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Resumen 
           La tecnología de alta eficiencia P/Al fue desarrollada a mediados de los años 80 

mediante estudios teóricos y experimentales de A. Cuevas y M. Balbuena en el IES-UPM.  

Ellos concluyeron que es posible obtener alta eficiencia con emisores de fosforo profundos 

poco dopados y  contacto de aluminio en la superficie posterior (aluminum back surface 

field). El objetivo principal de este trabajo fue mejorar la tecnología P/Al de alta eficiencia en 

el caso de obleas finas de silicio de bajo grado para células solares industriales. 

           Aplicando la tecnología P/Al, se han realizado diferentes lotes de células solares y su 

caracterización se llevó a cabo mediante medidas de  Soles-Voc,  tiempo de vida y curvas 

IV. Hemos observado alta densidad de corriente de saturación del emisor en la fabricación 

de emisores, que limita el voltaje de circuito abierto, estando en el rango de 1E-11A/cm2 

para los peores emisores y 5E-13 A/cm2 para los emisores buenos. La máxima eficiencia 

que hemos obtenido se situaba en torno a 16.5%. El voltaje de circuito abierto de las células 

estaban en el rango de 600mV a 610mV y la corriente de cortocircuito estaba en el rango de 

36mA/cm2 a 39.2mA/cm2. Hemos medido el tiempo de vida de las células P/Al después de 

cada paso térmico y después de la deposición de SiNx por PECVD, el máximo tiempo de 

vida que estaba en torno a 20µs por la técnica PCD y 40 µs por la técnica QSSPC después 

de la deposición de SiNx. 

            Debido a la poca eficiencia y la pobre calidad de la pasivación del emisor, hemos 

planeado investigar la difusión de fosforo en profundidad con el objetivo de lograr emisores 

profundos, ligeramente dopados y pasivados. Hemos llevado a cabo varias experimentos en 

de difusiones de fosforo a cuatro temperaturas en el rango de 800 a 875 ºC con el fin de 

lograr emisores n+ profundos y ligeramente dopados y sus perfiles. La densidad de 

corriente de saturación que limita el voltaje de circuito abierto depende de la concentración 

de fosforo activo y la profundidad de la unión. Debido a la alta temperatura, la difusión de 

fosforo forma una capa muerta que aumenta la recombinación y disminuye la eficiencia de 

la célula. Se introduce un paso de oxidación húmeda y/o seca para minimizar el efecto de la 

capa muerta. El porcentaje de fosforo eléctricamente activo se calcula por el modelo Tsai. 

Nuestros resultados muestran que con  el aumento de temperatura, la concentración de 

Fosforo eléctricamente activo disminuye y viceversa. El objetivo  de este estudio era realizar 

un proceso de difusión en un solo paso en el horno para la fabricación industrial de células 

solares. 

             La fiabilidad de los emisores  fue evaluada por la influencia de la pasivacion. Para 

las condiciones de superficie de cada emisor, las velocidades de recombinación 

superficiales han sido simuladas en el PC1D para emisores convencionales con una 

profundidad de unión de unión de 0.2 µm y para los emisores actuales con una profundidad 

de union de 0.7 µm, mostrandose  que los emisores con una union profunda dan bajos 

valores de densidad de corriente de saturacion de emisor (Joe) en compraracion con una 

profundidad de union convencional. Los emisores obtenidos en un unico paso termico estan 

en torno a 7-8 x1019 cm-3 con una resistencia de capa  de ~60 Ω/□ y una profundidad de 

union de 0.71 µm y una densidad de corriente de saturacion de emisor de 130 fA/cm2. En el 

proceso de difusión de una sola etapa, el gettering es mucho mayor que el obtenido con el 

proceso convencional y la carga térmica es también baja. En el caso de sustratos de tipo-p 



                                                                           Improvements in P/Al High Efficiency Technology, AlSi 
 
 

 

  iv 

y alta resistividad de 5.4Ω.cm, hemos medido tiempos de vida de en torno a 200 µs y  en las 

obleas de tipo –n de baja resistividad (0.8 Ω.cm) en torno a 505 µs por la técnica PCD. La 

mejora en tiempo de vida es mucho mayor que en los procesos de gettering 

convencionales. 

        Utizandose una receta de SiNx optimizada, el tiempo de vida máximo que se midio en 

una estructura SiO2/SiNx para un emisor pasivado fue 334 µs por la tecnica PCD y 780 µs 

por la técnica QSSPC que se corresponde con una velocidad de recombinación superficial 

(SRV) de 10 cm/s para la técnica QSSPC y 24 cm/s por la técnica PCD para obleas de tipo 

p y en obleas de tipo n, el tiempo de vida máximo fue 1263 µs por la técnica PCD y 2209 µs 

por la técnica QSSPC que se corresponde con una veloscidad de recombinación superficial 

efectiva de  3.8 cm/s pr la técnica QSSPC y 15cm/s por la técnica PCD. La densidad de 

corriente  de saturación del emisor (Joe) disminuye aun más debido al efecto de SiNX que 

pasa a estar en el rango de 5E-14 a 2.5E-14A/cm2 (25-25fA/cm2) para obleas de tipo p. 

         Para emisores suavemente dopados (resistencia de capa 100-200 Ω/□), es difícil 

hacer contacto entre el metal frontal y los emisores suavemenete dopados. Este tema 

puede superarsepor la fabricación de emisores selectivos. Los emisores selectivos tienen 

alta concentración de dopado bajo la red de contactos metalicos y baja concentración de 

dopaje en la zona iluminada. La segunda difusión de fosoforo (parte posterior- parte 

posterior) se realizó a 875 ºC durante 30 minutos en la area de surcos creadas con el láser, 

protegiendo la superficie posterior y el resto del area frontal con una capa SiNx para crear 

emisores selectivos. Una capa gruesa de Aluminio se depositó en la parte posterior de las 

células por medio de serigrafía con el fin de crear back surface field (BSF) asi como 

contacto posterior. La temperatura óptima para el contacto de Aluminio es 925 ºC a 60 

pulgadas/min de veloicidad de cadena para tener un buen quemado y contacto. En este 

paso, la superficie posterior Al-BSF con oxido de Silicio (SiO2)  muestra alto voltaje de 

circuito abierto y bajo valor de Joe. 

        Tras la formación de contactos posteriores, hemos medido los Soles-VOC de las células 

para obtener los parámetros eléctricos de las células solares, hemos encontrado que la 

densidad de corriente de saturación (Joe) de las células aumentó, las cuales estaban en el 

rango de 6.45E-13 a 3.1E-12A/cm2 y shunt conductance estaban en el rango de 2E-4 a 

3.5E-3 ohm.cm2. Esta Joe es debida a los emisores posteriores (Al-BSF), debemos 

optimizar algunos parámetros para una apropiada metalización, tales como la pasta de 

metalización con el fin de medir los valores reales (bajo) de la Joe de las células. La calidad 

de los emisores selectivos está afectada por el tratamiento químico, este fenómeno se 

observo tras las medidas de tiempo de vida de los emisores selectivos, hemos encontrado 

reducción en el tiempo de vida, lo que habíamos medido tras la deposición de la capa SiNx 

pero el tiempo de vida se mantiene homogénea en la zona de dopaje suave. La destrucción 

del tiempo de vida se reduce cuando se ha utilizado baño de teflón para el tratamiento 

químico en vez del baño metálico. El NaOH o el KOH se utiliza para eliminar los daños del 

láser previo a la segunda difusión de P. Utilizándose KOH, la reducción en tiempo de vida 

es menor que en el caso de la NaOH. 

      Hemos medido valores de Soles-Voc en torno a 624 mV para obleas de tipo-p de alta 

resistividad y 626mV para las obleas de tipo n de baja resistividad. El comportamiento final 

de la célula P/Al es debido al Al-BSF, puede ser mejorada más y teóricamente se espera 

que sea en torno a 650 mV. El proceso que se ha utilizado para fabricar los emisores 

selectivos es factible para aplicarse en la fabricación industrial de células solares P/Al con 

emisores selectivos en los que se espera una eficiencia en torno al 20 %. 
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Laburpena 
Efizientzia altuko P/Al teknologia 1980ko erdialdean garatu zen A. Cuevasek eta 

M. Balbuenak IES-UPMn aurrera eramandako ikerketa teorikoak eta esperimentalak zirela 

medio. Haiek ondorioztatu bezala, arinki dopatutako fosforozko igorle sakonak eta 

aluminiozko BSFak erabilita (P/Al teknologia) efizientzia altuak lor zitezkeen. Lan honen 

helburu nagusia honako hau da: P/Al teknologia hobetzea, maila baxuko siliziozko olata 

finak erabilita, industriako eskakizunetara begira. 

P/Al teknologiaren bitartez gabrikatu dira eguzki-zelula sortak eta Suns-Voc kurbak, 

bizialdia eta IV kurbak neurtu izan zaizkie horiek karakterizatzeko. Neurketen arabera, 

asetasuneko korronte-dentsitate altuak ikusi dira igorleen fabrikazioan, zirkuitu irekiko 

tentsioa mugatzen dutenak. Asetasuneko korronte dentsitatearen tartea 3·10-11 cm2-tik 

(txarrena)  5·10-13 A/cm2-ra (hoberena) artekoa da. Lortutako efizientzia maximoak 16.5 % 

ingurukoak dira; eguzki-zelulen zirkuitu irekiko tentsioa 600-610 mV tartekoa eta zirkuitu 

laburreko korronte-dentsitatea 36-39.2 mA/cm2-koa. P/Al eguzki-zelulen bizialdia neurtu da 

urrats termiko guztien ostean bai eta PECVDz SiNx geruzak ezarri ostean; SiNx geruza 

ezarri ostean neurtutako bizialdi maximoa, 20 µs ingurukoa da PCD bidez neurtuta eta 40 

µs-koa QSSPC bidez neurtuta. 

Igorleen pasibaketaren kalitate txikia eta efizientzia baxua dela eta, fosforozko 

dopaketak sakon aztertu dira, arinki dopatutako eta sakon pasibatutako igorleak lortu 

nahian. Horretarako, hainbat saiakera egin dira, fosforo-dopaketak 800-875 ºC tartean lau 

tenperatura aukeratuta: jomuga arinki baina dopatutako n+ igorleak lortzea izan da, eta bide 

batez, haien profila. Igorlearen asetasuneko korrontea, zirkuitu irekiko tentsioa mugatzen 

duena, fosforo-kontzentrazioaren eta junturaren sakoneraren menpekoa da. Tenperatura 

altuak direla eta, fosforo-dopaketak geruza ahitu bat sortzen du, birkonbinazioa handitzen 

eta zelularen efizientzia txikitzen duena. Oxidazio lehor/heze bat gaineratzen zaio geruza 

ahituaren efektua txikitzeko. Elektrikoki aktiboa den fosforo portzentajea Tsai ereduaren 

bitartez kalkulatzen da. Emaitzen arabera, tenperaturak igo ahala elektrikoki aktiboak diren 

Pen kopurua txikitzen da eta alderantziz. Ikerketa honek labean gauzatutako urrats 

bakarreko dopaketa egitea zuen helburu, industrian fabrikatzen diren eguzki.zelulei-begira. 

Igorleen fidagarritasuna pasibaketaren eraginaren bitartez aztertu da: igorleen 

gainazaleko baldintzaren arabera gainazaleko birkonbinazio-abiadurak simulatu dira PC1D 

bitartez: igorleek 0.7 µm-ko sakonera izanez gero, igorleen asetasuneko korronte-

dentsitatea txikia da (J0e) 0.2 µm-ko sakonera duten ohiko igorleekin alderatuta. Urrats 

termiko bakarrean gauzatutako igorleen kontzentrazioa 7-8 x1019 cm-3 –ko tartean dago, 

geruza-erresistentzia ~60 Ω/□-koa, junturaren sakonera 0.71 µm-koa eta igorlearen 

asetasuneko korronte-dentsitatea 130 fA/cm2. Pauso bakarreko dopatze-prozesuan 

getteringa handiagoa da, ohiko prozesuarekin alderatuta, gainera, gastu termikoa txikia da. 

Materiala p-motakoa bada 200 µs-ko bizialdiak neurtu dira erresistibitate altuko olatetan 

(5.4Ω.cm) eta n-motako erresistibitate baxuko olatetan (0.8 Ω.cm) 505 µs-koak inguru (PCD 

teknika). Bizialdian hobekuntza ohiko gettering prozesuetan baino handiagoa da. 

SiNx ezarketarako errezeta berria erabilita, optimizatutakoa, pasibatutako 

igorleetarako SiO2/SiNx egituran neurtutako bizialdi maximoa 334 µs-koa da, PCD bitartez 
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neurtutakoa eta 780 µs QSSPC teknikaren bitartez, hau da, 10 cm/s-ko SRV efektiboa 

QSSPCren bitartez eta 24 cm/s-ko SRV efektiboa QSSPCren bitartez p-motako olaten 

kasurako; n-motako olaten kasurako aldiz, neurtutako bizialdi maximoa 1263 µs-koa (PCD) 

eta 2209 µs-koa (QSSPC), hau da, 3.8 cm/s-ko SRV efektiboa (QSSPC) eta 15 cm/s-koa 

(PCD). Igorlearen asetasuneko korronte-dentsitatea hare gehiago jaitsi da, SiNx-ren 

pasibaketaren eraginez, p-motako olaten kasurako eta 5·10-14-2.5·10-14 tartekoa izatera 

iristen da. 

Arinki dopatutako igorleen kasuan (geruza-erresistentzia 100-200 Ω/𝑠𝑞), ez da 

erraza aurrealdeko metala eta igorlea kontaktatzea. Arazo horri nagusitu dakioke igorle 

selektiboak gauzatuz gero: aurrealdeko metalaren kontaktatze-eskualdeetan igorle 

selektiboak, kontzentrazio handikoak, ezarriko dira eta argiztapeneko eskualdeetan 

dopaketa baxuko igorleak gauzatuko dira. Igorle selektibo horiek gauzatzeko 2. dopaketa 

bat gauzatu da, olatak bizkarrez bizkar kokatuta (en back to back), 30 minutuz 875 ºC-era 

laser bidez urratutako eskualdeetan; horretarako, olatak SiNx geruza batez babestuko dira 

lehenik eta behin, gero laser bidez urratu eta egitura horiek labean sartu. Aluminiozko 

geruza lodi bat ezarri zaie eguzki-zelulei atzealdean serigrafia bidez BSFa eta atzealdeko 

kontaktua gauzatzeko. Aluminiozko atzealdeko kontaktuen sinterizazioa zinta-labean egiteko 

tenperatura eta abiadura optimoak 925 ºC eta 60 in/min dira; urrats horretan atzealdeko Al-

BSF gainazala, siliziozko dioxidoa (SiO2) gainazalean duena, da zirkuitu irekiko tentsiorik 

altuena ematen duena, bai eta eta J0e-eko baliorik baxuena ere. 

Atzealdeko kontaktuak gauzatu ostean eguzki-zelulen karakterizazio elektrikoa egin 

da, Suns-VOC kurba ezaugarriak neurtuta. Gauzak horrela, 6.45·10-13–3.1·10-12 A/cm2 tarteko 

J0e-ak eta 2·10-4–3.5·10-3 Ω·cm2-ko shunt-konduktantziak neurtu dira. J0e-a atzealdeko 

igorlearen ondoriozkoa da (Al-BSF): metalizazioa egokia izan dadin parametro batzuen 

optimizazioa beharrezkoa da, metalizazio-oreen optimizazioa, besteak beste, J0e-ko balio 

errealak (baxuagoak) neurtzeko. Igorle selektiboen kalitatea tratamendu kimikoaren 

menpekoa da; igorle selektiboen bizialdia murriztu da (SiNx geruzaren ezarketaren ostean 

neurtutakoa); bestalde, bizialdia berdintsu mantendu da oro har igorle nagusiaren 

eskualdeetan. Bizialdiaren degradazioa, baina, txikiagoa izan da tefloizko bainua 

metalezkoaren ordez erabili denean. NaOH-zko edo KOH-zko soluzioak laser-kaltea 

txikiagotzeko erabili dira, bigarren fosforo-dopatzearen aurretik. Bizialdia gutxiago 

txikiagotzen da KOH-zko soluzioarekin NaOH-zko soluzioarekin baino. 

Zirkuitu irekiko tentsioa 624 mV ingurukoak neurtu dira p-motako erresistibitate 

altuko olatetan, n-motako erresistibitate baxuko olatetan 626 mV ingurukoak. P/Al eguzki-

zelulen bukaerako bilakaera Al-BSFaren ondoriozkoa da: hobetu daiteke, teorikoki 650 mV-

era arte. Igorle selektiboak gauzatzeko erabili den prozesua bideragarria da industria-

fabrikazioan txertatzeko, eta horrela, 20 %-ko efizientzia duten igorle selektiboak dituzten 

P/Al eguzki-zelulak gauzatu daitezke. 
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Summary 
          High efficiency P/Al technology was developed in the mid of 1980s by theoretical and 

experimental studies of A. Cuevas and M. Balbuena at IES-UPM. They have concluded that 

it is possible to obtain high efficiency with lightly doped deep phosphorus emitters and 

aluminum back surface field, P/Al (P emitters/Al BSF). The main objective of this work was 

to improve high efficiency P/Al technology by using low grade silicon thin wafers for solar 

cells for industrial application.   

        By applying P/Al technology, we have fabricated different batches of 𝑛+𝑝 𝑝+ (P/Al) solar 

cells and their characterization were carried out by Sun-Voc, lifetime and IV curves 

measurements. We have observed high emitter saturation current density in fabrication of 

emitters which limits the open circuit voltage were in range of 1E-11A/cm2 for worse emitters 

and 5E-13 A/cm2 for good emitters. Maximum efficiency which we have obtained was around 

16.5%. Open circuit voltage of cells were in range of 600mV to 610mV and short circuit 

current was in range of 36mA/cm2 to 39.2mA/cm2.  We have measured lifetime of P/Al solar 

cells after each thermal step and each after SiNx deposited by plasma enhanced chemical 

vapor deposition, the maximum lifetime which was around 20µs by PCD (transient photo-

conductance decay) and 40 µs By QSSPC technique (quasi steady state photo-conductance 

decay) after SiNx deposition.  

         Due to low efficiency and poor quality of emitter’s passivation, we have planned to 

investigate P diffusion deeply in order to get softly doped and passivated deep emitters.  We 

have performed several phosphorus diffusion experiments at four temperatures ranging from 

800 ºC to 875 ºC in order to get softly doped and deep 𝑛+emitters and their profiles. The 

emitter saturation current density which limits the open circuit voltage depends on active 

phosphorus concentration and junction depth. Due to high temperature, P diffusion form 

dead layer which increased recombination and decrease overall cell efficiency. Dry or/and 

wet oxidation step with drive-in is introduced to minimize the effect of dead layer. The 

percentage of electrically active P is calculated by Tsai Model. Our results show that with 

increase of temperature, concentration of electrically active P decrease and vice versa. Our 

goal of this investigation was to make a single step diffusion process in a furnace for idustrial 

fabrication of solar cells.  

         Reliability of emitters were evaluated by the influence of passivation. For each emitter 

surface conditions, surface recombination velocities have been simulated by PC1D for 

conventional emitters with 0.2 µm junction depth and current emitters with 0.7 µm depth 

which show that deep emitters junction depth give low values of emitter saturation current 

density (Joe) as compare to conventional junction depth. Emitters obtained by single thermal 

step are in range of 7-8 x1019 cm-3 with sheet resistance ~60 Ω/□ and junction depth 0.71 µm 

and emitter saturation current density was 130 fA/cm2. In single step diffusion process the 

gettering is higher than conventional process and thermal budget is also low. In case of P-

type material, we have measured lifetime around 200 µs at high resistivity (5.4Ω.cm) wafers 

and on N-type low resistivity (0.8 Ω.cm) wafers around 505 µs by PCD technique. 

Improvement in lifetime is much higher than conventional gettering processes. 
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        By using optimized new SiNx recipe, the maximum lifetime which we measured on 

stack structure SiO2/SiNx for passivated emitter was 334 µs by PCD technique (transient 

photo-conductance decay) and 780 µs by QSSPC technique (quasi steady state photo-

conductance decay) which corresponds to an effective surface recombination velocity (SRV) 

10cm/s by QSSPC technique and 24cm/s by PCD technique for p-type wafers and on n-type 

wafers, the maximum lifetime  which we measured was 1263µs by PCD technique and 2209 

µs by QSSPC technique which corresponds to an effective SRV 3.8 cm/s for QSSPC 

technique and 15cm/s by PCD technique. Emitter’s saturation current density (Joe) further 

decreased due to passivation effect of SiNx, which were in range of 5E-14 to 2.5E-14 A/cm2 

(25-50fA/cm2) for p-types wafers. 

       For softly doped emitters (sheet resistance 100-200 Ω/𝑠𝑞), it is difficult to make a 

contacts between front metal and softly doped emitters. This issue can be overcome by 

fabrication of selective emitters. Selective emitter have high doping concentration under 

metal contacts grid and low doping concentration under illumination area. Second P diffusion 

(back to back) was carried out at 875 ºC for 30 minutes in laser scribed grooves area by 

protecting back surface and rest of front surface area with SiNx layer to create selective 

emitters. A thick layer of aluminum was deposited on backside of cells by screen printing 

technique in order create back surface field (BSF) as well as back contact. Optimal 

temperature for Al-deposition is 925 ºC at 60inches/min belt furnace speed for good firing 

and contacts. In this step, rear surface Al-BSF with silicon oxide (SiO2) surface give highest 

open circuit voltage and lower Joe value.  

       After back contacts formation, we have measured Sun-Voc of cells to get electrical 

parameters of solar cells, we have found that emitter saturation current density (Joe) of cells 

increased which were in range from 6.45E-13 to 3.1E-12A/cm2 and shunt conductance was 

in range from 2E-4 to 3.5E-3 ohm.cm2. This Joe is due to rear emitters (Al-BSF), we have to 

optimize some parameters for appropriate metallization such as metallization paste in order 

to measure the real values (low) Joe of the cells. Quality of selective emitters is affected by 

chemical treatment, this phenomena was observed after lifetime measurements of selective 

emitters, we have found reduction in lifetime, what we had measured after SiNx layer 

deposition but lifetime is maintained under homogenous softly doped area. Destruction of 

lifetime is reduced when we have used teflon bath for chemical treatment instead of metallic 

bath. NaOH or KOH is used to remove laser damages prior to second P diffusion. By using 

KOH, reduction in lifetime is minor than NaOH. 

        We have measured Sun-Voc around 624 mV for p-type high resistivity wafers and 

626mV for n-type low resistivity wafers. Final behavior of P/Al solar cell is due to Al-BSF, it 

can be further improved and theoretically expected is around 650 mV. Process which is used 

to fabricate selective emitter is feasible to apply for industrial fabrication of P/Al silicon solar 

cells with selective emitters with expected efficiency around 20%. 
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1 Improvements in P/Al high 

efficiency technology, AlSi 
 

1.1 Introduction 
           With the increase of human population, energy demand is also increasing steadily 

and rapidly. The conventional energy resources such as fossil and nuclear fuels are limited 

and associated with negative effect on environment, such as greenhouse gases effect, holes 

in ozone layer, acid rain and pollution cannot be neglected. Therefore new means of energy 

is necessary which should be renewable and environmental friendly. 

          Today conversion of sunlight into electricity by using photovoltaics is attractive, 

environmental friendly way to produce renewable energy. Photovoltaics systems especially 

in case of silicon solar cell raw material is available in abundant in nature, can be used 

everywhere in world and almost maintenance free flexible scale from milli-watt to megawatt. 

Due to these advantages, PV competes with conventional energy production but cost of PV 

electricity is still higher as compared to conventional resource of electricity. The aim of this 

research work is increase competitiveness of photovoltaics by improving the technology for 

high efficiency process and decreasing cost. The cost of solar cell modules is at this time is 

around 0.6$/Wp, this cost can be reduced to below 0.3$/Wp. Major tasks in solar cell 

research are;  

 • Reduce material and fabrication costs 

• Improve technology  

• Improved efficiencies 

• Industrial application for high volume of production (≥ 500 MWp/year) [1]. 

 

        Photovoltaic cell or photoelectric cell is a solid state electrical device that converts the 

sun light energy directly into electrical energy by the photoelectric effect. Photovoltaic is the 

field of technology and research related to the practical application of photovoltaic cells in 

producing electricity from light. After petrol crisis and the emissions problems deriving from 

the use of petrol derivatives, solar cells and other alternative sources of energy gained 

important place in the application of alternative energy. It has been under intensive 

investigation for cost-effective photovoltaics, since the development of the first solar cells in 

the 1950s [2–4]. The materials currently used for the fabrication of photovoltaic solar cells 

included crystalline materials are in the form of mono and polycrystalline silicon,  amorphous 

silicon, cadmium telluride, and copper indium selenide/sulfide. Recently available solar cells 

are fabricated from bulk materials, in which wafers are cut into 150-300 µm thickness, and 

processed to fabricate solar cells like other semiconductors. Second group of solar cells, 

which are used as thin film layers are organic dyes and organic polymers that are deposited 

on substrate. A third group of cells are fabricated from nanocrystals, which is also called 

quantum dots or nanoparticles. Silicon remains the only material which is deeply 

investigated in both bulk and thin film forms of solar cell. Among all alternative technologies 

to silicon-based PN-junction solar cells, could lead the most significant cost reduction. [5]  
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1.2 Objective of thesis: 

           The main objective of this work is to develop high efficiency technology for solar cells 

which are industrializable exceed the efficiency and thickness estimation provided by 

industry. High efficiency technology, P/Al technology has shown efficiency 19% on float-zone 

wafer [6]. This technology consists of lightly doped phosphorus emitters of 100-

150Ω/square, Aluminum evaporated by electron beam machine, diffused in quartz furnace 

and contacts are defined by metals evaporation by using photolithographic technique and 

lift-off. In this work, this technology is applied on monocrystalline silicon wafers, obtained by 

Czochralski growth (CZ), a low quality wafers than float-zone wafers. This technology will be 

compatible with 150 µm thickness and it is based on phosphorus and aluminum diffusion on 

p-type silicon wafers (Cz) with expected efficiencies over 18% [7-8]. 

        The proposed work not only contributes to sustainable development but also direct 

impact on effective solution of environmental protection. In addition to this, the work aim is to 

improve P/Al solar cell technology for high efficiency, which can be implemented in industry. 

It is well recognized that the efficiency of photovoltaic systems is the key and to shorten the 

time is fully competitive. The proposed work not only contributes to sustainable development 

but also direct impact on effective solution of environmental protection. 

        Although the efficiencies achievement is remarkable and next step will be to transfer 

this technology from laboratory to industry in the future. Optimization analysis of phosphorus 

emitters is key step of this technology in order to maintain high efficiency. Phosphorus 

emitters are necessarily to be a selective, for this purpose P diffusion is investigated deeply 

to get lightly doped emitters under illumination area and highly doped under the metallization 

grid. Passivation can be achieved through layers of silicon nitride with silicon oxide, which 

also act as antireflection layers. For optimization of aluminum diffusion, some parameters 

are taken into account such as the amount of deposition of metal, temperature, process 

time, and composition of environment in the furnace to improve the lifetime and passivation. 

Techniques developed during this work under specific tasks (selective phosphorus emitter, 

aluminum BSF (back surface field), and metallization with photolithography by using electron 

beam (laboratory technique) and screen-printing or ink-jet (industrial technique), edge 

insolation of devices (solar cell) through laser), applied in fabrication of P/Al cells on Cz 

silicon wafers and expected efficiency is close to 18%. 

1.2.1 Description of Work: 

           Photovoltaic solar energy is one kind of renewable energy source, it is started to 

develop from 1970 as an alternative resource of electricity. It is providing electricity but its 

efficiency and cost has not yet met the expectations what we have now a days. Solar energy 

has great advantages associated with its unlimited and widely distributed as fuel in the form 

of sun light. With respect to cost solar energy is still expensive. According to current 

estimation as shown in figure 1.1, average cost of solar energy for is ranging from 0.08-

0.14€/kWh in European Union while in European Union average cost of electricity for end 

user is 0.05-0.10€/kWh. However we can see the cost reduction in recent years. By the 

using advance technology and improved technology, it could be cheaper [2]. 
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Figure 1.1 Cost of electricity from different resources in € Per KWh (source: Fraunhofer ISE) 

 

          Today investigation in solar energy is an area of undeniable interest. On one hand, it 

is necessary to find new alternative energy resource and other hand we are interested to find 

clean energy pollution free energy.  

 There are many opinions about production of petroleum products and fossil fuel. It is thought 

that energy resources will be gradually decreased in near future. In 2008 price of petroleum 

reached as high as 148$/barrel and followed by a fluctuation in the following months. 

Currently prices of petroleum are very unstable. Natural gas is also evolved in similar way. 

The European Union is mainly depending on fossil fuel, it is necessary for diversification of 

energy sources in order to avoid the worsening the economic crisis. 

 Second is the uneven distribution of energy resources, which are currently concentrated in 

small area of Middle East, whose political situation is uncertain. In contrary solar energy is 

abundant and cannot be monopolized by any country.  

 In the mid of June 2009 EU directive force on “Promoting the use of energy from renewable 

resources” which aims was to reduces emissions of greenhouse gases by 20% in 2020 

(Pollution free energy).  

 In order to solve above mentioned problems, renewable energies are the best candidate to 

overcome the major problem of energy supply and climate changes. The renewable energy 

resources which come from external resources usually from sun do not run out, in contrast to 

conventional energy resources based on fossil fuel in form of carbon, petrol and gas. There 

are many energy resources such as wind, geothermal biomass, hydrodynamic and solar 

energy. All of these form of energy resources capable of producing huge quantity of 

electricity for present and future use. There are strong reasons to use renewable energy 

which are as follow: 

 These resources are environmental friendly in nature; do not contribute to produce 

carbon dioxide or other greenhouses gases. 

 These energy resources are everlasting abundance and widely distributed. 
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 Renewable energy resources can supply energetically to poor areas/countries, avoiding 

energy dependence on other countries.  

 

Among them, photovoltaic solar energy is the best positioned to face for long term. 

 From 2003, global PV productions have increased ten times with annual growth 40-

80%. This cumulative capacity will be reached 233 GW in 2015. Their increasing trend and 

projection is shown in the graph, figure 1.2.  

 

 

 Figure1.2 Global cumulative PV Capacity in MW since 1990  

 

        In Spain, coverage of electricity demand from solar energy has experimented in the 

beginning of 2004 (first decay of twenty-first century), up to 3-5% energy accumulated from 

solar resources [9]. In 2009-10, the many PV power plants were installed in Spain, the most 

common PV power plants are Olmedilla Photovoltaic Park (60 MW), Puertollano 

Photovoltaic Park (47.6 MW), Solar Plant La Magascona and Magasquila (34.5 MW), 

Arnedo Solar Plant (34 MW), and Dulcinea Solar Plant (31.8 MW). The Spanish situation 

were very significant in manufacturing worldwide from 90 and thanks to the existence of 

strong industrial groups, those are leader in manufacturing photovoltaic cells/panels in 

Spain, emerged as a spin-off of university research groups and in all the cases providing 

good support in R & D (research and development). 

         In 2009 due to political restriction on renewable energy, photovoltaic industry collapse 

in Spain. Module fabrication decreased more than 30%. BP solar in Madrid and some other 

Photovoltaic’s companies from Spain even from Europe moved to Asia, especially in China 

and India due low fabrication and labor cost. But still some companies have endured without 

closing their setup and come with better prospects and have plans to expand the module 

fabrication (Photon January 2010 issue).  
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Figure1.3 Photovoltaic solar energy in Spain since 1992, in megawatts (MWp) 

  

      As photovoltaic industry is rapidly growing industry in last 2 decade also known as high 

technology corresponding electronics sector as well as microelectronic and nanotechnology 

sector.  

        The global growth of photovoltaics (PV) has been fitted by an exponential curve for 

more than 2 decades. During this period, PV solar progressed from small scale application 

toward to become main source of electricity. By the end of 2014, global cumulative 

photovoltaics capacity researched at 178 gigawatts (GW). This is sufficient to supply 1% of 

overall electricity demand. For 2015, global deployment of being about 55GW is forecasted 

and installed capacity is projected to be more than double beyond 500GW between now and 

2020. In 2050 solar energy is expected to become the world`s largest source of electricity 

with PV solar cell and concentrated solar power. It will be necessary to grow PV capacity up 

to 4600GW, of which more than half is forecasted to be deployed in China and India. [10]. 

Regional wise global cumulative capacity is given in the graph figure 1.4. 
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Figure 1.4 Cumulative Capacity in Megawatts [MWp] Grouped by Region 

 

1.2.2 Summary; Analysis of state of Art 

     The generations for electricity by using photovoltaic solar module have the highest growth 

rate which is more than 40% annually over last six years. This growth rate is mainly support 

by crystalline silicon technology, which is currently contributing more than 90% of the world 

PV market. More than 90% of solar modules/panels are fabricated by using either 

monocrystalline or polycrystalline silicon globally. See the figure 1.5 for more detail.  

 

Figure 1.5 Global market-share in terms of annual production by PV technology since 1990 

    

     In the recent past, the barrier which exists to massive deployment of photovoltaic solar 

energy is only its relative high cost as compared to other power/energy generation 
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technology. It is also true that the calculations which assess the benefits of sustainability of 

the resources and its environmental impacts, impacts of photovoltaic power resource will be 

greatly benefits as compared to other power resources.  

      Now a days these barrier are not well established in distribution of generation, new 

energetic modules. In our opinion cost reduction does not only depend on the economical 

scale but also effect of R&D will be significant. Short and medium term technologies support 

the market that will be an evolution of what will be finding today in line of 

fabrication/production. While in long terms, we will need of new technologies, perhaps which 

will be based on better utilization of solar spectrum.  

      Today more than 90% of photovoltaic solar panels for generation of electricity are based 

on crystalline silicon wafers which are usually doped with boron and obtaining by casting in 

the form of monocrystalline and polycrystalline silicon, grown by Czochralski methods. There 

are many reasons to favor this technology (p-type wafer). On one hand, use of p-type wafers 

doped with boron, is quite simple to get phosphorus emitters by diffusion which is relatively 

simple technique, surface is transparent to light, recombination is low enough to give good 

photocurrent and high open circuit voltage. Moreover phosphorus is more soluble in silicon 

as compare to silicon oxide. Wafer surface rich in phosphorus could be used for making 

ohmic contacts even using screen-printing silver paste, in which silver is functional element.  

 

Figure 1.6 Curves of the solar electricity cost and forecasts 



Introduction                                                        Improvements in P/Al High Efficiency Technology, AlSi 
 
 

 

  10 

 

Figure 1.7 Electricity generating cost for PV and utility prices 

      

    One of most common way to reduce the cost of photovoltaic is to use thin silicon wafers 

without loss of conversion efficiency of solar cells. Thin silicon wafers create new challenges, 

in term of their electrical, optical and mechanical characteristics which are different from 

conventional silicon wafers even handing is more complicated than conventional wafers. 

First thing which appear in reducing the thickness is back surface of cell, which are little 

important in conventional cells. It becomes electrically active. 

    The carriers which are generated by the absorption of light within the cell, electrons which 

are minority carriers in case of p-type bases, have major possibility to travel till back surface. 

Instead of being collected by front contacts. If the back surface do not have any kind of 

electron repelling property like p+BSF, electrons end their journey at this point and 

recombine at back surface. In addition to this many photons can pass through entire 

thickness of wafer without being absorbed in semiconductor material. Overcome these 2 

problems we have to design the back surface of solar cell which not only reflect the electrons 

backward but also reflect the photons back toward the base of material to increase the 

probability of collection/absorption of photons. A structure that combines the existence of a 

reflector of electrons and photons is BSF layer with aluminum back reflector layer (in case of 

thin wafers).  

    The fragility of thin wafers has resulted in significant breaking rates when they are 

introduced in line of production or when treated at high temperature [11]. On contrary to thick 

wafers, thin wafers are more flexible behavior and difficult to handle, Due to this reason, thin 

wafers must be handled in special way in order to avoid breakage and damages. We have 

found that thin wafers can be bent to a minimum bend radius and exceeded radius may 

break the wafers. [12]. Fraunhofer ISE Institute also concluded the existence of minimum 

radius [14].  

      The industrial fabrications of silicon solar cells which are based on thin wafers require a 

better understanding of their mechanical properties. Our institution TIM-EHU also 
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participated and collaborated with other research groups in different research projects 

(Cesidel Bimude 2007 thin cells, christhin, and Tobaco) were working on resistances, 

strength and mechanical properties of material, concluded that there is no relationship 

between the radius of curvature and thickness of wafers. Wafers are broken due to surface 

cracks which appear during cutting and processing of wafers by wire saw. It may be deeper 

than 30 µm [15].  

       Measurement and analysis of surface of wafers which are removed by chemical etching 

support the wafers for greater stresses without breaking and consequently smaller radii. [15 

]. Due to this reason, it seems that thin wafers, which are obtained by thinning of thick wafers 

by chemical etching, have very low bending radii and high maximum voltages. 

       At industrial scale, the efficiency that can be obtained by silicon solar cell is range from 

16-19% depending on the process and material used. The first industrial technology have 

presented higher efficiencies than 15% are LGBC (Laser grooved buried contacts) by BP-

solar or PCSC (point contacts solar cells) employed by SunPower with efficiency 20%. [16]. 

