
For Peer Review
 O

nly; Not for Distribution
Time-resolved resting state fMRI analysis: current status, challenges, and new directions 
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Abstract 

Time-resolved analysis of resting state fMRI data allows researchers to extract more information about 

brain function than traditional functional connectivity analysis, yet a number of challenges in data 

analysis and interpretation remain.  This manuscript briefly summarizes common methods for time-

resolved analysis and presents some of the pressing issues and opportunities in the field. From there, 

the discussion moves to the interpretation of the network dynamics observed with resting state fMRI 

and the role that resting state fMRI can play in elucidating the large-scale organization of brain activity. 

 

I. Introduction 

Resting state functional magnetic resonance imaging (rs-fMRI), based on the spontaneous fluctuations 

of the blood oxygenation level dependent (BOLD) signal, has become a powerful and popular tool for 

the study of normal and dysfunctional brain activity. Traditional methods of analysis identify spatial 

patterns of BOLD signal coordination that are assumed to persist for the duration of the entire rs-fMRI 

scan (~5-10 min or longer), which we will refer to as average functional connectivity. However, using the 

entire time series for a single connectivity calculation disregards the vast amount of dynamic 

information that is present in the rs-fMRI data. Researchers are increasingly turning to analyses that 

capture time-dependence in the data as a way to extract more information about brain function, using 

methods ranging from windowed versions of standard seed-based correlation or independent 

component analysis (ICA) techniques to new methods that consider information from individual time 

points and/or identify change points in the rs-fMRI signal. As the field of time-resolved rs-fMRI and 

functional connectivity analysis has grown, a number of challenges, opportunities, open questions, and 

new areas of inquiry have arisen. This manuscript summarizes discussion of these topics from the 

Dynamic Connectivity Satellite Symposium at the Resting State Functional Connectivity Workshop in 

Vienna in September 2016. We begin with a summary of current approaches to analysis of rs-fMRI data 

that incorporate time-dependence and describe some of the existing technical challenges in the field, 

including the definition of null models for validation and statistical inference. Note, in this overview we 

use the terms “time-varying” and “dynamic” interchangeably, though we recognize that one can 

distinguish between, e.g., dynamic state models and static models, both of which can be used to 
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characterize time-dependent signals (e.g. an oscillatory signal can be modeled with a static model). Our 

main focus is on approaches that move beyond querying parameters that represent averages over the 

entire experiment (e.g. a single set of nodes and edges) and instead capture information about changes 

over time in activity or connectivity. From there, we move to a more open-ended consideration of how 

to interpret large-scale patterns of time-varying activity and explore rs-fMRI’s potential contribution to 

neuroscience. 

II. Summary of current approaches 

The vast majority of studies that use rs-fMRI to examine time-varying changes in the brain employ a 

windowed version of traditional analysis techniques, primarily correlation and/or ICA (Figure 1). When 

used over the whole scan period, these techniques map the spatial distribution of the networks and 

provide a single measure of statistical dependence, e.g. linear correlation, between the timecourses for 

any pair of voxels, regions, or networks of interest. When applied in a windowed manner, in contrast, 

the results are maps of spatial extent and/or correlation values that vary over time. However, sliding 

windows are not the only available approach; there is a rich set of tools that have been proposed over 

the past few years, which are unveiling the utility in characterizing the dynamic reconfiguration of brain 

activity and connectivity. For example, change points in functional connectivity can be identified based 

on the covariance matrix of partitioned (i.e., temporally windowed) data, or dynamic analyses can focus 

on the signal amplitude to identify individual events (Figure 2). One can also extract spatiotemporal 

patterns of dynamic activity that repeat over the course of the scan (Figure 3). In this section, we briefly 

summarize some of the most widely used techniques. 

Windowed coherence, correlation or covariance-based methods. As in standard studies of average 

functional connectivity, dynamic analysis is often used under the assumption that the relationships 

between areas are of greater interest than the relative signal amplitudes. Coherence, correlation, and 

covariance all provide information about the similarity between signals from different areas. Sliding 

window correlation analysis is widely used to examine dynamic connectivity presumably because it is 

relatively straightforward and can be implemented using regions of interest or ICA-derived timecourses 

(Allen et al., 2014; Chang and Glover, 2010; Handwerker et al., 2012; Hutchison et al., 2013; Keilholz et 

al., 2013; Petridou et al., 2013; Sakoglu et al., 2010). For this method, a “window” is moved along the 

scan from beginning to end and correlation between the areas or components of interest is calculated 

for each window, resulting in a plot of correlation as a function of time (Figure 1A). Different studies use 

different window lengths but the length is generally kept constant throughout the analysis. Consecutive 

windows may overlap maximally (all time points are the same except one), minimally (no time points are 

the same; Figure 1B), or at some level in between. Window length, shape, and overlap for best 

performance are still not known, as discussed further in the section on technical challenges. For whole-

brain studies, the brain is often first parcellated into a manageable number of regions of interest (ROIs) 

or components. Coarse parcellations increase the signal-to-noise ratio (SNR) of the time courses through 

averaging, while finer parcellations improve the homogeneity of the timecourses that are averaged.  

Sliding window correlation is then calculated pairwise between the timecourses from all parcels for each 

window to create a series of correlation matrices that can be used for further analysis (Allen et al., 2014; 

Gonzalez-Castillo et al., 2015; Hutchison et al., 2013; Li et al., 2014; Ma et al., 2016). Sliding window 

correlation can also be computed on the first-order temporal derivative of the time series, an approach 

referred to as multiplication of temporal derivatives (Shine et al., 2016, 2015). This is equivalent to high 

pass filtering with a cutoff frequency fcutoff = 0.25/TR (Oppenheimer and Schafer, 2009).  
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The choice of window length is critical for sliding window approaches because it influences the ability to 

extract information from the data and the interpretation of the results (Leonardi and Van De Ville, 

2015). To overcome this constraint, time-frequency analyses enable the exploration of time-varying 

connectivity at multiple frequencies, which is conceptually equivalent to adapting the analysis to 

different window lengths (Figure 1C). In one of the earliest demonstrations, Chang and Glover focused 

on wavelet coherence between selected regions of interest. They identified periods with significant 

levels of coherence (Chang and Glover, 2010). The statistical rigor and use of both frequency and time 

information taken by this approach is appealing but difficult to transfer to whole brain studies due to 

the explosion in the dimensionality of the data, perhaps explaining why this approach has not been 

widely utilized. More recently, approaches to obtain information about the multiple frequencies that 

mediate dynamic functional connectivity at the level of the whole brain have been introduced (Miller et 

al., 2016a; Yaesoubi et al., 2017, 2015). 

