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Abstract. We study the non-dissipative transport effects appearing at second order in

the hydrodynamic expansion for a non-interacting gas of chiral fermions by using the

partition function formalism. We discuss some features of the corresponding constitutive

relations, derive the explicit expressions for the conductivities and compare with existing

results in the literature.

1 Introduction

Hydrodynamics is an effective description of out-of-equilibrium systems in which it is assumed lo-

cal thermodynamical equilibrium. The hydrodynamical systems should obey the conservation laws

of the energy-momentum tensor and spin one currents, and these quantities are written in terms of

fluid variables in the so-called constitutive relations. Some of the transport phenomena are related to

dissipative effects, as they lead to entropy production: examples are the shear viscosity η and bulk

viscosity ζ [1]. However new phenomena on the hydrodynamics induced by quantum anomalies have

recently received much attention and interest. In presence of anomalies the currents are no longer con-

served, and this has important effects in the constitutive relations. Two relevant phenomena appear at

first order in the hydrodynamic expansion as a consequence of chiral anomalies: the chiral magnetic

effect, which is responsible for the generation of an electric current induced by a magnetic field [2],

and the chiral vortical effect, in which the electric current is induced by a vortex [3]. It is believed that

these phenomena can produce observable effects in heavy ion physics [4], as well as in condensed

matter systems [5]. These effects are non-dissipative, and the associated conductivities are almost

completely fixed by imposing the requirement of zero entropy production. At second order a plethora

of dissipative and non-dissipative conductivities have been studied, see e.g. [6] and references therein.

Some methods to compute the transport coefficients from a microscopic theory, either dissipa-

tive or non-dissipative, include kinetic theory [7, 8], Kubo formulae [9], diagrammatic methods [10]

and fluid/gravity correspondence [11]. Recently it has been proposed a new formalism to obtain the

non-dissipative part of the anomalous constitutive relations, and it is based on the existence of an

equilibrium partition function in a stationary background. It has been observed that the equations of

hydrodynamics are significantly constrained by the requirement of consistency with the partition func-

tion [12, 13], and these constraints seem to overlap with the ones obtained from the existence of an
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entropy current with non-negative divergence [14]. In this work we study, within this formalism, the

non-dissipative constitutive relations up to second order in the hydrodynamic expansion for an ideal

gas of chiral fermions. We will be able to get explicit results for some of the transport coefficients.

2 Hydrodynamics of relativistic fluids

Hydrodynamics is based on the assumption that the scales of variation of the observables are much

longer than any microphysical scale in the system, and the result can be organized in a gradient expan-

sion, also called hydrodynamic expansion [1]. The constitutive relations for the energy-momentum

tensor and charged currents write generally in the form

〈T μν〉 = (ε + P)uμuν + Pgμν + 〈T μν〉diss & anom , (1)

〈Jμ〉 = ρuμ + 〈Jμ〉diss & anom , (2)

where ε is the energy density, P the pressure, ρ the charge density and uμ the local fluid velocity. In

addition to the equilibrium contributions, there are extra terms which lead to dissipative and anoma-

lous effects. Within the Landau frame 1 and in presence of external electromagnetic fields, these terms

write up to first order in derivatives as 2

〈T μν〉diss & anom = −ηPμαPνβ

(
∇αuβ + ∇βuα −

2

3
gαβ∇λuλ

)
− ζPμν∇αuα + · · · , (3)

〈Jμ〉diss & anom = −σT Pμν∇ν
(
μ

T

)
+ σEμ + σBBμ + σVωμ + · · · , (4)

where Pμν = Gμν+uμuν, and the electric, magnetic fields and vorticity are defined as Eμ = Fμνuν, Bμ =
1
2
εμνρλuνFρλ and ωμ = εμνρλuν∇ρuλ respectively. The coefficients appearing in Eqs. (3)-(4) are the

shear η and bulk η viscosities, the electric σ, chiral magnetic σB and chiral vortical σV conductivities

respectively. At this point it is worth analyzing the parity P and time reversal T properties of these

coefficients. The spatial component of the charged current, Ji, isP-odd andT -odd, while the magnetic

field and vorticity are P-even and T -odd. Then one concludes from Eq. (4) that σB and σV are P-odd

and T -even. On the other hand, the second law of thermodynamics states the increase of entropy with

time, i.e.
∂

∂t
s > 0 , (5)

and this means that only T -odd contributions can lead to entropy production of the system. This

is not the case of the chiral conductivities, so that these terms should be related to non-dissipative

transport. A similar analysis for the shear, bulk and electric conductivities implies that these transport

coefficients are P-even and T -odd, and they are associated with dissipative transport phenomena. In

Sections 3 and 4 we present the partition function formalism, which is suitable to compute T -even

conductivities. We use this formalism to obtain the constitutive relations up to second order in the

hydrodynamic expansion in Section 5.

