
Bachelor’s Degree in Informatics Engineering
Computation

Bachelor’s End Project

Verification of Concurrent Programs in Dafny

Author
Jon Mediero Iturrioz

2017

Abstract

This report documents the Bachelor’s End Project of Jon Mediero Iturrioz for the Bachelor
in Informatics Engineering of the UPV/EHU. The project was made under the supervision
of Francisca Lucio Carrasco.

The project belongs to the domain of formal methods. In the project a methodology to
prove the correctness of concurrent programs called Local Rely-Guarantee reasoning is
analyzed. Afterwards, the methodology is implemented over Dagny automatic program
verification tool, which was introduced to me in the Formal Methods for Software Devel-
opments optional course of the fourth year of the bachelor.

In addition to Local Rely-Guarantee reasoning, in the report Hoare logic, Separation logic
and Variables as Resource logic are explained, in order to have a good foundation to
understand the new methodology. Finally, the Dafny implementation is explained, and
some examples are presented.

i

Acknowledgments

First of all, I would like to thank to my supervisor, Paqui Lucio Carrasco, for all the help
and orientation she has offered me during the project.

Lastly, but not least, I would also like to thank my parents, who had supported me through
all the stressful months while I was working in the project.

iii

Contents

Abstract i

Contents v

1 Introduction 1

1.1 Objectives . 3

1.2 Work plan . 3

1.3 Content . 4

2 Foundations 5

2.1 Hoare Logic . 5

2.1.1 Assertions . 5

2.1.2 Programming language . 7

2.1.3 Inference rules . 9

2.1.4 Recursion . 11

2.2 Separation Logic . 13

2.2.1 Programming language . 14

2.2.2 Assertion language . 17

2.2.3 Inference rules . 21

2.3 Variables as Resource . 26

v

CONTENTS

2.3.1 State . 27

2.3.2 Assertion language . 27

2.3.3 Inference rules . 30

2.4 Dafny . 34

2.4.1 Functions and predicates . 35

2.4.2 Lemmas . 37

2.4.3 Algebraic data types . 40

3 Proving the correctness of concurrent programs 43

3.1 Local Rely-Guarantee reasoning . 44

3.1.1 Programming language . 45

3.1.2 Assertion language . 47

3.1.3 Inference rules . 51

4 Implementing LRG in Dafny 59

4.1 Implementation . 59

4.1.1 Expressions . 60

4.1.2 Binary expressions . 61

4.1.3 Programming language . 62

4.1.4 Assertion language . 64

4.1.5 Inference rules . 67

4.2 Project structure . 70

4.3 Proving methodology . 71

5 Examples 73

5.1 Example of a sequential program . 73

5.2 Example of a concurrent program . 76

vi

CONTENTS vii

6 Conclusions and future work 81

6.1 Conclusions . 81

6.2 Future work . 83

Appendices

A Project organization 87

Bibliography 89

1. CHAPTER

Introduction

As a consequence of the lowering of the barrier to entry to programing, thanks to the
creation of easy to use programming languages and due to an almost universal access to
learning resources over the internet, the number of people who code has greatly increased
over the last fifteen years. For most of this coders, programming is just a tool to be used
occasionally when they need to automate a task, or to process great volumes of data or to
work complex scientific calculations. On the other hand, for software developers, which
profession consist specifically on creating programs to be used by other people, program-
ming is the central element of the toolbox. Being the use of programming by these two
collectives quite different, it is logical to think the methodology might also differ. Indeed,
while regular programmers begin to program directly without any preparation, software
developers design, specify the use cases, and create models before beginning to code a
single line. Additionally they set the conventions to be used, guidelines to be followed
and methodologies to apply, in order to ensure multiple developers can collaborate effec-
tively. But at the end of the day, when programs have errors (bugs) and problems arise,
the two collectives use the same approach: they analyze the error, modify the code, and
test again. This process is iterative, repeating the cycle until no error is found.

The problem is that testing is not capable of proving the absence of errors, since not
all possibilities are tried, and can only give us a limited assurance of the correctness of
the program. For casual programmers, this is not a big problem, as programs are usually
short lived, and have a low level of complexity. But for software developers, creating
program with millions of lines of code, to be distributed all over the world, having a
correct program is a critical condition.

1

2 Introduction

To give an answer to that problem, formal methods where invented, a methodology where
program behaviour is specified using logic, and the implementation is proved to conform
the specification mathematically.

Formal methods where first proposed by C.A.R Hoare in 1969, when he publised An

Axiomatic basis for Computer Programming [11]. In this paper, Hoare proposes a simple
logic, that is nowadays know as Hoare logic, to prove the correctness of simple imperative
programs. This publication opened the door to plenty of research on the area, even though
industry adoption of formal method was not very high.

An specially important advance in the proliferation of formal methods, was the 1980s,
when the firs proof assistants as Coq [3] and Isabelle [16] were created. Theorem provers
allowed to use computers to verify the proofs done manually or directly over them were
correct. Thanks to that, bigger programs could be verified and the human errors were
detected early and corrected. From them, proof assistants have improved, and nowadays
automatic theorem proves exist, which are capable of proving themselves the theorem
they receive as parameters. Human interaction is still needed for complex proofs.

In parallel, many new methodologies were created, to allow proving correctness of pro-
grams making use of dynamic memory, or even to allow reasoning about concurrent pro-
grams.

In the recent years, many of the advances on the field have been combined, and complex
things as operative systems have been verified: seL4 [13].

In this work, we are going to explain and implement Local Rely-Guarantee (LRG) rea-
soning [9], a logic to verify the correctness of shared memory concurrent programs, over
the Dafny [14] automatic program verification tool. The objective is to allow making this
proofs more easy using a computer based approach instead of doing it manually.

Unlike for actor based or message based concurrency, were thread interaction is limited
to specific points were messages are send or received, in shared memory concurrency
one thread might interfere with others at any time. This is why to verify shared memory
concurrency conventional techniques as Hoare logic are not enough, since this logics has
no way to represent neither take into account this interferences, and LRG like systems are
used.

We discovered LRG while reading about LiLi [15] which was itself discovered when
reading about CertikOS [10], an architecture to build certified concurrent kernels. LiLi is a

1.1 Objectives 3

methodology to prove concurrence related properties as deadlock adn starvation freedom,
and was mentioned in the CertikOS as it was necessary to prove all the system calls
of the OS eventually return. LiLi is build ovar LRG. At the begining of the project we
asses the possibility to do the project about LiLi instead of LRG and explain RLG in the
foundations, but we decided against it because of time concerns.

1.1 Objectives

One of the project’s objectives is to explore the suitability of Dafny as a tool to implement
logics, as conventionally proof assistants as Coq or Isabelle have been used to that pur-
pose. Being Dafny a higher level tool capable of proving many simple theorems by itself,
we hope that the implementation will be easier, and will allow more future implementa-
tions.

The second objective is to explore the capabilities of LRG logic, implementing it and
using it to prove some examples.

1.2 Work plan

The project has been carried between January 2017 and June 2017. The work was divided
in two stages:

• In the first stage many technical publications were read in order to learn enough
about modern formal verification techniques as Separation Logic [17] and Rely-
Guarantee reasoning [12] to allow a good understanding of LRG. Additionally, in
order to understand the problems might arise in concurrent programs, literature
about concurrent programming has also been studied. Finally, some chapters of the
Software Foundations course were followed, to learn how to implement logics over
proof assistants.

• In the second stage, LRG was implemented over Dafny, and after that we tried to
use the implementation to prove the correctness of some programs..

The documentation phase began in January, and continued all over the project duration.
The implementation phase was started in March and most of this report was written be-
tween May and June.

4 Introduction

In order to report progress, plan the work for the following days and solve problems, a
weekly meeting with the project director was scheduled. The meeting were at Tuesday
morning and with few exceptions, the schedule was fulfilled. In June some additional
meeting were made in order to prepare the report and the project presentation.

1.3 Content

The document is organized as follows:

• In chapter 2 we present all the foundation necessary to understand the project, which
include Hoare logic, Separation logic and Variables as Resource in Hoare logic..
Additionally, a general description of Dafny language is included.

• In chapter 3 we present the LRG logic.

• In chapter 4 we explain how the LRG logic was implemented over Dafny.

• In chapter 5 we present the proofs to example programs.

• Finally, in chapter 6 final conclusions and possible improvements are discused.

2. CHAPTER

Foundations

2.1 Hoare Logic

Hoare Logic is a formal verification system used to prove the correctness of imperative
computer programs. It was first proposed by C. A. R. Hoare in 1969 in his An Axiomatic

Basic for Computer Programming publication [11].

2.1.1 Assertions

In Hoare Logic, assertions are used to specify the state of the program in different points
of the execution. Assertions are logical expressions witch relate the values of the program
variables to concrete values or between them. Assertions are attached to concrete points of
the program code, and must be true for any correct execution of the program (considering
a correct execution an execution beginning from a valid state).

For example, in the next program:

{true}
i := x + 2;

{i = x+2}
z := 7;

{z = 7∧ i = x+2}
a := i*z + 2;

{a = 7∗ x+16}

5

6 Foundations

there are 4 different assertions. The first one is true to assert that any initial state is con-
sidered valid. If instead of true the assertions value was x≥ 2, only executions beginning
with an x value greater or equal to 2 would be considered valid.

The rest of the assertions give information about the state of the program after the exe-
cution of some code. An important detail to take into account is that assertions are not
required to be complete, this is, it is not mandatory for assertions to record all the state of
the program at one point. Because of that, some variables and relations might disappear
from the assertions when their value is no longer considered necessary or interesting for
the proof. This is the case of the last assertion, where there is no longer information about
the values of z and i variables.

The assertions language used in Hoare Logic is the language of first order logic. This
means the assertions language accepts:

• terms: variables, constants and functions

• atoms: predicates over terms

• logical connectors: ∧, ∨, ¬,→ and↔

• quantifiers over variables: ∀ and ∃

Usually, for Hoare Logic, the type of the constants is integer or boolean and the basic
mathematical operators, including the relational ones, are defined (+, −, ∗, /, <, =, ...).

It is possible to add new functions and predicates to the language defining them in a
straightforward way or recursively. For example, we might define the isEven function
using the modulo operator

isEven(x) def
= x mod 2 = 0

or recursively:

isEven(x) def
=


true, x = 0
false, x = 1
isEven(x−2), x > 1

The assertions of Hoare Logic are evaluated over a store. The store is a partial function
which maps variable names to terms, and is used to represent the concrete state of a

2.1 Hoare Logic 7

program in a given point. In order to evaluate an assertion, all the free variables should be
replaced with the values of the store.

2.1.2 Programming language

Even if it can be used to reason over complex programming languages, Hoare Logic is
usually defined over a minimum language including only the most basic operations.

In this section, we are going to define one of those minimum language, to be used in the
following examples and explanations.

Assuming n is an integer constant and x is a variable name, the grammar of the language
is the following:

E ::= n | x | E op_E E

op_E ::= '+' | '-' | '*'

B ::= 'true' | 'false' | B op_B B | E op_C E | 'not' B

op_B ::= 'and' | 'or'

op_C ::= '=' | '!=' | '<=' | '=>' | '<' | '>'

C ::= 'skip'

| x ':=' E

| C';'C

| 'if' '(' B ')' '{' C '}' 'else' '{' C '}'

| 'while' '(' B ')' '{' C '}'

For the sake of simplicity, all the variables in this programming language are going to be
of integer type, and they are not going to have any upper or lower limit.

As we mentioned earlier, the program status is represented using an store, i.e. a par-
tial function mapping variable names to values. When evaluating expressions (E) and
boolean expressions (B), the variable names are replaced by the corresponding value, and
the resulting mathematical expression is evaluated using the usual semantics of integer
and logical operators.

The assignment (x ':=' E) is the only statement who changes the store, updating or
creating the value of x variable with e. The rest of the statements have the usual semantics.

8 Foundations

To represent changes in the s store, we are going to use the following syntax s[x← v],
where x is the variable name and v is the new value for the variable. We are going to be
using this operator quite often in the following chapters, so it may be useful to define it
formally.

For any function f : T → T ′ where T and T ′ might be any type, ∀x ∈ T and ∀y ∈ T ′:

f [x← y](z) def
=

{
y, z = x

f (z), otherwise

We can formalize the operational semantics of the language using a standard small-step
semantics. Having the store s : Var→ Z, s(x) will give the current value of the variable x.
Taking that into account, the value of an expression E or boolean expression B in some
state s, denoted JEKs and JBKs respectively, are recursively defined as follows.

JnKs = n

JxKs = s(x)

JE1 opE E2Ks = JE1Ks JopEK JE2Ks

JE1 opC E2Ks = JE1Ks JopCK JE2Ks

JB1 opB B2Ks = JB1Ks JopBK JB2Ks

Jnot BKs = ¬JBKs

where JopEK is the standard semantic of operator opE on integers, JopCK is the standard
semantic of operator opC on integers and JopBK is the natural semantic of operator opB

on booleans.

The semantics of statements are defined using the following relation s,C s′,C′, which
means that in state s executing one step of the statement C leads to the state s′ and the
remaining statement C′. The semantics of the statements are defined by the following

2.1 Hoare Logic 9

rules:

s,x := e s[x← JeKs],skip

s,(skip;C) s,C
s,C1 s′,s′1

s,(C1;C2) s′,(C′1;C2)

JbKs

s,if (b) { C1 } else { C2 } s,C1

¬JbKs

s,if (b) { C1 } else { C2 } s,C2
JbKs

s,while (b) { C } s,(C;while b do C)

¬JbKs

s,while (b) { C } s,skip

2.1.3 Inference rules

In order to prove to correctness of a computer program using Hoare Logic we first have
to specify the program behaviour using the following triple:

{ϕ}C {ψ}

where C is the full program (a sequence of statements: C), ϕ is the precondition and ψ

the postcondition.

The meaning of the triple is the following: if the execution of the program begins in a
state satisfying ϕ and the program ends, the final state will satisfy the ψ .

Proving the triplet is correct is what we call to prove the partial correctness of the pro-
gram. It is important to note that in order to prove the total correctness of the program, it
is also necessary to prove that for any initial state satisfying ϕ the program ends in a finite
number of steps.

The Hoare inference rules can be used to prove partial correctness and with a little exten-
sion also total correctness.

This are the Hoare inference rules for partial correctness:

{P} skip {P}
(Empty statement axiom)

This ruler asserts that a skip statement does not change the program state.

10 Foundations

{P[E/x]} x := E {P}
(Assigment axiom)

where P[E/x] is the assertion P where all the free occurrences of x have been replaced by
the expression E. This rule says that, as after the assignment, any property was fulfilled
by E is going to be fulfilled by x. For example:

{y+1≥ 5} x := y + 1 {x≥ 5}

{P}C1 {Q} {Q}C2 {R}
{P}C1;C2 {R}

(Rule of composition)

This rule asserts that if the postcondition of the first statement and the precondition of
the second statement are equal, the two statement can be chained maintaining the first
precondition and the second postcondition.

P⇒ P′ {P′}C {Q′} Q′⇒ Q
{P}C {Q}

(Consequence rule)

This rule asserts that strengthening a precondition or weakening a postcondition preserves
the correctness. This rule is very useful as many of the rules require some of the pre or
postconditions to be identical.

