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Abstract 

In recent years statistical learning (SL) research has seen a growing interest in tracking 

individual performance in SL tasks, mainly as a predictor of linguistic abilities. We 

review studies from this line of research and outline three presuppositions underlying 

the experimental approach they employ: (1) that SL is a unified theoretical construct, 

(2) that current SL tasks are interchangeable, and equally valid for assessing SL ability, 

and (3) that performance in the standard forced-choice test in the task is a good proxy 

of SL ability. We argue that these three critical presuppositions are subject to a number 

of theoretical and empirical issues. First, SL shows patterns of modality- and 

informational-specificity, suggesting that SL cannot be treated as a unified construct. 

Second, different SL tasks may tap into separate sub-components of SL, that are not 

necessarily interchangeable. Third, the commonly used forced-choice tests in most SL 

tasks are subject to inherent limitations and confounds. As a first step we offer a 

methodological approach that explicitly spells out a potential set of different SL 

dimensions, allowing for better transparency in choosing a specific SL task as a 

predictor of a given linguistic outcome. We then offer possible methodological 

solutions for better tracking and measuring SL ability. Taken together, these 

discussions provide a novel theoretical and methodological approach for assessing 

individual differences in SL, with clear testable predictions. 

 

Keywords: Statistical learning; Individual differences; Online measures; Predicting 

linguistic abilities. 
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Introduction 

Over the past two decades, extensive research has focused on statistical learning (SL), 

demonstrating sensitivity to complex distributional properties in the input. Starting 

from the seminal work of Saffran and colleagues [1], numerous studies have shown that 

humans display remarkable sensitivity to distributional regularities in the auditory [2], 

visual [3], and tactile [4] modalities, with verbal [5] or non-verbal [6] stimuli, 

comprising adjacent or non-adjacent [7] dependencies, over both time and space [8], 

even without overt attention [9], and from a very young age [10]. Sensitivity to the 

input's statistical structure has become an important theoretical construct in explaining 

a wide range of human capacities such as language learning, perception, categorization, 

segmentation, transfer and generalization (see [11], for discussion).  

Whereas all of the above studies focused on demonstrating that a given sample 

of participants shows evidence of learning the distributional properties of a sensory 

input, recent years has seen a growing interest in tracking individual performance in SL 

tasks. This line of study is relatively new. Its initial motivation was to confirm the 

theoretical link between SL and language acquisition. However, more generally, the 

study of individual differences holds the promise of providing critical insights 

regarding the mechanisms of SL and could enable more powerful studies ([11–13]; see 

also [Arciuli, this issue]). Note that “individual differences” in the context of SL can in 

principle refer to any quantitative or qualitative differences between individual learners 

(i.e., differences in both the extent and the speed/trajectory of learning, individual 

variation in the sensitivity to multiple statistics within the same input, etc.). 

Nevertheless, individual differences other than overall performance differences have to 

date rarely been investigated. We return to this issue further on, when considering the 

limitations of the currently used offline learning measures. For now, the important point 
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is that these recent SL studies that tracked individual performance aimed to show that 

language learning relies, at least in part, on being sensitive to the statistical properties 

of a linguistic environment, and that individual variation in sensitivity to such 

regularities predict linguistic abilities. Within this research program SL and artificial 

grammar learning (AGL) tasks were shown to correlate with literacy skills in L1 

[14,15], literacy acquisition in L2 [16], comprehension of syntax [17], sentence 

processing [13,18,19], semantic and phonological lexical access [20], vocabulary 

development [21,22], and speech perception [23,24]. Conversely, other studies aimed 

to show that participants with language deficits such as children with specific language 

impairment ([20,25], but see [26]), dyslexics readers [27,28], and agrammatic aphasia 

patients [29], display poor SL abilities.  

This research is characterized by a prototypical experimental approach. First, a 

SL or AGL task that has been shown to produce above chance performance in the group 

level is selected, and imported into the study as is or with minor modifications. 

Typically, the tasks involve a visual or an auditory familiarization stream (representing 

an artificial grammar or a stream comprising set of transitional probabilities), which is 

followed by a test phase. Second, individual performance in the task is registered for 

each participant (often the number of correct two-alternative forced-choice [2AFC] 

decisions in distinguishing presented visual or auditory sequences from foils at the test 

phase). Third, given the aim of the study (e.g., reading, syntactic processing, speech 

recognition, etc.), participants’ capability in the respective linguistic domain is 

independently measured through well-established relevant language tests. Fourth, the 

participants’ SL scores are used as predictors of their linguistic test performance. Table 

1 presents a set of recent studies that followed this approach, including our own, along 

with the correlations they obtained.  
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 SL task(s) Operational SL measure Linguistic measure Studied population Number of 

participants 

Obtained correlation 

Arciuli & Simpson 

[14]  

Visual SL Success in 64 2AFC trials Reading skills (reading sub-test WRAT-4) adults  37 r=0.34 

6-12yo children 38 r=0.33 

Conway et al., 2010 

[24]  

Visual AGL Difference in span between grammatical 

and ungrammatical sequences in test 

Speech perception in noise adults 23 r=0.46 

Auditory AGL 22 r=0.42 

Visual AGL 64 r=0.31 

Frost et al., 2013 [16] Visual SL Success in 32 2AFC trials Learning scores in nonword decoding, word 

reading, and morphological priming 

adult L2 learners 27 r=0.44 to 0.57 

Kidd & Arciuli, 2015 

[17] 

Visual SL Success in 64 2AFC trials Auditory syntax comprehension task 6-8yo children 68 Pearson's r not reported. SL 

predicts comprehension of 

passives and relative clauses 

(logistic mixed-effect 

models). 

Mainela-Arnold & 

Evans, 2014 [20] 

Auditory SL Success in 2AFC test Gating task (lexical-phonological skills), word-

definition task (lexical-semantic) 

8-12yo children with 

SLI 

20 r=0.2 for both linguistic tasks. 

8-12yo typically 

developing children 

20 r=0.28 (phonological); 

 r=0.1 (semantic) 

Misyak & 

Christiansen, 2012 

[13] 

Two auditory AGL 

tasks: adjacent and 

non-adjacent  

Success in 2AFC test Comprehension of different types of 

grammatically complex sentences. 

adults 30 r=0.11 to r=0.49 

Misyak et al., 2010 

[32]  

Auditory non 

adjacent AGL, 

combined with 

SRT 

Differences in the ability to predict the 

final non-adjacent dependent element 

after training 

Self-paced reading of sentences involving object 

relative clauses 

adults 20 r=0.59 

Shafto et al., 2012 

[21] 

Visual SL RT difference of eye movements 

towards predictable stimuli between 

learning and test. 

Early receptive vocabulary skills 7.5 month-old infants 58 r=0.28 

Spencer et al., 2014 

[15] 

Auditory SL and 

visual AGL 

Success in 4 2AFC test trials for SL; 

Difference in span between grammatical 

and ungrammatical for AGL 

A series of 10 tasks related to early literacy skills 4-10yo children 553 ranging from 0 to 0.2 

Table 1 Summary of recent individual differences studies predicting linguistic abilities from SL performance
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 Although never explicitly specified, individual differences studies of this kind 

typically involve three critical preliminary presuppositions which underlie the logic of 

this experimental strategy. First, since there is no agreed taxonomy of possible types of 

SL, it is treated by default as a unified theoretical construct, a general capacity for 

picking up regularities (with the exception of [13,30]; see, e.g., [31], for discussion). 

