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Abstract

In this paper, we address the question of the e¢ ciency of weighted networks
in a setting where nodes derive utility from their direct and indirect connections.
Under rather general conditions, based on a set of assumptions about the value
that connections in a weighted network generate, and about link-formation tech-
nology, we prove that any network is dominated by a special type of nested split
graph weighted network. These conditions include some of the models in the
literature, which are seen as particular cases of this general model.
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1 Introduction

In this paper, we address the question of e¢ ciency of weighted networks in a setting
where nodes derive utility from their direct and indirect connections1. Under a set of
assumptions about the value that connections in a weighted network generate, and a
simple notion of link-formation technology, we prove that any network is dominated by
a special type of nested split graph weighted network2. These conditions include some
of the models in the literature, which can be seen as particular cases of this general
model. The problem addressed admits two interpretations. The most obvious and
natural interpretation is as the goal of a planner looking for the e¢ cient network, in
the sense of maximizing social welfare or aggregate utility. Nevertheless, it also applies
to the question of e¢ cient structures that can arise from decentralized interaction in
some connections models. The proof of this result is constructive and based on an
algorithm that solves an interesting optimization problem: How to make the best of
a given set of available links of di¤erent strengths. It is proved that a special class
of weighted nested split graph networks form the optimizing structures. Thus, the
algorithm enables a dominant weighted nested split graph network to be constructed
from any initial network by optimizing the use of its links.
Nested split graph networks form a proper subclass of core-periphery networks

which is highly hierarchical, covering a whole range of core-periphery degrees with
di¤erent organizations of the connections between the periphery and the core, ranging
from the star to the complete network3. As pointed out by Bramoullé and Kranton
(2016), recent theoretical work has drawn attention to these structures in economic
literature. In the words of Michael D. König, �The wider applicability of nested split
networks suggests that a network formation process that generates these graphs (...)
may be of general relevance for understanding economic and social networks.�(König,
2009, p. 69.)
Most recent work in network formation adopts a setting where agents choose a level

of e¤ort and the utility of each agent is determined by his/her e¤ort and that of his
neighbors. A very in�uential seminal paper in this line is Ballester, Calvó-Armengol and
Zenou (2006). In contrast with this approach, the setting considered here corresponds
to connections models after Jackson and Wolinsky (1996), where agents derive utility
from their direct and indirect connections by investing in links, which are costly, but
according to a link-formation technology which is not necessarily discreet as in the
seminal model. It is in the �rst line of work that nested split graph networks emerge in
the literature (König, Tessone and Zenou (2014), see also König, Battiston, Napoletano
and Schweitzer (2012)). However, to the best of our knowledge ours is the �rst result
on nested split graph (weighted) networks in a connections setting.

1Seminal papers in this approach are Jackson and Wolinsky (1996) and Bala and Goyal (2000a).
2To the best of our knowledge, this is the �rst economic paper where weighted nested split graph

networks appear.
3König, Tessone and Zenou (2014) includes an excellent review of the related economic literature.
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König, Tessone and Zenou (2014) develop a dynamic network formation model to
explain the nestedness observed in real-world networks, using stochastic stability to
show the convergence to nested split graphs. They also systematically study some
properties of this class of networks. Hierarchical, although not nested split graph,
structures where agents are ranked according the number of neighbors also emerge in
equilibrium in Baetz (2014), assuming one-sided network formation, strategic comple-
mentarities and a concave value function. Lagerås and Seim (2016) apply a game with
local complementarities to nested split graphs and provide a dynamic model which, un-
der certain conditions, converges to the absorbing class of nested split graph networks.
Hiller (2017) assumes strategic complementarities and positive local externalities, but
assumes convexity of the value function. In this model agents choose an e¤ort level
and the set of agents with whom the agent wants to be linked, but only links desired
by both agents form and in this case both share cost equally. Kinateder and Merlino
(2016) study a local public good game with heterogeneous agents and endogenous net-
work, where the equilibrium networks are empty or nested split graph networks when
agents di¤er in their valuation of the local public good.
The question of e¢ cient networks is addressed in the connections setting by Jackson

and Wolinsky (1996) and Bala and Goyal (2000a) in their seminal models, and in
Olaizola and Valenciano (2017) in a model bridging them. In all these cases, depending
on the parameters of the model, only the empty, complete, and star networks can be
e¢ cient. The question of e¢ ciency is also addressed in other settings, e.g. in Goyal
and Moraga-González (2001), Goyal and Joshi (2003), Galeotti and Goyal (2010),
Westbrock (2010), König, Battiston, Napoletano and Schweitzer (2012), and Billand,
Bravard, Durieu and Sarangi (2015). The closest work in terms of its goal and result,
although also in a completely di¤erent setting, is Belhaj, Bervoets and Deroïan (2016).
They address the problem of a planner looking for the e¢ cient network when agents
play a network game with local complementarities choosing their e¤ort levels, links are
costly and the total cost is an increasing function of the sum of the individual linking
types. Assuming that players choose their equilibrium levels, they show that e¢ cient
networks are nested split graph networks under di¤erent cost functions. To that end
they use a reallocation procedure or �switch�guided by the Bonacich (1987) measure
which, when feasible, improves the aggregate utility. They prove that any non nested
split network admits an improving switch. The setting and the logic of the proof are
completely di¤erent, which makes the coincidence more interesting, i.e. the optimality
of nested split graph networks in two di¤erent environments.
The paper is organized as follows. Section 2 contains the notation and basic de�ni-