3 Equilibrium partition function formalism to hydrodynamics

We present in this section the main ingredients of the equilibrium partition function formalism intro-

duced in Refs. [12, 13] (see also e.g. Refs [14–17]). Let us consider a relativistic invariant Quantum

1This frame is defined as the one in which the viscous terms are transverse, uμ〈Tμν〉diss & anom = 0 = uμ〈Jμ〉diss & anom.
2In this work we will consider (3 + 1) space-time dimensions.
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Field Theory with a time independent U(1) gauge connection on the manifold

ds2 = Gμνdxμdxν = −e2σ(x)(dt + ai(x)dxi)2 + gi j(x)dxidx j , (6)

A = A0(x)dx0 +Ai(x)dxi . (7)

The fields σ, ai, gi j, A0 and Ai are smooth functions of the spatial coordinates x. As usual, the

partition function of the system writes

Z = Tr e
− H−μ0Q

T0 , (8)

where H is the Hamiltonian of the theory, Q is the charge associated to the gauge connection, while

T0 and μ0 are the temperature and chemical potential at equilibrium. An obvious question is: what

is the dependence of Z on the fields σ, ai, gi j, A0 and Ai? This has important implications for the

hydrodynamics of the system, as we will see later. To answer this, the standard procedure is to

build the most general partition function of the system consistent with the allowed symmetries, in

particular: i) 3-dim diffeomorphism invariance; ii) Kaluza-Klein invariance, i.e. t → t+φ(x) , x → x;

and iii) U(1) time-independent gauge invariance (up to an anomaly). It is convenient to introduce the

combination Ai ≡ Ai − A0ai, which is invariant under the Kaluza-Klein transformation.

From the partition function we can compute the energy-momentum tensor and U(1) charged cur-

rent by performing the appropriate t-independent variations, i.e.

δ log Z =
1

T0

∫
d3x

√
g3

(
−

1

2
Tμνδg

μν + JμδAμ

)
, (9)

where g3 = det(gi j). In particular, for a general partition function of the form log Z =

W(eσ, A0, ai, Ai, g
i j,T0, μ0), one gets

〈Ji〉 =
T0√
−G

δW
δAi

, 〈J0〉 = −
T0e2σ

√
−G

δW
δA0

, (10)

〈T i
0 〉 =

T0√
−G

(
δW
δai

− A0

δW
δAi

)
, 〈T00〉 = −

T0e2σ

√
−G

δW
δσ

, (11)

and a similar expression for 〈T i j〉. This illustrates the fact that W plays the role of a generating

functional for the hydrodynamic constitutive relations, and one expects that its form matches order by

other with the derivative expansion in hydrodynamics. In the rest of this section we present the most

important properties of this partition function up to second order in derivatives.

3.1 Equilibrium partition function at zeroth order

We study first the zeroth order in derivatives. The most general partition function at this order, which

is consistent with the symmetries mentioned above, reads [12]

W0 =

∫
d3x

√
g3

eσ

T0

P(e−σT0, e
−σA0) , (12)

where P is an arbitrary function of its arguments. From Eq. (12) and after applying the variational

formulae (10)-(11), one gets

〈J0〉 = e−σ∂bP , 〈Ji〉 = 0 , (13)

〈T i j〉 = P gi j , 〈T00〉 = e2σ(P − a∂aP − b∂bP) , 〈T i
0 〉 = 0 , (14)
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where for convenience we have defined the variables a ≡ e−σT0 and b ≡ e−σA0. This result should

correspond to the equilibrium contribution of the hydrodynamic constitutive relations. Finally, after a

comparison with Eqs. (1)-(2) one gets

P = P , ε = −P + a∂aP + b∂bP , ρ = ∂bP , uμ = e−σ(1, 0, 0, 0) . (15)

Note that P is identified with the pressure of the system, and the thermodynamic variables ε, P and

ρ are determined in terms of this single master function. Thermodynamical consistency requires to

identify the local value of the temperature, T , and chemical potential, μ, with a and b respectively.

