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Resumen 
 
 

La artrosis de rodilla es un proceso patológico inducido mecánicamente, y 

mediada por un desajuste de citoquinas y enzimas que compromete todo el 

tejido articular de la rodilla. Esta patología es un proceso degenerativo diferente 

al que ocurre durante el envejecimiento normal produciendo dolor, pérdida de 

movilidad y deformación de las zonas afectadas.  

 

La artrosis no es una enfermedad grave porque amenace la supervivencia sino 

porque disminuye considerablemente la calidad de vida por culpa del dolor y la 

falta de movimiento, incluso puede llegar a ser incapacitante en fases avanzadas. 

El problema social que acarrea se agrava a medida que aumentan las 

expectativas de vida de la población. La edad y la obesidad son los mayores 

factores de riesgo relacionados con la artrosis; con el envejecimiento de la 

sociedad y el incremento de las tasas de obesidad aumenta el número de 

pacientes con artrosis y atenderles debidamente supone un enorme gasto social 

y sanitario. La frecuencia y la cronicidad de la enfermedad la convierten en un 

reto para la sanidad y los sistemas sociales de todos los países desarrollados. La 

organización mundial de la salud estima que el 40% de las personas con más de 

70 años tiene artrosis de rodilla, el 80% de pacientes con artrosis presenta 

limitaciones de movimiento y un 25% de ellos no puede realizar las actividades 

normales de la vida cotidiana. La prevalencia entre los distintos países es 

desigual, siendo Europa y EEUU las zonas más castigadas. En países avanzados 

como EEUU las cifras son alarmantes; la estimaciones apuntan unos 46 millones 

de enfermos con artrosis, más del 50% de adultos con más de 50 años. Para el 

año 2030 está cifra puede llegar a los 70 millones. Habiéndose convertido la 

artrosis en la enfermedad musculoesquelética más común, el reto de los sistemas 

sanitarios es enorme y el coste que esto supone en un futuro cercano es casi 

inasumible, siendo un verdadero problema financiero a nivel global. 

 

Aunque en un principio la etiopatogenia de la artrosis se centraba casi 

exclusivamente en el cartílago, actualmente prevalece la idea de que es una 



enfermedad que afecta a toda la articulación: cartílago, hueso subcondral, 

membrana sinovial, ligamentos, tejido neural, etc. De esta forma, todos los 

componentes de la articulación son imprescindibles para mantener la 

homeostasis de ésta, y factores tanto genéticos como adquiridos o ambientales 

pueden romper este equilibrio. Con el tiempo, los esfuerzos para mantener este 

equilibrio fallan y se produce la degeneración del cartílago, del hueso subcondral 

y del resto de componentes de la articulación, convirtiéndose en un problema 

clínico. Esta degeneración de toda la articulación puede evolucionar más o menos 

rápido pero hasta el momento no existe curación. 

 

Actualmente ningún tratamiento es capaz de parar la progresión de la artrosis o 

revertir el daño ocasionado, siendo la colocación de prótesis  mediante 

intervención quirúrgica la única salida para estos pacientes. Los tratamientos 

conservadores incluyen farmacología oral enfocados en el alivio de los síntomas 

pero no en frenar la enfermedad. También son habituales los suplementos 

nutritivos condroprotectores de acción muy lenta como la glucosamina, el sulfato 

de condroitina o la diacerina. Igualmente a menudo se recomienda una 

disminución de peso y programas adecuados de ejercicio. En fases más 

avanzadas de la enfermedad se pueden administrar inyecciones intraarticulares. 

Por ejemplo, en las crisis dolorosas se introducen corticoides en el interior de la 

articulación para promover un alivio temporal del dolor. Otro método 

mínimamente invasivo son las infiltraciones de ácido hialurónico (AH) que es un 

amortiguador y lubricante natural propio de las articulaciones; así, con las 

inyecciones de AH se consigue restaurar la viscosidad y elasticidad intraarticular, 

reduciendo el estrés mecánico que se produce sobre el cartílago. Esta técnica ha 

demostrado ser eficaz en las etapas tempranas de la enfermedad pero a lo largo 

del tiempo esa eficacia desaparece. Así pues, los tratamientos actuales se 

centran en paliar el dolor, y no previenen ni curan la enfermedad, ni tampoco 

frenan su evolución; por lo tanto, es necesario que los esfuerzos empleados en 

desarrollar nuevos fármacos se centren en la investigación de tratamientos que 

modifiquen la evolución de la enfermedad y frenen y reviertan la degeneración 

producida en el cartílago, en el hueso subcondral y en el resto de la articulación.  

 



En los últimos años ha emergido como alternativa a los tratamientos actuales las 

infiltraciones de plasmas ricos en plaquetas (PRP). Entre estos destaca el plasma 

rico en factores de crecimiento (PRGF®-Endoret®), una terapia biológica y 

autóloga que usa el propio plasma del paciente y los factores de crecimiento 

derivados de las plaquetas, así como un scaffold de fibrina autóloga con 

propósitos regenerativos. Se ha visto que varios de estos factores de crecimiento 

actúan sobre toda la articulación influyendo en el desarrollo de la artrosis; así, 

ayudan a restaurar la homeostasis de la articulación (TGFβ, PDGF, IGF), tienen 

efectos inductivos y protectores sobre los condrocitos (VEGF, FGF), y actúan 

sobre los sinoviocitos de la membrana sinovial estimulando la producción de 

ácido hialurónico y otras moléculas. Además este coctel de factores también 

tiene características antinflamatorias (HGF), bacteriostáticas y quimiotácticas que 

atraen a células madres mesenquimales, las cuales también participarían en la 

regeneración del cartílago. Todas estas propiedades contribuyen a fomentar un 

ambiente biológico en la articulación propicio para ralentizar la degeneración del 

cartílago y aliviar los síntomas clínicos. 

 

Teniendo en cuenta las limitaciones de los tratamientos actuales antes descritos 

y el potencial terapéutico del PRP, el primer estudio enmarcado de estas tesis fue 

un ensayo clínico aleatorizado en el que se comparaban las infiltraciones 

intraarticulares de ácido hialurónico con las infiltraciones intraarticulares de PRP 

en pacientes con artrosis de rodilla. Para ello 176 pacientes fueron asignados de 

forma aleatorizado en dos grupos; los pacientes del grupo control (N=89) 

recibieron tres infiltraciones de ácido hialurónico con una pauta de una por 

semana durante tres semanas. A los pacientes del grupo experimental (N=87) se 

les administró tres infiltraciones de PRP con la misma pauta que el grupo control. 

A los seis meses del tratamiento, los pacientes que fueron tratados con PRP 

mostraron una mejoría en el dolor significativamente superior al grupo del ácido 

hialurónico, demostrando que a corto plazo el PRP es más eficaz que el ácido 

hialurónico en el tratamiento de la artrosis. 

 

Sin embargo, el éxito de este tratamiento no reside sólo en las características 

propias del PRP, sino también en su correcta aplicación: una mala aplicación 



puede llevar a una respuesta ineficaz por parte del paciente. De esta forma, 

aunque las infiltraciones intraarticulares del PRP han mostrado ser seguras y 

eficaces, esta forma de infiltración no llega a alcanzar las capas más profundas 

del hueso subcondral, lo que podría limitar su potencial terapéutico en artrosis 

más severas y avanzadas. 

 

Recientes estudios ponen de manifiesto la importancia del hueso subcondral en 

la patogenia de la artrosis, lo que remarca la idea antes descrita de que la artrosis 

es una enfermedad que afecta a toda la articulación. Cuando se altera la 

homeostasis debido a estos cambios bioquímicos y biomecánicos, todos los 

tejidos de la articulación participan en restaurar el equilibrio biológico. Estos 

esfuerzos para recuperar la homeostasis se traducen en respuestas a nivel celular 

y de la matriz extracelular en todos los tejidos; así, se producen comunicaciones 

entre las capas más profundas del hueso subcondral y el cartílago y, por otro 

lado, entre éste y el líquido sinovial que baña toda la articulación. Esta 

comunicación hueso-cartílago se ha evidenciado con estudios que demuestran 

cómo vasos y canales alcanzan el cartílago desde el hueso subcondral, y que 

además son más abundantes en el cartílago de pacientes con artrosis. 

 

Aceptando la idea de que la artrosis es una patología que afecta a toda la rodilla 

por completo y que todos los tejidos (líquido sinovial, membrana sinovial y hueso 

subcondral) son dianas terapéuticas clave para un tratamiento eficaz, el siguiente 

trabajo de esta tesis describe una nueva administración de PRP que pretende 

alcanzar también el hueso subcondral. Esta técnica consiste en combinar las 

infiltraciones intraarticulares con infiltraciones intraóseas de PRP en el cóndilo 

femoral y la meseta tibial, con la intención de que el PRP estimule 

biológicamente a las células presentes en el hueso subcondral. Para demostrar la 

seguridad y eficacia de esta técnica, se realizó un ensayo clínico piloto sobre 14 

pacientes que presentaban una artrosis severa y que seguramente la colocación 

de una prótesis hubiese sido el tratamiento de elección. Estos pacientes 

recibieron un primer tratamiento que combinaba una infiltración intraarticular 

PRP y dos infiltración intraóseas (una en el cóndilo femoral y otra en la meseta 

tibial); en las dos siguientes semanas recibieron dos infiltraciones de PRP 



intraarticular, una por semana. A los 6 meses del tratamiento se observó una 

mejoría significativa del dolor y la función respecto a los valores iniciales, y sin 

ningún efecto adverso relevante. 

 

En este ensayo piloto, también se estudió el posible efecto biológico de este tipo 

de administración, mostrando un descenso significativo en el número de células 

madre mesenquimales a lo largo del tratamiento. Para comprender mejor este 

efecto, se realizó un último estudio en el que se analizaba la composición celular 

de los líquidos sinoviales en dos grupos de pacientes; un grupo recibió 

infiltraciones intraarticulares y a los pacientes del otro grupo se les administró 

PRP de forma intraósea. En este estudio se observó un descenso significativo en 

el número de células madre presentes en el líquido sinovial de los pacientes que 

recibieron infiltraciones intraóseas. Sin embargo, este descenso no se produjo en 

los pacientes que solo recibieron PRP intraarticular, confirmando la importancia 

del hueso subcondral en la patogenia y evolución de la artrosis. El descenso 

celular podría ser debido a la acción biológica del PRP, modulando fenómenos 

como la inflamación que están relacionados con la presencia de células madre. 

Sin embargo, serán necesarios más estudios para comprender todas las acciones 

biológicas que puede desencadenar el PRP en las diferentes células y tejidos. 

 

Por lo tanto, nuestros resultados animan a realizar futuros estudios con el fin de 

arrojar más luz sobre los mecanismos celulares y moleculares y para dilucidar si la 

aplicación de PRP administrado de forma tanto intraarticular como intraósea 

podría conducir a cambios estructurales en los diferentes tejidos. Además, las 

infiltraciones intraóseas podrían tener una aplicación inmediata en otras 

patologías como en los edemas óseos, restaurando la homeostasis del hueso 

subcondral y actuando como tratamiento preventivo en la artrosis de rodilla. Por 

último, también se necesitarán más estudios para ampliar nuestro conocimiento 

sobre el líquido sinovial como fuente de células madre mesenquimales y su 

potencial terapéutico. 
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Knee osteoarthritis (KOA) is a mechanically induced, cytokine and enzyme-mediated 
disorder involving the whole joint tissues of the knee. Among the new emerging 
treatments to address this pathology, mesenchymal stem cells (MSCs) and Platelet 
Rich Plasma (PRP) stand out. We conducted a multicenter, double-blind clinical trial to 
evaluate and compare the efficacy and safety of plasma rich in growth factors (PRGF) 
versus hyaluronic acid (HA), as a short-term treatment for knee pain from osteoarthritis. 
PRGF showed superior short-term results when compared to HA, with a comparable 
safety profile, in alleviating symptoms of mild to moderate OA of the knee. However, 
some patients showed no response to intraarticular infiltration of plasma rich in growth 
factors, likely due to the fact that this treatment is insufficient to reach the subchondral 
bone. In order to elucidate this lack of response, we explored a new strategy consisting 
in performing intraosseous infiltrations of PRP into the subchondral bone besides the 
conventional intraarticular injection to tackle several knee joint tissues at once. Targeting 
synovial membrane, synovial fluid, articular cartilage, and subchondral bone with 
intraarticular injections and intraosseous infiltrations of PRP reduced pain and MSCs in 
SF, besides significantly improving knee joint function in patients with severe KOA. We set 
out a third study to assess the suitability of SF as a source of MSCs and their response to 
the biological mechanisms implicated in the effects of two different treatment modalities 
of PRP applications on osteoarthritic patients. The synovial fluids of 31 patients, who 
received PRP using two different techniques, were collected just before and one week 
after infiltration. SF of osteoarthritic patients contains a resident population of MSCs, 
which was reduced when PRP was infiltrated into the subchondral bone. The reduction in 
MSCs in the synovial fluid was further confirmed by the presence of colony forming units 
(CFU-F). Patients receiving intra-articular infiltration did not show variations in any of the 
cellular populations by flow cytometry or CFU-F assay. 

In summary, PRGF-Endoret is safe and effective therapy in reducing KOA pain. Targeting 
synovial membrane, synovial fluid, articular cartilage, and subchondral bone with 
intraarticular injections and intraosseous infiltrations of PRP   this autologous biologic 
reduces pain and MSCs in SF, besides significantly improving knee joint function and  may 
favor MSCs therapeutic effect by decreasing pro-inflammatory processes present in the 
synovial fluid of OA patients.
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1. INTRODUCTION (I - II)

1.1. OVERVIEW OF THE KNEE JOINT

Knee joint is a complex biological system composed of articular cartilage (AC), synovial fluid (SF), 

synovium (SM), menisci, ligaments,  subchondral bone (SB), and periarticular muscles (PM) . They all 

are highly specialized mechano-sensitive and/or load-bearing tissues whose homeostasis relies on 

the precise interaction between biomolecules and cells when the latter are subjected to physiologi-

cal loading 200, 221. From a mechanical viewpoint, the knee is a complex, shock-absorbing interface in 

which a coordinated and sequentially ordered engagement of the joint´s elements and muscles is re-

quired to maintain the physical integrity of anatomical structures and homeostasis of knee tissues. In 

the functionality of the knee, articular cartilage provides an elastic, gliding, smooth frictionless sur-

face, while SB, a very low viscoelastic structure, together with periarticular muscles and ligaments, 

act as shock absorber structures, accounting for 30% and 50% of the total absorbing energy and only 

1-3% for the AC 30, 88.  Articular cartilage is an avascular tissue that lies functionally sandwiched be-

tween the SM and the SB, two highly vascularized and innervated tissues that might well be the trig-

gers of inflammation and make the chondrocytes victims instead of culprit of articular cartilage de-

struction 29. Except for articular cartilage, the rest of joint tissues are endowed with chemoreceptors 

and mechanoreceptors from where the nociceptive stimulus might drive to peripheral pain. As such, 

the joint can be considered to be an organ 29, 162.  The hyaline cartilage is surprisingly durable and has 

a very low friction coefficient, thus making it highly resistant to compression and shear forces under 

physiological conditions. The integrity of this cartilage has a major effect on quality of life as its dete-

rioration or damage markedly restricts mobility due to the resulting pain, thereby limiting autonomy, 

quality of life, and, eventually, survival. Changes in the degree of physical activity, whether too much 

(competitive sports) or too little (sedentary lifestyle), together with the appearance of a completely 

new diet, are a key factor underlying the emergence of new diseases in Western society117.

1.1.1. Biology of Knee joint tissues
Adult hyaline cartilage is a tissue with no vascular, lymphatic, or nerve component whose only cell 

element is the chondrocyte, a mesenchymal cell which synthesizes and maintains an abundant pro-

tein-rich extracellular matrix (ECM) at a very low remodeling rate32, 128, 5. The quantity and orientation 
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of these two tissue components (chondrocytes and extracellular matrix) vary depending on their 

location and level of mechanical stress. Water, which is mainly located in the surface regions, with 

a small quantity being located much deeper, accounts for between 65% and 80% of wet cartilage 

weight. This water provides lubrication and a low coefficient of sliding friction to the joint surface 

whereas also participating actively in cartilage nutrition and tissue-based load distribution (Fig. 1). 

More than 90% of the collagen fibers present are type II—although types VI, IX, and XI are also pres-

ent—accounting for 10–20% of the wet weight. Their distribution and organization into a network 

via the different layers provides cartilage with the ability to mainly transfer stress forces. The rest of 

the joint cartilage (10–20%) consists of decorin, biglycans, and proteoglycans, especially aggrecans. 

These components bind to hyaluronic acid (synthesized by chondrocytes and synovial fibroblasts) 

via two molecules, namely chondroitin and keratan sulfate 199. Chondrocytes account for only 1–5% 

of the volume of hyaline cartilage, and are quiescence cells, thus they do not divide in physiological 

conditions. They are responsible for maintaining homeostasis/allostasis in the tissue as a result of 

their high metabolic activity and ability to respond to mechanical stress and biological stimuli by con-

tinually remodeling the ECM, thereby adapting it to its required role. As a functional structure that 

is highly specialized for the efficient lubrication, distribution, and transmission of mechanical forces 

in the joint, AC is a stratified tissue. Thus, as can be seen in Fig. 1, its components are organized into 

four different zones. This arrangement allows the cartilage to transfer the physiological forces to 

which the joint is subjected.

SM is a specialized mesenchymal soft tissue made up of a lining layer with two distinct types of cells: 

synoviocytes that are fibroblastic-like cells and secrete lubricin and hyaluronan, and macrophages, 

although mesenchymal stem cells (MSCs) too have been isolated both in normal and osteoarthritic 

synovial membrane81, 84. MSCs might play an important role as chondroprogenitor cells (CPCs) in the 

reparative response to articular cartilage damage87, 190. Another layer, known as subintima, includes 

blood and lymphatic vessels associated with terminal nerve nociceptors. The multicellularity and 

vascularity endow the SM with a highly reactive capacity against what their cells might interpret as 

an insult or stress (mechanical or biochemical) 187, 193. Such an insult would trigger an inflammatory 

defense response in order to preserve or restore joint tissue homeostasis and function71 (Fig. 1).

 

Stemming primarily from an ultrafiltrate of plasma and secretions of chondrocytes and synovio-

cytes, SF is a viscous liquid composed of hyaluronan (HA) and lubricin, cytokines and growth factors, 

and a minor presence of cells84. Synovial fluid plays a crucial role in joint homeostasis through the  

lubrication of articulating cartilage surface, facilitating the transport of nutrients and waste prod-
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FIG. 1
A. In the complex cartilage-bone-based mechanotransduction system, the mechanical energy applied to the joint is re-
flected  in the extracellular matrix, and subsequently in the chondrocyte nucleus. Joint cell exposure to non physiological 
stimuli leads to a rupture in the cartilage balance between degradation and synthesis  known as cartilage homeostasis.
There appears to be a molecular, cellular, and fluid communication between the cartilage and bone.

B. The survival/viability of the chondrocyte is affected to a large extent by the presence of a sufficient (plasticity), but not 
excessive(degeneration), mechanical stimulus that would inevitably lead to the disarrangement of structures such as the 
subchondral bone mediated  mainly by  deregulated chondrocytes, perpetuating a catabolic microenvironment and even-
tually the joint failure.
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ucts, and the communication between different cell populations of the joint84 where the population 

of MSCs in normal conditions increases after joint structure-damage and osteoarthritis (OA) 93, 136, 192.

SB is a complex structure at the interface between AC and the rigid skeleton composed of epiphyseal 

trabecular bone that  lies immediately below the calcified cartilage , and consists of two different 

anatomical entities, one called subchondral or cortical plate which is nonporous and poorly vascular-

ized cortical bone, and the SB which contains bone marrow (fatty) and trabecular bone 35, 88 with  

blood vessels, sensory nerves, endothelium, osteoblasts, osteoclasts and haematopoietic bone mar-

row 202. Together with the AC, it forms the osteochondral functional unit, which undergoes mechani-

cal stresses that trigger adaptive cell responses and establish a crosstalk among them to adjust their 

architecture to ongoing physical and biochemical challenges 131, 202.  SB play a key role in  both shock 

absorbing by attenuating 30-50 % of the joint load and  by providing the deepest layers of articular 

cartilage with nutrients supply and removal of waste products 88, 127.

 

1.1.2. Homeostasis and joint-tissue damage
At a biomechanical level, knee components work as a network from which the joint´s functional 

property as an organ emerges, a property known as dynamic stability, whose equivalent at the tis-

sular and cellular level is termed tissue and cell homeostasis. Such identities do not imply biological 

constancy but rather dynamic adaptability33. The phenotype of chondrocytes, synoviocytes, and os-

teoblasts is constantly adapting to its dependence on the biochemical, biophysical and mechanical 

loading features of their microenvironment 97, 144, 177, 221. Signals and ligands from ECM drive cell re-

sponses and tightly fine tune the anabolic/catabolic balance in order to maintain or to adapt their 

ECM composition to the ongoing mechanical challenges221, thereby protecting against the deleteri-

ous effect of some supraphysiological stimuli 119. Although the load-bearing capability of articular 

cartilage is largely attributable to pericellular, territorial and interterritorial spatial organization of 

collagens, aggrecans, hyaluronans, and water 199, 216, it is the chondrocyte that senses and distin-

guishes among unloaded, physiological and hyperphysiologic loading magnitudes, and responds ac-

cordingly to them 77, 144, 173, 200, 217 in order to maintain a dynamic homeostasis of ECM by degrading, 

synthesizing, and reassembling it. In the unloaded cartilage, the chondrocyte shows an inhibition of 

aggrecans and collagens synthesis and an enhanced matrix degradation mediated by matrix metal-

loproteinases (MMPs) and A disintegrin and metalloproteinase with thrombospondin motifs (AD-

AMTs). When subjected to physiologic mechanical stress, chondrocyte responds with an inhibition 

of IL-1-induced proinflamatory cytokines production and an increased matrix synthesis whereas in 

the cartilage with hyperphysiologic and injurious strains an increase matrix catabolism, matrix frag-
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ments and necrosis cell in addition to the activation of  proinflammatory pathways leads to cartilage 

destruction 96, 144, 173, 200. 

Tissue interactions govern most developmental processes, from the very early patterning events of 

cell differentiation, through a process called morphogenesis and finally growth of the many organs 

in the embryo. All human synovial joints share the same developmental processes. Formation of 

the skeleton is no exception, and most of the tissues differentiating in the newly forming limb arise 

from mesenchymal cells. These cells give rise to the various articular tissues, with the exception of 

neuronal elements and blood vessels42, 148. The regulation of articular cartilage development and ho-

meostatic processes throughout life is carried out under the influence of numerous growth factors 

and cytokines which act in concert as signaling molecular pathways71, 73.

1.2. KNEE OSTEOARTHRITIS

Knee osteoarthritis (KOA) is a mechanically induced, cytokine and enzyme-mediated disorder un-

dergoing different phases and phenotypes, with pain as the clinical hallmark of the disease 118. Knee 

osteoarthritis encompasses a cluster of degenerative joint conditions with different biochemical, in-

flammatory, and genetic signatures that generates distinct subtypes, evolving in phases, the severity 

of whose single resulting phenotype impacts the quality of life of the patient 96.  Estimates suggest 

that about 46 million patients suffer from OA in developed countries, more than 50% of adults over 

50 years; by 2030 this figure may reach 70 million 69. Despite the enormous effort made to mitigate 

symptoms, what is lacking is an early disease-modifying therapeutic intervention aimed at prevent-

ing the progressive destruction of articular cartilage, or even reversing the initial post-traumatic 

damage. In this absence of a whole regenerative joint therapy, doctors must resort to joint replace-

ment as the only solution for patients in advanced cases of OA139.  

1.2.1. Joint injury and inflammation
Abnormal mechanical stress and/or biochemical mediators variously stemming from trauma, obe-

sity, lesion or disfunction of knee components, as well as metabolic diseases break knee dynamic  

stability and trigger biological responses that disrupt the homeostasis of cells and tissues of the joint 

in a locally, sustained, low-grade inflammatory fashion leading to a matrix degradation (Fig. 2) 25, 187. 
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In OA synovial joints, chondrocytes, synoviocytes, and osteoblasts respond with an early inflamma-

tory catabolic response when subjected to a microenvironment with either non-physiological mag-

nitudes of mechanical loading or pro-inflammatory cytokines, thereby leading to aggrecans deple-

tion, collagen II cleavage, and disruption of water tissue distribution 173, 199. The extracellular matrix 

breakdown of insoluble fibrous structural proteins (collagens, laminins, elastase) and proteoglycans 

carried out by matrix metalloproteinases (MMP-1 and MMP-3) and aggrecanases (ADAMTS-4 and 

ADAMTS-5) lead to both a decrease in load-bearing capacity of articular cartilage and a production 

of fragments which, acting as damage-associated molecular patters (DAMPS) activate pattern-recog-

nition receptors expressed by chondrocytes, synovial macrophages and fibroblasts, and osteoblast 

to express inflammatory cytokines and to influence cell fates 71, 82, 186 (Fig 2). In the wake of this sterile 

matrix degradation of articular cartilage, there is a depletion of aggrecans and cleavage of collagen II, 

which leads to the erosion of cartilage, subsequently altering the nanostiffness of articular cartilage 

and weakening its load-bearing capacity30, 199. Besides the release of matrix-degrading products, the 

ECM degradation deeply impacts the micromechanical environment of chondrocytes and changes 

the magnitude of dynamic compressive forces transferred from them to the underlying bone, and 

these aberrant new sustained (chronic) abnormal forces prompt chondrocytes and osteoblasts to 

respond with a pro-inflammatory gene expression through activation of the NFkB signalling path-

way 79, 144 and increased osteoclastogenesis, thereby increasing bone resorption and sclerosis 174, 177  

respectively. Nevertheless, evidence is accumulating about how alterations of subchondral bone 

induced by mechanical or vascular stresses, might be the start point in the catabolic loop of AC 

degradation and extend to SM (Fig. 2) 34, 118, 127, 162. Cartilage is an avascular tissue whose cells rely on 

synovial fluid and subchondral plate to obtain oxygen and a supply of nutrients, the subchondral 

bone account source for at least 50% of articular cartilage requirements in oxygen and glucose 88, 

127. Therefore, despite the fact that tracking down the “first pathogenic event” responsible for the 

initiation of KOA still proves an elusive quest, any induced mechanical or metabolic damage to joint 

tissues in combination with predetermined influences such as genetic, obesity, and aging, paves the 

way to initiating a  harmful joint environment involving AC, SM, and SCB, and then it is difficult to 

establish who was first 108. The neurovascular structures of the knee are rife with nociceptors, which 

together with synovial fibroblasts and macrophages possess Toll-like receptors (TLRs) 126. Subchon-

dral bone has always been present in the equation of OA pathogenesis 107, 161, and  the hypothesis 

that changes in the subchondral bone may play a pivotal role in the development and progression of 

articular cartilage breakdown and might even precede the latter 35, 225  Pelletier 2005 (del 2015????) 

is increasingly recognized mainly associated with the mounting evidence in the crosstalk or commu-

nication between the SB and AC 106, 150, 151, 202, 204 (Figs. 3 and 4)
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FIG. 2
Abnormal distribution of mechanical loading across joint cartilage breaks the homeostasis of articular cartilage and pro-
vokes adaptive or catabolic cell responses, which leads to an increased synthesis of matrix metalloproteinases (MMPs) 
and aggrecanases (ADAMTS), expression of proinflammatory cytokines and mediators such as interleukin-1B (IL-1B) and 
cyclooxygenase-2 (COX-2), high levels of reactive oxygen species (ROS), disruption of water tissue distribution, and matrix 
fragments 30, 70, 72, 199. Proinflammatory cytokines involved in OA,  such as IL-1B and TNF-a are major players in the 
destruction of AC by  inhibiting the synthesis of aggrecans and collagen type II while at the same time  stimulating the syn-
thesis of  MMPs in chondrocytes 96. It has been reported that activation of TLRs of synovial macrophages and fibroblasts, 
and monocytes by DAMPs present in an inflammatory SF, is an important pathway in promoting synovitis in OA through the 
NFkB pathway 186, cells that respond with the production of MMP-1, MMP-3, and MMP13, IL-1B, TNFa, and IL-6 among 
other catabolic mediators, promoting synovitis in OA 96, 186, 193.
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FIG. 4a FIG. 4b

FIG. 4
Infiltration of activated PRP previously stained with methylene blue performed in sheep`s joint to ascertain its diffusion 
across the joint. Once the animals were put down and the joint opened, we infiltrated the femoral condyle as well, and 
took these picture in which first the PRP liquid-to-gel ·3D injectable scaffold had been converted into a matrix-like viscous 
and malleable structure, which adhered to synovium and covered it , and second it diffused across the condyle (Fig. 4 
unpublished data).

FIG. 3
This schematic drawing illustrates the outside-in (AC-SB) and inside-out (SB-AC) flow of mediators and cells. SB as a point of 
egress of morphogens and cells, through the channels and vessels breaching the osteochondral junction, partially recruited 
by the osteoarthritic synovial fluid106, 202. This cell invasion of cartilage might be facilitated by the loss of aggrecans, collagen 
II cleavage, and disruption of water tissue distribution 199 of the AC as well as by the secretion by MSCs of fibrinolytic en-
zymes 145. The excessive presence of TGFB1 and VEGF in OA subchondral bone 106, 202, 225 could be a driving factor for changes 
in osteoblast-osteoclast coupling thereby leading to a bone remodelling imbalance 106, 204, 224, overexpression of NGF, and 
fibroneurovascular growth, all of which are changes that additionally might well contribute to overlying cartilage degrada-
tion 224, 225, pain 35, 131, 202 and an osteoarthritic joint 224, 225.

FIG. 3
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1.2.2. Interaction between tissues, cells, and biomolecules at knee joint level
OA is driven primarily by both mechanical stress and inflammatory signals (IL-1β and TNFα) or-

chestrated by the NF-kβ signaling molecules which have been shown to mediate articular cartilage 

degradation by upregulation of matrix-degrading MMPs 72, 132. The activation of the NF-kβ signaling 

pathway can generate altered states of quiescent chondrocytes thereby pushing chondrocytes to a 

more differentiated, hypertrophic-like state in an attempt to maintain or restore tissue homeosta-

sis, as well as recapitulating some developmental cell phenotypes 72, 132, 205. A variety of cells and cell  

signaling molecules, which dynamically form the structural network of the joint tissues, are extreme-

ly well communicated and may use the fluid flow to migrate and reach injured areas mainly attracted 

by cell signaling factors, biochemical gradients and matrix fragments 66, 98, 206. Cells from different tis-

sues of the joint but chiefly the quiescent chondrocytes undergo and sense nonphysiological stimuli 

as an insult, modulating and taking on a different phenotype whose gene expression products (an-

abolics and catabolics) orchestrate a defense-inflammatory response 72, 185, 207 in a miscued attempt 

to either maintain the tissue homeostasis and integrity or mimic the repair process (Figs. 1 and 2). 

Nevertheless the tissue response turns out to be catabolic, thereby altering the cells’ microenviron-

ment and breaking down the extracellular matrix. The response of chondrocytes in the osteoarthritic 

cartilage is heterogeneous and oriented towards hypoanabolism, which encompasses cell prolifer-

ation, apoptosis, and phenotypic alterations. Such a response results in a reactive or hypertrophic 

chondrocyte phenotype known as deregulated chondrocytes 72, 185, 205 whose catabolic gene-expres-

sion causes a net loss of extracellular matrix 185. Not only chondrocytes but also synovial macrophag-

es and fibroblasts influenced in a paracrine manner take on a pro-inflammatory phenotype 24, 71. The 

extracellular matrix which is made up mainly of water, type II collagen and aggrecans, drains away 

and degenerates as a consequence of the action of catabolic cytokines (TNFα and IL-Iβ), metallopro-

teinases (MMPs, MMP13), and aggrecanases (ADAMTS). These products are primarily released by 

chondrocytes, synoviocytes, and mononucleated cells, breaking the collagen and aggrecans down 

in a slow and relentless degenerative process 72, 185 and thereby giving rise to articular chondrocytes 

expressing classic hypertrophic markers (characteristic of the growth-plate chondrocytes) and apop-

tosis 1, 72, 157. 

1.2.2.1. Synovial membrane and subchondral bone in OA
In recent years, a great deal of evidence has been accumulating in favour of seeing  as decisive  the 

contribution of synovitis and SB on articular cartilage degradation, and on the progression of OA, 

where AC may after all be the victim, and not the only culprit of catabolic inflammatory cytokines 
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stemming from SM and SB, and triggered by abnormal mechanical stresses (Fig. 2) 30, 88, 96, 127, 160, 186, 193. 

Hence, cartilage integrity is highly dependent on the underlying subchondral bed and vice versa, as 

well as on a healthy synovium and its product the synovial fluid (Fig. 3) 20, 162.

Evidence has been mounting for the role of synovium inflammation in the pathogenesis and progres-

sion of OA 48, 186. Matrix-degradation products such as fibronectin, tenascin C, high-mobility group 

protein B1 (HMGB1), and low molecular-weight hyaluronic acid (LWHA) among others within the  

SF 187, 193 can act as Toll-like receptor (TLR) ligands or damage-associated molecular patterns (DAMPs) 

and activate TLR-2 and TLR 4 of synovial macrophages and fibroblasts, chondrocytes, and osteo-

blasts, leading to the activation of the intracellular signaling pathway nuclear factor kappa B (NFkB) 

(Fig. 2) 132, 186. The activation of the NFkB signaling pathway mediates the expression of several inflam-

matory genes and  the synthesis of interleukin 1beta (IL-1B), interleukin 6 (IL-6), interleukin 10 (IL-

10), nitric oxide (NO), prostaglandine E2 (PGE2), tumor necrosis factor alpha (TNF-a), interferon gama 

(IFN-j), and nerve growth factor (NGF ) among other inflammatory cytokines (Fig. 2 and 5) 71, 72, 96, 132, 

186. Moreover, NFkB transcription factor has been postulated as a functional connection among the 

mechanobiological, developmental programming and stress-inflammatory responses of AC, SM, and 

SB, making  the NFkB signaling pathway a potential multi-faceted target in OA disease (Fig. 5) 132, 134. 

Another pathway involved in OA synovitis is the activation of complement as it has been shown by 

Wang et al (2011) who reported that the expression and activation of complement is abnormally high 

in the human OA joint, where  the presence of some products of dysregulated cartilage remodeling 

such as fibromodulin, cartilage oligomeric matrix protein (COMP), and osteoadherin  in synovial fluid 

and membranes might account for this activation 186. Important clinical features of the inflamed syn-

ovium are pain, swelling, and stiffness 193, whereas hystopathological changes are characterized by 

an uneven, abnormal cell infiltration  and an aberrant proliferation of macrophages, fibroblasts, and 

blood and lymphatic endothelial cells that lead to a neofibroangiogenesis 193. SM and SB are highly 

vascularized and innervated tissues endowed with heat receptors, chemoreceptors, and mechano-

receptors from where nociceptive stimuli, coming from a microenvironment undergoing non-phys-

iological mechanical loading and/or pro-inflammatory cytokines and damage-associated molecular 

patterns (DAMPs), might initially lead to peripheral and eventually both peripheral and neuropathic 

pain by mechanisms yet to be fully identified 126, 186. In addition, proinflammatory cytokines may 

contribute to pain by stimulating hyperalgesia and sensitizing joint nociceptors to other stimuli 186, 193 

thereby perpetuating a catabolic vicious circle among SM, AC, and SB (Figs. 2, 3, and 5).
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1.2.2.2. Joint Inflammation and Mesenchymal Stem Cells
Aggression and inflammation to AC, SM, menisci, and ligaments has been reported to bring about an 

increase of MSCs in SF 137, 192, which is commonly interpreted as a tissue response to injury 93, 137 equiv-

alent to the response of migratory chondrogenic progenitor cells from SB to injured cartilage 99,194. 

FIG. 5
The repertoire of antiinflammatory responses induced by PRP may break the catabolic loop, and dampen inflammatory 
response in SM and AC when these cells are exposed to proinflammatory cytokines and to abnormal mechanical stress and 
DAMPS, which is the significant OA context 70, 118, 186. This sterile disruption of ECM homeostasis in osteoarthitic joint and an 
early inflammatory response  has been suggested to resemble a chronic injury 187.
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Moreover, several studies have reported that the accumulation of SF MSCs increases with the severi-

ty of osteoarthritis, joint damage and the disease duration 21, 114, 192. Healthy human and osteoarthritic 

cartilage and SF contain a population of cells with characteristics of mesenchymal progenitor cells 93, 

158 with migratory and chondrogenic potential 93, 99, 112, 138. According to these observations, endoge-

nous mesenchymal stem cells have been postulated as a reservoir of repair cells and immunomodu-

latory drugstore cells to dampen inflammation 195. Although the source of MSC increase has yet to be 

determined, the most likely origin may be the SM 93, 192, the breakdown zone of superficial AC 158, and 

the SB 99, 106, 194, 202. However, the SB origin of SF MSCs is less likely to occur for as some authors have 

suggested, the marrow of patients with severe OA is almost depleted in MSCs and the remaining 

MSCs are functionally deficient 21.

The chondroprogenitor cells (CPCs), with MSC features have a multipotent differentiation capacity 

towards the chondrogenic lineage 99 and may be the target of the GFs which traffic cell information 

through the MSCs by their trophic activity 39. These multipotent cells might offer us the most valu-

able component when it comes to the repair process, namely, cells 38. A similar process appears to 

be responsible for fibrocartilage repair synthesis when the Pridie drilling procedure is carried out in 

some reconstructive cartilage surgeries. This surgical procedure has presumed that the adult mar-

row-derived mesenchymal stem cells (MSCs) from the subchondral bone, are able to differentiate 

into bone, cartilage, muscle, marrow stroma, tendon-ligament, fat and other connective tissues37. In 

addition to the subchondral bone marrow, the synovium is another important source of MSCs in the 

joints tissues showing a high chondrogenic potential comparable to that of bone marrow-derived 

MSCs 87, 190. 

1.2.2.3. The role of SB in pathophysiology and clinical symptoms of osteoarthritis
Bone, like cartilage, responds to mechanical stress in an intensity-dependent manner and a tight 

regulation between the sequential processes of deposition and resorption at the same site. These 

processes are carried out by the coupling of osteoblast and osteoclast metabolic activities 79 and 

unlike cartilage, when damaged regenerates spontaneously due mainly to its high elevated vascular 

and cellular network 83. Evidence is gathering not only about the involvement of bone, and more 

particularly SB in the development and progression in OA but also about how these SB changes 

might even precede changes in AC of OA joints 97, 107, 108, 162, 202, 224. SB has always been present in the 

equation of OA pathogenesis, and more than 40 years ago, partially inspired by the 1827 proposal 

by surgeon Dr. P.P. Physick on the SB as an effective shock absorber, Radin et al161, 162, suggested a 

cause-effect connection among mechanical loading, subchondral bone sclerosis, and osteoarthritis. 
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SB is the layer of bone which lies immediately below the calcified cartilage 145, and consists of two 

different anatomical entities, one called subchondral or cortical plate which is nonporous and poorly 

vascularized cortical bone, and the SB which contains bone marrow (fatty) and trabecular bone 35, 

88. Together with the AC, it forms the osteochondral functional unit, which undergoes mechanical 

stresses that trigger adaptive cell responses and establish a crosstalk among them to adjust their 

architecture to ongoing physical and biochemical challenges 131, 202. In the functionality of the oste-

ochondral unit, articular cartilage provides an elastic, gliding, smooth frictionless surface, while SB, 

a very low viscoelastic structure, together with periarticular muscles and ligaments, acts as shock 

absorber structures, accounting for 30% and 50% of the total absorbing energy and only 1-3% for 

the AC 30, 88. Besides the pivotal shock absorbing function, SB is a source of vessels whose perfusion 

rate enables an important nutritional route for AC but any damage to this microvasculature affects 

venous bony circulation thereby altering cartilage and chondrocyte function 88, 106, 127. 

1.2.2.3.1. SB turnover and structural changes in OA
The osteochondral unit in an OA joint undergoes several structural changes including loss of articular 

cartilage, development of inflamed synovium, calcified cartilage thickening and tidemark duplica-

tion, undermineralization of bone, sclerosis and stiffness of SB, bone marrow lesions (BMLs), cysts, 

osteophyte, and a localized bone marrow replacement by fibroneurovascular tissue 97, 106, 150, 202.

Despite the high turnover of SB in OA, an uncoupling between bone formation and resorption at 

the same site leads to an increase in bone volume without a concomitant increase in bone mineral-

ization pattern 79, 97, 108.This SB sclerosis is characterized by an increase of the osteoid volume, and a 

decrease of calcium bind to collagen fiber, and is associated with a gain of trabecular thickness, loss 

of trabecular number, and a trabecular network more separated and less interconnected 79, 224. It has 

been suggested that sclerotic subchondral bone, localized at subchondral plate, could decrease the 

load transfer to the underlying bone tissue leading to osteoporotic-like changes 106. Moreover, SB 

can undergo microdamage, such as microcracks and clefts,  that modify SB stiffness and reduce the 

shock-absorbing capacity of SB, thereby making chronic a microdamage context and perpetuating 

an accelerated bone remodelling, which impairs normal  mineralization of bone once it has been de-

posited, most likely by an altered osteoblastic phenotype 35, 36, 106. Magnetic resonance imaging (MRI) 

has helped to detect subchondral bone marrow edema-like lesions (BMLs), which have been found 

to be associated with pain  and  disease progression in KOA 63,  and together with bone attrition, are 

strong indicators of a structural deterioration in KOA 106. Several studies paralleling MRI bone marrow 

edema lesion studies with histological analysis of SB retrieved at the time of joint replacement, re-
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vealed microfractures and increased bone remodelling, subchondral ingrowth of fibrovascular tissue 

and increased vascularity, as well as various types of bone marrow fibrosis 203. These observations 

were confirmed in rodent models of OA 130, 202. The increased activity of osteoclasts in OA cause 

channels to extend from SB to AC, passing across the calcified tissues into the noncalcified articular 

cartilage 131. The neurovascular invasion of those new-formed channels is accompanied by a new 

fibroneurovascular mesenchymal tissue within the channel along with cells such as macrophages, 

osteoclasts, osteoblasts, and endothelial cells, which interact to stimulate angiogenesis and growth 

of sympathetic and sensory nerves 202 and reach the noncalcified cartilage, a finding which has been 

supported by animal models of OA (Fig. 2 and 3)202.

