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1. Nanotechnology and engineered nanoparticles  

Nanotechnology is one of the most powerful emerging technologies of the end of the 

twentieth century, which enables the design, characterization, production and 

application of structures and systems with novel properties and functions due to their 

size (The Royal Society and The Royal Academy of Engineering, 2004). The size range 

that holds so much interest is at the nanoscale, where (nano)materials can have 

different or enhanced properties (e.g catalytic activity, mechanical strength, electrical 

conductivity, etc.) arising from an increased relative surface area (per unit mass) and, in 

some cases, quantum effects (Sellers, 2009). Nanomaterials (NMs) can be synthesised 

with different structures, such as one-dimensional films, thin layers and surface 

coatings; tubes, wires or roads (in two dimensions); and single particles or crystals, 

dendrimers, composites and carbon fullerenes at nanoscale in three dimensions (Chen 

et al., 2011; Royal Commission on Environmental Pollution, 2008; Sellers, 2009). If all 

external dimensions are in the nanoscale the conditions for a nanoparticle (NP) are 

given (ISO, 2008). NPs are characterized to have at least 50% of the particles (by 

number size distribution) with one or more external dimensions in the size range of 1–

100 nm (EU, 2011a) and exhibited these new size-dependent properties compared with 

larger size particles (Fig. 1). 
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Figure 1. Relative sizes in a logarithmic scale of silver nanoparticles (Silver NPs) and some 
biological components used in this thesis. 
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NPs have occurred naturally as products of photochemical and volcanic activities and 

created by humic materials, algae and bacteria (environmental NPs; Stuart and 

Compton, 2015). They have also been originated from human activity for thousands of 

years as products of combustion and industrial processes (incidental NPs; Bleeker et al., 

2013). Recently, the intentionally manufactured NPs have attracted the major attention 

due to the increasing ability of nanoscience and nanotechnology to synthesize and 

manipulate such materials and to incorporate them in different applications and 

consumer products. In the latter case, they are often referred to as engineered or 

manufactured nanoparticles (ENPs or MNPs).  

ENPs can be separated based on their chemical composition into carbon-based, 

inorganic and polymeric, being inorganic NPs further subdivided between oxides (e.g. 

TiO2, SiO2, ZnO, Al2O3 and nanomagnetite), elemental metals (e.g. Ag, Fe, Au, nZVI), salts 

(e.g. metal-phosphates) and the less known aluminosilicates (e.g. zeolites, clays and 

ceramics) (Nowack and Bucheli, 2007; Sauvé and Desrosiers, 2014). These products of 

nanotechnology have numerous applications and are being incorporated in many 

consumer products with medical, domestic, cosmetic, industrial and military uses. In 

fact, more than 1800 nanotechnology-based products are commercially available 

nowadays (Vance et al., 2015), around the 15% of all global consumer products (Stuart 

and Compton, 2015). Further, nanotechnology is considered to have the potential to 

revolutionise manufacturing industries over the next 10-15 years (OECD, 2015). 

1.1. Silver nanoparticles (Ag NPs) 

Metal-based NPs (including metal and metal oxides) comprise the majority of MNPs in 

current use (Tourinho et al., 2012; Vance et al., 2015). Among them, silver nanoparticles 

(Ag NPs) are of the most frequent. In 2012, Ag NPs were produced at quantities around 

55t/year worldwide and at maximum of 10t/year in Europe (Piccinno et al., 2012). 

Moreover, 438 nanosilver containing products, 24% of the total products containing 

NMs, were listed in the Nanotechnology Consumer Products Inventory (CPI) in 2015 

(Fig. 2). This number has increased gradually in the last years (an increment of 41% 

from 2011 up to date) and a growing trend is expected for the coming years.  
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Figure 2. Number of products in the market containing metallic nanomaterials (silver, titanium, 
zinc and gold) in the years 2011, 2013 and 2015 (Data obtained from The Nanotechnology 
Consumer Products Inventory-CPI-, http://www.nanotechproject.org/cpi/). 

Ag NPs are so popular additives in consumer product due to their unique optical, 

catalytical and antimicrobial properties (García-Barrasa et al., 2011; Rai et al., 2009). Ag 

NPs can be found in consumer electronics and for conductivity uses; however, the vast 

majority of the produced Ag NPs (around 80%) are destined for antimicrobial-coatings 

(Piccinno et al., 2012). In fact, silver has been for a long time known to have a 

disinfecting effect and capacity to control bacterial growth, thus, several silver salts and 

their derivatives have been employed as antimicrobial agents in different biomedical 

fields, especially for wound healing and burn treatments (Edward-Jones, 2009). 

Nevertheless, nanosized silver have gained higher commercial and scientific interest in 

comparison with other silver forms since its large surface area provided better contact 

with microorganism, increasing biocompatibility. Ag NPs interact with the cell 

membrane of bacteria, getting attached, interfering with the membrane stability and 

also penetrating inside, where they can damage sulphur or phosphorus containing 

compounds like DNA (García-Barrasa et al., 2011; Rai et al., 2009), resulting ultimately 

in cell death. Hence, Ag NPs can be used as effective growth inhibitors for various 

microorganisms (i.e. Escherichia coli, Staphylococcus aureus, S. epidermidis and Listeria 

monocytogenes) (García-Barrasa et al., 2011; Kim et al., 2007), making them applicable 

to diverse medical devices and water treatments (Gong et al., 2007). Their fungicidal 

activity has been also demonstrated against 18 plant pathogens (e.g. Fusarium sp., 

Botrytis cinerea, etc.) (Kim et al., 2012). Ag NPs can be also found in cleaning agents (e.g. 

detergents, soaps, wet wipes, etc.), washing machines, textiles (e.g. socks, bedding, sport 

clothing, etc.), food storage containers, paints and cosmetics (Benn et al., 2008; Piccinno 

et al., 2012; The Project of emerging Nanotechnologies, 2017- 

http://www.nanotechproject.org/cpi/). 
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2. Release of Ag NPs into the environment 

Since Ag NPs are the most common NP composition for commercialization, they are also 

the most likely materials to enter into the environment. Consequently, the inputs of Ag 

NPs into the different environmental compartments are expected to increase, posing 

concerns regarding risks for ecosystems, living organisms and human health. NMs, 

including Ag NPs, may end up in aquatic ecosystems and/or soil through many 

pathways, either from direct release during production or transport, deposition onto 

landfills as fertilizers (Yu et al., 2013), waste incineration (Jòsko et al., 2013), release 

from products, or as a material contained within products (Klaine et al., 2012). 

However, the main sources of Ag NPs in the aquatic and terrestrial ecosystems are the 

wastewater treatment plants (WWTPs) (Brar et al., 2010; Mueller and Nowack, 2008; 

Tourinho et al., 2012). Ag NPs used in consumer products and in other industrial 

applications will be discharged to the sewer system and transported to WWTP. In this 

context, the amount of released silver strongly depends on the manufacturing process, 

product use, and disposal (Reidy et al., 2013) and thus, several studies have concerned 

Ag NPs releases from different materials such as textiles (Benn et al., 2008; Blaser et al., 

2008) and paints (Kaegi et al., 2010). 

In regard to quantities of Ag NPs reaching the environment, fate models have been 

carried out in order to calculate predicted environmental concentrations (PECs). These 

models are based on probabilistic material flow analysis from a life-cycle perspective of 

ENP containing products (Boxall et al., 2007; Gottschalk et al., 2009; Mueller and 

Nowack, 2008). Such studies estimated likely concentrations of ENPs in different 

compartments, including surface waters, WWTP effluents, biosolids, sediments, soils 

and soils treated with biosolids. 

Once released into the environment, Ag NPs may undergo different transformations 

during their transport in the natural systems (air, water, soil) that will alter their 

starting characteristics and consequently, change their fate, behavior and ecotoxicology 

(Tourinho et al., 2012). These transformations will be determined by NPs physical (i.e. 

size and shape) and chemical (e.g. acid-base character of the surface, solubility) 

characteristics as well as by their surrounding environment, where Ag NPs could remain 

as individual particles, aggregate at high ionic strength, oxidize and liberate Ag ions or 

react with sulfide, chloride or other natural substances (Buzea et al., 2007; Yu et al., 

2013). These alterations in the original characteristics of the NPs, apart from on their 
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intrinsic properties, largely depend on the environmental conditions, involving calcium 

concentration, ionic strength, cations, pH and organic matter (OM) (Klaine et al., 2008). 

For instance, soils represent a complex medium for the understanding of the physico-

chemical behavior of NPs, taking into consideration the potential interactions of Ag NPs 

with particulate material and natural colloids in soils solid and aqueous phases. 

2.1. Ag NPs deposition onto soils 

Ag NPs in particular are predicted to primarily enter terrestrial system (Shoults-Wilson 

et al., 2011a). In some instances, Ag NPs can directly enter in the terrestrial 

compartment through accidental spills during synthesis and transformation, soil and 

water remediation technologies, atmospheric fallouts (i.e. after waste incineration and 

posterior deposition on land) and agriculture (thought the use of nanopesticides, 

herbicides and fertilizers) (Blaser et al., 2008; Gottschalk et al., 2009; Shoults-Wilson et 

al., 2011a). Nevertheless, the major input of Ag NPs to soils is currently through the 

disposal of WWTP sludges, mainly after their land application or incineration and 

posterior deposition (Tourinho et al., 2012) (Fig. 3). A large fraction of Ag NPs are 

predicted to enter WWTP via sewage streams, leached from products and from 

industrial and household applications, ending up in the sewage sludge as a result of 

partial elimination during the treatment (Gottschalk et al., 2009; Jósko et al., 2013; Kaegi 

et al., 2011). The resulting sludge or biosolid is commonly used in many countries as 

fertilizer or as amendment in agricultural soils since its organic constituents pose 

beneficial soil conditioning properties (e.g. higher levels of soil OM and microbial 

activity, improvements in aggregation and structural stability, etc.) (Alloway and 

Jackson, 1991; Natal-da-Luz et al., 2009). In fact, in Europe the 53% of the produced 

sewage sludge is applied on agricultural soils as a fertilizer (Kelessidis and Stasinakis, 

2012). Further, is estimated that the sewage sludge contribute to inputs of 1 μg/kg3 of 

Ag to worldwide agricultural land per year (Mueller and Nowack, 2008). 

The second most preferable disposal practice in Europe is the incineration of the 

sludges (21%), so these particles are deposited (dry deposition) or washed out (wet 

deposition) on soil or water. During the wastewater treatment, Ag NPs may be subjected 

to various processes leading to their transformation. In this framework, silver sulfide 

(Ag2S) NPs are the predominant Ag species found in sewage sludge. Sulfidation of Ag 

NPs is a common process taking place in WWTPs and more generally in environmental 

and biological compartments. However, recent studies revealed that Ag NPs spiked to a 
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WWTP and transformed into Ag2S NPs during the activated sludge process, will be 

transformed back into metallic Ag NPs (maintaining the original size) during their 

incineration (Kaegi et al., 2011). Considering Ag NPs incombustible, Ag NPs will not be 

eliminated and will reach soils since incineration residues are usually landfilled in 

Europe. Moreover, the sewage sludge is also directly landfilled (15%), a practice 

through which Ag NPs could leach into subsoil and groundwater (Blaser et al., 2008). 
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Figure. 3 Possible pathways that could introduce Ag NPs into soils. 

At present, there is no available data regarding measurement of Ag NPs in soils due to 

the absence of analytical methods able to quantify trace concentrations of NPs. Indeed, 

the quantification of Ag NPs in soil represents a real analytical challenge. Although 

actual analytical methodology is well equipped to detect environmentally relevant 

concentrations of traditional pollutants (e.g. trace metals, pesticides, persistent organic 

pollutants, etc.), NMs detection and characterization in complex matrixes such as soil 

raised several challenges emerged from the solid-state properties of NMs. These 

challenges include differentiating NPs from backgrounds natural particles, the use of 

multiple methods to confirm an accurate detection and achieving sufficiently low 

detection limits to realistically monitor NPs in environmental compartments (Klaine et 

al., 2012). Several spectrophotometric analytical methods (e.g. single particle 

inductively coupled plasma-mass spectrometry-spICP-MS-, UV-vis) have been 

demonstrated to have potential for environmental detection of NPs (Tuoriniemi et al., 

2012). In addition, particle visualization (i.e. scanning electron-SEM-, transmission 

electron-TEM-, helium ions and atomic force microscopy), size determination (e.g. X-ray, 

dynamic light scattering-DLS-, fluorescence spectra) and separation techniques (e.g. 

flow cytometry, ultracentrifugation, field-flow fractionation) might be adaptable to the 

measurement of NPs in environmental matrixes (Howard et al., 2010). Nevertheless, 
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through some of these techniques is difficult to distinguish between Ag NPs and silver 

ions, while methods such as TEM and other particle sizing approaches have difficulty 

distinguishing and finding low concentrations of particles and could be time consuming 

and costly (Reidy et al., 2013). 

The current lack of information about Ag NPs concentration in soils has resulted in 

modelling of PECs as a valuable alternative for measurement studies. Models have 

predicted that Ag NPs in WWTP sludges ranges from 1.31-4.44 mg Ag NPs/kg in Europe 

(Boxall et al. 2007; Gottschalk et al. 2009), in contrast, the estimations for Ag NP 

concentration in soils are much lower (Table 1). However, Ag NPs in sludge treated soil 

reached 0.007 mg/kg in 2012, a value that is expected to be annually enhanced in 

countries with a high proportion of sludge or sludge incineration residues land-disposal 

(Gottschalk et al., 2009). Hence, models evidence inputs of Ag NPs in soils, which once 

reached land would have the potential to contaminate soil (Klaine et al., 2008). 

Table 1. Predicted environmental concentrations (PECs) for Ag NPs in sludge, sludge treated 
soil and soil based on Life Cycle Release Models. PECs are shown as range and mode (the most 
frequent value). 

 Unit Location Range Range details Mode Study (Ref) 
 

      

Sludge  mg/kg 

Europe 1.31-4.44 Lower-Upper quantities 1.68 Gottschalk et al., 2009 

UK 0.29-2.90 10%-100% market penetration _ Boxall et al., 2007 

Switzerland 1.46-6.24 Lower-Upper quantities 1.88 Gottschalk et al., 2009 
       

Soil with sludge  mg/kg Europe _ _ 0.007 Gottschalk et al., 2009 
       

Soil  µg/kg 
Europe 0.02-0.1 Realistic-High emission _ Mueller & Nowack, 2008 

UK 0.43-4.26 10%-100% market penetration _ Boxall et al., 2007 

 

2.2. Ag NPs as a contaminant of emerging concern in soils 

Soil is one of natures most complex living systems, described as multicomponent and 

multifunctional, and with definable operating limits (Kibblewhite et al., 2008). Soil is the 

basis for food, fuel and fibre production and for many critical ecosystem services 

including nutrient cycling, carbon sequestration, water purification, climate regulation, 

biodiversity pool supporter and habitat for organisms (Fig. 4). This ability of soil to 

deliver ecosystem services is under increasing pressure due to the intensification and 

competing uses of forestry, cropping, pasture and urbanization, which enhanced rates of 

soil degradation. In fact, 33% of global soil is moderately to highly degrade in form of 

erosion, sealing, compaction, salinization, acidification, nutrient depletion and chemical 

contamination (FAO, 2015).  
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Figure 4. Soils as biodiversity supporters and habitat for numerous organisms: earthworms (1), 
collembola (2), insects (3), isopods (4), enchytraeus (5), bacteria (6), fungi hyphae (7) and plant 
roots (8). (Image from Vega Asensio, NorArte illustration studio, www.norarte.es). 

The large volume of waste production and disposal (municipal and industrial) together 

with the handling of chemicals within industrial and commercial activities (e.g mining, 

oil extraction and production, power plants etc.) during the past decades have left 

numerous sites with local soil contamination, which have become a widespread issue 

globally (Fig. 5A). In Europe there are estimated to be more than 2.5 million potentially 

contaminated sites, of which 340.000 are expected to be actually contaminated and 

likely to require risk management measures (i.e. remediation) (Van Liedekerke et al., 

2014). In the Basque Autonomous Community (CAPV), as a consequence of a long 

industrial tradition, 2.7-6.5% of the living surface has been inventoried as contaminated 

soil in 2012 (Plan de Suelos Contaminados del Pais Vasco 2007-2012 of the Basque 

Government).  

0
5

10
15
20
25
30
35
40
45

Waste 
disposal 

and 
treatment

Industrial 
and 

comercial 
activities

Storage 
(oils, 

chemicas,…)

Farming 
and WWTP

Transport 
spills 

%

Heavy metals
35%

Mineral oil
24%

Aromatic 
hydrocarbons 

and PAHs 
21%

Others
12%

Chlorinated 
hydrocarbons

8%

A B

 

Figure 5. Main contamination sources (A) and kind of contaminants affecting soils (B) in Europe 
as reported in 2011. (Data obtained from the JRC Report Progress in the management of 
contaminated sites in Europe 2014, Van Liedekerke et al., 2014). 

http://www.norarte.es/


INTRODUCTION 

 

11 
 

Heavy metals are among the most frequent contaminants found in soils, since, from a 

historical perspective, gold, silver, cooper, tin and lead have been used by humankind 

for thousands of years (Alloway, 2013). Considerable areas of soil in many parts of the 

world have had inputs of metals (Fig. 5B), which raised the concern about the uptake via 

food chain that may result in hazardous effects for humans and ecotoxicological impacts 

for plants and soil organisms (De Vries et al., 2013). Simultaneously, large numbers of 

studies on metal contaminated soils in Europe, China and other regions about which 

relatively little was known until recently have been performed, which provided a wider 

global perspective on sources, dynamics and effects of metals in soils (Alloway, 2013). 

In addition, governments have implemented policies to protect human health and 

environment by measuring metals concentrations in soils and establishing threshold 

values for the distinction between soils that do not constitute a risk and those that could 

or currently pose risks for the uses intended (Urzelai et al., 2000).  

At the same time that science improved its understanding of current and past 

contaminants such as metals, nanoscience and nanotechnology experienced huge 

advances in the synthesis, application and incorporation into products of ENPs. After 

their increasing use and high levels of commercialization, increasing inputs of NPs into 

the environment are expected, leading to an emerging concern, since these particles are 

expected to behave differently from their metallic counterparts. As mentioned before, 

the current regulation imposes threshold values for metals and organic contaminants 

but there is no guideline concerning their content in ENPs. The existing scarcity data 

and the limitations of analytical methods of these materials posed high level of risk 

uncertainty. Hence, the case of ENPs is quite challenging since they showed potential to 

pose risks to human health or to the environment while they are not yet subjected to 

specific regulatory criteria or norms for the protection of human health or the 

environment (Bleeker et al., 2013). Thus, ENPs, including Ag NPs, could be considered 

contaminants of emerging concern in soil (Sauvé and Desrosiers, 2014).  

As mentioned above, there are no specific regulations for nanotechnologies or NMs in 

Europe. Instead, the manufacture, use and disposal of NMs are covered by a complex set 

of consumer and environmental protection regulatory regimes (e.g. REACH- 

Registration, Evaluation, Authorisation and Restriction of Chemicals-, CLP-Classification 

and Labelling-,  Directive on Industrial emissions-Integrated Pollution Prevention and 

Control-, etc.). Regulatory instruments like REACH have not been designed for NM 

products and their applications, so it is a matter of concern that their risks might not be 
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captured effectively within this framework (Royal commission of Environmental 

Pollution, 2008). However, The Second Regulatory Review on Nanomaterials (2012) 

and the REACH Review (2013) concluded that REACH and CLP offer the best possible 

framework for the risk management of NMs. REACH applies equally to substances for 

which all or some forms are NMs. The CLP Regulation provides an obligation to notify to 

ECHA (European Chemical Agency) substances in the forms as placed on the market, 

including NMs, which meet the criteria for classification as hazardous, independent of 

their tonnage (Second Regulatory Review on Nanomaterials, 2012). In addition, sector 

specific regulations (for food, pharmaceuticals, veterinary medicines, pesticides, toys, 

cosmetics and end-of-life practices) performed risk assessments of NMs through case by 

case scientific studies. In support to these approaches, harmonization and 

standardization of measurement and test methods are being promoted through the 

OECD and by a Commission Mandate to the European Standards Organisations, since 

accurate information about the toxicity of NMs is important in determining their 

regulation. In this context, pushed by exposure monitoring and control strategies, 

nanotoxicology has arise as new discipline to evaluate the health and environmental 

threats posed by NPs and to enable a safe development of the emerging nanotechnology 

industry (Bruzea et al., 2007; Donaldson et al., 2004). 

3. Nanotoxicology and factors affecting NPs toxicity in soils 

From the ecosystems perspective, nanotoxicology addressed the adverse effects of NMs 

to organisms, populations and communities (Klaine et al., 2012). NPs toxicological 

effects are complex, since they can be influenced by many factors. Hence, 

nanotoxicology encompasses the physico-chemical characteristics of NPs, routes and 

degrees of exposure, biodistribution, cellular and molecular interactions, genotoxicity 

and regulatory aspects (Arora et al., 2012).  

In the terrestrial compartment, together with the NPs characteristics (e.g. size, shape, 

surface charge, composition, coatings), soil physico-chemical factors (pH, cation 

exchange capacity-CEC-, clay and OM contents) and the interaction of NPs with the 

medium (e.g. dissolution, aggregation, sorption to larger particles), will affect NPs 

behaviour, fate and ecotoxicity (Klaine et al., 2008; Ren et al., 2016; Tourinho et al., 

2012). 

 

 

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012DC0572
http://ec.europa.eu/environment/chemicals/reach/review_2012_en.htm
http://www.sciencedirect.com/science/article/pii/S0041008X11004467%23bb0100
http://www.sciencedirect.com/science/article/pii/S0041008X11004467%23f0005
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3.1. Soil physico-chemical factors 

Soils are heterogeneous environmental matrixes with varying spatial and temporal 

gradients of OM, CEC, pH, particle size distribution (soil texture) and water holding 

capacity (WHC). 

OM is formed by chemical and biological decomposition of organic residues, being 

differentiated into unaltered material and the transformed products (humus). Generally, 

soil humus is defined as a mixture of colloidal organic compounds with high molecular 

weights and relatively resistant to decomposition (Nieder et al., 2008). OM plays an 

important role modulating soil functions, including provision of surface charges 

(expressed as the cation exchange capacity-CEC-), influencing wettability and 

contributing to nutrient cycling and soil structure maintenance (Kibblewhite et al., 

2008). OM has high capacity to chelate positively charged molecules such as metal 

cations. 

Another soils physico-chemical factor affecting metal mobility is the pH, since metals 

become more bioavailable in soils (and soil pore water) when the pH decreases (Sijm et 

al., 2000). The pH is the factor that greatest affects metal solubility (Giller et al., 1998). 

The particle size distribution could be divided into three main size grades or 

separates, sand (2.0-0.05 mm), silt (0.05-0.002 mm) and clay (<0.002 mm) (USDA, 

1987). Soil texture will influence, among others, the structure, colour, porosity, CEC and 

WHC of soils. Soils rich in clay tend to be chemically active (Cornelis et al., 2012), 

absorbing positively charged molecules (cations) that normally are nutrients for living 

organisms. The amount of clay present in the soil will also influence its capacity to 

retain water against the gravity (WHC). 

These factors will affect NPs behaviour, resulting in NPs dissolution, agglomeration or 

aggregation, and sorption to surfaces.  

3.2. Ag NPs behaviour in soils 

Soil represents a complex medium with a solid phase and pore water in which NPs will 

interact. NPs could travel through soil pores, form aggregates followed by 

sedimentation or could be sorbed to soil particles and become immobilized (Baalousha 

2011). However, Ag NPs dissolution, agglomeration/aggregation and sorption to 

surfaces (Fig. 6) have been shown to vary with soil composition and characteristics. 
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Figure 6. Key processes likely to affect the behaviour, fate and bioavailability of nano-particles 
in the soil environment (Modified from Batley et al., 2013). 

Dissolution occurs when an ion detached from the particle migrates into the solution 

(Borm et al., 2006). The dissolution of metal based NPs releases ionic species that may 

be toxic per se and thus, both NPs and ionic form need to be considered to better 

understand the potential effects of NPs (Misra et al., 2012; Tourinho et al., 2012). NPs 

dissolution and solubility are size dependent, being nanosized materials faster and in a 

greater extent dissolved in comparison with macroscopic ones. The solubility of Ag and 

Ag NPs is influenced by soil pH, increasing with the decrease of the pH value in soils 

(Oromieh, 2011). Thereafter, the dissolved Ag has been stated to tend to bind to clay 

and organic matter present in soil (Cornelis et al., 2010), since they are abundant in 

negative charges. The dissolution of NPs can be hindered by the formation of aggregates 

or agglomerates (Borm et al., 2006). 

Aggregation could be defined as the association of primary particles by strong bonding 

that sediment in the solution while agglomeration means the same but referring to weak 

bonding associations (Jiang et al., 2009). Physical forces (e.g. Brownian motion, gravity) 

and NPs size, surface charge, coatings and concentration will affect 

aggregation/agglomeration rates. In fact, the basic aim of the usage of coating in NPs is 

to stabilize them against aggregation (Sharma et al., 2014). The aggregation rate of NPs 

in soil suspensions has been found to be negatively correlated to soil characteristics 

such as dissolved OM and clay contents (as they cover the surface of NPs and prevents 

their homo-aggregation with repulsive forces), and positively correlated to the ionic 

strength, zeta potential and pH (Fang et al., 2009). For instance, greater aggregation has 

been observed in NPs in high ionic strength medium and at the isoelectric point (zeta 

potential=0, pH 6) (Jiang et al., 2009). In regard to Ag NPs, the effects of ionic strength 

were observed for suspensions with pH higher than 7 but for polyvinylpyrrolidine 

(PVP) coated Ag NPs aggregation was not influenced by increasing ionic strength (El 
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Badawy et al., 2010). In the soil matrix, aggregation is mainly limited to hetero-

aggregation, as NPs-biomolecule conglomerates are mainly produced (Fabrega et al., 

2009; Hotze et al., 2010). For instance, PVP coated Ag NPs have been demonstrated to 

have high affinity for soil solids (VandeVoort and Arai, 2012; Whitley et al., 2013).  

The main compartments involved in metal sorption are soil OM, clay and oxide surfaces 

(Fe, Al, Mn…) (Jacobson et al., 2005). Sorption is the attachment or removal of a solute 

from a solution to a contiguous solid phase (Smith, 1999). Increasing the pH value and 

clay content of the soils, will increase the sorption of Ag NPs (Cornelis et al., 2010; Van 

Gestel and Van Dis, 1988), which could be due to the soils higher CEC value or to the 

finer texture of clay (Hedberg et al., 2015; Oromieh, 2011). This sorption has been 

demonstrated to be weaker in low ionic strength soils and stronger to soils with high 

OM concentration (Jacobson et al., 2005).  

The behaviour of NPs in soil will control their mobility and their bioavailability to soil 

organisms (Tourinho et al., 2012), including earthworms.  

4. Earthworms for toxicity assessment in soil environments 

Among soil organisms, earthworms are abundant, ubiquitous and important for soil 

processes (Spurgeon et al., 2004). Earthworms, which belong to the order Oligochaeta, 

comprise roughly 8000 species grouped into 800 genera (Edwards, 2004) and are 

considered the most abundant animal biomass in the majority of terrestrial ecosystems 

(Bartlett et al., 2010). They are very versatile and are found in nearly all terrestrial 

ecosystems (from forest to agricultural ecosystems) (Lavelle et al., 2004), providing 

many favorable effects on the physical, chemical and biological properties of soil 

(Bartlett et al. 2010, Edwards 2004). In fact, Darwin (1881) was among the first to 

include earthworms, in the list of factors responsible for soil formation. Earthworms 

have been called ‘ecosystem engineers’ as they change and improve the structure of the 

soil. They contribute towards mineral weathering, the formation of humus, and burying 

OM from the surface (Blouin et al., 2013). One of the most important roles of 

earthworms in soil is their control of humification rates through feeding, burrowing, 

casting activities and interactions with microorganisms (Bernier, 1998).  

Many researchers have studied the role of earthworms in soil ecology by their 

contribution to soil formation, water regulation, nutrient recycling, plants growth and 

microorganism population (Blouin et al., 2013; Lavelle et al., 2004). Their potential use 

for remediation or restoration of soils contaminated with organic and inorganic 
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contaminants has been also examined (Sinha et al., 2008; Sizmur and Hodson, 2009), 

together with their use for vermicomposting (Schuldt, 2006). In addition, earthworms 

have become a model for comparative immunologist with the publication of results that 

proved the existence of self/nonself recognition by cellular and humoral pathways in 

earthworms (Bilej et al., 2000, 2010). Due to their susceptibility to chemicals and other 

unique biological advantages (short life cycle, direct uptake of chemicals by their 

exterior epidermal surface and exposure via ingestion of soil, among others) much 

research has been done with earthworms as bioindicators of contamination and toxicity 

in soil (Nahmani et al., 2007; Paoletti, 1999; Schaefer, 2004; Spurgeon et al., 1994, 

2004). Most of the mentioned studies used the widely distributed family of earthworms, 

Lumbricidae, being ecotoxiological research performed mainly in two genera, Lumbricus 

and Eisenia. Recently, earthworms have been used for the toxicity assessment of NPs in 

soil. Such works dealing with Ag NPs toxicity in earthworms used Lumbricus rubellus, L. 

terrestris, Enchytraeus albidu, Eisenia andrei and E. fetida, being the latter by far the 

most commonly employed species.  

4.1. Eisenia fetida as model organisms  

Eisenia fetida (Savigny, 1826) is an epigeic earthworm living in decaying organic matter, 

in compost and mold (Bilej et al., 2010). It has a short life cycle, hatching from cocoons 

in 3-4 weeks and reaching maturity in 2 months at 20 °C. It is very prolific (2-5 

cocoons/week/worm), is available commercially and can be feed in a wide range of 

organic waste materials (e.g cow, rabbit and horse manures). It also represents an 

inexpensive, appropriate and noncontroversial model for experimentation (Bilej et al., 

2010). E. fetida has been demonstrated to be impacted by soil pollutants and thus, it is 

broadly used in ecotoxicology and nanotoxicology and it is included as a standard test 

organism by some international organisations (ISO 1993, 1998; OECD 1984, 2004). 

Moreover, biomarkers at different levels of biological complexity have been measured in 

this organism (see 6.1 section). Further, in vitro assays with E. fetida coelomocytes have 

been recently optimized in order to assess toxicity of metals (Irizar et al., 2014b, 2015b; 

see section7). 
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Taxonomy

Kingdom Animalia

Phylum Annelida

Class Clitellata

Subclass Oligochaeta

Order Haplotaxida

Family Lumbricidae

Genus Eisenia

Species E. fetida (Savigny, 1826)
 

Figure 7. Eisenia fetida earthworm and its taxonomic classification 
(https://commons.wikimedia.org/wiki/File:Eisenia_foetida_R.H._(8).JPG) 

5. Standard toxicity tests with E. fetida  

A common way to assess the toxicity of pollutants in the environment is by performing 

laboratory toxicity assays with different organisms, since good correlation has been 

found between laboratory results and effects in the field (Heimbach, 1992; Maboeta et 

al., 2004). The first toxicity test in soil was performed at the end of the sixties, using 

Collembola and earthworms to assess the effects of pesticides in soils (Ghabbour and 

Imam, 1967). Twenty years later, the first toxicity test with soil invertebrates was 

internationally standardized by the OECD, using E. fetida earthworms and only focusing 

on short-term (acute) responses like survival (Earthworm Acute Toxicity Test-OECD 

207, 1984). 

The Acute Toxicity Test-OECD 207 (OECD, 1984) describes two short-term toxicity 

tests, Paper Contact and Artificial Soil tests, using both methods survival as the unique 

endpoint. In the Paper Contact test earthworms are exposed to treated filter paper 

during 2 days, being a useful exposure method for a rapid screening of chemicals and to 

assess their uptake, biotransformation or other types of mechanistic research (Van 

Gestel et al., 2012). However, the assessment of the effects produced by the 

incorporation of toxic substances by ingestion (solid phase) should include toxicity 

evaluation in a real media. The Artificial Soil test provides a more representative toxicity 

data of natural exposure of earthworms to chemicals as it is performed in an artificial 

soil substrate containing 70% sand, 20% clay and 10% sphagnum peat (OECD, 1984). 

For reasons of standardization and comparison of results, all standardized tests use this 

OECD artificial soil. However, new standard and natural soils such as LUFA soils have 

started to be used in the last years in order to increase realism (Van Gestel et al., 2012). 
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The toxicants, once inside the organisms may provoke death or may affect physiological 

parameters such as growth, assimilation of energy from food, the energetic costs for 

producing offspring, etc. Thus, complementarily to survival endpoint, toxicity tests using 

sublethal endpoints like reproduction were standardized for earthworms by OECD 

(Earthworm Reproduction Test-OECD 222, 2004) and ISO (Determination of effects on 

reproduction, ISO 11268-2, 1998). The Earthworm Reproduction Test-OECD 222 has 

a duration of 28 days in which the earthworms are exposed to the test substance. 

Afterwards, earthworms are removed from the spiked soil while the cocoons are 

incubated for another 28 days to enable determining the number of offspring. Despite 

being focused on the reproductive output, this test also included weight change 

(growth) of the earthworms.  

In addition, standard test guidelines for avoidance tests (ISO 17512-1, 2008a) have 

been recently developed for earthworms. The aim of these tests is to determine the 

quality of soils and the effects of chemicals on behaviour of E. fetida and E. andrei. 

The acute and sublethal laboratory test guidelines (traditional endpoints) are being 

applied to new and emerging chemicals as well, especially to determine the toxicity of 

NPs using earthworms (Heckmann et al., 2011; Lapied et al., 2010; Schlich et al., 2013; 

Shoults-Wilson et al., 2011b, 2011c). 

These above mentioned standardized tests are designed to estimate toxicity values of 

the chemicals from concentration-response relationships in survival or reproduction of 

earthworms (lethal concentration-LCx- and effect concentration–ECx-). Therefore, they 

are considered of great importance for risk assessment and regulation of chemicals 

(Rodriguez-Ruiz et al., 2014; Spurgeon et al., 1994, 2004). With the same applied 

purposes, research efforts have been carried out in the framework of modern 

ecotoxicology to develop and validate biomarkers. In the recent years there has been an 

increasing interest in the use of biomarkers at different levels of biological complexity in 

terrestrial invertebrates, including E. fetida, for the assessment of potential adverse 

effects of chemicals in soil ecosystems (Asensio et al., 2013; Irizar et al., 2015a; 

Kammenga et al., 2000). 
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6. Target tissues and cells for pollutant handling in earthworms 

Earthworms may uptake pollutants from soil and pore water, both through dermal and 

oral routes. Thus, the first barrier of earthworm against pollutants is their body wall, 

which consists of an external cuticle and the epidermis (Fig. 8). The earthworm 

epidermis is formed by supporting and basal cells plus mucus-secreting goblet cells, 

which release mucus over the surface of the earthworm body in order to facilitate the 

locomotion through soils and prevent desiccation (Lapied et al., 2010). This mucus layer 

around the cuticle is maintained by the secretion of a fluid rich in mucopolysaccharides, 

proteins and lipid complexes that take part in the humoral immune system (Jamieson, 

1981), and is also a way to eliminate metals from their body (Vijver et al., 2003). The 

integument is highly permeable, serving as respiratory surface, and also as the main 

uptake route for metals such as cadmium, copper, and lead (Saxe et al., 2001; Vijver et 

al., 2003). 

T
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Figure 8. Transverse section of Eisenia fetida earthworm stained with Alcian Blue. Cuticle (Cu), 
Epidermis (E), Circular muscle (CM), Longitudinal muscle (LM), Dorsal blood vessel (DBV), 
Chloragogenous tissue (CT), Typhlosole (T) and Coelom (C). Scale 500 µm. 

Previous studies showed the chloragogenous tissue, placed between the digestive 

epithelium and the coelom (Fig. 8), as the major metal accumulating site (Irizar et al., 

2014b; Van Gestel et al., 2012). In addition, the epithelium of the digestive tract also 

exhibits a great ability for metal accumulation (Irizar et al., 2014b; Morgan et al., 2002). 

In fact, soil ingestion is considered the major entering route of metals in earthworms 
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(Becquer et al., 2005; Jager et al., 2004) and thus, epithelial cells in the digestive gut are 

usually targets for biomarker measurements. 

Earthworms posse a coelomic cavity that contains coelomic fluid with free floating 

wandering cells, coelomocytes. The earthworm coelomic fluid plays an important role 

in homeostasis and in immune defenses against external stimuli by means of 

haemolytic, proteolytic and cytotoxic enzymes (Kurek et al., 2007). This fluid is 

communicated with the outer environment by a pair of nephridia and dorsal pores per 

segment (Bilej et al., 2000), and thus, coelomocytes can be in nearly direct contact with 

pollutants present in soils (Irizar et al., 2015a). Comparable to human leukocytes 

(Hayashi et al., 2012), coelomocytes are the immune cells of earthworms, and play a 

pivotal role in recognition and elimination of foreign materials, clotting and wound 

healing (Cooper, 2002; Kurek et al., 2007). 

Among coelomocytes two major subpopulations can be distinguished in earthworms by 

cytochemical, morphometrical, ultrastructural and functional characteristics 

(Adamowicz, 2005; Bilej et al., 2000; Engelmann et al., 2004, 2005), amoebocytes and 

eleocytes (Fig. 9), being the former subgrouped into hyaline and granular amoebocytes. 

Hyaline or granular amoebocytes, the most numerous coelomocytes (Adamowicz, 

2005), represent effector immunocytes with a strong phagocytic and encapsulation 

activity (e.g. bacteria, fungi, etc.) (Engelmann et al., 2005; Hayashi et al., 2012; 

Valembois et al., 1985). However, this activity is higher in hyaline amoebocytes, which 

can adhere and engulf bacteria (Engelmann et al., 2005).  
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Figure 9. Amoebocytes (hyaline-hAm- and granular-gAm-) and eleocytes (E) of E. fetida 
earthworm (A). Note the autofluorescence of eleocytes (B). Scale 50 µm. 
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Eleocytes are detached chloragocytes derived from the chloragogen tissue (Linthicum 

et al., 1977a) with nutritive functions such as glycogens and lipids production (Bilej et 

al., 2000, 2010). They do not have phagocytic activity but they participate in the 

homoestasis and humoral immunity of earthworms (Adamowicz, 2005; Engelmann et 

al., 2004, 2005) by producing humoral factors such antimicrobial peptides (Bilej et al., 

2000, 2010; Cooper et al., 2002). Eleocytes of E. fetida exhibited autofluorescence due to 

the selective accumulation of riboflavin (sourced from their diet, intestinal microflora 

and other endosymbiotic bacteria), which simplifies their identification (Plytycz et al., 

2011; Sulik et al., 2012). 

At subcellular level, the lysosomal system has been identified as a particular target to 

assess the toxic effects produced by many contaminants. The lysosomal vacuolar system 

is involved in the accumulation and degradation of a wide range of substances obsolete 

in the cell (e.g. biological polymers, proteins, lipids) or taken up by endocytosis (e.g. 

organic compounds, metals) (Moore, 1985; Viarengo, 1989). Pathological alterations in 

lysosomes have been especially useful in the identification of adverse environmental 

impacts. 

Since the existence of morphofunctional variability along the earthworms, the selection 

of the most adequate body region for the measurements of different biomarkers is 

crucial for accurately assess toxicity in E. fetida (Irizar et al., 2014a). 

6.1. Biomarkers at different levels of biological complexity in E. fetida 

Biomarkers can be defined as biological responses to pollutants at molecular, cell and 

tissue levels that provide early indications of ecosystems health status (McCarthy and 

Shugart, 1990). Biomarkers forecast effects at higher levels of biological organisation 

(Spurgeon et al., 2005), and also may provide information on the mode of action of 

chemicals (Kammenga et al., 2000). These characteristics, together with their simplicity, 

accuracy and reproducibility, make biomarkers useful tools in nanotoxicology. Current 

studies with biomarkers in earthworms have been focused on DNA damage (molecular 

level), cholinesterases, metal binding proteins and enzymatic defense system 

(biochemical level), lysosomal membrane stability (subcellular level), 

histophathological alterations (tissue level) and immune responses (Asensio et al., 2007, 

2013; Irizar et al., 2014b, 2015a, 2015b; Scott-Fordsmand and Weeks., 2000). Among 

them, molecular and biochemical level biomarkers have been the most studied after 
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exposure of E. fetida to NPs (Gomes et al., 2015; Hayashi et al., 2013a; Novo et al., 2015; 

Tsyusko et al., 2012).  

