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Abstract

I
n the last years, the fields of quantum technologies and quantum information have

undergone dramatic advances, which suggest the advent of the second quantum

revolution. In particular, superconducting circuits have experienced rapid and dras-

tic technological growth. In this sense, architectures facilitating large numbers of

quantum bits, with coherence times that allow for hundreds of quantum gates, are

now feasible. On the other hand, quantum simulations are one of the most promising

branches of quantum information, where digital and analog protocols allow us to

reproduce a variety of systems with versatility.

Spin models, along with light-matter interactions, are one of the most studied

topics in many-body systems. The microscopic description of magnetism is a relevant

question that one can study in condensed matter physics and it has applications in

many di↵erent disciplines including quantum field theory, metamaterials, and neu-

roscience models, among others. Quantum versions of spin models have interesting

physical properties and, due to the high complexity of these quantum systems, the

analysis with classical computers is a tough task. Hence, quantum platforms such as

superconducting circuits are wonderful candidates to probe spin system’s features.

In this Thesis, we propose several digital quantum simulations of quantum spin

models with superconducting circuits, in which light-matter and spin-spin interac-

tions are reproduced. Exploiting natural interactions in circuit quantum electrody-

namics setups, in which qubits are coupled capacitively or by quantum buses, dynam-

ics of prototypical spin models such as Ising and Heisenberg models are implemented

and experimentally analyzed. On the other hand, Rabi and Dicke Hamiltonians are

simulated with a digital-analog quantum simulation approach. For this purpose,
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analog-block interactions are composed in a digital manner to exploit the resources

of quantum simulators. Furthermore, we study the combination of digital methods

with an adiabatic quantum computing approach, which has been implemented in an

experiment involving up to nine qubits. Finally, genetic algorithms are considered

as a tool to improve not only digital quantum simulation protocols but also fidelity

in quantum gates. Therefore, they allow us to enhance the fidelity of quantum in-

formation processing protocols via the introduction of a new paradigm, which is

conceptually distinct from the conventional approach via quantum error correcting

codes.

We believe that this Thesis provides the first step towards digital quantum simu-

lations with superconducting circuit architectures, which o↵er considerable potential

for surpassing classical simulators in the search of quantum supremacy. We hope that

our results motivate further theoretical and experimental works involving many-body

spin systems and complex light-matter interactions.
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Resumen

A
lo largo de la historia, el ser humano, consciente de su incapacidad natural

para realizar diversas tareas, ha utilizado herramientas que le han permitido

afrontar de forma cada vez más satisfactoria los problemas de cada época. Estos

avances que van desde las lanzas prehistóricas para cazar mamuts hasta los aviones

actuales para llegar al otro lado del mundo en cuestión de horas, han provisto a

los humanos de habilidades que la naturaleza no nos ha brindado. No es distinto

el caso particular de la computación. Desde niños hemos aprendido a hacer uso de

elementos más allá de nuestra mente anaĺıtica para la realización de todo tipo de

cálculos. Contar con los dedos, utilizar un ábaco o un papel y un lápiz, y en última

instancia hacer uso de un ordenador son solo algunos ejemplos de ello. Hay quien

podŕıa pensar erróneamente que los superordenadores con tecnoloǵıa puntera son

capaces de resolver los problemas computacionales más complejos pero la verdad es

que posiblemente nunca lleguen a conseguirlo.

Las primeras máquinas computadoras teńıan un único propósito, es decir, esta-

ban programadas por construcción con una única función, recibiendo el nombre de

máquinas analógicas. En caso de querer realizar otra tarea, las máquinas analógicas

deb́ıan desmontarse y reconstruirse, lo que resultaba ineficiente. Con el tiempo se

introdujo la posibilidad de programar las computadoras sin la necesidad de alterar

los distintos componentes f́ısicos, permitiendo aśı la posibilidad de introducir nuevas

funciones no consideradas durante el diseño y montaje de las máquinas. Estas reciben

el nombre de computadoras digitales y su estructura se basa en tres partes: una en-

trada de datos, una función que actúa sobre estos mediante una serie de puertas

lógicas y una salida de datos. Diseñando un algoritmo que codifique el problema que
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se quiere resolver, la salida de datos da la solución a dicho problema. Además, debido

a la posibilidad de programar el algoritmo, se puede resolver una gran variedad de

problemas sin la necesidad de hacer ajustes mecánicos en la máquina.

La tecnoloǵıa en el ámbito de la computación ha tenido un crecimiento sin

precedentes desde la implementación del transistor, siendo esta la primera revolución

cuántica. Antes de este, los ordenadores funcionaban con válvulas o tubos de vaćıo de

gran tamaño que requeŕıan altas cantidades de enerǵıa además de necesitar un tiempo

de calentamiento. Los transistores, dispositivos que transfieren señales eléctricas

unidireccionalmente, mejoraron todas las cualidades de las válvulas, especialmente

en rapidez y fiabilidad. Estos elementos, cuyos efectos f́ısicos se basan en efectos

cuánticos, generaron una revolución en la historia de la computación. Como predijo

Moore, la densidad de transistores en un microprocesador es duplicada cada dos

años. De esta forma, hoy d́ıa disponemos de ordenadores programables de gran ca-

pacidad de cálculo aunque todav́ıa no están a la altura de simular la complejidad de

los sistemas cuánticos.

La mecánica cuántica se desarrolló durante la primera mitad del siglo XX, rev-

elando una f́ısica exótica y contraintuitiva para muchos. Aśı, la interacción entre luz

y materia a escala microscópica comenzó a describirse mediante modelos basados en

interacciones entre part́ıculas y campos cuánticos. Los efectos puramente cuánticos

de la superposición y entrelazamiento implican una dificultad inmensa a la hora de

simularlos con un ordenador que codifica los datos en bits, d́ıgitos binarios con esta-

dos 0 o 1. Una máquina cuántica estaŕıa compuesta de bits cuánticos (qubits) cuyos

estados seŕıan superposiciones de los estados 0 y 1, y que podŕıan entrelazarse con

otros qubits. Aśı pues, el ordenador cuántico no solo posibilitaŕıa este tipo de simula-

ciones sino también avanzados protocolos en el ámbito de la teoŕıa de la información,

como la factorización en números primos o la criptograf́ıa de alta seguridad. Por esa

razón, la comunidad cient́ıfica ha puesto grandes esfuerzos en controlar los sistemas

cuánticos, dando lugar a diversas tecnoloǵıas cuánticas como iones atrapados, sis-

temas fotónicos o circuitos superconductores. Mediante el uso de estas tecnoloǵıas se

puede estudiar el comportamiento de las propiedades cuánticas de modelos f́ısicos en

un laboratorio. Para ello, nuestro sistema cuántico ha de cumplir una serie de requi-

sitos como la capacidad de inicializar el sistema en un estado conocido, la posibilidad
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de implementar una evolución o una serie de puertas lógicas, aśı como la realización

de medidas que den información del estado del sistema.

En esta Tesis, mostramos las primeras propuestas de simulaciones cuánticas dig-

itales de modelos de espines en la tecnoloǵıa cuántica de circuitos superconductores,

que adquieren un comportamiento cuántico cuando su temperatura es de alrededor de

20 mK. En primer lugar estudiamos los distintos tipos de dinámicas que gobiernan es-

tos sistemas y las consiguientes puertas lógicas que pueden implementarse. Además,

tenemos en cuenta las limitaciones de la tecnoloǵıa actual considerando los tiempos

de coherencia cuántica y las imperfecciones experimentales a la hora de ejecutar puer-

tas lógicas en uno o varios qubits. Una vez conocidas en detalle las capacidades de

los circuitos con interacciones de electrodinámica cuántica, podemos realizar varias

propuestas para la simulación de modelos cuánticos, en concreto, modelos de espines.

El esṕın es una propiedad de las part́ıculas elementales que interacciona mediante el

acoplo dipolar magnético. De esta forma, estos modelos estudian las propiedades de

los sistemas de part́ıculas con esṕın alineados en cadenas o redes en 2 y 3 dimensiones.

Adicionalmente, los modelos esṕın-bosón consideran las interacciones entre estos dos

tipos de part́ıculas que en muchos casos se refiere al acoplo entre la materia y la

radiación electromagnética. Para simular estas interacciones, los circuitos supercon-

ductores se diseñan de tal forma que se comporten como un sistema cuántico de dos

niveles, conocido como qubit superconductor. Acoplando varios de estos qubits, ya

sea capacitivamente o mediante una linea de transmisión de microondas, las interac-

ciones entre varios espines son reproducidas. Por otra parte, la ĺınea de transmisión

actúa como un resonador, por lo que los qubits también interactúan con los modos

electromagnéticos dentro de la ĺınea resultando una genuina interacción entre la luz

y la materia.

Una vez establecido un mapeo entre el estado de los espines y el de los qubits su-

perconductores, y considerando los modos bosónicos del resonador, podemos comen-

zar a introducir dinámicas de modelos de esṕın en nuestro sistema. Es necesario

remarcar dos tipos distintos dentro del campo de las simulaciones cuánticas: las

analógicas y las digitales. De forma similar a las primeras máquinas computadoras,

los simuladores analógicos solo son capaces de reproducir dinámicas muy limitadas,

siendo estas las que aparecen de forma natural en el sistema. Aśı pues, la dinámica

de aquellos modelos que sea igual que la de un simulador analógico podrá ser testada
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experimentalmente en estas plataformas. Por otra parte tenemos los simuladores

cuánticos digitales que permiten la simulación de dinámicas con una gran generali-

dad. Estas simulaciones se basan en evoluciones realizadas por una serie discretizada

de puertas lógicas. Siguiendo la fórmula de Trotter-Suzuki-Lie, la evolución unitaria

de un sistema gobernado por un Hamiltoniano H puede ser descompuesta en una

serie de evoluciones de Hamiltonianos Hk, donde la suma de estos es igual al Hamil-

toniano simulado H =
P

k Hk. Además, esta fórmula predice un error teórico en la

simulación que depende de los conmutadores entre los Hamiltonianos aplicados y del

tiempo simulado. Afortunadamente este error puede reducirse repitiendo la serie de

puertas lógicas a la vez que se reduce el tiempo de ejecución de cada una. Lloyd, al

proponer los simuladores cuánticos digitales, tomó como ejemplo la acción de aparcar

un coche en ĺınea. Un coche que se quiere aparcar a su derecha (Hamiltoniano H)

tiene que descomponer su movimiento en varios pasos en los que se mueve diagonal-

mente hacia atrás y hacia adelante (Hamiltonianos HK). Como resultado, el coche

termina aparcando correctamente a pesar de la dependencia del tamaño del hueco.

Cuando este es grande, el coche deberá realizar pocos movimientos (error mayor),

pero si es pequeño se precisarán muchos movimientos. En el ĺımite, el coche nece-

sitará infinitos movimientos para aparcar en un hueco de su misma longitud (error

nulo). Aśı pues, el uso de técnicas digitales permite implementar una mayor cantidad

de dinámicas que las que aparecen naturalmente en los circuitos superconductores

como demostramos en las propuestas reunidas en esta Tesis.

Dos de los modelos de esṕın más conocidos son el de Heisenberg y el de Ising,

los cuales describen la f́ısica de materiales ferromagnéticos y antiferromagnéticos.

Estas interacciones no aparecen de forma natural en la tecnoloǵıa de circuitos por

lo que hay que simularlas digitalmente. Afortunadamente la dinámica de dos qubits

acoplados por un resonador en el régimen dispersivo es gobernada por la interacción

XY que tiene un gran parecido con los modelos de Heisenberg e Ising. En el Caṕıtulo

2 demostramos que realizando rotaciones sobre los qubits, antes y después de las

evoluciones unitarias bajo la interacción XY, podemos cambiar las direcciones de

la interacción consiguiendo los modelos XZ e YZ. Mediante una descomposición de

Trotter, la suma de las tres interacciones da como resultado el modelo de Heisenberg

que además tiene error digital nulo para dos qubits. De forma similar el modelo
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de Ising se logra ejecutando una evolución XY seguida por otra con rotaciones lo-

cales sobre un único qubit antes y después. Considerando un campo transverso que

se simula con rotaciones locales, este modelo requiere de varias repeticiones en la

descomposición de Trotter para limitar el error digital. Por tanto, analizamos la

cantidad de puertas lógicas requeridas para la simulación y la fidelidad de estas con

parámetros realistas. Esta propuesta ha sido llevada al laboratorio por el grupo

del Prof. Andreas Wallra↵ en el ETH Zürich en colaboración con el grupo QUTIS

del Prof. Enrique Solano. Aqúı, los modelos XY, Heisenberg e Ising con campo

transverso fueron implementados en un chip sobre dos qubits acoplados mediante un

resonador.

Seguidamente hacemos un análisis de cómo simular el modelo de Rabi cuántico

que describe la interacción luz-materia. La f́ısica de este modelo es diversa y a pesar

de ser propuesto hace ochenta años a d́ıa de hoy aún quedan reǵımenes por explorar.

Este modelo consta de un esṕın y un modo bosónico, los cuales se pueden simular

mediante un qubit superconductor acoplado a una gúıa de transmisión. Por el con-

trario, el modelo efectivo que aparece en estos sistemas es el de Jaynes-Cummings,

un régimen espećıfico del modelo de Rabi cuántico, y se requiere de Trotterización

para lograr el modelo general. Haciendo uso de rotaciones locales en el estado del

qubit, antes y después de la interacción Jaynes-Cummings, conseguimos la interacción

anti-Jaynes-Cummings. Esta, en vez de intercambiar excitaciones entre el qubit y

el resonador, excita y desexcita los dos sistemas a la vez. Estas interacciones son

complejas en el sentido de que involucran modos bosónicos que actúan en un espacio

de Hilbert de dimensión infinita. Debido a esto, la descomposición de estos campos

en qubits en una simulación puramente digital, como lo haŕıa un ordenador codifi-

cando la información en bits, es muy ineficiente comparado con la implementación de

puertas lógicas basadas en dinámicas analógicas. Aśı, con una serie digitalizada de

evoluciones unitarias compuesta por dos interacciones analógicas Jaynes-Cummings

y dos rotaciones locales, se obtiene el modelo de Rabi en una simulación cuántica que

recibe el nombre de digital-analógica. Además, demostramos que la flexibilidad en los

parámetros de los circuitos permite acceder a reǵımenes especialmente interesantes

como lo son los de los acoplos “ultrastrong” y “deep strong” o la ecuación de Dirac.

En este apartado mostramos varias simulaciones numéricas estimando la cantidad de
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repeticiones de Trotter requeridas para obtener fidelidades altas. Finalmente, pro-

ponemos la extensión de esta simulación digital-analógica para sistemas de varios

qubits con dinámicas tipo Tavis-Cummings para la simulación del modelo de Dicke.

La implementación experimental de este trabajo ha sido realizada recientemente por

el grupo del Prof. Leonardo DiCarlo en la Universidad Técnica de Delft, obteniendo

unos resultados que han llegado a superar los ĺımites experimentales estimados en la

propuesta inicial.

En el Caṕıtulo 4 de esta Tesis, consideramos la implementación de varios mod-

elos de cadenas de espines en sistemas con acoplos capacitivos entre qubits vecinos,

aśı como acoplos no locales mediante el uso de resonadores. De esta forma, además

de las interacciones empleadas en los apartados anteriores, podemos introducir in-

teracciones de tipo ZZ entre qubits que estén conectados en nuestro sistema f́ısico,

pudiendo realizar una simulación del modelo de Ising con menos puertas lógicas.

Además, demostramos que simulaciones cuánticas de modelos de mayor complejidad,

con acoplos locales entre qubits que a su vez están acoplados al campo bosónico del

resonador, son factibles con este tipo de arquitecturas. De hecho, proponemos la in-

teracción Tavis-Cummings con acoplo entre espines vecinos de tipo Ising y estudiamos

la forma de implementar interacciones entre múltiples cuerpos. Estas son propias de

modelos de materia condensada y en este trabajo analizamos numéricamente el caso

de interacciones entre tres cuerpos. Adicionalmente, proponemos el uso de técnicas

digitales para la realización de evoluciones adiabáticas. En estas, el sistema se ini-

cializa en el estado base de un Hamiltoniano conocido, y variando el Hamiltoniano

que gobierna la evolución a lo largo de un cierto tiempo y tomando las precauciones

pertinentes para no excitar al sistema, el estado del sistema pasa a ser el estado

base del Hamiltoniano final. Nosotros demostramos que la Trotterización permite

realizar este tipo de protocolos y revisamos los resultados experimentales obtenidos

por el grupo del Prof. John M. Martinis en Google/Universidad de California Santa

Bárbara en colaboración con el grupo QUTIS del Prof. Enrique Solano, donde se

realizan evoluciones adiabáticas cuánticas digitalizadas de modelos de espines con

interacciones a primeros vecinos.

Por último, proponemos el uso de algoritmos genéticos en las simulaciones dig-

itales cuánticas. Los algoritmos genéticos son protocolos inspirados en sistemas

biológicos que con el paso de los años han conseguido una adaptación al entorno
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que maximiza las probabilidades de supervivencia mediante la combinación y la mu-

tación genéticas. De esta forma son capaces de encontrar soluciones de problemas

de gran robustez en tiempos mucho menores que los algoritmos de optimización de

fuerza bruta que tienen que procesar todos los posibles casos. En nuestras anteriores

propuestas hemos descompuesto los modelos simulados en una suma de Hamiltoni-

anos implementables en nuestro sistema. No obstante, mediante el uso de algoritmos

genéticos es posible implementar estructuras de Hamiltonianos que no cumplen esta

regla dando pie a simulaciones de alta fidelidad que requieren de menos recursos.

Aśı pues, en este trabajo demostramos numéricamente que los algoritmos genéticos

aportan estructuras de puertas lógicas implementables en sistemas de qubits super-

conductores con acoplos capacitivos para la simulación de modelos de espines de

tipo Heisenberg e Ising. Por otra parte, como alternativa a los códigos de corrección

de errores cuánticos, consideramos los algoritmos genéticos para la supresión de er-

rores experimentales en puertas lógicas y analizamos la construcción de la puerta

Controlled-NOT (cnot). Para ello, tomamos un grupo de puertas cnot con errores

arbitrarios y el algoritmo genético determina una estructura de puertas lógicas so-

bre qubits que tienen los roles de control, objetivo y ancillas. Aśı, obtenemos como

resultado una puerta cnot con un error inferior que cualquiera de las puertas em-

pleadas en el protocolo, siendo robusta frente a pequeñas alteraciones en las puertas

componentes.

En conclusión, creemos que los resultados presentados en esta Tesis han con-

tribuido al campo puntero de simulaciones cuánticas digitales en circuitos supercon-

ductores. Hemos analizado algunas de las primeras propuestas para la simulación

digital de modelos de espines, considerando en todo momento la tecnoloǵıa experi-

mental de vanguardia para una aplicación directa. Tanto es aśı que estos trabajos

han tenido un impacto experimental inmediato, generando fruct́ıferas colaboraciones

internacionales. Se espera que la tecnoloǵıa de circuitos superconductores mejore,

dando lugar a una mejor controlabilidad con menores errores experimentales, may-

ores tiempos de coherencia y una mayor variedad de interacciones implementables.

De este modo seŕıa posible simular sistemas complejos empleando códigos de cor-

rección de errores en ordenadores cuánticos con todo tipo de aplicaciones en f́ısica de

materiales, bioqúımica o f́ısica médica entre otros, logrando una supremaćıa cuántica

frente a los ordenadores clásicos. En cualquier caso, aún hay cantidad de problemas
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por resolver desde un punto de vista teórico, como la creación de un código universal

de corrección de errores que involucre bloques de interacciones analógicas. El desar-

rollo de este y otros retos en el ámbito de la información y tecnoloǵıas cuánticas nos

encamina hacia la segunda revolución cuántica que tendrá aplicaciones directas en la

vida cotidiana. No olvidemos que cuando se construyeron los primeros ordenadores

nadie imaginó que unos años más tarde cualquier persona podŕıa tener un teléfono

móvil en el bolsillo con capacidad para procesar información de una red de datos a

nivel mundial en tiempo real.
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Chapter 1

Introduction

The only joy in the world is to begin. It is good to

be alive because living is beginning, always, every

moment. When this sensation is lacking – as when

one is in prison, or ill, or stupid, or when living

has become a habit – one might as well be dead.

Cesare Pavese

1.1 Quantum Simulations

F
or many years, several problems have been known to be too complex for solving

them via classical computers, which codify information in classical bits. Ma-

terial science, high-energy physics, and quantum chemistry among others, provide

problems considered as intractable, meaning that classical computers cannot imple-

ment the required algorithms due to the lack of scalability with respect to the size

of the resources. In 1982, Richard Feynman conjectured that quantum computers,

exploiting quantum properties, made of quantum bits and capable of implementing

quantum operations, might allow us to perform information processing tasks which

are unreachable for classical computers [1]. For this purpose, one should make use
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of a controllable quantum system to be able to make predictions about a complex

problem. In particular, in quantum mechanics, the dimension of the Hilbert space

increases exponentially with the number of particles so it is necessary to consider

other methods to compute the dynamics of quantum systems. Indeed, the main idea

of a quantum simulator is to reproduce the behavior of a physical model and measure

its physical properties.

The concept of a quantum simulator can be generalized to the universal quan-

tum computer, made of quantum bits (qubits) and capable of implementing quantum

operations [2]. This, in contrast to a single purpose machine, could solve a large vari-

ety of problems, including the simulation of multipartite quantum systems. Actually,

computing the dynamics of systems made of only 40 qubits is a task that cannot be

accomplished even by the most powerful classical supercomputers, providing one ex-

ample of the superiority of quantum computers over the classical ones. Furthermore,

quantum algorithms for quantum computing have been already proposed, e.g. the

Shor [3] and Grover [4] algorithms for factorizing and searching, respectively, whose

complexity grows with polynomial and linear number of resources. This is in con-

trast to classical computing, where the best known algorithms require an exponential

and quadratic number of resources, respectively. Unfortunately, universal quantum

computers are unfeasible at the moment due to the fact that current technology does

not allow for systems with more than a dozen fully controllable qubits.

Fortunately, although only a few type of quantum operations can be implemented

in current quantum platforms, it is possible to reproduce dynamics of interesting

physical models and extract information about mimicked systems [5]. In this scenario,

the controllable system employed in the lab is called a quantum simulator, and the

quantum system whose properties we want to reproduce is the simulated model. In

order to realize a quantum simulation, a set of criteria, weaker than that for quantum

computing, and currently feasible, must be satisfied.

• Quantum system: A quantum simulator should contain quantum systems,

e.g., spins, bosons, or fermions confined in a region of space. The system must

have many degrees of freedom.
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• Initialization: The first step to control a quantum system is the preparation

of the system in a certain initial state at t = 0. This can be either a pure or a

mixed state.

• Hamiltonian engineering: One should be able to control the system by

making use of a set of interactions with external fields or between the particles

of the system. Turning on and o↵ these interactions, it should be possible to

generate the dynamics of another quantum system.

• Detection: It should be feasible to perform individual and/or collective mea-

surements on the system. Once the evolution has finished, this is required

to determine the state of the system, or the result of the measurement of an

observable over the system.

• Verification: It is crucial to know whether the non-trivial predictions of the

simulation are correct. In case a classical machine could not reproduce the

dynamics of the simulated system, one should work with consistency arguments

to be confident about the correctness of the simulation. For example, it is

expected that the dynamics of two di↵erent quantum systems should be the

same if the Hilbert spaces and their interactions are similar. Accordingly, two

di↵erent quantum platforms should reproduce the same results when simulating

the same model.

Once a quantum platform fulfills the previous points, it can be classified as be-

longing to one of two classes of quantum simulators, either analog or digital quantum

simulator. In the following, the main properties of both classes are reviewed.

1.1.1 Analog Quantum Simulators

The main feature of this type of quantum simulator is a similarity between the

naturally occuring interactions within the quantum simulator, and the model to be

simulated. Usually, the quantum platform employed in the lab has a few parameters

that one can tune, so that the Hamiltonian governing the dynamics can be exactly

the same as the one of the system to be simulated. In this way, by establishing

a mapping between the quantum states of the simulated model and the physical
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quantum simuator, it is possible to implement the desired dynamics. The mapping

may be simple, like a small variation in the natural dynamics, or complex, like when

the particle is forced to mimic another one. For instance, a bosonic field mapped

onto another bosonic field is a simple mapping, but a spin could also be mapped onto

an anharmonic oscillator. Furthermore, there are mappings between particles whose

properties are completely di↵erent such as Jordan-Wigner [6] and Bravyi-Kitaev [7]

transformations, in which fermions can be mapped onto spins.

Usually, analog quantum simulators are large systems which do not provide many

degrees of freedom [8–12]. Even analog quantum simulations are restricted to a few

simulatable models, and the execution is generally a relatively easy process. Once the

system is initialized in a state, the preparation of which might be the hardest part of

the whole process, one only needs to let it evolve and then make the corresponding

measurements. In fact, due to the continuous evolution of the natural Hamiltonian

of the system, analog quantum simulations are most suitable for tackling ground

state searching problems, and for obtaining phase diagrams. Accordingly, quenching

experiments, in which a system of a fixed static properties is suddenly evolved with

respect to a new Hamiltonian, can be straightforwardly implemented. Moreover, it

is possible to measure interesting quantities including response functions, coherence

times and thermalization. These kind of quantum simulations, involving not only

two-level systems but also bosonic modes, are on the edge of classical computer

capabilities.

Many advances in the field of quantum error correction have been developed

in the last few years [13–18], but extensions to analog quantum simulators is still

an open question. Often, in the field of quantum computing, quantum circuits are

expressed in terms of single and two-qubit gates, whose errors are known to be

correctable if one introduces redundancy by using a multi-qubit encoding for a single

logical qubit. However, analog quantum simulators often involve dynamics of many

qubits and bosonic fields at the same time, impeding the stepwise evaluation, and

hence, making the certification of the output a tough task for classical computers.
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1.1.2 Digital Quantum Simulators

As defined in the previous subsection, analog quantum simulators need to have a

Hamiltonian which can be mapped to the Hamiltonian of the model to be simulated.