{P∧B}C1 {Q} {P∧¬B}C2 {Q}
{P} if (B) { C1 } else { C2}{Q}

(Rule of condition)

This rule ensures that if the postcondition Q is the postcondition of both of the branches
of the if Q is also the postcondition of all the if.

{I∧B}C {I}
{I} while (B) { C } {I∧¬B}

(While rule)

In this rule, the I predicate is called the loop invariant. The loop invariant is a condition
is meet before entering the loop, and maintained both while the loop is executing and just
after the loop is finished. The inference rule, asserts that if the loop invariant is maintained
by the loop body when the loop condition is true, after finishing the loop both the invariant
and the negation of the loop condition will be true.

In order to prove program termination, it is necessary to make a little extension of the

2.1 Hoare Logic 11

inference rules. The only changing rule is the while rule, as it is the only place where a
program might get stuck.

In order to prove termination, it is necessary to find an expression which value is strictly
decreasing for each iteration. The expression must be defined for all the iterations and
the strictly decreasing relation for the expression we choose must be well founded. This
means, it is not possible to decrease the value infinitely, hence there is a finite maximum
number of steps.

Formally the while termination rule is

{I∧B∧ v =V}C {I∧ v≺V} I∧B→ v≥ ξ

{I} while (B) { C } {I∧¬b}
(while termination rule)

where v is the variant, V is a fresh logical variable, and ≺ is a well founded relation with
smallest value ξ . For example, if v ranges in the natural numbers, < is a well founded
relation, as there is no element smaller than 0 to continue decreasing the value of v in-
finitely.

2.1.4 Recursion

Hoare rules can be easily extended to allow proving correctness and termination of recur-
sive programs.

First of all, it is necessary to extend the programming language to allow function calls:

C ::= ...

| x ':=' f '(' e ',' ... ',' e ')'

where f is a name of a function. For the sake of simplicity we have omitted the function
definitions from the grammar, giving instead this generic example:

function f(x1, x2, ..., xn) return z

{P}
{

... code goes here ...

}

{Q}

12 Foundations

Functions also have a precondition (P) and a postcondition (Q). The precondition is usu-
ally used to limit the acceptable parameters of the function, and the postcondition to relate
the returned value z with the input parameters x1, ...,xn. In order the precondition to work
as expected, it is necessary to assume the input parameters are read only (in particular they
can not appear in the left side of an assignment). Without this assumption, it will be pos-
sible for a correct function to change the parameter values to conform the postcondition
instead of returning a conforming value.

The new inference rule needed to prove programs using functions is the following:

{P} z := f(x1, ...,xn) {Q}
{R∧P[E1, ...,En/x1, ...,xn]}

x := f(E1, ...,En)

{Q[x,E1, ...,En/z,x1, ...,xn]∧R}

(call rule)

where P and Q are the precondition and postcondition respectively. The condition of the
rule means that the function is correct under this conditions, P[E1, ...,En/x1, ...,xn] means
replacing all arguments with the expression values in the precondition and Q[x,E1, ...,En-
/z,x1, ...,xn] means replacing all the arguments and the z result with the expression values
and x variable. R is any additional assertion, where x variable is not present. This R is
conserved, as the function calls in this programming language do not have any side effect.

Intuitively, this rule means that if we meet the function preconditions before the call, the
function postcondition will be true after the call.

In case we are using this rule to prove the correctness of a recursive function, we can
assume the function meets the pre and postconditions for the recursive calls. If making this
assumptions we can prove the function is correct, and the function has a correct base case,
the prove is finished. What we are doing with the assumption is equivalent to the proving
by induction used in mathematics. The base case (the one without any recursive call) is
the basis, and the recursive case makes use of the inductive hypothesis (the precondition
and postcondition) to perform the inductive step.

In a similar way to what happened in standard Hoare Logic, some additional proving is
needed in order to ensure program termination, hence total correctness. As in the case of
the while termination rule, it is necessary to found a strictly decreasing variant expression.
Each recursive function call must decrease this expression. In order the decreasing relation

2.2 Separation Logic 13

to be well founded, a minimum value must exist, and the precondition of the function must
ensure the variant expression is bigger or equal.

For example, if we have a program to calculate the factorial:

function fact(x) return z

{x≥ 0}
{

if (x <= 1) {

z := 1;

} else {

tmp := fact(x-1);

z := x * tmp;

}

}

{z = x!}

we can use the parameter x as variant, as in all recursive calls is reduced (x−1) and has a
minimum value of 0 enforced by the precondition.

2.2 Separation Logic

One of the biggest problems of conventional Hoare Logic, is that it does not allow the
specification of programs that manipulate dynamically allocated storage or made use any
kind of pointers (which is quite common to allow access to shared data or to create com-
plex data structures). If we limit ourselves to the use of pure functional languages, were
functions do not have any side effect and changes to data structures always return a copy
of the structure with the desired modification, conventional Hoare Logic might be enough.
The runtime of the programming language is the one who takes the responsibility of allo-
cating memory and implementing the data structures in a save way, freeing us of the need
to do it ourself and verify we do it correctly. But in case we want to use an imperative pro-
gramming language, implement complex data structures and manage memory ourselves,
we need additional tools.

Separation Logic [18] is an extension of Hoare Logic to allow exactly that, verifying pro-
grams with pointers and dynamic memory. In order to do so, first of all, the programming
language is extended with new statements to reserve, read, write and free dynamic mem-
ory. The state of the program is also extended, as in addition to local variables we now

14 Foundations

have memory addresses with values. Finally, new assertions and inference rules are added
to reason about the new commands.

Even if it is not the original publication about Separation logic the assertions and inference
rules in this section are taken from [17].

2.2.1 Programming language

The programming language defined in the Hoare Logic section has not any operation
related to dynamic memory. As a consequence, the grammar and semantics should be
extended to add the new functionality. There are many different ways to add memory
operations to a language, but in our case we are going to use the same approach used in
most of the literature regarding to Separation Logic, which consists on adding four new
statements to the code.

It follows the grammar of the new statements:

C ::= ...

| x ':=' 'cons' '(' E ',' ... ',' E ')'

| x ':=' '[' E ']'

| '[' E ']' ':=' E

| 'dispose' E

For defining the semantics of the new operations, it is necessary to extend the program
state. The dynamic memory of the program is going to be represented using a partial
function from addresses to values. To allow doing pointer arithmetic addresses are going
to be represented using positive integers and (as the variables of the language) the values
of the memory are going to be also unbounded integers. So the heap function signature is
h : N→ Z.

The state of the program is a pair consisting of a store s and a heap (dynamic memory) h,
represented as (s,h).

Having defined the state of the program, we can proceed to define the semantics of the
new statements. For all the original constructs of the language, the semantics remain un-
changed, as they do not access the heap, the only difference being that where there was a

2.2 Separation Logic 15

simple store s now we have the pair (s,h).

(s,h),x := E (s[x← JEKs],h),skip

(s,h),(skip;C) (s,h),C
(s,h),C1 (s′,h),s′1

(s,h),(C1;C2) (s′,h),(C′1;C2)

JBKs

(s,h),if (B) {C1} else {C2} (s,h),C1

¬JBKs

(s,h),if (B) {C1} else {C2} (s,h),C2

JBKs

s,while (B) {C} s,(C;while (B) {C})
¬JBKs

(s,h),while (B) {C} (s,h),skip

The first of the new statements is the allocation statement. This statement reserves a con-
tinuous range of n elements in the heap memory, where n is the length of the argument
list, and initializes each of this memory cells with the values of the arguments. Formally
we can define the statement using small step semantics:

(s,h),x:= cons(e1, . . . ,En) (s[x← l],h[l← JE1Ks] . . . [l +n−1← JEnKs]),skip

where l, . . . , l +n−1 ∈ N−dom(h).

The second statement is the lookup statement. It reads the value of the memory cell JEKs

and assigns it to variable x. Unlike all the previous statements, this one might fail if the
memory address we are trying to access is not in the domain of h, for which a new state
abort is introduced, as a terminal state for memory faults. Formally:

JEKs ∈ dom(h)
(s,h),x:= [E] (s[x← h(JEKs)],h),skip

JEKs /∈ dom(h)
(s,h),x:= [E] abort

The third statement is the mutation statement, which assigns the value of JEvKs a new
value to the memory address JEaKs (where Ev is the expression to the right and Ea is the
expression to the left). As the memory read, this statement might abort if the memory

16 Foundations

address in not in the domain of h.

JEKs ∈ dom(h)
(s,h),[Ea]:= Ev (s,h[JEaKs← JEvKs]),skip

JEKs /∈ dom(h)
(s,h),[Ea]:= Ev abort

Finally, the fourth one is the deallocation statement. It removes the value JEKs from the
domain of h, this is, it frees the memory in JEKs. As the previous statements this one
aborts if the memory address in not in the domain of h.

JEKs ∈ dom(h)
(s,h),dispose E (s,h � (dom(h)− JeKs),skip

JEKs /∈ dom(h)
(s,h),dispose E abort

where f �U stands for function projection on a subset U of the domain of f .

Example

The following program uses the language defined for separation logic. The program cre-
ates an integer array in memory and reverses its content using a while loop.

array := cons(2, 5, 7, 4, 8, 6, 5);

len := 7;

i := 0;

while (i*2+1 < len) {

t0 := [array + i];

t1 := [array + len - 1 - i];

[array + i] := t1;

[array + len - 1] := t0;

i := i + 1;

}

...

i := 0;

while (i < len) {

dispose (array + i);

}

2.2 Separation Logic 17

2.2.2 Assertion language

Since the state of the program is composed now by the store and the heap, the original
assertion language is not powerful enough to reason about the new programs. That is why
the assertion language is extended.

All the original assertions are maintained, which means that we can continue to use all
the available constructs of the first order logics to reason about local variables. But in case
we need to specify properties of the values on the heap, or relate the content of the store
with the heap, we are going to use new constructs.

For defining the new assertion language, we are going to use some specific symbols to
represent different kinds of assertions. The symbol B represent an standard Hoare Logic
assertion, to be evaluated over s and which always returns a boolean value.

JBKs = {true, false}

The symbols E and F represent integer expressions, which are also evaluated over s (in a
similar way of the expressions in the programming language).

JEKs = Z and JFKs = Z

Finally, P and Q represent full separation logic assertions, that can be created combining
the previous assertions with some new operators:

P,Q :: = B | E 7→ F

| false | P⇒ Q

| ∀x.P | emp

| P∗Q | P−∗ Q

| P−~ Q

For defining the semantics of this operations we first define some notations:

• h⊥ h′ means the fact that the domains of h and h′ are disjoint, which can be formally
represented by: dom(h)∩dom(h′) =∅.

18 Foundations

• h] h′ represent the union of functions h and h′ with disjoint domains, and it is
undefined if the domains overlap.

s,h |= P is a satisfaction judgement which says that the assertion P holds for the state s,h,
where the semantics are defined as follows:

s,h |= B iff JBKs = true

s,h |= E 7→ F iff dom(h) = {JEKs}∧h(JEKs) = JFKs

s,h |= false never
s,h |= P⇒ Q iff s,h |= P ⇒ s,h |= Q

s,h |= ∀x.P iff ∀v ∈ Z(s[x← v],h |= P)

s,h |= emp iff dom(h) = /0
s,h |= P∗Q iff ∃h0,h1. h0 ⊥ h1∧h0]h1 = h∧ s,h0 |= P∧ s,h1 |= Q

s,h |= P−∗ Q iff ∀h′(h⊥ h′∧ s,h′ |= P ⇒ s,h]h′ |= Q)

s,h |= P−~ Q iff ∃h′(h⊥ h′∧ s,h′ |= P∧ s,h]h′ |= Q)

In other words:

• s,h |= B is a normal Hoare Logic assertion which meaning is maintained evaluating
it independently to h.

• s,h |= E 7→ F asserts that the heap is formed by a single memory cell, with address
JEKs and value JFKs.

• s,h |= emp asserts that the heap is empty.

• s,h |= P∗Q asserts that the heap can be divided in two non overlapping regions of
memory one of them satisfying P and the other satisfying Q.

• s,h |= P −∗ Q asserts that adding an independent memory region which satisfies P

to our heap h creates a new heap satisfying Q.

• s,h |= P−~Q asserts that exists an independent memory region satisfying P, which
if added to our heap h satisfies Q.

Even if all the logical connectors (∧, ∨, ¬, ⇒, ⇔) and quantifications (∀ and ∃) are
defined at the Hoare Logic assertion level, it is necessary to redefine them at this more
general level.⇒, ∀ and false are defined above and the rest of the operators can be formed

2.2 Separation Logic 19

as a combination of this ones.

¬P def
= P⇒ false

P∨Q def
= ¬P⇒ Q

P∧Q def
= ¬(¬P∨¬Q)

∃x.P def
= ¬∀x(¬P)

true def
= ¬false

In order to make the use of the assertion language more easy, some abbreviations are also
defined:

E 7→ − def
= ∃x(E 7→ x) where x is not free in E

E ↪→ F def
= E 7→ F ∗ true

E 7→ E1, . . . ,En
def
= E 7→ E1 ∗ · · · ∗E +n−1 7→ En

The first one is used when the value pointed by a memory address is not important. The
second one is used when, in addition to JEKs, the heap might contain more memory ad-
dresses. Finally, the third one allows to specify consecutive memory address and value
pairs in a concise way, which is going to be extensively used, for defining data structures
and arrays.

Examples

Some simple assertions:

1. The value of the memory address x is greater than 5:

∃v(x 7→ v∧ v > 5)

2. y points to a contiguous memory region of 7 elements:

y 7→ −,−,−,−,−,−,−

20 Foundations

3. y points to a contiguous memory region of 77 elements:

∀n(0≤ n < 77⇒ (y+n) 7→ −)

4. y points to a contiguous memory region of 5 elements, x to a contiguous memory
region of 3 elements and both regions do not intercede:

(y 7→ −,−,−,−,−)∗ (x 7→ −,−,−)

In order to write more complex assertions, the use of inductive predicates is encouraged.
They are specially useful to reason about data structures. As most of the data structures
need a way to represent there are no more elements, the negative pointers (which are
invalid addresses) will represent the end. Note that in most real world computer and pro-
gramming languages, a single value NULL is used instead of all the negative values. The
typical value of NULL is 0.

The following predicate says that the data structure pointed by x is a singly linked list and
is the only element in heap. The inductive predicate takes as an argument an address (a
natural number) and returns a full separation logic assertion which can be evaluated over
a store and heap to know if the property holds. Thus, the signature is isList : N→ P.

isList(x) def
=

{
emp, x < 0
∃v, p(x 7→ v, p ∗ isList(p)), x≥ 0

Each entry of the linked list is composed by an integer value v and the pointer p to the
next element of the list.