Several organic and metallic compounds, including Ag NPs, are known to induce the 

production of reactive oxygen species (ROS) (McShan et al., 2014). Living organisms, 

aiming to balance ROS and prevent oxidative stress, have developed antioxidant defence 

systems with enzymes (e.g. catalase, supeoxide dismutase, gluthathione peroxidase) and 

additional protection mechanisms against metal exposure such as metal binding 

proteins (e.g. metallothioneins).  

In regard to antioxidant defense, changes in catalase (CAT) activity after exposure to 

chemicals are indicators of cellular lesion, and thus are considered as early 

environmental stress biomarkers (Asensio et al., 2013; Gomes et al., 2015).  

A number of metals are known to induce metallothioneins and thus, they have been 

advocated as earthworm biomarkers for a long time. Metallothioneins (MTs) have the 

capacity to bind a variety of metal atoms (due to their low molecular weight and high 

cysteine content), participate in homeostasis and detoxification of metals (Brulle et al., 

2006) and prevent the organism from oxidative stress (Ribeiro et al., 2015). Hence, 

oxidative stress could be assessed by measuring the transcription levels (molecular 

level) or the activity (biochemical level) of antioxidant enzymes and detoxification 

mechanisms. In fact, transcription levels of target genes such those encoding CAT or 

MTs have been easily measured in earthworm tissues (Asensio et al., 2007; Brulle et al., 

2006; Irizar et al., 2014b). Spurgeon et al. (2005) demonstrated that the responses at 

the molecular level were most sensitive and that genetic tools (genomics, proteomics 

and transcriptomics etc.) enable a better understanding of molecular mechanisms of 

action of chemicals. These tools may also help unraveling the mechanisms by which 

metal-based nanoparticles affect organisms (Van Gestel et al., 2012).  

ROS are able to induce genotoxicity (DNA damage), protein carbonylation and 

membrane oxidation (Piao et al., 2011). The single-cell gel electrophoresis assay or 

Comet assay is widely used technique to detect DNA damage in individual cells, 

primarily as strand breakage (Fig. 10). The experimental conditions for this technique 

were described by Singh et al. (1988) over 20 years ago. For that time onwards this 

technique has been conducted with coelomocytes of soil invertebrates for the toxicity 

assessment of organic compounds (Di Marzio et al., 2005; Sforzini et al., 2012) and 

metals (e.g cadmium, chromium, nikel) (Di Marzio et al., 2005; Fourie et al., 2007; 
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Lourenço et al., 2011a; Manerikar et al., 2008; Reinecke and Reinecke, 2004) with 

satisfactory results. According to Tice et al. (2000), this assay is potentially useful for the 

screening of DNA-damaging agents. 

A B

 

Figure 10. Images of single-cell gel electrophoresis (Comet assay) for untreared coelomocytes 
(A) and coelomocytes exposed to 50 mM H2O2. Note the migration of DNA strands (comet tail) in 
treated coelomocytes (B). Scale 100 µm. 

Cellular level biomarkers in earthworms have been focused on the integrity of the 

coelomocytes lysosomal membrane. Some authors considered these biomarkers the 

following more sensitive (after molecular and biochemical biomarkers) to evaluate 

metal stress in earthworms (Rocco et al., 2011; Spurgeon et al., 2005). The majority of 

the studies on lysosomal stability used the Neutral Red Retention Time (NRR time) in 

coelomocytes (Scott-Fordsmand et al., 1998; Weeks and Svendsen, 1996), which has 

been adapted to spectrophotometric measurement carried out in microplates (Neutral 

Red Uptake assay-NRU-) (Asensio et al., 2007, 2013; Homa et al., 2003; Irizar et al., 

2014b, 2015a, 2015b; Kwak et al., 2014a). Recently, parameters such as the total 

number and viability of coelomocytes have been also used as biomarkers to assess the 

impact of metals on earthworms (Homa et al., 2015, Kwak et al., 2014b). In this context, 

other microplate assays are available to measure cell metabolic activity (MTT, XTT) or 

viability (Calcein AM) after exposure to chemicals, but they have not been used with 

earthworm coelomocytes yet. The Calcein AM Viability assay provides a simple, rapid, 

and accurate method to measure cell viability and cytotoxicity. The calcein 

acetoxymethyl ester (Calcein AM) permeates live cells and is hydrolyzed by intracellular 

esterase to calcein, a hydrophilic and strongly fluorescent compound that is well-

retained in the cell cytoplasm. Calcein AM has been used to evaluate the esterase activity 

of several organisms, including microorganisms (Kaneshiro et al., 1993). In the case of 
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earthworms, Calcein AM has only been used to label earthworm coelomocytes (Kwak et 

al., 2014b).  

 

Figure 11. The transformation from Calcein AM (hydrophobic) to Calcein (hydrophilic) by 
intracellular esterases (From Calcein AM Viability assay-R&D System, Catalog Number 4892-
010-k). 

At tissue level, histological changes such the thickness of the epithelium and the 

cellular composition (e.g amount of mucous secreting globet cells) have been measured 

in body wall, gastrointestinal tract and chloragogenous tissue of earthworms exposed to 

metals, radionuclides and hostile environmental conditions (Amaral et al., 2006; Cunha 

et al., 2011; Lourenço et al., 2011b). In addition, the intralysosomal metal accumulation 

in digestive epithelium and chloragenous tissues have been shown as an effective 

biomarker of metal exposure through the quantification of black silver deposits (BSD) 

after the application of autometallography (Amaral et al., 2006). This technique allows 

the in situ localization of metals in tissue sections in a simple and cost-effective way 

(Soto et al., 1996).  

A battery of biomarkers is often used to evaluate the effects of exposure to chemical 

(Cajaraville et al., 2000). With the aim of summarizing biomarker responses at different 

level of biological complexity and simplify their interpretation, the Integrative 

Biomarker Response Index/n (IBR/n) has been applied, although mainly in field 

surveys (Beliaeff and Burgeot, 2002; Marigómez et al., 2013). In fact, IBR index was first 

applied to study the impacts of organic pollutants in flatfish and mussels from different 

areas of the Baltic Sea (Beliaeff and Burgeot, 2002). From there on, this approach has 

been successfully applied in other marine pollution monitoring programs (Broeg and 

Lehtonen, 2006; Marigómez et al., 2013) to identify temporal and spatial fluctuations in 

ecosystem health status and their magnitude. In soil studies, the IBR index has been 

scarcely applied (Asensio et al., 2013). However, other biomarker data integration and 

interpretation approaches such as the Earthworm Expert System (EES) have been 



INTRODUCTION 

 

25 
 

developed to perform a ranking of the pollutants induced stress syndrome phases in E. 

andrei (Sforzini et al., 2011).  

7. Coelomocytes in vitro 

In vitro approaches are rapid, reliable, cost-effective and reproducible tools for the 

screening of potentially toxic agents by greatly reducing the number of animals used 

(Borenfreund and Puerner, 1984). In addition, the exposure of organisms through 

complex matrixes such as soil could rend a challenge when assessing toxicants 

characterization or their mechanism of toxicity (Hayashi et al., 2012), whereas in vitro 

models, despite limited environmental signification, allow defining and controlling 

exposure conditions (e.g. dosing, specific targeting). 

Commonly, earthworms are exposed in vivo to chemicals and subsequently 

coelomocytes are extruded to assess different endpoints (e,g NRU, cell viability, 

oxidative stress etc.) (Asensio et al., 2007, 2013; Homa et al., 2003; Irizar et al., 2014a, 

2015a; Scott-Fordsmand et al., 2000). It was 20 years ago that coelomocytes of L. 

terrestris were maintained viable in culture for the first time to study their immune 

response capacity (Toupin et al., 1977). More recently, primary culture of coelomocytes 

have been used to evaluate the toxicity of a wide range of metals (Irizar et al., 2014b, 

2015b), including Ag NPs (Hayashi et al., 2012, 2013b). These studies seeded 

coelomocytes in different conventional media (i.e Leibovitz´s L-15 and RPMI-1640 

medium), with and without serum, and supplemented with a set of antibiotics 

(Amphotericin, Penicillin-Streptomycin, Gentamicin).  

In order to assess viability, proliferation and cytotoxicity in cell culture, a number of 

methods have been developed in microplates (Cook and Mitchell, 1989). These methods 

allow the analysis of many samples rapidly and simultaneously with the aid of plate 

reader spectrophotometers and fluorescence readers. Cytotoxicity in primary cultures 

of coelomocytes exposed to metals (Cu, Pb, Ni, Cd) has been measured using the NRU 

assay (Irizar et al., 2014b, 2015b). For Ag NPs assessment, a counting kit that employs 

water soluble tetrazolium salts (WST-8) has been recently used (Hayashi et al., 2012). 

In addition, flow cytometry has been widely used to analyse the mode of action of 

pollutants and mixtures in established vertebrate cell lines and primary cultures 

(Castaño et al., 2000; Gallego et al., 2007). In this technique, particles or cells go through 

a laser beam (one at a time) and a detector in front of the light beam measures forward 

scatter (FS, correlated with the size) and several detectors in the side measure side 
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scatter (SS, correlated with the complexity). Additional detectors measure the 

fluorescence emitted from positively labelled cells or particles. This technique has been 

a common approach to study earthworm coelomocytes and to characterize the different 

subpopulations (Engelmann et al., 2016; Kurek et al., 2007; Plytycz et al., 2007). Using 

flow cytometry coelomocytes can be separately gated according to their light scatter 

profiles, fordward scatter (cell size) and side scatter (cell granularity/complexity) 

(Engelmann et al., 2016), and changes in their relative proportion and mortality rates 

can be recorded (Irizar et al., 2015b). Earthworm coelomocytes can be discriminated 

between amoebocytes and eleocytes by means of this technique (Fig. 12), being 

amoebocytes further classified using light or electron microscope. Using this approach, 

several authors have provided valuable data about the different functional aspects (e.g 

phagocytosis, proliferation) of earthworm coelomocytes (Cossarizza et al., 1995; Fuller-

Espie et al., 2011; Homa et al., 2013). Nevertheless, flow cytometry has been scarcely 

applied in soil ecotoxicology using coelomocytes retrieved after in vivo exposures 

(Homa et al., 2013; Kwak et al., 2014b; Massicotte et al., 2004; Plytycz et al., 2011) and 

even less using in vitro exposure of coelomocytes (Hayashi et al., 2012; Irizar et al., 

2015b; Kwak et al., 2014b; Plytycz et al., 2007). These studies with different earthworm 

species employed flow cytometric assays with various types of fluorescent probes (e.g. 

NR, Propidium Iodide-PI-, Calcein AM, DCFDA, acridine orange, etc) to test the 

cytotoxicity to metals.  
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Figure 12. Flow cytometric analysis of E. fetida coelomocytes. Distribution by density plot of 
amoebocytes (A) and eleocytes (E) according to their complexity (SS, Y axis) and size (FS, X axis). 

Further, flow cytometry analysis showed a dissimilar sensitivity among coelomocyte 

subpopulations, being eleocytes more sensitive than amoebocytes when exposed to 

metals (Homa et al., 2010; Irizar et al., 2015b; Plytycz et al., 2010). Coelomocytes 
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subpopulation can be physically isolated by means of cell sorting. Engelmann et al. 

(2016) has just recently done the first example of amoebocyte and eleocyte sorting for 

post-sort TEM and SEM imaging characterization. In the study subpopulations were 

sorted with high purity and cell survival after sorting was demonstrated by 

phagocytosis assay.  

8. An overview of the studies regarding Ag NPs toxicity to Oligochaeta 

The following table (Table 2) shows an overview of the available studies focused on the 

toxicity of Ag NPs to Oligochaeta. Literature regarding this topic started to be available 

in 2010, from there on, the number of publications have slowly increased. The majority 

of the studies used the species E. fetida as model organisms. In regard to the NPs, the 

reference material NM-300K from the OECD sponsorship program (JRC programme on 

nanomaterials) were commonly used. In addition, both, uncoated at coated Ag NPs were 

tested, being PVP the most used coating agent. The vast majority of the studies 

employed limit test concentrations, being the dose range selected much higher than the 

concentrations predicted for the environment.  

Earthworms were exposed through soils mainly. Among soils, standard (i.e. artificial-

OECD-and natural-LUFA and RefeSol-) and field collected soils were used. In order to 

perform the spiking of soils, wet and dry dosing procedures were followed. In the 

former, powdered Ag NPs were first suspended in DI water by sonicating (not always) 

and the resultant suspension was applied to the soils at a range of 40-50% of their WHC. 

For the latter, Ag NPs were directly mixed (manually) with the dry soil prior to the 

addition of water. Some studies did the dosing to a carrier soil or to a sub-sample, which 

afterwards was mixed with the remaining soil. In all cases spiking was carried out 

individually for each replicate and the stabilization periods ranged from 3 days to 1 

week depending on the authors. 

Endpoints within the OECD standard tests were the most used ones, based on survival, 

growth and reproduction. Apart from traditional endpoints, molecular and biochemical 

biomarkers (changes in gene expression and biochemical measurements) were also 

studied. 

 

 



 

 

 

Table 2. An overview of studies on Ag NPs toxicity to Oligochaeta.  

 

 

Species 
tested 

NPs Size 
(nm) 

NPs 
Characterization 

Concentration 
ranges 

Exposure 
media Dosing Duration Endpoint Reference 

L. terrestris 8 (a), 20 (b) 

 
(a)-Colloidal 

 -from Purest Colloids  
 

(b)-Pristine, powder 
 -from Quantum Sphere 

 

(a) 0-20 mg/l (E1); 0-20 
mg/kg (E2);  
0-8 mg/kg (E3) 
(b) 0-100 mg/l (E1); 
 0-100 mg/kg(E2,E3) 

-Water (E1) 
-Food (horse 
manure, E2) 
-Agricultural clay 
loam soil (E3) 

-Suspension in 18 MΩ DI 
water  
-Sonication (5 min)  

-24h (E1) 
-2, 4 and 8 w 
(E2) 
-4 w (E3) 

-Apoptosis in 
different tissues Lapied et al., 2010 

E. fetida 30-50 
-0.2% w/w PVP coated 
-Zpot:-28.16 mV 
-from Nanoamor 

0-1000 mg /kg  
-Sandy loam from 
Askov 
experimental 
station (Denmark) 

-Suspension in DI water  
-Ultra-sonication (30min) 
-Manually mixed into the 
soil. 

28 d 
-Survival 
-Growth 
-Reproduction 

Heckmann et al., 
2011 

E. fetida 10, 30-50 
-PVP coated 
-Powder 
-from NanoAmor 

10-1000 mg/kg 
-Artificial soil  
-Yeager sandy loam 
(YSL) natural soil 

-Suspension in 18 MΩ DI 
water 
-Sonication (15min, RT) 
-Applied to soils 50% WHC. 

28 d 

-Bioaccumulation 
-Survival 
-Growth 
-Reproduction 

Shoults-Wilson et al., 
2011a 

E. fetida 30-50 

-PVP and oleic acid 
coated  
-Powder 
-from NanoAmor 

10, 100, 1000 mg/kg -Artificial soil  

-Suspension in 18 MΩ DI 
water  
-Sonication (15min, RT). 
-Applied to soils 50% WHC 

28 d 

-Bioaccumulation 
-Survival 
-Growth 
-Reproduction 

Shouts-Wilson et al., 
2011b 

E. fetida 10, 30-50 
-PVP and oleic acid 
coated  
-Powder 

0-54 mg/kg 
(environmentally 
relevant) 

-Artificial soil, 
artificial soil with 
lower pH 
-Yeager sandy loam 
(YSL) natural soil 

-Suspension in 18 MΩ DI 
water  
-Sonication (15min, RT). 
-Applied to soils 50% WHC 

48 h -Avoidance Shoults-Wilson et al., 
2011c 

E. fetida 20 
-Powder 
-Zpot: -21.1 ± 0.4 mV 
-from Quantum Sphere 

0.77 µg/g 
-Food (horse 
manure) in OECD 
soil 

-Wet spiking 28 d -Uptake, excretion  
-Biodistribution Coutris et al., 2012 

E. fetida 80-100 -0.2% w/w PVP coated 
-from Nanoamor 0-5.91 µg/ml -Culture medium 

(RPMI-1640) 

-Preparation of a colloidal 
suspension, then mixed 
with serum (BSA) 

24 h 

-Cytotoxicity 
-ROS 
-Gene expression 
-Intracellular 
accumulation 

Hayashi et al., 
2012 



 

 
 

Table 2. (Continued I) 

 

 

Species 
tested 

NPs Size 
(nm) 

NPs 
Characterization 

Concentration 
ranges 

Exposure 
media Dosing Duration Endpoint Reference 

E. fetida 10 (a), 
30-50 (b) 

-PVP coated 
-Powder 
-Zpot -49.5 mV (a) and 
35.9 mV (b) 
-from NanoAmor 

100 and 500 mg/kg -Yeager sandy loam 
(YSL) 

-Suspension in 18 MΩ DI 
water 
-Sonication (15min, RT). 
-Applied to soils 50% WHC 

1,3 and 7d 

-Gene expression 
(metal homoestasis 
and oxidative stress) 
-Protein oxidative 
damage 
-Catalase enzymatic 
activity 

Tsyusko et al., 
2012 

E. fetida 10 

-PEG coated 
-Colloidal 
-`green´ NPs (Thuja 
leaf extracts) 

0-1000 mg/kg -Natural Soil 
(Assam, India) -Wet spiking 30 d 

-Survival 
-Growth 
-Reproduction 

Barua et al., 2013 

Enchytraeus 
albidus 30-50 

-0.2% w/w PVP coated 
-Zpot:-28.6 mV 
-from Nanoamor 

0-1000 mg/kg -OECD soil 
-Dry dosing for each 
replicate 
-Manually mixed 

2 d, 6 w 
-Survival 
-Reproduction  
-Gene expression 

Gomes et al., 2013 

E .fetida. 30-50 

-0.2% w/w PVP coated 
-Powder 
-Zpot:-28.6 mV 
-from Nanoamor 

500 mg/kg 

-Sandy loam from 
Askov 
experimental 
station (batch no. 
2031207) 
(Denmark). 

-Dry dosing 
-Addition of DI water 1, 2, 7, 14d -Gene expression 

-Enzymatic activity 
Hayashi et al., 
2013a 

E. andrei 15 -NM-300K (OECD) 
-Stabilizing agents 

-60, 120 and 200 
mg/Kg.  
-15, 30, 60, 120 and 
200mg/Kg. 

-RefeSol 01A soil 
-Application mixing carrier 
soil (5%) with test soil 
(95%) 

28 d 

-Reproduction 
-Ag content in 
earthworms and 
soil (ICP-OES) 

Schlich et al., 2013 

E. andrei 10 
-1% w/w citrate 
coated 
-from ABC Nanotech 

0-2000 mg/kg -OECD soil -Wet spiking for each dose  7 d 
-Survival 
-Cell viability 
-Cytotoxicity 

Kwak et al., 2014a 

L. rubellus 15 -NM-300K (OECD) 0-154 mg/kg (E1, E2) 
0-1000 µg/ml (E3) 

-Sandy loam soil 
from an 
experimental 
organic farm (E1, 
E2) 
-Culture medium 
(E3) 

-Wet spiking 4w (E1, E2) 
18-20 h (E3) 

-Reproduction (E1) 
-Adult (E1) and 
juvenile (E2) 
survival, and growth 
-Tissue pathology 
-Cell viability (E3) 

Van der Ploeg et al., 
2014 



 

 

 

Table 2. (Continued II) 

 

Species 
tested 

NPs Size 
(nm) 

NPs 
Characterization 

Concentration 
ranges 

Exposure 
media Dosing Duration Endpoint Reference 

E. fetida 50 
-Uncoated 
-Powder 
-from NanoTrade Ltd 

0-4395 mg/kg -LUFA 2.2 soil 

-Dry dosing to a sub-sample 
and then mixed with the 
remaining soil 
-1, 9, 30 and 52 w aging 
 

28 d 
-Survival 
-Growth 
-Reproduction 

Diez-Ortiz et al., 
2015a 

L. rubellus 50 
-Uncoated 
-Powder 
-from NanoTrade Ltd 

100 and 500 mg/kg -LUFA 2.2 soil 

-Dry dosing to a sub-sample 
and then mixed with the 
remaining soil 
-1 w stabilization 

Up to 7 d 
-Toxicokinetic 
patters (uptake 
routes) 

Diez-Ortiz et al., 
2015b 

E. fetida 10 -Uncoated 
-from Nanoamor 0-1500 mg/kg -OECD soil 

-10 g of sand per replicate 
were mixed with the Ag 
NPs and then added to the 
remainder soil. 
-Spiking individually per 
replicate 

4 and 28 d -Biochemical 
analysis  Gomes et al., 2015 

E. fetida 50 

-PVP coated 
-Powder 
-from Institut Catalá 
de Nanotecnología 
(ICN) 

0-1758 mg/kg -LUFA 2.2 soil -Dry dosing 
-1 w stabilization 28 d 

-Survival 
-Growth 
-Reproduction 
-Transcriptome 
analysis 

Novo et al., 2015 

E. crypticus 15 -NM-300K (OECD) 
-Uncoated 0-225 mg/kg -LUFA 2.2 soil 

-Wet spiking, individually 
per replicate 
-3d stabilization 

3 and 7 d 
-Reproduction 
-Biochemical 
analysis  

Ribero et al., 2015 

E. fetida 15 -NM-300K (OECD) 
-Uncoated 0-20 µg/ml 

-PBS and culture 
medium (RPMI-
1640) 

-Suspension in DI water  
 24 h 

-Cytotoxicity 
-ROS 
-Gene expression 

Hayashi et al., 
2016 

L. rubellus 20, 35, 50 

-bovine serum 
albumin,  
chitosan and PVP. 
coated 
-from Institut Catalá 
de Nanotecnología 
(ICN) 

0-250 mg/kg 
-Natural soil from a 
reference 
experimental 
organic farm 

-Wet spiking 
-24 h stabilization 28 d 

-Bioaccumulation 
-Survival 
-Growth 
-Reproduction 

Makama et al. 
2016 
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 STATE OF THE ART 

In the last years, manufactured nanoparticles (NPs) are being incorporated in many 

consumer products with several uses. The majority of NPs are metal based and among 

them silver NPs (Ag NPs) are the most used due to their unique optical, catalytical and 

antimicrobial properties, which render them high commercial and scientific interest. 

Concomitantly with the applications of Ag NPs, an increase in the amount of nanosilver 

entering into the environment is expected. In soils, the major input of Ag NPs is through 

the disposal of waste water treatment plant (WWTP) sludges, mainly after their land 

application as fertilizer (biosolids) or incineration and posterior deposition. At present, 

there is no available data regarding measurements of NPs in the environment due to the 

limitations of the analytical methods. Nevertheless, estimations based on fate models 

predicted concentrations that will undoubtedly increase in the forthcoming years due to 

the high proportion of sludge or sludge incineration residues land-disposal. Therefore, 

concerns are growing because the novel properties of Ag NPs could pose a risk to 

human health and to the environment. Toxic effects of Ag NPs have already been 

demonstrated in the laboratory for many species living in different compartments, but 

in general terms, very few studies assessing Ag NPs toxicity have involved the terrestrial 

compartment and soil organisms. 

Earthworms play an important role in soil ecosystems and are one of the most studied 

sentinel taxa in terrestrial ecotoxicology and soil health assessment since their pollutant 

body burdens reflect environmentally bioavailable pollutant levels and can exert 

measurable responses and adverse effects. Therefore, the study of effects exerted by Ag 

NPs on earthworms is crucial to understand the potential impacts of Ag NPs in soils. 

Among earthworms, Eisenia fetida is a model species in toxicology that has been broadly 

used in standardized OECD toxicity tests (OECD-207-, OECD-222). These conventional 

tests are aimed to address traditional endpoints such as survival, growth and 

reproduction after exposure to chemicals, in order to calculate different toxicity indices 

(LCx and ECx). 

Biomarkers at different complexity levels (molecular, biochemical, cellular, tissue) could 

be also measured in E. fetida in order to assess the toxic effects of Ag NPs. These 

biomarkers can be put together into integrative indexes to summarise and obtain a 

conclusive outline of the responses of sentinel organisms in order to assess soil health.  
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The scarce research works dealing with Ag NPs toxicity in earthworms have used Ag 

NPs in concentration ranges order of magnitude higher than those expected in the 

environment. In addition, different test soils (artificial and natural) with different 

physico-chemical characteristics have been used. Such characteristics need to be taken 

into consideration since would affect the fate and behavior of Ag NPs, and subsequently 

their accumulation, uptake and toxicity in earthworms.  

Recently, the potential of in vitro techniques and "omics" technologies is beginning to be 

harnessed to provide a number of promising applications in nanotoxicology. In vitro 

approaches with primary cultures of earthworm coelomocytes have been successfully 

developed as cost-effective tools for the screening of potentially toxic agents by greatly 

reducing the number of animals used and allow defining and controlling exposure 

conditions (e.g. dosing, specific targeting) opposite to in vivo set ups. Among 

coelomocytes two major subpopulations can be distinguished in E. fetida earthworms, 

amoebocytes and eleocytes that exhibited dissimilar cytochemical, morphometrical, 

ultrastructural and functional characteristics and also a different behavior against 

pollutants. These two populations can be distinguished using flow cytometry according 

to their size, granularity and autofluorescence. Changes in their mortality rate and 

relative proportion have been scarcely applied in soil ecotoxicology but could help to get 

deeper knowledge about accumulation, mechanism of action and toxicity of chemical 

compounds in general and of Ag NPs in particular.  

 

 HYPOTHESIS 

A reliable screening diagnosis of the toxicity produced by PVP-PEI coated Ag NPs in soils 

can be achieved after the establishment of the main uptake route (through standard 

toxicity tests) and through the definition of accurate test soils (artificial vs. natural), the 

integration of biomarker responses at different levels of biological complexity 

(molecular, biochemical, cell, tissue, organism), the selection of the most reliable 

conditions for in vitro toxicity testing (conventional and natural culture media, viability 

assays), and the discrimination of the responses given by two subpopulations of 

coelomocytes (amoebocytes vs. eleocytes) in Eisenia fetida earthworms. 
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 OBJECTIVES 

In order to experimentally test this hypothesis, the following objectives were 

established: 

1- To determine the uptake routes and to assess the toxicity of PVP-PEI coated Ag 

NPs in soil through the implementation of different exposure media based 

standard toxicity tests (OECD) and cellular biomarkers (coelomocyte number 

and viability) in E. fetida earthworms (Chapter 1).  

2- To perform an integrative assessment of the toxic effects exerted by sublethal 

concentrations (close to lethality threshold, and close to environmental 

predictions based on in silico models) of PVP-PEI coated Ag NPs at different 

levels of biological complexity in E. fetida earthworms maintained in two 

widely used standard soils (OECD and LUFA 2.3) (Chapter 2). 

3- To compare the toxicity of PVP-PEI coated Ag NPs with the soluble form 

(AgNO3) at sublethal concentrations (close to lethality threshold, and close to 

environmental predictions based on in silico models) in E. fetida earthworms, 

using biochemical endpoints measured in target tissues and cellular and 

molecular level endpoints (cell number and viability and transcription levels of 

cat and mt) measured in coelomocytes extruded from exposed earthworms 

(Chapter 3). 

4-  To assess through in vitro approaches (microplate viability assays, flow 

cytometry, cell sorting) the toxicity of PVP-PEI coated Ag NPs in primary cultures 

of E. fetida coelomocytes, after a previous selection of an optimal medium for 

coelomocytes culturing and the most responsive viability assay (Chapter 4). 
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CHAPTER 1 

Uptake route and resulting toxicity of silver nanoparticles 

in Eisenia fetida earthworm exposed through standard 

OECD tests 
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Abstract 

Despite the increasing interest in silver nanoparticles (Ag NPs) toxicity still few works dealt 

with the hazards of nanosized Ag in soils (either dissolved in pore water or coupled to 

colloids) although disposal of waste water treatment plant (WWTP) sludges or biosolids in 

landfills has been reported as the major source of Ag NPs in terrestrial environments. In the 

present chapter, Eisenia fetida was used to assess the toxicity of 5 nm sized PVP-PEI coated 

Ag NPs in soil through the implementation of different exposure media standard toxicity 

tests (Paper Contact and Artificial Soil –OECD-207- and Reproduction –OECD-222- tests) 

together with cellular biomarkers measured in extruded coelomocytes. In order to decipher 

the mode of action of Ag NPs in soil and the uptake routes in earthworms, special attention 

was given to the Ag accumulation and distribution in tissues. High Ag accumulation rates, 

weight loss and mortality due to the disruption of the tegument could be the result of a 

dermal absorption of Ag ions released from Ag NPs (Paper Contact test). However, 

autometallography showed metals mainly localized in the digestive tract after Artificial Soil 

test, suggesting that Ag uptake occurred mostly through soil ingestion. That is, Ag NPs 

attached to soil particles or colloids seemed to be internalized in earthworms after ingestion 

of soil and transferred to the digestive gut epithelium where at high doses they have 

triggered severe effects at different levels of biological complexity.  

Key words: Silver Nanoparticle (Ag NP), Soil, Eisenia fetida, OECD Standard toxicity test, 

Uptake route. 
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Laburpena 

Zilar nanopartikulek (Ag NPs) lurzoruetan izan ditzaketen toxikotasunaren ezaguera eskasa 

da egun. Ag NPak nekazaritzan erabiltzean diren hondakin uren araztegietako (HUA) 

lokatzen bitartez heldu daitezke lurzorutara eta bertan beren osagaiekin interakzio 

desberdinak pairatu ditzakete (uretan disolbatu edo koloideekin elkarreraginak jasan 

ditzakete adibidez). Kapitulu honetan, 5 nm-ko PVP-PEI estalduradun zilar nanopartikulen 

toxikotasuna aztertu izan da esposizio medio desberdinetan oinarritutako toxikotasun test 

estandarrak Eisenia fetida zizareetan erabiliz (Paper Contact eta Artificial Soil –OECD-207- 

eta Reproduction –OECD-222- testak). Horietaz gain, biomarkatzaile zelularrak neurtu izan 

ziren Ag NP pean izandako zizareetatik erauzitako zelomozitoetan. Ag NPak lurzoruetan 

duten portaera eta zizareetan duten sarrera bide nagusia ezagutu nahian, ehunen zilar 

metaketa eta metaketa guneei arreta berezia eskaini zitzaien. Zilar metaketa balio altuak, 

pisu galera eta tegumentuaren hausteak eragindako hilkortasuna ikusi ziren dermis 

bitarteko esposizio pean egondako zizareetan (Paper Contact test). Hala ere, lurzoru 

bitarteko esposizioaren ondoren egindako autometalografiak zilarra liseri-traktuan topatu 

zuen nagusiki, liseri-traktu bitarteko esposizio bidearen nagusitasuna zehaztuz. Beraz, 

lurzoru partikula edo koloideetara atxikituriko Ag NPak ingesta bitartez barneratuko dira 

zizareetan eta behin traktu epitelioan, dosi garaietan, efektuak eragingo dituzte zizareen 

konplexutasun maila desberdinetan. 

Hitz gakoak: Zilar nanopartikula (Ag NPs), Lurzorua, Eisenia fetida, OECD toxikotasun test 

estandarizatuak, Esposizio bidea 
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Resumen 

Es fácilmente constatable que actualmente hay pocos trabajos que se dedican al estudio de 

la toxicidad de las nanopartículas de plata (Ag NPs) en el ecosistema terrestre, a pesar de 

que la utilización de lodos de depuradora de aguas residuales (EDAR) en agricultura es su 

principal vía de entrada a éste compartimento. Hay que tener en cuenta, además, la gran 

cantidad de interacciones que pueden ocurrir entre estos materiales y los componentes del 

suelo (ej. disolución en el agua de poro o agregados con coloides). En el presente capítulo se 

ha evaluado la toxicidad de Ag NPs de 5 nm recubiertas con PVP-PEI en suelo mediante 

ensayos de toxicidad estandarizados (OECD) en lombrices Eisenia fetida utilizando 

diferentes medios de exposición (Paper Contact and Artificial Soil test –OECD-207- y 

Reproduction test –OECD-222-). Además, se han cuantificado biomarcadores celulares en 

celomocitos extruidos de lombrices expuestas in vivo a Ag NPs. Para entender el modo de 

acción de las Ag NPs en el suelo y su principal ruta de toma por las lombrices se han medido 

la acumulación y distribución de Ag en tejidos. Se han observado niveles altos de Ag en 

tejidos tras la toma de Ag (iónica) vía dermis (Paper Contact test), y se han determinado una 

pérdida de peso y mortalidad significativas debidas fundamentalmente a la 

desestructuración del tegumento. Se ha demostrado la localización mayoritaria de Ag 

mediante autometalografía en el tracto digestivo de lombrices mantenidas en suelo artificial 

(Artificial Soil test), y se ha demostrado que la ingesta de suelo es la ruta más importante de 

toma de Ag NPs en condiciones reales. De esta manera, las Ag NPs agregadas a coloides o 

partículas de suelo serían incorporadas por las lombrices vía ingestión, y ser a continuación 

transferidas al epitelio del tracto digestivo donde a dosis altas producen efectos severos a 

diferentes niveles de complejidad biológica. 

Palabras clave: Nanopartículas de plata (Ag NPs), Suelo, Eisenia fetida, Test estándar de 

la OECD, Ruta de toma 
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1. Introduction 

In recent years more than 438 consumer products (24% of the total products containing 

nanomaterials; e.g. detergents, paints, printer inks and textiles) contain silver 

nanoparticles (Ag NPs) (Vance et al., 2015). These NPs are mainly used in biomedical 

devices due to their antimicrobial properties (Nowack et al., 2011). Together with the 

increasing uses and applications of Ag NPs their release into different environmental 

compartments could occur and thus, the concern about the still scarcely known hazards 

of nanosized materials is growing considerably. To date, the potential risk of NPs has 

been studied in aquatic environments mainly, where several reviews have dealt with the 

environmental fate, exposure routes, and ecotoxicity data addressed trough in vivo and 

in vitro methodologies (McShan et al., 2014). Such studies included freshwater and 

marine species such as Daphnia magna, Chlorella kessleri, Danio rerio, Oncorhynchus 

mykiss and Mytilus galloprovincialis (Hund-Rinke et al., 2006; Katsumiti et al., 2015; 

Lacave et al., 2016; Lovern and Klaper, 2006). On the contrary, the effects of NPs on soils 

have been less investigated despite the great complexity of soil matrix and the potential 

interactions of soil components with pollutants. These components (organic matter, 

cations, soil colloids-clay and humic acid-, and water) together with the soil type varying 

pH and ionic strength factors, may affect the behaviour of NPs, with particular effect on 

the aggregation (i.e. homoaggregation, heteroaggregation) and subsequent effect on 

their toxicity to organisms inhabiting soils (Jośko and Oleszczuk, 2013). Apart from the 

soil factors, the basic physicochemical properties of NPs such as chemical composition, 

shape, size, surface area (coating agent) and charge must be taken into consideration 

when assessing their toxicity (Tourinho et al., 2012), as these parameters will also 

influence their fate and behaviour (dissolution, aggregation, agglomeration, etc.) in 

environmental matrixes. Therefore, determining the toxicity of NPs should take into 

account not only the character of the NPs as such, but also the soil properties above 

mentioned. 

Among NPs, Ag NPs in particular are predicted to primarily enter terrestrial system 

(Blaser et al., 2008; Gottschalk et al., 2009; Shoults-Wilson et al., 2011c), mainly through 

accidental spills during synthesis and transformation, after direct display of NPs in soil 

and water remediation technologies, atmospheric fallouts (e.g. after waste incineration) 

and agriculture (through the use of nanopesticides, herbicides and fertilizers). However, 

the major source of Ag NPs deposition onto soils is currently through the disposal of 

wastewater treatments plant (WWTP) sewage sludge or biosolids, mainly after their 

http://www.tandfonline.com/author/Jo%C5%9Bko%2C+Izabela
http://www.tandfonline.com/author/Oleszczuk%2C+Patryk
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land application or incineration and posterior deposition (Tourinho et al., 2012). Even 

more, the predicted concentrations in sewage sludges range from 1.33 to 4.44 mg Ag 

NPs/kg in Europe based on products life-cycle release models (Gottschalk et al., 2009, 

2010).  

Ecotoxicological tests to determine the toxicity of NPs to soil organisms can be carried 

out with earthworms such as Eisenia fetida placed in different exposure media (e.g. 

moisten paper and standard soil). E. fetida is a model terrestrial organism, broadly used 

in standard toxicity tests (OECD, ISO) due to its sensitivity to different toxicants. 

Although being epigeic and living in decaying organic matter, in compost or mold, the 

choice of E. fetida is pertinent since it represents an inexpensive and non-controversial 

model for experimentation (Bilej et al., 2010). Additionally, its historical use in standard 

tests allows the direct comparison of results with reported data. Earthworms are able to 

uptake chemicals not only by soil ingestion but also from pore water through the outer 

body wall (Lord et al., 1980). The Paper Contact toxicity test (OECD-207) is an accurate 

initial screening method to identify toxicity (LCx and ECx) and reflects dermal contact 

exposure, is easy to perform and gives high reproducibility (Zhang et al., 2009; 

Heckmann et al., 2011). However, the assessment of the effects produced by the 

incorporation of toxic substances by ingestion (solid phase) via gut requires more 

detailed testing and should include the assessment of the acute toxicity (Artificial Soil 

test) and effects on the reproductive output (Reproduction test) in real exposure media 

(soils).  

Apart from assessing effects on survival, body weight and reproduction, and 

accumulation and tissue distribution of Ag, changes in the immune activity of 

earthworm coelomocytes can be sensitive indicators too. Content and activity of the 

coelomic immune cells (coelomocytes) of annelids are known to vary not only between 

species but also within them depending on the presence of stress factors in soil such as 

heavy metals (Plytycz and Morgan, 2011). Thus, recently, parameters such as the total 

number and viability (membrane integrity by Neutral Red Uptake and Retention assays) 

of coelomocytes have been used as biomarkers to assess the impact of metals on 

annelids (Asensio et al., 2007, Homa et al., 2015, Irizar et al., 2014b, 2015a). Therefore, 

the aim of the present chapter is to assess the toxicity of PVP-PEI coated Ag NPs in soil 

through the implementation of different exposure media based standard toxicity tests 

(OECD) in E. fetida earthworms together with cellular biomarkers measured in 

coelomocytes. In order to accurately understand the toxicity exerted by Ag NPs and 
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their mode of action in terrestrial environments a central focus was given to the tissue 

distribution and uptake routes of Ag in E. fetida earthworms. 

2. Materials and methods 

2.1. Test species 

Eisenia fetida earthworms were purchased from a commercial dealer (LOMBRICOR 

S.C.A., Córdoba, Spain) and set as laboratory culture maintained in containers at 19 ± 2 

°C, in darkness and constant humidity. As food source medication-free horse manure 

was provided when required. The earthworms used for the experiments were all 

healthy adults, clitellated and of similar size (300-500 mg individual weight). 

2.2. Test substances 

The tested Ag NPs (NP Ag-2106W purchased from NANOGAP SUB-NM-POWDER, S.A., A 

Coruña, Spain) were 5.08 ± 2.03 nm sized, polyvinylpyrrolidone-polyethylenimine (PVP-

PEI, 3.35:1) coated, with 18.6 ± 7.9 mV Z-potential. Ag NPs were water dispersed, 10 g 

Ag/L with 104 g PVP-PEI/l. More details on the characterization of Ag NPs are given in 

Appendix I. The coating agent PVP-PEI was tested separately at the same concentration 

range and pH as present in the Ag NPs suspension (PVP10-polyvinylpyrrolidone, Mw 

10000 and PEI-polyethylenimine, Mw 25000 by LS; both from Sigma-Aldrich).  

2.3. Soil preparation and spiking procedure 

The OECD artificial soil was prepared following the OECD guideline for testing of 

chemicals No. 207 (OECD, 1984), consisting the substrate of 70% sand (50% of the 

particles between 50-200 µm), 20% kaolin clay and 10% sphagnum peat sieved at 2 

mm. The pH was then adjusted to 7.0 ± 0.5 by addition of 0.01% calcium carbonate. Dry 

constituents were mixed, placed in glass containers and moistened to 40% of their 

water holding capacity (WHC, 21.91%) with suspensions of Ag NPs in distilled water or 

with distilled water in the case of the control group. After spiking, experimental soils 

were thoroughly mixed to ensure homogeneous distribution and were left stabilizing 

during 3 days before the exposure of the earthworms. 