However, if we consider a given quantum architecture, there are a variety of interac-

tions that can be reproduced, including single, two and multi-qubit gates. In digital

quantum simulations, gates of di↵erent types are implemented one by one in a way

that ensures that the resulting quantum state is similar to the one produced by the

unitary evolution of the simulated model, even if the latter has nothing to do with

the interactions actually implemented. In the method proposed by Lloyd [19], the

following condition must be fulfilled,

H =
NX

k=1

Hk, (1.1)

where H is the Hamiltonian of the simulated model and Hk are the interactions

executed by the system, which may act in di↵erent Hilbert spaces. Hence, complex

Hamiltonians could be in principle decomposed into k single and two-qubit gates.

Once H is written in terms of the available interactions of the employed quantum

technology, its dynamics can be implemented using the Trotter expansion or equiva-

lent methods [20, 21]. Most of physical models can be written as a polynomial sum

of interactions, which makes Lloyd’s method e�cient. Indeed, an arbitrary unitary

gate would require a number of single and two-qubit gates growing exponentially

with the number of qubits and, therefore, it would be ine�cient even for a quantum

computer.

The method that Lloyd envisioned to digitally simulate Hamiltonians of type

Eq. (1.1) is the Trotter expansion [2, 19], which can be expressed as follows,

e�iHt = lim
l!1

(e�iH1t/le�iH2t/l · · · e�iH
N

t/l)l. (1.2)

In order to approximate the unitary evolution of the simulated model e�iHt to an

arbitrary precision, one must divide the evolution time into l time intervals of length

t/l. Then, the system must evolve sequentially according to the N decomposed

interactions Hk during the time intervals of length t/l. Finally, the sequence of
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interactions should be repeated l times. The error can be reduced as much as desired

just by increasing the number of Trotter steps l. It is important to remark that

the simulated time is just t, but the simulation time it takes to experimentally do

it is N · t, since each of the N interaction that compose the simulated Hamiltonian

Hk must be executed during a time t. This feature, besides switching times and

other processes, has to be taken into account especially in those systems with short

relaxation and coherence times.

The Trotter expansion is no other than the lowest order approximation of the

Baker-Campbell-Hausdor↵ formula applied to a sum of operators. Considering a

Hamiltonian H decomposed into two di↵erent interactions H = H1+H2 and applying

a single Trotter step, it reads

e�i(H1+H2)�t = e�iH1�te�iH2�t + O((�t)2). (1.3)

Hence, by decreasing �t = t/l, that is performing more Trotter steps l, the error is

reduced quadratically. One can also execute more complex expansions whose errors

decrease faster with l, just by introducing more gates per Trotter step. The second-

order approximation, also known as symmetric Trotter expansion [2], reads

e�i(H1+H2)�t = e�iH1�t/2e�iH2�te�iH1�t/2 + O((�t)3), (1.4)

where the error decreases cubically with l.

Restricted to the case of quadratic error and considering a set of interactions

{H1, ..., HN} and l Trotter steps, the Lie-Suzuki-Trotter formula estimates the error

of the protocol [22],

e�iHt = (e�iH1t/le�iH2t/l · · · e�iH
N

t/l)l +
X

i>j

[Hi, Hj ]t
2/2l +

1X

k=3

E(k), (1.5)

where the high-order error terms E(k) are bounded by

||E(k)||sup  l||Ht/l||ksup/k! (1.6)

Here, ||A||sup is defined as the supremum, or the maximum expectation value, of the

operator A over the states that play a role in the simulation. Hence, the total error in
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approximating e�iHt = (e�iH1t/l · · · e�iH
N

t/l)l is less than ||l(eiHt/l �1� iHt/l)||sup,

and can be made as small as desired by taking l large enough.

In digital quantum simulators, it is necessary to make an estimation of the ex-

perimental errors of the applied gates. In fact, when one increases the number of

Trotter steps in order to decrease the Trotter error according to Eq. (1.5), the number

of performed gates increases as l ·N . Considering that each gate introduces a certain

experimental error, a compromise between experimental and Trotter errors must be

considered in order to maximize the fidelity of the simulation. Indeed, experiments

implementing digital methods show that the total error in a digital quantum simula-

tion accumulates linearly [23–26]. Hence, improvements in gate fidelities generate a

linear gain on the total simulation fidelity, allowing us to avoid the error accumulation

which occurs when making use of error-corrected gates.

1.1.2.1 Digital-Analog Quantum Simulators

In the last few years, digital quantum simulators have been split into two di↵erent

groups, the purely digital and the digital-analog ones. Both simulators follow the

Trotter expansion in order to simulate a model, but while purely digital ones execute

single and two-qubit gates, digital-analog quantum simulators introduce many-body

gates or involve bosonic fields. Hence, it can be said that analog interaction blocks

are introduced in a stepwise fashion in these simulations are, then, often combined

with simpler gates like single-qubit rotations [27–29].

Regarding quantum error correction, in those digital quantum simulations in

which interactions are just single and two-qubit gates, it is possible to implement

mechanisms to correct bit and phase flips. However, in digital-analog quantum sim-

ulations, it is often not possible for the same reason as in purely analog quantum

simulations.

Summarizing, digital-analog quantum simulators allow us to implement complex

dynamics by exploiting the many-body and bosonic interactions that appear natu-

rally in the considered quantum plarform. However, the extension of error correction

protocols to analog blocks is still an open question.
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1.2 Superconducting Circuits

Up to date, many quantum platforms have been used for quantum information proto-

cols, such as trapped ions, cold atoms, quantum dots, cavity quantum electrodynam-

ics (QED) and superconducting circuits. The latter has probably been the quantum

architecture which has advanced the most in the last decade [30]. Indeed, protocols

such as Grover algorithm [31], quantum teleportation [32], quantum simulations in-

cluding ultra-strong [29, 33, 34] and deep-strong coupling [35, 36] interactions have

been achieved, among others.

Circuit QED was proposed [37] and experimentally realized [38, 39] in 2004.

Light-matter interactions traditionally studied in cavity QED systems, where an

atom is coupled with the photons within a cavity, were quickly reproduced within

this revolutionary architecture. In circuit QED setups a superconducting circuit

plays the role of an atom, often considered as a two-level system, and a transmission

line resonator acts as a cavity, with photons in the microwave regime instead of

the optical. These macroscopic devices work at temperatures below 20 mK, where

materials like aluminum are in the superconducting phase.

Superconducting circuits, also known as superconducting or artificial atoms, are

made of inductances, capacitances and Josephson junctions. The latter is a non-

linear element that generates an anharmonicity in the energy levels, allowing us

to restrict the system to the ground and first excited state, which is also known

as superconducting qubit. Originally, three type of superconducting circuits were

created, each exploiting their respective degrees of freedom: charge [40, 41], flux [42]

or phase qubits [43]. Since then, many other qubits have appeared with architectures

similar to the first three, including quantronium [44], transmon [45], fluxonium [46],

as well as further hybrid designs [47] that reduce their sensitivity to decoherence

hence improving their controllability. To be concrete, transmon qubits are charge-

like qubits which, by increasing the shunt capacitance, have a more flattened charge

dispersion relation. As a result, these devices are much less sensitive to decoherence

produced by charge fluctuations. Given the extended use of this kind of qubits

in experimental labs, the proposals included in this Thesis are made for transmon

qubits.
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Transmission line resonators are a crucial element in superconducting circuits.

Indeed, they not only play the role of a harmonic oscillator which couples to the to

superconducting qubits, but they also provide for many applications, such as non-

demolition measurements [48] and the execution of single qubit rotations, achieved

through the use of microwave drivings [37, 39]. Moreover, several qubits can be placed

within a single resonator with a dispersive coupling, allowing one to implement many-

body interactions without requiring local or capacitive couplings between the qubits.

Furthermore, recent architectures provide a high tunability, which gives us the chance

to perform quantum operations only directly onto the considered qubits.

Standard systems composed of transmon qubits and transmission line resonators

usually have coherence times of tens of microseconds, while single-qubit and two-qubit

gates require a few nanoseconds and a few tens of nanoseconds respectively [17].

Therefore, in these kind of circuit QED systems, up to one thousand gates can be

implemented within the coherence time. In fact, even this number has recently been

surpassed in a recent experimental realization of a digital quantum simulation [26].

In addition, quantum memories have been proposed for superconducting setups with

the goal of preserving quantum information, while quantum error correction codes

have been implemented by several groups [17, 18] involving up to seven qubits.

In summary, superconducting circuits are a promising quantum platform to im-

plement complex quantum protocols due to their high controllability. In particular,

over the last few years they have developed extremely rapidly, and are now the most

arguably advanced platform for the realization of scalable quantum processing de-

vices.

1.3 Spin Models

The microscopic description of magnetism is one of the most pertinent questions

in the field of condensed matter. Indeed, spin models are mathematical models

that describe physical interactions between magnetic dipole moments of particles in

ordinary materials. In the early 20th century, classical spin models based on dipole-

dipole interactions, such as the Heisenberg interaction, were studied in both the

ferromagnetic and antiferromagnetic regimes with external magnetic fields, and key
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features of phase transitions were discovered. Moreover, spin lattices in 2D and 3D

were studied, exhibiting exotic properties like frustration.

Later on, spin systems started being treated quantum mechanically. While clas-

sical spin interactions are modeled with scalar products of spin vectors, inner products

of Pauli matrices are employed for the description of quantum spin interactions. This

research line has provided applications in a variety of fields including quantum phase

transitions [49, 50], strongly correlated systems [51], quantum information theory

and quantum computing [2], among others.

Besides spin-spin interactions, spins coupled to bosons have also been considered

in which light-matter interactions are studied within the framework of quantum field

theory. In quantum optics, light is described with a continuum of bosonic fields,

while the description of matter is written in terms of anharmonic oscillators with

only a few populated levels. In this context, spin-boson Hamiltonians involving both

single and several spins have been proposed, including semiclassical Rabi [52], Jaynes-

Cummings [53], Dicke [54] and Tavis-Cummings [55] Hamiltonians, quantum Rabi

model [56] and spin-boson model [57]

Advances in several quantum platforms have allowed us to perform spin and spin-

boson interactions in the laboratory. Indeed, in cavity QED, one can demonstrate

such interactions, since the light within the cavity is quantized and this bosonic mode

is coupled to a few internal states of the atom. However, the same physics can be pro-

duced in several quantum platforms. For instance, in circuit QED, superconducting

qubits and transmission line resonators substitute atoms and cavities respectively,

while in trapped ions, instead of electromagnetic fields, motional degrees of freedom

are employed as quantized bosonic modes. In this way, many proposals and exper-

iments have been realized in the last years for the study of spin models, involving

relevant features from spin-spin correlations to quantum phase diagrams [11, 58–61].

1.4 Genetic Algorithms

In computer science, there exist many algorithms that look for solutions to opti-

mization problems. Genetic algorithms [62] belong to the branch of evolutionary
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algorithms in the field of machine learning. Inspired by biological systems, these

type of algorithms simulate the natural selection of individual, in which the solutions

to optimization problems have been encoded. Letting the system evolve, the most

adapted individuals to the condition defined by the optimization problem survive,

achieving good results in much less time that conventional optimization algorithms.

Most genetic algorithms work via the following steps. First, the genetic code

of the individuals and the fitness function are defined according to the optimization

problem, in such a way that the genetic code of individuals saves the information

of candidate solutions. Then, two kind of operations are executed: mutation and

crossover. The first introduces modifications in the properties of each individual

while the crossover exchanges information of two or more individuals. Hence, a

new generation of individuals is created, which is finally evaluated according to the

fitness function. In the case that one set of individuals from a given generation is

more highly adapted, these are the ones that will be saved in order to repeat the

cycle, otherwise one simply keeps the last generation. By choosing a high enough

number of repetitions, or introducing a convergence condition to be satisfied, a set

of improved solutions to the optimization problem is obtained.

As a result of the manner in which genetic algorithms are constructed, several

solutions are obtained relatively fast, in comparison with generic optimization algo-

rithms, which need to evaluate every possible solution to obtain the optimal one. On

the other hand, genetic algorithms produce a set of solutions which might not be the

optimal but are robust against small variations. This means that the genetic code

of the best individual can be modified slightly without a↵ecting the convergence of

the solution, which makes genetic algorithms a flexible optimization method. For

the same reason, the solutions are robust against errors. For instance, designing an

electric circuit for a concrete purpose might be an easy task to perform manually.

At the same time, if one of the components of the circuit breaks the circuit will

probably not work. However, genetic algorithms provide more complex solutions in

which these unexpected problems do not a↵ect the system as much as in simple and

optimal solutions.

These kind of machine learning protocols have been used for solving optimiza-

tion problems with many applications, such as mirrors that funnel sunlight into
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a solar collector [63], antennas measuring the magnetosphere of Earth from satel-

lites [64], walking methods for computer figures [65] and e�cient electrical circuit

topology [66, 67], among others. Moreover, the implementation of classical genetic-

algorithm-based protocols in quantum information has already begun for tasks like

characterizing linear optical networks [68] and finding unitary transformations for

quantum computations [69]. These previous results illustrate the potential of genetic

algorithms within the quantum context.

1.5 Contents of this Thesis

We propose a variety of digital quantum simulations of spin models with supercon-

ducting circuits. For this purpose, we consider some of the newest experimental se-

tups involving transmission line resonators and transmon qubits, to simulate bosonic

fields and spins respectively. By employing the Suzuki-Lie-Trotter formula and com-

bining the natural interactions from circuit QED architectures, we detail the steps

necessary to reproduce the behavior of several spin models. Furthermore, we analyze

experimental and digital errors in the process. The field of digital quantum simula-

tions in superconducting circuits has only recently begun. However, thanks to rapid

advances in superconducting technologies, this platform competes with alternative

technologies such as trapped ions. Accordingly, we think that this work is timely

and provides the first proposals in this field. In addition, we review key experimental

articles in which we are coauthors, reproducing our theoretical proposals.

This Thesis is composed of four chapters with the following contents:

In Chapter 2, we propose the implementation of a digital quantum simulator for

prototypical spin models in a circuit QED architecture. We consider the feasibility of

the quantum simulation of Heisenberg and frustrated Ising models in transmon qubits

coupled to coplanar waveguide microwave resonators, by using the exchange gate and

single qubit rotations. We study the time evolution of these models and compare

the ideal spin dynamics with a realistic version of the proposed quantum simulator.

Furthermore, we analyze the experimental results produced with a superconducting

chip in the lab of Prof. Andreas Wallra↵ at ETH Zurich, where dynamics of XY

Heisenberg and Ising models are digitally implemented. Finally, we discuss the key
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steps for developing a toolbox of digital quantum simulators in superconducting

circuits.

We propose, in Chapter 3, the digital-analog quantum simulation of the quan-

tum Rabi and Dicke models using circuit QED. We find that all physical regimes,

in particular those which are impossible to realize in typical cavity QED setups,

can be simulated via unitary decomposition into digital steps. Moreover, when the

bosonic-mode frequency vanishes, we show the emergence of Dirac equation dynam-

ics from the quantum Rabi model when the mode frequency vanishes. We analyze

the feasibility of this proposal with realistic superconducting technology. To finish,

we briefly review the recent experiment by the group of Prof. Leonardo DiCarlo at

Delft University of Technology.

In Chapter 4, we consider the implementation of digitized adiabatic quantum

simulation of spin chains with superconducting circuits. First, we study the imple-

mentation of digital quantum simulations of spins coupled to bosonic field modes.

Gates with high fidelities allow one to simulate a variety of Ising magnetic pairing

interactions with a transverse field, Tavis-Cummings interactions between spins and

a bosonic mode, and a spin model with three-body terms. We analyze the feasi-

bility of the implementation in realistic circuit QED setups, where the interactions

are either realized via capacitive couplings or mediated by microwave resonators.

Additionally, we propose a digitized adiabatic quantum computing protocol which

combines the generality of the adiabatic algorithm with the universality of the digital

approach. This protocol is implemented in an experiment performed by the group of

John M. Martinis at Google/University of California, Santa Barbara, using a super-

conducting circuit with nine qubits. We probe the adiabatic evolutions, and quantify

the success of the algorithm for random spin problems. We find that the supercon-

ducting chip can approximate the solutions to both frustrated Ising problems and

problems with more complex interactions, with a performance that is comparable.

Finally, in Chapter 5, we propose genetic algorithms, which are robust opti-

mization techniques inspired by natural selection, to enhance the versatility of dig-

ital quantum simulations. In this sense, we show that genetic algorithms can be

employed to increase the fidelity and optimize the resource requirements of digital
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quantum simulation protocols, while adapting naturally to the experimental con-

straints. Furthermore, this method allows us to reduce not only digital errors, but

also experimental errors in quantum gates. Indeed, by adding ancillary qubits, we

design a modular gate made out of imperfect gates, whose fidelity is larger than the

fidelity of any of the constituent gates. Finally, we prove that the proposed modular

gates are resilient against di↵erent gate errors.

To conclude, the overall conclusions of this Thesis are detailed in the last Chap-

ter, where we also discuss the future of the field of digital quantum simulations with

superconducting circuits.
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Chapter 2

Digital Quantum Simulation

of Spin Systems

Divide et impera.

Julius Caesar

2.1 Introduction

T
he quantum coherent control of superconducting qubits has dramatically im-

proved during the last years [30]. Indeed, circuit quantum electrodynamics

(cQED) [39] is considered as a potential scalable platform for quantum computing.

Basic quantum algorithms [70] and tests of fundamentals in quantum mechanics [71]

have already been realized. Additionally, single and two-qubit gates [72], preparation

of complex entangled states [73], and basic protocols for quantum error correction [74]

are some of the quantum information tasks achievable with high fidelities. Conse-

quently, superconducting circuits have reached su�cient complexity and potential

scalability to be considered as quantum simulators.
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A quantum simulator is a technology that allows us to reproduce the behavior of

another quantum system. The original idea of quantum simulation can be traced back

to Feynman [1], while the first mathematical formulation using local interactions was

proposed by Lloyd some years later [19]. So far, several analog quantum simulations

in circuit QED have been proposed [60, 61, 75–80]. On the other hand, an experiment

of discrete-time gate sequences to reproduce the dynamics of a given spin Hamiltonian

has been recently realized in ion-trap [23] and photonic [81] systems, together with

proposals for the emulation of interacting fermionic-bosonic models [82, 83]. The

digital decomposition of Hamiltonians and their implementation using short-time

gates has been demonstrated to be e�cient [21, 84]. Accordingly, it is timely to

address the topic of digital quantum simulators with superconducting circuits. The

quantum simulation of spin models can shed light onto a variety of open problems,

such as quantum phase transitions [85], correlated one-dimensional systems [86], and

high-Tc superconductivity [87].

In this Chapter, we investigate the implementation of digital quantum simula-

tions of spin Hamiltonians in a superconducting setup consisting of several supercon-

ducting qubits coupled to a coplanar waveguide resonator. Although our proposal is

valid for every superconductor-based qubit with a su�ciently long coherence time, we

focus on a transmon qubit setup. Superconducting transmon qubits are commonly

used because of their low sensitivity to o↵set charge fluctuations [45]. However, de-

pending on the targeted physical properties, other superconducting qubits may be

considered. First, we show that a variety of spin dynamics can be retrieved by a

digital decomposition in a generic quantum simulator. Then, we consider prototypi-

cal spin models, simulation times, and fidelities with current circuit QED technology,

showing the computational power of superconducting qubits in terms of digital quan-

tum simulations. In this way, we analyze the required resources in a realistic setup for

a multipurpose quantum simulator of spin dynamics capable of emulating a general

multiqubit spin Hamiltonian. Finally, we analyze the experimental results obtained

in the lab of Prof. Andreas Wallra↵ at ETH Zurich.
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2.2 Heisenberg Model

Most physical Hamiltonians can be written as a sum of local terms, H =
PN

k=1 Hk,

where each Hk acts on a local Hilbert space. The dynamics of a generic Hamiltonian

H can be approximated by discrete stepwise unitaries, up to arbitrary small errors,

according to the formula (~ = 1 here and in the following) [19],

e�iHt =
⇣
e�iH1t/l · · · e�iH

N

t/l
⌘l

+
X

i<j

[Hi, Hj ]t2

2l
+

1X

k=3

E(k), (2.1)

with l||Ht/l||ksup/k! � ||E(k)||sup being an upper bound on the higher order error

terms. In the trivial case, when [Hi, Hj ] = 0 for every {i, j}, the error made in the

digital approximation is zero. To approximate e�iHt to arbitrary precision, one can

divide the simulated time t into l intervals of size t/l, and apply sequentially the

evolution operator of each local term for every interval. Repeating the sequence l

times, the error can be made as small as desired just by increasing l. However, in a

realistic quantum simulator, there will be a limit to the number of local e�iH
k

t/l gates

feasible to apply, due to accumulated gate errors. Accordingly, one has to optimize

the number of steps l to get the best possible result.

Digital methods can be used to simulate the Heisenberg spin model with available

resources in superconducting circuits. We consider a setup made of several transmon

qubits coupled to a single coplanar microwave resonator [45],

HT = !ra
†a +

NX

i=1

h
4EC,i(ni � ng,i)

2 � EJ,i cos �i

+2�ieVrmsni(a + a†)
i
. (2.2)

Here, ni, ng,i and �i stand respectively for the quantized charge on the superconduct-

ing island, the o↵set charge and the quantized flux of the i-th transmon qubit. The

operators a(a†) act on the resonator field, whose first mode has frequency !r. EC,i is

the charging energy of the superconducting island, while EJ,i = Emax
J,i | cos(⇡�i/�0)|

is the Josephson energy of the dc-SQUID loop embedded in the i-th qubit. The

latter can be tuned from small values up to Emax
J,i by changing the ratio between the

external magnetic flux �i, that threads the loop, and the elementary flux quantum



18 Heisenberg Model

�0. Here, �i are renormalization coe�cients of the couplings due to circuit capaci-

tances, Vrms is the root mean square voltage of the resonator, and e is the electron

charge. Typical transmon regimes consider ratios of Josephson to charging energy

EJ/EC & 20.

Notice that cavity and circuit QED platforms do not feature the Heisenberg

interaction from first principles. Nevertheless, one can consider a digital simulation

of the model. We show that the coupled transmon-resonator system, governed by the

Hamiltonian in Eq. (2.2), can simulate Heisenberg interactions of N qubits, which in

the case of homogeneous couplings reads

HH =
N�1X

i=1

J
�
�x

i �x
i+1 + �y

i �y
i+1 + �z

i �z
i+1

�
. (2.3)

Here, the Pauli matrices �j
i , j 2 {x, y, z} refer to the subspace spanned by the first two

levels of the i-th transmon qubit. We begin by considering the simplest case, in which

two qubits are involved. The XY exchange interaction can be directly reproduced by

dispersively coupling two transmon qubits to the same resonator [37, 88, 89], Hxy
12 =

J
�
�+

1 ��
2 + ��

1 �+
2

�
= J/2 (�x

1�x
2 + �y

1�y
2 ). The XY exchange interaction can be trans-

formed via local rotations of the single qubits to get the e↵ective Hamiltonians Hxz
12 =

Rx
12(⇡/4)Hxy

12 Rx†
12(⇡/4) = J/2 (�x

1�x
2 + �z

1�z
2) and Hyz

12 = Ry
12(⇡/4)Hxy

12 Ry†
12(⇡/4) =

J/2 (�y
1�y

2 + �z
1�z

2). Here, Rx(y)
12 (⇡/4) = exp[�i⇡/4(�x(y)

1 + �x(y)
2 )] represents a local

rotation of the first and second transmon qubits along the x(y) axis. The XYZ ex-

change Hamiltonian Hxyz
12 can therefore be implemented according to the protocol

shown in Fig. 2.1a with the following steps. Step 1.– The qubits interact for a time

t according to the XY Hamiltonian Hxy
12 . Step 2.– Application of single qubit rota-

tions Rx
12(⇡/4) to both qubits. Step 3.– The qubits interact for a time t with Hxy

12

Hamiltonian. Step 4.– Application of single qubit rotation Rx†
12(⇡/4) to both qubits.

Step 5.– Application of single qubit rotation Ry
12(⇡/4) to both qubits. Step 6.– The

qubits interact for a time t according to the Hxy
12 Hamiltonian. Step 7.– Application

of single qubit rotation Ry†
12(⇡/4) to both qubits. Consequently, the total unitary

evolution reads

UH
12(t) = e�iHxy

12 te�iHxz

12 te�iHyz

12 t = e�iHH
12t. (2.4)
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Figure 2.1: Protocols for digital quantum simulations with transmon qubits.
a) Heisenberg model of two qubits. b) Heisenberg model of three qubits. c)
Frustrated Ising model of three qubits. Here R

x(y)

⌘ Rx(y)(⇡/4) and R
x

⌘
Rx(⇡/2).

This evolution operator simulates the dynamics of Eq. (2.3) for two qubits. Arbitrary

inhomogeneites of the couplings can be achieved by implementing di↵erent simulated

phases for di↵erent digital steps. Notice that, in this case, just one Trotter step is

needed to achieve a simulation without digital errors, due to the commutativity of

Hxy
12 , Hxz

12 , and Hyz
12 . Thus, from a practical point of view, the only source of errors

will come from accumulated gate errors. One can assume two-qubit gates with an

error of about 5% and eight ⇡/4 single qubit rotations with errors of 1%. This will

give a total fidelity of the protocol around 77%. Moreover, the total execution time

for a ⇡/4 simulated XYZ phase will be of about 0.10 µs. Throughout the paper, we

compute the execution times by summing the corresponding times of all the employed

gates, where we consider typical circuit QED values.