Change point detection. Another approach that avoids the challenges involved in choosing an 

appropriate window length involves data-driven temporal segmentation of the rs-fMRI data (Chen et al., 

2016; Cribben et al., 2013, 2012; Lindquist et al., 2014; Ou et al., 2014; Xu and Lindquist, 2015; Zhang et 

al., 2014). The goal of these methods is to determine when a change in “brain state” occurs based on 

properties of the data itself. The segmentation can be accomplished using simple methods (clustering 

based on the amplitude of the signal) or with more sophisticated state-space models (hidden Markov 

models) that consider the covariance as well as the amplitude of the time series, albeit at the cost of 

additional computational complexity (Chen et al., 2016; Eavani et al., 2013; Ryali et al., 2016; Suk et al., 

2016; Taghia et al., 2017). Still other methods use the properties of the signal or the relationship 

between the signal from different areas to identify times when the large-scale organization of brain 

activity changes (Lindquist et al., 2014; Ou et al., 2014; Xu and Lindquist, 2015; Zhang et al., 2014). In 

some cases, these methods can be considered to be a version of windowed analysis techniques in which 

the window size is adaptively varied in response to data properties (Xu and Lindquist, 2015). The spatial 

patterns in each cluster and the timing of their occurrence through the scan can then be used in further 

analysis. 

Event-based analysis. In contrast to methods based on relationships between brain areas, analysis 

techniques based on amplitude changes do not necessarily assume that changes occur at the network 

level. At the heart of many of these methods is the idea that activity in any given area is primarily 

composed of distinct spontaneous events that each give rise to a hemodynamic response, similar to the 

response that occurs for a task or stimulus. This assumption is based on the hypothesis that these 

spontaneous BOLD events originate from neuronal events such as avalanching activity (Tagliazucchi et 

al., 2012a, 2011). The timing of the events can be deciphered from the BOLD fluctuations using a variety 

of approaches. Straightforward detection of single events can be accomplished by thresholding the 

timecourses of the voxel or ROI based on amplitude, where the threshold can be based on the standard 

deviation of the time series (Tagliazucchi et al., 2012a, 2011; Wu et al., 2013) or the local maximum (or 

minimum) of the signal (Laumann et al., 2016; Tagliazucchi et al., 2016). This approach is known as point 

process analysis (PPA; Figure 2A). Alternatively, events can be identified through deconvolution of a 

given hemodynamic model from the time series (Caballero Gaudes et al., 2013; Karahanoğlu et al., 2013; 

Petridou et al., 2013). Hemodynamic deconvolution to estimate the underlying neuronal signal is 

commonly applied to investigate psychophysiologic interactions (PPI) in task-based functional 

connectivity studies (Gerchen et al., 2014; Gitelman et al., 2003) and in rs-fMRI (Di and Biswal, 2015). 
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Contrary to the classical formulation of PPI analysis, recent deconvolution approaches employ sparsity-

promoting estimators based on the assumption that the dynamics of spontaneous brain activity can be 

characterized by looking at sparse BOLD events (Karahanoğlu et al., 2013; Petridou et al., 2013), similar 

to the hypothesis underlying PPA-based approaches (Tagliazucchi et al., 2012a).  

The dynamics of the brain activity generated by the individual events can be visualized by watching the 

sequence of events. The complexity of these sequences (which explodes with large number of ROIs or in 

whole-brain analyses) and the inherent variability in the timing of the events across datasets makes 

drawing inferences a challenging task. Consequently, once the events are detected, a variety of post-

processing methods have been developed to summarize the spatial and temporal distribution of the 

events. As a first approximation, the timings of the events can be employed as onsets in a standard 

general model analysis (Caballero Gaudes et al., 2013; Petridou et al., 2013). On the other hand, the 

time volumes corresponding to the single events can be either averaged or clustered to generate the so-

called co-activation patterns (CAPs), i.e. patterns of regions that repeatedly activate and deactivate 

together (Chen et al., 2017; Chen and Glover, 2015; Liu and Duyn, 2013; Tagliazucchi et al., 2012a). 

Furthermore, estimating the shape of the hemodynamic response function at rest is feasible by 

averaging the signal (i.e. fitting a finite impulse response model) around the times of the identified 

events, for example, with a PPA-based approach (Tagliazucchi et al., 2012a; Wu et al., 2013; Wu and 

Marinazzo, 2016). The retrieved resting-state HRF exhibits a similar temporal pattern to the HRF that is 

obtained for task-related fMRI data, which partially validates the employment of deconvolution-based 

methods to identify these events. 

In all these studies, the spatial distribution of the maps obtained based on these brief spontaneous 

events closely resemble the resting state networks obtained using static seed-based correlation or ICA, 

even though the number of data observations or events is substantially reduced (Petridou et al., 2013; 

Tagliazucchi et al., 2012a; Liu and Duyn, 2013). Furthermore, removal of the spontaneous events 

considerably diminishes the strength of correlation between the nodes of the network as computed 

with a sliding window approach (Petridou et al., 2013). These observations demonstrate that a 

substantial part of the brain’s functional connectivity observed in rs-fMRI is driven by spontaneous BOLD 

events that sometimes occur simultaneously in all the nodes of the network or in a subset of nodes (see 

also Allan et al., 2015).  

As an extension of the CAP technique, Karahanoğlu and Van de Ville (2015) proposed to identify 

innovation-driven co-activation patterns (iCAPs) where k-means clustering is applied to the temporal 

derivatives of the deconvolved timecourses, which encode the changes in the original BOLD 

timecourses. In contrast to conventional CAPs, iCAPs identify regions whose signal simultaneously 

increases or decreases, i.e. regions with similar temporal dynamics (Preti et al., 2016). Using this 

framework, Karahanoğlu and Van de Ville (2015) found evidence that well-known resting state 

networks, such as the default mode network (DMN), might divide into multiple subsystems with their 

own temporal dynamics and therefore possibly functionally heterogeneous subnetworks (see also Chen 

et al., 2017 for similar observations using PPA and CAPs). Moreover, backprojection of the iCAPs to the 

deconvolved fMRI volumes allows reconstruction of iCAP timecourses and, therefore, evaluation of 

temporal overlaps between the different patterns. Interestingly, it has been found that, on average, 

between 3 and 4 iCAPs overlap in time and that the brain activity associated to these patterns is 

sustained for 5-10 s, which might explain why a window length of at least 20 s is required to obtain 
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robust inferences with an sliding window approach (Karahanoğlu and Van de Ville, 2015; Preti et al., 

2016).  

