 6.34 must be linear in δ. On the other hand, for the non-dispersive
plane y, the solution will only be composed of the linear combination of another pair of cosine
like and sine like solutions. We can then write,

x(z) = x1Cx(z) + x′
1Sx(z) + δD(z) (6.36)

y(z) = y1Cy(z) + y′
1Sy(z) (6.37)

It is Typically possible to solve eq. 6.34 and eq. 6.35 for individual beam line components
like dipoles, quadrupoles and drift spaces. If we call, z2 the exit point of the beamline
component and z1 the entrance point, the solutions eq. 6.38 and eq. 6.39 may be expressed
in matrix form as,







x2

x′
2

δ2






=







Cx Sx D

C ′
x S′

x D′

0 0 1













x1

x′
1

δ1






= Mx12 ·







x1

x′
1

δ1






(6.38)

(

y2

y′
2

)

=

(

Cy Sy

C ′
y S′

y

)(

y1

y′
1

)

= My12 ·
(

y1

y′
1

)

(6.39)

In most cases, we can treat individually the movement in the dispersive and non-dispersive
planes and we will often drop the x or y sub-index, indicating by the context which plane we
are dealing with. It would be possible as well to combine the movement in both planes in a
5x5 matrix. The movement along a more complex beamline will be made by combining the
transport along the individual components using matrix multiplication,







x3

x′
3

δ2






= Mx13 ·







x1

x′
1

δ1






= Mx23 · Mx12 ·







x1

x′
1

δ1






(6.40)

Giving the law of composition,

M13 = M23 · M12 (6.41)

It is possible now to obtain the matrices M for many beamline components of practical
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interest and solve the first order dynamic of a beamline. This is made in many standard
books and we will not repeat it here.

The solution of the complete equation 6.34, may be expressed on the basis of a Green
function derived from the individual solutions of the homogeneous equation. In order to
obtain the appropriate Green function, we express the complete equation as,

x” +K(z)x = p(z) =
∫ z

0
p (ẑ) δ (z − ẑ) dẑ (6.42)

, that we interpret as a linear combination of inhomogeneus terms δ (z − ẑ), in which each
term has a weight p (ẑ). The total solution will then be a linear combination of the individual
solutions,

x” +K(z)x = δ (z − ẑ) (6.43)

If we integrate eq. 6.43 over z, and apply initial conditions x(0) = 0 and x′(0) = 0, we
obtain that for all z < ẑ, x remains zero, will for ẑ we have a unitary jump of the derivative,

x′
(

ẑ+
)

− x′ (ẑ−) = 1 (6.44)

We can interpret this result as saying that the function will be identically zero until ẑ
and then it will continue to evolve according to the homogeneous equation but with initial
conditions x (ẑ) = 0 and x (ẑ)′ = 1. This type of solution may be seen in fig. 6.2.
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Figure 6.2 – Example of a unitary step on the derivative at around 4.1. The back-propagated
initial condition may be seen in the dashed line

To obtain the solution to the impulse function, we only have to back-propagate the initial
conditions at ẑ to the origin and express the solution from this initial conditions. The back-
propagated initial conditions will be,

(

x(0)
x′(0)

)

= M−1

(

0
1

)

=

(

S′ (ẑ) −S (ẑ)
−C ′ (ẑ) C (ẑ)

)(

0
1

)

=

(

−S (ẑ)
C (ẑ)

)

(6.45)

, and therefore the solution will be,
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x(z) =







0 ifz ≤ ẑ

−S (ẑ)C(z) + C (ẑ)S(z) ifz > ẑ
(6.46)

From here we can obtain the solution of the non homogeneous function, in terms of the
Green function,

x = x(0)C(z) + x′(0)S(z) +
∫ z

0
p (ẑ) (C (ẑ)S(z) − S (ẑ)C(z)) dẑ (6.47)

On of the applications of eq. 6.47 is to obtain the dispersion function from the non homo-
geneous term of linear beam equation in the dispersive plane. In this case, p(z) corresponds
to the product of the momentum dispersion by the curvature of the nominal particle and a
given point. The dispersion function is then,

D(z) =
∫ z

0

1
ρ (ẑ)

(C (ẑ)S(z) − S (ẑ)C(z)) dẑ (6.48)

From eq. 6.48, we may see that the dispersion appears in the dipoles, which have a non
infinite radius of curvature.

6.3 Twiss parameters and emittance

In many cases is not just enough to characterize the displacement of a single particle, but
it is desired to describe the evolution of whole regions of the phase space. We will use the
standard phase space of beam dynamics, composed of the x or y coordinate in the horizontal
axis and the angles with respect to this axes, x′ = dx/dz or y′ = dy/dz. These pairs of
magnitudes are not really a generalized coordinate and its corresponding momentum in the
sense of Hamiltonian mechanics, but are normally used as such.

The trick to do the analysis of an ensemble of particles in phase space is to parametrize a
closed curve in phase space and calculate the evolution of these parameters as the particles
evolve in the transport line. Because, as we know, trajectories in phase space never cross, we
can be sure that all the particles that were contained inside the initial parametric curve will
be contained inside the final parametric curve.

The natural choice for the closed curve is an ellipse, this is so because the transformation
of an ellipse through a linear differential equation will be an ellipse again and because the
parametrization is very simple.

The phase space ellipse is parametrized by eq. 6.49 [55], where the Twiss parameters, α, β
and γ define the shape of the ellipse and the emittance ǫ is related to its area. In addition, it
is required that βγ −α2 = 1 in order to keep the relationship between the emittance and the
area of the phase space ellipse.

γx2 + 2αxx′ + βx′2 = ǫ (6.49)

The relationships between the Twiss parameters and the shape of the beam space ellipse
may be seen in fig. 6.3.
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x’

x

−α
√

ǫ/β

−α
√

ǫ/γ

√

ǫ/β
√
ǫγ

√
ǫβ

√

ǫ/γ

φ

tan 2φ = 2α
γ−β

Figure 6.3 – Phase Space Ellipse with parameters

6.3.1 Transformation of the Twiss parameters through a transport line

We can define a vector x as,

x =

(

x

x′

)

(6.50)

The equation of the phase space ellipse eq. 6.49 may be expressed in matrix form in the
following way,

(

x x′
)

(

γ α

α β

)(

x

x′

)

= xTTx = ǫ (6.51)

, where we have defined a Twiss parameter matrix T. To see how the Twiss parameters
evolve from one point of the transport line to another, we may apply the transport matrix
formalism,

x2 = M12x1 (6.52)

and we can transform the Twiss ellipse from point 1 to 2,

ǫ = xT
2 T2x2 = (M12x1)T

T2 (M12x1) = xT
1 MT

12T2M12x1 (6.53)

, so that the Twiss parameter matrix at point 1 will be given by,

T1 = MT
12T2M12 (6.54)

And the forward transform will be given by,

T2 = MT
21T1M21 (6.55)
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, where the reverse transport matrix is given by the inverse,

M21 = M−1
12 =

(

S′ −S
−C ′ C

)

(6.56)

We can explicitly obtain from eq. 6.55 the evolution of the Twiss parameters through a
transport matrix M12.

(

γ2 α2

α2 β2

)

=

(

S′ −C
−S C

)(

γ1 α1

α1 β1

)(

S′ −S
−C ′ C

)

(6.57)

After performing the matrix multiplication, the evolution of the Twiss parameters will be,







β2

α2

γ2






=







C2 −2SC S2

−CC ′ (S′C + SC ′) −SS′

C ′2 −2S′C ′ S′2













β1

α1

γ1






(6.58)

In order to obtain the differential equation ruling the evolution of the Twiss parameters, we
start by expressing the generalized harmonic equation in matrix form,

dx

ds
=

(

0 1
−k(s) 0

)

x = Ax (6.59)

We can now take the derivative of the phase space ellipse equation,

0 =
d

ds

(

xTTx
)

=
dxT

ds
Tx + xT dT

ds
x + xTT

dx

ds
= xT ATTx + xT dT

ds
x + xTAx

= xT
(

ATTT +
dT

ds
+ TA

)

x (6.60)

, and we can obtain the derivative of the Twiss parameters matrix,

dT

ds
= −

(

(TA)T + TA
)

(6.61)

From this equation, we can obtain the differential equations governing the Twiss parameters,

d

ds

(

γ α

α β

)

=

(

2αk βk − γ

βk − γ −2α

)

(6.62)

The propagation of the Twiss parameters, may then be calculates as,

dβ

ds
= −2α (6.63)

dα

ds
= βk − γ (6.64)
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6.4 Back to single particle trajectory: The phase advance concept.

In the previous section, we have analyzed how we can obtain the evolution of a whole phase
plane region under the effect of the transport along a beam line. We have parametrized
a certain region of the phase plane using the Twiss parameters and we have related the
evolution of the parameters defining this region of the phase plane to the transport matrix
of the single particle. In this section, we will follow the opposite approach and investigate
how the evolution of a single particle may be derived from the Twiss parameters evolution.
Although this may look as going backward in our analysis of the beam evolution, this is the
key to introduce the effect of the perturbations in the particle dynamics. It is obvious that
the non-linear forces are applied in the individual particles and not in the beam envelope as
a whole, hence the interest of the formalism developed at this chapter. On the other hand,
the phase advance will allow us to express the transport matrix easily in terms of the Twiss
parameters.

At this stage, most textbooks start again from scratch and solve the generalized harmonic
oscillator equation from scratch supposing a certain functional form of the solutions and
applying it to the differential equation to obtain the solution. Here we will propose a different
approach, as we already know the evolution of the Twiss parameters from eqs. 6.63. and 6.64.
We will suppose that each individual particle in the phase space beam envelope is defined by
a parameter φ0 in the parametric equation,

x(s) =
√

ǫβ cos (φ(s) + φ0) (6.65)

, whose derivative will be,

x′(s) = −α
√

ǫ

β
cos (φ(s) + φ0) +

√

ǫβφ′(s) sin (φ(s) + φ0) (6.66)

In order to be a valid parametrization of the movement of an individual particle in the
phase space ellipse, x(s) and x′(s) must satisfy,

γx2 + 2αxx′ + βx2 = ǫ (6.67)

Introducing eqs. 6.65 and 6.66 into eq. 6.67, we obtain,

cos2 (φ(s) + φ0) + βφ′ sin2 (φ(s) + φ0) = 1 (6.68)

Obtaining the interesting result that if φ(s) is defined as,

φ(s) =
∫

ds

β
(6.69)

, then the parametrization given by eq. 6.65 is not dependent of the individual particle φ0

chosen. The change in the variable φ(s) is then just a property of the beamline and it is
called, phase advance.

We can now relate the single particle evolution, the transport matrix, from one point of
the beam line to another through the change of the Twiss parameters and the phase advance
between then.
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In order to obtain this relationship, we suppose that a certain point will be the origin of
the phase, expanding eq. 6.65 and eq. 6.66 on this point, we can obtain,

[

x0

x′
0

]

=

[ √
ǫβ0 0

−α
√

ǫ
β0

√

ǫ
β0

] [

cosφ0

sinφ0

]

(6.70)

The same expression may be obtained for the general case with a certain phase φ,

[

x

x′

]

=

[ √
ǫβ cosφ −√

ǫβ sinφ
−α
√

ǫ
β cosφ+

√

ǫ
β sin φ

√

ǫ
β sinφ+ α

√

ǫ
β cosφ

] [

cosφ0

sinφ0

]

(6.71)

It is possible to eliminate the initial phase φ0 from eq. 6.70 and eq 6.71. Eq. 6.72 gives the
final result of this operation.

[

C(s) S(s)
C ′(s) S′(s)

]

=







√

β
β0

(cosφ+ α0 sinφ)
√
ββ0 sinφ

(α−α0) cos φ−(1+αα0) sin φ√
ββ0

√

β0

β (cosφ− α sinφ)






. (6.72)

6.5 The complex formulation

It has been known since many years that the phase space ellipse that is normally used to model
the phase space extension of a beam in linear dynamics may be represented by a complex
number. This complex number has several interesting properties and it has normally been
emphasized its similarity to a complex impedance in electrical circuits. Actually the method
was created by Hereward in order to use electrical circuit methods for the design of beam
transport lines. Although mentioned in many places, this method has never been very popular
in comparison with transport matrices or Twiss parameters. To our knowledge, this method
has never been fully developed, and only the transport transformation of several circuit has
been presented. In this paper, I complete the formalism by obtaining a general differential
equation and solving it to show that the general transformation is a Moebius one. The
Moebius transformation is then analyzed and several properties presented. Some properties
of the Moebius transformation are used to obtain known results of the beam transport theory
in a completely different way. In addition, the result that beam transport is a conformal
mapping of the Moebius type opens the possibility of studying the effect of the beam line on a
domain of the complex plane and not only on a single point. Although the complex formalism
may be obtained without using the Twiss parameters, we will refer to them because it may
be easier for the reader used to them.

When the beam is transported through a drift space, the point of maximum divergence
will keep its divergence γ2 = γ1 = γ, while its position will shift according to x′ and the drift
length L. This may be stated as,

−α2

√

ǫ

γ
= −α1

√

ǫ

γ
+ L

√
ǫγ (6.73)

So, through a drift space,
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1
γ2

=
1
γ1

(6.74)

−α2

γ2
= −α1

γ1
+ L (6.75)

We can show in the same way that through a thin lens of focal length f , the following
relationships will follow,

1
β2

=
1
β1

(6.76)

−α2

β1
= −α1

β1
− 1
f

(6.77)

We can create two complex numbers as,

Z =
1
γ

− j
α

γ
(6.78)

Y =
1
β

+ j
α

β
(6.79)

It may be seen by direct multiplication that ZY = 1 In addition, through a drift space we
will have, Z2 = Z1 + jL, and through a thin lens Y2 = Y1 + j/f .

If we use the Y parameter, the size of the beam will be proportional to
√

ǫ/RealY , while
the lines passing through the origin are of constant α. The upper part of the complex plane
corresponds to converging beams and the lower to diverging ones.

Fig. 6.4, shows a qualitative representation of the shape of the phase space ellipses according
to their position in the Y plane.

α/β

1/β

Figure 6.4 – Shape of the phase space ellipses according to their location in the Y plane. Each
ellipse is drawn in a local x-x′ system.
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6.5.1 The general differential equation of the complex form

All the previous material has been studied in the past, starting with the report of Hereward,
[32], and is cited extensively, [46], [35]; but as long as it is known to the author, the general
differential equation governing the complex representation of the phase space ellipse has not
been obtained. In order to obtain this equation, we analyze an infinitesimal displacement
through a lens of strength per unit length k. Because the displacement is infinitesimal we can
superpose the effect of the lens, which is straightforward in Y , with the effect of the drift ds,
which is straightforward in Z. This superposition may be expressed in terms of Z or Y , but
we prefer the later, because its real part is related to β, which in turn is related to the beam
size.

dY = dYlens + dYdrift = jkds + d

(

1
Z

)

drift
=

jkds +
−dZdrift

Z2
= jkds − Y 2jds =

(

k − Y 2
)

jds (6.80)

Finally, we obtain the following Riccati differential equation,

dY

ds
= j

(

k − Y 2
)

(6.81)

To solve the Riccati equation, we start by applying a substitution,

Y = −j u
′

u
(6.82)

which converts the Riccati equation in a second order linear differential equation,

u′′ + k(s)u = 0 (6.83)

This is the generalized oscillator equation that governs the one particle problem. The
solutions to eq. 6.83 may be expressed as a linear combination of the fundamental functions
C(s) and S(S), which satisfy C(0) = 1, C ′(0) = 0, S(1) = 0, S′(0) = 1. We have found then
2 particular solutions to the eq. 6.81, which may be written as:

Y1 = −j C
′

C
(6.84)

Y2 = −j S
′

S
(6.85)

With one particular solution, for instance the one based on C, we can reduce the Riccati
equation to a first order linear equation,

Y = Y1 +
1
z

(6.86)

and we obtain,
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z′ − 2
C ′

C
z = j (6.87)

Because we know a second particular solution of the Riccati equation, we know, as well, a
particular solution of eq. 6.87,

z1 =
1

Y2 − Y1
= jCS (6.88)

, where we have used that CS′ −C ′S = 1 because of the constancy of the Wronskian of eq.
6.83

With this particular solution of eq. 6.87, we may obtain its general solution as the sum of
the general solution of the homogeneous equation and the particular solution

z = AC2 + jCS (6.89)

, where A is an integration constant. Replacing eq. 6.89 in eq. 6.86, we obtain the general
solution of the Riccati equation,

Y = −j C
′

C
+

1
AC2 + jCS

(6.90)

We can obtain the integration constant by imposing Y (0) = Y0, to obtain A = Y −1
0 . After

some algebra, we obtain the final result:

Y =
S′Y0 − jC ′

jSY0 + C
(6.91)

, and therefore we conclude that the transformation of the complex parameter is a Moebius
transformation of the shape given by eq. 6.91. A similar expression is found in [32], but the
proof is restricted to drift spaces and lenses.

This result is very important, because the Moebius transformations are a group, i.e. the
composition of Moebius transformations is new transformation. Because, any general transfor-
mation following the eq. 6.81 may be expressed as a composition of individual transformations,
we may conclude that at any point in a transfer line there will be Moebius transformation
representing the position of the line.

6.5.2 Phase advance in the complex formulation

Phase advance may be expressed in the complex formulation in an elegant way, which may
be as well visualized graphically. First of all, lets start with the standard expression of phase
advance,

∆φ =
∫

ds

β
(6.92)

We can replace the integration between two points of the transport line by integration along
β by using, ds = ds

dβdβ, in which case, we obtain,

∆φ =
∫

ds

β
=
∫

1
β

dβ
dβ
ds

= −
∫

dβ

2αβ
(6.93)
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Finally, we express the phase advance in terms of the real and imaginary part of Y as,

∆φ =
∫

β

2α
d

(

1
β

)

=
1
2

∫ d
(

1
β

)

α
β

(6.94)

So that the phase advance may be expressed as the area between the inverse of the curve
defining the movement of the beam in the complex plane and the abscissa axis. For periodical
transport lines, the area will correspond to the one inside the closed region created by the
inverse of the closed loop in the complex plane. It is interesting to note that because all
periodical transport lines will have at least two points with α equal to zero, the inverse loop
will have at least two vertical asymptotes. Nevertheless, the total area must remain bounded.

6.5.3 Some special transformations

With the general result of eq. 6.91 and the values of the transport matrices from standard
textbooks, we can now build the Moebius transformations associated to several beam line
elements.

A drift space

Y2 =
Y1

jLY1 + 1
(6.95)

The effect on the complex plane of the drift space in Z = Y −1 is a vertical displacement
in the upward direction. The complex inverse of a straight line in the complex plane is a
circle passing through the origin. Therefore the trajectory in the Y plane will be a sector of
a circle passing through the origin and tangent to the imaginary axis, the particle will move
clockwise, because the inversion implies a change of sign with respect to the movement as
seen from the origin. Fig. 6.5, shows the effect of a drift on the Z plane and the Y one.

A

B

−α/γ

1/γ

A

B

α/β

1/β

Figure 6.5 – Effect of a drift on the Z and the Y plane

We may see, as well, that the distance of the drift is measured as the difference in the
vertical distance of the two extreme points defining the drift, A and B. We could imagine
that all the horizontal lines of the Z plane are labeled by their constant pure imaginary
coordinate −α/γ. These lines are transferred to the Y plane as circles passing through the
origin and tangent to the real plane. Each of these circles correspond to a certain −α/γ.
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A thin lens

Y2 = Y1 +
j

f
(6.96)

This represents a vertical displacement upward when the lens is focusing and downward when
it is defocusing.

A Thick lens

Y2 =
cos(

√
kl)Y1 + j

√
k sin(

√
kl)

j sin(
√
kl)/

√
kY1 + cos(

√
kl)

(6.97)

A similar equation is given in [2] without proof.

This transformation is as well a circle centered in the real axis. It may be seen by dividing
the numerator and denominator of eq. 6.97 by cos

√
kl and considering,

Y2 =
Y1 + j

√
k tan(

√
kl)

j tan(
√
kl)/

√
kY1 + 1

=
Y1 + j

√
ku

ju/
√
kY1 + 1

(6.98)

, as a Moebius transform of u=tan(
√
kl), ie. the real axis. As it is known, Moebius trans-

formations convert lines to circles (or lines in some cases). In order to obtain the parameters
of the circle, we will write the Riccati equation expressed in terms of its real and imaginary
components, Y = x+ jy.

dx

ds
= −2xy (6.99)

dy

ds
= k −

(

x2 − y2
)

(6.100)

We may see, that when we change the sign of y, only the horizontal derivative changes sign,
which is what we would expect from a circle centered on the real axis. Therefore, the circle
must follow the equation,

(x− xc)
2 + y2 = R2 (6.101)

To obtain the parameters of the circle, we apply that when the vertical derivative eq. 6.100
cancels, we are on maximum of y, the point with (xc, R) coordinates. We have then the
following pair of equations defining the circle passing through the point (x0, y0) and with a
focusing strength of k,

(x0 − xc)
2 + y2

0 = R2 (6.102)

k − x2
c +R2 = 0 (6.103)
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And the desired parameters will be,

xc =
k + x2

0 + y2
0

2x0
(6.104)

R =
√

x2
c − k (6.105)

We can see, that when k > 0, the circle is fully contained in the right part of the complex
plane, having a bounded value of the complex parameter; while when k < 0, the circle is
partly contained on the left part of the complex plane.

6.5.4 Some properties of the Moebius transformation

The Moebius transformation has been extensively studied [42] and there are many results
that may be used in our analysis of transfer lines.

The matrix representation of the Moebius transformation

A general Moebius transformation,

w =
az + b

cz + d
with ad− bc 6= 0 (6.106)

may be represented by a matrix

H =

[

a b

c d

]

(6.107)

and the composition of Moebius transformations corresponds to the matrix multiplication.
This correspondence may be clearly seen if the complex numbers are written in homogeneous
coordinates, z = z1/z2.

ω1

ω2
=
a z1

z2
+ b

cz1
z2

+ d
=
az1 + bz2

cz1 + dz2
(6.108)

We can express the Moebius transform in homogeneous coordinates as,
[

ω1

ω2

] [

a b

c d

] [

z1

z2

]

(6.109)

We will represent the column vector of homogeneous coordinates with an underline, and the
matrices of Moebius transformations (and later of circles) in Gothic characters. The Moebius
transformation, will then be expressed as,

ω = Hz (6.110)

In our case, the matrix H will be given by the more restricted form,

H =

[

S′ −jC ′

jS C

]

(6.111)
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, which has a certain resemblance to the transport matrix for a single particle, but remember
that in the present case, we are dealing with a complex number representing the whole phase
space ellipse of the beam. As |H| = 1, the Moebius transformation is normalized. We will
often use the inverse matrix, which may be expressed as,

W = H−1 =

[

C −jC ′

−jS S′

]

(6.112)

The fixed points and circles of the transformation

The fixed points are these left invariant by the transformation. We can obtain these points
by using,

Y± =
j(C − S′) ±

√

4 − (C + S′)2

2S
(6.113)

There are three possibilities, if |C + S′| < 2, eq. 6.113 will have two complex solutions
symmetrical with respect to the imaginary axis,if |C + S′| = 2, there will be only one double
solution in the imaginary axis and if if |C + S′| > 2, there will be two solutions contained in
the imaginary axis.