If we want to reason about the elements of the list, it is convenient to represent the list
using algebraic data types, for example:

data List = Nil | Cons Int List

, to reason over the values of the data type, and to check if the values of the data type
correspond with the values of the linked list. We present an overloaded isList : N×List→

2.2 Separation Logic 21

P, which checks also the correspondence between the two lists:

isList(x, l) def
=

emp, x < 0∧ l = Nil

false, x≥ 0∧ l = Nil

false, x < 0∧∃h, t(l = Cons h t)

∃v, p, t(x 7→ v, p ∗ l = Cons v t ∗ isList(p, t)), x≥ 0∧∃h, t(l = Cons h t)

s,h |= isList(x, l) evaluates to true if x is a valid linked list with content l.

Other data structure easily representable is the binary tree:

isTree : N→ P

isTree(x) def
=

{
emp, x < 0
∃v, l,r(x 7→ v, l,r ∗ isTree(l) ∗ isTree(r)), x≥ 0

Note that both in the tree and in the linked list cycles are not accepted as we have used
the operator ∗ instead of ∧.

2.2.3 Inference rules

As in the case of the programming language and the assertions, the inference rules for
separation logic are also an extension of the Hoare rules.

To explain the new rules, it is necessary to understood that Hoare triples has not exactly
the same meaning in separation logic as in Hoare Logic. Is separation logic the {P}C{Q}
triple asserts that if program C executes from a state satisfying P precondition the program
is not going to abort (because of an erroneous memory access), the program will terminate
and the resulting state will satisfy Q.

The original rules of Hoare Logic are maintained exactly as in the previous section, hence
we are going to avoid to repeat them here.

The new rules are the following ones:

{x = m} x:= cons(E1, . . . ,En) {x 7→ E1[m/x], . . . ,En[m/x]}
(Allocation rule)

22 Foundations

The allocation rule is quite straightforward, as after executing a cons statement with an
empty heap the result is always going to be a heap where the only elements are consecutive
memory cells with the values of E1, . . . ,En. Note we need to replace x occurrences with
m in the expressions, as x’s value changes after the execution of the command.

{E1 7→ E2∧ x = m} x:= [E1] {x = E2∧E1[m/x] 7→ v}
(Lookup rule)

The lookup rule asserts that after the statement the value of x will be equal to h(JE1Ks) =

E2. As in the case of the previous rule, we have to replace the appearences of x with m in
order to maintain the validity of the expression.

{E1 7→ −} [E1]:= E2 {E1 7→ E2}
(Update rule)

The update rule asserts that if address JE1Ks exist in the heap, after the statement the value
in memory cell JE1Ks will be JE2Ks.

{E 7→ −} dispose E {emp}
(Deallocation rule)

The deallocation rule asserts that if address JEKs exist and is the only element in the heap,
after the command the heap will be empty.

{P}C {Q}
{∃x.P}C {∃x.Q}

x /∈ free(C) (Auxiliary Variable Elimination)

This rule allows to eliminate the existential quantifier over x when proving the correctness
of C.

{P}C {Q}
({P}C {Q})[E1, . . . ,Ek/x1, . . . ,xk]

free(P,C,Q)⊆ {x1, . . . ,xk}∧
∀i(1≤ i≤ k∧ xi ∈mod(x)⇒
∀ j(1≤ j ≤ k∧ i 6= k⇒ Ei /∈ free(Ek)))

(Substitution rule)
where free(P,C,Q) = free(P)∪ free(C)∪ free(Q). This rule allows to replace the free
variables in P, C and Q with expressions if for each xi modified in C, Ei is not free in the
remaining expressions.

{P}C {Q}
{P∗R}C {Q∗R}

mod(C)∩ free(R) =∅ (Frame rule)

2.2 Separation Logic 23

where mod(C) returns the set of the variables modified in C and free(R) the set of the
variables occurring free in R. This rule asserts that all the assertions concerning disjoint
memory locations to the ones mentioned in P and Q are conserved by the C command.
This rule is the most important rule of separation logic, as it allows to do local reasoning
about some piece of code, prove its correctness, and use it in any place where its memory
is not shared with other code.

Note that the frame rule uses the operator ∗ and not the operator ∧ in the frame. This is im-
portant, as the ∧ operator does not guarantee the independence of the memory addresses.
Consequently, the modification of some cell of the memory may break the R assertion.

For example, the following reasoning:

{x 7→ −}[x] := 4{x 7→ 4}
{x 7→ −∧y 7→ 5} [x] := 4 {x 7→ 4∧y 7→ 5}

is not sound whenever x = y. The correct postcondition is x 7→ 4∧y 7→ 4. If we use the
operator ∗ we know x= y can not be true, as the two heaps should be disjoint.

Example (borrowed from [17] section 2.2.)

Assuming our programming language accepts procedure calls, which are equivalent to
function calls but without having a return value (or discarding the return value), the fol-
lowing code frees a binary tree from memory:

procedure freeTree(t)

{

if (t > 0) {

l := [t + 1];

r := [t + 2];

freeTree(l);

freeTree(r);

dispose t;

dispose t + 1;

dispose t + 2;

} else {

skip;

}

}

24 Foundations

To specify the precondition and postcondition we are going to use the isTree predicate
defined in the examples section of the assertion language. The precondition is:

isTree(t)

and the postcondition:
emp

In order to help the proving, we are going to annotate the program with intermediate
assertions:

1 procedure freeTree(t)

2 {

3 {isTree(t)}
4 if (t >= 0) {

5 {t ≥ 0∧ isTree(t)}
6 {∃v, l′,r′(t 7→ v, l′,r′ ∗ isTree(l′)∗ isTree(r′))}
7 l := [t + 1];

8 {∃v, l′,r′(t 7→ v, l,r′ ∗ isTree(l)∗ isTree(r′))}
9 r := [t + 2];

10 {∃v, l′,r′(t 7→ v, l,r ∗ isTree(l)∗ isTree(r))}
11 {t 7→ −, l,r ∗ isTree(l)∗ isTree(r))}
12 freeTree(l);

13 {t 7→ −, l,r ∗ emp∗ isTree(r))}
14 {t 7→ −, l,r ∗ isTree(r))}
15 freeTree(r);

16 {t 7→ −, l,r ∗ emp)}
17 {t 7→ −, l,r}
18 dispose t + 2;

19 {t 7→ −, l}
20 dispose t + 1;

21 {t 7→ −}
22 dispose t;

23 {emp}
24 } else {

25 {t < 0∧ isTree(t)}
26 {emp}
27 }

28 {emp}
29 }

When there are two assertions without any instruction between them, it means we are
using the consequence rule to transform the assertion. For example between the lines 5

2.2 Separation Logic 25

and 6 the consequence rule is used as

t ≥ 0∧ isTree(t) ⇒ ∃v, l,r(t 7→ v, l,r ∗ isTree(l)∗ isTree(r))

is true by definition of isTree. Some uses of the consequence rule are not represented as
the transformations are quite intuitive.

Between 6 and 8 the lookup rule is used in combination to the consequence rule, the frame
rule and the auxiliary variable elimination to read the value of the left hand side of the
tree:

{t +1 7→ l′∧ l = l} l := [t + 1] {l = l′∧ t +1 7→ l′}
(Lookup rule)

{t +1 7→ l′} l := [t + 1] {l = l′∧ t +1 7→ l′}
{t 7→ v, l′,r′ ∗ isTree(l′)∗ isTree(r′)}

l := [t + 1]

{t 7→ v, l,r′ ∗ isTree(l)∗ isTree(r′)}

(Frame and consequence rules)

{t 7→ v, l′,r′ ∗ isTree(l′)∗ isTree(r′)}

l := [t + 1]

{t 7→ v, l,r′ ∗ isTree(l)∗ isTree(r′)}

{∃v, l′,r′(t 7→ v, l′,r′ ∗ isTree(l′)∗ isTree(r′))}

l := [t + 1]

{∃v, l′,r′(t 7→ v, l,r′ ∗ isTree(l)∗ isTree(r′))}

(Auxiliary variable elimination)

In a similar way, between the lines 8 and 10 the value of the right hand of the tree is loaded
in r.

Between the lines 12-14, 15-17 the frame rule is used again. The reason to use the frame
rule is that the signature of freeTree contains mentions a heap with a single tree in the
precondition and an empty heap in the postcondition. The frame rule allow us to add new
independent heap element to the assertions maintaining the correctness:

{isTree(l)}freeTree(l){emp}
{t 7→ −, l,r ∗ isTree(l)∗ isTree(r))}freeTree(l){t 7→ −, l,r ∗ emp∗ isTree(r))}

26 Foundations

Finally, the deallocation rule is applied at the lines 18, 20 and 22. For the first two cases,
using the frame rule is also necessary to adapt the assertions.

The rule of composition is used to join all the statements inside of the if.

After proving the correctness of the body of the if, we can finish using the rule of condi-
tion:

{isTree(t)∧ t ≥ 0} ... {emp} , {isTree(t)∧ t < 0} skip {emp}
{isTree(t)} if (t >= 0) {...} else {skip} {emp}

2.3 Variables as Resource

One of the limitations of separation logic is that even if it allows to reason in a modular
way about the dynamic memory (the heap), local variables continue to be global. Using
the frame rule, we can prove the correctness of a small piece of code and use the frame
rule to extend the correctness to a bigger program including it. The small piece of code
is not obliged to know about the memory it does not touch. But, for the local variables,
the treatment is different, and all the pieces of code must know about all the existing local
variables in order to preserve their properties.

For example, once we had proved the correctness of the following pieces of code:

A:

{7 > 0}
x := 7;

{x > 0}

B:

{5 = 5}
y := 5;

{y = 5}

If we want to prove the correctness of the composition of the two, even if we know that
the variables are independent, in Hoare Logic we have to prove the pieces once again, as
the assertions have changed.

{7 > 0∧5 = 5}
x := 7;

{x > 0∧5 = 5}
y := 5;

{x > 0∧ y = 5}

2.3 Variables as Resource 27

As a partial solution to the problem, functions might be used, since each functions has its
own local variables, which are independent even if the names are shared.

Instead of that, in this section we present a simplification1 of Variables as Resource in
Hoare Logic [4], which applies an approach similar to the used in Separation Logic to
local variables. Thanks to that, it is possible to use the frame rule to reason locally about
code using independent sets of local variables. The simplification we present takes the
assertions and inference rules from the sequential part of LRG.

In this logic the state, assertions and inference rules are updated. The programming lan-
guage is maintained unchanged, but for simplification purposes we are going to ignore
the function calls.

2.3.1 State

In this logic a new elements is added to the pair of store and heap, forming the new state
σ = (s, i,h). The new element is the logical variable map (i), used to store the values of
logical variables necessary for specification. Until now, the logical variables were stored
in the store together with the local variables. In Variables as Resource, they must be stored
independently to allow specifying which local variables a program is using without having
to worry about the logical variables.

Logical variables are stored in a similar way as to loclal variables, but instead of being
a map from variable names to integers is a map from logical variable names to integers:
i : LVar→ Z. The sets of valid local variable names and logical variable names should be
disjoint.

In order to allow easier identification, in the following sections we are going to use lower
case letters for the local variables and upper case letters for the logical ones.

As a side note, since i is never mentioned in the programming language specification, the
variables in i are never changed by the program.

2.3.2 Assertion language

In the new assertion language, B continues to represent a boolean expression an E and
F an integer expression, but now they are evaluated over the union of s and i. The new

1The simplification we present takes the assertions and inference rules from the sequential part of LRG.

28 Foundations

notation for the evaluation is: JBKs,i and JEKs,i. Note that for the evaluation to be valid, s

and i must be disjoint (dom(s)∩ dom(i) = ∅) and all the free variables in the assertions
must be defined in the union of s and i. In case

In Variables as Resource, only few elements are added to the assertions grammar 2 , but
the semantics of some of most of the existing ones change.

p,q,r :: = B | E 7→ F

| false | p⇒ q

| ∀X .p | emps | emph

| p∗q | p−∗ q

| p−~ q | Own(x)

Before redefining the semantics of the assertions we first overload the meaning of ⊥ and
]:

• (s, i,h)⊥ (s′, i′,h′) iff s⊥ s′∧ i = i′∧h⊥ h′

• (s, i,h)] (s′, i′,h′) = (s] s′, i,h]h′)

The new semantics, where σ = (s, i,h):

σ |= B iff JBKs,i = true

σ |= emps iff dom(s) =∅
σ |= emph iff dom(h) =∅
σ |= Own(x) iff dom(s) = {x}
σ |= E 7→ F iff dom(h) = {JEKs,i}∧h(JEKs,i) = JFKs,i

σ |= false never
σ |= p⇒ q iff σ |= p ⇒ σ |= q

σ |= ∀X .p iff ∀v ∈ Z((s, i[X ← v],h) |= p)

σ |= p∗q iff ∃σ1,σ2. σ1 ⊥ σ2∧σ1]σ2 = σ ∧σ1 |= p∧σ2 |= q

σ |= p−∗ q iff ∀σ ′(σ ⊥ σ ′∧σ |= p ⇒ σ]σ ′ |= q)

σ |= p−~ q iff ∃σ ′(σ ⊥ σ ′∧σ |= p ⇒ σ]σ ′ |= q)

2In order to be more consistent with most of the publications about Rely-Guarantee reasoning, we begin
using lower case p and q to represent the assertions, but the meaning does not change.

2.3 Variables as Resource 29

The principal differences are, the addition of emps and Own(x) to reason about the el-
ements in the local variables, and the redefinition of p ∗ q, p −∗ q and p −~ q to take
into account also the local variables can be split in disjoint groups. Additionally, the ∀
quantifier is now applied over logical variables only.

Note that in order σ |= B to be true, JBKs,i must be true, and for that B must be correctly
defined. That is why B = B in not a tautology in this system, as free variables in B might
be undefined in the current state. Also, ¬(B1 = B2) and B1 6= B2 are not equivalent.

In addition to the changes to the assertion language, we define de following syntactic
sugar:

O ::= • |x,O

x1, . . . ,xn,•
 p def
= (Own(x1)∗ · · · ∗Own(xn))∧ p

emp def
= emps∧ emph

Examples

Some examples of the new assertions:

1. There is a reserved memory cell in the heap and the store is empty:

∃L(L 7→ −)∧ emps

2. There is a x variable in the store and its value is equal to the X logical variable:

x = X

3. x is the only variable in the store:

Own(x) or x
 true

4. x and y are in the store, and the value of the memory address x is y:

x 7→ y

30 Foundations

5. x and y are the only values in the store, and the value of the memory address x is y:

x,y
 x 7→ y

2.3.3 Inference rules

In Variables as Resource, some of the rules from Hoare Logic and Separation Logic, must
be adapted.

{p} skip {p}
(Empty statement axiom)

This rule is maintained without change.

{x,O
 X = E ∧ emph} x := E {x,O
 x = X ∧ emph}
(Assigment axiom)

This rule was heavily modified. The new rule says that if we have a variable x in the store
(and other variables O), an empty heap and a logical variable X with the value of the E

expression, after the assignment x is equal to X .

{p}C1 {p′} {p′}C2 {q}
{p}C1;C2 {q}

(Rule of composition)

This rule is maintained without change.

p⇒ p′ {p′}C {q′} q′⇒ q
{p}C {q}

(Consequence rule)

This rule is maintained without change.

p⇒ B = B {p∧B}C1 {q} {p∧¬B}C2 {q}
{p} if (B) { C1 } else { C2}{q}

(Rule of condition)

This rule has a new condition, which is that the precondition p implies that B is well
defined, in other words, that all the free variables in B are present in s or i. The remaining
of the rule does not change.

p⇒ B = B {p∧B}C {p}
{p} while (B) { C } {p∧¬B}

(While rule)

2.3 Variables as Resource 31

As the previous one, this rule also has the new p⇒ B = B precondition.