The advantages of both PPA and deconvolution approaches for the study of dynamic functional 

connectivity are that they can potentially allow a reduction in data dimensionality since time points with 

non-significant amplitude, which are more likely to be corrupted by noise, are excluded. In addition, 

they easily enable whole brain analyses at the voxel level (Petridou et al., 2013; Tagliazucchi et al., 

2016), even though in practice it is common to constrain the analysis to specific brain regions (e.g., Liu 

and Duyn (2013); Chen et al. (2017)) to ease interpretability of the results and reduce computational 

time. However, a critical issue in both approaches is the sensitivity of the detection of events to the 

choice of the amplitude thresholds or regularization parameters (Caballero Gaudes et al., 2011; 

Karahanoğlu et al. 2013; Tagliazucchi et al., 2012a; Tagliazucchi et al., 2016; see Figure 2). Varying these 

parameters may considerably modulate the sensitivity and specificity of the algorithm to detect true 

neuronally-related BOLD events, and in turn subsequent analysis (e.g. the definition of (i)CAPs ) and 

results. Often, to assure the functional significance of the detected events or voxels, some type of 

additional spatial or temporal thresholding is applied.  For example, one can select only those time 

points in a timecourse summarizing the activations or “activation time series” (Caballero Gaudes et al., 

2013) where a minimum number of voxels exhibit an event (Petridou et al., 2013; Karahanoğlu et al. 

2015), or a subset of voxels of the single volumes with a minimum signal change (Liu and Duyn, 2013; Liu 

et al., 2013).  

Principle Component Analysis (PCA) and Independent Component Analysis (ICA). ICA is commonly used to 

identify functional networks that persist across the duration of a rs-fMRI scan, but it has also been used 

to characterize dynamic connectivity by computing the correlation or coherence between the 

components’ timecourses in a sliding window approach (Allen et al., 2014; Calhoun and Adali, 2016; 

Sakoglu et al., 2010). ICA maximizes spatial independence among brain networks, which is effectively 

finding networks that are not systematically overlapping. As such it provides a powerful and intuitive 

framework for analyzing resting fMRI data (Calhoun and Adali, 2012; Beckmann, 2012). This however 

does not necessarily imply that the brain is actually organized into spatially independent units; rather it 

represents a modeling framework for organizing and understanding high dimensional data at a 

particular scale (Calhoun and deLacy, in press). Instead of examining the relationships between the 

windowed timecourses of ICA components, ICA can also be applied independently to the rs-fMRI data 

from each temporal window to provide information about the spatial extent of the networks as a 

function of time (Kiviniemi et al., 2011), similar to a related approach called independent vector analysis 

(Ma et al., 2014). 

In traditional rs-fMRI analysis, PCA is primarily used as a data cleaning/reduction step prior to ICA. For 

dynamic analysis, PCA can also be used in conjunction with sliding window correlation to identify 

patterns of connectivity, termed eigen components, that serve as the basis for the observed network 

dynamics (Leonardi et al., 2014, 2013). In contrast to hard clustering, PCA provides a weighted 

combination for the basis patterns of functional connectivity at each time point, rather than a 

discretized assignment to a single cluster. Such fuzzy clustering is useful and fuzzy membership in 

possibly overlapping states can be computed from a variety of approaches, including for the hard 

clustering approaches mentioned earlier (e.g. kmeans, PCA, spatial ICA, temporal ICA) (Miller et al., 

2016b). 
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Repetitive patterns. Most dynamic analysis methods do not assume a particular temporal sequence of 

events. However, a number of experimental observations of quasi-periodic sequences of activity have 

been reported (Chow et al., 2013; Majeed et al., 2009), and researchers have begun to explore analysis 

methods that explicitly search for repeated patterns. Mitra et al. demonstrated reproducible 

propagation across the cortex on the time scale of seconds (Mitra et al., 2015), while other studies have 

observed repeated whole-brain patterns of activity that can be characterized with an autoregressive 

pattern-finding algorithm (Chow et al., 2013; Kiviniemi et al., 2015; Majeed et al., 2011; Figure 3). The 

patterns of activity typically involve sequential activation and deactivation of one or more of the large 

scale functional networks detected with traditional rs-fMRI analysis. At least some of these repetitive 

patterns are linked to infraslow (<1 Hz) electrical activity (Pan et al., 2013; Thompson et al., 2014; 

Grooms et al., 2017), and appear to arise from a different mechanism than the variability that reflects 

activity in typical EEG bands (Thompson et al., 2014; Thompson et al., 2015).  These reproducible 

spatiotemporal patterns of activity contribute to both average functional connectivity and dynamics 

measured with other analysis methods unless they are explicitly accounted for. 

III. Challenges in dynamic analysis 

All of the approaches for obtaining dynamic information from rs-fMRI data face considerable challenges. 

Because no other imaging modality can map dynamic activity throughout the brain with spatial and 

temporal resolution at the finest scale, there is no “gold standard” for evaluating the accuracy of a 

particular analysis method. The signal-to-noise ratio in rs-fMRI is low and it is known to be contaminated 

with non-neuronal components such as head motion and physiological respiratory- and cardiac-related 

fluctuations (Caballero-Gaudes and Reynolds, 2016; Laumann et al., 2016; Murphy et al., 2013; Power et 

al., 2012). Even the neuronal portion of the signal may be dominated by changes in vigilance levels over 

the course of the scan (Allen et al., 2014; Chang et al., 2016; Laumann et al., 2016; Wong et al., 2013). In 

this section, we highlight some of the most pressing issues in analysis; in the following section, we 

address how these issues affect the interpretation of dynamic rs-fMRI data. 

The utility of sliding window correlation. To date, sliding window correlation has been the most widely 

used approach for the analysis of rs-fMRI data. Network dynamics measured with sliding window 

correlation have been linked to behavioral variability (Gonzalez-Castillo et al., 2015; Kucyi et al., 2016b; 

Kucyi and Davis, 2014; Thompson et al., 2013a), can distinguish patient populations from healthy 

controls (Damaraju et al., 2014; Sakoglu et al., 2010), and are even shown to be more accurate than 

static connectivity for individual subject classification (Rashid et al., 2014). However, some recent 

modeling studies have shown that sliding window correlation is inherently highly variable for noisy, 

autocorrelated signals and that it may not accurately represent the underlying correlation (Hindriks et 

al., 2015; Shakil et al., 2016). How, then, to reconcile its poor correspondence to the true correlation 

structure with its sensitivity to behaviorally-relevant changes and its success in distinguishing patient 

groups? One key to understanding the robustness and clear results of the sliding window correlation 

approach may be that most of the successful studies have examined sliding window correlation from 

large arrays of segments from the whole brain, rather than bivariate correlation between small regions 

of interest (Damaraju et al., 2014; Gonzalez-Castillo et al., 2015; Rashid et al., 2014; Sakoǧlu et al., 2010). 