The circle preserving properties

One interesting possibility that opens when considering a beam line transformation as a
complex plane transformation, is that entire regions of the complex plane may be transformed
as conformal mappings. For instance, one of the properties of the Moebius transform is that
circles are transformed to circles. It is possible then to find a set of initial conditions, envelope
them with a circle and transform the circle along the beam line. All the initial conditions
will remain inside the transformed circle. Because it is possible to analyze the evolution of
the radius of the circle along the transformed planes, it is possible for instance to know if the
solutions converge or not and at which speed.

We will proceed as in [47], in order to prove the circle preserving property, we will learn
how to express the equation of the circle in the complex plane in the more general way. A
circle of radius ρ and center at γ, may be expressed as,

|z − γ| = ρ (6.114)

, or,

(z − γ) (z − γ) = ρ2 (6.115)

zz − zγ − zγ +
(

γγ − ρ2
)

= 0 (6.116)

We multiply eq. 6.116 by an arbitrary factor A, and write it in matrix form,

[

z 1
]

[

A −Aγ
−Aγ A

(

γγ − ρ2
)

] [

z

1

]

=
[

z 1
]

[

A B

C D

] [

z

1

]

= 0 (6.117)
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The circle will be represented by the Hermitian matrix C. It is possible to represent z by
its column vector of homogeneous coordinates, z. The circle will then be represented by the
expression,

zHCz = 0 (6.118)

The superindex H will represent the conjugate of the transpose of a matrix. We may see
by construction that C must be Hermitian, as the diagonal elements are real and the non-
diagonal elements are conjugate of each other. The arbitrary factor A has been introduced in
order to include the straight lines as a particular case of the circles. In the projective plane,
a line may be considered as a circle with a point at infinite. With the representation of eq.
6.118, all circles and lines of the complex plane may be represented as the quadratic form of
a Hermitian matrix with respect to the homogeneous coordinates of the complex plane.

The determinant of the circle matrix C is equal to −Aρ2, and it is called the discriminant
of the circle. Real circles will have a negative discriminant. The discriminant will be zero if C
represents a line or a zero radius circle. A positive discriminant is due to a circle of imaginary
radius, which cannot be represented in the ordinary complex plane.

In order to check how the Moebius transform changes a given circle at the origin plane of
the transformation, we will suppose that it is defined at the start of the transformation by,

zHC1z = 0 (6.119)

If W is the reversed transformation, i.e. the one causing,

z = Wω (6.120)

then the circle will be transformed in the target plane to,

ωHWHC1Wω = 0 (6.121)

The matrix inside the quadratic form of eq. 6.121 is Hermitian as well, and will represent
a new circle in the transformed plane.

C2 = W
H
C1W (6.122)

6.5.5 The complex parameters on a circular accelerator

In a circular accelerator, or in general a periodical line, we expect the beam to repeat its
configuration in phase space. This is equivalent to operate in one of the fixed points of the
Moebius transformation of eq. 6.91. Because we need a real part for the fixed point, we
reproduce the classical result of the need to have |C + S′| < 2 in order to have a periodical
solution for a periodical lattice.

This result can be expressed in the language of Moebius transforms via the classification
of the transformation through the parameter σ. This parameter is invariant through any
equivalence transformation, and is obtained as,
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σ =
(a+ d)2

ad− bc
− 4 (6.123)

, which is the quotient of the square of the trace by the determinant minus four. This
definition of the transformation invariant is made so as to have a value of zero for the identity
transformation. With regards to this parameter, all Moebius transformations may be classified
as,



























Elliptic if − 4 ≤ σ < 0

Proper hyperbolic if σ > 0

Improper hyperbolic if σ ≤ −4

Loxodromic if σ is no real

(6.124)

The behavior of an iterative application of the same Moebius transform with respect to the
fixed points is fully described by the transformation type. The most important aspect for our
study of the transversal dynamics is that only for the elliptic transformation does no of the
invariant point not represent an attractor. That is, for all other transformation types, the
iterative application of the transformation has as a limit one of invariant points. In addition,
the invariant points for the case |C + S′| lie on the imaginary axis and therefore β → ∞,
which shows that the beam will grow without limit in size for the hyperbolic case.

This condition will ensure as well that the Moebius transformation is of the elliptical type.
We can as well, use the result of the fixed point to obtain the Twiss parameters as a function

of the fundamental solutions,

β =
1

ReY+
=

2S
√

4 − (C + S′)2
(6.125)

α =
ImY+

ReY+
=

C − S′

√

4 − (C + S′)2
(6.126)

This is, of course, a classical result of the theory of the Twiss parameters. We will use now
the theory of the complex transform to obtain the structure of the solutions of the transport
of the beam on a periodic line, which are not easily obtained from the classical theory, and
that will show a beautiful structure when seen under the light of the Moebius transform.

We will start by asking if there are not only points, but also circles which are invariant
under the Moebius transform, the answer is positive. First, we will prove that if there are
two invariant circles, we can obtain a one-dimensional set of circles having this property. A
pencil of circles is formed by the linear combination of two circles.

C (λ1, λ2) = λ1C1 + λ2C2 (6.127)

It can be easily proved that if C1 and C2 are invariant circles, all the circles of their pencil are
invariant. The pencil is one-dimensional, because eq. 6.127 may be multiplied by a constant
without modifying the circle of the pencil.

As the basis of the pencil of invariant circles, we can use the zero radius circles with center in
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the fixed points of the transformation. We will call the two fixed points Y+ andY−, according
to the sign of the real part of the fixed points given by eq. 6.113. Their respective Hermitian
matrices are,

C± =

[

1 −Y±

−Y± Y±Y±

]

(6.128)

The parametrization of the invariant circles will be,

Cλ = (1 + λ)C+ − λC+ (6.129)

This parametrization ensures that the A term is one, so that the circle is normalized and
that λ equal zero corresponds to the invariant point with positive real part. It is now possible
to obtain the invariant circle of the invariant pencil that passes through any point, y0 by
solving λ from the equation,

y0
H
Cλy0 = 0 (6.130)

The solution of the invariant circle passing through point y0 will be,

Cλ =
−y0

HC−y0

y0
HC+y0 − y0

HC−y0
C+ +

y0
HC+y0

y0
HC+y0 − y0

HC−y0
C− (6.131)

As an example of the use of the theory of invariant circles on a periodic transport line,
let us analyze the structure of the solutions of the beam when injected not necessarily well
matched on a FODO line. In a qualitative way, we can show the evolution of the beam along
the line for a well matched condition in Fig. 6.6, which shows the trajectory in the Y plane of
a beam in a symmetrical FODO cell. The focusing thin lens is the line CD, the upper circle
arc, DA is the drift going to the defocusing lens, AB is the defocusing lens and BC the drift
space going to the focusing lens.

A

BC

D

α/β

1/β

Figure 6.6 – Trajectory on the Y plane of a beam through a FODO cell

To use a more quantitative approach, we will define a thick lens FODO cell which quadrupoles
of 0.2 m length and drift spaces of 2 m length. The strength of the quadrupoles is ±4 m−2.
Quite arbitrarily, we will analyze the behavior of the horizontal solution at 1/3 of the length
of the focusing quadrupole. The cell, with the horizontal Twiss parameters for the injection
matched at the invariant point may be seen in fig. 6.7.
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Figure 6.7 – Horizontal Twiss parameters in the example cell

The same cell may be described by the movement of the beam point in the complex plane.
This is shown in fig. 6.8. The matching parameters at the injection point are β 9 m and α

roughly 1.1, or the corresponding complex parameter.

0.0 0.5 1.0 1.5

-0.5

0.0

0.5

1/β

α
/β

Figure 6.8 – The same cell described in the complex plane

In case that the injection parameters are not well matched, the beam will oscillate around
the periodic parameters in a way in which is difficult to find any apparent order, for instance,
at fig. 6.9 the beam has been injected with a β of 5 m and α equal to 0.5. In this condition,
the beam wiggles around the ideal fixed point.
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Figure 6.9 – Horizontal Twiss parameters in the example cell for the case of a non-matched
injection.

The situation is more clear, when the different complex points are plotted in the complex
plane after each period. This situation is shown in fig. 6.10. The points must remain
in the circle of the invariant pencil of circles that passes through the point defined by the
injection parameters. At some passages, the point will be at the right side of the fixed point,
corresponding to a smaller beam and at other passages, the point will be at the left, which
corresponds to a larger beam. Nevertheless, the beam size will be bounded by the left-most
side of the invariant circle, which is easily obtained by the parameters of the Cλ invariant
circle of eq. 6.131.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.00

0.05

0.10

0.15

0.20

0.25

1/β

α
/β

Figure 6.10 – The pencil of invariant circles at 1/3 o of the length of the quadrupole. We have
shown the position of the passes of the beam during several periods and the fixed
point
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Figure 6.11 – The same FODO cell but with unstable parameters. We can see that the movement
of the beam converges to one of the stable points located at the imaginary axis.
Note the logarithmic scale that is required to show all points as the convergence
towards the fixed point is exponential.

For the sake of comparison, we have increased the strength of the quadrupoles until the
Moebius transform has become hyperbolic. In this case, the behavior of the movement of the
particles have changed dramatically, and instead of showing a rotation around one of the fixed
points, now it converges to one of the fixed points, which actually is located at the imaginary
axis and therefore it represents a beam of infinite size, β → ∞. This situation is shown in
6.11.

6.6 The effect of an accelerating gap on the transverse dynamics

In this section, we will see the relationship between the longitudinal dynamics, that we studied
in the previous chapter and the transversal dynamics that we are analyzing in the present one.
We will divide the analysis in two sections, in this one we will see how the need to accelerate
the beam requires a certain defocusing in the transversal plane, and in the next section we will
see how this defocusing affects the stability in the transversal plane. With the knowledge of
both effects, we can obtain the requirements of transversal focusing to successfully accelerate
the beam to the desired energy.

An accelerating gap has a certain impact as well in the transverse dynamics. The main
reason may be seen in fig. 6.12, in which we can see that away from the central axis of the
accelerating gap, the electric field has a radial component as well as an axial one. This field
is focusing at the beginning of the gap and defocusing at the end. The overall effect of the
gap on the transverse movement of the particles depends on how these two parts of the radial
electrical field balance each other. There are two competing effects on this balance,

1. The electrical field is changing during the transit of the particle through the gap. As
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typically linacs operate in the accelerating mode, with negative synchronous phase, φs,
the field is increasing during the transit. Therefore, the net effect of the gap is defocusing,
as the particles will see a larger radial electrical field pointing outwards near the end of
the gap.

2. If the field is accelerating the particles will increase their energy during the transit, and
will arrive with a higher electrical rigidity to the second half of the gap. This effect
will then be focusing on average. Nevertheless, this effect is only important when a
significant increase in the electrical rigidity of the particle may be obtained in a single
gap, typically in electron linacs

In this work, we will only study the first effect, which is in most cases the dominant one.

beam
E

Figure 6.12 – Shape of the electric field lines in the gap

The radial electrical field is related to the axial one due to the the zero divergence of the
field. In cylindrical coordinates, the divergence may be expressed as,

1
r

∂

∂r
(rEr) +

∂Ez

∂z
= 0 (6.132)

In addition, the on-axis electrical field does not change on first order with the radius, as it
may be immediately derived from the Faraday equation. From the divergence equation, the
radial field near the axis may be related to the variation of the axial one as,

Er = −r

2
∂Ez

∂z
(6.133)

This equation says to us that the radial field will be outwards on one side of the gap and
inwards on the other side (of course, the absolute direction changes with the phase). The
situation may be seen in fig. 6.13.
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Figure 6.13 – Radial and axial electrical field on an idealized gap

The expression including the dependence with time will be,

Er = −r

2
E′(z) cos (ωt+ φ) (6.134)

In addition, there will be an azimuthal magnetic field created by the changing electrical
field. From Ampere’s law including the displacement current, we can state,

Bθ2πr =
1
c2

d

dt

(

Ezπr
2
)

(6.135)

The magnetic field will be,

Bθ =
rω

2c2
E(z) sin (ωt+ φ) (6.136)

The change in radial momentum may be calculated by the Lorentz force equation,

dpr

dt
= e (Er − βcBθ) (6.137)

Which may be expressed as an integral along the gap changing the variable of integration
taking into account that in the paraxial approximation, z = βct.

∆pr = e

∫ L/2

−L/2

(

Er

βc
−Bθ

)

dz (6.138)

We will calculate independently the effect of the electrical and magnetic field in order to
understand the effect of each of them,

∆pe
r = e

∫

Er dt =
e

βc

∫

Er dz = − er

2βc

∫ L/2

−L/2
E′(z) cos

(

ω

βc
z + φ

)

dz (6.139)

, where the integral extends to a region where the axial field vanishes. In this condition, the
integral may be evaluated by parts as,
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∆pe
r = −E(z) cos

(

ω

βc
z + φ

) ∣

∣

∣

∣

L/2

−L/2

− erω

2β2c2

∫ L/2

−L/2
Ez sin

(

ω

βc
z + φ

)

dz (6.140)

The first term will disappear due to the vanishing of the electrical field at both extremities
of the gap. In the second term we can expand the sinus in its both term, and considering
that the field in the gap is even, only the cosine term in z will remain,

∆pe
r = −erω sin φ

2β2c2

∫ L/2

−L/2
Ez cos

(

ω

βc
z

)

dz = −erωV0T sin φ
2β2c2

(6.141)

The effect of the magnetic field is easier to calculate, as no part integration is required,

∆pm
r = −

∫ L/2

−L/2
eBθ dz =

erωV0T sin φ
2c2

(6.142)

Because the synchronous phase must be negative to provide stability, the electrical field
will have a defocusing effect and the magnetic field a focusing one. Because the term in the
electrical field is divided by β2 it will be dominant at the low energy range. The magnetic
field will start to cancel the electrical one only approaching the relativistic regime, β → 1.
The total effect will be,

∆pr = ∆pe
r + ∆pm

r = −erωV0T sinφ
2c2

(

1
β2

− 1
)

= −erωV0T sinφ
2c2β2γ2

(6.143)

The defocusing effect may be modeled as a kick dependent on the radial error of the particle,
i.e. it may be modeled as a thin defocusing quadrupole,

∆r′

r
=

∆pr

pzr
=

∆pr

mγβcr
= −eωV0T sinφ

2mc3β3γ3
(6.144)

In the next section, we will use eq. 6.144 to obtain the defocusing effect of an accelerating
gap and see under which circumstances may the acceleration be stable.

6.7 The Smith and Gluckstern stability chart

The Smith and Gluckstern stability chart plots in the abscissa the focusing strength of the
accelerating gaps, related to the RF level for a certain linac, and the focusing elements strength
in the ordinate. Then the plot is divided in regions of stability and instability, and the stable
regions may be equipped with constant phase advance lines.

The unit cell of the transverse dynamics of an accelerating structure may be seen in fig.
6.14.
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F
h D F

h

G G

dd ddll/2 l/2

Figure 6.14 – Unit cell of an accelerating structure. The cell starts at the middle of a focusing
quadrupole. G represent the gap as a thin lens, D is a defocusing quadrupole and
Fh is half a focusing quadrupole.

For the X axis an adimensional parameter characterizing the defocusing strength of the gap
is chosen, this gap is the ratio between the length of the cell, i.e. the distance between two
points at which the phase if the RF repeats, this parameter is called ∆0, and it is defined as,

∆0 =
βλ

fg
(6.145)

Where the focal length may be obtained from eq. 6.144. In the Y axis it is represented the
focusing strength of the quadrupoles, in addimensional form, the parameter is,

θ0 = Kβλ =
√

G/ηmβλ (6.146)

In addition, we define the quadrupole filling factor, Λ, defined as,

Λ =
l

l + 2d
(6.147)

The transport matrix, from the center of a focusing quadrupole to the center of the nest
one will be,

M = F1/2 · d ·G · d ·D · d ·G · d · F1/2 (6.148)

From this transport matrix, the periodical transport properties of the beam, stability, phase
advanced, beam size and so on may be obtained, they are summarized in the Smith and
Gluckstern stability plots, that may be seen in fig. 6.15.

The adimensional dimension of the beam may be expressed by a parameter γ = β/lcell,
curves of constant γ may be seen in fig. 6.15.

In addition to a simple FODO cell, it is possible to have a FOFODODO cell, in which there
are two consecutive focusing and defocusing quadrupoles. This solution tends to allow the
use of weaker quadrupoles, as may be seen in the reduced ordinates axis span of fig. 6.15,
right; but it has a reduced stability margin and requires larger beam values and apertures.
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Figure 6.15 – Smith and Gluckstern stability charts for N=1 (left) and N=2 (right), for Λ = 0.5

We can see in the chart of fig. 6.15 that the acceleration decreases the region in which the
beam is stable, this effect is specially marked in the case where the cell is FOFODODO. The
maximum size of the beam increases, as well, with the acceleration. The minimum beam size
is obtained near a phase advance of 90°, although this is an approximate relationship.

The main use of the Smith and Gluckstern chart is conceptual. In it we can observe the
reduction of the stability zone with the increase of the acceleration in the gap, the existence
of the optimal focusing power with respect to beam size, and many other properties of the
focusing system in multi-gap accelerating structures. Nevertheless, its practical use must
be complemented with a more detailed simulation tool, as some of its limitations, i.e. con-
stant filling factor quadrupoles, no space charge, and others are very important in the actual
behavior of the beam.

6.8 Types of transverse focusing

There are several ways in which the transverse focusing may be provided, we will center in two
of them, solenoids and quadrupoles, which are widely used in linacs. Solenoid focusing has the
advantage of being focusing at both planes at the same time, but it is normally much weaker,
as it depends on an indirect effect. Quadrupole focusing applies direct force by the coupling
of dominantly axial velocity and radial fields, but because of the nature of the magnetic field
it must be focusing in one plane and defocusing in the transverse one, which force us to use
combination of quadrupoles with alternating polarity to provide focusing on both planes.

Another way to provide focusing in both planes is provided by the weak focusing principle.
We have seen that the first order equations have in the dispersive plane a focusing term of
strength 1/ρ2. This focusing may be distributed in both planes by using a weak gradient that
provides focusing in the non-dispersive plane, while does not reduce below zero the geometrical
focusing in the dispersive one. This kind of focusing was dominant in the accelerators until
the discovery that the alternating gradient focusing provided by quadrupoles allows for a
significant reduction in the cost of the magnetic systems required for beam confinement.
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6.8.1 Solenoid focusing

Solenoid focusing is widely used for focusing particle beams at the low energy range. The
main advantage of this type of focusing is that both transverse axes are focused at the same
time by only one magnetic element. We will see that the focusing capability of an asymmetric
system scales as the inverse of the square of the magnetic rigidity, and hence the limitation
of the use of solenoids for the focusing of low energy beams.

At the entrance of the solenoid there is a region where the radial magnetic field increases
significantly with the radius of the incoming particle. This radial field creates a tangential
component of the velocity that will couple with the axial field of the solenoid to provide
the desired radial focusing. A very intuitive qualitative description of the focusing effect of
solenoids may be seen in [37].

For obtaining the equation determining the focusing strength of a solenoidal lens, we start
proving a very general and important result. We start with the Lagrangian formulation of
the movement of a charged particle in a static magnetic field. The Lagrangian is [18],

L = −mc2
√

1 − (v/c)2 + e~v · ~A = −mc2

√

1 − ṙ2 + r2φ̇2 + ż2

c2
+ erφ̇Aφ (6.149)

Due to the symmetry of the problem, the azimuthal component of the vector potential may
depend only on r and z, but not on φ. Therefore, φ is a cyclic variable, and its generalized
momentum if conserved.

Pφ =
∂L
∂φ̇

= γmr2φ̇+ erAφ = constant (6.150)

This very remarkable result is called Busch theorem and it is the basic of the analysis of
beam transport in axisymmetric problems. In most cases, we can assume that the azimuthal
velocity outside of the lens is zero, so that the constant value in eq. 6.150 is zero. In this
case, the azimuthal velocity at any point inside the lens will be,

vφ = −eAφ

γm
(6.151)

If we now apply the Euler-Lagrange equation to the radial component of the Lagrangian,
we obtain,

γmr̈ = γmrφ̇2 + eφ̇r

(

Aφ

r
+
∂Aφ

∂r

)

= γmrφ̇2 + eφ̇rBz (6.152)

The first term in the right term is the centrifugal force, and the second the Lorentz force.
The value of the azimuthal speed, φ̇, may be obtained from the conservation of the azimuthal
canonical moment and the radial equation may be expressed as,

r̈ =
(

e

γm

)2
(

A2
φ

r
−AφBz

)

(6.153)

We will now use the paraxial approximation to express the time derivatives as longitudinal
derivatives,

d2

dt2
= v2 d

2

dz2
(6.154)
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Because the field is purely magnetic, the modulus of the velocity is constant and can be
extracted from the derivative.

With this simplifications, we obtain,

d2r

dz2
=
(

e

γmv

)2
(

A2
φ

r
−AφBz

)

=
1
η2

m

(

A2
φ

r
−AφBz

)

(6.155)

We can see that the dependence of the focusing capability of the magnetic system decreases
with the square of the magnetic rigidity of the beam. We can further simplify eq. 6.155
supposing that the particles only have very small excursions away from the solenoid axis. In
this case, the axial magnetic axis is constant, and the vector potential may be expressed as,

Aφ =
1
2
rBz (z, 0) (6.156)

And the focusing equation may be expressed as a function of the axial magnetic field at
the origin as

d2r

dz2
+

(

B2
z (z, 0)
4η2

m

)

r = 0 (6.157)

Although we have mentioned several times that the main limitation of the solenoid focusing
is the dependence of the strength on the square of the magnetic rigidity; it is interesting to
note, that the effect of the magnetic field also increases with the square of the magnetic
field. This implies that the use of superconducting magnets may be very advantageous, as
the value of the axial field may be several times higher than when using normally conducting
solenoids. Actually, many linacs use nowadays superconducting solenoids in combination with
superconducting radiofrequency.

An interesting application of a periodic system of solenoid focusing for a muon cooling
channel may be seen in [3].

6.8.2 Quadrupole focusing

In general terms, a form of focusing based on a field which is mostly transverse to the beam
direction has the potential of being more performing. The reason is that the transverse forces
responsible for the focusing are created by the interaction of the main component of the
particle speed and the main component of the magnetic field.

The focusing will be created by a quadrupole, a magnet which creates a field whose modulus
increase linearly with the distance from the ideal particle trajectory. The ideal field of the
quadrupole corresponds to the second term of the Taylor expansion of the complex field in
terms of the complex variable. In real terms, the 2D field of an ideal quadrupole may be
expressed as,

Bx = gy (6.158)

By = −gx (6.159)

, where g is the gradient or the linear variation of the modulus of the field with the radius.
An important consequence of the field equations is that the sign of the gradient with respect
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to two perpendicular axes changes. This fact implies that the magnetic field of a quadrupole
must be focusing in one direction and defocusing in the other.