(x,O
 x = X ∧ emph)⇒ E1 = E1∧·· ·∧Ek = Ek

{x,O
 x = X ∧ emph}
x:= cons(E1, . . . ,En)

{x,O
 x = Y ∧ (Y 7→ [X/x]E1, . . . , [X/x]Ek)}

(Allocation rule)

This rule was completely changed. The new condition requires that the precondition im-
plies that all the expressions are well defined. The rest of the rule says that if x is in the
store and has a value X , and the heap is empty, after the execution, x has value Y and Y

points to a continuous memory region with values [X/x]E1, . . . , [X/x]Ek.

{x,O
 x = X ∧E 7→ Y} x:= [E1] {x,O
 x = Y ∧ [X/x]E 7→ Y}
(Lookup rule)

This rule was heavily changed. The new rule says that if in the store there is a x variable
with the value X and the heap is single memory cell with address E and value Y , after the
operation the x value is Y and the memory cell address is now [X/x]E.

O
 E1 7→ −⇒ E2 = E2

{O
 E1 7→ −} [E1]:= E2 {O
 E1 7→ E2}
(Update rule)

This rule is quite similar to the original. There is a new condition, which requires the
precondition of the statement implies that E2 is correctly defined, and the execution of the
execution of the statement now maintains the store elements.

{O
 E 7→ −} dispose E {O
 emph}
(Deallocation rule)

The deallocation rule remains almost unchanged, with the exceptions that now maintains
the store elements.

{p}C {q}
{∃X .p}C {∃X .q}

(Auxiliary Variable Elimination)

This rule is maintained almost unchanged, with the only difference of the lack of the side
condition. The side condition is no longer necessary as X is a logical variable and can not
appear in C.

32 Foundations

(Substitution rule)

This rule is no longer necessary.

{p}C {q}
{p∗ r}C {q∗ r}

(Frame rule)

This rule is maintained, but the side condition is no longer necessary as ∗ ensures the store
values modified in C are independent from the ones in r.

In addition to the previous rules, there are two new rules:

{p}C {q} {p′}C {q′}
{p∧ p′}C {q∧q′}

(Conjuntion rule)

and
{p}C {q} {p′}C {q′}
{p∧ p′}C {q∧q′}

(Disjuntion rule)

which quite intuitively allow the use of conjunction and disjunction of preconditions and
postconditions, if the conditions hold independently.

Example

As an example we are going to prove modularly the program mentioned in the introduc-
tion:

{x,y
 X = 7∧Y = 5}
x := 7;

y := 5;

{x,y
 x = X ∧ y = Y}

First we are going to prove the each statement independently:

A:

{x
 X = 7∧ emph}
x := 7;

{x
 x = X ∧ emph}

2.3 Variables as Resource 33

Can be proved directly using the assignment axiom.

B:

{y
 Y = 7∧ emph}
y := 5;

{y
 y = Y ∧ emph}

Can be also proved using the assignment axiom.

Once the two statements are proved, we can extend the proof to the fool program. First
we apply the frame rule on both statements:

{x
 X = 7∧ emph} x := 7; {x
 x = X ∧ emph}
{(x
 X = 7∧ emph)∗ (y
 Y = 5)} x := 7; {(x
 x = X ∧ emph)∗ (y
 Y = 5)}

(Frame rule)

{y
 Y = 5∧ emph} y := 5; {y
 y = Y ∧ emph}
{(y
 Y = 5∧ emph)∗ (x
 x = X)} y := 5; {(y
 y = Y ∧ emph)∗ (x
 x = X)}

(Frame rule)

After that we can use the consequence rule to get the following judgements:

{x,y
 X = 7∧Y = 5} x := 7; {x,y
 x = X ∧Y = 5}

{x,y
 x = X ∧Y = 5} x := 5; {x,y
 x = X ∧ y = Y}

Finally, we only have to apply the rule of composition to prove the full program:

{x,y
 X = 7∧Y = 5}
x := 7;

y := 5;

{x,y
 x = X ∧ y = Y}

The postcondition might be a bit strange, as instead of having x = 7 and y = 5 we have
x = X and y = Y . But remember that X and Y are logical variables and their value do not
change. That is why x = 7 and x = X , and y = 5 and y = Y are equivalent.

If we compare this methodology with the one used in Hoare logic, it might seem that it
is more complicated for the same result. Nevertheless, it is important to note that usually

34 Foundations

A and B are going to be much bigger programs, where avoiding proving once again the
code could reduce significantly the cost of the full proof.

2.4 Dafny

Dafny [14] is a program verification tool which includes a programing language and
specification constructs. The Dafny programming language is primarily an imperative
programing language, but it has support for additional paradigms as object orientation
and functional programming. The object support is somehow limited, since inheritance is
not supported at the time of writing. Nevertheless, generic classes and dynamic alloca-
tion are implemented. From the point of view of functional programming, the language
has support for algebraic data types, recursive functions and predicates, and basic pattern
matching. The specification constructs include pre- and postconditions, to specify func-
tions, methods and predicates, framing constructs to allow local reasoning when working
with dynamic memory and pointers, and termination metrics to prove total correctness.
All the specification constructs are real entities of the programming language,included in
the grammar, avoiding the need to use specifically crafted comments as a way to represent
them, which is the case in other verifications tools like KeY [1] or frama-c [5].

At the compilation time, Dafny program are statically verified for total correcness, ensur-
ing all the contracts are meet and that every execution does terminates. The verification
process work by translating the Dafny code to an intermediate language Boogie [2] specif-
ically designed to work as a back-end for other program verification tool. The translation
must ensure that the correctness of the Boogie program implies the correctness of the
original program. Boogie is used to generate first order verification conditions, which are
given to a logic reasoning engine to be proved correct. In the case of Dafny, the used
engine is the Z3 [6] satisfiability modulo theories (SMT) solver.

If the solver is capable of verifying the conditions in a specified time limit, the original
Dafny code is once again translated, but this time to C# [7] code, which is a hight level
general purpose programming language developed by Microsoft. This C# code can be
compiled to the Common Intermediate Language (CIL), which can be executed using a
runtime such as Microsoft’s .Net Framework or Mono. The biggest advantage of using
C# as a target is it allows Dafny code to interoperate with all the other languages of the
CLI [8] environment. Thanks to that, it is possible to use Dafny to verify safety critical
code in already existing projects, while the rest of the code is maintained in the original

2.4 Dafny 35

language without modification.

In the following sections we proceed to explain the features of Dafny we used in the
implementation.

2.4.1 Functions and predicates

Dafny programming language has support for functions and predicates (being the last ones
simply syntactic sugar to functions returning a boolean value). The functions on Dafny do
not accept code (statements), the body of the function must be an expression, which can
be recursive.

For example, the add function returns the sum of two integers:

function add(a: int, b: int): int {

a + b

}

and the fact function calculates the factorial:

function fact(n: int): int {

if n <= 1 then 1

else n*fact(n-1)

}

All functions in Dafny are pure and total by default. A function to be pure means that the
same input parameters are always going to produce the same result and that the function
does not have any side effect, in other words, the function does not depend on the global
state neither it changes it. A function to be total means that the function is defined for all
the possible inputs. For example, the division of integers is not total, as division by zero is
not defined, even if zero is an integer. On the other hand, the addition of integers is total.

If we want a Dafny function not to be pure, i.e., the value of the function to depend in a
global variable, we must specify it using the reads clause. This clause is especially useful
when the function accepts pointers, as the value pointed by the pointer might change while
the pointer is maintained. We present an example predicate, which checks if the first value
from an array is bigger than 5. Arrays in Dafny are reference types, so they are accessed
through pointers. For now ignore the requires clause.

36 Foundations

predicate firstGr5(a: array<int>)

requires a != null && a.Length > 0

reads a

{

a[0] > 5

}

On the other hand there is no way in Dafny for a function to modify global state.

If we want a function not to be total, we must declare a condition to limit which inputs
are accepted using the requires keyword. For example, the firstGr5 predicate requires
the a pointer not to be null and the array to be non empty.

At compilation time, the Dafny runtime checks that the body of the function is well de-
fined for all the acceptable inputs and also it does not accede any state outside the ones
listed in the read. It also checks all the preconditions (requires) are meet in any point a
function is called.

Additionally, if the function is recursive, Dafny also checks if any function call termi-
nates. To do so, Dafny searches a decreasing expression. This decreasing expression is
analogous to the one mentioned in the recursion extension for Hoare logic. The expres-
sion must depend on the parameters of the function, and must accept a well founded
decreasing metrics, i.e, there is a minimum acceptable value for the expression. If Dafny
is not able to find the expression automatically, we can provide one using the decreases
keyword.

As an example, for the factorial function, a suitable decreasing expression is n:

function fact(n: int): int

decreases n

{

if n <= 0 then 1

else n*fact(n-1)

}

the lower bound of n is 0 as for values less than zero no recursive call is made thanks to
the condition of the if.

In some cases, in can be interesting to have functions that could not terminate. For those
cases, the inductive keyword is added before predicate (at the time of writing this
report inductive is only implemented for predicates and not functions returning other types

2.4 Dafny 37

of values). As inductive predicates do not terminate, they acquire the semantics of the
minor fix point of the predicate, and thanks to that their properties can be proved.

Dafny functions accept also an additional ensures clause. This clause can be used to
specify a property of the returned value that the function satisfies. For example:

function fact(n: int): int

ensures fact(n) >= n

decreases n

{

if n <= 0 then 1

else n*fact(n-1)

}

The ensures is statically checked at compilation time to ensure it is true. In some cases,
the property is to complex to prove it automatically, and a lemma should be used to prove
it.

2.4.2 Lemmas

Lemmas are the basic construct of Dafny for proving things. Lemmas are ghost methods
(i.e. their body is formed by a sequence of statements) but unlike the normal methods they
are not compiled to executable code.

Each lemma has a ensures clause which is proved to be true. Additionally, the lemmas
might also include a requires to specify some precondition. For example, we present
the FactGr lemma, which ensures the factorial of n is always bigger or equal to n:

lemma FactGr(n: int)

requires n >= 0

ensures fact(n) >= n

(The requires is not necessary here, but we add it for illustrative purposes.)

If the lemma is declared without a body, it is leaved unproved, but it can be used from
other points, allowing leaving properties to be proved lately. If a body is added to the
lemma, the lemma is checked to be correct.

38 Foundations

For simple properties, like the one used in FactGr, an empty body is enough for Dafny
to prove the correctness. In other cases, helping Dafny is necessary. There are many ap-
proaches we can use.

The first one is to add assertions in the body. Assertions are expressions checked to be
true at the point they are executed. Once the assertions are proved, they are added to the
knowledge Dafny has about the proof in that point, helping him to prove more complex
things. In some cases, it might be interesting to check if Dafny is able to prove something
giving it some knowledge, but whitout proving this knowledge is true. To do so there is
the assume keyword, which works exactly as the assert but which is not checked to be
true.

Some examples of the assertion and assumes are:

assert x >= 5;

assume r < 7;

assume x + x + x >= x*x;

The second one is to add lemmas. When a lemma is called in a body, its precondition is
checked to be true, and the lemmas ensure is introduced in the knowledge base. A lemma
call is equivalent to adding a assert with the precondition and a assume with the ensure:

FactGr(5);

// equivales to

assert 5 > 0;

assume 5 >= fact(5);

The third one is to use ifs inside the body to separate the prove in two. If the two sides
of the if are proved, the ensemble is also true. Additionally, using if allows to make
proves inductively: one of the braces of the if is the base case, and the other one(s) are
the inductive cases. Inside the inductive cases, we call the lemma itself but with a lesser
parameter. As for the functions, Dafny checks the lemma always terminates searching a
decreasing expression, and asking for one if necessary.

Combining the tree techniques mentioned before, it is possible to prove interesting prop-
erties. For example, we are going to prove the sum of the first n numbers multiplied by 2
is equal to n(n+1):

2.4 Dafny 39

function sum(n: int): int

requires n >= 0

{

if n == 0 then 0

else n + sum(n-1)

}

lemma sumEq(n: int)

requires n >= 1

ensures sum(n)*2 == n*(n+1)

{

if n == 1 {

} else {

sumEq(n-1);

assert sum(n-1)*2 == (n-1)*n;

assert sum(n-1)*2 + 2*n == (n-1)*n + 2*n;

assert sum(n)*2 == (n-1+2)*n;

assert sum(n)*2 == (n+1)*n;

assert sum(n)*2 == n*(n+1);

}

}

In the example we are helping Dafny more than necessary for illustration purposes. This
example can be proved using an empty body.

Sometimes, having a long list of asserts one after another is quite tedious. For those cases
the calc environment can be used.

lemma sumEq(n: int)

requires n >= 1

ensures sum(n)*2 == n*(n+1)

{

if n == 1 {

} else {

sumEq(n-1);

calc {

sum(n-1)*2 == (n-1)*n;

==>

sum(n-1)*2 + 2*n == (n-1)*n + 2*n;

==>

sum(n)*2 == (n-1+2)*n;

==>

sum(n)*2 == (n+1)*n;

==>

sum(n)*2 == n*(n+1);

}

}

}

40 Foundations

calc also accepts using == (equality) or < and > between the steps. Additionally, if some
step is very difficult and requires additional information to be made, intermediate asser-
tions, assumes and lemmas can be called:

calc {

x == y;

==> {assert a == b;}

x + a == x + b;

}

There is a useful method to prove lemmas, which is the prove by contradiction. It is
usually done with a calculation beginning with a not followed by the precondition and
ended in a false:

lemma less(a: int, b: int)

requires a < b

ensures a + 5 < b + 5

{

calc {

! (a+5 < b+5) && (a < b);

==>

! (a < b) && (a < b);

==>

false;

}

}

2.4.3 Algebraic data types

Dafny has support for algebraic data types. Algebraic data types are a way to create new
types typically used in functional programming. They take a similar role to the structs or
objects in object oriented programs.

Algebraic data types are defined by the type name and a list of constructors:

datatype example = A | B | C(int) | D(example)

2.4 Dafny 41

In the example A, B, C and D are the constructors and example is the type name. The
constructors can take different arguments. A and B take no argument, and they are con-
stant constructors. C takes an integer as an argument and D takes another example as an
argument.

To create an instance of a example variable, we call one of the constructors.

var a: example := A;

var b: example := B;

var c: example := C(5);

var d: example := D(a);

(The last one takes a as it needs other example as parameter).

Almost any type of data representable by computer can be encoded using data types. For
example, the booleans:

datatype boolean' = true | false

naturals (0 is represented by Z, 1 by C(Z), 2 by C(C(Z)), ...):

datatype nat' = Z | C(nat')

Polymorphic lists:

datatype list<T> = Nil | Cons(head: T, tail: list<T>)

head and tail are called destructor’s, and are optional.