Now, we consider a digital protocol for the simulation of the Heisenberg inter-

action for a chain of three spins. When considering more than two spins, one has

to take into account noncommuting Hamiltonian steps, involving digital errors. This

three-spin case is directly extendable to arbitrary numbers of spins. We follow a dig-

ital approach for its implementation, as shown in Fig. 2.1b. Step 1.– Qubits 1 and 2

interact for a time t/l with XY Hamiltonian. Step 2.– Qubits 2 and 3 interact for
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Figure 2.2: Fidelity loss for simulated Hamiltonians for three qubits, in the
interval ✓ = [0,⇡/4], ✓ ⌘ Jt. Curved lines show digital errors, while horizontal
lines show the accumulated error due to a single step error of ✏. Red solid (black
dotted) lines stand for higher (lower) digital approximations l. a) Heisenberg
model, with ✏ = 10�2, l = 3, 5, and b) ✏ = 5 ⇥ 10�2, l = 2, 3. c) Transverse field
Ising model, with ✏ = 10�2, l = 3, 5 and d) ✏ = 5⇥ 10�2, l = 2, 3.

a time t/l with XY Hamiltonian. Step 3.– Application of Rx
12(⇡/4) to each qubit.

Step 4.– Qubits 1 and 2 interact for a time t/l with XY Hamiltonian. Step 5.–

Qubits 2 and 3 interact for a time t/l with XY Hamiltonian. Step 6.– Application

of Rx†
12(⇡/4) to each qubit. Step 7.– Application of Ry

12(⇡/4) to each qubit. Step 8.–

Qubits 1 and 2 interact for a time t/l with XY Hamiltonian. Step 9.– Qubits 2 and

3 interact for a time t/l with XY Hamiltonian. Step 10.– Application of Ry†
12(⇡/4) to

each qubit. Thus, the total unitary evolution per step reads

UH
123(t/l) = e�iHxy

12 t/le�iHxy

23 t/le�iHxz

12 t/le�iHxz

23 t/le�iHyz

12 t/le�iHyz

23 t/l. (2.5)

In this case, the protocol has to be repeated l times according to Eq. (2.1), to ap-

proximate the dynamics of Eq. (2.3) for three qubits. Each Trotter step involves
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four single qubit gates at di↵erent times and six two qubit gates, producing a step-

time of about 0.16 µs, which is well below standard coherence times for transmon

qubits [90]. In Fig. 2.2a and 2b, we plot the digital error of the simulated Heisenberg

model for three qubits, along with horizontal lines, that show the error of the imper-

fect gates multiplied by the number of Trotter steps, i.e., the total accumulated gate

error. In this way, one can distinguish time domains dominated by the digital error

and time domains in which the largest part of the error in the quantum simulation

is due to experimental gate errors. One can consider interactions with open and

closed boundary conditions, adding an extra term coupling the first and last spin.

Extending this protocol to N qubits with open or periodic boundary conditions, we

compute an upper bound on the second-order Trotter error Eopen = 24(N �2)(Jt)2/l

and Eperiodic = 24N(Jt)2/l.

2.3 Ising Model

Here, we consider a generic N qubit Ising interaction J
P

i �x
i �x

i+1, with periodic

boundary conditions. Considering a three site model is su�cient to show the e↵ect

of frustration in the system. The antiferromagnetic interaction is ine�ciently solvable

in a classical computer, while it is e�cient for a quantum simulator [10]. We consider

the isotropic antiferromagnetic case between three sites , HI
123 = J

P
i<j �x

i �x
j , with

i, j = 1, 2, 3 and J > 0. In order to simulate this Hamiltonian, one can apply a ⇡/2

rotation to one of the qubits. This will result in an e↵ective stepwise elimination of

the YY component of interaction,

Hx�y
12 = Rx

1(⇡/2)Hxy
12 Rx†

1 (⇡/2) = J (�x
1�x

2 � �y
1�y

2 ) . (2.6)

The protocol for the simulation is shown in Fig. 2.1c. As the terms of the Ising

Hamiltonian commute, there is no error from the Trotter expansion. We obtain a

fidelity of the protocol of about 64%. The time for the execution of all gates is

0.18 µs.

One can also add a transverse magnetic field, that leads to the Hamiltonian

HIT
123 = J

P
i<j �x

i �x
j + B

P
i �y

i . In this case, the terms of the Hamiltonian do

not commute, so we need to apply more than one Trotter step to achieve adequate
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Table 2.1: Execution times and error bounds for the Heisenberg(H) and Ising(I)
models with open(o) and periodic(p) boundary conditions for N qubits. Here
✓ ⌘ Jt, J/2 and g

�

are respectively the coupling strenght of the XY and single-
qubit gates, and ⌧

s

is the pulse time required for a single qubit rotation.

Execution time Error bound
Ho 4l⌧s + 6(N � 1)✓/J 24(N � 2)(Jt)2/l
Hp 4l⌧s + 6N✓/J 24N(Jt)2/l
Io 2(N � 1)l⌧s + ✓/g� + 4(N � 1)✓/J 2(N � 1)(Jt)2/l
Ip 2Nl⌧s + ✓/g� + 4N✓/J 2N(Jt)2/l

fidelities. The unitary evolution per Trotter step in this case is given by

U(t/l) = e�iHxy

12 t/le�iHx�y

12 t/le�iHxy

13 t/le�iHx�y

13 t/l

⇥e�iHxy

23 t/le�iHx�y

23 t/le�iBt/l(�y

1+�y

2+�y

3 ) (2.7)

= e�i2Jt/l(�x

1 �x

2 +�x

1 �x

3 +�x

2 �x

3 )e�iBt/l(�y

1+�y

2+�y

3 ).

In Fig. 2.2c and 2.2d, we plot the fidelity loss for di↵erent number of Trotter steps,

in the 3-qubit frustrated Ising model with transverse magnetic field, considering

an error for each step due to the imperfect gates. The time for simulating the

transverse field Ising model for the considered dynamics is about 190 ns per Trotter

step. The protocol can also be extended to N qubits with open and periodic boundary

conditions, where we compute an upper bound to the second-order error in Jt/l of

Eopen = 2(N �1)(Jt)2/l and Eperiodic = 2N(Jt)2/l. We report in Table 2.1 execution

times and error bounds for the models proposed, for N qubits. In general, given the

nonlocal character of the microwave resonator acting as a quantum bus, one can

emulate 2D and 3D interaction topologies.

2.4 Feasibility in Current Circuit QED

Architectures

In order to estimate the feasibility of the protocols in a superconducting circuit

setup, we perform a numerical simulation for the Heisenberg interaction between

two transmon qubits coupled to a coplanar waveguide resonator. We compute the
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e↵ect on the protocol of a realistic XY interaction, given as an e↵ective second-order

Hamiltonian, obtained from the first order Hamiltonian

Ht =
2X

i=0

2X

j=1

⇣
!j

i |i, jihi, j|
⌘

+ !ra
†a

+
2X

i=0

2X

j=1

gi,i+1(|i, jihi + 1, j| + H.c.)(a + a†). (2.8)

Here, !j
i is the transition energy of the i-th level, with respect to the ground state,

of the j-th qubit, and !r is the transition frequency of the resonator. We consider

the first three levels for each transmon qubit, and a relative anharmonicity factor

of ↵r = (!j
2 � 2!j

1)/!j
1 = �0.1, typical for the transmon regime [45]. We assume

identical transmon devices, with transition frequencies !1,2
1 ⌘ !1 = 2⇡ ⇥ 5 GHz.

The resonator frequency is set to !r = 2⇡ ⇥ 7.5 GHz. We consider the coupling

between di↵erent levels of a single transmon qubit [45] gi,i+1 =
p

i + 1g0, where

g0 = 2�eVrms = 2⇡ ⇥ 200 MHz. The chosen experimental parameters are typical for

superconducting circuit setups and they can be optimized for each platform. The

resonator-transmon coupling Hamiltonian, in the interaction picture with the free

energy
P

i,j !j
i |i, jihi, j| + !ra†a, results in an e↵ective coupling between the first

two levels of the two transmon qubits He↵ = [g2
01!1/(!2

1 � !2
r)] ⇥ (�x

1�x
2 + �y

1�y
2 ),

where we have considered negligible cavity population ha†ai ⇡ 0 and renormalization

of the qubit frequencies to cancel Lamb shifts. Here we have defined a set of Pauli

matrices for the subspace spanned by the first two levels of each transmon, e.g.

�x
1(2) ⌘ |0, 1(2)ih1, 1(2)| + H.c. In order to estimate the e↵ect of decoherence in a

realistic setup, we consider the master equation dynamics,

⇢̇ = �i[Ht, ⇢] + L(a)⇢ +
2X

i=1

�
��L(�z

i )⇢ + ��L(��
i )⇢

�
, (2.9)

where we have defined the Lindblad superoperators L(Â)⇢ = (2Â⇢Â† � Â†Â⇢ �
⇢Â†Â)/2. We have set a decay rate of  = 2⇡ ⇥ 10 kHz for the resonator, and a

dephasing and decay rate of �� = �� = 2⇡ ⇥ 20 kHz for the single transmon qubit.

We perform a numerical simulation for the Heisenberg protocol for two transmon

qubits, following the steps as in Fig. 2.1a, using for the XY interaction steps the
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Figure 2.3: Dynamics for the simulated Heisenberg model for two transmon
qubits, which are initialized in the state 1/

p
5(|"i + 2|#i) ⌦ |#i. Fidelity F =

Tr(⇢| 
I

ih 
I

|) shows the behavior of the protocol for a given simulated phase ✓.
The ideal spin dynamics h�x

i

i for both qubits is plotted versus mean values h�x

i

i
⇢

obtained with the qubit Hamiltonian H
t

.

result of the dynamics obtained by solving Eq. (2.9), and ideal single-qubit rota-

tions. The result is plotted in Fig. 2.3. The evolution for the density matrix ⇢, that

encodes the dynamics of the two transmon qubits, is compared to the exact quan-

tum evolution | iI , that evolves according to the Hamiltonian in Eq. (2.3), with

J = g2
01!1/(!2

1 � !2
r) ⇡ 2⇡ ⇥ 6 MHz. One can observe that good simulation fidelities

F = Tr(⇢| Iih I |) are achieved for nontrivial dynamics. Note that the action of the

Heisenberg Hamiltonian on an initial state, which is also an eigenstate of the �z
1�z

2

operator, would be equivalent to the one of the XY exchange interaction. To show

signatures of the Heisenberg interaction, we choose in our simulation an initial state

which does not have this property. One can also notice the typical small time-scale

fidelity oscillations due to the first order part of the dispersive exchange interaction.

By further detuning the qubits from the resonator, one can reduce the contribution

of the non-dispersive part of the interaction, and increase the global fidelity of the

protocol.
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2.5 Experimental Realization

In this section, we analyze the experimental results obtained in the lab of Prof.

Andreas Wallra↵ from the ETH Zurich. The experiments are carried out with two

superconducting transmon qubits [45] coupled dispersively to a common mode of

a coplanar waveguide resonator, see Appendix A for the device layout and setup

diagram. We operate the circuit at 30 mK in a dilution refrigerator. The qubits Q1

and Q2 interact with a coplanar waveguide resonator with a fundamental resonance

frequency at 7.14 GHz which serves both as a quantum bus [88] and for readout [91].

The natural two-qubit interaction is the XY exchange coupling [88] Hxy
1,2 =

J
2 (�x

1�x
2 +�y

1�y
2 ) mediated by virtual photons in a common cavity mode, which we also

refer to as the XY interaction, where J is the e↵ective qubit-qubit coupling strength

[89]. The XY interaction is activated by tuning the transition frequency of qubit Q1

(5.44 GHz) into resonance with qubit Q2 (5.24 GHz) for a time ⌧ using nanosecond

time scale magnetic flux bias pulses [31], see Appendix A for further details. When the

qubit transition frequencies are degenerate, the resonator-mediated coupling strength

is spectroscopically determined to be J = �40.4 MHz. To make the presentation of

the simulation results independent of the actual J , we express the interaction time

⌧ for a given J in terms of the acquired quantum phase angle 2|J |⌧ . In our setup,

the action of the XY gate (Fig. 2.4a) is characterized by full process tomography for

a complete set of 16 initial two-qubit states and a series of 25 di↵erent interaction

times ⌧ finding process fidelities no lower than 89 %, see Appendix A.

In Fig. 2.5a and 2.5b, we present non-stationary spin dynamics under the XY

exchange interaction for a characteristic initial two-qubit state |"i(|"i+ |#i)/p
2 with

spins pointing in perpendicular directions along +z and +x, respectively. During

the XY interaction, the state of one spin is gradually swapped to the other spin and

vice versa with a phase angle of ⇡/2. This corresponds to the iswap gate [92]. As a

consequence, the measured Bloch vectors move along the YZ and XZ planes. For a

quantum phase angle of 2|J |⌧ = ⇡ they point along the +y and +z directions respec-

tively in good agreement with the ideal unitary time evolution indicated by dashed

lines in Fig. 2.5a,b. We also find that the two-qubit entanglement characterized by

the measured negativity [93] of 0.246 is close to the maximum expected value of 0.25

for this initial state at a quantum phase angle of ⇡/2. As a consequence the Bloch
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Figure 2.4: (a) Circuit diagram to characterize the XY exchange interaction on
the qubits Q1 and Q2 symbolized by the vertical line (⇥) which is activated for
a time ⌧ . To perform standard process tomography of this interaction, separable
initial states are prepared using single-qubit rotations Rprep

1,2

(green) in the begin-
ning and the final state is characterized using single-qubit basis rotations Rtom

1,2

and
joint two-qubit readout (yellow). (b) Digital quantum simulation of the two-spin
Heisenberg (XYZ) interaction for time ⌧ . The first step after state-preparation is
to apply the XY gate for a time ⌧ (dashed box labeled as XY). In the second and
third steps (dashed boxes with labels XZ and YZ), XZ and YZ gates are realized

using single-qubit rotations R±⇡/2

x,y

(blue) by an angle ±⇡/2 about the x or y axis
transforming the basis in which the XY gate acts. (c) Protocol to decompose and
simulate Ising spin dynamics in a homogeneous transverse magnetic field. The
circuit between the bold vertical bars with two dots is repeated n times, invoking
each XY and phase gates for a time ⌧/n. See text for details. The actual pulse
scheme is provided in Appendix A.
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Figure 2.5: (a) Experimentally determined coordinates of the Bloch vectors
during exchange (XY) interaction represented by small red (Q1) and blue (Q2)
points are compared to the ideal paths shown as dashed lines in the XY model.
The ideal paths are in the YZ and XZ planes shown as blue and red planes inter-
secting the Bloch sphere. The time evolution is indicated by the saturation of the
colors as the quantum phase angle 2|J |⌧ advances from 0 (saturated) to ⇡ (un-
saturated). (b) Measured expectation values of the Pauli operators �x,y,z

1,2

for the
qubits Q1 (red points) and Q2 (blue points), respectively, for the XY interaction
as a function of the quantum phase angle 2|J |⌧ along with the ideal evolution
(dashed line). (c) Evolution of the Bloch vector for the quantum simulation of
the isotropic Heisenberg interaction vs. quantum phase angles from 0 to 3⇡/4.
The path of the Bloch vectors of the qubits Q1 and Q2 spans the plane indicated
by the rectangular sheets intersecting the Bloch spheres. (d), As in panel b for
the Heisenberg interaction.

vectors do not remain on the surface of the Bloch sphere but rather lie within the

sphere.

The anisotropic Heisenberg model describes spins interacting in three spatial

dimensions

Hxyz =
X

(i,j)

(Jx�x
i �x

j + Jy�y
i �y

j + Jz�
z
i �z

j ), (2.10)

where the sum is taken over pairs of neighbouring spins i and j. Jx, Jy and Jz are

the couplings of the spins along the x, y and z coordinates, respectively. Since it

does not occur naturally in circuit QED we decompose the Heisenberg interaction
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into a sequence of XY and single-qubit gates, as shown in Fig. 2.4b. We combine

three successive e↵ective XY, XZ and YZ gates derived from the XY gate by basis

transformations [94] to realize the isotropic Heisenberg model with Jx = Jy = Jz = J

versus interaction time ⌧ . Since the XY, XZ and YZ operators commute for two spins

the Trotter formula is exact after a single step.

To compare the Heisenberg (XYZ) interaction with the XY exchange interaction

we have prepared the same initial state as presented in Fig. 2.5a,b. The isotropic

Heisenberg interaction described by the scalar product between two vectorial spin

1/2 operators preserves the angle between the two spins. As a result, the initially

perpendicular Bloch vectors of qubits Q1 and Q2 remain perpendicular during the

interaction (Fig. 2.5c) and rotate clockwise along an elliptical path that spans a plane

perpendicular to the diagonal at half angle between the two Bloch vectors (Fig. 2.5c).

In accordance with theory, the XYZ interaction leads to a full swap operation

for a quantum phase angle of 2|J |⌧ = ⇡/2 where the Bloch vectors point along the +x

and +z directions. For the given initial state, we observed a maximum negativity of

0.210 close to the expected value of 0.25 for the Heisenberg interaction at a quantum

phase angle of 2|J |⌧ = ⇡/4. As for the XY interaction we have characterized the

Heisenberg interaction with standard process tomography finding fidelities above

82 % for all quantum phase angles 2|J |⌧ .

Next, we consider the quantum simulation of the Ising model with a transverse

homogeneous magnetic field

HI = J
X

(i,j)

�x
i �x

j +
B

2

X

i

�z
i , (2.11)

where the magnetic field B pointing along the z axis is perpendicular to the inter-

action given by J�x
i �x

j . Since the two-spin evolution (Fig. 2.4c) is decomposed into

two-qubit XY and single-qubit Z gates which do not commute, the transverse field

Ising dynamics is only recovered using the Trotter expansion in the limit of a large

number of steps n for an interaction time of ⌧/n in each step. To realize the Ising

interaction term using the exchange interaction, the XY gate is applied twice for a

time ⌧/n, once enclosed by a pair of ⇡ pulses on qubit Q1. This leads to a change

of sign of the �y
1�y

2 term which thus gets canceled when added to the bare XY gate.
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The external magnetic field part of the Hamiltonian is realized as single-qubit phase

gates R�
z which rotate the Bloch vector about the z axis by an angle � = B⌧/n per

Trotter step. These gates are realized by detuning the respective qubit by an amount

� from its idle frequency corresponding to an e↵ective B-field strength of B = 2⇡�.

We experimentally simulate the non-stationary dynamics of two spins in this

model for the initial state |"i(|"i � i|#i)/p
2 which is well-suited to assess the sim-

ulation performance. In Fig. 2.6a expectation values for the digital simulation of

the �z
1,2-components of the two spins are shown, as well as the two-point correlation

function h�x
1�x

2 i. The �z
1,2-components of the spins represented by the red and blue

datasets in Fig. 2.6a, respectively, oscillate with a dominant frequency component

of 2J due to the presence of the interaction term / �x
1�x

2 . Likewise, the XX corre-

lation h�x
1�x

2 i represented by the yellow dataset in Fig. 2.6a is non-stationary and

oscillates at rate 2
p

B2 + J2 = 2
p

10J ⇡ 6.3J due to the presence of a magnetic

field of strength B = 3J . The evolution of the measured final state shows agreement

with a theoretical model (solid lines in Fig. 2.6a) which takes into account dissipa-

tion and decoherence with deviations being dominated by systematic gate errors, see

Appendix A.

In Fig. 2.6b, the fidelity of the simulated state is compared to the expected state

at characteristic quantum phase angles both for the experimental realization (colored

bars) and the ideal Trotter approximation (wire frames) after the nth step. In an

ideal digital quantum simulator the theoretical fidelity (wire frame) converges for an

increasing number of steps n (Fig. 2.6b). The experimental fidelity, however, reaches

a maximum for a finite number of steps (Fig. 2.6b) after which it starts to decrease

due to gate errors and decoherence [94]. As expected, the Trotter approximation

converges faster for smaller quantum phase angles 2|J |⌧ . For 2|J |⌧ = ⇡/4 the peak

experimental fidelity (Fig. 2.6b) of 98.3 % is already observed for n = 1, whereas for

2|J |⌧ = 3⇡/2 the optimum of 80.7 % is observed for n = 5.
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Figure 2.6: (a) Digital quantum simulation of the Ising model with transverse ho-
mogeneous magnetic field using 1 to 3 Trotter steps. Shown are the z-components
h�z

1

i of qubit Q1 (red) and h�z

2

i of qubit Q2 (blue) and the two-point correlation
function in the x-direction h�x

1

�x

2

i (yellow points) of the spins as a function of the
quantum phase angle 2|J |⌧ for the initial state |"i(|"i � i|#i)/

p
2 and a magnetic

field strength B = 3J . Theoretically expected results take systematic phase o↵sets
and finite coherence of the qubits into account (solid curves). The ideal dynamics
are obtained from the time-dependent Schrödinger equation for the Ising Hamil-
tonian (dashed lines). (b) Fidelity with respect to the exactly solved Ising model
for displayed quantum phase angles of the final state after ideal unitary evolution
in the simulation protocol for n Trotter steps (wire frames) and experimentally
obtained final state (colored bars).



Chapter 2. Digital Quantum Simulation of Spin Systems 31

2.6 Conclusions

In this Chapter, we have proposed a digital quantum simulation of spin models in

superconducting circuits. We have considered prototypical models such as the Heisen-

berg and frustrated Ising interactions. Furthermore, we have shown the feasibility

of the simulation with state-of-the-art technology of transmon qubits coupled to mi-

crowave resonators. Finally, we have experimentally analyzed the digitized physical

implementation of e↵ective spin interactions by using a superconducting architecture

involving two transmon qubits coupled by a transmission line resonator.

In future experiments, transmission line resonators may provide a method to

design multi-qubit devices with non-local qubit-qubit couplings that directly reflect

the lattice topology of spin systems such as frustrated magnets. Moreover, the incor-

poration of cavity modes as explicit degrees of freedom in the simulated models [27],

following a digital-analog approach, and the integration of optimal control concepts,

will be instrumental to scale the system to larger Hilbert-space dimensions. With

this, the circuit QED architecture o↵ers considerable potential for surpassing the

limitations of classical simulations, which can be facilitated by using e�cient digi-

tal decompositions of spin Hamiltonians, paving the way towards universal quantum

simulation of spin dynamics in circuit QED setups.
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Chapter 3

Digital-Analog Quantum

Rabi and Dicke Models

Fools ignore complexity. Pragmatists su↵er it.

Some can avoid it. Geniuses remove it.

Alan Perlis

3.1 Introduction

T
he simplest, most fundamental model describing the interaction between quan-

tum light and quantum matter is the quantum Rabi model, consisting of the

dipolar coupling of a two-level system with a single radiation mode [52]. The Dicke

model [54] was introduced afterwards to generalize this interaction to an ensemble

of N two-level systems. Typically, the coupling strength is small compared to the

transition frequencies of the two-level system and the radiation mode, which leads

to e↵ective Jaynes-Cummings and Tavis-Cummings interactions, respectively, after

performing a rotating-wave approximation (RWA). This introduces a U(1) symmetry

into the model, which makes it integrable for any N [53, 55]. Recently, analytical so-

lutions for the generic quantum Rabi and Dicke models for N = 3 were found [56, 95].
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However, the general case for arbitrary N is still unsolved, while its direct implemen-

tation in a physical system remains as an outstanding challenge.

A variety of quantum platforms, such as cavity QED, trapped ions, and cir-

cuit QED, provides a natural implementation of the Jaynes-Cummings and Tavis-

Cummings models, due to the strong qubit-mode coupling strength. When the latter

is a fraction or comparable to the mode frequency, the model is said to be in the

ultrastrong coupling (USC) regime. Experimental evidence of this regime has been

observed in the optical [96] and microwave domains [33, 34]. A coupling strength

larger than the mode frequency marks the transition towards the recently intro-

duced deep-strong coupling (DSC) regime [35]. Signatures of this regime may be

e↵ectively retrieved in di↵erent quantum systems [78, 97], but an experimental ob-

servation of the full quantum Rabi and Dicke models in all parameter regimes has not

yet been realized. In particular, the quantum simulation of the Dicke Hamiltonian

could outperform analytical and numerical methods, while enabling the simulation

of engineered superradiant phase transitions [98–100]. Recently, technological im-

provements of controlled quantum platforms have increased the interest in quantum

simulations [5, 12, 101, 102]. A digital approach to quantum simulations was put

forward by Lloyd [19]. In this sense, it has been analyzed how suitable versions

of digital quantum simulators can be implemented with available quantum plat-

forms [23, 82, 83, 94]. Standard digital quantum simulations focus on the e�cient

decomposition of the quantum system dynamics in terms of elementary gates. In

order to maximize the e�ciency of the simulation, one may analyze which is the

decomposition of the dynamics in its largest realizable parts, and reduce the num-

ber of elementary interactions in the simulation. This approach can be denoted as

digital-analog quantum simulation and corresponds to finding some terms in the sim-

ulated system that can be implemented in an analog way, e.g., to employ a harmonic

oscillator to simulate a bosonic field, while others will be carried out with a digital

decomposition.

In this Chapter, we propose the digital-analog quantum simulation of the quan-

tum Rabi and Dicke models in a circuit QED setup, having access only to Jaynes-

Cummings and Tavis-Cummings interactions, respectively. We show how the rotating

and counter-rotating contributions can be e↵ectively realized employing digital tech-

niques. By interleaved implementation of rotating and counter-rotating steps, the
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dynamics of the quantum Rabi and Dicke models can be simulated for all parameter

regimes with bounded error. Lastly, we show how a relativistic Dirac dynamics can

be retrieved in the limit in which the mode frequency cancels. To finish, we review

the experiment realized by the group of Prof. Leonardo DiCarlo at Delft University

of Technology.