Normal conducting quadrupoles could be used for the focusing of drift tube linac. In some
circumstances, the possibility of adapting the magnetic field during the beam commissioning
or the need to use the linac at several energies or with different particles requires the use of
electromagnetic quadrupoles, that must be integrated inside the drift tubes. Fig. 6.16 shows
the design of a quadrupole performed by the author for an old version of the drift tube linac
of IFMIF. The design was based on an original work of Saclay for IFMIF, see for instance
[33]. This design has a very interesting cooling of the coils based on flooding the inside of the
drift tube with water that circulates through the stem in a coaxial circuit.

On the other hand, electromagnetic quadrupoles tend to be bulky and impose a constraint
in the RF design of the linac unit, requiring a larger diameter of the drift tube and decreasing
the performance of the whole linac. The PMQs have a significant advantage in size and
simplicity, allowing a much reduced drift tube, which allows improving the RF design of the
DTL.

It is interesting to note that the drift tubes aperture is typically small, as the distance
between the drift tubes is short and the high spatial frequency of the focusing array causes
the beam to remain small.

Figure 6.16 – Drift tube with an electromagnetic quadrupole integrated in it. (1) Drift tube
stem, (2) and (3) Drift tube, (4) quadrupole yoke, (5) quadrupole coil, (6) detach-
able pole.
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6.9 Design of a wide aperture spectrograph

A very interesting application of the transversal dynamics consist in the separation of particles
of different magnetic rigidity by a magnetic field. As we have seen in the previous sections,
the difference in magnetic rigidity causes the particles to follow a different trajectory from
the source to a certain plane perpendicular to the trajectory where the amount of each type
of particle is measured.

A typical spectrograph will create a set of different particles from a particle source with
a definite aperture and divergence, the particles will be accelerated from the source to a
transport line by an electrostatic or an RF field, will be separated by the spectrograph and
will be collected in a detector to measure the amount of each type of particle. The main task
of the spectrograph is to separate spatially the particles with different magnetic rigidity in
spite of the finite aperture and divergence of source.

In most spectrographs, the requirement to separate particles with very similar magnetic
rigidities implies that the beam that enters the spectrograph must have a small divergence and
aperture to avoid the non-linear components of the magnetic field disturbing the trajectories
and mixing particles of different magnetic rigidity. However, this increased resolution implies
a reduction of the current entering the spectrograph, and if the desired particles are scarce,
the amount of time required to collect a certain amount of the desired species may increase
largely.

6.9.1 Principle of operation

As an example of an spectrograph that may circumvent the problem of the degradation of
current with the increase of resolution , the author designed the dipole magnet described in
[25], [4]. This spectrograph is installed in the CMAM (Centro de microanálisis de materiales)
in the Universidad Autonoma at Madrid, and is used for high-resolution depth profiling of
heavy elements using Rutherford scattering of light ions (RBS) and of light elements using
elastic recoil detection (ERD). Typically the spectrographs used for this type of applications
require collimating most of the secondary beam in order to obtain the desired resolution.
In the novel design, the position of the incoming ions is measured prior to entering the
spectrograph. This allows to increase the angle acceptance of the spectrograph to 14 msr,
two order of magnitude larger than for most spectrographs.

In order to detect the time and position of the entering ion, it passes through a thin foil,
5 nm thick diamond-like, under an angle of 45

The time of flight technique is used to obtain the velocity of the particle, while the magnetic
rigidity, mv/q for the non-relativistic ions, is obtained by the spectrograph. In such a way, it
is possible to obtain the mass to charge ratio.

6.9.2 Design of the multipole magnet

The challenge of the design of the spectrograph magnet is to allow the transport of all particles
entering in a large acceptance angle, ±4.5◦ in the horizontal plane and ±6◦ in the vertical
plane of the spectrograph; into the one-dimensional silicon detector located on the image
plane of the spectrograph. Because the angle of acceptance is so large, most of the ions
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will travel through highly non-linear fields and the typical design equations of the focusing
of dipoles are only a help to provide a starting point for the simulations of the dipole. In
addition, all particles with an energy spread, ∆E/E of ±2.5% of the central energy must
reach the detector.

The design of the spectrograph was based on building a finite element method of the magnet
and using ray tracing to check that all particles entering the acceptance cone ended in the
detector. The degrees of freedom implemented in the model were:

1. The bending angle

2. The entrance and exit angles of the dipole

3. The multipolar content of the field in the central zone up to 4th order

Some of these parameters are shown in fig. 6.17. The last set of parameters (the multipolar
components of the central part) are explained in the next section.

α β

θ ρ

R1 R2

Be
am

Figure 6.17 – Parameters defining the pole shape

6.9.3 Generation of a general multipolar field

We will describe the complex potential in sect. 7.3. The imaginary part of the complex
potential is the scalar magnetic potential, which has the property that the magnetic induction
is derived from it as ~B = −∇Φ. Therefore, the magnetic induction will be perpendicular to
the lines of constant Φ. From the boundary conditions of the magnetic field ~H, which has a
tangential component that in absence of surface current, must be the same on both sides of
a boundary; the field on the air boundary of a ferromagnetic must be perpendicular to the
boundary. We conclude, then, that the surfaces of the ferromagnetic materials are of constant
Φ.
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We will see in eq. 7.26, an expression relating the field coefficients to the scalar potential.
Therefore, the shape of the poles will be given by eq. 6.160.

∞
∑

n=1

rn

nRn−1
(Bn sin nθ +An cosnθ) = Constant (6.160)

In order to know which is the constant, Ampere law must be used. The total magnetomotive
force connecting to poles of an iron dominated magnet may be calculated as,

Ni =
∫

~H · d~r =
∫

Hxdx+Hydy = Im
1
µ0

∫

(By + iBx) (dx+ idy) = −Im∆Ψ (6.161)

So that the variation between the scalar potential of two poles of an iron dominated magnet
is equal to the total magnetomotive force around these poles. With the theory developed in
this section, it is possible to obtain the ideal shape that several practical magnets must have
and in addition which is the required magnetomotive force to obtain a certain value of field.

In the next sections, we will show a few examples of different magnetic fields.

An ideal dipole

In an ideal dipole, the curves of constant scalar potential may be obtained from eq. 6.160,

Φ = −B1

µ0
r sin θ = −B1

µ0
y (6.162)

And from eq. 6.161, the required magnetomotive force will be,

Ni =
B1

µ0
(y2 − y1) =

B1

µ0
g (6.163)

where g is the gap of the magnet.

An ideal quadrupole

In the same way, it is possible to obtain a pure quadrupole by shaping the poles according to
the lines of constant scalar potential,

Φ = −B2r
2

2R
sin 2θ = −g (r sin θ) (r cos θ) = −gxy (6.164)

Where we have used that the gradient, g is B2 divided by the reference radius. The ideal
pole shapes are equilateral hyperbolae with the horizontal and vertical axes as asymptotes.
Because the typical vacuum chamber inside the quadrupole is circular, we are interested in
knowing which is the hyperbola tangent to a circle of diameter d centered on the origin. This
will happen at 45◦ for symmetry reasons. Therefore, the scalar potential at the pole tangent
to the circle will be,

Φ = −g d
2

8µ0
= −Niper coil (6.165)
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The total magnetomotive between two poles will be twice this value, but as typically there
is one identical coil around each pole, eq. 6.165 gives the magnetomotive force required for
each of these 4 coils.

A combined function magnet

A combined function has at the same time a dipole component and a quadrupole component.
The curves of constant scalar potential will be then,

B1y +
B2

R
xy = By + gxy = B1y

(

1 + b2
x

R

)

= K (6.166)

For this type of magnet, is quite common to use the field index that is defined as,

n = −∂By/∂x

B/ρ
(6.167)

Where, ρ is the radius of curvature. In this case, the equation of the pole shape will be,

B1y

(

1 − n
x

ρ

)

= K (6.168)

6.9.4 Ray tracing

Although the first design was performed with the classical linear equations for transport
lines, using the matrix formalism. The aperture and divergence of the incoming beam is
so large that the final design was performed by a trial and error system using a parametric
FEM model of the magnet and a ray tracing. A ray tracing program was created for this
purpose. This program reads the field calculated by the finite element model and launches a
set of particles covering the whole range in the aperture ellipse and the energy spread. The
program integrates the dynamical equations associated with the Lorentz force and checks
that no particle is lost in the vacuum chamber and which are the intersection points in the
detector (image) plane. The 6 scalar Ordinary Differential Equations that are solved are,

d~r

ds
= ~τ (6.169)

d~τ

ds
=
~τ × ~B (~r)

ηm
. (6.170)

Which are expressed in vector for and clearly show that all particles of the same magnetic
rigidity will trace the same path.

Because of the vertical symmetry, only the particles launched with positive vertical velocity
has been simulated. The center of curvature of the magnet is centered on the origin, the object
plane is located at 800 mm from the start of the magnet, and the detector (image plane) is
located at 700 mm from the magnet exit. Fig. 6.18 is a top view of the simulated trajectories,
in which it may be seen the initial drift from the object plane, the bend in the dipole and the
image formation at the detector.

80



J. Lucas

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

H
or

iz
on

ta
l 2

 [m
]

Horizontal 1 [m]

Figure 6.18 – Top view of the particle trajectories

A vertical view of the trajectories is shown in fig. 6.19. It is interesting to see the vertical
focusing due to the pole face angles, which at the entrance produce a roughly horizontal beam
and at the exit makes the particle converge towards the detector. This plot is useful to prove
that a vertical mechanical aperture of 100 mm is enough for the magnet.

Fig. 6.20 shows the interception of the particles with the detector. There, it is shown that
the objective of the design is reached, as all the particles fall in the active part of the detector,
marked by a red frame.

6.9.5 Manufacturing of the magnet

Because of the complex shape of the pole, the magnet was machined using a CNC milling
machine. The magnet is divided in a lower and an upper part, both parts are similar except
that the lower one has interfaces for attaching the magnet supports, and the upper part has
the interfaces for the alignment targets.

The pole and the columns were attached to the top and bottom plates and then the pole
shape and the matting face of the columns were machined during the same operation. In such
a way, it could be ensured that once the two halves were assembled, the relative position of
the poles would match perfectly. Both magnet halves were connected using bolts and locating
pins, so that they can be re-assembled in a repetitive way.

The coils were divided in several double pancakes, which were put electrically in series but
hydraulically in parallel. The coils were insulated with glass fiber tape.

Fig. 6.21 shows the assembly of the lower part of the magnet and the final installation at
the CMAM.
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Figure 6.19 – Elevation view of the particle trajectories
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Figure 6.21 – Left, assembly of one of the magnet halves. Right, the magnet installed at the
CMAM.
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CHAPTER7
Magnetics

The previous chapters have been related to the beam dynamics, otherwise stated, the way
in which a certain distribution of electromagnetic field will affect an assembly of charged
particles and the how they may be guided. In this chapter,we will change the focus to the
methods of characterizing and creating the magnetic field, which is most often used to guide
the particles at medium and high energy.

We will put emphasis on the 2D case, in which the magnet is sufficiently long with respect
to the cross section, so as to produce most of it effect on the beam near its center, with the
effect of the magnet extremities of minor importance. Of course, because most applications
require high accuracy, the 3D effect must be added at a later stage as a perturbation of the
2D field. We will see, nevertheless, that the integral of the 3D field along a straight lines
behave in many aspects as a 2D field.

7.1 The complex field and the 2D harmonic expansion

The complex formulation of the 2D magnetostatic field was introduced by Richard A. Beth,
[9], [10], [11],[12], and it has become the standard formalism in accelerator magnets; both
normal conducting and superconducting.

In all the following formalism, we will suppose that the magnet has its cross section on the
x− y plane with the beam traveling in the z direction.

The Maxwell equations limited to the magnetostatic case in vacuum are the following,

∇ · ~B = 0 (7.1)

∇ × ~B = 0 (7.2)

In the 2D case, these equations are reduced to the following set,

∂Bx

∂x
= −∂By

∂y
(7.3)

∂By

∂x
=
∂Bx

∂y
(7.4)

Eqs. 7.3 and 7.4 are equivalent to the Cauchy-Riemann equations, and therefore, the
following complex function is analytical,
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F = By + iBx (7.5)

There are many consequences of the field function of eq. 7.5 being analytic. One of the
most important is that if the Cauchy-Riemann conditions are satisfied in a circle of complex
center ξ and radius r, the function may be expanded as a convergent Taylor series,

F =
∞
∑

n=1

(Bn + iAn)
(

z − ξ

R

)n−1

, |z − ξ| < r (7.6)

R is a reference radius which is used to homogenize the units of the field harmonics. Typ-
ically, this reference radius is specified to be in the range of 66% to 80% of the aperture. In
addition, in most cases, the circle center, ξ, around which the function is developed is taken
as the origin.

Very often the integrated field is developed, as well, in the same way as the 2D field. The
integrated field is defined as1,

IBx =
∫ ∞

−∞
Bx (x, y, z) dz (7.7)

IBy =
∫ ∞

−∞
By (x, y, z) dz (7.8)

The integrals satisfy, as well, the Cauchy-Riemann conditions. This may be obtained
directly by integration along z for the curl equation, while for the divergence one may be
proved as,

∫ ∞

−∞

(

∂Bx

∂x
+
∂By

∂y

)

dz = −
∫ ∞

−∞

∂Bz

∂z
dz = −Bz (∞) +Bz (−∞) = 0 (7.9)

, as long as the axial cancels when we are far away the magnet ends cancels when we are
far away the magnet ends. Therefore, the complex function IBy + iIBx is analytical as well.

7.2 The field in polar coordinates

In some cases, it is interesting to obtain the polar coordinates of the magnetic field. In this
section, we show how to calculate them from the complex field and how the expression of the
radial field in Fourier series allows to calculate the standard field harmonics.

A simple rotation of the coordinate system in which the field is expressed provides:

Br = Bx cos θ +By sin θ (7.10)

Bθ = −Bx sin θ +By cos θ (7.11)

We can combine both expressions in a complex one

1In this expression and the following, z represents the Cartesian coordinate perpendicular to the cross section,
and not the complex coordinate
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(By + iBx)eiθ = (By + iBx) (cos θ + i sin θ) =

= (−Bx sin θ +By cos θ) + i (Bx cos θ +By sin θ) = (Bθ + iBr) (7.12)

It is interesting to express the radial and azimuthal field from the harmonic components of
the complex field.

(Bθ + iBr) =
∞
∑

n=1

(Bn + iAn)
(

z

R

)n−1

eiθ =
∞
∑

n=1

(Bn + iAn)
(

r

R

)n−1

einθ (7.13)

We can now write the radial field for r = R as a standard Fourier series:

Br =
∞
∑

n=1

(Bn sinnθ +An cosnθ) (7.14)

And the field harmonics may be obtained as:

Bn =
1
π

∫ 2π

0
Br(θ) sin nθ dθ (7.15)

An =
1
π

∫ 2π

0
Br(θ) cosnθ dθ (7.16)

7.3 The complex potential

The field may be expressed as the derivative of the potentials, outside of the sources we may
express the field as the curl of the vector potential or as the gradient of the scalar potential.
For analogy with the electrical potential, we introduce a minus sign in the expression of the
scalar potential.

~B = ∇ × ~A = −∇Φ (7.17)

We can now represent the components as the partial derivatives of either the vector or the
scalar potential.

Bx =
∂Az

∂y
= −∂Φ

∂x
(7.18)

By = −∂Az

∂x
= −∂Φ

∂y
(7.19)

The previous expressions may be seen as the Cauchy-Riemman conditions of the analytic
function:

Ψ = Az + iφ (7.20)

And the complex field is the derivative of the complex potential:
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dΨ
dz

= −(By + iBx) (7.21)

We can now integrate the series expansion of the complex field in order to relate the
standard coefficients with the complex potential. This is very useful in the post-processing
of the solutions of numerical methods that calculate first the vector potential and obtain the
fields as the derivative of the vector potential. In this case, obtaining the harmonics directly
from the vector potential eliminates the derivative, which may introduce additional error in
the final result.

Ψ = −
∫ ∞
∑

n=1

(Bn + iAn)
(

z

R

)n−1

dz = −
∞
∑

n=1

(Bn + iAn)
nRn−1

zn =

= −
∞
∑

n=1

(Bn + iAn) rn

nRn−1
(cosnθ + i sin nθ) (7.22)

We can obtain now the vector potential as the real part of the previous equation.

Az =
∞
∑

n=1

rn

nRn−1
(An sinnθ −Bn cosnθ) (7.23)

And the standard coefficients will be:

Bn = −nRn−1

πrn

∫ 2π

0
Az(θ) cosnθ dθ (7.24)

An =
nRn−1

πrn

∫ 2π

0
Az(θ) sinnθ dθ (7.25)

The expression of the scalar potential in terms of the field coefficients will be useful to
obtain the pole shapes of iron dominated magnets. It is,

Φ = −
∞
∑

n=1

rn

nRn−1
(Bn sin nθ +An cosnθ) (7.26)

An interesting application of eq. 7.26 is the qualitative understanding of the effect of the
mechanical errors of a magnet in the field quality. For this purpose, we can use the inverse
procedure, and see how much the surfaces of constant scalar magnetic potential get distorted
when a multipolar term is added to the pure multipolar field that we desire to obtain. This
method has been applied in fig. 7.1. A small amount of multipolar error has been introduced
in the scalar potential expansion of a pure quadrupole to check which type of movements of
the pole faces would caused this multipolar error. We can, for instance, observe that a pure
B3 is caused by an unequal gap between the left and right set of poles, the gap being smaller
at the left than at the right for a positive B3. For the case of A3 the two vertical gaps are
unequal.

In the case of B4, both horizontal gaps and both vertical gaps are equal, but they are
different in pairs. For instance both vertical gaps are smaller for positive B4. The case of A4
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is different and cannot be easily identified with a displacement of the poles. It requires that
the poles are deformed, with opposed poles being equal but with different curvature than the
other pair of poles.

Figure 7.1 – Effect of a pure b3, left top; a pure a3, right top; a pure b4, bottom left and a pure a4

bottom right, with respect to the ideal hyperbolic shape required for a quadrupole.
Both the amount of error and the dimensions are arbitrary

We can see in fig. 7.2 the application of this philosophy of measurement to a quadrupole.
The relative separation between adjacent and opposite poles are measured using a column. In
such a way, it is possible to correlate the error in these distances with respect to the harmonic
content of the quadrupole. Using this method, it is possible to specify the mechanical tolerance
required in order to achieve the desired magnetic field quality.

Figure 7.2 – Measuring of a quadrupole poles

89



J. Lucas 7.5. Transformation of the field harmonics

7.4 Relationship between the field harmonics and the field modulus

We can calculate the field modulus in 2D by multiplying the expansion of the field in harmonics
by its conjugate.

By + iBx =
∞
∑

n=1

Cn

(

z

R

)n−1

(7.27)

By − iBx =
∞
∑

m=1

Cm

(

z̄

R

)m−1

(7.28)

So that the modulus will be given as the double sum:

B2 =
∞
∑

n=1

∞
∑

m=1

CnCm

(

r

R

)m+n−2

ei(n−m)φ (7.29)

Where we have expressed z in polar form. Now, we will suppose that the field has a very
dominant harmonic of order p, which is the case in most technically relevant systems, in which
we are interested in obtaining a pure multipole and the other terms are only perturvative.
Letťs suppose then that |Cp| ≫ |Cm| for all p 6= m. In this case, only the terms containing
Cp will be relevant. In addition, we will suppose that only the normal harmonic (and not the
skew) is desired, so that Cp = Bp is a real number. We may write the field modulus as:

B2 = Bp

∞
∑

n−p=1

(

Cne
−i(n−p)φ + Cne

i(n−p)φ
)

(

r

R

)n+p−2

ei(n−p)φ +B2
p

(

r

R

)2p−2

=

= Bp

∞
∑

n−p=1

2 (Bn cos(n− p)φ−An sin(n− p)φ)
(

r

R

)n+p−2

+B2
p

(

r

R

)2p−2

(7.30)

We can now reformulate eq. 7.30 to obtain the relative error to the main field:

B2 −B2
p

( r
R

)2p−2

B2
p

(

r
R

)2p−2 =
∞
∑

n−p=1

2

(

Bn

Bp
cos(n− p)φ− An

Bp
sin(n− p)φ

)

(

r

R

)n−p

(7.31)

This equation relates the error in the modulus of the field at a certain radius with the
relative harmonics of other existing angular frequencies. The ripple to the otherwise uniform
modulus appears at the n− p angular frequency.

7.5 Transformation of the field harmonics

7.5.1 Translation of the reference frame for the harmonic expansion

In some cases it is interesting to translate by a complex number δ the reference system of the
magnet. This is made for instance to align the measurement axis with the mechanical axis
in order to cancel the dipole component of the field. As we will see, the higher harmonics
contribute to the lower ones in a series that converges as powers of |δ|/R. If we apply a
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displacement to the harmonics, the field expansion in the new coordinates will be:

(By + iBx) =
∞
∑

n=1

Cn

(

z + δ

R

)n−1

=
∞
∑

n=1

Cn

∑n−1
j=0

(n−1
j

)

zn−1−jδj

Rn−1
=

∞
∑

n=1

n−1
∑

j=0

Cn

(

n− 1
j

)

zn−1−jδj

Rn−1

(7.32)
We can now group all terms of constant power in the complex coordinate by making the

substitution k = n− j.

(By + iBx) =
∞
∑

k=1

∞
∑

j=0

Ck+j

(

k + j − 1
j

)

(

δ

R

)j ( z

R

)k−1

(7.33)

This expression is the expansion of the field around the new point, with the new field
coefficients being:

C̄k =
∞
∑

j=0

Ck+j

(

k + j − 1
j

)

(

δ

R

)j

(7.34)

7.5.2 Rotation of the measurement around the vertical axis

One interesting transformation is the rotation of the magnet around the y axis. This is useful
because sometimes a magnet must be measured independently from both sides, because the
probe is not long enough or for any other reason.

First of all, the new complex reference system has the sign of the x coordinate changed:

z′ = −x+ iy = −z̄ (7.35)

And additionally, the x coordinate of the complex field has changed of sign.

F ′ = By − iBx = F̄ (7.36)

The new expansion will be:

F ′ = F̄ =
∞
∑

n=1

(Bn + iAn)
(

z

R

)n−1

=
∞
∑

n=1

(Bn − iAn)
(

z̄

R

)n−1

=

=
∞
∑

n=1

(Bn − iAn)
(−z′

R

)n−1

=
∞
∑

n=1

(

(−1)n−1Bn + i(−1)nAn

)

(

z′

R

)n−1

(7.37)

And therefore,

B′(n) = (−1)n−1Bn (7.38)

A′(n) = (−1)nAn (7.39)

Which we could rephrase as even normal harmonics and odd skew harmonics change sign.
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7.6 Magnetic field calculations for 2D current and magnetization

distributions

The theory of the complex field may be used to obtain powerful results for current dominated
magnetic systems. Instead of adding up the contribution of the different current lines to
the magnetic field in a given point of space, we will show that it is possible to obtain the
harmonic contribution of the line of current to the complete interior field problem and add
up the contribution of the different line currents to a given harmonic.