2.4. Acute toxicity tests (OECD-207, 1984) 

2.4.1. Paper Contact test 

Earthworms were kept in moist paper voiding their gut contents (3 h) before being 

individually placed into glass vials containing filter paper cuts (8 x 5.5 cm) lined in their 
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sides and previously moistened with 1 ml of PVP-PEI coated Ag NPs in a range of 

concentrations from 0 to 200 µg/cm2 (0, 0.02, 0.06, 0.2, 0.6, 2, 6, 8, 16, 20, 66, 200 Ag 

NPs µg/cm2). In parallel, another set of earthworms was exposed to PVP-PEI in the same 

proportion (PVP: PEI, 3.35:1) and pH value (around 7.5) present in the Ag NPs solution. 

For the control group, vials were treated with 1 ml of distilled water. Ten replicates 

were done per treatment. Each vial was sealed with a plastic net and maintained in 

darkness at 19 °C for a period of 48 h. After exposure mortality rate and weight loss 

were recorded according to earthworm Acute toxicity test (OECD-207). 

Complementarily, for each treatment the post clitellar region of five depurated worms 

was dissected out, sectioned transversally in a cryotome (10 µm, Leica CM3000) and 

stained with hematoxylin/eosin for the examination of histopathological alterations and 

with Alcian Blue (pH 2.5) to visualize histochemically carboxylated mucopolysaccharids 

in the tegument. With the remaining earthworms (≤ 5) Ag accumulation and 

distribution (autometallography) in tissues was determined (see section 2.7). 

2.4.2. Artificial Soil test 

A total of nine experimental groups were prepared in order to obtain a limit-test 

concentration range from 0-500 mg Ag NPs/kg soil (0, 0.05, 0.5, 5, 50, 100, 200, 350 and 

500 mg/kg). According to the Acute toxicity test (OECD-207) 4 replicates of 750 g (wet 

weight) were carried out for each treatment. Earthworms previously maintained in non-

polluted OECD soil for 24 h were weighed in tens and introduced in the experimental 

soils during 3 and 14 days, in continuous light and constant humidity. Then, mortality 

and weight loss were recorded after 3, 7 and 14 days. During the exposure humidity was 

checked periodically.  

2.5.  Earthworm Reproduction test (OECD-222, 2004) 

Earthworms were exposed to a range of sublethal concentrations of Ag NPs through 

OECD artificial soil (0, 0.05, 0.5, 5 and 50 mg Ag NPs/kg soil). These concentrations were 

selected after analysing the results of the Acute toxicity tests and following the same 

spiking procedure. Adult earthworms were maintained in non-polluted OECD soil for 

acclimation during 24 h, weighted in tens and placed in containers with 500 g (dry 

weight) experimental soil. Four replicates were done per treatment. Test was carried 

out at 19 ± 2 °C under controlled light-dark cycles (8/16 h) and 5 g of medication-free 

horse manure were provided weekly during the first 4 weeks. After this period, adults 

were removed from the soils to determine effects on growth and the accumulation of Ag 
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in tissues (see section 2.7). After the adult removal, their offsprings were kept for 

another 4 weeks in the same experimental soils and conditions with the exception of the 

feeding. At day 56, effects on reproduction were assessed by counting cocoons and 

juveniles using the hand sorting technique twice in all samples (OECD, 2004). 

2.6. Silver concentration and pH of experimental soils 

At days 3 and 14 of the Artificial Soil test and day 56 of the Earthworm Reproduction 

test Ag concentration and pH were measured in experimental soils. The real 

concentration of Ag in soils was quantified following the EPA 3051A method. For that, 

soil samples (2 g) were acid digested (HNO3 : HCl, 3:1) in Teflon vessels in a microwave 

oven, filtered after cooling (0.45 µm, 25 mm, PVDF) and analysed in Inductively Coupled 

Plasma Mass Spectrometry (ICP-MS, 7700-Agilent Technologies) in the Central Analysis 

Service of the UPV/EHU (SGIker). For QA/QC, blanks were ensured to be below the limit 

of quantification (LOQ < 0.01 µg Ag/l) and samples and Certified Reference Materials 

(CRMs) measurements were replicated with RSD < 3%, and only measurements within 

the nominal value of CRMs plus uncertainty were accepted. The CRMs used were sewage 

sludge 3 (RTC, 100 ± 9.96 mg Ag/kg) and sewage sludge 4 (Sigma-Aldrich, 64.7 ± 8.17 

mg Ag/kg). 

For the measurements of the pH an adaptation of the ISO 10390: 2005 “Soil Quality – 

Determination of pH in water” was followed. Soil samples from each replicate were 

mixed with distilled water (1:5), shaken during 1 minute and left to settle for 45 

minutes. The process was repeated twice and then the pH of the liquid phase was 

measured using a calibrated pH-meter (CRISON micro pH 2001).  

2.7. Silver accumulation and distribution in earthworms 

Ag concentration in tissues was quantified by ICP-MS in the surviving earthworms at the 

end of each standard toxicity test (Paper Contact test, Artificial Soil test and Earthworm 

Reproduction test). Depurated earthworms were dried at 120 °C for 48 h (individually 

after Paper Contact test and in pools of five worms in the case of the Artificial Soil and 

Reproduction tests), weighted and digested in HNO3 Tracepur® 69%. Once the 

concentrated acid was evaporated, pellets were resuspended in 0.01 M HNO3 

Tracepur® and Ag analysed in the Central Analysis Service of the UPV/EHU (SGIker). 

Distribution of Ag in earthworm tissues was studied by the implementation of the 

autometallographical method (Soto et al., 1996). After exposure through Paper Contact 
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(48 h) and Artificial Soil (days 3 and 14) tests, five earthworms per treatment were 

placed in Petri dishes with moist filter paper for 24 h to depurate, then were cleaned, 

dissected out and tissues histologically processed. The dissection was made according 

to the zonation in the digestive tract described by Irizar et al. (2014a). Following these 

criteria, a small post clitellar section (around 5 segments) for transversal sectioning and 

the next section (around 10 segments) for longitudinal sectioning were used for the 

histological analysis. The portions were immersed in formalin (10% commercial 

formaldehyde in 0.1 M phosphate buffered saline-PBS- solution with 0.23% NaCl) for 24 

h at 4 °C and dehydrated in Leica ASP 300 tissue processor (in 70%, 96%, and 100% 

ethanol) before being embedded into paraffin blocks. Afterwards, 5 µm sections were 

obtained in a Leica RM 2125RT microtome. A set of various sections was extended onto 

slides, dewaxed with xylene and rehydrated through several baths of ethanol (100%, 

96% and 70%) and air dried. Autometallography was then carried out with the 

BBInternational Silver Enhancing Kit for Light and Electron Microscopy (BBI Life 

Sciences). A mix of initiator and enhancer reagents (1:1) was applied as drops onto each 

tissue section placed in a moisture chamber to avoid desiccation. After 25 minutes of 

reaction the slides were washed several times with distilled water, dried, covered with 

Kaisers´ glycerol gelatine and overlaid with a cover slide. Ag tissue distribution was 

visualized under light microscope as autometallographed Black Silver Deposits (BSDs). 

2.8. Coelomocyte number and viability in exposed earthworms 

After 3 and 14 days of exposure through artificial soil, from the treatments 0, 0.05, 0.5, 

5, 50, 500 mg Ag NPs/kg 5 earthworms were pooled together and their coelomocytes 

extruded to perform the Calcein AM viability assay. First, earthworms were cleaned 

with distilled water by softly massaging their body in order to remove any soil particle 

attached to the tegument or in the posterior part of their digestive tract. Then pools of 

five individuals were immersed in extrusion solution (0.02% EDTA in PBS with 0.23% 

NaCl, 1 ml per worm) and were subjected to an electric stimulation with a 9 V battery to 

allow the release of coelomocytes through dorsal pores (Irizar et al., 2014b). The cell 

suspensions were transferred to tubes, centrifuged (530 x g, 10 min, 10 °C) and 

resuspended in 5 ml of PBS for posterior cell counting under light microscope. Neubauer 

chamber was used to count and adjust the cell density of each pool to 106 cells per ml. 

Then 2 x 105 coelomocytes per well were seeded in a 96-well microplate (six well per 

treatment) and were left to stand at 18 °C in darkness for 30 minutes. Afterwards, the 

microplate was centrifuged (530 x g, 5 min, 10 °C), supernatant removed and cells were 
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incubated for 40 minutes with 2.5 µM Calcein AM (n=3, 100 µl per well). In the 

remaining wells, instead of Calcein AM, 100 µl PBS were added in order to thereafter 

subtract the inherent fluorescence of cells. Coelomocytes were washed twice 

(centrifugation, supernatant removal and addition of 100 µl PBS) and fluorescence was 

measured at 490 ± 20 nm excitation filter and 520 ± 20 nm emission filter in FLx 800 

microplate fluorescence reader.  

2.9.  Statistical analysis 

The statistical analysis of the data was carried out with the aid of the SPSS statistical 

package (IMB SPSS Statistics 20). Shapiro-Wilk (n<30) and Levene´s tests were 

performed to study normality and equality of variances of the datasets, respectively. 

One-way ANOVA followed by Tukey´s pairwise comparison and Dunnet post hoc test 

was used as a parametric approach. The non-parametric datasets were analysed with 

Kruskal-Wallis followed by Dunn´s post-hoc test. Statistically significant differences 

were established at p<0.05 or p<0.01. Pearson´s correlation was followed to find the 

significance of the correlation coefficient (R) and the Probit model to estimate the 

median lethal concentration (LC50) and the effect concentration for 50% effect (EC50) 

after OECD standard toxicity tests.  

3. Results  

3.1. Silver concentration and pH of experimental soils 

The real concentrations of Ag in experimental soils did not differ significantly from the 

nominal concentrations in both Artificial Soil and Reproduction tests (Table 1). Soil pH 

did not change between treatments and remained stable during time with a neutral 

value for both tests (Table 1).  

3.2. Silver accumulation and distribution in earthworms 

The accumulation of Ag in earthworm tissues after Paper Contact toxicity test showed a 

dose-dependent increase, the maximum values being recorded after exposure to the 

highest doses of Ag NPs, 6 and 8 µg/cm2 (140.41 ± 68,27 and 105.91 ± 78.74 µg Ag/g, 

respectively; Table 2). 

After 3 and 14 days of exposure in the Artificial Soil test, Ag concentration in earthworm 

tissues followed an increasing dose-dependent gradient. Exposure to 500 mg Ag NPs/kg 

for 3 days rendered 29.70 µg Ag/g. After 14 days 100% mortality was recorded between 

200 and 500 mg Ag NPs/kg (Table 2) and the highest concentrations recorded were 
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14.10 and 18.20 µg Ag/g after exposure to 50 and 100 mg Ag NPs/kg exposure 

concentrations, respectively. Earthworms exhibited higher Ag concentrations after 14 

days than after 3 days of exposure being the accumulation in earthworms exposed to 50 

mg Ag NPs/kg significantly different. Earthworms maintained in Ag NPs polluted soils 

during the first 28 days of the earthworm Reproduction test exhibited lower Ag 

accumulation values than the obtained after 14 days of exposure in the Artificial Soil test 

(Table 2). 

After implementation of the autometallography and visualization at the light microscope 

few BSD were observed in control earthworms when compared with exposed 

specimens. High amounts of BSDs were observed surrounding the cuticle of earthworms 

exposed through the Paper Contact test to doses higher that 2 µg/cm2, being the highest 

amount found in 6 µg Ag NPs/cm2 dose (Fig. 1b), where Ag accumulation resulted to be 

the highest too (140.41 ± 68,27 µg Ag/g). After 3 days of exposure in the Artificial Soil 

test, no differences in the amount of BSDs were observed in the digestive tract 

epithelium and in the tegument between controls and the lowest Ag NPs exposure 

concentration (0.05 mg Ag NPs/kg). Exposure to 50 and 500 mg Ag NPs/kg showed a 

higher amount of BSDs. Earthworms exposed to 500 mg Ag NPs/kg exhibited BSDs in 

the apex of the digestive epithelium, in the chloragocytes and attached to the cuticle 

(Figs. 1C and 1c). After 14 days of exposure, BSDs were observed in the earthworms 

exposed to 5 and 50 mg Ag NPs/kg being the amount higher at 50 mg Ag NPs/kg in the 

same cell and tissue compartments mentioned beforehand (Figs. 1D and 1d). Silver 

deposits were more abundant in the digestive tract epithelium than in the tegument of 

animals exposed through soil. 

3.3. Histopathological alterations and mucopolysaccharid demonstration in 

the tegument  

The observation of histological sections stained with hematoxylin/eosin showed that 

control earthworms did not exhibit any histopathological alteration (results not shown). 

Cuticle disruption and epithelial thinning were clearly observed in the tegument of 

earthworms exposed to concentrations higher than 6 µg Ag NPs /cm2 (Paper Contact 

test, OECD-207), as observed in tissue sections stained with Alcian Blue (Fig. 2). 

Mucocytes were very conspicuous with an homogenous secretion covering completely 

the body of control earthworms (Fig. 2A). After exposure to doses higher than 6 µg Ag 

NPs/cm2, a reduced number of mucocytes was visualized (Fig. 2B). 



 

 

 

Table 1. Ag concentration (nominal and real values, mg Ag/kg soil) and pH of soils (1) at days 3 and 14 of the Artificial Soil test and (2) at day 56 of the 
Reproduction test. Values are represented as means ± standard deviations. (udl: under the detection limit, 0.06 mg/kg).  
 
(1) Artificial Soil test                   

Ag (mg / kg soil) 

Nominal 0 0.05 0.5 5 50 100 200 350 500 
Real 3 d udl udl 0.31 ± 0.03 3.98 ± 1.23 46.00 ± 6.96 _ _ _ 371.33 ± 106.82 

Real 14 d udl udl 0.36 ± 0.05 5.67 ± 2.91 43.93 ± 2.63 79.13 ± 3.46 165.25 ± 8.42 237.5 ± 45.71 432.00 ± 43.46 

Soil pH  
3 d 6.98 ± 0.1 6.96 ± 0.03 6.96 ± 0.04 7.24 ± 0.06 7.36 ± 0.03 _ _ _ 7.07 ± 0.14 

14 d 7.07 ± 0.70 7.05 ± 0.04 7.01 ± 0.03 7.09 ± 0.06 7.03 ± 0.06 6.75 ± 0.09 6.79 ± 0.06 6.91 ± 0.09 7.18 ± 0.13 

                        
(2) Reproduction test                   

Ag (mg / kg soil) 
Nominal 0 0.05 0.5 5 50         

Real udl 0.07 ± 0.03 0.42 ± 0.09 3.60 ± 0.76 36.02 ± 6.63         

Soil pH  56d 6.76 ± 0.08 6.82 ± 0.02 6.60 ± 0.23 6.84 ± 0.04 6.65 ± 0.10         

                        
udl= Under detection limit, 0.06 mg/kg                 
 

 

 

 

 

 

 



 

 

 

Table 2. Ag concentration in earthworm tissues (µg Ag/g) (1) after 48 h of the Paper Contact test, (2) after 3 and 14 days of the Artificial Soil test, and (3) 
after 28 days of the Earthworm Reproduction test. Values are represented as means ± standard deviations. (udl: under the detection limit, 0.03 µg/g; # 
100% mortality). Significant differences respect to control (p<0.05 with Kruskal-Wallis) are represented by asterisks. 

(1) Paper Contact test 
 
                     

        Ag NPs exposure 0 0.02 0.06 0.2 0.6 2 6 8   
(0) (0.8) (2.9) (8.8) (29) (88) (290) (362.5)   

        Ag in tissues (µg / g) 48 h 1.37 ± 0.26 2.95 ± 2.16 4.44 ± 2.30 6.77 ± 3.29 10.76 ± 2.53* 14.88 ± 9.86* 140.41 ± 68.28* 105.92± 78.74*   
                       
(2) Artificial Soil test                     
         Ag NPs in soil  (mg/kg) 0 0.05 0.5 5 50 100 200 350 500 

Ag in tissues (µg / g) 
 

3 d udl udl 0.07± 0.00 1.36 ± 1.09 0.54 ± 0.22 _ _ _ 29.7 ± 20.48 

14 d udl udl 0.10 ±  0.05 4.27 ± 1.23 14.10 ± 3,92* 18.20 ± 11.86* # # # 
                        

(3) Reproduction test               
        Ag NPs in soil  (mg/kg) 0 0.05 0.5 5 50         

        Ag in tissues (µg / g) 28 d udl 0.18± 0.23 udl 0.47 ± 0.54 3.44 ± 2.76*         
                        
udl= Under detection limit, 0.03 µg/g                 
# 100% mortality                     
* p < 0.05                       

(ppm) 
(µg/cm2) 
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Figure 1. Autometallography in transversal sections of the digestive tract (capital letters) and 
tegument (small letters) of E. fetida earthworms after the Paper Contact and Artificial Soil tests. 
Control earthworm (A, a); earthworms exposed to 6 µg Ag NPs/cm2 through Paper Contact tests 
(B,b) and exposed to 500 mg Ag NPs/kg during 3 days (C, c) and to 50 mg Ag NPs/kg for 14 days 
(D, d) through the Artificial Soil Contact test. Black Silver Deposits (BSDs) are labelled with 
arrows. CT: Chloragogenous tissue; DE: Digestive epithelium; T: Typhlosole; E: Epithelium; C: 
Cuticle; CM: Circular muscle; LM: Longitudinal muscle; SP: Soil particles in the gut. 
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Figure. 2 Demonstration of mucopolysaccharides after Alcian Blue (pH 2.5) staining in the 
tegument of control earthworms (A) and in earthworms exposed to 6 µg Ag NPs/cm2 (B) 
through the Paper Contact test (OECD-207). Mucocytes are labelled with asterisks and the 
detached cuticle with an arrow. m: Mucus layer, C: Cuticle, E: Epithelium, CM: Circular muscle, 
LM: Longitudinal muscle. Scale bar: 50 µm. 

3.4. Acute toxicity tests (OECD-207, 1984) 

3.4.1. Paper Contact test 

Ag NPs caused massive mortality (100%) in earthworms exposed though the Paper 

Contact toxicity test to concentrations higher than 16 µg Ag NPs/cm2. Significant 

mortalities (50%) were also recorded at lower doses (6 and 8 µg Ag NPs/cm2) where 

high values of Ag accumulation were observed (140.4 µg Ag/g and 105.9 µg Ag/g, 

respectively; Table 2). A severe weight loss (>20%) was detected at exposure 

concentrations higher than 0.06 µg Ag NPs/cm2, being significantly different to the 

control (distilled water moistened paper) from 0.6 µg Ag NPs/cm2 onwards (Fig. 3). 

PVP-PEI coating agent produced 100% mortality after exposure to 200 µg PVP-PEI/cm2 

and 10% mortality at 20 µg PVP-PEI/cm2. In contrast, the rest of the exposure 

concentrations did not produce any mortality (Fig. 3). A severe weight loss (47.51%) 

was recorded after exposure to 20 µg PVP-PEI/cm2 while the rest of exposure 

concentrations produced weight losses ranging 8-12% (Fig. 3).  

The LC50 value after Ag NPs exposure was 7.17 µg/cm2 (equivalent to 315.41 ppm) and 

the EC50 0.10 µg/cm2 (4.49 ppm). The LC50 value for the PVP-PEI coating agent was 

15.57 µg/cm2 (equivalent to 685.08 ppm). 
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Figure 3. Weight loss (% WL, solid lines) and mortality (%M, dotted lines) of E. fetida 
earthworms after exposure to PVP-PEI coated Ag NPs (black) and PVP-PEI coating agent (green) 
(0-200 µg/cm2) through the Paper Contact toxicity test. Weight loss values are represented as 
average ± standard deviations and significant differences (p<0.05 with Kruskal-Wallis) between 
treatments are represented by letters and asterisk.  

3.4.2. Artificial Soil test 

After 3 days of exposure to Ag NPs through artificial OECD soil 10% mortality was 

observed uniquely in the highest concentration (500 mg Ag NPs/kg soil, Fig. 4). 

Earthworms did not exhibit severe weight loss for the concentrations ranging from 0 - 

100 mg Ag-NP/kg soil (<10%). However, after exposure to 500 mg Ag NPs/kg 

earthworms lost around 25% of their initial weight showing significant differences with 

the groups exposed to 0.5 and 5 mg Ag NPs/kg (Fig. 4).  

After 7 days, 100% mortality was recorded after exposure to the highest concentrations 

(350 and 500 mg Ag NPs/kg soil), 67.5% after 200 mg Ag NPs/kg and 10% after 

exposure to 100 mg Ag NPs/kg (Fig. 4). Significant differences in weight loss after 7 days 

of exposure were only observed at 100 and 200 mg Ag NPs/kg (30-35%) in comparison 

with 0.5 mg Ag NPs/kg as well as between 200 mg Ag NPs/kg and 5 mg Ag NPs/kg (Fig. 

4). 

After 14 days, 100% mortality was observed after exposure to 350 mg Ag NPs/kg 

onwards, 95% after exposure to 200 mg Ag NPs/kg and 10% after 100 mg Ag NPs/kg 

(Fig. 4). The LC50 value was calculated in 144.20 mg Ag NPs/kg. Significant differences in 

weight loss could be observed for 50 and 100 mg Ag NPs/kg (20% and 35% 

respectively) when compared with lower doses (Fig. 4). The calculated EC50 regarding 
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weight loss at day 14 was 57.62 mg Ag NPs/kg, considering 20% weight loss as a 

significant effect. No significant differences were observed between exposure days 3, 7 

and 14. 
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Figure. 4 Weight loss (%) and mortality (%M) of E. fetida earthworms exposed to Ag NPs (0-500 
mg/kg) through OECD artificial soil during 3 days (white), 7 days (grey) and 14 days (black). 
Weight loss values are represented as average ± standard deviations and significant differences 
(p<0.05 with Kruskal Wallis) between treatments at days 3, 7 and 14 are represented by letters. 
ND: No Data. 

3.5. Earthworm Reproduction test (OECD-222, 2004) 

Adult earthworms removed from Ag NPs polluted soils after the first 4 weeks of the 

Reproduction test gained weight in all treatments, those exposed to the highest dose 

gaining less weight (50 mg Ag NPs/kg, Fig. 5A). The number of cocoons and juveniles 

followed a decreasing dose-response trend at increasing exposure doses, being the 

decrease statistically significant for the number of cocoons and its EC50 established at 

17.92 mg Ag NPs/kg (Fig. 5B).  
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Figure 5. Weight gained (%) by E. fetida earthworms after exposure to Ag NPs (0-50 mg/kg) 
during the first 4 weeks of the Reproduction test (A). Number of cocoons (B) and juveniles (C) 
counted in the same experimental soils at day 56 of the test. Weigh loss values are represented 
as average ± standard deviations. The regression line, its coefficient (R) and the significance of 
the correlation (**, p<0.01 with Pearson´s correlation) are shown for the number of cocoons. 

3.6. Coelomocyte number and viability in exposed earthworms 

The amount of coelomocytes present in the coelomic fluid extruded from exposed 

earthworms after the Artificial Soil test showed a decreasing trend at increasing Ag NPs 

dose (Fig. 6A). Exposures to 5 and 500 mg Ag NPs/kg during 3 days produced a 

significant reduction of the extruded cell number in comparison with control group (Fig. 

6A). After 14 days, the number of coelomocytes presented significant differences 

between the control and low concentrations of Ag NPs (0.05 and 0.5 mg/kg) with the 

highest doses (5 and 50 mg Ag NPs/kg) (Fig. 6A).  
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Figure 6. Number of coelomocytes (cell x 104/ ml) extruded from pools of 5 earthworms (A) and 
their viability through Calcein AM Viability assay (Calcein retention in % to the control, B) at 
days 3 and 14 of the Artificial Soil test. Values are represented as means ± standard deviations 
and the significant differences in cell number are represented by letters (p ≤ 0.05 with Dunnet 
test). 

The Calcein AM viability assay performed in coelomocytes extruded from exposed 

earthworms showed similar calcein retentions in controls and doses ranging from 0.05 
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to 5 mg Ag NPs/kg. A decrease occurred after 3 days of exposure to 500 mg Ag NPs/kg 

and after 14 days exposed to 50 mg Ag NPs/kg (Fig. 6B). 

4. Discussion 

The uptake of chemicals by earthworms occurs via soil ingestion and from pore water 

through the outer body wall (Lord et al., 1980). In this work these two main routes were 

studied when assessing the toxicity of PVP-PEI coated Ag NPs with the aid of standard 

tests (Paper Contact and Artificial Soil tests-OECD 207- and Reproduction test-OECD 

222) performed in different exposure medias (filter paper and soil). During the Paper 

Contact test, only dermal exposure occurred, while both, dermal (across body wall) and 

oral (via ingestion and absorption across the digestive gut epithelium) uptakes take 

place during Artificial Soil and Reproduction tests. 

The Paper Contact test evidenced that Ag NPs uptaken by body wall produced a 

significant weight loss and enhanced mortality in earthworms after exposure to 

concentration higher than 0.6 µg Ag NPs/cm2 for 48 h. Hence, the EC50 was established 

at 0.10 µg Ag NPs/cm2 (equivalent to 4.49 ppm of Ag NPs) and the LC50 at 7.17 µg Ag 

NPs/cm2 (315.41 ppm) (Table 3). The outer part of the earthworm body wall consists of 

an external cuticle and the epidermis. The cuticle acts as the primary barrier against 

external mechanical, chemical or biological hazards (Page and Johnstone, 2007). 

Although being permeable for respiration and perforated by epidermal secretory cell 

openings, the cuticle offers resistance to abrasion due to the mucus secretion by 

underlying mucocytes (Lapied et al., 2010). Epithelial mucocytes secrete mucus over the 

surface of the earthworm body in order to facilitate the locomotion through soils, 

prevent desiccation and eliminate metals from their body (Lapied et al., 2010; Vijver et 

al., 2003). It has been previously reported that dermal exposure to environmental 

stressors can affect the integrity and functionality of the tegument due to enhanced 

mucous secretion and epithelial disruption (Silva et al., 2016). Likely, the tegument of 

earthworms exposed to concentrations higher than 6 µg Ag NPs/cm2 were severely 

damaged exhibiting cuticle disruption, epithelial thinning and a reduction in the number 

of mucocytes in the epithelium. Conversely, the tegument of control earthworms 

exhibited intact cuticle and functional mucocytes with a homogenous secretion covering 

completely the surface of the body. It can be concluded that the dermal exposure to Ag 

NPs produced physical and functional disruption of the tegument as a whole (cuticle and 

epithelium), resulting in enhanced weight loss in earthworms. 



Chapter 1 

 

73 
 

Table 3 Effect concentration for 50% effect (EC50, ppm) and median lethal concentration (LC50, 
ppm) after Paper Contact and Artificial Soil tests (OECD 207) and Reproduction test (OECD 222). 
 

 

 

 

In nanotoxicology there is an ongoing challenge regarding whether the toxicity 

observed is caused by intrinsic properties of the NPs or due to their solubility and ion 

release, or a combination of both. Hence, dissolution is an important property of NPs 

which considerably influences their mode of action, and is governed mainly by the 

chemistry of the coating agents and size. The toxicity resulted after dermal exposure to 

Ag NPs (Paper Contact test) could be related, at least in part, to the solubility and the 

uptake of Ag free ions (released from Ag NPs) via the body wall (Vijver et al., 2003; Li et 

al., 2011). According to manufacturer specifications the 5 nm sized Ag NPs used in the 

present work were stable in water and were coated by polyvinylpyrrolidone-

polyethylenimine (PVP-PEI). PVP has been extensively used as coating agent because 

modifies the surface of NPs, stabilizing them and preventing ion release and reducing 

agglomeration (Misra et al., 2012). However, many studies demonstrated that Ag ions 

can be released from PVP coated Ag NPs (Navarro et al., 2008; Heckmann et al.. 2011). 

Furthermore, particle size has an inverse effect on the dissolution and ion release of NPs 

(Lapied et al., 2010; Sotiriou and Pratsinis, 2010; Zhang et al., 2011; Ma et al., 2012; 

Misra et al., 2012), and it is conceivable that the dissolution of 5 nm Ag NPs might occur 

under present exposure conditions. Thus, it could happen that earthworm were exposed 

rather to silver ions released to the test media, so Ag NPs would be acting directly as the 

ions. However, it cannot be discarded whether the effects reported herein are due to Ag 

NPs, released Ag ions or to both. This controversial point deserves further 

investigations. 

As mentioned before, the role of the coating agent can be a crucial factor since their 

combination with NPs may influence bioavailability and toxicity. Therefore, in order to 

discriminate whether the toxicity was exerted by Ag NPs themselves or by the coating 

agent PVP-PEI, or by the interaction of both, the Paper Contact test was carried out for 

PVP-PEI agent separately. The results showed that PVP-PEI only caused toxicity at very 

high doses, being its LC50 of 15.57 µg PVP-PEI/cm2 (equivalent to 685.08 ppm), that is, 

more than two folds higher than the estimated LC50 for PVP-PEI coated Ag NPs (7.17 

                                   Test                                                           
Substance Paper Contact  Artificial Soil  Reproduction  

Ag NPs 
EC50 (ppm) 4.49 57.62 17.92 

LC50 (ppm) 315.41 144.20 _ 

  PVP-PEI LC50  (ppm) 685.08     
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µg/cm2, Table 3). Thus, PVP-PEI was less toxic than coated Ag NPs. Likely, Gomes et al. 

(2013) reported the lack of toxicity due to this compound. However, we would like to 

suggest that the use of PVP-PEI in the formulation of Ag NPs should be limited since it 

caused severe weight loss in earthworms exposed to concentrations higher than 290 

ppm (Filter Paper test). 

The assessment of the effects produced by the incorporation of Ag NPs from the solid 

(oral uptake) and pore water (dermal uptake) phases requires exposure to soils. In this 

context, an adequate spiking and homogenising procedure is one of the most crucial 

issues when characterizing the toxicity of contaminants in soils (Waalewijn-Kool et al., 

2012). The chemical analyses carried out in the Ag NPs spiked soils clearly showed that 

the measured real concentrations did not differ significantly from the nominal 

concentrations. Similarly, the pH of the soils did not change with time nor between 

treatments, so was constant and within the optimum range for the experiments, around 

7.0. It is well known that metal uptake by earthworms is affected by soil pH, with the 

highest bioavailability and uptake rates occurring at acid soils (Leveque et al., 2013). 

However, under the present exposure conditions pH dependent changes in Ag NPs 

dissolution rates were not expected. Time-dependent Ag accumulation, mortality and 

weight loss were recorded in earthworms maintained in artificial soil with 

concentrations higher than 100 mg Ag NPs/kg. Interestingly, the concentrations that 

produced mortality (LC50 144.20 mg Ag NPs/kg) and severe weight loss (EC50 57.62 mg 

Ag NP/kg) on the half of the population were much higher than the predicted 

environmental concentrations for Ag NPs in biosolids of Europe (1.33 - 4.44 mg/kg; 

Gottschalk et al., 2010). Nevertheless, these lethal and effect concentrations were 

obtained in laboratory experiments using standard soils, whereas in a real scenario soil 

components and varying factors may affect the fate and behavior of NPs and 

subsequently increase their toxicity to organisms inhabiting soils. 

Effects exerted by environmental factors (including pollutants) at high levels of 

biological organisation have the advantage of being ecologically relevant and are widely 

used tools for the overall assessment of soil health (Lionetto et al., 2012). For instance, 

effects on reproduction (assessed by standard OECD tests) are one of the most sensitive 

toxicological parameters due to the fact that even small changes in reproduction can 

severely affect the survival of the population (Scott-Fordsmand et al., 2008). In the 

present study, reproduction was also demonstrated to be a more sensitive endpoint 

compared to mortality and weight loss (EC50cocoon number 17.92 mg Ag NPs/kg, Table 3). In 
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fact, a variety of chemicals (i.e. chlorpyrifos and cadmium) can completely suppress 

reproduction without producing effects on body size (growth) suggesting that energy is 

more used for metabolic repair than for the production of offspring (Jager et al., 2006). 

Accordingly, Ag NPs are able to cause total or partial reproductive failure in Oligochaeta 

(Gomes et al., 2013; Hekmann et al., 2011; Schlich et al., 2013; Shoults-Wilson et al., 

2011a, 2011b; present chapter). However, some of these studies were designed as limit-

test toxicity screenings (up to 1000 mg Ag NPs/Kg), whereas presently only sublethal 

concentrations were employed. Still, alterations in the reproductive output derived from 

Ag NPs exposure should be closely monitored in soil invertebrates such as earthworms.  

E. fetida earthworms exposed to similar concentrations of Ag NPs through soils and 

through paper contact accumulated nearly the same amounts of Ag, although the time of 

exposure was far shorter in the latter. These lower accumulation rates recorded in soil 

could be the result of the lower bioavailability of Ag NPs, probably due to the adsorption 

and formation of complexes together with clay and organic matter (Coutris et al., 2012; 

Gomes et al., 2013), which made them less available for absorption. Nevertheless, 

mortality was much higher in the earthworms that were exposed to Ag NPs in soil. This 

feature might confirm the existence of two uptake routes for Ag NPs, dermal and soil 

ingestion. Previous studies have proved that metals such as Cu, Pb, Cd and Zn are 

absorbed via the dermal route (Vijver et al., 2003), whereas oral exposure is dominant 

for the assimilation of Ag and Ag NPs in soils (Diez-Ortiz et al., 2015b). Ag NPs contained 

in soil were incorporated into the digestive epithelium where the low pH of epithelial 

cell lysosomes could oxidize NPs and induce a series of reactions not occurring outside 

the organisms (Gomes et al., 2013; Hayashi et al., 2012). These reactions would explain 

the enhanced toxicity observed under present exposure conditions (digestive 

impairment and subsequent weight loss and mortality). In fact, the intracellular 

accumulation of Ag NPs could act as a source of Ag ions mediating oxidative stress and 

cellular damage in situ, a putative mechanism known as the Trojan-horse effect 

(Limbach et al., 2007).  

The combination of standard toxicity tests (Paper Contact, Artificial Soil and 

Reproduction tests) and the autometallography technique implemented in the present 

work, was a valuable tool not only to assess the effects exerted by Ag NPs, but also to 

decipher the uptake routes (dermal or oral) and the target organs where Ag is 

distributed (digestive epithelium, chloragogenous tissue and cuticle). BSDs (formed 

around Ag ions released from Ag NPs and/or formed around Ag NPs themselves) were 
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localized surrounding the cuticle after exposure through Paper Contact test and in the 

digestive tract (in the apex of the digestive epithelium and in the chloragogenous tissue) 

and attached to the cuticle in the case of the Artificial soil test. Even though, BSDs were 

more abundant in the digestive epithelium, which proves that Ag uptake occurred 

mostly through soil ingestion rather than via dermal exposure, being the latter more 

related with the absorption of free ions or chemicals present in the pore water of the 

soils (Spurgeon et al., 2006). Evidencing this, Leveque et al. (2013) reported that the 

absolute uptake of metals was higher via the digestive tract than via the dermal route 

when metal concentration was high in the solid phase and low in the aqueous phase. 

Diez-Ortiz et al. (2015a) measured Ag concentrations in the pore water of soils spiked 

with Ag NPs, distinguishing the percentage of particulate (intact Ag NPs and silver 

associated to colloids) and dissolved Ag following ultrafiltration. After one week of 

aging, 0.15% Ag (respect to the Ag measured in soil) was recorded in the pore water 

phase and the dissolved ions fraction scarcely reached 0.05% (Diez-Ortiz et al., 2015a). 

Hence, Ag NPs would form complexes with the solid phase of the soils and they would 

be internalized by earthworms through ingestion to then interfere with the correct 

functioning of the gut epithelium, thus, affecting on the earthworm survival.  

Autometallography showed that metals were located in the digestive epithelium 

primarily, however, the cells comprising the chloragogenous tissue (chloragogen cells) 

could have accumulated Ag NPs too. Chloragocytes derived from the chloragogenous 

tissue are part of the immune system of earthworms (coelomocytes) and thus, they 

exhibit a well-developed lysosomal system (Peeters-Joris, 2000), known to accumulate 

metals. It has been reported that the number of coelomocytes varies after exposure to 

metals (Plytycz and Morgan, 2011; Podolak et al., 2011), in most of the cases being 

reduced as a result of changes in the permeability of the cell membrane that leads to 

diminished cell viability. Likely Ag NPs largely reduced the number and viability of 

coelomocytes extruded from exposed earthworms at the highest exposure 

concentrations. Coelomocytes are involved in eliminating foreign material by 

phagocytosis and encapsulation (amoebocytes) and they also synthesize and secret 

cytolitic components into the coelomic fluid (chloragocytes or eleocytes), causing 

haemagglutination, opsonisation as well as lysis of non-self material (Bilej et al., 2010). 

Recent in vitro test with coelomocytes demonstrated the selective intracellular 

accumulation of Ag NPs in the amoebocyte subpopulation and their role as scavengers 

of Ag NPs, effecting cytokine release and even death of the cell (Hayashi et al., 2012). 
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Thus, a phagocytic uptake of Ag NPs may have occurred, which explains the observed 

toxicity (reduced number and viability of extruded coelomocytes) and the consequent 

dysfunction of the immune system at cellular level (Plytycz and Morgan, 2011).  

One of the most important aims of applying biomarkers in ecotoxicology, like the 

viability of coelomocytes in earthworms, is to detect changes at low concentrations and 

short exposure periods, which can be linked with effects occurring at longer exposure 

times and have an effect on high levels of biological complexity (organism and 

population level). In this work, the toxicity assessment of coelomocytes at 50 mg Ag 

NPs/kg after 14 days of exposure showed a negative effect on the cells without 

noticeable effects on mortality at organism level. However, longer exposure periods to 

that Ag NP concentration (56 days) caused a strong reduction in reproduction, 

evidencing the valuable usefulness of the assessment of the immune system in 

earthworm-based ecotoxicity tests as early-response biomarker. 

5. Conclusions 

The standard toxicity tests (OECD) in E. fetida earthworms have provided relevant 

toxicity data for soil ecotoxicology and in this case, they also allowed the understanding 

of the behaviour of 5 nm sized PVP-PEI coated Ag NPs in two different exposure 

conditions. This way, the effects recorded after exposing earthworms to high doses of Ag 

NPs through the Paper Contact test (high Ag accumulation rates and weight loss and 

mortality due to the disruption of the tegument), could be the results of a dermal 

absorption of Ag ions released from Ag NPs. So this preliminary test could be 

representative of the uptake and resulting toxicity in earthworms of chemicals dissolved 

in the pore water of real soils. However, the implementation of autometallography 

indicated that in real situations where earthworms are exposed to the Ag NPs in soil 

media, Ag NPs are internalized mainly via ingestion of soil, and are then uptaken by the 

digestive gut epithelium causing severe effects on survival, growth and reproduction. 

Complementarily, the cell biomarkers measured in the coelomocytes of exposed 

earthworms offered rapid and accurate information since they were able to predict 

impairments caused by Ag NPs in higher complexity and exposure levels, demonstrating 

the suitability and usefulness of cell level biomarkers in nanotoxicology. In addition, it 

must be pointed out that the toxicity showed in this study could be exerted by the Ag 

NPs or released Ag ions, but not from the PVP-PEI coating agent. 
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Abstract 

There is a potential risk to increase the release of silver nanoparticles (Ag NPs) into the 

environment. For instance, in soils receiving sludge models estimate 0.007 mg Ag NPs/kg 

that will annually increase due to sludge or sludge incineration residues land-disposal. Thus, 

the concern about the hazards of nanosilver to soils and soil invertebrates is growing. 

Studies performed up to now have been focused in traditional endpoints, used limit range 

concentrations and employed different soil types that differ in physico-chemical 

characteristics. In the present chapter, effects of PVP-PEI coated Ag NPs have been 

measured at different levels of biological complexity in Eisenia fetida earthworm, exposed 

for 3 and 14 days to high but sublethal (50 mg Ag NPs/kg) and close to modelled 

environmental concentrations (0.05 mg Ag NPs/kg). Since characteristics of the exposure 

matrix may limit the response of the organisms to these concentrations, experiments were 

carried out in OECD and LUFA soils, the most used standard soils. High but sublethal 

concentrations of Ag NPs increased catalase activity and DNA damage in earthworms 

maintained in OECD soils for 14 days while in LUFA 2.3 soils produced earlier effects 

(weight loss, decrease in cell viability and increase in catalase activity at day 3). At day 14, 

LUFA 2.3 soil (containing low clay and organic matter-OM-) could have provoked starvation 

of earthworms, masking Ag NPs toxicity. The concentration close to modelled 

environmental concentrations produced effects uniquely in LUFA 2.3 soil. Accurate physico-

chemical characteristics of the standard soils are crucial to assess the toxicity exerted by Ag 

NPs in E. fetida since low clay and OM contents can be considered toxicity enhancers. 