Being l a variable of type list there are several things we can do:

• l.Nil? is a predicate returning true if l was constructed with Nil.

• l.Cons? is a predicate returning true if l was constructed with Cons.

• If l.Cons? then l.head returns the variable of type T used to construct l.

• If l.Cons? then l.tail returns the list used to construct l.

42 Foundations

Finally, instead of using destructors, it is possible to access the elements of a data type
using match:

math l

case Nil => ...

case Cons(h, t) => ... // here h is the integer

// and t is the list

As a final note, algebraic data types are immutable. This means that the only way to
change a value from a data type is to create a copy with the value changed.

3. CHAPTER

Proving the correctness of concurrent programs

Concurrency is a very powerful tool, it allows programs to made a better usage of the
system resources, especially in multi core systems. For example, if a program is divided
into two threads, one for the interactions with the user and the other to made the relevant
connections to Internet, while the user is giving some input slowly, the second thread can
take advantage of the unused processor time to exchange data with the network. Other
example, if a computationally taxing application is being executed in a multi core system,
and the program is divided into multiple threads, the processor will be able to execute
calculations in all cores at the same time, speeding up the application by the number of
cores.

There are multiple models for concurrency, being the most common and most efficient
one the memory sharing model. In this model, the threads communicate between them
using some memory locations which are accessible for all of them. The problem of this
model is it makes formal program verification very difficult, as some memory locations
might change at arbitrary times, causing the assertions about those memory locations to
be violated.

If instead shared memory model, message based models (like the actor model) are used,
it is easy to use separation logic to reason about concurrent programs, using the following
inference rule:

{P1}C1{Q1} {P2}C2{Q2}
{P1 ∗P2}C1‖C2{Q1 ∗Q2}

(3.1)

where C1‖C2 stands for concurrent execution of C1 and C2. The operator ∗ ensures that all
the memory addresses from the preconditions P1 and P2 and postconditions Q1 and Q2

43

44 Proving the correctness of concurrent programs

are independent, avoiding any possible interferences between the two threads.

In practice, real computers use shared memory model, and even if it is possible to imple-
ment alternative models at software level, in order to verify these implementations a new
methodology must be used.

Rely-Guarantee reasoning is a method for verification of shared-memory concurrent pro-
grams. Rely-Guarantee can be combined with Separation logic and Variables as Resource
to form Local Rely-Guarantee Reasoning (LRG) [9].

3.1 Local Rely-Guarantee reasoning

Rely-Guarantee reasoning is a tool to verify concurrent programs making use of shared-
memory concurrency. Most of the state accessed by the threads is considered private and
it is analyzed using standard techniques as Hoare logic or Separation logic. But for the
shared data a new model needs to be established.

In concurrent programs threads might interfere between them changing the values of the
shared memory in a nondeterministic way. Changes can happen, before, after or in the
middle of any command (except if the command is atomic). All the threads must be aware
of the possible interferences. For that, Rely-Guarantee reasoning introduces the two state
assertions. This assertions relate two states, both specified using standard assertions: pn
q. If the program is in a state satisfying p, we know that a transition to a state satisfying q

might happen. Everything else, not listed in the interferences, is guaranteed to not happen.

The interferences a thread causes are the guarantee conditions of the thread G. The inter-
ferences a thread must be aware are the rely conditions of the thread R. The rely conditions
of one thread are always going to be the combination of the guarantee conditions of the
remaining threads.

In order to prove the correction of a thread having its rely conditions, the standard pre a
postconditions used in the proof must be stablished. This means finding equivalent asser-
tions which are not affected by the transitions specified in G. Since the assertions are not
affected, the proofs maintain the correctness even in concurrent executions.

There are many variations of Rely-Guarantee reasoning. The most simple ones reason
only about programs with a local state composed by a store and a global state with lim-
ited variables. There are more advanced ones, like RGSep [19], which combine separa-

3.1 Local Rely-Guarantee reasoning 45

tion logic with rely-guarantee reasoning. The one analyzed in this report is LRG: Local
Rely-Guarantee reasoning. This one combines in addition to Separation logic an Rely-
Guarantee reasoning, the Variables as Resource approach. Thanks to that and other im-
provements, in this logic it is possible to prove concurrent programs in a modular way,
since unlike the previous one, it is not necessary that the shared state used in some sections
of the code to be known by other parts of the program.

LRG uses the same state and basic assertions we have seen in the Variables as Resource,
but the programming language is extended with parallel and atomic constructs, and a new
type of assertions, the actions are introduced.

3.1.1 Programming language

In LRG, the concurrency is implemented at the language level, extending the program-
ming language used in separation logic with two new statements.

Follows the new grammar:

C ::= ...

| C '||' C

| 'atomic' '(' B ')' '{' C '}'

The new statements are the parallel execution statement and the atomic statement. The
first one says that the statement to the right and to the left of the operator ‖ are going to
be executed in a concurrent way. The small step semantics are the following:

σ ,C1 σ ′,C′1
σ ,(C1‖C2) σ ′,(C′1‖C2)

σ ,C2 σ ′,C′2
σ ,(C1‖C2) σ ′,(C1‖C′2)

σ ,(skip‖skip) σ ′,skip

where σ = (s, i,h).

The second one, the atomic statement, says that in the moment B is true, the C instruction
is going to be executed atomically, i.e. no intermediate step from C are going to be visible
externally and during its execution no other thread might modify the shared state. At the
beginning of C B continues to be true, since the evaluation of B is done inside the atomic

46 Proving the correctness of concurrent programs

region. It follows the small step semantic:

JBKσ = true σ ,C ∗ σ ′,skip

σ ,atomic (B) { C } σ ′,skip

JBKσ = true σ ,C ∗ abort
σ ,atomic (B) { C } abort

where ∗ represent zero or more steps.

In order to ease the use of atomic, the syntactic sugar 〈C〉 is equivalent to atomic(true){C }.

Example

The following example program creates a dynamic variable x and a lock l, and spawns
two threads. Each threads acquires the lock, adds one to x (memory pointed by x) and
releases the lock.

x := cons(0);

l := 0;

{

atomic(l == 0) {

l := 1;

}

〈t1 := [x]〉;
t1 := t1 + 1;

〈[x] := t1〉;
[x] := t1;

〈l := 0〉;
} || {

atomic(l == 0) {

l := 1;

}

〈t2 := [x]〉;
t2 := t2 + 1;

〈[x] := t2〉;
[x] := t2;

〈l := 0〉;
}

3.1 Local Rely-Guarantee reasoning 47

3.1.2 Assertion language

The assertion language for LRG logic is far more complex than the one used for Hoare
logic and Separation logic.

In Rely-Guarantee reasoning, an special kind of assertion, called action, must be specified.
This actions are a relation between two standard assertions, and specify modifications to
the shared state. If we can prove the execution of any number of actions maintain the
validity of the standard assertions in a piece of code, a property called stability, we can
prove the code works correctly even in a concurrent environment. Since all the shared
state can only be modified in a way specified by the actions and the actions have no effect
in the assertions, the code must be correct.

In order to use the actions correctly, the local and shared state of the threads must be
differentiated. In the first approaches, the heap was divided in two disjoint partial func-
tions, and an special notation and operations were used to allow moving data between
them. In LRG instead of using that, invariant-fenced actions are used. In this approach, all
the modification done by the actions must be limited by an invariant which is a standard
assertion. What is mentioned in the invariant is part of the shared state, while the rest is
considered private. The invariant can change within the program, allowing moving data
between the states.

The grammar for the assertions in LRG is:

p,q,r, I ::= B | emph | emps | . . .

a,R,G ::= pnq | [p] | ∃X .a | a⇒ a

| a∧a | a∨a | . . .

p, q, r and I are standard assertions equivalent to the ones from the Variables as Resource
section, with the same semantic. a, R and G are actions.

(σ ,σ ′) |= a is a satisfaction judgement which says that the action a holds for the pair
of states σ and σ ′, where the semantics are defined as follows (being σ = (s, i,h) and

48 Proving the correctness of concurrent programs

σ ′ = (s′, i′,h′):

(σ ,σ ′) |= pnq iff i = i′∧σ |= p∧σ ′ |= q

(σ ,σ ′) |= [p] iff σ = σ ′∧σ |= p

(σ ,σ ′) |= a∗a′ iff ∃σ1,σ2,σ
′
1,σ

′
2 (σ1]σ2 = σ ∧σ ′1]σ ′2 = σ ′

∧(σ1,σ
′
1) |= a∧ (σ2,σ

′
2) |= a′)

(σ ,σ ′) |= ∃X .a iff i = i′∧∃n, i′′ (i′′ = i[X ← n]

∧((s, i′′,h),(s′, i′′,h′)) |= a)

(σ ,σ ′) |= a⇒ a′ iff (σ ,σ ′) |= a⇒ (σ ,σ ′) |= a′

(σ ,σ ′) |= a∧a′ iff (σ ,σ ′) |= a∧ (σ ,σ ′) |= a′

(σ ,σ ′) |= a∨a′ iff (σ ,σ ′) |= a∨ (σ ,σ ′) |= a′

In other words:

• (σ ,σ ′) |= pnq asserts p holds over the first initial state and q over the final state.

• (σ ,σ ′) |= [p] asserts that the state is maintained and satisfies p.

• (σ ,σ ′) |= a∗a′ asserts that both the initial and the final state can be divided in two
independent states, one pair satisfying a and the other satisfying a′.

• (σ ,σ ′) |= ∃X .a asserts that exists some value for the variable X in i for which a in
satisfied.

• The rest of them are standard logical connectives with their usual meaning.

Some syntactic sugar is also defined:

Emp def
= empn emp True def

= truen true Id def
= [true]

Precise assertions

The precision is a property of the assertions. If an assertion is precise, it means that for
any possible state there is one and only one sub-state which satisfies the assertion.

Definition 1 (Precise Assertions) An assertion p is precise, i.e., precise(p) holds, if and

only if ∀s, i,h,s1,s2,h1,h2 (s1 ⊆ s∧ s2 ⊆ s∧h1 ⊆ h∧h2 ⊆ h∧ (s1, i,h1) |= p∧ (s2, i,h2) |=
p⇒ s1 = s2∧h1 = h2).

This property will be mentioned and used in the following sections.

3.1 Local Rely-Guarantee reasoning 49

Stability

As mentioned before, stability is the property allowing us to reason about concurrent
programs. We can consider actions events might occur while executing some piece of
code. Stability allows us to check if this events might influence the execution and results
of the code.

Definition 2 (Stability) We say p is stable with respect to the action a, i.e., Sta(p,a)

holds, if and only if ∀σ ,σ ′(σ |= p∧ (σ ,σ ′) |= a⇒ σ ′ |= p).

Informally, stability means that the validity of p is conserved for any transition satisfying
a.

In order to allow doing local reasoning about concurrent executions, the following prop-
erty will be very interesting:

Sta(p,a)∧Sta(p′,a′)⇒ Sta(p∗ p′,a∗a′)

Unfortunately, this property does not hold in the vast majority of cases, even if we restrict
p to be precise. That is why invariant-fenced actions are introduced.

Invariant-Fenced Actions

Invariant-fenced actions are actions whose effects are limited by a precise invariant I. This
means I restricts the variables and memory that might be accessed by the action, and also
the changes that might occur.

Definition 3 (Fence) An action a is fenced by invariant I, denoted IB a, if and only if

([I]⇒ a)∧ (a⇒ (I n I))∧precise(I).

Informally, the IB a means that a holds over any identity transition satisfying I and that
any transition satisfying a conserves the invariant I.

The reason why I can be used to divide the local and shared memory of the treads is
the following: a conserves the invariant I and I is a separation logic assertion. Since in
separation logic assertions everything not mentioned in the assertions does not exist or is

50 Proving the correctness of concurrent programs

it maintained, a conserving I means that only memory addresses and variables referenced
in I could change. That is why what is referenced in I is the shared state, and the rest local
state.

Invariant-fenced actions allow using the frame rule for local reasoning thanks to the fol-
lowing property:

Lemma 1 (Sta(p,a)∧Sta(p′,a′)∧ (p⇒ I)∧ IBa)⇒ Sta(p∗ p′,a∗a′)

Examples

Some simple actions:

1. Free the memory at address x:

(x 7→ −)n (emph)

2. Maintain the value at memory address m:

[m 7→ −]

3. Maintain m reserved but the value might change:

(m 7→ −)n (m 7→ −)

4. Increase the value of x variable:

(x = X)n∃X ′(X ′ > X ∧ x = X ′)

5. Add 5 or subtract 2 to y:

(y = Y)n (y = Y +5∧ y = Y −2)

Examples of pure assertions:

1. x,y
 x 7→ y

3.1 Local Rely-Guarantee reasoning 51

2. x
 x = X ∧ emph

3. x
 x 7→ −

4. x,y
 (x 7→ y∗ y 7→ x)

An example of stability: Let

• p def
= a1 7→ v1

• G def
= (a2 7→ v2)n (a2 7→ v2 +1)

Sta(p,G) holds.

An example of a fence: Let

• I def
= L 7→ −∧ emps

• a def
= [L 7→ −∧ emps]∨∃Y.(L 7→ Y nL 7→ Y +1)

IBa holds.

3.1.3 Inference rules

In Local Rely-Guarantee reasoning the inference rules are divided into two groups: the
sequential rules, used when R and G conditions are empty, and the inference rules for
concurrency, used when interferences might happen. The rules of the first group are the
ones reviewed previously in the Variables as Resource section, in the previous chapter.

In this section we will present only the inference rules for concurrency. Note that some
rules of the concurrent group depend on the correctness of a sequential code section, to
be proved with the sequential rules.

For the concurrent rules, the program behaviour is represented using the following type
of expression, called the judgement for well-formed concurrent programs:

R;G; I ` {p}C {q}

where R is the rely condition, G is the guarantee condition, I is the invariant used to fence
R and G, p is the precondition and q is the postcondition. If the expression is proved
correct, the code C is guaranteed to satisfy the q postcondition for any suitable execution.

52 Proving the correctness of concurrent programs

The inference rules for concurrency1:

{p}C {q}
Emp;Emp;emp ` {p}C {q}

(ENV)

This rule says that if the rely and guarantee condition are empty the code correctness can
be proved using just the sequential rules. Since the shared resource is empty this is quite
intuitive.

R;G; I ` {p}C1 {q} R;G; I ` {q}C2 {r}
R;G; I ` {p}C1;C2 {r}

(P-SEQ)

This rule is analogous to the sequential rule of composition. The postcondition of the
first statement and the precondition of the second one must match, and R, G and I are
conserved.

p⇒ B = B {p∧B}C {q} Sta({p,q},R∗ Id)
pnq⇒ G∗True p∨q⇒ I ∗ true IB{R,G}

R;G; I ` {p} atomic(B){C} {q}
(ATOMIC)

where Sta({p,q}),R∗ Id) def
= Sta(p,R∗ Id)∧Sta(q,R∗ Id) and IB{R,G} def

= IBR∧ IBG.
This rule is used to prove the correctness of atomic statements. The conditions are:

1. the precondition p implies B is well defined,

2. {p∧B}C {q} can be proved using sequential rules,

3. p and q are stable under R and the identity transition,

4. the transition from p to q imply G for the shared state and true for the rest,

5. p or q imply the invariant for the shared state and true for the rest, and

6. both R and G are fended by the I invariant.

