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Prologue

T his work is based on the doctoral project on quantum information which I started in the summer
of 2013. It collects part of the research I have done during these years. In page iii, I include a

brief summary of the thesis written in Basque. It gave me the opportunity to explain what I did these
past years in my tongue language. I find it useful for the people I love most, my family and friends.

I will make an effort to be clear throughout the thesis in order to make it useful for an audience
as wide as possible. This way I hope it will be readable by any person with a bachelor in science,
particularly in physics or at least with a partial knowledge in quantum mechanics. With that in
mind, the first and the second chapters will introduce the background to the reader as well as the
basic notions of quantum metrology, the field our work belongs to. Even though I write this thesis
for a broad audience in mind, a basic notions in quantum physics and statistics is needed to follow
it properly as I said before. For instance, I will assume among other things that the reader knows
what probability is and which its properties are, or what a quantum state is and what it represents.
I will give references where to find complementary material when necessary.

The thesis has been done within the research group in quantum information in which Prof. Géza
Tóth is the group leader and principal investigator. I have to mention the rest of the members of the
group Dr. Philipp Hyllus, Dr. Giuseppe Vitagliano, Dr. Iñigo Urizar-Lanz, Dr. Zoltán Zinborás and
Dr. Matthias Kleinmann at the time I was working on the projects of this thesis. Apart from the
group of Géza Tóth based in Bilbao, Spain, this thesis also collects some work done in collaboration
with the Theoretical Quantum Optics group lead by Prof. Otfried Gühne at the University of Siegen,
Germany, and the group of Prof. Carsten Klempt at the Leibniz University in Hannover, also in
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Germany. The last one is an experimental group specialized on the creation of exotic quantum states
with very many particles with a variety of applications in quantum technology.

In this thesis, first, we investigate the metrological usefulness of a family of states known as
unpolarized Dicke states, which turn to be very sensitive to the magnetic field. Quantum mechanics
plays a central role in achieving such a high precision. Second, we investigate possible lower bounds
on the quantum Fisher information, a quantity that characterizes the usefulness of a state for quantum
metrology, using the theory of Legendre transforms such that we obtain tight lower bounds based
on few measurements of the initial quantum state that will be used for metrology. And last but not
least, we investigate gradient magnetometry, i.e., we develop a theory to study the sensitivity of some
states of the change in space of the magnetic field.

Iagoba Apellaniz
Bilbao, March 3, 2017

ii



Laburpena

L an honek metrologia kuantikoaren baitan egindako hainbat ikerketa biltzen ditu tesi moduan.
Aurkezten dudan ikerlan hau, Zientzia eta Teknologia Kuantikoko masterra bukatu ondoren,

azkeneko lau urte hauetan Prof. Géza Tóth irakaslearen lan-taldean burutua izan da. Tesi hone-
tan agertzen ez diren beste hainbat lan plazaratu ditugu nik eta elkarrekin lan egin dugun hainbat
ikertzailek. Publikatutako artikuluen lista tesi honen ix. orrialdean aurki daiteke.

Tesi honetan agertzen diren ikerketa lanak gauzatzeko ezinbestekoa izan da nazioarteko elkar-
lana. Izandako elkarlanen artean Alemaniako Siegen hiriko unibertsitatean dagoen Otfried Gühnek
zuzentzen duen TQO taldea dago. Beste kolaborazio garrantzitsu bat Italiako Florentzian dagoen
unibertsitateko Augusto Smerzik zuzentzen duen QSTAR taldea izan da. Azkenik, Alemaniako Han-
nover hiriko unibertsitateko Carsten Klemptek zuzentzen duen ikerkuntza talde esperimental batekin
izandako elkarlana azpimarratu nahi da.

1. kapituluan teknologia kuantikoak eta metrologia kuantikoak duten garrantzia azpimarratzen da.
Teknologia kuantikoa prozesu kuantikoez baliatzen baita klasikoki lortu ezin diren hainbat helburu
lortzeko. Adibide gisa, ordenagailu kuantikoek hainbat posibilitate aldi berean aztertzeko izango
luketen gaitasuna, edota simulazio kuantikoek modelo konplexu ezberdinak simulatzeko duten gaita-
suna azpimarratzen dira.

Beste motatako teknologi kuantikoak alde batera utzita, metrologia kuantikoan oinarritzen da lan
hau. Metrologia kuantikoak zenbatetsi nahi diren parametroen errorea txikiagotzeko aukera ematen
du metrologia klasikoarekin alderatuz gero. Klasikoki diseinatutako aparailu batek N proba egin on-
doren errorea √N aldiz txikitzea lortzen duen bitartean, metrologia kuantikoa erabiliz errorea N aldiz
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txikitu daitekeela aski ezaguna da [1, 2]. Muga gaindiezin hauei "shot-noise scaling" deritze aparatu
klasikoen kasurako eta "Heisenber scaling" egoera kuantiko orokorrek gainditzerik ez duenarentzako.

Ezaguna da baita ere elkarlotura kuantikoak, hau da, mekanika kuantikoaren propietatea eta
klasikoki azalpenik ez duenak, zenbatespenean duen garrantzia. Elkarlotura kuantikoa zenbatespena
hobetzeko ezinbestekoa da, aldiz, elkarlotura kuantiko mota guztiak ez dute balio errorea txikitzeko.
Elkarlotura kuantikoak eta metrologia kuantikoak duten erlazioaren hainbat azterketa hurrengo er-
referentzietan aurki daitezke [3–10].

Honi guztiari azken urteotan metrologia kuantikoak piztu duen arreta gehitu behar zaio. Kuantikak
hobetutako metrologia erabiltzen da, adibidez, erloju atomikoetan [4, 11, 12], zehaztasun handiko
magnetometrian [13–19], edota uhin grabitazionalen detektagailuetan [20–22].

2. kapitulua metrologia kuantikoaren sarrera gisa uler daiteke. Bertan estatistikan oinarritu-
tako hainbat kontzeptu azaltzen dira. Estatistika datuetatik ondorio ulerkorrak ateratzeko erabiltzen
den zientzia matematikoa da. Adibidez, datu lagin baten batezbestekoa kalkulatzeko erabiltzen den
prozedura, edota datu lagin baten bariantza kalkulatzeko erabilitako formulak azaltzen dira kapitulu
honetan. Datu lagin batek zenbatetsi nahi den parametroari buruzko informazioa izan lezake bere
baitan. Adibide bezala, pilota bat bosgarren pisutik jaurtitzerakoan lurra jotzeraino igarotako denbora
neurtu da hainbat aldiz. Denbora ezberdin guzti hauek erabiliz, bosgarren pisuraino dagoen altuera
kalkula daiteke grabitateak pilotarengan duen eragina aldez aurretik ezaguna denean.

Estatistikaren baitan kokatzen da datu lagin batetik zenbatespena egiterakoan saihestezina den
errorearen muga klasikoaren kalkulua. Muga hau Fisher informazioan, hau da, laginaren probabilitate
distribuzio funtzioa eta zenbatetsi nahi den parametroaren aldaketaren arteko korrelazioa neurtzen
duen kantitatean, oinarrituta dago.

Kontzeptu hauek aztertu ondoren, mekanika kuantikoko tesi honetan erabilitako hainbat tresna
aurkezten dira. Tresna eta definizio hauek tesi hau hobeto ulertzeko azaltzen dira tesiaren hasierako
kapitulu honetan. Egoera kuantikoaren definizio eta propietateak azaltzen dira, baita operadore
kuantikoenak ere. Egoera kuantikoa matrize baten bitartez irudikatu daiteke gehienetan. Matrize
honen karratuarekin egoera kuantiko bera lortzen bada egoera purua dela esaten da. Egoera kuantiko
nahasiak aldiz, egoera puruen nahasketa baten bitartez adieraz daitezke.

Deskonposizio horien artean, egoera puruak beraien artean ortogonalak direnean deskonposizio
propioa dela esaten da. Egoera kuantiko bat beraz deskonposizio propio baten bitartez adieraz
daiteke ρ ≡∑λ pλ|λ〉〈λ|, non pλ probabilitate bat eta |λ〉 egoera puru bat adierazten duten. Partikula
multzo baten aurrean gaudenean, aurreko propietateez gain, beste propietate interesante batzuk
agertzen dira. Elkarlotura kuantikoa, adibidez, partikula multzoetan definitzen da. Multzo osoaren
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egoera kuantikoa banakorra ez denean elkarlotuta daudela esaten da.
Tesi honetako operadore erabilienak momentu angeluarraren osagaiak dira, bai partikula bakar-

raren momentu angeluarrarenak, baita partikula guztien momentu angeluar kolektiboenak ere. Mo-
mentu angeluarraren operadore hauek garrantzia handia daukate magnetometrian. Partikula bakar-
raren spin operadoreak momentu angeluar operadoreak dira, eta spin operadoreen bitartez deskri-
batzen da partikulek eremu magnetikoekin daukaten interakzioa. Oinarrizkotzat hartu daitekeen
partikula bakarraren spin zenbakia gehienetan 12 da. Honi qubit deitzen zaio kuantikoa.

Bestalde, momentu angeluarraren operadoreek deskonposizio propioan base berri bat sortzen dute.
Base honetan hainbat egoera kuantiko berezi topa daitezke, esaterako, Dicke egoera simetrikoak
edota singletea. Egoera hauek aztertzerakoan ikusten da magnetometrian edota beste teknologia
kuantikoetan duten erabilgarritasuna.

Estatistikaren zenbatespen metodologia eta mekanika kuantikoa batzean metrologia kuantikoa
sortzen da. Metrologia kuantikoan zenbatespen prozesuaren errorearen mugak aztertzen dira askotan.
Tesi honetan aurkeztutako ikerkuntzekin muga hauen bilaketan aurrera pausu garrantzitsuak eman
dira. Fisher informazio kuantikoa da normalean erabiltzen den tresnarik esanguratsuena. Zenbate-
spena egiteko erabiltzen den egoera kuantikoan eta interakzioak sortzen duen egoeraren eboluzioan
oinarrituta dago Fisher informazio kuantikoa. Beraz, ezinbestekoa da hasierako egoera kuantikoa
ezagutzea Fisher informazio kuantikoa kalkulatzeko. Hurrengo paragrafoetan, aldez aurretik egoera
kuantikoa zein den jakin gabe, muga hauek bilatzeko garatu diren tresnak azaltzen dira.

3. kapituluan lehenbiziko ikerketa lana aurkezten da: Polarizatu gabeko Dicke egoeratik hurbil
dauden egoera kuantiko nahasiek metrologian duten erabilgarritasuna. Egoera kuantiko puruak
gauzatzea oso zaila da praktikoki, eta egoera nahasiak lortzen dira gehienbat laborategietan. Arrazoi
honegatik, kapitulu honetan egoera nahasi hauek metrologian duten erabilgarritasunaren arabera
sailkatzeko balio duen teknika aurkezten da.

Egoera ez polarizatuak egoera polarizatuak baino erabilgarriagoak izan daitezke magnetome-
trian. Egoera polarizatuak erabiltzerakoan aldiz eremu magnetikoaren magnitudea zenbatestea
nahiko zuzena da. Egoerak denbora tarte batean eremu magnetikoaren pean polarizazioan jasan-
dako errotazioa neurtzen da eta aldaketa honetatik eremu magnetikoaren zenbatespena egiten da.
Bestalde, egoera ez polarizatuak ezin dute teknika hau erabili, nahiz eta Fisher informazio kuantikoa
kalkulatzerakoan magnetometriarako erabilgarriagoak direla argi dagoela ikusi.

Hau dela eta, Dicke egoera ez polarizatuek duten beste propietate bat erabiltzen da, polar-
izazioaren sakabanaketa. Propietate hau polarizazioaren neurketetan lortzen den datuen saka-
banaketa da. Datuen sakabanaketa hau Heisenbergen ziurgabetasun printzipioarekin lotuta dago.
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Dicke egoera ez polarizatuetan sakabanaketa hau txiki izatetik N2-ko proportzioetara heltzen den
magnitude bat da, beraz, N2-ko proportzioetako aldaketa neurtuko da. Polarizazioan oinarritutako
zenbatespenak N-ko proportzioetara heltzen diren bitartean, sakabanaketan oinarritutakoak zen-
batespenak "Heisenberg scaling" muga fisikotik hurbilago daude, ikusi 6. orrian dagoen 1.1. irudia.
Polarizazioa gezi gorriak ematen duen bitartean, ziurgabetasuna zirkulu urdinak ematen du.

Guzti honetan oinarrituta, polarizazioaren sakabanaketaren aldaketa neurtzerakoan eremu mag-
netikoaren zenbatespena egin ahal da. 3. kapituluan erroreen hedapenaren formula aplikatuz, zen-
batespenean gertatuko den errorea kalkulatzen dugu. Errore hau hasierako egoeraren itxarotako
balioen funtzio bezala idatzi ondoren, aski da lau behagarriren itxarotako balioak neurtzea. Lau
balore hauek neurtzearekin batera zenbatespenaren errorea lortuko dugu. Errore hau Fisher in-
formazio kuantikoaren gainetik egon arren, egoerak sailkatzen laguntzen du beraz. Gainera, lau
operadorereen neurketa partikula asko duten egoeren tomografia egitea baino askoz errazagoa da
esperimentalki.

Kapitulua bukatutzat emateko, errorearen formulan oinarrituta, are gehiago sinplifikatzen dugu
formula hau. Oraingoan, operadore biren itxarotako balioan oinarritzen den beste ordezko ekuazio
bat aurkezten dugu, honek dakarren abantaila esperimentala azpimarratuz.

4. kapituluan, Fisher informazio kuantikoaren mugak aztertzen ditugu egoera kuantiko baten oper-
adore ezberdinek daukaten itxarotako balioen funtzio bezala. Beraz, arazo berdinari egiten zaio aurre
kapitulu honetan. Praktikoki egoera kuantikoa zehatz-mehatz jakitea ezinezkoa denez, eta are gutx-
iago partikula asko duten sistemetan, kapitulu hau behagarriek egoera kuantikoan duten itxarotako
balioetan oinarritzen da Fisher informazio kuantikoa mugatzerako orduan.

Oraingoan aldiz, problema honi beste ikuspuntu batekin aztertzeari ekiten zaio. Legendreren
transformazioan oinarritutako elkarloturaren neurketak egiteko metodo baten oinarrituta [23], Fisher
informazio kuantikoaren doitutako mugak topatzen dira.

Kapituluan zehar hainbat adibide garatzen dira. Metodo honek edozein behagarri hartu eta
beraren itxarotako balio bera duten egoera kuantiko guztien artean Fisher informazio kuantiko bax-
uenekoa aukeratzea ahalbidetzen du. Metodo honek, bat bakarra beharrean, hainbat behagarri hartu
ditzake. Beraz, hainbat behagarri sorta hartu eta beraien itxarotako balioak aldez aurretik dak-
izkigula, metodoak emandako Fisher informazio kuantikoaren muga ezberdinak aztertzen ditugu.

Azkenik, adibide konkretu batzuei jarraituz, gure metodoa partikula askotako egoeretara nola
luzatu daitekeen aztertzen dugu. Datu esperimentalak erabiliz, aldez aurretik egindako esperimentue-
tarako zenbatespenaren mugak kalkulatzen ditugu. Datu hauek [24] eta [7] erreferentziei jarraituz lortu
ditugu.
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Tesi honetan aurkezten dudan azkenengo ikerketa lana 5. kapituluan topa daiteke: Eremu mag-
netikoaren gradientearen zenbatespenaren mugak atomo multzoak erabiltzerakoan, izenekoa. Eremu
magnetikoaren gradientea eremu magnetikoak espazioan daukan aldaketa adierazten du. Aurreko
kapituluetan ez bezala, honetan, Fisher informazio kuantikoa kalkulatzen da.

Eremu magnetikoa, beraz, parametro birekin zehaztuta dago, eremu magnetikoaren parte homo-
geneoa eta gradientea. Ondorioz, parametro bat baino gehiago zenbatetsi behar ditugu, nahiz eta
gradiente parametroan soilik interesatuta egon. Parametro bat baino gehiagoko metrologia kuan-
tikoaren oinarrizko problematzat hartu daiteke eremu magnetikoaren gradientearen zenbatespena.

Eremu magnetikoaren gradientea kalkulatzeko ezinbestekoa da egoera kuantikoak espazioan
daukan izaera aztertzea, hau da, egoera kuantikoak espazioa nola betetzen duen jakitea. Egoera
kuantikoaren espazioaren partea, partikula puntualez osatutako egoera batera sinplifikatzen dugu,
nahiz eta lortutako emaitzak bestelako kasuetara ere egokitzen diren.

Adibidez, lehenengo kasuan atomoak espazioko puntu ezberdinetan jartzen dira ilara zuzen bat
sortuz. Atomo ezberdinek eremu magnetikoaren intentsitate ezberdinak sumatuko dituzte. Spin ego-
eraren arabera beraz, Fisher informazio ezberdinak kalkulatzen ditugu. Bigarren kasuan atomo guz-
tiak espazioko bi puntu ezberdinetan kokatuta daude, atomoen erdia puntu batean eta beste erdia
bestean. Kasu honetan topa daiteke eremu magnetikoaren zenbatespenerako spin egoerarik onena,
Heisenbergen printzipioez mugatutako zenbatespena ematen duena.

Azkenengo kasuan, atomoak espazioan zehar era desordenatu baten sakabanatuta daude. Esper-
imentu askotan topa daitekeen egoera da hau. Adibidez, atomoak barrunbe batean daudenean. Spin
egoera ezberdinak aztertzen ditugu eta kasu bakoitzean beraien Fisher informazioa, zenbatespenean
duten muga teorikoa, kalkulatzen dugu.

Ondorio gisa, lan honetan aurkeztutako azterketek zenbatespen kuantikoa dute jomuga. Lehenengo
ikerkuntza bietan, esperimentuen konplexutasuna sinplifikatzen da. Egoera kuantikoan oinarritu be-
harrean, behagarri batzuen itxarotako balioetan oinarritzen baita zenbatespenaren errorearen muga.
Metodo hauen inplementazio praktikoak aztertu ditugu aldez aurretik egindako esperimentuen datuak
erabiliz. Honek guztiak, etorkizunean egingo diren metrologia kuantikoko esperimentuetan, metodo
hauek erabiltzea errazten du. Bestalde, eremu magnetikoaren gradientearen azterketan topatu ditu-
gun muga teorikoak Heisenbergen proportzionaltasuna ahalbidetzen dute. Proportzionaltasun hau bi
partikula multzo erabiltzen direnean eta baita multzo bakarra erabiltzen denean ere agertu daitekeela
frogatu da. Partikula multzo bakarra erabiltzerakoan beraz, partikula zenbakiarekin batera txikitzen
da errorea, esperimentua eta ondoren etor daitekeen inplementazio praktikoa asko sinplifikatuz, eta
Heisenbergen proportzionaltasuna oraindik ere mantenduz.
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1 INTRODUCTION

1 Introduction
"The story I am about to tell, while it is not directly about John Bell,

could not have taken place without him."
Daniel M. Greenberger

M etrology plays an important role in many areas of physics and engineering [25]. With the
development of experimental techniques, it is now possible to realize metrological tasks in

physical systems that cannot be described well by classical physics, instead quantum mechanics
must be used for their modeling. Quantum metrology [1, 2, 26, 27] is the novel field, which is
concerned with metrology using such quantum mechanical systems.

In quantum metrology, the quantumness of the system plays an essential role [28, 29]. One can
find bounds on the highest achievable precision of a metrological setup. One of the usual methods
to find such bounds is using the theory of the quantum Fisher information (QFI) [30–33]. There have
been efforts recently connecting quantum metrology to quantum information science, in particular, to
the theory of entanglement [34]. Entanglement, a feature of quantum mechanics, lies at the heart of
many problems has attracted an increasing attention in recent years.

There are now efficient methods to detect entanglement with a moderate experimental effort
[35, 36]. However, in spite of intensive research, many of the intriguing properties of entanglement
are not fully understood. One of such puzzling facts is that, while entanglement is a sought after
resource, not all entangled states are useful for some particular quantum information processing task.
For instance, it has been realized recently that entanglement is needed in very general metrological
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tasks to achieve high precision [3]. Remarkably, this is true even in the case of millions of particles,
which is especially important for characterizing the entanglement properties of cold atomic ensembles
[4–9]. However, there are highly entangled pure states that are useless for metrology [10].

In the light of these results, beside verifying that a quantum state is entangled, we should also
show that it is useful for metrology. One of the basic tasks of quantum metrology is magnetometry
with an ensemble of spin-j particles. Magnetometry with a state completely polarized works as
follows. The total spin of the ensemble is rotated by a homogeneous magnetic field perpendicular to
it. We would like to estimate the rotation angle or phase θ based on some measurement. Then, the
phase can be used to determine the strength of the magnetic field, see Figure 1.1-(a).

(a) (b)
Figure 1.1: (a) (red-arrow) Initial state ρi pointing in the y-direction. (blue-dashed-circle) Uncertainty
ellipse of the polarization perpendicular to the mean spin. The state is rotated with a speed proportional to
the strength of the magnetic field B (green-arrow). Hence, the magnetic field can be estimated from the final
state ρf (red-dashed-arrow). (b) When the uncertainty ellipse is reduced in one direction perpendicular
to the polarization, the state is called a spin-squeezed state. If the direction in which the uncertainty is
reduced coincides with the direction of the rotation, then it is easier to distinguish the final state from the
initial state. Which turns into a better precision for the estimation of the magnetic field.

In recent years, quantum metrology has been applied in many scenarios, from atomic clocks
[4, 11, 12] and precision magnetometry [13–19] to gravitational wave detectors [20–22]. There have
been many experiments with fully polarized ensembles [13, 15, 17, 18, 27, 37, 38], in which the
collective spin of the particles is rotated as in Figure 1.1-(a) and the angle of rotation is estimated
by collective measurements. It has also been verified experimentally that spin squeezing can result
in a better precision compared to fully polarized states [6, 13, 27, 38–43] since spin-squeezed states
are characterized by a reduced uncertainty in a direction orthogonal to the mean spin [44–47], see
Figure 1.1-(b).

Besides almost fully polarized states, there are also unpolarized states considered for quantum
metrology. Prime examples of such states are Greenberger-Horne-Zelinger (GHZ) states [48], which
have already been realized experimentally many times [49–56]. Recently, new types of unpolarized
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1 INTRODUCTION

states have been considered for metrology, such as the singlet state [57, 58] and the symmetric
unpolarized Dicke states which have been realized in cold gases [8, 59, 60].

In the present thesis we study how large precision can be achieved for realistic noisy systems
[61, 62]. We also study how such states can be characterized with few measurements which reduce the
experimental efforts considerably. And finally, we discuss the multi-parameter estimation problem. It
turns out that some states not useful for homogeneous magnetometry may become useful when we use
them for differential magnetometry, which is one of the most fundamental two-parameter estimation
tasks.
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2 BACKGROUND IN QUANTUM METROLOGY

2 Background in quantum metrology
"In the real world, doing real experiments, statistics began to matter."

Roger J. Barlow

I n this chapter, we will study the basics of quantum metrology, metrology enhanced by quantum
phenomena. First of all, metrology, as the science of measuring, has played an essential role in the

development of science and technology. Metrology studies several aspects of the estimation process,
for example, which strategy to follow in order to improve the precision of the estimation. Metrology
also covers all intermediate processes, from the design aspects of a precise measuring device, to the
most basic mathematical concepts that arise from the formulation of the different problems.

Historically, with the discovery of quantum theory and the subsequent development of quantum
mechanics, new opportunities emerged for advances in metrology in the early decades of the twenti-
eth century. Later with the arrival of concepts like qubit and quantum cryptography, quantum theory
embraced the so-called quantum information theory, which merges the notions of theory of information
and computer science with quantum mechanics. Due to the rapid development of quantum technolo-
gies, quantum information attracted a lot of attention from the scientific community. Moreover, those
emerging fields rapidly became a very interesting interdisciplinary playground of science with many
scientists as well as resources involved.

Next, we will focus on quantum metrology, for which the role of entanglement, an exclusive feature
of quantum mechanics which cannot be described using classical probabilistic theories, is essential.
Entanglement connects quantum metrology with concepts like local realism or quantum teleportation.
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2.1 Background in statistics and theory of estimation

Nevertheless, throughout the thesis we will focus mainly on the achievable precision for different
systems and schemes.

On the other hand, we will also present some important tools and concepts of statistics, without
which many descriptions of important physical findings would lack the rigorous interpretation needed.
It basically helps to analyze raw data to make it readable from the human perspective.

This chapter is organized as follows. In Section 2.1, we introduce the basic concepts of statistics
and estimation theory, focusing on what is needed for the understanding of this thesis. In Section 2.2,
we present the necessary tools of quantum mechanics used throughout the text. Finally in Section 2.3,
we arrive at the main set of tools used in the quantum metrology framework and by extension in the
present work.

2.1 Background in statistics and theory of estimation
In this section, we will enumerate the basic concepts of statistics as well as the estimation process.
As we have said, the main mathematical tools used by metrology belong to statistics. Moreover, we
are especially interested in estimation theory, which shows how to estimate properly some quantity
based on a data sample. The data can be of any kind. For instance, the data sample might be a set of
the heights of members of a basketball team, or the outcomes of coin tosses, or even the wavelengths
of photons coming out of some radioactive sample∗.

2.1.1 Probability, data samples, average and variance
The probability indicates the relative chance of an event to happen. For instance, if there is a box
with 10 red balls and 5 blue balls and assuming we extract on of them randomly, the probability of
obtaining a blue ball is given by nbluentotal = 510+5 = 13 . In the same way, the probability of obtaining a
red ball is nredntotal = 23 . Note that some properties of the probabilities arise from this simple example.
First, the probability of any event is always given by a number in between zero and one. Second,
the sum of the probabilities of all possible events, in this case either to extract a blue ball or a red
ball, sum up to one.

Once we have a data sample, we normally face the task of analyzing the data to extract the
relevant properties from it. We assume that the data sample always comes from a population sample
which represents all the available data before the measurements. Hence, the data sample might
not be complete in the most general case (one could lose some data in the measurement, or the

∗ For a more detailed introduction to statistics, see Refs. [63, 64]
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2 BACKGROUND IN QUANTUM METROLOGY

data population might be so large that we can only obtain part of it). The measurement itself might
also induce some error to the data (measuring a continuous variable is always error prone, e.g., the
height of people). Hence, the data sample inherits a probability number for each of its data elements.
In the subsequent paragraphs, we will describe these relations between the data sample and the
corresponding probabilities, and we will enumerate the most useful properties and formulas†.

The magnitude we would like to measure from the data population is called a random variable.
When measuring some random variable X , a probability distribution function (PDF) gives the prob-
ability of x to be the outcome of the measurement and it is denoted by Pr(X=x). Second, due to the
random nature of the measurement, the N elements of a data sample are considered outputs of N
different random variables with their corresponding values denoted by {Xi=xi}Ni=1, or X=x for short.
The joint probability of those random variables is in general not separable. This is due to the fact
that the data sample elements could depend on the rest of outcomes or some other more complex
relation that makes the most general case to be non-separable from the probabilistic point of view.
The PDF of the data sample is an N-variable function denoted by

Pr(X=x) ≡ Pr(X1=x1, X2=x2, . . . , XN=xN ). (2.1)
In the case of separable probabilities, Eq. (2.1) is written as

Pr(X=x) =
N∏
i=1

Pr(Xi=xi), (2.2)

which is the case in many relevant situations.
When some indirect property of the system is defined as a function of the measured random

variables, the result is also a new random variable with another assigned PDF. For example, we
measure the position of a body at some moment. If the system was at rest at the origin when t = 0
and assuming that the acceleration is constant, then from the measured final position one could infer
the value of the acceleration by using A = 2X/t2, where X denotes the final position at instant t and
A the acceleration. If X is a random variable, which is the general case when measuring the position
of some physical system, then the probability assigned to the random variable A is computed by

Pr(A=a) = dX
dA
∣∣∣∣A=a

Pr(X=x) = 2
t2 Pr(X=x). (2.3)

†The notation used in this section follows mainly the one used in Ref. [63].
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2.1 Background in statistics and theory of estimation

In general, for multiple random variables, we must require the following identity
|Pr(X=x) dx1dx2 . . . dxN | = |Pr(Y=y) dy1dy2 . . . dyN |, (2.4)

which leads to some interesting formulas we will discuss later.
We now stick to the simplest case in which the data consists of a collection of values describing the

same physical one-dimensional data population. We assume that all the outcomes are independent
from each other. Hence, the PDF is of the form of Eq. (2.2). Next, we need some definitions used
in this thesis: namely the average, variance, and the statistical moments and central moments. The
arithmetic average is computed as

x = 1
N

N∑
i=1

xi. (2.5)
Note that there are other types of averages one can find in the literature. The variance, which is
related to the spread of the data, is computed as

σ 2 = 1
N

N∑
i=1

(xi − x)2, (2.6)

where σ is the standard deviation. Different statistical moments are computed by xr = 1N
∑ xri , while

central moments, i.e., statistical moments that are invariant under a global translation of the parameter
space, are of the form of cr = 1N

∑(xi−x)r . Note that the variance is equivalent to the second central
moment.