1.2.2.3.2. Cellular interactions and molecular crosstalk in osteochondral unit in OA 
There is now good evidence that even in a non-diseased joint, naturally occurring pores and holes en-

able communication between SB and AC via diffusion of small molecules 124, 150, 151. This communication 

may be exacerbated by structural changes seen early in the osteochondral unit in OA. The increased 

osteoclastic activity in the OA subchondral plate97 may increase the permeability of bone-cartilage in-

terface by inducing channel formation in the tidemark, in addition to the existent aberrant fibroneu-

rovascular tissue and vasculature, and mechanical stress-induced microcracks 35, 202, 204. Reinforcing 

this view, Pan et al 151 have demonstrated the diffusion of small-size molecules between SB and AC by 

utilizing the FLIP method with sodium fluorescein in the distal femur of mice, and this communication 

is greatly increased in osteoarthritic joints of the mice model 150. Therefore, the presence of these 

connections enables an elevated crosstalk among chondrocytes, osteoblasts, osteoclasts and MSCs 

through biological factors and signalling pathways (Fig. 2 and 3).

Several in vitro and in vivo studies have demonstrated that osteoblasts from sclerotic subchondral 

bone show an altered phenotype. Westacott et al 215 reported that osteoblasts in OA-affected bone 

exhibited a different phenotype, whose activity can degrade articular cartilage in vitro. Supporting 

this observation, [76] Hilial et al 80 reported that osteoblasts from OA subchondral bone have an ab-

normal metabolism with increased levels of PGE2 and TGFβ (Figs. A and B). Using a co-culture model 

of OA subchondral bone osteoblasts with chondrocytes, Sanchez et al reported that osteoblasts 

induced a catabolic response of chondrocytes including a decrease in aggrecan, type II collagen and 

SOX-9, and an increase of MMP-3 and MMP-13 among other mediators 175, 176. Moreover, osteoblasts 

from scletoric subcondral bone have an elevated TGFβ expression 79 and under cyclical compression 

express proangiogenic factors such as VEGF, FGF, and IL-8 177. Hepatocyte growth factor (HGF) is 

a pleiotropic morphogen present in articular cartilage but produced by osteoarthritic subchondral 
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bone osteoblats, osteoclasts, and MSCs 74, 75, 198, with likely implications in both the chondrocyte an-

abolic state and  the proliferation of an invasive fibroneurovascular tissue in SB 75, 108, 223, the latter 

when an uncoupling osteoclast-osteoblast activity may lead to an overexpression of HGF (Figs. 2 and 

3) 74. The excessive presence of TGFB1  and VEGF in OA subchondral bone 202, 225 could be a driving 

factor for changes in osteoblast-osteoclast coupling thereby leading to a bone remodelling imbal-

ance 106, 224, NGF expression 26,  and fibroneurovascular growth changes that  additionally might well 

contribute to overlying cartilage degradation 224, 225, pain 35, 131, 202 and an osteoarthritic joint 224, 225. In 

a recent study, Zhen et al. 225 showed that by inhibiting TGF-β signalling in a specific population of 

MSCs present at the SB (Nestin positive MSCs), the severity of OA was reduced, a change associated 

with improvement of bone parameters, cartilage structure and joint function without affecting TGFB 

signalling in AC (Figs. 2 and 3) 225. In fact, previous studies have shown that the decrease of MSCs 

in the synovial fluid, in low degree OA, suggests clinical improvement 192. MSCs from osteoarthritic 

bone marrow have been reported to be substantially reduced in yield and proliferative activity be-

sides showing a weakened chondrogenic and adipogenic activity and increased osteogenic activity 

21. However, in vitro studies indicate that the inclusion of growth factors, as a supplementary culture 

medium, can be beneficial in reverting their chondrogenic activity 189. 

1.2.3. Current therapeutic approaches to treat knee osteoarthritis
The appropriate treatment of cartilage injuries and OA remains a daunting clinical challenge despite 

advances in both pharmacological managenment of the pain and inflammation, and advances in the 

surgical procedures and techniques and, in extremis, OA has been considered a disease with no cure 
85. Despite the enormous effort made to mitigate symptoms, what is lacking is an early disease-mod-

ifying therapeutic intervention aimed at preventing the progressive destruction of articular cartilage, 

or even reversing the initial post-traumatic damage. In this absence of a whole regenerative joint 

therapy, doctors must resort to joint replacement as the only solution for patients in advanced cases 

of OA 139. Among the new emerging treatments to address this pathology, mesenchymal stem cells 

(MSCs) and Platelet Rich Plasma (PRP) stand out 168. MSCs present an important therapeutic poten-

tial promoting regeneration derived from their proliferative and multipotential properties that could 

lead to the formation of new chondrocytes and cartilage regeneration, a process that has been ob-

served in promising preclinical studies and clinical trials 65, 91, 167. However, there are still specificities 

on this broader treatment that require deeper analysis, probing such questions as which cell sources 

are more appropriate, whether there may be an influence on therapeutic effectiveness from in vitro 

expansion, dosage, and the delivery method 143.
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Since it is yet to be established which of the joint tissues or structures is the primary driver of knee 

OA, and therapeutic strategies solely targeting one cell or tissue target may well be proved to fail 92, 

it is advisable that approaches to treat OA should be aimed at reaching several joint tissues with the 

purpose of reducing joint inflammation, controlling pain, improving joint functionality, and restoring 

tissue homeostasis. 

1. 3. AN INNOVATIVE BIOLOGICAL APPROACH TO THE TREATMENT OF OSTEOARTHRITIS:  

PLATELET-RICH PLASMA

1.3.1. The scientific rationale underlying PRPs as therapeutic 
1.3.1.1.Platelets as a source of growth factors
Mammal platelets are circulating monitors, trackers and surveyors of the integrity of the vascular 

system and of the internal milieu as well as carriers of cytokines, chemokines and growth factors, 

fulfilling the function of coordinators of coagulation, inflammation and repair processes31, 188. In ad-

dition to these bioactive mediators (α-granules: TGFB, PDGF, VEGF, FGF, EGF, IGF-1, HGF, BMPs, BDNF 

and dense granules: Histamine, Serotonin, Ca and ATP/ADP) there are other contents in the plasma 

of PRPs (IGF-1, HGF, fibrinogen, fibronectine and other proteins) which together with adhesive pro-

teins expressed by activated platelets, all play a central role in the cell signaling pathways involved in 

both tissue injury recognition and in the repair of damaged tissues31, 146. Platelets appear to be cru-

cial in post-embryonic morphogenesis in identifying tissue loss or injury, factors that activate plate-

lets thereby releasing by degranulation, growth factors and cytokines which trigger mechanisms to 

reconstruct structures and restore function mainly by stimulating cell migration and proliferation, 

regulating angiogenesis, chemoattracting circulating progenitor cells and guiding tissue remodeling3, 

15, 67, 133. Drawing on these mechanisms and observations made by Crisan and col.45 and Caplan 37 

concerning the immunomodulatory and trophic effects of MSCs37, 45, it might be possible to suggest 

a synergy between platelets and MSCs. 

Although a universally accepted definition of PRPs in terms of platelet concentration and presence or 

absence of leukocytes is lacking, PRP products can be depicted as an autologous platelet concentrate 

within a plasma suspension, and whose composition is determined by the method used to obtain it. 

Platelet Rich Plasma products include plasma and twofold or more increases in platelet concentra-

tions above baseline levels, and the concentration of leukocytes and erythrocytes varies widely28, 49 
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from a complete absence of products to a high concentration of them. In particular, PRGF is depicted 

as an endogenous blood-derived product which conveys growth factors, cytokines, and morphogens 

contained in the platelets as well as fibrinogen and other plasmatic proteins in a biologically bal-

anced aggregate, and managed and delivered in a pharmacological manner6, 13. This multifaceted, 

versatile, biological system is made up of an autologous, balanced blend of plasma with a moderat-

ed platelet concentration (a two-third-fold increase compared with peripheral blood) that does not 

contain leukocytes or erythrocytes. The process of platelet activation and hydrolysis of prothrombin 

into thrombin is driven by the addition of calcium chloride, simultaneously causing the release of a 

plethora of growth factors and the polymerization of fibrin5, 146. 

Besides conveying GFs, PRGF provides the damaged tissue with a transient biological scaffold made 

up of fibrin which stems from the polymerization of fibrinogen, a pleiotropic blood protein that 

regulates coagulation, inflammation, and tissue regeneration 16, 133, 146. The three-dimensional net-

work, formed either “in vitro“ as a clot or “in situ” as an extracellular matrix after the intraarticular 

infiltration over injured areas, contains  binding sites for cell adhesion as well as proteins such as 

thrombospondin-1 (TSP-1),alpha-1-antitrypsin fibronectin, acute phase proteins or proteins related 

to lipid metabolisms (Fig. 6). 

FIG. 6
PRGF preparation process with two formulations for molecular intervention, a liquid injectable scaffold and in vitro formed 
membrane-scaffold. The generated fibrin matrix is embedded with a pool of growth factors stemmed from activated plate-
lets and plasma. GFs are released in a gradual and sustained manner at the dysfunctional and degenerated sites as the 
fibrinolytic process takes place. 
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Since cells that make up and populate musculoskeletal tissues, including chondrocytes are mech-

ano-sensive, in this varied molecular landscape, migratory cells such as MSCs and CPs might adhere 

and undergo physiological loading, thereby regulating their gene expression and eventually repair-

ing the injured tissue; cells cannot express a physiological phenotype in an empty space. Therefore, 

after the intraarticular infiltration over the injured areas, a fibrin-scaffold formed “in situ” as an 

extracellular matrix, serves as a highway for mechanical energy to transit from the environment to 

the cell, thereby bridging cell-to-cell tissue transition, promoting multi-cellular assembly and provid-

ing mechanical support as well as endowing tissues with a suitable microenvironment for biological 

restoration13, 146. Since they are autologous, bio-reabsorbable, bio-compatible, and free of leukocytes 

and red cells, PRGF scaffolds are the best tailored among all the tissue engineering materials. 

1.3.1.2. Growth factors and PRPs in cartilage repair

GFs are biochemical modulators and regulators which are shared with developmental biological 

processes and will be redeployed for tissue repair after injury123, 205. Transforming growth factor-β 

superfamily (TGFβ) has been shown to play an anabolic role in cartilage repair. In particular, TGFβ1, 

the major growth factor within PRPs and one of the most important in cartilage regeneration, stim-

ulates both chondrogenesis of synovial lining and  bone marrow-derived MSC62, 105 and chondrocyte 

synthetic activity with matrix deposition 68. Moreover, TGFβ1 counteracts the catabolic activity of 

IL- β1 including the degradation of type II collagen and proteoglycan produced by chondrocytes50, 

159 and increases chondrocyte phenotype expression196. Insulin-like growth factor (IGF-1) is another 

component of PRPs with a potent anabolic effect on articular cartilage metabolism and its presence 

is required to maintain the integrity of articular cartilage57. In addition to positive influence of IGF-1 

on the repair of extensive areas of damaged cartilage and protection of the synovial membrane from 

chronic inflammation67, IGF-1 is, together with PDGF, a potent chemotactic factor for chondrocytes,  

which stimulates  synthesis of extracellular matrix in human osteoarthritis but does not avoid the 

matrix catabolism141. Moreover, its presence in cartilage enhances the effect of other Growth factors 

present in articular cartilage147.

PRP application to cartilage repair is underpinned by a substantial body of evidence in basic science, 

as well as in preclinical and clinical levels of practice. In vitro, treatment of mature porcine chondro-

cytes with L-PRP releasate stimulates cell proliferation, and glycosaminoglycan and collagen synthe-

sis3. The presence of PRGF releasate without leukocytes on human osteoarthritic synoviocyte cul-

tures enhances the synthesis of Hyaluronic acid (HA) and HGF compared to synoviocytes cultured on 
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a platelet-poor medium. Moreover, the enhanced secretion of HA and HGF by PRGF was maintained 

despite the fact that synoviocytes were treated with interleukin-1β12, 15. In one proteomic study con-

ducted on human osteoarthritic chondrocytes cultured with different mediums, the  PRP-enriched 

medium showed to be more efficient than other mediums at increasing cell proliferation and revert-

ing and restoring the pattern  of gene expression determined in a normal chondrocyte phenotype 

without undergoing hypertrophy23, 197. Bendinelli et al. have reported an important HGF-mediated 

anti-inflammatory and anabolic effect of platelet-rich plasma on immortalized chondrocytes lineage 

by attenuating or reducing the transactivating activity of NF-kB23, a proposal that has been reinforced 

by the results obtained in osteoarthritic chondrocytes by van Bull et al209. (2011). In addition, PRP de-

creased the expression of COX2 and CXCR4 target genes, whose products might be involved in con-

troling chemotaxis of inflammatory cells such as monocytes thereby reducing local inflammation23. 

Wu et al219 have shown, using a 3D in vitro model, that the combination of PRP with a collagen ma-

trix (with immortalized human chondrocytes) recovered type II collagen and proteoglycan synthesis 

which had been inhibited by 3 days of treatment with IL-1β+TNF α, thereby illustrating the protective 

efficacy of PRP on chondrogenic-specific gene expression such as Col lI and AGN219. In another recent 

study, Anitua et al. determined  that  synovial fibroblast culture incubated with PRGF +HA induced a 

greater increment in synovial cell migration compared with the response to HA alone8.

Furthermore, drawing on the aforementioned evidence, some in vivo studies have used PRP in an 

attempt to restore local hyaline cartilage injuries. When PRP liquid was loaded in microporous po-

ly-lactic-glycolic acid scaffolds and applied on large osteochondral defects in a rabbit model, the 

neo-chondrogenesis induced showed chondrocyte-like cell and a high ECM synthesis and the defects 

were totally filled with a repair tissue similar to hyaline cartilage, compared with the control that 

showed a fibrous tissue repair200. The preventive effect of PRP infiltrations delivered in gelatin hydro-

gel microspheres in a rabbit model has been reported, showing a suppression of histomorphologic 

signs of the OA progression compared with microspheres containing PPP.  Therefore it has been 

suggested that the treatment of OA might be carried out using a combination of growth factors67, 125, 

205 in an attempt to redress the extracelular matrix through the cells behavior. 

1.3.2. PRP as an emergent and promising knee osteoarthritis treatment
Despite important advances made in the development of treatments to reduce pain and inflamma-

tion, and in spite of endeavors to develop an efficacious and early disease and structure-modifying 

therapeutic intervention, the path to osteoarthritis treatment remains elusive. 
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1.3.2.1. Inflammation and oxidative stress
In vitro and in vivo studies have reported that PRP and GFs within it such as HGF, IGF-1, PDGF, and 

TGFB, and platelet microparticles have proven to exert an immunomodulatory effect and promote 

an antiinflammatory environment. HGF and platelet microparticles have been reported to polarize 

macrophages from M1 to M2 phenotype44,164, 211. IGF-I, PDGF, HGF, and PRP releasate modify the 

inflammatory status of chondrocytes by suppressing the NF-kβ signaling pathway23, 140, 209 (Fig. 3), 

which might lead to the decreased presence of IL-B, and  TNF-α  and other  pro-inflammatory cy-

tokines in synovial fluid 60, 186. Reinforcing this interpretation, Anitua et al reported that LPS-treated 

osteoblasts and fibroblasts which had been cultured in the presence of releasates obtained from 

PRP without leukocytes, showed an increased expression of Ikβ-α, an antiinflammatory protein that 

anchors the transcription factor NF-kβ to the cytoplasma and inhibits its activation, whereas releas-

ates obtained from leukocyte-rich PRP induced a NF-kβ activation17. In one recent study, Xie et al220 

reported that PRP attenuated the multiple-cyclic tensile stain mediated MMPs, NO, and PGE2 syn-

thesis in chondrocytes, suggesting that PRP may protect chondrocytes from mechanically induced 

injury. Connective tissue factor (CTGF), one of the most abundant growth factors released by platelet 

activation103 was reported to protect chondrocytes from age-related degenerative changes and from 

cellular stress, the latter mediated through NF-kβ89.  

On the other hand, synovial fibroblasts from osteoarthritic patients cultured in 20% PRP supernatant 

produced a significant amount of HGF, even in the presence of IL-1β, which is known to inhibit the 

NFkβ on macrophages44 and to mediate the antiinflammatory effects of PRP on fibroblasts226. In a 

recent work, Assirelli et al19 observed that L-PRP (leukocyte-rich PRP)-treated human synoviocytes 

sustained a long-term upregulation of  IL-β, IL-8 and FGF-2, together with a down-regulation of HGF 

and TIMP-4 expression, two anti-catabolic mediators in cartilage, the former indicating a proinflam-

matory and procatabolic response.  These observations were not present when the culture medium 

was obtained by P-PRP (Pure PRP) or PPP (Poor PPP), a notable signal that suggests there is indeed 

an impact of leukocytes on the biologic effects of PRP. This repertoire of antiinflammatory respons-

es induced by PRP may break the catabolic loop, and dampen inflammatory response in SM and 

AC when these cells are exposed to proinflammatory cytokines and to abnormal mechanical stress 

and DAMPS, which is the significant OA context  (Figs. 2, 3, and 4)187. One cellular process that ac-

centuates the catabolic state of the AC and SB is the oxidative stress resulting from the imbalance 

between levels of reactive oxygen species (ROS) relative to antioxidant, which is amplified by aging70, 

122. Osteoblasts cultured in the presence of PRP supernatant showed an up-regulation of NrF2-ARE 

pathway and subsequent activation of antioxidant response element (ARE), an important mecha-
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nism involved in detoxifying ROS and protecting chondrogenic and osteogenic precursor cells208. 

Moreover, intraosseous infiltrations of PRP in mice can revert the decreased expression of SIRT1 in 

bone-marrow derived stem cells from aged animals, making stem cells more resistent to oxidative 

stress and maintaining their stemness, suppressing adipogenesis within the bone marrow and im-

proving osteogenesis and bone mineral density120, 121. Hence, PRP might additionally play a role as an 

anti-aging factor by stabilizing AC and protecting SB against oxidative stress76, 89, 120, 121, 208. However, 

as aging is one physiological risk factor for developing OA122, there are some age-related changes in 

the composition of PRP, such as the reduction of IGF-1 and PDGF in elderly people, two important 

chondrogenic mediators55, that might account for some contradictory outcomes in the application 

of this therapy.

1.3.2.2. OA and Pain
Pain is considered the clinical hallmark of KOA, and several clinical trials have been conducted to 

assess the efficacy of intraarticular injections of PRP for both pain and function of the knee. There 

are several relevant studies demonstrating a significant pain reduction and an improvement in knee 

joint physical function210, 212 in patients with KOA treated by 3 weekly infiltrations of PRP64, 152, 178, 182, 

184, 210. The mechanism/s causing osteoarthritis pain remain yet to be fully identified126 as do the  

proposed mechanisms of PRP effectiveness. Two mechanisms might likely link the pain reduction to 

PRP treatment. The first is the suppression of NFkβ on intraarticular inflamed cells, which leads to 

the reduction of proinflammatory cytokines that otherwise, might contribute to pain by stimulating 

hyperalgesia and sensitizing joint nociceptors to other stimuli186, 193. The second is the reported sig-

nificant amount of endogenous cannabinoids within PRP51 that might act as ligands for cannabinoid 

receptor 1(CB1) and 2 (CB2) of chondrocytes, synovium cells, and bone cells56, 129, 166 of OA patients, 

thereby supporting both a pain and inflammation reduction by targeting the endogenous cannabi-

noid systems  (Figs 2, 3, and 4) 51, 56, 129, 166.

1.3.2.3. Trophic and anabolic effects
PRP has been shown to have a consistent in vitro proliferative effect on cultured human chondro-

cytes in a  dose-and time-dependent manner41, 54, 171, 197 and on rabbit chondrocyte when GFs are 

delivered in a sustained manner through the upregulation of CB1 and CB2 receptors114. Moreover, 

an in vitro and in vivo anabolic effect of PRP on chondrocytes has been reported by increasing the 

synthesis of proteoglycan and collagen type II3, 219 or decreasing catabolism by reducing MMP-13 

expression and TNF-α concentration in synoviocyte and cartilage co-cultured systems with PRP me-

dia201. Another chondroprotective effect is based on the visco-inducing effect of PRP, which stimu-



Mikel Sánchez

PLASMA RICH IN GROWTH FACTORS TO TREAT KNEE OSTEOARTHRITIS

46

INTRODUCTION

lates the synthesis of hyaluronic acid and lubricin by synoviocytes and chondrocytes respectively12, 

171, 201, which help restore  the SF homeostasis and function (Fig. 7), the latter preventing chondrocyte 

apoptosis, synovial cell overgrowth, cartilage breakdown, and inhibition of the MSC release and mi-

gration61, 90, 102, 171.  On the other hand, platelet rich plasma obtained by apheresis, and characterized 

by a low platelet concentration and very few leukocytes has been shown to exert positive effects on 

migration, proliferation and chondrogenic differentiation of cultured human subchondral mesenchy-

mal progenitor cells 100, 101, 102.

Several soluble morphogens embedded in a fibrin network such as IGF-I and -II, PDGF, SDF-1, TGF-β, 

CCL5 and fibronectin, among other biomolecules, have been shown to be involved in the recruit-

ment and homing, and in a chondrogenic-differentiation effect of PRP on  chondroprogenitor or 

MSCs from subchondral mesenchymal progenitor cells90, 102, 104, 165. Last but not least, uncontrolled 

angiogenesis and fibroneurovascular tissue proliferation are two histological features of osteoar-

thritic SM and SB. Despite the fact that PRP contains proangiogenic and profibrotic growth factors 

(VEGF, FGF, PDGF,and TGFβ) several in vitro and in vivo studies have reported no increase in the level 

of VEGF and TGFβ10, 15 nor were tissular fibrosis or an aberrant angiogenesis induced9-11, 180.

1.3.3. Subchondral bone as a tissue target in OA treatment: Intraosseous infiltration of  
Platelet-rich plasma
The realization of the biological and mechanical connection between AC and SB has lead to numer-

ous in vivo animal studies that have shown that targeting SB with some drugs can have protective 

structural effects on cartilage40. Blocking or limiting the bone remodelling with alendronate78, zola-

dronic acid109 or improving the microstructure and quality of subchondral bone in osteoarthritic and 

osteoporotic rabbits with parathyroid hormone22, prevent cartilage degradation and OA progression. 

Moreover, Sagar et al170 reported a reduction in pain behaviour after a subcutaneous treatment 

with osteoprotegerin in a monosodium iodoacetate (MIA) rat model of OA pain, and Pelletier et 

al153 demonstrated that an oral strontium ranelate treatment in an experimental osteoarthritic dog 

model reduced the progression of structural changes including the subchondral bone. Despite the 

fact that the translation of these promising observations in preclinical research to human clinical 

trials has often failed, as indicated by a recent metaanalysis of clinical trial with risedronate in knee 

osteoarthritis47, recent clinical trials are raising expectations. For instance, using zoledronic in pa-

tients with clinical KOA associated with bone marrow lesions (BMLs) assessed by MRI, Laslett et al111 

reported a beneficial effect on pain and on BML evolution at 6 months. In participants from the os-

teoarthritis initiative, Laslett et al111 demonstrated significant pain reduction during the first 3 years 
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of treatment with biphosphonates. Two more clinical trials have shown positive structural effects of 

strontium ranelate on KOA, one improving the joint space narrowing163 and the other reducing the 

loss of cartilage volumes concurrent with the decrease of BMLs at 3 years of follow up154.

FIG. 7
Intraarticular infiltration of PRP helps restore SF homeostasis by stimulating the synthesis of hyaluronic acid and lubricin 
by synoviocytes and chondrocytes respectively12, 171, 201, dampening inflammation and suppressing the concentration che-
moattractan cytokines in SF, which might contribute to the inhibition of the MSC release and migration60, 61, 186. PRP might 
favour a homing and chondrogenic-differentiation effect on MSCs of subchondral mesenchymal progenitor cells and SF-
MSCs100, 102, 104, 135. 
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Infiltrations of PRP into the BM cavity of femur of young and old ovariectomized-SAMP8 age-related 

osteoporotic female mice have been reported to up-regulate osteogenesis and down-regulate adi-

pogenesis121.  The increase of fat tissue mass in BM is correlated with decreased bone mineralization 

in aged SAMPS8 mice120, 121, bone demineralization that occurs in osteoarthritic subchondral bone 

together with cysts35. Moreover, improvement of bone mineral density in PRP-treated osteoporotic 

mice concurred with both histological sections of the bone samples showing more trabecular bone 

areas and more intense calcium staining and a suppression of bone resorption process as evidenced 

by the decrease of RANKL transcript121.  In a trial on 13 healthy volunteers, Philippart et al156 reported 

fatigue on the first day as the only clinical adverse effect after a self-stimulation of BM of the iliac 

crest by injected autologous platelet-rich plasma156.
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The aims of this study were:

1.	 To validate the PRP intraarticular injections as a safe and efficacious treatment for KOA.

2.	 To assess a novel way of treating severe  knee OA  by targeting SM, superficial articular cartilage, 

SF, and SB by combining intraarticular and intraosseous infiltrations of plasma rich in growth 

factors (PRP).

3.	 To explore the suitability of SF as a source of MSCs and their response to the biological mecha-

nisms implicated in the effects of two different treatment modalities of PRP applications on OA 

patients: intraarticular injections targeting the SM, superficial AC, and SF, or combining intraar-

ticular injections and intraosseous infiltrations, the latter reaching as well the SB. 

2. AIMS OF THE STUDY

The overall outcomes in basic science, preclinical, and clinical studies suggest four synergetic effects 

of PRP application on the osteoarthritic joint. By modulating gene expression and gene products, 

PRP may well influence cell behavior which is conducive to maintaining the homeostatic state of the 

joint tissues thereby reducing pain and improving joint function and motion. (Fig. 8).

INCREASING THE TOLERABLE 
PHYSIOLOGICAL  LOAD 

Degradation

EXTRACELLULAR MATRIX

Adaptation

Chondrocyte

p38 MAPK

NF/kβ

Metabolic activity

Mainly chondrocyte, MSCs, and CPCs  

- Inhibition of NF-kβ as stress-induced 
  response pathway.
- Suppressing IL-1B and TNFα induced 
  cartilage degradation.

ANTIINFLAMMATORY

CELL   PHENOTYPE   MODULATION

JOINT´S PAIN REDUCTION

- Hyaluronic acid secretion.
- Arresting of Type II collagen cleavage.

CHONDROPROTECTIVE

PRGF

CITED2CITED2

SDF-1

FIG. 8
Four synergetic effects of PRGF application on the 
osteoarthritic joint proposed by our group.
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3.  METHODS AND RESULTS

3.1. METHODS

3.1.1 Platelet-rich plasma: Depiction, preparation, and formulation  
For almost two decades our research group has characterized this technology and has studied its 

therapeutic potential in tissue repair and wound healing14. PRGF contains a moderated platelet 

concentration, a two-third fold increase compared to peripheral blood, a dosage shown to induce 

optimal biological benefit15. PRGF does not contain leukocytes, and activation is performed only 

with CaCl2. The process to produce PRGF is easy, fast and reproducible (Fig 9). Blood collection is 

performed in tubes containing sodium citrate as anticoagulant. Thus, platelets are well preserved. 

 

Subsequently, centrifugation is achieved in a specifically designed centrifuge. The centrifuge has 

specific parameters to maximize the production of platelets and keep the plasma leukocyte-free. 

After the centrifugation, three layers are typically obtained: a yellowish top layer, the plasma, which 

contains a gradient of platelets, with maximum concentration of those platelets above the buffy 

coat. The leukocyte layer, or buffy coat, is located below the plasma layer. The bottom layer is the 

layer containing the red cells. Regarding the plasma volume, it is possible to empirically differentiate 

between two different fractions, depending on the respective concentration of platelets. The upper 

fraction will contain a similar number of platelets to peripheral blood whereas the lower fraction 

will contain 2 to 3-fold the concentration of platelets compared with blood. Depending on clinical 

needs, the fractionation can be made in one or two fractions, achieving higher volume - lower con-

centration of platelets (a single fraction), or lower volume - higher concentration of platelets (two 

fractions). After fractionation, PRGF can be activated in a controlled way by the addition of CaCl2, 

providing a clot that mimics its natural structure.  Activation with CaCl2 avoids the use of exogenous 

bovine thrombin, a source of possible immunological reactions53, 110, 222. Another important feature 

of the PRGF is the absence of leukocytes, which categorizes it as safe and homogeneous, because 

the values of leukocytes are highly variable between donors214 and within the same donor are highly 

dependent on small perturbation of the body homeostasis. In addition, polymorphonuclear neutro-

phils (PMN) contain molecules designed to kill microorganisms, but can seriously damage the body 

tissues. Once PRP liquid formulation is activated, plasma fibrinogen polymerizes into a three-dimen-

sional  transient fibrin scaffold, which contains heparan sulfate binding domains for growth factors 
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FIG. 9
Platelet Rich Plasma protocol. Obtaining platelet-rich plasma involves the extraction of a small volume of blood from the 
patient, its centrifugation to fractionate the blood and the separation of platelet-rich fractions (F1 and F2) (A). After activa-
tion with calcium chloride PRP fractions can be obtained for various formulations including liquid, clot and membrane (B).
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(PDGF, FGF, HGF, BDGF, VEGF, IGF, TGF-B), cytokines (TNF-a, IL-2,3,4,5), chemokines (PF4), ECM com-

ponents (Fibronectin, thrombospondin, tenascin), cell adhesion (L-selectin, N-CAM), acute phase 

proteins, and proteins related to lipid metabolism5, 146. Once infiltrated into the joint and subchondral 

bone, this liquid-to-gel ·3D injectable scaffold is converted into a matrix-like viscous and malleable 

structure, which adheres to SM, AC and SB, and  covers them5, 16, 183 (Figs. 5, 6 and 7). When fibrinol-

ysis begins, a gradual, sustained release of GFs and other biomolecules occurs, in contrast to a bolus 

delivery modality7, 27, 135.  Such a gradual yet sustained release of GFs influence cells and mimic the 

biological repair process2, 16, 27 (Fig. 6).

Two different formulations with therapeutic potential are obtained from the patient’s blood, de-

pending on the coagulation and activation degree of the samples. These formulations may be used 

for different therapeutic purposes:

1.	 PRGF-Endoret scaffold. This three-dimensional matrix encloses autologous growth factors, both 

plasma and platelet proteins. This scaffold can be used in various applications, such as the treat-

ment of ulcers149 wound closure and tissue engineering 11.  The three dimensional structure of 

the fibrin mesh (Fig. 6) allows cell proliferation, since, as mentioned above, it contains factors 

necessary for growth and migration of cells. In addition, this formulation can be combined with 

other materials, such as autologous bone, demineralized freeze-dried bovine bone and collagen, 

among others, adjusting the resulting characteristics of the scaffold. 

2.	 Liquid PRGF-Endoret, activated at the time of use, is used in intra-articular and intraosseous 

injections178, 182, 212,  in bone and tendon surgery179, 181, and  treatment of skin disorders and regen-

eration149. Therefore, after the intraarticular or intraosseous infiltration over the injured areas, 

a fibrin-scaffold formed “in situ” as an extracellular matrix, serves as a highway for mechanical 

energy to transit from the environment to the cell, thereby bridging cell-to-cell tissue transition, 

promoting multi-cellular assembly and providing mechanical support as well as endowing tis-

sues with a suitable microenvironment for biological restoration13, 146. Since they are autologous,  

bio-reabsorbable, bio-compatible, and free of leukocytes and red cells, PRGF scaffolds are the 

best tailored among all the tissue engineering materials (Figs. 3, 5, 6, and 7).
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3.1.2. A randomized clinical trial evaluating plasma rich in growth factors (PRGF-Endoret)  
versus hyaluronic acid in the short-term treatment of symptomatic knee osteoarthritis (IV) 
This study was carried out in accordance with the international standards on clinical trials: Real De-

creto 223/2004, Declaration of Helsinki in its latest revised version (Tokio, 2004) and Good Clinical 

Practice Regulations (ICH). The study protocol was reviewed and approved by the Reference Ethics 

Committee. All patients provided written informed consent before entry into the study.

Patient selection

One hundred and eighty seven patients were initially selected in the study. Patients were considered 

eligible if they were between 41 to 74 years of age and suffered from osteoarthritis of the knee as 

diagnosed on the basis of American College of Rheumatology criteria.23 with radiographic confir-

mation (Allback grade 1-3, on a scale of 1 to 4, with higher numbers indicating more severe signs of 

the disease). 

Recruitment of patients began January 18, 2008, at 3 clinical centers. The recruitment finished No-

vember 12, 2009 and the study was completed on Sep 13, 2010. A preliminary assessment of each 

patient was carried out in the first basal visit by an orthopedic surgeon, 30 days prior to randomiza-

tion and the medical history was completed. Patients were only included in the study if they met all 

inclusion / exclusion criteria shown in Table I. Each patient also received a booklet that contained de-

tailed instructions and the Western Ontario and McMaster Universities Osteoarthritis Index WOMAC 

questionnaire. This booklet had to be completed by the patient and carried along with them in each 

of the following visits.

TABLE I. Inclusion and exclusion criteria in the PRGF/HA intraarticular infintrations CT
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Interventions

All patients who met the inclusion criteria (176 of 187 enrolled initially since 11 patients had already 

been excluded) were scheduled at the first visit and received either of the two active treatments 

under study depending on the randomization made previously: infiltration of the affected knee with 

PRGF-Endoret (three injections on a weekly basis) or infiltration of the affected knee with hyaluronic 

acid (Euflexxa®) (three injections on a weekly basis). 

PRP was prepared according to the protocol of PRGF-Endoret technology (BTI Biotechnology Insti-

tute, Vitoria-Gasteiz, Spain) already depicted in point 3.1.1., and applied according to the explana-

tion in the point 3.1.3.

 

Randomization and allocation concealment

A total of three treatment visits were carried out with a weekly periodicity. During these visits the 

treatment assigned by randomization was delivered. A stratified randomization (one stratum per 

center) was carried out. Both the evaluators and patients remained blind to the treatments. 

All subjects included in the study were identified by patient number after signing informed consent.

Each patient was identified by a numerical code. The correspondence between the number of pa-

tients and their treatment was performed using specific software for randomization, keeping that re-

lationship in a sealed envelope. This envelope was not opened until the moment before applying the 

treatment. Neither the patients nor the evaluators were informed at treatment time. To maintain 

masking the application area was hidden from view and blood was drawn for all patients to prepare 

the PRGF-Endoret technology.

Procedures

All subjects underwent blood draw an hour before applying the treatment. Patients were recalled 

for follow-up visits 1, 2 and 6 months after the last treatment administration. The only permitted 

medication throughout the clinical trial was acetaminophen. The intake of any type of NSAID was an 

exclusion criterion. The amount of acetaminophen consumed by each patient in each treatment and 

follow-up visits was recorded. Acetaminophen consumption was measured by counting the number 

of empty containers that were previously administered in the previous follow-up visit. 

Response was assessed by researchers not involved in the application of treatment. In the data re-

port forms did not make any reference to the treatment applied.
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Outcome measures
Efficacy assessments

The primary efficacy outcome was defined as the percentage of patients having a 50% decrease 

in the summed score for the WOMAC pain subscale from baseline to week 24. This outcome was 

measured by applying the questionnaire WOMAC compared to baseline therapy on the basis of the 

criteria of the Outcome Measures for Rheumatology Committee and Osteoarthritis Research Society 

International Standing Committee for Clinical Trials Response Criteria Initiative (OMERACT-OARSI). 

The secondary efficacy outcomes included the scores on the WOMAC subscales for stiffness and 

physical function, the percentage of OMERAT-OARSI responders and the number of acetaminophen 

mg per day. The evolution from baseline in overall knee pain after application of the visual analogue 

scale that ranged from 0 to 100, was determined by the Womac and Lequesne scales.

Safety assessments

The nature, onset, duration, severity, and outcome of all adverse events, as well as any association 

of an adverse event related to the study medication were assessed and documented at each visit. 

Indeed, the only permitted medication throughout the clinical trial was acetaminophen. The intake 

of any type of NSAIDs was an exclusion criteria and a reason to be excluded from the study.

In order to evaluate the safety profile of the treatments, all complications and/or adverse events 

were recorded with an accountability scale. The use of rescue medication was recorded daily in the 

patients’ diaries.

Sample size calculation

A sample size of 220 patients, 110 subjects per group was estimated to provide at least 90% power 

to detect differences in the proportions of patients achieving 50% pain improvement compared to 

PRGF inflitration versus hyaluronic acid, at a 5% level of significance. The sample size was calculated 

using the exact test with the aim of comparing two proportions by applying the chi-square test as-

suming that the proportion of patients would achieve an improvement in pain over 50% would be 

30% in the experimental group versus to 12% in the control group.

Data analysis

Initially, a descriptive analysis of the sample was performed taking into account the demographic 

and clinical variables of patients. Quantitative variables (age, BMI) were determined by the mean, 

SD and range, and for qualitative variables (gender, marital status, education level, physical activity, 

history, medication type and severity of radiological OA) a frequencies analysis was conducted.
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Analysis of the primary outcome measure was conducted according to the intention to treat. The 

baseline comparability of treatment groups was performed by applying a T student test for quan-

titative variables and a chi-square analysis for categorical variables. The primary efficacy variable 

was assessed using a chi-square test. Secondary efficacy variables were evaluated using either a chi-

square test for qualitative variables or a T student test for quantitative variables. For all outcomes, a 

nominal p value of less than 0.05 was considered to indicate statistical significance.

3.1.3. Intraosseous infiltration of Platelet-rich plasma for severe knee osteoarthritis (V)
Patients with grades 3 and 4 of knee tibiofemoral OA based on the Ahlbäck scale are considered can-

didates for this technique, which consists in one intraarticular infiltration and two PRP intraosseous 

infiltrations into medial femoral condyle and into the medial tibial plateau (Fig. 10) at the first proce-

dure, and two more intraarticular PRP infiltrations 7, and 14 days after the intraosseous procedure. 

FIG. 10
(A) The platelet-rich plasma (PRP) intraosseous infiltration of a knee with severe femorotibial osteoarthitis is performed 
into the medial tibial plateau (1) and medial femoral condyle (2). (B) If the patient presents with femoropatellar osteoar-
thritis, the approach is external and the patella (3) and trochlea (4) are infiltrated. Before these intraosseous infiltrations 
are performed, conventional knee intra-articular infiltration of PRP is conducted.
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Prior to inducing sedation, about 80 ml of venous blood is extracted from the patient in order to 

prepare the PRP according to PRGF-Endoret technology (Biotechnolgy Institute BTI, Vitoria-Gasteiz, 

Spain). Sedation is performed by infusing a single dose of normal saline, a single dose of midazolam 

(0.03-0.05 mg/kg) and fentanyl (3.2 mg/kg), in peripheral vein; single or repeated dose of propofol is 

also administrated (1-2 mg/kg), depending on the duration of the infiltration. The degree of sedation 

is 4 or 5 on Richmond Sedation Scale. Patients are monitored by the standards of the American Soci-

ety of Anesthesiologists. The patient is positioned supine on an operating room table; the infiltration 

area is prepared with a povidone-iodine solution, covering a region with 10cm proximally and 10cm 

distally to the infiltration zone. Sterile drapes are placed defining the treatment zone (proximal, dis-

tal, medial and lateral).

Once the patient is sedated and prepared, and PRP is obtained, two marks are drawn in the medi-

al region of the knee, one located 2cm proximal and the other located 2cm distal to medial joint 

line and centered in the midline sagittal plane. Next, a 24G needle is used to anesthetize the area 

of infiltration, which is introduced through the mark and moved to contact the femoral condyle; 

without retreating the needle, the periosteum of the femoral condyle is infiltrated with 2 ml of 2% 

mepivacaine. Then, the needle is withdrawn and moved into contact with the inner face of the tibial 

plateau (through the other mark) and without retracting the needle, the periosteum of medial tibial 

plateau is infiltrated with 2 ml of 2% mepivacaine.

Intraarticular infiltration

Intraarticular infiltration is conducted first and with a 21 G needle. The needle penetrate into the 

joint through the external patellar wing, centered in the central region of the patella in the cra-

nio-caudal plane. Lateralization of the patella during infiltration facilitates this process (Fig. 11 A). 

After placing the needle into the joint space, synovial fluid arthrocentesis will be done if it is neces-

sary. Once arthrocentesis is carried out, and without removing the needle, 8 ml of PRP is infiltrated. 

The infiltration is directed into the mind-point area of the femoropatellar region using an external 

approach in order to prevent infiltration into the synovial membrane, which would cause pain (Fig. 

11B).