The use of the complex formulation to analyze a permanent magnet system has been used
at least since [31], here we obtain the same results and a few more using a different method.
The key is the used of the complex magnetic moment, that will be defined in section. 7.7.
In this work, we will concentrate in the Hallbach type arrangement, although some other
approaches like the quasi-sheet multipole [48] may be advantageous in some cases.

7.6.1 Field of current lines and current distributions

To calculate the field created by a current line, we will suppose without loss of generality that
the current line is located at the origin. In this case, Ampere law may be expressed as,

Br = 0 (7.40)

Bθ =
µ0I

2πr
(7.41)

From eq. 7.12, we can obtain the complex field as,

By + iBx = e−iθ (Br + iBθ) =
µ0i

2πz
(7.42)

For a current line of value I, located at the complex position ξ, the value at the complex
point z may be obtained by a shift of eq. 7.42,

F =
µ0I

2π (z − ξ)
(7.43)

We could expand in an harmonic series the complex field and obtain directly the harmonics
from the position of the current line. We will take the particular case of an internal field
|z| < |ξ|.

F =
µ0I

2π (z − ξ)
= − µ0I

2πξ
(

1 − z
ξ

) = −µ0I

2πξ

∞
∑

n=1

(

z

ξ

)n−1

(7.44)

If we compare it now with the standard complex harmonic distribution, we will obtain:

Bn + iAn = −µ0IR
n−1

2πξn
(7.45)
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7.6.2 Harmonics of a line current distribution

We could integrate now eq. 7.45 to obtain the harmonics of a constant surface current sheet
of linear current density λ going from complex points ξ1 to ξ2. In this case we can parametrize
the complex variable with a parameter t going from 0 to 1 and the integral will be:

Bn + iAn = −µ0λR
n−1

2π

∫ 1

0

|ξ2 − ξ1| dt
(ξ1 + (ξ2 − ξ1)t)n =

= −µ0λR
n−1

2π
|ξ2 − ξ1|
(ξ2 − ξ1)

∫ 1

0

(ξ2 − ξ1) dt
(ξ1 + (ξ2 − ξ1)t)n =











−µ0λRn−1

2π
|ξ2−ξ1|
(ξ2−ξ1) ln ξ2

ξ1
if n = 1,

µ0λRn−1

2π(n−1)
|ξ2−ξ1|
(ξ2−ξ1)

(

1
ξn−1

2

− 1
ξn−1

2

)

if n > 1.

(7.46)

7.7 The field of a magnetic dipole

In this section, we will extend the complex formalism to include the field generated by 2D
magnetic dipoles. We could imagine two current lines of the same value but different sign
placed at a complex distance, ∆, the situation if shown in fig. 7.3. The complex field would
be,

F =
µ0I

2π

(

1
z − (ξ + ∆/2)

− 1
z − (ξ − ∆/2)

)

=
µ0I

2π
−∆

(z − ξ)2 − (∆/2)2
(7.47)

Figure 7.3 – Calculation of the field of two current lines

We could take now the limit of ∆ to zero, while the product I∆ takes a finite value. To
relate the magnitudes that we are using with the conventional magnetic moment (per unit
length), we should do:

m = iI∆ (7.48)

As the magnetic moment is perpendicular to the line that goes from the positive to the
negative current line. Finally, the complex field of a magnetic moment per unit length m

located at the complex coordinate ξ, at a complex coordinate z will be:
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F =
µ0mi

2π (z − ξ)2 (7.49)

We will now expand the complex field in powers of z for an internal field. This is indicated
for magnets used for beam focusing or steering. If |z| < |ξ|, then:

F =
µ0mi

2π (z − ξ)2 =
µ0mi

2πξ2 ((z/ξ) − 1)2 =
µ0mi

2πξ2

∞
∑

n=1

n

(

z

ξ

)n−1

(7.50)

The usual field expansion used for accelerator magnets is:

F = By + iBx =
∞
∑

n=1

(Bn + iAn)
(

z

R

)n−1

(7.51)

Where R is an arbitrary reference radius which is used so that all harmonics Bn and An

have dimensions of magnetic induction. We may compare eq. 7.50 and eq. 7.51 to obtain the
harmonic contribution for the dipole m at position ξ:

Bn + iAn =
iµ0mnR

n−1

2πξn+1
(7.52)

A very interesting property of eq. 7.52 is its linearity with respect to the complex mag-
netization m. This linearity affects both the modulus and the argument of the complex
magnetization. Therefore, if the magnetization is rotated by an angle φ, the complex mag-
netization will be multiplied by a factor eiθ and so will be the complex field. This property
is very useful when understanding the effect of angular error in the magnetization of the
permanent magnet blocks.

7.8 Generation of pure multipoles

Eq. 7.52 may be used for obtaining a magnetization distribution which creates a pure har-
monic field. If we express the field source position ξ in radius and angle, we obtain:

Bn + iAn =
iµ0mnR

n−1

2πrn+1
(cos(n+ 1)φ− i sin(n+ 1)φ) (7.53)

We will calculate the effect of magnetization per unit of surface Ms which is of constant
modulus and rotates m times over a complete turn of 2π, i.e.:

dm = iMse
imφrdφ (7.54)

The complex unit i in front of the second term is used to align the magnetization with the
complex axis at φ equal zero. We can perform the integration over the crust to obtain:
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Bn + iAn =
iµ0MsnR

n−1

2πrn

∫ 2π

0
ieimφe−i(n+1)φdφ =

− µ0MsnR
n−1

2πrn

∫ 2π

0
ei(m−(n+1))φdφ =







0 if m 6= n+ 1,

−µ0MsnRn−1

rn if m = n+ 1.
(7.55)

This equation may be generalized to a shell of finite thickness by integrating the result over
r. Letťs assume now that we have the appropriate rotation of the magnetization (m = n+ 1)
and that the magnetization per unit of volume is M . In this case,we will obtain:

Bn = −µ0MnRn−1
∫ r2

r1

dr

rn
=











µ0MnRn−1

n−1

(

1
rn−1

1

− 1
rn−1

2

)

if n 6= 1,

−µ0M ln r2
r1

if n = 1.
(7.56)

For a practical magnet of relative permeability near 1, the product of the vacuum per-
meability times the magnetization is the residual magnetization Br. For a quadrupole, and
taking into account that the gradient is B2 divided by the reference radius, we obtain the
value:

g = 2Br

(

1
r1

− 1
r2

)

(7.57)

A similar expression may be obtained for a dipole,

B1 = −Br ln
r2

r1
(7.58)

An interesting property of eq. 7.58, is that B1 may be significantly larger than Br, depend-
ing on the geometry of the magnet. The value of the residual magnetization is not limiting the
achievable central field. The field that may be reached is only limited by the demagnetizing
field on the point where it is higher on any point on the magnets. Therefore, achieving high
field does not only require a high Br, but also a high irreversible demagnetizing field Hci. The
exact definition of each property will be given in chapter 8.

7.9 The Green’s theorem in complex formulation

In this section, we proof a complex form of the Green Theorem which we will use to integrate
the effect of blocks of homogeneous magnetization. The Green’s theorem, states that for a
given plane region ℜ an area integral is related to a line integral over the perimeter C.

∮

C
M dx+N dy =

∫∫

ℜ

(

∂N

∂x
− ∂M

∂y

)

dx dy (7.59)

If now, z is the complex variable x + iy, we can calculate the following complex contour
integral by the Greenťs theorem.

∮

C
f(z)z̄ dz =

∮

C
f(z)(x− iy) dx+ f(z)(y + ix)dy (7.60)
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So that we may identify:

M = f(z)(x− iy) (7.61)

N = f(z)(y + ix) (7.62)

If we calculate the partial derivatives needed by the Greenťs theorem, we obtain:

∂M

∂y
= f ′(z)i(x − iy) − f(z)i (7.63)

∂N

∂x
= f ′(z)(y + ix) + f(z)i (7.64)

The first terms will cancel in the subtraction of the integrand while the second will add up,
giving an expression that may be used to calculate integrals of complex functions over regions
of the complex plane:

And applying the Green’s theorem:
∫∫

ℜ
f(z) dx dy =

1
2i

∮

C
f(z)z̄ dz (7.65)

It must be noted, nevertheless, that the integrand is not an analytic function because of the
presence of the conjugate and the method of residues cannot be used to evaluate the integral.
Of course, according to the Cauchy integral theorem, the function cannot be analytical if the
integral must have a non-zero value.

7.10 Surface currents on the sides of constant magnetization

blocks

From the point of view of the field generated outside the blocks, the magnetization may be
replaced by a surface density current equal to the curl of the magnetization plus a linear
current density on the edges of the block of value ~M × ~n, where ~n is the normal pointing
outside of the block. Therefore the linear current density, in 2D, will be:

λ = Mxny −Mynx = − (τxMx + τyMy) (7.66)

λds = −1
2

(

Mdξ̄ + M̄dξ
)

(7.67)

7.11 Harmonics of blocks of constant magnetization

We can now combine eq. 7.52, with Greenťs theorem to obtain the harmonics of a block of
constant magnetization by a line integral on the contour of the block.

Bn + iAn =
∫∫

A

iµ0MnRn−1

2πξn+1
dxdy =

µ0MnRn−1

4π

∮

C

ξ̄ dξ

ξn+1
(7.68)
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It is now possible to integrate by parts the line integral in order to obtain a simplified
expression.

∮

C

ξ̄ dξ

ξn+1
= − ξ̄

nξn
+

1
n

∮

C

dξ̄

ξn
=

1
n

∮

C

dξ̄

ξn
(7.69)

Because the part that goes out of the integral cancels over a closed loop. We obtain finally:

Bn + iAn =
µ0MRn−1

4π

∮

C

dξ̄

ξn
(7.70)

It is interesting to note that the effect of the constant magnetization block may be obtained
in a different but related way. As shown in the previous section, the field of the block may
be obtained by replacing the magnetization by a surface current density on the outer surface
of the block with value λ = ~n× ~M , where ~n is the vector normal to the block.

7.11.1 Harmonics created by a cylinder of uniform magnetization

As a first example of the use of eq. 7.70, we will calculate the harmonics created by a cylinder
of constant magnetization. Fig. 7.4 shows the geometry used for the calculation, the circle is
centered on the complex number ξ0 and has a radius r.

The circle may be parametrized by equation:

ξ = ξ0 + reiφ, 0 ≤ φ < 2π (7.71)

The harmonics created by the cylinder will be:

Bn + iAn =
µ0MRn−1

4π

∮ 2π

0

−ire−iφ dφ

(ξ0 + reiφ)n = − iµ0MRn−1r

4πξn
0

∮ 2π

0

e−iφ dφ
(

1 + reiφ

ξ0

)n (7.72)

As long as the origin is not contained in the cylinder |ξ0| > r = |reiφ|, and therefore the
denominator may be expanded as:

Bn + iAn = − iµ0MRn−1r

4πξn
0

∮ 2π

0
e−iφ

(

1 − n
reiφ

ξ0
+

1
2
n(n+ 1)

r2e2iφ

ξ2
0

− · · ·
)

dφ (7.73)

Only the term in the parenthesis that contains the term eiφ will contribute to the total
integral and the final result will be:

Bn + iAn =
iµ0MRn−1r2

2ξn+1
0

(7.74)

7.11.2 General polygonal block

For a general polygonal block, we will use the integral of eq. 7.70 over the external shape.
An example of the geometry may be seen in fig. 7.5. The polygon will be made by a series of
edges with a running index e, each of them going from vertex ξe to vertex ξe+1. The closed
loop integral will be replaced by an integral over the edges, which each edge parametrized as,
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Figure 7.4 – Geometry used to calculate the effect of a uniformly magnetized cylinder.

ξ = (ξe+1 − ξe) t+ ξe (7.75)

So that the ξ dependent part of eq. 7.70 may be expressed as,

∮

c

dξ

ξn
=
∑

e

∫ 1

0

(ξe+1 − ξe)dt
((ξe+1 − ξe) t+ ξe)n =

1
n− 1

∑

e

(ξe+1 − ξe)
(ξe+1 − ξe)











(

1
ξn−1

e

− 1
ξn−1

e+1

)

, for n 6= 1

ln ξe

ξe+1
, for n = 1

(7.76)
This equation contains a term which is the ratio between the conjugate of the complex

number defining the edge and the edge itself, (ξe+1 − ξe). If we define the edge in modulus
and argument, re exp (iθe), the ratio will be exp (−2iθe). This a complex number obtained by
squaring the unitary complex number parallel to the edge and making a symmetry on the real
axis. This term is a complex number of unitary modulus, that multiplies the contribution of
the edge, and that actually avoids the integral being null because the direct contribution of
each vertex appears twice in the complete integral, the first time with positive sign and the
second with negative sign. The contribution of each vertex may be obtained by subtracting
the edge term of the edges that share the vertex. In this case, the summation on the edges of
eq. 7.76, may be replaced by a summation over the vertices of the polygon. The contribution
of the edges and the vertices for a square may be seen on the right side of fig. 7.5.

For instance for a rectangular block with edges parallel to the axis the field harmonics will
be given by eq. 7.78.

Bn + iAn =
µ0MRn−1

2π(n − 1)

(

1
ξn−1

1

− 1
ξn−1

2

+
1

ξn−1
3

− 1
ξn−1

4

)

if n 6= 1 (7.77)

B1 + iA1 = −µ0M

2π
ln
(

ξ1ξ3

ξ2ξ4

)

(7.78)

7.12 Structures made of several blocks

For calculating the effect of the other blocks of the magnet we will not integrate the blocks
in their actual position, but we will transfer them to the real axis as the first block in fig. 7.5
calculate the harmonics using eqs. 7.77 and 7.78 and then translating the harmonics to the
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1

-1

1

-1

-2

2-2

2

Figure 7.5 – Left, calculation of the harmonics created by a constant magnetization block. Right,
terms associated to the edge angle and contribution to the vertex term for a square
with the edges parallel to the axes.

original reference system. If we consider the prime system as the one having the real axis
coincident with the mid-plane of the second block in fig. 7.5. The harmonics created by the
second block on the prime system will be coincident with the harmonics created by the first
block on the original coordinate system , Cn0. Of course, to be so, the magnetization of the
second block must keep the same angle with the prime real axis as the magnetization of the
first block with the reference real axis. Taking into account this additional rotation of the
magnetization and the absolute rotation φ, the harmonics created in the reference system by
block 2, will be:

Cn1 = Cn0e
−inθe−iθeiφ = Cn1e

i(φ−(n+1)θ) (7.79)

If we choose a rotation of the magnetization φ which is equal to (n + 1)θ, we obtain that
the contribution to the nth harmonic is constant for the first and the second block. Of course,
this can be generalized to an arbitrary number of blocks.

Letťs now concentrate in a special case of technical interest. The magnet is formed from s

sectors, each an angle of 2π/s, running from b = 0 to b = s − 1. We wish to create the mth

harmonic, so that we choose φ = (m+ 1)θ. In this case, we have:

Cnb = Cn0e
−2πi

b(n−m)
s . (7.80)

A similar equation is obtained, but not added at [39].
This is, obviously a geometrical series, where b is the power of each term. It is possible to

sum the effect of all the blocks to obtain the total field:

Cn = Cn0

s−1
∑

b=0

e−2πi
b(n−m)

s = Cn0
1 − e−2πi(n−m)

1 − e−2πi n−m
s

=







0 if (n−m)/s is not an integer

sCn0 if (n−m)/s is integer
(7.81)

According to the result of eq. 7.81, the harmonics created by the blocks are 0 except
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for some allowed harmonics, in which case, the contribution of each block is the same. For
instance, to calculate the effect on the desired harmonic, n = m, it is sufficient to multiply
the result of the first block by the number of blocks, s.

It is very interesting to see the individual effect of the magnetization of each block in the
field harmonics. We can do it by calculating each coefficient of eq. 7.80 for a particular case.
For instance, in eq. 7.82, we show the individual contributions of each block to the field
harmonics for an 8 block quadrupole (m=2,s=8).







































C1

C2

C3

C4

C5

C6

C7

C8

C9

C10







































=
Cn0

M0











































1 e
iπ
4 i e

3iπ
4 −1 e− 3iπ

4 −i e− iπ
4

1 1 1 1 1 1 1 1
1 e− iπ

4 −i e− 3iπ
4 −1 e

3iπ
4 i e

iπ
4

1 −i −1 i 1 −i −1 i

1 e− 3iπ
4 i e− iπ

4 −1 e
iπ
4 −i e

3iπ
4

1 −1 1 −1 1 −1 1 −1
1 e

3iπ
4 −i e

iπ
4 −1 e− iπ

4 i e− 3iπ
4

1 i −1 −i 1 i −1 −i
1 e

iπ
4 i e

3iπ
4 −1 e− 3iπ

4 −i e− iπ
4

1 1 1 1 1 1 1 1











































·































M0

M1

M2

M3

M4

M5

M6

M7






























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And the matrix for a 16 block magnet is:

























1 e
iπ

8 e
iπ

4 e
3iπ

8 i e
5iπ

8 e
3iπ

4 e
7iπ

8 −1 e
−

7iπ

8 e
−

3iπ

4 e
−

5iπ

8 −i e
−

3iπ

8 e
−

iπ

4 e
−

iπ

8

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 e
−

iπ

8 e
−

iπ

4 e
−

3iπ

8 −i e
−

5iπ

8 e
−

3iπ

4 e
−

7iπ

8 −1 e
7iπ

8 e
3iπ

4 e
5iπ

8 i e
3iπ

8 e
iπ

4 e
iπ

8

1 e
−

iπ

4 −i e
−

3iπ

4 −1 e
3iπ

4 i e
iπ

4 1 e
−

iπ

4 −i e
−

3iπ

4 −1 e
3iπ

4 i e
iπ

4

1 e
−

3iπ

8 e
−

3iπ

4 e
7iπ

8 i e
iπ

8 e
−

iπ

4 e
−

5iπ

8 −1 e
5iπ

8 e
iπ

4 e
−

iπ

8 −i e
−

7iπ

8 e
3iπ

4 e
3iπ

8

1 −i −1 i 1 −i −1 i 1 −i −1 i 1 −i −1 i

1 e
−

5iπ

8 e
3iπ

4 e
iπ

8 −i e
7iπ

8 e
iπ

4 e
−

3iπ

8 −1 e
3iπ

8 e
−

iπ

4 e
−

7iπ

8 i e
−

iπ

8 e
−

3iπ

4 e
5iπ

8

1 e
−

3iπ

4 i e
−

iπ

4 −1 e
iπ

4 −i e
3iπ

4 1 e
−

3iπ

4 i e
−

iπ

4 −1 e
iπ

4 −i e
3iπ

4

1 e
−

7iπ

8 e
iπ

4 e
−

5iπ

8 i e
−

3iπ

8 e
3iπ

4 e
−

iπ

8 −1 e
iπ

8 e
−

3iπ

4 e
3iπ

8 −i e
5iπ

8 e
−

iπ

4 e
7iπ

8

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
























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The interesting part of eq. 7.82, is that it may be used for sorting the permanent magnets

used for assembling the quadrupole. This is so, because ot is clearly shown which pairs
(or groups of magnet) cancel each other for each harmonics. For instance, for the 8 blocks
structure, we can derive the following consequences,

1. The dipole field is canceled by having diametrically opposed magnets of the same mag-
netization. This is clear from the fact that in the first row of the matrix, elements four
columns apart have the same value but of opposite sign

2. The second row shows that the quadrupole is an allowed harmonic. All blocks contribute
the same to the harmonic. The same is true for the last row (C10).

3. Specially interesting is the case of C6, this harmonic is allowed by the quadrupolar
symmetry, but in our case, it cancels if the magnets in the even and the odd positions
are equal. In real magnets with a relative permeability different of 1, the magnets in the
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Figure 7.6 – Sketch of the duality of the integral field of a finite system (left) and the relationship
to the solution of the 2D case

odd positions are under a larger demagnetizing field, and the actual magnetization is
smaller. This originates a C6 component because it is allowed by the problem symmetry.

7.13 Relationship between the 2D and the 3D case

An important point for the practical use of the complex, 2D, expressions is how well they
relate to the engineering systems they will be used at, which are, of course of finite length. In
this section we will prove that for systems of constant section along one axis the 2D solutions
my be used without losing any accuracy. Letťs imagine a system of constant cross section A,
on which a magnetization is imposed, which extends from 0 to l over the z axis (left of fig.
7.6).

The field at any point of the space may be found by integrating over the sources a certain
kernel.

~B(x, y, z) =
∫∫

A
dxsdys

∫ l

0
dzs

~~G(x− xs, y − ys, z − zs) · ~M (xs, ys, zs) (7.84)

For the distributed magnetization system, the integrating kernel is shown in eq. 7.85,
although we will not use explicit use of it.







Bx

By

Bz






=







3x2

r5 − 1
r3

3xy
r5

3xz
r5

3xy
r5

3y2

r5 − 1
r3

3zy
r5

3xz
r5

3zy
r5

3z2

r5 − 1
r3






·







mx

my

mz






(7.85)

For beam optics in paraxial approximation, we will be interested in the integral of the
magnetic field over lines parallel to the central trajectory, eq. 7.86.

~IB(x, y) =
∫ ∞

−∞

~B(x, y, z)dz =
∫∫

A
dxsdys

∫ l

0
dzs

∫ ∞

−∞
dz
~~G(x−xs, y−ys, z−zs) · ~M (xs, ys, zs)

(7.86)
If we make the following substitution of variables:

zs = zs (7.87)

z = zs + u (7.88)

We can decouple the integral on the longitudinal axis over the kernel and over the magne-
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tization.

~IB(x, y) =
∫∫

A
dxsdys

∫ l

0
dzs

∫ ∞

−∞
du
~~G(x − xs, y − ys, u) · ~M (xs, ys, zs) =

∫∫

A
dxsdys

(∫ ∞

−∞
du
~~G(x− xs, y − ys, u)

)

·
(

∫ l

0
dzs

~M (xs, ys, zs)

)

=

l

∫∫

A
dxsdys

(

~~G2D(x− xs, y − ys) · 〈 ~M (xs, ys)〉zs

)

(7.89)

This last equation states that the integral field of the 3D problem corresponds to the
solution of the 2D problem with the magnetization averaged over zs and multiplied by the
length on which the magnetization is present.

The derivation we have made depends on the identification of the integral of the 3D kernel
along one of its dimensions with the 2D kernel, i.e.,

~~G2D(x− xs, y − ys) =
∫ ∞

−∞
du
~~G(x − xs, y − ys, u) (7.90)

This identification is obvious if we think of the 2D problem as the solution of a 3D case,
in which the effect of an infinite magnet block is added on any particular point at any cross
section.

The present case may be compared to an electromagnet, in which the transport current
must return on both ends of the magnet, and will create a different structure with respect to
the cross section. In many practical problems, this region is the most difficult to design and
have a negative impact on the guided beam. The lack of any coil heads, and the equivalence
between the 2D and 3D cases is another strong point of the magnets created with pure
permanent magnet blocks.