3.2 Equilibrium partition function at higher orders

Let us discuss now the properties of the partition function at higher derivative orders. The most general

partition function at first order in the derivative expansion was presented in [12], and it reads

W1 =

∫
d3x

√
g3

[
α1(T, ν)ε i jkAiF jk + T0α2(T, ν)ε i jkAi f jk + T 2

0α3(T, ν)ε i jkai f jk

]
, (16)

where

T = e−σ T0 , ν =
A0

T0

, (17)

while Fi j = ∂iA j − ∂ jAi and fi j = ∂ia j − ∂ jai. Eq. (16) contains only P-odd contributions, as one

cannot build P-even contributions to the partition function at first order in derivatives. Following the

method of Section 4, a computation of the partition function for an ideal gas of Weyl fermions leads

to the following result [17]

α1(T, ν) = −
C

6
ν , α2(T, ν) = −

1

2

(
C

6
ν2 −C2

)
, α3(T, ν) = 0 , (18)

where

C =
1

4π2
, C2 =

1

24
, (19)

are constants related to the axial anomaly [3, 18] and gauge-gravitational anomaly [19] respectively.

After a suitable computation of the constitutive relations as it will be explained in Section 5, one gets

the well known expressions for the chiral conductivities in the Landau frame 3

σB = Cμ −
ρ

ε + P

(
1

2
Cμ2 +C2T 2

)
, σV =

1

2
Cμ2 +C2T 2 −

ρ

ε + P

(
1

3
Cμ2 + 2C2T 2

)
μ , (20)

where we have used that ν = μ/T . These results have been obtained in a wide variety of methods, see

e.g. [2, 3, 9, 18–25].

Finally, the most general partition function at second order in derivatives is built from seven scalar

and two pseudo-scalar quantities as follows [14, 16]

W2 =

∫
d3x

√
g3

[
M1g

i j∂iT∂ jT + M2g
i j∂iν∂ jν + M3g

i j∂iν∂ jT

+ T 2
0 M4 fi j f i j + M5Fi jF

i j + T0M6 fi jF
i j + M7R

+ N1ε
i jk∂iA0 f jk + T−1

0 N2ε
i jk∂iA0F jk

]
, (21)

where R is the Ricci scalar in 3 dim, with Mi = Mi(T, ν) and Ni = Ni(T, ν). We keep for the moment

both P-odd and P-even contributions.

3We have considered a fluid with an anomalous charge U(1). The extension to UV (1)×UA(1) would require the introduction

of both vector and axial gauge connections.
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4 Second order partition function

We present in this section the procedure to compute the second order partition function of Eq. (21) for

a theory of free massless Dirac fermions. We refer to Ref. [17] for full details in the computation.

4.1 Free theory of Dirac fermions

We will derive the partition function by using Pauli-Villars (PV) regularization, and this demands the

consideration of the massive theory for the vacuum contribution. The action of the theory is

S =

∫
d4x

√
−GL , where L = −iΨ̄γμ∇μΨ + imΨ̄Ψ . (22)

The space-time dependent Dirac matrices satisfy {γμ(x), γν(x)} = 2Gμν(x), and they are related to

the Minkowski matrices by γμ(x) = e
μ
a(x)γa, where e

μ
a(x) is the vierbein, {γa, γb} = 2ηab and ηab =

diag(−1, 1, 1, 1). The U(1) current and energy-momentum tensor write

Jμ = −Ψ̄γμΨ , Tμν =
i

4
Ψ̄

[
γ
μ

−→
∇ν −

←−
∇νγ

μ
+ (μ↔ ν)

]
Ψ , (23)

where it has been assumed that the spinor field Ψ =

(
ψL

ψR

)
satisfies the Dirac equation. Using the

explicit form of the background Eqs. (6)-(7) one has

J0 = −e−σψ†ψ , Ji = −ψ†σiψ , (24)

T00 =
i

2
eσ

(
ψ†∂tψ − ∂tψ

†ψ
)
+ eσA0ψ

†ψ −
1

4
e3σε i jk∂ jakψ

†σiψ , (25)

where σi are the Pauli matrices, and ψ is the two-component Weyl fermion ψL. The same expressions

are obtained for ψR, but with opposite sign in Ji.