This suggests that sliding window correlation may retain information about the underlying correlation 

structure despite any shortcomings in the analysis or noise in the data, and that consideration of the 

changes in correlation across many areas improves sensitivity to the differences between groups. The 

few studies that have successfully used bivariate sliding window correlation to identify behaviorally-

Page 42 of 61

Mary Ann Liebert Inc., 140 Huguenot Street, New Rochelle, NY 10801

Brain Connectivity

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly; Not for Distribution
relevant changes in connectivity typically apply it to large, widespread networks (i.e., default mode 

network vs. task positive network) rather than small regions of interest (Kucyi et al., 2016a; Thompson 

et al., 2013a). This improves the signal-to-noise ratio and allows more accurate estimation of the 

correlation values in each window. Along similar lines, the growing use of fast imaging sequences to 

obtain subsecond TRs (Feinberg et al., 2010; Moeller et al., 2010) should improve the performance of 

sliding window correlation for a given window size, assuming other sources of noise remain constant. 

Improvements in the null models used for statistical analysis, as described in a later section, also hold 

the potential to increase the sensitivity of sliding window correlation to the neurally-linked variability. 

The characteristics of the window itself are important considerations for sliding window correlation and 

other windowed techniques. Long windows average the signal over longer periods and approach the 

traditional measures of average functional connectivity; short windows are more sensitive to transient 

changes but provide much noisier estimates of the correlation. Intuitively, the appropriate window size 

should approximate the amount of time that the brain spends in a single configuration, a hypothesis 

that has been confirmed by modeling (Shakil et al., 2016)(Figure 4). Since the duration of a typical brain 

state is unknown, unfortunately, researchers have turned to other methods to identify appropriate 

window sizes. Sakoglu et al. showed that the first saddle point in the plot of time-windowed correlation 

occurs at ~ 0.5/f, where the lowest and highest frequencies in the data provide bounds for the longest  

and shortest windows, respectively (Sakoglu et al., 2010). Similarly, Leonardi and Van De Ville showed 

analytically that spurious fluctuations can arise when the window is shorter than the period of the 

lowest frequency present in the data, typically ~50-100 s (Leonardi and Van De Ville, 2015). Expanding 

on this study, Zalesky and Breakspear showed that using the period of the lowest frequency maximizes 

statistical power, but may be overly conservative when the SNR is moderately high (2015).  Gonzalez-

Castillo et al. (2015) have tested the efficacy of different sliding window lengths for identifying and 

differentiating several ongoing cognitive processes that were 3 minutes in duration. They found that 

while windows of 3 minutes (matching the duration of each imposed cognitive process) were optimal, 

windows as short as 20 seconds in duration nearly matched the performance of the longer windows. 

From an experimental perspective, Thompson et al. found that the correlation between sliding window 

BOLD correlation and bandlimited power correlation reached a plateau at ~ 50 s (Thompson et al., 

2013b), but that shorter windows could exhibit less error.  

The type of the window is also debated. Many studies use simple square windows, but these windows 

can be extremely sensitive to outliers in the data since the inclusion or exclusion of outlier observations 

may cause a sudden apparent change in dynamic functional connectivity (Lindquist et al., 2014). Other 

groups have advocated the use of tapered windows, e.g. Hamming windows, in which the weight of the 

points far from the center of the window is reduced. One modeling study found that the square window 

produced a more accurate estimation of the underlying correlation than the Hamming window, but with 

the caveat that changes in brain states were explicitly modeled as discontinuous jumps that occurred 

between one TR and the next (Shakil et al., 2016). Presumably a model that employed slower transitions 

might be better served with a smoother window. Again, the ideal choice depends strongly on which 

model better describes the underlying brain activity. 

Null models and validation. Several early studies showed that apparent variations in connectivity can 

arise in signals that share no temporal information (Handwerker et al., 2012; Keilholz et al., 2013). In 

other words, networks, each oscillating at their own unique set of frequencies, can show transient 

correlations due to the beat frequency correlation (from the difference in the frequency content) that 
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inevitably would arise between different networks (Handwerker et al., 2012). It extremely difficult to 

dissociate this “beat frequency” effect from true transient correlation. Perhaps one approach would be 

to surmise that if the transient correlations are periodic, then the correlations are spurious and if they 

occur with a non-periodic, behaviorally correlated manner, then they represent “true” correlations.  

Multivariate approaches may serve an important role here as well as they take into account the full 

structure of the data and as such can be more robust than pairwise approaches (Damaraju et al., 2014; 

Kudela et al., 2017; Lindquist et al., 2014). Because apparent changes in the network configuration of 

the brain can arise from properties of the signal itself rather than neural activity, methods for validating 

the findings and statistical analysis are a critical need in dynamic rs-fMRI. 

Statistical analysis relies on the appropriate definition of a null model. One common process is to 

construct an empirical model of a null distribution by permuting the data (i.e., matching time courses 

from different scans or different subjects), creating surrogate data (e.g. by shuffling the phase of the 

voxels’ time course (Karahanoğlu and Van de Ville, 2015) or using a spatio-temporal wavelet resampling 

approach (Patel et al., 2006)) so that shared temporal information is destroyed. This empirical approach 

has the advantage of preserving features that arise from properties of the signal itself, which for rs-fMRI 

is typically heavily processed and strongly autocorrelated in space and time. However, depending on the 

type of procedure, permutation does not usually preserve other properties of the signal (such as the 

average correlation value) and may not be the appropriate control (Hindriks et al., 2015). The design of a 

good null distribution for time-resolved resting state fMRI is challenging and requires careful 

consideration (Shi et al., 2016), particularly since it is not understood exactly what type of dynamic 

activity is expected. There are a large number of ways a signal can vary in time, and most existing 

simulation approaches have made rather strong assumptions about the form of the dynamic activity. In 

this case, it is quite easy to create a scenario where a certain dynamic behavior (not anticipated by a 

given null model) has a distribution that is indistinguishable from the aforementioned null model, 

rendering it essentially useless (Miller et al., "Resting-State fMRI Dynamics and Null Models: 

Perspectives, Sampling Variability, and Simulations," bioRxiv, preprint). 