Conditions 1 and 2 are similar to the sequential conditions for the if. The 3rd condition
ensures that the sequential proof can be extended to the concurrent version as p and q

are maintained in the case of interference. The 4th ensures the code satisfies its guarantee
conditions. The 5th ensures the invariant is conserved by the C statement and the 6th one
is the fence to separate shared and local state.

1The names used for the rules correspond with the names used in [9].

3.1 Local Rely-Guarantee reasoning 53

p⇒ (B = B)∗ I R;G; I ` {p∧B}C {p}
R;G; I ` {p} while (B) { C } {p∧¬B}

(P-WHILE)

This rule is analogous to the sequential rule, but requiring C to be held also for R, G and
I, and p to imply the resources to evaluate B are disjoint with I, i.e., they are not part of
the shared state.

p⇒ (B = B)∗ I R;G; I ` {p∧B}C1 {q} R;G; I ` {p∧¬B}C2 {q}
R;G; I ` {p} if (B) { C1 } else { C2}{q}

(P-IF)

As the previous P-WHILE rule, this one also is analogous to the sequential rule, and have
the same additional requirements.

R∧G2;G1; I ` {p1 ∗ r}C1 {q1 ∗ r1}
R∧G1;G2; I ` {p2 ∗ r}C2 {q2 ∗ r2}

r∨ r1∨ r2⇒ I IBR

R;G1∨G2; I ` {p1 ∗ p2 ∗ r}C1 ||C2 {q1 ∗q2 ∗ (r1∧ r2)}
(PAR)

This rule is used to verify parallel executions. The disjoint preconditions p1 and p2 are
distributed between the threads C1 and C2 as the private state. The initial r and final r1 and
r2 are the shared state between the threads. The conditions of the rule are that each thread
is independently derivable using the inference rules for concurrency, that the disjuntion
of the shared state implies I and that I fences R. Note that the rely conditions for the
independent executions are formed adding the guarantee condition of the other thread to
the initial R of the parent. Additionally, the guarantee of the parent thread is the disjunction
of the rely of the child’s.

R;G; I ` {p}C {q} Sta(r,R′ ∗ Id) I′B{R′,G′} r⇒ I′ ∗ true
R∗R′,G∗G′, I ∗ I′ ` {p∗ r}C {q∗ r}

(FRAME)

The frame rule for the concurrent version is quite more complex that the sequential one.
This rule allows local reasoning as it ensures the correctness of some concurrent code is
not lost if a disjoint state is added. The conditions of the rule are:

1. R;G; I ` {p}C {q} is concurrently derivable,

2. r (assertion over shared state) is stable under R and the identity transition,

3. I′ fences both R′ and G′ and

4. r implies I′ invariant for the shared state and true for the rest.

54 Proving the correctness of concurrent programs

This rule is correct thanks to the Lemma 1. The first condition will ensure p and q are
stable under R, and the conditions 2, 3 and 4 ensure the other prerequisites to ensure that
the union of p and r and q and r is going to be stable under R∗R′.

R∗R′;G∗G′; I ∗ I′ ` {p}C {q} IB{R,G}
R,G, I ` {p}C {q}

(HIDE)

If part of the shared state used in C (as C might create child threads sharing data) is not ac-
cessible from the outside this rule allows to leave this part unspecified. R′, G′ are the rely
conditions over the shared state fenced by I′. When we delete I′ from the invariant, im-
plicitly we are moving data from the shared state to the local state, making it inaccessible
from the outside and removing the need of R′ and G′.

R;G; I ` {p}C {q} x /∈ free(R,G, I)
{∃X .p}C {∃X .q}

(P-EX)

where free(R,G, I) = free(R)∪ free(G)∪ free(I). This rule is analogous to the auxiliary
variable elimination rule for sequential programs, but adapted to add new restrictions
requiring x in not free in R, G or I.

R;G; I ` {p}C {q} R;G; I ` {p′}C {q′}
R;G; I ` {p∧ p′}C {q∧q′}

(P-CONJ)

and
R;G; I ` {p}C {q} R;G; I ` {p′}C {q′}

R;G; I ` {p∧ p′}C {q∧q′}
(P-DISJ)

This two rules are equivalent to the conjunction and disjunction rule for sequential pro-
grams.

p′⇒ p R′⇒ R G⇒ G′ q⇒ q′

R;G; I ` {p}C {q}
p′∨q′⇒ I′ ∗ true I′B{R′,G′}

R′;G′; I′ ` {p′}C {q′}
(CSQ)

This rule is analogous to the consequence rule for sequential programs, but new require-
ments have been added to ensure the consistency. R′ must imply R, G must imply G′, and
the new invariant I′ should be implied by p′∨q′ and must fence both R′ and G′.

In addition to those rules, four useful inference rules can be derived from the previous
ones:

3.1 Local Rely-Guarantee reasoning 55

{p}C {q} Sta(r,R∗ Id) IB{R,G} r⇒ I ∗ true
R;G; I ` {p∗ r}C {q∗ r}

(ENV-SHARE)

This rule is derived form the ENV and FRAME rules, and it allows to use sequential
reasoning to prove the correctness of C if C does not access the shared state.

R;G; I ` {p}C {q}
R;G; I ` {p∗ r}C {q∗ r}

(FR-PRIVATE)

This rule is derived from the rule FRAME when R′ and G′ are Emp and I′ is emp. It allow
to ignore some of the shared state when it is not used by the code.

R;G; I ` {p}C {q} Sta(r,R′) I′B{R′,G′} r⇒ I′

R∗R′,G∗G′, I ∗ I′ ` {p∗ r}C {q∗ r}
(FR-SHARE)

This rule is derived from the rule FRAME when r only contains shared state. It’s use is
similar to the one of the rule FRAME.

(R∨G2)∧G′2;G1 ∗G′1; I ∗ I′ ` {p1 ∗m∗ r}C1 {q1 ∗m′1 ∗ r′1}
(R∨G1)∧G′1;G2 ∗G′2; I ∗ I′ ` {p2 ∗m∗ r}C2 {q2 ∗m′2 ∗ r′2}

IB{R,G1,G2} I′B{G′1,G′2} r∨ r′1∨ r′2⇒ I′ m∨m′1∨m′2⇒ I′

R;G1∨G2; I ` {p1 ∗ p2 ∗m∗ r}C1 ||C2 {q1 ∗q2 ∗ (m′1∧m′2)∗ (r1∧ r2)}
(PAR-HIDE)

This rule is a generalization of the rule PAR, obtained applying the rule PAR followed
by the rule HIDE to hide the m resource. This rule is useful when a parent thread wants
to create a shared resource for the child’s but without sharing this resource with the full
program.

Example

We present a very simple example program and verify it using LRG.

The program code is just

atomic(true) {

x := x + 1

}

56 Proving the correctness of concurrent programs

and it is run in a concurrent environment where more threads executing the same code
might exists. The precondition and postcondition are:

p def
= x
 x≥ Y ∧ emph

q def
= x
 x > Y ∧ emph

So we begin the execution in a state where x is greater or equal than Y logical variable,
and we end in a state where x can only be greater than Y . The specification is quite weak
in order to be stable over the R condition. The R, G, and I we are going to use for the
verification are:

R def
= (x
 x≥ Y ∧ emph n x
 x > Y ∧ emph)∨ Id

G def
= R

I def
= Own(x)∧ emph

For this definitions,

• IB{R,G},

• Sta({p,q},R∗ Id),

• pnq⇒ G∗True, and

• p∨q⇒ I ∗ true

hold. So in order to prove the correctness of the code using the atomic rule it only remains
to prove the tautology p⇒ true = true, and to prove the code sequentially.

To prove the code sequentially, we are going to use begin using the assignment axiom:

{x
 X = x+1∧ emph} x := x + 1 {x
 x = X ∧ emph}
(Assignment axiom)

After that we are going to add independent state with the frame rule:

{x
 X = x+1∧ emph} x := x + 1 {x
 x = X ∧ emph}
{(x
 X = x+1∧ emph)∗ (X > Y ∧ emps)}

x := x + 1

{(x
 x = X ∧ emph)∗ (X > Y ∧ emps)}

(Frame rule)

3.1 Local Rely-Guarantee reasoning 57

And apply the rule of consequence to arrive to the following triple:

{x
 X = x+1∧ emph∧X > Y}
x := x + 1

{x
 x = X ∧ emph∧X > Y}

We continue using the auxiliary variable elimination rule for X :

{x
 X = x+1∧ emph∧X > Y}
x := x + 1

{x
 x = X ∧ emph∧X > Y}

{∃X .x
 X = x+1∧ emph∧X > Y}
x := x + 1

{∃X .x
 x = X ∧ emph∧X > Y}

(Auxiliary variable elimination)

And finish using the consequence rule once again to get:

{x
 x≥ Y ∧ emph} x := x + 1 {x
 x > Y ∧ emph}

or, which is the same:
{p} x := x + 1 {q}

The full program can be proved using the rule ATOMIC:

p⇒ true = true {p∧ true}C {q} Sta({p,q},R∗ Id)
pnq⇒ G∗True p∨q⇒ I ∗ true IB{R,G}

R;G; I ` {p} atomic(true) {x := x + 1;} {q}
(ATOMIC)

4. CHAPTER

Implementing LRG in Dafny

4.1 Implementation

To implement LRG in Dafny we used the functional features of the language:

• algebraic data types,

• pure functions,

• predicates.

Dafny supports writing imperative code and proving it using integrated resources as lem-
mas, assertions, calculation... Nevertheless, the imperative language used in Dafny is not
compatible with the one used in LRG as it does not support concurrent executions nei-
ther atomic operations. In addition, the memory model used in Dafny is based in frames
instead of separation logic.

Since modifying Dafny in order to support the custom programming language used in
LRG was out of the scope of this project, instead of that we implemented de language
over Dafny using algebraic data types and functions.

For each element in the programing and the assertion language, we define the grammar
using algebraic data types, and afterwards we give a meaning to each constructor using a
function or a predicate.

59

60 Implementing LRG in Dafny

4.1.1 Expressions

The integer expression grammar is defined using the following algebraic data type:

datatype Expr = Var(VName) | Int(int) | Add(Expr, Expr)

| Substract(Expr, Expr)

Var and Int are the only non recursive constructors. The first one takes a VName, a variable
name, as a parameter (VName is a synonim to string in our code). The second takes
an integer as an argument. The rest of them are recursive constructors which take two
expressions as an argument. Add is for addition, Substract for subtraction.

To give semantic meaning to the expressions we use the ValExpr function:

function ValExpr(expr: Expr, s: Store, i: LvMap): int

requires DefinedExpr(expr, s, i)

{

var si := union(s, i);

match expr

case Var(x) => si[x]

case Int(n) => n

case Add(e0, e1) => ValExpr(e0, s, i) + ValExpr(e1, s, i)

case Substract(e0, e1) => ValExpr(e0, s, i) + ValExpr(e1, s, i)

}

This function takes the expression to be evaluated, the store and the logical variable map
as a parameter. This function does in Dafny exactly the same as the JEKs,i in the LRG
logic, calculate the value of E expression over the union of s and i. Note that the function
is not total, it has a precondition requiring all the free variables in expr are present in s

or i.

Examples

Some expressions and their equivalent in Dafny:

• x: Var("x")

• 7: Int(7)

• x+2: Add(Var("x"), Int(2))

4.1 Implementation 61

• x− (2+ y): Substract(Var("x"), Add(Int(2), Var("y")))

4.1.2 Binary expressions

The binary expressions are similar to the integer expressions. Their grammar is:

datatype BExpr = True | False

| Not(BExpr) | And(BExpr, BExpr) | Or(BExpr, BExpr) |

| Xor(BExpr, BExpr) | Equal(Expr, Expr)

| Greater(Expr, Expr) | GreaterEqual(Expr, Expr)

| Less(Expr, Expr) | LessEqual(Expr, Expr)

True and False are constants and because of that they do not take any parameter. Nor,
And, Or and Xor represent the usual binary operators and take one or two binary expres-
sions as parameters. Equal, Greater, GreaterEqual, Less and LessEqual on the other
hand are relational operators which take integer expressions as an argument.

The semantics are given by ValBExpr:

function ValBExpr(bexpr: BExpr, s: Store, i: LvMap):bool

requires DefinedBExpr(bexpr, s, i)

We omit the body as it is quite long an is not necessary to understand how ValBExpr

works. The signature is equivalent to the one used by ValExpr but replacing the integer
expression with a binary expression and the returned value is equivalent to the value of
JBKs,i evaluation in LRG.

Examples

Some binary expressions and their equivalent in Dafny:

• true: True

• true∨ false: Or(True, False)

• 5 >= n: GreaterEqual(Int(5), Var("n"))

• y < 2∧ x = 2:
And(Less(Var("y"), Int(2)), Equal(Var("x"), Int(2))

62 Implementing LRG in Dafny

4.1.3 Programming language

The programming language used in LRG logic is quite simple grammatically, as only one
level of statements exist in addition to the expressions.

It follows the grammar:

datatype Stmt = Assign(dst: VName, val: Expr)

| Load(dst: VName, addr: Expr)

| Store(addr: Expr, val: Expr)

| Skip

| Cons(dst: VName, vals: seq<Expr>)

| Dispose(addr: Expr)

| Seq(c1: Stmt, c2: Stmt)

| If(cond: BExpr, c1: Stmt, c2: Stmt)

| While(cond: BExpr, c: Stmt)

| Atomic(cond: BExpr, c: Stmt)

| Par(c1: Stmt, c2: Stmt)

Each constructor is equivalent to one element of the LRG logic’s programming language’s
grammar:

• Assign is equivalent to x := E

• Load is equivalent to x := [E]

• Store is equivalent to [E] := E

• Skip is equivalent to skip

• Cons is equivalent to x := cons(E, . . . ,E)

• Dispose is equivalent to dispose(E)

• Seq is equivalent to C1 ; C2

• If is equivalent to if (B) {C} else {C}

• While is equivalent to while (B) {C}

• Atomic is equivalent to atomic (B) {C}

• Par is equivalent to C1 ||C2

4.1 Implementation 63

To give semantics to the programming language in Dafny, we can create a function which
simulates the execution of a statement. The signature will be something in the line of:

inductive predicate StmtStep (stmt: Stmt, m0: Mem, m1: Mem)

where Mem is equivalent to the type of (s, i,h), m0 represents the initial state and m1 the final
state. This predicate returns true if the statement stmt executed in the state m0 yields the
state m1. Since a while might cycle causing the predicate not to terminate and the final state
never to be reached the termination of the predicate can not be proved. Consequently we
make the predicate inductive, as Dafny does not require inductive predicates to terminate.

Nevertheless, implementing the semantics of the programming language is not necessary
to use the inference rules proposed in LRG. Implementing the semantics is only necessary
to prove the correctness and completeness of the inference rules, and for that reason, our
implementation does not include the StmtStep predicate.