Second, and relatedly, the tasks which are selected for the study from the arsenal of 

tasks employed in this domain, are naturally assumed to equally represent a good 

operational proxy of this unified theoretical construct, so that the selection of one 

specific task for the study is not a matter of deep theoretical concerns (though see 

[13,30,32])1. Third, the performance score of the test phase in the task is naturally 

assumed to be a valid and reliable measure of the operational proxy, and therefore, a 

valid and reliable measure of the postulated ability for picking up regularities.  

In the following, we will argue that these three critical presuppositions are 

subject to a number of both theoretical and empirical issues. Although previous studies 

of individual differences in SL have yielded important initial insights into how SL 

might be involved in various aspects of cognition, to get a deeper understanding of the 

extent and precise nature of these relationships we need to address these issues head on.  

 

Is SL a general unified capacity? 

Most studies of SL do not provide an explicit computational account of learning but, 

rather, tend to adopt a more abstract notion of the underlying computations in the form 

of domain-general learning. Typically, the underlying computational system is assumed 

to be a “unified capacity” instantiated by a unitary learning system that is applied across 

different modalities and domains. This may be a reasonable first approximation, given 

                                                             
grained taxonomy between AGL and SL tasks exist, so that AGL tasks are -Admittedly, some coarse 1

typically selected to examine syntactic abilities (e.g., [18]). 
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that the ability to extract statistical structure from the input is found across a wide range 

of stimuli as well as different domains, as reviewed above. Indeed, in the simple and 

abstract sense, there is something common to all these behavioral phenomena: 

registering regularities in the environment. However, advances in cognitive science 

require moving from abstract verbal theorizing to refined mechanistic computational 

theories. From this perspective, it seems that current empirical evidence suggests that 

the differences in computations across different SL phenomena, largely outweigh their 

superficial abstract similarity. 

Modality specificity: Whereas SL has been demonstrated in all sensory and sensory-

motor areas, current evidence systematically suggests qualitatively different patterns of 

performance in different modalities (see [11], for review). Importantly, tracking 

individual abilities in different SL tasks reveals significant reliability of capacity within 

modality, but zero correlation in performance across modalities [33]. Admittedly, one 

should be cautious drawing firm conclusions from a lack of correlations in a single 

study, especially given the relatively low reliability of some of the studied SL tasks 

(which limits the extent of expected correlations between SL measures, see [12,33]). 

Importantly, however, this result concurs with other findings showing qualitative 

differences in SL ability in the auditory, visual, and tactile modalities [4,34], opposite 

effects of presentation parameters on visual vs. auditory SL performance [35], lack of 

learning transfer across modalities (e.g., [36]), and interference in learning two artificial 

grammars within modality, but no interference across modalities [37]. This large body 

of evidence suggests that individual capacity of learning regularities differs across 

domains. This state of affairs should not come as a surprise. Recent imaging data 

suggest that in spite of the suggested role of the medial temporal lobe (MTL) memory 

system in SL (e.g., [38,39]), substantial SL computations occur already in the early 
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visual and auditory cortices (e.g., [40,41]). The visual and auditory cortices involve 

different representations, and the set of computations characterizing these cortical areas 

is naturally constrained by the specific characteristics of the processed input. Thus, both 

the neurobiological and the behavioral evidence are inconsistent with the 

presupposition that SL is a unified capacity.  

Informational specificity: Although SL can be abstractly defined as “learning the 

statistical properties of the continuous sensory input”, from an informational 

perspective there are different kinds of “statistical properties” which are the object of 

learning (see [42], for discussion; see also [Hasson, this issue]). First, there is ample 

evidence that humans are sensitive to transitional statistics in continuous input, 

allowing them to detect even small changes in Transitional Probabilities (TPs) [43]2. 

Second, there is evidence that humans also aggregate information about the relative 

frequency of events (e.g., [44]), as well as their variance in the stream (e.g., [45]), 

showing sensitivity to distributional statistics. Cue-based statistics as revealed in spatial 

contextual-cuing (e.g., [46]), or temporal cuing (e.g., [47]), is yet another form of 

learned regularities. In some cases, multiple cues either within or across modalities are 

needed to learn more complex probabilistic patterns [48]. As Thiessen et al. discuss in 

their expansive review [42], different kinds of statistical information do not necessarily 

implicate different sets of computations. Nevertheless they argue that a complete 

account of statistical learning must explain not only the learning of distributional 

                                                             
2 That learners display sensitivity to TPs does not necessarily entail that the underlying computational 

mechanism of SL explicitly represents TPs between sequential elements. Indeed, an alternative 

theoretical accounts assume that the seeming sensitivity to transitional statistics emerges from chunking 

due to the repetition of groups of elements (e.g., [31,79–81]; see also [82]).  
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statistics (i.e., the frequency and variance of exemplars) but also transitional statistics 

(i.e., learning the co-occurrences of elements in the stream). 

Whether one or more kinds of computations are needed to cover the range of SL 

behaviors requires additional investigation, mainly through computational modeling, 

but also through correlational designs. For example, it has been suggested that learning 

non-adjacent contingencies follows specific constraints that do not exist while learning 

adjacent contingencies [7]. Indeed, supporting findings show that individual SL ability 

to learn adjacent contingencies is uncorrelated with their ability to learn non-adjacent 

contingencies even within modality [13,33,49]3. 

In sum, current empirical evidence is largely inconsistent with SL being a unified 

capacity involving a single set of computations. This has immediate implications for 

any correlational study aiming to tie specific cognitive abilities to SL. We suggest that 

such studies need to consider SL as a componential ability, requiring researchers to 

explicitly specify the theoretical link between the specific cognitive construct they 

investigate and its relation to the specific relevant SL computations.  

2. Are all SL tasks equally valid for assessing SL ability? 

To date there are no agreed-upon constraints on which tasks should be selected as 

proxies for SL capacity. This is exemplified by the different tasks employed in 

correlational studies tying SL to other cognitive capacities, with often very little 

discussion regarding the theoretical logic governing the specific task selection (but see, 

e.g., [13], for such discussion). The problem with this state of affairs is twofold. First, 

                                                             
Importantly, though, comparing potentially different kinds of computations in correlational designs 3

requires careful attention to the detailed probability structure of such computations. For instance, when 

controlling for probability of occurrence between dependencies, Vuong, Meyer, & Christiansen [76] 

found that adjacent and nonadjacent dependencies could be learned simultaneously. 
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without a clear understanding of the specific SL components that are being tapped by a 

given task, well-defined empirical predictions regarding its predictive validity cannot 

be generated. Second, understanding the relation between specific SL components and 

the proxies selected to tap them is necessary for integrating different findings, so as to 

make sense of the wide range of obtained results. In order to develop such integrative 

theory of the relations between SL computational components and linguistic capacities 

(as well as other cognitive capacities), we must first explicitly spell out the different 

components of SL capacity that, according to current evidence, is a multi-faceted 

construct.  

