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1 Introduction 

 

After a brief introduction to infrared thermography, this chapter presents the principles of 

vibrothermography as a technique in the field of non-destructive testing. Then, key aspects 

regarding vibrothermography are addressed along with an outline of research activities. 

Finally, the concept of characterization of vertical cracks is introduced, leading to the 

objectives of this thesis. 

 

 

The sensations of hot and cold are fundamental to the human experience, yet finding ways 

to measure temperature has challenged many great minds. Over history, most methods of 

measuring temperature have been indirect, observing the effect it has on something’s 

properties and deducing temperature from it.  

Galileo Galilei built a device that showed changes in temperature around 1592, called 

thermoscope, but it lacked a scale and was affected by changes in atmospheric pressure. In 

1714, Daniel Gabriel Fahrenheit, the inventor of the mercury thermometer as we know it, 

realised that he needed a temperature scale. Anders Celsius proposed the 0 to 100 scale, 

whereas William Thomson, later Lord Kelvin, proposed using the absolute zero as starting 

point. 

Being Isaac Newton, in 1666, the first scientist introducing the term spectrum as he 

realized that white light could be split into colours using a glass prism, it was William 

Herschel, in 1800, who first discovered the infrared region upon which thermography is 

based, when he was measuring the “temperature of each colour” and he found the highest 

temperature to fall beyond the red end. In 1840, his son, John Herschel, who was more into 

photography, was the first one who managed to capture a thermal image on paper, by 
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creating an evaporograph image using carbon suspension in alcohol. He called it a 

thermogram. 

Thermography is, thus, the detection of radiation in the infrared range and formation of a 

thermal image, which is related to the object temperature, but also to the surface nature of 

the measured object. 

By the time of World War I, scientists had begun to discover the military and aeronautic 

uses for infrared detection and thermography. In 1935, night vision was invented. It had 

obvious military applications and it was not until the mid-sixties when civilian and 

engineering applications came up. Advances in infrared detectors and semiconductors 

along with the invention of the CCD in the seventies promoted the development of the 

infrared focal plane array (IRFPA) which, in turn, made a variety of technologies on the 

thermography field emerge, such as non-destructive testing (NTD).  

At this point it is meaningful to distinguish between the two main divisions of infrared 

thermography: passive and active. In passive infrared thermography, the thermal radiation 

of an object is observed without interfering with its natural conditions regarding heating or 

cooling and the involved heat transfer mechanisms. Here, the temperature itself is the 

magnitude of interest. For simplicity reasons, passive thermography was the first to arise, 

with a wide range of applications such as inspection of buildings in engineering, night 

vision in the military field or body temperature mapping in medicine.  

Active infrared thermography, in contrast, implies an artificial change of the object’s 

energetic equilibrium. Some energy is deposited on the object and it diffuses along the 

sample, as well as to the surroundings. Thus, in active infrared thermography, temperature 

changes, which are obtained from changes in the recorded infrared emission from the 

sample surface, are used to retrieve information. The absolute value of the temperature, on 

the contrary, is of minor importance. This considered, active infrared thermography reveals 

a deviated thermal response produced at the position of the defects compared to that in 

sound regions, in order to detect and characterize such defects. 

1.1 Vibrothermography as a non-destructive technique 

Ultrasound excited thermography, also known as vibrothermography, thermosonics or 

sonic infrared, was first proposed as a thermographic non-destructive evaluation (NDE) 

technique in the late seventies [1, 2]. In this technique, the part or structure under study is 
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excited by high amplitude ultrasounds. At the defects, part of this mechanical energy is 

dissipated as heat, due to rubbing of the defect’s faces or, in the case of cracks, to plastic 

deformation at the surrounding area [3]. The thermal energy produced at the defects 

diffuses in the material, producing a temperature rise at the surface that can be measured 

with an IR videocamera. If the material is not viscoelastic, the bulk attenuation of the 

ultrasounds is small, so the defect turns into a heat source on a cold environment, which 

makes the technique defect selective. Given that the detection is based on heat diffusion, 

vibrothermography is used to detect surface breaking or shallow subsurface defects.  

The development of ultrasound excited thermography has been linked to the availability of 

modern IR cameras. In order for vibrothermography to reveal the presence of a defect in a 

live image sequence, surface temperature rises need to be above the temperature resolution 

of the camera. Pioneering works by Henneke [1, 2], Pye [4, 5] and Mignona [6] lacked 

continuity until the late nineties due to the low temperature resolution (about 0.2 K) of the 

IR cameras available at that time.  

The development of affordable IR cameras in the last decade of the twentieth century, with 

temperature resolutions in the 20 to 30 mK range, boosted vibrothermography, both in the 

lock-in [7] and burst [8] regimes. Since then, the application range of vibrothermography 

has spread out over different types of materials such as polymers, fibre reinforced 

polymers, metals, ceramics or timber. Regarding polymers and carbon fibre reinforced 

plastic laminates, vibrothermography has been used to detect cracks and impact damage [1-

5, 7-11], delaminations, disbonds [12] and heat damage [13], as well as to assess the 

overall damage in composites after mechanical loading [14, 15]. 

Other fields of application are the detection of corrosion [16] and cracks [6, 17-20] in 

metallic plates and timber [21], the identification of microcracks in plasma sprayed 

coatings [22] (being the only non-destructive technique capable of identifying such flaws), 

or the assessment of defective adhesion in bondlines [13]. The technique has also been 

successfully applied to large aerospace structures such as cracked fuselage panels and to 

locate loose rivets and cracks in aluminium assemblies [23]. In addition to laminates, large 

massive structures have been inspected with vibrothermography. Favro et al. [9] found 

surface breaking and subsurface fatigue cracks in an aluminium cylinder head that had 

been subjected to severe thermal cyclic stressing, Guo et al. identified surface breaking 

cracks in aluminium aircraft structures [20] and Montanini and coworkers [19] detected 

buried flaws in cast iron turbocharger housings without any surface preparation, showing 

the potential applicability of the technique in a production line.  
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The variety of applications enumerated above is a manifestation of the simplicity of 

application of the technique together with its ability to test large parts in a single 

inspection. The ultrasounds injected at a certain position of the structure propagate in the 

material and can induce heat production at defects located at virtually any positions in the 

structure. This ability of producing an overall excitation of the part from a single excitation 

is adequately complemented by the large inspection field provided by IR cameras. 

However, as will be discussed later on, the actual level of excitation reached at a certain 

location of the test piece might be greatly affected by the geometry of the part, the coupling 

between sample and exciter, the clamping conditions and the excitation of mechanical 

resonances. Furthermore, the need for a contact between the ultrasound exciter and the 

sample has restrained a wide development of the technique. 

As a NDE technique, vibrothermography competes mainly with classical non-destructive 

testing methods aimed at the detection of surface breaking or slightly subsurface flaws, 

namely, penetrants testing (PT), magnetic particle testing (MT) and Eddy current testing 

(ET). PT and MT produce indications that are easy to interpret, but the manual operation is 

time consuming and PT is limited to non-porous materials and surface breaking defects, 

which prevents it from being used with composites [24]. ET is very sensitive but is a non-

imaging technique that requires highly qualified personnel. As opposed to MT and ET, in 

which the part needs to be made of a ferromagnetic or electrically conductive material 

respectively, there is no material restriction to the application of vibrothermography other 

than the part not being brittle. These advantages put vibrothermography in a good position 

for composites testing [25], for which ultrasonic testing is the current “gold standard”. 

Regarding the inspection of metallic parts, vibrothermography has shown better inspection 

accuracy than PT in Titanium 6-4 and Inconel 718 bars [26]. Actually, it has been 

recognized as a promising alternative to fluorescent PT in turbine blades [27]. 

In addition to the mechanical excitation used in vibrothermography, both 

electromagnetically (inductive) [28-33] and optically [34-39] activated IR thermography 

are also addressed to detect surface breaking and shallow subsurface defects. The 

mechanical excitation used in vibrothermography has some advantages and drawbacks with 

respect to electromagnetic and optical excitations, the choice depending on the application 

and the inspection circumstances.  

In inductive infrared thermography, a coil induces Eddy currents in a skin of material 

whose depth depends on the current frequency and the electrical and magnetic properties of 

the material. The Eddy currents, in turn, produce heat. The presence of a flaw disturbs the 

electric currents in the part: they become denser at the crack boundaries, where heat 
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dissipation is enhanced with respect to sound areas, and thus affect the surface temperature 

distribution, which is monitored with an IR camera, with hot spots appearing at the crack 

tips. The presence of cracks can also affect the heat flow. The technique has been 

implemented using both, Eddy current bursts [28] and amplitude modulated inductive 

heating [29].  

In principle, inductive thermography needs the material to be electrically conductive so that 

Eddy currents can be actually established. However, it can also be applied to identify flaws 

like impact damage in carbon fibre reinforced polymers (CFRP). In this application, the 

detection relies more on local variation of electric characteristics due to carbon fibre 

breaking than to mechanical delamination effects [30]. Anyway, a certain degree of 

electrical conductivity is needed, which prevents the technique from being used with pure 

electrical insulators. On the other hand, when the test piece is small, it can be surrounded 

by the induction coil, which induces Eddy currents along the whole lateral surface, 

allowing a fast evaluation. However, in the inspection of large parts that cannot be placed 

inside a coil, evaluation of flaws requires scanning the exciting coil along the sample 

surface, which is time consuming or even unpractical in certain circumstances. This is a 

significant disadvantage with respect to ultrasound excited thermography, although the 

contact free character of inductive thermography makes it very attractive for the detection 

of small surface breaking cracks, especially in ferromagnetic steels [39], where a high 

current density is confined in a thin skin depth, very close to the surface. 

In optically excited infrared thermography [40, 41], a heat flow is established in the sample 

by illuminating the surface of a (typically) opaque material. The energy absorbed at the 

surface diffuses inside the sample and is eventually dispersed by defects. This interaction 

disturbs the surface temperature distribution and its time evolution with respect to a sound 

material, which enables the detection of defects. The perturbation of the heat diffusion by 

the defect is stronger the larger both the defect thickness and the effusivity mismatch 

between the material and the defect [42]. Hence, air filled cracks and delaminations 

produce larger surface temperature signatures in good thermal conductors than in thermal 

insulators. Additionally, the wider the air gap the larger the effect on the surface 

temperature distribution. In this sense, optically excited thermography is complementary to 

vibrothermography [43]: the signal generation in vibrothermography requires contact 

between the defect faces so that friction produces heat, so it is better suited to identify 

kissing cracks or tight delaminations. 

The different spatial illumination schemes for optically excited infrared thermography that 

can be found in the literature are intended to maximize the “heat-defect” interaction, in 
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order to enhance the surface temperature fingerprint of the defect. Typically, homogeneous 

illumination is applied to detect planar defects parallel to the surface, such as 

delaminations, disbonds or impact damage in layered composite structures [35, 44-46], 

because thermal energy travelling perpendicularly to the sample surface is very efficiently 

dispersed by this kind of defects. This homogeneous illumination scheme has been 

implemented by modulating the light intensity (lock-in thermography) [42, 46], using a 

short light pulse (pulsed thermography) [35, 44-45], or a step function [47] and, more 

recently, implementing the photothermal imaging radar [48], which allows for the 

identification of deep structures. 

As vibrothermography, optically excited thermography provides large inspection areas, 

with the advantage of being contactless. However, an intrinsic advantage associated to 

vibrothermography is a higher penetration potential than thermographic techniques based 

on optical excitation. The reason for this is that in optically excited thermography the 

detection of a buried defect involves thermal waves travelling from the specimen surface 

inwards and outwards: the energy absorbed at the surface penetrates in the material, the 

propagation is perturbed by the defect and this perturbation reaches the sample surface 

back. Accordingly, the effects of the presence of the defect are observed at the surface after 

a “round trip” thermal propagation. In vibrothermography, however, heat is generated at 

the defect and the observed temperature rise is the result of a “one-way trip”. Therefore, 

given the diffusive character of heat propagation, vibrothermography enables detection of 

deeper defects.  

The homogeneous illumination scheme described above is quite inefficient to detect 

vertical cracks, i.e., cracks contained in a plane that is perpendicular to the measuring 

surface, since these barely perturb heat propagation perpendicular to the sample surface. In 

such situations, point or line focusing of the excitation beam is much more appropriate: 

when the laser beam illuminates the sample surface on one side of a vertical crack, the 

crack acts as a thermal resistance that hinders heat propagation, producing an asymmetry in 

the surface temperature distribution. The flying spot technique introduced in the nineties 

exploited this idea by scanning a continuous laser beam onto the sample surface and 

registering the surface temperature with an infrared camera [49-51]. Further developments 

were implemented using modulated [52] and pulsed [53-55] illumination. Once the 

presence of a crack has been identified, the characterization can be performed by 

illuminating one side of the crack with a static beam and analysing the asymmetry of the 

surface temperature distribution across the crack [56-60]. Using this approach, the width of 

artificial infinite cracks has been characterized in AISI 304 stainless steel down to 1 µm 
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using both modulated [58] and pulsed [60] excitations. However, this approach has only 

been applied to date to detect and characterize surface breaking cracks, whereas 

vibrothermography is able to detect buried vertical cracks as long as the surface 

temperature rise is above the noise level of the experiment.  

As mentioned above, a further advantage of vibrothermography over other thermographic 

techniques, especially in metals, is that under ultrasonic excitation the defect turns into a 

heat source on a cold environment, whereas in optically and electromagnetically excited 

thermography the defect just represents a perturbation on an existing temperature field, 

generated by the absorbed light and the Eddy currents, respectively.  

1.2 Principles of ultrasound excited thermography 

1.2.1 Equipment 

The experimental setup typically used in a vibrothermography experiment is depicted in 

Figure 1.1. The main components are an ultrasound system to excite the sample and an IR 

camera to register the evolution of the surface temperature distribution of the sample 

surface. A clamping system and control electronics complete the set-up. 

 

Figure 1.1. Diagram of a typical experimental setup for vibrothermography experiments. 
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As for the ultrasound system, the vibrations are typically generated by means of an 

ultrasonic welder, consisting of a high power ultrasound generator that creates high 

frequency electrical oscillations that are transformed into mechanical oscillations by an 

ultrasound stack converter. This is made up of a piezoelectric transducer, an optional 

vibration booster and a horn or sonotrode that is brought into mechanical contact with the 

test piece in order to induce elastic waves that propagate inside its structure. The three 

elements in the converter are designed to have the same ultrasonic resonance frequency, 

typically, 20 or 40 kHz. The ultrasound generator, usually in the 2-4 kW range, delivers an 

AC signal matching the resonance frequency of the stack and the system works at a fixed 

or slightly tuneable frequency.  

Tuneable ultrasound generators are nowadays used in vibrothermography experiments, 

which provide a range of ultrasound frequencies typically between 15-25 kHz but with an 

efficiency curve that decays away from the resonance of the converter. Alternatively, a 

piezoelectric stack driven by a power amplifier fed by a waveform generator can be used to 

produce reasonable broad band output [61]. In standard setups, the converter is pressed 

against the part with a static force, so that the ultrasonic vibration is efficiently transmitted 

to the test piece. This is usually achieved either with a pneumatic system [62], spring 

loading [63], or pressing the horn against the part with a screw [20]. In portable systems, 

the horn is hand-held and manually pressed against the structure [25]. 

In order for the excitation to be fruitful, the vibration produced at the converter needs to be 

efficiently injected into the part. Since the incident ultrasonic wave is split at the boundary 

into a reflected and a transmitted wave, the mechanical impedance mismatch between the 

sonotrode and the test piece that hinders acoustic energy coupling can be reduced by 

placing in between a thin layer of a coupling material with an intermediate impedance, in 

order to improve ultrasound transmission. The optimum choice is the material whose 

impedance matches the geometric mean 1 2Z Z Z= , being Z1 and Z2 the mechanical 

impedance of the sonotrode and the part to be inspected, respectively. The effect of the 

coupling material has been proven to be very significant in the achieved 

vibrothermographic signal [65]. Another purpose of the coupling material is to prevent 

damage of the sonotrode on the sample surface, especially in polymers and composites. 

Typical coupling materials are duct tape [65], aluminium film [66], paper and plastic [3], or 

Cu sheets [7]. Whereas the excited sample tends to vibrate at the transducer’s frequency, 

the oscillations of its internal structure are permanently damped. Attenuation is mainly 

caused by friction at every support and contact interface such as screw connections, in 

addition to inherent material damping. 
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With regard to the other main component of the experimental setup for vibrothermography 

experiments, the IR camera, nowadays, full-field temperature measurements are mostly 

based on two types of infrared cameras, both equipped with focal plane array detectors: the 

microbolometer cameras and the quantum detector cameras. On the one hand, quantum 

detector cameras are generally faster and provide a higher thermal sensitivity as well as a 

greater array size, but on the other hand, are much more expensive and they need from 

detector cooling, which involves maintenance of the coolant system after a certain number 

of operating hours.  

In most laboratory tests, cooled semiconductor focal plane array cameras are used to follow 

the evolution of the surface temperature, with noise equivalent temperature differences 

(NETD) of around 20 mK. However, with the aim of extending the technique to out of 

laboratory industrial environments, portable systems have been designed that work with 

smaller and lighter uncooled microbolometer focal plane array cameras. The lower 

performance of these cameras (NETD of 80 mK in ref. [25]) can be compensated for by 

applying further image processing in addition to the standard background subtraction, such 

as low pass and salt and pepper noise filtering, clipping, i.e. setting to zero all pixels whose 

signal is below a certain value related to the standard deviation of the noise level, and 

integrating images obtained during the excitation [25].  

Finally, by means of a computer, the ultrasound generator can be controlled and 

vibrothermography data are recorded. Besides, synchronisation between ultrasound 

generation and camera operation is performed in order to allow for reproducible test 

procedures. 

In addition to the standard equipment described above, in many laboratory studies and in 

some new portable systems, vibrothermography experiments are complemented with 

measurements of the vibration of certain points of the specimen surface [18, 67], or of the 

relative motion of the crack lips [68]. In some cases even the whole specimen surface 

vibration is monitored to check vibration coverage [69]. These measurements are driven by 

means of laser vibrometres [18, 67-69] that measure the part surface velocity parallel to the 

laser beam, with strain gauges [17], or with microphones [25]. 

   



Section 1 

10 

1.2.2  Excitation regimes 

Coming to the excitation temporal regimes, vibrothermography has been implemented in 

basically two schemes: burst and amplitude modulated or lock-in. 

In burst vibrothermography, a short ultrasound pulse (typically from some tens of 

milliseconds to some seconds) of constant amplitude is applied to the specimen and the 

evolution of the surface temperature distribution of the sample surface is registered with an 

infrared camera during and after the excitation. The main advantage of the burst approach 

is that the experiment is very fast, as the data acquisition takes at most a few seconds. The 

presence of the defect can be evaluated in the raw image sequence or, alternatively, a 

pulsed phase thermography analysis [35] can be conducted, in which the signal at each 

pixel is transformed from time domain to frequency domain via the one-dimensional 

Discrete Fourier Transform (DFT) to extract amplitude and phase at any of the frequencies 

contained in the burst, which de-noises the data. Phase images are especially interesting as 

they are less affected than amplitude by emissivity variations, surface orientation and 

environmental reflections. 

In lock-in vibrothermography, the amplitude of the ultrasounds is modulated at a frequency 

flock-in (much lower than the ultrasound frequency, fUS) typically from some mHz to a few 

Hz. This gives rise to a periodic heat deposition at the defect and thus to the production of 

thermal waves. The oscillating component (at frequency flock-in) of the surface temperature 

at each pixel is evaluated and averaged over a certain number of periods and amplitude and 

phase lag images are generated. The key advantage of the lock-in approach is that due to 

this averaging nature, it provides a very efficient filtering of the signal at flock-in that can 

reduce the average noise in amplitude images, noiseT , well below the noise equivalent 

temperature difference (NETD) of the camera, depending on the number of images 

analysed [41] 

2
NETDnoise

images

T
N

=  (1.1) 

The lock-in technique, thus, can extract signals that are embedded in noise being orders of 

magnitude above the signal level as long as they are periodic, by analysing a high number 

of images. For instance, using an IR camera with a NETD = 20 mK, the average noise level 

in amplitude is reduced below 1 mK by analysing 2,000 images. 
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The drawback is that data acquisition takes longer than in the burst regime, as several 

periods need to be analysed and only one modulation frequency is proved at a time. In 

order to gain some insight on the depth of the defect, several measurements at different 

modulation frequencies are usually conducted, which further prolong the experiments. 

However, noise reduction allows using relatively low ultrasound powers, which is 

beneficial for the reproducibility of the experiments and also to avoid damaging the sample 

[70].  

In Figure 1.2 (a), the waveforms for ultrasound excitation in both burst and lock-in regimes 

are represented. However, in both regimes, the ultrasound frequency can be fixed or it can 

be modulated within the tuning range of the equipment, which is sometimes called 

wobbulation (see Figure 1.2 (b)). Given that it is not possible to know beforehand the right 

ultrasound frequency that will excite each defect in the specimen, in this way, the 

excitation covers a certain range of frequencies in order to maximize the probability of 

detecting defects in the test part. However, care has to be taken not to perform the 

frequency sweep too fast, so that a too low energy is deposited at the appropriate frequency 

to excite the defects.  

 

Figure 1.2. Monofrequent (a) and frequency modulated (b) excitation in burst (top) and lock-in (bottom) 
regimes. 

A further usefulness of wobbulation is the suppression of standing waves in the specimen, 

since resonant excitation forms stationary vibration nodes and antinodes that in turn 

enhance or hinder the detection of defects in the material, respectively. This issue will be 

discussed later on.  
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1.2.3 Mechanisms of heat generation 

Ultrasound excited thermography relies on the principle that defected areas are sources of 

mechanical damping, generating heat. If the material damping is low, as in the case of 

metals, heat production occurs primarily at defects, so vibrothermography provides a defect 

selective dark field method for flaw detection. In addition to defective areas, bulk heating 

can also be produced in lossy media such as viscoelastic polymers and composites, in 

which case, the technique is not background free. Thermoelastic effects due to sinusoidally 

stress-induced heating and cooling cycles occur in vibrothermography experiments in the 

kHz range, and are averaged out by the integration time of the IR camera typically covering 

several vibration periods, so in this technique they cannot be resolved.  

The determination of the mechanisms that produce heat in the specimen in a 

vibrothermography experiment is a primary question that has been matter of intensive 

research [3, 70-76]. Although the most extended idea is that friction is mainly responsible 

for crack heating in metals, some authors have argued that the elastoplasticity in the 

vicinity of the crack tip is the cause for heat generation in cracks [75]. Nowadays, three 

physical phenomena are acknowledged to be responsible for the heat production [3]: 

friction between the defect faces, material damping and, in the case of cracks, plastic 

deformation at the crack tips.  

The contribution of rubbing or clapping friction to vibrothermographic signals has been 

demonstrated in several studies on cracked metallic beams, showing that heat production at 

a given crack can be modified by applying opening and closure stresses. Lu et al. showed 

that heat production at the crack can be almost terminated by locking crack asperities under 

an external compression stress [73]. Renshaw et al. [74] and Weekes et al. [43] applied 

opening stresses to surface breaking cracks in Titanium and austenitic Nickel super-alloy 

beams, respectively, and showed that regions of heat production moved towards the crack 

tips as the opening stress was increased, eventually terminating heat production when the 

crack was completely open [74]. This provides evidence of heat production at the crack due 

to rubbing of contacting crack asperities under low stress. A further evidence of frictional 

heating is the appearance of crack surface alterations, such as micromachining and fretting 

damage due to friction between crack faces [3, 70]. 

When a purely elastic material is subjected to a cyclic uniaxial stress, time varying stress 

and strain are in phase and the stress-strain curve is a straight line enclosing a zero area 

(see Figure 1.3 (a)). At small strain levels, the behaviour of metals does not deviate much 

from linear elasticity. As mentioned above, thermoelasticity of the material produces cyclic 
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temperature oscillations that are averaged out in vibrothermography experiments by the 

integration time of the camera.  

In a more realistic case, the viscoelasticity of the material gives rise to a phase shift 

between oscillating stress and strain (loss angle). In this case, the stress-strain diagram 

shows the elliptical shape depicted in Figure 1.3 (b), featuring hysteresis. The thermal 

energy released per loading cycle is represented by the area enclosed in the ellipse and is 

proportional to the squared strain [71]. This viscoelastic behaviour is usually referred to as 

material damping and produces a bulk heating in the part. The heating increases with 

ultrasound frequency, since more cycles take place per unit time. 

 

Figure 1.3. Schematic stress-strain diagrams for different material behaviours.  

Examples of bulk heating caused by material damping are usually given in polymers [71] 

or composites [64], as viscoelastic effects are stronger than in metals. Material damping 

produces additional localized heating in regions of stress concentration [71].  

Bulk heating due to viscoelasticity of polymers and composites can produce a deleterious 

effect, reducing the contrast of the signal generated at the defect. The signals generated by 

typical composite flaws such as delamination created by impact damage are believed to be 

due to frictional rubbing or clapping of delamination surfaces [11]. Besides, if the part is 

excited at a single ultrasound frequency that matches a resonance frequency of the structure 

in the clamping conditions, a standing wave pattern arises. Due to viscoelasticity, the 

standing wave gives rise to a temperature pattern (that is superimposed to the signal 

coming from the defect), in which a hot anti-node can be mistaken with a defect. On the 

other hand, defects located at nodes of the standing wave pattern do not vibrate and thus do 

not produce heat, being likely to be missed [62]. Close to nodal points, the vibration 

amplitude may not be high enough to activate the defect. As mentioned before, this effect 

can be overcome by performing frequency sweeps or by modulating the ultrasound 
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frequency during both lock-in or burst excitations [13]. The generation of standing waves, 

however, has been exploited to measure the thermal diffusivity of sound viscoelastic 

materials [77]. 

Back to the different material behaviours, if higher stresses are applied on the material 

reaching the yield stress, plastic deformation can occur. The stress-strain curve exhibits 

then the aspect shown in Figure 1.3 (c), with an enclosed area that grows linearly with the 

strain, as the stress is limited to the yield stress. Such large stresses are likely to be present 

at crack tips rather than in sound areas and, since no stress higher than the yield stress can 

occur in the material, a plastic zone appears beyond the crack tips [71]. The heating due to 

plasticity can be distinguished from viscoelasticity since for the generation of the former, a 

stress threshold needs to be exceeded. This takes place at specific locations of the 

specimen, as opposed to the bulk heating occurring everywhere in the sample due to 

viscoelasticity. Renshaw et al. [3] also showed evidence of heat production beyond the 

crack tips of a growing crack excited by high vibrational stress in an aluminium specimen. 

The heat production was attributed to plastic deformation in the plastic zone of the 

propagating crack. Other works by Mabrouki et al. [78, 79] presented coupled 

thermomechanical analyses of heat generation at cracks on steel and aluminium bars 

considering frictional heating of the crack surfaces [78] and dissipation due to plasticity on 

the crack faces [79]. 

In summary, under moderate vibration stresses, frictional heating of defect faces seems to 

be the dominant mechanism of heat generation in cracked metals. In polymers and 

composites, frictional heating of impact damaged delamination-type defects coexists with 

bulk viscoelastic heating due to material damping.  

1.2.4 Enhancement of the vibrothermographic signal 

Defect heating is known to be strongly dependent on ultrasound frequency in metallic 

parts. When a frequency sweep is performed in a cracked metallic specimen the surface 

temperature rise on top of a crack (vibrothermography spectrum) shows sharp peaks, which 

leads to the assumption that resonant excitation is required in the inspection of metallic 

parts. Resonant excitation produces standing waves also in metals, but is generally not 

accompanied by a measurable thermal pattern like in polymer based materials, because the 

material damping is very low. The excitation at one of these structural resonances produces 

large vibration amplitudes in the structure that can be used to excite defects.  
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In laboratory studies, standing waves are actually used to efficiently excite cracks 

generated on purpose at specific locations and selecting the ultrasound frequencies for 

which the crack location corresponds (or is close) to an anti-nodal point of the structure in 

the clamping conditions [80]. However, Renshaw and coworkers demonstrated, using 

viscous material (honey) filled holes in a Titanium beam that, if the filled hole is located at 

a nodal position, no heating of the viscous material is produced [81]. The low acoustic 

damping in metals is also advantageous, as the induced vibration keeps significant 

amplitude along large distances from the excitation point [82]. 

Plum and Ummenhofer further showed that the ultrasound frequencies at which 

vibrothermography peaks appear in metals and their corresponding intensities significantly 

depend on the particular location of the exciter on the sample [82]. The authors argued that 

a different configuration results in different natural frequencies and therefore different 

mode shapes. Accordingly, if a single frequency propagates in the metal, the defect will not 

be activated unless it matches one of the peaks. In composites and polymers, the peaks are 

broader due to a lower acoustic quality [62], which is beneficial because the particular 

ultrasound frequency is not so decisive to find or miss the defect. 

There is little work published on the frequency dependence of the vibrothermographic 

signal in metals. Rothenfusser and Homma used laser vibrometry to analyse the behaviour 

of various cracks [83] and they identified three principal crack modes leading to heat 

production, sketched in Figure 1.4: mode I describes the tensile opening (clapping) and 

modes II and III represent the in-plane (sliding) and out-of-plane shear (tearing). If both 

crack faces move in unison, there is very little relative motion and heat production is very 

low. 

 

Figure 1.4. Vibration modes considered for crack heating. 
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Plum and coworkers [82] performed a modal finite element analysis of the cracked test 

piece (a 10 mm thick low carbon steel plate) and showed that all three crack modes were 

excited in their experiment. Performing measurements of the vibration amplitude of mode 

III at both sides of the crack during a frequency sweep, they could identify some of the 

crack heating peaks as frequencies that gave maximum mode III relative velocity between 

the two crack faces and thus producing maximum frictional heat. In a later work [84], the 

same authors presented a finite element analysis that takes into account crack surface 

asperities and that is able to account for experimentally observed frequency dependent and 

non-uniform crack heating. Further work is needed to fully understand the frequency 

dependence of crack heating in metals. 

1.2.4.1 Generation of acoustic chaos 

Despite the evidences of the ultrasound frequency dependence of the vibrothermographic 

signal in metallic parts mentioned above, soon after the renaissance of vibrothermography 

in the late nineties, it was acknowledged that, when exciting the specimen at a fixed 

ultrasound frequency typically generated with a non-tuneable ultrasonic welder vibrating at 

20 or 40 kHz (beyond hearing capability), a significant enhancement of the 

vibrothermographic signal could be achieved under certain experimental circumstances 

[67, 85]. The enhancement of the IR signal was related to the presence of an audible 

“screech”, attributed by the authors to nonlinearities in the coupling between the excitation 

source and the sample. 

The experimental results of the first analysis of this evidence, conducted by Han et al. [67], 

showed an evolution in the frequency content of the sample (a Titanium specimen excited 

with a 500 ms burst at 40 kHz) during the excitation, that can be summarized as the random 

appearance of a large number of discrete frequency components (both multiples and 

fractions (plus harmonics) of the fundamental frequency), coinciding with the beginning of 

the audible “screech” and a significant enhancement of the IR signal produced at the 

cracks. This behaviour was described as a quasi-chaotic excitation, whose origin was 

attributed to the recoil of the excitation gun, which resulted in a series of impulses, rather 

than in a harmonic excitation of the sample.  

In further work, Han et al. [86] introduced an analytical mechanical model that was able to 

explain this so-called acoustic chaos in the vibration of the gun in contact with a rigid wall 

representing an uncracked specimen. The generation of fractional subharmonics is 

explained by the gun bouncing on the specimen, with different heights in subsequent 
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rebounds, which produce random fluctuations in the frequency of the bounces. In a 

subsequent study [87], a finite element model of an uncracked sample bouncing between 

the gun and a rigid substrate on one end and clamped at the other end, seemed to confirm 

bouncing as the primary mechanism for generating vibration subharmonics and the 

corresponding family of harmonics, even in the absence of flaws in the sample. The model 

also describes the spontaneous switching between subharmonics (and the corresponding 

ultrasubharmonics) during excitation, characterizing the acoustic chaos.  

The same group showed, using a finite element modeling of a cracked sample [88], that 

chaotic vibrations in the sample can explain the enhanced defect heating (if compared to 

non-chaotic excitation at similar excitation powers) due to a greater differential motion of 

the crack surfaces, which was attributed to the shorter wavelength of high frequency 

components and to the presence of a large density of such high frequencies in the chaotic 

regime. The generation of chaotic sound has been shown to be quite unpredictable and 

extremely sensitive to the engaging force applied on the specimen [89, 90] and the 

coupling material [91, 92].  

The presence of subharmonics and ultrasubharmonics has also been observed by Solodov 

and coworkers, both in the MHz range in surface acoustic waves [93] and in the kHz range 

[94], which were attributed by the authors to nonlinear effects (contact acoustic 

nonlinearity [95]) associated to the presence of a crack. Furthermore, the same authors [96] 

argued that both subharmonics oscillations and self-modulation (wave interaction) are 

produced locally in the damaged area, due to the nonlinear acoustic response of the flaws. 

They modelled the defected area as a nonlinear oscillator exhibiting both resonance (the so-

called local defect resonance) and nonlinear properties, and showed that when the driving 

frequency corresponds to the sum of two normal mode frequencies of the defected area, the 

pair of resonance frequencies grows in amplitude. According to their analysis, the 

nonlinear forces provide frequency mixing, leading to new frequency components. Further 

analysis of the nonlinear contribution of local defect resonances can be found in [97]. 

1.2.4.2 Local defect resonance and nonlinear effects at the 

defects 

The existence of acoustic resonances that activate defects in vibrothermography 

experiments has been the subject of recent research. Solodov et al. [98] provided a physical 

interpretation of the local defect resonance (LDR). According to their description, the 

presence of a defect results in a reduced stiffness for a certain mass of material around the 
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defect, which is characterized by a resonance frequency. When the sample is vibrated at the 

resonance frequency of the defect, the resonance provides an efficient energy transfer 

mechanism from the wave to the defect. These local resonances are different from 

structural resonances mentioned at the beginning of section 1.2.4.  

Experimental evidences of defect resonances have been given mainly in polymers and 

composites, such as a glass fibre-reinforced composite plate containing a horizontal 

delamination [99]. When exciting the sample at the defect resonance, a strong enhancement 

of the out-of-plane vibration amplitude is locally observed at the defect area, together with 

an enhancement of the vibrothermographic signal, if compared with excitation at a 

resonance frequency of the specimen. According to the authors, his enhancement of the 

thermographic signal is related to a combination of a higher amplitude of vibration and a 

clapping mechanism in the delamination that produce a significantly larger amount of heat 

than the surrounding sound areas. This efficient resonant excitation of the defect provides 

the opportunity of using much lower excitation powers than those usually applied with 

ultrasound welders, just exciting the sample with conventional piezoceramic transducers 

[100, 101]. LDR has been further exploited by implementing remote ultrasound excited 

thermography using Air Coupled Ultrasound (ACU) excitation [100]: flat-bottomed holes 

in a PMMA plate and also impact damage in a multi-ply CFRP have been detected with the 

transducer located in front of the defect area, just a few centimetres away from it. In both 

cases, the fundamental frequencies of the ACU transducers, about 50 and 70 kHz, 

respectively, matched the LDR frequencies of the defects.  

In a further attempt to optimize the excitation of defects, Rahammer and coworkers [102] 

have recently proposed a system to achieve directional guiding of plate waves by placing 

two wires between the excitation source and the specimen. The constructive interference of 

the plate waves generated by each source resulted in an enhancement of the total plate 

wave amplitude perpendicular to the lines and in a plane wave pattern. Vibrothermography 

signals reported using guided waves show an enhancement of the signal similar to an 

increase of 25% of the input power.  

In parallel to these developments, non-contact vibrothermography has been explored by 

other groups without making use of LDR. Zalameda and coworkers [103] presented a 

system in which acoustic waves in the 800 to 2000 Hz range were injected in the test 

specimen by means of loudspeakers located about 11 cm away from the sample. Authors 

were able to identify ballistic and fabricated damage on a sandwich honeycomb structure. 

More recently, Sathish and coworkers [104] used a conventional high amplitude ultrasound 

generator at 20 kHz with a maximum output power of 1 kW located at a distance of 200-
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300 µm from the sample surface to assess heat damage in carbon fibre reinforced epoxy 

and to detect cracks in an aluminium wheel component.  

Although extremely attractive due to the possibility of using low power and/or contact free 

excitation, LDR excitation of the defects requires previous knowledge of the defect 

resonance frequency, which is unlike to be known beforehand. Furthermore, in the studies 

published so far for air coupled ultrasounds, knowledge of the location of the defect is also 

required as the transducer needs to be located close to it. Besides, little experimental 

evidence and analysis of LDR has been given in cracked metals [105]. Further work is 

needed to investigate eventual relationships between LDR in metals and the sharp peaks 

appearing in vibrothermography spectra typical of cracked metallic samples. 