Examples

Some programs and their equivalence in Dafny:

LRG:

y := 5;

x := [y];

Dafny:

Seq(Assign("y", Int(5)), Load("x", Var("y")))

LRG:

y := 0;

while (y < 5) {

y := y + 1;

}

64 Implementing LRG in Dafny

Dafny:

Seq(

Assign("y", Int(0)),

While(Bool(Less(Var("y"), Int(5))),

Assign("y", Add(Var("y"), Int(1)))

)

)

4.1.4 Assertion language

As in the assertion language we have both standard assertions and actions, we need two
separate data types to represent them.

Assertions

The assertion grammar is:

datatype Assertion = Bool(BExpr) | emp_h | emp_s | Own(VName)

| Points(Expr, Expr) | Reserved(Expr)

| Indep(Assertion, Assertion) | Wand(Assertion, Assertion)

| And(Assertion, Assertion) | Or(Assertion, Assertion)

| Neg(Assertion) | Exists(VName, Assertion)

| Impl(Assertion, Assertion)

and the semantics are given by a predicate with the signature:

predicate SemanticAssertion(assrt: Assertion, mem: Mem)

This predicate is true if and only if σ |= p holds where p is assrt and σ is mem. The
equivalences between Dafny and LRG are:

• Bool is equivalent to B

• emp_h is equivalent to emph

• emp_s is equivalent to emps

• Points is equivalent to E 7→ E

4.1 Implementation 65

• Reserved is equivalent to E 7→ −

• Indep is equivalent to p∗q

• Wand is equivalent to p−∗ q

• And is equivalent to p∧q

• Or is equivalent to p∨q

• Neg is equivalent to ¬p

• Exists is equivalent to ∃X .p

• Impl is equivalent to p⇒ q

Technically Reserved is only syntactic sugar in LRG, but is implemented inside the as-
sertions in order to be easier to prove.

In addition to the data type definition there are some useful functions to help create com-
plex assertions in a easier way:

function OwnFromSeq(sn: seq<VName>): Assertion

function AndFromSeq(sa: seq<Assertion>): Assertion

function OrFromSeq(sa: seq<Assertion>): Assertion

function IndepFromSeq(sa: seq<Assertion>): Assertion

function MultiplePoints(e: Expr, se: seq<Expr>): Assertion

The first one is equivalent to x1, . . . ,xn,•
 true. It takes a sequence of variables as argu-
ment, and it returns the equivalent assertion formed combining Own and And. The second
one simply joins a bunch of assertions with a conjunction and the third one with a dis-
junction. The fourth one joins a sequence of assertions using the ∗ independence operator.
Finally, the fifth one is equivalent to E 7→ E1, . . . ,En. The e parameter is the address E and
se is the sequence of expressions (E1, . . . ,En).

Thanks to this assertions things like:

And(Bool(Equal(Var("a"), Int(5))),

And(q,

And(r, s)

)

)

66 Implementing LRG in Dafny

are transformed to

AndFromSeq([

Bool(Equal(Var("a"), Int(5))),

q,

r,

s

])

which are much easier to read and debug.

The constant emp is also implemented in Dafny, using a function without parameters:

function emp(): Assertion {

Assertion.And(emp_s, emp_h)

}

Actions

The action grammar is:

datatype Action = Change(Assertion, Assertion)

| Mantain(Assertion) | Indep(Action, Action)

| Exists(VName, Action) | Impl(Action, Action)

| And(Action, Action) | Or(Action, Action)

and the semantics are given by a predicate with the signature:

predicate SemanticAction(assrt: Action, m: Mem, m': Mem)

This predicate is true if and only if σ ,σ ′ |= p holds where p is assert, σ is mem and σ ′

is mem'. The equivalences between Dafny and LRG are:

• Change is equivalent to pnq

• Maintain is equivalent to [p]

• Indep is equivalent to a1 ∗a2

4.1 Implementation 67

• Exists is equivalent to ∃X .a

• Impl is equivalent to a1⇒ a2

• And is equivalent to a1∧a2

• Or is equivalent to a1∨a2

The actions Emp, True and Id are defined using functions without parameters is a similar
way to emp assertion.

function Id(): Action {

Mantain(Bool(True))

}

function TrueAct(): Action {

Change(Bool(True), Bool(True))

}

function Emp(): Action {

Change(emp(), emp())

}

Examples

We present some assertions and actions, and their equivalence in Dafny.

• x > y: Bool(Greater(Var("x"), Var("y")))

• x 7→ y,z: MultiplePoints("x", [Var("y"), Var("z")])

• true⇒ 1 < 2: Impl(Bool(True), Less(Int(1), Int(2)))

• truena: Change(Bool(True), a)

• [x 7→ −]: Maintain(Reserved(x))

• Id∨Emp: Action.Or(Id(), Emp())

4.1.5 Inference rules

Inference rules can be implemented in several different ways. One approach could be to
create a lemma for each inference rule, where the conditions of the rule are encoded in
the requirements and the consequence in the ensure clause.

68 Implementing LRG in Dafny

An alternative approach is to create a predicate to check if a program is correct. The
predicate is encoded in a way such that it is true if and only if it exists an inference
rule chain beginning in the judgement for well formed sequential programs (R;G; I `
{p}C {q}) to check and ending in rules without any conditions.

In this implementation, we used the second approach.

Since in LRG logic there are two levels of inference rules, the sequential rules and the
concurrent rules, each one using a different specification, two predicates are necessary.

We first explain the implementation of the sequential rules, as the concurrent rules depend
on them.

Sequential rules

The sequential rules are implemented in SequentiallyDerivable:

inductive predicate SequentiallyDerivable(

p: Assertion,

C: Stmt,

q: Assertion)

The parameters of the rule p, C and q correspond to the precondition, code and postcon-
dition of {p}C {q} program specification.

To check if it is derivable, the conditions of all the rules are joined with a disjunction.
That way, if some of the rules is applicable the predicate will return true.

The conditions of the rules might require to prove other specifications of the form {p′}C′ {q′},
which is implemented in Dafny using recursive calls. The predicate is inductive because
the chain of rules needed to prove a program might be infinite and cycles can be created
in the chain, causing the predicate not to terminate.

For some rules, the consequence of the rule is not of the form {p}C {q}. For those cases,
additional conditions are needed to ensure that the consequence of the rule is equivalent
to the received parameters. For example if the rule was:

p⇒ q
{p} skip {q}

in addition to p⇒ q condition we should check also that C = skip.

4.1 Implementation 69

In many rules, there are implications between assertions. To prove them, it is necessary
to check that for all the states the implication is true: if the condition is p⇒ q we need to
prove that ∀σ .σ |= p⇒ q. As writing it in Dafny is quite tedious:

forall m :: SemanticAssertion(p, m) ==> SemanticAssertion(q, m)

specially when p and q are quite complex, the check is done inside the AssertionImpl

function:

predicate AssertionImpl(p: Assertion, q: Assertion) {

forall m :: SemanticAssertion(Assertion.Impl(p, q), m)

}

Concurrent rules

The sequential rules are implemented in ConcurrentlyDerivable:

inductive predicate ConcurrentlyDerivable(

R: Action,

G: Action,

I: Assertion,

p: Assertion,

C: Stmt,

q: Assertion)

The parameters of the rule R, G, I, p, C and q correspond to the rely conditions, guarantee
condition, invariant, precondition, code and postcondition of R;G; I ` {p}C {q} program
specification.

The predicate is constructed in the same way as the one for sequential rules, using the
disjunction to join all the conditions of the rules. The bigger difference is that in addition
to implications between assertions, implications between actions, stability checks and
fences might appear. To check each of the new conditions, there are three new predicate:

predicate ActionImpl(a1: Action, a2: Action)

predicate Sta(p: Assertion, a: Action)

predicate Fence(I: Assertion, a: Action)

70 Implementing LRG in Dafny

4.2 Project structure

The implementation of the system in separated in four different files:

1. util.dfy

2. programmin_language.dfy

3. assertions.dfy

4. inference_rules.dfy

Each file includes a module with the same name of the file without the dfy extension. In
order to use the resources of other modules, they must be imported at the beginning of the
module.

util.dfy
In this file they are defined general usage functions like domain to get the domain
of a map or union to join two maps.

programming_language.dfy
In this file both the expressions and the programming language are implemented.
It contains also helper functions for them as FvExpr to get the free variables from
a expression or DefinedExpr to check if it is well defined. It depends on util for
some operations.

assertions.dfy
In this file both the assertions and actions the programming language are imple-
mented. The contains also helper functions as FvAction to get the free variables in
an action or ActionImpl to check if an action implies another. It depends on util

for some operations and on programming_language for the expressions.

inference_rules.dfy
In this file the sequential and concurrent inference rules are implemented. Sta and
Fence and some lemmas about them are also implemented here (the lemmas were
taken directly from [9] and because of that they are not proved). Id depends on all
the previous files.

4.3 Proving methodology 71

4.3 Proving methodology

In order to prove a program using the Dafny implementation, a new dfy file should be
created. First of all, in the new file we must import all the files from the implementation.

Which the files imported, the program to be proved and the assertions to be used should
be translated to Dafny. Both the program and the assertions must be associated to some
names. The preferable way would be to use constants but they do not allow to call func-
tions inside them. As a consequence, the alternative approach is to use functions without
parameters, which return always the same value. For example, we could implement a
program and name it simple with the following code:

function simple(): Stmt {

Assign("x", Int(5))

}

The only drawback of using functions is we have to remember to use the parentheses
when referencing them.

Once the program and assertions are implemented, the must create a lemma with an empty
requires clause. The ensures clause should be a call to ConcurrentlyDerivable with the
program and its specification as parameters. If the program is not concurrent the call must
be to SequentiallyDerivable.

After that it only remains to prove the lemma is correct. For any program containing more
than one statement, using additional lemmas will be necessary to prove the intermediate
steps are correct.

Example

We present the proof of a sequential skip statement as an illustration of the methodology
(the imports are omitted):

function skip(): Stmt {

Skip

}

function p(): Assertion {

Bool(True)

72 Implementing LRG in Dafny

lemma prove_skip()

ensures SequentiallyDerivable(p(), skip(), p())

{

}

Limitations

One of the limitations of the methodology is the inability to accept arbitrary functions
to be used for the specification purpose. For example, if we want to reason a value cor-
responds with the factorial of other number, with the current assertion language it is not
possible to do so.

We tried to add the opportunity to call to arbitrary functions in the expressions and asser-
tions, adding a new constructor Function to both of them. Unfortunately, due to limitations
in how function variables are specified in Dafny the solution did not work.

The workaround for this is to add manually the required functions inside the expression
and assertion definitions, creating a new constructor and specifying the semantics.

5. CHAPTER

Examples

In this section we present two different examples where we use our implementation to
prove the correctness of a program.

The first one is a formalization in our tool of the example presented in the Variables as
Resource section (subsection 2.3.3), and is a sequential program. The second one is a
formalization of the example presented in LRG section (subsection 4.1.4). This one is a
sequential program.

The full code of both proofs is included with the LRG implementation directory (see
appendix A for more information).

5.1 Example of a sequential program

In this example we formalize and proof the following code:

{x,y
 X = 7∧Y = 5}
x := 7;

y := 5;

{x,y
 x = X ∧ y = Y}

To do so, we will use the following intermediate assertions:

73

74 Examples

p0 = {x,y
 X = 7∧Y = 5}
{(x
 X = 7∧ emph)∗ (y
 Y = 5)}
px assigment = {x
 X = 7∧ emph}
x := 7;

qx assigment = {x
 x = X ∧ emph}
{(x
 x = X ∧ emph)∗ (y
 Y = 5)}
p1 = {x,y
 x = X ∧Y = 5}
{(y
 Y = 5∧ emph)∗ (x
 x = X)}
py assigment = {y
 Y = 7∧ emph}
y := 5;

qy assigment = {y
 y = Y ∧ emph}
{(y
 y = Y ∧ emph)∗ (x
 x = X)}
p2 = {x,y
 x = X ∧ y = Y}

First of all, we have defined most assertions and both statements in Dafny using constant
function (we omit the bodies):

function p0(): Assertion

function p1(): Assertion

function p2(): Assertion

function p_x_assigment_p(): Assertion

function q_x_assigment(): Assertion

function p_y_assigment(): Assertion

function q_y_assigment(): Assertion

function x_mem(): Assertion

function y_mem(): Assertion

function x_command(): Stmt

function y_command(): Stmt

The assertions without name from the previous code segment are formed combining
x_mem and y_mem with other assertions.

Once the necessary constants are defined, we can proceed with the proofs. We begin
proving both assignments independently using the assignment axiom. To do so in Dafny,
we formulate two lemmas, which are automatically proved:

lemma x_assignment_axiom()

ensures SequentiallyDerivable(

p_x_assigment(),

x_command(),

q_x_assigment()

)

{

}

lemma y_assignment_axiom()

5.1 Example of a sequential program 75

ensures SequentiallyDerivable(

p_y_assigment(),

y_command(),

q_y_assigment()

)

{

}

With the assignments proved, we can use the frame rule to add the memory corresponding
to y to the assertions of the first statement and the memory corresponding to x to the
assertions of the second statement:

lemma x_frame_rule()

ensures SequentiallyDerivable(

Assertion.Indep(p_x_assigment(), y_mem()),

x_command(),

Assertion.Indep(q_x_assigment(), y_mem())

)

{

x_assignment_axiom();

}

lemma y_frame_rule()

ensures SequentiallyDerivable(

Assertion.Indep(p_y_assigment(), x_mem()),

y_command(),

Assertion.Indep(q_y_assigment(), x_mem())

)

{

y_assignment_axiom();

}

It must be noted that calling the previously proved lemmas inside the method body is
necessary, since their ensures clauses correspond with the conditions of the frame rules.

After that, we continue applying the consequence rule to adapt the form of the assertions,
and be able to apply the rule of composition. The consequence rule has the additional
conditions p⇒ p′ and q′⇒ q. This consequences must be proved, but in order to simplify
the example, we decided to formulate the additional conditions in the auxiliary lemmas
helper_x_implication and helper_y_implication and call this lemmas in order to
prove the consequence rule is correctly applied:

lemma x_consequence_rule()

ensures SequentiallyDerivable(p0(), x_command(), p1())

76 Examples

{

x_frame_rule();

helper_x_implication();

}

lemma y_consequence_rule()

ensures SequentiallyDerivable(p1(), y_command(), p2())

{

y_frame_rule();

helper_y_implication();

}

Finally, we apply the rule of composition, to join both statements and verify the full
program.

lemma rule_of_composition()

ensures SequentiallyDerivable(

p0(),

Seq(x_command(), y_command()),

p2()

)

{

x_consequence_rule();

y_consequence_rule();

}

In order the verification to be complete, the auxiliary lemmas must also be proved, but
due to the time constraints and some difficulties with Dafny, we only have checked them
manually.