3.2 Digital-Analog Decomposition

of the Quantum Rabi Model

We start by considering a generic circuit QED setup consisting of a charge-like qubit,

e.g. a transmon qubit [45], coupled to a microwave resonator. The setup is well

described by the Hamiltonian (~ = 1) [37]

H = !ra
†a +

!q

2
�z + g(a†�� + a�+), (3.1)

where !r and !q are the resonator and qubit transition frequencies, g is the resonator-

qubit coupling strength, a†(a) is the creation(annihilation) operator for the resonator

mode, and �± raise and lower excitations on the qubit. The capacitive interaction

in Eq. (3.1) excludes excitations of the higher levels of the qubit device, because

typically the coupling g is much smaller than other transition frequencies of the

system. By trying to design setups with larger capacitive couplings, pushing them

above dispersive regimes, one starts to populate the higher levels of the transmons,

producing unwanted leakage. On the other hand, methods based on orthogonal

drivings of the qubits [78, 79] may increase the resonator population. Here, we show

that the dynamics of the quantum Rabi Hamiltonian

HR = !R
r a†a +

!R
q

2
�z + gR�x(a† + a) (3.2)

can be encoded in a superconducting setup provided with a Jaynes-Cummings inter-

action, as in Eq. (3.1), using a digital expansion. The quantum Rabi Hamiltonian in
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Figure 3.1: Frequency scheme of the stepwise implementation for the quantum
Rabi Hamiltonian. A transmon qubit of frequency !

q

is interacting with a mi-
crowave resonator, whose transition frequency is !

r

. The interactions H
1,2

in
Eq. (3.3) are simulated respectively with a Jaynes-Cummings interaction (step
1), and another one with di↵erent detuning, anticipated and followed by ⇡ pulses
(step 2).

Eq. (3.2) can be decomposed into two parts, HR = H1 + H2, where

H1 =
!R

r

2
a†a +

!1
q

2
�z + g(a†�� + a�+),

H2 =
!R

r

2
a†a � !2

q

2
�z + g(a†�+ + a��), (3.3)

and we have defined the qubit transition frequency in the two steps such that !1
q �

!2
q = !R

q . These two interactions can be simulated in a typical circuit QED device

with fast control of the qubit transition frequency. Starting from the qubit-resonator

Hamiltonian in Eq. (3.1), one can define a frame rotating at frequency !̃, in which

the e↵ective interaction Hamiltonian becomes

H̃ = �̃ra
†a + �̃q�

z + g(a†�� + a�+), (3.4)

with �̃r = (!r � !̃) and �̃q = (!q � !̃) /2. Therefore, Eq. (3.4) is equivalent to H1,

following a proper redefinition of the coe�cients. The counter-rotating term H2 can

be simulated by applying a local qubit rotation to H̃ and a di↵erent detuning for the

qubit transition frequency,

e�i⇡�x/2H̃ei⇡�x/2 = �̃ra
†a � �̃q�

z + g(a†�+ + a��). (3.5)
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By choosing di↵erent qubit-resonator detuning for the two steps, �̃1
q for the first

one and �̃2
q for the rotated step, one is able to simulate the quantum Rabi Hamilto-

nian, Eq. (3.2), via digital decomposition [19], by interleaving the simulated interac-

tions. The frequency scheme of the protocol is shown in Fig. 3.1. Standard resonant

Jaynes-Cummings interaction parts with di↵erent qubit transition frequencies are

interrupted by microwave pulses, in order to perform customary qubit flips [103].

This sequence can be repeated according to the digital simulation scheme to obtain

a better approximation of the quantum Rabi dynamics.

3.3 Implementation in Superconducting Circuits

The simulated Rabi parameters can be obtained as a function of the physical param-

eters of the setup by inverting the derivation presented above. In this way, one has

that the simulated bosonic frequency is related to the resonator detuning !R
r = 2�̃r,

the two-level transition frequency is related to the transmon frequency in the two

steps, !R
q = �̃1

q � �̃2
q, and the coupling to the resonator remains the same, gR = g.

Notice that even if the simulated two-level frequency !R
q depends only on the fre-

quency di↵erence, large detunings �̃1(2)
q will a↵ect the total fidelity of the simulation.

In fact, since the digital error depends on the magnitude of individual commutators

between the di↵erent interaction steps, using larger detunings linearly increases the

latter, which results in fidelity loss of the simulation. To minimize this loss, one

can choose, for example, the transmon frequency in the second step to be tuned to

the rotating frame, such that �̃2
q = 0. Nevertheless, to avoid sweeping the qubit fre-

quency across the resonator frequency, one may choose larger detunings. To estimate

the loss of fidelity due to the digital approximation of the simulated dynamics, we

consider a protocol performed with typical transmon qubit parameters [45]. We esti-

mate a resonator frequency of !r/2⇡ = 7.5 GHz, and a transmon-resonator coupling

of g/2⇡ = 100 MHz. The qubit frequency !q and the frequency of the rotating frame

!̃ are varied to reach di↵erent parameter regimes.

To perform the simulation for the quantum Rabi model with gR/2⇡ = !R
q /2⇡ =

!R
r /2⇡ = 100 MHz, for example, one can set !1

q/2⇡ = 7.55 GHz, !2
q/2⇡ = 7.45 GHz.
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Table 3.1: Simulated quantum Rabi dynamics parameters versus frequencies of
the system. For all entries in the right column, the resonator frequency is fixed
to !

r

/2⇡ = 7.5 GHz, and the coupling gR/2⇡ = 100 MHz. Frequencies are shown
up to a 2⇡ factor.

gR = !R
q /2 = !R

r /2 !̃ = 7.4 GHz, !1
q � !2

q = 200 MHz
gR = !R

q = !R
r !̃ = 7.45 GHz, !1

q � !2
q = 100 MHz

gR = 2!R
q = !R

r !̃ = 7.475 GHz, !1
q � !2

q = 100 MHz

In this way, one can define an interaction picture rotating at !̃/2⇡ = 7.45 GHz to en-

code the dynamics of the quantum Rabi model with minimal fidelity loss. Considering

that single-qubit rotations take approximately ⇠ 10 ns, tens of Trotter steps could

be comfortably performed within the coherence time. Notice that, in performing the

protocol, one has to avoid populating the third level of the transmon qubit. Taking

into account transmon anharmonicities of about ↵ = �0.1, for example, in this case

one has third level transition frequencies of 6.795 GHz and 6.705 GHz. Therefore,

given the large detuning with the resonator, it will not be populated. Similarly, by

choosing di↵erent qubit detunings and rotating frames, one can simulate a variety of

parameter regimes, e.g. see Table 3.1.

In order to capture the physical realization of the simulation, we plot in Fig. 3.2

the behavior of the transmon-resonator system during the simulation protocol. We

numerically integrate a master equation, alternating steps of Jaynes-Cummings inter-

action with single-qubit flip pulses. We consider ⇢̇ = �i[H, ⇢]+L(a)⇢+��L(�z)⇢+

��L(��)⇢, with Jaynes-Cummings terms H̃ = �̃ra†a + �̃q�z + g(a†�� + a�+), al-

ternated with qubit-flip operations Hf = f(t)�x, where f(t) is a smooth function

such that
R T

f

0
f(t)dt = ⇡/2, Tf being the qubit bit-flip time. The quantum dynamics

is a↵ected by Lindblad superoperators ��L(�z)⇢, ��L(��)⇢, and L(a)⇢ modelling

qubit dephasing, qubit relaxation and resonator losses. We have defined L(A)⇢ =

(2A⇢A† � A†A⇢ � ⇢A†A)/2. We set a resonator-qubit coupling of g/2⇡ = 80 MHz,

and a frame rotating at the qubit frequency, �̃q = 0, �̃r/2⇡ = 40 MHz. We consider

��/2⇡ = 30 kHz, ��/2⇡ = 60 kHz, and /2⇡ = 100 kHz. The inset of Fig. 3.2

shows collapses and revivals of both the photon and spin dynamics, which are typical

signatures of the regimes of the quantum Rabi dynamics dominated by the coupling

strength. We consider prototypical DSC dynamics, with !R
q = 0, and gR = !R

r .

Notice that to encode the dynamics corresponding to a certain simulated time t, one
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Figure 3.2: A transmon qubit and microwave resonator simulating the quantum
Rabi Hamiltonian in the regime gR = !R

r

, !R

q

= 0. The ideal dynamics, plotted in
the inset, shows collapses and revivals of the photon and qubit population. The
latter are recovered via sequential qubit-resonator interactions and qubit flips.
The photon population is pumped to the expected value at the time marked by
the arrow. Note that the simulating time t̃ is di↵erent from the simulated time t.

needs the quantum simulator to run for a simulating time t̃, that depends on the

specific gate times of the experiment. We choose to set the simulation at the time

marked by the black arrow, close to the photon population peak in the inset. A sim-

ulation with 15 digital steps is then performed. The time for a single qubit flip pulse

is set to Tf = 10 ns. Periodic collapses and revivals of the bosonic population of the

quantum Rabi model ha†aiR are shown as a function of time, in the inset. The ideal

spin and bosonic populations h�ziR and ha†aiR, evolving according to the quantum

Rabi Hamiltonian, are shown to be in good agreement with the simulated ones, h�zi
and ha†ai, at the final simulated time. In fact, during the Jaynes-Cummings inter-

action parts, photons are pumped into the resonator. Afterwards, before the photon

population starts to decrease due to excitation exchanges with the transmon qubit,

a qubit flip further enhances the photon production.

The simulation protocol can be performed for every time of the dynamics, with

the number of digital steps tuned to reach a satisfactory simulation fidelity. We

plot in Fig. 3.3 the fidelity F = |h S Ri|2 as a function of time of the simulated
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Figure 3.3: Time evolution of the fidelity F = |h 
S

| 
R

i|2 of state | 
S

i evolving
according to the digitized protocol, to the ideal state | 

R

i evolving according to
the quantum Rabi dynamics, with a) gR = !R

r

/2 = !R

q

/2, b) gR = !R

r

= !R

q

,
c) gR = 2!R

r

= !R

q

, and d) gR = 2!R

r

= 1.5!R

q

. The simulation is performed for
di↵erent number n of Trotter steps. Black curves in the insets show the overlap
of the ideal evolved state with the one at time t = 0, |h 

R

| 
0

i|2, initialized with
a fully excited qubit and the resonator in the vacuum state.

wavefunction  S , including resonator and spin degrees of freedom, versus the ideal

one  R, evolving according to HR, as defined in Eq. (3.2). The fidelity is plotted for

di↵erent parameters and iteration steps. Increasing the number of steps, the fidelity

grows as expected from standard Suzuki-Lie-Trotter expansions [21]. In principle,

the whole protocol can accurately access non-analytical regimes of these models,

including USC and DSC regimes.
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3.4 Extension to Dicke Model and Dirac Equation

By adding several transmon qubits to the architecture, the presented method can be

extended to simulate the Dicke Hamiltonian

HD = !R
r a†a +

NX

j=1

!R
q

2
�z

j +
NX

j=1

gR�x
j (a† + a). (3.6)

This simulation can be e�ciently implemented by means of collective qubit rotations.

In fact, only collective Tavis-Cummings interactions and global qubit rotations are

involved. In this way, the total time for the simulation does not scale with the size of

the system N . The Dicke model can be investigated provided enough coherence and

low-enough gate errors. Notice that this kind of quantum simulation is well suited

for superconducting circuits, since simultaneous single-qubit addressing is possible.

Making use of the results in Refs. [84, 104], we demonstrate that the quantum re-

sources needed to approximate the Dicke Hamiltonian with an error less than ✏ scale

e�ciently with the number of spins N and of excitations allowed in the bosonic mode

M . In a Dicke model simulation, one can bound the number of gates N✏ necessary

to achieve a certain error ✏ in a time t by

N✏  2 · 52k
�
2t[!R

r M + N(!R
q + 2|gR|pM + 1)]

 1+1/2k

✏1/2k
. (3.7)

Here, we have used an upper bound for the norm of the Dicke Hamiltonian, ||HR|| 
!R

r M + N(!R
q + 2|gR|pM + 1), where M is a truncation on the number of bosonic

excitations involved in the dynamics. The fractal depth is set to k = 1 in the standard

Trotter approximations. Using higher orders of fractal decompositions would be a

more involved task for implementation of digital approximations in realistic devices,

due to the sign inversion that appears [21]. Nevertheless, unitary approximants with

arbitrarily high fidelity can be obtained even when k = 1. The formula in Eq. (3.7)

gives an upper bound to the scaling of quantum resources and experimental errors in

a simulation involving several qubits. In fact, if one considers a small error for each

gate, the accumulated gate error grows linearly with the number of gates.

Notice that the quantum dynamics of the Dirac Hamiltonian emerges as a specific

case of the quantum Rabi dynamics. For the 1+1 dimensional case the algebra of
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the Dirac spinors | i corresponds to that of Pauli matrices, and the Dirac equation

in the standard representation can be written

i
d

dt
| i = (mc2�z + cp�x)| i, (3.8)

where m is the mass of the particle, c is the speed of light and p / (a � a†)/i

is the one-dimensional momentum operator. The Dirac Hamiltonian in Eq. (3.8),

HD = mc2�z + cp�x, shows the same mathematical structure as the quantum Rabi

Hamiltonian, Eq. (3.2), when !R
r = 0. This condition can be achieved by choos-

ing !̃ = !r. The analogy is complete by relating mc2 to !R
q /2, c to gR, and the

momentum to the quadrature of the microwave field, which can be measured with

current microwave technology [105]. Choosing an initial state with components in

both positive and negative parts of the Dirac spectrum will allow the measurement

of the Zitterbewegung [9, 106]. By retrieving di↵erent quadratures of the microwave

field, one can detect this oscillatory motion of the simulated particle in the absence of

forces, and the Klein paradox, where a relativistic particle can tunnel through high-

energy barriers. To detect such e↵ects, one will be interested in measuring either the

position or the momentum of the particle, standing for di↵erent quadratures of the

microwave field.

3.5 Experimental Realization

Recently, this proposal has been experimentally realized in the lab of Prof. Leonardo

DiCarlo at Delft University of Technology, demonstrating the feasibility of digital-

analog methods to simulate the quantum Rabi model. Here, regimes of ultrastrong

and deep-strong coupling have been achieved by the stepwise implementation of

Jaynes-Cummings and anti-Jaynes-Cummings dynamics as described above in this

Chapter.

Fidelities expected in the original proposal as well as the number of implemented

Trotter steps have been overcome in this experiment, in which Wigner function of

the system has been measured. Here, the symmetric approach of Trotter expansion

has been followed, which cancels the first-order term in the Trotter error. As a result

of the combination of this technique with the capability to introduce more than 90
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Trotter steps, accurate simulations of Rabi model have been achieved. Furthermore,

physical properties of USC and DSC regimes have been reproduced, such as creation

of Schrödinger cat states of large photon numbers among others.

3.6 Conclusions

In this Chapter, we have shown that the dynamics of the quantum Rabi and Dicke

models can be encoded in a circuit QED setup using a digital-analog approach.

The use of these techniques provides both the flexibility to implement unnatural

dynamics in a quantum system and the complexity of analog simulations involving,

for instance, bosonic modes. Digital-analog quantum simulations will contribute to

the observation of quantum dynamics in regimes not accessible in current experiments

of purely analog quantum simulations, including USC, DSC and unexplored zones of

the quantum Rabi model, due to the accessibility to an arbitrary set of parameters.

Finally, we have mentioned the experimental realization of this proposal, made in

the lab of Prof. Leonardo DiCarlo at Delft University of Technology, where physical

properties of quantum Rabi model in USC and DSC regimes have been reproduced

with high fidelities.
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Chapter 4

Digitized Adiabatic Quantum

Simulation of Spin Chains

Change always involves a dark night when every-

thing falls apart. Yet if this period of dissolution is

used to create new meaning, then chaos ends and

new order emerges.

Margaret Wheatley

4.1 Introduction

A
s already explained in the previous Chapter, a two-level system coupled with a

single radiation mode is modeled by the ubiquitous and paradigmatic quantum

Rabi model [52]. There have been many e↵orts, in both theory and experiments,

to capture the features of this model in di↵erent quantum technologies [5, 107].

These analyses will expectively have an impact in understanding of di↵erent quantum

phenomena [33, 35, 108–111].

The concept of a quantum simulator can be attributed to Feynman [1], and

it refers to a controllable quantum platform that mimics the behaviour of another
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quantum system. Some analog quantum simulators have already been implemented

in di↵erent quantum technologies, such as trapped ions [82, 83], ultracold atoms [12],

or superconducting circuits [78–80, 112]. Similarly, quantum simulators based on

digital methods [19] in order to simulate dynamics of quantum systems have been

realized in trapped ions [23], photonic systems [81], spin-photon hybrid systems [113]

and superconducting circuits [24, 25, 27, 94, 114, 115]. Additionally, this methods can

be combined with adiabatic quantum computing protocols [116–118], in which the

state of a quantum system is slowly evolved from the ground state of a simple initial

Hamiltonian to a final Hamiltonian that encodes a computational problem. The

appeal lies in the combination of simplicity and generality; in principle, any problem

can be encoded. In practice, applications are restricted by limited connectivity,

available interactions, and noise.

A key challenge in adiabatic quantum computing is to construct a device that is

capable of encoding problem Hamiltonians that are non-stoquastic [119]. Such Hamil-

tonians would allow for universal adiabatic quantum computing [120, 121] as well as

improving the performance for di�cult instances of classical optimization problems

[122]. Additionally, simulating interacting fermions for physics and chemistry re-

quires non-stoquastic Hamiltonians [1, 123]. In general, non-stoquastic Hamiltonians

are more di�cult to study classically, as Monte Carlo simulations fail to converge

due to the sign problem [124]. A hallmark of non-stoquastic Hamiltonians is the

need for several distinct types of coupling, for example containing both �z�z and

�x�x couplings with di↵erent signs. With a digitized approach, di↵erent couplings

can be constructed without change of hardware. Long-range many-body interactions

can be assembled to aid in quantum tunneling [125] or to encode the non-local terms

for fermionic simulations [7, 126]. And finally, noise in analog systems can thwart

the evolution, whereas digital systems can be fully fault-tolerant. Crucially, this abil-

ity makes the approach scalable, as any non-corrected implementation is ultimately

limited by the accumulation of error.

In this Chapter, we analyze the quantum simulation of arbitrary spin models,

where spin chains alone or coupled to bosonic modes are emulated with supercon-

ducting circuits [30]. We use digital techniques in order to imitate systems whose

dynamics may in principle di↵er from the ones of the experimental setups. We

study the feasibility and e�ciency of the implementation of three generic models in
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a realistic circuit quantum electrodynamics setup. In addition, we employ digitized

adiabatic quantum computing algorithms to simulate time-dependent couplings in

an Ising-like spin chain, and we analyze the experimental results obtained in the lab

of Prof. John Martinis at Google/University of California, Santa Barbara.

4.2 Digitized Adiabatic Quantum Simulations

The goal of simulating diverse and generic models involving spin interactions and

bosonic modes leads us to consider digital techniques, due to their suitability and

flexibility for mimicking di↵erent dynamical structures. Hamiltonian dynamics can

be approximated by the digital decomposition of the exact unitary evolution into

discrete stepwise unitary operations, implemented by using quantum gates in an

e�cient way [19, 21]. Digital methods are based on the Trotter formula, which allows

us to expand the evolution operator of Hamiltonians that are written as a sum of

terms, H =
PN

j=1 Hj , into a product of evolution operators for the interactions given

by the summands of the Hamiltonian, Hj . The Trotter expansion can be written as

e�iHt =
⇣
e�iH1t/s · · · e�iH

N

t/s
⌘s

+
X

i<j

[Hi, Hj ] t2

2s
+

1X

k=3

E(k), (4.1)

where the total time of the simulated dynamics is divided into s intervals in which

the evolution associated to each summand of the complete Hamiltonian are applied.

The error scales with t2/s for short times, as can be observed in the second term, and

the upper bound for higher order error contributions is skHt/skk
sup/k! � kE(k)ksup.

As a complementary approach, in adiabatic quantum computing, the solution

of a problem is encoded in the ground state of a Hamiltonian [116, 127]. In order

obtain it, a system is initialized in the ground state of a simple Hamiltonian, and it

is evolved adiabatically to the desired complex Hamiltonian following the expression

H(r) = f1(r)HI + f2(r)HP , (4.2)

where HI is the initial Hamiltonian, HP is the problem Hamiltonian, and f1 (f2) is an

increasing (decreasing) time-dependent function that fulfills f1(rinitial) = f2(rfinal) =
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1 and f2(rinitial) = f1(rfinal) = 0. According to the adiabatic theorem [128], the

evolution time �r must be long enough to avoid excitations, so the smaller the

energy-gap is between ground and first-excited state, the larger the evolution time

must be, �r = O(1/ min(Egap)) with Egap(r) = E1(r) � E0(r). This method has

been shown to be polynomially equivalent to conventional quantum computing in the

circuit model [129].

Our goal is to propose a systematic procedure using digital methods for simu-

lating e�ciently di↵erent models, namely spin-spin interaction and spins coupled to

bosonic modes. First, we employ gates that commute with each other and do not

produce digital error. For those that do not commute, we apply several Trotter steps

because the more Trotter steps one applies, the smaller the digital error produced

is. In realistic experiments, one has to take into account decoherence times and gate

errors. Therefore, we have to regulate the number of steps in order to be able to

perform the simulation before decoherence e↵ects take place, and in order to reduce

the accumulated gate error. Consequently, once the digital error is small enough

applying a certain number of Trotter steps, the error coming from the experimental

setup always must be smaller than the digital one.

Similarly, protocols combining adiabatic quantum computing and digitization

of gates can realized. Here, instead of implementing a Hamiltonian that changes

continuously in time as in standard adiabatic evolutions, a discretized set of unitary

gates are performed in such a way the variation in time of the Hamiltonian is simu-

lated. The simplest form to do it is to discretize linearly the variation in time of the

Hamiltonian in p steps, and implement the unitary evolution of the corresponding p

constant Hamiltonians.

Uadiabatic =
pY

k=1

e�iH
k

�r

p , (4.3)

where each of the discretized Hamiltonians Hk = HI �(HI �HP )k�1/2
p are applied for

a time �r
p . Moreover, if the system does not provide the required unitary evolutions,

they can be performed using the digital approach as in Eq. (4.1). In these simulations,

besides experimental errors, adiabatic and Trotter errors must be taken into account.
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4.3 Simulation of Spin Chains Coupled to Bosonic

Modes

In this section, we present a method to implement the dynamics of several spin mod-

els, coupled with bosonic modes, in circuit quantum electrodynamics setups. For this

purpose, we take under consideration two di↵erent architectures of superconducting

circuits. We show how to use linear arrays of superconducting qubits with capacitive

coupling between nearest neighbors [17] to simulate the Ising model with transverse

field. Then we simulate the behavior of a spin-chain coupled to a bosonic mode via

a Tavis-Cummings interaction [55]. Moreover, we show how to implement many-

body spin dynamics with highly nonlinear terms in superconducting qubits coupled

to transmission line resonators acting as a quantum bus [39].

In the following, we propose digital quantum simulations based on quantum gates

implemented in superconducting architectures. Capacitive coupling setups allow one

to implement ZZ gates, exp(�i✓�z
j �z

k), for nearest-neighbor superconducting qubits

by the sequence of two single qubit rotations along the z axis, Z(�), and a c-phase

gate, CZ(�), as shown in Fig. 4.1, where

Z(�) =

 
1 0

0 ei�

!
, CZ(�) =

0

BBBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e�i2�

1

CCCCA
. (4.4)

The current achievable fidelities in superconducting circuits [17] are of 99.9% and

99.4% for the single and two-qubit (CZ) gates, respectively. They enable circuit QED

setups to be great candidates for digital quantum simulators where the stroboscopic

application of gates is necessary. Notice that ZZ12(✓) = (Z1(�)⌦Z2(�))CZ12(�) for

✓ = �/2.

The use of quantum buses allows for the implementation of multi-qubit gates

and spin-boson interactions, coupling the electromagnetic field in the resonator with

superconducting circuits [59, 77, 130, 131].
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Figure 4.1: Protocol for decomposing a ZZ interaction between two qubits using
single-qubit rotations, Z, and a c-phase gate, CZ.

4.3.1 Ising Model with Transverse Field via Capacitive

Nearest-Neighbour Gates

One of the most studied spin models in condensed matter is the Ising model with

a transverse field, which is used for describing the behavior of interacting nearest-

neighbor dipoles in the presence of a transverse magnetic field. The Hamiltonian of

N spins can be written as

HITF = J
X

hjki

�z
j �z

k + B
X

j

�x
j , (4.5)

where �↵
j is the Pauli operator acting over the j-th spin with j = 1, ..., N , in the

direction ↵ = x, y, z. J stands for the coupling between nearest-neighbor spins and

B is the coupling between a spin and the transverse field. Depending on the sign

of J the model is ferromagnetic (J < 0) or antiferromagnetic (J > 0). In order to

reproduce this interaction in superconducting circuits, we make use of a high-fidelity

set of gates, as introduced in Eq. (4.4): single-qubit rotations along the x direction,

Xj(�) = exp(�i��x
j ), and two-qubit ZZ gates, ZZjk(✓) = exp(�i✓�z

j �z
k).

As shown in Section 4.2, it is possible to decompose a complex interaction into

discrete series of gates through a Trotter expansion. In order to implement the spin-

spin interaction, we need to execute (N � 1) two-qubit gates. In this case, there is

no digital error because all the gates in this decomposition commute,

exp

0

@�i ✓
X

hjki

�z
j �z

k

1

A = e�i✓�z

1�z

2 e�i✓�z

2�z

3 · · · e�i✓�z

N�1�z

N , (4.6)

with ✓ = Jt, t being the simulation time of the experiment.The coupling among the

spins and the transverse field can be simulated in a similar way using N single qubit
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Figure 4.2: Protocol for digital quantum simulation of the Ising model with
transverse magnetic field in terms of ZZ two-qubit gates and single qubit rotations
along x axis.

rotations,

exp

0

@�i �
X

j

�x
j

1

A = e�i��x

1 e�i��x

2 · · · e�i��x

N , (4.7)

with � = Bt. Given that the two interactions in Eqs. (4.6) and (4.7) do not commute,

one has to implement them in sequential short-time Trotter steps to minimize the

digital error. In Fig. 4.2, we show a scheme of the protocol for the quantum simulation

of the transverse field Ising model for four spins. The recent achievement of high-

fidelity single and two-qubit (CZ) gates with superconducting circuits will allow one

to perform many Trotter steps for several qubits, using hundreds of gates.