For completeness, when each element of the data consists of more than a single magnitude the
co-variance between two magnitudes is obtained as

VX,Y = 1
N

N∑
i=1

(xi − x)(yi − y), (2.7)

where it represents how both magnitudes influence each other. As an example, we could measure
two magnitudes simultaneously (vi, ai), where vi is the velocity and ai the acceleration of a body, in
a experiment to estimate the friction coefficient of the air.

The data population is represented in most cases by the probability distribution function. While
the mean values over the data sample of any function g(x) are denoted with a bar, e.g., xr for the
r-th moment over the data sample or g(x) for the average of g(x) itself, the mean values over the
data population of any function g(X ) are denoted by E[g(X )], e.g., the r-th moment over the data
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2 BACKGROUND IN QUANTUM METROLOGY

population is E[X r ]. The data sample always consist of discrete data elements. On the other hand,
the data population can be represented by a PDF for discrete values or by a PDF for continuous
values. For completeness, here are expressed the two definitions for the mean value over the data
population of a function g(X ) as

E[g(X )] =



∫
g(x)Pr(X=x) dNx,

∑
i,j ,...

g(x)Pr(X=x). (2.8)

I also write the variance of g(X ) over the data population as V[g(X )] ≡ E[g(X )2]− E[g(X )]2.

2.1.2 Estimators and Fisher information

Let us suppose that the data sample has encoded some parameters a ≡ (a1, a2, . . . ) we are interested
in. Therefore, the underlying probability, in general also unknown, might be conditioned by the real
values of the parameters a. The probability of the data sample is written as

Pr(X=x|a), (2.9)
where "|a" indicates its dependency on these parameters. Note that an estimate of one of the pa-
rameters must be based on the data sample elements. A function of this type is called the estimator
and it is connected to the PDF of the data population. Hence as mentioned before, the estimator
of a, one of the unknown parameters, is denoted by â and the underlying PDF associated to it is
computed from the PDF of the data population as

Pr(â|a) dâ = Pr(x|a) dx1dx2 . . . dxN . (2.10)
For short, we have omitted writing "X=". The conditional joint probability of N random variables X
is written simply as Pr(x|a) then.

An estimator is a function of the data sample. For example, one of such estimators can be the
estimator of the mean value of the data population, which is in general unknown. The mean value of
the data population, which in general we do not have access to, is denoted usually by µ. Note that
µ is in general different from the mean value of the data sample x . A valid estimator for the mean
value µ would be the mean itself of the data sample, i.e., µ̂ = x .

An important notion of an estimator is its efficiency. The smaller the variance of the estimator the
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2.1 Background in statistics and theory of estimation

more efficient it is. Remember that an estimator is considered a random variable so it must have a
variance when our knowledge about the population is incomplete.

Focusing now on what is more interesting for this thesis, an estimator of any kind has a theoretical
lower bound for its variance. For the proof of the previous statement, which we will show only for
continuous random variables without loss of generality, we start with the normalization formula for
any given PDF ∫

Pr(x|a) dNx = 1. (2.11)
Next, we compute the partial derivative over a such that

∫
∂aPr(x|a) dNx =

∫
∂a[ ln Pr(x|a)]Pr(x|a) dNx = 0, (2.12)

where for the second equality we used the identity for logarithmic derivatives. From Eq. (2.8), it turns
out that Eq. (2.12) is the expectation value of ∂a(ln Pr). Finally, if we have an unbiased estimator, i.e.,
an estimator for which the expectation value E[â] coincides with true value a, the partial differentiation
of E[â] over a must be equal to one. Therefore, we apply similar identities as in Eq. (2.12) to arrive
at

∂aE[â] = ∂aa = ∂a
∫
âPr(x|a) dNx

=
∫
â ∂aPr(x|a) dNx =

∫
â ∂a[ ln Pr(x|a)]Pr(x|a) dNx = 1,

(2.13)

where we have used the definition of the expectation value for continuous variables Eq. (2.8) and we
use the fact that the estimator is not a function of the parameter a.

At this point, we invoke the Schwarz inequality for two real multidimensional functions g(x) and
h(x) such that (∫ gh dNx)2 6 (∫ g2 dNx)(∫ h2 dNx). With this, we can obtain a lower bound for the
variance of a general estimator. First the definition of the variance over the data population of â
looks like

V [â] = E [(â − a)2] =
∫

(â − a)2Pr(x|a) dNx, (2.14)
for unbiased estimators. Second, since a is not a function of x , subtracting a times Eq. (2.12) to
Eq. (2.13) we have that ∫

(â − a) ∂a[ ln Pr(x|a)]Pr(x|a) dNx = 1. (2.15)
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2 BACKGROUND IN QUANTUM METROLOGY

Hence, using the Schwarz inequality we can write

V[â] =
∫

(â − a)2Pr(x|a) dNx > 1∫ (∂a[ ln Pr(x|a)])2 Pr(x|a) dNx , (2.16)

which is also known as the Cramér-Rao bound or the Fisher inequality. The denominator in the right
hand-side is called generally the Fisher information or simply information.

With this review of the most interesting properties of "classical" metrology, from the point of
view of this thesis, we conclude this section. In the next section, we will discuss some properties
of quantum mechanics and then we will follow with another section which presents the basics of
quantum metrology.

2.2 Quantum mechanics from metrology perspective
The ubiquitous probabilistic nature of quantum mechanics makes us to work with probabilities on
a regular basis. Moreover, if one studies fields connected to experiments or some short of physical
realizations, this probabilistic nature of quantum mechanics becomes even more visible. On the
other hand, exotic features such as entanglement arise from quantum mechanics, which are directly
connected with the probabilistic properties of quantum system. The present section is intended to
describe quantum systems from the point of view of metrology.

2.2.1 The quantum state, multiparticle state and entanglement
A formal mathematical description of the quantum state is given next. This also allows us to introduce
some notation used throughout the thesis. A state in quantum mechanics lives in a Hilbert space, H.
The state ρ has the following properties:

i) It is Hermitian, so it is invariant under the complex transposition, ρ = ρ† and all its eigenvalues
are real.

ii) Its trace is equal to one, tr(ρ) = 1.
iii) It is positive semi-definite, i.e, all its eigenvalues are larger or equal to zero, ρ = ∑

λ pλΠλ
where pλ > 0 and Πλ ≡ |λ〉〈λ| is the projector to the eigenstate |λ〉, a vector state satisfying
the following eigenvalue equation ρ|λ〉 = pλ|λ〉. From (ii), it follows that ∑λ pλ = 1.

iv) If all pλ are zero except one, the state is called a pure state and is equivalent to the projector
to the corresponding eigenstate ρ = Πλ = |λ〉〈λ|.

v) Using the properties (iii) and (iv), it follows that the quantum states form a convex set, where

15



2.2 Quantum mechanics from metrology perspective

the extremal states are pure states.
vi) An expectation value of an observable A is computed as 〈A〉 = tr(Aρ). To make a connection

with the previous section, the state might represent the so-called data population. Hence,
using the notation in Sec. 2.1, the following equivalence holds, 〈O〉 ≡ E[O].

The composite system of N different parties live in the Hilbert space H = H(1)⊗H(2)⊗· · ·⊗H(N)
or H = ⊗N

i=1H(i) for short, where ⊗ stands for tensor product. For instance, this composite Hilbert
space could be used to represent a many-particle system, in this case N particles. A separable state
in this Hilbert space can be written as [65]

ρsep =∑
i
piρ(1)i ⊗ ρ(2)i ⊗ · · · ⊗ ρ(N)i , (2.17)

where pi are convex weights that add up to one and are equal to or larger than zero. If a state
cannot be written like Eq. (2.17), the state is entangled. Note that Eq. (2.17) is a formal description
of the separable states, for more details see Refs. [36, 66]. One may note at this moment, that relaxing
the requirements of Eq. (2.17), one can lead to different classifications of the states. Concepts like
genuine multipartite entanglement, k-producible states, or entanglement depth, among others, arose
from weaker constraints than Eq. (2.17) [36, 66].

It is important to describe one of such classifications in order to characterize the different levels
or multipartite entanglement followed in this work. We call a state k-producible [67], if it can be
written as a mixture of the tensor product of different multipartite states with at most k parties in
each,

ρk-pro =∑
i
piρ(α,...,β)i ⊗ ρ(γ,...,δ)i ⊗ . . . , (2.18)

where superscript indexes between parenthesis go from 1 to N and denote to which parties belong
to the state, and where each index appears once in each sum element. For instance, a separable
state like Eq. (2.17) is 1-producible. If a state cannot be written as k-producible, then it must be
(k+1)-entangled. This defines the entanglement depth, see Figure 2.1. Later on, these concepts of
entanglement and entanglement depth will arise naturally on the metrological framework [68].

2.2.2 Angular momentum operators on multiparticle systems

We now present a set of operators that will appear many times in all chapters, namely the angular
momentum operators. Again these definitions allow us to introduce much of the notation used on
this thesis. For a single-particle with d discrete levels, and therefore with spin j = (d − 1)/2, the
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Figure 2.1: Hierarchic sets for k-producible states, were k-producible set contains (k−1)-producible
states. Based on the Eq. (2.18), one can see that a state that cannot be written as k-producible must be
(k+1)-entangled or equivalently it must have k+1 entanglement depth. A separable state can always be
written as 1-producible state by definition.

eigenvalue equation for the angular momentum projection operators are
j (n)l |m〉(n)

l = m|m〉(n)
l (2.19)

for m = −j, . . . ,+j and where l = x, y, z . It is usual to omit the subscript of |m〉(n)
l when l = z

because it is typically the preferred direction and the superscript (n) can also be omitted in some
cases, e.g., |ψ〉 = |m1〉⊗|m2〉⊗· · ·⊗|mN〉. In many cases, it is also usual to merge all single-particle
states into a single ket such that |ψ〉 = |m1, m2, . . . , mN〉‡.

The square of the total angular momentum, j2 = j2x + j2y + j2z , for a single-party (n) acts on any
state ρ simply as

(j2)(n)ρ = jn(jn + 1)ρ, (2.20)
where the Hilbert space where ρ is defined must contain H(n) and where jn is the spin number of
such a particle. Note that in order to distinguish the spin number jn and the operators j (n)

l we may
use the fact that the operators are attached to a Hilbert space with a superscript or even we can use
a "hat" to denote which of them is an operator like ĵl and which is not.

The collective angular momentum projection operators Jl are defined as the sum of their respective
single-party spin operators j (n)

l such that they are extended to the remaining of the Hilbert spaces
by tensor products of the identity operators defined in the rest of subspaces,

Jl =
N∑
i=1

1
(1,...,i−1) ⊗ j (i)l ⊗ 1

(i+1,...,N) ≡
N∑
i=1

j (i)l , (2.21)

where 1 stands for the identity operator and where in the last equality the identity operators are
‡ This notation is normally used in many-body quantum mechanics, see Refs. [69, 70].
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omitted for simplicity. On the other hand, note that the squares of the different projections of total
angular momentum are not equal to the sum of the square angular momentum projections of each of
the parties. The square angular momentum components are

J2l =
N∑
i,j
j (i)l j (j)l =

N∑
i=1

(j2l )(i) +
N∑
i6=j

j (i)l j (j)l , (2.22)

for l = x, y, z . Therefore, neither the square of the total angular momentum is the sum of the square
of all single-party angular momenta but

J2 =
N∑
i
j (i) + ∑

l=x,y,z

N∑
i6=j

j (i)l j (j)l , (2.23)

where we separated the sum into two parts. The first one corresponds to the sum of all single-
party square angular momentum and the second corresponds to the product of angular momentum
projection operators of two distinct parties summed for all l = x, y, z . Many more combinations of
these single-party operators may arise in different contexts. In the Appendix A, we discuss in more
detail the addition of the angular momenta and the block structure that arises in this new basis, e.g.,
the symmetric subspace or the singlet subspace.

2.2.3 Dynamics of quantum systems

The most basic evolution of the state is represented by unitary evolution operators denoted by U
and those are the only ones appearing throughout the thesis. On the other hand, there are other
types of dynamics involving particle losses, entropy changes in the system and open quantum systems
in general. These transformations are governed by master-equations such as the Lindblad equation
[71–73].

For the understanding of this thesis it is enough to present the unitary evolution operators.
We also restrict ourselves to the case in which the generator G is constant, so are in general the
Hamiltonians of the metrological setups. The unitary evolution operator is defined as

U = exp(−iαG) =
∞∑
n=0

(−iαG)n
n! , (2.24)

for the amount of change α and where we use the matrix exponentiation in the last equality. When
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2 BACKGROUND IN QUANTUM METROLOGY

a constant Hamiltonian H acts on an initial state ρ, the state evolves in time as
ρ(t) = UρU† = e−itH/~ρe+itH/~. (2.25)

Note that all information we can extract from the system comes in the form of expectation values
of different operators at different times, 〈A〉(t) = tr(Aρ(t)). When the state evolves in time but the
operators are constant the picture of the system is called the Schrödinger-picture. Using the cyclic
property of the trace, tr(ABC ) = tr(CBA), the Heisenberg-picture, a dual interpretation of the same
physical system emerges, in which the state remains the same while the operators evolve in time. It is
well known that the operators in this picture evolve as A(t) = U†AU , where A is the initial operator,
see Refs. [69, 70].

2.3 Quantum metrology
In this section, we summarize important recent advances in quantum metrology. Quantum metrological
setups encode some unknown parameter into the quantum state. Then, from the readout of the final
state one could in principal estimate this parameter. The basic ideas of quantum metrology emerge
when one applies the notions of estimation theory to the intrinsic probabilistic nature of quantum
mechanics. Merging the probabilistic features of quantum mechanics and the estimation theory is
not trivial. Nevertheless, with the initial pioneering works of C. W. Helstrom, W. K. Wootters, and
S. L. Braunstein and C. M. Caves, in 1969, 1981 and 1992-1994 respectively [30, 74–76], until the
works of V. Giovannetti et al, and M. G. Paris, roughly two decades later [1, 2], quantum metrology
got firm foundations. Later, advanced works in quantum metrology appeared [10, 77–80] together with
experimental realizations [8, 17, 37], which raised the interest in this topic. In this section, we will
highlight the most important aspects of this field and with this we will conclude this introductory
chapter.

The most basic scheme for a metrological setup in the present context is the following. First,
a state ρ is prepared followed by a general evolution represented by a mapping Λθ in which the
unknown parameter θ is imprinted on the state. Finally, the outgoing state is characterized by some
measured quantity 〈M〉, which allows us to infer the value of the parameter θ. Figure 2.2 illustrates
the main steps of quantum metrology.

In the many-particle case, most of the metrology experiments have been done for systems with
simple Hamiltonians that do not contain interaction terms. Such Hamiltonians cannot create entan-
glement between the particles. A typical situation is that we rotate our many particle state by some
angle and we want to estimate the rotation angle θ. It has been shown that particles exhibiting quan-
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Figure 2.2: Sequence of the different steps of the estimation process in quantum metrology. First, an
input state ρ enters the region in which the unknown parameter θ is imprinted on it, which is represented
with Λθ for the most general case. The encoded parameter θ is inferred from the measured quantity 〈M〉
over the final state ρθ .

tum correlations, or more precisely, quantum entanglement [36, 66], provide a higher precision than an
ensemble with non-entangled particles. The most important question is how the achievable precision
of the angle estimation (∆θ)2 scales with the number of particles N . Very general derivations lead
to, at best,

(∆θ)2 ∼ 1
N (2.26)

for non-entangled particles. The equation above is called shot-noise or standard scaling, the term
originating from the shot-noise in electronic circuits, which is due to the discrete nature of the electric
charge. On the other hand, quantum entanglement makes it possible to reach

(∆θ)2 ∼ 1
N2 (2.27)

which is called the Heisenberg scaling. Note that if the Hamiltonian of the dynamics has interaction
terms, then these bounds can be surpassed [66, 81–86].

It is time to mention that the calculations above have been carried out for an ideal situation. When
an uncorrelated noise is present in the system, it turns out that for large enough particle number the
scaling becomes shot-noise scaling [62]. The possible survival of a better scaling under correlated
noise, under particular circumstances, or depending on some interpretation of the metrological task,
is at the center of attention currently. All these are strongly connected to the question of whether
strong multipartite entanglement can survive in a noisy environment.

Finally, note that often, instead of (∆θ)2 one calculates its inverse, which is large for high precision.
It scales as (∆θ)−2 ∼ N for shot-noise scaling and as (∆θ)−2 ∼ N2 for the Heisenberg scaling.

2.3.1 Quantum magnetometry
Without loss of generality, we present in this section the characterization of the precision of one of
the simplest metrological tasks, namely the estimation of a homogeneous magnetic field based on the
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interaction between the system and the field. In this section, we will mostly study the interaction
of a system with a homogeneous magnetic field in the z-direction. In the Chapter 5, we will show
a different situation in which the magnetic field changes linearly with the position of the system.
Coupling the magnetic moment of the state and the magnetic field, we imprint the magnetic field
strength on the evolved state. Finally, measuring how the state has changed one could in principle
infer on the strength of the magnetic field.

In general, we will say that the magnetic moment of the state comes exclusively from the spin
angular momentum, neglecting any possible contribution from the orbital angular momentum. This
way the physics is simpler. This is justified in the sense that most of the recent experiments in this
context have been carried out with ion-traps, Bose-Einstein condensates (BEC) or at most cold atomic
ensembles, which have indeed a negligible orbital angular momentum.

Beside this considerations, the interaction Hamiltonian can be written as
H = −µ · B, (2.28)

Now in the simplest case we will choose the magnetic field to be pointing in the z-direction as
B = Bk , where k is the unitary vector pointing to the z-direction. This way one does not need to
determine the direction of the magnetic field.

The magnetic moment of the system is proportional to the total angular momentum, µ = −µBgs~J ,
where µB and gs are the Bohr magneton and the anomalous gyromagnetic factor respectively, and
where we multiply it by the Plank reduced constant ~. Note that throughout all the thesis the angular
momentum component were defined with ~ = 1 for simplicity, e.g., see Eq. (2.19). Hence, one can
rewrite the interaction Hamiltonian as

H = γBJz. (2.29)
where γ = µBgs~ and we have used that J ·k = Jz . Finally, the unitary operator leading the evolution
of the system can be written as

U = exp(−iθJz), (2.30)
where the magnetic field strength is encoded into the phase-shift θ = −µBgstB and t is the evolution
time.

We have to mention that for large particle ensembles, typically only collective quantities can
be measured in order to characterize the state in different phases of the metrological sequence, see
Figure 2.2. Such collective quantities are in this case the total angular momentum components defined
in Eq. (2.21) and their linear combinations. More concretely, we can measure the expectation values
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of any direction
Jn := ∑

l=x,y,z
nlJl, (2.31)

where n = (nx , ny, nz) is a unit vector describing the direction of the component.

2.3.2 Metrology with almost polarized states, including spin-squeezed states
Let us present one of the basic approaches to calculate the metrological precision of a quantum
setup. In order to estimate the phase-shift θ we measure the expectation value of a Hermitian
operator, which we will denote by M in the following. If the evolution time is a constant, then
estimating θ is equivalent to estimating the magnetic field strength B appearing in Eq. (2.29). The
precision of the estimation can be characterized with the error propagation formula as

(∆θ)2 = (∆M)2
|∂θ〈M〉|2 , (2.32)

where 〈M〉 is the expectation value of the operator M . We used that 〈M〉 is a random variable with
probability Pr(〈M〉 = m|θ) for the outcomes of the measurements, see the Section 2.1.2. For a recent
review discussing this approach in detail, see Ref. [79]. Based on the formula Eq. (2.32), one can see
that the larger the slope |∂θ〈M〉|, the higher the precision. On the other hand, the larger the variance
(∆M)2, the lower the precision. Figure 2.3 helps to interpret the quantities appearing in Eq. (2.32).

Figure 2.3: (Blue solid) Functional relation between the expectation value 〈M〉 and the estimator of the
wanted parameter θ̂. (Green dashed) One to one correspondence when the estimator θ̂ is based on 〈M〉.
(Red dotted) Obtaining the error of the estimate is based on Eq. (2.32). The slope of the curve at that
point, denoted with tan α , directly relates the uncertainty σM on the measured quantity 〈M〉 and the error
on the estimation σθ .

We focus on multi-partite systems of spin-12 particles, widely known as qubits. Let us start with
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an almost polarized state. The state totally polarized along the l-direction is written as
|+j〉⊗Nl ≡ |+j〉(1)

l |+j〉(2)
l · · · |+j〉(N)

l , (2.33)
For l = y, the state Eq. (2.33) is almost all the times one of the states that saturates the shot-noise
limit, which will be defined later in this section. In the present case, the spin-vector of the ensemble,
originally pointing into the y-direction, will be rotated. The rotation after the evolution is used to
estimate the strength of the magnetic field. A way to measure the rotation of the system is to measure
the expectation value 〈Jx〉, which is zero at the beginning.

For small angles of θ and using the Eq. (2.32) after substituting M by Jx , we have that

(∆θ)−2 = |∂θ〈Jx〉|2(∆Jx )2 , (2.34)

for a state almost completely polarized along the y-axis. Next, we have to compute these values for
small angles of θ.

To compute them we use the Heisenberg picture of the operator Jx , which after applying the
unitary operator Eq. (2.30), is written as

Jx (θ) = U iθJz JxU−iθJz = cθJx − sθJy, (2.35)
where we introduce a notation for trigonometric functions such that cx = cos(x), sx = sin(x) and
tx = tan(x). The square of Jx is simply

J2x (θ) = c2θJ2x − 2cθsθ{Jx , Jy}+ s2θJ2y, (2.36)
where {A, B} = AB + BA is the anti-commutator. We also compute the derivative with respect to θ
of 〈Jx〉 as

∂θ〈Jx〉(θ) = ∂θcθ〈Jx〉 − ∂θsθ〈Jy〉 = −sθ〈Jx〉 − cθ〈Jy〉. (2.37)
Hence, assuming that we are in the small angle limit we can neglect the terms proportional to

sin(θ) when computing the Eq. (2.34). Finally, the precision of the estimation is given by

(∆θ)−2 = |cθ〈Jy〉|2
c2θ〈J2x 〉 − (cθ〈Jx〉)2 = 〈Jy〉2

(∆Jx )2 , (2.38)

when we measure 〈Jx〉 to estimate the angle θ.
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For the state totally polarized along the y-axis, the initial expectation values 〈Jx〉, 〈J2x 〉 and 〈Jy〉
needed to compute the precision are

〈Jx〉tp = 0, (2.39a)
〈J2x 〉tp = N4 , (2.39b)
〈Jy〉tp = N2 . (2.39c)

Thus, we obtain a precision that scales linearly with N ,

(∆θ)−2tp = N2/4
N/4 = N. (2.40)

Note that the totally polarized state Eq. (2.33) is a separable pure state with all particles pointing
into the y-direction. Hence, we obtained the shot-noise scaling, even with very simple qualitative
arguments.

A way of improving the precision is considering that the variances of the angular momentum
components are bounded by the Heisenberg uncertainty relation as [44]

(∆Jx )2(∆Jz)2 > 1
4 |〈Jy〉|2. (2.41)

When decreasing the variance (∆Jx )2 to obtain a better precision, our state fulfills

(∆Jx )2 < 1
2 |〈Jy〉|, (2.42)

where the main spin points along the y-axis and where we would obtain (∆Jx )2 = 12 |〈Jy〉| for totally
polarized states. Such states are called spin-squeezed states [44–47] and they can in principal
overcome the shot-noise scaling.

Next, we can ask, what the best possible phase estimation precision is for the metrological task
considered in this section. For that, we have to use the following inequality based on general
principles of angular momentum theory

〈J2x + J2y + J2z 〉 6 N(N + 2)
4 . (2.43)

Note that Eq. (2.43) is saturated only by symmetric multiparticle states, see Appendix A. Together
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with the identity connecting the second moments, variances and expectation values
(∆Jl)2 + 〈Jl〉2 = 〈J2l 〉, (2.44)

Eq. (2.43) leads to a bound on the uncertainty for the angular momentum component in the anti-
squeezed direction, in this case the z-direction, as

(∆Jz)2 6 N(N + 2)
4 − 〈Jy〉2 = N

2 + N2
4
(

1− 〈Jy〉2J2max

)
, (2.45)

where Jmax = N/2 is the maximum value an angular momentum component can take. This leads to a
bound in the precision when measuring 〈Jx〉 as

(∆θ)−2 = 〈Jy〉2
(∆Jx )2 6 4(∆Jz)2 6 2N +N2

(
1− 〈Jy〉2jmax

)
, (2.46)

which indicates that the precision is limited for almost completely polarized states to the shot-noise
scaling and that less polarized states can overcome the shot-noise limit. The bound above is not
optimal, as for the fully polarized states we would expect N and we obtain 2N .

2.3.3 The quantum Fisher information
In this section, we review the theoretical background of the Fisher information, the Cramér-Rao bound
and we introduce the quantum Fisher information.

First of all, we have already introduced the Fisher information and the Cramér-Rao bound in
Section 2.1.2. The formula Eq. (2.16) tells us that if we measure an operator, say M , and we know its
probability distribution function Pr(〈M〉 = m|θ), we can bound the achievable precision. In quantum
mechanics the PDF of a state ρθ when measuring the operator M is given by

Pr(m|θ) = tr(Πmρθ), (2.47)
where Πm are the projector operators or the eigenstates on which M is expanded, M = ∑mΠm. Fol-
lowing arguments found on Refs. [1, 2], one can arrive at a universal bound valid for any measurement.
This bound is called the quantum Cramér-Rao bound given as

(∆θ)−2 6 FQ[ρ, Jz ], (2.48)
where FQ[ρ, JZ ] denotes the quantum Fisher information for the initial state ρ and the unitary evolution
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generated by Jz . In principle, it might be difficult to find the operator that leads to the best estimation
precision just by trying several operators. Fortunately, the theory tells us that the bound Eq. (2.48)
can be saturated [31, 87].

As a direct consequence, based on Eq. (2.32) for any given M , we have that

FQ[ρ, Jz ] > |∂θ〈M〉|
2

(∆M)2 (2.49)

is an upper bound for the precision obtained by measuring 〈M〉. For example, when the rotation of
the system is estimated by measuring 〈Jx〉, based on the Eq. (2.38) the quantum Fisher information
is bounded from below by [3]

FQ[ρ, Jz ] > 〈Jy〉
2

(∆Jx )2 . (2.50)
The quantum Fisher information can be computed by closed formulas such as

FQ[ρ, Jz ] = 2∑
λ,ν

(pλ − pν)2
pλ + pν |〈λ|Jz|ν〉|

2, (2.51)
FQ[ρ, Jz ] = infpk ,|ψk 〉

4∑
k
pk (∆Jz)2|ψk 〉, (2.52)

for the case of unitary evolution Eq. (2.30). In the Eq. (2.51), the state is decomposed in its eigenbasis
as ρ = ∑

λ pλ|λ〉〈λ|. On the other hand, in the Eq. (2.52), the state is arbitrarily decomposed as
ρ = ∑

k pk |ψk〉〈ψk |. Hence, the first equation is based on the eigen-decomposition of the state
whereas the second is the convex-roof of 4(∆Jz)2 [2, 88, 89]. Both formulas yield the same expression
for pure states

FQ[|ψ〉, Jz ] = 4(∆Jz)2. (2.53)
Using the identity (a − b)2 = (a+ b)2 − 4ab and that pλ = δλ,1 (we choose the pure state to be |1〉
without loss of generality) in Eq. (2.51), we arrive at the result

FQ[|ψ〉, Jz ] = 2∑
λ,ν

(
pλ + pν − 4pλpν

pλ + pν
)
|〈λ|Jz|ν〉|2

= 4 tr(Jzρ)− 8∑
λ,ν

pλpν
pλ + pν |〈λ|Jz|ν〉|

2

= 4(∆Jz)2.