1.3 Detectability of cracks and reproducibility of 

experiments 

The detectability of a crack in a vibrothermography experiment is a complex function of 

many parameters. It depends on the amount of heat released at the crack, its depth and the 

thermal properties of the material. The heat released at the defect depends on the defect 

size and on the crack lips relative motion, which, in turn, is dependent on the crack closure 

state and vibration pattern induced in the specimen, and increases with both vibration 

amplitude and frequency. The vibration pattern depends on the exciter location, clamping 

conditions, coupling material, geometry of the part, etc. These complex interdependences 

make it difficult to determine a probability of detection of cracks only based on the crack 

size. 

One of the key points for vibrothermography to become a fully accepted technique for non-

destructive evaluation is the determination of the minimum strain needed to detect a crack 

and the identification of the minimum detectable crack size. Experimental data provided by 

Barden et al. [106] on the relationship between temperature rise and strain amplitude on a 

cracked nickel superalloy showed an offset, indicating the existence of a strain threshold 

that needs to be exceeded for the crack to heat up. Rothenfusser and Homma [83] gave 

further evidence of the existence of a threshold by measuring the relationship between 

temperature rise and velocity amplitude at the same location. They argued that either the 

crack asperities were locked, in which case an activation energy was necessary, or the 
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crack width was similar to the oscillation amplitude and thus a certain amplitude needed to 

be reached to get the crack faces into contact.  

The study of the relationship between crack heating, vibration and crack size has been 

addressed by several groups. Holland et al. [18] published an experimental study in which a 

breathing mode in surface breaking half-penny cracks was produced and the longitudinal 

stress amplitude normal to the crack surface was derived from the velocities measured with 

a laser vibrometre. The displayed data on crack heating for different crack sizes and 

dynamic stresses are in agreement with the proposed model, in which they consider friction 

between crack asperities as the main mechanism to produce heat in the opening/closing 

mode of the crack. Morbidini et al. [17] tried to establish a relationship between the 

vibration strain and the temperature rise at the crack mouth. In a further work [63], authors 

evaluated the strain required at a single ultrasound frequency (40 kHz) to produce a 

temperature rise close to the resolution limit of the IR camera, under a constant excitation 

power for a given excitation time in mild steel beams containing cracks between 1 and 5 

mm long. The results showed that strains between 85 µε (for 1 mm long cracks) and 375 µε 

(for 5 mm long cracks) were needed to produce temperature rises of 0.1 K at the crack 

mouth. However, when exciting at these estimated strain levels, the temperature rises 

where higher than expected, which was attributed to the presence of more frequency 

components due to nonlinear excitation. 

With the aim of improving the reliability of vibrothermography, in 2009, Morbidini and 

Cawley proposed a calibration method for vibrothermography experiments [107]. They 

introduced the so-called heating index, that is a measure of the ability of the vibration field 

to generate heat at defects. Authors presented results of the maximum temperature rise 

versus maximum value of the heating index, that show a consistent linear behaviour with 

no apparent threshold other than the one imposed by the sensitivity of the camera. The 

slopes of these straight lines represent a sonic IR efficiency. In the calibration procedure, 

tests are conducted in different specimens containing cracks of different sizes. The sonic IR 

efficiency is then computed for each crack size and the resulting quadratic curve is fitted to 

a 2nd order polynomial that is used as the main calibration curve, as it represents the 

temperature rise per heating index that can be expected for each crack size in a real 

experiment. In a real test, the maximum heating index has to be measured and compared to 

the threshold heating index: if this threshold is exceeded, the test is considered valid and if 

no temperature rises are observed in the post-processing, the specimen is classified as 

uncracked.  
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It is evident, from the analyses described above, that an evaluation of the vibration induced 

in the specimen is essential to determine whether a defect at a given position will be 

exposed to a high enough vibrational strain to be activated in a vibrothermography 

experiment. Holland and co-workers [69] introduced a methodology to evaluate internal 

dynamic stresses-strain state of a vibrating solid. The authors applied the method to 

measure internal stresses in a metallic beam oscillating in a flexural mode and the results 

agreed with predictions given by flexural wave theory. In a recent work, researchers of the 

same group [108] proposed the use of a viscoelastic coating on a metallic part to evaluate 

the vibration strain distribution from the temperature rise map of the polymer adhesive. The 

method provides full vibration coverage in a vibrothermography test. The proposed method 

is more efficient than laser velocimetry used in reference [69] by the same authors, as the 

later requires scanning the entire specimen surface with three laser vibrometres in order to 

get the full 3D vibration field. Also, high frequency microphones have also been used to 

measure the vibration strain field [25].  

The improvement of crack detectability has also been addressed by several groups, mainly 

using post-processing techniques, such as the matched filter technique that Li and 

coworkers [109] proposed to improve the signal-to-noise ratio and thus enhance the 

probability of detection. In a subsequent work [110], Holland introduced a rather 

sophisticated algorithm in which the image sequence was reduced to a single static plot 

with improved sensitivity, that helps identifying the presence of flaws. Other efforts have 

been made to optimize experimental parameters in turbine disks inspections [111, 112] and 

to estimate a probability of detection in particular types of specimens such as aircraft 

engine turbine blades [113].  

The vibration coverage data presented in several works [69, 81, 108] indicate that at the 

specimen resonances usually used in vibrothermography experiments, the vibration strain 

is uneven, maximum at antinodes and minimum at nodes, as mentioned in section 1.2.3. 

This indicates that, in order to determine a probability of detection, not only the crack size, 

but also the crack position and orientation should be taken into account, together with the 

crack closure state. Despite the difficulty of this ultimate goal, some efforts have been 

devoted to achieving full description of vibrothermography experiments and prediction of 

vibrothermographic signals. Guo [114] presented a combined mechanical and thermal 

analytical model to predict the surface temperature evolution during the excitation of the 

crack. Recently, Holland and co-workers [115] presented a model that combines a 

computational vibration modelling, an empirical crack heating model and a computational 

heat flow model to predict surface temperature rise of cracks in a given specimen. The 
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specimen geometry, mounting and excitation parameters are fed into the vibration model 

stage. The resulting vibrations enter the empirical crack heating model that, in turn, 

predicts heat generation taking into account the vibrations, the relative mobility of crack 

surfaces and the crack closure state. Finally, a computational heat propagation model is 

used to predict surface temperature. 

Regarding the reproducibility of experiments, there is not much research published on the 

effect of repeated ultrasound excitation on crack heating. Homma et al. [71] and Renshaw 

et al. [70] performed repeated vibrothermography experiments on turbine blades and 

titanium bars, respectively. Homma et al. found a signal decrease in subsequent excitations, 

and Renshaw et al. concluded that the application of large stresses to fracture surfaces can 

alter the crack surface as plastic deformation, fretting, adhesive wear oxidation, phase 

transformation and melting were observed, which can lead to reduced heat production in 

subsequent experiments. Evidences of crack growing in vibrothermography experiments 

under high vibrational stresses [3] together with the evidence of crack surface damage 

mentioned above, suggests that moderate vibrational stresses, below 20% of the materials 

endurance limit [70], should be used in vibrothermography experiments to guarantee the 

nondestructive character and the repeatability of the technique. 

1.4 Characterization of vertical cracks and objectives of 

this thesis 

The preceding sections summarize the efforts made by researchers to gain knowledge of 

the heating mechanisms in ultrasound excited thermography and to improve flaw 

detectability and experiments reliability that are necessary to expand the use of this 

technology in real nondestructive testing applications.  

The step beyond detection is characterization, i.e., the determination of geometrical 

parameters of the defect such as size, shape and depth from vibrothermography 

experiments. The characterization of delaminations typically resulting from impact damage 

in polymer based composites has been addressed using both in lock-in [116] and burst 

[117] vibrothermography with the aim of identifying the depth of delaminations. Optically 

excited thermography is quite efficient to detect this kind of defects and several processing 

techniques such as thermographic signal reconstruction [118] or pulsed phase 

thermography [35] can be efficiently applied to characterize delaminations.  
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On the contrary, kissing vertical cracks, which are quite elusive to other nondestructive 

testing methods, are target flaws for vibrothermography and crack characterization has 

been the subject of recent research [119-124]. This thesis is aimed at exploiting the ability 

of lock-in vibrothermography to characterize buried vertical cracks. 

The “cause-to-consequence” relationship, i.e., the calculation of the surface temperature 

distribution caused by a certain crack, is the so-called direct problem. The inverse problem 

consists in retrieving the cause (the crack geometry). However, since the measured 

magnitude is surface temperature, what is physically accessible from vibrothermography 

data is the heat source distribution responsible for it, rather than the crack geometry itself. 

The region that contains the heat sources and the crack geometry may coincide in the case 

of kissing cracks for vibrational stresses that induce heat production all along the crack 

surface [83], but in open cracks heat is more likely to be produced only in part of crack 

[74,83]. Given a certain level of crack heating, the surface temperature rise that is 

measured in vibrothermography experiments is governed by heat diffusion. The diffusive 

nature of heat propagation and the fact that temperature data can only be measured at the 

surface and are not available at heat production sites (buried below the surface), makes the 

general problem of retrieving the geometry of the heat source distribution an ill-posed 

inverse problem, which results in arbitrarily small errors in the data yielding arbitrarily 

large differences in the solution.  

In this kind of problems, regular least-square minimization does not give satisfactory 

results because the minimization does not converge. The ill-posedness of the inverse 

problem can be addressed using more sophisticated inversion procedures that involve 

regularization of the inversion. These minimization techniques can be classified into two 

groups: global methods and local methods.  

Global methods such as neural networks [125], genetic algorithms [126] or particle swarm 

optimization [127], require many evaluations of the objective function, which is time 

consuming, but are efficient at identifying the global minimum. Local methods [128, 129] 

such as the conjugate gradient method, on the contrary, start from one set of parameter 

values and modify them to look for the minimum residue. This is computationally cheaper 

and allows a more accurate estimation of the parameters, but local methods risk getting 

trapped in local (instead of global) minima.  

On the other hand, the degree of ill-posedness of the inverse problem increases with the 

number of unknowns. Accordingly, instead of tackling a general inverse problem, a 

possible strategy consists in reducing the number of unknowns (for instance, by assuming a 
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certain shape of the heat source [123]) to diminish or even remove the ill-posedness of the 

inverse problem. Of course, this approach lacks generality as only heat sources of a given 

shape can be characterized accurately.  

The first objective of this thesis is to implement a robust inversion algorithm, based on 

stabilized least squares minimization, in order to retrieve vertical buried heat source 

distributions of any geometry from lock-in vibrothermography data. Thus, our approach to 

characterize inner heat source distributions from vibrothermography data involves the 

fitting of the data to the result of a semi-analytical model that describes the propagation of 

the thermal waves generated at the defects. The treatment is purely thermal, as we leave 

aside the heat generation mechanisms at the defects.  

An analysis of the implemented inversion algorithm will be carried out as well inverting 

synthetic data, aimed at optimizing the inversion algorithm so as to expand its application 

to the widest range of heat source geometries and gain accuracy in the reconstructions 

providing quantitative information of the buried defects.  

Experimental verification is necessary in order to prove the potential of the inversion 

algorithm to characterize vertical heat sources from real experimental data, with the 

ultimate goal of implementing it in the characterization of cracks in real applications. Thus, 

the second objective of this thesis is to verify the results of the inversion algorithm with 

experimental instead of synthetic data, obtained from vibrothermography experiments 

performed in the lock-in regime, using both samples with calibrated heat sources and real 

samples with inner defects.  

This thesis is composed of nine sections, including this introductory section, and it is 

organised as follows: 

Section 2 provides theoretical background regarding thermal radiation and heat conduction, 

as they represent the basis of the direct problem of this thesis, and also about inverse 

problems, focusing on the key aspects that will be needed further on for the statement, 

resolution and analysis of our inverse problem. The treatment of ill-posed inverse problems 

is addressed.    

Section 3 states and solves the direct problem of this thesis. The solution is then analysed 

by performing simulations for homogeneous square heat sources, with the aim of observing 

the impact of varying the geometrical parameters of the heat sources on the surface 

temperature distribution. The frequency dependence of the surface temperature amplitude 

and phase is checked and, lastly, other geometries are also considered to check the ability 
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of vibrothermography to distinguish between the particular features of heat sources of 

different geometry. 

Section 4 describes the experimental setup for the performance of vibrothermography 

experiments in the lock-in regime using samples containing vertical calibrated heat sources, 

focusing on the equipment used and the construction of the samples. For the verification of 

the direct problem, experimental data are analysed, the frequency response of the 

equipment is characterized and different methods for the elimination of the contribution of 

the transient temperature rise of the sample on surface temperature data are proposed. 

Finally, the optimum experimental conditions for data acquisition are settled.  

Section 5 addresses the inverse problem of this thesis. First, the inverse problem is stated 

and its ill-posed nature is analysed. Then, regularization procedures together with a 

minimization process based on a local method are proposed in order to implement a robust 

inversion algorithm, capable of retrieving heat source distributions from 

vibrothermography data. Lastly, the inversion algorithm is described in detail.  

Section 6 analyses the ability of the inversion algorithm to retrieve heat source distributions 

by inverting synthetic data generated for heat sources representing homogeneous vertical 

kissing cracks of square/rectangular geometry. After describing the generation of synthetic 

data, the effects of various aspects regarding both the inversion algorithm and the data 

entering it on the reconstructions are analysed. The optimum inversion protocol is then 

defined, the convergence property of the inversion algorithm is shown and the use of multi-

frequency data, as well as the experimental design, are verified. In order to evaluate 

quantitatively the quality of the retrieved heat source distributions, an “accurate 

reconstruction criterion” is defined and, in addition, the spatial resolution of the inversion 

algorithm is tested and the situations where the shadowing effect arises in the 

reconstructions are identified. 

In section 7 we present assessment of the behaviour of the inversion algorithm when 

retrieving heat source distributions of geometries other than square/rectangular. The 

performance of the inversion algorithm to recover the particular features of the different 

geometries for kissing heat sources is checked, the robustness of the algorithm against 

noise is shown and, in order to approach situations arising in experiments with real cracks, 

open heat sources representing surface breaking open cracks of different geometries are 

also considered. In addition, we tackle the qualitative recovery of inhomogeneous heat 

fluxes, for both kissing and open heat sources. 
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Section 8 verifies experimentally the potential of the inversion algorithm to characterize 

vertical heat sources. To this purpose, we check the predictions from synthetic data by 

inverting data obtained in vibrothermography experiments using samples with calibrated 

heat sources representing both homogeneous vertical kissing and open cracks of different 

geometries. Heat sources of arbitrary orientation and shape are considered in order to prove 

that any geometry can be accurately retrieved with the inversion algorithm. In addition, for 

semicircular and triangular open heat sources, inhomogeneous fluxes are produced in the 

experiments. Finally, in order to prove that the inversion algorithm can be extended to real 

applications, vibrothermography experiments are performed using a welded Inconel 718 

sample with real instead of calibrated defects, and the defects found are characterized. 

Section 9 summarizes the conclusions drawn from this thesis and points out future 

research. 

Finally, a list of publications resulting from this thesis is presented. 
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2 Theoretical background 

 

This section provides theoretical background regarding thermal emission and heat 

conduction, which is fundamental for the comprehension of the direct problem in this 

thesis. Similarly, inverse problems are introduced in a general and theoretical way, 

addressing the key points that play a role for the further statement, resolution and analysis 

of the inverse problem in this thesis and focusing on the treatment of ill-posed inverse 

problems. 

 

2.1 Thermal radiation and heat conduction 

The term radiation refers to the continuous energy emission from any body’s surface. All 

bodies with a temperature over 0 K emit radiation, as it corresponds to the fact that 

particles are in motion. This motion is constrained by interactions with other atoms or 

molecules, e.g., collisions and bonds, so the elementary charges within these atoms are 

subjected to accelerations, and accelerating charges radiate electromagnetically. 

Radiant energy is carried by electromagnetic waves, which, in turn, travel through a 

vacuum at a speed of 3·108 ms-1. Radio waves, microwaves, IR, visible and ultra-violet 

radiation, X-rays and gamma rays form the different regions of the electromagnetic 

spectrum (see Figure 2.1).  

Infrared radiation is the electromagnetic radiation with wavelengths lying from 0.75 to 

1000 µm. In turn, it can be divided into three regions: first, closest to the visible, the near 

infrared, with wavelengths between 0.75 and 1.5 µm; then, the middle infrared ranges from 
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1.5 to 30 µm, being the thermal imaging region and last, the far infrared, with wavelengths 

ranging from 30 to 1000 µm.  

 

Figure 2.1. Electromagnetic spectrum showing the IR regions.  

Back to the fact that all bodies emit electromagnetic radiation, this emission depends on 

various factors: the surface nature, the body temperature, the wavelength and the direction. 

A body that is a perfect emitter is called a blackbody, and is able to absorb radiation from 

any direction or wavelength and emit it in the same way until it reaches the thermodynamic 

equilibrium. A blackbody follows Planck’s law, which takes into account that 

electromagnetic emission is not uniformly distributed over the wavelength spectrum 

( )
2

5

2
,

1

b hc

kT

hc
M T

eλ

πλ
λ

=
 

− 
  

 
(2.1) 

Equation (2.1) is the spectral radiance for a blackbody (Wm-2µm-1), where λ is the emitted 

wavelength in µm, T is the absolute temperature in K, h = 6.63·10-34 Ws2 is the Planck’s 

constant, c = 3·108 ms-1 is the speed of light and k = 1.38·10-23 WsK-1 is the Boltzmann’s 

constant. 

As mentioned before, the spectral radiance is not uniformly distributed over the spectrum, 

but it has a maximum at a certain wavelength and then is reduced at both sides of the 

spectrum. To illustrate this, Figure 2.2 shows the spectral radiance for a blackbody at 
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different temperatures, highlighting those corresponding to room temperature and to the 

temperature of the Sun, in green and orange, respectively.  

 

Figure 2.2. Spectral radiance for a blackbody with different temperatures. 

As for the maximum spectral radiance at a certain blackbody temperature, the Wien’s 

displacement law gives the relation between temperature and the peak wavelength of 

Planck’s function, which is obtained by setting the wavelength derivative of equation (2.1) 

to zero 

( ),
0bM Tλ

λ
∂

=
∂

 (2.2) 

and solving for the value of λT that maximizes ( ),bM Tλ  

max 2898µmKTλ =  (2.3) 

Using equation (2.3) we can check that the peak wavelength at room temperature is 9.6 

µm, located in the middle infrared region, whereas at the temperature of the Sun it is λmax = 

502 nm, lying on the visible region.  
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On the other hand, if the total emission in all wavelengths is of interest, equation (2.1) then 

needs to be integrated from λ = 0 to ∞, and the resulting expression is known as the Stefan-

Boltzmann law 

( ) ( ) 4

0

,b b bM T M T d Tλ λ σ
∞

= =∫  (2.4) 

where σb = 5.67·10-12 is the Stefan-Boltzmann constant.  

Concerning the fact mentioned above that infrared emission depends on the body’s surface 

nature, we may note that all laws above do not include any parameter regarding it, since the 

blackbody represents the ideal surface in which the emitted energy equals the absorbed 

energy. However, so as to account for real surfaces, we need to introduce a parameter 

called emissivity, which represents the ratio of the spectral radiance of a body to the 

spectral radiance of a blackbody at the same temperature 

( ) ( , )

( , )b

M T

M T

λε λ
λ

=  (2.5) 

Emissivity depends on the wavelength, temperature and direction of the emitted radiation, 

and it varies from ɛ (λ) = 0 to 1. This considered, the emissivity should be included in laws 

of electromagnetic emission explained above. Therefore, the Planck’s law for real surfaces 

can be now written as 

( ) ( )
2

5

2
, ,

1
hc

kT

hc
M T T

eλ

πλ ε λ
λ

=
 

− 
  

 
(2.6) 

and the Stefan-Boltzmann law results 

( ) ( ) 4
bM T T Tε σ=  (2.7) 

As Kirchhoff’s law for electromagnetic radiation states, the amount of energy absorbed 

must equal the amount of energy emitted, not only for a blackbody but for all surfaces, as 

long as the thermodynamic equilibrium is reached 
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( ) ( )α λ ε λ=  (2.8) 

where α (λ) is the absorptance, the fraction of incident electromagnetic power absorbed at 

an interface. This is illustrated in Figure 2.3 (a), from which it can concluded that a poor 

absorber is also a poor emitter. Of course, a good absorber is also a good emitter, and in the 

case of a blackbody (see Figure 2.3 (b)), ɛb (λ) = αb (λ) = 1. 

 

Figure 2.3. Representation of energy absorbed and emitted for (a) a real surface and (b) a blackbody. 

At this point, it is worth mentioning that there are only three possible components to the 

behaviour of radiation incident on a surface 

α+ ρ+ τ=1  (2.9) 

where ρ is the reflectance, i.e., the portion of incident power that is reflected, and τ is the 

transmittance or the fraction of incident power that emerges from the other side of the 

surface. As only metallic samples are inspected within this work, there is no radiation from 

beyond the sample that can pass through the sample.  

Thus, the radiated energy in vibrothermography experiments depends only on the sample 

surface temperature and on the emissivity. For this reason, the uncertainty about the 

emissivity of the sample surface would become a major problem, if absolute temperatures 

were to be measured. However, only relative temperatures are evaluated in this work and, 

moreover, for small changes of temperature, just what we often need in lock-in 

vibrothermography, the emissivity can be considered constant.  
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Infrared radiation emitted from the sample surface must travel to the detector through the 

atmosphere. Figure 2.4 shows a diagram of the atmospheric absorption bands. As can be 

observed, there are three main areas where low atmospheric absorption occurs, the so-

called atmospheric windows (from 1 to 2.5 µm, from 3 to 5 µm and from 8 to 12 µm) and 

IR cameras are equipped with detector materials coincident with these atmospheric 

windows. 

 

Figure 2.4. Absorption spectrum of the atmosphere and its major absorption components. 

Another issue worth mentioning is that thermal radiation from objects in the room could 

contribute to the radiation reaching the detector, causing it to observe an apparent 

temperature of the sample surface different from the real one. However, the fact that the 

room emits infrared radiation reaching the detector is not a problem since, as it is not 

amplitude modulated, it will not affect lock-in experiments.  

Once reviewed the basics of infrared radiation, we cannot forget that in lock-in 

vibrothermography experiments, the IR emission from the sample surface is a product of 

mechanical energy absorption, production of thermal energy, diffusion through the 

material, and lastly emission as IR radiation. Therefore, it is useful to review heat 

conduction through solids. 
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The heat conduction equation for homogeneous and isotropic materials writes [130] 

 
2 1 ( , ) ( , )

( , )
T t Q t

T t
D t K

∂∇ − = −
∂
r r

r  (2.10) 

where ( , )Q tr  is the energy generated per unit time and unit volume, D is the thermal 

diffusivity and K is the thermal conductivity of the material. As the deposited energy is 

periodic in the lock-in regime, ( , )Q tr  can be expressed as 

( )0( , ) ( ) 1 i tQ t Q e ω= +r r  (2.11) 

This periodic heat deposition produces a DC temperature rise above the ambient 

temperature plus an oscillating (AC) temperature component. In consequence, in steady 

state, the temperature field will be of the form 

( , ) ( ) ( , )amb DC ACT t T T T t= + +r r r  (2.12) 

where the AC temperature component shows the same harmonic dependence as the energy 

source 

( , ) ( ) i t
AC ACT t T e ω=r r  (2.13) 

Since lock-in thermography is based on the detection of the AC component of the 

temperature, by substituting ( , )T tr , given by equation (2.12), into the heat conduction 

equation (2.10), we obtain the differential equation for the oscillating component of the 

temperature 

2 0( , ) ( )1
( , )

i t
AC

AC

T t Q e
T t

D t K

ω∂
∇ − = −

∂
r r

r
 

(2.14) 

If we now use expression (2.13) for ( , )ACT tr , we obtain the equation governing the spatial 

dependence of the AC temperature  

  

2 2 0( )
( ) ( )AC AC

Q
T q T

K
∇ − = −

r
r r  (2.15) 
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where /q i Dω=  is the thermal wave vector. Thus, the oscillating temperature field 

depends on the excitation and the thermal properties of the material. Equation (2.15), which 

describes the AC temperature field in the material, is the Helmholtz equation with heat 

source term. Its solution represents the AC temperature distribution, which leads us to the 

direct problem of this thesis.  

2.2 Inverse problems 

As mentioned in section 1.4, whereas the calculation of the surface temperature distribution 

caused by a certain heat source distribution is the direct problem, the inverse problem 

consists in retrieving the cause (the heat source distribution) that produces the observed 

surface temperature rise, which is severely ill-posed due to the diffusive nature of heat 

propagation. 

Apart from introducing inverse problems in a general and theoretical way, this section 

addresses the main aspects that will arise in the inverse problem considered in this thesis, 

such as the discretization of integral equations, the least square solution, the singular value 

decomposition for the analysis and resolution of ill-posed inverse problems, the generalized 

inverse and the regularization of the generalized inverse using Tikhonov penalization. 

2.2.1 Introduction to inverse problems 

With the aim of solving a physical problem, we often wish to relate physical parameters 

characterizing a model, m, to collected observations making up some set of data, d. To do 

so, we can define a function, A, such that  

( )A m d=  (2.16) 

Equation (2.16) is called mathematical model. An important issue is that actual 

observations always contain some amount of noise, frequently due to instrument readings 

and numerical round-off, so we can divide data into noiseless observations from a “perfect” 

experiment, dtrue, and a noise component, η 
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trued d η= +  (2.17) 

( )trued A m η= +  (2.18) 

where dtrue satisfies equation (2.16) for m equal to the true model, mtrue, in which case, we 

assume that the forward modelling is exact. However, as data always contain noise, it is 

often the case that a solution for m that is influenced by even a small noise level η may 

have little or no correspondence to mtrue. As for A, we typically refer to it as an operator, 

when d and m are functions. 

The inverse problem is defined as finding m given d. When we want to determine a finite 

number of parameters, n, to define a model, we can express the model parameters as an n 

element vector m. Similarly, when there are a finite number of data points, we can express 

data as an m element vector d. Such problems are called discrete inverse problems or 

parameter estimation problems. A general parameter estimation problem can be written as 

a system of equations 

( )A m d=  (2.19) 

On the other hand, when the model and data are functions of continuous variables, the task 

of estimating m from d is called a continuous inverse problem, yet continuous inverse 

problems can often be well-approximated by discrete inverse problems.   

A type of mathematical model for which many useful results exist is the class of linear 

operators, which obey superposition (2.20) and scaling (2.21) 

( ) ( ) ( )1 2 1 2A m m A m A m+ = +  (2.20) 

( ) ( )A αm αA m=  (2.21) 

In the case of a discrete linear inverse problem, equation (2.19) can always be written in the 

form of a linear system of algebraic equations  

( )A = =m Am d  (2.22) 
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and in the case of a continuous linear inverse problem, A can often be expressed as a linear 

integral operator, where (2.16) has the form 

( ) ( ), d ( )
b

a

g x y m y y d x=∫  (2.23) 

where the data, ( )d x , is a function of x and, hence, so is the function ( ),g x y , the so-

called kernel. Equations of the form of (2.23) where ( )m y  is the unknown are called 

Fredholm’s integral equations of the first kind (IFK). IFKs arise in a large number of 

inverse problems, including the one in this thesis, and they have the inconvenience of 

making the inverse problem ill-posed when the kernel is a smooth function. 

2.2.2 Discretization of integral equations 

In problems of the form of equation (2.23), the kernel, ( ),g x y , which encodes the physics 

relating the unknown model, ( )m y , to the observed data, ( )d x , is considered to be given. 

For the sake of simplicity, we consider that [ ]: ,g a b× →ℝ ℝ  and, also, that ( )d x  refers 

to measurements at a finite set of points, even though it might be known over an entire 

interval. Assuming that ( )d x  is known at a finite number of points x1, x2, ..., xm, we can 

rewrite equation (2.23) as 

( ) ( ) ( )

( ) ( )

, d      

                d          1, 2, ...,

b

i i i

a

b

i

a

d d x g x y m y y

g y m y y i m

= =

= =

∫

∫

 (2.24) 

where the functions ( ) ( ),i ig x y g y=
 

are the data kernels. For the discretization of 

equation (2.24) we apply a quadrature rule. The simplest quadrature approach is the 

midpoint rule, in which we divide the interval [a, b] into n subintervals and pick points y1, 

y2, ..., yn in the middle of each subinterval (see Figure 2.5), being ∆y the length of each 

subinterval 
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∆
b a

y
n

−=  (2.25) 

The points in the middle of each subinterval, yj, are then 

           
( )∆

1 ∆
2j

y
y a j y= + + −  (2.26) 

                  

 

Figure 2.5. Grid for the midpoint rule. 

The integral equation (2.24) is then approximated by 

( ) ( ) ( ) ( )
1

d ∆      1, 2, , 
b n

i i i j j

ja

d g y m y y g y m y y i m

=

= ≈ = …∑∫  (2.27) 

Finally, if we define 

( ),

1, 2, , 
∆      

1, 2, , i j i j

i m
A g y y

j n

= … 
=  = … 

 (2.28) 

and  

( )     1, 2, , j jm m y j n= = …  (2.29) 

then we obtain a linear system of equations Am = d. We have used the midpoint rule to 

approximate the Fredholm’s integral equation of the first kind. This procedure is known as 

simple collocation and lets us with an m by n linear system of equations. 
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2.2.3 Least squares solution, SVD and the generalized inverse 

From the linear system of equations Am = d obtained from the discretization of the 

Fredholm’s integral equation of the first kind, the unknown model is solved as  

-1
m = A d  (2.30) 

However, m may not always be obtained directly from equation (2.30): if there are more 

data points than model parameters (m > n) and data are affected by noise, it is impossible to 

find a solution m that satisfies every equation exactly, because the dimension of the range 

of A is smaller than m, meaning that no solution exists. 

Nevertheless, useful solutions may be found by solving for model parameters that fit the 

data in an approximate or “best-fit” sense. In order to get the best approximate solution to 

an overdetermined system of linear equations, i.e., with more data points than unknowns, 

we need to find an m that minimizes some misfit measure, calculated from the differences 

between the observations and the theoretical predictions, commonly called residuals. The 

residual vector is 

r = d - Am  (2.31) 

A very commonly used measure of the misfit is the 2-norm (euclidean length) of the 

residual vector 

( )( )2

2
1

m

i i
i

dd Am Am

=

− = −∑  (2.32) 

and a model that minimizes this 2-norm is called a least squares solution. To obtain the 

least squares solution of (2.31), we solve its normal equations 

T T=A Am A d  (2.33) 

 The least squares solution is then 

( ) 1
T T

−
=m A A A d  (2.34) 
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If A has full column rank, then (AT
A)-1 exists. However, if A is rank deficient, (AT

A)-1 does 

not exist and equation (2.34) cannot be applied in order to obtain m.  

Singular Value Decomposition (SVD) is a method to analyse and solve equation (2.33) in a 

more sophisticated way than using (2.34), even for rank deficient matrices. In the SVD, the 

m by n matrix A is factored into 3 matrices  

T
A USV=  (2.35) 

where U is an m by m matrix whose columns are orthogonal vectors spanning the data 

space, V is an n by n matrix whose columns are orthogonal vectors spanning the model 

space and S is an m by n diagonal matrix with diagonal elements called singular values. 

Recall that orthogonal matrices meet U-1 = UT. 

The singular values along the diagonal of S are arranged in decreasing size, 

( )1 2 min , 0
m n

s s s≥ ≥ … ≥ ≥ . If only the first p singular values are nonzero (p < m), we can 

write S as  

pS 0
S

0 0

 
=  
 

 (2.36) 

where S is a p by p diagonal matrix composed of the positive singular values. Expanding 

equation (2.35) in terms of U and V gives 

.,1 .,2 ., .,1 .,2 .,

0 0

, , , , , , 

, ,

Tp

m n

Tp

p p

S 0
A U U U V V V

0 0

S 0
U U V V

0 0

 
   = … …    

 

 
   =     

 

 (2.37) 

where Up refers to the first p columns of U, U0 refers to the last (m – p) columns of U, Vp 

refers to the first p columns of V and V0 refers to the last (n – p) columns of V. As the last 

(m – p) columns of U and the last (n – p) columns of V are multiplied by zeros in S, we can 

simplify equation (2.37) into its compact form 

T
p p pA U S V=  (2.38) 
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The SVD can be used to compute a generalized inverse of A, the so-called Moore-Penrose 

pseudoinverse, A
†, because it has desirable inverse properties originally identified by 

Moore and Penrose [131, 132] 

( ) 1
† T T

A A A A
−

=  (2.39) 

According to (2.39), in order to obtain the Moore-Penrose pseudoinverse, we need to 

calculate the transposed of A and then the inverse of the product A
T
A. Since Sp is a 

diagonal matrix, T
p pS S=  and the transposed of A is 

( )
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T T T T
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T T
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T
p p p
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=

=

 (2.40) 

Thus, the product AT
A is 

2        

T T T
p p p p p p

T
p p p

A A V S U U S V

V S V

=

=
 (2.41) 

and its inverse gives 

( ) ( ) ( ) ( )
( )

1 1 1 12

12              

T T
p p p

T
p p p

A A V S V

V S V

− − − −

−

=

=
 (2.42) 

At last, the Moore-Penrose pseudoinverse is, introducing (2.42) and (2.40) into (2.39) 
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 (2.43) 
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Using equation (2.43), we define the pseudoinverse solution to be 

                                              
† † 1 T

p p pm A V Sd dU
−= =

 
(2.44) 

The most important property of equation (2.44) is that A† (given in (2.43)), and hence m†, 

always exist, unlike (AT
A)

-1 in equation (2.34). In the inverse problem of this thesis, we 

will normally have that n = p, being the number of unknown model parameters who 

determines the number of nonzero singular values, and also p < m, so we have more data 

points than unknown model parameters to solve. Under these conditions, the solution 

cannot fit noisy data exactly. 

In order to get a more explicit expression of m† than equation (2.44), we follow the steps 

below: first, the elements of the vector T
pU d  are the dot products of the first p columns of 

Up with d 
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 (2.45) 

When we multiply equation (2.45) by 1
pS
− , we obtain 
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 (2.46) 

And finally, when we multiply equation (2.46) by Vp, we obtain a linear combination of the 

columns of Vp that can be written as 



Section 2 

42 

.,†
.,

1

Tp
i

i

ii
s

U d
m V

=

=∑  (2.47) 

Equation (2.47) is the generalized inverse, which may include terms involving model space 

vectors in V.,i with very small singular values. The presence of near-zero singular values in 

the denominator of equation (2.47) can provoke very large coefficients for their 

corresponding model space vectors V.,i, which can dominate the model and, in the worst 

case, act as a noise amplifier. 

Inverse problems stated in the form of Fredholm’s integral equations of the first kind with 

smooth kernels lead to a severe ill-posedness of the inverse problem in the presence of 

noise [133]. The concept of a well-posed inverse problem, originally introduced by 

Hadamard [134], requires that its solution should satisfy the following three conditions: 

- The solution must exist 

- The solution must be unique 

- The solution must be stable under small changes to the input data (stability condition) 

For the inverse problem of retrieving the heat source distribution that gives rise to a certain 

surface temperature distribution from vibrothermography data, in the absence of noise, a 

solution exists and, according to the corollary of Holmgren’s uniqueness theorem, the 

solution is unique [135]. However, the third condition is not fulfilled: the Fredholm’s 

integral equations lead to lack of stability of the inversion. Obtaining the solution to an ill-

posed inverse problem can be an extremely unstable process, in that a small change in the 

measurement, i.e., a small η in equation (2.18), can lead to an enormous change in the 

estimated model. If the inverse problem is very sensitive to random errors in the input data, 

it needs to be stabilized by imposing additional constraints that bias the solution, which is 

generally called regularization, in order to satisfy the stability condition.  

In the analysis of the generalized inverse solution, it is useful to examine the range of 

singular values: the more near-zero singular values, the more severely ill-posed the inverse 

problem can be considered to be. The shape of the curve that the singular values take on 

when plotted (versus the singular value number), can also be a visual indicator of the ill-

posedness of the inverse problem: if the singular values si decay following laws such as si ≈ 

i
-1 or 

si ≈ i
-2, the inverse problem may be mildly ill-posed, whereas if their decay fits a 
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decreasing exponential function such as si ≈ e-i, the inverse problem can be considered to 

be severely ill-posed. 

If we chop very small singular values and thus eliminate the model space vectors 

associated to them, then the solution becomes more stable. However, this stability comes at 

the expense of reducing the accuracy of the solution, as the fit to the data worsens. 

Therefore, the chopping criterion should satisfy a compromise between stability and 

accuracy of the solution.  

For a long time it was thought that, if any of the conditions required for well-posedness 

were violated, the problem would be unsolvable or the results obtained from such a 

solution would be physically meaningless. It was more sophisticated inversion procedures 

such as Tikhonov regularization [136] that revitalized the interest in the solution for inverse 

problems.  

A successful solution of an inverse problem generally involves its reformulation as an 

approximate well-posed problem. Tikhonov regularization procedure modifies the least 

squares equation by adding smoothing terms in order to reduce the unstable effects of 

errors in data. 

2.2.4 Tikhonov regularization 

As we have seen, the generalized inverse solution can become extremely unstable when 

one or more singular values, si, are very small. Dealing with this difficulty implies the 

implementation of a method for the stabilization or regularization of the solution, in the 

sense that the solution becomes less sensitive to noise in the data, at the expense of 

reducing resolution and having no longer an unbiased solution. 