One promising way to develop a theory regarding the inner structure of a complex 

construct is to define it in the form of a mapping sentence in line with Facet Theory, a 

systematic approach to theory development and data collection (e.g., [50,51]). In Facet 

Theory, the first and most important step in investigating a complex theoretical 

construct (in our case, SL), is to formulate a mapping sentence, which defines the full 

domain of the studied phenomena given existing data. A mapping sentence includes 

content facets that represent the different dimensions of the construct. It further outlines 

for each content facet a set of possible values (categorical or continuous) which could 

be relevant to the specific facet. This divides the full range of behavioral phenomena 

into theoretically distinct sub-types [51]. Importantly, one of the unique characteristics 

of Facet Theory is that it is taken to be a continuous effort of trial and error, where 

constructing a mapping sentence that outlines the various facets of a theoretical 

construct resembles an ongoing process of hypotheses testing and updating. An initial 

sentence is typically offered as a starting hypothesis (see [33]), and it is subsequently 

modified given novel empirical data regarding the inter-correlations between the 

suggested facets and their postulated values. Following this strategy, we define a 
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preliminary mapping sentence below that concurs with a wide range of SL phenomena 

already reported in the literature, and outlines a potential set of different dimensions:  

Statistical Learning is the ability to pick-up (1){
𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙
𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑎𝑙

} statistics from the 

sensory environment, in the (2) {
𝑣𝑖𝑠𝑢𝑎𝑙

𝑎𝑢𝑑𝑖𝑡𝑜𝑟𝑦
}  modality, when contingencies are 

(3) {
𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡

𝑛𝑜𝑛 − 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡
} , over (4) {

𝑣𝑒𝑟𝑏𝑎𝑙
𝑛𝑜𝑛 − 𝑣𝑒𝑟𝑏𝑎𝑙

}  material, across (5) {
𝑡𝑖𝑚𝑒
𝑠𝑝𝑎𝑐𝑒

} , 

(6){
𝑤𝑖𝑡ℎ

𝑤𝑖𝑡ℎ𝑜𝑢𝑡
} motor involvement, thereby shaping behavior. 

This suggested mapping sentence offers then six preliminary content facets to 

account for SL phenomena 4. The first three facets: the type of statistics extracted 

(transitional vs. distributional), the input modality (visual vs. auditory)5, and the type 

of contingencies (adjacent vs. non-adjacent), were included in light of empirical 

evidence (reviewed in the previous section), and which have been suggested to involve 

non-overlapping sets of computations. Facets (4) and (5) are additional hypothetical 

dimensions that we offer to account for SL capacity, since they reflect ecologically 

separable phenomena: SL studies show that it occurs for both verbal and non-verbal 

material (e.g., [6]), and that statistical contingencies are extracted across both time and 

space (e.g., [8], though with different biases, see [34]). Admittedly, to date there is little 

unequivocal evidence showing that these phenomena are governed by non-overlapping 

computations and necessarily result in different learning constraints. Nevertheless, our 

recent investigation of SL capacities demonstrates no correlation in performance with 

verbal vs. nonverbal stimuli within modality [33]. Similarly, no interference was found 

                                                             
4 Note that computations related to different values within facet of SL may operate in parallel. Indeed, 

there is compelling evidence that can learners can exploit more than one source of statistical information 

at the same time (e.g., [49,76,83]), although sometimes at the cost of interference [84]. 
5 Because sensory information related to SL phenomena is mostly visual or auditory, the tactile modality 

is omitted for the sake of simplicity. 
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in learning two different sets of regularities at the same time, when they comprised 

verbal and nonverbal materials (nonwords vs. tones, [37]) 6 . Indeed, recent 

neurobiological findings suggest that neural temporal coding is independent of the 

spatial dimension, and that specific time cells represent the flow of time (see [52]).  

Importantly, from a theoretical perspective, including facets (4) and (5) in the 

mapping sentence has the advantage of shaping future investigation, so as to examine 

empirically the extent of their relative overlap and interaction (see [43], for discussion). 

Facet number (6) – motor involvement – is yet another dimension that requires further 

investigation. Statistics of an input can be extracted without any motor involvement 

(such as in the case of most SL or AGL tasks). However, some SL tasks specifically 

involve active motor responses to stimuli (such as in the case of motor sequence 

statistical learning, best exemplified by the Serial Reaction Time (SRT) task, e.g., [53]). 

Whether such motor activity results in non-overlapping sets of computations in 

extracting statistical structure, is then another open question awaiting future research 

(see, e.g., [54] for a discussion).  

Mapping sentences typically start small and grow bigger as empirical 

investigation progresses. Our initial proposed mapping sentence, therefore, does not 

preclude the possibility that other dimensions may be relevant for understanding SL 

ability. Possible additional candidate facets could be, for example, basic perceptual 

dimensions (color, line orientation, etc.; e.g., [37]), full vs. quasi regularity (see [43], 

for discussion), implicit vs. explicit learning settings (e.g., [55]), or, relatedly, 

unsupervised vs. supervised learning settings (see [56] for a discussion of the role of 

                                                             
argue that verbal stimuli are special in the sense that they require a hardwired specific  do notHere we  6

neurobiological mechanism. Rather, verbal stimuli (e.g., syllables) differ from non-verbal stimuli (e.g., 

tones) in the sense that they involve extensive prior exposure, which inevitably effects learning. 
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feedback in perceptual category learning). An additional factor that was shown to affect 

SL performance is rate of presentation – with opposite effects of both the inter stimulus 

interval and the actual stimulus duration on SL performance in the visual versus 

auditory modality ([34,35]; but see [57]). Whether rate of presentation constitutes a 

separate facet, or simply affects peripheral aspects to SL such as the encoding of 

individual elements, with different constraints in different modalities (see [11]), 

deserves further investigation. 

 Defining a mapping sentence as a working hypothesis for studying individual 

differences in SL enables theoretical discussions regarding how and why specific SL 

components modulate specific sub-components of other cognitive abilities, given their 

overlapping hypothesized computations. This makes the logic of choosing specific SL 

tasks for a given study more transparent, and allows a clear interpretation of the 

findings. For example, different components of linguistic phenomena most likely 

involve more than one type of underlying SL computations. Acquiring phonotactic 

constraints of a language requires registering both transitional and distributional 

statistics7 of phonemes in the speech stream via the auditory modality [58], while 

learning to read in L1 or L2 involves assimilating transitional statistics of letter 

sequences in the visual modality, but also aggregating systematic correlations between 

letters and sound, and between letter sequences and meaning through morphological 

form (see [59], for discussion). The mapping sentence above thus allows for more 

refined discussions of the components involved in each linguistic capacity and its 

relation to SL. 

                                                             
7 Note that distributional and transitional statistics overlap given that to compute transitional 

probabilities (e.g., between phonemes), the learner needs to keep track of the frequency of phonemes 

and phoneme pairs (or bigrams). For example, the forward transitional probability of phoneme Y 

following phoneme X is computed as Frequency (XY) / Frequency (X), requiring the learner to register 

both the distribution of biphone pairs (XY) and that of the individual phonemes (X).  
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 Importantly, a mapping sentence for SL not only dissects the outcome cognitive 

phenomena in terms of their different statistical computations, but also points to tasks 

that could (or should) be used to measure SL as predictors of a specific ability. To date, 

the arsenal of tasks tapping SL capacity is impressively varied: in addition to those 

reviewed in Table 1, tasks such as the Serial Reaction Time (e.g., [60]), Contextual 

Cuing (e.g., [61]), Tone Detection (e.g., [62]), or Hebb Repetition Task (e.g., [63]), are 

all considered to be proxies of SL, since they all involve learning statistical regularities. 