tions. The model, i.e. the set of assumptions under which the result is to be established,
is presented in Section 3. Section 4 addresses the question of e¢ ciency, i.e. the problem
of a planner who chooses the weighted network so as to maximize the aggregate payo¤,
and present the result. The detailed proof is relegated to the Appendix.
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2 Preliminaries

An undirected weighted N-graph consists of a set of nodes N = f1; 2; :::; ng with n � 3
and a set of links speci�ed by a symmetric adjacency matrix g = (gij)i;j2N of real
numbers gij 2 [0; 1) and gii = 0. Alternatively, g can, and often will, be interpreted
as a map g : N2 ! [0; 1) (i.e. g 2 [0; 1)N2), where N2 denotes the set of all subsets
of N with cardinality 24. In what follows, ij stands for fi; jg and gij for g(fi; jg)
for any fi; jg 2 N2. When gij only takes the values 0 or 1, g is said to be non-
weighted. When gij > 0, it is said that a link of weight or strength gij connects i and j.
N1(i; g) := fj 2 N : gij > 0g denotes the set of neighbors of node i, and its cardinality
jN1(i; g)j is the degree of i. A path p from i to j is a sequence of distinct nodes s.t.
the �rst one is i, the last one is j, every two consecutive nodes are connected by a link,
and the path from j to i consisting of the same nodes in inverse order is denoted by
p�1. N(i; g) denotes the set of nodes connected to i by a path. Pij(g) denotes the set
of paths in g from j to i. If i and j are two consecutive nodes in a path p, we write
ij 2 p. The length of a path is the number of its nodes minus 1, i.e. the number of
links that form it. The distance between two nodes connected by a path is the length
of the shortest path that connects them. For any integer k � 2, Nk(i; g) denotes the
set of nodes connected with i at a distance of k or less. If gij > 0, g � ij denotes the
graph that results from eliminating link ij, i.e. g � ij = g0 s.t. g0ij = 0 and g0kl = gkl
for all kl 6= ij. A graph is connected if any two nodes are connected by a path. A
component of a graph is a maximal connected subgraph.
Undirected graphs, weighted or not, underlie a variety of situations where actual

links mean some sort of reciprocal connection or relationship. Such structures are
commonly referred to as networks. Behind a network there is always a graph as a highly
salient feature, so we transfer the notions introduced so far for graphs to networks,
identifying them with the underlying graph, and refer the new ones directly to networks.
An empty network is one for which gij = 0 for all ij 2 N2. A complete network is

one where gij > 0 for all ij 2 N2. An all-encompassing star consists of a network with
n� 1 links in which one node (the center) is connected to each of the remaining nodes
by a link.
An important class of networks is that in which the underlying graph is a �nested

split graph�. These networks exhibit a strict hierarchical structure where nodes can
be ranked by their number of neighbors5.

De�nition 1 A nested split graph (NSG) is an undirected (weighted or not) graph such
that ��N1(i; g)

�� � ��N1(j; g)
��) N1(i; g) � N1(j; g) [ fjg:

4Alternatively, a weighted N -graph can be de�ned as a map g : N2 ! R+; where R+ denotes the
set of non-negative real numbers. But, w.l.o.g. we prefer to assume g : N2 ! [0; 1).

5König, Tessone and Zenou (2014) contains an interesting study of the topological properties of
these networks.
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In terms of the adjacency matrix, they have a simple structure. It is a symmetric
matrix such that for a certain renumbering of the nodes, each row consists of a sequence
of non-zero entries (apart from those in the main diagonal) followed by zeros, and the
number of nonzero entries in each row is not greater than in the preceding row. Nodes
are then classi�ed in classes, each containing the nodes with the same number of
neighbors, referred to as NSG-classes (isolated nodes, i.e. with no neighbors, form a
class that plays no relevant role and is referred to as the trivial class). Fig.1 shows the
adjacency matrix (a) of a nested split weighted graph with 8 nodes and 5 NSG-classes,
while matrix (b) is that of a non-weighted nested split graph with the same non-zero
entries6.