(2.54)

From the Eq. (2.52), we also obtain the same result since the convex-roof over a pure state must be
computed in the state itself.

26



2 BACKGROUND IN QUANTUM METROLOGY

Some interesting properties of the quantum Fisher information emerge from these expressions and
we summarize them in the following list:

i) The QFI is convex in states, as it is directly shown in Eq. (2.52). It can also be proven if one
starts from Eq. (2.51),

FQ[pρ1 + (1− p)ρ2, Jz ] 6 pFQ[ρ1, Jz ] + (1− p)FQ[ρ2, Jz ]. (2.55)
ii) Based on Eq. (2.52), it has recently been shown, that the quantum Fisher information is the

largest convex function that fulfills Eq. (2.53) [88, 89].
iii) For pure states FQ[|ψ〉, Jz ] = 4(∆Jz)2, as it has been already shown.
iv) For all states, the QFI is smaller or equal to four times the variance

FQ[ρ, Jz ] 6 4(∆Jz)2ρ. (2.56)
It can be proven that the variance is the concave-roof of the variance itself [88]. Hence, the main
relation between the quantum Fisher information and the variance can be summarized as follows. For
any decomposition {pk , |ψk〉} of a state ρ we have

1
4FQ[ρ, Jz ] 6∑

k
pk (∆Jz)2|ψk 〉 6 (∆Jz)2ρ, (2.57)

where the upper bound and the lower bound are both tight in the sense that there are decompositions
that saturate the first inequality, and there are others that saturate the second one.

After the discussion relating the quantum Fisher information to the variance, and examining its
convexity properties, we list some further useful relations for the QFI. In this case, we substitute the
generator of the phase shift Jz by some more general Hermitian operators. From Eq. (2.51), we can
obtain directly the following identities:

i) The formula Eq. (2.51) does not depend on the diagonal elements of the generator written in
the eigenbasis of the state. Hence,

FQ[ρ, A] = FQ[ρ, A+ D], (2.58)
where D is an arbitrary matrix that is diagonal in the eigenbasis of the state, i.e., [ρ,D] = 0.

ii) The following identity holds for all unitary dynamics U as it could be expected from the
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Schrodinger vs Heisenberg pictures,
FQ[UρU† , A] = FQ[ρ, U†AU ]. (2.59)

In particular the QFI does not change for unitary dynamics of the type U = e−iB when
[A, B] = 0.

iii) The quantum Fisher information is additive under tensor product as
FQ[ρ(1) ⊗ ρ(2), A(1) ⊗ 1

(2) + 1
(1) ⊗ A(2)] = FQ[ρ(1), A(1)] + FQ[ρ(2), A(2)]. (2.60)

For N-fold tensor product of the system, we obtain an N-fold increase in the quantum Fisher
information as

FQ[ρ⊗N ,∑N
n=1 A(n)] = NFQ[ρ, A], (2.61)

where A(n) ≡ A for all n.
iv) The quantum Fisher information is additive under a direct sum [90]

FQ[⊕k pkρk ,⊕k Ak ] =
∑
k
pkFQ[ρk , Ak ], (2.62)

where ∑k pk = 1. The above equation is relevant, for instance, for experiments where the
particle number variance is not zero, and the ρk corresponds to density matrices with a fixed
particle number [10, 77].

Entanglement and the quantum Fisher information

The quantum Fisher information is strongly related to entanglement. In this section, we discuss
now this relation and we review some important facts concerning it. We will show that entanglement
is needed to overcome the shot-noise sensitivity in very general metrological tasks. Moreover, not
only entanglement but multipartite entanglement is necessary for a maximal sensitivity. All these
statements will be derived in a very general framework, based on the quantum Fisher information. We
will also briefly discuss the question whether inter-particle entanglement is an appropriate notion
for our systems.

Let us first examine the upper bounds on the QFI for general quantum states and for separable
states. Due to the Cramér-Rao bound (2.48), they are also bounds for the sensitivity of the phase
estimation. Entanglement has been recognized as an advantage for several metrological tasks (see,
e.g., Refs. [46, 91]). For a general relationship for linear interferometers, we can take advantage of
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the properties of the quantum Fisher information discussed before. Since for pure states the quantum
Fisher information equals four times the variance, for pure product states we can have at most

FQ[ρ, Jz ] = 4(∆Jz)2 = 4
N∑
n=1

(∆j (n)z )2 6 4Nj2, (2.63)

where j is the spin of the particles. Note that for spin-12 we recover the usual threshold one can
find for instance in Ref. [26]. For the second equality, we used the fact that for a product state the
variance of a collective observable is the sum of the single-particle variances. Due to the convexity
of the QFI, this upper bound is still valid for all separable states of the form Eq. (2.17) and we obtain
[3]

FQ[ρ, Jz ] 6 4Nj2, (2.64)
a bound for not entangled states. All states violating Eq. (2.64) are entangled. The entangled states
make it possible to surpass this bound, the shot-noise limit, and some might be more useful than
separable states for the metrological tasks at hand.

The maximum achievable precision for general states, called the Heisenberg limit, can be obtained
evaluating the Eqs. (2.51) or (2.52) for pure states only. Therefore, similarly we have

FQ[ρ, Jz ] = 4(∆Jz)2 6 4N2j2, (2.65)
which is a valid bound still for mixed states due to the convexity of the QFI. Note that such a bound
has the Heisenberg scaling Eq. (2.27). Note also that our derivation is very simple, and does not
require any information about what operator we measure to estimate θ. Equation (2.64) has been
used already to detect entanglement based on the metrological performance of the quantum states in
Refs. [8, 60].

At this point one might ask whether all entangled states can provide a sensitivity larger than
the shot-noise limit. This would show that entanglement is equivalent to metrological usefulness.
Concerning linear interferometers, it has been proven that not all entangled states violate the shot-
noise limit Eq. (2.64), even allowing local unitary transformations. Thus not all entangled states are
useful for phase estimation [10]. It has been shown that there are even highly entangled pure states
that are not useful. Hence, the presence of entanglement is a necessary but rather than a sufficient
condition.

The quantum Fisher information can be used to define an entanglement parameter that charac-

29



2.3 Quantum metrology

terizes the metrological usefulness as
χ = FQ[ρ, Jz ]

N , (2.66)
which is not larger than one for separable states and it can take at most the value of N as is deduced
from Eq. (2.65).

Based on methods similar to the ones used to find the bound for separable states in Eqs. (2.64)
and (2.65), for k-producible states the QFI is bounded from above as [77, 92]

χ 6 sk2 + (N − sk )2
N

k�N≈ k, (2.67)

where s is the integer part of Nk , and we write out explicitly the bound for k � N . It is instructive
to write the equation above for the case in which N is exactly divisible by k as

χ 6 k. (2.68)
Thus, the bounds reachable by k-producible states are distributed linearly in k .

It is also instructive to define a QFI averaged over all possible directions. Simple calculations
show that

avg
n
FQ[ρ, Jn] ≡

∫
n=(cφsθ ,sφsθ ,cθ )

FQ[ρ, Jn] sin(θ ) dφdθ = 1
3
∑
l=x,y,z

FQ[ρ, Jl], (2.69)

where we used the spherical coordinates such that φ and θ are the azimuthal and polar angles
respectively. Therefore, bounds similar to Eqs. (2.64) and (2.65) for separable and general states can
be obtained for the average quantum Fisher information as

avg
n
FQ[ρ, Jn] 6 2

3N, (2.70a)
avg
n
FQ[ρ, Jn] 6 1

3N(N + 2). (2.70b)

Similarly to Eq. (2.66), an entanglement criterion can be constructed for the averaged QFI. Similar
to Eq. (2.66) an entanglement criterion can be constructed for the averaged QFI.

Finally, we also mention that bound entangled states can also be detected with the entanglement
criteria based on the quantum Fisher information. Bound entanglement is a weak type of entangle-
ment, which is not distillable with local operations and classical communication [35, 36]. Ref. [77]
presented states that were detected as bound entangled based on the criterion for the average QFI
Eq. (2.69). Ref. [93] presented states that violate the criterion based on a bound for the quantum
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Fisher information similar to Eq. (2.66).
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3 METROLOGY IN THE VICINITY OF DICKE STATES

3 Metrology in the vicinity of Dicke
states

"An experimentalist should not be unduely inhibited by theoretical untidyness."
Robert H. Dicke

I n this chapter we will present recent results regarding the metrological usefulness of a family of
unpolarized states. Such states can be used as trial states to estimate the homogeneous magnetic

field strength, see Section 2.3.1 for references about magnetometry. It turns out that unpolarized
states are the most adequate states to reach the Heisenberg limit, as it was shown in the Section 2.3.
Hence, these states have attracted considerable interest.

One of the figures of merit of these states is the so-called unpolarized Dicke state [94] given in
the l-basis, which consists of an equal number of qubits pointing in the l-direction and pointing in
the opposite direction while the whole state is symmetrized, and where l = x, y, z . It can be written
as

|DN〉l ≡ |DN,N/2〉l :=
( N
N/2

)− 12 ∑
k∈σs
Pk (|0〉⊗N/2l |1〉⊗N/2l ), (3.1)

where Pk denote all the distinct permutations in σs. |0〉l and |1〉l are single-particle quantum states
of a spin-12 system in the l-basis, see Appendix A for more details. Note that in Eq. (3.1) we omit
the subscript giving the number of |1〉’s which is the notation we will follow in this chapter. Such
a state is known to be highly entangled [95, 96] and can reach Heisenberg scaling when used for
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magnetometry [97].
One of the characteristics of state Eq. (3.1) is that it is an eigenstate of the collective operator

Jl with corresponding eigenvalue equal to zero. At the same time, it lives in the subspace where
the collective total spin is maximum, i.e, 〈J2〉 = N(N + 2)/4. Based on these and the fact that the
state is unpolarized, we can see that has a very large uncertainty for the collective spin operators
perpendicular to Jl.

For metrology, we chose the magnetic field to be pointing in the z-axis. Hence, the Dicke state
we choose must be an eigenstate of a perpendicular component of the angular momentum operator
such as Jx . Hence, we will consider a scheme in which the state is rotated around the z-direction
and the rotation angle must be estimated based on collective measurements. A criterion to detect the
metrological usefulness of states of this type has been derived in Ref. [98].

In this chapter, we present a condition for metrological usefulness for the case when the second
moment of a total angular momentum component is measured to obtain an estimate for the rotation
angle. Our method is expected to simplify the experimental determination of metrological sensitiv-
ity since it is much easier to measure the collective operators of the state than carrying out the
metrological procedure and measure directly the sensitivity. We also test our approach using the
experimental results of Refs. [8, 60], which realize parameter estimation with a Dicke state. Thus, our
work is expected to be useful for similar experiments in the future.

The chapter is organized as follows. In Section 3.1, we review some important concepts behind the
theory of metrology with unpolarized states. In Section 3.2, we present our criterion. In Section 3.3,
we compare our findings to sensitivity bounds obtained from the quantum Fisher information. In
Section 3.4, we show how to apply our criterion to experimental results.

3.1 Unpolarized Dicke states for magnetometry
In Eq. (2.46) we have shown that unpolarized states may overcome the shot-noise limit, i.e., the
precision achieved by completely polarized states. While the quantum Fisher information would give
us directly the performance of the state, we typically cannot compute it because a complete knowledge
of the state would be necessary, see Eq. (2.51). On the other hand, we can use the error propagation
formula Eq. (2.32) to obtain a bound on the achievable precision which at the same time bounds the
QFI.

As one can see in Figure 3.1, a pure unpolarized Dicke state |DN〉x of 16 qubits, an eigenstate
of the Jx operator, is rotated around the z-axis. The state is unpolarized so the expectation value of
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any component of the total angular momentum remains zero. It turns out that measuring the evolution
of the second moment of Jx allows the estimation of rotation angle θ, and therefore, the magnetic
field. The expectation value 〈J2x 〉 is initially zero for a pure unpolarized Dicke state, and it increases
rapidly as it can be seen in the Figure 3.1. Another observation is that for θ = π/2 the value of 〈J2x 〉
will be at its maximum proportional to 〈J2〉 or equivalently to JN/2, see Eq. (A.3). Hence, the change
in the second moment over the phase shift must be in this case proportional to N2. We are lead to
the conclusion that one only needs to measure the second moment of the collective spin Jx to achieve
Heisenberg scaling for the estimation.

Figure 3.1: Sequence of the evolution of an unpolarized Dicke state of 16 qubits for θ = {iπ/6}4i=0.
(sequence-above) Bloch spheres representing the Husimi quasi-probabilistic distribution Q of the state,
see Appendix B for details. (sequence-below) PDF of the Jx positive-operator valued measure (POVM) for
each step of the sequence.

In certain situations, it is better to use Eq. (2.32) rather than Eq. (2.48) for calculating the
achievable precision, since it gives the precision for a particular operator to be measured in an
experimental setup. This is reasonable, since in a typical experiment, only a restricted set of operators
can be measured. In this work, we will consider many-particle systems in which the particles cannot
be accessed individually, and only collective quantities can be measured. As we said, measuring
the second moment of Jx is a valid choice to estimate the rotation angle. In the following equation,
we show the error propagation formula when measuring the second moment of the Jx total angular
momentum component,

(∆θ)−2 = |∂θ〈Jx〉|2(∆J2x )2 . (3.2)
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Since Eq. (3.2) is always smaller than FQ, and as a consequence of Eq. (2.66), if

|∂θ〈Jx〉|2
(∆J2x )2 > N (3.3)

holds, then the system is entangled. Hence again, entanglement is required for a large metrological
precision. Based on Eq. (2.67), we can bound the entanglement depth from below of the systems as
follows. Similarly to the previous paragraph, if for a quantum state

|∂θ〈Jx〉|2
(∆J2x )2 > kN (3.4)

holds, then it is at least (k + 1)-entangled.

3.2 Precision based on the error propagation formula when M = J2x
With the aim of obtaining the precision, Eq. (3.2), we will compute the dependence on θ of the
expectation value of the operator Jx and higher order moments. We will use the Heisenberg picture,
where the operators evolve in time while the state remains the same. The operator Jx can be written
as a function of θ in the following way

Jx (θ) = eiθJz Jx (0)e−iθJz = Jx (0)cθ − Jy(0)sθ, (3.5)
where Jl(0) for l = x, y, z are the collective angular momentum operators at time equal zero. We will
denote them by Jl from now on. The notation for the trigonometric functions cθ and sθ was introduced
in Section 2.3.2.

We need to compute the second and the fourth moments of Jx as it is required by the Eq. (3.2).
But before any calculation we will make a simplifying assumption which turns out to be true in the
most common situations. The assumption is that both expectation values are even functions of θ, so

〈J2x (θ)〉 = 〈J2x (−θ)〉,
〈J4x (θ)〉 = 〈J4x (−θ)〉 (3.6)

holds. This way we can omit the terms that are odd in θ. In Section 3.4, we will see that unitary
dynamics of some experimentally prepared states have this property. The assumption Eq. (3.6) is
needed to obtain a closed formula for the precision of the phase estimation.
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The square of Jx in the Heisenberg picture is written as
J2x (θ) = J2x c2θ + J2ys2θ − (JxJy + JyJx )cθsθ. (3.7)

Hence, due to the first constraint of Eq. (3.6) and Eq. (3.7), we require that
〈{Jx , Jy}〉 = 0. (3.8)

Eq. (3.8) is based on expectation values of the initial state state. The condition Eq. (3.8) is fulfilled
in a typical experiment.

As we have done with the expectation value of the square of Jx , now we do the same for J4x . This
way one will be able to distinguish which other expectation value of combination of operators must
vanish in order to have Eq. (3.6) guarantied. The fourth power of Jx can be written in the Heisenberg
picture as

J4x (θ) = J4x c4θ + J4ys4θ + (J2x J2y + JxJyJxJy + JxJ2yJx + JyJxJyJx + JyJ2x Jy + J2yJ2x )c2θs2θ
− (J3x Jy + J2x JyJx + JxJyJ2x + JyJ3x )c3θsθ − (JxJ3y + JyJxJ2y + J2yJxJy + J3yJx )cθs3θ. (3.9)

And again assuming that the expectation value of J4x (θ) must be an even function of θ, we see
that the terms multiplied by c3θsθ and cθs3θ , respectively, must be zero. So, the expectation value of
(J3x Jy+J2x JyJx+JxJyJ2x +JyJ3x ) and (JxJ3y+JyJxJ2y+J2yJxJy+J3yJx ) must vanish. Hence, the second constraint
of the Eq. (3.6) can be fulfilled if

〈{J2x , {Jx , Jy}}〉 = 0,
〈{J2y, {Jx , Jy}}〉 = 0. (3.10)

Finally, we can write the evolution of second and fourth moments of the Jx operator as
〈J2x (θ)〉 = 〈J2x 〉c2θ + 〈J2y〉s2θ (3.11a)
〈J4x (θ)〉 = 〈J4x 〉c4θ + 〈J4y〉s4θ

+ 〈{J2x , J2y}+ {Jx , Jy}2〉c2θs2θ.
(3.11b)

From here, we are able to write the evolution of the variance of the second moment when Eq. (3.6) is
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fulfilled. We obtain

(∆J2x (θ))2 = 〈J4x (θ)〉 − 〈J2x (θ)〉2
= 〈J4x 〉c4θ + 〈J4y〉s4θ + 〈{J2x , J2y}+ {Jx , Jy}2〉c2θs2θ − (〈J2x 〉c2θ + 〈J2y〉s2θ

)2
= (〈J4x 〉 − 〈J2x 〉2)c4θ + (〈J4y〉 − 〈J2y〉2)s4θ + (〈{J2x , J2y}+ {Jx , Jy}2〉 − 2〈J2x 〉〈J2y〉)c2θs2θ
= (∆J2x )2c4θ + (∆J2y)2s4θ + (〈{J2x , J2y}+ {Jx , Jy}2〉 − 2〈J2x 〉〈J2y〉)c2θs2θ.

(3.12)

In order to compute the Eq. (3.2), we also need the modulus square of the derivative of the second
moment of the Jx operator. Using Eq. (3.11a) for the expression of the evolution of the second moment,
the numerator of Eq. (3.2) follows

|∂θ〈J2x (θ)〉|2 = | − 2〈J2x 〉cθsθ + 2〈J2y〉cθsθ|2
= 4〈J2y − J2x 〉2c2θs2θ.

(3.13)

From the equations above directly follows expression for the precision of θ,

(∆θ)2 = (∆J2x )2c4θ + (∆J2y)2s4θ + (〈{J2x , J2y}+ {Jx , Jy}2〉 − 2〈J2x 〉〈J2y〉)c2θs2θ
4〈J2y − J2x 〉2c2θs2θ

= (∆J2x )2t−2θ + (∆J2y)2t2θ + 〈{J2x , J2y}+ {Jx , Jy}2〉 − 2〈J2x 〉〈J2y〉
4〈J2y − J2x 〉2 .

(3.14)

To this calculations further computations follow mainly regarding to the following expectation value
〈{J2x , J2y}+ {Jx , Jy}2〉. This calculus is left for the Appendix C. Finally, the expression Eq. (3.14) can
be written as

(∆θ)2 = (∆J2x )2t−2θ + (∆J2y)2t2θ + 4〈J2y〉 − 3〈J2z 〉 − 2〈J2x 〉(1 + 〈J2y〉) + 6〈JxJ2yJx〉
4〈J2y − J2x 〉2 . (3.15)

We have verified the correctness of our analytic formula Eq. (3.15) comparing it with a numerical
simulation of the Eq. (3.2) for the ground-state of H = J2x + Jy for 6 qubits, |GS〉. We computed
the evolution of the expectation values of the second and the fourth moments of the operator Jx for
θ ∈ [0, π], for thousand of equidistant points, from which we obtained the bound, see Figure 3.2-
(a). Finally, we have also checked that the constraints assumed at the beginning of this section
are fulfilled. For that, we considered the range θ ∈ [−π, π] and we have computed the expectation
values, see Figure 3.2-(b). We can conclude saying that our formula Eq. (3.15) reproduces exactly
the evolution of the error propagation formula, Eq. (3.2).
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(a) (b)
Figure 3.2: (a) Evolution of the precision (∆θ)−2/N for 6 qubits based on the simulation of the system
|GS〉 and its expectation values. The agreement with the Eq. (3.15) is shown in the inset plot where
the square of the difference between two approaches are plotted, the analytically obtained result and the
simulation. The difference is more or less two orders of magnitude below the actual value for the relevant
points, which is mainly because of computing the derivative near the points at which the expectation value
〈J2x 〉 and (∆J2x )2 are both close to zero. (b) With the system at hand, we verified the parity with respect to
θ of the expectation values of the second and the fourth moment, so to fulfill the constraint Eq. (3.6).

3.2.1 The optimal precision

First of all, note that all the dependence on the phase shift θ is in the first two terms of the numerator
of Eq. (3.15). Hence, one can minimize the sum on the first two terms in order to find where the
precision is best. So it follows that for the optimal angle

tan2(θopt) =
√(∆J2x )2(∆J2y)2 (3.16)

holds. By substituting Eq. (3.16) into Eq. (3.15), we obtain the optimal bound as

(∆θ)2opt =
√(∆J2x )2(∆J2y)2 + 4〈J2y〉 − 3〈J2z 〉 − 2〈J2x 〉(1 + 〈J2y〉) + 6〈JxJ2yJx〉

4〈J2y − J2x 〉2 . (3.17)
.

We conclude this section checking our bound for pure unpolarized Dicke state aligned with the
x-axis, |DN〉x , whose precision bound is well known using the QFI for pure states Eq. (2.53),

FQ[|DN〉x , Jz ] = 4(∆Jz)2|DN〉x = N(N + 2)
2 . (3.18)
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With this aim we compute all the expectation values needed for the Eq. (3.17) which almost all of
them are trivial, 〈JxJ2yJx〉 = 〈J4x 〉 = 〈J2x 〉 = 0 since the state is an eigenstate of Jx with an eigenvalue
zero. The last expectation value is obtained as

〈J2y〉 = 〈J2z 〉 = N(N + 2)
8 . (3.19)

Note that for the Eq. (3.19) we use that the state is invariant under rotations over the x-axis, the sum
of all the second moments must give 〈J2〉 = N(N+2)

4 , and 〈J2x 〉 = 0. Hence, the Eq. (3.19) holds.
From the Eq. (3.19) using the expression for the optimal precision Eq. (3.17) and substituting all

the terms that are zero, one arrives at the following formula for the precision of the phase shift for a
pure unpolarized Dicke state,

(∆θ)2opt = 2
N(N + 2) , (3.20)

which coincides exactly with the inverse of the quantum Fisher information for such state Eq. (3.18)
[8]. Hence for the ideal Dicke state, the Cramér-Rao bound Eq. (2.48) is saturated, which means that
estimating the phase shift θ using the measurement of 〈J2x 〉 is optimal. Based on Eq. (3.16), we add
that the optimal angle for the ideal Dicke state is θopt = 0.

3.3 Testing the formula against some known states
In this section, we will compare our criteria based on few expectation values against the corresponding
quantum Fisher information obtained for some known states. We find that our formula gives a good
lower bound on the quantum Fisher information, which is the best achievable precision when any
measurement is allowed. However note that the Cramér-Rao bound might be impractical.

Let us consider first the spin-squeezed states. Those states will be defined as the ground states
|GS〉λ of the spin-squeezing Hamiltonian given as

Hλ = J2x − λJy, (3.21)
see Appendix D. For λ > 0, the ground state is unique, and it is in the symmetric subspace. Hence,
we can restrict our attention to this subspace for our computations, and hence we can model larger
systems. For λ → ∞, the ground state is the state totally polarized in the y-direction Eq. (2.33).
And for λ → 0+, it is the Dicke state Eq. (3.1). Note that for λ = 0 the eigenvalue is degenerate, so
there are more than one ground states. On the other hand, we still can use a limit in which λ tends
to zero from the positive axis to arrive at the Dicke state. Figure 3.3-(a) shows the sensitivity we
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obtained together with the QFI for the same states. Our bound is close to the QFI when the state is
well polarized. It also coincides with the bound in the λ → 0+ limit, when the ground state is close
to the unpolarized Dicke state.

(a) (b)
Figure 3.3: Comparison between our formula for the precision and the QFI for different states. (a)
Comparison with ground states of Hλ. (b) Comparison with thermal mixture of Dicke states.

The second family of states we use to test our formula are the Gaussian mixture of Dicke states
around the unpolarized Dicke state, which have the following form as function of T as

ρT ∝
N∑
n=0

e− (n+N/2)2T |DN,n〉x〈DN,n|x (3.22)

for even N , where |DN,n〉 is defined in Eq. (A.5). It can be used to model a noisy or thermal unpolarized
Dicke state. For T = 0, we obtain the pure unpolarized Dicke state. For T > 0, other symmetric
Dicke states in the vicinity of the unpolarized one are also populated. The result can be seen in
Figure 3.3-(b). Again, our bound seems to be quite close to the corresponding QFI.

Note also that in Figure 3.3, based on Eq. (2.67), if the bound turns to be greater than k integer,
then a metrologically useful (k + 1)-particle entanglement is detected in the system. Note that this
is true whenever k is a divisor of N , or k � N .

Although showing how the optimal precision formula behaves compared with the quantum Fisher
information for those two families of states, we will now prove that they indeed fulfill the constraints
appearing in Eq. (3.6). Hence, we compute the Eq. (3.6) for the spin-squeezed states |GS〉λ. For
that it is enough to know that since those states are non-degenerate ground states, they must have
the same symmetries as the Hamiltonian. In this case, the Hamiltonian Eq. (3.21) is invariant under
x ↔ −x and z ↔ −z , thus it must be invariant under rπ angle rotations under the y-axis for r
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integer, for more references about symmetries in quantum mechanics see Refs. [69, 70]. Hence, we
can write for the evolution of the expectation value of any power m of Jx such that

tr(e+iθJz Jmx e−iθJzρλ) = tr(e+iθJz Jmx e−iθJze−irπJyρλe+irπJy), (3.23)
where ρλ = |GS〉〈GS|λ. Then for the case r = 1, we can use the cyclic property of the trace to arrive
at

tr(e+iπJye+iθJz Jmx e−iθJze−iπJyρλ) = tr(e+iθ(−1)Jz (−1)mJmx e−iθ(−1)Jzρλ)
= tr(e−iθJz (−1)mJmx e+iθJzρλ), (3.24)

or equivalently
〈Jmx (θ)〉ρλ = 〈(−1)mJmx (−θ)〉ρλ, (3.25)

which implies that for even m, and specially for m = 2, 4, the expectation values are an even function
of θ, and that for odd m the expectation values are odd functions of θ, which proves the Eq. (3.6) for
the present case.