Keywords: Silver nanoparticle (Ag NP), biomarker, biological complexity level, 

standard soil, Integrated Biomarker Response/n index. 
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Laburpena 

Zilar nanopartikulen (Ag NPs) sarrera ekosistemetan gertu dago, araztegietako lokatzak 

jasotzen dituzten lurretan 0.007 mg Ag NPs/kg aurreikusten direlarik. Kontzentrazio hau 

urtero emendatzeko aurreikusia dago eta ondorioz, Ag NPek eragin dezaketen kalteen 

gaineko ardurak piztu dira. Ag NPen toxikotasuna lurzorutan ezagutzeko diharduten lanek 

helburu tradizionalak, kontzentrazio altuak eta ezaugarri desberdinak dituzten lurzoruak 

erabili dituzte orain arte. Kapitulu honetan, PVP-PEI estalduradun Ag NPen efektuak Eisenia 

fetida zizarearen konplexutasun maila biologiko desberdinetan neurtu dira. Horretarako 

zizareak 3 eta 14 egunez mantendu ziren kontzentrazio altu baina azpiletalean (50 mg Ag 

NPs/kg) eta ingurumenean aurreikusten direnetatik gertu dauden kontzentrazioetan (0.05 

mg Ag NPs/kg). Era berean, Ag NPen toxikotasunean esposizio medioak eragina izan 

dezakeenez, zizareen esposizioa bi lurzoru estandarretan egin zen, OECD eta LUFA. Ag NP 

kontzentrazio altuek katalasa aktibitatearen emendatzea eta DNAn kalteak eragin zituzten 

OECD lurretan 14 egunez izandako zizareetan. LUFA 2.3 lurzoruetan efektu goiztiarragoak 

ikusi ziren (pisu galera, zelula bideragarritasunaren beherakada eta katalasa aktibitatearen 

emendioa 3 egunetan). 14 egunean, LUFA 2.3 lurzoruan (buztin eta materia organiko 

gutxiago) behatutako efektuak, Ag NPek eragindakoak baino, zizareek jateari utzi ziotelako 

izan ziren. Ingurumenean aurreikusten direnetatik gertu dauden kontzentrazioen (0.05 mg 

Ag NPs/kg) pean izandako zizareak LUFA 2.3 lurzoruan bakarrik erakutsi zituzten kalteak. 

Ag NPen toxikotasuna lurzoruan aztertzerako orduan, lurzoru estandarren ezaugarri fisiko-

kimikoen ezaguera garrantzi handikoa da, jakinda buztin eta materia organiko gutxiren 

presentzia toxikotasunaren indartzaile direla. 

Hitz gakoak: Zilar nanopartikula (Ag NP), biomarkatzailea, konplexutasun maila 

biologikoa, lurzoru estandarra, IBR/n 
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Resumen 

Existe un riesgo potencial de aumentar la entrada de nanopartículas de plata (Ag NPs) en los 

ecosistemas. Así se ha estimado un incremento anual de 0.007 mg Ag NPs/kg en suelos que 

reciben descargas de lodos de depuradora o residuos de su incineración. De forma 

simultánea crece la preocupación respecto a posibles daños que estas Ag NPs puedan 

provocar en el ecosistema terrestre y en los invertebrados que lo habitan. Los estudios 

realizados hasta el momento para evaluar los efectos de las Ag NPs en suelo se han centrado 

fundamentalmente en objetivos tradicionales utilizando concentraciones elevadas y 

empleado suelos con características físico-químicas muy diferentes. En el presente capítulo, 

se han estudiado los efectos de las Ag NPs (recubiertas de PVP-PEI) a diferentes niveles de 

complejidad biológica en la lombriz Eisenia fetida. Para ello se expusieron durante 3 y 14 

días a una concentración alta pero subletal (50 mg Ag/kg) y a otra concentración próxima a 

la estimada para el medio ambiente (0.05 mg Ag/kg). Dado que las características del medio 

de exposición pueden limitar las respuestas de los organismos ante las Ag NPs, las 

exposiciones se realizaron en los dos suelos estándares más comunes, OECD y LUFA. La 

exposición a altas concentraciones de Ag NPs provocó un incremento en la actividad de 

catalasa y daño en el ADN en lombrices mantenidas en suelo OECD durante 14 días. En suelo 

LUFA 2.3 se observaron efectos más tempranos (pérdida de peso, bajada de viabilidad 

celular e incremento en la actividad de catalasa en el día 3). Los efectos observados en las 

lombrices tras 14 días de exposición en el suelo LUFA 2.3 (menor contenido en arcillas y 

materia orgánica) podrían estar enmascarados por la falta de ingesta de suelo. La 

concentración de Ag NPs próxima a la estimada para el medio ambiente (0.05 mg Ag 

NPs/kg) produjo efectos únicamente en el suelo LUFA 2.3. Se ha concluido que las 

características físico-químicas de los suelos estándares son cruciales para evaluar 

correctamente la toxicidad de las Ag NPs en E. fetida, dado que contenidos bajos en arcilla y 

materia orgánica pueden potenciar la toxicidad de las Ag NPs en el suelo. 

Palabras clave: Nanopartícula de plata (Ag NP), biomarcador, nivel de complejidad 

biológica, suelo estándar, IBR/n. 
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1. Introduction 

Nanotoxicity studies focused on the effects of Ag NPs on soils are becoming more 

frequent, dealing most of them with survival, growth and reproduction measurements 

in soil invertebrates (Diez-Ortiz et al., 2015a; Garcia-Velasco et al., 2016; Gomes et al., 

2013; Heckmann et al., 2011; Lapied et al., 2010; Schlich et al., 2013; Shoults-Wilson et 

al., 2011a, 2011b, 2011c; Van der Ploeg et al., 2014; Chapter 1). This way, standard 

toxicity tests with earthworms (promoted by the Organisation for Economic Co-

operation and Development, OECD) have provided relevant toxicity data for soils spiked 

with Ag NPs. In fact, in the previous chapter (Chapter 1), Ag NPs were demonstrated to 

be uptaken mainly by soil ingestion and once absorbed by the digestive gut epithelium 

caused severe effects at organism level in the earthworm Eisenia fetida.  

In order to obtain toxicity data, sandy loam is used in the tests as soil matrix, but 

depending on the authors, commercial (6.9% of the studies focused on NPs toxicity with 

terrestrial invertebrates used soils from this source), field collected (from reference 

sites, 31%) or standard (62.1%) soils are selected, which differ in pedological and 

physico-chemical characteristics, including pH, cation exchange capacity (CEC), water 

holding capacity (WHC), clay and organic matter (OM) contents. These soil type varying 

physico-chemical properties may affect the behaviour of Ag NPs as well, with particular 

consequence on their aggregation/agglomeration and dissolution and subsequent effect 

on their bioavailability and toxicity to soil organisms (Jośko and Oleszczuk, 2013). 

Among standard soils OECD and LUFA substrates are the most commonly used ones, 

being both in accordance with the OECD principles of GLP (Good Laboratory Practice) 

and recommended and included in other related guidelines such as the German JKI 

(Julis-Kühn-Institut). In both OECD and LUFA soils a wide range of experiments have 

been conducted with E. fetida earthworm, an organism broadly used in standard toxicity 

tests (OECD, ISO). Further, due to its sensitivity to different toxicants, different 

biomarkers are measured at all levels of biological complexity.  

Apart from assessing traditional endpoints (survival, growth and reproduction), some 

authors have measured biochemical and molecular parameters in E fetida earthworm 

exposed to Ag NPs (Gomes et al., 2015; Hayashi et al., 2013a; Novo et al., 2015; Tsyusko 

et al., 2012). For instance, Ag NPs are known to induce the production of reactive 

oxygen species (ROS) (McShan et al., 2014) and living organisms, aiming to balance ROS 

and prevent oxidative stress, have developed antioxidant defence systems with enzymes 

http://www.tandfonline.com/author/Jo%C5%9Bko%2C+Izabela
http://www.tandfonline.com/author/Oleszczuk%2C+Patryk
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(e.g. catalase -CAT-) and additional protection mechanisms against metal exposure such 

as metal binding proteins (e.g. metallothioneins -MT-). Nanosilver has been 

demonstrated to induce oxidative stress in E. fetida as well (Gomes et al., 2015; Hayashi 

et al., 2013a; Tsyusko et al., 2012) and changes in the transcription levels of cat or mt 

have been easily measured after the exposure to other metals (Brulle et al., 2006). ROS 

are able to induce genotoxicity (DNA damage), protein carbonylation and membrane 

oxidation (Piao et al., 2011). Nevertheless, the information available regarding oxidative 

stress and DNA damage (though the Comet assay) in soil invertebrates exposed to Ag 

NPs is still scarce. 

Recently, parameters such as the total number and viability (membrane integrity by 

Neutral Red Uptake and Retention assays) of coelomocytes have been used as 

biomarkers to assess the impact of metals on annelids (Asensio et al., 2007; Garcia-

Velasco et al., 2016; Homa et al., 2015; Irizar et al., 2014b, 2015a; Kwak et al., 2014a). In 

Chapter 1, cell biomarkers measured in the coelomocytes of exposed earthworms 

offered rapid and accurate information and were able to predict impairments caused by 

Ag NPs at higher complexity levels. Thus, the measurement of changes in the immune 

activity of earthworm coelomocytes can be a sensitive indicator of Ag NPs toxicity. 

In most of the studies dealing with the above mentioned endpoints, earthworms were 

exposed to concentrations orders of magnitude higher than those expected in the 

environment. The major source of Ag NPs deposition onto soils is through the disposal 

of waste water treatment plant (WWTP) sludges, mainly after their land application as 

fertilizers or incineration and posterior deposition (Tourinho et al., 2012). During the 

wastewater treatment, sulfidation of Ag NPs is a common process taking place being 

silver sulfide (Ag2S) NPs the predominant silver species found in sewage sludge and 

thereafter in soils. Nevertheless, Kaegi et al. (2011) demonstrated that Ag NPs spiked to 

a WWTP and transformed into Ag2S NPs during the activated sludge process, were 

transformed back into Ag NPs (maintaining the original size) during their incineration. 

Thus, Ag NPs could reach soils in their original state since incineration residues are 

usually landfilled in Europe (Kelessidis and Stasinakis, 2012). Predicted environmental 

concentrations (PECs for Europe, based on a probabilistic material flow analysis from a 

life-cycle perspective of nanomaterials containing products-in silico models-) in WWTP 

sludges ranges from 1.31 to 4.44 mg Ag NPs/kg (Boxall et al., 2007; Gottschalk et al., 

2009), in contrast, the estimations for Ag NP concentration in soils are much lower 

(0.0001-0.00426 mg/kg; Boxall et al., 2007; Mueller and Nowack 2008). However, Ag 
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NPs in sludge treated soil reached 0.007 mg/kg in 2012, a value that is expected to be 

annually enhanced in countries with a high proportion of sludge and sludge incineration 

residues land-disposal (Gottschalk et al., 2009). 

Hence, the present work aims to (a) assess the toxicity of PVP-PEI coated Ag NPs at 

sublethal concentrations (including close to environmental predictions) in E. fetida 

earthworms at different levels of biological complexity and (b) to compare the toxicity 

exerted by Ag NPs in two widely used standard soils (OECD and LUFA 2.3). For those 

purposes earthworms were maintained during 3 and 14 days in OECD and LUFA 2.3 

soils previously spiked with 0.05 and 50 mg Ag NPs/kg. These concentrations were 

selected from predictive modelling values in soils amended with WWTP sludges or 

sludge incineration residues (0.05 mg Ag NPs/kg) and from the survival and 

reproductive output data scored in the previous screening (50 mg Ag NPs/kg; Garcia-

Velasco et al., 2016; Chapter 1), respectively. At each exposure time, Ag concentration 

was measured in test soils and earthworm tissues, survival and weight loss were 

checked and coelomocyte number and viability were recorded. DNA damage was also 

assessed in coelomocytes extruded from exposed earthworms with the aid of the Comet 

assay. In addition, catalase and metallothionein protein and transcription levels were 

measured. A parallel study using the same concentration used herein and aiming to 

compare silver forms (Ag NPs vs. AgNO3) is presented in Chapter 3. Thus, in the present 

work, attention was given to the exposure matrix dependant toxicity rather than to the 

silver form. All the mentioned endpoints were included in a Principal Component 

Analysis (PCA) and in the Integrated Biomarker Response/n index (IBR/n) in order to 

give an integrative and conclusive idea of the effects posed by Ag NPs at different 

complexity levels of E. fetida. 

2. Materials and methods 

2.1. Test species 

Eisenia fetida earthworms were purchased from a commercial dealer (LOMBRICOR 

S.C.A., Córdoba, Spain) and set as laboratory culture maintained in containers under 

controlled conditions of temperature (19 ± 2 °C) and humidity. As food source 

medication-free horse manure was provided when required. The earthworms used for 

the experiment were all adults (clitellated) of similar size (300-500 mg weight). 
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2.2. Test nanoparticles 

Polyvinylpyrrolidone-polyethylenimine (PVP-PEI, 3.35:1) coated Ag NPs (NP Ag-

2106W) were purchased from NANOGAP (SUB-NM-POWDER S.A., A Coruña, Spain). Ag 

NPs were water dispersed (10 g Ag/L with 104 g PVP-PEI/L), 5.08 ± 2.03 nm average 

size and with a Z-potential of 18.6 ± 7.9 mV. Particle size distribution and zeta potential 

determinations (in distilled water) through Dynamic Light Scattering were provided by 

NANOGAP in their certificate of analysis (Appendix I). 

2.3. Test soils and spiking procedure 

Two different standard soils were used, the artificial OECD soil and the natural soil 

LUFA 2.3. The OECD soil was prepared following the guideline for testing of chemicals 

No. 207 (OECD 1984), the substrate consisting of 70% sand (50% of the particles 

between 50-200 µm), 20% kaolin clay and 10% sphagnum peat sieved at 2 mm. The pH 

was then adjusted to 7.0 ± 0.5 with addition of powdered calcium carbonate (0.01%). 

LUFA 2.3 soil was purchased from the LUFA Speyer Institute (Germany). Soils were 

spiked with 0.05 mg Ag NPs/kg soil (close to predicted environmental concentration) 

and with 50 mg Ag NPs/kg soil (high but sublethal dose according to previous 

experiments in Garcia-Velasco et al., 2016; Chapter 1). Soils were placed in glass 

containers and moistened with Ag NPs dispersions or distilled water (in control groups) 

to 40% of their water holding capacity (WHC, Table 1) to obtain the final wet weight of 

750 g. After spiking, test soils were thoroughly mixed to ensure a homogeneous 

distribution of the Ag NPs and were left stabilizing during 3 days before the exposure of 

the earthworms. 

Table 1. Main characteristics of OECD and LUFA 2.3 soils: Type, pH value (in dH2O and 0.01 M 
CaCl2), CEC (Cation exchange capacity, meq/100g), WHC (Water holding capacity, %) and clay, 
sand and OM (Organic matter, %) contents. 

 

 OECD LUFA 2.3 
  

Soil type Artificial Natural sandy loam 
pH (dH2O) 7.00 7.50 
pH (0.01 M CaCl2) 5.88 6.80 
CEC (meq/100g) 10.80 10.9 
WHC (%) 21.9 37.3 
Clay (%) 20 9# 
Sand (%) 70 65# 
OM (%) 10 1.88* 
   

# Particle size distribution according to United States Department of Agriculture (USDA) 
*Organic matter calculated as 2 x percent organic carbon 



Chapter 2 

 

91 
 

2.4. Experimental set up 

Earthworms previously maintained in non-spiked OECD and LUFA 2.3 soils for 24 h 

were weighed in tens and introduced in test soils (10 earthworms per container, 4 

containers per treatment) during 3 and 14 days in continuous light and 19 °C. During 

the exposure no food was supplied and humidity was checked periodically. After 

exposure, for each endpoint earthworms were dissected out according to the zonation 

described by Irizar et al. (2014a).  

2.5. Test soil characterization 

At days 3 and 14 Ag concentration and pH were measured in test soils. The measured 

concentration of Ag in soils was quantified following the EPA 3051A method. Briefly, 

soil samples (2 g) were acid digested (HNO3 : HCl, 3:1) in Teflon vessels in a microwave 

oven (MW CEM-Mars 5), filtered after cooling (0.45 µm, 25 mm, PVDF) and analysed in 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS, 7700-Agilent Technologies) in 

the Central Analysis Service of the UPV/EHU (SGIker). For QA/QC, the same set of 

processes and Certified Reference Materials (CRM) as in Chapter 1 were used.  

The protocol for pH measurement was adapted from the ISO 10390: 2005 “Soil Quality – 

Determination of pH in water”. Soil samples from each replicate were mixed with 

distilled water (1:5), shaken during 1 minute and left to settle for 45 minutes. The 

process was repeated twice and then the pH of the liquid phase was measured using a 

calibrated pH-meter (CRISON micro pH 2001).  

2.6. Organism level endpoints: mortality, weight loss and Ag accumulation 

in tissues 

After exposure mortality rate and weight loss were recorded in earthworms according 

to the earthworm Acute toxicity test (OECD-207). Complementarily, Ag concentration in 

earthworm tissues was quantified by ICP-MS (7700 Agilent) at days 3 and 14. 

Depurated (left on wet filter paper for 24 h to void gut content) and cleaned 

earthworms (n=5) were dried in pools at 120 °C for 48 h, weighted and digested in 

HNO3 Tracepur® 69%. Once the concentrated acid was evaporated, pellets were 

resuspended in 0.01 M HNO3 Tracepur® and Ag quantified in the Central Analysis 

Service of the UPV/EHU (SGIker). The Detection limit (DL) was 0.03 µg/g. 
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2.7. Cellular endpoints: coelomocytes number, viability and genotoxicity 

Earthworms were cleaned with distilled water by softly massaging their body in order 

to remove any soil particle attached to the tegument or in the posterior part of their 

digestive tract. Then pools of seven individuals were immersed in extrusion solution 

(0.02% EDTA in PBS with 0.23% NaCl, 1 ml per worm) and were subjected to an electric 

stimulation with a 9 V battery to allow the release of coelomocytes through dorsal pores 

(Irizar et al., 2014b). Cell suspensions were transferred to tubes, centrifuged (530 x g, 

10 min, 10 °C in Allegra X-30R Beckman Coulter) and resuspended in PBS for posterior 

cell counting under light microscope. Neubauer chamber was used to count and adjust 

the cell density of each pool to 106 cells per ml. Then 2 x 105 coelomocytes were seeded 

per well in a 96-well microplate (7 well per treatment) and were left to stand at 18 °C in 

darkness for 30 minutes. Afterwards, the microplate was centrifuged (530 x g, 5 min,   

10 °C), supernatant removed and cells were incubated for 40 minutes with 2.5 µM 

Calcein AM (Molecular Probes® ThermoFisher Scientific, 100 µl per well, 4 wells per 

treatment). In the remaining wells, instead of Calcein AM, 100 µl PBS were added in 

order to thereafter subtract the inherent fluorescence of cells. Coelomocytes were 

washed twice (centrifugation, supernatant removal and addition of 100 µl PBS) and 

fluorescence was measured at 490 ± 20 nm excitation filter and 520 ± 20 nm emission 

filter in a FLx 800 microplate fluorescence reader.  

Comet assay was performed as described by Singh et al. (1988) with slight 

modifications. Earthworms (n=5) were left in moist filter paper during 24 h to depurate 

and coelomocytes were extruded from each individual using the method described 

above. Cell suspension (5 x 105 cells/ml) were diluted (1:2) in 0.5% low melting point 

agarose (LMPA) and 80 µl transferred to slides previously coated with 1% normal 

melting point agarose (NMPA). Then slides were kept on ice for 10 minutes in order to 

allow cell layer to solidify. Afterwards, slides were immersed in lysis solution (2.5 M 

NaCl, 100 mM EDTA, 10 mM Tris, 1% Triton X-100 and 10% DMSO, pH 10.0) for 1 h at   

4 °C in darkness, washed in dH2O and incubated in alkaline solution (1 mM EDTA, 300 

mM NaOH, pH>13.0; 20 min) for posterior electrophoresis (300 mA, 19 V; 20 min). 

Slides were then washed in neutralization buffer (0.4 M Tris-HCl, pH 7.5; 10 min) and 

cells fixed in methanol. For the analysis, slides were stained with 10 µl of ethidium 

bromide (20 µg/ml) and DNA migration scored (in 100 coelomocytes per sample) in 

Olympus BX50 fluorescence microscope with the aid of the Komet 5.5 image analysis 

system (Kinetic Imaging). Resuts were represented by % of tail DNA. 
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2.8. Biochemical endpoints: MT concentration and CAT activity 

Metallothionein (MT) concentration in earthworms was quantified 

spectrophotometrically by determining the sulphydryl (SH) residue content after 

Ellman´s reaction (DTNB; 5,5-dithiobis-2-nitrobenzoic acid) (Viarengo et al., 1997). 

Briefly, the post-clitellar portion of earthworms (n=5) were weighed and homogenized 

in three volumes of homogenization buffer (pH 8.6) containing 0.006 mM leupeptine, 

0.5 mM PMSF (phenylmethylsulphonyl fluoride) and 0.01% β-mercaptoethanol as a 

reducing agent. Homogenates were ultracentrifuged (30.000 x g, 20 min, 4 °C in 

Optima™ L-90K Beckman Coulter) and precipitated with ethanol/chloroform. Then the 

MT enriched fraction was resuspended in 0.25 M NaCl and 1 N HCl containing 4 mM 

EDTA, followed by the addition of a known amount of DTNB reagent in a high ionic 

strength medium to completely denature MTs. Samples (300 µl) were placed in 96-well 

microplates (4 replicates) and absorbance was read at 412 nm in Multiskan Thermo 

Scientific Spectrophotometer using reduced glutathione (GSH) as standard. Data (µg 

MTs/g earthworm ww) were expressed in % relative to control. 

Catalase (CAT) activity was determined measuring decrease in absorbance at 240 nm 

due to hydrogen peroxide (H2O2) consumption (Claiborne, 1985). The pre-clitellar 

portion of earthworms (n=5) was weighed and homogenized in five volumes of 

homogenization buffer (TVBE, 1 mM sodium bicarbonate, 1 mM EDTA, 0.1% ethanol 

and 0.01% Triton X-100, pH 7.4). Absorbance was measured in 96-well UV Flat Bottom 

microplates using Multiskan Thermo Scientific Spectrophotometer. 4 replicates were 

added per sample (5 µl of sample and 295 µL of freshly prepared KH2PO4 and H2O2 

solution) and a standard curve prepared with different volumes of TVBE and KH2PO4 

and H2O2 solution was included as well. CAT activity (µmol H2O2/ min.mg protein) was 

expressed in % relative to control.  

Total protein content was estimated according to Lowry et al. (1951) with the aid of the 

DC™ Protein Assay (Bio-Rad), using bovine ɣ-globulin as standard.  

2.9. Molecular endpoints: mt and cat transcription levels 

Quantifications of metallothionein (mt) and catalase (cat) transcription levels were 

done in the post-clitellar body (~100 mg) of earthworms (n=6) that were dissected out 

and homogenized with silica beads in a Precellys™ 24 homogenizer (Bertin 

Technologies) at 6 m/s for 20 s twice. Total RNA was extracted using the TRIzol® 

(Invitrogen, Thermofisher Scientific) method and purified using the RNase-Free DNase 
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Set (QIAGEN®). After measuring final concentration and purity spectrophotometrically 

(Epoch BioTek), 1 µg of total RNA was retro-transcribed into cDNA using the 

AffinityScript Multiple Temperature kit (Agilent Technologies). cDNA was then 

amplified in reactions (final volume of 20 µL) containing 2 µL of sample, 10 µL of SYBR 

Green (Roche), primer pairs at set concentrations (Table 2) and RNAse free water. mt 

and cat transcription levels were quantified in a ViiA 7 by Life Technologies (AB Applied 

Biosystems) in 384 well plates. qPCRs were run as follows: 2 min at 50 °C, 10 min at 95 

°C and 40 cycles of 15 s at 95 °C followed by 1 min at melting temperature (Table 2). 

Efficiency was determined running a standard curve and specificity of each reaction was 

certified by verifying the presence of a single peak in the melting curve plot. Three 

replicates were run per sample as well as RT minus controls and non-template controls. 

The amount of input cDNA per sample was used to normalize genes transcription data. 

For that a ∆CT formula adapted from the ∆∆CT normalization method was used (Rojo-

Bartolomé et al., 2016a). cDNA concentration of each sample was measured with the 

Quant iT OliGreen ssDNA assay Kit (Life Technologies). Briefly, diluted samples (50 µl, 

1/50) were placed in 96-well clear bottom microplates, the reagent was added (50 µl) 

and fluorescence was measured at 485 ± 20 nm excitation and 528 ± 20 emission in a 

FLx 800 (BioTek) microplate fluorescence reader. 

Relative Quantification (RQ) of the transcription levels was calculated using a plate 

calibrator to obtain the ∆CT, the efficiency (E) of the PCR and the amount of cDNA (in 

ng) used in each reaction:  

RQ= (1+E)-∆CT / ng cDNA 

The average of control earthworms in each exposure time (3 and 14 days) was used as 

calibrator. 

Table 2. Primer sequences (Fw: Forward, Rv: Reverse), melting temperatures (°C), amplicon 
length (bp) and primer concentrations used for the specific amplification of metallothionein (mt) 
and catalase (cat) genes by qPCR in earthworms. 
 

Gene (Acc. number) Melting 
T. (°C)

Amplicon 
lenght (bp)

Primer conc. 
(pmol)

Fw AAATGCTCGGCTGGTTCGT
Rv  TGATGACAGAGTTCCGTATTTC
Fw  GCCGACGGAGAAGCTGTGTA
Rv  TAAAGGTCACGGGTCGCATAG

Primer sequence (5´-3´)

6.0

12.5

103

cat (DQ286713) 59.0 125

mt (AJ236886) 55.5
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2.10. Integrated Biomarker Response/n (IBR/n) 

Integrative Biological Response (IBR) index was calculated with the aim of integrating 

alterations at different level of biological complexity, following the procedure described 

by Beliaeff and Burgeot (2002). The 5 most representative biomarkers were used for 

this purpose ranging from molecular level to organism level changes: cat transcription 

levels (cat expression), DNA damage, CAT activity, viability of extruded coelomocytes 

and weight loss in earthworms. Such selection was performed according to Garmendia 

et al. (2011) and Asensio et al. (2013), selecting biomarkers at different levels of 

biological complexity and ordering them accordingly, to provide an integrative view of 

the effects posed by Ag NPs on earthworms. Five biomarkers would be representative of 

all the studied biological complexity levels (molecular, biochemical, cellular, organism). 

Finally, as the IBR value depends on the number of applied biomarkers, the IBR/n was 

obtained dividing IBR by the number of biomarkers applied (n=5) (Marigómez et al., 

2013). 

2.11. Statistical analysis  

The statistical analysis of the data was carried out with the aid of the SPSS statistical 

package (IMB SPSS Statistics 23). Shapiro-Wilk and Levene´s tests were performed to 

study normality and equality of variances of the datasets, respectively. In order to 

compare treatments in each soil, one-way ANOVA followed by Tukey´s pairwise 

comparison and Dunnett´s test was used as a parametric approach and the non-

parametric datasets were analysed with Kruskal-Wallis followed by Dunn´s post-hoc 

test. Differences between exposure times were explored with Student´s t (parametric) 

and Mann-Whitney U (non-parametric) tests. In all cases significant differences were 

established at p<0.05.  

The average values of each endpoint were plotted together in a Principal Component 

Analysis (PCA) in order to observe the distribution of the different Ag NP concentrations 

and exposure times in each soil. The two dimensional PCA was based on Euclidean 

distances and was performed in previously standardized and normalized variables.  
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3. Results 

3.1. Test soil characterization 

The real concentration of silver in OECD soils did not significantly differ (either between 

treatments and exposure times) from the nominal concentration (Table 3). In LUFA 2.3 

soil, Ag traces were detected in non-spiked soils in both exposure times, being the 

nominal concentration values at the same range as those measured in 0.05 mg Ag 

NPs/kg spiked soils (Table 3). In soils dosed with 50 mg Ag NP/kg real concentrations 

were very close to the nominal concentration in both test soils and exposure times. 

Similarly, the pH did not change between treatments and only showed a weak decrease 

in OECD soil after 14 days, still with a neutral value (6.5-6.9). 

3.2. Organism level endpoints: mortality, weight loss and Ag accumulation 

in tissues 

Mortality was not detected in earthworms maintained in OECD soil. In LUFA 2.3 soil 

mortality was observed in the highest Ag NP concentration at both exposure times (10% 

after 3 days and 7.5% after 14). The weight loss of earthworms maintained in OECD soil 

did not differ between treatments (Fig. 1A). In LUFA 2.3 soils a significant weight loss 

was observed after exposure to the highest dose (50 mg Ag NPs/kg) for 3 days. At day 

14 higher weigh losses were observed in comparison to day 3, mainly in control and 

0.05 mg Ag NPs/kg spiked soils. At this exposure time severe weight losses (>20%) 

occurred in all treatments (Fig 1A).  

Earthworms maintained in Ag NP spiked soils exhibited Ag accumulation, with the 

highest Ag concentration in earthworms exposed to 50 mg Ag NPs/Kg (Table 4). At this 

dose earthworms accumulate more Ag in OECD soil than in LUFA 2.3 soil, especially 

after 14 days of exposure (13.88 vs. 6.61 µg Ag/g earthworm, respectively). In LUFA 2.3 

soil higher Ag concentrations were detected in earthworms maintained in non-spiked 

and 0.05 mg Ag NPs/kg dose during 14 days in comparison with OECD soil (0.07 and 

0.18 µg Ag/g, respectively for each treatment). 



 

 

 

 

Table 3. Ag concentration (nominal and real values, mg/kg soil) and pH (in dH2O) of OECD and LUFA 2.3 test soils at days 3 and 14. Values are represented 
as means ± standard deviations of four soil samples. (udl: under the detection limit, 0.03 mg/kg). 
 

 

 

 

 

 
 
 
 
 

Table 4. Ag concentration in earthworm tissues (µg Ag/g) after 3 and 14 days of exposure in OECD and LUFA 2.3 test soils. Values represented 
concentrations measured in pools (n=5). (udl: under the detection limit, 0.03 µg/g). 

 

      OECD soil  LUFA 2.3 soil  
Exposure (mg Ag NPs/kg soil) 0 0.05 50 0 0.05 50 

    Time             
Ag in tissues                
(µg Ag/g earthworm) 

3d udl  0.06  2.01  udl  udl  1.32  
14d udl  0.04  13.88  0.07  0.18  6.61  

 

 

    
 

OECD soil  LUFA 2.3 soil  
 Nominal (mg Ag NPs/kg soil) 0 0.05  50 0 0.05  50 
    Time             

Real (mg Ag/kg soil) 3 d  udl  0.11 ± 0.02  46.32 ± 1.36  0.17 ± 0.04  0.12 ± 0.01  43.58 ± 2.55  

14 d  udl  0.12 ± 0.01  41.13 ± 1.68  0.13 ± 0.01  0.14 ± 0.04 34.44 ± 17.87 

pH (in dH2O)  3 d  7.70 ± 0.03  7.32 ± 0.01  7.10 ± 0.15  7.55± 0.08  7.58 ± 0.03  7.74 ± 0.09  

14 d  6.42 ± 0.04  6.75 ± 0.00  6.89 ± 0.01 7.36± 0.19  7.60± 0.06  7.83± 0.13 
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Figure 1. Weight loss (%, A), number of extruded coelomocytes (cell x 106/ ml, B) and cell 
viability through Calcein AM Viability assay (Calcein retention in % relative to the control, C) in 
earthworms maintained in OECD and LUFA 2.3 soils spiked with Ag NPs (0, 0.05 and 50 mg Ag 
NPs/kg) during 3 and 14 days. Values are represented as means ± standard deviations and the 
significant differences are represented by asterisk for exposure times (p ≤ 0.05 with Mann-
Whitney U) and by letters for exposure doses (p ≤ 0.05 with Kruskal-Wallis). 

3.3. Cellular endpoints: coelomocytes number, viability and genotoxicity 

The exposure of earthworms to 50 mg Ag NPs/kg in OECD soil during 14 days produced 

a trend of reduction in the number of extruded coelomocytes. In earthworms 

maintained in LUFA 2.3 soil the non significant cell number decrease was noticeable 

after 3 days of exposure (Fig. 1B). After the Calcein AM viability assay the number of 

viable cells was stable after exposure to Ag NPs in OECD soils (Fig. 1C). A significant 

decrease in the number of viable cells could be only appreciated after 3 days of 

exposure to the highest Ag NPs dose in LUFA 2.3 soil (Fig. 1C). 
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DNA damage in coelomocytes of earthworms exposed during 14 days in OECD soil 

followed a dose dependent response when increasing Ag NPs concentration (Fig. 2). In 

LUFA 2.3 soil, no significant differences were found between treatments (Fig. 2).  
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Figure 2. DNA damage (% Tail DNA) after Comet assay in earthworms maintained in OECD and 
LUFA 2.3 soils spiked with Ag NPs (0, 0.05 and 50 mg Ag NPs/kg) during 3 and 14 days. Values 
are represented as means ± standard deviations and the significant differences are represented 
by asterisk for exposure times (p ≤ 0.05 with Student´s t) and by letters for exposure doses (p ≤ 
0.05 with Tukey´s Test). 

3.4. Biochemical endpoints: MT concentration and CAT activity 

MT concentration in earthworms maintained in both test soils during 3 days did not 

show differences between treatments. After 14 days MT protein levels tend to decrease 

in earthworms maintained in test soils spiked with the highest Ag NPs dose and in LUFA 

2.3 soil also after exposure to 0.05 mg Ag NPs/kg (Fig. 3A).  

An increase of CAT activity was recorded in earthworms exposed to the highest dose, in 

OECD soil after 14 days and in LUFA 2.3 soil after 3 days (Fig. 3B).  
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Figure 3. Metallothionein (MT) protein concentration (in % relative to the control, A) and 
catalase (CAT) activity (in % relative to the control, B) in earthworms maintained in OECD and 
LUFA 2.3 soils spiked with Ag NPs (0, 0.05 and 50 mg Ag NPs/kg) during 3 and 14 days. Values 
are represented as means ± standard deviations and the significant differences are represented 
by letters (p ≤ 0.05 with Kruskal-Wallis). 
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Figure 4. Relative Transcription (RQ) levels of metallothionein (mt) (A) and catalase (cat) (B) in 
earthworms maintained in OECD and LUFA 2.3 soils spiked with Ag NPs (0, 0.05 and 50 mg Ag 
NPs/kg) during 3 and 14 days. Values are represented as means ± standard deviations. 
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3.5. Molecular endpoints: mt and cat transcription levels 

mt and cat transcription levels were not altered in earthworms maintained in both test 

soils (Fig. 4A, 4B).  

3.6. Principal Component Analysis (PCA) in test soils 

In the PCA scatter plots performed for each test soil, the variation explained by the two 

main components reached 75.60% in OECD soil and 85.00% in LUFA 2.3 soil. In OECD 

soil, CAT activity and coelomocyte number and viability were the endpoints that 

presented higher correlation (0.479 and -0.432 , -0.456; positively and negatively 

correlated, respectively) with the first component (PC1), while the second component 

(PC2) was correlated with changes in metallothionein protein (0.289) and transcription 

levels (0.278) and DNA damage (-0.697) (Fig. 5A). 

Based on these variables, control earthworms of both exposure times were 

characterized by low weight loss and low CAT activity, and high cell number and 

viability. The group conformed by the controls was distinguished from earthworms 

exposed to 0.05 and 50 mg Ag NPs/kg during 3 days, which presented higher values in 

metallothionein protein and transcription levels (Fig. 5A). Remaining treatments 

(exposure to 0.05 and 50 mg Ag NPs/kg during 14 days) were individually 

discriminated as they were characterized by high CAT activity and a reduced 

coelomocyte number and viability (Fig. 5A). These effects were higher in 50 mg Ag 

NPs/kg soil after 14 days exposure (Fig. 5A). 

In LUFA 2.3 soil, CAT activity and DNA damage were the endpoints that presented 

higher correlation (0.421 and -0.457, respectively) with PC1, while PC2 was correlated 

with changes in weight loss (0.563) and MT protein concentration (-0.602) (Fig. 5B). 

The display of the different treatments and exposure times showed that the control 

groups of both exposure times together with the close to predicted environmental 

concentration (0.05 mg Ag NPs/kg) after 3 days of exposure were grouped together. 

This cluster was distinguishable from the earthworms exposed to the highest 

concentration (50 mg Ag NPs/kg) during 3 days, explained by the higher CAT activity of 

the latter, and also from the close to predicted environmental concentration and high 

dose at longer exposure times (14 days) as they were characterized by higher losses in 

weight and depletion in MT protein levels (Fig. 5B). 
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Figure 5. Two-dimensional Principal Component Analysis (PCA) scatter plot including all 
biomarkers (Weight loss, Coelomocyte No., Cell Viability, MT concentration, CAT activity, DNA 
damage and mt and cat transcription levels) measured in earthworms maintained in OECD (A) 
and LUFA 2.3 soils (B) spiked with Ag NPs (0, 0.05 and 50 mg Ag NPs/kg) during 3 and 14 days. 
The variation explained by the two main components reached 72.60% in OECD soil analysis and 
85.00% in LUFA 2.3 soil. Different experimental clusters (p<0.05) are marked. The circle located 
in the bottom and left part explains the distribution of the used variables (biomarkers).  
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3.7. Integrated Biomarker Response/n (IBR/n) 

In OECD soil, the IBR index did not reflect effects after exposure to Ag NPs during short 

exposure times (3 days) (Fig. 6A). At longer times (14 days) earthworms exposed to the 

highest dose (50 mg Ag NPs/kg) presented the highest IBR index, indicating highly 

affected earthworms, explained by increase in CAT activity and DNA damage (Fig. 6A). 

In LUFA 2.3 soil, earthworms were affected by Ag NPs after 3 days of exposure to the 

highest dose and after 14 days of exposure to close to predicted environmental 

concentrations and high doses, demonstrated by the reduction of the coelomocyte 

viability and enhancement in weight loss and CAT activity (Fig. 6B).  
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Figure 6. Integrative Biomarker Response (IBR/n) in earthworms maintained in different test 
soils (OECD, A and LUFA 2.3 soils, B) dosed with Ag NPs (0, 0.05 and 50 mg Ag NPs/kg soil) 
during 3 and 14 days. For the analysis the most responsive biomarkers (5) were employed 
measured at different levels of biological complexity: cat transcription levels (cat expression), 
DNA damage, CAT activity, viability of extruded coelomocytes and weight loss in earthworms. 
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4. Discussion 

The study of the toxicity exerted by Ag NPs in soil has been focused on traditional 

endpoints and has used limit test range concentrations that did not reflect real 

conditions. In the last years, the effects of Ag NPs at biochemical and molecular levels of 

E. fetida earthworms have also been assessed (Tsyusko et al., 2012; Hayashi et al., 

2013a; Gomes et al., 2015; Novo et al., 2015), but still high exposure concentrations 

were used in those studies. The present chapter has been mainly focused on the 

exposure matrix dependant toxicity rather than in the comparison between silver forms 

(see Chapter 3). In fact, different soil matrices with different physico-chemical 

characteristics have been employed for assessment purposes difficulting the direct 

comparison among studies. Presently, the toxicity posed by Ag NPs in soil was measured 

at different levels of biological organisation using a battery of biomarkers in E. fetida. 

Such responses were measured in earthworms exposed to sublethal concentration of Ag 

NPs (including close to environmental predictions) in two commonly used standard 

soils.  