In order to reduce the digital error, it is necessary to increase the number of

Trotter steps. In Fig. 4.3, we plot a numerical simulation of the Ising model with

transverse field for di↵erent digital steps. The simulated dynamics with digital de-

composition is more accurate when compared with the exact dynamics when the

number of Trotter steps is increased.

4.3.2 Spin Chain Coupled to a Bosonic Field Mode

via Tavis-Cummings Model

We now analyze a model consisting of a spin-chain with nearest-neighbour couplings

interacting with a bosonic mode. In this sense, both free energies of the bosonic

mode and spins are taken into account, as well as spin-spin and spin-boson inter-

actions. The spin-spin evolution is modelled with the Ising dynamics, while the

Tavis-Cummings model describes the interactions between spins and bosons. The
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Figure 4.3: Digital simulation of the ferromagnetic Ising model with a transverse
field for four spins in superconducting circuits, up to a phase of ✓ = 4, with
J/B = 2. The plot shows the fidelity of the digitally evolved state versus the
ideally evolved one for di↵erent number of Trotter steps, s = 6, 8, 10. The inset
shows the overlap between the ideally evolved state with the initial state, that is,
all qubits in |0i
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resulting Hamiltonian is

HITC = ! a†a +
X

j

⌦

2
�z

j � J
X

hjki

�z
j �z

k + g
X

j

(a�+
j + a†��

j ). (4.8)

Following the notation presented above, �z
j is the Pauli operator along z direction,

�+
j (��

j ) is the creation(annihilation) spin excitation operator acting on the i-th spin

and a(a†) is the annihilation(creation) operator of the bosonic mode. ! and ⌦ are

the free energies of each boson and spin, respectively. Moreover, J is the coupling

constant between nearest spins and g stands for the coupling among spins and bosonic

field.

The implementation in circuit QED requires the simulation not only of the spin

dynamics, as in the previous example, but also of the bosonic mode. To achieve this,

the superconducting qubits play the role of spins while the photons in a transmission

line resonator emulate the bosonic excitations in the simulation. In order to perform

the interactions of the model, it is necessary to couple the resonator to all the su-

perconducting qubits. The Tavis-Cummings interaction appears straightforwardly in
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circuit QED setups once the rotating wave approximation is performed,

H1 = !1 a†a +
X

j

⌦1

2
�z

j + g
X

j

(a�+
j + a†��

j ), (4.9)

being !1 the frequency of the photons in the resonator, ⌦1 the frequency associated

with the excitation energy of the superconducting qubits, and g the qubit-resonator

coupling constant. The spin-spin interaction for qubits j and k is achieved by means

of the ZZ gate presented in Eq. (4.4). Detuning to high frequencies the qubit-

resonator interaction, we are able to reproduce the model

H(j, k) = !0 a†a +
X

j

⌦0

2
�z

j � J�z
j �z

k. (4.10)

Since [H(j, k), H(j0, k0)] = 0 8 j, j0, k, k0, we can define and implement sequentially

the interaction

H2 =
X

hjki

H(j, k) = !2 a†a +
X

j

⌦2

2
�z

j � J
X

hjki

�z
j �z

k, (4.11)

where !2 = (N � 1)!0, ⌦2 = (N � 1)⌦0 and N the number of simulated spins, and

it fulfills the condition exp(�itH2) =
Q

hjki exp(�itH(j, k)), being t the execution

time.

Summing the interactions H1 and H2, we recover the model we wanted to repro-

duce, HITC . Nevertheless, [H1, H2] 6= 0, so we need to employ the Trotter method in

order to make the digital error decrease, as shown in Fig. 4.4. Moreover, for consid-

ering the resonator photonic leakage, we have calculated the evolution of the system

making use of the master equation,

⇢̇ = �i[Ht, ⇢] + L(a)⇢. (4.12)

Here, L(a)⇢ = (2a⇢a† � a†a⇢ � ⇢a†a)/2 is the Lindblad superoperator acting on a,

 is the decay rate of the resonator, and Ht = {H1, H2} is the Hamiltonian that

governs the evolution. Notice that we have considered a coherence time much longer

for the qubits than for the resonator. In Fig. 4.5, we plot the steps for implementing

the protocol for four spins interacting with a bosonic mode.



54 Simulation of Spin Chains Coupled to Bosonic Modes

0 1 2 3 4

0.6

0.7

0.8

0.9

1

0 1 2 3 4
0

0.25

0.5

0.75

1

|h (t)| (0)i|2

0 1 2 3 4
0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4

0.6

0.7

0.8

0.9

1

s = 6

s = 8

s = 10

s = 3

s = 4

s = 5

F

F

✓

✓

h (0)|⇢I(t)| (0)i

Grosor Lineas: 3 
Letra LateixIt para \Psi(t) y para s=.. :14 

Font MatlabFigura: 10 
FontMatlabInset: 20 

El theta y F copialos tal cual ;)

Figure 4.4: Fidelity F of the simulation of a four-spin chain coupled to a bosonic
mode with circuit QED for di↵erent Trotter steps, s = 3, 4, 5. The upper curves
correspond to larger number of Trotter steps. Here, the parameters of Hamilto-
nians H

1

and H
2

are !
1

= 2⇡⇥ 200 MHz, ⌦
1

= 2⇡⇥ 180 MHz, g = 2⇡⇥ 80 MHz,
!
2

= 2⇡⇥600 MHz, ⌦
2

= 2⇡⇥18 MHz, J = 2⇡⇥200 MHz and the decay rate of the
resonator is given by  = 2⇡⇥10 kHz. F is defined as the overlap between the ide-
ally evolved density matrix and the digitally evolved one, F (t) = Tr(⇢

I

(t)⇢
T

(t)).
The inset shows the overlap between the ideally evolved density matrix and the
state of the system at t = 0, 1/

p
2(a†+(a†)2/

p
2)|0i

p

⌦ |1
1

0
2

0
3

0
4

i
z

, i.e., the same
probability for having 1 and 2 photons in the resonator and all the superconduct-
ing qubits in the ground state of �z

i

except the first, which is excited.
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it

H
1

e�
it

H̃e�
it

H̃

e�
it

H̃
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Figure 4.5: Protocol for the digital quantum simulation of a spin-chain coupled
to a bosonic mode with superconducting circuits, in terms of unitary evolutions
of Hamiltonians H

1

, H
2

and H̃, being the interaction defined in Eq. (4.10).
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4.3.3 Collective Spin Coupling Mediated by Resonators

In this subsection, we extend the Ising model presented in Eq. (4.5) by adding three-

body interactions. The method can be generalized to arbitrary interaction orders.

This extension allows us to simulate problems such as quantum chemistry [81, 123,

132, 133], as well as fermionic lattice models [82, 134], by using the Jordan-Wigner

mapping to map fermionic interactions into spin interactions. The Hamiltonian for

N spins including three-body interactions can be written as

H = J
X

hjki

�z
j �z

k + G
X

hjkli

�z
j �z

k�z
l + B

X

j

�x
j , (4.13)

Here, we have added one collective interaction term with coupling constant G, which

is the coupling among three nearest neighbour spins. This model can be simulated by

enriching with additional gates the protocol for the Ising model in section 4.3.1. That

is, together with single-qubit rotations along the x direction, Xj(�) = exp(�i��x
j ),

and two-qubit zz gates, ZZjk(✓) = exp(�i✓�z
j �z

k), we also consider the combination

of collective gates shown in Fig. 4.6. This will allow us to couple three qubits,

ZZZjkl(�) = exp(�i��z
j �z

k�z
k).

The collective spin interaction of this model can be decomposed into (N � 1)

two-qubit gates and 2(N � 2) three-qubit gates, and the transverse field is mimicked

by N single qubit rotations. Moreover, we notice that the digital error of the Trotter

expansion in Eq. (4.1) is reduced due to the fact that the interaction summands of

the Hamiltonian commute with each other. The Trotter expansion for this model

reads

e�iHt '
⇣
e�i t/s J

P
hjki �z

j

�z

ke�i t/s G
P

hjkli �z

j

�z

k

�z

l e�i t/s B
P

j

�x

j

⌘s
, (4.14)
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where

exp

0

@�i✓
X

hjki

�z
j �z

k

1

A = e�i✓�z

1�z

2 e�i✓�z

2�z

3 · · · e�i✓�z

N�1�z

N ,

exp

0

@�i�
X

hjkli

�z
j �z

k�z
l

1

A = e�i��z

1�z

2�z

3 e�i��z

2�z

3�z

4 · · · e�i��z

N�2�z

N�1�z

N ,

exp

0

@�i�
X

j

�x
j

1

A = e�i��x

1 e�i��x

2 · · · e�i��x

N , (4.15)

with ✓ = �Jt, � = Gt and � = Bt, t being the simulated execution time. The col-

lective gate for three qubits can be decomposed into two-qubit gates, as in Fig. 4.6.

Recently, the implementation of collective gates with a quantum bus has been pro-

posed in superconducting circuits [130].

In Fig. 4.7, we plot a numerical simulation of the extended Ising model with

higher-order terms and transverse field for several Trotter steps. The figure shows as

in the previous examples how the simulated dynamics with digital methods becomes

more accurate when compared with the exact one when the number of Trotter steps

is increased.

4.4 Experimental Realization of Digitized Adiabatic

Quantum Simulations

In this section, we combine the advantages of digitization and adiabatic evolutions by

implementing digitized adiabatic quantum computing in a superconducting system.

We study the experimental results obtained in the lab of Prof. John M. Martinis

at Google/University of California, Santa Barbara, which tomographically probes

the system during the digitized evolution and explore the scaling of errors with

system size. We conclude by having the full system find the solution to random

one-dimensional Ising problem instances with frustration as well as non-stoquastic

problem Hamiltonians that involve more complex interactions. This digital quantum

simulation [23–25, 135] of the adiabatic algorithm consists of up to nine qubits and
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Figure 4.6: (a) Protocol for performing one of the three-qubit interactions ap-
pearing in Eq. (4.13) with collective gates. Here ZZZ

123

(↵) = exp(�i↵�z

1

�z

2

�z

3

),
R

Y,✓

= exp(�i✓�y/2) is the rotation along the Y -axis of a qubit, X = exp(i↵�x),
and U

S

2
z

(✓) = exp(�i✓/2
P

i<j

�z

i

�z

j

). (b) The same interaction ZZZ can be
realized with two-qubit gates where ZZ

A

= exp(i⇡�z ⌦ �z/4), and ZZ
B

=
exp(�i⇡�z ⌦ �z/4).

up to 103 quantum logic gates. The demonstration of digitized adiabatic quantum

computing in the solid state opens a path to synthesizing long-range correlations and

solving complex computational problems. When combined with fault-tolerance, this

approach becomes a general-purpose algorithm that is scalable.

We explore the adiabatic quantum evolutions of one-dimensional spin chains

with nearest-neighbour coupling. We start with a simple ferromagnetic problem to

visualize the adiabatic evolution process. We identify specific error contributions, and

follow up by exploring the scaling of errors with system size. We finish by testing the

device on random stoquastic and non-stoquastic problems. The initial and problem
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Figure 4.7: Digital simulation of the extended Ising model with a transverse
field and three-body terms for four spins in superconducting circuits, where J =
G = 2⇡ ⇥ 400 MHz and B = 2⇡ ⇥ 200 MHz, for a phase of ✓ ⌘ �Jt = 4. The
plot shows the fidelity of the digitally evolved state with the ideally evolved one
for di↵erent Trotter steps, s = 7, 9, 11. The inset shows the overlap between the
ideally evolved state with the initial state, that is, all qubits in |0i

z

state.

Hamiltonians are

HI = � Bx
I

X

i

�x
i , (4.16)

HP = �
X

i

(Bz
i �z

i + Bx
i �x

i ) �
X

i

�
Jzz

i �z
i �z

i+1 + Jxx
i �x

i �x
i+1

�
, (4.17)

where Bz and Bx denote local field strengths, and Jzz and Jxx the �z�z and

�x�x coupling strengths. The Ising model is recovered when Bx = Jxx = 0. We

initialize the system with HI and vary the system Hamiltonian to the final problem:

H(r) = rHP + (1 � r)HI , with r going from 0 to 1. An example problem is shown

in Fig. 4.8a.

The spin system is formed by a superconducting circuit with nine qubits. The

qubits are the cross-shaped structures [136], patterned out of an Al layer on top of

a sapphire substrate, and arranged in a linear chain, see Fig. 4.8b. Each qubit is

capacitively coupled to its nearest neighbours, and can be individually controlled

and measured; for details see Ref. [137]. Crucially, by tuning the frequencies of the

qubits we can implement a tunable controlled-phase entangling gate. We use the
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Figure 4.8: Spin chain problem and device. (a) We implement one-dimensional
spin problems with variable local fields and couplings between adjacent spins.
Shown is an example of a stoquastic problem Hamiltonian with local X and Z
fields, indicated by the gold arrows in the spheres, and �z�z couplings, whose
strength is indicated by the radius of the links. Red denotes a ferromagnetic
and blue an antiferromagnetic link. The problem Hamiltonian is for the instance
in Fig. 4.11c. (b) Optical picture of the superconducting quantum device with
nine Xmon qubits Q

0

- Q
8

(false-coloured cross-shaped structures), made from Al
(light) on a sapphire substrate (dark). Connections to readout resonators are at
the top, and control wiring is at the bottom. Scale bar is 200 µm.

first-order Trotter expansion to digitize [21]. The evolution is divided into many

steps, see Appendix B.

For quantifying digitized adiabatic evolutions there are four sets of data: I) The

ideal continuous time evolution, for infinite time, which is free of error and provides

the perfect solution; we refer to this as “target state”. II) The ideal continuous

time evolution for a finite time T , which is sensitive to non-adiabatic errors. We call

these results: “ideal continuous evolution”. III) The “ideal digital evolution”, where

the finite ideal continuous evolution is digitized, and therefore includes digital error

as well as non-adiabatic errors. And IV) the experimental results, which include a

contribution from gate errors as well.
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4.4.1 Ferromagnetic Chain

We start with a ferromagnetic chain problem with N = 4 spins, and equal coupling

strength Jzz = 2. The qubits are initialized in the |+i⌦N state, and we use five

steps to evolve the system to the problem Hamiltonian, performing quantum state

tomography after each step. We linearly decrease the Bx term to zero, starting

at Bx = 2, and simultaneously increase the coupling strength from 0 to 2, ending

the evolution at a scaled time of |J |T = 6. The density matrices are shown in

Fig. 4.9a. With each step the quantum state evolves and matrix elements in the

middle vanish while the elements at the four corners grow to form the density matrix

⇢ of the Greenberger-Horne-Zeilinger (GHZ) state, the solution to the ferromagnetic

problem, with a fidelity Tr(⇢target�state⇢) of 0.55. The density matrix is constrained

to be physical [17]. The ideal digital evolution is plotted in Fig. 4.9b, reaching a

fidelity of 0.85. The Hamiltonian during evolution, construction of the algorithm,

and pulse sequence are shown in Figs. 4.9c-e. In each Trotter step, we perform a

�z�z operation on each pair, to implement the ferromagnetic �z�z coupling, followed

by single qubit rotations around the X axis to simulate the transversal magnetic field.

In the pulse sequence, the rectangular-like frequency detuning pulses indicate where

�z�z interaction is implemented by bringing qubits near resonance (highlighted for

s = 0.2). The wave-like pulses are microwave gates. The decrease in Bx is reflected by

the reduction in amplitudes of the corresponding pulses (highlighted for s = 0.4 and

s = 1.0). Additional microwave echo pulses decrease coupling to other qubits and the

environment. We find mean phase errors from neighbouring parasitic interactions to

be around 0.05 rad, equivalent to an error contribution below 10�3, see Appendix B.

The experiment in Fig. 4.9 shows that digital synthesis of adiabatic evolutions

can successfully be implemented in a solid state quantum platform. Using five Trotter

steps, 15 entangling gates and 144 single-qubit microwave gates, the system produces

a GHZ state with a fidelity that indicates genuine entanglement. It shows that

complex pulse sequences are possible, and that the errors make sense: The fidelity

of the experimental data with respect to the ideal digital evolution is 0.64. The

overlap between the ideal digital evolution and ideal continuous time evolution for

finite time is 0.93, and the overlap of this continuous evolution with the GHZ state

(see Appendix B) is 0.88. The product of the above three values (0.52) is close to

the experimental fidelity of 0.55, and shows the experimental error is a combination
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Figure 4.9: Quantum state tomography of the digital evolution into a
Greenberger-Horne-Zeilinger state. A four-qubit system is adiabatically evolved
from an initial Hamiltonian where all spins are aligned along the X axis to a
problem Hamiltonian with equal ferromagnetic couplings between adjacent qubits
(J

zz

= 2). (a) Experimental density matrix ⇢ at the start and after each Trotter
step, showing the growth of the major elements on the four corners, measured
using quantum state tomography. The target state is shown in black. Coloured
squares indicate qubit indices: For example, Q

0

being excited is indicated by a
red square. Black arrows indicate significant elements for states which di↵er from
the target state by a single kink. (b) Ideal digitized evolution, showing major
elements on the four corners as well as other populations and correlations. Real
parts shown. (c) Hamiltonian at di↵erent r, showing the vanishing transversal
field and increasing coupling strength. (d) Gate sequence, showing initialization
and the five Trotter steps. (e) Pulse sequence, showing the single-qubit microwave
gates (wave-like pulses) and frequency detuning pulses (rectangular-like). Corre-
sponding interactions and local field terms are highlighted. The displayed five step
algorithm is 2.1 µs long. Colours correspond to the physical qubits in Fig. 4.8b.
Implementations of �z�z coupling and local X-fields are highlighted. See Ap-
pendix B for imaginary parts and the ideal continuous evolution.

of non-adiabatic, digitization and gate errors. Adopting the entangling gate error of

7.4 · 10�3 and 8 · 10�4 as measured in Ref. [17], we expect an accumulated gate error

of 0.23 whereas we find an infidelity of 0.36; we attribute the di↵erence to errors in

maintaining the phases of the four-qubit system for a duration of 2.1 µs.
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Figure 4.10: Kink errors, residual energy, and scaling with system size. (a)
Kink likelihood for the four-qubit configuration. Solid lines: experiment. Dashed
lines: ideal digital evolution. Dotted lines: ideal continuous time evolution. (b)
Residual energy in the adiabatic evolutions of ferromagnetic chains (J

zz

= 2)
in configurations with two to nine qubits. The green solid line shows the ideal
square-root trend for the large-scale limit (see Appendix B). Distinct contributions
to error are highlighted.

An important feature of the errors is the prevalence of populations and corre-

lations of the |###"i, |##"i, and |#"""i-states and their bitwise inverse, see arrows

in Fig. 4.9a. Their elements are also present in the ideal digital results as well as

the ideal continuous evolutions (see Appendix B). These are states that deviate by

a single kink from the target state, having a residual energy of 2|J |, indicating the

presence of non-adiabatic errors. These kink errors are connected to the formation

of defects during a phase transition, as described by the Kibble-Zurek mechanism

[138].

To explore the scaling of errors we vary the system size from two to nine qubits

and measure the likelihood of kinks and residual energy. We keep the ferromagnetic

problem Hamiltonian, Jzz = 2, but vary the scaled time such that |J |T goes from 0

to 3. For the two to six qubit system we use five Trotter steps and for seven to nine

qubits we use two steps, to limit the total number of gates. The kink likelihood for
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the four-qubit system is shown in Fig. 4.10a. Here, the likelihood of one kink is given

by the sum of the probabilities of all states with one kink. When increasing |J |T from

0 to 3 the kink likelihood decreases, and the likelihood of no kinks increases (black

line). The experimental data closely follow the ideal digital evolution (dashed). This

picture is repeated for all systems, see Appendix B.

The kink likelihood signals that the final state has residual energy, as a state

with a single kink has energy 2|J | above the target state. The residual energies for

all systems are plotted in Fig. 4.10b. Initially, the residual energy is constant at

|J |T ⇠ 0, and starts to decrease around |J |T ⇠ 0.5, following both the ideal digital

(dashed) and ideal continuous time evolutions (dotted). For two to six qubits, this

decrease continues until the traces start to settle around |J |T = 3. For the seven

to nine qubit system, the residual energy starts to increase again around |J |T = 2,

following the ideal digital evolution. See Appendix B for the pulse sequence for

the nine qubit experiment, all kink likelihoods, and for the di↵erences between the

residual energies.

The main result is that Fig. 4.10 distinctly shows the di↵erent contributions to

error (highlighted): For |J |T ⌧ 1, the residual energy is dominated by non-adiabatic

errors as the evolution moves too fast. For |J |T > 2, the flattening out of the

residual energy for the configurations with two to six qubits indicates that gate errors

dominate, as the predictions from the ideal digital evolutions are significantly lower.

And for the larger qubit configurations with seven to nine qubits, the residual energy

follows the digital predictions upwards, indicating that digitization errors dominate.

In addition, the residual energy visibly decreases at |J |T = 1 for all configurations,

implying that the digitized evolutions are able to approach the target state even for

nine qubits.

We also applied local fields to explore the lifting of degeneracy and generation

of long-range correlations, see Appendix B.
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Figure 4.11: Digital evolutions of random stoquastic and non-stoquastic prob-
lems. As stoquastic problems we use frustrated Ising Hamiltonians, having ran-
dom local X and Z fields, and random �

z

�
z

couplings. (a, b, c) Stoquastic results
are shown for three, six and nine qubits. For three qubits we have done tomog-
raphy. An example instance is on the left in (a), where we show the real part
of the density matrix. Coloured bars denote the experimental data, black the
ideal digital evolution, and gray the target state. The diagonals of the experiment
(colour) and the target state (gray) are on the right, rank ordered by ideal target
state results. The fidelity results for all 100 instances are summarized in the his-
togram where ratio denotes the normalized occurrence, top right. Coloured bars:
fidelities of experimental results with respect to the target state. Gray: fideli-
ties of the ideal digital evolution with respect to the target state. The correlated
probabilities for six (b) and nine (c) qubits are plotted in the main figure, sorted
by target state results. Experimental data is in colour, the target state is in gray.
The results for all 250 instances are summarized in the insets. For the nine qubit
instance the first 100 elements are shown. (d, e, f) Non-stoquastic problems have
additional random �

x

�
x

couplings, here we plot the data for three, six, and seven
qubits, for which the average measure of success is above the random baseline.
The results show that the system can find the ground states of both stoquastic
and non-stoquastic Hamiltonians with a similar performance.
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4.4.2 Simulation of Stoquastic and Non-Stoquastic

Hamiltonians

We next discuss how the digitized approach can solve both stoquastic and non-

stoquastic problems with comparable performance, by testing random problems on

three, six, seven, eight and nine qubits. Problems have local fields and couplings

with random strength and sign. We independently choose Bz and Bx from [-2, 2] for

each spin, and Jzz from [-2, -0.5] or [0.5, 2] for each link. This creates a random Ising

problem with frustration. For non-stoquastic problems we also add Jxx coupling

for each link, with values from [-2, -0.5] or [0.5, 2]; e↵ectively doubling the amount

of entangling gates. We avoid small couplings to reduce the number of gates. For

the three qubit systems we have used quantum state tomography on 100 separate

instances, to include o↵-diagonal elements in the fidelity metrics. For six or more

qubits, tomography is not practical and we have measured the correlated probabilities

on 250 separate instances, and use a measure of success that is equal to |h ideal| i|2 to

first order and sets an upper bound on the fidelity: (
P

k

p
Pk,idealPk)2, where Pk,ideal

and Pk are probabilities and k runs over the computational basis. In Fig. 4.11 we

show the results for stoquastic problems with three, six and nine spins, and non-

stoquastic problems with three, six and seven spins. Per case, we highlight a single

instance and show histograms of the fidelities.

For the three-spin stoquastic problems, the real part of the density matrix of

one instance and a histogram of its diagonal elements are shown in Fig. 4.11a. In the

tomography plot we overlay the experimental results (colour) with the ideal digital

(black), and ideal continuous results (gray). For this example, we find fidelities

Tr(⇢ideal�digital⇢) = 0.70 and Tr(⇢target�state⇢) = 0.63. In the top right, we show

in colour the histograms for all instances of the fidelities Tr(⇢target�state⇢). Shown

in gray is the fidelity of the ideal digital evolution with respect to the target state.

Stoquastic problems with six and nine qubits are displayed in Figs. 4.11b-c. The

main figures show the measured probabilities (colour) sorted by the target state

results (gray), and the insets display the histograms. Non-stoquastic problem results

are displayed on the right in Figs. 4.11d-f.

The key result from Figs. 4.11 is that the physical system can find solutions to

non-stoquastic problems with a performance similar to that of stoquastic problems.
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The three qubit examples show major diagonal as well as o↵-diagonal elements close

to the expected positions. And visibly, for six and more qubit systems the coloured

bars in the example instances are mostly on the left, indicating that the system has

a clear preference for returning the probabilities associated with the ideal solutions.

The physical system produces results which are comparable to the expectations,

as the histograms show a significant overlap between experiment and theory. More-

over, the numbers are consistent, as we now discuss the six qubit stoquastic example.