On the other hand, the eigenstates of the thermal state ρT are also eigenstates of Jx , and hence
the state invariant under rotations around the x-axis. This still holds for the entire state, since it is a
statistical mixture of states invariant under rotations around the x-axis. Moreover, it is also invariant
if the state is rotated around the x-axis by an angle π. Hence, we have for the evolution of the
expectation values of Jmx that

tr(e+iθJz Jmx e−iθJzρT ) = tr(e+iθJz Jmx e−iθJze−iπJxρTe+iπJx ) (3.26)
holds for any m. Finally, using again the cyclic properties of the trace, we flip the signs of the of
angular momentum components orthogonal to Jx , so in this case Jy → −Jx and Jz → −Jz , and we
arrive at

tr(e+iπJxe+iθJz Jmx e−iθJze−iπJxρT ) = tr(e−iθJz Jmx e+iθJzρT ). (3.27)
We conclude that for the thermal state this case all the moments of the Jx operator are even functions
of θ for the thermal state, i.e., 〈Jmx (θ)〉ρT = 〈Jmx (−θ)〉ρT , which proves that the Eq. (3.6) holds for this
case too.
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3.4 Using our method with real experimental data
In reference [24], a state is produced in the laboratory with the proper characteristics of an unpolarized
Dicke state, small variance in one direction, say x , and a very large variance in the directions
perpendicular to the x-axis. In the cited experiment with N qubits, it is possible to determine the
operator Jx as the population imbalance of the two levels as

Jx = 1
2(N1,x −N0,x ), (3.28)

where Nm,x is the number of particles in the state |m〉x . Hence, measuring the population imbalance
and collecting the statistics of the measurements, the expectation values of all moments of Jx can be
obtained. In practice, it is possible to measure the lower order moments like 〈J2x 〉 and 〈J4x 〉, while
higher order moments need too many repetitions of the experiment to collect enough statistics.

The other two global operators Jy and Jz are obtained by rotating the system using a π2 microwave
coupling pulse before the measurement of the population imbalance. Whether Jy or Jz is obtained
depends on the relation between the microwave phase and the phase of the initial BEC. The conden-
sate phase represents the only possible phase reference in analogy to the local oscillator in optics.
Intrinsically, it has no relation to the microwave phase, such that it homogeneously average over all
possible phase relations. From another point of view, one can also say that the fluctuation of the
magnetic field results in a random rotation of the spin around the z-axis. Hence, what is obtained in
this case is

Jα = sin(α)Jy + cos(α)Jz, (3.29)
where α is an angle, and we need to consider the average over all possible angles. Effectively, the
state has the following form

ρ = 1
2π
∫
e−iαJxρ0eiαJx dα, (3.30)

where ρ0 is what we would obtain if we would have access to the phase reference. Note that the
integration over the rotation angle α does not create entanglement. If the state ρ is entangled then
ρ0 has to be also entangled.

Let us see the consequences of our state having the form Eq. (3.30). For the density matrix ρ,
since it is invariant under rotations around the x-axis, we have

〈Jmα 〉 = 〈Jmy 〉 = 〈Jmz 〉 (3.31)
for all m. Hence the expectation values of 〈Jmy 〉 and 〈Jmz 〉 can be obtained from the statistics of
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measuring Jα . Moreover, for states of the form Eq. (3.30) the unitary dynamics will fulfill the condition
Eq. (3.6).

There is a single remaining term in the expression for the achievable precision Eq. (3.17), the
expectation value for 〈JxJ2yJx〉, which can be bounded as

〈JxJ2yJx〉 = 〈Jx (J
2y + J2z )Jx〉

2 = 〈Jx (J
2x + J2y + J2z )Jx〉 − 〈J4x 〉

2
6 N(N + 2)

8 〈J2x 〉 − 〈J
4x 〉2 ,

(3.32)

where the last inequality is due to that for all states 〈J2〉 6 JN/2, see Eq. (A.3), while symmetric states
saturate the inequality in Eq. (3.32). Note that obtaining 〈JxJ2z Jx〉 can be hard experimentally. In any
case, this simplification can only make our estimation of the precision worse while for symmetric
states the equality holds. Hence, the lower bound for the achievable precision can be written as

(∆θ)2opt 6

√(∆J2x )2(∆J2y)2 + 〈J2y〉+ 3N(N+2)−8
4 〈J2x 〉 − 2〈J2x 〉〈J2y〉 − 3〈J4x 〉

4〈J2y − J2x 〉2 , (3.33)

where some terms were reordered and further simplified.
It is worth to study the case appearing in Ref. [60] and apply our methods such that we obtain

conclusions about the metrological usefulness of the state. The system under consideration has around
N = 7900. Note that using the expectation value of the particle number, in our case 〈N〉 = 7900,
cannot overestimate any lower bound on the precision. For a discussion about entanglement criteria
in systems with particle number fluctuations see Ref. [99]. The measured data for the system yields

〈J2x 〉 = 112± 31,
〈J4x 〉 = 40× 103 ± 22× 103,

〈J2y〉 = 6× 106 ± 0.6× 106,
〈J4y〉 = 6.2× 1013 ± 0.8× 1013. (3.34)

Hence, we obtain the maximum precision as
(∆θ)−2opt
N > 3.7± 1.5. (3.35)

The statistical uncertainties of Eqs. (3.34) and (3.35) have been obtained through bootstraping, while
the direct substitutions of expectation values would yield to 3.3 of gain over the shot-noise limit
(∆θ)−2 = N . Based on Eq. (2.66), this proves the presence of metrologically useful entanglement
[3]. Based on Eq. (2.67), it even demonstrated that the quantum state had metrologically useful 4-
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particle entanglement. Assuming an error of a standard deviation, Eq. (3.35) still proves 3-particle
entanglement.

Next we plot the value for the precision substituting directly the experimental data into Eq. (3.15),
see Figure 3.4. Since we cannot obtain the expectation value 〈JxJ2yJx〉 we approximate it with the
right-hand side of Eq. (3.32). With that we underestimate (∆θ)−2.

Figure 3.4: (solid) The precision as a function of the parameter θ given by Eq. (3.15) varies through the
evolution. Note that for the initial moment the precision is zero. (dashed) We highlight where the precision
reaches its maximum at θ ≈ 0.0057. (gray-area) It represent the region where the precision is below the
shot-noise limit.

Thus, we could detect metrological usefulness by measuring the second and fourth moments of the
collective angular momentum components. For future applications of our scheme, it is important to
reduce further the number of quantities we need to obtain a lower bound for the precision. In practice,
one can easily avoid the need for determining 〈J4y〉. Note that if we measure Jy then the distribution
of the values obtained is strongly non-Gaussian. The values ±N/2 appear most frequently, and the
value 0 appears least frequently [8]. See also the distribution of a pure Dicke state when θ = π/2
in the Figure 3.1. The state has more overlap with the eigenstates of the edges than in the middle.
Based on 〈AB〉 6 λmax(A)〈B〉, where λmax(A) is the largest eigenvalue of A, for two commuting
positive-semidefinite observables,

〈J4y〉 6 N2
4 〈J2x 〉. (3.36)

Since even for a noisy Dicke state 〈J2y〉 is very large, the above equation is a very good upper bound.
Substituting it into the Eq. (3.17), we will underestimate (∆θ)−2.

It is also possible to approximate 〈J4x 〉 with 〈J2x 〉 in the sense that it is small and that mainly its
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value comes from technical noise,
〈J4x 〉 ≈ β〈J2x 〉2. (3.37)

This approximation, even if it is not a strict bound on the precision, can be very useful in order to
characterize the metrological usefulness of the state based only on second statistical moments of only
two angular momentum components, namely 〈J2y〉 and 〈J2x 〉. Those two expectation values are related
with how thin is the state in one direction and how wide in the perpendicular ones. So in this case
we use β = 3 assuming that the distribution function has a Gaussian shape.

From these considerations we are able to write a second bound with fewer expectation values for
the optimal precision such that

(∆θ)2opt 6
〈J2y〉+ 3N(N+2)−8

4 〈J2x 〉+
(√ N2

2〈J2y〉 − 2− 2)〈J2y〉〈J2x 〉 − 9〈J2x 〉2
4〈J2y − J2x 〉2 . (3.38)

We have used this formula to compute the bound for the optimal precision with the measured data
shown on Eq. (3.34), (∆θ)−2opt > 2.9N , see Figure 3.5. It turns out that even this way, 3-particle
metrologically useful entanglement is detected.

(a) (b)
Figure 3.5: (a) Precision bound as a function of 〈J2y〉 and 〈J2x 〉. The expectation value 〈J2y〉 is normalized
with JN/2. (solid) Different boundaries for metrologically useful entanglement depths. (cross) Experimental
data. (blue-ellipse) Region with one σ confidence from the experimental data. (vertical-dashed) Constant
〈J2y〉 cross section plotted in (b). (b) Constant 〈J2y〉 cross section for the precision bound. (solid) Precision
bound based on the Eq. (3.38). One can see that decreasing further the uncertainty in 〈J2x 〉 can improve
the bound significantly. (white-point) Experimental data with the corresponding errors bars. (gray-area)
Shot-noise limit. The point is slightly below the 4-particle entanglement level.

In Figure 3.5-(a), we show the two-dimensional plot that is obtained based on these considerations.
The regions with various levels of multipartite entanglement can clearly be identified. The ideal Dicke
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state corresponds to the bottom-right corner, where 〈J2x 〉 = 0 and 〈J2y〉 is largest. In Figure 3.5-(b),
the cross section of the two-dimensional plot is shown.

Summarizing, we have shown that characterizing the metrological usefulness of noisy Dicke states
can be done using few experimental data. Furthermore, the precision bound is computed with the
expectation values of the second and fourth moments of the angular momentum in the directions
perpendicular to the magnetic field. We have shown some simplifying techniques that reduce the
experimental efforts needed to characterize the state.
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4 Witnessing metrologically useful X
entanglement

"All the truths of mathematics are linked to each other,
and all means of discovering them are equally admissible."

Adrien-Marie Legendre

T ypically, one has no access to the density matrix of the system which is used for metrology or
for some other quantum information processing task. Moreover, for systems in which the particle

number is very large, which is the case when one would like to do metrology with quantum states,
the details of the density matrix cannot be known due to practical reasons. Since the quantum Fisher
information is based on the complete knowledge of the density matrix, methods to avoid the complete
tomography must be developed as we have shown a practical case in the previous chapter. In this
chapter, we obtain a general procedure to get an optimal bound for the quantum Fisher information
based on as many expectation values of the initial state as one is ready to measure. Two main
features are worth to mention again. First, in general this method gives us a tight bound. Second,
the bound is based on the expectation values of the initial state only, so it is not necessary to perform
an evolution of the state. This is in contrast to other approaches one can find in the literature, ours
needs a significantly smaller experimental effort.

From Eq. (2.50), a lower bound on the quantum Fisher information based on expectation values
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of the initial state is
FQ[ρ, Jz ] > 〈Jx〉2

(∆Jy)2 . (4.1)
where the state is polarized along the x-axis [3]. In the previous chapter we have also shown one of
these bounds specifically designed for unpolarized Dicke states (3.1).

The setup is described in Section 2.3.1 and consists of in estimating the homogeneous magnetic
field strength, in this case, which points towards the z-axis. Therefore, we will base our calculations
on the quantum Fisher information FQ[ρ, Jz ], defined in Eqs. (2.51) and (2.52), see Section 2.3.3 for
more information about the properties of the QFI.

4.1 Lower bound on a convex function given some arbitrary expectation values
Our problem could be solved with Lagrange multipliers or Legendre transforms. We follow the latter
method since obtaining a lower bound on a convex function for states with some given operator
expectation values has already been studied by O. Gühne et al. and J. Eisert et al. in Refs. [23, 100]
respectively, mainly from the perspective of entanglement measures. The illustrated techniques are
based on the well known Legendre transform for differentiable functions, see Appendix E for more
details. We first review in this section the state-of-the-art solution to this problem. Later on, we
extend it to the quantum Fisher information. For simplicity in the next section, Section 4.1.1, we
assume that a single expectation value is given. An extension to the case in which more expectation
values are given will follow in the Section 4.1.2. Finally, we will summarize our results with an
explicit formula which will be used to compute the bounds in the most general case.

4.1.1 Lower bound based on a single observable

When a convex function g(ρ) is given together with an expectation value of some operator w = tr(ρW ),
a tight lower bound, Bg(w), can be obtained as [23, 100, 101]

g(ρ) > Bg(w) := sup
r
{rw − ĝ(rW )}

= {infρ g(ρ) | w = tr(ρW )}, (4.2)
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where ĝ(rW ) is the Legendre transform of g(ρ) and the second equality expresses the tightness of
the bound. The Legendre transform in this context is defined as

ĝ(rW ) = sup
ρ
{〈rW 〉ρ − g(ρ)}, (4.3)

where the maximization is over all possible states. This method to obtain the lower bound has been
used to compute entanglement measures [23, 100].

Following the theory one can find that if the convex function g(ρ) is defined as a convex roof over
all possible convex decompositions of the state, the optimisation of Eq. (4.3) can be reduced to an
optimization over pure states only, thus simplifying the calculation [23, 100]

ĝ(rW ) = sup
ρ
{〈rW 〉ρ − g(ρ)}

= sup
ρ

{r〈W 〉ρ − inf{pk ,|φk 〉}
{∑

k
pkg(|φk〉)}

}

= sup
{pk ,|φk 〉}

{∑
k
pk〈rW 〉|φk 〉 − inf{pk ,|φk 〉}

{∑
k
pkg(|φk〉)}

}

= sup
{pk ,|φk 〉}

{∑
k
pk{〈rW 〉|φk 〉 − g(|φk〉)}

}

= sup
|ψ〉
{〈rW 〉|ψ〉 − g(|ψ〉)}.

(4.4)

However, even an optimization over all pure states is feasible numerically only for small systems. We
will show later in this section how to circumvent this problem in the case of the QFI. The convex roof
construction has the following form

g(ρ) = inf{pk ,ψk}
∑
k
pkg(|ψk〉), (4.5)

where the mixed state is decomposed into ρ = ∑k pk |ψk〉〈ψk |. Among other definitions of the QFI in
the literature, there is one that defines it as the convex roof of 4(∆Jz)2, the variance of the generator,
as it has been shown in Ref. [89, 95], we can compute the Legendre transform optimizing for pure
states only. Hence, we will be able to use this simplification to apply this method to obtain the lower
bound on the QFI. Note that in this context, the QFI is the convex roof of four times the variance of
the generator, Eq. (2.52).
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4.1.2 Measuring several observables

For some cases, it is interesting to characterize the quantum state with several measurements rather
than with a single one. For instance, we might want to use, as it is done with the spin-squeezed
states the absolute polarization and the variance of one of the orthogonal components of the angular
momentum to detect entanglement and metrological usefulness [3]. So far, we studied the case in which
a single measurement is used. Its extension to several expectation values is indeed straight-forward.
We can generalize Eqs. (4.2) and (4.3) for several observables {Wi}Mi=1 as follows [23]

Bg(w1, w2, . . . ) := sup
r
{rw − sup

ρ
{〈rW 〉 − g(ρ)}}, (4.6)

where ab = ∑M
k=1 akbk , the usual notation for scalar products of two vectors.

4.1.3 Lower bound on the quantum Fisher information

After we have shown how to find a lower bound for a general convex function of the state based on
its expectation values and how to simplify that method for the case in which the function is defined
as a convex roof, now we are in the position to achieve the main goal of this chapter. First of all,
we note that for the quantum Fisher Information the inner maximization, the Legendre transform, is
obtained optimizing a function quadratic in expectation values,

F̂Q(rW ) = sup
|ψ〉
{r〈W 〉ψ − 4(∆Jz)2ψ}

= sup
|ψ〉
{r〈W 〉ψ − 4〈J2z 〉ψ + 4〈Jz〉2ψ}

= sup
|ψ〉
{〈rW − 4J2z 〉ψ + 〈2Jz〉2ψ},

(4.7)

where we have used the fact that the QFI can be expressed as a convex roof of (∆Jz)2 and we arrive
at the problem of an optimization over a single parameter for simplicity on the following derivations.
Equation (4.7) can be rewritten as an optimization linear in operator expectation values and over a
parameter µ as

F̂Q(rW ) = sup
|ψ〉,µ

{〈rW − 4J2z 〉ψ + 8µ〈Jz〉ψ − 4µ2
1
}, (4.8)
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which, making use of max{〈A〉} = λmax[A] for any observable, can be reformulated as
F̂Q(rW ) = sup

|ψ〉
{λmax[rW − 4J2z + 8µJz − 4µ2]}

= sup
|ψ〉
{λmax[rW − 4(Jz − µ)2]}, (4.9)

where we omitted in writing 1 for clarity and λmax[A] stands for the maximum eigenvalue of the operator
A. At the extremum, the derivative with respect to µ must be zero, hence at the optimum µ = 〈Jz〉opt
which represents the expectation value of Jz should have considering the optimal state in Eq. (4.7).
This also means that we have to test µ values in the interval −N/2 6 µ 6 N/2 only for spin-half
systems.

The full optimization problem to be solved consists of Eqs. (4.2) and (4.9) substituting g(ρ) by
FQ[ρ, Jz ],

BF (w) = sup
r
{rw − sup

µ
{λmax[rW − 4(Jz − µ)2]}}. (4.10)

It is crucial that the optimization over r is a concave function, since the theory tells us that F̂Q(rW )
is a convex function [101], even when the multi-parameter case is considered. Thus the optimum can
be determined easily with simple methods, e.g., the gradient method, looking for the maximum in r .
Based on Eq. (4.2), we can see that even if we do not find the global optimum in r , we obtain a valid
lower bound. The extension of this bound to the multi-parameter case is done using the recipe given
in Eq. (4.6). On the other hand, the function to be optimized for µ does not have a single maximum in
general. Moreover, not finding the optimal µ leads to an overestimating of the bound. Thus, a large
care must be taken when optimizing over µ.

We stress again the generality of these findings beyond linear interferometers covered in the
following sections. For nonlinear interferometers [66, 81, 82, 84, 85, 102], the phase θ must be
estimated assuming unitary dynamics U = exp−iGθ, where G is not a sum of single spin operators,
hence, it is different from the angular momentum components.

4.1.4 Exploiting the symmetries
When making calculations for quantum systems with an increasing number of qubits, we soon run
into difficulties when computing the largest eigenvalue of Eq. (4.9). The reason is that for N qubits,
we need to handle 2N × 2N size matrices, hence we are limited to systems of 10 to 15 qubits.

We can obtain bounds for much larger particle numbers, if we restrict ourselves to the symmetric
subspace [95, 96]. This approach can give optimal bounds for many systems, such as Bose-Einstein
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condensates of two-level atoms, which are in a symmetric multiparticle state. The bound computed
for the symmetric subspace might not be correct and generally might overestimate the real bound for
general cases.

Finally, it is important to note that if the operators Wk are permutationally invariant and the
eigenstate with the maximal eigenvalue in Eq. (4.9) is non-degenerate, then we can do the computa-
tions on the symmetric subspace only. The resulting maximal eigenvalue is the maximal eigenvalue
even when the whole Hilbert space is taken into account for the maximization. Hence, the lower
bound obtained in the symmetric subspace is valid even for the general case.

For completeness, we follow presenting the proof of the observation mentioned above. Let us
denote the ground state of a permutationally invariant Hamiltonian by |Ψ〉. This is at the same time
the T = 0 thermal ground state, hence it must be a permutationally invariant pure state. For such
states Skl|Ψ〉〈Ψ|Skl = |Ψ〉〈Ψ|, where Skl is the swap operator exchanging qubits k and l. Based on
this, follows that Skl|Ψ〉 = ckl|Ψ〉, and ckl ∈ −1,+1. There are three possible cases to consider:

i) All ckl = +1. In this case, for all permutation operator Πj we have
Πj |Ψ〉 = |Ψ〉, (4.11)

since any permutation operator Πj can be constructed as Πj = ∏i Skili . Equation (4.11) means
that the state |Ψ〉 is symmetric.

ii) All ckl = −1. This means that the state is anti-symmetric, however this state exists only for
N = 2 qubits.

iii) Not all ckl are identical to each other. In this case, there must be k+, l+, k−, k− such that
Sk+,l+|Ψ〉 = +|Ψ〉,
Sk−,l−|Ψ〉 = −|Ψ〉.

(4.12)

Let us assume that k+, l+, k−, l− are index different from each other. In this case, |Ψ′〉 =
Sk+,k−Sl+,l−|Ψ〉 another ground state of the Hamiltonian H such that

Sk+,l+|Ψ′〉 = −|Ψ′〉,
Sk−,l−|Ψ′〉 = +|Ψ′〉. (4.13)

Comparing Eqs. (4.12) and (4.13) we can conclude that |Ψ′〉 6= |Ψ〉, while due to the per-
mutational invariance of H we have that 〈H〉Ψ′ = 〈H〉Ψ. Thus, |Ψ〉 is not a non-degenerate
ground state. The proof works in an analogous way for the only nontrivial case k+ = k−,

54



4 WITNESSING METROLOGICALLY USEFUL ENTANGLEMENT

when Sk+,k− = 1.
Hence, if N > 2 then only i) is possible and |Ψ〉 must be symmetric.

Next, we will demonstrate the use of our approach for several experimentally relevant situations.
In the many-particle case, often symmetric operators can be used to describe accurately the system,
which makes it possible to carry out calculations for thousand of particles, as will be shown later in
this chapter.

4.2 Examples
In this section, we show how to obtain lower bounds based on the fidelities with respect to the GHZ
state and the unpolarized Dicke state as well as with different sets of powers of collective angular
momentum operators, e.g., the set {〈Jy〉, 〈Jx〉, 〈J2x 〉}.

4.2.1 Fidelity measurements
Let us consider the case when W is a projector onto a pure quantum state. First, we consider GHZ
states. Hence W is the projector |GHZ〉〈GHZ|, where

|GHZ〉 = 1√2 (|0 · · · 0〉+ |1 · · · 1〉) (4.14)
for spin-12 particles, and 〈W 〉 = FGHZ is the fidelity with respect to the GHZ state. Based on knowing
FGHZ, we would like to estimate FQ[ρ, Jz ]§.

Using Eq. (4.10), we will obtain an analytical tight lower bound on the QFI based on the fidelity
FGHZ. The calculation that we have to carry out is computing the bound

BF (FGHZ) = sup
r
{rFGHZ − sup

µ
{λmax[r|GHZ〉〈GHZ| − 4(Jz − µ)2]}}. (4.15)

We will make our calculations in the Jz orthonormal basis, which is defined with the 2N basis vectors
b0 = |00 . . . 000〉, b1 = |00 . . . 001〉, . . . , b(2N−2) = |11 . . . 110〉, and b(2N−1) = |11 . . . 111〉, as it can be
found in Eq. (A.2) for j = 12 . It is easy to see that the matrix in the argument of λmax in the Eq. (4.15)
is almost diagonal in the Jz basis. To be more specific, the only non-diagonal matrix block comes
from |GHZ〉〈GHZ|, which has non-trivial matrix elements only in the {b0, b(2N−1)} basis. Thus, we

§ Not tight lower bounds on the quantum Fisher information based on the fidelity have been presented in [103].
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have to diagonalize the following matrix

r|GHZ〉〈GHZ| − 4(Jz − µ)2 =
( r2 − 4(N2 − µ)2 r2

r2 r2 − 4(N2 + µ)2
)
⊕D, (4.16)

where D is already a (2N − 2) × (2N − 2) diagonal matrix with Dk = −4(〈Jz〉bk − µ)2 negative
eigenvalues for k = 1, 2, . . . , (2N − 2). This means that the Eq. (4.16) can be diagonalized as
diag[λ+, λ−, D1, D2, . . . , D2N−2], where the two eigenvalues λ± are

λ± = r
2 −N2 − 4µ2 ±

√
16µ2N2 + r2

4 . (4.17)

Next, we show a way that can simplify our calculations considerably. As indicated in Eq. (4.15),
we have to look for the maximal eigenvalue and then optimize it over µ. We exchange the order of
the two steps, that is, we look for the maximum of each eigenvalue over µ, and then find the maximal
one. The eigenvalues of D are negative and for some µ’s some of them can be zero. Due to this, the
problem can be simplified to the following equation

sup
µ
{λmax[r|GHZ〉〈GHZ| − 4(Jz − µ)2]} := max{0, sup

µ
(λ+)}

=




0, if r < 0,
r
2 + r2

16N2 if 0 6 r 6 4N2,
− N2 + r if r > 4N2,

(4.18)

where we did not have to have to look for the maximum of λ− over µ since clearly λ+ > λ−. Finally,
we have to substitute Eq. (4.18) into Eq. (4.15), and carry out the optimization over r , considering
FGHZ ∈ [0, 1].

This way we arrive at a lower bound of the QFI based on the fidelity with respect to the GHZ
state as

BF (FGHZ) =
{N2(1− FGHZ)2 if FGHZ < 1/2,

0 if FGHZ 6 1/2. (4.19)

This equation is plotted in Figure 4.1-(a). Note that in the figure the plot is normalized by N2 and
that the resulting semi-parabola is independent of the number of particles. Moreover, the bound is
zero for FGHZ 6 1/2. This is consistent with the fact that for the product states ρ = |111 . . . 11〉 or
ρ = |000 . . . 00〉 we have FGHZ = 1/2, while FQ[ρ, Jz ] = 0.
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(a) (b)
Figure 4.1: (a) Analytical solution of the bound BF for different values of the fidelity with respect to the
GHZ state. (b) Numerical results for the minimum quantum Fisher information as a function of the fidelity
with respect of unpolarized Dicke states perpendicular to the magnetic field, |D0N〉. (line) For systems
with 4 particles and (dashed) for systems with 40 particles. One may note that when the fidelity is at its
maximum the bound approaches 0.5 as it is the quantum Fisher information for a large particle number.

Next, let us consider a symmetric unpolarized Dicke state with even N particles along the x-
direction |DN〉x , given by Eq. (3.1). This state is known to be highly entangled [95, 104] and allows
for a Heisenberg limited interferometry [97]. In the following we may omit the subscript x since this
Dicke state will be always at the center of our attention, the unpolarized Dicke state perpendicular to
the magnetic field in this case along the z-direction. The witness operator that can be used for noisy
Dicke states is W = |DN〉〈DN |, hence the expectation value of the witness is just the fidelity with
respect to the Dicke state, i.e., 〈W 〉 = FDicke. In Figure 4.1-(b), we plotted the results for symmetric
Dicke states of various particle numbers. FDicke = 1 corresponds to FQ[ρ, Jz ] = N(N + 2)/2. At this
point, note that for the examples presented above, the QFI bound scales as O(N2) in the asymptotic
limit if the quantum state has been prepared perfectly¶.

Note that estimating FQ[ρ, Jz ] based on FDicke was possible for 40 qubits for Figure 4.1-(b), since
we carried out the calculations for the symmetric subspace. For our case, the witness operator W
is permutationally invariant and it has a non-degenerate eigenstate corresponding to the maximal
eigenvalue. Hence, based on the arguments of the Section 4.1.4 the bound is valid even for the
general case, i.e., non-symmetric states.

We now compute several quantities for the large N case. We show that if the fidelity with respect
to the Dicke state is larger than a bound then BF > 0, where we omit the arguments for brevity.
Moreover, we have seen in Figure 4.1-(b) that the lower bound on FQ[ρ, Jz ] as a function of the fidelity

¶O(x) is the usual Landau notation used to describe the asymptotic behavior for large x [77, 92].

57



4.2 Examples

FDicke normalized by N2 is not the same curve for all N . Next, we will demonstrate by numerical
evidence that the lower bound normalized by N2 collapses to a nontrivial curve for large N .

As a first step, let us consider the state completely polarized along z-direction |1〉⊗Ny . This state
does not change under rotations around the z-axis, hence FQ[ρ, Jz ] = 0. Its fidelity with respect to
the Dicke state |DN〉x is

FDicke(|1〉⊗Ny ) = 1
2N
( N
N/2

)
≈
√ 2
πN . (4.20)

From convexity of the bound on the quantum Fisher information in FDicke, it immediately follows that
for FDicke smaller than Eq. (4.20) the optimal bound on FQ[ρ, Jz ] will give zero.