102



CHAPTER8
Materials used in the PMQ

In this chapter we will study the properties of the materials that are used for the manufac-
turing of the PMQs. The Hallbach design requires just two types of different materials, the
permanent magnet blocks and the holders. Losely stated, the magnetic properties of both
should be as different as possible, with the permanent magnets being a hard magnetic material
and the holders a paramagnetic or diamagnetic material.

The other components of the PMQ are the bolts used to block the magnets and the spacers
used to fine-tune their position. These two components have similar requirements than the
holders.

8.1 Permanent Magnets

8.1.1 Magnetic properties

In general, a permanent magnet is a material which after the appropriate treatment has
magnetization even in the absence of an externally applied magnetic field. Magnetization
remains even in the presence of an external magnetic field of opposite direction.The magnetic
properties of permanent magnets are summarized in the magnetization graphs given in the
second and third quadrants of an H-B plot. In these graphs, it is possible to show in the
y-axis both the magnetic induction and µ0M . An schematic magnetization plot may be seen
in fig. 8.1
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Figure 8.1 – Typical magnetization curves for a hard (left) and a soft magnetic (right) material

Hard permanent magnetic materials are the preferred choice for implementing accelerator
magnets. They offer a roughly constant magnetization until the demagnetizing field reaches
a critical value Hci, which may well extend beyond the demagnetizing field that causes the
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magnetic induction to reverse direction (Hcb).On the other hand, soft permanent magnets
start to irreversibly lose some of the magnetization as soon as a small demagnetizing field is
applied and the actual magnetization of the magnets depend on the history of their manip-
ulation; they may, nevertheless, be useful if they are magnetized in their final configuration
and never see a larger demagnetizing field. In practice, there are two basic families of hard
permanent magnetic materials, the one based on neodymium-iron-boron (NdFeB) alloys and
the one based on samarium-cobalt (SmCo) alloys. Typical values are shown in tab. 8.1

Table 8.1 – Comparative values of several permanent magnet materials

Family Type Br(T) Hcb (kA/m) Hci (kA/m)
E.Prod.
(kJ/m3)

Max. temp.
(oC)

NdFeB
Nd35 1.17-1.21 860 - 899 955 263-279 80
Nd38 1.22-1.26 876-923 955 287-302 80

Nd35UH 1.17-1.21 860-907 1990 263-279 180

SmCo
Sm1Co5 0.85-0.90 653-717 1194 127-143 250
Sm2Co17 1.0-1.1 653-717 1194 183-223 350

NdFeB magnets have a larger remanent field, up to 1.26 T, excellent coercivity and very
low permeability, 1.03. In addition they are mechanically tougher than SmCo magnets, and
less expensive. Nevertheless, the operating temperature may be higher in Sm2Co17 magnets
and the variation of magnetization under irradiation is much smaller; it is mostly because of
radiation resistance that Sm2Co17 magnets were chosen for the present application.

8.1.2 Magnetization loss due to radiation

The radiation resistance of permanent magnets has been extensively studied [52], [13], [19],
[49]. A long term loss of magnetization is observed in all kinds of magnets, but it is more
intense in NdFeB magnets. The main reason for the difference in the behavior of both
material seems to be the much better thermal behavior of Sm2Co17. Radiation seems to
affect the long term magnetization by a mechanism of local heating, where the temperature
increases due to the heat deposited by the impinging particles, briefly exceeding the required
to go beyond Hci. This mechanism would imply as well that magnets operating at higher
demagnetizing fields would be more prone to degrade over time under radiation. The loss
of magnetization due to irradiation is fully reversible, indicating that the degradation of the
crystalline structure or material transmutation are of secondary importance when compared
to the thermal mechanism.

From the point of view of the PMQ designer, the main guidelines for radiation resistance
is the choice of a material with the highest possible Hci at elevated temperatures and trying
to minimize the demagnetizing magnetic field in the less favorable permanent magnet block.
At the present state of technology, this implies to use Sm2Co17 of high temperature for most
accelerator magnets under a significant radiation load.
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8.2 Holder materials

The choice of the holder material depends on requirements related to mechanical properties,
UHV (Ultra High Vacuum) compatibility and magnetic properties. In this section, we will
analyze the requirements and the materials that are valid alternatives for the manufacturing
of the holder.

8.2.1 Magnetic properties

The main requirement from the magnetic point of view is to have a magnetic susceptibility
as low as possible. The magnetic susceptibility ξ is defined as the magnetization created by
a magnetic field on a material,

~M = ξ ~H (8.1)

Because the magnets are designed to create the desired magnetic field by using only the
magnetization of the permanent magnet blocks, any additional magnetization near the region
of interest will create an undesired perturbation of the field. The magnetic susceptibility is
related to the relative permeability as,

~B = µ0

(

~H + ~M
)

= µ0 (1 + ξ) ~H = µ0µr
~H (8.2)

And therefore, the magnetic susceptibility is µr −1. According to the value of the magnetic
susceptibility, the materials may be classified as,

1. Diamagnetic materials have a negative value of the susceptibility. They react to an
external magnetic field by creating a magnetization opposing the imposed field. The
absolute value of the susceptibility is normally very low and independent of temperature

2. Paramagnetic materials have a positive, but normally low value of the susceptibility.
The susceptibility increases when the temperature is lowered according to the Curie-
Weiss law

3. Ferromagnetic materials have a large positive value of the susceptibility. Because of this
they have to be avoided in the holder of the PMQ

Because the requirement of low permeability, only diamagnetic and paramagnetic materials
may be used for the holder. Almost all alloys based on Aluminum and Copper will show such
a behavior. Steels have a particular problematic, at room temperature several phases of steel
are meta-stable and may coexist. Austenite is non magnetic, while ferrite is ferromagnetic.
The exact amount of austenitic and ferritic phase that may be present at a certain material
depends on the chemistry and the treatments applied to the part. A preliminary idea of
the behavior of a certain sample may be obtained from the chemical composition by using
the Schaeffler or De Long diagrams. This diagram is based on obtaining a Nickel equivalent,
which is a weighted average of elements enhancing the austenite production and the Chrome
equivalent, a weighted average of elements promoting the formation of ferritic phase.

The determination of the Ni and Cr equivalents is given by eqs. 8.3 and 8.4 , where fx

represents the weight concentration of element x in the steel [36].
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Nieq = fNi + 0.11fMn − 0.0086f2
Mn + 18.4fN + 24.5fC (8.3)

Creq = fCr + 1.21fMo + 0.48fSi (8.4)

Once the composition of a stainless steel is known, it is possible to introduce the point of
coordinates (Nieq, Creq) in the diagram to check if it is above the line of 0 δ-ferrites. At design
stage the chemical composition of the material is not available and the choice of material must
be made with the information of the composition range provided by the standards defining the
materials. This situation may be seen in fig. 8.2, in which the regions for several austenitic
steels have been indicated. For any batch of material, it should be possible to perform a
chemical analysis that would provide a point on the Schaeffler diagram. This point should be
on the left of the 0% δ-ferrite line for a safe use of the material for the magnet holder.

An important practical aspect is that the AISI standard is more loose than DIN in the
chemical composition of the alloy, causing a larger area in the Schaeffler diagram for any
given material. In any case, the best recommendation is to perform a chemical analysis of
the base material if it is not possible to perform a permeability measurement according to
ASTM A 342.
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Figure 8.2 – Schaeffler diagram

Very often it is necessary to measure directly the magnetic properties of the low permeability
material. In this case, the standard of reference is ASTM A 342, which provides 3 different
ways of measuring the material. In the first method, the sample is introduced in the bore
of a magnet, while a twin magnet is left with its aperture empty; both magnets are then
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powered to a certain level of magnetic field and the flux for both solenoids is compared. The
magnet with the feebly magnetic sample inside will have an additional amount of flux that
will be due to the magnetization created in the sample. The second method is based on
a long sample which enters in the bore of a magnet and whose other extremity is placed
totally outside of the magnet, where the field is very low. When the magnet is energized a
magnetic force appears that, for positive susceptibility, will tend to introduce the sample in
the magnet. The reason to require a long sample is to make the force independent of the
details of the fringe field of the magnet, as the force will only depend on the magnetic field
in the center of the magnet. The force may be measured with a high resolution balance, that
will detect an apparent variation of the weight. The third method is based on comparing the
force exercised by a permanent magnet on the sample and on a reference calibration piece of
known permeability. This method is very useful for determining the permeability of parts of
which it is difficult to extract a sample, as welds.

The relationship between the ferrite content and the material permeability may be clearly
seen in fig. 8.3, where the microstructure of a 316L stainless steel is compared to the magne-
tization of a material as measured in a vibrating sample magnetometer. The material with
ferrite inclusions shows a higher magnetization until the ferrite inclusions saturate and then
the magnetization increases at the same path that a purely austenitic material. In fig. 8.4,
the effect of the paramagnetic magnetization of the austenitic matrix has been eliminated to
show only the effect of the ferrite in the global measurement.
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Figure 8.3 – Left, microphotograpy of 316L stainless steel performed by AIMME laboratory
for ELYTT. Right, measurement of the magnetization of a sample of this steel
compared to a 0% δ-ferrite 316LN material

In [34]it is shown how to calculate the content of ferrite from the magnetization measure-
ment. The ferrite will have a saturation magnetization which is dependent on the composition
of the stainless steel and that may be expressed as,

µ0Ms[T ] = 2.16 − 0.0275(%Cr) − 0.033(%Ni) − 0.028(%Mn)−
0.061(%Si) − 0.026(%Mo) − 0.067(%T i) − 0.063(%Al)

(8.5)

, where the components percentages are given in weight. With this equation, for instance,
it is possible to state that the saturation magnetization, µ0Ms of the 316L ferrite is 1.1 T,

107



J. Lucas 8.2. Holder materials

-8

-6

-4

-2

 0

 2

 4

 6

 8

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

M
ag

ne
tiz

at
io

n 
[k

A
/m

]

Magnetic Field [MA/m]

Figure 8.4 – Magnetization of the ferrite phase

and that the ferrite content is around 0.9%.
The final decision for the material of the linac4 was to used AISI316LN stainless steel.

This material is almost always totally austenitic, due to the addition of Nitrogen. It is as
well tough and the features built on it, like threads, are quite robust. The main problem with
this material, apart from its cost, is that it is quite difficult to procure in small quantities. In
the project, the material was provided by CERN that has a stock of the material as it can
purchase larger amounts of material to be distributed to suppliers that only requires a small
amount of it.

8.2.2 Vacuum properties

Because the linac4 magnets will operate in vacuum is important that the production of gas
from the materials used in them is as low as possible. This emission of gas is called outgassing

and it is related to the nature of the material and the cleanliness of its surface.
As in all sciences, the quantification of vacuum should start with the definition of the

appropriate extensive magnitude. The ideal one for this science should be the number of
moles on a given volume. However, this magnitude cannot be directly measured, and vacuum
scientists use a proxy of it, the product of the pressure by the volume.

Q = PV (8.6)

Of course, both magnitudes are related by the ideal gas law as,

n =
Q

RT
(8.7)

So that in many cases both magnitudes are directly related. We should take into account
that when temperature changes Q may change although the number of particles in the volume
has not varied. This is, for instance, the case in the insulating vacuum of cryostats, in which
Q decreases several orders of magnitude when the temperature of the cold walls is reduced.
The large decrease of the pressure is due partially to the freezing of some particles on the cold
walls (cryosorption) and to the reduction of the temperature of the gas.
Q is normally measured in mbar·l, or in more modern texts in Pa · m3.

108



J. Lucas

The outgassing is defined as the amount of Q released by the material by unit of time. A
proper outgassing requires careful cleaning, and if a very low rate is desired to termically
activate the surfaces under vacuum before operation, the so called bake-out. In such a way,
the interstitial impurities will migrate towards the surface and will be pumped away. Never-
theless, the complete PMQ cannot be baked due to the presence of the magnets which would
demagnetize if the temperature is significantly increased.

The measurement of the outgassing requires to pump the magnet inside a vacuum vessel
to a low enough pressure and, once the pumping stopped and the pump isolated from the
vessel, to measure the increase of pressure over time. Often, it is necessary to correct for the
outgassing of the vessel itself and for any possible leak from the outside of the vessel.

The PMQs must be cleaned in an ultrasonic bath using an appropriate detergent and then
rinsed with de-ionized water and dried in a flow of clean air. To avoid any demagnetization
of the permanent magnet blocks, the temperature of the air flow cannot be too high.

For linac4, the cleaning and vacuum measurement was performed by CERN. The process
was successful, indicating that the choice of material and their handling was adequate.
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CHAPTER9
Design of the linac4 PMQ

The previous chapters are a preparation for the following ones. We have seen how a DTL
accelerating structure works, why it requires a transverse focusing and how this may achieved
with permanent magnet based structures. We have as well learn which materials and which
topologies may be used for generating the required magnetic fields. With this basis, it is now
time to go to the practical problem of designing, building and measuring a set of permanent
quadrupoles that will be used for a real accelerator. In this case, the second and third tanks
of the linac4 DTL at CERN.

In this chapter, we present the specifications as received by CERN and we design a family
of PMQ that in the most economical and simple way satisfies these requirements. As we will
see, this is obtained by using the most simple possible structure, an 8 block Hallbach array
with square permanent magnet blocks.

9.1 Specification of the linac4 DTL PMQ

Table 9.1 shows the specifications given by CERN for the requirements of linac4 PMQ. These
PMQs correspond to the later tanks of LINAC4, while the first tank was equipped with PMQs
supplied by ASTER, a characterization of these magnets may be seen in [17]. The description
of the DTL where the PMQ is to be integrated may be seen in [44] and [45].

Table 9.1 – Specifications of the linac4 PMQ
Number of pieces 70
Integrated gradient (Max) 2.0 Tesla
Integrated gradient (min) 1.2 Tesla
Mechanical Length 80 mm
Inner diameter 22 mm
Outer diameter 60 mm
Gradient integral error (rms) ± 0.5 %
Magnetic versus geometric axis less than 0.1 mm
Maximum Harmonic content at 7.5 mm radius Bn/B2 for n=3,4,...10 0.01
Maximum Yaw/pitch 2 mrad
Maximum Roll 1 mrad

Machining tolerances ISO 2768-mK unless indicated in SPLACDTD00009
Outgassing rate per magnet below 4.10−6 mbar l/ s−1

The roll specification refers to a rotation of an ideal quadrupole with respect to the beam
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axis, the yaw is the rotation with respect to an horizontal axis perpendicular to the beam
axis, and the pitch is the rotation with respect to a vertical axis.

Tab. 9.2 shows the specified strengths of the 70 PMQs that will be used for the tanks 2
and 3 of linac4. All the magnets have a length of 80 mm and an aperture of 22 mm. The
minimum integrated gradient is 1.197 T and the maximum 2.031 T.

Table 9.2 – Specifications of the PMQs of the tanks 2 and 3 of linac4

Quad Name Length (m) Grad (T/m)

Aperture

radius

(mm)

Abs Integrated

Gradient (T)

objective
L4D.MQDP.0231 0.08 30.5367 11 2.031136
L4D.MQFP.0232 0.08 -23.3395 11 1.762152
L4D.MQFP.0233 0.08 -23.3395 11 1.762152
L4D.MQDP.0234 0.08 22.8865 11 1.74418
L4D.MQDP.0235 0.08 22.8865 11 1.74418
L4D.MQFP.0236 0.08 -21.4261 11 1.702012
L4D.MQFP.0237 0.08 -21.4261 11 1.702012
L4D.MQDP.0238 0.08 21.2464 11 1.690856
L4D.MQDP.0239 0.08 21.2464 11 1.690856
L4D.MQFP.0240 0.08 -20.6972 11 1.656788
L4D.MQFP.0241 0.08 -20.6972 11 1.656788
L4D.MQDP.0242 0.08 20.562 11 1.646004
L4D.MQDP.0243 0.08 20.562 11 1.646004
L4D.MQFP.0244 0.08 -20.1512 11 1.613084
L4D.MQFP.0245 0.08 -20.1512 11 1.613084
L4D.MQDP.0246 0.08 20.0204 11 1.602596
L4D.MQDP.0247 0.08 20.0204 11 1.602596
L4D.MQFP.0248 0.08 -19.6233 11 1.570652
L4D.MQFP.0249 0.08 -19.6233 11 1.570652
L4D.MQDP.0250 0.08 19.4965 11 1.560476
L4D.MQDP.0251 0.08 19.4965 11 1.560476
L4D.MQFP.0252 0.08 -19.1115 11 1.52948
L4D.MQDP.0253 0.08 -19.1115 11 1.52948
L4D.MQDP.0254 0.08 18.9879 11 1.519548
L4D.MQDP.0255 0.08 18.9879 11 1.519548
L4D.MQFP.0256 0.08 -18.6122 11 1.489324
L4D.MQFP.0257 0.08 -18.6122 11 1.489324
L4D.MQDP.0258 0.08 18.4915 11 1.479608
L4D.MQDP.0259 0.08 18.4915 11 1.479608
L4D.MQFP.0260 0.08 -18.1242 11 1.450012
L4D.MQFP.0261 0.08 -18.1242 11 1.450012
L4D.MQDP.0262 0.08 18.0378 11 1.440476
L4D.MQDP.0263 0.08 18.0057 11 1.440476
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Quad Name Length (m) Grad (T/m)

Aperture

radius

(mm)

Abs Integrated

Gradient (T)

objective
L4D.MQFP.0264 0.08 18.0057 11 1.411444
L4D.MQFP.0265 0.08 -17.9209 11 1.411444
L4D.MQDP.0266 0.08 -17.9209 11 1.405008
L4D.MQDP.0267 0.08 17.7212 11 1.405008
L4D.MQFP.0268 0.08 17.7212 11 1.38432
L4D.MQFP.0269 0.08 -17.6454 11 1.38432
L4D.MQDP.0270 0.08 -17.6454 11 1.3798
L4D.MQDP.0271 0.08 17.1262 11 1.3798
L4D.MQDP.0331 0.08 17.1262 11 1.346284
L4D.MQDP.0332 0.08 -16.6297 11 1.346284
L4D.MQFP.0333 0.08 -16.6297 11 1.340516
L4D.MQFP.0334 0.08 16.5425 11 1.340516
L4D.MQDP.0335 0.08 16.5425 11 1.334468
L4D.MQDP.0336 0.08 -16.278 11 1.334468
L4D.MQFP.0337 0.08 -16.278 11 1.316076
L4D.MQFP.0338 0.08 16.1952 11 1.316076
L4D.MQDP.0339 0.08 16.1952 11 1.309348
L4D.MQDP.0340 0.08 15.9611 11 1.309348
L4D.MQFP.0341 0.08 -15.9443 11 1.288936
L4D.MQFP.0342 0.08 -15.9443 11 1.288936
L4D.MQDP.0343 0.08 15.8627 11 1.282296
L4D.MQDP.0344 0.08 15.8627 11 1.282296
L4D.MQFP.0345 0.08 15.8586 11 1.262176
L4D.MQFP.0346 0.08 -15.6152 11 1.262176
L4D.MQDP.0347 0.08 -15.6152 11 1.255604
L4D.MQDP.0348 0.08 15.5387 11 1.255604
L4D.MQFP.0349 0.08 15.5387 11 1.235708
L4D.MQFP.0350 0.08 -15.3066 11 1.235708
L4D.MQDP.0351 0.08 -15.3066 11 1.22918
L4D.MQDP.0352 0.08 15.2298 11 1.22918
L4D.MQFP.0353 0.08 15.2298 11 1.20936
L4D.MQFP.0354 0.08 -14.9971 11 1.20936
L4D.MQDP.0355 0.08 -14.9971 11 1.218028
L4D.MQDP.0356 0.08 14.9301 11 1.218028
L4D.MQFP.0357 0.08 14.9301 11 1.197136
L4D.MQFP.0358 0.08 14.7753 11 1.197136
L4D.MQDP.0359 0.08 -14.7273 11 1.460736

The sign of the gradient indicates whether the magnet will be used in focusing or defocusing
configuration. CERN planned to have all the magnets built with the same configuration and
then to use them in one or the other configuration by the choice of the locating pin on the
outer radius of the holder. Due to a wrong interpretation of the drawings, we built the
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quadrupoles with the polarity already implemented in them, so that all magnets have to be
installed in the drift tubes in the same angular position. This error was more an additional
difficulty in the construction of the quadrupoles than a problem for the user, as each magnet
was already labelled for their final position.

9.2 Choice of the magnet structure

The main objective of the design is providing the most cost effective solution to the PMQ
satisfying all the requirements with a large confidence.

In general, the 16 block structure is preferred over the 8 block structure because it can
provide a higher magnetic field, lower harmonics and lower stray field outside of the magnet.
Nevertheless, it is more complex because it requires magnets polarized along the diagonal,
which reduces the possibilities of sorting and complicates the manufacturing. In addition,
magnetizing along the diagonal is slightly more complicated that along the sides of a rectangle.

As for the shape of the magnets, sector magnets are optimal for providing a high gradient
as they may fill most of the space with permanent magnet material. They are nevertheless,
more difficult to manufacture and magnetize. They are, as well, more difficult to shim than
square or rectangular magnets, as they have to be displaced radially by putting to equal shims
on the tapered sides of the permanent magnet blocks. In addition, the material on the wide
side of the wedge is less efficient in generating magnetic field due to the large dependence on
the radius of the field created by a magnetic moment. Therefore, sector magnets should be
used when the main requirement is higher gradient.

Rectangular magnets are at an intermediate position with respect to sector and square mag-
nets. They are easier to build, magnetize and shim than square magnets, but nevertheless, at
least two different types of magnetizations are required. In addition, for the magnets magne-
tized along the short side of the square, the coercitive field is higher than for square blocks.
Numerical simulations as shown in [24] show that rectangular magnets are less sensitive than
sector magnets to the angular error of the magnetization.

Square magnets are the simplest possible building elements. Only one type of magnetization
is required and they can be easily and accurately shimmed on one flat surface. It has the
highest possibility of sorting blocks and the coercitive field is low.

Therefore, the 8 square block PMQ is the solution that must be chosen if it satisfies in the
available volume, the requirements of gradient, field quality and stray field. In the following
section, we will prove that it is possible to find a solution of this type that fulfills all the
requirements.

The main drawback of the 8-block solution is the presence of a nominal b10, which does
not exist in the 16-block one. Nevertheless, this is a minor problem, as the value of b10 is
well bellow the acceptable one, and being a high order harmonic is more related to the design
itself than to the manufacturing errors.

9.3 Choice of the permanent magnet block size

From the point of view of manufacturing, the simplest design uses only 8 blocks of square
magnets, magnetized along the side. In addition, we are interested, if possible, in having only
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one type of permanent magnet block for the whole range of series. In the present section, we
will prove that such a choice of permanent magnet size exists for the list of gradients of linac4
tanks 3 and 4.

The first constraint is the aperture of the PMQ, that we know is 11 mm. Because the sim-
plest design uses a radially inner wall of the holder to position the magnet, we are constraint
by the minimum radial position of the magnet. In order to have a rigid enough wall and to
minimize the risks of manufacturing the holder, we have fixed a minimum wall thickness of
2 mm; defining a minimum radial position of the permanent magnet block of 14 mm.