In case of SunPower (solar cell fabricating company), the solar cells fabricated by using 

silicon grown by FZ (float-zone) technology, in order to ensure the necessary high lifetimes. 

Sanyo solar, commercializing solar module panels with HIT technology (Heterojunction with 

Intrinsic Thin-layer) new technology, announces modules with cells of 18.5 % [17]. 

      The objective of this thesis is to achieve (P/Al) AlSi industrial technology with cell 

efficiencies around 18% and thickness of 150 µm. This objective will strongly improve the 

high efficiency cell fabrication for future. In our opinion there are many technologies which 

exist in production line, which can be use carefully for mechanical handling of wafers up to 

150 µm thick. In addition to this, all our knowledge about mechanical behavior of thin wafer, 

one part of our work strategy is to optimize the amount of aluminum deposited on backside 

by using electron beam machine and thermal processing parameters such temperature and 

diffusion time. These paste which are based on composite of boron and aluminum, it will 

allow using technology aluminum alloy on backside of wafer of 150 µm thick [18]. As we 

know, from experimental results, screen printing paste of silver can produce deformation at 

front surface of the cell. For proper handling of geometry of front electrical contacts, the 

composition of the glass-frit of the paste and proper condition of firing (time and 

temperature) allows partially to compensate the tension/problem caused by the alloy of Al-Si 

of backside.  

      The efficiency of solar cell either can be increased by using high quality substrates (FZ- 

silicon) as it was the case of SunPower or by using low temperature processes and excellent 

passivation of surface as in case of Sanyo HIT cells. In both cases, high quality of base of 

material must be assured. However, these technology are expensive and we do not believe 

that high cost of FZ silicon allow these technologies to be competitive with other 

technologies. With respect to low temperature process, those involve a large number of 

variations on conventional process. Process such as HIT, it includes a large number of steps 

in plasma equipment for deposition of amorphous silicon layers. From there, it is necessary 

to look exquisitely entire thermal process, in order to avoid amorphous silicon not to 

crystallize. Crystallization may destroy the passivation properties of cells. It is necessary to 

synthesize screen printing paste for new metallization at commercial scale availability for low 

temperature fire 750 0C. In short, it looks a very complex and uncertain competitive process. 
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      The option is selected to implement a process which is based on AlSi, in which 

phosphorus is supersaturated at front surface and aluminum alloy on back surface. These 

processes ensure high lifetime of electrons in material and important source of gettering of 

metallic impurities. This process will be compatible with monocrystalline or polycrystalline 

silicon wafers, while wafer will be based on monocrystalline Cz industrial wafers.  

    Increase of efficiency of these solar cells will be based on formation of lightly doped deep 

phosphorus emitters, which is usually formed by using phosphorus diffusion in saturated 

conditions. However in case of phosphorus gettering is compromised and high diffusion time 

is required which severely limit productivity of the process.  

      There are two technical problems which must be solved for utilization of deep emitters. 

First is surface passivation for lightly doped deep emitters, passivation will be done by 

applying SixNy layer in plasma equipment by PECVD. Second is the electrical contact of 

emitters, which is complex due to specific contact resistance of silver pastes. It dramatically 

increases with decreasing surface concentration of impurities. For this process which we 

proposed the use of selective emitters incorporating phosphorus dopant, with this technology 

we expect to obtain an efficiency of 16.5%. 

      Selective emitters are already used in some industrial technologies, as SunPower cells 

and LGBC (Laser grooved buried contact) in case of BP-Solar. Recently two German groups 

have shown that is possible to form emitters in case of aluminum and phosphorus through 

laser.  

1.3  Description of P/Al technology 

             In the mid of 80´s, theoretical and experimental studies of A. Cuevas and M. 

Balbuena have given a conclusion that it is possible to obtain high efficiency with lightly 

doped deep phosphorus emitters and aluminum back surface field, P/Al (P emitters- Al 

BSF). They have obtained efficiency around 19% by using high quality FZ (float zone) 

monocrystalline silicon wafers [6]. In fact when the process was described in mid of 80´s, 

efficiency achieved was remarkable and among the best silicon solar efficiency reported in 

the world. The structure of P/Al solar cell is shown in figure below.  
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       The P/Al structure mentioned above of high efficiency can apply to other materials with 

simplicity; it can be considered useful tool to evaluate the, solar grade potential of materials 

for photovoltaic application both for monocrystalline and polycrystalline silicon.  

       The main features of this fabricating process, which we can call as standard process, is 

consist of simultaneous diffusion for formation of front phosphorus emitters and back surface 

region as a highly doped aluminum as back surface field.  

   

1.3.1 Research objective:  

     In this work, we have focused on the fabrication of P/Al solar cells with high efficiency 

process around 18% by using Cz wafers (other than FZ wafers). The research objective is 

divided into the following specific tasks: 

1.3.2 Task1: Lightly doped phosphorus emitters 

          One of objective of this work is get lightly doped homogeneous P emitters with 

moderate surface concentration. Conventional phosphorus emitters doped by using screen 

printing technique are in range of 40-60 Ω/□ and different characteristic of expected cells are 

studied by analyzing PCD (Photo conductance decay) and Sun-Voc (irradiance versus open 

circuit voltage) techniques. For homogeneous emitters, P doping is carried out by diffusion in 

a quartz tube by passing nitrogen gas through a POCl3 source understand different 

temperature and quartz furnace conditions. Addition to this we have evaluated sheet 

resistance, surface concentration and junction depth. Deep emitters which are around 

100Ω/□, provide high efficiency.  

Al Diffused layer 

(BSF) 

p- base 

n+ emitters 

Textured surface +ARC 
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Figure 1.8 Structure of standard P/Al solar cell 
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1.3.3 Selective phosphorus emitter  

   Conventional homogeneous emitters are formed over full area of silicon wafer by using 

POCl3 as a source of phosphorus at 800-875 ºC and nitrogen as a carrier gas in tube 

furnace under standard conditions. Selective emitters are doped selectively with P either by 

using a tube furnace or other means such as laser, inkjet are called selective emitters. For 

selectivity of emitters, these are lightly doped under passivated area, open for illumination 

and heavily doped under metallic contacts. These emitters allow to be metalized by industrial 

techniques such as screen printing and ink-jet.  

1.3.4 Task2: Surface passivation           

         Front surface passivation we focused on silicon nitride and tandem silicon oxide. 

Silicon nitride not only passivates the surface but also acts as antireflection layer which is 

important for high efficiency process. While in case of back surface passivation, Aluminum 

has been deposited on backside of wafer by electron beam machine and disseminated in 

quartz furnace (diffuse deeper inside silicon). The extraction of impurities or gettering as well 

as effect of BSF layer (Back surface field) has been assessed through lifetime and sun-Voc 

measurements.  

           P/Al process for solar cells fabrication is shown in figure 1.9 which also represents the 

minor tasks with little modifications. Process used in this work is modified as compare to 

standard process described by A. Cuevas and M. Balbuena. [6]  

 

Figure 1.9 Typical silicon solar cell fabrication steps by using P/Al standard process 
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        Lot of work has been done to improve this standard P/Al process and to reduce the 

fabrication cost by modifying the technological steps. Our main objective is similar, to 

improve this P/Al standard process for high efficiency and to reduce the cost. In future this 

standard process will be apply for industrial silicon solar cells fabrication.  

       Standard P/Al process was design and developed in Institute of Solar Energy, 

Polytechnic university of Madrid (IES-UPM). This process was first time investigated by J. 

Alonso on Float-zone wafers of different resistivity. The results are given in doctoral thesis 

[19]. Subsequently Rosa Lago performed various process of P/Al on Cz wafers supplied by 

Bayer. She used Cz p-type wafers with resistivity 1.4 Ω.cm and 130-170 µm in thickness, the 

best result are given in the table 1.1 [7] . Later A. Mousaousi optimized this process to apply 

on multicrystalline materials with resistivity 0.5 Ω.cm. During this investigation, A. Mousaousi 

made some modification in standard process. In this new process, he had introduced novelty 

in initial step of extracting the impurities by phosphorus that is called pre-gettering. In 

addition to this, new process reduced the thermal budget by uniting step P predisposition 

and P and Al drive in (redistribution) in one step. Detail of process is given below; 

 

1. “P” pre-gettering step at 850 0C for 30 minutes, Thus it improves the lifetime of 

wafers, over all solar cell characteristics will be improved. Etching process removes 

the diffused area from both sides.  

2. Thermal oxidation of wafers in both dry and wet conditions at 950 0C for 4 hours. 

3. Defining the active area on front surface by photolithography and removal of oxides 

from window, where solar cell to be placed and whole back surface.  

4. Alkaline texturing of surface. 

5. Evaporation of Aluminum 1µm thick on backside of wafer. 

6. For P pre-depostion and redistribution of impurities, optimum temperature was 

chosen, was 900 0C for 12 hours. During this step, emitters with depth junction 0.5 

µm and surface concentration of 5x1019/cm3 was achieved with passivated surface. 

7. Metallization of front contacts was carried by electron beam machine by using 

photolithographic technique. Metallization of back contacts was carried out by 

evaporation by EBM.  

8. Forming gas annealing at 450 0C for 20 minutes (90% nitrogen and 10% hydrogen). 

9. Finally deposition of double antireflection layer (ZnS + MgF2). 
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Figure 1.10 Solar cell fabrication processes at moderate temperature by simultaneous 

diffusion of P and Al [12] 

        Table1.1 shows typical results of standard P/Al process obtained during solar cell 

fabrication by using Float zone substrate (high quality wafers), Cz substrate (low quality 

wafers) and multicrystalline substrate.  

 

Table 1.1 

Type of wafers 
(Resistivity in Ω.cm) 

Voc  
(mV) 

Jsc  
(A/cm2) 

FF 
 (%) 

Efficiency 
(%) 

References 

Monocrystaline FZ      
(0.3) 

645-650 
 

35 75-83 17.5-19 (6) 

Monocrystaline FZ      
(0.3) 

645-650 
 

35 81-83 18.5 (19) 

Monocrystaline FZ  
      (1) 

628-632 
 

37-38 81 18.5-19.5 (19) 

Monocrystaline FZ  
     (20) 

612-618 
 

38-39.5 79-81 18.5-19 (19) 

Monocrystaline CZ 
(1.4) 

603 33.5 79 15.9 
 

(7) 

Monocrystaline CZ 
(0.5-1.5) 

602 35.4 82 17.5 
 

(7) 

Monocrystaline CZ          
(0.5-1.5) 

601 36 83 17.8 
 

(7) 

multicrystalline 
    (0.5) 

635 34.1 79.7 17.3 (20) 

Multicrystalline  
     (1.5) 

611 33.5 74 15.3 (21) 
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       In A. Mousaousi P/Al fabrication process, high lifetime was measured along with high 

efficiency on multcrystalline wafers. Although this process has advantage of high efficiency 

with high lifetime but this process has disadvantage of long duration of P pre-deposition step 

and redistribution of impurities (step 6 as mentioned above). Its high thermal load made this 

process unsuitable for other substrate. In addition to this process has low reproducibility [20]. 

  

Initial lifetime 

(µs) 

After P pre-gettering 

(µs) 

Final lifetime 

(µs) 

30 100 105 

  

        After A. Mousaousi, S. P. Alcántara investigated fabrication of multicrystalline silicon 

solar cells by using P/Al process with high resistivity. In this process the innovation was 

simultaneous extraction of impurities by phosphorus and aluminum which is called co-

gettering process. But due to high temperature, lifetime was affected, S.P. Alcántara more 

focused on improvement of lifetime by using passivation technique. The best of results of his 

research are given in table 1.1 [21]. Later M. C. Delgado was working on fabrication of 

silicon solar cell under concentrated light by using P/Al technology, with minor modification in 

concept of cost reduction and industrialization at UPM and UPV/EHU. Flow sheet of 

fabrication process is shown in figure 1.11. During her investigation and fabricating process 

of solar cells, she has obtained average efficiency around 18.5% and maximum efficiency 

20.2% under 100sun on p-type FZ wafers. More detail of her work is given in reference. [22]  

 

Figure1.11 Fabrication process of solar cell at UPM-PPV    
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2  Basic of Solar Cell 

Physics 
 

 

2.1 Current Voltage characterization 
           A solar cell is a PN junction diode which is used to create electricity under illumination. 

The electric current is due to formation of electrons and holes by the absorption of sun light. 

Before absorption of light (photon) electrons are tightly bound in covalent bonds between 

neighboring atoms and are unable to move freely in the lattice. By the absorption of light these 

bounded electrons get free and excite them into conduction band, while covalent bond with 

missing electron behaves as hole. This hole with missing electron allows the neighboring 

bonded electrons to convert into hole, leaving behind another hole and in this way holes can 

move through the lattice. In this way, by the absorption of sun light (photon) holes electrons 

pairs are created in semiconductor. It is important that photons must have greater energy than 

band gap energy in order to excite electrons from valence band to conduction.  

         The solar frequency spectrum is an approximate a black body spectrum at 5800K. 

Solar radiations which are reaching at the earth surface have higher energy than band gap 

energy. Some part of photon energy is used to excite the electrons and rest of energy is 

converted into heat by via lattice vibrations, this phenomenon is called phonon. These 

electrons and holes pairs move randomly through the lattice and net current flow is zero. To 

get non-zero net current flow, it is necessary to control the flow of electrons and holes in 

preferred direction. It is obtained by creating a PN junction or diode by diffusion process. 

During junction formation, electrons diffuse from the region of high concentration of N-type 

side of junction into the region of lower concentration that is P-type side of junction while 

holes moves from P-type side of junction into N-type. Due to diffusion of carriers (electrons 

and holes), on either side of junction creates charges separation on both side of junction 

which creates an electric field. This PN junction creates an electric field and electric field 

creates a diode which promotes charges or carriers flow knows as drift current. This drift 

current is driven by an electric field [1-5]. 

          As we know that in N-type of semiconductor electrons are majority carries while in P-

type of semiconductor electrons are minority carriers. In PN junction electrons start moving 

from high concentration to low concentration from N-type to P-type by diffusion. This 

diffusion of electrons constitutes current which is called diffusion current. Similarly holes 

diffuse from P-type semiconductor to N-type semiconductor, as a result of this diffusion or 

flow of holes create immobile ions near the junction as shown in the figure 2.1. The immobile 

negative charges of P-type material and positive charges of N-type material create a 

depletion of free mobile carriers which is called depletion region. This is region by which 

electrons and holes diffused across the junction and it does not contain any mobile carriers. 

It is also known as space charge region [1-5]. 
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Figure 2.1 Diffusion of electrons and holes to form a depletion layer 

 

       Since electrons are negative charged and holes are positive charged, these charged 

particles or carriers respond to electric field and electrons (negative charged particles) swept 

to N-type region while holes (positive charged particles) are swept to P-type regions. This 

flow of charged carriers across the PN junction creates photocurrent (IL). The separation of 

charged particles or carriers also creates potential difference or voltage (V) across solar cell 

diode which is called photo voltage. This potential difference or voltage allows the 

photocurrent to flow in external circuit connected to cell. Electrons flow from N-type region to 

external circuit and return to P-type where they are reinjected in low energy status.  

       During generation process, generated minority carriers are lost due to recombination in 

the different region of Si solar cell. Recombination may be in the base or depletion 

region/space charge region, that is called bulk recombination region or in the p+ BSF region 

or rear surface. Due to this recombination process carriers are being lost and overall reduce 

the photo-generated current. Recombination also occurs in emitter and at front surface and 

minority carriers are being lost before their transfer to external load. Recombination regions 

are shown in the figure 2.2 [1-5]. 
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       White spots represent electrons (minority carriers) in Si solar cell after generation, 

representing recombination processes in possible recombination regions while rest of them 

extracted to metal contacts (external load) in the direction of electric field across the PN 

junction. The resulted current is less than current generated from light photons. 

     Mathematically net current 𝐼 is given by equation 2.2. Whereas 𝐼0 is saturation current 

density and n is ideal factor. Equation 2.1-2.2 is simple diode equation which described the 

behavior of IV curve in forward biased diode. Dark current in reality is diffusion current 

produced by diffusion of electrons n+ emitter to electron deficient P-type base. Drift current 

which is produced by photo generation, carriers flow in opposite direction to dark diffusion 

current. According to superposition principle photo generated drift current is subtracted from 

dark current. In graph IV curve of solar cell which is a diode IV curve shifted downward by 

light generated current (IL) as shown in figure 2.3. 

 

 

 

𝐼 = 𝐼0 [𝑒
𝑞𝑉
𝑛𝑘𝑇 − 1] − 𝐼𝐿 (2.1) 

𝐼 = 𝐼𝐿 − 𝐼0 [𝑒
𝑞𝑉
𝑛𝑘𝑇 − 1] (2.2) 
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Figure 2.3, I-V characteristics of a solar cell under illumination and dark 

 

   It is noted that photo-generated current is negative due to its direction of flow, which is 

opposite to flow to electrons (as shown in diode model). However, conventionally photocurrent 

in solar cell is written as positive current. Equation 2.2 can also be written in the form of current 

density. J (A/cm2). 

 There are two important operational modes for solar cell, one is open circuit, when there is 

not current flow to external load, I=0. Second is short circuit when current flows to external 

load (short circuit condition). In short circuit condition there is no potential drop or voltage 

difference across the solar device, V=0. When voltage is zero, second part of equation 2.3 is 

cancelled due to zero voltage. JSC≈JL which is the maximum output current of solar cell.  

 When current is not flowing to external load, under open circuit conditions I=0 or (J=0), we 

can write equation 2.3 as follow: 

Detail of Open circuit voltage and short circuit current is given next session  

 

2.2 Equivalent circuit diode model of solar cell 
       It is useful to create a model of solar cell which is electrically equivalent circuit model in 

order to understand the electronic behavior. It is based on discrete electrical components 

whose functions are fully known. An ideal solar cell is modeled by current source in parallel 

 𝐽 = 𝐽𝐿 − 𝐽0 [𝑒
𝑞𝑉
𝑛𝑘𝑇 − 1] (2.3) 

 
𝑉𝑂𝐶 =

𝑛𝑘𝑇

𝑞
ln (

𝐼𝐿
𝐼0

+ 1) 

𝑉𝑂𝐶 =
𝑛𝑘𝑇

𝑞
ln (

𝐽𝑆𝐶

𝐽0
+ 1) 

(2.4) 
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with rectifying diode. In Practice no solar cell is an ideal solar cell due to shunt and series 

resistance components. These components are added to equivalent model circuit and 

resulted model is shown in circuit diagram (figure 2.4). Due to these components, solar cell 

deviates from ideal behavior.  

  

    From equivalent circuit model, it is evident that current produced by solar cell is equal to 

current produced from the sun light (photons) minus current flows through diode, minus current 

flow to shunt resistor.  

Mathematically;  

𝐼 = 𝐼𝐿 − 𝐼𝐷 − 𝐼𝑆𝐻   (2.5) 

  

I is output current, ISH is shunt current while IL is light generated current and ID diode current 

which flows through diode. 

The current through these elements of circuit is governed by voltage across them 

 𝑉𝑗 = 𝑉 + 𝐼𝑅𝑆   (2.6) 

 

While Vj is voltage across the diode as well as resistor RSH and V is voltage across output 

terminals (in volts). I is output current terminals and Rs is series resistance. Current passing 

through diode is given by Shockley diode equation: 

 
𝐼𝐷 = 𝐼𝑜 {𝑒𝑥𝑝 [

𝑞𝑉𝑗

𝑛𝑘𝑇
] − 1}     (2.7) 

 

By definition of ohm´s law, current diverted through shunt resistor is given by: 

𝐼𝑆𝐻 =
𝑉𝑗

𝑅𝑆𝐻
    (2.8) 

RSH is shunt resistance (Ω). 

ID 
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Figure 2.4 Equivalent circuit model of solar cell 
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        By substituting these three equations (2.6, 2.7 and 2.8) into equation 2.5 gives us a basic 

solar cell equation which is related to solar cell parameters to the output current and voltage.  

𝐼 = 𝐼𝐿 − 𝐼0 {𝑒𝑥𝑝
⌊
𝑞(𝑉+𝐼𝑅𝑠)

𝑛𝑘𝑇
⌋
− 1} −

𝑉 + 𝐼𝑅𝑠

𝑅𝑆𝐻
 (2.9) 

              The significant parameters of solar cells which are extracted from IV curves are the 

equivalent series resistance and shunt resistance, which is also called parallel resistance as 

in shown in figure 2.4. The value of series resistance is much lower than shunt resistance. For 

ideal solar cell Rs would be zero and RSH would be infinite. Since the parameters I0, RS, RSH 

and n (ideality factor) cannot be measured directly; the most common application of the 

characteristics equation is nonlinear regression to extract above mentioned parameters on the 

basis of their combined effect on solar cell behavior.  

          Values of I0, Rs and RSH also depend upon the real size of solar cell, when the area of 

solar cell increases, values of I0 also increases while RS and RSH start decreasing. If area of 

solar cell will be double, values of I0 will be double and RS and RSH will be half. Above equation 

2.9 can be written in term of current density or current produces per unit cell are: 

 
𝐽 = 𝐽𝐿 − 𝐽0 {𝑒𝑥𝑝

⌊
𝑞(𝑉+𝐽𝑟𝑠)

𝑛𝑘𝑇
⌋
− 1} −

𝑉 + 𝐽𝑟𝑠
𝑟𝑆𝐻

 (2.10) 

J is current density (Ampere/cm2) 

J0 is reverse current density (Ampere/cm2) 

JL is light generated current density (Ampere/cm2) 

rS is normalized series resistance (Ω-cm2) 

rSH is normalized shunt resistance (Ω-cm2) 

 

      In Solar cell recombination of electron hole pairs do not contribute to any current, 

mathematically recombination can be treated in same way as dark diffusion current. As we 

know recombination process is opposite of photo-generation, so photocurrent is opposed by 

recombination process. In simple or one diode model of solar cell which is represented in 

equation 2.9 or 2.10 both effects dark diffusion current and recombination is united into single 

dark current term. Either increase of dark diffusion current or recombination current increases 

J0, which reduced JSC and VOC. For ideal solar cell n=1 but in real solar cell, ideality factor can 

be greater than 1. The ideal and non-ideal behavior real solar cell is often split up using two-

diode model.  

 

2.2.1 Two Diode circuit model of solar cell 
In one diode model equation, ideality factor, it is considered a constant value. But in reality 

ideality factor is function of voltage across the device. At high voltage, when recombination 

process is dominated by surface and bulk regions then ideality factor is approaching to one. At 

low voltage recombination in the junction region dominates over bulk and surface region and 

ideality factor approach to two. The junction recombination is modeled by adding a second 

diode in parallel to first diode and setting the ideality factor to two. 
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Figure 2.5 Two diode circuit model of solar cell 
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Under illumination  

𝐽 = 𝐽𝐿 − 𝐽01 {𝑒𝑥𝑝
⌊
𝑞(𝑉+𝐽𝑅𝑠)

𝑘𝑇
⌋
− 1} − 𝐽02 {𝑒𝑥𝑝

⌊
𝑞(𝑉+𝐽𝑅𝑠)

2𝑘𝑇
⌋
− 1} −

𝑉 + 𝐽𝑅𝑠

𝑅𝑆𝐻
 (2.11) 

        Above equations are two diode model equations I01, I02 (J01, J02) represent saturation 

current (densities). First term of above equation represent recombination process in the base 

and in emitters of solar cell, while second term represents the recombination process in the 

space charge region (depletion region) of the solar cell. In two diode equation, n1=1 and J01 

represent ideality factor and saturation current density of ideal diode while J02 and n2 represent 

the non-ideal diode. The second diode represent the recombination in the depletion region with 

𝑛2=2. In real solar cell 𝑛2 is often higher than 2 due to various recombination phenomenon. [1-

4, 6-7]. It is clear that recombination results in the loss of voltage and current which reduces 

the efficiency of solar cell [4, 7]. 

             In non-ideal solar cell (real device) may have series resistance (Rs) and shunt 

resistance (RSH). Series resistance is due to bulk resistance of silicon wafers and contact 

resistance at front and back surface of solar cells. Circuit resistance from connections and 

terminals also contributes to series resistance. Shunt resistance is mainly due to leakage 

current at PN junction due to non-ideality factor and impurities near the junction which cause 

the partial shorting of the junction. All these parameters are shown in the circuit diagram in 

figure 2.5.  

 

2.2.2 Measurement of IV curve under illumination 
          For measurement of IV characteristics, it is important to control the standard conditions. 

It is measured under AM1.5 spectrum and at 25 0C for terrestrial solar cells. Intensity of 

radiation power for one meter square area its value is 1kW/m2under one sun illumination. 

Intensity of radiation is calibrated by using already calibrated cell before real sample cells 

measurements. Not only the intensity of radiation but also its spectrum must be match with 

standard spectrum [8-9]. Its short circuit values must be adjusted with radiation output as 

measures at external laboratory. The current voltage characteristic of solar cell is measured by 

monitoring current from solar cell point by point from zero to short circuit current by external 
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electrical load regulator. From IV data measurement, by using computer program or manually 

we can calculate: 

 Open circuit voltage (VOC) 

 Short circuit current (ISC) 

 Maximum power (Pmax) 

 Fill factor (FF) 

 Efficiency (η)  

                   Detail of above mentioned parameters are given at the end of this chapter. All the 

parameters are important for assessment of quality of solar cell for construction of modules.  

 

Figure2.6: Computer based information of IV curve under illumination 

2.2.3 Measurement of IV under dark and characteristics  
     The typical graphical form of dark IV curve is shown in figure 2.7 and 2.8. Individual range 

of dark current characteristics can be assigned different variable in two diode model. Diode 

equation (2.12) for two diode model is given below.  

Under dark 

𝐽 = 𝐽01 {𝑒𝑥𝑝
⌊
𝑞(𝑉−𝐽𝑅𝑠)

𝑘𝑇
⌋
− 1} + 𝐽02 {𝑒𝑥𝑝

⌊
𝑞(𝑉−𝐽𝑅𝑠)

2𝑘𝑇
⌋
− 1} +

𝑉 − 𝐽𝑅𝑠

𝑅𝑆𝐻
 (2.12) 

 

      The linear graph of current versus voltage reveals less information about the diode but 

much more information can be revealed by plotting current on the logarithmic scale. 

Logarithmic scale plot of same IV curve reveals more information about diode. Different region 

are dominated by different loss mechanism.  
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Figure 2.7 Dark IV curve in linear scale 

 

 

 

Figure 2.8 Dark IV Curve in logarithmic scale 
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Figure 2.9 Extraction of parameters by fitting of dark IV curve  

       The dark current in the region of 0 to 150mV, first two terms in equation 2.12 are 

negligible and dark current is mainly determined by shunt resistance RSH which is also called 

parallel resistance RP. 

        Area in the graph from 200-400mV dark current is assigned to second term of equation 

2.13 of two diode model. It is rare relationship with n2=2. Voltage from 400-600mV. It depends 

on first term of equation which is dominant. If the dependency is 𝑛1=1 then saturation current 

from I01 can be determined from it which is responsible for open circuit voltage. Voltage near 

600mV to onward, in this region series resistance has influence on IV characteristics. 

        Based on above assignment as shown in the graph, figure 2.9, different parameters to 

various regions of dark current characteristics we can determine for all type of solar cell 

parameters by using different fit program for the measured dark current characteristics. For IV 

curve adjustment and to fitting the curve we used Multiv fit program, designed by our 

department (TIM). [10-11].  

      Series resistance can be more precisely determined by IV curve under illumination as well 

dark. For Dark current measurement, high voltage is required than open circuit voltage to 

obtain a current similar values as short circuit current, because additional voltage drop at 

series resistance must be overcome. From difference between two voltages we can determine 

series resistance values by using following equation (2.13).  

 

 𝑉𝑎 − 𝑉𝑂𝐶 = 𝑅𝑆𝐼𝑆𝐶 

𝑅𝑆 =
𝑉𝑎 − 𝑉𝑂𝐶

𝐼𝑆𝐶
 

(2.13) 
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2.2.4 Limitation in two diodes Model 
             In real solar cell recombination process is a complex function of carrier concentration. 

In high efficiency solar cell, carrier concentration increase with applied voltage and 

recombination process change extremely with voltage. In such case analysis is performed by 

single diode model but allowing both ideality factor and saturation current to vary with voltage. 

In this case double diode fit model give erroneous values.  

 

2.3 Parasitic Resistance  

2.3.1 Series resistance and shunt resistance 
          During IV curve measurement, efficiency of solar cell is reduced due to parasitic series 

and shunt resistance. These parasitic resistances can be modeled as parallel resistance which 

is called shunt resistance (RSH) and series resistance as shown in one diode and two diodes 

model. This affect is also represented in diodes equation (2.11). For ideal solar cell, shunt 

resistance should be infinite (No alternate way for current flow) and series resistance should be 

zero (No voltage drop before load). 

        Light generated current is usually equal to short circuit current when there are no parasitic 

resistances. Effect of parasitic resistances is shown in figures 2.11 (a and b). From the 

equation 2.9, it is concluded that shunt resistances has no effect on short circuit current but 

reduce the open circuit voltage while series resistance has no effect on open circuit voltage but 

reduces short circuit current. However their effect mainly reduced values of the fill factor, as a 

result maximum power output (efficiency) decreased. [1-3]. 

 

Figure 2.11 IV curves graphs representing effect of series resistance (Rs) in (a) and in graph 

(b) shunt resistance (RSH) 

 

Front and back metal contact particularly front grid also contributes to series resistance. Above 
equation 2.12 can also written in modified way. 

 

𝐼 = 𝐼𝐿 − 𝐼0 {𝑒𝑥𝑝
⌊
𝑞(𝑉+𝐼𝑅𝑠)

𝐴0𝑘𝑇
⌋
− 1} −

𝑉 + 𝐼𝑅𝑠

𝑅𝑆𝐻
 

    (2.14) 
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Where A0 is the ideality of diode (quality) factor, its typical values lies between 1 and 2. A0=1 

for diode dominated by recombination in the quasi neutral region and A0=2 when 

recombination dominates in the depletion region. 

        From IV Curve, it is possible to calculate series and shunt resistance, Rs and RSH from 

the slope of IV curve at Voc and Isc respectively. The resistance at Voc, however it is at the 

best proportional to the series resistance but it is larger than the series resistance. RSH is 

represented by the slope at ISC. Typically the parasitic resistances at ISC and Voc will be 

measured and noted as shown in the figure.  
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A
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Figure2.13 IV curves for Resistances calculation 

 

2.3.2 Effect of temperature 
             Temperature affects the characteristic equation directly via T in the exponential term 

and indirectly via its effect on I0. With the increase of T reduces the magnitude of exponent in 

characteristic equation. And I0 values increases exponentially with T and net effect is to reduce 

the Voc linear with increase of temperature.  

            It must be taken into consideration, other parameters such as radiation intensity and 

temperature; it has also effects on the efficiency of solar cell. All semiconductor crystals are 

sensitive to temperature, therefore temperature also effect on IV curve. When solar cell is 

exposed to higher temperature, short circuit current (ISC) increased, while VOC decreased more 

significantly. Under specific conditions, higher temperature results in decrease in the maximum 

power output PMAX due to decrease of ISC and Voc. As a result efficiency also decreases. 
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Figure2.14: IV curve Measurement at 25 0C and 30 0C of same cell 

2.3.3 Short circuit current (Isc)  

             The short circuit current (Isc) corresponds to the short circuit conditions when the 

impedance is low and is measured when the voltage is zero. In other word the current through 

solar cell when the voltage across the solar cell is equal to zero. 

I (at V=0) =ISC 

Short circuit current (Isc) occurs at the beginning of the forward bias sweep. It has maximum 

values of current in power quadrant. For ideal solar cell, short circuit current (Isc) is the total 

values of current produced in solar cell by solar radiation (incident photons) when there is no 

loss of current due to resistances. Short circuit current (Isc) is shown in IV curve in figure 

(2.15). 
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Figure2.15 IV curve under illumination 
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Isc=I max= Iph for forward bias power quadrant  

Short circuit current (Isc) depends on the area of solar cell, to remove the dependence of area 

of solar cell, short circuit current (Isc) is usually expressed in short circuit current density (JSC in 

mA/cm2) 

        Generation of current depends on many factors; it is directly related to the intensity of 

light, spectrum of incident light and optical properties of solar cell as well as collection 

probabilities, it depends mainly on surface passivation and minority carriers in the base. Short 

circuit current can be approximated by using equation (2.15) if we have cell with perfect 

passivation and uniform generation, Equation is given below.  

 

        Although above equation have several assumptions which do not fit completely for 

conditions encountered in many solar cells. However this equation (2.15) indicates that short 

circuit current depends mainly on the generation rate and diffusion length. In case of silicon 

solar cell under AM1.5 spectrum upper maximum limit of short circuit current is 46mA/cm2. In 

laboratories short circuit current up to 42mA/cm2 has been obtained. Short circuit current 

also depends on the band gap of the material used in fabrication e.g. Short circuit current 

start decreasing with increase of band gap. While open circuit voltage increases with 

increase of band gap.  

 

2.3.4 Open circuit voltage (Voc) 
  Open circuit voltage is the maximum voltage available from solar cell when current is not 

flowing in solar cell. Voltage available from cell when the amount of current is zero (No 

current flow) is called open circuit voltage (Voc). It is corresponded to the forward bias of 

solar cell due to bias of junction of solar cell with photo-generated current.  

V (at I=0) = VOC 

Open circuit voltage (Voc) is graphically represented in IV curve in figure (2.15).  

 𝐽𝑆𝐶 = 𝑞𝐺(𝐿𝑛 + 𝐿𝑝) 

While 
G= Generation rate 
Ln and Lp = electron and hole diffusion length 
q = charge of electron or hole 

(2.15) 
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Figure 2.15 IV curve under illumination 

  We can calculate open circuit voltage by adjusting overall current equal to 

zero and by considering ideal factor equal to one and shunt resistance is very high enough 

to neglect it. 

 

                    Open circuit voltage (Voc) depends on the dark saturation current that depends 

on the recombination in the solar cell and photon generated current. Open circuit voltage is a 

measure of the recombination in the device. Single crystalline silicon solar cells have open 

circuit voltage (Voc) up to 730mV under one sun and AM1.5 conditions at laboratory scale 

while at commercial scale on multicrystalline silicon solar cells have Open circuit voltage 

640mV. Open circuit voltage can be calculated from carrier concentration by using equation 

(2.17) which is given below. [12]. 

 
𝑉𝑂𝐶 =

𝑛𝑘𝑇

𝑞
ln (

𝐼𝐿
𝐼0

+ 1) 

While 

I0= Dark saturation current 

IL= photon generated current 

n= Ideal factor 

T= Temperature 

K = Boltzmann constant 

q = electronic charge 

 

 (2.16) 
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Open circuit voltage (Voc) determined by above equation is called implied Voc. 

 

2.3.5 Maximum power (Pmax) 

            Maximum power (Pmax) is product of IMP and VMP, part of voltage and current 

participating to get maximum power (Values of current and voltage at Pmax point as shown 

in graph in figure 2.16. Power can calculate by following equation (2.18). 

                 At short circuit current point or open circuit voltage point, net power is zero but 

maximum power can be obtained in between these two points as shown in the graphs. The 

value of power start increasing with the increase of current and voltage and at certain point 

we get maximum power and this point is maximum power point. After this point value of 

maximum power starts decreasing till zero values.  
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Figure 2.16 (a) (b) Maximum Power for an I-V sweep 

 

 

𝑉𝑂𝐶 =
𝑘𝑇

𝑞
ln [

(𝑁𝐴 + ∆𝑛)∆𝑛

𝑛𝑖
2 ] 

While 

∆𝑛 = is excess carrier concentration 

NA= doping concentration 

𝑛𝑖= intrinsic carrier concentration 

T= Temperature 

kT/q = Thermal voltage 

(2.17) 

 𝑃 = 𝐼𝑉 (2.18) 
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2.3.6 Fill Factor (FF) 
             Fill factor is essential parameter for solar cell characterization which is defined as ratio 

of maximum power (Pmax) to the area of rectangle formed by open circuit voltage (Voc) and 

short circuit current (Isc) as shown in figure 2.17. Maximum power (Pmax) is product of IMP and 

VMP, part of voltage and current participating to get maximum power (Values of current and 

voltage at Pmax point as shown in graph in figure 2.17). FF is calculated by dividing the 

maximum power to the theoretical power (PT), theoretical power is output of both open circuit 

voltage and short circuit current [13] 

 

 

 

 

 

 

 

             

 

 

 

     

           For good solar cell, larger fill factor is desirable and correspond to I-V sweep that is 

more square-like. Typical values of fill factors range from 0.5 to 0.85 in case of silicon solar 

cells, usually fill factors is represented in percentage [14]. 

 

2.3.7 Efficiency 
           Efficiency is the ratio of electrical power output (Pout) compares solar power input 

(Pin). It is ratio of energy output from solar cell to input energy from sun light. Efficiency is 

one of the most common parameter used to describe performance of solar cell and to 

compare with other cells.  