 

Intraosseous tibial plateau infiltration

Once the area is anesthetized, PRP is infiltrated into tibial plateau. A 13G trocar used for bone biopsy 

(CareFusion, San Diego, USA) is introduced into the bone through the mark previously made. The 

trocar is placed 2 cm distal to the joint line, leaning on the periosteum; then the trocar is introduced 
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2 cm into the thickness of the medial tibial plateau, following a parallel direction to the articular 

surface. Once the trocar is placed in the desired position 5 ml of PRP is infiltrated through the trocar 

(Figs. 11C, 11D).

Intraosseous femoral condyle infiltration

Next, PRP is injected into femoral condyle. A 13G trocar used for bone biopsy is introduced into the 

bone through the mark previously made. The trocar is placed 2 cm proximal to the joint line, leaning 

on the periosteum. Then, the trocar is introduced 2 cm into the thickness of the medial femoral con-

dyle (to the middle area of the medial condyle), following a parallel direction to the articular surface 

of the condyle. Once the trocar is placed in the desired position 5 ml of PRP is infiltrated through the 

trocar (Figs. 11E, 11F).

FIG. 11
After the patient is positioned supine on the operating room table, (A) intra-articular infiltration is performed into the joint 
through the external patellar wing, centered in the central region of the patella in the craniocaudal plane; (B) the infiltra-
tion is directed towards the midpoint area of the femoropatellar region using an external approach and preventing infiltra-
tion into the synovial membrane (asterisk). (C, D) Intraosseous tibial plateau infiltration is conducted into the medial tibial 
plateau, just to its middle area. The arrow indicates the trocar. (E, F) Concerning intraosseous femoral condyle infiltration, 
a trocar (arrows) is applied to the thickness of the medial femoral condyle, as far as the middle area of the medial condyle.
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Intraosseous infiltration exploits these communications between cartilage and subchondral bone in 

order that PRP reaches the deeper layers of cartilage. There is a viscous consistency of PRP and the 

cellular material of subchondral bone which coagulates and remains in the areas of injured cartilage 

from which it has come (Fig. 12)

Finally, and after completing the infiltrations and removing the sterile drapes, the skin is cleaned 

with an alcohol solution, applying wound dressings on infiltration points. After infiltration is com-

pleted, the site is iced. In the days following surgery, the patient can bear weight and take analgesics 

(acetaminophen) as demanded for pain.

FIG. 12
(A) Communications between cartilage and subchondral bone are more pronounced in degenerated cartilage. (B) The 
platelet-rich plasma infiltrated into subchondral bone flows through the degenerated zones, and because of its viscous 
consistency, (C) it remains stuck in the area, creating a transient matrix (asterisk)

3.1.4 Combination of intra-articular and intraosseous injections of Platelet Rich Plasma for 
Severe Knee Osteoarthritis:  a Pilot study (VI)
The study was carried out in accordance with the international standard on clinical trials: Real Decre-

to 223/2004, Declaration of Helsinki in its latest revised version (Fortaleza, Brazil; 2013), and Good 

Clinical Practice Regulations (International Conference for Harmonization). The study protocol was 

reviewed and approved by the Reference Ethics Committee. All patients provided written informed 

consent before entry into the clinical trial.
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Patient Selection

Nineteen patients were initially assessed for eligibility. Patients were considered eligible if they were 

aged between 40 and 77 years and presented severe knee osteoarthritis according to radiographic 

confirmation (Ählback grades 3 and 4, on a scale 1 and 4, with higher numbers indicating more severe 

signs of degree). Finally, 14 patients were enrolled in the study from January 2014. Table II compiles 

the inclusion and exclusion criteria that patients had to meet in order to be included in this study. The 

enrollment finished October 29, 2014 and the clinical trial was completed on June 10, 2015.

Inclusion criteria Exclusion criteria

Patients of both sexes aged 40 to 77 

years

Predominant internal tibiofemoral  

knee osteoarthritis 

Joint pain above 2.5 VAS points

Radiographic severity degree 3 and 4 

according to the Ahlbäck scale

Values of Body Mass Index between 

20 and 33

Possibility for observation during the 

follow up period

Bilateral knee osteoarthritis that requires infiltration in both knees

Values of Body Mass Index > 33

Polyarticular disease diagnosed

Severe mechanical deformity (diaphyseal varus of 4º and valgus of 16º)

Arthroscopy in the last year prior to treatment

Intraarticular infiltration of hyaluronic acid in the past 6 months

Systemic autoimmune rheumatic disease (connective tissue diseases and 

systemic necrotizing vasculitis)

Poorly controlled diabetes mellitus (glycosylated hemoglobin above 9%)

Blood disorders (thrombopathy, thrombocytopenia, anemia with Hb <9)

Undergoing immunosuppressive therapy and / or warfarin

Treatment with corticosteroids during the 6 months prior to inclusion in 

the study

In the first basal visit, an orthopedic surgeon conducted a clinical and radiographic assessment of 

each patient, including their medical history and a complete blood count. Moreover, the doctor 

delivered a booklet that contained detailed instructions and the Knee Injury and Osteoarthritis Out-

come Score (KOOS) questionnaire, which had to be completed by the patients at the baseline visit 

and before follow-up visits.

Patients were identified by a code number and scheduled to undergo the experimental procedure, 

which consisted of three treatments of Platelet Rich Plasma (PRP) on a weekly basis. The first treat-

ment included one PRP intraarticular infiltration and two PRP intraosseous infiltrations (femoral con-

dyle and tibial plateau). The next two treatments were conventional intraarticular injections.

TABLE II. Inclusion and exclusion criteria in the IA/IO infiltrations CT



Mikel Sánchez

64

METHODS AND RESULTS

PLASMA RICH IN GROWTH FACTORS TO TREAT KNEE OSTEOARTHRITIS

PRP preparation and treatment

PRP was prepared according to the protocol of PRGF-Endoret technology (BTI Biotechnology Insti-

tute, Vitoria-Gasteiz, Spain) already depicted in the point 3.1.1., and applied according to the expla-

nation  in the point 3.1.3.

Follow up

Patients were called for follow-up visits 2 and 6 months after the last treatment visit in order to 

conduct clinical evaluation. During these visits, the patient submitted the questionnaires given at 

baseline. The doctor carried out a clinical examination and an evaluation of pain and function by 

visual analogue scale (VAS) and Lequesne Index, respectively. Acetaminophen consumption was also 

controlled.

Clinical Outcomes

The primary efficacy was defined as the decrease in knee pain from the baseline to second month 

and sixth month (endpoint), according to the KOOS questionnaire. The secondary efficacy out-

comes included the other areas of KOOS: Symptoms, Function in daily living (ADL), Function in sport 

and recreation (Sport/Rec) and knee related Quality of life (QOL). They measured at baseline, two 

months and six months (endpoint). Furthermore, measurement of VAS and Lequesne Index were 

also evaluated.

Safety Outcomes

To evaluate the safety of treatment applied, all complications and adverse events were assessed and 

reported during treatment visits as well as follow up visits. Their nature, onset, duration and severity 

were documented.

Biological Outcomes

Presence of mesenchymal stem cells (MSC) in synovial fluids before and one week after intraosseous 

infiltration was evaluated by flow cytometry and cultures of colony-forming cells (CFU-F). Concerning 

flow cytometry, each sample was immunophenotyped using an 8-color direct immunofluorescence 

technique. Concentrated cell suspensions were stained with the following combination of monoclo-

nal antibodies (MoAb) [Brilliant violet (BV) 421/orange chrome (OC) 500/fluorescein isothiocyanate 

(FITC)/phycoerythrin (PE)/peridinin chlorophyll protein-cyanin 5.5 (PerCP-Cy5.5) /PE-cyanin 7 (PE-

Cy7)/allophycocyanin (APC)/APCH7]: i) CD105/CD45/CD73/CD271/CD34/CD13/CD90/CD44. Regard-

ing CFU-F assay, collected synovial fluids were diluted in phosphate buffer saline PBS and centrifuged 
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in order to harvest the cellular content. The sample was used for colony-forming assay (CFU-F) and 

seeded on a 100 mm diameter culture plate. Seven days after plating colonies were visualized and 

counted by 0.5% crystal violet staining.

Sample Size Calculation

Power analysis was conducted to estimate the minimum sample size needed to achieve 80% power 

at a 5% level of significance for the primary outcome measure. An assumed effect size of 10 points 

(Minimal clinically Important Change, MIC) with a standard deviation (SD) of 12 points was used26. 

This analysis suggested a minimum of 13 patients, expecting a dropout rate of 0.1 (Fig. 13).

FIG. 13
Randomization of patients of the IA/IO pilot study.
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Statistical Analysis

Demographic and medical variables (gender, age and OA grade) were determined by the mean, 

standard deviation, range and percent. For this study a per protocol analysis was used. Comparisons 

were performed by Student’s t-test for paired-samples parametric data or Wilcoxon signed-rank test 

for paired-samples non-parametric data, after assessing the normal distribution of the samples by 

Saphiro-Wilk test. Data were considered statistically significant when p values were less than 0.05. 

Statistical analysis was performed with SPSS 17.0 (SPSS, Chicago, IL). (Fig. 14).

3.1.5. Modulation of synovial fluid cell contain by intraarticular and intraosseous Platelet Rich 
Plasma administration (VII)
Treatments and collection of synovial fluids

Synovial fluids were collected from 31 patients with knee OA. Patients were divided into two treat-

ment groups; patients of the IA group received intraarticular infiltrations of PRP (n=14) and patients 

of the IO group (n=17) were treated with PRP intraarticular infiltrations together with PRP intraosse-

ous injections. The choice of IA or IO modality treatment was made based on the failure of previous 

pharmacological treatments, namely, the patients who had been medically oriented toward a knee 

replacement as the only solution for their OA were allocated in the IO group. Synovial fluids were 

collected from 31 patients, before and after one week of PRP treatment. Patients were allowed to 

consume acetaminophen.

PRP was prepared according to the protocol of PRGF-Endoret technology (BTI Biotechnology Insti-

tute, Vitoria-Gasteiz, Spain) already depicted in the point 3.1.1., and applied according to the expla-

nation  in the point 3.1.2.

The institutional review board approved this study, and informed consents were obtained from 

every patient included in the study.

Multidimensional flow cytometry (MFC) immunophenotyping

Approximately 2-6 mL of arthrocentesis-derived SF of each patient was immunophenotyped using 

an 8-color direct immunofluorescence technique. After sample centrifugation, 100 µL of the con-

centrated cell suspension was stained for 15 minutes at room temperature in darkness, with the fol-

lowing combination of monoclonal antibodies (MoAb) [Brilliant violet (BV) 421/orange chrome (OC) 

500/fluorescein isothiocyanate (FITC)/phycoerythrin (PE)/peridinin chlorophyll protein-cyanin 5.5 

(PerCP-Cy5.5)/ PE-cyanin 7 (PE-Cy7)/ allophycocyanin (APC)/APCH7: i) CD105 / CD45 / CD73 / CD271 
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FIG. 14
Depiction of a new strategy to treat severe knee OA by targeting different knee joint structures such as synovial membrane 
(SM), synovial fluid (SF), articular cartilage (AC) and subchondral bone (SB) with intraarticular injections (IA) and intraosseous 
infiltrations (IO) of plasma rich in growth factors (PRP) (Sanchez et al 2014). This procedure reduces pain and mesenchymal 
stem cells (MSCs) in SF, besides significantly improving knee joint function of patients with severe OA. We suggest that various 
growth factors, cytokines and chemokines trapped in the fibrin network of PRP might inhibit the NFkβ on synovial macrophag-
es, fibroblasts as well as on chondrocytes, thereby dampening the inflammatory response of SM and AC (23,44,140,164). In 
addition, IO infiltrations in subchondral bone, might buffer the excess of transforming growth factor β (TGFβ) as well as re-
store hepatocyte growth factor (HGF) activity synthesized by osteoblasts, thereby leading to a new reestablished homeostatic 
balance between TGFβ-1 and HGF (19,26,225). The buffer effect of PRP on TGFβ-1 signalling pathway in SB might reduce the 
presence of nestin MSCs in SF, likely associated with the shrinking of fibroneurovascular tissue in the SB, as an antifibrotic 
mechanism which has already been reported in other cell phenotypes (14,19)
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/ CD34 / CD13 / CD90 / CD44. After staining, 2 mL of FACS lysing solution (Becton/Dickinson Bio-

sciences, San Jose, CA) was added. After 5 minutes incubation at room temperature, samples were 

sequentially centrifuged 5 minutes at 540 g and resuspended in 100 µL of premixed Perfect-COUNT 

microspheres (Cytognos SL, Salamanca, Spain). Subsequently, data acquisition was performed for 

around 5.000 nucleated cells per tube in a FACSCantoII flow cytometer (Becton Dickinson Bioscienc-

es – BD – San Jose, CA) using the FACSDiva 6.1 software (BD). Monitoring of instrument perfor-

mance was performed daily using the Cytometer Setup Tracking (CST; BD) and rainbow 8-peak beads 

(Spherotech, Inc; Lake Forest, IL) after laser stabilization, following the EuroFlow guidelines 25; sam-

ple acquisition was systematically performed after longitudinal instrument stability was confirmed. 

MSCs and residual leukocytes were identified through a boolean gating strategy based on forward 

scatter, side scatter, and CD45 expression; monocytes were defined on the basis of their relatively 

higher light scatter properties, CD13 and CD45 bright expression, whereas lymphocytes were iden-

tified through low scatter properties and strong CD45 reactivity (Fig. 15). Absolute cell numbers per 

volume unit were calculated following the manufacturer recommendation.

 

FIG. 15
Identification of MSCs, and White Blood cell in synovial fluid.
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MSCs isolation from knee Synovial fluid

Collected SF were diluted in phosphate buffer saline PBS and the cellular content then harvested 

by centrifugation. One part of each sample was seeded in a 6-well plate under standard cell culture 

conditions with Dulbecco’s Modified Eagle Medium (DMEM; Lonza) supplemented with 20% fetal 

bovine serum (Gibco), 1% penicillin-streptomycin (P/E) (Gibco) and 1 ng/ml of human recombinant 

basic fibroblast growth factor (bFGF; R&D systems) (Expansion Medium). The adherent cells were 

expanded in a humidified 5% CO2 atmosphere at 37 °C and used for further differentiation experi-

ments. The remaining sample was used for colony-forming assay (CFU-F) and seeded on a 100 mm 

diameter culture plate. Seven days later plating colonies were visible and counted by 0.5% crystal 

violet staining.

Synovial fluid MSCs differentiation

Mesenchymal lineage differentiation assays were carried out between passages 2 to 4 to confirm 

the osteogenic, adipogenic and chondrogenic capacity of the cells. For the osteogenic and adi-

pogenic differentiation 8000 cells/cm2 were plated in a 12 well plates. Adipogenic differentiation 

was induced using DMEM supplemented with 10% FBS, 1 μM Dexamethasone, 0.5 mM 3-Isobu-

tyl-1-methylxanthine, 50 μM Indomethacin. For the osteogenic differentiation cells were cultured 

in DMEM supplemented with 10% FBS, 50 μg/ml L-(+)-Ascorbic acid, 10 mM β-glicerol Phosphate 

and 10 nM Dexmethasone. For chondrogenic differentiation, 2.5 x 105 cells were spun-down at 600 

g for 10 minutes in polystyrene 15ml conical tubes and incubated with hMSC Chondrogenic Differ-

entiation BulletKit™ Medium (Lonza). Differentiations were achieved at 28 days. Specific histological 

and immunohistochemistry analyses were done to assess differentiations: Oil Red O for adipogenic 

differentiation, Alizarin Red for osteogenic differentiation and Toluidine Blue and Type II Collagen 

immunostaining (anti-type II Collagen Mab, MP Biosystems) for chondrogenic differentiation. 

Statistical Analysis

Comparisons were performed by Wilcoxon signed-rank test for non-parametric data and Student t 

test for parametric data, after assessing the normal distribution of the samples by Saphiro-Wilk test. 

Data were considered statistically significant when p values were less than 0.05. Statistical analysis 

was performed with SPSS 17.0 (SPSS, Chicago, IL).
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3.2. RESULTS

3.2.1. A randomized clinical trial evaluating plasma rich in growth factors (PRGF-Endoret) ver-
sus hyaluronic acid in the short-term treatment of symptomatic knee osteoarthritis (IV) 
A total of 187 patients were screened, and 176 underwent randomization (Fig. 16). The most com-

mon reason for exclusion included a body-mass index higher than 32 (six patients), the inability to 

meet radiographic criteria (four patients) and a genu varus deformity of the knee (one patient). 

A slightly higher percentage of patients were women (52%), with a mean age of 59.8 and a mean 

body-mass index of 28. The groups were well balanced in terms of age, gender, body-mass index, 

percentage of patients suffering from primary arthritis, consumption of analgesics per day, radio-

graphic grade (Ahlbäck scale) and WOMAC and Lequesne scores (Table III). A total of ten patients 

from the PRGF group and 13 from the hyaluronic group were precluded excluded from the study. The 

exclusion and withdrawal percentages did not differ significantly among the groups.

 

FIG. 16
Randomization of patients of the PRGF/HA clinical trial.
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TABLE III. Baseline characteristics of the patients in the PRGF/HA CT.
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Clinical outcomes

Results of primary and secondary outcome measures for the entire study population and each 

WOMAC pain stratum are summarized in Table IV. Analysis of the primary outcome measure (de-

fined as the percentage of patients having a 50% decrease in the summed score for the WOMAC 

pain subscale from baseline to week 24) revealed that the rate of response to PRGF-Endoret was 

significantly higher than the rate of response to hyaluronic acid (Fig. 17). As compared with the rate 

of response to hyaluronic acid, the rate of response to PRGF-Endoret was 14.1 percentage points 

higher (95% CI 0.5-27.6; P=0.044). Regarding the secondary outcome measures, the rate of response 

to PRGF-Endoret was in all the cases higher than the rate of response to hyaluronic acid, although no 

significant differences were reached.

TABLE IV. Results of primary and 
secondary outcomes in the PRGF/HA 
intraarticular infiltrations CT



Mikel Sánchez

73

METHODS AND RESULTS

PLASMA RICH IN GROWTH FACTORS TO TREAT KNEE OSTEOARTHRITIS

Overall, the rate of use of rescue acetaminophen was low (Table IV). There were not significant dif-

ferences in the use of acetaminophen between the groups for all randomized patients or within each 

pain stratum. 

Fifty adverse events were reported in 50 patients, 26 in the PRGF-Endoret group and 24 in the hy-

aluronic acid group (Table IV). Adverse events were generally mild and evenly distributed between 

the groups (P=0.811). Most of these adverse events (96% in the PRGF-Endoret group and 92% in the 

hyaluronic acid group) were not related with the type of treatment. The number of patients who 

withdrew because of adverse events was similar between groups (Fig. 16). 

One patient who received hyaluronic acid felt numbness in the infiltration area and another patient 

of this group suffered from itching in the outside area of both thighs. One patient treated with 

PRGF-Endoret suffered from pain after the third infiltration. All the adverse events disappeared in 

48 hours. 

3.2.2 Combination of intra-articular and intraosseous injections of Platelet Rich Plasma for 
Severe Knee Osteoarthritis:  a Phase II Clinical Trial (VI)
A total of 19 patients were considered eligible to participate in this study, and 14 patients were 

finally enrolled (Fig 13). Of the 5 excluded patients, four declined to participate and one presented 

predominant lateral osteoarthritis. Of the 14 patients who started, 13 completed the study and one 

FIG. 17
Comparison of the clinical effect of PRGF and HA intraarticular infiltrations.
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was excluded during the follow up period because of the occurrence of a popliteal cyst.

Nine of the thirteen patients who finished the study were men (69.23%) and four were women 

(30.77%), with a mean age of 62.23 ± 9.6 years (range: 47-75 years). Nine patients have been diag-

nosed with OA III (69.23%) and five with OA IV (30.77%), according to Ahlbäck Scale (Table V).

 

DEMOGRAPHIC DATA

Total: n Men: n (%) Women:n (%) Age: mean + sd (range) OA III: n (%) OA IV: n (%)

Patients 13 9 (69.23) 4 (30.77) 62.23 ± 9.6 (47-75) 9 (69.23) 4 (30.77)

BIOLOGICAL OUTCOMES

One week post-infiltration:

Baseline: mean + sd mean + sd p

MSC/µL 7.98 ± 8.21 4.04 ± 5.36 0.019*

CFU-F/mL 601.75 ± 312.30 139.19 ± 123.61 0.012*

CLINICAL OUTCOMES

Baseline: mean + sd Endpoint: mean + sd p δ: mean + sd (% change) Improved patients: n (%) Patients with MCII[22]:  n (%)

KOOS Pain 61.55 ± 14.11 74.60 ± 19.19 0.008* 13.10 ± 14.89 (24.19 ± 40.07) 11 (84.62) 8 (61.53)

KOOS Symptoms 60.56 ± 17.35 71.70 ± 18.82 0.004* 11.14 ± 11.34 (19.73 ± 25.42) 11 (84.62) 8 (61.53)

KOOS ADL 68.44 ± 14.08 80.86 ± 15.58 0.022* 12.45 ± 17.31 (23.25 ± 38.82) 11 (84.62) 8 (61.53)

KOOS Sport/Rec 29.23 ± 20.29 45.38 ± 22.40 0.017* 11.78 ± 11.54 (76.94 ± 115.23) 10 (76.92) 7 (53.84)

KOOS QOL 28.10 ± 19.75 39.28 ± 16.52 0.012* 14.90 ± 22.03 (66.66 ± 72.64) 11 (84.62) 8 (61.53)

VAS 6.77 ± 1.75 2.88 ± 2.48 <0.001* -3.88 ± 2.82 (-55.04 ± 38.21) 11 (84.62) 10 (76.92)

Lequesne Index 8.69 ± 2.65 5.77 ± 3.49 0.008* -2.92 ± 3.35 (-31.18 ± 46.61) 10 (76.92)  

Clinical Outcomes

Table V summarizes results of primary and secondary outcome measures for the entire study popu-

lation that completed the study. Analysis of the primary outcome measure (as the decrease in knee 

pain from baseline to week 24, according to the KOOS questionnaire) showed a statistically signifi-

cant improvement in pain reduction from 61.55±14.11 at baseline to 74.60±19.19, six months after 

treatment (p=0.008). Eleven patients improved (84.62%), and 8 patients (61.52%) reported minimal 

clinically important improvement (MCII) (Table V). Depending on the osteoarthritis grade, eight of 

the 9 patients with grade 3 (88.88%) showed improvement, as did 3 of the 4 with grade 4 (75%).

Regarding secondary outcomes, there was also a statistically significant improvement in all other 

areas of the KOOS (Symptoms, p=0.004; ADL, p=0.022; Sport/Rec, p=0.017; QOL, p=0.012), as well 

as VAS score (p<0.001) and Lequesne Index (p=0.008).

TABLE V. Demographic data, biological and clinical outcomes
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The improvement of the patients was observed at two month follow-up, and it was maintained until 

week 24, when the study ended (Fig. 18). The two patients who did not respond to treatment were 

indicated for a total knee arthroplasty.

Two adverse events were reported in 2 patients and unrelated to the treatment. One of the pa-

tients experienced an episode of fever and the other exacerbation of knee pain three months after 

treatment. Both events were resolved satisfactorily by oral pharmacology allowed in the study. In 

addition, one patient withdrew because of a popliteal cyst that was treated by fluid drainage and 

corticosteroids infiltration.

FIG. 18
Follow-up of clinical symptoms after intraosseous infiltrations of PRGF.
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Biological Outcomes

Baseline levels of Mesenchymal Stem Cells (MSCs) presented in synovial fluid were 7.98 ± 8.21 

MSC/µL, while one week after intraosseous infiltration the values dropped at 4.04 ± 5.36 MSC/µL 

(p=0.019) (Table V).

Concerning cultures of colony-forming cells (CFU-F), a decrease in the number of CFU-F was also 

observed one week after infiltration, being the number of CFU-F/mL before and after treatment of 

601.75 ± 312.30 and 139.19 ± 123.61, respectively (p=0.012) (Table V).

3.2.3 Modulation of synovial fluid cell contain by intraarticular and intraosseous Platelet Rich 
Plasma administration (VII)
Characteristic of the patients

The mean age of patients in the IA group was 62.6 ± 11.8 years and the range was 41-77 years. The 

percentages of patients of this group with osteoarthritis grade II, III and IV according to Ahlbäck scale 

were 50%, 35.7% and 14.3% respectively. Concerning IO group, the average age of patients was 63.6 

± 11.2 years and the range was 41-80 years. In this group, the percentages of patients classified by 

Ahlbäck scale were 29.4% for grade II, 47.1% for grade III and 23.5% for grade IV. (Table VI).

TABLE VI. Patients included in the study and their clinical OA grade

IA group IO group

Age 62.6±11.8 63.6±11.2

Age range 41-77 41-80

OA grade II (%) 50 29.4

OA grade III (%) 35.7 47.1

OA grade IV (%) 14.3 23.5

Phenotypic characterization of the cell population of synovial fluid

To determine the influence of PRP treatment in the cellularity of the joint the presence of mononu-

cleated cells (MNC) cells and their populations was analyzed in the synovial fluids of both groups, 

before and after treatment, by flow cytometry as described in material and methods (Fig. 15). Con-
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cerning IA group, the concentration of MNC, lymphocytes, monocytes and MSCs in the synovial fluid 

pre and post treatment did not show significant differences (Table VII).

TABLE VII. Phenotypic characterization of the cell population in synovial fluid of IA group

Pre treatment Post treatment p value

MNC  (cells/ml) 237.11±223.32 243.81±193.37 0,32

Lymphocytes (cells/ml) 103.65±125.00 85.38±94.16 0,06

Monocytes (cells/ml) 130.66±101.88 142.62±112.81 0,73

MSCs (cells/ml) 2.60±4.38 1.53±2.51 0,32

MNC, mononuclear cells; MSCs, mesenchymal stem cells

Interestingly, although in the IO group the variations in the concentration of MNC, lymphocytes and 

monocytes in the synovial fluid were also not significant, MSCs showed a significant decrease after 

intraosseous treatment (Table VIII). 

TABLE VIII. Phenotypic characterization of the cell populations in synovial fluid of IO group 

Pre treatment Post treatment p value

MNC (cells/ml) 441.92±371.87 354.82±411.44 0,38

Lymphocytes(cells/ml) 179.83±237.87 184.19±337.00 0,072

Monocytes (cells/ml) 199.37±160.28 119.06±98.47 0,053

MSCs (cells/ml) 7.61±8.68 2.46±3.86 0,01

MNC, mononuclear cells; MSCs, mesenchymal stem cells

Table IX shows the cellular increments (δ) before and after each infiltration, and compares the differ-

ences between the two treatments. The decrease in the levels of MSCs observed after intraosseous 

infiltration of PRP was higher than the decrease after intraarticular treatment (p=0.045).
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TABLE IX . Cellular increment of the cell populations in synovial fluid

Cellular Increment (TM)

Intraarticular intraosseus p value

MNC (cells/ml) 109.70±272.66 -91.33±334.47 0.905

Lymphocytes (cells/ml) -65.04±106.50  42.64±171.96 0.159

Monocytes (cells/ml) -19.64±156.00 -97.80±147.95 0.280

MSCs (cells/ml) -1.41±5.38 -6.36±6.64 0.045

CFU-F (CFU/ml) -6.87±236.79 -266.30±296.79 0.037

MNC, mononuclear cells; MSCs, mesenchymal stem cells; CFU-F, colony forming unit fibroblast

Culturing of colony-forming cells (CFU-F)

To confirm the reduction in MSCs in the SF we assessed the capacity of the MSCs population to 

sustain clonal growth on plastic surfaces (CFU-F). Consistently with the flow cytometry results, the 

intraarticular injection of PRP did not result in a significant variation in CFU-F, 332.52 ± 234.96 CFU/

mL before treatment to 327.54 ± 223.32 CFU/mL post treatment (p=0.92). Remarkably, in the IO 

group we found a significant reduction in CFU-F from 477.51 ± 253.44 CFU/mL before intraosseous 

injections to 222.95 ± 151.36 CFU/mL one week post- infiltration (p<0.01) (Fig. 19). Consistent with 

the results obtained with the number of MSCs, the decrease in the CFU-F levels after intraosseous 

infiltration was greater than the decrease after intraarticular injection (p=0.037). 

 

FIG. 19
Culturing of colony-forming cells (CFU-F) before and after intraarticular and intraosseous infiltrations of PRGF.
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To confirm the mesenchymal progenitor na-

ture of the CFU-F cells present at the synovial 

fluid we performed an in vitro multipotency 

assay by differentiation to the three mesen-

chymal lineages osteoblast, adipocyte and 

chondrocyte under defined conditions (Fig. 

20). Although only a limited number of assays 

showed tri-lineage differentiation capacity 

(7 out of 68 assays, 10%) the majority of the 

assessed synovial fluid-derived mesenchymal 

cells showed bi lineage differentiation capaci-

ty (51 out of 68, 75%) supporting the mesen-

chymal nature of the population. 

 
FIG. 20
In vitro multipotency assay of MSCs from osteoarthritic SF.
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DISCUSSION

We conducted, for the first time in the literature, a randomized, double blind, hyaluronic acid-con-

trolled, multicenter trial to evaluate rigorously the efficacy and safety of intra-articular injections of 

PRGF in the treatment of pain due to osteoarthritis of the knee. Three injections of PRGF, an autolo-

gous pool of growth factors and fibrin scaffold biomaterial, resulted in clinically significant reductions 

in knee pain, stiffness and physical function in patients with knee osteoarthritis. The analysis of the 

primary outcome showed that PRGF-Endoret was significantly more effective than hyaluronic acid. 

Clinically meaningful pain relief is in general defined as a reduction in pain intensity of more than 

30% from the baseline level169, 172 and reduction of 50% is considered as high improvement in pain 

according to the OMERACT-OARSI criteria155. In this study, the percentage of patients at the end of 

follow-up with a primary response to PRGF-Endoret was 38.2 whereas the rate of response to hy-

aluronic acid was 24.1%. In addition, the rate of response to each treatment followed an opposite 

pattern, with a substantial improvement of the primary outcome in the PRGF-Endoret group at 24 

weeks and a gradual decrease in the case of the hyaluronic acid group. This data may suggest that 

in addition to the HA action12, the PRGF-Endoret has other beneficial biological effects on cartilage 

in the long run. All the secondary outcome measures decreased with both active treatments and 

no significant differences were found between groups. The pool of growth factors obtained from 

platelet rich plasma decreases NFκB activation, a major pathway involved in the pathogenesis of OA, 

which is characterized by a catabolic and inflammatory joint environment209. Moreover, the superna-

tant of autologous proteins also inhibits MMP-13 production by IL-1β and TNFα-stimulated human 

articular chondrocytes218. The majority of the adverse events that were reported by patients were 

mild in severity. Most of the adverse events were not related with the type of treatment and they 

were evenly distributed between the groups.

The limitations of this study include the lack of measurement of physical activity levels in patients 

after applying the treatments, the different experience of physicians in the implementation of 

PRGF-Endoret treatment, the lack of longitudinal analysis and subgroup analysis for participating 

centers, the short-term follow-up of 24 weeks, the lack of a placebo group and the exclusion of pa-

tients who had the highest degree of severity on radiography (Alback grade 4).  

Intraarticular delivery is the conventional modality to deliver PRP in patients with KOA and it has 

been shown to be safe and efficacious in improving clinical symptoms64, 152, 178, 182, 184, 210, 212. 
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This route of drug delivery reaches the SM and the AC, which is sometimes inefficiently targeted by 

systemic drug delivery. Intraarticular delivery circumvents systemic toxicity and its side effects, offers 

an excellent bioavailability, and does not present molecular size limitation, in contrast to the system-

ically delivered molecules entering the joint via capillaries of the subsynovium59, 95. Nevertheless, in-

traarticular therapy faces other challenges when treating chronic nonsystemic sterile-inflammatory 

conditions as in the case of KOA. One significant challenge is a short joint dwell time of drugs, since 

the lymphatic drainage clears proteins in a few hours. This is not the case of PRP, since it acts as a 

dynamic liquid scaffold with a fibrin network from where GFs are gradually released into the tissue16, 

27, 135. Nevertheless, the increasingly recognized role of SB in the pathophysiology of OA might make 

the intraarticular route insufficient to tackle all the joint tissues involved in KOA. 

Intraosseous delivery strategy for local, prolonged, and sustainable release of GFs has been proven 

to be efficacious in some musculoskeletal pathology, non-union fractures, osteoporosis, and bone 

fracture healing among them35, 97, 108, 202.  Surgical experience in cartilage defect repair over the past 

30 years has revealed that only when the subchondral bone is involved through bone marrow stim-

ulating procedures such as transcortical Pridie drilling and microfractures, is there a synthesis of a 

temporary functionally efficient fibrocartilage tissue, not have been reported serious adverse ef-

fects86. There is good in vitro and vivo evidence that events in the subchondral bone concur with and 

have a direct effect on the overlying articular cartilage22, 34, 79, 127. Moreover, although the titles and 

much of the text of Liu et al120 and Philippart et al 156 papers are not focused on osteoarthitis, these 

studies shed important light on the role that intraosseous infiltrations of PRP might play in subchon-

dral bone homeostasis by targeting both osteoblast-osteoclast coupling and mesenchymal stem cell 

responses, as well as in its safety. The combination of intra-articular and intraosseous injections of 

PRP is an in situ local biological “joint-centric” approach to treat severe KOA addresses the SM, SF 

and superficial zone of AC by intraarticular injections of PRGF, and deep zones of AC and SB through 

PRP intraosseous infiltrations183. These PRP infiltrations convey a mimetic biomaterial embedded 

with a pool of growth factors acting as a smart scaffold43 which might sustain a gradual delivery of 

growth factors at the dysfunctional and deregulated tissues as a niche therapy. 

In light of the aforementioned research and others not mentioned here due to space limitation, 

and the significant clinical improvement obtained in some patients with KOA, but not in all patients, 

treated with intraarticular infiltrations of PRP64, 178, 182, 210, our group arrived at the strategy of combin-

ing  another drug delivery route, namely, the intraosseous infiltrations52, 183 combining with intraar-

ticular infiltrations of PRP. 
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This is the first time that an in situ local biological therapeutic approach was used to treat severe 

KOA and address the knee joint as a whole by reaching the synovial membrane, synovial fluid and 

superficial zone of articular cartilage via intraarticular injections of PRP, and deep zones of articular 

cartilage and subchondral bone through PRGF intraosseous infiltrations resulting in a significant pain 

reduction and decrease of MSC and CFU-F in synovial fluid with no adverse effects.  There are several 

potential mechanisms by which intraarticular injections and intraosseous infiltrations of plasma rich 

in growth factors might reduce knee pain. Once the activated PRP is injected into the intraarticular 

or intraosseous space, plasma fibrinogen is cleaved and fibrin polymerizes in situ as a three-dimen-

sional scaffold adhering to SM, AC, and SCB (Figs. 3, 5, 6, 7, and 14). 

Afterwards, the fibrinolysis begins, and the pool of growth factors, cytokines, and other biomole-

cules trapped into the fibrin network will gradually be delivered over 7-10 days16. In vitro and in vivo 

studies have reported that PRP and growth factors within it such as HGF, IGF-1, and PDGF suppress 

macrophage, fibroblast, and chondrocyte activation by inhibiting the NFҡB pathway23, 44, 60, 140 and 

thereby dampening the synovial and articular cartilage inflammatory response186. In addition, the 

significant amount of endogenous cannabinoids within PRP might act as ligands for cannabinoid re-

ceptor 1 (CB1) and 2 (CB2) of chondrocyte and synovium cells of OA patients56, 166 thereby supporting 

a pain reduction by targeting the endogenous cannabinoid systems51, 56, 166. On the other hand, the 

excessive presence of TGF-β1 and VEGF in OA subchondral bone and articular cartilage202, 225 could 

be a driving factor for changes in osteoblast-osteoclast coupling, which lead to a bone remodeling 

imbalance106, 224, NGF expression26, 106, and fibroneurovascular growth, all changes that might well 

contribute to pain126, 202. It is reasonable to speculate that the concurrent presence of, and a bal-

anced ratio between, platelet-secreted TGF-β1 and VEGF, and plasma growth factors such as IGF-1 

and HGF19, all conveyed by PRP intraosseous infiltration, might buffer the excess of TGF-β1 in SB as 

well as restore HGF activity synthesized by osteoblasts. This new reestablished homeostatic balance 

between TGF-β1 and HGF106, 225 would reduce the synthesis of NGF, VEGF and other inflammatory 

mediators thereby contributing to the reduction of pain and hyperalgesia in severe stages of KOA26. 

The increase in tolerable physical load, assessed by the significant improvement in the secondary 

efficacy outcomes such as function in daily living (ADL), function in sport and recreation (Sport/Rec) 

and knee related Quality of life (QOL), might entail a positive chondroprotective and antiinflamma-

tory effect since as several lines of evidence suggest, moderate mechanical loading of joints prevents 

cartilage degradation by suppressing the activation of NFҡB116, 200. 
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The significant reduction of MSC in SF after treatment with this novel PRP therapy is open to inter-

pretation. Several studies have reported that the accumulation of MSCs in SF increases with the 

severity of osteoarthritis, joint damage192, and the disease duration94, 192. Although the source of this 

MSC increase has not yet been determined, the most likely origin of the increased presence of MSC 

in SF of KOA patients might be the SM93, 192, the breakdown zone of superficial AC158, and the SB106, 

202. By adhering to SM, superficial AC, and SF and by gradually delivering various components such as 

IGF-1, HGF, PDGF, TGF-β1 and platelet microparticles (PM)211, intra-articularly injected PRP may influ-

ence macrophage M1 polarization towards M2 phenotype 44, 211 as well as modify the inflammatory 

status of chondrocytes and the superficial zone of AC by suppressing the NFҡB signaling pathway23, 

140. By lowering the concentration of chemoattractant inflammatory cytokines in SF, PRP may well 

contribute to the inhibition of the MSC release and migration58, 60, 186. Another origin for SF MSCs 

might be the SB as a point of egress, through the channels and vessels breaching the osteochondral 

junction, partially recruited by the osteoarthritic SF58, 106, 202. The buffer effect of PRP on TGF-β1 signa-

ling pathway in SB might reduce the presence of nestin MSCs225 likely associated with the shrinking of 

fibroneurovascular tissue of KOA subchondral bone as an antifibrotic mechanism which has already 

been reported in several cell phenotypes19. Moreover, the process of cell homing whereby SF MSCs 

might be recruited to damaged areas of AC and take part in the in vivo repair of that cartilage might 

also contribute to MSCs reduction113, just as the PRP fibrin network, containing fibronectin, IGF-1 

and II, PDGF, SDF-1, and TGF-β1 may exert a recruitment, homing, and chondrogenic-differentiation 

effect on subchondral mesenchymal progenitor cells100, 102, 219. This second study has, as well, some 

limitations. First, a relatively small number of patients were enrolled in the study, all belonging to the 

same severe KOA phenotype stage. Second, the clinical follow up of 6 months seems to be a short 

period to draw conclusive clinical indications. Third, a mechanistic account of the significant pain and 

SF MSCs reduction experienced by the majority of patients is lacking. 

In our third study, we carried out two different treatment modalities of PRP applications on OA pa-

tient. After the first infiltration of intraarticular and intraosseous treatments, it was observed that 

cell levels in SF, particularly monocytes and MSCs decreased (Tables VII and VIII), suggesting an an-

ti-inflammatory effect of PRP, a result which is consistent with the clinical improvement reported by 

Sanchez et al178, 184 and Vaquerizo et al210 using three intraarticular administrations of PRP on a weekly 

basis. Although the decrease regarding inflammatory process in synovial fluid after intraarticularly 

injected PRP is not statistically significant, this trend should be more pronounced after two more PRP 

intraarticular injections, which is the total number of applications for this conventional treatment, 

as significant clinical improvement has been shown in our first CT182. However, the decrease in the 
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concentration of MSCs was statistically significant after combining a single application of intraosseous 

treatment with intraarticular infiltration (IO group, p=0.01) (Table VIII). This was also confirmed when 

the levels of CFU-F were analyzed before and after treatment administration (Fig. 19). 

It is worth mentioning that the cell population in synovial fluid before the PRP treatment and the de-

gree of OA severity was considerably varied between both groups. The levels of synovial fluid-MSCs 

(SF-MSCs) in the IA group were very close to healthy population levels and substantially lower than 

in the IO group. Likewise, the percentage of patients in the IO group with advanced degree of OA (OA 

grade III and IV) was of 70.6% compared to 50% in the IA group (Tables V and VI)94. This observation 

is in accordance with several studies where the SF-MSCs levels were associated with the severity of 

osteoarthritis, joint damage and the disease duration94, 114, 192. Moreover, in the IO group, the higher 

level of mononuclear cells (MNC) could well support a deeper involvement of the synovial mem-

brane inflammation in knee OA. Accordingly, MSCs have been postulated as a reservoir of repair cells 

and their release is interpreted as a tissue response to injury93, 142, 195.

Several growth factors within PRP have proven to promote an antiinflammatory macrophage pheno-

type44, 164, 211, suppress the NF-kβ signaling pathway on synovial fibroblasts and chondrocytes of the 

superficial zone of articular cartilage140,  and induce the synthesis of hyaluronic acid and lubricin by 

synoviocytes and chondrocytes respectively, the latter preventing chondrocyte apoptosis, cartilage 

breakdown, and inhibition of the MSC release and migration61, 90, 101, 171. All these modulatory and 

trophic effects of intraarticularly injected PRP on the synovial membrane, superficial articular car-

tilage, and synovial fluid combined with the decline of monocytes in the synovial fluid would result 

in a lower level of pro-inflammatory cytokines and restoration of the joint homeostasis leading to a 

more favorable synovial fluid environment for chondrogenic differentiation of MSCs60, 61, 101, 143. 