Validation with multimodal imaging studies. Particularly because the identification of statistically 

significant network dynamics is still under development, it is crucial to validate the findings against other 

modalities whenever possible. Simultaneous acquisition of EEG and rs-fMRI has shown that the changes 

observed in the BOLD signal are linked to changes in the pattern of neural activity (Allen et al., 2017; 

Chang et al., 2013a; Grooms et al., 2017; Tagliazucchi et al., 2012b), increasing confidence that rs-fMRI is 

sensitive to dynamic reconfigurations of brain networks. In animal models where more localized invasive 

recordings can be obtained, spontaneous BOLD fluctuations are correlated with local field potentials 

from the same site (Pan et al., 2011; Shmuel and Leopold, 2008), and BOLD sliding window correlation 

between left and right somatosensory cortex are significantly correlated with simultaneously-acquired 

local field potentials, particularly in the theta, beta and gamma bands (Thompson et al., 2013b). In 

contrast, the repetitive quasi-periodic patterns of whole brain activity are more closely linked to 

infraslow (<1 Hz) electrical activity (Pan et al., 2013; Thompson et al., 2014). The relative independence 

of the quasi-periodic patterns and the time-varying interactions observed with sliding window 

correlation ( Thompson et al., 2014; Thompson et al., 2015) raises the intriguing possibility that it may 

prove possible to selectively sensitize dynamic rs-fMRI to particular types of activity based on their 

spatial, spectral and temporal signatures (Keilholz et al., 2016). Simultaneous monitoring of neuronal 

calcium signals and whole-brain hemodynamic signals with optical imaging in mice has also provided 
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evidence of two apparently independent types of fluctuations in large-scale functional connectivity, one 

related to global waves propagating across the neocortex and transient coactivations among cortical 

areas sharing high functional connectivity (Matsui et al., 2016). These findings not only help to validate 

ongoing efforts with rs-fMRI but may also aid in the development of better models of brain dynamics. 

Validation by correlation with behavior. In human studies, a growing number of researchers are taking a 

different approach to validation, using differences in behavioral outcomes as a proxy for differences in 

neural activity (Kucyi et al., 2016a; Thompson et al., 2013a). These studies differ by necessity from 

standard rs-fMRI in that brain activity is no longer truly spontaneous, although the task may have low 

cognitive requirements. An early example incorporated a psychomotor vigilance task in which subjects 

pressed a button as rapidly as they could whenever the fixation dot changed colors. Correlation 

between the default mode network and task positive network within a short window prior to the color 

change predicted reaction time (Thompson et al., 2013a). A more recent study showed that patterns of 

functional connectivity predicted whether an auditory stimulus would be perceived (Sadaghiani et al., 

2015). Other groups have looked at reproducible changes across subjects listening to the same 

narratives or watching the same movies (Simony et al., 2016). This work builds on existing literature 

linking activity in areas or networks prior to a task to the task response (Boly et al., 2007; Hesselmann et 

al., 2008) (for review, see Sadaghiani and Kleinschmidt, 2013). Note, however, that these approaches 

tell nothing about the dynamics of areas that are not involved in the task and can be confounded by 

other factors that vary with task performance, such as head motion (Siegel et al., 2016). Still, the use of 

behavioral variability as a surrogate for measures of underlying neural variability may prove a powerful 

tool for interpreting rs-fMRI data.  

Replication, reliability and sensitivity to individual differences.   

One very basic criteria for the validation of dynamic rs-fMRI analysis is that the metrics measured must 

be reproducible. It is less natural to think of reproducibility for dynamic rs-fMRI than for average 

functional connectivity or task-based fMRI, since dynamic analysis attempts to capture the time-varying, 

unconstrained activity of the brain. Nevertheless, properties such as the number of states, the primary 

networks contributing to each state, and the relative number of transitions between states should be 

reproducible at least at the level of a population average. A recent study by Abrol et al. used sliding 

window correlation followed by clustering on 28 groups of 250 age-matched subjects and identified five 

distinct connectivity states for each group. The patterns of correlation in each state were very 

reproducible across the groups (Abrol et al., 2016). Choe et al. examined test-retest data and found that 

summary statistics for dynamic analysis (mean and variance) could be reliably detected across sessions 

(Choe et al., 2017). Indeed, recent work shows that even at the individual level, patterns of dynamic 

activity provide important information, such that the inclusion of dynamic connectivity improves 

classification of individuals compared to average connectivity alone (Rashid et al., 2016).   

 

Sensitivity to changes related to brain disorders. 

 

Another indication that time-varying rs-fMRI analysis is sensitive to vital aspects of dynamic brain 

activity comes from the growing body of studies showing that it can successfully differentiate between 

patients with psychiatric or neurological disorders and healthy control subjects. One of the earliest 

reports from patients with schizophrenia (Sakoglu et al., 2010) showed that dynamic analysis has the 

potential to provide information that is different from the information obtained from average functional 

connectivity.  Differences in the dynamic connectivity of the brain were subsequently observed in mild 
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cognitive impairment (Chen et al., 2016), schizophrenia (Damaraju et al., 2014; Ma et al., 2014; Miller et 

al., 2016; Yaesoubi et al., in  press, Yu et al., 2014, 2015), post-traumatic stress disorder (Li et al., 2014), 

attention deficit/hyperactivity disorder (Ou et al., 2014), major depression (Demirtas et al., 2016), and 

autism/autism spectrum (Falahpour et al., 2016, de Lacy et al., 2017). In a study of particular note, 

Rashid et al. (2014) found differences between schizophrenic and bipolar patients, groups that can be 

very challenging to distinguish. A follow-up study showed that dynamic connectivity was able to predict 

individual diagnoses within these groups (Rashid et al., 2016).  

 

The differences between healthy subjects and patients with brain disorders provide support for dynamic 

rs-fMRI’s sensitivity to altered brain activity.  However, physiological variables such as cerebral perfusion 

and levels of motion can also vary across groups and may influence the results of dynamic analysis 

(although many of the studies mentioned above do careful correction and evaluation to true to rule out 

motion).  In the sense that metrics from dynamic rs-fMRI can serve as specific biomarkers for different 

disorders, it may not matter whether the differences reflect brain activity or other physiological 

processes.  For studies that make inferences about how the brain’s organization is affected by a 

particular disorder, however, caution should be used and other potential sources of differences should 

be examined. 

 

Validating and constraining whole brain computational models. The nature of the neuronal mechanisms 

that generate whole-brain temporal dynamics are still elusive. Whole-brain computational models aim 

to balance complexity and realism in order to describe the most important features of brain activity in 

vivo. This balance is extremely difficult to achieve because of the astronomical number of neurons and 

the underspecified connectivity at the neural level. Thus, the most successful whole-brain 

computational models have taken their lead from statistical physics, where it has been shown that 

macroscopic physical systems obey laws that are independent of their mesoscopic constituents. The 

emerging collective macroscopic behavior of brain models depends only weakly on individual neuron 

behavior (Breakspear and Jirsa, 2007). Thus, these models typically use mesoscopic top-down 

approximations of brain complexity with dynamical networks of local brain area attractor networks.  

 

Indeed, whole brain models can provide a detailed understanding of the causal dynamics of the human 

brain by linking anatomical structure with functional dynamics. The structural connectivity of the brain 

forms the framework that patterns of coordinated activity play across (although it should be noted that 

activity can also influence structure, something that is ignored in most modeling approaches). To better 

understand how network structure constrains and informs large-scale patterns of activity, researchers 

have created models based on diffusion-weighted MR tractography or other tractographic techniques 

that result in a matrix of pairwise connectivity for all regions of interest in the brain. The global dynamics 

of the whole-brain model result from the mutual interactions of local node dynamics coupled through 

the underlying empirical structural connectivity matrix. Typically, the temporal dynamics of local brain 

areas in these models are taken to be either asynchronous (spiking models or their respective mean-

field reduction) or oscillatory (Cabral et al., 2011; Deco et al., 2009; Deco and Jirsa, 2012; for review, see 

Deco and Kringelbach, 2014). 