 

 

 

FF =  
Pmax

(VOC)(ISC)
 or  

Pmax

PT
 

Pmax = (IMP. VMP) 

(2.19) 

 𝜂 =  
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
 

 

(2.20) 

Isc 
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Figure 2.17 Fill factor from I-V Curve. 
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Efficiency of solar cell is related to overall performance of solar cell, Reflection has great 

influences on short circuit current and efficiency. Other common parameters are spectrum 

and intensity of incident sunlight and temperature. During IV curve measurement, 

temperature must be controlled. It is usually measured under AM1.5 condition and at 25 0C 

for terrestrial solar cells. For efficiency calculation, power input (Pin) is taken as product of 

irradiance of incident light; it is measured in W/m2or mW/cm2. For 1m2 area its value is 

1000W/m2 under one-sun illumination. For 1cm2area, its value is 100mW/cm2. Power input is 

calculated with respect to surface area of solar cells [1, 14]. 

 

2.3.8 Efficiency losses in Solar cell 
            The conversion efficiency of real solar is always lower than ideal solar cell due to 

various loss factors. Some of these losses are controllable, we can save efficiency loss but 

some are intrinsic to the system. Basic principle of solar cell explains physical process by 

which sun light is converted into electricity, by semiconductor materials. Theoretical study 

helps us to understand fundamental limits of solar cell and give guidance on the phenomena 

that contribute to losses and solar cell efficiency.  

    In general, solar cell operation consists of two steps; one is absorption of sunlight (photon) 

creates electrons hole pairs and second is transfer of photo excited electrons to external 

load. Any process which causes loss of photo excited energy of electron before it’s captured 

by external load is known as recombination. This recombination takes place before the 

completion of step 2. Absorption of sun light results in generation of electrons hole pair, the 

process by which photo excited electrons loss its energy and being a captured by the lattice 

which is called recombination of electron with hole.  

      Efficiency loss mechanism of solar cell is mainly divided in two parts. One is electrical (or 

electronic) losses and second is optical losses. All electrical losses mechanism in solar cell 

involves a recombination process i.e. recombination of electron hole pair. It will be discuss in 

detail in recombination mechanisms (Radiative, Auger and SRH recombination). Optical loss 

is mainly due to reflection of sun light and low energy photons which are unable to create 

electron hole pair. Schematic representation of efficiency loss parameters of silicon solar cell 

is represented in figure 2.18. 

    When a photon which has energy equal to band gap energy, It excited an electron from 

valence band to conduction band by the absorption of photon energy (E). If energy of photon 

is greater than band gap energy (Eg), excessive energy of photon (E-Eg) dissipated into 

lattice vibrations within picoseconds. This loss is known as thermalization loss.  

       Not all generated electron hole pairs contribute to electric current (efficiency) due to 

recombination. Due to carriers recombination process efficiency is affected and decreased. 

The optical and electrical losses mentioned in the figure 2.18 should be minimized in order to 

get high efficiency solar cell [4]. 

 
𝜂𝑚𝑎𝑥 =

𝑃𝑚𝑎𝑥

𝑃𝑖𝑛
=

(𝑉𝑂𝐶)(𝐼𝑆𝐶)(𝐹𝐹)

𝑃𝑖𝑛
 

 

(2.21) 
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Figure 2.18 Efficiency loss mechanism in silicon solar cell 

In silicon solar cell recombination process occurs in various regions such as; 

 Bulk region (base region) 

 Front emitter regions 

 Front surface.  

 Rear BSF region  

 Rear surface  

Recombination regions of solar cell are represented in the figure 2.19 
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                 White dots represent electrons (minority carriers) in Si solar cell after generation, 

representing recombination in possible recombination regions while rest of them are 

extracted to metal contacts (external load) in the direction of electric field across the PN 

junction. The resulted current is less than current generated from light photons. Although 

recombination also occurs in depletion region but in good fabricated solar cell recombination 

is relatively low. For high efficiency solar cell, reducing recombination losses is very 

important. It is also one of the objectives of this thesis.  

       Any electron which exists in conduction band from high energy level will return to into 

valence band to stabilize in low energy level, where it effectively recombines with hole. This 

is called recombination. Experimentally recombination loss is quantified as minority carriers’ 

lifetime 𝜏. Lifetime a measure of how long a photo generated electron like to stay around 

before recombining. It is one of most important parameters for characterization of wafers for 

power electronic devices and solar cell. Wafers with long lifetime means minority carriers 

generated in the bulk will persist for a long time before recombining. Usually recombination 

(R) is expressed in volume recombination rate (U) and lifetime related to recombination rate 

is given by (2.22): 

 
𝜏 =  

∆𝑛

𝑅
  =   

∆𝑛

𝑈
 

(2.22) 

Where U is expressed cm-3/s, ∆𝑛  excessive carriers’ concentration is in cm-3 and lifetime in 

second (s). 

There are three basic types of recombination in silicon semiconductor material.  

1. Radiative recombination 

2. Auger recombination 
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Figure2.19 Representation of 𝒏+𝒑𝒑+ solar cell with recombination regions 
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3. Shockley Read Hall recombination SRH (Recombination via defects states in 

semiconductor band gap)  

 Surface recombination which is due to dangling bonds at the wafer surface; it is considered 

a special case of bulk SRH recombination applied to the two dimension surface. As 

recombination occurs in all parts of the solar cell simultaneously, measurements therefore 

reflect an effective recombination rate and an effective lifetime 𝜏𝑒𝑓𝑓 by using equation 2.22.  

 

𝑈𝑒𝑓𝑓 = 𝑈𝑏𝑢𝑙𝑘 + 𝑈𝑒𝑚𝑖𝑡𝑡𝑒𝑟 + 𝑈𝑓𝑟𝑜𝑛𝑡 + 𝑈𝐵𝑆𝐹 + 𝑈𝑟𝑒𝑎𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒             (2.23) 

1

𝜏𝑒𝑓𝑓
=

1

𝜏𝑏𝑢𝑙𝑘
+

1

𝜏𝑒𝑚𝑖𝑡𝑡𝑒𝑟
+

1

𝜏𝑓𝑟𝑜𝑛𝑡 𝑠𝑢𝑟.
+

1

𝜏𝐵𝑆𝐹
+

1

𝜏𝑟𝑒𝑎𝑟 𝑠𝑢𝑟.
 

 

         (2.24) 

 

Recombination in each region is effected by radiative, Auger and SRH recombination 

mechanism, Detail of each mechanism is given below. 

 

2.3.9 Radiative Recombination (band to band recombination) 
         Radiative recombination or band to band recombination correspond to recombination 

process of electron hole, where an electron in conduction band directly move to valence 

band to recombine with hole and excess energy is released in the form of photon. The 

radiative volume recombination is proportional to the electrons concentration in the 

conduction band and holes concentration in valence band. It is reverse process of photo-

generation and energy is release in the form of photon as shown in the figure 2.20.  

Mathematically, radiative recombination rate is given by:  

 𝑈𝑟𝑎𝑑 = 𝐵𝑛𝑝 = 𝐵(𝑛0 + ∆𝑛)(𝑝0 + ∆p) (2.25) 

 

Where B is radioactive coefficient, n is the free electrons and p is free holes concentration. 

While n0 and p0 concentrations in the dark (due to doping) and ∆𝑛  and ∆𝑝 are excessive 

concentration due to light generation in case of solar cell. From detail balance calculation 

value of B for silicon material is given 2 × 10−15𝑐𝑚3𝑠−1 [15]. 

 

 

 

 

 

 

 

 

   

Ec 

Ev 

Figure 2.20 Energy band diagram representing relative recombination 
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By using equation 2.22 and 2.25, the lifetime due to radiative recombination is 

 
𝜏𝑟𝑎𝑑 =

∆𝑛

𝐵(𝑛0 + ∆𝑛)(𝑝0 + ∆𝑝)
 

(2.26) 

 

Under low level injection (LLI) conditions, where (∆𝑛, ∆𝑝 ≪ n0, p0) and high level injection 

conditions, where (∆𝑛, ∆𝑝 ≫ n0, p0) equation 2.20 can be simplified as 

𝜏𝑟𝑎𝑑𝐿𝐿𝐼 =
1

𝐵𝑁𝐷𝑜𝑝𝑒𝑑
                                   𝜏𝑟𝑎𝑑𝐻𝐿𝐼 =

1

𝐵∆𝑛
 

(2.27) 

 

Where NDoped is electrons/holes doping concentration usually represented as ND for donor 

and NA for accepter dopant respectively for n or p-type semiconductor.  

It is noted that radiative recombination lifetime is stay constant at low injection but at 

intermediate or high injection recombination lifetime decrease. The radiative recombination 

in case of silicon is very low as compared to types of recombination and it has not significant 

due to that fact that silicon is indirect band gap semiconductor. It means that bottom line of 

conduction band and valence band do not line up in K-space (momentum).In this process a 

fourth particle is involved (apart from electron, hole and photon) to the conserve the energy 

and momentum. See the figure (2.21) [1, 4, and 16]. 

 

2.3.10 Auger Recombination 

                 Auger recombination is three particles interaction where an electron in conduction 

band recombines with hole in valence band by giving extra to energy to third particle which 

maybe an electron or hole. Mechanism of Auger recombination is shown in figure 2.22. 

 

 

Energy (E) 

 

Momentum (P) 

 

Energy (E) 

Momentum (P) 

(a) (b) 

Figure 2.21 Schematic representation of Radiative Recombination (a) direct band gap 
recombination in GaAs semiconductors (b) indirect band gap in Silicon semiconductor 
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     The ‘eeh’ and ‘ehh’ represents the cases where excess energy is transferred to an 

electron and hole respectively. The total Auger recombination process is sum of two 

processes two holes and one electron or two electrons and one hole particle Uehh or Ueeh 

respectively. The Auger recombination rate UAuger is given by: 

 𝑈𝐴𝑢𝑔𝑒𝑟 = 𝑈𝑒ℎℎ + 𝑈𝑒𝑒ℎ = 𝐶𝑛𝑛2𝑝 + 𝐶𝑝𝑛𝑝2 (2.28) 

  

  Where Cn and Cp are Auger coefficients, for electrons and holes respectively  

       Consequently the expression (equation) for Auger recombination lifetime under low and 

high injection for n-type and p-type silicon are as follows: 

N-type 

Si 𝜏𝐴𝑢𝑔𝑒𝑟,𝐿𝐿𝐼 =
1

𝐶𝑛 𝑁𝐷
2                   𝜏𝐴𝑢𝑔𝑒𝑟,𝐻𝐿𝐼 =

1

(𝐶𝑛 + 𝐶𝑝)∆𝑛2
 

(2.29) 

P-type 

Si 𝜏𝐴𝑢𝑔𝑒𝑟,𝐿𝐿𝐼 =
1

𝐶𝑝𝑁𝐴
2                 𝜏𝐴𝑢𝑔𝑒𝑟,𝐻𝐿𝐼 =

1

(𝐶𝑛 + 𝐶𝑝)∆𝑝2
 

 

(2.30) 

 

        The most common used values for Auger coefficient were determined by Dziewior and 

Schmid: Cn = 2.8 × 10−31 cm6/s and for Cp = 9.9 × 10−32 cm6/s for silicon with dopant 

concentration greater than5 × 1018 𝑐𝑚−3 [17 -18].  

         By the comparison of equations 2.22, 2.23 and 2.24, it shows clearly that Auger 

recombination is much stronger in heavily doped silicon than radiative recombination. Auger 

lifetime decreases as the square of doping concentration. While radiative lifetime decreases 

linearly with doping concentration. Therefore Auger recombination is dominant in emitter 

region and back surface field. The two values of Auger recombination Cn and Cp show that 

Ec 

Ev 

Figure 2.22: Energy band diagram representing Auger recombination process 
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Auger recombination in heavily doped n-type silicon is roughly 3 times stronger than p-type 

silicon. P-type silicon solar cells with n-type emitters are more affected by Auger 

recombination.  

        Experimentally many authors have been reported higher Auger recombination rate 

higher than that calculated by Dzeiwior and Schmid [19].Those higher values of Auger 

recombination were considered due to coulombic interactions between the charged particles. 

Recently Kerr and Cuevas [20] have provided some different expression for Auger 

recombination lifetime but conclusion is same that Auger recombination process is dominant 

over radiative process in heavily doped silicon and it is three times more effective n heavily 

doped n-type silicon than p-type silicon.  

        Revised expression by Kerr and A. Cuevas [20] are valid for doping concentration 

greater than 5 × 1015 𝑐𝑚−3 . 

N-type 

Si 
𝜏𝐴𝑢𝑔𝑒𝑟,𝐿𝐿𝐼 =

1

1.18 𝑥10−24𝑁𝐷
1.65  (2.31) 

P-type 

Si 
𝜏𝐴𝑢𝑔𝑒𝑟,𝐿𝐿𝐼 = 

1

6𝑥10−25𝑁𝐴
1.65 

 

(2.32) 

  

 

2.3.11 Shockley Read Hall recombination SRH (Recombination via defects 

states in semiconductor band gap) 

            Defects in semiconductor can create different energy level within the band gap that 

can enhance the probability of recombination process. These defect levels also called trap 

level. In SRH recombination, an excited electron lose its energy in small increment (level 

traps) in between conduction band and valence band instead of single large step as in case 

radiative and Auger recombination. SRH recombination mechanism is shown in figure 2.23. 

Defects in semiconductors are created by doping process or by crystal defects in 

semiconductor lattice [21-22]. 

 

 

 

 

 

 

 

 

                  

 Under 1-sun illumination, SRH recombination is dominant  

Ec 

Ev 

ET 

Figure 2.23 Energy band diagram representing SRH recombination process 
(Recombination through defects level in band gap) 
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     Mechanism in the bulk region of multicrystalline silicon solar cell. Multicrystalline silicon 

mostly has defects in lattice or impurities and SRH recombination is dominant mechanism in 

multicrystalline solar cell. These defects or impurities limits the SRH recombination lifetime 

of silicon substrate to a few hundred microseconds or even less. While Auger lifetime of 

silicon wafer with resistivities (≥ 0.6Ω. 𝑐𝑚)is over 1 ms using Dziewior and Schmid model or 

Kerr model [17, 20]. SRH recombination often dominant in bulk region of high quality wafers 

e.g. float-zone wafers, due to introduction of defect or impurities during solar cell fabrication 

process.  

 Recombination rate due to defect levels (level trap) in the band gap was first time analyzed 

by Shockley, Read and Hall for single defect level [21-22]. 

 

𝑈𝑆𝑅𝐻 =
𝑛𝑝 − 𝑛𝑖

2

𝜏𝑝0(𝑛 + 𝑛1) + 𝜏𝑛0(𝑝 + 𝑝1)
 

 

(2.33) 

 

Where 𝜏𝑛0 and 𝜏𝑝0 are electron and hole lifetime which is related to the thermal velocity ( vth) 

and trap density (NT) and the capture cross section for electrons (𝜎𝑛) and holes (𝜎𝑝) are:  

 
𝜏𝑛0 =

1

𝜎𝑛𝑁𝑇𝑣𝑡ℎ
                    𝜏𝑝0 =

1

𝜎𝑝𝑁𝑇𝑣𝑡ℎ
 

 

(2.34) 

 

The capture cross sections are related to the probability of the defects states capturing an 

electron or hole. 𝑛1 and 𝑝1 are related free electron and holes concentration in case in 

which Fermi level (EF) lies at the trap energy level, to the fill the trap level with carriers 

(electrons or holes), which is given by: 

 
𝑛1 = 𝑛𝑖 exp (

𝐸𝑇 − 𝐸𝑖

𝑘𝑇
)              𝑝1 = 𝑛𝑖exp (

𝐸𝑖 − 𝐸𝑇

𝑘𝑇
)     

 

(2.35) 

 

       Where ni and Ei are the intrinsic carriers concentration and intrinsic energy level 

respectively. T is the temperature and k is Boltzmann constant. By using equation 2.22, The 

SRH recombination lifetimes can be obtained as follows: 

 

𝜏𝑆𝑅𝐻 =
𝜏𝑝0(𝑛 + 𝑛1) + 𝜏𝑛0(𝑝 + 𝑝1)

𝑛0 + 𝑝0 + ∆𝑛
 

(2.36) 

 

     From equation 2.36 it can be seen that SRH recombination lifetime depends on dopant 

concentration, injection level and defects, specific properties like capture of cross-section 

and defects energy level. The expression for SRH recombination lifetimes under low and 

high injection conditions are as follows.  
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For 

N-

type 

Si 
𝜏𝑆𝑅𝐻 ,𝐿𝐿𝐼 = 𝜏𝑝0 +

𝜏𝑛0(𝑝1 + ∆𝑛)

𝑁𝐷
              𝜏𝑆𝑅𝐻,𝐻𝐿𝐼 = 𝜏𝑛0 + 𝜏𝑝0 (2.37) 

P-

type 

Si 

𝜏𝑆𝑅𝐻 ,𝐿𝐿𝐼 = 𝜏𝑛0 +
𝜏𝑝0(𝑛1 + ∆𝑛)

𝑁𝐴
              𝜏𝑆𝑅𝐻,𝐻𝐿𝐼 = 𝜏𝑛0 + 𝜏𝑝0 (2.38) 

 

      From above equations 2.37 and 2.38, it is concluded that SRH lifetime at LLI can be 

approximately constant (first term in equation) or increase with injection level (second term 

of equation) depending on capture cross section ratio and energy levels of defects state.  

      It is also concluded that defects close to middle of band gap, which are also known as 

recombination centers, are most effective recombination sites. For this kind of defects (deep 

defects) n1 and p1 become very small and second term in LLI equations drops out. The mid-

gap traps are considered to be most damaging traps that can greatly enhance the overall 

recombination in the solar cell.  

For N-type Si 𝜏𝑆𝑅𝐻 ,𝐿𝐿𝐼 = 𝜏𝑝0       for mid gap trap (2.39) 

For P-type Si 𝜏𝑆𝑅𝐻 ,𝐿𝐿𝐼 = 𝜏𝑛0       for mid gap trap (2.40) 

 

        For high level injection, Equation remains unchanged which means that SRH 

recombination lifetime also increases with injection level for deep defects.  

 

2.4 Surface recombination 
           Surface recombination is a phenomenon, where excited electrons in conduction band 

recombine with holes in the valence band via defects level at the surface of wafer, in silicon 

solar cell. Surface of silicon wafer represents a severe disruption of crystal lattice, which 

promotes the recombination and sites for high recombination. This surface recombination 

can be treated as an extension of SRH recombination, with two dimension surface. 

Mechanism is shown in figure 2.24. 

        Surface recombination rate is limited by the rate at which minority carriers moves 

toward the surface. Another parameter which is called surface recombination velocity (SRV) 

is introduced to explain the phenomenon of surface recombination. Surface with no 

recombination, movement of carriers toward the surface is zero, so SRV is zero. Surface 

with fast recombination, movement of carriers toward the surface is limited by the maximum 

velocity which they can attain, is1 × 107𝑐𝑚/𝑠𝑒𝑐. [23]. 
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There are two quantities, which are used to qualify the surface recombination activity.  

1. Surface recombination rate (US in cm2/sec) a recombination rate of the carriers per 

unit area per unit time.  

2. Surface recombination velocity (S or SRV in cm/s) a velocity of carries by which they 

travel toward the surface.  

 

These two quantities which are related to surface recombination rate can be express as 

follow: 

 
𝑆 =  

𝑈𝑆

∆𝑛
 (2.41) 

 Whereas ∆𝑛 is the excess carrier concentration at the surface. For single surface state 

equation 2.27 can by modified as in term of surface recombination rate US, as  

 

𝑈𝑆 =
𝑛𝑠𝑝𝑠 − 𝑛𝑖

2

𝑛𝑠 + 𝑛1

𝑆𝑝0
+

𝑝𝑠 + 𝑝1

𝑆𝑛0

 
(2.42) 

Where nS and pS are surface carriers concentrations, Sn0 and Sp0 are the characteristic 

surface recombination velocities for electrons and holes, which are related to the surface 

state density NST, are given by  

 𝑆𝑛0 = 𝜎𝑛𝑁𝑆𝑇𝑣𝑡ℎ 

𝑆𝑝0 = 𝜎𝑝𝑁𝑆𝑇𝑣𝑡ℎ 

(2.43) 

NST is density of surface states and vth is thermal velocity, so from definition of surface 

recombination velocity (equation 2.41) SRH recombination velocity can be written as: 

 
𝑆 =

𝑛0𝑝0 − ∆𝑛𝑆

𝑛𝑠 + 𝑛1

𝑆𝑝0
+

𝑝𝑠 + 𝑝1

𝑆𝑛0

 
(2.44) 

E c 

E v 

ET 

Figure 2.24 Energy band diagram representing SRH recombination through 
surface defects in the band gap 
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In reality surface states are not localized in a single energy level but these are distributed 

across the band gap of a semiconductor. Total surface recombination rate is calculated by 

integrating over the entire band gap: 

 

𝑈𝑆 = ∫
𝑛𝑠𝑝𝑠 − 𝑛𝑖

2

𝑛𝑠 + 𝑛1 (𝐸) 
𝜎𝑝(𝐸)

+
𝑝𝑠 + 𝑝1 (𝐸) 

𝜎𝑛(𝐸)

𝐸𝑐

𝐸𝑣

 𝑣𝑡𝐷𝑖𝑡(𝐸)𝑑𝐸 (2.45) 

 

Where Dit is surface trap density per unit energy cm-2/eV (1/eV.cm2). Ec is conduction band 

and Ev is valence band. Equations 2.44 and 2.45 shows that for recombination at the 

surface require the presence carriers (electrons and holes) and defects states which mediate 

the recombination process. Reduction in carriers, electrons/hole or defects states reduces 

the surface recombination. Experimentally it is achieved by passivation which maybe field 

effect passivation or interface passivation (also called chemical passivation).  

2.4.1 Minimization of Recombination  
            Recombination process of generated carriers (electron and hole) is possible at the 

surface, in the depletion region and in the bulk region of solar cell. In order to get high 

photocurrent and conversion efficiency, it is necessary to minimize the recombination 

problems and it is achieved by passivation.  

2.4.2 Surface passivation techniques 
             High number of defects at the surface of semiconductor makes surface 

recombination dominant mechanism in silicon and other semiconductors. Reduction of 

surface recombination is called passivation. Passivation techniques maintain the minority 

carriers’ density high to achieve high efficiency solar cells. Passivation can be achieved by 

two ways.  

a) By deposition of dielectric film (interface passivation) 

b) By creating surface electric field (BSF) 

           Deposition of dielectric film, at the surface of crystalline silicon to eliminate dangling 

bonds is called interface passivation. Chemical deposition of dielectric film such as silicon 

dioxide or silicon nitride can be used for passivation. Silicon nitride not only passivates the 

surface but also acts as an antireflection layer. The best passivation is reported until now is 

that of plasma enhanced chemical vapor deposition (PECVP), tripe layer stack of 

amorphous silicon, silicon dioxide and silicon nitride (a-Si/SiO2/Si3N4) [24]. By using 

additional field effect passivation provided by corona charge, Herasimenka et al. [24] has 

reported effective surface recombination velocities (Seff) below 1cm/sec on 1.7Ω.cm on n-

type silicon. Similar results have been reported with addition of annealing step [25] and by 

atomic layer deposition (ALD) of aluminum oxide (Al2O3) [26]. These films have reached Seff 

as low as 2.4cm/sec and 1.2 cm/sec on similar type of material. The values of Seff 20-30cm/s 

have been commonly observed at industrial level [27]. 

      And second is by creating a surface electric field that (field effect passivation) that repels 

one type of carriers electrons or holes back and therefore limits the amount of recombination 

and possible at the interface due to field effect. Field effect can set up either by charging the 

dielectric film or by doping the surface. Field effect passivation on rear surface of p-type 
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silicon solar cell is achieved by deposition of p+ doped surface layer which is called back 

surface field (BSF).  

2.4.3 Front surface passivation 
             As I have mentioned early, unwanted recombination of the photo generated carriers 

is the major limiting factor in conversion efficiency of solar cell. In crystalline silicon material 

surface represents discontinuity of the crystal arrangement due dangling bonds. These 

dangling bonds act as good recombination centers for carriers. In band gap figure (figure 

2.24) these dangling bonds give rise to energy state in middle of band gap which acts as 

recombination centers. In order to avoid this recombination, surface must be passivated. At 

front surface it is achieved by deposition of an electric layer to passivate the dangling bonds 

which remove energy states from middle of band gap. SiO2 and Si3N4 or combination of both 

layers is usually used for front passivation. Both layers have high band gap which prevent 

carriers to reach them at the surface.  

2.4.4  Back surface passivation 
            Back surface is usually achieved by field effect passivation. In this method high level 

of doping in low doped semiconductor of similar impurities (for example Al in p-type silicon 

and P in n-type silicon) is used. It is typically done on rear side (back surface) of silicon solar 

cell. A layer of heavy doped is deposited on back surface (p+ represents doping 

concentration above 1018cm-3 or higher) to obtain pp+ junction. It gives rise an electric field 

at the junction in the direction from p to p+ side. This junction creates a potential barrier to 

the minority electrons. The electric field repels electrons back toward PN junction and 

reduces the recombination at back surface. This is known as back surface field (BSF) or 

back surface layer. See the figure 2.25. 

 

 

 

 

 

P base 

P+ BSF 

Front 

contacts 

n + 

emitter

s 

Back 

contacts 

PP+ junction 

 

Figure 2.25 n+ p p+ back surface field junction solar cell 
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        Field effect passivation in case of p base solar cell is achieved with p+ doping   surface 

layer (BSF) or negatively charged dielectric layer as shown in figure 2.26. Both doped layer 

and negatively charge dielectric layer result in stronger surface electric field and steeper 

band-bending which enhance field effect passivation. [28]. 

       In high efficiency solar cell, used both passivated methods. E.g. in PERL (passivated 

emitter rear locally contacted) solar cell with efficiency 25%, solar cell structure which has 

both high quality rear Passivation and localized B- BSF region under rear point contacts. 

[29].  

         Effectiveness of the surface recombination is given in term of surface recombination 

velocity (SRV or S). It is defined as the rate of recombination at the surface divided by the 

excess of carrier concentration at the surface.  

 

 
𝑆𝑒𝑓𝑓 =

𝑈𝑆

∆𝑛
=

𝐽𝑟𝑒𝑐

𝑞∆𝑛
 

For p-type cell, it simplified to  

𝑆𝑒𝑓𝑓 =
𝐽𝑂𝐸(𝑁𝐴 + ∆𝑛)

𝑞𝑛𝑖
2  

(2.46) 

  

          It is common to measure effective recombination velocity which include combined 

effect of all processes such SRH recombination, Auger recombination in non-uniform emitter 

(band gap narrowing which increases ni with in emitters and recombination at emitter 

surface. The lower is the surface recombination velocity (SRV), better is the surface 

passivation and vice versa. 10cm/s SRV value is considered to a well passivated surface 

while value of SRV higher than 104 cm/s represented a poor passivated surface. 

 

n+ 

emitter 

p- base 

𝜀 

𝜀 
P+BSF 

n+ emitter 

p- base 

𝜀 

𝜀 

Figure 2.26; Band diagrams representing electric field and band bending caused by a) p+ 
BSF layer b) a negatively charged dielectric layer with its effect on electron flow 
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2.4.5 Bulk passivation  
            In general multicrystalline silicon and other materials which have low degree of 

crystallization can contain crystallographic defects, grain boundaries, metallic impurities etc. 

These defects effect on minority carrier lifetime of the bulk material and degrade solar cell 

performance. The defects provide recombination centers and decrease to lifetime. To 

overcome the recombination problems in the bulk, special treatment have been developed 

either by passivation of bulk crystallographic defects using hydrogen (Hydrogenation) and by 

gettering process which is used to remove metallic impurities from bulk.  

2.4.6 Bulk passivation: The Gettering 
            Commercial solar cells fabrications on low cost substrates have high concentration of 

metallic impurities (iron, nick and copper particles) and defects. Silicon technology has 

harmful effect of metallic impurities on the performance of solar cell. Multicrystalline silicon 

wafers have high concentration of metallic impurities even it is difficult to avoid in case of 

single crystalline silicon wafers. These impurities create leakage current in pn junctions. In 

order to avoid the harmful effects of metallic impurities, gettering technique is used. 

Gettering is a technique used to eliminate or reduced impurities by relocating and blocking 

them from active region/bulk of the device. As silicon solar cell comprised the whole wafer 

thickness, it is important to clear the bulk of solar cell from impurities. In commercial solar 

cells fabrication, gettering of impurities is obtained by aluminum and phosphorus diffusion. 

Aluminum is used to create back surface field (BSF) and back contacts. Aluminum not only 

used to create a BSF and back contacts but also passivate defects in the back. SiAl alloy 

works very well for gettering of metallic impurities. [ 30]. In case of p-type solar cells 

fabrication process which is dominant type of solar cell, the emitter formation by P diffusion, 

simultaneously getters iron from bulk from p-type silicon to diffuse into phosphorus layer. SiP 

particles in emitters region acts as gettering sites, [31]. 

2.4.7 Bulk passivation: Hydrogenation 
            Hydrogenation has gain attention in low cost solar cell fabrication process by using 

amorphous silicon. Incorporation of hydrogen strongly improves the properties of amorphous 

silicon (a-Si: H). [32]. Hydrogenation of amorphous a-Si saturate silicon dangling bonds and 

makes it a semiconductor suitable for solar cell and device fabrication. Dangling band 

otherwise form band gap defects of a-Si and acts as recombination centers [33-35]. A similar 

beneficial effect has also noted for grain boundary passivation by hydrogenation in 

polycrystalline silicon.  

 

2.5 Optical losses in solar cell 
           Optical losses mainly affect on power loss by decreasing the short circuit current. 

(ISC).Optical loss is the amount of light which is reflected back or not absorbed in solar cell to 

generate electron hole pairs. For silicon solar cell, visible spectrum (350-800nm) has enough 

energy to generate electron hole pair.  

  Major optical losses in typical silicon solar cell are summarized in figure 2.27, which are 

given below: 

1. Reflection at front surface 

2. Parasitic absorption in ARC layer 

3. Parasitic absorption in emitter 
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4. Parasitic absorption in BSF layer and rear contacts 

5. Reflection or escape from cell interior  

 

From figure 2.27, it is clear that light absorbed in ARC layer, emitter and BSF layers did 

not contribute any current or energy. Only light absorbed in p-base region contribute 

current and power generation.  

 

 

At the front surface, there are metal contacts, which decrease the surface area for light 

absorption. There are number of ways to decrease optical losses in silicon solar cell. 

 Front contact surface coverage can be minimized in order to increase surface area 

for light absorption (although it can increase series resistance but it can be 

optimized). 

 Anti-reflection coating can be used on front surface of cell (to decrease reflection). 

 Reflection can be minimized by surface texturing. 

 Thickness of solar cell can be increase to absorb maximum amount of light. 

(Although light absorption more than diffusion length from junction will have low 

collection probability, it will not contribute to short circuit current. It will also increase 

cost of solar cell). 

 Optical path length can be increase by the combination of texturing and light 

trapping. 

 

2.5.1 Front surface Reflection 
     One of main source of optical loss is front surface reflection. Etched silicon wafers 

have higher surface reflection than 30%. Reduction of surface reflection is very 

important, Antireflection effect achieved by using two different ways. 

 Anti-reflection coatings  

Front contact 

Rear metal 

contacts 

ARC 

P -base 

Emitters 

BSF 

Figure 2.27: Schematic representation of optical losses in silicon solar cell (Arrows 
represent light rays) 
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 Surface texturing  

2.5.2 Antireflection coatings 
A reduction in reflection can be achieved by optical quarter wavelength principle. Penetrating 

beam of light is reflected at barrier layer between silicon and antireflection layer as shown in 

figure 2.28. 

 

 Figure 2.28 Antireflection behavior of thin layer 

 

 For planar silicon wafer in air, reflectance at surface for incident light is given by Fresnel 

equation [4, 36]. 

 
𝑅 =

(𝑛2 − 𝑛1)
2 + 𝑘2

(𝑛2 + 𝑛1)
2 + 𝑘2

 
(2.47) 

Where 𝑛1 and 𝑛2 are reflective indices of air and silicon and k is extinction coefficient for 

silicon. Bare silicon has high reflective index (𝑛 ≥ 3.5) over wavelength range of interest 

typically ranging from 300-1200nm. Reflectance of bare silicon is higher than 30% as shown 

in graph (figure 2.29). This high reflection can be reduced by using antireflection coatings 

(ARC). 

    For bare silicon wafer in air, coating with single layer of antireflection coatings (ARC) 

having extinction coefficient (k=0). 

 

𝑅 =
𝑟1

2 + 𝑟2
2 + 2𝑟1𝑟2 𝑐𝑜𝑠 2𝜃

1 + 𝑟1
2𝑟2

2 + 2𝑟1𝑟2 𝑐𝑜𝑠 2𝜃
 

With  𝑟1 =
𝑛0−𝑛1

𝑛0+𝑛1
 

𝑟2 =
𝑛1 − 𝑛2

𝑛1 + 𝑛2
 

𝜃 =
2𝜋𝑛1𝑑1

𝜆
 

(2.48) 
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Where n0 is reflective index of upper layer (air or glass) 

 n1 is reflective index of ARC layer 

 n2 is reflective index of bare silicon 

 d1 is thickness of ARC layer, λ is wavelength θ is phase difference of reflected rays. 

          If the thickness of ARC is known, product of reflective index and thickness is equal to 

quarter of the wavelength. At the interface of substrate and ARC, interface is destructively in 

that way reducing the reflection (destructive interference). It is written as [4, 36]. 

 
𝑛1𝑑1 =

𝜆

4
 

Minimum reflection R is calculated as: 

𝑅𝑚𝑖𝑛𝑖 = [
𝑛1

2 − 𝑛0𝑛2

𝑛1
2 + 𝑛0𝑛2

]

2

 

(2.49) 

 

For given wavelength, reflectance becomes zero if the ARC meets this condition.  

 𝑛1
2 = 𝑛0𝑛2 (2.50) 

        ARCs that fellow this condition is also called quarter wave coatings. In general, silicon 

solar cells have minimum reflectance at λ=600nm as shown in the figure 2.29 Silicon nitride 

(Si3N4) n ≅ 2 and silicon dioxide SiO2 n=1.46 at λ=600nm are most common ARC dielectric 

which passivate the silicon surface. Si3N4 reduce surface reflection averagely from 35 % 10-

15%.  
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Figure 2.29 Reflection of bare silicon and silicon with antireflection coatings 

        There are many candidates for ARC, such as ZnO, SiOxNy, ITO (indium tin oxide, 

silicon nanowire, perovskite [1]. The function of ARC is to reduce the reflection of incoming 

light, passivate the surface and provide insulation allowing selective plating of top contacts. 

Si3N4 is considered the best layer due to its unique above three functions.  
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Figure 2.30 Surface reflectance with various ARC thicknesses 

 

 

2.5.3  Surface texturing 
             Surface texturing either in combination with antireflection coating or itself can be 

used to reduce surface reflection. Any roughness (grooves or pyramids) on the surface 

minimizes the reflection by the increasing the chance of reflected light to bounce back to the 

surface rather than reflected to surroundings. Random pyramid texturing is common 

methods for surface texturing of crystalline silicon solar cells. These pyramids act as light 

traps on silicon solar cell. When light impinges on textured surface, reflection occurs at 

different angles those are deflected into new points on surface. Multiple interactions occur at 

silicon surface, thus reducing amount of light lost through reflection.  

                Through surface texturing, average reflectance of light can be reduced down to the 

12%. Using both ARC (Si3N4 n =2.03 at 600nm wavelength) with pyramid texturing surface, 

the reflectance can be reduced less than 4%. Texture surface also provides a reduction in 

path length to the junction which is pronounced for longer wavelength. Thereby increase the 

longer wavelength collection efficiency. In practice, the best results have been achieved with 

inverted pyramids [37-38].  
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Figure 2.32 Reflection of polish wafer and texture wafer 

   

W 

Figure2.31 Radiation (rays) path for a texture silicon wafer 

Texture surface  
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Figure2.33. Reflection of texture surface and texture with ARC 

2.5.4 Parasitic absorption in ARC 
            Absorption of light passing through a solid material (silicon) is described by beer 

lambert law.  

 

While  

𝐼(𝑥) = 𝐼0𝑒
−𝛼𝑥 

𝛼 =
4𝜋𝑘

𝜆
 

(2.51) 

 

(2.52) 

 

      Whereas, I0 is intensity of incident light, I(x) is intensity of light absorbed by material and 

α is absorption coefficient, (Absorption coefficient determines how much light of certain 

wavelength is penetrated into material), it is function of imaginary part of complex reflective 

index or extinction coefficient k of a material.  

     In case of SiO2 and Si3N4, as antireflection coating materials for solar cell, It has 

negligible value of absorption coefficient (α) and values of their extinction coefficient is 

almost zero over the 300-1200 wavelength range [36].There are some other materials, can 

be used as ARCs materials for solar cells such as ZnO, SiOxNy, ITO and SiCN, which show 

appreciable absorption. Name and chemical formulas of these materials are given in table 

2.1 [39-42]. 