The combination of intraarticular and intraosseous infiltrations targets the three most likely origins 

of SF-MSCs increase, namely, the synovial membrane, the breakdown zone of superficial articular 

cartilage and the subchondral bone93, 106, 142, 183, 192, 202. When comparing the two treatment groups, 

the decrease in MSCs and CFU-F after PRP treatment was more pronounced in the IO group (Table 

VIII). This observation suggests that in the modulation of MSC by PRP, the subchondral bone is an 

important player and potential target, and might be a MSC egress point through the channels and 

vessels breaching the osteochondral junction and reaching the cartilage, partially recruited by the 

osteoarthritic environment of the synovial fluid58, 106, 202.  
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There are several potential mechanisms by which intraosseous infiltrations of PRP might account for 

this significant reduction in MSCs in synovial fluid. The excessive presence of TGF-β1 and VEGF in os-

teoarthritic subchondral bone may be a driving factor for changes in osteoblast-osteoclast coupling, 

which lead to a bone remodeling imbalance and fibroneurovascular growth106, 202, 204, 225.  Moreover, 

Zhen et al showed that by inhibiting TGF-β signaling in a specific population of MSCs present at the 

subchondral bone (Nestin positive MSCs) the severity of OA was reduced225.  In fact, previous stud-

ies have shown that the decrease in MSCs in the synovial fluid, in low degree OA, suggest clinical 

improvement192. It is reasonable to speculate that, by administering PRP directly into subchondral 

bone, the concurrent presence of platelet-secreted TGF-β1 and VEGF as well as plasma growth fac-

tors such as IGF-I and HGF, could have a modulatory effect on TGF-β signaling pathway19. The re-

duced presence of MSCs, could likely be associated with the shrinking of fibroneurovascular tissue of 

OA subchondral bone, an explanation which parallels the antifribrotic mechanism already reported 

in several cell phenotypes8, 10, 19.

A further significant component to the SF-MSCs reduction induced by PRP treatment would be the 

process of cell homing whereby SF-MSCs might be locally recruited to damaged areas of the articular 

cartilage taking part in the in vivo repair of this tissue, a possibility already reported by Lee et al112.  

This study showed that following humeral-head excision the entire articular surface of a rabbit syn-

ovial joint was regenerated by homing of endogenous cell and TGF-β3-infused bioscaffold. The PRP 

fibrin network, comprised of fibronectin, IGF-I and -II, PDGF, SDF-1, and TGF-β among other biomol-

ecules, may exert recruitment, homing, and a chondrogenic-differentiation effect on subchondral 

mesenchymal progenitor cells. It has been reported that PRP is rich in fibronectin, a plasma protein 

incorporated into the fibrin network during the natural polymerization and one of the major factors 

for the recruitment of mesenchymal progenitor cells5, 102, 104, 165.

Another interesting aspect in our study is that MSCs can be detected in the synovial fluid of all pa-

tients when measured through CFU-F assay. Using flow cytometry analysis prior to treatment, the 

presence of MSCs was observed in the synovial fluid in 21 of the 31 enrolled patients, representing 

67.7% of total. The level of MSCs in these synovial fluids was as low as 5.19±7.15 MSCs/μL. However, 

the use of this technique to measure fresh synovial fluids without a prior cell expansion cycle can 

represent a limitation due to the low number of cells114. In order to overcome this limitation, the 

presence of MSCs in those synovial fluids was evaluated by means of culturing on plastic surfaces 

to determine the presence of colony-forming cells (CFU-F). In this case, CFU-F were found in the 

synovial fluid of all patients, with an average value of 410.59±246.36 CFU-F/mL. These results are 
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consistent with those reported in other studies in which the possibility of using synovial fluid as a 

source of autologous mesenchymal stem cells is demonstrated93, 94. 

The use of synovial fluid as a source of cells for obtaining MSCs may be a promising alternative 

for treating diseases related to cartilage degeneration diseases such as OA. Thus, various factors 

must be considered when deciding the cell source and good environmental conditions for optimal 

effects143. The advantage of using synovial fluid as a cell source over other niches, such as bone mar-

row or fat tissue, is foremost its easy access. Furthermore, arthrocentesis is usually a necessary step 

prior to conducting an intraarticular injection of corticosteroids, hyaluronic acid or PRP. Additionally, 

MSCs present in the synovial fluid may derive from the synovial membrane, a tissue involved in the 

cartilage repair process18.  

Our hypothesis is that the concurrent presence and a balanced ratio between platelet-secreted TGFB-1 

and VEGF, and plasma growth factors such as IGF-1 and HGF4, 8, 9, 19, all conveyed by PRP intraosseous 

infiltrations, might reduce or buffer  the excess of TGFB in SB and  restore HGF activity synthesized by 

subchondral bone cells. This modulatory effect of PRP on TGFB-1 signaling pathway might shrink the 

fibroneurovascular tissue  that replaces the bone marrow of OA subchondral bone, an explanation 

which parallels the antifibrotic mechanism already reported to be exerted by the PRP on several cell 

phenotypes8, 9, 19. This new reestablished homeostatic balance between TGFB1 and HGF204, 225 would 

reduce the synthesis of NGF, VEGF and other inflammatory mediators thereby contributing as well to 

modulate the aberrant fibroneurovascular tissue and to alleviate pain and hyperalgesia191. 

Rebuilding a physiological-homeostatic network at knee organ failure tissue level, as is the case of 

severe KOA, must be an orderly process, which entails a daunting therapeutic task. Knee joint is a 

paradigm of autonomy and connectedness of their anatomical structures and tissues from which 

they are made. We propose an innovative approach to the treatment of severe knee osteoarthritis 

including a combination of intraarticular and intraosseous infiltrations of PRP52, 183. This novel ther-

apeutic approach to treat severe KOA adresses the knee joint as a whole by reaching the synovial 

membrane, synovial fluid and superficial zone of articular cartilage by intraarticular injections of 

PRGF, and deep zones of articular cartilage and subchondral bone through PRP intraosseous infiltra-

tions resulting in a significant pain reduction and decrease of MSC and CFU-F in synovial fluid with 

no adverse effects183. Our proposal to tackle severe knee OA by considering this condition a failure of 

an organ162 and with a  “joint-centric” rather than a purely “cartilage-centric” approach is challenging 

though promising183.
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However we do not forget that “ the aim of science is not to open the door to infinite wisdom but to 

set a limit to infinite error “ (Bertolt Brecht), and many questions and uncertainties still persist unan-

swered in the field of PRPs and inflammation.  When the concept of inflammation defined as “a co-

operative and amplifying protective multicellular response, orquestrated both locally and remotely, 

that is intended to eliminated the original insult and their toxic consequences, thereby initiating the 

repair process”, there are some difficulties applying it to tissue damage brought about by mechanical 

stresses, which is the case of most sterile inflammatory pathologies such the KOA.

In summary, targeting synovial membrane, synovial fluid, articular cartilage, and subchondral bone 

with intraarticular injections and intraosseous infiltrations of PRP reduces pain and MSCs in SF, be-

sides significantly improving knee joint function in patients with severe knee OA.
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CONCLUSIONS

CONCLUSIONS

1.	 PRGF showed superior short-term results when compared with to HA in a randomized controlled 

trial, with a comparable safety profile, in alleviating symptoms of mild to moderate OA of the 

knee.

2.	 PRGF is safe, and effective therapy in reducing pain of KOA patients  and it shows more long-last-

ing beneficial effect than hyaluronic acid.

3.	 Targeting synovial membrane, synovial fluid, articular cartilage, and subchondral bone with in-

tra- articular injections and intraosseous infiltrations of PRGF is a safe procedure and reduces 

pain and MSCs in SF, besides significantly improving knee joint function in patients with severe 

knee OA. 

4.	 MSCs modulation generated by PRGF may be  favored  by decreasing pro-inflammatory process-

es present in the synovial fluid of OA patients, and thereby might act as a structure-modifying 

therapeutic agent.

5.	 Combination of intraarticular and intraosseous infiltrations of PRGF rebuilds a physiological-ho-

meostatic network at knee organ failure tissue level thereby paving the way for hyaline carti-

lage-like tissue regeneration.
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FUTURE PERSPECTIVES

FUTURE PERSPECTIVES

In spite of a wealth of preclinical and clinical publications on PRP, many uncertainties remain regard-
ing the ultimate molecular mechanism/s, the variability in its composition mainly due to the pres-
ence/absence of leukocytes, the platelet concentration, the donors age, and the manner in which 
PRPs are applied to the damaged tissues213. The restoration of TGFβ and other extracellular matrix 
GFs balance by the application of PRP deserves a deeper research and opens the door to explore the 
analgesic, antiinflammatory and immunomodulatory, and trophic-anabolic effects of PRP through 
a systems biology approach. In addition, we cannot rule out a systemic effect of intraosseous infil-
trations as suggested by studies carried out in animal model, which should be explored. And finally, 
we still do not know how to combine PRP with rehabilitation programs and exercise in a synergistic 
application with the goal of full recovery of knee function117, 221.  

Fortunately, there are reasons for optimism. Novel formulations and fabrication methods are likely 
to help broaden the catalogue of PRGF applications. In addition, 3D bioprinting, may help to control 
the final properties of the autologous preparations. The exploration of PRGF potential for the ex 
vivo expansion of mesenchymal stem cells, together with the value of fibrin scaffolds for stem cell 
handling and transplantation, may also reduce some of the challenges faced in the field. Finally, 
homologousPRGF may become an alternative to patients whose blood components such as plasma, 
platelets, or fibrinogen lack several regenerative key inductors. 

Our results encourage further studies in order to shed more light on the cellular and molecular mech-
anisms and to elucidate whether the PRP application in both modalities might lead to structural joint 
tissue changes as in vitro and preclinical research using this therapy have reported100-102, 115, 219. More-
over, intraosseous infiltrations of PRGF may have an immediate application to bone edema lesions, 
which might facilitate the AC damage, by restoring the homeostasis of subchondral bone thereby 
acting as a preventative treatment of KOA. Finally, also further studies will be needed in order to 
increase our knowledge about synovial fluid as source of MSC s and their therapeutic potential.

The successive intra-articular injections of Platelet Rich Plasma in the knee joint of Osteoarthritic 
patients has shown significantly higher reductions in knee pain and stiffness and improvement in 
physical function, even compared with Hyaluronic acid (HA). However, PRP has not yet been proven 
to really modify the overall histology or molecular composition of OA cartilage. In these clinical tri-
als, the surrogate marker for OA amelioration was the pain and physical function. The trials, did not 
evaluate the influence of PRGF on histological and molecular make-up of Osteoarthritic cartilage. 
Although PRP therapy opens a new disease-modifying osteoarthritis strategy, we acknowledge that 
this biological approach may only play a part, albeit, a key part in solving this condition. We must not 
lose sight of the fact that physical rehabilitation as well as others systemic factors such as nutritional 
deficiencies, can affect the joint vulnerability.
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Review

A biological therapy to
osteoarthritis treatment using
platelet-rich plasma
Eduardo Anitua, Mikel Sánchez, Gorka Orive† & Sabino Padilla
†Foundation Eduardo Anitua Biotechnology Institute, Vitoria, Spain

Introduction: Osteoarthritis (OA) is a degenerative disease affecting the syno-

vial joint. It is caused by cells exposure to non-physiological stimuli, either

mechanical or biochemical, and the loss of bone-cartilage homeostasis.

Some of these changes, however, may be reversed by the use of single or

combined growth factors, suggesting that the treatment of OA could be

addressed using a pool of growth factors.

Areas covered: This review addresses current molecular and biological knowl-

edge and implicates the recapitulation of some developmental processes dur-

ing endochondral ossification in OA aetiology and pathogenesis. Platelets act

as carriers of endogenous morphogens that may modulate cell fate and there-

fore affect joint tissues structure and function. We shed light on the platelet-

rich plasma effects on biological level that might drive the osteoarthritic

joint’s improvement both in structure and function.

Expert opinion: We present the therapeutic potential of plasma rich in

growth factors (PRGF-Endoret), an endogenous biological therapy that might

modulate the gene expression of cells such as chondrocytes, synoviocytes,

macrophages, and mesenchymal stem cells, and thereby influence an anabolic

microenvironment of synovial joint which is conducive to maintaining the

homeostatic state of the joint’s tissues, and hence reduce pain and improve

the joint motion.

Keywords: cartilage, growth factors, osteoarthritis, platelet-rich plasma

Expert Opin. Biol. Ther. (2013) 13(8):1161-1172

1. Introduction

Osteoarthritis (OA) is a mechanically induced disorder that evolves as a heteroge-
neous, multistage, and degenerative disease provoking the synovial joint failure as
an organ. OA is a relatively local disease, for the most part affecting one or two
joints, typically knees or hips. The disease represents a family of synovial joint
degeneration which alters every component of the tissues involved, from the molec-
ular to the cellular and extracellular levels. Although induced by an insult, either
mechanical or biochemical, OA is biochemically mediated and ultimately causes
the structural and functional failure of the joint. In addition to the central role
that mechanical stress and age play in the onset and progression of OA [1], we con-
ceptualize OA as a multifaceted disease in which systemic (hormonal status, gender,
and genetics) and abnormal biomechanical loading on joints (obesity, joint injury,
high-intensity and prolonged sports activities) make the joint vulnerable [2]. Another
additional risk factor might be mutations in genes whose products make up the
extracellular matrix. Although many of the OA-associated genes are involved in
the development of the joints, none of them appears to be involved in the hyaline
articular cartilage degradation and loss [3] which is considered a central pathological
feature of OA [4]. It is important to remember that genes only represent the cells



potentiality for change and that is the microenvironment’s
signalling presence that rules cells behaviour [5].
Whereas pain represents the clinical hallmark of the disease

coexisting with other clinical features such as stiffness, instabil-
ity, swelling, crepitus and functional limitation [6,7], it is the
degeneration of the joint’s tissues and changes in the periartic-
ular bone rearrangement and the hyaline articular cartilage
breakdown in particular that constitute the major factors lead-
ing to disability and impaired quality of life [8,9]. Due to the
aneural feature of cartilage, the source of nociceptive stimuli
might well stem from structures which are richly innervated
such as synovium, subchondral bone, periostium, and joint
capsule, however this relation has yet to be established [1].
In addition to articular cartilage, mature synovial joints

have classically been considered to consist of ligaments and
fibrous capsules lined with a synovial membrane whose cells
exude a lubricating fluid (synovial fluid). The synovium is a
specialized mesenchymal soft tissue made up of a lining layer
with two distinct types of cells: synoviocytes that are
fibroblastic-like and secrete lubricin and hyaluronan, and
macrophages, although mesenchymal stem cells (MSCs) too
have been isolated both in normal and osteoarthritic human
articular cartilage [10,11]. These might play an important role
as chondroprogenitor cells in the reparative response to artic-
ular cartilage damage [12]. Another layer, known as subintima,
includes blood and lymphatic vessels associated with nerve
fibres. The multicellularity and vascularity endow the syno-
vium with a highly reactive capacity against what their cells
might interpret as an insult or stress (mechanical or

biochemical). Such an insult would trigger an inflammatory
defence response in order to maintain or restore joint tissue
homeostasis and function [13].

2. Bone-cartilage homeostasis disruption

Exposure of the joint cells to non-physiological stimuli, either
mechanical or biochemical, leads to a rupture in the cartilage
balance between anabolism and catabolism known as cartilage
homeostasis [8,9,14]. Although the homeostatic processes
within the joint occur at the cellular, tissular and organ level,
the behaviour of cells such as chondrocytes, synoviocytes,
macrophages and osteocytes is truly responsible for carrying
them out [15]. The disarrangement of structures that make
up the synovial joints such as hyaline cartilage, synovium,
synovial fluid, menisci, and subchondral bone gives rise to
the failure of the synovial joint, a key component in the
body’s motion.

Articular cartilage and the subchondral bone are endowed
with different adaptive responses to mechanical load and
damage, and this asymmetry might disrupt the homeostasis
between them [16]. Several groups have proposed a molecular
crosstalk between the bone and cartilage pointing to the sub-
chondral bone reactions to the mechanical stress as the trig-
gering factor in the OA [4,15-17] hence challenging the
traditional view of the articular cartilage as an isolated tissue
and offering a view of the possible existence of fluid, cell,
and molecular communication between the cartilage and the
subchondral bone (Figure 1) [18,19].

Tissue interactions govern most developmental processes,
from the very early patterning events of cell differentiation,
through a process called morphogenesis and finally growth
of the many organs in the embryo. All human synovial joints
share the same developmental processes. Formation of the
skeleton is no exception, and most of the tissues differentiat-
ing in the newly forming limb arise from mesenchymal cells.
These cells give rise to the various articular tissues, with the
exception of neuronal elements and blood vessels [20,21]. The
regulation of articular cartilage development and homeostatic
processes throughout life is carried out under the influence of
numerous growth factors and cytokines which act in concert
as signalling molecular pathways [22].

3. Current cellular and molecular knowledge
about the common signalling molecules and
pathways underlying osteoarthritis

A variety of cells and cell signalling molecules which dynam-
ically form the structural network of the joint tissues are
extremely well communicated and may use the fluid flow to
migrate and reach injured areas mainly attracted by cell signal-
ling factors (growth factors and cytokines), biochemical
gradients and matrix fragments [23-25]. Cells from different tis-
sues of the joint but chiefly the quiescent chondrocytes
undergo and sense non-physiological stimuli as an insult,

Article highlights.

. Osteoarthritis is a degenerative disease that gradually
affects all the joint tissues provoking pain and loss
of function.

. Developmental biology has shed some light on the
osteoarthritis pathogenesis by bringing growth factors
into play as cell fate modulators on different
joint tissues.

. Growth factors may have the capacity to establish a
molecular cross-talk among joint tissues, thereby
controlling the pro-inflammatory phenotype of synovial
joint‘s cells and maintaining an anabolic microenvironment.

. Platelet-rich plasma (PRP) products deliver growth
factors, cytokines and adhesive proteins as well as other
plasma proteins such as fibrinogene, prothrombin,
and fibronectin.

. Plasma rich in growth factors (Endoret) application to
osteoarthritic joints results in reducing joint pain and
improving joint function by restoring tissue homeostasis
as indicated by the chondroprotective, anti-inflammatory,
and cell-phenotypic modulation effect on joint tissues.

. We are only at the beginning of a new era in which we
must optimize PRP procedures at the same time we
continue drawing on its healing power and relief in a
wide range of medical conditions.

This box summarises key points contained in the article.
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modulating and taking on a different phenotype whose gene
expression products (anabolics and catabolics) orchestrate a
defence-inflammatory response [26-28] in a miscued attempt
to either maintain the tissue homeostasis and integrity or

mimic the repair process. Nevertheless the tissue response
turns out to be catabolic, thereby altering the cells’ micro-
environment and breaking down the extracellular matrix.
The response of chondrocytes in the osteoarthritic cartilage

Synthesis

Radial zone
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Tidemark

C

A

Mechanical forces

B
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Figure 1. A. In the complex cartilage-bone-based mechanotransduction system, the mechanical energy applied to the joint is

reflected on in the extracellular matrix, and subsequently in the chondrocyte nucleus. Joint cells exposure to non-

physiological stimuli tips the loss of tissue balance between cartilage degradation and synthesis known as cartilage homeostasis.

There appears to be a molecular, cellular, and fluid communication between the cartilage and bone. B. The survival/viability of

the chondrocyte is affected to a large extent by the presence of a sufficient (plasticity), but not excessive (degeneration),

mechanical stimulus that would inevitably lead to the disarrangement of structures such as the subchondral bone mediated

mainly by deregulated chondrocytes, perpetuating a catabolic microenvironment and eventually the joint failure.

A biological therapy to osteoarthritis treatment using platelet-rich plasma
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is heterogeneous and oriented towards hypoanabolism,
which encompasses cell proliferation, apoptosis, and pheno-
typic alterations. Such a response results in a reactive or
hypertrophic chondrocyte phenotype known as deregulated
chondrocytes [26,28-30] whose catabolic gene expression
causes a net loss of extracellular matrix [26]. Not only chon-
drocytes but also macrophages and synoviocytes influenced
in a paracrine manner take on a pro-inflammatory pheno-
type [13,31]. The extracellular matrix which is made up
mainly of water, type II collagen and aggrecans drains
away and degenerates as a consequence of the action of cat-
abolic cytokines (TNF-a and IL-Ib), metalloproteinases
(MMPs, MMP13), and aggrecanases (ADAMTS). These
products are primarily released by chondrocytes, synovio-
cytes, and mononucleated cells, breaking the collagen and
aggrecans down in a slow and relentless degenerative pro-
cess [9,26,28] and thereby giving rise to articular chondrocytes
expressing classic hypertrophic markers (characteristic of the
growth-plate chondrocytes) and apoptosis [8,29,30]. This inter-
pretation of biological processes strongly suggests that context
matters, and that the extracellular matrix (ECM) in connective
tissues, as in bone, muscle, tendon and cartilage, hosts
physical--chemical processes which are key to tissue-repair
processes such as cell-recruitment and differentiation, and
patterning-remodelling.
There is a clear role played by tissue and cellular signalling

pathways and networks in osteoarthritic aetiopathogenesis,
pathways and networks which are shared in the developmen-
tal biological process [29,30,32] and which will be partially rede-
ployed and may, in osteoarthrosis pathogenesis, adopt a role
as mediator. At the molecular level the aforementioned bio-
logical processes are mediated by a group of highly conserved
polypeptides known as growth factors (GFs) which are pro-
teins specialized in signalling cellular pathways and mainly,
but not solely, released by local cells such as chondrocytes,
macrophages, and synoviocytes. Growth factors modulate
the cell’s behaviour and shape the structure of the tissues
thereby determining their functions [33,34]. In addition to
the inflammatory response in the osteoarthritic aetiopatho-
genesis, mainly led by the local cells in one reparative-
reactive attempt of the cartilage, the osteoarthritic joint is
the destination of several migratory cells, namely MSCs and
chondroprogenic progenitor cells (CPCs) [10,12,35,36] which
may come from the subchondral bone through the tidemark
into the cartilage tissue. The CPC, with MSC features have a
multipotent differentiation capacity towards the chondro-
genic lineage [35] and may be the target of the GFs which traf-
fic cell information through the MSCs by their trophic
activity [37]. These multipotent cells might offer us the most
valuable component when it comes to the repair process,
namely, cells [38]. A similar process appears to be responsible
for fibrocartilage repair synthesis when the Pridie drilling
procedure is carried out in some reconstructive cartilage sur-
gery. This surgical procedure has presumed that the adult
marrow-derived mesenchymal stem cells (MSCs) from the

subchondral bone are able to differentiate into bone, carti-
lage, muscle, marrow stroma, tendon-ligament, fat and other
connective tissues [39]. In addition to the subchondral bone
marrow, the synovium is another important source of
MSCs in the joint tissues showing a high chondrogenic
potential comparable to that of bone marrow-derived
MSCs [12]. These observations are in accordance with insights
and clinical experience, suggesting that MSCs are naturally
found as perivascular cells or pericytes. Once they have
migrated to the injured site, these cells behave not only as
proliferative and differentiated cells but also and significantly
as immunomodulatory and trophic ones [39,40].

There is growing evidence indicating that in OA, articular
chondrocytes expressing classic hypertrophic markers (known
as deregulated chondrocytes) [26,28-30] with a catabolic gene
expression and extracellular matrix destruction of articular
cartilage, resembles that observed in the hypertrophic zone
of foetal growth plate during endochondral ossification, a
resemblance suggesting that developmental biology might
shed some light on the OA pathogenesis [26-30]. OA is driven
primarily by both mechanical stress and inflammatory signals
(IL-1b and TNF-a) orchestrated by the NF-kb signalling
molecules which have been shown to mediate articular
cartilage degradation by upregulation of matrix-degrading
MMPs [28,41]. The activation of the NF-kb signalling path-
way can generate altered states of quiescent chondrocytes
thereby pushing chondrocytes to a more differentiated,
hypertrophic-like state in an attempt to maintain or restore
tissue homeostasis, as well as recapitulating some develop-
mental cell phenotypes [28,29,41]. Most of the cellular and
molecular changes previously mentioned are also described
in the growth plate chondrocyte and may be reversed by the
use of single or combined growth factors such as TGFb-2,
FGF-2, IGF-1 or insulin [42,43] combinations that have been
shown to produce synergistic effects in preserving chondro-
cyte homeostasis [44,45].

4. An innovative biological approach to the
treatment of osteoarthritis: platelet-rich
plasma

The appropriate treatment of cartilage injuries and OA
remains a daunting clinical challenge despite advances in
both pharmacological management of the pain and inflamma-
tion, and advances in the surgical procedures and techniques
and, in extremis, OA has been considered a disease with no
cure [1]. Although is not within the scope of this article to
address the wide range of therapeutic strategies in the treat-
ment of OA, we wish to remark that only a holistic approach
could fulfil the goal of clinicians, namely, to control pain, to
improve function and to stop the progression of disease [1].
Since the synovial joint is a complex, shock-absorbing inter-
face in which a coordinated and sequentially ordered engage-
ment of the joint’s elements and muscles is required to

E. Anitua et al.
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maintain the physical integrity of anatomical structures and
homeostasis of the joint´s tissues, every pharmacological and
surgical therapy should be assisted by mechanotherapy [46].
In this respect, and as a clinical application of cells mechano-
transduction, a rehabilitation program which included the
employment of PRGF in a synergistic manner would play a
crucial role in both promoting the repair or remodelling of
injured tissue and avoiding the degradation of cartilage and
atrophy of joint’s structures such as bone, periarticular
muscles, tendons and ligaments with the goal of full recovery
of function [46-48].

One innovative biological approach to the treatment of
OA is the application of platelet-rich plasma in intraarticu-
lar injections. Although a universally accepted definition of
PRPs in terms of platelet concentration and presence or
absence of leucocytes is lacking, PRP products can be
depicted as an autologous platelet concentrate within a
plasma suspension, and whose composition is determined
by the method used to obtain it. Platelet-rich plasma
products include plasma and twofold or more increases in
platelet concentrations above baseline levels, and the con-
centration of leucocytes and erythrocytes varies widely [49-51]

from a complete absence of products to a high concentra-
tion of them. In particular, the PRGF is depicted as an
endogenous blood-derived product which conveys growth
factors, cytokines, and morphogens contained in the plate-
lets as well as fibrinogen and other plasmatic proteins in a
biologically balanced aggregate, and managed and delivered
in a pharmacological manner [33,52,53]. This multifaceted,
versatile, biological system is made up of an autologous,
balanced blend of plasma with a moderated platelet con-
centration (a two- to threefold increase compared with
peripheral blood) that does not contain leucocytes. The
process of platelet activation and hydrolysis of prothrombin
into thrombin is driven by the addition of calcium chloride,
simultaneously causing the release of a plethora of growth
factors and the polymerization of fibrin [33,53,54]. Once
activated the liquid formulation is in the ensuing moments
injected as a solution into soft tissues, and due to its local
and gradual activation (in vitro and in vivo) and homoge-
neous distribution through and interaction with the ECM
of different tissues, is converted into a matrix-like viscous
and malleable structure [34].

Mammal platelets are circulating monitors, trackers and
surveyors of the integrity of the vascular system and of the
internal milieu as well as carriers of cytokines, chemokines
and growth factors, fulfilling the function of coordinators
of coagulation, inflammation and repair processes [55,56].
In addition to these bioactive mediators (a-granules:
TGFB, PDGF, VEGF, FGF, EGF, IGF-1, HGF, BMPs,
BDNF and dense granules: histamine, serotonin, Ca and
ATP/ADP), there are other contents in the plasma of PRPs
(IGF-1, HGF, fibrinogen, fibronectine and other proteins)
which together with adhesive proteins expressed by activated
platelets, all play a central role in the cell signalling pathways

involved in both tissue injury recognition and in the repair of
damaged tissues (Table 1) [33,56]. Platelets appear to be crucial
in post-embryonic morphogenesis in identifying tissue loss or
injury, factors that activate platelets thereby releasing by
degranulation, growth factors and cytokines which trigger
mechanisms to reconstruct structures and restore function
mainly by stimulating cell migration and proliferation, regulat-
ing angiogenesis, chemoattracting circulating progenitor cells
and guiding tissue remodelling [54,57-59]. Drawing on these
mechanisms and observations made by Crisan and col.2008
and Caplan 2009 concerning the immunomodulatory and
trophic effects of MSCs [39,40], it might be possible to suggest
a synergy between platelets and MSCs.

Besides conveying GFs, PRGF provides the damaged tis-
sue with a transient biological scaffold made up of fibrin
which stems from the polymerization of fibrinogen, a
pleiotropic blood protein that regulates coagulation, inflam-
mation, and tissue regeneration [33,54]. The three-dimensional
network, formed either “in vitro” as a clot or “in situ” as an
extracellular matrix after the intraarticular infiltration over-
injured areas, contains binding sites for cell adhesion as well
as proteins such as thrombospondin-1 (TSP-1), alpha-1-anti-
trypsin fibronectin, acute phase proteins or proteins
related to lipid metabolisms. Since cells that make up and
populate musculoskeletal tissues, including chondrocytes are
mechano-sensitive, in this varied molecular landscape, migra-
tory cells such as MSCs and CPs might adhere and undergo
physiological loading, thereby regulating their gene expres-
sion and eventually repairing the injured tissue; cells cannot
express a physiological phenotype in an empty space. There-
fore, after the intraarticular infiltration over the injured areas,
a fibrin-scaffold formed “in situ” as an extracellular matrix
serves as a highway for mechanical energy to transit from
the environment to the cell, thereby bridging cell-to-cell tis-
sue transition, promoting multicellular assembly and provid-
ing mechanical support as well as endowing tissues with a
suitable microenvironment for biological restoration [33,34].
Since they are autologous, bio-reabsorbable, bio-compatible,
and free of leucocytes and red cells, PRGF scaffolds are the
best tailored among all the tissue engineering materials.

Oral and maxillofacial surgery and implantology, skin
ulcers, orthopaedic surgery and bone regeneration as well as
repair of injured muscle and tendon are some of the fields
in which the application of platelet-rich plasma has consis-
tently demonstrated its safety and successful outcomes in
restoring tissue functions [60-64]. Therefore, the platelet-
rich plasma application to osteoarthritic joints is intended
to trigger and mimic the biological process of tissue healing
based primarily on the synergistic influence that growth fac-
tors may exert on the joint tissues as they do in articular car-
tilage development and homeostasis [22], namely, by arresting
type II collagen cleavage, reversing the reactive chondrocytic
phenotype thereby regaining a healthier phenotype, and
repairing articular cartilage [29,44,57,65,66].
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5. Growth factors and PRPs in cartilage repair

These biochemical modulators and regulators which are
shared with developmental biological processes will be
redeployed for tissue repair after injury [15,29].
Transforming growth factor-b superfamily (TGFb) has

been shown to play an anabolic role in cartilage repair. In par-
ticular, TGFb1 the major growth factor within PRPs and one
of the most important in cartilage regeneration, stimulates
both chondrogenesis of synovial lining and bone marrow-
derived MSC [67,68] and chondrocyte synthetic activity with
matrix deposition [69]. Moreover, TGFb1 counteracts the cat-
abolic activity of IL-b1 including the degradation of type II
collagen and proteoglycan produced by chondrocytes [70,71]

and increases chondrocyte phenotype expression [72].
Insulin-like growth factor (IGF-1) is another component of
PRPs with a potent anabolic effect on articular cartilage
metabolism and its presence is required to maintain the integ-
rity of articular cartilage [73]. In addition to positive influence
of IGF-1 on the repair of extensive areas of damaged cartilage
and protection of the synovial membrane from chronic
inflammation [57], IGF-1 is, together with PDGF, a potent
chemotactic factor for chondrocytes, which stimulates synthe-
sis of extracellular matrix in human OA but does not avoid

the matrix catabolism [74]. Moreover, its presence in cartilage
enhances the effect of other growth factors present in articular
cartilage [75].

PRPs application to cartilage repair is underpinned by a
substantial body of evidence in basic science, as well as in pre-
clinical and clinical levels of practice. In vitro, treatment of
mature porcine chondrocytes with L-PRP releasate stimulates
cell proliferation, and glycosaminoglycan and collagen synthe-
sis [58]. The presence of PRGF releasate without leucocytes on
human osteoarthritic synoviocyte cultures enhances the syn-
thesis of hyaluronic acid (HA) and HGF compared to syno-
viocytes cultured on a platelet-poor medium. Moreover, the
enhanced secretion of HA and HGF by PRGF was main-
tained despite the fact that synoviocytes were treated with
interleukin-1b [59,76]. In one proteomic study conducted on
human osteoarthritic chondrocytes cultured with different
mediums, the PRP-enriched medium showed to be more effi-
cient than other mediums at increasing cell proliferation and
reverting and restoring the pattern of gene expression deter-
mined in a normal chondrocyte phenotype without under-
going hypertrophy [77,78]. Bendinelli et al. have reported an
important HGF-mediated anti-inflammatory and anabolic
effect of platelet-rich plasma on immortalized chondrocytes
lineage by attenuating or reducing the transactivating activity

Table 1. Primary platelet and plasma contents and their biological functions in tissue regeneration [28,46].

Category Name or acronym of the molecule Biological function

Adhesive proteins VWF + pro-peptide, Fibrinogen (Fg), Fibronectin (Fn),
Vitronectin (Vn), Thrombospondin-1,-2 (TSP-1, -2),
laminin-8

Cell contact interaction, extracellular
matrix composition

Proteases and anti-proteases Tissue inhibitor of metalloprotease 1-4 (TIMPs 1-4),
metalloprotease-1,-2,-4,-9 (MMP-1,-2,-4,-9),
ADAMTS13, ADAMS10,17, serpin proteinase inhibitor,
platelet inhibitor of FIX, C1 inhibitor, a 1-antitrypsin

Angiogenesis, vascular modelling,
regulation of cellular behaviour

Growth and mitogenic factors Platelet-derived growth factor (PDGF), Transforming
growth factor b1and b2 (TGF b1, b2), Epidermal
growth factor (EGF), Insulin-like growth factor
1 (IGF-1), Vascular endothelial growth factor A and C
(VEGF A, C), Basic fibroblastic growth factor (FGF-2),
Hepatocyte growth factor (HGF), Bone morphogenetic
protein -2,-4,-6 (BMP-2,-4,-6), CTGF, SCUBE1, IGFBP3

Chemotaxis, cell proliferation and
differentiation, angiogenesis

Chemokines, cytokines and others RANTES, IL-8, MIP-a, ENA-78, MIP-2, MCP-1, MCP-3,
SDF-1a, PF4, b-TG, pro-platelet basic protein (PBP),
NAP-2, connective-tissue-activating peptide III T,
angiopoietin-1, High mobility group box 1 (HMGB1),
IL-6sR, endostatin, osteonectin, bonesialoprotein,
osteoprotegerin

Regulation of angiogenesis,
chemotaxis, vascular modelling,
cellular interaction, bone formation

Membrane glycoproteins alphaIIbbeta 3 (aIIbb3), alphavbeta3 (avb3) PECAM-1,
most plasma membrane constituent, receptors for
primary agonists, CD63, CD40L, tissue factor,
P-selectin, furin, GLUT3, semaphorin 4D, TLT-1,
TNF-related apoptosis inducing ligand (TRAIL),
syntaxin-2, SANP23

Platelet aggregation and adhesion,
endocytosis of proteins, secretion,
inflammation, thrombin generation,
platelet-leucocyte and platelet--vascular
cell interactions

Others Content of dense granules: ATP/ADP, calcium,
serotonin, histamine

Fibrin formation, capillary permeability,
vascular local regulation
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of NF-kB [78], a proposal that has been reinforced by the
results obtained in osteoarthritic chondrocytes by Van
Buul et al. [79]. In addition, PRP decreased the expression of
COX2 and CXCR4 target genes, whose products might be
involved in controlling chemotaxis of inflammatory cells
such as monocytes thereby reducing local inflammation [78].
Wu et al. [80] have shown, using a 3D in vitro model, that
the combination of PRP with a collagen matrix (with immor-
talized human chondrocytes) recovered type II collagen and
proteoglycan synthesis which had been inhibited by 3 days
of treatment with IL-1b+TNF-a, thereby illustrating the pro-
tective efficacy of PRP on chondrogenic-specific gene expres-
sion such as Col lI and AGN [80]. In another recent study,
Anitua et al. determined that synovial fibroblast culture incu-
bated with plasma rich in growth factors (Endoret) + HA
induced a greater increment in synovial cell migration
compared with the response to HA alone [81].

Furthermore, drawing on the aforementioned evidence,
some in vivo studies have used PRP in an attempt to restore
local hyaline cartilage injuries. When PRP liquid was loaded
in microporous poly-lactic-glycolic acid scaffolds and applied
on large osteochondral defects in a rabbit model, the neo-
chondrogenesis induced showed chondrocyte-like cell and a
high ECM synthesis and the defects were totally filled with
a repair tissue similar to hyaline cartilage, compared with
the control that showed a fibrous tissue repair [82]. The pre-
ventive effect of PRP infiltrations delivered in gelatin hydrogel
microspheres in a rabbit model has been reported, showing a
suppression of histomorphological signs of the OA progres-
sion compared with microspheres containing PPP [83]. There-
fore, it has been suggested that the treatment of OA might be
carried out using a combination of growth factors [29,57,65] in
an attempt to redress the extracellular matrix through the
cells behaviour.

6. Conclusions

There is increasing recognition and evidence of a molecular
crosstalk between cartilage and subchondral bone which
might be harnessed by growth factors delivered from PRPs,
thereby counteracting the influence of catabolic gene expres-
sion of immature or deregulated chondrocytes on the extracel-
lular matrix, triggered and maintained by mechanical stress.
PRGF-Endoret might influence an anabolic microenviron-
ment, containing the right combination of chemical cues,
which is conducive to maintaining the homeostatic state of
the joints tissues, reducing pain and improving the joint
motion, structure, and function.

7. Expert opinion

The potential of endogenous regenerative technology
(Endoret) for in situ regenerative medicine has yielded posi-
tive and promising clinical--surgical outcomes in musculo-
skeletal system pathologies [34,61,84]. This autologous and

biological therapy to cartilage repair is underpinned by a sub-
stantial body of evidence in basic science [58,76,80] as well as in
preclinical [82,83] and clinical levels of practice [66,85-91].

The successive intraarticular injections of platelet-rich
plasma in the knee joint of osteoarthritic patients have shown
significantly higher reductions in knee pain and stiffness and
improvement in physical function, even compared with hya-
luronic acid (HA) [64,82,87] although this product has not yet
been proven to really modify the overall histology or molecu-
lar composition of OA cartilage. In these clinical trials, the
surrogate marker for OA amelioration was the pain. The trials
did not evaluate the influence of Endoret on histological and
molecular make-up of osteoarthritic cartilage. Although PRPs
open a new disease-modifying OA therapy, we acknowledge
that this biological approach may only play a part, albeit, a
key part in solving this condition. We must not lose sight of
the fact that physical rehabilitation as well as other systemic
factors such as nutritional deficiencies can affect the joint vul-
nerability [1]. Healing does not mean “regenerating”, and
repairing does not mean “recovering the function”.

These clinical outcomes have demonstrated that Endoret use
is safe as well as efficacious. Taking into account the overall
results in basic science, in preclinical and in osteoarthritic
patients, we are led to suggest four synergetic effects on the
osteoarthritic context (Figure 2). First, there is a chondroprotec-
tive effect of the synovial joint due to both the hyaluronic acid
secretion by synoviocytes [76] and the arresting of type II colla-
gen cleavage by the combination of TGFb and FGF [29] which
contribute to the homeostasis of the articular cartilage. Second,
we see an anti-inflammatory effect on human chondrocytes on
the basis of the HGF effect both present in PRP and secreted
by the synoviocytes [64] inhibiting the intracellular signalling
regulator of the inflammatory and stress-induced response [41]

pathway NF-kb [78,79]. Moreover, PRP up-regulates chondro-
genic-specific genes and down-regulates the expression of
inflammatory molecules on immortalized human articular
chondrocyte cell hPi [80]. Third, there is a cell-phenotypic
modulation of both chondrocytes which prevent hypertrophic
differentiation and maintain them in an arrested state [28-30]

and of MSCs and CPCs which promote chondrogenic differ-
entiation once they have migrated from vascular areas (syno-
vium and subchondral bone) [12,17,35,36] towards injured areas
under the action of PRP [80], GFs such as TGF-b and
IGFs [71,92,93] or FGF-2 [94]. Fourth, by attenuating and reduc-
ing the joint’s pain [64,86-88,90,95] the physical activity level might
improve and increase the physiological load tolerable for the
joints. The increased tolerable physical load might entail a
chondroprotective effect since it has been proved that moderate
mechanical loading [14,48] has an anticatabolic effect on the
articular cartilage through either the action of CITED2 [96] or
by suppressing NF-kb activation and, in this manner, it may
mediate the anti-inflammatory effect of moderate joint
motion [14,48,97]. But not all PRPs are the same, and in a clinical
trial conducted by Filardo et al. [98] which compared the
efficacy and safety of intraarticular injections of Endoret
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against a leucocyte-PRP in the treatment of OA, patients
treated with Endoret had fewer side effects than those treated
with leucocyte-PRP whose patients presented more pain and
swelling events.
The aforementioned observations emphasize the important

role that both growth factors and autologous platelets and
plasma products play by providing a storm of signalling fac-
tors which are biologically active soluble metabolites, and by
regulating a vast range of cellular behaviours both in osteoar-
thritis and in the articular cartilage repair process. By modu-
lating gene expression and gene products of cells such as

chondrocytes, synoviocytes, macrophages, mesenchymal
stem cells as well as their cell cycles through epigenetic mech-
anisms [12,28,80] PRP might influence an anabolic microenvi-
ronment, containing the right combination of physical as
well as chemical cues, which is conducive to maintaining the
homeostatic state of the joint tissues, reducing pain and
improving the joint motion, structure, and function.