Next, we examine what happens if the fidelity is larger than Eq. (4.20). For that we note first that
FQ[ρ, Jz ] is the convex roof of 4(∆Jz)2 [88, 89]. Hence, if we have a mixed state for which FQ[ρ, Jz ] is
zero, then it can always be decomposed into the mixture of pure states for which FQ[|Ψ〉, Jz ] is zero
too. As a consequence, the extremal states of the set of states for which FQ[ρ, Jz ] = 0 are pure states,
and we can restrict our search for pure states. The optimization problem we have to solve is given as

Fopt = {maxΨ |〈Ψ|DN〉x |2 : FQ[|Ψ〉, Jz ] = 0}. (4.21)
Hence, we have to carry out the optimization over pure states |Ψ〉 that are invariant under Uθ =
exp(−iJzθ) for any θ. Such states are the eigenstates of Jz . In order to maximize the overlap with the
Dicke state |DN〉x , we have to look for symmetric eigenstates of Jz . These are the symmetric Dicke
states in the z-basis |DN,m〉z . Then, using the following identity

q∑
k=0

(−1)k
(n
k
)( n

q − k
)

=



( n
q/2
)

(−1)q/2 for even q,
0 for odd q,

(4.22)

one finds that the squared overlap is given by

|〈DN,m|z|DN〉x |2 =



(N/2
m/2
)2( N

N/2
)

2N(Nm
) for even m,

0 for odd m,
(4.23)

which is maximal in the case of even N when m = N or m = 0, the state totally polarized along
the +z-direction or along the −z-direction respectively. We skip the case in which N is odd. For
detailed calculations of Eq. (4.23) see Appendix F.

Next, we will examine the behavior of our lower bound on FQ[ρ, Jz ] based on the fidelity FDicke
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for large N . In Figure 4.2, the calculations up to N = 500 present a strong evidence that for fidelity
values FDicke = 0.2, 0.5, 0.7 the lower bound on QFI has a O(N2) scaling for increasing N . If this
is correct then reaching a fidelity larger than a certain bound for large N would imply Heisenberg
scaling for the bound on the quantum Fisher information. Note that it is difficult to present a similar
numerical evidence for small values of FDicke since in that case the bound for QFI is nonzero only for
large N due to Eq. (4.20).

Figure 4.2: Lower bound on QFI normalized by N2 for various particle numbers N = 50, 100, 200, 300,
400, 500. (circles) Lower bound for FDicke = 0.2, (stars) for FDicke = 0.5, and (triangles) for FDicke = 0.7.
For a better visibility we use a logarithmic scale for the y-axis.

4.2.2 Spin-squeezed states
In the case of spin squeezing, the quantum state has a large spin in the y-direction, while a decreased
variance in the x-direction. By measuring 〈Jy〉 and (∆Jx )2 we can estimate the lower bound on the
quantum Fisher Information by Eq. (2.50). However, this formula does not necessarily give the best
lower bound for all values of the collective observables. With our approach we can find the best
bound.

To give a concrete example, we choose W1 = Jy, W2 = J2x and W3 = Jx for the operators to be
measured. We vary w1 and w2 in some interval. We also require that w3 = 0, since we assume
that the mean spin points into the y-direction∗. This is reasonable since in most spin-squeezing
experiments we know the direction of the mean spin.

Our result can be seen in Figure 4.3. We chose N = 4 particles since for small N the main
∗ Due to symmetries of the problem, when minimizing FQ[ρ, Jz ] with the constraints on 〈Jz〉 and 〈J2x 〉, we do not have

to add explicitly the constraint 〈Jx〉 = 0. The optimization with only the first two constraints will give the same bound.
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features of the plot are clearly visible. The hatched area corresponds to non-physical combination of
expectation values. States at the boundary can be obtained as ground states of H (±)

bnd(λ) = ±J2x − λJy,
see Appendix D. In Figure 4.3, the state fully polarized in the y-direction, and initial state for spin-
squeezing experiments, corresponds to point T. The unpolarized Dicke state along the x-direction
Eq. (3.1) corresponds to point D.

Figure 4.3: We show as a function of the expectation value, 〈Jy〉, and the variance in the perpendicular
direction, (∆Jx )2, the minimum sensitivity for a 4-qubit system. (hatched) The physically forbidden region
is indicated. Interesting quantum states: (M) Mixed state defined in the text, (T) totally polarized state, (S)
singlet state, and (D) Dicke state. (W) Any mixture of the singlet state and the completely mixed state of
the symmetric subspace. Other states can be found on this line, for instance, the completely mixed state of
the whole Hilbert space. (dashed) Shot-noise threshold. Below this line non-classical sensitivities can be
achieved. (cross) In Figure 4.4, we compute the bound when an additional expectation value is measured.

We add that outside the symmetric subspace, there are other states with 〈Jy〉 = 〈J2x 〉 = 0,
which also correspond to the point D, e.g the singlet state labeled by the point S. However, usual
spin-squeezing procedures remain in the symmetric subspace, thus we discuss only the Dicke state.
Spin-squeezing makes (∆Jx )2 decrease, while 〈Jy〉 also decreased somewhat. Hence, at least for
small squeezing it corresponds to moving down from point T to point D following the boundary, while
the metrological usefulness is increasing. Below the dashed line FQ[ρ, Jz ] > N , hence the state
possesses metrologically useful entanglement [3]. The equal mixture of |000 . . . 00〉x and |111 . . . 11〉x
corresponds to point M, with FQ[ρ, Jz ] = N . Finally, the completely mixed state rests on the line W.
It cannot be used for metrology, hence FQ[ρ, Jz ] = 0.

We now compare the difference between our bound and the bound of L. Pezzè and A. Smerzi
Eq. (2.50). First, we consider the experimentally relevant region for which (∆Jx )2 6 1. We find that
for points away from the physical boundary at least by 0.001 on the vertical axis, the difference
between the two bounds is smaller than 2 × 10−6. Hence, Eq. (2.50) practically coincides with the
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optimal bound for (∆Jx )2 < 1.
For points at the boundary, the difference is somewhat larger, but still small, the relative difference

is smaller than 2% for 4 particles. We compute the difference between the Eq (2.50) and our bound
for different number of particles and for states at the boundary from the state totally polarized T to
the unpolarized Dicke state at D, see Figure 4.4-(a).

(a) (b)
Figure 4.4: (a) Difference between the bound of Pezzè-Smerzi and the optimal bound for the quantum
Fisher information normalized by the value of the optimal bound itself for the bosonic ground states of
H = J2x −λJy for ∀λ ∈ [0,∞). From dark to lighter colors (solid-dark, dotted, dash-dotted, dashed, pointed,
solid-light), results for different particle numbers, N = 4, 6, 10, 20, 1000 respectively. For large particle
numbers the difference is largest when the polarization is around two thirds of the maximal polarization
and that this difference is less than 2.6%. (b) Lower bound on QFI for 〈Jy〉 = 1.5, (∆Jx )2 = 0.567, as a
function of 〈J4x 〉. The corresponding point in Figure 4.3 is denoted by a cross. (gray-area) Lower bound
on precision below the shot-noise limit. (dashed) Lower bound without constraining 〈J4x 〉. (dash-dotted)
Lower bound when bosonic symmetry is considered. As can be seen, an additional constraint or assuming
symmetry improves the bound.

We now consider regions on Figure 4.3 for which (∆Jx )2 > 1. The difference between the two
bounds is now larger. It is larger at point M, for which the bound Eq. (2.50) is zero. Hence for
measurement values corresponding to points close to M, our method improve the formula Eq. (2.50).

It is important from the point of view of applying our method to spin-squeezing experiments that
the bound Eq. (2.50) can be substantially improved for (∆Jx )2 < 1, if we assume bosonic symmetry
for the system, or we measure an additional quantity, such as 〈J4x 〉 as shown in Figure 4.4-(b).
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4.2.3 Dicke states
In this section, we use our method to find lower bounds on the QFI for states close to the Dicke
states (3.1) along the x-direction, based on collective measurements. We discuss what operators have
to be measured to estimate the metrological usefulness of the state. In Section 4.3.2, we will test our
approach for a realistic system with very many particles.

In order to estimate the metrological usefulness of states created in such experiments, we choose
to measure W1 = J2x , W2 = J2y and W3 = J2z since the expectation values of these operators uniquely
define the ideal Dicke state, and they have been already used for entanglement detection [24]. In
cold gas experiments of nowadays, the state created is invariant under transformations of the type
Ux (φ) = exp(−iJxφ) [105]. For such states 〈J2y〉 = 〈J2z 〉, which we also use as a constraint in our
optimization.

Let us demonstrate how our method works in an example for small systems. Figure 4.5 shows the
result for 6 qubits for symmetric states for which

〈J2x + J2y + J2z 〉 = N(N + 2)
4 =: JN/2, (4.24)

which was introduced in Chapter 3. It can be seen that the lower bound on quantum Fisher Information
is the largest for 〈J2x 〉 = 0. It reaches the value corresponding to the ideal Dicke state, FQ[ρ, Jz ]/N =
(N + 2)/2 = 4. It is remarkable that the state is also useful for metrology if 〈J2x 〉 is very large. In this
case 〈J2y〉 and 〈J2z 〉 are smaller than 〈J2x 〉.

Figure 4.5: Optimal lower bound on the quantum Fisher Information for symmetric states with 〈J2y〉 = 〈J2z 〉.
Even if it is metrologicaly useful for a wide range of 〈J2x 〉, the numerics shows us a tiny region where the
metrological gain is surpassing the shot-noise limit.
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4.3 Calculations for experimental data
In this section, we use our method to find tight lower bound on the QFI based on experimental data. In
particular, we will determine the bound for several experiments in photons and trapped ions creating
GHZ states and Dicke states, in which the fidelity has been measured [49, 52, 54–56, 60, 106–109],
which is much easier than obtaining the quantum Fisher Information from the density matrix [77],
or estimation it from a metrological procedure [8]. We will obtain a bound on the QFI for a spin-
squeezing experiment with thousand of particles [7]. Based on numerical examples, we see that the
bound Eq. (2.50) is close to the optimal even for not completely polarized states. Assuming symmetry
or knowing additional expectation values can improve the bound Eq. (2.50). Finally, we will also
obtain the bound for the QFI for a recent experiment with Dicke states [24]. The estimate of the
precision based on considering the particular case when 〈J2x 〉 is measured for parameter estimation
[105] is close to the optimal bound computed by our method.

4.3.1 Few-particle experiments
Now, we will estimate the quantum Fisher information based on the fidelity with respect to Dicke
states and GHZ states for several experiments with photons and trapped cold ions, following the ideas
of Section 4.2.1.

Our results are summarized in Table 4.1. The experiments in [54, 109] are with hyperentangled
qubits, while in the rest of experiments a single qubit is stored in a particle. Ref. [56] describes
experiments with 2-14 ions, we presented only results of two of them. Finally, for the experiment of
Ref. [110] we used the fidelity estimated using reasonable assumptions discussed in that paper, while
the worst case fidelity is lower.

We can compare our estimate to the quantum Fisher information of the state for the experiment of
Ref. [60], where the QFI for the density matrix was obtained as FQ[ρ, Jz ]/N = (10.326± 0.093)/N =
(2.5816 ± 0.02325). As can be seen in Table 4.1, this value is larger than we obtained, however, it
was calculated by knowing the entire matrixm, while our bound is obtained from the fidelity alone.

4.3.2 Many-particle experiments
In this section, we will estimate the quantum Fisher information based on collective measurements
for experiments aiming to create spin-squeezed states and Dicke states.

Spin-squeezing experiment
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Physical Target Fidelity BF /N Ref.system quantum state

photons
|D4〉

0.844± 0.008 1.432± 0.044 [106]
0.78± 0.008 1.124± 0.236 [109]
0.8872± 0.0055 1.680± 0.036 [60]
0.873± 0.005 1.44± 0.024 [34]

|D6〉 0.654± 0.024 0.564± 0.076 [107]
0.56± 0.02 0.304± 0.048 [108]

photons
|GHZ4〉 0.840± 0.007 1.848± 0.076 [110]
|GHZ5〉 0.68 0.65 [110]
|GHZ8〉 0.59± 0.02 0.256± 0.128 [111]
|GHZ8〉 0.776± 0.06 2.4376± 0.1072 [54]
|GHZ10〉 0.561± 0.019 0.15± 0.11 [54]

trapped-ions
|GHZ3〉 0.89± 0.03 1.824± 0.291 [49]
|GHZ4〉 0.57± 0.02 0.08± 0.052 [55]
|GHZ6〉 0.509± 0.004 0.0018± 0.0018 [112]
|GHZ8〉 0.817± 0.004 3.21± 0.08 [56]
|GHZ10〉 0.626± 0.006 0.64± 0.06 [56]

Table 4.1: Fidelity values and the corresponding bound for the QFI for several experiments with Dicke
states and GHZ states. Bounds normalized with N are shown. The ones surpassing the value one in
the fourth column show quantum entanglement enhanced metrological usefulness. For Dicke states the
maximum is achieved at (N + 2)/2, i.e., 3 for the |D4〉 case and 4 for the |D6〉 case. For the case in which
GHZ states are used the limit for the normalized bound is N , the particle number.

We turn our attention to a recent many-particle spin-squeezing experiment in cold gases to
use our method to find lower bounds on the quantum Fisher information, following the ideas of
Section 4.2.2. With that we show that the lower bound given in Eq. (2.50) is close to the optimal.
We also demonstrate that we carry out calculations for real systems.

In particular, for our calculations we use the data from spin-squeezing experiments of Ref. [7]. The
particle number is N = 2300, and the spin-squeezing parameter defined as

ξ2s = N (∆Jx )2
〈Jy〉2 (4.25)

has the value ξ2s = −8.2dB = 10−8.2/10 = 0.1514. The spin length 〈Jy〉 has been close to maximal.
In our calculations, we choose

〈Jy〉 = αN2 , (4.26)
where we will test our method with various values for α . For each α we use (∆Jx )2 will be given
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such that we get the experimentally obtained spin-squeezing parameter Eq. (4.25). Moreover, we
assume 〈Jx〉 = 0, as the y-direction was the direction of the mean spin in the experiment. Based on
Eq. (2.50), the bound for the quantum Fisher information is obtained as

FQ[ρ, Jz ]
N > 1

ξ2s
= 6.605. (4.27)

For our computations we need a tool to handle large systems. We will carry out the calculations
for symmetric states. this way we obtain a lower bound on the QFI that we will denote by B sym.
As already mentioned, we could obtain a bound for the QFI that is valid even for general case, not
necessarily symmetric states if the matrix from which compute the maximum eigenvalue Eq. (4.9) has a
non-degenerated largest eigenvalue. This is not the case in general for the spin-squeezing problem.
However, we still know that our bound obtained with our calculations in the symmetric subspace
cannot be smaller than the optimal bound BF , which must be larger or equal to the Eq. (2.50) since
it cannot be smaller than the optimal bound for general states. These relations can be summarized
as

B sym > BF > 〈Jy〉2(∆Jx )2 , (4.28)
where on the right-hand side we just used the bound in Eq. (2.50).

Our calculations lead to B sym(〈Jy〉, (∆Jx )2)
N = 6.605 (4.29)

for a wide range of values of α . That is, based on numerics, the left-hand side and the right-hand side
of Eq. (4.29) seem to be equal. This implies that the lower bound Eq. (2.50) is optimal for estimating
the QFI for the system.

We follow giving the details of our calculations for α = 0.5, 0.85 and we show examples in which
we can improve the bound Eq. (2.50) with our approach, if symmetry is assumed. We present a
simple scheme that can be used to handle large systems, and make calculations for larger particle
number. Thus, we need fewer steps for the numerical optimization for large system sizes, which makes
our computations faster. Second, while we will be able to carry out the calculation for the particle
number of the experiment, we will also see that we could even extrapolate the results from the results
obtained for lower particle numbers. This is useful for future application of our method for very large
systems.

The basic idea is that we transform the collective quantities from N to a smaller particle number
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using the scaling relation

〈Jy〉 = N ′
2 α, (4.30)

(∆Jx )2 = ξ2s
N ′
4 α2. (4.31)

We see that for the scaling we consider, for all N ′ the bound in Eq. (2.50) is valid, i.e., is obtained as
FQ[ρN ′, Jz ]

N ′ > 1
ξ2s

= 6.605. (4.32)

Let us first take α = 0.85, which is somewhat smaller than the experimental value, however, it
helps us to see various characteristics of the method. At the end of the section we will also discuss
the results for other values of α . Based on these ideas, we compute the bound B sym for the quantum
Fisher information for an increasing system size N ′.

The results can be seen in Figure 4.6-(a). The bound obtained this way is close to the bound in
Eq. (4.27) even for small N ′. For larger particle number it is constant and coincides with the bound
in Eq. (4.27) This also strongly supports the idea that we could use the result for small particle
numbers to extrapolate the bound for N . Since for the experimental particle number we obtain that
B sym equals the bound in Eq. (4.27), we find that all three lower bounds in Eq. (4.29) must be equal.
Hence, Eq. (2.50) is optimal for the experimental system and α considered before in this section.
Besides, these results present also a strong argument for the correctness of our approach.

We now give more details of the calculation. We were able to carry out the optimizations up to
N ′ = 2300 with a usual laptop computer using MATLAB programming language. We started the
calculation for each given particle number with the rk parameters obtained for the previous simulation
with a smaller particle number. This allows for faster finding of the solution than if we would start
the rk parameters arbitrarily.

Let us consider a spin-squeezed state that is not fully polarized and α = 0.5. In Figure 4.6-(b),
we can see that for small particle numbers we have a larger bound on FQ[ρ, Jz ] than the one obtained
from Eq (2.50). Thus for the case in which the particle number would be smaller we could improve
the bound Eq. (2.50) by assuming symmetry. On the other hand, for large particle number we recover
the bound Eq. (2.50).

Finally, we add a note on the technical details. We carried out our calculations with the constraints
on (∆Jx )2 and 〈Jy〉, with the additional constraint 〈Jx〉 = 0. For the experimental particle numbers, one

For MATLAB R2015a, see http://www.mathworks.com.
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(a) (b)
Figure 4.6: (Color line) Lower bound on the QFI based on 〈Jy〉 and (∆Jx )2 obtained for the symmetric
subspace for different particle numbers N ′. N=2300 corresponds to the spin-squeezing experiment [7]. (a)
Almost fully polarized spin-squeezed state. Even for a moderate N ′, the bound is practically identical to
the right-hand side of the Eq. (4.32). (b) Spin-squeezed state that is not fully polarized. For large N ′, the
bound converges to the right-hand side of the Eq. (4.32), represented by a dashed line. (dots) Results of
our calculations, which are connected by straight lines.

can show that our results are valid even if we constrained only (∆Jx )2 and 〈Jy〉, and did not use the
〈Jx〉 = 0 constraint. This way, in principle, we could only get a lower bound that is equal to the one
we obtained before or lower. However, we obtained before a value identical to the analytical bound
Eq. (2.50). The optimal bound cannot be below the analytic bound, since then the analytic bound
would overestimate the quantum Fisher information, and it would not be a valid bound. Hence, even
an optimization without the 〈Jx〉 = 0 constraint could not obtain a smaller value than our results.

Experiment creating Dicke states

In this section, we present our calculations for an experiment aiming at creating Dicke states
in cold gases [24]. The basic ideas are similar to the ones explained in Section 4.2.3 for small
systems. The experimental data, as in previous Section 3.4, are N = 7900, 〈J2y〉 = 112 ± 31,
〈J2x 〉 = 〈J2z 〉 = 6 × 106 ± 0.6 × 106 [105]. Applying some simple transformations, we can make
calculations for a very large numbers of particles, and obtain results even for general, non-symmetric
systems.

In the general, non-symmetric case, we can handle only small problems. Thus, we have to transform
the collective quantities such that the corresponding quantum state, i.e., it has to fulfill

〈J2x 〉sym + 〈J2x 〉sym + 〈J2x 〉sym = JN/2, (4.33)
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where JN/2 is defined on Eq. (4.24). A mapping of this type can be realized equally scaling all second
moments of the angular momentum projections as

〈J2l 〉sym,N = γ〈J2l 〉N , (4.34)
where we now added the label N to avoid confusions in upcoming equations, l = x, y, z and where
we used the coefficient γ to be

γ = JN/2
〈J2x 〉N + 〈J2y〉N + 〈J2z 〉N . (4.35)

Note that γ = 1 if the original state is symmetric.
Next, based on the ideas of this chapter, we calculate the lower bound on the quantum Fisher

information for symmetric systems, which we denote B sym,N . To obtain the results for the original
non-symmetric case, the convex nature of the BN implies that

BN 6 1
γ B sym,N , (4.36)

where B sym,N corresponds to the bound one would obtain in the symmetric subspace for expectation
values given by the Eq. (4.34). This can also be seen using an auxiliary state ρ̃ that mixes the
symmetric state that has the expectation values computed with Eq. (4.34) and the singlet state that
has zero value for all these expectation values. Hence, if we construct a mixture of this type as follows

ρ̃N = (1− γ−1)ρsinglet,N + γ−1ρsym,N , (4.37)
we have that ρ̃N has the same expectation values as the original non-symmetric case. This way, we
can relate the bound for general systems to the quantum Fisher information for symmetric cases as

BN 6 FQ[ρ̃N , Jz ] = 1
γFQ[ρsym,N, Jz ]. (4.38)

Here, the inequality comes due to that our bound cannot be larger than the QFI of any state having
the given set of expectation values. On the other hand, the equality holds due to the fact that both
ρ̃ and Jz can be written as block-diagonal matrix of blocks corresponding to different eigenvalues of
J2. In particular, ρsinglet,N has non-zero elements only in the blocks for which 〈J2〉 = 0, while ρsym,N
has nonzero elements only in the blocks in which 〈J2〉 is maximal. Note that J2 is a shorthand of
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J2x + J2y + J2z . Then we can use the general formula [68]
FQ[⊕k pkρk ,⊕k Ak ] =

∑
k
pkFQ[ρk , Ak ], (4.39)

where ρk are density matrices with unit trace, ∑k pk = 1 and the k index represent the block
subspaces of the system and the operators Ak .

Extensive numerics for small systems show that the inequality in Eq. (4.38) is very close to an
equality within the numerical precision

BN ≈ 1
γ B sym,N . (4.40)

To obtain the lower bound BN we also use an increasing system size N ′ as we have done in at
the beginning of this section. However, in this case we will not be able to do the calculation for
the experimental particle number, and we will use extrapolation from the results obtained for smaller
particle numbers.

First, we transform the measured second moments to values corresponding to a symmetric system
using Eqs. (4.34) and (4.35). For our case, γ = 1.301. This way, we obtain

〈J2y〉sym,N = 145.69,
〈J2x 〉sym,N = 〈J2z 〉sym,N = 7.8× 106. (4.41)

Next, we will carry out calculations for symmetric systems. We will consider a smaller system N ′
that keeps expectation values such that the corresponding quantum state must be symmetric. Hence,
we will use the following relation to find the target expectation values for smaller systems

〈J2y〉sym,N ′ = 〈J2y〉sym,N ,
〈J2x 〉sym,N ′ = 〈J2z 〉sym,N ′ = 1

2(JN ′/2)− 〈J2y〉sym,N ′),
(4.42)

where JN ′/2 is defined in Eq. (4.24). Note that with Eq. (4.24) holds for all N ′, hence the state must
be symmetric. Hence, the main characteristics of the scaling relation can be summarized as follows,
〈J2y〉sym,N ′ remains constant for all N ′ while 〈J2x 〉sym,N ′ and 〈J2z 〉sym,N ′ are chosen such that they are equal
to each other and the state is symmetric. For large N, this implies 〈J2x 〉sym,N = 〈J2z 〉sym,N ∼ N(N+2)/8.

Let us now turn to central quantities of our chapter, the lower bounds on the quantum Fisher
information. A central point in our scheme is that due to the scaling properties of the system, we can
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obtain the value for the particle number N from the values of a smaller particle number N ′ as [98]

B sym,N ≈ JN/2JN ′/2B sym,N ′, (4.43)

which we will verify numerically. Note that for large N , we have JN/2/JN ′/2 ∼ N2/(N ′)2.
As last step, we have to return from the symmetric system to our real system, not fully symmetric

one. Based on Eq. (4.43) and assuming Eq. (4.40), a relation for the lower bound for the original
problem can be obtained from the bound on the symmetric problem with N ′ particles as

BN ≈ 1
γ
JN/2
JN ′/2B sym,N ′ = 〈J

2x 〉N + 〈J2y〉N + 〈J2z 〉N
JN ′/2 B sym,N ′. (4.44)

In Figure 4.7, we plotted the right-hand side of Eq. (4.44) as the function of N ′ divided by N . We
can see that BN ′/N is constant or slightly increasing for N ′ > 400. This is a strong evidence that
Eq. (4.43) is valid for relatively large particle numbers. With this, we arrive at the result for the
experimental system

BN (〈J2y〉, 〈J2x 〉 = 〈J2z 〉)
N ≈ 2.94. (4.45)

The ≈ sign is used referring to the fact that we assume that the inequality in Eq. (4.38) is close to
be saturated and that we did sufficient numerics for an increasing system size N ′ to have a good
asymptotic approach to the real value Eq. (4.43).

Figure 4.7: Asymptotic behavior of the bound as a function of N ′. The bound is first obtained for a
symmetric subspace of N ′ particles and then the bound for N particles is computed using the Eq. (4.44).
The function is monotonically increasing. Hence, with N ′ ≈ 200 we already obtain a good lower bound.
This approach does not overestimate the precision bound.
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It is instructive to compare the value of Eq. (4.45) to the one obtained in Section 3.4, where the same
system was characterized base on its metrological usefulness. Such result implies FQ[ρ, Jz ]/N > 3.3
which is somewhat larger than our recent result as we did not use the knowledge of the fourth
moments, only the second moments. The closeness of the two results is a strong argument for the
correctness of our calculations.

4.4 Scaling of FQ[ρ, Jz ] with N
Recent important works examine the scaling of the quantum Fisher information with the particle
number for metrology under the presence of decoherence [61, 62]. They consider the QFI defined
now for the non-unitary, noisy evolution. They find that for small N it is close to the value obtained
by considering coherent dynamics. Hence, even the Heisenberg scaling, O(N2), can be reached.
However, if N is sufficiently large, then, due to the decoherence during the parameter estimation, the
QFI scales as O(N).

We have to stress that the findings of B. M. Escher et al [61] and R. Demkowicz-Dobrzański et al
[62] are not applicable to our case. Our methods estimate the quantum Fisher information assuming
a perfect unitary dynamics. The quantum Fisher information can be smaller that what we expect
ideally only due to the imperfect preparation of the state∗∗. We can even find simple conditions on
the state preparation that lead to a Heisenberg scaling. Based on Eq. (4.18), if we could realize
quantum states ρN such that FGHZ(ρN ) > 0.5 + ε for N → ∞ for some ε > 0, then we would
reach BF (FGHZ) = O(N2). Strong numerical evidence suggest that a similar relation holds for fidelity
FDicke and BF (FGHZ), see Section 4.2.3. From another point of view, our method can estimate FQ[ρ, Jz ]
for large particle numbers, while a direct measurement of the metrological sensitivity considerably
underestimates it.

∗∗ This is also relevant for Ref. [103], where FQ = O(N2) is reached with weakly entangled states.
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5 Precision bound for gradient field
estimation with atomic ensembles

"To consult the statistician after an experiment is finished is often merely to ask him to conduct
a post mortem examination. He can perhaps say what the experiment died of."

Ronald Fisher

I n this chapter, one of the most fundamental two-parameter estimation tasks in magnetometry is
considered, namely gradient magnetometry. We will add the gradient of the magnetic field as

the second parameter beside the constant (homogeneous) part of the field. While most works in
magnetometry with a single ensemble focus only on the determination of the strength and direction
of the magnetic field, certain measurement schemes for the gradient have already been proposed and
tested experimentally. We study gradient magnetometry with an ensemble of atoms described by a
very general probability distribution function for the position of the atoms, and considering atoms
with an arbitrary spin. Some schemes use an imaging of the ensemble with a high spatial resolution,
however, they do not count as single-ensemble methods in the sense we use this expression in our
paper, since in this case not only collective observables are measured [17–19]. There is a method
based on collective measurements of the spin length of a fully polarized ensemble [37]. Finally, there
is a scheme where they use as a trial state a many-body singlet states, which is described in Ref. [57].