Table 2.1 Material used as antireflection layers 

Chemical formula Name of material Reflective index 

SiO2 silicon dioxide 1.46 

Si3N4 silicon nitride 2.0 

ZnS zinc sulfide 2.4 

MgF2 magnesium fluoride 1.4 

Al2O3 aluminum oxide 1.6 

TiO2 titanium dioxide 2.5 
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Ta2O5 tantalum pentoxide 2.2 

2.5.5 Free carriers absorption (FCA) 
           It is an intraband (within band) process, carriers are excited to higher energy state 

within the same band, valence band or conduction band. But this absorption does not 

generate additional electron hole pair. This process does not contribute photocurrent and 

extra energy is lost as heat. FCA process is important in heavily doped region such as 

emitters and it is observed as an enhanced the absorption of long wavelength as compare to 

lightly doped emitter or intrinsic silicon. FCA is an undesirable process; PC1D simulations 

show that FCA in emitters has much smaller impact on current loss than Auger and BGN 

(band gap narrowing) in emitters [43-44]. 

 

2.5.6 Rear Reflectance/Absorption 
           Absorption of photon from incident ray of sunlight depends on the absorption 

coefficient, which is high for shorter wavelength and low for longer wavelength. From 

equation 2.52, it shows that absorption coefficient of silicon is function of wavelength, as 

shown in figure 2.34. Red and infrared light penetrate deeper into silicon material and a huge 

portion of light is scattered or absorbed at rear side contact. In practice BSR has reflection 

less than 100%, which mean some amount of radiation is absorbed in this region. 

Depostions of Aluminum or silver on back side of solar cell minimize absorption and have 

reflectance greater than 90%. In high efficiency PERL solar cell, Al layer deposited on 

backside of solar cell as BSR and as rear contact [29]. In commercial solar cell, screen 

printed paste is used as BSR, which may have higher parasitic absorption. Figure 2.35 

represents that light in range of 850-1200nm have nearly 25% of optical energy in AM1.5 

spectrum. 
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Figure 2.34 Absorption coefficients for silicon [45]. 
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Figure 2.35 AM1.5G (IEC 60904-3) spectrums [46].  

       The weak absorption of silicon, wavelength closer or beyond to optical band-edge of 

silicon at 1100nm, which means that silicon solar cell need to be fairly thick for complete 

absorption in single pass. Sun light in range from 800-1200nm nearly hold 25% of optical 

energy in AM1.5 spectrum. If the rear surface of solar cells has a back surface reflector 

(BSR) with 100% reflectance, the same amount of absorption can be achieved by with thin 

wafer. This BSR will reflect the long wavelength light back for second pass through the cell, 

as shown in figure 2.36. In practice BSRs have reflectance less than 100% due to parasitic 

absorption. In high efficiency solar cell, parasitic absorption is minimized by back surface 

reflector (BSR), by evaporating pure metals such as silver and aluminum which have 

reflectance ≥ 95% at long wavelength. [47-48]. Low cost screen printed Al- paste solar cell 

can have higher parasite absorption low BSR. As we know that reflectivity of aluminum as 

back reflector is > 95% and less than 80% for oblique incidence, while reflectivity of 

distributed bragg reflector (DBR) is higher than 99% over a wide range of wavelength (figure 

2.36(b)). The main limitation for back reflector is that it can enhance optical path length to 

twice of the solar cell thickness. [49]. 
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         To overcome this limitation, diffraction grating is used on back surface to diffract the 

light inside the solar cell to certain angles based on different diffraction order. When DBR is 

coupled with diffraction grating (DG), they are complement to each other, light lost is 

negligible as shown in figure 2.37 [49]. 

    

 

 

 

 

 

 

 

 

 

       DBR consists of pairs of Si and SiO2 layers in 8 stacks, deposited by using PECVD. The 

DBR is deposited at temperature less than 450 0C but even it is stable at high temperature, 

having thermal history at 1000 0C for 3 hours. Diffraction grading can be fabricated by using 

interference lithography and directional etching using plasma ion etching (RIE). It is 

expensive laboratory technique, far away from industrial point of view [50].  
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3 Fabrication of P/Al 

solar cells 
    

     Silicon solar cells of P/Al high efficiency technology arrived in IES (Institute of solar 

energy Madrid) in late of 1980. At that time A. Cuevas and M. Balbuena presented an 

investigation on high efficiency solar cell working under one sun of irradiance. They have 

concluded that it is possible to obtain high efficiency with lightly doped deep phosphorus 

emitters and aluminum as back surface field, P/Al (P-emitters/Al-BSF). They have obtained 

efficiency around 19% by using high quality FZ (float zone) monocrystalline silicon wafers 

[1]. In fact when the process was described in mid of 1980´s, efficiency achieved was 

remarkable and among the best silicon solar cell efficiency reported at that time.  

        In this P/Al technology, phosphorus emitters are relatively deep about 2 microns (2 µm) 

and moderately doped surface concentration of dopant impurities is near to 1E19/cm3 

(1019 𝑐𝑚−3),  which corresponds to a sheet resistance of 100 ohm/square. While on 

backside of wafer, 1µ𝑚  thick layer of aluminum is deposited which diffused into silicon at 

high temperature and create a BSF (back surface field). The resulting structure of the P/Al 

technology is 𝑛+𝑝𝑝+  in which the emitters which are produced by phosphorus diffusion, 

creates 𝑛+ on front side of wafer while on back side aluminum is diffused to produce 𝑝+. The 

typical structure of P/Al technology which produces a 𝑛+𝑝𝑝+  structure is shown in figure 3.1  

 

Figure 3.1 Standard Structure of P/Al (n+pp+) solar cell 

    Fabrication scheme of P/Al technology, which is also called standard fabrication scheme 

for 𝒏+𝒑𝒑+ silicon solar cells, is described in figure 3.2. Fabrication process is started from 
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chemical etching of P-type monocrystalline silicon wafers obtained by Czochralski growth 

(Cz), a low quality wafers than float-zone wafers. Description of wafers are given below: 

Monocrystalline silicon wafers (Cz) 

Resistivity: 0.5-2 ohm.cm  

Thickness: 200±10 µm 

Dopant: B 

Conductivity: P type 

Size: 125mm  

 

     New wafers of above mentioned characteristics have been taken for fabrication process. 

Process is started from chemical etching process. Wafers used for process were about 150 

± 5 µm thick.  

 

 

Figure 3.2 Standard fabrication process of P/Al technology for (n+pp+) silicon solar cell 

        Wet chemical etching process for thinning of wafers is quick, instrument free, cost 

effective process and widely used in industrial fabrication of silicon solar cell. The wet 

chemical etching process for any material usually consist of three steps: transport of reactant 
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to surface of wafer, reaction at the surface of wafer and movement of reaction products into 

the volume of etchant solution. An etch process which is limited by rate of surface reaction 

will tend to enhance surface roughness and promote faceting. Since surface reactivity is 

function of localized defects and crystallographic orientation. On the hand etching can be 

limited by rate of diffusion of etchant through a stagnant layer at the surface. This changes 

polished wafer into rough surface with protuberances and facets will tend to become smooth 

in this process. Although etch characteristics of silicon with wet etchants are well documents, 

but the best results for various micromachining structure are obtained by trial and error 

methods. [2-5]. Silicon ingot which is obtained by Czochralski (CZ) crystal growth process 

can by pulled in a defined orientation (100). There is one big economic advantage of this 

process is that during solar cell process, we can use this crystallographic plane for 

homogeneous texturing with cost effective wet chemical etching process. During anisotropic 

etching, the surface structure with random pyramids is built that enhance the absorption of 

incoming light effectively into solar cell. Etching rate Si (100) depends on NaOH 

concentration, temperature and etching time. Maximum etching rate was observed in our 

case is about 3.5 µm/min at 90 0C at 25% NaOH concentration. Etch rate increased with 

increasing temperature. According to literature maximum etching rate was observed near the 

boiling point of solution is 4.5µm/min for Si (100) orientation at 100 0C. 
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Figure 3.3 Silicon (100) etch rate in NaOH solution 

After etching process, wafers were characterized by measuring the reflectance of etched 

wafer as well as under microscope. Etched wafers behaves like a mirror, reflected most of 

incident light. Reflectance of etched wafer is shown in figure 3.4. 
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Figure 3.4 Reflectance of etch wafer (Alkaline etching) 

Images of etched wafers which are taken under microscope is shown in figure 3.5.  

 

Figure 3.5 Microscopic images of anisotropically etched wafer of silicon by NaOH 

under different resolution (a, b and C). 

 

3.1 Texturization of Silicon wafers 
      Silicon texturization of (100) oriented silicon substrate is an important step to reduce of 

optical losses of monocrystalline silicon solar cell. During texturization, pyramids are created 

on silicon surface either by chemical methods or by physical methods. Monocrystalline 

silicon wafers can be textured by etching along with faces of crystal planes which results in 

pyramids formation, if the surface is appropriately aligned with respect to internal atom. This 

type of texturing is also random pyramids texturing [6-15]. Any roughness on the surface of 

wafers reduces the reflection by increasing the chances of reflected light to bounce again 

onto the surface rather than reflected back.  

      In industry, texturization with a subsequent deposition of antireflection coating (ARC) is 

well established method to reduce the optical losses.  
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      Texturization is a slow etching process which leads to microscopic pyramids formation 

on silicon surface. Their size must be optimized, small size pyramids lead to high reflection, 

while optimized size decrease the reflection. In order to make sure the complete coverage of 

wafer with adequate size of pyramids, concentration, temperature and agitation of solution 

must be controlled. In fact high concentration and temperature etching leads to anisotropic 

etching, which is used for saw damage removal. Normally texturing is carried out at low 

concentration with continuous agitation, Alcohol is also added in this process to improve 

homogeneity of texturing bath which enhance the wettability of wafer surface. Typical 

parameters which vary from one laboratory to other laboratory are concentration 1-5% 

NaOH solution, temperature 70-90 ºC and time 10-30 minutes. 

3.1.1 Texturing Recipe (TIM recipe) 
             In our experiments, we have used a texturing recipe formulated by our institute for 

the texturing of silicon wafers. [16]. This recipe is considered as an economical recipe due to 

less consumption of NaOH and 2-propanol and it can easily apply for large scale industrial 

texturing for solar cell fabrication. This recipe consists of following chemicals and their 

weights are given below:  

 118.4grams of sodium hydroxide (NaOH) 

 265ml of 2-propanol (C3H8O) 

 358ml of sodium (ortho) silicate (Na2SiO3)  

 12 liters of deionized water 

  

3.1.2 Characterization of Texture wafers 
            Anisotropic texturing of silicon wafers with alkaline solution is a standard process in 

silicon solar cell fabrication. Textured wafers are usually characterized by reflectance 

measurements and microscopic studies. Reflectance of textured wafers indicates the 

amount of absorbed light. Sometime reflectance of textured wafers is high due to randomly 

oriented grains etch rates is not same as for (100) wafers. Reflectance of etched wafer and 

texture wafer is shown in figure 3.6. 
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Figure 3.6. Reflectance of Etch (polish) wafer and texture wafer 

 Reflectance measurements which is shown in figure 3.8, shows that polish wafer has 

reflectivity near 40-50%, while texture wafer has reflectivity 10-15%. Even it is still high with 

respect to high efficiency solar cell. Microscopic and electron microscopic images are shown 

in figure 3.7.  

 

Figure 3.7 Microscopic image of texture wafers under different resolution (a, b and c), (d) 

image of texture wafer under SEM. 
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   One of drawback is grains size of crystal, which can cause interruption in the screen 

printed metal contacts. Due to this reason alternatives are also being considered, during 

evaluation we should take into account not only reflectivity but also surface damage due to 

texturing and compatibility with metallization.  

       Reduction in reflection either by surface texturing or by other means is still a broad field 

of investigation and many research groups are investigating reduction in reflectance. 

Reflectance can be reduced by forming porous silicon layer on surface of silicon wafers 

which represented about 6% optical loss under optimum conditions [17]. But compatibility of 

porous silicon layer with screen printed contacts still need to optimize.  

 Recently developed, black silicon layer deposited by different techniques such 

as electrochemical HF etching or reactive ion etching, or laser irradiation process which also 

act as AR coatings, show the reduction in reflectance as low as 2%. However black silicon is 

not still suitable for PV cells due to high recombination rates due to its nanostructures [18]. 

Y. Wang et al has developed new methods to create maskless inverted pyramids for silicon 

texturization. In this method wafer scale arrays of silcon inverted pyramids were fabricated 

by using cupper nanoparticles (Cu-NPs) assisted anisotropic etching in a Cu(NO3)2 / HF/ 

H2O2/H2O mixture at 50 ºC for 5-20 minutes. Reflectivity was lower than 4.4% without any 

AR coating [19]. Electron microscopic images of texture wafers are shown in figure 3.8.  

 

Figure 3.8 Electron microscopic images of (a) random pyramids and (b) inverted pyramids 

3.2 Wafer cleanings (RCA1&2) 

        Contaminants which appears on the surface of silicon wafers during etching and 

texturing process must be remove. For high efficiency, surface of wafers must be clean and 

free from all of kind of impurities both organic and inorganics. For cleaning purpose, 

RCA1&2 process is carried out to get to ultraclean wafers. RCA cleaning play important role 

to get high performance and high reliability of semiconductor devices. This cleaning further 

prevent contamination of processing equipment, especially high temperature oxidation, 

diffusion, and deposition process. The RCA clean is the standard industrial process used to 

remove contaminants from wafer´s surface. 

The RCAs cleaning process has three major functions sequentially: 

 Organic Clean: Removal of insoluble organic contaminants with a 5:1:1 

H2O:H2O2:NH4OH mixture. 

 Oxide Strip: Removal of a thin silicon dioxide layer where metallic contaminants may 

accumulated as a result of step 1, by using a diluted 50:1 H2 O: HF solution. 
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 Ionic Clean: Removal of ionic and heavy metal atomic contaminants using a mixture of 

6:1:1 H2O:H2O2: HCl. 

 

3.2.1 RCA1 chemicals recipe:  
600 ml of Ammonia solution (NH4OH) 

 600ml of hydrogen peroxide (H2O2) 

 3 liters of deionized water 

Ratio: 1:1:5  

           We took 3 liters of deionized water in RC1 bath and also added 600 ml of Ammonia 

solution (NH4OH), in same bath and allowed to stand for some time to reach the temperature 

at 90 0C. For heating bath, we used paraffin oil bath. At 900C we added 600ml of hydrogen 

peroxide (H2O2) carefully in RC1 bath just 5-10 minutes before the wafers cleaning. When 

we added hydrogen peroxide (H2O2), violent bubbling were started and it is not 

recommended to cover the bath with lid for 1-2 minutes. Wafers were taken in RCA1 

cleaning carrier and tied the carrier with handle carefully. Wafers were placed in RC1 bath at 

90 0C for 15 minutes. After 15 minutes wafers were taken out, washed with 1% hydrofluoric 

acid. 

 

3.2.2 RCA2 chemical recipe:  
600 ml of hydrochloric acid (HCl) 

600ml of hydrogen peroxide (H2O2) 

3 liters of deionized water. 

Ratio: 1:1:5  

       RCA2 bath is prepared in similar way as RCA1 but with above mentioned recipe.  After 

RC1 cleaning process, RC2 process was carried out to remove the metal particles. After 

washing with deionized water, wafers were put in RC2 bath at approximately 90 0C for 15 

minutes. After 15 minutes wafers were taken out, washed with water then treated with 1% 

hydrofluoric acid and washed once again with water. Wafers were dried in furnace under IR 

radiation before further processing. 

 

3.3 Doping (Phosphorus diffusion) 

                 Process in which we Introduce impurities into a semiconductor crystal to define 

modification of conductivity and electronic properties is called doping. There are two most 

important materials which are used in silicon doping. Boron (B) atom is trivalent (3 valence 

electrons) and phosphorus (P) is pentavalent (5 valence electrons) impurities. Atoms which 

are trivalent (3 valence electrons) are used for p-type doping and atoms which are 

pentavalent (5 valance electrons) are used for n-doping. Diffusion is a process of the 

redistribution of atoms, molecules and ions from regions of high concentration of mobile 

species to regions of low concentration. It occurs at all temperatures, but the diffusivity has 

an exponentially dependent on temperature. High temperature diffusion is one of the 

important process in solar cell fabrication and other monolithic integrated circuits (IC) in 

microelectronics devices. Today, diffusion process has been used in the formation of deep 

layers of emitters below one micron in depth. Diffusion has been the primary method of 

introducing impurities phosphorous (P), into silicon to control the majority-carrier type and 

resistivity of doped layers formed on the wafer surface. Phosphorus diffusion is used to form 
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n+ emitters in silicon solar cells and bipolar power device technology, to form source and 

drain regions and to dope crystalline silicon wafers in MOS device technology. 

3.3.1 Phosphorus pre-deposition (825 0C) 

           Phosphorus diffusion was carried out at 8250C by using POCl3 as a source of 

phosphorus and nitrogen as a carrier gas. Steps are given below for phosphorus deposition. 

Prior to “P” diffusion, textured wafers are passed through HF solution in order to remove 

oxide layer on the surface of wafers produced by aerial oxidation. Flow of gases for 

phosphorus diffusion is controlled manually in following order as mentioned in table 3.1. 

Flow of nitrogen gas through bubbler (POCl3 flask) is also controlled at fix flow rate of 

nitrogen. Usually furnace is turned on at least one hour prior to diffusion, (Run the desire 

recipe in order to get required temperature). In this P/Al technology, Phosphorus diffusion is 

carried at 825 0C and left the furnace for some time to stabilize the temperature in all zone of 

furnace, then started the flow of gases in following order:  

 

 Table 3.1 

Step Gases flow Time 

Entrance 

(wafers loading) 

N2 8 l/min +O2 0.45 l/min (5 minutes) 

Stabilization N2 8 l/min +O2 0.45 l/min (5 minutes) 

Doping 

(P pre-deposition) 

N2 8 l/min +O2 0.45 l/min + 

N2/POCl3 60-85 cc/min 

(30 minutes) 

Final selected flow: 

N2 8 l/min +O2 0.45 l/min + 

N2/POCl3 85 cc/min 

(30 minutes) 

Oxidation O2 10 l/min (10 minutes) 

Annealing N2 6 l/min (10 minutes) 

Exit 

(wafers unloading) 

N2 6 l/min 

 

(5 minutes) 

   

      Chemical reaction for phosphorus diffusion is given below, phosphorus oxychloride 

reacts with oxygen to produce phosphorus pentoxide (P2O5) which reacts with silicon to 

produce free phosphorus to diffuse into silicon. The Rate at which phosphorus diffuse into 

silicon depends on the temperature of furnace. The amount of dopant entering into furnace 

must be control in order to get desire sheet resistance, uniformity and repeatability of 

process. This control is achieved by maintaining a constant temperature of furnace and 

gaseous flow. It is also important to control the flow gas through bubbler and temperature of 

bubbler. Usually bubble temperature is fixed at 20ºC, a 5 ºC less than room temperature in 

order avoid condensation of chemical in the flow line leading from bubble to furnace tube.   
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Figure 3.9 Flow sheet representation of phosphorus diffusion furnace. 

 

 

         At 8250C we have taken out the boat (carrier) from furnace with the help of long 

glass rod by using safety gloves and adjusted the wafers in the boat carefully at minimum 

distance among the wafers. Wafers were introduced into furnace carefully by using handle of 

boat and protective gloves. Wafers were moved slowly inside the furnace especially at high 

temperature in order to avoid cracks. Wafers were allowed to homogenize in the furnace for 

5 minutes prior to start flow of gases into furnace as mentioned in table 1. This step is used 

for stabilization of wafers inside the furnace. After 5 minutes we opened the N2 flow through 

bubbler (flask containing POCl3) for 30 minutes at above mentioned rate as given in table. 

This step is called pre-deposition. After 30 minutes, we opened O2 gas flow at the above 

mention rate for 10 minutes and closed the flow of nitrogen toward the furnace and also 

closed the flow of N2 through the bubbler. This is called oxidation process, after oxidation 

phosphorus neither diffuses into the wafers nor effuses outside the wafers. After 10 minutes, 

we closed the O2 and opened again N2 for 10 minutes for annealing process at above 

mention flow rate. Fast movement of wafers inside the furnace can produce cracks due to 

carrier and different dilatation coefficient of stirring wafers. 

   At oxidation step in pre-deposition process, a layer of SiO2 is grown by the oxidation of 

silicon by oxygen gas which acts as a barrier for further diffusion of phosphorus inside or 

outside from silicon lattice. After oxidation, phosphorus neither diffuses into the wafers nor 

effuses outside the wafers. This layer not only acts as a barrier for phosphorus but also 

reduce the surface recombination velocity. Annealing process improves material properties 

such as hardness and strength. Care should be taken while the wafers processing, inside 

the furnace high temperature stress can produce cracks. All gaseous flow is controlled 

manually and manual control system is shown in figure 3.10.  
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Figure 3.10 Manual control system of gases flow 

 

3.4 Sheet resistance and emitter characterization 
     The most important and most delicate step is phosphorus pre-deposition. The main 

problem is uniformity on the wafer surface and from one wafer to other wafer. The sheet 

resistance vary from wafer to wafer, even on same wafer. Other problem is lack of 

repeatability from batch to batch. It is really different to get desire sheet resistance in a batch 

process. We have repeated many time this process to get desire sheet resistance. As I have 

already described that our aim was to get sheet resistance Rs 100 Ω/□ with deep junction 

depth.  

        There are many ways to control the process to get desire values either by changing the 

dose of phosphorus atoms which goes to silicon by modification of POCl3 flow time or 

concentration of oxygen. We can also change flow rate of POCl3 concentration by changing 

flow of nitrogen through bubbler [20-21]. In this technology during phosphorus pre-deposition 

a thin layer of oxide is also grown to passivate the surface. In furnace heavily contaminated 

with phosphorus and oxides acts as an additional source of dopant during drive-in process. 

This step also helps to get reasonable uniformity in sheet resistance values. 10 minutes of 

oxidation is thin enough and do not affected by AR coatings. The sheet resistance measured 

immediately after pre-deposition, sheet resistance values were very high ranging from 400-

650 Ω/□. But after drive-in, the final sheet resistance measured after distribution show some 

kind of uniformity in final values ranging from 80-150 Ω/□. Final sheet resistance values are 

better to make a good emitters. The decrease of sheet resistance values during drive-in 

(distribution) process at high temperature indicate that thin layer of phosphosilicate glass 

(PSG) act as an impurities sources. Due to high mobility, surface concentration increase 

which decrease the sheet resistance. [20-21]. 

        We have performed many experiments to get to desire results but not all experiments 

were reliable. There are many factors which effect on reliability, most important is the proper 

maintenance of furnace, to keep it in working condition. Others factors are flow of nitrogen 

gas through the bubbler and temperature of bubbler, pre-deposition time and temperature. 

E.g. at high temperature pre-deposition of 900 ºC for 5 minutes is similar like low 

temperature pre-deposition of 800 ºC for 30 minutes. All above mentioned variables should 

be optimized to improve the uniformity and repeatability of the process.  

        Sheet resistance is one of most useful parameter from electronic point of view and 

easily to characterize. For emitter’s characterization including junction depth and surface 
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dopant concentration, these parameters are difficult to measure but they can be estimated 

from sheet resistance data. Sheet resistance is easily measureable parameter. It is difficult 

to model “P” pre-deposition in order to estimate in advance process variables which produce 

a certain surface dopant concentration and sheet resistance. Junction depth mainly depends 

on drive-in time and temperature. A theoretical model was developed by A. Cuevas [20-21] 

to determine the junction depth by SUPREM 3 (one dimension model used for generate a 

doping profiles resulting from given processing steps), although our results are little bit 

different, but help to evaluate junction depth. See figure 3.11. 
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Figure 3.11 Graph between sheet resistance vs junction depth [20] 

     Impurities concentration of phosphorus is calculated by PC1D simulation with Gaussian 

adjustment by using sheet resistance data. A graph between concentration and sheet 

resistance is given in figure 3.12. 
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Figure 3.12. Graph between sheet resistance and impurities concentration 
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       After Phosphorus pre-deposition at 825 ºC for 30 minutes and with 3 hours of drive- in at 

1050 ºC. Alkaline etching was carried out in order to determine the junction depth and 

impurities concentration. We used dilute concentration of 2% by weight NaOH at 60 0C. After 

15 seconds of etching, wafers were cleaned and dried to measure the sheet resistance by 

four probe method. This process is repeated again and again until concentration of 

impurities or sheet resistance was similar with base doping. In this way we have measured 

the junction depth. Doping concentration is calculated by PC1D simulation with Gaussian 

adjustment by using sheet resistance data. Diffusion profile is given in figure 3.13. 

0.0 0.3 0.6 0.9 1.2

1E16

1E17

1E18

1E19
 Rs =100 (ohm/square)

 Rs =125 (ohm/square) 

 Base doping

C
on

ce
nt

ra
tio

n 
(c

m
-3

)

Junction Depth (um)
 

Figure 3.13 Phosphorus doping profile after 30 minutes of pre-deposition at 825 ºC and 3 

hours of drive-in inert environment. 

            In the figure 3.13, diffusion profile of phosphorus is measured after pre-disposition 

and drive-in a redistribution process in a furnace with temperature high than pre-deposition 

temperature, 1050 ºC for 3 hours in an inert environment. Graphs in this figure show 

Gaussian adjustment which are simulated by using a PC1D program. Although there is a 

difference in experimental and theoretical values for sheet resistance100 Ω/□ but difference 

is not significant in term of efficiency. From experimental data, it is observed that with 

increase of resistivity of base of substrate (wafers) also increase the short circuit current and 

decrease the open circuit voltage. Figure 3.14 and 3.15 show the effect of base doping on 

open circuit voltage and short circuit current in case of float-zone wafers (FZ) by considering 

fixed lifetime of base. This trend is also supported by theoretical predictions of A. Luque [22]. 

It was observed that efficiency and fill factor almost remain constant over a wide range of 

base doping from 1X10E13 cm-3 to 1X10E16 cm-3 as shown in table 2. Detail of 

technological knowledge is given in the doctoral thesis of J. Alonso and R. Lago [23-24] and 

following articles [25-26]. 
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Figure 3.14 Effect on base doping on open circuit voltage 
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Figure 3.15 Effect of base doping on short circuit current 

Table 3.2 

Type of wafers 

(Resistivity in Ω.cm) 

Voc 

(mV) 

Jsc 

(A/cm2) 

FF 

(%) 

Efficiency 

(%) 

References 

Monocrystaline FZ      

(0.3) 

645-650 

 

35 75-83 17.5-19 [1] 

Monocrystaline FZ      

(0.3) 

645-650 

 

35 81-83 18.5 [24] 

Monocrystaline FZ 

(1) 

628-632 

 

37-38 81 18.5-19.5 [24] 

Monocrystaline FZ 

(20) 

612-618 

 

38-39.5 79-81 18.5-19 [24] 
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         This technology has been developed and applied in the IES (Institute solar energy 

Madrid) for particular cases with satisfactory results. After invention of this technology, 

improvement was carried out by many researchers at IES. Results obtained by these 

researchers are already discussed in first chapter. The Moussaui [27-28] presents the 

process for formation emitters by using P/Al technology in one step, as an optional 

simplification, the results obtained are shown in table 3.3. 

Table 3.3 

Material FZ wafers Multicrystalline   

(Bayer) 

Multicrystalline 

(Eurosolare) 

Efficiency 17.1% 16.1% 17.4% 

Observation      

(P/Al technology) 

Without Texturing 

and AR coating 

With P Pre 

gettering 950ºC 

With P Pre-gettering 

950ºC 

      These results are obtained on 4cm2 by using P/Al fabrication scheme. (Look at figure 

1.10 of 1st chapter) In the case of multicrystalline material it has raised the need for 

simultaneous diffusion P/Al at temperatures lower than 1000 ºC (low quality substrates), and 

the wafers were subjected to a supersaturation phosphorus to remove impurities from the 

volume before starting the fabrication process. With these innovations, efficiency has 

reached 16 to 17% cells in 2 to 4cm2 on multicrystalline material. [27-28] After P pre-

deposition step, Wafers were ready for Al deposition.  

3.5 Aluminum Deposition (By PVD) 
      Deposition of metals by using an electron beam machine is a physical vapor deposition 

technique (PVD), in which target anode is bombarded with high energy beam of electron 

release from a tungsten filament under high vacuum. Electron beam evaporate atoms of 

solid material (Al metal) and transform into gaseous state, later these gaseous atoms 

precipitated into solid form. Everything inside the chamber is coated with a thin layer of 

target material. Physical vapor deposition is carried at low deposition temperature and 

without corrosive product. Deposition rate not only depends on current supply and voltage 

but also on pressure of chamber. At low vacuum level, evaporation rate is higher, higher will 

be deposition rate. Flow sheet diagram of electron beam machine is shown in figure 3.16.  
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Figure 3.16 Flow sheet diagram of chamber of electron beam machine. 

      For electromagnetic alignment, ingot is placed at a positive potential relative to filament. 

To avoid a chemical interaction between filament and ingot material, filament is kept out of 

ingot area. A magnetic field is employed to direct and control electron beam from its source 

to ingot location. Additional electric field is applied, which is used to steer the beam over 

ingot surface for uniform heating. Usually ingot is enclosed in a copper crucible or hearth. 

Crucible and socket must be cooled and this usually done by water circulation. Evaporation 

rate can be control, slow and continuous evaporation is recommended for uniformity of thin 

film.  

   After introducing the wafers, closed the chamber and turn on vacuum machine to create 

high vacuum, at desire vacuum, first apply the high voltage up to 6 KV and then apply the 

current from 5 mA to 250mA. Voltage and current supply vary from metal to metal. E.g. in 

case of aluminum we need high voltage and current supply while in case palladium we need 

less power supply. Higher current supply increases the evaporation rate as well Al 

deposition. During this process care should be taken that electron beam must focus in the 

center of crucible. During deposition process, make sure that water is flowing in the chamber 

for cooling purpose.  

Metal Vacuum 

(Torr) 

Voltage 

(kV) 

Current 

(mA) 

Tooling factor 

(%) 

Thickness 

(A0) 

Al 5×10-5 to10-6 7 120-220 45 10000 

(Voltage 7kV, Mini. Vacuum 5×10-5 to10-6 Torr and Current 120-220 mA) 

      During aluminum deposition, make sure that crucible contains enough amount of 

aluminum to get 1µm thickness. The best way is complete the process in two steps, 0.5um 

in each step. Although process is remote control, after desire thickness machine is stopped 

automatically but still we can calculate the thickness by measuring weight gain by wafers 

during deposition of aluminum for accurate results by using following equation 3.1.  
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𝑡 =

𝑊

𝜌 × 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑤𝑎𝑓𝑒𝑟
 

W= difference in weight (gain in weight) 

𝜌= density of Al 2.7g/cm3 

t= thickness of A layer 

(3.1) 

 

3.6 P/Al Drive-in process  
          During drive-in process, aluminum diffuse into the p-type silicon base and it produced 

a p p+ junction at the rear zone. As we already know that rear side of wafers have n+ 

emitters, but alloying with aluminum after phosphorus pre-deposition make unnecessary to 

remove the n+ emitters from rear side. This p p+ junction generates an electric field opposite 

to the electron movement from the base to the p+ contact, so less carriers arrive to the rear 

surface and in this way effective values of S is improves. Lifetime is decreased by the 

presence of defects and impurities in the crystal and it is strongly dependent on the 

contamination in the fabrication process. Impurities may be removed from the back by 

gettering process, so lifetime is increase. Gettering effect is produced by the molten 

aluminum layer during drive-in process [29-32]. Phosphorus and aluminum redistribution 

was performed in a single furnace step. At 1050 0C drive-in process for P/Al is performed 

under inert atmosphere using nitrogen gas for 3 hours. Drive in facilitate to move impurities 

deeper into the semiconductor (silicon wafers). The front emitter (collector) obtained is 

1.1µm deep with a sheet resistance of 100-150 Ω/ □. Drive in process has three advantages; 

1. Impurities which are presented in bulk of silicon are cleaned by aluminum via gettering 

process and lifetime is improved. 

2. Aluminum diffuses inside the silicon which gives a p+ zone with p base and metal rear 

contact and BSF effect appear.  

3. Back aluminum layer acts as a back reflector, the photons that travelled through the cell 

and have not been absorbed, reflected back to the bulk of the silicon and have another 

opportunity to be absorbed.  

 

Table 3.4 

  N2 gas flow 2l/min from starting of furnace to get 10500C 

 

3.7 Aluminum redistribution process (Redistribution of aluminum in silicon) 

               Aluminum is responsible for creating BSF effect on rear side of P/Al cells to form 

the p+ layer and redistribution of aluminum at high temperature produces an effect of 

removing impurities through gettering process, which can reduce recombination in volume 

significantly. This process modify the lifetime of the volume due to BSF effect during drive-in 

Step Gases flow 

Entrance 

(wafers loading) 

N2 2 l/min + O2 6 l/min        (5 minutes) 

After 5 minutes N2 10 l/min               (5 minutes) 

After 10 minutes N2 2 l/min                 (2h and 50 minutes) 
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process. This feature redistribution of aluminum in silicon can be analyze, both from 

theoretical and experimental perspective. [29-32]  

       The Al-Si phase diagram is a straightforward, classic example of a eutectic system 

where each element has little, if any solubility in the other. Aluminum melts at 660°C while 

silicon melts at 1414 ºC shows the eutectic at 12.6 wt. % Si and 577 °C. The maximum 

solubility of Si in Al is about 1.7% at 577°C, while solubility decreases with decreasing 

temperature. There is virtually no solubility for Al in Si at any temperature to the melting 

point. Phase diagram of aluminum-silicon (Al-Si) alloy is shown in figure 3.17. As we can see 

in figure 3.19, it has a eutectic temperature of 577 ºC corresponding to a composition of 

88.5% Al and Si 11.5%.  

 

Figure 3.17 Phase diagram of Al-Si 

 

     In the fabrication of silicon solar cells with P/Al technology, aluminum layer is deposited 

on the backside of silicon wafers and redistributed at high temperature (higher than eutectic 

temperature). The process which occurs in shown in figure 3.18. 

     The phenomena which take place is shown in figure 3.18(a), shows the deposition of 

aluminum on backside of wafer, 3.18(b) represents high temperature step in an inert 

atmosphere but in this case we used nitrogen gas. It forms a liquid layer of Al-Si, which 

consume deposited aluminum and a certain amount of crystalline silicon. Concentration will 

be high at high temperature (as in phase diagram). In figure 3.18(C) indicates that Al also 

diffuse into silicon and dope the silicon. During cooling which occurs when we took out the 

wafers from furnace is shown in figure 3.18(c). A liquid layer is also capable of dissolving 

small amount of silicon at low temperature as shown in phase diagram. Progressively 

excess of silicon recrystallized epitaxial and has aluminum doping profile according to the 

solid solubility for each temperature of the cooling curve. Finally in figure 3.18(d) shows that 

once reached the eutectic temperature the remaining liquid layer solidified Al-Si eutectic with 

the proportions of (88% Al, 11.7% Si).  
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Figure 3.18 Redistribution of aluminum in silicon at a temperature higher than eutectic 

temperature (a) It represents deposition aluminum layer on the silicon (b) high-temperature 

processing (higher than the eutectic temperature). (c) Cooling during removal of the wafers 

from furnace at temperature higher than the eutectic temperature. (d) Cooling to a lower 

temperature than the eutectic temperature. 

  J.D. Alamo et al [33] estimated the thickness of recrystallized silicon epitaxially layer  𝑊𝑃+, 

referred in figure 3.20(d). Layer 𝑝+epitaxial in mathematical expression is written in equation 

3.2. By the using this expression we can calculate depth of 𝑝+ layer in silicon.  

𝑊𝑃+ =
𝑃𝐴𝑙

𝐴𝜌𝑆𝑖
(

𝐹

100 − 𝐹
−

𝐸

100 − 𝐸
) 

(3.2) 

 

While 𝑃𝐴𝑙 is weight of Aluminum deposited, A is the area of the wafer 𝜌𝑆𝑖 is the density of 

silicon and F and E are percentage of silicon at liquid (surface) zone to the temperature of 

process and of the eutectic temperature respectively, Figure represent thickness of this layer 

for various temperatures, by evaporating aluminum 1µm thick layer. Values for  𝑊𝑃+ 

obtained by using above equation on different firing temperature is shown in figure 3.19. 
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Figure 3.19 Thickness of the silicon layer epitaxially recrystallized with respect to the 

temperature of the redistribution process after evaporation 1 µm of Aluminum 

        As indicated earlier, the area which is grown epitaxially in aluminum profile according to 

solid solubility corresponding for each temperature of the cooling curve, if it has been slow 

and allowed balance, or it will be a more complicated profile. Its peak doping is on the border 

with 𝑝+ diffused and the solid solubility at temperature of redistribution, assign value for 

doping 𝑝+ epitaxial entire area posterior simulations, as this profile is not decisive. In table 

3.5 shows the solid solubility (CS) of aluminum in silicon for various temperatures. While D is 

diffusion coefficient of Al. 

Table 3.5; solid solubility of Al in Silicon with respect to temperature 

Temperature 

(ºC) 

D 

cm2/sec 

Cs 

(cm-3) 

Reference 

750 2.20E-17 9.00E+18 23, 34 

800 1.33E-16 1.10E+19 23, 34 

850 6.87E-16 1.40E+19 23, 34 

900 3.08E-15 1.60E+19 23, 34 

950 1.22E-14 1.70E+19 23, 34 

1000 4.37E-14 1.90E+19 23, 34 

1050 1.41E-13 2.00E+19 23, 34 

 

From the theory of solid state diffusion can apply to profile of aluminum diffusion into the 

silicon in the process of high temperature redistribution. Because the liquid aluminum phase 

acts as infinite source of diffusion in this process, its diffusion profile has shape of a 

complementary error function according to the expression eq.3.3 [35]. 