In addition, we require that the radially outermost position of the magnet is limited by
the need to have the pushing grub bolts large enough. The minimum possible length of the
grub bolts is 4 mm, and therefore the magnet cannot extend radially beyond 26 mm. The
outermost radial position of the magnets will be then 26 mm minus the height of the magnet,
with this constraints and eq. 7.77, we can draw fig. 9.1.
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Figure 9.1 – Integrated gradient for several block sizes and radial positions of the blocks

In fig. 9.1 it may be seen that blocks smaller that 6.5 mm cannot reach the maximum
gradient because they should be placed in a radial position incompatible with the minimum
wall thickness in the innermost radius. In addition, magnets larger than 7.5 mm should be
incompatible with the minimum length of the grub bolt while trying to obtain the smallest
integrated gradient. Therefore, the range of square magnet blocks is limited in size to the
range 6.5 mm to 7.5 mm.

The reason why 7.5 mm has been finally chosen may be seen in fig. 9.2.The magnets blocks
in the lower range of the dimension have a nominal value of b10, the first allowed harmonic for
ideal magnets, which is significantly larger than the larger ones. This is due to the fact that
the smaller magnets leave a large angular dimension of the aperture uncovered, and therefore
cause a local field reduction in this area. This is the cause of the appearance of a higher value
of b10. With the chosen design, the maximum built-in value of b10 is 25 units approximately,
which satisfies the specified field quality.
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9.4 Analysis with a finite element program

The analytical analysis described in the previous section was extremely useful in the initial
stages of the design to perform the general dimensioning of the PMQ.It is very practical
for choosing between 8 and 16 blocks designs and to sweep a family of designs with slightly
different geometries. Nevertheless, it has some limitations, the most important one being
the assumption of the relative permeability being one. As the magnets will work under
their own demagnetizing field, the actual magnetization will not be exactly Br/µ0 . Even
more important, the magnetic field varies from magnet to magnet and inside each magnet,
creating a non-homogeneous magnetization that translates into some harmonics appearing,
the most important b6. In addition, the permanent magnets are not exactly rectangles, but
their geometry may include other features such as fillets or a certain taper. Taking these
effects into account, several finite element method (FEM) models were developed, both in 2D
and 3D, which were used to confirm the analytical results and to model the additional effects
mentioned above. 3D models were created to include end-effects that may affect performance.
Fig. 9.3 shows the harmonics calculated with the FEM model.

The results of the higher order harmonics seem to be affected by numerical noise, but a
trend may be observed with a value of b6 going from 4 units at the higher gradients to 2 units
at the lower integrated gradients; b10 has a more or less constant value of -1 unit.

Another very important piece of information obtained from the FEM analysis is the demag-
netizing force applied to the material. For all the designs, the magnetic field was plotted in
the direction of the magnetization, and then it was checked that the maximum allowed value
was not exceeded at any point of the structure. We can see in fig. 9.4 a plot of the chose
design in the less favorable position, i.e. with the PMQ with the highest integrated gradient.
The peak value of H is 574 kA/m, well below the value of Hci. An average value of H in the
blocks is -370 kA/m.

It is interesting to note that to reproduce in the analytical calculations the values given by
the finite element calculations, the apparent residual field Br should be reduced according to
the finite susceptibility of the material,
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Figure 9.3 – Harmonics for the nominal design according to the FEM calculation

B′
r = Br + ψH = Br + µ0 (µr − 1)H (9.1)

Using this equation and the values of the Sm2Co17, we obtain that we must use a value
of 1.03 T for Br in the analytical calculations instead of 1.06 T. This is the value used
for instance in fig. 9.1 to obtain the integrated gradient for several block sizes and radial
positions. On the other hand, we can observe in fig. 9.4 that the tangential block operates
under a higher H that the radial block. The combination of this difference of magnetic field
plus the finite susceptibility of the material creates the b6, that is not existent in a PMQ of
8 blocks operating with blocks of uniform magnetization, see eq. 7.82.

9.5 Sensitivity of the magnetic field to the holder material

As it was mentioned previously, the holder and shim material should have a susceptibility
as low as possible in order not to influence the magnetic field created by the permanent
magnet blocks. Paramagnetic or diamagnetic metals would be an ideal choice, but previous
experience had shown vacuum problems in the case of Aluminum, and Copper alloys were
not considered.

To check for the effect of a slightly magnetic holder material, a FEM model that included
the holder was created and the relative permeability of the material was varied from 1 to 2
and the integrated gradient and harmonic content was calculated, fig. 9.5. It is interesting
to note that the effect of the relative permeability of the holder on the integrated gradient is
very non-linear, with a small effect of values of relative permeability below 1.1. On the other
hand, the effect on b6 may be noticed even at low values of relative permeability. This results
indicate that permeabilities around 1.05 or below are fully acceptable for the present design.
This value can be easily obtained with a highly austenitic alloy as AISI 316LN, but it may
be not achieved in lower grade steels.
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Figure 9.4 – Coercitive field H in the permanent magnet blocks assembled in the PMQ

9.6 Magnet engineering

The general design of the magnet may be seen in 9.6. It is based on a cylindrical AISI316LN
holder which has been machined by wire erosion in order to have 8 slots for the insertion of
the 8 permanent block prisms. Below the permanent magnet blocks, non magnetic stainless
steel shims are placed in order to adjust the integrated gradient. The size of the slots have
been designed to cover the whole range of the desired integrated gradient with just one holder
design. Each magnet is blocked in position by two grub bolts distributed along the magnet
length.

The magnet is centered in the drift tube by the external cylindrical shape and the angle
defined by two small locating pins located at 90o. The two pin holes allow for installing the
magnet as a QF or a QD depending on the relative angular position of the magnet with
respect to the drift tube.

The pin holes must go through the thickness of the wall in order to avoid trapping a volume
of gas at the bottom of the hole. The hole is made in two steps, with a reduction of diameter
in order to support the pin in position. This design of the pin hole allows to pump the volume
below the pin through the magnet slot.
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CHAPTER10
Measurement of the permanent magnet

blocks

A normal permanent magnet supplier, whose business is normally centered in permanent
magnets for motors, actuators and other applications which do not require a highly accurate
magnetic field, will provide a batch of magnets with a certain amount of imperfections that
make them not directly useful in the permanent magnet assemblies of accelerator quality.
These imperfections may be of several types:

1. Geometrical imperfections. In this case, the size or shape of the permanent magnet
blocks are not accurate enough for the application. Usually, this problem is easily
detected, at least for prismatic blocks, and the magnets are rejected at the factory

2. Magnetization value error. The level of the magnetization may vary between the differ-
ent blocks of the batch. In general, the same PMQ must be assembled with blocks of the
same magnetization in order to avoid magnetic field errors in the assembly. In order to
use the low quality blocks in the high quality assemblies, it is necessary to measure the
whole batch of blocks and carefully choose the appropriate blocks that may be combined
together

3. Magnetization angle error. The permanent magnet suppliers cannot provide in general a
magnetization angle accuracy better than 1°. This creates a problem because this error
translates directly into a roll of the integrated magnetic field. As the typical tolerance
of the roll of a PMQ is 1 mrad, it is necessary to compensate this error in the final
assembly. This problem requires as well a careful measurement of the blocks to guide
in the cancellation process

10.1 Measurement method of the permanent magnet blocks using

a Hall probe scan

Because the most tight requirements involve the lower order harmonics of the integrated
field, magnetic center given by the first harmonics, integrated gradient given by the normal
second harmonic and roll given by the skew second harmonic; we are mostly interested on
the average magnetization of the magnet and not in the details of the spatial distribution of
any magnetization inhomogeinity. Such a magnetization gradient will be mostly expressed
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in a higher order harmonic. Therefore, we have adopted a model of the permanent block as
homogeneously magnetized but including a roll angle in the direction of the magnetization.

The estimation of the magnet magnetization is made in several steps:

1. First a finite element model of the magnet is made. This model is run twice, in the
first run a unitary magnetization in the nominal direction is imposed in the permanent
magnet block model and the magnetic field is calculated in the air regions around the
block. In the second run, the magnetization is imposed in the direction perpendicular
to the nominal and the problem is solved again.

2. The magnetic field around the magnet is measured by a Hall probe in a certain cloud
of points including all three components of the magnetic field.

3. A minimum square optimization procedure is used to obtain the optimal nominal and
skew magnetization that better match the measured values of the magnetic field with
the values obtained in the finite element simulation.

10.1.1 The finite element model of the permanent magnet block

ANSYSTM was used for modeling the permanent magnet blocks using finite elements. A
3D FEM model of the block was created and a Br of 1 T was imposed to the material of
the magnet. The problem was run twice, the first time with the magnetization in vertical
direction (as it was going to be measured in the second phase) and the second time with
the magnetization in the horizontal direction. For each of the runs, the vector value of the
magnetic field was calculated on a cloud of 66 points on which the actual magnets were to
be measured afterwards. The solutions of the field at these locations, provide the coefficients
kij to be used in §10.1.3. Each of the coefficients represent the capability of a uniform
magnetization on the block to create magnetic field at a certain point and direction.

10.1.2 Magnetic measurement of the permanent magnet blocks

Each block was measured twice, the first time with the north pole upwards and the second
point with the south pole upwards. For every measurement, the field is obtained at 66 points,
on a cloud of 11x3x2 with respect to the block length, width and height respectively. Because
the used Hall probe is vector, in total 66x2x3 = 396 individual numbers are obtained to fit
the only 2 parameters modeling the magnet block. The measurements along the length of the
magnets extend 10 mm on each side to capture any effect of the stray field.

Fig. 10.1 shows the experimental set up used for the magnetic measurements of the blocks.

The measurement has been performed by using a vector Hall probe, Metrolab THM-1176.
This Hall probe can measure the three components of the magnetic field at a given point. The
Hall probe is attached to the arm of an aluminum body CNC machine. In order to accurately
position the center of the Hall probe with respect to the permanent magnet block, a reference
plate has been built on which the permanent magnet block is position and three reference pin
holes are accurately referenced to the block slot. In each of these pin holes a reference magnet
is located. The reference magnet, fig. 10.2 is built so as to have a very well defined point of
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Figure 10.1 – Measurement of an individual permanent magnet block

zero magnetic field. This is obtained by powering the two coils of the reference magnet by
current of opposite polarity obtaining by symmetry a point of zero field.

The reference magnet is located alternatively on the three pinholes. The first pinhole defines
the origin of the reference systems, the line linking the first and second points defines the
x-axis and the three points define the x-y plane. The z-axis is defined to be perpendicular
to the x-y plane and form a destrogirus coordinate system. After locating the three points
of zero field in space, the program controlling the CNC calculates a matrix transformation
to convert the coordinates from the newly defined system, the bench system, to the CNC
system. Because the pin holes have very accurate positions with respect to the magnet, it is
possible now to measure the field on a given point with respect to the magnet block.

In addition, it is possible using the reference magnet to correct the rotation of the Hall
probe with respect to the bench system. This is made taking advantage of the fact that
the reference magnet is axisymmetric with respect to the bench z-axis. For an axisymmetric
magnetic field, the field is purely radial in the central plane (the plane with 0 field component
in the z-axis), in this case any movement of the Hall probe in the radial plane from the zero
field point to a new point n the plane should only create a field component in the direction
of the movement. In the same way, a movement in the direction of the z-axis, should only
create a component of the B field in the z axis. If we perform three movements from the
zero point field in the direction of the three coordinate axes in the bench system, we would
measure three B fields which in the Hall probe reference system have all the components
different from zero. As we know that each of the readings should only provide a non zero
measurement in the direction of the displacement, we may calculate a rotation matrix that
transforms the Hall probe system to the bench system.

In a more quantitative way, the 9 scalar readings may be summarized in a matrix of type,

M =







Bxx Bxy Bxz

Byx Byy Byz

Bzx Bzy Bzz






(10.1)

, where Bxy means the reading on the x-axis of the Hall probe when it is displaced in the
y-axis. The transformation matrix must them be capable of converting the matrix of read
outs M to a diagonal matrix.

123



J. Lucas10.1. Measurement method of the permanent magnet blocks using a Hall probe scan

ANSYS 14.0    
OCT 20 2012
01:00:02   
PLOT NO.   1
NODAL SOLUTION
STEP=2           
SUB =1           
TIME=2           
/EXPANDED 
AZ              
RSYS=0
SMN =-.305E-08   
SMX =.116E-04    

1

 R1 = 7.5mm                                                                     
 R2 = 26.6659mm                                                                 
 R3 = 31.6659mm                                                                 
 h0 = 8mm                                                                       
 h1 = 12.9904mm                                                                 
 h2 = 14.1106mm                                                                 
 Grosor Tapa = 5mm                                                              
 Grosor Cilindro = 8mm                                                          
 Radio Punta = 0.2mm                                                            
 Densidad = .300E+07A/m2                                                        
 Potencia = 3.50716W                                                            

.211E-06    

.640E-06    

.107E-05    

.150E-05    

.193E-05    

.235E-05    

.278E-05    

.321E-05    

.364E-05    

.407E-05    

.450E-05    

.493E-05    

.535E-05    

.578E-05    

.621E-05    

.664E-05    

.707E-05    

.750E-05    

.792E-05    

.835E-05    

.878E-05    

.921E-05    

.964E-05    

.101E-04    

.105E-04    

.109E-04    

.114E-04    

                                                                                

1

 R1 = 7.5mm                                                                     
 R2 = 26.6659mm                                                                 
 R3 = 31.6659mm                                                                 
 h0 = 8mm                                                                       
 h1 = 12.9904mm                                                                 
 h2 = 14.1106mm                                                                 
 Grosor Tapa = 5mm                                                              
 Grosor Cilindro = 8mm                                                          
 Radio Punta = 0.2mm                                                            
 Densidad = .300E+07A/m2                                                        
 Potencia = 3.50716W                                                            

                                                                                

1

 R1 = 7.5mm                                                                     
 R2 = 26.6659mm                                                                 
 R3 = 31.6659mm                                                                 
 h0 = 8mm                                                                       
 h1 = 12.9904mm                                                                 
 h2 = 14.1106mm                                                                 
 Grosor Tapa = 5mm                                                              
 Grosor Cilindro = 8mm                                                          
 Radio Punta = 0.2mm                                                            
 Densidad = .300E+07A/m2                                                        
 Potencia = 3.50716W                                                            

                                                                                

1

 R1 = 7.5mm                                                                     
 R2 = 26.6659mm                                                                 
 R3 = 31.6659mm                                                                 
 h0 = 8mm                                                                       
 h1 = 12.9904mm                                                                 
 h2 = 14.1106mm                                                                 
 Grosor Tapa = 5mm                                                              
 Grosor Cilindro = 8mm                                                          
 Radio Punta = 0.2mm                                                            
 Densidad = .300E+07A/m2                                                        
 Potencia = 3.50716W                                                            

                                                                                

1

 R1 = 7.5mm                                                                     
 R2 = 26.6659mm                                                                 
 R3 = 31.6659mm                                                                 
 h0 = 8mm                                                                       
 h1 = 12.9904mm                                                                 
 h2 = 14.1106mm                                                                 
 Grosor Tapa = 5mm                                                              
 Grosor Cilindro = 8mm                                                          
 Radio Punta = 0.2mm                                                            
 Densidad = .300E+07A/m2                                                        
 Potencia = 3.50716W                                                            

                                                                                

1

 R1 = 7.5mm                                                                     
 R2 = 26.6659mm                                                                 
 R3 = 31.6659mm                                                                 
 h0 = 8mm                                                                       
 h1 = 12.9904mm                                                                 
 h2 = 14.1106mm                                                                 
 Grosor Tapa = 5mm                                                              
 Grosor Cilindro = 8mm                                                          
 Radio Punta = 0.2mm                                                            
 Densidad = .300E+07A/m2                                                        
 Potencia = 3.50716W                                                            

                                                                                

1

 R1 = 7.5mm                                                                     
 R2 = 26.6659mm                                                                 
 R3 = 31.6659mm                                                                 
 h0 = 8mm                                                                       
 h1 = 12.9904mm                                                                 
 h2 = 14.1106mm                                                                 
 Grosor Tapa = 5mm                                                              
 Grosor Cilindro = 8mm                                                          
 Radio Punta = 0.2mm                                                            
 Densidad = .300E+07A/m2                                                        
 Potencia = 3.50716W                                                            

                                                                                

1

 R1 = 7.5mm                                                                     
 R2 = 26.6659mm                                                                 
 R3 = 31.6659mm                                                                 
 h0 = 8mm                                                                       
 h1 = 12.9904mm                                                                 
 h2 = 14.1106mm                                                                 
 Grosor Tapa = 5mm                                                              
 Grosor Cilindro = 8mm                                                          
 Radio Punta = 0.2mm                                                            
 Densidad = .300E+07A/m2                                                        
 Potencia = 3.50716W                                                            

                                                                                

1

 R1 = 7.5mm                                                                     
 R2 = 26.6659mm                                                                 
 R3 = 31.6659mm                                                                 
 h0 = 8mm                                                                       
 h1 = 12.9904mm                                                                 
 h2 = 14.1106mm                                                                 
 Grosor Tapa = 5mm                                                              
 Grosor Cilindro = 8mm                                                          
 Radio Punta = 0.2mm                                                            
 Densidad = .300E+07A/m2                                                        
 Potencia = 3.50716W                                                            

                                                                                

1

 R1 = 7.5mm                                                                     
 R2 = 26.6659mm                                                                 
 R3 = 31.6659mm                                                                 
 h0 = 8mm                                                                       
 h1 = 12.9904mm                                                                 
 h2 = 14.1106mm                                                                 
 Grosor Tapa = 5mm                                                              
 Grosor Cilindro = 8mm                                                          
 Radio Punta = 0.2mm                                                            
 Densidad = .300E+07A/m2                                                        
 Potencia = 3.50716W                                                            

                                                                                

1

 R1 = 7.5mm                                                                     
 R2 = 26.6659mm                                                                 
 R3 = 31.6659mm                                                                 
 h0 = 8mm                                                                       
 h1 = 12.9904mm                                                                 
 h2 = 14.1106mm                                                                 
 Grosor Tapa = 5mm                                                              
 Grosor Cilindro = 8mm                                                          
 Radio Punta = 0.2mm                                                            
 Densidad = .300E+07A/m2                                                        
 Potencia = 3.50716W                                                            

                                                                                

Figure 10.2 – Finite element model of the conical magnet. It is an axisymmetric model.

SM = D (10.2)

The conversion matrix S must have the shape,

S =







cosα1 sinα2 sin β2 sinα3 cos β3

sinα1 cos β1 cosα2 sinα3 sin β3

sinα1 sin β1 sinα2 cos β2 cosα3






(10.3)

, in which each column is a vector in the bench system pointing in the direction of one of
the Hall probe sensors. The problem has 6 degrees of freedom, two per each Hall probe sensor
corresponding to its direction in the bench system.

10.1.3 Fitting of the measurements to the model

In this section it is explained how the measurements are fitted to the permanent magnet
block model, that as mentioned earlier, corresponds to an homogeneous magnetization with
a normal component Mz and a skew component Mx, transverse to the permanent magnet
block.

The finite element model has provided a series of coefficients kzxi
and kzzi

which provide
the z component of the field at the point i when multiplied by the normal magnetization Mz

and the skew one Mx, respectively.
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Bzi
= kzxi

Mx + kzzi
Mz (10.4)

Because the magnet is not ideal, we will use a minimum square fitting of the measurements
of the magnetic field with the homogeneous magnetization values, i.e. we must find the
minimum of the function,

f (Mx,Mz) =
∑

i

(Bzi
− kzxi

Mx − kzzi
Mz)2 (10.5)

This function may be minimized by the standard method of taking the partial derivatives
with respect to Mx and Mz and equating them to zero. The following system of two equations
with two unknowns is obtained,

∑

i

k2
zxi
Mx +

∑

i

kzzi
kzxi

Mz =
∑

Bzi
kzxi

(10.6)

∑

i

kzzi
kzxi

Mx +
∑

i

k2
zzi
Mz =

∑

Bzi
kzzi

(10.7)

This pair of equations, provides us with the best fitting of the normal and the skew magne-
tization of the permanent magnet blocks, which are the main parameters used in the sorting
to assign a certain set of blocks to a given PMQ.

The minimum square fitting is made independently on the north and south pole of each
block and then the results are averaged.

10.2 Measurement of the permanent magnet blocks by use of an

external coil

A different method of determining the total magnetization of a permanent magnet block is
to introduce the block inside a coil and measure the flux variation created by the insertion
of the magnet. To study how the method works, let us see the effect of a magnetic dipole ~m
located at point ~r′ on a coil located at ~r(s), where s is the length along the coil. The flux
created by the magnetic dipole on the coil is just the integral of the vector potential along
the coil,

λ =
∮

~A · d~r(s) =
∮

µ0

4π

~m×
(

~r(s) − ~r′
)

| ~r(s) − ~r′|2
· d~r(s) = −µ0

4π
~m ·

∮ d~r(s) ×
(

~r(s) − ~r′
)

| ~r(s) − ~r′|2
(10.8)

Where we have made a cyclic permutation of the triple vector product. Obviously, the
flux will be measured by attaching a voltmeter to the terminals of the coil and integrating
over time the voltage while the permanent magnet block moves from a position with zero flux
linkage to the final position.

λ = −
∫

v(t) dt (10.9)
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We can compare eq. 10.8 with the one giving the magnetic induction caused by a current
I circulating through the coil at ~r′, using the Biot-Savart law,

~B =
µ0

4π

∮ Id~r(s) ×
(

~r(s) − ~r′
)

| ~r(s) − ~r′|2
(10.10)

We see that the part in the integral is the same, and that we may write the flux created by
the magnetization in the coils as,

λ = −
(

~B

I

)

· ~m (10.11)

We must consider that in eq. 10.11, neither ~B nor I do actually exist, but the whole
parenthesis just represent the magnetic induction that would be created at the point of the
magnetic moment by a unitary current traversing the coil.

Because of the superposition principle, the effect of the complete permanent magnet block
in the coil may be obtained by volume integration of the effect of the individual magnetization
d~m = ~MdV ′.

λ = −
∫∫∫

(

~B

I

)

· ~M dV (10.12)

In order to obtain the total magnetization of the block we must use a coil that would create
an homogeneous magnetic field in the region where the block will finish its flux creating path.
This can be clearly seen by getting the magnetic field out of the integral of eq. 10.12. If on
the other hand we would like to measure the north-south difference of a magnet we should
place the magnet in a coil that would create a gradient field with the plane of zero field at
the center of the permanent magnet block. One extreme application would be to introduce
the magnet in a structure capable of generating an arbitrary field profile, like a set of nested
multipolar coils each of them equipped with an independent voltage integrator, in this case,
it would be possible to make a tomography of the magnet magnetization.