4.2 Thermal Green’s function

The expectation values of Jμ and T μν at equilibrium may be computed from the thermal Green’s

function, defined as

〈Tψ(−iτ, x)ψ†(0, x′)〉T0
= T0

∑
n

e−iωnτG(x, x′, ωn) , ωn = 2πT0

(
n +

1

2

)
, (26)

where T denotes time ordering. The explicit calculation of the Green’s function is the most compu-

tationally demanding step in the derivation. After rotating to imaginary time t → −iτ, the Green’s

function satisfies

−
√
−G γ0γ0(iωn −H)G(x, x′, ωn) = δ(3)(x − x

′) , (27)

where H is the Hamiltonian

H = −i

(
1

4
ω ab

0 γab − iA0

)
−

i

g00
γ0

(
γk ∇k − m

)
, (28)

with ω ab
μ the spin connection and γab =

1
2
[γa, γb]. Then by expanding Eq. (27) in derivatives, the

Green’s function can be computed recursively order by order in a derivative expansion, i.e. G =
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G0 +G1 +G2 + · · · , where G� is the contribution at order �. Note that to get G� one needs to know the

Green’s function at all the orders lower than �. The complete expressions for G up to second order are

very lengthy and will not be presented here. Finally, from Eqs. (24)-(26) one obtains the precise form

of the current and energy-momentum tensor up to �-th order in the derivative expansion

〈J0〉� = T0

∑
n

[
−eσtrG�(x, x, ωn)

]
, 〈Ji〉� = −T0

∑
n

tr [σi G�(x, x, ωn)] , (29)

〈T00〉� = T0

∑
n

[
eσ(iωn + A0) trG�(x, x, ωn) −

1

4
e3σε i jk∂ jak tr [σi G�−1(x, x, ωn)]

]
. (30)

Note that 〈T00〉� receives a contribution ∝ rot a · 〈J〉�−1.

4.3 Charge density at second order

To get W2 it is enough to compute 〈J0〉2 and 〈T00〉2 including only bilinear terms ∼ ∂iX∂ jY . The

evaluation of Eq. (29) produces the following renormalized expression

〈J0〉2 =
1

24π2

(
−∇iA0∇iσ +

1

2
e2σ fi jF

i j +
1

2
A0e2σ fi j f i j

) ⎛⎜⎜⎜⎜⎝ln e2σM̄2

T 2
0

+ Q(ν)

⎞⎟⎟⎟⎟⎠
+

1

48π2

(
∇iA0∇iA0 +

e2σ

2
A2

0 fi j f i j +
e2σ

2
Fi jF

i j + e2σA0 fi jF
i j

)
1

T0

Q′(ν)

−
1

24π2
A0∇iσ∇iσ +

1

8π2
∇iA0∇iσ +

1

96π2
e2σ fi jF

i j +
1

32π2
e2σA0 fi j f i j +

A0

48π2
R , (31)

where Q(ν) is the analytic continuation of the series Q(ν) = −2
∑∞

n=1(−1)n cosh(nν) log(n2). A similar

expression is obtained for 〈T00〉2. To derive this result we have regularized the vacuum contribution

in a gauge invariant way by using the PV regularization procedure. We have defined the rescaled

PV mass as M̄ = 2−3/2eγE M. The distinction between vacuum and finite temperature and chemical

potential contributions in the expectation values can be obtained, for instance, by considering the

Poisson summation formula in the Matsubara sums.