The advantage of a mapping sentence is that it provides a priori criteria for selecting 

one of the many available tasks for a given study, specifying the inter-relations between 

them. For example, in contrast to tasks such as visual SL or SRT that tap the extraction 

of transitional statistics, tasks such as Contextual Cuing require registering the 

distribution of stimuli to learn the repeated patterns, whereas tasks such as AGL involve 

both learning of units defined by transitional statistics (see, e.g., [64]), as well as their 

distributional statistics [42]. 

So far we have advocated a research strategy that requires researchers to be very 

explicit about what specific computations involved in a given SL task and their predicted 

outcomes. However, if the target of research is to assess the overall SL capacity of an 

individual as defined by the mapping sentence, as well as its predictive validity, the 

proposed mapping sentence provides specific guidelines for developing novel SL tasks 

to cover a wide range of SL components. Here we propose that if SL is indeed a multi-

faceted construct involving different types of computations with substantial non-

overlapping variance, then this capacity should be measured and assessed by a variety 

of different tasks. Much like in the measurement of other complex constructs (e.g., the 

g factor measured by WAIS, [65]), accurate estimation of multi-faceted constructs 

involves a large battery of tasks, each covering different parts of the variance. But note, 
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that in contrast to general intelligence, which has been mapped through decades of 

extensive research, the dimensions of SL as an individual ability are yet to be 

empirically established. Our mapping sentence attempts to offer a preliminary 

approximation of the possible facets of SL, serving as springboard for such research. 

At this point, we argue that current evidence points to SL as a multi-faceted individual 

ability. Selecting tasks as proxies for this ability thus requires an integrative approach 

with explicit discussions of the specific components which are being tapped.  

3. Are standard task test scores a good proxy of SL ability? 

The vast majority of studies tracking individual differences in SL employ the same 

tasks that were originally designed for group-level studies. Here the underlying 

assumption is that the outcome measure of performance in the task would serve as a 

good proxy or indicator of the theoretical construct: individual SL ability. We see two 

problems with this assumption. First, from a methodological perspective although the 

typical SL tasks can reliably estimate the mean performance of the sample as a whole, 

they are often not sensitive enough to estimate a given individual's SL ability. Second, 

as we outline bellow, from a theoretical perspective, the structure of the tasks often 

intermixes outputs of different SL computations. This practice is likely to confound 

cognitive capacities that are orthogonal to SL, while also potentially lead to interference 

effects that mask the true capacity of SL.  

Psychometric weakness. A task that is suitable for measuring individual capacity 

must show substantial between-individual variance and this variance must be highly 

reliable. If not, the task cannot differentiate between good and bad learners, and cannot 

reliably predict other cognitive capacities. As we have recently argued [12], most SL 

tasks that have been used for group-level studies do not withstand psychometric 
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scrutiny. This is due to a number of shortcomings, such as insufficient number of test 

trials, the difficulty of the task which results in a large part of the sample performing at 

chance, and the lack of variability in test item difficulty. Together, these psychometric 

weaknesses lead to tasks tapping mainly error variance rather than variance related to 

SL capacity (see [12], for extended discussion, and possible solutions). Whereas this 

state of affairs did not hinder demonstrations of learning across a full sample of 

participants, they constitute a formidable obstacle to individual differences studies. 

Structural confounds: At present, most SL tasks are based on a passive 

familiarization phase, in which stimuli representing a set of regularities are presented 

to participants (e.g., a continuous stream of shapes or syllables organized in pairs or 

triplets in visual and auditory SL, a sequence of “grammatical” sequences in AGL, etc.). 

Once the familiarization phase is over, it is followed by a test phase that estimates 

participants' learning of the statistical properties of the previously presented stream, 

typically through a series of 2AFC responses. We will refer to these measures as offline 

measures of performance, since they do not track the discovery of regularities from the 

stream while it unfolds, but attempt to assess the extent of learning once it is over.  

The theoretical challenges that offline measures implicate are presented in Figure 1 

which outlines the components of individual performance in the classical visual SL 

(VSL) task (e.g., [3,16,35,66,67]) is measured (see [68] for a related approach). 
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Figure 1. The factors contributing to SL task performance, as measured by standard offline 

measures.  

 

As an example, consider a common variant of the VSL task, in which 24 abstract 

shapes are organized into eight triplets. During a familiarization phase these triplets are 

repeatedly presented in a continuous stream. The only source of information regarding 

the composition of the triplets in the stream lies in the transitional probabilities (TPs) 

between the shapes in the sequence: TPs between shapes within a triplet is 1, whereas 

TPs of shapes between triplets is 1/7, for 8 triplets without immediate repetition of a 

triplet. Following familiarization, the test phase begins. It consists of a series of 2AFC 

trials, each contrasting one of the triplets presented during learning with a “foil” – a 

group of three shapes that never appeared together in the familiarization phase (TPs=0). 

In each trial of the test, one foil and one triplet are presented, and participants are asked 

to decide which group of shapes appears more familiar, given the stream they have 

seen. The final score that represents SL individual ability is the number of correct 

responses in the test phase. 

Figure 1 depicts a coarse-grained account of possible factors and processes 

underlying the final observed performance in the task. On the left side of the figure (in 

blue), we describe the processes involved in the familiarization phase, while on the right 
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side (in red) we list several additional factors affecting the outcome of the test phase. 

Considering the computation of regularities, we note that participants first have to 

perceive and encode the individual elements of the stream (factor A). Since individuals 

substantially differ in the resolution of their perceptual system, their differential ability 

to generate perceptual representations under specific exposure constraints, would 

inevitably contribute to the variance of performance in the subsequent test-phase (see 

also [11,43]). While encoding the individual events, participants further have to 

discover the statistical regularities in the stream (factor B), which is, in our present 

context, the most central factor for SL research. These two factors in combination (A 

and B) may result in sufficient sensitivity to the statistical regularities to perform above 

chance in the test phase. In addition, some experiments include instructions or other 

demand characteristics that may lead participants to try and detect repeated patterns 

(here, triplets) and memorize them for later recollection. Although this type of strategy 

is not required for successful SL, such additional explicit memorization efforts will add 

yet another task component (factor C) with considerable individual differences (e.g., 

[69]; see [Gomez, this issue] for discussion).  

Critically, the underlying implicit assumption behind the use of offline measures 

is that the accurate signature of learning can be retroactively traced, so that the test 

score would reflect the two, possibly three factors (A, B, and C) contributing to SL 

abilities, and these only. However, as we will argue, similar to many offline tests in 

other fields in cognitive science (e.g., [70]) , the testing phase in SL tasks inevitably 

interferes with what was learnt during familiarization, obscuring the ability to 

accurately measure the net SL ability. Here we label the interference component (factor 

i). This leads us to the following operationalization of measuring performance in the 

VSL task, using offline measures:  
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Task performance = f (A*B [*C] – i) 

By this formula, performance in the VSL task would be some function of the 

multiplication of the ability to encode shapes (A), the ability to encode their co-

occurrences (B), and, in some cases, the ability to store the extracted triplets (or 

patterns) in memory (C), minus (i) the degree of test interference. We opted for 

multiplication of the first two/three factors A, B, C, rather than simple additivity, since 

zero ability in any of the components (inability to encode shapes, inability to extract 

regularities, or inability to store items in memory) would inevitably result in zero 

learning.  