Soil physico-chemical characteristics are known to directly affect the fate and behaviour 

of pollutants, and subsequently their accumulation, uptake and toxicity in earthworms 

(Irizar et al., 2015a; Lukkari et al., 2004; Nahmani et al., 2007; Shoults-Wilson et al., 

2011a, 2011b, 2011c). The soils used in the current study differed in clay and OM 

contents mainly, being the percentages lower in LUFA 2.3 soil compared to OECD 

substrate. In control and 0.05 mg Ag NPs/kg exposure treatments Ag accumulation was 

higher in earthworms maintained in LUFA 2.3 soil than in OECD soil due to the Ag traces 

quantified in this commercial soil that have been previously detected by Waalewijn-

Kool et al. (2014). Irrespective of this, the measured Ag concentrations did not differ 

from the nominal concentration evidencing and accurate spiking and homogenization 

procedure. Ag NPs could be expected to be more available and highly accumulated by 

earthworms in LUFA 2.3 soil due to its lower clay and OM content in comparison with 

OECD soil, however, after exposure to the highest dose, Ag concentration was higher in 

earthworms maintained in the latter. This fact and weight losses below 20% recorded in 

earthworms maintained in OECD soil could reveal a major feeding activity in this soil, 

through which earthworms would have uptaken soil-Ag NPs complexes (Lukkari et al., 

2004). In contrast, earthworms maintained in LUFA 2.3 soil would have presented 

lower soil ingestion, which also explains the higher weight loss (at the high dose after 3 

days and enhanced in all the treatments after 14 days and mortality (at high dose) 
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observed. In fact, diminished feeding activities followed by lower metal accumulation in 

earthworms have been previously reported in soils with low OM content (Irizar et al., 

2015a). The behaviour of metal NPs in soils (i.e. aggregation/agglomeration, sorption to 

surfaces or dissolution to the ionic metal) is influenced by soil pH, isoelectric point and 

the presence of granulometric clay and OM content (Cornelis et al., 2012). The different 

clay and OM contents of the soils used herein would have influenced Ag NPs behaviour 

as well, and consequently, their bioavailability and uptake for earthworms would be 

different. As mentioned above, in OECD soils Ag NPs could be bounded to soil particles 

and coated by OM which would suppress dissolution (Cornelis et al., 2012; Klitzke et al., 

2015), being the primary uptake form soil ingestion. In LUFA 2.3 soils, Ag could be 

dissolved in soil pore water due to the absence of OM and incorporated by dermal 

uptake. Assuming that NPs suspended in pore waters are more widely dispersed and 

that they could be subjected to earlier oxidation processes, being more bioavailable to 

organisms (Di Toro et al., 1991; Klaine et al., 2008), it makes sense that effects (at 

organism level) of Ag NPs on LUFA 2.3 were greater than in OECD soils after 3 days of 

exposure to the highest dose. Nevertheless, after 14 days of exposure in this soil with 

less clay and poor in OM, Ag NPs toxicity could be masked by the starvation of 

earthworms under those conditions. So far, it is unclear to which extent Ag NPs were 

coupled to soils or dissolved in pore water, this point will deserve further investigations.  

Accordingly, effects at cellular level (i.e reduction in the viability of extruded 

coelomocytes at day 3) occurred earlier in earthworms in LUFA 2.3 soils. As stated 

before, it could happen that the higher fraction of dissolved Ag in the pore water of this 

soil have entered through dorsal pores (Irizar et al., 2015a) and impact on the 

permeability of the cell membrane, leading to a significantly diminished coelomocyte 

viability. Several studies reported that the number of coelomocytes decreases after 

exposure of earthworms to metals (Homa et al., 2010; Plytycz and Morgan, 2011; 

Podolak et al., 2011) and this effect has also been described after exposure to Ag NPs 

but at concentrations higher that the ones used presently (Garcia-Velasco et al., 2016; 

Chapter 1). Coelomocytes are involved in eliminating foreign material by phagocytosis 

and encapsulation (amoebocytes) and they synthesize and secret cytolitic components 

into the coelomic fluid (eleocytes), causing opsonisation and lysis of non-self material 

(Bilej et al., 2000, 2010). Therefore, the reduction in the viability of coelomocytes 

exerted by Ag NPs in LUFA 2.3 soil could be posing a dysfunction of the immune system 

at cellular level (Plytycz and Morgan, 2011) that could lead to physiological alterations 
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together with effects at higher levels of biological organisation (weight loss and 

mortality). The fact that effects at cellular level were only significant in earthworms 

maintained in LUFA 2.3 soils and exposed to the highest dose during 3 days, and not at 

longer exposure periods, could be due to changes in the subpopulation ratios of 

coelomocytes. In fact, coelomocytes are a heterogeneous group of cells (Adamowicz, 

2005) where amoebocytes appeared to be more sensitive against Ag NPs (Hayashi et al., 

2012). Thus, the dissimilar responses between amoebocytes and eleocytes after Ag NPs 

exposure could be interfering with the cell number and viability responses of the whole 

coelomocyte population. 

Apart from earthworm coelomocytes, MTs are also involved in metal homoeostasis and 

detoxification (Homa et al., 2010). MTs involvement in earthworm protection against 

metal pollution has been described in many studies (Asensio et al., 2007; Brulle et al., 

2006; Demuynck et al., 2007; Homa et al., 2010; Irizar et al., 2014a, 2015a). Accordingly, 

MTs have been studied (at protein and transcription levels) in earthworms subjected to 

metallic NPs, especially after exposure to Ag NPs (Gomes et al., 2015; Hayashi et al., 

2013a; Tsyusko et al., 2012). Presently, it seems that MT levels were not affected at 

short exposure times but tended to reduce in OECD and LUFA 2.3 soils after 14 days of 

exposure to the highest dose of Ag NPs. Interestingly, significant inhibition effects were 

only recorded on LUFA 2.3 soils spiked with low Ag NP concentration (0.05 mg Ag 

NPs/kg). The lack of MT induction and the increase of CAT activity may resemble the 

onset of oxidative stress mechanisms posed by Ag NPs, which seems to occur earlier in 

LUFA 2.3. In fact, cells have a complex defence system, including non-enzymatic 

scavengers (MTs) or enzymatic ones such as CAT. On the other hand, MT concentrations 

can be influenced by other factors than metal exposure, such as the animal condition 

and growth, developmental stages, and environmental stimuli, like starvation (Dallinger, 

1996). Thus, the depletion of MTs recorded after 14 days of exposure to the 

concentration close to environmental predictions in LUFA 2.3 soil and to the high dose 

in OECD soil could be related to weight losses above 20%, which limited their capability 

of response against metals or due to an onset of oxidative stress. CAT activity in E. fetida 

has been previously reported to be activated in short exposure periods (4 days) and 

inhibited in long periods (28 days) of exposure to Ag (Gomes et al., 2015). Presently, 

CAT activity increased after exposure to the highest concentration, at day 14 in OECD 

soil and at day 3 in LUFA 2.3 soil. Thus, in OECD soil earthworms CAT responses would 

need longer exposure periods, probably due to a less availability of Ag in this media 
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richer in clay and OM. In LUFA 2.3 soil CAT activity was not enhanced at longer 

exposure times, even if higher Ag body burdens were measured in earthworms at day 

14, which could be associated, once again, to the starvation of earthworms. Overall, 

these results highlight the idea of oxidative stress as a mechanism of toxicity of Ag NPs 

in E. fetida, which by means of ROS can damage cell components including DNA, proteins 

and membranes (Piao et al., 2011). Moreover, nanosilver is known to interact with DNA, 

alter its conformation and subsequently, induce genotoxicity (McShan et al., 2014). 

Presently, DNA damage was only recorded in coelomocytes of earthworms maintained 

in OECD soil during 14 days, following a dose dependant response, which is in 

accordance with the depletion trend observed in coelomocyte number and with the 

increase in CAT activity recorded. In contrast, earthworms maintained in LUFA 2.3 soils 

did not show significant differences in DNA damage between treatments as they were 

characterized by high variability. Nevertheless, a trend of higher genotoxicity was 

observed in comparison to OECD soils, maybe due to the dissimilar Ag availability of the 

test soils.  

The lack of alterations in the transcription levels of mt and cat could be due to the 

selection of the post-clitellar body of earthworms to perform this endpoint. The 

consideration of the zonation when applying biomarkers for toxicity assessment has 

been reported to reduce the intrinsic variability that results from the morphofunctional 

heterogeneity that exists along the body axis of annelids. However, for cat expression 

levels, high variability was recorded along the post-clitellar body of earthworms (Irizar 

et al., 2014a). Other studies dealing with molecular endpoints in nanosilver exposed E. 

fetida used the whole earthworm for the RNA extraction with successful results 

(Hayashi et al., 2013a; Tsyusko et al., 2012). Nevertheless, much higher concentrations 

of Ag NPs were employed in those studies. The identification of target tissues to assess 

the Ag NPs posed oxidative stress at molecular level and the clarification of its 

mechanisms of action will deserve thorough investigations in the future. 

Both the PCA and the IBR/n index revealed earlier toxic effects in soil with lower clay 

and OM content (LUFA 2.3). In fact, in OECD soil Ag NPs exerted oxidative stress and 

DNA damage in earthworms uniquely after 14 days of exposure in the high dose while 

the same parameters were already affected at shorter exposure times (3 days) and even 

at lower exposure doses (0.05 mg Ag NPs /kg) after 14 days in LUFA 2.3 soil. These 

approaches were able to give an integrative and conclusive idea of the effects posed by 
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Ag NPs at different complexity levels of E. fetida, in differing doses, exposure times, and 

standard soils. 

5. Conclusions 

PVP-PEI coated Ag NPs exerted toxicity at different levels of biological complexity in E. 

fetida earthworms, being weight loss, reduction in the viability of coelomocytes, 

increase in CAT activity and DNA damage the major effects recorded, which reinforce 

oxidative stress as a mechanism of toxicity of Ag NPs. High but sublethal concentrations 

of Ag NPs (50 mg Ag NPs/kg) caused increase in CAT activity and DNA damage in OECD 

soils after 14 days while in LUFA 2.3 soils produced earlier effects (weight loss, decrease 

in cell viability and increase in CAT activity at day 3). At day 14, the characteristics of 

this natural soil (lower clay and OM contents) could have provoked starvation of 

earthworms, masking Ag NPs toxicity. The concentration of Ag NPs close to 

environmental predictions (0.05 mg Ag NPs/kg) did not produce significant effects in 

OECD soils, while exposure in LUFA 2.3 soil posed weight losses above 20% and 

depletion of MTs at day 14. Therefore, the lower clay and organic matter contents of 

LUFA 2.3 soils in comparison to OECD soil can be considered as a toxicity enhancer to Ag 

NPs toxicity. 
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Abstract 

The current use and development of applications with silver nanoparticles (Ag NPs) could 

lead to potential inputs of these NPs to soils. Consequently, it is crucial to understand the 

ecotoxicological risks posed by Ag NPs in the terrestrial compartment. In the present 

chapter, the effects produced by PVP-PEI coated Ag NPs were assessed in Eisenia fetida 

earthworms in comparison with the soluble form (AgNO3). Earthworms were exposed for 1, 

3 and 14 days to high but sublethal (50 mg Ag/kg) and close to modelled environmental 

concentrations (0.05 mg Ag/kg) and at each exposure time, apart from mortality and weight 

loss of individuals, metallothionein (MT) protein concentration and catalase (CAT) activity 

were quantified in earthworm tissues. In addition, cellular and molecular level endpoints 

(cell viability, subpopulations relative number and transcription levels of metallothionein-

mt- and catalase-cat-) were measured in coelomocytes extruded from exposed earthworms. 

Despite the lack of effects in traditional endpoints (mortality and weight loss), Ag NPs and 

AgNO3 posed changes at lower levels of biological complexity (biochemical, cellular and 

molecular levels). Both Ag forms induced similar changes in the metal detoxification 

mechanism (MT, mt) and in the antioxidant response system (CAT, cat) of E. fetida. In 

contrast, Ag form dependant cytotoxicity and alterations in the subpopulations (eleocytes 

and amoebocytes) relative number were recorded in extruded coelomocytes. 

Complementarily, the use of coelomocytes to assess molecular level endpoints represented 

a relevant alternative for development of non-invasive biomarkers. 

Keywords: Silver nanoparticle (Ag NP), Silver nitrate (AgNO3), Eisenia fetida, metal 

detoxification, antioxidant response, coelomocyte cytotoxicity. 
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Laburpena 

Zilar nanopartikulen (Ag NPs) egungo erabilerek eta aplikazio desberdinen garapenek 

material hauen sarrera eragin dezakete lurzoruan. Beraz, Ag NPek lurzoruko ekosistemetan 

sortu ditzaketen arrisku toxikologikoen ikertzeak berebiziko garrantzia du egun. Kapitulu 

honetan, PVP-PEI estalduradun Ag NPen efektuak zilar nitratoarekin (AgNO3) alderatu ziren 

Eisenia fetida zizarean. Horretarako, zizareak 1, 3 eta 14 egunez mantendu ziren 

kontzentrazio altu baina azpiletalean (50 mg Ag /kg) eta ingurumenean aurreikusten 

direnetatik gertu dauden kontzentrazioetan (0.05 mg Ag/kg). Esposizio denbora 

desberdinetan zizareen hilkortasuna eta pisu galera neurtzeaz aparte, metalotioneina (MT) 

kontzentrazio eta katalasa (CAT) aktibitatea kuantifikatu ziren zizareen ehunetan. Horretaz 

gain, biomarkatzaile zelular eta molekularrak ( zelulen bideragarritasuna, azpipopulazioen 

proportzio erlatiboa ,eta metalotioneina-mt- eta katalasa-cat- transkripzio mailak) neurtu 

ziren esposizio pean izandako zizareetatik erauzitako zelomozitoetan. Ag NP and AgNO3 

zizareetan hilkortasuna eta pisu galera sortu ez bazuten ere, zizareen konplexutasun maila 

baxuagoetan (maila biokimiko, zelular eta molekularra) efektuak eragin zituzten. Bi zilar 

formek antzeko aldaketak eragin zituzten E. fetidaren metal detoxifikazio (MT, mt) eta 

erantzun antioxidatzailearen (CAT, cat) sistemetan. Bestalde, Ag formaren menpeko 

zitotoxizitatea eta azpipopulazioen (amebozito eta eleozito) proportzio erlatiboan aldaketak 

behatu ziren erauzitako zelomozitotan. Era berean, maila molekularreko biomarkatzaileen 

neurketarako zelomozitoen erabilera aukera aproposa dela ikusi izan da. 

Hitz gakoak: Zilar nanopartikula (Ag NP), Zilar nitratoa (AgNO3), Eisenia fetida, metal 

detoxifikazioa, erantzun antioxidantea, zelomozitoen zitotoxizitatea. 
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Resumen 

El actual uso y desarrollo de aplicaciones con nanopartículas de plata (Ag NPs) pueden 

producir una entrada de éstas en el suelo. Por esta razón, es crucial conocer los riesgos 

toxicológicos de las Ag NPs en el compartimento terrestre. En el presente capítulo, se han 

comparado los efectos causados por las Ag NPs recubiertas de PVP-PEI y los producidos por 

la forma soluble de plata (AgNO3) en Eisenia fetida. Para ello se expusieron las lombrices 

durante 1, 3 y 14 días a una concentraciones alta pero subletal (50 mg Ag/kg) y a otra 

concentración próxima a la estimada para el medio ambiente (0.05 mg Ag/kg). En cada 

tiempo de exposición, aparte de cuantificar la mortalidad y pérdida de peso en los 

individuos, se determinaron la concentración de metalotioneinas y la actividad catalasa en 

tejidos. Además, se midieron biomarcadores a nivel celular y molecular (viabilidad celular, 

número relativo de celomocitos, y niveles de trascripción de metalotioneínas –mt- y 

catalasa-cat-) en celomocitos extruidos de lombrices expuestas in vivo. A pesar de no 

observarse mortalidad o pérdida de peso significativas, las Ag NPs y AgNO3 causaron 

cambios a niveles más bajos de complejidad biológica (niveles bioquímico, celular y 

molecular). Los cambios en los sistemas de detoxificación de metales (MT, mt) y respuesta 

antioxidante (CAT, cat) fueron similares tras la exposición de las lombrices a Ag NPs y 

AgNO3. Por el contrario, se observaron diferencias dependientes de la forma de Ag en la 

citotoxicidad y en el número relativo de celomocitos (amebocitos y eleocitos). De forma 

complementaria, se concluye que el uso se celomocitos puede ser una buena alternativa 

para desarrollar biomarcadores no invasivos. 

Palabras clave: Nanopartícula de plata (Ag NP), Nitrato de plata (AgNO3), Eisenia fetida, 

detoxificación de metales, respuesta antioxidante, citotoxicidad de celomocitos. 
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1. Introduction 

The wide range of current and potential future applications exhibited by silver 

nanoparticles (Ag NPs) has made them one of the most commonly used nanomaterials 

(Dubey et al., 2015; Vance et al., 2015). Due to these applications and to the massive 

disposal of sewage sludge released from waste water treatment plants (WWTP, one of 

the major sources of Ag NPs in soils), Ag NPs might have the potential to severely affect 

soil health (Shoults-Wilson et al., 2011c; Tourinho et al., 2012). However, the potential 

risk of Ag NPs in soils has been poorly investigated in comparison with aquatic 

environments. Even if fewer studies have involved the effects of Ag NPs on terrestrial 

organisms, the number of studies carried out with earthworms has increased during the 

last five years (Diez-Ortiz et al., 2015a, 2015b; Gomes et al., 2013, 2015; Hayashi et al., 

2012; Heckmann et al., 2011; Kwak and An, 2015; Novo et al., 2015; Schlich et al., 2013; 

Shoults-Wilson et al., 2011a, 2011b, 2011c; Tsyusko et al., 2012). 

Earthworms play an important role in terrestrial ecosystems (e.g. decomposition and 

nutrient recycling) and therefore, the study of effects exerted by Ag NPs on them is 

crucial to understand the potential impacts of NPs in soils. In this context, standard 

toxicity tests with Eisenia fetida earthworm (OECD 1984, 2004) are aimed to address 

traditional endpoints such as survival or weight loss in order to calculate different 

toxicity indices (LCx and ECx). Furthermore, tissue, cellular or molecular level 

biomarkers could be also quantified in target tissues of E. fetida in order to assess the 

exposure degree or the toxic effects of pollutants. For instance, metallothioneins (MTs), 

low molecular weight proteins, with high cysteine content (up to 30%) that enables to 

bind a variety of metal atoms (Asensio et al., 2007; Brulle et al., 2006), participate in 

homeostasis of essential metals and in the detoxification of toxic trace metals (Brulle et 

al., 2006) and may prevent oxidative stress (Ribeiro et al., 2015). Ag NPs are known to 

cause oxidative stress in terrestrial invertebrates by the production of highly reactive 

oxygen species (ROS) that can damage cell components including DNA, proteins and 

membranes (Yang et al., 2011). Cells, in order to protect themselves from ROS, have 

developed complex defence systems including non-enzymatic scavengers and 

antioxidant enzymes such as catalase (CAT). A change in CAT activity is an indicator of a 

cellular lesion after exposure to chemicals, and thus it is considered as an early 

environmental stress biomarker (Asensio et al., 2013; Gomes et al., 2015). 
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Biomarkers can be measured in earthworm tissues or even in target cells as 

coelomocytes. Coelomocytes are the immune cells of earthworms and play a pivotal role 

in recognition and elimination of foreign materials and are involved in clotting and 

wound healing (Cooper, 2002; Kurek et al., 2007). Coelomocytes compose a 

heterogeneous cellular group that circulates in fluid-suspension in the coelomic cavity. 

Based on cytomorphometric, ultrastructural and cytochemical properties two major cell 

subpopulations are distinguished, amoebocytes and eleocytes, being the former 

subgrouped into hyaline and granular amoebocytes (for detailed descriptions see 

Adamowicz, 2005). Changes in coelomocytes viability and subpopulation ratios in 

earthworms exposed to xenobiotics or subjected to different types of stress reflect 

alterations in the earthworms immune response and in the general health status 

(Adamowicz and Wojtaszek, 2001; Di Marzio et al., 2005; Homa et al., 2003; Irizar et al., 

2015b). Hence, these cellular parameters have been proposed as biomarkers of general 

stress in soil toxicity assessment (Homa et al., 2003; Irizar et al., 2015b; Olchawa et al., 

2006). Regarding lower levels of biological organization, Ag NPs are known to alter the 

transcription of genes involved in the abovementioned pathways in E. fetida: oxidative 

stress, detoxification and immune signalling (Hayashi et al., 2013a; Tsyusko et al., 2012). 

Transcription levels of target genes such those encoding CAT or MT have been easily 

measured in earthworm tissues (Asensio et al., 2007; Brulle et al., 2006; Irizar et al., 

2014a; Chapter 1). However, the utilization of immune cells (coelomocytes) to assess 

molecular level endpoints would represent a relevant alternative for the development of 

non-invasive biomarkers in more controllable and reproducible test systems than whole 

animals. 

The aim of the present chapter was to assess the toxicity of PVP-PEI coated Ag NPs in 

earthworms, E. fetida, in comparison with the soluble form of the metal (AgNO3). For 

this purpose, earthworms were exposed for 1, 3 and 14 days to high but sublethal (50 

mg Ag /kg) and close to modelled environmental concentrations (0.05 mg Ag /kg) in the 

form of Ag NPs and AgNO3. At each exposure time, apart from mortality and weight loss 

of individuals, MT protein concentration and CAT activity were quantified in earthworm 

tissues. In addition, cellular and molecular level endpoints (cell viability, subpopulations 

relative number and transcription levels of cat and mt genes) were measured in 

coelomocytes extruded from exposed earthworms.  
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2. Materials and Methods 

2.1. Test species 

Eisenia fetida earthworms (350–500 mg fresh weight) used for the experiments were 

healthy adults, clitellated and obtained from the stock population provided by a 

commercial dealer (LOMBRICOR S.C.A., Córdoba, Spain). Earthworms were maintained 

in the laboratory under controlled conditions of temperature (19 ± 2 °C), darkness and 

constant humidity. As food source medication-free horse manure was provided when 

required.  

2.2. Test substances 

Polyvinylpyrrolidone-polyethylenimine (PVP-PEI, 3.35:1) coated silver nanoparticles 

(NP Ag-2106W) were purchased from NANOGAP (SUB-NM-POWDER, S.A., A Coruña, 

Spain). Ag NPs were water dispersed (10 g Ag/L with 104 g PVP-PEI/L), 5.08 ± 2.03 nm 

average size and with a Z-potential of 18.6 ± 7.9 mV. Particle size distribution and zeta 

potential determinations through Dynamic Light Scattering were provided by NANOGAP 

CoA (Appendix I). High grade (>99% purity) AgNO3 was purchased from Sigma-Aldrich. 

2.3. Artificial soil preparation, contamination and characterization 

The OECD artificial soil was prepared following the OECD guideline 207 (OECD, 1984). 

The artificial soil contained 70% sand (50% of particles were between 50-200 µm), 20% 

kaolin clay and 10% sphagnum peat sieved at 2 mm. pH was adjusted to 6.0 ± 0.5 by 

addition of 0.01% calcium carbonate. Dry constituents were mixed, placed in glass 

containers and moistened to 40% of their water holding capacity (WHC, 21.91%) with 

suspensions of Ag NPs and solutions of AgNO3 in distilled water or with distilled water 

in the case of the control group. The same concentration used in Chapter 2 were chosen, 

sublethal (50 mg Ag /kg, according to previous experiments in Garcia-Velasco et al., 

2016; Chapter 1) and close to modelled environmental concentrations (0.05 mg Ag /kg). 

After spiking with the corresponding silver form, experimental soils were thoroughly 

mixed to ensure a homogeneous distribution of the metal. Then soils were stabilized 

during 3 days before adding earthworms previously acclimated (24 h) to OECD soil. 

Earthworms (n=20) were exposed to unpolluted soil (control) and to soils spiked with 

Ag NPs or AgNO3 during 1, 3 and 14 days. At the end of each Ag exposure, weight loss 

was assessed in earthworms and Ag quantification and pH measurements were carried 

out in experimental soils at day 14. The real concentration of Ag in soils was quantified 
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following the EPA 3051A method and analysed in Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS, 7700-Agilent Technologies) in the Central Analysis Service of the 

UPV/EHU (SGIker). Detection limit (DL) was 0.03 mg/kg. For the measurements of the 

pH an adaptation of the ISO 10390: 2005 “Soil Quality – Determination of pH in water” 

was followed.  

2.4. Concentration of metallothioneins (MTs) 

Metallothionein (MTs) concentration was determined in earthworms by the 

spectrophotometric method described by Viarengo et al. (1997). In order to perform 

pools, the post-clitellar portion of 3 earthworms were weighed and homogenized in 

three volumes of 0.5 M sucrose and 20 mM Tris–HCl buffer (pH 8.6) containing 0.006 

mM leupeptine and 0.5 mM phenylmethylsulfonilfluoride, as an antiproteolytic agents, 

and 0.01% β-mercaptoethanol, as a reducing agent. Homogenates were ultracentrifuged 

(30.000 x g, 20 min, 4 °C) and precipitated with ethanol/chloroform. Three pools were 

done per treatment and exposure time. MTs concentration was quantified by 

spectrophotometric titration of the sulfhydryl residues using the Ellman’s reagent (5,50-

dithiobis-2-nitrobenzoic acid) with reduced glutathione (GSH) as standard. Samples 

were centrifuged for 5 minutes (530 x g, 4 °C) and the supernatant (300 µl) was added 

in 96-well microplate wells. Each sample was replicated four times. Finally, absorbance 

was measured at 412 nm in a microplate reader Multiskan Thermo Scientific 

Spectrophotometer. Data (µg MTs/g earthworm ww) were expressed in % relative to 

control. 

2.5. Catalase (CAT) activity 

Catalase (CAT) activity was determined measuring decrease of absorbance at 240 nm 

due to hydrogen peroxide consumption (Claiborne, 1985). The pre-clitellar portion of 5 

earthworms were weighed and homogenized in five volumes of homogenization buffer 

(TVBE, 1 mM sodium bicarbonate, 1 mM EDTA, 0.1% ethanol and 0.01% Triton X-100, 

pH 7.4) in order to obtain pools. Two pools per treatment and exposure time were used. 

Absorbance was measured in 96-well UV Flat Bottom microplates and using a 

microplate reader Multiskan Thermo Scientific Spectrophotometer. Four replicates 

were added per sample and a standard curve was also included in the plates. Total 

protein content was estimated according to Lowry et al. (1951) with the aid of the DC™ 

Protein Assay (Bio-Rad), using bovine ɣ-globulin as standard. CAT activity (mM of 

H2O2/mg of protein/min) was expressed in % relative to control. 
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2.6. Coelomocyte extrusion, viability and subpopulations relative number 

Before the extrusion earthworms were left in moist filter paper during 24 h to void gut 

contents. Coelomocytes were collected using a non-invasive extrusion method (Di 

Marzio et al., 2005). Briefly, four pools (of 5 organisms) per treatment and exposure 

time were placed into tubes containing 2 ml of 5% ethanol phosphate buffered saline 

solution (0.1 M, PBS) per individual and incubated for 1 min. Extruded coelomocyte 

suspensions were washed in PBS twice (530 x g, 10 min, 4 °C). Final pellets were 

resuspended in 2 ml of PBS and cells were counted using a haemocytometer (Neubauer 

chamber). Three replicate slides were analyzed per pool for viability and 

subpopulations relative number measurements. Cytotoxicity was expressed as the 

percentage of non-viable cells measured with 0.4% Trypan Blue. Additionally, the 

population of coelomocytes was characterized as eleocytes or amoebocytes according to 

their morphology (Adamowicz, 2005).  

2.7. cat and mt transcription levels in extruded coelomocytes 

The same coelomocyte pools used to record viability and subpopulations relative 

number (4 pools- from 5 individuals- per treatment and exposure time) were employed 

to quantified cat and mt transcription levels. Coelomocytes (2×106 cell pellets) were 

homogenized in TRIzol® (Invitrogen, Thermofisher Scientific USA) using silica beds in a 

HYBAID RiboLyser (FP120-HY-230) for 45 s at maximum speed. Total RNA was 

extracted following the manufacturers protocol (TRIzol® method). RNA purity and 

integrity were spectrophotometrically checked. RNA was purified using the RNase-free 

DNase Set (Qiagen®) following manufacturers indications and 1 µg of total RNA was 

retro-transcribed into cDNA using the AffinityScript Multiple Temperature kit (Agilent 

Technologies). Cat and mt transcription levels were quantified in a 7300 Real Time PCR 

System (Applied Biosystems, Thermofiher Scientific) using FastStar Universal SYBR 

Green Master mix (Roche). Each reaction (final volume 20 µL) contained 2 µL of sample 

(previously diluted at 1/100), 0.25 µl of 25 pmol primer pair (Table 1), 7.75 µL of RNAse 

free water, and 10 µL of SYBR Green (Roche). qPCRs were run as follows: 2 min at 50 °C, 

10 min at 95 °C; and 40 cycles at 95 °C (15 s) followed by each melting temperature 

(Table 1) (45 s). Efficiency was determined running a standard curve and specificity of 

each reaction was determined by the melting curve where a single peak was identified 

in all dissociation curves, confirming the production of a single amplicon per primer set. 

In all cases, a control without template was run for quality assessment. The specific 
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amplification of each amplicon was also checked by sequencing both PCR products. 

Relative Quantification (RQ) of the transcription levels was calculated using a plate 

calibrator to obtain the ∆CT, the efficiency (E) of the PCR and the amount of cDNA (in 

ng) used in each reaction:  

RQ= (1+E)-∆CT / ng cDNA 

Amount of cDNA was determinate by using QuantiT OliGreen ssDNA assay Kit following 

manufacturer’s procedure. RQ values were represented relative to the average of 

control earthworms in each exposure time (1, 3 and 14 days).  

Table 1. Primer sequences (Fw: Forward, Rv: Reverse), melting temperatures (°C) and the 
expected amplicon length (bp) for the specific amplification of metallothionein (mt) and catalase 
(cat) by qPCR in earthworms. 
 

Gene (Acc. number) Melting 
T. (°C)

Amplicon 
lenght (bp)

Fw AAATGCTCGGCTGGTTCGT
Rv  TGATGACAGAGTTCCGTATTTC
Fw  GCCGACGGAGAAGCTGTGTA
Rv  TAAAGGTCACGGGTCGCATAG

Primer sequence (5´-3´)

103

cat (DQ286713) 59.0 125

mt (AJ236886) 55.5

 

2.8. Statistical analysis 

Normal distribution of data was assessed using the Shapiro-Wilk’s test and homogeneity 

of variance was tested using the Bartlett’s test. Significant differences (p<0.05) with 

respect to the control were based on the non-parametric Kruskal-Wallis test followed by 

the Dunn´s post hoc test. Differences between Ag forms were explored with Student´s t 

(parametric) and Mann-Whitney U (non-parametric) tests. All statistical analysis was 

performed using Statistica v. 8 (StatSoft). 

3. Results 

3.1. Ag concentration and pH of soils 

Real concentrations of Ag in experimental soils were similar to nominal concentrations 

with the exception of the 0.05 mg AgNO3/kg experimental group that showed 0.53 mg 

Ag/kg as real concentration (Table 2). Soil pH remained around 6 during the experiment 

for all the exposure groups.  
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Table 2. Nominal and real Ag exposure concentrations (mg /kg soil) and pH of experimental 
soils. Detection limit (DL) was 0.03 mg/kg. 
 

Nominal concentration 
(mg/kg) 

Real concentration 
(mg Ag/kg) pH (in dH2O) 

Control 0 0.05 5.93 

Ag NPs 
0.05 0.09 5.99 
50 48.40 5.89 

AgNO3 
0.05 0.53 6.00 
50 50.30 6.11 

3.2. Weight loss 

Control and exposed earthworms lost similar weight (15-17%) during the experiment, 

regardless of the Ag form (Ag NPs and AgNO3) and time (1, 3 and 14 days). 

3.3. Concentration of metallothioneins (MTs) 

MTs concentration did not change during the experiment time in control earthworms. 

MT levels significantly increased with respect to controls after exposure to both 

concentrations (0.05 and 50 mg/kg) of Ag NPs and AgNO3 (Fig. 1). The major increases 

were recorded at day 3. No differences in MT concentration were found between Ag 

forms at day 1 and 3. After 14 days of exposure, MT concentrations appeared to be 

significantly higher after exposure to Ag NPs at the highest dose (50 mg/kg). 
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Figure 1. Metallothioneins (MTs) concentration (% relative to the control) in organisms 
exposed to Ag NPs and AgNO3 spiked soils (0.05 and 50 mg/kg) and unpolluted soil (0) for 1, 3 
and 14 days. Mean values and standard deviations are shown. The statistically significant 
differences with respect to the control group (p < 0.05 with Kruskal-Wallis) are represented by 
asterisk. Letter and letter plus apostrophe pairs (C, C´) indicate significant differences (p<0.05) 
between both Ag forms. 
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3.4. Catalase (CAT) activity 

CAT activity did not show alterations during the experiment in control organisms (Fig. 

2). In earthworms exposed to both concentrations (0.05 and 50 mg/kg) of Ag NPs and 

AgNO3 CAT activity was significantly enhanced in comparison to controls up to day 3 

(Fig. 2). After 14 days of exposure, activity was reduced, especially after exposure to the 

highest dose of both Ag forms (Fig. 2). CAT activity was significantly higher in 

earthworms exposed to AgNO3 than to Ag NPs at day 14, only at 0.05 mg/kg 

concentration. 
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Figure 2. Catalase activity (CAT, in % relative to the control) in organisms exposed to Ag NPs 
and AgNO3 spiked soils (0.05 and 50 mg/kg) and unpolluted soil (0) for 1, 3 and 14 days. Mean 
values and standard deviations are shown. The statistically significant differences with respect 
to the control group (p < 0.05 with Kruskal-Wallis) are represented by asterisk. Letter and letter 
plus apostrophe pairs (C, C´) indicate significant differences (p<0.05) between both Ag forms. 

3.5. Coelomocytes viability and subpopulations relative number  

Percentage of non-viable coelomocytes in control earthworms remained in the same 

value along the experimental period. Percentage of non-viable coelomocytes increased 

significantly in earthworms exposed to both forms of Ag (NPs or salts) (Fig. 3A). 

Exposure to Ag NPs produced significantly higher cell mortality than AgNO3 for the 

same exposure concentration and time.  

The number of eleocytes (Fig. 3B) in control earthworms and in earthworms exposed to 

the predicted environmental concentration (0.05 mg/Kg) of Ag NPs was similar all along 

the experiment (Fig. 3B). However, after 3 and 14 days of exposure to the highest 

concentration of Ag NPs (50 mg/kg) the total number of eleocytes increased in 

comparison to controls. Eleocyte number tended to decrease after exposure to 0.05 mg 

AgNO3/kg for 3 and 14 days. Exposure to the highest dose (50 mg/kg) of AgNO3 

significantly decreased the number of eleocytes in comparison to control groups. 
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Significant differences were found in eleocyte number when comparing Ag forms (Fig. 

3B). 
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Figure 3. Non-viable coelomocytes (Trypan Blue 0.4%, A) and number of eleocytes (%, B) after 
1, 3 and 14 days of exposure to Ag NPs and AgNO3 (0.05 and 50 mg/Kg) spiked soils and 
unpolluted soil (0). Values are represented as mean values and standard deviation. Statistically 
significant differences with respect to the control group (p < 0.05 with Kruskal-Wallis) are 
represented by asterisk. Letter and letter plus apostrophe pairs indicate significant differences 
(p<0.05) between both Ag forms for day 1 (a, A), day 3 (b, B) and day 14 (c, C). 

3.6. cat and mt transcription levels in extruded coelomocytes 

Overall, cat and mt transcription levels were higher in coelomocytes extruded from 

earthworms exposed to both forms of Ag (Ag NPs and AgNO3) during 1 and 3 days in 

comparison to control coelomocytes (Fig. 4). These differences were enhanced after the 

exposure to the highest concentration of Ag (50 mg/kg). After 14 days, Ag NPs caused 

increase of cat transcription levels while no significant differences were found in mt at 

this time. After exposure to AgNO3, both genes were significantly up-regulated at low 

doses (0.05 mg/Kg) while at the highest exposure concentration a significant inhibition 

was observed for mt (Fig. 4A). In the case of cat, transcription levels decreased up to the 

control values after 14 days of exposure to the highest dose of AgNO3 (Fig. 4B). 

Alterations in mt and cat transcription levels were significantly higher after AgNO3 

exposure than after Ag NPs exposure at days 1 and 14 after exposure to the low dose.  
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Figure 4. Relative transcription levels of mt (A) and cat (B) in coelomocytes extruded from 
control earthworms and from earthworms exposed to Ag NPs and AgNO3 (0.05 and 50 mg/kg) 
spiked soils for 1, 3 and 14 days. Relative Quantification (RQ) is represented by means and 
standard deviations. Statistically significant differences with respect to the control group are 
indicated by asterisk (p < 0.001). Letter and letter plus apostrophe pairs indicate significant 
differences (p<0.05) between both Ag forms for day 1 (a, A), day 3 (b, B) and day 14 (c, C). 

4. Discussion 

An adequate spiking and homogenizing procedure is one of the most crucial issues 

when characterizing the toxicity of pollutants in soils (Waalewijn-Kool et al., 2012). 

Presently, Ag concentrations measured in both Ag NPs and AgNO3 spiked soils did not 

differ from the nominal concentrations, with the exception in 0.05 mg AgNO3/kg 

treatment (0.53 mg Ag/kg as real concentration, probably due to 

inhomogeneity/contamination of the soil sample collected), indicating overall validity of 

the spiking protocol used herein. In this context, it is noteworthy that chemical analyses 

carried out on experimental soils ensured the exposure of earthworms to different 

known concentrations of Ag (NPs or salt) for up to 14 days. This exposure may exert 

physiological responses at different levels of biological complexity, possibly altering 

earthworm fitness, and ultimately changing their populations or community densities. 

Aiming to measure these effects, standard toxicity tests (OECD, ISO) with E. fetida 

earthworms are based on short and long-term experiments and traditional endpoints 

(Moser and Römbke, 2009). However, presently earthworms appeared to be unaffected 

at high levels of biological organization (organism level) since severe weight losses 

(>20%) were not recorded after Ag NPs and AgNO3 exposures. It seemed that exposure 

concentrations and duration (or both) were not high enough to produce significant 

somatic effects at the organism level. Accordingly, in Chapter 1 was proved that the EC50 
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for weight loss after 14 days of exposure (EC50= 57.62 mg Ag NPs/kg) was higher than 

the highest dose used in the present chapter.  

Complementary to the classical toxicity endpoints, changes in health status can be 

detected at lower levels of biological complexity, which can forecast effects in more 

ecologically relevant parameters. In fact, even if the weight loss of earthworms 

remained unaltered after exposure to both silver forms, MT concentrations significantly 

increased in comparison with controls after exposure to low and high doses of Ag. This 

might suggest a possible activation of the metal detoxification mechanism that involves 

these metal quenching proteins, as Ribeiro et al. (2015) found for Enchytraeus crypticus 

after exposure to both silver forms. Hence, Ag would be selectively bound to MTs and 

the resulting Ag-MT complexes would be sequestered into lysosomes (Garcia-Velasco et 

al., 2016; Marigómez et al., 2002; Chapter 1). Thus, MT could participate in Ag removal, 

helping to prevent oxidative stress, mainly at short exposure times (day 3). In fact, 

biochemical responses are known to be time dependent, and therefore, 3 days could be 

enough to scavenge silver. A similar pattern was reported for E. fetida after exposure to 

carbon nanotubes, where MT concentration increased significantly at the third day of 

exposure followed by a decrease at longer exposure times (Calisi et al., 2016). In 

contrast, Gomes et al. (2015) observed that MTs in E. fetida were not affected by Ag NPs 

or AgNO3 even at higher exposure concentrations than the ones used in the present 

work. These controversial results can be the effect of different concentrations and 

exposure times. In any case, it can be concluded that there is no full discrimination 

between the two Ag forms regarding MT levels. 

Accordingly with Gomes et al. (2015) CAT activity in E. fetida was activated in short 

exposure periods (1 and 3 days) and inhibited after long periods of exposure to both Ag 

forms. This inhibition has been previously demonstrated in earthworms after exposure 

to metals by producing relevant quantities of superoxide anions (Irizar et al., 2014a). 