4.4 Partition function at second order

By using the variational formulae (10)-(11) with Eq. (21), and after a comparison with the expressions

of 〈J0〉2 and 〈T00〉2, one gets a system of 14 equations and 7 functions of two arguments. After

consistently solving these equations we get the following result

N1(T, ν) = 0 = N2(T, ν) , M1(T, ν) = −
1

144

1

T
−

1

48π2

ν2

T
, (32)

M2(T, ν) =
1

48π2
T

(
ln

M̄2

T 2
+ Q(ν) − 1

)
, M3(T, ν) = −

1

12π2
ν , (33)

M4(T, ν) = −
1

96π2

ν2

T

(
ln

M̄2

T 2
+ Q(ν) + 3 − 6π2C

)
+

1

288

1

T
−

C2

8T
+

1

384π2

1

T 3
M2 ln 2 , (34)

M5(T, ν) = −
1

96π2

1

T

(
ln

M̄2

T 2
+ Q(ν)

)
, M6(T, ν) = −

1

48π2

ν

T

(
ln

M̄2

T 2
+ Q(ν) + 2 − 6π2C

)
, (35)

M7(T, ν) = −
1

288
T −

1

96π2
T ν2 +

1

96π2

1

T
M2 ln 2 , (36)
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where the constants C and C2 are given by Eq. (19). This result corresponds to a free theory of one

left Weyl fermion. The coefficients obtained with one free Dirac fermion are twice these expressions.

Note that these terms depend on the renormalization scale. The combination of terms proportional

to M2 in M4 and M7 is a pure renormalization effect, and they can be renormalized by adding a

counterterm proportional to the Ricci scalar R̃ of the 3 + 1 dimensional metric,

Wct
2 = −

M2 ln 2

96π2

∫
d4x

√
−G R̃ . (37)

The renormalized partition function is Wren
2
=W2+Wct

2
and the counterterm exactly cancels the M2

terms inW2, so that the renormalized coefficients Mren
4,7

are the same as M4,7 after removing these con-

tributions. On the other hand, this theory only violates conformal invariance because renormalization

effects, which lead to a logarithmic dependence ∼ ln M̄
T

. The anomalous partition function reads

Wanom =
1

24π2

∫
d3x

√
g3

1

T
ln

M̄

T
×

(
e−2σgi j∂iA0∂ jA0 −

1

2
A2

0 fi j f i j −
1

2
Fi jF

i j − A0 fi jF
i j

)

= −
1

48π2

∫
d4x

√
−G ln

M̄

T
FμνF μν , (38)

where Fμν is the four dimensional field strength of the gauge field Aμ. This is in agreement with the

form of the local covariant action for the trace anomaly [26, 27].

5 Non-dissipative constitutive relations

In this section we determine partially the non-dissipative part of the second order constitutive relations

in terms of the functions Mi(T, ν). The outline of the procedure may be sketched by

〈O�〉eq = δ(Operfect fluid + O1 + . . . + O�−1) + O� , (39)

where O� ≡ T
μν

(�)
, J

μ

(�)
, and δ(Operfect fluid + · · · ) is a correction of order � due to all changes pro-

portional to derivatives of the background evaluated in the constitutive relations of lower orders, see

e.g. Ref. [16]. As an example δOperfect fluid receives corrections of the fluid velocity ∝ δu(1) where

u = u(0) + δu(1) + · · · . The most general non-dissipative form of the constitutive relations in the

Landau frame at second order can be expressed as

T(2) μν = T
(
κ1R̃〈μν〉 + κ2uαuβR̃〈μαν〉β + κ3∇〈μ∇ν〉ν + λ3 ω〈μαω

α
ν〉 + λ4 a〈μaν〉

)
+ · · ·

J(2) μ = υ1PμαuνR̃
να + υ2Pμα∇νF να + · · · , (40)

where aμ = uα∇αuμ, the vorticity tensor is ωμν ≡ 1
2
Pα
μP

β
ν

(
∇αuβ − ∇βuα

)
and X〈μν〉 stands for the

traceless and symmetric projection transverse to uμ, see e.g. [6, 12, 16]. The goal is to determine the

coefficients κi, λi and υi by comparison with the partition function W2. After using the variational

formulae Eqs. (10)-(11) with Eq. (21), we arrive at the following general result

κ1 = −2Mren
7 , κ2 = −2Mren

7 − 2T
∂Mren

7

∂T
, κ3 = 2

∂Mren
7

∂ν
, (41)

λ3|μ=0 = 16T 2Mren
4 − 6Mren

7 − 2T Mren ′
7 (T ) , (42)

λ4|μ=0 = −2T 2M1 + 4T Mren ′
7 (T ) + 2T 2Mren ′′

7 (T ) , (43)