Note that this operationalization applies not only to the VSL task, but can be 

generalized (with some obvious modifications given the exact task design) to other SL 

tasks involving offline measurements. It enables us, however, to explicate the critical 

shortcomings of this method to assess SL capacity. 

 

Shortcomings of current offline measures: 

The first problem that arises is that performance in offline tests intermixes encoding 

efficiency, learning statistical regularities, and possibly individual memory constraints. 

Since the offline test is administered only after the learning phase in which those 

processes occur, it cannot differentiate between the relative contribution of these factors 

to the final learning score. Naturally, one could dismiss this caveat arguing that SL 

capacity inherently reflects the joint contribution of these components. However, in 

terms of predictive validity, in order to theoretically tie SL performance to specific 

cognitive abilities, knowing where exactly a potential weakness lies (encoding, 

learning, or explicit memorization), is crucial. This is especially critical for an 
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explanatory theory regarding how SL results in specific cognitive impairments, such as 

SLI, dyslexia, etc.  

The second problem is that offline measures, being set at the end of learning, do not 

provide any information regarding the learning dynamics across time. Since no data 

are collected during the learning phase, offline measures simply miss a large part of the 

action (this is a key part of the motivation for the AGL-SRT task developed by [19,30]; 

see also [71] for an individual-differences SRT study). Learning dynamics are 

important for two reasons. First, they provide insights regarding the speed of learning 

(i.e., how fast a given individual is in picking-up the statistical properties of the input), 

in addition to the extent of his/her learning (i.e., how much of the underlying structure 

did he/she learn in a pre-defined time period). From a theoretical perspective, both 

speed and degree of learning are useful markers of a participant’s SL ability. In 

addition, learning dynamics can provide valuable insights regarding the shape of the 

learning trajectory – for example, it can be used to examine whether knowledge is 

acquired gradually (reflected by a linear/logarithmic learning trajectory), or whether 

learning is characterized by a sudden burst in performance (i.e., step function).  

The third problem is that the post-hoc nature of the offline test inevitably introduces 

testing interference and confounds. For example, to allow for sufficient test items and 

to improve the resolution of performance scores, patterns and foils are typically 

repeated throughout the test phase several times. These repetitions effects interfere with 

learning, thereby blurring the methodological separation between intended learning 

during familiarization, and unintended learning that occurs during the test phase8. It is 

                                                             
8 The potential for learning during test has long been known in the implicit learning literature and thus 

a number of AGL studies have employed no-learning control groups to factor out potential effects of 

such learning on test performance (e.g., [4]). Note also that in some paradigms researchers have tried to 

mitigate the effect of learning/interference during the test phase by interleaving several tests with re-

familiarization phases (e.g., in perceptional adaptation paradigms, see [85]).  
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impossible to know whether responses reflect information acquired during learning or 

of overriding information presented by the repeated test items (see [12], for discussion).  

 

The promise of online measures 

The main motivation for using online measures is to track learning throughout 

the familiarization phase as it unfolds, which alleviates most of the caveats introduced 

by offline measures. As such, online measures of SL carry the promise of better 

resolution on multiple levels: First, from a theoretical perspective, they can differentiate 

cognitive processes that relate to the perceptual encoding of input elements and the 

learning of their distributional properties, from processes that use this information 

during a subsequent test. This makes it possible to identify the contribution of each of 

these components to SL performance. Second, online measures provide information 

regarding learning dynamics, reflecting how fast each individual learns the statistical 

properties of a stream, as well as indicating his/her learning trajectory. Third, by 

gathering a maximal amount of information (by tapping the full learning session), and 

by avoiding the interference introduced by the test phase, online measures have the 

promise of higher ‘psychometric resolution’- resulting in more reliable measurements.  

Operationally, we define online measures as examining participants' responses 

throughout the learning process. A typical example is the classic SRT task, where 

implicit learning of a repeated sequence of digits is monitored. The online measure, the 

time taken to press a given key corresponding to a given digit, reflects the underlying 

assumption that faster motor responses are expected for predicted sequences compared 

with random ones. Since predicted events result in faster responses, the trajectory of 

learning can be traced in this task.  
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These principles, however, can be easily applied to classical SL tasks. Consider 

for example the above VSL task. A simple modification can be introduced into the task 

to yield useful online information (see [72], for an action-sequence version, and [73], 

for visual AGL). Rather than asking participants to passively watch a stream of visual 

shapes which appeared on the screen at a fixed rate of presentation, they are asked to 

advance the stream of shapes by themselves, at their own pace, by pressing the spacebar 

(much like in the self-paced reading paradigm, [74]). The assumption is that learning 

the transitional probabilities between shapes in the triplets will result in faster bar 

pressing for predicted shapes (second and third shapes of the triplet), relative to 

unpredicted shapes (the first shape of each triplet). This makes it possible to track the 

detailed time-course of learning. RT differences between predicted and unpredicted 

stimuli have also been demonstrated in other tasks in auditory [75] and audio-visual SL 

[19,30,32,76]. Importantly, online measures of SL have been found to correlate with 

sentence processing in L1 [19,32], providing preliminary evidence regarding its 

predictive validity.  

But note that the development of online measures of SL still requires extensive 

research. First, it is yet to be shown whether the existing online measures of learning 

provide reliable measures of individual performance, since no studies to date have 

examined the reliability of such measures (see by contrast, the reliability coefficients 

of offline measures recently reported by [33]). Second, existing studies present mixed 

reports regarding the correlations between online and the standard offline measures of 

SL (high correlations reported in [73], but zero correlations reported in [19,75,77]). 

Low correlations between offline and online measures in the same task could reflect 

theoretical issues (e.g., tapping explicit vs. implicit knowledge, [78], or tapping 

different components of SL variance, [19]). However, such state of affairs might also 
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be due to an inherent low reliability of online measures, either because they are unstable 

or inaccurate. A third issue in the development of online measures is that some online 

tasks may actually contaminate learning – for example, it was shown that in the SL 

click-detection paradigm (first proposed by [75]), the mere presence of clicks in the 

familiarization stream hinders learning due to its taxation on attentional resources [77]. 

These issues need to be resolved by further research if the promise of the higher-

resolution online measures is to be realized in future SL studies.  

 

Concluding remarks 

The theoretical interest in SL originally emerged as potential domain-general 

alternative to domain-specific approaches to language. Rather than assuming an innate 

and modular human capacity for processing linguistic information, SL was offered as a 

general mechanism for learning and processing any type of sensory input. In line with 

this view, individual performance in SL tasks was systematically shown to correlate 

with an array of linguistic abilities. Here we have suggested that further advances in 

this research enterprise require a deep mechanistic understanding of the precise 

interrelationship(s) between linguistic performance and SL ability, where SL as a 

theoretical construct is unpacked, no longer treated as a unified “black-box” entity. On 

this view, empirical and modeling work should provide a-priori hypotheses regarding 

the set of computations that underlie the learning of specific statistical regularities, 

within different types of input, in different modalities, taking into account their 

neurobiological constraints. This will allow for clear and testable fine-grained 

predictions that tie particular linguistic (and potentially other cognitive) abilities to 

specific SL computations. In the same vein, different experimental tasks impose 

different constraints on learning, thereby implicating different learning mechanisms. 
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Transparent discussions regarding the specific computations involved in each SL task, 

its relations to other SL paradigms, and the strategies that learners might use to learn a 

given statistical structure are necessary for establishing the theoretical link between 

performance in the task, and the cognitive function it is supposed to predict. On the 

methodological level, such finer-grained hypotheses would call for more refined 

measures of SL, that track SL performance more directly, providing a richer set of data 

regarding the processes involved in SL. In line with these aims, the current paper offers 

a preliminary taxonomy of SL phenomena and outlines methodological guidelines, that 

can serve such future research.  