Platelet-rich plasma therapy draws on the autologous bio-
logical system of growth factors and fibrin whose effects on
different joint cells and their microenvironments are promis-
ing. The biological approach with the application of Endoret

PRGF

Chondroprotective Antiinflammatory

Extracellular matrix

Cell phenotype modulation

CITED2 CITED2

Increasing the tolerable
physiological load

Adaptation

Chondrocyte

Mainly chondrocyte, MSCs and CPCs

Joint’s pain reduction

Degradation

-Hyaluronic acid secretion.
-Arresting of type II collagen cleavage.

-Inhibition of NF-κβ as stress-induced
 response pathway.

IGF 1

bFGFHGF

VEGF

PDGF
TGF B

NF-κβ
p38 MAPK

Figure 2. The overall outcomes in basic science, preclinical, and clinical studies suggest four synergetic effects of PRP

application on the osteoarthritic joint. By modulating gene expression and gene products, PRP may well influence cells

behaviour which are conducive to maintaining the homeostatic state of the joint’s tissues thereby reducing pain and

improving joint function and motion.
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on osteoarthritic joints results in reducing joint pain and
improving joint function by restoring tissue homeostasis as
indicated by the chondroprotective, anti-inflammatory, and
cell-phenotypic modulation effect on joint tissues.

However, there remain some mechanistic and dosage
aspects that must be elucidated in order to determine, harness,
and optimize the therapeutic potential of platelet-rich plasma
products. Although somewhat controversial, one differential
element among the various biological compositions of PRPs
that might clearly alter its healing potentiality is the leucocyte
concentration. Several unanswered questions remain, such as
how many infiltrations would be ideal in a first approach,
the interval between them, and whether there should be a
1-year anniversary repetition of infiltrations. Due to the het-
erogeneous composition of PRPs, stemmed from the myriad
of methods to obtain them as well as from individual variabil-
ity, it is difficult to ascertain general guidelines in order to
optimize them. We have to acknowledge that we are only in
the dawn of biological therapies and PRP products are just
in their infancy. The fact that such endogenous PRP therapy
acts on a variety of tissues which can be seen as biological sys-
tems or networks themselves should not be seen as an absence
of accuracy, like a scatter shot, simply because most of the
proteins in platelet-rich plasma exert a broad regulatory and
pleiotropic function. Indeed, it is only in rather exceptional
cases that a specific physiological function can uncondition-
ally and unambiguously be assigned to a given protein as a
discrete entity [99]. There seems to be no specific biological
factor for each specific cellular function. There are simply bio-
logical factors which, in a particular tissue environment, and
acting together, induce the expression of cell phenotypes
with different cell behaviours [100]. In recognition of the
emerging current view of the bone-cartilage as a biological

unit [16,17,19,35] mentioned previously in this paper, the articu-
lar cartilage should be regarded as only part of the target in the
OA treatment. Therefore, in the coming years attempts to
harness subchondral bone’s source of migratory cell such as
MSCs and CPCs [10,12,35,36] and of signalling factors (growth
factors and cytokines) must include the subchondral bone as
an additional target in the OA treatment with Endoret.

In the light of basic science and clinical studies, we may
state that the application of Endoret, in addition to being
safe, has been shown to be clinically efficacious in OA treat-
ment although many interesting challenges remain. As knowl-
edge about the regenerative effect of growth factors is
growing, their application is being extended, and new chal-
lenges arise. We are only at the beginning of a new era in
which we must optimize this procedure at the same time we
continue drawing on its healing power.
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REVIEW

A new strategy to tackle severe knee osteoarthritis: Combination of intra-articular
and intraosseous injections of Platelet Rich Plasma
Mikel Sáncheza, Eduardo Anituab, Diego Delgadoc, Peio Sanchezc, Roberto Pradob, Juan Jose Goirienad,
Felipe Prospere,f, Gorka Oriveb,g,h and Sabino Padillab
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dDepartamento Fisiología, Facultad de Medicina, UPV, Leioa, Spain; eCell Therapy Program, Foundation for Applied Medical Research, University of
Navarra, Pamplona, Spain; fHematology and Cell Therapy Department, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain;
gLaboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, Vitoria, Spain; hNetworking
Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, SLFPB-EHU, Vitoria-Gasteiz, Spain

ABSTRACT
Introduction: Knee osteoarthritis (KOA) is a mechanically induced, cytokine and enzyme-mediated
disorder involving all the joint tissue of the knee. Rebuilding a physiological-homeostatic network at
the tissue level following knee organ failure, such as in severe KOA, is a daunting task with therapeutic
targets encompassing the articular cartilage, synovium and subchondral bone. Intraarticular infiltration
of plasma rich in growth factors (PRP) has emerged as a promising symptomatic approach, although it
is insufficient to reach the subchondral bone.
Areas covered: This review addresses current molecular and cellular data in joint homeostasis and
osteoarthritis pathophysiology. In particular, it focuses on changes that subchondral bone undergoes in
knee osteoarthritis and evaluates recent observations on the crosstalk among articular cartilage,
subchondral bone and synovial membrane. In addition, we review some mechanistic aspects that
have been proposed and provide the rationale for using PRP intraosseously in KOA.
Expert opinion: The knee joint is a paradigm of autonomy and connectedness of its anatomical
structures and tissues from which it is made. We propose an innovative approach to the treatment of
severe knee osteoarthritis consisting of a combination of intraarticular and intraosseous infiltrations of
PRP, which might offer a new therapeutic tool in KOA therapy.
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1. Introduction

Knee osteoarthritis (KOA) is a mechanically induced, cytokine
and enzyme-mediated disorder with different biochemical,
inflammatory, and genetic signatures undergoing distinct
phases and phenotypes, and encompassing all joint tissues,
with pain and inflammation as the clinical and biochemical
hallmarks of the disease.[1–3] This complex mechanical organ
includes articular cartilage (AC), an avascular hydrated tissue
functionally sandwiched between two highly innervated and
vascularized tissues, namely, synovial membrane (SM), which
produces synovial fluid (SF), and subchondral bone (SB), liga-
ments, capsule and periarticular muscles (PM).[4] Intraarticular
joint tissues are endowed with very distinct load-bearing cel-
lular responses, which are responsible for the organization of
their specific extracellular matrix (ECM), which account for the
bulk mechanical properties of the tissues in order to transfer,
absorb and dissipate the mechanical forces among them in a
frictionless and pain-free movement.[4,5]

Subchondral bone has always been present in the equation
of the cartilage repair process and osteoarthritis (OA) [6–8] but
it has suffered neglect for decades as an important player in

the etiopathogenesis of OA.[8,9] There is an increasingly
recognized communication between the subchondral bone
and articular cartilage based on the changes that the subchon-
dral bone undergoes in patients with severe OA, including
microcracks and structural defects, vascularization of channels,
nerve growth and a progressive replacement of the subchon-
dral marrow with fibroneurovascular mesenchymal tissue.[10–
12] As it is yet to be established precisely which of the joint
tissues or structures is the primary driver of KOA, and ther-
apeutic strategies targeting solely one cell or tissue target may
well prove to fail [13], it is advisable that approaches to KOA
treatment should be aimed at reaching several joint tissues
with the objective of reducing joint inflammation, controlling
pain, improving joint functionality and restoring the home-
ostasis of joint tissues.

A biologically inspired therapeutic approach consisting in
intraarticular infiltrations of PRP has proven to substantially
reduce pain in patients with KOA [14,15] and to improve joint
stiffness and physical function.[16] Unlike a single growth-
factor-delivered therapeutic strategy in a bolus manner, PRP
conveys many bioactive mediators within an autologous fibrin
network released gradually, which have been shown to exert

CONTACT Sabino Padilla sabinopadilla@hotmail.com Department of Regenerative Medicine, BTI Biotechnology Institute, Jacinto Quincoces, 39, 01007,
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positive effects on reestablishing homeostasis of joint tissues
through a breadth of actions such as antiinflammatory, immu-
nomodulatory and antioxidative effects [17–24], an analgesic
effect [14–16,25], and finally chondroprotective and anabolic-
trophic effects.[26–29]

This review will explore some of the recent insights and
observations concerning the involvement of subchondral
bone in the pathophysiology of osteoarthritis and additionally
will highlights the increasing understanding of knee joint
homeostasis and the role that PRP therapy could play in the
disease-modifying osteoarthritis treatment of the knee.

2. Joint tissue responses to mechanical stimuli:
homeostasis, adaptation and inflammation

2.1. Joint homeostasis and mechanical stress

At a biomechanical level, knee components work as a network
from which the joint´s functional property as an organ
emerges, a property known as dynamic stability, whose
equivalent at the tissular and cellular level is termed tissue
and cell homeostasis. Such identities do not imply biological
constancy but rather dynamic adaptability.[30] The phenotype
of chondrocytes, synoviocytes, and osteoblasts is constantly
adapting to its dependence on the biochemical, biophysical
and mechanical loading features of their microenvironment.
[31–34] Signals and ligands from extracellular matrix (ECM)
drive cell responses and tightly fine tune the anabolic/cata-
bolic balance in order to maintain or to adapt their ECM
composition to the ongoing mechanical challenges,[31]
thereby protecting against the deleterious effect of some
supraphysiological stimuli.[35] Abnormal mechanical stress
and/or biochemical mediators variously stemming from
trauma, obesity, lesion or disfunction of knee components,
as well as metabolic diseases break knee dynamic stability
and trigger biological responses that disrupt the homeostasis
of cells and tissues of the joint in a locally, sustained, low-
grade inflammatory fashion leading to a matrix degradation
(Figure 1).[2,36,37]

In the wake of this sterile matrix degradation of articular
cartilage, there is a depletion of aggrecans and cleavage of
collagen II, which leads to the erosion of cartilage, subsequently
altering the nanostiffness of articular cartilage and weakening
its load-bearing capacity.[4,38] Besides the release of matrix-
degrading products, the ECM degradation deeply impacts the
micromechanical environment of chondrocytes and changes
the magnitude of dynamic compressive forces transferred
from them to the underlying bone, and these aberrant new
sustained (chronic) abnormal forces prompt chondrocytes and
osteoblasts to respond with a pro-inflammatory gene expres-
sion through activation of the NFkB signaling pathway [32,43]
and increased osteoclastogenesis, thereby increasing bone
resorption and sclerosis [34,44] respectively. Nevertheless, evi-
dence is accumulating about how alterations of subchondral
bone induced by mechanical or vascular stresses might be the
start point in the catabolic loop of AC degradation and extend
to SM (Figure 1).[1,7,45,46] Cartilage is an avascular tissue
whose cells rely on synovial fluid and subchondral plate to
obtain oxygen and a supply of nutrients, having the subchon-
dral bone account source for at least 50% of articular cartilage
requirements in oxygen and glucose.[46,47]

Therefore, despite the fact that tracking down the ‘first
pathogenic event’ responsible for the initiation of KOA still
proves an elusive quest, any induced mechanical or metabolic
damage to joint tissues in combination with predetermined
influences such as genetic, obesity and aging, paves the way
to initiating a harmful joint environment involving AC, SM and
SCB, and then it is difficult to establish who was first.[8]

2.2. Synovial membrane and subchondral bone in
cartilage homeostasis

In recent years, a great deal of evidence has been accumu-
lating in favour of seeing as decisive, the contribution of
synovitis and subchondral bone on articular cartilage degra-
dation, and on the progression of OA, where AC may after
all be the victim, and not the culprit of catabolic inflamma-
tory cytokines stemming from synovial membrane and sub-
chondral bone, and triggered by abnormal mechanical
stresses.[3,4,41,42,48] Hence, cartilage integrity is highly
dependent on the underlying subchondral bed and vice
versa, as well as on a healthy synovium and its product
the synovial fluid.[7,49]

Evidence in basic science, preclinical and clinical settings
has been mounting for the role of synovium inflammation in
the pathogenesis and progression of OA.[2,3] Matrix-degrada-
tion products such as fibronectin, tenascin C, high-mobility
group protein B1 (HMGB1) and low molecular-weight hyaluro-
nic acid (LWHA) among others in the SF [37,42] can act as Toll-
like receptor (TLR) ligands or damage-associated molecular
patterns (DAMPs) and activate TLR-2 and TLR-4 of synovial
macrophages and fibroblasts, chondrocytes and osteoblasts,
leading to the activation of the intracellular signaling pathway
nuclear factor kappa B (NFkB) (Figure 1).[3,50] The activation of
the NFkB signaling pathway mediates the expression of sev-
eral inflammatory genes and the synthesis of interleukin 1beta
(IL-1B), interleukin 6 (IL-6), interleukin 10 (IL-10), nitric oxide
(NO), prostaglandine E2 (PGE2), tumor necrosis factor alpha

Article highlights.

● Knee osteoarthritis is a mechanically induced, cytokine- and enzyme-
mediated cluster of disorders affecting the whole joint.

● There is an intense molecular and cellular crosstalk among AC, SB,
and SM in KOA, which establishes a catabolic loop.

● Any attempt to treat KOA should address the articular cartilage, the
synovial membrane, the synovial fluid and subchondral bone as
therapeutic targets.

● Platelet rich plasma is a multimolecular and safe therapy, and its
clinical benefits might be attributed to trophic-anabolic, antiinflam-
matory and analgesic effects.

● Intraosseous infiltrations of PRP modulate SB homeostasis by antiox-
idative stress protection, adipogenesis suppression and improvement
in bone mineralization effect.

● The combination of intraarticular and intraosseous injections of PRP
might offer a new therapeutic tool to address the knee joint pathol-
ogy as a whole, by reaching the SM, SF and superficial zone of AC by
intraarticular injections, and the deep zones of AC, and SB through
PRP intraosseous infiltrations.

This box summarizes key points contained in the article.
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Figure 1. Abnormal distribution of mechanical loading across joint cartilage breaks the homeostasis of articular cartilage and provokes adaptive or catabolic cell
responses, which leads to an increased synthesis of matrix metalloproteinases (MMPs) and aggrecanases (ADAMTS), expression of proinflammatory cytokines and
mediators such as interleukin-1B (IL-1B) and cyclooxygenase-2 (COX-2), high levels of reactive oxygen species (ROS), disruption of water tissue distribution and
matrix fragments.[4,38–40] Proinflammatory cytokines involved in OA, such as IL-1B and TNF-a are major players in the destruction of AC by inhibiting the synthesis
of aggrecans and collagen type II while at the same time stimulating the synthesis of MMPs in chondrocytes.[41] It has been reported that activation of TLRs of
synovial macrophages and fibroblasts, and monocytes by DAMPs present in an inflammatory SF, is an important pathway in promoting synovitis in OA through the
NFkB pathway [3], cells that respond with the production of MMP-1, MMP-3, and MMP13, IL-1B, TNFa and IL-6 among other catabolic mediators, promoting synovitis
in OA.[3,41,42]
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(TNF-a), interferon gama (IFN-j) and nerve growth factor (NGF)
among other inflammatory cytokines (Figure 1).[3,39,41,50,51]
Moreover, NFkB transcription factor has been postulated as a
functional connection among the mechanobiological, devel-
opmental programming and stress-inflammatory responses of
AC, SM and SB, making the NFkB signaling pathway a poten-
tial multi-faceted target in OA disease.[13,32,50] Another path-
way involved in OA synovitis is the activation of complement
as it has been shown by Wang et al. [52] who reported that
the expression and activation of complement is abnormally
high in the human OA joint, where the presence of some
products of dysregulated cartilage remodeling such as fibro-
modulin, cartilage oligomeric matrix protein (COMP), and
osteoadherin in synovial fluid and membranes might account
for this activation.[3]

Important clinical features of the inflamed synovium
(synovitis) are pain, swelling and stiffness,[42] whereas his-
topathological changes are characterized by an uneven,
abnormal cell infiltration and an aberrant proliferation of
macrophages, fibroblasts, and blood and lymphatic
endothelial cells that lead to a neofibroangiogenesis.[42]
SM and SB are highly vascularized and innervated tissues
endowed with heat receptors, chemoreceptors and mechan-
oreceptors from where nociceptive stimuli, coming from a
microenvironment undergoing non-physiological mechani-
cal loading and/or pro-inflammatory cytokines and
damage-associated molecular patterns (DAMPs), might initi-
ally lead to peripheral and eventually both peripheral and
neuropathic pain by mechanisms yet to be fully identified.
[3,53] In addition, proinflammatory cytokines may contri-
bute to pain by stimulating hyperalgesia and sensitizing
joint nociceptors to other stimuli [3,42] thereby perpetuat-
ing a catabolic vicious circle among SM, AC and SB.

2.3. Joint inflammation and mesenchymal stem cells

Aggression and inflammation to AC, SM, menisci and liga-
ments has been reported to bring about an increase of MSCs
in SF,[54,55] which is commonly interpreted as a tissue
response to injury [56,57] equivalent to the response of migra-
tory chondrogenic progenitor cells from SB to injured carti-
lage.[58,59] Moreover, several studies have reported that the
accumulation of SF MSCs increases with the severity of
osteoarthritis, joint damage and the disease duration.
[55,60,61] Healthy human and osteoarthritic cartilage and SF
contain a population of cells with characteristics of mesench-
ymal progenitor cells [56,62] with migratory and chondrogenic
potential.[56,58] According to these observations, endogenous
mesenchymal stem cells have been postulated as a reservoir
of repair cells and immunomodulatory drugstore cells to dam-
pen inflammation.[63] Although the source of MSC increase
has yet to be determined, the most likely origin may be the
SM, [55,56] the breakdown zone of superficial AC,[62] and the
SB.[10,12,58,59] However, the SB origin of SF MSCs is less likely
to occur for as some authors have suggested, the marrow of
patients with severe OA is almost depleted in MSCs and the
remaining MSCs are functionally deficient.[60]

Bone, like cartilage, responds to mechanical stress in an
intensity-dependent manner and a tight regulation between

the sequential processes of deposition and resorption at the
same site. These processes are carried out by the coupling of
osteoblast and osteoclast-metabolic activities [43] and unlike
cartilage, when damaged regenerates spontaneously due
mainly to its high elevated vascular and cellular network.
Evidence is accumulating not only about the involvement of
bone, and more particularly SB in the development and pro-
gression in OA but also about how these SB changes might
even precede changes in AC of OA joints.[7,8,12,33,64]

3. The role of SB in pathophysiology and clinical
symptoms of osteoarthritis

3.1. The subchondral bone-articular cartilage functional
unit

Subchondral bone has always been present in the equation of
OA pathogenesis and more than 40 years ago, partially
inspired by the 1827 proposal by surgeon Dr. P.P. Physick on
the SB as an effective shock absorber. Radin et al. [7,65]
suggested a cause-effect connection among mechanical load-
ing, subchondral bone sclerosis and osteoarthritis.
Subchondral bone is the layer of bone which lies immediately
below the calcified cartilage (Figure 2),[66] and consists of two
different anatomical entities, one called subchondral or corti-
cal plate which is nonporous and poorly vascularized cortical
bone, and the SB which contains bone marrow (fatty) and
trabecular bone.[47,67] Together with the AC, it forms the
osteochondral functional unit, which undergoes mechanical
stresses that trigger adaptive cell responses and establish a
crosstalk among them to adjust their architecture to ongoing
physical and biochemical challenges.[12,68] In the functional-
ity of the osteochondral unit, articular cartilage provides an
elastic, gliding, smooth frictionless surface, while subchondral
bone, a very low viscoelastic structure, together with periarti-
cular muscles and ligaments, acts as shock absorber structures,
accounting for 30 and 50% of the total absorbing energy and
only 1–3% for the AC.[4,47] Besides the pivotal shock absorb-
ing function, SB is a source of vessels whose perfusion rate
enables an important nutritional route for AC but any damage
to this microvasculature affects venous bony circulation
thereby altering cartilage and chondrocyte function.[10,46,47]

3.2. SB turnover and structural changes in OA

The osteochondral unit in an OA joint undergoes several
structural changes including loss of articular cartilage, devel-
opment of inflamed synovium, calcified cartilage thickening
and tidemark duplication, undermineralization of bone, sclero-
sis and stiffness of SB, bone marrow lesions (BMLs), cysts,
osteophyte, and a localized bone marrow replacement by
fibroneurovascular tissue.[10–12,33]

Despite the high turnover of SB in OA, an uncoupling between
bone formation and resorption at the same site leads to an
increase in bone volume without a concomitant increase in
bone mineralization pattern.[8,33,43] This SCB sclerosis is charac-
terized by an increase of the osteoid volume and a decrease of
calcium bind to collagen fiber, and is associated with a gain of
trabecular thickness, loss of trabecular number, and a trabecular
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network more separated and less interconnected.[43,64] It has
been suggested that sclerotic subchondral bone, localized at
subchondral plate, could decrease the load transfer to the under-
lying bone tissue leading to osteoporotic-like changes.[10]
Moreover, SB can undergo microdamage, such as microcracks
and clefts, that modify SB stiffness and reduce the shock-absorb-
ing capacity of SB, thereby chronifying a microdamage context
and perpetuating an accelerated bone remodeling, which impairs
normal mineralization of bone once it has been deposited, most
likely by a modified osteoblastic phenotype.[10,67,72] Magnetic
resonance imaging (MRI) has helped to detect subchondral bone
marrow edema-like lesions (BMLs), which have been found to be
associated with pain and disease progression in KOA,[73] and
together with bone attrition, are strong indicators of a structural
deterioration in KOA.[10] Several studies conducted in human
knee and hip OA paralleling MRI bone marrow edema lesion
studies with histological analysis of SB retrieved at the time of
joint replacement, revealed microfractures and increased bone
remodeling, subchondral ingrowth of fibrovascular tissue and
increased vascularity, as well as various types of bone marrow
fibrosis.[73–75] These observations were confirmed in rodent
models of OA.[12,76] The increased activity of osteoclasts in OA
cause channels to extend from SB to AC, passing across the
calcified tissues into the noncalcified articular cartilage.[68] The
neurovascular invasion of those newly formed channels is accom-
panied by a new fibroneurovascular mesenchymal tissue within
the channel along with cells such as macrophages, osteoclasts,
osteoblasts and endothelial cells, which interact to stimulate
angiogenesis and growth of sympathetic and sensory nerves
[12] and reach the noncalcified cartilage, a finding which has
been supported by animal models of OA (Figure 1).[12]

3.3. Cellular interactions and molecular crosstalk in
osteochondral unit in OA

There is now good evidence that even in a non-diseased joint,
naturally occurring pores and holes enable communication
between SB and AC through diffusion of small molecules.
[11,70,77] This communication may be exacerbated by structural
changes seen early in the osteochondral unit in OA. The
increased osteoclastic activity in the OA subchondral plate [33]
may increase the permeability of bone–cartilage interface by
inducing channel formation in the tidemark, in addition to the
existent aberrant fibroneurovascular tissue and vasculature, and
mechanical stress-induced microcracks.[12,67,78] Reinforcing
this view, Pan et al. [77] have demonstrated the diffusion of
small-size molecules between SB and AC by utilizing the FLIP
method (Imaging method based on fluorescence loss, which
quantifies diffusivity of small molecules) with sodium fluorescein
in the distal femur of mice, and this communication is greatly
increased in osteoarthritic joints of the mice model.[11]
Therefore, the presence of these connections enables an ele-
vated crosstalk among chondrocytes, osteoblasts, osteoclasts
and MSCs through biological factors and signaling pathways.

Several in vitro and in vivo studies have demonstrated that
osteoblasts from sclerotic subchondral bone show an altered
phenotype. In an in vitro study, Westacott et al. [79] reported
that osteoblasts in OA-affected bone exhibited a different phe-
notype, whose activity can degrade articular cartilage in vitro.
Supporting this observation,[80] Hilial et al. reported that osteo-
blasts fromOA subchondral bone have an abnormal metabolism
with increased levels of PGE2 and TGFβ (Figure 1 and 2). Using a
co-culture model of OA subchondral bone osteoblasts with

Figure 2. SB. Targeting the osteoarthritic subchondral bone with Intraosseous infiltration of PRP. This schematic drawing illustrates the outside-in (AC-SB) and
inside-out (SB-AC) flow of mediators and cells. SB as a point of egress of morphogens and cells, through the channels and vessels breaching the osteochondral
junction, partially recruited by the osteoarthritic synovial fluid.[8,12] This cartilage cell invasion might be facilitated by the loss of aggrecans, collagen II cleavage,
and disruption of water tissue distribution [38] of the articular cartilage as well as by the secretion by MSCs of fibrinolytic enzymes.[66] The excessive presence of
TGFB1 and VEGF in OA subchondral bone [8,12,69] could be a driving factor for changes in osteoblast-osteoclast coupling thereby leading to a bone remodeling
imbalance.[8,64,70] NGF expression,[71] and fibroneurovascular growth changes that additionally might well contribute to overlying cartilage degradation, [64,69]
pain [12,67,68] and an osteoarthritic joint.[64,69]
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chondrocytes, Sanchez et al. reported that osteoblasts induced a
catabolic response of chondrocytes including a decrease in
aggrecan, type II collagen and SOX-9, and an increase of MMP-
3 and MMP-13 among other mediators.[81,82] Moreover, osteo-
blasts from scletoric subcondral bone have an elevated TGFβ
expression [43] and under cyclical compression express proan-
giogenic factors such as VEGF, FGF and IL-8.[34] Hepatocyte
growth factor (HGF) is a pleiotropic morphogen present in articu-
lar cartilage but produced by osteoarthritic subchondral bone
osteoblats, osteoclasts and MSCs,[69,83,84] with likely implica-
tions in both the chondrocyte anabolic state and the prolifera-
tion of an invasive fibroneurovascular tissue in SB,[10,12,69] the
latter when an uncoupling osteoclast–osteoblast activity may
lead to an overexpression of HGF (Figure 1 and 2).[83] The
excessive presence of TGFB1 and VEGF in OA subchondral
bone [12,71] could be a driving factor for changes in osteo-
blast–osteoclast coupling thereby leading to a bone remodeling
imbalance,[10,64] NGF expression,[85] and fibroneurovascular
growth changes that additionally might well contribute to over-
lying cartilage degradation,[64,71] pain [12,67,68] and an
osteoarthritic joint.[64,71] In a recent study, Zhen et al. showed
that by inhibiting TGF-β signaling in a specific population of
MSCs present at the SB (Nestin positive MSCs), the severity of
OAwas reduced, a change associatedwith improvement of bone
parameters, cartilage structure and joint function without affect-
ing TGFB signaling in AC.[71] In fact, previous studies have
shown that the decrease of MSCs in the synovial fluid, in low
degree OA, suggests clinical improvement.[55] MSCs from
osteoarthritic bone marrow have been reported to be substan-
tially reduced in yield and proliferative activity besides showing a
weakened chondrogenic and adipogenic activity and increased
osteogenic activity.[60] However, in vitro studies indicate that the
inclusion of growth factors, as a supplementary culture medium,
can be beneficial in reverting their chondrogenic activity.[86]

4. Plasma rich in growth factors as an effective and
safe therapeutic approach to treat OA

4.1. PRP as an emergent and promising knee
osteoarthritis treatment

Despite important advances made in the development of
treatments to reduce pain and inflammation, and in spite of
endeavors to develop an efficacious and early disease and
structure-modifying therapeutic intervention, the path to
osteoarthritis treatment remains elusive. Among the emerging
biologic interventions to target the clinical and biochemical
hallmarks of OA, namely joint pain and inflammation, platelet
rich plasma stands out.[87]

4.2. Platelet-rich plasma preparation and content

4.2.1. What is platelet-rich plasma?
Drawing on the regenerative potential of platelets, plasma
biomolecules and fibrin matrix,[88] a plethora of systems to
produce PRPs have been developed to enhance the natural
regenerative capacity of damaged tissues.[89,90] Platelet rich
plasma is an autologous platelet concentrate within a plasma
suspension whose cell and plasma composition are

determined by the method used to obtain it. PRP products
include plasma and twofold or more increases in platelet
concentrations above peripheral blood levels and the concen-
tration of leukocytes and erythrocytes varies widely, from a
complete absence to a high concentration of them.[89] There
is a wide range of PRP products obtained by different blood-
spinning preparation protocols (number of centrifugations
and centrifugation speeds and time, the type of anticoagulant
and platelet activation methods),[89,91,92] and consequently,
the different biological effects that necessarily result, produce
very distinct clinical outcomes, which produce a confusing
picture of efficacy.

4.2.2. Plasma rich in growth factors (PRGF) preparation
PRGF, one of the multiple autologous platelets- and plasma-
derived products, which is included in PRPs, is produced as
follows. Briefly, peripheral venous blood from the patient is
withdrawn into 9 ml tubes containing 3.8% (wt/vol) sodium
citrate as anticoagulant. Blood is centrifuged at 580 g for 8 min
at room temperature. The 2 ml plasma fraction located just
above the sedimented red blood cells is collected in a tube
without aspirating the buffy coat (F2). The remaining upper
volume of plasma is deposited in another tube (F1). The
activation of PRGF is carried out by adding calcium chloride
(10% wt/vol).[14] Additionally, PRPs can be manufactured by
using other standardized or commercial systems whose pro-
tocol heavily influences the composition of the final product
(platelet concentration, the presence of leukocytes and ery-
throcytes, the level of platelets activation).[89,93]

4.3. Platelet-rich plasma rationale

Plasma rich in growth factors (PRP) consists of a pool of
autologous growth factors (GFs) and other bioactive mediators
stemmed from platelets and plasma. Once PRP is activated,
plasma fibrinogen polymerizes into a three-dimensional tran-
sient fibrin scaffold, which contains heparan sulfate binding
domains for growth factors (PDGF, FGF, HGF, BDGF, VEGF, IGF
and TGF-B), cytokines (TNF-a, IL-2,3,4,5), chemokines (PF4),
ECM components (Fibronectin, thrombospondin and tenas-
cin), cell adhesion (L-selectin and N-CAM), acute phase pro-
teins and proteins related to lipid metabolism.[94,95] By
sequestering several growth factors, microparticles, and
other biomolecules released from the degranulation of plate-
lets and plasma [95–97] this biocompatible and biodegradable
scaffold provides plastic-elastic stiffness and generates growth
factor gradients that are essential cues for cell proliferation,
differentiation, migration and correct orientation in the nas-
cent tissue.[98] Once infiltrated into the joint and subchondral
bone, this liquid-to-gel 3D injectable scaffold is converted into
a matrix-like viscous and malleable structure, which adheres to
SM, AC and SB and covers them (Sanchez et al. 2014; Figure 3).
[99] When fibrinolysis begins, a gradual, sustained release of
GFs and other biomolecules occurs, in contrast to a bolus
delivery modality.[96,100] Such a gradual yet sustained release
of GFs influence on cells, mimics the biological repair process,
[96,97,100] which is the topic of a review published in this
journal.[101]

632 M. SÁNCHEZ ET AL.

D
ow

nl
oa

de
d 

by
 [s

ab
in

o 
pa

di
lla

] a
t 0

4:
45

 1
5 

A
pr

il 
20

16
 



4.4. Some pitfalls in the application of PRPs on tissue repair

Despite the care and seriousness with which medical staff may
elaborate and apply PRPs in different medical fields, the poor
standardization, which mainly pivots around the controversial
presence/absence of leukocytes, the modalities of application
and the donor-related variabilities, are three elements that
contribute to drawing misleading conclusions about the clin-
ical efficacy of PRPs.[90,93,102] In a sterile inflammatory repair
scenario such as musculoskeletal injuries including KOA, leu-
kocytes may aggravate tissue damage and promote a proin-
flammatory microenvironment by releasing TNF-α, IL-6, IFN-γ
cytokines, which then induce the over-expression of MMPs,
elastase and cathepsin G, as well as reactive oxygen species
among others, thereby breaking down the ECM and exacer-
bating the original lesion.[40,103] Several research groups
have highlighted the detrimental effect that the presence of
leukocytes within PRP may exert on synoviocytes, chondro-
cytes, human subchondral MSCs [93,104–106] as well as on
clinical symptoms.[15] With regard to the modality of applica-
tion, PRP cannot be considered a magic bullet applied as a
kind of single scatter shot. Rather, a biological approach is
most productive with distributed infiltrations: infiltrating sev-
eral times and including healthy peripheral tissue which sur-
rounds the injury, with the aim of recruiting, activating and
mobilizing resident MSCs and influencing macrophages and
endothelial cells as well. Finally, the Spanish Agency of
Medical Devices (AEMPS) has defined PRP as a human-use
medicinal product and framed PRP outside the category of
advanced-therapy medicinal products. Therefore PRP therapy
can be applied intraoperatively and on an outpatient basis.

There is no doubt that the challenges to fulfill the require-
ments of safety and efficacy are daunting, and these must be
demonstrated by further clinical trials. Moreover, the hetero-
geneity of PRPs is hindering their regulation and several gaps
will be filled in the coming years particularly regarding PRPs
medical indications.[107] As the body of research about the
regenerative effects of PRPs skyrockets, expansion of their
applications is inevitable. Several unanswered questions
remain, some regarding molecular mechanisms involved in
the clinical benefits and others encompassing aspects of
dosage, such as how many injections would be ideal, the

interval between them and the suitability of combining PRP
with stem cells to enhance the healing power of PRPs.

4.5. Inflammation and oxidative stress

In vitro and in vivo studies (Table I) have reported that PRP
and GFs within it such as HGF, IGF-1, PDGF and TGFB, and
platelet microparticles have proven to exert an immunomo-
dulatory effect and promote an antiinflammatory environ-
ment. HGF and platelet microparticles have been reported
to polarize macrophages from M1 to M2 phenotype.
[20,108,109] IGF-I, PDGF, HG and PRP releasate modify the
inflammatory status of chondrocytes by suppressing the NF-
kβ signaling pathway [17–19] (Figure 2), which might lead
to the decreased presence of IL-β, and TNF-∝ and other pro-
inflammatory cytokines in synovial fluid [3,110,111]
(Figure 4). Reinforcing this interpretation, Anitua et al.
reported that LPS-treated osteoblasts and fibroblasts which
had been cultured in the presence of releasates obtained
from PRP without leukocytes, showed an increased expres-
sion of Ikβ∝, an antiinflammatory protein that anchors the
transcription factor NFkβ to the cytoplasma and inhibits its
activation, whereas releasates obtained from leukocyte-rich
PRP induced a NFkβ activation.[112] In one recent study, Xie
et al. [113] reported that PRP attenuated the multiple-cyclic
tensile strain mediated MMPs, NO and PGE2 synthesis in
chondrocytes, suggesting that PRP may protect chondro-
cytes from mechanically induced injury. Connective tissue
factor (CTGF), one of the most abundant growth factors
released by platelet activation [114] was reported to protect
chondrocytes from age-related degenerative changes and
from cellular stress, the latter mediated through NFkβ.[115]
On the other hand, synovial fibroblasts from osteoarthritic
patients cultured in 20% PRP supernatant produced a sig-
nificant amount of HGF, even in the presence of IL-1β,
which is known to inhibit the NFkβ on macrophages [20]
and to mediate the antiinflammatory effects of PRP on
fibroblasts.[57] In a recent work, Assirelli et al. [105]
observed that L-PRP (leukocyte-rich PRP)-treated human
synoviocytes sustained a long-term upregulation of IL-β,
IL-8 and FGF-2, together with a down-regulation of HGF

Figure 3. Infiltration of activated PRP previously stained with methylene blue was performed in sheep`s joint to ascertain its diffusion across the joint. Once the
animals were put down and the joint opened, we infiltrated the femoral condyle as well and took these picture in which the PRP liquid-to-gel ·3D injectable scaffold
was converted into a matrix-like viscous and malleable structure, which adhered to synovium (A) and covered it as it diffused across the condyle (B) (figure 2
unpublished data).
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and TIMP-4 expression, two anti-catabolic mediators in car-
tilage, the former indicating a proinflammatory and proca-
tabolic response. These observations were not present when
the culture medium was obtained by P-PRP (Pure PRP) or
PPP (Poor PPP), a notable signal that suggests there is
indeed an impact of leukocytes on the biologic effects of
PRP. This repertoire of antiinflammatory responses induced
by PRP may break the catabolic loop, and dampen inflam-
matory response in SM and AC when these cells are
exposed to proinflammatory cytokines and to abnormal
mechanical stress and DAMPS, which is the significant OA
context (Figure 2 and 4).[37] One cellular process that
accentuates the catabolic state of the AC and SB is the
oxidative stress resulting from the imbalance between levels
of reactive oxygen species (ROS) relative to antioxidant,
which is amplified by aging.[35,116,117] Osteoblasts cul-
tured in the presence of PRP supernatant showed an up-
regulation of NrF2-ARE pathway and subsequent activation
of antioxidant response element (ARE), an important
mechanism involved in detoxifying ROS and protecting
chondrogenic and osteogenic precursor cells.[22]
Moreover, intraosseous infiltrations of PRP in mice can
revert the decreased expression of SIRT1 in bone-marrow
derived stem cells from aged animals, making stem cells
more resistant to oxidative stress and maintaining their
stemness, suppressing adipogenesis within the bone mar-
row and improving osteogenesis and bone mineral density.
[23,24] Hence, PRP might additionally play a role as an anti-
aging factor by stabilizing AC and protecting SB against
oxidative stress.[22–24,115] However, as aging is one phy-
siological risk factor for developing OA,[35,117] there are
some age-related changes in the composition of PRP, such
as the reduction of IGF-1 and PDGF in elderly people, two
important chondrogenic mediators,[118] that might account
for some contradictory outcomes in the application of this
therapy.

4.6. OA and pain

Pain is considered the clinical hallmark of KOA and several clinical
trials have been conducted to assess the efficacy of intraarticular
injections of PRP for both pain and function of the knee. There are
several relevant studies using the same type of PRP product
(PRGF) demonstrating a significant pain reduction and an
improvement in knee joint physical function [16] in patients with
KOA treated by 3 weekly infiltrations of PRP.[14–16,127] The
mechanism/s causing osteoarthritis pain remain yet to be fully
identified [53] as do the proposed mechanisms of PRP effective-
ness. Two mechanisms might likely link the pain reduction to PRP
treatment. The first is the suppression of NFkβ on intraarticular
inflamed cells, which leads to the reduction of proinflammatory
cytokines that otherwise, might contribute to pain by stimulating
hyperalgesia and sensitizing joint nociceptors to other stimuli.
[3,42] The second is the reported significant amount of endogen-
ous cannabinoids within PRP [25] that might act as ligands for
cannabinoid receptor 1 (CB1) and 2 (CB2) of chondrocytes, syno-
vium cells and bone cells [128] of OA patients, thereby supporting
both a pain and inflammation reduction by targeting the endo-
genous cannabinoid systems (Figure 2 and 4).[25,128]Ta
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4.7. Trophic and anabolic effects

PRP has been shown to have a consistent in vitro proliferative
effect on cultured human chondrocytes in a dose-and time-
dependent manner [27,29,119] and on rabbit chondrocyte
when GFs are delivered in a sustained manner through the
upregulation of CB1 and CB2 receptors.[120] Moreover, an in
vitro and in vivo anabolic effect of PRP on chondrocytes has
been reported by increasing the synthesis of proteoglycan and
collagen type II [26] or decreasing catabolism by reducing
MMP-13 expression and TNF-∝ concentration in synoviocyte
and cartilage co-cultured systems with PRP media.[21]
Another chondroprotective effect is based on the visco-indu-
cing effect of PRP, which stimulates the synthesis of hyaluronic
acid and lubricin by synoviocytes and chondrocytes respec-
tively,[21,28,29] which help restore the SF homeostasis and
function (Figure 5), the latter preventing chondrocyte apopto-
sis, synovial cell overgrowth, cartilage breakdown, and inhibi-
tion of the MSC release and migration.[29,111,121] On the other
hand, platelet rich plasma obtained by apheresis, and charac-
terized by a low platelet concentration and very few leukocytes
has been shown to exert positive effects on migration, prolif-
eration and chondrogenic differentiation of cultured human
subchondral mesenchymal progenitor cells.[93,121,122]
Several soluble morphogens embedded in a fibrin network
such as IGF-I and -II, PDGF, SDF-1, TGF-β, CCL5 and fibronectin,
among other biomolecules, have been shown to be involved in
the recruitment and homing, and in a chondrogenic-

differentiation effect of PRP on chondroprogenitor or MSCs
from subchondral mesenchymal progenitor cells.[121,129] Last
but not least, uncontrolled angiogenesis and fibroneurovascular
tissue proliferation are two histological features of osteoarthritic
SM and SB. Despite the fact that PRP contains proangiogenic
and profibrotic growth factors (VEGF, FGF, PDGF and TGFβ)
several in vitro and in vivo studies have reported no increase
in the level of VEGF and TGFβ [123] nor were tissular fibrosis or
an aberrant angiogenesis induced.[123,124,130,131]

5. Targeting subchondral bone as one important
tissue in the knee OA treatment

5.1. Subchondral bone as a tissue target in OA
treatment

The realization of the biological and mechanical connection
between AC and SCB has lead to numerous in vivo animal
studies that have shown that targeting SB with some drugs
can have protective structural effects on cartilage.[9] Blocking
or limiting the bone remodeling with alendronate, [132] zole-
dronic acid [133] or improving the microstructure and quality
of subchondral bone in osteoarthritic and osteoporotic rabbits
with parathyroid hormone, [9] prevent cartilage degradation
and OA progression. Moreover, Sagar et al. [134] reported a
reduction in pain behavior after a subcutaneous treatment
with osteoprotegerin in a monosodium iodoacetate (MIA) rat
model of OA pain, and Pelletier et al. [135] demonstrated that

Figure 4. SM. This repertoire of antiinflammatory responses induced by PRP may break the catabolic loop, and dampen inflammatory response in SM and AC when
these cells are exposed to proinflammatory cytokines and to abnormal mechanical stress and DAMPS, which is the significant OA context.[1,3,40] This sterile
disruption of ECM homeostasis in osteoarthitic joint and an early inflammatory response has been suggested to resemble a chronic injury.[3]
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an oral strontium ranelate treatment in an experimental
osteoarthritic dog model reduced the progression of structural
changes including the subchondral bone. Despite the fact that
the translation of these promising observations in preclinical
research to human clinical trials has often failed, as indicated
by a recent metaanalysis of clinical trial with risedronate in
knee osteoarthritis,[136] recent clinical trials are raising expec-
tations. For instance, using zoledronic in patients with clinical
KOA associated with bone marrow lesions (BMLs) assessed by
MRI, Laslett et al. [137] reported a beneficial effect on pain and
on BML evolution at 6 months. In participants from the
osteoarthritis initiative, Laslett et al. [138] demonstrated sig-
nificant pain reduction during the first 3 years of treatment
with biphosphonates. Two more clinical trials have shown
positive structural effects of strontium ranelate on KOA, one
improving the joint space narrowing [139] and the other
reducing the loss of cartilage volumes concurrent with the
decrease of BMLs at 3 years of follow up.[140]

5.2. Intraosseous infiltrations of PRP

Infiltrations of PRP into the BM cavity of femur of young and old
ovariectomized-SAMP8 age-related osteoporotic female mice
have been reported to up-regulate osteogenesis and down-
regulate adipogenesis.[23] The increase of fat tissue mass in

BM is correlated with decreased bone mineralization in aged
SAMPS8 mice,[23,24] bone demineralization that occurs in
osteoarthritic subchondral bone together with cysts.[67]
Moreover, improvement of bone mineral density in PRP-treated
osteoporotic mice concurred with both histological sections of
the bone samples showing more trabecular bone areas and
more intense calcium staining and a suppression of bone
resorption process as evidenced by the decrease of RANKL
transcript.[23] In a trial on 13 healthy volunteers, Philippart
et al. [141] reported fatigue on the first day as the only clinical
adverse effect after a self-stimulation of BM of the iliac crest by
injected autologous platelet-rich plasma.[141] Figure 5 shows
the histological analysis of cartilage and SB from a patient
suffering from severe KOA who underwent intraosseous infiltra-
tions of PRGF. Eight months later, the patient had not improved
clinically and underwent a knee replacement. During the sur-
gery, we took this sample of cartilage and subchondral bone
from the femoral condyle in which 5 cc of PRGF had been
infiltrated intraosseously. Part of the biopsy showed a good
gross appearance, with pearly areas similar to the original hya-
line cartilage, though histological study revealed a fibrocartilage
repair tissue. Another area showed nearly exposed bone.