Tikhonov regularization is a very widely applied and easy to implement technique for 

regularizing ill-posed problems. The Tikhonov series solution has coefficients that are 

functions of a regularization parameter, αTk, controlling the degree of regularization, and 

which give a greater weight to model elements associated with larger singular values, in a 

similar way to a low-pass filter. 

For a general least squares problem where data contain noise, there is no point in fitting 

such noise exactly, but there can be many solutions n∈m ℝ  that can adequately fit the data 

so that ||Am - d||2 is small enough. In zero-order Tikhonov regularization, we consider all 
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solutions that meet ||Am - d||2 ≤ δ, being δ a particular residual misfit tolerance value, and 

select the one that minimizes the 2-norm of m 

2 2
, subject to min m Am d δ− ≤  (2.48) 

Implementing Tikhonov regularization including Lagrange multipliers, the minimization 

problem now is 

2 2

2 2
arg min

nα Tkα
∈

 = − +  m

m Am d m
ℝ

 (2.49) 

We refer to the first and second terms in equation (2.49) as discrepancy term and 

regularization term, respectively. The larger αTk, the more powerful the regularization term 

so as to damp model elements associated with small singular values, as we will see later on.  

This solution is equivalent to an ordinary least squares problem augmenting it in the 

following manner 

2

2

arg min
n

Tk

α
αm

A d
m

0I
m

∈

   
−   
   

=
ℝ

 (2.50) 

For the sake of clarity, we will refer to the new augmented matrix A as matrix Aaug. 

Following the same procedure as the steps followed above for the obtention of the 

generalized inverse with no regularization, Aaug and its transposed are  

aug

Tkα

A
A

I

 
=  
  

 (2.51) 

T T
aug TkαA A I =    (2.52) 

where the size of A remains m by n and I is the n by n identity matrix. As long as αTk is 

nonzero, the last n rows of matrix Aaug are linearly independent, so equation (2.50) is thus a 

full rank least squares problem that can be solved by its normal equations 

T T
aug aug α augA A m A d=  (2.53) 
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Expanding equation (2.53), we have 

( )             

T T
Tk α Tk

Tk

T T
Tk α

α α
α

α

A d
A I m A I

0I

A A I m A d

   
   =          

+ =

 (2.54) 

Employing the SVD of A, where A = USV
T and A

T = VS
T
U

T, equation (2.54) can be 

written as 

( )
( )       

T T T T T
Tk α

T T T T
Tk α

α

α

VS USV I m VS U d

VS SV I m VS U d

+ =

+ =

U
 (2.55) 

The following simple substitutions diagonalize this system and make it straightforward to 

write out the solution: let x = VT
mα and mα = Vx. Since VV

T = I, we can write equation 

(2.55) as 

( )
( )

( )
      

               

T T T T T
Tk α

T T T T
Tk α

T T T
Tk

α

α

α

VS SV VV m VS U d

V S S I V m VS U d

S S I x S U d

+ =

+ =

+ =

 (2.56) 

Because the left-hand side of the equation (2.56) is diagonal, it is trivial to solve the system 

of equations 

.,2
Ti

i i

i Tk

s
x

s α
U d=

+
 (2.57) 

and since mα = Vx, we get to the solution 

., .,2
1

k
Ti

α i i

i Tki

s

s α
m U dV

=

=
+∑  (2.58) 

where k = min(m,n), so that all the non-zero singular values and vectors are included. To 

relate this solution to that obtained without Tikhonov regularization (equation (2.47)) more 

clearly, we can rewrite equation (2.58) as 
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2
.,

.,2
1

.,
.,

1

     

Tk
ii

i

ii Tki

Tk
i

i i

ii

s

ss α

f
s

U d
m V

U d
V

α
=

=

=
+

=

∑

∑
 (2.59) 

where ( )2 2/i i i Tkf s s α= +  are the so-called filter factors, which control the contribution of 

the different terms to the sum, in the same way as a low-pass filter. Thus, the penalization 

of the different model space vectors depends on the relation between αTk and their 

associated singular values. Accordingly, the degree of regularization can be varied between 

two extremes: for si >> αTk, fi ≈ 1 and equation (2.59) remains exactly the same as equation 

(2.47), meaning that the regularization is dismissed, whereas for si << αTk,  fi ≈ 0, which is 

equivalent to damping the model space vectors associated with very small singular values, 

V.,i. Logically, for singular values ranging between these two extremes, as si decrease, fi 

produce a monotonically decreasing contribution of their corresponding model space 

vectors to the solution. 

This considered, the Tikhonov series produces a softer filtering of model space vectors 

associated to small singular values, than just chopping them as mentioned in the SVD 

description. Thus, this produces a smooth solution, since sharp, high frequency model 

space vectors are filtered out. 

As for the choice of αTk, the curve of optimal values of ||mα||2 versus ||Amα - d||2 as a 

function of αTk, plotted on a log-log scale, often takes on a characteristic “L” shape in linear 

problems 

 

Figure 2.6. L-curve: a particular residual misfit, δ, and its position on the curve between the model norm, 
||mα||2, and the residual misfit, ||Amα - d||2, as a function of αTk. 
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For this reason, Figure 2.6 is called L-curve [137], which is useful for picking the optimal 

value of the regularization parameter according to the L-curve criterion, that selects the 

value of αTk that gives the solution closest to the corner of the L-curve. Note that as δ 

increases, the set of feasible models expands and ||m||2 decreases. In other words, as we 

allow a poorer fit to the data, a smaller norm model is sufficient to fit the data. 
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3 The direct problem 

 

This section states and solves the direct problem in this thesis, consisting in the calculation 

of the surface temperature distribution caused by a certain heat source distribution. The 

solution is then analysed by performing simulations for homogeneous square heat sources, 

in order to observe the impact of varying the geometrical parameters of the heat sources on 

the surface temperature distribution. Finally, other geometries are considered too, in order 

to assess the ability of vibrothermography to distinguish between the particular geometries 

of the heat sources. 

 

 

The vibrothermographic signal is a result of heat sources activated by ultrasounds at defect 

areas. In the case of the moderate ultrasound intensities usually used to keep the test 

nondestructive, heat is mainly produced by rubbing and/or clapping friction between the 

crack surfaces. Due to amplitude modulated activation at a frequency flock-in, thermal waves 

are generated at the defects, they propagate in the material and are the cause of the 

resulting surface temperature distribution, which is monitored as a function of time with an 

IR camera. This process is governed by heat diffusion.  

Thermal waves are highly attenuated as well as dispersive. The attenuation of thermal 

waves is characterized by the thermal diffusion length [42], which represents the distance 

for which the temperature amplitude decreases by a factor 1/e with respect to the 

temperature amplitude at the location of the modulated heat source, in 1D problems 

lock in

D

f
µ

π −
=

 

(3.1) 
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According to equation (3.1), the penetration range of a thermal wave depends on the 

thermal diffusivity of the material and the modulation frequency, increasing with 

decreasing flock-in. However, a sample with a vertical heat source of finite size states a 3D 

thermal diffusion problem, in which an additional radial decay of the temperature field 

takes places aside from the attenuation due to its diffusive nature. 

Characterization of cracks by inversions from vibrothermography data involves fitting the 

observed surface temperature distribution to a mathematical model. Thus, the first step is to 

solve the direct problem, consisting in calculating the surface temperature distribution 

caused by a certain heat source distribution, and analyse it with the aim of observing how 

the different geometries of the heat sources affect the surface temperature distribution.  

In the following, the direct problem is stated and solved. Then, the solution is analysed in 

depth for homogeneous rectangular heat sources, by performing variations in all the 

geometrical parameters that come to play such as width, height and the depth at which the 

heat source is buried beneath the sample surface, so that the results can be extrapolated to 

other geometries. The amplitude and phase dependence with modulation frequency is also 

addressed and, finally, other geometries, namely, semicircles and triangles, are considered 

in order to analyse the ability of vibrothermography to distinguish between the particular 

features of the geometries. 

3.1 Statement and solution of the direct problem 

The direct problem consists in calculating the surface temperature distribution 

corresponding to inner heat sources covering a certain area Ω modulated at a frequency 

flock-in, contained in plane Π (x = 0), perpendicular to the sample surface. These heat sources 

represent a vertical kissing crack excited by amplitude modulated ultrasounds at flock-in in 

vibrothermography experiments. The sample has a thickness e and it is infinite in x and y 

directions. Figure 3.1 shows the geometry of the problem. 
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Figure 3.1. (a) Geometry of the problem: an inner heat source of area Ω and arbitrary shape contained in 
plane Π (x = 0), perpendicular to the measuring surface (z = 0), (b) rectangular heat source, (c) semi-
circular heat source with the circular side upward and (d) downward, (e) triangular heat source with the 
apex on the middle upward and (f) downward. 

As mentioned in section 2.1, lock-in thermography is based on the measurement of the 

oscillating component (AC) of the surface temperature distribution, governed by the 

Helmholtz equation with heat source term (equation (2.15)).  

Thus, we start considering the Helmholtz equation for a point-like modulated heat source in 

an infinite medium located at r’ (x’, y’, z’), whose intensity is modulated at frequency flock-in 

(ω = 2π flock-in) 

  

2 2 ( - )
( ) ( )AC AC

P
T q T

K

δ∇ − = − r' r
r r  (3.2) 

where P is the maximum emitted power and 

2

2 1iω i
q

D µ

 +  = =   
. The solution to equation 

(3.2) is known as the normal solution of the Helmholtz equation, which gives the AC 

temperature at any point of the sample, r (x, y, z), and writes [130]  
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( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2
' ' '

2 2 2

e
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q
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q x x y y z z

P
T T x y z

K

P x y z

K x x y y z z

π

π
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= =
−

=
− + − + −

r r'r'
r

r r'

 

(3.3) 

where the square root represents the distance between heat source and the position where 

the temperature is calculated. Equation (3.3) represents a highly damped spherical thermal 

wave.  

If we now consider the contributions of the point-like heat sources covering area Ω, 

contained in plane Π (x = 0), equation (3.3) writes 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 22 ' '

2 22

e
, , '

8

e
                                 

0, ', '

'
 ' '

8 '

AC

x y y z

q

AC

zq

Q
T x y z dS

K

Q
d

T

y z

x y

y dz
K y z z

π

π

− −

+ − + −

Ω

−

Ω

=
−

+ − + −

=

=

∫∫

∫∫

r r'r'
r

r r'

 

(3.4) 

where Q is the maximum flux (power density) emitted over area Ω.  

In order to account for the thickness of the sample, we apply the images method assuming 

adiabatic conditions. With this method, the effect of the surface boundaries is equivalent to 

having successive reflected images of the heat source at the sample surfaces. In this way, 

the position-dependent part of the AC temperature is now given by 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 22

' '' '''...

' '

' '

2 2
' '''. .

2
.

e
, , '

8

e
                                  

0, ',
'

'
'

'8

'

q

AC

q

AC

x y y z z

Q
T x y z dS

K
T

y z

x y y z

Q
dy dz

zK

π

π

−

Ω+Ω +Ω +Ω

−

Ω+Ω +Ω +Ω

−

+ − + −

=
−

+ − + −

=

=

∫∫

∫∫

r r'r'
r

r r'

 

(3.5) 

where Ω’ is the reflection of Ω at the front surface of the sample, Ω’’ is the reflection of Ω 

at the rear surface of the sample, Ω’’’ is the reflection of Ω twice, first at the front surface 

and then at the rear surface, and so forth. 
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In the experiments performed in this thesis using samples with calibrated heat sources, the 

sample is made of AISI 304 stainless steel (D = 4 mm2s-1 and K = 15 Wm-1K-1), its 

thickness is e = 15 mm and the minimum modulation frequency is 0.05 Hz. Under these 

conditions, we have checked that the rear surface (z = -e) does not affect the temperature 

distribution at the front surface (z = 0), where data are taken. Since thermal diffusion length 

diminishes with increasing modulation frequency, this check at the lowest modulation 

frequency implies making sure that the sample can be considered semi-infinite, so only Ω 

and Ω’ are considered. 

Accordingly, as we are only interested in calculating the temperature at the sample surface 

because of being the only information that is experimentally accessible, the result for 

( )0AC zT =r  is just the first term of equation (3.5), multiplied by 2 

( ) ( ) ( )

( ) ( )

( )

22 2' '

2

0
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e
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e
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y z

Q
T x y dS

K

Q
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K x y y z

π

π

−

Ω

− + −

−

=

+

Ω
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=
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−∫∫
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r r'r'
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r r'

 

(3.6) 

Equation (3.6) is the general form of the solution of the direct problem considered in this 

thesis, and it represents the complex position-dependent part of the AC temperature at any 

point of the surface of a semi-infinite sample, generated by inner vertical modulated heat 

sources of area Ω, contained in plane Π, perpendicular to the sample surface.  

Note that this solution is valid either for homogeneous, i.e., with uniform Q over area Ω, or 

inhomogeneous heat sources of any shape Ω, which will both be considered further on.  

We next analyse the influence of the geometrical parameters of the heat source on the 

solution, for homogeneous rectangular heat sources. This analysis is carried out by 

performing simulations in order to give an idea of the impact of varying geometrical 

parameters such as height, weight and depth of the heat sources, on the surface temperature 

distribution. 
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3.2 Rectangular heat sources: analysis of the influence of 

geometrical parameters 

In this section we present simulations that consist in computing the phase, Ψ, and the 

natural logarithm of the amplitude, Ln(|T|), of the surface temperature distribution, 

generated by homogeneous rectangular heat sources, at various modulation frequencies. 

All the simulations are performed for AISI 304 stainless steel. We show the results at two 

modulation frequencies, flock-in = 0.05 Hz and 6.4 Hz, representative of the ends of the 

typical modulation frequency range in our vibrothermography experiments, performed in 

the lock-in regime.   

For the sake of simplicity, instead of comparing amplitude and phase surface maps we 

compare two key profiles: x-profile, perpendicular to the heat source along OX axis, and y-

profile, parallel to the heat source along OY axis (see Figure 3.1 (a)). In order to allow for 

an easier comparison between different profiles, all surface temperature amplitudes have 

been normalized to their value at position (0, 0, 0), and they have been shifted along the 

vertical axis to better distinguish between amplitudes and phases. It is worth mentioning 

that the representation range of both x- and y-profiles depends on the thermal diffusion 

length corresponding to the modulation frequency in each case. 

For the particular case of a homogeneous rectangular heat source of height h and width w 

submerged at depth d, as depicted in Figure 3.1(b), equation (3.6) can be written as  

( )
( )

( )

22 2/2 ' '

_
22 2

/2 ( )

e
, ,0 ' '

4 ' '

w d q x y y z

AC r

w d h

Q
T x y dy dz

K x y y zπ

− − + − +

− − +

=
+ − +

∫ ∫  (3.7) 

Below, the effect of varying the size parameters (w and h) on the surface temperature 

distribution given by equation (3.7) is analysed. To do so, we have taken a standard square 

of 1 mm in side (h = w = 1 mm) reaching the sample surface (d = 0) and checked the 

influence of variations of 50% and 200% in these parameters. Similarly, as for the 

influence of the depth, we have buried the standard square at increasing depths: |d| = 0, 

0.25, 0.5 and 1 mm. Finally, the influence of varying the size parameters is checked for the 

heat sources being buried at a depth |d| = 0.5 mm. 
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In addition, the frequency dependence of both maximum surface temperature amplitude 

and phase is checked for the standard square buried at increasing depths, namely, |d| = 0, 

0.5 and 1 mm. 

3.2.1 Effect of modifying the width 

Figure 3.2 shows the effect of modifying the width (w = 0.5, 1 and 2 mm) of a h = 1 mm 

tall heat source reaching the sample surface (d = 0) on the surface temperature.  

Both x- and y-profiles are sensitive to width variations, but changes are logically most 

significant in y-profiles since the defect is located parallel to the y-axis. In y-profiles, the 

width of the flat centre in both amplitude and phase follows the width of the defect, 

whereas in x-profiles, width differences affect the slope of the branches of amplitude and 

phase. 

Differences are bigger at 6.4 Hz than at 0.05 Hz, because high frequencies carry more 

detailed information regarding the shape of the heat sources, which gets diffuse at low 

frequencies.  
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Figure 3.2. Calculated Ln(|T|) and Ψ of the surface temperature along (a) x- and (b) y-profiles, for heat 
sources reaching the surface (d = 0), all with the same height h = 1 mm and three different widths: w = 0.5 
(red), 1 (black) and 2 mm (blue). Results at two modulation frequencies are shown: flock-in = 0.05 Hz (left) 
and 6.4 Hz (right). 

3.2.2 Effect of modifying the height 

Figure 3.3 shows the effect on the surface temperature of modifying the height (h = 0.5, 1 

and 2 mm) of a w = 1 mm wide heat source reaching the sample surface (d = 0). As can be 

observed, the taller the defect, the wider both x- and y-profiles. Differences are more 

significant in amplitude than in phase.  

As for the amplitude, differences in the height of the heat source are better distinguished at 

0.05 Hz than at 6.4 Hz. The reason for this is that at high frequencies, due to the damped 

character of thermal waves, the additional effect of heat sources located at increasingly 

deeper positions barely affects the surface temperature distribution. Thus, at low 

frequencies, which provide larger thermal diffusion lengths, the effect of having taller heat 

sources is better appreciated in both x- and y-profiles. 
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Figure 3.3. Calculated Ln(|T|) and Ψ of the surface temperature along (a) x- and (b) y-profiles, for heat 
sources reaching the surface (d = 0), all with the same width w = 1 mm and three different heights: h = 0.5 
(red), 1 (black) and 2 mm (blue). Results at two modulation frequencies are shown: flock-in = 0.05 Hz (left) 
and 6.4 Hz (right). 
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3.2.3 Effect of modifying the depth 

The effect of burying the standard square (h = w = 1 mm) at increasing depths (|d| = 0, 

0.25, 0.5 and 1 mm) is shown in Figure 3.4, where it can be checked that deeper heat 

sources give rise to round instead of sharp profiles close to the centre. Absolute phase 

differences with depth are significantly larger at high modulation frequencies. However, at 

large distances, all phase values converge. 

Differences with depth are better distinguished at 6.4 Hz than at 0.05 Hz, contrary to what 

happens if we increase the height (section 3.2.2). The reason for this is that we are not 

adding heat sources located at increasingly deeper positions to an initial heat source 

distribution anymore but we are calculating the surface temperature distribution 

corresponding to different inner heat sources, and as high frequencies provide a higher 

spatial resolution, differences in surface temperature with the depth are more pronounced at 

high frequencies. 
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Figure 3.4. Calculated Ln(|T|) and Ψ of the surface temperature along (a) x- and (b) y-profiles, for a square 
heat source of w = h = 1 mm, located at increasing depths: |d| = 0 (black), 0.25 (red), 0.5 (blue) and 1 mm 
(green). Results at two modulation frequencies are shown: flock-in = 0.05 Hz (left) and 6.4 Hz (right). 

It must be mentioned, though, that increasing the depth of a heat source of a certain size 

provokes a signal reduction, which is not apparent in Figure 3.4 because the amplitudes are 

normalized. 

3.2.4 Effect of modifying the size parameters for buried heat 

sources 

Once we have looked at the influence of modifying both the width and the height of a 

surface breaking square heat source, we now want to see how the observed effects are 

modified in the case that the square heat source is buried deeper beneath the surface.  

In Figure 3.5 we modify the width (w = 0.5, 1 and 2 mm) and the height (h = 0.5, 1 and 2 

mm) of a h = 1 mm tall and w = 1 mm wide heat source buried at a depth |d| = 0.5 mm, 

respectively. For the sake of simplicity, we show the results at an intermediate modulation 

frequency flock-in = 0.8 Hz, for both x- and y-profiles. 
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Figure 3.5. Calculated Ln(|T|) and Ψ of the surface temperature along x- (left) and y-profiles (right), for a 
heat source buried a depth |d| = 0.5 mm: (a) all with the same height h = 1 mm and three different widths, 
w = 0.5 (red), 1 (black) and 2 mm (blue) and (b) all with the same width w = 1 mm and three different 
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heights, h = 0.5 (red), 1 (black) and 2 mm (blue). All results are shown at the intermediate modulation 
frequency flock-in = 0.8 Hz. 

The results show the same features as in Figure 3.2 and Figure 3.3, but the profiles are 

closer to each other, meaning that the deeper the heat source, the more difficult it is to 

distinguish between different sizes. This evidences the ill-posed nature of the problem, 

since heat sources of different geometries can give rise to very similar temperature 

distributions. If, besides this, even a very small amount of noise is added, the surface 

temperature distribution corresponding to two heat sources could be undistinguishable, 

making the inverse problem of retrieving them very difficult to solve. 

It is worth recalling that since all the surface temperatures shown in the analysis carried out 

above have been normalized, i.e., the maximum temperature in each case has been brought 

to 1 in order to make the direct comparison of the profiles possible, the decay of the signal 

with increasing depth is hidden, as well as the rise of the signal with increasing area of the 

heat source. 

3.2.5 Amplitude and phase dependence with frequency 

Finally, we represent the maximum values of both the phase, Ψ, and the amplitude, |T|, of 

the temperature distribution as a function of flock-in, in order to illustrate how they decrease 

with increasing modulation frequency.  

In Figure 3.6 we compare the maximum values of |T| (a) and Ψ (b) of the surface 

temperature distribution corresponding to a square heat source (w = h = 1 mm) buried at 

increasing depths, namely, |d| = 0.1, 0.5 and 1 mm, and emitting with a uniform flux Q = 1 

Wm-2. For a homogeneous square heat source, these maximum values logically correspond 

to the origin of the coordinates (0, 0, 0), just on top of the centre of the square. 
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Figure 3.6. Maximum (a) |T| and (b) Ψ of the surface temperature as a function of flock-in, for a square heat 
source of width w = 1 mm and height h = 1 mm, located at increasing depths: |d| = 0.1 (black), 0.5 (blue) 
and 1 mm (red), emitting with a homogeneous flux Q = 1 Wm-2. 

As for the amplitudes, the signal decay can be checked when the heat source is buried 

gradually deeper. In all cases, both |T| and Ψ decrease with increasing flock-in. 

3.3 Other geometries 

After the analysis of the solution of the direct problem performed with homogeneous 

rectangular heat sources, we now consider other geometries, in order to see if 

vibrothermography is able to distinguish between the different particular geometries of the 

heat sources. Two geometries different from rectangles are chosen, namely, semicircles and 

triangles, as representative of heat sources having smooth contours and sharp features, 

respectively.  

To this purpose, we particularize the general form of the solution of the direct problem and 

we compare the surface temperature distributions calculated for these geometries with 

those for rectangular heat sources of similar dimensions. In this way, we can see how 

sensitive the solution of the direct problem is as for the particular geometries of the heat 

sources. 
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3.3.1 Semicircular heat sources 

Considering a homogeneous semicircular heat source of radius R in plane Π (x = 0) 

submerged at a depth d (measured at the shallowest side of the semicircle), we consider 

two possible configurations, with the circular side upward and with the circular side 

downward, as depicted in Figure 3.1 (c) and (d), respectively. From now on, these two 

configurations for semicircular heat sources will be referred to as sUp and sDown, 

respectively. 

For sUp, the position-dependent AC part of the surface temperature distribution can be 

written as  

( )
( ) ( )

( ) ( )

2 222 'cos ' 'sin '

_
2 22

0

e
, ,0 ' ' '

4 'cos ' 'sin '

R q x y r R d r
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T x y rdr d

K x y r R d r

π ϕ ϕ

π

ϕ
π ϕ ϕ

− + − + + +

=
+ − + + +

∫ ∫  (3.8) 

while in the case of sDown, equation (3.6) reduces to 

( )
( ) ( )

( ) ( )
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_
2 22

0 0

e
, ,0 ' ' '
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R q x y r d r
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Q
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π ϕ ϕ

ϕ
π ϕ ϕ

− + − + +
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+ − + +

∫∫  (3.9) 

As mentioned above, we now wish to compare the surface temperature along both the x- 

and y-profiles for a semicircular heat source of radius R = 1 mm and a rectangular heat 

source of width w = 2R and height h = R, both reaching the sample surface (d = 0). 

Calculations are performed at an intermediate frequency flock-in = 0.8 Hz.  

Figure 3.7 (a) shows the comparison when the circular side of the semicircle is upward: 

although the different features of the upper part of the heat sources provoke little 

differences in x-profiles, differences in y-profiles allow us to clearly distinguish between 

the two shapes. However, when the circular side of the semicircle is downward (see Figure 

3.7 (b)), the buried structure of the heat sources is barely distinguishable, as the signal is 

dominated by the shallowest contributions. 
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Figure 3.7. Calculated Ln(|T|) and Ψ of the surface temperature along x- (left) and y-profiles (right), for a 
rectangular heat source of width w = 2 mm and height h = 1 mm (black) and a semicircular heat source of 
radius R = 1 mm (red) with the circular side of the semicircle (a) upward and (b) downward, both reaching 
the sample surface (d = 0). Results are shown at an intermediate modulation frequency flock-in = 0.8 Hz. 
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3.3.2 Triangular heat sources 

As mentioned in the introduction of this section, we want to check the ability of 

vibrothermography to distinguish between different shapes of heat sources of similar 

dimensions, this time having sharp features like corners. 

We now consider a triangular homogeneous heat source of height h and width w in plane Π 

(x = 0) buried at a depth d (measured at the shallowest side of the triangle) and we also 

consider two possible configurations, with the apex on the middle upward and with the 

apex on the middle downward, as depicted in Figure 3.1 (e) and (f), respectively. Similarly 

as with semicircles, the two configurations for triangular heat sources will be referred to as 

tUp and tDown respectively, from now on. 

For tUp, equation (3.6) can be particularized as 

( )
( )

( )

22 2( ' ) /(2 ) ' '

_
22 2

( )  ( ' ) /(2 )

,
e

' '
4 ' '

,0

z d w hd q x y y z
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h d z d w h

Q
T dy dz

K x y y

x y

zπ

− +− − + − +

− + + + − +
= ∫ ∫  (3.10) 

while in the case of tDown, equation (3.6) can be written as 
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Figure 3.8 (a) compares the surface temperature along the x- and y-profiles for a triangular 

heat source of width w = 1 mm and height h = 1 mm with the apex on the middle being 

upward and for a square heat source (w = h = 1 mm), both reaching the sample surface (d = 

0). Figure 3.8 (b) shows the same but with the apex on the middle of the triangle being 

downward. Calculations are performed at fLock-in = 0.8 Hz.  
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Figure 3.8. Calculated Ln(|T|) and Ψ of the surface temperature along x- (left) and y-profiles (right), for a 
square heat source of width w = 1 mm and height h = 1 mm (black) and a triangular heat source of w = 1 = 
h = 1 mm (red) with the apex on the middle (a) upward and (b) downward, both reaching the sample 
surface (d = 0). Results are shown at an intermediate modulation frequency flock-in = 0.8 Hz. 
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The conclusions of these simulations are similar to those obtained from the comparison 

between rectangles and semicircles, meaning that when the apex on the middle is upward, 

we can easily distinguish between the two shapes because of differences in y-profiles 

mainly, whereas when the apex on the middle is downward, the buried structure of the heat 

sources is harder to distinguish, but easier than in the case of semicircles. The reason for 

this is that the lack of heat sources on the upper side of the geometries is more abrupt in 

triangles than in semicircles, with respect to rectangular heat sources. 

All the previous results indicate that the dimensions and location of the heat sources affect 

different aspects of the corresponding surface temperature distribution: depending on the 

parameter considered, high or low frequencies may be more sensitive, amplitude or phase 

may display more information and examining the temperature distribution closer or further 

away from the heat source may better reveal certain details.  

Therefore, in order to characterize a certain heat source distribution, full amplitude and 

phase surface temperature maps need to be recorded, in the widest possible modulation 

frequency range, in order to gather as much information as possible. 

This considered, in the vibrothermography experiments performed in this thesis, we will 

take data at nine modulation frequencies ranging from 0.05 to 12.8 Hz, which correspond 

to thermal diffusion lengths between 5 and 0.3 mm, respectively, in AISI 304 stainless steel 

(see Table 3.1).  

Table 3.1. Modulation frequencies at which surface temperature data will be taken in vibrothermography 
experiments along with their corresponding thermal diffusion lengths, for AISI 304. 

 

flock-in (Hz) 0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 

µ (mm) 5.04 3.56 2.52 1.78 1.25 0.89 0.63 0.44 0.31 

 

We have chosen 0.05 Hz as our lowest modulation frequency because, as explained in the 

statement of the direct problem, the rear surface of the sample does not affect the 

temperature distribution at the measuring surface. At lower flock-in, such as 0.025 Hz, 

surface temperature data recorded in vibrothermography experiments using our AISI 304 

samples may be affected by the rear surface of the sample, which would make it necessary 

to consider in our model reflected images of the heat sources at the rear surface of the 

sample.  
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As for the upper limit of our set of modulation frequencies, 12.8 Hz has been chosen 

because it provides enough spatial resolution considering the size of the heat sources in our 

experiments, i.e., a thermal diffusion length of 0.3 mm provides detailed enough 

information in order to retrieve shallow heat sources of a similar size as the defined 

standard square (w = h = 1 mm). 
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4 Experimental setup and verification of the 

direct problem 

 

This section describes the construction of samples containing inner calibrated heat sources, 

as well as the experimental equipment needed in order to perform vibrothermography 

experiments in the lock-in regime. After analysing experimental data and dealing with the 

frequency response of the equipment, the optimum experimental procedure for data 

acquisition is described, as well as the post-processing of the data.  

 

 

With the aim of verifying the predictions of the theoretical simulations of the direct 

problem presented in section 3, we perform vibrothermography experiments using samples 

with calibrated inner heat sources. 

Below, the experimental setup in our vibrothermography experiments is described, 

focusing on the construction of metallic samples with calibrated inner heat sources, as well 

as on the equipment needed for the performance of the experiments in the lock-in regime. 

Experimental data are then shown and analysed. Since lock-in thermography is based on 

measuring the oscillating part of the surface temperature of the sample, we deal with the 

fact that data are affected by the transient temperature rise of the sample, proposing three 

different methods to remove it and reaching to conclusions regarding the optimum 

experimental conditions for our vibrothermography experiments.  

Finally, the issue that the experimental equipment has a non-flat response with frequency 

that overlaps the frequency dependence of our signal is also addressed, and the data post-

processing in order to remove it is described.  
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4.1 Experimental setup 

4.1.1 Construction of samples with calibrated inner heat 

sources 

In order to prepare metallic samples containing calibrated heat sources, we designed two 

AISI 304 stainless steel parts with a common flat surface, that can be joined and pressed 

together by means of two screws. The common flat surface is well rectified in both halves, 

and it is where a thin Cu foil (38 µm thick) is placed, representing a vertical homogeneous 

defect. The use of other materials in order to produce an inhomogeneous heat generation in 

vibrothermography experiments will be addressed further in the study. 

Figure 4.1 shows the features of the sample and the Cu foils placed in the common surface 

of the two halves. 

 

Figure 4.1. Diagram of the AISI 304 stainless steel sample (a) open with a calibrated heat source on the 
common surface between the two halves and (b) closed with dimensions (in mm).  

When the ultrasounds are launched into the sample, friction takes place between the Cu foil 

and the steel surfaces and, in order to guarantee that the surface temperature that will be 

recorded only corresponds to friction at the location of the Cu foil and not to friction 

between the steel planes somewhere else on the common surface, two additional Cu foils 
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are placed at the back side, near the rear surface and far enough from the measuring surface 

so that the thermal waves generated there do not affect the data.  

The dimensions of the Cu foil representing the defect and its location on the common 

surface with respect to the surface where data are taken, which is perpendicular to it, are 

measured by means of an optical stereoscope. In order to enhance the emissivity of the 

sample surface, black paint is applied on it with the two halves joined with the screws, 

without the Cu films.  

It is worth mentioning that an important point when attaching the two halves of the sample 

is to tighten the two screws with a similar torque, so as to guarantee that the whole area of 

the Cu foil will rub homogeneously during the experiment. As mentioned in section 1.2.3 

when explaining the mechanisms of heat generation, heat production at a real defect can be 

modified depending on the opening and closure stresses [73]. In the case of our samples 

with calibrated heat sources, care has to be taken not to over-tighten the screws, since it can 

reduce the relative motion between the Cu foil representing the defect and the steel planes, 

provoking a signal decay of even its complete disappearance. Similarly, if the two halves 

are attached too loosely, no friction between the Cu foil and the steel planes takes place 

either and the foil risks losing its position in the sample. 

4.1.2 Experimental equipment 

The experimental equipment typically used in vibrothermography experiments has been 

detailed in section 1.2.1, paying special attention to the two main elements: the ultrasound 

system and the IR camera.  

In our vibrothermography experiments, the needed equipment elements are the following: 

an ultrasound system, two function generators, an IR camera and a PC with the specific IR 

imaging software for image acquisition and control of the lock-in process. Figure 4.2 

shows all these elements. 
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Figure 4.2. (a) Elements of the experimental equipment in our vibrothermography experiments and (b) 
detail of the sample being held in a vertical position by the sonotrode, with a coupling Al film in between. 

Ultrasound excitation is performed with the UTvis equipment from Edevis. The US 

converter turns the high frequency electrical oscillations created by the ultrasound 

generator into mechanical oscillations. The sonotrode launches the ultrasounds into the 

sample, at the same time as it holds it in a vertical position.  

The basis of our sample stands on a Teflon base in such a way that only one of the halves is 

fixed between the base and the sonotrode, so that the other half can vibrate freely. Also, a 

thin adhesive Al film is placed between the steel sample and the titanium sonotrode, as 

mechanical coupling material.  

The ultrasound generator provides ultrasound frequencies ranging between 15 and 25 kHz, 

with a maximum power of 2 kW at 20 kHz. Excitation can be performed either at a fixed 

ultrasound frequency or modulating the ultrasound frequency within the range mentioned. 

For the experiments in the lock-in regime, monofrequent ultrasounds are amplitude 

modulated at flock-in. The optimum ultrasound frequency is previously determined so as to 

get the maximum heat generation at the location of the Cu foil. In order to know the 

resonant frequency of the sample, we first perform frequency sweeps (with the Cu foils 
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inside) at constant ultrasound amplitude. The ultrasound frequency is controlled by means 

of a function generator, by applying voltages that range from 0 to 10 V, corresponding to 

15 and 25 kHz, respectively. Similarly, the ultrasound amplitude for the frequency sweeps 

is chosen by means of a second function generator, by applying a constant voltage that can 

range from 0 to 400 mV. The frequency sweeps are performed slowly enough to appreciate 

temperature variations accurately: the transition between 15 and 25 kHz is performed 

within 20 s.  

Provided that the structural resonances depend on both the sample geometry and the 

location of the exciter on the sample, in the case of performing experiments with different 

samples, either containing calibrated or real defects, a new frequency sweep is required for 

each sample and configuration. All the experiments with calibrated heat sources shown in 

this thesis are carried out using the same AISI 304 stainless steel sample previously 

described. Figure 4.3 shows a frequency sweep using this sample, where a main peak on 

the surface temperature on top of the Cu foil as a function of the ultrasound frequency can 

be clearly seen, indicating that the optimum ultrasound frequency is around 22,900 Hz.  
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Figure 4.3. Temperature on top of a heat source during a frequency sweep using the AISI 304 sample. 

Once the optimum ultrasound frequency so as to activate the defect is set, amplitude 

modulation of the ultrasound excitation is performed for the vibrothermography 

experiments: we modulate the ultrasound amplitude at the nine flock-in defined in Table 3.1 

by means of a function generator. The amplitude of the modulation may be increased or 
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decreased: since the signal weakens with increasing modulation frequency, it is interesting 

to have the opportunity to increase the ultrasound power at high modulation frequencies in 

order to partially compensate for this signal reduction.  

Moreover, at this point it is worth mentioning that we have considered two regimes of 

modulation amplitude, that can be understood as ultrasound electrical power and to which 

we will refer as high US power and low US power, from now on. Experiments using high 

US power have been performed with the intention of maximizing the vibrothermographic 

signal, especially when the Cu foil is very small or it is buried very deep, with values 

around 250-300 W. On the contrary, low US power, with values around 25-40 mW, has 

been used with the aim of preventing the experiments from being performed in transient 

state, i.e., when the DC part of the temperature of the sample is still rising due to the energy 

deposition, as well as to keep the non-destructive nature of vibrothermography. This issue 

will be addressed more in detail in section 4.2. Anyway, it is worth clarifying that despite 

calling it high US power (in order to distinguishing it from low US power), it is actually 

low in comparison with the power typically applied in the burst regime. 

The thermal radiation emitted from the sample surface is captured using a JADE J550M 

infrared camera, from Cedip, that features a cooled 320 x 240 px (full frame) InSb focal 

plane array detector, which is sensitive in the wavelength range of 3.6 to 5 µm. The camera 

has a noise equivalent temperature difference (NETD) of 25 mK, measured at 25 ºC and 

over a detector integration time of 1600 µs, according to the manufacturer. Each pixel 

averages the temperature of a 137 µm square on the sample at the minimum working 

distance, which is about 25 cm. The maximum frame rate at full frame is 148 Hz, but it can 

be increased by working at the subwindowing modes, that consist in reducing the picture 

size so that the frame rate may be increased. This way, the frame rate can be increased up 

to 336 Hz by working at half frame (160 x 120 px), up to 446 Hz at quarter frame (64 x 120 

px) or even up to 605 Hz by setting the custom size (64 x 8 px). 