Whole brain computational models have shown that the structural connectivity of the brain is a major 

determinant of the patterns of functional connectivity that it can support. However, major functional 

networks can be identified using numerous models for activity at individual nodes and a wide range of 

parameters that describe the coupling between nodes. Most of the models (especially those that are 

linear) perform poorly when asked to reproduce the network dynamics observed with rs-fMRI (Messé et 
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al., 2014). This suggests that incorporating information obtained with dynamic analysis into the 

modeling process can serve as a constraint on the types of models and parameters that are appropriate. 

If the dynamic connectivity of the brain can be successfully modeled, the features of the model itself 

may provide insight into the organization and coordination of the neural processes that produce these 

dynamics.   

Consider a study by Hansen and colleagues, which demonstrated that average functional connectivity is 

closely linked to the underlying structural connectivity (Hansen et al., 2014) and proposed to 

characterize the time dependent structure of the resting fluctuations with the functional connectivity 

dynamics (FCD) matrix, which is based on the sliding window approach. For each window, centered at 

time t, one calculates a separate FC matrix, FC(t). The FCD is a MxM symmetric matrix whose (t1, t2) 

entry is defined by the Pearson correlation between the upper triangular parts of the two matrices 

FC(t1) and FC(t2). Epochs of stable FC(t) configurations are reflected around the diagonal of the FCD 

matrix in blocks of elevated inter-FC(t) correlations. When nonlinearities are considered in the network 

models, the spatiotemporally dynamic repertoire of the network is significantly enhanced and the 

resting state dynamics show non-stationary FCD. While Hansen and colleagues proposed FCD as a novel 

biomarker and demonstrated that all known RSNs can be derived from the nonlinear network dynamics 

of FCD, they did not fit the model to the empirical functional time series data. The patterns in the FCD 

matrix arise from what is essentially a random process and are thus different for different 

measurements. This renders the fitting process for brain network models more complex than fitting with 

average functional connectivity, for which a Pearson correlation across empirical and simulated FC 

matrices is sufficient.  

Recently a powerful novel whole-brain model emerged which uses for each brain area a local dynamical 

model given by a normal form of bifurcations (e.g. a supercritical Hopf bifurcation) (Deco et al., 2016; 

Kringelbach et al., 2015). The normal form of a Hopf bifurcation can describe the transition from 

asynchronous noisy behavior to full oscillations, and thus unify previous asynchronous and full 

oscillatory scenarios. One key finding of the Hopf whole-brain model is that previous findings using the 

optimal operating point based on average functional connectivity hold true if we take into account the 

temporal dynamics of FC, i.e. FCD. Importantly, this model also demonstrated that fitting the temporal 

structure of the fluctuations using the FCD provided a better way of constraining the model than simply 

using the average functional connectivity.  Another remarkable and important finding is that high 

metastability is only present in a narrow range of parameters. In dynamical systems, metastability refers 

to a nonequilibrium state that persists for an extended period of time; in computational modeling of the 

brain, it is a measure of the variability of the whole brain synchronisation level, i.e. global temporal 

fluctuation.  In other words, the FCD of the spontaneous resting state, in conjunction with brain network 

modelling, provides evidence that the brain at rest is maximally metastable, refining and demonstrating 

the hypothesis of Tognoli and Kelso (Tognoli and Kelso, 2014) -- an excellent demonstration of how 

empirical network dynamics can inform theoretical neuroscience.   

Taming the data explosion. Dynamic analysis of rs-fMRI inherently multiplies the size of an already large 

data set by two or three orders of magnitude. Managing this data explosion and summarizing the 

relevant features is an ongoing challenge. Many studies to date have defined a small number of “states” 

that describe the current configuration of the brain. These states are usually obtained via clustering or 

dimensionality reduction algorithms and can be based on features of the data such as the amplitude in 

each voxel, patterns of correlation between all brain parcels (Allen et al., 2014; Chen et al., 2016; Hudetz 
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et al., 2015; Ma et al., 2016; Suk et al., 2016; Taghia et al., 2017) or patterns of regions with similar 

temporal dynamics as with the (innovative)-coactivation patterns (Liu and Duyn, 2013; Karahanoğlu and 

Van de Ville, 2015). In the simplest approach, each time point is ascribed to one of these states so that 

each N time point scan can be described by a single string of N numbers. If temporal overlap between 

states is modeled or allowed, each time point can also be assigned a set of states, resulting in more 

complex trajectories (Karahanoğlu and Van de Ville, 2015). Using these time series, the number of 

transitions between states, the number of occurrences of a given state, and the average dwell time in 

each state can be calculated and compared across individuals or groups (e.g. see Chen et al., 2015; 

Karahanoğlu and Van de Ville, 2015 for specific examples for the (i)CAPs approaches; and Taghia et al. 

2017 for an example based on hidden Markov models). Additional summarization can be obtained by 

tracking the transitions between multiple (possibly overlapping) states via a ‘meta-state’ which 

characterizes each fMRI timepoint as an N-element meta-state vector representing the contribution of 

each timepoint to each of N states. These meta-states can then be quantified in terms of multiple 

metrics such as total distance travelled, number of transitions, or more complex but interesting 

quantities such as ‘hub states’ (Miller et al., 2016b). 

Alternatively, graph theory has proven successful at summarizing average measures of functional 

connectivity across the brain, and is increasingly being applied to dynamic rs-fMRI as well. The appeal of 

graph theory lies in its ability to condense connectivity matrices into measures that can be reported by 

node, by network, or even globally across the brain. Brain imaging researchers have adopted concepts of 

centrality, efficiency, modularity, and community structure from the well-developed field of complex 

networks (Betzel et al., 2016; van den Heuvel et al., 2012; van den Heuvel and Sporns, 2011).  In the 

realm of dynamic analysis, graph theory is particularly applicable to techniques like sliding window 

correlation that provide an estimate of the changing relationship between areas over time (Bassett et 

al., 2011; Yu et al., 2014). Graph metrics like efficiency and modularity can then be calculated on a time-

varying basis, allowing an examination of how the changes in brain network configuration influence 

communication between areas (Betzel et al., 2016; Zalesky et al., 2014; Fukushima et al., 2017, Yu et al., 

2015). These studies are paving new ground in basic neuroscience by elucidating the dynamic balance of 

integration and segregation in the brain.  