The mean success rate between the ideal adiabatic evolution and target state is

0.59 ± 0.01, indicating that the scaled time is large enough for capturing the evolu-

tion dynamics. The mean success rate of the ideal digitized evolution with respect

to the ideal adiabatic evolution is 0.73 ± 0.01, indicating a proper Trotterization of

the evolution. Finally, the value for the experimental evolution with respect to the

ideal digitized evolution is 0.714 ± 0.006, indicating that the experiment follows the

ideal digital evolution reasonably well. Interestingly the product of the above three

numbers, 0.31, is very close to the mean value between the experimental data and

the target state, 0.296 ± 0.007. This shows that the experimental errors arise from

comparable contributions of non-adiabatic, digital, and gate errors. For the six qubit

non-stoquastic case, experimental-to-target state values are higher than this product,

suggesting that errors partially cancel. A further reason may be that the presence

of �x�x terms is helpful for di�cult problems in general [122]. This experiment took

up to nine qubits and up to 103 gates. See Appendix B for pulse sequences, gate

counts, problem parameters, and additional metrics.

To further quantify the performance of the system we compare experimental

as well as random probabilities with the theoretical results. In essence, we take a

uniform random distribution over the 2N possible measurement outputs as a baseline

sanity check. We find that for the stoquastic problems, the measures of success

of all six to nine qubit configurations are significantly above this baseline: for six

qubits, the success measure of the experimental data with respect to the target

state is 0.296 ± 0.007, while using uniform random probabilities produces a value

of 0.168 ± 0.005. For the nine qubit case the numbers are: 0.122 ± 0.006 for the

experimental data and 0.074 ± 0.004 for random. For the non-stoquastic problems

the numbers are: 0.380± 0.009 and 0.335± 0.008 for the six qubit configuration, and
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for the seven qubit case: 0.311 ± 0.009 and 0.277 ± 0.008. A complete listing for all

configurations can be found in the Appendix B.

This experiment shows that digital synthesis of the adiabatic evolutions can be

used to find signatures of the ground states of random stoquastic as well as non-

stoquastic problems. Errors arise from a comparable contribution of non-adiabatic,

digital, and gate errors; and success rates are significantly above a uniform random

baseline. We note that for larger qubit systems the number of Trotter steps needs

to be limited to reduce the accumulation of gate error; in turn limiting the evolution

we can simulate. The experimental error is therefore larger, from a combination of

gate, digitization, and non-adiabatic error. However, in an error-corrected system the

number of gates is in principle unconstrained, digitization can be made arbitrarily

accurate, and one can move slower through critical parts of the evolution. While we

have used Trotterization [22], with recent methods based on the truncation of Taylor

series [139] the scaling of the digitization becomes appealing. See Appendix B for

further motivations and discussions.

4.5 Conclusions

In this Chapter, we have introduced digitized adiabatic quantum simulations. We

have proposed the digital quantum simulation of several spin-chain models coupled

to bosonic modes with circuit quantum electrodynamics architectures. We have pre-

sented a method for decomposing spin interactions and implementing them stepwisely

with available single and two-qubit gates. Furthermore, we have considered both cir-

cuit QED setups employing capacitively coupled superconducting qubits and trans-

mission line resonators acting as quantum buses. We have exemplified our method

with the quantum simulation of the Ising model with transverse field, a spin chain

coupled to a bosonic field mode, and a many-body spin model with three-body in-

teractions, which are realized through a bosonic quantum bus. These results show

that spin chains and bosonic field modes can be e�ciently implemented with super-

conducting qubits.
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Additionally, we have analyzed the theory and the experiment realized in Google/U-

niversity of California, Santa Barbara, where the proposed digitized adiabatic quan-

tum evolutions have been demonstrated in superconducting circuits. We believe that

the digitized approach to adiabatic quantum evolutions of complex problems, where

local fields, variable coupling strengths and types, as well as multibody interactions

can be constructed, becomes viable on the small scale with lower gate errors, and that

large scale applications can be done in conjunction with error correction. We hope

our work accelerates the improvement of superconducting quantum systems, and

motivates further research into the encoding of and measurement for non-stoquastic

computational problems. In addition, we anticipate that these results encourage

work on the e�cient digitization of algorithms for small and large-scale systems, for

which reducing the e↵ects of noise is paramount.
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Chapter 5

Genetic Algorithms for

Digital Quantum Simulations

I believe that at the end of the century the use of

words and general educated opinion will have al-

tered so much that one will be able to speak of

machines thinking without expecting to be contra-

dicted.

Alan Turing

5.1 Introduction

O
ptimization problems, a prominent area in computer science and machine

learning [62], are focused on finding, among all feasible solutions, the best

one in terms of e�ciency and resource requirements. In particular, genetic algo-

rithms (GAs) [140], an especially flexible and robust set of optimization methods,

are inspired by ideas of evolution and natural selection. In this sense, GAs opti-

mize among di↵erent possibilities, which are codified in the genetic information of

an individual. Evolution is therefore based on genetic recombination over a group of
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individuals, together with some random mutations. Natural selection is performed

according to the optimization criteria, codified in an evaluation or fitting function.

This process is repeated until the individuals satisfy a condition of adaptation. As

the solutions to the problem are encoded in the genetic information of the individuals,

the information of the survival corresponds to the optimal solution.

A variety of applications have been designed utilizing these methods: mirrors

that funnel sunlight into a solar collector [63], antennas measuring the magnetosphere

of Earth from satellites [64], walking methods for computer figures [65] and e�cient

electrical circuit topology [66, 67]. The resilience against changes in the initial con-

ditions of the problem is based on the overheads in the resources. For instance,

in the case of electric circuits, when one circuit element fails, the circuit continues

working and the designed antennas continue measuring signals even under changes

in environmental conditions.

One of the most important limitations in the field of quantum computing [141] is

the fidelity loss of quantum operations. Quantum error correction protocols [13, 14],

which codify logical qubits in several physical qubits, have been proposed and imple-

mented in di↵erent quantum technologies, such as linear optics [15], trapped ions [16]

and superconducting circuits [17, 18]. It is noteworthy to mention that quantum error

correction has been proposed for gate-based quantum computing [1] and, in principle,

they are also meant to be adaptable to digital quantum simulations [19]. However,

experimental implementations of quantum error correction protocols applied to spe-

cific quantum algorithms are still to come in the expected development of quantum

technologies.

In this Chapter, we propose a protocol based on genetic algorithms for the sup-

pression of errors ocurring within digital quantum simulations, along the general

lines of bioinspired algorithms in quantum biomimetics [142, 143]. First, we prove

that GAs are able to decompose any given unitary operation in a discrete sequence

of gates inherently associated to the experimental setup. Moreover, we numerically

demonstrate that this sequence achieves higher fidelities than previous digital pro-

tocols based on Trotter-Suzuki methods [19, 21]. Second, we show that GAs can be

used to correct experimental errors of quantum gates. Indeed, architectures combin-

ing a sequence of imperfect quantum gates with ancillary qubits generate a modular
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Figure 5.1: Scheme of the GA-based protocol for digital quantum simulations.
First, the simulated Hamiltonian is decomposed in local interaction blocks, sep-
arately implemented in di↵erent unitary evolutions U

j

which act on a subset of
k particles of the system. Second, the set of gates is selected according to the
constraints of the simulating quantum technology: total number of gates to avoid
experimental gate error, interactions restricted to adjacent physical qubits, and
implementable phases of the Hamiltonian, among others. Once the set of gates is
determined, GAs provide a constraint-fulfilling sequence of gates, which e↵ectively
perform the resulting dynamics U

GA

similar to U
T

.

gate with higher fidelity than any of the components of the sequence. We exemplify

this with a possible implementation of a high-fidelity controlled-not (cnot) modular

gate, which is made out of several imperfect cnot gates. Additionally, these archi-

tectures show resilience against changes in the gate error. Therefore, by combining

the concept of digital quantum simulation with GA, it is possible to design robust

and versatile digital quantum protocols.

5.2 Digital Methods with Genetic Algorithms

Here, we explain how GAs can improve the fidelity of digital quantum simulations.

Up to now, the standard technique for realizing digital simulations is Trotter-Suzuki

expansion [21], which has been proven to be e�cient [84, 104, 144]. This method

consists in executing a series of discretized interactions, resulting in an e↵ective
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dynamics similar to the ideal dynamics of the simulated system. Associated to the

unitary evolution of Hamiltonian H =
Ps

j Hj , Trotter formula reads

UI = e�iHt = lim
l!1

⇣
e�iH1t/l · · · e�iH

s

t/l
⌘l

, (5.1)

where UI is the ideal unitary evolution, t is the simulated time, l is the number of

Trotter steps, and Hi are the Hamiltonians in the simulating system. On one hand,

for a fixed total execution time, the larger the number of Trotter steps is, the lower

the digital error of the simulation. On the other hand, the execution of multiple

gates in a quantum system can introduce experimental errors due to decoherence

and imperfect gate implementation. Therefore, there is a compromise between the

number of Trotter steps and quantum operations that can be performed by the

quantum simulator [94, 145].

GAs can be employed for outperforming current techniques of digital quantum

simulations. The first step of a digital quantum simulation is the decomposition of

the simulated Hamiltonian into interactions implementable in the quantum platform,

which is a tough task in general. However, by using GAs, it is possible to find a

series of gates adapted to the constraints imposed by the quantum simulator, whose

resulting interaction is similar to the one of Hamiltonian H. For this purpose, we

need neither to satisfy the condition H =
Ps

j Hj , nor to use the same execution

time for every involved gate. This not only relaxes the conditions for simulating the

dynamics, but also allows us to control the number of gates involved, permitting the

possibility of minimizing the experimental error.

Let us assume the situation in which is not possible to compute the ideal dy-

namics of a short-range interacting Hamiltonian, since, for instance the number of

particles is too large. By using the Trotter-Suzuki formula, it is possible to decom-

pose the interaction into ↵ local blocks of k-interacting particles each, out of N

total particles. Let us denote by Uj the ideal unitary evolution of the Hamiltonian

acting on the jth local block of k qubits. Once the total dynamics is decomposed

into blocks, each Uj has to be implemented employing the resources available in the

experimental platform, as depicted in Fig. 5.1. Here, GAs play an important role,
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since they provide an architecture for e�ciently approximating each Uj by Wj :

UT =

0

@
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l
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UGA =

0

@
↵Y

j=1

Wj

1

A
l

, (5.3)

where ↵ =
l

N�1
k�1

m
. We assume that k is su�ciently small to allow the minimization

of the error associated with the approximation in a standard computer. Therefore,

the evaluation function has access to an approximate version of the complete system

dynamics, because this is solvable in terms of the Trotter expansion. In our algorithm,

as an evaluation function, we compare Trotter unitary evolution, UT , for a given

number of Trotter steps l with the unitary evolution obtained from GAs, UGA. The

evaluation function is then given by Rj = ||Uj � Wj ||. Notice that a global phase in

the unitary Wj does a↵ect the evolution but it a↵ects the value of Rj , so we should

consider inf� ||Uj � ei�Wj ||. As we normally have access to the initial state of the

evolution, the evaluation function Rj = |h |U†
j Wj | i|2, in which the global phase

is irrelevant, can be chosen. In addition, for all analyzed examples, the number of

gates involved in the GA protocol is lower than in the Trotter expansion, which gives

positive perspectives for experimental realizations of digital quantum simulations

based on this approach.

The upper bound for the total error ⇠ of the protocol, is obtained by combin-

ing the Trotter error with the error of the GA optimization ⇠ = ||UI � UGA|| 
||UI � UT || + ||UT � UGA||. The first term is nothing but the digital error [21], so

we analyze the second term. Consider that Wj , the unitary provided by the GA,

has a matrix error ⌘j , Wj = Uj + ⌘j . Let us denote by Ũj = 1⌦j�1 ⌦ Uj ⌦ 1⌦↵�j ,

the operations when extending to the whole Hilbert space, where ↵ is the num-

ber of blocks. The same relation holds for W̃j and ⌘̃j , therefore, W̃j = Ũj + ⌘̃j .

We are now able to compute the error of the GA optimization for a single Trot-

ter step, given by ||UT � UGA|| = ||Q W̃j �Q Ũj || = ||Q(Ũj + ⌘̃j) �Q Ũj ||. We

approximate this expression to a first order in ⌘̃j , ||P W̃1...W̃j�1⌘̃jW̃j+1...W̃↵|| 
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P ||W̃1||...||W̃j�1||||⌘̃j ||||W̃j+1||...||W̃↵||. By computing the norm of the unitary ma-

trices W̃j , we obtain
P ||⌘̃j ||, which coincides with the error in each of the subspaces,

||UT �UGA|| =
P ||⌘j ||. Therefore, the GA error is bounded by the sum of the errors

in each unitary block, which is linear in the number of qubits for the simulation of

a short-range interacting Hamiltonian. As a final remark, since both W and U are

unitaries, we would like to point out that the error could also be parametrized by

a multiplicative unitary matrix. However, both approaches are equivalent for small

errors in the sense that Vµ = exp(iµH) ⇡ 1 + iµH + O(µ2||H||2) for a small µ, so

W ⇡ U + iUHµ = U + ⌘.

We now illustrate the protocol for simulating digitally the isotropic Ising and

Heisenberg spin models with a magnetic field in a superconducting circuit architecture

as in Chapters 2 and 4 [24, 94, 114]. The Hamiltonians of these models are

HI = J
NX

hi,ji

�z
i �z

j + B
NX

i

�x
i , (5.4)

HH = J
NX

hi,ji

(�x
i �x

j + �y
i �y

j + �z
i �z

j ) + B
NX

i

�x
i , (5.5)

where J is the coupling between nearest-neighbor spins hi, ji, B is the strength of the

magnetic field, and ��
i are the Pauli operators acting on the ith spin with � = x, y, z.

We decompose the interactions in terms of single-qubit rotations and controlled-

phase (cphase) gates between nearest-neighbor superconducting qubits [25, 26, 114,

146]. Following the approach in Chapter 4, simulating the Ising Hamiltonian requires

N �1 cphase and 3N �2 single-qubit gates, while Heisenberg Hamiltonian demands

3(N -1) cphase and 11N � 6 single-qubit gates. In this simulation, we consider a

chain of N = 5 spins. The GA computes a digitalized unitary evolution for a concrete

time t, constituted by the previous gates in a local subspace of k = 2 qubits. Then,

this unitary evolution W1 is repeated following Eq. 5.3 with l=1 over all adjacent

qubits due to the translation invariance . The resulting unitary process UGA is

compared with the ideal dynamics of the model. This protocol employs 4 cphase

and 8 single-qubit gates for the Ising model, and 4 cphase and 16 single-qubit gates

for the Heisenberg model. Moreover, fidelities are enhanced when compared with

the corresponding to pure digital methods for a single Trotter step, even using less
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Figure 5.2: Logarithmic plot of the error E = 1� |h |U†
I

Ũ | i|2 in the evolution
of (a) Ising and (b) Heisenberg spin models for N = 5 qubits, J = 2, B = 1, and
| i = |0i⌦5. Here, U

I

is the ideal unitary evolution, while Ũ refers to the unitary
evolution using either a digital expansion in 1 (blue line) and 2 (red line) Trotter
steps, or GAs (dashed green). The GA protocol requires fewer gates than the
digital method for a single Trotter step achieving similar fidelities to two Trotter
steps.

gates, as shown in Fig. 5.2. This approach can be applied similarly to other quantum

technologies such as NV centers, trapped ions, and quantum dots among others,

just by adding the constrains of their implementable quantum gates to the genetic

algorithm. In this protocol, we have considered gates with perfect fidelity. Let us

now focus on how to employ GAs to improve the experimental error of quantum

gates.

5.3 Experimental Error in a CNOT Gate

Besides outperforming protocols for digital quantum simulations, GAs are also useful

for suppressing experimental errors in gates. We propose a protocol to perform an
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e↵ective quantum gate by using ancillary qubits and a set of imperfect gates, and

we illustrate for the cnot gate. A cnot gate is given by a unitary UCNOT =

exp(i⇡
2 HCNOT ), with HCNOT = 1

2 [( + �z) ⌦ + ( � �z) ⌦ �x]. Let us consider

imperfect gates modeled by WCNOT = exp(i⇡
2 HCNOT + �HR), with � << 1 and

HR a random matrix, such that ||H||2 = 1. These unitaries define unital quantum

channels U = U ⌦ Ū and W = W ⌦ W̄ respectively, and we define the error of the

gate as the distance ⌘ = || W � U ||2.

Let us now consider q � 2 ancillary qubits in the state |0i in addition to the

control and target of the integrated cnot gate. Let us also consider n imperfect

cnot gates ~W = {W1, . . . , Wn} acting on any possible pair of the q qubits, with errors

~⌘ = {⌘1, . . . , ⌘n} respectively, and denoted by ⌘ = mini ⌘i. The integrated circuit is

defined by a set of n ordered pairs IG~⌘ = {(ik, jk)|1  ik, jk  q, k = 1, . . . , n}, where

the indices indicate the control and target qubits, respectively. In order to calculate

the fidelity of the protocol, we compute the Kraus operators of the integrated cnot

gate, by tracing out the q � 2 ancillary qubits, and compare the resulting channel

IG
~⌘

with the unital channel U , ✏IG
~⌘

= || IG
~⌘

� U ||2. If ✏IG
~⌘

< ⌘, then the

cnot gate is implemented with higher fidelity than any of the original cnot gates,

showing this GA-based architecture resilience against quantum errors.

The set IG~⌘ codifies the genetic information of the individuals which conform

the population evolving into successive generations. During the reproduction, the

individuals recombine their genetic code, which is also allowed to mutate. The sur-

vival probability depends on the fidelity of the e↵ective cnot encoded in IG~⌘ and,

therefore, only individuals associated with a small error succeed.

The number of possible architectures involving n di↵erent cnot gates and q

ancillary qubits is P = (q2 � q)nn!, see Appendix C for a description of the ge-

netic algorithm and a detailed calculation of the errors and number of architectures.

The factor (q2 � q)n is due to all possible cnot configurations in a given order be-

tween qubits i and j for n gates, while n! comes from reordering imperfect gates

{W1, ..., Wn}. When q and n are small, the optimal architecture can be found by

analyzing all cases. However, when we increase these parameters, this brute-force op-

timization method turns out to be ine�cient. GAs allow us to optimize the protocol

in this unreachable regime, being moreover robust, as analyzed below.
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Figure 5.3: Error resilience for architectures with n = 3, 5, 7 imperfect cnot

gates using 1000 runs. Pie charts show the percentage of cases in which the fidelity
of the e↵ective cnot overmatches the best cnot employed in the architecture.
Bar charts show the distribution of cases according to the relative improvement
in the error, again when compared with the best cnot.

This cnot case has been analyzed involving three, five and seven gates. Notice

that, when one considers q = 4 and n = 7, the number of possible architectures is

larger than 1.8⇥, 1014 for a fixed set of imperfect gates. We have chosen a set of

gates and find the optimal architecture by GA. Then, we analyze the resilience or

robustness of this architecture by changing the set. In Fig. 5.3, we have depicted the

results for a sampling of 1000 sets of random imperfect cnot gates. The pie charts

show the percentage of cases with a lower error than any cnot performed in the

protocol, which are 6% for three qubits, 87% for five, and 96% for seven. Furthermore,

the bar charts show the average improvement of the error for the integrated cnot

with respect to the best implementing cnot, which is �39%, +18%, and +30%,

respectively. For completeness, in Fig. 5.4, we show the optimal architecture for

q = 4 and n = 5, obtained from a fixed set of imperfect gates ~W , and proven to be

robust, see Appendix C.

Additionally, we have studied the behavior of the protocol with respect to the
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number of ancillary qubits. The results show no significant improvement when the

number of performed gates is small, see Appendix C. For instance, architectures up

to n = 7 do not overcome fidelities shown above when adding a third ancillary qubit,

q = 5. However, we expect that architectures with a larger number of gates would

actually take advantage of using more ancillary qubits in order to suppress the error.

C

T

A1

A2

Figure 5.4: Scheme of the optimal architecture for constructing a cnot gate
with 5 imperfect gates, by using two ancillary qubits initialized in state |0i. Here,
C is the control, T is the target, and A

1

and A
2

are the ancillary qubits.

The same protocol can be applied in the realization of more general unitary

operations. Additionally, the gates conforming the building blocks can be arbitrary,

which facilitates the adaptation of the protocol to any experimental platform.

5.4 Conclusions

In summary, in this Chapter we have proposed a new paradigm based on GAs to

enhance digital quantum simulations and face di↵erent types of quantum errors. We

have shown that they can be used to improve the fidelity of quantum information pro-

tocols by e↵ectively reducing digital errors produced in Trotter-Suzuki expansions.

Our method has allowed us to correct experimental errors due to imperfect quan-

tum gates, by using ancillary qubits and optimized architectures. We also argued

that solutions provided by GAs manifest resilience against digital and experimental

quantum errors. From a wide perspective, we expect that GAs will be part of the

standard toolbox of quantum technologies, and a complementary approach to analog

[147, 148] and digital [149] optimal-control techniques.
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Conclusions

If you’re going to be a good and faithful judge, you

have to resign yourself to the fact that you’re not

always going to like the conclusions you reach. If

you like them all the time, you’re probably doing

something wrong.

Antonin Scalia

I
n this Thesis, we have explored several features of digital quantum simulations

applied to spin models with superconducting architectures. We have studied the

decomposition into quantum gates of complex spin Hamiltonians involving spin-spin

and light-matter interactions. For this, we have considered not only purely digital

protocols, but also digital-analog approaches, which allow us to e�ciently simulate

bosonic fields. Indeed, the simulation of these fields would otherwise require a large

number of qubits and gates. Furthermore, we have shown that adiabatic quantum

evolutions can be digitized, so that ground states of unnatural Hamiltonians are

accessible with digital techniques. In addition, we have considered genetic algorithms

for the decomposition of complex Hamiltonians into discretized gates, producing high-

fidelity and robust solutions.
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Along this work, we have analyzed the digitized implementation of spin interac-

tions into superconducting-circuit-based technology. For this, we have studied di↵er-

ent present superconducting architectures for the implementation of digital quantum

simulations, such as transmission line resonators dispersively coupled to transmon

qubits, which can be additionally capacitively coupled. We have shown that these

systems provide the necessary complexity for digitally simulating a variety of spin

models, including many-body and spin-boson interactions. Considering the state of

the art technology, we have made realistic proposals taking into account gate-errors

and decoherence processes, and we have analyzed the corresponding experimental

realizations.

In Chapter 2, we have proposed the physical implementation in a circuit QED

setup of two prototypical spin models, namely, Heisenberg and Ising models. By

considering a set of superconducting qubits coupled via transmission line resonators

operating as quantum buses, we have studied the use of implementable XY interac-

tions and single qubit rotations for the simulation of the Heisenberg Hamiltonian.

Indeed, our numerical simulations show that present superconducting circuit technol-

ogy already provides the gate fidelities and coherence times required to successfully

perform the quantum simulations. Taking into account realistic parameters, we have

estimated the optimal number of Trotter steps to reach a balance between experimen-

tal gate errors and digital errors. In addition, we have described the experimental

realization of this proposal, realized in the lab of Prof. Andreas Wallra↵ at ETH

Zürich, in which XY, Heisenberg and Ising dynamics are physically implemented via

two superconducting transmon qubits.

The digital-analog quantum simulation of the quantum Rabi model has been pro-

posed in Chapter 3. Here, we have provided an approach to digitally simulate bosonic

fields by implementing analog interaction blocks, instead of digitally decomposing it

into single and two-qubit gates, which is much more e�cient in terms of employed

resources. Circuit QED systems provide naturally Jaynes-Cummings interactions.

We have shown that also anti-Jaynes-Cummings interactions can be generated by

introducing rotations before and after the former interaction. Employing the Trotter

formula, we have proven that dynamics of the quantum Rabi model is achieved via

the stepwise implementation of Jaynes-Cummings and anti-Jaynes-Cummings evo-

lutions. Due to the flexibility of superconducting platforms, all quantum regimes



Chapter 6. Conclusions 81

of the quantum Rabi model, namely, ultrastrong, deep-strong coupling regimes and

Dirac equation in the limit, may be achieved by tuning the parameters in the setup.

Moreover, this approach can be extended to the Dicke model by considering the Tavis-

Cummings interaction as the building block in a setup with multiple qubits within

a transmission line resonator. Recently, this proposal has been experimentally im-

plemented in the lab of Prof. Leonardo Di Carlo at Delft University of Technology,

where the quantum Rabi model is produced in an elaborate decomposition of more

than 90 Trotter steps.

In Chapter 4, we have introduced the concept of digitized adiabatic quantum

computing. By combining the approaches of adiabatic evolutions and digital simu-

lations, we have shown that these quantum protocols allows for reaching the ground

state of complex Hamiltonians that are not necessarily provided in a natural manner

by the controllable quantum system. Here, we have considered capacitive couplings

between superconducting qubits, as well as transmission line resonators playing the

role of quantum buses. Exploiting the natural interactions provided by these sys-

tems, we have proposed the digital quantum simulation of the Ising model with

transverse field, in which, di↵erently to what was done in Chapter 2, qubit-qubit

interactions come from the capacitive couplings. In addition, we have studied the

use of resonators to implement bosonic fields in a Tavis-Cummings-like spin chain.

Furthermore, we have exploited the ability of resonators to realize collective qubit

interactions, which in general reduce the number of gates required in a purely digital

protocol. Then, we have described the experimental realization of digitized adiabatic

quantum evolutions of a spin chain in a 9-qubit superconducting chip in the lab of

John M. Martinis at Google/University of California, Santa Barbara. Here, both sto-

quastic and non-stoquastic Hamiltonians, which are computationally hard problems,

have been considered. These experiments, where up to 9 qubits and more than 1000

gates have been employed, show that digitized adiabatic protocols are feasible with

current technology.