We calculate precision bounds for estimating the gradient of the magnetic field based on the
quantum Fisher information. For quantum states that are invariant under the homogeneous magnetic

73



field, a single parameter estimation is sufficient. In contrast to this, for states that are sensitive to
the homogeneous fields, a two-parameter estimation problem must be solved to obtain the gradient
parameter, since the homogeneous field must also be taken into account. We use our method to
calculate precision bounds for gradient estimation with a chain of atoms and even with two spatially
separated atomic ensembles which feel different magnetic fields. As we said, we also consider a single
atomic ensemble with an arbitrary density profile, in which atoms cannot be addressed individually,
which is a very relevant case for experiments. Our model can take into account even correlations
between particle positions.

The atoms will be distributed along the x-axis, so y = z = 0, and in principle they will be able
to feel differences in the magnetic field at different points of the axis. The magnetic field at the atoms
will be given by a linear function of the position x

B(x, 0, 0) = B0 + xB1 + O(x2), (5.1)
where we will neglect the terms of order two or higher. We will consider the magnetic field pointing
along the z-direction direction only, B0 = B0k and B1 = B1k , where k is the unitary vector pointing
on the z-direction. For this configuration, due to the Maxwell equations, with no currents or changing
electric fields, we have

∇·B = 0,
∇ × B = 0, (5.2)

where 0 ≡ (0, 0, 0) is the 3-dimensional null vector. This implies ∑l=x,y,z ∂lBl = 0 and ∂mBl−∂lBm =
0 for all l 6= m, where ∂m ≡ ∂/∂m stands for the partial derivative over the variable m. Thus, the
spatial derivatives of the field components are not independent of each other. However, in the case
of a linear arranged particle ensemble only the derivative along the x-axis has an influence on the
quantum dynamics of the atoms.

We will determine the precision bounds for the estimation of the magnetic field gradient B1 based
on the quantum Fisher information [2, 31, 33, 76, 87, 113]. In this context the Heisenberg and shot-
noise scaling are defined as usual. The achievable precision in terms of the number of particles
scales as (∆θ)−2 ∼ N and (∆θ)−2 ∼ N2 for shot-noise scaling and Heisenberg scaling, respectively.
We will show that with spin chains or two ensembles at different positions the Heisenberg scaling
is possible. Concerning the case of a single ensemble, we will show the following. Since in such
systems the atoms cannot be be individually addressed, we will assume that the quantum state is
permutationally invariant. We will show that for states insensitive to the homogeneous magnetic
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5 METROLOGY OF THE GRADIENT MAGNETIC FIELD

field, one can reduce the problem to a one-parameter estimation scenario. Such states can arise in
a single-ensemble scheme, however, it will be shown that the Heisenberg limit cannot be reached
in this case. When the state is sensitive to the homogeneous field, the spatial correlation between
the atoms must be taken into account in order to show whether the system can overcome the shot-
noise scaling and achieve the Heisenberg scaling. Nevertheless, single-ensemble measurements have
certain advantages since the spatial resolution can be higher and the experimental requirements are
smaller since only a single ensemble must be prepared.

On the other hand, for states sensitive to the homogeneous field, the classical limit can be
overcome only if the particle positions are highly correlated with each other. Our calculations are
generally valid for any measurement, thus they are relevant to many recent experiments [13–19, 37].
We note that in the case of the singlet, our precision bounds are saturated by the metrological scheme
presented in Ref. [57].

We can also connect our results to entanglement theory [35, 36, 65]. We find that even in the case
of gradient magnetometry the shot-noise scaling cannot be surpassed with separable states, while the
Heisenberg scaling can be reached with entangled states. However, in the single-ensemble scenario,
the shot-noise scaling can be surpassed only if the particle positions are correlated, which is the
case if the particles attract each other. We will go into the details in Section 5.4.

The chapter is organized as follows. In Section 5.1, we will present the setup of the system. In
Section 5.2, the metrological basic concepts used in the chapter are presented. In Section 5.3, we
will show the results for the chain of ions and for when two distant ensembles are considered In
Section 5.4, we restrict our calculations to single permutationally invariant atomic ensembles and we
develop some particular cases, such as the singlet spin state or the totally polarized state.

5.1 The setup
In this section, we will present the characteristics of our setup. For simplicity, as well as following
recent experiments (e.g., Ref. [17]), we will consider an ensemble of spin-j particles placed in a
one-dimensional trap or a chain. Furthermore, we will assume that the particles are point-like and
distinguishable. On the other hand, we assume that the particles have a spin, which is a quantum
degree of freedom. Such a model is used typically to describe experiments with cold atomic ensembles.

Based on these considerations, we assume that the state is factorizable into a spatial and a spin
part as

ρ = ρ(x) ⊗ ρ(s), (5.3)
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and that the spatial part can be characterized as an incoherent mixture of point-like particles that
can be written as

ρ(x) =
∫

Pr(x)|φx〉〈φx | dNx, (5.4)
where |φx〉 is a pure state of each particle been placed at x = (x1, x2, . . . , xN ), respectively. Each
part of the state acts on different Hilbert spaces denoted by H(x) and H(s), respectively. Note that we
skip to write the superscript (x), denoting the Hilbert space to which |φx〉 belongs, for simplicity.

In order to write the operators, including the state ρ(x), acting on the Hilbert space H(x), we will
invoke the completeness relation found in the literature [69, 70] for the spatial continuous Hilbert
space ∫

|x〉〈x| dNx = 1, (5.5)
where |x〉 = |x1〉(1,x) ⊗ |x2〉(2,x) · · · ⊗ |xN〉(N,x) is the tensor product of the position eigenvectors of each
particle which obey

〈x|y〉 = δ(x − y), (5.6)
where δ(x − y) is the Dirac delta found in the literature [69, 70].

To see how our notation works, let us write the vector of the position operators for each particle
as x̂ ≡ (x (1), x (2), . . . , x (N)), where we used the ·̂ notation on top of x to distinguish it from the vector
of position variables. It is known that x̂ acting on |x〉 will give x|x〉 [69, 70]. Hence,

x̂ = x̂1 = x̂
∫
|x〉〈x| dNx =

∫
x̂|x〉〈x| dNx =

∫
x|x〉〈x| dNx. (5.7)

We can follow similar arguments to rewrite the pure state |φx〉. First, note also that the expectation
value of the position operator for such a state is always x . Hence, such a state must be proportional
to |x〉. On the other hand, a pure state must be normalized to one, hence, we can construct such a
state by dividing the eigenvector |x〉 by the square-root of its norm as

|φx〉 ≡ |x〉√〈x|x〉 . (5.8)

The meaning of Eq. (5.8) is clear, while a rigorous form of how various limits are taken could over-
complicate our discussion. For illustrative purposes, we compute in this basis the expectation value
of the position operator for these pure states as

〈x̂〉φx = 〈φx |
∫
y|y〉〈y| dNy|φx〉 =

∫
y〈x|y〉〈y|x〉〈x|x〉 dNy = x 〈x|x〉〈x|x〉 = x, (5.9)
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where in the step before the last we have used 〈y|x〉 = δ(y − x) to compute the integral. We can
rewrite the spatial state Eq. (5.4) as

ρ(x) =
∫ Pr(x)
〈x|x〉 |x〉〈x| d

Nx. (5.10)

Note also that if the eigen-decomposition of the internal state is ρ(s) = ∑
λ pλ|λ〉〈λ|, then the whole

state is decomposed as
ρ =

∫ ∑
λ

Pr(x)
〈x|x〉pλ|x, λ〉〈x, λ| d

Nx, (5.11)

where |x, λ〉 is a shorthand for |x〉(x) ⊗ |λ〉(s), the eigenstates, where their corresponding eigenvalues
are in this case Pr(x)

〈x|x〉pλ.
At this point, we want to emphasize that our method could easily be extended to the case of Bose-

Einstein condensates, or any other spatial configuration, not considered in this paper. In the case of
BECs, the spatial state of the particles would be a pure state, and we would have ρ(x) = (|Ψ〉〈Ψ|)⊗N ,
where |Ψ〉 is a spatial single-particle state.

Although in our case the parameter to be estimated is B1, the time-evolution of the state is
usually also affected by the second unknown parameter, the homogeneous field B0, which means that
we generally have to consider a two-parameter estimation problem. The angular momentum of an
individual atom is coupled to the magnetic field, yielding the following interaction term

h(n) = γB(n,x)z ⊗ j (n,s)z , (5.12)
where the operator B(n)z = B0 +B1x (n) acts on the spatial part of the nth particle Hilbert space H(n,x).

The sum of all single-particle interactions with the magnetic field provide the total Hamiltonian

H = γ
N∑
n=1

B(n,x)z ⊗ j (n,s)z , (5.13)

which will generate the time evolution of the system.
We will calculate lower bounds on the precision of estimating B1 based on measurements on the

state after it passed through the unitary dynamics U = exp(−iH~ t), where t is the time spent by
the system under the influence of the magnetic field. The unitary operator can be rewritten in the
following way

U = e−i(b0H0+b1H1), (5.14)
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where the bi = γBit/~ and therefore b1 encodes the gradient of the magnetic field B1. Here, the
generator describing the effect of the homogeneous field is given as

H0 =
N∑
n=1

j (n)z = Jz, (5.15)

while the generator describing the effect of the gradient is

H1 =
N∑
n=1

x (n)j (n)z . (5.16)

As in Eq. (5.16), we will usually omit ⊗ and the superscripts (x) and (s) for simplicity, and will use
it only if it is necessary to make our explanation clearer.

Note that the operators H0 and H1 commute with each other. These two commuting dynamics are
the two simplest in an atomic ensemble as they are based on collective operators not requiring an
individual access to the particles. This is mainly because the spatial part in Eq. (5.12) is represented
by a single-particle operator and not by a scalar depending on the position of the particle. The last
approach, where the position of the particle is encoded in a scalar, would require to know in advance
the location of the particles to construct the Hamiltonian H1 Eq. (5.16), which would yield finally to a
non-collective operator for H1. This approach is widely adopted by the community, since it simplifies
the problem considerably [57, 114].

Note also that it is not necessarily true that the operators we have to measure in order to estimate
b0 and b1 must commute with each other. On the other hand, in schemes in which the gradient is
calculated based on measurements in two separate atomic ensembles or different atoms in a chain,
the measuring operators can always commute with each other [13, 14, 98].

5.2 Cramér-Rao bound for gradient estimation
In this section, we show how the Cramér-Rao bound and the QFI help us to obtain the precision bound
that is valid for any measurement scenario. We will discuss gradient magnetometry using quantum
states that are insensitive to homogeneous fields, which is a single-parameter estimation task. Then,
we discuss the case of quantum states sensitive to homogeneous fields, which is a two-parameter
estimation problem. We show that the precision bound obtained does not change under spatial
translation, which is one of the main tools to derive our bounds. For the two-parameter estimation
task, we will introduce the two-parameter Cramér-Rao bound and the corresponding two-parameter
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QFI matrix, and we adapt those expressions to our problem.
For clarity, we present our main tools in subsequent paragraphs before going into details. Here

we define a functional very similar to the QFI Eq. (2.51). This expression will be used along this
chapter and it will be useful for the transition to the multi-parameter problem, i.e, it is equivalent
to the QFI for the single parameter estimation problem but still it gives the chance to switch to the
multi-parameter case easily. The function is defined as follows. For two arbitrary operators A and
B, it is written as

FQ[ρ, A, B] := 2∑
λ,ν

(pλ − pν)2
pλ + pν Aλ,νBν,λ, (5.17)

where the subscript for A and B stand for the matrix elements on the eigenbasis of the initial state
ρ = ∑λ pλ|λ〉〈λ|. If the two operators are the same, the usual form of the QFI Eq. (2.51) is recovered
[2, 31, 33, 76, 87, 113],

FQ[ρ, A, A] := FQ[ρ, A] = 2∑
λ,ν

(pλ − pν)2
pλ + pν |Aλ,ν|

2. (5.18)

We mention that in our case the operators A and B will commute in all situations, making the
computations easier. We also make use of the fact that the QFI as written in Eq. (5.17) is linear in
the second and the third arguments,

FQ[ρ, A,∑ibi] =
∑
i
FQ[ρ, A, bi]. (5.19)

It also holds for commuting A and B, that the last two arguments can be exchanged without affecting
the outcome, FQ[ρ, A, B] = FQ[ρ, B, A].

Similar to Eq. (2.54), Eq. (5.17) can be rewritten as

FQ[ρ, A, B] = 4〈AB〉 − 8∑
λ,ν

(pλ − pν)2
pλ + pν Aλ,νBν,λ, (5.20)

when the operators A and B commute. This form leads to simpler arguments in our derivations through
the following sections.

For pure states it simplifies also to
FQ[|ψ〉, A, B] = 4 (〈AB〉ψ − 〈A〉ψ〈B〉ψ) . (5.21)

Note that we recover FQ[ρ, A, A] = 4(∆A)2ρ as can be found in the Eq. (2.54) for single-parameter
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estimation with pure states [2, 88].
Another important feature of the function Eq. (5.17) is that it is convex on the states. This property

is written as follows
FQ[qρ1+(1−p)ρ2] 6 pFQ[ρ1]+(1−p)FQ[ρ2], (5.22)

where we omit in writing the last two arguments for simplicity. Finally, it is also useful to note that
additive under the tensor product as
FQ[ρ(1) ⊗ ρ(2), A(1) ⊗ 1

(2) + 1
(1) ⊗ A(2), B(1) ⊗ 1

(2) + 1
(1) ⊗ B(2)] = FQ[ρ(1), A(1), B(1)] + FQ[ρ(2), A(2), B(2)].

(5.23)
In the following subsections we show the general form for the precision bounds for states insensitive

to the homogeneous fields and for states sensitive to them. We also show that both bounds are
invariant under spatial translation of the system which makes the computing for particular cases
much easier.

5.2.1 States insensitive to the homogeneous field: Single-parameter estimation
Let us consider quantum states that are insensitive to the homogeneous field. For these states,
[ρ,H0] = 0 and hence the evolved state is a function of a single unknown parameter, b1. For the
unitary dynamics we consider, the QFI for single-parameter estimation problem can be expressed in
terms of the eigenstates and eigenvalues of the density matrix as [2, 31, 33, 76, 87, 113]

FQ[ρ,H1] = 2∑
λ,ν

(pλ − pν)2
pλ + pν |〈λ|H1|ν〉|2. (5.24)

Note that here the eigenstates |λ〉 and |ν〉 live on both the external and internal Hilbert spaces. Due
to the Cramér-Rao formula, the QFI gives us an upper bound for the precision

(∆b1)−2|max = FQ[ρ,H1]. (5.25)
Note that it is always possible to find a measurement that saturates the precision bound above.
Hence, we denote it using the "|max =" notation. Here, FQ[ρ,H1] denotes the QFI that depends, in
the case of unitary transformation of the form Eq. (5.14), on the state ρ and on the generator of the
evolution H1.

For the particular case in which the state has the form of Eqs. (5.3) and (5.10), Eq. (5.24) can be
simplified in the following way. Note that we have to compute the matrix elements of H1 which is
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already diagonal in the spatial subspace. Therefore, the following holds for the matrix elements of
H1

(H1)x,λ;y,ν = 〈x, λ|H1|y, ν〉
= 〈x, λ|

N∑
n=1

x (n)j (n)|y, ν〉

= δ(x − y)
N∑
n=1

xn〈λ|j (n)|µ〉,
(5.26)

where |λ〉 and |µ〉 refer now to eigenstates of the internal state ρ(s) and we use 〈x|x (n)|y〉 = δ(x−y)xn.
We will use the Dirac delta function appearing in Eq. (5.26) to further simplify the Eq. (5.24).

We show now that spatial translations does not change the sensitivity of gradient estimation. The
translation operator Ud moves the state to a new position at a distance d from its previous location,
and it is written as

Ud = e−idPx /~, (5.27)
where Px is the sum of all single-particle linear momentum operators p(n)x in the x-direction and it
only acts on the external degrees of freedom of the state, i.e., the external Hilbert space H(x). To
show that the precision is unchanged, we use the Heisenberg picture in which the operators are
transformed instead of the states. Thus, we compute the transformation of H1 as

Ud : H1 → H1(d) = U†dH1Ud
=

N∑
n=1

U†d x (n)Ud ⊗ j (n)z

=
N∑
n=1

(x (n) − d)j (n)z

= H1 − dH0.

(5.28)

Hence, the new unitary evolution operator to represent the translated system, instead of Eq. (5.14), is
U = e−i(b0H0+b1H1(d)) = e−i((b0−b1d)H0+b1H1). (5.29)

Eq. (5.29) is equivalent to Eq. (5.14) for states insensitive to the homogeneous fields, since in this
case [ρ,H0] = 0.

To compute the QFI, we used the Dirac delta function appearing in Eq. (5.26), and the state
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defined by Eq. (5.11). See Appendix G for details.
The following bound in the precision of the estimation of the gradient parameter b1 holds for

states insensitive to the homogeneous magnetic fields

(∆b1)−2|max =
N∑
n,m

∫
Pr(x)xnxm dNx FQ[ρ(s), j (n)z , j (m)z ], (5.30)

where the integral has the form of a two-point correlation function of the spatial state.

5.2.2 States sensitive to the homogeneous field: Two-parameter dependence

In order to obtain the precision bound for states sensitive to the homogeneous field, one has to
consider the effect on the state of a second unknown parameter, in this case b0, which represents
the homogeneous magnetic field. The homogeneous field will rotate all the spins in the same way,
while the field gradient rotates the spins differently depending on the position of the particles. Now,
instead to the Cramér-Rao bound Eq. (5.25), we have a matrix inequality [2]

Cov(b0, b1) > F−1, (5.31)
where Cov(b0, b1) is the covariance matrix for b0 and b1.

For the matrix inequality Eq. (5.31), we have the inverse of QFI matrix F on one hand, which
depends on ρ and the two generators H0 and H1, and the covariance matrix on the other hand. In
this section, we are only interested in the variance of the gradient parameter, (∆b1)2. Since we
have to compute the inverse of the QFI matrix and then look at the element corresponding to the
(∆b1)2, the determinant of F cannot be zero. H0 and H1 are Hermitian operators and commute with
each other. For unitary dynamics of the type Eq. (5.14), the QFI matrix elements are computed as
Fij ≡ FQ[ρ,Hi, Hj ], following the definition given in Eq. (5.17).

In the two-parameter estimation problem, F is a 2 × 2 matrix and the precision bound for the
estimation of the gradient is

(∆b1)−2 6 F11 − F01F10
F00

, (5.32)
where the inequality is saturated only if there exists a set of compatible measurements to determine
both parameters b0 and b1, which is not true in general and must be studied for each particular case
[2, 115]. We distinguish this case from the Eq. (5.25), in which the bound is surely saturated by some
measurement, using an inequality "6" instead of "|max =".
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To compute the bound Eq. (5.32), we will need to simplify the matrix elements of H0 and H1
written in the eigenbasis of the state Eq. (5.11), see Eq. (5.17). Note that the matrix elements for H1
were already computed in Eq. (5.26). Hence, we now calculate (H0)x,λ;y,ν in a similar way as we did
for Eq. (5.26)

(H0)x,λ,y,ν = 〈x, λ|H0|y, ν〉
= 〈x, λ|Jz|y, ν〉
= δ(x − y)〈λ|Jz|ν〉.

(5.33)

With this we are now in the position to compute the missing matrix elements of F . One can find
most of the computations of the matrix elements of F in the Appendix G. First of all, we compute
F11 = FQ[ρ,H1, H1] which turns to be equal to Eq. (5.30) for obvious reasons,

F11 =
N∑
n,m

∫
xnxmPr(x) dNx FQ[ρ(s), j (n)z , j (m)z ]. (5.34)

Second, the most trivial matrix element is F00 which turns to depend only on the internal state ρ(s),
F00 = FQ[ρ(s), Jz ]. (5.35)

Finally, we compute both F01 and F10. To compute them, note that the two matrix elements are
equal F01 = F01, due to the properties of Eq. (5.17) for commuting H0 and H1. Therefore, we have
to compute only one of them

F01 =
N∑
n=1

∫
xnPr(x) dNx FQ[ρ(s), j (n)z , Jz ]. (5.36)

With these results the bound for the precision for states sensitive to the homogeneous field which
have the form of Eq. (5.11) is

(∆b1)−2 6
N∑
n,m

∫
xnxmPr(x) dNx FQ[ρ(s), j (n)z , j (m)z ]−

(∑N
n=1
∫ xnPr(x) dNx FQ[ρ(s), j (n)z , Jz ]

)2

FQ[ρ(s), Jz ] . (5.37)

To simplify our calculations, we show that the bound Eq. (5.37) is invariant under displacements of
the system. We use the linearity of the last two arguments of FQ[ρ, A, B], Eq. (5.19), the fact that H0
remains unchanged in the Heisenberg picture, and we also use the shifted H1(d) operator computed
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in Eq. (5.28). Hence, the translated QFI matrix elements are written as
F00(d) = FQ[ρ,H0(d)] = FQ[ρ,H0], (5.38a)
F01(d) = FQ[ρ,H0(d), H1(d)]

= FQ[ρ,H0, H1 − dH0] = F01 − dF00, (5.38b)
F11(d) = FQ[ρ,H1(d), H1(d)]

= FQ[ρ,H1 − dH0, H1 − dH0]
= F11 − 2dF01 + d2F00. (5.38c)

Simple algebra shows that the bound for the precision of the estimation of the gradient remains
constant under spatial translations,

(∆b1)−2d 6F11(d)− (F01(d))2
F00(d)

=F11 − 2dF01 + d2F00

− F 201 − 2dF01F00 + d2F 200
F00

=F11 − F 201
F00

.

(5.39)

These observations make the computations of the precision bounds in the next sections easier,
since now we can place the system arbitrarily wherever we choose. It also allows us, for example,
to place the origin of our coordinate system as well as the system itself where the magnetic field
is zero. So, we can write the linear magnetic field simply as B(x) = xB1k where k is the unitary
vector pointing on the z-direction perpendicular to x- and y-axis. The discourse we have had on the
preceding section has a vital importance to understand properly our results.

5.3 Testing our approach
Despite the generality of the tools we developed in Section 5.2, it is always useful to start with
simple but concise examples. For this, we consider two of the most relevant cases for the external
state ρ(x) which we know that behave well for estimating the gradient parameter. We will study the
chain of atoms, where the atoms are placed one-by-one in a 1-dimensional lattice with a constant
separation a, and the two-ensembles of atoms, where half of the atoms are in x = −a and the rest
in x = +a.
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5.3.1 Distinguishable atoms in a 1D lattice
As we have said, the first spatial state we consider will be given by N particles all placed equidistantly
from each other in a one-dimensional spin chain, i.e., a chain of atoms in a 1-dimensional lattice [116],
see Figure 5.1. The probability density function describing the system is

Pr(x) =
N∏
n=1

δ(xn − na). (5.40)

(a) (b)
Figure 5.1: (blue-circles) A system of N-atoms of spin-j trapped in a chain configuration. (green-area)
Magnetic field gradient. Note that the field is pointing outwards of the figures. (red-arrows) Spins of
the particles initially all aligned. (a) The ensemble is initially totally polarized along a perpendicular
direction, in this case y-direction, of the magnetic field Bz . The internal state can be written as |+j〉⊗Ny , the
number represents my the eigenvalue of the one particle operator j (n)y . (b) One can see how the gradient
field affects with a varying field strength the different spins when they are placed in different positions.

With this at hand we compute the single-point averages and the two-point averages corresponding
to the ion-chain. For the single-point average, one of the integrals appearing in Eq. (5.37), we have
that ∫

xnPr(x) dNx = na, (5.41)
and for the two-point correlation, which appears in Eqs. (5.30) and (5.37), we have the following for
the case of the chain of atoms, ∫

xnxmPr(x) dNx = nma2. (5.42)
On the other hand, we use first a totally polarized state in the y-direction for the internal degrees

of freedom, ρ(s) = (|+j〉y〈+j |y)⊗N appeared in Eq. (2.33). This state is sensitive to the homogeneous
field, so using that the state is pure and separable

FQ[|+j〉⊗y , j (n)z , j (m)z ] = 4(〈j (n)z , j (m)z 〉 − 〈j (n)z 〉〈j (m)z 〉) = 2jδn,m. (5.43)
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Since this function is linear in the second and third arguments, we have that FQ[|+j〉⊗y , j (n)z , Jz ] = 2j
and FQ[|+j〉⊗y , Jz ] = 2jN . With this, we can now write the precision bound for a chain of atoms when
the internal state is totally polarized along the y-axis as

(∆b1)−2ch,tp 6 a2
{ N∑

n=1
n22j − (∑N

n=1 n2j)2N2j
}

= a2N2 − 1
12 2jN.

(5.44)

Despite that Eq. (5.44) is a third order function of the particle number N and that it seems to
overcome the ultimate scaling Heisenberg scaling, note that the length of the chain increases as we
introduce more particles into the system. Hence, we have to normalize the bound with the effective
size of the system, such that separable states would scale as shot-noise scaling. This restores the
ultimate threshold of the precision to ∼ N2 as usual.

In this section, we will use the standard deviation of the averaged particle position as the length
measure of the system. We also include in our next definitions the averaged correlation of two
different particle positions, since it will appear in the following sections and for completeness. They
are computed as

µ =
∫ ∑N

n=1 xnN Pr(x) dNx, (5.45a)

σ 2 =
∫ ∑N

n=1 x2n
N Pr(x) dNx − µ2, (5.45b)

η =
∫ ∑

n6=m xnxm
N(N − 1) Pr(x) dNx − µ2, (5.45c)

where µ denotes the averaged position of the particles, σ 2 the variance of position of the particles
and η the position correlation between different particles. So, the system effective width for the chain
of atoms, computed by the variance Eq. (5.45b), is given as

σ 2ch = a2N2 − 1
12 . (5.46)

It turns out that Eq. (5.46) exactly coincides with one of the factors we have in Eq. (5.44). Substituting
this into the Eq. (5.44) we have that, for ion-chains where the particles are separated by a constant
distance and where the spin-state ρ(s) is the totally polarized state along the y-direction, the precision
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bound is given by
(∆b1)−2ch,tp 6 σ 2ch2jN, (5.47)

in terms of σch, the spin of each particle j and the particle number N .

5.3.2 Differential magnetometry with two ensembles
We now turn our attention to the case of two ensembles of distinguishable atoms. Two ensembles
of spin-j atoms spatially separated from each other have been realized in cold gases (e.g., Ref. [41]),
and can be used for differential interferometry [14, 117]. We will also use an internal state such the
maximal QFI is achieved so the reader gets familiar with our approach and sees how the best state
to measure the gradient parameter looks like in our framework.

The spatial part is described by the following probability density function, where for an even
number of particles half of the particles are at one position and the rest at another, both places at a
distance of a from the origin

Pr(x) =
N/2∏
n=1

δ(xn + a)
N∏

n=N/2+1
δ(xn − a). (5.48)

This could be realized in a double-well trap, where the width of the wells is negligible compared to
the distance of the wells. Note that a state defined by Eq. (5.48) and Eq. (5.10) is a pure state in
the position Hilbert space. To distinguish the two wells we will use the labels "L" and "R" for the left
and right wells respectively, which is a shorthand which collects the first half of the particles and
the last half into a single index, respectively. With this we are able to compute the single-point and
two-point correlation functions as

∫
xnPr(x) dNx =

{−a if n ∈ L,
a if n ∈ R, (5.49a)

∫
xnxmPr(x) dNx =

{−a2 if (n,m) ∈ (L,L) or (R,R),
a2 if (n,m) ∈ (L,R) or (L,R). (5.49b)

We will try states insensitive to the homogeneous fields. Since the spatial part is a pure state
in the position subspace, we will try pure states in the spin subspace due to the fact that the QFI is
maximized by pure states as it was shown in Section 2.3. For pure states we have that the QFI is
computed directly as four times the variance of the gradient Hamiltonian, FQ[ρ,H1] = 4(∆H1)2. So,
we just choose a spin-state that maximizes the variance of H1 when the spatial part is Eq. (5.48).
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Hence, the best state in this case is
|Ψ〉 = 1√2(|+j · · ·+j〉(L)|−j · · · −j〉(R) + |−j · · · −j〉(L)|+j · · ·+j〉(R)), (5.50)

where it can be seen as the superposition of the state with the smallest energy and the state with
the greatest energy when the Hamiltonian is H1, see Figure 5.2. The state |Ψ〉 is indeed insensitive
to the homogeneous field since both states of the superposition in Eq. (5.50) are eigenstates of H0
with the same eigenvalue. Moreover, the state is also maximally entangled.