Recent studies evidence oxidative stress (with temporal changes) as a mechanism of 

toxicity after exposure to both silver forms in E. fetida earthworms (Hayashi et al., 2012, 

2013; Tsyusko et al., 2012) and present results reinforce this idea. However, such 

studies showed that antioxidant responses to AgNO3 started earlier than to Ag NPs, 

which could be related to oxidation time (quicker ion release) or a slower uptake of Ag 

NPs or due to a complexation with the soil matrix of the nanoform. Presently, CAT 

activity did not show a clear dissimilar patter between the two Ag forms.  
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The interaction of NPs or released ions with thiol groups of vital enzymes and proteins 

affects cellular processes and ultimately can lead to cell death (Hayashi et al., 2012; 

Levard et al., 2012). Cytotoxicity and subpopulations relative number were determined 

in coelomocytes extruded from organisms exposed to both Ag forms to assess 

coelomocytes viability. Coelomocytes are involved in eliminating foreign material by 

phagocytosis and encapsulation (amoebocytes) and they also synthesize and secret 

cytolitic components into the coelomic fluid (chloragocytes or eleocytes), causing lysis 

of non-self material (Bilej et al., 2000, 2010). Several studies have reported that the 

number of coelomocytes varies after exposure to metals as a result of changes in the 

permeability of the cell membrane that leads to diminished cell viability (Irizar et al., 

2015b; Podolak et al., 2011). Similarly, Irizar et al. (2014b) found that in vivo and in vitro 

exposure to sublethal concentrations of metals (Pb, Ni, Cd, Cu) provoked a dose-

dependent decrease in Neutral Red Uptake capacity due to damage in the coelomocytes 

membrane. Likewise, after in vivo exposure to Ag NPs and AgNO3, non-viable 

coelomocytes increased following a dose and time trend. Both silver forms could have 

released ions to soil pore water that would have entered trough the dorsal pores of the 

earthworms tegument (Garcia-Velasco et al., 2016; Irizar et al., 2015a; Chapter 1) and 

impact in the permeability of the cellular membrane (McShan et al., 2014) of 

coelomocytes, causing the observed cytotoxicity. The degree of Ag NPs solubilisation 

seems to be crucial to exert biological effects. Moreover, the toxicity of Ag NPs has been 

principally attributed to bioavailable Ag+ ions (Van Aerle et al., 2013). However, it 

cannot be discarded in which form remained Ag NPs and AgNO3 under present exposure 

conditions, in pore water as particulate form, soluble salts or insoluble Ag 

(nano)clusters or bound to soil particles conforming heteroaggregates.  

The response of the different subpopulations (amoebocytes and eleocytes) was 

dependant of the Ag form. In fact, according to coelomocytes viability and the 

subpopulations relative number, the exposure to Ag NPs (or/and to Ag ions released 

from them) provoked a more marked toxicity than exposure to AgNO3. This could be 

related with the target cell for each Ag form, hence Ag NPs enhanced the mortality of 

amoebocytes (increased the relative number of eleocytes), while AgNO3 posed a 

decrease in eleocytes. Likewise, recent in vitro tests with coelomocytes demonstrated 

the selective intracellular accumulation of Ag NPs in the amoebocyte subpopulation and 

their role as scavengers of Ag NPs, effecting cytokine release and even death of the cell 

(Hayashi et al., 2012). Thus, a phagocytic uptake of Ag NPs may have occurred in 
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amoebocytes, followed by intracellular particle oxidation which can produce cellular 

damage (Hayashi et al., 2012; Limbach et al., 2007). The intracellular accumulation of Ag 

NPs could act as Ag+ source that is known as Trojan horse effect (Limbach et al., 2007). 

In contrast, studies with metal salts (e.g. CdCl2) demonstrated eleocytes to be more 

sensitive than amoebocytes (Irizar et al., 2015b) and the same could happen with Ag 

salts (AgNO3). Hence, both Ag forms caused cytotoxicity in coelomocytes but dissimilar 

sensitivities were recorded among subpopulations depending on the Ag form.  

Apart from assessing metal detoxification (MT) and antioxidant response (CAT) in 

earthworm tissues, advances in molecular biology propelled the use of a new family of 

biomarkers based on the analysis of transcription levels of stress-related genes. In this 

framework, changes in the transcription levels of target genes such those encoding CAT 

or MT have been easily measured in earthworms subjected to Ag NPs (Chapter 2) and to 

NP and salt Ag forms (Hayashi et al., 2013a; Tsyusko et al., 2012). In all these studies 

gene expression was measured in tissues whereas presently transcription levels were, 

for the first time, recorded in isolated coelomocytes extruded from exposed 

earthworms. According to the results obtained at biochemical level, mt transcription 

levels increased at days 1 and 3 followed by an inhibitory response after 14 days of 

exposure to the highest concentration. Equally, Tsyusko et al. (2012) pointed out that 

the highest number of significant changes in the levels of expression of mt in E. fetida 

exposed to both Ag NPs and AgNO3 occurred at short exposure periods (up to 3 days) as 

can be expected for a early warning biomarker of metal exposure. It can be concluded 

that the transcription of mt is involved in short term homeostasis mechanisms for Ag 

exposure. Previous works dealing with cat expression in E. fetida showed different 

regulation patterns and temporal variation maybe due to a different bioavailability of 

the Ag in the media or related to the Ag NPs concentration and characterization (i.e. 

coating agent and size) (Hayashi et al., 2013a; Tsyusko et al., 2012). Nevertheless, the 

dissimilar changes in eleocyte and amoebocyte number after Ag NPs and AgNO3 

exposure found in the present study should be taken into consideration when analyzing 

transcription level profiles of the whole coelomocyte population. In fact, the basal 

transcription level of each gene in each subpopulation might be different. Thus, 

subpopulation specific gene transcription profiles are found relevant for further studies 

including cell sorting techniques. However, the results obtained at transcription level in 

coelomocytes of earthworms exposed to Ag NPs and AgNO3 were able to reflect 

responses at higher levels of biological complexity and thus, the utilization of these 
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immune cells to assess molecular level endpoints represents a relevant alternative for 

development of non-invasive biomarkers. 

5. Conclusions 

Despite the lack of effects in traditional endpoints (mortality and weight loss), Ag NPs 

and AgNO3 posed changes at lower levels of biological complexity. Both Ag forms 

induced similar responses in most of the endpoints (significant changes in the metal 

detoxification mechanism and in the antioxidant response system). In contrast, at 

cellular level cytotoxicity was higher after exposure to Ag NPs but, dissimilar 

sensitivities were recorded among coelomocytes subpopulations depending on the Ag 

form, suggesting a different mode of action of nanoparticulate/salt/ionic Ag depending 

on the target cell. 
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Abstract 

Earthworm coelomocytes have become a target system in ecotoxicology due to their sensitivity 

against a wide range of pollutants, including silver nanoparticles (Ag NPs). Presently, several in 

vitro approaches with primary cultures of coelomocytes have been used to test the toxicity and 

the dissimilar response of amoebocyte and eleocyte subpopulations after PVP-PEI coated Ag NPs 

and AgNO3 exposures. In this framework, the maintenance of coelomocytes in an optimal culture 

medium and the selection of the most responsive assay are of utmost importance to obtain 

reliable data and to accurately assess Ag NPs toxicity. Thus, primary cultures of coelomocytes 

were maintained in widely used conventional media (Leibovitz´s L-15, Basal Medium Eagle, 

RPMI-1640) and in a natural medium based on freshly extruded coelomic fluid. Afterwards 

coelomocytes were exposed to PVP-PEI coated Ag NPs, the coating agent (PVP-PEI) and AgNO3 

(0-100 mg/l) and after  24 h flow cytometric analyses were used to assess mortality of 

coelomocytes and changes in the relative proportion of subpopulations, amoebocytes and 

eleocytes. In addition, viability was assessed in microplates by Neutral Red Uptake (NRU), Cell 

Proliferation WST-1 and Calcein AM Viability assays. Finally, in order to better understand the 

behaviour of both cell-types after Ag NP exposure, amoebocytes and eleocytes were sorted and 

Ag concentration measured in both isolated subpopulations. Our results showed that the 

coelomic fluid occurred to be the optimal medium for coelomocytes maintenance and Ag NPs 

toxicity assessment due to the lower mortality quantified by flow cytometry, but its 

methodological limitations made RPMI-1640 medium the best option among conventional media 

for coelomocytes culturing and for the development of microplate assays. NRU and WST-1 

assays exhibited large unavoidable interferences with the absorbance wavelengths of the 

exposure media, while Calcein AM viability assay was the most accurate and responsive to 

assess the effects produced by Ag NPs (and AgNO3) exposure. According to this assay, Ag NPs 

posed a gradual decrease in coelomocytes viability starting at 10 mg/l. The LC50 for Ag NPs was 

established at 30.48 mg/l in RPMI-1640 medium. Ag NPs appeared to be more toxic than AgNO3 

(LC50 43.38 mg AgNO3/l) for coelomocytes, which could be mediated by a dissimilar uptake of 

the different Ag forms. Nevertheless, the observed cytotoxicity cannot be attributable to its 

coating agent PVP-PEI. Exposure to Ag NPs caused selective cytotoxicity in amoebocytes, which 

correlated with the Ag concentrations measured in sorted amoebocytes and reinforced the idea 

of dissimilar sensitivities among amoebocytes and eleocytes.  

Key words: Silver nanoparticle (Ag NP), in vitro, coelomocytes primary culture, culture 

medium, microplate assay, flow cytometry, cell sorting. 
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Laburpena 

Zizareen zelomoziatoak itu zelulak bilakatu dira ekotoxikologian kutsatzaile ugariren 

aurrean (zilar nanopartikulak-Ag NPs- barne) azaldu duten sentikortasunagatik. Kapitulu 

honetan, zilar nanopartikulek eragindako toxikotasuna eta zelomozito azpipopulazioen 

(amebozito eta eleozito) erantzun desberdinak aztertu dira zelomozito hazkuntza 

primarioetan in vitro proba desberdinak erabiliz. Horretarako, aurretiaz zelomozito kultibo 

primarioen mantenurako hazkuntza medio optimoaren eta erantzun esangarrienak 

eskaintzen dituen entsegu sentikorrenaren aukeratzeak garrantzi handikoak dira. Hortaz, 

zelomozitoen kultibo primarioak hazkuntza medio konbentzionaletan (Leibovitz´s L-15, 

Basal Medium Eagle, RPMI-1640) eta zeloma barrunbetik erauzitako fluido naturalean 

prestatu ziren. Ondoren, zelomozitoak PVP-PEI estalduradun Ag NP, estaldura konposatu 

(PVP-PEI) eta AgNO3 pean izan ziren (0-100 mg/l) 24 orduz. Denbora horren ostean, zelulen 

hilkortasuna eta azpipopulazioen (amebozitoak eta eleozitoak) proportzio erlatiboan 

aldaketak kuantifikatu ziren fluxu zitometro analisi bitartez. Horretaz gain, Gorri 

Neutroaren metaketa (NRU), zelulen proliferazio WST-1 eta Kaltzeina AM bideragarritasun 

testak burutu ziren mikroplaketan. Azkenik, zelomozito azpipopulazioek Ag NP 

esposiziopean duten portaera ulertzeko asmoz, amebozito eta eleozitoak banatu egin ziren 

eta isolatutako azpipopulazioetan Ag metaketa neurtu zen. Fluxu zitometroan neurtutako 

zelomozitoen hilkortasunari begiratuta fluido zelomikoa medio optimotzat hartu bazitekeen 

ere, medio honek muga metodologikoak aurkeztu zituen. Beraz, horren ordez RPMI-1640 

medio konbentzionala aukeratu zen, zelomozitoen hazkuntza eta mikroplaka entseguak 

egiteko mediorik aproposena izanik. NRU eta WST-1 entseguen eta esposizio medioen 

absorbantzien artean interferentziak aurkitu ziren. Kaltzeina AM bideragarritasun testak, 

aldiz, erantzunik sentikorrenak eskaini zituen. Azken honen emaitzei erreparatuta, Ag NPek 

zelomozitoen bideragarritasunean 10 mg/l kontzentrazioan hasitako jeitsiera graduala 

eragin zuten. RPMI-1640 medioan eta Ag NPs esposiziopean mantendutako zelomozitoen 

LC50 balorea 30.48 mg/l-koa izan zen. Ag NP pean izandako zelomozitoen toxikotasuna 

AgNO3 pean izandakoena (LC50 43.38 mg AgNO3/l) baino handiagoa izan zen, toxikotasun 

maila zilar forma desberdinen metaketa bidearen menpekoa izan zitekelarik. Hala ere, 

behatutako toxikotasuna ezin zaio PVP-PEI estaldurari esleitu. Ag NPen esposizioak 

zitotoxizitate selektiboa eragin zuen amebozitoetan, isolatutako amebozitotan 

kuantifikatutako zilarraren edukiarekin bat etorriz, eta amebozito eta eleozitoen Ag-arekiko 

sentikortasun ezberdina dutela frogatzen du. 

Hitz gakoak: Zilar nanopartikula (Ag NP), in vitro, zelomozito hazkuntza primarioa, 

hazkuntza medioa, mikroplaka entseguak, fluxu zitometroa, zelulen banaketa. 
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Resumen 

Los celomocitos de lombriz son considerados cómo células diana en ecotoxicología debido a su 

sensibilidad frente a diversos contaminantes, incluidas las nanopartículas de plata (Ag NPs). En 

el presente capítulo se han empleado diferentes ensayos in vitro con cultivos primarios de 

celomocitos para evaluar la toxicidad y determinar las respuestas de los amebocitos y eleocitos 

frente a la exposición a Ag NPs (recubiertas de PVP-PEI) y AgNO3. Para evaluar adecuadamente 

la toxicidad de estos compuestos, se considera que tanto el mantenimiento de los celomocitos en 

un medio de cultivo óptimo como la validación del ensayo más sensible son factores de gran 

importancia. Con ese objetivo, se prepararon cultivos primarios de celomocitos en medios de 

cultivo convencionales (Leibovitz´s L-15, Basal Medium Eagle, RPMI-1640) y en un medio 

natural, el líquido de la cavidad celómica de las lombrices. Posteriormente, se expusieron los 

celomocitos mantenidos en los medios anteriormente mencionados a diferentes concentraciones 

de Ag NPs recubiertas (PVP-PEI) y a AgNO3 (0-100 mg/l). Pasadas 24 horas, se midieron 

mortalidad y los cambios en la proporción relativa de amebocitos y eleocitos mediante 

citometría de flujo. Además se realizaron ensayos de viabilidad celular en microplaca: Retención 

de Rojo Neutro (NRU), Proliferación celular WST-1 y Calceina AM. Con el objetivo de entender el 

comportamiento de los diferentes tipos celulares expuestos a Ag NPs, los amebocitos y eleocitos 

fueron aislados mediante técnicas de separación celular y se cuantificó su contenido en Ag. A 

pesar de que el medio natural (fluido celómico) resultó ser el óptimo para el mantenimiento de 

los celomocitos en cultivo ya que produjo la menor mortalidad en los análisis de citometría de 

flujo, éste presentó limitaciones metodológicas importantes. Por ello se seleccionó el medio 

RPMI-1640 como la mejor opción entre los medios de cultivo convencionales para el 

mantenimiento de celomocitos y para aplicar ensayos en microplaca. Los ensayos NRU y WST-1 

mostraron interferencias con la absorbancia de los medios de exposición, mientras que el ensayo 

con Calceina AM resultó ser el más sensible para evaluar los efectos de las exposiciones a Ag NPs 

(y AgNO3). Mediante el ensayo de viabilidad Calceina AM se observó un descenso gradual en la 

viabilidad de los celomocitos a partir de 10 mg/l. El valor LC50 para Ag NPs fue establecido en 

30.48 mg/l para células mantenidas en el medio RPMI-1640. Se observó una mayor toxicidad de 

las Ag NPs en comparación con Ag NO3 (LC50 43.38 mg AgNO3/l) en los celomocitos, pudiendo 

estar la toxicidad mediada por una diferente vía de acumulación dependiendo de la forma de Ag. 

Se descartó que la toxicidad observada fuese debida al recubrimiento PVP-PEI. La exposición de 

celomocitos a Ag NPs causó citotoxicidad selectiva en los amebocitos, coincidiendo con una 

mayor acumulación de Ag en este tipo celular y reforzando así la idea de diferente sensibilidad 

entre amebocitos y eleocitos.  

Palabras clave: Nanopartícula de plata (Ag NP), in vitro, cultivo primario de celomocitos, 

medio de cultivo, ensayo en microplaca, citometría de flujo, separación celular. 
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1. Introduction 

A number of in vivo assays with earthworms have been carried out to assess the effects 

produced by silver nanoparticles (Ag NPs) in soils, dealing most of them with traditional 

endpoints (avoidance, survival, growth and reproduction) (Garcia-Velasco et al., 2016; 

Heckmann et al., 2011; Lapied et al., 2010; Schlich et al., 2013; Shoults-Wilson et al., 

2011b, 2011c; Chapter 1). Even if scarcely, biomarkers measured at different levels of 

biological complexity (biochemical and molecular levels mostly) have also been used 

(Gomes et al., 2013, 2015; Hayashi and Engelmann 2013; Novo et al., 2015; Tsyusko et 

al., 2012). In regard to cellular level, earthworm immune cells (coelomocytes) have 

become an increasingly studied target system in ecotoxicology. In fact, several studies 

concerned the effects of polluted soils by measuring coelomocytes number, viability and 

activity in earthworms exposed in vivo (Hayashi et al., 2012; Homa et al., 2003; Irizar et 

al., 2015a; Kwak et al., 2014b; Scott-Fordsmand and Weeks, 2000). Such measurements 

have been recently included in in vivo studies dealing with Ag NPs toxicity assessment in 

soils (Curieses et al., 2017; Garcia-Velasco et al., 2016; Kwak et al., 2014a; Chapters 1, 2 

and 3). Even more, molecular endpoints measured in coelomocytes of earthworms (i.e. 

Eisenia fetida) exposed to Ag NPs in vivo are less invasive biomarkers that can represent 

an alternative to those measured at higher levels of biological complexity (Curieses et 

al., 2017; Chapter 3). Nevertheless, coelomocytes are not an homogeneous group of cells 

in the coelomic cavity of E. fetida earthworms, two main subpopulations, eleocytes and 

hyaline or granular amoebocytes being distinguished by cytochemical, morphometrical, 

ultrastructural and functional characteristics (Adamowicz, 2005; Bilej et al., 2000, 2010; 

Engelmann et al., 2004, 2005). Regarding their function, amoebocytes participate in 

phagocytosis and encapsulation of foreign particles (e.g. bacteria, fungi, etc.) 

(Engelmann et al., 2005; Hayashi et al., 2012; Valembois et al., 1985) and eleocytes are 

detached chloragocytes derived from the chloragogen tissue (Linthicum et al., 1977a) 

that contribute to homoestasis and humoral immunity in earthworms (Adamowicz, 

2005; Engelmann et al., 2004, 2005). Eleocytes of E. fetida possess autofluorescence due 

to the selective accumulation of riboflavin, which simplifies their identification (Plytycz 

et al., 2011). 

Both subpopulations behave differently after exposure to Ag NPs (Curieses et al., 2017; 

Chapter 3) and the accumulation, together with the intracellular mechanism of action of 

NPs in each cell type is still unclear. In vitro models could help to get deeper knowledge 

about these issues. 
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Recently, in vitro approaches with primary cultures of coelomocytes have been 

developed as cost-effective tools with promising applications in toxicity assessment of 

chemicals (Hayashi et al., 2012, 2013b; Irizar et al., 2014b, 2015b, Madhusudhan et al., 

2009). However, these methods require an accurate composition of the culture medium 

to achieve good experimental reproducibility and to ensure that the responsiveness of 

cells against toxicants is not compromised by culture conditions (Brunner et al., 2010). 

Different commercial culture media (e.g. Leibovitz´s L-15, Basal Medium Eagle-BME-, 

RPMI-1640 medium, etc.) have been used to evaluate the toxicity of chemical 

compounds in cellular models, which could lead to different biological toxicity values 

that difficult comparisons. As an alternative to the use of conventional culture media, 

Hayashi et al. (2013, 2013b) suggested the maintenance of E. fetida coelomocytes in a 

medium supplemented with cell-free coelomic fluid in order to increase their viability. 

The use of coelomic fluid would allow obtaining more realistic responses from 

coelomocytes exposed to Ag NPs since these cells reside on it, being this cell-fluid 

combination essential for homeostasis and immune defence functions (Kurek et al., 

2007).  

Together with the culture media composition the selection of a responsive assay to 

assess cytotoxicity is of great importance. Existing studies with earthworm 

coelomocytes have investigated the effects of toxicants on the lysosomal stability using 

Neutral Red Retention assay (NRRT, Scott-Fordsmand and Weeks, 2000; Scott-

Fordsmand et al., 1998; Weeks and Svendsen, 1996; Yuk et al., 2012), which has been 

adapted to spectrophotometric measurement carried out in microplates (Asensio et al., 

2007, 2013; Homa et al., 2003; Irizar et al., 2014b, 2015a, 2015b; Kwak et al., 2014a). 

However, the relevance of other microplate viability assays, based on tetrazolium salts 

(Cell Proliferation WST-1, MTT) and fluorescence (Calcein AM), is still low in primary 

cultures of coelomocytes and even lower in toxicity testing of Ag NPs. 

Another approach to test the cytotoxicity in coelomocytes is flow cytometric analysis 

(Brousseau et al., 1997; Engelmann et al., 2016; Homa et al., 2013), which have been 

applied in coelomocytes extruded after in vivo exposures (Bilej et al., 1990; Brousseau et 

al., 1997; Homa et al., 2013, Vernile et al., 2007) and slightly in primary cultures of 

coelomocytes (Fugère et al., 1996; Hayashi et al., 2012, 2013b; Irizar et al., 2015b).Flow 

cytometric assays use various fluorescent dyes to detect dead cells and apoptosis (i.e 

propidium iodide and 7-aminoactinomycin D), mitochondrial membrane potential and 

mass (i.e., rhodamine 123, acridine orange) and reactive oxygen species (i.e 
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Dichlorofluorescin) (Kwak et al., 2014b). In addition, with the aid of flow cytometry, 

amoebocytes and eleocytes can be easily distinguished according to their forward and 

side scatter profiles (size and granularity) and to the green fluorescence, and thereafter, 

their dissimilar sensitivities against compounds (including Ag NPs) can be analyzed. 

Moreover, these subpopulations can be physically isolated by means of cell sorting, an 

issue that has been newly performed by Engelmann et al. (2016) with cell 

characterization purposes. The sorting of coelomocytes exposed to Ag NPs (followed by 

chemical analysis) would allow to better understand accumulation pattern and 

subsequent toxicity in each subpopulation. 

Hence, the aim of the present work is to accurately assess (through in vitro approaches) 

Ag NPs toxicity in primary cultures of E. fetida coelomocytes, (a) by selecting an optimal 

medium for coelomocytes culturing and, (b) by determining the most responsive 

viability assay. For that, primary cultures of coelomocytes were maintained in widely 

used conventional media (Leibovitz´s L-15, BME, RPMI-1640) and in a natural medium 

based on freshly extruded coelomic fluid. Afterwards coelomocytes were exposed to 

PVP-PEI coated Ag NPs, the coating agent (PVP-PEI) and AgNO3 (0-100 mg/l) and after 

24 h flow cytometric analyses were used to assess mortality of coelomocytes (with 

propidium iodide, 5 μg PI/ ml) and changes in the relative proportion of amoebocytes 

and eleocytes (recorded by their forward and side scatter profiles and green 

fluorescence). In addition, viability was assessed in microplates by Neutral Red Uptake 

(NRU), Cell Proliferation WST-1 and Calcein AM Viability assays. In order to better 

understand the behaviour of both cell-types after Ag NP exposure, amoebocytes and 

eleocytes were sorted and Ag concentration measured in both isolated subpopulations.  

2. Materials and methods 

2.1. Test species 

Eisenia fetida earthworms were purchased from a commercial dealer (LOMBRICOR 

S.C.A., Córdoba, Spain) and set as laboratory culture maintained in containers under 

controlled conditions of temperature (19 ± 2 °C) and humidity. As food source 

medication-free horse manure was provided when required. The earthworms used for 

the harvesting of coelomocytes were all adults (clitellated) of similar size (300-500 mg 

individual weight). 
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2.2. Test substances 

Polyvinylpyrrolidone-polyethylenimine (PVP-PEI, 3.35:1) coated Ag NPs (NP Ag-

2106W) were purchased from NANOGAP (SUB-NM-POWDER S.A., A Coruña, Spain). Ag 

NPs were water dispersed (10 g Ag/l with 104 g PVP-PEI/l), 5.08 ± 2.03 nm average size 

and with a Z-potential of 18.6 ± 7.9 mV. More details on the characterization of Ag NPs 

are given in Appendix I. The coating agent PVP-PEI was tested separately at the same 

concentration range and pH as present in the Ag NPs suspension (PVP10-

polyvinylpyrrolidone, Mw 10000 and PEI-polyethylenimine, Mw 25000 by LS; both 

from Sigma-Aldrich). High grade (>99% purity) AgNO3 was purchased from Sigma-

Aldrich.  

2.3. Culture media preparation  

2.3.1. Conventional culture media 

Leibovitz´s L-15 (L4386 Sigma-Aldrich, powder, 13.8 g/l) and Basal Medium Eagle 

(BME, B9638 Sigma-Aldrich, powder, 9.2 g/l) were prepared in MQ water with 0.35% 

HEPES (A14777 Alfa Aesar). RPMI-1640 medium (R7388 Sigma Aldrich) was purchased 

liquid with 20 mM HEPES. After having adjusted the pH of the different media to 7.4, 

these were filtered through 0.22 µm filter and a set of antibiotics was supplemented 

(1% Amphotericin B-250 µg/ml-, 1% Penicillin/Streptomycin-10.000 units 

penicillin/10 mg streptomycin/ml- and 0.5% Gentamicin sulphate-10 mg/ml-). All the 

processes were performed in a flow chamber (Cultair BC100, Cultek) and sterile 

material was used. 

The composition (inorganic salts, aminoacids, vitamins and others) of the above 

mentioned conventional media (Leibovitz´s L-15, BME and RPMI-1640) are illustrated 

in Table 1. 

2.3.2. Coelomic fluid based medium 

Earthworms were first left for depuration in moistened filter paper (24 h) and cleaned 

with distilled water. Coelomic fluid was then extruded by suctioning in the coelomic 

cabity with the aid of a syringe and needle (0.4 × 20 mm, Henke Sass Wolf GmbH). PBS 

was used during the process to lubricate the needle. Once extruded, the aspirated 

coelomic fluid was filtered through 0.45 µm filter to discard any cell in suspension and 

antibiotics were added (1% Amphotericin B-250 µg/ml-, 1% Penicillin/Streptomycin-
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10.000 units penicillin/10 mg streptomycin/ml- and 0.5% Gentamicin sulphate-10 

mg/ml-). About 100 µl of coelomic fluid were extruded from each earthworm.  

Table 1. Composition (inorganic salts, aminoacids, vitamins and others) and some specifications 
of the different conventional media (Leibovitz´s L-15, BME and RPMI-1640) used for 
coelomocyte culturing (from Sigma-Aldrich Product Information sheets). 
 

  
Leibovitz´s L-15 BME RPMI-1640 

    L4386 (g/L) B9638 (g/L) R7388 (g/L) 

PR
OD

UC
T 

SP
EC

IF
IC

AT
IO

N
 Osmolality  ( mOs/kg) 305 - 338 229 - 253  252 - 278  

with 2.2 g/L NaHCO3 _ 273 - 301  _ 
pH  7.3-7.9 5.6 - 6.2 7.3-7.7 

with 2.2 g/L NaHCO3 _ 7.4-8.0 _ 
Appearance (Turbidity)  Clear Clear Clear 
Appearance (Form)  Powder Powder Solution 
Sterility by USP 
guidelines  Pass  Pass  Pass 

Endotoxin Level  <_ 1.0 EU/ml <_ 1.0 EU/ml <_ 1.0 EU/ml 
Galactose Concentration  0.81 - 0.99 g/l _ _ 
Total Glucose  _ 1.0 g/l 2.0 g/l 
Cell Culture Test  Pass Pass Pass 

IN
OR

GA
N

IC
 S

AL
TS

 CaCl2•2H2O  0.140  0.265  _ 
Ca(NO3)2 • 4H2O  _ _ 0.1 
MgCl•6H2O   0.093  _ _ 
MgSO4 (anhyd)   0.09767  0.09767  0.04884 
KCl   0.4  0.4  0.5 
KH2PO4 (anhyd)  0.06  _ _ 
NaCl   8.0  6.8  6 
Na2HPO4 (anhyd)  0.19 _ 0.8 
NaH2PO4 (anhyd) _ 0.122  _ 

AM
IN

O 
AC

ID
S 

L-Alanine  0.225  _ _ 
L-Arginine (free base)  0.5 _ _ 
L-Arginine•HCl  _ 0.021  0.2  
L-Asparagine (anhyd)  0.25  _ 0.05  
L-Aspartic Acid  _ _ 0.02  
L-Cysteine (free base)  0.12  _  L-Cystine•2HCl  _ 0.01565  0.0652  
L-Glutamine  0.3  0.292  0,3 
L-Glutamic Acid  _ _ 0.02  
Glycine  0.2  _ 0.01 
L-Histidine  0.25  0.008  0.015 
L-Isoleucine  0.125  0.026  0.05 
L-Leucine  0.125  0.026  0.05 
L-Lysine 
Monohydrochloride  0.0937  0.03647  0.04 

L-Methionine  0.075   0.0075  0.015 
L-Phenylalanine  0.125  0.0165  0.015 
L-Proline  _ _ 0.02  
Hydroxy-L-Proline  _ _ 0.02  
L-Serine  0.2  _ 0.03 
L-Threonine  0.3  0.024  0.02 
L-Tryptophan  0.02  0.004  0.005 
L-Tyrosine (free base)  0.3  _ _ 
L-Tyrosine•2Na•2H2O  0.02595  

 
0.02883  

L-Valine  0.1  0.0235 0.02 
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Table 1. (Continued) 

  
Leibovitz´s L-15 BME RPMI-1640 

    L4386 (g/L) B9638 (g/L) R7388 (g/L) 
VI

TA
M

IN
S 

p-Aminobenzoic Acid      0.001  
Choline Chloride  0.001  0.001 0.003 
D-Biotin  _ 0.001  0.0002 
Flavin 
Mononucleotide•Na  0.0001  _ _ 
Folic Acid  0.001  0.001 0.001 
myo-Inositol  0.002  0.002 0.035 
Niacinamide  0.001  0.001 0.001 
DL-Pantothenic 
Acid•½Ca  0.001  0.001 0.00025 
Pyridoxine•HCl  0.001  0.001 0.001 
Thiamine 
Monophosphate•HCl  0.001  _ _ 
Thiamine•HCl  _ 0.001 0.001 
Riboflavin  _ 0.0001  0.0002 
Vitamin B12    _ 0.000005 

OT
H

ER
S 

D-Galactose  0.9  _ _ 
D-Glucose   1.0  2.0 
Phenol Red•Na  0.011 0.011 0.0053 
Pyruvic Acid•Na  0.55 _ _ 
Glutathione (reduced)  _ _ 0.001  
HEPES  _ _ 4.77  

AD
D Sodium Bicarbonate  _ 2.2 2 

 

2.3.3. Exposure media 

Exposure media were prepared from the previous culture media by adding Ag NPs, the 

coating agent (PVP-PEI) and AgNO3, and performing serial dilutions. Triton X-100 

(0.2%) containing media were also prepared to be used as positive control. All the steps 

were performed in a flow chamber (Cultair BC100, Cultek) and sterile material was used 

during the whole process.  

2.4. Characterization of the exposure media 

The size of Ag NPs in the different exposure media (conventional- Leibovitz´s L-15, BME 

and RPMI-1640-and natural-coelomic fluid- with 10 mg Ag NPs/l) was determined by 

Dynamic Light Scattering (DLS, ZetaSizer Nano Series ZS, Malvern, Worcestershine). DLS 

measurements were carried out after 2 and 24 h of the exposure media preparation at 

19 °C. Size distribution was determined by number, selecting the size ranges that 

included >99% of the measured particles.  

Absorbance spectra of conventional and natural media with 0, 1, 10 and 100 mg/l PVP-

PEI coated Ag NPs and AgNO3 (only in coelomic fluid and Leibovitz´s L-15) were 
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measured with a Multiskan™ GO Microplate spectrophotometer (Thermo Fisher 

Scientific) at 200-1000 nm wavelength range.  

2.5. Primary culture of coelomocytes  

Previous to the harvesting of coelomocytes E. fetida earthworms were left for 

depuration on wet filter paper (24 h) and were cleaned with distilled water by softly 

massaging their body in order to remove any soil particle attached to the tegument or in 

the posterior part of their digestive tract. Clean earthworms were immersed in 

extrusion solution (0.02% EDTA in PBS-0.1 M Na-Phosphate Buffered Saline- with 

0.23% NaCl, 1 ml per worm) and were subjected to an electric stimulation (9 V) to allow 

the release of coelomocytes through dorsal pores (Irizar et al., 2014b). The cell 

suspension was centrifuged (530 x g, 10 min, 10 °C), washed in PBS with antibiotics (1% 

Amphotericin B-250 µg/ml-, 1% Penicillin/Streptomycin-10.000 units penicillin/10 mg 

streptomycin/ml- and 0.5% Gentamicin sulphate-10 mg/ml-) and counted in a 

haemocytometer (Neubauer chamber) under light microscope to adjust the cell density 

to 106 cells per ml. Cells were then resuspended in conventional (Leibovitz´s L-15, BME 

and RPMI-1640 medium) and natural (coelomic fluid) media supplemented with 

antibiotics. Afterwards, coelomocytes suspended in the different culture media were 

seeded in 24-well plates (5 x 105 cells/well) for flow cytometry analysis and in 96-well 

microplates (2 x 105 cells/well) to perform viability assays. Primary cultures of 

coelomocytes were left to stand in a cell incubator (CO2 free) at 18 °C for 24 h. 

2.6. Coelomocyte exposure to Ag NPs, PVP-PEI and AgNO3 

After the stabilization, coelomocytes seeded in 24-well plates were exposed to 0, 1, 10, 

100 mg/l PVP-PEI coated Ag NPs and AgNO3 for flow cytometric analysis. The latter 

exposure (AgNO3) was performed only in coelomocytes maintained in coelomic fluid.  

Coelomocytes seeded in 96-well microplates were exposed to PVP-PEI coated Ag NPs, 

the coating agent PVP-PEI and AgNO3 (0, 0.01, 1, 10 and 100 mg /l medium) during 24 h 

for posterior viability assessment. Triton X-100 (0.2%) treated cells were used as 

positive control in the microplate assays since they were nonviable coelomocytes 

showing no mitochondrial activity.  

Coelomocytes cultured in the optimal medium (defined after 2.7 and 2.8 sections) for a 

posterior sorting and chemical analysis were exposed to PVP-PEI coated Ag NPs (0, 

0.0001, 1, 10, 100 mg/l medium).  
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All exposures were carried out by replacing the medium in the wells with exposure 

medium, doing 4 replicates per dose for flow cytometry and sorting techniques and 7 

for viability assays. 

2.7. Coelomocytes mortality and changes in the relative proportion of 

subpopulations by flow cytometric analysis 

Wells containing exposed coelomocytes were grouped in 2 pools per treatment (0, 1, 10, 

100 mg/l Ag NPs and AgNO3) and were introduced in a NovoCyte® Flow Cytometer 

(ACEA Biosciences, Inc.). In one of the pools propidium iodide (PI, 5 μg/ml, Molecular 

Probes) was added in order to detect death coelomocytes by red fluorescence at 

513/617 nm (PE BL2). PI only penetrates the cells with damaged membranes, and binds 

to nucleic acids of the double strand in a stoichiometric manner. Mortality was detected 

through PI fluorescence and determined by histogram (C column in Fig. 1a, 1b; SM-Fig. 

1c, 1d, 1e). 

Coelomocytes in the second pool were used to determine the relative proportion of the 

different subpopulations (amoebocytes and eleocytes) using their forward (FSC, cell 

size) and side scatter (SSC, cell granularity/complexity) characteristics. Green 

fluorescence (488 nm excitation/525 nm emission, FITC BL1) detection was also used 

to record eleocytes due to their autofluorescence (B column in Fig. 1a, 1b; SM-Fig. 1c, 1d, 

1e).  

In order to avoid the occurrence of false counting of particles due to the 

aggregation/agglomeration of Ag NPs or precipitation of Ag, after exposure to 10 and 

100 mg Ag/l mortality and relative proportion of amoebocytes and eleocytes were 

assessed by density plots (D column in Fig. 1a, 1b; SM-Fig. 1c, 1d, 1e) after subtraction of 

particles detected in the exposure media without cells (E line in Fig. 1a, 1b; SM-Fig. 1c, 

1d, 1e).  

During the probes, at least 10.000 events per single determination were collected and 

analyzed. The collected data were analyzed in Flowlogic™ Flow cytometry analysis 

software (Inivai Technologies) (Fig. 1, SM-Fig. 1). By means of flow cytometry, the 

optimal culture medium was established by comparing the mortality of control 

coelomocytes in the different media. 
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(a) Coelomic fluid and Ag NPs exposure
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(b) Coelomic fluid and AgNO3 exposure
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Figure 1. Analysis of the data with Flowlogic™ to establish subpopulation distribution and 
mortality in coelomocytes maintained in coelomic fluid and exposed to PVP-PEI coated Ag NPs 
(a) and AgNO3 (b). Amoebocytes (grey dots) and eleocytes (blue dots) distribution was 
established according to their complexity (SSC, Y axis) and size (FSC, X axis) features 
(represented by density plot, A column) and according to their autofluorescence in green (FITC 
histogram, B column). Mortality of the whole coelomocyte population (%) was detected through 
PI fluorescence (PE histogram, C column). In the case of 10 and 100 mg/l exposure 
concentrations, amoebocyte and eleocyte relative number and mortality of coelomocytes were 
assessed by density plot (amoebocytes in grey, eleocytes in blue and dead coelomocytes in red, D 
column ) after having subtracted the particles detected by density plot in the exposure media 
without cells (E line). 

2.8. Coelomocytes viability through microplate assays  

After exposure, coelomocytes viability was assessed in microplates through Neutral Red 

Uptake (NRU), Cell Proliferation WST-1 (Water soluble tetrazolium salts, WST-1) and 

Calcein AM viability assays. Each assay was replicated three times. Thereafter the 

optimal culture medium and the most accurate viability assay were selected according 

to the sensitivity and the responsiveness of coelomocytes against Ag NPs. For that, the 

median lethal concentration values (LC50) calculated from the most responsive assay 

were used. 

For NRU assay, exposure media were removed from wells and coelomocytes were 

incubated with NR solution (0.05% in PBS, 200 µl per well, 7 replicates) for 30 minutes 

in darkness. Then, several washes were done (centrifugation at 530 x g, 5 min, 10 °C; 

supernatant removal and addition of 200 μl PBS) to completely remove the dye. After 

washing, 100 μl of NR extraction solution (50% acetic acid, 1% ethanol, 49% dH20) 

were added to the wells in order to withdraw the dye retained within lysosomes. 

Absorbance was measured at 540 nm in a microplate reader spectrophotometer 

(Multiskan Spektrum, Thermo Scientific). 

WST-1 assay was performed by adding 20 μl of the reagent (Roche Diagnostics GmbH, 

Mannheim; 7 replicates) into the wells containing 200 μl exposure medium so the 

reagent was 10 times diluted. Absorbance was measured (Abs 450nm -Abs 690nm, 

Multiskan Spektrum, Thermo Scientific) after 3 h and data was presented as relative to 

the control (in %). 

In Calcein AM viability assay, microplate was centrifuged (530 x g, 5 min, 10 °C), 

exposure media were removed and cells were incubated for 40 minutes with 2.5 µM 

Calcein AM (Molecular Probes® ThermoFisher Scientific, 100 µl per well, 4 replicates) 

in darkness. In the remaining wells, instead of Calcein AM, 100 µl PBS were added to 

thereafter subtract the basal fluorescence measured in the wells, derived from 
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riboflavin containing eleocytes. Coelomocytes were washed twice (centrifugation, 

supernatant removal and addition of 100 µl PBS) and fluorescence was measured at 490 

± 20 nm excitation filter and 520 ± 20 nm emission filter in FLx 800 microplate 

fluorescence reader. Fluorescence micrographs were taken from washed microplate 

wells in which Calcein AM was added.  

2.9. Cell sorting and Ag quantification in isolated amoebocytes and 

eleocytes 

Coelomocytes cultured in the optimal culture medium (defined after 2.7 and 2.8 

sections; 24-well plates, 5 x 105 cells/well) and exposed to Ag NPs (0, 0.0001, 1, 10, 100 

mg/l medium) were pooled per treatment, analyzed in flow cytometry and sorted (BD 

FACSAria™ III) according to their forward, side scatter and fluorescence characteristics. 

Data acquisition and analysis were performed in FACSDiva software (version 6.1.3). 

Collected amoebocytes and eleocytes were maintained in PBS and centrifuged (530 x g, 

5 min). Cell pellets were then dried in the heating block (80-130 °C) and acid digested 

(HNO3) for posterior silver quantification (Flame-AAS, Perkin Elmer Analyst 4100). 

2.10. Statistical analysis 

The statistical analysis of the data was carried out with the aid of the SPSS statistical 

package (IMB SPSS Statistics 23). Datasets were analysed with Kruskal-Wallis followed 

by Dunn´s post-hoc test and significant differences were established at p<0.05. In order 

to estimate the median lethal concentration (LC50) the Probit model was used. 

