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RReessuummeenn
________________________________________________________________________________________________________

El trabajo de investigación que se recoge en la presente memoria se centra en el 

desarrollo de nuevos métodos sintéticos basados en el empleo de compuestos 

organolíticos y catálisis con paladio para la formación de enlaces carbono-carbono, 

orientados a la preparación de heterociclos nitrogenados, tales como 

pirroloisoquinolinas, naftiridinas y pirrolicinas. 

Tal y como se describe en el segundo capítulo y en conexión con los trabajos de 

nuestro grupo de investigación, se ha extendido la reacción de carbolitiación 

intramolecular tipo Parham a heteroaril-litios deficientes de electrones, tales como 

piridinil- y quinolinil-litios derivados de N-(o-haloheteroarilmetil)pirroles, 

obteniendo las correspondientes dihidropirrolo[1,2-g][1,6]naftiridinas y 

dihidrobenzo[b]pirrolo[1,2-g][1,6]naftiridinas con rendimientos de bajos a 

moderados. El alqueno que actúa como electrófilo interno debe estar activado con 

grupos electroatractores de electrones, en nuestro caso ésteres y amidas, y se ha 

comprobado que el empleo de MesLi como agente metalante es crucial para evitar 

reacciones competitivas de adición conjugada (Esquema 1). 
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Esquema 1 



Resumen 

�

Por otro lado, se ha logrado sintetizar (10R,10aS)-hexahidropirrolo[1,2-

b]isoquinolinas enantioméricamente puras partiendo de N-(o-

yodobencil)pirrolidinilacrilatos derivados de L-prolina, mediante una reacción de 

carbolitiación intramolecular que resultó ser totalmente diastereoselectiva, cuando 

el alqueno estaba disustituído, generando eficientemente el centro estereogénico 

terciario (Esquema 2). Sin embargo, si el alqueno presentaba un grupo metilo en 

posición � al éster, se obtenía una mezcla de diastereoisómeros, cuya relación 

dependía de las condiciones empleadas. Si bien la carbolitiación intramolecular 

parece ser diastereoselectiva, la protonación del intermedio litiado, en la que se 

genera el tercer centro estereogénico, no fue selectiva. 

�

Esquema 2 

Por otra parte, la extensión del procedimiento a los correspondientes N-(o-

yodobencil)pirrolilbutenoatos para la formación de un centro cuaternario, no ha 

proporcionado buenos resultados, aislándose la correspondiente pirroloisoquinolina 

con bajos rendimientos, siendo el sustrato desyodado el producto mayoritario 

(Esquema 3).   



                                                             Resumen 
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Esquema 3  

Asimismo, se ha estudiado la reacción de carbolitiación intramolecular mediante 

procesos tipo SN2´ sobre N-(o-yodobencil)pirroles o pirrolidinas alquenil 

sustituídas, así como sobre las correspondientes halopiridinas y haloquinolinas, en 

las que el electrófilo interno era un alcohol alílico protegido (R1 = COCH3, 

TBDMS).  Sin embargo, si bien, en todos los casos, se encontraron las condiciones 

experimentales para efectuar la metalación, la subsecuente ciclación fallaba, 

aislándose los sustratos deshalogenados, junto con productos secundarios de 

adición/sustitución del alquil-litio empleado para efectuar el intercambio halógeno-

litio (Esquema 4).  

Esquema 4 



Resumen 

�

El tercer capítulo de este trabajo se centra en el estudio de las reacciones 

intramoleculares tipo Heck catalizadas por paladio. En una primera parte, se ha 

realizado el estudio de la competencia entre la reacción de Mizoroki-Heck y 

arilación directa empleando haluros de heteroarilo deficientes en electrones, tales 

como o-bromo- y o-yodopiridinas o quinolinas. Se ha investigado la reacción sobre 

N-(o-haloheteroaril)pirrolilacrilatos y acrilamidas, tratando de dirigir el ataque 

hacia el alqueno o hacia el núcleo de pirrol eligiendo el sistema catalítico 

adecuado. Sin embargo, se ha demostrado que no es posible controlar la 

quimioselectividad de la reacción. La reacción de arilación directa sobre el C-2 del 

pirrol está favorecida en todos los casos, incluso empleando sistemas catalíticos 

basados en Pd(PPh3)4 que dan lugar a especies catalíticas que pueden favorecer la 

reacción de Mizoroki-Heck a través de un mecanismo neutro en sustratos 

relacionados. Así, se ha logrado sintetizar con buenos rendimientos pirido[2,3-

a]pirrolicinas y pirrolicino[1,2-b]quinolinas mediante arilación directa (Esquema 

5).   
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Esquema 5 



                                                             Resumen 

La segunda parte del capítulo se centra en la generación de centros terciarios y 

cuaternarios en la síntesis de pirroloisoquinolinas y naftiridinas mediante reacción 

intramolecular de Mizoroki-Heck de diferentes o-halo(hetero)arilmetilpirroles, 

evitando la �-eliminación del hidruro del carbono directamente implicado en la 

formación del nuevo enlace carbono-carbono, y promoviendo la �´-eliminación de 

hidruro o de un grupo saliente sobre alcoholes alílicos protegidos.  

Por un lado, se ha logrado de manera eficiente la generación de centros 

cuaternarios y terciarios para la síntesis de pirroloisoquinolinas en versión 

racémica, partiendo de N-(o-yodobencil)pirroles en los que se incorporaba una 

unidad de alcohol protegido con un grupo TBDMS, mediante �´-eliminación 

selectiva de hidruro (Esquema 6). Dado que en la ciclación se retenía el grupo 

OTBDMS, el producto se aislaba como una mezcla de diastereoisómeros E:Z de 

silil enol éter, por lo que fue necesaria la desprotección/reducción para obtener la 

pirroloisoquinolina 10b-hidroxietil sustituída. No obstante, la reacción no es 

eficiente cuando empleamos fosfinas quirales,  lográndose hasta un 18% de ee en la 

generación del centro cuaternario, mediante el empleo de Pd2(dba)3.CHCl3 (10 

mol%) con (R)-BINAP (28 mol%) como ligando, en presencia de Ag3PO4 (2.0 eq.) 

en CH3CN a reflujo durante 4 h.  

   



Resumen 

�

�)&�

�)&�

�

� �)&�

�)&�
�

�(�.�/

�(�.�/

�)&�

�)&�
�

�)

��

��

��

�� � )� �)&

0�+�! �� ���$��

'	+'� 

1��112&�� ��	 -$% �
��&� ���! �
��

�$%#��$
��3%#4$� �"2

�� 5*� ()*6���)

�� ���)�� ���)

  

Esquema 6 

Sin embargo, cuando se trató de extender el procedimiento a las correspondientes 

o-halopiridinas, no pudo controlarse la competencia entre la reacción de Mizoroki-

Heck y la arilación directa, obteniendo siempre mezclas de las correspondientes 

naftiridinas y pirrolicinas, incluso cuando se emplean condiciones que favorecen 

un mecanismo neutro (Esquema 7). Además, en el caso de o-haloquinolinas, 

únicamente se obtenían productos de arilación directa, sin detectarse el producto de 

Mizoroki-Heck.  

  

Esquema 7 



                                                             Resumen 

En vista de estos resultados, se decidió optimizar la reacción de arilación directa 

sobre o-yodo(hetero)arilmetilpirroles que incorporaban un alcohol alílico protegido 

con un grupo sililo, habiéndose encontrado las condiciones experimentales que 

promueven la arilación directa sobre el C-2 del pirrol, lo que ha permitido obtener 

con buenos rendimientos las correspondientes pirrolicinas (hetero)benzo-

fusionadas (Esquema 8).  

Esquema 8 

En la última parte del capítulo, se estudió la diastereoselectividad de la reacción de 

Mizoroki-Heck para la generación de centros terciarios sobre N-(o-

yodobencil)pirrolidinas enantioméricamente puras derivadas de L-prolina. Así, 

cuando se empleaban pivalatos y acetatos como grupos protectores del alcohol 

alílico, la ciclación tenía lugar mediante �´-eliminación del grupo carboxilato, 

obteniéndose 10b-vinil pirroloisoquinolinas con alta diastereoselectividad y 

rendimientos moderados si el alqueno estaba disustituído (Esquema 9, Condiciones 

a), si bien los rendimientos eran menores cuando se empleaban alquenos 

trisustituídos (Condiciones b). 



Resumen 
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Esquema 9 

Por otra parte, cuando el alcohol alílico estaba protegido por un grupo TBDMS, la 

ciclación tipo Heck tenía lugar mediante �´-eliminación de hidruro, con retención 

del grupo saliente, de manera diastereoselectiva. La subsecuente desprotección y 

reducción condujo a la pirroloisoquinolina 10b-hidroxietil sustituída de 

configuración (10S,10aS) enantioméricamente pura (Esquema 10). 



                                                             Resumen 
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Esquema 10 

Finalmente, en el cuarto capítulo se describe el trabajo desarrollado en el Instituto 

de Química Orgánica de la RWTH Universidad de Aachen, bajo la supervisión del 

Prof. Carsten Bolm. Durante la estancia de tres meses en estos laboratorios, se ha 

estudiado la adición nucleófila de 2-(hetero)arilpiridinas a iminas cíclicas con 

distintos patrones de sustitución, mediante catálisis con complejos de rodio(III) vía

activación C-H. Este método, en el cual la piridina actúa como grupo director de la 

activación C-H, ha permitido la síntesis eficiente de las respectivas aminas en 

condiciones suaves (Esquema 11).  



Resumen 
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Esquema 11 

En este contexto, en el grupo de Bolm se había realizado previamente la 

optimización de las condiciones catalíticas para llevar a cabo la adición nucleofila 

catalizada por rodio(III) de la 2-fenilpiridina a la [1,2,3]-benzoxatiacina sin 

sustituir (R2 = H), vía activación del enlace C-H. Mi trabajo ha consistido en la 

síntesis de sustratos con distintos patrones de sustitución y el empleo de los 

mismos para estudiar el alcance de la metodología propuesta.



SSuummmmaarryy
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The research work described in this thesis is focused on the use of lithium and 

palladium mediated cyclization reactions for the stereocontrolled synthesis of 

(hetero)benzo-fused indolizidines through carbon-carbon bond formation.  

The Parham-type intramolecular carbolithiation via conjugate addition and SN2´ 

reactions of aryl and heteroaryllithiums has been investigated for the construction 

of the indolizidine core present in different type of heterocycles. On the other hand, 

the competition between Mizoroki-Heck and direct arylation reaction on alkenyl 

substituted o-halopyridines and o-haloquinolines has been studied. Moreover, a 

procedure for the generation of tertiary and quaternary stereocenters through Heck 

cyclization via �´-hydride or �´-leaving group elimination in different o-

halo(hetero)arylmethylpyrroles has been developed. 
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1.1. Group precedents 

Organometallic Chemistry has become one of the most interesting fields in 

Synthetic Organic Chemistry as it affords the possibility to perform a wide number 

of chemical transformations. In particular, it should be highlighted that 

organolithium compounds, aryl and heteroaryllithium compounds1 amongst others, 

have emerged as versatile intermediates in synthesis, since their reaction with 

carbon electrophiles allows the introduction of new functionality in a molecule, 

together with carbon-carbon bond formation. Thus, strategies based on aromatic 

lithiation have been widely applied in the field of natural products´ synthesis.2

���������������������������������������� �������������������
1 a) Wakefield, B. J. The Chemistry of Organolithium Compounds, Pergamon Press: New York, 2nd 
Ed, 1990. b) Wakefield, B. J. Organolithium Methods, Academic Press: London, 1990. c) Clayden, J. 
Organolithiums: Selectivity for Synthesis, Pergamon Press: New York, 1st Ed, 2002. d) Rappoport, 
Z.; Marek, I. Eds., The Chemistry of Organolithium Compounds, Patai Series: The Chemistry of 

Functional Groups, Wiley-VCH: Chichester, 2004. e) Majewski, M.; Snieckus, V. Eds. In Science of 

Synthesis, Vol. 8a, Thieme: Stuttgart, 2006.�
2 For some selected examples, see: a) Moreau, A.; Couture, A.; Deniau, E.; Grandclaudon, P.; Lebrun, 
S. Org. Biomol. Chem. 2005, 3, 2305. b) Moreau, A.; Lorion, M.; Couture, A.; Deniau, E.; 
Grandclaudon, P. J. Org. Chem. 2006, 71, 3303.  c) Lamblin, M.; Couture, A.; Deniau, E.; 
Grandclaudon, P. Tetrahedron 2007, 63, 2664. d) James, C. A.; Snieckus, V. J. Org. Chem. 2009, 74, 
4080. e) Wang, X.; Fu, J.; Snieckus, V. Helv. Chim. Acta 2012, 95, 2680. 
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Aromatic lithiation reaction3 can take place through hydrogen-lithium exchange or 

halogen-lithium exchange. On the one hand, directed ortho-lithiation4 can be 

considered as an acid-base reaction in which a strong base such as an alkyllithium 

reagent causes deprotonation in an ortho position to a directing group, leading to an 

ortho-lithiated species, which could further react with electrophiles.  

On the other hand, the halogen-lithium exchange procedure allows the possibility 

to functionalize non-activated positions of an aromatic ring. Moreover, the celerity 

that characterizes halogen-lithium exchange, even at low temperatures, permits the 

preparation of aryllithiums in the presence of highly reactive functional groups, 

such as ketones and imides.  

We will focus our attention on the halogen-lithium exchange based lithiation, as it 

is related to the present research project. Once the halogen-lithium exchange takes 

place to generate an aryl or heteroaryllithium species, it may react with external or 

internal electrophiles, resulting in the latter case in cyclization reactions (Scheme 

1.1). Intramolecular cyclization reactions that involve an aryllithium intermediate 

produced by halogen-lithium exchange are termed as Parham cyclizations.5

�

���������������������������������������� �������������������
3 a) Snieckus, V. Chem. Rev. 1990, 90, 879. b) Snieckus, V. Pure Appl. Chem. 1994, 66, 2155. c) 
Gray, M.; Tinkl, M.; Snieckus, V. In Comprehensive Organometallic Chemistry II, Vol. 11, Abel, E. 
W.; Stone, F.G.A.; Wilkinson, G. Eds., Pergamon: Exeter, 1995, p. 66. d) Schlosser, M. Eur. J. Org. 

Chem. 2001, 3975. e) Clayden, J. In The Chemistry of Organolithium Compounds, Patai Series: The 

Chemistry of Functional Groups, Rappoport, Z.; Marek, I. Eds., Wiley-VCH: Chichester, 2004, p. 
495. 
4 a) Gilman, H.; Bebb, R. L. J. Am. Chem. Soc. 1939, 61, 109. b) Wittig, G.; Furhmann, G. Chem. 

Ber. 1940, 73, 1197. 
5 a) Parham, W. E.; Jones, L. D.; Sayed, Y. A. J. Org. Chem. 1975, 40, 2394. b) Parham, W. E.; 
Bradsher, C. K. Acc. Chem. Res. 1982, 15, 300.  
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Scheme 1.1�

The application of this methodology using different internal electrophiles, such as 

alkyl halides, epoxides, alkenes, alkynes, ketones, imines, amides or carbamates, 

which remain passive during the halogen-lithium exchange process, but are 

reactive enough to participate in the posterior ring-closure process, provides a 

successful strategy to regioselectively synthesize carbocycles and heterocycles.6  

In the last years, our group has developed a variety of synthetic methodologies 

based on Parham cyclization allowing the synthesis of diverse nitrogen 

heterocycles.7 In particular, the use of imides8 as internal electrophiles is especially 

attractive as they are much more reactive towards nucleophiles than primary 

���������������������������������������� �������������������
6 Sotomayor, N.; Lete, E. Curr. Org. Chem. 2003, 7, 275. 
7 For selected reviews, see: a) Ardeo, A.; Collado, M.I.; Osante, I.; Ruiz, J.; Sotomayor, N.; Lete, E. 
In Targets in Heterocyclic Systems, Vol. 15, Attanasi, O.; Spinelli, D. Eds., Italian Society of 
Chemistry: Rome, 2001, p. 393. b) Arrasate, S.; Sotomayor, N.; Lete, E. In New methods for the 

asymmetric synthesis of nitrogen heterocycles, Vicario, J. L.; Badía, D.; Carrillo, L. Eds., Research 
Signpost: India, 2005, p. 223. c) Martínez-Estíbalez, U.; Gómez-SanJuan, A.; García-Calvo, O.; 
Aranzamendi, E.; Lete, E.; Sotomayor, N. Eur. J. Org. Chem. 2011, 3610. 
8 For a review, see: a) Ref. 7c. For some representative examples, see: b) Lete, E.; Eguiarte, A.; 
Sotomayor, N.; Vicente, T.; Villa, M. J. Synlett 1993, 41. c) Collado, M. I.; Manteca, I.; Sotomayor, 
N.; Villa, M. J.; Lete, E. J. Org. Chem. 1997, 62, 2080. d) Osante, I.; Lete, E.; Sotomayor, N. 
Tetrahedron Lett. 2004, 45, 1253.  
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amides. In this sense, in a direct lithiation process (X = H), the organolithium 

reagents undergo preferentially addition to the carbonyl group of the imide 

providing �-hydroxylactam intermediates that are immediate precursors of N-

acyliminium ions (Scheme 1.2). Subsequently, these N-acyliminium intermediates 

are prone to cyclize with the aromatic ring via an intramolecular �-amidoalkylation 

reaction. On the other hand, taking advantage of the fast rates in halogen-lithium 

exchange, a Parham cyclization can be conducted for iodinated aryl substrates (X = 

I), which contain an imide as internal electrophile, to afford bicyclic �-

hydroxylactams. These lactams are precursors of bicyclic N-acyliminium ions, 

which may react with external nucleophiles via intermolecular �-amidoalkylation 

reaction.7c  

These two synthetic methodologies have resulted diastereocomplementary and 

have permitted the stereocontrolled synthesis of different nitrogenated 

heterocycles.9 Furthermore, these cyclizations have been carried out in an 

asymmetric fashion with the aid of chiral auxiliaries under Lewis acid catalysis10 or 

with chiral Brönsted acids as catalysts.11 The combination of �-amidoalkylation 

and Parham cyclization reactions with intramolecular metathesis reactions (RCM) 

or conjugated addition has permitted our group to achieve the synthesis of a variety 

of alkaloid cores (Scheme 1.2).12

���������������������������������������� �������������������
9 For some representative examples, see: a) Osante, I.; Collado, M. I.; Lete, E.; Sotomayor, N. Synlett

2000, 101. b) Osante, I.; Collado, M. I.; Sotomayor, N.; Lete, E. Eur. J. Org. Chem. 2001, 1267. c) 
García. E.; Arrasate, S.; Ardeo, A.; Lete, E.; Sotomayor, N. Tetrahedron Lett. 2001, 42, 1511. d) 
García, E.; Arrasate S.; Lete, E.; Sotomayor, N. J. Org. Chem. 2005, 70, 10368. 
10 a) González-Temprano, I.; Lete, E.; Sotomayor, N. Synlett 2002, 593. b) González-Temprano, I.; 
Osante, I.; Lete, E.; Sotomayor, N. J. Org. Chem. 2004, 69, 3875. 
11 a) Aranzamendi, E.; Sotomayor, N.; Lete, E. J. Org. Chem. 2012, 77, 2986. b) Gómez-SanJuan, A.; 
Sotomayor, N.; Lete, E. Tetrahedron Lett. 2012, 2157. 
12 a) Ardeo, A.; García, E.; Arrasate, S.; Lete, E.; Sotomayor, N. Tetrahedron Lett. 2003, 44, 8445. b) 
Camarero, C.; González-Temprano, I.; Gómez-SanJuan, A.; Arrasate, S.; Lete, E.; Sotomayor, N. 
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Scheme 1.2

���������������������������������������� ���������������������������������������� ���������������������������������������� ����������������������������

Tetrahedron 2009, 65, 5787. c) Osante, I.; Sotomayor, N.; Lete, E. Lett. Org. Chem. 2004, 1, 323. d) 
Osante, I.; Abdullah, M. N.; Arrasate, S.; Sotomayor, N.; Lete, E. Arkivoc 2007, 4, 206. e) Abdullah, 
M. N.; Arrasate, S.; Lete, E.; Sotomayor, N. Tetrahedron 2008, 64, 1323. f) García, E.; Lete, E.; 
Sotomayor, N. J. Org. Chem. 2006, 71, 6776. 
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In parallel, our group has studied the generation of six-, seven- or eight-membered 

rings through Parham cyclization of aryl and heteroaryllithiums with an amide 

moiety as internal electrophile.13 This methodology has allowed us the synthesis of 

benzo- and hetero-fused indolizine type systems, as well as benzazepine and 

benzazocine skeletons (Scheme 1.3). In this case, the aromatic metalation-

cyclization sequence may be considered as an anionic Friedel-Crafts equivalent, 

with the advantages that it can be performed under milder conditions and it lacks 

the electronic requirements of the classical reaction. 
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Scheme 1.3 

���������������������������������������� �������������������
13 a) Ruiz, J.; Sotomayor, N.; Lete, E. Org. Lett. 2003, 5, 1115. b) Ruiz, J.; Ardeo, Ignacio, R.; 
Sotomayor, N; Lete, E. Tetrahedron 2005, 61, 3311. c) Ruiz, J.; Lete, E.; Sotomayor, N. Tetrahedron

2006, 62, 6182. 
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When an alkene is used as an internal electrophile, the carbolithiation would take 

place in an intramolecular fashion. Our group has also been involved in the study 

of these cyclization reactions to promote the construction of heterocyclic six-

membered rings. In parallel, we have investigated the Mizoroki-Heck reaction as 

an alternative strategy for the synthesis of this type of heterocycles, as both 

reactions share common substrates. In this context, making use of both independent 

methodologies we have conducted the synthesis of quinoline derivatives (Scheme 

1.4), since they represent important building blocks in the total synthesis of natural 

products,14 as well as they often show biological activity interesting for 

pharmaceutical and agrochemical industries.15   
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Scheme 1.4 

���������������������������������������� �������������������
14 For selected reviews, see: a) Kaur, K.; Jain, M.; Reddy, R. P.; Jain, R. Eur. J. Med. Chem. 2010, 45, 
3245. b) Solomon, V. R.; Lee, H. Curr. Med. Chem. 2011, 18, 1488. c) Montalban, A. G. In 
Heterocycles in Natural Products Synthesis, Majumbar, K. C.; Chattopadhyay, S. K. Eds., Wiley:
Weinheim, 2011, p. 299. d) Sridharan, V.; Suryavanshi, P. A.; Menendez, J. C. Chem. Rev. 2011, 111, 
7157. 
15 For selected examples, see: a) Pryor, W. A.; Strickland, T.; Church, D. F. J. Am. Chem. Soc. 1988, 
110, 2224. b) De Koning, A. J. Int. J. Food Prop. 2002, 5, 451. c) Blaszczyck, A.; Skolimowski, J. 
Chem. –Biol. Interact. 2006, 162, 70. d) Kouznetsov, V. V.; Gomez, C. M. M.; Derita, M. G.; Svetaz, 
L.; Olmo, E. D.; Zacchino, S. A. Bioorg. Med. Chem. 2012, 20, 6506. e) Kouznetsov, V. V.; Ruiz, F. 
A.; Vargas, L. Y.; Gupta, M. P. Lett. Drug Des. Discov. 2012, 9, 680 and references cited therein.  
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The chemistry of intramolecular carbolithiation reaction16 will be discussed in 

detail in Chapter 2, while the palladium-catalyzed Mizoroki-Heck reaction17 will be 

studied separately in Chapter 3 of this manuscript. However, we will show selected 

examples for the synthesis of already mentioned quinoline skeletons.  

On the one hand, the synthesis of tetrahydroquinoline system through 6-exo

intramolecular carbolithiation reaction has been reached from N-butenyl substituted 

2-iodoanilines bearing different electron-withdrawing substituents on the alkene 

and in � position to the nitrogen atom.18 Thus, 2,4-disubstituted 

tetrahydroquinolines were obtained with moderate diastereoselectivities depending 

on the nature of the organolithium reagent used, the solvent, and the presence of 

additives (Figure 1.1a).  

���������������������������������������� �������������������
16 For reviews on carbolithiation reactions: a) Marek, I. J. Chem. Soc., Perkin Trans. 1 1999, 535. b) 
Clayden, J. Organolithiums: Selectivity for Synthesis, Pergamon Press: Oxford, 2002, p. 273. c) 
Mealy, M. J.; Bailey, W. F. J. Organomet. Chem. 2002, 646, 59. d) Normant, J. F. Top. Organomet. 

Chem. 2003, 287. e) Fañañás, F. J.; Sanz, R. In The Chemistry of Organolithium Compounds, Patai 

Series: The Chemistry of Functional Groups, Rappoport, Z.; Marek, I. Eds., Wiley: Chinchester, 
2006, p. 295. f) Hogan, A. M. L.; O´Shea, D. F. Chem. Commun. 2008, 3839. g) Sanz, R. In Targets 

in Heterocyclic Systems, Attanasi, O.; Spinelli, D. Eds., Italian Society of Chemistry: Rome, 2008, 
vol. 12, p. 349. h) Martínez-Estíbalez, U.; Gómez-SanJuan, A.; García-Calvo, O.; Arrasate, S.; 
Sotomayor, N.; Lete, E. In Targets in Heterocyclic Systems, Attanasi, O.; Spinelli, D. Eds., Italian 
Society of Chemistry: Rome, 2010, vol. 14, p. 124. i) Lete. E.; Sotomayor, N. In Science of Synthesis, 
Vol. 8a update [Compounds of Group 1 (Li…Cs)], Yus, M. Ed., Thieme: Stuggart, 2012, p. 191. i) 
Minko, Y.; Marek, I. In Lithium Compounds in Organic Synthesis, Luisi, R.; Capriati, V. Eds., Wiley: 
Weinheim, 2014, p. 329.  
17 For selected reviews, see: a) Heck, R. F. Org. React. 1982, 27, 345. b) Heck, R. F. In 
Comprehensive Organic Synthesis, Vol. 4, Trost, B. M.; Fleming, I. Eds., Pergamon Press: Oxford, 
1991, p. 833. c) Meijere, A.; Meyer, F. E. Angew. Chem. Int. Ed. Engl. 1994, 33, 2379. d) Beletskaya, 
I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009. e) Hegedus, L. S. In Organometallics in 

Synthesis: A Manual, Schlosser. M. Ed., Wiley-VCH: Chichester, 2nd Ed, 2002, p. 1123. f) Oestreich, 
M. Ed. The Mizoroki-Heck Reaction, Wiley-VCH: Chichester, 2009. g) Larhed, M. Ed. Science of 

Synthesis. Cross-Coupling and Heck-type reactions, Vol. 3, Thieme: Stuttgart, 2013.  
18 a) Martínez-Estíbalez, U.; Sotomayor, N.; Lete. E. Org. Lett. 2009, 11, 1237. b) García-Calvo, O.; 
Martínez-Estíbalez, U.; Lete, E.; Sotomayor, N. Heterocycles 2014, 88, 425. 
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In view of these results, we decided to study this 6-exo ring-closure over chiral 

non-racemic 2-iodoanilines derived from glyceraldehyde.18b The reaction took 

place with complete diastereoselectivity to afford the tetrahydroisoquinoline as a 

single (2R,4S)-cis isomer (Figure 1.1b). The enantioselective version of this 

reaction was also studied and we were pleased to find that when performing the 

cyclization of racemic N-substituted 2-iodoanilines in the presence of a chiral 

bidentated ligand, such as (–)-sparteine, the reaction led to the tetrahydroquinolines 

in moderate diastereoselectivity (in favor of the 2,4-trans isomer) and with 

excellent ee for both diastereomers (Figure 1.1c).18a In this case, the incorporation 

of a phenyl group in � position to the nitrogen atom and the substitution pattern in 

the olefin (Weinreb amide) were crucial to achieve good enantioselection. 
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The Mizoroki-Heck reaction has also been applied to the synthesis of 

tetrahydroquinoline derivatives using similar N-alkenyl substituted 2-haloanilines 

as substrates.19 Concerning these studies, we can outline that cyclization always 

proceeded in a 6-exo-trig manner, with high functional group tolerance. 

Additionally, when using non-substituted alkenes, isomerization and oxidation 

could be controlled by using adequate catalytic systems and experimental 

conditions to achieve the regioselective preparation of quinolines with the double 

bond in an exo or endo position (Figure 1.1d). When conjugated alkenes were used, 

the same methodologies afforded selectively the tetrahydroquinoline product with 

its exocyclic double bond of E geometry (Figure 1.1e). The use of chiral substrates 

also allowed the synthesis of enantiomerically pure tetrahydroquinolines (Figure 

1.1f).19

As an alternative to the Mizoroki-Heck reaction, our group has investigated the 

palladium(II)-catalyzed C-H alkenylation known as Fujiwara-Moritani reaction, 

which does not require prefunctionalization of substrates. Therefore, we have 

recently reported an efficient and atom-economical strategy to achieve the 

regioselective synthesis of 4-substituted quinolones through 6-endo intramolecular 

C-H alkenylation reaction of N-phenylacrylamides. A second intermolecular C-H 

activation reaction led to further functionalization at C-3 position (Scheme 1.5).20

���������������������������������������� �������������������
19 Martínez-Estíbalez, U.; García-Calvo, O.; Ortiz-de-Elguea, V.; Sotomayor, N.; Lete, E. Eur. J. Org. 

Chem. 2013, 3013. 
20 Ortiz-de-Elguea, V.; Sotomayor, N.; Lete, E. Adv. Synth. Catal. 2015, 357, 463. 
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Scheme 1.5 

We were also interested in the synthesis of pyrroloisoquinolines starting from 2-

alkenyl N-(o-iodobenzyl)pyrroles and pyrrolidines through Parham cyclization 

and/or Mizoroki-Heck cyclization processes (Scheme 1.6). 

�

Scheme 1.6 
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In this case, the use of mesityllithium to promote Parham cyclization over 2-

alkenyl substituted N-(o-iodobenzyl)pyrroles allowed the regioselective synthesis 

of pyrrolo[1,2-b]isoquinoline systems, when olefins activated with electron-

withdrawing groups were used (Figure 1.2a).21 The same methodology could be 

applied for the construction of seven- and eight-membered rings, opening new 

routes to access benzazepine and benzazocine cores (Figure 1.2b,c).22

In addition, we have reported the diastereoselective intramolecular carbolithiation 

of racemic N-(o-iodobenzyl)pyrrolidines to obtain trans-(10RS,10aSR)-

hexahydropyrrolo[1,2-b]isoquinolines as single diastereomers (Figure 1.2d).23

When chiral non-racemic N-(o-iodobenzyl)pyrrolidines derived from L-prolinal 

were used, the 6-exo-trig cyclization took place with the same degree of 

diastereoselectivity providing a single trans-(10R,10aS) diastereomer in 

enantiomerically pure form (Figure 1.2e).22

���������������������������������������� �������������������
21 Lage, S.; Villaluenga, I.; Sotomayor, N.; Lete, E. Synlett 2008, 3188. 
22 García-Calvo, O.; Coya, E.; Lage, S.; Coldham, I.; Sotomayor, N.; Lete, E. Eur. J. Org. Chem. 
2013, 1460. 
23 a) García-Calvo, O.; Sotomayor, N.; Lete, E.; Coldham, I. Arkivoc 2011 (v), 57. b) García-Calvo, 
O. Ph.D Thesis, University of the Basque Country, 2011. 
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Figure 1.2 

Regarding palladium-catalyzed ring-closures, we have described the 6-exo Heck 

cyclization over 2-alkenyl N-(o-iodobenzyl)pyrrolidines in the synthesis of 

hexahydropyrrolo[1,2-b]isoquinolines (Figure 1.2f), a methodology which  can also 

be applied to the corresponding chiral non-racemic substrates affording enantipure 

cyclized products (Figure 1.2g).23 
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Furthermore, when 2-alkenyl substituted N-(o-iodobenzyl)pyrroles are used as 

substrates in palladium-catalyzed reactions, a competition between Mizoroki-Heck 

reaction and direct arylation reaction can be established. Hence, it has been 

possible to control the chemoselectivity of the reaction by applying specific 

conditions to direct the cyclization towards the olefin or the pyrrole nucleus, 

affording the regioselective synthesis of pyrroloisoquinolines or pyrroloisoindoles, 

respectively.24 This methodology has been extended for the construction of 

medium size rings (Scheme 1.7).25
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���������������������������������������� �������������������
24 Lage, S.; Martínez-Estibalez, Sotomayor, N.; Lete, E. Adv. Synth. Catal. 2009, 351, 2460 
(Highlighted in Synfacts 2010, 0023). 
25 Coya, E.; Sotomayor, N.; Lete, E. Adv. Synth. Catal. 2014, 356, 1853. 
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Moreover, we centered our attention in the use of heteroaromatic halides, such as 

thiophenyl halides, in order to promote cyclizations mediated by lithium and 

palladium. Regarding carbolithiation reactions, thiophenyllithiums could be 

prepared by halogen-lithium exchange with MesLi at low temperature, but the 6-

exo and 7-exo ring-closure did not proceed with the same degree of regiochemical 

efficiency than that one achieved in the reactions with the corresponding 

aryllithiums. However, this methodology allowed the synthesis of pyrrolo[1,2-

a]thieno[2,3-d]azepine and thieno[3,2-f]indolizine in moderate yields (Figure 

1.3a).26   

�

Figure 1.3 

The competition between Heck cyclization and direct arylation reaction over 

thiophenyl halides caused difficulties to control the chemoselectivity of the 

reaction. In this case, the attack to the pyrrole nucleus was favored (Figure 1.3b), 

so the Heck-reaction products were always isolated in low to moderate yields 

(Figure 1.3c).25

���������������������������������������� �������������������
26 Coya, E. Ph.D Thesis, University of the Basque Country, 2013. 
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Furthermore, we recently showed that quaternary stereocenters can be generated 

using chiral phosphane ligands through a polyene cyclization. Thus, our group has 

described the asymmetric palladium-based 6-exo/6-endo cascade reaction over 2,3-

dialkenyl-N-(o-iodobenzyl)pyrroles in the presence of (R)-BINAP ligand to 

achieve the synthesis of enantioenriched (11bR)-substituted 

pyrrolophenanthridines, which present the tetracyclic framework of the Lycorane 

core (Scheme 1.8).27 This polyene cyclization can be further extended to other 

heteroaromatic rings and tolerates different substitution patterns in the aromatic 

ring. 
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���������������������������������������� �������������������
27 Coya, E.; Sotomayor, N.; Lete, E. Adv. Synth. Catal. 2015, 357, 3206 (Highlighted in Synfacts

2016, 12, 67). 
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1.2. Aims and work plan 

The overall goal of this research work consists in the development of new 

methodologies for the synthesis of nitrogenated heterocycles by formation of 

carbon-carbon bonds through intramolecular carbolithiation and/or palladium-

catalyzed Mizoroki-Heck type coupling reactions. 

In view of the previously described group precedents, an extension of the Parham 

cyclization reaction to electron-deficient heteroaryllithiums, derived from o-

halopyridines and o-haloquinolines, will be studied in order to synthesize 

(benzo)pyrrolonaphthyridines. 

On the other hand, an extension of the diastereoselective version of intramolecular 

carbolithiation reaction will be conducted with alkenyl substituted N-(o-

iodobenzyl)pyrrolidinylacrylates. Additionally, the generation of a quaternary 

center will be studied by Parham cyclization over a properly designed substrate. 

Furthermore, an extension of intramolecular carbolithiation methodologies to 

substrates, where different leaving groups in the allylic chain would be introduced 

to promote ring closure via SN2´ reaction, will be studied. 

In parallel, the competition between direct arylation and Mizoroki-Heck reaction 

over substituted 2-alkenyl N-(o-haloheteroaryl)pyrroles will be investigated in 

order to control the chemoselectivity of the reaction for the synthesis of 

naphthyridine and pyrrolizine frameworks.  
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Besides, generation of tertiary and quaternary stereocenters through Heck 

cyclization over protected allylic alcohols will be studied in order to promote a �´-

leaving group or �´-hydride elimination. These reactions will be carried out in the 

presence of chiral phosphane ligands in order to study the enantioselective variant. 

The diastereoselectivity of the reaction will also be investigated on chiral non-

racemic N-(o-iodobenzyl)pyrrolidines for the synthesis of pyrroloisoquinolines.  

Finally, during a predoctoral stay in the laboratories of Prof. C. Bolm in the RWTH 

Aachen University, a strategy to perform rhodium(III)-catalyzed nucleophilic 

addition of 2-(hetero)arylpyridines to cyclic imines via ortho C-H bond activation 

for the synthesis of amines under mild conditions will be studied. 

Thus, stages followed towards the achievement of these aims are depicted below: 

1.2.1. Intramolecular carbolithiation reaction of 2-alkenyl substituted 

N-(o-haloheteroarylmethyl)pyrroles 

The intramolecular carbolithiation reaction over 2-alkenyl substituted N-(o-

haloheteroarylmethyl)pyrroles I will be studied using 2-halo-pyridinyl and 

quinolinyl derivatives as precursors for the heteroaryllithiums, to open new routes 

for the synthesis of dihydropyrrolo[1,2-g][1,6]naphthyridine and 

dihydrobenzo[b]pyrrolo[1,2-g][1,6]naphthyridine skeletons II (Scheme 1.9). In 

view of the group precedents, olefins activated with electron-withdrawing groups 

will be used. 

�

�

�
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�

Scheme 1.9 

1.2.2. Intramolecular carbolithiation reaction of N-(o-

halobenzyl)pyrrolidines and pyrroles for generation of tertiary and 

quaternary centers 

Firstly, an extension of the diastereoselective Parham cyclization previously 

applied to alkenyl N-(o-iodobenzyl)pyrrolidinyl acrylamides, this time over the 

corresponding acrylates III will be studied in order to achieve diastereoselectively 

tetrahydropyrroloisoquinolines IV by the generation of a tertiary stereocenter 

(Scheme 1.10a). Moreover, an intramolecular carbolithiation over a properly 

substituted alkenyl N-(o-iodobenzyl)pyrrole V will be investigated to obtain 

pyrroloisoquinoline VI with generation of a quaternary center (Scheme 1.10b). 
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�

Scheme 1.10 

1.2.3. Intramolecular carbolithiation reaction of N-(o-iodobenzyl) and 

N-(o-haloheteroarylmethyl)pyrrolyl and pyrrolidinyl allylic alcohol 

derivatives 

An extension of intramolecular carbolithiation methodologies to substrates VII, 

where different leaving groups in the allylic chain will be introduced to promote 

ring closure via SN2´ reaction, will be studied. Different aryl and heteroaryl halides 

will be tried (Scheme 1.11). 

�

Scheme 1.11 
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1.2.4. Intramolecular Mizoroki-Heck and direct arylation competition 

study on N-(o-haloheteroarylmethyl)pyrroles 

An extension of the methodologies previously reported for the control in the 

chemoselectivity to direct palladium-catalyzed reactions towards a Mizoroki-Heck 

(MH) cyclization or a direct arylation reaction will be studied over electron-

deficient heteroaryl halides, such as pyridine and quinoline derivatives I. In this 

sense, an access to naphthyridine IX and pyrrolizine X cores will be tried (Scheme 

1.12). 
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Scheme 1.12 

1.2.5. Generation of quaternary and tertiary centers through 

intramolecular Mizoroki-Heck reaction  

The possibility to generate quaternary and tertiary centers will be studied by 

applying Heck cyclization over different o-halo(hetero)arylmethylpyrroles VII that 

will be properly designed incorporating a protected allylic alcohol moiety, in order 

to avoid �-hydride elimination on the carbon atom directly involved in the new 

formed bond. In some of the cases, an enantioselective study will be conducted 

evaluating different parameters such as catalysts, chiral ligands, solvents, additives, 

etc. (Scheme 1.13a). 
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In a similar way, we will subject enantiopure N-(o-iodobenzyl)pyrrolidines XIII to 

Heck cyclization conditions in order to study the diastereoselectivity of the 

reaction. We will value the incorporation of different leaving groups in the allylic 

alcohol to generate a tertiary stereocenter via �´-hydride or �´-leaving group 

elimination (Scheme 1.13b). 

. 

Scheme 1.13 
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1.2.6. Rhodium(III)-catalyzed nucleophilic addition of 2-

(hetero)arylpyridines to cyclic imines 

During the realization of this PhD, a three-month stay in the RWTH Aachen 

University (Germany) was carried out to develop a project related to the transition-

metal catalyzed nucleophilic addition of ortho C-H bonds to unsaturated polar 

bonds. In this field of research, the rhodium(III)-catalyzed addition of 2-aryl and 2-

heteroarylpyridines XVI to differently substituted cyclic imines XVII will be 

studied via C-H activation (Scheme 1.14). In this context, the synthesis of a variety 

of coupling partners, which bear different substitution patterns, in order to evaluate 

the scope of the methodology that had been already studied in the group, will be 

developed. 

Scheme 1.14 

This part of the work has been carried out under the supervision of Prof. Carsten 

Bolm. 
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2.1. Introduction 

The term carbolithiation is defined as the addition of alkyl, vinyl and 

(hetero)aryllithiums to the unactivated � bond contained in an olefinic or alkyne 

system. These reactions, which belong to a wider family of carbometalation 

transformations, are highly valuable in Synthetic Organic Chemistry, due to their 

ability to construct not only carbon-carbon bonds in a regio- and stereoselective 

manner, but also new organolithium species.1 The newly generated organolithium 

species may be used for further in situ transformations with different electrophiles 

that would offer the possibility of introducing additional functionality in the 

molecule.  

As pointed above, carbolithiation is generally applied to unactivated alkenes, but 

sometimes the introduction of substituents in the � double bond is required to favor 

the stabilization of the resulting organolithium for its posterior addition to the 

electrophile.  

���������������������������������������� �������������������
1 For reviews in carbolithiation reactions: a) Marek, I. J. Chem. Soc., Perkin Trans. 1 1999, 535. b) 
Clayden, J. Organolithiums: Selectivity for Synthesis, Pergamon Press: Oxford, 2002, p. 273. c) 
Mealy, M. J.; Bailey, W. F. J. Organomet. Chem. 2002, 646, 59. d) Fañanás, F. J.; Sanz, R. In The 

Chemistry of Organolithium Compounds, Patai Series: The Chemistry of Functional Groups, 
Rappoport, Z.; Marek, I. Eds., Wiley: Chinchester, 2006, p. 295. e) Hogan, A. M. L.; O´Shea, D. F. 
Chem. Commun. 2008, 3839. f) Sanz, R. In Targets in Heterocyclic Systems, Attanasi, O.; Spinelli, D. 
Eds., Italian Society of Chemistry: Rome, 2008, vol. 12, p. 349. g) Martínez-Estíbalez, U.; Gómez-
SanJuan, A.; García-Calvo, O.; Arrasate, S.; Sotomayor, N.; Lete, E. In Targets in Heterocyclic 

Systems, Attanasi, O.; Spinelli, D. Eds., Italian Society of Chemistry: Rome, 2010, vol. 14, p. 124. h) 
Lete. E.; Sotomayor, N. In Science of Synthesis, Vol. 8a update [Compounds of Group 1 (Li…Cs)], 
Yus, M. Ed., Thieme: Stuggart, 2012, p. 191. i) Minko, Y.; Marek, I. In Lithium Compounds in 

Organic Synthesis, Luisi, R.; Capriati, V. Eds., Wiley: Weinheim, 2014, p. 329.  
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Carbolithiation reactions can be carried out in both inter- and intramolecular 

fashion. In the intermolecular carbolithiation reaction (Scheme 2.1), the main 

drawback emerges as a consequence of the reactivity shown by the new generated 

organolithium towards the unsaturated substrate. When the organolithium reacts 

with a second molecule of the alkene, anionic polymerization may take place, 

which should be avoided to allow the formation of the target molecule.  

�

Scheme 2.1 

The challenge to successfully perform carbolithiation reactions implies the 

suppression of the anionic polymerization process in favor of the formation of a 

carbolithiated monomer intermediate and addition to the electrophile. This goal 

was first reached by Bartlett et al. for the simplest unactivated C=C bond in ethene 

(R1 = H), in which the carbolithiation reaction was controlled by the use of 

secondary (R2 = s-Bu) and tertiary alkyllithiums (R2 = t-Bu).2 The main reason for 

this behavior is that the rate of carbolithiation is faster for the bulkier R2 alkyl 

groups. Moreover, polymerization processes can also be circumvented by the 

introduction of substituents on the double bond that stabilize the organolithium 

���������������������������������������� �������������������
2 Bartlett, P.D.; Friedman, S.; Stiles, M. J. Am. Chem. Soc. 1953, 75, 1771.  
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intermediate. For instance, successfully controlled carbolithiation reactions of �

and �-alkyl substituted styrenes and stilbenes have been reported.3  

Carbolithiation reaction over acetylenic systems has also been investigated, but not 

so deeply developed as those over olefinic systems. The addition of the 

organolithium reagent to the carbon-carbon triple bond is useful for the synthesis of 

stereochemically defined tri- and tetrasubstituted alkenes, but often the 

regioselectivity of the process becomes an obstacle. The abstraction of acetylenic 

or propargylic protons usually predominates over the addition of the organolithium 

reagent to the unsaturated triple bond.4 This side reaction can be overcome when 

the addition is accelerated by the introduction of an electron-withdrawing group or 

a heteroatom directing group in the propargylic position.5 Thus, carbolithiation of 

alkynes might have a limited synthetic application, not only because it is restricted 

to the use of some kind of alkynes, but also because obtained vinyllithium 

intermediates are prone to suffer isomerization.1b  

In contrast, the intramolecular carbolithiation of alkenes and alkynes has become a 

powerful tool for the highly regio- and stereoselective construction of carbocyclic 

and heterocyclic systems.1 In these reactions, the formation of the lithiated species 

has to be carried out in the presence of an internal alkene or alkyne. Different 

���������������������������������������� �������������������
3 a) Wei, X.; Taylor, R. J. K. Chem. Commun. 1996, 187. b) Wei, X.; Johnson, P.; Taylor, R. J. K. J. 

Chem. Soc., Perkin Trans. 1 2000, 1109. c) Landgrebe, J. A.; Shoemaker, J. D. J. Am. Chem. Soc. 
1967, 89, 4465. d) Coleman, C. M.; O´Shea, D. F. J. Am. Chem. Soc. 2003, 125, 4054. e) Kessler, A.; 
Coleman, C. M.; Charoenying, P.; O´Shea D. F. J. Org. Chem. 2004, 69, 7836. f) Tang, S.; Han, J.; 
He, J.; Zheng, J.; He, Y.; Pan, X.; She, X. Tetrahedron Lett. 2008, 49, 1348. g) Cottineau, B.; 
Gillaizeau, I.; Farard, J.; Auclair, M.; Coudert, G. Synlett 2007, 1925. h) Hogan, A. L.; O´Shea, D. F. 
Org. Lett. 2006, 8, 3769. i) Hogan, A. L.; O´Shea, D. F. Org. Lett. 2007, 72, 9557. 
4 Knochel, P. In Comprehensive Organic Synthesis, Vol. 4, Trost. B. M.; Flemming, I.; Semmelhack, 
M. F. Eds., Pergamon Press: Oxford, 1991, p. 865. 
5 Igawa, K.; Tomooka, K. Angew. Chem. Int. Ed. 2006, 45, 232. 
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approaches to generate the organolithium have been described, such as 

deprotonation,6 halogen-lithium exchange, tin-lithium exchange,7 selenium-lithium 

exchange8 or reductive lithiation.9  

In this context, the intramolecular carbolithiation reactions with alkenes may be 

exemplified by the cyclization of 1-hex-5-enyllithium to generate 

cyclopentylmethyllithium (Scheme 2.2). The 5-exo-trig cyclization might occur 

through a rigid chair-like transition state, where substituents preferentially occupy 

pseudo-equatorial positions and the lithium atom is coordinated to the C-5–C-6 �

bond.10 Mechanistical outcome suggest that retention of configuration in the C-1 is 

possible, due to syn addition to the � bond giving as a result a total stereo and 

regioselectivity.11  

���������������������������������������� �������������������
6 a) Funk, R. L.; Bolton, G. L.; Brummond, K. M.; Ellestad, K. E.; Stallman, J. B. J. Am. Chem. Soc. 
1993, 115, 7023. b) Oestreich, M.; Fröhlich, R.; Hoppe, D. Tetrahedron Lett. 1998, 39, 1745. c) 
Oestreich, M.; Fröhlich, R.; Hoppe, D. J. Org. Chem. 1999, 64, 8616. d) Hoppe, D.; Woltering, M. J.; 
Oestreich, M.; Fröhlich, R. Helv. Chim. Acta 1999, 82, 1860. e) Velasco, R.; Feberero, C.; Roberto, S. 
Org. Lett. 2015, 17, 4416. 
7 a) Broka, C. A.; Lee, W. J.; Shen, T. J. Org. Chem. 1988, 53, 1336. b) Coldham, I.; Hufton, R.; 
Snowden, D. J. J. Am. Chem. Soc. 1996, 118, 5322. c) Coldham, I.; Lang-Anderson, M. M. S.; 
Rathmell, R.E.; Snowden, D. J. Tetrahedron Lett. 1997, 38, 7621. d) Coldham, I.; Fernàndez, J.-C.; 
Price, K. N.; Snowden, D. J. J. Org. Chem. 2000, 65, 3788. e) Gralla, G.; Wibbeling, B.; Hoppe, D. 
Org. Lett. 2002, 4, 2193. f) Coldham, I.; Price, K. N.; Rathmell, R. E. Org. Biomol. Chem. 2003, 1, 
2111. g) Guido, C.; Stratmann, C.; Coldham, I.; Hoppe, D. Org. Lett. 2006, 8, 4469. 
8 Krief, A.; Kenda, B.; Maertens, C.; Remacle, B. Tetrahedron 1996, 52, 7465. 
9 a) La Cruz, T. E.; Rychnovsky, S. D. Chem. Commun. 2004, 168. b) La Cruz, T. E.; Rychnovsky, S. 
D. J. Org. Chem. 2006, 71, 1068. 
10 Bailey, W. F.; Kahnolkar, A. D.; Gavascar, K.; Ovasca, T. V.; Rossi, K.; Thiel, Y.; Wiberg, K. B. J. 

Am. Chem. Soc. 1991, 113, 5720. For a review, see: Bailey, W. F.; Ovasca,  T.V. In Advances in 

Detailed Reaction Mechanism, Coxon, J. M. Ed., JAI Press: Greenwich, CT, 1994, vol. 3, 
Mechanisms of Importance in Synthesis, p. 251. Intramolecular coordination of the lithium atom with 
the � bond in the transition state has been experimentally confirmed:  Rölle, T.; Hoffmann, R. W. J. 

Chem. Soc., Perkin Trans. 2 1995, 1953. 
11 a) Woltering, M. J.; Fröhlich, R.; Hoppe, D. Angew. Chem. Int. Ed. 1997, 36, 1764. b) Tomooka, 
K.; Komine, N.; Nakai, T. Tetrahedron Lett. 1997, 38, 8939. 
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�

Scheme 2.2 

Alkyl12 and alkenyllithium13 species have not been the only intermediates used in 

intramolecular carbolithiation reactions, the cycloisomerization of aryl and 

heteroaryllithiums has been also described. Although these reactions can be carried 

out with alkenes and alkynes,14 in this section, we will focus on the cyclization of 

aryl and heteroaryllithiums, formed by halogen-lithium exchange with alkenes. 

This particular reaction could be considered as a Parham-type metalation-

cyclization process.15   

���������������������������������������� �������������������
12 For examples of alkyllithium addition to alkenes or alkynes, see: a) Ref. 1h and references cited 
therein. b) Gati, W.; Rammah, M. M.; Rammah, M. B.; Couty, F.; Evano, G. J. Am. Chem. Soc. 2012, 
134, 9078. c) Gati, W.; Rammah, M. M.; Rammah, M. B.; Evano, G. Beilstein J. Org. Chem. 2012, 8, 
2214. d) Luderer, M. R.; Mealy, M. J.; Bailey, W. F. J. Org. Chem. 2014, 79, 10722. e) Ryu, I.; 
Yamamura, G.-H.; Minakata, S.; Komatsu, M.; Kubo, H.; Ueda, M. Synlett 2015, 26, 2413. 
13 For examples of alkenyllithium addition to alkenes or alkynes, see: a) Ref. 1h and references cited 
therein. b) Bailey, W. F.; Bakonyi, J. M. J. Org. Chem. 2013, 78, 3493. c) Bailey, W. F.; Fair, J. D. 
Beilstein J. Org. Chem. 2013, 9, 537.�
14 For selected examples of intramolecular carbolithiations using aryllithiums with alkynes, see: a) 
Wu, G.; Cederbaum, F. E.; Negishi, E. Tetrahedron Lett. 1990, 31, 493. b) Bailey, W.F.; Wachter-
Jurcsak, N. M.; Pineau, M. R., Ovaska, T. V.; Warren, R. R.; Lewis, C. E. J. Org. Chem. 1996, 61, 
8216.  c) Le Strat, F.; Maddaluno, J. Org. Lett. 2002, 4, 2791. d) Le Strat, F.; Harrowven, D. C.; 
Maddaluno, J. J. Org. Chem. 2005, 70, 489.  e) Fressigné, C.; Girard, A.-L.; Durandetti, M.; 
Maddaluno, J. Chem. Eur. J. 2008, 14, 5159.  f)  Fressigné, C.; Girard, A.-L.; Durandetti, M.; 
Maddaluno, J. Eur. J. Org. Chem. 2009, 721. g) Girard, A.-L.; Lhermet, R.; Fressigné, C.; Silvi, B.; 
Durandetti, M.; Maddaluno, J. Eur. J. Org. Chem. 2012, 2895. h) Fressigné, C.; Lhermet, R.; Girard, 
A. -L.; Durandetti, M.; Maddaluno, J. J. Org. Chem. 2013, 78, 9659. i) Lhermet, R.; Ahmad, M.; 
Fressigné, C.; Durandetti, M.; Maddaluno, J. Chem. Eur. J. 2014, 20, 10249. j) Lhermet, R.; Ahmad, 
M.; Hauduc, C.;  Fressigné, C.; Durandetti, M.; Maddaluno, J. Chem. Eur. J. 2015, 21, 8105. 
15 a) Parham, W. E.; Jones, L. D.; Sayed, Y. A. J. Org. Chem. 1975, 40, 2394. For reviews, see: b) 
Parham, W. E.; Bradsher, C. K. Acc. Chem. Res. 1982, 15, 300. c) Gray, M.; Tynkl, M.; Snieckus, V. 
In Comprehensive Organometallic Chemistry II, Abel, E. W.; Stone, F. G. A.; Wilkinson, G. Eds.,
Pergamon Press: Exeter, 1995, vol. 11, p. 66. d) Ardeo, A.; Collado, M. I.; Osante, I.; Ruiz, J.; 
Sotomayor, N.; Lete E. In Targets In Heterocyclic Systems, Attanassi, O.; Spinelli, D. Eds., Italian 
Society of Chemistry: Rome, 2001, vol. 5, p. 393. e) Sotomayor, N.; Lete, E. Curr. Org. Chem. 2003, 
7, 275. f) Gribble, G. W. In Name Reactions for Homologations; Li, J. J. Ed., Wiley, Chinschester, 
2009, Part. 2, p. 749.�
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2.2. Synthetic applications of the intramolecular carbolithiation 

reaction of (hetero)aryllithiums with alkenes 

The Parham cyclization using alkenes as internal electrophiles followed by 

treatment of the generated lithiated species with diverse external electrophiles, 

allows the possibility of introducing different functionalization on the cyclized 

molecule, opening new routes for the regio- and diastereoselective construction of 

benzo- or hetero-fused carbocycles and heteretocycles (Scheme 2.3). 

�

Scheme 2.3 

This anionic cyclization has allowed the formation of five-membered rings through 

5-exo-trig ring-closure with high levels of regio- and stereocontrol. However, 

generation of six-membered rings is not so general, as there are only a few 

examples described and it is not clear that the cyclization would take place with the 

same degree of regio- and stereochemical efficiency. 

To give a general overview on the concept of intramolecular carbolithiation with 

aryl and heteroaryllithiums, formed by halogen-lithium exchange, some synthetic 

applications classified by the size of the resulting ring will be presented. 

Additionally, enantioselective examples of the reaction will also be disclosed. 
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2.2.1. Formation of five-membered rings through intramolecular 

carbolithiation reactions 

Woolsey et al. reported in 1985 for the first time the anionic cyclization of 2-(3-

butenyl)phenyllithium, obtained by bromine-lithium exchange using n-BuLi at -78 

ºC, for the construction of indane nucleus (Scheme 2.4).16 The cyclization was 

favored by an increase in solvent polarity or by addition of additives such as 

TMEDA, as it is known to reduce aggregation of the organolithiums.17

�

Scheme 2.4 

Regarding the high diastereoselectivity involved in the intramolecular 

carbolithiation reactions, Bailey et al. have studied the cyclization of aryllithiums 

tethered to methylencycloalkanes, obtained through bromine-lithium exchange. 

This cyclization has been shown to be a kinetically slow, but thermodynamically 

favored process.18 As can be seen in Scheme 2.5, the 5-exo cyclization appears to 

take place with higher diastereoselectivity when the methylencycloalkane is a 5- 

and 6-membered ring, resulting in an exclusive cis-configuration of products, while 

a mixture of diastereomers was obtained when a 7-membered ring is used.  

���������������������������������������� �������������������
16 Ross, G. A.; Koppang, M. D.; Bartak, D. E.; Woolsey, N. F. J. Am. Chem. Soc. 1985, 107, 6742. 
17 Eberhardt, G. G.; Butte, W. A. J. Org. Chem. 1964, 29, 2928.  
18 Bailey, W. F.; Daskapan, T.; Rampalli, S. J. Org. Chem. 2003, 68, 1334.  
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Scheme 2.5 

This fact can be explained by the formation of a transition state where the lithium 

atom is coordinated to the exocylic � bond for cyclopentane or cyclohexane rings, 

while for cycloheptane rings the conformation of the transition state is more 

flexible (Scheme 2.6).10,11 Additionally, the reaction allows the synthesis of 4�-

substituted cis-hexahydrofluorenes in a diastereoselective fashion using different 

electrophiles for quenching the reaction.  

Scheme 2.6 

Regarding the obtention of nitrogen containing heterocycles, in 1996 Liebeskind19

and Bailey20 published simultaneous but independently, a simple strategy for the 

construction of N-allylindolines and their oxidized counterparts, N-allylindoles, 

bearing a variety of functionalities at the C-3 position, starting from readily 

���������������������������������������� �������������������
19 Zhang, D.; Liebeskind, L. S. J. Org. Chem. 1996, 61, 2594. 
20 Bailey, W. F.; Liang, X.-L. J. Org. Chem. 1996, 61, 2596. 
�



Chapter II               Intramolecular Carbolithiation Reaction 

�

39 

available 2-bromo-N,N-diallylanilines through a Parham cyclization process 

(Scheme 2.7). Therefore, the treatment of anilines with t-BuLi provided lithio-

metalated  species, which upon protonation or electrophile trapping would lead to a 

diversity of 3-methylindolines, susceptible of oxidation to the corresponding 3-

methylindoles with o-chloranil reagent. It should be remarked that the use of 

TMEDA as additive in the 5-exo cyclization of the aryllithium is not required but 

recommended to prevent loss of yield.20

�

Scheme 2.7 

Taking into account the previous methodology, Bailey reported later a more 

general synthetic route that would allow the formation of selectively functionalized 
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1,3-disubstituted indolines through the cyclization of (1-lithio-3-

indolinyl)methyllithium intermediate, followed by subsequent addition of 

electrophiles.21 Accordingly, the dilithio species generated by treatment of N-allyl-

2-bromoaniline with t-BuLi at -78 ºC, was cyclized by the addition of TMEDA and 

subsequent warming up to +5 ºC. Different functionalization of the resulting 

cyclized dilithium intermediate was accomplished in high overall yields by 

sequential addition of different external electrophiles (E1
�  E2) (Scheme 2.8).    

�

Scheme 2.8 

In a similar way, Barluenga described the intramolecular carbometalation of 2-

bromo-N-(2-bromoallyl)anilines with t-BuLi/TMEDA at low temperature.22

Tertiary amines afforded a dianion, by bromine-lithium exchange, which was 

susceptible to form the dilithiated indoline by attack of the aryllithium to the 

vinyllithium moiety. The subsequent elimination of lithium hydride afforded 3-

���������������������������������������� �������������������
21 Bailey, W. F.; Luderer,  M. R.; Mealy, M. J. Tetrahedron Lett. 2003, 44, 5303. 
22 a) Barluenga, J.; Sanz, R.; Granados, A.; Fañanás, J. J. Am. Chem. Soc. 1998, 120, 4865. b) 
Fañanás, J.; Granados, A.; Sanz, R.; Ignacio, J. M.; Barluenga, J. Chem. Eur. J. 2001, 7, 2896. 
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lithiomethylindoles that could be trapped by different electrophiles leading to 

functionalized indole derivatives (Scheme 2.9). Performing the reaction with an 

excess of t-BuLi, the 2-position of the lithiated indole nucleus may be attacked 

leading a dianionic species, which sequentially could be functionalized by different 

electrophiles.  
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Scheme 2.9 

Closely related to this procedure, intramolecular carbolithiation of 

heteroaryllithiums derived from (N,N-diallylamino)bromopyridines afforded 3-

substituted 4-, 5-, 6-, and 7-azaindolines via one pot, 3-step sequence (Scheme 
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2.10).23 The generation of 4- and 6-azaindolines, through anionic cyclization of 2-

bromo-3-(N,N-diallylamino)pyridine and 4-bromo-3-(N,N-diallylamino)pyridine 

respectively, proceed as expected. However, ring closure to give 5- and 7-

azaindolines was found to follow an unexpected pathway, as 3-methyl-N-allyl 

anions are formed. In this case, two isomeric azaindolines were isolated: the 

expected 1-allyl-azaindolines were the minor products, while Z-isomer of the 

corresponding enamines, were the major products.  

�

Scheme 2.10 

This type of intramolecular carbolithiation reaction can also be performed in a 

diastereoselective fashion. Thus, Comins et al. reported the intramolecular 1,4-

addition of the aryllithium, obtained by iodine-lithium exchange, to N-acyl- and N-

���������������������������������������� �������������������
23 Bailey, W. F.; Salgaonkar, P. D.; Brubaker, J. D.; Sharma, V. Org. Lett. 2008, 10, 1071. 
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alkylenaminones in a diastereoselective manner.24 The presence of an electron-

withdrawing group in the alkene accelerated the cyclization reaction that occurred 

at -78 ºC in just 30 min to afford the trans-diastereomer of dihydropyrido[1,2-

a]isoindolodiones with high sterocontrol (Scheme 2.11).  

�

Scheme 2.11 

On the other hand, the enantioselective version of intramolecular carbolithiation 

reaction has also been developed. As has been stated previously, anionic 

cyclization reactions take place through a rigid transition state adopted by the 

lithiated intermediate, where the lithium atom may be coordinated to the � double 

bond in a chair-like conformation.10 Taking into account that this coordinated 

organolithium might have two additional sites suitable for ligation, the 

carbolithiation could be carried out enantioselectively, if performed in the presence 

of a chiral bidentate ligand such as (–)-sparteine.25 Thus, it has been possible to 

���������������������������������������� �������������������
24 Comins, D. L.; Zhang, Y.-M. J. Am. Chem. Soc. 1996, 118, 12248. 
25 For reviews on the use of (–)-sparteine as chiral ligand, see: a) Beak, P.; Basu, A.; Gallagher, D. J.; 
Park, Y. S.; Thayumanavan, S. Acc. Chem. Res. 1996, 29, 552. b) Hoppe, D.; Hense, T. Angew. 

Chem. Int. Ed. 1997, 36, 2282. c) Beak, P.; Anderson, D. R.; Curtis, M. D.; Laumer, J. M.; Pippel, D. 
J.; Weisenburger, G. A. Acc. Chem. Res. 2000, 33, 715. d) Hoppe, D.; Christoph, G. In The Chemistry 

of Organolithium Compounds, Rappoport, Z.; Marek, I. Eds., Wiley & Sons: New York, 2004, 
Chapter 17, p. 1055. 
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perform asymmetric carbolithiation reactions, starting from achiral substrates by 

promoting facial selectivity of the double bond.26

The first reports related to enantioselective intramolecular carbolithiation reaction 

for the synthesis of 3-substituted indolines, using aryllithiums generated via

halogen-lithium exchange, were simultaneously published in 2000 by Bailey and 

Groth. Bailey and coworkers27 reported a 5-exo enantioselective cyclization of 

differently substituted (N-allylamino)-2-bromoanilines by treatment with t-BuLi at 

low temperature in the presence of (–)-sparteine ligand in n-C5H12/Et2O. The 

choice of the solvent was crucial to achieve a high degree of enantioselection 

(Scheme 2.12, Method a).  

�

Scheme 2.12 

���������������������������������������� �������������������
26 For reviews on enantioselective carbolithiation reaction, see: a) Normant, J. F. Top. Organomet. 

Chem. 2003, 287. b) Gómez-SanJuan, A.; Sotomayor, N.; Lete, E. Beilstein J. Org. Chem. 2013, 9, 
313, and references cited therein.�
27 Bailey, W. F.; Mealy, M. J. J. Am. Chem. Soc. 2000, 122, 6787. 
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Groth and coworkers28 described an analogous methodology for asymmetric 

anionic cyclization of N-allyl-N-benzyl-2-bromoaniline with t-BuLi and (–)-

sparteine in toluene, a solvent that also favored coordination of the ligand with 

lithium (Scheme 2.12, Method b).  

Progressing with their studies in asymmetric intramolecular carbolithiation 

reactions, Bailey et al. studied the ability of a large and chemically diverse set of 

thirty chiral ligands to promote enantioselection in the 5-exo cyclization of N,N-

diallyl-2-bromoanilines for the synthesis of 3-methyl indolines.29 None of the 

ligands examined improved the enantioselection observed for the formerly studied 

(–)-sparteine ligand, but many of them effectively matched the same results 

(Scheme 2.13). 

�

Scheme 2.13 

���������������������������������������� �������������������
28 Gil, G. S.; Groth, U. M. J. Am. Chem. Soc. 2000, 122, 6789. 
29 Mealy, M. J.; Luderer, M. R.; Bailey, W. F.; Sommer, M. B. J. Org. Chem. 2004, 69, 6042. 
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In addition, Groth and coworkers published the enantioselective synthesis of 3,3-

disubstituted indolines through a 5-exo anionic cyclization of N-benzyl-protected 

bromoanilines with different substitution patterns in the allyl moiety, using t-BuLi 

and (–)-sparteine.30 Oxygen-, nitrogen- and sulfur-substituted anilines showed a 

chelating effect, which may promote a higher enantioselection in the course of the 

cyclization (Scheme 2.14). 

�

Scheme 2.14 

This anionic cyclization reaction is also effective for the benzo-fused furan 

synthesis. In this sense, Barluenga and coworkers reported readily access to 

dihydrobenzofuran derivatives via Parham cyclization of 2-bromophenyl ethers 

with t-BuLi as metalating agent (Scheme 2.15).31  The presence of a substituent in 

� to the oxygen atom was necessary to avoid �-elimination reaction.32 The reaction 

led to trans-2,3-dihydrobenzofurans isomers with a complete diastereoselectivity, 

due to the chair-like configuration adopted by the aryllithium intermediate, in 

which the substituent occupies a pseudoequatorial position.10    

���������������������������������������� �������������������
30 Groth, U.; Köttgen, P.; Langenbach, P.; Lindenmaier, A.; Schütz, T.; Wiegand, M. Synlett 2008, 
1301. 
31 Barluenga, J.; Fañanás, F. J.; Sanz, R.; Marcos, C. Chem. Eur. J. 2005, 11, 5397. 
32 Bailey, W. F.; Punzalan, E. R. Tetrahedron Lett. 1996, 37, 5435. 
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Scheme 2.15 

Substitution at the C-6 position of the aryl moiety was also found out to avoid the 

isomerization on the lithiated intermediate due to stereoelectronic effects. Thus, 

functionalized 2,3-dihydrobenzofurans could be synthesized under the same 

conditions, starting from simple 2-propenyl ethers. The easily removal of the TMS 

group, would provide benzofuran derivatives with no substitution at 2- and 7-

positions (Scheme 2.16).31 
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Scheme 2.16 

More recently, Nudelman and coworkers applied this methodology to phenyl 

substituted alkenes. Hence, intramolecular carbolithiation of 2-bromophenyl-3-

phenylprop-2-enyl ether afforded the corresponding 3-substituted-2,3-

dihydrobenzofurans in a diastereoselective manner, although stereochemistry was 

not determined, via bromine-lithium exchange and followed by trapping of the 

cyclic lithiated intermediate by different electrophiles (Scheme 2.17). 33  

�

Scheme 2.17 

���������������������������������������� �������������������
33 Rodriguez, C.; Nudelman, N. S. Synth. Commun. 2014, 44, 772. 
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Barluenga and coworkers made use of previously stated 5-exo cyclization and �-

elimination competitive pathways31 to develop the enantioselective version of the 

reactions. Firstly, they described the intramolecular carbolithiation reaction-�

elimination tandem sequence of achiral allyl o-bromoarylether with t-BuLi/(–)-

sparteine in toluene or hexane, which resulted in the diastereoselective synthesis of 

the corresponding trans-cyclopropanes with moderate to good ee (Scheme 2.18).34

�

Scheme 2.18 

With regard to 5-exo ring-closure, 3-functionalized-2,3-dihydrobenzofurans were 

obtained with high enantioselectivities applying the procedure to C-6 substituted 

derivatives (Scheme 2.19).31

���������������������������������������� �������������������
34 Barluenga, J.; Fañanás, F. J.; Sanz, R.; Marcos, C. Org. Lett. 2002, 4, 2225. 
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Scheme 2.19 

2.2.2. Formation of six-membered rings through intramolecular 

carbolithiation reactions 

As it has been stated previously, anionic cyclization of aryl and heteroaryllithiums 

with unsaturated double bonds has been generally applied for the synthesis of five-

membered rings, but generation of six-membered rings has not been so deeply 

studied. There are a few precedents describing intramolecular carbolithiation 

through alkyl and alkenyllithiums in the formation of six-membered rings,35 since 

6-exo cyclization is slower than 5-exo cyclization. In some cases, the activation of 

the double bond by electron-withdrawing groups is required to form a stabilized 

lithiated intermediate that favors the cyclization.36     

In this context, Pedrosa and coworkers37 described the first diastereoselective 

synthesis of enantiomerically pure 4-substituted tetrahydroisoquinolines by 6-exo

cyclization. Aryllithiums were formed by the treatment of chiral 2-(o-

���������������������������������������� �������������������
35 a) Bailey, W. F.; Nurmi, T. T.; Patricia, J. J.; Wang, W. J. Am. Chem. Soc. 1987, 109, 2442. b) 
Chamberlin, A. R.; Bloom, S. H.; Cevini, L. A.; Fotsch, C. H. J. Am. Chem. Soc. 1988, 110, 4788. c) 
Ashweek, N. J.; Coldham, I.; Snowden, D. J.; Venall, G. P. Chem. Eur. J. 2002, 8, 195. 
36 a) Rychnovhky, S. C.; Takaoka, L. R. Angew. Chem. Int. Ed. 2003, 42, 818. b) Coldham, I.; Venall, 
C. P. Chem. Commun. 2000, 1569.  
37 Pedrosa, R.; Andrés, C.; Iglesias, J. M.; Pérez-Encabo, A. J. Am. Chem. Soc. 2001, 123, 1817. 
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bromophenyl)-substituted perhydro-1,3-benzoxazines with t-BuLi at -90 ºC in the 

presence of TMEDA, through a bromine-lithium exchange. The subsequent 

addition of the aryllithium to the internal unsaturated bond provided 

tetrahydroisoquinolines. As depicted in Scheme 2.20, the intramolecular 6-exo

carbolithiation reaction was viable when a stabilizing phenyl group was attached to 

the terminal alkene moiety.  

�

Scheme 2.20 

In connection to this research, our group has described the intramolecular 

carbolithiation reaction of N-substituted o-iodoanilines using n-BuLi as metalating 

agent for the synthesis of tetrahydroquinoline derivatives.38 The cyclization was 

effective as long as the double bond was activated with an electron-withdrawing 

moiety. Intramolecular carbolithiation reactions are fast even in the absence of 

TMEDA as additive. Moreover, suppression of side reactions, such as addition of 

organolithium reagent to the enamide group, might be possible using MesLi as 

reagent (Scheme 2.21).  

���������������������������������������� �������������������
38 García-Calvo, O.; Martínez-Estíbalez, U.; Lete, E.; Sotomayor, N. Heterocycles 2014, 88, 425. 
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Scheme 2.21 

Moreover, we were pleased to find out that 2-iodoanilines, bearing a phenyl group 

in � to the nitrogen atom, subjected to Parham cyclization, always with electron-

deficient double bonds, were prone to give 4-substituted 2-

phenyltetrahydroquinolines.39 The diastereoselectivity of the reaction was 

influenced by the substitution pattern of the alkene, the type of alkyllithium or the 

presence of additives (Scheme 2.22). In this sense, treatment with t-BuLi in THF at 

-105 ºC of 2-iodoanilines with alkenes activated by a Weinreb amide, provided the 

trans-diastereomer as the major product (Scheme 2.22, Method a). When this 

methodology was applied to the same type of substrates in combination with the 

addition of TMEDA, 2,4-disubstituted tetrahydroquinolines were obtained with 

moderate diastereoselectivity, in favor of the cis-isomer (Scheme 2.22, Method b).  

���������������������������������������� �������������������
39 Martínez-Estíbalez, U.; Sotomayor, N.; Lete, E. Org. Lett. 2009, 11, 1237. 
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Scheme 2.22 

The scope of this reaction may be enlarged, by incorporating a dimethyl-1,3-

dioxolanyl substituent in � to the nitrogen atom. Thus, the diastereoselective 

cyclization of enantiopure 2-iodoanilines, derived from glyceraldehyde, led to the 

disubstituted tetrahydroquinoline as a single diastereomer (Scheme 2.23).38 

Cyclization of the aryllithium would follow a rigid pseudo-chair transition state, 

involving the coordination of the lithium atom to the � bond with location of both 

substituents in pseudo-equatorial positions and subsequent attack to the Re-face of 

the alkene. In this case, the complete diastereoselectivity could be understood by 

the presence of the bulky dioxolanyl substituent, which afforded the (2R,4S)-cis

diastereomer. Diastereoselectivity observed is in agreement with the results 

obtained with a benzyloxymethyl substituent at C-2, which resulted in a 61:39 

mixture, in favor of the cis-diastereomer, in 59% yield when using n-BuLi in 

THF.38  
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Scheme 2.23 

On the other hand, our group also performed the synthesis of 2-phenyl 4-

substituted tetrahydroquinolines from N-alkenyl substituted 2-iodoanilines with 

moderate diastereoselectivities and high enantiomeric excess by using (–)-sparteine 

as chiral ligand, when the alkene moiety was substituted by a Weinreb amide 

(Scheme 2.24).39 

�

Scheme 2.24 

In addition, our group has studied the 6-exo cyclization on alkenyl substituted o-

iodobenzylpyrroles as a way to obtain pyrroloisoquinoline frameworks.40 In this 

work, it could be shown that substitution of the double bond by an electron-

withdrawing group (ester or amide) was also required to perform cyclization. The 

use of t-BuLi as reagent at low temperature and in the presence of TMEDA, led to 

���������������������������������������� �������������������
40 Lage, S.; Villaluenga, I.; Sotomayor, N.; Lete, E. Synlett 2008, 20, 3188. 
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low yields of the pyrroloisoquinolines due to undesired 1,2- and 1,4-addition 

reactions of the alkyllithium to both the alkene and ester or amide moieties. To 

overcome this competitive reactions, the use of MesLi, a bulkier and non-

nucleophilic organolithium reagent,41 was necessary (Scheme 2.25, Method a).  

Scheme 2.25 

Paying special attention to a possible asymmetric variant, we tried to perform the 

enantioselective version of the reaction using (–)-sparteine as chiral bidentate 

ligand (Scheme 2.25, Method b). However, the pyrroloisoquinoline was obtained in 

moderate yield and low ee (up to 37%). Although several attemps were tried to 

improve the enantioselectivity by varying temperatures of the reaction or the order 

of additives in the addition, no improvements in enantioselectivity were achieved.42  

���������������������������������������� �������������������
41 a) Mhaske, S. B. Synlett 2005, 184. For a example in an halogen-lithium exchange reaction, see: b) 
Kondo, Y.; Asai, M.; Miura, T.; Uchiyama, M.; Sakamoto, T. Org. Lett. 2001, 3, 13. 
42 García-Calvo, O.; Coya, E.; Lage, S.; Coldham, I.; Sotomayor, N.; Lete, E. Eur. J. Org. Chem. 

2013, 1460. 
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In view of these results, we decided to study the diastereoselective variant of this 

intramolecular carbolithiation on 2-alkenyl substituted N-o-iodobenzylpyrrolidines 

that allowed the synthesis of hexahydropyrrolo[1,2-b]isoquinolines in a total 

diastereoselective fashion.42,43 The 6-exo-trig cyclization reaction took place with a 

complete diastereoselectivity and no 1,4-addition reaction to the enamide moiety 

was observed when treatment with t-BuLi or n-BuLi was performed in the presence 

of TMEDA at low temperature (Scheme 2.26, Method a).  
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Scheme 2.26 

Further studies in this research topic allowed our group to report the asymmetric 

synthesis of enantiopure (10R,10aS)-pyrroloisoquinolines, starting from 

enantiomerically pure N-(o-iodobenzyl)pyrrolidines, prepared from commercially 

available L-prolinal (Scheme 2.26, Method b).42 

Furthermore, the use of MesLi as reagent at low temperatures permitted the 

generation of medium-sized rings, such as benzazepines and benzazocines through 

7-exo and 8-exo cyclizations, as depicted in Scheme 2.27.42

���������������������������������������� �������������������
43 García-Calvo, O.; Sotomayor, N.; Lete, E.; Coldham, I. Arkivoc 2011 (v), 57. 
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Scheme 2.27 

In addition, our group studied the intramolecular carbolithiation reaction of 

electron-rich heteroaryllithiums, such as thiophenyllithiums, by 6-exo and 7-exo

cyclizations, respectively.44 The use of MesLi at low temperature promoted fast 

metalation by iodine-lithium exchange, but the subsequent cyclization required 

longer reaction times and higher temperatures, which resulted in lower yields due 

to competitive side reactions and decomposition. Thus, the pyrrolo[1,2-

a]thieno[2,3-d]azepine was obtained in moderate yield, while thieno[3,2-

f]indolizine could not be purified by chromatographic methods (Scheme 2.28). 

�

Scheme 2.28 

���������������������������������������� �������������������
44 Coya, E. Ph.D Thesis, University of the Basque Country, 2013. 
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2.3. Results and discussion 

As has been shown in the previous section, our group has developed an efficient 

intramolecular carbolithiation reaction of 2-alkenyl substituted o-

iodobenzylpyrroles to access to pyrrolo[1,2-b]isoquinolines by using electron-

withdrawing groups (ester and amide) to activate the alkene moiety.40,42 Besides, 

the use of electron-rich heteroaryllithiums as thiophenyllithiums has been 

investigated, although it proved to be less efficient and selective for the obtention 

of hetero-fused indolizines and azepines.44   

Thus, the first objective of this work was to study the scope of this Parham-type 

cyclization by using electron-poor heteroaryllithiums derived from o-halopyridines 

and o-haloquinolines. This methodology would provide access to interesting 

heterocycles, such as dihydropyrrolo[1,2-g][1,6]naphthyridines and the 

corresponding benzo-fused derivatives (Scheme 2.29a).  

On the other hand, we have previously conducted studies on the diastereoselective 

version of the Parham cyclization using enantiomerically pure 2-alkenyl substituted 

N-(o-iodobenzyl)pyrrolidines to synthesize hexahydropyrrolo[1,2-

b]isoquinolines.42 Therefore, the second aim of this work was to study the 

possibility to perform this reaction by using different substitution patterns on the 

alkene (Scheme 2.29b). Next, intramolecular carbolithiation reaction of 2-alkenyl 

substituted N-(o-iodobenzyl)pyrroles to generate a quaternary stereocenter was 

planned by introducing a methyl group in the olefinic carbon atom that is directly 

involved in the carbon-carbon bond formation (Scheme 2.29c). 
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Finally, an extension of intramolecular carbolithiation methodologies to substrates, 

where different leaving groups in the allylic chain would be introduced to promote 

ring closure via SN2´ reaction, was studied. Different aryl and heteroaryl halides 

would be tried (Scheme 2.29d). 
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2.3.1. Intramolecular carbolithiation reaction via conjugate addition on 

N-(o-haloheteroarylmethyl)pyrrolylacrylates and acrylamides  

We firstly centered our attention in the first objective, which involved the 

development of intramolecular carbolithiation reactions on electron-deficient 

heteroaryl halides (Scheme 2.30). 

�

Scheme 2.30 

2.3.1.1. Synthesis of o-halopyridines 5a-5d and o-haloquinolines 9a-9d. 

In this section, the preparation of the required o-halopyridines 5a-5d and o-

haloquinolines 9a-9d is presented. Both the brominated and iodinated heteroaryl 

derivatives, bearing an olefin moiety substituted with electron-deficient groups, 

such as an ester or an amide, have been synthesized.  