IV. Interpretation of network dynamics 

Rs-fMRI can provide a unique view of dynamic activity throughout the whole brain. This leaves us in the 

challenging and somewhat circular position of attempting to interpret the rs-fMRI findings from analysis 

methods that rely on key assumptions about unknown processes in the brain. For example, when using 

sliding window correlation followed by clustering, one is likely to find that clusters persist for 

approximately the length of the window (Shakil et al., 2016). Ideally, the window length would 

approximate the length of a brain state, but since the length of a typical brain state is unknown, instead 

we obtain brain states that approximate the length of the window that was chosen. In this section we 

discuss key underlying parameters that affect the design of experiments and interpretation of results. 

What is a brain state? Inherent to many types of dynamic analysis is the concept of a brain state, which 

we will define as a spatial pattern of activity that remains relatively stable for some minimum amount of 

time. Even in the definition, ambiguities are apparent. How much must a spatial pattern change 

between states? How long should a state persist? The answers depend in part on the types of activity 

that are reflected in the rs-fMRI signal. The fast, brief brain states observed in electrophysiological data, 
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either with EEG (Khanna et al., 2015) or MEG (Baker et al., 2014), involve large scale patterns that cover 

most of the cortex but persist for less than a second, and studies show that they partially contribute to 

the BOLD fluctuations in patterns that resemble resting state networks (Britz et al., 2010; Musso et al., 

2010; Yuan et al., 2012). Many cognitive processes occur on a scale of seconds and should be reflected 

in the BOLD fluctuations as well, as demonstrated by the marked similarity between activation maps and 

resting state networks (Smith et al., 2009). At the slower end of the scale are changes in the level of 

arousal and vigilance that tend to occur over minutes or even longer, and which appear to be one of the 

driving factors in identifying brain states in most rs-fMRI studies (Allen et al., 2017; Chang et al., 2016; 

Laumann et al., 2016; Tagliazucchi and Laufs, 2014). All of these processes have been shown to influence 

the rs-fMRI signal, and it is plausible that sensitivity to a particular contributor varies depending on 

analysis factors such as window length.  

Interestingly, most studies that use states to summarize the brain’s activity find a relatively small 

number of distinct states, whether using EEG/MEG or rs-fMRI (Allen et al., 2014; Britz et al., 2010; Chen 

et al., 2016; Musso et al., 2010). These states seem to comprise a rather limited set of building blocks 

compared to the brain’s rich dynamical repertoire, particularly given the wide range of temporal scales 

involved. Still, it is possible that these states represent some fundamental property of brain activity at 

each scale that has yet to be understood. The replicability of states and their various metrics suggests 

there may be some canonical aspect to these states (Abrol et al., 2016). However this is certainly not the 

end of the story. It is possible and even probable that better acquisition and analysis methods might 

lead to the separation of some clusters into distinct subclusters. Higher temporal resolution to improve 

the estimation of correlation, higher spatial resolution to better localize the signal, improved 

registration methods to reduce blurring and averaging across subjects, and better noise removal could 

all increase sensitivity to distinct brain states. This is a similar position to that of average functional 

connectivity studies a few years ago in modeling the brain with a specific number of networks and/or 

components. As acquisition and analytic approaches evolved and data sets increased in size, many more 

interesting aspects of the resting state networks have emerged. 

Another fundamental issue in identifying brain states is choosing the right metric. One might cluster the 

data, for example, based on the amplitude of all voxels or ROIs at each time point, or one might instead 

choose to cluster based on the result of sliding window correlation between areas. In amplitude-based 

approaches, it is assumed that the activity in each voxel defines a brain state, whereas in correlation or 

coherence-based approaches, changes in the relationships between areas define states. At this time, it is 

unknown which provides a better picture of the changes that occur in the brain. One modeling study 

suggests that using amplitude produces a better representation of the true changes in network 

configuration (Shakil et al., 2016), but several experimental studies have found improved sensitivity with 

correlation (Gonzalez-Castillo et al., 2015; Thompson et al., 2013a). Indeed, these different measures 

may well be complementary, in which case a combined approach might be more comprehensive. 

While the use of brain states to summarize dynamic rs-fMRI provides a practical simplification of the 

data that allows for easy comparisons across groups and conditions, it is far from certain that the brain 

state model accurately describes activity in the brain. One can also imagine a continuous evolution of 

activity over time, with certain spatial patterns evolving together, a view that has been studied with 

both PCA and ICA approaches (Leonardi et al., 2013; Miller et al., 2016b; Yaesoubi et al., 2014), as well 

as with PPA and deconvolution approaches and (i)CAPs (Karahanoglu and Van de Ville, 2015). The 

presence of repeated quasiperiodic spatiotemporal patterns in the brain’s activity is also somewhat at 
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odds with the brain state model, where it may appear as alternating between two or three states 

without capturing the propagation of activity from one state to the next. As we learn more about the 

macroscale organization of the brain, we must update and revise our analytical models to best capture 

its features. 

Even for theoretical models linking brain structure and function, a single comprehensive model for 

dynamic activity in the brain has proven elusive. There are many reasons for this failure but the main 

reason comes from the realization that whole-brain dynamics are much more complex than previously 

thought. Traditional attractor states do not appear to adequately describe them (Amit and Treves, 

1989). One can perhaps define a given brain state by its dynamical complexity, which must arise from 

the interplay between anatomy and functional dynamics. For a given brain state, a balance has to be 

found between the integration and segregation of information (Deco et al., 2015). The dynamical 

repertoire of a brain state depends on the underlying anatomical structural connectivity and local 

dynamics. A number of different methods have tried to describe the spatiotemporal unfolding of activity 

(Allen et al., 2014; Hansen et al., 2014). These methods are able to describe the evolution of global 

whole-brain activity but they are less good at describing the interaction of how activity in a local region 

shapes global activity. A possible way to escape this problem, perhaps, is by generalizing the definition 

of brain states as an ensemble or ‘cloud’ of possible steady states (attractors). This cloud of attractors 

can be defined by the underlying time-varying brain generators, which are the parameters of a 

generative whole-brain model describing each possible attractor contributing to the system dynamics. 

Thus, a given brain state could be characterized by the statistics and dynamical complexity of these 

intrinsic brain generators over time. Another approach is to focus on multiple scales, for example 

interaction between networks vs domains (sets of networks) (Vergara et al., 2017). 

 

What processes contribute to dynamic rs-fMRI? The conception of dynamic rs-fMRI as reflecting 

moment-to-moment changes related to cognition and information processing is appealing but overly 

simplistic. Like traditional rs-fMRI functional connectivity measurements, dynamic rs-fMRI is sensitive to 

physiological cycles and small motions of the head (Caballero-Gaudes and Reynolds, 2016), and even 

changes related to neuronal activity are multiplexed, encompassing different processes that occur at 

different time scales. Moreover, neural and physiological processes can be intertwined. For example, 

heart rate variability is an important marker of autonomic function and can be affected by emotionally-

salient stimuli. Using sliding window correlation, Chang et al. identified a network of areas that become 

more strongly connected during periods of high heart rate variability (Chang et al., 2013b). While it is 

difficult to say whether autonomic fluctuations drive changes in functional connectivity or changes in 

the brain drive autonomic variability, it is clear that some portion of the dynamic activity in the brain is 

linked to autonomic processes (Nikolaou et al., 2016). 