1 2 3 4 5 6 7 8

1 0 :4 :5 :1 :7 :9 :2 :4
2 :4 0 :2 :4 :5 :1 :8 0
3 :5 :2 0 :2 :6 0 0 0
4 :1 :4 :2 0 :4 0 0 0
5 :7 :5 :6 :4 0 0 0 0
6 :9 :1 0 0 0 0 0 0
7 :2 :8 0 0 0 0 0 0
8 :4 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8

1 0 1 1 1 1 1 1 1
2 1 0 1 1 1 1 1 0
3 1 1 0 1 1 0 0 0
4 1 1 1 0 1 0 0 0
5 1 1 1 1 0 0 0 0
6 1 1 0 0 0 0 0 0
7 1 1 0 0 0 0 0 0
8 1 0 0 0 0 0 0 0

(a) (b)

Figure 1: Adjacency matrices of nested split graphs: (a) weighted, (b) non-weighted

3 The model

We address the question of e¢ ciency of weighted networks in a generalized connections
model setting. The problem can be stated in general terms, to be further speci�ed,
as follows: A planner invests in links between nodes in a given set in order to form
an e¢ cient network, i.e. a network that maximizes the aggregate value generated
minus its cost, assuming that nodes derive their utilities from their direct and indirect
connections through the network. Even if the network is the result of decentralized
actions of the node-players, as might be the case, the question of e¢ ciency can be
interpreted as the goal of a planner with the ability to play the role of all nodes

6The example illustrates a common mistake of de�ning NSG by condition:��N1(i; g)
�� � ��N1(j; g)

��) N1(i; g) � N1(j; g);

which does not hold, for instance, for i = 3 and j = 1, by a simple reason: 1 2 N1(3; g)) but
1 =2 N1(1; g). Similarly, it is also incorrect to de�ne NSG by condition��N1(i; g)

�� � ��N1(j; g)
��) N1(i; g) [ fig � N1(j; g) [ fjg;

which in the example fails to hold, for instance, for i = 7 and j = 3.
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simultaneously trying to maximize the aggregate payo¤. It is assumed that forming
weighted links entails a cost, and that a weighted network generates an aggregate value
from the initial worth attached to each node7. This requires further speci�cation.
Di¤erent connections models in the literature make di¤erent assumptions about the

way in which a weighted network generates value by connecting nodes. Here we make
several assumptions about it, including di¤erent alternatives for some of them, which
enable us to establish a general result.
We assume that a weighted N -network g generates value under the following as-

sumptions:
Assumption 1: Each node i 2 N is endowed with initial worth v > 0, which is

partially perceived, received or bene�tted from, by any other node j 2 N connected
with i directly or indirectly by a path in g8.
Assumption 2: For each j 6= i, if p 2 Pij(g); the strength of the connection between

i and j via path p in g, denoted �ji (p)g (when no ambiguity arises, we just write �
j
i (p)),

is a number in the interval (0; 1) which is a function of the vector of strengths of the
links that form the path such that:

Assumption 2-i : If path p consists of a single link, i.e. p = ij, then �ji (p) = gij.

Assumption 2-ii : For any path p from j to i, �ji (p) = �
i
j(p

�1):
Assumption 2-iii : For any two networks g and g0, and any path p 2 Pij(g) \

Pij(g0) s.t. for all kl 2 p, gkl � g0kl, �
j
i (p)g � �

j
i (p)g0 holds:

Assumption 2-iv : If p = i1i2:::il and p0 = i1i2:::ilil+1:::im; with i = i1, j = il
and k = im; then �

j
i (p) � �ki (p0):

By Assumption 2-i, when p is just a link its strength is the strength of the link.
By the condition in Assumption 2-ii, the strength of the connection via any path is
the same in both directions. In view of this, in what follows for any path p connecting
two nodes i and j it is possible to drop i and j in �ji (p) and write just �(p)

9. As-
sumption 2-iii postulates a sort of �strength monotonicity�: The strength of a path
is non decreasing w.r.t. the increase of strengths of its links. And Assumption 2-iv
postulates a sort of �length monotonicity�on any path p 2 Pij(g), the strength of the
connection of i with the furthest node in that path through that path is weaker than the
connection with closer nodes in that path through the corresponding subpath. Note
that nothing is assumed about nodes on di¤erent paths. Links are the building blocks
of a network. Their weight is their strength (Assumption 2-i), which admits di¤erent
interpretations in di¤erent models. It can be the fraction of information/worth �ow-
ing through the link that remains intact, but other interpretations are possible. For
instance they can be seen as the �strength of a tie�(Granovetter, 1973), i.e. a measure
of the quality/intensity/value of a relationship, e.g. in personal relationships, where

7In fact, these ingredients are common in a range of models in the literature as commented below.
8More generally, it can be assumed that this amount vji depends on the pair of nodes involved.

Here we assume homogeneity in the sense that vji = v
i
j , for all i; j.