Firstly, the synthesis of o-halopyridines 5a-5d was carried out, starting from 

commercially available 2-bromopyridine-3-carboxaldehyde, whose reduction with 

NaBH4 in MeOH led to the corresponding primary alcohol, 2-bromo-3-

hydroxymethylpyridine (1). A subsequent conversion of the alcohol into bromide 

by reaction with PBr3 in CH2Cl2 at room temperature resulted in the generation of 
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the dibromopyridine 2 in excellent yield (89% yield over two steps)45 (Scheme 

2.31). Alkylation reaction of readily synthesized 2-bromo-3-bromomethylpyridine 

(2) with commercially available pyrrole-2-carboxaldehyde using KOH as base in 

DMSO as solvent enabled the preparation of (o-bromopyridinylmethyl)pyrrole 

carbaldehyde 3a in good yield. The corresponding iodinated derivative 3b was 

prepared by treatment of the bromo derivative 3a with NaI/CuI in dioxane.46  

�

Scheme 2.31 

To perform the next olefination step, it was necessary to prepare ylide 4b, while 

ethyl (triphenylphosphoranylidene)acetate (4a) was commercially available. The 

synthesis was performed as depicted in the Scheme 2.3247 in a two step sequence 

beginning with the generation of the phosphonium salt to follow with the formation 

of ylide, which was stored under argon at low temperature to prevent 

decomposition.    

���������������������������������������� �������������������
45 Ruiz, J.; Lete, E.; Sotomayor, N. Tetrahedron 2006, 62, 6182. 
46 Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 14844. 
47 Cardillo, G.; Gentilucci, L.; De Matteis, V. J. Org. Chem. 2002, 67, 5957. 
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Scheme 2.32 

Finally, the introduction of the olefin moiety took place through Wittig olefination 

of both (o-halopyridinylmethyl)pyrroles 3a and 3b with ylide 4a in CH2Cl2 at 

reflux, affording (E)-acrylates 5a and 5b in excellent yields (Scheme 2.33). In the 

same way, the corresponding acrylamides 5c and 5d were obtained in excellent 

yields as single diastereomers of (E)-configuration, by treatment of previous 

aldehydes 3a and 3b with the synthesized ylide 4b. 

�

Scheme 2.33 

In parallel, o-haloquinolines 9a-9d were prepared starting with the formation of 2-

bromo-3-bromomethylquinoline (7) from commercially available 2-chloro-3-

formylquinoline (Scheme 2.34). The reduction of the aldehyde to primary alcohol, 

by using NaBH4 as reducting agent in a 1:1 mixture of MeOH:THF, led to 2-
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chloro-3-hydroxymethylquinoline (6), which was converted into 2-bromo-3-

bromomethylquinoline (7) by treatment with PBr3 under heating.45

�

Scheme 2.34 

Alkylation of the bromomethylquinoline 7 with pyrrole-2-carboxaldehyde resulted 

in the formation of (o-bromoquinolinylmethyl)pyrrole carbaldehyde 8a in a 70% 

yield. As previously described for pyridines, we were able to synthesize the iodo 

derivative 8b. The subsequent Wittig olefination afforded the acrylates and 

acrylamides 9a-9d in excellent yields (89-95%) as single diastereomers of (E)-

configuration (Scheme 2.35). 

Scheme 2.35 
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2.3.1.2. Intramolecular carbolithiation reaction of o-halopyridines 5a-5d. 

Synthesis of 5,10-dihydropyrrolo[1,2-g][1,6]naphthyridines 10a, 10b. 

Once the substrates had been synthesized, we started studying the cyclization of o-

halopyridines 5a-5d in order to obtain dihydropyrrolonaphthyridines 10a, 10b. 

We first tested the reaction using n-BuLi as metalating agent, as it had given the 

best results in related Parham cyclizations carried out in our group.45  However, 

when acrylamides 5c and 5d were treated with n-BuLi in dry THF at -90 ºC, as 

expected, dehalogenated pyrrolylmethylpyridine 11, derived from addition of the 

alkyllithium to the double bond (Figure 2.1), was obtained as the major product, 

together with the desired naphthyridine 10b in low yields (Scheme 2.36, Table 2.1, 

Entries 1-2). 

Scheme 2.36 
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Table 2.1. Carbolithiation reactions of o-halopyridines 5a-5d. 

Entry Substrate  RLi T (ºC) Time (min) Product Yield (%)
[a]

1 5c n-BuLi[b] -90 5 10b
[d] 9 

2 5d n-BuLi[b] -90 5 10b
[e] 9 

3 5c MesLi[c] -105 5 10b 27[f]

4 5c MesLi[c] -105 10 10b 55 

5 5d MesLi[c] -105 10 10b 56 

6 5a MesLi[c] -105 5 10a 47 

7 5b MesLi[c] -105 5 10a 49 

[a] Isolated yield. [b] 2.2 eq. [c] 2.0 eq. [d] Addition product 11 (45%) was also isolated. [e] Addition 
product 11 (44%) was also isolated. [f] Conversion 86%. 

�

�

�
�
��

����

�� �

Figure 2.1 

Therefore, we decided to choose MesLi as the metalating agent, as it is known to 

avoid competitive 1,2- and 1,4-addition reactions of the alkyllithium reagent to the 

alkene moiety.40 As mentioned before, MesLi is a non-nucleophilic and strongly 

basic bulky reagent, which has to be prepared in situ as is not stable enough to be 
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stored. The preparation of MesLi involves lithiation of 2-bromomesitylene with an 

excess of t-BuLi at low temperature under inert atmosphere (Scheme 2.37).48

�

Scheme 2.37 

We took the conditions optimized by our group for the carbolithiation of N-(o-

iodobenzyl)pyrroles40 as a starting point (MesLi in THF, from -90 ºC to -105 ºC). 

Low temperatures and very short reaction times were required for the formation of 

this type of heteroaryllithiums.45 Thus, first attempts were conducted by treating o-

bromopyridine 5c with MesLi in dry THF at -105 ºC, which provided 

pyrrolonaphthyridine 10b in only a 27% yield (Table 2.1, Entry 3), but starting 

material was recovered (86% conversion). Longer reaction times were required to 

obtain 10b in moderate yield (55%) (Entry 4). When this procedure was applied to 

o-iodopyridine derivative 5d, naphthyridine 10b was obtained in a similar 56% 

yield (Entry 5).  The procedure could be also applied to the corresponding acrylates 

5a and 5b, obtaining pyrrolonaphthyridine 10a in just 5 min in moderate yields 

(Entries 6-7). 

���������������������������������������� �������������������
48 a) Seebach, D.; Neumann, H. Chem. Ber. 1974, 107, 847. b) Yoshifuji, M.; Nakamura, T.; Inamoto, 
N. Tetrahedron Lett. 1987, 28, 6325. c) Rathman, T. L.; Woltermann, C. J. PharmaChem. 2003, 2, 6. 
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2.3.1.3. Intramolecular carbolithiation reaction of o-haloquinolines 9a-9d. 

Synthesis of 5,12-dihydrobenzo[b]pyrrolo[1,2-g][1,6]naphthyridines 12a, 12b.�

A similar methodology was applied to o-haloquinolines 9a-9b, affording this time 

dihydrobenzopyrrolonaphthyridines 12a, 12b (Scheme 2.38).  
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Scheme 2.38 

All essays are collected in Table 2.2, but unfortunately low yields of the 

corresponding benzonaphthyridines 12a, 12b were always obtained. 

Carbolithiation carried out on acrylates 9a, 9b resulted in 29-30% yield of the 

benzonaphthyridine 12a (Entries 1-2). Acrylamides 9c, 9d needed longer times for 

the reaction to reach completion, but the yields were not improved (Entries 3-5). In 

all cases, the reaction afforded a complex mixture of products, from which 

benzonaphthyridines 12a, 12b were difficult to isolate.  
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Table 2.2. Carbolithiation reactions of o-haloquinolines 9a-9d. 

Entry Substrate  Time (min) Product Yield (%)
[a]

1 9a 5 12a 29 

2 9b 10 12a 30 

3 9c 10 12b 20[b]

4 9c 30 12b 25 

5 9d 30 12b 28 

[a] Isolated yield. [b] Conversion 86%. 

In summary, it has been possible to perform intramolecular carbolithiation reaction 

with electron-deficient heteroaryllithiums, such as pyridinyllithiums, to obtain 

5,10-dihydropyrrolo[1,2-g][1,6]naphthyridines 10a-10b in moderate yields. 

However, the use of the corresponding quinolinyllithium derivatives provided the 

corresponding 5,12-dihydrobenzo[b]pyrrolo[1,2-g][1,6]naphthyridines 12a-12b in 

lower yields. No difference in reactivity was observed between bromo and iodo 

derivatives for the formation of heteroaryllithiums and subsequent cyclizations. 

These results contrast with the more efficient Parham cyclization reaction of o-

halobenzylpyrroles for the synthesis of pyrrolo[1,2-a]isoquinolines when using 

activated alkenes as internal electrophiles40 (see Scheme 2.25). On another hand, 

when using amides as internal electrophiles, we have reported that pyridinyl and 

quinolinyllithiums could be efficiently generated by treatment with n-BuLi 

followed by fast cyclization at -90 ºC, leading to pyrrolo[1,2-b]acridinones and 

pyrrolo[1,2-g]quinolones in good yields (Scheme 2.39).45 However, in the case 

presented in this work, it was necessary to use MesLi to avoid 1,2- and 1,4-

competitive addition reactions. Besides, the reactions required longer reaction 
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times to reach completion, which probably led to decomposition of the 

substrates/products. Similar results were observed when electron-rich 

heteroaryllithiums were used in carbolithiation reactions (see Scheme 2.28).44  

�

Scheme 2.39 

2.3.2. Intramolecular carbolithiation reaction via conjugate addition on 

N-(o-iodobenzyl)pyrrolidinylacrylates  

As summarized in the introduction of this chapter, our group had described the 

intramolecular carbolithiation of chiral non-racemic N-(o-

iodobenzyl)pyrrolidinylacrylamides derived from L-prolinal, which took place with 

complete diastereoselectivity.42 In order to expand the scope of this methodology, 

we decided to investigate the effect of the substitution pattern in the alkene on the 

carbolithiation reaction of related substrates. 

For this purpose, we chose enantiomerically pure 2-alkenyl N-(o-

iodobenzyl)pyrrolidines, where the alkene was substituted by an ester group, with 

or without substituents in the �-position of the acrylate moiety (Scheme 2.40). 
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�

Scheme 2.40 

2.3.2.1. Synthesis of N-(o-iodobenzyl)pyrrolidines 17a, 17b. 

The synthesis of enantiopure N-(o-iodobenzyl)pyrrolidines (S,E)-17a and (S,E)-

17b was performed starting from commercially available Boc-L-proline (Scheme 

2.41). Thus, Boc-L-prolinal (14) was prepared by reduction of the carboxylate 

group of Boc-L-proline to the alcohol 13 by treatment with the borane adduct 

BH3.SMe2
49 and subsequent oxidation to an aldehyde moiety with PCC.50 Wittig 

olefination with commercially available ylides 4a, 4c resulted in the formation of 

acrylates 15a, 15b as single diastereomers of (E)-configuration without 

epimerization at the stereogenic centre (> 99% ee). The enantiomeric purity was 

determined by chiral stationary phase HPLC using Chiralcel IC column in a 

hexane/i-PrOH (95:5) mobile phase and by comparison with data obtained from 

racemic samples of the acrylates 15a, 15b, which were prepared by following the 

same procedures starting from racemic proline (See Experimental Section). These 

acrylates were deprotected with TFA and N-alkylated with benzyl bromide 16,51 to 

give N-(o-iodobenzyl)pyrrolidines 17a and 17b.  

���������������������������������������� �������������������
49 Reed, P.E.; Katzenellenbogen, J.A. J. Org. Chem. 1991, 56, 2624.�
50 Trybulski, E.J.; Kramss, R.H.; Mangano, R.M.; Rusinko, A. J. Med. Chem. 1990, 33, 3190. 
51 The synthesis of benzylbromide 16 was performed by iodination of commercially available 3,4-
dimethoxybenzyl alcohol with I2 and CF3COOAg in CHCl3 as solvent (91%), followed by treatment 
with PBr3 to provide 1-(bromomethyl)-2-iodo-4,5-dimethoxybenzene (16) in 89% yield. See: Ruiz, J.; 
Ardeo, A.; Ignacio, R.; Sotomayor, N.; Lete, E. Tetrahedron 2005, 61, 3311. 
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Scheme 2.41 

2.3.2.2. Intramolecular carbolithiation reaction of N-(o-iodobenzyl)pyrrolidines 

17a, 17b. Synthesis of hexahydropyrrolo[1,2-b]isoquinolines 18a, 18b. 

Based on the precedents already mentioned, we started the study of intramolecular 

carbolithiation of pyrrolidines (S,E)-17a and (S,E)-17b as depicted Scheme 2.42 

and Table 2.3. We first carried out the reaction using MesLi as metalating agent to 

avoid competitive addition reactions. Thus, treatment of pyrrolidinylacrylate (S,E)-

17a with MesLi in dry THF at -105 ºC led to (10R,10aS)-hexahydropyrrolo[1,2-

b]isoquinoline 18a as a single diastereomer in excellent yield (85%) (Entry 1). 

Therefore, the cyclization took place with total diastereoselectivity in agreement 

with our previous results on the corresponding acrylamides.42,43
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Scheme 2.42

Table 2.3. Carbolithiation reactions of N-(o-iodobenzyl)pyrrolidines 17a, 17b. 

Entry Subs.  RLi Additive T (ºC) Time 

(min) 

Prod. Yield (%)
[a]

(dr)
[b]

1 (S,E)-17a MesLi[c] - -105 5 18a 85 

2 (S,E)-17b MesLi[c] - -105 5 18b 77 (50:50) 

3 (S,E)-17b n-BuLi[d] TMEDA[d] -78 10 18b
[f] 40 (69:31) 

4 (S,E)-17b n-BuLi[d] TMEDA[d] -78 40 18b
[g] 48 (59:41) 

5 (S,E)-17b n-BuLi[d] (–)-sparteine[d][e] -90 10 18b
[h] 36 (38:62) 

6 (S,E)-17b n-BuLi[d] (–)-sparteine[d][e] -90 60 18b
[i] 45 (38:62) 

[a] Isolated yield. [b] Diastereomer ratio determined by 1H NMR spectroscopy. [c] 2.0 eq. [d] 2.2 eq. 
[e] Toluene as solvent. [f] Addition product 19 (21%) was also isolated. [g] Addition product 19 (8%) 
was also isolated. [h] Addition product 19 (23%) was also isolated. [i] Addition product 19 (22%) was 
also isolated.    

We could confirm the (10R,10aS)-trans configuration in the indolizidine system by 

2D NOESY experiments, which showed an enhancement between H-10 and H-1, 

and between H-10a and a methylenic proton of the substituent at C-10 (Figure 2.2). 

The stereochemical outcome of the reaction could be explained by attack of the 

intermediate aryllithium as shown in Figure 2.2. This model allows possible 

nitrogen-lithium chelation and subsequent cyclization.��
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Figure 2.2 

In view of these results, we submitted the pyrrolidinylacrylate (S,E)-17b to the 

same reaction conditions. In this case, a 1:1 mixture of diastereomers 18b was 

obtained (Table 2.3, Entry 2), which could not be separated by chromatographic 

methods. The NMR studies carried out on the mixture seem to indicate that the 

cyclization was diastereoselective, but the protonation of the final lithiated 

intermediate was non-selective. However, the stereochemistry could not be 

unambiguously determined due to overlapping of the signals.  

The change to n-BuLi as organolithium reagent in the presence of TMEDA at -78 

ºC provided the mixture of the same diastereomers in different ratio (69:31) in 

moderate yield (40%) (Entry 3), together with byproduct 19 (21%), derived from a 

double addition of n-BuLi to the ester moiety as represented in Figure 2.3. Longer 

reaction times improved slightly the yield (48%), but with a drop in 

diastereoselectivity (Entry 4). The use of n-BuLi in the presence of a chiral 

bidentate ligand, such as (–)-sparteine, in toluene at lower temperatures, generated 

the hexahydropyrrolo[1,2-b]isoquinoline 18b in moderate yields but with an 

inversion in the stereochemical outcome (Entries 5-6). A reversal of 
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diastereoselection has been previously reported when (–)-sparteine was used 

instead of TMEDA in related processes.52

� %


� %


�

� %
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����
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Figure 2.3 

To sum up, the intramolecular conjugate addition of the aryllithium intermediate to 

the acrylate moiety of pyrrolidine (S,E)-17a takes place diastereoselectively to 

obtain the hexahydropyrrolo[1,2-b]isoquinoline 18a with a (10R,10aS)-

configuration. However, in the case of acrylate 17b, the protonation is non-

selective, obtaining 18b as an epimeric mixture, in a different ratio depending on 

the reaction conditions.  

2.3.3. Intramolecular carbolithiation reaction via conjugate addition on 

N-(o-iodobenzyl)pyrrolylbutenoate 

According to our objectives, our next task was to study the possibility of generating 

a quaternary stereocenter by intramolecular carbolithiation on N-(o-

iodobenzyl)pyrrolylbutenoate 26 (Scheme 2.43).  

���������������������������������������� �������������������
52 a) See Ref. 39. b) Arrasate, S.; Sotomayor, N.; Lete, E. Tetrahedron: Asymmetry 2002, 13, 311. 
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Scheme 2.43

2.3.3.1. Synthesis of N-(o-iodobenzyl)pyrrole 26.  

We first focused on the synthesis of N-(o-iodobenzyl)pyrrolylbut-2-enoate 26. 

Different approaches were tried to introduce a methyl group in the � position of the 

�,�-unsaturated ester moiety of the pyrrole.  

The first strategy planned started with Boc-protection of commercially available 2-

acetylpyrrole to afford 20.53 However, all attempts to perform Wittig olefination 

reactions over Boc-acetylpyrrole 20 failed, probably due to the lower reactivity of 

ketones compared to aldehydes. Therefore, we chose the Reformatsky reaction,54

followed by dehydration, as an alternative pathway to synthesize this �,�-

unsaturated ester. However, when 20 was reacted with BrCH2CO2Et in the 

presence of Zn, oxazolone 21 was obtained in 40% yield, after treatment with p-

TsOH in dry toluene, as depicted in Scheme 2.44. The formation of this oxazolone 

could be explained by intramolecular reaction of the hydroxyl group of the �-

hydroxy ester intermediate with the Boc group catalyzed by p-TsOH. 

���������������������������������������� �������������������
53 Son, S.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 1046. 
54 a) Picotin, G.; Miginiac, P. J. Org. Chem. 1987, 52, 4796. b) Thakur, V.V.; Nikalje, M.D.; Sudalai, 
A. Tetrahedron: Asymmetry 2003, 14, 581.�
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Scheme 2.44

Observing this outcome of the Reformatsky reaction, we decided to introduce an 

alternative protecting group on the pyrrole nitrogen, the phenylsulfonyl group, 

which would remain unchanged during that step. Thus, treatment of commercially 

available pyrrole with phenylsulfonyl chloride, followed by acetylation (Ac2O, 

BF3.OEt2 in CH2Cl2) at C-2 position55 led to 23. When N-phenylsulfonylpyrrole 23

was submitted to Reformatsky reaction conditions, a mixture of three isomers 

(whose ratio was determined by GC-MS) was obtained (Scheme 2.45). This 

mixture was difficult to separate and only (E)-24a was isolated and completely 

characterized. Besides, all attemps to deprotect the sulphonyl group of (E)-24a

failed. 

���������������������������������������� �������������������
55 Kakushima, M.; Hamel, P.; Frenette, R.; Rokach, J. J. Org. Chem. 1983, 48, 3214. 
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Scheme 2.45 

The configuration of the isomer (E)-24a was determined by NOE difference 

experiments, which showed an enhancement between the olefinic proton and H-3 

of the pyrrole, and between the same olefinic proton and the aromatic protons of 

the phenyl group. Enhancements between the alkene methyl group, and both 

pyrrole H-3 and aromatic protons were also observed. Therefore, the alkene is 

likely to be coplanar with the pyrrole, giving two preferred conformations (Figure 

2.4). Equilibrium between the two conformations would be fast on the chemical 

shift timescale. 

�

Figure 2.4 
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On the other hand, it has been reported that palladium-catalyzed cross-coupling 

reaction via C-H bond activation of simple heteroarenes, such as pyrroles and 

indoles, with alkynes, affords cis-heteroarylalkenes in most cases.56 Therefore, an 

alternative strategy was planned. Commercially available ethyl 2-butynoate was 

reacted with pyrrole in the presence of Pd(OAc)2, to provide 2-ethyl 3-(1H-pyrrol-

2-yl)but-2-enoate (25) as a 66:34 mixture of Z:E diastereomers in low yield (38%) 

(Scheme 2.46). 

�

Scheme 2.46

 Both diastereomers could be separated, characterized and their stereochemistry 

assigned on the basis of 2D NOESY experiments (Figure 2.5). As in the case of N-

phenylsulfonylpyrrole (E)-24a, enhancements between olefinic proton, pyrrole H-3 

and N-H, together with enhancements between methyl group and pyrrole H-3, were 

observed for (E)-25b. Therefore, an equilibrium between the two conformers, 

shown in Figure 2.5, is established. On the other hand, the enhancements between 

the methyl group, pyrrole H-3 and olefinic proton were observed for (Z)-25a. 

Additionally, in the last case, no NOE between the olefinic proton and pyrrole H-3 

could be detected. 

���������������������������������������� �������������������
56 Lu, W.; Jia, C.; Kitamura, T.; Fujiwara. Y. Org. Lett. 2000, 2, 2927. 
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Figure 2.5 

Although the reaction proved inefficient due to the presence of byproducts derived 

from the coupling in C-3 position of the pyrrole nucleus, N-alkylation of both 2-

ethyl 3-(1H-pyrrol-2-yl)but-2-enoate diastereomers 25 with benzyl bromide 16 was 

performed independently under different conditions, obtaining in all cases the 

desired N-(o-iodobenzyl)pyrroles 26 as a single diastereomer of (E)-configuration 

in yields up to 38% (Scheme 2.46). 

Synthesis of analogous pyrrolidine derivative was also tried starting from 

commercial enantiopure Boc-L-proline (Scheme 2.47). The preparation of Weinreb 

amide derivative (S)-27 was accomplished by treatment with N,O-

dimethylhydroxylamine hydrochloride and CDI in CH2Cl2.
57 The amide was 

further transformed to a ketone moiety by reaction with methylmagnesium 

bromide, thus obtaining N-Boc protected 2-acetylpyrrolidine (S)-28.57,58 The 

subsequent Reformatsky reaction54 afforded 29 as a 54:46 mixture of diastereomers 

(40% yield). All attempts to dehydrate this �-hydroxyester with p-TsOH, HCl or 

TFA failed, so we decided to give up the synthesis of this intermediate. 

���������������������������������������� �������������������
57 Kong, C.; Jana, N.; Driver, T. G. Org.Lett. 2013, 15, 824. 
58 Barluenga, J.; Escribano, M.;  Aznar, F.; Valdés, C.  Angew. Chem. Int. Ed. 2010, 49, 6856. 
�
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Scheme 2.47

2.3.3.2. Intramolecular carbolithiation of N-(o-iodobenzyl)pyrrole 26. Synthesis of 

5,10-dihydropyrrolo[1,2-b]isoquinoline 30. 

Based on our previous experience, we started the study of intramolecular 

carbolithiation reaction of pyrrole 26 with MesLi (Scheme 2.48). Treatment of N-

(o-iodobenzyl)pyrrole 26 with MesLi in THF at -105 ºC afforded 10-methyl-5,10-

dihydropyrrolo[1,2-b]isoquinoline 30 in low yield (22%), together with deiodinated 

pyrrole 31 as a 25:75 mixture of diastereomers (Z:E) in a 52% yield (Table 2.4, 

Entry 1). Longer reaction times and different temperatures were tried, but the 

results could not be improved, isolating in all cases deiodinated benzylpyrrole 31

as major product (Entries 2-3). When the reaction was allowed to warm up to room 

temperature overnight only (E)-diastereomer of 31 was isolated (Entry 4). 
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Scheme 2.48

Table 2.4. Carbolithiation reactions of N-(o-iodobenzyl)pyrrole 26. 

Entry T (ºC) Time (min) Yield (%) 

30 31
[b]

1 -105 5 22 52[c]

2 -105 45 -
[a] 59[d]

3 -78 180 -
[a] 45[c][e]

4 -78 � r.t. 180 � 16 h - 37[f][g]

[a] Traces of 30 were observed. [b] Ratio of (Z:E) diastereomers determined by GC-
MS. [c] (Z:E, 25:75). [d] (Z:E, 47:53). [e] Conversion 76%. [f] Only (E)-
diastereomer was obtained.  [g] Conversion 61%.  

In view of these results, we decided not to carry out the asymmetric version of the 

carbolithiation reaction on this substrate. 
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2.3.4. Intramolecular carbolithiation reactions via SN2´ reaction  

According to the aims proposed in section 2.3, we decided to study the 

intramolecular carbolithiation reaction on allyl substituted pyrroles and 

pyrrolidines via SN2´process (Scheme 2.49).  

�

Scheme 2.49 

For that purpose, we are going to present a brief overview of the reactions of 

organolithium reagents with allylic derivatives. Allylic compounds may undergo 

competitive displacement reactions using organometallic reagents, which involve 

carbon-carbon bond formation at the �- or �-position of the allyl moiety. The 

development of methods to control this regioselectivity has emerged as an 

important goal in the last years. We will focus on nucleophilic substitution at an 

allylic carbon taking place through SN2´ mechanism when organolithium 

compounds are used.  

In the 1960´s, Magid and Welch59 reported that treatment of allyl chloride, 2H or 
14C- labeled at the �-position, with PhLi afforded a 1:3 mixture of �-coupled and �-

���������������������������������������� �������������������
59 a) Magid, R. M.; Welch, J. G. J. Am. Chem. Soc. 1966, 88, 5681. b) Magid, R. M.; Welch, J. G. J. 
Am. Chem. Soc. 1968, 90, 5211. 
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coupled instead of a 1:1 mixture (Scheme 2.50a). When using cis- and trans-�-

methylallyl chloride under the same conditions, the same mixture of compounds 

was obtained with retention of the stereochemistry in the double bond (Scheme 

2.50b).60 These evidences claimed for concerted SN2 and SN2´mechanism, rejecting 

a mechanism that involved a resonance stabilized allylic cation intermediate (SN1 

or SN1´mechanisms).  

�

Scheme 2.50 

Both SN2 and SN2´ mechanisms take place under same nucleophilic conditions. 

However, different factors can affect the reaction outcome. For example, a SN2´ 

process may be favored in those substrates where �-position is sterically hindered, 

or by increasing the size of the nucleophile. In addition, the nature of the leaving 

group might also affect the competition.  

���������������������������������������� �������������������
60 Magid, R. M.; Gandour, R. D. J. Org. Chem. 1970, 35, 269. b) Magid, R. M.; Nieh, E. C.; Gandour, 
R. D. J. Org. Chem. 1971, 36, 2069. 
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A pioneer study was also carried out by Broaddus61 in 1965, where the cleavage of 

several alkyl allyl ethers occurred upon treatment with n-BuLi in a hydrocarbon 

solution at 70 ºC, affording the corresponding alcohols and n-heptene. In fact, 

nucleophilic SN2´ displacement process was proposed to take place via a cyclic 6-

membered transtition state, where the lithium atom was coordinated to the oxygen 

atom (Scheme 2.51). 

�

Scheme 2.51 

Based in these precedents, more recently Bailey and coworkers published an 

efficient methodology to perform O-deallylation of allyl ethers as a strategy for 

alcohol deprotection, when using allyl units as robust protecting groups.62 In this 

case, differently substituted allylic ethers led to their corresponding alcohols and 

4,4-dimethyl-1-pentene using t-BuLi in pentane solution at -78 ºC and allowing to 

warm up the reaction mixture to room temperature (Scheme 2.52). This 

methodology provides a convenient strategy for the selective removal of an allyl 

protecting group, even in presence of an acetal or a silyl groups. 

���������������������������������������� �������������������
61 Broaddus, C. D. J. Org. Chem. 1965, 30, 4131. 
62 Bailey, W. F.; England, M. D.; Mealey, M. J. Thongsornkleeb, C.; Teng, L. Org. Lett. 2000, 2, 489. 
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Scheme 2.52 

In the same context, Fañanás and coworkers63 reported a selective method for easy 

deallylation of o-allyloxyanisoles by using s-BuLi or t-BuLi at low temperature. 

The coordination of the methoxy group with the organolithium reagent, favored a 

SN2´ attack to the double bond and thus, allyl ethers derived from o-

methoxyphenols and naphthols were cleanly cleaved to obtain the corresponding 

phenols or naphthols in excellent yields (Scheme 2.53).  

Scheme 2.53 

���������������������������������������� �������������������
63 Sanz, R.; Martínez, A.; Marcos, C.; Fañanás, F. J. Synlett 2008, 1957. 
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In this context, Bailey and coworkers64 have also reported the regioselective ring 

opening of cis-4-methyl-2-vinyl-1,3-dioxane. Preferential cleavage of the C–O 

bond, remote from the 4-methyl substituent occurred, which resulted in the 

formation of E-enol ether shown on Scheme 2.54 as the major product. However, 

in this case, a two-step mechanism, which differs from the simple one step-SN2´ 

process, involving addition of alkyllithium and subsequent syn-elimination of 

lithium alkoxide was suggested. 
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Scheme 2.54 

Sodeoka and coworkers65a described the release of a poor leaving group, such as 

hydroxyl group, through SN2´ reaction, when (Z)-trifluoromethylated 2-phenyl 

allylic alcohol was treated with n-BuLi in Et2O at -10 ºC (Scheme 2.55a). Posterior 

mechanistical studies confirmed that hydroxyl group plays the role of leaving 

group and of directing group.65b In addition, trifluoromethyl moiety favors the 

reactivity towards the SN2´ process, not only by its electron-withdrawing 

���������������������������������������� �������������������
64 Bailey, W. F.; Zarcone, L. M. J. Chirality, 2002, 14, 163. 
65 a) Shimizu, R.; Egami, H.; Hamashima, Y.; Sodeoka, M. Angew. Chem. Int. Ed. 2012, 51, 4577. b) 
Egami, H.; Usui, Y.; Kawamura, S.; Shimizu, R.; Nagashima, S.; Sodeoka, M. J. Fluorine Chem.

2015, 179, 121. 
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properties, but also by chelation of the lithium alkoxide, which fixes the 

conformation of the substrate. In this case, the (Z)-isomer allows geometrically 

more favorable chelation, compared to the (E)-isomer, which only afforded a 3% of 

product (Scheme 2.55b).65b In addition, the aryl group also plays a crucial role in 

controlling the regioselectivity and reactivity of the process. 

�

Scheme 2.55 

In the same context, Paquin et al.66 reported the carbolithiation via SN2´ 

displacement of a fluoride group located in an allylic system. In this case, the 

cleavage of carbon-fluoride bonds on 3,3-difluoropropene derivatives with various 

alkyllithiums was achieved, thus obtaining monofluoroalkenes. Although fluoride 

group is thought to be a poor leaving group, in this example, its nucleofuge ability 

may increase due to a C–F···Li chelation. Hence, fluorine-lithium coordination has 

been proposed to activate carbon-fluorine bond, so LiF would be released acting as 

a driving force to promote SN2´ process (Scheme 2.56).  

���������������������������������������� �������������������
66 Bergeron, M.; Johnson, T.; Paquin, J.-F. Angew. Chem. Int. Ed. 2011, 50, 11112. 
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Scheme 2.56 

However, best results in this type of SN2´ processes with organolithium compounds 

have been obtained using transition-metal catalysts such as copper salts,67 which 

involve a transmetallation process to form organocuprate intermediates that are the 

reactive species in the addition to allylic systems. 

The carbolithiation reactions via a SN2´ process can also be carried out in an 

intramolecular fashion. In this context, Coldham and coworkers7f reported the 

anionic cyclization of �-amino-organolithium species, formed by tin-lithium 

exchange, onto allylic ethers to obtain the corresponding pyrrolidines (Scheme 

2.57).  

�

Scheme 2.57 

���������������������������������������� �������������������
67 For some representative examples, see: a) Yus, M.; Ortiz, R. Eur. J. Org. Chem. 2004, 3833. b) 
Kiyotsuka, Y.; Kobayashi, Y. Tetrahedron Lett. 2008, 49, 7256. c) Pérez, M.; Fañanás-Mastral, M.; 
Bos, P. H.; Rudolph, A.; Harutyunyan, S. R.; Feringa, B. Nat. Chem. 2011, 3, 377. d) Konno, T.; 
Ikemoto, A.; Ishihara, T. Org. Biomol. Chem. 2012, 10, 8154. �
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A similar methodology was applied by Krief68 for the synthesis of cyclopentanes, 

but in this case, a selenium-lithium exchange provided benzyllithium 

intermediates, which cyclized over the allyl ether through SN2´ reaction. 

In addition, alkyllithiums formed by reductive lithiation of a nitrile have also 

proved to undergo intramolecular carbolithiation reactions via SN2´ pathway.9 In 

this context, Takaoka36a has reported the formation of five- and six-membered rings 

by cyclization of an alkyllithium over an allylic ether moiety by displacement of an 

alkoxide (Scheme 2.58). 

Scheme 2.58 

In relation to our work, we are interested on intramolecular carbolithiation 

reactions of aryl and heteroaryllithiums, generated by halogen-lithium exchange, 

over allylic systems bearing leaving groups in �-position to promote SN2´ 

reactions. 

���������������������������������������� �������������������
68 Krief, A.; Remacle, B.; Mercier, J. Synlett 2000, 1443. 
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To our knowledge, very few precedents are found in literature. Thus, Nishiyama 

and coworkers69 described the synthesis of optically pure cyclopenta[b]benzofuran 

derivatives via a SN2´ intramolecular carbolithiation, starting from enantiomerically 

pure aryl ethers. Regardless of the C-4 configuration in the starting cyclopentyl eter 

(Scheme 2.59), the reaction took place with a total diastereoselectivity, affording 

cyclopenta[b]benzofuran as a single cis-isomer in enantiomerically pure form.  

��




��

��




��

��




��

��




��




������

��� �� * ��

������

��� �� * ��
!!#

8 ""# ��
�

Scheme 2.59 

The same group had previously investigated the asymmetric induction promoted by 

several chiral lithium alkoxides in the bis-phenyllithium intermediate, in the 

anionic cyclization of enantiopure cis-1,4-bis(2-bromophenoxy)cyclopent-2-ene by 

a SN2´ process.70

On the other hand, Pedrosa and coworkers37 described the intramolecular 6-exo

carbolithiation reaction of chiral 2-(o-bromophenyl)perhydro-1,3-benzoxazines 

with an allylic moiety following an SN2´ reaction, affording the corresponding 

tetrahydroisoquinoline in enantiomerically pure form as a 75:25 mixture of 

diastereomers in 66% yield (Scheme 2.60). 

���������������������������������������� �������������������
69 Nishiyama, H.; Sugimoto, H.; Wakita, H.; Nagase, H. Synlett 1998, 930. 
70 Nishiyama, H.; Sakata, N.; Motoyama, Y.; Wakita, H.; Nagase, H. Synlett 1997, 1147. 
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Scheme 2.60 

2.3.4.1. Intramolecular carbolithiation reaction of N-(o-halopyridinylmethyl) 34a, 

34b and N-(o-haloquinolinylmethyl)pyrrolyl allylic alcohol derivatives 35a, 35b.  

As previously stated, we first began to study the cyclization via SN2´ reaction of N-

(o-halopyridinylmethyl) and N-(o-quinolinylmethyl)pyrrolyl allylic alcohol 

derivatives to afford (benzo)naphthyridine cores (Scheme 2.61). 

�

Scheme 2.61 
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2.3.4.1.1. Synthesis of o-halopyridines 34a, 34b and o-haloquinolines 35a, 35b. 

We performed the synthesis of o-halopyridines 34a, 34b and o-haloquinolines 35a, 

35b by using a standard methodology. Firstly, previously synthesized pyridinyl 5a,

5b and quinolinylacrylates 9a, 9b were reduced with diisobutylaluminum hydride 

in THF71 to the corresponding allylic alcohols giving pyridines 32a, 32b and 

quinolines 33a, 33b, respectively in excellent yields. The reduction step was 

followed by protection of the alcohol moiety as a silyloxy group (R1 = TBDMS) by 

treatment with t-butyldimethylsilyl chloride and imidazole in DMF72 to afford the 

corresponding silyl protected allylic alcohols 34a, 34b, 35a, 35b, as depicted in 

Scheme 2.62. 

Scheme 2.62 

���������������������������������������� �������������������
71 Bandini, M.;  Melloni, A.; Piccinelli, F.; Sinisi, R.; Tommasi, S.; Umani-Ronchi, A. J. Am. Chem. 

Soc. 2006, 128, 1424. 
72 Gritsch, P. J.; Stempel, E.; Gaich, T. Org. Lett. 2013, 15, 5472. 
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2.3.4.1.2. Attemps of intramolecular carbolithiation of o-halopyridines 34a, 34b

and o-haloquinolines 35a, 35b via SN2´reaction. 

The research started with the treatment of o-halopyridines 34a, 34b with n-BuLi in 

the presence of TMEDA as additive,  in dry THF at -90 ºC (Scheme 2.63, Table 

2.5, Entries 1-2). After 50 min, no cyclization was observed to occur, however 

products 36 and 37 (Figure 2.6), which come from dehalogenation of the 

heteroaromatic ring, were isolated. Treatment of o-halopyridines 34a, 34b with t-

BuLi in the presence of TMEDA in dry THF at -78 ºC for 3 h and allowing the 

reaction mixture to reach room temperature for 2 h also led to the formation of 

dehalogenated products 36 (40-42%) and 38 (8-16%) (Figure 2.6), instead of the 

expected cyclization products (Entries 3-4). Therefore, although metalation took 

place, the subsequent cyclization failed. 

Scheme 2.63 
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Table 2.5. Carbolithiation reactions of o-halopyridines 34a, 34b and o-haloquinolines 35a, 

35b. 

Entry Subs. RLi  

(2.2 eq.) 

T (ºC) Time (min) Product Yield (%) 

1 34a n-BuLi -90  50 36
[a] 63 

2 34b n-BuLi -90 50 36
[b] 53 

3 34a t-BuLi -78 � r.t. 3 h � 2 h 36
[c] 40 

4 34b t-BuLi -78 � r.t. 3 h � 2 h 36
[d] 42 

5 35a n-BuLi -90  50 39
[e] 8 

6 35b n-BuLi -90 50 39
[f] 11 

7 35a t-BuLi -78 � r.t. 3 h � 2 h 39 27

8 35b t-BuLi -78 � r.t. 3 h � 2 h 39 37 

[a] Byproduct 37 (11%) was also obtained. [b] Byproduct 37 (22%) was also obtained. [c] Byproduct 
38 (8%) was also obtained. [d] Byproduct 38 (16%) was also obtained. [e] Product 40 (21%) was also 
obtained. [f] Product 40 (40%) was also obtained.  
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Figure 2.6 

When o-haloquinolines 35a, 35b were treated under the same conditions, similar 

results were obtained, with no visible evidence for the desired SN2´ reaction 

(Scheme 2.63). Table 2.5 also shows the results obtained in the attempts of 

intramolecular carbolithiation of o-haloquinolines 35a, 35b. The use of n-BuLi and 
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TMEDA in THF at -90 ºC gave products 39 (8-11%) and 40 (21-40%) (Figure 2.6) 

(Entries 5-6). Using t-BuLi as metalating agent, the formation of dehalogenated 

product 39 was isolated (27-37%) (Entries 7-8). 

In view of these results, we may conclude that in all cases the halogen-lithium 

exchange took place at low temperature, but the alkene moiety does not seem to be 

electrophilic enough to prompt the cyclization even when reaction was allowed to 

reach room temperature. Therefore, we were not able to achieve the cyclization via

SN2´ reaction using heteroaryllithiums derived from electron-poor heterocycles. 

2.3.4.2. Intramolecular carbolithiation reaction of N-(o-iodobenzyl)pyrrolyl 44a, 

44b and N-(o-iodobenzyl)pyrrolidinyl allylic alcohol derivatives 46.  

In order to complete the investigations on the Parham cyclization via SN2´ reaction 

pathway, we chose electron-rich aryllithiums to promote ring-closure through SN2´ 

displacement (Scheme 2.64). 

�

Scheme 2.64�



Ane Rebolledo Azcargorta       Ph.D.Thesis 

�

96 

2.3.4.2.1. Synthesis of N-(o-iodobenzyl)pyrroles 44a, 44b and pyrrolidine 46. 

The synthetic route designed for N-(o-iodobenzyl)pyrroles 44a, 44b, illustrated in 

Scheme 2.65, is analogous to that one described for o-halopyridines 34a, 34b and 

o-haloquinolines 35a, 35d. The route began with the N-alkylation of pyrrole-2-

carboxaldehyde with benzyl bromide 16
51 to obtain N-benzylpyrrole 41 (93%). 

Wittig olefination of pyrrole 41 with ylidene 4d provided acrylate 42 as a single 

diastereomer of (E)-configuration in a 86% yield. Reduction with DIBAL-H in dry 

toluene under inert atmosphere71 afforded allylic alcohol 43 (88%). At this point, 

the introduction of different groups in the allylic alcohol was attempted, in order to 

synthesize allylic derivatives for the SN2´reaction. All attempts to transform the 

allylic alcohol into a mesylate group (Scheme 2.64, LG = OMs: MsCl, Et3N in 

CH2Cl2 at 0 ºC),73 tosylate group (LG = OTs: p-TsCl, Et3N in CH2Cl2 at 0 ºC), 

silane group (LG = SiMe3: (SiMe3)2, [Pd(BF4)2(CH3CN)4] as catalyst in 

MeOH/DMSO at 50 ºC),74 bromide (LG = Br: PBr3 in CH2Cl2 at r.t.), chloride (LG 

= Cl: SOCl2, benzotriazole in CH2Cl2 at r.t.)75 or carbonate group (LG = OCO2CH3: 

CH3OCOCl, pyridine in CH2Cl2 at r.t.) failed, and complex mixtures of products 

were obtained in all cases. However, allylic alcohol 43 could be acylated and 

silylated72 to obtain the acetoxy 44a (92%) and silyloxy 44b (88%) derivatives 

respectively, in excellent yields. 

���������������������������������������� �������������������
73 Uyeda, C.; Jacobsen, E. N. J. Am. Chem. Soc. 2011, 133, 5062. 
74 Selander, N.; Paasch, J. R.; Szabó, K. J. J. Am. Chem. Soc. 2011, 133, 409. 
75 a) Bandgar, B.P.; Bettigeri, S. V. Monatsh. Chem. 2004, 135, 1251. b) Pavlakos, E.; Georgiou, T.; 
Tofi, M.; Montagnon, T.; Vassilikogiannakis, G. Org. Lett. 2009, 11, 4556. 
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�

Scheme 2.65 

The synthesis of the enantiomerically pure o-iodobenzylpyrrolidine 46 could also 

be readily achieved by reduction71 of previously prepared acrylate 17a to provide 

the allylic alcohol (S,E)-45 (92%), followed by silylation to the enantiopure 

sililoxymethyl derivative (S,E)-46 in excellent yield (Scheme 2.66). 

�

Scheme 2.66 
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2.3.4.2.2. Attempts of intramolecular carbolithiation of N-(o-iodobenzyl)pyrroles 
44a, 44b and pyrrolidine 46 via SN2´reaction. 

In order to promote Parham cyclization of acetylated N-(o-iodobenzyl)pyrrole 44a, 

we decided to use t-BuLi in the presence of TMEDA at -78 ºC for 3 h, quenching 

the reaction with saturated NH4Cl solution at low temperature. Although no 

cyclization took place, allylic alcohols 47 (18%) and 43 (63%) were isolated 

(Scheme 2.67, Table 2.6, Entry 1). Under these conditions, the iodine-lithium 

exchange was not efficient, and competitive addition to the ester carbonyl ocurred. 

When the addition of the lithium reagent was performed at -78 ºC and the reaction 

was allowed to warm up to room temperature for 3 h (Entry 2), only deiodinated 

allylic alcohol 47 (48%) could be isolated from the reaction mixture. In this case, 

although I-Li exchange occurred more efficiently, cyclization was not observed. 

Increasing the reaction time to 16 h (Entry 3), 47 (33%) was also isolated, but in 

lower yield, probably due to decomposition in the reaction media.  

�

Scheme 2.67�
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Table 2.6. Carbolithiation reactions of N-(o-iodobenzyl)pyrrole 44a.

Entry RLi Additive T (ºC) Time (min) Yield (%) 47 

1 t-BuLi[a] TMEDA[a] -78 3 h 18[e]

2 t-BuLi[a] TMEDA[a] -78 � r.t. 10 � 3 h 48 

3 t-BuLi[a] TMEDA[a] -78 � r.t. 10 � 16 h 33 

4 MesLi[a] - -78 3 h - 

5 MesLi[a] - -78 � r.t. 10 � 3 h 16 

6 t-BuLi[b] -[c] [d] -78 2 h 17[f]

7 t-BuLi[b] -[c] [d] -78 � r.t. 2 h � 2 h  7 

[a] 2.0 eq. [b] 1.2 eq. [c] CuI (0.1 eq.) and PPh3 (0.2 eq.) were also added. [d] The reaction was 
performed in dry CH2Cl2. [e] Iodinated allylic alcohol 43 (63%) was obtained as the major product. 
[f] Iodinated allylic alcohol 43 (5%) was also obtained. 

We decided to change the metalating agent to MesLi, but cyclization also failed 

(Entries 4-5). The attempts to transmetallate the initially formed aryllithium to 

favor cyclization using t-BuLi, CuI and PPh3 in CH2Cl2,
67c only led to complex 

mixtures of products (Entries 6-7).  

In view of these results, we decided to investigate the carbolithiation reaction of 

silyl protected allylic alcohols 44b and (S,E)-46, in order to access 

pyrroloisoquinoline structural cores (Scheme 2.68). Treatment of 44b and (S,E)-46

with n-BuLi in the presence of TMEDA in dry THF at -90 ºC for 50 min, resulted 

in the formation of dehalogenated products 48 (69%) and 49 (100%), respectively 

(Table 2.7, Entries 1-2). The use of t-BuLi as metalating reagent led to similar 

results.  
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Scheme 2.68 

Table 2.7. Carbolithiation reactions of N-(o-iodobenzyl)pyrrole 44b and pyrrolidine 46.

Entry Subs. RLi  

(2.2 eq.) 

Additive  

(2.0 eq.) 

T (ºC) Time 

(min) 

Prod. Yield 

(%)
[a]

1 44b n-BuLi TMEDA -90 50 48 69 

2 (S,E)-46 n-BuLi TMEDA -90 50 49 100 

3 44b t-BuLi TMEDA -90 50 48 64 

4 44b t-BuLi - -90 50 48 60 

5 44b t-BuLi TMEDA -90 � r.t. 10 � 5 h 48 27 

6 44b t-BuLi TMEDA -90 � r.t. 10 � 16 h 48 20 

7 44b t-BuLi TMEDA -78 � r.t. 3 h � 2 h 48 55 

8 (S,E)-46 t-BuLi TMEDA -78 � r.t. 3 h � 2 h 49 82 

[a] Isolated yield.  

�

Thus, treatment of 44b with t-BuLi in the presence of TMEDA resulted in the 

formation of 48 in a 64% yield (Entry 3). Same conditions conducted in absence of 

additive gave similar results (Entry 4). This fact indicates that metalation occurred 

effectively, but not the cyclization. Therefore, an increase of the temperature to 
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favor the carbolithiation via SN2´ reaction was tested. Addition of t-BuLi at -90 ºC, 

followed by 10 min of stirring and allowing to warm up to room temperature for 

longer periods of time, led to decomposition of the initially formed product 48 (20-

27%) (Entries 5-6), but there was no evidence of cyclization. Additionally, addition 

of t-BuLi to substrate 44b or (S,E)-46 at -78 ºC followed by 3 h of stirring and 

warming up to room temperature for 2 h, afforded again dehalogenated products 48

(55%) and 49 (82%), respectively (Entries 7-8). 

�

Finally, we can conclude that cyclization is not favored when TBDMS or acetyl 

protected allylic alcohols are used to promote 6-exo ring closure of the formed 

aryllithium through a SN2´ reaction. The use of protecting groups that could be 

unreactive under the reaction conditions and also offer a better leaving group 

ability, should be studied as an alternative. Work along these lines is in progress. 
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3.1. Introduction 

Transition metal-catalyzed cross-coupling is nowadays recognized to be one of the 

most valuable carbon-carbon bond formation processes in organic synthesis.1 In 

this context, palladium-mediated transformations2 occupy an important position, 

due to their versatility to construct not only carbon-carbon bonds, but also carbon-

oxygen, carbon-nitrogen and carbon-sulfur bonds.  

Many benefits associated with palladium mediated reactions might be found, 

particularly the tolerance exhibited by palladium catalysts towards a wide range of 

functional groups, in this sense, avoiding protecting group chemistry. Additionally, 

palladium based methodologies generally proceed in excellent yields with a high 

stereo- and regioselectivity, by the use of catalytic amounts of metal and relatively 

mild conditions.        

���������������������������������������� �������������������
1 Beller, M.; Bolm, C. Eds. Transition Metals for Organic Synthesis, Wiley-VCH: Weinheim, 2nd Ed, 
2004. b) Diederich, F.; de Meijere, A. Eds. Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH: 
Weinheim, 2nd Ed, 2004. c) Schlosser, M. Ed. Organometallics in Synthesis. Third Manual, Wiley & 
Sons: New York, 2013. d) Meijere, A.; Bräse, S.; Oestreich, M. Eds. Metal-Catalyzed Cross-

Coupling Reactions and More, Wiley-VCH: Weinheim, 2014. e) Lipshutz, B.H. Ed. Organometallics 

in Synthesis. Fourth Manual, Wiley & Sons: New York, 2014. 
2 For selected books and reviews, see: a) Tsuji, J. Palladium Reagents and Catalyst: Innovations in 

Organic Chemistry, Wiley & Sons: New York, 1995. b) Negishi, E. Handbook of Organopalladium 

Chemistry for Organic Synthesis, Wiley & Sons: New York, 2002, Vol. 1 and 2. c) Tsuji, J. 
Palladium  Reagents and Catalysts: New Perspectives for the 21st Century, Wiley & Sons: New 
York, 2003. d) Palladium in Organic Synthesis, Tsuji, J. Ed., Springer: Berlin, 2005. e) Roglans, A.; 
Pla-Quintana, A.; Moreno-Mañas, M. Chem. Rev. 2006, 106, 4622. f) Lindhart, A.T.; Skrydstrup, T. 
Chem. Eur. J. 2008, 14, 8756. g) Wu, X.-F.; Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem. 

Int. Ed. 2010, 49, 9047. h) Bolm, C. J. Org. Chem. 2012, 77, 5221. i) Bräse, E. In Organometallics in 

Synthesis. Third Manual, Schlosser, M. Ed., Wiley & Sons: New York, 2013, p. 777. 
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Together with a wide number of well-established palladium-based transformations 

such as Suzuki-Miyaura,3 Sonogashira,4 Stille,5 Negishi6 or Kumada7 reactions, the 

Mizoroki-Heck8 reaction has emerged over the last decades as an extremely 

powerful and useful tool for the preparation of highly functionalized olefins, dienes 

or other unsaturated compounds. Besides, this reaction is also known to be useful 

in polymerization chemistry. 

The Mizoroki-Heck reaction has been developed significantly from its original 

concept as the arylation of olefins with aryl mercury compounds.9 The discovery 

that aryl mercury compounds could be substituted by aryl iodides, without 

affecting the oxidation state of the palladium and thus, permiting the use of 

catalytic amounts in the absence of reoxidants, was independently discovered by 

Mizoroki10 and Heck11 more than 40 years ago.  

���������������������������������������� �������������������
3 a) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 20, 3437. b) Miyaura, N.; Suzuki, 
A. J. Chem. Soc., Chem. Commun. 1979, 866. 
4 a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467. b) Sonogashira, K. J. 

Organomet. Chem. 2002, 653, 46.  
5 a) Mistein, D.; Stille, J. K. J. Am. Chem. Soc. 1978, 100, 3636. b) Mistein, D.; Stille, J. K. J. Am. 

Chem. Soc. 1979, 101, 4992. 
6 a) Negishi, E.; Baba, S. J. Chem. Soc., Chem. Commun. 1976, 596. b) Baba, S.; Negishi, E. J. Am. 

Chem. Soc. 1976, 98, 6729.  
7 a) Hayashi, T.; Konishi, M.; Kumada, M. Tetrahedron Lett. 1979, 20, 1871. b) Minato, A.; Tamao, 
K.; Hayashi, T.; Suzuki, K.; Kumada, M. Tetrahedron Lett. 1980, 21, 845.  
8 For selected reviews, see: a) Heck, R. F. Org. React. 1982, 27, 345. b) Heck, R. F. In 
Comprehensive Organic Synthesis, Vol. 4, Trost, B. M.; Fleming, I. Eds., Pergamon Press: Oxford, 
1991, p. 833. c) Meijere, A.; Meyer, F. E. Angew. Chem. Int. Ed. Engl. 1994, 33, 2379. d) Beletskaya, 
I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009. e) Hegedus, L. S. In Organometallics in 

Synthesis: A Manual, Schlosser. M. Ed., Wiley-VCH: Chichester, 2nd Ed, 2002, p. 1123. f) Oestreich, 
M. Ed. The Mizoroki-Heck Reaction, Wiley-VCH: Chichester, 2009. g) Larhed, M. Ed. Science of 

Synthesis. Cross-Coupling and Heck-type reactions, Vol. 3, Thieme: Stuttgart, 2013.  
9 a) Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5531. b) Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5535. 
c) Heck, R. F. J. Am. Chem. Soc. 1971, 93, 6896. 
10 Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 581. 
11 Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320. 
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The Mizoroki-Heck reaction can be defined as the Pd(0) mediated cross-coupling 

reaction of (hetero)aryl and vinyl halides or triflates with alkenes, in both an 

intermolecular or intramolecular fashion (Scheme 3.1). As stated before, the 

versatility of this reaction is supported by its great tolerance to different functional 

groups. Although the use of different types of olefins is possible, it is specially 

favored with electron-deficient alkenes. 
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Scheme 3.1 

In its intramolecular version, this palladium-catalyzed reaction has been recognized 

as a simple and useful tool for regio- and stereoselective syntheses of carbo-12 and 

heterocyclic13 compounds. Besides, it has also been widely used in the multi-step 

syntheses of natural products. Further improvement has been found in the 

���������������������������������������� �������������������
12 Machotta, A.; Oestreich, M. In The Mizoroki-Heck Reaction, Oestreich, M. Ed., Wiley & Sons: 
Münster, 2009, p. 179. 
13 For selected reviews on the application of the Mizoroki-Heck reaction on the synthesis of 
heterocycles, see: a) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285. b) Li, J. J.; Gribble, G. W. 
Eds. Palladium in Heterocyclic Chemistry, Elsevier: Amsterdam, 2007. c) Muller, T.; Bräse, S. In The 

Mizoroki-Heck Reaction, Oestreich M. Ed., Wiley-VCH: Chichester, 2009, p. 215. d) Majumdar, K. 
C.; Samanta, S.; Sinha, B. Synthesis 2012, 44, 817. 
�



Ane Rebolledo Azcargorta       Ph.D.Thesis 

�

108

development of multiple palladium catalyzed transformations, which are performed 

in a domino fashion.14   

A wide variety of different palladium complexes may be used as catalysts in 

Mizoroki-Heck reaction. Apart from those sources that directly provide Pd(0) in 

the media, such as Pd(PPh3)4, Pd(dba)2 and Pd2(dba)3, other sources of Pd(II) are 

also used, such as Pd(OAc)2, PdCl2(CH3CN)2, etc., precatalysts that require a 

reduction step in situ to afford Pd(0) as the active species. The use of ligand free 

Mizoroki-Heck reactions is interesting from an economical and environmental 

point of view. However, palladium-stabilizing ligands are often required, which 

afford reactivity and selectivity to the reaction. The most common ligands used are 

phosphanes, which are known to keep the catalyst stable at a (0) oxidation state, by 

forming species like PdL4 or PdL2. In addition, other nitrogen, arsine, sulfur or 

carbene derived ligands have also been developed. 

Since the original work of Mizoroki10 and Heck,11 many modifications have been 

proposed in order to improve the selectivity and regioselectivity of the reaction. 

Among these improvements, the use of tetraalkylammonium salts in the catalytic 

system (Jeffery protocol),15 and addition of either silver16 or thallium17 salts could 

be included. 

���������������������������������������� �������������������
14 a) de Meijere, A.; von Zezschwitz, P.; Bräse, S. Acc. Chem. Res. 2005, 38, 413. b) Ackermann, L.; 
Althammer, A. Angew. Chem. Int. Ed. 2007, 46, 1627. 
15 Jeffery, T. Tetrahedron 1996, 52, 10113 and references cited therein. 
16 Karabelas, K.; Westerlund, C.; Hallberg, A. J. Org. Chem. 1985, 50, 3896. 
17 Grigg, R.; Loganathan, V.; Santhakumar, V.; Sridharan, V.; Teasdale, A. Tetrahedron Lett. 1991, 
32, 687. 
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A wide range of solvents can be used in Mizoroki-Heck rections, and elevated 

temperatures are frequently necessary. Non-protic polar solvents such as DMF, 

DMA, DMSO, etc. are usually employed. Both organic (trialkylamines) and 

inorganic bases (NaOAc, NaHCO3, etc.) are required for the regeneration of active 

palladium(0), although the last ones demand polar solvents to achieve homogeneity 

in the media. 

3.1.1. Mechanistic considerations and competition between Mizoroki-

Heck and direct arylation reactions 

The mechanism of Mizoroki-Heck reaction has been deeply studied18 and all 

current evidence points to be based on a palladium(0/II) cycle. The most widely 

accepted mechanism was described by Dieck and Heck19 in 1974, which is 

illustrated in Scheme 3.2 for the coupling of aryl halides or triflates (Ar-X) with 

alkenes, using Pd(OAc)2 as precatalyst in combination with monodentate 

phosphane ligands.  

Firstly, the in situ generation of the active Pd(0) species is required by reduction of 

the Pd(II) precursor through an exchange equilibrium of multiple ligands. Once the 

Pd(0) complex (A) is formed, the catalytic cycle starts with the oxidative addition 

to an aryl halide or triflate (Ar-X) to generate the �-arylpalladium(II) complex (B) 

which contains 16 electrons. 

���������������������������������������� �������������������
18 For reviews on the mechanism of Mizoroki-Heck reaction, see: a) Knowles, J. P.; Whiting, A. Org. 

Biomol. Chem. 2007, 5, 31. b) Jutand, A. In The Mizoroki-Heck reaction, Oestreich, M. Ed., Wiley: 
Chinchester, 2009, p. 1, and references therein. 
19 Dieck, H. A.; Heck, R. F. J. Am. Chem. Soc. 1974, 96, 1133. 
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Scheme 3.2 

Subsequently, this complex B, after dissociation of one phosphane ligand, 

coordinates to an alkene. Then, migratory syn insertion to the double bond 

generates the �-(�-aryl)alkylpalladium(II) complex (C). The former step can also 

be termed as a carbopalladation process, since a Pd-C and a C-C bonds are formed 

and is known to be the origin of the regioselectivity in most Mizoroki-Heck 

reactions. Indeed, two isomeric intermediates might be generated in an � or �

arylation of the alkene, to result in branched or linear products respectively.  

Continuing with the cycle, the intermediate C is prone to suffer a C-C bond 

rotation to give an intermediate D, which presents the required syn relationship 

between the �-hydrogen and palladium atom in order to promote the �-elimination. 

Since the �-hydrogen and the transition metal are located in the same plane, syn �-
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hydride elimination takes place providing the cross-coupling product (E) and a 

hydropalladium(II) halide complex (F). To finish, a reductive elimination of the 

intermediate F takes place to generate the Pd(0) active catalyst, which can enter the 

catalytic cycle again, associated with the release of HX neutralized by the base 

present in the media. 

As shown, the Heck-type reactivity depends on the ability of Pd(0) species to 

undergo oxidative addition to C-X bonds of aryl halides and the subsequent 

addition of thus formed Ar-Pd-X intermediates to unsaturated bonds. Under the 

same experimental conditions, the reactivity order for aryl halides and triflates in 

Mizoroki-Heck reactions is: Ar-I >> Ar-OTf > Ar-Br >> Ar-Cl,20 suggesting that 

the oxidative addition step is rate determining for the less reactive aryl halides. On 

the contrary, for the more reactive ones it is thought that the complexation/insertion 

process to the alkene would be the limiting one. 

To account for differences in the regioselectivity derived from the syn insertion of 

the Ar-Pd(II)-X complex to the alkene, two different mechanistic pathways have 

been proposed, termed as “cationic” and “neutral” depending on the formal charge 

on the first-formed palladium(II)-alkene complex generated (Scheme 3.3). In the 

neutral mechanism (non polar route), a neutral palladium species is formed by 

dissociation of one ligand, while in cationic mechanism (polar route) a loss of the 

X group leads in the formation of a cationic palladium species which undergoes 

syn addition.  

���������������������������������������� �������������������
20 Jutand, A.; Negri, S.; de Vries, J. G. Eur. J. Inorg. Chem. 2002, 1711. 
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Scheme 3.3 

The vinylation of aryl halides promoted by the use of Pd(PPh3)4 as catalyst, is 

known to follow a classical “neutral” pathway.21 However, when Pd(OAc)2 is used 

in combination with monodentate phosphane ligands nPPh3 (n>2), the reaction 

follows a “cationic” pathway, being ionic species [ArPd(PPh3)2]
+ favored in polar 

aprotic solvents and at high temperatures.22

Both mechanisms could take place when monodentate phosphanes are employed, 

while the use of bidentate species, such as dppp, promote the formation of 

electrophilic palladium(II) species, which follows a polar route due to steric 

reasons.23

���������������������������������������� �������������������
21 a) Amatore, C.; Jutand, A.; M’Barki, M. A. Organometallics 1992, 11, 3009. b) Amatore, C.; 
Carré, E.; Jutand, A.; M’Barki, M. A. Organometallics 1995, 14, 1818. c) Amatore, C.; Carré, E.; 
Jutand, A.; M’Barki, M. A.; Meyer, G. Organometallics 1995, 14, 5605. d) Amatore, C.; Jutand, A. J. 

Organomet. Chem. 1999, 576, 25. e) Amatore, C.; Jutand, A. Acc. Chem. Res. 2000, 33, 314.��
22 Amatore, C.; Carré, E.; Jutand, A. Acta. Chem. Scand. 1998, 52, 100. 
23 Portnoy, M.; Ben-David, Y.; Rousso, I.; Milstein, D. Organometallics 1994, 13, 3465. 
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Analogous electrophilic palladium(II) species have been considered as 

intermediates in the direct arylation reaction via C-H bond cleavage of aromatic 

and heteroaromatic rings with aryl halides in the presence of palladium catalysts.24

This direct arylation reaction can take place both in an intermolecular or 

intramolecular fashion as represented in Scheme 3.4.  

�

Scheme 3.4 

���������������������������������������� �������������������
24 For selected reviews, see: a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. b) 
Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1773. c) Miura, M.; Satoh, T. In Modern 

Arylation Methods, Ackermann, L. Ed.; Wiley-VCH: Weinheim, 2009, p. 335. d) Catellani, M.; 
Motti, E.; Della Ca, N. Acc. Chem. Res. 2008, 41, 1512. e) McGlacken, G. P.; Bateman, L. M.; Chem. 

Soc. Rev. 2009, 38, 2447. f) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem. Int. Ed. 2009, 
48, 9742. g) Livendahl, M.; Echavarren, A. M. Isr. J. Chem. 2010, 50, 360. h) Roger, J.; 
Gottumukkala, A. L.; Doucet, H. ChemCatChem. 2010, 2, 20. i) Su, Y.-X.; Sun, L.-P. Mini-Rev. Org. 

Chem. 2012, 9, 87. j) Sharma, A.; Vacchani, D.; Van der Eycken, E. Chem. Eur. J. 2013, 19, 1158. 
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For intramolecular direct arylation, a higher control of the regioselectivity is 

possible, since restraints are present to limit the degree of freedom in the system 

(Scheme 3.4A). On the other hand, in the intermolecular reaction, the existence of 

a greater degree of freedom difficults the control of regioselectivity. Therefore, the 

arene should be substituted by groups that influence the stereoelectronics in the 

ring (Scheme 3.4B) or, more commonly, directing groups are used to direct the 

arylation to a specific position, generally ortho to the directing group (Scheme 

3.4C). 

The direct arylation of aryl halides with arenes, in an intermolecular fashion, 

follows the catalytic cycle represented in Scheme 3.5. First, similarly to the Heck-

reaction previously discussed, the oxidative addition of Pd(0) species to the aryl 

halide takes place generating the Ar-Pd(II)-X complex (A). Subsequently, C-H 

bond activation of an arene occurs, forming the Ar-Pd(II)-Ar complex (B) with the 

release of HX. To conclude, reductive elimination in the intermediate B affords the 

coupled biaryl compound (C) by generation of a C-C bond and Pd(0) catalyst, 

ready to enter the cycle again. 
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Different mechanisms for the C-H activation step with the electrophilic Ar-Pd(II)-

X species, formed after oxidative addition, have been described (Scheme 3.6). In 

an initial approach, the mechanism was proposed to follow a SEAr pathway,25

which would proceed like a Friedel-Crafts type reaction, followed by a 

rearomatization step to form the diarylpalladium(II) intermediate (path a). On the 

other hand, the fact that the reactivity has been shown to depend on the acidity of 

the C-H bond, 26 not on the (hetero)arene nucleophilicity, led to the proposal of the 

C-H bond functionalization step via a concerted metalation-deprotonation process 

(CMD),27 which is also supported by theoretical calculations (path b).28 In this 

mechanistic hypothesis, Pd(OAc)2 is generally the transition metal precatalyst, and 

a carboxylate (or carbonate) anion plays a fundamental role in the C-H cleavage,29

���������������������������������������� �������������������
25 a) Pivsa-Art, S.; Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Bull. Chem. Soc. Jpn. 1998, 71, 
467. b) Glover, B.; Harvey, K. A.; Liu, B.; Sharp, M. J.; Tymoschenko, M. F. Org. Lett. 2003, 5, 301. 
c) Li, W.; Nelson, D. P.; Jensen, M. S.; Hoerrner, R. S.; Javadi, G. J.; Cai, D.; Larsen, R. D. Org. Lett. 
2003, 5, 4835. d) Park, C.-H.; Ryabova, V.; Seregin, I. V.; Sromek, A. W.; Gevorgyan, V. Org. Lett. 
2004, 6, 1159. e) Lane, B. S.; Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005, 127, 8050. f) 
Bellina, F.; Benelli, F.; Rossi, R. J. Org. Chem. 2008, 73, 5529. 
26 Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 8754. 
27 For selected examples of direct arylation where a CMD pathway has been proposed, see: a) Davies, 
D. L.; Donald, S. M. A.; Macgregor, S. A. J. Am. Chem. Soc. 2005, 127, 13754. b) Lafrance, M.; 
Fagnou, K. J. Am. Chem. Soc. 2006, 128, 16496. c) García-Cuadrado, D.; Braga, A. A. C.; Maseras, 
F.; Echavarren, A. M. J. Am. Chem. Soc. 2006, 128, 1066. d) García-Cuadrado, D.; de Mendoza, P.; 
Braga, A. A. C.; Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc. 2007, 129, 6880. e) Pascual, S.; 
de Mendoza, P.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. Tetrahedron 2008, 64, 6021. f) 
Gorelsky, S.I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 10848. g) Liégault, B.; 
Lapointe, D.; Caron, L.; Vlassova, A.; Fagnou, K. J. Org. Chem. 2009, 74, 1826. h) Guihaume, J.; 
Clot, E.; Einstein, O.; Perutz, R. N. Dalton Trans. 2010, 39, 10510. i) Liégault, B.; Petrov, I.; 
Gorelsky, S.I.; Fagnou, K. J. Org. Chem. 2010, 75, 1047. j) Rene, O.; Fagnou, K. Adv. Synth. Catal.

2010, 352, 2116. k) Lapointe, D.; Markiewicz, T., Whipp, C. J.; Toderian, A.; Fagnou, K. J. Org. 

Chem. 2011, 76, 749. l) Carrer, A.; Rousselle, P.; Florent, J.-C.; Bertounesque, E. Adv. Synth. Catal.

2012, 354, 2751. m) Gorelsky, S.I.; Lapointe, D.; Fagnou, K. J. Org. Chem. 2012, 77, 658. n) 
Gorelsky, S.I. Organometallics 2012, 31, 4631. o) Korenaga, T.; Suzuki, N.; Sueda, M.; Shimada, K. 
J. Organomet. Chem. 2015, 780, 63. 
28 Pascual, S.; de Mendoza, P.; Echavarren, A. M. Org. Biomol. Chem. 2007, 5, 2727. 
29 For evidence for the critical role of the base, see, for example: a) Sun, H.-Y.; Gorelsky, S. I.; Stuart, 
D. R.; Campeau, L.-C.; Fagnou, K. J. Org. Chem. 2010, 75, 8180. b) Si Larbi, K.; Fu, H. Y.; 
Laidaoui, N.; Beydoun, K.; Miloudi, A.; El Abed, D.; Djabbar, S.; Doucet, H. ChemCatChem 2012, 
4, 815. 
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which occurs in the rate determining step of this model simultaneously with 

carbon-palladium bond formation. In the CMD mechanism, the choice of an 

appropriate base represents an important element of catalyst design, so the 

influence of the anionic base and its counter cation on the outcome of the direct 

arylation should be taken into account.30 Thus, CMD and nCMD (non-concerted 

metalation–deprotonation) mechanisms have been identified in the base-assisted, 

Pd-catalyzed direct arylation of oxazoles and thiole-4-carboxylates with aryl 

halides. Modulation of intrinsic basicity (K+ vs. Cs+) and ligand electronic effects 

were shown to be important for controlling the subtle CMD/nCMD competition.31

Scheme 3.6 

Since Mizoroki-Heck and direct arylation share common conditions, a competition 

between both palladium-catalyzed reactions may occur when using suitable 

���������������������������������������� �������������������
30 a) de Mendoza, P.; Echavarren, A. M. In Modern Arylation Methods, Ackermann, L. Ed., Wiley-
VCH: Weinheim, 2009, p. 363. b) Lapointe, D.; Fagnou, K. Chem. Lett. 2010, 39, 1119. c) Fagnou, 
K. Top. Curr. Chem. 2010, 292, 35. d) Verrier, C.; Lassalas, P.; Theveau, L.; Queguiner, G.; Trecourt, 
F.; Marsais, F.; Hoarau, C. Beilstein J. Org. Chem. 2011, 7, 1584. e) Ackermann, L. Chem. Rev. 
2011, 111, 1315. f) Gorelsky, S. I. Coord. Chem. Rev. 2013, 257, 153. g) Wakioka, M.; Nakamura, 
Y.; Hihara, Y.; Ozawa, F.; Sakaki, S. Organometallics 2013, 32, 4423. 
31 a) Theveau, L.; Verrier, C.; Lassalas, P.; Martin, T.; Dupas, G.; Querolle, O.; Van Hijfte, L.; 
Marsais, F.; Hoarau, C. Chem. Eur. J. 2011, 17, 14450. b) Theveau, L.; Querolle, O.; Dupas, G.; 
Hoarau, C. Tetrahedron 2013, 69, 4375. 
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substrates. Buchwald and coworkers32 have been able to obtain carbazoles, 

acridines and dibenzazepines from a common precursor, such as 2-chloro-N-(2-

vinyl)aniline. The selectivity could be controlled by phosphane ligands and the 

reaction could be directed either to the Heck reaction (6-exo or 7-endo cyclization) 

or to a direct arylation process (Scheme 3.7). Although a complete selectivity was 

initially reported in the study,32a further research provided evidence of byproducts 

derived from other competing reactions.32b  

�

Scheme 3.7 

In this context, our group has reported the selective synthesis of pyrrolo[1,2-

b]isoquinolines and pyrrolo[2,1-a]isoindoles in excellent yields by adequately 

controlling the cyclization to the alkene moiety (Mizoroki-Heck) or pyrrole nucleus 

(direct arylation) respectively, changing the catalytic system.33 In this way, when 

conditions that favor the formation of cationic Pd(II) intermediates or a CMD 

���������������������������������������� �������������������
32 a) Tsvelikhovsky, D.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 14048. b) Tsvelikhovsky, D.; 
Buchwald, S. L. J. Am. Chem. Soc. 2012, 134, 16917 (Erratum the previous document).�
33 Lage, S.; Martínez-Estíbalez, U.; Sotomayor, N.; Lete, E. Adv. Synth. Catal. 2009, 351, 2460. 
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mechanism are used, such as Pd(OAc)2, PPh3, n-Bu4NOAc in DMSO, C-2 direct 

arylation products were obtained with complete chemoselectivity. On the other 

hand, under conditions that favor the neutral pathway for the Heck reaction, such 

as Pd(PPh3)4, n-Bu4NCl, NaHCO3 in acetonitrile, pyrrolo[1,2-b]isoquinolines were 

obtained (Scheme 3.8). The substitution in the alkene moiety did not affect the 

course of the reactions. 

  

 Scheme 3.8 

This protocol can be also applied for the selective synthesis of medium sized 

rings.34 Thus, an access to pyrroloisoquinoline, pyrroloazepine, pyrroloazocine 

systems has been achieved by adequately choosing reaction conditions (Scheme 

3.9). 

���������������������������������������� �������������������
34 Coya, E.; Sotomayor, N.; Lete, E. Adv. Synth. Catal. 2014, 356, 1853. 
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Scheme 3.9 

3.1.2. Synthetic applications of the intramolecular Mizoroki-Heck 

reaction 

As we have mentioned before, the intramolecular Mizoroki-Heck reaction has 

proved to be a powerful and useful tool for the synthesis of carbocycles and 

heterocycles.13 Some representative examples of the application of the 

intramolecular Heck reaction of aryl and heteroaryl halides with alkenes for the 

synthesis of nitrogen heterocycles, related to this work, will be discussed below.  

The first attempt to synthesize a nitrogen heterocycle through Mizoroki-Heck 

cyclization was published in 1977 by Mori and coworkers.35 An indole nucleus was 

readily prepared by treatment of an aryl bromide bearing an electron-deficient 

olefin using Pd(OAc)2 and PPh3 in the presence of TMEDA. The cyclization took 

place in a 5-exo fashion, and after isomerization, led to the indole derivative 

(Scheme 3.10). 

���������������������������������������� �������������������
35 Mori, M.; Chiba, K.; Ban, Y. Tetrahedron Lett. 1977, 18, 1037. 
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Scheme 3.10 

Similar results were obtained by Hegedus and coworkers,36 who reported the 

synthesis of substituted indoles starting from unactivated 2-halo-N-allylanilines 

(Scheme 3.11, Method a). In this case, the presence of an electron-withdrawing 

group in the olefin moiety was not required to perform the intramolecular 

Mizoroki-Heck reaction. Kasahara et al.37 broadened the scope to different 

substitution patterns both in the aryl ring and the alkene to generate substituted 

indoles in high yields (Scheme 3.11, Method b). 

Scheme 3.11 

���������������������������������������� �������������������
36 Odle, R.; Blevins, B.; Ratcliff, M.; Hegedus, L. S. J. Org. Chem. 1980, 45, 2709. 
37 Kasahara, A.; Izumi, T.; Murakami, S.; Yanai, H.; Takatori, M. Bull. Chem. Soc. Jpn. 1986, 59, 
927. 



Chapter III                Intramolecular Mizoroki-Heck Reaction 

�

121 

The isomerization of the initially formed exo double bond is known to take place 

by reinsertion of the hydropalladium species generated after �-elimination, which 

could follow a second elimination process. This fact can be prevented by 

employing specific reaction conditions. In this way, Yamanaka and coworkers38

described the selective synthesis of a 3-methyleneindole derivative in the presence 

of silver carbonate, which neutralized the H-Pd(II)-X species (Scheme 3.12).  

Scheme 3.12 

This reaction has also been applied to the synthesis of highly functionalized 

heterocycles. For instance, Cacchi et al.39 performed the synthesis of 3-alkylidene 

oxindoles through 5-exo Heck reaction of 5-alkyl-5-[2-(o-

iodophenylcarbamoyl)vinyl] derivatives of Meldrum´s acid using palladium-based 

catalytic system (Scheme 3.13). In all cases a Z double bond is formed, even when 

sterically demanding groups, such as isopropyl units, were located in the adjacent 

quaternary carbon. 

���������������������������������������� �������������������
38 Sakamoto, T.; Kondo, Y.; Uchiyama, M.; Yamanaka, H. J. Chem. Soc. Perkin Trans. 1993, 1, 
1941. 
39 Arcadi, A.; Cacchi, S.; Marinelli, F.; Pace, P. Synlett 1993, 743. 
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Scheme 3.13 

Intramolecular Mizoroki-Heck reaction has also been widely applied to the 

synthesis of six-membered rings. In this context, formation of quinoline derivatives 

through 6-exo-trig processes has been described, although, as reported for five-

membered heterocycles, in some cases isomerization and oxidation reactions may 

happen. 

  

Thus, Larock and Babu40 reported the synthesis of 4-methylquinoline via 6-exo

ring-closure through formation of a methylenetetrahydroquinoline intermediate, 

followed by double bond migration and oxidation to the more stable quinoline 

(Scheme 3.14). 

Scheme 3.14 

���������������������������������������� �������������������
40 Larock, R. C.; Babu, S. Tetrahedron Lett. 1987, 28, 5291. 
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In this context, our group has developed a methodology for the regioselective 

synthesis of 4-alkylidenetetrahydroquinoline derivatives from N-alkenyl-

substituted secondary 2-haloanilines, avoiding isomerization and oxidation of the 

tetrahydroquinoline to the quinoline derivative.41 The treatment of N-

butenylanilines with an aryl or heteroaryl group in � to the nitrogen atom, under 

Pd-catalyzed reaction conditions, resulted in the generation of the 4-

methylenetetrahydroquinolines in moderate to good yields via 6-exo cyclization 

(Scheme 3.15). 

Scheme 3.15 

Starting from tertiary anilines with a non-activated olefin as precursors, the 

regioselectivity of the reaction could be controlled by the use of specific catalytic 

systems, which permitted or avoided isomerization after cyclization in an exo

manner.41 In this sense, the presence of a silver salt promoted the 6-exo ring closure 

to 2-substituted 4-methylenetetrahydroquinolines, while the use of Pd(PPh3)4/Et3N 

as catalytic system afforded 2,4-disubstituted 1,2-dihydroquinolines in good yields 

(Scheme 3.16). 

���������������������������������������� �������������������
41 Martínez-Estíbalez, U.; García-Calvo, O.; Ortiz-de-Elguea, V.; Sotomayor, N.; Lete, E. Eur. J. Org. 

Chem. 2013, 3013.  
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Scheme 3.16 

When the alkene was substituted with an electron-withdrawing group (amide), no 

isomerization processes were observed under different catalytic conditions, always 

obtaining alkylidenetetrahydroquinolines as single (E)-isomers (Scheme 3.17).41 

   

Scheme 3.17 

Moreover, the same reaction conditions could be applied to the synthesis of 

enantiopure tetrahydroquinolines, starting from chiral non-racemic anilines derived 

from D-glyceraldehyde. In this case, the reaction proceeded with no racemization 

(Scheme 3.18).41  
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Scheme 3.18 

Smalley and Mills42 similarly reported the 6-exo Heck cyclization of a 

bromophenyl butenamide in the presence of Pd(OAc)2 under microwave 

irradiation, affording the 4-methylenedihydroquinolone depicted in Scheme 3.19. 

In this case, no isomerization pathway was possible, as there was no possibility of 

hydrogen removal in � carbon atom to the exo-double bond. 

Scheme 3.19 

For related substrates, Herradón and coworkers43 showed that the stereochemistry 

of the new exocyclic double bond formed may depend on the substrate and the 

reaction conditions. In this way, they reported that treatment of methyl (E)-3-[1-(2-

iodobenzoyl)piperidin-2-yl]acrylate with Pd(OAc)2 in the presence of silver salts, 

led to pyrido[1,2-b]isoquinoline as a single (Z)-stereoisomer via a 6-exo cyclization 

���������������������������������������� �������������������
42 Smalley, T. L. Jr.; Mills, W. Y. Heterocycl. Chem. 2005, 42, 327. 
43 Sánchez-Sancho, F.; Mann, E.; Herradón, B. Adv. Synth. Catal. 2001, 343, 360. 
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(Scheme 3.20a). On the other hand, the reaction of the N-benzyl analogue under 

Jeffery´s conditions,15 resulted in a 9:1 mixture of Z/E isomers, while no reaction 

was observed under formerly described conditions (Scheme 3.20b). No 

isomerization or oxidation processes were observed in any case. 

Scheme 3.20 

Similarly, we have reported the regioselective intramolecular 6-exo cyclization of 

N-(o-iodobenzyl)pyrrolidines for the generation of hexahydropyrrolo[1,2-b]-

isoquinolines in good yields, always as single diastereomers. Different 

experimental conditions should be used when the alkene moiety was unactivated44

(Scheme 3.21, Method a) or substituted with an electron-withdrawing carbamoyl 

group45 (Scheme 3.21, Method b). 

���������������������������������������� �������������������
44 García-Calvo, O.; Sotomayor, N.; Lete, E.; Coldham, I. Arkivoc 2011 (v), 57. 
45 García-Calvo, O. Ph.D Thesis, University of the Basque Country, 2011. 



Chapter III                Intramolecular Mizoroki-Heck Reaction 

�

127 

Scheme 3.21 

As has been shown, 6-exo cyclizations are much more common than 6-endo

processes. However, in some cases 6-endo cyclizations are also viable, although 5-

exo cyclization may also be a competitive pathway. Thus, Dankwardt et al.46

reported the regioselective Heck cyclization reaction of differently substituted N-

acryloyl-7-bromoindolines via a 6-endo-trig ring-closure (Scheme 3.22). 

�

Scheme 3.22 

All the examples that have been highlighted previously involve the intramolecular 

Heck reaction of aryl halides. Some selected examples for the generation of five 

���������������������������������������� �������������������
46 Dankwardt, J. W.; Flippin, L. A. J. Org. Chem. 1995, 60, 2312. 
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and six-membered rings, using heteroaryl halides will be discussed, although these 

are less common. 