Finally, in Chapter 5, we have considered the problem of digitization of Hamil-

tonians from the perspective of machine learning. We have shown that genetic algo-

rithms provide robust digital gate decompositions for quantum simulations. In fact,

our results show that Ising and Heisenberg models can be reproduced in supercon-

ducting circuits using less gates than the required in Chapter 4. Furthermore, we
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have considered genetic algorithms as a tool to improve the fidelity of composed gates

with arbitrary errors, and we have demonstrated the e�ciency of these methods in

the construction of a CNOT gate with enhancements of up to 30% in the fidelity.

In summary, we believe that the results presented in this Thesis have contributed

to the foundations of the field of digital quantum simulations in superconducting

quantum platforms. Here, not only the first proposals to digitally simulate spin

models are analyzed, but simulations of quantum field theories, fermionic models

and quantum chemistry have also been proposed with a potential experimental im-

pact. Indeed, the remaining experimental challenges are mainly the improvement in

the control of circuit-based quantum architectures to provide not only long coherence

times and high-fidelity gates, but also a higher flexibility in the implementation of

interactions. In the near future, superconducting devices will hold up complex quan-

tum information processes for large scale systems, in which quantum error correction

codes will allow us to simulate intricate models like the physics of bio-chemical sys-

tems. Nevertheless, there are still relevant theoretical open questions, such as the

development of a quantum error correction code in analog blocks, which hopefully

will be addressed and solved in the near future to boost the burgeoning field of

quantum technologies.
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Appendix A

Aspects of Experimental

Simulation of Ising and

Heisenberg Models

In this Appendix, we provide details of the experimental implementation of the digital

quantum simulation of spin models with circuit QED, at ETH Zurich, studied in

Chapter 2.

A.1 Chip Architecture and Measurement Setup

The present experiment was performed using two superconducting transmon [45]

qubits Q1 and Q2 and one coplanar waveguide resonator R1 on a microchip (Fig. A.1).

The resonator R1 has a fundamental resonance frequency of ⌫r = 7.14 GHz. From

spectroscopic measurements we have determined the maximum transition frequencies

⌫max = {5.55, 5.53} GHz and charging energies EC/h ⇡ {260, 260} MHz of the

qubits Q1 and Q2, respectively, where h is the Planck constant. The qubits Q1 and

Q2 are coupled to resonator R1 with coupling strengths g/2⇡ ⇡ {120, 120} MHz.

For this experiment the qubit transition frequencies in their idle state were o↵set
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to ⌫ = {5.440, 5.240} GHz by applying a constant magnetic flux threading their

SQUID loops with miniature superconducting coils mounted underneath the chip.

At these idle frequencies, the measured energy relaxation and coherence times were

T1 = {7.1, 6.7} µs and T2 = {5.4, 4.9} µs, respectively. The transition frequencies

of the qubits Q3 and Q4 were tuned to 4.5 GHz and 6.1 GHz such that they do not

interact with Q1 and Q2 during the experiment.

7mm

R1

R2R4

R3

700 µm

Q2

Q3Q4

Q1

Figure A.1: Chip design and false colored optical image of a superconducting
qubit (inset). The chip comprises four superconducting qubits Q1-4 (orange) made
of aluminium and four niobium coplanar waveguide resonators R1-4 (deep blue)
coupled to input and output ports (red). The qubits have individual microwave
drive lines (green) and flux bias lines (blue).

A schematic diagram of the measurement setup is shown in Fig. A.2a. To re-

alize two-qubit XY gates and single-qubit phase gates (Z), controlled voltage pulses

generated by an arbitrary waveform generator (AWG) are used to tune the flux

threading the SQUID loop of each qubit individually using flux bias lines [31]. The

single-qubit microwave pulses (X,Y) are generated using sideband modulation of an
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up-conversion in-phase quadrature (IQ) mixer (Fig. A.2b) driven by a local oscil-

lator (LO) and modulated by an arbitrary waveform generator (AWG). The same

up-conversion LO is used for the microwave pulses on both qubits to minimize the

phase error introduced by phase drifts of microwave generators. We have used a

quantum-limited parametric amplifier (PA) to amplify readout pulses at the output

of R1 (Fig. A.2c). Here the Josephson junction based amplifier in form of a Joseph-

son parametric dimer (JPD) [150] is pumped by a strong pump drive through a

directional coupler (D). To cancel the pump leakage, a phase (�) and amplitude (A)

controlled microwave cancelation tone is coupled to the other port of the directional

coupler (D). Three circulators (C1-3) were used to isolate the sample from the pump

tone. A circulator (C4) at base temperature followed by a cavity band-pass filter

(BP) and another circulator (C5) at the still stage were used to isolate the sample

and JPD from higher-temperature noise. The transmitted signal is further amplified

by a high electron mobility transistor (HEMT) at the 4.2 K stage and a chain of

ultra-low-noise (ULN) and low-noise (LN) amplifiers at room temperature as shown

in Fig. A.2d. The amplified readout pulse is down-converted to an intermediate fre-

quency (IF) of 25 MHz using an IQ mixer (Fig. A.2e) and digitally processed by

field-programmable gate array (FPGA) logic for real-time data analysis.

A.2 Implementation of the XY Gate

The interaction between two qubits with degenerate transition frequencies disper-

sively coupled to the same CPW resonator is described by the exchange coupling [37]

J(�+
1 ��

2 +��
1 �+

2 ) which can also be written in terms of Pauli operators as J
2 (�x

1�x
2 +

�y
1�y

2 ). We activate this interaction by tuning the transition frequency of qubit Q1

into resonance with qubit Q2 with a flux pulse (Fig. A.3) for an interaction time ⌧

which we varied from 0 to 60 ns. At the frequency of qubit Q2, we obtain a cou-

pling strength J = �40.4 MHz from a fit to the spectroscopically measured avoided

crossing. To compensate overshoots of the flux pulse due to the limited bandwidth

of the flux line channel, we use an inverted linear filter based on room-temperature

response measurements of the flux line channel and in-situ Ramsey measurements of

the residual detuning of qubit Q1 in the time interval from 0 to 2 µs after the flux

pulse.
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Figure A.2: (a) Schematic of the experimental setup with complete wiring of
electronic components inside and outside of the dilution refrigerator with the
same color code as in Fig. A.1. (b) Up conversion circuit for generating controlled
microwave pulses. (c) Quantum limited parametric amplifier circuit to amplify
readout pulses at base temperature. (d) Amplifiers used at room temperature just
before down conversion of the signal. (e) Down conversion circuit (See text for
details).

Since the outcome of the XY gate depends strongly on the relative phase of the

two-qubit input state, we have used the same LO signal for the upconversion of the

single-qubit pulses acting on both qubits Q1 and Q2 (green lines in Fig. A.2a). Then

the initial relative phase between the qubits is defined solely by the pulse sequence
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Figure A.3: Implementation of the XY gate. The transition frequency of qubit
Q1 (red) is tuned into resonance with qubit Q2 (blue) for an interaction time ⌧
using a fast flux pulse. Before and after the flux pulse, a 16 ns long bu↵er is added
at an intermediate level to cancel the dynamic phase accumulated by qubit Q1
relative to Q2 (grey area) during the evolution (see text).

generated by the AWG and the cable lengths. In addition, we choose the shape of the

flux pulse that realizes the XY gate such that the dynamic phase acquired by qubit

Q1 during the idle time and the rising edge of the flux pulse cancels any unwanted

relative phase o↵set of the initial state. We satisfy this condition by tuning the

frequency of Q1 to an intermediate level (bu↵er) for a fixed time of 16 ns before and

after the XY gate (Fig. A.3). A suitable bu↵er level is found by performing Ramsey-

type experiments with a single XY gate while sweeping the bu↵er amplitudes. This

calibration procedure is carried out for each interaction length of the XY gate. The

second bu↵er at the falling edge of the flux pulse is used to ascertain that the relative

phase between the qubits after tuning qubit Q1 back to its original position is the

same as the initial relative phase.

A.3 Pulse Scheme

The quantum protocols for the digital quantum simulation of Heisenberg (Fig. A.4a)

and Ising spin (Fig. A.4b) models were realized by sequences of microwave and
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flux pulses applied on qubit Q1 (red curves in Fig. A.4) and qubit Q2 (blue curves

in Fig. A.4). The single-qubit rotations were implemented by 24 ns long Gaussian-

shaped resonant DRAG [151, 152] microwave pulses and the XY gates were imple-

mented using fast flux pulses. To avoid the e↵ect of residual transient response of

the flux pulse we have added a 40 ns +�⌧ waiting time after each flux pulse, with

�⌧ being an adjustable idle time. We have chosen �⌧ such that the time di↵erence

between two applications of the XY interaction is commensurate with the relative

phase oscillation period of 5 ns, equal to the inverse frequency detuning 1/200 MHz.

With these measures we ensure that the gate can be used in a modular fashion,

i.e. that a single calibration of the gate su�ces for all gate realizations within the

algorithm. The single-qubit phase gates were implemented by detuning the idle

frequencies of each qubit with a square flux pulse. In the idle state, we observe

a state-dependent qubit transition frequency shift of 940 kHz due to the residual

�z
1�z

2 interaction. To decouple this undesired e↵ect we have used a standard refocus-

ing technique [153] implemented by two consecutive ⇡ pulses on qubit Q2 (magenta

boxes in Fig. A.4). In the end of each pulse sequence we perform dispersive joint

two-qubit state-tomography [154] by single-qubit basis transformations followed by

a pulsed microwave transmission measurement through resonator R1.

A.4 Process Tomography

We perform standard two-qubit process tomography [155, 156] of the XY gate and

of the simulated isotropic Heisenberg (XYZ) model for a varying interaction time ⌧ .

Fig. A.5 shows the process � matrices characterizing the XY gate for a quantum phase

angle ⇡/2 (Fig. A.5a) and ⇡ (Fig. A.5b) corresponding to a
p

iswap gate [92, 157]

and an iswap gate [73, 158] with process fidelities of 97.8 % and 95.3 %, respec-

tively. Heisenberg interaction with a quantum phase angle ⇡/2 leads to a swap

gate (Fig. A.6a) with a process fidelity of 86.1 %. While the swap gate belongs to

the two-qubit Cli↵ord group, there is no natural interaction in standard circuit QED

architecture to directly implement the swap gate [159, 160]. For a phase angle ⇡,

the Heisenberg interaction is an identity gate (Fig. A.6b) with a process fidelity of

83.6 %.
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Figure A.4: Pulse sequences that are applied on qubit Q1 (red) and qubit Q2
(blue) to implement the Heisenberg (a) and Ising spin (b) models. The Gaussian-
shaped DRAG microwave pulses are applied to the charge lines of the respective
qubits to implement single-qubit rotations R�

x,y

about the x or y axis of the Bloch
vector by an angle �. Each sequence starts with the preparation of an initial
state (green boxes) and ends with microwave pulses for basis rotations to perform
state-tomography (yellow boxes). The microwave pulses marked with magenta
boxes are used for refocussing. The black vertical bars with the two dots in panel
(b) indicate that the enclosed pulse sequence is repeated n times. The XY gates
are realized by applying flux pulses to the flux line of qubit Q1 for a time ⌧/n.

The phase gates R
�/n

z

are implemented by detuning the transition frequency of
each qubit from their idle frequencies applying flux pulses for a time ⌧/n. The
numbers stated below the pulses on qubit Q1 represent timescales in ns.

A.5 Error Contributions

The single-qubit gate fidelities measured by randomized benchmarking [161–163]

amount to 99.7 %. The dominant contribution to the loss in fidelity originates from

the two-qubit XY gates for which a process fidelity Fp,XY = 95.7 % is obtained
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Figure A.5: (a) Measured real and imaginary part of the XY process � matrix
(Re �, Im �), in the basis {I = identity, X = �x, Ỹ = �i�y, Z = �z}, describing
the mapping from any initial state to the final state for a quantum phase angle of
2|J |⌧ = ⇡/2. The dashed wire frames represent the theoretically optimal matrix
elements and the colored bars represent measured positive (blue) and negative
(red) matrix elements. The fidelity of the experimentally observed process with
respect to the ideal process is indicated in the black boxes. (b) As in (a) for a
phase angle ⇡.
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Figure A.6: (a) Measured real and imaginary part of the Heisenberg (XYZ)
process �matrix (Re �, Im �), in the basis {I = identity, X = �x, Ỹ = �i�y, Z =
�z}, describing the mapping from any initial state to the final state for a quantum
phase angle of 2|J |⌧ = ⇡/2. The dashed wire frames represent the theoretically
optimal matrix elements and the colored bars represent measured positive (blue)
and negative (red) matrix elements. The fidelity of the experimentally observed
process with respect to the ideal process is indicated in the black boxes. (b) As
in (a) for a phase angle ⇡.
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from process tomography averaging over all quantum phase angles. This indicates

that the errors in the implementation of the XY gate limit the fidelity of the fi-

nal state of the quantum simulation. To confirm this, we calculate the expected

process fidelity for the Heisenberg and Ising protocol from the observed XY gate

fidelity by assuming independent gate errors in all three steps. For the Heisenberg

(XYZ) model simulation neglecting the small single-qubit gate errors, we expect a

mean process fidelity Fp,XYZ ⇡ 1 � 3(1 � Fp,XY) = 87.1 %, which is close to the

observed value of 86.3 %. For the Ising model simulation we expect a process fidelity

of Fp,Ising ⇡ 1 � 2n(1 � Fp,XY). From the relation Fs = (dFp + 1)/(d + 1) between

state (Fs) and process fidelity (Fp), we obtain the expected mean state fidelities of

{93.1, 86.2, 79.4, 72.5, 65.6} % for n = 1 to 5 Trotter steps which compare well to the

measured state fidelites {91.7, 88.3, 82.2, 73.0, 60.7} %.

To estimate the dominant source of systematic errors, we consider a model which

includes relaxation (T1) and dephasing (T2) and state-dependent phase errors de-

scribed by an e↵ective J̃z�z
1�z

2 term with interaction strength J̃z. In addition, we

include an extra o↵set in the single-qubit phase gate acting on qubit Q2 from cross

talk of the flux pulses acting on qubit Q1 in each Trotter step. By fitting the fi-

nal state predicted by this model to the observed states, we estimate an unwanted

interaction angle J̃z⌧z of approximately 2.3� and a constant phase o↵set of 4.6�.
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Appendix B

Aspects of Digitized

Adiabatic Quantum

Simulation Experiment

In this Appendix, we provide details of the experimental implementation of the dig-

itized adiabatic quantum computing protocol at Google/University of California,

Santa Barbara, studied in Chapter 4.

B.1 Why Digitized Adiabatic Quantum

Computing?

Implementing an adiabatic quantum algorithm on a gate-based quantum computer

has been discussed in the original works introducing adiabatic quantum computing

(AQC) [116, 127]. However, the motivation for those works was to investigate the

power of AQC by mapping the adiabatic algorithm to the gate model [129, 164, 165].

In this work, we promote digitized AQC as a viable quantum algorithm for execution

on an error corrected digital quantum device.
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In contrast to conventional quantum algorithms, such as Shor’s algorithm and

Grover’s algorithm [2], AQC is a general-purpose optimization algorithm. Any opti-

mization problem, in principle, can be mapped and solved via AQC. However, AQC

is a heuristic algorithm as there is no guarantee on the computation run time and

it strongly depends on the nature of the problem. It is an active area of research to

search for computational problems for which AQC yields a speed-up over its classical

counterparts [117, 166–170]. AQC is an approach to quantum computing that uses

continuous dynamics. Therefore, building an analog processor to implement an adi-

abatic quantum evolution is a natural choice. Such a processor is commonly known

as a quantum annealer. An analog quantum annealer has certain limitations that we

propose can be overcome by a gate-model realization of the AQC. Here we list some

key features that boosts the algorithmic success of a quantum annealer:

Graph connectivity and k-body interactions- These factors yield a computational

landscape with tall and narrow energy barriers that make it easier for AQC to out-

perform those algorithms that use classical dynamics, such as simulated thermal

annealing [171], spin Monte Carlo [172], and cluster finding based algorithms [173].

Arbitrary interactions- AQC becomes a platform for universal quantum comput-

ing when it has programmable non-stoquastic Hamiltonian terms [129, 164, 165, 174].

A Hamiltonian is non-stoquastic when there is no representation in a standard ba-

sis with all non-positive o↵-diagonal terms [175, 176]. In the context of many-body

physics, fermionic systems [124] or spin systems with Heisenberg XYZ interactions

[176] are some examples for non-stoquastic Hamiltonians which su↵er from the sign

problem. Realizing arbitrary o↵-diagonal interactions is a significant problem for ana-

log systems as it requires perturbative gadgets with great precision [174, 177, 178].

Precision- Encoding computational problems in a quantum annealer such as the

number partitioning problem [166, 179], requires high level of precision in tuning

the interaction between qubits. Therefore a higher precision in programming the

problem Hamiltonian is an essential feature for a quantum annealer.

Coherence and scalability- Suppression of errors in analog AQC is an active area

of research [180, 181]. However, as there is no established error correction formalism

for full fault-tolerant AQC, decoherence can be a major limitation for analog quantum

computers. Thermal noise may preferentially drive an analog system into low energy
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states [125, 182], but also sets a limit to the distinguishability of energy di↵erences

and therefore the size of the problem. A non-corrected digital approach is ultimately

limited by the accumulation of gate error. A critical advantage of the digital approach

is that it allows for the implementation of full fault tolerance, making this approach

scalable.

Nonclassical metrics- One of the advantages of digital methods is the possibility

to perform arbitrary dynamical evolution and to combine it with full state tomo-

graphy for a reduced number of qubits, as used in this manuscript, as well as with

enhanced quantum protocols like embedding quantum simulators for determining

entanglement monotones without full tomography [183].

Each of the above features adds to the hardware complexity of an analog quan-

tum annealer. It would be realistic to say that any design would inevitably compro-

mise some of these elements. A digital approach to AQC, however, has no funda-

mental limit to achieve the above features since it simulates AQC with single and

two-qubit gates. Of course there is a cost in terms of required qubits, which will be

discussed next.

B.2 Methods of Digitization and Discussion

of Scaling

The experiments in this paper explore the digitization of adiabatic quantum com-

puting using the first-order Lie-Trotter-Suzuki formula [20, 21]. We now discuss the

scaling of the number of gates that this scheme requires to prepare the target state to

within fixed error. We restrict our focus to adiabatic evolutions under time-dependent

Hamiltonians that are decomposable into L di↵erent k-local Hamiltonians such that

H (t) =
PL

`=1 a` (t) H` where the a`(t) are time-dependent scalars and the H` are

local Hamiltonians having many-body order of at most k [184]. We approximate a

continuous time evolution for time T by discretizing time into steps of equal size,

�t = T/M where M is the number of time steps. In our experiment the digitization
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of the continuous time evolution is simulated as

Udigital =
MY

m=1

LY

`=1

exp [�i�t a` (m�t) H`] . (S1)

Assuming the ability to implement arbitrary rotations, evolution under any k-local

Hamiltonian can be implemented using a number of gates that is at most O(k).

Thus, the gate complexity of this approach is O(MLk). We now address how

M should be chosen to perform a continuous time evolution Ucontinuous such that

kUcontinuous � Udigitalk  ✏. Here ✏ upper-bounds the largest error that can be in-

duced on any eigenstate of the Hamiltonian. While the strategy is not employed in

our experiment, one can derive a significantly tighter bound on the discretization

error by making the following substitution to Eq. S1 [185],

�t a` (m�t) !
Z m�t

(m�1)�t
a` (s) ds. (S2)

In [22, 186], it is shown that such an evolution can be simulated with error ✏ by

choosing M = T 2a2
maxL

2/✏ where amax = max`,t{a`(t)}. The adiabatic theorem

[116] dictates that T should be chosen as,

T = O
0

@
maxt

���h1; t|dH(t)
dt |0; ti

���
�2

1

A = O
✓

D

�2

◆
(S3)

where � is the minimum spectral gap during the adiabatic evolution, |0; ti and |1; ti
denote the ground and first excited state at time t. Putting these bounds together

we find that the total number of gates should scale as

O (MLk) = O
✓

T 2a2
maxL

3k

✏

◆
= O

✓
a2
maxD

2L3k

�4✏

◆
. (S4)

We chose simple first order Trotterization for this experiment only because of exper-

imental limitations. Since, due to substantial overhead in L, k and ��1, it is unlikely

that an approach based on the first order Trotter decomposition will be of practical

use. With a future device of larger size and better coherence, we would be able to

significantly improve the method of digitization. For instance, a digital simulation

scheme based on the truncation of the Taylor series of the time-evolution operator
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[139] has been shown to exponentially outperform Trotterization in terms of ✏, scale

linearly with T (up to logarithmic factors), which implies a quadratic reduction in

��1, and scale much better with the number of terms for real world applications such

as the simulation of chemistry [123, 146, 187]. As quantum hardware improves, the

implementation of near-optimal schemes such as this becomes increasingly viable.

B.3 Residual Energy Scaling

Here, we motivate the residual energy and its scaling with simulated time and number

of spins. We find that for large Ising spin chains the residual energy follows a power

law, T�⌘ with ⌘ � 0.5.

The standard picture of AQC describes that the ground state of a Hamiltonian

(problem Hamiltonian) encodes the solution of a computational problem. Quantum

adiabatic theorem tells us how slowly we should drive the system to reach to this

target state with high probability. Therefore a measure of success for computation is

the overlap between the system state at the end of the evolution and the ground state

of the problem Hamiltonian. Such a measure might be unnecessary for optimization

problems as most of the time reaching a good local minimum could be satisfactory

instead of the global minimum of the ground state. Therefore a relevant measure

would be the residual energy above the ground state, the smaller the better.

The Kibble-Zurek mechanism and the Landau-Zener theorem are consistent ap-

proaches to estimate the residual energy for a many-body system that slowly passes

through a phase transition [188–191]. In the experiment, Fig. 10 in Chapter 4, a

transverse field drives a chain of spins with Ising interaction through phase transi-

tion at di↵erent speeds. The KZ mechanism explains that as a system goes faster

through the critical point, there would be less time for spins to communicate in or-

der to find the ground states. That translates into an incomplete formation of the

ground state and the emergence of kinks after the phase transition. The density of

kinks is monotonically related to the energy of the final exited state. Here we follow

the line of argument in Ref. [189] to find the scaling of residual energy at fast and
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intermediate speeds. Note that the scaling theory describes dynamics in thermody-

namical limit of a large number of spins. However, we see a correspondence between

our few-qubit experiment and the scaling analysis presented below.

For fast quench, a system that starts in the superposition of all energy levels

(ground state of uniform transverse Hamiltonian) has insu�cient time to adjust to

lower energy states. Therefore the system stays close to its initial energy distribution

with little dependence on the time T . This appears as a plateau in the residual energy

plot. For longer evolution times T , we consider a two-level system approximation

and apply the Landau-Zener formula that gives the probability of excitement into

the first exited state as P = e�↵�2T . For an N�spin system of the experiment,

with a uniform Ising Hamiltonian, �, the minimum gap, scales as 1
N . For a fixed

time T and likelihood p⇤, we find the longest defect-free chain as N⇤ = | ↵
ln p⇤ | 1

2 T 1/2.

Therefore, to first order the kink density and residual energy scale as 1
N⇤ / T�1/2.

Although our residual energy experiment is small-scale, the two phases of plateau for

short times, and a transition to a power law T�⌘ with ⌘ > 0.5 are visible.

B.4 Pairwise Interaction in a Nine-Qubit System

The nine qubit chain is placed in a configuration with alternating frequencies for

idling. This detuning, together with design and decoupling pulses minimize parasitic

interactions from nearby qubits. The coupling strength between nearest neighbours

is g/2⇡ = 15 MHz. The strength between next-nearest neighbours is 0.7 MHz. As

�z�z interaction scales with g2, the ratio between unintended and intended coupling

is about 2 · 10�3. Adjacent qubits are detuned by typically 1 GHz, and next-nearest

qubits are detuned by 0.1 GHz. The idling configuration is shown in Fig. S1a.

Figure S1b shows the implementation of entangling, for example between qubits

Q1 and Q0, we move Q0 to a higher frequency, and let Q1 undergo an adiabatic

trajectory which is tuned to bring about a conditional phase shift while minimizing

state leakage [17, 192]. We apply decoupling pulses to Q2 during this interaction.

Other qubits undergo entangling gates at the same time. After this interaction, the

qubit frequencies are returned to the idling positions.
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Figure S1: Frequency configuration for idling and interacting. (a) Idling
configuration, showing an alternating frequency pattern designed to minimize in-
teraction. (b) Configuration where qubits interact. Black: idling qubits. Red:
adjacent pairs of qubits are performing a CZ

�

entangling gate. Blue: qubits
which are decoupled using ⇡ pulses. This configuration corresponds to the dashed
line in Fig. S3a.

B.5 Constructing Interaction

At the core of the multibody interactions is the CZ� entangling gate. One qubit is

held at a steady frequency while the other undergoes an adiabatic trajectory which

sweeps |02i close to |11i [192]. By varying the amplitude of this trajectory we can

tune the conditional phase [25]. After this interaction we null the single qubit phases,

arising from the single qubit frequency detunings. We find that by careful calibra-

tions, we can achieve the desired conditional phase, and null the single qubit phases

to within 0.05 rads, see Fig. S2a-b. Other qubits are decoupled from this interaction

with ⇡ rotations, see below.

The tunable phase is limited between � ⇠ 0.5 to ⇠ 4.5. Below this range interac-

tions with other qubits complicate implementation, and above this range population

leakage into higher-energy levels becomes significant. In order to construct a tunable
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gate over the full range, we choose one of three implementations based on the desired

phase for �z ⌦ �z:

e�i �

2 �z⌦�z

For � > 0.25:

Z� X⇡
CZ2�

X⇡

Z��

For �0.25 < � < 0.25:

X⇡
CZ�+✓

A⇡
CZ�+✓

A⇡ X⇡

with A = Y and ✓ = ⇡.