9This intuitive simpli�cation, i.e. undirectedness of links extends to paths, is consistent with the
undirectedness of links.
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the quality/strength of a link is a function of the investments of each of the two people
involved. A link can also be a means for the �ow of other goods10. We do not commit
ourselves to any particular interpretation as our point is to establish a general result
based on a set of assumptions.
Assumption 3: For all p 2 Pij(g), de�ne vji (p) := v�(p), which is interpreted as the

value that player i receives from j�s worth endowment v via p (in fact, what i receives
from j�s worth in the network consisting of the links that form path p only). Then
the value that i receives from j�s worth in network g, denoted by vji (g), is the maximal
value of vji (p), i.e.

vji (g) = max
p2Pij(g)

vji (p) = v max
p2Pij(g)

�(p):

It is understood that vji (g) = 0 if Pij(g) = ?, i.e. no path connects i and j.
Assumption 4: Now the value that a node i receives from a network g can be de�ned.

Again, several options are possible. An option is the sum of the values received from
all other nodes:

Vi(g) =
X

j2N(i;g)

vji (g): (1)

Alternatively, if it is assumed than only nodes at k or less distance are received,

Vi(g) =
X

j2Nk(i;g)

vji (g): (2)

Or, assuming a threshold of sensitivity, when only nodes with which the strength of
the connection is at least � > 0 are received,

Vi(g) =
X

j2N�(i;g)

vji (g): (3)

where N�(i; g) = fj 2 N : �ji (g) � �g:
Note that which path is best, i.e. which one maximizes �(p) and consequently vji (p),

depends on the de�nition of �ji : Pij(g) �! [0; 1), which it only assumed to satisfy the
conditions in Assumption 2-i-iv. The main result is established under these conditions
about function �ji , without specifying it, but there are two main cases in the literature.
Accumulative friction or decay: The strength of a link is interpreted as the fraction

of value that crosses it. Thus the strength of a path is given by the product of strengths
of the links that form it:

�ji (p) =
Y
kl2p

gkl; (4)

and the best path is that with the smallest friction.

10Alternatively, the strength of a link can be interpreted as a degree of reliability, i.e. the probability
of successful transmission, as in Bala and Goyal (2000b), but this interpretation is not consistent with
the assumptions made here.
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Weakest link strength: The strength of a path is the strength of the weakest of the
links that form the path:

�ji (p) = minfgkl : kl 2 pg: (5)

It is immediately apparent that in both cases the conditions in Assumption 2-i-iv are
satis�ed.
In any case, the aggregate value of the network is:

V (g) =
X
i2N

Vi(g):

So far the speci�cation of the value generated by a weighted network through its
connections from the nodes�worth. But links are costly, and we assume that a link-
formation technology rules the formation of links according to the following de�nition.

De�nition 2 A link-formation technology is a non decreasing map � : R+ ! [0; 1) s.t.
�(0) = 0.

The interpretation of this function is the following. If c is the amount invested in a
link to connect two nodes, �(c) is the strength of the link formed. Only links invested
in form (�(0) = 0), but perfection is never reached (�(c) < 1).
We assume that a planner invests in links, according to a given technology, con-

necting pairs of nodes in N , and each of them is endowed with an initial worth v
(Assumption 1). The network resulting from a link-investment vector c = (cij)ij2N2 is
a weighted network gc = (gcij)ij2N2, with g

c
ij = �(cij); that generates value in accordance

with Assumptions 2-4. The net value of the network resulting from link-investment
vector c is the aggregate value generated by the network gc minus its cost:

v(gc) := V (gc)�
X
ij2N2

cij =
X
i2N

Vi(g
c)�

X
ij2N2

cij; (6)

where Vi(gc) is given by (1), (2) or (3).
Let c and c0 be two link-investment vectors, gc and gc

0
the resulting networks, and

let v(gc) and v(gc
0
) be their net values as de�ned by (6). If v(gc) � v(gc0) then it is said

that gc dominates gc
0
(or that c dominates c0). Thus a network gc (or link-investment

vector c) is e¢ cient if it dominates any other11.
Before proceeding to the result, we review some models in the literature that meet

the conditions assumed.
In the seminal model of Jackson and Wolinsky (1996), the formation of a link of

strength � (0 < � < 1) requires an investment of a �xed amount c > 0 by each of
the two nodes involved. The question of e¢ ciency is equivalent to the question of an
e¢ cient investment by a planner if the available technology is

�(c) :=

�
�, if c � 2c
0, if c < 2c:

11This is the �strong e¢ ciency�notion introduced by Jackson and Wolinsky (1996).
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They assume v = 1 and accumulative friction.
Bala and Goyal (2000a): In this model links can be formed unilaterally at a �xed

cost c. Thus everything is similar to the previous model from the e¢ ciency point of
view, but the technology available to a planner is now �(c) = �, if c � c:
Olaizola and Valenciano (2017) is an extension of these two models where there are

two types of links: Weak links, only supported by one of the two players, and strong
links, supported by both players. The friction is greater through weak links. The
question of e¢ ciency in this case is equivalent to that of an e¢ cient investment for the
technology:

�(c) =

8<: �, if c � 2c
�, if c � c < 2c
0, if c < c;

where 0 < � < � < 1. Friction is assumed to be accumulative.
In Olaizola and Valenciano (2016) the strength of a link is a non decreasing function

of the total investment � : R+ ! [0; 1) s.t. �(0) = 0, continuously di¤erentiable and
strictly concave, and friction accumulative.
It is easy to check that in all the previous models Assumptions 1-4 hold.
In Bloch and Dutta (2009), if node/player i invests cij in link ij, then the strength

of the resulting link is �(cij) + �(cji), where � is a non decreasing convex function s.t.
�(0) = 0 and �(c) < 1=2, for all c > 0. Under these conditions, a planner able to play
the roles of all players simultaneously would be using the technology:

�(c) = max
cij+cji�c
cij ;cji�0

(�(cij) + �(cji)) = �(c):

Where the last equality follows from ��s convexity. In fact, Bloch and Dutta (2009) does
not specify the domain of function �, which should be an interval of the form [0; k) or
[0; k]; while according to De�nition 1 a technology is de�ned as a map � : R+ ! [0; 1):
Nevertheless, as � = �, which is non-decreasing and s.t. �(0) = 0 and �(c) < 1=2 < 1 on
its domain ( R+), this small di¤erence is not an obstacle to applying the conclusion of
our result because the conditions in Assumptions 1-4 hold. They consider accumulative
friction and also that of the weakest link strength.
As mentioned in the Introduction, models following Ballester, Calvó-Armengol and

Zenou (2006) do not �t into the conditions assumed here.

4 E¢ ciency of weighted networks

We now address the problem of a planner investing in links with the objective of
maximizing social welfare, i.e. the aggregate value received by the nodes minus the
total cost of the network, under the assumptions formulated in the previous section: A
link-formation technology as speci�ed in De�nition 2 and network-generation of value
in accordance with Assumptions 1-4.
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We use the following notation. Given a link-investment vector c = (cij)ij2N2 , for
all i; j 2 N; i 6= j; pij denotes an optimal path connecting them in gc (note that it may
be not unique), i.e. one for which the resulting strength is maximal, that is

pij 2 arg max
p2Pij(gc)

�(p) i.e. �(pij) = max
p2Pij(gc)

�(p):

The net value of the network for this link-investment vector is then

v(gc) = 2v
X
ij2M

�(pij)�
X
ij2N2

cij; (7)

where M = N(i; g) if (1), M = Nk(i; g) if (2), and M = N�(i; g) if (3).
Note that in principle the last expression in (7) may not be unique. This occurs if

the optimal path connecting a pair of nodes is not unique.
The following result shows that under Assumptions 1-4 in all their variants, and

for any link-formation technology, any weighted network is dominated by a particular
type of weighted NSG-network which exhibits stronger hierarchical features beyond
those speci�ed by De�nition 1, hence the name that we have given to them: �Strongly
NSG-graphs/networks� (SNSG-graphs/networks). A weighted NSG-network g, like
any undirected graph, is completely speci�ed by the triangular matrix T (g) above the
main diagonal of 0-entries of its adjacency matrix for a certain order of the nodes,
T (g) := (gij)i<j.
Formally, the de�nition is as follows.

De�nition 3 A strongly nested split graph (SNSG) network is a weighted NSG-network
g such that, for a certain renumbering of the nodes, in T (g) : (i) each row consists of
a non-decreasing sequence of positive entries followed by zeros; (ii) all positive entries
in the �rst row are greater than or equal to any other entries; and (iii) from the second
row downwards, non-zero entries in the same column form a non-decreasing sequence.

Fig. 2 shows the triangular matrix T (g) for the adjacency matrix of an NSG and
an SNSG. Both exhibit the same pattern of the non-zero entries of an NSG, but only
for (b) do the conditions (i-iii) of De�nition 2 hold, thus only the second is strongly
NSG.
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1 2 3 4 5 6 7 8

1 � :4 :5 :1 :7 :9 :2 :4
2 � � :2 :4 :5 :1 :8 0
3 � � � :5 :2 8 0 0
4 � � � � :4 0 0 0
5 � � � � � 0 0 0
6 � � � � � � 0 0
7 � � � � � � � 0
8 � � � � � � � �

1 2 3 4 5 6 7 8

1 � :4 :5 :6 :7 :8 :8 :9
2 � � :1 :2 :3 :3 :4 0
3 � � � :3 :35 4 0 0
4 � � � � :4 0 0 0
5 � � � � � 0 0 0
6 � � � � � � 0 0
7 � � � � � � � 0
8 � � � � � � � �

(a) (b)

Figure 2: Adjacency matrices of an NSG and an SNSG

This gives the following result:

Proposition 1 Under Assumptions 1-4, for any link-formation technology �, any net-
work gc is dominated either by the empty network or by a connected SNSG-network.