In this context, nitrogen containing heteroaryl halides, such as pyridinyl and 

quinolinyl halides, have been used. In this sense, Zhai and coworkers47 reported the 

synthesis of the cyclopenta[c]pyridine core, by 5-exo Heck cyclization of 1-(3-

bromopyridin-4-yl)but-3-en-1-ol, which had been used as intermediate to obtain 

(±)-oxerine alkaloid (Scheme 3.23).  

Scheme 3.23 

Similarly, Comins et al.48 reported the synthesis of (S)-camptothecin alkaloid that 

is known to be a natural anticancer agent, by intramolecular 5-exo Heck reaction 

using a quinolinyl bromide as coupling partner (Scheme 3.24).�

Scheme 3.24 

���������������������������������������� �������������������
47 Zhao, J.; Yang, X.; Jia, X.; Luo, S.; Zhai, H. Tetrahedron 2003, 59. 9379. 
48 Comins, D. L.; Baevsky, M. F.; Hong, H. J. Am. Chem. Soc. 1992, 114, 10971.  
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An efficient strategy to synthesize 3-substituted pyrrolo[2,3-b]quinoxalines from 

allyl (3-haloquinoxalin-2-yl)amines has been published by Li49 under Jeffery’s 

“ligand-free” conditions (Scheme 3.25). In this case, a 5-exo cyclization took place, 

following an isomerization process, as previously seen in the indole nucleus 

synthesis. However, when the method was applied to substrates containing 

electron-withdrawing groups on the benzene ring of the quinoxaline unit, low 

yields (26-32%) were obtained. 
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Scheme 3.25 

4-Iodopyridine derivatives have also been used in the synthesis of six-membered 

rings. In this way, Fang et al.50 reported the synthesis of a bicyclic ether as a 8:1 

mixture of endo:exo(Z) regioisomers by treatment of the corresponding crotyl ether 

under Jeffery´s conditions. This reaction undergoes a 6-exo Mizoroki-Heck 

cyclization to afford firstly the allylic ether (exo-regioisomer), which is followed 

by partial olefin isomerization to give enol ether (endo-regioisomer) as major 

product (Scheme 3.26).  

���������������������������������������� �������������������
49 Li, J. J. J. Org. Chem. 1999, 64, 8425. 
50 Fang, F. G.; Xie, S.; Lowery, M. W. J. Org. Chem. 1994, 59, 6142. 
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Scheme 3.26 

On the other hand, electron-rich heteroaromatics have also been used. Natsume and 

coworkers51 described ring closure of a pyrrolyl bromide with a cyclic olefin to 

provide a tricyclic derivative, which was used as intermediate in the 12-step total 

synthesis of (±)-duocarmycin SA (Scheme 3.27).   

Scheme 3.27 

Sageot and Bombrun52 have studied the competition between 6-endo and 5-exo

cyclization by using thiophenyl bromides. They have been able to control the 

regioselectivity of the Mizoroki-Heck reaction by adequately changing 

experimental conditions (Scheme 3.28). Thus, under classical conditions, 6-endo

���������������������������������������� �������������������
51 Muratake, H.; Abe, I.; Natsume, M. Tetrahedron Lett. 1994, 35, 2573. 
52 Bombrun, A.; Sageot, O. Tetrahedron Lett. 1997, 38, 1057.  
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cyclization took place selectively (Method a), while in the presence of a hydride 

source as HCO2Na (Method b), the 5-exo cyclization product could be obtained, 

generating a quaternary stereocenter. 

Scheme 3.28 

Moreover, our group has investigated the competition between Mizoroki-Heck and 

direct arylation reactions on electron-rich heteroaryl halides, such as thiophenyl 

halides, for the synthesis of (hetero)fused indolizine and pyrrolizine cores (Scheme 

3.29).34 In this case, direct arylation is the main pathway, obtaining 

thienopyrrolizines (n = 1) and thienoindolizines (n = 2), under conditions which 

favored a cationic or a CMD mechanism. However, when using conditions to favor 

neutral mechanism, it has not been possible to achieve intramolecular Mizoroki-

Heck reaction, obtaining also direct arylation products, thus thienoindolizine (n = 

1) and benzazepine (n = 2) derivatives were obtained in low yields. In general, 

higher catalyst loadings and longer reaction times were required to perform direct 

arylation reactions on thiophenyl halides compared to the reactions of aryl halides. 
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Scheme 3.29 

3.1.3. Generation of tertiary and quaternary centers 

In the Mizoroki-Heck reactions discussed in the previous section, the formation of 

a sp2 hybridized carbon center is promoted by the syn �-elimination of a hydride in 

the carbon atom directly involved in the new carbon-carbon bond formation 

(Scheme 3.30a). Nevertheless, it is also possible to generate tertiary and quaternary 

centers through the Mizoroki-Heck reaction. For that purpose, it is necessary to 

avoid the syn �-hydride elimination in the �-alkylpalladium intermediate formed 

after the insertion of the arylpalladium to the alkene, so that the elimination takes 

place in another �´ position and not on the carbon directly involved in bond 

formation. Scheme 3.30 shows three possible pathways in an intermolecular Heck 

reaction, with additional placement of a heteroatom (Z group) in an allylic position 

of the olefin.  
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Scheme 3.30 

Different strategies have been used to direct elimination to �´ position. The first 

implies the introduction of a good leaving group (Z = acetate, silane…) in the 

allylic position of the olefin in order to promote the elimination of this leaving 

group (Scheme 3.30b). On the contrary, when protected (Z = OSiR3…) or 

unprotected allylic alcohols (Z = OH) are used, the formation of the corresponding 

enol ether or enol, which would tautomerize in the former case to an aldehyde or a  

ketone,53 may act as thermodynamic driving force in favor of �´-hydride 

elimination (Scheme 3.30c). These strategies can be applied to the formation of 

both tertiary centers (R1 or R2 = H) and quaternary centers. In the latter case, the 

olefin should be blocked with substituents (R1, R2
�  H), in order to prevent from �-

hydride elimination. 

Some examples of these strategies are shown below. 

���������������������������������������� �������������������
53 a) Melpolder, J. B.; Heck, R. F. J. Org. Chem. 1976, 41, 265. b) Jeffery, T. Tetrahedron Lett. 1990, 
31, 6641. c) Jeffery, T. Tetrahedron Lett. 1991, 32, 2121. d) Zhao, H.; Cai, M.-Z.; Hu, R.-H.; Song, 
C.-S. Synth. Commun. 2001, 31, 3665. e) Calò, V.; Nacci, A.; Monopoli, A.; Ferola, V. J. Org. Chem.

2007, 72, 2596.  
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3.1.3.1. Generation of tertiary centers 

As we have pointed above, a common strategy for generation of tertiary centers 

involves the use of allylic esters as coupling partners, directing the elimination to 

an alternative �´ position.  When palladium-catalyzed coupling of aryl halides with 

allylic esters is performed, the reaction could be regioselectively driven to the usual 

�-hydride elimination process (Heck product) or to �´-acetoxy elimination 

pathway54 (Scheme 3.31).  

Scheme 3.31 

���������������������������������������� �������������������
54 Pan, D.; Jiao, N. Synlett 2010, 1577.  
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In the literature, there are some examples of intermolecular Mizoroki-Heck 

reaction that take place regioselectively by �´-elimination of different leaving 

groups, such as acetate or carbonate groups,55 silane56 or halide57 moieties. 

However, there are very few examples described for the use of this strategy in an 

intramolecular fashion.58 Some selected examples involving coupling of aryl 

halides with allylic derivatives, related to our work, will be discussed.  

   

Lautens and coworkers59 showed that is possible to generate tertiary stereocenters 

by palladium-catalyzed cyclization of o-iodoanilines with an allyl ester or 

carbonate moiety, using thermal and microwave-assisted conditions. Thus, a new 

synthetic approach to a variety of trans-2,4-disubstituted 1,2,3,4-

tetrahydroquinolines, with excellent diastereoselectivity, was developed by 

preferential elimination of �´-acetoxy over �-hydride (Scheme 3.32a). For this 

purpose, the combination of Pd2(dba)3.CHCl3 or Pd(OAc)2 with bulky phosphane 

ligands as P(o-tolyl)3 gave similar results as complex PdCl2[P(o-tolyl)3]2, always in 

the presence of n-BuNMe2 as base. Furthermore, the presence of H2O in the solvent 

was necessary to reach full conversion and avoid generation of Pd-black. The 

reaction was extended to the synthesis of five- to seven-membered carbo- and 

heterocycles with the same catalytic system [Pd2(dba)3.CHCl3, P(o-tolyl)3 and n-

BuNMe2 as base] by �´-carbonate elimination (Scheme 3.32b). 

���������������������������������������� �������������������
55 a) Mariampillai, B.; Herse, C.; Lautens, M. Org. Lett. 2005, 7, 4745. b) Liu, Y.; Yao, B.; Deng, C.-
L.; Tang, R.-Y.; Zhang, X.-G.; Ling, J.-H. Org. Lett. 2011, 13, 1126.  
56 Jeffery, T.; Tetrahedron Lett. 2000, 41, 8445. 
57 Wang, J.; Cui, Z.; Zhang, Y.; Li, H.; Wu, L.-M.; Liu, Z. Org. Biomol. Chem 2011, 9, 663. 
58 Steinig, A. G.; de Meijere, A. Eur. J. Org. Chem. 1999, 1333. 
59 Lautens, M.; Tayama, E.; Herse, C. J. Am. Chem. Soc. 2005, 127, 72. 
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Scheme 3.32 

Tietze and coworkers60 demonstrated that regioselective �´-leaving group 

elimination may be possible for aryl halides that contain (Z)-allyl silanes in the side 

chain. Furthermore, the reaction could be carried out in an enantioselective fashion, 

when a chiral bidentated ligand as (R)-BINAP was used. In this example, a highly 

regio- and enantioselective intramolecular Heck reaction takes place through 

elimination of the silane group allowing the generation of a tertiary stereocenter of 

a vinyltetralin, which could be used as a precursor in the synthesis of 

norsesquiterpene 7-demethyl-2-methoxycalamene60c (Scheme 3.33). 

���������������������������������������� �������������������
60 a) Tietze, L. F.; Schimpf, R. Angew. Chem. Int. Ed. 1994, 33, 1089. b) Tietze, L. F.; Raschke, T. 
Synlett 1995, 597. c) Tietze, L. F; Raschke, T. Liebigs Ann. Chem. 1996, 1981.  
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Scheme 3.33 

The same group61 described an extension of this methodology to other (Z)-allyl 

silane derivatives with different substitution patterns in the phenyl ring, to 

synthesize tetrahydroisoquinolines and benzazepines in high enantioselectivities, in 

the presence of (+)-TMBTP as chiral ligand (Scheme 3.34). 

Scheme 3.34 

Additionally, a tertiary center can also be formed through regioselective �´-hydride 

elimination, even if a hydride in �-position is available. Tietze et al. have reported 

an efficient approach to achieve the highly diastereoselective synthesis of 4-vinyl-

substituted 3,4-dihydroisoquinolin-1(2H)-ones, in favor of the trans-diastereomer, 

through Heck cyclization of N-allyl-2-iodobenzamides via regioselective �´-

hydride elimination (Scheme 3.35).62 In addition, the diastereoselectivity of the 

���������������������������������������� �������������������
61 Tietze, L. F.; Thede, K.; Schimpf, R.; Sannicolò, F. Chem. Commun. 2000, 583. 
62 Tietze, L. F.; Burkhardt, O. Liebigs Ann. 1995, 1153. 
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reaction improved, with the size of the substituents located at the stereogenic 

centre. 

Scheme 3.35 

In this case, the reason to explain the hydride elimination in the �´-position may be 

that the �-alkylpalladium intermediate, formed after the insertion into the alkene, 

would not require the rotation needed for syn �-elimination, so it would be 

kinetically favored.  

A different approach implies the use of cyclic alkenes so that, after migratory 

insertion, the �-hydrogen is always anti to palladium with any possibility of 

rotation restricted, so the �´-elimination is always favored. Thus, Fukuyama and 

coworkers63 reported the synthesis of the tricyclic core of ecteinascidin 743 through 

intramolecular Mizoroki-Heck reaction (Scheme 3.36). 

���������������������������������������� �������������������
63 Endo, A.; Yanagisawa, A.; Abe, M.; Tohma, S.; Kan, T.; Fukuyama, T. J. Am. Chem. Soc. 2002, 
124, 6552. 
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Scheme 3.36 

The same group64 has recently developed the synthesis of lysergic acid, involving 

as a key step the Heck cyclization of a 3-substituted 4-bromoindole that resulted in 

the formation of the tetracyclic ergoline nucleus. The formation of a six-membered 

carbocycle is achieved by �´-hydride elimination generating a tertiary stereocenter 

(Scheme 3.37). 

Scheme 3.37 

���������������������������������������� �������������������
64 Inoue, T.; Yokoshima, S.; Fukuyama, T. Heterocycles 2009, 79, 373. 
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3.1.3.2. Generation of quaternary centers 

As stated previously, the introduction of substituents in the carbon atom of the 

olefin that suffers directly the coupling drives the elimination to a contiguous �´-

position to form a quaternary center. However, the generation of quaternary centers 

is less common than tertiary centers, because it requires the use of tri- or 

tetrasubstituted olefins where steric hindrances could affect their reactivity.  

The following Scheme 3.38 shows the mechanism of the intramolecular Mizoroki-

Heck reaction for aryl or alkenyl halides with blocked olefins (R1
�  H), known to 

proceed via classical neutral manifold.65 The cycle starts with the formation of the 

catalytic Pd(0) species, which suffers oxidative addition of the aryl or alkenyl 

halide to generate a Pd(II) intermediate. Coordination and syn migratory insertion 

into the alkene moiety to form a C-C bond provides the �-alkylpalladium 

intermediate, which contains another position available for competitive syn �´-

hydride elimination. Favoring this alternative pathway, a new center would be 

created in the coupled product, in association with the release of hydropalladium 

complex that may be neutralized with base to generate the Pd(0) active species, 

ready to start a new cycle.  

���������������������������������������� �������������������
65 a) Cabri, W.; Candiani, I. Acc. Chem. Res. 1995, 28, 2. b) Crisp, G. T. Chem. Soc. Rev. 1998, 27, 
427. 
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Scheme 3.38 

Some examples for the generation of quaternary stereocenters have been selected, 

as they are relevant to our work. Curran and coworkers66 described the synthesis of 

3-methyl-3-vinyloxindoles through Heck cyclization of �-substituted N-(2-

iodoaryl)acrylamides with generation of a quaternary center (Scheme 3.39). In this 

case, when o-iodoacrylamides with axial chirality were submitted to Heck reaction 

at room temperature, the chirality was efficiently transferred, obtaining the 

indolinones with high ee.  
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���������������������������������������� �������������������
66 Lapierre, A. J. B.; Geib, S. J.; Curran, D. P. J. Am Chem. Soc. 2007, 129, 494. 
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Overman and coworkers67 reported the synthesis of spirooxindoles in good yields 

and moderate enantioselectivities through an asymmetric Heck cyclization, which 

allowed the formation of a quaternary stereogenic spirocenter. As illustrated below 

in Scheme 3.40, ring closure of the same o-iodoaniline over a (E)-configuration 

cyclic alkene, provided opposite enantiomers depending on the use of a halide 

scavenger or a tertiary amine as base.  In this sense, the use of a silver salt as 

Ag3PO4 afforded the (S)-enantiomer in good yields and enantioselectivities, while 

the use of PMP provided the (R)-enantiomer in similar yields and ee.

  

�

Scheme 3.40

���������������������������������������� �������������������
67 a) Ashimori, A.; Bachand, B.; Calter, M. A.; Overman, L.; Poon, D. J. J. Am. Chem. Soc. 1998, 
120, 6477. b) Ashimori, A.; Bachand, B.; Overman, L. E.; Poon, D. J. J. Am. Chem. Soc. 2000, 122, 
192 (Erratum the previous document). 
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Similarly, for analogous substrates as (E)-�,�-unsaturated 2-iodoanilines, under the 

same conditions, depending on the use of Ag3PO4 or PMP as the base, either of the 

enantiomers of the oxindole could be obtained through cyclization over the alkene, 

as represented Scheme 3.41.67  
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Scheme 3.41

In addition, the same group68 reported the generation of quaternary stereocenters 

through highly enantioselective intramolecular Mizoroki-Heck reaction, starting 

from (Z)-�,�-unsaturated 2-iodoanilines by treatment with Pd2(dba)3.CHCl3 as 

catalyst and (R)-BINAP ligand. In this case, the use of a silver salt such as Ag3PO4

(cationic pathway) or an amine as PMP (neutral pathway), provided both high 

regio- and enantioselective substituted oxindoles of the same (R)-configuration 

(Scheme 3.42). It is worth to mention that silyloxy group is retained in the coupling 

step and cleavage of silyl group took place by acidic hydrolysis. Bidentated ligand 

partial dissociation has been postulated to be the cause of low stereoinduction in 

���������������������������������������� �������������������
68 Ashimori, A.; Bachand, B.; Calter, M. A.; Govek, S. P.; Overman, L.; Poon, D. J. J. Am. Chem. 

Soc. 1998, 120, 6488. 
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Heck cyclizations via neutral mechanism, while the cationic mechanism provides a 

reasonable higher enantioselectivity due to total chelation of the bidentated ligand, 

in the presence of silver and thallium salts. However, the authors concluded that 

the phosphane remained chelated, even when neutral manifold conditions were 

used, which led to high enantioselectivities. The change in stereoinduction 

observed in the oxindoles, starting from (E)- and (Z)-iodoanilides, when Ag3PO4 is 

used as HI acceptor, while the sense of stereoinduction is independent of alkene 

geometry when using PMP, is explained by theoretical calculations.68  

Scheme 3.42

Some time later, the group of Overman69 reported the synthesis of analogous 3-

(hetero)aryl-3-alkyloxindoles with high enantioselectivities, using aryl triflates as 

precursors (Scheme 3.43). 

Scheme 3.43 

���������������������������������������� �������������������
69 Dounay, A. B.; Hatanaka, K.; Kodanko, J. J.; Oestreich, M.; Overman, L. E.; Pfeifer, L. A.; Weiss, 
M. M. J. Am. Chem. Soc. 2003, 125, 6261.  
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The application of former methodologies in the synthesis of enantioselective 3,3-

disubstituted oxindoles has allowed the access to different natural products, such as 

the Calabar alkaloids (–)-physostigmine and (–)-physovenine, which contain an 

hexahydropyrrolo[2,3-b]indole core in its structure.70

Shibasaki and coworkers71 described an additional example of quaternary 

stereocenter construction, this time via 6-exo cyclization, to afford structurally 

simple alkaloid (–)-eptazocine. The alkene configuration influenced the 

asymmetric outcome of the process. Therefore, subjecting (E)-alkenyl aryl triflate 

to reaction with Pd2(dba)3.CHCl3 provided (R)-enantiomer in high yield and 

moderate enantiomeric excess, while (Z)-alkenyl aryl triflate afforded (S)-

enantiomer in both high yield and enantioselectivity (Scheme 3.44). 

Scheme 3.44 

���������������������������������������� �������������������
70 a) Ashimori, A.; Matsuura, T.; Overman, L. E.; Poon, D. J. J. Org. Chem. 1993, 58, 6949. b) 
Matsuura, T.; Overman, L. E.; Poon, D. J. J. Am. Chem. Soc. 1998, 120, 6500. 
71 Takemoto, T.; Sodeoka, M.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1993, 115, 8477. 
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A potential utility of the asymmetric intramolecular Mizoroki-Heck reaction may 

be the design of substrates that allow �-alkylpalladium intermediate to follow an 

alternative pathway to �´-elimination, to perform cascade reactions. In this way, the 

�-alkylpalladium complex can react with an external nucleophile72 or can undergo 

an insertion to another alkene inter- or intramolecularly, the last case being more 

frequent and leading to polyene cyclizations.73

As an example to illustrate asymmetric Heck cascade reactions, Keay and 

coworkers74 described the total synthesis of xestoquinone, which represents the 

first asymmetric palladium catalyzed polyene cyclization for the synthesis of a 

natural product. In this paper, a naphthoyl triflate is treated with Pd2(dba)3 in the 

presence of (S)-BINAP. In this case, the �-alkylpalladium intermediate formed 

through a 6-exo process, undergoes a second insertion into the alkene via 6-endo

pathway to finally result in a pentacyclic derivative in high yield and moderate 

enantioselectivity (Scheme 3.45). 

���������������������������������������� �������������������
72 For some representative examples, see: a) Ohshima, T.; Kagechika, K.; Adachi, M.; Sodeoka, M.; 
Shibasaki, M.  J. Am. Chem. Soc. 1996, 118, 7108. b) Itano, W.; Ohshima, T.; Shibasaki, M. Synlett

2006, 3053. c) Jaegli, S.; Vors, J. P.; Neuville, L.; Zhu, J. Tetrahedron 2010, 66, 8911. 
73 For selected reviews on palladium-catalyzed polyene cyclizations, see: a) Overman, L. E.; 
Abelman, M. M.; Kucera, D. J.; Tran, V. D.; Ricca, D. J. Pure Appl. Chem. 1992, 64, 1813. b) Tietze, 
L. F.; Levy, L. M. In The Mizoroki–Heck Reaction, Oestreich, M. Ed., Wiley: Chichester, 2009, p. 
281. For reviews on the asymmetric variant, see: c) Link, J. T.; Wada, C. K. In The Mizoroki-Heck 

Reaction, Oestreich, M. Ed., Wiley: Chichester, 2009, p. 433. d) Clavier, H.; Pellissier, H. Adv. Synth. 

Catal. 2012, 354, 3347.�
74 a) Maddaford, S. P.; Andersen, N. G.; Cristofoli, W. A.; Keay, B. A. J. Am. Chem. Soc. 1996, 118, 
10766. b) Lau, S. Y. W.; Keay, B. A. Synlett 1999, 605. c) Rankic, D. A.; Lucciola, D.; Keay, B. A. 
Tetrahedron Lett. 2010, 51, 5724. 
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Scheme 3.45

In connection with the polyene cyclization, our group has also been able to perform 

a 6-exo/6-endo cascade reaction of N-benzyl 2,3-dialkenylpyrroles to access the 

Lycorane tetracyclic core present in the Amaryllidaceae alkaloids.75 This 

methodology allows the synthesis of enantiomerically enriched (11bR)-substituted 

pyrrolophenanthridines with different substitution patterns on the aromatic ring, 

and also heteroaromatic rings (Scheme 3.46). 

���������������������������������������� �������������������
75 Coya, E.; Sotomayor, N.; Lete, E. Adv. Synth. Catal. 2015, 357, 3206. 
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�

Scheme 3.46

In conclusion, as has been shown through these selected examples, tertiary and 

quaternary centers may be generated by Heck reaction of aryl halides or triflates. 

Enantiomerically enriched products have been obtained starting from chiral non-

racemic substrates or inducing chirality by the use of chiral ligands. Thus, the 

asymmetric Heck cyclization can be considered an interesting method for natural 

product total synthesis, allowing the access to several types of compounds, such as 

terpenoids or alkaloids. 
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3.2. Results and discussion 

Our group has described the synthesis of pyrrolo[1,2-b]isoquinolines and 

pyrrolo[2,1-a]isoindoles from 2-alkenyl-substituted o-iodobenzylpyrroles by 

controlling the chemoselectivity associated with the competition between 

Mizoroki-Heck (M-H) and direct arylation (C-H activation) reactions.33 Thus, the 

ring closure can be switched from the alkene to the pyrrole nucleus by choosing an 

adequate catalytic system. This methodology has been further applied to substrates 

that contain electron-rich heteroaryl halides such as thiophenyl halides in the 

selective formation of thieno[3,2-g]indolizine and thieno[2,3-a]pyrrolizine, but 

difficulties in the Mizoroki-Heck reaction outcome have arised.34   

In this context, our goal was to extend this process to electron-deficient heteroaryl 

halides, such as pyridinyl and quinolinyl halides, in order to be able to obtain a 

good control in the chemoselectivity for the synthesis of naphthyridine and 

pyrrolizine systems (Scheme 3.47a).�

Our group has also recently studied the synthesis of enantioenriched 

pyrroloisoquinolines through intramolecular Mizoroki-Heck reaction of a properly 

substituted 2-alkenyl N-(o-iodobenzyl)pyrrole via �´-hydride elimination with the 

generation of quaternary stereocenter.76 In this context, we decided to investigate 

the generation of tertiary and quaternary stereocenters through Heck cyclization via

�´-hydride or �´-leaving group elimination in different o-

halo(hetero)arylmethylpyrroles (Scheme 3.47b). For this purpose, we selected 

pyrroles incorporating a protected allylic alcohol moiety. Different leaving groups 

(OR2) have been selected. The reactions would be carried out first in a racemic 
���������������������������������������� �������������������
76  Coya, E. Ph.D Thesis, University of the Basque Country, 2013. 
�
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fashion and then in the presence of chiral phosphanes to study the enantioselective 

version.  

Using the same strategy, our last objective involved the study of the 

diastereoselectivity when enantiopure o-iodobenzylpyrrolidines are subjected to 

palladium-catalyzed conditions to obtain pyrroloisoquinolines with the generation 

of a tertiary stereogenic centre (Scheme 3.47c). 

Scheme 3.47 
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3.2.1. Intramolecular Mizoroki-Heck and direct arylation of N-(o-

haloheteroarylmethyl)pyrrolylacrylates and acrylamides 

We firstly focused on the first objective, which involves the study of the 

competition of intramolecular Mizoroki-Heck and direct arylation reactions on (o-

haloheteroarylmethyl)pyrroles (Scheme 3.48).   

Scheme 3.48 

In our previous work on intramolecular carbolithiation (see Chapter 2), we have 

synthesized a series of o-haloheteroarylmethylpyrroles, bearing alkenes that are 

activated with electron-deficient groups, which are also suitable for intramolecular 

Mizoroki-Heck and direct arylation reactions (Figure 3.1). 

�

Figure 3.1 
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We started to study a possible control in the chemoselectivity of the process 

subjecting pyrrolylacrylates 5a and 5b to different catalytic systems in order to 

obtain pyrrolo[1,2-g][1,6]naphthyridines or pyrido[2,3-a]pyrrolizines through 

Mizoroki-Heck or direct arylation reactions respectively, as illustrated in Scheme 

3.49.  
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Scheme 3.49 

With the aim of performing a Mizoroki-Heck reaction over the alkene moiety, 

conditions previously reported for 6-exo cyclization [Pd(PPh3)4, Et3N, toluene, 

reflux] in the synthesis of tetrahydroquinolines41 were applied to pyrroles 5a, 5b. 

However, instead of the desired cyclization, the starting material was recovered 

(Table 3.1, Entries 1-2). A change in the solvent to acetonitrile did not afford the 

expected cyclized product (Entry 3). A change in base to NaHCO3 for the reaction 

of pyrrole 5a gave the arylation product 50, although in low yield and conversion 

(Entry 4). Under these conditions, the corresponding iodide 5b was much more 

reactive, affording 50 in a higher yield (68%) (Entry 5). The use of DMF as solvent 

provided pyrrolizine 50 in low to moderate yields (37-58%) (Entries 6-7). When 5a

was treated with Pd(OAc)2 in the presence of PPh3 and a silver salt,41
50 was 

obtained again in low yield (Entry 8).  
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Table 3.1. Mizoroki-Heck reaction vs. direct arylation reaction of o-halopyridines 5a, 5b. 

Entry Subs. [Pd] 

 (10 mol%) 

Base Ligand Solvent Time 

(h) 

Yield 50 

(%)
[a]

1 5a Pd(PPh3)4 Et3N
[b] -  Toluene[k] 48 -[p]

2 5b Pd(PPh3)4 Et3N
[b] -  Toluene[k] 48 -[p]

3 5a Pd(PPh3)4 Et3N
[b] - CH3CN[k] 48 -[p]

4 5a Pd(PPh3)4 NaHCO3
[b] -[d] CH3CN[k] 48 12[q]

5 5b Pd(PPh3)4 NaHCO3
[b] -[d] CH3CN[k] 48 68 

6 5a Pd(PPh3)4 Et3N
[b] - DMF[l] 20 37 

7 5b Pd(PPh3)4 Et3N
[c] -[d] DMF[m] 48 58 

8 5a Pd(OAc)2 - PPh3
[e][f] DMF[m] 48 25[r]

9 5b Pd(OAc)2 - dppp[g][h] CH3CN[k] 48 -[p]

10 5a Pd(OAc)2 - PPh3
[i][j] DMSO[n] 48 -[p]

11 5a Pd(OAc)2 - PPh3
[i][j] DMF[n] 48 -[p]

12 5a Pd(OAc)2 - PPh3
[i][j] DMF[o] 48 22[s]

13 5a Pd(OAc)2 - PPh3
[i][j] DMF[m] 2 71 

14 5b Pd(OAc)2 - PPh3
[i][j] DMF[m] 1 85 

[a] Isolated yield. [b] 2.5 eq. [c] 12.0 eq. [d] n-Bu4NCl (1.5 eq.) was also added. [e] 30 mol%. [f] 
Ag2CO3 (1.5 eq.) was also added. [g] 5 mol%. [h] n-Bu4NI (10 eq.) was also added. [i] 10 mol%. [j]
n-Bu4NOAc (1.5 eq.) was also added. [k] Heated under reflux. [l] Heated at 130 ºC. [m] Heated at 
110 ºC. [n] Heated at 60 ºC. [o] Heated at 80 ºC. [p] Starting material was recovered. [q] Conversion 
32%. [r] Conversion 86%. [s] Conversion 91%. 
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As a last attempt, 5b was treated with a catalytic system based on Pd(OAc)2, dppp 

and n-Bu4NI, which has been reported to direct selectively the cyclization to the 

alkene moiety for o-iodobenzylpyrroles,33 but no cyclization was observed (Entry 

9).  

In view of the impossibility to achieve Mizoroki-Heck reaction, conditions to favor 

direct arylation were studied. In this context, standard conditions to promote direct 

arylation on the pyrrole nucleus were applied to 5a with Pd(OAc)2 catalyst, PPh3

and a source of acetate anions, such as n-Bu4NOAc, in different polar aprotic 

solvents, such as DMSO and DMF at 60 ºC, which unfortunately did not afford the 

arylation compound (Entries 10-11). An increase in temperature resulted in the 

formation of the expected pyrrolizine 50 in low yield (22%) (Entry 12). Further 

increase of the temperature afforded 50 in good to high yields (71-85%), for both 

bromo and iodo derivatives 5a, 5b, in just 1-2 h (Entries 13-14). 

We next moved to the study of the competition between Mizoroki-Heck and direct 

arylation reactions on pyrrolylacrylamides 5c, 5d (Scheme 3.50).  

Scheme 3.50 
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Table 3.2. Mizoroki-Heck reaction vs. direct arylation reaction of o-halopyridines 5c, 5d. 

Entry Subs. [Pd] 

(mol%) 

Base 

(2.5 eq.) 

Ligand Solvent Time 

(h) 

Yield 51

(%)
[a]

1 5c Pd(PPh3)4
[b] Et3N -  Toluene[f] 48 39[i]

2 5d Pd(PPh3)4
[b] Et3N -  Toluene[f] 48 67 

3 5c Pd(PPh3)4
[b] NaHCO3 -[d] CH3CN[f] 48 46[j]

4 5d Pd(PPh3)4
[b] NaHCO3 -[d] CH3CN[f] 48 15[k]

5 5c Pd(PPh3)4
[b] Et3N -[d] DMF[g] 48 38[l]

6 5d Pd(PPh3)4
[b] Et3N -[d] DMF[g] 48 49 

7 5c Pd(dba)2
[c] Et3N P(o-tolyl)3

[b] DMF[h] 48 57[l]

8 5d Pd(dba)2
[c] Et3N P(o-tolyl)3

[b] DMF[h] 48 78 

9 5c Pd(dba)2
[c] Et3N P(Cy)3

[b] DMF[h] 48 70 

10 5d Pd(dba)2
[c] Et3N P(Cy)3

[b] DMF[h] 48 46 

11 5c Pd(dba)2
[c] Et3N P(t-Bu)3

[b] DMF[h] 24 78 

12 5d Pd(dba)2
[c] Et3N P(t-Bu)3

[b] DMF[h] 48 44 

13 5c Pd(OAc)2
[b] - PPh3

[b][e] DMF[g] 2 73 

14 5d Pd(OAc)2
[b] - PPh3

[b][e] DMF[g] 2 66 

[a] Isolated yield. [b] 10 mol%. [c] 5 mol%. [d] n-Bu4NCl (1.5 eq.) was also added. [e] n-Bu4NOAc 
(1.5 eq.) was also added. [f] Heated under reflux. [g] Heated at 110 ºC. [h] Heated at 130 ºC. [i] 
Conversion 60%. [j] Conversion 78%. [k] Conversion 24%. [l] Conversion 70%. 

As a starting point, we tried conditions reported as efficient in the synthesis of 

tetrahydroquinolines through Mizoroki-Heck reaction,41 based in Pd(PPh3)4 and 

Et3N as base in toluene under reflux, which had shown unreactive for former 

pyrrolylacrylates 5a, 5b. In this case, both of the amides 5c, 5d reacted under these 
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conditions to provide the arylation product 51 in 39% and 67% yields, respectively, 

as only reaction product, with no evidence of Mizoroki-Heck cyclization (Table 

3.2, Entries 1-2). As in the previous case, standard Mizoroki-Heck conditions,33

which involve the use of Pd(PPh3)4, NaHCO3, n-Bu4NCl in acetonitrile over 5c, 5d

yielded again pyrrolizine 51 as only product in low yields and conversions (Entries 

3-4). However this time, bromide 5c provided better results than iodo derivative 

5d. 

The change in base to Et3N and in solvent to DMF afforded the same 

chemoselectivity outcome in the reaction to give pyrrolizine 51 in moderate yields 

(38-49%) (Entries 5-6). So far, even under reaction conditions that would favor a 

neutral pathway for a Heck reaction, arylation reaction is predominant. So, 

different phosphanes were tried, as it has been demonstrated that the nature of the 

ligands affected directly the reactivity of Mizoroki-Heck reactions. In this context, 

bulky trialkylphosphanes are known to stabilize highly reactive palladium 

species.77 Nevertheless, when the reaction was carried out using P(o-tolyl)3, P(Cy)3

or P(t-Bu)3, for both bromo- and iodopyrrolylacrylamides 5c, 5d, pyrrolizine 51 

was obtained as only reaction product (Entries 7-12). The formation of the Heck 

product was not detected. Finally, treatment of both amides 5c, 5d under standard 

arylation conditions, which are known to favor a cationic electrophilic Pd(II) 

species or CMD pathway, afforded the expected arylation product 51 in good 

yields in a short reaction time, as it happened to former pyrrolylacrylates 5a, 5b

(Entries 13-14). 

���������������������������������������� �������������������
77 Fu, G. C. Acc. Chem. Res. 2008, 41, 1555. 
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It is noteworthy that under all conditions tested, the arylation reaction is favored 

over the Heck reaction. Thus, we decided to block the position susceptible for 

direct arylation on the pyrrole, introducing a methyl substituent. For this purpose, 

we prepared pyrroles 53a, 53b, by the same synthetic route already reported for 

pyrroles 5a, 5b in Chapter 2 (Schemes 2.31, 2.33). The synthesis started from 

commercially available 3,5-dimethylpyrrole-2-carboxaldehyde following typical N-

alkylation, iodination and Wittig olefination reactions (Scheme 3.51). 
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Scheme 3.51 

Once pyrroles 53a, 53b were prepared, we started the study using standard 

Mizoroki-Heck conditions (Scheme 3.52), but no reaction was observed, 

recovering starting material (Table 3.3, Entries 1-4). 

  

�

Scheme 3.52 
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Table 3.3. Mizoroki-Heck reaction of o-halopyridines 53a, 53b. 

Entry Subs. [Pd] 

(10 mol%) 

Base Ligand Solvent Time (h) Yield 54 

(%)
[a]

1 53a Pd(PPh3)4 NaHCO3
[b] -[d] CH3CN[h] 48 -[j]

2 53b Pd(PPh3)4 NaHCO3
[b] -[d] CH3CN[h] 48 -[j]

3 53a Pd(PPh3)4 Et3N
[c] -[e] DMF[i] 48 -[j]

4 53b Pd(PPh3)4 Et3N
[c] -[e] DMF[i] 48 -[j]

5 53a Pd(OAc)2 - PPh3
[f][g] DMF[i] 48 6[k][l]

6 53b Pd(OAc)2 - PPh3
[f][g] DMF[i] 48 14[m][n]

[a] Isolated yield. [b] 2.5 eq. [c] 12.0 eq. [d] n-Bu4NCl (1.5 eq.) was also added. [e] n-Bu4NCl (2.0 
eq.) was also added. [f] 10 mol%. [g] n-Bu4NOAc (1.5 eq.) was also added. [h] Heated under reflux. 
[i] Heated at 110 ºC. [j] Starting material was recovered. [k] Dehalogenated product 55 (9%) was also 
obtained. [l] Conversion 73%. [m] Dehalogenated product 55 (6%) was also obtained. [n] Conversion 
43%. 

Treatment of bromopyridine 53a with Pd(OAc)2/PPh3 provided the desired 

naphthyridine 54 with a (Z)-configuration in low yield (6%), together with 

dehalogenated pyridine 55 (9%) (Figure 3.2), as the reaction was sluggish and the 

conversion of substrate incomplete (Entry 5). Similar results were obtained with 

iodopyridine 53b (Entry 6). So these 2-pyridinyl halides are unreactive with the 

internal alkene, even when the arylation position is blocked.  

  

Figure 3.2 
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Subsequently, we continued with the research in intramolecular palladium-

catalyzed reactions of N-(o-haloquinolinylmethyl)acrylates and acrylamides 9a-9d, 

as illustrated in Scheme 3.53, in order to obtain benzo[b]pyrrolo[1,2-

g][1,6]naphthyridines and pyrrolizino[1,2-b]quinolines.  
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Scheme 3.53 

Table 3.4. Mizoroki-Heck reaction vs. direct arylation reaction of o-haloquinolines 9a-9d. 

Entry Subs. [Pd] 

(10 mol%) 

Base Ligand Solvent Time 

(h) 

Prod. Yield 

(%)
[a]

1 9a Pd(PPh3)4 NaHCO3
[b] -[c] CH3CN[f] 48 56 88 

2 9b Pd(PPh3)4 NaHCO3
[b] -[c] CH3CN[f] 48 56 85 

3 9c Pd(PPh3)4 NaHCO3
[b] -[c] CH3CN[f] 48 57 67[h]

4 9d Pd(PPh3)4 NaHCO3
[b] -[c] CH3CN[f] 48 57 95 

5 9a Pd(OAc)2 - PPh3
[d][e] DMF[g] 1 56 77 

6 9b Pd(OAc)2 - PPh3
[d][e] DMF[g] 1 56 84 

7 9c Pd(OAc)2 - PPh3
[d][e] DMF[g] 24 57 75 

8 9d Pd(OAc)2 - PPh3
[d][e] DMF[g] 24 57 88 

[a] Isolated yield. [b] 2.5 eq. [c] n-Bu4NCl (1.5 eq.) was also added. [d] 10 mol%. [e] n-Bu4NOAc 
(1.5 eq.) was also added. [f] Heated under reflux. [g] Heated at 110 ºC. [h] Conversion 75%.
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For this purpose, we chose standard Mizoroki-Heck conditions,33 which although 

are reported to favor a neutral mechanism, provided the arylation products 56 and

57 in good to excellent yields (67-95%), when quinolines 9a-9d were used as 

substrates (Table 3.4, Entries 1-4). In these cases, the pyrrolizines were obtained 

even in higher yields than those obtained with the former pyridines 5a-5d. As 

expected, the treatment of haloquinolines 9a-9d under standard arylation 

conditions afforded the same pyrrolizine derivatives 56 and 57 in high yields (75-

88%) (Entries 5-8). 

In conclusion, when electron-deficient heteroaryl halides, such as pyridinyl 5a-5d

and quinolinyl halides 9a-9d, are used, in all cases, the direct arylation emerges as 

the predominant process under all conditions tested, even under conditions that 

should favor a neutral mechanism.  

As stated in the introduction of this chapter, our group has been able to control the 

chemoselectivity towards the alkene or the pyrrole nucleus for o-

iodobenzylpyrroles by adequately changing experimental conditions, in order to 

obtain the corresponding pyrroloisoquinoline and pyrroloisoindole skeletons.33 The 

change in the chemoselectivity of the reaction was explained through the formation 

of different intermediate palladium species in the catalytic cycle, as explained in 

detail by Jutand.21 Therefore, the intermediate species generated after the oxidative 

addition to the heteroaryl halide I (X = OAc), formed when Pd(OAc)2/n PPh3 (n>2) 

is used, or II (X = I), formed in the presence of Pd(PPh3)4 with an iodide ligand, 

should be taken into account (Scheme 3.54). Thus, it has been reported that the 

acetate ion is easily dissociable, and an equilibrium could be established between 

[trans-(Het)ArPd(PPh3)2(OAc)] species I and cationic [ArPd(PPh3)2]
+ in polar 
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aprotic solvents. Therefore, when the reaction is carried out in the presence of a 

source of acetate anions, as n-Bu4NOAc, electrophilic Pd(II) species would be 

formed that would react preferentially with the electron-rich pyrrole, and a cationic 

mechanism could take place. Besides, acetate ion would be able to assist the 

abstraction of the proton in � position to the nitrogen atom in the pyrrole nucleus 

(III) and finally result in arylation product V, through a CMD mechanism.27 On the 

contrary, in the presence of Pd(PPh3)4 as catalyst, the neutral pathway may take 

place providing arylation of the alkene and giving VIII as main product. 

�

Scheme 3.54 

More recently, an extension to medium-sized rings has been achieved, also 

controlling the competition between Mizoroki-Heck and direct arylation reactions, 

which has led to the synthesis of pyrroloisoquinoline, pyrrolobenzazepine and 

pyrrolobenzazocine cores.34 However, when electron-rich heteroaryl halides, such 

as thiophenyl halides, were used as coupling partners, although direct arylation 

reaction was selectively controlled by appropriate experimental conditions, the 
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Mizoroki-Heck reaction was not so effective affording thienoindolizine and 

thienoazepine frameworks in low yields. 34   

In our case, the priority to undergo direct arylation onto the pyrrole nucleus could 

be explained by assuming that the electrophilic Pd(II) intermediate would react 

preferentially with the electron-rich pyrrole nucleus in all cases, even under 

conditions that would favor neutral pathway. In this sense, the synthesis of 

pyrrolizines 50, 51, 56 and 57 has been accomplished in good yields via direct 

arylation standard conditions (Scheme 3.55). The study of intramolecular 

palladium-catalyzed reaction of pyrroles 53a, 53b, prepared to avoid direct 

arylation, led the expected 6-exo products 54 through Mizoroki-Heck reaction in 

very low yields, showing that this attack on the activated double bond was not 

favored. 

�

Scheme 3.55 
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3.2.2. Intramolecular Mizoroki-Heck reaction of N-(o-iodobenzyl) and 

N-(o-haloheteroarylmethyl)pyrrolyl allylic alcohol derivatives. 

Generation of tertiary and quaternary stereocenters  

According to the next objective of this work, we decided to investigate the 

generation of quaternary and tertiary centers in the synthesis of 

pyrroloisoquinolines and naphthyridines through �´-hydride or �´-leaving group 

elimination (Scheme 3.56), selecting different leaving groups. 
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Scheme 3.56 

3.2.2.1. Intramolecular enantioselective Mizoroki-Heck reaction of N-(o-

iodobenzyl)pyrrole 59. Generation of a quaternary stereocenter. 

Our group has studied the formation of a quaternary center through intramolecular 

cyclization of an o-iodobenzylpyrrole via �´-hydride elimination for the synthesis 

of enantioenriched pyrroloisoquinolines,76 as depicted Scheme 3.57a. Although a 

reasonable ee was achieved, the corresponding pyrroloisoquinoline was obtained in 

very low yield. The same procedure was much more effective when it was applied 

to an o-iodobenzylpyrrole carrying two alkene moieties, accessing enantioenriched 

tetracyclic Lycorane core through a cascade process75 (Scheme 3.57b). 



Ane Rebolledo Azcargorta       Ph.D.Thesis 

�

164

Scheme 3.57 

Firstly, compound 59, in which the possibility of �-hydride elimination is blocked 

with a methyl group, was selected. The TBDMS group was chosen, so �´-hydride 

elimination could be favored by formation of a silyl enol ether.68,71 Alternatively, 

the �´-elimination of the leaving group would give access to a vinyl substituted 

pyrroloisoquinoline. N-o-iodobenzylpyrrole 59 was prepared from the previously 

synthesized acrylate 26 (Chapter 2, Scheme 2.46), through reduction to the allylic 

alcohol 58 and protection of the alcohol with TBDMSCl (Scheme 3.58). 

��( 

��( 

�

)

� �*�

��( 

��( 

�

)

 ��

�� � !�./'� "' 5�6

.���%&�

!$�,���

�� � �� "* 5(6
!�./'��� �@���A$��

./2

��( ��($(

�

Scheme 3.58 



Chapter III                Intramolecular Mizoroki-Heck Reaction 

�

165 

We started performing the reaction of 59 in a racemic fashion. Therefore, treatment 

of 59 under Mizoroki-Heck conditions previously reported in our group41 provided 

the racemic silyl enol ether 60 as 10:90 mixture of Z:E diastereomers in high yield 

(81%), which were isolated and characterized separately (Scheme 3.59, Table 3.5, 

Entry 1). In this case, �´-elimination of the leaving group did not occur, and ring-

closure followed an alternative �´-hydride elimination pathway with retention of 

the silyloxy group. This type of �´-elimination has been observed in several related 

examples.68,71  

�

Scheme 3.59 

Different methods to cleave the silyl protecting group were tried in order to 

derivatize compound 60. All attempts to deprotect silyl alcohol with strong acids, 

such as HCl68 and TFA,78 or with TBAF79 failed. Fortunately, the mixture of silyl 

���������������������������������������� �������������������
78 Trost, B. M.; Surivet, J. P.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15592. 
79 Trost, B. M.; Xu, J.; Reichle, M. J. Am. Chem. Soc. 2007, 129, 282. 
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enol ether isomers 60 was derivatized by treatment with KF in MeOH/THF,80

followed by reduction with NaBH4 in MeOH affording alcohol 61 in an excellent 

yield (95%, over 2 steps) as depicted Scheme 3.59. 

Table 3.5. Enantioselective Mizoroki-Heck reaction of N-(o-iodobenzyl)pyrrole 59. 

  Entry [Pd] 

(10 mol%) 

Base Ligand Solvent Time 

(h) 

Yield 60 (%) 

dr (Z:E)
[a]

Yield 61 (%) 

(% ee)
[b]

1 Pd(PPh3)4 Et3N
[e] - Toluene[k] 24 81 (10:90) 95 

2 Pd(OAc)2 K2CO3
[f] (R)-BINAP[i] THF[k] 48 7 (12:88)[n] - 

3 Pd(OAc)2 PMP[g] (R)-BINAP[i] CH3CN[k] 48 61 (19:81) 79 (11) 

4 Pd(OAc)2 PMP[g] (R)-BINAP[i] DMF[l] 96 38 (8:92)[o] 89 (2) 

5 Pd(OAc)2 PMP[g] (R)-BINAP[i] THF[k] 48 Traces[p] - 

6 Pd(OAc)2 Ag3PO4
[g] (R)-BINAP[i] CH3CN[k] 18 n.d.[q] 37 (0)[t]

7 Pd(OAc)2 - (R)-BINAP[i] CH3CN[k] 72 18 (22:78)[r] 80 (-10) 

8 Pd(OAc)2 PMP[g]
L4

[i] CH3CN[k] 96 38 (14:86)[p] 83 (-1) 

9 Pd(OAc)2 PMP[g]
L5

[i] CH3CN[k] 48 5 (1:99) - 

10 Pd2(dba)3
[c][d] PMP[h] (R)-BINAP[j] DMA[m] 92 20 (11:89)[s] 82 (0) 

11 Pd2(dba)3
[d] PMP[g] (R)-BINAP[i] CH3CN[k] 72 65 (11:89) 75 (6) 

12 Pd2(dba)3
[d] Ag3PO4

[g] (R)-BINAP[i] CH3CN[k] 4 65 (34:66) 80 (18) 

[a] Diastereomer ratio determined by GC-MS. [b] Isolated yield over 2 steps of derivatization. % ee

determined by using Chiral Stationary Phase HPLC using a ADH column and hexane/i-PrOH 10% as 
eluent. tr (major): 35.5 min. tr (minor): 58.4 min. [c] 5 mol%. [d] CHCl3 adduct was used. [e] 2.5 eq. 
[f] 3.0 eq. [g] 2.0 eq. [h] 4.0 eq. [i] 28 mol%. [j] 12 mol%. [k] Heated under reflux. [l] Heated at 80 
ºC. [m] Heated at 100 ºC. [n] Conversion 23%. [o] Conversion 84%. [p] Conversion 20%. [q] Ratio 
of aldehyde:enol-Z:enol-E (46:9:45) was determined by GC-MS of the crude, which was derivatized 
without previous purification. [r] Conversion 28%. [s] Conversion 85%. [t] Yield of 61 over 3 steps.  

���������������������������������������� �������������������
80 Hoppe, H.-W.; Stammrn, B.; Werner, U.; Stein, H.; Welzel, P. Tetrahedron 1989, 45, 3695. 
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Having established the formation of the quaternary stereocenter in racemic fashion, 

we decided to optimize the reaction conditions for the enantioselective version 

using (R)-BINAP as has been recognized to be a privileged ligand for this type of 

reaction.81 Thus, subjecting substrate 59 to Shibasaki conditions71 in the presence 

of K2CO3 as base in THF provided 60 in low yield (7%), so derivatization was not 

worth to be carried out (Entry 2). Subsequently, conditions reported by our group 

in the asymmetric cascade reaction75 using PMP as base82 were employed to 

achieve the synthesis of the final alcohol 61 in 79% yield, but low ee (11%) (Entry 

3). These conditions were a starting point to explore different conditions, in order 

to increase the enantioselectivity.  

A change in the solvent did not improve the yield or ee (Entries 4-5). Subsequently, 

we decided to change the base. The addition of a silver salt such as Ag3PO4, which 

is reported to act as a halide scavenger driving the cyclization towards a cationic 

mechanism83 and favoring higher degrees of enantioselection, was tried providing 

the alcohol 61 in an overall 37% (3 steps) with no ee improvement (Entry 6). When 

���������������������������������������� �������������������
81 For selected reviews on the asymmetric Heck reaction, see: a) Dounay, A. B.; Overman, L. E. 
Chem. Rev. 2003, 103, 2945. b) Guiry, P. J.; Kiely, D. Curr. Org. Chem. 2004, 8, 781. c) Shibasaki, 
M.; Vogl, E. M.; Ohshima, T. Adv. Synth. Catal. 2004, 346, 1533. d) Tietze, L. F.; Ila, H.; Bell, H. P. 
Chem. Rev. 2004, 104, 3453. e) Tietze, L. F.; Lotz, F. In Asymmetric Heck and other palladium-

catalyzed reactions, Christmann, M.; Bräse, S. Eds., Wiley-VCH: Weinhein, 2007, p. 147. f) Link, D. 
T.; Wada, C. K. In The Mizoroki-Heck Reaction, Oestreich, M. Ed., Wiley-VCH: Chinchester, 2009, 
p. 533. g) McCartney, D.; Guiry, P. J. Chem. Soc. Rev. 2011, 40, 5122. h) Broggini, G.; Borsini, E.; 
Piarulli, U. In Science of Synthesis, Cross Coupling and Heck-Type Reactions 3, Molander, G. A.; 
Wolfe, J. P.; Larhed, M. Eds., Thieme: Stuttgart, 2013, p. 521. 
82 PMP base (1,2,2,6,6-pentamethylpiperidine) is reported to be a highly basic, sterically hindered and 
stable tertiary amine, which demonstrated to increase selectivity and reactivity via neutral pathway, 
see: Ref. 81g. 
83 a) Sato, Y.; Sodeoka, M.; Shibasaki, M. Chem. Lett. 1990, 1953. b) Shibasaki, M.; Boden, C. D. J.; 
Kojima, A. Tetrahedron 1997, 53, 7371. c) Shibasaki, M.; Erasmus, M. V. In Comprehensive 

Asymmetric Catalysis, Vol. 2, Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Eds., Springer: Berlin, 1999, 
Chapter  14. d) Donde, Y.; Overman, L. E. In Catalytic Asymmetric Synthesis, Ojima, I. Ed., Wiley-
VCH: New York, 2000, Chapter 8G. e) Donay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945. 
�
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performing the reaction in absence of base, the reactivity dropped, affording 60 in 

low yield. This issue can be explained by the fact that base plays a role in the 

reductive elimination step, generating active Pd(0) to enter again the catalytic 

cycle. However, an inversion in the ee was detected (-10%) (Entry 7). 

The nature of chiral ligands is also a fundamental parameter, which can influence 

the stereochemical outcome of Mizoroki-Heck reactions.84 Therefore, we decided 

next to study the use of other type of ligands, represented in Figure 3.3, which have 

been reported as efficient in the synthesis of enantioenriched vinyl substituted 

pyrroloisoquinolines.76�
�
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Figure 3.3 

Neither the use of (R,R)-CHIRAPHOS L4 or phosphoramidite L5 ligands provided 

better results (Entries 8-9). We decided to keep (R)-BINAP as the chiral ligand and 

we tried a change in the precatalyst to Pd2(dba)3. The use of Overman reported 

conditions using DMA or acetonitrile for 5-exo enantioselective cyclization of 2-

iodoanilines,67,68 did not afford any improvement (Entries 10-11). However, best 

results were obtained with the use of Ag3PO4, providing 61 in good yield (52% 

over 3 steps), and with slight increase in ee (18%) (Entry 12).  

���������������������������������������� �������������������
84 For a review on ligand design in the asymmetric Mizoroki-Heck reaction, see: Coyne, A. G.; 
Fitzpatrick, M. O.; Guiry, P. J. In The Mizoroki-Heck reaction, Oestrich, M. Ed., Wiley: Chinchester, 
2009, p. 406. 
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The % ee measurements of 61 were determined by chiral stationary phase HPLC, 

in comparison with the racemic mixture. Figure 3.4A shows the HPLC 

chromatogram for reactions in absence of base (Table 3.5, Entry 7), while Figure 

3.4B shows the HPLC chromatogram for the best results obtained in 

enantioselection (Table 3.5, Entry 12). Due to the low ee obtained, the absolute 

configuration could not be determined. 

Figure 3.4. HPLC Chromatograms of 61, Chiralcel ADH, hexane/i-PrOH 10%, 1 mL/min: 

A) -10% ee. B) 18% ee. 

A. 

B. 
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3.2.2.2. Intramolecular Mizoroki-Heck reaction of N-(o-iodobenzyl)pyrroles 44b, 

44c, o-halopyridines 34a, 34b and o-haloquinolines 35a, 35b. Generation of a 

tertiary stereocenter. 

We decided to continue the intramolecular asymmetric Mizoroki-Heck reaction 

study by using analogous substrates in order to promote generation of a tertiary 

stereocenter by elimination of the leaving group or just simple �´-hydride 

elimination with retention of the leaving group, as has been shown in Section 

3.2.2.1.  

For this purpose, we selected N-(o-iodobenzyl)pyrroles 44b and N-(o-

haloheteroarylmethyl)pyrroles 34a, 34b, 35a, 35b, whose synthesis has been 

previously described in Chapter 2, as they are also suitable to perform 

intramolecular Mizoroki-Heck reactions with the generation of a tertiary 

stereocenter (Figure 3.5). Furthermore, pivaloyl protected alcohol 44c was obtained 

in 87% yield from previously prepared allylic alcohol 43 (Scheme 2.65), by 

treatment with pivaloyl chloride and pyridine in CH2Cl2.  

�

Figure 3.5 
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We started to perform 6-exo cyclization of substrate 44b in a racemic fashion under 

the same conditions used in the former section, providing silyl enol ether 62 in 

good yield (80%) as a 45:55 mixture of Z:E diastereomers (Scheme 3.60, Table 

3.6, Entry 1), which were isolated and characterized separately. Diastereomer 

mixture 62 was derivatized to alcohol 63 (73% yield over two steps), following the 

same sequence described before. 

Scheme 3.60 

Once the racemic version for the construction of the tertiary center had been 

established, we decided to optimize the asymmetric variant as in the previous case. 

Applying Shibasaki reported conditions71 to compound 44b, a complex mixture of 

products was obtained (Entry 2). We next moved to the catalytic system reported 

for cascade process,75 which provided again a complex mixture of products, where 

62 and 64 could be detected by GC/MS of the crude reaction mixture, but we were 

unable to isolate them separately (Entry 3). The change in solvent (Entries 4-6) and 
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in base (Entries 7-8) did not afford better results. A change in catalyst to Pd2(dba)3

was also unsuccessful (Entries 9-10).  

Table 3.6. Enantioselective Mizoroki-Heck reaction of N-(o-iodobenzyl)pyrrole 44b.

Entry [Pd]  

(10 mol%) 

Base Ligand Solvent Time 

(h) 

Prod. Yield 

(%)
[a]

1 Pd(PPh3)4 Et3N
[d] - Toluene[l] 16 62  80[p]

2 Pd(OAc)2 K2CO3
[e] (R)-BINAP[h] THF [o] 72 - -[q][r]

3 Pd(OAc)2 PMP[f] (R)-BINAP[h] CH3CN [l] 42 - -[q][s]

4 Pd(OAc)2 PMP[g] (R)-BINAP[h] Toluene [l] 44 64 Traces[t]

5 Pd(OAc)2 PMP[g] (R)-BINAP[h] THF [l] 44 64 Traces[t]

6 Pd(OAc)2 PMP[g] (R)-BINAP[h] DMF [m] 48 - -[q][u]

7 Pd(OAc)2 Et3N
[g] (R)-BINAP[h] CH3CN [l] 48 - -[q][v]

8 Pd(OAc)2 Cy2NMe[g] (R)-BINAP[h] CH3CN [l] 48 - -[q][w]

9 Pd2(dba)3
[b][c] PMP[g] (R)-BINAP[i] DMA[n] 48 - -[q]

10 Pd(dba)2 PMP[g] (R)-BINAP[h] CH3CN [l] 48 - -[q][x]

11 Pd(OAc)2
[b] - PPh3

[j][k] DMSO[o] 1.5 64 82 

12 Pd(OAc)2
[b] - PPh3

[j][k] DMF[o] 1.5 64 81

[a] Isolated yield. [b] 5 mol%.  [c] CHCl3 adduct was used. [d] 2.5 eq. [e] 3.0 eq. [f] 2.0 eq. [g] 4.0 eq. 
[h] 28 mol%. [i] 12 mol% [j] 10 mol%. [k] n-Bu4NOAc (1.5 eq.) was also added. [l] Heated under 
reflux. [m] Heated at 80 ºC. [n] Heated at 100 ºC. [o] Heated at 60 ºC. [p] Diastereomers ratio (Z:E, 

45:55) determined by GC-MS. [q] Complex mixture of products unable to isolate, in which 62 and 64 

were detected by GC-MS. [r] Conversion 54%. [s] Conversion 69%. [t] Starting material was 
recovered. [u] Conversion 72%. [v] Conversion 76%. [w] Conversion 94%. [x] Conversion 65%. 

As described, all conditions tested were inefficient to afford Mizoroki-Heck 

reaction products, and efforts to isolate product 62 were ineffective. For this 

reason, derivatization and ee measurements were not conducted.     
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Finally, to unambiguously confirm the structure of the arylation product, standard 

arylation conditions were tried, which selectively afforded pyrrolo[2,1-a]isoindole 

64 in high yields (81-82%) (Entries 11-12).  

We next moved to the study of intramolecular Heck cyclization of pivaloyl 

protected allylic alcohol 44c. In this case, a better leaving group, as pivalate, was 

selected to favor �´-pivalate elimination to form the 10b-substituted vinyl 

derivative 66 (Scheme 3.61).  

�

Scheme 3.61 

Firstly we began with the formation of the tertiary center in racemic fashion. The 

use of previous standard Mizoroki-Heck conditions [Pd(PPh3)4, Et3N in toluene] 

provided a mixture of (E:Z) diastereomers 65 in low yield, formed selectively by 

�´-hydride elimination (Table 3.7, Entry 1), with no detection of 66. A change in 

the solvent (DMF, CH3CN), promoted selectively again �´-hydride elimination 

obtaining compound 65 in lower yields (Entries 2-3). Addition of 

tetraalkylammonium salts, such as n-Bu4NCl led to a mixture of (E)-65 and 66 in a 

48:52 ratio (established by GC/MS) (Entry 4). The mixture could be separated and 

the products characterized to afford (E)-65 (8%) and 66 (9%). Treatment of 44c

under Mizoroki-Heck reaction conditions, in the presence of NaHCO3 and again n-

Bu4NCl, provided a mixture of (E)-65 and 66 (Entry 5). A change in the additive to 
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other tetraalkylammonium salts, afforded compound 65 as a mixture of isomers in 

low yields (Entries 6-8).  

Table 3.7. Mizoroki-Heck reaction of N-(o-iodobenzyl)pyrrole 44c.

Entry [Pd]  

(10 mol%) 

Base Ligand Solvent Time 

(h) 

 (E)-65: 

(Z)-65:66
[a]

Yield 

(%) 

1 Pd(PPh3)4 Et3N
[c] - Toluene[m] 24 72:28:0 28 

2 Pd(PPh3)4 Et3N
[d] - DMF[n] 5 100:0:0 19 

3 Pd(PPh3)4 Et3N
[c] - CH3CN [m] 6 88:12:0 11 

4 Pd(PPh3)4 Et3N
[d] -[g] DMF[n] 5 48:0:52 17 

5 Pd(PPh3)4 NaHCO3
[c] -[g] CH3CN [m] 16 56:0:44 -[q]

6 Pd(PPh3)4 NaHCO3
[c] -[h] CH3CN [m] 16 83:17:0 13 

7 Pd(PPh3)4 NaHCO3
[c] -[i] CH3CN [m] 16 95:5:0 13 

8 Pd(PPh3)4 NaHCO3
[c] -[j] CH3CN [m] 16 87:23:0 10 

9 Pd(OAc)2 Ag2CO3
[e] PPh3

[k] DMF[o] 24 - -[r]

10 Pd(OAc)2 Ag2CO3
[e] PPh3

[k] CH3CN [m] 24 100:0:0 2

11 Pd(OAc)2 Et3N
[f] PPh3

[k] CH3CN [m] 48 90:10:0 12

12 Pd(OAc)2 Et3N
[c] dppp[k] CH3CN [m] 48 - -

13 Pd(OAc)2 Et3N
[f] P(o-tolyl)3

[l] CH3CN:H2O
[p] 6 - - 

14 Pd2(dba)3
[b] Et3N

[f] P(o-tolyl)3
[l] CH3CN:H2O

[p] 24 - - 

15 PdCl2[(o-
tolyl)3P]2

Et3N
[f] - CH3CN:H2O

[p] 24 - - 

[a] Products ratio determined by GC-MS. [b] 5 mol%, CHCl3 adduct was used. [c] 2.5 eq. [d] 12.5 eq. 
[e] 1.5 eq. [f] 2.2 eq. [g] n-Bu4NCl (1.5 eq.) was also added. [h] n-Bu4NBF4 (1.5 eq.) was also added.   
[i] n-Bu4NOAc (1.5 eq.) was also added. [j] n-Bu4NI (1.5 eq.) was also added. [k] 0.3 eq. [l] 0.22 eq. 
[m] Heated under reflux. [n] Heated at 110 ºC. [o] Heated at 90 ºC. [p] Heated under reflux in a (10:1) 
mixture of solvents. [q] Yield not determined. [r] Starting material was recovered.  
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In view of these results, we decided to change the catalyst. For this purpose, we 

tried previously reported conditions by our group41 [Pd(OAc)2,  PPh3, Ag2CO3, 

DMF], but they did not afford the cyclized product (Entries 9-10). Finally, 

treatment under Lautens conditions, for the cyclization of aryl iodides with allylic 

moieties via elimination of acetoxy group,59 resulted in no success even with 

different palladium sources (Entries 13-15).  

We decided to continue our study of cyclization with electron-deficient heteroaryl 

halides, such as o-halopyridines 34a, 34b (Scheme 3.62). We first studied the 

generation of the tertiary center in a racemic fashion by treatment of brominated 

34a with reported selective conditions for Mizoroki-Heck with Pd(PPh3)4 as 

catalyst, although no cyclization was observed (Table 3.8, Entries 1-2). The 

treatment of 34a under Lautens conditions,59 gave a mixture of pyrrolizine 69 

(27%) and aldehyde 67 (26%), formed by deprotection of the silyl group and 

tautomerization of the enol to the aldehyde in situ (Entry 3). As aldehyde 67 was 

unstable, we decided to repeat cyclization reaction followed by a reduction, thus 

obtaining 69 (25%) and alcohol 68 (35%), which was stable (Entry 4). 

�

Scheme 3.62 
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Table 3.8. Mizoroki-Heck reaction of N-(o-halopyridinylmethyl)pyrroles 34a, 34b.

Entry Subs. [Pd]  

(10 mol%)

Base Ligand Solvent Time 

(h) 

Prod. Yield 

(%)
[a]

1 34a Pd(PPh3)4 Et3N
[d] - Toluene[j] 48 - - [n]

2 34a Pd(PPh3)4 NaHCO3
[d] -[f] DMF[k] 48 - -[n]

3 34a Pd(OAc)2 Et3N
[e] P(o-tolyl)3

[g] -[l] 7 67/69 26/27 

4 34a Pd(OAc)2 Et3N
[e] P(o-tolyl)3

[g] -[l] 7 68/69 35/25[o]

5 34b Pd(OAc)2 Et3N
[e] P(o-tolyl)3

[g] -[l] 7 68/69 20/62[o]

6 34a Pd2dba3
[b][c] Et3N

[e] P(o-tolyl)3
[g] -[l] 7 68/69 30/19[o]

7 34a PdCl2[(o-
tolyl)3P]2

Et3N
[e] - -[l] 7 68/69 31/16[o]

8 34a Pd(OAc)2 - PPh3
[h][i] DMF[m] 1 69 23

9 34b Pd(OAc)2 - PPh3
[h][i] DMF[m] 1 69/70 38/40 

10 34a Pd(OAc)2 - PPh3
[h][i] DMF[k] 5 69/70 25/24 

[a] Isolated yield. [b] 5 mol%. [c] CHCl3 adduct was used. [d] 2.5 eq. [e] 2.0 eq. [f] n-Bu4NCl (1.5 
eq.) was added. [g] 0.22 eq. [h] 10 mol%. [i] n-Bu4NOAc (1.5 eq.) was added. [j] Heated under reflux. 
[k] Heated at 80 ºC. [l] Heated under reflux in a CH3CN:H2O (10:1) mixture of solvents. [m] Heated 
at 110 ºC. [n] Starting material was recovered. [o] The yield over 2 steps. 

Iodinated 34b afforded similarly both arylation product 69 (62%) and alcohol 68

(20%) under the same conditions (Entry 5). The chemoselectivity of the reaction 

was tried to be controlled by changing palladium source, but similar results were 

obtained (Entries 6-7). 

By treatment of 34a, 34b under standard arylation conditions, the reaction could be 

directed to cyclization on the pyrrole nucleus affording arylation products 69 and 

70, this latter one derived from desilylation of pyrrolizine 69 in the media (Entries 
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8-10). The asymmetric variant was not performed, due to the high difficulty 

emerged to control the selectivity of the reaction.  

We then moved to o-haloquinolines 35a, 35b (Scheme 3.63), but only arylation 

product 71 was obtained under Lautens conditions59 (Entries 1-2) or, as expected, 

under standard arylation conditions (Entries 3-4). Unfortunately enantioselective 

studies could not be conducted, since Mizoroki-Heck product formation was not 

observed. 

�

Scheme 3.63 

Table 3.9. Mizoroki-Heck reaction of N-(o-haloquinolinylmethyl)pyrroles 35a, 35b.

Entry Subs. [Pd] 

(mol%) 

Base Ligand Solvent Time 

(h) 

Yield 71

(%) 

1 35a Pd(OAc)2
[a] Et3N

[b] P(o-tolyl)3
[a] CH3CN:H2O

[d] 22 14 

2 35b Pd(OAc)2
[a] Et3N

[b] P(o-tolyl)3
[a] CH3CN:H2O

[d] 5 43 

3 35a Pd(OAc)2
[a] - PPh3

[a][c] DMF[e] 1 14 

4 35b Pd(OAc)2
[a] - PPh3

[a][c] DMF[e] 1 50 

[a] 10 mol%. [b] 2.0 eq. [c] n-Bu4NOAc (1.5 eq.) was also added. [d] Heated under reflux in a (10:1) 
mixture of solvents. [e] Heated at 110ºC. 
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In conclusion, we have been able to efficiently synthesize pyrroloisoquinolines 60, 

62 in a racemic manner, by formation of tertiary and quaternary centers, starting 

from silyl protected N-(o-iodobenzyl)pyrrolyl allylic alcohols 59, 44b through 

selective �´-H elimination. However, the reaction is not efficient when it is carried 

out in the presence of chiral phosphanes. 

When pivaloyl protected N-(o-iodobenzyl)pyrrolyl allylic alcohol 44c is used, in 

order to promote �´-elimination of the leaving group in the formation of a tertiary 

center, the efficiency and selectivity of the reaction could not be controlled, leading 

in mixtures of �´-hydride elimination product 65 and �´-leaving group elimination 

product 66, always in low yields. 

When the same procedure is applied to the corresponding heteroaryl derivatives 34

and 35, the direct arylation reaction is always competitive, and only in the case of 

2-halopyridines 34a, 34b, the formation of naphthyridine 67 was observed, always 

in low yields and with no selectivity.   



Chapter III                Intramolecular Mizoroki-Heck Reaction 

�

179 

3.2.3. Diastereoselective intramolecular Mizoroki-Heck reaction of N-

(o-iodobenzyl)pyrrolidinyl allylic alcohol derivatives. Generation of a 

tertiary stereocenter 

In view of the difficulties found for the stereocontrolled generation of tertiary and 

quaternary centers described in the previous section, we decided to study the 

possibility of obtaining enantiomerically pure pyrroloisoquinolines using a 

diastereoselective approach. Thus, the last objective of this work involves the study 

of Heck cyclization of enantiopure pyrrolidines that bear a protected allylic alcohol 

moiety to obtain diastereoselectively the pyrroloisoquinolines via �´-elimination of 

the leaving group or �´-hydride elimination (Scheme 3.64). The same protecting 

groups used in the previous section (TBDMS, COt-Bu and also COCH3) were 

selected. 

Scheme 3.64 

Scheme 3.65 shows the preparation of acyl protected N-(o-iodobenzyl)pyrrolidinyl 

alcohols  73a, 73b, 74a, 74b, starting from enantiomerically pure acrylates (S,E)-

17a, (S,E)-17b, which had been previously synthesized (Scheme 2.41). 

Additionally, we have chosen compound (S,E)-46 that has been already 

synthesized in Chapter 2 (Scheme 2.66), as it appears suitable for Mizoroki-Heck 

cyclization studies. 
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Scheme 3.65 

Firstly, we chose chiral non racemic acyl protected alcohols (S,E)-73a, (S,E)-73b

with the aim of studying diastereoselective synthesis of pyrroloisoquinolines 

through intramolecular Heck reactions with generation of a second tertiary 

stereocenter (Scheme 3.66). A possible problem in regioselectivity may arise due 

to �´-leaving group or �´-hydride elimination (with retention of leaving group) 

competitive pathways, as already seen for N-(o-iodobenzyl)pyrrolyl pivaloyl 

derivative 44c (Scheme 3.61). 

�

Scheme 3.66 
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Table 3.10. Mizoroki-Heck reaction of N-(o-iodobenzyl)pyrrolidine 73a.

Entry [Pd]  

(10 mol%) 

Base Ligand Solvent Time

(h) 

Yield 75 (%)
[a]

dr (75a:75b)
[b]

1 Pd(PPh3)4 Et3N
[e] - Toluene[m] 5 - 

2 Pd(PPh3)4 NaHCO3
[e] -[i] CH3CN [m] 48 16 (66:34)

3 Pd(OAc)2 Ag2CO3
[f] PPh3

[j] DMF[n] 72 - 

4 Pd(OAc)2 Et3N
[g] P(o-tolyl)3

[k]  CH3CN[m] 72 51 (83:17)

5 Pd(OAc)2 Et3N
[g] P(o-tolyl)3

[k]  CH3CN:H2O
[o] 5 53 (78:22) 

6 Pd(OAc)2 Et3N
[g] P(t-Bu)3

[k]  CH3CN:H2O
[o] 5 32 (78:22) 

7 Pd(OAc)2 Et3N
[g] P(Cy)3

[k] CH3CN:H2O
[o] 5 45 (78:22) 

8 Pd(OAc)2 Et3N
[g] DavePhos[k] CH3CN:H2O

[o] 5 51 (76:24)

9 Pd(OAc)2 Et3N
[g] PPh3

[k] CH3CN:H2O
[o] 5 32 (66:34) 

10 Pd(OAc)2 Et3N
[g] Dppp[k] CH3CN:H2O

[o] 5 27 (50:50) 

11 Pd(OAc)2 Et3N
[g]

L2
[k] CH3CN:H2O

[o] 22 34 (80:20)[p]

12 Pd(OAc)2
[c] Et3N

[g] P(o-tolyl)3
[k]  CH3CN:H2O

[o] 22 46 (79:21) 

13 Pd(OAc)2 Et3N
[g] P(o-tolyl)3

[l] CH3CN:H2O
[o] 5 39 (80:20) 

14 Pd(OAc)2 n-BuNMe2
[g] P(o-tolyl)3

[k]  CH3CN:H2O
[o] 5.5  35 (72:28) 

15 Pd2(dba)3
[c][d] Et3N

[h] P(o-tolyl)3
[l]  CH3CN:H2O

[o] 5 53 (82:18) 

16 Pd2(dba)3
[c][d] n-BuNMe2

[h] P(o-tolyl)3
[l]  CH3CN:H2O

o] 5 52 (77:23) 

17 Pd2(dba)3
[d] n-BuNMe2

[h] P(o-tolyl)3
[l]  CH3CN:H2O

[o] 5 39 (71:29) 

18 Pd2(dba)3
[c][d] n-BuNMe2

[h] P(o-tolyl)3
[k]  CH3CN:H2O

[o] 6 34 (77:23) 

19 PdCl2[(o-
tolyl)3] 

n-BuNMe2
[h] - CH3CN:H2O

[o] 5 38 (76:24) 

[a] Isolated yield of the mixture. [b] Diastereomer ratio determined by GC-MS. [c] 5 mol%. [d] 
CHCl3 adduct was used. [e] 2.5 eq. [f] 1.5 eq. [g] 2.2 eq. [h] 2.0 eq. [i] n-Bu4NCl (1.5 eq.) was also 
added. [j] 0.3 eq. [k] 0.1 eq. [l] 0.22 eq. [m] Heated under reflux. [n] Heated at 100 ºC. [o] Heated 
under reflux in a (10:1) mixture of solvents. [p] Conversion 36%. 
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We started studying the cyclization of (S,E)-73a. Under standard conditions with 

Pd(PPh3)4, no cyclization was observed (Table 3.10, Entry 1). However, treatment 

of (S,E)-73a with Pd(PPh3)4, NaHCO3 as base, n-Bu4NCl in acetonitrile under 

reflux provided a 66:34 mixture of diastereomers 75a:75b in 16% yield (Scheme 

3.61, Entry 2), which derived from �´-pivaloxy group elimination. No �´-hydride 

elimination product was detected. Further attempts were conducted to increase both 

the yield and diastereoselectivity of the process using Pd(OAc)2. In the presence of 

a silver salt, no cyclization product was observed (Entry 3). The use of bulkier 

phosphanes59 in acetonitrile as solvent, resulted in an increase of 

diastereoselectivity (75a:75b, 83:17) and yield (51%) after 72 h (Entry 4). The use 

of a mixture of acetonitrile:H2O (10:1), provided similar results but only in 5 h 

(53%, 75a:75b 78:22) (Entry 5).  

We decided to try other bulky phosphane ligands (Figure 3.6), but no 

improvements in yield or diastereoselectivity were obtained (Entries 6-11). 

Figure 3.6 

A decrease of catalyst loading, an increase of phosphane loading or a change in 

base, afforded similar results (Entries 12-14). Attempts conducted with other 

palladium sources resulted in yields up to 53% and diastereomers ratios up to 

(82:18) (Entries 15-19). 
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Thus, in all cases �´-elimination of the pivaloxy group was observed. The yield 

indicated is the isolated yield of the mixture of diastereomers 75a and 75b, whose 

ratios were determined by GC-MS in each case. Additionally, both diastereomers 

have been isolated and characterized separately using NMR spectroscopy and X-

Ray Diffraction techniques to unambiguously confirm their absolute configuration. 

2D NOESY experiments showed enhancement between H-10a and an olefinic 

proton HA of the substituent at C-10 for the trans-75b diastereomer (10R,10aS) 

(Figure 3.7B), while that enhancement was not observed for cis-75a diastereomer 

(10S,10aS) (Figure 3.7A). Further supporting evidences for these configurations, 

could be additional enhancements shown in 75a between H-10 and H-9, and 

between olefinic HA and H-1 from the pyrrolidine ring. In 75b, enhancements 

between H-10a and olefinic HA could also be observed. 

Figure 3.7 
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In addition, the configuration of each diastereomer was unambiguously confirmed 

by X-Ray diffraction techniques, assigning a cis-(10S,10aS)85 configuration to the 

major diastereomer 75a (Figure 3.8A), and a trans-(10R,10aS)86 configuration to 

the minor diastereomer 75b (Figure 3.8B). 

75a (10S,10aS)              75b (10R,10aS)

Figure 3.8. ORTEP plots of compounds 75a and 75b

Similar results were also obtained for acetyl protected alcohol (S,E)-73b, when 

conditions that provide a higher diastereoselectivity and efficiency in the former 

synthesis of 10b-vinyl pyrroloisoquinolines were applied (Scheme 3.67). In this 

case, similar diastereomer ratios for 75a:75b were determined in the crudes, but 

difficulties in the purification just allowed to isolate the major isomer 75a in 30-

32% yield (Table 3.11, Entries 1-2). 

���������������������������������������� �������������������
85 CCDC 1062658 contains the supplementary crystallographic data for 75a. These data can be 
obtained from The Cambridge Crystallographic Data Centre (see Appendix). 
86 CCDC 1062659 contains the supplementary crystallographic data for 75b. These data can be 
obtained from The Cambridge Crystallographic Data Centre (see Appendix). 

A. B. 
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Scheme 3.67 

Table 3.11. Mizoroki-Heck reaction of N-(o-iodobenzyl)pyrrolidine 73b.

Entry [Pd] (mol%) Ligand dr (75a:75b)
[a]

 Yield 75a (%)
[b] 

1 Pd(OAc)2
[c] P(o-tolyl)3

[f]  78:22 30  

2 Pd2(dba)3
[d[e] P(o-tolyl)3

[g]  82:18 32  

[a] Diastereomer ratio in the crude, determined by GC-MS. [b] Isolated yield. [c] 10 mol%. [d] 5 
mol%. [e] CHCl3 adduct was used. [f] 0.22 eq. [g] 0.1 eq.  

In the same way, we studied the Mizoroki-Heck reaction of related N-(o-

iodobenzyl)pyrrolidines (S,E)-74a, (S,E)-74b shown in Scheme 3.68. 

Scheme 3.68 
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Table 3.12. Mizoroki-Heck reaction of N-(o-iodobenzyl)pyrrolidines 74a, 74b. 

Entry Subs. [Pd]  

(10 mol%) 

Base  

(2.2 eq.) 

Ligand Solvent Time 

(h) 

Yield 76 

(%)
[a] 

1 74a Pd(OAc)2 Et3N P(o-tolyl)3
[e] CH3CN:H2O [g] 26 -[k]

2 74b Pd(OAc)2 n-BuNMe2 P(o-tolyl)3
[e] CH3CN:H2O

[g] 48 Traces 

3 74b Pd(OAc)2 n-BuNMe2 P(o-tolyl)3
[e] DMF[h] 5 -[l]

4 74a Pd2(dba)3
[b][c] Et3N P(o-tolyl)3

[e] CH3CN:H2O
[g] 26 -[k]

5 74b Pd2(dba)3
[b][c] n-BuNMe2 P(o-tolyl)3

[e] CH3CN:H2O
[g] 48 Traces 

6 74a Pd2(dba)3
[c] Et3N  P(o-tolyl)3

[e] Toluene[i] 48 -[m]

7 74a Pd2(dba)3
[c] Et3N P(o-tolyl)3

[f] DMF[j] 48 -[n]

8 74a Pd2(dba)3
[c] Et3N P(o-tolyl)3

[f] DMF[h] 4 39 

9 74a Pd2(dba)3
[c] Et3N P(o-tolyl)3

[e] DMF[h] 16 -[m]

10 74a Pd2(dba)3
[c] Et3N P(Cy)3

[f]  DMF[h] 4 16[o]

11 74b Pd2(dba)3
[b][c] n-BuNMe2 P(o-tolyl)3

[e] DMF[h] 5 Traces 

12 74b Pd2(dba)3
[c] n-BuNMe2 P(o-tolyl)3

[e] DMF[h] 16 11[p]

13 74b PdCl2[(o-
tolyl)P3]2

n-BuNMe2 - CH3CN:H2O
[g] 48 Traces 

[a] Isolated yield. [b] 5 mol%. [c] CHCl3 adduct was used. [e] 0.22 eq. [f] 0.44 eq. [g] Heated under 
reflux and 10:1 mixture of solvents. [h] Heated to 130 ºC. [i] Heated under reflux. [j] Heated to 80 ºC. 
[k] Starting material was recovered. [l] Deiodinated product 77b (20%) was obtained. [m] Complex 
mixture of products. [n] Deiodinated product 77a (23%) was obtained. [o] Deiodinated product 77a

(24%) was also obtained. [p] Deiodinated product 77b (37%) was also obtained.  