In experiments using low US power, we mostly work at half frame and capture images at a 

fixed frame rate of 320 Hz, taking a certain number of frames per modulation period that 

range from 6,400 (at 0.05 Hz) to 25 (at 12.8 Hz). We average the signal over 32,000 

images regardless of the modulation frequency, which implies exciting the sample during a 

certain number of periods that range from 5 (at 0.05 Hz) to 1,280 (at 12.8 Hz).  

Data acquisition is done using Altair and Altair LI infrared imaging software from FLIR for 

live registration and lock-in applications, respectively, which allow for complex capturing 

procedures such as externally triggering or using varying frame rates and record durations. 
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Also, the lock-in process can be carried out on-line on the live image sequence, as well as 

off-line on the recorded image sequence. Once the image capturing and the lock-in process 

at each flock-in are carried out, the surface amplitude and phase thermograms are displayed 

and saved. In next section, these experimental data are shown and analysed.  

4.2 Verification of the direct problem 

Experimental data refer to surface amplitude and phase thermograms at each one of the 

nine flock-in defined in our set of modulation frequencies, from vibrothermography 

experiments in the lock-in regime. Thus, experimental data consist of 18 images that can be 

easily handled as matrices for further treatment.  

Figure 4.4 shows experimental amplitude and phase thermograms in grey scale for a 

rectangular Cu foil of width w = 1.4 mm and height h = 2.3 mm buried at a depth |d| = 95 

µm, obtained in an experiment using high US power at flock-in = 0.1 (a), 0.8 (b) and 6.4 Hz 

(c), representing an intermediate modulation frequency and the ones close to the ends of 

our set of modulation frequencies.  

 

Figure 4.4. Amplitude (top) and phase (bottom) thermograms obtained at flock-in = 0.1 (a), 0.8 (b) and 6.4 
(c) Hz, for with a square heat source of width w = 1.4 mm and height h = 2.3 mm, buried at a depth |d| = 
95 µm, in an experiment using high US power. Grey scales are not comparable. 
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At first sight, it can be seen that both the amplitude and phase thermograms corresponding 

to 0.1 and 6.4 Hz have a clearly different appearance. Indeed, when analysing these 

thermograms obtained in an experiment using high US power, two different types of 

behaviour are observed depending on the modulation frequency, that become more obvious 

as we analyse the thermograms further away from the heat source. These results are better 

appreciated if we draw the x-profiles and compare them to the predictions of the theory 

(see Figure 4.5). 
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Figure 4.5. Ln(|T|) (a) and Ψ (b) of the surface temperature x-profiles obtained with a rectangular 
calibrated heat source of width w = 1.4 mm and height h = 2.3 mm, buried at a depth |d| = 95 µm, at flock-in 
= 6.4 Hz (left) and 0.1 Hz (right) in experiments using high US power. Blue dots stand for experimental 
raw data and solid lines are the predictions of the theory. 
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As can be observed, at 6.4 Hz both the amplitude and phase x-profiles match the 

predictions of the model: starting on top of the heat source, the signal decreases until the 

noise level is reached (down to -5.5 in Figure 4.5 (a)), whereas further away the amplitude 

is dominated by noise and, accordingly, the phase is random.  

At 0.1 Hz, however, neither the amplitude nor the phase x-profiles match the predictions of 

the theory: although they coincide on top of the heat source, they soon differ from the 

model and the noise level cannot be reached, even though the size of the thermogram 

allows for a far enough measurement to reach it. Instead, far away from the heat source 

there is a remaining amplitude and a rather stable phase, which points out the existence of a 

signal in regions where the thermal wave is already faded away. This effect is related to the 

fact that vibrothermography data are recorded in transient state, i.e., while the temperature 

of the sample is still increasing all over the sample volume.  

In order to give an idea of how the DC temperature of the sample rises in an experiment 

using high US power, Figure 4.6 (a) shows the evolution of the surface temperature as a 

function of time, both on top of the heat source (red line) and also far away from it along x-

profile (blue line), recorded at flock-in = 0.1 Hz. In Figure 4.6 (b), both the AC and the DC 

components of the surface temperature can be appreciated in detail. 
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Figure 4.6. (a) Evolution of the surface temperature as a function of time in an experiment using high US 
power (250 W), on top of the Cu foil (red line) and far away from it along x-profile (blue line) recorded at 
flock-in = 0.1 Hz and (b) detail of (a) in a shorter time interval, showing the AC and DC parts of the surface 
temperature. 
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It is worth noting that after 30 minutes, the sample has not reached the stationary state yet. 

The rising temperature of the sample has a certain Fourier content, which is more 

significant at low frequencies, as the temperature rise is slow. These Fourier components 

add up to the thermal signal generated at the heat source.  

According to this, the recorded experimental surface temperature, 
Ψ

e expi

exp expT T= , is 

actually the sum of the AC component due to the oscillating heat source, Ψe osc

osc os
i

cT T= , 

and the Fourier component due to the transient temperature rise all over the sample 

volume, Ψe transi
trans transT T=  

exp osc transT T T= +  (4.1) 

As mentioned above, thermograms taken at low modulation frequencies are more strongly 

affected by the transient temperature rise of the sample than those taken at high 

frequencies, which may even not be affected at all, as can be checked in Figure 4.5 (left). 

This additional signal needs to be removed from experimental data in order to obtain the 

pure oscillating contribution to the surface temperature, as described in the theoretical 

model. In the following sections we deal with this problem, proposing and analysing three 

methods for the elimination of the Fourier component in experimental data.  

4.2.1 Subtraction of the Fourier component 

This method for the elimination of the Fourier component consists in subtracting it from 

experimental data. To do so, we obtain the Fourier component of the transient temperature 

rise by evaluating the amplitude and phase signals far away from the heat source where the 

thermal wave is already damped in a certain profile, for instance, x-profile. Then, we 

subtract it from the experimental data all along the profile, obtaining the pure oscillating 

contribution to the surface temperature. With this method we are assuming that the Fourier 

component is the same all along the considered profile.  

Figure 4.7 illustrates this method for x- and y-profiles in an amplitude thermogram obtained 

at flock-in = 0.1 Hz. 
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Figure 4.7. Identification of the Fourier component due to the transient temperature rise of the sample all 
along (a) x- and (b) y-profiles in an amplitude thermogram obtained at flock-in = 0.1 Hz in an experiment 
using high US power. 

The subtraction of the Fourier component along a profile is carried out in the complex 

plane according to equation (4.1) 

( ) ( ) ( )Re Re Reexp ssc t no raT T T= −  (4.2) 

( ) ( ) ( )Im Im Imosc exp transT T T= −
 

(4.3) 

being, for all temperature components in equation (4.1) 

( )Re cosΨT T=  (4.4) 

( )Im sinΨT T=  (4.5) 

Once the real and imaginary parts of Tosc are known, we can go back to amplitude and 

phase using  

( ) ( )2 2
Re Imoscos scc oT T T= +  (4.6) 

( )
( )

1 Im
Ψ tan

Re
osc

osc

osc

T

T

−  
=   

 
 (4.7) 
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In order to correct whole thermograms, we follow this procedure for all the rows or 

horizontal profiles within a thermogram. The handicap of this method is that it relies on the 

assumption that the contribution of the transient component is uniform all along a certain 

profile, which is not rigorously true because the temperature rise provoked by the heat 

source, that acts as a continuous heat deposition on top of which modulation occurs, is a 

function of the distance to the heating region. But, despite this limitation, this method is 

fast and easy to implement and gives rather satisfactory results in terms of coincidence 

between experiments and simulations with slight discrepancies at low frequencies.  

We have performed experiments using high US power in steady state, i.e., when the 

temperature of the sample has reached equilibrium, and these data are very similar to those 

obtained after the subtraction of the Fourier component in transient measurements, 

confirming that the origin of the additional signal is the increasing temperature of the 

sample.  

Figure 4.8 compares phase thermograms at flock-in = 0.1 Hz obtained in experiments carried 

out in both transient (a) and stationary (b) states, using high US power. As can be checked, 

in the phase thermogram corresponding to steady state, stable phase values are found all 

around the heat source and, further away, where the amplitude gets dominated by noise, the 

phase becomes rather random, which is an indication of the absence of any remaining 

signal.  

 

Figure 4.8. Comparison of surface temperature phase thermograms obtained at flock-in = 0.1 Hz in 
experiments using high US power performed in transient (a) and stationary (b) state. 
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In order to prove that the subtraction of the Fourier component all along a certain profile 

corrects experimental data taken in transient state using high US power and makes them 

coincide with the predictions of the theory, Figure 4.9 shows the Ln(|T|) (a) and Ψ (b) of 

the surface temperature x-profile for a rectangular heat source of dimensions w = 1.87 mm 

and h = 2.77 mm, buried at a depth |d| = 117 µm. Data taken in transient state, both raw 

(blue dots) and corrected (red dots), are compared with data taken in steady state (green 

dots), at flock-in = 0.1 Hz. 
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Figure 4.9. Experimental Ln(|T|) (a) and Ψ (b) of the surface temperature x-profile obtained with a 
rectangular calibrated heat source of width w = 1.87 mm and height h = 2.77 mm, buried at a depth |d| = 
117 µm, at flock-in = 0.1 Hz. Blue dots stand for raw data taken in transient state, red dots correspond to 
processed data taken in transient state, green dots represent raw data taken in steady state and solid lines 
are the predictions of the theory. 

Performing the experiments in steady state could be a suitable method for the elimination 

of the Fourier component due to the transient temperature rise of the sample, but it is time 

consuming and, in addition, the equilibrium of the sample temperature may be found 

significantly above ambient temperature: typically between 10 and 30ºC above ambient 

temperature, taking about 45 minutes to reach the equilibrium at 0.8 Hz in experiments 

using high US power.  

Under these conditions, we have checked that our experiments are not completely non-

destructive, since we have observed fretting damage in the Cu foil representing the defect. 

Logically, this makes the results after vibrothermography experiments not repeatable, 
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which in turn reduces the reliability of the technique. As mentioned in the introduction, 

researchers have concluded that, in real cracks, the application of high vibrational stresses 

can alter the crack surface [70] leading to plastic deformation, fretting or melting, as well 

as provoke crack growing [3].  

Thus, mainly for time, reproducibility and reliability reasons, at this stage we decide that 

taking data in transient state and performing the post-processing described is more 

appropriate than taking data in steady state. Since the transient contribution affects low 

frequencies mainly, we only correct experimental data obtained at modulation frequencies 

flock-in ≤ 0.8 Hz, as for higher modulation frequencies raw data agree with the predictions of 

the theory. 

To illustrate this, Figure 4.10 shows Ln(|T|) (a) and Ψ (b) of the surface temperature x-

profile for a tUp of width w = 1.76 mm and height h = 1.72 mm, buried at a depth |d| = 420 

µm, obtained at flock-in = 0.1 Hz (processed data, in red) and 6.4 Hz (raw data, in blue), in 

experiments using high US power. 
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Figure 4.10. Experimental Ln(|T|) (a) and Ψ (b) of the surface temperature x-profile obtained with a tUp 
of width w = 1.76 mm and height h = 1.72 mm, buried at a depth |d| = 420 µm, at flock-in = 6.4 Hz and 0.1 
Hz, in experiments using high US power. Dots represent experimental data: processed for 0.1 Hz (red) and 
raw for 6.4 Hz (blue). The solid lines are the predictions of the theory. 

As can be seen, both processed data at 0.1 Hz and raw data at 6.4 Hz are in agreement with 

the predictions of the theory very satisfactorily.  
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4.2.2 Temperature history fitting 

Another method to remove the transient component is to rewrite surface amplitude and 

phase thermograms in such a way that the DC temperature is not taken into account.  

Whereas in the previous section each row or horizontal profile needed to be processed 

independently in order to correct the whole thermograms, this method generates whole 

amplitude and phase thermograms discarding the contribution of the transient temperature 

rise in each pixel. In this sense, the main handicap of the previous method is overcome, 

which is the assumption of uniform contribution of the transient component all along a 

certain profile. 

This method is based on analysing the temperature history, ( )T f t= , of all the pixels that 

compose the temperature maps of the sample surface. The set of data points that compose 

the temperature history of each pixel is then fitted to a mathematical function that includes 

an oscillatory function, which fits the AC part of the temperature history, and a 3rd order 

polynomial function, in order to fit the transient temperature rise at each pixel during the 

experiment, as we have checked that the 3rd order polynomial fits the DC temperature rise 

well enough.  

Equation (4.8) expresses this mathematical function, in which the oscillatory function takes 

into account both the signal generated at the fundamental modulation frequency, flock-in, and 

the signal generated at twice the fundamental modulation frequency, with the aim of 

considering eventual excursions from perfect harmonicity 

( ) ( ) ( )
( ) ( )

1 - 1 -

3 2
2 - 2 - 3 2 1 0

S sin 2 C cos 2

               S sin 4 C cos 4 P P P P

exp lock in lock in

lock in lock in

t f t f t

f t f t t t t

T π π

π π

= + +

+ + + + +
 (4.8) 

Figure 4.11 (a) shows experimental data and fitting to equation (4.8) corresponding to a 

pixel located on top of the centre of the heat source and also at 1.15 and 2.30 mm from the 

centre of the heat source along x-profile, at 0.1 Hz, for a rectangular heat source of width w 

= 2.2 mm and height h = 0.88 mm, buried at a depth |d| = 150 µm, in an experiment using 

high US power. Similarly, Figure 4.11 (b) shows the resultant curve fitting for a pixel 

located on top of the centre of the heat source and also at 1.15 and 2.30 mm along y-profile, 

at 6.4 Hz, for the same heat source.  

As can be observed, although noise makes data at high modulation frequencies more 

challenging to fit, both the AC and DC components of the surface temperature are very 
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well fitted, regardless of the modulation frequency, distance and orientation with respect to 

the centre of the heat source.  
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Figure 4.11. Fitting of the surface temperature history of a pixel located (a) on top of the heat source and 
at 1.15 and 2.30 mm from it along x-profile at 0.1 Hz and (b) on top of the heat source and at 1.15 and 
2.30 mm from it along y-profile at 6.4 Hz. Red dots stand for experimental data corresponding to a 
rectangular heat source of width w = 2.2 mm and height h = 0.88 mm, buried at a depth |d| = 150 µm in an 
experiment using high US power and black lines represent the fitting to equation (4.8). 

After the curve fitting procedure, all the coefficients in equation (4.8) are determined for 

each pixel in the image, but only S1 and C1 account for the generation of the new amplitude 

|Texp| and phase Ψexp thermograms, according to the following expressions 

 2 2
1 1S CexpT = +  (4.9) 

 1 1

1

S
Ψ tan

C
exp

−  
=  

 
 (4.10) 

In this way, the transient temperature rise of the sample and the second harmonic 

contributions are discarded and the thermograms are only composed of the AC part of the 

surface temperature at the fundamental modulation frequency, flock-in. However, a problem 

that may arise when generating phase thermograms with this method is that equation (4.10) 

can take different values depending on the instant within a modulation period in which the 

lock-in process has started: what we want to measure is the phase lag with respect to the 
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excitation at the different modulation frequencies. For this reason, it is recommended to 

start data acquisition at zero phase of the reference (excitation) signal. In order to visualize 

the differences between the processed surface amplitude and phase thermograms with this 

method and the original experimental ones, Figure 4.12 shows the results for two square Cu 

foils of w1 = w2 = h1 = h2 = 1.2 mm, buried at a depth |d1| = |d2| = 120 µm and with a 

separation distance between centres of 1.2 mm, obtained at flock-in = 0.2 Hz. 

 

 

Figure 4.12. Original experimental (a) and processed by fitting of the temperature history of each pixel (b) 
Ln(|T|) (top) and Ψ (bottom) surface thermograms for two square Cu foils of w1 = w2 = h1 = h2 = 1.2 mm, 
buried at a depth |d1| = |d2| = 120 µm and with a separation distance between centres of 1.2 mm, at flock-in = 
0.2 Hz, in an experiment using high US power. 

It can be seen that processed amplitude and phase thermograms after the fitting of the 

temperature history of each pixel do not contain the contribution of the transient 

temperature rise: the phase becomes random where the thermal wave vanishes and the 

amplitude reaches the noise level.  

As for coincidence with the predictions of the theory, Figure 4.13 compares the surface 

temperature x- and y-profiles generated with this method and those corrected with the 

Fourier component subtraction method, for two rectangular Cu foils of width w1 = w2 = 0.9 
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mm and height h1 = h2 = 2 mm, buried at a depth |d1| = |d2| = 260 µm and with a separation 

distance between centres of 1 mm, at flock-in = 0.8 Hz. 
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Figure 4.13. Experimental Ln(|T|) (left) and Ψ (right) of the surface temperature x- (a) and y-profiles (b) 
for two rectangular Cu foils of width w1 = w2 = 0.9 mm and height h1 = h2 = 2 mm, buried at a depth |d1| = 
|d2| = 260 µm and with a separation distance between centres of 1 mm, obtained at flock-in = 0.8 Hz. Red 
dots correspond to processed data with the Fourier component subtraction method, purple dots represent 
data generated with the temperature history fitting method and solid lines are the predictions of the theory. 
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As can be seen, both data corrected with the Fourier component subtraction method and 

data generated with the temperature history fitting method are very similar along both x- 

and y-profiles, and agree with the predictions of the theory very well. 

Although the Fourier component is successfully eliminated, the main drawback of this 

procedure is that it does not take advantage of the key feature of the lock-in technique, 

which is to dig up periodic signals embedded in noise. Moreover, for the fitting of the 

temperature history of all pixels in an area of interest within the measuring surface, the 

whole surface temperature evolution at all modulation frequencies needs to be recorded and 

processed by computer, which is time consuming and demands a high computer capacity. 

Actually, the capacity of the computer may limit the number of temperature maps from 

which the temperature history of each pixel is analysed, in which case, reducing the 

sampling frequency may be preferable in order to ensure that a certain amount of complete 

periods are used for the temperature history fitting, especially at low modulation 

frequencies. 

For these reasons, we have decided not to use this method and take advantage of the lock-

in technique instead, as it allows analysing as many frames as needed with no further 

computing work.  

In next section we suggest an experimental procedure that minimizes the DC temperature 

rise so that no further post-processing of the data is needed. 

4.2.3 Low ultrasound electrical power excitation 

As mentioned in the previous section, the use of high US power in lock-in experiments 

induces a DC surface temperature rise of 10-30ºC, together with a temperature oscillation 

of several degrees in amplitude. These conditions allow having AC components with high 

amplitudes, i.e., good signal-to-noise ratios, but they also imply having a very long 

transient regime coinciding with data acquisition, which in turn introduces a distortion in 

both amplitude and phase thermograms at low modulation frequencies. This distortion 

needs to be removed by post-processing and, in addition, the Cu foil representing the 

vertical crack shows fretting damage under high ultrasound electrical power. 
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For this reason, at this point we decide to reduce the ultrasound power in order to perform 

the experiments in steady state, which is reached in a few minutes in experiments using low 

US power. Moreover, the Cu foils remain unaltered, which makes the experiments more 

repeatable and reliable, but the price to be paid is a significant reduction of the amplitude 

of the oscillating component of the surface temperature. For instance, in experiments using 

low US power the amplitude of the oscillating component at an intermediate modulation 

frequency flock-in = 0.8 Hz is about 0.2 K.  

With this limitation, obtaining exploitable data requires reducing the noise level 

significantly and, in order to do that, we take advantage of the lock-in ability to reduce the 

noise by increasing the number of images analysed. As introduced in section 4.1.2, low US 

power refers to ultrasound electrical power values around 25-40 W. The fact that in real 

cracks friction damage has also been observed [3, 70] further supports the idea of using low 

US power. 

To illustrate this, we have compared three lock-in analyses performed with a different 

number of images in experiments using low US power: 4,000, 41,000 and 200,000. This 

comparison is made at flock-in = 12.8 Hz, the highest modulation frequency in our 

experiments, because as the signal-to-noise ratio is the lowest, the influence of the number 

of images on the averaged amplitude noise level may be better noticed.  

In Figure 4.14 we show a side view of Ln(|T|) along y-axis, corresponding to two 

rectangular heat sources of width w1 = w2 = 0.8 mm and height h1 = h2 = 2 mm, with a 

separation distance between centres of 2.2 mm and buried at a depth |d1| = |d2| = 0.25 mm. 

We also mark the theoretical natural logarithm of the average noise level in amplitude, 

Ln noiseT , with a red line in each case, according to equation (1.1). 

The improvement of the signal-to-noise ratio when increasing the number of images is 

dramatic. As can be checked, increasing the number of analysed images from 4,000 to 

200,000 allows digging up the signal from noise up to a radius of 2.5 mm with respect to 

the centre of the thermogram (y = 0), experimentally demonstrating that the larger the 

number of collected and analysed frames in the lock-in process, the larger the area of 

exploitable information. It is worth mentioning that, in the case of Figure 4.14 (c), data are 

clipped due to an insufficient number of decimals during the temperature measurements. 
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Figure 4.14. Comparison between the noise level of experimental data and the theoretical average noise 
level in amplitude (red line) for three different number of images analysed in experiments using low US 
power: (a) 4,000, with Ln noiseT = -7.14, (b) 41,000, with Ln noiseT = -7.83 and (c) 200,000, with 

Ln noiseT = -9.09. Data are shown at a modulation frequency flock-in = 12.8 Hz and correspond to two 

rectangles of width w1 = w2 = 0.8 mm and height h1 = h2 = 2 mm, with a separation distance between 
centres of 2.2 mm and buried at a depth |d1| = |d2| = 0.25 mm. 

Figure 4.15 compares surface temperature x-profiles of raw data taken using low US power 

and data taken using high US power and corrected by the Fourier component subtraction 

method, corresponding to two square Cu foils of width w1 = w2 = 1.2 mm and height h1 = 
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h2 = 1.2 mm, buried at a depth |d1| = |d2| = 120 µm and with a separation distance between 

centres of 1.15 mm, obtained at flock-in = 0.8 Hz.   
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Figure 4.15. Experimental Ln(|T|) (a) and Ψ (b) of the surface temperature x-profile for two square Cu 
foils of width w1 = w2 = 1.2 mm and height h1 = h2 = 1.2 mm, buried at a depth |d1| = |d2| = 120 µm and 
with a separation distance between centres of 1.15 mm, at flock-in = 0.8 Hz. Red dots correspond to data 
obtained in transient state using high US power and processed with the Fourier component subtraction 
method, green dots represent raw data obtained in steady state using low US power and solid lines are the 
predictions of the theory. 

As can be observed, both raw data taken in steady state using low US power and data taken 

in transient state using high US power and corrected with the Fourier component 

subtraction method fit the theoretical predictions, demonstrating that reducing the 

ultrasound electrical power allows obtaining exploitable data that are not affected by the 

transient DC temperature rise, as long as the noise level is reduced by analysing a larger 

number of images in the lock-in process enough to compensate for the signal reduction. 
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4.3 Frequency dependence of the equipment 

Although all experimental data shown up to now correspond to certain modulation 

frequencies representing either the ends of our set of modulation frequencies or an 

intermediate one, it is worth recalling that experimental data are taken at nine flock-in ranging 

from 0.05 to 12.8 Hz, as detailed in Table 3.1. 

A problem that arises in vibrothermography experiments performed at several modulation 

frequencies is that, for a given heat source, the surface temperature phases at the different 

modulation frequencies do not follow the predictions of the theory, such as those depicted 

in Figure 3.6. The reason for this problem is that the experimental equipment has a non-flat 

response with frequency, which overlaps the frequency dependence of signal.  

The frequency response of the equipment is a well-known issue in optically excited IR 

thermography, where several approaches have been used to overcome it: normalization of 

data of interest with data taken either on a reference sample [138] or on the same sample 

but with a different configuration (self-normalization) [139], and performing an 

independent evaluation of the frequency response of the equipment [140]. 

However, as far as we know, in vibrothermography experiments there is no way to perform 

normalization in order to remove the frequency dependence of the equipment and, for this 

reason, all the experimental phases along both x- and y-profiles presented so far have been 

shifted along the vertical axis, by the right amount in each case, in order to match the 

theoretical profiles. 

In this section we deal with the fact that the acquisition system introduces an error in 

vibrothermographic data by measuring it experimentally, with the aim of taking into 

account the measured mismatch in experimental phase thermograms. To do so, we have 

performed 6 identical experiments using a square Cu foil of w = h = 1 mm buried at a depth 

|d| = 230 µm, and we have compared the values of the surface temperature phase on top of 

the centre of the heat source (position (0, 0, 0) in Figure 3.1) with the theoretical phase 

prediction (equation (3.7)), at several modulation frequencies, namely, 0.05, 0.1, 0.2, 0.4, 

0.6, 0.8, 1.2, 1.6, 1.9, 3.2, 4.0, 4.8, 5.6, 6.4, 8.0, 9.6, 11.2 and 12.8 Hz. We have also made 

this comparison at a distance of 0.5 mm along both the x- and y-profiles with respect to the 

centre of the heat source.  

Figure 4.16 (a) shows the experimental values of the surface temperature phase on top of 

the centre of the heat source obtained in the six experiments as a function of the modulation 
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frequency (coloured dots), along with the theoretical values (black line). As can be seen, 

the phases follow a similar qualitative trend with modulation frequency in all the 

experiments, but they do not match the theoretical values: the decay of the experimental 

phases with modulation frequency is more pronounced than theoretically expected.  
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Figure 4.16. (a) Experimental (coloured dots) and theoretical (black line) values of the surface 
temperature phase on top of the centre of the heat source (0, 0, 0) as a function of modulation frequency, 
obtained with a square Cu foil of w = h = 1 mm buried at a depth |d| = 230 µm, and (b) differences 
between experimental and theoretical values of the surface temperature phase on top of the centre of the 
heat source as well as at a distance of 0.5 mm along both x- and y-profiles with respect to it (coloured 
dots), along with the mean values (black dots) at each modulation frequency after removing the most 
discordant data points, and a 3rd order polynomial (solid line) fitting the mean values. 

As mentioned above, the phase shifts, i.e., the differences between experimental and 

theoretical phases at all modulation frequencies have been calculated also at a distance of 

0.5 mm along both x- and y-profiles with respect to the centre of the heat source, in order to 

evaluate the frequency dependence of the equipment with data obtained at different 

positions along the surface. Then we fit the mean values of such phase shifts to a 3rd order 

polynomial function, after removing the most discordant data points (see Figure 4.16 (b)).  

The experimental phase thermograms are corrected by adding the values obtained from the 

fitted curve to the whole thermograms, at each modulation frequency. In this way, the 

corrected phase thermograms take into account the shifts introduced by the acquisition 

system. All flock-in not included in our modulation frequency set have been considered in 

this section only for a more accurate curve fitting. 
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Taking into account the frequency dependence of the equipment and according to the 

decisions that we have made in previous sections in relation to the experimental conditions 

for data acquisition in our vibrothermography experiments, we can now determine that the 

optimum procedure to obtain experimental data is the following: performing the 

experiments using low US power, in steady state, acquiring a large number of images at all 

modulation frequencies and, at last, removing the measured phase shifts introduced by the 

acquisition system from whole surface phase thermograms. 

All in all, using low US power allows taking data that are not affected by the transient 

temperature rise of the sample and it prevents the Cu foils from being damaged due to 

fretting, making the experiments repeatable and more reliable. The steady state is reached 

within a few minutes and despite the reduction of the amplitude of the oscillating 

component of the surface temperature, good signal-to-noise ratios can be achieved by 

reducing the noise level, which in turn is achieved by taking advantage of the key feature 

of the lock-in technique by analysing a large number of images.  

Thus, the only needed post-processing of the data is the elimination of the phase shifts 

introduced by the equipment from whole phase thermograms, which is a very fast 

operation. It is worth mentioning that the inversion algorithm, which will be described in 

detail in next section, is able to absorb any frequency dependence of the surface 

temperature amplitudes. For this reason, surface temperature amplitudes have not been 

considered in this section. 
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5 The inverse problem 

 

This section addresses the inverse problem in this thesis, consisting in retrieving the heat 

source distribution giving rise to a certain surface temperature distribution and which is 

severely ill-posed. After analysing the ill-posedness of the inverse problem with SVD, 

regularization methods are proposed with the aim of implementing a robust inversion 

algorithm in order to characterize cracks from vibrothermography data. Finally, the 

inversion algorithm is described in detail. 

 

5.1 Statement of the inverse problem 

The ultimate goal of any NTD technique is the characterization of flaws. However, as 

mentioned before, the physical magnitude that can be retrieved from surface temperature 

data is the periodic heat flux responsible for it, rather than the crack geometry itself. 

Accordingly, the inverse problem consists in retrieving the heat source distribution giving 

rise to a certain surface temperature distribution. In order to tackle the inverse problem, it is 

worth recalling the solution of the direct problem, i.e., the calculation of the surface (z = 0) 

temperature distribution generated by a given heat source distribution covering an area Ω 

contained in plane Π (x = 0), modulated at frequency flock-in. As shown in section 3.1, the 

complex position-dependent part of the AC temperature at any point of the sample surface 

is given by 

         

( ) ( )
0

e
d '

4C z

q

A

Q
S

K
T

π
Ω

=

− −

=
−∫∫

r r'r'
r

r r'

         

 (5.1) 
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Note that in the direct problem, the geometry of the source, Ω, appears in the domain of 

integration. Since we use multi-frequency data so as to gather as much information as 

possible, we will refer to flock-in as fk in this section for the sake of simplicity, where k = 1, 

…, kmax, being kmax = 9. 

From a mathematical point of view, when combining data at several modulation 

frequencies, the inversion of equation (5.1) consists in a system of Fredholm’s integral 

equations of the first kind with smooth kernels, which are well known for giving severely 

ill-posed inverse problems [133]. The kernel in equation (5.1), 
- '

e / 'fk
q − −r r

r r , is smooth 

except for a 1-dimensional zone corresponding to the positions of the heat sources in 

surface z = 0. The ill-posedness of the problem has been intuitively recognized in Figure 

3.5, since heat sources of different geometries produce relatively small changes in the 

surface temperature signature, especially when buried deep inside the material. 

For the inversion, no particular geometry of the heat source distribution is considered to be 

known and only the plane containing it (Π) is assumed as prior information. Equation (5.1) 

is then reformulated by introducing a function describing both position and frequency 

dependent heat source distributions, ( )
kf

Q r' , and integrating over the whole plane Π 

containing the heat sources, rather than just area Ω. Therefore, :Π
kf

Q →ℝ  is now defined 

in plane Π (x = 0) and not only within area Ω. 

Function ( )
kf

Q r'  is expressed as the product of two factors: a normalized heat source 

distribution, ( )Q r' , which is common to all modulation frequencies, and a set of 

intensities, 
kf

I , that only depend on the modulation frequency and that refer to the 

intensities the heat sources emit with, at each modulation frequency 

( ) ( )
k kf fQ I Q=r' r'  (5.2) 

The set of intensities, 
kf

I , is introduced in order to allow the maximum intensity of these 

heat sources vary from one modulation frequency to another, since in the experiments, it is 

interesting to increase the ultrasound amplitude at high modulation frequencies where the 

signal is weaker.  
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With this new formulation, equation (5.1) writes 

( )
( ) ( )- - '

0

'
e e

d ' d '
4 ' 4 '

f fk k
k k

k

q q
f f

f z

Q I Q
T S S

K K

−

Π Π

=

−

= =
− −∫∫ ∫∫π π

r r r rr' r'

r r r r
r  (5.3) 

where we make explicit reference to the modulation frequency dependence of the surface 

temperature oscillation, 
kf

T . Note that with this reformulation, the inverse problem 

becomes bi-linear in ( )Q r'  and 
kf

I . Equation (5.3) can be written in a compact operator 

form 

   
[ ] maxfor 1, ...,

k k k k kf f f f fT Q I Q k k = = =  A A  (5.4) 

being 
kf

A  the operators mapping the normalized heat source distribution, ( )Q r' , and the 

set of intensities, 
kf

I , into the complex surface temperature distribution, 
kf

T . Equations 

(5.4) represent the exact relationship between the surface temperature and the heat sources.  

However, in practice, all surface temperature distributions available from 

vibrothermography data are affected by noise, so both the normalized heat source 

distribution and the set of intensities can only be retrieved from noisy data, 
k

δ
fT . Noisy data 

can be considered the sum of exact data, 
kf

T , and a certain amount of noise, being δ the 

noise level, defined as  

 
max 2 2 22

22
1 0

with
k k

k

f f

k z

T T g g dSδδ

= =

= − =∑ ∫∫  (5.5) 

It is worth mentioning that δ also accounts for model errors. Due to the presence of noise, 

equation (5.4) does not hold anymore, it becomes an approximation and the inversion has 

to be understood as a minimization problem consisting in finding the normalized heat 

source distribution, ( )Q r' , and the intensities, 
kf

I , that minimize a residual. We define 

such residual as the squared 2-norm (see equation (2.32)), i.e., the squared differences 

between exact data, 
kf

T , calculated from equation (5.4), and actual noisy data, 
k

δ
fT , 

summed over all modulation frequencies 
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max 22

2
1

k k k

k

f f f

k

R I Q Tδ δ δ

=

= −∑ A  (5.6) 

Thus, as may be noted in equation (5.6), the resulting approximated normalized heat source 

distribution, Qδ,

 

and the set of intensities, 
k

δ
fI , will be affected by the noise in the data. 

As mentioned above, the fact that equations (5.4) are stated in terms of Fredholm’s integral 

equations of the first kind with smooth kernels, leads to a severe ill-posedness of the 

inverse problem in the presence of noise, which is characterized by very small errors in the 

data giving rise to arbitrarily large errors in the solution. This, in turn, makes the 

minimization of the residual in equation (5.6) very unstable, which is the reason why the 

minimization process needs from the introduction of a regularization method.  

Least squares minimization can be stabilized by introducing a regularization or penalty 

term in equation (5.6) 

  ( )
max 2

2 , , ,

2
1

k kk

k

α α α
α f ff

k

T QR I Q αJδ δ δ δ

=

= − +∑ A  (5.7) 

As can be seen, the penalty term is the product of a regularization parameter, α, and a 

functional, ( ),αJ Qδ : the functional allows us make use of prior information regarding the 

solution of the inverse problem, whereas the regularization parameter determines the size 

of the penalty term with respect to the discrepancy term. Of course, the solution for ,αQδ  

and ,

k

α

f
I δ  will be affected by the value of α.  

In next section, the inverse problem is analysed by means of SVD, with the aim of 

assessing the ill-posed character of the problem and proposing appropriate regularization 

methods in order to implement a robust inversion algorithm. 
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5.2 Analysis of the inverse problem and regularization 

methods 

The discretization of the inverse problem is performed by meshing both planes z = 0 (data 

points) and Π (x = 0, unknown heat sources). As introduced in section 2.2.1, matrix 
kf

A
 
is 

the mathematical model that relates heat source distributions to surface temperature 

distributions. In order to stabilize the inverse problem with appropriate regularization 

methods, we first analyse the ill-posedness of the inverse problem by implementing SVD, 

in which 
kf

A  is factored into three matrices: 
kf

U , 
kf

S  and 
kf

V . The object of this section 

is to give an idea of what these matrices represent and what they look like for particular 

discretizations of planes z = 0 and Π (x = 0), particularizing the theory of section 2.2.3 to 

the inversion problem in this thesis. A representation of the discretization of the planes is 

shown in Figure 5.1. 

 

Figure 5.1. Representation of plane Π (x = 0) containing a heat source distribution and plane z = 0 with the 
noisy surface temperature distribution generated by modulated point-like heat sources covering area Ω. 
The discretization of both planes is represented by square meshes. 

Starting with 
kf

A  and considering a single modulation frequency, each column in 
kf

A  

contains the surface temperature distribution generated by a modulated point-like heat 

source located at each node of plane Π. Thus, 
kf

A  has as many columns as nodes in plane 

Π, representing all the possible heat sources covering it. Similarly, the number of rows in 
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kf
A

 
corresponds to the nodes in plane z = 0, the surface temperature data points. Thus, the 

size of 
kf

A  is m by n, being m the number of data points and n the number of unknowns. 

As we generate multi-frequency data, each modulation frequency contributes to matrix A 

following the same procedure, meaning that it gains rows while the columns remain the 

same, since the number of unknown model parameters does not depend on the modulation 

frequency 

 

1

2

max

 

k

f

f

f

A

A

A

A

 
 
 =  … 
 
 

 (5.8) 

Similarly, U, S and V refer to 
kf

U , 
kf

S  and 
kf

V
 

when combining all modulation 

frequencies. In order to illustrate what the diagonal of matrix S, i.e., the singular values 

look like, we next perform the SVD of A corresponding to a square search area in plane Π 

of 1 mm along both y- and z-axis with nodes separated by 100 µm, buried at a depth |d| = 

0.2 mm. Thus, the number of unknown model parameters, n, is 100, and since the number 

of data points, m, is much larger, n determines the number of singular values in this inverse 

problem, as in all cases in this thesis. 