Figure 5.2: (blue-circle) Atoms located at (L) or (R). (red-arrow) Spin state of each of the atoms. (green-
area) Linear magnetic field Bz . Note that the z-axis is to represent the direction of the spins. On the
other hand, the state is a linear superposition of the upper state and the lower state, represented by |·〉
and + sign. Note that all particles at (L) or (R) are assumed to be in the same spatial spot.

We compute first the FQ[ρ(s), j (n)z , j (m)z ] for |Ψ〉 as

FQ[|Ψ〉, j (n)z , j (m)z ] =
{4j2 if (n,m) ∈ (L,L) or (R,R),
−4j2 if (n,m) ∈ (L,R) or (R,L). (5.51)

Now, if we separate the terms of the sum in Eq. (5.30) into two groups, such that one of the sums is for
indexes (n,m) ∈ (L,L) or (R,R), and the other is for indexes (n,m) ∈ (L,R) or (R,L), we can compute
the bound for the best state for the two ensemble case as

(∆b1)2|max = ∑
(n,m)∈(L,L) or (R,R)

a24j2 + ∑
(n,m)∈(L,R) or (R,L)

−a2(−4j2)

= 4a2N2j2.
(5.52)

On the other hand, if we compute now the standard deviation Eq. (5.45b), as we did before for
the case of the chain Eq. (5.46), we have that for the two ensembles case µ = 0 and the standard
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deviation for the spatial state is
σ 2te = a2, (5.53)

with which
(∆b1)2HL|max = 4σ 2teN2j2. (5.54)

For a general σ 2, the Eq. (5.54) can be seen as the Heisenberg limit for gradient metrology. Note that
the state is insensitive to the homogeneous field, hence this bound is saturable by some measurement,
and that the state |Ψ〉 maximizes the variance of H1 for any given σ 2. Before concluding, we want to
show another more usual approach to the same problem.

Knowing that the QFI is convex in the state and considering the spatial state to be Eq. (5.48),
we reduce our problem to the internal subspace in which the state that maximizes the QFI is the one
that maximizes (∆H1)2. In this case, taking into account the particle locations are given and that we
have zero magnetic field at the origin, we obtain

H (s)
1,eff = a(1(L) ⊗ J (R)z − J (L)z ⊗ 1

(R)), (5.55)
where we write the effective Hamiltonian that the particles on the left and right feel. This proves that
we have used the right state, since it maximizes the variance (∆H (s)

1,eff)2 [117].

States separable into |ψ〉(L) ⊗ |ψ〉(R)

Now that we have already introduced the reader to the case of the two ensembles, we take the
opportunity to show some more important results for states of the form of |ψ〉(L)⊗ |ψ〉(R). These states
can reach the Heisenberg limit, while they are easier to realize experimentally than states in which
the particles on the left and particles on the right are entangled with each other.

First, we will compute the bound for states insensitive to the homogeneous field. For such states
we only have to compute the QFI for H1,eff Eq. (5.55) such that

(∆b1)−2|max = FQ[|ψ〉(L) ⊗ |ψ〉(R), a(1(L) ⊗ J (R)z − J (R)z ⊗ 1
(L))] = 2a2FQ[|Ψ〉(L), J (L)z ], (5.56)

where we used the general rule Eq. (2.60) and that any scalar multiplying the second argument of
the QFI can be extracted outside the function squared.

Now, we analyze how the bound would look like for states sensitive to the homogeneous field.
Note that the single-point correlation function for particles at "(L)" and "(R)" is a and −a respectively,
and the two-point correlation function is a2 for both. Thus, in the case of computing the bound for the
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states sensitive to the homogeneous fields, we have that F (L)
01 = −F (R)

01 , which we used the superscript
to indicate in this case over which subspace is computed the QFI matrix element, whereas the other
two matrix elements we have to compute are equal for both subspaces "(L)" and "(R)". The precision
bound for states sensitive to the homogeneous fields is obtained as

(∆b1)−2 6F11 + (F01)2
F00

=F (L)
11 + F (R)

11 + (F (L)
01 + F (R)

01 )2
F (L)

00 + F (R)
00

=2F (L)
11 + (F (L)

01 − F (L)
01 )2

2F (L)
00

=2F (L)
11

=2a2FQ[ρ(L), J (L)z ],

(5.57)

where we use in the first line the identities for additions under tensor products Eqs. (2.60) and (5.23),
and in the last line we extract the common factor a2 and we use the linearity on the arguments
the QFI. Note that this is the same precision bound we will obtain for states insensitive to the
homogeneous fields. Note that this bound relates how good the state on the "(L)" or "(R)" subsystem
is in sensing the homogeneous field with the precision achievable for the gradient parameter. This is
reasonable because the state in "(L)" is not interacting neither correlated with "(R)". Hence, after the
homogeneous field is estimated for "(L)" and "(R)" independently, the gradient can also be estimated
as the difference between the two estimates divided by the square distance a2.

In the literature one can find several states that can be used to measure a homogeneous field,
such as the GHZ states [118], unpolarized Dicke states, and spin-squeezed states. Note that if |Ψ〉
is separable, then based in Eq. (2.64) and for any of the two bounds Eqs. (5.56) and (5.57), we have

FQ[|Ψ〉(L)sep|Ψ〉(R)sep, a(J (L)z 1(R) − 1
(L)J (R)z )] = 2a2FQ[|Ψ〉(L)sep, J (L)z ] = 2a24N2 j2 6 4a2Nj2. (5.58)

Note that each of the ensembles has half of the total particle number N . Eq. (5.58) can be seen as the
shot-noise limit when two ensembles are used for gradient metrology. In Table 5.1, we summarized
the precision bounds for states of type |Ψ〉(L) ⊗ |Ψ〉(R) for the two-ensemble case.

In this section we have shown to the reader how one should handle the spatial width of the system
for classifying it for gradient metrology as well as a state-of-the-art system in which the Heisenberg
limit is achieved. Moreover, we have shown how to use the tools developed in the previous section
to compute simple bounds. In the next section we will focus on single cold-atom ensembles since
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States in (L) and (R) FQ[ρ, Jz ] for N/2 (∆b1)−2 6
|+j〉⊗N/2l ⊗ |+j〉⊗N/2l Nj 2a2Nj
|GHZ〉 ⊗ |GHZ〉 N2/4 a2N2/2
|DN/2〉x ⊗ |DN/2〉x N(N + 4)/8 a2N(N + 4)/4
|Ψ〉sep ⊗ |Ψ〉sep 2Nj2 4a2Nj2

Table 5.1: (first column) The complete state as a tensor product of the state in (L) and the state in (R). Note
that for the GHZ state and the unpolarized Dicke state, the spin is j = 12 . The last state |Ψ〉 is the best
separable state for the estimation of the homogeneous field. Hence, the bound for |Ψ〉 coincides with the
shot-noise limit for gradient metrology with two ensembles. (second column) Precision of the estimation
of the homogeneous magnetic field in one of the ensembles. (third column) From the second column and
based on Eqs. (5.56) and (5.57), we compute the precision for differential magnetometry for various product
quantum states in two ensembles spatially separated from each other by a distance a. Note that all states
are sensitive to the homogeneous field so the saturability of of the bound is not ensured. This is the reason
we use "6" instead of "|max".

they play an important role in quantum technology, and many groups are trying to realize them whit
great success but with few theoretical support.

5.4 Magnetometry with a single atomic ensemble
In this section, we discuss magnetometry with a single atomic ensemble in more detail. We consider
a one-dimensional ensemble of spin-j atoms placed in a one dimensional trap, which is elongated
in the x-direction. The magnetic field points in the z-direction, and has a constant gradient along
the x-direction. The setup is depicted in Fig. 5.3. In the last part of this section, we calculate
precision bounds for the gradient estimation for some important multi-particle quantum states, for
instance, Dicke states or GHZ states. Note that all these states are permutationally invariant, since
we assume that a permutationally invariant procedure prepared the states.

5.4.1 Precision bound

In an atomic ensemble of very many atoms, typically the atoms cannot be individually addressed. This
can be taken into account, if we consider quantum states that are permutationally invariant. Hence,
we will consider states for which both the internal state ρ(s) and the probability distribution function
Pr(x), appearing in Eq. (5.10), are permutationally invariant. The permutational invariance of Pr(x)
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Figure 5.3: (blue-point) Atomic ensemble with their spins (red-arrow) pointing randomly in any direction
coupled with a linear magnetic field Bz (green). The spatial state ρ(x) is assumed to be permutationally
invariant. The ensemble is centered around the place at which the magnetic field is zero due to the
invariance of the precision bound under translations of the system.

implies that
Pr(x) = 1N!

∑
k
Pk [Pr(x)], (5.59)

where the summation is over all the possible permutations of the variables xn denoted by Pk .
As we have shown in Section 5.2, the precision bound is invariant under spatial translations. This

allows us to place the "center of mass" of the system at the origin of the coordinate system. With
this simplifying assumption and based on Eqs. (5.45a), (5.45b) and (5.45c), the single-point average
appearing in Eq. (5.37) is

∫
xnPr(x) dNx =

∫ ∑N
n=1 xnN Pr(x) dNx = µ = 0, (5.60)

where we used the permutational invariance of Pr(x) substitute xn by the sum appearing in Eq. (5.45a).
In a similar way we obtain

∫
xnxmPr(x) dNx =



σ 2 for n = m,
η

N − 1 for n 6= m, (5.61)

where we used that the system is placed at the origin µ = 0. An interesting property of the covariance
of this type is that its a value is bounded from below and from above by the variance itself and the
particle number N in the following way,

−σ 2
N − 1 ≤ η ≤ σ 2. (5.62)

Note that in the first sum in Eq. (5.37) there are in total N(N − 1) terms proportional to η/(N − 1)
and N terms proportional to σ 2.
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From the linearity in the second and third arguments of FQ[ρ, A, B] Eq. (5.17) and for states
insensitive to the homogeneous field, where FQ[ρ, Jz ] = 0, we have that

N∑
n=1
FQ[ρ, j (n)z ] = −

N∑
n6=m
FQ[ρ, j (n)z , j (m)z ]. (5.63)

From the definition of the QFI for states insensitive to the homogeneous field, Eq. (5.30), we
compute the bound for single ensembles as

(∆b1)−2|max =
N∑
n,m

∫
xnxmPr(x) dNxFQ[ρ(s), j (n)z , j (m)z ]

=
N∑
n=1

σ 2FQ[ρ, j (n)z ] +
N∑

n6=m
ηFQ[ρ, j (n)z , j (m)z ].

(5.64)

Together with Eq. (5.63) we write the precision bound for states insensitive to the homogeneous fields
as

(∆b1)−2|max = (σ 2 − η)
N∑
n=1
FQ[ρ(s), j (n)z ]. (5.65)

Note that the bound in Eq. (5.65) can be saturated by an optimal measurement. Nevertheless, it
cannot surpass the shot-noise scaling, ∼ N , because FQ[ρ(s), j (n)z ], the QFI for the single-particle
operator j (n)z , cannot be larger than j2.

To compute the bound for states sensitive to the homogeneous field, note that in the second term
appearing in Eq. (5.37) is proportional to the single-point average Eq. (5.60) which was chosen to be
equal to zero. Hence, we only have to compute the first term of the Eq. (5.37) as

(∆b1)−2 6
N∑
n,m

∫
xnxmPr(x) dNxFQ[ρ(s), j (n)z , j (m)z ]

=
N∑
n=1

σ 2FQ[ρ, j (n)z ] +
N∑

n6=m
ηFQ[ρ, j (n)z , j (m)z ]

=(σ 2 − η)
N∑
n=1
FQ[ρ, j (n)z ] + η

N∑
n,m
FQ[ρ, j (n)z , j (m)z ],

(5.66)

where in the second line we compute the diagonal and the off-diagonal terms of the sum separately
and in the last line we add η∑N

n=1FQ[ρ, j (n)z ] to the last term and subtract it from the first term to
make the expression more similar to Eq. (5.65).
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Hence, for states sensitive to homogeneous fields, the precision of estimating the gradient is
bounded from above as

(∆b1)−2 6 (σ 2 − η)
N∑
n=1
FQ[ρ(s), j (n)z ] + ηFQ[ρ(s), Jz ]. (5.67)

The second term on the right-hand side of Eq. (5.67) is new in the sense that it did not appear
in the bound for states insensitive to homogeneous fields. Note that the bound in Eq. (5.67) is
not necessarily saturable if the optimal measurements to estimate the gradient parameter and the
homogeneous parameter do not commute with each other. Note also that even if the first term cannot
overcome the shot-noise scaling, in the second term the covariance is multiplied by QFI for estimating
the homogeneous field and therefore this concrete term can make the bound, for extremely correlated
particle positions, to scale as Heisenberg scaling.

5.4.2 Precision bounds for different spin-states
In this section, we present the precision limits for different classes of important quantum states such
as the totally polarized state, the state having the largest precision among separable states, or the
singlet state. We will calculate the precision bounds presented before, Eqs. (5.65) and (5.67), for
these systems. We show first the results for singlets that are insensitive to homogeneous fields. In
this case, the bounds can be achieved by choosing the appropriate magnitude to measure. The rest
of the results are for states sensitive to homogeneous fields which in general are not necessarily
achievable bounds.

Before going into the details of our computations we present a summary of the results obtained
in this section. The summary for different states can be found in the Table 5.2.

Permutationally invariant singlet states

We consider now the singlet state, which is invariant under the influence of a homogeneous field
along any direction. So, we have to compute the formula for the bound of the precision Eq. (5.65). A
pure singlet state is an eigenstate of the collective Jz and J2 operators, with an eigenvalue zero in
both cases. There are many different singlet states for an ensemble of N spin-j particles, which some
of them are permutationally invariant. Surprisingly the precision bound we compute is the same for
any permutationally invariant singlet. Atomic ensembles in a singlet state have been experimentally
created with cold gases [34, 58].
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States (∆b1)−2
permutationally invariant singlet states |max = (σ 2 − η)4Nj(j+1)

3|+j〉⊗Ny 6 σ 22Nj
Best separable state |Ψ〉 6 σ 24Nj2
|DN〉z |max = (σ 2 − η)N
|DN〉x 6 (σ 2 − η)N + ηN(N+2)

2|GHZ〉 6 (σ 2 − η)N + ηN2

Table 5.2: Precision bounds for differential magnetometry for various quantum states. For the definition of
the states, see the text. If the bound are proved to be saturable then the "|max =" subscript is used instead
of an inequality.

In an N-particle system, there are several singlets pairwise orthogonal to each other. The number
of such singlets, D0, depends on the particle spin j and the number of particles N .

The most general singlet state can be written in the total angular momentum basis, using D to
label the degenerate states, see Appendix A. In its eigenbasis the singlet is written as

ρ(s) =
D0∑
D=1

λD|0, 0, D〉〈0, 0, D|, (5.68)

where ∑D λD = 1. In its complete form the eigenvalues of the spin density matrix are λJ,Mz ,D = δ0,JλD .
Looking at Eq. (5.65), we must compute the QFI for the one-particle operator j (n)z in order to

compute the precision bound for permutationally invariant singlet states. For that purpose we use
the fact that when j (n)z acts on a singlet state, it produces a state outside of the singlet subspace. This
can be proved by noting that

eiπJx j (n)z e−iπJx = −j (n)z (5.69)
and that e−iπJx |0, 0, D〉 = |0, 0, D〉 holds for any pure singlet state. Hence, we can arbitrarily flip the
sign of j (n)z so

〈0, 0, D|j (n)z |0, 0, D′〉 = −〈0, 0, D|j (n)z |0, 0, D′〉, (5.70)
which implies

〈0, 0, D|j (n)z |0, 0, D′〉 = 0, (5.71)
for any pair of pure singlet singlet states.

In order to compute the QFI for the singlet state we use Eq. (5.20). Hence, we can write the
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following for the second term of Eq. (5.20),
8∑
D,D′

λDλD′λD+λD′ |〈0, 0, D|j (n)z |0, 0, D′〉|2 = 0. (5.72)

It follows that the QFI of j (n)z for any singlet is indeed simply
FQ[ρ(s), j (n)z ] = 4 tr(ρ(s)(j (n)z )2). (5.73)

Finally, we must compute the expectation value of the operator (j (n)z )2. For that we have that
tr(ρ(s)(j (n)k )2) = tr(ρ(s)(j (n)

l )2), (5.74)
for any pair k, l ∈ x, y, z due to the rotational invariance of the singlet, i.e, all the singlets remain
invariant under a SU(2) transformation of the kind U = eiφJn , where n is an unitary vector belonging
to the positional space. Then we can write that

〈(j (n)x )2 + (j (n)y )2 + (j (n)z )2〉 = j(j + 1), (5.75)
for any state, since it represents the spin number of the particle, which is fixed. Hence, the expectation
value of (j (n)z )2 on the singlet is

tr(ρ(s)(j (n)z )2) = j(j + 1)
3 , (5.76)

for all the singlets. Inserting this into Eq. (5.73) and using Eq. (5.65), we obtain

(∆b1)−2s |max = (σ 2 − η) 4Nj(j + 1)
3 . (5.77)

To conclude, singlet states are insensitive to homogeneous magnetic fields, hence determining
the gradient leads to a single-parameter estimation problem. This implies that there is an optimal
operator that saturates the precision bound given by Eq. (5.77). However, it is usually very hard to
find this optimal measurement, although a formal procedure for this exists [2, 115]. In Ref. [57], a
particular set-up for determining the magnetic gradient with permutationally invariant singlet states
was suggested by the measurement of the J2x collective operator. For this scenario the precision is
given by the error propagation formula as

(∆b1)−2 = |∂b1〈J2x 〉|2〈J4x 〉 − 〈J2x 〉2 . (5.78)
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Totally polarized state

The totally polarized state can easily be prepared experimentally. It has already been used for
gradient magnetometry with a single atomic ensemble [17, 18]. For the gradient measurement as
for the measurement of the homogeneous field, the polarization must be perpendicular to the field
we would like to measure in order to take advantage of the interaction between the particles and
the field. Here we chose as before the totally polarized state along the y-axis which is written as
|j〉⊗Ny . Note that this state is sensitive to the homogeneous field, hence, we must use the Eq. (5.67)
to compute the bound.

For the pure states we have that FQ[|ψ〉, A] = 4(∆A)2. Together with, (∆j (n)z )2 = j /2 and (∆Jz)2 =
Nj/2, when the polarization is perpendicular to the z-direction, the precision will be computed
straightforward from Eq. (5.67).

Therefore, the Cramér-Rao bound fixes the highest value for the precision of the totally polarized
state as

(∆b1)−2TP 6 σ 22Nj. (5.79)
Note that the precision bound for the totally polarized state is smaller than that of the optimal
separable state we present later on. We can see clearly that the precision scales as O(N).

Let us now see, which quantities have to be measured to estimate the field gradient with a totally
polarized state. The homogeneous field rotates all spins by the same angle, while the gradient rotates
the spins at different positions by a different angle. Due to that, the homogeneous field rotates the
collective spin, but does not change its absolute value. On the other hand, the field gradient decreases
the absolute value of the spin, since it has been prepared to be maximal, which has been used in
Ref. [37] for gradient magnetometry, see Figure 5.1.

The best separable state

We will now turn our attention to the precision bound for all separable spin states. It is useful to
obtain this value so we have a direct comparison on what the best classically achievable precision
is. It will turn out that for j > 12 , it is possible to achieve a precision higher than with the fully
polarized state. One has to take into account that if the state is insensitive to the homogeneous field
the bound can be saturated for sure, and if the state is sensitive to homogeneous fields, it would
depend on the measurements compatibility and on the system as we discussed before. From another
point of view and instead of using the Eqs. (5.65) and (5.67), what we have is that the bound is the
same FQ[ρ,H1] for both cases. Note that we can place the system at the point in which the magnetic
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field is zero without changing the result. Thus, it is easy to argue that the precision bound itself is
a convex function of the states. Moreover, it is also a convex function of the states when the external
state ρ(x) is fixed and only the internal ρ(s) is considered.

In the single ensemble configuration, Eq. (5.34) must be computed only, where the two-point
correlation function returns σ 2 or η based on Eq. (5.61). On the other hand, for pure states we have
that FQ[ρ(s), j (n)z , j (m)z ] is four times the correlation 〈j (n)z j (m)z 〉 − 〈j (n)z 〉〈j (m)z 〉. If the state is a product state,
then we have 〈j (n)z j (m)z 〉 − 〈j (n)z 〉〈j (m)z 〉 = 0 for all n 6= m. Hence, η does not play any role in the
precision. Finally, we have to maximize only the variance of each of the single-particle operators
4(∆j (n)z )2. From the definition of the variance,

(∆j (n)z )2 = 〈(j (n)z )2〉 − 〈j (n)z 〉2. (5.80)
Hence, We try a state that approaches to zero its polarization on the z-direction and maximizes
〈(j (n)z )2〉.

We have that |Ψ〉 = (|+j〉 + |−j〉)/√2 is ideal for this, for any j . Hence, we write the entire
internal state as ρ(s) = (|Ψ〉〈Ψ|)⊗N . This state gives (∆j (n)z )2 = j2 which can be used in Eq. (5.34)
after multiplying by four. Note that this state is permutationally invariant, hence we have finished
the search for the best separable permutationally invariant state. Moreover, the state is sensitive to
the homogeneous field.

Finally, the best achievable precision for separable states is written as
(∆b1)−2SNL 6 σ 24Nj2, (5.81)

where the state itself is sensitive to homogeneous fields and the shot-noise limit is achieved. Note
that in the two ensembles case σ 2te = a2 which tells us that both bounds Eqs. (5.58) and (5.81) are
equal. This bound coincides with the totally polarized state studied before when the spin number
j = 12 .

In the following we try to find a better precision bound making use of the presumably better
entangled states. Note that the bound for the singlet state, even if it is entangled, is above the
bound for the totally polarized state but below of the bound defined for the best separable state.
Nevertheless, when the singlet state is used the effect of the homogeneous magnetic field has not
to be compensated since the state is insensitive to it and thus the bound can be saturated with an
optimal estimator for the gradient field.
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The unpolarized Dicke states |DN〉z and |DN〉x

Unpolarized Dicke states play an important role in quantum optics and quantum information
science. The unpolarized Dicke state |DN〉l with a maximal 〈J2x + J2y + J2z 〉 = JN/2, defined in Eq. (A.3),
and 〈Jl〉 = 0 for any l ∈ x, y, z is particularly interesting due to its entanglement properties and its
metrological usefulness. This state has been created in photonic experiments [106, 107, 109] and in
cold atoms [8, 59], while a Dicke state with 〈Jz〉 > 0 has been created with cold trapped ions [119].

The Dicke state |DN〉z is an eigenstate of Jz so it is insensitive to homogeneous magnetic field
pointing into the z-direction, thus the precision can be saturated by some measurement. In the
following, |DN〉z without the subscript z refers to |DN〉z . On the other hand, the Dicke state |DN〉x is
sensitive to the homogeneous field. Moreover it is very useful for homogeneous magnetometry as it
has been shown in Ref. [97]. Here we consider large particle numbers, to make the results simpler.

Since both Dicke states are pure, and following the procedure we used in previous sections,
we have that to compute all the FQ[ρ(s), j (n)z ] = 4(〈j (n)z j (m)z 〉 − 〈j (n)z 〉〈j (m)z 〉) and FQ[ρ(s), Jz ] appearing in
Eqs. (5.65) and (5.67). Since both states are unpolarized and permutationally invariant, we have that
〈Jz〉 = 0 and 〈j (n)z 〉 = 0 for both cases. Therefore, we only need to compute the second moments to
compute the needed variances.

To distinguish between the to cases, |DN〉 and |DN〉x , we will denote their expectation values by
〈·〉D and 〈·〉D,x , respectively.

First of all, from the definition of the Dicke states we have that

〈J2x + J2y + J2z 〉 = JN/2 = N
2
(N

2 + 1
)
, (5.82)

for both cases. Moreover, 〈J2l 〉 = 0 holds for |DN〉l. The other two second moments of Eq. (5.82) are
equal to the invariance of the states under rotations around the l-axis. Hence, we can write that

〈J2z 〉D = 0, (5.83a)
〈J2z 〉D,x = JN/22 . (5.83b)

For the single spin components
〈(j (n)x )2 + (j (n)y )2 + (j (n)z )2〉 = J1/2 (5.84)
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holds. Invoking the rotational symmetry again and that 〈J2l 〉 = ∑N
n,m〈j (n)l j (m)

l 〉, we arrive at

〈(j (n)z )2〉D = 1
4 , (5.85a)

〈(j (n)z )2〉D,x = 1
4 , (5.85b)

after solving a system of linear equations.
Substituting Eqs. (5.83) and (5.85) into Eqs. (5.65) and (5.67), the bounds for unpolarized Dicke

states insensitive to the homogeneous field and sensitive to the homogeneous field are
(∆b1)−2D |max = (σ 2 − η)N, (5.86a)

(∆b1)−2D,x 6 (σ 2 − η)N + ηN(N + 2)
2 , (5.86b)

where Eq. (5.86b) shows in principal a Heisenberg scaling behavior in the second term, whenever the
particles are very correlated among each other in the position subspace. This is due to the metrological
enhancement of sensing the homogeneous field. In the next section, we will see another example of
a state useful for homogeneous field estimation that is also useful for gradient magnetometry.

The GHZ state

The Greenberger-Horne-Zeilinger (GHZ) states are also highly entangled and play an important
role in quantum information theory [48]. They have been created experimentally in photonic systems
[51, 53, 120] and trapped ions [55, 56].

We invoke the definition of the GHZ states Eq. (4.14) given as
|GHZ〉 = 1√2 (|0 · · · 0〉+ |1 · · · 1〉), (5.87)

where |0〉 and |1〉 stands for particles with eigenvalue −1/2 and +1/2 respectively for the one-particle
j (n)z operator. The state Eq. (5.87) is very sensitive to the homogeneous field.

In order to calculate the bound explicitly, let us recall that for pure states the QFI is simplified
to FQ[ρ, A] = 4(∆A)2 Eq. (2.53). Following the Eq. (5.67), for the GHZ state the expectation values of
j (n)z and Jz are equal to zero, and 〈(j (n)z )2〉 = 14 and 〈J2z 〉 = N2

4 . Hence, the variances of j (n)z and Jz can
be computed. Finally, we obtain the precision bound for gradient magnetometry for the GHZ state
as

(∆b1)−2GHZ 6 (σ 2 − η)N + ηN2. (5.88)
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This means that we can reach the Heisenberg-limit with such states, but only in cases where η is
positive, i.e, that the particles stay spatially correlated.

In summary, we have considered the experimentally most relevant spatial distributions of particles,
which could be used for gradient metrology. We have have also applied our methods to calculate
the quantum Fisher information for various spin states. As we have seen, in some cases the system
overcomes the shot-noise limit, even when the spatial state is a single ensemble of atoms, which
opens up the possibility of ultra-precise gradient magnetometry with a smaller experimental effort.
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6 CONCLUSIONS

6 Conclusions

I n this thesis we have presented some aspects of quantum metrology from three different perspectives.
Besides the introductory part, Chapters 1 and 2, our main results can be found in Chapters 3, 4

and 5. In Chapter 3, we have developed the theory of quantum metrology for metrology with noisy
Dicke states. In Chapter 4, we have presented a method for witnessing the QFI with expectation
values of some general observables. Finally in Chapter 5, we have computed precision bounds for
gradient magnetometry.