Treating (S,E)-74a, (S,E)-74b under former conditions, which proved successful in 

the synthesis of 10b-vinyl pyrroloisoquinolines, no cyclization was observed 

(Table 3.12, Entries 1-2). A change in the solvent, proved also unsuccessful (Entry 

3). Treatment of (S,E)-74a with Pd2(dba)3 in DMF at 80 ºC provided small amounts 

of (S,E)-77a (Entry 7). An increase of temperature to 130 ºC gave 
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pyrroloisoquinoline 76 in 39% yield as a single diastereomer in 4 h (Entry 8). 

Reaction of (S,E)-74a using other bulky phosphanes as P(Cy)3 provided 76 in low 

yield after 4 h (Entry 10). When (S,E)-74b was treated with Pd2(dba)3.CHCl3, n-

BuNMe2, P(o-tolyl)3 in DMF at 130 ºC, 76 (11%) and deiodinated substrate (S,E)-

77b (37%) were isolated. This issue points that longer reaction times may be 

needed, but always with a risk of decomposition (Entry 12).  

The configuration of 76 has been assigned as trans-(10R,10aS) by 2D NOESY 

experiments that show enhancements between CH3 group at the olefin and H-10a 

and between H-10 and H-1 of the pyrrolidine ring, and by analogy to the former 

compound 75b (Figure 3.9).  
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Figure 3.9 

Finally, the protecting group of the alcohol was changed to TBDMS. Thus, 

enantiopure pyrrolidine (S,E)-46 was subjected to the best conditions in terms of 

diastereoselectivity for the reaction of (S,E)-73a. In this case, �´-hydride 

elimination occurred, obtaining the silyl enol ether 78 in high yield (78%) as a 

mixture of diastereomers that correspond to (E)- and (Z)-alkenes of both 

(10S,10aS) and (10R,10aS) diastereomers (Scheme 3.69). 
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Scheme 3.69 

We were able to determine the configuration of the major diastereomer in 78 by 2D 

NOESY experiments of the mixture. Firstly, the configuration of the alkene was 

assigned as E, as indicated by the coupling constant value between olefinic protons 

(Jtrans = 12.0 Hz) detected by 1H NMR spectroscopy, orders of value similar to 

those obtained for analogous pyrroloisoquinolines (E)-60b and (E)-62b.87 2D 

NOESY experiments showed no enhancements between the olefinic proton HA and 

H-10a, so a (10S,10aS)-configuration could be assigned, by analogy to the former 

pyrroloisoquinoline 75a (Figure 3.9). Further issues to support this configuration 

could be the enhancements shown between olefinic HA and H-1 of the pyrrolidine 

ring, at the same time than those shown between H-10 and both, H-9 and olefinic 

HB. 

�

Figure 3.9 

���������������������������������������� �������������������
87 See Experimental section. 



Chapter III                Intramolecular Mizoroki-Heck Reaction 

�

189 

To confirm the stereochemistry of C-10, the silyl enol eter mixture 78 was 

deprotected and the resulting aldehyde was reduced to alcohol 79, which was 

obtained as a single diastereomer in a 61% yield (over 2 steps) (Scheme 3.70). In 

this case, we also assigned the absolute configuration of this diastereomer as 

(10S,10aS) by 2D NOESY experiments and by analogy to the former 

pyrroloisoquinoline 75a. Thus, enhancement shown between H-1 from the 

pyrrolidine ring and one of the methylenic protons was observed. Additionally, 

enhancement between H-10 and H-9 could be detected. Similarly, no enhancement 

between methylenic protons bounded to C-10 and H-10a was observed (Figure 

3.10). 

Scheme 3.70 

�

Figure 3.10 

�
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In summary, tertiary stereocenters can be efficiently generated by Mizoroki-Heck 

reaction of protected N-(o-iodobenzyl)pyrrolidinyl allylic alcohols. A change in the 

protecting group allows the selective �´-hydride elimination (when TBDMS is 

used) or �´-leaving group elimination (when pivalate or acetate are used), leading 

to the corresponding functionalized pyrroloisoquinolines. 

The Mizoroki-Heck reaction proceeded with moderate diastereoselectivity for acyl 

protected N-(o-iodobenzyl)pyrrolidines through �´-elimination of the alkoxy group. 

However, when an additional substituent is placed in the alkene, there is an 

inversion on diastereoselectivity (Scheme 3.71). 

�

Scheme 3.71 

When the alkene moiety is substituted by a silyloxymethyl group, the application 

of the same methodology permits the synthesis of pyrroloisoquinolines 78 with 

high diastereoselectivity, this time with retention of the leaving group. In addition, 

derivatization of pyrroloisoquinoline 78 provides the corresponding alcohol 79 in 

high yield and total diastereoselectivity (Scheme 3.72). 
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�

Scheme 3.72 
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4.1. Introduction 

The nucleophilic addition of organometallic reagents to polar unsaturated 

electrophiles, such as carbonyl compounds and their derivatives, is a relevant 

method for the construction of carbon-carbon bonds in Organic Synthesis.1  

Traditionally, chemists have required the use of Grignard reagents to perform this 

type of reactions (Scheme 4.1a), which involves the need to prepare aryl halides as 

starting materials associated with a raise in the costs and sometimes, a tedious 

preparation. In addition, directed ortho-metalation (DoM) strategies2 of 

functionalized arene compounds (Scheme 4.1b) partially solves this problem as a 

complementary method for preparation of susbstrates, but adversely requires the 

use of stoichiometric amount of organometallic reagents. From a synthetic point of 

view, both former methods imply a number of drawbacks such as strict and 

complex anhydrous and anaerobic manipulation requirements for the air- and 

moisture-sensitive organometallic reagents, limited functional tolerance, 

prefunctionalization of nucleophilic coupling partners and formation of 

stoichiometric salt waste.  

���������������������������������������� �������������������
1 a) Silverman, G. S.; Rakita, P. E. Handbook of Grignard Reagents, Marcel Dekker: New York, 
1996. b) Richey, H. G. Grignard Reagents: New Developments, Wiley: Chichester, 2000. c) 
Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069. d) Katritzky, A. R.; Taylor, R. J. K. 
Comprehensive Organic Functional Group Transformations II, Elsevier: Dordrecht, 2004, Chapter 2, 
p. 561. 
2 a) Snieckus, V. Chem. Rev. 1990, 90, 879. b) Whisler, M. C.; MacNeil, S.; Snieckus, V.; Beak, P. 
Angew. Chem. Int. Ed. 2004, 43, 2206. c) Rohbogner, C. J.; Clososki, G. C.; Knochel, P. Angew. 

Chem. Int. Ed. 2008, 47, 1503. d) Wunderlich, S. H.; Kienle, M.; Knochel, P. Angew. Chem. Int. Ed.

2009, 48, 7256. e) Jaric, M.; Haag, B. A.; Unsinn, A.; Karaghiosoff, K.; Knochel, P. Angew. Chem. 

Int. Ed. 2010, 49, 5451.  
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Transition metal-catalyzed addition of more stable and air and moisture tolerant 

organometallic reagents (RM´, M´ = B, Si, Sn, etc.) to carbonyl and imine groups 

opens a new route providing a wider expansion in the reaction scope (Scheme 

4.1c).3 However, the permanent requirement of prefunctionalization of substrates 

resulted in a low atom- and step economy. 

Scheme 4.1 

���������������������������������������� �������������������
3 a) Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169. b) Hayashi, T.; Yamasaki, K. Chem. Rev. 

2003, 103, 2829. c) Glorius, F. Angew. Chem. Int. Ed. 2004, 43, 3364. d) Miyaura, N. Synlett 2009, 
2039. e) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2011, 111, 7774.  
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In the past decades, a new strategy based in transition-metal catalyzed C-H 

activation of substrates has emerged as a straightforward and environmentally 

friendly synthetic tool to overcome the main drawbacks of traditional 

organometallic chemistry, principally prefunctionalization issues (Scheme 4.1d).  

Therefore, the elimination of prefunctionalization introduces new challenges to 

control the selectivity and overfunctionalization through competing reactivity of 

multiple bonds. Among the most promising activation strategies, we can outline the 

use of a chelating heteroatom (directing group) that by coordination to the metal 

center will facilitate reactivity at a proximal site. A wide variety of metal catalysts 

have appeared to promote reactivity of specific C-H bonds.  

Rhodium-based catalysis has become one of the leading candidates presenting 

functional group tolerance and efficiency in this field. Most of the studies 

involving these catalysts were centered in the oxidative coupling of aryl substrates 

with alkene and alkyne derivatives via C-H activation process.4  This pioneering 

work has encouraged chemists to focus on the less investigated transition-metal-

catalyzed nucleophilic addition of C-H bonds to polar C-X (X = N, O) unsaturated 

bonds, such as aldehydes, imines, isocyanates, etc.5 In this context, some examples 

���������������������������������������� �������������������
4 For selected reviews of transition-metal catalyzed oxidative coupling with alkenes and alkynes, see: 
a) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731. b) Satoh, T.; Miura, M. Chem. Eur. 

J. 2010, 16, 11212. c) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624. d) 
Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2012, 45, 814. e) Song, G.; 
Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651. f) Patureau, F. W.; Wencel-Delord, J.; Glorius, F. 
Aldrichimica Acta 2012, 45, 31. g) Chiba, S. Chem. Lett. 2012, 41, 1554. h) Zhu, C.; Wang, R.; Falck, 
J. R. Chem. Asian J. 2012, 7, 1502. i) Rao, Y.; Shan, G.; Yang, X. L. Sci. China Chem. 2014, 57, 930. 
5 For selected reviews of transtition-metal catalyzed additions to unsaturated polar bonds, see: a) Yan, 
G.; Wu, X.; Yang, M. Org. Biomol. Chem. 2013, 11, 5558. b) Zhang, X.-S.; Chen, K.; Shi, Z.-J. 
Chem. Sci. 2014, 5, 2146. 
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based on the nucleophilic addition of C-H bonds to different polar unsaturated 

electrophiles will be discussed in order to understand the background of this work.   

4.2. Rh(III) catalyzed addition to polar � bonds  

4.2.1. Addition of ortho C-H bond to aldehydes 

Since Miyaura and coworkers reported the first rhodium-catalyzed addition of 

organoboronic acids to aldehydes, which involved a previous transmetallation 

process,6 organic chemists thought about a complementary strategy based on C-H 

bond activation before addition to the polar electrophile. Some years later, Takai et 

al. published the chelation assisted addition of aromatic C-H bond to aldehydes by 

quenching the resulting alcohols with silanes, but this time, catalyzed by another 

transition metal such as manganese.7 With this reaction in mind, and intrigued by a 

possible Rh-based C-H activation of substrates, Li and coworkers described an 

alternative Grignard type arylation of aldehydes to synthesize the respective benzyl 

alcohol derivatives (Scheme 4.2).8 In this case, rhodium-catalyzed chelation-

assisted C-H activation using a pyridine as directing group, generates an 

organometallic species that undergoes subsequent addition under mild conditions.  

Other nitrogen containing heterocycles have also been used as directing groups, 

such as pyrimidinyl, pyrazolyl and oxazolyl groups, providing a useful route to  

synthesize the corresponding alcohols. Moreover, the reaction presents a wide 

functional group tolerance and can proceed efficiently in the presence of air and 

water. 

���������������������������������������� �������������������
6 Sakai, M.; Ueda, M.; Miyaura, N. Angew. Chem. Int. Ed. 1998, 37, 3279. 
7 Kuninobu, Y.; Nishina, Y.; Takeuchi, T.; Takai, K. Angew. Chem. Int. Ed. 2007, 46, 6518.  
8 Yang, L.; Correia, C. A.; Li, C.-J. Adv. Synth. Catal. 2011, 353, 1269. 
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Scheme 4.2 

Shi and coworkers similarly described the rhodium-catalyzed direct addition of aryl 

C-H bonds to aromatic aldehydes to synthesize biaryl methanols with a highly 

effective and atom-economical procedure.9 This strategy required the presence of a 

N-containing directing group, such as a quinoline system, and showed broad group 

tolerance without the addition of any oxidant or reductant (Scheme 4.3). 

���������������������������������������� �������������������
9 Li, Y.; Zhang, X.-S.; Chen, K.; He, K.-H.; Pan, F.; Li, B.-J.; Shi, Z.-J. Org. Lett. 2012, 14, 636. 
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Scheme 4.3 

Recent developments have shown a tandem C-H bond nucleophilic addition 

followed by cyclization reaction where a capture of the formed alcohol 

intermediate occurred leading to the synthesis of heterocycles. In this context, 

Ellman and coworkers were able to synthesize biologically active phthalides in a 

single step by Rh(III) catalyzed C-H activation of benzimidates and addition to 

differently substituted aromatic and aliphatic aldehydes.10 In this case, they propose 

a mechanism where the imidate not only acts as a directing group to direct the 

ortho C-H bond activation, but also serves to capture the alcohol intermediate 

formed upon addition with release of a methoxy group. A final hydrolysis would 

afford the final phthalide (Scheme 4.4).  

���������������������������������������� �������������������
10 Lian, Y.; Bergman, R. G.; Ellman, J. A. Chem. Sci. 2012, 3, 3088. 



Chapter IV Rh(III)-catalyzed C-H Bond Activation    

203 

�

Scheme 4.4 

Following the same scheme but using a carboxylic acid as directing group, Li et al. 

reported a simple method to synthesize phthalimides by the ortho C-H bond 

addition of benzoic acids to aldehydes and subsequent cyclization.11

Nucleophilic addition to ketones has been less investigated, as ketone moiety 

represents a less reactive and more steric hindered group than aldehyde. Just a few 

examples involving iridium metal complexes12 as catalysts appear in the 

bibliography. Thus, Shi et al. reported the first methodology to perform direct 

addition of aromatic C-H bonds to ketones catalyzed by rhodium and using a 

quinoline as directing group.13  

���������������������������������������� �������������������
11 Shi, X.; Li, C.-J. Adv. Synth. Catal. 2012, 354, 2933. 
12 a) Tsuchikama, K.; Hashimoto, Y.; Endo, K.; Shibata, T. Adv. Synth. Catal. 2009, 351, 2850. b) 
Shibata, T.; Hashimoto, Y.; Otsuka, M.; Tsuchikama, K.; Endo, K. Synlett 2011, 2075.  
13 Zhang, X.-S.; Zhu, Q.-L.; Luo, F.-X.; Chen, G.; Wang, X.; Shi, Z.-J. Eur. J. Org. Chem. 2013, 
6530. 
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4.2.2. Addition of ortho C-H bond to imines 

Imines represent an important source of nitrogen for synthetic organic 

transformations. In this context, when the coupling partner is changed from an 

aldehyde to an imine group, the addition reaction is also effective generating 

amines as final products. The work described in this chapter is based in the 

addition of C-H bonds to this moiety, thus some examples will be described to help 

to understand the background of this field.  

In 2011, Ellman and coworkers described the first arylation of imines based in 

Rh(III)-catalyzed C-H activation assisted by pyridine as chelating group to obtain 

branched N-protected Boc amines (Scheme 4.5).14 The use of AgSbF6 additive as 

halide abstractor was required since it favors the coordination between the cationic 

metal center and the nitrogen atom of imines. At that time, the activation process 

was thought to occur through an electrophilic deprotonation of the ortho-phenyl C-

H bond. However, the same group reported later a detailed mechanistic study 

proposing a concerted metalation-deprotonation (CMD) mechanism proved by the 

isolation and characterization of relevant Rh(III) complex intermediates.15

�

Scheme 4.5 

���������������������������������������� �������������������
14 Tsai, A. S.; Tauchert, M. E.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2011, 133, 1248. 
15 Tauchert, M. E.; Incarvito, C. D.; Rheingold, A. L.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. 

Soc. 2012, 134, 1482. 
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Shi and coworkers,16 continuing with the work of Ellman, reported the chelation-

assisted rhodium-catalyzed nucleophilic addition of aryl C-H bonds to N-sulfonyl 

arylaldimines using pyridine again as directing group. This strategy included a 

wider substrate scope and provided a wide range of functional group tolerance 

(Scheme 4.6). 
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Scheme 4.6 

The same group developed the first strategy of direct addition of alkenyl C-H to N-

sulfonyl aldimines and aldehydes via rhodium catalysis with assistance of pyridyl 

directing group (Scheme 4.7).17  

���������������������������������������� �������������������
16 Li, Y.; Li, B.-J.; Wang, W.-H.: Huang, W.-P.; Zhang, X.-S.; Chen, K.; Shi, Z.-J. Angew. Chem. Int. 

Ed. 2011, 50, 2115. 
17 Li, Y.; Zhang, X.-S.; Zhu, Q.-L.; Shi, Z.-J. Org. Lett. 2012, 14, 4498. 
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Scheme 4.7 

Ellman and coworkers have also shown that amides can act as directing groups in 

the rhodium-catalyzed C-H addition to N-sulfonyl aldimines.18 In this sense, the 

limited utility of the pyridyl directing group was overcome by the use of a directing 

amide group, which was responsible of ortho-functionalization in the aryl group by 

Lewis base directed C-H cleavage. The reaction showed great functional group 

compatibility (Scheme 4.8). 

�

Scheme 4.8 

���������������������������������������� �������������������
18 Hesp, K. D.; Bergman, R. G.; Ellman, J. A. Org. Lett. 2012, 14, 2304. 
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Similarly, heteroaromatic C-H bonds may also be activated by amide chelating 

groups. Therefore, Zhou et al. reported regioselective C-2 metalation of indoles 

and subsequent nucleophilic addition to N-sulfonyl aldimines catalyzed by rhodium 

(Scheme 4.9).19

�

Scheme 4.9 

As has been shown through these examples, rhodium catalyzed nucleophilic 

addition to aldehyde and imine groups via C-H activation, represents an efficient 

approach to synthesize alcohols and amines. Finally, some examples of ortho C-H 

bond addition to isocyanate groups for the synthesis of amides will be described. 

4.2.3. Addition of ortho C-H bond to isocyanates 

In 1978, Sonogashira reported the pioneer studies of the direct addition of benzene, 

used as solvent, to phenyl isocyanate catalyzed by Rh4(CO)12 in the presence of 

carbon monoxide at 220 ºC to obtain benzanilide.20 Since that, a wide number of 

examples involving different transition-metal catalyzed direct additions to 

���������������������������������������� �������������������
19 Zhou, B.; Yang, Y.; Lin, S.; Li, Y. Adv. Synth. Catal. 2013, 355, 360. 
20 Hong, P.; Yamazaki, H.; Sonogashira, K.; Hagihara, N. Chem. Lett. 1978, 535. 
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isocyanates group have been developed such as rhenium21 and ruthenium22

complexes so far. 

Continuing with their studies in rhodium-based catalysis, Ellman published the 

efficient synthesis of N-acyl anthranilamides and enamine amides via amidation of 

aryl C-H bonds with isocyanates (Scheme 4.10).23 Both aryl and alkyl isocyanates 

are compatible in this strategy. 

Scheme 4.10 

In 2013, Li and coworkers described synthesis of biologically active substituted 5-

ylidinepyrrol-2(5H)-ones via rhodium-catalyzed nucleophilic addition of an 

alkenyl C-H bond to isocyanates, followed by annulation process under mild 

conditions (Scheme 4.11).24 The oxime moiety directed the activation to the ortho

C-H bond.  

���������������������������������������� �������������������
21 a) Kuninobu, Y.; Tokunaga, Y.; Kawata, A.; Takai, K. J. Am. Chem. Soc. 2006, 128, 202. b) 
Kuninobu, Y.; Tokunaga, Y.; Takai, K. Chem. Lett. 2007, 36, 872. 
22 Muralijaran, K.; Parthasarathy, K.; Cheng, C.-H. Org. Lett. 2012, 14, 4262. 
23 Hesp, K. D.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2011, 133,  11430. 
24 Hou, W.; Zhou, B.; Yang, Y.; Feng, H.; Li, Y. Org. Lett. 2013, 15, 1814. 
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Scheme 4.11 

�

Recently, Kim and coworkers have described the synthesis of C-2-amidated N-

heterocyclic cores through rhodium-catalyzed amidation of indoles and pyrroles, 

which contained a pyrimidinyl group to direct ortho C-H activation, with different 

aryl and alkyl isocyanates (Scheme 4.12).25  

�

Scheme 4.12 

The same group has reported the generation of N-acylsulfonamides and ortho-

amidated azobenzenes by rhodium(III)-catalyzed nucleophilic addition of 

���������������������������������������� �������������������
25 Jeong, T.; Han, S.; Mishra, N. K.; Sharma, S.; Lee,S.-Y.; Oh, J. S.; Kwak, J. H.; Jung, Y. H.; Kim, 
I. S. J. Org. Chem. 2015, 80, 7243. 
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azobenzenes to arylsulfonyl and aryl and alkyl isocyanates.26 This effective 

strategy provides the ready access to a wide scope of substrates that are known to 

be precursors of biologically active compounds (Scheme 4.13). 

�

Scheme 4.13 

In conclusion, aldehydes, imines and isocyanates represent the most common 

groups to be used as electrophilic partners for coupling reactions based in 

transition-metal catalyzed nucleophilic addition, principally in rhodium catalysis. 

Different chelating groups such as pyridine, pyrimidine or simple amides have 

been used to direct activation of ortho C-H bonds. There is still room for 

improvement in this field, so the study on different electrophilic groups and other 

metal catalysts is on great expansion. 

���������������������������������������� �������������������
26 Han, S.; Mishra, N. K.; Sharma, S.; Park, J.; Choi, M.; Lee, S.-Y.; Oh, J. S.; Jung, Y. H.; Kim, I. S.  
J. Org. Chem. 2015, 80, 8026.
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4.3. Results and discussion 

As we have stated before, metal-transition catalyzed nucleophilic addition through 

C-H activation and insertion in unsaturated polar bonds involves an easy and atom-

economical strategy for the synthesis of more complex molecules.  

Diverse metal complexes have been used to perform the addition of C-H bond of 2-

arylpyridines to different polar bonds. We have already mentioned the example 

reported by Cheng and coworkers for ruthenium(II) catalyzed ortho-directed 

amidation of 2-arylpyridines with isocyanates via C-H activation.22 In addition, 

cobalt(III) catalyzed C-H addition of 2-arylpyridines with imines have also been 

published by Matsunaga and coworkers.27 Furthermore, transition-metal catalyzed 

addition of boronic acids to cyclic ketimines has also been investigated.28 However, 

the ortho-directed addition of 2-arylpyridines with cyclic imines has never been 

reported. Bolm´s group had previously performed rhodium catalyzed studies in the 

oxidative coupling with alkenes and alkynes via C-H bond activation.29  

In this context, the optimization of the catalytic conditions for the rhodium-

catalyzed direct nuclephilic addition of 2-phenylpyridine to a non-substituted 

[1,2,3]-benzoxathiazine-2,2-dioxide via C-H bond activation has been carried out 

���������������������������������������� �������������������
27 a) Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. Angew. Chem. Int. Ed. 2013, 52, 2207. b) 
Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. Chem. Eur. J. 2013, 19, 9142. 
28 a) Nishimura, T.; Noishiki, A.; Tsui, G. C.; Hayashi, T. J. Am. Chem. Soc. 2012, 134, 5056. b) 
Yang, G.; Zhang, W. Angew. Chem. Int. Ed. 2013, 52, 7540. 
29 a) Dong, W.; Wang, L.; Parthasarathy, K.; Bolm, C. Angew. Chem. Int. Ed. 2013, 52, 11573. b) 
Becker, P.; Priebbenow, D. L.; Pirwerdjan, R.; Bolm, C. Angew. Chem. Int. Ed. 2014, 53, 269. c) 
Parthasarathy, K.; Bolm, C. Chem. Eur. J. 2014, 20, 4896. 
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in the group of Bolm, by the postdoctoral student Kanniyappan Parthasarathy 

(Scheme 4.14).30
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Scheme 4.14 

The aim of this work was to synthesize a variety of coupling partners, such as 2-

(hetero)arylpyridines and cyclic imines bearing different substitution patterns, in 

order to evaluate the scope of the reaction (Scheme 4.15).  

�

Scheme 4.15 

���������������������������������������� �������������������
30 Parthasarathy, K.; Azcargorta, A. R.; Cheng, Y.; Bolm, C. Org. Lett. 2014, 16, 2538. 
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4.3.1. Synthesis of 2-(hetero)arylpyridines and [1,2,3]-benzoxathiazine-

2,2-dioxides

Firstly, a variety of substituted 2-aryl- and 2-heteroarylpyridines were synthesized 

by a Suzuki cross-coupling reaction (Scheme 4.16).31 This methodology permitted 

the obtention of (hetero)arylpyridines 82b-82h by treatment of 2-pyridinyl bromide 

(81) and differently substituted aryl and heteroaryl boronic acids 80b-80h in the 

presence of Pd(PPh3)4 catalyst and Na2CO3 as base, obtaining from low yields 

(18% for the 2-thiophenylpyridine) to excellent yields for the rest of products 

(62%-100%).32 2-Phenylpyridine (82a) was commercially available. 
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Scheme 4.16 

���������������������������������������� �������������������
31 For some reviews in Suzuki coupling reaction, see: a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 
95, 2457. b) Suzuki, A. Angew. Chem. Int. Ed. 2011, 50, 6722. c) Heravi, M. M.; Hashemi, E. 
Monats. für Chem. 2012, 143, 861. d) Soloducho, J.; Olech, K.; Swist, An.; Zajac, D.; Cabaj, J. 
ACES, 2013, 3, 19. e) Kapdi, A. R.; Prajapati, D. RSC Adv. 2014, 4, 41245. f) Zafar, M. N.; Mohsin, 
M. A.; Danish, M.; Nazar, M. F.; Murtaza, S. Russ. J. Coord. Chem. 2014, 40, 781. g) Maluenda, I.; 
Navarro, O. Molecules 2015, 20, 7528.  
32 Mizuno, H.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2011, 133, 1251. 
�
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The preparation of the differently functionalized [1,2,3]-benzoxathiazine-2,2-

dioxides 85a-85f involved treatment of 2-hydroxybenzaldehydes 83a-83f with 

commercially available chlorosulfonylisocyanate (84) in toluene under reflux 

(Scheme 4.17).33 This procedure involves imine formation and subsequent 

cyclization to the expected cyclic imines 85a-85e in moderate to good yields. 

�

Scheme 4.17 

The preparation of cyclic imine 85f was conducted in a two step sequence starting 

with the formylation of sesamol by reaction with triethyl orthoformate in the 

presence of a Lewis acid (AlCl3) as depicted Scheme 4.18. Acidic workup provided 

2-hydroxy-4,5-methylenedioxybenzaldehyde (83f) in moderate yield, which was 

subjected to reaction with chlorosulfonylisocyanate (84) to afford ketimine 85f

(67%). 

�

Scheme 4.18 

���������������������������������������� �������������������
33 Kamal, A.; Sattur, P. B. Synthesis 1981, 272. 
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4.3.2. Scope of the reaction 

We started the evaluation of the substrate scope using the best optimization 

conditions (Scheme 4.19).30 All the results are depicted in Table 4.1. The treatment 

of various 4-substituted phenylpyridines (82a-82e) with cyclic imine 85a under 

optimized conditions, allowed efficiently C-H activation/nucleophilic addition to 

obtain products 86a-86e in high yields (72-95%) (Entries 1-5). Substrate 2-(3-

methoxyphenyl)pyridine (82f) followed selective C-6 ortho-directed nucleophilic 

addition to ketimine 85a catalyzed by rhodium, to afford the coupling product 86f 

in high yield (81%) (Entry 6). It is noteworthy to highlight that from two possible 

C-H activation sites (C-2 and C-6), the less sterically hindered one C-6 at the 

phenyl ring was more reactive.  

Different heteroarylpyridines such as 2-thienylpyridine 82g were tried, following 

efficient addition to provide product 86g (Entry 7). Treatment of (2-naphthalen-1-

yl)-pyridine (82h) with cyclic imine 85a under catalyzed conditions, resulted in the 

formation of addition product 86h in moderate yield (57%) (Entry 8). When 

commercially available 2-phenyl-quinoline (82i) and benzo[h]quinolone (82j) were 

used as substrates low to moderate yields were obtained (27-56%) (Entries 9-10). 

We continued with further development of the scope, this time by using 2-

phenylpyridine (82a) as reference substrate and employing differently 

functionalized cyclic imines (85b-85f) as coupling partners. In this way, treatment 

of substrate 82a with 6-methoxy- and 6-halo-[1,2,3]-benzoxathiazine-2,2-dioxide 

(85b-85e) under rhodium(III) catalyzed conditions resulted in the synthesis of 

products (86k-86n) in high yields (69-83%) (Entries 11-14). Finally, no addition 
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product was observed when reaction of pyridine 82a with ketimine 85f was 

performed (Entry 15). 

�

Scheme 4.19 

Table 4.1. Nucleophilic addition of 2-arylpyridines and related substrates 82a-82j to cyclic 

imines 85a-85f.a  

Entry 82 85 Product 86 Yield (%) 

1 82a 85a R1 = H, 86a 88 

2 82b 85a R1 = Me, 86b 95 

3 82c 85a R1 = Cl, 86c 79 

4 82d 85a R1 = F, 86d 83 

5 82e 85a R1 = Ph, 86e 72 

6 82f 85a 86f 81 

7 82g 85a 86g 97 
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8 82h 85a 86h
b 57 

9 82i 85a 86i 56 

10 82j 85a 86j 27 

11 82a 85b R2 = OMe, 86k 69 

12 82a 85c R2 = F, 86l 74 

13 82a 85d R2 = Cl, 86m 81 

14 82a 85e R2 = Br, 86n 83 

15 82a  85f 86o
c Traces 

[a] Reaction conditions: 2-arylpyridine 82 (1 mmol), cyclic imine 85 (1.1 mmol), 
[Cp*Rh(CH3CN)3][SbF6]2 (5 mol%) in t-AmylOH (3 mL) at 85 ºC for 16 h. [b] Product 86h was not 
isolated pure. [c] Product 86o was not characterized (impure). 

Further extension of the scope was performed by the Ph.D. student Ying Cheng, 

where additional coupling partners were used.30 The new results are included in the 

following Table 4.2. 
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Table 4.2. Extension of the scope.a  

Entry 82 85 Product 86 Yield (%) 

1 85a 86p 77 

2 85a 86q 72 

3 85a 86r 74 

4 85a R3 = H, 86s 80 

5 85a R3 = Cl, 86t 77 

6 85a R2 = Br, 86u 70 

7 85f 86v 74 

[a] Reaction conditions: 2-arylpyridine 82 (1 mmol), cyclic imine 85 (1.1 mmol), 
[Cp*Rh(CH3CN)3][SbF6]2 (5 mol%) in t-AmylOH (3 mL) at 85 ºC for 16 h. 
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4.3.3. Mechanism and kinetic studies 

A mechanistic proposal and determination of Kinetic Isotope Effect (KIE)30 was 

established by postdoctoral student Kanniyappan Parthasarathy, on the basis of 

previously reported studies in this field.13,16,17,26

The catalytic cycle illustrated in Scheme 4.20, starts with the coordination of the 

nitrogen atom of the 2-phenylpyridine (82a) to the cationic rhodium center which 

is followed by insertion of the metal in the activated C-H bond in order to form the 

five-membered rhodacycle I, together with the loss of a proton. Then, coordination 

of the cyclic imine 85a to the rhodium takes place to generate intermediate II by 

ligand exchange, which directly undergoes nucleophilic addition or insertion of 

C=N bond of the imine into Rh-C bond to afford seven-membered rhodacycle III. 

Finally, proton abstraction of intermediate III gives the desired addition product 

86a, accompanied by the regeneration of the active rhodium catalyst which could 

enter the catalytic cycle again. External additives are not required to perform this 

catalytic cycle. 
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Scheme 4.20 

Intermolecular competition experiment was carried out by treatment of cyclic 

imine 85a and a mixture 1:1 of 2-phenylpyridine (82a) and deuterated 

phenylpyridine 82a-D5. The ratio of the two products 86a and 86a-D4 was 

calculated by integration of 1H NMR signals, to provide intermolecular kinetic 

isotope effect (KIE) of kH/kD = 1.58, which determined that C-H bond cleavage is 

rate determining (Scheme 4.21).34

���������������������������������������� �������������������
34 Simmons, E. M.; Hartwig, J. F. Angew. Chem. Int. Ed. 2012, 51, 3066. 
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Scheme 4.21 

In conclusion, an efficient and selective strategy to synthesize amine derivatives 

has been developed through rhodium(III) catalyzed ortho-directed chelation 

assisted C-H activation, followed by nucleophilic addition of differently 

functionalized arylpyridines with cyclic imines. Additionally, this C-H 

functionalization method provides high functional group tolerance.  
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5.1. Conclusions 

• The application of intramolecular carbolithiation reaction via conjugate 

addition of electron-deficient heteroaryllithiums, such as pyridinyl and 

quinolinyllithiums, generated by halogen-lithium exchange on 2-alkenyl 

substituted N-(haloheteroarylmethyl)pyrroles, has allowed the synthesis of 

pyrrolo[1,2-g]naphthyridine and benzo[b]pyrrolo[1,2-g]naphthyridine 

derivatives in low to moderate yields. However, these Parham type 

cyclizations via SN2´reaction on the corresponding allylic alcohol derivatives 

proved unsuccessful, due to competitive side addition reactions.  

• The intramolecular carbolithiation reaction via conjugate addition on N-(o-

iodobenzyl)pyrrolidinylacrylates, derived from L-proline, takes place 

diastereoselectively affording the corresponding enantiomerically pure 

(10R,10aS)-pyrroloisoquinoline. On the other hand, intramolecular 

carbolithiation reaction via SN2´reaction is not favored when TBDMS or 

acetyl protected allylic alcohols are used as internal electrophiles. 
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• Intramolecular Palladium(0)-catalyzed reaction of 2-alkenyl substituted N-

(haloheteroarylmethyl)pyrroles always led to the direct arylation reaction on 

the pyrrole nucleus, using catalytic systems that would favor either a neutral 

or a cationic mechanism. Thus, the synthesis of heterofused indolizine 

systems, such as pyrido[2,3-a]pyrrolizines and pyrrolizino[1,2-b]quinolines, 

can be achieved in high yields. 

• Tertiary and quaternary stereocenters can be efficiently generated through 

intramolecular Mizoroki-Heck reaction over silyl protected N-(o-

iodobenzyl)pyrrolyl allylic alcohol derivatives for the synthesis of 

pyrroloisoquinolines through �´-hydride elimination. However, no good 

enantioselection could be achieved using chiral phosphanes under all 

conditions tested. When the corresponding pivaloyl protected allylic alcohol 

derivatives were used, the reaction was not regioselective, obtaining mixtures 

of �´-hydride and �´-leaving group elimination products in low yields. On the 

N-(o-haloheteroarylmethyl)pyrrolyl allylic alcohol derivatives the direct 

arylation reactions is always competitive. 
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• The generation of tertiary stereocenters have been efficiently achieved via

intramolecular Mizoroki-Heck reaction of N-(o-iodobenzyl)pyrrolyl allylic 

alcohol derivatives for the synthesis of pyrroloisoquinolines in a 

diastereoselective manner. It has been possible to control the �´-hydride or �´-

leaving group elimination in the formation of the stereocenter, by changing the 

protecting group in the alcohol moiety. When acyl protecting groups (pivalate 

or acetate) are used, the cyclization takes place through �´-alkoxy group 

elimination to afford 10-vinyl substituted pyrroloisoquinolines in moderate 

yields and diastereoselectivities. However, when the corresponding silyl 

protected allylic alcohol (TBDMS) derivatives are used as substrates, the 

reaction takes also place in a diastereoselective way with retention of the 

protecting group. 

• An efficient and selective Rhodium(III)-catalyzed direct nucleophilic addition 

of 2-(hetero)arylpyridines to cyclic imines via C-H bond activation has been 

developed. This methodology allows the synthesis of a wide variety of amine 

derivatives using (hetero)arylpyridines as electrophilic coupling partners, 

where the pyridine group would act as a directing group to assist the C-H 

activation.  



�
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6.1. General methods and materials 

RMN 

__________________________________________________________________________________________________________________________�

Monodimensional and/or bidimensional nuclear magnetic resonance proton and 

carbon spectra (1H NMR and 13C NMR) were acquired at 25 ºC on a Bruker AC-

300 spectrometer (300 MHz for 1H and 75.4 MHz for 13C) and on a Bruker AC-500 

spectrometer (500 MHz for 1H and 125.7 MHz for 13C). During the stay in RWTH 

Aachen University, spectra were acquired at 25 ºC on a Agilent VNMR 600 

spectrometer (600 MHz for 1H and 151 MHz for 13C), on a Agilent VNMR 400 

spectrometer (400 MHz for 1H and 101 MHz for 13C) and on a Varian Mercury 300 

spectrometer (300 MHz for 1H and 75 MHz for 13C). Chemical shifts (�) are 

reported in ppm relative to residual solvent signals (CDCl3, 7.26 ppm for 1H NMR, 

CDCl3, 77.0 ppm for 13C NMR; (CD3)2CO, 2.05 ppm for 1H NMR, (CD3)2CO, 28.8 

ppm for 13C NMR; CD3OD, 3.31 ppm for 1H NMR, CD3OD, 49.0 ppm for 13C 

NMR) and coupling constants (J) are expressed in hertz (Hz). The following 

abbreviations are used to indicate the multiplicity in 1H NMR spectra: s, singlet; d, 

doublet; t, triplet; q, quadruplet; m, multiplet; brs, broad singlet. Assignments of 

individual 13C and 1H resonances are supported by DEPT experiments and 2D 

correlations experiments (COSY, HSQCed or HMBC). Selective nOe or NOESY 

experiments were performed when necessary.1  

���������������������������������������� �������������������
1 Kinss, M.; Sanders, J. K. M. J. Mag. Res. 1984, 56, 518. 
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IR 

__________________________________________________________________________________________________________________________�

IR spectra were obtained using an ATR in a JASCO FT/IR 4100 in the interval 

between 4000 and 400 cm-1 with a 4 cm-1 resolution. Only characteristic bands are 

given in each case. During the stay in RWTH Aachen University, IR spectra were 

recorded as film with ATR in a PerkinElmer Spectrum 100 spectrometer with an 

attached UATR device Diamond KRS-5. 

MS 

__________________________________________________________________________________________________________________________�

GC-MS analyses were performed on an Agilent 7890A, using a column HP-1 

(100% methylpolysiloxane, 30 m × 0.25 mm × 0.25 µm). Mass spectra were 

recorded using electron impact conditions (EI) at 70 eV on an Agilent MSD 5975C 

spectrometer. High resolution mass spectra (HRMS) were performed by the Mass 

Spectrometry General Service at the University of the Basque Country using a 

Micromass GCT, equipped with a TOF detector under chemical ionization (CI) to 

230 eV (methane as the reagent gas, positive mode), using a hybrid mass 

spectrometer MALDI-LTQ-Orbitrap XL (Thermofisher Scientific) operating in 

positive mode or using a ultra performance liquid chromatograph (Acquity UPLC, 

Waters Cromatografía S.A.), in tandem with a QTOF mass spectrometer (SYNAPT 

G2 HDMS, Waters Cromatografía S.A.), with an electrospray ionization source in 

a positive mode. During the stay in RWTH Aachen University, high resolution 

mass spectra (HRMS) were acquired on a Finnigan MAT 95 spectrometer. 
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m.p. 

__________________________________________________________________________________________________________________________�

Melting points were measured in a Büchi B-540 apparatus in open capillary tubes 

and are uncorrected.  

Polarimetry 

__________________________________________________________________________________________________________________________�

Optical rotations were measured at 20 ºC on a Jasco P-2000 polarimeter with 

sodium lamp at 589 nm and a path length of 1 dm. Solvent and concentration are 

specified in each case. 

HPLC 

__________________________________________________________________________________________________________________________�

High performance liquid chromatography on a chiral stationary phase experiments 

were performed on a Waters 2695 chromatograph coupled to a Waters 2998 

photodiode array detector. Daicel Chiralpak IC and ADH columns (0.46 cm x 25 

cm) were used in isocratic elution mode (otherwise indicated): specific conditions 

are indicated for each case. 
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Reagents and Solvents 

__________________________________________________________________________________________________________________________�

Anhydrous solvents were purified according to standard procedures, and dried with 

activated molecular sieves prior to their use.2 n-Hexane used as solvent for flash 

column chromatography was distilled prior to its use.  

Commercially available starting materials and reagents (Sigma-Aldrich, Fluka and 

Acros Organics) were used without further purification. The supplier´s specified 

assay or purity of the reagents were accounted when the reaction batches were 

calculated, including: ethyl (triphenylphosphoranylidene)acetate 95% purity, 

(carbethoxyethylidene)triphenylphosphorane 94% purity, TBDMSCl 97% purity, 

3,5-dimethylpyrrole-2-carboxaldehyde 95% purity, n-Bu4NOAc 97% purity and 

P(o-tolyl)3 97% purity. TMEDA was distilled prior to its use and stored under 

argon atmosphere. Palladium catalysts were purchased from Sigma-Aldrich and 

were used without further purification: Pd(OAc)2 98% purity, Pd(dba)2 99.9% 

purity, Pd2(dba)3.CHCl3 99.9% purity, Pd(PPh3)4 99% purity and PdCl2(o-tolyl)3

97% purity.  

During the stay in RWTH Aachen University, rhodium(III) complex 

[Cp*Rh(MeCN)3][SbF6]2 was prepared according to a literature protocol3 by 

postdoctoral student Kanniyappan Parthasarathy.  

���������������������������������������� �������������������
2 a) Armarego, W. L. F., Chai, C. L. L. Purification of Laboratory Chemicals, 6th Ed., Elsevier 
Science: Burlington, Massachusetts, 2009; b) Williams, d. B. G.; Lawton, M. J. Org. Chem. 2010, 75, 
8351. 
3 White, C.; Thompson, S. J.; Maitlis, P. M. J. C. S. Dalton 1977, 1654.  
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Miscellaneous 

__________________________________________________________________________________________________________________________�

The reactions were monitored by thin layer chromatography (TLC) in pre-coated 

aluminum-backed plates Merck F254. Visualization was accomplished with UV 

light (� = 254 nm and 360 nm) or by immersion in phosphomolybdic acid, 

potassium permanganate or vanillin solution.4 For column chromatographic 

separations Silicagel 60 (Merck), 230-400 mesh ASTM, or aluminum oxide neutral 

active 90 (Merck), 70-230 mesh ASTM, were used when performed under 

pressure.5  

All air and moisture sensitive reactions were performed under argon. 

All the glassware was previously dried for 12 h prior to utilizing in an oven at    

130 ºC and allowed to cool under a dehumidified atmosphere, and purged with 

argon. The addition of solutions and liquids was carried out by oven-dried syringe 

or cannula.6

The solvents were removed at reduced pressure on Rotavapors Büchi R210, R200 

and R114. Weighs were made in analytical balances Mettler AE-260 or Sartorius 

Practum 224-1S. Low temperature reactions were performed using baths or 

immersion coolers TERMO HAAKE EK90.  

���������������������������������������� �������������������
4 Stahl, E. Thin layer chromatography. Springer-Verlag: Berlín, 1969. 
5 Still, W. C.; Kann, H.; Miltra, A. J. J. Org. Chem. 1978, 43, 2923. 
6 Harwood, L. M.; Moody, C. J.; Percy, J. M. Experimental organic chemistry. Standard and 

microscale, 2nd Ed., Blackwell Science: Oxford, 1999.
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6.2. Intramolecular carbolithiation reaction via conjugate 

addition on N-(o-haloheteroarylmethyl)pyrrolylacrylates and 

acrylamides 

6.2.1. Synthesis of o-halopyridines 5a-5d and o-haloquinolines 9a-9d 

Synthesis of (2-bromopyridin-3-yl)metanol (1)
7

To a solution of 2-bromo-3-pyridinecarboxaldehyde (1.00 g, 

5.38 mmol) in dry methanol (20 mL) cooled at 0 ºC, NaBH4

(0.29 g, 7.77 mmol) was added portion wise. After the addition, 

the ice bath was removed and the mixture allowed to warm up to room temperature 

and stirred for 2 h. The reaction was followed by TLC. When the reaction was 

completed, the mixture was eluted with EtOAc (20 mL) and washed with a 

saturated NH4Cl solution (2 x 10 mL) and brine (1 x 10 mL). The aqueous phase 

was extracted with EtOAc (3 x 20 mL). The combined organic extracts were dried 

over anhydrous Na2SO4, filtered and concentrated to dryness. Product 1 was 

obtained pure as a white solid (0.99 g, 5.27 mmol, 98% yield) and was used for the 

next step without further purification. 

m.p.: 74-76 ºC (Hexane/EtOAc); IR (ATR): 3264 cm-1 (brs, O-H st), 1565 cm-1

(C=Carom st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 3.27 (brs, 1H, CH2OH), 4.72 (s, 

2H, CH2OH), 7.28 (dd, J = 7.6, 4.8 Hz, 1H, H5pyridine), 7.80 – 7.91 (m, 1H, 

H4pyridine), 8.22 (dd, J = 4.8, 1.8 Hz, 1H, H6pyridine); 
13

C NMR (CDCl3, 25 ºC): �

(ppm) = 63.1 (CH2OH), 123.1 (C5), 136.6 (C4), 137.5 (C3), 141.3 (C2), 148.4 (C6); 

���������������������������������������� �������������������
7 a) Martin, N.; Pierre, C.; Davi, M.; Jazzar, R. Chem. Eur. J. 2012, 18, 4480. b) Spivey, A. C.; 
Shukla, L.; Hayer, J. F. Org. Lett. 2007, 9, 891. 

N Br

OH
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MS (CI): (m/z) 188 (MH+, 100); 172 (88); 170 (89); 110 (19); 108 (28); HRMS 

(CI): Calculated for C6H7NOBr79 (MH+): 187.9711. Found: 187.9721. 

Synthesis of 2-bromo-3-(bromomethyl)pyridine (2)
8
  

To a solution of (2-bromopyridin-3-yl)methanol (1) (1.00 g, 

5.32 mmol) in dry CH2Cl2 (20 mL), PBr3 (0.61 mL, 6.38 mmol) 

was added dropwise. The reaction was stirred overnight at room 

temperature. After that time, an aqueous NaHCO3 saturated solution was added 

slowly until release of gas stopped.  Subsequently, the organic phase was separated 

and further washed with the NaHCO3 saturated solution (3 x 20 mL). The aqueous 

phase was then extracted with CH2Cl2 (3 x 20 mL). The combined organic extracts 

were dried over anhydrous Na2SO4, filtered and concentrated to dryness. Product 2

was obtained pure as a light yellow solid (1.22 g, 4.87 mmol, 91% yield) and was 

used for the next step without further purification.   

m.p.: 52-53 ºC (CH2Cl2); IR (ATR): 1578 cm-1 (C=C st), 1050 cm-1 (C-Br st); 1
H 

NMR (CDCl3, 25 ºC): � (ppm) = 4.53 (s, 2H, CH2Br),  7.26 (dd, J = 7.6, 4.7 Hz, 

1H, H5pyridine), 7.75 (dd, J = 7.6, 1.9 Hz, 1H, H4pyridine), 8.28 (dd, J = 4.7, 1.9 Hz, 1H, 

H6pyridine); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = 31.4 (CH2Br), 123.2 (C5), 134.6 

(C3), 139.2 (C4), 143.6 (C2), 149.6 (C6). MS (CI): (m/z) 254 (45); 252 (100); 250 

(MH+, 50); 170 (44). HRMS (CI): Calculated for C6H6NBr79
2 (MH+): 249.8867. 

Found: 249.8885. 

���������������������������������������� �������������������
8 Ruiz, J.; Lete, E.; Sotomayor, N. Tetrahedron 2006, 62, 6182. 

N Br

Br
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Synthesis of 1-((2-bromopyridin-3-yl)methyl)-1H-pyrrole-2-carbaldehyde (3a) 

To a suspension of KOH (0.35 g, 6.24 mmol) in DMSO (20 

mL), pyrrole 2-carboxaldehyde (0.15 g, 1.55 mmol) was 

added. The mixture was stirred for 2 h at room temperature. 

After that time, 2-bromo-3-(bromomethyl)pyridine (2) (0.59 

g, 2.35 mmol) was added to the former solution and the reaction was stirred for 4 h 

more at room temperature. The reaction was quenched with H2O (20 mL) and the 

crude was extracted with CH2Cl2 (3 x 20 mL). The organic phase was washed with 

H2O (3 x 20 mL) and brine (1 x 10 mL). The combined organic extracts were dried 

over anhydrous Na2SO4, filtered and concentrated to dryness. The crude was 

subjected to flash chromatography (silica gel, hexane/EtOAc 7/3) obtaining 

product 3a as a white solid (0.35 g, 1.32 mmol, 85% yield). 

m.p.: 92-94 ºC (Hexane/EtOAc); IR (ATR): 3012 cm-1 (C-Harom st), 2810 cm-1 (C-

Haliph st), 1657 cm-1 (C=O st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 5.56 (s, 2H, 

CH2N),  6.30 (dd, J = 4.0, 2.6 Hz, 1H, H4pyrrole), 6.80 – 6.83 (m, 1H, H4pyridine), 6.99 

(dd, J = 4.0, 1.7 Hz, 1H, H5pyrrole), 7.00 – 7.03 (m, 1H, H3pyrrole), 7.10 (dd, J = 7.6, 

4.7 Hz, 1H, H5pyridine), 8.19 (dd, J = 4.7, 1.9 Hz, 1H, H6pyridine), 9.50 (s, 1H, CHO); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = 50.9 (CH2N), 110.6 (C4pyrrole) 123.0 (C5pyridine), 

124.9 (C5pyrrole), 131.2 (C2pyrrole), 131.5 (C3pyrrole), 134.7 (C3pyridine), 135.8 (C4pyridine), 

141.5 (C2pyridine), 148.7 (C6pyridine), 179.2 (CHO). MS (CI): (m/z) 267 (89); 265 

(MH+, 100); 185 (64). HRMS (CI): Calculated for C11H10N2OBr79 (MH+): 

264.9976. Found: 264.9979. 

N Br

N

CHO
24

5

6

3
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Synthesis of 1-((2-iodopyridin-3-yl)methyl)-1H-pyrrole-2-carbaldehyde (3b) 

(Bromopyridinylmethyl)pyrrole carbaldehyde 3a (1.08 g, 

4.07 mmol) in dry dioxane (10 mL) was added via canula to 

a suspension of CuI (38.80 mg, 0.20 mmol), N,N´-

dimethylethylenediamine (0.04 mL, 0.41 mmol) and NaI 

(1.22 g, 8.15 mmol) in dry dioxane (30 mL) under an inert atmosphere. The 

mixture was heated to reflux for 24 h. H2O (20 mL) was added and the crude was 

extracted with CH2Cl2 (3 x 20 mL). The organic phase was washed with brine (3 x 

20 mL). Combined organic extracts were dried over anhydrous Na2SO4, filtered 

and concentrated to dryness. The crude was subjected to flash chromatography 

(silica gel, hexane/EtOAc 7/3) obtaining product 3b as a white solid (0.92 g, 2.94 

mmol, 72% yield). 

m.p.: 141-142 ºC (Hexane/EtOAc); IR (ATR): 3098 cm-1 (C-Harom st), 2813 cm-1

(C-Haliph st), 1640 cm-1 (C=O st), 1570 cm-1 (C=Carom st); 1
H NMR (CDCl3, 25 ºC): 

� (ppm) = 5.52 (s, 2H, CH2N),  6.34 (dd, J = 4.0, 2.6 Hz, 1H, H4pyrrole), 6.66 – 6.72 

(m, 1H, H4pyridine), 6.98 – 7.06 (m, 2H, H3pyrrole, H5pyrrole), 7.12 (dd, J = 7.7, 4.7 Hz, 

1H, H5pyridine), 8.22 (dd, J = 4.7, 1.8 Hz, 1H, H6pyridine), 9.55 (s, 1H, CHO); 13
C 

NMR (CDCl3, 25 ºC): � (ppm) =  55.1 (CH2N), 110.8 (C4pyrrole) 121.3 (C2pyridine), 

123.3 (C5pyridine), 125.0 (C3pyrrole), 131.3 (C2pyrrole), 131.4 (C5pyrrole), 134.5 (C4pyridine), 

138.2 (C3pyridine), 149.5 (C6pyridine), 179.4 (CHO). MS (ESI
+
): (m/z) 313 (MH+, 100); 

185 (29). HRMS (ESI
+
): Calculated for C11H10N2OI (MH+): 312.9838. Found: 

312.9836. 

N I

N

CHO
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Synthesis of (2-(diethylamino)-2-oxoethyl)triphenylphosphonium chloride
9

PPh3 (5.26 g, 20.1 mmol) was added to a solution of 2-chloro-

N,N-diethylacetamide (2.76 mL, 20.1 mmol) in dry CH3CN 

(40 mL). The mixture was heated to reflux and stirred for 18 

h. The solvent was evaporated under reduced pressure and the crude was subjected 

to flash chromatography (silica gel, EtOAc/MeOH 5/5) obtaining the product as a 

white solid (6.72 g, 16.31 mmol, 81% yield). 

m.p.: 197-198 ºC (hexane/EtOAc); IR (ATR): 3006 cm-1  (C-Harom st), 2987 cm-1

(C-Haliph st), 1631 cm-1 (st, C=O); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 0.87 (t, J = 

7.1 Hz, 3H, NCH2CH3, cis to CO), 1.12 (t, J  = 7.1 Hz, 3H, NCH2CH3, trans to CO,  

3.13 (q, J = 7.1 Hz, 2H, NCH2CH3, cis to CO), 3.68 (q, J = 7.1 Hz, 2H, NCH2CH3, 

trans to CO), 5.48 (d, JH-P = 13.0 Hz, 2H, CH2), 7.40 – 7.67 (m, 9H, Harom), 7.67 – 

7.91 (m, 6H, Harom); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 12.8 (NCH2CH3, cis to 

CO), 14.5 (NCH2CH3, trans to CO), 34.0 (d, 1JC-P = 67.2 Hz, CH2CO), 40.8 

(NCH2CH3, cis to CO), 43.9 (NCH2CH3, trans to CO), 119.9 (d, 1JC-P = 90.2 Hz, 

C1arom), 129.8 (d, 2JC-P = 13.0 Hz, C2arom, C6arom), 134.0 (d, 3JC-P = 10.4 Hz, C3arom,

C5arom), 134.2 (d, 4JC-P = 3.0 Hz, C4arom), 163.2 (d, 2JC-P = 3.6 Hz, CONEt2).  

���������������������������������������� �������������������
9 Lage, S.; Martinez-Estibalez, U.; Sotomayor, N.; Lete, E. Adv. Synth. Catal. 2009, 351, 2460. 

NEt2
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Synthesis of N, N-diethyl-2-(triphenyl-�
5
-phosphanyliden)acetamide (4b)

9 

Over a solution of (2-(diethylamino)-2-

oxoethyl)triphenylphosphonium chloride (6.16 g, 15 mmol) in 

dry THF (55 mL), t-BuOK (1.72 g, 15 mmol) was added 

portion wise at -5 ºC.  The mixture was stirred for 1 h at that temperature and after 

that time, the solvent was evaporated under reduced pressure. The crude was 

crystallized by addition of hot Et2O (200 mL) and cooling down to -15 ºC for 3 h. 

The resulting mixture was filtered under vacuum and washed with cold pentane, 

affording product 4b as a white solid (4.45 g, 11.85 mmol, 79% yield). 

m.p.: 150-151 ºC (Et2O); IR (ATR): 3056 cm-1 (C-Harom st), 2987 cm-1 (C-Haliph st), 

1633 cm-1 (C=O st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 1.14 (t, J = 7.0 Hz, 6H, 

N(CH2CH3)2), 3.35 (q, J = 7.0 Hz, 4H, N(CH2CH3)2), 7.32 – 7.77 (m, 16H, 

PPh3=CH-, Harom); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 13.1 (NCH2CH3, cis to 

CO), 14.2 (NCH2CH3, trans to CO), 40.0 (NCH2CH3, cis to CO), 42.8 (NCH2CH3, 

trans to CO), 77.2 (PPh3=CH-), 128.5 (d, 2JC-P = 12.2 Hz, C2arom, C6arom), 131.9 (d, 
4JC-P = 2.7 Hz, C4arom), 132.1 (d, 3JC-P = 9.8 Hz, C3arom, C5arom), 133.1 (d, 1JC-P = 

104.1 Hz, C1arom), 169.7 (CONEt2). 

NEt2

Ph3P

O
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Synthesis of (E)-ethyl 3-(1-((2-bromopyridin-3-yl)methyl)-1H-pyrrol-2-

yl)acrylate (5a)  

To a solution of (bromopyridinylmethyl)pyrrole 

carbaldehyde 3a (1.36 g, 5.14 mmol) in dry CH2Cl2 (50 

mL), ethyl (triphenylphosphoranylidene)acetate (4a) 

(4.48 g, 12.22 mmol) was added and the mixture was 

heated under reflux for 16 h. After that time, the crude was concentrated to dryness 

and subjected to flash chromatography (silica gel, hexane/EtOAc 7/3) obtaining 

product 5a as a white solid (1.64 g, 4.89 mmol, 95% yield).

m.p.: 124-125 ºC (Hexane/EtOAc); IR (ATR): 3113 cm-1 (C-Harom st), 2980 cm-1

(C-Haliph st), 1697 cm-1 (C=O st), 1620 cm-1 (C=C st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) = 1.27 (t, J = 7.1 Hz, 3H, OCH2CH3),  4.18 (q, J = 7.1 Hz, 2H, OCH2CH3), 

5.23 (s, 2H, CH2N), 6.14 (d, J = 15.6 Hz, 1H, -CH=CH-CO2Et), 6.28 – 6.35 (m, 

1H, H4pyrrole), 6.61 – 6.68 (m, 1H, H4pyridine), 6.77 (dd, J = 3.9, 1.7 Hz, 1H, H3pyrrole), 

6.83 (dd, J = 2.4, 1.7 Hz, 1H, H5pyrrole), 7.16 (dd, J = 7.7, 4.7 Hz, 1H, H5pyridine), 7.39 

(d, J = 15.6 Hz, 1H, -CH=CH-CO2Et),  8.28 (dd, J = 4.7, 1.8 Hz, 1H, H6pyridine); 
13

C 

NMR (CDCl3, 25 ºC): � (ppm) = 14.3 (OCH2CH3), 49.8 (CH2N), 60.3 (OCH2CH3), 

110.8 (C4pyrrole), 112.4 (C3pyrrole), 114.4 (-CH=CH-CO2Et), 123.5 (C5pyridine), 126.2 

(C5pyrrole), 129.1 (C2pyrrole), 131.1 (-CH=CH-CO2Et), 134.5 (C3pyridine), 135.7 

(C4pyridine), 141.0 (C2pyridine), 149.2 (C6pyridine), 167.3 (-CH=CH-CO2Et). MS (CI):

(m/z) 337 (MH++2, 100); 336 (50); 335 (MH+, 100); 334 (35); 291 (94); 289 (94); 

255 (55). HRMS (CI): Calculated for C15H16N2O2Br79 (MH+): 335.0395. Found: 

335.0381. 

N Br

N

CO2Et
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Synthesis of (E)-ethyl 3-(1-((2-iodopyridin-3-yl)methyl)-1H-pyrrol-2-

yl)acrylate (5b) 

To a solution of (iodopyridinylmethyl)pyrrole 

carbaldehyde 3b (0.88 g, 2.82 mmol) in CH2Cl2 (30 mL), 

ethyl (triphenylphosphoranylidene)acetate (4a) (2.58 g, 

7.04 mmol), and the mixture was heated under reflux for 

16 h. After that time, the crude was concentrated to 

dryness and subjected to flash chromatography (silica gel, hexane/EtOAc 7/3) 

obtaining product 5b as a white solid (1.00 g, 2.62 mmol, 93% yield).

m.p.: 96-97 ºC (Hexane/EtOAc); IR (ATR): 2980 cm-1 (C-Haliph st), 1698 cm-1

(C=O st), 1623 cm-1 (C=C st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 1.26 (t, J = 7.1 

Hz, 3H, OCH2CH3),  4.17 (q, J = 7.1 Hz, 2H, OCH2CH3), 5.12 (s, 2H, CH2N), 6.12 

(d, J = 15.6 Hz, 1H, -CH=CH-CO2Et), 6.27 – 6.33 (m, 1H, H4pyrrole), 6.51 (dd, J = 

7.7, 1.3 Hz,  1H, H4pyridine), 6.75 (dd, J = 3.8, 1.7 Hz, 1H, H3pyrrole), 6.78 – 6.81 (m, 

1H, H5pyrrole), 7.13 (dd, J = 7.7, 4.7 Hz, 1H, H5pyridine), 7.36 (d, J = 15.6 Hz, 1H, -

CH=CH-CO2Et),  8.23 (dd, J = 4.7, 1.3 Hz, 1H, H6pyridine); 
13

C NMR (CDCl3, 25 

ºC): � (ppm) = 14.3 (OCH2CH3), 53.8 (CH2N), 60.2 (OCH2CH3), 110.7 (C4pyrrole) 

112.4 (C3pyrrole), 114.3 (-CH=CH-CO2Et), 120.3 (C2pyridine), 123.5 (C5pyridine), 126.1 

(C5pyrrole), 129.0 (C2pyrrole), 131.1 (-CH=CH-CO2Et), 134.4 (C4pyridine), 137.7 

(C3pyridine), 149.8 (C6pyridine), 167.3 (-CH=CH-CO2Et). MS (MALDI): (m/z) 383 

(MH+, 58); 382 (M+, 21); 337 (21); 258 (16); 257 (88); 256 (17); 255 (100). 

HRMS (MALDI): Calculated for C15H16N2O2I (MH+): 383.0250. Found: 

383.0257. 

N I

N

CO2Et
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Synthesis of (E)-3-(1-((2-bromopyridin-3-yl)methyl)-1H-pyrrol-2-yl)-N,N-

diethylacrylamide (5c) 

To a solution of (bromopyridinylmethyl)pyrrole 

carbaldehyde 3a (0.11 g, 0.41 mmol) in dry CH2Cl2 (20 

mL), previously synthesized ylide 4b (0.38 g, 1.01 

mmol) was added and the mixture was heated under 

reflux for 16 h. After that time, the crude was concentrated to dryness and 

subjected to flash chromatography (silica gel, hexane/EtOAc 5/5) obtaining 

product 5c as a white solid (0.14 g, 0.39 mmol, 95% yield). 

m.p.: 108-109 ºC (Hexane/EtOAc); IR (ATR): 2976 cm-1 (C-Haliph st), 1641 cm-1

(C=O st), 1593 cm-1 (C=C st), 1562 (C=Carom st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) = 1.01 – 1.18 (m, 6H, N(CH2CH3)2),  3.25 – 3.41 (m, 4H, N(CH2CH3)2), 

5.20 (s, 2H, CH2N), 6.23 – 6.29 (m, 1H, H4pyrrole), 6.41 (d, J = 15.1 Hz, 1H, -

CH=CH-CONEt2), 6.59 – 6.63 (m, 1H, H4pyridine), 6.67 (dd, J = 3.8, 1.7 Hz, 1H, 

H3pyrrole), 6.76 (dd, J = 2.5, 1.7 Hz, 1H, H5pyrrole), 7.11 (dd, J = 7.6, 4.7 Hz, 1H, 

H5pyridine), 7.45 (d, J = 15.1 Hz, 1H, -CH=CH-CO2Et),  8.18 – 8.24 (m, 1H, 

H6pyridine); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = 13.2, 15.0 (N(CH2CH3)2), 41.1, 

42.2 (N(CH2CH3)2), 50.0 (CH2N), 110.3 (C4pyrrole) 111.9 (C3pyrrole), 113.8 (-CH=CH-

CONEt2), 123.5 (C5pyridine), 125.6 (C5pyrrole), 129.5 (-CH=CH-CONEt2), 129.9 

(C2pyrrole), 134.7 (C3pyridine), 135.8 (C4pyridine), 141.0 (C2pyridine), 149.0 (C6pyridine), 165.7 

(-CH=CH-CONEt2). MS (ESI
+
): (m/z) 362 (MH+, 100); 364 (MH+ + 2, 100); 384 

([M + Na]+,13); 386 ([M + Na]+ + 2, 13). HRMS (ESI
+
): Calculated for 

C17H21N3OBr79 (MH+): 362.0868. Found: 362.0863. 

N Br

N
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Synthesis of (E)-N,N-diethyl-3-(1-((2-iodopyridin-3-yl)methyl)-1H-pyrrol-2-

yl)acrylamide (5d) 

To a solution of (iodopyridinylmethyl)pyrrole 

carbaldehyde 3b (0.64 g, 2.05 mmol) in dry CH2Cl2 (20 

mL), previously synthesized ylide 4b (1.57 g, 4.18 

mmol) was added and the mixture was heated under 

reflux for 24 h. After that time, the crude was 

concentrated to dryness and subjected to flash chromatography (silica gel, 

hexane/EtOAc 5/5) obtaining product 5d as a white solid (0.82 g, 2.00 mmol, 98% 

yield). 

m.p.: 121-122 ºC (Hexane/EtOAc); IR (ATR): 2976 cm-1 (C-Haliph st), 1642 cm-1

(C=O st), 1591 cm-1 (C=C st), 1555 (C=Carom st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) = 1.11 – 1.17 (m, 6H, N(CH2CH3)2),  3.28 – 3.47 (m, 4H, N(CH2CH3)2), 

5.14 (s, 2H, CH2N), 6.28 – 6.32 (m, 1H, H4pyrrole), 6.43 (d, J = 15.1 Hz, 1H, -

CH=CH-CONEt2), 6.50 – 6.54 (m, 1H, H4pyridine), 6.70 (dd, J = 3.8, 1.7 Hz, 1H, 

H3pyrrole), 6.77 (dd, J = 2.5, 1.7 Hz, 1H, H5pyrrole), 7.13 (dd, J = 7.7, 4.7 Hz, 1H, 

H5pyridine), 7.49 (d, J = 15.1 Hz, 1H, -CH=CH-CONEt2),  8.21 – 8.25 (m, 1H, 

H6pyridine); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = 13.1, 14.9 (N(CH2CH3)2), 40.9, 

42.0 (N(CH2CH3)2), 54.0 (CH2N), 110.2 (C4pyrrole) 111.8 (C3pyrrole), 113.6 (-CH=CH-

CONEt2), 120.2 (C2pyridine), 123.4 (C5pyridine), 125.4 (C5pyrrole), 129.4 (-CH=CH-

CONEt2), 129.7 (C2pyrrole), 134.3 (C3pyridine), 137.7 (C4pyridine), 149.5 (C6pyridine), 165.5 

(-CH=CH-CONEt2). MS (ESI
+
): (m/z) 411 (MH+ + 1, 14); 410 (MH+, 100). 

HRMS (ESI
+
): Calculated for C17H21N3OI (MH+): 410.0729. Found: 410.0723. 

N I

N
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Synthesis of (2-chloroquinolin-3-yl)methanol (6)
10

To a solution of 2-chloroquinoline-3-carbaldehyde (1.50 g, 

7.83 mmol) in dry MeOH: dry THF (1:1) (40 mL) cooled at 0 

ºC, NaBH4 (0.59 g, 15.54 mmol) was added dropwise. After 

the addition, the ice bath was removed and the mixture allowed to warm up to 

room temperature and stirred for 2 h. The reaction was followed by TLC. When the 

reaction was completed, the mixture was eluted with EtOAc (60 mL) and washed 

with a saturated NH4Cl solution (2 x 20 mL) and brine (1 x 20 mL). The aqueous 

phase was extracted with EtOAc (3 x 20 mL). The combined organic extracts were 

dried over anhydrous Na2SO4, filtered and concentrated to dryness. Product 6 was 

crystallized from CHCl3 and obtained pure as a light yellow solid (1.28 g, 6.61 

mmol, 84% yield).

m.p.: 162-164 ºC (CHCl3); IR (ATR): 3397 cm-1 (brs, O-H st), 2916 cm-1 (C-Haliph

st); 1
H NMR (DMSO, 25 ºC): � (ppm) =  3.33 (s, 1H, HDO), 4.70 (d, J = 5.5 Hz, 

2H, CH2OH), 5.71 (t, J = 5.5 Hz, 1H, CH2OH), 7.65 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H, 

H6quinoline), 7.79 (ddd, J = 8.2, 6.9, 1.5 Hz, 1H, H7quinoline), 7.96 (dd, J = 8.2, 1.2 Hz, 

1H, H8quinoline), 8.09 (dd, J = 8.2, 1.5 Hz, 1H, H5quinoline), 8.47 (s, 1H, H4quinoline); 
13

C 

NMR (DMSO, 25 ºC): � (ppm) = 59.9 (CH2OH), 127.2 (C4a,quinoline), 127.3 

(C6quinoline), 127.5 (C8quinoline), 127.9 (C5quinoline), 130.2 (C7quinoline), 133.9 (C3quinoline), 

135.9 (C4quinoline), 146.0 (C8a,quinoline), 148.4 (C2quinoline). MS (CI): (m/z) 194 (MH+, 

100); 193 (21); 178 (34); 176 (89); 164 (23); 158 (76). HRMS (CI): Calculated for 

C10H9NOCl (MH+): 194.0373.  Found: 194.0372. 

���������������������������������������� �������������������
10 Vanlaer, S.; Voet, A.; Gielens, C.; De Maeyer, M.; Compernolle, F. Eur. J. Org. Chem. 2009, 643. 
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Synthesis of 2-bromo-3-(bromomethyl)quinoline (7)
11 

(2-chloroquinolin-3-yl)methanol (6) (1.00 g, 5.22 mmol) was 

dissolved in PBr3 (30 mL, 312.81 mmol) and heated to 150 ºC 

for 16 h. After that time, the reaction was slowly quenched 

adding a saturated aqueous solution of NaHCO3 at 0 ºC, until release of gas 

stopped. The aqueous phase was extracted with CH2Cl2 (3 x 50 mL) and the 

combined organic extracts were washed with the same saturated NaHCO3 solution 

(3 x 50 mL). Subsequently, the organic phase was dried over anhydrous Na2SO4, 

filtered and concentrated to dryness. Product 7 was obtained pure as a light pink 

solid (1.20 g, 3.99 mmol, 76% yield) and was used for the next step without further 

purification. 

m.p.: 140-141 ºC (CH2Cl2); IR (ATR): 2923 cm-1 (C-Harom st), 1567 cm-1 (C=C 

st), 750 cm-1 (C-Br st); 1
H NMR (CDCl3, 25 ºC): � (ppm) =  4.73 (s, 2H, CH2Br), 

7.59 (ddd, J = 8.2, 7.0, 1.0 Hz, 1H, H6quinoline), 7.74 (ddd, J = 8.5, 7.0, 1.4 Hz, 1H, 

H7quinoline), 7.81 (brd, J = 8.2 Hz, 1H, H5quinoline), 8.04 (brd, J = 8.5 Hz, 1H, 

H8quinoline), 8.21 (s, 1H, H4quinoline); 
13

C NMR (CDCl3, 25 ºC): � (ppm) =  32.1 

(CH2Br), 127.2 (C4a,quinoline), 127.6, 127.7 (C5quinoline, C6quinoline), 128.5 (C8quinoline), 

131.1 (C7quinoline), 131.5 (C3quinoline), 138.6 (C4quinoline), 143.1 (C2quinoline), 147.9 

(C8a,quinoline). MS (CI): (m/z) 304 ([MH+4]+, 26); 302 ([MH+2]+, 53); 300 ([MH]+, 

27); 222 (100); 220 (89). HRMS (CI): Calculated for C10H8NBr79
2 (MH+): 

299.9023. Found: 299.9026. 

���������������������������������������� �������������������
11 Ruiz, J. Ph.D Thesis, University of the Basque Country, 2004. 
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Synthesis of 1-((2-bromoquinolin-3-yl)methyl)-1H-pyrrole-2-carbaldehyde 

(8a) 

To a suspension of KOH (0.69 g, 12.30 mmol) in 

DMSO (30 mL), pyrrole 2-carboxaldehyde (0.29 g, 3.09 

mmol) was added. The mixture was stirred for 2 h at 

room temperature. After that time, 2-bromo-3-

(bromomethyl)quinoline (7) (1.40 g, 4.64 mmol) was added to the former solution 

and the reaction was stirred for 4 h more at room temperature. The reaction was 

quenched with H2O (20 mL) and the crude was extracted with CH2Cl2 (3 x 20 mL). 

The organic phase was washed with H2O (3 x 20 mL), brine (1 x 10 mL) and 

finally dried over anhydrous Na2SO4, filtered and concentrated to dryness. The 

crude was subjected to flash chromatography (silica gel, hexane/EtOAc 7/3) 

obtaining product 8a as a white solid (0.68 g, 2.16 mmol, 70% yield).

m.p.:  145-146 ºC (Hexane/EtOAc); IR (ATR): 1656 cm-1 (C=O st), 1592 cm-1

(C=C st), 750 cm-1 (C-Br st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 5.80 (s, 2H, 

CH2N), 6.42 (dd, J = 3.8, 2.7 Hz, 1H, H4pyrrole), 7.07 – 7.16 (m, 2H, H3pyrrole, 

H5pyrrole), 7.30 (s, 1H, H4quinoline), 7.49 – 7.58 (m, 1H, H6quinoline), 7.67 (d, J = 8.3 Hz, 

1H, H5quinoline), 7.69 – 7.77 (m, 1H, H7quinoline), 8.04 (d, J = 8.5 Hz, 1H, H8quinoline), 

9.62 (s, 1H, CHO); 13
C NMR (CDCl3, 25 ºC): � (ppm) =  51.4 (CH2N), 110.8 

(C4pyrrole) 125.1 (C3pyrrole), 127.3 (C6quinoline), 127.4 (C4a,quinoline), 127.6 (C5quinoline), 

128.3 (C8quinoline), 130.5 (C7quinoline), 131.5 (C2pyrrole), 131.6 (C5pyrrole), 131.9 

(C3quinoline), 135.4 (C4quinoline), 141.6 (C2quinoline), 147.70 (C8a,quinoline), 179.5 (CHO). 

MS (CI): (m/z) 317 ([MH+2]+, 71); 315 ([MH]+, 73); 236 (16); 235 (100). HRMS 

(CI): Calculated for C15H12N2OBr79 (MH+): 315.0133. Found: 315.0137. 
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N

CHO

3

245

8

7

6

8a

4a

2



Chapter VI                                               Experimental Section 

�

251 

Synthesis of 1-((2-iodoquinolin-3-yl)methyl)-1H-pyrrole-2-carbaldehyde (8b) 

(Bromoquinolinylmethyl)pyrrole carbaldehyde 8a (0.52 g, 

1.66 mmol) in dry dioxane (10 mL) was added via canula 

to a suspension of CuI (15.84 mmol, 0.08 mmol), N,N´-

dimethylethylenediamine (0.02 mL, 0.17 mmol) and NaI 

(0.50, 3.33 mmol) in dry dioxane (30 mL) under an inert atmosphere. The mixture 

was heated under reflux for 24 h. H2O (20 mL) was added and the crude was 

extracted with CH2Cl2 (3 x 20 mL). The organic phase was washed with brine (3 x 

20 mL). Combined organic extracts were dried over anhydrous Na2SO4, filtered 

and concentrated to dryness. The crude was subjected to flash chromatography 

(silica gel, hexane/EtOAc 7/3) obtaining product 8b as a white solid (0.48 g, 1.34 

mmol, 80% yield). 

m.p.:  150-151 ºC (Hexane/EtOAc); IR (ATR): 1657 cm-1 (C=O st), 1586 cm-1

(C=Carom st); 1
H NMR (CDCl3, 25 ºC): � (ppm) =  5.69 (s, 2H, CH2N), 6.39 (dd, J

= 4.0, 2.6 Hz, 1H, H4pyrrole), 7.04 – 7.10 (m, 3H, H3pyrrole, H5pyrrole, H4quinoline), 7.51 

(ddd, J = 8.1, 6.9, 1.1 Hz, 1H, H6quinoline), 7.62 (brd, J = 8.1 Hz, 1H, H5quinoline), 7.67 

(ddd, J = 8.5, 6.9, 1.4 Hz, 1H, H7quinoline), 8.03 (brd, J = 8.5 Hz, 1H, H8quinoline), 9.60 

(s, 1H, CHO). 13
C NMR (CDCl3, 25 ºC): � (ppm) = 55.4 (CH2N), 110.8 (C4pyrrole) 

122.0 (C2quinoline), 125.0 (C5pyrrole), 127.3 (C4a,quinoline), 127.4 (C6quinoline), 127.6 

(C5quinoline), 128.5 (C8quinoline), 130.2 (C7quinoline), 131.4 (C3pyrrole), 133.6 (C4quinoline), 

134.3 (C3quinoline), 148.8 (C8a,quinoline), 179.5 (CHO). (C2pyrrole peak overlapped). MS

(ESI
+
): (m/z) 364 ([MH+1]+, 13); 363 ([MH]+, 100); 235 (27). HRMS (ESI

+
):

Calculated for C15H12N2OI (MH+): 362.9994. Found: 362.9989. 
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Synthesis of (E)-ethyl 3-(1-((2-bromoquinolin-3-yl)methyl)-1H-pyrrol-2-

yl)acrylate (9a) 

To a solution of (bromoquinolinylmethyl)pyrrole 

carbaldehyde 8a (1.29 g, 4.09 mmol) in dry CH2Cl2

(50 mL), ethyl (triphenylphosphoranylidene)acetate 

(4a) (3.75 g, 10.23 mmol) was added. The mixture 

was heated under reflux for 16 h. After that time, the 

crude was concentrated to dryness and subjected to flash chromatography (silica 

gel, hexane/EtOAc 7/3) obtaining product 9a as a white solid (1.50 g, 3.89 mmol, 

95% yield).  

m.p.: 125-126ºC (Hexane/EtOAc); IR (ATR): 2980 cm-1 (C-Harom st), 1698 cm-1

(C=O st), 1622 cm-1 (C=C st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 1.25 (t, J = 7.1 

Hz, 3H, OCH2CH3), 4.15 (q, J = 7.1 Hz, 2H, OCH2CH3), 5.37 (s, 2H, CH2N), 6.17 

(d, J = 15.6 Hz, 1H, -CH=CH-CO2Et), 6.33 – 6.40 (m, 1H, H4pyrrole), 6.82 (dd, J = 

3.9, 1.6 Hz, 1H, H3pyrrole),  6.88 (dd, J = 2.4, 1.6 Hz, 1H, H5pyrrole), 7.05 (s, 1H, 

H4quinoline), 7.44 (d, J = 15.6 Hz, 1H, -CH=CH-CO2Et), 7.49 – 7.55 (m, 1H, 

H6quinoline), 7.63 (d, J = 8.1 Hz, 1H, H5quinoline), 7.68 – 7.72 (m, 1H, H7quinoline), 8.03 

(d, J = 8.5 Hz, 1H, H8quinoline); 
13

C NMR (CDCl3, 25 ºC): � (ppm) =  14.3 

(OCH2CH3), 50.1 (CH2N), 60.3 (OCH2CH3), 110.8 (C4pyrrole), 112.4 (C3pyrrole), 114.3 

(-CH=CH-CO2Et), 126.3 (C5pyrrole), 127.4 (C4a,quinoline), 127.5 (C6quinoline), 127.7 

(C5quinoline), 128.3 (C8quinoline), 129.1 (C2pyrrole), 130.6 (C7quinoline), 131.2 (-CH=CH-

CO2Et), 131.5 (C3quinoline), 135.1 (C4quinoline), 140.7 (C2quinoline), 147.8 (C8a,quinoline), 

167.3 (CO2Et). MS (ESI
+
): (m/z) 387 (MH+ + 2, 31); 385 (MH+, 31); 306 (18); 305 

(100). HRMS (ESI
+
): Calculated for C19H18N2O2Br79 (MH+): 385.0552. Found: 

385.0548. 
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Synthesis of (E)-ethyl 3-(1-((2-iodoquinolin-3-yl)methyl)-1H-pyrrol-2-

yl)acrylate (9b) 

To a solution of (iodoquinolinylmethyl)pyrrole 

carbaldehyde 8b (0.63 g, 1.74 mmol) in CH2Cl2 (20 

mL), ethyl (triphenylphosphoranylidene)acetate (4a) 

(1.65 g, 4.50 mmol) was added. The mixture was 

heated under reflux for 16 h. After that time, the 

crude was concentrated to dryness and subjected to flash chromatography (silica 

gel, hexane/EtOAc 7/3) obtaining product 9b as an oil (0.67 g, 1.55 mmol, 89% 

yield).

IR (ATR): 2980 cm-1 (C-Harom st), 1697 cm-1 (C=O st), 1621 cm-1 (C=C st), 1585 

(C=Carom st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 1.20 (t, J = 7.1 Hz, 3H, 

OCH2CH3), 4.10 (q, J = 7.1 Hz, 2H, OCH2CH3), 5.20 (s, 2H, CH2N), 6.13 (d, J = 

15.6 Hz, 1H, -CH=CH-CO2Et), 6.32 (dd, J = 3.9, 2.9 Hz, 1H, H4pyrrole), 6.78 (dd, J

= 3.9, 1.6 Hz, 1H, H3pyrrole),  6.83 (dd, J = 2.9, 1.6 Hz, 1H, H5pyrrole), 6.87 (s, 1H, 

H4quinoline), 7.37 – 7.45 (m, 2H, H6quinoline, -CH=CH-CO2Et), 7.54 (brd, J = 8.2 Hz, 

1H, H5quinoline), 7.60 (ddd, J = 8.5, 6.9, 1.4 Hz, 1H, H7quinoline), 7.95 (brd, J = 8.5 Hz, 

1H, H8quinoline); 
13

C NMR (CDCl3, 25 ºC): � (ppm) =  14.1 (OCH2CH3), 53.8 

(CH2N), 60.0 (OCH2CH3), 110.6 (C4pyrrole), 112.3 (C3pyrrole), 114.0 (-CH=CH-

CO2Et), 120.9 (C2quinoline), 126.1 (C5pyrrole), 127.0 (C3quinoline), 127.3 (C6quinoline), 127.5 

(C5quinoline), 128.2 (C8quinoline), 128.7 (C2pyrrole), 130.2 (C7quinoline), 131.0 (-CH=CH-

CO2Et), 133.3 (C4quinoline), 133.5 (C4a,quinoline), 148.6 (C8a,quinoline), 167.1 (CO2Et). MS 

(ESI
+
): (m/z) 434 (MH+ + 1, 17); 433 (MH+, 100); 306 (19); 305 (93). HRMS 

(ESI
+
): Calculated for C19H18N2O2I (MH+): 433.0413. Found: 433.0411. 