The diagonal values of matrix S are represented by a thick black line on a log scale in 

Figure 5.2 (a). The curve shows two main linear regions joined together by a “corner”: the 

first region contains singular values ranging from 102 to 10-6 approximately, whereas the 

second region contains singular values that can be considered to be the near-zero singular 

values. The diagonal values of matrix 
kf

S  are also represented by thinner coloured lines, 

as would be the case if data at a single modulation frequency was used for the inversion: 

the blue line represent the singular values at 0.05 Hz, the maroon line stands for those at 

12.8 Hz and the rest of the coloured lines correspond to those at the rest of the modulation 

frequencies in between. Figure 5.2 (b) shows the same but with the square search area 

buried at a depth |d| = 3.2 mm. A linear decay of the singular values on a log scale 

corresponds to an exponential decay on a linear scale, meaning that our inverse problem 

can be considered severely ill-posed. 

It can be observed that the corner that joins the singular values that carry information and 

the near-zero singular values becomes less obvious and moves to the right with increasing 
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modulation frequency, and also that the curves start at a gradually lower position along the 

ordinate, meaning that higher modulation frequencies contribute gradually less to the 

solution. In other words, the area under the curve corresponding to each individual 

modulation frequency gives an idea of how relevant the contribution of the information at 

that modulation frequency is to the solution. This could be quantitatively checked if we 

summed all the singular values in each curve: the greater the sum of all singular values 

within a modulation frequency, the more relevant its contribution to the solution when 

combining all modulation frequencies. According to this, we can say that for a search area 

buried at a depth |d| = 0.2 mm, information at all modulation frequencies contribute 

similarly to the solution with differences only in the smallest singular values, whereas at a 

depth |d| = 3.2 mm, information at 0.05 Hz is much more relevant than at 12.8 Hz.   

If we now compare the singular values of S and 
kf

S , we can easily see that the area under 

the thick black line is greater than under any other curves, which means that using multi-

frequency data provides more information and thus helps reducing the ill-posedness of the 

inverse problem, if compared to inversions from data at any single modulation frequency. 
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Figure 5.2. Singular values obtained from SVD of matrices A (black lines) and 
kf

A
 
(coloured lines) for a 

search area in plane Π corresponding to a square of 1 mm along both y- and z-axis with nodes separated by 
100 µm, buried at a depth |d| = 0.2 (a) and 3.2 mm (b). Colours stand for each modulation frequency, 
namely, f1 = 0.05 (blue), f2 = 0.1 (red), f3 = 0.2 (green), f4 = 0.4 (purple), f5 = 0.8 (dark green), f6 = 1.6 
(orange), f7 = 3.2 (light blue), f8 = 6.4 (pink) and f9 = 12.8 Hz (maroon). 
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Since we do not retrieve heat sources from data at a single modulation frequency but we 

introduce multi-frequency data in the algorithm, the qualitative interpretation of the 

singular values is useful in inversions where the high frequency content is reduced.  

Figure 5.3 (a) shows the singular values for a search area of 1 mm along both y- and z-axes 

with nodes separated by 100 µm, buried at a depth |d| = 0.2 mm, with a gradually narrower 

set of low frequency information: from 0.05 to 12.8 Hz, from 0.05 to 1.6 Hz and from 0.05 

to 0.2 Hz, indicating that the narrower the set of low frequency information, the more 

severely ill-posed the inverse problem, since the singular values containing information 

decay faster. 

10-11
10

-10
10-9
10-8
10

-7
10-6
10-5
10-4
10-3
10-2
10-1
10

0
101

0 20 40 60 80 100

S
in

gu
la

r 
va

lu
es

 (
ar

b.
 u

ni
ts

)

Number of model parameters, n
(a)

 

10-10
10

-9
10-8
10-7
10-6
10-5
10

-4
10-3
10-2
10-1
10

0
101

0 20 40 60 80 100

Number of model parameters, n

S
in

gu
la

r 
va

lu
es

 (
ar

b.
 u

ni
ts

)

(b)
 

Figure 5.3. (a) Singular values obtained from SVD of matrix A corresponding to a square search area of 1 
mm along both y- and z-axes with nodes separated by 100 µm, buried at a depth |d| = 0.2 mm, with a 
gradually narrower set of low frequency information: from 0.05 to 12.8 Hz (blue), from 0.05 to 1.6 Hz 
(red) and from 0.05 to 0.2 Hz (green), and (b) singular values obtained from SVD of matrix A 
corresponding to a square search area of 1 mm along both y- and z-axes with nodes separated by 100 µm 
buried at increasing depths. Coloured lines represent each depth: |d| = 0.2 (blue), 0.6 (red), 1.2 (green), 1.6 
(purple), 2.6 (dark green), 3.2 (orange), 4.0 (light blue) and 5.0 mm (pink). 

The decay of high frequency information becomes gradually more significant as heat 

sources are buried deeper beneath the surface. Figure 5.3 (b) shows the singular values of 

matrix A corresponding to search areas of 1 mm along both y- and z-axes with nodes 

separated by 100 µm, buried at increasing depths, namely, |d| = 0.2, 0.6, 1.2, 1.6, 2.6, 3.2, 

4.0 and 5.0 mm. As can be observed, each curve starts at a gradually lower position along 

the ordinate with increasing depth, but for the sake of clarity all curves have been 
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normalized at the first singular value of the curve corresponding to the shallowest case. 

Normalizing these curves, i.e., making their first singular values coincide, is representative 

of having the same information (signal-to-noise ratio) at all modulation frequencies, which 

is not realistic. Despite these favourable conditions, the singular values shown in Figure 5.3 

(b) clearly indicate that the ill-posed nature of the inverse problem becomes more severe as 

the depth of the heat sources increases.  

As for the design of experiments, i.e., the way the modulation frequencies are picked 

within the ends of our modulation frequency set (from 0.05 to 12.8 Hz), we have 

represented the singular values for two flock-in distributions (see Table 5.1): doubling the 

modulation frequencies as considered so far, and distributing them uniformly. The results 

are shown in Figure 5.4 (a). 

Table 5.1. Design of experiments: two different flock-in distributions. 
 

doubling flock-in (Hz) 0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 

unif. distr. flock-in (Hz) 0.05 1.64 3.2 4.84 6.44 8.0 9.64 11.8 12.8 
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Figure 5.4. Singular values obtained from SVD of (a) matrix A for a search area in plane Π of 7 mm along 
both y- and z-axes reaching the surface with nodes separated by 50 µm, considering two flock-in 

distributions: doubling modulation frequencies (blue) and uniformly distributed within the ends of our set 
of modulation frequencies (red), and of (b) matrices A (blue) and A0.05 (black) for a search area in plane Π 
of 4 mm along both y- and z-axis reaching the surface with nodes separated by 100 µm and doubling 
modulation frequencies. 
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As may be observed, doubling the modulation frequencies (blue line) provides slightly 

more information in relation to distributing them uniformly (red line). Anyway, the 

differences between either flock-in distributions are very small. In this case, a search area of 7 

mm along both y- and z-axes reaching the surface has been considered, with nodes 

separated by 50 µm and, as can be noted, the shape of the singular values is very different 

to those shown in previous figures: the corner is much more pronounced and the region that 

contains the near-zero singular values is longer and straight, which is related to the fact that 

the mesh in plane Π is much finer. The same effect can be observed in Figure 5.4 (b), 

where the singular values of matrices A (black thick line) and A0.05 (blue line) for a search 

area of 4 mm along both y- and z-axes reaching the surface with nodes separated by 100 

µm is shown. Thus, the shape of the singular values strongly depends on the size and mesh 

of plane Π. As for matrices 
kf

U
 
and 

kf
V

 
in the SVD of matrix 

kf
A , Figure 5.5 (a) and (b) 

show the data and model space vectors, U0.05.,i and V0.05.,i, respectively, corresponding to 

the first, second and last singular values represented by a blue line in Figure 5.4 (b).  

-0,06

-0,05

-0,04

-0,03

-0,02

-0,01

0

0 1000 2000 3000 4000 5000

D
at

a 
sp

ac
e 

ve
ct

or
 U

.,1
 (

ar
b.

 u
ni

ts
)

Number of data points, m(a)
  

-0,08

-0,06

-0,04

-0,02

0

0,02

0,04

0,06

0,08

0 1000 2000 3000 4000 5000

Number of data points, m

 D
at

a 
sp

ac
e 

ve
ct

or
 U

.,2
 (

ar
b.

 u
ni

ts
)

 

-0,15

-0,1

-0,05

0

0,05

0,1

0,15

0 1000 2000 3000 4000 5000 D
at

a 
sp

ac
e 

ve
ct

or
 U

.,1
60

0
 (

ar
b.

 u
ni

ts
)

Number of data points, m

 

-0,06

-0,05

-0,04

-0,03

-0,02

-0,01

0

0 400 800 1200 1600 M
od

el
 s

pa
ce

 v
ec

to
r 

V
.,1

 (
ar

b.
 u

ni
ts

)

Number of model parameters, n
(b)

 

-0,1

-0,05

0

0,05

0,1

0 400 800 1200 1600

Number of model parameters, n

M
od

el
 s

pa
ce

 v
ec

to
r 

V
.,2

 (
ar

b.
 u

ni
ts

)

 

-0,15

-0,1

-0,05

0

0,05

0,1

0,15

0 400 800 1200 1600 M
od

el
 s

pa
ce

 v
ec

to
r 

V
.,1

60
0
 (

ar
b.

 u
ni

ts
)

Number of model parameters, n

 

Figure 5.5. (a) Data space vectors U0.05.,1, U0.05.,2 and U0.05.,1600 as a function of the number of data points, 
m, and (b) model space vectors V0.05.,1, V0.05.,2 and V0.05.,1600 as a function of the number of model 
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parameters, n, obtained by performing the SVD of matrix A0.05 corresponding to a square search area in 
plane Π of 4 mm along both y- and z-axes reaching the surface with nodes separated by 100 µm. 

As may be observed, the first model space vector acts as a low frequency component in the 

series whereas the last one acts as a high frequency component, which can be considered 

noise in the model. All the model space vectors between these two extremes contribute to 

the sum in the series that generate the solution of the inverse problem.  

In order to see how harmful model space vectors associated to near-zero singular values are 

for the generalized inverse solution and how they can be damped by regularizing the 

inverse problem with the Tikhonov series (see section 2.2.4), we next make a comparison 

between equations (2.47) and (2.59), using the numerical values of Figure 5.4 (b) and those 

corresponding to Figure 5.5 combining all modulation frequencies (black thick line). The 

generalized solution with no regularization writes 

( ) ( ) ( )

.,†
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(5.9) 

Comparing the first and the last terms in (5.9), it can be seen that the smallest singular 

value provokes a very large coefficient for the last model space vector. Taking into account 

that about three quarters of the singular values shown in Figure 5.4 (b) are near-zero, the 

model may be completely dominated by noise.  

Employing Tikhonov regularization, however, the regularization parameter αTk gives a 

lower weight to the model elements associated with smaller singular values. Setting, for 

instance, αTk = 104, the solution now becomes 
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(5.10) 
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As we may check in equation (5.10), we have completely discarded the contribution of the 

last model space vector, associated to the smallest singular value, while we have barely 

modified the contributions of model space vectors associated to larger singular values. In 

this way, the model space vectors associated to decreasing singular values are 

progressively filtered. 

As introduced in the statement of the inverse problem, the solution is sought in the least 

square sense by introducing a penalty term 

 ( )
max 2

2 , , ,

2
1

k kk

k

α α α
α f ff

k

T QR I Q αJδ δ δ δ

=

= − +∑ A  (5.11) 

where α and J are generalized for any regularization method. In this example, in which the 

generalized inverse solution has been evaluated numerically without and with Tikhonov 

regularization, the notation corresponding to the theory in section 2.2.4 has been used. In 

order to relate it to our particular inverse problem, it must be clarified that m† and mα refer 

to the normalized heat source distribution (Qδ,α in equation (5.11)). 

According to our notation, the Tikhonov regularization functional is defined as [141]  

 ( ) 22

1

n

i

i

Tk Q dSQ Q S

=Π

= ≈ ∆∑∫∫  (5.12) 

Therefore, equation (5.11) now is 

( ) ( )
max 2

2 , , ,

2
1

with
k kk

k

f f Tk Tkf

k

R I Q T α Tk Q αδ δ δ δ

=

= − + =∑ A
α α α

α
α  (5.13) 

As mentioned at the end of section 2, the damping of model space vectors associated to 

very small singular values produces smoothly varying solutions, as sharp model space 

vectors are filtered out. These smooth solutions are not adequate for our inverse problem, 

as we search for heat source distributions with a well defined area. 

Tikhonov regularization penalizes all nodes in plane Π equally because of applying the 

same regularization parameter value to each one, with no further information regarding the 

location of the possible heat sources. However, in order to optimize the degree of 

regularization in our inverse problem, other non-linear regularization procedures based on 
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local information can be implemented in order to perform a position-dependent 

penalization, besides implementing Tikhonov. 

L1 and Total Variation (TV) regularization methods allow performing a position-dependent 

penalization by assigning a different regularization parameter value to each node in plane 

Π, which, in turn, is possible if we get information about the retrieved normalized heat 

source distribution at each node in a previous iteration. In this way, we can guess which 

nodes need to be penalized most or least in a following iteration, in order to force some 

nodes to remain damped as well as keep other nodes dominating the solution.  

Let us consider a penalty term based on Tikhonov, but with a regularization parameter that 

takes into account the solution in a previous iteration in order to penalize nodes differently 

in each iteration 

 
1 ,

, 1

1
i, jTk L

i j

α α
Qδ −

=
α

 (5.14) 

where i = 1, …, n, refers to the nodes in plane Π and j is the iteration. Expanding this new 

discretized penalty term for all nodes 
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(5.15) 

As can be seen, despite being 
1Lα  common for all terms in the sum of equation (5.15), each 

term is affected by a different penalization, because Q
δ,α is divided by its value in a 

previous iteration. In this way, if ,
, 1
δ
i jQ −
α  is small and thus ,

, 11 / δ
i jQ −
α  is large (in iteration j-

1), ,
,
δ
i jQ α  is forced to remain small (in iteration j). Similarly, if ,

, 1
δ
i jQ −
α is large, ,

, 11 / δ
i jQ −
α  

is small and ,
,
δ
i jQ α  is then free to increase or vary. 

Over iterations, eventually , ,
, 1 ,i j i jQ Qδ δ
− ≈
α α  and equation (5.15) then becomes  
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 (5.16) 

that is the L1-norm of Q
δ,α multiplied by the regularization parameter 

1Lα . Thus, the L1 

functional to implement in our inverse problem is 

 ( )1 dQL Q S

Π

= ∫∫  (5.17) 

Regularization with Total Variation is based on the same principle as L1, but acting over 

the gradient of Qδ,α. In practice, the main difference between L1 and TV on the solution of 

the inverse problem is that L1 favours null areas in plane Π, whereas TV favours areas with 

null derivatives of Q
δ,α, which provokes flat sections with sharp edges, i.e., blocky 

solutions, that are appropriate to characterize the confined heat sources we are seeking.  

Next section describes the inversion algorithm in detail, implementing the described 

regularization procedures. 

5.3 The inversion algorithm 

Our approach to stabilize the inversion consists in implementing both L1 and Total 

Variation functionals, aside from Tikhonov. L1 and TV optimize the regularization in 

inversions regularized with Tikhonov, since they allow performing a position-dependent 

regularization in plane Π. The implementation of L1 and Total Variation is aimed at 

retrieving heat sources contained in a well-defined area, i.e., featuring sharp edges, as a 

first step to characterization of heat source distributions.  

As mentioned above, Total Variation searches for blocky functions, i.e., functions with flat 

sections and sharp edges, whereas L1 tends to minimize the area where the function has 

non-zero values (compressive sensing effect) [144], which enhances contrast. Thus, L1 and 

TV give advantage to homogeneous heat source distributions and are appropriate for the 

reconstruction of heat sources with well-defined geometries and sharp borders.  
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The function to minimize has then, with respect to that in equation (5.13), two new terms  
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where each penalty functional is multiplied by a regularization parameter: Tkα , 
1Lα  and 

TVα  are the regularization parameters corresponding to stabilizations with Tikhonov, L1 

and Total Variation, respectively.  

In turn, we have implemented two versions of the TV functional, to which we refer as 

isotropic [142] and anisotropic [143], and that are defined as 

 ( )IsotTV Q Q dS

Π

= ∇∫∫  (5.19) 

 ( ) ( )Anisot y zTV Q Q Q dS

Π

= ∂ + ∂∫∫  (5.20) 

The drawback of these functionals is that they are neither quadratic nor even differentiable 

operators, so we approximate them using lagged fix-points iterations [141] 
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As presented in equation (5.16), L1 is approximated in a similar way 
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j

j
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Q
L Q Q dS dS

Qε
→∞

Π Π
−

= ≈

+
∫∫ ∫∫  (5.23) 

where ε is a small parameter that is introduced in order to avoid dividing by zero and the 

parentheses stand for the iteration.  

Since the regularization parameters, ( )
1

, ,Tk L TVα α α=α , determine the size of the different 

regularization terms with respect to the discrepancy term, the degree of regularization can 

be varied by modifying the values of the regularization parameters: large values of the 

regularization parameters increase the stability of the inversion process in the sense that the 

solution becomes less sensitive to noise in the data, but, on the other hand, this stability 

comes at the expense of introducing an error in the solution and having no longer an 

unbiased solution. 

In order to find the optimum regularization parameters, our choice is to start iterations with 

a rather high initial value of the regularization parameters, 
0Tkα , 

10
Lα  and 

0TVα , and reduce 

them in each iteration with different decay factors, Tkγ , 
1Lγ  and TVγ , respectively 

0
1,000 0.3

j

j j
Tk Tk Tkα α γ= = ⋅  (5.24) 

1 1 10
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j

j j
L L L
α α γ= = ⋅  (5.25) 

0
100 0.75

j

j j
TV TV TVα α γ= = ⋅  (5.26) 

It can be observed that 
0Tkα  decays much faster than 

10
Lα  and 

0TVα , so that the effect of 

Tikhonov regularization is only significant during the first iterations.  

As mentioned in section 5.2, Tikhonov damps the model vectors associated with small 

singular values and provides very smooth and rounded solutions, which is beneficial in the 

beginning of the inversion so as to make sure that the solution does not get dominated by 

noise, but then, sharper solutions are sought. Moreover, L1 and Total Variation cannot be 

implemented in the first iteration because they need the solution in a previous iteration.  
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The initial values of the regularization parameters as well as their decay factors have been 

chosen by performing inversions repeatedly until achieving solutions in a reasonable 

number of iterations, about 20.  

Next, the iterative process carried out by the inversion algorithm is described. 

In order to describe the iterative process for the minimization of the residual shown in 

(5.18), it is convenient to use the operator form (matrices and vectors in discrete version), 

as in equation (5.4) 

           

, , , ,
maxfor 1, ...,

k kk f kk
f ff f

T Q I Q k kδ δ δ δ   ≈ = =     
A A

α α α α  (5.27) 

As mentioned above, 
kf

A  is the integral operator, representing the kernel in equation (5.3). 

For the inversion procedure, we use domain decomposition iterations to retrieve the 

normalized heat source distribution, Q
δ,α, and the set of intensities, ,

kf
Iδ α , in successive 

iterations. The process of obtaining intensities and domains in two different steps is known 

as non-linear Gauss-Seidel iterations by blocks and it is a local minimization method used 

in bi-linear problems like this one. 

We start with iteration zero, in which we solve the approximated equations (5.27) by its 

normal equations, for each modulation frequency separately 

( ) 1
, * *
,0 k k k kk

f f Tk f ff
Q α Tδ δ

−
= +A A I A

α
 (5.28) 

where *
kf

A  stands for the complex conjugate of 
kf

A . However, as the right side of 

equation (5.28) is complex and we assume that the heat source distribution is real, we 

obtain ,
,0kf

Q
δ α  as follows 

( )( ) ( )
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,0 Re Re

k k k kk
f f Tk f ff

Q α T
δ δ

−
= +A A I A

α
 (5.29) 

to get a first approximation of the separate intensities as 

( ), ,
,0 ,0max

k kf f
I Q
δ δ=α α  (5.30) 
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being ,
,0kf

Qδ α  and ,
,0kf

Iδ α  the normalized heat source distribution and the set of intensities in 

iteration zero, respectively. The intensities obtained are now introduced as an initial guess 

in equation (5.27) combining all modulation frequencies together and being regularized 

only with Tikhonov, using the initial value of the regularization parameter Tkα   
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 (5.31) 

to get a first approximation of the reconstructed normalized heat source distribution, ,
(1)Qδ α . 

Iteration zero then gives way to iteration one, in which the Tikhonov regularization 

parameter Tkα  is reduced for the first time, whereas the regularization parameters 

corresponding to L1 and Total Variation, 
1Lα  and TVα , are used for the first time with their 

initial values.  

The retrieved normalized heat source distribution ,
(1)Qδ α  is introduced in equation (5.27) for 

each modulation frequency separately so that a new set of intensities 
,
,1kf

Iδ α  is obtained as 

follows 

,
,1 ,
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k
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f

f

f
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Q

δ

δ

δ
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 
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α

α

 (5.32) 

Now, the set of intensities 
,
,1kf

Iδ α  is introduced into the equation combining all frequencies 

together, similarly as in equation (5.31) but now employing L1 and Total Variation besides 

Tikhonov, to get a second approximation of the reconstructed normalized heat source 

distribution, ,
(2)Qδ α . 

With the second approximation of ,
(2)Qδ α  iteration two begins, in which Tkα is reduced for 

the second time, whereas 
1Lα  and TVα  are reduced for the first time. The same steps as in 
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iteration one are followed in order to get a new set of intensities, 
,
,2kf

Iδ α , along with a third 

approximation of the normalized heat source distribution, ,
(3)Qδ α , and so forth.  

In order to automatize recovered solutions and retrieve the different cases equally, we stop 

iterations when the minimum discrepancy term is found. This is a heuristic stopping 

criterion, which works in this kind of overdetermined problem and gives best results of the 

retrieved normalized heat source distribution, Q
δ,α. An important aspect that is worth 

mentioning about the chosen stopping criterion is that there is no over-fitting of the data, 

i.e., fitting the noise rather than the underlying function. Further support for this stopping 

criterion will be given in section 6.4.2. 
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6 Analysis of the inversion algorithm  

 

In this section we analyse the ability of the implemented inversion algorithm to retrieve 

heat source distributions from synthetic data representing vertical homogeneous kissing 

rectangular cracks, by observing the effects of various aspects regarding both the algorithm 

and the data entering it on the quality of the reconstructions. The object of this analysis is 

to optimize the inversion protocol in order to expand the use of the inversion algorithm for 

the characterization of the widest range of geometries of heat sources accurately and to 

verify key aspects concerning the inversions such as the stopping criterion and the design 

of experiments. 

 

 

In this section, the ability of the implemented inversion algorithm to reconstruct vertical 

heat source distributions is analysed. The whole analysis of the inversion algorithm is 

performed using synthetic data corresponding to heat sources representing the simplest 

case, homogeneous rectangular kissing cracks, and it consists in looking at the effects on 

the reconstructions of aspects regarding both the algorithm and the surface temperature 

data entering it.  

With regard to the algorithm, the effect on the reconstructions of implementing either the 

isotropic or the anisotropic versions of the TV functional is checked, as well as the effect of 

altering the values of the regularization parameters corresponding to the stabilization 

procedures. As for the data, the effects of the noise level and noise distribution are 

evaluated, as well as the effect of data normalization.  

The convergence property of the implemented inversion algorithm is proved, the chosen 

criterion to stop iterations is verified by making use of the retrieved set of intensities, 
,

kf
Iδ α , 
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and the effect of the flock-in in multi-frequency data is checked on the retrieved areas so as to 

verify the selected design of experiments. In addition, the shadowing effect is tackled and 

the spatial resolution of the inversion algorithm is tested by retrieving multiple heat 

sources. 

The general objective of analysing the inversion algorithm is to optimize it in order to 

expand its use for the characterization of the widest range of geometries of vertical heat 

source distributions. Provided that an intrinsic advantage of ultrasound excited 

thermography with respect to inductive and optical excitations is that it enables the 

detection of defects buried deeper beneath the sample surface, we also exploit this 

penetration potential when retrieving the heat source distributions by checking how deep 

we can obtain accurate reconstructions. 

6.1 Generation of synthetic data 

Generation of synthetic data involves discretizing both plane Π (x = 0), where heat sources 

are located, and the sample surface (z = 0), where surface temperature data are calculated.  

The discretization of the planes is carried out over a certain area that can be varied 

depending on the dimensions of the heat source distribution and de depth at which it is 

buried. As a rule of thumb we consider a square in plane Π (x = 0) that is 6 mm along both 

y- and z- axis for the heat source distribution and we generate surface temperature data in a 

rectangle at the surface (z = 0) that is 20 mm long along x-axis (perpendicular to plane Π) 

and 28 mm long along y-axis (parallel to plane Π) (see Figure 5.1 (a)). 

A square mesh is used for the discretization of both planes. Again, the size of the meshes 

can vary depending on the geometry and size of the heat sources and the desired accuracy 

in the surface temperature calculation. In our standard meshes, nodes in plane Π are 

separated by 20 µm and we calculate the surface temperature at nodes separated by 50 µm, 

which provides considerably finer surface temperature data than that obtained in our 

vibrothermography experiments, where each pixel in the detector of the IR camera 

averages the temperature of a 137 µm square on the sample surface. The reason for this is 

that we want the analysis of the inversion algorithm to be accurate enough for experimental 

setups using IR cameras with a higher spatial resolution. 
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Surface temperature data are calculated using equation (3.6), with the same maximum 

homogeneous flux emitted over the heat source area for all modulation frequencies and 

using the thermal properties corresponding to AISI 304. Then, we generate uniform noise 

whose norm represents the desired percentage of the total norm of the data and we 

distribute it uniformly over the whole frequency range. In this way, noisy amplitude and 

phase surface temperature data are obtained.  

This procedure represents the experimental case in which data are taken with the same 

ultrasound power for all modulation frequencies and the same number of images is used for 

each lock-in process. Finally, if it was the case, all amplitude data are normalized.  

It is worth mentioning that for very low noise percentages (δ < 0.5%), the size of the 

rectangle at z = 0 at which surface temperature data are generated defined above may not 

be sufficiently large, so the considered area in plane z = 0 depends on the noise level of the 

data as well, apart from depending on the dimensions and depth of the heat sources. 

In order to illustrate what synthetic data look like, Figure 6.1 shows synthetic Ln(|T|) (left) 

and Ψ (right) with 5% added uniform noise corresponding to a square heat source (w = h = 

1 mm) buried at a depth |d| = 0.2 mm, at flock-in = 0.1 (a) and 3.2 Hz (b).  
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Figure 6.1. Synthetic noisy Ln(|T|) (left) and Ψ (right) thermograms generated at flock-in = 0.1 (a) and 3.2 
Hz (b), corresponding to a homogeneous square heat source (w = h = 1 mm) buried at a depth |d| = 0.2 
mm. Data are affected by 5% uniform noise. 

For a more detailed visualization, both Ln(|T|) and Ψ thermograms shown in Figure 6.1 

have been cropped. For the inversion, surface temperature data may be cropped in order to 

demand a lower computer capacity and thus reduce the inversion time, as long as the 

amplitude has reached the noise level and the phase has become random, i.e., as long as the 

removed areas are basically noise.  

6.2 Effect of the TV functional model: TVIsot vs. TVAnisot 

We now focus on assessing the effect on the reconstructions of implementing Total 

Variation regularization in its two versions: TVIsot and TVAnisot. The definitions and the 

expressions of the quadratic approximations of both versions of the Total Variation 

functional are shown in equations (5.21) and (5.22), respectively.  

We start by inverting synthetic data with 5% added uniform noise corresponding to a 

standard square heat source (w = h = 1 mm) located at increasing depths, namely, |d| = 0.2, 

0.6, 1.2, 1.6, 2.6 and 3.2 mm. In these inversions, the amplitudes of the surface 

temperatures are normalized: we divide the whole amplitude thermograms by their 
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maximum value, at each modulation frequency, which brings all maximum amplitudes to 

1. As an example, Figure 6.2 (a) shows synthetic normalized Ln(|T|) (left) and Ψ (right) 

thermograms corresponding to a square heat source (w = h = 1 mm) buried at a depth |d| = 

0.2 mm, at flock-in = 0.8 Hz. The fitted thermograms are shown in Figure 6.2 (b). 

 

 

Figure 6.2. (a) Synthetic data affected by 5% uniform noise, normalized Ln(|T|) (left) and Ψ (right) 
thermograms at flock-in = 0.8 Hz and (b) fitted thermograms, corresponding to a homogeneous square heat 
source (w = h = 1 mm) buried at a depth |d| = 0.2 mm.  
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The results of inversions implementing TVIsot and TVAnisot are depicted in Figure 6.3 (a) and 

(b), respectively: we represent a grey level diagram of the normalized heat source 

distribution, Qδ,α, retrieved in plane Π, where white corresponds to the maximum value (1) 

and black (0) to the absence of heat sources. The real geometry of the heat sources is 

represented by a red contour and, for the sake of clarity, the depth (in mm) at which the 

heat sources are buried is indicated on top of each reconstruction. 

 

 

 

Figure 6.3. Grey level representation of the normalized heat source distribution, Qδ,α, corresponding to 
synthetic data affected by 5% added uniform noise generated for square heat sources (w = h = 1 mm) 
buried at increasing depths, retrieved by using: (a) TVAnisot and entering normalized amplitudes, (b) TVIsot 
and entering normalized amplitudes and (c) TVIsot and entering raw amplitudes. The depths of the squares 
in (a) are: |d| = 0.2, 0.6, 1.2, 1.6, 2.6 and 3.2 mm. In (b) and (c), also |d| = 4.0 and 5.0 mm. Real contours 
depicted in red and values of the depth of the heat sources and quality factor F, on top of and under each 
reconstruction, respectively. 
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As a general overview, it can be seen that as the depth increases the reconstructions 

become wider than the real squares. However, the depths of all heat sources are well 

recovered. 

When stabilizing the inversion with either model of Total Variation, the search is 

performed among blocky functions, i.e., functions with flat sections and sharp edges. In the 

anisotropic model, the partial derivatives along the different directions of the search plane 

(y and z) are separated in different terms, which provokes the minimization process reduce 

the projection of the contour of the heat source distribution along these axes. Figure 6.3 (a) 

shows that the effect of separating the derivatives in the two directions of the search plane 

in different terms is to favour jumps along the directions of the axes (y and z), which helps 

defining very well the corners of the squares. TVAnisot, thus, gives advantage to the 

reconstruction of shapes having edges that coincide with the directions of the axes, such as 

in square or rectangular geometries. 

In the isotropic model, on the contrary, the partial derivatives along the different directions 

are mixed together, which makes the minimization process tend to reduce the contour of 

the area where the heat source distribution has non-zero values. For this reason, provided 

that the circle is the shape with minimum perimeter for a given area, rounded reconstructed 

areas are obtained when using TVIsot. Despite this, for the shallowest case (see Figure 6.3 

(b)), TVIsot reproduces quite nicely the upper contour of the square. Given that in a real 

problem the geometry of the heat source distribution is unknown, it is advisable to stabilize 

the algorithm with TVIsot so that the results are of more general applications, since heat 

sources are equitably retrieved regardless of their particular geometry. 

In order to quantify the accuracy of the reconstructions, we have introduced a quality factor 

F. This quality factor takes into account the values of the retrieved Qδ,α within and outside 

the real contour of the heat source distribution and it is defined as 

, ,

1 1

M P

i j

i j

Q Q

F
M

δ δ

= =

−

=
∑ ∑α α

 
(6.1) 

where M is the number of nodes within the real geometry and P is the number of nodes in 

plane Π outside the real geometry. According to this definition, F = 1 corresponds to a 

perfect reconstruction. The value of F progressively decreases as the quality of the 

reconstruction worsens and F can reach negative values.  
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In order to define what a sufficiently accurate reconstruction should look like, we have also 

introduced an accurate reconstruction criterion based on the value of the quality factor: a 

reconstruction can be considered to be accurate as long as F > -1. The values of F are 

displayed under each reconstruction. 

Provided that TVIsot improves significantly the accuracy of the reconstructions obtained 

with TVAnisot, two deeper squares have been added in Figure 6.3 (b), at depths |d| = 4.0 and 

5.0 mm. 

6.3 Effect of data normalization: normalized vs. raw 

amplitudes 

As mentioned above, normalized amplitudes have been introduced in the algorithm in order 

to obtain the reconstructions shown in Figure 6.3 (a) and (b), as a method to standardize 

data input in the inversion algorithm. As the amplitude decreases with increasing 

modulation frequency, bringing all maximum amplitudes to 1 can be understood 

experimentally as increasing the ultrasound intensity with modulation frequency.  

However, Figure 6.3 (c) shows the reconstructions of the same heat sources in inversions 

entering raw amplitudes (and stabilizing the inversions with TVIsot) and, as can be observed, 

the quality of the reconstructions improves dramatically, especially from |d| > 2.6 mm on: 

the reconstructions are sharper and the enlargement of the retrieved areas with respect to 

the real sizes is less significant. 

This difference cannot be attributed to any inadequacy of the algorithm to deal with 

normalized amplitudes, since the intensities, 
kf

I , are introduced in the inversion procedure 

in order to absorb any flux difference at different modulation frequencies. Due to the 

damped nature of thermal waves, normalizing all amplitudes implies multiplying amplitude 

thermograms by factor that increases with modulation frequency. As a consequence, the 

absolute noise in the normalized thermograms increases as well, which is the reason for the 

degradation of the reconstructions when normalized amplitudes enter the algorithm.  

Another possibility to standardize data input into the algorithm is to normalize the 

amplitudes at all modulation frequencies first and then add the uniform noise. However, 

this procedure is experimentally unfeasible and, for this reason, it has not been considered 

in inversions from synthetic data.  
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Thus, in order to determine the optimum inversion protocol, it can be concluded that raw 

amplitudes should enter the inversion algorithm, which, in turn, should be stabilized with 

the isotropic model of the Total Variation functional so that no directions within the search 

area are favoured and heat source distributions of any shape are equitably retrieved. 

This considered, as may be checked in Figure 6.3 (c), we are able to obtain accurate 

reconstructions of square heat sources of 1 mm2 buried beneath the surface of an AISI 304 

sample down to a depth about |d| = 3.6 mm, for synthetic data affected by 5% uniform 

noise. The results of this analysis are scalable to squares of different sides L and different 

sample properties, as long as the data used for the inversions are generated at modulation 

frequencies corresponding to thermal diffusion lengths that represent the same fractions of 

the square size: from 0.3 to 5L.  

6.4 Effect of the noise and stopping criterion verification 

The reconstructions shown so far have been inverted using synthetic data with uniformly 

distributed 5% added uniform noise. However, we now show the influence of the noise 

level on the quality of the reconstructions. To that purpose, we look at the behaviour of the 

inversion algorithm when reducing or increasing the noise level in the data, being the noise 

uniformly distributed among the different flock-in.  

Due to the ill-posed character of the inverse problem in the presence of noise, more 

accurately retrieved normalized heat source distributions, Q
δ,α, can be expected when 

decreasing noise level, which proves the convergence property of the inversion algorithm. 

In addition, we propose a method to verify the established minimization stopping criterion 

using the retrieved set of intensities, ,

kf
I
δ α . 

Lastly, the effect of noise distribution over the modulation frequency range on the quality 

of the reconstructions is considered since, in practice, noise can also be distributed non-

uniformly in multi-frequency data obtained in vibrothermography experiments, if a 

different number of images is analysed in the lock-in process at each modulation 

frequency.  
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6.4.1 Uniform noise distribution 

The effect of reducing the noise level is illustrated in Figure 6.4, where we compare the 

reconstructions obtained from synthetic data corresponding to a standard square heat 

source (w = h = 1 mm) located at increasing depths, namely, |d| = 1.2, 2.0, 2.6, 3.2, 3.6, 4.0 

and 5.0 mm, with uniformly distributed (a) 5% and (b) 0.5% added uniform noise and 

retrieved by implementing the optimum inversion protocol.  

 

 

Figure 6.4. Grey level representation of the normalized heat source distribution corresponding to synthetic 
data generated for square heat sources (w = h = 1 mm) buried at increasing depths, namely, |d| = 1.2, 2.0, 
2.6, 3.2, 3.6, 4.0 and 5.0 mm, affected by uniformly distributed (a) 5% and (b) 0.5% uniform noise. 
Retrieved by implementing TVIsot and entering raw amplitudes. Real contours depicted in red and values of 
the depth of the heat sources and quality factor F, on top of and under each reconstruction, respectively. 

As may be observed, improvements on the reconstructions are obvious when the noise 

level in the data is reduced, since noise reduction makes a noticeable difference in the 

contribution of high frequency information to the inversion.  

This proves the convergence property of the algorithm, since the solution of the inverse 

problem, Q
δ,α, tends to the exact normalized heat source distribution Q, as the surface 
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temperature data, 
kf

Tδ , approach the noiseless surface temperature data, 
kf

T , i.e., as the 

noise level tends to zero (δ → 0).  