This means that e¢ cient networks are to be found among the SNSG-networks. The
constructive proof is based on the idea of rearranging the �available links�in any given
network g0 which yields a positive aggregate payo¤ (i.e. which is not dominated by the
empty network) in the most e¢ cient way by producing a dominant SNSG network g0

s.t. v(g0) � v(g0). A simple algorithm does the trick. The algorithm and the proof are
formalized precisely in the Appendix, but given their interest we outline them brie�y
here12.
Let g0 be any given network s.t. v(g0) > 0, consisting of d links. If d � n� 1 it is

shown that an all-encompassing star (a particular case of SNSG-network) dominates
g0. Otherwise, if d > n � 1, then apply the following algorithm (see �owchart in Fig.
3): Initialize: g := g0 and g0 as the empty network.
Step 1: Form an all-encompassing star g0 with the strongest n � 1 links in g and

update g by eliminating the links used to form the star g0 and go to Step 2.
Step 2 (Discarding procedure): Update g by disposing of all links in g that, if used

to replace the link that connects the two worst connected nodes (2 and 3) in the star
g0, do not increase the net value of the network. If no links remain (i.e. g = ?) Stop.
Otherwise go to Step 3.
Step 3 (Improving procedure): Take the weakest of the available links in g, denoted

by w(g), (labeled as �Pick w(g)�in the diagram of the algorithm in Fig. 3) and connect
with it the two worst connected nodes (2 and 3) in star g0, update g and g0 (labeled as
�g0 := g0+w(g)�in the diagram). Now repeat the following procedure until no available

12In the proof, the algorithm is described in terms of the link-investment vectors underlying net-
works, rather than in terms of networks themselves. Nevertheless, the idea can easily be conveyed in
terms of networks directly as we do here.
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Figure 3: Flowchart of the algorithm

g0 := Ø

g := g0
-

Step 1

g0 := star

g := g � g0

?Step 2
Discarding procedure

?
��

�HHH���HH
H g = Ø? -yes

STOP

?
no

Step 3
Pick w(g)

?
��

�HHH���HH
H

w(g)
improves

g0?

no- g0 := g0 � w(g0) + w(g)yes�g0 := g0 + w(g)

g := g � w(g) �-

-

Improving procedure

links are left in g: Take the weakest of the remaining available links in g, w(g); and
connect with it the two worst indirectly connected nodes if this improves the value of
the network g0 (labeled as g0 := g0+w(g) in the diagram). Otherwise, use it to replace
the last link added to g0 and proceed backwards replacing each previously added link
by the one that was added immediately afterwards and dispose of the �oldest� link
added, i.e. w(g0) = g023 (labeled as g

0 := g0�w(g0)+w(g) in the diagram13). At the end
of this process, i.e. when g is empty, g0 is an SNSG-network by construction which,
based on Assumptions 1-4, is proved to yield a net value greater than or equal to that
of the initial network at a lower or equal cost.
Figure 4 shows this process, once the star has been formed in Step 1 with the four

strongest links, starting from a 5-node network with 8 links, assuming that at every
stage, but perhaps at the last one, the weakest available link actually improves the net
value of the current network by connecting the two worst connected nodes. Figure 5
shows the same process in terms of the adjacency matrix. Assume that the investments
in the 8 links of the initial network are c1 � c2 � c3 � c4 � c5 � c6 � c7 � c8. First
(Step 1), form a star with the best 4 links in c in increasing order of strength with the
4 strongest links: (c1; c2; c3 and c4) (stage (a) in Figures 4 and 5); then, using available

13Note that this procedure leads to discarding the worst link in g0, i.e. w(g0) = g023, and adds to g
0

the worst in g, w(g) (rearranging all added links in the way described).
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Figure 4: Construction of a dominant SNSG-network
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links in increasing order of strength, improve the weakest connection if this increases
the net value of the network, i.e. 23 in the �rst iteration, with a c8-link, and then
24 with a c7-link, (stages (b)-(c) in Figures 4 and 5). Then, connect the pair worst
connected after stage (c), i.e. 25 or 34. If it is 25, i.e. if �(512) � �(314), then connect
them with a c6-link (stage (d)). Finally, connect the worst connected nodes after stage
(d), which are nodes 3 and 4 with a c5-link (stage (e)), if this increases the net value of
the network. Otherwise, if connecting 3 and 4 with a c5-link does not increase the net
value of the network, replace c6 by c5, c7 by c6 and c8 by c7; and dispose of c8 (stage
(e0)). Observe that, by construction, at every stage the current network in formation
is an SNSG-network.

1 2 3 4 5

1 0 c4 c3 c2 c1
2 c4 0 0 0 0
3 c3 0 0 0 0
4 c2 0 0 0 0
5 c1 0 0 0 0

!

1 2 3 4 5

1 0 c4 c3 c2 c1
2 c4 0 c8 0 0
3 c3 c8 0 0 0
4 c2 0 0 0 0
5 c1 0 0 0 0

!

1 2 3 4 5

1 0 c4 c3 c2 c1
2 c4 0 c8 c7 0
3 c3 c8 0 0 0
4 c2 c7 0 0 0
5 c1 0 0 0 0

(a) (b) (c)

!

1 2 3 4 5

1 0 c4 c3 c2 c1
2 c4 0 c8 c7 c6
3 c3 c8 0 0 0
4 c2 c7 0 0 0
5 c1 c6 0 0 0

!