𝐶(𝑥) = 𝐶𝑠𝑒𝑟𝑓𝑐 (
𝑥

√𝐷𝐴𝑙𝑡
2

) 
(3.3) 

For simplicity doping profile can be considered in Gaussian form 
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𝐶(𝑥) = 𝐶𝑠 𝑒𝑥𝑝 ⌊
(𝑥 − 𝑥𝑝+)

2

4𝐷𝐴𝑙𝑡
⌋ 𝐶(𝑥) = 𝐶𝑠 𝑒𝑥𝑝 ⌊

(𝑥 − 𝑥𝑟𝑒𝑐)
2

4𝐷𝐴𝑙𝑡
⌋ 

(3.4) 

      As we have mentioned early, that peak doping is equal to the solid solubility of Al in Si at 

the process temperature. The profile depends on the temperature (through diffusion 

coefficient) and process duration. We considered the diffusion coefficients Y. C. Kao et al, 

[36-37] as the best fit to the experimentally measured profiles. From these values and with 

base doping silicon, we can estimate thickness of the layer 𝑊𝑑𝑖𝑓 by using equation 3.5. In 

figure 3.22, 𝑊𝑑𝑖𝑓 calculated for the various processes at different temperature with 

redistribution. 

𝑊𝑑𝑖𝑓 = √4𝐷𝑡 ln (
𝐶𝑠

𝐶𝐵
)    

(3.5) 

           By using above equation (eq. 3.5) which is a simple form and facilitate to calculate the 

thickness of diffused layer after several hours of process, if we know the values of diffusion 

for one hour. We can calculate for rest of hours. Equation is given below (eq. 3.6). Depth of 

aluminum diffusion depends on time of drive-in and temperature as shown in figure 3.20. 

𝑊𝑑𝑖𝑓 = 𝑊𝑑𝑖𝑓,1ℎ𝑜𝑢𝑟 √𝑡 (3.6) 

While “t” is time in hours. 
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Figure 3.20 Depth of Al diffusion in silicon for various process. 

       In P/Al technology, we have deposited 1 µm thick layer of Aluminum and all batches of 

wafers having P emitter on front side and Al on backside were processed at 1050 ºC for 3 

hours for distribution of impurities. Usually p+ region of doping is characterized by scattering 

experimentally by Spreading sheet resistance or ECV (electrochemical capacitance voltage 

measurement). Although experimentally we did not measured Al doping profile but we have 



Fabrication of P/Al Solar Cells                           Improvements in P/Al High Efficiency Technology, AlSi                          
 
 

 

  90 

estimated theoretically and compare with already published results under same conditions. 

[23 and 28]. 

       Total thickness of p+ layer is the sum of 𝑊𝑝+ 𝑎𝑛𝑑 𝑊𝑑𝑖𝑓 as it given in equation 1&2. In 

figure 3.25 a doping profile of P/Al solar cell is shown, in which theoretical data is compare 

with experimental measurements for maximum doping have been assigned experimental 

profile for P diffusion (100 Rs(Ω/□) that is fitted with Gaussian profile and while in case of Al 

diffusion data is taken from already published data. [23 and 28]. In case of figure 3.21. 

Aluminum layer is 1.5 µm thick, and redistribution was carried out at different temperatures.  

 

Figure 3.21 Experimental doping profile of aluminum in silicon after different redistribution 

process. (1.5 µm layer of Al is deposited by evaporation. Profile is measured by using ECV 

technique. [23] 

          Various diffusion coefficient of aluminum was determined from aluminum profiles by 

different research groups. A summary of diffusion coefficient can be found in the graph of 

figures in Arrhenius expression. In all cases energy of activation was in range of 2.92 to 3.47 

eV. By using equation (3.7) diffusion coefficient values are calculated and plotted in figure 

3.22, there is difference in diffusion constant and energy of activation values which are given 

in table 3.6 .  

 

Table 3.6 

𝐷0 (cm2/s) E (eV) D (1200 ºC) 

(cm2/s) 

Reference 

8 3.47 9.24E-12 C.S. Fuller  [38 ] 

2800 3.8 1.28E-10 B. Goldstein [ 39] 

1.38 3.41 2.98E-12 R.N. Ghoshtagore [40] 

1.8 3.2 2.04E-11 Rosnowski [41 ] 

1530 4.1 4.29E-11 Cuevas and R.B.Fair [20-42] 

 

 
𝐷 = 𝐷0𝐸𝑥𝑝 (

−𝐸𝑎

𝑘. 𝑇
) 

(3.7) 
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       Data which is available for aluminum diffusion coefficient is very scattered and R.B.Fair 

[42-43] critically reviewed all the available data corrected it by multiplying it electric field 

enhancement factor. So above equation for diffusion coefficient for Al is written as follow: 

 
𝐷𝐴𝑙 = ℎ 1530𝐸𝑥𝑝 (

−4.1

𝑘. 𝑇
) 

(3.8) 

While h is the time in hours and in our case time is 3 hours and we have calculated diffusion 

coefficient of Al by using equation 3.8.  
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Figure 3.22 Diffusion coefficients of Aluminum in silicon (diffusivity) Al in Si (log of diffusivity 

of Al in Si verses reciprocal of temperature (in Kelvin) 
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Figure 3.23 Phosphorus and Aluminum profiles after 3 hours of drive-in (re-distribution of 

impurities) 
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     Figure 3.23 shows a phosphorus and aluminum profiles plotted for typical n+pp+ 

structure of solar cell fabricated by P/Al technology. In this process, we have used wafer 150 

µm thick with base resistivity around 1.46 Ω.cm. After all thermal step, wafers have lowly 

doped thick (deep) emitters on front side with sheet resistance around 100Ω/□. 

 

Table 3.7 Description of structure of P/Al solar cell 

n+ pp+ cell Front surface Rear surface 

BSF 

Doping source P by POCl3 Aluminum by evaporation 

Base doping concentration 

(cm-3) 

1E+16 (cm-3) 

 

1E+16 (cm-3) 

 

Drive-in (time) 3 hours 3 hours 

Temperature (ºC) 1050 ºC 1050 ºC 

Sheet resistance (Rs) 

After drive-in 

100 (Ω/□) 

 

 

Surface concentration 

(cm-3) 

1.16E+19 (cm-3) 

 

8E+18 (cm-3) 

Max. 2E+19(cm-3) 

Junction Depth 

(µm) 

1.01 (µm) 3.5 (µm) 

 

3.8 PC1D evaluation of p+ layer  
By using PC1D program simulation, we have calculated the effect of thickness of p+ layer on 

short circuit current, open circuit voltage and efficiency for different base thickness of solar 

cells. Effect of thickness of p+ layer can be seen in following figures (figure 3.24, 3.25 and 

3.26) [44]. 
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Figure 3.24 Effect of thickness of p+ layer on short circuit current 
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Figure 3.25 Effect of thickness of p+ layer on open circuit voltage 
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Figure 3.26 Effect of thickness of p+ layer on efficiency of P/Al solar cell 

 

3.8.1 Disadvantages of high temperature drive-in 
  At high temperature in case of Al diffusion on backside of wafers, it creates stress on 

crystal orientation of wafers and wafers were bended even broken due to high temperature. 

In addition this lifetime is affected too much due to high temperature. A photograph of tilted 

and broken wafers is shown in the figure 3.27.  
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Figure 3.27 Wafers are bended due to Al diffusion at high temperature  

     

3.9 Antireflection coating (ARC) 
           It is a type of optical coating applied on the surface of wafers and light reflecting 

materials and optical devices to reduce back reflection. Silicon nitride has been extensively 

used in research since last two decades. Silicon nitride film provides excellent surface 

passivation, transparency, antireflective properties and stability under ultraviolet light 

exposure and high thermal treatment. Coating layer improves the efficiency of the solar 

cell by absorbing maximum light. A layer of silicon nitride also acts as antireflection layer 

typically deposited using chemical vapor deposition process (CVD). Precursor gases of 

silane (SiH4) and ammonia (NH3) are fed into a chamber and break down due to a plasma 

enhancement (PECVD). PECVD is a technique used to deposit thin films from gas state 

(vapors) to solid state on a substrate. Chemical reaction, which takes place after creation of 

plasma of reacting gases (vapors). Plasma is generally created by RF (radiofrequency) or 

DC discharge between two electrodes and space is filled with reacting gases. In silicon solar 

cell fabrication, PECVD technique is used to deposit antireflection layer of silicon nitride 

(SnxNy). Silicon nitride layer not only acts as antireflection layer but also use for passivation 

of dangling bond.  

   Plasma enhanced chemical vapor deposition (PECVD) forms a thin film from precursor 

gaseous mixture, whose molecules are broken by using electric field. The gaseous excitation 

is used to produce plasma between two electrodes of electric field. Other systems use 

microwaves to cause the silane/ammonia reaction to take place. The complete reaction is 

given below;  

 

    But the usual reaction to produce a non-stoichiometric film with the incorporation of large 

amounts of hydrogen (SixNy:H). The process which is used to deposit silicon nitride is based 

on decomposition of hydrogenated gases. High content of hydrogen gas ensure to improve 

the surface passivation by saturating dangling bonds. This hydrogen is also beneficial for 

passivation of the defects in bulk of low quality grade silicon material. Oxygen content also 

improves surface passivation by saturating the dangling bonds. In order to obtain a good AR 

coating, we have to make sure that the oxide layer is after drive-in is very thin, therefore we 

have to check the reflectance measurements after drive-in. We also have to check the 

measurement of reflectance after AR coating. Silicon nitride not only acts as antireflection 

coating but also passivate the silicon surface [45-47].  

Silicon nitride deposition was carried at 450ºC.  

Silane (SiH4): 50 sccm  

Ammonia (NH3): 65 sccm  
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Argon (Ar):  40 sccm 

        In this chapter we will discuss the deposition of AR coating, and its optical 

characterization. Detail of AR coating with respect to passivation and lifetime improvements, 

we will discuss in passivation chapter. Microscopic images of texture wafer and texture with 

AR coating is shown in figure 3.28. AR coating is characterized by antireflection 

measurements. Texture wafers with AR coating have average reflectance less than 5%. 

Graph of reflectance measurement is shown in figure 3.29.  

 

 

Figure 3.28 Microscopic images of (a) Texture silicon wafer (b) Texture silicon with AR coating 
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Figure 3.29 Reflectance of measurements of texture wafer and texture with Antireflection layer 

      Front surface of wafer after AR coating is shown in figure 3.30 , while back side of wafer 

have diffused aluminum after 3 hours of drive-in. Wafers are ready for further processing, for 

photolithographic step.  
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Figure 3.30 Front and back side of silicon wafers after drive-in and AR coating. 

 

3.10 Frontal metallization (By photolithography) 
            In P/Al technology, for front metallization we have used more sophisticated and 

highly efficient photolithographic technique. For industrial fabrication of silicon solar cell, 

usually used screen printing technique for front as well as back contacts. To obtain 

maximum process reliability in photolithography, substrates should be clean and dry prior to 

applying the photoresist. Process is Started with the wafers cleaning, or a rinse with 

deionized water. A photoresist (resin) is a light sensitive polymeric material used in several 

industrial processes and in photolithography to form a patterned coating on a surface for 

fabrication of solar cell and electronic devices [48]. Systematic procedure for front 

metallization is shown in figure 3.35. Photoresist is synthesized to produce low defect 

coatings over a broad range of film thickness. The film thickness is related to spinning speed 

of spin coating machine, it is very important to control the spinning speed in order to achieve 

the desired film thickness. [49-50]. 

 

3.10.1 Recommended coating conditions: 
(1) Static dispense: Approximately 5ml (130-140 drops) of resin (photoresist) for 

125×125 mm (4.9×4.9 inches2) of wafers area. 

(2) Spread cycle: Ramp to 100 rpm acceleration for 30 seconds but at the end we did not 

used this spread cycle. 

(3) Spin cycle: Ramp to final spin speed at an acceleration of 1500 rpm for 50 seconds 

(4) Heat treatment (Prebake step): All wafers after photoresist deposition were dried in 

oven at 95 0C for 15 minutes. We adjusted the tray in furnace and we introduced the wafers 

inside the furnace by using carriers and kept these wafers in oven for heat treatment and 

polymer stabilization. For heat treatment, turn on the oven at least couple of hours before 

prior to use. Wafers containing photoresist are normally heated in oven at already fixed 

temperature of 950C for 15 minutes for solidification of photoresist. Make sure that 

temperature of oven remains fixed during introducing wafers in and out. Higher temperature 

or over heating may destroy or decompose the photoresist (resin) [49-50]. 
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3.10.2 Photolithographic step (Expose to light) 
            The mask used for front contacts metallization by using photolithography is already 

designed by our research group and it consists of specific pattern of 9 cells with dimension 

of 2X2 cm2 cells for 125X125 mm2 wafer. Each cell has different width of fingers and 

distance between them. Picture of photolithographic machine is shown in figure 3.31. 

 

Figure 3.31 Photolithographic machine used in photolithographic step for front contacts. 

 

     The mask is placed in mask holder and locked the mask holder, locked the keys/clamps 

which is used to tight the mask and to make ready for processing. Wafers were placed in a 

carrier for photolithographic step.  

     Adjustment of the mask in mask holder is done in such a way that wafer and mask had a 

minimum distance. Exposure time is adjusted by hit and trial methods by doing some 

experiments in order to control the width of fingers. We finalized exposure time 45 seconds. 

With exposure time 45 seconds we had a fingers width 28µm while in mask we have 25 µm. 

Which is more or less similar with mask design, so 45 seconds is recommended time for 

exposure time (photolithographic step). By the increasing exposure time, we observed 

degradation of photoresist (polymer) and width of fingers were increased.  

    After photoresist deposition and heat treatment, this photo sensitive polymer layer is 

exposed to UV light. A photomask is used as patterning template leaving an image on the 

photoresist. Photoresist is optimized for near UV (350-400nm) exposure. Photoresist is 

virtually transparent and insensitive above 400nm but has high actinic absorption below 

350nm. Excessive dose below 350nm may result in over exposure of the top portion of the 

resist film, resulting in exaggerated negative sidewall profiles. The optimal exposure dose 

depends on film thickness (thicker films require higher dosage) and process parameters. 

Normally expose time 30–60 seconds. Recommended exposure time is 30-45 seconds 

which are based on previous experience.  

3.10.3 Development of photoresist:  
           After photolithographic step, pattern development was carried out in developer 

solution for 1 minute developing time and1-3 minutes cleaning time. The solvents which are 

used for development purpose mainly depends on the type of photoresist. Chemical supplier 
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also supply developer solution for the development of photoresist. Recommended 

developing time is one minute but it also depends on concentration and type of developer. 

During development, image of mask is produced in the photoresist, which is transferred on 

the wafer surface. These layers are then etched to form a permanent pattern in the film. It is 

a simple method for patterning films that are deposited on wafers. A pattern is defined on a 

substrate using photoresist. A thin metallic film which is deposited by using electron beam 

machine is deposited all over the photoresist as well as images produced after development 

of photoresist. Wafers after photoresist development is shown in figure 3.32. 

 

Figure 3.32 Image of wafer after development of photoresist 

 

        Metallization was carried out in following order by using three different kind of metals 

whose detail is given in table 3.8.  Before deposition of metals, wafer were treated with HF to 

remove the silicon nitride under the contacts areas. (To remove the oxides, silicon nitride 

and make the surface hydrophobic in 5-7% HF) 

 Table 3.8 

Metal Vacuum Voltage (kV) Current (mA) Tooling 
factor (%) 

Thickness 
(A0) 

Ti 5×10-5 Torr 6.5 50-120 45 500 

Pd 5×10-5 Torr 5.5 50-70 45 200 

Ag 5×10-5 Torr 6.5 40-60 45 1000 

 

3.10.4 Liftoff of photoresist 
Acetone treatment for 2-4 hours 

Isopropyl alcohol 5-10 minutes 

Deionized water 2-5 minutes 

         After metals deposition, liftoff step was carried out to get front contacts. For liftoff 

process we used acetone as solvent. During lifting-off process the photoresist under the 

metallic layer is removed with solvent taking the film with it, and leaving only the film which 

was deposited directly on the substrate where photoresist was already removed by 

developer after photolithographic step. Selection of the solvent for lift-off process depends of 

type of photoresist. Different solvents or mixture of solvents have been reported in the 
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literature. After liftoff process we had metallic fingers on wafer surface according to mask 

design but resolution is not same as we have in mask used. Lift-off process can be 

accomplished by immersing in acetone. The time duration for lift-off depends on the quality 

and thickness of metallic film. At least 2-3 hours are necessary to complete lift off process. 

At the end wafers were cleaned with isopropyl alcohol and de-ionized water before drying 

[51]. 

       Photoresist (resin) which we used in our experiments was soluble in acetone. Acetone 

not only liftoff photoresist but also metals deposited on photoresist layer except fingers area. 

This process took more than three hours to remove the photoresist with metals. In our 

experiments, we used photoresist which were expired couple of months ago, we had some 

problems in liftoff due to expired date. Due to this reason, our liftoff was not only time 

consuming but also destroying silicon nitride layer, we had problems in liftoff, even it took 

longer time and poor cleaning of photoresist which resulted small silver spots on wafer 

surface.  

 Deposition of resins (photoresist) on wafers must be carry out in dark room because 

photoresist is sensitive to light.  

 Open the valves of all gases necessary for photolithographic machine and turn on 

the photolithographic machine at least 15 minutes before the processing. 

 Adhesion of the deposited film on the substrate should be very good. 

 Photoresist film can be easily wetted by the solvent for liftoff process. 

      Overall front metallization process by using photolithographic technique is shown in 

figure 3.33. It is considered as a laboratory technique for front metallization, in industry 

metallization is carried by screen printing technique.  

 

Figure 3.33 Front metallization process by photolithography. 
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3.11 Electroplating or electro-deposition 

             Electroplating is a metal deposition process in which metal ions in a solution are 

transferred by an electric field to coat an electrode connected metal growing area. The 

process uses electrical current to reduce the concentration of cations of a desired material 

from a solution and coat conductive object with a thin layer of the material, such as a metal. 

Electroplating is primarily used for depositing a layer of material to bestow a desired property 

to a surface that otherwise lacks that property. Other application of electroplating is grow 

thickness of undersized parts. In our work we used electroplating to grow silver on silver 

fingers to get desire thickness of silver fingers (5-8µm). 

Conditions for electroplating process: 

Anode: 99.9% pure silver anodes is used. 

Anode/cathode ratio: 2:1 anode to cathode ratio is required.  

          E-Brite 50/50: It is supplied as a liquid concentrator, which contains 4 oz/gallon of 

silver. Concentration of E-Brite 50/50 is diluted with D.I. water. It is an alkaline, cyanide free 

plating solution, which can plate bright silver for electronic, industrial and decorative uses. It 

operates at room temperature and can be utilized in both rack and barrel plating.  

E-Brite 50/50            50% 

Deionized water         50% 

pH                    8.8, (range 8.5-9.5) 

Temperature of bath      68-72°F (20-22 0C) 

E-Brite 50/51 electrolyte   5% 

45% KOH solution to adjust pH to 9.0 

50% Nitric acid to decrease pH 

       It is very important to operate E-Brite 50/50 at pH range 8.8 to 9.5. If pH is below than 

8.8, we have to adjust it with KOH. If pH is over than 9.5, we have to adjust it with 50% nitric 

acid. 

      E-Brite 50/51 electrolyte is added on a regular basis to complex the silver dissolved from 

the anodes. Additions of E-Brite 50/51 are made based on ampere hours, Hull Cell tests or 

as recommended by EPI. Typically 1% of E-Brite 50/51 is added every day to the solution 

used for silver plating and the pH is adjusted to 8.8 to 9.2. If silver is not plated on a 

particular day. Use a 1-micron filter to take out small particles in the bath. Continuous carbon 

filtration or normal paper filtration of the bath is required even when the bath is idle before 

using. The solution must be kept free from suspended matter (material) in order to prevent 

roughness. Continuous filtration with 2 micron carbon filter is recommended. We do not have 

this facility and used simple filtration using filter paper. It removed the micro and suspended 

particles and it could not remove the turbidity.  

      Took the filtered with maintained pH electrolyte solution in plastic tray, adjust the wafers 

inside the apparatus and connect the power supply as shown in the flow sheet or real figure. 

Take care during adjustment of wafers on platform. Use voltmeter to adjust the voltage 

supply to the system. Electroplating process takes 3-5 hours’ time depending on the number 

of cells to be plated. It also depends on concentration and pH of solution. After the 

electroplating process rinsing is important process to get neat and clean surface. Rinsing is 

followed cold and hot deionized water. In some cased with 10% dil. H2SO4.  

       In our work, we used electroplating to grow silver on silver finger to get desire thickness 

of front contacts (5-8um). The results of electroplating are quite different under same 
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experimental conditions; even fingers have a variable thickness. We are still optimizing 

experimental conditions to get desire thickness with uniformity. 

 

  

Figure 3.34 Electroplating process for front contacts growth (Ag electroplating) 

        The metals which were deposited by EBM, were in nanometers scale, it was difficult to 

extract current by these thin fingers and busbar. Electroplating process helped us to grow 

the finger thickness and height to extract the current easily. Fingers height were in range of 

6-10µm and width was in 25-35 µm after electroplating. Their thickness were measured by 

using optical microscope by focusing on the top of fingers and on the base of bottom area of 

fingers as shown in figure 3.35 [52]. 

3.11.1 Characterization of Electroplated cells. 
After electroplating, their thickness were characterized under microscopic study. 

 

Figure 3.35 Thickness measurements of fingers grown by electroplating 

 

 We can also calculate the thickness of finger after electroplating by using following equation 

3.9; 

 
ℎ = 𝜌𝐴𝑔

𝑙 × 𝐼

𝑊 × 𝑉
 

 (3.9) 

While h= height of finger (to be calculate), W= width of finger, l= is length of finger  
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     “I” = applied current to finger. 𝜌𝐴𝑔 =specific resistance of silver (1.59E-8Ω.m) and V= 

voltage to be measured. Flow sheet of measuring apparatus which is called 4 point contacts 

measurements is shown in figure 3.36. Length and width of fingers can be measured easily 

by optical microscope. Height which is in few micrometers, can we measure by using 

equation 10. [52] 

 

Figure 3.36 Thickness measurement procedure of finger by 4 points current voltage apparatus. 

3.11.2 Drawbacks: 
Electroplating electrolytes are alkaline in nature. Due to alkalinity of chemicals, it starts 

etching the surface of AR coating (silicon nitride), even etching rate is slow but due to long 

electroplating time surface is affected by chemicals. Scratches are appeared on front surface 

of the cell. Secondly, due to etched AR coating, Ag is deposited among the fingers as shown 

in figure 3.37. It strongly effects on performance of solar cells.  

 

Figure 3.37 Optical microscopic images of electroplated cells. Cell (b) is over electroplated and 

Ag is deposited among the fingers. 

3.12 Metallization (Back contacts) 
              For back contacts, a layer of aluminum and silver were deposited on back side (rear 

face) of wafers by using electron beam machine. Same procedure was adopted as it was 

adopted for aluminum or other metals deposition by using electron beam machine. 

Conditions for evaporation and desire thickness is mentioned in the table which is given 

below; 

Metals Vacuum 

(Torr) 

Voltage 

(kV) 

Current 

(mA) 

Tooling 

Factor (%) 

Thickness 

(A0) 

Al 5×10-5 to10-6 7 120-220 45 1000 

Ag 5×10-5 

Torr 

6.5 40-60 45 1500 
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   On backside of wafer, second layer of aluminum acts like a mirror which reflects back all 

unabsorbed radiation to silicon wafer for further absorption.  

3.13 Forming gas annealing 
          Forming gas annealing (FGA) is an effective process to repair low efficiency crystalline 

silicon solar cells. The major effect of forming gas treatment on solar cell performance is the 

fill factor values, which increase from 3 to 8%. It also effect on internal quantum efficiency, it 

confirm that hydrogen passivation has become most important in photovoltaics and 

microelectronics. Forming gas annealing treatment is carried out in P/Al solar cell by using 

N2/H2 (95%:5%) for 30 minutes at 450 0C by using following procedure. 

Table 3.9 

 

           It is a low cost process used for hydrogenation purpose to improve the surface 

damage due to high temperature processes during diffusion or deposition techniques. In 

forming gas annealing, hydrogen gas interact with impurities at appropriate temperature to 

enhance conversion efficiency in silicon solar cells. Passivation effect of hydrogen gas is 

used to improve the grain boundaries of crystalline silicon to improve the efficiency. As we 

have mentioned early major effect of forming gas annealing is to improve the fill factor, which 

can be increase up to 8%. In some case 15% of hydrogen gas is used in forming gas, 

improvement in efficiency was observed in case of higher percentage of hydrogen use. 

During annealing process, dissociated hydrogen diffused rapidly in region of low oxides 

(having low concentration of oxygen at surface). Damages produced by impurities in 

phosphorus diffusion depends on P concentration. High temperature diffusion of P helps the 

diffusion of hydrogen deeper in the junction. PECVD during passivation also damage the 

silicon surface. It is proved that FGA improves the lifetime of silicon solar cell. Results and 

observation made by some researchers show that FGA only improve the lifetime and surface 

damage when there is a junction. It is mandatory to have n+ junction in order to observe the 

improvement in lifetime [53-56]. Forming gas Annealing have two benefits, first it produce 

good alloys between different metals, as a result series resistance of the cell decrease and 

second is that it recovers the damage produced at the surface by electron beam and x-rays 

during metals deposition process. [53-56].       

3.14 Isolation of solar cells by laser: 
           Laser micromachining processes being used in monocrystalline and polycrystalline 

solar cells include laser edge isolation, laser micro via drilling, laser fired contacts, and laser 

surface structuring as well cutting of wafers and . All of the above mentioned machining 

technologies have a guarantee for high efficiency of the complete solar cell at a minimum of 

materials damage and least material’s loss. For the achievement of high opto-electronic 

efficiency, differently doped front and rear sides of crystalline solar cells need to become 

isolated at the edges. There are two kind of laser one is green which works in visible region 

and other red laser, works in IR region. Green laser of visible region has a wavelength 

515nm use for cutting of wafers and edges isolation. Silicon wafers are conventionally diced 

Step Gases flow at 4500C 

Turn on the furnace 

1st step 

N2 + H2  6l/min +                 (20 minutes) 

Wafers in 

(after 20 minutes) 

N2 + H2 6l/min                   (30 minutes) 

 

Turn off the furnace 

 (after 30 minutes) 

N2 + H2 6l/min                   ( 90 minutes) 
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off by a thin diamond blade, currently green wavelength with milliseconds low power pulsed 

fiber lasers and high beam quality continuous wave fiber lasers are being used to cut these 

materials. The cut quality is poor and micro cracking can occur due to excessive heat input, 

which can lead to failure of some components during process steps and associated 

reduction in yields. [57] 

3.14.1 Laser Description: 
           Different parts of lasers are shown in figures 3.38. For operation we used computer 

program Ast06. For proper functioning we have to adjust scanning speed which is from 20 to 

3000mm/sec and pulse repetition frequency 10-200 kHz and power is variable under 

different conditions. The laser system which we have used in our experiments, consists of a 

Q-switched fiber laser, which generates pulses of 10 ns duration, Gaussian beam, working 

at two wavelengths (infrared, IR, λ1 = 1030 nm and green, GR, λ2 = 515 nm). We have used 

green laser, which is more efficient than IR laser. 

We have used following parameters for cutting of cells: 

Laser frequency: 50 kHz 

Laser power 34.2 A 

Scanning velocity 500 mm/sec 

No of scan= variable (2-8) 

 

 

Figure 3.38 Description of laser (Different parts of laser is shown in figure) 

    

       By using laser, we have isolated different cells of area 2×2 cm2. Although laser is 

advance and fast technique for processing and cutting but it has some disadvantages, in 

some cases we observed that due to melting of silicon by laser, silicon starts depositing on 

the edges of cells which cause in shunt conductance.  

We have observed through optical microscope that silicon and aluminum due to laser 

energy, melted Si or Al, which is deposited on edges, even in some case it was in contact 

with backside. This process decreased short circuit current. 
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Figure 3.39 Due to laser energy, Melted Al cause a shunt conductance 

 

After laser cutting/isolation, cells of 4 cm2 area are obtained, pictures of some cells are shown 

in figure 3.40.  

 

Figure 3.40 Real pictures of solar cells with area of 2x2 cm2 

      Description of P/Al silicon solar cell structure with respect to thickness of different layers is 

given in below in figure 3.41.   

 

Figure 3.41 Thickness description of solar cell fabricated by P/Al technology 

 

 

75~nm 
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150µm 

250~nm 

3-5 µm 
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3.15 Characterization of P/Al solar cells 
           In solar cells fabrications, it is necessary to characterize solar cell during fabrication 

process. There are many destructive and nondestructive techniques which are used to 

analyze fabrication steps and performance of solar cell.  

There are two/three of characterization techniques: 

Electrical characterization  

Optical characterization 

Electro-optical characterization  

  

      In electrical characterization, there are 3 basic measurements which are used to 

characterize solar cells, which are as follows:  

  

 IV curve under illumination, where cell is illuminated at one sun and basic parameters 

are measured 

 Dark IV curve, where the cell is in under dark condition and IV dark characteristics are 

measured.  

 Jsc (Isc) and Voc are also recorded at different illumination.  

 

      These three measurements consider as one technique because above three 

measurements are measured together and curves are plotted in same graph. Solar cell 

parameters are extracted from these curves. Details of these techniques are already 

discussed in chapter 2. In this part we will focus on instrumentation and measuring 

procedure for IV characterization.  

3.15.1 IV Curve measurement System  
  The system, which we have in our institute for measurement of IV curve, is valid for both 

small size as well as large size solar cells. It consists of solar simulator with a xenon lamp as 

source of light. It is fixed at approximate air mass 1.5. As shown in figure 3.42. 

 

Figure 3.42 Schematic diagram showing Measurement system for IV characteristics 

The system (equipment) whose picture is shown in figure 3.43.  
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Figure 3.43 Solar simulator systems 

     In solar simulator there is an artificial source of sun light from solar simulator lamp which 

has xenon lamp attached with various filters and connect with power source. This system is 

accompanied by a program (Solar TiM) developed in our institute for the operation of solar 

simulator and automatic measurement of IV curves. Main screen of program is shown in 

figure 3.44 [58-59]. 

 

Figure3.44 Principal Screen of the program 

   By using this program, we can select procedure for desire measurements but usually we 

used solar simulator (light and dark) for measurement. After selecting the solar simulator, 

second screen of program appears, where we have to fill the information about our cell 

(emitter type, active and total area etc). In this way we can measure both dark and 

illumination IV curves in short time. Measurement results appear in the form of data which is 

shown in figure 3.45 [1-3]. 
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Figure 3.45 Screen for IV curve measurement data of solar cell by solar simulator 

           From the data, which appears on the screen we plotted IV curve and calculated 

efficiency and fill factor. IV curve plotted by solar simulator is shown in figure 3.46. We also 

have other relevant information about short circuit current and open circuit voltage. [58-59]. 

 

 

Figure3.46 IV curves measured with solar simulator 

       Furthermore, the data which we have obtained from solar simulator appears in the forms 

of 3 files, each file has specific information about data of IV curve under illumination, under 

dark and solar cells measuring parameters (such as total area of cell, active area and 

temperature of platform). These files are further processed by using fitting program, MultiV 

(developed by faculty members of our institute TiM). By the fitting the curves of our data with 

standard curves, we can obtain electrical parameters of cell. In this way, we can extract all 

information about solar cell. MultiV data appear on screen in MultiV program is shown in 

figure.3.47 [58-59]. 
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Figure 3.47 Screen of MultiV fitted data of Solar cell 

    By the using MultiV fit program, we have plotted I-V curves data of solar cell with MultiV 

program and graph is shown in figure 3.48. Spots (dots) represent our data, from solar cell 

and lines on the spots (dots) represent the fitting of data.  

 

Figure 3.48 IV curves fitted with MultiV program 

 

3.15.2 I V curve measurements and characterization of solar cell (batch1) 
         After laser isolation and cutting, IV characteristics were measured by solar simulator by 

using computer program. IV data which we have obtained after measurements are plotted in 

the form of IV curve and results are given in table 3.10. Graphs of IV curves under 

illumination and dark of first batch is shown in figure 3.49 and figure 3.50 shows the 

logarithmic plot of IV curve under dark.  
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Figure 3.49 IV curves of P/Al solar cells of batch 1 under illumination conditions 
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Figure 3.50 logarithmic plot of IV curve under dark conditions for P/Al solar cell. 

 

Electrical characteristics which we have obtained from IV curves are shown in table 3.10. In 

this batch we have used 4cm2 active area of solar cell. 
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Table 3.10 

No. Cell 1 

 

Cell 2 Cell 3 Cell 4 

Pmax. (mW) 52.43 60.14 36.54 48.95 

Efficiency  (𝜂) (%) 12.85 14.74 8.95 11.99 

Jsc (mA/cm2) 36.76 37.914 37.5 36.94 

Voc (mV) 594.76 603 598.89 598.94 

FF 0.60 0.67 0.41 0.56 

 

3.15.3 Sun-Voc Measurements and Characterization  

         This measurement is very similar to IV measurement except Jsc, Suns-Voc uses a 

separate solar cell to monitor the illumination intensity of the solar cell instead of Jsc. Suns-

Voc curve allows us to characterize lifetime of minorities carriers and its analysis also 

provides detailed information on the internal components of recombination in the solar cell. 

Sun-Voc measurements provide information of IV curves without the effect of series 

resistance of diode. Fitting of Sun-Voc curve is easier than illuminated curve since there is 

no dark current or series resistance. [60-61].  

   This measurement can be carried out with minimum extraction of current which are 

applicable for both structure with metals contacts or without metals contacts. This technique 

allows us to monitor the wafers and solar cells quality in early fabrication steps. System 

which is used to get data and curves is composed of a flash lamp with constant (specific) 

attenuation, a detector of illumination which are based on silicon photodiode and logarithmic 

converter, platform for measuring voltage and a micromanipulator to measure the voltage of 

open circuit structure. Flash lamp illuminates both the cell (to be measure) and detector, in 

this way voltage induced in both cell and detector are collected by an oscilloscope and 

transferred to computer. Measuring apparatus is shown in figure 3.51.  

 

Figure 3.51 Schematic measurement system of Suns-Voc. 
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     Measurements which are carried out by two different procedures. Frist is accomplished 

by slow decaying of light intensity, it can be considered as a quasi-steady statement 

measurement, (QSS-Voc). In our case we have two different kind of quasi-stationary 

phases, a flash with 2 different decay constants. For this measurement, we do not need to 

use coil or RF Bridge, we can measure directly from oscilloscope without any bridge 

adjustment. During this measurement, we do not only get the voltage but also get the diode 

parameters of solar cell (Joe, Joz Gsh and Rs) which is one of our objective of this 

measurement. These characteristic of solar cell are obtained by plotting Voc verse function 

of intensity of light. We do not measure electric current directly but this current is replaced by 

the intensity of light. A linear relationship exist between electric current and intensity of light 

which hold for most solar cell. 

      Second procedure in which illumination is reduced abruptly, this structures is considered 

as transient conditions. Where the decay of open circuit voltage is detected in dark. In order 

to process a collected data in each measurement, a template in excel has been created to 

extract the curves of suns-Voc, with applying the correction factors which are related 

capacitive associated effect of space charge zone. A reconstruction of Jsc-Voc curve by 

varying internal parameter of structure, we can obtain data/curves for Voc under one sun 

and effective lifetime depending on injection level. [62]. A graph of sun-Voc verses intensity 

of sun is shown in figure 3.52 and graph for sun-voc vs Voc is given in figure 3.53. 

 

Figure 3.52 Graph of Suns verses Voc by suns- Voc measurement 
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 Figure 3.53 Illumination vs time from the flash lamp and right hand open circuit voltage of the 

wafer. Measurement system Suns-Voc. 

Our objective to use Suns-Voc technique is not only to measure sun-Voc measurement but 

also use to extract solar cell diode parameters (Joe, Joz, Gsh and Rs) by fitting the curves of 

sun-Voc fit with our curve (real data). Graphical representation of sun-Voc fit is shown in the 

figure 3.54.  

 

Figure 3.54 Sun-Voc curve fitting to extract solar cell diode parameters 

    P/Al solar cell parameters which are extracted from Multiv and sun-Voc measurements 

are given in table 3.11. Sun-Voc measurements are carried out with metal contacts. 

Table 3.11 

Parameters. Cell 1 Cell 2 

From multiv From Sun Voc From multiv From Sun Voc 

Gsh (ohm.cm2) 4.73E-04 8.00E-04 4.21E-03 4.00E-04 

Joz  (A/cm2) 1.68E-07 1.00E-08 2.10E-07 1.46E-09 

Joe  (A/cm2) 1.00E-13 1.50E-12 9.06E-13 1.50E-12 

Rm (ohm.cm2) 4.00E-04  4.00E-04  

Voc (mV)    IV curve 594.7 603 

Sun-Voc (1sun) mV 600.7 610. 9 
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3.16 Fabrication of silicon solar cell by P/Al technology (Batch 2)  

    Fabrication steps which are used in standard P/Al technology for fabrication of silicon 

solar cells are given in the table 3.12, Fabrication process is same as it is mentioned early in 

this chapter. We have repeated this process to improve the fabrication process by 

investigation with respect to time. It is approximate time for fabrication of P/Al silicon solar 

cell.  