3. Results 

3.1. Characterization of the exposure media 

The size (nm) of PVP-PEI coated Ag NPs in the different exposure media (10 mg/l) 

appeared to be higher than 5.08 ± 2.03 nm (the average size of the particles provided by 

NANOGAP). Ag NPs size after 2 h in the different conventional media (Leibovitz´s L-15, 

BME, RPMI-1640) was similar, ranging from 7.9-22.7 nm (Table 2). Ag NPs size after 2 h 

in coelomic fluid ranges from 12.7-30.5 nm (Table 2). After 24 h of the exposure media 

preparation, the size of Ag NPs remained in the same range with exceptions in BME in 

which Ag NPs size increased and coelomic fluid where decreased (Table 2). 
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Table 2. Size ranges (nm) of PVP-PEI coated Ag NPs (10 mg Ag NPs/l) after 2 and 24 h in 
conventional (Leibovitz´s L-15, BME and RPMI-1640) and natural (coelomic fluid) media 
measured by Dinamic Light Scattering (DLS). 
 

DLS-Size (nm) 2 h 24 h 
Leibovitz´s L-15 8.7-18.0 7.9-17.3 

BME 7.9-17.4 12.0-26.8 
RPMI-1640 10.3-22.7 8.4-18.3 

Coelomic Fluid 12.7-30.5 11.3-24.0 
 

Absorbance spectra of the different exposure media containing 100 mg/l of Ag NPs 

showed a peak at 405-420 nm wavelengths (Fig. 2). This peak was not visible in culture 

media without Ag or in AgNO3 containing coelomic fluid and Leibovitz´s L-15 medium 

(Fig. 2).  
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Figure 2. Absorbance spectra of the different culture media (conventional-Leibovitz´s L-15, BME 
and RPMI-1640-and natural-coelomic fluid-, grey line) with PVP-PEI coated Ag NPs (black line) 
and with AgNO3 (dotted-line) at 100 mg/l concentration.  

3.2. Coelomocytes mortality and changes in the relative proportion of 

subpopulations by flow cytometric analysis 

Coelomocytes mortality in controls and after exposure to 1 mg/l was lower in coelomic 

fluid in comparison with the conventional media (Fig. 3A). Coelomocytes seeded in 

coelomic fluid showed a mortality of 16% in controls while in conventional media 

mortality reached 33-39%. Cells maintained in coelomic fluid showed a gradual increase 

in mortality starting at 10 mg Ag NPs/l exposure (Fig. 3A). A decrease in eleocytes 
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relative number was detected after exposure to concentrations higher than 1 mg Ag 

NPs/l (Fig. 3B).  

Coelomocytes maintained in Leibovitz´s L-15 and BME and exposed to Ag NPs showed 

an increase in mortality after exposure to 10 mg/l (55.6% and 54.6%, respectively) (Fig. 

3A). The relative number of eleocytes was enhanced in these media after exposure to 10 

mg/l (Fig. 3B).  

In RPMI-1640 medium, a gradual increase was observed in both, coelomocytes 

mortality and eleocytes relative number at increasing exposure concentration (Fig. 3A, 

3B).  

Mortality in coelomocytes maintained in coelomic fluid and exposed to AgNO3 followed 

a dose response increase (Fig. 3C). The relative number of eleocytes decreased to 5.94% 

after exposure to 10 mg AgNO3/l and at the highest dose increased up to 13.37% (Fig. 

3D). 
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Figure 3. Mortality of total coelomocytes (%; A,C) and the relative number of eleocytes (%; B,D) 
measured by flow cytometry in primary cultures of coelomocytes maintained in conventional 
(Leibovitz´s L-15, BME and RPMI-1640) and natural (coelomic fluid) media and exposed to PVP-
PEI coated Ag NPs (A,B) and AgNO3 (data for coelomic fluid only; C,D). 
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3.3. Coelomocytes viability through microplate assays  

Absorbance values measured in NRU and WST-1 assays exhibited unavoidable 

interferences with the absorbance wavelengths of the different exposure media (Fig. 4, 

Fig. 5). Both assays showed an increase after exposure to the highest dose (100 mg/l). 

This increase was due to the appearance of exposure medium and dye deposits 

(reddish) strongly attached to the bottom of the wells (even after thorough washing) 

after performing NRU assay (Fig. 4C) and due to the higher colour intensity of the 

exposure media at 100 mg Ag NPs/l in WST-1 (Fig. 6).  
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Figure 4. NRU (in % relative to the control, A) in primary cultures of coelomocytes maintained 
in conventional (Leibovitz´s L-15, BME and RPMI-1640) and natural (coelomic fluid) media and 
exposed to PVP-PEI coated Ag NPs. Values are represented as means ± standard deviations and 
the significant differences (p ≤ 0.05 with Kruskal-Wallis) are represented by letters (a´,b´ for 
Leibovitz´s L-15; a,b for BME; A,B for RPMI-1640 and A´,B´ for coelomic fluid). Micrographs 
showed untreated (B) and 100 mg Ag NPs/l exposed (C) coelomocytes in Leibovitz´s L-15 
medium after the washing steps of the NRU assay. Note the NR retention in control coelomocytes 
(B), the absence of dye within Ag NPs exposed cells and the reddish deposits in the bottom of the 
well (C).  
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Figure 5. Cell Proliferation Reagent WST-1 (in % relative to the control) in primary cultures of 
coelomocytes maintained in conventional (Leibovitz´s L-15, BME and RPMI-1640) and natural 
(coelomic fluid) media and exposed to PVP-PEI coated Ag NPs. Values are represented as means 
± standard deviations and the significant differences (p ≤ 0.05 with Tukey´s test) are 
represented by letters (a´,b´,c´ for Leibovitz´s L-15; a,b,c for BME; A,B,C for RPMI-1640).  
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Figure. 6. Micrographs showing primary cultures of coelomocytes maintained in conventional 
(Leibovitz´s L-15, BME and RPMI-1640) and natural (coelomic fluid) media and exposed to PVP-
PEI coated Ag NPs (10 and 100 mg/l) and Triton X-100 (0.2%). In the last line 100 mg Ag NPs/l 
exposure media without coelomocytes. Scale bar 100 µm. Note the different colour intensity of 
the exposure media when increasing Ag NPs concentration and the formation of aggregates in 
Leibovitz´s L-15 with Ag NPs (100 mg/l), not noticeable in the rest of the media.  
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The calcein retention was not measurable in coelomic fluid maintained coelomocytes 

due to the fluorescence feature of this (natural) medium (Fig. 7). The Calcein AM 

viability assays performed in coelomocytes maintained in Leibovitz´s L-15 and exposed 

to Ag NPs and AgNO3 did not show differences among doses (Fig. 8A, 8C). Coelomocytes 

seeded in this medium showed the lowest calcein retention capacity after PVP-PEI 

exposure followed by Ag NPs and AgNO3 exposures (Fig. 8B, Fig. 9A). The median lethal 

concentration (LC50) in Leibovitz´s L-15 maintained coelomocytes was 78.42 mg/l after 

PVP-PEI exposure. For both Ag forms, the LC50 values were higher than the exposure 

doses used (>100 mg/l, Table 3).  
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Figure 7. Fluorescence micrographs of microplate wells after Calcein AM viability assay in 
untreated (control), Ag NPs (100 mg/l) and Triton X-100 (0.2%) exposed coelomocytes in 
conventional (Leibovitz´s L-15, BME and RPMI-1640) and natural (coelomic fluid) media. Scale 
bar 1000 µm. Note the high autofluorescence of the coelomic fluid based medium. 

Coelomocytes cultured in BME and RPMI-1640 media and exposed to both Ag forms 

revealed a significant decrease in calcein retention starting after exposure to 10 mg/l 

(Fig. 8A, 8C). The lowest calcein retention was found after Ag NPs exposure (Fig. 9B, 9C), 

estimating the LC50 value at 36.68 in BME and at 30.48 mg/l in RPMI-1640 (Table 3).  
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Figure 8. Cell viability (Calcein AM viability assay, represented by calcein retention in % relative 
to the control) in primary cultures of coelomocytes maintained in conventional media 
(Leibovitz´s L-15, BME and RPMI-1640) and exposed to PVP-PEI coated Ag NPs (A), the coating 
agent (PVP-PEI, B) and AgNO3 (C). Values are represented as means ± standard deviations and 
the significant differences (p ≤ 0.05 with Kruskal-Wallis) are represented by letters (a´,b´ for 
Leibovitz´s L-15; a,b,c for BME and A,B for RPMI-1640). 

After exposure to AgNO3, coelomocytes retained more calcein than after exposure to Ag 

NPs at the same concentration (Fig. 9B, 9C) and the LC50 values were calculated around 

45 mg/l in both media (48.08 mg/l in BME and 43.38 mg/l in RPMI-1640, Table 3). After 

exposure to the coating agent PVP-PEI, significant decreases in calcein retention only 

occurred in the highest concentration (100 mg/l, Fig. 8B). The LC50 values after PVP-PEI 

exposure were 58.72 mg/l in BME and 76.25 mg/l in RPMI-1640 medium (Table 3). 
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Figure 9. Calcein retention capacity (% respect to the control) of coelomocytes maintained in 
Leibovitz´s L-15 (A), BME (B) and RPMI-1640 (C) and exposed to 100 mg/l of PVP-PEI coated Ag 
NPs, coating agent (PVP-PEI) and AgNO3. Values are represented as means ± standard deviations 
and the significant differences (p ≤ 0.05 with Kruskal-Wallis) are represented by letters. 

Table 3. Median lethal concentration (LC50, mg/l) calculated after Calcein AM Viability assay in 
coelomocytes cultured in different conventional media (Leibovitz´s L-15, BME and RPMI-1640) 
and exposed to PVP-PEI coated Ag NPs, the coating agent (PVP-PEI) and AgNO3. 
 

LC50 (mg/l) Ag NPs PVP-PEI AgNO3 
Leibovitz´s L-15 >100.00 78.42 >100.00 

BME 36.68 58.72 48.08 
RPMI-1640 30.48 76.25 43.38 

 

3.4. Cell sorting and Ag quantification in isolated amoebocytes and 

eleocytes 

Sorting and posterior Ag quantification were performed in coelomocytes maintained in 

RPMI-1640 medium, since this medium was selected as the optimal (more sensitive LC50 

values were obtained with RPMI-1640 in comparison with the rest of the tested 

conventional media). Ag concentration in sorted amoebocytes showed a gradual 

increase, significantly different from 10 mg Ag NPs/l exposure on. At the highest 

exposure concentrations (10 and 100 mg/l) amoebocytes accumulate 0.52 ± 0.00 and 

1.00 ± 0.01 µg Ag/106 cells, respectively (Fig. 10). In sorted eleocytes Ag concentration 

appeared to be higher (Fig. 10). 
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Figure 10. Silver concentration (µg Ag/106 cells, AAS) in sorted amoebocytes (light grey) and 
eleocytes (dark grey) previously maintained in RPMI-1640 medium and exposed to PVP-PEI 
coated Ag NPs. Values are represented as means ± standard deviations and the significant 
differences (p ≤ 0.05 with Kruskal-Wallis) are represented by letters. Detection limit range: 0.05- 
4 µg Ag/106 cells (dotted lines), udl: under detection limit. 

4. Discussion 

Earthworm coelomocytes have become a target system in immune response studies 

(Toupin et al., 1977) and in ecotoxicology (Hayashi et al., 2012; Homa et al., 2003; Irizar 

et al., 2014b; Scott-Fordsmand and Weeks, 2000) due to their sensitivity against a wide 

range of pollutants, including Ag NPs (Curieses et al., 2017; Garcia-Velasco et al., 2016; 

Kwak et al., 2014a; Chapters 1, 2 and 3). Presently, in vitro approaches (viability assays 

in microplate, flow cytometry, cell sorting) with primary cultures of coelomocytes have 

been used as rapid, cost-effective and reproducible tools to test the toxicity and the 

dissimilar response of amoebocyte and eleocyte subpopulations after exposure to PVP-

PEI coated Ag NPs and AgNO3. In this framework, the maintenance of coelomocytes in 

an optimal culture medium and the selection of the most responsive assay to accurately 

assess Ag NPs toxicity are of utmost importance. 

The use of coelomocyte cultures for toxicity screenings of compounds likely to end up in 

soils is convenient since these cells could give an idea of the effects occurring at higher 

levels of biological complexity (i.e. organism and population levels) in earthworms 

subjected to polluted soils. Moreover, coelomocytes are easily retrieved from the 

coelomic cavity via the dorsal pores (Stankiewicz and Plytycz, 1998), reducing the 

number of animals in experimentation and avoiding their killing. Despite these high 

potentials of in vitro techniques with coelomocytes, culturing conditions for this cell 

model have been poorly investigated. In the present work, the coelomic fluid appeared 

to be the best medium for the maintenance of coelomocytes, indicated by the lower 

mortality of control coelomocytes in comparison with the conventional media. This fact 
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could be due to the presence of proteins and enzymes in the coelomic fluid, which could 

render a better or quicker adaptation to external stimuli (i.e. trauma provoked by the 

extrusion from earthworms and seeding in plates) due to their role in homeostasis and 

immune defense of earthworms (Kurek et al., 2007). Among the haemolytic proteins, 

the so-called EFAF (Eisenia fetida andrei factors) are characterized by two glycoproteins 

secreted by eleocytes that participate in the cytotoxic activity of the coelomic fluid (Bilej 

et al., 2010). Thus, the use of coelomic fluid as culture medium would imply the 

presence of haemolytic proteolytic and cytotoxic enzymes that are active against foreign 

materials (Bundy et al., 2001), allowing to obtain more realistic responses from 

coelomocytes exposed to Ag NPs. However, the extrusion of coelomic fluid by suction is 

tremendously time consuming and the number of individuals needed to obtain the 

minimum amount of coelomic fluid is very high (> 20 earthworms per plate). In 

conclusion, despite its accurate properties for cell maintenance the use of coelomic fluid 

is not suitable to perform in vitro testing with coelomocytes and the use of a 

conventional medium is recommended. 

Toupin et al. (1977) stated the use Leibovitz´s L-15 medium supplemented with fetal 

bovine serum and antibiotics and similarly, Irizar et al. (2014b) employed the same 

medium but without serum. In the latter study, primary cultures with coelomocytes 

were optimized with this medium for their application in soil toxicity testing. In the 

present work, coelomocytes maintained in Leibovitz´s L-15 (serum free) showed higher 

mortality (by flow cytometry) and lower responsiveness against both Ag NPs and AgNO3 

using the Calcein AM viability assay in comparison with BME and RPMI-1640 media. In 

fact the LC50 values obtained for Ag NPs and AgNO3 were higher than the exposure 

concentrations used in the present work. In contrast, coelomocytes seeded in the other 

conventional culture media (BME and RPMI-1640 medium) and exposed to both Ag 

forms revealed a clear decrease in calcein retention, showing a major sensitivity of the 

cells responding to Ag in these media. Although the responses of the exposed 

coelomocytes were similar in BME and RPMI-1640 media, cells in the latter showed 

even more sensitive responses against both Ag forms, indicated by the lower LC50 values 

obtained in the Calcein AM viability assay. BME was formulated for nutritional 

requirements of mouse L fibroblasts and HeLa cells (Eagle, 1955) whereas currently is 

employed in cell cultures of marine invertebrates such as molluscs hemocytes (Gómez-

Mendikute et al., 2003; Katsumiti et al., 2015) but has not been used with earthworm 

coelomocytes beforehand. The lower cytotoxicity showed by exposed coelomocytes 
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could be also due to the higher size of Ag NPs (up to 26.8 nm after 24 h) in this medium 

that could have minimized solubility. In fact, higher size Ag NPs has been demonstrated 

to have lower ion release rates than smaller ones, considering ions responsible or 

enhancers of toxicity (Sotiriou and Pratsinis, 2010).  

Conversely, RPMI-1640 medium has been widely used to maintain earthworm 

coelomocytes in culture (Engelmann et al., 2016; Hayashi et al., 2012, 2013b) and 

furthermore, studies using this medium dealt with similar endpoints to those carried 

out herein (e.g. Ag NPs toxicity assessment, flow cytometric probes, coelomocyte sorting 

etc.), allowing comparisons. Unlike Leibovitz´s L-15 and BME, RPMI-1640 presented 

more amino acids (i.e. L Arginine, L-Aspartic acid, L-Cystine, L-proline, etc.) and 

vitamins (i.e. myo-Inositol, B12 etc.) together with the highest quantity of glucose (2 g/l) 

in its composition (Table 1). In one hand, these amendments in medium could be 

beneficial for the accurate maintenance of cells in primary cultures. On the other hand, 

the different components of the medium could have changed the physicochemical 

characteristics (i.e. size) of the Ag NPs and subsequently, their toxic behaviour in each 

medium could be altered. The size of Ag NPs in the different exposure media was higher 

than the average size of the particles in distilled water provided by NANOGAP, which 

makes sense considering the NP-protein interactions under in vitro test conditions 

(Hayashi et al., 2012). However, the size of Ag NPs did not differ between the different 

exposure media (excepting BME after 24 h) and thus, the highest sensitivity obtained 

from exposed coelomocytes in RPMI-1640 medium was not mediated by the 

characteristics of Ag NPs in that exposure medium. Therefore, the components present 

in RPMI-1640 medium appeared to be more suitable for coelomocytes in culture and 

thus, allowed to perform an accurate assessment of Ag NPs toxicity. Further, the 

information regarding the optimal composition of the medium (Table 1) could result 

useful to better understand the nutrient requirements of these cells with high in vitro 

potentials. Animal serum of different origins is frequently added to chemically defined 

basal media for cell growth and to stimulate metabolism and proliferation (Brunner et 

al., 2010). In this case, the supplementation with serum was not considered since 

viability was high in serum-free media during 3 days without replenishment (Irizar et 

al., 2014b) and being demonstrated that Ag NPs dispersion is stable in media with and 

without serum (Hayashi et al., 2012).  

Apart from using an optimal culture medium for coelomocytes, the selection of the most 

convenient and responsive assay is necessary to obtain reliable data and to accurately 
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assess Ag NPs toxicity. Cytotoxicity assays in microplate allow many samples to be 

analyzed rapidly and simultaneously (Weyermann et al., 2005) and thus, in the present 

chapter, NRU, WST-1 and Calcein AM viability assays were compared for Ag NPs toxicity 

assessment in coelomocytes. Metals and other xenobiotics have been demonstrated to 

act upon coelomocyte membranes, where they cause structural and physiological 

changes as lysosomal fragility and release of acid hydrolases (Engelmann et al., 2004) 

and subsequently, reduction in the capacity to uptake supravital dyes (neutral red; 

Irizar et al., 2014b, 2015b) or to transform products such as formazan salts (WST-1, 

WST-8; Hayashi et al., 2012) or calcein by intracellular enzymes. The Calcein AM is a 

fluorescence intensity based assay while NRU and WST-1 are colorimetric assays in 

which absorbance in specific wavelengths was measured. Interferences were not 

noticed between the absorption wavelengths of the colorimetric assays used in this 

study (540 nm and 450 nm, respectively) and Ag NPs (405-420 nm in exposure media 

containing 100 mg/l of Ag NPs). However, the absorbance values obtained after NRU 

and WST-1 assays did not entirely represent the dye retained within lysosomes or the 

transformed product. In spite of the washing steps, exposure medium and dye deposits 

in the bottom of the wells appeared to interfere with the absorbance measurements in 

NRU assay at the highest concentrations (10, 100 mg Ag NPs/l). Thus, this assay showed 

high absorbance values despite the absence of dye within exposed coelomocytes. 

Similarly, in WST-1 the highest absorbance values were measured at 100 mg Ag NPs/l 

exposure wells where the exposure medium reached the highest colour intensity. The 

occurrence of these interferences at the highest exposure concentrations (10 and 100 

mg Ag NPs/l) could be related to the presence of Ag NPs aggregates/agglomerates or Ag 

precipitates in the exposure media (and consequently, in the bottom of the wells). In 

fact, it has been previously reported that Ag NPs aggregate in media with a high 

electrolyte content, so in culture media Ag has rich opportunities to form AgCl 

complexes (Kittler et al., 2010; Zhang et al., 2013). Moreover Kittler et al. (2010) found 

that PVP stabilized Ag NPs rapidly agglomerate and precipitate in serum-free cell 

culture medium. This fact has been confirmed herein by flow cytometric probes, which 

demonstrate the presence of Ag NPs aggregates or Ag precipitates in all the exposure 

media (without cells) with 10 and 100 mg/l of Ag NPs and AgNO3. Moreover, 

microscopic observations allow distinguishing micrometric range precipitates in 

Leibovitz´s L-15 culture medium with 100 mg Ag NPs/l. 



RESULTS AND DISCUSSION 

 

166 
 

Therefore, both NRU and WST-1 provided no reliable results about Ag NPs toxicity, at 

least at the highest exposure concentrations. Conversely, the NR based assays (i.e. NRU 

and NRRT) in earthworm coelomocytes have been found to be reliable, dose-related, 

and practical in the assessment of the adverse effects of metal contamination at the 

subcellular level of different earthworm species from different habitats (Asensio et al., 

2007, 2013; Irizar et al., 2014b, 2015a; Scott-Fordsmand et al., 1988; Weeks and 

Svendsen, 1996). Nevertheless, Diogène et al. (1997) suggested that for E. fetida species 

coelomocytes in particular, the NRU may not be a suitable parameter to evaluate, since 

slow uptake and high standard deviation were observed as also recorded in Kwak et al. 

(2014a) for E. andrei. WST-1 assay is a stable and rapid method, newly validated for 

mouse primary lung fibroblast (Vietti et al., 2013). Thus, the possibility that the 

procedure followed herein for E. fetida coelomocytes and Ag NPs exposure need to be 

optimized is feasible. 

Hence, among the tested assays, the Calcein AM viability assay appeared to be the most 

responsive, showing more clear effects produced by Ag NPs (and AgNO3) exposures and 

providing simple, rapid, and accurate cell responses. 

According to Calcein AM Viability assay, Ag NPs posed a gradual decrease in 

coelomocytes viability starting at 10 mg/l concentration. The LC50 value for 

coelomocytes maintained in RPMI-1640 medium and exposed to Ag NPs was 

established at 30.48 mg/l, being the toxicity higher after exposure to Ag NPs than after 

AgNO3 exposure (LC50 43.38 mg/l). Most of the in vivo studies (Gomes et al., 2013, 2015; 

Shoults-Wilson et al., 2011c), and part of in vitro ones (Hayashi et al., 2012), comparing 

the toxicity of both Ag forms stated AgNO3 to be more toxic than Ag NPs to E. fetida 

earthworms/coelomocytes. In contrast, significantly higher cytotoxicity of Ag NPs has 

been reported in coelomocytes extruded from exposed earthworms (Curieses et al., 

2017; Chapter 3). A similar response was observed in A549 cells exposed to Ag NPs with 

silver ions fractions below 2.6% (Beer et al., 2012). Furthermore, Studer et al. (2010) 

showed that CuO NPs had a higher toxicity than dissolved copper ions, suggesting that 

the plasma membrane functioned as a natural barrier for Cu but not for Cu nanoform, 

which once taken up by the cell was dissolved within lysosomes through the mechanism 

described as Trojan horse (Limbach et al., 2007). The same mechanism cannot be 

discarded for Ag NPs. Hence, the toxicity of the Ag NPs could be mainly caused by the 

nanoform per se (Fabrega et al., 2009a; Navarro et al., 2008) and partly by released Ag 

ions (Beer et al., 2012; Gomes et al., 2015), or by both forms acting together considering 
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the Trojan Horse effect (Hayashi et al., 2012). In any case, the toxic effects could not be 

attributable to its coating agent PVP-PEI since has been reported not to be toxic (Beer et 

al., 2012; Garcia-Velasco et al., 2016; Gomes et al., 2013; Chapter 1) and, moreover, 

being its LC50 in coelomocytes more than two folds the value calculated for Ag NPs.  

Exposure to Ag NPs caused changes in the subpopulation ratios of coelomocytes, 

reinforcing the idea of dissimilar sensitivities among amoebocytes and eleocytes 

(Curieses et al., 2017; Hayashi et al., 2012; Irizar et al., 2015b; Chapter 3). In RPMI-1640 

medium, even low concentrations of Ag NPs (1 mg/l) provoked an increase in the 

relative number of eleocytes, which is related to a major mortality of amoebocytes. This 

fact is in agreement with Hayashi et al. (2012) who reported a selective cytotoxicity and 

preferential phagocytic uptake of Ag NPs in amoebocytes. Such cytotoxicity in 

amoebocytes correlated with the Ag concentrations measured in sorted amoebocytes, 

which followed a dose response fashion, 0.16, 0.52 and 1.00 µg Ag/106 cells after 

exposure to 1, 10, 100 mg Ag NPs/kg, respectively. In contrast, Ag accumulation in 

eleocytes was higher (>2.45 µg Ag/106 cells) but did not follow any gradual trend. The 

Ag concentration values showed in a previous study in coelomocytes exposed to Ag NPs 

were closer to those measured in amoebocytes (0.5 and 0.25 µg Ag/106 cells after 

exposure to 2 and 4 mg Ag NPs/l, respectively) (Hayashi et al., 2012). Therefore, a 

selective intracellular accumulation of Ag NPs could happen in amoebocyte 

subpopulation, followed by intracellular release of Ag ions that mediated cellular 

damage; whereas in eleocytes, Ag NPs could be adhered to the cellular membrane, no 

entering the cell. This could explain the absence of toxicity in eleocyte subpopulation 

despite the presence of Ag after Flame-AAS analysis. Nevertheless, through the flow 

cytometric and sorting techniques used herein we were not able to distinguish between 

internalized Ag NPs or nanosilver adhered to the cellular membrane, but these 

approaches provided valuable information about the dissimilar response of amoebocyte 

and eleocyte against Ag NPs. Moreover, this work is one of few examples performing 

coelomocytes sorting successfully for further analysis (Flame-AAS). 

5. Conclusions 

In the present chapter several in vitro approaches (viability assays in microplate, flow 

cytometry, cell sorting) with primary cultures of coelomocytes have been successfully 

used to test the toxicity and the dissimilar response of amoebocyte and eleocyte 

subpopulations after PVP-PEI coated Ag NPs and AgNO3 exposures. The coelomic fluid 



RESULTS AND DISCUSSION 

 

168 
 

occurred to be the optimal medium for coelomocytes maintenance and Ag NPs toxicity 

assessment though flow cytometry, but its methodological limitations made RPMI-1640 

medium the best option among conventional media for coelomocytes culturing and for 

the development of microplate assays. NRU and WST-1 assays exhibited no reliable 

results due to the large unavoidable interferences with the absorbance wavelengths of 

the exposure media, while Calcein AM viability assay was the most accurate and 

responsive to assess the effects produced by Ag NPs (and AgNO3) exposure. According 

to this assay, Ag NPs posed a gradual decrease in coelomocytes viability starting at 10 

mg/l concentration, establishing the LC50 value in RPMI-1640 medium at 30.48 mg/l. Ag 

NPs appeared to be more toxic than AgNO3 (LC50 43.38 mg AgNO3/l) for coelomocytes 

which could be mediated by a dissimilar uptake of the different Ag forms. Nevertheless, 

the observed cytotoxicity cannot be attributable to its coating agent PVP-PEI. Exposure 

to Ag NPs caused selective cytotoxicity in amoebocytes, which correlated with the Ag 

concentrations measured in sorted amoebocytes and reinforced the idea of dissimilar 

sensitivities among amoebocytes and eleocytes.  
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(d) BME and Ag NPs exposure
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(e) RPMI-1640 and Ag NPs exposure
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SM-Figure 1. Analysis of the data with Flowlogic™ to establish subpopulation distribution and 
mortality in coelomocytes maintained in conventional media (Leibovitz´s L-15-c-, BME-d- and 
RPMI-1640 medium-e-) and exposed to PVP-PEI coated Ag NPs. Amoebocytes (grey dots) and 
eleocytes (blue dots) distribution was established according to their complexity (SSC, Y axis) and 
size (FSC, X axis) features (represented by density plot, A column) and according to their 
autofluorescence in green (FITC histogram, B column). Mortality of the whole coelomocyte 
population (%) was detected through PI fluorescence (PE histogram, C column). In the case of 10 
and 100 mg/l exposure concentrations, amoebocyte and eleocyte relative number and mortality 
of coelomocytes were assessed by density plot (amoebocytes in grey, eleocytes in blue and dead 
coelomocytes in red, D column ) after having subtracted the particles detected by density plot in 
the exposure media without cells (E line). 
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Silver nanoparticles (Ag NPs) are the most frequently used nanomaterials (NMs), with 

438 nanosilver containing products (24% of the total products containing NMs; e.g. 

textiles, detergents and cosmetics) (Vance et al., 2015) and numerous applications in 

electronics and biomedicine due to their well-documented antimicrobial properties 

(Nowack et al., 2011). These properties that make Ag NPs so attractive to 

commercialization have also lead to a great concern due to the expected increasing 

inputs of Ag NPs into the environment (Yu et al., 2013) when there is still a gap of 

knowledge regarding their release, fate, behavior and toxicity on the biota. In soils, the 

major sources of Ag NPs are the disposal of waste water treatment plant sludges or their 

incineration and posterior deposition of residues (Tourinho et al., 2012). The impacts 

exerted by Ag NPs are being extensively studied in the different environmental 

compartments, including soils although in a less extent, where different test organism, 

soil types, exposure concentrations and endpoints have been employed for assessment 

purposes in the frame of nanotoxicology. 

In this thesis work the toxicity assessment of PVP-PEI coated Ag NPs in soil was carried 

out using Eisenia fetida earthworms. The accuracy of this earthworm species for soil 

health assessment could be controversial since it is epigeic, living in decaying organic 

matter, in compost or mold. Nevertheless, it represents a commercially available, 

inexpensive and easily cultured model for experimentation (Bilej et al., 2010). These 

aspects together with their biological advantages (e.g. short life cycle, prolific, direct 

uptake of chemicals by dermis, oral uptake) and susceptibility to pollutants have made 

E. fetida broadly used in standard toxicity tests (OECD, ISO). Previous works assessing 

Ag NPs toxicity in earthworms used E. fetida, E. andrei, Enchytraeus albidus, Lumbricus 

rubellus or L. terrestris, being E. fetida by far the most commonly used species. Among 

the total of studies published in the last 5 years dealing with Ag NPs toxicity in 

earthworms only few chose an endogeic earthworm (L. rubellus, Diez-Ortiz et al., 2015b; 

Makama et al., 2016; Van der Ploeg et al., 2014) limiting the comparison with present 

results.  

Presently, standard toxicity test (OECD), the integration of a battery of biomarkers at 

different levels of biological organization and in vitro approaches with coelomocytes 

have been carried out with E. fetida in order to obtain relevant toxicity data regarding 

PVP-PEI coated Ag NPs. Beforehand, the main uptake route, an accurate test soil for its 

maintenance and the optimization of the conditions for in vitro approaches with 
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coelomocytes were defined to ensure a reliable screening diagnosis of these Ag NPs in E. 

fetida. 

OECD tests with E. fetida are focused on acute (Acute toxicity test-207, OECD 1984) and 

chronic (Reproduction test-222, OECD, 2004) bioassays, using lethal and sublethal 

endpoints, respectively. Acute toxicity test are useful for screening of chemicals and can 

be carried out placing earthworms in different exposure media (Paper Contact test and 

Artificial Soil test). Since earthworms are able to uptake chemicals by soil ingestion (oral 

uptake) and from pore water through the outer body wall (dermal uptake) (Lord et al., 

1980), the Paper Contact test reflects a dermal uptake while both, dermal and oral 

uptakes can be observed during Artificial Soil and Reproduction tests. Hence, apart from 

providing toxicity data, these tests allowed understanding the behaviour of Ag NPs in 

two different exposure conditions (aqueous and soil matrices), the main uptake route 

in earthworms and the resulting toxicity (Chapter 1). The Paper Contact test suggested 

the dermal absorption of Ag ions released from Ag NPs through pore water of soils, 

which produced the disruption of the tegument and enhanced weight loss and mortality. 

The exposure in artificial soil revealed the ingestion as the main uptake route of Ag NPs 

in real conditions. Therefore, in a real scenario in which Ag NPs would enter soils by the 

disposal of sewage sludges, earthworms would be good candidates to ingest this 

material since many species feed on organic debris on the surface (Coutris et al., 2012; 

Kiser et al., 2009). Once ingested, a fraction of the Ag NPs could be processed in the 

earthworm gastro-intestinal tract to again be dispersed throughout the entire soil 

profile through faeces. The remaining Ag NPs could be internalized by the digestive gut 

epithelium, producing severe effects at organism level. For instance, in this work 

affection to survival, growth and reproduction have been proven with different toxicity 

values: LC50 144.20 ppm, EC50 57.62 ppm, EC50 17.92 ppm; respectively 

For an accurate assessment of NPs toxicity the intrinsic properties such as chemical 

composition, shape, size and surface area (coating agent) must be taken into 

consideration (Tourinho et al., 2012). Among them, the formulation of the coating 

agent can be a crucial factor that influence on toxicity. According to manufacturer 

specifications the Ag NPs used herein were stable in water as they were coated by 

polyvinylpyrrolidone-polyethylenimine (PVP-PEI) (Appendix I). PVP has been 

extensively used as coating agent for Ag NPs (Hayashi et al., 2012; Heckmann et al., 

2011; Shoults-Wilson et al., 2011a; Tsyusko et al., 2012), stabilizing them and 
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preventing ion release and reducing agglomeration (Misra et al., 2012). The lack of 

toxicity due to PVP has been previously reported (Beer et al., 2012; Gomes et al., 2013) 

and presently it has been confirmed that the observed toxicity was not attributable to 

PVP-PEI. In fact, both the Paper Contact test (Chapter 1) and in vitro assays in 

microplate (Chapter 3) showed that PVP-PEI toxicity was two folds lower than the 

toxicity exerted by PVP-PEI coated Ag NPs. Thus, the effects observed all over this thesis 

work would be due to the Ag NPs itself (or to the released ions) but not to the coating 

agent PVP-PEI.  

Together with NPs characteristics, soil physico-chemical factors (pH, CEC, WHC, clay 

and OM contents) and the interaction of NPs with the medium (e.g. dissolution, 

aggregation or agglomeration, sorption to larger particles), will affect NPs behaviour, 

fate and toxicity to earthworms (Jośko and Oleszczuk, 2013, Klaine et al., 2008; Ren et 

al., 2016; Tourinho et al., 2012). Therefore, in Chapter 2 experiments were carried out in 

two widely used standard test soils, OECD and LUFA 2.3 soils, which mainly differ in 

OM and clay contents. The same exposure concentration of Ag NPs produced earlier and 

stronger effects in soils with low clay and organic matter contents (LUFA 2.3), probably 

due to a dissimilar speciation and bioavailability of Ag NPs and also to a different 

behavior of the earthworms depending on the soil substrate. In OECD soils Ag NPs could 

be coupled to the solid phase of the soil and coated by OM, which would suppress 

dissolution (Cornelis et al., 2012; Klitzke et al., 2015); whereas in LUFA 2.3 soils, Ag 

could be dissolved in soil pore water and subjected to earlier oxidation processes (Di 

Toro et al., 1991; Klaine et al., 2008). In addition, even if E. fetida is considered tolerant 

to many soil types, allowing the testing in different soils (Lanno et al., 2004), 

earthworms maintained in LUFA 2.3 soil for 14 days showed severe weight losses 

probably due to the starvation of earthworms, which masked the real toxicity of Ag NPs. 

For further studies the implementation of an Avoidance test (ISO 17512-1, 2008a) could 

help determining the accuracy of soils regarding behaviour of E. fetida. Irrespective of 

this, the integration of the responses at different levels of biological complexity in E. 

fetida allowed discriminating the toxic effects exerted by PVP-PEI coated Ag NPs in 

standard soils with different physico-chemical characteristics (Chapter 2). In 

conclusion, OECD standard soil occurred to be more appropriate test soil to assess Ag 

NPs toxicity using E. fetida due to the accuracy of its physico-chemical characteristics 

and thus, this soil was used in the following experiment aiming to compare the toxicity 

effects produced by Ag NPs and the soluble form (AgNO3) (Chapter 3). 

http://www.tandfonline.com/author/Jo%C5%9Bko%2C+Izabela
http://www.tandfonline.com/author/Oleszczuk%2C+Patryk
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The toxicity values obtained by means of standard toxicity tests in OECD soils reinforce 

reproduction output as the most sensitive and ecologically relevant endpoint to assess 

Ag NPs toxicity in Oligochaeta (Gomes et al., 2013; Hekmann et al., 2011; Schlich et al., 

2013; Shoults-Wilson et al., 2011a, 2011b, Chapter 1). Nevertheless, a standard toxicity 

test such as earthworm Reproduction test-222 (OECD, 2004) has limitations when the 

amount of soils to be tested is high and when a rapid assessment is required due to its 

duration (8 weeks). Moreover, toxic effects not detectable through traditional endpoints 

(mortality and weight loss) could happen at lower biological complexity levels, as it 

occurred after exposing earthworms to Ag NPs and AgNO3 (Chapter 3). In addition, the 

concentrations used in standard toxicity tests are normally orders of magnitude higher 

than those modelled for the environment. Thus, in Chapter 2 and 3 the toxicity of PVP-

PEI coated Ag NPs was assessed applying a battery of biomarkers at different levels 

of biological complexity at sublethal concentrations, including those close to 

environmental predictions. All concentrations were selected from the survival and 

reproductive output data scored from standard tests in Chapter 1 (50 mg Ag NPs/kg) 

and from in silico model predictions (Gottschalk et al., 2009) in soils amended with 

WWTP sludges or sludge incineration residues (0.05 mg Ag NPs/kg). The use of 

biomarkers in ecotoxicology allows detecting changes at low concentrations and short 

exposure periods. In OECD soil high but sublethal concentrations of Ag NPs (50 mg Ag 

NPs/kg) caused significant increases in catalase activity and DNA damage in OECD soils 

after 14 days, reinforcing the idea of oxidative stress and genotoxicity as relevant 

mechanisms of toxicity produced by Ag NPs in earthworms (McShan et al., 2014). The 

selected biomarkers can be put together in integrative indexes to have a conclusive idea 

about the toxicity exerted by chemical compounds or test media. Thus, the IBR index, 

particularly used in marine monitoring programmes, allowed the discrimination of the 

responses as function of time (3 vs. 14 days) and to distinguish the overall toxicity of 

different exposure concentrations. Therefore, the integration of the responses at 

different levels of biological complexity of E. fetida provide a reliable and conclusive 

outline of the toxicity exerted by PVP-PEI coated Ag NPs at different exposure 

conditions.  

After exposure of earthworms to close to predicted environmental concentrations of 

Ag NPs (0.05 mg Ag NPs/kg) significant effects were not observed in E. fetida 

maintained in OECD soil (Chapter 2). However, as stated in Chapter 3 certain alterations 

regarding metal detoxification mechanisms (MT, mt) and in antioxidant responses (CAT, 
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cat) were observed at the same concentration (0.05 mg AgNPs/kg), which could be due 

to a dissimilar pH of the OECD soils (6.42-6.89 vs. 5.89-5.99 in Chapter 2 and Chapter 3, 

respectively). Accordingly, it has been proven by many authors that metal solubility and 

speciation are highly pH dependent (Leveque et al. 2013; Spurgeon et al., 2006) and 

thus, in a moderately acidic soil (OECD in Chapter 3) the bioavailability of Ag NPs could 

lead to an increase in metallothionein levels and catalase activity. This fact proves, once 

again, that soil characteristics influence more in the toxicity that the own NP features 

(Shoults-Wilson et al., 2011a). 

In nanotoxicology there is an ongoing challenge regarding whether toxicity is caused by 

the nanoform or due to NPs solubility and ion release, or a combination of both. 