And for � < �0.25:

Z�

CZ�2�

Z�

And for |�| > 2.25 we either apply the quantum circuit with two entangling gates

with A = X and ✓ = 0, or add or subtract 2⇡ until it is in range. Implementing the

unitary U = exp(�iJzz�t) is then done by setting � = 2Jzz�t. The above identities

ensure we can implement any strength of �z ⌦ �z.

B.6 Decoupling from the Environment and

Parasitic Interactions

Our qubits have dephasing, dominated by correlated processes, and are susceptible

to parasitic interactions with other qubits [193]. To reduce these e↵ects, we include

decoupling ⇡ pulses in three locations in the algorithm: I) Around the �z�z and

�x�x interaction. At the start of a �z�z or �x�x interaction we apply an X⇡ rotation

on both qubits; at the end we apply an X�⇡ rotation. This maintains the unitary
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Figure S2: Phases for the CZ
�

gate. (a) Measured vs. desired controllable
phase �. (b) Residual single-qubit phases. (c) Residual phase on the idling qubit
Q

2

for |Q
1

Q
0

i = |00i and |Q
1

Q
0

i = |11i.

but decreases the e↵ects of qubit dephasing. II) Idling qubits are decoupled from the

environment by applying two X⇡ pulses, centered at ⌧/4 and at 3⌧/4, with ⌧ being

the idling time. III) Qubits which are adjacent to a qubit undergoing a controlled-

phase frequency trajectory need to be decoupled from this interaction; in contrast to

the idling case, we now apply closely spaced sequential X⇡ and X�⇡ rotations during

the frequency trajectory of the other qubit, to null the parasitic interaction. We find

mean phase errors from residual parasitic interaction to be around 0.05 rad, which is

equivalent to a gate error of 1 � cos2( ��
2 ) = 6 · 10�4, see Fig. S2c. With decoupling

pulses the errors are dominated by intrinsic gate errors.
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B.7 Pulse Sequences

The evolution is digitized using the Trotter expansion [20, 21]. In essence the

evolution is divided into many small steps in time, U = T exp(�i
R

H(t)dt) '
exp(�iH(t1)�t) exp(�iH(t2)�t)..., where each H(tn) is comprised of terms which

sum up to H(tn) =
P

` H`(tn), implemented using a construction of quantum logic

gates. Local fields come from single qubit gates, and the full range of �z�z and

�x�x couplings come from one or two CZ� gates in a combination with single qubit

gates.

The pulse sequences are shown in Fig. S3 for the scaling experiment with nine

qubits (Fig. 4.10 in Chapter 4), and for the random stoquastic and non-stoquastic

problems with six to nine qubits (Fig. 4.11 in Chapter 4). Slow, rectangular-like

pulses are frequency detunings, and rapidly oscillating waveforms denote microwave

pulses. Numbers in the figure correspond to the following:

1. Initial state preparation: |+i⌦N , with N = 9 qubits.

2. First Trotter step

3. Second Trotter step

4. �z�z interaction: consisting of decoupling pulses, Q0 being moved to an inter-

action frequency, and Q1 performing the trajectory.

Table S1: Gate counts for pulse sequences in Fig. S3. We count idles as any
duration of 10 ns or longer. Long idles are counted as a single idle, even though
the relevant approach for estimating total process fidelities is by splitting idles in
terms of durations of the microwave gates [17]. The gate counts are for the full
algorithm, all Trotter steps as well as initialization.

a b c d e
entangling CZ� gates 16 29 52 26 18
single qubit gates 263 550 1059 486 326
- microwave ⇡ and ⇡/2 135 292 598 282 173
- idle 78 178 331 142 103
- virtual phase 50 80 130 62 50
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5. Environmental decoupling pulses: ⇡ pulses around �z�z, but such that the

ideal unitary is unchanged

6. Decoupling pulses to reduce parasitic interactions with idling qubits

7. Environmental decoupling pulses

8. Implementation of Bx. The decrease in amplitude with Trotter step reflects

the decrease in Bx following the annealing schedule.

9. �z�z interaction for an angle which requires 2 CZ� gates.

10. First Trotter step of the non-stoquastic problem evolution, showing both �z�z and

�x�x interaction. Note that other qubits have to wait if a pair has an interac-

tion strength which requires 2 CZ� gates.

11. �z�z interaction with large and small angles

12. �x�x interaction, showing the ⇡/2 pulses for basis rotation.

13. Notice how �x�x interaction in the second Trotter step is now done with only

a single CZ� gate. The coupling strength is linearly turned on and phases

increase, allowing the interaction to be implemented with a single entangling

gate.

14. As a result the Trotter steps 2-5 are shorter than the first.

15. Qubit frequency configuration shown in Fig. S1b.

A gate count of the sequences is provided in Table S1.

B.8 Simulation Parameters

An overview of the number of Trotter steps, simulated times, coupling and field

strengths for the performed experiments is shown in Table S2. For the single instances

shown in Chapter 4 see Tables S4-S3.
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B.9 Digital Evolution into GHZ State:

Imaginary Parts and Ideal Adiabatic Evolution

The real and imaginary parts, as well as the ideal adiabatic evolution and target

state for the experiment in Chapter 4 in Fig. 4.9 at s = 1.0 are shown in Fig. S4.

The fidelity of the ideal adiabatic evolution with respect to the target state is 0.92.

Table S2: Simulation parameters for the experiments. Random problem denotes
both the stoquastic and non-stoquastic one.

experiment coupling local field Trotter
steps

simulated
time

ferromagnetic chain Jzz = 2 None 5 T = 3
scaling (2-6 qubits) Jzz = 2 None 3 T = 0...1.5
scaling (7-9 qubits) Jzz = 2 None 2 T = 0...1.5
AF chain w. local field Jzz =

�1.25
middle
qubit:
Bz =
�3...3

4 T = 2.5

random problem, 3 qubits �2... � 0.5
or 0.5...2

�2...2 5 T = 3

random problem, 6 qubits �2... � 0.5
or 0.5...2

�2...2 5 T = 3

random problem, 7 qubits �2... � 0.5
or 0.5...2

�2...2 2 T = 1

random problem, 8 qubits �2... � 0.5
or 0.5...2

�2...2 2 T = 1

random problem, 9 qubits �2... � 0.5
or 0.5...2

�2...2 2 T = 1

Table S3: Nine qubit stoquastic problem instance.

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Bx 1.437 0.749 0.912 1.153 1.523 1.670 1.621 1.930 -
0.899

Bz -
0.559

-
1.078

-
1.822

-
0.407

0.652 1.675 1.362 0.302 -
0.187

Jzz -0.781 -1.672 0.520 0.635 0.812 -0.816 1.162 0.639
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The fidelity of the experimental data with respect to the ideal adiabatic evolution is

0.60.

B.10 Kink Likelihood for Two to Nine-Qubit

Configurations

The kink likelihood for configurations with two to nine qubits is shown in Fig. S5.

For two qubits, only a single kink is possible (|01i or |10i), and initially no kink or a

single kink are equally likely. When increasing the simulation time the kink likelihood

decreases, and the likelihood of no kinks increases. This picture is repeated for all

systems. For the seven to nine qubit systems, around |J |T = 2, the likelihood of

kinks increases again. The experimental data closely follow the ideal digital evolution

(dashed).

The di↵erences in residual energies are plotted in Fig. S6, for three, six and nine

qubits. The increase in di↵erence for the nine qubit system near |J |T = 3 (dashed

and dotted blue lines) is due to digitization error, as the experiment follows the ideal

digital evolution to within a di↵erence of 2|J | (solid blue line).

Table S4: Three qubit stoquastic problem instance.

Q0 Q1 Q2

Bx -0.159 1.22 -1.93
Bz -1.29 -1.45 -0.772
Jzz -1.09 1.16

Table S5: Three qubit non-stoquastic problem instance.

Q0 Q1 Q2

Bx -1.18 -1.71 1.02
Bz -0.875 0.781 -0.428
Jxx -0.841 1.02
Jzz -0.757 1.32
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B.11 Local Fields and Long-Range Spin Parity

Correlation

We explore the lifting of degeneracy with and the long-range e↵ects of local fields. We

apply a local Z field (BZ) on the middle qubit of a five-qubit antiferromagnetic chain.

Table S6: Six qubit stoquastic problem instance.

Q0 Q1 Q2 Q3 Q4 Q5

Bx 0.155 -
1.238

1.789 0.899 -
1.501

-
1.309

Bz 0.468 -
1.577

-
1.183

-
0.665

-
0.928

-
1.265

Jzz
1.476 -

0.740
-

0.765
-

0.535
-

0.966

Table S7: Six qubit non-stoquastic problem instance.

Q0 Q1 Q2 Q3 Q4 Q5

Bx -
0.255

0.606 -
1.735

0.732 1.586 -
0.305

Bz -
1.672

-
1.282

-
1.532

-
1.433

1.282 -
1.765

Jxx
0.577 -

1.954
-

1.616
-

1.517
-

1.896

Jzz
-

1.491
1.349 0.628 1.287 1.919

Table S8: Seven qubit non-stoquastic problem instance.

Q0 Q1 Q2 Q3 Q4 Q5 Q6

Bx -
1.335

0.760 -
1.261

-
0.221

-
0.892

-
1.321

0.133

Bz -
1.026

-
1.896

0.116 -
0.619

-
0.493

-
1.316

-
1.872

Jxx
1.891 1.517 1.568 0.748 1.419 -

0.839

Jzz
-

1.455
-

0.588
-

0.582
1.223 -

0.635
0.614
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In Fig. S7a we show the single spin magnetization < �z
i > for all qubits of index i as a

function of Bz. In the absence of a field, the state is degenerate, and the single qubit

magnetizations are zero. With local field, the magnetization develops and displays

the hallmark antiparallel configuration, following the ideal digital predictions (right).

The experimental data follow the ideal digital results more closely for Bz > 0, we

attribute this to gate errors arising from the asymmetry of implementation with

sign. We also plot in Fig. S7b the parity < �z
i �z

i+d > with distance d, averaged over

Bz. The mean correlation alternates sign (not shown) and decreases with distance,

following the ideal trend.

Spin parity correlations for the five qubit antiferromagnetic experiment are dis-

played in Fig. S8 as a function of distance d and magnetic field. The measured parity

correlations (left) reflect the anti-ferromagnetic nature: the correlation is negative for

odd distances and positive otherwise. The correlations follow the theory predictions

(right) for either direction.

These experiment show that long-range correlations are generated in the sys-

tem, even though the physical coupling of the system is nearest-neighbour only, and

become visible when we apply local fields and lift the degeneracy of the antiferro-

magnetic state, creating classical Néel states.

B.12 Gate Calibrations

Variable single qubit microwave rotations are calibrated by inferring the rotation

angle from measurements of the probability with amplitude (Fig. S9a). The tunable

CZ� gate is calibrated by placing the static qubit in an equator state, and placing

the other qubit in either |0i or |1i, and varying the amplitude of the trajectory. By

performing quantum state tomography on the static qubit the tunable phase becomes

apparent, see Fig. S9b.
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B.13 Comparison between Predicted

and Experimental Fidelities

Here, we list comparisons between experiment, ideal digital evolution, ideal continu-

ous evolution as well as the target state results, expressed as fidelities. We also show

comparisons with uniformly chosen random probabilities as a baseline sanity check.

A complete overview is shown in Table S9.

We also show the histograms of all fidelities in Fig. S10.

Fidelities for the example instances of Fig. 11 in Chapter 4 are in Table S10.

Table S9: Mean fidelities between the experimental data, the ideal digital evolu-
tion, ideal continuous evolution (ideal cont.) and target state. As a baseline sanity
check, we also show comparisons with randomly generated data. The standard
deviations from the mean are given.

data ideal digital evolution ideal continuous evolution target state

3 qubits, stoquastic

experiment 0.706 ± 0.007 0.48 ± 0.01 0.36 ± 0.02

ideal digital 0.67 ± 0.01 0.46 ± 0.02

ideal cont. 0.61 ± 0.03

3 qubits, non-stoquastic

experiment 0.36 ± 0.01 0.220 ± 0.009 0.185 ± 0.009

ideal digital 0.49 ± 0.02 0.29 ± 0.02

ideal cont. 0.53 ± 0.03

6 qubits, stoquastic

experiment 0.714 ± 0.006 0.523 ± 0.008 0.296 ± 0.007

random 0.496 ± 0.007 0.340 ± 0.007 0.168 ± 0.005

ideal digital 0.73 ± 0.01 0.43 ± 0.01

ideal cont. 0.59 ± 0.01
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data ideal digital evolution ideal continuous evolution target state

6 qubits, non-stoquastic

experiment 0.739 ± 0.004 0.522 ± 0.008 0.380 ± 0.009

random 0.669 ± 0.004 0.470 ± 0.007 0.335 ± 0.008

ideal digital 0.526 ± 0.009 0.350 ± 0.009

ideal cont. 0.62 ± 0.01

7 qubits, stoquastic

experiment 0.645 ± 0.006 0.607 ± 0.006 0.215 ± 0.009

random 0.543 ± 0.006 0.534 ± 0.006 0.133 ± 0.006

ideal digital 0.883 ± 0.004 0.332 ± 0.009

ideal cont. 0.281 ± 0.009

7 qubits, non-stoquastic

experiment 0.632 ± 0.006 0.566 ± 0.006 0.311 ± 0.009

random 0.607 ± 0.005 0.553 ± 0.006 0.277 ± 0.008

ideal digital 0.812 ± 0.006 0.34 ± 0.01

ideal cont. 0.36 ± 0.01

8 qubits, stoquastic

experiment 0.606 ± 0.006 0.570 ± 0.006 0.164 ± 0.007

random 0.513 ± 0.006 0.509 ± 0.006 0.091 ± 0.004

ideal digital 0.873 ± 0.004 0.274 ± 0.008

ideal cont. 0.225 ± 0.007

8 qubits, non-stoquastic

experiment 0.572 ± 0.005 0.499 ± 0.006 0.245 ± 0.008

random 0.585 ± 0.005 0.517 ± 0.005 0.238 ± 0.007

ideal digital 0.775 ± 0.006 0.292 ± 0.009

ideal cont. 0.32 ± 0.01

9 qubits, stoquastic

experiment 0.583 ± 0.007 0.551 ± 0.006 0.122 ± 0.006

random 0.496 ± 0.006 0.481 ± 0.006 0.074 ± 0.004

ideal digital 0.862 ± 0.004 0.228 ± 0.007

ideal cont. 0.184 ± 0.007
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data ideal digital evolution ideal continuous evolution target state

9 qubits, non-stoquastic

experiment 0.587 ± 0.006 0.507 ± 0.006 0.236 ± 0.008

random 0.570 ± 0.004 0.495 ± 0.005 0.214 ± 0.008

ideal digital 0.747 ± 0.006 0.248 ± 0.008

ideal cont. 0.27 ± 0.01
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Table S10: Fidelities and measures of success for the example instances in Fig. 11
between the experimental data, the ideal digital evolution, ideal continuous evo-
lution (ideal cont.) and target state.

data ideal digital
evolution

ideal
continuous
evolution

target state

3 qubits, stoquastic
experiment 0.70 0.68 0.63
ideal digital 0.96 0.90
ideal cont. 0.92

3 qubits, non-stoquastic
experiment 0.48 0.43 0.42
ideal digital 0.82 0.60
ideal cont. 0.59

6 qubits, stoquastic
experiment 0.78 0.69 0.65
ideal digital 0.90 0.61
ideal cont. 0.62

6 qubits, non-stoquastic
experiment 0.76 0.72 0.42
ideal digital 0.65 0.38
ideal cont. 0.52

9 qubits, stoquastic
experiment 0.66 0.60 0.63
ideal digital 0.83 0.64
ideal cont. 0.77

7 qubits, non-stoquastic
experiment 0.71 0.76 0.71
ideal digital 0.77 0.53
ideal cont. 0.69
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Figure S3: Pulse sequences. (a) Nine qubit scaling experiment at T = 1
from Fig. 4.10 in Chapter 4. (b) Six qubit stoquastic problem from Fig. 4.11b in
Chapter 4. (c) Six qubit non-stoquastic problem from Fig. 4.11e in Chapter 4.
(d) Seven qubit non-stoquastic problem. (e) Nine qubit stoquastic problem. The
numbers in the figures are explained in the main text.
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Figure S4: Digital evolution into GHZ state: real, imaginary parts and
ideal continuous time evolution. Experimental data (colour), target state
(black) and ideal continuous time evolution (gray) at s = 1.0. The leftmost red
bars indicate the real part, the adjacent blue bars indicate the imaginary part.
Im(⇢) < 0.05.

Figure S5: Kink likelihood for two to nine qubit configurations. Errors
in ferromagnetic chains (J = 2) in configurations with two to nine qubits. Kink
likelihood versus scaled time |J |T . Solid lines: experiment. Dashed lines: ideal
digital evolution.
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Figure S6: Di↵erences between residual energy for the experimental,
ideal digital, and ideal continuous evolutions. Residual energy di↵erence
for three, six, and nine qubits. Shown are the di↵erences between the experiment
and ideal digital evolution (solid lines), experiment and ideal continuous evolution
(dashed), and between the ideal digital and continuous evolutions (dotted).

Figure S7: Lifting degeneracy of a five-spin antiferromagnetic state.
Antiferromagnetic (J

zz

= �2) problem with a tunable local field on qubit 3. (a)
Single qubit magnetization < �z > as a function of magnetic field for the exper-
iment (left), and ideal digital evolution (right). (b) Mean experimental (closed)
and theory (open) spin parity correlation versus distance. The absolute value
shows the long-range correlations.
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Figure S8: Spin parity correlations in the antiferromagnetic state dur-
ing lifting of degeneracy. Left: Experimental data. Right: Ideal digitized
evolution.

Figure S9: Gate calibrations. (a) Microwave rotation pulse calibrations for
all nine qubits. Pulse amplitude is normalized to the amplitude of a ⇡-pulse.
Solid lines are fits to the data. Colours are linked to Fig. 4.8b in Chapter 4. (b)
Controllable phase � of the CZ

�

gate versus qubit detuning for all eight adjacent
pairs. The di↵erence between the curves is due to the qubits having di↵erent
setpoints in frequency. Solid lines are fits to the data.
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Figure S10: Fidelity overview for the random stoquastic and non-
stoquastic problems. Here, we show normalized histograms of fidelities and
measures of success for all experiments for both stoquastic and non-stoquastic
problems. For each case we plot three histograms: On the left, we plot the fi-
delity of the experimental results with respect to the ideal digital evolution. In
the middle, in colour we plot the fidelity of the experimental results with respect
to the ideal, continuous time evolution for finite time. In the same figure, we plot
in gray the fidelity of the ideal digital results with respect to the continuous, finite
time evolution. On the right, we plot in colour the fidelity of the experimental
results with respect to the ideal adiabatic evolution, and in gray the fidelity of
the ideal digital results with respect to the ideal adiabatic evolution. (a, b, c, d,
e) Results for random stoquastic problems with three, six, seven, eight and nine
qubits. (f, g, h, i, j) Results for random non-stoquastic problems with three, six,
seven, eight and nine qubits.
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Appendix C

Aspects of Genetic

Algorithms for Digital

Quantum Simulations

In this Appendix, we discuss details useful for the understanding of the main results

of Chapter 5.

C.1 Description of the Genetic Algorithm

In this section, we describe the GA [62, 140] used to obtain the decomposition of the

local Trotter blocks [19, 21]. The sequence of quantum gates is codified in a matrix

representing in the protocol the genetic code of an individual. This matrix contains

as many columns (genes) as allowed resources, and su�cient rows to determine the

type of gate and the qubits on which it acts. The next step is to engineer a fitness

or evaluation function which maps every individual into a real number. This allows

to classify the individuals with respect to an adequate criterion for the optimization

purposes. In our case, the fitness function corresponds to the fidelity with respect
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to the ideal block dynamics. Finally, each cycle of the algorithm consists of three

stages: breeding, mutation, and natural selection.

In the breeding stage, a new generation of individuals is obtained by combining

the genetic code of the predecessors, which provides the genetic code of the o↵spring.

We have used a hierarchical combination method, which allows the number of broods

of each individual to depend on its fidelity. In particular, for an initial population

of 4 individuals sorted by fidelity, our algorithm creates an o↵spring of 9, 6 of which

acquire genetic material of the first precursor, 5 of the second, 4 of the third, and

3 of the fourth. Notice that each newborn individual is produced with the genetic

information of two predecessors, as it can be seen from the fact that adding the

numbers of each progeny equals two times the number of newborn individuals. Notice

that this is not the most general situation, since we could have considered individuals

as a combination of more predecessors. Additionally, the amount of genes each

precursor provides, in this case the number of matrix columns, also depends on the

hierarchy induced by fidelity.

In the mutation stage, every individual is allowed to mutate by randomly modi-

fying any sequence of genetic material, with equal probability for all individuals. This

probability settles the threshold to overcome for a random number for a mutation

event to occur, case in which another set of random numbers provides the new genes

to insert in the genetic material.

In the last stage of the cycle, old and new generations of individuals are combined

in the same population group. Afterwards, they are sorted depending on their fidelity,

and those which show the highest fidelity are selected as the initial population of the

forthcoming cycle.

We have observed that it is convenient to combine numerical trials with high

and low mutation rates to enhance the breeding or the mutation stages depending

on the intermediate results.
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C.2 Number of Architectures

We derive here the formula P = (q2 � q)nn! for the number of architectures in terms

of the number of ancillary qubits q and the number of imperfect gates n. We impose

the condition of applying each two-qubit gate once and only once, and that the gates

are asymmetric, so applying it to qubits (i, j) is di↵erent to apply it to qubits (j, i).

Therefore, one of the q qubits is selected as the control, and one of the remaining

q � 1 as the target. This process is repeated for each of the n gates, so we obtain

(q(q �1))n possibilities. Finally, the n gates may be applied in any possible order, so

there are n! re-orderings. Therefore, by combining both results, the number of total

architectures turns into n! (q2 � q)n.

C.3 Errors in Architectures Building the CNOT

Gate

We compare the mean error of the integrated cnot gate obtained with GA over

many realizations of imperfect gates with the average of the highest fidelity imperfect

cnot gate involved in the architecture. For this purpose, we take a sampling of 1000

di↵erent experiments, and we average the error of the best gate. We estimate the error

of the integrated cnot and obtain the percentage of improvement in the error. These

results are summarized in Table S1 for the cases studied in the main manuscript. As it

is shown, the probability to have a high-fidelity gate is increased when the number of

gates is aucmented. Accordingly, there are more possible architectures that minimize

the error in the integrated cnot. For the case of q = 5 and n = 7, we obtain similar

errors to the ones for q = 4. This could well be because the number of ancillary qubits

is of the same order of the involved gates, and then no measurable improvement is

expected since there is no cancellation of gate errors. Nevertheless, the optimal

relation between number qubits and involved gates is still an open question.
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Table S1: Average errors of integrated cnots and highest fidelity cnot gates
for the protocols involving q qubits and n gates.

Errors
(q, n)

(4, 3) (4, 5) (4, 7) (5, 7)

Error of best gate 0.1271 0.1205 0.1150 0.1150
Error of architecture 0.1771 0.0988 0.0807 0.0810
Approximate gain -39% 18% 30% 30%
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A. Megrant, E. Je↵rey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell,

Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J.

O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, E. Solano,

and J. M. Martinis, “Digital quantum simulation of fermionic models with a

superconducting circuit”, Nature Communications 6, 7654 (2015).

[26] R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo, U. Las Heras,

R. Babbush, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro,

http://dx.doi.org/10.1038/nature13171
http://dx.doi.org/10.1038/nature13171
http://dx.doi.org/10.1038/ncomms7983
http://dx.doi.org/10.1126/science.273.5278.1073
http://dx.doi.org/10.1090/S0002-9939-1959-0108732-6
http://dx.doi.org/10.1090/S0002-9939-1959-0108732-6
http://dx.doi.org/10.1016/0375-9601(90)90962-N
http://dx.doi.org/10.1016/0375-9601(90)90962-N
http://dx.doi.org/10.1088/1751-8113/43/6/065203
http://dx.doi.org/10.1088/1751-8113/43/6/065203
http://dx.doi.org/10.1126/science.1208001
http://dx.doi.org/10.1103/PhysRevX.5.021027
http://dx.doi.org/10.1038/ncomms8654


126 Bibliography

A. Dunsworth, E. Je↵rey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley,

C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, D. Sank,

A. Vainsencher, J. Wenner, T. C. White, E. Solano, H. Neven, and J. M.

Martinis, “Digitized adiabatic quantum computing with a superconducting

circuit”, Nature 534, 222–226 (2016).

[27] A. Mezzacapo, U. Las Heras, J. S. Pedernales, L. DiCarlo, E. Solano, and

L. Lamata, “Digital Quantum Rabi and Dicke Models in Superconducting

Circuits”, Scientific Reports 4, 7482 (2014).

[28] I. Arrazola, J. S. Pedernales, L. Lamata, and E. Solano, “Digital-Analog

Quantum Simulation of Spin Models in Trapped Ions”, Scientific Reports 6,

30534 (2016).

[29] N. K. Langford, R. Sagastizabal, M. Kounalakis, C. Dickel, A. Bruno,

F. Luthi, D. J. Thoen, A. Endo, and L. DiCarlo, “Experimentally simulating

the dynamics of quantum light and matter at ultrastrong coupling”, arXiv

preprint 1610.10065 (2016).

[30] M. H. Devoret and R. J. Schoelkopf, “Superconducting Circuits for Quantum

Information: An Outlook”, Science 339, 1169–1174 (2013).

[31] L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I.

Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf,

“Demonstration of two-qubit algorithms with a superconducting quantum

processor”, Nature 460, 240–244 (2009).

[32] L. Ste↵en, Y. Salathe, M. Oppliger, P. Kurpiers, M. Baur, C. Lang,

C. Eichler, G. Puebla-Hellmann, A. Fedorov, and A. Wallra↵, “Deterministic

quantum teleportation with feed-forward in a solid state system”, Nature 500,

319–322 (2013).

[33] T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz,
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