N I

N

CO2Et
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Synthesis of (E)-3-(1-((2-bromoquinolin-3-yl)methyl)-1H-pyrrol-2-yl)-N,N-

diethylacrylamide (9c) 

To a solution of (bromoquinolinylmethyl)pyrrole 

carbaldehyde 8a (0.59 g, 1.87 mmol) in CH2Cl2 (20 

mL), synthesized ylidene 4b (1.56 g, 4.16 mmol) 

was added. The mixture was heated under reflux for 

16 h. After that time, the crude was concentrated to dryness and subjected to flash 

chromatography (silica gel, hexane/EtOAc 5/5) obtaining product 9c as a white 

solid (0.74 g, 1.79 mmol, 96% yield).  

m.p.: 153-154 ºC (Hexane/EtOAc); IR (ATR): 2975 cm-1 (C-Harom st), 1639 cm-1

(C=O st), 1592 cm-1 (C=C st), 1563 cm-1 (C=Carom st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) = 1.07 (t, J = 7.1 Hz, 6H, N(CH2CH3)2), 3.22 -3.43 (m, 4H, N(CH2CH3)2), 

5.36 (s, 2H, CH2N), 6.31 – 6.36 (m, 1H, H4pyrrole),  6.46 (d, J = 15.1 Hz, 1H, -

CH=CH-CONEt2), 6.74 (dd, J = 3.8, 1.7 Hz, 1H, H3pyrrole), 6.81 – 6.86 (m, 1H, 

H5pyrrole),  7.04 (s, 1H, H4quinoline), 7.44 – 7.55 (m, 2H, H6quinoline, -CH=CH-CO2Et), 

7.59 (d, J = 8.1 Hz, 1H, H5quinoline), 7.63 – 7.69 (m, 1H, H7quinoline), 7.99 (d, J = 8.5 

Hz, 1H, H8quinoline).
13

C NMR (CDCl3, 25 ºC): � (ppm) = 13.1, 14.9 (N(CH2CH3)2), 

41.0, 42.1 (N(CH2CH3)2), 50.2 (CH2N), 110.2 (C4pyrrole), 111.8 (C3pyrrole), 113.8 (-

CH=CH-CONEt2), 125.6 (C5pyrrole), 127.2 (C6quinoline), 127.3 (C4a,quinoline), 127.6 

(C5quinoline), 128.2 (C8quinoline), 129.5 (-CH=CH-CONEt2), 129.9 (C2pyrrole), 130.4 

(C7quinoline), 131.6 (C3quinoline), 135.1 (C4quinoline), 140.6 (C2quinoline), 147.6 (C8a,quinoline), 

165.6 (CONEt2). MS (MALDI): (m/z) 415 (21); 414 (MH+ + 2, 98); 413 (MH+ + 1, 

22); 412 (MH+, 100); 334 (33); 332 (84). HRMS (MALDI): Calculated for 

C21H23N3OBr79 (MH+): 412.1024. Found: 412.1019. 

N Br

N
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Synthesis of (E)-N,N-diethyl-3-(1-((2-iodoquinolin-3-yl)methyl)-1H-pyrrol-2-

yl)acrylamide (9d) 

To a solution of (iodoquinolinylmethyl)pyrrole 

carbaldehyde 8b (0.47 g, 1.28 mmol) in CH2Cl2 (20 

mL), synthesized ylidene 4b (1.06 g, 2.82 mmol) 

was added. The mixture was heated under reflux for 

16 h. After that time, the crude was concentrated to dryness and subjected to flash 

chromatography (silica gel, hexane/EtOAc 5/5) obtaining product 9d as a white 

solid (0.54 g, 1.18 mmol, 92% yield).  

m.p.: 158-159 ºC (Hexane/EtOAc); IR (ATR): 2973 cm-1 (C-Harom st), 1639 cm-1

(C=O st), 1588 cm-1 (C=C st), 1557 cm-1 (C=Carom st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) = 0.95 – 1.15 (m, 6H, N(CH2CH3)2), 3.21 -3.43 (m, 4H, N(CH2CH3)2), 5.27 

(s, 2H, CH2N), 6.34 (dd, J = 3.8, 2.7 Hz, 1H, H4pyrrole),  6.45 (d, J = 15.1 Hz, 1H, -

CH=CH-CONEt2), 6.74 (dd, J = 3.8, 1.9 Hz, 1H, H3pyrrole), 6.82 (dd, J = 2.7, 1.9 

Hz, 1H, H5pyrrole),  6.90 (s, 1H, H4quinoline), 7.43 – 7.54 (m, 2H, H6quinoline, -CH=CH-

CONEt2), 7.54 – 7.59 (m, 1H, H5quinoline), 7.65 (ddd, J = 8.5, 6.9, 1.4 Hz, 1H, 

H7quinoline), 8.01 (brd, J = 8.5 Hz, 1H, H8quinoline); 
13

C NMR (CDCl3, 25 ºC): � (ppm) 

= 13.2, 15.0 (N(CH2CH3)2), 41.0, 42.1 (N(CH2CH3)2), 54.4 (CH2N), 110.3 

(C4pyrrole), 112.0 (C3pyrrole), 113.8 (-CH=CH-CONEt2), 120.9 (C2quinoline), 125.6 

(C5pyrrole), 127.3 (C3quinoline), 127.5 (C5quinoline), 127.7 (C6quinoline), 128.4 (C8quinoline), 

129.6 (-CH=CH-CONEt2), 129.9 (C2pyrrole), 130.3 (C7quinoline), 133.6 (C4quinoline), 

133.8 (C4a,quinoline), 148.8 (C8a,quinoline), 165.7 (CONEt2). MS (ESI
+
): (m/z) 461 (MH+ 

+ 1, 19); 460 (MH+, 100). HRMS (ESI
+
): Calculated for C21H23N3OI (MH+): 

460.0886. Found: 460.0889. 
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6.2.2. Intramolecular carbolithiation reaction of o-halopyridines 5a-5d. 

Synthesis of 5,10-dihydropyrrolo[1,2-g][1,6]naphthyridines 10a, 10b 

Synthesis of ethyl 2-(5,10-dihydropyrrolo[1,2-g][1,6]naphthyridin-10-

yl)acetate (10a) (Table 2.1, Entry 7) 

t-BuLi (0.68 mL of a solution 1.53 M in hexane, 1.04 mmol) 

was added dropwise to a solution of 2-bromomesitylene (0.08 

mL, 0.51 mmol) in dry THF (5 mL) at -78 ºC and under an 

inert atmosphere. The reaction was stirred for 1 h at -20 ºC 

and after that time, a solution of (iodopyridinylmethyl)pyrrolylacrylate 5b (100.00 

mg, 0.26 mmol) in dry THF (5 mL) was added via canula at -105 ºC. The mixture 

was stirred for 5 min at -105 ºC and quenched at low temperature with a saturated 

solution of NH4Cl (5 mL). Et2O (20 mL) and H2O (10 mL) was added and the 

organic layer was separated. The aqueous phase was extracted with CH2Cl2 (3 x 10 

mL) and combined organic extracts were dried over anhydrous Na2SO4, filtered 

and evaporated under pressure. The crude was subjected to flash chromatography 

(neutral alumina, hexane/EtOAc 8/2) obtaining product 10a as a yellow oil (33.00 

mg, 0.13 mmol, 49% yield).  

IR (ATR): 2979 cm-1 (C-Harom st), 2924 cm-1 (C-Haliph st), 1730 cm-1 (C=O st), 

1580 cm-1 (C=C st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 1.23 (t, J = 7.1 Hz, 3H, 

OCH2CH3),  2.98 (dd, J = 15.8, 6.3 Hz, 1H, -CHAHBCO2Et), 3.15 (dd, J = 15.8, 6.3 

Hz, 1H, -CHAHBCO2Et), 4.13 (q, J = 7.1 Hz, 2H, OCH2CH3), 4.67 (t, J = 6.3 Hz, 

1H, H10), 5.12 (d, J = 15.8 Hz, 1H, H5A), 5.20 (d, J = 15.8 Hz, 1H, H5B), 6.03 – 6.11 

(m, 1H, H9), 6.20 – 6.25 (m, 1H, H8), 6.73 (brs, 1H, H7), 7.18 (dd, J = 7.7, 4.6 Hz, 

1H, H3), 7.53 (d, J = 7.7 Hz, 1H, H4), 8.52 (d, J = 4.6 Hz, 1H, H2); 
13

C NMR 

(CDCl3, 25 ºC): � (ppm) = 14.1 (OCH2CH3), 37.6 (C10), 39.6 (-CHAHBCO2Et), 47.0 

N
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(C5), 60.4 (OCH2CH3), 104.3 (C9) 109.0 (C8), 118.5 (C7), 121.5 (C3), 127.1 (C4a), 

130.0 (C9a), 133.8 (C4), 148.3 (C2), 155.4 (C10a), 171.9 (CO2Et). MS (ESI
+
): (m/z) 

258 (MH+ + 1, 15), 257 (MH+, 100). HRMS (ESI
+
): Calculated for C15H17N2O2 

(MH+): 257.1290. Found: 257.1296. 

Synthesis of 2-(5,10-dihydropyrrolo[1,2-g][1,6]naphthyridin-10-yl)-N,N-

diethylacetamide (10b) (Table 2.1, Entry 5) 

t-BuLi (0.71 mL of a solution 1.38 M in hexane, 0.98 mmol) 

was added dropwise to a solution of 2-bromomesitylene (0.08 

mL, 0.50 mmol) in dry THF (5 mL) at -78 ºC and under an 

inert atmosphere. The reaction was stirred for 1 h at -20 ºC 

and after that time, a solution of (iodopyridinylmethyl)pyrrolylacrylamide 5d

(100.00 mg, 0.24 mmol) in dry THF (5 mL) was added via canula at -105 ºC. The 

mixture was stirred for 10 min at -105 ºC and quenched at low temperature with a 

saturated solution of NH4Cl (5 mL). Et2O (20 mL) and H2O (10 mL) was added 

and the organic layer was separated. The aqueous phase was extracted with CH2Cl2

(3 x 10 mL) and combined organic extracts were dried over anhydrous Na2SO4, 

filtered and evaporated under pressure. The crude was subjected to flash 

chromatography (silica gel, hexane/EtOAc 9/1) obtaining product 10b as a yellow 

oil (38.90 mg, 0.14 mmol, 56% yield).  

IR (ATR): 2976 cm-1 (C-Harom st), 2926 cm-1 (C-Haliph st), 1627 cm-1 (C=O st); 1
H 

NMR (CDCl3, 25 ºC): � (ppm) = 1.05 – 1.15 (m, 6H, N(CH2CH3)2),  2.93 (dd, J = 

15.1, 6.3 Hz, 1H, -CHAHBCONEt2), 3.13 – 3.43 (m, 5H, N(CH2CH3)2), -

CHAHBCONEt2), 4.79 (t, J = 6.3 Hz, 1H, H10), 5.10 (d, J = 15.7 Hz, 1H, H5A), 5.20 

(d, J = 15.7 Hz, 1H, H5B), 6.01 – 6.06 (m, 1H, H9), 6.17 – 6.22 (m, 1H, H8), 6.68 – 

6.73 (m, 1H, H7), 7.15 (dd, J = 7.7, 4.8 Hz, 1H, H3), 7.51 (d, J = 7.7 Hz, 1H, H4), 

N

N

CONEt2
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8.45 – 8.52 (m, 1H, H2); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = 12.9, 14.2 

(N(CH2CH3)2), 37.7 (-CHAHBCONEt2), 37.9 (C10), 40.3, 42.0 (N(CH2CH3)2), 47.1 

(C5), 104.2 (C9) 108.8 (C8), 118.2 (C7), 121.2 (C3), 127.3 (C4a), 130.8 (C9a), 133.6 

(C4), 148.1 (C2), 156.4 (C10a), 170.2 (CONEt2). MS (ESI
+
): (m/z) 285 (MH+ + 1, 

16), 284 (MH+, 100). HRMS (ESI
+
): Calculated for C17H22N3O (MH+): 284.1763. 

Found: 284.1761. 

Synthesis of N,N-diethyl-3-(1-(pyridin-3-ylmethyl)-1H-pyrrol-2-

yl)heptanamide (11) (Table 2.1, Entry 1)

n-BuLi (0.61 mL of a solution 0.97 M in hexane, 0.59 

mmol) was added dropwise to a solution of 

(bromopyridinylmethyl)pyrrolylacrylamide 5c (97.50 

mg, 0.27 mmol) in dry THF (5 mL) at -90 ºC and under 

an inert atmosphere. The reaction was stirred for 5 min and quenched at low 

temperature with a saturated solution of NH4Cl (5 mL). Et2O (20 mL) and H2O (10 

mL) was added and the organic layer was separated. The aqueous phase was 

extracted with CH2Cl2 (3 x 10 mL) and combined organic extracts were dried over 

anhydrous Na2SO4, filtered and evaporated under pressure. The crude was 

subjected to flash chromatography (silica gel, hexane/EtOAc 8/2) obtaining 

product 11 as a colorless oil (41.60 mg, 0.12 mmol, 45% yield), and naphthyridine 

10b (7.10 mg, 25.06 mmol, 9% yield) as a minor fraction. 

IR (ATR): 2953 cm-1 (C-Harom st), 2928 cm-1 (C-Haliph st), 1631 cm-1 (C=O st), 

1577 cm-1 (C=C st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 0.72 (t, J = 7.2 Hz, 3H, 

3H4´), 0.82 – 0.96 (m, 1H, H2A´), 0.96 – 1.13 (m, 9H, H2B´, 2H3´, N(CH2CH3)2), 

1.44 – 1.57 (m, 2H, 2H1´), 2.44 (d, J = 6.9 Hz, 2H, -CH-CH2-CONEt2), 3.06 – 3.40 

(m, 5H, N(CH2CH3)2, -CH-CH2-CONEt2), 5.04 (d, J = 16.3 Hz, 1H, CHAHBN), 

N

N

n-Bu
CONEt2
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5.34 (d, J = 16.3 Hz, 1H, CHAHBN), 5.95 (dd, J = 3.3, 1.6 Hz, 1H, H3pyrrole), 6.12-

6.16 (m, 1H, H4pyrrole), 6.53 – 6.57 (m, 1H, H5pyrrole), 7.20 (dd, J = 7.8, 4.8 Hz, 1H, 

H5pyridine), 7.31 (brd, J = 7.8 Hz, 1H, H4pyridine), 8.40 (d, J = 1.6 Hz, 1H, H2pyridine), 

8.48 (dd, J = 4.8, 0.9 Hz, 1H, H6pyridine); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = 13.0, 

13.9 (N(CH2CH3)2), 14.3 (C4´), 22.5 (C3´), 29.7 (C2´), 32.9 (-CH-CH2-CONEt2), 

35.9 (C1´), 40.3 (N(CH2CH3)2), 40.7 (-CH-CH2-CONEt2), 41.9 (N(CH2CH3)2), 47.8 

(CHAHBN), 104.7 (C3pyrrole) 107.7 (C4pyrrole), 120.3 (C5pyrrole), 123.4 (C5pyridine), 134.5 

(C4pyridine), 134.6 (C3pyridine), 137.1 (C2pyrrole), 148.4 (C2pyridine), 148.7 (C6pyridine), 170.8 

(-CH-CH2-CONEt2). MS (ESI
+
): (m/z) 343 (MH+ + 1, 23), 342 (MH+, 100). 

HRMS (ESI
+
): Calculated for C21H32N3O (MH+): 342.2545. Found: 342.2549. 

6.2.3. Intramolecular carbolithiation reaction of o-haloquinolines 9a-9d. 

Synthesis of 5,12-dihydrobenzo[b]pyrrolo[1,2-g][1,6]naphthyridines 

12a, 12b 

Synthesis of ethyl 2-(5,12-dihydrobenzo[b]pyrrolo[1,2-g][1,6]naphthyridin-12-

yl)acetate (12a) (Table 2.2, Entry 2)

t-BuLi (0.86 mL of a solution 1.08 M in hexane, 0.93 

mmol) was added dropwise to a solution of 2-

bromomesitylene (0.07 mL, 0.46 mmol) in dry THF (5 

mL) at -78 ºC and under an inert atmosphere. The 

reaction was stirred for 1 h at -20 ºC and after that time, a solution of 

(iodoquinolinylmethyl)pyrrolylacrylate 9b (100.00 mg, 0.23 mmol) in dry THF (5 

mL) was added via canula at  -105 ºC. The mixture was stirred for 10 min at -105 

ºC and quenched at low temperature with a saturated solution of NH4Cl (5 mL). 

Et2O (20 mL) and H2O (10 mL) was added and the organic layer was separated. 

N

N

CO2Et

6

2

3
5a

5

10
10a

6a

9

8

7

1
12

11a 12a



Ane Rebolledo Azcargorta       Ph.D.Thesis 

260 

The aqueous phase was extracted with CH2Cl2 (3 x 10 mL) and combined organic 

extracts were dried over anhydrous Na2SO4, filtered and evaporated under pressure. 

The crude was subjected to flash chromatography (neutral alumina, hexane/EtOAc 

8/2) obtaining product 12a as yellow oil (21.0 mg, 0.07 mmol, 30% yield).  

IR (ATR): 2980 cm-1 (C-Harom st), 1730 cm-1 (C=O st), 1622 cm-1 (C=Carom st); 1
H 

NMR (CDCl3, 25 ºC): � (ppm) = 1.29 (t, J = 7.1 Hz, 3H, OCH2CH3),  3.08 (dd, J = 

15.8, 6.7 Hz, 1H, CHAHB-CO2Et), 3.33 (dd, J = 15.8, 6.7 Hz, 1H, CHAHB-CO2Et), 

4.14 – 4.27 (m, 2H, OCH2CH3), 4.82 (t, J = 6.7 Hz, 1H, H12), 5.27 (d, J = 15.4 Hz, 

1H, H5A), 5.33 (d, J = 15.4 Hz, 1H, H5B), 6.07 – 6.12 (m, 1H, H1), 6.20 – 6.24 (m, 

1H, H2), 6.74 – 6.81 (m, 1H, H3), 7.50 – 7.54 (m, 1H, H8), 7.69 (ddd, J = 8.5, 6.9, 

1.4 Hz, 1H, H9), 7.78 (brd, J = 7.7 Hz, 1H, H7), 7.99 (s, 1H, H6), 8.02 (brd, J = 8.5 

Hz, 1H, H10); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = 14.3 (OCH2CH3), 38.2 

(CHAHB-CO2Et), 38.7 (C12), 47.6 (C5), 60.5 (OCH2CH3), 104.2 (C1) 108.6 (C2), 

118.8 (C3), 125.7 (C5a), 126.5 (C8), 126.6 (C6a), 127.2 (C7), 129.1 (C10), 129.4 (C9), 

130.3 (C12a), 132.6 (C6), 147.1 (C10a), 156.8 (C11a), 172.3 (CO2Et). MS (ESI
+
):

(m/z) 308 (MH+ + 1, 18), 307 (MH+, 100). HRMS (ESI
+
): Calculated for 

C19H19N2O2 (MH+): 307.1447. Found: 307.1453. 

Synthesis of 2-(5,12-dihydrobenzo[b]pyrrolo[1,2-g][1,6]naphthyridin-12-yl)-

N,N-diethylacetamide (12b) (Table 2.2, Entry 5)

t-BuLi (0.81 mL of a solution 1.08 M in hexane, 0.87 

mmol) was added dropwise to a solution of 2-

bromomesitylene (0.07 mL, 0.45 mmol) in dry THF (5 

mL) at -78 ºC and under an inert atmosphere. The 

reaction was stirred for 1 h at -20 ºC and after that time, a solution of 

(iodoquinolinylmethyl)pyrrolylacrylamide 9d (100.00 mg, 0.22 mmol) in dry THF 

N
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(5 mL) was added via canula at -105 ºC. The mixture was stirred for 30 min at -105 

ºC and quenched at low temperature with a saturated solution of NH4Cl (5 mL). 

Et2O (20 mL) and H2O (10 mL) was added and the organic layer was separated. 

The aqueous phase was extracted with CH2Cl2 (3 x 10 mL) and combined organic 

extracts were dried over anhydrous Na2SO4, filtered and evaporated under pressure. 

The crude was subjected to flash chromatography (silica, hexane/EtOAc 6/4) 

obtaining product 12b as yellow oil (20.40 mg, 0.06 mmol, 28% yield).  

IR (ATR): 2963 cm-1 (C-Harom st), 2925 cm-1 (C-Haliph st), 1631 cm-1 (C=O st), 

1490 cm-1 (C=C st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 1.16 (t, J = 7.1 Hz, 3H, 

N(CH2CH3)2), 1.25 (t, J = 7.1 Hz, 3H, N(CH2CH3)2), 3.03 (dd, J = 15.1, 6.1 Hz, 

1H, CHAHB-CONEt2), 3.34 – 3.46 (m, 5H, CHAHB-CONEt2, N(CH2CH3)2), 4.98 (t, 

J = 6.1 Hz, 1H, H12), 5.27 (d, J = 15.3 Hz, 1H, H5A), 5.32 (d, J = 15.3 Hz, 1H, H5B), 

6.04 – 6.09 (m, 1H, H1), 6.19 (dd, J = 3.4, 2.8 Hz, 1H, H2), 6.76 – 6.78 (m, 1H, 

H3), 7.47 – 7.52 (m, 1H, H8), 7.66 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H, H9), 7.77 (brd, J = 

8.1 Hz, 1H, H7), 7.94 – 8.00 (m, 2H, H6, H10); 
13

C NMR (300 MHz, CDCl3, 25 ºC): 

� (ppm) = 13.1, 14.4 (N(CH2CH3)2), 35.8 (CHAHB-CONEt2), 39.1 (C12), 40.6, 42.3 

(N(CH2CH3)2), 47.8 (C5), 103.7 (C1) 108.4 (C2), 118.5 (C3), 126.2 (C5a), 126.3 (C8), 

126.6 (C6a), 127.2 (C7), 129.0 (C10), 129.2 (C9), 131.3 (C12a), 132.3 (C6), 147.1 

(C10a), 157.9 (C11a), 170.7 (CONEt2). MS (ESI
+
): (m/z) 335 (MH+ + 1, 22), 334 

(MH+, 100). HRMS (ESI
+
): Calculated for C21H24N3O (MH+): 334.1919. Found: 

334.1926. 
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6.3. Intramolecular carbolithiation reaction of N-(o-

iodobenzyl)pyrrolidinylacrylates  

6.3.1. Synthesis of N-(o-iodobenzyl)pyrrolidines 17a, 17b 

Synthesis of (S)-tert-butyl 2-(hydroxymethyl)pyrrolidine-1-carboxylate (13)
12

To a solution of Boc-L-proline (3.00 g, 13.94 mmol) in dry THF 

(75 mL), BH3.SMe2 (7.70 mL of a 2.00 M THF solution, 15.33 

mmol) was added dropwise and under inert atmosphere. The 

mixture was heated under reflux for 1 h, cooled to room temperature and 

concentrated to dryness. The resulting crude was eluted with CH2Cl2 (100 mL), and 

washed subsequently with water (2 x 50 mL), saturated NaHCO3 (2 x 50 mL) and 

brine (2 x 50 mL). The aqueous phase was extracted with CH2Cl2 (2 x 100 mL), 

and the combined organic extracts were dried over anhydrous Na2SO4, filtered and 

concentrated to dryness. Product 13 was obtained as a white solid (2.61 g, 13.00 

mmol, 93% yield) and was used without further purification. 

m.p. = 60-61 ºC (CH2Cl2); IR (ATR): 3416 cm-1 (brs, O-H st), 2972 cm-1 (C-Haliph

st), 1668 cm-1 (C=O st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 1.44 (s, 9H, C(CH3)3), 

1.48 – 1.68 (m, 1H, H3A), 1.70 – 1.90 (m, 2H, 2 x H4), 1.92 – 2.06 (m, 1H, H3B), 

3.28 (dt, J = 10.9, 6.8 Hz, 1H, H5A), 3.42 (dt, J = 10.9, 6.8 Hz, 1H, H5B), 3.49 – 

3.65 (m, 2H, CH2OH), 3.83 – 4.0 (m, 1H, H2).
 13

C NMR (CDCl3, 25 ºC): � (ppm) = 

24.0 (C4p), 28.4 (C(CH3)3), 28.6 (C3p), 47.5 (C5p), 60.1 (C2p), 67.5 (CH2OH), 80.1 

(C(CH3)3), 157.0 (CO2t-Bu). MS (CI): (m/z) 170 ([M – CH2OH]+, 53); 146 (100); 

128 (52); 114 (43); 102 (42). HRMS (CI): Calculated for C9H16NO2 [M – 

���������������������������������������� �������������������
12 Reed, P. E.; Katzenellenbogen, J. A. J. Org. Chem. 1991, 56, 2624. 
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CH2OH]+: 170.1181. Found: 170.1192. [�]D
20: -49.5 (c = 1.0 g/L, CHCl3). [Lit.13

[�]D
20: -47.5 (c = 1.0 g/L, CHCl3)]. 

Synthesis of (S)-tert-butyl 2-formylpyrrolidine-1-carboxylate (14)
12

To a water cooled solution of Boc-L-prolinol (13) (4.33 g, 21.51 

mmol) in dry CH2Cl2 (30 mL), PCC (7.10 g, 32.28 mmol), 1 g of 

4 Å molecular sieves powder and acetic acid (2.0 mL, 34.94 

mmol) were added subsequently. The mixture was stirred for 2 h at room 

temperature. After that time, celite (1.00 g) and Et2O (250 mL) were added and the 

precipitate was filtered through celite. The filtrate was washed with toluene (200 

mL), Et2O (250 mL) and concentrated to dryness. The crude was eluted in Et2O 

and further filtered through a small plug of SiO2. Product 14 was obtained as 

colorless oil (3.21 g, 16.11 mmol, 75% yield) and was used without further 

purification.  

IR (ATR): 2977 cm-1 (C-Haliph st), 1735 cm-1 (C=O st, aldehyde), 1689 cm-1 (C=O 

st, carbamate); 1
H NMR (CDCl3, 25 ºC): � (ppm) = (rotamer relation 1.5:1) = 1.32 

(s, 5.4H, C(CH3)3, major rotamer), 1.37 (s, 3.6H, C(CH3)3, minor rotamer),  1.67 – 

2.12 (m, 4H, 2 x H3, 2 x H4), 3.28 – 3.51 (m, 2H, 2 x H5), 3.89 – 4.01 (m, 0.6H, H2, 

major rotamer), 4.02 – 4.15 (m, 0.4H, H2, minor rotamer), 9.36 (s, 0.6H, CHO, 

major rotamer), 9.44 (s, 0.4H, CHO, minor rotamer); 13
C NMR (CDCl3, 25 ºC): �

(ppm) = 23.7 (C4p, major rotamer), 24.4 (C4p, minor rotamer), 26.5 (C3p, minor 

rotamer), 27.7 (C3p, major rotamer), 28.0 (C(CH3)3, major rotamer), 28.1 (C(CH3)3, 

minor rotamer),  46.5 (C5p, major rotamer), 46.6 (C5p, minor rotamer), 64.6 (C2p, 

minor rotamer), 64.8 (C2p, major rotamer), 79.9 (C(CH3)3, minor rotamer),   80.2 

(C(CH3)3, major rotamer),  153.7 (CO2t-Bu, major rotamer), 154.6 (CO2t-Bu, 
���������������������������������������� �������������������
13 Sou�ek, M.; Urban, J.; Šaman, D. Collect. Czech. Chem. Commun. 1990, 55, 761. 
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minor rotamer), 200.0 (CHO, major rotamer), 200.3 (CHO, minor rotamer). MS

(CI): (m/z) 170 ((M – CHO)+, 55); 144 (100); 126 (58); 114 (66); 100 (46). HRMS 

(CI): Calculated for C9H16NO2 [M – CHO]+: 170.1181. Found: 170.1181. [�]D
20: -

93.5 (c = 1.1 g/L, CH2Cl2). [Lit.14
[�]D

20: -90.1 (c = 1.0 g/L, CHCl3)]. 

Synthesis of (S,E)-tert-butyl 2-(3-ethoxy-3-oxoprop-1-enyl)pyrrolidine-1-

carboxylate (15a)
15

To a solution of Boc-L-prolinal (14) (1.34 g, 6.73 mmol) in 

CH2Cl2 (40 mL), ylide 4a (4.93 g, 13.44 mmol) was added. 

The reaction was stirred for 16 h at room temperature. After 

that time, the crude was washed with H2O (3 x 20 mL) and the aqueous phase was 

extracted with CH2Cl2 (2 x 20 mL). The organic extract was dried over anhydrous 

Na2SO4, filtered and concentrated to dryness. The crude was subjected to flash 

chromatography (silica gel, hexane/EtOAc 6/4) obtaining product 15a as a yellow 

oil (1.43 g, 5.31 mmol, 79% yield). 

IR (ATR): 2976 cm-1 (C-Haliph st), 1720 cm-1 (C=O st, ester), 1691 cm-1 (C=O st, 

carbamate), 1657 cm-1 (C=C st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = (rotamer 

relation 1.5:1) = 1.21 (t, J = 6.8 Hz, 3H, OCH2CH3), 1.29 – 1.37 (m, 5.4H, 

C(CH3)3, major rotamer), 1.37 – 1.42 (m, 3.6H, C(CH3)3, minor rotamer), 1.64 – 

1.74 (m, 1H, H3A), 1.74 – 1.82 (m, 2H, 2 x H4), 1.93 – 2.10 (m, 1H, H3B), 3.22 - 

3.42 (m, 2H, 2 x H5), 4.01 – 4.19 (m, 2H, OCH2CH3), 4.21 – 4.35 (m, 0.6H, H2, 

major rotamer), 4.35 – 4.49 (m, 0.4H, H2, minor rotamer), 5.74 (d, J = 15.3 Hz, 1H, 

-CH=CH-CO2Et), 6.67 – 6.81 (m, 1H, -CH=CH-CO2Et); 13
C NMR (CDCl3, 25 

���������������������������������������� �������������������
14 Song, X.-N.; Yao, Z.-J. Tetrahedron 2010, 66, 2589.
15 Zoute, L.; Kociok-Köhn, G.; Frostv, C. V. Org. Lett. 2009, 11, 2491.
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ºC): � (ppm) = 14.0 (OCH2CH3), 22.7 (C4p, major rotamer), 23.4 (C4p, minor 

rotamer), 28.2 (C(CH3)3), 30.7 (C3p, minor rotamer), 31.5 (C3p, major rotamer), 

46.0 (C5p, major rotamer), 46.4 (C5p, minor rotamer), 57.3 (C2p, minor rotamer), 

57.6 (C2p, major rotamer), 60.1 (OCH2CH3), 79.4 (C(CH3)3), 120.3 (-CH=CH-

CO2Et), 148.1 (-CH=CH-CO2Et, minor rotamer), 148.3 (-CH=CH-CO2Et, major 

rotamer), 154.1 (CO2t-Bu), 166.2 (CO2Et). MS (CI): (m/z) 196 (M – Ot-Bu, 4); 

170 (100); 168 (M – CO2t-Bu, 6); 124 (50). HRMS (CI): Calculated for C9H16NO2 

(MH+-(CH=CH-CO2Et)): 170.1181. Found: 170.1169. [�]D
20

: -64.4 (c = 1.2 g/L, 

CH2Cl2). The enantiomeric excess was determined by HPLC to be >99% [Chiralcel 

IC, hexane:i-PrOH 95:05, 1 mL/min, tr (S)= 24.9  min (>99 %), tr (R)= 55.0  min 

(<1 %)]. 

Synthesis of (S,E)-tert-butyl 2-(3-ethoxy-2-methyl-3-oxoprop-1-

enyl)pyrrolidine-1-carboxylate (15b)
16

To a suspension of ylide 4c (3.87 g, 10.04 mmol) in tert-butyl 

methyl ether (50 mL) under argon atmospehere, Boc-L-

prolinal (14) (1.00 g, 5.02 mmol) dissolved in tert-butyl 

methyl ether (10 mL) was added via canula. The reaction was 

heated under reflux for 16 h under an inert atmosphere. After that time, the crude 

was washed with H2O (3 x 20 mL) and the aqueous phase was extracted with 

CH2Cl2 (2 x 20 mL). The organic extract was dried over anhydrous Na2SO4, filtered 

and concentrated to dryness. The crude was subjected to flash chromatography 

���������������������������������������� �������������������
16 Grison C.; Gèneve, S.; Halbin, E.; Coutrot, P. Tetrahedron 2001, 57, 4903. 
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(silica gel, hexane/EtOAc 8/2) to afford 15b as a colorless oil (1.35 g, 4.76 mmol, 

95% yield).17

IR (ATR): 2975 cm-1 (Caliph-H st), 1693 cm-1 (C=O st, carbamate), 1655 cm-1 (C=C 

st); 1
H NMR (CDCl3, 25 ºC): � (ppm) =  1.25 (t, J = 7.1 Hz, 3H, OCH2CH3),  1.37 

(brs, 9H, C(CH3)3), 1.56 – 1.69 (m, 1H, H3A), 1.72 – 1.99 (m, 5H, -CH=C(CH3)-

CO2Et, 2 x H4), 2.01 – 2.20 (m, 1H, H3B), 3.27 – 3.57 (m, 2H, 2 x H5), 4.08 – 4.24 

(m, 2H, OCH2CH3), 4.33 – 4.65 (m, 1H, H2), 6.55 – 6.61 (m, 1H, -CH=C(CH3)-

CO2Et); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 12.4 (-CH=C(CH3)-CO2Et), 14.2 

(OCH2CH3), 23.8 (C4p, major rotamer), 24.4 (C4p, minor rotamer), 28.3 (C(CH3)3), 

31.8 (C3p, minor rotamer), 32.3 (C3p, major rotamer), 46.4 (C5p), 55.2 (C2p), 60.5 

(OCH2CH3), 79.4 (C(CH3)3), 126.3 (-CH=C(CH3)-CO2Et, major rotamer), 127.3 (-

CH=C(CH3)-CO2Et, minor rotamer), 143.3 (-CH=C(CH3)-CO2Et), 154.4 (CO2t-

Bu), 167.9 (CO2Et). MS (CI): (m/z) 284 (MH+, <1); 228 (MH+-(CH3)3, 55); 184 

(51); 183 (30); 154 (31); 138 (100). HRMS (CI): Calculated for C15H26NO4 

(MH+): 284.1862. Found: 284.1880. [�]D
20

: -9.3 (c = 0.6 g/L, CH2Cl2). The 

enantiomeric excess was determined by HPLC to be >99% [Chiralcel IC, hexane:i-

PrOH 95:5, 1 mL/min, tr (S-E)= 19.40  min (>99 %), tr (R-E)= 41.20  min (<1 %)]. 

Synthesis of 1-(bromomethyl)-2-iodo-4,5-dimethoxybenzene (16)
18

  

To a solution of (2-iodo-4,5-dimethoxyphenyl)methanol 

(2.87 g, 9.76 mmol) in dry CH2Cl2 (40 mL), PBr3 (1.20 mL, 

12.64 mmol) was added. The mixture was stirred for 2 h at 

���������������������������������������� �������������������
17 (Z)-isomer was not detected by NMR spectroscopy techniques, but HPLC spectrometry showed 
product 15b as a 95:5 mixture of diastereomers (E:Z).  
18 Ruiz, J.; Ardeo, A.; Ignacio, R.; Sotomayor, N.; Lete, E. Tetrahedron 2005, 61, 3311. 
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room temperature. Once the reaction was completed, an aqueous solution of 

saturated NaHCO3 was carefully added, until the release of gas totally finished. 

Subsequently, the organic layer was further washed with H2O (3 x 40 mL) and the 

aqueous phase was extracted with CH2Cl2 (3 x 20 mL). The combined organic 

extracts were dried over anhydrous Na2SO4, filtered and concentrated to dryness. 

The product 16 was obtained pure as a white solid (3.09 g, 8.66 mmol, 89% yield).

m.p.: 80-81 ºC (CH2Cl2); 
1
H NMR (CDCl3, 25 ºC): � (ppm) = 3.86 (s, 3H, OCH3), 

3.87 (s, 3H, OCH3), 4.58 (s, 2H, Ar-CH2-Br), 6.96 (s, 1H, H6arom), 7.22 (s, 1H, 

H3arom); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 39.6 (CH2Br), 56.2, 56.4 (2 x OCH3), 

88.7 (C2arom), 112.9 (C6arom), 122.0 (C3arom), 132.6 (C1arom), 149.7 (C4arom), 149.8 

(C5arom). MS (CI): (m/z) 359 (8); 357 (MH+, 8); 279 (13); 278 (21); 277 (100); 152 

(14). HRMS (CI): Calculated for C9H11BrIO2 (MH+): 356.8987. Found: 356.8970. 

Synthesis of (S,E)-ethyl 3-(1-(2-iodo-4,5-dimethoxybenzyl)pyrrolidin-2-

yl)acrylate (17a) 

To a solution of pyrrolidinylacrylate 15a (0.74 g, 

2.75 mmol) in CH2Cl2 (20 mL), trifluoroacetic acid 

(2.13 mL, 27.56 mmol) was added. The reaction 

was stirred overnight at room temperature. Next 

day, the solvent was evaporated to dryness under 

reduced pressure obtaining (S,E)-2-(3-ethoxy-3-oxoprop-1-enyl)pyrrolidinium 

trifluoroacetate salt (0.78 g, 2.75 mmol, quant.) as a crude which was used in the 

next step without any purification. This salt was dissolved in DMSO (20 mL) and 

KOH (0.46 g, 8.20 mmol) was added. The reaction was stirred at room temperature 

for 2 h, and after that time, benzyl bromide 16 (0.49 g, 1.37 mmol) was added to 

the mixture. The reaction was left stirring for 16 h at room temperature. After that 
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time, the mixture was quenched with H2O (10 mL) and eluted with CH2Cl2 (20 

mL). The organic phase was separated and the aqueous phase was further extracted 

with CH2Cl2 (2 x 20 mL). Combined organic extracts were washed with brine (3 x 

20 mL), dried over anhydrous Na2SO4, filtered and concentrated to dryness. The 

crude was subjected to flash chromatography (silica gel, hexane/EtOAc 6/4) 

obtaining product 17a as a yellow oil (0.55 g, 1.24 mmol, 90% yield). 

IR (ATR): 2955 cm-1(Carom-H st), 1716 cm-1 (C=O st), 1657 cm-1 (C=C st); 1
H 

NMR (CDCl3, 25 ºC): � (ppm) =  1.25 (t, J = 7.1 Hz, 3H, OCH2CH3), 1.57 – 1.92 

(m, 3H, H3A, 2 x H4), 1.92 – 2.09 (m, 1H, 1H3B), 2.27 (q, J = 8.4 Hz, 1H, H5A), 2.96 

– 3.08 (m, 1H, H5B), 3.14 (q, J = 8.0 Hz, 1H, H2),  3.35 (d, J = 13.8 Hz, 1H, Ar-

CHAHB-N), 3.75 (d, J = 13.8 Hz, 1H, Ar-CHAHB-N), 3.81 (s, 3H, OCH3),  3.85 (s, 

3H, OCH3), 4.15 (q, J = 7.1 Hz, 3H, OCH2CH3), 5.93 (d, J = 15.6 Hz, 1H, -

CH=CH-CO2Et), 6.87 (dd, J = 15.6, 8.0 Hz, 1H, -CH=CH-CO2Et), 6.98 (s, 1H, 

H6arom), 7.17 (s, 1H, H3arom); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 14.2 (OCH2CH3), 

22.8 (C4p),  31.4 (C3p), 53.7 (C5p),  55.9 (OCH3), 56.0 (OCH3), 60.2 (OCH2CH3), 

62.1 (Ar-CHAHB-N), 65.8 (C2p), 87.5 (C2arom), 112.9 (C6arom), 121.3 (C3arom), 121.6 

(-CH=CH-CO2Et), 133.9 (C1arom), 148.4 (C5arom), 149.2 (C4arom), 150.5 (-CH=CH-

CO2Et), 166.3 (CO2Et). MS (ESI
+
): (m/z) 447 (22); 446 (MH+, 100). HRMS 

(ESI
+
): Calculated for C18H25INO4 (MH+): 446.0828. Found: 446.0826. [�]D

20
: -

49.3 (c = 1.0 g/L, CH2Cl2). 



Chapter VI                                               Experimental Section 

�

269 

Synthesis of (S,E)-ethyl 3-(1-(2-iodo-4,5-dimethoxybenzyl)pyrrolidin-2-yl)-2-

methylacrylate (17b) 

To a solution of pyrrolidinylacrylate 15b (0.73 g, 

2.58 mmol) in dry CH2Cl2 (20 mL), trifluoroacetic 

acid (2.00 mL, 25.87 mmol) was added. The 

reaction was stirred overnight at room temperature. 

Next day, the solvent was evaporated to dryness 

under reduced pressure obtaining (S,E)-2-(3-ethoxy-2-methyl-3-oxoprop-1-

enyl)pyrrolidinium trifluoroacetate salt (0.77 g, 2.58 mmol, quant.) as a crude 

which was used in next step without any purification. This salt was dissolved in 

DMSO (20 mL) and KOH (0.43 g, 7.66 mmol) was added. The reaction was stirred 

at room temperature for 30 min, and after that time, benzyl bromide 16 (0.46 g, 

1.29 mmol) was added to the mixture. The reaction was left stirring for 1.5 h at 

room temperature. After that time, the reaction was quenched with H2O (10 mL) 

and extracted with CH2Cl2 (3 x 20 mL). The combined organic extracts were 

washed with brine (3 x 20 mL) and dried over anhydrous Na2SO4, filtered and 

concentrated to dryness. The crude was subjected to flash chromatography (silica 

gel, hexane/EtOAc 7/3) to afford product 17b as a yellow oil (0.38 g, 0.83 mmol, 

64% yield). 

IR (ATR): 2967 cm-1 (C-Haliph st), 1705 cm-1 (C=O st), 1653 cm-1 (C=C st); 1
H 

NMR (CDCl3, 25 ºC): � (ppm) = 1.26 (t, J = 7.1 Hz, 3H, OCH2CH3), 1.51 – 1.70 

(m, 1H, H3A), 1.87 (s, 3H, -CH=C(CH3)-CO2Et)*, 1.72 – 1.90 (m, 2H, 2 x H4)*, 

1.93 – 2.09 (m, 1H, H3B), 2.18 – 2.32 (m, 1H, H5A), 2.97 – 3.08 (m, 1H, H5B), 3.25 

– 3.39 (m, 2H, H2, Ar-CHAHB-N), 3.73 (d, J = 13.6 Hz, 1H, Ar-CHAHB-N), 3.82 (s, 

3H, OCH3), 3.86 (s, 3H, OCH3), 4.15 (q, J = 7.1 Hz, 2H, OCH2CH3), 6.73 (d, J = 

8.8 Hz, 1H, -CH=(CH3)-CO2Et), 6.97 (s, 1H, H3arom), 7.18 (s, 1H, H6arom); 13
C 
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NMR (300 MHz, CDCl3, 25 ºC): � (ppm) = 12.8 (-CH=C(CH3)-CO2Et), 14.2 

(OCH2CH3),  22.7 (C4p), 30.6 (C3p), 53.7 (C5p), 55.9, 56.0 (2 x OCH3), 60.4 

(OCH2CH3), 62.3 (Ar-CHAHB-N), 62.8 (C2p), 87.7 (C2arom), 113.1 (C6arom), 121.3 

(C3arom), 128.5 (-CH=C(CH3)-CO2Et), 133.9 (C1arom), 144.1 (-CH=C(CH3)-CO2Et), 

148.4, 149.2 (C4arom, C5arom), 167.9 (CO2Et). MS (CI): (m/z) 460 (MH+, 40); 458 

(20); 332 (27); 278 (17); 277 (100); 196 (36); 182 (50). HRMS (CI): Calculated 

for C19H27INO4 (MH+): 460.0985. Found: 460.0969. [�]D
20

: -64.2 (c = 1.5 g/L, 

CH2Cl2).* Partially overlapped signals 

6.3.2. Intramolecular carbolithiation reaction of N-(o-

iodobenzyl)pyrrolidines 17a, 17b. Synthesis of hexahydropyrrolo[1,2-

b]isoquinolines 18a, 18b 

Synthesis of ethyl 2-((10R,10aS)-7,8-dimethoxy-1,2,3,5,10,10a-

hexahydropyrrolo[1,2-b]isoquinolin-10-yl)acetate (18a) (Table 2.3, Entry 1)

t-BuLi (1.29 mL of a solution 1.00 M in hexane, 1.29 

mmol) was added dropwise to a solution of 2-

bromomesitylene (0.10 mL, 0.64 mmol) in dry THF (5 

mL) at -78 ºC and under an inert atmosphere. The 

reaction was stirred for 1 h at -20 ºC and after that time, a solution of 

pyrrolidinylacrylate 17a (143.30 mg, 0.32 mmol) in dry THF (5 mL) was added via

canula at -105 ºC. The mixture was stirred for 5 min at -105 ºC and quenched at 

low temperature with a saturated solution of NH4Cl (5 mL). Et2O (20 mL) and H2O 

(10 mL) was added and the organic layer was separated. The aqueous phase was 

extracted with CH2Cl2 (3 x 10 mL) and combined organic extracts were dried over 

anhydrous Na2SO4, filtered and evaporated under pressure. The crude was 
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subjected to flash chromatography (silica gel, EtOAc/MeOH 9/1) to afford the 

product 18a as white solid (86.80 mg, 0.27 mmol, 85% yield).  

m.p.: 75-76 ºC (Hexane/EtOAc); IR (ATR): 2957 cm-1 (C-Haliph st), 1729 cm-1

(C=O st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 1.23 (t, J = 7.1 Hz, 3H, OCH2CH3),  

1.55 – 1.67 (m, 1H, H1A), 1.73 - 1.84 (m, 1H, H2A), 1.84 – 1.96 (m, 1H, H2B), 2.05 

– 2.16 (m, 1H, H1B), 2.19 – 2.32 (m, 2H, H3A, H10a)  2.61 (dd, J = 15.5, 5.8 Hz, 1H, 

-CHAHB-CO2Et), 2.70 (dd, J = 15.5, 5.8 Hz, 1H, -CHAHB-CO2Et), 3.13 – 3.27 (m, 

2H, H3B, H10), 3.38 (d, J = 14.0 Hz, 1H, H5A), 3.81 (s, 3H, OCH3), 3.82 (s, 3H, 

OCH3), 3.96 (d, J = 14.0 Hz, 1H, H5B), 4.13 (q, J = 7.1 Hz, 3H, OCH2CH3), 6.52 (s, 

1H, H6), 6.73 (s, 1H, H9); 
13

C NMR (CDCl3, 25 ºC): � (ppm) =  14.1 (OCH2CH3), 

21.4 (C2),  30.0 (C1), 38.6 (-CHAHB-CO2Et), 41.5 (C10), 54.8 (C3), 55.5 (C5), 55.7 

(OCH3),  55.8 (OCH3), 60.5 (OCH2CH3), 66.1 (C10a), 109.3 (C6), 109.8 (C9), 127.2 

(C5a), 129.3 (C9a), 147.2 (C7), 147.6 (C8), 172.7 (CO2Et). MS (ESI
+
): (m/z) 321 

(MH+ + 1, 18), 320 (MH+, 100). HRMS (ESI
+
): Calculated for C18H26NO4 (MH+): 

320.1862. Found: 320.1873. [�]D
20

: +49.7 (c = 1 g/L, CH2Cl2). 

Synthesis of (R/S)-ethyl 2-((10R,10aS)-7,8-dimethoxy-1,2,3,5,10,10a-

hexahydropyrrolo[1,2-b]isoquinolin-10-yl)propanoate (18b) (Table 2.3, Entry 
2) 

t-BuLi (1.30 mL of a solution 1.00 M in hexane, 1.30 

mmol) was added dropwise to a solution of 2-

bromomesitylene (0.11 mL, 0.68 mmol) in dry THF (5 

mL) at -78 ºC and under an inert atmosphere. The 

reaction was stirred for 1 h at -20 ºC and after that time, a solution of 

pyrrolidinylacrylate 17b (155.00 mg, 0.34 mmol) in dry THF (5 mL) was added via

canula at -105 ºC. The mixture was stirred for 5 min at -105 ºC and quenched at 

CH3O

CH3O
N

CO2EtCH3

H
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low temperature with a saturated solution of NH4Cl (5 mL). Et2O (20 mL) and H2O 

(10 mL) was added and the organic layer was separated. The aqueous phase was 

extracted with CH2Cl2 (3 x 10 mL) and combined organic extracts were dried over 

anhydrous Na2SO4, filtered and evaporated under pressure. The crude was 

subjected to flash chromatography (silica gel, EtOAc/MeOH 9/1) to afford product 

18b (86.40 mg, 0.26 mmol, 77% yield) as an oil, in a ratio of 50:50 mixture of 

diastereomers (diast.1:diast.2).  

IR (ATR): 2934 cm-1 (C-Haliph st), 1724 cm-1 (C=O st), 1516 cm-1 (C=Carom st); 1
H 

NMR (CDCl3, 25 ºC): � (ppm) = 0.94 (d, J = 7.1 Hz, 3H, -CH(CH3)-CO2Et, 

diast.1) , 0. 99 (d, J = 7.1 Hz, 3H, -CH(CH3)-CO2Et, diast.2), 1.18 – 1.29 (m, 6H, 2 

x OCH2CH3, diast.1, diast.2),  1.40 – 2.05 (m, 8H, 2 x 2H1, 2 x 2H2, diast.1, 

diast.2), 2.10 – 2.43 (m, 4H, 2 x H3A, 2 x H10a, diast.1, diast.2),  2.74 - 2.81 (m, 1H, 

CH(CH3)(CO2Et), diast.2), 3.04 – 3.24 (m, 3H, -CH(CH3)-CO2Et, diast.1, 2 x H3B, 

diast.1, diast.2), 3.28 – 3.42 (m, 4H, 2 x H10, 2 x CH5AH5B, diast.1, diast.2), 3.73 – 

3.96 (m, 14H, 2 x (2 x OCH3), 2 x CH5AH5B, diast.1, diast.2), 4.05 – 4.29 (m, 4H, 2 

x OCH2CH3, diast.1, diast.2), 6.51 (s, 1H, H6, diast.1/diast.2), 6.52 (s, 1H, H6, 

diast.1/diast.2), 6.59 (s, 1H, H9, diast.2), 6.73 (s, 1H, H9, diast.1); 13
C NMR 

(CDCl3, 25 ºC): � (ppm) =  11.1 (-CH(CH3)-CO2Et, diast.1), 11.9 (-CH(CH3)-

CO2Et, diast.2), 14,1, 14.2 (2 x OCH2CH3, diast.1, diast.2), 21.5, 21.6 (2 x C2, 

diast.1, diast.2), 30.4, 30.9 (2 x C1, diast.1, diast.2), 40.8 (-CH(CH3)-CO2Et, 

diast.2), 41.9 (-CH(CH3)-CO2Et, diast.1), 46.6, 46.7 (2 x C10, diast.1, diast.2), 54.2, 

54.9 (2 x C3, diast.1, diast.2), 55.3, 55.4 (2 x C5, diast.1, diast.2), 55.7, 55.8, 56.0 (2 

x (2 x OCH3), diast.1, diast.2)*,  60.4, 60.6 (2 x OCH2CH3, diast.1, diast.2), 61.8, 

64.3 (2 x C10a, diast.1, diast.2), 109.5, 109.6 (2 x C6, diast.1, diast.2), 109.7, 110.7 

(2 x C9, diast.1, diast.2), 127.1 (C9a, diast.2), 128.0 (C5a, diast.1/diast.2), 128.1 (C9a, 

diast.1), 128.3 (C5a, diast.1/diast.2), 147.0, 147.1, 147.3, 147.8 (2 x C7, 2 x C8, 
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diast.1, diast.2), 175.5 (CO2Et, diast.1), 176.3 (CO2Et, diast.2). MS (CI): (m/z) 335 

(MH+ + 1, 20), 334 (MH+, 100), 333 (21), 332 (17), 264 (11), 231 (10). HRMS 

(CI): Calculated for C19H28NO4 (MH+): 334.2018. Found: 334.2001. *Overlapped 

signals, one peak missing 

Synthesis of (S,E)-5-(1-(1-(3,4-dimethoxybenzyl)pyrrolidin-2-yl)prop-1-en-2-

yl)nonan-5-ol (19) (Table 2.3, Entry 3)

Pyrrolidinylacrylate 17b (154.50 mg, 0.34 

mmol) was dissolved in dry THF (10 mL) 

under inert atmosphere. Subsequently, readily 

distilled TMEDA (0.11 mL, 0.74 mmol) and 

n-BuLi (0.74 mL of a solution 1.00 M in 

hexane, 0.74 mmol) were added to the previous solution at -78 ºC. The mixture was 

stirred for 10 min at -78 ºC and quenched with a saturated solution of NH4Cl (5 

mL). The crude was extracted with Et2O (3 x 10 mL) and the organic combined 

extracts were dried over anhydrous Na2SO4, filtered and concentrated to dryness. 

The crude was subjected to flash chromatography (silica gel, hexane/EtOAc 2/8) 

obtaining product 19 as a yellow oil (27.90 mg, 0.07 mmol, 21% yield) and 

pyrroloisoquinoline 18b (44.30 mg, 0.13 mmol, 40% yield) as a 69:31 mixture of 

diastereomers (diast.1:diast.2). 

IR (ATR): 3512 cm-1 (brs, O-H st), 2954 cm-1 (C-Haliph st), 1590 cm-1 (C=C st); 1
H 

NMR (CDCl3, 25 ºC): � (ppm) =  0.80 – 0.89 (m, 6H, 2 x 3H4´), 1.05 – 1.18 (m, 

2H, 2H2A´), 1.21 – 1.31 (m, 6H, 2H2B´, 2 x 2H3´), 1.46 – 1.60 (m, 5H, 2 x 2H1´, 

H3A), 1.61 (s, 3H, -CH=C(CH3)-), 1.67 – 1.87 (m, 2H, 2H4), 1.91 – 2.02 (m, 1H, 

H3B), 2.11 (q, J = 9.0 Hz, 1H, H5A), 2.94 (td, J = 9.0, 2.3 Hz, 1H, H5B), 3.00 - 3.14 

(m, 2H, H2, Ar-CHAHB-N), 3.79 – 3.96 (m, 8H, Ar-CHAHB-N, 2 x OCH3, OH), 

CH3O

CH3O
N

n-Bu

CH3

H

HO

n-Bu A´

B´
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5.50 (d, J = 8.5 Hz, 1H, -CH=C(CH3)-), 6.75 – 6.91 (m, 3H, H2arom, H3arom, H6arom); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = 13.68 (-CH=C(CH3)-), 14.06 (2 x C4´)*, 

22.07 (C3A´), 23.05 (C3B´), 25.38 (C2A´), 25.62 (C2B´), 29.65 (C4p),  31.14 (C3p), 

38.99 (C1A´), 39.27 (C1B´), 53.11 (C5p), 55.82 (OCH3), 55.85 (OCH3), 58.20 (Ar-

CHAHB-N), 62.88 (C2p), 77.77 (-C(OH)(n-Bu)2), 110.72 (C6arom), 112.26 (C3arom), 

121.12 (C2arom), 127.03 (-CH=C(CH3)-), 132.01 (C1arom), 140.42 (-CH=C(CH3)-), 

147.91, 148.71 (C4arom, C5arom). MS (CI): (m/z) 404 (MH+, 14); 403 (M+, 17); 402 

(16); 387 (30); 386 (100); 385 (26); 384 (19). HRMS (CI): Calculated for 

C25H42NO3 (MH+): 404.3165. Found: 404.3153. [�]D
20

: -27.79 (c = 1.4 g/L, 

CH2Cl2). *Overlapped signals 

6.4. Intramolecular carbolithiation reaction via conjugate 

addition on N-(o-iodobenzyl)pyrrolyl)butenoate 

6.4.1. Synthesis of N-(o-iodobenzyl)pyrrole 26 

Synthesis of tert-butyl 2-acetyl-1H-pyrrole-1-carboxylate (20) 

2-acetyl pyrrole (2.00 g, 18.14 mmol) was dissolved in dry THF 

(30 mL). Et3N (3.83 mL, 27.48 mmol) and DMAP (44.80 mg, 0.37 

mmol) were added subsequently to the previous solution. To this 

mixture, di-tert-butyl dicarbonate (6.38 mL, 27.50 mmol) was added dropwise and 

was stirred overnight at room temperature. After that time, the crude was washed 

several times with basic solutions as a saturated solution of Na2CO3 (3 x 20 mL) 

and a solution of 10% in NaOH (3 x 20 mL). The aqueous extracts were extracted 

with CH2Cl2 (3 x 20 mL) and the combined organic extracts were dried over 

anhydrous Na2SO4, filtered and evaporated to dryness. The product 20 was 

N

O

CH3Boc

34

5
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obtained as a crude yellow oil (3.70 g, 17.68 mmol, 97% yield) which was used 

without further purification. 

1
H NMR (CDCl3, 25 ºC): � (ppm) = 1.54 (s, 9H, -C(CH3)3), 2.41 (s, 3H, COCH3), 

6.10 – 6.15 (m, 1H, H4pyrrole), 6.82 (dd, J = 3.6, 1.6 Hz, 1H, H3pyrrole), 7.28 (dd, J = 

3.0, 1.6 Hz, 1H, H5pyrrole); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = 27.42 (-C(CH3)3), 

27.76 (COCH3), 84.71 (-C(CH3)3), 109.85 (C4pyrrole), 121.04 (C3pyrrole), 127.78 

(C5pyrrole), 134.06 (C2pyrrole), 148.86 (CO2t-Bu), 188.27 (COCH3). MS (CI): (m/z) 

154 (73); 136 (7, M-Ot-Bu); 110 (100); 109 (55). HRMS (CI): Calculated for 

C11H15NO3 (M
+): 209.1052. Found: 209.1066. 

Synthesis of ethyl 2-(1-methyl-3-oxo-1,3-dihydropyrrolo[1,2-c]oxazol-1-

yl)acetate (21) 

To a vacuum-flame dried round bottom flask, under an inert 

atmosphere provided with a magnetic stirring bar, Zn dust 

(0.11 g, 1.65 mmol) was added and dissolved in dry Et2O (5 

mL). Subsequently, TMSCl (0.013 mL, 0.10 mmol) was 

added as catalyst and the reaction was stirred at room temperature for 10 min. After 

that time, Boc-protected acetyl pyrrole 20 (0.17 g, 0.83 mmol) and ethyl 

bromoacetate (0.14 mL, 1.24 mmol) were dissolved in dry Et2O (10 mL) and added 

via canula to the previous mixture while heating to reflux. The reaction was heated 

under reflux for 24 h. Then, the reaction was quenched with H2O (10 mL) and 

extracted with diethyl ether (3 x 5 mL). The aqueous phase was basified with 

aqueous Na2CO3 saturated solution and further extracted with diethyl ether (3 x 5 

mL). The combined organic extracts were dried over anhydrous Na2SO4 and 

evaporated to dryness. The crude was dissolved in dry toluene (10 mL) under an 

argon atmosphere and monohydrated p-toluensulfonic acid (14.10 mg, 0.08 mmol) 

N

O

O

CH3

CO2Et

13
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6 7
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was added with a spatula of anhydrous Na2SO4. The mixture was heated to reflux 

for 24 h. After that time, the crude was filtered and subjected to flash 

chromatography (silica gel, hexane/EtOAc 9/1) obtaining product 21 as an oil 

(74.60 mg, 0.33 mmol, 40% yield). 

IR (ATR): 2985 cm-1 (C-Haliph st),  1791 cm-1 (C=O st, carbamate), 1733 cm-1

(C=O st, ester); 1
H NMR (CDCl3, 25 ºC): � (ppm) =  1.17 (t, J = 7.1 Hz, 3H, 

OCH2CH3),  1.77 (s, 3H, CH3), 2.97 (s, 2H, -CH2-CO2Et), 4.07 (q, J = 7.1 Hz, 2H, 

OCH2CH3), 6.04 (dd, J = 3.1, 0.9 Hz, 1H, H7), 6.40 (t, J = 3.1 Hz, 1H, H6), 

7.01(dd, J = 3.1, 0.9 Hz, 1H, H5); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = 13.9 

(OCH2CH3), 26.3 (CH3), 44.0 (-CH2CO2Et), 60.9 (OCH2CH3), 82.8 (C1), 102.7 

(C7), 112.2 (C5), 118.2 (C6), 139.1 (C7a), 149.1 (C3), 168.1 (CO2Et). MS (CI): (m/z) 

224 (MH+, 2); 223 (M+, 4); 180 (100); 162 (13); 134 (75). HRMS (CI): Calculated 

for C11H14NO4 (MH+): 224.0923. Found: 224.0939. 

Synthesis of 1-(phenylsulfonyl)-1H-pyrrole (22)
19

Pyrrole (0.52 mL, 7.45 mmol) was added over a suspension of 

NaOH (0.89 g, 22.25 mmol) in 1,2-dichloroethane (20 mL). A 

solution of phenylsulfonyl chloride (1.14 mL, 8.93 mmol) in 1,2-

dichloroethane (20 mL) was added dropwise to the former solution at 0 ºC. After 

the addition, the ice bath was removed and the reaction was allowed to warm up to 

room temperature and stirred for 24 h. After that time, the crude was poured on 

water and extracted with CH2Cl2 (3 x 20 mL). The combined organic phases were 

dried over anhydrous Na2SO4, filtered and evaporated to dryness. Crude product 22

was characterized without further purification (1.00 g, 4.83 mmol, 65% yield).  

���������������������������������������� �������������������
19 Zelikin, A.; Shastri, V. R.; Langer, R.  J. Org. Chem. 1999, 64, 3379. 

N
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m.p.: 83-85 ºC (CH2Cl2) [Lit.20 87-88ºC (MeOH)]; IR (ATR): 1451 cm-1 (C=Carom

st), 1370 cm-1 (SO2 st); 1
H NMR (CDCl3, 25 ºC): � (ppm) =  6.27 – 6.34 (m, 2H, 

H3pyrrole),  7.14 – 7.20 (m, 2H, H2pyrrole), 7.50 (tt, J = 8.3, 1.4 Hz, 2H, H3arom), 7.55 – 

7.64 (m, 1H, H4arom), 7.81 – 7.91 (m, 2H, H2arom); 13
C NMR (CDCl3, 25 ºC): �

(ppm) = 113.66 (C3pyrrole), 120.79 (C2pyrrole), 126.73 (C2arom), 129.34 (C3arom), 133.79 

(C4arom), 139.10 (C1arom). MS (CI): (m/z) 209 (13); 208 (MH+, 100); 207 (29); 

HRMS (CI): Calculated for C10H10NO2S (MH+): 208.0432. Found: 208.0439. 

Synthesis of 1-(1-(phenylsulfonyl)-1H-pyrrol-2-yl)ethanone (23)
21

BF3.OEt2 (1.70 mL, 13.77 mmol) was added to a solution of 1-

phenylsulfonyl pyrrole (22) (0.93 g, 4.47 mmol) in dry CH2Cl2

(20 mL). The reaction was stirred to room temperature for 10 min. 

After that time, Ac2O (0.63 mL, 6.71 mmol) was added to the 

former solution and stirred overnight at room temperature. The mixture was 

quenched with water (10 mL) and extracted with CH2Cl2 (3 x 20 mL). The 

combined organic phases were dried over anhydrous Na2SO4, filtered and 

concentrated to dryness giving product 23 as a solid which was characterized 

without further purification (0.74 g, 2.98 mmol, 67% yield).  

m.p.: 94-96 ºC (CH2Cl2) [Lit.21 96-98ºC (Hexane)]; IR (ATR): 1674 (C=O st), 

1540 cm-1 (C=Carom st), 1360 cm-1 (SO2 st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 

2.33 (s, 3H, COCH3),  6.34 (dd, J = 3.8, 3.3 Hz, 1H, H4pyrrole), 7.05 (dd, J = 3.8, 1.8 

Hz, 1H, H3pyrrole), 7.45 – 7.63 (m, 3H, H3arom, H4arom), 7.82 (dd, J = 3.3, 1.8 Hz, 1H, 

H5pyrrole), 7.92 – 8.06 (m, 2H, H2arom); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 26.8 

(COCH3), 110.4 (C4pyrrole), 124.3 (C3pyrrole), 128.0 (C2arom), 128.6 (C3arom),  130.3 

���������������������������������������� �������������������
20 Fukuda, T.; Sudo, E.; Shimokawa, K.; Iwao, M. Tetrahedron  2008,  64, 328. 
21 Komoto, I.; Matsuo, J.-i.; Kobayashi, S. Topics in Catalysis 2002, 19, 43. 
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(C5pyrrole), 133.2 (C2pyrrole), 133.5 (C4arom), 138.8 (C1arom), 185.8 (COCH3). MS (CI):

(m/z) 251 (14); 250 (MH+, 100); 208 (71); 185 (31). HRMS (CI): Calculated for 

C12H12NO3S (MH+): 250.0538. Found: 250.0533. 

Synthesis of (E)-ethyl 3-(1-(phenylsulfonyl)-1H-pyrrol-2-yl)but-2-enoate (24a) 

To a vacuum-flame dried round bottom flask, under an inert 

atmosphere provided with a magnetic stirring bar, Zn dust 

(0.23 g, 3.45 mmol) was added and dissolved in dry Et2O (10 

mL). Subsequently, TMSCl (0.013 mL, 0.10 mmol) and ethyl 

bromoacetate (0.29 mL, 2.57 mmol) were added and the reaction was stirred at 

room temperature for 10 min. After that time, sulphonyl protected acetyl pyrrole 23

(0.21 mg, 0.86 mmol) in dry Et2O (10 mL) was added via canula to the previous 

mixture while heating to reflux. The reaction was heated under reflux for 16 h. The 

reaction is quenched with H2O (10 mL) and extracted with Et2O (3 x 10 mL). The 

aqueous phase was basified with aqueous Na2CO3 saturated solution and further 

extracted with diethyl ether (3 x 10 mL). The combined organic extracts were dried 

over anhydrous Na2SO4 and evaporated to dryness. The crude was dissolved in dry 

toluene (10 mL) under an argon atmosphere and monohydrated p-toluensulfonic 

acid (18.00 mg, 0.09 mmol) was added with a spatula of anhydrous Na2SO4. The 

mixture was heated to reflux for 24 h. After that time, the crude was filtered and 

subjected to flash chromatography (silica gel, hexane/EtOAc 9/1) obtaining 

isolated product 24a as an oil (106.60 mg, 0.33 mmol, 39% yield), and isomers 24b

and 24c (68.00 mg, 0.21 mmol, 25% yield) as a 27:73 mixture of byproducts, 

unable to isolate and characterize. 
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IR (ATR): 2983 cm-1 (C-Haliph st), 1711 cm-1 (C=O st), 1631 cm-1 (C=C st), 1369 

cm-1 (SO2 st); 1
H NMR (CDCl3, 25 ºC): � (ppm) =  1.23 (t, J = 7.1 Hz, 3H, 

OCH2CH3),  2.31 (d, J = 1.1 Hz, 3H, -C(CH3)=CH-CO2Et), 4.13 (q, J = 7.1 Hz, 

2H, OCH2CH3), 5.62 – 5.67 (m, 1H, -C(CH3)=CH-CO2Et), 6.07 (dd, J = 3.3, 1.7 

Hz, 1H, H3pyrrole), 6.15 (t, J = 3.3 Hz, 1H, H4pyrrole), 7.23 (dd, J = 3.3, 1.7 Hz, 1H, 

H5pyrrole), 7.33 – 7.41 (m, 2H, H3arom), 7.45 – 7.54 (m, 1H, H4arom), 7.59 – 7.66 (m, 

2H, H2arom); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 14.25 (OCH2CH3), 21.08 (-

C(CH3)=CH-CO2Et), 59.94 (OCH2CH3), 113.23 (C4pyrrole), 116.28 (C3pyrrole), 121.13 

(-C(CH3)=CH-CO2Et), 125.65 (C5pyrrole), 126.77 (C2arom), 129.01 (C3arom), 133.88 

(C4arom), 138.24, 138.29 (C1arom, C2pyrrole), 147.27 (-C(CH3)=CH-CO2Et), 165.99 

(CO2Et). MS (CI): (m/z) 320 (MH+, 21); 275 (13); 274 (100); 179 (15); 134 (38); 

111 (19). HRMS (CI): Calculated for C16H18NO4S (MH+): 320.0957. Found: 

320.0940. 

Synthesis of (Z)-ethyl 3-(1H-pyrrol-2-yl)but-2-enoate (25a) and (E)-ethyl 3-

(1H-pyrrol-2-yl)but-2-enoate (25b)
22

Ethyl 2-butynoate (0.30 mL, 2.52 mmol) was added over a suspension of pyrrole 

(0.36 mL, 5.04 mmol) and Pd(OAc)2 (57.79 mg, 0.25 mmol) in CH2Cl2 (1 mL). 

The reaction was left stirring during 96 h. After that time, the crude was filtered 

through celite and purified through flash chromatography (silica gel, 

hexane/EtOAc 8/2) obtaining diastereomers 25a (113.60 mg, 0.63 mmol, 25% 

yield) and 25b (59.50 mg, 0.33 mmol, 13% yield), both as yellow oils.  

���������������������������������������� �������������������
22 Lu, W.; Jia, C.; Kitamura, T.; Fujiwara. Y. Org. Lett. 2000, 2, 2927. 
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Data for (Z)-25a: major diastereomer 

IR (ATR): 3191 cm-1 (N-H st), 2979 cm-1 (C-Haliph), 1679 cm-1

(C=O st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 1.34 (t, J = 7.1 Hz, 

3H, OCH2CH3), 2.31 (d, J = 1.1 Hz, 3H, -C(CH3)=CH-CO2Et), 

4.23 (q, J = 7.1 Hz, 2H, OCH2CH3), 5.61 (d, J = 1.1 Hz, 1H, -

C(CH3)=CH-CO2Et), 6.28 – 6.30 (m, 1H, H4pyrrole), 6.64 – 6.68 (m, 1H, H3pyrrole), 

7.00 – 7.05 (m, 1H, H5pyrrole), 12.97 (brs, 1H, NH); 13
C NMR (CDCl3, 25 ºC): �

(ppm) = 14.2 (OCH2CH3), 24.5 (-C(CH3)=CH-CO2Et), 60.3 (OCH2CH3), 108.7 (-

C(CH3)=CH-CO2Et), 109.4 (C4pyrrole), 114.4 (C3pyrrole), 121.9 (C5pyrrole), 130.2 

(C2pyrrole), 144.4 (-C(CH3)=CH-CO2Et), 168.8 (CO2Et). MS (CI): (m/z) 180 (MH+, 

28); 179 (88); 134 (100); 133 (24). HRMS (CI): Calculated for C10H14NO2 (MH+): 

180.1025. Found: 180.1020. 

Data for (E)-25b: minor diastereomer 

IR (ATR): 3368 cm-1 (N-H st), 2979 cm-1 (C-H aliph st), 

1711 cm-1 (C=O st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 1.30 

(t, J = 7.1 Hz, 3H, OCH2CH3),  2.54 (d, J = 1.1 Hz, 3H, -

C(CH3)=CH-CO2Et), 4.20 (q, J = 7.1 Hz, 2H, OCH2CH3), 

5.95 (d, J = 1.1 Hz, 1H, -C(CH3)=CH-CO2Et), 6.25 – 6.29 (m, 1H, H4pyrrole), 6.58 – 

6.62 (m, 1H, H3pyrrole), 6.86 – 6.91 (m, 1H, H5pyrrole), 8.71 (brs, 1H, NH); 13
C NMR 

(CDCl3, 25 ºC): � (ppm) = 14.3 (OCH2CH3), 15.8 (-C(CH3)=CH-CO2Et), 59.6 

(OCH2CH3), 108.6 (-C(CH3)=CH-CO2Et), 110.4 (C4pyrrole), 111.4 (C3pyrrole), 121.4 

(C5pyrrole), 132.6 (C2pyrrole), 145.7 (-C(CH3)=CH-CO2Et), 167.4 (CO2Et). MS (CI):

(m/z) 180 (MH+, 52); 179 (100); 134 (77); 133 (18). HRMS (CI): Calculated for 

C10H14NO2 (MH+): 180.1025. Found: 180.1023.  
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Synthesis of (E)-ethyl 3-(1-(2-iodo-4,5-dimethoxybenzyl)-1H-pyrrol-2-yl)but-2-

enoate (26) 

NaH (60% dispersion in mineral oil, 139.10 mg, 

3.48 mmol) was added to a solution of the former 

(E) substituted pyrrole 25a (311.70 mg, 1.74 mmol) 

in dry DMF (20 mL) at 0 ºC. The reaction was 

stirred and allowed to warm up to room temperature 

during 1 h. After that time, benzyl bromide 16 (750.00 mg, 2.10 mmol) was added 

to the mixture and stirred for 4 h at room temperature. The reaction was quenched 

with H2O (10 mL) and the crude was extracted with CH2Cl2 (3 x 20 mL). The 

organic phase was washed with H2O (3 x 20 mL). The combined organic extracts 

were dried over anhydrous Na2SO4, filtered and concentrated to dryness. The crude 

was purified through flash chromatography (silica gel, hexane/EtOAc 9/1) 

obtaining product 26 as a yellow solid (300.20 mg, 0.66 mmol, 38% yield). 

m.p. : 81-83 ºC (Hexane/EtOAc); IR (ATR): 2976 cm-1 (C-Haliph st), 1705 cm-1

(C=O st), 1612 cm-1 (C=C st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 1.25 (t, J = 7.1 

Hz, 3H, OCH2CH3), 2.45 (d, J = 1.1 Hz, 3H, -C(CH3)=CH-CO2Et), 3.61 (s, 3H, 

OCH3), 3.81 (s, 3H, OCH3), 4.12 (q, J = 7.1 Hz, 2H, OCH2CH3), 5.07 (s, 2H, Ar-

CH2-N), 5.69 (d, J = 1.1 Hz, 1H, -C(CH3)=CH-CO2Et), 6.01 (s, 1H, H6arom), 6.20 

(dt, J = 3.7, 2.8 Hz, 1H, H4pyrrole), 6.42 ( dd, J = 3.7, 1.7 Hz, 1H, H3pyrrole), 6.67 – 

6.72 (m, 1H, H5pyrrole), 7.21 (s, 1H, H3arom). 13
C NMR (CDCl3, 25 ºC): � (ppm) = 

14.21 (OCH2CH3), 19.12 (-C(CH3)=CH-CO2Et), 55.54 (OCH3), 56.02 (OCH3), 

56.29 (Ar-CH2-N), 59.47 (OCH2CH3), 84.72 (C2arom), 108.89 (C4pyrrole), 110.39 

(C6arom), 112.33 (C3pyrrole), 115.36 (-C(CH3)=CH-CO2Et), 121.38 (C3arom), 126.25 

(C5pyrrole), 132.53 (C1arom), 135.51 (C2pyrrole), 146.36 (-C(CH3)=CH-CO2Et), 148.72 

(C5arom), 149.66 (C4arom), 166.61 (CO2Et). MS (CI): (m/z) 456 (MH+ , 13); 455 (17); 

CH3O

CH3O

I

N

CH3

H

CO2Et
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328 (31); 277 (100). HRMS (CI): Calculated for C19H23INO4 (MH+): 456.0672. 

Found: 456.0677. 

Synthesis of (S)-tert-butyl 2-(methoxy(methyl)carbamoyl)pyrrolidine-1-

carboxylate (27)
23,24

Carbonyldiimidazole (1.13 g, 6.97 mmol) was added portion 

wise to a solution of Boc-L-proline (1.00 g, 4.65 mmol) in dry 

CH2Cl2 (20 mL).  The mixture was stirred at room temperature 

until CO2 liberation ceased. Then, N,O-dimethylhydroxylamine hydrochloride 

(0.69 g, 6.93 mmol) was added and stirred overnight at room temperature.  The 

crude was quenched with water (10 mL) and extracted with CH2Cl2 (3 x 20 mL). 

The combined organic phases were dried over anhydrous Na2SO4, filtered and 

concentrated to dryness. The crude was subjected to flash chromatography (silica 

gel, hexane/EtOAc 7/3) obtaining product 27 as a colorless oil (0.96 g, 3.73 mmol, 

80% yield). 

IR (ATR): 2975 cm-1 (C-Haliph st), 1695 cm-1 (C=O st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) = (rotamer relation 1.2:1) = 1.31 (s, 5H, C(CH3)3, major rotamer), 1.35 (s, 

4H, C(CH3)3, minor rotamer), 1.66 – 1.98 (m, 3H, H3A, 2 x H4), 1.98 – 2.18 (m, 1H, 

H3B), 3.09 (s, 3H, CH3), 3.24 – 3.56 (m, 2H, 2 x H5), 3.62 (s, 1.7H, OCH3, major 

rotamer), 3.68 (s, 1.3H, OCH3, minor rotamer), 4.50 (dd, J = 8.3, 3.0 Hz, 0.55H, 

H2, major rotamer), 4.60 (dd, J = 8.3, 3.0 Hz, 0.45H, H2, minor rotamer). 13
C NMR 

(CDCl3, 25 ºC): � (ppm) = 23.28 (C4p, major rotamer), 23.93 (C4p, minor rotamer), 

28.29 (C(CH3)3, major rotamer), 28.38 (C(CH3)3, minor rotamer), 29.49 (C3p, minor 

rotamer), 30.38 (C3p, major rotamer), 32.18 (CON(CH3)(OCH3), minor rotamer), 

���������������������������������������� �������������������
23 Kong, C.; Jana, N.; Driver, T.G. Org. Lett. 2013, 15, 824.�
24 Barluenga, J.; Escribano, M.; Aznar, F.; Valdés, C.  Angew. Chem. Int. Ed. 2010, 49, 6856. 

N
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32.34 (CON(CH3)(OCH3), major rotamer), 46.47 (C5p, major rotamer), 46.76 (C5p, 

minor rotamer), 56.40 (CON(CH3)(OCH3), minor rotamer), 56.69 

(CON(CH3)(OCH3), major rotamer), 61.11 (C2p, major rotamer), 61.20 (C2p, minor 

rotamer), 79.25 (C(CH3)3, minor rotamer), 79.42 (C(CH3)3, major rotamer), 153.77 

(CO2t-Bu, major rotamer), 154.37 (CO2t-Bu, minor rotamer), 173.16 

(CON(CH3)(OCH3), minor rotamer), 173.74 (CON(CH3)(OCH3), major rotamer). 

MS (CI): (m/z) 185 (M – Ot-Bu, 33); 170 (M – CON(OCH3)(CH3), 59); 159 (100); 

157 (M – CO2t-Bu, 38); 114 (50). HRMS (CI): Calculated for C12H23N2O4 (MH+): 

259.1658. Found: 259.1640. [�]D
20

: -20.3 (c = 0.5 g/L, CH2Cl2). [Lit.23
[�]D

20: -13.6 

(c = 0.5 g/L, CH2Cl2)]. 

Synthesis of (S)-tert-butyl 2-acetylpyrrolidine-1-carboxylate (28)
23,24

Methylmagnesium bromide (2.20 mL of a 3.00 M solution in 

ether, 6.60 mmol) was added to a solution of Weinreb amide 

(0.69 g, 2.66 mmol) in dry diethyl ether at 0 ºC. The reaction 

was stirred for 1.5 h at 0 ºC. After that time, the reaction was quenched with 

saturated NH4Cl solution and the crude was extracted with diethyl ether (3 x 

20mL).  The combined organic phases were dried over anhydrous Na2SO4, filtered 

and concentrated to dryness. The crude was subjected to flash chromatography 

(silica gel, hexane/EtOAc 5/5) obtaining product 28 as a white solid (0.43 g, 2.03 

mmol, 76% yield) whose spectroscopic details are checked with those in the 

bibliography. 

m.p.: 46-47 ºC (Hexane/EtOAc); IR (ATR): 2977 cm-1 (C-Haliph st), 1691 cm-1 

(C=O st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = (rotamer relation 1.4:1) = 1.32 (s, 

5.3H, C(CH3)3, major rotamer), 1.37 (s, 3.7H, C(CH3)3, minor rotamer), 1.62 – 1.88 

(m, 3H, H3A, 2 x H4), 1.92 – 2.20 (m, 4H, H3B, CH3CO), 3.29 – 3.53 (m, 2H, 2 x 

N
CH3

OBoc
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H5), 4.06 - 4.18 (m, 0.6, H2, major rotamer), 4.18 – 4.29 (m, 0.4H, H2, minor 

rotamer); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 23.56 (C4p, major rotamer), 24.22 

(C4p, minor rotamer), 25.38 (CH3CO, major rotamer), 26.19 (CH3CO, minor 

rotamer), 28.09 (C(CH3)3, major rotamer), 28.23 (C(CH3)3, minor rotamer), 28.54 

(C3p, minor rotamer), 29.61 (C3p, major rotamer), 46.47 (C5p, major rotamer), 46.65 

(C5p, minor rotamer), 65.02 (C2p, minor rotamer), 65.54 (C2p, major rotamer), 79.59 

(C(CH3)3, minor rotamer), 79.91 (C(CH3)3, major rotamer), 153.68 (CO2t-Bu, 

major rotamer), 154.43 (CO2t-Bu, minor rotamer), 207.96 (COCH3, minor 

rotamer), 208.07 (COCH3, major rotamer). MS (CI): (m/z) 158 (26); 140 (M – Ot-

Bu, 21); 114 (100). HRMS (CI): Calculated for C9H16NO2 [M – CH3CO]+: 

170.1181. Found: 170.1207. [�]D
20

: -48.37 (c = 1.0 g/L, CH2Cl2). [Lit.24
[�]D

20: -

47.69 (c = 0.1 g/L, CH2Cl2)]. 