 

Acknowledgements  

This article was supported by the Israel Science Foundation (Grant No. 217/14, 

awarded to R.F.), and by the National Institute of Child Health and Human 

Development (Grant Nos. RO1 HD 067364, awarded to Ken Pugh and R.F., and PO1-

HD 01994, awarded to Haskins Laboratories). L.B. is a research fellow of the Fyssen 

Foundation. 

 

Authors’ contributions  

All four authors contributed to the writing of this paper.  



 25 

References 

1. Saffran, J. R., Aslin, R. N. & Newport, E. L. 1996 Statistical Learning by 8-

Month-Old Infants. Science (80-. ). 274, 1926–1928. 

(doi:10.1126/science.274.5294.1926) 

2. Endress, A. D. & Mehler, J. 2009 The surprising power of statistical learning: 

When fragment knowledge leads to false memories of unheard words. J. Mem. 

Lang. 60, 351–367. (doi:10.1016/j.jml.2008.10.003) 

3. Kirkham, N. Z., Slemmer, J. A. & Johnson, S. P. 2002 Visual statistical 

learning in infancy: evidence for a domain general learning mechanism. 

Cognition 83, B35–B42. (doi:10.1016/S0010-0277(02)00004-5) 

4. Conway, C. M. & Christiansen, M. H. 2005 Modality-constrained statistical 

learning of tactile, visual, and auditory sequences. J. Exp. Psychol. Learn. 

Mem. Cogn. 31, 24–39. (doi:10.1037/0278-7393.31.1.24) 

5. Pelucchi, B., Hay, J. F. & Saffran, J. R. 2009 Statistical Learning in a Natural 

Language by 8-Month-Old Infants. Child Dev. 80, 674–685. 

(doi:10.1111/j.1467-8624.2009.01290.x) 

6. Gebhart, A. L., Newport, E. L. & Aslin, R. N. 2009 Statistical learning of 

adjacent and nonadjacent dependencies among nonlinguistic sounds. Psychon. 

Bull. Rev. 16, 486–490. (doi:10.3758/PBR.16.3.486) 

7. Newport, E. L. & Aslin, R. N. 2004 Learning at a distance I. Statistical learning 

of non-adjacent dependencies. Cogn. Psychol. 48, 127–162. 

(doi:10.1016/S0010-0285(03)00128-2) 

8. Fiser, J. & Aslin, R. N. 2001 Unsupervised statistical learning of higher-order 

spatial structures from visual scenes. Psychol. Sci. 12, 499–504. 

(doi:10.1111/1467-9280.00392) 



 26 

9. Evans, J., Saffran, J. & Robe-Torres, K. 2009 Statistical learning in children 

with Specific Language Impairment. J. Speech, Lang. Hear. Res. 52, 321–335.  

10. Bulf, H., Johnson, S. P. & Valenza, E. 2011 Visual statistical learning in the 

newborn infant. Cognition 121, 127–132. 

(doi:10.1016/j.cognition.2011.06.010) 

11. Frost, R., Armstrong, B. C., Siegelman, N. & Christiansen, M. H. 2015 

Domain generality versus modality specificity: the paradox of statistical 

learning. Trends Cogn. Sci. 19, 117–125. (doi:10.1016/j.tics.2014.12.010) 

12. Siegelman, N., Bogaerts, L. & Frost, R. 2016 Measuring individual differences 

in statistical learning: Current pitfalls and possible solutions. Behav. Res. 

Methods (doi:10.3758/s13428-016-0719-z) 

13. Misyak, J. B. & Christiansen, M. H. 2012 Statistical learning and language: An 

individual differences study. Lang. Learn. 62, 302–331. (doi:10.1111/j.1467-

9922.2010.00626.x) 

14. Arciuli, J. & Simpson, I. C. 2012 Statistical learning is related to reading ability 

in children and adults. Cogn. Sci. 36, 286–304. (doi:10.1111/j.1551-

6709.2011.01200.x) 

15. Spencer, M., Kaschak, M. P., Jones, J. L. & Lonigan, C. J. 2014 Statistical 

learning is related to early literacy-related skills. Read. Writ. 28, 467–490. 

(doi:10.1007/s11145-014-9533-0) 

16. Frost, R., Siegelman, N., Narkiss, A. & Afek, L. 2013 What predicts successful 

literacy acquisition in a second language? Psychol. Sci. 24, 1243–52. 

(doi:10.1177/0956797612472207) 

17. Kidd, E. & Arciuli, J. 2015 Individual Differences in Statistical Learning 

Predict Children’s Comprehension of Syntax. Child Dev. 87, 184–193. 



 27 

(doi:10.1111/cdev.12461) 

18. Kidd, E. 2012 Implicit statistical learning is directly associated with the 

acquisition of syntax. Dev. Psychol. 48, 171–184. (doi:10.1037/a0025405) 

19. Misyak, J. B., Christiansen, M. H. & Tomblin, J. B. 2010 On-line individual 

differences in statistical learning predict language processing. Front. Psychol. 

1, 31. (doi:10.3389/fpsyg.2010.00031) 

20. Mainela-Arnold, E. & Evans, J. L. 2014 Do statistical segmentation abilities 

predict lexical-phonological and lexical-semantic abilities in children with and 

without SLI? J. Child Lang. 41, 327–51. (doi:10.1017/S0305000912000736) 

21. Shafto, C. L., Conway, C. M., Field, S. L. & Houston, D. M. 2012 Visual 

Sequence Learning in Infancy: Domain-General and Domain-Specific 

Associations With Language. Infancy 17, 247–271. (doi:10.1111/j.1532-

7078.2011.00085.x) 

22. Singh, L., Steven Reznick, J. & Xuehua, L. 2012 Infant word segmentation and 

childhood vocabulary development: A longitudinal analysis. Dev. Sci. 15, 482–

495. (doi:10.1111/j.1467-7687.2012.01141.x) 

23. Conway, C. M., Karpicke, J. & Pisoni, D. B. 2007 Contribution of implicit 

sequence learning to spoken language processing: Some preliminary findings 

with hearing adults. J. Deaf Stud. Deaf Educ. 12, 317–334. 

(doi:10.1093/deafed/enm019) 

24. Conway, C. M., Bauernschmidt, A., Huang, S. S. & Pisoni, D. B. 2010 Implicit 

statistical learning in language processing: Word predictability is the key. 

Cognition 114, 356–371. (doi:10.1016/j.cognition.2009.10.009) 

25. Hsu, H. J., Tomblin, J. B. & Christiansen, M. H. 2014 Impaired statistical 

learning of non-adjacent dependencies in adolescents with specific language 



 28 

impairment. Front. Psychol. 5, 1–10. (doi:10.3389/fpsyg.2014.00175) 

26. Plante, E., Bahl, M., Vance, R. & Gerken, L. 2010 Children with specific 

language impairment show rapid, implicit learning of stress assignment rules. 