An interesting special case, is when a Helmholtz coil is used to measure the magnetization
of the magnet. In this case, a pair of two small cross section coils, whose radius is equal to
their separation is used either to create a nearly uniform field in a small region of space or
to measure the total magnetization of the magnet. The field created near the origin by a
Helmholtz coil is,

B =
(

4
5

)3/2 µ0nI

R
(10.13)

, where n is the number of turns on each coil.
In this case, the flux in the Helmholtz coil created by a magnetic dipole ~m aligned along

the magnetic field of the Helmholtz coil will be,

λ =
(

4
5

)3/2 µ0nm

R
≈
(

4
5

)3/2 µ0nMV

R
(10.14)

One important point to compare the results of the measurements using both methods is
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that the magnetic flux method gives the actual magnetization of the block, including the
loss of magnetization due to the susceptibility of the permanent magnet material. On the
other hand, the method using the Hall probe and the minimum square fitting to the finite
element model will provide Br, the remanence.Only in materials with a relative permeability
of near 1, or when the geometry of the magnet makes it operate at very low demagnetizing
field, will both methods give the same value. From the sorting point of view, this difference is
unimportant, because we are comparing blocks of the same material and geometry; but when
using the obtained values of magnetization to define the shimming of the PMQ it must be
taken into account, because the result of the flux coil will apparently give a lower value of Br.

The effect of the non-zero magnetic susceptibility is very clear in magnets whose imposed
magnetization is not aligned with a symmetry axis of the magnet. In this case, the reversible
magnetization will not be aligned with the imposed one, and the total magnetization will
be rotated with respect to the desired one. A pair of orthogonal Helmholtz coils, will then
measure a magnetization rotated with respect to the desired angle. This is typical of the per-
manent magnet quadrupoles using 16 blocks, of which some of them are at 45°with respect
to the symmetry angle of the blocks. This effect is clearly shown in fig 10.3. The imposed
magnetization is decomposed on to orthogonal axes parallel to the magnet faces. The demag-
netizing field along the short side of the magnet is larger than along the long side, this causes
that the total demagnetization has a larger component along the short side and the total mag-
netization is rotated towards the long axis of the magnet. This effect is measured by the two
pairs of orthogonal Helmholtz coils and may be considered as an error of the magnetization,
but it is just a consequence of the non-zero magnetic susceptibility of the magnet.

= +
Figure 10.3 – Effect of the imposed magnetization not being aligned to a symmetry axis of the

permanent magnet block. The imposed magnetization is drawn on black, the
reversible demagnetization is drawn on red and the total one on blue.

.

10.3 Statistical analysis of the magnet blocks

The magnets for linac4 were produced, including magnetization, by the Spanish company
IMA (http://www.ima.es). As it will be shown afterwards, the quality of the magnets was
good, in spite of the normal application of its permanent magnets being industrial instead of
scientific.

All the magnets were measured using the method of the Hall probe. The statistical distri-
bution of the magnets is of the utmost importance, as the difficulty on sorting the permanent
magnet blocks will depend on how disperse its distribution is. Fig. 10.4 shows the histogram
of the residual magnetization, as measured and adjusted according to the method of the pre-
vious section. The distribution of magnetization follows well a normal distribution of average
1.071 T and standard deviation 0.0075.

Fig. 10.5 shows the distribution of the angular error. The general distribution and a more
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detailed histogram around the region of small angular errors, the only one interesting for
building the PMQs. The average angular error of the whole population is 1.32o, but if only
the 560 permanent magnet blocks used for building the required magnets are considered, the
average error is 0.764o. In this region, the distribution is approximately uniform.
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Figure 10.5 – Histogram of the angular error

It is interesting to note that there exists a significant correlation between magnet strength
and angular error, fig. 10.6 shows a plot of the residual magnetization vs. the angular error. It
can be easily observed that the blocks with the higher error tend to be weaker as well. These
magnets are probably magnetized in a region of the magnetizing coil far from the center and
present, therefore, both a strength and angle problem.

As each block is measured once with the north pole upwards and another time with the
north pole downwards, we can compare the difference between both measurements. The
histogram of frequencies of the north-south effect may be seen in fig. 10.7. Most of the
population is below 0.5% and the effect seems not to be very worrying. Actually, the effect
was not taken into account for the sorting, and the value that was used for this purpose is
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Figure 10.6 – Correlation between residual magnetization and angular error

the average between the north and south measurements.
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Figure 10.7 – North-South difference histogram

It is interesting to state that although the process of measuring all the magnet blocks in-
house was very satisfactory from the technical point of view, it was rather time consuming
and that for later projects of PMQs, we have preferred to have the magnets supplied with
an individual manufacturer measurement. This was related not to a technical problem of the
Hall probe measurement, but to the need to shorten the manufacturing cycle of the PMQs. A
random measurement of a few magnets using both methods allows to perform a cross-check
and to correlate the measurements taking into account that one of the methods provide Br

and the other the actual magnetization under the self-field.
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CHAPTER11
Assembly and measurement of the PMQ

11.1 Magnet sorting

With the measurements described in chapter 10, we have now characterized the magnetic
properties of the permanent magnet blocks. It is time to sort the magnets in order to assembly
the PMQs. Most of the rules used in this section are easily obtained from the analytical design
principles that has been described previously. A very succinct description of the method used
for sorting would be the following:

1. Sort the blocks by angular error in ascending order

2. Reject all the magnets that have a large angular error. In our case we have taken the
best 560 magnet blocks and rejected the rest, about 200. This has left us only with
magnet whose angular error is below 1°

3. Now, sort the magnets in either ascending or descending order according to their residual
magnetization

4. A group of 8 consecutive magnets will be used for each PMQ

5. Inside each group two consecutive magnets must be diagonally opposed in order to keep
the magnetic center

6. The four stronger magnets of each group must be in the tangential positions, while the
4 weakest must be in the radial ones, in order to limit B6

The previous rules have been programmed in an Excel macro that automatically creates
the groups of 8 magnets that must be put together. Now, we have to know to which PMQ
assign this set of magnets and which is the shim that must be used.

11.2 Selection of the magnet sets and shimming

In principle, each of the PMQ integrated gradients given in tab. 9.2 could be built with
several combinations of permanent magnet block strengths and shims; with each of these
combinations giving a correct PMQ. In order to create all the combinations possible an Excel
table has been created with one row per PMQ and a given value of radial and tangential shim
in each column. The cell corresponding to a certain row and a certain column contains the
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value of the residual magnetization that provides the integrated gradient of this PMQ with
this set of shims.

In order to limit the value of B6, a maximum difference of 0.1 mm is allowed between
the radial and the tangential shims, and the radial shim is always equal or larger than the
tangential one.

Because only residual magnetization between 1.04 T and 1.09 T are available, only some of
the cells provide a valid solution. By marking these valid solutions, a band is created in the
Excel sheet that provides the regions where a possible PMQ may be built. A small section
of the used table is shown in tab. 11.1, where the possible solutions are shown with a red
background.

The table should be used in the following way, each of the rows corresponds to a single
magnet, the possible solutions are the cells with the red background, and the corresponding
shims, radial and tangential, should be read on one of the upper rows.

Table 11.1 – Example of the Excel sheet that was used for the sorting of the magnets. Only the
beginning of the spreadsheet is shown.

Radial Shim 1.00E-03 1.00E-03 1.10E-03 1.10E-03 1.20E-03 1.20E-03 1.30E-03 1.30E-03 1.40E-03 1.40E-03 1.50E-03 1.50E-03 1.60E-03

Tangential shim 9.00E-04 1.00E-03 1.00E-03 1.10E-03 1.10E-03 1.20E-03 1.20E-03 1.30E-03 1.30E-03 1.40E-03 1.40E-03 1.50E-03 1.50E-03

GdL -1.78540299 -1.77116504 -1.75730906 -1.74333705 -1.72971862 -1.71603734 -1.70282799 -1.68939079 -1.67630779 -1.66309098 -1.65051663 -1.63763136 -1.62505802

L4D.MQDP.0231 2.031136 1.21807328 1.22786506 1.2375465 1.24746484 1.25728639 1.26731023 1.27714114 1.28729936 1.29734628 1.30765647 1.31761876 1.3279861 1.33826094

L4D.MQFP.0232 1.762152 1.05676344 1.0652585 1.07365782 1.08226267 1.09078354 1.09947993 1.10800892 1.11682188 1.12553829 1.1344831 1.14312608 1.15212047 1.16103461

L4D.MQFP.0233 1.762152 1.05676344 1.0652585 1.07365782 1.08226267 1.09078354 1.09947993 1.10800892 1.11682188 1.12553829 1.1344831 1.14312608 1.15212047 1.16103461

L4D.MQDP.0234 1.74418 1.04598562 1.05439404 1.06270769 1.07122479 1.07965876 1.08826645 1.09670846 1.10543154 1.11405905 1.12291263 1.13146746 1.14037011 1.14919334

L4D.MQDP.0235 1.74418 1.04598562 1.05439404 1.06270769 1.07122479 1.07965876 1.08826645 1.09670846 1.10543154 1.11405905 1.12291263 1.13146746 1.14037011 1.14919334

L4D.MQFP.0236 1.702012 1.02069745 1.02890258 1.03701524 1.04532642 1.05355649 1.06195608 1.07019399 1.07870618 1.08712511 1.09576464 1.10411265 1.11280006 1.12140998

L4D.MQFP.0237 1.702012 1.02069745 1.02890258 1.03701524 1.04532642 1.05355649 1.06195608 1.07019399 1.07870618 1.08712511 1.09576464 1.10411265 1.11280006 1.12140998

L4D.MQDP.0238 1.690856 1.01400719 1.02215854 1.03021803 1.03847473 1.04665086 1.05499539 1.0631793 1.0716357 1.07999944 1.08858234 1.09687563 1.10550611 1.11405959

L4D.MQDP.0239 1.690856 1.01400719 1.02215854 1.03021803 1.03847473 1.04665086 1.05499539 1.0631793 1.0716357 1.07999944 1.08858234 1.09687563 1.10550611 1.11405959

L4D.MQFP.0240 1.656788 0.9935766 1.00156371 1.00946081 1.01755115 1.02556254 1.03373894 1.04175797 1.05004398 1.05823921 1.06664918 1.07477537 1.08323196 1.0916131

L4D.MQFP.0241 1.656788 0.9935766 1.00156371 1.00946081 1.01755115 1.02556254 1.03373894 1.04175797 1.05004398 1.05823921 1.06664918 1.07477537 1.08323196 1.0916131

L4D.MQDP.0242 1.646004 0.98710943 0.99504455 1.00289025 1.01092793 1.01888718 1.02701036 1.03497719 1.04320926 1.05135115 1.05970638 1.06777968 1.07618122 1.08450781

L4D.MQDP.0243 1.646004 0.98710943 0.99504455 1.00289025 1.01092793 1.01888718 1.02701036 1.03497719 1.04320926 1.05135115 1.05970638 1.06777968 1.07618122 1.08450781

L4D.MQFP.0244 1.613084 0.96736729 0.97514371 0.98283249 0.99070942 0.99850948 1.0064702 1.01427769 1.02234513 1.03032418 1.0385123 1.04642414 1.05465765 1.06281771

L4D.MQFP.0245 1.613084 0.96736729 0.97514371 0.98283249 0.99070942 0.99850948 1.0064702 1.01427769 1.02234513 1.03032418 1.0385123 1.04642414 1.05465765 1.06281771

L4D.MQDP.0246 1.602596 0.96107763 0.96880349 0.97644228 0.984268 0.99201734 0.9999263 1.00768303 1.01569801 1.02362518 1.03176007 1.03962047 1.04780045 1.05590745

L4D.MQDP.0247 1.602596 0.96107763 0.96880349 0.97644228 0.984268 0.99201734 0.9999263 1.00768303 1.01569801 1.02362518 1.03176007 1.03962047 1.04780045 1.05590745

L4D.MQFP.0248 1.570652 0.94192079 0.94949266 0.95697919 0.96464892 0.9722438 0.97999511 0.98759723 0.99545245 1.00322161 1.01119435 1.01889807 1.026915 1.03486041

L4D.MQFP.0249 1.570652 0.94192079 0.94949266 0.95697919 0.96464892 0.9722438 0.97999511 0.98759723 0.99545245 1.00322161 1.01119435 1.01889807 1.026915 1.03486041

L4D.MQDP.0250 1.560476 0.93581824 0.94334105 0.95077908 0.95839912 0.96594479 0.97364588 0.98119875 0.98900308 0.9967219 1.00464299 1.01229679 1.02026178 1.02815571

L4D.MQDP.0251 1.560476 0.93581824 0.94334105 0.95077908 0.95839912 0.96594479 0.97364588 0.98119875 0.98900308 0.9967219 1.00464299 1.01229679 1.02026178 1.02815571

L4D.MQFP.0252 1.52948 0.91722992 0.92460331 0.93189359 0.93936227 0.94675806 0.95430619 0.96170903 0.96935834 0.97692384 0.98468759 0.99218937 0.99999615 1.00773328

L4D.MQDP.0253 1.52948 0.91722992 0.92460331 0.93189359 0.93936227 0.94675806 0.95430619 0.96170903 0.96935834 0.97692384 0.98468759 0.99218937 0.99999615 1.00773328

L4D.MQDP.0254 1.519548 0.9112737 0.9185992 0.92584214 0.93326232 0.94061009 0.9481092 0.95546397 0.96306361 0.97057998 0.97829331 0.98574638 0.99350246 1.00118935

L4D.MQDP.0255 1.519548 0.9112737 0.9185992 0.92584214 0.93326232 0.94061009 0.9481092 0.95546397 0.96306361 0.97057998 0.97829331 0.98574638 0.99350246 1.00118935

L4D.MQFP.0256 1.489324 0.89314835 0.90032815 0.90742703 0.91469962 0.92190124 0.92925119 0.93645967 0.94390815 0.95127503 0.95883494 0.96613976 0.97374157 0.98127557

L4D.MQFP.0257 1.489324 0.89314835 0.90032815 0.90742703 0.91469962 0.92190124 0.92925119 0.93645967 0.94390815 0.95127503 0.95883494 0.96613976 0.97374157 0.98127557

L4D.MQDP.0258 1.479608 0.88732166 0.89445462 0.90150719 0.90873233 0.91588697 0.92318897 0.93035043 0.93775032 0.94506913 0.95257972 0.95983689 0.96738911 0.97487396

L4D.MQDP.0259 1.479608 0.88732166 0.89445462 0.90150719 0.90873233 0.91588697 0.92318897 0.93035043 0.93775032 0.94506913 0.95257972 0.95983689 0.96738911 0.97487396

L4D.MQFP.0260 1.450012 0.86957293 0.8765632 0.8834747 0.89055533 0.89756685 0.9047228 0.911741 0.91899288 0.9261653 0.93352566 0.94063766 0.94803882 0.95537395

L4D.MQFP.0261 1.450012 0.86957293 0.8765632 0.8834747 0.89055533 0.89756685 0.9047228 0.911741 0.91899288 0.9261653 0.93352566 0.94063766 0.94803882 0.95537395

L4D.MQDP.0262 1.440476 0.86385418 0.87079849 0.87766453 0.88469859 0.89166401 0.89877289 0.90574494 0.91294912 0.92007437 0.92738633 0.93445156 0.94180404 0.94909094

L4D.MQDP.0263 1.440476 0.86385418 0.87079849 0.87766453 0.88469859 0.89166401 0.89877289 0.90574494 0.91294912 0.92007437 0.92738633 0.93445156 0.94180404 0.94909094

L4D.MQFP.0264 1.411444 0.84644368 0.85324802 0.85997569 0.86686798 0.87369301 0.88065862 0.88749015 0.89454914 0.90153078 0.90869537 0.9156182 0.9228225 0.92996253

L4D.MQFP.0265 1.411444 0.84644368 0.85324802 0.85997569 0.86686798 0.87369301 0.88065862 0.88749015 0.89454914 0.90153078 0.90869537 0.9156182 0.9228225 0.92996253

L4D.MQDP.0266 1.405008 0.842584 0.84935732 0.85605431 0.86291518 0.86970909 0.87664293 0.88344331 0.89047011 0.89741992 0.90455184 0.9114431 0.91861455 0.92572202

L4D.MQDP.0267 1.405008 0.842584 0.84935732 0.85605431 0.86291518 0.86970909 0.87664293 0.88344331 0.89047011 0.89741992 0.90455184 0.9114431 0.91861455 0.92572202

L4D.MQFP.0268 1.38432 0.8301774 0.83685099 0.84344937 0.85020921 0.85690308 0.86373483 0.87043508 0.87735841 0.88420588 0.89123279 0.89802259 0.90508844 0.91209126

L4D.MQFP.0269 1.38432 0.8301774 0.83685099 0.84344937 0.85020921 0.85690308 0.86373483 0.87043508 0.87735841 0.88420588 0.89123279 0.89802259 0.90508844 0.91209126

L4D.MQDP.0270 1.3798 0.82746675 0.83411855 0.84069538 0.84743315 0.85410517 0.86091461 0.86759298 0.87449371 0.88131883 0.88832279 0.89509042 0.9021332 0.90911315

11.3 Measurement methods useful for PMQ

In this section we describe several methods that are useful for measuring the PMQs. We
pay special attention to field mapping with a Hall probe, as it is the method finally used to
characterize the magnets at ELYTT.
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11.3.1 The Hall probe method

When combined with a computer controlled displacement system a Hall probe may provide
a detailed field map of the magnet. It is essential for obtaining the field in dipoles where
the beam is curved by a large angle and in general for obtaining the field of magnets in
which the paraxial approximation is not good. Typically PMQs are short and the integrating
methods like the rotating coil or the stretch wire are better adapted. Nevertheless, because
the availability of a Hall probe system at ELYTT, the method was chosen for the measurement
of the linac4 PMQs. Although the time required to fully map a magnet was larger that the
required by a rotating coil, the operation was not labor intensive, as the machine operates
automatically once the system has been set up.

The calibration of the system followed a similar approach than the one that has been
described for the measurement of the permanent magnet blocks. A dedicated V-shaped
tooling was built in which the PMQ could be blocked and which was equipped with 3 pin
holes for locating the zero field conical magnet. Before the PMQ was placed in the tooling, the
conical magnet was placed alternatively in the pin holes and the 3 zero field points were located
in the bench coordinates. A transformation matrix was then calculated to convert the bench
coordinates to the magnet coordinates and vice versa. The methods for the transformation
were programmed as a set of C++ classes using Visual C++. In addition, the probe was
moved in 3 directions around the zero field point of the last position of conical magnet. By
the construction of the magnet, the movement should bring the probe to a point were only
field in the direction of the displacement exists. As the probe will normally measure field in all
axes, it is possible to obtain the rotation matrix of the probe. The method is fully described
in the chapter on the measurement of the permanent magnet block §10.1. Fig. 11.1 shows
two photographs of the measurement of a PMQ similar in dimension to the linac4 ones.

Figure 11.1 – Measuring a PMQ. Remark on the right photograph the locating pins for the
conical magnet.

An additional problem with the measurement of the 80 mm long linac4 PMQs is that the
Hall probe cannot enter into the magnet more than 40 mm before a thicker part of the probe
clashes with the front of the magnet, therefore the magnet must be measured from both sides
and the measurements must be jointed for the final interpretation of the results. There are
two ways in which this addition of the measurements of both sides may be performed. In the
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first method, the raw data are added by calculating which are the matching angles when the
magnet is seen from each end and how the components change sign. In the second method
the full harmonic analysis of each side is performed and then the harmonics are combined
according to certain rules, as shown in §7.5.2.

The program to measure the magnet describes a cloud of points located at the maximum
radius compatible with the magnet aperture and the Hall probe size. The number of angular
measurements at a given axial position is 64 and the number of axial measurements from each
side is 35, 70 points in total. In total 4480 measurements are taken per magnet.

The post-processing of the PMQ measurement starts with the axial integration of all the
data at a certain angular position. This integral is obtained with the alternative extended
Simpson rule [27].

∫ L
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(11.1)
This integration method was used independently for all the angular positions and all the

components of the magnetic field. Afterwards, the Cartesian components were combined to
obtain the integrated radial components of the field at all the angular positions and finally a
standard Fourier analysis of the radial field was performed to obtain the field harmonics.

For the particular application of the linac4 PMQ the mapping of the magnets with a Hall
probe was very efficient and accurate to obtain the magnetic center (using the B1 and A1

harmonics), the integrated gradient and the quadrupolar field roll (using A2)). Higher order
harmonics could not be calculated as accurately as the lower ones due to the limited aperture
available with respect to the Hall probe size and probably to the size of the actual magnetic
field measuring chip. Nevertheless, by construction of the magnet is almost impossible to
have the magnetic center and roll correct and to have the higher order harmonics higher than
the allowed 100 units, as the higher order harmonics are efficiently canceled by having all
magnets of similar strength and with a small magnetization angle error.

11.3.2 The rotating coil method

Although the rotating coil method was not used in the present project, it is very well adapted
to measure PMQs and, therefore, is fully described here. The rotating coil method is based
in measuring the voltage induced in a coil of special shape which is centered in the aperture
of the magnet to be measured and rotated along the magnet axis. The time integral of
the voltage is proportional to the flux linked by the coil, or otherwise stated, to the axial
component of the vector potential along the measuring coil turns. From this vector potential,
it is possible to obtain directly the field harmonics. Here, we will show the general theory
and particularize it to a pair of typical cases.

For any magnetic system, the induced voltage in a coil is the time derivative of the flux
passing through the coil. The flux can be expressed as a function of the flux density ~B or the
vector potential ~A using the equation 11.2.

Φ =
∫∫

S

~B · d~S =
∮

C

~A · d~l (11.2)
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If the system present a displacement symmetry axis (let it be z) the vector potential only
has a component parallel to that axis and, of course, the value of that component doesn’t
depend on z. In that kind of system equation 11.2 reduces to eq. 11.3.

Φ = L (A2 −A1) (11.3)

A further generalization of 11.3 can be obtained if we consider a system of conductors
placed along the z axis and interconnected alternatively at both extremities. The general
expression for the flux is given by equation 11.4. The sign in this equation varies between
two consecutively interconnected conductors.

Φ = − L
h
∑

m=1

±Am (11.4)

Where the sign applied to the vector potential is related to the direction that the current
would have in the measuring coil would be used to transport current instead of being used to
couple to the external magnetic flux.

The next step is to relate the field harmonics to the vector potential. The equation 11.5 is
the expression of the field inside the aperture of the magnet as a function of the coefficients
of the multipole expansion at a reference radius R. The value of the vector potential as a
function of the field multipoles can be obtained through integration in the complex plane and
using the fact that the function By + iBx is analytical in a domain which contains no field
sources, this integration is performed in 11.6 and the obtained multipole expansion is given
in equation 11.7.

F = By + iBx =
∞
∑

n=1

(Bn + iAn)
(

z

R

)n−1

(11.5)

A =
∫

C
(Bx dy −By dx) = − ℜ

∫
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F dz (11.6)
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(An sinnφ−Bn cosnφ) (11.7)

This equation was already obtained at §7.3 taking into account that A was the real part of
the complex potential.