As mentioned above, noise reduction allows digging up information buried in noise, 

especially at high modulation frequencies. To illustrate how noise affects the information 

carried in high frequencies, in Figure 6.5 we show a side view of the surface amplitude 

thermogram corresponding to a square heat source buried at a depth |d| = 3.2 mm with (a) 

5% and (b) 0.5% added uniform noise, generated at flock-in = 3.2 Hz. 

 

Figure 6.5. Side view of the surface amplitude thermogram corresponding to a square heat source of w = h 
= 1 m, buried at a depth |d| = 3.2 mm, with uniformly distributed (a) 5% and (b) 0.5% added uniform 
noise, generated at flock-in = 3.2 Hz. 

However, from a practical point of view, although in lock-in vibrothermography 

experiments the noise level can be reduced by analysing a larger number of images, the 

procedure takes time and the ultimate effect is a reduction of the signal-to-noise ratio with 

increasing depth, since the amplitude of the surface temperature diminishes as the depth of 

the heat source increases.  

For this reason, we have also looked at the effect of increasing the noise level on the 

quality of the reconstructions. In Figure 6.6 we show reconstructions of the w = h = 1 mm 

square heat source buried at a depth |d| = 3.2 mm from data affected by 10% and 15% 

uniform noise, in addition to the result of the same heat source previously shown from data 

affected by 5% uniform noise. It can be checked that the quality of the reconstructions 

worsens as the noise level increases.  
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Figure 6.6. Grey level representation of the normalized heat source distribution inverted from synthetic 
data corresponding to a square heat source (w = h = 1 mm) buried at a depth |d| = 3.2 mm with uniformly 
distributed 5%, 10% and 15% added uniform noise. Retrieved by implementing the optimum inversion 
protocol. Real contours depicted in red and values of the noise level and quality factor F on top of and 
under each reconstruction, respectively.  

As may be noted, the noise level in the data limits the maximum depth at which we can get 

accurate reconstructions in inversions implementing the optimum protocol: whereas it is 

about |d| = 3.6 mm for data affected by 5% uniform noise, it is increased to |d| = 5.0 mm 

and reduced to |d| = 3.2 mm for data affected by 0.5% and 15% uniform noise, 

respectively. 

6.4.2 Stopping criterion verification 

As described in section 5.3, the iterative minimization process is stopped when the 

minimum discrepancy term is found, obtaining the retrieved normalized heat source 

distribution, Q
δ,α, and the set of intensities, 

,

kf
Iδ α . Recall that 

kf
I  is introduced so as to 

allow the maximum intensity of the heat sources vary from one modulation frequency to 

another.  

However, the values of these intensities over iterations may be used in order to verify that 

stopping the minimization process at the discrepancy term minimal iteration is the 

appropriate choice so as to obtain the optimum solution to our inverse problem.  

Let’s start with the illustration of the evolution of the intensities over the iterative process 

in such a way that the intensity at each fk is divided by that at the next lower fk within our 

modulation frequency set. We can thus define 8 relations, since we combine data at 9 

modulation frequencies: relation 1 refers to 
2 1

, ,
, ,/

f j f j
I Iδ δα α

, relation 2 stands for 
3 2

, ,
, ,/

f j f j
I Iδ δα α

, 

and so forth, where k = 1, …, 9, and j stands for the iteration.  
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Figure 6.7 (a) shows the evolution of 
1

, ,
, ,/

k kf j f j
I Iδ δ

+

α α
 in an inversion from synthetic data 

affected by 5% uniform noise corresponding to a square heat source (w = h = 1 mm) buried 

at a depth |d| = 1.6 mm. In this inversion, the discrepancy term minimal iteration is the 22nd 

(see Figure 6.7 (b)). 

If we generate surface temperature thermograms corresponding to common maximum 

homogeneous fluxes at all modulation frequencies and we invert raw amplitudes, an 

indication that the inversion algorithm is correctly fitting the data over iterations is that the 

defined intensity relations approach 1.  

According to this, relations from 1 to 5 in Figure 6.7 indicate that the surface temperatures 

at the corresponding fk (from 0.05 to 1.6 Hz) are accurately fitted. Relation 6, involving 

data at 1.6 and 3.2 Hz, is harder to fit but it approaches 1 and shows a smooth minimum 

around the minimal discrepancy term iteration. Lastly, relations 7 and 8 are not properly 

fitted over the whole minimization process, because data at these modulation frequencies 

(from 3.2 to 12.8 Hz) are dominated by noise, given the depth of the heat source. 
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Figure 6.7. (a) Evolution of 
1

, ,
, ,/

k kf j f j
I Iδ δ

+

α α in an inversion from synthetic data affected by 5% uniform 

noise corresponding to a square heat source (w = h = 1 mm) buried at a depth |d| = 1.6 mm. Coloured lines 

stand for the intensity relations: 1 , ,
0.1, 0.05,( / )j jI Iδ δα α (pink), 2 , ,

0.2, 0.1,( / )j jI Iδ δα α  (light blue), 3 , ,
0.4, 0.2,( / )j jI Iδ δα α  

(orange), 4 , ,
0.8, 0.4,( / )j jI Iδ δα α  (dark green), 5 , ,

1.6, 0.8,( / )j jI Iδ δα α  (purple), 6 , ,
3.2, 1.6,( / )j jI Iδ δα α  (green), 7

, ,
6.4, 3.2,( / )j jI Iδ δα α  (red) and 8 , ,

12.8, 6.4,( / )j jI Iδ δα α  (blue), and (b) discrepancy term evolution in the same 

inversion. 
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Taking the meaning of the defined intensity relations into account, we have considered a 

second stopping criterion, for which the following expression, based on least squares, 

needs to be defined  

1

2,8
,

,
1 ,

1k

k

f j

k f j

I
Int

I

α

α

δ

δ
+

=

 
 = −
 
 

∑  (6.2) 

The object of this second stopping criterion is to check that the intensities are fitted in an 

optimum way at the iteration at which the minimization process is stopped, and it consists 

in verifying that Int shows either a local or global minimum around the discrepancy term 

minimal iteration. 

Figure 6.8 (a) shows Int over iterations with all intensity relations taken into account. As 

can be checked, the fact that the relations that are not properly fitted over the whole 

minimization process (relations 8 and 7) are taken into account, is reflected on the shape of 

Int, provoking peaks in certain iterations, as it corresponds to their evolution in Figure 6.7 

(a). However, by discarding the intensity relation 8, the evolution of Int depicted in Figure 

6.8 (b) is obtained, where a local minimum can be observed around the discrepancy term 

minimal iteration and, preventing both relations 8 and 7 from entering equation (6.2), we 

get the evolution of Int shown in Figure 6.8 (c), where the previous minimum becomes 

global instead of local.  
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Figure 6.8. Evolution of Int in an inversion from synthetic data affected by 5% uniform noise 
corresponding to a square heat source (w = h = 1 mm) buried at a depth |d| = 1.6 mm, (a) taking all 
intensity relations into account, (b) discarding relation 8, which relates data at the two highest modulation 
frequencies, and (c) discarding relations 8 and 7, which involve data at 12.8 and 6.4 Hz and data at 6.4 and 
3.2 Hz, respectively. 
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As will be shown in section 6.5, this does not mean that entering surface temperature data 

in which the signal is highly affected by noise harms the retrieved normalized heat source 

distribution. However, for the sake of clarity in the visualization of this second stopping 

criterion, intensity relations fitted at no time, i.e., that do not attempt to reach 1 over the 

whole minimization process, can be prevented from entering equation (6.2), as they have 

no effect on the interpretation of the criterion.   

This is a way of proving that the intensities are fitted in an optimum way when the 

minimization process is stopped, which supports the criterion of stopping iterations at the 

discrepancy term minimal iteration. In this way, optimum normalized heat source 

distributions are obtained, which allow for the verification of the convergence property of 

the algorithm, as has been shown in Figure 6.5. 

6.4.3 Non-uniform noise distribution 

Back to noise distribution in multi-frequency data, we now analyse the effect on the 

reconstructions of entering synthetic data with different noise distributions among 

modulation frequencies. To this purpose, we have generated synthetic noisy data with two 

different non-uniform noise distributions and we have compared the resulting 

reconstructions to the one retrieved from data with uniformly distributed noise, being the 

global noise level the same in the three cases. 

Taking the noise level at the intermediate modulation frequency flock-in = 0.8 Hz as common 

point, we have considered two cases: favouring higher flock-in, which is equivalent to 

analysing more images in the lock-in process at higher modulation frequencies 

progressively, and also the opposite case, where lower flock-in are favoured.  

To illustrate this, in Table 6.1 we show the ratio of the norm of the noise to the norm of the 

exact data at each modulation frequency, 
kf
δ , corresponding to a square heat source (w = h 

= 1 mm) buried at a depth |d| = 2.0 mm, along with the equivalent number of images 

analysed, for the three cases. The signal in each case has been adjusted so that the global 

noise level, i.e., the ratio of the norm of the noise to the norm of the data summed all over 

the whole modulation frequency range, is 10% in the three cases.  
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Table 6.1. Ratio of the norm of the noise to the norm of the exact data at each modulation frequency, 
kf
δ , 

along with the equivalent number of images analysed in the lock-in process, in synthetic data 
corresponding to a square heat source of w = h = 1 mm buried at a depth |d| = 2.0 mm, with noise added in 
three different ways: uniformly distributed (centre) and non-uniformly distributed favouring both higher 
(right) and lower modulation frequencies (left), considering flock-in = 0.8 Hz as common point. The global 
noise level in all cases is 10%. 

Figure 6.9 shows the reconstructions from synthetic data affected by 10% noise added in 

these three ways: uniformly distributed (centre) and non-uniformly distributed favouring 

low (left) and high (right) modulation frequencies. As may be noted, favouring high 

modulation frequencies gives the most accurate reconstruction of all. It is worth noting that 

as the equivalent number of images at high modulation frequencies decreases, the depth of 

the heat source is gradually less accurately recovered. 

 

Figure 6.9. Grey level representation of the normalized heat source distribution inverted from synthetic 
data corresponding to a square heat source (w = h = 1 mm) buried at a depth (a) |d| = 2.0 mm with noise 
added in three different ways: uniformly distributed (centre) and non-uniformly distributed favouring low 
(left) and high (right) modulation frequencies, being the global noise level 10% in all cases. Retrieved by 
implementing the optimum inversion protocol. Real contours depicted in red and non-uniform noise 
distribution and quality factor F on top of and under each reconstruction, respectively.  
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All in all, at least the same number of images at all modulation frequencies should be used 

for the lock-in analysis in vibrothermography experiments in order to increase the accuracy 

of the reconstructions, as high frequency information contains higher spatial resolution.  

All reconstructions shown from now on will be retrieved from synthetic data with 

uniformly distributed noise. 

6.5 Effect of flock-in in multi-frequency data and design of 

experiments 

In the analysis of the inverse problem, we have seen that combining vibrothermography 

data obtained at various modulation frequencies allows us to reduce the ill-posedness of the 

inverse problem, since we use more information than if we performed the inversions 

entering data at any single modulation frequency (see Figure 5.2).  

In order to check this fact and illustrate the importance of multi-frequency data on the 

accuracy of the retrieved normalized heat source distribution, in Figure 6.10 (a) we show 

reconstructions of a standard square (w = h = 1 mm) buried at a depth |d| = 2.6 mm, but 

inverting synthetic data at each modulation frequency separately (the corresponding fk are 

displayed on top of each reconstruction). The reconstruction of the same heat source 

combining all modulation frequencies is also shown in Figure 6.10 (b). Data are affected by 

5% added uniform noise. 

 

Figure 6.10. Grey level representation of the normalized heat source distribution inverted from synthetic 
data with 5% added uniform noise corresponding to a square heat source (w = h = 1 mm) buried at a depth 
|d| = 2.6 mm, retrieved by implementing the optimum inversion protocol and entering (a) data at each 
modulation frequency separately, namely, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4 and 12.8 Hz, and (b) multi-
frequency data. The corresponding fk is displayed on top of each reconstruction. Real contours depicted in 
red and values of the quality factor F under each reconstruction. 
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As can be observed, the F value in the reconstruction obtained by entering multi-frequency 

data is higher than that in any other reconstructions retrieved from data at a single 

modulation frequency. Actually, the heat source cannot be retrieved from data at a single 

modulation frequency if this ranges from 1.6 to 12.8 Hz as the signal is highly affected by 

noise. Instead, some artefacts can be seen on the upper part of the search areas, which 

indicate that the inversion algorithm has been fitting basically noise. 

Nevertheless, we have checked that, when combining all modulation frequencies, entering 

data at the modulation frequencies in which surface temperature information is dominated 

by noise does not harm the inversions. In fact, entering such thermograms improves the 

accuracy of the reconstructions. The reason for this is that we introduce information to the 

inversion algorithm (signal “almost zero”), which is better than having no thermograms at 

all. Of course, the further addition of thermograms at higher modulation frequencies does 

not improve the quality of the retrieved areas indefinitely, as improvements get saturated. 

As we use multi-frequency data, the effect on the reconstructions of reducing the high 

frequency content is also checked here, considering a certain depth of the heat source and 

entering data containing a gradually narrower set of low frequency information. Figure 

6.11 (a) shows reconstructions from data corresponding to a square heat source (w = h = 1 

mm) buried at a depth |d| = 2 mm, at a gradually narrower set of modulation frequencies: 

from 0.05 to 0.2 Hz (left), from 0.05 to 1.6 Hz (centre) and from 0.05 to 12.8 Hz (right).  

 

Figure 6.11. Grey level representation of the normalized heat source distribution corresponding to 
synthetic data affected by 5% uniform noise corresponding to a square heat source of w = h = 1 mm, (a) 
buried at a depth |d| = 2.0 mm and retrieved by entering data at three doubling modulation frequency sets: 
from 0.05 to 0.2 Hz (left), from 0.05 to 1.6 Hz (centre) and from 0.05 to 12.8 Hz (right), (b) buried at a 
depth |d| = 2.0 mm and entering data at uniformly distributed modulation frequencies and (c) buried at a 
depth |d| = 4.0 mm and entering data at both flock-in distributions: doubling (left) and uniformly distributed 
(right) modulation frequencies. Retrieved by using the optimum inversion protocol. Real contours depicted 
in red and values of the quality factor F under each reconstruction.  



Analysis of the inversion algorithm 

133 

It can be seen that the quality of the reconstructions decrease as high frequency information 

is lost, for a heat source at a certain depth.  

As for the design of experiments, i.e., the way the different flock-in are distributed within the 

ends of our modulation frequency set (0.05 and 12.8 Hz), we have seen in Figure 5.4 (a) 

that the information provided for the resolution of the inverse problem with either flock-in 

distribution (doubling or uniformly distributing modulation frequencies, see Table 5.1) is 

very similar.  

However, when it comes to the quality of the reconstructions, the appropriate flock-in 

distribution becomes determinant, for synthetic data affected by the same percentage of 

uniform noise. In order to evince this, Figure 6.11 (b) shows the reconstruction of a square 

heat source (w = h = 1 mm) buried at |d| = 2.0 mm, retrieved from synthetic data with 5% 

added uniform noise at uniformly distributed modulation frequencies between 0.05 and 

12.8 Hz. Comparing it to the reconstruction shown in Figure 6.11 (a) (right), it can be noted 

that the resulting reconstruction is much less accurate. The reason for this is that there are 

many more high modulation frequencies with very little useful information, as these 

frequencies have a very poor signal-to-noise ratio. This provokes no significant differences 

in reconstructions of shallow heat sources, but as information carried by high modulation 

frequencies gets lost with depth, deeper reconstructions from data at uniformly distributed 

modulation frequencies are obtained with less information in relation to those retrieved 

from data at doubling modulation frequencies.  

Following this idea, in Figure 6.11 (c) we show reconstructions of a square heat source (w 

= h = 1 mm) buried at |d| = 4.0 mm, retrieved from synthetic data with 5% added uniform 

noise using both flock-in distributions: doubling (left) and uniformly distributing modulation 

frequencies (right). At this depth, the effect of high frequency content loss becomes 

evident. Provided that we are interested in retrieving as deep heat sources from 

vibrothermography data as possible, it is clear that doubling flock-in is the optimum choice 

for the design of experiments.  

All in all, it can be concluded that doubling modulation frequencies that range from 0.05 to 

12.8 Hz is the optimum design of experiments, which gives most accurate reconstructions. 
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6.6 Discrepancy term evolution and effect of the 

regularization parameters 

As introduced in the description of the inversion algorithm (section 5.3), the regularization 

parameters corresponding to Tikhonov, L1 and Total Variation functionals are of vital 

importance in the inverse problem of this thesis. The initial values and decay factors of the 

regularization parameters, defined in equations (5.24), (5.25) and (5.26), determine the 

shape of the discrepancy term evolution, i.e., the value of the discrepancy term in equation 

(5.18) as a function of iterations. Although the shape of the discrepancy term evolution 

varies in each inversion, a common behaviour can be observed regardless of the geometry 

of the heat sources: the minimum discrepancy term is reached in monotonically fewer 

iterations with increasing depth of the heat source, which is related to the fact that deeper 

heat sources are retrieved with a gradually narrower set of low frequency information. In 

other words, the less amount of information enters the algorithm, the sooner the solution is 

reached. To illustrate this, Figure 6.12 shows the discrepancy term evolution in inversions 

from synthetic data affected by 5% uniform noise corresponding to a standard square heat 

source of w = h = 1 mm buried at two different depths, namely, |d| = 0.2 (a) and 5.0 mm 

(b). The resulting reconstructions can be found in Figure 6.3 (c). 
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Figure 6.12. Discrepancy term evolution in inversions from synthetic data affected by 5% uniform noise 
corresponding to a square heat source of w = h = 1 mm buried at |d| = 0.2 (a) and 5.0 mm (b), using the 
values of the regularization parameters defined in equations (5.24), (5.25) and (5.26). Retrieved by 
implementing the optimum inversion protocol. 
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As can be observed, whereas for a depth |d| = 0.2 mm the minimum discrepancy term is 

reached in 30 iterations, for a depth |d| = 5.0 mm, the solution is found in only 10 

iterations. By increasing the initial values of the regularization parameters, 
0Tkα , 

10
Lα  and 

0TVα , and their decay factors, Tkγ , 
1Lγ  and TVγ , the minimization process may be extended. 

However, we have checked that performing the inversions over a higher number of 

iterations does not produce significant improvements on the retrieved normalized heat 

source distribution. In other words, the discrepancy term minimizer iteration number is 

independent from the accuracy of the reconstruction, as long as the minimization 

converges. Therefore, it can be said that all values defined in equations (5.24), (5.25) and 

(5.26) are optimally selected. 

Only in inversions where the residual cannot be minimized, the regularization degree needs 

to be increased. This situation may arise when very little information regarding the heat 

source distribution is entered, or for surface temperature data affected by a very high noise 

percentage. As an example, in Figure 6.13 (a) we show the discrepancy term evolution in 

an inversion from synthetic data with 5% added uniform noise corresponding to a square 

heat source (w = h = 1 mm) buried at a depth |d| = 2.0 mm at uniformly distributed flock-in.  
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Figure 6.13. Discrepancy term evolution in inversions from synthetic data with 5% added uniform noise 
corresponding to a square heat source of w = h = 1 mm buried at a depth |d| = 2.0 mm obtained at 
uniformly distributed modulation frequencies with (a) values of the regularization parameters defined in 

equations (5.24), (5.25) and (5.26) and (b) multiplying 
0Tkα , 

10
Lα  and 

0TVα  by 10,000. Retrieved by 

implementing the optimum inversion protocol. 
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The inversion algorithm cannot minimize the residual because this flock-in distribution is 

mainly composed of high frequency information, which at |d| = 2.0 mm is basically noise. 

Instead, if we multiply 
0Tkα , 

10
Lα  and 

0TVα  by 10,000, the discrepancy term evolution 

shown in Figure 6.13 (b) is obtained, in which the minimization converges. This last 

inversion corresponds to the reconstruction shown in Figure 6.11 (b). Logically, the same 

has needed to be done to obtain the reconstruction depicted in Figure 6.11 (c) from data at 

uniformly distributed flock-in, which further proves that doubling the modulation frequencies 

is the optimum design of experiments if we want to see the performance of the inversion 

algorithm to retrieve heat sources buried gradually deeper. 

6.7 Spatial resolution of the algorithm  

At this point, it is worth analysing the ability of the algorithm to distinguish between 

multiple heat sources and reconstruct them separately, i.e., the spatial resolution. This 

section determines the spatial resolution of the inversion algorithm as a function of depth. 

The analysis of the spatial resolution of the inversion algorithm has been carried out twice: 

first entering normalized amplitudes and stabilizing the inversion with TVAnisot and then 

using the optimum inversion protocol (implementing TVIsot and entering raw amplitudes). 

The results obtained for both cases are then shown and discussed. 

6.7.1 Implementing TVAnisot with normalized amplitudes 

To start with, we have picked two square heat sources of the same size (w1 = w2 = h1 = h2 

= 1 mm) buried at the same depth and emitting the same maximum homogeneous flux, and 

we have performed inversions by modifying the separation distance between centres, dcen, 

with the aim of checking how well can the inversion algorithm reconstruct both heat 

sources separately as a function of dcen. This procedure has been carried out for different 

depths of the two heat sources, namely, |d1| = |d2| = 0.2, 0.6, 1.2, 1.6, 2.0, 2.6 and 3.2 mm, 

all with 5% added uniform noise.  

As an example, Figure 6.14 shows reconstructions corresponding to the two squares buried 

at depths |d1| = |d2| = 0.2 (a) and 1.6 mm (b) for different dcen. The value of dcen (in mm) is 

depicted on top of each reconstruction.  
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Figure 6.14. Reconstructions of two square heat sources of dimensions w1 = w2 = h1 = h2 = 1 mm and 
emitting with the same maximum homogeneous flux, for different dcen, buried at depths |d1| = |d2| = 0.2 (a) 
and 1.6 mm (b), in inversions using TVAnisot and entering normalized amplitudes. Data are affected by 5% 

uniform noise. The contours of the real heat sources are depicted in red and values of dcen and ,
midQ
δ α  

displayed on top of and under each reconstruction, respectively. 

In order to state whether the two heat sources are resolved or not in a reconstruction, we 

have established a resolution criterion. For this purpose, for each depth of the heat sources, 

we have plotted the values of the retrieved normalized heat source distribution in the mid-

point between the two maxima, ,
midQδ α , as a function of dcen and we have selected a value of 

0.3 as limiting criterion: if ,
midQδ α  is below 0.3, the two heat sources can be considered to be 

resolved. The values of ,
midQδ α  for the corresponding dcen in Figure 6.14 are depicted under 

each reconstruction. We refer to the separation distance between centres for which ,
midQδ α  = 

0.3 as dcenLim.  

These curves are shown in Figure 6.15 for depths |d1| = |d2| = 0.2 (a) and 1.6 mm (b). 

According to our resolution criterion, the distance between centres necessary for the two 

heat sources to be resolved, buried at |d1| = |d2| = 0.2 mm, is 1.55 mm, whereas if they are 

buried at |d1| = |d2| = 1.6 mm, dcenLim = 3.1 mm. The most relevant inversions performed as 

a function of dcen for each depth are collected in appendix A.1.  
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Figure 6.15. (a) Values of the retrieved ,
midQ
δ α  as a function of dcen, for two square heat sources of 

dimensions w1 = w2 = h1 = h2 = 1 mm buried at a depth |d1| = |d2| = 0.2 (a) and 1.6 mm (b). Data are 
affected by 5% uniform noise. 

As mentioned above, we have obtained dcenLim for all the considered depths in order to 

determine the spatial resolution of the inversion algorithm as a function of depth. The 

results are depicted in Figure 6.16, where the values of dcenLim at each depth have been 

fitted to a 3rd order polynomial in order to extrapolate dcenLim at any other depth between 0.2 

and 3.2 mm. The contours of the two heat sources at all the considered depths are also 

represented by grey squares.  

 

Figure 6.16. dcenLim for the resolution of two square heat sources of w1 = w2 = h1 = h2 = 1 mm as a 
function of depth, in inversions from data affected by 5% uniform noise, implementing TVAnisot and 
entering normalized amplitudes. The considered depths are: |d1| = |d2| = 0.2, 0.6, 1.2, 1.6, 2.0, 2.6 and 3.2 
mm. The values of dcenLim have been fitted to a 3rd order polynomial function (black lines) and the contours 
of the heat sources are represented by grey squares.  
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According to Figure 6.16, the two square heat sources buried at a certain depth and 

emitting with the same maximum homogeneous flux should be located in the outer regions 

of the fitted black curves in order to be resolved in inversions implementing TVAnisot and 

entering normalized amplitudes, for data affected by 5% uniform noise. As expected, 

dcenLim increases with depth, meaning that the spatial resolution of the inversion algorithm 

decreases as the heat sources are buried deeper inside the material.  

Provided that we have obtained dramatic improvements on the reconstructions of single 

heat source distributions by implementing the optimum inversion protocol, we next show 

the same analysis using TVIsot and entering raw amplitudes. 

6.7.2 Implementing TVIsot with raw amplitudes 

In order to show what reconstructions using the optimum protocol look like when inverting 

multiple heat sources, Figure 6.17 shows reconstructions from synthetic data affected by 

5% uniform noise corresponding to two square heat sources of w1 = w2 = h1 = h2 = 1 mm 

buried at depths |d1| = |d2| = 0.2 (a) and 1.6 mm (b) with increasing dcen. 

 

 

Figure 6.17. Reconstructions from synthetic data affected by 5% uniform noise corresponding to two 
squares of dimensions w1 = h1 = w2 = h2 = 1 mm buried at a depth |d1| = |d2| = 0.2 (a) and 1.6 mm (b) as a 

function of dcen. Contours of the real heat sources depicted in red and values of dcen and ,
midQ
δ α

 displayed on 

top of and under each reconstruction, respectively.  
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Similarly, the most relevant reconstructions at the rest of the considered depths using the 

optimum inversion protocol can be found in appendix A.1. 

We have compared the limiting distances between centres as a function of depth obtained 

for both inversion procedures: the comparison is shown in Figure 6.18, where maroon lines 

are the 3rd order polynomial fit and the red squares represent the contours of the two heat 

sources at all the considered depths, in inversions using the optimum protocol. 

Since for the deepest heat sources (|d1| = |d2| = 3.2 mm), dcenLim reduces from 6.25 to 4 mm, 

two more depths have been considered in inversions using the optimum protocol, namely, 

|d1| = |d2| = 4.0 and 5.0 mm. 

 

Figure 6.18. Comparison of dcenLim for squares of w1 = h1 = w2 = h2 = 1 mm as a function of depth, using 
TVAnisot and entering normalized amplitudes (black) and using TVIsot and entering raw amplitudes (red), in 
inversions from data affected by 5% uniform noise. A 3rd order polynomial fit of dcenLim at each depth 
(solid lines) and the contours of the heat sources (squares) are represented. The depths of the squares are 
|d1| = |d2| = 0.2, 0.6, 1.2, 1.6, 2.0, 2.6 and 3.2 mm. When implementing the optimum inversion protocol, 
also |d1| = |d2| = 4.0 and 5.0 mm. 

All the limiting distances obtained for both methods, represented in Figure 6.18, are 

summarized in Table 6.2.  

Table 6.2. Limiting separation distances for the resolution of two square heat sources of w1 = h1 = w2 = h2 
= 1 mm, dcenLim, for both inversion procedures (using TVAnisot and entering normalized amplitudes and 
using TVIsot and entering raw amplitudes) for all the considered depths. 

 

|d| (mm) 0.2 0.6 1.2 1.6 2.0 2.6 3.2 4.0 5.0 

dcenLim (mm) 

TVAnisot & norm. amplitudes  
1.55 1.92 2.90 3.10 4.32 5.47 6.25 - - 

dcenLim (mm) 

TVIsot & raw amplitudes 
1.55 1.92 2.20 2.55 2.90 3.45 4.00 4.90 5.90 
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It is worth noting that dcenLim for the two deepest squares (|d1| = |d2| = 5.0 mm) with the 

optimum inversion protocol is still shorter than for a depth |d1| = |d2| = 3.2 mm using 

TVAnisot and entering normalized amplitudes.  

6.8 The shadowing effect 

In order to see how the inversion algorithm behaves if we switch from our standard square 

heat source to a rectangle having one side much larger than the other one, we now perform 

inversions of rectangular heat sources of varying width and height.  

Figure 6.19 (a) shows reconstructions from synthetic data with 5% added uniform noise 

corresponding to a rectangle of width w = 1 mm and two different heights, namely, h = 5 

and 3 mm, buried at a depth |d| = 0.2 mm. As can be observed, the upper part of the 

rectangles is accurately reconstructed and as the height of the heat sources increases in 

depth, the lower parts become wider and diffuse. The reason for this is that shallower 

positions within the heat source distribution have a stronger contribution to the surface 

temperature than deeper positions, provoking the lower parts of the retrieved heat sources 

look poorly defined. This effect is known as shadowing.  

 

Figure 6.19. Grey level representation of the retrieved normalized heat source distribution corresponding 
to synthetic data with 5% added uniform noise for (a) rectangular heat sources of width w = 1 mm and two 
different heights, namely, h = 5 (left) and 3 mm (right), buried at a depth |d| = 0.2 mm, and (b) a 
rectangular heat source of w = 3 mm and h = 1 mm buried at a depth |d| = 0.2 mm. Retrieved by 
implementing TVIsot and using raw amplitudes. Real contours depicted in red and quality factor F values 
under each reconstruction. 

Also, it can be mentioned that asymmetries along the height of the retrieved heat sources, 

provoked by the ill-posed character of the inverse problem in the presence of noise, are 
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more likely to appear as the height of the rectangles increases. Nevertheless, although 

blurred, the overall height of the rectangles is well estimated in both reconstructions. 

However, considering a rectangular heat source of w = 3 mm and h = 1 mm (see Figure 

6.19 (b)) the shadowing disappears, which allows concluding that the shadowing effect 

weakens as the difference in depth between shallowest and deepest positions within the 

heat source area decreases.  

Seeing that the shadowing effect appears in long and deep geometries, it is worth further 

studying it, since apart from arising between shallow and deep positions within a certain 

heat source distribution, it may also arise between different heat sources retrieved within 

the same inversion. 

In the analysis of the spatial resolution of the algorithm carried out in section 6.7, we have 

considered two square heat sources of the same size, buried at the same depth and emitting 

with the same homogeneous flux. In this way, the resulting surface temperature distribution 

is symmetric and both heat sources are equally retrieved. However, if one of these three 

parameters is different in one of the two heat sources in such a way that its contribution to 

the surface temperature data is stronger than that of the other heat source, its reconstruction 

may be favoured. In this case, a heat source may shadow the other one.  

In order to give an idea of what an asymmetric surface temperature distribution generated 

by two heat source distributions looks like, in Figure 6.20 (a) we show synthetic noisy 

Ln(|T|) and the Ψ thermograms for two square heat sources buried at the same depth |d1| = 

|d2| = 0.2 mm, with dcen = 4 mm, both emitting with the same homogeneous flux Q1 = Q2 

but having different sizes (w1 = h1 = 1 mm and w2 = h2 = 1.5 mm), generated at flock-in = 0.1 

Hz. The fitted thermograms are depicted in Figure 6.20 (b). 
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Figure 6.20. (a) Synthetic data affected by 5% uniform noise, Ln(|T|) (left) and Ψ (right) and (b) fitted 
thermograms, obtained at flock-in = 0.1 Hz, for two square heat sources buried at a depth |d1| = |d2| = 0.2 
mm, with a separation distance between centres dcen = 4 mm, both emitting with the same flux Q1 = Q2 but 
having different sizes: w1 = h1 = 1 mm and w2 = h2 = 1.5 mm. 

With the aim of analysing the ability of the algorithm to deal with shadowing arising 

between two heat sources, we have inverted synthetic data with 5% added uniform noise 

corresponding to two square heat sources with dcen = 2 mm, considering three cases in 

which asymmetric surface temperature distributions are obtained. Note that for dcen = 2 

mm, two equal heat sources at a depth |d1| = |d2| = 0.2 mm are considered to be resolved, 

according to our resolution criterion. The heat source on the left (w1 = h1 = 1 mm) remains 

the same for the three cases, emitting with a certain flux Q1 and buried at a depth |d1| = 0.2 

mm, whereas the heat source on the right varies as follows in each case: (a) increasing the 

size (w2 = h2 = 1.5 mm), (b) decreasing the flux it emits with (Q2 = 0.5 Q1) and (c) 

increasing the depth (|d2| = 1.2 mm). The reconstructions are depicted in Figure 6.21. 

 

Figure 6.21. Grey level representation of the normalized heat source distribution corresponding to 
synthetic data with 5% added uniform noise for two square heat sources, considering three cases where the 
heat source on the left (w1 = h1 = 1 mm), buried at a depth |d1| = 0.2 mm and emitting with a flux Q1, 
remains the same. The separation distance between centres is dcen = 2 mm and the heat source on the right 
varies as follows in each case: (a) increasing the size (w2 = h2 = 1.5 mm), (b) decreasing the flux it emits 
with (Q2 = 0.5 Q1) and (c) increasing the depth (|d2| = 1.2 mm). Retrieved by implementing TVIsot and 
using raw amplitudes. Real contours depicted in red and individual quality factor F values under each 
reconstruction. 
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As for the effects of increasing the size or decreasing the flux of the heat source on the 

right (see Figure 6.21 (a) and (b), respectively), the algorithm recovers both heat sources 

very well, obtaining very accurate individual reconstructions. We have checked that the 

value of the retrieved Qδ,α in the centre of the heat source on the right is 0.5 in Figure 6.21 

(b). This proves that, in these cases, the fact that one of the two heat sources contributes 

more significantly to the surface temperature data entering the algorithm, does not prevent 

the other heat source from being recovered accurately.  

However, in the case of increasing the depth of the heat source on the right (Figure 6.21 

(c)), the shadowing is clearly appreciated, since its F value decreases from 0.60 (in Figure 

6.3 (c) at a depth |d| = 1.2 mm) to -0.84. The shadowing effect here produces an effect 

similar to reducing the intensity of the right heat source but with a wider reconstruction. 
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7 Behaviour of the inversion algorithm for 

different heat source distributions 

 

This section analyses the performance of the inversion algorithm to characterize heat 

sources representing vertical cracks of geometries other than squares, from synthetic data. 

As for kissing heat sources, the ability to retrieve the particular features of the different 

geometries such as smooth contours or pointy ends is studied. With the aim of approaching 

situations arising in real experiments, open cheat sources are recovered, representing the 

regions within surface breaking open cracks where heat production takes place. In addition, 

inhomogeneous heat generation in both kissing and open heat sources is considered.

 

7.1 Kissing heat sources 

The performance of the inversion algorithm to retrieve heat sources representing vertical 

homogeneous kissing cracks of other geometries than those considered in the main analysis 

(section 6) is analysed now, using synthetic data and implementing the optimum inversion 

protocol.  

In addition, as a first step for the characterization of inhomogeneous heat source 

distributions, width- and height-dependent flux variations have been considered for square 

geometries.  
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In order to check the ability of the algorithm to reproduce the particular shapes of the 

different geometries, semicircular and triangular heat sources are first considered, as they 

feature smooth contours and pointy ends, respectively. Just as in the direct problem, sUp 

and sDown refer to semicircles with the curved part upward and downward, respectively, 

and tUp and tDown stand for triangles with the apex on the middle upward and downward, 

respectively. The area of all semicircular and triangular heat sources is 1 mm2 so that the F 

values obtained can be compared to those obtained for square heat sources. 

Figure 7.1 (a) and (b) show reconstructions obtained from synthetic data affected by 5% 

uniform noise corresponding to sUp and sDown of radius R = 0.8 mm buried at increasing 

depths, respectively, retrieved by implementing TVIsot and entering raw amplitudes. The 

depths for all heat sources are: |d| = 0.2, 0.6, 1.2, 1.6, 2.6, 3.2, 4.0 and 5.0 mm. It is worth 

noting that the obtained F values are similar to those for square heat sources as depth 

increases. 

 

 

Figure 7.1. Grey level representation of the normalized heat source distribution in inversions from 
synthetic data affected by 5% uniform noise corresponding to (a) sUp and (b) sDown (R = 0.8 mm) buried 
at increasing depths, retrieved by implementing TVIsot and entering raw amplitudes. The depths of the heat 
sources are: |d| = 0.2, 0.6, 1.2, 1.6, 2.6, 3.2, 4.0 and 5.0 mm. Real contours depicted in red and values of 
the depth of the heat sources and quality factor F on top of and under each reconstruction, respectively. 
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As for the particular shapes of the semicircles, the two shallowest heat sources are very 

well reproduced, especially their upper part, notably in the case of sDown, where the 

straight upper contour does not coincide with the round shape favoured by TVIsot.  

Retrieving the lower contour of the heat sources is more challenging, unless it coincides 

with the round shape that TVIsot delivers by default, as in the case of sDown. As depth 

increases, rounded reconstructions dominate. Anyway, all depths are well recovered. 