In light of the aforementioned research and others not men-
tioned here because of space limitation, and the significant
clinical improvement obtained in some but not all patients

Figure 5. Intraarticular infiltration of PRP helps restore SF homeostasis by stimulating the synthesis of hyaluronic acid and lubricin by synoviocytes and chondrocytes
respectively,[21,28,29] dampening inflammation and suppressing the concentration chemoattractan cytokines in SF, whichmight contribute to the inhibition of theMSC release
and migration.[3,95,96] PRP might favour a homing and chondrogenic-differentiation effect on MSCs of subchondral mesenchymal progenitor cells and SF-MSCs.[88,108,111].
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with KOA treated with intraarticular infiltrations of PRP [14–
16,142]. Our group arrived at the strategy of combining another
drug delivery route, namely, the intraosseous infiltrations com-
bined with intraarticular infiltrations of PRP.[99,143]

We have already conducted a phase II clinical trial combining
intraarticular and intraosseous infiltrations of PRP for severe KOA.
The first treatment included one PRP intraarticular infiltration and
two PRP intraosseous infiltrations (in femoral condyle and tibial
plateau). The procedure is carried out in the operating roomunder
a 4–5 degree of sedation of the patient. In addition, local anesthe-
sia is conducted into the periosteum of condyle and tibial plateau
by injecting 2 ml of 2% mepivacaine. Intraosseous infiltrations are
performedwith a 13G trocar used for bone biopsy, and the control
of trocar placement is facilitated using a fluoroscope.[144] Two
more weekly intraarticular infiltrations were performed. After a 6
month follow-up, a significant pain reduction and decrease of
MSC and CFU-F in synovial fluid with no adverse effects were

reported.[14,99,143] We have been performing intraosseous infil-
trations of PRGF since 2003 applying them regularly at the condyle
and tibial tunnels in the arthroscopic reconstruction of anterior
cruciate ligament, and in osteochondral injuries and osteonecrosis
of the hip and knee.[144]

6. Conclusions

There is a substantial and growing body of evidence indicat-
ing that subchondral bone is a crucial target, which should be
included in KOA therapy. PRP molecular intervention posi-
tively influences SB, SF, AC and SM homeostasis, adaptation,
and metabolism in addition to reducing joint pain and inflam-
mation, and providing a circuit breaker in KOA, thereby acting
as a symptomatic and structure-modifying OA therapy.
However, many unanswered questions remain, regarding

Figure 6 Fibrocartilage repair tissue after intraosseus PRGF infiltrations in the treatment of human knee osteoarthritis: a histological study. (A) Macroscopic morphology
of the sample. The sample was divided into two pieces. The fragment on the left-hand corresponds to fibrocartilage repair tissue (B to F) while the right-hand fragment
shows osteoarthritic cartilage (G to K). B and G show panoramic images of the sample (Masson’s trichrome staining). In photomicrographs C and H, details of the
structure of articular cartilage are observed (Masson’s trichrome staining). The presence of elastic fibers is demonstrated by Orcein staining (D and I). These fibers can be
seen in D, while they are absent in I. An immunohistochemical study was performed to detect the presence of type I (E and J) and type II (F and K) collagen. In all samples
(E to K), both subchondral bone (always positive for type I and negative for type II collagens) and cartilage are observed. In fibrocartilage (E and F) both types of
reactivity are observed, while in the degenerated cartilage, only type II collagen positivity is shown (K). Histologically, the pearly area (the left-hand side of the sample) is
fibrocartilage repair tissue, while the right-hand side of the sample displays an osteoarthritic area with loss of cartilage surface integrity.
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molecular mechanisms, dosage aspects and whether combin-
ing PRP with stem cells might enhance the efficacy of PRP.

7. Expert opinion

Intraarticular delivery is an alternative modality to deliver PRP
in patients with KOA and it has been shown to be safe and
efficacious in improving clinical symptoms.[14–16] This route
of drug delivery reaches the SM and the AC, which is some-
times inefficiently targeted by systemic drug delivery.
Intraarticular delivery circumvents systemic toxicity and its
side effects, offers an excellent bioavailability and does not
present molecular size limitation, in contrast to the systemi-
cally delivered molecules entering the joint through capillaries
of the subsynovium.[145,146] Nevertheless, intraarticular ther-
apy faces other challenges when treating chronic nonsystemic
sterile-inflammatory conditions as in the case of KOA. One
significant challenge is a short joint dwell time of drugs, as
the lymphatic drainage clears proteins in a few hours. This is
not the case of PRP, as it acts as a dynamic liquid scaffold with
a fibrin network from where GFs are gradually released into
the tissue.[96,100] Moreover, the increasingly recognized role
of SB in the pathophysiology of OA [8,12,33,67] might make
the intraarticular route insufficient to tackle all the joint tissues
involved in KOA.

Intraosseous delivery strategy for local, prolonged and sus-
tainable release of GFs has been proven to be efficacious in
some musculoskeletal pathology, non-union fractures, osteo-
porosis and bone fracture healing among them.[143,147,148]
Over the past 30 years, surgical experience in cartilage defect
has revealed that only when the subchondral bone is involved
through bone marrow stimulating procedures such as trans-
cortical Pridie drilling and microfractures, is a temporary func-
tional fibrocartilage tissue synthesized, with no serious
adverse reported.[5] There is good in vitro and vivo evidence
that events in the subchondral bone concur with and have a
direct effect on the overlying articular cartilage.[9,43,45,46]
Moreover, although the titles and much of the text of Liu
et al. [24] and Philippart et al. [141] papers are not focused
on osteoarthitis, these studies shed important light on the role
that intraosseous infiltrations of PRP might play in subchon-
dral bone homeostasis by targeting both osteoblast-osteoclast
coupling and mesenchymal stem cells responses, as well as in
its safety.

The combination of intra-articular and intraosseous injections
of PRP is an in situ local biological ‘joint-centric’ approach to treat
severe KOA addresses the SM, SF and superficial zone of AC by
intraarticular injections of PRGF, and deep zones of AC and SB
through PRP intraosseous infiltrations.[99] These PRP infiltra-
tions convey a mimetic biomaterial embedded with a pool
of growth factors acting as a smart scaffold [149] which
might sustain a gradual delivery of growth factors at the
dysfunctional and deregulated tissues as a niche therapy.
Rebuilding a physiological-homeostatic network at knee
organ failure tissue level, as is the case of severe knee OA,
must be an orderly process, which entails a daunting ther-
apeutic task. Our hypothesis is that the concurrent presence
and a balanced ratio between platelet-secreted TGFB-1 and
VEGF, and plasma growth factors such as IGF-1 and HGF,

[105,124–126] all conveyed by PRP intraosseous infiltrations,
might reduce or buffer the excess of TGFB in SB and restore
HGF activity synthesized by subchondral bone cells. This
modulatory effect of PRP on TGFB-1 signaling pathway
might shrink the fibroneurovascular tissue that replaces
the bone marrow of OA subchondral bone, an explanation
which parallels the antifibrotic mechanism already reported
to be exerted by the PRP on several cell phenotypes.
[105,124,126] This new reestablished homeostatic balance
between TGFB1 and HGF [71,78] would reduce the synthesis
of NGF, VEGF and other inflammatory mediators thereby
contributing as well to modulate the aberrant fibroneuro-
vascular tissue and to alleviate pain and hyperalgesia.[150]

However we do not forget that ‘the aim of science is not to
open the door to infinite wisdom but to set a limit to infinite error ’
(Bertolt Brecht), and many questions and uncertainties still per-
sist unanswered in the field of PRPs and inflammation. When the
concept of inflammation defined as a cooperative and amplify-
ing protective multicellular response, orquestrated both locally
and remotely, that is intended to eliminate the original insult and
their toxic consequences, thereby initiating the repair process,
[30] there are some difficulties applying it to tissue damage
brought about by mechanical stresses, which is the case of
most sterile inflammation pathologies such the KOA.

In spite of a wealth of preclinical and clinical publications on
PRP, many uncertainties remain regarding the ultimate molecu-
lar mechanism/s, the variability in its composition mainly
because of the presence/absence of leukocytes, the platelet
concentration, the donors age and the manner in which PRPs
are applied to the damaged tissues.[90] Moreover, we need to
delve into the systemic effect that this procedure might entail as
few studies on human have been carried out regarding PRP
treatments and systemic effects.[151,152]

The restoration of TGFβ and other extracellular matrix GFs
balance by the application of PRP deserves a deeper research
and opens the door to explore the analgesic, antiinflammatory
and immunomodulatory, and trophic-anabolic effects of PRP
through a systems biology approach. In addition, we cannot
rule out a systemic effect of intraosseous infiltrations as sug-
gested by studies carried out in animal model, which should
be explored. And finally, we still do not know how to combine
PRP with rehabilitation programs and exercise in a synergistic
application with the goal of full recovery of knee function.[31]
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Platelet-Rich Plasma: Preparation and Formulation
Eduardo Anitua, MS, DDS, PhD,* Roberto Prado, MSc,* Mikel Sánchez, MD,†

and Gorka Orive, PhD*

Platelet-rich plasma is a set of autologous platelet products used to accelerate recovery
from injury. The basic rationale is to mimic the natural ways of healing, bringing to the injury
site a set of molecules that will accelerate the functional recovery of the tissue, trying to
regenerate the tissue itself, and not to merely repair with scar tissue. Among the jungle of
products in this field, PRGF-Endoret (BTI-Biotechnology Institute, Vitoria, Spain) is a
pioneering autologous regenerative technology with multiple therapeutic potentials, pres-
ent in at least 4 different formulations, depending on the coagulation and activation degree
of the samples. PRGF-Endoret technology is safe and has multiple applications and
potentials.
Oper Tech Orthop 22:25-32 © 2012 Elsevier Inc. All rights reserved.

KEYWORDS autologous therapy, plasma rich in growth factors, platelet-rich plasma, PRGF-
Endoret

Potential of Plasma Rich in
Growth Factors (PRGF-Endoret):
Mimicking the Natural Healing
The increasing number of musculoskeletal injuries has pro-
duced an increasing number and improvement of different
treatments of these lesions, especially in the search for non-
operative management modalities.1 One of these cutting-
edge technologies is the use of plasma rich in growth factors
(PRGF-Endoret).2 This type of biological treatment mimics
the natural ways of wound healing3 trying to optimize and
reduce healing times. This is achieved driving to the injury
site the whole protein array of platelet-rich plasma (PRP) that
will be involved in the repair of damaged tissues. In this way,
all the proteins necessary for tissue repair are released locally.

The process of tissue repair occurs naturally in a staged fash-
ion,4 and includes removal of dead cells, proliferation, migration
of cells to the injury site, production of new vascular structures,

and so on. The organization of all these elements influences the
healing of a given injury, preventing fibrotic elements that cause
loss of functional capacity of that tissue.5,6 Growth factors play
an important role, coordinating the whole process in an orches-
trated fashion in all tissues of the musculoskeletal system, in-
cluding muscle,7 tendon,8 bone,9,10 and cartilage.11 Growth fac-
tors act on other tissues as well, including skin,12 oral soft
tissue,13,14 cornea,15 among others.

The technology of PRGF-Endoret mimics the natural heal-
ing mechanisms but with 2 special features: trying to avoid
loss of functionality (fibrous tissue) and shortening healing
times. This is achieved in part adjusting the PRGF-Endoret
formulation and dosage to the type of tissue and injury.

PRGF-Endoret therapy accelerates and improves tissue
healing by local delivery of autologous bioactive molecules
and contributing with a first-line provisional scaffold.16 This
autologous toolbox consists in the use of platelets as a reser-
voir and vehicle of a large repertoire of proteins.17,18

In the past decade, several systems have been developed to
produce a biologically active product, both commercial and
homemade, but they differ in the presence of white blood cells,
growth factors’ concentration, and architecture of fibrin
scaffold.19-23

For human therapeutic uses, we recommend that only
commercial systems are used, although some centers still use
homemade products for both basic research and clinical use.

The commercial systems can be certified for various medical
applications, but the therapeutic outcome will depend on the
type of PRP and the dosage used. Establishing a proper classifi-
cation of the PRPs and identifying the biological differences
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among them is absolutely necessary to understand some of the
controversial results obtained with these types of technologies
so far.21 In terms of composition, different types of plasma rich
in platelets differ in their platelet count enrichment (greater or

less than 5x), leukocyte content (greater or less than 1x), and
whether they are activated or not. On this basis, it can be classi-
fied into 8 different types. These variables influence tissue bio-
logical response and thus the treatment efficacy.22

Table 1 Platelet Protein Classification and Their Biological Role16

Classification Protein Biological Effects

Adhesive proteins Von Willebrand factor (vWF) propeptide, Fibrinogen,
Fibronectin, Vitronectin, Thrombospondin 1
(TSP-1), laminin-8 (alpha4- and alpha5- laminin
subunits), signal peptide-CUB-EGF domain
containing protein 1 (SCUBE 1)

Cell contact interactions,
homeostasis and clotting, and
extracellular matrix composition

Clotting factors and
associated proteins

Factor V/Va, Factor Xl-like protein, multimerin,
protein S, high-molecular-weight kininogen,
antithrombin III, tissue factor pathway inhibitor

Thrombin production and its
regulation

Fibrinolytic factors and
associated proteins

Plasminogen, Plasminogen activator inhibitor-1
(PAI-1), urokinase plasminogen activator (uPA),
alpha2-antiplasmin, histidine-rich glycoprotein,
thrombin activatable fibrinolysis inhibitor (TAFI),
alpha2-macroglobulin (�2M)

Plasmin production and vascular
modeling

Proteases and
antiproteases

Tissue inhibitor of metalloprotease 1 -4 (TIMPs
1 -4), metalloprotease-1, -2, -4, -9, A disintegrin
and metalloproteinase with a thrombospondin
type 1 motif, member 13 (ADAMTS13), tumor
necrosis factor-alpha-converting enzyme (TACE),
protease nexin-2, C1 inhibitor, serpin proteinase
inhibitor 8, alpha1-antitrypsin

Angiogenesis, vascular modeling,
regulation of coagulation, and
regulation of cellular behavior

Growth factors Platelet-derived growth factor, transforming growth
factor beta1 and beta2, epithelial growth factor,
insulin-like growth factor type I, vascular
endothelial growth factor (A and C), basic
fibroblastic growth factor (FGF-2), hepatocyte
growth factor, Bone morphogenetic protein
(BMP)-2, -4, -6, connective tissue growth factor
(CTGF)

Chemotaxis, cell proliferation and
differentiation, and angiogenesis

Chemokines,
cytokines, and
others

Regulated upon Activation - Normal T-cell
Expressed, and Secreted (RANTES), Interleukin-8
(IL-8), Macrophage inflammatory protein-1 (MIP-1)
alpha, Epithelial Neutrophil-Activating Peptide 78
(ENA-78), Monocyte chemotactic protein-3 (MCP-
3), Growth regulated oncogene- alpha (GRO-
alpha), angiopoietin-1, IGF-1 binding protein 3
(IGF-BP3), interleukin-6 soluble receptor (IL-6sR),
Platelet factor 4 (PF4), beta-thromboglobulin
(bTG), platelet basic protein, neutrophil-activating
protein-2 (NAP-2), connective tissue-activating
peptide III, high-mobility group protein 1
(HMGB1), Fas ligand (FasL), Homologous to
lymphotoxins, exhibits inducible expression, and
competes with herpes simplex virus (HSV)
glycoprotein D for herpes virus entry mediator, a
receptor expressed by T lymphocytes (LIGHT),
Tumor necrosis factors (TNF)-related apoptosis-
inducing ligand (TRAIL), Stromal cell-derived
factor-1 (SDF-1) alpha, endostatin-l, osteonectin-
1, bone sialoprotein

Regulation of angiogenesis, vascular
modeling, cellular interactions, and
bone formation

Antimicrobial proteins Thrombocidins, Defensins Bactericidal and fungicidal properties
Others Chondroitin 4-sulfate, albumin, immunoglobulins,

disabled-2, semaphorin 3A, Prion protein (PrPC)

Table 1 shows a set of proteins present in platelets and its physiological role in the regeneration of tissues.
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Understanding the
Properties of PRP Products
Several key biological mediators are present in a PRP. The
more studied growth factors contained in PRP that are im-
portant during tissue repair include insulin-like growth fac-
tor type I (IGF-I), transforming growth factor beta type 1
(TGF-�1), platelet-derived growth factor (PDGF), hepato-
cyte growth factor (HGF), vascular endothelial growth factor
(VEGF), epithelial growth factor, and basic fibroblastic
growth factor among others (Table 1).24,25 Some of them
(IGF-I and HGF) are plasmatic proteins, and their concentra-
tions do not depend on the platelet enrichment. However,
most of the growth factors are indeed platelet proteins, both
synthesized and adsorbed, and thus, their quantity does de-
pend on the platelet concentration.

To understand the properties of PRP products, it is neces-
sary to detail the different roles of molecules that contain the
following:

● IGF-I: This protein circulates in plasma as a complex
with binding proteins. This determines the bioavailabil-

ity and regulates the interaction between this IGF-I and
its receptor.26,27 IGF-I is involved in keratinocyte migra-
tion and wound healing,28,29 stimulates bone matrix for-
mation and maintenance30 by promoting preosteoblast
proliferation,31,32 and is also involved in striated muscle
myogenesis.33 Furthermore, knockout mice for IGF-I
receptor (IGF-IR) in muscle exhibited impaired muscle
regeneration and deficient myoblast differentiation.34

● TGF-�1: The role of TGF-� family proteins in wound
healing has been recently reviewed.35 TGF-� has differ-
ent effects, depending on tissue and cell type.5 The re-
lease and posterior bioactivation of latent TGF-� con-
tributes to the early cellular reparative responses, such
as migration of cells, neovascularization, and angiogen-
esis36 into the wound area. In bone, TGF-�1 induces
osteogenic differentiation of mesenchymal cells of the
bone marrow, upregulating osteoblast differentiation
markers.37

● PDGF: This growth factor is a mitogen and chemotactic
factor for all cells of mesenchymal origin. It is important
in the repair of joint tissue, including cartilage and me-

Figure 1 PRGF-Endoret technology overview. PRGF-Endoret aids in the preparation of different autologous therapeutic
formulations from patient’s own blood.

PRP: preparation and formulation 27



niscus.38,39 Bone is also a target of PDGF, influencing its
metabolism and acting in repair mechanisms40,41 in-
cluding the recruitment of pericytes to stabilize new
blood vessels.42

● HGF: This growth factor regulates cell growth, migra-
tion, and morphogenesis,43 and plays an important role
in wound healing through an epithelial-mesenchymal
interaction.44 The antifibrotic effect of HGF has been
shown in various tissues,45,46 through induction of
Smad7, and thus regulates the myofibroblast pheno-
type, allowing the initial contraction of the wound, but
making the myofibroblast to gradually disappear.47

● VEGF: This growth factor is a key mediator in wound
healing48 and the main inducer of angiogenesis because
it stimulates chemotaxis and proliferation of endothelial
cells.49 Also, VEGF is involved in the regulation of many
organ homeostasis, such as brain, heart, kidney, or
liver,50 and its role may be crucial in cell-mediated tissue
regeneration.51

● Epithelial growth factor: This protein promotes che-
motaxis and mitogenesis in epithelial and mesenchymal
cells52,53 by acting on the regeneration of multiple tis-
sues. It has an important role in skin, cornea, gastroin-
testinal tract, and nervous system.54-58

● Basic fibroblastic growth factor: This factor, also called
fibroblast growth factor 2, is potent inductor of cell pro-
liferation, angiogenesis, and differentiation.59,60 Its role
in the repair process has been observed in several tis-
sues, including bone,61-63 tendon,64,65 and periodontal
tissue.66-68

Growth factors classically promote several important func-
tions in the regenerative milieu—they are able to stimulate
cell proliferation (mitosis), cellular migration (chemotaxis),
differentiation (morphogenic effect), angiogenesis, and the
combination of several of these effects. These peptides exert
the aforementioned functions in the local environment, close
to the site of the application.

However, it is difficult to dissect the contribution of each
molecule contained in PRP and examine its effect separately,
as many have multiple effects, some of which overlap with
others. Also, many molecules are activated in the presence of
others, such as TGF-�, which is in a latent state69 and be-
comes functional after proteolytic activation or in the pres-
ence of other molecules, such as thrombospondin-1 or vari-
ous integrins.

The idea that PRP contains only factors that stimulate an-
giogenesis and proliferation would be a little simplistic. In
fact, another important property of the PRP is the bacterio-
static effect. These antibacterial effects were observed against
Staphylococcus aureus and Escherichia coli.70 Classically, these
properties have been shown in leuko-enriched PRP. How-
ever, recently, these antimicrobial properties have been evi-
denced in PRGF-Endoret,71 which by definition has no white
cells. Specifically, PRGF-Endoret has bacteriostatic effect
against Staphylococcal strains. Moreover, the addition of leu-
kocytes to the PRGF-Endoret preparation did not yield
greater bacteriostatic potential than it already had. These data

raise questions about the role that leukocytes may play in a
PRP preparation because they do not improve the bacterio-
static properties, but, on the contrary, they might signifi-
cantly increase the presence of proinflammatory molecules.

Platelet-rich products act also as anti-inflammatory medi-
ators by blocking monocyte chemotactic protein-1, released
from monocytes, and lipoxin A4 production.72 HGF in PRP
inhibits NF-�B, a key nuclear factor implicated in inflamma-
tory responses, by activation of its inhibitor (ikB�). In this
same study, it was also observed that PRP reduced the che-
motaxis of the monocytic line U937.73 In addition, serotonin,
a neurotransmitter and hormone present in platelets, has
been reported to directly mediate liver regeneration.74

PRGF-Endoret:
A Pioneering Technology
For almost 2 decades, our research group has characterized
this technology and has studied its therapeutic potential in
tissue repair and wound healing.75 PRGF-Endoret contains a
moderated platelet concentration, a two-third–fold increase
compared with peripheral blood, a dosage shown to induce
optimal biological benefit.76 In fact, lower platelet concentra-
tions can lead to suboptimal effects, whereas higher concen-
trations might have an inhibitory effect.77 PRGF-Endoret
does not contain leukocytes, and activation is performed only
with calcium chloride (CaCl2).

The process to produce PRGF-Endoret is easy, fast, and
reproducible (Fig. 1). Blood collection is performed in tubes
containing sodium citrate as anticoagulant. Thus, platelets
are well preserved. Subsequently, centrifugation is achieved
in a specifically designed centrifuge (PRGF System IV, BTI-
Biotechnology Institute, Vitoria, Spain). The centrifuge has

Figure 2 The plasma transfer device is a disposable and sterile aspi-
ration system that allows the fractionation of PRGF-Endoret. The
device contains an ergonomic button that allows fine control of the
suction flow. The suction is performed by the vacuum containing in
the fractionation tube. The user accessible needle is a blunt needle to
prevent accidental stab injuries. In this way, PRGF-Endoret is ob-
tained directly in a fractionation tube, in which it can be directly
activated with calcium chloride.
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specific parameters to maximize the production of platelets
and keep the plasma leukocyte free. After centrifugation, the
following 3 typical layers are obtained: a yellowish top layer,
the plasma, which contains a gradient of platelets, with max-
imum concentration of those platelets above the buffy coat;
the leukocyte layer, or buffy coat, is located below of plasma
layer; and the bottom layer is the layer containing the red
cells. Regarding the plasma volume, it is possible to empiri-
cally differentiate between 2 different fractions, depending
on the respective concentration of platelets. The upper frac-
tion will contain a similar number of platelets than peripheral
blood, whereas the lower fraction will contain 2- to 3-fold the
concentration of platelets compared with blood.

With the aim of collecting these plasma fractions from
PRGF-Endoret technology, we have recently developed an
optimized device—the plasma transfer device (PTD) (Fig. 2).
The PTD is a disposable and sterile aspiration system that
allows separating the different fractions obtained after cen-
trifugation. In contrast to the traditional pipetting system, the
PTD system is faster, avoiding intermediate pipetting steps.
In addition, the PTD does not require maintenance of the
pipetting system. Depending on clinical needs, the fraction-

ation can be made in 1 or 2 fractions, achieving higher
volume—lower concentration of platelets (a single fraction)
or lower volume—higher concentration of platelets (2 frac-
tions). After fractionation, PRGF-Endoret can be activated in
a controlled way by the addition of CaCl2, providing a clot
that mimics its natural structure. Moreover, the coagulation
is conducted at a speed that allows controlling the whole
process. Activation with CaCl2 avoids the use of exogenous
bovine thrombin, a source of possible immunologic reac-
tions.78-80

Another important feature of the PRGF-Endoret technol-
ogy when compared with other PRP systems is the absence of
leukocytes, which categorizes it as a safe and homogeneous,
because the values of leukocytes are highly variable between
donors81 and, within the same donor, are highly dependent
on small perturbation of the body homeostasis.

In addition, polymorphonuclear neutrophils (PMN) con-
tain molecules designed to kill microorganisms, but can se-
riously damage the body tissues. For example, PMNs are
important producers of matrix metalloproteinases (MMP),
mainly MMP-8 and MMP-9, which can hamper the regener-
ation of damaged tissue. PMNs also produce free radicals,

Figure 3 The 4 different formulations of the PRGF-Endoret technology: (A) the 3-dimensional scaffold, (B) the liquid
formulation, activated at the moment, on the titanium surface, (C) the PRGF-Endoret supernatant, and (D) the elastic
and dense autologous fibrin membrane.
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reactive oxygen species and nitrogen, which can destroy not
only microorganisms but surrounding cells.82 Of special con-
cern would be to avoid leukocytes if muscle regeneration is
required, as in vivo PMNs increase muscle damage83 and
do not provide extra functionality. Therefore, it is recom-
mended to use leukocyte-free PRP in infiltrations of dam-
aged muscle.84

PRGF-Endoret Technology:
A Versatile Toolbox
with Multiple Formulations
A key point that distinguishes the PRGF-Endoret technology
from other PRP products is its versatility. Four different for-
mulations (Fig. 3) with therapeutic potential are obtained
from the patient’s blood, depending on the coagulation and
activation degree of the samples. These formulations may be
used for different therapeutic purposes:

1. PRGF-Endoret scaffold. It is a 3-dimensional matrix,
encloses autologous growth factors, both plasma and
platelet proteins. This scaffold can be used in various
applications, such as the treatment of ulcers,85,86

wound closure, and tissue engineering.87 The 3-
dimensional structure of the fibrin mesh (Fig. 4) al-
lows cell proliferation because, as mentioned earlier,
it contains factors necessary for growth and migra-
tion of cells. In addition, this formulation can be
combined with other materials,88 such as autologous
bone, demineralized freeze-dried bovine bone, col-
lagen among others, adjusting the resulting charac-
teristics of the scaffold.

2. Liquid PRGF-Endoret, activated at the time of use, is
used in intra-articular injections,89,90 surgery,91,92 treat-
ment of skin disorders,85,86 skin regeneration,93 and
implant surface bioactivation by producing a biologi-
cally active layer on the titanium surfaces.94

3. The PRGF-Endoret supernatant contains plasma pro-
teins and platelet releasate, and can be used as eye-drop
treatment for dry eye disease95 and other corneal de-
fects.96 In both basic and applied studies, this formula-
tion can be used to supplement the cell culture me-
dium.76,97,98

4. Autologous fibrin membrane. At the end of the process
of coagulation, fibrin scaffold retracts. At that stage, the
fibrin membrane can be shaped with tweezers or simi-
lar instruments to obtain an elastic, dense, and sutur-
able membrane. It is an excellent tool to seal the postex-
traction tooth sockets99 and to promote the full
epithelialization of soft tissues.100

The autologous platelet products have a high therapeutic
potential and can be used in various formulations and in
various fields of medicine and tissue engineering. At present,
there are over 40 of these products with different character-
istics, in terms of enrichment of platelets, presence of leuko-
cytes, kind of activator, and final volume among others. This
great variability makes it difficult to standardize protocols

and compare results. Furthermore, this large variability can
engender confusion among clinicians and researchers.101 It
is, therefore, necessary to reach a consensus and better defi-
nition of each product. Our research team has spent more
than 15 years developing this technology, which makes
PRGF-Endoret one of the best characterized autologous PRP,
with multiple and growing therapeutic applications, as result
of a continuous research translation to the clinic setting.
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A Randomized Clinical Trial Evaluating Plasma Rich in Growth
Factors (PRGF-Endoret) Versus Hyaluronic Acid in the

Short-Term Treatment of Symptomatic Knee Osteoarthritis

Mikel Sánchez, Ph.D., Nicolás Fiz, Ph.D., Juan Azofra, Ph.D., Jaime Usabiaga, Ph.D.,
Enmanuel Aduriz Recalde, Ph.D., Antonio Garcia Gutierrez, Ph.D., Javier Albillos, Ph.D.,

Ramón Gárate, Ph.D., Jose Javier Aguirre, Sabino Padilla, Ph.D.,
Gorka Orive, Ph.D., and Eduardo Anitua, M.D., D.D.S., Ph.D.

Purpose: This multicenter, double-blind clinical trial evaluated and compared the efficacy and safety
of PRGF-Endoret (BTI Biotechnology Institute, Vitoria-Gasteiz, Spain), an autologous biological
therapy for regenerative purposes, versus hyaluronic acid (HA) as a short-term treatment for knee
pain from osteoarthritis. Methods: We randomly assigned 176 patients with symptomatic knee
osteoarthritis to receive infiltrations with PRGF-Endoret or with HA (3 injections on a weekly basis).
The primary outcome measure was a 50% decrease in knee pain from baseline to week 24. As
secondary outcomes, we also assessed pain, stiffness, and physical function using the Western
Ontario and McMaster Universities Osteoarthritis Index; the rate of response using the criteria of the
Outcome Measures for Rheumatology Committee and Osteoarthritis Research Society International
Standing Committee for Clinical Trials Response Criteria Initiative (OMERACT-OARSI); and
safety. Results: The mean age of the patients was 59.8 years, and 52% were women. Compared with
the rate of response to HA, the rate of response to PRGF-Endoret was 14.1 percentage points higher
(95% confidence interval, 0.5 to 27.6; P � .044). Regarding the secondary outcome measures, the
rate of response to PRGF-Endoret was higher in all cases, although no significant differences were
reached. Adverse events were mild and evenly distributed between the groups. Conclusions: Plasma
rich in growth factors showed superior short-term results when compared with HA in a randomized
controlled trial, with a comparable safety profile, in alleviating symptoms of mild to moderate
osteoarthritis of the knee. Level of Evidence: Level I, randomized controlled multicenter trial.

Osteoarthritis (OA) is an heterogeneous disease
that affects the structures of the joints. It has

become one of the most common painful conditions

affecting adults and the most frequent cause of mo-
bility disability in the United States and Europe.1 The
incidence of OA is rising, influenced by the aging
population and the epidemic of obesity.2 Recent esti-
mates suggest that symptomatic knee OA affects 13%
of persons aged 60 years or older and a total of 20
million Americans, a number that is expected to dou-
ble over the next 2 decades.3

Unfortunately, there are currently no agents available
that can halt OA progression and reverse any existing
damage. Analgesics and nonsteroidal anti-inflammatory
drugs (NSAIDs) have suboptimal effectiveness, and
there are some concerns regarding their safety, in light of
the well-described gastrointestinal and cardiorenal side
effects.4 Current therapeutic approaches focus on devel-
oping less invasive procedures and applying them earlier
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in the disease when the structural changes of OA may be
prevented or delayed.5

Synovial hyaluronic acid (HA) is a high–molecular
weight glycosaminoglycan that acts as a fluid shock
absorber, protecting cells and the intracellular colla-
gen network from mechanical stress. The purpose of
intra-articular injections of HA is to return the lost
viscoelasticity to the joint, being frequently applied
with some good results,6 although several contradic-
tory findings have also been reported.7 Results from a
clinical trial involving 306 patients showed that at the
40-month visit, significantly more patients responded
to intra-articular injections of HA compared with pla-
cebo in the management of knee OA symptoms (P �
.004).8 Furthermore, a recent meta-analysis including
54 trials and involving more than 7,500 patients has
also provided information about the therapeutic tra-
jectory of HA for knee OA. Interestingly, HA was
found to be efficacious by 4 weeks, reaching its peak
effectiveness at 8 weeks but exerting a residual de-
tectable effect at 24 weeks.9

Recent data support the application of platelet-rich
plasma products as an effective and safe method in the
treatment of the initial stages of knee OA.10 Some
growth factors present in platelet-rich plasma prod-
ucts, including transforming growth factor �, platelet-
derived growth factor, and insulin-like growth factor
1, contribute to the maintenance of a homeostatic
balanced status between anabolism and catabolism on
the articular cartilage.11-14 Others such as vascular
endothelial growth factor and basic fibroblast growth
factor show chondroinductive roles.

Platelet-rich plasma injections showed more and
longer efficacy when compared with HA injections in
reducing pain and symptoms and recovering articular
functions.15 In an interesting prospective study, Fi-
lardo et al.16 compare, for the first time, the safety and
efficacy of 2 different approaches of platelet-rich
plasma production in the treatment of knee OA. In
particular, they evaluated 2 platelet-rich plasma prod-
ucts prepared following either a single-spinning ap-
proach (PRGF-Endoret; BTI Biotechnology Institute,
Vitoria-Gasteiz, Spain) or double-spinning approach
(homemade leuko–platelet-rich plasma). Results showed
that although both treatment groups presented a statis-
tically significant improvement in all the scores eval-
uated at all follow-up times, significantly more ad-
verse events (involving pain and swelling) were
detected in the group treated with the platelet-rich
plasma prepared with the double-spinning approach.

Plasma rich in growth factors (PRGF) is an autol-
ogous biological therapy based on using the patient’s

own plasma and platelet-derived growth factors and
endogenous fibrin scaffold for regenerative pur-
poses.17 There has been increasing recognition of the
potential role of this autologous cocktail of growth
factors in stimulating tendon and synovial cell prolif-
eration, migration, autocrine release of hepatocyte
growth factors and HA, and even differentiation of
tendon stem cells exclusively into tenocytes.18-21 An
absence or reduction in postsurgical inflammation is a
consistent clinical observation associated with the use
of this biological approach. A small retrospective co-
hort study showed that 3 intra-articular injections of
PRGF-Endoret at 1-week intervals substantially re-
duced pain in patients with OA of the knee compared
with those treated with HA.22 In this randomized,
double-blind, HA-controlled, multicenter trial, we ex-
plored the use of intra-articular injections of PRGF-
Endoret as a novel, safe, and efficacious biological
approach in the treatment of pain due to OA of the
knee. The hypothesis was that PRGF-Endoret would
improve pain symptoms compared with HA, possibly
through the release of proteins and growth factors, in
patients affected by knee degeneration.

METHODS

The study was carried out in accordance with the
international standards on clinical trials: Real Decreto
223/2004, Declaration of Helsinki in its latest revised
version (Tokyo, Japan; 2004), and Good Clinical
Practice Regulations (International Conference for
Harmonization). The study protocol was reviewed and
approved by the Reference Ethic Committee. All pa-
tients provided written informed consent before entry
into the study.

Patient Selection

One hundred eighty-seven patients were initially
selected in the study. Patients were considered eligible
if they were aged between 41 and 74 years and had
OA of the knee diagnosed based on American College
of Rheumatology criteria23 with radiographic confir-
mation (Ahlbäck grades 1 to 3, on a scale of 1 to 4,
with higher numbers indicating more severe signs of
the disease).

Recruitment of patients began January 18, 2008, at
3 clinical centers. The recruitment finished November
12, 2009, and the study was completed on September
13, 2010. A preliminary assessment of each patient
was carried out in the first basal visit by an orthopae-
dic surgeon, 30 days before randomization, and the
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medical history was completed. Patients were only
included in the study if they met all inclusion/
exclusion criteria shown in Table 1. Each patient also
received a booklet that contained detailed instructions
and the Western Ontario and McMaster Universities
Osteoarthritis Index (WOMAC) questionnaire. This
booklet had to be completed by the patient and carried
along with him or her at each of the following visits.

Interventions

All patients who met the inclusion criteria (176 of
187 enrolled initially because 11 patients had already
been excluded) were scheduled at the first visit and
received either of the 2 active treatments under study
depending on the randomization made previously: in-
filtration of the affected knee with PRGF-Endoret (3
injections on a weekly basis) or infiltration of the
affected knee with HA (Euflexxa; Copenhagen, Den-
mark) (3 injections on a weekly basis).

To prepare the PRGF-Endoret, at each treatment
visit, 36 mL of peripheral blood was extracted from
each patient by venipuncture directly into 4 extraction
tubes containing 3.8% sodium citrate as anticoagulant.
The extracted blood was centrifuged at 580g for 8
minutes at room temperature in a BTI Biotechnology
Institute system centrifuge. Once the blood tubes were
centrifuged, we proceeded to physically separate the
plasma fractions by meticulous pipetting and under
strictly sterile conditions.

We pipetted only the 2 mL of plasma rich in plate-
lets remaining above the red series and the “buffy
coat,” avoiding picking up the leukocytes. Before
infiltration, all these 2-mL fractions were put together

in a single tube (total, 8 mL), with gentle inversion of
the tube in a sterile glass container where it would be
activated before infiltration, by adding 400 �L of
calcium chloride.

Randomization and Allocation Concealment

A total of 3 treatment visits were carried out with a
weekly periodicity. During these visits, the treatment
assigned by randomization was delivered. A stratified
randomization (1 stratum per center) was carried out.
Both the evaluators and patients remained blind to the
treatments.

All subjects included in the study were identified by
a patient number after signing informed consent
forms. Each patient was identified by a numerical
code. The correspondence between the number of
patients and their treatment was performed using spe-
cific software for randomization, keeping that relation
in a sealed envelope. This envelope was not opened
until the moment before applying the treatment. To
maintain masking, the application area was hidden
from view and blood was drawn for all patients to
prepare the PRGF-Endoret.