υ1 = 4T 2 (2νM5 − M6) −
8ρ

ε + P
T 3

(
Mren

4 + ν
2M5 − νM6

)
, (44)

υ2 = −4T M5 +
2ρ

ε + P
T 2 (2νM5 − M6) . (45)
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The coefficients λ3 and λ4 multiply terms that are bilinear in derivatives, and these are more difficult

to obtain. However they can be directly inferred at zero chemical potential from the results derived

in Section 5 of Ref. [12]. In the particular case of the free field theory of Weyl fermions, the explicit

result of these transport coefficients are

κ1 =
T

144
+

1

48π2

μ2

T
, κ2 = 2κ1 , κ3 = −

μ

24π2
, λ3|μ=0 = 0 = λ4|μ=0 , (46)

υ1 = −
1

2

(
C −

1

3π2

)
μ +

ρ

ε + P

[
1

2

(
C −

1

6π2

)
μ2 +

(
C2 −

1

36

)
T 2

]
, (47)

υ2 =
1

24π2

(
ln

M̄2

T 2
+ Q

(
μ

T

))
−

ρ

ε + P

1

4

(
C −

1

3π2

)
μ . (48)

The only second order coefficient which shows sensitivity to the renormalization scale is υ2. Notice

also that there is no mixture between the conformal and chiral anomaly contributions in the constitu-

tive relations.

Let us compare these transport coefficients with some existing results in the literature. The values

of κ1,2 and λ3 have been computed in Ref. [28] at zero chemical potential. Our values for κ1 and κ2

are in agreement with this reference after setting μ = 0, but the vanishing value of λ3|μ=0 is in contrast

with the result obtained in this work, where they find λ
Moore,Sohrabi
3

= −T 2/24 for a Weyl fermion.

This difference is related to the second term in the rhs of Eq. (30), which seems to be not included

in the diagrammatic computation of these authors. Note however that this coefficient was previously

computed in Ref. [8] from kinetic theory by some of the same authors, and a vanishing value was

obtained. Finally the coefficients κ3 and υ2 were explicitly computed within a holographic model in 5

dim in Refs. [18, 20, 24]. A comparison between the weak coupling results presented above and the

explicit expressions from the holographic model, leads to

[κ3]weak coupling ∝ [κ3]strong coupling , [υ2]weak coupling ∼ c(T ) +
5

112π4

μ2

T 2
∝ [υ2]strong coupling , (49)

in the regime μ � T , where c(T ) has a logarithmic dependence on T in the free fermion theory, while

it is a constant in the holographic result. These coefficients receive contributions not induced by chiral

anomalies, and so we cannot expect that the results from both approaches agree. However, we do

confirm agreement in the parametric dependence in μ and T .

6 Conclusions and discussion

In this work we have studied second order transport effects induced by external electromagnetic fields,

vortices and curvature, in a relativistic fluid for a free theory of chiral fermions in (3+1) dim. We have

addressed the computation by using the equilibrium partition function formalism, which can only

account for non-dissipative effects, i.e. transport coefficients multiplying quantities that survive in

equilibrium. Examples of such contributions at first order in the hydrodynamic expansion are the

chiral magnetic and vortical conductivities, which are P-odd and T -even. The situation is slightly

different at second order, as we find that the parity violating part of the partition function vanishes,

and the nonzero non-dissipative coefficients we have obtained areP-even and T -even. An explanation

for this is that the only possible pseudo-scalars appearing at second order are T -odd, and so if the

underlying Hamiltonian is invariant under T , this part of the partition function should vanish [17].

We have shown that the renormalization effects of the conformal anomaly mix with the chiral

anomaly in some terms of the partition function, however this mixture does not appear in the con-

stitutive relations. We examined the non-dissipative constitutive relations in the Landau frame, and
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derived the dependence with temperature and chemical potential of five transport coefficients: κ1,2,3

and υ1,2. We also obtained the zero chemical potential value for two additional coefficients λ3,4. Some

of them: κ1,2,3, υ2 and λ3; were previously computed in the literature by using different methods, and

our results are consistent except for the latter. Finally let us mention that, as it has been pointed out in

Refs. [12, 17], the vanishing value of λ4 at zero chemical potential is required by conformal invariance,

while this only requires that λ3 = cons · T . The vanishing value of λ3 is due to a further cancellation.
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