1 2 3 4 5

1 0 c4 c3 c2 c1
2 c4 0 c8 c7 c6
3 c3 c8 0 c5 0
4 c2 c7 c5 0 0
5 c1 c6 0 0 0

or

1 2 3 4 5

1 0 c4 c3 c2 c1
2 c4 0 c7 c6 c5
3 c3 c7 0 0 0
4 c2 c6 0 0 0
5 c1 c5 0 0 0

(d) (e) (e0)

Figure 5: Construction of a dominant SNSG-network
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Remark: For a certain relabeling of the nodes, an SNSG-network can be seen
as consisting of a star centered on node 1 (�rst row and column of the adjacency
matrix) plus some additional links between spoke nodes of that star worst connected
through it (nonzero entries on the northwest of the adjacency matrix) according to
the pattern speci�ed in De�nition 3. But the constructive proof of Proposition 1
shows that a dominant SNSG exhibits further features beyond that of a pure SNSG
structure in general. Namely, apart from the pattern described in De�nition 3, it
must hold 2v�(cij) � cij > 2v�(i1j), for all i; j 2 f2; 3; :::ng s.t. cij > 0, i.e. their
direct connection should improve the contribution to the net value of the network of
their indirect connection through 1. For instance, under accumulative friction, for an
investment matrix SNSG to be e¢ cient 2v�(cij)� cij > 2v�(c1i)�(c1j) must hold for all
cij > 0; with i; j 6= 1.

5 Appendix

Proof of Proposition 1: Let � be a link formation technology according to De�nition
2, and let c0 = (cij)ij2N2 be a link-investment vector s.t. g

c0 has d links and positive net
value (if it were negative it would be dominated by the empty network). If d � n� 1
rearrange the d available links as a star. By Assumption 2-iv, the resulting star-network
dominates gc0 . If d = n� 1, the star is all-encompassing and consequently a connected
SNSG-network, and we are done. Otherwise, if d < n � 1, form an all-encompassing
star as many links as necessary by adding to the d-link star, i.e. n� 1� d, using links
with the same investment as any of those in the d-link star whose marginal contribution
is positive (note that there must be at least one).
Assume now that d > n� 1. Without loss of generality, it can be assumed that in

gc0 no link invested in is super�uous, i.e. �(pij) = �(cij) = gij > 0 whenever cij > 0. By
rearranging the links that form the network, i.e. by reassigning the amounts invested
in each of the d links in a di¤erent set of d links, only the sum

P
ij2M �(pij) in (7)

would change. As shown below, by reassigning the amounts invested in the links of
the network, perhaps even disposing of some of them, it is always possible to obtain
an SNSG-network that dominates gc0 . More precisely, starting from an arbitrary link-
investment c := c0, with more than n � 1 positive entries, we describe an algorithm
for constructing a new link-investment vector, c0 = (c0ij)ij2N2 , that yields an SNSG-

network gc
0
that dominates gc0 as the �nal outcome of a sequence of link-investment

vectors, each of them resulting from the preceding one by adding at most one link and
perhaps reassigning those introduced so far after Step 1 and disposing of the cheapest
of them.
Step 1: Let c0 be the link-investment that yields the all-encompassing star that

results from connecting node 1 with the other n � 1 by investing in each link exactly
the same amount invested in each of the strongest n � 1 links in gc0, so that c012 �
c013 � ::: � c01n�1 � c01n. Update c by eliminating in c0 the investments corresponding
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to the n� 1 strongest links, and go to Step 2.

1 2 3 . . . n

1 0 c012 c013 : : : c01n
2 c012 0 0 : : : 0
3 c013 0 0 : : : 0
.
.
.

...
...

...
. . . 0

n c01n 0 0 : : : 0

!

1 2 3 . . . n

1 0 c012 c013 : : : c01n
2 c012 0 c023 : : : 0
3 c013 c023 0 : : : 0
.
.
.

...
...

...
. . . 0

n c01n 0 0 : : : 0

Figure 6: Step 1 and �rst iteration of Step 3

Step 2 (Discarding procedure): Update c by setting to 0 all entries in c whose
investment in the worst connected nodes in the star c0 (nodes 2 and 3) would not
increase the net value of the network. If no links remain (i.e. c = 0) Stop. Otherwise
go to Step 3.
Step 3 (Improving procedure): Now proceed as follows. Choose two of the nodes, i

and j, which are the worst connected in gc
0
, in the �rst iteration nodes 2 and 3 (Figure

3). Then, to avoid ambiguity if there are multiple equally worst connected pairs, choose
any of them with the sole condition of preserving the NSG underlying structure if a link
to connect them is added14, and check whether the contribution to the net value of the
network of the connection of i and j via node 1 in gc

0
can be improved by connecting

them with the worst available link, i.e. investing the smallest entry, say ckl, in c: That
is, check whether