Table 3.12: General fabrication steps: 

Step 

No. 

Step Name 

 

Time consumption 

(in hours) 

1 Etching + texturing 4 Hours 

2 RCA (1&2) cleaning 4-6 Hours 

3 HF treatment 20-30 Minutes 

“P” pre-deposition 3-4 Hours 

4 Aluminum deposition 5-7 Hours 

5 Drive in process P/Al 5-6 Hours 

6 Antireflection coating 

(AR coating) 

6-8 Hours 

7 Frontal metallization 

(By photolithography) 

 

Mask development 2-3 Hours 

HF treatment 10-15 Minutes 

Ti/Pd/Ag deposition 

(electron beam machine) 

3-4 Hours 

Liftoff of photoresist 3-5 Hours 

8 Electroplating process 5-6 Hours 

9 Back side Al/Ag deposition 

Back contacts 

4-5 Hours 

10 Forming gas annealing 3-4 Hours 

11 Isolation of solar cell by laser 

( cutting by laser) 

3-5 Hours 

 

     Time which is given in the table 3.12 is for overall batch process, in each batch 

process we have used 10 wafers. Average time for each fabrication step is given in 

table 3.12. 

3.17 IV characterization of P/Al solar cell of batch 2. 
IV characteristics were measured by solar simulator by using computer program. IV data 

which we have obtained, are plotted in IV curve and results are given in table 3.13. Graphs 

of IV curves under illumination and dark of first batch are shown in figure 3.55 and figure 

3.56 shows the logarithmic plot of IV curve under dark. 
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Figure 3.55 Illumination and dark IV curves of P/Al silicon solar cells (batch 2) 
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Figure 3.56 Logarithmic plot of IV curves of P/Al silicon solar cells (batch 2) 

Batch 2, Electrical parameters of batch 2 which are extracted from IV curve under 

illumination are given in the table 3.13.  

Table 3.13 IV characteristics and parameters of P/Al silicon solar cells (batch2) 

Cell No. Cell 5 Cell 
6 

Cell 
Juntest2 

Cell 
Juntest3 

Pmax. (mW) 69.83 66.06 61.05 54.48 

Eff. (𝜂) (%) 16.22 15.5 14.2 12.851 

Jsc (mA/cm2) 39.3 38.3 37.8 35.01 

Voc (mV) 599.03 599.07 599.074 599.1 

FF 0.70 0.69 0.63 54.48 
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   Sheet resistance of these cells after “P” doping were in range of 140-190Ω/□. Electrical 

parameters of batch 2 of IV under dark which are extracted from Multiv fitting program and 

Sun-Voc fitted are given in the table 3.14. Sun-Voc measurement graph is given in figure 

3.57. 

Table 3.14 Multiv and sun-Voc fit characteristics and parameters of P/Al silicon solar cells 

(batch2) 

Cell ID Cell 5 Cell 6 Juntest2 Juntest3 

From 

Multiv 

From 

Sun-Voc 

From 

Multiv 

From 

Sun-Voc 

From 

multiv 

From 

Sun-Voc 

From 

Multiv 

From 

Sun-Voc 

Gsh 

(ohm.cm2) 

2.00E-04 5.0E-4 2.92E-

04 

9.0E-4 

 

8.00E-4 9.1E-4 9.50E-04 2.00E-4 

Joz 

(A/cm2) 

2.03E-07 2.4E-7 2.62E-

07 

2.65E-7 1.74E-7 1.00E-7 2.03E-07 1.2E-7 

Joe 

(A/cm2) 

1.12E-12 1.72E-13 3.00E-

13 

5.01E-

13 

4.5E-12 2.00E-13 9.89E-13 2.8E-13 

Rm 

(ohm.cm2) 

9.01E-01  1.80  2.23E-1  2.39  

Voc (mV)    

IV curve 

599.02 599.07 599.32 599.10 

Sun-Voc 

(1sun) mV 

608.37 597.99 603.32 596.69 

    

 

Figure 3.57 Sun-Voc values under 1 sun of P/Al cell (cell 5) 

 

3.18 Thin silicon solar cells 
          The photovoltaic industry tends to reduce the thickness of the silicon wafers from 350 

µm to 100-150µm to save starting material. This is sought to not only reduce the cost of the 

cells but also to face the dreaded problem of supply solar grade silicon in near future [63]. 

According to assessment, economic benefits can be taken by decreasing the thickness of 

solar cell and by increasing the efficiency. A massive improvement has been progressed 

since 2000 as shown in figures 3.58 and 3.59. For further reduction of cost, innovative 
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fabrication process by using highly efficient technology is necessary to use. Cost of solar 

module is described in the graph is given below in figure 3.60.  

       As it is shown in figure 3.58, economic benefits can be taken, if we used thin wafers for 

silicon solar fabrication. More than 50% cost of material decrease, if we use thin wafers. A 

major trend to use thin wafers appeared after 2004. If we used wafers of 150 µm thin, for 

fabrication, which is less than half of starting material. It would be a 12% reduction in total 

fabrication cost of solar module in case of multicrystalline silicon wafers. In case of 

monocrystalline silicon wafers, which are expansive than multicrystalline wafers, saving of 

total cost will be higher. (21% of total cost drop) [63 and 23]. If cells of 150 µm wafers were 

manufactured half of the starting material about (keep in mind that much is lost in the silicon 

wafer sawing) would be spent. This would be a 12% decrease in the total manufacturing cost 

of the module to the multicrystalline silicon, serving only to reduce the starting material. In 

the case of monocrystalline silicon as the basis for being a more expensive material, the 

saving would be even higher (21% of total cost). 

 

Figure 3.58 Silicon solar cell development (wafer thickness in micrometer (µm) and silicon 

usage in gram/watt (g/Wp) 

       In the graph in figure 3.59, the decrease of module price is due to two reasons, one is 

the solar module cost and other is raw material cost. Module cost from 2005 to 2015 is 

decreased from 3.25 $ to 0.50$ which is more than 75% drop, which is historical 

achievement in solar energy world. The cost of raw materials is also dramatically decreased 

in last decay from 400$ to 25$. This decline is also due to increasing efficiency of solar cell 

and electrical energy production from sun light due to improvement in fabrication 

technologies.  
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Figure 3.59 Fabrication cost of module in last 2 decays 

      Detail Information can be found in solar cell central webpage [64]. Fabrication cost of 

solar module from raw material to end point (lamination) is shown in figure 3.60 in 

percentage. This is calculated cost of thick silicon solar cell which are in range of 300-350 

µm. If decrease the thickness of wafer, we will not only save the raw material silicon but also 

ingot used for wafer preparation. By using thin wafers we can save more than half amount of 

silicon for each wafer. Amount of silicon used in each wafer preparation is already 

discussed. Fabrication cost which is shown in figure 3.60 is average fabrication cost for 

module but it may vary from country to country depending on the circumstances available. 

 

Figure 3.60 Costs distribution of fabrication of a cell module by Cz silicon wafer. If the cell 

thickness will be decrease, there's a saving both ingot grown and in the material cost. 

    These calculation assumed that efficiency does not change or decrease if the thickness is 

reduced. Even if the efficiency decrease little bit under certain conditions is feasible in order 

to reduce the cost. Obviously benefits are greater if efficiency is maintained or further 

increase efficiency under certain conditions of fabricated structure with decreasing of 

thickness. There are many parameters which provides attention to pursue high efficiency. 

These parameters are very important in order to maintain or even improve efficiency of solar 

cell. Lifetime in volume of cell (𝜏), surface recombination velocity (𝑆) and absorption and 

reflection of light. The lifetime reduces due to existence of crystal defects and impurities 

present in crystal structure, it also depends on fabrication process. These impurities can be 

removed from volume through process of gettering and lifetime values can be increase. By 
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aluminum gettering, 19% efficiency has been achieved by using P/Al technology on FZ 

material [23, 37]. 

       When lifetime of carriers is higher, it becomes more important for carriers to stay in 

surface of the cell, where dominant recombination take place but not in the volume of cell but 

also on the surface. Therefore interesting point is to decrease recombination by minimizing it 

electrically well passivated surface. In case 𝑛+𝑝 𝑝+ structure which is based on P/Al, front 

surface of n+ emitters have a good passivation due to SiO2 growth or due to silicon nitride 

passivation. Major problem is on the backside of wafer and this problem is solved by 

Aluminum deposition. During redistribution step of aluminum, it diffuses into the base of p-

type of silicon, which appears 𝑝 𝑝+  homounion (homojunction) on backside the wafers. This 

union generates an electric field opposite to the movement of minority electrons from base 

region toward the rear metal contacts, which improves the effective surface recombination 

velocity (S). 

3.18.1 Thinning effect of P/Al solar cell. 
         The objective of this section is to show the simulation results for fabrication 𝑛+𝑝 𝑝+ 

silicon solar cell on CZ wafers thin substrates about 100 µm in thickness by applying P/Al 

technology. It is experimentally confirmed that that the absorption and reflection of light is 

affected if thickness of wafers decrease from 300 to 120 µm is reduced unless entrapment 

techniques are used to absorb maximum amount of light [65]. 

    In case of thin film solar cell, when we use textured wafers, maximum light is absorbed 

due to texture structure of wafers which provides second chance to rays to be absorbed in 

base of silicon. Any roughness on the surface of wafers reduces the reflection by increasing 

the chances of reflected light to bounce again onto the surface rather than reflected back. In 

addition this texturization with a subsequent deposition of antireflection coating (ARC) is well 

established method to reduce the optical losses. Due to texture surface, thin wafers are not 

affected by reflection. Mechanism of reflection is shown in figure 3.61. Normally rays are 

reflected back due to plan surface but texture surface deflect them at certain to strike again 

on the surface. [66, 68-69] 

 

Figure 3.61 Reflectivity in texture wafer with rays’ path for absorption and reflection 

            We have prepared a theoretical model in order to predict behavior through PC1D 

simulations of P/Al solar cell, when its thickness is reduced. For this purpose, we have 

simulated solar cell data with PC1D and energy losses are analyzed where the thickness of 
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solar cell change. All other parameters are same and presented in a table which are given 

below ;( see the table 3.18). 

Table 3.18 parameters for simulation in PC1D for P/Al solar cell 

PC1D Simulations for P/Al silicon solar cell 

 

Parameters Specifications 

Cell structure 𝑛+𝑝 𝑝+ silicon solar cell 

substrate P-type silicon with 𝜌𝑏𝑎𝑠𝑒 =1.46 with base doping conc. 𝑁𝑏 

= 1E16 cm-3 

Thickness Variable 70-350 µm 

Front diffusion (𝑛+) Doping concentration with junction depth 

𝑁𝑠 = 1E19 cm-3 and   𝑥𝑗 = 1.01 µm 

Sheet resistance 100 Ω/ 

Back diffusion 𝑝+     𝑁𝑠 = 1E19 cm-3       𝑥𝑗 = 5 to 10 µm 

Internal reflectance Internal reflectivity of front internal 𝜌𝑓𝑟𝑜𝑛𝑡  = 90%, and 

internal reflectivity of the backside 

𝜌𝑏𝑎𝑐𝑘𝑠𝑖𝑑𝑒 = 70% 

Bulk Recombination τn =  55 µs  and τp =  280 µs 

Temperature 298 K 

Recombination in volume 

SRH (𝜏 (µ𝑠)) 

Variable 

Auger recombination In case of low injection 

𝐶𝐴𝑛 = 2.2 × 10−31𝑐𝑚6/𝑠  and  

𝐶𝐴𝑝 = 0.99 × 10−31𝑐𝑚6/𝑠 ; 

in case of high injection  

𝐶𝐴 = 1.66 × 10−30𝑐𝑚6/𝑠 

Recombination coefficient in 

emitters type (𝑛+) 

𝐵𝑛 = 7.8 × 10−13𝑐𝑚3/𝑠 

Recombination coefficient in 

type (𝑝+) 

𝐵𝑝 = 3.45 × 10−12𝑐𝑚3/𝑠 

Surface Recombination of 

metallic contacts 

107 cm/s 

Surface recombination  7000cm/s 

Parallel diode. 𝐽0 = 3.99 × 10−10  𝐴/𝑐𝑚2 , m=2 

 

       Solar cells parameters such as efficiency, short circuit current and open circuit voltage, 

their dependence on the thickness are studied by using PC1D simulations. Effect of these 

parameters are plotted verses thickness which are shown in figures 3.62, 3.63 and 3.64 [67]. 
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Figure 3.62 PC1D prediction of the behavior of a of P/Al cell according to different thicknesses 

of cell to the evolution of open circuit voltage 
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Figure 3.63 PC1D prediction of the behavior of a of P/Al cell according to different thicknesses 

of cell to evolution of short circuit current. 
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Figure 3.64 PC1D prediction of the behavior of a of P/Al cell according to different thicknesses 

of cell evolution of efficiency 

It is also possible to predict effect of lifetime on performance of silicon solar cell by PC1D 

prediction under different cell thickness. PC1D predicted results are shown in figure 3.65. 
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Figure 3.65 PC1D prediction for effect of lifetime on efficiency for of P/Al cell under different 

cell thickness. 

3.19 Gettering process by Al and lifetime measurement of P/Al solar cells 

        In silicon solar cell, recombination must be reduced in order to achieve high efficiency 

solar cells, therefore intrinsic gettering process is used in most semiconductor device 

technology (formed in a region near the surface) are unsuitable. There extrinsic gettering 

procedures which can reduce the concentration of contaminating impurities confining on the 

surface that are not active, which can be removed easily. There are major techniques used 
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for gettering process in fabrication process of silicon solar cell are gettering by phosphorus 

and gettering by aluminum.  

            In this process, after phosphorus pre-deposition, an aluminum layer is deposited on 

back side of silicon wafer and subsequently annealing was carried at high temperature 

improve the performance of solar cell due to two effects, which are back surface field effect 

(Al-BSF) and effect of gettering of metallic impurities from volume of the device. BSF effect 

is explained that annealing of Al, p-type dopants forms the basis of homojunction with p base 

silicon and reflect back the minority carriers from superficial. The gettering effect is due to 

solubility of metallic impurities, which is higher in liquid aluminum silicon (Al-Si) due to high 

temperature as compare to solid silicon. 

   Gettering techniques consist of P deposition in silicon saturation conditions (from a solid or 

liquid source), when temperature increases a layer of PSG is formed which segregate the 

impurities. This phenomenon of gettering of impurities by phosphorus was observed first 

time by Meek et al in 1975 [70]. When he deposited a layer of gold and copper on side of 

wafer, which was subjected to P diffusion in saturation conditions of POCl3 source to 

measure profiles of gold and copper and observed the reduction in the volume of wafer. In 

gettering by phosphorus, solubility of impurities is higher in PSG than volume of silicon. 

Some experiments were carried out by A.E. Mousssaoui and C. Cañizo in order to extract 

impurities by phosphorus diffusion during doctoral studies at IES (Madrid). [27 and 71].  

       A. Mousaousi has studied deeply Fz, Cz and multicrystalline silicon materials for P/Al 

solar cell fabrication process. In this new process, he introduced novelty in initial step of 

extracting the impurities by phosphorus that is called pre-gettering. He has found that 825 º 

C temperatures is the best temperature for Cz and multicrystalline material to extract (getter) 

the impurities. While in Fz material, decrease in lifetime was observed due to high 

temperature ranging from 825 to 975 ºC. We have to take into consideration before applying 

this gettering process. The lifetime measurements have permitted us to observe the effect of 

phosphorus gettering. In A. Mousaousi P/Al fabrication process, high lifetime was measured 

along with high efficiency on multcrystalline wafers. Although this process has advantage of 

high efficiency with high lifetime but this process has disadvantage of long duration of P pre-

deposition step and redistribution of impurities. Its high thermal load made this process 

unsuitable for other substrate. In addition to this process has low reproducibility [27].  

Initial lifetime  (µs) After P pre-gettering  (µs) Final lifetime  (µs) 

30 100 105 

        Fabrication process of P/Al solar cell and, detail of each step is already given early in 

chapter 1. In order to assess the effect of contamination and gettering during fabrication 

process, lifetime of each thermal step was measured during fabrication by using PCD and 

QSSPC techniques. Lifetime measurement results are given in figure 3.66. 
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Figure 3.66 Lifetime measurements by using PCD and QSSPC techniques after thermal, 

chemical treatment step and SiNx deposition 

.     In P/Al silicon solar cell, we have calculated effective surface recombination velocity (S) 

from lifetime measurements, which is around 500cm/s. This value is consider high surface 

recombination velocity. We have made some PC1D simulations, in order to determine the 

effect of surface recombination velocities for different concentration of emitters. From 3.67, it 

is shown that efficiency of silicon solar cells is higher at low surface recombination rate. 

Higher surface recombination velocity lower the efficiency of silicon solar cells. 
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Figure 3.67 Graph between efficiency against at surface recombination velocity with different 

surface concentration of emitter Ns. (Thickness =150µm, 𝝉p&𝝉n=200µs) 

 

0

5

10

15

20

25

30

35

40

45

50

PCD QSSPC

ta
u

 (
µ

s
) After P dif fusion

After drive-in 3h

HF (To remove oxide)

After SixNy deposition



Fabrication of P/Al Solar Cells                           Improvements in P/Al High Efficiency Technology, AlSi                          
 
 

 

  125 

3.20  Conclusion: 
       High efficiency P/Al technology has been developed in the mid of 80´s by theoretical 

and experimental studies of A. Cuevas and M. Balbuena at IES-UPM. They have concluded 

that it is possible to obtain high efficiency with lightly doped deep phosphorus emitters and 

aluminum back surface field, P/Al (P emitters- Al BSF). They have obtained efficiency above 

19% by using high quality FZ monocrystalline silicon wafers [1]. In fact when P/Al technology 

was described at that time, efficiency achieved was remarkable and among the best silicon 

solar efficiency reported in the world. The main objective of this work was to improve high 

efficiency P/Al technology by using low grade silicon thin wafers for solar cells, which are 

industrializable exceed the efficiency and thickness estimation provided by industry.  

       Fabrication process is started from chemical etching and texturing of P-type 

monocrystalline silicon wafers obtained by Czochralski growth (Cz) with base resistivity in 

range of 0.5-2 Ω.cm and having thickness around 160 µm. Phosphorus pre-deposition was 

carried out at 825 0C by using POCl3 as a source of phosphorus and nitrogen as a carrier 

gas in tube furnace under standard conditions. Diffusion profile has been made in order to 

know doping concentration and junction depth. Surface concentration is around 1 ×

𝐸19 𝑐𝑚−3 with junction depth about 1.05 µm. Optimization analysis of homogeneous 

phosphorus emitters is key step of this technology in order to maintain high efficiency. 

Phosphorus emitters are necessarily to be a homogeneous, for this purpose P diffusion is 

investigated deeply to get lightly doped and deep emitters. Detail of phosphorus diffusion 

and emitter’s optimization is given in next chapter 4 (diffusion). 

      1 µm thick layer of aluminum (Al) is deposited on backside of wafers by an electron 

beam machine (EBM) and diffused in quartz furnace simultaneously with phosphorus for 3 

hours at 1050 ºC in nitrogen ambient. For optimization of aluminum diffusion on backside of 

wafers, we have taken into account that amount of deposited of metal, temperature, process 

time and composition of environment of the furnace to improve the lifetime and passivation. 

Doping profile of Al is shown above, which represents the doping concentration of Al in Si is 

around 1 × 𝐸19 𝑐𝑚−3 and junction depth on rear side of wafer is around 3.5 µm. 

Simultaneous diffusion P and Al in P/Al technology resulted a 𝑛+𝑝𝑝+ structure in which the 

emitters are produced by phosphorus diffusion, creates 𝑛+ on front side of the wafer while 

on back side aluminum is diffused to produce 𝑝+ on backside of the wafer. Diffusion of 

aluminum into silicon at high temperatures also creates a BSF effect (back surface field).  

      Silicon nitride layer is deposited by PECVD on front side of wafers in order to achieve 

passivation, this layer also acts as an antireflection layer. Although we did not have 

reasonable results of passivation but still silicon nitride is used as an antireflection layer to 

decrease the reflectivity. Fronts contacts are defined by metals (Ti/Pd/Ag) evaporation by 

EBM by using photolithographic technique and to gain desire thickness (about 8 µm high 

and 25 µm wide) of fingers and busbar, electroplating process was carried out. A layer of 

Al/Ag is also deposited by evaporation by using electron beam machine100/150nm 

respectively on backside of wafer.   

      Final structure of P/Al technology (𝑛+𝑝𝑝+) was annealed at low temperature in a forming 

gas atmosphere in order to produce a good alloy between different metals which reduces 

series resistance and recover the damages produced by electron beam machine, when 

electrons hit the metal to evaporate, during this process they produce x-rays. Edge isolation 

and cutting of solar cells were carried by Laser application. By applying P/Al technology, we 
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have fabricated different batches of 𝑛+𝑝 𝑝+ (P/Al) solar cells, their characterization were 

carried out by Sun-Voc and lifetime measurements during fabrication and IV characteristics 

were measured under dark and illumination at the end of fabrication process.  

    The best results which we have obtained in batch 1 have efficiency around 14.75% with 

open circuit voltage around 600mV, short circuit current 37mA/cm2. Although shunt 

conductance is higher but still we have a good efficiency. In this batch emitters are poorly 

passivated. While in second batch, we have obtained efficiency around 16.5% with open 

circuit voltage 600mV and Sun-Voc around 610 mV with short circuit current 39.2mA/cm2. 

Although fill factor is low due to series resistance which is around 70. From PC1D 

simulations, it is clear that it is possible to get efficiency around 18% by P/Al technology.     

    During fabrication process of P/Al silicon solar cells we have obtained emitter saturation 

current density for worse emitters around 1E-11A/cm2 and good emitters around 5E-13 

A/cm2. The quality of emitters play important role in the performance of silicon solar cells. It 

depends on diffusion temperature with flow of gases and doping time. At high temperature, 

concentration of phosphorus (P) exceed the solubility in Si (1021/cm3) which form a dead 

layer [72-73] which is electrically inactive and has effect on surface P concentration and 

junction depth. It produces recombination centers that increase Auger recombination, as a 

result it increased the emitter’s saturation current density (Joe) [74-75]. Moreover high 

surface P concentration reduced the passivation effect which lowers the open circuit voltage 

(Voc) and overall solar cell efficiency [76]. It is observed that at high temperature, 

phosphorus is precipitated in the form of dead layer due over solid solubility limit. Due to this 

layer recombination centers appear, as a result Auger recombination increase. 

   There are some technological steps, involved in a fabrication process which are sources of 

impurities are almost inevitable. Those are identified as transitions metals which are 

common source of contaminating impurities. These contaminating impurities have negative 

impact on the lifetime of minority’s carries which supposed to degrade the performance or 

efficiency of solar cells. There are two strategies which are pursued in complementary form 

to alleviate effect of contaminations. On one hand high cleanliness of process including 

wafer cleaning after etching and texturing process by RCA1&2 cleaning and second cleaning 

by integrating gettering process by P or Al during diffusion process. These two processes 

are used to reduce the concentration of contaminating impurities of active area of device.  

        There are various techniques which are used to characterize the impurities, some of 

them are used to measure the concentration of impurities and some of them are used to 

measure its effects. In particular lifetime measurement techniques by photoconductivity 

decay which in term of surface passivation is used to measure impact of impurities on 

surface and in the bulk are reliable measurement techniques. We have measured lifetime of 

P/Al solar cell structure after each thermal step. Due to high temperature and impurities, 

lifetime was destroyed. After diffusion and P/Al drive-in process, we tried to measure lifetime 

but it was difficult to measure due to low values. After SixNy deposited by PECVD, which is 

used to passivate the surface, we had measured lifetime of solar cells around 20µs by PCD 

and 40 µs By QSSPC technique. In this our P/Al fabrication process, we did not observe 

improvement in of lifetime after Al-gettering step during drive-in as it is shown in graph in 

figure 3.69. Although some authors have observed improvement in lifetime after gettering by 

P/Al but they have used FZ wafers during fabrication process. In some cases improvement 

in lifetime was observed, when they used phosphorus pre-gettering or pre-oxidation step 
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prior to fabrication on Cz or multicrystalline material. According to theoretical knowledge, 

lifetime of the silicon wafers should be improved due to gettering step by aluminum. The 

gettering effect is due to solubility of metallic impurities, which is higher in liquid aluminum 

silicon (Al-Si) due to high temperature as compare to solid silicon but most of authors did not 

observe this phenomena of lifetime improvement in after Al-gettering step. This may be 

because most of the impurities present in the substrate are trapped in crystal defects 

(dislocations and grain boundaries) or to occupy substitutional positions within the network, 

which makes difficult its removal by aluminum.  

       Low quality emitters produce the recombination centers due poor passivation which 

decrease the lifetime of the solar cell. As a result effective surface recombination velocity 

increase. In P/Al silicon solar cell fabrication process we have calculated effective surface 

recombination velocity, which is around 500cm/s. PC1D simulation showed that efficiency of 

silicon solar cells is higher at low surface recombination rate. Higher surface recombination 

velocity lower the efficiency. Efficiency of P/Al structure will be around 20%, if we will have 

passivated emitters as shown by PC1D simulations. In next chapters we will focus on 

fabrication of passivated softly doped and deep emitters.  
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4  Diffusion 
 

4.1 Doping:  

          Introduction of impurities into a semiconductor crystal to the defined modification of 

conductivity and electronic properties is called doping process. There are two important 

materials which are used in silicon doping. Boron (B) atom is trivalent (3 valence electrons) 

and phosphorus (P) is pentavalent (5 valence electrons) impurities. Other materials are 

aluminum, indium (trivalent) and arsenic, antimony (pentavalent). The dopant is integrated 

into the lattice structure of the semiconductor crystal and the number of valence electrons 

define the type of doping. Elements which are trivalent (3 valence electrons) are used for p-

type doping and elements which are pentavalent (5 valance electrons) are used for n-

doping. The pentavalent dopant has outer electrons more than the silicon atoms. Four outer 

electrons combine with silicon atoms to form covalent bond while the fifth electron is free to 

move and serves as charge carrier. This free electron requires much less energy to be 

moved from the impurities level into the conduction band, than the electrons which cause the 

intrinsic conductivity of silicon. The dopant which emits an electron is known as an electron 

donor.  

4.1.1  N-type doping: 
      These dopants are positively charged in nature due to deficiency of electron in valence 

band by the loss of negative charge carriers and are built into the lattice, only the negative 

electrons can move. Doped semimetals whose conductivity is based on free (negative) 

electrons are n-type or n-doped. Due to the higher number of free electrons those are also 

named as majority charge carriers, while free mobile holes are named as the minority charge 

carriers. Arsenic is used as an alternative to phosphorus, because its diffusion coefficient is 

lower. This means that the dopant diffusion during subsequent processes is less than that of 

phosphorus and thus the arsenic remains at the position where it was introduced into the 

lattice originally. Due to negative charged electrons these semiconductors are called n-

conductive or n-doped. In p-doped semiconductors, the electrons are the majority charge 

carriers while holes are the minority charge carriers. 

 

4.1.2 P-type doping:  
      In contrast to phosphorus, Boron has totally different effect. It is trivalent dopant which 

can catch an additional outer electron, thus leaving a hole in the valence band of silicon 

atoms and producing positive charge (hole). Therefore the electrons in the valence band 

become mobile. The holes move in the opposite direction to the movement of the electrons. 

The necessary energy to lift an electron into the energy level of indium as a dopant, is only 

1 % of the energy which is needed to raise a valence electron of silicon into the conduction 

band. Due to positive charge (holes) these semiconductors are called p-conductive or p-

doped. Analog to n-doped semiconductors, the holes are the majority charge carriers, free 

electrons are the minority charge carriers. 
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        In semiconductor technology, there are couple of methods, which are used for doping in 

fabrication processes.  

 Diffusion 

 Ion implantation 

 During crystal growth 

 Epitaxy 

 

4.1.3 Diffusion: 
            Diffusion is a process of the redistribution of atoms, molecules and ions from regions 

of high concentration of mobile species to regions of low concentration. It occurs at all 

temperatures, but the diffusivity is an exponentially dependent on temperature. High 

temperature diffusion is one of the important process one the important process in solar cell 

fabrication and other monolithic integrated circuits (IC) in microelectronics devices.  

          Today, diffusion process has been used in the formation of deep layers below one 

micron (1µm) in depth. Diffusion is a primary method of introducing impurities such as boron 

(B), phosphorous (P), and antimony (Sb) into silicon to control the majority-carrier type and 

resistivity of layers formed in the wafer. Diffusion is used to form emitters and resistors in 

bipolar device technology, to form source and drain regions and to dope crystalline silicon 

wafers in MOS device technology. Therefore we are interested in diffusion process in order 

to understand its limitation and various problems associated with redistribution of impurities. 

There are mainly two methods of diffusion which are given below. 

 Diffusion from a chemical source in vapor form at high temperature. 

 Diffusion from a doped-oxide source 

  

4.1.4 Phosphorus diffusion: 
            Phosphorus diffusion usually is carried out in a tube furnace at high temperature to 

create 𝑛+emitters for silicon solar cell fabrication. A liquid source in form of phosphoryl 

chloride is used as source of phosphorus for phosphorus diffusion in a quartz close tube. 

Boat on which wafers are loaded is also made of quartz. Process is started from heating of 

furnace. Diffusion process is divided into two stages, phosphorus pre-deposition and drive-

in, both are usually carried out at different temperatures.  

      In pre-deposition step, nitrogen gas is used at carrier gas to carry POCl3 vapors into 

furnace, where it reacts with oxygen to produce phosphorus pentoxide, a real source of 

phosphorus for doping. While in drive-in step, supply of phosphorus is suppressed and 

deposited P2O5 interacts with silicon to produces silicon dioxides on wafer surface and 

release phosphorus atoms which diffuses into silicon. During pre-deposition silicon is 

oxidized and form a thin layer of silicon dioxide at surface. In addition to this P2O5 also reacts 

with silicon dioxide to for phosphorus silicate glass which is called as PSG on silicon dioxide 

surface. Due to PSG and SiO2 layers, diffusion of phosphorus in silicon is retarded, for 

diffusion, P has to overcome these layers in order to reach the silicon region to create 𝑛+ 

emitters. Diffusivity of phosphorus in silicon dioxide is lower than silicon and silicon dioxide is 

continuously grows creating a barrier is P in silicon diffusion [1-2]. In this work, pre-

deposition is carried at different temperature ((800-875 ºC) and drive-in was carried at fixed 

temperature 950 ºC to investigate emitters concentration and junction depth.  
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4.1.5 PSG (Phosphorus Silicate Glass):  
          In phosphorus diffusion, P2O5 is produced from POCl3 during pre-deposition process, 

P2O5 is rich in oxygen and oxidize the silicon into silicon dioxide. This reaction is carried at 

high temperature, which is diffusion temperature. When silicon surface is oxidized, P2O5 

reacts again with SiO2 to phosphorus silicate glass (PSG) at diffusion temperature. 

Chemical reaction is given in equation 4.1 

𝑥𝑆𝑖𝑂2 + 𝑦𝑃2𝑂5 →→→→ 𝑥𝑆𝑖𝑂2. 𝑦𝑃2𝑂5    (𝑃𝑆𝐺) 
 

 (4.1) 

 

Figure 4.1 Systematic representation of PSG layer [3] 

             In figure 4.1, a flow sheet diagram has been made in order to explain the formation 

of PSG and thickness of PSG. According to that model, a layer of silicon dioxide is created 

on silicon (pure Si). In region 1, PSG exist in liquid state and in region 2 there is a mixture of 

solid SiO2 and liquid PSG. After that a layer of mixture of SiO2 and P2O5 (in solid state) is 

appeared in region 3. PSG thickness during diffusion can be calculated by as 𝑋𝑃𝑆𝐺 = 𝑥1 +

𝑥2 + 𝑥3 but it was found that x3 is negligible as compare to x1 and x2. Due to this reason 

PSG thickness is estimated as 𝑋𝑃𝑆𝐺 = 𝑥1 + 𝑥2.  [3-4]. 

𝑋𝑃𝑆𝐺 = 𝑥1 + 𝑥2 
  

(4.2) 

P2O5 concentration starts decreasing when phosphorus species react with Silicon or silicon 

dioxide. Eutectic reaction represented as  

𝐿 ⇌ 𝑆𝑖𝑂2 + 𝑆𝑖𝑂2. 𝑃2𝑂5      at 870 ºC 

 

(4.3) 

       It is observed that below 870 ºC, formation of crystallite take place and temperature 

dependent solubility of P2O5 changes from 800 ºC to 900 ºC. A theoretical equation has 

been used to calculate the thickness of PSG layer during diffusion process. This equation 

depends on time (t in second) temperature (T in kelvin) and concentration 𝐶𝑝 of phosphorus 

in gas phase (In volume %). Equation is given below (equation 4.4). Thickness of 𝑋𝑃𝑆𝐺 can 

be controlled by controlling the time, temperature and phosphorus source (POCl3). 
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𝑥𝑃𝑆𝐺 = (9.032 ± 0.170)105. √𝐶𝑝𝑡 . 𝑒𝑥𝑝 (
−0.815𝑒𝑉

𝑘𝐵𝑇
)          (𝑛𝑚)   

(4.4) 

 

4.1.6 Diffusivity of P in Si.  
          In case of silicon, phosphorus diffusion can takes place by two mechanism which are 

interstitial and vacancy mechanism. In case of interstitial diffusion, dopant atoms in 

interstitial position jump to another interstitial positions without replacing atoms in the lattice. 

In case vacancy diffusion, a substitutional dopant atoms exchanges positions in the lattice 

with a vacancy. Interstitial diffusion take places at higher rate than vacancy diffusion, since 

number of vacancies is limited and depends on temperature. Vacancies are always present 

through thermal equilibrium processes and these are thermodynamics defects and their 

nature is different from dislocations and stacking faults. We can estimate the vacancies by 

following equation.  

𝑣𝑎𝑐𝑎𝑛𝑦 (𝑓) = 𝑒𝑥𝑝(−𝐸𝑎/𝑘𝑇) 

𝐸𝑎 = 1 𝑒𝑉, 

    (4.5) 

               

         For 1eV energy of activation, from this equation we have estimated 0.004% vacant 

sites at 875 ºC and their percentage at different temperature is shown in figure 4.2: 
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Figure 4.2 Graph between temperature and vacancies 

  In case of interstitialcy mechanism, phosphorus atoms replaced silicon atoms in the lattice 

and silicon atoms are displaced to interstitial sites [5]. There are two mechanisms which 

describes how impurities may return to the lattice. Kick out mechanism where impurity atom 

replaces a lattice atoms and dissociative or Frank-Turnbull mechanism where an interstitial 

impurity atom is captured by a vacancy. For these 2 mechanisms do not need the presence 

of self-interstitials as it is regulated by the interstitialcy mechanism.  
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 Silicon atoms   

 Impurities atoms   

Replaced atom  
Figure 4.3 Diffusion mechanisms: (a) interstitial, (b) substitutional/vacancy and (c) 

interstitialcy 

      

     A model which describe diffusion of phosphorus in silicon is based on assumption that 

diffusivity of phosphorus is dominated by vacancy mechanism. This model is proposed by 

Fair and Tsai in 1977 [6]. According to this model, diffusivity of phosphorus behave 

differently depending on concentration of dopant atoms. In the graph, there are three 

different regions. In high concentration region, diffusivity of impurities 𝐷 𝛼 𝑛2(n is electron 

concentration) and tail region where 𝐷 𝛼 𝑛𝑒
3 (𝑛𝑒 is electron concentration at the plateau 

level).  

         According to Fair and Tsai model, diffusion of dopants such as phosphorus into silicon 

from higher surface concentration is accompanied by an injection or generation of point 

defects which causes a radical enhancement in diffusion of dopant diffused previously. 

(Dopant which already present due to base doping). A model which explains observation of 

enhanced boron base diffusion of phosphorus emitters at high concentration was that of 

injection of vacancy or vacancy complexes. It is assumed that boron is diffused through a 

vacancy mechanism. More recent models have concentrated on the role of E-centers 

phosphorus vacancy pairs, both to explain the anomalous features in the diffusion of 

phosphorus itself and its effects on other dopants. 

       At low surface concentration (lower than 1E19 cm-3) Profiles follow a simple diffusion 

process, that is possibly of charged defects including E-centers being involve in phosphorus 

diffusion. Fair and Tsai proposed a recent model which they have developed for quantitative 

prediction of doping profiles is shown in figure 4.3 and proposed that high concentration 

region of profile (𝑛 > 1× 1020 cm-3) equilibrium concentration of 𝑃+ 𝑉= pair dominates 

phosphorus diffusion and electrically active. 