As mentioned above, triangular heat sources have been considered in order to see the 

ability of the inversion algorithm to retrieve pointy features: we have inverted synthetic 

data affected by 5% uniform noise corresponding to tUp and tDown (w = h = 1.4 mm) 

located at increasing depths, namely, |d| = 0.1, 0.2, 0.4, 0.6, 1.0 and 2.0 mm. The depths for 

triangles start closer to the surface than for semicircles so that we can focus on the apex on 

the middle and distinguish it more easily, since pointy features are lost very fast with depth. 

The results are shown in Figure 7.2.       

 

 

Figure 7.2. Grey level representation of the normalized heat source distribution in inversions from 
synthetic data affected by 5% uniform noise corresponding to (a) tUp and (b) tDown, buried at increasing 
depths and retrieved by implementing TVIsot and entering raw amplitudes. The size of the triangles is w = h 
= 1.4 mm and the depths are: |d| = 0.1, 0.2, 0.4, 0.6, 1.0 and 2.0 mm. Real contours depicted in red and 
values of the depth of the heat sources and quality factor F on top of and under each reconstruction, 
respectively. 

As for tUp, the apex on the middle is well reproduced for the shallowest case (|d| = 0.1 

mm). At |d| = 0.2 mm it is still visible but fainter at the tip and it gets lost from |d| = 0.4 
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mm on, as can be seen in Figure 7.2 (a). The inversion algorithm cannot reproduce the 

other two apexes on the basis of the triangles at any depth.  

Regarding tDown, the opposite happens: the two apexes on the basis of the triangles along 

with the straight basis are very well reproduced down to |d| = 0.6 mm, and the presence of 

the apex on the middle in the central lower side, although rounded and blurred, is pointed 

out by the V shape of the reconstructions, especially at |d| = 0.1 mm. This is the reason 

why tDown gets higher quality factor F values than tUp, as there is a larger area to be 

retrieved on the upper side of the heat sources. Anyway, from |d| = 0.6 mm on, all sharp 

corners are lost and the retrieved shapes are completely rounded for both tUp and tDown, 

making the F values very alike.  

The fact that the particular features of the heat sources is very hard to distinguish due to the 

ill-posedness of the inverse problem was pointed out by the direct surface temperature 

distribution calculations shown in Figure 3.7 and Figure 3.8, which obviously worsens with 

increasing depth.  

In summary, we can conclude that for 1 mm2 heat sources in AISI 304, smoothly varying 

upper contours like in semicircles, can be retrieved accurately down to depths |d| = 0.6 mm, 

whereas sharp corners like in triangles are more challenging to recover and can only be 

retrieved accurately if they are located at the shallowest positions within the heat sources 

and these are buried at depths that do not exceed |d| = 0.1 mm. 

Focusing on the shallowest positions for both semicircles and triangles where the particular 

features of the geometries are accurately recovered, we now want to observe if these details 

of the geometries can still be retrieved if we increase the noise level in the data, with the 

aim of checking the robustness of the inversion algorithm against noise. For this purpose, 

we increase the global noise level up to 10% and 15% and we retrieve sUp and sDown (R = 

0.8 mm) buried at a depth |d| = 0.2 mm, as well as tUp and tDown (w = h = 1.4 mm) 

submerged at a depth |d| = 0.1 mm, and compare the resulting reconstructions to those 

obtained from data affected by 5% uniform noise. The results are depicted in Figure 7.3. 

The most significant case is tUp (see Figure 7.3 (b)), where the apex on the middle is lost 

with increasing noise level, meaning that an accurate definition of the apex on the middle 

requires, in addition to shallow depths, noise levels under 5%. 
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Figure 7.3. Grey level representation of the normalized heat source distribution in inversions from 
synthetic data affected by 5%, 10% and 15% uniform noise, corresponding to (a) sUp and sDown (R = 0.8 
mm) buried at |d| = 0.2 mm and (b) tUp and tDown (w = h = 1.4 mm) buried at |d| = 0.1 mm, retrieved by 
implementing the optimum inversion protocol. Real contours depicted in red and values of the noise level 
in the data and quality factor F on top of and under each reconstruction, respectively.  

However, in the case of tDown and also for both semicircular heat source configurations 

shown in Figure 7.3 (a), the inversion algorithm is rather robust to noise, as the noise level 

does not significantly affect the quality of the reconstructions, just as for square heat 

sources (see Figure 6.6).  

Thus, it can be said that the inversion algorithm is more robust with respect to noise for 

geometries featuring smooth contours or straight edges than for those with pointy ends. 

As a first step to approach situations arising in vibrothermography experiments with real 

cracks, we have considered half-penny shaped heat sources, as this geometry is usually 

encountered in real cracks. We have considered three different cases of half-penny shaped 

heat source distributions, that go from deep and narrow to shallow and elongated, buried at 

a depth |d| = 0.2 mm. The reconstructions are shown in Figure 7.4. Obviously, the shallow 

and elongated half-penny shaped heat source distribution is the most accurately retrieved 

one, even its acute corners. Anyway, all half-pennies are accurately retrieved according to 

our accurate reconstruction criterion. 
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Figure 7.4. Grey level representation of the normalized heat source distribution corresponding to synthetic 
data with 5% added uniform noise generated for half-penny shaped heat sources that go from deep and 
narrow to shallow and elongated, going from left to right, buried at a depth |d| = 0.2 mm. Retrieved by 
implementing the optimum inversion protocol. Real contours depicted in red and values of the quality 
factor F under each reconstruction. 

Homogeneous heat source distributions have been considered so far, as they represent the 

ideal case where the whole crack geometry emits with uniform flux. However, we now 

study the ability of the algorithm to retrieve inhomogeneous heat source distributions as a 

first step to the characterization of inhomogeneous heat generation, since in real cracks, 

heat may not be produced homogeneously within the whole crack geometry due to the 

complexity of heat generation mechanisms. 

We start by a square heat source (w = h = 2 mm) buried at a depth |d| = 0.2 mm, 

considering two different cases of varying flux: width- and height-dependent flux. In turn, 

we have considered two alternatives for each case: the maximum flux being either at the 

centre or on the side of the square. In addition, a third case in which the flux varies with 

both height and width (the maximum flux being at the centre) has been considered too. The 

noise level is 5% in all cases. Figure 7.5 shows the reconstructions, retrieved by 

implementing the optimum inversion protocol. For the sake of clarity, the real heat source 

distributions are represented under each reconstruction. 

In all cases, the region within the heat source distribution where the heat flux is maximum 

is well identified, but the transition from maximum to null flux is more abrupt than in the 

real heat source distributions. However, nice gradual flux variations are recovered at the 

upper part of the heat sources shown in Figure 7.5 (a) and (b), where the whole flux 

gradient takes place at the shallowest positions of the squares. 
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Figure 7.5. Grey level representation of the normalized heat source distribution in inversions from 
synthetic data affected by 5% uniform noise corresponding to an inhomogeneous square heat source (w = 
h = 2 mm) buried at a depth |d| = 0.2 mm, considering various cases: width-dependent flux being the 
maximum flux (a) on the right side and (b) at the centre, height-dependent flux being the maximum flux 
(c) on the lower side and (d) at the centre, and (e) width- and height-dependent flux. (f) and (g) show the 
same as (a) and (b) but for a thread shaped heat source of w = 2 mm and h = 0.3 mm, buried at a depth |d| 
= 0.2 mm. Retrieved by implementing the optimum inversion protocol. Real heat source distributions 
represented under each reconstruction. 

Accordingly, two more heat sources have been considered: Figure 7.5 (f) and (g) represent 

the same flux variations as Figure 7.5 (a) and (b) but for a rectangular heat source of w = 2 

mm and h = 0.3 mm, buried at |d| = 0.2 mm, representing the geometry of a thread. The 

results prove that the inversion algorithm is able to retrieve width-dependent flux variations 

accurately, as long as the heat sources are shallow and very short in depth or, in the case of 

being longer, only at positions shallower than about 0.5 mm. For deeper positions, flux 

dependences cannot be appreciated and the reconstructions are dominated by the areas with 

maximum flux. Of course, a condition for the reproduction of these flux gradients is that 

they are performed over a long distance along y-axis in relation to the size of the mesh in 

plane Π. 

The inability to retrieve flux variations if they are deep or exhibit large gradients is a 

limitation of the inversion algorithm. 
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7.2 Open heat sources 

As a further step to approach situations arising in experiments with real cracks, it is worth 

tackling the case of surface breaking open cracks, to which vibrothermography is often 

applied, since we have proved that the inversion algorithm is able to reproduce the 

particular features of the different geometries for small depths. 

It has been shown that, in this kind of cracks, heat is usually produced at a given portion of 

the crack rather than at the whole crack geometry: at regions where the crack lips do not 

contact there is no frictional heating and, near the crack border, heat production may be 

also be prevented by closure stresses that lock the crack asperities. Accordingly, heat is 

generally produced at a certain band where crack lips’ contact and relative motion occur 

simultaneously.  

In this section, the ability of the inversion algorithm to characterize open heat sources of 

different geometries is checked. In addition to semicircular and half-penny shaped heat 

sources, we also consider rectangular and triangular geometries emitting with a 

homogeneous flux. 

Moreover, given that in this kind of cracks heat is most likely to be produced non-

homogeneously within the stimulated region, we also tackle the recovery of 

inhomogeneous fluxes, which can vary in different directions, for semicircular open heat 

sources. The geometries for open heat source distributions considered in this section are 

depicted in Figure 7.6. 

 

Figure 7.6. Geometries for strips representing open heat source distributions: (a) semicircle, (b) half-
penny, (c) triangle and (d) rectangle. 

In order to show what synthetic data affected by 5% uniform noise generated for open heat 

sources look like, Figure 7.7 (a) shows Ln(|T|) and Ψ thermograms for a semicircular strip 

of inner radius Ri = 1 mm and thickness e = 400 µm, buried at a depth |d| = 0.1 mm, 
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generated at flock-in = 0.2 Hz. The thickness in open heat sources refers to the band within 

the whole open crack surface where heat production takes place. Figure 7.7 (b) shows the 

fitted thermograms. 

 

 

Figure 7.7. (a) Synthetic data, Ln(|T|) (left) and Ψ (right) thermograms with 5% added uniform noise, 
generated at flock-in = 0.2 Hz, for a homogeneous semicircular open heat source of inner radius Ri = 1 mm 
and thickness e = 400 µm buried at a depth |d| = 0.1 mm, and (b) fitted thermograms. 

Since heat in open cracks is produced at a certain band, we first focus on recovering strips 

of different thicknesses: Figure 7.8 (a) shows reconstructions from synthetic data with 5% 

added uniform noise corresponding to semicircular heat sources of inner radius Ri = 1 mm 

and increasing thickness (e = 60, 100, 160, 220, 280, 340 and 400 µm), buried at a depth |d| 

= 0.1 mm, retrieved by implementing the optimum protocol. 
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As may be noted, the shallow ends of the bands are very well reproduced in all cases and, 

for the thickest heat sources (e = 340 and 400 µm), the whole geometry is very accurately 

retrieved. However, as thickness decreases, the shadowing effect becomes gradually more 

significant at the lower part of the bands, as the deep central areas look larger and fainter, 

with clear definition loss. Actually, for the thinnest strips (e = 60 and 100 µm), the deep 

central area is very challenging to retrieve due to the shadowing effect. It is worth 

mentioning that, in these cases, the size of the mesh in plane Π may also be a limiting 

parameter affecting the accuracy of the reconstructions. 

As an attempt to reproduce the central part of a thin band more accurately, in Figure 7.8 (b) 

we show the reconstruction of a larger shallow and elongated half-penny shaped open heat 

source of outer width we = 5.6 mm, outer height he = 1 mm and thickness e = 200 µm, 

buried at a depth |d| = 0.1 mm. Although the deep central part remains faint, the inversion 

algorithm is able to show the path the band follows from one tip to the other one very well. 

 

 

Figure 7.8. Grey level representation of the normalized heat source distribution in inversions from 
synthetic data with 5% added uniform noise corresponding to (a) homogeneous semicircular open heat 
sources of Ri = 1 mm and increasing thickness, namely, e = 60, 100, 160, 220, 280, 340 and 400 µm, 
buried at a depth |d| = 0.1 mm and (b) a homogeneous shallow and elongated half-penny shaped open heat 
source of outer width we = 5.6 mm, outer height he = 1 mm and thickness e = 200 µm, buried at a depth |d| 
= 0.1 mm. Retrieved by implementing the optimum inversion protocol. Values of the thickness (in µm) of 
the bands and quality factor F displayed on top of and under each reconstruction, respectively. 
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As for rectangular open heat sources, we have inverted synthetic data affected by 5% 

uniform noise representing a square crack of outer width we = 2.5 mm, outer height he = 2.5 

mm and thickness e = 500 µm, buried at a depth |d| = 0.2 mm, and we have looked at the 

effects of increasing the width (we = 3.75 and 5 mm) maintaining the height, as well as 

reducing the height (he = 1.8 and 1 mm) keeping the width constant. The results are shown 

in Figure 7.9 (a): the square open heat source is placed on the middle and the effects of 

increasing the width and decreasing the height are depicted on its right and left sides, 

respectively. As can be observed, the two tips, and therefore, the thickness of the bands, are 

very accurately retrieved.  

Regarding the effect of increasing the width, the retrieved central areas, although rounded 

because of the inherent effect of TVIsot and blurred due to the shadowing, show the path the 

bands follow and get narrower with increasing width. We can also mention that any corners 

on the band’s path are somehow marked. As for the effect of decreasing the height, 

logically the “hole” in the middle is easier to retrieve the larger the width-to-depth ratio.  

 

 

Figure 7.9. Grey level representation of the normalized heat source distribution in inversions from 
synthetic data with 5% added uniform noise corresponding to (a) homogeneous rectangular open heat 
sources buried at a depth |d| = 0.2 mm: the reconstruction on the centre (outer width we = 2.5 mm, outer 
height he = 2.5 mm and thickness e = 500 µm) is the standard square and variations in width (we = 3.75 
and 5 mm) as well as in height (he = 1.8 and 1 mm) are considered on its right and left sides, respectively, 
(b) triangular open heat sources of we = 2.5 mm and heights he = 1 and 2.5 mm buried at a depth |d| = 0.2 
mm, and (c) same as (b) but at a depth |d| = 0.8 mm. Retrieved by implementing the optimum inversion 
protocol. Real contours depicted in red and values of the quality factor F under each reconstruction. 
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Reconstructions of triangular open heat sources buried at |d| = 0.2 mm are shown in Figure 

7.9 (b), from synthetic data affected by 5% uniform noise. The outer width of the triangles 

is we = 2.5 mm, the thickness is e = 0.5 mm and two outer heights are considered, he = 1 

and 2.5 mm. Again, the wider the “hole” between the two tips of the strips, the easier is for 

the inversion algorithm to retrieve the open geometry. Figure 7.9 (c) shows reconstructions 

of the same triangles but buried at a depth |d| = 0.8 mm. Although burying this type of heat 

sources makes no practical sense since open cracks are usually found reaching the surface, 

these reconstructions are shown in order to observe the ability of the algorithm to retrieve 

buried open heat sources: only the overall geometry of the heat sources can be recovered 

and the shadowing effect almost disappears, probably due to the reduction of spatial 

resolution that retrieving heat sources with less high frequency information implies. 

Back to the semicircular geometry, it has been mentioned before that heat is most likely to 

be produced not homogeneously within the stimulated band, in experiments with real open 

cracks. In order to further simulate these type of cracks, three cases of varying flux have 

been considered: depth-, angle- and radius-dependent flux. Figure 7.10 shows the 

reconstructions from synthetic data affected by 5% uniform noise corresponding to 

semicircular strips of (a) inner radius Ri = 1 mm and thickness e = 400 µm with depth-

dependent flux, (b) inner radius Ri = 1 mm and thickness e = 400 µm with angle-dependent 

flux and (c) inner radius Ri = 1 mm and thickness e = 800 µm with radius-dependent flux. 

The depth of the three heat sources is |d| = 0.1 mm and the real heat source distribution 

from which surface temperature data are generated is represented under each 

reconstruction. 

 

Figure 7.10. Grey level representation of the normalized heat source distribution inverted from synthetic 
data affected by 5% uniform noise corresponding to semicircular open heat sources, buried at a depth |d| = 
0.1 mm, considering three inhomogeneous flux cases: (a) flux varying with depth (Ri = 1 mm and e = 400 
µm), (b) flux varying with angle (Ri = 1 mm and e = 400 µm) and (c) flux varying with radius (Ri = 1 mm 
and e = 800 µm). Retrieved by implementing the optimum inversion protocol. Real contours depicted in 
red and real heat source distributions from which surface temperature data are calculated represented 
under each reconstruction. 
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As for flux varying with depth, it is clear that the absence of heat emitted from the tips of 

the band allows the central deep part to dominate the reconstruction and, thus, the 

shadowing effect disappears. Because of this, the enlargement of the retrieved central area 

is more significant in comparison to that in the reconstruction of a homogeneous heat 

source of the same geometry and size (see Figure 7.8 (a)). Anyway, the flux dependence is 

well recovered.  

Regarding flux varying with angle, the algorithm behaves much better: the tip on the right 

is accurately defined and the variation from maximum to null flux is nicely recovered, just 

as in the case of the thread geometry shown in Figure 7.5 (f), which further proves that 

width- or angle-dependent fluxes can be accurately retrieved as long as the bands are thin 

and the whole flux variation takes place over a long distance along y-axis in relation to the 

size of the mesh of the search area.  

Lastly, the radial dependence of the flux is not identified at all. In the reconstruction 

corresponding to Figure 7.10 (c) the inner part of the tips of the strip are vanished, which 

can be easily mixed up with a thinner homogeneous open semicircle of same outer radius. 

In conclusion, angle-dependent fluxes are very well recovered, even at deep positions, as 

long as the strips are thin in relation to the height of the heat sources, and depth-dependent 

fluxes can also be reproduced. However, the optimization of the recovery of some flux 

variations, along with the reduction of shadowing effect in the retrieved areas, will require 

future work.  
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8 Characterization of cracks from experimental 

data 

 

In this section, the potential of the inversion algorithm to characterize vertical cracks is 

experimentally verified. To do so, the results of the inversion algorithm from synthetic data 

are checked using data obtained in vibrothermography experiments with samples 

containing calibrated heat sources. Furthermore, in order to prove that the inversion 

algorithm can be implemented in real applications, the defects found in a real welded 

sample have been characterized.

 

8.1 Calibrated vertical heat sources 

In the following, we tackle the characterization of calibrated heat source distributions 

representing both kissing and open cracks in inversions from data taken in 

vibrothermography experiments in the lock-in regime.  

All the experiments whose results are shown in this section have been performed following 

the defined optimum procedure for experimental data acquisition: using low US power, 

taking data in steady state, acquiring the same large number of images at all modulation 

frequencies and taking into account the phase shifts introduced by the acquisition system to 

whole surface phase thermograms.  

As for the ultrasound electrical power, this has been selected depending on the size and 

depth of the heat sources: 25 W have been applied in most cases and, in samples containing 
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very small, thin or deep heat sources, it has been increased up to 40 W, maintaining the 

same US power at all modulation frequencies.  

With regard to the IR camera, it has been set on half frame mode so as to capture images at 

a fixed frame rate of 320 Hz at all modulation frequencies, as we have checked that the 

picture size (21.6 x 16.5 mm) is sufficient to contain the surface temperature data for the 

size of heat sources considered. Similarly, 32,000 images have been analysed in the lock-in 

process regardless of the modulation frequency.  

The construction of the samples has been described in section 4.1 and micrographs of the 

most significant foils used in the experiments corresponding to the reconstructions shown 

in this section are collected in appendix A.2, representing both kissing and open cracks of 

different geometries.  

8.1.1 Kissing heat sources 

In this section we present the results obtained with compact heat sources representing 

kissing cracks.  

First, square heat sources are considered in order to verify that implementing the optimum 

inversion protocol gives best reconstructions and also to confirm the predictions from 

synthetic data concerning both the spatial resolution of the inversion algorithm and the 

shadowing effect appearing in certain cases.  

Then, the performance of the inversion algorithm to retrieve the particular features of other 

geometries is checked and, with the aim of proving that we are able to retrieve heat sources 

of any geometry from experimental data, heat sources of arbitrary orientation and shape are 

also considered. 

The experimental configuration used in this section is intended to generate a homogeneous 

flux over the whole heat source geometry. In order to illustrate what experimental data 

taken in vibrothermography experiments applying low US power look like, Figure 8.1 (a) 

shows Ln(|T|) (left) and Ψ (right) thermograms, obtained at flock-in = 0.2 Hz, for a square Cu 

foil of w = h = 1 mm buried at a depth |d| = 0.5 mm. The fitted thermograms are depicted in 

Figure 8.1 (b). 
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Figure 8.1. (a) Experimental Ln(|T|) (left) and Ψ (right) and (b) fitted thermograms, obtained at flock-in = 
0.2 Hz, corresponding to a square Cu foil of w = h = 1 mm buried at a depth |d| = 0.5 mm representing a 
homogeneous square kissing crack.  

8.1.1.1 Square heat sources 

In order to check that optimum retrieved areas are obtained by implementing the optimum 

inversion protocol, we have inverted experimental data corresponding to a standard square 

heat source (a Cu foil of dimensions w = h = 1 mm) buried at increasing depths, namely, |d| 

= 0.1, 0.5, 1, 1.5, 2.0 and 3.0 mm, first using TVAnisot and entering normalized amplitudes 

and then implementing TVIsot and entering raw amplitudes. The results are depicted in 

Figure 8.2. 
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Figure 8.2. Grey level representation of the normalized heat source distribution retrieved from 
experimental data corresponding to a Cu foil of dimensions w = h = 1 mm buried at increasing depths, 
namely, |d| = 0.1, 0.5, 1, 1.5, 2.0 and 3.0 mm, in inversions implementing (a) TVAnisot and entering 
normalized amplitudes and (b) TVIsot and entering raw amplitudes. Real contours depicted in red and 
values of the depth of the heat sources and quality factor F on top of and under each reconstruction, 
respectively. 

As can be observed, the quality factor F values are similar to those obtained in inversions 

from synthetic data affected by 5% uniform noise corresponding to square heat sources of 

w = h = 1 mm buried at similar depths, but only down to a depth about |d| = 2.0 mm. For 

deeper heat sources, the F values in reconstructions obtained from experimental data are 

reduced because data are affected by a significantly higher percentage of noise. Anyway, 

all depths at which the Cu foils are buried are very well recovered. 

Although TVAnisot favours the reconstruction of square and rectangular geometries, it has 

been determined before that the isotopic version of the Total Variation functional should be 

used to stabilize the inversion algorithm since, logically, the geometry of the cracks in real 

experiments is unknown. This considered and in order to double check that entering raw 

instead of normalized amplitudes provides dramatic improvements on the retrieved areas, 

in Figure 8.3 we show reconstructions of a standard square Cu foil (w = h = 1 mm) buried 

at other depths, namely, |d| = 0.6, 1.2, 2, 2.8, and 3.4 mm, inverted first entering 

normalized (a) and then raw amplitudes (b), in both cases using TVIsot. 
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Figure 8.3. Grey level representation of the normalized heat source distribution in inversions from 
experimental data corresponding to a square Cu foil (w = h = 1 mm) buried at other depths, namely, |d| = 
0.6, 1.2, 2.0, 2.8 and 3.4 mm, retrieved by stabilizing the inversions with TVIsot and entering: (a) 
normalized and (b) raw amplitudes. Real contours depicted in red and values of the depth of the heat 
sources and quality factor F on top of and under each reconstruction, respectively. 

As for the spatial resolution of the inversion algorithm, the limiting distances between the 

centres of two square heat sources of w1 = h1 = w2 = h2 = 1 mm for their resolution, dcenLim, 

obtained in inversions from synthetic data at increasing depths, are next verified in 

inversions from experimental data, using TVAnisot and entering normalized amplitudes.  

To that purpose, we have performed experiments using two Cu foils of w1 = h1 = w2 = h2 = 

1 mm buried at two different depths, namely, |d1| = |d2| = 0.2 and 1.6 mm. In turn, for each 

depth, we have considered two separation distances, dcen, in such a way that dcen < dcenLim in 

the first experiment and dcen > dcenLim in the second one, so that the two heat sources are 

expected to be not resolved and resolved, respectively, according to our resolution 

criterion. The results are shown in Figure 8.4 (a) and (b). 

The limiting distances obtained from synthetic data at depths |d1| = |d2| = 0.2 and 1.6 mm 

are dcenLim = 1.55 and 3.10 mm, respectively, with TVAnisot and using normalized 

amplitudes. The values of dcen (in mm) and ,
midQδ α  are displayed on top of and under each 

reconstruction, respectively.  
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Figure 8.4. Grey level representation of the normalized heat source distribution in inversions from 
experimental data corresponding to two square Cu foils of dimensions w1 = h1 = w2 = h2 = 1 mm buried 
(a) at a depth |d1| = |d2| = 0.2 mm and with dcen = 1.14 (left) and 2 mm (right) and (b) at a depth |d1| = |d2| = 
1.6 mm and with dcen = 2.6 (left) and 5 mm (right), inverted by implementing TVAnisot and entering 
normalized amplitudes. (c) and (d) show the same as (a) and (b) but implementing TVIsot and entering raw 

amplitudes. The values of dcen (in mm) and 
,

midQ
δ α  are displayed on top of and under each reconstruction, 

respectively. 

As can be checked, the predictions from inversions using synthetic data are in good 

agreement with the results from experimental data, as the two heat sources are not resolved 

(left) and resolved (right), respectively, at the two considered depths.  

Differences in dcenLim when implementing the optimum inversion protocol are not 

significant when the two heat sources are shallow (see Table 6.2), but dcenLim decreases 

significantly with depth when implementing TVIsot and entering raw amplitudes (see Figure 

6.18). This is experimentally confirmed in Figure 8.4 (c) and (d), where the same heat 

sources as in Figure 8.4 (a) and (b) are retrieved by implementing the optimum inversion 

protocol. Now, at a depth |d1| = |d2| = 0.2 mm, the two heat sources are not resolved (left) 

and resolved (right), but at |d1| = |d2| = 1.6 mm, the inversion algorithm resolves the two 

heat sources for the two considered dcen. 

Lastly, we invert experimental data corresponding to the cases where synthetic data has 

predicted that the shadowing effect may arise. Figure 8.5 (a) shows the reconstruction of a 

rectangular heat source of dimensions w = 1 mm and h = 2 mm, buried at a depth |d| = 0.2 

mm and, as may be noted, the result is very similar to that obtained from synthetic data: the 
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lower half of the retrieved area is blurred due to the weaker contribution of those deep 

positions to surface temperature data in relation to shallower positions. 

As for the shadowing effect arising between two different heat sources, we have inverted 

two square heat sources of w1 = h1 = w2 = h2 = 1 mm considering two possibilities to 

generate asymmetric surface temperature distributions: burying the heat source on the left 

deeper (|d1| = 0.78 mm and (|d2| = 0.18 mm) and decreasing the flux it emits with (being 

both buried at the same depth), for which, a stainless steel foil has been used instead of the 

usual Cu foil. In this last case, both the stainless steel and Cu foils are 25 µm thick and they 

are buried at a depth |d1| = |d2| = 0.4 mm. The results are depicted in Figure 8.5 (b) and (c), 

respectively. 

 

Figure 8.5. Grey level representation of the normalized heat source distribution in inversions from 
experimental data corresponding to (a) a rectangular Cu foil of dimensions w = 1 mm and h = 2 mm buried 
at a depth |d| = 0.2 mm, (b) two Cu foils of the same dimensions (w1 = h1 = w2 = h2 = 1 mm), emitting 
with same flux but buried at different depths (|d1| = 0.78 mm and (|d2| = 0.18 mm) and (c) two foils of the 
same dimensions (w1 = h1 = w2 = h2 = 1 mm) and buried at the same depth (|d1| = |d2| = 0.4 mm) but 
emitting with different flux (the left and right heat sources correspond to 25 µm thick stainless steel and 
Cu foils, respectively). Inverted by implementing the optimum protocol. Real contours depicted in red and 
values of the depth of the heat sources on top of each reconstruction. Values of the quality factor F under 
each reconstruction in (a) and (b). 

As may be observed in the reconstruction shown in Figure 8.5 (b), the shallower heat 

source is accurately retrieved, whereas the deeper one is clearly shadowed: fainter and with 

a lower individual F value than if it was retrieved alone.  

Finally, with regard to the two heat sources buried at the same depth but emitting with 

different flux (see Figure 8.5 (c)), it can be said that the differences obtained in Qδ,α at the 

centre of the heat sources are produced by the use of different materials, since the 

reconstruction from synthetic data in this case predicts no shadowing between the two heat 

sources in this case.  

However, the fact that the relation of fluxes that the two different materials have produced 

in this experiment is unknown prevents us from calculating the quality of the 
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reconstruction. Thus, we cannot provide quantitative check of the quality of the 

reconstructions when using foils of different materials, as only qualitative evidence of 

different heat fluxes is obtained.  

8.1.1.2 Other geometries 

For the reconstruction of heat sources of geometries other than squares, only inversions 

implementing the optimum protocol will be shown. Semicircular and triangular heat 

sources are considered first.  

Figure 8.6 (a) shows reconstructions from experimental data corresponding to sUp of R = 

1.4 mm buried at increasing depths, namely, |d| = 0.2, 0.75, 1.5, 2.2, 3.3 and 4.0 mm, 

whereas Figure 8.6 (b) shows reconstructions of sDown (R = 1.4 mm), buried at |d| = 0.2 

and 0.5 mm.  

 

 

Figure 8.6. Grey level representation of the normalized heat source distribution in inversions from 
experimental data corresponding to (a) sUp of R = 1.4 mm buried at increasing depths, namely, |d| = 0.2, 
0.75, 1.5, 2.2, 3.3 and 4 mm, (b) sDown (R = 1.4 mm) buried at |d| = 0.2 and 0.5 mm, (c) tUp of w = h = 2 
mm buried at |d| = 0.1, 0.2 and 0.4 mm and (d) tDown (w = h = 2 mm) buried at |d| = 0.2 and 0.4 mm. 
Retrieved by implementing TVIsot and entering raw amplitudes. Real contours depicted in red and values of 
the depth of the heat sources and quality factor F on top of and under each reconstruction, respectively.  
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As for sUp, the smooth contour of the semi-circles located at shallow depths are very well 

reproduced, but since the retrieved areas as depth increases get rounded due to stabilization 

with TVIsot, it becomes very hard to retrieve the geometry of the heat sources, especially the 

lower flat side of the semicircles. With regard to sDown, the two corners of the upper flat 

side are clearly marked, which gives a correct estimate of the diameter of the semicircles.  

Reconstructions of tUp of w = h = 2 mm buried at depths |d| = 0.1, 0.2 and 0.4 mm, as well 

as of tDown of the same size submerged at |d| = 0.2 and 0.4 mm, are shown in Figure 8.6 

(c) and (d), respectively. Very shallow depths have been considered when placing these 

triangular Cu foils, since pointy ends are lost very easily with depth and reproducing them 

is specially challenging when data are affected by a high noise percentage (see Figure 7.3). 

The depth and overall height of all triangular heat sources are well retrieved and it is worth 

pointing out that, for tDown, the upper flat side of the triangles is quite well reproduced. 

With the aim of proving that we are able to retrieve homogeneous heat sources of any 

geometry, we have performed vibrothermography experiments considering Cu foils of 

arbitrary orientation and shape. Figure 8.7 (a) shows the results for a rectangular (w = 0.8 

mm and h = 2.8 mm) Cu foil inclined about 45º, buried at a depth |d| = 0.4 mm and, as can 

be checked, inclined heat sources can also be accurately retrieved.  

 

Figure 8.7. Grey level representation of the normalized heat source distribution in inversions from 
experimental data corresponding to (a) a rectangular Cu foil of w = 0.8 mm and h = 2.8 mm with an 
inclination of about 45º buried at a depth |d| = 0.4 mm, (b) a Cu foil of arbitrary shape in experiments 
applying 25 W at all modulation frequencies (left) and applying 25 W from 0.05 to 1.6 Hz and 40 W from 
3.2 to 12.8 Hz (right), and (c) half-penny shaped Cu foils of different types: shallow and elongated (w = 
3.2 mm and h = 0.9 mm) buried at depths |d| = 0.17 and 0.24 mm, and deep and narrow (w = 2 mm and h 
= 2.8 mm), buried at a depth |d| = 0.2 mm. Retrieved by implementing TVIsot and entering raw amplitudes. 
Real contours depicted in red and values of the depth of the heat sources and quality factor F on top of and 
under each reconstruction, respectively.  

Two reconstructions of a heat source of arbitrary shape are shown in Figure 8.7 (b). This 

geometry features two shallow pointy ends and a deeper rounded area: its overall size is w 

= 3.5 mm and h = 2.5 mm and the depth at the shallowest end is |d| = 0.2 mm. Low US 
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power has been applied in the two experiments, but whereas the experiments corresponding 

to the reconstruction on the left have been performed applying an ultrasound power of 25 

W for all modulation frequencies, the reconstruction on the right has been obtained from 

data taken at 25 W for modulation frequencies ranging between 0.05 and 1.6 Hz, and at 40 

W for the three highest modulation frequencies: 3.2, 6.4 and 12.8 Hz. As may be noted, 

increasing the ultrasound power at high modulation frequencies helps the inversion 

algorithm defining the contour of the heat sources.  

As for geometries encountered in vibrothermography experiments with real cracks, Figure 

8.7 (c) shows the reconstruction of a deep and narrow half-penny shaped heat source of 

width w = 2 mm and height h = 2.8 mm, buried at a depth |d| = 0.2 mm, as well as the 

reconstructions of shallow and elongated half-penny shaped heat sources of w = 3.2 mm 

and h = 0.9 mm, buried at depths |d| = 0.17 and 0.24 mm. In these three reconstructions, 

both the lower smooth contour and the upper flat side of the half-pennies are very well 

reproduced. Also, all corners on the upper side are clearly marked, pointing out the width 

of the half-pennies. 

All the results shown in this section demonstrate that the inversion algorithm is able to 

retrieve heat sources of any geometry in inversions from data taken in vibrothermography 

experiments and implementing the optimum inversion protocol. 

Although the particular features of the different considered geometries are very hard to 

recover as depth increases, both smooth contours and pointy ends, besides flat edges, can 

be accurately retrieved as long as the heat sources are shallow. Moreover, increasing the 

ultrasound power at high frequencies has shown to help the inversion algorithm defining 

the contours of the heat sources at shallow positions. 

8.1.2 Open heat sources 

In this section, we retrieve heat sources of different geometries representing surface 

breaking open cracks with a homogeneous heat generation from experimental data. Further 

in the study, our approach to produce an inhomogeneous heat generation in 

vibrothermography experiments is shown for open semicircular and triangular geometries, 

for their qualitative characterization. 

Starting by heat sources representing open cracks emitting with a homogeneous flux, 

Figure 8.8 shows reconstructions corresponding to open (a) semicircular Cu bands of inner 
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radius Ri = 2.1 mm and thickness e = 0.8 mm buried at depths |d| = 0.13, 0.32 and 0.71 

mm, (b) a square Cu band of outer width we = 2.8 mm, outer height hi = 1.7 mm and 

thickness e = 0.7 mm buried at a depth |d| = 0.55 mm, (c) triangular Cu bands of outer 

width we = 3.6 mm, outer height hi = 2 mm and thickness e = 0.9 mm buried at depths |d| = 

0.36 and 0.71 mm, and (d) shallow and elongated half-penny shaped Cu bands of outer 

width we = 4 mm, outer height hi = 1.5 mm and thickness e = 1 mm buried at depths |d| = 

0.18 and 0.27 mm. 

 

 

Figure 8.8. Grey level representation of the normalized heat source distribution in inversions from 
experimental data corresponding to (a) semicircular Cu bands of inner radius Ri = 2.1 mm and thickness e 
= 0.8 mm buried at depths |d| = 0.13, 0.32 and 0.71 mm, (b) a square Cu band of outer width we = 2.8 mm, 
outer height hi = 1.7 mm and thickness e = 0.7 mm buried at a depth |d| = 0.55 mm, (c) triangular Cu 
bands of outer width we = 3.6 mm, outer height hi = 2 mm and thickness e = 0.9 mm buried at depths |d| = 
0.36 and 0.71 mm and (d) shallow and elongated half-penny shaped Cu bands of outer width we = 4 mm, 
outer height hi = 1.5 mm and thickness e = 1 mm buried at depths |d| = 0.18 and 0.27 mm, inverted by 
implementing the optimum protocol. Real contours depicted in red and values of the depth of the heat 
sources and quality factor F on top and under of each reconstruction, respectively.  

The shadowing effect, more pronounced in the recovery of open heat sources, can be 

appreciated in practically all cases. Nevertheless, in all geometries, the two tips of the 

bands are rather accurately retrieved and the deeper central areas correctly show the path 

the bands follow. Also, all depths are well recovered. 

As an approach to simulate open cracks emitting with an inhomogeneous flux, we have 

taken data on semicircular and triangular strips in which an inhomogeneous heat generation 
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is intended to be produced, since the band that represents the open crack is now composed 

of two half foils of different materials (and same thicknesses).  