J. Commun. Disord. 43, 397–406. (doi:10.1016/j.jcomdis.2010.04.012) 

27. Gabay, Y., Thiessen, E. D. & Holt, L. L. 2015 Impaired statistical learning in 

developmental dyslexia. J. Speech, Lang. Hear. Res. 58, 934–945. 

(doi:10.1044/2015) 

28. Pavlidou, E. V., Kelly, M. L. & Williams, J. M. 2010 Do Children with 

Developmental Dyslexia Have Impairments in Implicit Learning? Dyslexia 16, 

143–161. (doi:10.1002/dys.400) 

29. Christiansen, M. H., Louise Kelly, M., Shillcock, R. C. & Greenfield, K. 2010 

Impaired artificial grammar learning in agrammatism. Cognition 116, 382–393. 

(doi:10.1016/j.cognition.2010.05.015) 

30. Misyak, J. B., Christiansen, M. H. & Tomblin, J. B. 2010 Sequential 

expectations: The role of prediction-based learning in language. Top. Cogn. 

Sci. 2, 138–153. (doi:10.1111/j.1756-8765.2009.01072.x) 

31. Perruchet, P. & Pacton, S. 2006 Implicit learning and statistical learning: one 

phenomenon, two approaches. Trends Cogn. Sci. 10, 233–8. 

(doi:10.1016/j.tics.2006.03.006) 

32. Misyak, J. B. & Christiansen, M. H. 2010 When ‘more’ in statistical learning 

means ‘less’ in language: Individual differences in predictive processing of 

adjacent dependencies. In Proceedings of the 32nd Annual Cognitive Science 

Society Conference (eds R. Catrambone & S. Ohlsson), pp. 2686–2691. Austin, 

TX: Cognitive Science Society.  

33. Siegelman, N. & Frost, R. 2015 Statistical learning as an individual ability: 



 29 

Theoretical perspectives and empirical evidence. J. Mem. Lang. 81, 105–120.  

34. Conway, C. M. & Christiansen, M. H. 2009 Seeing and hearing in space and 

time: Effects of modality and presentation rate on implicit statistical learning. 

Eur. J. Cogn. Psychol. 21, 561–580. (doi:10.1080/09541440802097951) 

35. Emberson, L. L., Conway, C. M. & Christiansen, M. H. 2011 Timing is 

everything: changes in presentation rate have opposite effects on auditory and 

visual implicit statistical learning. Q. J. Exp. Psychol. 64, 1021–1040. 

(doi:10.1080/17470218.2010.538972) 

36. Redington, M. & Chater, N. 1996 Transfer in artificial grammar learning: A 

reevaluation. J. Exp. Psychol. Gen. 125, 123–138. (doi:10.1037/0096-

3445.125.2.123) 

37. Conway, C. M. & Christiansen, M. H. 2006 Statistical learning within and 

between modalities: pitting abstract against stimulus-specific representations. 

Psychol. Sci. 17, 905–912. (doi:10.1111/j.1467-9280.2006.01801.x) 

38. Schapiro, A. C., Gregory, E. & Landau, B. 2014 The Necessity of the Medial-

Temporal Lobe for Statistical Learning. J. Cogn. Neurosci. 26, 1736–1747.  

39. Turk-Browne, N. B., Scholl, B. J., Chun, M. M. & Johnson, M. K. 2009 Neural 

evidence of statistical learning: efficient detection of visual regularities without 

awareness. J. Cogn. Neurosci. 21, 1934–1945. (doi:10.1162/jocn.2009.21131) 

40. Tremblay, P., Baroni, M. & Hasson, U. 2013 Processing of speech and non-

speech sounds in the supratemporal plane: auditory input preference does not 

predict sensitivity to statistical structure. Neuroimage 66, 318–32. 

(doi:10.1016/j.neuroimage.2012.10.055) 

41. Meyer, T. & Olson, C. R. 2011 Statistical learning of visual transitions in 

monkey inferotemporal cortex. Proc. Natl. Acad. Sci. 108, 19401–6. 



 30 

(doi:10.1073/pnas.1112895108) 

42. Thiessen, E. D., Kronstein, A. T. & Hufnagle, D. G. 2013 The extraction and 

integration framework: a two-process account of statistical learning. Psychol. 

Bull. 139, 792–814. (doi:10.1037/a0030801) 

43. Bogaerts, L., Siegelman, N. & Frost, R. 2016 Splitting the variance of 

statistical learning performance: A parametric investigation of exposure 

duration and transitional probabilities. Psychon. Bull. Rev. 

(doi:10.3758/s13423-015-0996-z) 

44. Maye, J., Werker, J. F. & Gerken, L. 2002 Infant sensitivity to distributional 

information can affect phonetic discrimination. Cognition 82, 101–111. 

(doi:10.1016/S0010-0277(01)00157-3) 

45. Daikhin, L. & Ahissar, M. 2012 Responses to deviants are modulated by 

subthreshold variability of the standard. Psychophysiology 49, 31–42. 

(doi:10.1111/j.1469-8986.2011.01274.x) 

46. Goujon, A., Didierjean, A. & Thorpe, S. 2015 Investigating implicit statistical 

learning mechanisms through contextual cueing. Trends Cogn. Sci. 19, 524–

533. (doi:10.1016/j.tics.2015.07.009) 

47. Curtin, S., Mintz, T. H. & Christiansen, M. H. 2005 Stress changes the 

representational landscape: Evidence from word segmentation. Cognition 96, 

233–262. (doi:10.1016/j.cognition.2004.08.005) 

48. van den Bos, E., Christiansen, M. H. & Misyak, J. B. 2012 Statistical learning 

of probabilistic nonadjacent dependencies by multiple-cue integration. J. Mem. 

Lang. (doi:10.1016/j.jml.2012.07.008) 

49. Romberg, A. R. & Saffran, J. R. 2013 All together now: Concurrent learning of 

multiple structures in an artificial language. Cogn. Sci. 37, 1290–1320. 



 31 

(doi:10.1111/cogs.12050) 

50. Shye, S., Elizur, D. & Hoffman, M. 1994 Introduction to facet theory: Content 

design and intrinsic data analysis in behavioral research. Thousand Oaks, CA: 

Sage Publications.  

51. Guttman, R. & Greenbaum, C. 1998 Facet Theory: Its Development and 

Current Status. Eur. Psycholoist 3, 13–36. (doi:10.1027//1016-9040.3.1.13) 

52. Eichenbaum, H. 2013 Memory on time. Trends Cogn. Sci. 17, 81–88. 

(doi:10.1016/j.tics.2012.12.007) 

53. Schvaneveldt, R. W. & Gomez, R. L. 1998 Attention and probabilistic 

sequence learning. Psychol. Res. 61, 175–190. (doi:10.1007/s004260050023) 

54. Robertson, E. M. 2007 The serial reaction time task: implicit motor skill 

learning? J. Neurosci. 27, 10073–10075. (doi:10.1523/JNEUROSCI.2747-

07.2007) 

55. Arciuli, J., von Koss Torkildsen, J., Stevens, D. J. & Simpson, I. C. 2014 

Statistical learning under incidental versus intentional conditions. Front. 