Synthesis of (S)-tert-butyl 2-((R/S)-4-ethoxy-2-hydroxy-4-oxobutan-2-

yl)pyrrolidine-1-carboxylate (29a) and (S)-tert-butyl 2-((R/S)-4-ethoxy-2-

hydroxy-4-oxobutan-2-yl)pyrrolidine-1-carboxylate (29b) 

To a vacuum-flame dried round bottom flask, under an inert atmosphere provided 

with a magnetic stirring bar, Zn dust (1.00 g, 15.00 mmol) was added. Zn was 

dissolved in dry Et2O (30 mL), TMSCl (0.06 mL, 0.45 mmol) as catalyst and ethyl 

bromoacetate (1.27 mL, 11.25 mmol) were added and the reaction was stirred at 

room temperature for 10 min. After that time, Boc-protected 2-acetyl pyrrolidine 

28 (0.80 g, 3.75 mmol) in dry Et2O (10 mL) was added via canula to the previous 

mixture while heating to reflux. The reaction was heated under reflux for 16 h. The 

reaction is quenched with H2O (20 mL) and extracted with Et2O (3 x 10 mL). The 

aqueous phase was basified with aqueous Na2CO3 saturated solution and further 

extracted with diethyl ether (3 x 10 mL). The combined organic extracts were dried 

over anhydrous Na2SO4 and evaporated to dryness. The crude was dissolved in dry 
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toluene (10 mL) under an argon atmosphere and monohydrated p-toluensulfonic 

acid (0.18 g, 0.94 mmol) was added with a spatula of anhydrous Na2SO4. The 

mixture was heated under reflux for 24 h. After that time, the crude was filtered 

and subjected to flash chromatography (silica gel, hexane/EtOAc 8/2) obtaining 

diastereomers 29a (0.25 g, 0.83 mmol, 22% yield) and 29b (0.20 g, 0.66 mmol, 

18% yield), both as oils. 

Data for 29a: major diastereomer

IR (ATR): 3329 cm-1 (brs, O-H st), 2978 cm-1 (C-Haliph st), 

1733 cm-1 (C=O st, ester), 1691 cm-1 (C=O st, carbamate); 1
H 

NMR (CDCl3, 25 ºC): � (ppm) =  1.15 (s, 3H, -C(CH3)(OH)-

CH2-), 1.23 (t, J = 7.1 Hz, 3H, OCH2CH3), 1.42 (s, 9H, 

C(CH3)3), 1.64 – 2.12 (m, 4H, 2H3, 2H4), 2.37 – 2.58 (m, 2H, -C(CH3)(OH)-CH2-), 

3.06 – 3.25 (m, 1H, H5A), 3.55 – 3.68 (m, 1H, H5B), 4.00 – 4.20 (m, 3H, H2, 

OCH2CH3), 5.58 (brs, 1H, OH); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 14.1 

(OCH2CH3), 23.1 (-C(CH3)(OH)-CH2-), 24.4 (C4p), 28.0 (C3p), 28.3 (C(CH3)3), 

44.5 (-C(CH3)(OH)-CH2-), 47.9 (C5p), 60.4 (OCH2CH3), 65.2 (C2p), 74.7 (-

C(CH3)(OH)-CH2-), 80.2 (C(CH3)3), 157.4 (COt-Bu), 171.9 (CO2Et). MS (CI):

(m/z) 302 (MH+, 1); 228 (M – Ot-Bu, 11); 202 (100); 184 (25); 156 (14); 138 (11); 

114 (17). HRMS (CI): Calculated for C15H28NO5 (MH+): 302.1967. Found: 

302.1968. Calculated for C11H18NO4 [M – Ot-Bu]+: 228.1236. Found: 228.1241. 

[�]D
20

: -52.09 (c = 1.1 g/L, CH2Cl2). 

N

Boc

CO2Et
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Data for 29b: minor diastereomer

IR (ATR): 3343 cm-1 (brs, O-H st), 2977 cm-1 (C-Haliph st), 

1729 cm-1 (C=O st, ester), 1690 cm-1 (C=O st, carbamate); 1
H 

NMR (CDCl3, 25 ºC): � (ppm) =  1.14 – 1.23 (m, 6H, -

C(CH3)(OH)-CHAHB-), OCH2CH3), 1.39  (s, 9H, C(CH3)3), 

1.55 – 2.00 (m, 4H, 2H3, 2H4), 2.27 (d, J = 14.0 Hz, 1H, -C(CH3)(OH)-CHAHB-), 

2.43 (d, J = 14.0 Hz, 1H, -C(CH3)(OH)-CHAHB-), 3.11 (dt, J = 11.1, 7.4 Hz, 1H, 

H5A), 3.51 – 3.68 (m, 1H, H5B), 3.85 – 3.90 (m, 1H, H2), 4.08 (q, J = 7.2 Hz, 2H, 

OCH2CH3), 5.60 (brs, 1H, OH); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 14.0 

(OCH2CH3), 24.1 (C4p), 24.5 (-C(CH3)(OH)-CHAHB-), 27.9 (C3p), 28.2 (C(CH3)3), 

41.8 (-C(CH3)(OH)-CHAHB-), 48.1 (C5p), 60.1 (OCH2CH3), 66.3 (C2p), 74.3 (-

C(CH3)(OH)-CHAHB-), 80.2 (C(CH3)3), 157.2 (COt-Bu), 171.9 (CO2Et). MS (CI):

(m/z) 302 (MH+, 1); 246 (13); 228 (M – Ot-Bu, 13); 202 (100). HRMS (CI):

Calculated for C15H28NO5 (MH+): 302.1967. Found: 302.1969. Calculated for 

C11H18NO4 [M – Ot-Bu]+: 228.1236. Found: 228.1230. [�]D
20

: -49.79 (c = 1.1 g/L, 

CH2Cl2). 

N
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6.4.2. Intramolecular carbolithiation of N-(o-iodobenzyl)pyrrole 26. 

Synthesis of 5,10-dihydropyrrolo[1,2-b]isoquinoline 30 

Synthesis of ethyl 2-(7,8-dimethoxy-10-methyl-5,10-dihydropyrrolo[1,2-

b]isoquinolin-10-yl)acetate (30) (Table 2.4, Entry 1)

t-BuLi (0.81 mL of a solution 0.90 M in hexane, 0.73 

mmol) was added dropwise to a solution of 2-

bromomesitylene (0.06 mL, 0.36 mmol) in dry THF (5 

mL) at -78 ºC and under an inert atmosphere. The 

reaction was stirred for 1 h at -20 ºC and after that time, a solution of 

pyrrolylacrylate 26 (82.90 mg, 0.18 mmol) in dry THF (5 mL) was added via

canula at -105 ºC. The mixture was stirred for 5 min at -105 ºC and quenched at 

low temperature with a saturated solution of NH4Cl (5 mL). Et2O (20 mL) and H2O 

(10 mL) was added and the organic layer was separated. The aqueous phase was 

extracted with CH2Cl2 (3 x 10 mL) and combined organic extracts were dried over 

anhydrous Na2SO4, filtered and evaporated under pressure. The crude was 

subjected to flash chromatography (silica gel, hexane/EtOAc 8/2) obtaining 

product 30 as a yellow oil (13.20 mg, 0.04 mmol, 22% yield) and deiodinated 

compound 31 (31.00 mg, 0.09 mmol, 52% yield) as byproduct in a 25:75 mixture 

of diastereomers (Z:E). 

IR (ATR): 2932 cm-1 (C-Haliph st), 1728 cm-1 (C=O st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) = 1.02 (t, J = 7.1 Hz, 3H, OCH2CH3),  1.82 (s, 3H, -C(CH3)-CHAHB-CO2Et), 

2.74 (d, J = 14.3 Hz, 1H, -C(CH3)-CHAHB-CO2Et), 2.78 (d, J = 14.3 Hz, 1H, -

C(CH3)-CHAHB-CO2Et), 3.88 (s, 3H, OCH3)*, 3.90 (s, 3H, OCH3)*, 3.77 – 3.95 

(m, 2H, OCH2CH3)*, 5.04 (d, J = 15.5 Hz, 1H, H5A), 5.13 (d, J = 15.5 Hz, 1H, 

H5B), 5.99 – 6.07 (m, 1H, H1), 6.19 – 6.28 (m, 1H, H2), 6.69 (s, 2H, H3, H6), 6.94 

N
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(s, 1H, H9); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = 14.0 (OCH2CH3), 27.7 (-C(CH3)-

CHAHB-CO2Et), 37.6 (C10), 47.2 (C5), 48.8 (-C(CH3)-CHAHB-CO2Et), 56.0, 56.1 (2 

x OCH3), 60.0 (OCH2CH3), 102.6 (C1), 108.3 (C2), 108.5 (C9), 108.8, 118.2 (C3, 

C6), 124.0 (C5a), 132.0 (C9a), 134.7 (C10a), 147.6 (C8), 148.2 (C7), 170.5 (CO2Et). 

MS (ESI
+
): (m/z) 331 (MH+ + 1, 18), 330 (MH+, 100). HRMS (ESI

+
): Calculated 

for C19H24NO4 (MH+): 330.1705. Found: 330.1699. * Partially overlapped signals 

Synthesis of (E)-ethyl 3-(1-(3,4-dimethoxybenzyl)-1H-pyrrol-2-yl)but-2-enoate 

(31) (Table 2.4, Entry 4)

t-BuLi (1.10 mL of a 1.20 M solution in hexane, 

1.32 mmol) was added dropwise to a solution of 

2-bromomesitylene (0.10 mL, 0.66 mmol) in dry 

THF (5 mL) at -78 ºC and under an inert 

atmosphere. The reaction was stirred for 1 h at -20 

ºC and after that time, a solution of pyrrolylacrylate 26 (150.0 mg, 0.33 mmol) in 

dry THF (5 mL) was added via canula at -78 ºC. The mixture was stirred at -78 ºC 

for 3 h and after that time, the cooling bath was removed and the mixture was 

allowed to warm up to room temperature under stirring for 16 h. Then, the reaction 

was quenched with a saturated NH4Cl solution (5 mL). Et2O (20 mL) and H2O (10 

mL) was added and the organic layer was separated. The aqueous phase was 

extracted with CH2Cl2 (3 x 10 mL) and combined organic extracts were dried over 

anhydrous Na2SO4, filtered and evaporated under pressure. The crude was 

subjected to flash chromatography (neutral alumina, hexane/EtOAc 8/2) obtaining 

product 31 as yellow oil (40.60 mg, 0.12 mmol, 37% yield).25  

���������������������������������������� �������������������
25 Conversion 61%. 
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IR (ATR): 2935 cm-1 (C-Haliph st), 1704 cm-1 (C=O st), 1608 cm-1 (C=C st), 1515 

cm-1 (C=Carom st); RMN-
1
H: (CDCl3, �, ppm) = 1.26 (t, J = 7.1 Hz, 3H, 

OCH2CH3), 2.47 (d, J = 0.9 Hz, 3H, -C(CH3)=CH-CO2Et), 3.80 (s, 3H, OCH3), 

3.85 (s, 3H, OCH3), 4.15 (q, J = 7.1 Hz, 2H, OCH2CH3), 5.13 (s, 2H, Ar-CH2-N), 

5.78 (d, J = 0.9 Hz, 1H, -C(CH3)=CH-CO2Et), 6.19 – 6.22 (m, 1H, H4pyrrole ), 6.41 

(dd, J = 3.7, 1.7 Hz, 1H, H3pyrrole ), 6.53 – 6.56 (m, 1H, H6arom), 6.58 (d, J = 8.2 Hz, 

1H, H2arom), 6.73 – 6.76 (m, 1H, H5pyrrole ), 6.79 (d, J = 8.2 Hz, 1H, H3arom); RMN-

13
C: (CDCl3, �, ppm) = 14.36 (OCH2CH3), 19.44 (-C(CH3)=CH-CO2Et), 51.46 

(Ar-CH2-N), 55.81 (OCH3), 55.90 (OCH3), 59.64 (OCH2CH3), 108.68 (C4pyrrole ), 

109.82 (C6arom), 111.28 (C3arom), 112.36 (C3pyrrole ), 115.37 (-C(CH3)=CH-CO2Et), 

118.94 (C2arom), 126.51 (C5pyrrole ), 130.52 (C1arom), 135.52 (C2pyrrole ), 146.88 (-

C(CH3)=CH-CO2Et), 148.42 (C4arom), 149.23 (C5arom), 166.92 (CO2Et). MS (CI):

(m/z) 330 (MH+, 14); 329 (M+ ,16); 242 (12); 151 (100). HRMS (CI): Calculated 

for C19H24NO4 (MH+): 330.1705. Found: 330.1693. 
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6.5. Intramolecular carbolithiation reactions via SN2´reaction 

6.5.1. Intramolecular carbolithiation reaction of N-(o-

haloheteroarylmethyl)pyrrolyl allylic alcohol derivatives 

6.5.1.1. Synthesis of o-halopyridines 34a, 34b and o-haloquinolines 35a, 35b. 

Synthesis of (E)-3-(1-((2-bromopyridin-3-yl)methyl)-1H-pyrrol-2-yl)prop-2-

en-1-ol (32a)  

To a solution of pyrrolylacrylate 5a (0.20 g, 0.60 mmol) 

in dry THF (10 mL), DIBAL-H (3.28 mL of a solution 

1.00 M in toluene, 3.28 mmol) was added at -78 ºC and 

under an inert atmosphere. The reaction was stirred for 30 

min at -78 ºC, and after that time the reaction was quenched with a H2O:AcOH 

(1:1) solution (1 mL) and allowed to warm up at room temperature. The crude was 

eluted with EtOAc (40 mL), washed with water (3 x 20 mL), brine (2 x 20 mL) and 

the aqueous phase was extracted with CH2Cl2 (3 x 30 mL). The combined organic 

extracts were dried over anhydrous Na2SO4, filtered and concentrated to dryness. 

The crude was subjected to flash chromatography (silica gel, hexane/EtOAc 6/4) 

obtaining product 32a as a yellow solid (0.16 g, 0.55 mmol, 92% yield). 

m.p.: 114–115 ºC (Hexane/EtOAc); IR (ATR): 3355 cm-1 (brs, O-H st), 2919 (C-

Haliph st), 1652 cm-1 (C=C st), 1561 cm-1 (C=Carom st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) = 2.00 (brs, 1H, OH),  4.17 (d, J = 5.5 Hz, 2H, -CH=CH-CH2OH), 5.11 (s, 

2H, CH2N), 6.11 (dt, J = 15.6, 5.5 Hz, 1H, -CH=CH-CH2OH), 6.20 – 6.29 (m, 2H, 

H4pyrrole, -CH=CH-CH2OH), 6.42 – 6.47 (m, 1H, H3pyrrole), 6.62 (d, J = 7.5 Hz, 1H, 

H4pyridine), 6.65 (s, 1H, H5pyrrole), 7.13 (dd, J = 7.5, 4.8 Hz, 1H, H5pyridine), 8.14 – 8.24 

(m, 1H, H6pyridine); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = 49.5 (CH2N), 63.4 (-

N Br

N

OH
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CH=CH-CH2OH), 107.6 (C3pyrrole) 109.4 (C4pyrrole), 118.8 (-CH=CH-CH2OH), 122.6 

(C5pyrrole), 123.5 (C4pyridine), 127.4 (-CH=CH-CH2OH), 130.7 (C2pyrrole), 135.2 

(C3pyridine), 135.9 (C5pyridine), 140.7 (C2pyridine), 148.8 (C6pyridine). MS (ESI
+
): (m/z) 295 

(M+ + 2, 11); 293 (M+, 12); 278 (11); 277 (98); 276 (100); 245 (14); 213 (32). 

HRMS (ESI
+
): Calculated for C13H14N2OBr79 (MH+): 293.0289. Found: 293.0298. 

Synthesis of (E)-3-(1-((2-iodopyridin-3-yl)methyl)-1H-pyrrol-2-yl)prop-2-en-1-

ol (32b) 

To a solution of pyrrolylacrylate 5b (0.63 g, 1.65 mmol) 

in dry THF (20 mL), DIBAL-H (9.07 mL of a solution 

1.00 M in toluene, 9.07 mmol) was added at -78 ºC and 

under an inert atmosphere. The reaction was stirred for 4 

h at -78 ºC, and after that time the reaction was quenched 

with a H2O:AcOH (1:1) solution (1 mL) and allowed to warm up at room 

temperature. The crude was eluted with EtOAc (40 mL), washed with water (3 x 20 

mL), brine (2 x 20 mL) and the aqueous phase was extracted with CH2Cl2 (3 x 30 

mL). The combined organic extracts were dried over anhydrous Na2SO4, filtered 

and concentrated to dryness. The crude was subjected to flash chromatography 

(silica gel, hexane/EtOAc 5/5) obtaining product 32b as a white solid (0.38 g, 1.12 

mmol, 68% yield).  

m.p.: 136-137 ºC (Hexane/EtOAc); IR (ATR): 3343 cm-1 (brs, O-H st), 2923 (C-

Haliph st), 1652 cm-1 (C=C st), 1557 cm-1 (C=Carom st); 1
H NMR ((CD3)2CO, 25 ºC): 

� (ppm) = 2.83 (s, 1H, HDO),  3.72 (t, J = 5.6 Hz, 1H, OH), 4.10 (t, J = 5.5 Hz, 2H, 

-CH=CH-CH2OH), 5.14 (s, 2H, CH2N), 6.10 (dt, J = 15.6, 5.5 Hz, 1H, -CH=CH-

CH2OH), 6.14 – 6.17 (m, 1H, H4pyrrole), 6.35 – 6.43 (m, 2H, H3pyrrole, -CH=CH-

CH2OH), 6.50 – 6.55 (m, 1H, H4pyridine), 6.84 (dd, J = 2.6, 1.8 Hz, 1H, H5pyrrole), 7.30 
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(dd, J = 7.7, 4.7 Hz, 1H, H5pyridine), 8.21 – 8.25 (m, 1H, H6pyridine); 
13

C NMR 

((CD3)2CO, 25 ºC): � (ppm) = 54.20 (CH2N), 63.2 (-CH=CH-CH2OH), 107.7 

(C3pyrrole) 109.8 (C4pyrrole), 118.6 (-CH=CH-CH2OH), 121.0 (C2pyridine), 123.4 

(C5pyrrole), 124.6 (C5pyridine), 129.3 (-CH=CH-CH2OH), 131.9 (C2pyrrole), 135.4 

(C4pyridine), 139.9 (C3pyridine), 150.3 (C6pyridine). MS (ESI
+
): (m/z) 341 (MH+, 2); 324 

(11); 323 (100). HRMS (ESI
+
): Calculated for C13H14N2OI (MH+): 341.0151. 

Found: 341.0141. 

Synthesis of (E)-3-(1-((2-bromoquinolin-3-yl)methyl)-1H-pyrrol-2-yl)prop-2-

en-1-ol (33a) 

To a solution of pyrrolylacrylate 9a (1.35 g, 3.50 

mmol) in dry THF (10 mL), DIBAL-H (19.27 mL of 

a solution 1.00 M in toluene, 19.27 mmol) was added 

at -78 ºC and under an inert atmosphere. The reaction 

was stirred for 30 min at -78 ºC, and after that time 

the reaction was quenched with a H2O:AcOH (1:1) solution (1 mL) and allowed to 

warm up at room temperature. The crude was eluted with EtOAc (40 mL), washed 

with water (3 x 20 mL), brine (2 x 20 mL) and the aqueous phase was extracted 

with CH2Cl2 (3 x 30 mL). The combined organic extracts were dried over 

anhydrous Na2SO4, filtered and concentrated to dryness. The crude was purified 

through flash chromatography (silica gel, hexane/EtOAc 5/5) obtaining product 

33a as a yellow solid (1.08 g, 3.15 mmol, 90% yield). 

m.p.:  138-139 ºC (Hexane/EtOAc); IR (ATR): 3386 cm-1 (brs, O-H st), 1591 cm-1

(C=C st), 1564 cm-1 (C=Carom st); 1
H NMR (CDCl3, 25 ºC): � (ppm) =  1.50 (t, J = 

5.7 Hz, 1H, OH), 4.17 (m, 2H, -CH=CH-CH2OH), 5.27 (s, 2H, CH2N), 6.15 (dt, J

= 15.7, 5.7 Hz, 1H, -CH=CH-CH2OH), 6.24 - 6.43 (m, 2H, -CH=CH-CH2OH, 
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H4pyrrole), 6.48 – 6.58 (m, 1H, H3pyrrole),  6.69 – 6.77 (m, 1H, H5pyrrole), 7.03 (s, 1H, 

H4quinoline), 7.51 (ddd, J = 8.1, 6.8, 1.1 Hz, 1H, H6quinoline), 7.64 (brd, J = 8.1 Hz, 1H, 

H5quinoline)*, 7.69 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H, H7quinoline)*, 8.02 (brd, J = 8.4 Hz, 

1H, H8quinoline); 
13

C NMR (CDCl3, 25 ºC): � (ppm) =  49.9 (CH2N), 63.6 (-CH=CH-

CH2OH), 107.7 (C3pyrrole), 109.5 (C4pyrrole), 119.1 (-CH=CH-CH2OH), 122.7 

(C5pyrrole), 127.3, 127.4 (C6quinoline, -CH=CH-CH2OH), 127.5 (C4a,quinoline), 127.8 

(C5quinoline), 128.2 (C8quinoline), 130.4 (C7quinoline), 130.7 (C2pyrrole), 132.1 (C3quinoline), 

135.2 (C4quinoline), 140.7 (C2quinoline), 147.7 (C8a,quinoline). MS (MALDI): (m/z) 345 

(10); 344 (MH+ + 1, 40); 343 (MH+, 11); 342 ([M+, 41); 327 (97); 325 (100); 273 

(27); 264 (17); 263 (92); 245 (19); 199 (19). HRMS (MALDI): Calculated for 

C17H16N2OBr79 (MH+): 343.0449. Found: 343.0446.*Partially overlapped signals 

Synthesis of (E)-3-(1-((2-iodoquinolin-3-yl)methyl)-1H-pyrrol-2-yl)prop-2-en-

1-ol (33b) 

To a solution of pyrrolylacrylate 9b (0.34 g, 0.79 

mmol) in dry THF (10 mL), DIBAL-H (4.37 mL of a 

solution 1.00 M in toluene, 4.37 mmol) was added at 

-78 ºC and under an inert atmosphere. The reaction 

was stirred for 30 min at -78 ºC, and after that time 

the reaction was quenched with a H2O:AcOH (1:1) solution (1 mL) and allowed to 

warm up at room temperature. The crude was eluted with EtOAc (40 mL), washed 

with water (3 x 20 mL), brine (2 x 20 mL) and the aqueous phase was extracted 

with CH2Cl2 (3 x 30 mL). The combined organic extracts were dried over 

anhydrous Na2SO4, filtered and concentrated to dryness. The crude was purified 

through flash chromatography (silica gel, hexane/EtOAc 5/5) obtaining product 

33b as a yellow solid (0.19 g, 0.49 mmol, 62% yield).
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m.p.:  140-141 ºC (Hexane/EtOAc); IR (ATR): 3357 cm-1 (brs, O-H st), 1586 cm-1

(C=C st), 1557 cm-1 (C=Carom st); 1
H NMR ((CD3)2CO, 25 ºC): � (ppm) =  2.82 (s, 

HDO), 3.67 (t, J = 5.7 Hz, 1H, OH), 4.05 – 4.11 (m, 2H, -CH=CH-CH2OH), 5.30 

(s, 2H, CH2N), 6.13 (dt, J = 15.7, 5.4 Hz, 1H, -CH=CH-CH2OH), 6.19 – 6.23 (m, 

1H, H4pyrrole), 6.42 - 6.49 (m, 2H, -CH=CH-CH2OH, H3pyrrole), 6.88 – 6.91 (m, 1H, 

H5pyrrole), 7.01 (s, 1H, H4quinoline), 7.56 – 7.64 (m, 1H, H6quinoline), 7.73 – 7.79 (m, 2H, 

H5quinoline, H7quinoline), 7.97 (brd, J = 8.4 Hz, 1H, H8quinoline). 
13

C NMR ((CD3)2CO, 25 

ºC): � (ppm) = 54.4 (CH2N), 63.2 (-CH=CH-CH2OH), 107.7 (C3pyrrole), 109.8 

(C4pyrrole), 118.7 (-CH=CH-CH2OH), 122.2 (C2quinoline), 123.4 (C5pyrrole), 128.4 

(C4a,quinoline), 128.5 (C6quinoline), 128.8 (C5quinoline, C7quinoline), 129.0 (C8quinoline), 129.3 (-

CH=CH-CH2OH), 131.1 (C5quinoline, C7quinoline), 132.0 (C2pyrrole), 134.3 (C4quinoline), 

136.3 (C3quinoline), 149.5 (C8a,quinoline). MS (ESI
+
): (m/z) 391 (MH+, 5); 374 (7); 373 

(45); 264 (17); 263 (100). HRMS (ESI
+
): Calculated for C17H16N2OI (MH+): 

391.0307. Found: 391.0302. 

Synthesis of (E)-2-bromo-3-((2-(3-(tert-butyldimethylsilyloxy)prop-1-enyl)-1H-

pyrrol-1-yl)methyl)pyridine (34a) 

The allylic alcohol 32a (0.12 g, 0.42 mmol) was 

dissolved in dry DMF (5 mL) under an inert 

atmosphere. Imidazole (72.00 mg, 1.06 mmol) and 

TBDMSCl (0.13 g, 0.85 mmol) were added to the 

previous solution and the mixture was stirred for 4 h 

at room temperature. The crude was quenched with water (10 mL) and extracted 

with EtOAc (3 x 10 mL). The combined organic extracts were washed with water 

(3 x 5 mL), brine (3 x 5 mL) and dried over anhydrous Na2SO4, filtered and 

concentrated to dryness. The crude was subjected to flash chromatography (silica 
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gel, hexane/EtOAc 9/1) obtaining product 34a as a white solid (0.16 g, 0.39 mmol, 

93% yield).   

m.p.: 75-76 ºC (Hexane/EtOAc); IR (ATR): 2953 cm-1 (C-Haliph st), 1650 cm-1

(C=C st), 1561 cm-1 (C=Carom st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = -0.02 (s, 6H, 

Si(CH3)2C(CH3)3), 0.82 (s, 9H,  Si(CH3)2C(CH3)3), 4.22 (d, J = 4.7 Hz, 2H, -

CH=CH-CH2OSi), 5.12 (s, 2H, CH2N), 6.05 (dt, J = 15.5, 4.7 Hz, 1H, -CH=CH-

CH2OSi), 6.20 – 6.27 (m, 2H, H4pyrrole, -CH=CH-CH2OSi), 6.42 (dd, J = 3.6, 1.4 

Hz, 1H, H3pyrrole), 6.59 -6.64 (m, 1H, H4pyridine), 6.66 (dd, J = 2.5, 1.8 Hz, 1H, 

H5pyrrole), 7.14 (dd, J = 7.6, 4.7 Hz, 1H, H5pyridine), 8.25 (dd, J = 4.7, 1.8 Hz, 1H, 

H6pyridine); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = -5.3 (Si(CH3)2C(CH3)3), 18.2 

(Si(CH3)2C(CH3)3), 25.8 (Si(CH3)2C(CH3)3), 49.7 (CH2N), 63.4 (-CH=CH-

CH2OSi), 107.0 (C3pyrrole) 109.3 (C4pyrrole), 117.0 (-CH=CH-CH2OSi), 122.2 

(C5pyrrole), 123.4 (C5pyridine), 128.0 (-CH=CH-CH2OSi), 131.1 (C2pyrrole), 135.2 

(C3pyridine), 135.9 (C4pyridine), 140.7 (C2pyridine), 148.8 (C6pyridine). MS (ESI
+
): (m/z) 409 

(MH+ + 2, 19); 407 (MH+, 14); 359 (23); 328 (22); 327 (100); 277 (64); 275 (65); 

195 (43). HRMS (ESI
+
): Calculated for C19H28N2OBr79Si (MH+): 407.1154. 

Found: 407.1155. 

Synthesis of (E)-3-((2-(3-(tert-butyldimethylsilyloxy)prop-1-enyl)-1H-pyrrol-1-

yl)methyl)-2-iodopyridine (34b) 

The allylic alcohol 32b (0.36 g, 1.06 mmol) was 

dissolved in dry DMF (10 mL) under an inert 

atmosphere. Imidazole (0.18 g, 2.65 mmol) and 

TBDMSCl (0.33 g, 2.12 mmol) were added to the 

previous solution and the mixture was stirred for 4 h 

at room temperature. The crude was quenched with water (10 mL) and extracted 
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with EtOAc (3 x 20 mL). The combined organic extracts were washed with water 

(3 x 10 mL), brine (3 x 10 mL) and dried over anhydrous Na2SO4, filtered and 

concentrated to dryness. The crude was subjected to flash chromatography (silica 

gel, hexane/EtOAc 9/1) obtaining product 34b as a white solid (0.45 g, 1.00 mmol, 

94% yield).   

m.p.: 79-80 ºC (Hexane/EtOAc); IR (ATR): 2952 cm-1 (C-Haliph st), 1663 cm-1

(C=C st), 1571 cm-1 (C=Carom st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = -0.02 (s, 6H, 

Si(CH3)2C(CH3)3), 0.82 (s, 9H,  Si(CH3)2C(CH3)3), 4.22 (d, J = 4.7 Hz, 2H, -

CH=CH-CH2OSi), 5.02 (s, 2H, CH2N), 6.04 (dt, J = 15.6, 4.7 Hz, 1H, -CH=CH-

CH2OSi), 6.19 – 6.26 (m, 2H, H4pyrrole, -CH=CH-CH2OSi), 6.42 (dd, J = 3.6, 1.8 

Hz, 1H, H3pyrrole), 6.47 - 6.51 (m, 1H, H4pyridine), 6.65 (dd, J = 2.4, 1.8 Hz, 1H, 

H5pyrrole), 7.13 (dd, J = 7.7, 4.7 Hz, 1H, H5pyridine), 8.21 – 8.24 (m, 1H, H6pyridine). 
13

C 

NMR (CDCl3, 25 ºC): � (ppm) = -5.3 (Si(CH3)2C(CH3)3), 18.3 (Si(CH3)2C(CH3)3), 

25.9 (Si(CH3)2C(CH3)3), 53.9 (CH2N), 63.4 (-CH=CH-CH2OSi), 107.3 (C3pyrrole) 

109.3 (C4pyrrole), 117.0 (-CH=CH-CH2OSi), 120.1 (C2pyridine), 122.2 (C5pyrrole), 123.5 

(C5pyridine), 128.1 (-CH=CH-CH2OSi), 131.1 (C2pyrrole), 134.6 (C4pyridine), 138.4 

(C3pyridine), 149.5 (C6pyridine). MS (ESI
+
): (m/z) 456 (MH+ + 1, 3); 455 (MH+, 21); 

328 (10); 327 (50); 324 (11); 323 (100). HRMS (ESI
+
): Calculated for 

C19H28N2OISi (MH+): 455.1016. Found: 455.1013. 
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Synthesis of (E)-2-bromo-3-((2-(3-(tert-butyldimethylsilyloxy)prop-1-enyl)-1H-

pyrrol-1-yl)methyl)quinoline (35a) 

The allylic alcohol 33a (0.60 g, 1.75 mmol) 

was dissolved in dry DMF (10 mL) under an 

inert atmosphere. Imidazole (0.30 g, 4.37 

mmol) and TBDMSCl (0.54 mg, 3.50 mmol) 

were added to the previous solution and the 

mixture was stirred for 16 h at room temperature. The crude was quenched with 

water (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic 

extracts were washed with water (3 x 5 mL), brine (3 x 5 mL) and dried over 

anhydrous Na2SO4, filtered and concentrated to dryness. The crude was subjected 

to flash chromatography (silica gel, hexane/EtOAc 9/1) obtaining product 35a as a 

yellow oil (0.74 g, 1.62 mmol, 93% yield).   

IR (ATR): 2954 (C-Haliph st), 1663 cm-1 (C=C st), 1563 cm-1 (C=Carom st); 1
H 

NMR (CDCl3, 25 ºC): � (ppm) = 0.04 (s, 6H, Si(CH3)2C(CH3)3), 0.88 (s, 9H,  

Si(CH3)2C(CH3)3), 4.33 (d, J = 4.8 Hz, 2H, -CH=CH-CH2OSi), 5.39 (s, 2H, 

CH2N), 6.21 (dt, J = 15.6, 4.8 Hz, 1H, -CH=CH-CH2OSi), 6.39 – 6.47 (m, 2H, 

H4pyrrole, -CH=CH-CH2OSi), 6.60 – 6.66 (m, 1H, H3pyrrole), 6.83 - 6.90 (m, 1H, 

H5pyrrole), 7.17 (s, 1H, H4quinoline), 7.60 – 7.65 (m, 1H, H6quinoline), 7.75 (d, J = 7.7 Hz, 

1H, H5quinoline),  7.75 (ddd, J = 8.4, 7.0, 1.3 Hz, 1H, H7quinoline), 8.15 (d, J = 8.4 Hz, 

1H, H8quinoline). 
13

C NMR (CDCl3, 25 ºC): � (ppm) = -5.5 (Si(CH3)2C(CH3)3), 18.1 

(Si(CH3)2C(CH3)3), 25.6 (Si(CH3)2C(CH3)3), 49.9 (CH2N), 63.3 (-CH=CH-

CH2OSi), 107.0 (C3pyrrole) 109.2 (C4pyrrole), 117.1 (-CH=CH-CH2OSi), 122.2 

(C5pyrrole), 127.1 (C6quinoline), 127.4 (C4a,quinoline), 127.7 (C5quinoline), 127.9, 128.1 (-

CH=CH-CH2OSi, C8quinoline), 130.2 (C7quinoline), 131.0 (C3quinoline), 132.1 (C2pyrrole), 

135.1 (C4quinoline), 140.6 (C2quinoline), 147.6 (C8a,quinoline). MS (ESI
+
): (m/z) 475 (58); 
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474 (MH+, 17); 473 (100); 431 (14); 429 (31); 393 (61). HRMS (ESI
+
): Calculated 

for C23H30N2OBr79Si (MH+): 547.1311. Found: 547.1310. 

Synthesis of (E)-3-((2-(3-(tert-butyldimethylsilyloxy)prop-1-enyl)-1H-pyrrol-1-

yl)methyl)-2-iodoquinoline (35b) 

The allylic alcohol 33b (0.19 g, 0.49 mmol) was 

dissolved in dry DMF (10 mL) under an inert 

atmosphere. Imidazole (83.70 mg, 1.23 mmol) 

and TBDMSCl (0.15 mg, 0.98 mmol) were 

added to the previous solution and the mixture 

was stirred for 16 h at room temperature. The crude was quenched with water (10 

mL) and  extracted with EtOAc (3 x 10 mL). The combined organic extracts were 

washed with water (3 x 5 mL), brine (3 x 5 mL) and dried over anhydrous Na2SO4, 

filtered and concentrated to dryness. The crude was subjected to flash 

chromatography (silica gel, hexane/EtOAc 9/1) obtaining product 35b as a yellow 

oil (0.22 g, 0.44 mmol, 89% yield).   

IR (ATR): 2949 cm-1 (C-Haliph st), 1664 cm-1 (C=C st), 1587 cm-1 (C=Carom st). 1
H 

NMR (CDCl3, 25 ºC): � (ppm) = -0.09 (s, 6H, Si(CH3)2C(CH3)3), 0.74 (s, 9H,  

Si(CH3)2C(CH3)3), 4.19 (d, J = 4.7 Hz, 2H, -CH=CH-CH2OSi), 5.17 (s, 2H, 

CH2N), 6.07 (dt, J = 15.6, 4.7 Hz, 1H, -CH=CH-CH2OSi), 6.24 – 6.33 (m, 2H, 

H4pyrrole, -CH=CH-CH2OSi), 6.45 – 6.50 (m, 1H, H3pyrrole), 6.69 - 6.73 (m, 1H, 

H5pyrrole), 6.90 (s, 1H, H4quinoline), 7.47 – 7.51 (m, 1H, H6quinoline), 7.62 (d, J = 8.0 Hz, 

1H, H5quinoline),  7.64 – 7.70 (m, 1H, H7quinoline), 8.03 (d, J = 8.5 Hz, 1H, H8quinoline). 
13

C NMR (CDCl3, 25 ºC): � (ppm) = -5.4 (Si(CH3)2C(CH3)3), 18.2 

(Si(CH3)2C(CH3)3), 25.6 (Si(CH3)2C(CH3)3), 54.1 (CH2N), 63.4 (-CH=CH-

CH2OSi), 107.1 (C3pyrrole) 109.3 (C4pyrrole), 117.2 (-CH=CH-CH2OSi), 121.0 
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(C2quinoline), 122.2 (C5pyrrole), 127.3 (C6quinoline), 127.4 (C4a,quinoline), 127.8 (C5quinoline), 

127.9 (-CH=CH-CH2OSi), 128.4 (C8quinoline), 130.1 (C7quinoline), 131.1 (C2pyrrole), 

133.6 (C4quinoline), 134.3 (C3quinoline), 148.8 (C8a,quinoline). MS (ESI
+
): (m/z) 505 (MH+, 

3); 377 (27); 374 (17); 373 (100). HRMS (ESI
+
): Calculated for C23H30N2OISi

(MH+): 505.1172. Found: 505.1161. 

6.5.1.2. Attempts of intramolecular carbolithiation of o-halopyridines 34a, 34b and 

o-haloquinolines 35a, 35b via SN2´reation. 

Synthesis of (E)-3-((2-(3-(tert-butyldimethylsilyloxy)prop-1-enyl)-1H-pyrrol-1-

yl)methyl)pyridine (36) (Table 2.5, Entry 1)

The silyloxy allyl derivative 34a (100.00 mg, 0.25 

mmol) was dissolved in dry THF (5 mL) under an 

inert atmosphere. TMEDA (0.07 mL, 0.49 mmol) 

was added to the previous solution at -90 ºC, and 

subsequently n-BuLi (0.49 mL of a solution 1.10 M in hexane, 0.54 mmol) was 

added. The final mixture was stirred 50 min at -90 ºC and was quenched with a 

saturated solution of NH4Cl (5 mL) at low temperature. H2O (5 mL) and Et2O (20 

mL) were added to the crude, followed by the separation of the organic phase. The 

aqueous phase was extracted with CH2Cl2 (3 x 5 mL) and the combined organic 

extracts were dried over anhydrous Na2SO4, filtered and concentrated to dryness. 

The crude was subjected to flash chromatography (silica gel, hexane/EtOAc 8/2) 

obtaining product 36 as a colourless oil (50.50 mg, 0.15 mmol, 63% yield) and 

byproduct 37 (10.30 mg, 0.03 mmol, 11% yield). 
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IR (ATR): 2928 cm-1 (C-Haliph st), 1665 cm-1 (C=C st), 1577 cm-1 (C=Carom st); 1
H 

NMR (CDCl3, 25 ºC): � (ppm) = 0.01 (s, 6H, Si(CH3)2C(CH3)3), 0.86 (s, 9H,  

Si(CH3)2C(CH3)3), 4.23 (d, J = 4.8 Hz, 2H, -CH=CH-CH2OSi), 5.13 (s, 2H, 

CH2N), 6.05 (dt, J = 15.6, 4.8 Hz, 1H, -CH=CH-CH2OSi), 6.18 (dd, J = 4.9, 1.9 

Hz, 1H, H4pyrrole), 6.32 – 6.42 (m, 2H, -CH=CH-CH2OSi, H3pyrrole), 6.65 (dd,  J = 

2.6, 1.9 Hz, 1H, H5pyrrole), 7.17 – 7.23 (m, 2H, H5pyridine, H4pyridine), 8.40 (s, 1H, 

H2pyridine), 8.50 (t, J = 3.2 Hz, 1H, H6pyridine); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = -

5.3 (Si(CH3)2C(CH3)3), 18.3 (Si(CH3)2C(CH3)3), 25.8 (Si(CH3)2C(CH3)3), 48.0 

(CH2N), 63.5 (-CH=CH-CH2OSi), 106.8 (C3pyrrole) 108.9 (C4pyrrole), 117.4 (-

CH=CH-CH2OSi), 122.1 (C5pyrrole), 123.6 (C4pyridine), 127.8 (-CH=CH-CH2OSi), 

131.2 (C2pyrrole), 133.7 (C3pyridine), 133.9 (C5pyridine), 147.8 (C2pyridine), 148.9 (C6pyridine). 

MS (ESI
+
): (m/z) 329 (MH+, 1); 198 (12); 197 (100). HRMS (ESI

+
): Calculated 

for C19H29N2OSi (MH+): 329.2049. Found: 329.2046. 

Synthesis of (E)-3-(1-(2-(3-(tert-butyldimethylsilyloxy)prop-1-enyl)-1H-pyrrol-

1-yl)pentyl)pyridine (37) (Table 2.5, Entry 2)

The silyloxy allyl derivative 34b (89.50 mg, 0.20 

mmol) was dissolved in dry THF (5 mL) under an 

inert atmosphere. TMEDA (0.06 mL, 0.39 mmol) 

was added to the previous solution at -90 ºC, and 

subsequently n-BuLi (0.39 mL of a solution 1.10 M in hexane, 0.43 mmol) was 

added. The final mixture was stirred 50 min at -90 ºC and was quenched with a 

saturated aqueous solution of NH4Cl (5 mL) at low temperature. H2O (5 mL) and 

Et2O (20 mL) were added to the crude, followed by the separation of the organic 

phase. The aqueous phase was extracted with CH2Cl2 (3 x 5 mL) and the combined 

organic extracts were dried over anhydrous Na2SO4, filtered and concentrated to 

dryness. The crude was subjected to flash chromatography (silica gel, 

N

N
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hexane/EtOAc 8/2) obtaining byproduct 37 as a colourless oil (16.80 mg, 0.04 

mmol, 22% yield) and deiodinated byproduct 36 (34.10 mg, 0.10 mmol, 53% 

yield). 

IR (ATR): 2928 cm-1 (C-Haliph st), 1664 cm-1 (C=C st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) = 0.05 (s, 6H, Si(CH3)2C(CH3)3), 0.84 – 0.97 (m, 12H,  Si(CH3)2C(CH3)3, 

3H4´), 1.27 – 1.45 (m, 4H, 2H2´+ 2H3´), 2.06 – 2.27 (m, 2H, 2H1´), 4.23 – 4.26 (m, 

2H, -CH=CH-CH2OSi), 5.23 (m, 1H, -CH(n-Bu)-N), 6.03 (dt, J = 15.5, 4.8 Hz, 1H, 

-CH=CH-CH2OSi), 6.20 (m, 1H, H4pyrrole), 6.33 (dd, J = 3.6, 1.9 Hz, 1H, H3pyrrole), 

6.41 (d, J = 15.5 Hz, 1H, -CH=CH-CH2OSi), 6.80 (dd,  J = 2.6, 1.9 Hz, 1H, 

H5pyrrole),  7.20 (dd, J = 7.8, 4.8 Hz, 1H, H5pyridine), 7.27 – 7.30 (m, 1H, H4pyridine), 

8.42 – 8.52 (m, 2H, H2pyridine, H6pyridine); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = -5.2 

(Si(CH3)2C(CH3)3), 13.8 (C4´), 18.4 (Si(CH3)2C(CH3)3), 22.3 (C2´/C3´), 25.9 

(Si(CH3)2C(CH3)3), 28.6 (C2´/C3´), 35.5 (C1´), 57.4 (-CH(n-Bu)-N), 63.6 (-

CH=CH-CH2OSi), 106.4 (C3pyrrole) 108.8 (C4pyrrole), 117.7 (-CH=CH-CH2OSi), 

118.3 (C5pyrrole), 123.6 (C5pyridine), 128.1 (-CH=CH-CH2OSi), 131.7 (C2pyrrole), 133.7 

(C4pyridine), 137.9 (C3pyridine), 147.9 (C2pyridine), 148.7 (C6pyridine). MS (ESI
+
): (m/z) 386 

(2); 385 (MH+, 8); 254 (16); 253 (100). HRMS (ESI
+
): Calculated for 

C23H37N2OSi (MH+): 385.2675. Found: 385.2669. 
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Synthesis of (E)-2-tert-butyl-5-((2-(3-(tert-butyldimethylsilyloxy)prop-1-enyl)-

1H-pyrrol-1-yl)methyl)pyridine (38) (Table 2.5, Entry 4) 

The silyloxy allyl derivative 34b (90.80 mg, 

0.20 mmol) was dissolved in dry THF (5 mL) 

under an inert atmosphere. TMEDA (0.06 mL, 

0.40 mmol) was added to the previous solution 

at -78 ºC, and subsequently t-BuLi (0.44 mL of 

a solution 1.00 M in hexane, 0.44 mmol) was added. The final mixture was stirred 

for 3 h at -78 ºC and was allowed to warm up to room temperature for 2 h. The 

reaction was quenched with a saturated solution of NH4Cl (5 mL) at low 

temperature. H2O (5 mL) and Et2O (20 mL) were added to the crude, followed by 

the separation of the organic phase. The aqueous phase was extracted with CH2Cl2

(3 x 5 mL) and the combined organic extracts were dried over anhydrous Na2SO4, 

filtered and concentrated to dryness. The crude was subjected to flash 

chromatography (silica gel, hexane/EtOAc 9/1) obtaining product 38 as a 

colourless oil (12.50 mg, 0.03 mmol, 16% yield) and deiodinated byproduct 36

(27.60 mg, 0.08 mmol, 42% yield).

IR (ATR): 2935 cm-1 (C-Haliph st), 1660 cm-1 (C=C st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) = 0.00 (s, 6H, Si(CH3)2C(CH3)3), 0.86 (s, 9H,  Si(CH3)2C(CH3)3), 1.33 (s, 

9H, C(CH3)3-C6pyridine), 4.24 (d, J = 4.9 Hz, 2H, -CH=CH-CH2OSi), 5.10 (s, 2H, 

CH2N), 6.05 (dt, J = 15.6, 4.9 Hz, 1H, -CH=CH-CH2OSi), 6.14 – 6.20 (m, 1H, 

H4pyrrole), 6.35 – 6.43 (m, 2H, -CH=CH-CH2OSi, H3pyrrole), 6.62 – 6.67 (m, 1H, 

H5pyrrole), 7.15 (dd, J = 8.2, 2.1 Hz, 1H, H4pyridine), 7.24 – 7.27 (m, 1H, H5pyridine), 

8.34 (d, J = 2.1 Hz, 1H, H2pyridine); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = -5.2 

(Si(CH3)2C(CH3)3), 18.3 (Si(CH3)2C(CH3)3), 25.9 (Si(CH3)2C(CH3)3), 30.2 

(C(CH3)3-C6pyridine), 37.2 (C(CH3)3-C6pyridine), 47.9 (CH2N), 63.7 (-CH=CH-
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CH2OSi), 106.7 (C3pyrrole) 108.8 (C4pyrrole), 117.7 (-CH=CH-CH2OSi), 119.2 

(C5pyridine), 122.1 (C5pyrrole), 127.6 (-CH=CH-CH2OSi), 130.4 (C3pyridine), 131.2 

(C2pyrrole), 134.3 (C4pyridine), 146.7 (C2pyridine), 168.7 (C6pyridine). MS (ESI
+
): (m/z) 386 

(26); 385 (MH+, 100); 254 (7); 254 (46). HRMS (ESI
+
): Calculated for 

C23H37N2OSi (MH+): 385.2675. Found: 385.2669. 

Synthesis of (E)-3-((2-(3-(tert-butyldimethylsilyloxy)prop-1-enyl)-1H-pyrrol-1-

yl)methyl)quinoline (39) (Table 2.5, Entry 8) 

The silyloxy allyl derivative 35b (76.30 mg, 

0.15 mmol) was dissolved in dry THF (5 mL) 

under an inert atmosphere. TMEDA (0.05 mL, 

0.30 mmol) was added to the previous solution 

at -78 ºC, and subsequently t-BuLi (0.33 mL of a 

solution 1.00 M in hexane, 0.33 mmol) was added. The final mixture was stirred 

for 3 h at -78 ºC and was allowed to warm up to room temperature for 2 h. The 

reaction was quenched with a saturated solution of NH4Cl (5 mL). H2O (5 mL) and 

Et2O (20 mL) were added to the crude, followed by the separation of the organic 

phase. The aqueous phase was extracted with CH2Cl2 (3 x 5 mL) and the combined 

organic extracts were dried over anhydrous Na2SO4, filtered and concentrated to 

dryness. The crude was subjected to flash chromatography (silica gel, 

hexane/EtOAc 9/1) obtaining product 39 as a colourless oil (20.90 mg, 0.06 mmol, 

37% yield).26

���������������������������������������� �������������������
26 Subproduct corresponding to the insertion of t-Bu group into the quinoline ring was detected but 
not characterized. 
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IR (ATR): 2928 cm-1 (C-Haliph st), 1660 cm-1 (C=C st),1496 cm-1 (C=Carom st); 1
H 

NMR (CDCl3, 25 ºC): � (ppm) = -0.05 (s, 6H, Si(CH3)2C(CH3)3), 0.80 (s, 9H,  

Si(CH3)2C(CH3)3), 4.21 (d, J = 4.9 Hz, 2H, -CH=CH-CH2OSi), 5.32 (s, 2H, 

CH2N), 6.07 (dt, J = 15.5, 4.9 Hz, 1H, -CH=CH-CH2OSi), 6.22 – 6.25 (m, 1H, 

H4pyrrole), 6.36 – 6.46 (m, 2H, -CH=CH-CH2OSi, H3pyrrole), 6.72 (dd,  J = 2.5, 1.8 

Hz, 1H, H5pyrrole), 7.52 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H, H6quinoline), 7.59 (s, 1H, 

H4quinoline), 7.67 - 7.74 (m, 2H, H5quinoline, H7quinoline), 8.09 (d, J = 8.4 Hz, 1H, 

H8quinoline), 8.74 (m, 1H, H2quinoline); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = -5.3 

(Si(CH3)2C(CH3)3), 18.3 (Si(CH3)2C(CH3)3), 25.8 (Si(CH3)2C(CH3)3), 48.3 (CH2N), 

63.6 (-CH=CH-CH2OSi), 106.9 (C3pyrrole) 109.0 (C4pyrrole), 117.5 (-CH=CH-

CH2OSi), 122.3 (C5pyrrole), 126.9 (C6quinoline), 127.8 (C5quinoline/C7quinoline), 127.9 (-

CH=CH-CH2OSi), 129.2 (C8quinoline), 129.4 (C5quinoline/C7quinoline), 131.1 (C2pyrrole), 

131.3 (C3quinoline), 133.1 (C4quinoline), 147.6 (C8a, quinoline), 149.1 (C2quinoline). C4a,quinoline

peak is overlapped. MS (ESI
+
): (m/z) 379 (MH+, 10); 248 (16); 247 (100). HRMS 

(ESI
+
): Calculated for C23H31N2OSi (MH+): 379.2206. Found: 379.2196.  

Synthesis of (E)-2-butyl-3-((2-(3-(tert-butyldimethylsilyloxy)prop-1-enyl)-1H-

pyrrol-1-yl)methyl)quinoline (40) (Table 2.5, Entry 6)

The silyloxy allyl derivative 35b (65.90 mg, 

0.13 mmol) was dissolved in dry THF (5 mL) 

under an inert atmosphere. TMEDA (0.04 mL, 

0.26 mmol) was added to the previous solution 

at -90 ºC, and subsequently n-BuLi (0.26 mL of 

a solution 1.10 M in hexane, 0.29 mmol) was added. The final mixture was stirred 

50 min at -90 ºC and was quenched with a saturated aqueous solution of NH4Cl (5 

mL) at low temperature. H2O (5 mL) and Et2O (20 mL) were added to the crude, 

followed by the separation of the organic phase. The aqueous phase was extracted 

N

N
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with CH2Cl2 (3 x 5 mL) and the combined organic extracts were dried over 

anhydrous Na2SO4, filtered and concentrated to dryness. The crude was subjected 

to flash chromatography (silica gel, hexane/EtOAc 9/1) obtaining product 40 as a 

colourless oil (22.80 mg, 0.05 mmol, 40% yield) and deiodinated byproduct 39

(5.30 mg, 0.01 mmol, 11% yield). 

IR (ATR): 2927 cm-1 (C-Haliph st), 1666 cm-1 (C=C st), 1563 cm-1 (C=Carom st); 1
H 

NMR (CDCl3, 25 ºC): � (ppm) = -0.08 (s, 6H, Si(CH3)2C(CH3)3), 0.75 (s, 9H,  

Si(CH3)2C(CH3)3), 1.00 (t, J = 7.4 Hz, 3H, 3H4´), 1.47 – 1.57 (m, 2H, 2H3´), 1.76 – 

1.87 (m, 2H, 2H2´), 2.94 – 2.99 (m, 2H, 2H1´), 4.19 (d, J = 4.9 Hz, 2H, -CH=CH-

CH2OSi), 5.29 (s, 2H, CH2N), 6.06 (dt, J = 15.6, 4.9 Hz, 1H, -CH=CH-CH2OSi), 

6.23 – 6.28 (m, 1H, H4pyrrole), 6.31 (d, J = 15.6 Hz, 1H, -CH=CH-CH2OSi), 6.46 

(dd, J = 3.6, 1.5 Hz, H3pyrrole), 6.62 – 6.67 (m,  1H, H5pyrrole), 7.16 (s, H4quinoline), 7.37 

– 7.46 (m, 1H, H6quinoline), 7.59 - 7.66 (m, 2H, H5quinoline, H7quinoline), 8.02 (d, J = 8.4 

Hz, 1H, H8quinoline); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = -5.3 (Si(CH3)2C(CH3)3), 

14.0 (C4´), 18.2 (Si(CH3)2C(CH3)3), 23.0 (C3´), 25.8 (Si(CH3)2C(CH3)3), 31.1 (C2´), 

35.7 (C1´), 47.8 (CH2N), 63.6 (-CH=CH-CH2OSi), 106.9 (C3pyrrole) 109.0 (C4pyrrole), 

117.6 (-CH=CH-CH2OSi), 122.3 (C5pyrrole), 125.9 (C6quinoline), 127.0 (C4a,quinoline), 

127.6 (C5quinoline/C7quinoline), 127.8 (-CH=CH-CH2OSi), 128.5 (C8quinoline), 129.2 

(C5quinoline/C7quinoline), 130.0 (C3quinoline), 131.3 (C2pyrrole), 133.4 (C4quinoline), 147.1 (C8a, 

quinoline), 159.6 (C2quinoline). MS (ESI
+
): (m/z) 436 (38); 435 (MH+, 100); 303 (27). 

HRMS (ESI
+
): Calculated for C27H39N2OSi (MH+): 435.2832. Found: 435.2821. 
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6.5.2. Intramolecular carbolithiation reaction of N-(o-

iodobenzyl)pyrrolyl and pyrrolidinyl allylic alcohol derivatives  

6.5.2.1. Synthesis of N-(o-iodobenzyl)pyrroles 44a, 44b and pyrrolidine 46. 

Synthesis of 1-(2-iodo-4,5-dimethoxybenzyl)-1H-pyrrole-2-carbaldehyde (41)
27

To a suspension of KOH (0.47 g, 8.43 mmol) in 

DMSO (20 mL), pyrrole 2-carboxaldehyde (0.21 mg, 

2.21 mmol) was added. The mixture was left stirring 

for 1 h at room temperature. After that time, 

benzylbromide 16 (1.50 g, 4.21 mmol) was added to the former solution and the 

reaction was stirred for 4 h more at room temperature. The reaction was quenched 

with H2O (20 mL) and the crude was extracted with CH2Cl2 (3 x 20 mL). The 

organic phase was washed with H2O (3 x 20 mL) and brine (1 x 10 mL). The 

combined organic extracts were dried over anhydrous Na2SO4, filtered and 

concentrated to dryness. The crude was subjected to flash chromatography (silica 

gel, hexane/EtOAc 7/3) obtaining product 41 as a white solid (0.76 g, 2.05 mmol, 

93% yield).  

m.p.: 111-113 ºC (Hexane/EtOAc); 1
H NMR (CDCl3, 25 ºC): � (ppm) =  3.69 (s, 

3H, OCH3), 3.86 (s, 3H, OCH3), 5.55 (s, 2H, Ar-CH2-N), 6.27 (t, J = 3.2 Hz, 1H, 

H4pyrrole), 6.46 (s, 1H, H6arom), 6,99 - 7,01 (m, 1H, H3pyrrole, H5pyrrole), 7.24 (s, 1H, 

H3arom), 9.60 (s, 1H, CHO); 13
C NMR (CDCl3, 25 ºC): � (ppm) =  55.8 (OCH3), 

56.1 (Ar-CH2-N), 56.2 (OCH3), 86.6 (C2arom), 110.3 (C4pyrrole), 111.7 (C6arom), 121.6 

(C3pyrrole), 125.0 (C3arom), 131.2 (C5pyrrole), 131.6 (C2pyrrole), 132.3 (C1arom), 149.1 

(C4arom), 149.8 (C5arom), 179.6 (CHO). MS (CI): (m/z) 372 (MH+, 28); 276 (73); 246 

���������������������������������������� �������������������
27 Lage, S.; Villaluenga, I.; Sotomayor, N.; Lete, E. Synlett 2008, 3188. 
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(15); 245 (100); 244 (26). HRMS (CI): Calculated for C14H14INO3 (MH+): 

372.0089. Found: 372.0097. 

Synthesis of (E)-methyl 3-(1-(2-iodo-4,5-dimethoxybenzyl)-1H-pyrrol-2-

yl)acrylate (42) 

To a solution of N-benzylpyrrole carbaldehyde 41

(3.54 g, 9.55 mmol) in CH2Cl2 (50 mL), methyl 

triphenylphosphoranylidene acetate (4c) (13.03 g, 

38.19 mmol, 2.0 eq per day), and the mixture was 

stirred under reflux for 48 h. The reaction was followed by NMR and when the 

reaction was completed, the mixture was concentrated to dryness. The crude was 

purified through flash chromatography (silica gel, hexane/EtOAc 7/3) obtaining 

product 42 as a white solid (3.50 g, 8.19 mmol, 86% yield). 

m.p.: 97-99 ºC (CH2Cl2); IR (ATR): 2998 cm-1 (C-Haliph st), 1699 cm-1 (C=O st); 
1
H NMR (CDCl3, 25 ºC): � (ppm) =  3.62 (s, 3H, OCH3), 3.73 (s, 3H, CO2CH3), 

3.85 (s, 3H, OCH3), 5.10 (s, 2H, Ar-CH2-N), 6.03 (s, 1H, H6arom), 6.13 (d, J = 15.6 

Hz, 1H, -CH=CH-CO2CH3), 6.23 – 6.29 (m, 1H, H4pyrrole), 6.72 – 6.77 (m, 1H, 

H3pyrrole), 6.77 – 6.80 (m, 1H, H5pyrrole), 7.25 (s, 1H, H3arom), 7.50 (d, J = 15.6 Hz, 

1H, -CH=CH-CO2CH3); 
13

C NMR (CDCl3, 25 ºC): � (ppm) =  51.4 (CO2CH3), 

55.3 (Ar-CH2-N), 55.7, 56.2 (2 x OCH3),  84.9 (C2arom), 110.2 (C3pyrrole),  110.6 

(C6arom), 112.3 (C2pyrrole), 113.1 (-CH=CH-CO2CH3), 121.6 (C3arom), 126.4 (C4pyrrole), 

129.1 (C1pyrrole), 131.7 (C1arom), 132.1 (-CH=CH-CO2CH3), 149.1 (C4arom), 149.9 

(C5arom), 167.9 (CO2CH3). MS (CI): (m/z) 456 (20); 428 (26); 427 (MH+, 21); 396 

(10); 277 (100). HRMS (CI): Calculated for C17H19INO4 (MH+): 428.0359. Found: 

428.0346. 
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Synthesis of (E)-3-(1-(2-iodo-4,5-dimethoxybenzyl)-1H-pyrrol-2-yl)prop-2-en-

1-ol (43)
28

To a solution of N-benzylpyrrolylacrylate 42 (3.21 

g, 7.51 mmol) in dry toluene (40 mL), DIBAL-H 

(41.32 mL of a solution 1.00 M in toluene, 41.32 

mmol) was added at -78 ºC and under an inert 

atmosphere. The reaction was stirred for 30 min at -

78 ºC, and after that time the mixture was quenched at low temperature with a 

H2O:AcOH (1:1) solution (2 mL) and allowed to warm up to room temperature. 

The crude was eluted with EtOAc (40 mL), washed with water (3 x 20 mL), brine 

(2 x 20 mL) and the aqueous phase was extracted with CH2Cl2 (3 x 30 mL). The 

combined organic extracts were dried over anhydrous Na2SO4, filtered and 

concentrated to dryness. The crude was subjected to flash chromatography (silica 

gel, hexane/EtOAc 6/4) obtaining product 43 as a white solid (2.64 g, 6.60 mmol, 

88% yield).  

m.p.: 82–84 ºC (Hexane/EtOAc); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 1.66 (brs, 

1H, OH), 3.59 (s, 3H, OCH3), 3.83 (s, 3H, OCH3), 4.17 (d, J = 5.9 Hz, 2H, -

CH=CH-CH2OH), 4.98 (s, 2H, Ar-CH2-N), 5.97 (s, 1H, H6arom), 6.08 (dt, J = 15.6, 

5.9 Hz, 1H, -CH=CH-CH2OH), 6.18 (t, J = 3.1 Hz, 1H, H4pyrrole), 6.31 (d, J = 15.6 

Hz, 1H, -CH=CH-CH2OH), 6.38 – 6.45 (m, 1H, H3pyrrole), 6.61 – 6.66 (m, 1H, 

H5pyrrole), 7.22 (s, 1H, H3arom). 13
C NMR (CDCl3, 25 ºC): � (ppm) =  55.2 (Ar-CH2-

N), 55.7, 56.2 (2 x OCH3), 63.9 (-CH=CH-CH2OH), 84.3 (C2arom), 107.4 (C3pyrrole), 

108.9 (C4pyrrole), 110.5 (C6arom), 119.9 (-CH=CH-CH2OH), 121.4 (C3arom), 122.8 

(C5pyrrole), 126.6 (-CH=CH-CH2OH), 130.8 (C2pyrrole), 132.6 (C1arom), 148.9 (C4arom), 

���������������������������������������� �������������������
28 Lage, S. PhD. Thesis, University of the Basque Country, 2008. 
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149.9 (C5arom). MS (CI): (m/z) 384 (30); 383 (25); 382 (M-OH, 42); 277 (100); 257 

(15). HRMS (CI): Calculated for C16H19INO3 (MH+): 400.0409. Found: 400.0403. 

Synthesis of (E)-3-(1-(2-iodo-4,5-dimethoxybenzyl)-1H-pyrrol-2-yl)allyl 

acetate (44a) 

The allylic alcohol 43 (92.60 mg, 0.23 mmol) 

was dissolved in dry CH2Cl2 (10 mL) under an 

inert atmosphere. Pyridine (0.04 mL, 0.45 

mmol) and acetyl chloride (0.02 mL, 0.25 

mmol) were added to the previous solution 

and the mixture was stirred for 2 h at room temperature. The reaction was followed 

by TLC and when it was completed, the reaction was quenched with a saturated 

aqueous solution of NaHCO3 (10 mL) and the organic phase was separated. The 

aqueous phase was further extracted with CH2Cl2 (3 x 10 mL). The combined 

organic extracts were evaporated and filtrated through a plug of basic Al2O3 by 

elution with CH2Cl2. Product 44a was obtained as a yellow oil (93.90 mg, 0.21 

mmol, 92% yield) and used without further purification.29

IR (ATR): 3001 cm-1 (C-Harom st), 1739 cm-1 (C=O st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) =   2.05 (s, 3H, COCH3), 3.61 (s, 3H, OCH3), 3.86 (s, 3H, OCH3), 4.60 (d, J

= 6.7 Hz, 2H, -CH=CH-CH2O), 5.00 (s, 2H, Ar-CH2-N), 5.94 – 6.07 (m, 2H, 

H6arom, -CH=CH-CH2O), 6.18 - 6.22 (m, 1H, H4pyrrole), 6,36 (d, J = 15.8 Hz, 1H, -

CH=CH-CH2O), 6.46 (d, J = 2.3 Hz, 1H, H3pyrrole), 6.64 – 6.68 (m, 1H, H5pyrrole), 

7.24 (s, 1H, H3arom); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 21.0 (COCH3), 55.2  (Ar-

���������������������������������������� �������������������
29 Product 44a was unstable to column cromatography both in silica gel or neutral alumina.
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CH2-N), 55.7, 56.2 (2 x OCH3), 65.4 (-CH=CH-CH2O), 84.3 (C2arom), 107.9 

(C3pyrrole),  109.0 (C4pyrrole), 110.5 (C6arom), 120.8 (-CH=CH-CH2O), 121.4 (C3arom), 

123.0 (-CH=CH-CH2O), 123.2 (C5pyrrole), 130.3 (C2pyrrole), 132.5 (C1arom), 148.9 

(C4arom), 149.9 (C5arom), 170.8 (COCH3). MS (CI): (m/z) 442 (MH+, 24); 399 (32); 

382 (100); 278 (11); 277 (38). HRMS (CI): Calculated for C18H21INO4 (MH+): 

442.0515. Found: 442.0529. 

Synthesis of (E)-2-(3-(tert-butyldimethylsilyloxy)prop-1-enyl)-1-(2-iodo-4,5-

dimethoxybenzyl)-1H-pyrrole (44b) 

The allylic alcohol 43 (1.99 g, 4.98 mmol) was 

dissolved in dry DMF (30 mL) under an inert 

atmosphere. Imidazole (0.85 g, 12.45 mmol) 

and TBDMSCl (1.55 g, 9.96 mmol) were 

added to the previous solution and the mixture 

was stirred for 4 h at room temperature. The crude was quenched with water (20 

mL) and extracted with EtOAc (3 x 40 mL). The combined organic extracts were 

washed with water (3 x 20 mL), brine (3 x 20 mL) and dried over anhydrous 

Na2SO4, filtered and concentrated to dryness. The crude was subjected to flash 

chromatography (silica gel, hexane/EtOAc 9/1) obtaining product 44b as a 

colourless oil (2.24 g, 4.36 mmol, 88% yield).  

IR (ATR): 2952 cm-1 (C-Haliph st), 1665 cm-1 (C=C st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) =  0.00 (s, 6H, Si(CH3)2(CH3)3), 0.85 (s, 9H,  Si(CH3)2(CH3)3), 3.59 (s, 3H, 

OCH3), 3.85 (s, 3H, OCH3), 4.24 (d, J = 4.9 Hz, 2H, -CH=CH-CH2OSi), 4.98 (s, 

2H, Ar-CH2-N), 5.94 (s, 1H, H6arom), 6.03 (dt, J = 15.6, 4.9 Hz, 1H, -CH=CH-

CH2OSi), 6.18 – 6.20 (m, 1H, H4pyrrole),  6.30 (d, J = 15.6 Hz, 1H, -CH=CH-

CH2OSi), 6.40 (dd, J = 3.6, 1.5 Hz, 1H, H3pyrrole), 6.61 – 6.65 (m, 1H, H5pyrrole), 7.23 
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(s, 1H, H3arom); 13
C NMR (CDCl3, 25 ºC): � (ppm) = -5.3 (Si(CH3)2C(CH3)3), 18.3 

(Si(CH3)2C(CH3)3), 25.9 (Si(CH3)2C(CH3)3), 55.2 (Ar-CH2-N), 55.6, 56.2 (2 x 

OCH3), 63.7 (-CH=CH-CH2OSi), 84.0 (C2arom), 106.7 (C3pyrrole),  108.7 (C4pyrrole), 

110.4 (C6arom), 117.9 (-CH=CH-CH2OSi), 121.3 (C3arom), 122.3 (C5pyrrole), 127.3 

(CH=CH-CH2OSi), 131.2 (C2pyrrole), 132.8 (C1arom), 148.7 (C4arom), 149.9 (C5arom). 

MS (CI): (m/z) 514 (MH+, 27); 513 (21); 384 (31); 383 (33); 382 (79); 381 (29); 

277 (100); 256 (26); 255 (24); 133 (23); 117 (33). HRMS (CI): Calculated for 

C22H33INO3Si (MH+): 514.1274. Found: 514.1255. 

Synthesis of (E)-3-(1-(2-iodo-4,5-dimethoxybenzyl)-1H-pyrrol-2-yl)allyl 

pivalate (44c) 

The allylic alcohol 43 (1.16 g, 2.91 mmol) 

was dissolved in dry CH2Cl2 (40 mL) under an 

inert atmosphere. Pyridine (0.47 mL, 5.83 

mmol) and pivaloyl chloride (0.80 mL, 6.43 

mmol) were added to the previous solution 

and the mixture was stirred overnight at room temperature. The reaction was 

followed by TLC and when it was completed, the reaction was quenched with a 

saturated aqueous solution of NaHCO3 (20 mL) and the organic phase was 

separated. The aqueous phase was further extracted with CH2Cl2 (2 x 20 mL). The 

combined organic extracts were dried over anhydrous Na2SO4, filtered and 

concentrated to dryness. The crude was filtered through a basic Al2O3 column (� = 

4 cm, h = 15 cm) by elution with CH2Cl2 and evaporation of the filtrate afforded 

CH3O

CH3O

I

N

OCOt -Bu
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product 44c as a yellow oil (1.22 g, 2.53 mmol, 87% yield), which was used 

without further purification.30 

IR (ATR): 2962 cm-1 (C-Haliph st), 1724 cm-1 (C=O st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) =  1.12 (s, 9H, COC(CH3)3), 3.55 (s, 3H,  OCH3), 3.78 (s, 3H, OCH3), 4.56 

(d, J = 6.2 Hz, 2H, -CH=CH-CH2O), 4.93 (s, 2H, Ar-CH2-N), 5.89 – 6.04 (m, 2H, 

H6arom, -CH=CH-CH2O), 6.12 - 6.17 (m, 1H, H4pyrrole), 6,31 (d, J = 15.8 Hz, 1H, -

CH=CH-CH2O), 6.41 (dd, J = 3.5, 1.3 Hz, 1H, H3pyrrole), 6.59 – 6.64 (m, 1H, 

H5pyrrole), 7.19 (s, 1H, H3arom); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 26.9 

(COC(CH3)3), 38.4 (COC(CH3)3), 54.9 (Ar-CH2-N), 55.3, 55.9 (2 x OCH3), 64.6 (-

CH=CH-CH2O), 84.0 (C2arom), 107.5 (C3pyrrole),  108.7 (C4pyrrole), 110.2 (C6arom), 

120.9 (-CH=CH-CH2O), 121.1 (C3arom), 121.7 (-CH=CH-CH2O), 122.8 (C5pyrrole), 

130.0 (C2pyrrole), 132.2 (C1arom), 148.6 (C4arom), 149.6 (C5arom), 177.6 (COC(CH3)3). 

MS (CI): (m/z) 484 (MH+, 18); 384 (22); 383 (28); 382 (100); 381 (25); 277 (47); 

103 (35). HRMS (CI): Calculated for C21H27INO4 (MH+): 484.0985. Found: 

484.0972. 

Synthesis of (S,E)-3-(1-(2-iodo-4,5-dimethoxybenzyl)pyrrolidin-2-yl)prop-2-

en-1-ol (45) 

To a solution of N-benzylpyrrolidinylacrylate 17a

(0.62 g, 1.40 mmol) in dry toluene (20 mL), 

DIBAL-H (7.70 mL of a solution 1.00 M in 

toluene, 7.70 mmol) was added at -78 ºC and under 

inert atmosphere. The reaction was stirred for 30 

min, and after that time the reaction was quenched with a H2O:AcOH (1:1) solution 

���������������������������������������� �������������������
30 Product 44c was unstable to column cromatography both in silica gel or neutral alumina.�
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(2 mL). The crude was diluted with H2O (20 mL) and extracted with CH2Cl2 (3 x 

20 mL). The aqueous phase was basified with a 10% NaOH solution until pH = 9 

and extracted with CH2Cl2 (3 x 20 mL). The combined organic extracts were dried 

over anhydrous Na2SO4, filtered and concentrated to dryness. The crude was 

subjected to flash chromatography (silica gel, hexane/EtOAc 3/7) obtaining 

product 45 as a yellow oil (0.52 g, 1.29 mmol, 92% yield). 

IR (ATR): 3364 cm-1, (brs, O-H st), 2957 (C-Haliph st), 1595 cm-1 (C=C st); 1
H 

NMR (CDCl3, 25 ºC): � (ppm) =  1.50 – 1.85 (m, 3H, H3A, 2 x H4), 1.86 – 2.03 (m, 

1H, 1H3B), 2.10 – 2.29 (m, 2H, H5A, OH), 2.85 - 3.01 (m, 2H, H2, H5B), 3.21 (d, J = 

13.9 Hz, 1H, Ar-CHAHB-N), 3.81 (s, 3H, OCH3)*, 3.84 (s, 3H, OCH3)*, 3.76 – 

3.87 (m, 1H, Ar-CHAHB-N)*, 4.07 (d, J = 5.4 Hz, 2H, -CH=CH-CH2OH), 5.61 (dd, 

J = 15.5, 8.1 Hz, 1H, -CH=CH-CH2OH), 5.76 (dt, J = 15.5, 5.4 Hz, 1H, -CH=CH-

CH2OH), 6.98 (s, 1H, H6arom), 7.17 (s, 1H, H3arom); 13
C NMR (CDCl3, 25 ºC): �

(ppm) =  22.1 (C4p),  31.6 (C3p), 53.4 (C5p),  55.9 (OCH3), 56.0 (OCH3), 61.7 (Ar-

CH2-N), 62.9 (-CH=CH-CH2OH), 67.1(C2p), 87.7 (C2arom), 113.0 (C6arom), 121.2 

(C3arom), 131.2 (-CH=CH-CH2OH), 134.0 (-CH=CH-CH2OH), 134.2 (C1arom), 148.2 

(C5arom), 149.1 (C4arom). MS (CI): (m/z) 404 (MH+, 23); 403 (58); 402 (29); 386 

(65); 277 (100). HRMS (CI): Calculated for C16H23INO3 (MH+): 404.0723. Found: 

404.0703. [�]D
20

: -44.5 (c = 1.0 g/L, CH2Cl2). *Partially overlapped signals 
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Synthesis of (S,E)-2-(3-(tert-butyldimethylsilyloxy)prop-1-enyl)-1-(2-iodo-4,5-

dimethoxybenzyl)pyrrolidine (46) 

The allylic alcohol 45 (0.56 g, 1.40 mmol) 

was dissolved in dry DMF (20 mL) under an 

inert atmosphere. Imidazole (0.24 g, 3.49 

mmol) and TBDMSCl (0.43 g, 2.80 mmol) 

were added to the previous solution and the 

mixture was stirred for 16 h at room temperature. The crude was quenched with 

water (20 mL) and extracted with EtOAc (3 x 40 mL). The combined organic 

extracts were washed with water (3 x 20 mL), brine (3 x 20 mL) and dried over 

anhydrous Na2SO4, filtered and concentrated to dryness. The crude was subjected 

to flash chromatography (silica gel, hexane/EtOAc 8/2) obtaining product 46 as a 

yellow oil (0.60 g, 1.16 mmol, 83 % yield).  

IR (ATR): 2952 cm-1 (C-Haliph st), 1597 cm-1 (C=C st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) = 0.05 (s, 6H, Si(CH3)2C(CH3)3), 0.89 (s, 9H,  Si(CH3)2C(CH3)3), 1.56 – 

1.82 (m, 3H, H3A, 2 x H4), 1.91 – 2.01 (m, 1H, H3B), 2.18 (c, J = 8.7 Hz, 1H, H5A), 

2.88 – 3.00 (m, 2H, H5B, H2), 3.21 (d, J = 13.9 Hz, 1H, Ar-CHAHB-N), 3.83 (s, 3H, 

OCH3)*, 3.85 (s, 3H, OCH3)*, 3.79 – 3.90 (m, 1H, Ar-CHAHB-N)*, 4.16 (d, J = 4.8 

Hz, 2H, -CH=CH-CH2OSi), 5.62 (dd, J = 15.4, 8.2 Hz, 1H, -CH=CH-CH2OSi), 

5.72 (dt, J = 15.4, 4.8 Hz, 1H, -CH=CH-CH2OSi), 7.00 (s, 1H, H6arom), 7.19 (s, 1H, 

H3arom); 13
C NMR (CDCl3, 25 ºC): � (ppm) = -5.2 (Si(CH3)2C(CH3)3), 18.3 

(Si(CH3)2C(CH3)3), 22.2 (C4p),  25.9 (Si(CH3)2C(CH3)3), 31.6 (C3p), 53.4 (C5p),  

55.9 (OCH3), 56.0 (OCH3), 61.6 (Ar-CH2-N), 63.4 (-CH=CH-CH2OSi), 67.1 (C2p), 

87.5 (C2arom), 113.0 (C6arom), 121.2 (C3arom), 131.5 (-CH=CH-CH2OSi), 132.7 (-

CH=CH-CH2OSi), 134.6 (C1arom), 148.2 (C5arom), 149.2 (C4arom). MS (CI): (m/z) 

518 (MH+, 88); 517 (78); 516 (66); 502 (57); 460 (47); 392 (16); 387 (19); 386 
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(100); 278 (22); 277 (47); 260 (38); 259 (25). HRMS (CI): Calculated for 

C22H37INO3Si (MH+): 518.1587. Found: 518.1572. [�]D
20

: -49.3 (c = 1.0 g/L, 

CH2Cl2). *Partially overlapped signals  

6.5.2.2. Attempts of intramolecular carbolithiation of N-o-iodobenzylpyrroles 44a, 

44b and pyrrolidine 46 via SN2´reaction. 

Synthesis of (E)-3-(1-(3,4-dimethoxybenzyl)-1H-pyrrol-2-yl)prop-2-en-1-ol 

(47) (Table 2.6, Entry 2)

The acetylated allylic alcohol 44a (88.00 mg, 0.20 

mmol) was dissolved in dry THF (5 mL) under an 

inert atmosphere. t-BuLi (0.48 mL of a solution 

0.83 M in hexane, 0.40 mmol) was added to the 

former solution at -78 ºC, and after being stirred for 

5 min, TMEDA (0.06 mL, 0.40 mmol) was added to the mixture. The final mixture 

was stirred for 10 min at -78 ºC and then, the reaction was allowed to reach room 

temperature for 3 h. The reaction was quenched with a saturated solution of NH4Cl 

(2 mL). H2O (5 mL) and Et2O (10 mL) were added to the crude, followed by the 

separation of the organic phase. The aqueous phase was extracted with CH2Cl2 (3 x 

10 mL) and the combined organic extracts were dried over anhydrous Na2SO4, 

filtered and concentrated to dryness. The crude was subjected to flash 

chromatography (silica gel, hexane/EtOAc 4/6) obtaining product 47 as a yellow 

oil (26.30 mg, 0.10 mmol, 48% yield).

IR (ATR): 3379 cm-1 (brs, O-H st), 2922 cm-1 (C-Haliph st), 1649 cm-1 (C=C st), 

1595 cm-1 (C=Carom st); 1
H NMR (CDCl3, 25 ºC): � (ppm) =  1.26 (brs, 1H, OH), 

3.80 (s, 3H,  OCH3), 3.84 (s, 3H, OCH3), 4.19 (d, J = 6.0 Hz, 2H, -CH=CH-

CH3O

CH3O
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CH2OH), 5.05 (s, 2H, Ar-CH2-N), 6.11 (dt, J =15.6, 6.0 Hz, 1H, -CH=CH-

CH2OH), 6.16 (t, J = 3.1 Hz, 1H, H4pyrrole), 6.38 – 6.46 (m, 2H, -CH=CH-CH2OH, 

H3pyrrole), 6.53 – 6.60 (m, 2H, H2arom, H6arom), 6.63 – 6.69 (m, 1H, H5pyrrole), 6.79 (d, J

= 8.5 Hz, 1H, H3arom). 13
C NMR (CDCl3, 25 ºC): � (ppm) = 50.2 (Ar-CH2-N), 55.8, 

55.9 (2 x OCH3), 63.8 (-CH=CH-CH2OH), 107.0 (C3pyrrole), 108.4 (C4pyrrole),  109.6 

(C6arom), 111.2 (C2arom), 118.6 (C3arom), 120.1 (-CH=CH-CH2OH), 122.7 (C5pyrrole), 

126.2 (-CH=CH-CH2OH), 130.5 (C1arom), 130.7 (C2pyrrole), 148.3 (C4arom), 149.2 

(C5arom). MS (CI): (m/z) 274 (MH+, 14); 273 (14); 258 (20); 257 (19); 256 (65); 

151 (100). HRMS (CI): Calculated for C16H20NO3 (MH+): 274.1443. Found: 

274.1452. 

Synthesis of (E)-2-(3-(tert-butyldimethylsilyloxy)prop-1-enyl)-1-(3,4-

dimethoxybenzyl)-1H-pyrrole (48) (Table 2.7, Entry 1)

The silyloxy allyl derivative 44b (91.50 mg, 

0.18 mmol) was dissolved in dry THF (5 mL) 

under inert atmosphere. n-BuLi (0.34 mL of a 

solution 1.17 M in hexane, 0.39 mmol) was 

added to the former solution at -90 ºC, and 

after being stirred for 5 min, TMEDA (0.05 mL, 0.36 mmol) was added to the 

mixture. The final mixture was stirred for 50 min at -90 ºC and was quenched with 

a saturated solution of NH4Cl (5 mL) at low temperature. H2O (5 mL) and Et2O (20 

mL) were added to the crude, followed by the separation of the organic phase. The 

aqueous phase was extracted with CH2Cl2 (3 x 10 mL) and the combined organic 

extracts were dried over anhydrous Na2SO4, filtered and concentrated to dryness. 