Procedures

All subjects underwent blood draw an hour before
application of the treatment. Patients were recalled for
follow-up visits 1, 2, and 6 months after the last
treatment administration. The only permitted medica-
tion throughout the clinical trial was acetaminophen.
The intake of any type of NSAID was an exclusion
criterion. The amount of acetaminophen consumed by

TABLE 1. Inclusion and Exclusion Criteria

Inclusion Criteria Exclusion Criteria

Male and female patients aged between 40 and 72 yr Bilateral knee OA requiring infiltration in both knees
Diagnosed with tibiofemoral OA of knee by radiography BMI �33
Joint pain �35 mm on 0- to 100-mm visual analog scale Suffering from polyarticular disease
Radiologic severity Ahlbäck grade �4
BMI ranging between 20 and 32
Possibility for observation during follow-up period

Severe mechanical deformity (diaphyseal varus deformity of 4°
and valgus of 16°)

Previous arthroscopy within last year
HA intra-articular infiltration within last 6 mo
Systemic autoimmune rheumatoid disease (connective tissue

disease and systemic necrotizing vasculitis)
Glycosylated hemoglobin above 7%
Blood disorders (thrombopathy, thrombocytopenia, anemia with

hemoglobin �9)
Undergoing immunosuppressive therapy and/or warfarin
Having undergone treatment with steroids during 3 mo before

inclusion in study
Treatment with NSAIDs during 15 d before its inclusion in study
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each patient for each treatment and at follow-up visits
was recorded. Acetaminophen consumption was mea-
sured by counting the number of empty containers that
were previously administered in the previous follow-
up visit.

Response was assessed by researchers not involved
in the application of treatment. The data report forms
did not make any reference to the treatment applied.

Outcome Measures
Efficacy Assessments: The primary efficacy out-

come was defined as the percentage of patients having
a 50% decrease in the summed score for the WOMAC
pain subscale from baseline to week 24. We measured
this outcome by applying the WOMAC questionnaire
compared with baseline therapy based on the criteria
of the Outcome Measures for Rheumatology Commit-
tee and Osteoarthritis Research Society International
Standing Committee for Clinical Trials Response Cri-
teria Initiative (OMERACT-OARSI).

The secondary efficacy outcomes included the
scores on the WOMAC subscales for stiffness and
physical function, the percentage of OMERACT-
OARSI responders, and the amount of acetaminophen
in milligrams per day. The evolution from baseline in
overall knee pain after application of the visual analog
scale that ranged from 0 to 100 was determined by the
WOMAC and Lequesne scales.

Safety Assessments: The nature, onset, duration,
severity, and outcome of all adverse events, as well as
any association of an adverse event related to the
study medication, were assessed and documented at
each visit. Indeed, the only permitted medication
throughout the clinical trial was acetaminophen. The
intake of any type of NSAIDs was an exclusion cri-
teria and a reason to be excluded from the study.

To evaluate the safety profile of the treatments, all
complications and/or adverse events were recorded
with an accountability scale. The use of rescue med-
ication was recorded daily in the patients’ diaries.

Sample Size Calculation

A sample size of 220 patients, with 110 subjects per
group, was estimated to provide at least 90% power to
detect differences in the proportions of patients
achieving 50% pain improvement with PRGF infiltra-
tion versus HA at a 5% level of significance. We
calculated the sample size using the exact test with the
aim of comparing 2 proportions by applying the �2

test assuming that the proportion of patients who
would achieve an improvement in pain over 50%

would be 30% in the experimental group versus 12%
in the control group.

Data Analysis

Initially, we performed a descriptive analysis of the
sample, taking into account the demographic and clin-
ical variables of patients. Quantitative variables (age,
body mass index [BMI]) were determined by the
mean, standard deviation, and range, and for qualita-
tive variables (gender, marital status, education level,
physical activity, history, medication type, and sever-
ity of radiologic OA), a frequencies analysis was
conducted.

Analysis of the primary outcome measure was con-
ducted according to the intention to treat. The baseline
comparability of treatment groups was performed
by applying a Student t test for quantitative vari-
ables and a �2 analysis for categorical variables.
The primary efficacy variable was assessed using a �2

test. Secondary efficacy variables were evaluated us-
ing either a �2 test for qualitative variables or a Stu-
dent t test for quantitative variables. For all outcomes,
a nominal P � .05 was considered to indicate statis-
tical significance.

RESULTS

A total of 187 patients were screened, and 176
underwent randomization (Fig 1). The most common
reason for exclusion included a BMI higher than 32 (6
patients), the inability to meet radiographic criteria (4
patients), and a genu varus deformity of the knee (1
patient). A slightly higher percentage of patients were
women (52%), with a mean age of 59.8 years and a
mean BMI of 28. The groups were well balanced in
terms of age, gender, BMI, percentage of patients with
primary arthritis, consumption of analgesics per day,
radiographic grade (Ahlbäck scale), and WOMAC
and Lequesne scores (Table 2). A total of 10 patients
from the PRGF group and 13 from the hyaluronic
group were excluded from the study. The exclusion
and withdrawal percentages did not differ significantly
between the groups.

Clinical Outcomes

Results of primary and secondary outcome mea-
sures for the entire study population and each
WOMAC pain stratum are summarized in Table 3.
Analysis of the primary outcome measure (defined as
the percentage of patients having a 50% decrease in
the summed score for the WOMAC pain subscale
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from baseline to week 24) showed that the rate of
response to PRGF-Endoret was significantly higher
than the rate of response to HA. Compared with the
rate of response to HA, the rate of response to PRGF-

Endoret was 14.1 percentage points higher (95% con-
fidence interval, 0.5 to 27.6; P � .044). Regarding the
secondary outcome measures, the rate of response to
PRGF-Endoret was higher than the rate of response to

FIGURE 1. Enrollment
and outcomes.

TABLE 2. Baseline Characteristics of Patients

PRGF HA P Value

Age (yr) 60.5 � 7.9 58.9 � 8.2 .198
Sex (% female patients) 46 (52) 45 (52) .996
BMI (kg/m2) 27.9 � 2.9 28.2 � 2.7 .590
Primary arthritis 73 (82%) 68 (78%) .521
Dose of acetaminophen (mg/d) 2.6 � 7.1 1.7 � 5.6 .631
Ahlbäck grade*

I 45 (51%) 42 (49%) .973
II 32 (36%) 32 (38%)
III 12 (13%) 11 (13%)

Normalized WOMAC score†
Pain subscale 40.4 � 16 38.4 � 5.6 .417
Stiffness subscale 41.8 � 17.3 38.5 � 18.3 .233
Physical function subscale 39.6 � 16.3 38.8 � 17.4 .755
Global 121.8 � 44.4 115.6 � 45.1 .378

Lequesne index‡ 9.5 � 3.0 9.1 � 3.2 .408
No. 89 87

NOTE. Quantitative variables are expressed as mean and SD, except acetaminophen, which is
expressed as median and range. Qualitative variables are shown as absolute and relative frequencies. P �
.05 is considered statistically significant.

*Grade I indicates joint space narrowing (joint space �3 mm); grade II, joint space obliteration; and
grade III, minor bone attrition (0 to 5 mm).

†Normalized scores for the WOMAC can range from 0 to 100 for all subscales.
‡Lequesne score is an index of severity for OA of the knee that includes 3 subscales (pain or discomfort,

maximum distance walked, and activities of daily living). To assess the severity of gonarthrosis, the sum
of all points is determined, with a minimum score of 0 and maximum of 24, where 0 indicates no severity,
1 to 4, mild; 5 to 7, moderate; 8 to 10, severe; 11 to 13, very severe; and 14 or greater, extremely severe.
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HA in all cases, although no significant differences
were reached.

Overall, the rate of use of rescue acetaminophen
was low (Table 3). There were no significant differ-
ences in the use of acetaminophen between the groups
for all randomized patients or within each pain stra-
tum.

Fifty adverse events were reported in 50 patients, 26
in the PRGF-Endoret group and 24 in the HA group
(Table 4). Adverse events were generally mild and
evenly distributed between the groups (P � .811).
Most of these adverse events (96% in the PRGF-
Endoret group and 92% in the HA group) were not
related to the type of treatment. The number of pa-
tients who withdrew because of adverse events was
similar between groups (Fig 1).

One patient who received HA felt numbness in the
infiltration area, and another patient in this group had
itching on the outside area of both thighs. One patient

treated with PRGF-Endoret had pain after the third
infiltration. All the adverse events disappeared in 48
hours.

DISCUSSION

We conducted the first randomized, double-blind,
HA-controlled, multicenter trial to rigorously evaluate
the efficacy and safety of intra-articular injections of
PRGF-Endoret in the treatment of pain caused by OA
of the knee. Three injections of PRGF-Endoret, an
autologous pool of growth factors and fibrin scaffold
biomaterial, resulted in clinically significant reduc-
tions in knee pain, stiffness, and in improving the
physical function in patients with knee OA. The anal-
ysis of the primary outcome showed that PRGF-
Endoret was significantly more effective than HA.
Clinically meaningful pain relief is in general defined

TABLE 3. Primary and Secondary Outcomes

PRGF HA

Proportion Mean
Difference (95%

Confidence
Interval)* Dif

(95% CI) P Value

No. of patients 89 87
50% decrease in WOMAC pain score [No. (%)] 34 (38.2) 21 (24.1) 14.1 (0.5-27.6) .044
OMERAT-OSARSI responders [No. (%)]† 47 (52.8) 43 (49.4) 3.4 (�11.4-18.1) .653
20% decrease in WOMAC pain score [No. (%)] 51 (57.3) 46 (52.9) 5.2 (�10.3-19.1) .555
Normalized WOMAC pain score‡

% change from baseline �35.0 � 41.6 �21.8 � 73.1 13.1 (�5.8-32.1) .172
At end of follow-up 24.1 � 15.5 26.9 � 15.8 2.8 (�2.2-7.9) .265

Normalized WOMAC stiffness score
% change from baseline �37.2 � 40.6 �31.5 � 41.6 5.6 (�7.7-19.0) .403
At end of follow-up 25.2 � 15.4 25.5 � 17.9 0.3 (�5.0-5.7) .901

Normalized WOMAC physical function score
Change from baseline �33.9 � 39.0 �29.3 � 38.8 4.6 (�7.8-17.1) .465
At end of follow-up 24.8 � 15.9 25.9 � 17.2 1.1 (�4.2-6.4) .682

Normalized WOMAC total score
% change from baseline �35.1 � 38.4 �32.5 � 31.9 2.7 (�8.7-14) .642
At end of follow-up 74.0 � 42.7 78.3 � 48.1 4.3 (�10.2-18.8) .561

Lequesne index§
% change from baseline �43.9 � 34.6 �40.2 � 39.4 3.7 (�8.1-15.5) .534
At end of follow-up 5.2 � 3.4 5.4 � 3.3 0.2 (�0.9-1.3) .714

Acetaminophen [median (range)] (g/d) 0.1 (2.0) 0.1 (2.3) .853

NOTE. A primary response was defined as a 50% decrease in the summed score for the pain subscale of the WOMAC. Quantitative
variables are expressed as mean and SD, except acetaminophen, which is expressed as median and range. Qualitative variables are shown
as absolute and relative frequencies. P � .05 is considered statistically significant.

*Mean difference is shown for normalized WOMAC scores and Lequesne index. Otherwise, the proportion difference is shown.
†OMERACT-OARSI Outcome Measures in Rheumatology Clinical Trials-Osteoarthritis Research Society and Health Assessment

Questionnaire.
‡Normalized scores for the WOMAC can range from 0 to 100 for all subscales.
§Lequesne score is an index of severity for OA of the knee that includes 3 subscales (pain or discomfort, maximum distance walked, and

activities of daily living). To assess the severity of gonarthrosis, the sum of all points is determined, with a minimum score of 0 and maximum
of 24, where 0 indicates no severity, 1 to 4, mild; 5 to 7, moderate; 8 to 10, severe; 11 to 13, very severe; and 14 or greater, extremely severe.
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as a reduction in pain intensity of more than 30% from
the baseline level,24,25 and a reduction of 50% is consid-
ered as high improvement in pain according to the

OMERACT-OARSI criteria.26 In this study the per-
centage of patients at the end of follow-up with a
primary response to PRGF-Endoret was 38.2, whereas

TABLE 4. Adverse Events

Adverse Event Grade
Relation to the

Treatment Evolution
Serious Adverse Event

or Unexpected

HA group
1 Low back pain 1 Possible Resolved No
2 Low back pain 1 Unrelated Resolved No
3 Febrile syndrome 1 Unrelated Resolved No
4 Left knee surgery 1 Unrelated Resolved No
5 Abdominal pain and dizziness 2 Unrelated Persistent No
6 Toothache 1 Unrelated Resolved No
7 Flu 2 Unrelated Resolved No
8 Trauma 1 Unrelated Resolved No
9 Knee and hip pain 2 Unrelated Resolved Yes
10 Right knee pain 1 Unrelated Persistent No
11 Low back pain 2 Unrelated Resolved No
12 Toothache 2 Unrelated Resolved No
13 Ankle sprain 1 Unrelated Resolved —
14 Renal colic 1 Unrelated Resolved No
15 Back pain 2 Unrelated Resolved No
16 Bronchitis 2 Unrelated Resolved No
17 Neck pain 2 Unrelated Resolved No
18 Low back pain 3 Unrelated Resolved No
19 Itching both outer thighs 1 Unrelated Resolved No
20 Headache 2 Highly likely Resolved No
21 Low back pain 1 Unrelated Resolved No
22 Headache 1 Unrelated Resolved No
23 Right knee pain 2 Unrelated Resolved No
24 Low back pain 2 Unrelated Resolved No

PRGF group
1 Dizziness 1 Unrelated Resolved No
2 Acute knee pain 1 Unrelated Resolved No
3 Left hip pain 3 Unrelated Resolved —
4 Other knee pain 1 Unrelated Resolved No
5 Left knee pain 1 Unrelated Resolved No
6 Contracture lumbar 4 Unrelated Resolved —
7 Urine infection 1 Unrelated Resolved No
8 Low back pain 1 Unrelated Resolved No
9 Headache 2 Unrelated Resolved No
10 Sciatica 2 Unrelated Resolved No
11 Knee trauma during study 3 Unrelated Resolved Yes
12 Fall/back pain 2 Unrelated Resolved No
13 Pain after third injection 3 Highly likely Resolved No
14 Shoulder pain 1 Unrelated Resolved No
15 Left knee contusion 1 Unrelated Resolved No
16 Right shoulder pain 1 Unrelated Persistent No
17 Cold 1 Unrelated Resolved No
18 Cold 1 Unrelated Resolved No
19 Right knee pain 3 Unrelated Persistent No
20 Left knee pain 2 Unrelated Persistent No
21 Back pain 1 Unrelated Resolved No
22 Headache 1 Unrelated Resolved No
23 Cold 1 Unrelated Resolved No
24 Coxalgia 1 Unrelated Resolved No
25 Right knee pain 1 Unrelated Persistent No
26 Right knee pain 1 Unrelated Persistent No
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the rate of response to HA was 24.1%. In addition, the
rate of response to each treatment followed an oppo-
site pattern, with a substantial improvement of the
primary outcome in the PRGF-Endoret group at 24
weeks and a gradual decrease in the case of the HA
group. These data may suggest that, in addition to the
HA action,18 the PRGF-Endoret has other beneficial
biological effects on cartilage in the long run. All the
secondary outcome measures decreased with both ac-
tive treatments, and no significant differences were
found between groups. These results may have impor-
tant considerations for the medical community.

Mechanical stress and growth factors play a pivotal
role in modulating the phenotypic expression of chon-
drocytes. The pool of growth factors obtained from
platelet-rich plasma decreases nuclear factor–�B acti-
vation, a major pathway involved in the pathogenesis
of OA, which is characterized by a catabolic and
inflammatory joint environment.27 Moreover, the su-
pernatant of autologous proteins also inhibits matrix
metalloproteinase 13 production by interleukin 1�–
and tumor necrosis factor �–stimulated human artic-
ular chondrocytes.28

Most of the adverse events that were reported by
patients were mild in severity. Most of the adverse
events were not related to the type of treatment, and
they were evenly distributed between the groups.

The limitations of this study include the lack of
measurement of physical activity levels in patients
after applying the treatments, the different experience
of physicians in the implementation of PRGF-Endoret
treatment, the lack of longitudinal analysis and sub-
group analysis for participating centers, the short-term
follow-up of 24 weeks, the lack of a placebo group,
and the exclusion of patients who had the highest
degree of severity on radiography (Ahlbäck grade 4).
However, our study had a mean score for knee pain on
the visual analog scale on the day of randomization of
56 � 15, and 20% of the patients in our study had a
score over 70.

Although several studies have evaluated the poten-
tial of PRGF-Endoret22,29 and other platelet-rich
plasma products,30 our study is the first randomized,
controlled, multicenter trial that shows that PRGF-
Endoret is safe and effective in the treatment of pa-
tients with OA of the knee, with the beneficial effects
persisting for 24 weeks. This autologous technology
has European Conformity and Food and Drug Admin-
istration clearance to be used for the treatment of
musculoskeletal injuries.

CONCLUSIONS

PRGF showed superior short-term results when
compared with HA in a randomized controlled trial,
with a comparable safety profile, in alleviating symp-
toms of mild to moderate OA of the knee.
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Intraosseous Infiltration of Platelet-Rich Plasma for
Severe Knee Osteoarthritis

Mikel Sánchez, M.D., Nicolás Fiz, M.D., Jorge Guadilla, M.D., Sabino Padilla, M.D., Ph.D.,
Eduardo Anitua, M.D., Ph.D., Pello Sánchez, M.Sc., and Diego Delgado, Ph.D.

Abstract: We describe a new technique of platelet-rich plasma (PRP) infiltration for the treatment of severe knee
osteoarthritis. PRP intra-articular infiltration is a promising treatment for knee osteoarthritis, but it still has some limi-
tations in high-degree osteoarthritis. Diagnosis of osteoarthritis is based on clinical and radiographic findings, and patients
with grade III or IV knee tibiofemoral osteoarthritis based on the Ahlbäck scale are considered candidates for this tech-
nique. The technique consists of performing intraosseous infiltration of PRP into the subchondral bone, which acts on this
tissue and consequently on cartilage-bone communication. Although the intraosseous injection hinders the conventional
knee intra-articular infiltration, it allows an extension of the range of action of the PRP, which acts directly on the
subchondral bone, which is involved in the progression of osteoarthritis. Thus this technique involves a new adminis-
tration of PRP that can delay knee arthroplasty; moreover, it can be applied for not only severe osteoarthritis but also other
pathologies in which the subchondral bone is critical in the etiology, such as necrosis and osteochondral lesions.

Osteoarthritis (OA) is a disease of the synovial joints
that evolves with pain, loss of motion, and

deformation of affected joints. Initially, the pathogen-
esis of OA was focused almost exclusively on the
cartilage; however, nowadays, it is considered a disease
that involves all tissues of the joint, all of which are
crucial for maintaining articular homeostasis. Both
genetic and acquired or environmental factors can
disrupt this anabolic-catabolic balance, resulting in
cartilage degeneration, osteophyte formation, and
inflammation of the synovial membrane and becoming
a clinical problem.1 Currently, no treatment can stop
the progression of OA or reverse the damage, making
joint replacement the only solution for these patients.
Conservative treatment include oral pharmacologic
treatment, such as analgesics, nonsteroidal anti-in-
flammatory drugs, or symptomatic slow-acting drugs

for OA, and intra-articular infiltrations of steroids and
hyaluronic acid, focused on relieving the symptoms but
not on stopping the disease.2

In recent years intra-articular infiltrations of platelet-
rich plasma (PRP) have emerged as an alternative to
current treatments. This biological therapy uses the
patient’s own platelets and plasma, which mainly
convey fibrin and growth factors as effectors. These
growth factors act on the entire joint and may well have
an influence on the development of OA; they promote
restoration of joint homeostasis, have inductive and
protective effects on chondrocytes, and stimulate the
production of hyaluronic acid by synoviocytes. All these
properties help to promote a generative biological
environment and to slow down joint and cartilage
degeneration, thereby relieving symptomatology.3

Several clinical trials showing promising results have
been published; however, there are still some doubts
about whether this form of administration is able to
reach the deeper layers of the cartilage and subchondral
bone, thereby possibly limiting the growth factors’
therapeutic potential especially in severe OA.4,5

In light of recent studies showing the importance of
the subchondral bone in the pathogenesis of OA and
showing cartilageesubchondral bone communication,6

we propose a combination of intra-articular and intra-
osseous injections to treat severe OA. With this com-
bination, it is possible to expand the effective range of
PRP by acting not only on the subchondral bone and,
consequently, on its cartilage communications but also
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on mesenchymal stem cells to modulate the affected
tissue regeneration.7

Surgical Technique

Diagnosis
Diagnosis of OA is based on clinical and radiographic

findings. The radiographs used are the weight-bearing
anteroposterior view of the knee, the lateral view at 30�

of knee flexion, and the axial view at 20� of knee
flexion. Patients with grade III or IV knee tibiofemoral
OA based on the Ahlbäck scale are considered

candidates for our technique, which consists of a PRP
intra-articular infiltration and 2 PRP intraosseous in-
filtrations into the medial femoral condyle and into the
medial tibial plateau (Fig 1).

Patient Preparation
Before sedation is induced, about 80 mL of venous

blood is extracted from the patient to prepare the PRP
according to PRGF-Endoret technology (Biotechnology
Institute, Vitoria-Gasteiz, Spain).4 Sedation is performed
by infusing a single dose of normal saline solution, as
well as a single dose of midazolam (0.03 to 0.05 mg/kg)

Fig 1. (A) The platelet-rich plasma
(PRP) intraosseous infiltration of a
knee with severe femorotibial
osteoarthritis is performed into the
medial tibial plateau (1) and
medial femoral condyle (2). (B) If
the patient presents with femo-
ropatellar osteoarthritis, the
approach is external and the pa-
tella (3) and trochlea (4) are infil-
trated. Before these intraosseous
injections are performed, conven-
tional knee intra-articular infiltra-
tion of PRP is conducted.

Fig 2. After the patient is positioned supine on the operating room table, (A) intra-articular infiltration is performed into the
joint through the external patellar wing, centered in the central region of the patella in the craniocaudal plane; (B) the infil-
tration is directed into the midpoint area of the femoropatellar region using an external approach and preventing infiltration into
the synovial membrane (asterisk). (C, D) Intraosseous tibial plateau infiltration is conducted into the medial tibial plateau, just to
its middle area. The arrow indicates the trocar. (E, F) Concerning intraosseous femoral condyle infiltration, a trocar (arrow) is
applied to the thickness of the medial femoral condyle, as far as the middle area of the medial condyle.
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and fentanyl (3.2 mg/kg), in the peripheral vein; a single
or repeated dose of propofol is also administered (1 to
2 mg/kg), depending on the duration of the infiltration.
The degree of sedation is �4 or �5 on the Richmond
Sedation Scale. The patient is monitored according to
the standards of the American Society of Anesthesiolo-
gists. The patient is positioned supine on the operating
room table; the infiltration area is prepared with a
povidone-iodine solution, covering a region 10 cm
proximal and 10 cm distal to the infiltration zone. Sterile
drapes defining the treatment zone (proximal, distal,
medial, and lateral) are placed (Video 1).
Once the patient has been sedated and prepared and

the PRP has been obtained, 2 marks are drawn in the
medial region of the knee, one located 2 cm proximal
and the other located 2 cm distal to the medial joint line
and centered in the midline sagittal plane. Next, a
24-gauge needle is used to anesthetize the area of
infiltration; it is introduced through the mark and
moved into contact with the femoral condyle. Without
retraction of the needle, the periosteum of the femoral
condyle is infiltrated with 2 mL of 2% mepivacaine.
Then, the needle is withdrawn and moved into contact
with the inner face of the tibial plateau (through the

other mark), and without retraction of the needle, the
periosteum of the medial tibial plateau is infiltrated
with 2 mL of 2% mepivacaine.

Intra-articular Infiltration
After application of local anesthesia, intra-articular

infiltration is conducted first. We penetrate a 21-gauge
needle into the joint through the external patellar
wing, centered in the central region of the patella in
the craniocaudal plane. Lateralization of the patella
during infiltration facilitates this process (Fig 2A). After
placement of the needle into the joint space, synovial
fluid arthrocentesis can be performed if it is necessary.
Once arthrocentesis has been carried out and without
removal of the needle, 8 mL of PRP is infiltrated. The
infiltration is directed into the midpoint area of the
femoropatellar region using an external approach to
prevent infiltration into the synovial membrane, which
would cause pain (Fig 2B).

Intraosseous Tibial Plateau Infiltration
Once the area is anesthetized, PRP is infiltrated into

the tibial plateau. A 13-gauge trocar used for bone
biopsy (CareFusion, San Diego, CA) is introduced into
the bone through the mark previously made. The trocar
is placed 2 cm distal to the joint line, leaning on the
periosteum; the trocar is then introduced 2 cm into the
thickness of the medial tibial plateau (to the middle
area of the medial tibial plateau), following a parallel
direction to the articular surface. Once the trocar has
been placed in the desired position, 5 mL of PRP is
infiltrated through the trocar (Fig 2 C and D).

Intraosseous Femoral Condyle Infiltration
Next, PRP is injected into the femoral condyle. A

13-gauge trocar used for bone biopsy is introduced into
the bone through the mark previously made. The trocar
is placed 2 cm proximal to the joint line, leaning on the
periosteum. Then, the trocar is introduced 2 cm into the

Fig 3. Patients are diagnosed with osteoarthritis (OA) based
on physical examination findings and imaging techniques,
using scales such as the Ahlbäck scale or Kellgren-Lawrence
scale. Depending on the osteoarthritis grade, different treat-
ments can be applied. If the patient presents with Ahlbäck
grade I or II, we propose a classic treatment or intra-articular
infiltration of platelet-rich plasma (PRP). If the patient
presents with grade III or IV, we apply intraosseous infiltra-
tion with 2 intra-articular infiltrations in the subsequent
weeks. If the patient presents with grade V, he or she
undergoes a total knee arthroplasty.

Table 1. Benefits

Stimulates subchondral bone
Reaches deeper layers of cartilage
Acts on molecules and mesenchymal stem cells of subchondral bone
Is applicable to high grades of osteoarthritis, necrosis, and

osteochondral lesions

Table 2. Technical Pearls

Intra-articular infiltration is performed into the midpoint of the
femoropatellar region using an external approach to prevent
infiltration into the synovial membrane.

The use of a fluoroscope can facilitate trocar placement.
Although the patient is under sedation, local anesthesia is

recommended.
After infiltration, it is advisable to apply ice to the area.

Table 3. Pitfalls

The technique requires training and practice; therefore the infiltration
time is increased.

The technique requires patient sedation.
In the 48 hours after treatment, the patient has more pain than with

conventional infiltration.
Treatment will be more complicated in case of an infection due to

infiltration.
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thickness of the medial femoral condyle (to the middle
area of the medial condyle), following a parallel direc-
tion to the articular surface of the condyle. Once the
trocar has been placed in the desired position, 5 mL of
PRP is infiltrated through the trocar (Fig 2 E and F).
Finally, after completion of the infiltrations and

removal of the sterile drapes, the skin is cleaned with an
alcohol solution, with application of wound dressings at
the infiltration points. After infiltration is completed, ice
is applied to the site. In the days after surgery, the
patient can bear weight and take analgesics (acet-
aminophen) as required for pain.

Patellofemoral OA
If patients present with severe patellofemoral OA, the

same procedure as described earlier will be performed,
but in these cases the local anesthesia and PRP are
infiltrated into the patella and into the trochlear zone of
the condyle. Both approaches will be conducted in the
middle area, from the external side of the knee, with
introduction of the trocar 2 cm into the thickness. In
such cases 3 mL of PRP is infiltrated into the patella and
5 mL into the condyle.

Discussion
The frequency and chronicity of OA make it a chal-

lenge for the health and social systems of all developed
countries. In affluent countries such as the United States,
the numbers are staggering; estimates suggest that about
46million patients have OA, with OA inmore than 50%
of adults older than 50 years. By 2030, this figure may
reach 70 million.8 Current treatments focus exclusively
on relieving the symptoms but not on curing the disease,
making joint arthroplasty the definitive option for pa-
tients.2 The results obtained with new therapies such as
PRP and the use of stem cells are promising but still have
some limitations, such as the mode of administration.
The most commonly used form of administration is
intra-articular injection, which is effective in patients
with mild degrees of OA but is not so effective in those

with severe OA.4 With this new administration tech-
nique for PRP, in which the intra-articular injection is
combined with intraosseous infiltrations, treating pa-
tients with higher grades of OA is a possibility, giving
them an alternative to knee arthroplasty or at least
delaying this more radical intervention (Fig 3).
The main limitation of intraosseous infiltration is

related to patient preparation, involving sedation and
local anesthesia because of the subchondral bone in-
jection. These factors, in addition to training of the
medical team, make this technique take more time and
make it more expensive than a conventional intra-
articular injection. The pressure increment inside the
bone could entail pain 48 hours after treatment, so the
patient should be advised of this possibility. Sometimes,
the use of fluoroscopic control (FMControl, Vitoria-
Gasteiz, Spain) is also necessary for proper adminis-
tration (Tables 1-3).
The aforementioned disadvantages are not present

during intra-articular infiltration, but this form of
infiltration does not reach the deeper layers of the
cartilage and subchondral bone, thereby limiting its
therapeutic potential. Recent studies have shown the
importance of the subchondral bone in the pathogen-
esis of OA, and subchondral boneecartilage commu-
nication has been shown in multiple experiments.6,9

When homeostasis is disrupted because of biochemical
and biomechanical offenders, all the tissues of the joint
are involved in restoring biological balance. These
efforts to restore homeostasis entail cellular and extra-
cellular matrix responses in all tissues. Thus commu-
nications occur between the deeper layers of the
subchondral bone and cartilage and, on the other hand,
between these and the synovial fluid that surrounds the
entire joint. This bone-cartilage communication has
been described in studies showing channels that reach
the cartilage from the subchondral bone, which are
more abundant in the cartilage of patients with OA.6

Intraosseous infiltration exploits the communication
between the cartilage and subchondral bone such that

Fig 4. (A) Communications between cartilage and subchondral bone are more pronounced in degenerated cartilage. (B) The
platelet-rich plasma infiltrated into subchondral bone flows through the degenerated zones, and because of its viscous consis-
tency, (C) it remains in the area, creating a matrix (asterisk).
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PRP reaches the deeper layers of cartilage. There is a
viscous consistency of PRP and the cellular material of
subchondral bone that coagulates and remains in the
areas of injured cartilage from which it has come
(Fig 4). In addition, infiltrating PRP directly into the
subchondral bone could act on this tissue and its
mesenchymal stem cells; these cells would be main-
tained in the PRP matrix and modulate the repair
process of subchondral bone, which has a direct impact
on halting the progression of OA.6 Therefore, with our
technique, PRP could achieve a more extensive range of
action and, thereby, higher effectiveness and could be
useful not only in severe OA but also in other pathol-
ogies, such as necrosis of the condyle or tibial plateau,
and during surgical treatment of osteochondral lesions.
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The aimof this studywas to assess a novel approach to treating severe knee osteoarthritis by targeting synovialmembrane, superficial
articular cartilage, synovial fluid, and subchondral bone by combining intra-articular injections and intraosseous infiltrations of
platelet rich plasma.We explored a new strategy consisting of intraosseous infiltrations of platelet rich plasma into the subchondral
bone in combination with the conventional intra-articular injection in order to tackle several knee joint tissues simultaneously.
We assessed the clinical outcomes through osteoarthritis outcome score (KOOS) and the inflammatory response by quantifying
mesenchymal stem cells in synovial fluid.There was a significant pain reduction in the KOOS from baseline (61.55±14.11) to week
24 (74.60 ± 19.19), after treatment (𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝𝑝, in the secondary outcomes (symptoms, 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝; ADL, 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝; sport/rec.,
𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝; QOL, 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝), as well as VAS score (𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝) and Lequesne Index (𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝𝑝. The presence of mesenchymal
stem cells in synovial fluid and colony-forming cells one week after treatment decreased substantially from 7.98 ± 8.21MSC/𝜇𝜇L to
4.04 ± 5.36MSC/𝜇𝜇L (𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝𝑝 and from 601.75 ± 312.30 to 139.19 ± 123.61 (𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝𝑝, respectively. Intra-articular injections
combined with intraosseous infiltrations of platelet rich plasma reduce pain and mesenchymal stem cells in synovial fluid, besides
significantly improving knee joint function in patients with severe knee osteoarthritis. This trial is registered on EudraCT with the
number 2013-003982-32.

1. Introduction

Knee osteoarthritis (KOA) is a mechanically induced,
cytokine and enzyme-mediated disorder comprising differ-
ent phases and phenotypes, with pain as the clinical hallmark
of the disease [1]. This diarthrodial joint is a complex
biological system where articular cartilage (AC), an aneural
and avascular tissue, lies functionally sandwiched between
two highly vascularized and innervated tissues, namely,

synovial membrane (SM), which produces synovial fluid
(SF), and subchondral bone (SB), both endowed with heat
receptors, chemoreceptors, and mechanoreceptors. Nocicep-
tive stimuli, coming from a microenvironment undergoing
nonphysiological mechanical loading and/or proinflamma-
tory cytokines and damage-associated molecular patterns
(DAMPS), might initially lead to peripheral and eventually
both peripheral and neuropathic pain traits by mechanisms
yet to be fully identified [2–4]. Moreover, the aggression
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to these tissues causes a surge of mesenchymal stem cells
(MSCs) in SF as a part of tissue response to injury [5, 6].

In patients with severe OA, the subchondral bone
undergoes changes which include microcracks and struc-
tural defects, vascularization of channels, nerve growth,
and a progressive replacement of the subchondral marrow
with fibroneurovascular mesenchymal tissue changes which
underpin the increasingly recognized crosstalk and pathway
for direct transport of growth factors such as transforming
growth factor B (TGF𝛽𝛽) and nerve growth factor (NGF) and
even for cells such as macrophages and MSCs between the
subchondral bone and articular cartilage [7–10].

As it is yet to be established which of the joint tissues
or structures is the primary driver of KOA and therapeutic
strategies that solely target one cell or tissue may well prove
to fail, it is advisable that approaches to treating KOA should
aim at reaching several joint tissues [11].

In patients with severe KOA, platelet rich plasma (PRP)
and many bioactive mediators present in it have been shown
to exert positive effects on the homeostasis of joint tissues
through chondroprotective, anabolic, anti-inflammatory, and
immunomodulatory effects and to substantially reduce pain,
relieve joint stiffness, and improve physical function [12–
20]. The aim of this study is to assess a novel approach to
treating severe KOA, targeting synovial membrane, superfi-
cial articular cartilage, synovial fluid, and subchondral bone
by combining intra-articular injections and intraosseous
infiltrations of PRP. The hypothesis was that the addition of
intraosseous injections of PRP directly into the subchondral
bone to conventional intra-articular treatment would achieve
a positive effect on patients with severe KOA.

2. Patients and Methods

The study was carried out in accordance with the interna-
tional standard on clinical trials: Real Decreto 223/2004,
Declaration of Helsinki in its latest revised version (Fort-
aleza, Brazil; 2013), and Good Clinical Practice Regulations
(International Conference for Harmonization). The study
protocol was reviewed and approved by the Reference Ethics
Committee. All patients provided written informed consent
before entry into the study.

2.1. Patient Selection. Nineteen patients were initially
assessed for eligibility. Patients were considered eligible if
they were aged between 40 and 77 years and presented severe
knee osteoarthritis according to radiographic confirmation
(Ahlbäck degrees 3 and 4, on a scale from 1 to 4, with the
highest degrees indicating more severe OA). Finally, 14
patients were enrolled in the study from January 2014. The
inclusion and exclusion criteria that patients had to meet in
order to be included in this study are as follows.

Inclusion criteria are the following:

Patients of both sexes aged 40 to 77 years.
Predominant internal tibiofemoral knee osteoarthri-
tis.
Joint pain above 2.5 VAS points.

Radiographic severity degrees 3 and 4 according to
Ahlbäck scale.
Values of body mass index between 20 and 33.
Possibility for observation during the follow-up
period.

Exclusion criteria are the following:

Bilateral knee osteoarthritis which requires infiltra-
tion in both knees.
Values of body mass index > 33.
Polyarticular disease diagnosed.
Severe mechanical deformity (diaphyseal varus of 4∘
and valgus of 16∘).
Arthroscopy in the last year prior to treatment.
Intra-articular infiltration of hyaluronic acid in the
past 6 months.
Systemic autoimmune rheumatic disease (connective
tissue diseases and systemic necrotizing vasculitis).
Poorly controlled diabetes mellitus (glycosylated
hemoglobin above 9%).
Blood disorders (thrombopathy, thrombocytopenia,
and anemia with Hb < 9).
Undergoing immunosuppressive therapy and/or war-
farin.
Treatment with corticosteroids during the 6 months
prior to inclusion in the study.

The enrolment finished on 29 October 2014 and the pilot
study was completed on 10 June 2015.

In the first visit, an orthopedic surgeon conducted a clin-
ical and radiographic assessment of each patient, including
their medical history and a complete blood count. More-
over, the doctor delivered a booklet that contained detailed
instructions and the knee injury and osteoarthritis outcome
score (KOOS) questionnaire, which had to be completed by
the patients at the baseline visit and before follow-up visits.
Patients were allowed to consume acetaminophen, but it was
restricted 48 hours before filling the questionnaires.

Patients were identified by a code number and scheduled
to undergo the experimental procedure, which consisted
of three treatments of PRP on a weekly basis. The first
treatment included one PRP intra-articular infiltration and
twoPRP intraosseous infiltrations (femoral condyle and tibial
plateau). The next two treatments were conventional intra-
articular injections.

2.2. PRP Preparation. 90mL of venous blood was extracted
from the patient in order to prepare the PRP and withdrawn
into 9mL tubes containing 3.8% (wt/V) sodium citrate. Blood
was centrifuged at 580 g for 8 minutes at room temperature.
The 2mL plasma fraction located just above the sedimented
red blood cells, but not including the buffy coat, was collected
in a tube and carried to the injection room for use. This
plasma fraction preparation contained a moderate concen-
tration of platelets (2 to 3 times the concentration of platelets
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Figure 1: Fluoroscopic images. Intraosseous infiltration into the medial femoral condyle (a) and tibial plateau (b).

compared with peripheral blood, depending on the platelet
count and size as well as the hematocrit) and an absence of
erythrocytes and leukocytes [21]. To initiate the activation of
platelets clotting, calcium chloride (10% wt/V) was added to
the liquid PRP aliquots just before injection. All procedures
were performed under sterile conditions.

2.3. Treatment. In the patient’s first treatment, one PRP intra-
articular injection and two PRP intraosseous injections were
performed. Under anesthesiologist surveillance, sedation
of the patient was induced by infusing a single dose of
midazolam (0.03–0.05mg/kg) and fentanyl (3.2mg/kg), in
a peripheral vein; single or repeated dose of propofol was
also administered (1-2mg/kg), depending on the duration
of the infiltration. The degree of sedation was −4 or −5 on
Richmond Sedation Scale. The patient was positioned in a
supine position on an operating room table and two marks
were drawn in themedial region of the knee, one located 2 cm
proximal and the other located 2 cmdistal tomedial joint line;
the infiltration area was prepared with a povidone-iodine
solution. Local anesthesia was conducted by injecting 2mL
of 2% mepivacaine into the periosteum of condyle and tibial
plateau. After evacuating the totality of the synovial fluid,
8mL of PRP (the first intra-articular infiltration of a series of
three) was infiltrated intra-articularly through the mid-point
area of the femoropatellar region using a lateral approach in
order to reach the joint space after lateralization of the patella.
Intraosseous infiltrations were performed with a 13G trocar
used for bone biopsy, which was manually introduced into
the bone and inserted 2 cm into the medial tibial plateau and
medial femoral condyle. Once the trocars were placed in the
desired position, 5mL of PRP was infiltrated into subchon-
dral bone of each structure. The control of trocar placements
was facilitated by using a fluoroscope (Figure 1) [22]. After
intraosseous infiltration is completed, ice is applied to the
site. In the days after surgery, the patient can bear weight
and take analgesics (acetaminophen) as required for pain. It
is worth mentioning that the application of intra-articular
and intraosseous infiltrations of PRP does not entail any
reduction in physical activity and patients resume their daily
activities few hours after the procedure is performed.

Two more intra-articular PRP infiltrations were per-
formed 7 and 14 days after the first treatment. Moreover,
the synovial fluid evacuated prior to the infiltrations was
preserved for analysis.

2.4. Follow-Up. Patients were called for follow-up visits 2 and
6 months after the last treatment visit in order to conduct
clinical evaluation. During these visits, the patient submit-
ted the questionnaires given at baseline. A rheumatologist
carried out a clinical examination and an evaluation of pain
and function by visual analogue scale (VAS) and Lequesne
Index, respectively. Acetaminophen consumption was also
controlled.

2.5. Clinical Outcomes. The primary outcome was defined as
the decrease in knee pain from the baseline to second month
and sixth month (endpoint), according to the KOOS ques-
tionnaire. Furthermore, measurement of VAS and Lequesne
Index was also evaluated; the secondary outcomes included
the other areas of KOOS: symptoms, function in daily living
(ADL), function in sport and recreation (sport/rec.), and
knee related quality of life (QOL).

2.6. Safety Outcomes. To evaluate the safety of treatment, all
complications and adverse events were assessed and reported
during patient visits. Their nature, onset, duration, and
severity were documented.

2.7. Biological Outcomes. Presence ofmesenchymal stem cells
(MSC) in synovial fluids before and one week after
intraosseous infiltrationwas evaluated by flow cytometry and
cultures of colony-forming cells (CFU-F). Concerning flow
cytometry, each sample was immunophenotyped using an
8-color direct immunofluorescence technique. Concentrated
cell suspensions were stained with the following combination
of monoclonal antibodies (MoAb) in order to detect
the expression of CD105/CD45/CD73/CD271/CD34/CD13/
CD90/CD44: [Brilliant violet (BV) 421/orange chrome
(OC) 500/fluorescein isothiocyanate (FITC)/phycoerythrin
(PE)/peridinin chlorophyll protein-cyanin 5.5 (PerCP
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Eligible patients (n = 19)

Allocated patients (n = 14)

Two-month follow-up (n = 14)

Six-month follow-up (n = 13)
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Enrolment

Treatment

Follow-up

Figure 2: Enrolment and outcomes.