Previous reports indicate that toxicity of Ag NPs may be caused by released Ag ions 

(Hayashi et al., 2013a; Gomes et al., 2015), however Ag NPs specific effects have also 

been demonstrated (Fabrega et al., 2009a). Furthermore, the release of ions from Ag 

NPs has been proved not to be the responsible of the avoidance effect in E. fetida 

(Tourinho et al., 2012). In order to better understand the potential effects of Ag NPs, 

both NPs and ionic form need to be considered (Misra et al., 2012; Tourinho et al., 2012) 

and thus, the design of experiments comparing the effects of Ag NPs and the soluble 

form (AgNO3) are strongly recommended. The majority of these works showed earlier 

and more toxic effects after silver salts exposure, which could be related to oxidation 

time (quicker ion release) or a slower uptake of Ag NPs or due to a less mobility of the 

nanoform (Coutris et al., 2012; Hayashi et al., 2013a; Shoults-Wilson et al., 2011b; 

Gomes et al., 2015). However, as presently observed PVP-PEI coated Ag NPs and AgNO3 

induced similar changes in metal detoxification mechanisms and in antioxidant 

responses of E. fetida after exposure to high but sublethal (50 mg/kg) and to close to 

environmental (0.05 mg/kg) concentrations. In order to decipher to which extent 

dissolved ions are the responsible of the observed toxicity ionic Ag can be measured in 

exposure media (soils -solid and pore water phases- and culture media) through 

ultracentrifugation and ultrafiltration techniques (Diez-Ortiz et al., 2015a) or ion 

selective electrode (ISE) (Gomes et al., 2013). Diez-Ortiz et al. (2015b) revealed ten 

times higher Ag concentrations in pore water samples in soil spiked with ionic Ag than 

in soil spiked with Ag NPs at the same total nominal Ag concentrations (100 mg/kg). 

However, at nominal concentrations below 50 mg Ag/kg (concentrations used herein) it 

has not been possible to detect ionic Ag in soil pore water of spiked soils.  
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In contrast with the responses observed at biochemical level, cytotoxicity was higher 

after exposure to PVP-PEI coated Ag NPs and, dissimilar sensitivities were recorded 

among coelomocytes subpopulations depending on the Ag form. Recent in vitro tests 

with coelomocytes exposed to metal salts (e.g. CdCl2, CuCl2, PbCl2) demonstrated 

eleocytes to be more sensitive than amoebocytes (Irizar et al., 2015b), and the same was 

observed herein after exposure to Ag salts (AgNO3) (Chapter 3 and Chapter 4). In 

contrast, a major sensitivity of amoebocytes was shown after exposure to Ag NPs, which 

is supported by their selective intracellular accumulation of Ag NPs and their role as 

scavengers of Ag NPs found by Hayashi et al. (2012). Thus, a phagocytic uptake of Ag 

NPs may have occurred in amoebocytes, followed by intracellular particle oxidation 

which can produce cellular damage (Trojan horse effect; Hayashi et al., 2012; Limbach 

et al., 2007).  

In order to get deeper knowledge about these issues in vitro approaches were 

performed with primary cultures of coelomocytes. However, first of all, optimal culture 

conditions and in vitro tests were selected in order to ensure an accurate response of 

cells against Ag NPs. RPMI-1640 medium was the best option among conventional 

media for coelomocytes culturing and for the development of microplate assays. Calcein 

AM viability assay was the most accurate and responsive test to assess the effects 

produced by Ag NPs (and AgNO3) exposure. According to this assay, Ag NPs caused 

selective cytotoxicity in amoebocytes, which correlated with the Ag concentrations 

measured in sorted amoebocytes and reinforced the idea of dissimilar sensitivities 

against particulate or dissolved metals among amoebocytes and eleocytes. Further 

studies based on Transmission Electron Microscopy (TEM) of isolated subpopulations 

would help ensuring this aspect. Nevertheless, in vitro approaches (viability assays in 

microplate, flow cytometry, cell sorting) with primary cultures of coelomocytes provide 

valuable information about PVP-PEI coated Ag NPs toxicity and about the dissimilar 

response of amoebocyte and eleocyte against Ag NPs. Moreover, as far as we know, this 

work is one of few examples performing coelomocytes sorting successfully for further 

analysis (Flame-AAS). 

Even if the ecological relevance of biomarkers measured at low levels of biological 

complexity has been questioned, presently endpoints measured in coelomocytes 

retrieved from exposed E. fetida (cell viability and transcription levels-mt and cat- 

quantification) offered rapid and accurate information to predict impairments caused at 

longer exposure times and higher complexity levels (Chapter 1 and Chapter 3). In fact, 
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the concentration causing depletion on coelomocytes viability correlated with the 

concentration in which reproductive failure occurred. Even more, molecular endpoints 

measured in coelomocytes of earthworms exposed to Ag NPs in vivo were less invasive 

and represent an alternative to those measured at higher levels of biological complexity. 

In addition, even if it is a challenge to link in vitro approaches with more ecologically 

relevant endpoints (such reproduction and growth), the toxicity indices (LC50, EC50) 

obtained in this thesis at different levels (Chapter 1, Chapter 4) followed the same 

pattern, indicating the high potential of in vitro assays with coelomocytes for accurate 

diagnosis, screening and toxicity testing of emerging chemicals such as Ag NPs.  

This thesis work represents a scientific based goal approach for the diagnosis of toxic 

effects exerted by Ag NPs soil using E. fetida. The toxicity data obtained from this thesis 

work would be helpful for the development of risk assessment strategies and 

establishment of regulatory criteria for the protection of the environment by 

environmental protection regulatory regimes (EPA, CLP, ECHA, REACH). Nevertheless, 

these lethal and effect concentrations were obtained in laboratory experiments using 

standard soils, whereas in a real scenario soil components and varying factors may 

affect the fate and behaviour of NPs and subsequently increase their toxicity to 

organisms inhabiting soils. Hence, in order to increase realism, future experiments 

should be designed with real soils in which WWTP sludges have been applied with 

amendment purposes. The same endpoints applied in this work could be used in those 

experiments. A challenging future of possibilities is open. 
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CONCLUSIONS 

1- The combination of standard toxicity tests (OECD-207 and OECD-222) with cellular 

biomarkers provided relevant toxicity data and allow to understand the behavior and 

to decipher the uptake routes of PVP-PEI coated Ag NPs in Eisenia fetida earthworms 

under two different exposure conditions, aqueous and soil matrices.  

a.  The Paper Contact test suggested the dermal absorption of Ag ions 

released from Ag NPs through pore water of soils that produced the 

disruption of the tegument and enhanced weight loss and mortality. 

b. The exposure in artificial soil revealed the ingestion as the main uptake 

route of Ag NPs that were internalized by the digestive gut epithelium 

producing severe effects on survival (LC50 144.20 ppm), growth (EC50 

57.62 ppm) and reproduction (EC50 17.92 ppm). 

c. The toxicity of the coating agent PVP-PEI seemed to be meaningless. 

2- The integration of the responses at different levels of biological complexity of E. 

fetida provides a reliable and conclusive outline of the toxicity exerted by PVP-PEI 

coated Ag NPs at different exposure times, at environmentally relevant 

concentrations in standard soils with different physico-chemical characteristics. The 

same exposure concentration of Ag NPs produced earlier and stronger effects 

(weight loss, reduction in the viability of coelomocytes, increase in catalase activity 

and DNA damage) in soils with low clay and organic matter contents (LUFA 2.3).  

3- PVP-PEI coated Ag NPs and AgNO3 induced similar changes in metal detoxification 

mechanisms and in antioxidant responses of E. fetida after exposure to high but 

sublethal (50 mg/kg) and to close to environmental (0.05 mg/kg) concentrations. In 

contrast, cytotoxicity was higher after exposure to PVP-PEI coated Ag NPs but, 

dissimilar sensitivities were recorded among coelomocytes subpopulations 

depending on the Ag form, suggesting a different mode of action of 

nanoparticulate/salt/ ionic Ag depending on the target cell. 

4- Cell viability and transcription levels (mt and cat) quantified in coelomocytes 

retrieved from E. fetida earthworms exposed in vivo to PVP-PEI coated Ag NPs 

offered rapid and accurate information to predict impairments caused at higher 
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complexity levels. Thus, the utilization of coelomocytes to assess cellular and 

molecular level endpoints represents a relevant alternative for development of non-

invasive biomarkers. 

5- In vitro approaches (viability assays in microplate, flow cytometry, cell sorting) with 

primary cultures of coelomocytes have been successfully used to test the toxicity and 

the dissimilar responses of amoebocyte and eleocyte subpopulations after exposure 

to PVP-PEI coated Ag NPs. RPMI-1640 medium was the best option among 

conventional media for coelomocytes culturing and for the development of 

microplate assays. Calcein AM viability assay was the most accurate and responsive 

test to assess the effects produced by Ag NPs (and AgNO3) exposure. According to 

this assay, Ag NPs were more toxic than AgNO3 for coelomocytes (LC50 30.48 mg Ag 

NPs/l vs. 43.38 mg AgNO3/l). Exposure to Ag NPs caused selective cytotoxicity in 

amoebocytes, which correlated with the Ag concentrations measured in sorted 

amoebocytes and reinforced the idea of dissimilar sensitivities against 

nanoparticulate or dissolved metals among amoebocytes and eleocytes. 

 

THESIS 

An accurate diagnosis of the toxicity exerted by PVP-PEI coated Ag NPs in soils has been 

achieved in Eisenia fetida earthworms, after establishing the main uptake route and the 

definition of accurate test soil, using standard tests together with the integration of 

biomarker responses at different levels of biological complexity and the implementation 

of in vitro approaches with coelomocytes. 
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PROTOCOLS 
 

1. Histology 

1.1. Non-fixed samples 

1.1.1. Hematoxylin‐eosin (H/E) staining 

1.1.2. Alcian Blue pH 2.5 staining 

1.2. Fixed samples 

1.2.1. Autometallography 

2. Coelomocyte extrusion  

2.1. Cell counting and viability (Trypan Blue) 

3. Cell viability assays in microplate 

3.1. Neutral Red Uptake (NRU) 

3.2. Cell proliferation kit WST-1 

3.3. Calcein AM viability assay 

4. Metallothioneins (MTs) measurement by spectrophotometry  

5. CAT activity measured by H2O2 consumption  

5.1. Total protein quantification in microplate 

6. Comet assay with earthworm coelomocytes  

7. Gene transcription levels by Real-Time qPCR 

7.1. Tri-reagent protocol (total RNA extraction) 

7.2. RNA Purification through RNase-Free DNase Set 

7.3. First-Strand cDNA Synthesis protocol (Retro Transcription-RT-) 

7.4. Establishment of primer conditions for PCR  

7.5. cDNA concentration through Quant iT OliGreen ssDNA assay Kit  

7.6. Relative Quantification (RQ) level calculation 
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1. Histology 

1.1. Non-fixed samples 

a. Prior to the dissection, left earthworms voiding their gut contents during 24 h 

(depuration) and clean them thoroughly with dH2O to avoid soil particles 

b. Dissect out the post-clitellar sections of earthworms, freeze them in liquid nitrogen 

and store (-80 °C) samples 

c. Cut transversal sections of the frozen earthworms in a cryotome (10 µm, -24 °C Leica 

CM3000)  

d. Maintain tissue sections at -40 °C (no longer than 72 h) to perform the stainings 

1.1.1. Hematoxylin‐eosin (H/E) staining 

- Move slides containing unfixed 10 µm cryostat sections from -40 °C to 4 °C for 10 

min and then keep them at room temperature for other 10 min 

- Put them in distilled H2O for 5 min 

- Stain sections in Harris hematoxylin (HHS128 Sigma-Aldrich) for 4min 

- Wash them in dH2O for 4 min 

- Wash them in dH2O (10 sec x 3) 

- Put them in acid alcohol for 10 s 

- Wash them in dH2O for 5 min 

- Put them in acid lithium carbonate for 10 s 

- Wash them in dH2O for 1 min 

- Stain sections in eosin yellowish alcoholic solution 1% (256879 Panreac) for 1 min 

- Mount slides in glycerine (Kaisers´ glycerol gelatin) 

1.1.2. Alcian Blue pH 2.5 staining 

  Alcian Blue (A3157 Sigma-Aldrich)            1 g 
  dH2O                97 ml 
  Acetic acid glacial (Scharlau AC0343)       3 ml 

- Move slides containing unfixed 10 µm cryostat sections from -40 °C to 4 °C for 10 

min and then keep them at room temperature for other 10 min 

- Put them in distilled H2O 

- Stain sections in Alcian Blue (pH 2.5) for 30 min 

- Wash them in dH2O (10 sec x 3) 

- Mount slides in glycerin (Kaisers´ glycerol gelatin) 



APPENDIX II 

 

202 
 

 

1.2. Fixed samples 

a. Prior to the dissection, left earthworms voiding their gut contents during 24 h 

(depuration) and clean them thoroughly with dH2O to avoid soil particles 

b. Dissect out the post-clitellar sections (~5 segments), immerse them in formalin (10% 

commercial formaldehyde in 0.1 M phosphate buffered saline solution-PBS- with 0.23% 

NaCl, 1 l per 20 samples) and keep at 4 °C for 24 h 

c. After 24 h remove formalin and store histological samples in 70% alcohol at 4 °C 

d. Fixation and dehydration in Tissue processor (Leica ASP 300): 

70% ethanol   1 h 
96% ethanol   1 h 
96% ethanol   1 h 
100% ethanol   1 h 
100% ethanol   1 h 
100% ethanol/xylene  1 h 
xylene    1 h 
xylene    1 h 
paraffin    2 h 
paraffin    2 h 

e. Embed samples in paraffin to obtain paraffin blocks 

f. Cut tissue sections (5 μm) with the aid of a rotary microtome (Leica RM 2125RT) 

g. Dewaxe with xylene, rehydrate through several baths of ethanol (d step in reverse) 

and air dry slides 

1.2.1. Autometallography 

 BBinternational Enhancing Kit (BBI Life Sciences) 

 Mix Initiatiator and Enhancer reagents (1:1) 

- Applied as drops into each tissue section and place in a moisture chamber to 

avoid desiccation 

- Check the reaction in control and treated samples and stop when it is visible (20-

25 min). 

- Wash them in dH2O (10 sec x 3) 

- Mount slides in glycerin (Kaisers´ glycerol gelatin) 
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2. Coelomocyte extrusion  

(Irizar et al., 2014b) 

A. Equipment and Reagents 

Equipment: 

- Centrifuge  

- Light microscope  

- Laboratory balance 

- Glass Petri dishes 

- 9V batteries 

- Pasteur 

- Tweezers 

- Falcon tubes of 15 and 50 ml 

- Pipettes (and multichannel pipette) 

- Cell counter or hemocytometer (neubauer chamber) 

Reagents: 

 - Distilled water (dH2O) 

- Na2HPO4 . 12H2O (71649 Sigma or similar) 

- NaH2PO4 . H2O (Panreac 131965 or similar) 

- NaCl (Sigma S-9888 or similar) 

- EDTA (Sigma E-6758 or similar) 

- Trypan blue solution 0.4% (Sigma T8154 or similar) 

B. Preparation of solutions 

- Phosphate buffer saline -PBS-, pH 7.4 ( for 1 l) 

Na2HPO4 . 12 H2O……………….....…28.98 g 
                                                             in 808 ml dH2O 
 
NaH2PO4 . H2O…………………..….…… 2.65 g 
                                                             in 192 ml dH2O 

NaCl……………………..……………………2.32 g 

Dissolve the sodium phosphates separately, mix them and then add sodium chloride. 

Check pH to be about 7.4 and store solution in the fridge, but use it at room temperature 

- Extrusion Fluid, pH 7.3 (100 ml) 

Dissolve 0.02 % EDTA in PBS and adjust to pH 7.3.  

Store solution in the fridge, but use it at room temperature 
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C. Procedure 

a. Clean the worms with dH2O to remove any particle of soil 

b. Gently message the earthworms to remove intestine contents 

c. Place a pool of 5 worms per group in a glass Petri dish with 5 ml extrusion fluid 

(1ml/worm) and retrieve the cells by an electric shock with a 9 V battery. 

Coelomocytes will be extruded through dorsal pores 

2.1. Cell counting and viability (Trypan Blue) 

d. Transfer the cell suspension to a 15 ml Falcon tube 

e. Centrifuge at 530 xg for 10 min at 4 °C 

f.  Resuspend the pellet in 5 ml of PBS (1 ml/earthworm) 

g. Mix trypan blue solution (0.4%) with coelomocytes and count death/alive cells in 

a haemocytometer under an inverted microscope. Use a dilution factor of 2:  

10 µl of cell solution + 10 µl trypan blue solution (0.04%) 

Total number of cells per ml: 

Total nº of  alive cells/ml = (B1+B2+B3+B4)/4  x 104 x  dilution factor 

+ 

Total nº of dead cells/ml= (B1+B2+B3+B4)/4  x 104 x  dilution factor 

 

Viability % = Total nº of  alive cells per ml/ Total number of cells per ml 
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3. Cell viability assays in microplate  

a. Adjust cell solution to 106 cells per ml 

b. Place 2 x 105 alive cells on each well of a 96-well microplate. 8 replicates per group 

c. Leave coelomocytes to stabilizing and attaching to the plate for 30 min at RT 

d. Centrifuge at 530 x g for 5 min at 4 °C. 

3.1. Neutral Red Uptake (NRU)   (Irizar et al., 2014b) 

A. Equipment and Reagents 

Equipment 
- Centrifuge, equipped with rotors for microplates  
- Pipettes (and multichannel pipette) 
- 96-well microplates  
- Inverted microscope 
- 96-well microplate spectrophotometer  

Reagents 
- Distilled water 
- Neutral Red dye (Sigma N-7005 or similar) 
- Ethanol (Panreac 131086 or similar) 
- Acetic acid glacial (Scharlau AC0343 or similar) 

B. Preparation of solutions 

- Neutral Red Stock Solution (NRS) (10 ml)  

Dissolve 5 mg Neutral Red dye in 10 ml distilled water (Neutral Red 0.5 %) 

Centrifuge NRS (530 x g, 5 min) and use the supernatant  

Keep in darkness and use it freshly made 

- Neutral Red Working Solution (NRW) (20 ml) 

Dissolve 2 ml NRS in 18 ml PBS (Neutral Red 0.05%) 

Keep in darkness and use it freshly made 

- Extraction Solution ( for 100 ml) 

Acetic acid glacial…….....1 ml 
Ethanol………………….....50 ml 
dH2O……...............…….....49 ml 

Store solution in the fridge, but use it at room temperature 

C. Procedure 

a. Remove the supernatant by suction and replace with 200 µl of NRW (0.05%). 

Make the negative control by adding 200 µl of NRW to empty wells 

b. Incubate the plate at room temperature for 30 min in darkness 
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c. Centrifuge at 350 x g for 5 min at 4 °C 

d. Wash the plate with PSB until no colour is visible in the negative control, 

removing the supernatant and replacing it with 100 µl PBS 

e. Solubilise the dye uptaken by coelomocytes by adding 100 µl of extraction 

fluid. Incubate at room temperature for 5 min 

f. Shake the plate and read the absorbance at 540 nm in a microplate reader 

spectrophotometer 

Calculations 

Substrate the mean of the negative control to all group means. Supposing that the 

control group has the maximum retention capacity (100%), the relative values are 

compared using proper statistical analysis 

3.2.  Cell proliferation kit WST-1 

A. Equipment and Reagents 

Equipment 

- Centrifuge, equipped with rotors for microplates  
- Pipettes (and multichannel pipette) 
- 96-well microplates  
- Inverted microscope 
- 96-well microplate spectrophotometer 

Reagents 

- Cell proliferation reagent (Roche Diagnostics GmbH, Mannheim) 

B. Procedure 

a. Add the reagent 10 times diluted to the wells (20 μl of the reagent into the 

wells containing 200 μl volume). Do the same in well containing medium 

without cells 

b. Incubate the plate at room temperature for 3 h in darkness 

c. Read the absorbance at Abs 450nm -Abs 690nm in a microplate reader 

spectrophotometer 

Calculations 

Substrate the mean of the wells containing exposure media without cells to the cell 

containing wells . Supposing that the control group has the maximum transformation of 

formazan (more metabolically active cells) (100%), the relative values are compared 

using proper statistical analysis 
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3.3. Calcein AM viability assay 

A. Equipment and Reagents 

Equipment 

- Centrifuge, equipped with rotors for microplates  
- Pipettes (and multichannel pipette) 
- 96-well microplates  
- Inverted microscope 
- 96-well microplate fluorescence reader 

Reagents 

- Calcein-AM (Molecular Probes® ThermoFisher Scientific) 

B. Preparation of solutions 

-Calcein-AM Working Solution (2 ml) 

5 µl Calcein-AM in 1,995 ml PBS (2.5 µM Calcein-AM) 

Keep in darkness and use it freshly made 

C. Procedure 

a. Remove the supernatant by suction and replace with 100 µl of Calcein-AM 

working solution in 4 wells. In the remaining wells, instead of Calcein-AM, 

100 µl PBS were added to ensure that the loss of cells during wash steps was 

alike in all treatments 

b. Incubate the plate at room temperature for 40 min in darkness. 

c. Centrifuge at 350 x g for 5 min at 4 °C. 

d. Wash the plate twice with PBS, removing the supernatant and replacing it 

with 100 µl PBS. 

e. Read the fluorescence at 490 ± 20 nm excitation filter and 520 ± 20 emission 

filter. 

Calculations 

Substrate the mean of the wells incubated with PBS to all group means. 

Supposing that the control group has the maximum calcein retention capacity 

(100%), the relative values are compared using proper statistical analysis. 
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4. Metallothioneins (MTs) measurement by spectrophotometry  
(Viarengo et al., 1997) 

A. Preparation of solutions 

-Homogenization buffer (pH 8.6, 50 ml) 

8.557 g  sucrose (0.5M) 
0.157 g Tris-HCl (0.02M)  
0.006 mM Leuptine (150 µl) 
0.5 mM PMSF (Phenylmethylsulphonyl fluoride, 0.004 g PMSF in75 µl d H2O) 
0.01% β-mercaptoethanol (5µl) 

-DTNB (5,5-dithiobis-2-nitrobenzoic acid, pH 8,  20 ml) 
0.2 M Na- phosphate (1.43g) 
2 M NaCl (1.16 g) 
43 mM DTNB *Freshly made 

B. Procedure 

a. Homogenization 

-Weight a pool of ∼ 0.5 g 
-Homogenize in 3 volumes of homogenization buffer 

b. Centrifugation 

-Centrifuge at 18000 rpm (30000 xg) for 20 min at 4 °C 
-Transfer the supernatant to a centrifuge tube 
-Add 1.05 ml of cold (-20°C) absolute ethanol and 80 µl of chloroform and 
vortex 
-Centrifuge at 1500 rpm(530 x g) for 10 min at 4°C 
-Collect the supernatant (1.8 ml minimum) and transfer to a new centrifuge 
tube 
-Add 40 µl of 37% HCl, 10µl of RNA and 3 volumes of cold ethanol (5.55 ml) 
-Store the tubes sealed with paraffin at -20 °C for 1h  
-Recentrifuge at 1500 rpm (530 x g) for 10 min and discard the supernatant 
-Wash the pellet with 2 ml ethanol/chloroform/homogenizing buffer (-20°C) 
(87:1:12) 
-Centrifuge at 1500 rpm (530 x g) for 10 min and discard the supernatant 
-Dry pellets at RT 

c. Resuspension of the MT enriched fraction (for 0.5 g sample) 

-Add to the pellet 150 µl of 0.25 M NaCl and 150µl 1N HCl/4mM EDTA 
-Vortex and stir to resuspend the pellet 
-Add 4.2 ml DTNB solution and centrifuge for 5 min at RT at1500 rpm (530 
xg) 

d. DTNB assay: Standard curve 
 GSH stock solution 0.25 M NaCl 1N HCl DTNB Total vol. 

Blank - 150 µl 150 µl 4.2 ml 4.5 ml 
10 10 µl 140 µl 150 µl 4.2 ml 4.5 ml 
20 20 µl 130 µl 150 µl 4.2 ml 4.5 ml 
40 40 µl 110 µl 150 µl 4.2 ml 4.5 ml 
80 80 µl 70 µl 150 µl 4.2 ml 4.5 ml 

                                                                                                                        GSH: Reduced glutathione 

-Centrifuge samples at 1500 rpm for 5 min at RT 
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e. -Add 300 µl of the serial dilutions (standard curve) and of sample (4 

replicates in both) 

f. Measure absorbance at 412 nm in a microplate reader spectrophotometer 

5. CAT activity measured by H2O2 consumption  

(Claiborne, 1985) 

A. Preparation of solutions 

-TVBE buffer (pH 7.4, 1l) 

1 nM NaHCO3 (84 mg) 

1mM EDTA (10 ml 0.1 M EDTA-3.802 g in 100 ml dH2O-) 

0.1% Abs Ethanol (1 ml) 

0.01% Triton X-100 (100 µl) 

-Potassium dihydrogen phosphate (KH2PO4, 50 mM) 

KH2PO4   3.402 g 

d H2O  500 ml 

- 20.2 mM H202 in KH2PO4*Freshly prepared 

H202  46 µl 

KH2PO4  20 ml 

B. Procedure 

a. Homogenization 

-Weight the samples 

-Homogenize in 5 volumes of TVBE homogenization buffer 

b. Prepare serial dilutions for the standard curve 

 TVBE (µl) H202 in KH2PO4 (µl) mM H202  Volume well (µl) µmol/well 
1 0 1000 20.28 300 5.9826 

2 400 600 12.168 300 3.58956 

3 600 400 8.112 300 2.39304 

4 800 200 4.056 300 1.19652 

5 900 100 2.028 300 0.59826 

6 950 50 1.014 300 0.29913 

7 975 25 0.507 300 0.149565 

8 1000 0 0 300 0 

 

c. Add 5 µl of the homogenized sample (4 replicates) in a 96 wells UV 

microplate 
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d. Add 300 µl of the calibration solutions to perform the standard curve (4 

replicates) 

e. Add 295 µl H202 in KH2PO4 to the wells containing 5 µl samples  

f. Measure absorbance at 240 nm in a microplate reader spectrophotometer 2-

10 min after the addition of H202 in KH2PO4 to the samples. Read absorbance 

every 22 s during 4 min 

Calculations 

Select the kinetic section with the higher slope from the standard curve and use it for all 

the samples and replicates. Activity is represented as µmol H202/mg protein/min. Total 

protein content was estimated according to Lowry et al. (1951) 

5.1. Total protein quantification in microplate  

(Lowry et al., 1951)  
 (Bio-Rad DC Protein Assay) 

a. Preparation of serial dilutions for the Standard curve (For a bovine ɣ-

globuline-Bio-Rad 500-0005- concentration of 1.5 mg/ml) 

0.00 mg/ml (Homogenation buffer) 
0.15 mg/ml (5 µl of standard + 45µl of homogenation buffer) 
0.30 mg/ml (10 µl of standard + 40µl of homogenation buffer) 
0.60 mg/ml (20 µl of standard + 30µl of homogenation buffer) 
1.00 mg/ml (36 µl of standard + 18µl of homogenation buffer) 
1.50 mg/ml standard  

b. Add 5 µl per well of the serial dilutions or sample (4 replicates) in 96-well 

microplates 

c. Add 25 µl Reagent A (Bio-Rad DC) to each well with the aid of a repetitive 

pipette. If the homogenization buffer contains detergent, 20 µl of Reagent S 

(Bio-Rad DC) per ml of Reagent A (Bio-Rad DC) need to be added. 

d. Add 200 µl of Reagent B (Bio-Rad DC) to each well with the aid of a 

repetitive pipette 

g. Wait for 15 min and measure absorbance at 750 nm in a microplate reader 

spectrophotometer 
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6. Comet assay with earthworm coelomocytes  

(Singh et al., 1988 with modifications) 

A. Reagents 

-Ethanol 

-Guayacol Gliceril eter (G5627 Aldrich) 

-H2O2(H1009 Sigma) 

-Normal melting point agarose (NMPA, A4679 ) 

-Low melting point agarose (LMPA, A9414) 

- Tris (Trizma base T4661) 

- Triton X-100 (X100 Sigma-Aldrich) 

- Dimethyl sulfoxide DMSO (276855 Sigma-Aldrich) 

- NaOH (Riedal-de Hasen 30620) 

- Ethidium bromide (E1510 Sigma) 

- NaCl (Sigma S-9888 or similar) 

- EDTA (Sigma E-6758 or similar) 

- Phosphate buffer saline (PBS, see Appendix II-3) 

B. Solutions 

1% NMPA (1g agarose in 100ml PBS) 

0,5% LMPA (100mg LMPA in 20ml PBS) at 37ºC 

-Lysis solution pH10 

2,5 M NaCl  
100 mM EDTA  
10 mM Tris (pH 10)  
1% Triton X-100 (added fresh*) 
10% DMSO (added fresh*) 

-Electrophoretic buffer (pH> 13, 3l) 

1 mM EDTA 
300 mM NaOH 

-Neutralisation buffer  
0.4 M Tris-HCl, pH 7.5 

C. Procedure 

a. Coat the slides adding a layer of 1% NMPA one day before. Let it solidify 

b. Coelomocytes extrusion: 

-Place the earthworms in a glass Petri dish with moistured filter paper to depurate 

(void gut contents) for 24 h 
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-Place each earthworm in a Petri dish with 1 ml extrusion solution and retrieve the 

cells by an electric shock with a 9 V battery. Coelomocytes will be extruded through 

dorsal pores 

-Transfer the cell suspension to a 15 ml Falcon tube  

-Centrifuge at 350 x g for 10 min at 4°C 

-Resuspend the pellet in 2 ml of cold PBS 

-For a positive control resuspend the cell suspension in 50 mM H2O2 (in PBS) for 

30min. Centrifuge at 200 g, 5 min and resuspend in PBS. 

*Keep the cell suspensions on ice. 

c. Dilute (1:2) the cell suspension in 0.5% LMPA at 25-37 °C and transfer 80 µl of 

the cell suspension to a slide having a thin layer of solidified 1% agarose. Cover 

with a coverslip of 18 x 18 mm and left on ice for 10 min to allow the 2nd layer to 

solidify.  

d. Remove the coverslip  

e. Cell lysis 

-Add 1ml Triton X-100 and 10 ml DMSO to 100ml of lysis solution (4°C) (or 

equivalent volumes). Mix thoroughly 

-Immerse the slides in Lysis solution in a staining jar for at least 1h at 4°C in 

darkness.  

-Wash the slides in dH2O 

f. Alkaline incubation and electrophoresis 

-Place the slides in the electrophoresis tank immersed in alkaline electrophoresis 

solution forming complete rows (gaps filled with blank slides) and wait for 20-25 

min in darkeness. The tank should be leveled and gels just covered 

-Connect the electrophoresis across the platform in the same buffer at 300mA (19V) 

during 20 min. 

g. Neutralisation  

-Wash the slides with the neutralization buffer for 10 min 

h. Fix the cells in methanol (-20 °C) 3 min 

i. Stain the slides with 10 µl of 20 µg/ml ethidium bromide 

D. Analysis 

Analyse the DNA migration in a fluorescence microscope. 
Analyse 100 cells for sample (image analysis program) 

% Tail DNA (100-head % DNA) 
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7. Gene transcription levels by Real-Time qPCR 

7.1. Tri-reagent protocol (Total RNA extraction) 

1-Prepare extraction tubes containing silica beds (up to 0.25 ml line), 1 ml TRIzol® 
(Invitrogen, Thermofisher Scientific) and ~100 mg sample. 

2-Homogenize at 6 m/s-for 20 s twice (or more) 

3-Transfer the homogenate to 1.5 ml eppendorf using filter tips 

4-Allow to stand 5 min at RT 

5-Add 200 µl chloroform per ml Trizol and shake manually (15 s) 

6-Allow to stand at RT for 2 min 

7-Centrifuge at 12000 x g (12 rcf) for 15 min at 4 °C 

8-Transfer the upper aqueous phase to a new eppendorf carefully not to include 
the white precipitate 

9-Add 500 µl isopropanol (cold) per 1ml Trizol 

10-Allow to stand at RT for 10 min 

11-Centrifuge at max speed for 10 min at 4 °C 

12-Remove supernatant. Pellet should be visible 

13-Wash pellet with 70% cold ethanol (from the freezer) 1ml 

14-Centrifuge at max speed (7.4 rcf) for 5 min at 4 °C. Ensure that all the ethanol is 
removed. Pulse down several times if required 

15-Air dry pellet for 10 min in ice (leave lids open) 

16-Add 10-100 µl RNAse DNAse free water, leave tubes on ice and resuspend 

17-Put tubes on 57.7 °C heat block for 2 min 

18-Measure RNA concentration and purity (keep samples in ice): 
Blank: 60 µl RNase DNAse free H2O          

Sample: 1 µl sample + 60 µl RNase DNAse free H2O 

18-Store at -80 °C 

 

7.2. RNA Purification through RNase-Free DNase Set 

1-Select a volume with a maximum of 100 µg RNA and adjust the sample to a 
volume of 100 µl with RNase-free water 

2-Add 350 µl Buffer RLT and mix well by pippeting 

3-Add 250 µl ethanol (96-100%) and mix well by pippeting 

4-Transfer the sample (700 µl) to an RNeasy Mini spin column placed in a 2 ml 
collection tube. Close the lid and centrifuge for 15 s at >8000 g (>10000 rpm). 
Discard the flow-through 

5- Add 350 µl Buffer RW1 to the RNeasy spin column. Close the lid and centrifuge 
for 15 s at >8000 g (>10000 rpm). Discard the flow-through 
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6-Prepare DNase I incubation mix by adding 10 µl DNase I stock solution to 70 µl 
Buffer RDD. Mix bi gently inverting the tube 

7-Add DNase I incubation mix solution (80 µl) to the RNeasy spin column and 
keep at 20-30 °C 15 min 

8-Add 350 µl Buffer RW1 to the RNeasy spin column. Close the lid and centrifuge 
for 15 s at >8000 g (>10000 rpm). Discard the flow-through 

9-Add 500 µl Buffer RPE to the RNeasy spin column. Close the lid and centrifuge 
for 15 s at >8000 g (>10000 rpm). Ensure that ethanol is added to Buffer RPE 
before use. Discard the flow-through 

10-Add 500 µl Buffer RPE to the RNeasy spin column. Close the lid and centrifuge 
for 2 min at >8000 g (>10000 rpm). After centrifugation carefully remove the 
RNeasy spin column from the collection tube so that the column does not contact 
the flow-through 

11-Optional: Place the RNeasy spin column in anew 2 ml collection tube. Close the 
lid and centrifuge for 1 min at full speed 

12-Place the RNeasy spin column in anew 1.5 ml collection tube. Add 30-50 µl 
RNase-free water. Close the lid and centrifuge for 1 min at >8000 g (>10000 
rpm).to elute the RNA. 

7.3. First-Strand cDNA Synthesis protocol (Retro Transcription-RT-) 

1- Measure RNA concentration  

2-Prepare the following mix (RNA/primer) in sterile microcentrifuge tubes: 
3 µl Random Primers (0.1 µg/µl)  

1ng-5 µg  total RNA  

Up to 15.7 µl RNase-free H2O  

Every component must be vortex before use 

3-Incubate tubes in termocycler (V=15.7 µl) 
5 min  65 °C 

 10 min  RT 

4-Prepare the following mixture (calculations for `samples+1´) and add 4.3 µl per 
sample 

2 µl 10xAffinityScript RT Buffer 

0.8 µl dNTP mix 

0.5 µl RNase Block Ribonuclease Inhibitor 

1 µl AffinityScript Multiple Temperature RT  

5-Incubate tubes in termocycler (V=20 µl) 
10 min  25 °C 
60 min  49 °C 
15 min  70 °C 
∞ 4 °C (until PCR amplification) 
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7.4. Establishment of primer condition for qPCR  

A. Confirmation of primer specificity (Agarose gel electrophoresis) 

1- Prepare the following mixture (calculations for `4 samples+1´): 
H2O RNase/DNAse free    208 µl 
X10 PCR Buffer                      25 µl 
MgCl2 50nm             7.5 µl 
dNTP                  5 µl  
Primer Fw                 1 µl 
Primer Rv                 1 µl   
Taq                                          2.5 µl 

2- Mix 48 µl of the mixture with 2 µl cDNA 

3-Incubate tubes in termocycler (V=50 µl) 
2 min  94 °C 
30 s  94 °C 
30 s  *Primer °C 
30 s  72 °C 
8 min  72 °C 
∞ 4ºC 

4-Prepare the gel: 
1.5 g agarose 
100ml TAE buffer 
 
-Warm it up in the microwave and let it temper before adding 10 µl Ethidium Bromide 
-Assemble the gel plate, add the solution (avoiding bubbles) and create wells on the 
plate  
-Wait for solution to solidify (15-30 min) 
-Remove the gel carefully and place it in a gel box (wells in the negative electrode-black-) 
-Slowly pour 1x TAE buffer adding enough solution to cover the wells 

5-Load 4 µl Ladder (50pb), 1 µl Loadding buffer + 7 µl sample, and 1 µl Loadding 
buffer + 4 µl Ladder (100pb) 

6-Do the migration at 100 V and 400 mA for 30 min 

7-Specifity verification through sequencing of a single amplicon (SGIKer Genomic 
service) 

Agarose gel electrophoresis 

50pb         C1           C2           T1           T2           NTC      100pb

C1 and C2: Coelomocytes (pool of 5 earthworm) samples
T1 and T2: Earthworm tissue samples
NTC: Non template controls

50pb          C1           C2             T1           T2            NTC     100pb

mt cat

mt
Temperature Cycle no. Cycle Time(s)

56,5 °C 35 30

cat
Temperature Cycle no. Cycle Time(s)

60 °C 35 30

 

30-35 cycles  
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B. Concentration of the primer and dilution of the samples for qPCR  

mt 

-Pure sample 

-6 pmol sample 

1- Prepare the MASTER MIX (calculations for the number of wells): 
10 µl SYBR Green 
0.03 µl Fw Primer 
0.03 µl Rv Primer 
7.94 µl H2O 

2- Load in the plate 2 µl sample and add 18 µl MIX: 
Standard curve: Pure sample, 1/10, 1/100, 1/1000, 1/10000 (3 replicates each) 

Samples (Pure) (3 replicates each) 

NTC (6 wells) 

3-Place a film on, shake the plate and centrifuge at 1000 rpm for 1 min 

3-Run the qPCR as follows  
2 min  50 °C 
10 min  95 °C 
15 s  95 °C  
1 min  55.5 °C 
 

cat 

-Pure sample 

-12.5 pmol sample 

1- Prepare the MASTER MIX (calculations for the number of wells): 
10 µl SYBR Green 
0.06 µl Fw Primer 
0.06 µl Rv Primer 
7.88 µl H2O 

2- Load in the plate 2 µl sample and add 18 µl MIX: 
Standard curve: Pure sample, 1/10, 1/100, 1/1000, 1/10000 (3 replicates each) 

Samples (Pure) (3 replicates each) 

NTC (6 wells) 

3-Place a film on, shake the plate and centrifuge at 1000 rpm for 1 min 

4-Run the qPCR as follows  
2 min  50 °C 
10 min  95 °C 
15 s  95 °C  
1 min  59 °C  
 

 

 

40 cycles  

40 cycles  
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7.5. cDNA concentration through Quant iT OliGreen ssDNA assay Kit  

1-Defrost the reagents of the kit at RT in darkeness 

2-Prepare M13 Oligonucleotide working solution: 
(x50 x1) (1 µl M13 in 49 µl H2O) 

3-Prepare the standard curve using M13 working solution 
 H2O (µl) M13 (µl) ng/ µl 

1 50 0 0 

2 49.5 0.5 0.02 

3 45 5 0.2 

4 25 25 1 

5 0 50 2 

3-Prepare the standard curve using M13 working solution 

4-Prepare Quant-ITTM OilGreen® working solution reagent (calculations per well): 
0.25 µl R in 49.75 µl H2O 

5-Dilute the samples to be around 0.02-0.2 ng cDNA per well (1/50) 

6-Add in each well of a 96-well Clear Bottom microplates 50 µl sample and 50 µl 
Quant-ITTM OilGreen® working solution reagent (3 replicates) 

7-Mix and wait 2-5 min at RT protected from light 

8-Measure fluorescence at 485 ± 20 nm and 528 ± 20 emission in a microplate 
fluorescence reader 

Calculations 
The standard deviation among replicates should not surpass %5. Substract the 
fluorescence value of the blank to samples and use the corrected data to generate a 
standard curve (samples fluorescence-y axis- vs. M13 Oligonucleotide concentration-x 
axis-). Obtain cDNA concentration from the equation of the linear regression (R>0.9). 
Take into consideration the dilution factor used for CDNA quantification and calculate 
the amount of CDNA placed in each well of the qPCR plate. 

7.6. Relative Quantification (RQ) levels calculation 

a. Relative Quantification (RQ) of the transcription levels was calculated with 
the following formula:  

RQ= (1+E)-∆CT / ng cDNA 

-where Efficiency (E) was obtained using the slope of the linear regression 
of the standard curve in the PCR  

E=[10(-1/slope)]-1  

-∆CT= CT (sample)-CT (plate calibrator)      *in 386 wells plate calibrator=0 

-Divided by the amount of cDNA (in ng) used in each reaction 

b. The average of the controls RQ values is used as calibrator  

c. Use Log2 for the graphical representation of the RQ values 
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