Profile  
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    In figure 4.4 (b), Phosphorus profile and vacancy generation model, 𝑷+ 𝑽= pairs formed in 

surface region dissociate when electron concentration decrease to   𝒏 = 𝒏𝒆. At this 

concentration Fermi level coincides with second accepter level of 𝑽=.Free vacancies diffuse 

until the recombine with 𝑷+ atoms in region to form 𝑷+ 𝑽− pairs (Fair and Tsai [6]). 

 

            With respect to energy requirement for phosphorus atoms to diffuse into silicon or 

displace the silicon atoms requires lower energy for interstitial diffusion as compare to 

vacancy diffusion. Interstitial atoms are loosely bound as compare to substitutional atoms. In 

case of vacancy mechanism the energy of activation is defined as energy required to create 

a vacancy in silicon instead of energy required to move the impurities as in interstitial 

diffusion. The intrinsic diffusivity values for phosphorus can be calculated by following 

equation (4.6). 

 

𝐷𝑖 = 𝐷0 𝑒𝑥𝑝(−𝐸𝑎/𝑘𝑇) 

𝐸𝑎 = 3.66 𝑒𝑉, 𝐷0 = 3.85 (𝑐𝑚2/𝑠)  

(4.6) 

 

In high concentration region, total P concentration is higher than active P concentration. 

𝑃+ ion unite with vacancy 𝑉= 𝑜𝑟 𝑉2− (double negative charge) to form 𝑃+𝑉= pairs 

represented as (𝑃𝑉)− and extrinsic diffusivity is given be equation (4.7).  

𝐷𝑥 = 𝐷0 + 𝐷= (
𝑛

𝑛𝑖
)
2

         (𝑐𝑚2/𝑠) 

 

𝐷0 = 𝐷𝑖 And  𝐷= can be calculated by following equation (4.8). 

(4.7) 

 

𝐷= = 44.2. 𝑒𝑥𝑝 (
−4.37

𝑘𝐵𝑇
)    (𝑐𝑚2/𝑠) 

 

(4.8) 



Diffusion                                                             Improvements in P/Al High Efficiency Technology, AlSi                                              
 

 

  141 

Concentration of electron in kink region can be calculated by equation (4.9).  

𝑁𝑒 = 4.65 × 1021𝑒𝑥𝑝 (
−0.39

𝑘𝐵𝑇
)  (𝑐𝑚−3) 

 

(4.9) 

Diffusivity in tail region can be calculated by equation given below (5.0).  

 

𝐷𝑇𝑎𝑖𝑙 = 𝐷0𝐷− 𝑛𝑒
3

𝑁𝑒
2 𝑛𝑖

 [1 + 𝑒𝑥𝑝 (
−0.39

𝑘𝐵𝑇
)]   (𝑐𝑚2/𝑠)  

While 𝐷0 = 𝐷𝑖  

𝐷− = 4.44 × 1021𝑒𝑥𝑝 (
−4

𝑘𝐵𝑇
)     (𝑐𝑚2/𝑠)  

(4.10) 

 

               There are different opinions about interstitial mechanism is proposed to play 

important role in phosphorus diffusion. It is observed that oxidation of silicon strongly 

influence on the diffusion of phosphorus. Some experiments were performed in order to 

know prominent diffusion mechanism among the vacancy and interstitial mechanism. 

According to evidences simultaneous diffusion take places through vacancy under saturation 

and self-interstitial in super saturation conditions and concluded that conversion of P 

interstitialcy to substitutional form is due to emission of self-interstitials [7-8]. 

        At lower electron concentration when Fermi level is about 0.11eV below the conduction 

band, 𝑉= give up an electron and lower binding energy of resulting 𝑃+ 𝑉− pair enhances the 

probability for pair dissociation. This effect creates steady state excess of concentration of 

𝑉− vacancies which flow away from point of pair dissociation and interact with phosphorus to 

enhance the tail diffusion. In 𝑛𝑝𝑛 structure, Fair and Tsai propose charge state of vacancies 

become 𝑉+ in the base region and enhancing the diffusivity of the base dopant. By Fair and 

Tsai model which is reinforced by Willoughby model [15] concluded that the cause of 

phosphorus tail and emitter push effect are very closely linked. It is well characterized 

enhancement factors now allow the process design of double diffusion process to be 

accepted on a comprehensive basis. However effect of emitter surface concentration is still 

uncharacterized and need a comprehensive study of function of total and electrically active 

phosphorus concentration. 

4.1.7 Solid Solubility of P in Silicon: 
        Maximum amount of P which can be diffuse into silicon lattice has been investigated, 

there is a solubility limit, above that limit no more P is can diffuse into silicon lattice. Above 

solubility limit, precipitation of monoclinic and orthorhombic SiP particles takes place in the 

doped regions or on the surface [9]. 

𝑆𝑖 +  𝑃   𝑆𝑖𝑃 

 

(4.11) 

        The P which is deposited in form SiP in doped regions appear in the form of inactive P, 

this inactive P forms a point defects or E centers. E center is a pair of phosphorus atom with 

a charged or neutral vacancy. As a result dopant appear electrically inactive, if phosphorus 

is inactive, it does not contribute to current or charge transport. All inactive phosphorus 

atoms act as a defects which increase the recombination losses, as a result open circuit 

voltage decrease [10]. Silicon surface which contain electrically inactive dopants at the 
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surface or near to surface commonly called as dead layer. Many investigators have 

investigated the presence of SiP in order to know active concentration and inactive 

concentration of phosphorus in the superficial layer and in the depth [11]. By using following 

equation (4.12 and 4.13) we can calculate active phosphorus (𝑛𝑒), saturation concentration 

(𝐶𝑠𝑎𝑡) and inactive mobile concentration (𝐶𝑠𝑎𝑡 − 𝑛𝑒) at specific temperature. Curves obtained 

from these equations are plotted in figure 4.5.  

𝑛𝑒(𝑇) = 1.3 × 1022 𝐸𝑥𝑝 (
−0.37

𝑘𝐵𝑇
) (𝑐𝑚−3) 

 

(4.12) 

𝐶𝑠𝑎𝑡(𝑇) = 2.45 × 1023 𝐸𝑥𝑝 (
−0.62

𝑘𝐵𝑇
) (𝑐𝑚−3) 

(4.13) 
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Figure 4.5 Active phosphorus, saturation and inactive mobile phosphorus concentration. 

        Fair and Tsai model is used to calculate the electrically inactive phosphorus (total 

concentration of phosphorus) and also for kink and tail doping profile [6]. This model is used 

to explain the phosphorus diffusion into silicon by interacting with vacancies in 3 different 

charge states, which can be represented as 𝑃+ 𝑉×, 𝑃+ 𝑉− 𝑎𝑛𝑑 𝑃+ 𝑉= where 𝑉× is neutral 

vacancy. When concentration of phosphorus is higher than 𝑁𝑒 (as shown in Fair and Tsai 

model plot) then 𝑃+ 𝑉= will be dominate. In this case, electron will be removed from 

conduction band by 𝑃+ 𝑉= pair and reform the second accepter level of vacancy generating 

an electrically inactive phosphorus atom. It is concluded that when concentration is 

approximately similar to 𝑁𝑒 , then 𝑉= vacancy has high probability to lose an electron and 

become 𝑉− thus lower binding energy of 𝑃+ 𝑉− pair enhances probability of pair to 

dissociate into to excessive 𝑉− above the equilibrium values. Latter is responsible for 

enhanced diffusion in the tail region. It is concluded that vacancy mechanism occurs during 

slow diffusing components and insterstitialcy mechanism occurs during fast diffusion. 

Electron concentration in flat zone (at solid solubility level) is a function of temperature only 

and independent of source or surface concentration. The super saturation of P arises from 
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the fact that a part of PSG during diffusion and atomic P is formed exceeding solid solubility. 

Thus precipitate of SiP is formed [12-13]. 
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Figure 4.6 Electron concentration 𝒏𝒆 at which diffusivity becomes proportional to 𝒏 𝟐 vs 1/T.  
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Figure 4.7 Phosphorus diffusivity (diffusion coefficient) vs. electron concentration in silicon 

       
  Arrhenius plot of diffusivity D as function of temperature for shallow impurities in Silicon 

can be used to calculate energy of activation 𝐸𝑑 and average nature, independence of 
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concentration. They are calculated by diffusing impurities into silicon of opposite to 
background dopant, to form a PN junction. Energy of activation for different dopant is given 
in literature [16]. 
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Figure4.8 Arrhenius plots of diffusion coefficient vs. 1/T 

 
 

4.2 Objective of P diffusion:  
       The objective of this work was to get lowly (softly) doped and deep emitters for high 

efficiency solar cells. High efficiency silicon solar cells are related to low recombination 

currents and high open-circuit voltages. Parameters which are used for emitter’s 

characterization are sheet resistance (Rs), surface impurity concentration (Ns) and junction 

depth. , In this work we have performed several experiments in order to study the effect 

phosphorus diffusion on emitters under different temperature (800, 820,840 and 875 0C) to 

get shallow and deep n+ emitters. The emitter saturation current density which limits the 

open circuit voltage depends on active phosphorus concentration and junction depth. Due to 

high temperature, P diffusion form dead layer which increased Auger recombination and 

decrease overall cell efficiency. For high quality emitters, we have investigated phosphorus 

diffusion process in which oxidation step is incorporated during diffusion to reduce Joe values 

for softly doped emitters with moderate surface concentration values and to get deep 

junction depth. A wet oxidation step is used to minimize the dead layer and the peak surface 

concentration. Effects of both dry and wet oxidation on phosphorus diffusion are investigated 

in this work.  

 

4.3 Phosphorus diffusion (800- 875ºC) 

4.3.1 Phosphorus Pre-deposition 

            For P diffusion p-type monocrystalline Cz-Silicon (𝜌 =  0.8 Ω · 𝑐𝑚; thickness=

 150µ𝑚) with base doping 𝑁𝑏𝑎𝑠𝑒 = 1.92E16 cm−3 and size 10 𝑐𝑚 ×  10 𝑐𝑚 has been taken for 
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processing after chemical etching and cleaning. P pre-deposition is carried out at 800-8750C 

by using POCl3 as a source of phosphorus and nitrogen as a carrier gas in tube furnace 

under following conditions as shown in table 4.1. It is common to perform phosphorus 

diffusion in two-steps, pre-deposition and drive-in. In this work we have introduced a step of 

wet oxidation between phosphorus pre-deposition and drive-in in order to remove the dead 

layer or area which is not electrically active, which originates during emitters formation. 

Numerous phosphorus diffusion processes are carried out at various temperatures from 800 

°C to 875 °C in order to get doping uniformity for different set of wafers. Usually wafers were 

loaded in the middle of the boat (carrier for wafers) to avoid the problem of inhomogeneous 

distribution. The proper position of the boat with wafers within the furnace is also important 

for maximum and uniform interaction of carrier gases with doping material. In our 

experiments, we had placed wafers at the last zone of furnace where carrier substrates were 

entering into the furnace, to seek that the flow is adequate to obtain uniform doping. There 

was one drawback in this process, wafers had a greater influence of flow on bottom. As a 

result, there was more doping at position 4 than position 2 in the wafer area. 

 

Figure 4.9 Flow sheet representation of phosphorus diffusion furnace. 

 

        We have performed series of experiments of P diffusion under different conditions of 

temperature and in some cases with different gaseous flow. Phosphorus diffusion is carried out 

at different temperatures ranging from 800ºC to 8750C. During this process when temperature 

reached at 750 0C, then wafers were loaded in order to start the process. The flows of gases 

are in following order table 4.1: 

Table4.1 

Steps Time in minutes (T in ºC) Gases flow 

wafers loading 5minutes at (7500C) N2 6 l/min +O2 0.1 l/min 

Stabilization 5-15 (800-8750C) N2 6l/min +O2 0.1 l/min 

 Bubbler temperature and flow 

rate. 20 0C 

 240 cc/min N2/POCl3      

 

Doping 30 (800-8750C) N2 6 l/min +O2 0.1 l/min +  

 

Oxidation 5 (800-8750C) O2 2 l/min 
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Exit (wafers unloading) 5 (7500C) N2 2 l/min 

 

 

        At 7500C we took out the boat (carrier) from furnace with the help of long glass rod by 

using safety gloves and adjusted the wafers in the boat carefully with at least 4 mm distance 

between wafers. After that we introduced (put) wafers into furnace carefully by using handle of 

boat and protective gloves. During introduction of wafers into furnace, a care should be taken in 

handling of wafers in the furnace especially at high temperature in order to avoid cracks. At 

same temperature and gaseous flow allow wafers to homogenize in the furnace for 5-15 

minutes. This step is for stabilization of wafers inside the furnace and to get desire temperature. 

At adjusted diffusion temperature, process were started and N2 flew through bubbler (flask 

containing POCl3) for 30 minutes at the rate of 240cc/min. This step is called pre-deposition. 

After 30 minutes according to programmed recipe, flow of nitrogen stopped automatically and 

flow O2 gas started at the above mention rate for 5 minutes and also stopped the flow of 

nitrogen through the bubbler. This is called oxidation step. After oxidation phosphorus neither 

diffuses into the wafers nor effuses outside the wafers. After 5 minutes, programmed recipe 

stop the flow of O2 and open again start the flow of N2 for stabilization and to decrease the 

temperature to take the wafers out of furnace. After that wafers were taken out of the furnace 

by using long glass rod. Move boat very slowly inside the furnace, sometime fast movement of 

boat with wafers inside the furnace can produce (introduce) cracks due to high temperature 

stress. [17-18] 

 

4.3.2 Oxidation and drive in process 
         As we have mentioned we have used p-type wafers of 0.8 Ω.cm resistivity for phosphorus 

diffusion at different temperatures (800, 820, 840 and 875 ºC). For each diffusion temperature 

for 4 sets of five wafers were processed under above mentioned conditions of P diffusion and 

their sheet resistance (Ω/□) were measured after processing. One from each set of wafers is 

maintained with the corresponding diffusion process (diffusion temperature), three of them 

(each set) were used to perform wet oxidation at 950 °C for three different time duration (10, 15 

and 20 minutes) last wafer of each set were processed with wet oxidation for drive-in process. 

Detail of each process is given in table 4.2. Drive in process was carried in oxidation furnace. 

N2 gas flow 2l/min was selected from beginning of furnace to get 9500C (Nitrogen gas flow is 

optional in beginning). After Phosphorus pre-deposition, wafers were divided in 5 sets for 

different oxidation time and drive in process. 

 

 Wafer 1, only doping without drive-in. 

 Wafer 2, after doping, 60 minutes drive-in only. 

 Wafer 3, after doping, 10 minutes wet oxidation+ HF + 10 minutes dry oxidation, 60 

minutes drive-in. 

 Wafer 4, after doping, 15 minutes wet oxidation + HF+ 10 minutes dry oxidation with 60 

minutes drive-in. 
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 Wafer 5, after doping, 20 minutes wet oxidation + HF+ 10 minutes dry oxidation 60 

minutes of drive-in. 

 

Table 4.2. Characteristics of different process variations which were completed for each diffusion 

temperature 800, 820, 840 and 875ºC 

 Diffusion (ºC) Process (time in minutes) 

800(ºC) 

Diffusion 

Diffusion + wet oxidation (10, 15 and 25 minutes)+ dry 

oxidation (10 minutes)+ 1hour drive-in 

Diffusion + dry oxidation (10 minutes)+ 1hour drive-in 

820(ºC) 

Diffusion 

Diffusion + wet oxidation (10, 15 and 20 minutes)+ dry 

oxidation (10 minutes)+ 1hour drive-in 

Diffusion + dry oxidation (10 minutes)+ 1hour drive-in 

840(ºC) 

Diffusion 

Diffusion + wet oxidation (10, 15 and 20 minutes)+ dry 

oxidation (10 minutes)+ 1hour drive-in 

Diffusion + dry oxidation (10 minutes)+ 1hour drive-in 

875(ºC) 

Diffusion 

Diffusion + wet oxidation (10, 15 and 25 minutes)+ dry 

oxidation (10)+ 1hour drive-in 

Diffusion + dry oxidation (10 minutes)+ 1hour drive-in 

 

During drive-in with oxidation process gaseous flow and time is given below in table 4.3; 

Table 4.3 

  

 During drive in process each set of wafers are processed separately.  

 

4.4 Oxidation Process: 

              In microelectronics, the term oxidation is used to convert silicon material into silicon 

dioxide. In silicon solar cell fabrication, oxidation is used to convert a layer of silicon into 

Step Gases flow                (time) 

Entrance  

(wafers loading) 

N2 2 l/min (optional)                 (5 minutes) 

Wet oxidation N2 2 l/min+ O2 2 l/min + O2 through water flask   (10-25 minutes) 

 

HF Wafers are taken out to remove dead layer 

Dry Oxidation N2 2 l/min+ O2 2 l/min               (10 minutes) 

Drive-in N2 2 l/min                 (1h=60 minutes) 
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silicon dioxide layer. There are two different methods used in microelectronics to covert 

silicon layer into silicon dioxide.  

Thermal oxidation  

Electrochemical oxidation 

           Deposition of silicon dioxide layer by chemical vapor deposition is not considered as 

oxidation process. In silicon solar cell fabrication and industrial fabrication oxidation is 

carried by thermal process, it is similar process like doping of N-type or P-type material 

which are added into silicon to modify its properties. Silicon oxide have most important 

application in microelectronics. In CMOS transistor, oxide is essential component which is 

used as gate (dielectric layer) to separate two terminals of transistors. Silicon dioxide layer 

acts as a passivation layer to protect the silicon surface and a good insulator used between 

wires and transistors. When silicon is exposed to air or moisture, it automatically form a thin 

layer of silicon oxide by aerial oxidation in range of 2 nm thick. It is recommended that 

wafers must be clean by HF before processing. 

 

 There are two types of thermal oxidation, 

Wet oxidation  

Dry oxidation 

   Chemical reactions for dry oxidation and wet oxidation is given below. 

 

Reaction for dry oxidation             𝑆𝑖 + 𝑂2    →→→  𝑆𝑖𝑂2   

For wet oxidation                  𝑆𝑖 + 2𝐻2𝑂 →→→  𝑆𝑖𝑂2 + 2𝐻2     

 

   When silicon react with oxygen, it produces silicon dioxide (SiO2) which is also called 

silica. In case of monocrystalline, silicon dioxide produced by dry oxidation have higher 

density than amorphous silicon. In wet oxidation water vapors are introduced into oxidation 

furnace system by a carrier gas which is nitrogen or oxygen into the bubbler filled with de-

ionized water at fixed temperature (95°C). In wet oxidation process structured produced by 

chemical reaction of silicon with water vapors is more porous than pure silicon dioxide. For 

highly good quality surface, dry oxidation process is recommended. Still wet oxidation is a 

good process to grow silicon oxide very quickly as compare to dry oxidation. It is frequently 

used for growing sacrificial oxides (oxides to be grown at later stage of process, or later it will 

be removed (sacrificed). Since it is not going to be a part of permanent structure [16]. 
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Figure 4.20 Systematic representation of furnace used for wet oxidation. 

       

      Furnace which we have used for oxidation is suitable for both dry and wet oxidation 

process for growth of oxides. In the dry oxidation method, oxygen gas is allowed to pass into 

the quartz tube. During this process, high-purity gas is used to ensure that no unnecessary 

impurities are incorporated in the layer of oxides. In the wet oxidation method, the water 

vapor are introduced into the furnace system is created by flowing a carrier gas into a 

container or bubbler (flask) filled with de-ionized water and maintained at a constant 

temperature below its boiling point (95 °C). As the carrier gas passed through the water, it 

became saturated with the water vapor. The distance to the quartz oxidation tube must be 

short enough to prevent water vapors from condensation. The bubbler used in the wet 

oxidation process are simple and quite reproducible, but it has disadvantages associated 

with the fact that with passage of time, its level decrease, we have to refill it from time to time 

[16]. Proposed processes of P diffusion with oxidation at different temperature with 

sequence of all steps are shown in flow sheet diagram 4.11. 

 

Figure 4.11. Flow sheet diagram for the proposed processes, a sequence of all the steps used 

in P pre-deposition with drive-in to corresponding temperature with time description. 

 

4.4.1 Calculation for growth of silicon oxide in wet and dry oxidation 
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𝑥2 + 𝐴𝑥 = 𝐵(𝑡 + 𝜏) 

 

For shorter time,                    𝑡 ↓↓→ 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐           𝑥2 ≅ 𝐵(𝑡 + 𝜏) 

 For longer time,                         𝑡 ↑↑→ 𝑙𝑖𝑛𝑒𝑎𝑟             𝑥 ≅
𝐵

𝐴
(𝑡 + 𝜏) 

 

"𝑥"  is thickness of oxide, t is time of oxidation,  𝜏 this quantity corresponds to shift 
in time coordinate, which corrects the initial thickness of oxide at t=0   

(4.14) 

 

        Detail of above equation and oxidation process and oxide growth mechanism is given 

reference [16]. In this work, we have calculated theoretically and experimentally thickness of 

oxide layer at 950 ºC for 10 to 25 minutes both dry and wet oxidation process. 

First we have calculated coefficients (B/A) and B for both dry and wet oxidation, in order to 

calculate the thickness of oxide growth.  

4.4.1.1 Wet Oxidation 

(
𝐵

𝐴
)
𝑤𝑒𝑡

= 𝐶2𝑒𝑥𝑝 (
−𝐸2

𝑘𝑇
) 

𝐶2 = (9.70𝑥107 𝜇𝑚

ℎ
)  

 𝐸2 = 2.05𝑒𝑉 

(
𝐵

𝐴
)
𝑤𝑒𝑡

= (9.70𝑥107
𝜇𝑚

ℎ
) 𝑒𝑥𝑝 (

−2.05𝑒𝑉

𝑘𝑇
) 

(
𝐵

𝐴
)
𝑤𝑒𝑡

= (9.70𝑥107
𝜇𝑚

ℎ
)𝑒𝑥𝑝 (

−2.05𝑒𝑉

8.61 10−5 ∙ 1223
) = 0.340 

 

 

 

(4.15) 

(𝐵)𝑤𝑒𝑡 = 𝐶1𝑒𝑥𝑝 (
−𝐸1

𝑘𝑇
) 

𝐶1 = (386
𝜇𝑚2

ℎ
)    

𝐸1 = 0.78𝑒𝑉 

(𝐵)𝑤𝑒𝑡 = (386
𝜇𝑚2

ℎ
) 𝑒𝑥𝑝 (

−0.78𝑒𝑉

𝑘𝑇
) 

(𝐵)𝑤𝑒𝑡 = (386
𝜇𝑚2

ℎ
)𝑒𝑥𝑝 (

−0.78𝑒𝑉

8.61 10−5 ∙ 1223
) = 0.234 

(4.16) 

In both case, oxidation for was carried at 950 ºC. (Wet and dry oxidation) [16] 

4.4.1.2 Dry oxidation 

(
𝐵

𝐴
)
𝑑𝑟𝑦

= 𝐶2𝑒𝑥𝑝 (
−𝐸2

𝑘𝑇
) 

𝐶2 = (3.71𝑥106 𝜇𝑚

ℎ
)   

 𝐸2 = 2𝑒𝑉 

(4.17) 
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(
𝐵

𝐴
)
𝑑𝑟𝑦

= (3.71𝑥106
𝜇𝑚

ℎ
) 𝑒𝑥𝑝 (

−2𝑒𝑉

𝑘𝑇
) = 0.03569 

 

(𝐵)𝑑𝑟𝑦 = 𝐶1𝑒𝑥𝑝 (
−𝐸1

𝑘𝑇
) 

𝐶1 = (772
𝜇𝑚2

ℎ
)   

 𝐸1 = 1.23𝑒𝑉 

(𝐵)𝑑𝑟𝑦 = (772
𝜇𝑚2

ℎ
)𝑒𝑥𝑝 (

−1.23𝑒𝑉

𝑘𝑇
) = 0.00659 

(4.18) 

 

        𝐸1& 𝐶1 and 𝐸2& 𝐶2 values are taken from literature [16] in order to calculate the values 

of A and B. Values of A and B depend on the operating temperature. Linear and parabolic 

rate constants are exponentially related to temperature for both dry and wet oxidation 

process as in figure 4.12. Usually oxidation temperature range is from 900-1200 ºC. 
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Figure 4.12 Arrhenius plot of linear and parabolic rate constants for dry and wet oxidation. 

 

        These coefficients A and B are applied to the oxide growth equation: By using this 

equation (4.19), we can calculate the thickness of oxide grown during oxidation process. 

This equation applied for both dry and wet oxidation process.  

𝑡𝑜𝑥 =
𝐵

2 (
𝐵
𝐴)

[
 
 
 
 
√

1 +
4 (

𝐵
𝐴)

2

𝐵
𝑡 − 1

]
 
 
 
 

 

𝑡𝑜𝑥 =
0.234

2(0.340)
[√1 +

4(0.340)2

0.234
𝑡 − 1] 

(4.19) 
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     While t is the time for oxidation in hour. By using this equation, we have calculated 

thickness of oxide layer in oxidation process. Experimentally we have performed oxidation 

experiments at 950 ºC, for good estimation of oxidation behavior we have theoretically 

calculated thickness of oxide layer for different time duration as shown in figure 4.13 and 

4.14. As I have mentioned early that we have used wet oxidation for 10 to 25 minutes, 

theoretically thickness of layer is given below for different time in table 4.4.  
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Figure 4.13. Growth of oxide by wet oxidation, growth of oxide which depends on temperature 

and time of the process. (Growth of oxide by wet oxidation process in µm). 
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Figure 4.14 Growth of oxide by dry oxidation, growth of oxide which depends on temperature and 

time of the process. (Growth of oxide by dry oxidation process in µm). 

 

 

 

 

Table 4.4 Growth of oxide layers in oxidation process for different time (theoretically).  

Time (in Minutes) Process Thickness (nm) 

10 Wet oxidation 53 

15 Wet oxidation 77 

20 Wet oxidation 97 

10 Dry oxidation 6 

15 Dry oxidation 8.5 

20 Dry oxidation 11 

           

     After this wet oxidation, the ellipsometer is used to measure the resulting oxide layer. 

After that this oxide layer is removed by HF and difference in weight loss of silicon wafers 

were noted to calculate the thickness removal of oxide layer for each wafer. We measured 

the sheet resistance, Rs (Ω/□) of all wafers used in oxidation process. These wafers were 

processed for drive-in in an oxidation furnace, where dry oxidation was performed for 10 

minutes with 1hour for drive-in at temperature of 950 °C. After drive-in sheet resistance of all 

wafers were measured again by four point probe instrument. Each wafer is measured at 5 

different points of each surface as shown in the figure 4.15. Arrangement of the wafer 

position in the diffusion furnace and lower part shows 5 zones where Rs (Ω / □) is measured 

on wafer front and back surface. 
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Figure 4.15 Points for wafer measurements  

       Experimentally thickness of oxide layer is measured by ellipsometer and also calculated 

by weight loss of silicon dioxide layer by HF for different temperature of phosphorus diffusion 

and oxidation. Results of both measurements are given in figures 4.16 and 4.17.  
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Figure 4.16 Growth of silicon dioxide during wet oxidation process, measured by Si removal. 
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Figure 4.17 Growth of silicon dioxide during wet oxidation process, measured by ellipsometer 

                    

        In table 4.5, the thickness of oxide obtained in the oxidation depends on the level of 

doping of the wafer in pre-deposition step and doping temperature. At high temperature 

diffusion, we had high values of doping concentration, as a result the thicker oxide layer, we 

obtained in wet oxidation. There is variation in observed thickness of oxides obtained and 

theoretically values due to difference in crystal orientation, base doping and surface 

concentration.  

Table 4.5. Values of Rs (Ω/□) and thicknesses of oxide layers measured 

experimentally by ellipsometer. 

Diffusion 

Temperature 800 ºC 820 ºC 840 ºC 875 ºC 

Rs (Ω/□) 220-294 73-192 50-62 27-35 

Wet oxidation 

10 Minutes (Option A) 

Temperature 800 ºC 820 ºC 840 ºC 875 ºC 

Rs (Ω/□) 214-320 46-66 47-56 30-45 

 Thickness oxide 

layer 

experimentally 

(nm) 

40-50 138-144 140-160 85-110 

15 Minutes (Option B) 

Temperature 800 ºC 820 ºC 840 ºC 875 ºC 

Rs (Ω/□) 199-297 46-6 40-58 27-34 

 Thickness oxide 

layer 

experimentally 

(nm) 

63-55 170 180-190 144-160 
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20 Minutes (Option C) 

Temperature 800 ºC 820 ºC 840 ºC 875 ºC 

Rs (Ω/□) 203-300 60-126 37-52 27-30 

Thickness oxide 

layer 

experimentally 

(nm) 

105-115 165-190 180-210 250-285 

Dry oxidation (10 Minutes) + Drive-in (1hour) 

From option A (10 Minutes) 

Temperature 800 ºC 820 ºC 840 ºC 875 ºC 

Rs (Ω/□) 245-414 38-71 38-50 22-54 

From option B (15 Minutes) 

Temperature 800 ºC 820 ºC 840 ºC 875 ºC 

Rs (Ω/□) 222-325 44-52 31-52 20-31 

From option C (20 Minutes) 

Temperature 800 ºC 820 ºC 840 ºC 875 ºC 

Rs (Ω/□) 221-355 64-143 32-60 18-22 

  

       In case of dry oxidation, growth of silicon dioxide layer was very thin, it was difficult to 

measure by ellipsometer.   

                       During diffusion and drive-in process, wafers were evaluated by measuring 

their sheet resistance of each process at each step (for given temperature of diffusion). 

Sheet resistance data and concentration is given in the graphs below in figure 4.18, 4.19 and 

4.20.  

 

Figure 4.18 Sheet resistance values of silicon wafers resulted after P diffusion at different 

temperatures (a) after phosphorus diffusion (b) after 10 minutes, 15 minutes and 20 minutes of 

wet oxidation. 
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Figure 4.19 Sheet resistance values of silicon wafers resulted after P diffusion at different 

temperatures (a) after phosphorus diffusion with drive-in (b) after 10 minutes, 15 minutes and 

20 minutes of wet oxidation and one hour of drive-in in nitrogen ambient. 

 

Figure 4.20 Sheet resistance values of silicon wafers resulted after P diffusion at different 
temperatures (a) after phosphorus diffusion with drive-in (b) after 10 minutes, 15 minutes and 
20 minutes of dry oxidation and one hour of drive-in in nitrogen ambient. 

      
     Surface concentration of dopant for emitters resulted after phosphorus diffusion at 
different temperature after following steps (a) after phosphorus diffusion (b) P diffusion and 
10 minutes of dry oxidation with one hour of drive-in (c) after 10 minutes, 15 minutes and 20 
minutes of wet oxidation with drive-in (in N2 gas) are given in the figure 4.21. 
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Figure 4.21 Surface concentration of dopant for emitters resulted after P diffusion at different 
temperature (a) after phosphorus diffusion (b) P diffusion and 10 minutes of dry oxidation 
with one hour of drive-in (c) after 10 minutes, 15 minutes and 20 minutes of wet oxidation with 
drive-in (N2 gas). 
 

4.5 Diffusion profiles 

                     After Phosphorus pre-deposition and drive-in process, etching was carried out 

in order to determine the junction depth and impurities concentration Ns (at/cm-3). For this 

purpose selective etching was carried out in very dilute concentration of 2% NaOH at 60 0C. 

After 15 second etching, (about ~50 nm thickness of each surface of wafer is removed in this 

short etching time). Wafers were cleaned and dried to measure the sheet resistance of 

exposed surface by 4-point probes. This process is repeated again and again until sheet 

resistance shows complete removal of emitters and sheet resistance values were similar to 

base doping. In this way we can estimate the junction depth. 

Finally, the calculation of Ns is carried out by PC1D, using a Gaussian model with values of 

the sheet resistance for the corresponding values of junction depth. It helped us to obtain the 

doping profiles of the emitters. We can calculate charge of emitter at specific in phosphorus 

doped region. Image of PC1D screen is shown in figure 4.22. 
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Figure 4.22 PC1D program screen page, used to calculate surface concentration. 

 

          By this PC1D program, doping concentration for various diffusion profiles of phosphorus 

emitters at 4 different temperatures under different oxidation and drive-in conditions are 

calculated. Emitters which are obtained through phosphorus diffusion with wet oxidation and 

drive-in are deeper than the emitters obtained normal phosphorus diffusion. As it is mentioned 

early that 4 different diffusion temperatures are processed with different duration of dry and wet 

oxidation time in order to get deep and lightly doped emitters. Diffusion profiles of all 

temperatures with different oxidation conditions and drive-in are shown below in figures 4.23-

4.26.  
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Figure 4.23 P diffusion profiles for 800 ºC 
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Figure 4.24 P diffusion profiles for 820 ºC 
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Figure 4.25 P diffusion profiles for 840 ºC 
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Figure 4.26 P diffusion profiles for 875 ºC 

       

       From above 4 figures 4.23-4.26, it is clear that high concentration is obtained at high 

temperature diffusion and in all cases of P diffusion, surface concentration of P diffusion in 

emitter is below than 2x1020 cm-3. After the wet oxidation processes surface concentration is 

decreased even with dry oxidation process. Due to oxidation step with drive-in, junction 

depth move deeper than only diffusion process. Wet oxidation is one way to decrease the 

surface concentration in order to get desire sheet resistance values (doping concentration) 



Diffusion                                                             Improvements in P/Al High Efficiency Technology, AlSi                                              
 

 

  162 

and junction depth. As we have mentioned early that our aim was to get softly doped and 

deep emitters for high efficiency silicon solar cells. Junction depth of dopant for emitters 

resulted after P diffusion at different temperature and after different steps such as (a) after 

phosphorus diffusion (b) P diffusion and 10 minutes of dry oxidation with one hour of drive-in 

(c) after 10 minutes, 15 minutes and 20 minutes of wet oxidation and one hour of drive-in in 

nitrogen ambient are shown in figure 4.27.  

 

 

Figure 4.27 Junction depth of dopant for emitters resulted after P diffusion at different 

temperature (a) after phosphorus diffusion (b) P diffusion and 10 minutes of dry oxidation with 

one hour of drive-in (c) after 10 minutes, 15 minutes and 20 minutes of wet oxidation and one 

hour of drive-in in nitrogen ambient.  

 

4.5.1 Q calculation  
            In complementary error function diffusion, Concentration profile of dopant in silicon is 

given by erfc. 

𝑁(𝑥, 𝑡) = 𝑁0𝑒𝑟𝑓𝑐
𝑥

2√𝐷𝑡
 

(4.20) 

 Where 𝑁0 is dopant concentration in surface layer (1/cm3) 𝑥 is depth (cm), t is time in 

second and D is diffusion coefficient at given temperature (cm2/s). Longer diffusion time will 

lead to deeper diffusion but surface concentration is unchanged.  

2√Dt is calculated from the equation 

𝑙𝑛 
𝑁

𝑁0
= −(

𝑥

2√𝐷𝑡
)
2

 

(4.21) 

 

This value applies in the following equation to obtain Q. 

𝑁0 =
𝑄

2√𝜋𝐷𝑡
 

(4.22) 
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Table 4.6. Charges Q calculated at given diffusion temperature under variable conditions. 

Diffusion 

temperature 

Profile step, at which charge (Q) is calculated. Charge (Q) 

(cm2/s) 

875 ºC After doping 5.23E15 

After doping with drive-in 3.58E15 

After doping+ 10 minutes wet oxid.+ 1 hour drive-in 1.85E15 

After doping+ 15 minutes wet oxid. +1 hour drive-in 1.15E15 

After doping+ 20 minutes wet oxid. +1 hour drive-in 2.37E15 

1.72E15 

840 ºC After doping 1.55E15 

2.06E15 

After doping with drive-in 1.75E15 

2.14E14 

After doping+ 10 minutes wet oxid.+1 hour drive-in 1.28E15 

1.98E15 

After doping+ 15 minutes wet oxid.+ 1 hour drive-in 4.14E14 

After doping+ 20 minutes wet oxid.+ 1 hour drive-in 4.49E14 

820 ºC After doping 7.04E14 

9.3E14 

After doping with drive-in  7.35E14 

After doping+ 10 minutes wet oxid. +1 hour drive-in 5.75E14 

After doping+ 15 minutes wet oxid.+ 1 hour drive-in 4.23E14 

After doping+ 20 minutes wet oxid. +1 hour drive-in 3.44E14 

800 ºC After doping 2.67E14 

After doping with drive-in 1.85E14 

After doping+ 10 minutes wet oxid.+ 1 hour drive-in 2.5E14 

After doping+ 15 minutes wet oxid.+ 1 hour drive-in 6.74E13 

After doping+ 20 minutes wet oxid. +1 hour drive-in 8.83E13 

 

         In table charge Q has been given at different temperature under different conditions of 

wet oxidation as well as dry oxidation. Emitters on the surface have higher charge than 

emitters in depth. Amount of charge Q start decreasing with the drive-in process, after the 

diffusion with this drive-in, Q is decreased due to redistribution and due to trapping in SiO2. 

 

4.6 Total concentration of P diffusion 
         Total phosphorus concentration is measured accurately by secondary ion mass 

spectrometry (SIMS), although it is expensive technique but we can get accurate result. Fair 

and Tsai measured total phosphorus concentration by using SIMS analysis as well as by 

neutron activation analysis (NA) of same sample wafers: they have got similar results by 

using two different techniques. Neutron activation analysis is just used to calibrate the 

results of SIMS measurement. By using differential conductivity (DC) techniques, Fair and 

Tsai also measured electrically active 𝑃+profile of phosphorus diffusion. Ratio of total 

phosphorus concentration and Active results were agreed with already published data by P. 
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Negrim et al (1975) [21]. The data obtained by Fair and Tsai is represented by an empirical 

equation, which is used to calculate total concentration of phosphorus [6].  