-Cy5.5)/PE-cyanin 7 (PECy7)/allophycocyanin (APC)/
APCH7]. Regarding CFU-F assay, collected synovial fluids
were diluted in phosphate buffered saline (PBS) and
centrifuged in order to harvest the cellular content. The
sample was used for colony-forming assay (CFU-F) and
seeded on a 100mm diameter culture plate. Seven days later,
plating colonies were noted and counted by 0.5% crystal
violet staining.

2.8. Sample Size Calculation. Power analysis was conducted
to estimate the minimum sample size needed to achieve 80%
power at a 5% level of significance for the primary outcome
measures. An assumed effect size of 10 points (minimal
clinically important change, MIC) with a standard deviation
(SD) of 12 points was used [23]. This analysis suggested a
minimum of 13 patients, expecting a dropout rate of 0.1.

2.9. Statistical Analysis. Demographic and medical variables
(gender, age, and OA grade) were determined by the mean,
standard deviation, range, and percent. For this study, a pair
protocol analysis was used. Comparisons were performed
by Student’s 𝑡𝑡-test for paired-samples parametric data or
Wilcoxon signed-rank test for paired-samples nonparametric
data, after assessing the normal distribution of the samples by
Shapiro-Wilk test. Data were considered statistically signifi-
cant when 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝. Statistical analysis was performed with
SPSS 17.0 (SPSS, Chicago, IL).

3. Results

A total of 19 patients were considered eligible to participate
in this study, and 14 patients were finally enrolled (Figure 2).
Of the 5 excluded patients, four declined to participate
and one presented predominant lateral osteoarthritis. Of the
remaining 14 patients, 13 completed the study and one was
excluded during the follow-up period due to a popliteal cyst.

Nine of the thirteen patients who finished the study were
men and four were women, with a mean age of 62 ± 10 years
(range: 47–75 years). Nine patients were diagnosed with OA
III and five were diagnosed withOA IV, according to Ahlbäck
scale (Table 1).

3.1. Clinical Outcomes. Table 1 summarizes results of primary
and secondary outcome measures for the entire population
that completed the study. Analysis of the primary outcome
measure (as the decrease in knee pain from baseline to
week 24, according to the KOOS questionnaire) showed a
statistically significant improvement in pain reduction from
61.55 ± 14.11 at baseline to 74.60 ± 19.19 six months after
treatment (𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝). Eleven patients improved, and 8
patients reported minimal clinically important improvement
(MCII) (Table 1).Depending on the osteoarthritis grade, eight
of the 9 patients with degree 3 showed improvement as did 3
of the 4 patients with degree 4.

Regarding secondary outcomes, there was also a statisti-
cally significant improvement in all other areas of the KOOS
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Figure 3: Clinical outcomes. KOOS (a), VAS (b), and Lequesne Index (c) at baseline, 8 weeks after treatment, and 24 months after treatment.
ADL: function in daily living; sport/rec.: function in sport and recreation; QOL: quality of life. ∗𝑝𝑝 < 0.05 with respect to basal level.

(symptoms, 𝑝𝑝 𝑝𝑝𝑝𝑝𝑝 𝑝; ADL, 𝑝𝑝 𝑝𝑝𝑝𝑝 𝑝; sport/rec., 𝑝𝑝 𝑝𝑝𝑝𝑝 𝑝;
QOL, 𝑝𝑝 𝑝𝑝𝑝𝑝 𝑝), as well as VAS score (𝑝𝑝 𝑝𝑝𝑝𝑝𝑝 𝑝) and
Lequesne Index (𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝).

The improvement of the patients was observed at 8 weeks
of follow-up, and it was maintained until week 24, when the
study ended (Figure 3).The two patients who did not respond
to treatment were indicated for a total knee arthroplasty.

Two patients reported 2 adverse events likely unrelated
to the treatment. One of the patients experienced an episode
of fever associated with flu episode, and the other reported
exacerbation of knee pain three months after the treatment.
Both events weremended satisfactorily by oral pharmacolog-
ical treatment, which was allowed in the study. In addition,
one patient was excluded because of a popliteal cyst caused
by sports activity which was treated with fluid drainage and
corticosteroid infiltration.

3.2. Biological Outcomes. Baseline levels of mesenchymal
stem cells (MSCs) presented in synovial fluid were 7.98 ±
8.21MSC/𝜇𝜇L, while one week after intraosseous infiltration
the values significantly declined to 4.04 ± 5.36MSC/𝜇𝜇L (𝑝𝑝 𝑝
0.019) (Table 1).

Concerning cultures of colony-forming cells (CFU-F),
a substantial reduction in the number of CFU-F was also
observed one week after infiltration, namely, the number of
CFU-F/mL before and after treatment of 601.75 ± 312.30 and
139.19 ± 123.61, respectively (𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝) (Table 1).

4. Discussion

The combination of intra-articular and intraosseous injec-
tions of PRP is an in situ local biological “joint-centric”
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approach to treat severe KOA addressing the SM, SF, and
superficial zone of AC by intra-articular injections of PRP
and deep zones of AC and SB through PRP intraosseous
infiltrations [24]. The significant pain reduction from base-
line shown in these results is according to several studies
which have shown the substantial pain reduction in patients
with KOA treated with intra-articular infiltrations of PRP
[20, 25–27]. However, some patients do not respond to this
treatment, a result which converges with the severity of
osteoarthritis [28–30]. These studies confirmed that patients
with advance KOA such as Ahlbäck III type did not improve
after intra-articular injections of PRP. Intra-articular drug
delivery does not address the subchondral bone as a tissue
target, which might be one of the reasons for this absence of
response. In this study, we added intraosseous injections for
the conventional intra-articular treatment to address the SB
as one crucial tissue target in the treatment of severe KOA
(Figure 4).

There are several potential mechanisms by which intra-
articular injections and intraosseous infiltrations of PRP
might reduce knee pain. In vitro and in vivo studies have
reported that PRP and growth factors within it such as
HGF, IGF-1, and PDGF suppress macrophage, fibroblast,
and chondrocyte activation by inhibiting the NF𝜅𝜅B path-
way, thereby dampening the synovial and articular cartilage
inflammatory response [4, 15–17]. In addition, the significant
amount of endogenous cannabinoids within PRP might act
as ligands for cannabinoid receptors 1 (CB1) and 2 (CB2)
of chondrocyte and synovium cells of OA patients, thereby
supporting a pain and inflammation reduction by targeting
the endogenous cannabinoid systems [2, 31–34]. On the
other hand, the excessive presence of TGF𝛽𝛽1 and VEGF
in OA subchondral bone and articular cartilage could be a
driving factor for changes in osteoblast-osteoclast coupling
[7, 19, 35–37], which leads to a bone remodeling imbalance,
NGF expression, and fibroneurovascular growth, all changes
which might well contribute to pain [3, 7–9, 33, 35–37]. It is
reasonable to speculate that the concurrent presence of, and
a balanced ratio between, platelet-secreted TGF𝛽𝛽1 and VEGF
and plasma growth factors such as IGF-1 and HGF [37], all
conveyed by PRP intraosseous infiltration, might buffer the
excess of TGF𝛽𝛽1 in SB as well as restoring HGF activity syn-
thesized by osteoblasts. This new reestablished homeostatic
balance between TGF𝛽𝛽1 andHGFwould reduce the synthesis
of NGF, VEGF, and other inflammatory mediators, thereby
contributing to the reduction of pain and hyperalgesia in
severe stages of KOA [9, 36].

In this study, patients also showed a significant improve-
ment in the secondary efficacy outcomes such as function
in daily living (ADL), function in sport and recreation
(sport/rec.), and knee related quality of life (QOL). This
increased intolerable physical load might entail a positive
chondroprotective and anti-inflammatory effect, since as sev-
eral lines of evidence suggest, moderate mechanical loading
of joints prevents cartilage degradation by suppressing the
activation of NF𝜅𝜅B [38].

The significant reduction of MSC in SF after treatment
with this novel PRP therapy is open to interpretation. Several
studies have reported that the accumulation of MSCs in SF

increases with the severity of osteoarthritis, joint damage,
and the disease duration [39, 40]. Although the source of
this MSC increase has not yet been determined, the most
likely origin of the increased presence of MSC in SF of
KOA patients might be the SM, the breakdown zone of
superficial AC, and the SB [6, 7, 9, 39–41]. By adhering
to SM, superficial AC, and SF and by gradually delivering
various components such as IGF-1, HGF, PDGF, TGF-𝛽𝛽1,
and platelet microparticles (PM), intra-articularly injected
PRP may influence macrophage M1 polarization towards M2
phenotype and modify the inflammatory status of chon-
drocytes and the superficial zone of AC by suppressing
the NF𝜅𝜅B signaling pathway [15–17, 42]. By lowering the
concentration of chemoattractant inflammatory cytokines in
SF, PRP may well contribute to the inhibition of the MSC
release andmigration [4, 26, 43]. Another origin for SFMSCs
might be the SB as a point of egress through the channels
and vessels breaching the osteochondral junction, partially
recruited by the osteoarthritic SF [7, 9, 43]. The buffer effect
of PRP on TGF𝛽𝛽1 signaling pathway in SB might reduce the
presence of nestin MSCs likely associated with the shrinking
of fibroneurovascular tissue of KOA subchondral bone as an
antifibrotic mechanism which has already been reported on
several cell phenotypes [36, 37]. Moreover, the process of cell
homing whereby SF MSCs might be recruited to damaged
areas of AC and take part in the in vivo repair of that cartilage
might also contribute to MSCs reduction [44], just as the
PRP fibrin network, containing fibronectin, IGF-1 and IGF-
II, PDGF, SDF-1, and TGF𝛽𝛽1 may exert a recruitment, hom-
ing, and chondrogenic-differentiation effect on subchondral
mesenchymal progenitor cells [14, 45, 46].

This study has some limitations. First, a relatively small
number of patients were enrolled in the study with no control
group, all belonging to the same severe KOAphenotype stage.
Second, the clinical follow-up of 6 months seems to be a
short period to draw conclusive clinical indications. Third,
an evaluation of patients with X-ray or MRI has been very
useful to document eventual changes in the subchondral
bone after PRP treatment. Finally, a mechanistic account of
the significant pain and SF MSCs reduction experienced by
the majority of patients is lacking. The first three limitations
are inherent in the nature of the study.

5. Conclusions

In summary, targeting synovial membrane, synovial fluid,
articular cartilage, and subchondral bone with intra-articular
injections and intraosseous infiltrations of PRP reduces pain
and MSCs in SF, besides significantly improving knee joint
function in patients with severe knee OA, with no adverse
event reported. This work aims to be a first step for further
research in this field, both in basic research and in increas-
ingly robust clinical trials.

Ethical Approval

This trial is approved by Clinical Research Ethics Committee
of the Basque Country.
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Figure 4: Mechanisms of intra-articular and intraosseous injections of platelet rich plasma. Depiction of a new strategy to treat severe knee
OA by targeting different knee joint structures such as synovial membrane (SM), synovial fluid (SF), articular cartilage (AC) with noncalcified
cartilage (NCC) and calcified cartilage (CC), and subchondral bone (SB)with intra-articular injections (IA) and intraosseous infiltrations (IO)
of platelet rich plasma (PRP) [24].This procedure reduces pain andmesenchymal stem cells (MSC) in SF, besides significantly improving knee
joint function of patients with severe OA.We suggest that various growth factors, cytokines, and chemokines trapped in the fibrin network of
PRPmight inhibit the NF𝜅𝜅𝜅𝜅 on synovial macrophages, fibroblasts as well as on chondrocytes, thereby dampening the inflammatory response
of SM and AC [15–18]. In addition, IO in subchondral bone, might buffer the excess of transforming growth factor 𝛽𝛽1 (TGF-𝛽𝛽1) as well
as restore hepatocyte growth factor (HGF) activity synthesized by osteoblasts, thereby leading to a new reestablished homeostatic balance
between TGF-𝛽𝛽1 andHGF [35–37].The buffer effect of PRP on TGF-𝛽𝛽1 signalling pathway in SBmight reduce the presence of nestinMSCs in
SF, likely associated with the shrinking of fibroneurovascular tissue in the SB, as an antifibrotic mechanism which has already been reported
on other cell phenotypes [36, 37].
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The aim of this study was to evaluate the effect of intra-articular (IA) or a combination of intra-articular and intraosseous (IO)
infiltration of Platelet Rich Plasma (PRP) on the cellular content of synovial fluid (SF) of osteoarthritic patients.Thirty-one patients
received a single infiltration of PRP either in the IA space (𝑛𝑛 𝑛 𝑛𝑛) or in the IA space together with two IO infiltrations, one in
the medial femoral condyle and one in the tibial plateau (𝑛𝑛 𝑛 𝑛𝑛). SF was collected before and after one week of the infiltration.
The presence in the SF of mesenchymal stem cells (MSCs), monocytes, and lymphocytes was determined and quantified by flow
cytometry. The number and identity of the MSCs were further confirmed by colony-forming and differentiation assays. PRP
infiltration into the subchondral bone (SB) and the IA space induced a reduction in the population ofMSCs in the SF.This reduction
inMSCs was further confirmed by colony-forming (CFU-F) assay. On the contrary, IA infiltration alone did not cause variations in
any of the cellular populations by flow cytometry or CFU-F assay. The SF of osteoarthritic patients contains a population of MSCs
that can be modulated by PRP infiltration of the SB compartment.

1. Introduction

Knee osteoarthritis (OA) encompasses a cluster of degen-
erative joint conditions with different biochemical, inflam-
matory, and genetic signatures generating distinct subtypes.
Evolving in phases, the severity of the resulting phenotype
impacts the quality of life of the patient and represents an
economic burden and social challenge. Estimates suggest
that about 46 million patients suffer from OA in developed
countries, more than 50% of adults over 50 years; by 2030,
this figure may reach 70 million [1]. It is essential to develop

novel treatments that slow or stop the progression of this
disease and even reverse the damage. Current treatments
such as analgesics, nonsteroidal anti-inflammatory drugs,
intra-articular infiltrations of steroids, or hyaluronic acid just
relieve the symptoms, and, in advanced cases of OA, joint
replacement is the only solution for these patients [2].

The knee joint is a complex biological system composed
of synovial fluid (SF), synovial membrane (SM), meniscus,
ligaments, subchondral bone (SB), and articular cartilage
(AC). AC is an avascular tissue that lies functionally sand-
wiched between the SM, which generates the SF, and the
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SB. Stemming primarily from an ultrafiltrate of plasma
and secretions of chondrocytes and synoviocytes, SF is a
viscous liquid composed of hyaluronan (HA) and lubricin,
cytokines, growth factors, and a minor presence of cells.
Aggression and inflammation to intra-articular tissues bring
an increase of MSCs in SF [3, 4], which is commonly
interpreted as a tissue response to injury [5, 6], equivalent
to the response of migratory chondrogenic progenitor cells
from SB to injured cartilage [7, 8]. Although the source
of MSCs has not been yet clearly determined, the most
likely origin might be the SM [4, 5], the breakdown zone
of superficial AC, and the SB [6, 9, 10]. Recent findings
suggest that the increase in pathological situations of certain
molecules such as monocyte chemotactic protein-1, SDF-
1, and TGF-𝛽𝛽1 could promote the recruitment of MSCs
[11, 12].

SB has always been present in the equation of OA
pathogenesis [13]. There is an increasingly recognized com-
munication between the SB and AC based on the changes
that the SB undergoes in patients with severe OA, including
microcracks and structural defects, vascularization of chan-
nels, nerve growth, and a progressive replacement of the
subchondral marrow with fibroneurovascular mesenchymal
tissue [9, 10, 14, 15]. Since the primary driver of knee OA
is not yet established between the different joint tissues,
therapeutic strategies solely targeting one cell or tissue are
prone to fail [16]. Thus, approaches to treat OA should be
aimed at reaching several joint tissues with the purpose
of reducing joint inflammation, controlling pain, improving
joint functionality, and restoring tissue homeostasis.

Among the new emerging treatments to address kneeOA,
mesenchymal stem cells (MSCs) and Platelet Rich Plasma
(PRP) stand out [17], with the scientific rationale for the use
of PRP in the treatment of knee OA growing. Intra-articular
infiltrations of PRP have proven to substantially reduce pain
in patients with knee and hip OA and to improve joint
stiffness and physical function [18–21]. PRP and many of the
bioactive mediators that contain IGF-I, TGF-𝛽𝛽1, HGF, PDGF,
VEGF, NGF, BDNF, CTGF, BMPs, Vitronectin, fibronectin,
SDF-1, and PF4, among others, have shown positive effects
on homeostasis of joint tissues through chondroprotective,
anabolic, anti-inflammatory, and immunomodulatory effects
[22–26]. Also MSCs hold an important therapeutic potential
promoting regeneration, derived from their proliferative
and multipotential differentiation properties. MSCs could
lead to the formation of new chondrocytes and cartilage
regeneration, a process that has been observed in promising
preclinical studies and clinical trials [27–29]. However, there
are still specificities on this broader treatment that require
deeper analysis as to what cell sources are more appropriate,
influence on therapeutic effectiveness of in vitro expansion,
and dosage [30]. We hypothesize that targeting SM, SF,
AC, and SB with a combination of intra-articular injections
and intraosseous (IO) infiltrations of PRP on severe knee
OA [31] could have a deeper biological impact on knee
joints tissues and therefore be a more effective treatment
than the conventional intra-articular (IA) infiltrations of
PRP.

2. Methods

2.1. Treatment Groups and Collection of Synovial Fluids.
Patients were divided into two modality treatment groups;
patients of the IA modality group received a single IA
infiltration of PRP (𝑛𝑛 𝑛 𝑛𝑛) and patients of the IO group
(𝑛𝑛 𝑛 𝑛𝑛) were treated with a combination of one IA
infiltration of PRP followed by two PRP IO infiltrations of
PRP (one in the tibial plateau and one in the medial femoral
condyle). Both groups received two more IA infiltrations of
PRP on a weekly basis. SF were collected from 31 patients,
before and after the first week of PRP treatment. The choice
of IA or IO modality treatment was made based on the
failure of previous medical treatments; namely, the patients
who had been oriented toward a total knee replacement
as the only solution for their OA were allocated in the IO
group.

2.2. PRP Preparation. A small volume between 36 and 72mL
of peripheral blood was extracted from each patient into
extraction tubes containing 3.8% sodium citrate as anticoagu-
lant. After centrifugation at 580×g for 8minutes, plasma frac-
tions were separated by pipetting under sterile conditions.
In each tube, the 2mL of plasma rich in platelets remaining
above the red cells and the “buffy coat” were collected,
avoiding picking up the leukocytes, and were put together
[31]. This preparation was characterized by containing 2 to 3
times the concentration of platelets comparedwith peripheral
blood and the absence of erythrocytes and leukocytes (BTI
Biotechnology Institute, Vitoria-Gasteiz, Spain).

2.3. Procedures. For the IA group, 8mL of PRPwas infiltrated
in the joint space. Before infiltration, a 21 G needle was placed
into the joint space and SF arthrocentesis was carried out
and collected SF were preserved for analysis as pretreatment
sample. One week after, another arthrocentesis was carried
out to analyze the SF after treatment. For the IO group,
a sedation of the patient was induced by infusing a single
dose of normal saline, a single dose of midazolam (0.03–
0.05mg/kg), and fentanyl (3.2mg/kg), in peripheral vein;
single or repeated dose of propofol was also administered (1-
2mg/kg), dependent on the duration of the infiltration. The
degree of sedation was −4 or −5 on the Richmond Sedation
Scale. Local anesthesia was conducted by injecting 2mL of
2%mepivacaine into the periosteum of the condyle and tibial
plateau. As in the case of IA group, an arthrocentesis was
carried out to evacuate the totality of SF which was preserved
for analysis as pretreatment sample of IO group. PRP was
infiltrated into the joint space first (8mL) and then into SB
of the tibial plateau (5mL) and the femoral condyle (5mL),
using a 13G bone-biopsy trocarmanually introduced into SB;
the use of the fluoroscope facilitated trocar placement. It is
worth noting that Sánchez et al. have illustrated visual direct
evidence that the intraosseously injected PRP was allocated
into the SB [32].

The institutional review board approved this study, and
informed consentswere obtained fromevery patient included
in the study.
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2.4. Multidimensional Flow Cytometry (MFC) Immunopheno-
typing. Approximately 2–6mL of arthrocentesis-derived SF
of each patient was immunophenotyped using an 8-color
direct immunofluorescence technique. After sample centrif-
ugation, 100𝜇𝜇Lof the concentrated cell suspensionwas stained
for 15 minutes at room temperature in darkness, with the
following combination of monoclonal antibodies (MoAb):
Brilliant violet (BV) 421/orange chrome (OC) 500/fluorescein
isothiocyanate (FITC)/phycoerythrin (PE)/peridinin chloro-
phyll protein-cyanin 5.5 (PerCP-Cy5.5)/PE-cyanin 7 (PE-
Cy7)/allophycocyanin (APC)/APCH7: (i) CD105/CD45/
CD73/CD271/CD34/CD13/CD90/CD44.After staining, 2mL
of FACS lysing solution (Becton/Dickinson Biosciences, San
Jose, CA) was added. After 5 minutes of incubation at room
temperature, samples were sequentially centrifuged for 5
minutes at 540×g and resuspended in 100𝜇𝜇L of premixed
Perfect-COUNT microspheres (Cytognos SL, Salamanca,
Spain). Subsequently, data acquisition was performed for
around 5,000 nucleated cells per tube in a FACSCantoII
flow cytometer (Becton Dickinson Biosciences (BD), San
Jose, CA) using the FACSDiva 6.1 software (BD). Monitoring
of instrument performance was performed daily using the
Cytometer Setup Tracking (CST; BD) and rainbow 8-peak
beads (Spherotech Inc., Lake Forest, IL) after laser stabiliza-
tion, following the EuroFlow guidelines; sample acquisition
was systematically performed after longitudinal instrument
stability was confirmed. MSCs and residual leukocytes were
identified through a Boolean gating strategy based on for-
ward scatter, side scatter, and CD45 expression; monocytes
were defined on the basis of their relatively higher light scatter
properties and CD13 and CD45 bright expression, whereas
lymphocytes were identified through low scatter properties
and strong CD45 reactivity (Figure 1). Absolute cell numbers
per volume unit were calculated following themanufacturer’s
recommendation.

2.5. MSCs Isolation from Knee Synovial Fluid. Collected
SF were diluted in phosphate buffer saline (PBS) and the
cellular content was then harvested by centrifugation. One
part of each sample was seeded in a 6-well plate under
standard cell culture conditions with Dulbecco’s Modified
Eagle Medium (DMEM; Lonza) supplemented with 20%
fetal bovine serum (Gibco), 1% penicillin-streptomycin (P/E)
(Gibco), and 1 ng/mL of human recombinant basic fibroblast
growth factor (bFGF; R&D systems) (Expansion Medium).
The adherent cells were expanded in a humidified 5% CO2
atmosphere at 37∘C and used for further differentiation
experiments. The remaining sample was used for colony-
forming assay (CFU-F) and seeded on a 100mm diameter
culture plate. Seven days later, plating colonies were visible
and counted by 0.5% crystal violet staining. It was established
that a CFU-F contains more than 10 morphologically homo-
geneous cells.

2.6. Synovial Fluid MSCs Differentiation. Mesenchymal lin-
eage differentiation assays were carried out as described
in Muinos-López et al. 2016 [33]. Briefly, SF-derived cells
were assessed between passages 2 and 5 to confirm their
osteogenic, adipogenic, and chondrogenic capacity. For

osteogenic and adipogenic differentiation, 8000 cells/cm2
were seeded in 12-well plates. Adipogenic differentiation
was induced using DMEM supplemented with 10% FBS,
1 𝜇𝜇M Dexamethasone, 0.5mM 3-isobutyl-1-methylxanthine,
and 50 𝜇𝜇M Indomethacin for 21 days. For the osteogenic
differentiation, cells were cultured in DMEM supplemented
with 10% FBS, 50𝜇𝜇g/mL L-(+)-ascorbic acid, 10mM 𝛽𝛽-
glycerol phosphate, and 10 nM Dexamethasone for 21 days.
For chondrogenic differentiation, 2.5𝐸𝐸5 cells were spun-
down at 600×g for 10 minutes in polystyrene 15mL conical
tubes and incubated with hMSC Chondrogenic Differen-
tiation BulletKit� Medium (Lonza). Differentiations were
analyzed at 28 days. In all differentiation assays, a negative
control was included where the cells were maintained with
expansion medium (DMEM containing 10% FBS) without
induction factors. In all differentiation assays, medium was
changed every 2-3 days.

2.7. Histological and Immunohistochemistry Differentiation
Analyses. Adipogenic and osteogenic differentiation were
assessed by Oil Red O and Alizarin Red staining, respec-
tively. For adipogenic differentiation, after fixation with 4%
paraformaldehyde (Panreac) for 10 minutes, cells were rinsed
with 60% isopropyl alcohol followed by a 60% solution of Oil
Red for 20 minutes to reveal intracellular oil droplets. For
osteogenic differentiation, mineral precipitates were revealed
with a 2% solution of Alizarin Red, pH 4.2, for 15 minutes
at room temperature and washed with deionized water.
Chondrogenic differentiation was evaluated by toluidine
blue staining and immunohistochemistry (IHC) for type II
collagen. Cell pellets were included in paraffin and sectioned,
4 𝜇𝜇m thick. Toluidine Blue, 1% (weight/volume) in 1% acetic
acid solution, was used to visualize anionic glycoconjugates,
proteoglycans (PG), and glycosaminoglycans (GAG). For
IHC, sections were hydrated in grade ethanol and subjected
to antigen unmasking by sequential 15min treatments of
hyaluronidase (4mg/mL in PBS) and pepsin (4mg/mL in
0.01N HCl solution) at 37∘C. Endogenous peroxidase activ-
ity was blocked by H2O2 treatment (3% H2O2 in PBS).
Samples were incubated overnight at 4∘C with a mouse
monoclonal antihuman type II collagen (0.5 𝜇𝜇g/mL; Clone
II-4CII, MP Biomedicals). Staining was visualized with DAB
using EnVision� chromogenic kit (DAKO) according to the
manufacturer’s instructions.

2.8. Statistical Analysis. Data were determined by the mean
and standard deviation. Comparisons were performed by
Wilcoxon signed-rank test for nonparametric data and Stu-
dent’s 𝑡𝑡-test for parametric data, after assessing the normal
distribution of the samples by Shapiro-Wilk test. Data were
considered statistically significant when 𝑝𝑝 values were less
than 0.05. Statistical analysis was performed with SPSS 17.0
(SPSS, Chicago, IL).

3. Results

3.1. Characteristics of the Patients. The mean age of patients
in the IA group was 62.6 ± 11.8 years and the range was
41–77 years. The percentages of patients of this group with
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Figure 1: Phenotypic characterization of synovial fluid MSCs. After exclusion of doublets (a) and debris (b), mesenchymal stem cells
(MSCs) were identified through a Boolean gating strategy according to their strong reactivity for CD13, CD44, CD73, CD90, and CD105
and intermediate to high levels of CD271 (e-f), in the absence of CD34 (f). Monocytes were defined on the basis of their relatively higher light
scatter properties and CD13 and CD45 bright expression, whereas lymphocytes were identified through low scatter properties and strong
CD45 reactivity. In panel (g), the automated population separator (APS) graphic representation of the Infinicyt software is shown with the
three cell populations phenotypically separated by principal component analysis (PCA). I: lymphocytes; II: monocytes; III: MSCs.
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Figure 2: Colony-forming units fibroblast. Levels of colony-forming units fibroblast in the synovial fluids (CFU-F) before (preinfiltration)
and one week after (postinfiltration) infiltration of Platelet Rich Plasm (PRP). (a) Intra-articular infiltration of PRP. (b) IO infiltration of PRP.
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Table 1: Patients included in the study and their clinical OA grade.

IA group IO group
Age (mean ± SD) 62.6 ± 11.8 63.6 ± 11.2
Age range 41–77 41–80
OA grade II (%) 50 29.4
OA grade III (%) 35.7 47.1
OA grade IV (%) 14.3 23.5

osteoarthritis grades II, III, and IV according to Ahlbäck
scale were 50%, 35.7%, and 14.3%, respectively. Regarding
the IO group, the average age of patients was 63.6 ± 11.2
years and the range was 41–80 years. In this group, the
percentages of patients classified byAhlbäck scale were 29.4%
for grade II, 47.1% for grade III, and 23.5% for grade IV
(Table 1).

3.2. Phenotypic Characterization of the Cell Population of
Synovial Fluid. To determine the influence of PRP treatment
in the cellularity of the joint, the presence of mononucleated
cells (MNC) cells and their populations was analyzed in
the SF of both groups, before and after treatment, by flow
cytometry, as described in Methods (Figure 1).

Regarding the IA group, the concentration of MNC,
lymphocytes,monocytes, andMSCs in the SF before and after
treatment did not show significant differences (Table 2).

Interestingly, although in the IO group the variations in
the concentration of MNC, lymphocytes, and monocytes in
the SF were also not significant, MSCs showed a significant
decrease after IO treatment (Table 3).

Table 4 shows the cellular increments (𝛿𝛿) before and after
each infiltration and compares the differences between the
two treatments. The decrease in the levels of MSCs observed
after IO infiltration of PRP was higher than the decrease after
IA treatment (𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝).

3.3. Culturing of Colony-Forming Cells (CFU-F). To confirm
the reduction of MSCs in the SF, we assessed the capacity
of the MSCs population to sustain clonal growth on plastic
surfaces (CFU-F). Consistent with the flow cytometry results,
the IA injection of PRP did not result in a significant variation
in CFU-F, 332.52 ± 234.96CFU/mL before treatment to
327.54 ± 223.32CFU/mL after treatment (𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝) (Fig-
ure 2(a)). In the IO group, we found a significant reduction in
CFU-F from 477.51±253.44CFU/mL before IO injections to
222.95±151.36CFU/mLoneweek after infiltration (𝑝𝑝 𝑝𝑝𝑝𝑝𝑝 )
(Figure 2(b)). Consistent with the results obtained with the
number of MSCs, the decrease in the CFU-F levels after IO
infiltration was greater than the decrease after IA injection
(𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝).

To confirm the mesenchymal progenitor nature of the
CFU-F cells present in the SF, we performed an in vitro
multipotency assay by differentiation to the three mesenchy-
mal lineages osteoblast, adipocyte, and chondrocyte under
defined conditions (Figure 3). Although only a limited num-
ber of assays showed trilineage differentiation capacity (7 out
of 68 assays, 10%), the majority of the assessed synovial fluid-
derived mesenchymal cells showed bilineage differentiation
capacity (51 out of 68, 75%), with a majority of assays positive
for adipogenesis and osteogenesis lineage (97%), supporting
the mesenchymal nature of the population.

4. Discussion

In this study, we carried out two different treatment modal-
ities of PRP applications on OA patients. IA group received
intra-articular injections of PRP and a combination of intra-
articular and intraosseous injections was applied in the IO
group in order to address the SB.

One week after administration of IA infiltration, it was
observed that MSCs and monocytes level in SF decreased
(Table 2). Although this decrease was not significant, it could
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Table 2: Phenotypic characterization of the cell population in SF of IA group.

Pretreatment (mean ± SD) Posttreatment (mean ± SD) 𝑝𝑝 value
MNC (cells/mL) 237.11 ± 223.32 243.81 ± 193.37 0.32
Lymphocytes (cells/mL) 103.65 ± 125.00 85.38 ± 94.16 0.06
Monocytes (cells/mL) 130.66 ± 101.88 142.62 ± 112.81 0.73
MSCs (cells/mL) 2.60 ± 4.38 1.53 ± 2.51 0.32
MNC, mononuclear cells; MSCs, mesenchymal stem cells.

Table 3: Phenotypic characterization of the cell populations in SF of IO group.

Pretreatment (mean ± SD) Posttreatment (mean ± SD) 𝑝𝑝 value
MNC (cells/mL) 441.92 ± 371.87 354.82 ± 411.44 0.38
Lymphocytes (cells/mL) 179.83 ± 237.87 184.19 ± 337.00 0.072
Monocytes (cells/mL) 199.37 ± 160.28 119.06 ± 98.47 0.053
MSCs (cells/mL) 7.61 ± 8.68 2.46 ± 3.86 0.01
MNC, mononuclear cells; MSCs, mesenchymal stem cells.

suggest an anti-inflammatory effect of PRP. This trend may
bemore pronounced after twomore PRP IA injections, which
would be consistent with the significant clinical improvement
reported by Sánchez et al. and Vaquerizo et al. using three
IA administrations of PRP on a weekly basis [19, 21]. This
conventional modality to deliver PRP in patients results
in a liquid-to-gel transition 3D fibrin scaffold. When fib-
rinolysis degrades this scaffold, growth factors within the
fibrin scaffold such as IGF-I, HGF, PDGF, TGF-𝛽𝛽1, and
platelet microparticles are released gradually. These growth
factors have been proven to promote an anti-inflammatory
macrophage phenotype [23, 34–36] and suppress the NF-𝜅𝜅𝜅𝜅
signaling pathway in synovial fibroblasts and chondrocytes
of the superficial zone of AC [24] and induce the synthesis
of hyaluronic acid and lubricin by synoviocytes and chon-
drocytes, respectively, with the latter preventing chondrocyte
apoptosis, cartilage breakdown, and inhibition of the MSC
release and migration [25, 37–39]. Although the decline of
monocytes in the SF was not statistically significant, this
fact together with all these modulatory and trophic effects of
intra-articularly injected PRP on the SM, superficial AC, and
SF could suggest a lower level of proinflammatory cytokines
and restoration of the joint homeostasis leading to a more
favorable SF environment for chondrogenic differentiation of
MSCs [30, 37, 39, 40].

Concerning IO group, levels of monocytes and cells also
declined, but in this case decrease in the concentration of
MSCs was statistically significant (Table 3). This was also
confirmed when the levels of CFU-F were analyzed before
and after treatment administration (Figure 2(b)). It is worth
mentioning that the MSCs population in SF before the PRP
treatment and the degree of OA severity was considerably
varied between both groups. The levels of SF-MSCs in the
IA group were very close to healthy population levels and
substantially lower than in the IO group. Likewise, the
percentage of patients in the IO group with advanced degree
of OA (OA grades III and IV) was 70.6% compared with
50% in the IA group. This difference between the two groups
became similar after application of the IO treatment, which

approximated the MSCs level to IA group and the healthy
population. This observation is in accordance with several
studies where the SF-MSCs levels were associated with the
severity of OA, joint damage, and the disease duration [4, 34].

When comparing the two treatment groups, the decrease
inMSCs after PRP treatment wasmore pronounced in the IO
group (Table 4). Although the drop in the IO group could be
influenced by the higher level of MSC present in this group
before treatment, this greater decrease was also observed in
the CFU-F, where the baseline difference between groups is
not so critical.The influence of arthrocentesis in this cell drop
must also be taken into consideration, since a weekmight not
be enough for MSCs to migrate to the IA space. Considering
that the SM and the breakdown zone of superficial AC are
postulated as the main sources of cells that reach the SF and
they are continuously soaked with this fluid, it seems possible
that MSCs repopulate the SF in a week [4, 5, 41]. Regarding
MSCs migration from SB, and despite the lack of clinical
studies that analyze the time needed for this process, in vitro
studies have shown this migration after 20 hours, so a week
seems enough for MSCs to reach the SF from SB [42].

This observation suggests that, in themodulation ofMSC
by PRP, the SB is an important player and potential tissue
target and might be a MSC egress point through the chan-
nels and vessels breaching the osteochondral junction and
reaching the cartilage, partially recruited by the osteoarthritic
environment of the SF [9, 10, 42]. The excessive presence
of TGF-𝛽𝛽1 and VEGF in osteoarthritic SB may be a driving
factor for changes in osteoblast-osteoclast coupling, which
lead to a bone remodeling imbalance and fibroneurovascular
growth [9, 10, 12, 16]. Moreover, Zhen et al. showed that
by inhibiting TGF-𝛽𝛽 signaling in a specific population of
MSCs present at the SB (Nestin positive MSCs) the severity
of OA was reduced [12]. In fact, previous studies have
shown that the decrease in MSCs in the SF, in low degree
OA, suggests clinical improvement [4]. It is reasonable to
speculate that, by administering PRP directly into SB, the
concurrent presence of platelet-secreted TGF-𝛽𝛽1 and VEGF
as well as plasma growth factors such as IGF-I andHGF could
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Table 4: Cellular increment (𝛿𝛿).
IA group (mean ± SD) IO group (mean ± SD) 𝑝𝑝 value

MNC (cells/mL) 109.70 ± 272.66 −91.33 ± 334.47 0.905
Lymphocytes (cells/mL) −65.04 ± 106.50 42.64 ± 171.96 0.159
Monocytes (cells/mL) −19.64 ± 156.00 −97.80 ± 147.95 0.280
MSCs (cells/mL) −1.41 ± 5.38 −6.36 ± 6.64 0.045
CFU-F (CFU/mL) −6.87 ± 236.79 −266.30 ± 296.79 0.037
MNC, mononuclear cells; MSCs, mesenchymal stem cells; CFU-F, colony-forming unit fibroblast.
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Figure 3: Differentiation assay. In vitro differentiation assay of synovial fluid isolated cells to the mesenchymal lineages, adipocytes,
osteoblasts, and chondrocytes. Control mediumwas expansion medium. Adipogenic differentiation was visualized by Oil Red (OR) staining.
Osteogenic differentiation was visualized with Alizarin Red (AR) staining. Chondrogenic differentiation was visualized with Toluidine Blue
(TB) staining and COL2 and immunohistochemistry using a monoclonal antibody directed to type II collagen. CTL, no primary antibody
was added.

have a modulatory effect on TGF-𝛽𝛽 signaling pathway [12,
43].This might reduce the presence of MSCs and could likely
be associated with the shrinking of fibroneurovascular tissue
of OA SB, an explanation which parallels the antifibrotic
mechanism already reported in several cell phenotypes [43,
44].

A further significant component to the SF-MSC reduc-
tion induced by PRP treatment would be the process of
cell homing whereby SF-MSCs might be locally recruited to
damaged areas of the AC taking part in the in vivo repair
of this tissue, a possibility already reported by Lee et al.
[45]. It has been reported that PRP is rich in fibronectin,
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a plasma protein incorporated into the fibrin network during
the natural polymerization and one of the major factors for
the recruitment of mesenchymal progenitor cells [37, 46–48].

Another interesting aspect in our study is to analyze the
SF as suitable source of MSCs. Using flow cytometry analysis
prior to treatment, the presence of MSCs was observed in
the SF in 21 of the 31 enrolled patients, representing 67.7%
in total. The level of MSCs in these SF was as low as 5.19 ±
7.15MSCs/𝜇𝜇L. However, the use of this technique tomeasure
fresh SF without a prior cell expansion cycle can represent
a limitation due to the low number of cells [35]. In order to
overcome this limitation, the presence of MSCs in those SF
was evaluated by means of culturing on plastic surfaces to
determine the presence of colony-forming cells (CFU-F). In
this case, CFU-Fs were found in the SF of all patients, with
an average value of 410.59 ± 246.36CFU-F/mL.These results
are consistent with those reported in other studies in which
the possibility of using SF as a source of autologous MSCs is
demonstrated [5, 34].This source of cells for obtainingMSCs
may be a promising alternative for treating diseases related to
cartilage degeneration diseases such as OA.

Various factors must be considered when deciding the
cell source and good environmental conditions for optimal
effects [30]. The advantage of using SF as a cell source over
other niches, such as bone marrow or fat tissue, is foremost
its easy access. Arthrocentesis is usually a necessary step prior
to conducting an IA injection of corticosteroids, hyaluronic
acid, or PRP. Additionally,MSCs present in the SFmay derive
from the SM, a tissue involved in the cartilage repair process
[49, 50], and their chondrogenic capacity could be increased
compared with other types of MSCs [51].

This study has some limitations. First, a relatively small
number of samples were analyzed and no data were obtained
after second and third infiltrations of both treatments because
many patients did not present with knee swelling in their
last visits. Second, there is a difficulty in working with
synovial fluid, for both its complexity and small volumes
obtained. Because of this, a cytokine analysis in order to study
the inflammatory process could not be carried out, so the
work focused mainly on cellularity. Third, the donor-related
variability concerning the amount of platelet-derived and
plasmatic growth factors present in the PRP could account
for the disparity in biological and clinical outcomes.

5. Conclusions

In summary, targeting different knee joint structures such as
SM, AC, and SB with IA and IO infiltrations of PRP reduces
the inflammatory environment and MSCs in SF. In vitro
differentiation assays for SF-MSCs from OA patients showed
different grades of multipotency toward the adipocyte,
osteoblast, and chondrocyte lineages, although bilineage
differentiation capacity was most frequently observed, con-
firming their identity. MSC modulation generated by PRP
may be increased by acting directly on the SB, whose
influence is crucial to the pathogenesis of OA. In addition,
the use of PRP may favor MSCs therapeutic effect by
decreasing proinflammatory processes present in the SF of
OA patients. While being promising, a limitation of our

study is the considerable intersubject variability; therefore,
a larger sample would possibly be necessary to draw more
definitive conclusions. Our results encourage further studies
in order to shed more light on the cellular and molecular
mechanisms and to elucidate whether the PRP application in
both modalities might lead to structural joint tissue changes
as in vitro and preclinical researches using this therapy have
reported [26, 39, 52]. Finally, further studies will be needed in
order to increase our knowledge about SF as source of MSC
and their therapeutic potential.
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