The crude was subjected to flash chromatography (silica gel, hexane/EtOAc 9/1) 

obtaining product 48 as an oil (47.80 mg, 0.12 mmol, 69 % yield). 
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IR (ATR): 2955 cm-1 (C-Haliph st), 1515 cm-1 (C=C st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) = 0.03 (s, 6H, Si(CH3)2C(CH3)3), 0.88 (s, 9H,  Si(CH3)2C(CH3)3), 3.80 (s, 

3H, OCH3), 3.85 (s, 3H, OCH3), 4.25 (d, J = 5.0 Hz, 2H, -CH=CH-CH2OSi), 5.05 

(s, 2H, Ar-CH2-N), 6.05 (dt, J = 15.6, 5.0 Hz, 1H, -CH=CH-CH2OSi), 6.14 – 6.18 

(m, 1H, H4pyrrole),  6.38 (dd, J = 3.6, 1.5 Hz, 1H, H3pyrrole), 6.42 (d, J = 15.6 Hz, 1H, -

CH=CH-CH2OSi), 6.54 – 6.60 (m, 2H, H2arom, H6arom), 6.63 – 6.66 (m, 1H, H5pyrrole), 

6.79 (d, J = 8.8 Hz, 1H, H3arom); 13
C NMR (CDCl3, 25 ºC): � (ppm) = -5.3 

(Si(CH3)2C(CH3)3), 18.3 (Si(CH3)2C(CH3)3), 25.9 (Si(CH3)2C(CH3)3), 50.2 (Ar-

CH2-N), 55.7, 55.9 (2 x OCH3), 63.7 (-CH=CH-CH2OSi), 106.4 (C3pyrrole),  108.2 

(C4pyrrole), 109.5 (C6arom), 111.3 (C3arom), 118.2 (-CH=CH-CH2OSi), 118.6 (C2arom), 

122.2 (C5pyrrole), 127.0 (-CH=CH-CH2OSi), 130.6 (C1arom), 131.2 (C2pyrrole), 148.3 

(C5arom), 149.2 (C4arom). MS (ESI
+
): (m/z) 389 (MH+ +1, 20); 388 (MH+, 83); 257 

(14); 256 (100); 151 (21). HRMS (ESI
+
): Calculated for C22H34NO3Si (MH+): 

388.2308. Found: 388.2317. 

Synthesis of (S,E)-2-(3-(tert-butyldimethylsilyloxy)prop-1-enyl)-1-(3,4-

dimethoxybenzyl)pyrrolidine (49) (Table 2.7, Entry 2)

The silyloxy allyl derivative 46 (87.00 mg, 

0.17 mmol) was dissolved in dry THF (5 mL) 

under an inert atmosphere. TMEDA (0.05 

mL, 0.34 mmol) was added to the previous 

solution at -90 ºC, and subsequently n-BuLi 

(0.34 mL of a solution 1.10 M in hexane, 0.37 mmol) was added. The final mixture 

was stirred 50 min at -90 ºC and was quenched with a saturated solution of NH4Cl 

(5 mL) at low temperature. H2O (5 mL) and Et2O (20 mL) were added to the crude, 

followed by the separation of the organic phase. The aqueous phase was extracted 

with CH2Cl2 (3 x 10 mL) and the combined organic extracts were dried over 
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anhydrous Na2SO4, filtered and concentrated to dryness. The crude was subjected 

to flash chromatography (silica gel, EtOAc) obtaining product 49 as an oil (65.80 

mg, 0.17 mmol, 100% yield). 

IR (ATR): 2954 cm-1 (C-Haliph st), 1512 cm-1 (C=C st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) = 0.08 (s, 6H, Si(CH3)2C(CH3)3), 0.91 (s, 9H, Si(CH3)2C(CH3)3), 1.57 – 1.82 

(m, 3H, 2 x H4, H3A), 1.88 – 2.01 (m, 1H, H3B), 2.09 (q, J = 8.8 Hz, 1H, H5A), 2.79 

(q, J = 8.2 Hz, 1H, H2),  2.87 – 2.96 (m, 1H, H5B), 3.00 (d, J = 12.8 Hz, 1H, Ar-

CHAHB-N), 3.85 (s, 3H, OCH3), 3.87 (s, 3H, OCH3), 3.96 (d, J = 12.8 Hz, 1H, Ar-

CHAHB-N), 4.19 (d, J = 4.9 Hz, 2H, -CH=CH-CH2OSi), 5.63 (dd, J = 15.4, 8.2 Hz, 

1H, -CH=CH-CH2OSi), 5.73 (dt, J = 15.4, 4.9 Hz, 1H, -CH=CH-CH2OSi),  6.72 – 

6.87 (m, 3H, H2arom, H3arom, H6arom). 13
C NMR (CDCl3, 25 ºC): � (ppm) = -5.1 

(Si(CH3)2C(CH3)3), 18.4 (Si(CH3)2C(CH3)3), 21.9 (C4p), 25.9 (Si(CH3)2C(CH3)3), 

31.6 (C3p), 53.2 (C5p), 55.8, 55.9 (2 x OCH3), 57.9 (Ar-CHAHB-N), 63.5 (-CH=CH-

CH2OSi), 67.1 (C2p), 110.7 (C3arom), 112.2, 121.0 (C2arom, C6arom), 131.8 (-CH=CH-

CH2OSi), 132.0 (C1arom), 132.7 (-CH=CH-CH2OSi), 147.8,  148.7 (C4arom, C5arom). 

MS (ESI
+
): (m/z) 393 (MH+ +1, 26); 392 (MH+, 100). HRMS (ESI

+
): Calculated 

for C22H38NO3Si (MH+): 392.2621. Found: 392.2628. [�]D
20

: -42.4 (c = 1.0 g/L, 

CH2Cl2).  
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6.6. Intramolecular Mizoroki-Heck and direct arylation of N-

(o-haloheteroarylmethyl)pyrrolylacrylates and acrylamides 

Synthesis of (E)-ethyl 3-(5H-pyrido[2,3-a]pyrrolizin-7-yl)acrylate (50) (Table 
3.1, Entry 14)

(Iodopyridinylmethyl)pyrrolylacrylate 5b (100.00 mg, 

0.26 mmol) was dissolved in dry DMF (5 mL) under 

an inert atmosphere. n-Bu4NOAc (122.00 mg, 0.39 

mmol), PPh3 (6.90 mg, 0.03 mmol) and Pd(OAc)2 

catalyst (6.00 mg, 0.03 mmol) were added to the previous solution and the mixture 

was heated at 110 ºC for 1 h. After that time, the crude was eluted with EtOAc (50 

mL) and washed with a saturated solution of NH4Cl (2 x 20 mL) and H2O (1 x 10 

mL). The aqueous phase was further extracted with EtOAc (3 x 10mL) and the 

combined organic extracts were dried over anhydrous Na2SO4, filtered and 

evaporated under pressure. The crude was purified through flash chromatography 

(neutral alumina, CH2Cl2/EtOAc 9/1) obtaining product 50 as a solid (56.40 mg, 

0.22 mmol, 85% yield).  

m.p.: 148-150 ºC (CH2Cl2/EtOAc); IR (ATR): 2980 cm-1 (C-Haliph st), 1696 cm-1

(C=O st), 1618 cm-1 (C=C st); 1
H NMR (CDCl3, 25ºC): � (ppm) = 1.30 (t, J = 7.1 

Hz, 3H, OCH2CH3),  4.21 (q, J = 7.1 Hz, 2H, OCH2CH3), 4.89 (s, 2H, 2H5), 5.96 

(d, J = 16.1 Hz, 1H, -CH=CH-CO2Et), 6.60 – 6.65 (m, 1H, H9), 6.65 – 6.69 (m, 1H, 

H8), 7.02 (dt, J = 7.7, 4.6 Hz, 1H, H3), 7.53 (d, J = 16.1 Hz, 1H, -CH=CH-CO2Et),  

7.58 – 7.64 (m, 1H, H4), 8.44 (d, J = 4.6 Hz, 1H, H2). 
13

C NMR (CDCl3, 25ºC): �

(ppm) = 14.3 (OCH2CH3), 49.2 (C5), 60.2 (OCH2CH3), 102.8 (C9) 112.3 (-

CH=CH-CO2Et), 119.8 (C3, C8)*, 127.4 (C7), 130.4 (C4), 132.3 (-CH=CH-CO2Et), 

134.3 (C4a), 141.0 (C9a), 149.4 (C2), 151.6 (C9b), 167.3 (CO2Et). MS (ESI
+
): (m/z) 

N

N
CO2Et3

2

4 5

8
9

9a9b

4a
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256 (MH+ + 1, 15); 255 (MH+, 100). HRMS (ESI
+
): Calculated for C15H15N2O2 

(MH+): 255.1134. Found: 255.1142. *Overlapped signals 

Synthesis of (E)-N,N-diethyl-3-(5H-pyrido[2,3-a]pyrrolizin-7-yl)acrylamide 

(51) (Table 3.2, Entry 8)

(Iodopyridinylmethyl)pyrrolylacrylamide 5d (81.60 

mg, 0.20 mmol) was dissolved in dry DMF (5 mL) 

under an inert atmosphere. P(o-tolyl)3 (6.30 mg, 0.02 

mmol), Et3N (0.07 mL, 0.50 mmol) and Pd(dba)2 catalyst (5.80 mg, 0.01 mmol) 

were added to the previous solution and the mixture was heated at 130 ºC for 48 h. 

After that time, the crude was eluted with EtOAc (50 mL) and washed with a 

saturated solution of NH4Cl (2 x 20 mL) and H2O (1 x 10 mL). The aqueous phase 

was further extracted with EtOAc (3 x 10 mL) and the combined organic extracts 

were dried over anhydrous Na2SO4, filtered and evaporated under pressure. The 

crude was purified through flash chromatography (neutral alumina, hexane/EtOAc 

1/9) obtaining product 51 as a yellow oil (43.90 mg, 0.16 mmol, 78% yield). 

IR (ATR): 2970 cm-1 (C-Haliph st), 1641 cm-1 (C=O st), 1587 cm-1 (C=C st); 1
H 

NMR (CDCl3, 25ºC): � (ppm) =  1.12 – 1.37 (m, 6H, N(CH2CH3)2),  3.42 – 3.56 

(m, 4H, N(CH2CH3)2), 5.00 (s, 2H, 2H5), 6.56 (d, J = 15.3 Hz, 1H, -CH=CH-

CONEt2), 6.69 (d, J = 3.9 Hz, 1H, H9), 6.76 (d, J = 3.9 Hz, 1H, H8), 7.08 (dd, J = 

7.6, 4.6 Hz, 1H, H3), 7.63 – 7.73 (m, 2H, H4, -CH=CH-CONEt2),  8.50 (d, J = 4.6 

Hz, 1H, H2);
13

C NMR (CDCl3, 25ºC): � (ppm) = 13.3, 15.1 (N(CH2CH3)2), 29.7 

(grease), 41.2, 42.3 (N(CH2CH3)2), 48.4 (C5), 102.8 (C9) 113.0 (-CH=CH-

CONEt2), 116.5 (C8), 119.6 (C3), 128.6 (C7), 130.2, 130.5 (C4, -CH=CH-CONEt2), 

134.1 (C4a), 139.6 (C9a), 149.4 (C2), 152.4 (C9b), 165.9 (CONEt2). MS (ESI
+
): (m/z) 

N

N
CONEt2
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283 (MH+ + 1, 13); 282 (MH+, 100). HRMS (ESI
+
): Calculated for C17H20N3O

(MH+): 282.1606. Found: 282.1599. 

Synthesis of 1-((2-bromopyridin-3-yl)methyl)-3,5-dimethyl-1H-pyrrole-2-

carbaldehyde (52a)  

To a suspension of KOH (0.52 g, 9.26 mmol) in DMSO (20 

mL), substituted pyrrole 2-carboxaldehyde (0.30 g, 2.31 

mmol) was added. The mixture was stirred for 2 h at room 

temperature. After that time, 2-bromo-3-

(bromomethyl)pyridine (2) (0.75 g, 3.01 mmol) was added to the former solution 

and the reaction was stirred for 4 h more at room temperature. The reaction was 

quenched with H2O (20 mL) and the crude was extracted with CH2Cl2 (3 x 20 mL). 

The organic phase was washed with H2O (3 x 20 mL) and brine (1 x 10 mL). The 

combined organic extracts were dried over anhydrous Na2SO4, filtered and 

concentrated to dryness. The crude was subjected to flash chromatography (silica 

gel, hexane/EtOAc 7/3) obtaining product 52a as a white solid (0.57 g, 1.95 mmol, 

84% yield).

m.p.: 170-171 ºC (Hexane/EtOAc); IR (ATR): 2916 cm-1 (C-Haliph st), 1642 cm-1

(C=O st), 1560 cm-1 (C=Carom st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 2.09 (s, 3H, 

CH3-C5pyrrole), 2.36 (s, 3H, CH3-C3pyrrole),  5.57 (s, 2H, CH2N), 5.95 (s, 1H, H4pyrrole), 

6.59 (dd, J = 7.6, 0.7 Hz, 1H, H4pyridine), 7.12 (dd, J = 7.6, 4.7 Hz, 1H, H5pyridine), 

8.17 – 8.27 (m, 1H, H6pyridine), 9.61 (s, 1H, CHO); 13
C NMR (300 MHz, CDCl3, 25 

ºC): � (ppm) = 10.9 (CH3-C3pyrrole), 11.7 (CH3-C5pyrrole), 47.6 (CH2N), 112.4 

(C4pyrrole) 123.2 (C5pyridine), 127.5 (C2pyrrole), 134.9 (C3pyridine), 135.0 (C4pyridine), 135.7 

(C3pyrrole), 139.2 (C5pyrrole), 141.2 (C2pyridine), 148.5 (C6pyridine), 176.8 (CHO). MS

N Br

N

CHO

3

4

5

5

4

6 2
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(ESI
+
): (m/z) 293 (MH+, 5); 214 (12); 213 (100). HRMS (ESI

+
): Calculated for 

C13H14N2OBr79 (MH+): 293.0290. Found: 293.0285. 

Synthesis of 1-((2-iodopyridin-3-yl)methyl)-3,5-dimethyl-1H-pyrrole-2-

carbaldehyde (52b) 

Pyrrole carbaldehyde derivative 52a (0.55 g, 1.89 mmol) in 

dry dioxane (10 mL) was added via canula to a suspension of 

NaI (0.57 g, 3.77 mmol), CuI (18.00 mg, 0.09 mmol) and 

N,N´-dimethylethylenediamine (0.02 mL, 0.18 mmol) in dry 

dioxane (20 mL) under an inert atmosphere. The mixture was heated under reflux 

for 24 h. H2O (20 mL) was added and the crude was extracted with CH2Cl2 (3 x 20 

mL). The organic phase was washed with brine (3 x 20 mL). Combined organic 

extracts were dried over anhydrous Na2SO4, filtered and concentrated to dryness. 

The crude was subjected to flash chromatography (silica gel, hexane/EtOAc 7/3) 

obtaining product 52b as a white solid (0.55 g, 1.61 mmol, 85% yield). 

m.p.: 164-165 ºC (Hexane/EtOAc); IR (ATR): 2916 cm-1 (C-Haliph st), 1640 cm-1

(C=O st), 1554 cm-1 (C=Carom st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 2.09 (s, 3H, 

CH3-C5pyrrole), 2.36 (s, 3H, CH3-C3pyrrole),  5.48 (s, 2H, CH2N),  5.95 (s, 1H, H4pyrrole), 

6.43 – 6.49 (m, 1H, H4pyridine), 7.10 (dd, J = 7.7, 4.7 Hz, 1H, H5pyridine), 8.11 – 8.23 

(m, 1H, H6pyridine), 9.61 (s, 1H, CHO); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 10.9 

(CH3-C3pyrrole), 11.7 (CH3-C5pyrrole), 51.8 (CH2N), 112.4 (C4pyrrole) 120.5 (C2pyridine), 

123.4 (C5pyridine), 127.5 (C2pyrrole), 133.6 (C4pyridine), 135.7 (C3pyrrole), 138.0 (C3pyridine), 

139.2 (C5pyrrole), 149.2 (C6pyridine), 176.8 (CHO). MS (ESI
+
): (m/z) 341 (MH+, 16); 

214 (12); 213 (100). HRMS (ESI
+
): Calculated for C13H14N2OI (MH+): 341.0151. 

Found: 341.0151. 

N I

N

CHO
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Synthesis of (E)-ethyl 3-(1-((2-bromopyridin-3-yl)methyl)-3,5-dimethyl-1H-

pyrrol-2-yl)acrylate (53a)  

To a solution of pyrrole carbaldehyde derivative 52a

(0.40 g, 1.36 mmol) in dry THF (30 mL), ethyl 

(triphenylphosphoranylidene)acetate (4a) (4.00 g, 10.92 

mmol, 2.0 eq per day) were added and the mixture was 

heated under reflux for 96 h. After that time, the crude was concentrated to dryness 

and subjected to flash chromatography (silica gel, hexane/EtOAc 7/3) obtaining 

product 53a as a white solid (0.45 g, 1.24 mmol, 91 % yield).

m.p.: 141-142 ºC (Hexane/EtOAc); IR (ATR): 2980 cm-1 (C-Haliph st), 1700 cm-1

(C=O st), 1611 cm-1 (C=C st), 1560 cm-1 (C=Carom st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) = 1.25 (t, J = 7.1 Hz, 3H, OCH2CH3), 2.10 (s, 3H, CH3-C5pyrrole), 2.26 (s, 3H, 

CH3-C3pyrrole),  4.15 (q, J = 7.1 Hz, 2H, OCH2CH3), 5.11 (s, 2H, CH2N), 5.82 (d, J = 

15.8 Hz, 1H, -CH=CH-CO2Et), 5.96 (s, 1H, H4pyrrole), 6.53 (dd, J = 7.6, 1.6 Hz, 1H, 

H4pyridine), 7.14 (dd, J = 7.6, 4.7 Hz, 1H, H5pyridine), 7.46 (d, J = 15.8 Hz, 1H, -

CH=CH-CO2Et),  8.25 (dd, J = 4.7, 1.6 Hz, 1H, H6pyridine); 
13

C NMR (CDCl3, 25 

ºC): � (ppm) = 12.2 (CH3-C5pyrrole), 14.0 (CH3-C3pyrrole), 14.3 (OCH2CH3), 46.5 

(CH2N), 60.0 (OCH2CH3), 111.1 (-CH=CH-CO2Et), 112.5 (C4pyrrole), 123.4 

(C5pyridine), 124.8 (C2pyrrole), 126.0 (C3pyrrole), 131.4 (-CH=CH-CO2Et), 133.4 

(C5pyrrole), 134.2 (C3pyridine), 135.4 (C4pyridine), 140.9 (C2pyridine), 148.9 (C6pyridine), 168.1 

(CO2Et). MS (ESI
+
): (m/z) 387 (11); 385 (11); 365 ([MH+2]+, 47); 363 (MH+, 48); 

284 (15); 283 (100). HRMS (ESI
+
): Calculated for C17H20N2O2Br79 (MH+): 

363.0708. Found: 363.0715. 

N Br

N

CO2Et
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Synthesis of (E)-ethyl 3-(1-((2-iodopyridin-3-yl)methyl)-3,5-dimethyl-1H-

pyrrol-2-yl)acrylate (53b) 

To a solution of pyrrole carbaldehyde derivative 52b (0.55 

g, 1.61 mmol) in dry THF (30 mL), ethyl 

(triphenylphosphoranylidene)acetate (4a) (4.72 g, 12.87 

mmol, 2.0 eq per day) were added and the mixture was 

heated under reflux for 96 h. After that time, the crude was 

concentrated to dryness and subjected to flash chromatography (silica gel, 

hexane/EtOAc 7/3) obtaining product 53b as a white solid (0.50 g, 1.23 mmol, 

76% yield). 

m.p.: 132-133 ºC (Hexane/EtOAc); IR (ATR): 2978 cm-1 (C-Haliph st), 1698 cm-1

(C=O st), 1609 cm-1 (C=C st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 1.26 (t, J = 7.1 

Hz, 3H, OCH2CH3), 2.10 (s, 3H, CH3-C5pyrrole), 2.27 (s, 3H, CH3-C3pyrrole),  4.16 (q, 

J = 7.1 Hz, 2H, OCH2CH3), 5.01 (s, 2H, CH2N), 5.82 (d, J = 15.8 Hz, 1H, -

CH=CH-CO2Et), 5.96 (s, 1H, H4pyrrole), 6.37 – 6.43 (m, 1H, H4pyridine), 7.12 (dd, J = 

7.7, 4.7 Hz, 1H, H5pyridine), 7.45 (d, J = 15.8 Hz, 1H, -CH=CH-CO2Et),  8.24 (dd, J

= 4.7, 1.8 Hz, 1H, H6pyridine); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = 12.2 (CH3-

C5pyrrole), 14.0 (CH3-C3pyrrole), 14.3 (OCH2CH3), 50.8 (CH2N), 60.1 (OCH2CH3), 

111.1 (-CH=CH-CO2Et), 112.5 (C4pyrrole), 120.2 (C2pyridine), 123.6 (C5pyridine), 124.8 

(C2pyrrole), 126.1 (C3pyrrole), 131.5 (-CH=CH-CO2Et), 133.4 (C5pyrrole), 134.2 

(C4pyridine), 137.4 (C3pyridine), 149.6 (C6pyridine), 168.1 (CO2Et). MS (ESI
+
): (m/z) 412 

(MH+ + 1, 11); 411 (MH+, 70); 284 (15); 283 (100). HRMS (ESI
+
): Calculated for 

C17H20N2O2I (MH+): 411.0569. Found: 411.0563. 

N I

N

CO2Et



Chapter VI                                               Experimental Section 

�

325 

Synthesis of (Z)-ethyl 2-(7,9-dimethylpyrrolo[1,2-g][1,6]naphthyridin-10(5H)-

ylidene)acetate (54) and (E)-ethyl 3-(3,5-dimethyl-1-(pyridin-3-ylmethyl)-1H-

pyrrol-2-yl)acrylate (55) (Table 3.3, Entry 6)

(Iodopyridinylmethyl)pyrrolylacrylate 51b (90.00 mg, 0.22 mmol) was dissolved 

in dry DMF (5 mL) under an inert atmosphere. n-Bu4NOAc (102.60 mg, 0.33 

mmol), PPh3 (5.80 mg, 0.02 mmol) and Pd(OAc)2 catalyst (5.00 mg, 0.02 mmol) 

were added to the previous solution and the mixture was heated at 110 ºC for 48 h. 

After that time, the crude was eluted with EtOAc (50 mL) and washed with a 

saturated solution of NH4Cl (2 x 20 mL) and H2O (1 x 10 mL). The aqueous phase 

was further extracted with EtOAc (3 x 10 mL) and the combined organic extracts 

were dried over anhydrous Na2SO4, filtered and evaporated under pressure. The 

crude was purified through flash chromatography (silica gel, hexane/EtOAc 6/4) 

obtaining cyclized product 54 as a yellow solid (8.80 mg, 0.03 mmol, 14% yield) 

and deiodinated product 55 as a yellow oil (3.90 mg, 0.01 mmol, 6% yield). The 

conversion was 43%. 

Data for 54: 

m.p.: 130-131 ºC (Hexane/EtOAc); IR (ATR): 2926 cm-1 (C-

Haliph st), 1706 cm-1 (C=O st), 1601 cm-1 (C=C st); 1
H NMR 

(CDCl3, 25 ºC): � (ppm) = 1.38 (t, J = 7.1 Hz, 3H, OCH2CH3), 

2.16 (s, 3H, CH3-C9), 2.34 (s, 3H, CH3-C7), 4.40 (q, J = 7.1 

Hz, 2H, OCH2CH3), 4.75 (s, 2H, 2H5), 5.92 (s, 1H, H8), 7.16 (dd, J = 7.6, 4.8 Hz, 

1H, H3), 7.59 (dd, J = 7.6, 1.5 Hz, 1H, H4), 7.85 (s, 1H, -C10=CH-CO2Et),  8.62 

(dd, J = 4.8, 1.5 Hz, 1H, H2); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = 11.3 (CH3-C9), 

12.3 (CH3-C7), 14.3 (OCH2CH3), 47.3 (C5), 60.9 (OCH2CH3), 111.5 (C8), 121.8 

(C3), 123.1 (C10), 124.7 (C9), 127.0 (C9a), 129.1 (-C10=CH-CO2Et), 130.0 (C4a), 

132.9 (C7), 135.5 (C4), 148.7 (C2), 155.1 (C10a), 168.5 (CO2Et). MS (ESI
+
): (m/z) 

N

N

EtO2C

3

2

4 5
4a 7

8

99a10a
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284 (MH+ + 1, 17); 283 (MH+, 100). HRMS (ESI
+
): Calculated for C17H19N2O2

(MH+): 283.1447. Found: 283.1444. 

Data for 55: 

IR (ATR): 2928 cm-1 (C-Haliph st), 1697 cm-1 (C=O st), 1609 

(C=C st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 1.27 (t, J = 7.1 

Hz, 3H, OCH2CH3), 2.17 (s, 3H, CH3-C5pyrrole), 2.27 (s, 3H, 

CH3-C3pyrrole), 4.17 (q, J = 7.1 Hz, 2H, OCH2CH3), 5.19 (s, 2H, 

CH2N), 5.87 (d, J = 15.8 Hz, 1H, -CH=CH-CO2Et), 5.94 (s, 

1H, H4pyrrole), 7.15 (d, J = 7.9 Hz, 1H, H4pyridine), 7.23 (dd, J = 7.9, 4.8 Hz, 1H, 

H5pyridine), 7.57 (d, J = 15.8 Hz, 1H, -CH=CH-CO2Et),  8.32 (s, 1H, H2pyridine), 8.51 

(d, J = 4.8, 1H, H6pyridine); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = 12.5 (CH3-C5pyrrole), 

14.1 (CH3-C3pyrrole), 14.4 (OCH2CH3), 44.8 (CH2N), 60.0 (OCH2CH3), 110.9 (-

CH=CH-CO2Et), 112.4 (C4pyrrole), 123.8 (C5pyridine), 125.0 (C2pyrrole), 126.0 (C3pyrrole), 

132.0 (-CH=CH-CO2Et), 133.1 (C3yridine), 133.5 (C5pyrrole), 133.6 (C4pyridine), 147.6 

(C2pyridine), 148.9 (C6pyridine), 168.3 (CO2Et). MS (ESI
+
): (m/z) 286 (MH+ + 1, 16); 

285 (MH+, 100); 239 (29). HRMS (ESI
+
): Calculated for C17H21N2O2 (MH+): 

285.1603. Found: 285.15896. 

Synthesis of (E)-ethyl 3-(10H-pyrrolizino[1,2-b]quinolin-1-yl)acrylate (56) 

(Table 3.4, Entry 1)

(Bromoquinolinylmethyl)pyrrolylacrylate 9a

(100.00 mg, 0.26 mmol) was dissolved in dry 

CH3CN (5 mL) under an inert atmosphere. n-

Bu4NCl (108.20 mg, 0.39 mmol), NaHCO3

(54.50 mg, 0.65 mmol) and Pd(PPh3)4 catalyst (30.30 mg, 0.03 mmol) were added 

to the previous solution and the mixture was heated under reflux for 48 h. After 

N

N

EtO2C

N

N
CO2Et

2
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that time, the crude was eluted with EtOAc (50 mL) and washed with a saturated 

solution of NH4Cl (1 x 20 mL). The organic layer was separated and the aqueous 

phase further extracted with EtOAc (2 x 10mL). The combined organic extracts 

were dried over anhydrous Na2SO4, filtered and evaporated under pressure. The 

crude was purified through flash chromatography (neutral alumina, CH2Cl2/EtOAc 

9/1) obtaining the product 56 as a yellow solid (69.40 mg, 0.23 mmol, 88% yield).

m.p.: 170-171 ºC (CH2Cl2/EtOAc); IR (ATR): 2978 cm-1 (C-Haliph st), 1698 cm-1

(C=O st), 1617 cm-1 (C=C st), 1573 cm-1 (C=Carom st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) =  1.36 (t, J = 7.1 Hz, 3H, OCH2CH3),  4.27 (q, J = 7.1 Hz, 2H, OCH2CH3), 

5.03 (s, 2H, 2H10), 6.10 (d, J = 16.1 Hz, 1H, -CH=CH-CO2Et), 6.77 (d, J = 4.0 Hz, 

1H, H2), 6.88 (d, J = 4.0 Hz, 1H, H3), 7.40 – 7.48 (m, 1H, H7), 7.58 (d, J = 16.1 Hz, 

1H, -CH=CH-CO2Et),  7.61 – 7.63 (m, 2H, H6, H8), 7.94 (s, 1H, H9), 8.05 (d, J = 

8.4 Hz, 1H, H5); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = 14.3 (OCH2CH3), 48.5 

(C10), 60.4 (OCH2CH3), 104.5 (C3), 113.3 (-CH=CH-CO2Et), 119.8 (C2), 125.7 

(C8a), 125.8 (C7), 127.7 (C6), 128.1 (C1), 128.6 (C5), 129.3 (C9), 129.6 (C8), 132.1 

(C9a), 132.3 (-CH=CH-CO2Et), 140.0 (C3a), 148.2 (C4a), 151.7 (C3b), 167.3 

(CO2Et). MS (MALDI): (m/z) 306 (MH+ + 1, 17); 305 (MH+, 100); 274 (23); 200 

(19). HRMS (MALDI): Calculated for C19H17N2O2 (MH+): 305.1290. Found: 

305.1282. 
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Synthesis of (E)-N,N-diethyl-3-(10H-pyrrolizino[1,2-b]quinolin-1-

yl)acrylamide (57) (Table 3.4, Entry 4)

(Iodoquinolinylmethyl)pyrrolyl acrylamide 

derivative 9d (80.00 mg, 0.17 mmol) was 

dissolved in dry CH3CN (5 mL) under an inert 

atmosphere. n-Bu4NCl (72.60 mg, 0.26 mmol), NaHCO3 (36.60 mg, 0.44 mmol) 

and Pd(PPh3)4 catalyst (20.30 mg, 0.02 mmol) were added to the previous solution 

and the mixture was heated under reflux for 48 h. After that time, the crude was 

eluted with EtOAc (50 mL) and washed with a saturated solution of NH4Cl (1 x 20 

mL). The organic layer was separated and the aqueous phase further extracted with 

EtOAc (2 x 10mL). The combined organic extracts were dried over anhydrous 

Na2SO4, filtered and evaporated under pressure. The crude was purified through 

flash chromatography (silica, hexane/EtOAc 9/1) obtaining the product 57 as a 

yellow solid (54.50 mg, 0.16 mmol, 95% yield). 

m.p.: 190-191 ºC (CH2Cl2/EtOAc); IR (ATR): 2974 cm-1 (C-Haliph st), 1633 cm-1

(C=O st), 1591 cm-1 (C=C st); 1
H NMR (CDCl3, 25ºC): � (ppm) =  1.12 – 1.43 (m, 

6H, N(CH2CH3)2),  3.40 – 3.61 (m, 4H, N(CH2CH3)2), 5.12 (s, 2H, 2H10), 6.63 (d, J 

= 15.2 Hz, 1H, -CH=CH-CONEt2), 6.83 (d, J = 4.0 Hz, 1H, H2), 6.90 (d, J = 4.0 

Hz, 1H, H3), 7.45 – 7.50 (m, 1H, H7), 7.66 – 7.72 (m, 2H, -CH=CH-CONEt2, H6), 

7.74 (d, J = 7.6 Hz, 1H, H8), 8.04 (s, 1H, H9), 8.08 (d, J = 8.4 Hz, 1H, H5). 
13

C 

NMR (CDCl3, 25ºC): � (ppm) = 13.3, 15.1 (N(CH2CH3)2), 41.2, 42.3 

(N(CH2CH3)2), 47.8 (C10), 104.7 (C3), 114.0 (-CH=CH-CONEt2), 116.5 (C2), 125.8 

(C7), 125.9 (C8a), 127.9 (C8), 128.7 (C5), 129.4 (C3a), 129.6 (C9), 129.7, 129.9 (C6, -

CH=CH-CONEt2), 132.4 (C9a), 138.7 (C1), 148.4 (C4a), 152.4 (C3b), 165.8 

(CONEt2). MS (ESI
+
): (m/z) 333 (MH+ + 1, 23); 332 (MH+, 100). HRMS (ESI

+
):

Calculated for C21H21N3O (MH+): 332.1763. Found: 332.1771. 

N

N
CONEt2
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6.7. Intramolecular Mizoroki-Heck reaction of N-(o-

iodobenzyl) and N-(o-haloheteroarylmethyl)pyrrolyl allylic 

alcohol derivatives. Generation of tertiary and quaternary 

stereocenters 

6.7.1. Intramolecular Mizoroki-Heck reaction of N-(o-

iodobenzyl)pyrrole 59. Generation of a quaternary stereocenter 

Synthesis of (E)-3-(1-(2-iodo-4,5-dimethoxybenzyl)-1H-pyrrol-2-yl)but-2-en-1-

ol (58) 

Over a solution of the former N-benzylpyrrole 26

(0.50 g, 1.10 mmol) in dry toluene (20 mL), 

DIBAL-H (6.04 mL of a solution 1.0 M in toluene, 

6.04 mmol) was added at -78 ºC and under an inert 

atmosphere. The reaction was stirred for 30 min at -

78 ºC, and after that time the reaction was quenched at low temperature with a 

H2O:AcOH (1:1) solution (2 mL). The crude was washed with water (3 x 10 mL) 

and the aqueous phase extracted with CH2Cl2 (3 x 10 mL). The combined organic 

extracts were dried over anhydrous Na2SO4, filtered and concentrated to dryness. 

The crude was purified through flash chromatography (silica gel, hexane/EtOAc 

6/4) obtaining product 58 as a yellow oil (0.42 g, 1.02 mmol, 93% yield).  

IR (ATR): 3510 cm-1 (brs, O-H st), 2936 cm-1 (C-Haliph st), 1682 cm-1 (C=O st), 

1596 cm-1 (C=C st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 1.39 (brs, 1H, OH), 1.92 

(s, 3H, -C(CH3)=CH-CH2OH), 3.62 (s, 3H,  OCH3), 3.84 (s, 3H, OCH3), 4.23 (d, J 

= 6.7 Hz, 2H, -C(CH3)=CH-CH2OH), 5.02 (s, 2H, Ar-CH2-N), 5.51 (t, J = 6.7 Hz, 

1H, -C(CH3)=CH-CH2OH), 5.99 (s, 1H, H6arom), 6.14 – 6.23 (m, H3pyrrole, H4pyrrole ), 

6.60 - 6.65 (m, 1H, H5pyrrole ), 7.21 (s, 1H, H3arom). 13
C NMR (CDCl3, 25 ºC): �

CH3O

CH3O

I

N
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(ppm) =17.8 (-C(CH3)=CH-CH2OH), 55.6 (OCH3), 55.8 (Ar-CH2-N), 56.1 (OCH3), 

59.4 (-C(CH3)=CH-CH2OH), 84.2 (C2arom), 108.2, 108.7 (C3pyrrole , C4pyrrole), 110.4 

(C6arom), 121.2 (C3arom), 123.2 (C5pyrrole ), 127.5 (-C(CH3)=CH-CH2OH), 129.8, 

133.4, 136.2 (C2pyrrole, C1arom, -C(CH3)=CH-CH2OH), 148.6, 149.7 (C4arom, C5arom). 

MS (CI): (m/z) 396 (35); 395 (13); 277 (100); 269 (47); 268 (79). HRMS (CI):

Calculated for C17H21INO3 (MH+): 414.0566. Found: 414.0555. 

Synthesis of (E)-2-(4-(tert-butyldimethylsilyloxy)but-2-en-2-yl)-1-(2-iodo-4,5-

dimethoxybenzyl)-1H-pyrrole (59) 

The former allylic alcohol 58 (0.10 g, 0.25 

mmol) was dissolved in dry DMF (15 mL) 

under an inert atmosphere. Imidazole (42.10 

mg, 0.62 mmol) and TBDMSCl (76.80 mg, 

0.49 mmol) were added to the previous 

solution and the mixture was stirred for 4 h at room temperature. The crude was 

quenched with water (20 mL) and extracted with EtOAc (3 x 20 mL). The 

combined organic extracts were washed with water (3 x 20 mL), brine (3 x 20 mL) 

and dried over anhydrous Na2SO4, filtered and concentrated to dryness. The crude 

was subjected to flash chromatography (silica gel, hexane/EtOAc 9/1) obtaining 

product 59 as a colorless oil (0.12 g, 0.23 mmol, 92% yield).  

IR (ATR): 2952 cm-1 (C-Haliph st), 1665 cm-1 (C=C st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) =  0.01 (s, 6H, Si(CH3)2C(CH3)3), 0.85 (s, 9H,  Si(CH3)2C(CH3)3), 1.91 (s, 

3H, -C(CH3)=CH-CH2OSi), 3.62 (s, 3H, OCH3), 3.84 (s, 3H, OCH3), 4.29 (d, J = 

6.1 Hz, 2H, -C(CH3)=CH-CH2OSi), 5.01 (s, 2H, Ar-CH2-N), 5.41 – 5.46 (m, 1H, -

C(CH3)=CH-CH2OSi), 5.99 (s, 1H, H6arom), 6.16 (dd, J = 3.6, 1.8 Hz, 1H, H3pyrrole ), 

6.18 – 6.20 (m, 1H, H4pyrrole ), 6.60 (dd, J = 2.7, 1.8 Hz, 1H, H5pyrrole ), 7.22 (s, 1H, 

CH3O

CH3O

I

N
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H3arom); 13
C NMR (CDCl3, 25 ºC): � (ppm) = -5.2 (Si(CH3)2C(CH3)3), 17.9 (-

C(CH3)=CH-CH2OSi), 18.2 (Si(CH3)2C(CH3)3), 25.9 (Si(CH3)2C(CH3)3), 55.6 

(OCH3), 55.7 (Ar-CH2-N), 56.1 (OCH3), 60.4 (-C(CH3)=CH-CH2OSi), 84.2 

(C2arom), 108.2, 108.3 (C3pyrrole/C4pyrrole), 110.5 (C6arom), 121.4 (C3arom), 122.9 

(C5pyrrole), 127.4 (-C(CH3)=CH-CH2OSi), 129.1 (-C(CH3)=CH-CH2OSi), 133.6 

(C1arom), 136.6 (C2pyrrole ), 148.6 (C5arom), 149.8 (C4arom). MS (ESI
+
): (m/z) 529 (21); 

528 (MH+, 100); 397 (12); 396 (88); 270 (10); 269 (58); 241 (26). HRMS (ESI
+
):

Calculated for C23H35INO3Si (MH+): 528.1431. Found: 528.1442. 

Synthesis of (Z)-10-(2-(tert-butyldimethylsilyloxy)vinyl)-7,8-dimethoxy-10-

methyl-5,10-dihydropyrrolo[1,2-b]isoquinoline (60a) and (E)-10-(2-(tert-

butyldimethylsilyloxy)vinyl)-7,8-dimethoxy-10-methyl-5,10-

dihydropyrrolo[1,2-b]isoquinoline (60b) (Table 3.5, Entry 1)

Silyloxy allyl derivative 59 (116.10 mg, 0.22 mmol) was dissolved in dry toluene 

(5 mL) under an inert atmosphere and Et3N (0.08 mL, 0.55 mmol) and Pd(PPh3)4 

catalyst (25.70 mg, 0.02 mmol) were added to the previous solution and the 

mixture was heated under reflux for 16 h. After that time, the solvent was 

evaporated under reduced pressure. The crude was purified through flash 

chromatography (silica gel, hexane/CH2Cl2 4/6) obtaining diastereomers (Z)-60a

(7.10 mg, 0.02 mmol, 8% yield) and (E)-60b (63.80 mg, 0.16 mmol, 73% yield) as 

as colorless oils. 

Data for (Z)-60a: 

IR (ATR): 2928 cm-1 (C-Haliph st), 1652 cm-1 (C=C 

st), 1612 cm-1 (C=Carom st); 1
H NMR (CDCl3, 25 ºC): 

� (ppm) = 0.05 (s, 6H, Si(CH3)2(CH3)3), 0.79 (s, 9H, 

Si(CH3)2(CH3)3), 1.74 (s, 3H, CH3-C10), 3.87 (s, 3H, 

CH3O

CH3O
N

H
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H
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OCH3), 3.89 (s, 3H, OCH3), 4.64 (d, J = 6.4 Hz, 1H, -CH=CH-OSi), 5.02 (s, 2H, 

2H5), 6.02 (dd, J = 3.4, 1.7 Hz, 1H, H1), 6.15 – 6.19 (m, 1H, H2), 6.22 (d, J = 6.4 

Hz, 1H, -CH=CH-OSi), 6.61 – 6.65 (m, 1H, H3), 6.66 (s, 1H, H6), 7.08 (s, 1H, H9); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = -5.5 (Si(CH3)2C(CH3)3), 18.0 

(Si(CH3)2C(CH3)3), 25.4 (Si(CH3)2C(CH3)3), 29.7 (grease), 30.6 (CH3-C10), 40.1 

(C10), 47.2 (C5), 56.0, 56.1 (2 x OCH3), 102.7 (C1), 108.0 (C2), 108.7 (C6), 109.9 

(C9), 115.3 (-CH=CH-OSi), 117.3 (C3), 123.0 (C5a), 135.4 (C9a), 137.4 (C10a), 139.0 

(-CH=CH-OSi), 147.1 (C8), 148.2 (C7). MS (ESI
+
): (m/z) 401 (MH+ + 1, 27); 400 

(MH+, 100). HRMS (ESI
+
): Calculated for C23H34NO3Si (MH+): 400.2308. Found: 

400.2307. 

Data for (E)-60b: 

IR (ATR): 2930 cm-1 (C-Haliph st), 1652 cm-1 (C=C st), 

1611 cm-1 (C=Carom st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) = 0.12 (s, 6H, Si(CH3)2(CH3)3), 0.92 (s, 9H, 

Si(CH3)2(CH3)3), 1.63 (s, 3H, CH3-C10), 3.89 (s, 3H, 

OCH3), 3.91 (s, 3H, OCH3), 4.97 (d, J = 15.1 Hz, 1H, 

H5A), 5.02 (d, J = 15.1 Hz, 1H, H5B), 5.21 (d, J = 12.1 Hz, 1H, -CH=CH-OSi), 6.02 

(dd, J = 3.5, 1.7 Hz, 1H, H1), 6.09 (d, J = 12.1 Hz, 1H, -CH=CH-OSi),  6.18 (dd, J 

= 3.5, 2.8 Hz, 1H, H2), 6.68 – 6.71 (m, 2H, H3, H6), 6.99 (s, 1H, H9); 
13

C NMR 

(CDCl3, 25 ºC): � (ppm) = -5.1 (Si(CH3)2C(CH3)3), 18.4 (Si(CH3)2C(CH3)3), 25.8 

(Si(CH3)2C(CH3)3), 27.5 (CH3-C10), 39.4 (C10), 47.2 (C5), 56.0, 56.1 (2 x OCH3), 

103.2 (C1), 107.9 (C2), 109.1, 109.2 (C6, C9), 118.2 (C3), 119.5 (-CH=CH-OSi), 

124.2 (C5a), 134.1 (C9a), 135.6 (C10a), 140.5 (-CH=CH-OSi), 147.4 (C8), 148.3 (C7). 

MS (ESI
+
): (m/z) 401 (MH+ + 1, 28); 400 (MH+, 100). HRMS (ESI

+
): Calculated 

for C23H34NO3Si (MH+): 400.2308. Found: 400.2301. 
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Synthesis of 2-(7,8-dimethoxy-10-methyl-5,10-dihydropyrrolo[1,2-

b]isoquinolin-10-yl)etanol (61) (Table 3.5, Entry 12)

Silyloxy allyl derivative 59 (83.80 mg, 0.16 mmol) was 

dissolved in dry CH3CN (5 mL) under an inert 

atmosphere. (R)-BINAP (27.70 mg 0.04 mmol), Ag3PO4

(135.70 mg, 0.32 mmol) and Pd2(dba)3.CHCl3 catalyst 

(16.40 mg, 0.02 mmol) were subsequently added to the previous solution and the 

mixture was heated under reflux for 4 h. After that time, the mixture was diluted 

with EtOAc (20 mL), filtered through celite and washed with a saturated solution 

of NH4Cl (1 x 10 mL), H2O (2 x 10 mL). The aqueous phase was extracted with 

EtOAc (2 x 10mL) and combined organic extracts were dried over anhydrous 

Na2SO4, filtered and concentrated to dryness. The crude was purified through flash 

chromatography (silica gel, hexane/CH2Cl2 4/6) obtaining the cyclized silyl enol 

ethers 60 (41.20 mg, 0.10 mmol, 65% yield) as a 34:66 mixture of diastereomers 

(60a:60b). To a solution of this mixture in dry THF (5 mL), a solution 1.00 M of 

KF (18.00 mg, 0.31 mmol) in dry MeOH (0.30 mL) was added via canula under an 

inert atmosphere. The reaction was stirred for 4 h at room temperature. The curse 

of the reaction was followed by TLC and when the conversion was completed, 

extractive workup was performed. The mixture was quenched with H2O (10 mL) 

and extracted with EtOAc (3 x 20 mL). Combined organic extracts were dried over 

anhydrous Na2SO4, extracted and evaporated to dryness. The crude was used 

without further purification in the following reduction reaction due to the lack of 

stability of the aldehyde intermediate. The so-obtained aldehyde (29.40 mg, 0.10 

mmol) was dissolved in dry MeOH (5 mL) and NaBH4 (7.80 mg, 0.21 mmol) was 

added portionwise at 0 ºC. The ice bath was removed and the mixture was allowed 

to reach room temperature for 30 min. The crude was quenched with H2O (10 mL) 

CH3O

CH3O

*

N

OH
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and extracted with EtOAc (3 x 10 mL). Combined organic extracts were dried over 

anhydrous Na2SO4, extracted and evaporated to dryness. The crude was subjected 

to flash chromatography (silica gel, hexane/EtOAc 6/4) obtaining product 61 as a 

white solid (23.70 mg, 0.08 mmol, 80% yield over two steps). 

m.p.: 125-126 ºC (Hexane/EtOAc); IR (ATR): 3386 cm-1 (brs, O-H st), 2934 cm-1

(C-Haliph st), 1514 (C=Carom st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 1.69 (s, 3H, 

CH3-C10), 2.05 – 2.18 (m, 2H, -CH2-CHAHB-OH), 3.35 (dt, J = 11.1, 6.5 Hz, 1H, -

CH2-CHAHB-OH), 3.42 (dt, J = 11.1, 6.5 Hz, 1H, -CH2-CHAHB-OH), 3.89 (s, 3H, 

OCH3), 3.91 (s, 3H, OCH3), 5.04 (d, J = 15.6 Hz , 1H, H5A), 5.10 (d, J = 15.6 Hz , 

1H, H5B), 6.07 (dd, J = 3.5, 1.7 Hz, 1H, H1), 6.22 - 6.26 (m, 1H, H2), 6.65 – 6.72 

(m, 2H, H3, H6), 6.94 (s, 1H, H9). 
13

C NMR (CDCl3, 25 ºC): � (ppm) = 28.7 (CH3-

C10), 37.7 (C10), 47.0 (C5), 47.6 (-CH2-CHAHB-OH), 55.9, 56.1 (2 x OCH3), 60.1 (-

CH2-CHAHB-OH), 102.4 (C1), 108.2 (C9), 108.6 (C2), 108.8 (C3), 118.3 (C6), 123.3 

(C5a), 132.7 (C9a), 135.0 (C10a), 147.6 (C8), 148.5 (C7). MS (ESI
+
): (m/z) 289 (17), 

288 (MH+, 100). HRMS (ESI
+
): Calculated for C17H22NO3 (MH+): 288.1600. 

Found: 288.1610. [�]D
20

: -3.2  (c = 0.5 g/L, CH2Cl2). The enantiomeric excess was 

determined by HPLC to be 18% [Chiralcel ADH, hexane:i-PrOH 90:10, 1 mL/min, 

tr (major)= 35.5  min (59%), tr (minor)= 58.4  min (41%)]. 



Chapter VI                                               Experimental Section 

�

335 

6.7.2. Intramolecular Mizoroki-Heck reaction of N-(o-

iodobenzyl)pyrroles 44b, 44c, o-halopyridines 34a, 34b and o-

haloquinolines 35a, 35b. Generation of a tertiary stereocenter 

Synthesis of (Z)-10-(2-(tert-butyldimethylsilyloxy)vinyl)-7,8-dimethoxy-5,10-

dihydropyrrolo[1,2-b]isoquinoline (62a) and (E)-10-(2-(tert-

butyldimethylsilyloxy)vinyl)-7,8-dimethoxy-5,10-dihydropyrrolo[1,2-

b]isoquinoline (62b) (Table 3.6, Entry 1)

Silyloxy allyl derivative 44b (92.20 mg, 0.18 mmol) was dissolved in dry toluene 

(5 mL) under an inert atmosphere and Et3N (0.06 mL, 0.45 mmol) and Pd(PPh3)4 

catalyst (21.00 mg, 0.02 mmol) were added to the previous solution and the 

mixture was heated under reflux for 16 h. After that time, the solvent was 

evaporated under reduced pressure. The crude was subjected to flash 

chromatography (silica gel, hexane/CH2Cl2 3/7) obtaining diastereomers (Z)-62a

(24.80 mg, 0.06 mmol, 36% yield) as a colorless oil and (E)-62b (30.30 mg, 0.08 

mmol, 44% yield) as a yellow oil. 

Data for (Z)-62a: 

IR (ATR): 2953 cm-1 (C-Haliph st), 1651 cm-1 (C=C 

st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 0.22 (s, 6H, 

Si(CH3)2(CH3)3), 0.98 (s, 9H, Si(CH3)2(CH3)3), 3.88 

(s, 3H, OCH3), 3.89 (s, 3H, OCH3), 4.67 (dd, J = 9.5, 

5.7 Hz, 1H, -CH=CH-OSi), 5.02 - 5.10 (m, 2H, 2H5), 

5.23 (d, J = 9.5 Hz, 1H, H10), 5.98 - 6.04 (m, 1H, H1), 6.22 (t, J = 3.0 Hz, 1H, H2), 

6.53 (d, J = 5.7 Hz, 1H, -CH=CH-OSi), 6.68 – 6.73 (m, 2H, H3, H6), 6.94 (s, 1H, 

H9). 
13

C NMR (CDCl3, 25 ºC): � (ppm) = -5.3 (Si(CH3)2C(CH3)3), 18.3 

(Si(CH3)2C(CH3)3), 25.7 (Si(CH3)2C(CH3)3), 32.6 (C10), 47.2 (C5), 55.8, 56.0 (2 x 

OCH3), 103.8 (C1), 108.2 (C2), 108.7 (C6),  110.8 (C9), 111.8 (-CH=CH-OSi), 
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117.9 (C3), 123.2 (C5a), 129.1 (C9a), 131.3 (C10a), 139.7 (-CH=CH-OSi), 147.4 (C8), 

148.2 (C7). MS (CI): (m/z) 386 (MH+, 100), 385 (40), 370 (19). HRMS (CI):

Calculated for C22H32NO3Si (MH+): 386.2151. Found: 386.2128. 

Data for (E)-62b: 

IR (ATR): 2954 cm-1 (C-Haliph st), 1656 cm-1 (C=C st); 
1
H NMR (CDCl3, 25 ºC): � (ppm) = 0.21 (s, 6H, 

Si(CH3)2(CH3)3), 0.98 (s, 9H, Si(CH3)2(CH3)3), 3.89 (s, 

6H, 2 x OCH3), 4.38 (d, J = 9.3 Hz, 1H, H10), 4.97 - 

5.07 (m, 2H, 2H5), 5.11 (dd, J = 11.9, 9.3 Hz, 1H, -CH=CH-OSi), 5.99 - 6.04 (m, 

1H, H1), 6.22 (t, J = 3.0 Hz, 1H, H2), 6.47 (d, J = 11.9 Hz, 1H, -CH=CH-OSi), 6.69 

– 6.74 (m, 2H, H3, H6), 6.91 (s, 1H, H9). 
13

C NMR (CDCl3, 25 ºC): � (ppm) = -5.2 

(Si(CH3)2C(CH3)3), 18.4 (Si(CH3)2C(CH3)3), 25.7 (Si(CH3)2C(CH3)3), 29.7 

(grease), 37.1 (C10), 47.2 (C5), 55.9, 56.0 (2 x OCH3), 104.4 (C1), 108.2 (C2), 108.8 

(C6), 110.7 (C9), 112.4 (-CH=CH-OSi), 118.3 (C3), 123.6 (C5a), 129.0 (C9a), 131.3 

(C10a), 142.6 (-CH=CH-OSi), 147.6 (C8), 148.1 (C7). MS (CI): (m/z) 386 (MH+, 

100), 385 (38), 228 (34). HRMS (CI): Calculated for C22H32NO3Si (MH+): 

386.2151. Found: 386.2130.
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Synthesis of 2-(7,8-dimethoxy-5,10-dihydropyrrolo[1,2-b]isoquinolin-10-

yl)etanol (63) 

To a solution of a 45:55 mixture of silyl enol ether 

diastereomers 62 (56.00 mg, 0.15 mmol, 62a:62b) in dry 

THF (5 mL), a solution 1.0 M of KF (25.30 mg, 0.44 

mmol) in dry MeOH (0.44 mL) was added via canula 

under an inert atmosphere. The reaction was stirred for 5 h. The course of the 

reaction was followed by TLC and when the conversion was completed, extractive 

workup was performed. The mixture was quenched with H2O (10 mL) and 

extracted with EtOAc (3 x 20 mL).  Combined organic phases were dried over 

anhydrous Na2SO4, extracted and evaporated to dryness. The crude was used 

without further purification in the following reduction reaction due to the lack of 

stability of the aldehyde intermediate. The so-obtained aldehyde (38.80 mg, 0.14 

mmol) was dissolved in dry MeOH (5 mL) and NaBH4 (16.20 mg, 0.43 mmol) was 

added at 0 ºC. The ice bath was removed and the mixture was allowed to reach 

room temperature for 30 min. The crude was quenched with H2O (10 mL) and 

extracted with EtOAc (3 x 10 mL). Combined organic extracts were dried over 

anhydrous Na2SO4, extracted and evaporated to dryness. The crude was subjected 

to flash chromatography (silica gel, hexane/EtOAc 5/5) obtaining product 63 as a 

brown oil (28.60 mg, 0.10 mmol, 73% yield over two steps). 

IR (ATR): 3515 cm-1 (O-H st), 2934 cm-1 (C-H st), 1515 (C=Carom st); 1
H NMR 

(CDCl3, 25 ºC): � (ppm) = 1.81 – 1.90 (m, 1H, -CHAHB-CH2OH), 1.95 – 2.04 (m, 

1H, -CHAHB-CH2OH), 3.66 – 3.72 (m, 2H, -CHAHB-CH2OH), 3.89 (s, 3H, OCH3), 

3.90 (s, 3H, OCH3), 4.18 – 4.25 (m, 1H, H10), 4.98 (d, J = 15.3 Hz, 1H, H5A), 5.06 

(d, J = 15.3 Hz , 1H, H5B), 6.03 (dd, J = 3.3, 1.5 Hz, 1H, H1), 6.17 - 6.22 (m, 1H, 

H2), 6.70 – 6.74 (m, 2H, H3, H6), 6.83 (s, 1H, H9). 
13

C NMR (CDCl3, 25 ºC): �
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(ppm) = 36.1 (C10), 41.0 (-CHAHB-CH2OH), 47.3 (C5), 56.0, 56.1 (2 x OCH3), 60.5 

(-CHAHB-CH2OH), 103.8 (C1), 108.2 (C2), 109.2 (C6), 111.1 (C9), 118.4 (C3), 124.1 

(C5a), 130.1 (C9a), 130.7 (C10a), 147.5 (C8), 148.3 (C7). MS (ESI
+
): (m/z) 296 

(MNa+, 33), 274 (MH+, 100), 273 (M+, 6), 272 (32). HRMS (ESI
+
): Calculated for 

C16H20NO3 (MH+): 274.1443. Found: 274.1451. 

Synthesis of (E)-3-(3-(tert-butyldimethylsilyloxy)prop-1-enyl)-7,8-dimethoxy-

5H-pyrrolo[2,1-a]isoindole (64) (Entry 3.6, Entry 11)

Silyloxy allyl derivative 44b (94.30 mg, 0.18 

mmol) was dissolved in dry DMSO (5 mL) 

under an inert atmosphere. n-Bu4NOAc 

(85.60 mg, 0.28 mmol), PPh3 (4.90 mg, 0.02 

mmol) and Pd(OAc)2 catalyst (2.10 mg, 0.009 mmol) were added to the previous 

solution and the mixture was stirred at 60 ºC for 1.5 h. After that time, the crude 

was eluted with EtOAc (50 mL) and washed with a saturated solution of NH4Cl (2 

x 20 mL) and H2O (1 x 10 mL). The aqueous phase was further extracted with 

EtOAc (3 x 10mL) and the combined organic extracts were dried over anhydrous 

Na2SO4, filtered and evaporated under pressure. The crude was subjected to flash 

chromatography (neutral alumina, hexane/EtOAc 8/2) obtaining the product 64 as 

yellow oil (58.10 mg, 0.15 mmol, 82% yield). 

IR (ATR): 2953 cm-1 (C-Haliph st), 1651 cm-1 (C=C st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) = 0.13 (s, 6H, Si(CH3)2(CH3)3), 0.96 (s, 9H, Si(CH3)2(CH3)3), 3.91 (s, 3H, 

OCH3), 3.94 (s, 3H, OCH3), 4.37 (d, J = 5.4 Hz, 2H, -CH=CH-CH2OSi), 4.86 (s, 

2H, 2H5), 5.93 (d, J = 16.1, 5.4 Hz, 1H, -CH=CH-CH2OSi), 6.21 (d, J = 3.6 Hz, 

1H, H1), 6.32 (d, J = 3.6 Hz, 1H, H2), 6.54 (d, J = 16.1 Hz, 1H, -CH=CH-CH2OSi), 

6.97 (s, 1H, H6), 7.05 (s, 1H, H9). 
13

C NMR (CDCl3, 25 ºC): � (ppm) = -5.1 
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(Si(CH3)2C(CH3)3), 18.4 (Si(CH3)2C(CH3)3), 26.0 (Si(CH3)2C(CH3)3), 50.5 (C5), 

56.1, 56.3 (2 x OCH3), 64.4 (-CH=CH-CH2OSi), 97.8 (C1), 102.3 (C9), 106.9 (C6), 

112.9 (C2), 120.3 (-CH=CH-CH2OSi), 123.8 (-CH=CH-CH2OSi), 126.2 (C5a), 

128.1 (C3), 132.3 (C9a), 139.6 (C9b), 147.3 (C8), 149.4 (C7). MS (CI): (m/z) 386 

(MH+, 47), 385 (44), 256 (98), 255 (100), 253 (26), 241 (39). HRMS (CI):

Calculated for C22H32NO3Si (MH+): 386.2151. Found: 386.2128. 

Synthesis of (E)-2-(7,8-dimethoxy-5,10-dihydropyrrolo[1,2-b]isoquinolin-10-

yl)vinyl pivalate (65a) (Table 3.7, Entry 2)

The pivaloyl allyl derivative 44c (178.20 mg, 0.37 

mmol) was dissolved in dry DMF (15 mL) under an 

inert atmosphere. Et3N (0.64 mL, 4.61 mmol) and 

Pd(PPh3)4 catalyst (21.30 mg, 0.02 mmol) were added 

to the previous solution and the mixture was heated to 

110 ºC for 5 h. The crude was eluted with EtOAc (20 mL) and washed with a 

saturated solution of NH4Cl (3 x 10 mL) and then, with water (3 x 10 mL). The 

aqueous phase was extracted with EtOAc (3 x 20 mL). The combined organic 

extracts were dired over anhydrous Na2SO4, filtered and concentrated to dryness. 

The crude was purified through flash chromatography (silica gel, hexane/Et2O 6/4) 

obtaining product 65a as a yellow oil (24.90 mg, 0.07 mmol, 19% yield).31 

IR (ATR): 2970 cm-1 (Carom-H st), 1739 cm-1 (C=O st); 1H NMR (CDCl3, 25 ºC): �

(ppm) = 1.24 (s, 9H, COC(CH3)3), 3.89 (s, 3H, CH3), 3.90 (s, 3H, OCH3), 4.60 (d, J 

= 8.7 Hz, 1H, H10), 4.98-5.13 (m, 2H, 2H5), 5.52 (dd, 1H, J = 12.3, 8.7 Hz, -

CH=CH-OCOt-Bu), 6.03-6.05 (m, 1H, H1), 6.23 (t, J = 3.0 Hz, 1H, H2), 6.70-6.75 

(m, 2H, H3, H6), 6.84 (s, 1H, H9), 7.18 (d, J = 12.3 Hz, 1H, -CH=CH-OCOt-Bu). 

���������������������������������������� �������������������
31 Product 65a was unstable to column chromatography in both silica gel and neutral alumina. 
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13
C NMR (CDCl3, 25 ºC): � (ppm) = 26.96 (COC(CH3)3), 37.31 (C10), 38.71 

(COC(CH3)3), 47.12 (C5), 56.07, 56.17 (2 x OCH3), 104.66 (C1), 108.51 (C2), 

109.07 (C6),  111.26 (C9), 116.72 (-CH=CH-OCOt-Bu), 118.59 (C3), 123.74 (C10a), 

127.33 (C5a), 129.48 (C9a), 136.68 (-CH=CH-OCOt-Bu); 148.04, 148.45 (C8, C7), 

175.73 (COt-Bu). MS (CI): (m/z) 357 (21), 356 (MH+, 100), 355 (72), 270 (30), 

254 (37). HRMS (CI): Calculated for C21H26NO4 (MH+): 356.1862. Found: 

356.1852. 

Synthesis of 7,8-dimethoxy-10-vinyl-5,10-dihydropyrrolo[1,2-b]isoquinoline 

(66) (Table 3.7, Entry 4)

The pivaloyl allyl derivative 44c (207.80 mg, 0.43 mmol) 

was dissolved in dry DMF (15 mL) under an inert 

atmosphere. Et3N (0.75 mL, 5.37 mmol), n-Bu4NCl 

(179.30 mg, 0.65 mmol) and Pd(PPh3)4 catalyst (14.90 

mg, 0.01 mmol) were added to the previous solution and the mixture was heated to 

110 ºC for 5 h. The reaction was diluted with EtOAc (10 mL) and washed with a 

saturated solution of NH4Cl (3 x 10 mL) and water (3 x 10 mL). The organic phase 

was separated and further extracted with EtOAc (3 x 10 mL). The combined 

organic extracts were dried over anhydrous Na2SO4, filtered and concentrated to 

dryness. The crude was subjected to flash chromatography (silica gel, 

hexane/EtOAc 8/2) obtaining cyclized 66 as a yellow oil (9.50 mg, 0.04 mmol, 9% 

yield) and byproduct 65a (12.10 mg, 0.03 mmol, 8% yield).32

IR (ATR): 2924 cm-1 (C-Haliph st), 1516 cm-1 (C=C st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) = 3.89 (s, 6H, 2 x OCH3), 4.57 (d, J = 7.6 Hz, 1H, H10), 4.98 - 5.19 (m, 4H, -

CH=CH2, 2H5), 5.87 (ddd, J = 17.5, 9.8, 7.6 Hz, 1H, -CH=CH2), 6.58 – 6.02 (m, 

���������������������������������������� �������������������
32 Product 66 was unstable to column chromatography in both silica gel and neutral alumina.
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1H, H1), 6.23 (t, J = 3.0 Hz, 1H, H2), 6.73 - 6.74 (m, 1H, H3, H6), 6.84 (s, 1H, H9); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = 43.0 (C10), 47.1 (C5), 55.9, 56.0 (2 x OCH3), 

104.5 (C1), 108.3 (C2), 108.9 (C6), 111.0 (C9), 115.5 (-CH=CH2), 118.4 (C3), 123.6 

(C5a), 127.4 (C9a), 129.6 (C10a), 139.3 (-CH=CH2), 147.7 (C8), 148.2 (C7). MS

(CI): (m/z) 284 (17), 257 (18), 256 (MH+, 100), 255 (67). HRMS (CI): Calculated 

for C16H18NO2 (MH+): 256.1338. Found: 256.1331. 

Synthesis of 2-(5,10-dihydropyrrolo[2,1-g][1,7]naphthyridin-10-yl)etanol (68) 

(Table 3.8, Entry 4) 

Silyloxy allyl derivative 34a (100.00 mg, 0.25 mmol) was 

dissolved in a mix of CH3CN:H2O (10:1) (5.5 mL) under an 

inert atmosphere. Subsequently, Et3N (0.07 mL, 0.49 mmol), 

P(o-tolyl)3 (16.90 mg, 0.05 mmol) and Pd(OAc)2 catalyst (5.60 

mg, 0.02 mmol) were added to the previous solution and the mixture was heated 

under reflux for 7 h. The reaction was quenched with a saturated solution of NH4Cl 

(5 mL) and the organic phase was separated and washed with the same saturated 

solution (3 x 10 mL). The aqueous phase was extracted with EtOAc (3 x 10 mL) 

and the combined organic extracts were dried over anhydrous Na2SO4, filtered and 

concentrated to dryness. The crude was used in the following reduction reaction 

without further purification.33 NaBH4 (9.50 mg, 0.25 mmol) was added to a 

solution of the crude in dry MeOH (5 mL) at 0 ºC under an inert atmosphere. After 

addition, the ice bath was removed to allow the reaction reach room temperature 

and the mixture was stirred 30 min. The mix was eluted with EtOAc (10 mL) and 

H2O (10 mL), the organic phase was separated and the aqueous phase further 

extracted with EtOAc (2 x 20 mL). The combined organic extracts were washed 

���������������������������������������� �������������������
33 Aldehyde 67 was unstable to purification through column chromatography in both silica and neutral 
alumina, so derivatization to alcohol 68 was performed. 
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with H2O (3 x 10 mL), dried over Na2SO4, filtered and concentrated to dryness. 

The crude was subjected to flash chromatography (silica gel, pure EtOAc) 

obtaining product 68 as a brown oil (18.40 mg, 0.09 mmol, 35% yield in 2 steps) 

and arylation product 69 (20.30 mg, 0.06 mmol, 25% in 2 steps). 

IR (ATR): 3361 cm-1 (brs, O-H st), 2926 cm-1 (C-Haliph st), 1582 cm-1 (C=Carom st); 
1
H NMR (CDCl3, 25 ºC): � (ppm) = 2.02 – 2.10 (m, 1H, -CH1A´H1B´-

CH2A´H2B´OH),  2.24 – 2.32 (m, 1H, -CH1A´H1B´-CH2A´H2B´OH), 3.70 (ddd, J = 

11.5, 7.1, 4.5 Hz, 1H, -CH1A´H1B´-CH2A´H2B´OH), 3.79 (ddd, J = 11.5, 7.1, 4.5 Hz, 

1H, -CH1A´H1B´-CH2A´H2B´OH), 4.42 (dd, J = 8.2, 5.9 Hz, 1H, H10), 5.10 (d, J = 

15.8 Hz, 1H, H5A), 5.17 (d, J = 15.8 Hz, 1H, H5B), 6.08 – 6.11 (m, 1H, H9), 6.23 – 

6.26 (m, 1H, H8), 6.73 (dd, J = 2.5, 1.8 Hz, 1H, H7), 7.22 (dd, J = 7.7, 4.9 Hz, 1H, 

H3), 7.59 (d, J = 7.7 Hz, 1H, H4), 8.45 - 8.52 (m, 1H, H2); 
13

C NMR (CDCl3, 25 

ºC): � (ppm) = 38.5 (-CH1A´H1B´-CH2A´H2B´OH), 39.7 (C10), 46.9 (C5), 60.9 (-

CH1A´H1B´-CH2A´H2B´OH), 104.3 (C9) 109.1 (C8), 118.5 (C7), 121.6 (C3), 127.5 

(C4a), 131.3 (C9a), 134.5 (C4), 147.8 (C2), 156.9 (C10a). MS (MALDI): (m/z) 229 

(35); 216 ([MH + 1]+, 14); 215 (MH+, 100); 214 (23); 213 (60), 212 (10); 200 (17); 

197 (16). HRMS (MALDI): Calculated for C13H15N2O (MH+): 215.1184. Found: 

215.1176. 
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Synthesis of (E)-7-(3-(tert-butyldimethylsilyloxy)prop-1-enyl)-5H-pyrido[2,3-

a]pyrrolizine (69) (Table 3.8, Entry 5)

Silyloxy allyl derivative 34b (90.00 mg, 0.20 

mmol) was dissolved in a mix of CH3CN:H2O 

(10:1) (5.5 mL) under an inert atmosphere. 

Subsequently, Et3N (0.06 mL, 0.40 mmol), P(o-

tolyl)3 (13.70 mg, 0.04 mmol) and Pd(OAc)2 catalyst (4.50 mg, 0.02 mmol) were 

added to the previous solution and the mixture was heated under reflux for 5 h. The 

reaction was quenched with a saturated solution of NH4Cl (5 mL) and the organic 

phase was separated and washed with the same saturated solution (3 x 10 mL). The 

aqueous phase was extracted with EtOAc (3 x 10 mL) and the combined organic 

extracts were dried over anhydrous Na2SO4, filtered and concentrated to dryness. 

The crude was used in the following reduction reaction without further purification. 

NaBH4 (7.70 mg, 0.20 mmol) was added to a solution of the crude in dry MeOH (5 

mL) at 0 ºC under an inert atmosphere. After addition, the ice bath was removed to 

allow the reaction warm up to room temperature and the mixture was stirred 30 

min. The mix was eluted with EtOAc (10 mL) and H2O (10 mL), the organic phase 

was separated and the aqueous phase further extracted with EtOAc (2 x 20 mL). 

The combined organic extracts were washed with H2O (3 x 10 mL), dried over 

Na2SO4, filtered and concentrated to dryness. The crude was subjected to flash 

chromatography (silica gel, pure EtOAc) obtaining product 69 as a yellow solid 

(39.90 mg, 0.12 mmol, 62% yield in 2 steps) and byproduct 68 (8.60 mg, 0.04 

mmol, 20% yield in 2 steps). 

m.p.: 74-75 ºC (Hexane/EtOAc); IR (ATR): 2954 cm-1 (C-Haliph st), 1601 cm-1

(C=C st), 1568 cm-1 (C=Carom st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 0.13 (s, 6H, 

Si(CH3)2C(CH3)3), 0.95 (s, 9H,  Si(CH3)2C(CH3)3), 4.38 (d, J = 5.0 Hz, 2H, -
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CH=CH-CH2OSi), 4.94 (s, 2H, 2H5), 6.04 (dt, J = 16.1, 5.0 Hz, 1H, -CH=CH-

CH2OSi), 6.44 (d, J = 3.8 Hz, 1H, H9), 6.56 (d, J = 16.1 Hz, 1H, -CH=CH-

CH2OSi), 6.65 (d, J = 3.8 Hz, 1H, H8), 7.01 (dd, J = 7.6, 5.0 Hz, 1H, H3), 7.64 (d, J

= 7.6 Hz, 1H, H4), 8.47 (d, J = 5.0 Hz, 1H, H2); 
13

C NMR (CDCl3, 25 ºC): � (ppm) 

= -5.1 (Si(CH3)2C(CH3)3), 18.4 (Si(CH3)2C(CH3)3), 26.0 (Si(CH3)2C(CH3)3), 48.6 

(C5), 64.0 (-CH=CH-CH2OSi), 101.9 (C8), 113.5 (C9), 118.8 (C3), 119.2 (-CH=CH-

CH2OSi), 126.2 (-CH=CH-CH2OSi), 129.7 (C7), 130.2 (C4), 133.8 (C4a), 137.3 

(C9a),  149.2 (C2), 152.7 (C9b). MS (MALDI): (m/z) 328 ([MH+1]+, 17); 327 (MH+, 

100); 326 (21); 325 (12); 287 (11). HRMS (MALDI): Calculated for C19H27N2OSi 

(MH+): 327.1893. Found: 327.1884. 

Synthesis of (E)-3-(5H-pyrido[2,3-a]pyrrolizin-7-yl)prop-2-en-1-ol (70) (Table 
3.8, Entry 9)

Silyloxy allyl derivative 34b (90.00 mg, 0.20 mmol) 

was dissolved in dry DMF (5 mL) under an inert 

atmosphere. n-Bu4NOAc (92.30 mg, 0.30 mmol), PPh3

(5.20 mg, 0.02 mmol) and Pd(OAc)2 catalyst (4.50 mg, 0.02 mmol) were added to 

the previous solution and the mixture was heated at 110 ºC for 1 h. After that time, 

the crude was eluted with EtOAc (50 mL) and washed with a saturated solution of 

NH4Cl (2 x 20 mL) and H2O (1 x 10 mL). The aqueous phase was further extracted 

with EtOAc (3 x 10mL) and the combined organic extracts were dried over 

anhydrous Na2SO4, filtered and evaporated under pressure. The crude was 

subjected to flash chromatography (silica gel, hexane/EtOAc 6/4) obtaining 

product 70 as a yellow solid (16.90 mg, 0.08 mmol, 40% yield) and arylation 

product 69 (24.50 mg, 0.08 mmol, 38% yield).

N

N OH
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m.p.: 148-149 ºC (Hexane/EtOAc); IR (ATR): 3238 cm-1 (brs, O-H st), 2919 cm-1

(C-Haliph st), 1602 cm-1 (C=C st), 1572 cm-1 (C=Carom st); 1
H NMR (CDCl3, 25 ºC): 

� (ppm) = 2.46 (brs, 1H, OH), 4.30 (d, J = 5.9 Hz, 2H, -CH=CH-CH2OH, 4.83 (s, 

2H, 2H5), 6.03 (dt, J = 16.1, 5.9 Hz, 1H, -CH=CH-CH2OH), 6.37 (d, J = 3.8 Hz, 

1H, H9), 6.43 (d, J = 16.1 Hz, 1H, -CH=CH-CH2OH), 6.64 (d, J = 3.8 Hz, 1H, H8), 

7.03 (dd, J = 7.5, 5.0 Hz, 1H, H3), 7.62 (d, J = 7.5 Hz, 1H, H4), 8.45 (d, J = 5.0 Hz, 

1H, H2). 
13

C NMR (CDCl3, 25 ºC): � (ppm) = 48.8 (C5), 63.9 (-CH=CH-CH2OH), 

102.0 (C8), 114.1 (C9), 119.0 (C3), 120.7 (-CH=CH-CH2OH), 125.6 (-CH=CH-

CH2OH), 129.2 (C7), 130.3 (C4), 134.1 (C4a), 137.6 (C9a),  149.0 (C2), 152.4 (C9b). 

MS (MALDI): (m/z) 214 ([MH+1]+, 17); 213 (MH+, 100); 212 (20); 195 (12). 

HRMS (MALDI): Calculated para C13H13N2O (MH+): 213.1028. Found: 

213.1020. 

Synthesis of (E)-1-(3-(tert-butyldimethylsilyloxy)prop-1-enyl)-10H-

pyrrolizino[1,2-b]quinoline (71) (Table 3.9, Entry 4)

Silyloxy allyl derivative 35b (75.00 mg, 

0.15 mmol) was dissolved in dry DMF (5 

mL) under an inert atmosphere. n-Bu4NOAc 

(69.30 mg, 0.22 mmol), PPh3 (3.40 mg, 0.01 

mmol) and Pd(OAc)2 catalyst (4.00 mg, 0.01 mmol) were added to the previous 

solution and the mixture was heated at 110 ºC for 1 h. After that time, the crude 

was eluted with EtOAc (50 mL) and washed with a saturated solution of NH4Cl (2 

x 20 mL) and H2O (1 x 10 mL). The aqueous phase was further extracted with 

EtOAc (3 x 10mL) and the combined organic extracts were dried over anhydrous 

Na2SO4, filtered and evaporated under pressure. The crude was subjected to flash 

chromatography (neutral alumina, hexane/EtOAc 7/3) obtaining product 71 as a 

yellow solid (28.00 mg, 0.07 mmol, 50% yield).  
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m.p.: 145-146 ºC (Hexane/EtOAc); IR (ATR): 2954 cm-1 (C-Haliph st), 1636 cm-1

(C=C st), 1573 cm-1 (C=Carom st); 1
H NMR (CDCl3, 25 ºC): � (ppm) = 0.14 (s, 6H, 

Si(CH3)C(CH3)3), 0.97 (s, 9H,  Si(CH3)2C(CH3)3), 4.39 (d, J = 4.5 Hz, 2H, -

CH=CH-CH2OSi), 5.07 (s, 2H, 2H10), 6.14 (dt, J = 16.0, 4.5 Hz, 1H, -CH=CH-

CH2OSi), 6.50 – 6.54 (m, 1H, H2), 6.58 (d, J = 16.0 Hz, 1H, -CH=CH-CH2OSi), 

6.84 – 6.89 (m, 1H, H3), 7.40 – 7.48 (m, 1H, H7), 7.63 – 7.69 (m, 1H, H6), 7.71 (d, 

J = 8.0 Hz, 1H, H8), 7.97 (s, 1H, H9), 8.07 (d, J = 8.4 Hz, 1H, H5); 
13

C NMR 

(CDCl3, 25 ºC): � (ppm) = -5.1 (Si(CH3)2C(CH3)3), 18.5 (Si(CH3)2C(CH3)3), 26.0 

(Si(CH3)2C(CH3)3), 48.0 (C10), 63.9 (-CH=CH-CH2OSi), 103.9 (C3), 113.9 (C2), 

118.7 (-CH=CH-CH2OSi), 125.3 (C7), 125.7 (C8a), 127.3 (-CH=CH-CH2OSi), 

127.8 (C8), 128.6 (C5), 129.1 (C6), 129.5 (C9),  130.6 (C3a, C1), 132.6 (C9a), 136.5 

(C3a, C1), 148.5 (C4a), 152.8 (C3b). MS (ESI
+
): (m/z) 378 (MH+ + 1, 27); 377 (MH+, 

100). HRMS (ESI
+
): Calculated for C23H29N2OSi (MH+): 377.2049. Found: 

377.2052. 
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6.8. Diastereoselective intramolecular Mizoroki-Heck reaction 

of N-(o-iodobenzyl)pyrrolidinyl allylic alcohol derivatives. 

Generation of a tertiary stereocenter

Synthesis of (S,E)-3-(1-(2-iodo-4,5-dimethoxybenzyl)pyrrolidin-2-yl)-2-

methylprop-2-en-1-ol (72) 

Over a solution of N-benzylpyrrolidine 17b (0.36 

g, 0.79 mmol) in dry toluene (20 mL), DIBAL-H 

(4.40 mL of a solution 1.00 M in toluene, 4.40 

mmol) was added at -78 ºC under an inert 

atmosphere. The reaction was stirred for 30 min at 

-78 ºC, and after that time the reaction was quenched at low temperature with a 

H2O:AcOH (1:1) solution (2 mL). The mixture was allowed to reach room 

temperature and the crude was washed with water (3 x 20 mL). The aqueous phase 

was basified with a 10% NaOH solution until pH = 9 and extracted with CH2Cl2 (3 

x 20 mL). The combined organic extracts were dried over anhydrous Na2SO4, 

filtered and concentrated to dryness. The crude was subjected to flash 

chromatography (silica gel, hexane/EtOAc 3/7) obtaining product 72 was obtained 

as a solid (0.32 g, 0.77 mmol, 97% yield).

m.p.:  90-92ºC (CH2Cl2); IR (ATR): 3364 cm-1 (brs, O-H st),  2960 cm-1 (Calk-H 

st), 1597 cm-1 (C=C st); 1
H NMR (CDCl3, 25 ºC): � (ppm) =  1.48 – 1.60 (m, 1H, 

H3A), 1.71 (s, 3H, , -CH=C(CH3)-CH2OH)*, 1.62 – 1.87 (m, 3H, 2 x H4, OH)*, 

1.90 – 2.02 (m, 1H, 1H3B), 2.19 (c, J = 8.8 Hz, 1H, H5A), 2.99 (td, J = 8.8, 2.7 Hz, 

1H, H5B), 3.17 – 3.27 (m, 2H, H2, Ar-CHAHB-N), 3.79 (d, J = 13.8 Hz, 1H, Ar-

CHAHB-N), 3.83 (s, 3H, OCH3), 3.86 (s, 3H, OCH3), 3.99 (s, 1H, -CH=C(CH3)-

CH2OH), 5.43 (d, J = 8.2 Hz, 1H, -CH=C(CH3)-CH2OH), 7.00 (s, 1H, H6arom), 7.19 
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(s, 1H, H3arom); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 14.1 (-CH=C(CH3)-CH2OH), 

22.3 (C4p), 31.2 (C3p), 53.5 (C5p),  56.0 (OCH3), 56.1 (OCH3), 62.0 (Ar-CHAHB-N), 

62.4 (C2p), 68.5 (CH2OH), 87.7 (C2arom), 113.1 (C6arom), 121.3 (C3arom), 128.1 (-

CH=C(CH3)-CH2OH), 134.4 (C1arom), 137.2 (-CH=C(CH3)-CH2OH), 148.3, 149.2 

(C4arom, C5arom). MS (CI): (m/z) 418 (MH+, 16); 417 (41); 416 (25); 400 (75); 278 

(20); 277 (100). HRMS (CI): Calculated for C17H25INO3 (MH+): 418.0879. Found: 

418.0870. [�]D
20

: -47.1 (c = 1.0 g/L, CH2Cl2). *Partially overlapped signals 

Synthesis of (S,E)-3-(1-(2-iodo-4,5-dimethoxybenzyl)pyrrolidin-2-yl)allyl 

pivalate (73a) 

Allylic alcohol 45 (0.60 g, 1.50 mmol) was 

dissolved in dry CH2Cl2 (20 mL) under an 

inert atmosphere. Pyridine (0.24 mL, 2.98 

mmol) and pivaloyl chloride (0.40 mL, 3.22 

mmol) were added to the previous solution 

and the mixture was stirred overnight at room temperature. The reaction was 

followed by TLC and when it was completed, the reaction was quenched with a 

saturated solution of NaHCO3 (10 mL) and the organic phase was separated and 

washed with H2O (3 x 20 mL) and with a solution of 10% NaOH (3 x 20 mL). The 

aqueous phase was extracted with CH2Cl2 (3 x 20 mL) and the combined organic 

extracts were dried over anhydrous Na2SO4, filtered and concentrated to dryness. 