As an example of what experimental thermograms corresponding to an inhomogeneous 

semicircular strip look like, Figure 8.9 (a) shows the Ln(|T|) (left) and Ψ (right) surface 

thermograms obtained at flock-in = 1.6 Hz, generated by a semicircular band of inner radius 

Ri = 4.2 mm and thickness e = 0.9 mm, buried at depth |d| = 0.16 mm beneath the sample 

surface. The fitted thermograms are depicted in Figure 8.9 (b). The left and right halves of 

the semicircular strip correspond to 25 µm thick stainless steel and W foils. 

 

 

Figure 8.9. (a) Experimental Ln(|T|) (left) and Ψ (right) and (b) fitted thermograms, obtained at flock-in = 
1.6 Hz, corresponding to an inhomogeneous semicircular strip of inner radius Ri = 4.2 mm and thickness e 
= 0.9 mm, buried at depth |d| = 0.16 mm. The left and right halves of the strip correspond to 25 µm thick 
stainless steel and W foils. 
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Figure 8.10 (a) shows the reconstructions from experimental data corresponding to three 

inhomogeneous semicircular bands of inner radius Ri = 4.2 mm and thickness e = 0.9 mm, 

buried at depths |d| = 0.2, 0.27 and 0.16 mm. In each case, the material combination for the 

left and right halves of the bands is different: 38 µm thick annealed and hard (usual) Cu 

foils (left), 25 µm thick Cu and stainless steel foils (centre) and 25 µm thick stainless steel 

and W foils (right). Similarly, Figure 8.10 (b) shows the results for three inhomogeneous 

triangular bands of outer width we = 5.6 mm, outer height he = 2.4 mm and thickness e = 

0.9 mm buried at depths |d| = 0.35 and 0.36 mm, using the same material combinations. 

 

 

Figure 8.10. Grey level representation of the normalized heat source distribution in inversions from 
experimental data corresponding to (a) inhomogeneous semicircular bands of inner radius Ri = 4.2 mm and 
thickness e = 0.9 mm, buried at depths |d| = 0.2, 0.27 and 0.16 mm and (b) inhomogeneous triangular 
bands of outer width we = 5.6 mm, outer height he = 2.4 mm and thickness e = 0.9 mm buried at depths |d| 
= 0.35 and 0.36 mm. For both geometries, the material combinations for the left and right halves of the 
bands are the following: 38 µm thick annealed and hard (usual) Cu foils (left), 25 µm thick Cu and 
stainless steel foils (centre) and 25 µm thick stainless steel and W foils (right). Inverted by implementing 
the optimum protocol. Real contours depicted in red and values of the depth of the heat sources on top of 
each reconstruction. 

As may be noted, for either geometry, similar results are obtained regarding the heat flux 

generated by each material combination: the annealed and hard Cu halves act as a 

homogeneous heat source, whereas differences in the retrieved Qδ,α are more significant for 

the other two material combinations (Cu-stainless steel and stainless steel-W, respectively), 

meaning that using foils of different materials allows for an efficient inhomogeneous heat 

flux production in our vibrothermography experiments.  
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Although the shadowing effect makes the retrieved areas miss the contribution of the 

central deeper positions in most cases, the overall geometry and the depths of all heat 

sources are well recovered.  

As mentioned before, we cannot provide quantitative check of the quality of the 

reconstructions because the relation of fluxes produced by the different materials is 

unknown. Nevertheleses, these results prove that inhomogeneous heat sources can be 

qualitatively characterized.  

8.2 Characterization of real cracks 

In order to prove the potential of the inversion algorithm to retrieve and characterize 

defects in real applications, we have performed vibrothermography experiments in the 

lock-in regime using a welded Inconel 718 (D = 3.14 mm2s-1 and K = 11.2 Wm-1K-1) 

sample containing real instead of artificial inner defects. The specimen is shown in Figure 

8.11 (a). 

The chosen experimental configuration is similar to that when using our AISI 304 sample: 

the specimen stands on the Teflon base and the sonotrode fixes it vertically, with an Al film 

placed in between as mechanical coupling material. Numbers from one to seven can be 

read on the sample, indicating the positions where the sonotrode has been placed in order to 

perform frequency sweeps so as to find the ultrasound frequency that excites the existing 

defects all along the welding bead. We have checked that a horizontal configuration for this 

specimen prevents the defects from giving any signal. 

Thus, the IR camera records the surface temperature distribution of a welding bead (and 

surroundings) area that is located just under the sonotrode. As when using samples with 

calibrated heat sources, we run the camera at half frame, taking images at the fixed frame 

rate of 320 Hz and averaging the signal over 32,000 images, regardless of the modulation 

frequency. Also, we apply low US power (25 W), in order to prevent the crack surfaces 

from being altered or damaged. 

Due to owner requirements, this specimen could not be coated with high emissivity paint, 

so data have been taken on the bare sample surface, making the test more challenging. The 

experimental setup for the welded Inconel 718 sample is shown in Figure 8.11 (b). 
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Figure 8.11. (a) Visible picture of the welded Inconel 718 sample, with numbers from one to seven 
showing the positions where the sonotrode has been placed in order to identify defects by performing 
frequency sweeps, and (b) experimental setup: the specimen stands on the Teflon base and the sonotrode 
fixes it vertically, with an Al film placed in between as mechanical coupling material. 

Clear indications of the presence of defects have been found in positions 2 and 3 during the 

frequency sweeps: Figure 8.12 plots the recorded temperature as a function of the 

ultrasound frequency for these positions, where it can be checked that 22.9 (a) and 22.5 

kHz (b) excite most efficiently the existing defects in such positions, respectively.  

As may be noted, a second ultrasound frequency has also been found to excite the defects 

efficiently in both positions (34.3 (a) and 24.2 kHz (b) for positions 2 and 3, respectively), 

but, logically, only the ultrasound frequency that produces the highest surface temperature 

rise in each case has been considered for the later experiments in the lock-in regime. With 

respect to the right border of the specimen (corresponding to the start of the welding bead), 

positions 2 and 3 are located at 31 and 87 mm, respectively. 
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Figure 8.12. Frequency sweeps performed using the welded Inconel 718 specimen, with the sonotrode 
located in positions (a) 2 and (b) 3, pointing out that the ultrasound frequencies that excite the defects most 
accurately are 22.9 and 22.5 kHz, respectively. 

Focusing on position 2, in Figure 8.13 (a) we show a thermogram corresponding to the 

ultrasound frequency where the presence of two defects is evidenced (22.9 kHz) (top), 

along with a thermogram at another ultrasound frequency at which the defects are not 

activated (bottom). The locations of the defects are marked with ellipses and Figure 8.13 

(b) and (c) show different side views of the same thermograms.  

Position x = 0 along x-axis coincides with the location of the sonotrode on top of the 

specimen and position y = 0 along y-axis has been chosen so that it represents the centre of 

the welding bead. In this way, it can be observed that the main defect is centred with 

respect to the sonotrode, whereas the second and smaller defect is located at x = -3.5 mm 

with respect to the centre of position 2. Along the ordinate, both defects are in line with y = 

1.2 mm, which in the visible picture of the specimen corresponds to the upper toe of the 

welding bead. 

As for position 3, a single defect has been identified, which generates an even smaller 

surface temperature distribution than that shown in Figure 8.13. 
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Figure 8.13. (a) Surface thermograms at fUS = 22.9 kHz evidencing the presence of two defects in position 
2 (top) and at another ultrasound frequency where the defects are not activated (bottom). (b) and (c) are 
different side views of the same thermograms. The location of the defects is marked with ellipses.  

Since the specimen is not coated with high emissivity paint and due to a high reflectance of 

the sample surface, the features of the welding bead can be seen in the thermograms 

shown, as well as other irregularities on the measuring surface such as weld spatter. For 

this reason, for the reconstruction of the three defects found (two defects in position 2 and a 

defect in position 3), surface temperature data taken in lock-in vibrothermography 

experiments have been cropped so that only information around the defects can enter the 

inversion algorithm. In each case, the coordinates have been repositioned so that position 

(0, 0) refers to the centre of the observed signals.  

As an example, Figure 8.14 shows the Ln(|T|) (top) and Ψ (bottom) surface thermograms 

corresponding to the main defect in position 2, obtained at flock-in = 0.1 (a), 0.2 (b) and 0.4 

Hz (c), exciting the sample with an ultrasound frequency fUS = 22.9 kHz. 
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Figure 8.14. Ln(|T|) (top) and Ψ (bottom) thermograms taken in vibrothermography experiments applying 
low US power and exciting the sample at fUS = 22.9 kHz, corresponding to the main defect found in 
position 2 of the welded Inconel 718 sample, at flock-in = 0.1 (a), 0.2 (b) and 0.4 Hz (c). 

Surface temperature data obtained at flock-in = 0.1, 0.2, 0.4 and 0.8 Hz have been inverted in 

order to reconstruct the three defects found, since no signals have been detected at 0.05 Hz 

and data taken at modulation frequencies higher than 0.8 Hz are affected by such a high 

noise level that provide no exploitable information, even increasing the number of images 

analysed in the lock-in process.  

It is worth mentioning that, for the inversions, the initial values of the regularization 

parameters corresponding to Tikhonov, Total Variation and L1 given in equations (5.24), 
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(5.25) and (5.26) have been multiplied by 10, in order to increase the regularization degree 

due to the poor signal-to-noise ratio in surface temperature data. 

In Figure 8.15 we show the reconstructions corresponding to the (a) main and (b) second 

defects found in position 2, and (c) the defect found in position 3. 

 

Figure 8.15. Grey level representation of the normalized heat source distribution in inversions from 
experimental data corresponding to the (a) main and (b) second defects found in position 2, and (c) the 
defect found in position 3, retrieved by combining data taken in lock-in vibrothermography experiments at 
flock-in = 0.1, 0.2, 0.4 and 0.8 Hz and exciting the welded Inconel 718 sample at fUS = 22.9 and 22.5 kHz for 
positions 2 and 3, respectively, and using low US power. Inverted by implementing the optimum protocol. 

As may be checked, all the defects found are surface breaking and very short, the 

maximum depths being 100 and 50 µm for the main and second heat sources in position 2, 

respectively, and even less than 50 µm for the defect in position 3.  

The reconstruction of the main defect in position 2 indicates that the length of the defect is 

about 800 µm. Within this defect, two main heat sources can be identified, which are in 

good agreement with the two temperature peaks observed in the surface thermograms. The 

second defect in position 2 has a length of about 300 µm and the defect found in position 3 

looks more like a point-like heat source. 

Liquids penetrants testing has been performed in order to identify surface breaking defects. 

The results are shown in Figure 8.16. The test has produced two indications: a rather 

visible one in position 7 (at 17 cm with respect to the right border of the especimen) and a 

fainter one pointing out a very small defect volume and coinciding with the main defect 

detected by vibrothermography in position 2.  

The reconstructions of the second defect found in position 2 and that found in position 3 

indicate that these defects are even smaller than the main defect in position 2, which could 

be consistent with the absence of any liquids trace. 
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Figure 8.16. Result of the liquids penetrants testing performed in the welded Inconel 718 specimen, 
showing two indications: a rather visible one in position 7 (at 17 cm with respect to the right border of the 
especimen) and a fainter one coinciding with the main defect detected by vibrothermography in position 2 
(at 31 cm). 

On the contrary, the stronger indication by penetrants testing in position 7 did not give any 

signal in the vibrothermography testing. Two reasons could be responsible for this. On the one 

hand, the larger liquid exuded volume might point out to an open defect, in which case rubbing 

friction barely takes place. Another possibility is that the ultrasound frequency that activates 

that defect is outside our frequency range. 

 

 

 

 

 

 

 

 



Conclusions and future work 

179 

9 Conclusions and future work 

The most important conclusions that can be drawn from the work presented in this thesis 

are summarized below.  

Concerning the direct problem and data acquisition in lock-in vibrothermography 

experiments: 

- The direct problem in this thesis, consisting in the calculation of the surface 

temperature distribution generated by a buried modulated heat source distribution, 

has been solved and its solution has been analysed by performing simulations. Heat 

sources of different geometries are very hard to distinguish when their particular 

features correspond to the lower (buried) contour of the geometry, which evidences 

the ill-posed nature of the problem and leads to the determination of using multi-

frequency data in order to gather as much information as possible.  

- The direct problem has been experimentally verified and three methods to tackle the 

contribution of the transient temperature rise of the sample to the measured surface 

temperature have been proposed, which provide surface temperature data in good 

agreement with the predictions of the theory.  

- The frequency dependence of the experimental equipment has been measured. 

- The optimum data acquisition procedure has been defined: using low US power (25-

40 W) so as to preserve the non-destructive nature of the technique and acquire 

surface temperature data in steady state, taking advantage of the key feature of the 

lock-in process by analysing a large number of images at all modulation frequencies 

and removing the phase shifts introduced by the equipment to whole surface phase 

thermograms.                                                                                                                                                                                                                       

As for the inverse problem and the inversion algorithm: 

- The inverse problem in this thesis, consisting in retrieving the heat source 

distribution giving rise to a certain surface temperature distribution, has been tackled 



Section 9 

180 

and analysed by means of SVD for the proposal of appropriate regularization 

methods.  

- A robust inversion algorithm based on least squares minimization stabilized with 

penalty terms corresponding to Tikhonov, Total Variation and L1 functionals has 

been implemented, which is able to recover heat source distributions from 

vibrothermography data.  

- A complete analysis of the inversion algorithm has been carried out using synthetic 

data corresponding to square/rectangular heat sources representing homogeneous 

vertical kissing cracks: 

• The optimum inversion protocol has been defined by analysing the effects of 

the Total Variation functional model and data normalization on the retrieved 

normalized heat source distribution: the isotropic TV model and raw data 

should be used in order to obtain best reconstructions.  

• A quality factor of the reconstructions and an accurate reconstruction 

criterion have been defined, providing quantitative information about the 

quality of the retrieved normalized heat source distribution. According to it, 

we are able to retrieve a square heat source of side L down to depths of 3.6L 

and 5L for data affected by 5% and 0.5% uniform noise, respectively.  

• The convergence property of the inversion algorithm has been demonstrated 

by verifying the effect of the noise level on the reconstructions. In addition, 

the effect of noise distribution has been checked, which indicates that data 

acquisition should be carried out by analysing the same number of images for 

all modulation frequencies or even increasing the number of images at high 

modulation frequencies. 

• The minimization stopping criterion has been validated by making use of the 

retrieved set of intensities: at the discrepancy term minimal iteration, the 

intensities are fitted in an optimum way. 

• The use of multi-frequency data and the design of experiments have been 

verified: combining surface temperature data at multiple modulation 

frequencies gives more accurate reconstructions in comparison to inverting 

data at any single modulation frequency, and entering data at doubling 

modulation frequencies is determinant for the accurate recovery of deep heat 

sources. Furthermore, the good choice for all values concerning the 

regularization parameters corresponding to Tikhonov, Total Variation and L1 

stabilization procedures has been checked. 
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• The spatial resolution of the inversion algorithm has been determined for two 

equal square heat sources as a function of depth.  

• Different cases concerning the geometrical parameters of the heat sources for 

which the shadowing effect arises in reconstructions have been identified. 
  

- The ability of the inversion algorithm to retrieve heat sources of other geometries 

from synthetic data, namely, semicircular and triangular heat sources, has been 

analysed: 

• Smooth contours are easily recovered because of the rounded shapes that 

TVIsot delivers by default.  

• Narrow or sharp corners are very hard to reproduce and a shallow depth 

(|d| ≤ 0.1 mm) along with a low noise level (δ ≤ 5%) are necessary for 

their accurate reconstruction.  

• The robustness of the inversion algorithm against noise has been checked 

considering the depths at which the particular features of the geometries 

are accurately retrieved: increasing the noise level in the data does not 

significantly harm the recovery of the particular shapes, with the 

exception of pointy ends.  

- Real situations have been approached by retrieving open heat sources representing 

surface breaking homogeneous vertical open cracks of different geometries from 

synthetic data. The inversion algorithm is able to recover the thickness and depth of 

the strips very accurately and the shadowing effect is the main limitation for the 

reconstruction of the deeper central part of the strips.  

- Lastly, both kissing and open inhomogeneous heat sources have been retrieved from 

synthetic data, proving that the inversion algorithm is capable of reproducing certain 

flux dependences. In kissing heat sources, width-dependent fluxes can be accurately 

retrieved at shallow positions. In open heat sources, width- or angle- dependent 

fluxes are very well recovered, even at deep positions, as long as the strips are thin 

in relation to the height of the heat sources, and depth-dependent fluxes can also be 

reproduced. Large radial flux gradients represent a limitation of the method. 

In relation to the experimental verification of the implemented inversion algorithm: 

- The results of inversions from synthetic data have been verified by with data 

obtained in lock-in vibrothermography experiments using samples with calibrated 

heat sources and following the optimum data acquisition procedure: 
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• The optimum inversion protocol gives best results in inversions from 

experimental data, with similar reconstruction qualities for square heat 

sources to those obtained from synthetic data. 

• The limiting distances obtained from synthetic data for the spatial resolution 

of two equal square heat sources as a function of depth are in good agreement 

with the results from experimental data. 

• Heat sources of arbitrary orientation and shape have been considered in the 

experiments in order to prove that any geometry can be accurately retrieved. 

• Increasing the ultrasound power has shown to help the inversion algorithm 

defining the contour of the geometries. 

• The use of different materials has been proposed so as to produce an 

inhomogeneous heat flux generation within open heat sources in the 

experiments. The results prove that the inversion algorithm is capable of 

retrieving flux differences. 
 

- The use of the inversion algorithm has been extended for the characterization of the 

cracks encountered in experiments using a real welded Inconel 718 specimen. The 

results are in good qualitative agreement with the results of liquids penetrants 

testing.  

These conclusions lay the grounds for future research.  

Interests first focus on the reduction of the shadowing effect in the retrieved areas as well 

as on the optimization of the recovery of certain heat flux variations. In order to tackle the 

shadowing effect, two options may be considered. First, other experimental designs could 

be studied so as to favour the recovery of the shadowed heat sources. Another solution 

could be to implement a procedure that chops the highest values of the retrieved 

normalized heat source distribution so that, over iterations, they equalise the values 

obtained for the shadowed positions. 

The next step is the characterization of inclined instead of vertical heat sources, i.e., 

contained in a plane that is not perpendicular with respect to the sample surface, with the 

ultimate goal of characterizing non-planar heat sources, where a 3D search region needs to 

be considered for the inversion. For open inclined or non-planar heat sources, where the 

heat generated at a certain band needs to cross the air gap corresponding to the area where 

the crack faces do not contact in order to reach de sample surface, the modelling of a 

thermal resistance is of major importance, which may be tackled by using discontinuous 

finite elements.   
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Lastly, an aspect in vibrothermography experiments that is worth addressing in future 

research is the measurement of the absolute heat flux produced at the heat source. In 

experiments with real cracks, the knowledge of the relation between vibration strain and 

heat flux at the crack would allow for the determination of the minimum vibration strain so 

as to produce a detectable heat generation, which is a key point for vibrothermography to 

become a fully accepted technique for non-destructive evaluation.  
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 Resumen 

Esta tesis recoge el trabajo desarrollado con el fin de potenciar el uso de la 

vibrotermografía para la caracterización de grietas verticales sumergidas, ya que es una 

técnica de evaluación no destructiva (NDE) aun en desarrollo. La investigación llevada a 

cabo durante esta tesis contribuye a la sistematización y normalización de la 

vibrotermografía como técnica NDE y supone un avance de cara a la cuantificación de los 

defectos, lo que, a su vez, supone una contribución significativa a la información que esta 

técnica puede ofrecer a sectores industriales estratégicos como el aeronáutico o la máquina 

herramienta. 

En la termografía con excitación ultrasónica o vibrotermografía, la muestra o pieza objeto 

de estudio se excita mediante ultrasonidos. En los defectos, parte de esta energía mecánica 

se disipa en forma de calor como consecuencia del rozamiento entre las caras del defecto y, 

si se trata de grietas, por deformación plástica del material que las rodea. La energía 

térmica generada en los defectos se difunde en el material, produciendo un aumento de 

temperatura en la superficie de la muestra que puede medirse mediante una cámara 

infrarroja. Así, en el caso de los metales, donde la atenuación de los ultrasonidos en el 

material es pequeña, los defectos se convierten en una fuente de calor en un entorno frío, lo 

que hace que la técnica sea selectiva con los mismos, ya que sólo los defectos producen 

señal vibrotermográfica.  

La vibrotermografía compite con las clásicas técnicas de evaluación no destructiva que 

tienen como objeto la detección de defectos ligeramente sumergidos o abiertos a la 

superficie, como los líquidos penetrantes, partículas magnéticas o corrientes inducidas. La 

técnica de líquidos penetrantes requiere que el material no sea poroso y que los defectos 

lleguen a la superficie y, para aplicar los métodos de partículas magnéticas o corrientes 

inducidas, el material debe ser ferromagnético o conductor eléctrico, respectivamente. Sin 

embargo, no hay restricción en cuanto al material para la aplicación de la vibrotermografía, 

a excepción de que no sea frágil.  
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La vibrotermografía también compite con otros métodos termográficos, ya que además de 

mediante excitación mecánica, la muestra se puede excitar por medios electromagnéticos u 

ópticos. Las mayores limitaciones de la excitación electromagnética son la evaluación de 

piezas de gran tamaño y su restricción a materiales conductores eléctricos y, en relación a 

la excitación óptica, la vibrotermografía permite la detección de defectos más profundos. 

Además, para la detección de defectos verticales (perpendiculares a la superficie de 

medida) como los abordados en esta tesis, es necesario escanear un haz de luz focalizado 

sobre la superficie del material, lo que supone una importante inversión de tiempo.  

La vibrotermografía puede implementarse en dos regímenes de excitación diferentes: lock-

in (modulada) y burst (pulsada). En la vibrotermografía burst, se aplica un pulso de 

amplitud constante y se registra la evolución de la temperatura superficial de la muestra 

durante y después de la excitación, siendo su mayor ventaja la rapidez de los ensayos. En la 

vibrotermografía lock-in, sin embargo, los ultrasonidos se modulan en amplitud, 

provocando una deposición de calor periódica en el defecto que da lugar a la generación de 

ondas térmicas que, a su vez, se propagan de acuerdo a las propiedades térmicas del 

material y se detectan en la superficie. La magnitud que se evalúa en el régimen modulado 

es la componente oscilatoria de la temperatura superficial de la muestra en cada píxel, que 

se promedia durante un cierto número de períodos de modulación para obtener las 

imágenes de amplitud y fase de la oscilación de la temperatura superficial.  

A pesar de que la adquisición de datos en el régimen modulado es más larga que en el 

régimen pulsado por tener que evaluar muchos períodos para cada frecuencia de 

modulación, la gran ventaja del régimen lock-in es su eficiente capacidad de filtrado del 

ruido aleatorio, permitiendo extraer señales embebidas en un nivel de ruido varios órdenes 

de magnitud mayor, siempre y cuando las señales sean periódicas. La reducción del nivel 

de ruido, a su vez, permite disminuir la potencia de los ultrasonidos en los ensayos, lo cual 

es favorable para minimizar el riesgo de alterar la superficie de los defectos y, en 

consecuencia, la generación de calor en los mismos, preservar la naturaleza no destructiva 

de la técnica y así aumentar su reproducibilidad y su fiabilidad. Por estos motivos, se ha 

elegido el régimen lock-in para la realización de esta tesis.  

El fin último de la detección de defectos es su caracterización, es decir, la determinación de 

los parámetros geométricos de los defectos como su tamaño, forma y la profundidad a la 

que están sumergidos. El problema directo es la relación “causa-efecto”, es decir, el cálculo 

de la distribución de temperatura superficial generada por una grieta, mientras que el 

problema inverso consiste en recuperar la causa (la geometría de la grieta), a partir de la 

distribución de temperatura superficial. Sin embargo, la información físicamente accesible 
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a partir de datos de vibrotermografía es la distribución de fuentes de calor responsable de 

esa distribución de temperatura superficial, más que la geometría de la grieta en sí. La 

región que contiene las fuentes de calor y la geometría de la grieta coinciden en el caso de 

grietas cerradas, donde el calor es generado en la totalidad de la superficie de la grieta, 

mientras que, en el caso de grietas abiertas, la generación de calor se da solo en una región 

determinada de la grieta. Además, en grietas abiertas, es probable que el calor se genere de 

manea inhomogénea dentro de la región considerada. 

La naturaleza difusiva de la propagación del calor y el hecho de que la temperatura solo 

pueda obtenerse en la superficie de la muestra y no en el propio lugar de generación del 

calor (sumergido bajo la superficie), provocan que el problema de reconstruir la geometría 

de la distribución de fuentes de calor sea un problema mal puesto en el sentido de 

Hadamard, ya que su solución es fuertemente dependiente de pequeños errores en los datos 

y la inversión es inestable. En este tipo de problemas, la minimización por mínimos 

cuadrados no converge. Sin embargo, la inestabilidad del problema inverso se puede paliar 

mediante técnicas de regularización.  

Esta tesis se centra en la caracterización de grietas verticales mediante vibrotermografía 

lock-in, principalmente cerradas, que suponen un reto para la gran mayoría de las técnicas 

END. Así pues, el primer objetivo es la implementación de un algoritmo de inversión 

basado en minimización por mínimos cuadrados estabilizados, para la reconstrucción de 

fuentes de calor verticales sumergidas a partir de datos de vibrotermografía. También se 

lleva a cabo un análisis del algoritmo de inversión usando datos sintéticos, con el fin de 

optimizar el algoritmo para expandir su aplicación a la caracterización del mayor rango de 

geometrías de fuentes de calor posible y aumentar la calidad de las reconstrucciones, 

aportando información cuantitativa sobre las fuentes de calor.    

La verificación experimental del algoritmo de inversión es un paso obligado para demostrar 

el potencial del mismo para reconstruir fuentes de calor. El segundo objetivo de esta tesis, 

entones, es el de verificar los resultados obtenidos usando datos sintéticos con datos 

experimentales obtenidos en ensayos de vibrotermografía lock-in, utilizando muestras con 

fuentes de calor calibradas y también muestras reales con grietas internas. 

Para la consecución de los objetivos, el primer paso es el planteamiento y resolución del 

problema directo, es decir, el cálculo de la distribución de temperatura superficial generada 

por fuentes de calor moduladas. La solución del problema directo se ha analizado llevando 

a cabo simulaciones, en las cuales se estudia la influencia de alterar los parámetros 

geométricos de una fuente de calor homogénea de geometría cuadrada en la distribución de 
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temperatura superficial. También se han considerado otras geometrías con el objetivo de 

explorar la capacidad de la vibrotermografía para distinguir entre distribuciones de 

temperatura superficial generadas por distintas geometrías. La dificultad de distinguir entre 

las diferentes geometrías cuando las características distintivas de las mismas se encuentran 

en la parte inferior (sumergida) de las fuentes de calor, evidencia el carácter de problema 

mal planteado, que además empeora con la profundidad a la que están sumergidas las 

fuentes. El uso de datos obtenidos a múltiples frecuencias de modulación permite aumentar 

la información sobre las fuentes de calor. Por tanto, el diseño experimental seleccionado 

consta de 9 frecuencias de modulación, cubriendo un rango de 0.05 a 12.8 Hz. 

Las predicciones de las simulaciones del problema directo se han verificado llevando a 

cabo experimentos de vibrotermografía con muestras que contienen fuentes de calor 

verticales calibradas. Se han observado diferencias entre las predicciones del modelo 

teórico y los resultados experimentales cuando la muestra se excita con una potencia de 

ultrasonidos “alta” (250-300 W), especialmente a frecuencias de modulación bajas. Se ha 

demostrado que estas discrepancias se deben a la contribución de la subida de temperatura 

de la muestra a la distribución de temperatura superficial medida, al tomar datos en 

régimen transitorio.  

Tras la propuesta de tres métodos para la eliminación del transitorio de la temperatura 

superficial medida, se ha optado por el que permite una mayor reducción de la potencia de 

los ultrasonidos, realizando así los ensayos con una potencia de ultrasonidos “baja” (25-40 

W). Para compensar la disminución de la relación señal-ruido que ello conlleva, se ha 

hecho uso de la capacidad de filtrado de la técnica lock-in analizando un mayor número de 

imágenes, en concreto 32.000 imágenes, para cada frecuencia de modulación. De esta 

manera, se ha llegado a la definición del procedimiento óptimo de adquisición de datos en 

los ensayos de vibrotermografía. Además, se ha medido la dependencia en frecuencia del 

equipo experimental, con el fin de corregir los errores introducidos en los termogramas de 

fase sistemáticamente. 

En cuanto al problema inverso, éste ha sido abordado y su carácter mal planteado ha sido 

analizado mediante descomposición en valores singulares, con el fin de seleccionar 

métodos de regularización apropiados. La investigación en este sentido ha resultado en la 

implementación de un algoritmo de inversión robusto, basado en minimización por 

mínimos cuadrados estabilizados mediante términos de penalización basados en los 

funcionales de Tikhonov, Total Variation y L1, capaz de reconstruir distribuciones de 

fuentes de calor partiendo de datos de vibrotermografía. El planteamiento adoptado implica 

el ajuste de los datos al resultado de un modelo semi-analítico que describe la propagación 
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de las ondas térmicas generadas en los defectos. En este sentido, el tratamiento del 

problema es puramente térmico, dejando de lado los mecanismos de generación de calor en 

los defectos.  

A partir del profundo análisis del algoritmo de inversión realizado usando datos sintéticos 

generados para fuentes de calor que representan grietas homogéneas de geometría 

cuadrada/rectangular, en el que se analizan los efectos en las reconstrucciones de aspectos 

tanto en relación al propio algoritmo como a los datos que se introducen, se ha llegado a su 

optimización, es decir, a la determinación del protocolo de inversión para la obtención de 

resultados óptimos. Con el objetivo de cuantificar la similitud entre la distribución de 

fuentes de calor reconstruida y la real, se ha definido un factor de calidad y un criterio de 

“reconstrucción precisa”. Conforme a este criterio, el algoritmo de inversión es capaz de 

reconstruir fuentes de calor cuadradas de lado L hasta profundidades de 3.6L y 5L, con 

datos afectados por un 5% y un 0.5% de ruido uniforme, respectivamente, demostrando así 

la propiedad de convergencia del algoritmo, ya que la solución obtenida tiende a la 

solución exacta a medida que el nivel de ruido en los datos disminuye.  

Otros aspectos importantes han sido también verificados, como el criterio de parada del 

proceso iterativo de minimización, los valores seleccionados de los parámetros de 

regularización correspondientes a los funcionales de Tikhonov, Total Variation y L1, el 

diseño del experimento o el uso de datos multi-frecuencia para lograr una óptima 

reconstrucción. Además, se ha determinado la resolución espacial del algoritmo de 

inversión en función de la profundidad de dos fuentes de calor y, por último, se han 

identificado los casos en los que ensombrecimiento, es decir, la reconstrucción difusa de 

ciertas zonas de las fuentes de calor, afecta a las reconstrucciones.  

En cuanto a la caracterización de fuentes de calor que representan grietas homogéneas 

cerradas de otras geometrías, el algoritmo de inversión reproduce las formas redondeadas 

fácilmente, mientras que las formas puntiagudas son muy difíciles de reconstruir, 

requiriendo profundidades muy pequeñas, además de niveles de ruido bajos. Excepto en 

este último caso, el algoritmo es robusto frente al aumento del nivel de ruido de cara a la 

recuperación de las particularidades de las diferentes geometrías. 

Con el objeto de abordar situaciones que surgen a menudo en experimentos con grietas 

reales abiertas a la superficie, se han considerado fuentes de calor abiertas representadas 

por bandas de diferentes geometrías. El algoritmo de inversión, en este caso, reconstruye 

adecuadamente los extremos superficiales de las bandas donde la producción de calor tiene 

lugar, siendo el ensombrecimiento, es decir, la reconstrucción poco definida de las áreas 
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centrales y más profundas de las bandas, la mayor limitación para la reproducción de la 

totalidad de las geometrías.  

Para una mayor aproximación a situaciones reales, se han reconstruido flujos de calor 

inhomogéneos, tanto en fuentes de calor cerradas como abiertas, de manera cualitativa. A 

pesar de que la reconstrucción de gradientes de flujo es todo un reto para un problema 

inverso mal planteado, el algoritmo de inversión ha demostrado ser capaz de reconstruir de 

manera precisa ciertas variaciones de flujo. En concreto, en fuentes de calor cerradas, se 

reconstruyen de manera precisa las variaciones de flujo cercanas a la superficie que se dan 

a lo largo de la anchura de la geometría y, en fuentes de calor abiertas, aquellas que se dan 

a lo largo de la anchura incluso a profundidades mayores, así como las variaciones de flujo 

que tengan lugar a lo largo de la profundidad de la fuente de calor.  

Finalmente, los resultados obtenidos en inversiones de datos sintéticos se han verificado 

con datos experimentales obtenidos en ensayos de vibrotermografía, realizados siguiendo 

el procedimiento óptimo de adquisición de datos. Se ha comprobado que el protocolo 

óptimo de inversión permite obtener las mejores reconstrucciones también partiendo de 

datos experimentales y, para demostrar que se puede reconstruir cualquier geometría 

haciendo uso del algoritmo de inversión implementado, se han considerado geometrías 

diferentes a las analizadas con datos sintéticos, como rectángulos inclinados o formas 

arbitrarias. Además, se ha demostrado que el aumento de la potencia de ultrasonidos a altas 

frecuencias (dentro de la potencia “baja” establecida) permite una mayor definición del 

contorno de las geometrías en las reconstrucciones. Para la producción inhomogénea de 

calor en los experimentos de vibrotermografía se ha propuesto el uso de diferentes 

materiales en las fuentes de calor calibradas. Al igual que en inversiones de datos 

sintéticos, el algoritmo de inversión ha reproducido las diferencias de flujo de calor 

generados en las distintas zonas, para fuentes de calor abiertas de geometría semicircular y 

triangular. 

Finalmente y como objetivo último, se ha aplicado el algoritmo de inversión para 

caracterizar grietas reales en una muestra soldada de Inconel 718. Los resultados están en 

buena correlación cualitativa con los resultados del ensayo de líquidos penetrantes 

realizado posteriormente. 

El trabajo realizado a lo largo de esta tesis sirve de base para líneas futuras de investigación 

relacionadas con el algoritmo de inversión. El interés más inmediato está en la reducción 

del ensombrecimiento, muy presente en la reconstrucción de ciertas geometrías y también 

entre dos fuentes de calor reconstruidas en una misma inversión, así como en la 
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optimización de la reconstrucción de cualquier tipo de flujo de calor inhomogéneo. El 

siguiente paso es la caracterización de grietas oblicuas en lugar de verticales, con el fin 

último de poder caracterizar grietas no planas, caso en el cual el algoritmo de inversión 

necesitaría considerar una zona de búsqueda tridimensional. Finalmente, un avance 

importante es la determinación absoluta del flujo de calor generado en las grietas, ya que 

supone un conocimiento determinante para la aceptación total de la vibrotermografía como 

técnica NDE. 
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A.1 Spatial resolution of the inversion algorithm 
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Figure A.1. Reconstructions of two squares of dimensions w1 = h1 = w2 = h2 = 1 mm as a function of dcen 
(separation distance between centres), in inversions stabilized with TVAnisot and entering normalized 
amplitudes. The contours of the real heat sources are depicted in red and the values of both dcen and the 

normalized heat source distribution in the mid-point between the two maxima, ,
midQ
δ α , are displayed on top 

of and under each reconstruction, respectively. The depths of the heat sources are: |d| = 0.2 (a), 0.6 (b), 1.2 
(c), 1.6 (d), 2.0 (e), 2.6 (f) and 3.2 mm (g). 
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Figure A.2. Reconstructions of two squares of dimensions w1 = h1 = w2 = h2 = 1 mm as a function of dcen 
(separation distance between centres), in inversions stabilized with TVIsot and entering raw amplitudes. The 
contours of the real heat sources are depicted in red and the values of both dcen and the normalized heat 

source distribution in the mid-point between the two maxima, ,
midQ
δ α , are displayed on top of and under 

each reconstruction, respectively. The depths of the heat sources are: |d| = 0.2 (a), 0.6 (b), 1.2 (c), 1.6 (d), 
2.0 (e), 2.6 (f), 3.2 (g), 4.0 (h) and 5.0 mm (i). 
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A.2 Micrographs of the calibrated heat sources 
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Figure A.3. Micrographs and diagrams of the Cu foils used in vibrothermography experiments using 
samples containing calibrated heat sources, representing homogeneous kissing vertical cracks of different 
geometries: (a) square, (b) rectangle, (c) two squares, (d) sUp, (e) sDown, (f) tUp, (g) tDown, (h) shallow 
and elongated half-penny, (i) deep and narrow half-penny, (j) rectangle inclined 45º and (k) arbitrary 
shape. 
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Figure A.4. Micrographs and diagrams of the geometries considered in vibrothermography experiments 
using samples containing calibrated heat sources, representing both homogeneous and inhomogeneous 
vertical open cracks of different geometries: (a) semicircle, (b) half-penny, (c) triangle, (d) rectangle, (e) 
semicircle with left and right halves corresponding to 38 µm annealed and hard Cu foils and (f) triangle 
with left right halves corresponding to 25 µm Cu and stainless steel foils. All the homogeneous heat 
sources correspond to 38 µm Cu strips. 