Motion can be a particularly tricky confound for dynamic rs-fMRI. Realignment and regression of motion 

parameters reduce but do not eliminate its effects on scans (Power et al., 2012), and recent work 

suggests that the residual effects of motion may account for a sizeable portion of the variability in the 

BOLD correlation between areas (Laumann et al., 2016). Furthermore, head motion is linked to a 

number of behavioral and physiological traits, suggesting that some of the relationships observed 

between network dynamics and behavior may actually arise from head motion during the scan (Siegel et 
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al., 2016). The development of better ways to characterize and correct for small motions during scans is 

critical to improved analysis and interpretation of dynamic rs-fMRI.   

In terms of brain activity, the evidence is growing that changes in arousal level are major contributors to 

the variability in connectivity over the course of a scan (Allen et al., 2017, 2014; Chang et al., 2016; 

Laumann et al., 2016; Tagliazucchi and Laufs, 2014). Tagliazucchi and Laufs found that about one third of 

their subjects fell asleep within the first three minutes of the scan (Tagliazucchi and Laufs, 2014). The 

pattern of changes associated with lowered arousal involve large portions of the cortex and are highly 

stereotyped, such that Chang et al. suggest that a template might be derived and regressed from the 

signal to minimize this type of variability (or allow it to be specifically examined, depending on the 

researcher’s interest) (Chang et al., 2016).  

The changes that occur as subjects relax and become drowsy within the scanner may also impact the 

global signal (Wong et al., 2013). Global signal regression is still widely debated in the neuroimaging 

community. It improves the spatial localization of networks but can introduce artificial anticorrelations 

into the data (Murphy et al., 2009). In terms of network dynamics, greater network connectivity is 

observed during periods of high global signal (Scheinost et al., 2016). Recent work with PET and MRI has 

shown that the global signal tends to follow the baseline level of FDG, while the variance of the BOLD 

signal is mostly unaffected (Thompson et al., 2016). In support of the idea that the global signal 

represents a separable baseline level of brain activity, regression of the global signal improves the 

concordance between BOLD correlations and simultaneously-measured local field potentials from the 

same areas (Thompson et al., 2013b). 

Repeated spatiotemporal patterns of brain activity may also be linked to levels of vigilance or arousal. 

Work in animals has shown that the quasiperiodic patterns (QPPs) described by Majeed et al. (Majeed et 

al., 2011, 2009) are linked to infraslow electrical activity (Pan et al., 2013; Thompson et al., 2014) and 

influence reaction time on a simple vigilance task (Abbas et al., 2016). Like the global signal, the QPPs 

appear to be separable from time-varying activity (Thompson et al., 2014; Thompson et al., 2015). The 

similarities between the global signal, templates associated with arousal level, and QPPs raises the 

question of whether they might represent a single neurophysiological process viewed through different 

lenses. 

Despite the widespread contribution of changes related to vigilance levels, substantial variability in both 

BOLD correlation and LFP correlation is observed in anesthetized rats, which are carefully maintained at 

a constant anesthetic depth and should theoretically not exhibit fluctuations in arousal level (Thompson 

et al., 2013b).  These animals also exhibit minimal motion due to the use of a stereotaxic headholder, 

indicating that motion is not the primary source of network dynamics in this type of experiment 

(Keilholz et al., 2016).  

 

What, then, of the time-varying patterns of activity or connectivity reflecting cognitive changes? After 

rs-fMRI scans, subjects report a variety of mental activities (daydreaming, counting, planning, thinking of 

music, remembering events, dreaming, etc), and it has been shown that the tendency to daydream, for 

instance, correlates with variability in connectivity between certain brain areas (Kucyi and Davis, 2014). 

One can in some ways consider these to be tasks (albeit undirected and unknown tasks) that produce a 

response that we wish to detect. In this scenario, it seems clear that these varying mental activities over 
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the course of the scan should result in variations in activity and/or connectivity in the rs-fMRI data. 

However, the relevant changes may be limited in spatial extent and difficult to detect with current 

analysis techniques, particularly because the timing of the “tasks” is unknown. Studies that analyze tasks 

with known timings or tie network dynamics to behavioral outcomes provide evidence that detection of 

time-varying activity with rs-fMRI is feasible (Gonzalez-Castillo et al., 2015; Kucyi et al., 2016a; 

Thompson et al., 2013a).  Gonzalez-Castillo et al. (Gonzalez-Castillo et al., 2015) have found that specific 

cognitive states and steady state tasks induced over several minutes were readily detectable by 

windowed connectivity analysis alone. In addition, it appears that the connectivity changes that occur 

are more extensive than the measured magnitude changes. Within this context, it is also interesting to 

consider individual vs. task-level contributions to time-varying connectivity (Xie et al., 2017). Further 

improvements in methods for minimizing noise from motion and physiological cycles, better data 

analysis methods for deconvolving the neuronal component of the fMRI signal (Caballero Gaudes et al., 

2013; Karahanoğlu et al., 2013) and dynamic generative models of brain activity that do not assume a 

fixed window length or a-priori number of brain states (e.g. using hidden Markov model formulations as 

in Taghia et al. 2017), will definitely improve analysis of dynamic neural activity measured with rs-fMRI. 

It may also be possible to minimize contributions from unwanted types of variability (such as arousal) 

using template regression or other measures of alertness.  

V. Conclusions  

The ability of rs-fMRI to provide a noninvasive glimpse of dynamic activity throughout the brain has 

paved the way for a better understanding of how the brain is organized across spatial and temporal 

scales, and how this organization is altered in neurological and psychiatric disorders. The combination of 

whole brain coverage and reasonable spatial and temporal resolution with the noninvasive nature of the 

data acquisition can paint a picture of brain dynamics currently unobtainable with any other imaging 

modality. Further improvements in image acquisition, minimization of physiological noise, and better 

image registration and analysis techniques will continue to improve sensitivity to the activity of interest.  

In combination with whole-brain network models, dynamic rs-fMRI has the potential to give new insight 

into fundamental problems in basic neuroscience, and may eventually enable the field to move beyond 

group analyses to characterizing network dynamics within any given individual—possibly even to 

identifying interventions that can restore normal function. While numerous challenges remain, 

particularly in the analysis and interpretation of the data, dynamic rs-fMRI is poised to play a key role in 

fields ranging from basic neuroscience to clinical neurology. 
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