The crude was subjected to flash chromatography (silica gel, hexane/EtOAc 6/4) 

obtaining product 73a as a brown oil (0.56 g, 1.15 mmol, 77 % yield). 

IR (ATR): 2961 cm-1 (C-Haliph st), 1727 cm-1 (C=O st), 1594 cm-1 (C=C st); 1
H 

NMR (CDCl3, 25 ºC): � (ppm) =  1.18 (s, 9H, COC(CH3)3), 1.55 – 1.66 (m, 1H, 

H3A), 1.66 – 1.85 (m, 2H, 2 x H4), 1.88 – 2.03 (m, 1H, 1H3B), 2.21 (c, J = 8.7 Hz, 

CH3O

CH3O
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1H, H5A), 2.89 - 3.03 (m, 2H, H2, H5B), 3.23 (d, J = 13.8 Hz, 1H, Ar-CHAHB-N), 

3.83 (s, 3H, OCH3)*, 3.85 (s, 3H, OCH3)*, 3.77 – 3.89 (m, 1H, Ar-CHAHB-N)*, 

4.48 – 4.56 (m, 2H, -CH=CH-CH2O), 5.65 – 5.77 (m, 2H, -CH=CH-CH2O), 6.98 

(s, 1H, H6arom), 7.19 (s, 1H, H3arom). 13
C NMR (CDCl3, 25 ºC): � (ppm) = 22.3 

(C4p),  27.2 (COC(CH3)3), 31.6 (C3p), 38.7 (COC(CH3)3), 53.5 (C5p),  55.9 (OCH3), 

56.1 (OCH3), 61.7 (Ar-CH2-N), 64.2 (-CH=CH-CH2O), 67.0 (C2p), 87.7 (C2arom), 

113.0 (C6arom ), 121.3 (C3arom), 126.1 (-CH=CH-CH2O-), 134.3 (C1arom), 136.8 (-

CH=CH-CH2O-), 148.3 (C5arom), 149.2 (C4arom), 178.1 (COt-Bu). MS (CI): (m/z) 

488 (MH+, 60); 487 (51); 486 (35); 386 (100); 277 (76). HRMS (CI):  Calculated 

for C21H31INO4 (MH+): 488.1298. Found: 488.1294. [�]D
20: -46.19 (c = 1.0 g/L, 

CH2Cl2).*Partially overlapped signals 

Synthesis of (S,E)-3-(1-(2-iodo-4,5-dimethoxybenzyl)pyrrolidin-2-yl)allyl 

acetate (73b) 

Allylic alcohol 45 (0.35 g, 0.87 mmol) was 

dissolved in dry CH2Cl2 (20 mL) under an 

inert atmosphere. Pyridine (0.14 mL, 1.74 

mmol) and acetyl chloride (0.14 mL, 1.92

mmol) were added to the previous solution 

and the mixture was stirred overnight at room temperature. The reaction was 

quenched with water (10 mL) and the organic phase was separated and washed 

with H2O (3 x 20 mL) and with a solution of 10% NaOH (3 x 20 mL). The aqueous 

phase was extracted with CH2Cl2 (3 x 20 mL) and the combined organic extracts 

were dried over Na2SO4, filtered and concentrated to dryness. The crude was 

subjected to flash chromatography (silica gel, hexane/EtOAc 5/5) obtaining 

product 73b as a yellow oil (0.30 g, 0.67 mmol, 78 % yield).

CH3O

CH3O
N

I

OCOCH3



Ane Rebolledo Azcargorta       Ph.D.Thesis 

350 

IR (ATR): 3002 cm-1 (C-Harom st), 2951 cm-1 (C-Haliph st), 1737 cm-1 (C=O st), 

1596 cm-1 (C=C st); 1
H NMR (CDCl3, 25 ºC): � (ppm) =  1.52 – 1.86 (m, 3H, H3A, 

2 x H4), 1.87 – 2.02 (m, 1H, H3B), 2.04 (s, 3H, COCH3), 2.19 (c, J = 8.7 Hz, 1H, 

H5A), 2.87 – 3.04 (m, 2H, H5B, H2), 3.23 (d, J = 13.8 Hz, 1H, Ar-CHAHB-N), 3.81 

(d, J = 13.8 Hz, 1H, Ar-CHAHB-N)*, 3.82 (s, 3H, OCH3)*, 3.85 (s, 3H, OCH3)*, 

4.52 (d, J = 4.6 Hz, 2H, -CH=CH-CH2O), 5.63 – 5.79 (m, 2H, -CH=CH-CH2O), 

6.97 (s, 1H, H6arom), 7.18 (s, 1H, H3arom); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 20.9 

(COCH3), 22.3 (C4p),  31.6 (C3p), 53.5 (C5p),  55.9 (OCH3), 56.1 (OCH3), 61.8 (Ar-

CHAHB-N), 64.5 (-CH=CH-CH2O), 66.9 (C2p), 87.6 (C2arom), 113.0 (C6arom), 121.3 

(C3arom), 125.6 (-CH=CH-CH2O), 134.3 (C1arom), 137.6 (-CH=CH-CH2O), 148.3, 

149.2 (C4arom, C5arom), 170.7 (COCH3). MS (CI): (m/z) 446 (MH+, 31); 445 (60); 

444 (29); 386 (91); 385 (22); 277 (100). HRMS (CI): Calculated for C18H25INO4 

(MH+): 446.0828. Found: 446.0817. [�]D
20

: -48.3 (c = 1.1 g/L, CH2Cl2). *Partially 

overlapped signals 

Synthesis of (S,E)-3-(1-(2-iodo-4,5-dimethoxybenzyl)pyrrolidin-2-yl)-2-

methylallyl pivalate (74a) 

Allylic alcohol 72 (1.04 g, 2.49 mmol) was 

dissolved in dry CH2Cl2 (40 mL) under an 

inert atmosphere. Pyridine (0.40 mL, 4.97 

mmol) and pivaloyl chloride (0.63 mL, 5.69 

mmol) were added to the previous solution 

and the mixture was stirred overnight at room temperature. The reaction was 

followed by TLC and when it was completed, the reaction was quenched with 

water (10 mL) and the organic phase was separated and washed with H2O (3 x 20 

mL) and with a solution of 10% NaOH (3 x 20 mL). The aqueous phase was 

extracted with CH2Cl2 (3 x 20 mL) and the combined organic extracts were dried 
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over anhydrous Na2SO4, filtered and concentrated to dryness. The crude was 

subjected to flash chromatography (silica gel, hexane/EtOAc 7/3) obtaining 

product 74a as a light yellow oil (0.96 g, 1.91 mmol, 77% yield). 

IR (ATR): 2957 cm-1 (C-Haliph st), 1727 cm-1 (C=O st), 1597 cm-1 (C=C st); 1
H 

NMR (CDCl3, 25 ºC): � (ppm) = 1.18 (s, 9H, COC(CH3)3), 1.44 – 1.62 (m, 1H, 

H3A), 1.69 (s, 3H, -CH=C(CH3)-CH2O)*, 1.64 – 1.84 (m, 2H, 2 x H4)*, 1.86 – 2.04 

(m, 1H, 1H3B), 2.22 (c, J = 8.7 Hz, 1H, H5A), 2.88 - 3.04 (m, 2H, H2, H5B), 3.13 – 

3.32 (m, 2H, H2, Ar-CHAHB-N), 3.81 (s, 3H, OCH3)*, 3.84 (s, 3H, OCH3)*, 3.74 – 

3.88 (m, 1H, Ar-CHAHB-N)*, 4.44 (s, 2H, -CH=C(CH3)-CH2O), 5.47 (d, J = 8.7 

Hz, Hz, 1H, -CH=C(CH3)-CH2O), 6.98 (s, 1H, H6arom), 7.17 (s, 1H, H3arom); 13
C 

NMR (CDCl3, 25 ºC): � (ppm) = 14.2 (-CH=C(CH3)-CH2O), 22.2 (C4p),  27.1 

(COC(CH3)3), 30.9 (C3P), 38.9 (COC(CH3)3), 53.2 (C5p),  55.9 (OCH3), 56.0 

(OCH3), 61.7 (ArCH2N), 62.2 (C2p), 69.1 (-CH=C(CH3)-CH2O), 87.9 (C2arom), 

113.1 (C6arom ), 121.3 (C3arom), 130.3 (-CH=C(CH3)-), 132.7 (-CH=C(CH3)-CH2O), 

134.0 (C1arom), 148.3, 149.2 (C4arom, C5arom), 178.0 (COC(CH3)3). MS (CI): (m/z) 

502 (MH+, 36); 501 (57); 401 (24); 400 (100); 277 (54). HRMS (CI): Calculated 

for C22H33INO4 (MH+): 502.1454. Found: 502.1434. [�]D
20

: -40.43 (c = 1.0 g/L, 

CH2Cl2). *Partially overlapped signals 

Synthesis of (S,E)-3-(1-(2-iodo-4,5-dimethoxybenzyl)pyrrolidin-2-yl)-2-

methylallyl acetate (74b) 

Allylic alcohol 72 (0.75 g, 1.80 mmol) was 

dissolved in dry CH2Cl2 (20 mL) under an 

inert atmosphere. Pyridine (0.30 mL, 3.72 

mmol) and acetyl chloride (0.28 mL, 3.85 

mmol) were added to the previous solution and 
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the mixture was stirred overnight at room temperature. The reaction was quenched 

with a water (10 mL) and the organic phase was separated and washed with H2O (3 

x 20 mL) and with a solution of 10% NaOH (3 x 20 mL). The aqueous phase was 

extracted with CH2Cl2 (3 x 20 mL) and the combined organic extracts were dried 

over anhydrous Na2SO4, filtered and concentrated to dryness. The crude was 

subjected to flash chromatography (silica gel, hexane/EtOAc 3/7) obtaining 

product 74b as a yellow oil (0.61 g, 1.33 mmol, 74% yield).

IR (ATR): 2958 cm-1 (C-Haliph st), 1738 cm-1 (C=O st), 1595 cm-1 (C=C st); 1
H 

NMR (CDCl3, 25 ºC): � (ppm) =  1.44 – 1.62 (m, 1H, H3A), 1.70 (s, 3H, -

CH=C(CH3)-CH2O)*, 1.64 – 1.87 (m, 2H, 2 x H4)*, 1.88 – 2.03 (m, 1H, 1H3B), 

2.05 (s, 3H, COCH3), 2.18 (c, J = 8.7 Hz, 1H, H5A), 2.91 – 3.03 (m, 1H, H5B), 3.13 

- 3.28 (m, 2H, H2, Ar-CHAHB-N), 3.77 (d, J = 13.6 Hz, 1H, Ar-CHAHB-N), 3.82 (s, 

3H, OCH3), 3.85 (s, 3H, OCH3), 4.45 (s, 2H, -CH=C(CH3)-CH2O), 5.47 (d, J = 8.6 

Hz, 1H, -CH=C(CH3)-CH2O), 6.96 (s, 1H, H6arom), 7.18 (s, 1H, H3arom); 13
C NMR 

(CDCl3, 25 ºC): � (ppm) = 14.3 (-CH=C(CH3)-CH2O), 20.9 (COCH3), 22.3 (C4p),  

31.0 (C3p), 53.4 (C5p),  55.9 (OCH3), 56.0 (OCH3), 62.0 (Ar-CHAHB-N), 62.2 (C2p), 

69.6 (-CH=C(CH3)-CH2O), 87.7 (C2arom), 113.1 (C6arom ), 121.3 (C3arom), 131.6 (-

CH=C(CH3)-CH2O), 132.0 (-CH=C(CH3)-CH2O), 134.4 (C1arom), 148.3, 149.2 

(C4arom, C5arom), 170.8 (COCH3). MS (CI): (m/z) 460 (MH+, 24); 459 (57); 401 (22); 

400 (100); 277 (63). HRMS (CI): Calculated for C19H27INO4 (MH+): 460.0985. 

Found: 460.0967. [�]D
20

: -51.7 (c = 1.1 g/L, CH2Cl2). *Partially overlapped signals. 
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Synthesis of (10S,10aS)-7,8-dimethoxy-10-vinyl-1,2,3,5,10,10a-

hexahydropyrrolo[1,2-b]isoquinoline (75a) and (10R,10aS)-7,8-dimethoxy-10-

vinyl-1,2,3,5,10,10a-hexahydropyrrolo[1,2-b]isoquinoline (75b) (Table 3.10, 
Entry 5)

Pivaloyl allyl derivative 73a (209.80 mg, 0.43 mmol) was dissolved in a mixture of 

CH3CN:H2O (10:1) (22 mL) under inert atmosphere. Subsequently, Et3N (0.13 mL, 

0.93 mmol), P(o-tolyl)3 (13.50 mg, 0.04 mmol) and Pd(OAc)2 catalyst (9.70 mg, 

0.04 mmol) were added to the previous solution and the mixture was heated under 

reflux for 5 h. The reaction was quenched with a saturated solution of NH4Cl (5 

mL) and the organic phase was separated and washed with the same saturated 

solution (3 x 10 mL). The aqueous phase was extracted with CH2Cl2 (3 x 10 mL) 

and the combined organic extracts were dried over Na2SO4, filtered and 

concentrated to dryness. The crude was subjected to flash chromatography (silica 

gel, gradient of solvents: pure EtOAc � EtOAc/MeOH 9.5/0.5) obtaining product 

75 as a 78:22 mixture of diasteroisomers (59.60 mg, 0.23 mmol, 53% yield, 

75a:75b).34  

Data for 75a:

m.p.: 60-61 ºC (CHCl3); IR (ATR): 3068 cm-1 (C-Harom

st), 2956 cm-1 (C-Haliph st), 1631 cm-1 (C=C st); 1
H NMR 

(CDCl3, 25 ºC): � (ppm) =  1.71 – 1.86 (m, 4H, 2 x H1, 2 x 

H2), 2.13 – 2.25 (m, 1H, H3A), 2.43 – 2.56 (m, 1H, H10A), 

3.19 – 3.27 (m, 1H, 1H3B), 3.29 – 3.36 (m, 2H, H5A, H10), 3.84 (s, 6H, 2 x OCH3), 

4.07 (d, J = 14.3 Hz, 1H, H5B), 5.05 (d, JcisB,A = 9.7 Hz, 1H, -CHA=C(HB)HC), 5.10 

(d, JtransC,A = 17.2 Hz, 1H, -CHA=C(HB)HC), 5.93 (dt, J = 17.2, 9.7 Hz, 1H, -

���������������������������������������� �������������������
34 Diastereoisomers 75a and 75b were separated from each other through flash chromatography 
(silica gel, hexane/EtOAc 7/3 with a 2% of Et3N) and each one crystallized from CHCl3. 
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CHA=C(HB)HC)), 6.54 (s, 1H, H6), 6.60 (s, 1H, H9); 
13

C NMR (CDCl3, 25 ºC): �

(ppm) = 21.8 (C2),  26.5 (C1), 47.5 (C10), 55.1 (C3), 55.8 (2 x OCH3),  56.1 (C5), 

63.5 (C10A), 109.0 (C6), 112.4 (C9), 115.3 (-CHA=C(HB)HC), 126.7 (C9A), 129.3 

(C5A), 139.8 (-CHA=C(HB)HC), 147.4 (C7), 147.5 (C8). MS (CI): (m/z) 260 (MH+, 

100); 259 (51); 258 (28); 191 (29); 190 (72). HRMS (CI): Calculated for 

C16H22NO2 (MH+): 260.1651. Found: 260.1646. [�]D
20

: +270.9 (c = 1.2 g/L, 

CH2Cl2). 

Data for 75a:

m.p.: 100-102 ºC (CHCl3); IR (ATR): 3072 cm-1 (C-

Harom st), 2951 cm-1 (C-Haliph st), 1640 cm-1 (C=C st); 1
H 

NMR (CDCl3, 25 ºC): � (ppm) =  1.54 – 1.66 (m, 1H, 

H1A), 1.72 – 1.83 (m, 1H, H2A), 1.84 – 1.94 (m, 1H, H2B), 

1.96 – 2.06 (m, 1H, 1H1B), 2.09 – 2.18 (m, 1H, H10A), 2.22 – 2.32 (m, 1H, H3A), 

3.23 (t, J = 9.5 Hz, 1H, H10), 3.29 (t, J = 8.5 Hz, 1H, H3B), 3.39 (d, J = 14.1 Hz, 1H, 

H5A), 3.82 (s, 3H, OCH3), 3.84 (s, 3H, OCH3), 4.04 (d, J = 14.1 Hz, 1H, H5B), 5.18 

– 5.32 (m, 2H, -CH=CH2), 5.67 (dt, J = 17.2, 9.7 Hz, 1H, -CH=CH2), 6.55 (s, 1H, 

H6), 6.69 (s, 1H, H9); 
13

C NMR (CDCl3, 25 ºC): � (ppm) =  21.3 (C2),  30.0 (C1), 

51.5 (C10), 55.2 (C3), 55.7 (C5), 55.8 (OCH3),  55.9 (OCH3), 65.3 (C10A), 109.3 

(C6), 111.2 (C9), 117.6 (-CH=CH2), 126.8 (C9A), 128.6 (C5A), 139.3 (-CH=CH2), 

147.4 (C7), 147.5 (C8). MS (CI): (m/z) 260 (MH+, 100); 259 (43); 258 (27); 191 

(28); 190 (73). HRMS (CI): Calculated for C16H22NO2 (MH+): 260.1651. Found: 

260.1646. [�]D
20

: -22.5 (c = 0.8 g/L, CH2Cl2). 
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Synthesis of (10R,10aS)-7,8-dimethoxy-10-(prop-1-en-2-yl)-1,2,3,5,10,10a-

hexahydropyrrolo[1,2-b]isoquinoline (76) (Table 3.2, Entry 8) 

Pivaloyl allylic derivative 74a (148.50 mg, 0.30 mmol) 

was dissolved in dry DMF (10 mL) under inert 

atmosphere. Subsequently, Et3N (0.09 mL, 0.65 mmol), 

P(o-tolyl)3 (40.90 mg, 0.13 mmol) and Pd2(dba)3.CHCl3

catalyst (30.70 mg, 0.03 mmol) were added to the previous solution and the 

mixture was heated at 130 ºC for 4 h. The crude was eluted with EtOAc (20 mL) 

and washed with a saturated solucion of NH4Cl (3 x 10 mL) and H2O (3 x 10 mL). 

The aqueous phase was extracted with EtOAc (3 x 10 mL) and the combined 

organic extracts were dried over Na2SO4, filtered and concentrated to dryness. The 

crude was purified through flash chromatography (silica gel, hexane/EtOAc 7/3 + 

2% Et3N) obtaining the product as a yellow oil (31.40 mg, 0.11 mmol, 39% yield) 

and deiodinated 77a (9.40 mg, 0.03 mmol, 8% yield) as byproduct. 

IR (ATR): 2958 cm-1 (C-Haliph st), 1645 cm-1 (C=C st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) =  1.53 (s, 3H, -C(CH3)=CH2)*, 1.47 – 1.68 (m, 1H, H1A)*, 1.70 – 1.83 (m, 

1H, H2A), 1.84 – 2.01 (m, 2H, H1B, H2B), 2.24 – 2.30 (m, 2H, H3A, H10A), 3.26 – 

3.32 (m, 1H, H3B), 3.32 – 3.42 (m, 2H, H10, H5A), 3.80 (s, 3H, OCH3), 3.84 (s, 3H, 

OCH3), 4.03 (d, J = 14.0 Hz, 1H, H5B), 5.00 (d, J = 16.1 Hz, 2H, -C(CH3)=CH2), 

6.54 (s, 1H, H6), 6.64 (s, 1H, H9); 
13

C NMR (CDCl3, 25 ºC): � (ppm) =  18.5 (-

C(CH3)=CH2), 21.3 (C2),  29.7 (C1), 54.9 (C10), 55.2 (C3), 55.8 (2 x OCH3)*, 55.9 

(C5),  63.6 (C10A), 109.1 (C6), 110.4 (C9), 115.3 (-C(CH3)=CH2), 127.3 (C9A), 128.1 

(C5A), 145.0 (-C(CH3)=CH2), 147.3 (C7), 147.7 (C8). MS (CI): (m/z) 275 (18); 274 

(MH+, 100); 273 (34); 272 (23); 205 (27); 204 (20). HRMS (CI): Calculated for 

C17H24NO2 (MH+): 274.1807. Found: 274.1795. [�]D
20

: -8.6 (c = 0.9 g/L, CH2Cl2). 

*Partially overlapped signals. 
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Synthesis of (S,E)-3-(1-(3,4-dimethoxybenzyl)pyrrolidin-2-yl)-2-methylallyl 

pivalate (77a) (Table 3.2, Entry 10)

Pivaloyl allylic derivative 74a (151.70 mg, 

0.30 mmol) was dissolved in dry DMF (10 

mL) under inert atmosphere. Subsequently, 

Et3N (0.09 mL, 0.67 mmol), P(Cy)3 (42.00 

mg, 0.15 mmol) and Pd2(dba)3.CHCl3 catalyst 

(31.30 mg, 0.03 mmol) were added to the previous solution and the mixture was 

heated to 130 ºC for 4 h. The crude was eluted with EtOAc (20 mL) and washed 

with a saturated solucion of NH4Cl (3 x 10 mL) and H2O (3 x 10 mL). The aqueous 

phase was extracted with EtOAc (3 x 10 mL) and the combined organic extracts 

were dried over Na2SO4, filtered and concentrated to dryness. The crude was 

subjected to flash chromatography (silica gel, EtOAc) obtaining product 77a as a 

yellow oil (27.50 mg, 0.07 mmol, 24% yield) and pyrroloisoquinoline 76 (13.20 

mg, 0.05 mmol, 16% yield) as byproduct.

IR (ATR): 2958 cm-1 (C-Haliph st), 1730 cm-1 (C=O st), 1683 cm-1 (C=C st); 1
H 

NMR (CDCl3, 25 ºC): � (ppm) = 1.15 (s, 9H, COC(CH3)3), 1.42 – 1.57 (m, 1H, 

H3A), 1.63 (s, 3H, -CH=C(CH3)-CH2O)*, 1.57 – 1.81 (m, 2H, 2 x H4)*, 1.81 – 1.95 

(m, 1H, H3B), 2.05 (c, J = 8.7 Hz, 1H, H5A), 2.85 – 2.89 (m, 1H, H5B), 2.92 - 3.06 

(m, 2H, H2, Ar-CHAHB-N), 3.79 (s, 3H, OCH3)*, 3.81 (s, 3H, OCH3)*, 3.78 – 3.83 

(m, 1H, Ar-CHAHB-N)*, 4.34 – 4.51 (m, 2H, -CH=C(CH3)-CH2O), 5.41 (d, J = 8.6 

Hz, 1H, -CH=C(CH3)-CH2O), 6.69 – 6.79 (m, 3H, H2arom, H3arom, H6arom); 13
C NMR 

(CDCl3, 25 ºC): � (ppm) = 14.3 (-CH=C(CH3)-CH2O), 22.0 (C4p), 27.2 

(COC(CH3)3),  31.0 (C3p), 38.8 (COC(CH3)3), 53.1 (C5p),  55.8 (OCH3), 55.9 

(OCH3), 58.1 (Ar-CHAHB-N), 62.1 (C2p), 69.3 (-CH=C(CH3)-CH2O), 110.8 

(C3arom), 112.2, 121.1 (C2arom, C6arom), 130.7 (-CH=C(CH3)-CH2O), 131.9 (C1arom), 
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132.7 (-CH=C(CH3)-CH2O), 147.9, 148.7 (C4arom, C5arom), 178.2 (COt-Bu). MS

(CI): (m/z) 274 (MH+, 100); 151 (29). HRMS (CI): Calculated for C22H34NO4 

(MH+): 376.2488. Found: 376.2495. [�]D
20

: -13.51 (c = 1.0 g/L, CH2Cl2). *Partially 

overlapped signals 

Synthesis of (S,E)-3-(1-(3,4-dimethoxybenzyl)pyrrolidin-2-yl)-2-methylallyl 

acetate (77b) (Table 3.12, Entry 12) 

Acetyl allylic derivative 74b (213.70 mg, 0.47 

mmol) was dissolved in dry DMF (20 mL) 

under inert atmosphere. Subsequently, n-

BuNMe2 (1.30 mL, 9.26 mmol), P(o-tolyl)3

(32.10 mg, 0.10 mmol) and Pd2(dba)3.CHCl3

catalyst (48.20 mg, 0.05 mmol) were added to the previous solution and the 

mixture was heated to 130 ºC for 16  h. The crude was eluted with EtOAc (20 mL) 

and washed with a saturated solucion of NH4Cl (3 x 10 mL) and H2O (3 x 10 mL). 

The aqueous phase was extracted with EtOAc (3 x 10 mL) and the combined 

organic extracts were dried over Na2SO4, filtered and concentrated to dryness. The 

crude was purified through flash chromatography (silica gel, hexane/EtOAc 7/3 + 

2% Et3N) obtaining product 77b as a yellow oil (57.90 mg, 0.17 mmol, 37% yield) 

and pyrroloisoquinoline 76 (14.00 mg, 0.05 mmol, 11% yield) as byproduct.

IR (ATR): 2959 cm-1 (C-Haliph st), 1736 cm-1 (C=O st), 1590 cm-1 (C=C st); 1
H 

NMR (CDCl3, 25 ºC): � (ppm) = 1.49 – 1.61 (m, 1H, H3A), 1.70 (s, 3H, -

CH=C(CH3)-CH2O)*, 1.64 – 1.84 (m, 2H, 2 x H4)*, 1.89 – 2.00 (m, 1H, 1H3B), 

2.08 (s, 3H, COCH3)*, 2.05 – 2.17 (m, 1H, H5A)*, 2.93 – 2.97 (m, 1H, H5B), 2.99 - 

3.15 (m, 2H, H2, Ar-CHAHB-N), 3.86 (s, 3H, OCH3)*, 3.88 (s, 3H, OCH3)*, 3.76 – 

3.93 (m, 1H, Ar-CHAHB-N)*, 4.48 (s, 2H, -CH=C(CH3)-CH2O), 5.48 (d, J = 8.5 
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Hz, 1H, -CH=C(CH3)-CH2O), 6.70 – 6.88 (m, 3H, H2arom, H3arom, H6arom); 13
C NMR 

(CDCl3, 25 ºC): � (ppm) = 14.4 (-CH=C(CH3)-CH2O), 21.0 (COCH3), 22.1 (C4p),  

31.0 (C3p), 53.2 (C5p),  55.8 (OCH3), 55.9 (OCH3), 58.2 (ArCHAHB-N), 62.2 (C2p), 

69.6 (-CH=C(CH3)-CH2O), 110.8 (C3arom), 112.2, 121.0 (C2arom, C6arom), 131.4 (-

CH=C(CH3)-CH2O), 132.0 (-CH=C(CH3)-CH2O), 132.2 (C1arom), 147.9, 148.7 

(C4arom, C5arom), 170.9 (COCH3). MS (CI): (m/z) 334 (MH+, 2); 333 (M+, 6); 274 

(86); 153 (100); 152 (28); 151 (46). HRMS (CI): Calculated for C19H28NO4 

(MH+): 334.2018. Found: 334.2026. [�]D
20

: -22.75 (c = 0.9 g/L, CH2Cl2). *Partially 

overlapped signals 

Synthesis of (10S,10aS)-10-((E)-2-(tert-butyldimethylsilyloxy)vinyl)-7,8-

dimethoxy-1,2,3,5,10,10a-hexahydropyrrolo[1,2-b]isoquinoline (78) 

Silyloxy allyl derivative 46 (85.20 mg, 0.16 mmol) 

was dissolved in a mix of CH3CN:H2O (10:1) (5 mL) 

under inert atmosphere. Subsequently, Et3N (0.05 

mL, 0.36 mmol), P(o-tolyl)3 (5.17 mg, 0.02 mmol) 

and Pd(OAc)2 catalyst (3.80 mg, 0.02 mmol) were 

added to the previous solution and the mixture was heated under reflux for 5 h. The 

reaction was quenched with a saturated solution of NH4Cl (5 mL) and the organic 

phase was separated and washed with the same saturated solution (3 x 10 mL). The 

aqueous phase was extracted with CH2Cl2 (3 x 10 mL) and the combined organic 

extracts were dried over Na2SO4, filtered and concentrated to dryness. The crude 

was subjected to flash chromatography (silica gel, EtOAc/MeOH 9/1) obtaining the 

mixture of diastereomers 78 as a yellow oil (49.80 mg, 0.13 mmol, 78% yield, 

(81:6:3:10). The major diastereomer representing a (10S,10aS)-diastereoisomer of 

(E)-configuration was characterized.

CH3O

CH3O
N

H

OTBDMS
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IR (ATR): 2855 cm-1 (C-Haliph st), 1658 cm-1 (C=C st); 1
H NMR (CDCl3, 25 ºC): �

(ppm) = 0.12 (s, 6H, Si(CH3)2C(CH3)3), 0.90 (s, 9H, Si(CH3)2C(CH3)3), 1.73 – 1.81 

(m, 4H, 2 x H1, 2 x H2), 2.15 – 2.28 (m, 1H, H3A), 2.49 (m, 1H, H10A), 3.14 – 3.23 

(m, 2H, H10, H3B), 3.30 (d, J = 14.2 Hz, 1H, H5A), 3.82 (s, 6H, 2 x OCH3), 4.02 (d, 

J = 14.2 Hz, 1H, H5B), 5.12 (dd, J = 12.0, 10.3 Hz, 1H, -CH=CH-OSi), 6.34 (d, J = 

12.0 Hz, 1H, -CH=CH-OSi), 6.51 (s, 1H, H6), 6.59 (s, 1H, H9); 
13

C NMR (CDCl3, 

25 ºC): � (ppm) = -5.2 (Si(CH3)2C(CH3)3), 18.3  (Si(CH3)2C(CH3)3), 21.9 (C1/C2),  

25.7 (Si(CH3)2C(CH3)3), 26.7 (C1/C2),  41.5 (C10), 55.2 (C3), 55.7, 55.8 (2 x OCH3), 

55.9 (C5), 63.9 (C10A), 109.0 (C6), 112.4 (C9), 113.6 (-CH=CH-OSi), 126.4 (C9A), 

130.6 (C5A), 140.6 (-CH=CH-OSi), 147.3, 147.4 (C7, C8). MS (MALDI): (m/z) 391 

(28); 390 (MH+, 100); 389 (20); 388 (78); 386 (15). HRMS (MALDI): Calculated 

for C22H36NO3Si (MH+): 390.2464. Found: 390.2455. [�]D
20

: +69.4 (c = 1.0 g/L, 

CH2Cl2). 

Synthesis of 2-((10S,10aS)-7,8-dimethoxy-1,2,3,5,10,10a-

hexahydropyrrolo[1,2-b]isoquinolin-10-yl)ethanol (79) 

To a solution of former mixture of silyl enol ether 

diastereomers 78 (50.00 mg, 0.13 mmol) in dry THF (5 

mL), a solution 1.0 M of KF (37.30 mg, 0.64 mmol) in 

dry MeOH (0.64 mL) was added via canula under an 

inert atmosphere. The reaction was stirred for 24 h and additional KF (37.30 mg, 

0.64 mmol) was added to the mixture. The course of the reaction was followed by 

TLC and when the conversion was completed, extractive workup was performed. 

The mixture was quenched with H2O (10 mL) and extracted with EtOAc (3 x 20 

mL).  Combined organic phases were dried over anhydrous Na2SO4, extracted and 

evaporated to dryness. The crude was used without further purification in the 

following reduction reaction due to the lack of stability of the aldehyde 

CH3O

CH3O
N

H
OH

1́

2́
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intermediate. The so-obtained aldehyde (35.30 mg, 0.13 mmol) was dissolved in 

dry MeOH (5 mL) and NaBH4 (9.70 mg, 0.26 mmol) was added portionwise at 0 

ºC. The ice bath was removed and the mixture was allowed to reach room 

temperature for 30 min. The crude was quenched with H2O (10 mL) and extracted 

with EtOAc (3 x 10 mL). Combined organic extracts were dried over anhydrous 

Na2SO4, extracted and evaporated to dryness. The crude was subjected to flash 

chromatography (silica gel, EtOAc/MeOH 9/1) obtaining product 79 as a brown oil 

(21.70 mg, 0.08 mmol, 61% yield over two steps). 

IR (ATR): 3328 cm-1 (brs, O-H st), 2930 cm-1 (C-Haliph st); 1
H NMR (CDCl3, 25 

ºC): � (ppm) =  1.69 – 1.79 (m, 1H, -CH1A´H1B´-CH2A´H2B´OH), 1.79 – 2.10 (m, 4H, 

2 x H1, 2 x H2), 2.17 – 2.26 (m, 1H, -CH1A´H1B´-CH2A´H2B´OH), 2.27 – 2.36 (m, 1H, 

H3A), 2.55 – 2.64 (m, 1H, H10A), 2.89 – 2.95 (m, 1H, -CH1A´H1B´-CH2A´H2B´OH), 

3.18 - 3.21 (m, 1H, H10), 3.25 – 3.32 (m, 2H, H3B, -CH1A´H1B´-CH2A´H2B´OH), 3.37 

(d, J = 14.3 Hz, 1H, H5A), 3.84 (s, 3H, OCH3), 3.85 (s, 3H, OCH3),  4.11 (d, J = 

14.3 Hz, 1H, H5B), 6.53 (s, 1H, H6), 6.58 (s, 1H, H9); 
13

C NMR (CDCl3, 25 ºC): �

(ppm) = 21.3 (C2),  25.5 (C1),  33.0 (-CH1A´H1B´-CH2A´H2B´OH), 39.7 (C10), 54.6 

(C3), 55.5 (C5), 55.8, 55.9 (2 x OCH3), 56.9 (-CH1A´H1B´-CH2A´H2B´OH), 62.6 

(C10A), 108.9 (C6), 111.4 (C9), 126.7 (C5A), 128.7 (C9A), 147.6, 147.9 (C7, C8). MS 

(ESI
+
): (m/z) 279 (14); 278 (MH+, 100). HRMS (ESI

+
): Calculated for C16H24NO3 

(MH+): 278.1756. Found: 278.1760. [�]D
20

: +66.9 (c = 1.0 g/L, CH2Cl2).  
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6.9. Rh(III)-catalyzed ortho-directed nucleophilic addition to 

polar unsaturated bonds via C-H bond activation 

6.9.1. Synthesis of 2-(hetero)arylpyridines 82b-82h and [1,2,3]-

benzoxathiazine-2,2-dioxides 85a-85f

General procedure for synthesis of functionalized aryl- and 

heteroarylpyridines 82b-82h
35

�
�

��

�����	


��
�����
����	�� ����
�

������� �� �������
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���������� ��	���
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��
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��
��

�

�

Boronic acid 80b-80h (1.3 mmol), Na2CO3 (7.5 mmol) and Pd(PPh3)4 catalyst (3 

mol%) were diluted in a mixture of toluene (12 mL), EtOH (3 mL) and H2O (12 

mL) under an inert atmosphere. Subsequently, bromopyridine 81 (1.0 mmol) was 

added and the system was heated to reflux for 16 h. When the reaction was 

completed, a saturated solution of NH4Cl was added to the reaction and extracted 

with EtOAc (3 x 10 mL). The combined organic extracts were dried over 

anhydrous MgSO4, filtered and concentrated to dryness. The crude was purified 

through flash chromatography (silica gel, hexane/EtOAc) obtaining product 82b-

82h.  

���������������������������������������� �������������������
35 Mizuno, H.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2011, 133, 1251. 
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Synthesis of 2-(4-methylphenyl)pyridine (82b)
36

Prepared from boronic acid 80b (0.34 g, 2.50 mmol), 2-

bromopyridine (81) (0.30 g, 1.90 mmol), Na2CO3 (1.49 g, 14.06 

mmol) as base and Pd(PPh3)4 as catalyst (0.06 g, 0.06 mmol). After 

extractive work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 9/1) obtaining product 

82b as a white solid (0.27 g, 1.61 mmol, 85% yield).  

1
H NMR (CDCl3, 25 ºC): � (ppm) = 2.50 (s, 3H), 7.20 – 7.33 (m, 1H), 7.34 (d, J = 

7.9 Hz, 2H), 7.75 – 7.90 (m, 2H), 7.92 – 8.00 (m, 2H), 8.71 (m, 1H); 13
C NMR

(CDCl3, 25 ºC): � (ppm) = 22.3, 121.2, 122.4, 127.9, 130.5, 137.3, 139.5, 139.6, 

150.4, 158.0. 

Synthesis of 2-(4-chlorophenyl)pyridine (82c)
37

Prepared from boronic acid 80c (0.39 g, 2.49 mmol), 2-

bromopyridine (81) (0.30 g, 1.90 mmol), Na2CO3 (1.49 g, 14.06 

mmol) as base and Pd(PPh3)4 as catalyst (0.06 g, 0.06 mmol). After 

extractive work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 9/1) obtaining product 

82c as a white solid (0.28 g, 1.49 mmol, 79% yield).  

1
H NMR (CDCl3, 25 ºC): � (ppm) = 7.03 – 7.16 (m, 3H), 7.52 – 7.66 (m, 2H), 7.87 

– 8.00 (m, 2H), 8.62 (ddd, J = 4.8, 1.7, 1.0 Hz, 1H); 13
C NMR (CDCl3, 25 ºC): �

(ppm) = 115.2, 115.5, 119.9, 121.8, 128.4, 135.2, 136.5, 149.4, 156.0. 

���������������������������������������� �������������������
36 Ackermann, L.; Kapdi, A. R.; Fenner, S.; Kornhaaß, C.; Schulzke, C. Chem. Eur. J. 2011, 17, 2965.�
37 Kitamura, K.; Sako, S.; Tsutsui, A.; Monguchi, Y.; Maegawa, T.; Kitade, Y.; Sajikia, Y. Adv. 

Synth. Catal. 2010, 352, 718.�
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Synthesis of 2-(4-fluorophenyl)pyridine (82d)
38

Prepared from boronic acid 80d (0.35 g, 2.50 mmol), 2-

bromopyridine (81) (0.30 g, 1.90 mmol), Na2CO3 (1.49 g, 14.06 

mmol) as base and Pd(PPh3)4 as catalyst (0.06 g, 0.06 mmol). After 

extractive work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 9.5/0.5) obtaining 

product 82d as a white solid (0.31 g, 1.76 mmol, 93% yield).  

1
H NMR (CDCl3, 25 ºC): � (ppm) =  7.09 – 7.15 (m, 1H), 7.32 – 7.38 (m, 2H), 

7.52 – 7.63 (m, 2H), 7.85 – 7.89 (m, 2H), 8.61 (ddd, J = 4.8, 1.7, 1.0 Hz, 1H); 13
C 

NMR (CDCl3, 25 ºC): � (ppm) = 119.9, 122.0, 127.9, 128.6, 134.7, 136.5, 137.4, 

149.4, 155.7.

Synthesis of 2-(biphenyl-4-yl)pyridine (82e)
39

Prepared from boronic acid 80e (0.81 g, 4.09 mmol), 2-

bromopyridine (81) (0.50 g, 3.16 mmol), Na2CO3 (2.52 g, 23.73 

mmol) as base and Pd(PPh3)4 as catalyst (0.11 g, 0.11 mmol). After 

extractive work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 9.5/0.5) obtaining 

product 82e as a white solid (0.45 g, 1.96 mmol, 62% yield).  

1
H NMR (CDCl3, 25 ºC): � (ppm) = 7.22 – 7.26 (m, 1H), 7.34 – 7.40 (m, 1H), 7.44 

– 7.50 (m, 2H), 7.64 – 7.67 (m, 1H),  7.67 – 7.68 (m, 1H), 7.70 – 7.72 (m, 1H), 

7.72 – 7.74 (m, 1H), 7.76 – 7.79 (m, 2H),  8.06 – 8.09 (m, 1H), 8.09 – 8.11 (m, 

���������������������������������������� �������������������
38 Ackermann, L.; Potukuchi, H. K.; Kapdi, A. R.; Schulzke, C. Chem. Eur. J. 2010, 16, 3300.�
39 Kumar, M. R.; Park, K.; Lee, S. Adv. Synth. Catal. 2010, 352, 3255. 
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1H), 8.69 – 8.74 (m, 1H); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 120.4, 122.1, 

127.1, 127.3, 127.4, 127.5, 128.8, 136.7, 138.3, 140.6, 141.7, 149.7, 157.0.

Synthesis of 2-(3-methoxyphenyl)pyridine (82f)
36

Prepared from boronic acid 80f (0.38 g, 2.50 mmol), 2-

bromopyridine (81) (0.30 g, 1.90 mmol), Na2CO3 (1.49 g, 14.06 

mmol) as base and Pd(PPh3)4 as catalyst (0.06 g, 0.06 mmol). After 

extractive work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 9/1) obtaining product 

82f as a yellow oil (0.32 g, 1.74 mmol, 92% yield).  

1
H NMR (CDCl3, 25 ºC): � (ppm) = 3.80 (s, 3H), 6.93 (ddd, J = 8.2, 2.6, 0.9 Hz, 

1H), 7.09 – 7.15 (m, 1H), 7.30 – 7.36 (m, 1H), 7.53 (ddd, J = 7.7, 1.6, 1.0 Hz, 1H), 

7.57– 7.66 (m, 3H), 8.65 (ddd, J = 4.8, 1.7, 1.1 Hz, 1H); 13
C NMR (CDCl3, 25 ºC): 

� (ppm) = 55.2, 112.1, 115.0, 119.2, 120.6, 122.2, 129.7, 136.7, 140.8, 149.5, 

157.0, 160.1.

Synthesis of 2-(thiophen-2-yl)pyridine (82g)
40

Prepared from boronic acid 80g (0.32 g, 2.50 mmol), 2-

bromopyridine (81) (0.30 g, 1.90 mmol), Na2CO3 (1.49 g, 14.05 

mmol) as base and Pd(PPh3)4 as catalyst (0.06 g, 0.06 mmol). After 

extractive work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 9/1) obtaining product 82g as a white 

solid (55.00 mg, 0.34 mmol, 18% yield).  

���������������������������������������� �������������������
40 Fleckenstein, C. A.; Plenio, H.  J. Org. Chem. 2008, 73, 3236. 
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1
H NMR (CDCl3, 25 ºC): � (ppm) = 7.01 – 7.08 (m, 2H), 7.31 (dd, J = 5.1, 1.1 Hz, 

1H), 7.50 (dd, J = 3.7, 1.1 Hz, 1H), 7.56 – 7.59 (m, 2H), 8.47 – 8.51 (m, 1H); 13
C 

NMR (CDCl3, 25 ºC): � (ppm) = 118.7, 121.8, 124.4, 127.5, 128.0, 136.5, 144.7, 

149.4, 152.5.

Synthesis of 2-(naphthalen-1-yl)pyridine (82h)
41

Prepared from boronic acid 80h (0.71 g, 4.13 mmol), 2-

bromopyridine (81) (0.50 g, 3.16 mmol), Na2CO3 (2.48 g, 23.40 

mmol) as base and Pd(PPh3)4 as catalyst (0.11 g, 0.11 mmol). After 

extractive work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 9/1) obtaining product 82h as a yellow 

oil (0.65 g, 3.16 mmol, 100%).  

1
H NMR (CDCl3, 25 ºC): � (ppm) = 7.20 (m, J = 7.4, 4.9, 0.8 Hz, 1H), 7.43 – 7.53 

(m, 3H), 7.53 – 7.59 (m, 1H), 7.61 – 7.71 (m, 2H), 7.86 – 7.96 (m, 2H), 8.19 (dd, J

= 8.4, 4.1 Hz, 1H), 8.79 – 8.83 (m, 1H); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 

121.5, 124.5, 124.9, 125.2, 125.4, 126.0, 127.1, 127.9, 128.4, 130.7, 133.5, 135.9, 

138.0, 149.0, 158.7. 

���������������������������������������� �������������������
41 Li, X.; Zou, D.; Leng, F.; Sun, C.; Li, J.; Wu, Y.; Wu, Y. Chem. Commun. 2013, 49, 312. 
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General procedure for cyclic imines 85a-85f
42

�

In a 100 mL two necked round bottom flask provided with a condenser, 2-

hydroxybenzaldehyde 83a-83f (1 mmol) was dissolved in dry toluene (30 mL) 

under an inert atmosphere. The solution was heated under reflux and 

chlorosulfonyl isocyanate (84) (1 mmol) was added to the former solution via

siringe. The mixture was heated under reflux for 16 h. The crude was evaporated to 

dryness, diluted with EtOAc (100 mL) and washed with H2O (3 x 50 mL), a 

saturated solution of NaHCO3 (2 x 50 mL) and brine (2 x 50 mL). The organic 

phase was dried over anhydrous MgSO4, filtered and evaporated to dryness. The 

crude was subjected to flash chromatography (silica gel, hexane/EtOAc) obtaining 

product 85a-85f. 

���������������������������������������� �������������������
42 Kamal, A.; Sattur, P. B. Synthesis, 1981, 272. 
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Synthesis of [1,2,3]-benzoxathiazine-2,2-dioxide (85a)
43

Prepared from 2-hydroxybenzaldehyde 83a (1.50 g, 12.28 mmol) 

and chlorosulfonyl isocyanate (84) (1.07 mL, 12.28 mmol) in 

toluene (20 mL). After extractive work-up, the crude was purified 

through flash chromatography (silica gel, hexane/EtOAc 9/1) 

obtaining product 85a as a white solid (1.23 g, 6.72 mmol, 55% yield). 

1
H NMR (CDCl3, 25 ºC): � = 7.22 (d, J = 8.4 Hz, 1H), 7.43 – 7.38 (m, 1H), 7.68 – 

7.75 (m, 2H), 8.68 (s, 1H); 13
C NMR (CDCl3, 25 ºC): � = 115.0, 118.1, 126.2, 

131.0, 137.7, 153.7, 168.1.

Synthesis of 6-methoxy-[1,2,3]-benzoxathiazine-2,2-dioxide (85b)
43

Prepared from 2-hydroxybenzaldehyde 83b (1.00 g, 6.57 mmol) and 

chlorosulfonyl isocyanate (84) (0.57 mL, 6.57 mmol). After 

extractive work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 9/1) obtaining product 

85b as a yellow solid (0.87 g, 4.08 mmol, 62% yield). 

1
H NMR (CDCl3, 25 ºC): � (ppm) = 3.93 (s, 3H), 7.21 (d, J = 2.8 Hz, 1H), 7.25 (d, 

J = 9.1 Hz, 1H), 7.34 (dd, J = 9.1, 2.9 Hz, 1H), 8.71 (s, 1H); 13
C NMR (CDCl3, 25 

ºC): � (ppm) = 56.0, 113.1, 115.5, 119.4, 124.6, 147.7, 157.0, 168.0. 

���������������������������������������� �������������������
43 Luo, Y.; Carnell, A. J.; Lam, H. W. Angew. Chem. Int. Ed. 2012, 51, 6762. 

O
S

N

O O

O
S

N

O O

OMe



Ane Rebolledo Azcargorta       Ph.D.Thesis 

368 

Synthesis of 6-fluoro-[1,2,3]-benzoxathiazine-2,2-dioxide (85c)
 44

Prepared from 2-hydroxybenzaldehyde 83e (0.30 g, 2.14 mmol) and 

chlorosulfonyl isocyanate (84) (0.19 mL, 2.14 mmol). After 

extractive work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 8/2) obtaining product 

85c as a white solid (0.24 g, 1.18 mmol, 55% yield). 

1
H NMR (CDCl3, 25 ºC): � (ppm) = 7.32 (dd, J = 9.1, 4.0 Hz, 1H), 7.39 (dd, J = 

6.8, 3.0 Hz, 1H), 7.48 (ddd, J = 9.1, 7.7, 3.0 Hz, 1H), 8.65 (s, 1H); 13
C NMR

(CDCl3, 25 ºC): � (ppm) = 115.8 (d, J = 7.5 Hz), 116.3 (d, J = 24.4 Hz), 120.6 (d, J

= 7.6 Hz), 124.8 (d, J = 24.3 Hz), 150.2 (d, J = 2.8 Hz), 159.2 (d, J = 249.1 Hz), 

166.5 (d, J = 1.8 Hz). 

Synthesis of 6-chloro-[1,2,3]-benzoxathiazine-2,2-dioxide (85d)
43

Prepared from 2-hydroxybenzaldehyde 83d (1.00 g, 6.39 mmol) and 

chlorosulfonyl isocyanate (84) (0.56 mL, 6.39 mmol). After 

extractive work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 9/1) obtaining product 

85d as a yellow solid (0.97 g, 4.46 mmol, 70% yield). 

1
H NMR (CDCl3, 25 ºC): � (ppm) = 7.29 (d, J = 8.7 Hz, 1H), 7.72 (d, J = 2.6 Hz, 

1H), 7.73 (dd, J = 8.7, 2.6 Hz, 1H), 8.70 (s, 1H); 13
C NMR (CDCl3, 25 ºC): �

(ppm) = 116.5, 120.7, 130.4, 131.9, 137.2, 152.8, 167.0. 

���������������������������������������� �������������������
44 Luo, Y.; Hepburn, H. B.; Chotsaeng, N.; Lam, H. W. Angew. Chem. Int. Ed. 2012, 51, 8309. 
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Synthesis of 6-bromo-[1,2,3]-benzoxathiazine-2,2-dioxide (85e)
44

  

Prepared from 2-hydroxybenzaldehyde 83c (1.00 g, 4.97 mmol) and 

chlorosulfonyl isocyanate (84) (0.43 mL, 4.97 mmol). After 

extractive work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 9/1) obtaining product 

85e as a yellow solid (0.79 g, 3.01 mmol, 61% yield). 

1
H NMR (CDCl3, 25 ºC): � (ppm) = 7.21 (d, J = 8.7 Hz, 1H), 7.85 – 7.90 (m, 2H), 

8.72 (s, 1H); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 117.1, 119.0, 120.8, 133.4, 

140.6, 153.7, 167.0. 

Synthesis of 2-hydroxy-4,5-methylenedioxybenzaldehyde (83f)
45

Sesamol (2.70 g, 19.55 mmol) and triethylorthoformate (25 mL, 

150.30 mmol) were dissolved in Et2O (80 mL) at room 

temperature. AlCl3 (3.91 g, 29.32 mmol) was added to the 

previous solution portionwise at 0 ºC and the reaction was stirred for 10 min. The 

crude was quenched with a solution of HCl 5% (20 mL), H2O was added (20 mL) 

and the mixture was extracted with EtOAc (3 x 40 mL). The combined organic 

layers were washed with brine (3 x 30 mL), dried over anhydrous MgSO4, filtered 

and evaporated to dryness. The crude was subjected to column chromatography 

(silica gel, eluent: hexane/EtOAc 8/2) obtaining product 83f as a yellow solid (1.42 

g, 8.55 mmol, 44% yield). 

���������������������������������������� �������������������
45 Maes, D.; Vervisch, S.; Debenedetti, S.; Davio, C.; Mangelinckx, S.; Giubellina, N.; De Kimpe, N. 
Tetrahedron 2005, 61, 2505.
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1
H NMR (CDCl3, 25 ºC): � (ppm) = 6.00 (s, 2H), 6.45 (s, 1H), 6.84 (s, 1H), 9.60 

(s, 1H), 11.77 (s, 1H); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 98.28, 102.12, 109.29, 

113.58, 141.27, 155.11, 161.45, 193.64. 

Synthesis of 1,3,5-trioxa-6-thia-7-azacyclopenta[b]naphthalene 6,6-dioxide 

(85f)
43

Prepared from 2-hydroxybenzaldehyde 83f (0.50 g, 3.01 mmol) and 

chlorosulfonyl isocyanate (84) (0.26 mL, 3.01 mmol). After 

extractive work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 8/2) obtaining product 

85f as a yellow solid (0.46 g, 2.02 mmol, 67% yield). 

1
H NMR (CDCl3, 25 ºC): � (ppm) = 6.17 (s, 2H), 6.75 (s, 1H), 6.97 (s, 1H), 8.43 

(s, 1H); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 100.0, 103.5, 107.3, 109.4, 145.8, 

152.7, 155.4, 166.5. 
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6.9.2. Rh(III)-catalyzed ortho-directed nucleophilic addition of 2-

(hetero)arylpyridines 82a-82j to cyclic imines 85a-85f. Synthesis of 

dihydrobenzo[e][1,2,3]oxathiazine-2,2-dioxide derivatives 86a-86n

General procedure for the ortho-directed Rh(III)-catalyzed C-H additions of 

2-(hetero)arylpyridines 82a-82j to cyclic imines 85a-85f
46

�

A Schlenk tube (20 mL) was charged with differently functionalized aryl- or 

heteroarylpyridine 82a-82j (1 mmol), cyclic imine 85a-85f (1.1 mmol) and 

[Cp*Rh(MeCN)3][SbF6]2 (5 mol%). Then, t-amyl alcohol (3.0 mL), was added via

a syringe, and the reaction mixture was stirred at 85 ºC for 16 h. When the reaction 

was completed, the mixture was cooled to room temperature and diluted with 

CH2Cl2 (10 mL). The resulting mixture was filtered through a celite pad, which 

was then eluted with CH2Cl2 (3 x 20 mL). The combined filtrate was concentrated 

to dryness and the crude was purified through flash chromatography (silica gel, 

hexane/EtOAc) obtaining the product 86a-86n.  

���������������������������������������� �������������������
46 Parthasarathy, K.; Azcargorta, A. R.; Cheng, Y.; Bolm, C. Org. Lett. 2014, 16, 2538.
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Synthesis of 4-[2-(pyridin-2-yl)phenyl]-3,4-dihydrobenzo[e][1,2,3]oxathiazine 

2,2-dioxide (86a)
46

Prepared from phenylpyridine 82a (80.00 mg, 0.52 mmol), 

cyclic imine 85a (104.00 mg, 0.57 mmol) and 

[Cp*Rh(CH3CN)3][SbF6]2 as catalyst (21.70 mg, 0.03 mmol). 

After work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 9/1) obtaining 

product 86b as a white solid (153.00 mg, 0.45 mmol, 88% yield).  

m.p.: 165-167 ºC; IR (ATR) (cm-1): 3017, 2919, 1590, 1453; 1
H NMR (CDCl3, 25 

ºC): � (ppm) = 5.92 (s, 1H), 6.52 (d, J = 7.8 Hz, 1H), 6.65 (d, J = 8.2 Hz, 1H), 6.73 

(t, J = 7.5 Hz, 1H), 6.96 (t, J = 7.7 Hz, 1H), 7.00 – 7.14 (m, 2H), 7.38 – 7.47 (m, 

1H), 7.47 – 7.61 (m, 3H), 7.62 – 7.71 (m, 1H), 8.47 (d, J = 4.7 Hz, 1H), 9.65 (brs, 

1H); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 63.4, 117.9, 122.0, 122.4, 124.1, 124.3, 

126.9, 128.9, 129.6, 129.9, 132.0, 133.1, 136.6, 137.7, 140.7, 147.3, 151.1, 159.3. 

MS (EI): m/z = 338 (M+, 9), 274 (84), 260 (1), 182 (10), 181 (77), 155 (100), 78 

(12). HRMS (EI): Calculated for C18H14N2O3S ([M+Na]+): 361.0623. Found: 

361.0624.  

Synthesis of 4-[5-methyl-2-(pyridin-2-yl)phenyl]-3,4-dihydrobenzo[e][1,2,3] 

oxathiazine 2,2-dioxide (86b)
46

Prepared from arylpyridine 82b (50.00 mg, 0.30 mmol), 

cyclic imine 85a (59.50 mg, 0.33 mmol) and 

[Cp*Rh(CH3CN)3][SbF6]2 as catalyst (12.50 mg, 0.02 mmol). 

After work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 9/1) obtaining 

product 86b as a white solid (98.70 mg, 0.28 mmol, 95% yield).  
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m.p.: 203-205 ºC; IR (ATR) (cm-1): 3017, 2919, 1590, 1453; 1
H NMR (CDCl3, 25 

ºC): � (ppm) = 2.49 (s, 3H), 5.87 (s, 1H), 6.53 (d, J = 7.7 Hz, 1H), 6.64 (d, J = 8.2 

Hz, 1H), 6.72 (t, J = 7.5 Hz, 1H), 6.95 (t, J = 7.7 Hz, 1H), 6.99 – 7.10 (m, 2H), 

7.31 – 7.38 (m, 2H), 7.45 – 7.53 (m, 2H), 8.44 (d, J = 4.3 Hz, 1H), 9.77 (brs, 1H); 
13

C NMR (CDCl3, 25 ºC): � (ppm) = 21.0, 29.6 (grease), 63.4, 117.7, 121.9, 122.0, 

123.9, 124.0, 126.8, 128.7, 130.2, 131.9, 133.8, 136.2, 137.4, 137.7, 139.5, 147.1, 

150.9, 159.2. MS (EI): (m/z) 352 (M+, 2), 288 (100), 274 (1), 210 (45), 182 (5), 

181 (29), 79 (1), 78 (5). HRMS (EI): Calculated for C19H16N2O3S (MH+): 

353.0960. Found: 353.0946.  

Synthesis of 4-[5-chloro-2-(pyridin-2-yl)phenyl]-3,4-dihydrobenzo[e][1,2,3] 

oxathiazine 2,2-dioxide (86c)
46

Prepared from arylpyridine 82c (94.00 mg, 0.50 mmol), cyclic 

imine 85a (99.90 mg, 0.55 mmol) and 

[Cp*Rh(CH3CN)3][SbF6]2 as catalyst (20.90 mg, 0.03 mmol). 

After work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 9/1) obtaining 

product 86c as a white solid (146.00 mg, 0.39 mmol, 79% yield).  

m.p.: 195-197 ºC; IR (ATR) (cm-1): 3064, 2924, 1726, 1591, 1454; 1
H NMR

(CDCl3, 25 ºC): � (ppm) = 5.87 (s, 1H), 6.53 (d, J = 7.7 Hz, 1H), 6.66 (d, J = 8.2 

Hz, 1H), 6.75 (t, J = 7.4 Hz, 1H), 6.98 (t, J = 7.6 Hz, 1H), 7.03 – 7.12 (m, 2H), 

7.38 (d, J = 8.2 Hz, 1H), 7.48 – 7.58 (m, 2H), 7.69 (s, 1H), 8.48 (d, J = 4.4 Hz, 

1H), 9.57 (brs, 1H); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 62.8, 117.9, 121.2, 122.5, 

123.9, 124.2, 126.5, 129.0, 129.7, 132.9, 133.1, 135.3, 137.6, 138.1, 139.0, 147.4, 

150.9, 158.0. MS (EI): (m/z) 372 (M+, 2), 230 (76), 201 (46), 189 (45), 91 (2), 78 
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(8). HRMS (EI): Calculated for C18H13ClN2O3S (MH+): 373.0414. Found: 

373.0390.  

Synthesis of 4-[5-fluoro-2-(pyridin-2-yl)phenyl]-3,4-dihydrobenzo[e][1,2,3] 

oxathiazine 2,2-dioxide (86d)
46

Prepared from arylpyridine 82d (85.00 mg, 0.49 mmol), cyclic 

imine 85a (98.90 mg, 0.54 mmol) and 

[Cp*Rh(CH3CN)3][SbF6]2 as catalyst (20.40 mg, 0.03 mmol). 

After work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 9/1) obtaining 

product 86d as a white solid (146.00 mg, 0.41 mmol, 83% yield).  

m.p.: 218-220 ºC; 1
H NMR (CDCl3, 25 ºC): � (ppm) = 5.87 (s, 1H), 6.54 (d, J = 

7.8 Hz, 1H), 6.66 (d, J = 8.2 Hz, 1H), 6.76 (t, J = 7.5 Hz, 1H), 6.98 (t, J = 7.7 Hz, 

1H), 7.02 – 7.14 (m, 2H), 7.20 – 7.29 (m, 1H), 7.36 – 7.47 (m, 2H), 7.52 (t, J = 7.7 

Hz, 1H), 8.47 (d, J = 4.3 Hz, 1H), 9.64 (brs, 1H); 13
C NMR (CDCl3, 25 ºC): �

(ppm) = 63.0, 116.5, 116.7, 118.1, 121.4, 122.5, 124.1, 124.4, 126.8, 129.2, 133.8 

(d, JC-F = 8.2 Hz), 136.9 (d, JC-F = 3.5 Hz), 137.8, 138.9 (d, JC-F = 7.3 Hz), 147.5, 

151.1, 158.3, 161.6, 164.1. MS (EI): (m/z) 357 (M+, 2), 292 (50), 277 (1), 173 

(100), 172 (41), 79 (2), 78 (13). HRMS (EI): Calculated for C18H13FN2O3S (MH+): 

357.0709. Found: 357.0704. 
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Synthesis of 4-[5-fluoro-2-(pyridin-2-yl)phenyl]-3,4-dihydrobenzo[e][1,2,3] 

oxathiazine 2,2-dioxide (86e)
46

Prepared from arylpyridine 82e (49.50 mg, 0.21 mmol), cyclic 

imine 85a (43.10 mg, 0.24 mmol) and 

[Cp*Rh(CH3CN)3][SbF6]2 as catalyst (9.00 mg, 0.01 mmol). 

After work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 9/1) obtaining 

product 86e as a pale yellow solid (63.70 mg, 0.15 mmol, 72% yield).  

m.p.: 202-204 ºC; IR (ATR) (cm-1): 3063, 1591, 1498; 1H NMR (CDCl3, 25 ºC): �

(ppm) = 6.01 (s, 1H), 6.59 (d, J = 7.6 Hz, 1H), 6.67 (d, J = 8.2 Hz, 1H), 6.74 (t, J = 

7.4 Hz, 1H), 6.97 (t, J = 7.6 Hz, 1H), 7.07 (dd, J = 7.0, 5.3 Hz, 1H), 7.14 (d, J = 7.5 

Hz, 1H), 7.43 (t, J = 7.4 Hz, 1H), 7.48 – 7.58 (m, 4H), 7.71 (d, J = 7.4 Hz, 2H), 

7.78 (dd, J = 7.9, 1.8 Hz, 1H), 7.91 (s, 1H), 8.49 (d, J = 4.4 Hz, 1H), 9.82 (brs, 

1H); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 63.5, 117.8, 121.8, 122.2, 123.9, 124.1, 

126.7, 127.1, 128.1, 128.1, 128.8, 129.0, 131.8, 132.4, 136.9, 137.5, 139.2, 139.2, 

139.3, 142.3, 147.3, 151.0, 158.8. MS (EI): (m/z) 350 (87), 272 (81), 231 (100), 

230 (48), 79 (2), 78 (8). HRMS (EI): Calculated for C24H18N2O3S (MH+): 

415.1116, Found: 415.1107. 

Synthesis of 4-[4-methoxy-2-(pyridin-2-yl)phenyl]-3,4-dihydrobenzo[e][1,2,3] 

oxathiazine 2,2-dioxide (86f)
46

Prepared from arylpyridine 82f (93.00 mg, 0.50 mmol), 

cyclic imine 85a (101.20 mg, 0.55 mmol) and 

[Cp*Rh(CH3CN)3][SbF6]2 as catalyst (20.90 mg, 0.03 

mmol). After work-up, the crude was purified through 

flash chromatography (silica gel, hexane/EtOAc 9/1) 
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obtaining product 86f as a white solid (150.00 mg, 0.41 mmol, 81% yield).  

m.p.: 213-215 ºC; IR (ATR) (cm-1): 2969, 2941, 1567, 1478. 1
H NMR (CDCl3, 25 

ºC): � (ppm) = 3.88 (s, 3H), 5.87 (s, 1H), 6.54 (d, J = 7.8Hz, 1H), 6.63 (dd, J = 8.2, 

0.9 Hz, 1H), 6.73 (td, J = 7.6, 1.1 Hz,  1H), 6.90 – 6.98 (m, 2H), 7.00 – 7.10 (m, 

3H), 7.46 – 7.53 (m, 1H), 7.58 (d, J = 8.4 Hz, 1H), 8.41 – 8.52 (m, 1H), 9.49 (brs, 

1H). 13
C NMR (CDCl3, 25 ºC): � (ppm) = 55.5, 62.7, 113.5, 117.7, 118.1, 122.2, 

122.3, 123.9, 124.1, 126.9, 128.6, 128.7, 134.3, 137.5, 141.9, 147.2, 150.8, 159.0, 

160.2. MS (EI): (m/z) 304 (75), 290 (1), 226 (100), 184 (64), 79 (2), 78 (10). 

HRMS (EI): Calculated for C19H16N2O4S (MH+): 369.0909. Found: 369.0892.  

Synthesis of 4-[2-(Pyridin-2-yl)thiophen-3-yl]-3,4-dihydrobenzo[e][1,2,3] 

oxathiazine 2,2-dioxide (86g)
46

Prepared from thienylpyridine 82g (80.00 mg, 0.50 mmol), 

cyclic imine 85a (100.00 mg, 0.55 mmol) and 

[Cp*Rh(CH3CN)3][SbF6]2 as catalyst (20.90 mg, 0.03 mmol). 

After work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 9/1) obtaining 

product 86g as a white solid (166.00 mg, 0.48 mmol, 97% yield).  

m.p.: 171-173 ºC; IR (ATR) (cm-1): 3102, 2926, 2692, 1723, 1586, 1473. 1
H 

NMR (CDCl3, 25 ºC): � (ppm) = 6.16 (s, 1H), 6.61 (d, J = 7.8 Hz, 1H), 6.77 - 6.83 

(m, 1H), 6.85 (dd, J = 8.3, 0.8 Hz, 1H), 7.03 -7.12 (m,  2H), 7.28 (d, J = 5.1 Hz, 

1H), 7.44 (d, J = 8.0 Hz, 1H), 7.47 (d, J = 5.1Hz, 1H), 7.61 (td, J = 7.8, 1.7 Hz, 

1H), 8.40 (d, J = 4.7 Hz, 1H), 9.70 (brs, 1H); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 

56.8, 117.8, 122.2, 122.4, 122.9, 124.3, 126.2, 126.6, 129.0, 132.6, 136.9, 137.8, 

140.34, 147.9, 151.4, 151.5.  MS (EI): (m/z) 344 (M+, 4), 280 (63), 265 (2), 161 
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(100), 160 (22), 82 (1), 79 (4), 78 (30).  HRMS (EI): Calculated for C16H12N2O3S2 

(MH+): 345.0368. Found: 345.0344.  

Synthesis of 4-[2-(quinolin-2-yl)phenyl]-3,4-dihydrobenzo[e][1,2,3]oxathiazine 

2,2-dioxide (86i)
46

Prepared from phenylquinoline 82i (102.00 mg, 0.50 mmol), 

cyclic imine 85a (100.10 mg, 0.55 mmol) and 

[Cp*Rh(CH3CN)3][SbF6]2 as catalyst (20.80 mg, 0.03 mmol). 

After work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 7/3) obtaining 

product 86i as a pale yellow solid (108.00 mg, 0.28 mmol, 56% yield).  

m.p.: 224-226 ºC; IR (ATR) (cm-1): 2923, 2854, 1727, 1598, 1453. 1
H NMR

(CDCl3, 25 ºC): � (ppm) = 5.98 (s, 1H), 6.28 (d, J = 7.3 Hz, 1H), 6.53 (d, J = 7.5 

Hz, 1H), 6.66 (t, J = 7.3 Hz, 1H), 6.77 (t, J = 7.3Hz,  1H), 7.22 (d, J = 8.2 Hz, 1H), 

7.53 (t, J = 7.4 Hz, 1H), 7.56 – 7.64 (m, 3H), 7.68 (d, J = 8.0 Hz, 1H), 7.70 – 7.81 

(m, 2H), 7.97 (d, J = 8.4Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 10.25 (brs, 1H); 13
C 

NMR (CDCl3, 25 ºC): � (ppm) = 29.6 (grease), 63.4, 117.4, 121.5, 121.8, 123.9, 

126.2, 126.3, 127.1, 127.2, 128.5, 128.6, 129.6, 129.7, 130.7, 132.3, 133.2, 136.9, 

137.6, 140.8, 145.6, 151.0, 159.0. MS (EI): (m/z) 388 (M+, 6), 324 (100), 231 (28), 

205 (38), 204 (36), 128 (5). HRMS (EI): Calculated for C22H16N2O3S (MH+): 

389.0960. Found: 389.0935. 
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Synthesis of 4-(benzo[h]quinolin-10-yl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 

2,2-dioxide (86j)
46

Prepared from benzo[h]quinolone (82j) (90.00 mg, 0.50 

mmol), cyclic imine 85a (101.20 mg, 0.55 mmol) and 

[Cp*Rh(CH3CN)3][SbF6]2 as catalyst (20.90 mg, 0.03 mmol). 

After work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 95/5) obtaining 

product 86j as a white solid (49.00 mg, 0.14 mmol, 27% yield).  

m.p.: 236-238 ºC; 1
H NMR (CDCl3, 25 ºC): � (ppm) = 6.16 (d, J = 7.8 Hz, 1H), 

6.39 (d, J = 10.6 Hz, 1H), 6.53 – 6.60 (m, 1H), 6.99 – 7.07 (m,  2H), 7.42 (dd, J = 

8.0, 4.4 Hz, 1H), 7.73 (d, J = 8.7 Hz, 1H), 7.79 – 7.85 (m, 1H), 7.92 (d, J = 8.7 Hz, 

1H), 7.98 (d, J = 6.5 Hz, 1H), 8.11 (dd, J = 8.0, 1.1 Hz, 1H), 8.17 (dd, J = 8.0, 1.7 

Hz, 1H), 8.71 (dd, J = 4.4, 1.8 Hz, 1H), 9.90 (d, J = 10.7 Hz, 1H); 13
C NMR

(CDCl3, 25 ºC): � (ppm) = 29.6 (grease), 66.1, 117.7, 121.8, 124.1, 124.2, 125.2, 

126.1, 127.9, 128.3, 128.4, 129.4, 129.5, 131.2, 133.8, 134.6, 136.6, 137.0, 144.7, 

146.4, 151.6. MS (EI): (m/z) 362 (M+, 12), 298 (100), 185 (1), 179 (48), 178 (21). 

HRMS (EI): Calculated for C20H14N2O3S (MH+): 363.0803. Found 363.0789. 

Synthesis of 6-methoxy-4-(2-(pyridin-2-yl)phenyl)-3,4-dihydrobenzo[e][1,2,3] 

oxathiazine 2,2-dioxide (86k)
46

Prepared from phenylpyridine 82a (78.00 mg, 0.50 mmol), 

cyclic imine 85b (117.90 mg, 0.55 mmol) and 

[Cp*Rh(CH3CN)3][SbF6]2 as catalyst (20.90 mg, 0.03 mmol). 

After work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 9/1) obtaining 

product 86k as a pale yellow solid (128.00 mg, 0.35 mmol, 69% yield).  
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m.p.: 186-188 ºC; IR (ATR) (cm-1): 2970, 1738, 1591, 1486; 1
H NMR (CDCl3, 25 

ºC): � (ppm) = 3.51 (s, 3H), 5.87 (s, 1H), 6.01 (s, 1H), 6.50 (dd, J = 9.0, 2.3 Hz, 

1H), 6.59 (d, J = 9.0 Hz, 1H), 7.04 – 7.15 (m, 2H), 7.41 – 7.47 (m, 1H), 7.49 – 7.58 

(m, 3H), 7.61– 7.68 (m, 1H), 8.47 (d, J = 4.4 Hz, 1H), 9.53 (brs, 1H); 13
C NMR

(CDCl3, 25 ºC): � (ppm) = 55.6, 63.4, 111.9, 114.0, 118.6, 122.2, 122.6, 123.9, 

129.4, 129.7, 131.8, 133.0, 136.2, 137.6, 140.6, 144.9, 147.3, 155.7, 159.1. MS 

(EI): (m/z) 368 (M+, 2), 290 (4), 214 (4), 154 (54), 153 (100), 79 (2), 78 (9). 

HRMS (EI): Calculated for C19H16N2O4S (MH+): 369.0909. Found: 369.0896.  

Synthesis of 6-fluoro-4-[2-(pyridin-2-yl)phenyl]-3,4-dihydrobenzo[e][1,2,3] 

oxathiazine 2,2-dioxide (86l)
46

Prepared from phenylpyridine 82a (77.00 mg, 0.50 mmol), 

cyclic imine 85c (119.80 mg, 0.55 mmol) and 

[Cp*Rh(CH3CN)3][SbF6]2 as catalyst (20.90 mg, 0.03 mmol). 

After work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 9/1) obtaining 

product 86l as a pale yellow solid (130.00 mg, 0.36 mmol, 74% yield).  

m.p.: 135-137 ºC; IR (ATR) (cm-1): 3018, 1739, 1592, 1482; 1
H NMR (CDCl3, 25 

ºC): � (ppm) = 5.87 (s, 1H), 6.23 (d, J = 8.4 Hz, 1H), 6.58 – 6.71 (m, 2H), 7.05 – 

7.20 (m, 2H), 7.44 – 7.51 (m, 1H), 7.51 – 7.62 (m, 3H),  7.66 (d, J = 7.6 Hz, 1H), 

8.47 (d, J = 4.3 Hz, 1H), 9.68 (brs, 1H); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 63.2, 

113.1, 113.2, 115.6, 115.7, 119.2 (d, JC-F = 8.2 Hz), 122.4, 123.9, 130.0, 132.0, 

133.0, 135.6, 137.8, 140.4, 146.8, 147.2, 157.6, 158.9, 159.2. MS (EI): (m/z) 292 

(5), 291 (6), 166 (22), 154 (84), 152 (100), 79 (1), 78 (9). HRMS (EI): Calculated 

for C18H13FN2O3S (MH+): 357.0709. Found: 357.0693.  
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Synthesis of 6-chloro-4-[2-(pyridin-2-yl)phenyl]-3,4-dihydrobenzo[e][1,2,3] 

oxathiazine 2,2-dioxide (86m)
46

Prepared from phenylpyridine 82a (77.00 mg, 0.50 mmol), 

cyclic imine 85d (119.00 mg, 0.55 mmol) and 

[Cp*Rh(CH3CN)3][SbF6]2 as catalyst (20.90 mg, 0.03 mmol). 

After work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 9/1) obtaining 

product 86m as a pale yellow solid (150.00 mg, 0.40 mmol, 81% yield).  

m.p.: 169-171 ºC; IR (ATR) (cm-1): 2917, 2849, 1739, 1589, 1565; 1
H NMR

(CDCl3, 25 ºC): � (ppm) = 5.88 (s,1H), 6.49 (d, J = 1.1 Hz, 1H), 6.61 (d, J = 8.8 

Hz, 1H), 6.92 (dd, J = 8.8, 1.9 Hz, 1H), 7.05 – 7.12 (m, 1H), 7.16 (d, J = 7.8 Hz, 

1H), 7.45 – 7.49 (m, 1H), 7.55 – 7.63 (m, 3H), 7.65 - 7.68 (m, 1H), 8.46 (d, J = 4.9 

Hz, 1H), 9.66 (brs, 1H); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 29.7 (grease), 63.1, 

119.2, 122.4, 123.5, 124.0, 126.5, 128.7, 129.2, 129.6, 130.1, 132.0, 133.1, 135.5, 

137.8, 140.4, 147.3, 149.5, 159.0. MS (EI): (m/z) 305 (1), 216 (1), 178 (27), 154 

(94), 152 (100), 79 (1), 78 (7). HRMS (EI): Calculated for C18H13ClN2O3S (MH+): 

373.0414. Found: 373.0408. 

Synthesis of 6-bromo-4-[2-(pyridin-2-yl)phenyl]-3,4-dihydrobenzo[e][1,2,3] 

oxathiazine 2,2-dioxide (86n)
46

Prepared from phenylpyridine 82a (77.00 mg, 0.50 mmol), 

cyclic imine 85e (143.00 mg, 0.55 mmol) and 

[Cp*Rh(CH3CN)3][SbF6]2 as catalyst (20.90 mg, 0.03 mmol). 

After work-up, the crude was purified through flash 

chromatography (silica gel, hexane/EtOAc 85/15) obtaining 

product 86n as a pale yellow solid (171.00 mg, 0.41 mmol, 83% yield).  
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m.p.: 182-183 ºC; 1
H NMR (CDCl3, 25 ºC): � (ppm) = 5.89 (s,1H), 6.55 (d, J = 8.7 

Hz, 1H), 6.63 (s, 1H), 7.08 (m, 2H), 7.17 (d, J = 7.8 Hz, 1H), 7.44 – 7.53 (m, 1H), 

7.51 – 7.62 (m, 3H), 7.67 (d, J = 8.2 Hz, 1H), 8.46 (d, J = 4.4 Hz, 1H), 9.62 (brs, 

1H); 13
C NMR (CDCl3, 25 ºC): � (ppm) = 63.1, 116.8, 119.7, 122.6, 124.1, 124.2, 

129.6, 129.8, 130.2, 131.8, 132.2, 133.3, 135.6, 137.9, 140.5, 147.5, 150.2, 159.2. 

MS (EI): (m/z) 415 (M+, 2), 352 (100), 337 (4), 273 (41), 179 (39), 155 (5), 78 (1). 

HRMS (EI): Calculated for C18H13BrN2O3S (MH+): 416.9909, Found 416.9915. 
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6.10. X-Ray Analysis of pyrroloisoquinolines 75a, 75b 

The structure of both pyrroloisoquinolines was unambiguously confirmed by 

single-crystal X-ray analysis. Both pyrroloisoquinolines 75a, 75b were 

recrystallized from chloroform. CCDC 1062658 contains supplementary 

crystallographic data for the structure 75a, while CCDC 1062659 contains data for 

the structure 75b.   

Intensity data were collected on an Agilent Technologies Super-Nova 

diffractometer, which was equipped with monochromated Cu k� radiation (� = 

1.54184 Å) and Atlas CCD detector. Measurement was carried out at 100.00(10) K 

with the help of an Oxford Cryostream 700 PLUS temperature device. Data frames 

were processed (united cell determination, analytical absorption correction with 

face indexing, intensity data integration and correction for Lorentz and polarization 

effects) using the Crysalis software package.47 The structure was solved using 

Olex248 and refined by full-matrix least-squares with SHELXL-97.49 Final 

geometrical calculations were carried out with Mercury50 and PLATON51 as 

integrated in WinGX.52

���������������������������������������� �������������������
47 CrysAlisPro, Agilent Technologies,Version 1.171.37.31 (release 14-01-2014 CrysAlis171.NET) 
(compiled Jan 14 2014,18:38:05). 
48 Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. J. Appl. Cryst. 
2009, 42, 339. 
49 Sheldrick, G. M. Acta Cryst. 2008, 64, 112. 
50 Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-
Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. J. Appl. Cryst. 2008, 41, 466. 
51 a) A. L. Spek (2010) PLATON, A Multipurpose Crystallographic Tool, Utrecht University, 
Utrecht, The Netherlands. B) Spek, A.L. J. Appl. Cryst. 2003, 36, 7. 
52 Farrugia, L. J. J. Appl. Cryst. 1999, 32, 837. 
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6.10.1. Crystal data for (10S,10aS)-7,8-dimethoxy-10-vinyl-

1,2,3,5,10,10a-hexahydropyrrolo[1,2-b]isoquinoline (75a)

Empirical formula: C16H21NO2, Mr = 259.34, T = 100 (1) K, � (CuK�) = 1.54184 

�, monoclinic, P21 (No.4), a = 8.8603 (2) Å, b = 8.9830 (2) Å, c = 8.9649 (2) Å, �

= � = 90°, 	 = 95.796 (2)º, V = 709.89 (3) Å3, Z = 2, Dx = 1.213 g.cm-3, 
 (CuKα) 

= 0.630 mm-1, F (000) = 280. Crystal size 0.13 × 0.23 × 0.31 mm, collected 

reflections = 7725, independent reflections (Rint.) = 2678 (0.023), observed 

reflections [I > 2σ(I)] = 2627, R(F) (I>2�I, all data) = 0.0277, 0.0285; Rw(F2) 

(I>2�I, all data) = 0.0708, 0.0714. 

An ORTEP plot with thermal ellipsoids at 50% probability of compound 75a with 

atomic nomenclature used is shown in Figure 6.1. For full details, refer to CCDC 

1062658. 

Figure 6.1. ORTEP plot of compound 75a with thermal ellipsoids at the 50% probability 

level with the atomic nomenclature used.
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6.10.2. Crystal data for (10R,10aS)-7,8-dimethoxy-10-vinyl-

1,2,3,5,10,10a-hexahydropyrrolo[1,2-b]isoquinoline (75b)

Empirical formula: C16H21NO2, Mr = 259.34, T= 100 (10) K, � (CuK�) = 1.54184 

�, monoclinic, P21 (No.4), a = 10.37540 (10) Å, b = 6.38350 (10) Å, c = 10.85090 

(10) Å, � = � = 90°, 	 = 100.6290 (10)º, V = 706.334 (14) Å3, Z = 2, Dx = 1.219 

g.cm-3, 
 (CuKα) = 0.632 mm-1, F (000) = 280. Crystal size 0.08 × 0.22 × 0.41 

mm, collected reflections = 13115, independent reflections (Rint.) = 2663 (0.025), 

observed reflections [I > 2σ(I)] = 2630, R(F) (I>2�I, all data) = 0.0263, 0.0268;

Rw(F2) (I>2�I, all data) = 0.0692, 0.0697. 

An ORTEP plot with thermal ellipsoids at 50% probability of compound 75b with 

atomic nomenclature used is shown in Figure 6.2. For full details, refer to CCDC 

1062659. 

Figure 6.2. ORTEP plot of compound 75b with thermal ellipsoids at the 50% probability 
level with the atomic nomenclature used.
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