Introducing the value of the vector potential of equation 11.7 in equation 11.4 it is possible
to obtain the value of the total flux inducing voltage in the conductor system as a function
of the multipoles that must be measured. The resulting equation is 11.8. The internal sum
runs in the conductors orthogonal to the field.
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∞
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In order to study the measuring capability of the assembly it is important to split the last
equation in the terms due to each harmonic. This is done in the following set of equations,
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in which the sensitivity of the flux to each harmonic is defined. We define the sensitivity
coefficients Sn and S̄n which give the flux induced by each multipolar component. According
to them the flux can be expressed as:

Φ =
∞
∑

n=1

(

BnSn +AnS̄n

)

(11.9)
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h
∑
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n

(

rm

R

)n

sin nφm (11.11)

We will now study two particular cases, the first corresponds to a radial coil in which the
measuring turns are located at a constant radius on top of a winding mandrel. The second
case corresponds to a planar coil, in which all the turns are located on the same plane.

Particular case I

1+

2−3+

1−

2+ 3−

Figure 11.2 – Conductor placement

In this section the general expressions developed above are employed for the particular case of
the figure 11.2. This design is developed to measure the sextupolar component B3 and having
a very low sensitivity to the main dipolar component. As we can see there are 6 conductors
grouped in 3 coils. It is possible to group them in several ways, but the result must be the
same. First of all the flux due to a diametrically placed coil is obtained. In the next equations,
it is possible to see how the even harmonics cannot be measured with diametric coils.
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Using the expressions for a diametrical coil it is possible to calculate the nominal sensitivity
of the structure represented in 11.2. As can be seen, with an ideal placement of the conductors
it is possible to cancel the sensitivity to the dipole. On the other hand, the coils add the
voltages created from the sextupole.

S0
1 = 2rL

(

1 + cos
2π
3

+ cos
4π
3

)

= 0 (11.14)

S0
3 =

2RL
3

(

r

R

)3 (

1 + cos 3
2π
3

+ cos 3
4π
3

)

= 2rL
(

r

R

)2

(11.15)

Of special interest is the ratio between the sensitivity of the system to the dipole and
the sextupole for the actual structure. As the difference between the actual and the ideal
structure is not large, it is possible to estimate the value of the ratio from a linearization of
S1 around the ideal geometry. This expression is given in equation 11.16, where tm is the
tangential displacement in the increasing angles direction.

S1

S3
=

∑h
m=1 ±Lrm cosφm

2rL
(

r
R

)2 =
∑h

m=1 ± cosφ0
m ∆rm ∓ sinφ0

m r0
m ∆φm

2r
(

r
R

)2 =

1
2

(

R

r

)2 h
∑

m=1

(

± cosφ0
m

∆rm

r
∓ sinφ0

m

∆tm
r

)

(11.16)

In the table 11.2, it can be seen the increase in the ratio S1/S3 due to a variation of 1 mm
around the ideal position.

Table 11.2 – Increase in the S1/S3 ratio for 1 mm error in conductor positioning

Conductor number
1+ 2− 3+ 1− 2+ 3−

Radial 3.2 · 10−3 1.6 · 10−3 1.6 · 10−3 3.2 · 10−3 1.6 · 10−3 1.6 · 10−3

Azimuthal 0 2.77 · 10−3 2.77 · 10−3 0 2.77 · 10−3 2.77 · 10−3

The voltage induced in the system can be calculated with equation 11.17. The integral of the
voltage can be expressed as a linear combination of the field multipoles with the sensibilities
as coefficients. This is expressed in equation 11.18.

v = − dΦ
dt

= −
∞
∑

n=1

(

SnḂn + S̄nȦn

)

(11.17)

∫ t

0
v dt = −

∞
∑

n=1

(

SnBn + S̄nAn

)

(11.18)

Of all the terms included in equation 11.18, only those who satisfy one of the following
characteristics are significant.

• The sensitivity is different of 0 even for conductors ideally placed. This is true for S3, S9,
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... In that case Sn is large enough to give a large term even for a small field multipole.

• The value of the field multipole is extremely large. This is the case of B1. For that term,
the sensitivity due to the construction errors are large enough to give a large voltage.

According to the last considerations equation 11.18 can be reduced to the 2 terms equation
11.19, in which only the dipolar and sextupolar terms appear.

∫ t

0
v dt = − (S1B1 + S3B3) = −B1S3

(

S1

S3
+
B3

B1

)

= −B1S3

(

S1

S3
+ 10−4b3

)

(11.19)

According with equation 11.19, it is possible to see that the integral of the induced voltage
depends on two terms. One of them, the ratio S1/S3 derives from the construction tolerances,
the other 10−4b3 is the magnitude that is desired to measure. There are two possibilities:

• If no calibration is desired it is necessary that the term derived from the sextupole is
much larger than the dipolar term. If one tenth of sextupolar unit is the accuracy need,
that means that the dipolar term must be in the order of 10−5, according with table
11.2, that means that the tolerances must be in the order of a few microns, which seems
a non-realistic objective.

• Equation 11.19 gives an idea of how to make the calibration of the system, a single
measurement must give B1 and b3, the value of S3 can be accurately approximated by
its design value given by equation 11.15. Finally the ratio S1/S3 can be calculated.
In such a way, and supposed that there is a way to measure the dipole, it is only
necessary that the dipolar and sextupolar terms in equation 11.19 are of the same order
of magnitude. This allows the system to be built with tolerances of a few hundreds of
microns.

Planar coils

Very often the coils used to measure the magnetic field are approximately planar. A typical
configuration may be seen in fig. 11.3.

+−−+

Axis

Figure 11.3 – Example of a planar coil.

In this case, all the turns are in the same plane, and the angle Φm is independent of the
turn, the normal and skew components of the field, may be obtained in a more straightforward
way from the time signal of the voltage.
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One important advantage of the planar coils is that they may be manufactured using the
Printed Circuit Board (PCB) technology which is widely used today. Small batches of coils
may be manufactured on short time and at very low cost.

An example of a coil for measuring permanent magnet quadrupoles may be seen in fig. 11.4.
In this design there are two concentric coils, each of 4 layers. The coils are eccentric to provide
a signal to the even harmonics, including the quadrupole. The number of turns is calculated
to cancel the sensitivity to B2 when they are connected in anti-series. An excellent sensitivity
to B2 can be obtained by connecting them in series. The leads of both coils are available to
the user, which may choose the type of measurement. This planar coil was designed using
the equations of the previous section, and directly exported in DXF format to Orcad in order
to create the GERBER files required for the manufacturing of the PCB.

Figure 11.4 – Example of a coil designed by the author for the measuring of small aperture
PMQs. Left, global view. Right, detail of the connection side, showing the vias
structure of the PCB.

In fig. 11.5 we may see the finalized coil, including the soldered wires and the jumpers to
connect the inner turns to the outer ones.

Figure 11.5 – The coil as finally built

11.3.3 The stretched wire method

The stretched wire method may easily be understood with the equations of the previous chap-
ter. In this case, the voltage is induced by a single wire being moved in the magnet aperture
with an external CNC system. The stretched wire is very useful for quickly determining the
magnetic center and the magnetic length of straight magnets.
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11.3.4 The vibrating wire method

The vibrating wire method was introduced by A. Temnykh while working in the measurements
of the CESR Phase III project [50]. It is based in setting a stationary wave on a wire under
the excitation force of the magnetic field acting on an alternating current passing through the
wire. By changing the frequency of the current, it is possible to excite several resonances and
by measuring the amplitude of the vibration at a certain point of the wire, it is possible to
reconstruct the spatial distribution of the field. Intuitively, wire modes which have maximum
amplitude near the regions of high magnetic field are mostly excited. The method is highly
sensitive due to the very low damping coefficient of the wire. Even a small magnetic field will
generate a significant vibration of the wire near the resonant frequencies.

Fig. 11.6 represents a simplified scheme of a vibrating wire measurement. We propose a
vertical wire, because the typical reduced dimension of a PMQ allows such position and the
measurement simplifies because it is not necessary to take the sag of the wire in to account.

Weight

PMQ

Displacement 

transducer

L

x s x

zy

T(x)

T(x+dx)

Fz dx

☎U/☎✁ (x)

☎U/☎x (x+dx)

Figure 11.6 – Left, schematic representation of a vibrating wire measurement of a PMQ. Right,
forces acting on a length dx of wire

We will now obtain the governing equations of the vibrating wire. In fig. 11.6 we can see
the forces acting on a piece of wire of length dx. We will call U the displacement in the z
direction T (x) is the tension at a certain point and µ the mass of the wire per unit length.
Newton’s second law in the z direction will be,

(

T (x+ dx)
∂U

∂x
(x+ dx) − T (x)

∂U

∂x
(x) + fzdx

)

= µdx

(

∂2U

∂t2
+ γ

∂U

∂t

)

(11.20)

, where γ is a viscous damping coefficient of the wire which includes all mechanism of losses
in the vibration, mostly friction with air and internal damping of the material.

If we apply the equilibrium of forces in the x direction, we obtain how the tension will
change with the slope of the wire. The result is that for small angles the tension is constant,
as it scales with ∂U/∂x. The final equation is then,

140



J. Lucas

T
∂2U

∂x2
+ fz = µ

(

∂2U

∂t2
+ γ

∂U

∂t

)

(11.21)

We will solve now 11.21 in two different conditions. First, we will solve the well known
problem of the eigenvalues of the vibrating wire and then we will superpose the particular
solution that includes the alternating forces due to the interaction of the AC current in the
wire with the steady magnetic field. To solve the eigenvalue problem, we separate variables, i.e.
we consider that the displacement U(x, t) is obtained as the multiplication of two functions,
one depending only on x and the other in t.

U(x, t) = X(x)S(t) (11.22)

If we introduce eq. 11.22 into eq. 11.21 and group all the terms that depend on t on one
side and on x on the other side, we obtain,

S”
S

+ γ
S′

S
=
T

µ

X”
X

= −ω2 (11.23)

We have equated both terms to a constant because the first would depend only on t and
the second on x, and a constant is the most general function depending at the same time only
in x and only in t at the same time. The ordinary differential equations for S and X will be,

S” + γS′ + ω2S = 0 (11.24)

X” + ω2 µ

T
X = 0 (11.25)

The spatial solution X has two nodes at 0 and L. Therefore, the solution must be,

X(x) = A sin
nπx

L
(11.26)

and therefore only certain values of ω are possible, i.e. the ones satisfying

ω = ωn =
nπ

L

√

T

µ
(11.27)

The solutions of the time evolution part eq. 11.24 will be quantified as well by ωn and will
be,

S(t) = exp
(

−j γ
2
t

)

cos (ωnt+ φn) (11.28)

So that the general solution will be,

U(x, t) =
∞
∑

n=1

An exp
(

−j γ
2
t

)

cos (ωnt+ φn) sin
nπx

L
(11.29)

So that the general solution of the homogeneous function is the sum of all the modes. Each
mode is characterized by an amplitude An and a phase φn. For the vibrating wire mode, the
most important conclusion of eq 11.29 is that it is a decaying solution and after a certain
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time of a transitory will have disappeared and the only solution resting will be the solution
synchronous with the excitation force.

In the vibrating wire method an alternating current will be passed through the wire and a
force, fz(t, x) = i(t)By(x), will appear. As the time variation of the solution will follow the
excitation frequency, we can convert the equation to phasor notation1 and say that,

U(x, t) = Û(x) exp jωt (11.30)

The vibrating wire equation is then converted to an ordinary differential equation,

T
d2Û

dx2
+ µ

(

ω2 + jωγ
)

Û = −ÎB(x) (11.31)

We will represent now the magnetic field distribution along x as a Fourier series. We will
suppose that the magnetic field cancels on both extremities of the wire. In this condition,

B(x) =
∞
∑

n=1

Bn sin
(

nπ

L
x

)

(11.32)

Û(x) =
∞
∑

n=1

Ûn sin
(

nπ

L
x

)

(11.33)

Normally, the solution of eq. 11.31 would require to obtain the general solution of the
homogeneous equation and a particular solution of the non homogeneous equation. Neverthe-
less, in this case we are directly fitting the solution of the non homogeneous equation with a
set of functions that already satisfy the boundary conditions, Û(0) = Û(L) = 0.

Ûn

(

−T

µ

(

nπ

L

)2

+ ω2 + jωγ

)

(11.34)

We will represent the resonant frequencies as ωn,

ωn =

√

T

µ

(

nπ

L

)

(11.35)

and the coefficients of the Fourier expansion of the phasor of the displacement will be,

Ûn =
ÎBn

µ ((ω2
n − ω2) − jωγ)

(11.36)

The displacement phasor will be,

Û(x) =
∞
∑

n=1

ÎBn

µ ((ω2
n − ω2) − jωγ)

sin
(

nπ

L
x

)

(11.37)

The wire vibration is obtained from the synchronous demodulation of the displacement at
a certain point xs with the current. The measured magnitude is,

1In this chapter, the hat symbol represents a time phasorial magnitude
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F (ω) =
1
T

∫ T

0
U(x, t)i(t)dt =

1
2

ℜ
(

Û Î
)

(11.38)

The results is,

F (ω) =
∞
∑

n=1

I2Bn

2µ0
sin
(

nπ

L
xs

)

(

ω2
n − ω2

)

(ω2
n − ω2)2 + (ωγ)2 (11.39)

Near the resonances, we can apply ω2
n − ω2 ≈ 2ω (ωn − ω).

F (ω) =
∞
∑

n=1

I2Bn

µ0
sin
(

nπ

L
xs

)

(ωn − ω)

4ω (ωn − ω)2 + ωγ2
(11.40)

The value of γ is normally quite small compared to ωn and therefore, each of the terms in
the sum of eq. 11.40 has only a significant value around the resonant frequency. The scanning
can then be executed only a few Hz around ωn to obtain a plot that can be parametrized as,

ωF (ω) = An
ωn − ω

4 (ωn − ω)2 + γ2
n

(11.41)

In fig, 11.7 the shape of this plot near a resonance is shown for two different damping
ratios. Near each resonance, it is possible by fitting to obtain the amplitude An, the resonance
frequency ωn and the damping γn. Although in the derivation of the wire behavior, we have
supposed the damping not to be frequency dependent and to have of viscous origin, in reality
it may be non linear and different for each of the resonant frequencies.
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Figure 11.7 – Typical shape of ωF (ω) near a resonance. For both curves An is unity and only
γ is changed. The peak to peak amplitude is An
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To give a more quantitative approach to the method, we can propose a set of design values.
The wave velocity in the vibrating wire will be given by,

v =

√

T

µ
=

√

σA

ρA
=
√

σ

ρ
(11.42)

,where σ is the design tensile stress, A the wire section and ρ the material density, The
standard material used for this wire is a Beryllium copper alloy (Cu98Be2), because it has a
relatively high electrical conductivity and high yield limit to operate safely at high mechanical
stress. It has a resistivity as low as 5.4 Ω · m, a density of 8250 kg/m3 and a tensile strength
of at least 500 MPa. If we operate the wire at 200 MPa, the sound velocity will be 155 m/s.
For measuring a short PMQ, the typical length of the wire may be 0.5 m and the first
eigenfrequency will be,

f1 =
ω1

2π
=

c

2L
= 155 Hz (11.43)

11.4 Corrective measurements

After the first assembly and the first measurement of each magnet, it is normally necessary
to modify some of the parameters of the magnet to comply with the specifications. This is
normally required for integrated gradient, magnetic center and specially for roll adjustment.
It has been found that the specification for higher order harmonics is loose enough not to
require any feedback from the measurements of the first assembly. This is probably related
to the location of the permanent magnets relatively far away from the reference radius, and
the effect of the higher order harmonics decaying fast with this distance. In this section, it
will be analyzed how the compensation after the out of tolerance measurements is made. The
theory of the effect of the individual blocks developed in chapter 7 will be very valuable for
this application.

11.4.1 Integrated gradient correction

In order to correct the measured integrated gradient of each quadrupole and approaching it
to the target value, the shims of all radial magnets are increased by 0.1 mm when it is desired
to decrease the integrated gradient, or the shims of all the tangential magnets are decreased
by 0.1 mm when it is desired to increased the integrated gradient. The choice to move the
radial magnets in one case and the tangential in the other is required by the need to avoid the
radial magnets being in an smaller radial position; as in this case the effect on B6 of the radial
position of the magnets is added to the effect of the larger coercitive field in the tangential
magnets, which gives a natural B6 in the same direction. For a larger variation, all radial and
tangential magnets are moved in the same direction. Fig. 11.8 shows the relative effect (in
per one) of increasing all 8 shims by 1 mm. The effect of moving 0.1 mm the radial magnets
is typically a reduction in the integrated gradient of 0.7%. This variation is fine enough to
achieve the required field accuracy of ± 0.5%.
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Figure 11.8 – Relative variation of the integrated gradient dGdL/drGdL−1 for a variation of the
radial position of all 8 shims

11.4.2 Magnetic center correction

For the calculation of the magnetic center, the first harmonic B1 + iA1 is used. Up to first
order, the magnetic field is,

By + iBx = B1 + iA1 +B2
x+ iy

Rref
(11.44)

We neglect the higher order harmonics because they are small and as they decrease accord-
ing to (r/Rref )n−1 their effect is negligible near the magnetic axis.

The point at which the field will cancel is obtained by equating eq. 11.44 to zero,

x0 = −Rref
B1

B2
= −Rref

b1

104
(11.45)

y0 = −Rref
A1

B2
= −Rref

a1

104
(11.46)

So that correcting the magnetic center is equivalent to canceling the first harmonic. The
contributions to the first harmonics may be seen in eq. 7.82, in order to modify, for instance,
the real part of C1, we can shift M0 and M4 in opposite directions. In this case, B2 is not
modified, because the effect of both shifts cancels in the second row of 7.82. We can check
the effect of a radial displacement ∆R of the first block M0, by taking the derivative of 7.78,

∆C1 = −µ0M∆R
2π

(

1
ξ1

+
1
ξ3

− 1
ξ2

− 1
ξ4

)

(11.47)

Dividing eq. 11.47 by the value of B2 as obtained by eq. 7.77 for n equal to 2,

∆C1

B2
= − ∆R

8Rref
(11.48)

The fifth block will give the same shift, so that the total displacement of the magnetic
center will be,
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∆x0 =
∆R
4

(11.49)

The same analysis may be repeated for the y axis to obtain a similar result involving blocks
3 and 7.

11.4.3 Roll correction

Probably, the roll is the most strict of all the requirements. At the reference radius of
7.5 mm, the arc length of 1 mrad is only 7.5 µm. In order to analyze how to correct the roll
error, we have to return to the sensitivity matrix of eq. 7.82. There, we can see that the
second harmonic is created by the sum of all the magnetizations, the magnetization in the
nominal direction creates the desired B2, while the angle error of the magnetization creates
the undesired roll A2. We can indifferently use the value of roll angle error or a2, taking into
account that 1 mrad is equivalent to 10 units of a2.

We can conclude that the relative harmonic a2 is the sum of all the skew magnetizations
divided by the sum of all the nominal magnetizations. Because each PMQ is made of blocks
of similar magnetization, we can suppose the nominal magnetization to be uniform in all of
the blocks, therefore:

a2 = 104

∑

iMsi
∑

iMni

= 104

∑

iMsi

8Mn
= 104

∑

i θi

8
(11.50)

The roll error is then the average value of the error in the magnetization angle error, θi in the
blocks used in the PMQ. Typically, the addition of N random errors will be like multiplying
the average value by

√
N , and the expected roll error of assembling N magnets will be,

a2 ≈ 104 θblock√
8

(11.51)

Referring to the statistical analysis of section 10.3, the average error in the magnetization
angle of the best 560 magnets is 13.3 mrad, we would then expect the average roll error of
each PMQ as assembled without any care or correction to be of 4.7 mrad, well above the
desired value of 1 mrad.

This problem is solved by two observations. First, the measurement of the blocks, not
only provides the absolute sign of the skew magnetization, but also its sign; and second, it is
possible to change the sense of the skew magnetization with respect to the PMQ holder by
flipping the front and the back of magnet while keeping the nominal magnetization (rotating
an angle of π with respect of a radial axis). In such a way, it is possible to cancel the roll
error of the PMQ to a value as small of the largest magnetization error angle of the blocks in
the PMQ divided by 8.

Unfortunately, during the measurement of the blocks this roll correction method was not
yet developed, and the blocks were measured without taking into consideration the flipping
of the block in the bench, i.e. where the east and west of the block were positioned with
respect to the measuring bench. Because of that, the roll correction was an iterative process,
in which some of the blocks were rotated until the desired PMQ roll was obtained. Typically,
3 iterations were required per magnet in order to obtain the desired roll.
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11.5 Summary of the magnet manufacturing

After some 400 individual assemblies, measurements and corrections, all magnets were put in
tolerance and send to CERN. The measurements at CERN confirmed that basically ours and
the magnets could be integrated in linac4.

The experience was extremely positive for the company, as it allowed to develop the tech-
nology required to design and manufacture similar projects for other linacs, at BARC and
ESS.
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CHAPTER12
Conclusions

This work has presented several contributions that I would like to remark in the conclusion,
making emphasis in the results that I consider to be a novelty. Directly, or not, they are related
to several aspects of the science of guiding charged particles through the use of electromagnetic
fields.

It has proven the feasibility of using the very high sensitivity of high-Q cavities to the
change of their external boundary to create a range of displacement sensors that thanks to
their inherent bandwidth, noise immunity and easy interfacing to the measurement electronics
may be applied to a large series of applications. The measurements on the prototype has con-
firmed the calculations and sensitivities in the range of nm could be achieved, combined with
bandwidths that cannot be reached with any other sensor of the same range, like capacitive
ones. This new sensor has been the object of a patent.

A significant contribution has been made to the complex theory of the linear dynamics by
generalizing some results that were known since the 50s on the possibility of combining the
beam envelope parameters on a single complex number. The general equation of the envelope
has been found and solved. It has been shown that the formalism is equivalent to the Twiss
parameters, but by recognizing that the evolution along any beam line is a Moebius transform,
it has been possible to apply a large corpus of already developed theory, like circle invariance,
to obtain results that can be only extracted with extreme difficulty from the algebra of the
Twiss parameters transform. These results, have a beautiful geometrical interpretation on
the complex plane which is hidden in the classical formalism.

Another contribution has been made on the development of a large aperture spectrograph
using direct ray tracing from a Finite Element Method program to a custom made, high
efficient, program. This approach has allowed to design and build an analyzing magnet of the
highest acceptance.

The complex theory of magnetic fields has been developed and used to design the linac4
permanent magnet quadrupoles for CERN. It has been proven that an 8 block design in
spite of its apparently excessive simplicity is the best solution for this application, in which a
modest gradient is required. It has been shown how to characterize and sort the permanent
magnet blocks to provide high quality quadrupoles from lower quality blocks and how to
measure the magnets in order to validate its design and construction.

The developments produced during the present work, apart from its purely technical inter-
est, has significantly enhanced the positioning of my Company in the fields covered by it. I
would like to emphasize that, for instance, the developments we did in Permanent Magnet
Quadrupoles has open us the field to supply this components to 2 new customers in India and
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Italy. Actually, linking the scientific and industrial sides of the projects has been the major
pleasure in the present work.
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