5.2 Example of a concurrent program

In this example we formalize and proof of the following code:

{x
 x≥ Y ∧ emph}
atomic (true) {

x := x + 1;

}

{x
 x > Y ∧ emph}

To do so we will first prove the sequential code using the following intermediate asser-
tions:

5.2 Example of a concurrent program 77

• p def
= x
 x≥ Y ∧ emph

• p1
def
= ∃X(x
 X = x+1∧ emph∧X > Y)

• p2
def
= x
 X = x+1∧ emph∧X > Y

• p3(
def
= x
 X = x+1∧ emph)∗ (X > Y ∧ emps)

• p4
def
= x
 X = x+1∧ emph

• q4
def
= x
 X = x+1∧ emph

• q3(
def
= x
 x = X ∧ emph)∗ (X > Y ∧ emps)

• q2
def
= x
 x = X ∧ emph∧X > Y

• q1
def
= ∃X(x
 x = X ∧ emph∧X > Y)

• q def
= x
 x > Y ∧ emph

As in the previous example, all the assertions and the x := x+1 statement are imple-
mented using constant functions:

function p(): Assertion

function p1(): Assertion

function p2(): Assertion

function p3(): Assertion

function p4(): Assertion

function q4(): Assertion

function q3(): Assertion

function q2(): Assertion

function q1(): Assertion

function q(): Assertion

function C(): Stmt

We begin the proof using the assignment axiom:

lemma assignment_axiom()

ensures SequentiallyDerivable(p4(), C(), q4())

{

assert OwnFromSeq(["x"]) == Own("x");

}

78 Examples

An assertion is included in the body to help Dafny with the proof.

Afterwards, we use the frame rule to add X > Y ∧ emps independent assertion to the
precondition and postcondition:

lemma frame_rule()

ensures SequentiallyDerivable(p3(), C(), q3())

{

assignment_axiom();

}

and we follow with the rule of consequence (where helper_CR_1 is an auxiliary lemma
to proof the implications):

lemma helper_CR_1()

ensures AssertionImpl(p2(), p3())

ensures AssertionImpl(q3(), q2())

lemma consequence_rule_1()

ensures SequentiallyDerivable(p2(), C(), q2())

{

frame_rule();

helper_CR_1();

}

The next step is to apply the auxiliary variable elimination rule to quantify X existentially:

lemma auxiliary_variable_elimination()

ensures SequentiallyDerivable(p1(), C(), q1())

{

consequence_rule_1();

}

and we finish the sequential proof with another application of the rule of consequence
(where help_CR_2 is an auxiliary lemma to proof the implications):

lemma helper_CR_2()

ensures AssertionImpl(p(), p1())

ensures AssertionImpl(q1(), q())

lemma consequence_rule_2()

ensures SequentiallyDerivable(p(), C(), q())

{

5.2 Example of a concurrent program 79

auxiliary_variable_elimination();

helper_CR_2();

}

Having the sequential proof completed, it only remains one application of the rule ATOMIC.
In order to do so we implement R, G and I and the statement for the full code in Dafny:

function R(): Action {

Action.Or(Change(p(), q()), Id())

}

function G(): Action {

R()

}

function I(): Assertion {

Assertion.And(Own("x"), emp_h)

}

function C'(): Stmt {

Atomic(True, C())

}

We also write the headers of many auxiliary lemmas:

lemma helper_condition()

ensures forall m :: SemanticAssertion(p(), m) ==> DefinedBExpr(True, m.0,

m.1)

lemma helper_Sta()

ensures Sta(p(), Action.Indep(R(), Id()))

ensures Sta(q(), Action.Indep(R(), Id()))

lemma helper_AndTrue()

requires SequentiallyDerivable(p(), C(), q())

ensures SequentiallyDerivable(Assertion.And(p(), Bool(True)), C(), q());

lemma helper_guarantee()

ensures ActionImpl(Change(p(), q()), Action.Indep(G(), TrueAct()))

lemma helper_invariant()

ensures AssertionImpl(Assertion.Or(p(), q()), Assertion.Indep(I(), Bool(

True)))

lemma helper_fence()

ensures Fence(I(), R())

ensures Fence(I(), G())

80 Examples

• helper_condition is used to proof p⇒ true = true

• helper_Sta is used to proof Sta({p,q},R∗ Id)

• helper_AndTrue is used to proof p∧true is equivalent to p when proving {p}C {q}

• helper_guarantee is used to proof pnq⇒ G∗True

• helper_fence is used to proof IB{R,G}

We finish the verification using the atomic rule to proof the full program:

lemma ATOM_rule()

ensures ConcurrentlyDerivable(R(), G(), I(), p(), C'(), q())

{

helper_condition();

helper_guarantee();

helper_invariant();

helper_fence();

helper_Sta();

consequence_rule_2();

helper_AndTrue();

}

As for the previous example, most of the auxiliary lemmas remain to be proved in order
the verification to be complete.

6. CHAPTER

Conclusions and future work

In this chapter we present the conclusions of the project and we also propose some ideas
for future works.

6.1 Conclusions

On the one hand, the learning process to understand LRG logic was more difficult than
expected. The first publications about Hoare logic date from about 50 years ago, and
many development has been done in tools and didactic methodologies to teach it. On the
contrary, Separation logic, Variables as Resource and Rely-Guarantee reasoning are much
newer, and the documentation and tools about them are more limited.

For Separation logic, the problem was not very significant, as in the last 15 years, some
academics have begun to teach courses about it creating a reasonable amount of didactic
material. Furthermore, an important verification tool, KeY, has integrated Separation logic
inside his proving system, extending its use to more public.

For Rely-Guarantee logic, on the other hand, the literature is much more limited. Almost
all the publications regarding it are scientific papers, which are addressed to people al-
ready experienced in the area. The tools using RG are also almost exclusively research
tools with limited real world usage. As a consequence, understanding Rely-Guarantee
reasoning was a real challenge, and has required quite more implication than expected at
the beginning on the project.

81

82 Conclusions and future work

Variables as Resource was also documented exclusively in research papers, but due to the
lower complexity of the logic system, and the similarities with separation logic was much
easier to understand.

Most of this methodologies (expect Rely-Guarantee reasoning, which was directly re-
placed by the improved LRG) are explained in this report, and that is why we think this
document can be useful for other students wanting to begin working or researching about
this technologies.

On the other hand, we discovered some limitations of Dafny implementing and, specially,
using the LRG methodology.

First off all, Dafny is a very young tool. The project is in active development, and many
changes happen from version to version. However, the documentation of the project is
limited. In addition to a pair of tutorials and some research papers, the only available
documentation is the Dafny reference manual, which is incomplete, and lacks important
information about advanced features of the language can be used. In addition, since the
Dafny language users base is so reduced, most of the typical question and answer sites as
StackOverflow1 contain very few solutions for problems. The lack of documentation has
severally hampered the implementation of the LRG logic and, in some cases, we perhaps
use inelegant workarounds to fix problems with the language.

On the other hand, there is a list of features they are available in other tools, they would
have been quite helpful to our project. For example, Dafny does not support operator
overloading, which could have been used to ease the writing of complex expressions, as-
sertions and programs. Even better than the overloading, would be that Dafny supports
something similar to the Notation declaration of Coq proof assistant, which can be used
in a similar way but is more flexible. We consider this feature quite important to do se-
mantics, since with the actual notation is very easy to introduce typos in the programs and
quite difficult to detect them. Other interesting feature, available also in Coq, is the simpl
command. In Coq, this command replaces a function with itch body after making the pa-
rameter substitution. While trying to prove lemmas in Dafny, we discovered that many
steps inside a calculation where this kind of substitutions, where we ended copying and
pasting the same come many times and doing the variable substitutions manually. Hav-
ing a simpl like feature in Dafny would reduce the errors and the effort for this proves
greatly. In addition, as the transformation is done by the machine, it will be no necessity
to check the step in the Z3 SMT solver integrated in Dafny.

1https://stackoverflow.com/

6.2 Future work 83

In conclusion, at the time of writing this report, we think that perhaps the proof assistants
continue to be better suited for this works, even if they require to do more manual work.
We are satisfied with the investigation of LRG logic, in which we learned a lot and we
produced a report useful for other people to learn. The formalization of the logic in Dafny
was also completed successfully. However, we are a bit disappointed of the implementa-
tions phase because the created tool is not easy to use in practice.

6.2 Future work

One of the obvious propositions for future work is to improve the proving methodology
of our tool, to enable easier proofs for lemmas.

Another proposal is to program a simple parser to translate programs and assertions writ-
ten in the format proposed in LRG to Dafny variable declarations. This implementation
should be quite straightforward since the grammars are quite simple comparing to the
ones used in production programming languages and we only need to create data types
instead of low level machine instructions. It will be also interesting to allow the parser
both to generate real programs and the Dafny program declarations. Like that, after veri-
fying the code in Dafny it will be possible to generate a verified executable (assuming the
translator is correct).

An important thing to mention is that LRG does not use the weakest precondition ap-
proach used to verify programs using Hoare logic. The weakest preconditions eliminates
the burden of manually searching intermediate assertions between each two instructions,
and generates less verification conditions to be checked by the SMT solvers or to be
proved manually. An interesting future work will be to find an equivalent method for
LRG logic, and implement creating a much powerful tool.

Other limitation of LRG is it lacks the capability of proving termination. It is important
to note that in concurrent environments termination depends on properties like deadlock
freedom, starvation freedom, wait freedom... mentioned in most books of concurrent pro-
gramming. As a consequence proving concurrent program termination is not so easy as
finding a decreasing clause for every while and recursive function call, a new methodology
is necessary. A methodology for this already exists, LiLi [15], but there is no computer
based tool implementing it. While implementing LRG we also implemented a first ver-
sion of LiLi in Dafny, but was neither tested nor fully completed. An interesting future

84 Conclusions and future work

work will be to finish the LiLi implementations and to use it in conjunction with LRG to
prove concurrent programs.

Appendices

85

A. APPENDIX

Project organization

The code of the project is organized using the following directory structure:

.

|-- LiLi

| |-- assertions.dfy

| |-- decreasing_functions.dfy

| |-- inference_rules.dfy

| |-- programming_language.dfy

| |-- test_programming_language.dfy

| |-- ticket_lock.dfy

| `-- util.dfy

`-- LRG

|-- assertions.dfy

|-- concurrent_example_proof.dfy

|-- concurrent_example_spec.dfy

|-- inference_rules.dfy

|-- programming_language.dfy

|-- sequential_example.dfy

`-- util.dfy

In the LiLi directory they are the files used to implement the LiLi logic mentioned in the
conclusion. The implementation is neither completed nor tested, and the code is structured

87

88 AAppendix

in a similar way to LRG logic’s implementation.

In the LRG directory they are both the files to implement LRG logic, and the source
files for the examples explained in the fifth chapter. The content of assertions.dfy,
inference_rules.dfy, programming_language.dfy and utils.dfy is explained in
the 4.2 section.

The remaining files are:

• sequential_example.dfy: this file contains the sequential example presented in
section 5.1.

• concurrent_example_spec.dfy: this file contains the definitions used in the con-
current example of section 5.2.

• concurrent_example_spec.dfy: this file contains the lemma used in the concur-
rent example of section 5.2.

The concurrent example is separated in two files in order to allow faster compilation
speeds.

Bibliography

[1] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin Giese,
Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski, Andreas Roth, Steffen
Schlager, and Peter H. Schmitt. The key tool. Software & Systems Modeling,
4(1):32–54, 2005.

[2] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M.
Leino. Boogie: A modular reusable verifier for object-oriented programs. In Frank S.
de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-Paul de Roever, edi-
tors, Formal Methods for Components and Objects: 4th International Symposium,

FMCO 2005, volume 4111, pages 364–387. Springer, September 2006.

[3] Yves Bertot and Pierre Castran. Interactive Theorem Proving and Program De-

velopment: Coq’Art The Calculus of Inductive Constructions. Springer Publishing
Company, Incorporated, 1st edition, 2010.

[4] Richard Bornat, Cristiano Calcagno, and Hongseok Yang. Variables as resource in
separation logic. Electron. Notes Theor. Comput. Sci., 155:247–276, May 2006.

[5] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
and Boris Yakobowski. Frama-c: A software analysis perspective. In Proceedings

of the 10th International Conference on Software Engineering and Formal Methods,
SEFM’12, pages 233–247, Berlin, Heidelberg, 2012. Springer-Verlag.

[6] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver, pages 337–
340. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[7] ECMA International. Standard ECMA-334 - C# Language Specification. 4 edition,
June 2006.

89

90 AAppendix

[8] ECMA International. Standard ECMA-335 - Common Language Infrastructure

(CLI). Geneva, Switzerland, 5 edition, December 2010.

[9] Xinyu Feng. Local rely-guarantee reasoning. In Proceedings of the 36th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’09, pages 315–327, New York, NY, USA, 2009. ACM.

[10] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vil-
helm Sjöberg, and David Costanzo. Certikos: An extensible architecture for building
certified concurrent os kernels. In 12th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 16), pages 653–669, GA, 2016. USENIX Asso-
ciation.

[11] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, October 1969.

[12] C. B. Jones. Tentative steps toward a development method for interfering programs.
ACM Trans. Program. Lang. Syst., 5(4):596–619, October 1983.

[13] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Nor-
rish, Thomas Sewell, Harvey Tuch, and Simon Winwood. sel4: Formal verification
of an os kernel. In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating

Systems Principles, SOSP ’09, pages 207–220, New York, NY, USA, 2009. ACM.

[14] Rustan Leino. Well-founded functions and extreme predicates in dafny: A tutorial.
In Boris Konev, Stephan Schulz, and Laurent Simon, editors, IWIL-2015. 11th In-

ternational Workshop on the Implementation of Logics, volume 40 of EPiC Series

in Computing, pages 52–66. EasyChair, 2016.

[15] Hongjin Liang and Xinyu Feng. A program logic for concurrent objects under fair
scheduling. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’16, pages 385–399, New York,
NY, USA, 2016. ACM.

[16] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A Proof

Assistant for Higher-order Logic. Springer-Verlag, Berlin, Heidelberg, 2002.

[17] Peter W. O’Hearn. A primer on separation logic (and automatic program verification
and analysis). In Tobias Nipkow, Orna Grumberg, and Benedikt Hauptmann, editors,

BIBLIOGRAPHY 91

Software Safety and Security - Tools for Analysis and Verification, volume 33 of
NATO Science for Peace and Security Series - D: Information and Communication

Security, pages 286–318. IOS Press, 2012.

[18] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science,
LICS ’02, pages 55–74, Washington, DC, USA, 2002. IEEE Computer Society.

[19] Viktor Vafeiadis and Matthew Parkinson. A Marriage of Rely/Guarantee and Sepa-

ration Logic, pages 256–271. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

	Abstract
	Contents
	Introduction
	Objectives
	Work plan
	Content

	Foundations
	Hoare Logic
	Assertions
	Programming language
	Inference rules
	Recursion

	Separation Logic
	Programming language
	Assertion language
	Inference rules

	Variables as Resource
	State
	Assertion language
	Inference rules

	Dafny
	Functions and predicates
	Lemmas
	Algebraic data types

	Proving the correctness of concurrent programs
	Local Rely-Guarantee reasoning
	Programming language
	Assertion language
	Inference rules

	Implementing LRG in Dafny
	Implementation
	Expressions
	Binary expressions
	Programming language
	Assertion language
	Inference rules

	Project structure
	Proving methodology

	Examples
	Example of a sequential program
	Example of a concurrent program

	Conclusions and future work
	Conclusions
	Future work

	Project organization
	Bibliography