2v�(p0ij) < 2v�(ckl)� ckl:
- If there is an improvement (which is certain to be in the �rst iteration), then

connect them, i.e. update c0 by adding entry c0ij := ckl, and update c by eliminating
its smallest entry, i.e. setting its kl-entry to 0.
- Otherwise, by construction (available links in c are picked in increasing order

of strength) ckl is necessarily at least as good as any link previously added. Then
replace the investment in the last link added by ckl and proceed similarly, replacing the
previously added connection by the newly available link, and so on backwards.15 This
procedure leads to the weakest of the added links, currently connecting nodes 2 and 3,
being discarded. Update c after this elimination, and let c0 be the updated investment
vector.
14That is, in terms of the triangular submatrix of the adjacency matrix above the main diagonal,

give priority to a new investment in a link ij as far as possible to the left among those in the same
row and to the uppermost among those in the same column.
15Note that for this we just need to keep track of the order in which new links were added to the

star formed in Step 1. If the investments in the links added so far to the initial star currently were
c0i1 � c0i2 � ::: � c0ir ; with c

0
i1
= c023, then upgrade the investments in the links added previously by

replacing c0irby ckl, c
0
ir�1

by c0ir , c
0
ir�2

by c0ir�1 , etc., and dispose of the weakest link, corresponding to
c0i1 = c

0
23:

14



In all cases, go back to Step 3 unless c is empty (i.e. no available links remain), if
c is empty then Stop.
Obviously the process ends in �nite iterations of Step 3, when c is the zero-

investment vector and no available links remain.
We show now that v(gc

0
) � v(gc): Both v(gc) and v(gc

0
) are the sum of at most

n(n � 1)=2. Each of these terms corresponds to one pair of nodes whose connection
contributes to the net value of the network, and gives its contribution, i.e. the value
received from each other (minus the cost of the link if they are directly connected).
Let D (R) and D0 (R0) denote the sets of pairs of nodes connected directly (indi-

rectly) in gc and gc
0
, and let d (r), d0 (r0) be their cardinalities. Then, decomposing

the contribution to the net value of pairs directly and indirectly connected, (7) can be
rewritten for gc and gc

0
as

v(gc) =
X
ij2D

2v�(cij) + 2v
X

ij2M(R)

�(pij)�
X
ij2D

cij;

v(gc
0
) =

X
ij2D0

2v�(c0ij) + 2v
X

ij2M(R0)

�(p0ij)�
X
ij2D0

c0ij;

where M(R) is R if (1), R\Nk(i; g) if (2), or R\N�(i; g) if (3). The �rst term of the
sum that yields v(gc) is the sum of d terms 6= 0, corresponding to its d links, while in
the �rst term of the sum that yields v(gc

0
) there may be fewer terms if any link has been

discarded in Step 2 because it does not improve any indirect connection through node
1, or in Step 3 when the weakest link in g0 connecting 2 and 3 is replaced and discarded.
That is, d0 � d. Moreover, for each term in this sum for gc

0
, a term with exactly the

same value occurs in the sum for gc. Note that if a link that received an investment
c > 0 in gc is discarded in Step 2, then 2v�(c)�c � 2v�(p0ij) for all i; j = f2; ::; ng, where
p0ij is the 2-link path i1j. The same occurs if it was disposed of in Step 3. Therefore
any term in the sum that yields v(gc) corresponding to these c�s is outweighed by all
indirect connections in gc

0
, therefore their sum is outweighed by the sum of the same

number (d � d0) of weakest indirect connections in gc0. Then, if B0 denotes the set of
best n(n�1)

2
� (d� d0) indirect connections in gc0, as

P
ij2N2 cij �

P
ij2N2 c

0
ij, we have

v(gc
0
)� v(gc) �

X
ij2M(B0)

2v�(p0ij)�
X

ij2M(R)

2v�(pij) +
X
ij2N2

cij �
X
ij2N2

c0ij

�
X

ij2M(B0)

2v�(p0ij)�
X

ij2M(R)

2v�(pij) � 0:

The last inequality holds because B0 contains the best n(n�1)
2

� (d� d0) paths of length
2 that can be formed with links in the collection f�(cij)gij2N2, in other words, the
strongest n(n�1)

2
� (d � d0) indirect connections that can be formed with the available

links. However any indirect connection in gc consists of a path of length at least 2, and
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consequently of strength no greater than the strength of the path formed by its �rst two
links (by �length monotonicity�Assumption 2-iv). But by Assumption 2-iii (�strength
monotonicity�), these in turn cannot outweigh those in B0. Now ifM(B0)  B0 and/or
M(R)  R, again Assumption 2-iii-iv ensures the last inequality. Finally, as links are
added to the initial star (formed by the strongest links) in increasing order of strength
and always preserving an SNSG structure, new links added corresponding to entries in
the same row (column) in the triangular matrix are of increasing strength rightward
(downward). Therefore the outcome is a connected SNSG-network. Thus, any network
which yields a positive aggregate payo¤ is dominated by a connected SNSG-network.�
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