Psychol. 5. (doi:10.3389/fpsyg.2014.00747) 

56. Maddox, W. T., Love, B. C., Glass, B. D. & Filoteo, J. V. 2008 When more is 

less: Feedback effects in perceptual category learning. Cognition 108, 578–589. 

(doi:10.1016/j.cognition.2008.03.010) 

57. Palmer, S. D. & Mattys, S. L. 2016 Speech segmentation by statistical learning 

is supported by domain-general processes within working memory. Q. J. Exp. 

Psychol. (Hove). , 1–12. (doi:10.1080/17470218.2015.1112825) 

58. Adriaans, F. & Kager, R. 2010 Adding generalization to statistical learning: 

The induction of phonotactics from continuous speech. J. Mem. Lang. 62, 311–

331. (doi:10.1016/j.jml.2009.11.007) 



 32 

59. Frost, R. 2012 Towards a universal model of reading. Behav. Brain Sci. 35, 

263–279. (doi:10.1017/S0140525X11001841) 

60. Kaufman, S. B., DeYoung, C. G., Gray, J. R., Jiménez, L., Brown, J. & 

Mackintosh, N. 2010 Implicit learning as an ability. Cognition 116, 321–340. 

(doi:10.1016/j.cognition.2010.05.011) 

61. Goujon, A. & Fagot, J. 2013 Learning of spatial statistics in nonhuman 

primates: Contextual cueing in baboons (Papio papio). Behav. Brain Res. 247, 

101–109. (doi:10.1016/j.bbr.2013.03.004) 

62. Ahissar, M. 2007 Dyslexia and the anchoring-deficit hypothesis. Trends Cogn. 

Sci. 11, 458–465. (doi:10.1016/j.tics.2007.08.015) 

63. Szmalec, A., Page, M. P. A. & Duyck, W. 2012 The development of long-term 

lexical representations through Hebb repetition learning. J. Mem. Lang. 67, 

342–354. (doi:10.1016/j.jml.2012.07.001) 

64. Poletiek, F. H. & Wolters, G. 2009 What is learned about fragments in artificial 

grammar learning? A transitional probabilities approach. Q. J. Exp. Psychol. 

62, 868–76. (doi:10.1080/17470210802511188) 

65. Wechsler, D. 2008 Wechsler adult intelligence scale - Fourth Edition (WAIS-

IV). San Antonio.  

66. Glicksohn, A. & Cohen, A. 2013 The role of cross-modal associations in 

statistical learning. Psychon. Bull. Rev. 20, 1161–1169. (doi:10.3758/s13423-

013-0458-4) 

67. Turk-Browne, N. B., Junge, J. A. & Scholl, B. J. 2005 The automaticity of 

visual statistical learning. J. Exp. Psychol. 134, 552–564. (doi:10.1037/0096-

3445.134.4.552) 

68. Karuza, E. A., Emberson, L. L. & Aslin, R. N. 2014 Combining fMRI and 



 33 

behavioral measures to examine the process of human learning. Neurobiol. 

Learn. Mem. 109, 193–206. (doi:10.1016/j.nlm.2013.09.012) 

69. Unsworth, N. & Engle, R. W. 2007 The nature of individual differences in 

working memory capacity: active maintenance in primary memory and 

controlled search from secondary memory. Psychol. Rev. 114, 104–132. 

(doi:10.1037/0033-295X.114.1.104) 

70. Malmberg, K. J., Criss, A. H., Gangwani, T. H. & Shiffrin, R. M. 2012 

Overcoming the Negative Consequences of Interference From Recognition 

Memory Testing. Psychol. Sci. 23, 115–119. (doi:10.1177/0956797611430692) 

71. Hunt, R. H. & Aslin, R. N. 2001 Statistical learning in a serial reaction time 

task: access to separable statistical cues by individual learners. J. Exp. Psychol. 

Gen. 130, 658–680. (doi:10.1037/0096-3445.130.4.658) 

72. Baldwin, D., Andersson, A., Saffran, J. & Meyer, M. 2008 Segmenting 

dynamic human action via statistical structure. Cognition 106, 1382–1407. 

(doi:10.1016/j.cognition.2007.07.005) 

73. Karuza, E. A., Farmer, T. A., Fine, A. B., Smith, F. X. & Jaeger, T. F. 2014 

On-line Measures of Prediction in a Self-Paced Statistical Learning Task. In 

Proceedings of the 36th Annual Meeting of the Cognitive Science Society, pp. 

725–730. 

74. Just, M. A., Carpenter, P. A. & Woolley, J. D. 1982 Paradigms and processes 

in reading comprehension. J. Exp. Psychol. Gen. 111, 228–238. 

(doi:10.1037/0096-3445.111.2.228) 

75. Gómez, D. M., Bion, R. H. & Mehler, J. 2011 The word segmentation process 

as revealed by click detection. Lang. Cogn. Process. 26, 212–223. 

(doi:10.1080/01690965.2010.482451) 



 34 

76. Vuong, L. C., Meyer, A. S. & Christiansen, M. H. 2016 Concurrent learning of 

adjacent and nonadjacent dependencies. Lang. Learn.  

77. Franco, A., Gaillard, V., Cleeremans, A. & Destrebecqz, A. 2014 Assessing 

segmentation processes by click detection: online measure of statistical 

learning, or simple interference? Behav. Res. Methods (doi:10.3758/s13428-

014-0548-x) 

78. Bertels, J., Franco, A. & Destrebecqz, A. 2012 How implicit is visual statistical 

learning? J. Exp. Psychol. Learn. Mem. Cogn. 38, 1425–1431. 

(doi:10.1037/a0027210) 

79. Perruchet, P. & Vinter, A. 1998 PARSER: A Model for Word Segmentation. J. 

Mem. Lang. 39, 246–263. (doi:10.1006/jmla.1998.2576) 

80. Giroux, I. & Rey, A. 2009 Lexical and sublexical units in speech perception. 

Cogn. Sci. 33, 260–272. (doi:10.1111/j.1551-6709.2009.01012.x) 

81. Orbán, G., Fiser, J., Aslin, R. N. & Lengyel, M. 2008 Bayesian learning of 

visual chunks by human observers. Proc. Natl. Acad. Sci. 105, 2745–2750. 

(doi:10.1073/pnas.0708424105) 

82. Thiessen, E. D. submitted. What’s statistical about learning? Insights from 

modeling statistical learning as a set of memory processes.  

83. Creel, S. C., Newport, E. L. & Aslin, R. N. 2004 Distant melodies: statistical 

learning of nonadjacent dependencies in tone sequences. J. Exp. Psychol. 

Learn. Mem. Cogn. 30, 1119–1130. (doi:10.1037/0278-7393.30.5.1119) 

84. Zhao, J., Ngo, N., McKendrick, R. & Turk-Browne, N. B. 2011 Mutual 

interference between statistical summary perception and statistical learning. 

Psychol. Sci. 22, 1212–9. (doi:10.1177/0956797611419304) 

85. Konkle, T., Wang, Q., Hayward, V. & Moore, C. I. 2009 Motion Aftereffects 



 35 

Transfer between Touch and Vision. Curr. Biol. 19, 745–750. 

(doi:10.1016/j.cub.2009.03.035) 

  

 

 