In Chapters 3 and 4, we were constructing bounds on the quantum Fisher information based
on the expectation values of some observables of the initial state. It turns out that to compute the
quantum Fisher information is not a trivial task and there is not a measurement scheme to obtain it
from the initial state apart from a complete tomography, which is very demanding for large system
sizes. Hence, some shortcuts to compute the bound of the QFI are necessary.

In Chapter 3, we computed the precision bound for noisy unpolarized Dicke states based on some
initial expectation values. Moreover, we first reduced the number of expectation values needed to four.
More explicitly, we have to measure only the second and the fourth moments of the y-component and
the x-component of the collective angular momentum in order to estimate the metrological usefulness
of the system. In practice, the fourth-order moments can also be well approximated by the second-
order moments.
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In Chapter 4, we developed a method based on the Legendre transform. Based on this method,
we are able to obtain a tight lower bound on the quantum Fisher information as a function of a set of
expectation values of the initial state. Furthermore, we tested our approach on extensive experimental
data of photonic and cold gas experiments, and demonstrated that it works even for the case of
thousands particles. In the future, it would be interesting to use our method to test the optimality of
various recent formulas giving a lower bound on the quantum Fisher information [98, 121], as well as
to improve the lower bounds for spin-squeezed states and Dicke states allowing for the measurement
of more observables than the ones used in this publication.

On the other hand, in Chapter 5, we have investigated the precision limits for measuring the
gradient of a magnetic field with atomic ensembles arranged in different geometries and initialized
in different states. In particular, we studied spin-chain configurations as well as the case of two
atomic ensembles localized at two different positions, and also the experimentally relevant set-up
of a single atomic ensemble with an arbitrary density profile of the atoms was considered. We
discussed the usefulness of various quantum states for measuring the field strength and the gradient.
Some quantum states, such as singlet states, are insensitive to the homogeneous field. Using these
states, it is possible to estimate the gradient and saturate be Cramér-Rao bound, while for states
that are sensitive to the homogeneous magnetic field, compatible measurements are needed for this
task. For spin chains and the two-ensemble case, the precision of the estimation of the gradient
can reach the Heisenberg limit. For the single ensemble case, only if strong correlation between
the particles is allowed can the shot-noise limit be surpassed and even the Heisenberg limit be
achieved. However, even if the Heisenberg limit is not reached, single-ensemble methods can have a
huge practical advantage compared to methods based on two or more atomic ensembles, since using
a single ensemble makes the experiment simpler and can also result in a better spatial resolution.
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Appendices

A Multiparticle angular momentum subspaces
As we mentioned in the Section 2.2.1, when dealing with many particle systems, the Hilbert space
is represented by tensor a product of the subspaces with a fixed spin. So, the final dimension is the
product of all single-particle dimensions which lead to an exponentially large Hilbert space. In order
to simplify our calculations, it is worth to note that some interesting structures arise from this kind
of tensor product construction.

Let us name some basic assumptions with which the problem of adding angular momentum sub-
spaces can be simplified. First of all, the single-particle Hilbert space must be discrete and finite,
hence it can be represented by a d-level system or qudit, where d is the dimension of the single-
particle system. When d equals two, we have the well known 2-level system or qubit. The basis
of such systems is composed of d different eigenstates of the spin operator j (n)z , where n denotes
the Hilbert space in which the operator is defined. We also assume that all parties have the same
dimension d, so the total dimension is dN . The spin j is defined as j := (d − 1)/2. It is usual to use
the single-particle angular momentum projector operator in the z-direction to completely characterize
the basis

j (n)z |m〉 = m|m〉, (A.1)
where m = −j,−j+1, . . . ,+j −1,+j and this way the necessary d different pure states are defined.

In quantum information, the two eigenstates |−1/2〉 and |+1/2〉 of the 2-level systems, or qubits,
are usually identified with |0〉 and |1〉 respectively, since the qubit case is the most studied case
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in which the dichotomized representation of classical bits, ones and zeros, is directly related with.
For qudits, particles whit d levels, one can map directly the m = −j,−j + 1, . . . ,+j − 1,+j to
m̃ = 0, 1, . . . , d − 1 in a similar way as for qubits, where m̃ is usual label used in the quantum
information framework, whereas the m gives directly the eigenvalue of the state when j (n)z is applied.

A usual approach is using the tensor products of the single-party basis states given as
|−j,−j, . . . , −j,−j〉,
|−j,−j, . . . , −j,−j + 1〉,
...
|−j,−j, . . . , −j + 1, −j〉,
|−j,−j, . . . , −j + 1, −j + 1〉,
...
|+j ,+j , . . . ,+j ,+j〉,

(A.2)

as a basis for the whole Hilbert space. Here we have used the notation |m1, m2, . . . , mN−1, mN〉 ≡
|m1〉 ⊗ |m2〉 · · · ⊗ |mN〉. This basis is yet an eigenbasis of Jz = ∑

n j (n)z . On the other hand, it is
not an eigenbasis of the total angular momentum J2 = J2x + J2y + J2z , neither all the eigenstates are
permutationally invariant, which would be useful for dealing with symmetric subspaces.

We will explain shortly how to write a basis in which all basis states are eigenstates of the total
angular momentum J2 as well as of the Jz operator. This is a usual procedure when adding angular
momentum operators, see Ref. [69, 70] for more details. For that, we have the ladder operators
J± := Jx ± iJy which increase or decrease the eigenvalue of the state for Jz without changing the
eigenvalue for J2. Therefore, if we start from |−j,−j, . . . , −j〉, which is an eigenstate of J2 with the
maximal eigenvalue Nj(Nj+1), and we apply J+, we obtain all the states belonging to that subspace
in which J2 is maximal. We use the following notation for the maximal eigenvalue of the J2 operator

JNj ≡ Nj(Nj + 1), (A.3)
since it appears many times throughout the thesis. Then, we use orthogonal states and we keep
doing this until we have all the subspaces characterized.

Hence, the eigenstates are characterized with only three simple numbers |J,M,D〉 instead of
Eq. (A.2). First of all, we have the total angular momentum number J , where J = 0, 1, . . . , Nj for
this particular case in which we are adding together N spin-j particles, and define the eigenvalue of
the J operator as J(J + 1). Then, we have the quantum number of the angular momentum projection

106



APPENDICES

into the z-direction, M = −J,−J + 1, . . . ,+J − 1,+J , which corresponds to the eigenvalue of the Jz
operator. And finally, the degeneracy number of the J subspaces, D = 1, 2, . . . , DJ , that is always
one for the J = Nj subspace and for the rest it depends in general in the number of particles as well
as in the spin-number j .

We now show the definition of some of the states most used in this thesis. For the spin-12 particles,
i.e., qubits, we can mention several important quantum states. For instance, the symmetric states, i.e.,
the states that after interchanging any pair of particles remain the same, are all confined into the
subspace where J2 is maximal, and equals Nj(Nj + 1). They can be constructed taking N − n
particles in the |−1/2〉 or, using another notation, in the |0〉 state, and n in the |+1/2〉 or |1〉 state
and symmetrizing them as

|J = N/2,M〉 ≡
( N
N/2 +M

)− 12 ∑
k
Pk (|0〉⊗N−n ⊗ |1〉⊗n), (A.4)

where the sum is over all possible different permutations of the state denoted by Pk and M = N/2+n.
Note that the Dicke states, are named after R. H. Dicke, who used them to explain the coherent
superradiance effect [94]. If we consider two modes corresponding to the two states, then Eq. (A.4) is
equivalent to the twin Fock state for a constant particle number. Therefore apart from Eq. (A.4), we
use the following notation for these states

|DN,n〉 ≡ |J = N/2,M = N/2− n〉 =
(N
n
)− 12 ∑

k
Pk (|0〉⊗N−n ⊗ |1〉⊗n), (A.5)

where n gives the number of particles that are in |0〉. One particularly interesting case of these states
is the unpolarized Dicke state

|DN〉 ≡ |DN,N/2〉, (A.6)
since it appears many times in this thesis, we skip writing the second subscript for simplicity.

Finally, we present another interesting state. It is the permutationally invariant singlet state for
spin-12 particles. This is a uniquely defined state that can be constructed in several different ways.
One can start by the product state of pairwise singlets |Ψ−〉 = 1√2 (|01〉 − 10) and later impose the
permutational invariance for the density matrix. Or one can find the thermal ground states of the
Hamiltonian H = J2. Finally, it can be constructed as the completely mixed state of the subspace
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where J = 0. All these alternative constructions are collected in the following equation
( N!

2N/2(N/2)!
)− 12 ∑

k∈σs
Pk (|Ψ−〉〈Ψ−|⊗N/2) ≡ limβ→∞

exp(−J2β)
tr(exp(−J2β)) ≡

1
D0

D0∑
D=1
|0, 0, D〉〈0, 0, D|, (A.7)

where β is the inverse of the Boltzman constant kB times the temperature T , and σs is the set of all
possible unique permutations, in this case N!2N/2(N/2)! .

B Husimi Q-representation and the Bloch sphere
To graphically represent states with an angular momentum larger than J = 12 , it is convenient to use
the so-called Husimi Q-representation on the Bloch-sphere. In fact it is straightforward to represent
in a 3D-sphere all the possible states as it is done for qubits.

The Husimi Q-representation must be normalized to 1. Hence,
∫
Qρ(Ω) dΩ = 1, (B.1)

where Ω represents the solid angle of the sphere, i.e., the function is a function of φ and θ, the azimuth
angle and the polar angle respectivelly, and dΩ = sin(θ)dφdθ. We will use it to describe states
belonging to the symmetric subspace or for states belonging to the maximum angular momentum
subspace. Therefore, the Qρ(Ω) function will be proportional to the fidelities of totally polarized
states that point to different directions represented by Ω.

In the case of many qubits such totally polarized states can be written as
|Ω〉 ≡ |N/2, N/2〉Ω, (B.2)

where can be reformulated as the eigenstate with the maximum eigenvalue for JΩ = cos(φ) sin(θ)Jx +
sin(φ) sin(θ) Jy+cos(θ)Jz operator. An alternative way to obtain such totally polarized states |Ω〉 is to
rotate a totally polarized state along the z-direction by θ angle along the y-axis and then applying
a rotation of φ angle along the z-axis. Hence,

|Ω〉 = e−iφJze−iθJy|11 . . . 1〉,
JΩ|Ω〉 = N

2 |Ω〉.
(B.3)
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We write the quasi-probability Q(Ω) proportional to the fidelity with respect to |Ω〉 of the state as
Qρ(Ω) ∝ tr(ρ|Ω〉〈Ω|). (B.4)

The normalization constant comes from Eq. (B.1). To obtain is the totally mixed state in the sym-
metric subspace can be used for which tr( 1N+1 |Ω〉〈Ω|) = 1N+1 . Integrating Eq. (B.1) we obtain the
proportionality factor shown in the following equation

Qρ(Ω) = 1
4π(N + 1) tr(ρ|Ω〉〈Ω|), (B.5)

which must be true for N qubits in the symmetric subspace. Similar definitions could be obtained for
different subspaces or even for different spin number of the constituents.

C Calculation of 〈{J2x , J2y}+ {Jx , Jy}2〉
The expectation value appearing in Eq. (3.14) which we want to simplify has 6 different terms, all
with two Jx and another two Jy,

〈J2x J2y〉+ 〈JxJyJxJy〉+ 〈JxJ2yJx〉+ 〈JyJ2x Jy〉+ 〈JyJxJyJx〉+ 〈J2yJ2x 〉. (C.1)
We can immediately see that the third term is zero, since Jx |DN,N/2〉x = 0.

We use the commutation relations of the angular momentum operators [Jk , Jl] = εklmiJm, where εklm
is the Levi-Civita symbol, to rearrange all operators,

〈J2x J2y〉 = i〈JxJzJy〉+ 〈JxJyJxJy〉, (C.2a)
〈JxJyJxJy〉 = i〈JxJyJz〉+ 〈JxJ2yJx〉, (C.2b)
〈JxJ2yJx〉 = 〈JxJ2yJx〉, (C.2c)
〈JyJ2x Jy〉 = i〈JyJxJz〉+ 〈JyJxJyJx〉, (C.2d)
〈JyJxJyJx〉 = −i〈JzJyJx〉+ 〈JxJ2yJx〉, (C.2e)
〈J2yJ2x 〉 = −i〈JyJzJx〉+ 〈JyJxJyJx〉. (C.2f)

One may note that with those relations is enough to see that we have six 〈JxJ2yJx〉, for instance,
Eq. (C.2a) is i〈JxJzJy〉 plus Eq. (C.2b), which at the same time is i〈JxJyJz〉 plus Eq. (C.3c). So each
equation has at the end one 〈JxJ2yJx〉 plus or minus some expectation value of the product of three
operators.
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For the three terms operators and again using the commutation relations we can further simplify
this expression. We transform each term such that a 〈JxJyJz〉 term appears in the expressions obtained,
and we arrive at the following,

i〈JxJzJy〉 = 〈J2x 〉+ i〈JxJyJz〉, (C.3a)
2i〈JxJyJz〉 = 2i〈JxJyJz〉, (C.3b)
i〈JyJxJz〉 = 〈J2z 〉+ i〈JxJyJz〉, (C.3c)
−i〈JyJzJx〉 = 〈J2y〉 − 〈Jz〉 − i〈JxJyJz〉, (C.3d)
−3i〈JzJyJx〉 = −3〈J2x 〉 − 3i〈JyJzJx〉

= −3〈J2x 〉+ 3〈J2y〉 − 3i〈JyJxJz〉
= −3〈J2x 〉+ 3〈J2y〉 − 3〈J2z 〉 − 3i〈JxJyJz〉.

(C.3e)

We now sum all the terms. Several terms cancel each other and the six 〈JxJ2yJx〉 terms add up. The
resulting expression is

4〈J2y〉 − 3〈J2z 〉 − 2〈J2x 〉+ 6〈JxJ2yJx〉. (C.4)

D Properties of the spin-squeezing Hamiltonian
In this section, we discuss how to obtain spin-squeezed states as the ground states of the spin-
squeezing Hamiltonian [122], which is defined as

Hλ = J2x + λJy, (D.1)
where λ is a real number.

Since H is permutationally invariant, if the ground state |GSλ〉 is non-degenerate, then |GSλ〉 is
a symmetric state. We can prove that by using the permutation operator Π which permutes any two
particles when acting on the state. With the permutation operator, we can write that

[Hλ,Π]|GSλ〉 = (HλΠ− ΠHλ)|GSλ〉,
= HλΠ|GSλ〉 − ΠE0,λ, |GSλ〉
= (Hλ − E0,λ)Π|GSλ〉,

(D.2)

where E0,λ is eigenvalue corresponding to the state |GSλ〉. Eq. (D.2) must be zero since Hλ is
permutationally invariant and we have that [Hλ,Π] = 0. Hence, Π|GSλ〉 must be an eigenstate of Hλ
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with eigenvalue E0,λ. It turns out that, Π|GSλ〉 and |GS±λ 〉 must be the same state for any permutation
Π. Hence, the ground states of Hλ must be symmetric if they are non-degenerate.

We have to show now that for a given expectation value of 〈Jy〉 of the ground state |GSλ〉, these
states are the ones that minimize 〈J2x 〉. Hence, using the linearity of the expectation values, we have
that for any state

〈Hλ〉 = 〈J2x 〉+ λ〈Jy〉,
〈J2x 〉 = 〈Hλ〉 − λ〈Jy〉. (D.3)

Then for a particular 〈Jy〉, if we want to minimize the value of 〈J2x 〉, then we have to minimize
〈Hλ〉, which by definition is done by the ground states |GSλ〉. Hence, these states sit at the lower
boundary of the set of the expectation values (〈J2x 〉, 〈Jy〉), which appears in Figure 4.3. Based on
similar arguments, states at the upper boundary are ground states of the Hamiltonian

H−λ = −J2x + λJy. (D.4)

E Legendre transform in 1-dimension
The Legendre transform of a convex function f (x) is defined as the maximum distance between the
line y = rx and the function f (x) for any x . It can be written as follows,

f̂ (r) := maxx {rx − f (x)}, (E.1)

where f̂ (r) denotes the transformed function [101]. A geometric representation of the transform is
given in Figure E.1.

The inverse transformation is simply obtained by applying again the same technique. One fully
recovers the

f (x) = maxr {rx − f̂ (r)}. (E.2)
Let us calculate the concrete example shown in the Figure E.1, where the function is f (x) =

x2 − 1.9x − 0.3. In this case the problem is well defined on the complete real axis. Now, one has to
find the maximum of g(r, x) = rx − f (x) for all r . The maximum is easily obtained in this particular
case with usual techniques. One has to solve for x the following equation ∂xg(r, x) = 0. Thus, the
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Figure E.1: Graphical representation of the Legendre transform. (blue-line) Convex function, f (x) =
x2 − 1.9x − 0.3, to be transformed. (red-dashed) Line passing by the coordinate system origin, rx . The
Legendre transform is the maximal difference between rx and f (x) at the same x . In this case, the vertical
distance between a and b.

maximum is at xopt = r+1.92 and hence, the Legendre transform is

f̂ (r) = r2
4 + 0.95r + 1.2025. (E.3)

If one applies again the transformation the resulting function is again the original one.

F Calculation of |〈DN,m|z|DN,N/2〉x |2

To compute the Eq. (4.23), we use the Dicke states |DN,m〉l defined as Eq. (A.5), see Appendix A for
more details about Dicke states. The Dicke states are multi-qubit states, hence we use |0〉(n)

l ’s and
|1〉(n)

l ’s to describe them, where the superscript denotes to which particle the state belongs.
The scalar product of |0〉(n)

l ’s and |1〉(n′)l′ is zero if n 6= n′. For n = n′ and l = l′, these states form
an orthonormal basis, i.e., 〈a|b〉 = δa,b. The rest of the possibilities are

〈0|z|1〉x = 〈1|z|0〉x = 〈1|z|1〉x = 〈1|z|0〉y = 〈1|z|1〉y = 1√2 , (F.1)

and
〈0|z|0〉x = −1√2 , 〈0|z|0〉y = −i√2 , 〈0|z|1〉y = +i√2 , (F.2)
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and all their complex conjugates. On the other hand using the tensor product properties we have that
〈a1, a2, . . . , aN |b1, b2, . . . , bN〉 = 〈a1|b1〉〈a2|b2〉 . . . 〈aN |bN〉. (F.3)

For the overlap of the different Dicke states, in this case for different m’s of |〈DN,m|z|DN,N/2〉x |2,
we have first that

〈DN,m|z|DN,N/2〉x =
(N
m
)− 12( N

N/2
)− 12 ∑

k,k ′∈σs
Pk (〈0|⊗N−mz 〈1|⊗mz )Pk ′(|0〉⊗N/2x |1〉⊗N/2x ), (F.4)

where Pk denotes one of the unique permutations of its argument.
From Eqs. (F.1) and (F.2), we see that all of the scalar products will be either 1√2 or −1√2 . This

way, we can take ( 1√2 )N out of the sum, and use redefine states such that 〈0̃|z|0̃〉x = −1 and
〈0̃|z|1̃〉x = 〈1̃|z|0̃〉x = 〈1̃|z|1̃〉x = +1. Moreover, note that for each permutation on k ′, k already
permutes all of the possible pairings. We can drop that sum then and substitute it by a constant
which is all the possible distinguishable permutations of N objects when N/2 are of one kind and
N/2 of another, which turns to be ( N

N/2
).

Hence, we get

〈DN,m|z|DN,N/2〉x =
(N
m
)− 12 ( N

N/2
) 12

√2N
∑
k∈σs
Pk (〈0̃|⊗N−mz 〈1̃|⊗mz ) |0̃〉⊗N/2x |1̃〉⊗N/2x . (F.5)

The terms in the sum are either +1 or −1. At this point, we have to solve this by using notions in
permutation sets. We have to assign −1 to the term in the sum whenever there are an odd number
of 〈0̃|z ’s in the first half particles of Pk (〈0̃|⊗N−mz 〈1̃|⊗mz ).

For 0 6 m 6 N/2, we can start having all the zeros in the first half of the particles, which are(N/2
m
) different possibilities with the same sign. Then, putting one 〈0̃|’s to the second half of the

particle numbers, we have (N/2m−1
)(N/2

1
) possibilities where the sign of the terms flipped. We have to

do so until there are no more 〈0̃|’s left in the first half of the particles, which clearly returns +1 for
the summing term. For the sum then, this yields

∑
k∈σs
Pk (〈0̃|⊗N−mz 〈1̃|⊗mz ) |0̃〉⊗N/2x |1̃〉⊗N/2x =

m∑
i=0

(−1)i
( N/2
m− i

)(N/2
i
)
. (F.6)

The key point now is to note that for N/2 < m 6 N we can swap all the 〈0̃|z ’s with 〈1̃|z ’s, which
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yields the same combinations, but where we have to count the number of 〈1̃|z ’s in the first half to
determine the sign. Hence, the following holds

∑
k∈σs
Pk (〈0̃|⊗N−mz 〈1̃|⊗mz ) |0̃〉⊗N/2x |1̃〉⊗N/2x =

N−m∑
i=0

(−1)N/2−i
( N/2
N −m− i

)(N/2
i
)
. (F.7)

Note that if N/2 is even, then Eq. (F.6) is equal to Eq. (F.7), whereas if N/2 is odd, then Eq. (F.6) is
the negative of Eq. (F.7). Since we are interested in the square of 〈DN,m|z|DN,N/2〉x , we can compute
it for 0 6 m 6 N/2 at the same time we obtain the results for N/2 < m 6 N . This is represented by

|〈DN,m|z|DN,N/2〉x |2 = |〈DN,(N−m)|z|DN,N/2〉x |2. (F.8)

Finally, using the binomial identity of Eq. (4.22) we have that Eq. (F.6) yields
m∑
i=0

(−1)i
( N/2
m− i

)(N/2
i
)

=



(N/2
m/2

)
(−1)m/2 for even m,

0 for odd m.
(F.9)

Hence, for even m the overlapping coefficient is

|〈DN,m|z|DN,N/2〉x |2 =
(N/2
m/2
)2( N

N/2
)

2N(Nm
) . (F.10)

If we substitute m by N− 1, using some binomial identities the formula remains the same, hence, the
Eq. (F.10) is valid for any m. Note that it also coincides with Eq. (4.23).

G Calculation of the QFI matrix elements
We start with states insensitive to the homogeneous fields. Later, we will discuss states sensitive
to it. Next, we must compute the matrix elements of the quantum Fisher information defined for the
generators H0 and H1. We use the functional defined in Eq. (5.17) to compute the matrix elements.
We also use thermal states with respect to the spatial degrees of freedom Eq. (5.11), since it is one
of the most common situations in the experiments. Moreover, we consider the eigen-decomposition of
the state appearing in Eq. (5.11).

First of all, we compute the F11 ≡ FQ[ρ,H1, H1] ≡ FQ[ρ,H1], since it is valid for states that
are insensitive to the homogeneous field as well as for states that are sensitive to it. We have the
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following for the QFI

FQ[ρ,H1] = 2
∫∫ ∑

λ,ν
1
〈x|x〉

(Pr(x)pλ − Pr(y)pν)2
Pr(x)pλ + Pr(y)pν |(H1)x,λ;y,ν|2 dNxdNy

= 2
∫∫ ∑

λ,ν
1
〈x|x〉

(Pr(x)pλ − Pr(y)pν)2
Pr(x)pλ + Pr(y)pν (δ(x − y))2

N∑
n,m

xnxm〈λ|j (n)z |ν〉〈ν|j (m)z |λ〉 dNxdNy,
(G.1)

where we use 〈x|x〉 = 〈y|y〉. From the definition of the Dirac delta, we arrive at

FQ[ρ,H1] = 2
∫ ∑

λ,ν
Pr(x)
〈x|x〉

(pλ − pν)2
pλ + pν δ(x − x)

N∑
n,m

xnxm〈λ|j (n)z |ν〉〈ν|j (m)z |λ〉 dNx

= 2
∫

Pr(x)∑
λ,ν

(pλ − pν)2
pλ + pν

N∑
n,m

xnxm〈λ|j (n)z |ν〉〈ν|j (m)z |λ〉 dNx

=
N∑
n,m

∫
xnxmPr(x) dNx FQ[ρs, j (n)z , j (m)z ],

(G.2)

where we used the Eq. (5.26) for the simplification of the matrix elements of H1, where we simplified
〈x|x〉 with δ(x − x), and where in the third line we reconstructed FQ[ρs, j (n)z , j (m)z ] using the factor 2,
the sum over λ and ν , and the matrix elements of j (n)z and j (m)z appearing in the third line. We finally
reordered all the terms in order to group what has to be integrated together between "∫ " and "dNx ",
which in this case represents a two-point correlation function of xn and xm over the PDF Pr(x).

We carry out a similar calculation for F01 and F00. We use again a state of the form Eq. (5.11)
to compute these matrix elements of the QFI. We also use the simplified expression for the matrix
elements of H0 for this case Eq. (5.33). For F01, the computation looks like

F01 = 2
∫∫ ∑

λ,ν
1
〈x|x〉

(Pr(x)pλ − Pr(y)pν)2
Pr(x)pλ + Pr(y)pν (H0)x,λ;y,ν(H1)y,ν;x,λ dNxdNy

= 2
∫∫ ∑

λ,ν
1
〈x|x〉

(Pr(x)pλ − Pr(y)pν)2
Pr(x)pλ + Pr(y)pν (δ(x − y))2

N∑
n,m

xm〈λ|j (n)z |ν〉〈ν|j (m)z |λ〉 dNxdNy.
(G.3)
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Using the definition of the Dirac delta inside one of the integrals we have that

F01 = 2
∫ ∑

λ,ν
Pr(x)
〈x|x〉

(pλ − pν)2
pλ + pν δ(x − x)

N∑
n,m

xm〈λ|j (n)z |ν〉〈ν|j (m)z |λ〉 dNx

= 2
∫

Pr(x)∑
λ,ν

(pλ − pν)2
pλ + pν

N∑
n,m

xm〈λ|j (n)z |ν〉〈ν|j (m)z |λ〉 dNx,
(G.4)

which follows from the definition of Eq. (5.17)

F01 =
N∑
n,m

∫
xmPr(x) dNx FQ[ρs, j (n)z , j (m)z ]

=
N∑
n=1

∫
xnPr(x) dNx FQ[ρs, j (n)z , Jz ],

(G.5)

where we have used similar arguments as when computing Eq. (G.2). We also use the linearity on
the second and third arguments of the functional Eq. (5.17) in the last line to remove the one of the
summation indexes. Note that the main difference with respect to F11 is that in this case the integral
represents a single-point average instead of a two-point correlation function. Finally, for the matrix
element F00 we have that

F00 = 2
∫∫ ∑

λ,ν
1
〈x|x〉

(Pr(x)pλ − Pr(y)pν)2
Pr(x)pλ + Pr(y)pν |(H0)x,λ;y,ν|2 dNxdNy

= 2
∫∫ ∑

λ,ν
1
〈x|x〉

(Pr(x)pλ − Pr(y)pν)2
Pr(x)pλ + Pr(y)pν (δ(x − y))2

N∑
n,m
〈λ|j (n)z |ν〉〈ν|j (m)z |λ〉 dNxdNy.

(G.6)

We use now the definition of the Dirac delta such that

F00 = 2
∫ ∑

λ,ν
Pr(x)
〈x|x〉

(pλ − pν)2
pλ + pν δ(x − x)

N∑
n,m
〈λ|j (n)z |ν〉〈ν|j (m)z |λ〉 dNx

= 2
∫

Pr(x)∑
λ,ν

(pλ − pν)2
pλ + pν

N∑
n,m
〈λ|j (n)z |ν〉〈ν|j (m)z |λ〉 dNx.

(G.7)
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We apply the definition of Eq. (5.17) and we reorder terms as

F00 =
N∑
n,m

∫
Pr(x) dNx FQ[ρs, j (n)z , j (m)z ]

=
N∑
n,m
FQ[ρs, j (n)z , j (m)z ]

= FQ[ρs, Jz, Jz ] = FQ[ρs, Jz ],

(G.8)

where we simplify the integral using the normalization of the PDF which is equal to 1. Note that
we obtain the QFI for the homogeneous field as expected.
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