 

                        𝐶𝑇 = 𝑛 + 2.04𝑥10−41𝑛3     ( 4.23 ) 

 

       Where 𝐶𝑇 is total concentration of phosphorus and 𝑛 is electrically active concentration 

of phosphorus.  

                  Figures 4.28,4.29,4.30 and 4.31 (a,b,c,d and e) represent the plots of electrically 

active phosphorus concentration obtained directly from the sheet resistance measurement 

for all above mentioned diffusion temperature with different process conditions. The total 

phosphorus concentration, calculated by using eq. (4.23) from Fair-Tsai model [6]. This total 

concentration includes both electrically active and inactive impurities. As it has been 

mentioned before this amount of inactive phosphorus correponds to the dead layer extent, 

which appear in the form of PSG. Table 4.7 contains the extent of electrically active 

phosphorus, which is obtained after different diffusion process conditions. Detail of each 

process is given in table 4.7.  

        It is observed that with increasing of temperature of P diffusion, surface concentration 

(Ns) is also increased and P is better and uniformly distributed in emitters. But at high 

temperature, phosphorus is precipitated in the form of dead layer due to over solid solubility 

limit. Due to this layer recombination centers appeared, as a result (Auger) recombination 

increase. These recombination centers increase saturation current density Joe; as a result 

cell Voc and Jsc decrease due to high recombination rate. At low temperature (800-820 0C) 

P diffusion is about 90-95% electrically active but at high temperature (875 0C) about 60-

80% P is electrically active and electrically inactive P appeared in the form PSG as a deal 

layer.  

        However we have introduced a wet oxidation step with drive in, it converts electrically 

inactive P into active P and improves the recombination and surface quality for passivation. 

We have found a very thin surface region in which the surface concentration N may reach 

nearly 1020 atom/cc. However, this region is no more than 150 nm deep. Moreover PN 

junction depth can be control by drive in time but it also depends on pre-deposition condition 

(temperature, dopant and oxygen ratio). Lower level of oxygen increases the junction depth 

in P pre-deposition. 

       One of our aim was to remove this dead layer within the oxide growinng step in the wet 

oxidation step. We have grown an oxide layer as thick as 0.1 μm. Figures 4.28 given below, 

show an improvement in the emitter quality after 10-20 minutes of wet oxidation, the inactive 

phosphorus concentration has decreased considerably and due to the redistribution of 

impurities, junction depth slight increased and reduction in surface concentration took place 

due to redistribution. This phenomena is clear at high temperature P diffusion. P Profles of 

emitters with electrically active P concentration and total concentration of P doped at 875 ºC 

under different condition of drive in are given below in figure 4.28 (a,b,c,d and e)  
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4.6.1 Electrically active and total concentration of P diffusion profiles for 875 ºC 
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P profile of the emitter doped at 875ºC with electrically active and total concentration after 
20 minutes of wet oxidation with 1 hour of drive-in, in nitrogen ambient. 

Figure 4.28 P diffusion profiles for emitter doped at 875 ºC with electrically active 

concentration and total concentration under different wet oxidation conditions and with 1 hour 

of drive-in, in nitrogen ambient 

       From these graphs of figure 4.28 of high temperature P diffusion (875 ºC), it is clear that 

wet oxidation converts electrically inactive P concentration into electrically active P. At high 

temperature diffusion, concentration of electrically inactive P is very high, around 35% is 

electrically inactive. However by introducing a wet oxidation step with drive-in, it converts 

electrically inactive P into electrically active P. Up to 90% concentration of P is electrically 

active after 10-20 minutes of wet oxidation with drive-in step of 1 hour. 

 

4.6.2 Electrically active and total concentration of P diffusion profiles for 840 ºC 

            P profles of emitters with electrically active P concentration and total concentration of 

P doped at 840 ºC under different condition of drive in are given below in figure 4.29, (a,b,c,d 

and e). These figures represent the plots of electrically active phosphorus concentration 

obtained directly from the sheet resistance measurement through etching process. The total 

phosphorus concentration, calculated by using eq. (4.23) from Fair-Tsai model. 
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Figure 4.29 P diffusion profiles for emitter doped at 840ºC with electrically active concentration 

and total concentration under different wet oxidation conditions and with 1 hour of drive-in, in 

nitrogen ambient. 

                          

                     From these graphs of figure 4.29 of 840ºC P diffusion, it is clear that wet 

oxidation converts electrically inactive P concentration into electrically active P 

concentration. At 840 ºC temperature concentration of electrically inactive P is around 25%. 

However by introducing a wet oxidation step with drive-in, it converts electrically inactive P 

into electrically active P. Up to 90% concentration of P is electrically active after 10-20 

minutes of wet oxidation with drive-in step of 1 hour.  

 

4.6.3 Electrically active and total concentration of P diffusion profiles for 820 ºC 

            P profles of emitters with electrically active P concentration and total concentration of 

P doped at 820 ºC under different condition of drive in are given below in figure 30, (a,b,c,d 

and e).These figures represent the plots of electrically active phosphorus concentration 

obtained directly from the sheet resistance measurement through etching process. The total 

phosphorus concentration, calculated by using eq. (4.23) from Fair-Tsai model. P Profles of 

emitters with electrically active P concentration and total concentration of P doped at 820 ºC 

under different condition of drive in are given below in figures 4.30.   
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P profile of the emitters doped at 820 ºC 
with electrically active and total 
concentration ( only diffusion) 

P profile of the emitters doped at 820ºC with 
electrically active and total concentration with 
1 hour of drive-in, in nitrogen ambient. 
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c d 

P profile of the emitters doped at 820 ºC 
with electrically active and total 
concentration after 10 minutes wet 
oxidation with 1 hour of drive-in, in 
nitrogen ambient. 

P profile of the emitters doped at 820 ºC with 
electrically active and total concentration after 
15 minutes wet oxidation with 1 hour of drive-
in, in nitrogen ambient. 
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P profile of the emitter doped at 820 ºC with electrically active and total concentration after 

20 minutes wet oxidation with 1 hour of drive-in, in nitrogen ambient. 

Figure 4.30 P diffusion profiles for emitter doped at 820 ºC with electrically active 

concentration and total concentration under different wet oxidation conditions and with 1 hour 

of drive-in, in nitrogen ambient. 

 

      From these graphs of figure 4.30 of 820ºC P diffusion, it is clear that wet oxidation 

converts electrically inactive P concentration into electrically active P concentration. At 820 

ºC temperature concentration of electrically inactive P is around 10%. However by 

introducing a wet oxidation step with drive-in, it converts electrically inactive P into 

electrically active P. Up to 95% concentration of P is electrically active after 10-20 minutes of 

wet oxidation with drive-in step of 1 hour. P Profles of emitters with electrically active P 

concentration and total concentration of P diffusion of 820 ºC under different condition of 

drive-in are given in figures 4.30.  

 

4.6.4 Electrically active and total concentration of P diffusion profiles for 800 ºC 

            P Profles of emitters with electrically active P concentration and total concentration of 

P doped at 800 ºC under different condition of drive in are given below in figure 4.31, (a,b,c,d 

and e). These figures represent the plots of electrically active phosphorus concentration 

obtained directly from the sheet resistance measurement after etching process. The total 

phosphorus concentration, calculated by using eq. (4.23) from Fair-Tsai model. 
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P profile of the emitters doped at 800 ºC with electrically active and total concentration 
after 20 minutes wet oxidation with 1 hour of drive-in, in nitrogen ambient 
 
Figure 4.31 P diffusion profiles for emitter doped at 800 ºC with electrically active 

concentration and total concentration under different wet oxidation conditions and with 1 hour 

of drive-in, in nitrogen ambient. 

 

     From these graphs of figure 4.31 of 800ºC P diffusion, it is clear that wet oxidation 

converts electrically inactive P concentration into electrically active P concentration. At 800 

ºC temperature concentration of electrically inactive P is around 3%. However by introducing 

a wet oxidation step with drive-in, it converts electrically inactive P into electrically active P. 

Up to 99% concentration of P is electrically active after 10-20 minutes of wet oxidation with 

drive-in step of 1 hour. But at 800 ºC P diffusion, there is a problem of reproducibility of 

results. Sheet resistance values which we have obtained after each P diffusion of 800 ºC is 

variable.      Electrically active concentration of phosphorus, which is calculated from sheet 

resistance values of emitters by PC1D as it is mentioned early and total concentration of 

phosphorus diffusion is calculated from Fair and Tsai model by using equation (4.23). From 

the graph between electrically active concentration and total concentration, we can draw the 

slope which gives us a percentage of electrically active phosphorus as shown in figure 4.32. 

We have calculated percentage of electrically active P in all diffusion processes. 

Percentages of electrically active concentration of phosphorus at different diffusion 

temperature under different drive-in conditions are given below in table 4.7.  
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Figure 4.32 Graph between electrically active and total concentration of Phosphorus to plot a 
slope  

     In this way, we have plotted all above mentioned graphs into to calculate the percentage 

of electrically active concentration. Percentage of all electrically active concentration is given 

in table 4.7.  

Table 4.7 

Diffusion 

temperature 

Profile step, at which electrically active 

concentration is calculated. 

Electricall active P 

concentration (%) 

875 ºC After doping 63% 

After doping with drive-in 72% 

After doping+ 10 minutes wet oxid.+ 1 hour drive-in 90% 

After doping+ 15 minutes wet oxid. +1 hour drive-in 79% 

After doping+ 20 minutes wet oxid. +1 hour drive-in 73% 

840 ºC After doping 66% 

After doping with drive-in 88% 

After doping+ 10 minutes wet oxid.+1 hour drive-in 92% 

After doping+ 15 minutes wet oxid.+ 1 hour drive-in 92% 

After doping+ 20 minutes wet oxid.+ 1 hour drive-in 91% 

820 ºC After doping 90% 

After doping with drive-in  94% 

After doping+ 10 minutes wet oxid. +1 hour drive-in 92% 

After doping+ 15 minutes wet oxid.+ 1 hour drive-in 92% 

After doping+ 20 minutes wet oxid. +1 hour drive-in 94% 

800 ºC After doping 97% 

After doping with drive-in 99% 

After doping+ 10 minutes wet oxid.+ 1 hour drive-in 99% 

After doping+ 15 minutes wet oxid.+ 1 hour drive-in 99% 

After doping+ 20 minutes wet oxid. +1 hour drive-in 99% 
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       It is observed that with the increase of the pre-deposition temperature increases the 

surface concentration (Ns) and makes the P distribution more uniform. At high temperature, 

phosphorus is precipitated in the form of dead layer due to over solid solubility limit. Due to 

this dead layer recombination centers appear, as a result Auger recombination increase. 

These recombination centers increase saturation current density; as a result cell Voc and 

Jsc decrease due to high recombination rate. At low temperature 800-820 0C, P diffusion is 

about 90% P electrically active but at high temperature (875 0C) about 65% P is electrically 

active and rest of concentration of P deposited is considered as electrically inactive.  

     However by introducing a wet oxidation step with drive in, it converts electrically inactive 

P into electrically active. We have found a very thin surface region in which the surface 

concentration N may reach nearly 1E20 cm-3. However, this region is no more than 100 nm 

in depth. Moreover PN junction depth can be control by drive in time but it also depends on 

pre-deposition condition (temperature, dopant and oxygen ratio). Lower level of oxygen 

increases the junction depth in P pre-deposition. 

   As I have mentioned early that objective of this work was to get softly doped and deep 

emitters for high efficiency solar cells. We have simulated doping concentration of 

phosphorus diffusion data to predict efficiency of silicon solar cell by PC1D modelling 

program. Results which are shown in graphs of figure 4.33 and 4.34 represent that moderate 

or low doped emitters give high efficiency. The best efficiency, which we can obtain is based 

on softly doped, deep and passivated emitters. From figure 4.33, it is clear that with increase 

of doping concentration of P, efficiency starts decreasing. From our experimental data of 

phosphorus diffusion at different temperatures under different oxidation and drive-in 

conditions, we have concluded that diffusion at high temperature has high density of 

recombination centers due electrically inactive phosphorus. Although wet oxidation and HF 

treatment steps in between P pre-deposition and drive-in diffusion decrease the 

concentration of electrically inactive phosphorus but still there is high probability of having 

high density of recombination centers. Due to this reason, we have planned to investigate 

low temperature diffusion for softly or moderate doped and deep emitters for silicon solar cell 

fabrication process to gain high efficiency. The result which we have obtained at 800 ºC is 

not uniform as compare to 820 ºC, we preferred to 820 ºC instead of 800 ºC. In addition to 

this doping concentration of P at 820 ºC is 95% electrically active as compare to high 

temperature diffusion. Due to this reason, there is lower probability to have recombination 

centers due to low percentage of electrically inactive phosphorus.  
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Figure 4.33 Efficiency verses doping concentration graph, results are obtained by PC1D 

modelling program 

 

 

 

Figure 4.34 Graph between efficiency and recombination velocities at different doping 

concentration obtained by PC1D modelling program 
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      From figure 3.34, it is clear that with the increase of surface doping concentration, open 

circuit voltage and overall efficiency of solar cell starts decreasing. When surface 

concentration is high and exceeds the intrinsic charge-carrier concentration, certain special 

features on electrical properties and conductivity of device appears. Due to over solubility 

limit, P appears as in the form of dead layer, an electrically inactive layer of P, which 

produces the recombination centers, as a result Auger recombination increases which 

decrease the lifetime  and overall efficiency of the solar cell. In addition to this, electrically 

inactive P also introduces defects in the crystalline lattice of silicon, Shockley Read Hall 

(SRH) recombination appears due to defects in crystalline structure and also take part in 

efficiency losses due to high recombination rate (low lifetime). At high P doping 

concentration, bandgap narrowing effect arises, which cause the absorption of photons in 

emitters region near the front surface.  

      Due to high recombination rate, we have focused on low temperature P diffusion instead 

of high temperature. In low temperature diffusion, 820 ºC has higher degree of reproducibility 

of results in term of sheet resistance, surface concentration and junction depth than 800 ºC. 

We have preferred 820 ºC for low temperature P diffusion in order to get softly doped and 

deep emitters. In conventional emitters’ formation, it is common to fabricate emitters by a 

heavy phosphorus diffusion followed by an etching process to get desire sheet resistance of 

open emitter in range of 60-100 Ω/□ [6]. It is common to combine chemical steps with 

thermal processes. One of our goal of this work/investigation was to make a single step 

diffusion process for softly doped and deep emitters. 

     We have conducted some experiments in order to achieve single step diffusion process. 

Prior to these experiments, we have investigated the effect of dry oxidation and HF free 

process to compare with wet oxidation. We have conducted three different P diffusion 

experiments under different condition of oxidation and HF free process. Emitter fabrication 

scheme of these experiments are modified which are shown in figure 4.35, scheme of low 

temperature diffusion as well as in process flowsheet diagram of these processes.  

 

4.7 Low Temperature Diffusions 

           In low temperature diffusion experiments, we have modified the diffusion process, 

which is mentioned above. In first experiment, we have used dry conditions for oxidation and 

second experiment, we used wet oxidation but without HF treatment. Diffusion process for 

both experiments is given in the figure 4.35 as scheme A and scheme B. Further detail of 

experimental conditions for scheme A is given in figure 4.36 and for scheme B is given in 

figure 4.37.  
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Low temperature P diffusion process 

  
Scheme A  Scheme B 

P diffusion with water free oxidation (only 

dry oxidation) 

P diffusion with HF free (without PSG 

removal) 

 Figure 4.35 Scheme A; P diffusion with water free oxidation (only dry oxidation) and scheme 

B; P diffusion with wet oxidation and without HF treatment.( HF free process) 

 

            Description of P diffusion process with respect to time and temperature is shown in 

figure 4.36. After phosphorus diffusion dry oxidation was carried out after HF treatment, 

which is used to remove the dead layer. In this process 20 minutes of dry oxidation is 

performed, prior to 10 minutes of dry oxidation and 1 hour of drive-in, wafers were treated 

again with HF to remove the oxides. This process is used to get softly doped and deep 

emitters.  

RS (/□) and 𝜏 measurement and etching 
for profile.

Dry oxidation @950 ºC (20 miuntes)+ 
Drive-in (1 hour)

Drive-in in diffusion 
furnace @950 ºC

Drive-in in 
oxidation furnace 

950 ºC

Oxide elimination (HF)

P diffusion@ 820ºC 30 minutes

NaOH etching and cleaning 

P-type Cz wafers

RS (/□) and 𝜏 measurement and 
etching for profile.

Drive-in @950 ºC ( 1hour)

Drive-in in diffusion 
furnace

Drive-in in 
oxidation furnace

Wet oxidation @ 950 ºC for 20 minutes

P diffusion@ 820ºC 30 minutes

NaOH etching and cleaning 

P-type Cz wafers
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Figure 4.36 Systematic process for P diffusion at low temperature with water free oxidation 

(only dry oxidation) 

4.7.1 Low temperature diffusion with HF free process 

            Usually in our standard process, we have cleaned the wafers with HF to remove the 

oxides and dead layer, but in this process, we have removed the cleaning step and wafers 

were directly processed for oxidation. Description of P diffusion process with respect to time 

and temperature is shown in figure 4.37. After phosphorus diffusion wet oxidation was 

carried out without after HF treatment, which is used to remove the dead layer. In this 

process 20 minutes of wet oxidation is performed with 1 hour of drive-in to get softly doped 

and deep emitters 

 

Figure 4.37 Systematic process for P diffusion at low temperature with wet oxidation but 

without HF treatment  

          After drive-in process, etching of emitters was carried out in a dilute solution of 2% 

NaOH at 60 0C as it is mentioned early in this chapter. After 15 second etching, (about ~50 

nm thickness of each surface of wafer is removed in this short etching time). Wafers were 

cleaned and dried to measure the sheet resistance of exposed surface by 4-point probes. 

This process is repeated again and again until sheet resistance shows complete removal of 

emitters and sheet resistance values were similar to base doping. In this way we have 

estimated the junction depth.  

          Surface concentration was calculated by PC1D, using a Gaussian model with values 

of the sheet resistance for the corresponding values of depth junction. By using 

concentration data obtained from PC1D are plotted against the junction depth to get the 

doping profiles of the emitters 
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4.7.2 Low temperature diffusion profiles of HF free process 
            Phosphorus diffusion was carried out at 820 ºC for 30 minutes and wet oxidation with 

H2O vapors at 950 ºC for 20 minutes in oxidation furnace. After wet oxidation process, drive-in 

was carried out in same furnace with 10 minutes of dry oxidation and 60 minutes drive-in step 

at 950 ºC. This process was HF free. No oxides and dead layer was removed by HF treatment. 

Low temperature diffusion profiles are shown in figures 4.38 and 4.39. (In figure 4.38, 2, 5, 6 

and 7 are zones of the wafer which are used to analyze for diffusion profiles as shown in figure 

4.15). Detail of sheet resistance, junction depth and surface concentration of each process is 

given in table 4.8. 
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Figure 4.38 P diffusion profiles for emitter doped at 820 ºC with 20 minutes wet oxidation with 

1 hour of drive-in, in nitrogen ambient, (HF free process) 

 

     In this low temperature diffusion profile of HF free process, surface concentration value 

ranging from 4.1x1019 cm-3 to 6.2x1019 cm-3 and depth junction values from 0.52 to 0.71 µm 

for sheet resistance ~60 Ω/□ has obtained. In profile of figure 4.39, Drive-in process was 
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shown in figure 4.15). 

 

Figure 4.39 P diffusion profiles for emitter doped at 820 ºC with 20 minutes wet oxidation with 1 

hour of drive-in, in oxyclean ambient, (HF free process in oxyclean ambient) 

 

4.7.3 Low temperature diffusion profile of water free process 
           In water free process, P diffusion was carried out at 820 ºC for 30 minutes and dry 
oxidation was carried out at 950 ºC for 20 minutes in oxidation furnace. Prior to dry 
oxidation wafers were clean and dead layer was removed by HF treatment. Wafers were 
treated once again with HF prior to drive-in. Drive-in was carried out in same furnace with 
10 minutes of dry oxidation and 60 minutes drive-in step at 950 ºC. This process was water 
vapor free process. Profile of water free process is given below in figures 4.40 and 4.41. (In 
figure 4.40, 1, 4 and 9 are zones of the wafer which are used to analyze for diffusion profiles 
as already shown in figure 4.15). 
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Figure 4.40 P diffusion profiles for emitter doped at 820 ºC with 20 minutes dry oxidation and 

1 hour of drive-in, in nitrogen ambient, (Water free oxidation process) 
 

     In this low temperature diffusion profile of water free oxidation process, surface 
concentration value ranging from 4.1x1019 cm-3 to 1.2x1020 cm-3 and depth junction values is 
around 0.75µm for sheet resistance ~45 Ω/□ has obtained. (In figure 4.39, 1, 5 and 6 are 
zones of the wafer which are used to analyze for diffusion profiles as shown in figure 4.15).  
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Figure 4.41 P diffusion profiles for emitter doped at 820 ºC with 20 minutes dry oxidation and 
1 hour of drive-in, in nitrogen oxyclean ambient, (Water free oxidation process)  

 

4.7.4 Results of low temperature diffusion 
   Wafer 2 belongs water free oxidation process of P diffusion and wafers 3 and 4 belong to 

HF free process of low temperature diffusion. Summary of the results is given in table 4.8 

Table 4.8 
Sheet 

Resistance 

RS(/□) 
 

PC1D 
Conc. N 
(At/cm3) 

Q (cm2/s) 
Depth 
(µm) 

By equation 
(theoretically) (N) 

(at/cm3) 

Wafer 2 Only dry oxidation 30 mins + 1 hour drive in 

32 1.06E20 1.95E15 0.77 8.42E19 

32 1.06E20 2.03E15 0.77 1.46E20 

45 6.69E19 1.13E15 0.77 6.11E19 

37 8.79E19 1.68E15 0.77 8.72E19 

18 2.13E20 3.82E15 0.77 3.87E20 

Wafer 3 HF free process (20 mins wet oxidation + 1 hour drive-in) 

58 4.75E19 8.55E14 0.73 4.0E19 

60 4.42E19 8.80E14 0.72 3.27E19 

55 5.11E19 1.02E15 0.72 4.65E19 

48 6.16E19 1.05E15 0.72 5.28E19 

61 4.42E19 7.99E14 0.68 2.93E19 

Wafer4  HF free process (20 mins wet oxidation + 1 hour drive-in) 

66 5.66E19 5.66E14 0.77 2.95E19 

32 1.03E20 2.13E14 0.77 1.12E20 

87 2.88E19 5.43E14 0.77 3.29E19 

33 1.14E20  1.74E15 0.77 1.31E20 

     

              By using equation 4.23, derived from Fair and Tsai model [6], we have calculated 

total concentration of P diffusion in water free process and HF free process. Figures 4.42 
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(a&b) show the graphs for P Diffusion profiles of electrically active concentration and total 

concentration for HF free process while figure 42 (c & d) show the graphs for P diffusion 

profiles of electrically active concentration of P and total concentration of P diffusion of water 

free oxidation process. This total concentration includes both electrically active and inactive 

impurities. As it has been mentioned before this amount of inactive phosphorus correponds 

to the dead layer extent, which appear in the form of PSG. 
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Figure 4.42 P Diffusion profiles of electrically active concentration and total concentration, a 
and b graphs show the plots for HF free process while c and d show the plots for water free 
process. (Graphs of figure 4.42b and 4.42d are oxyclean process) 

 

      From these graphs as shown in figure 4.42 of water free process and HF free process of 

low temperature P diffusion, it is clear that with dry oxidation with drive-in step and removal 

of dead layer by HF prior to drive-in step, it converts electrically inactive P concentration into 

electrically active P. Total concentration of P diffusion and electrically active P is almost 

overlapped in graphs, which represents that concentration of P diffusion is more than 96% 

electrically active. Electrically active concentration of phosphorus, which is calculated from 

sheet resistance values of emitters by PC1D as it is mentioned early and total concentration 

of phosphorus diffusion is calculated from Fair and Tsai model by using equation (4.23). In 

addition to this oxyclean ambient is recommended for oxidation and drive-in process. 

4.8 Single step diffusion process (Industrial process) 
      Low temperature P diffusion process with water vapor free oxidation and without HF 

treatment was carried out at 820 ºC to see the effect of dry oxidation on sheet resistance and 

junction depth of emitters. Although we have performed this process in two step, just to check the 

sheet resistance values but this process feasible to perform in a single step diffusion and this 

process is applicable for emitter formation at industrial level for silicon solar cell fabrication. Step 

by step description of phosphorus diffusion is given in flow sheet diagram in figure 4.43. 

 

Figure 4.43 Flow sheet representation of P diffusion with water free oxidation and without HF 

treatment 

         Description of diffusion process with respect to time and temperature is shown in figure 

4.44. After phosphorus diffusion dry oxidation is performed without HF treatment, which is 

used to remove the dead layer. In this process 30 minutes of dry oxidation is carried out with 

1 hour of drive-in to get industrially feasible softly doped and deep emitters.  

τ Measurement and etching for P profiles

Measurement of RS(/□)

Dry oxidation 30 min+Drive-in 60 min@ 950oC 

(in same furnace)

Measurement of RS(/□)

"P" Diffusion 30min@820 0C+ 5min dry 
Oxidation

Drying and Thickness & RS(/□) measurement

Etching 10min@ 90oC and RCA 1&2 cleaning

Cz P-type wafer
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Figure 4.44 Flow sheet representation of P diffusion with water free oxidation and without HF 

treatment 

         After drive-in process, etching of emitters was carried out in 2% solution of NaOH at 60 
0C as it is mentioned early in this chapter. After 15 second etching, (about ~50 nm thickness 

of each surface of wafer is removed in this short etching time). Wafers were cleaned and 

dried to measure the sheet resistance of exposed surface by 4-point probes. This process is 

repeated again and again until sheet resistance showed complete removal of emitters and 

sheet resistance values were similar to base doping. In this way we can estimate the 

junction depth. Surface concentration was calculated by PC1D, using a Gaussian model with 

values of the sheet resistance for the corresponding values of depth junction. By using 

concentration data obtained from PC1D are plotted against the junction depth to get the 

doping profiles of the emitters, low temperature diffusion with water and HF free process is 

shown in figures 4.45 & 4.46. Process which is shown in figure 4.46 is oxyclean process. 

Both processes are single step diffusion process.  

4.8.1 Single step diffusion profiles  
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Figure 4.45 P diffusion profiles for emitter doped at 820 ºC with 30 minutes dry oxidation and 1 

hour of drive-in, in nitrogen ambient, (Water free oxidation process, HF free process) 
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Figure 4.46 P diffusion profiles for emitter doped at 820 ºC with 30 minutes dry oxidation and 1 

hour of drive-in, in oxyclean environment. (Water free and HF free process) 

      By using equation (4.23) derived from Fair and Tsai model [6], we have calculated total 

concentration of P diffusion in water free process and HF free process. Figures 4.47 a and b 

show the graphs of P Diffusion profiles of electrically active concentration and total 

concentration for HF free process and water free process. This total concentration includes 

both electrically active and inactive impurities. As it has been mentioned before this amount 

of inactive phosphorus correponds to the dead layer extent, which appear in the form of 

PSG. 
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a b 

P profile of the emitter doped at 820 ºC with 

electrically active and total concentration after 

30 minutes dry oxidation with 1 hour of drive-

in, in nitrogen ambient, (HF free process, 

Water free oxidation process) 

P profile of the emitter doped at 820 ºC with 

electrically active and total concentration after 30 

minutes dry oxidation with 1 hour of drive-in, in 

nitrogen ambient, (HF free process and Water 

free oxidation process) 

 

Figure 4.47 P Diffusion profiles of electrically active concentration and total concentration, for 
HF free process and water free process (Single step diffusion process) 
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        In single step diffusion process, concentration of P more than 97% is electrically active. 

From graph as shown in figure 4.47, it is clear that there is almost no difference in electrically 

active P and total concentration of P. Due to low temperature diffusion, dead layer which is 

produced due to electrically inactive P is vanished. Sheet resistance, concentration, Q and 

junction depth values of single step diffusion process is given in table 4.10. As it is described 

early in this chapter that our aim was to get softly, deep and passivated emitters. In this 

addition to this, our goal was to perform P diffusion in a single thermal process. We have 

used 820 ºC P difffusion as standard process due low temperature diffusion and 

reprduceability of P diffusion results. In our standard process,we have obtained surface 

concentration in range of 3-7x1019 cm-3 which is related to ~100 Ω/□ and around 0.60 μm 

junction depth. In these experiments, we have presented the incorporation of wet oxidation 

step (10-20 minutes) in between pre-deposition and drive-in, in order to the reduce 

electrically inactive phosphorus concentration, the dead layer extent. We have decreased 

the surface concentration below 1x1020 cm-3 with sheet resistance ~60-100 Ω/□. 

      Low temperature diffusion which is modificaiton of our standard process to get softly and 

deep emitters in a single thermal process (single step diffusion process). From experiments 

data of low temperature diffusion under different oxidation condtions, we have obtained 

some variation in results with respect to concentration and junction depth which we have 

obtained in standard process. As shown in graph in figure 4.48. Surface concentration of 

these lower temperature processes are lower than 8x1019 cm-3 with junction depth around 

0.68 ± 0.03 𝜇𝑚, which is more deeper than standard process.  
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Figure 4.48 Diffusion profiles of low temperature process, doped at 820 ºC under variable 

process conditions. 

 

     Our process runs in oversaturation condition, It has some advantages in comparison to 

other processes with low Ns target that do not run in oversaturation condition. Each process 

of fabrication of emitters gives specific result in term of sheet resistance, surface 
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concentration and junction depth. Reliability of emitter is evaluated by the influence of 

passivation. For each emitter surface conditions, surface recombination velocities have been 

simulated by PC1D. results have been plotted  against  sheet resistance for corresponding 

to a conventional 0.2 and the current 0.7 µm junctions depth, in order to highlight the 

importance of having  softy doped  and deep junctions. Simulation results are shown in 

figures 4.49, 4.50 and 4.51. These simulations results show that deep emitters are better 

than superficial emitters and gives good passivation. 
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Figure 4.49 Saturation current of 0.2 and 0.7µm junction depth emitters resulted for several 
surface recombination velocities, values of S from 0 cm/s to 1000 and 10000 cm/s. 
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Figure 4.50 Saturation current density and Voc effect on junction depth emitters resulted from 

100 cm/s surface recombination velocities 

0.2 0.3 0.4 0.5 0.6 0.7

78.0f

84.0f

90.0f

96.0f

102.0f

108.0f

114.0f

Depth junction (m)

J
o

e
 (

A
/c

m
2
)

690

691

692

693

694

695

S=1000 cm/s, Ns=1.15E+19

V
o

c
 (m

V
)

 
Figure 4.51Saturation current density and Voc effect on junction depth emitters resulted from 

1000 cm/s surface recombination velocities 

       Besides the positive influence of having deep emitters in the Joe values, we have seen 

more influence of a good surface passivation  for softly doped and deep emitters, moderate 
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sheet resistances, changing from 36 to 120 fA/cm2, the advantages obtained from a lowly 

doped emitter has disappeared when junction depth is shallow. This figure 4.49 shows the 

influence of a good surface passivation for softly doped and deep emitters with moderate 

sheet resistances is changing from 58 to 130 fA/cm2. This can be seen in the table 4.9 [34-

35]. 

 

Table 4.9 Saturation current density (Joe) values for different values of surface recombination 

velocities 

 JOE(fA/Cm2) 

RS (Ω/□) S=0 Cm/S S=1000 Cm/S S=10000 Cm/S 

30 600 600 600 

53 130 140 184 

60 130 130 170 

100 58 68 130 

 

   As I have mentioned early, some modification have been carried out in our standard 

process in order to achieve one thermal step process in the diffusion furnace, removing the 

intermediate chemical or wet oxidation steps. On this occasion, the impurity concentration in 

the surface increases significantly 7-8 x1019 cm-3 and the sheet resistance decreased. It can 

be observed that the charge of phosphorus impurity is the same, it seems that charges 

trapped in the oxide are very few, but the junction is deeper. Emitter deeper gives the 

chance of having less recombinant emitters. Results of above mentioned processes is 

summarized in table 4.10.  

4.8.2 Summary of Low temperature diffusion 
           Overall results of low temperature P diffusion processes, including singe step 

diffusion process are given in table 4.10.  

Table 4.10 Summary of Low temperature diffusion process (820 ºC) 

Sheet 
Resistance 

RS(/□) 

PC1D 
Conc. N (At/cm3) 

Q 
(cm2/s) 

Depth 
(µm) 

Result 

Diffusion at 820 ºC (with 20 min. wet oxidation)+ 1 hour of drive-in 

110 3.17E+19 4.32E+14 0.52  

129 1.89E+19 3.28E+14 0.62  

87 3.48E+19 5.8E+14 0.62  

59 6.05E+19 1.02E+15 0.62  

103 3.4E+19 5.9E+14 0.58 Average result 

Diffusion at 820 ºC (with 20 min. wet oxidation) oxyclean process (HF free process) 

58 502E+19 8.9E+14 0.72  

62 4.0E+19 7.3E+14 0.82  

55 6.16E+19 9.27E+13 0.68  

66 4.33E+19 8.21E+14 0.68  

53.2 6.44E+19 1.2E+15 0.78 Average result 

Diffusion at 820 ºC (with 20 min. wet oxidation) with drive-in (HF free process) 

69 7.21E+19 2.87E+14 0.48  
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87 4.5E+19 5.78E+14 0.54  

79 5.9E+19 9.4E+19 0.48  

59 8.75E+19 9.77E+14 0.48  

32 1.3E+20 2.2E+15 0.64  

65 2.19+19 1.08E+15 0.53 Average Result 

Diffusion at 820 ºC (water free oxidation process) +HF+ 20 dry oxidation with drive-in 

32 2.01E+20 2.13E+15 0.63  

81 8.18E+19 5.19E+14 0.5  

131 6.18E+19 3.62E+14 0.38  

37 1.31E+20 1.61E+15 0.77  

81 7.55E+19 3.85E+14 0.52 Average result 

Diffusion at 820 ºC (water free and HF free process) + 30 dry oxidation with 1 hour drive-in 

Single step diffusion process 

61 5.25E+19 8.6E14 0.69  

55 6.06E19 9.3E14 0.69  

53 5.55E19 9.14E14 0.76  

49 6.18E19 9.01E14 0.76  

53 6.18E19 9.41E14 0.71 Average result 

  

 

     In addition to passivation, gettering effect in this single step diffusion process (Proposed 
process) is much higher than with conventional process. Getterging effect is evaluated by 
liftime measuremts. Results are given in Table 4.11 for comparison of gettering effect of our 
prosposed process with conventional process. For this purpose different kinds of wafers, 
including metallurgical grade silicon (MC) wafers has been used.  

 
Table 4.11 Gettering effect on different kinds of wafers 

Conventional process Proposed process 

n-type wafer p-type wafer M.C  wafers n-type wafer p-type wafer M.C wafers 

55µs 

62µs 

20µs 

23µs 
10µs 

250µs 

500µs 

178µs 

201µs 
33µs 

     The improvment due to gettering by our proposed process is much higher than 
conventional process for the n and p-type wafers. In case of metalligical grade silicon 
wafers, by our proposed process improvement in lifetime is more than 3 times higher than 
conventional process. 33µs lifetime has achieved for metallurgical grade wafers by our 
process which is much higher than conventional gettering process. Emitters obtained by a 
single step thermal  have concentration in range of 7-8 x1019 cm-3 with sheet resistance ~60 
Ω/□ and junction depth is around 0.71 µm and saturation current of emitter is around 130 
fA/cm2. 

4.9  Conclusion: 
       Phosphorus diffusions are used in solar cells fabrication process for all kinds of 

crystalline-silicon (c-Si) materials to form the n+   type emitter. Post diffusion oxidation is also 

common step in commercial fabrication sequence of crystalline solar cell. The quality of the 

emitter plays an important role for solar cell efficiency due to formation of P-N junction, which 
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is the core of the crystalline silicon (c-Si) solar cell. If the P surface concentration is high and 

exceeds the intrinsic charge-carrier concentration, have certain special features on electrical 

properties and conductivity [22-23].  

       The quality of emitters depends on diffusion temperature with flow of gases and doping 

time. At high temperature, concentration of phosphorus (P) exceed the solubility in Si 

(1021/cm3) which form a dead layer [24-25].which is electrically inactive and has effect on 

surface P concentration and junction depth. It produces recombination centers that increase 

Auger recombination that increase saturation current density (Joe) [26-27]. Moreover high 

surface P concentration increases the recombination (Auger recombination) which limits the 

lifetime and lowers the open circuit voltage (Voc) with overall solar cell efficiency [28]. Due to 

high P doping concentration, bandgap narrowing effect arises, which cause the absorption of 

photons in emitters region near the front surface. In addition to this, electrically inactive P 

also introduces defects in the crystalline lattice of silicon, Shockley Read Hall (SRH) 

recombination appears due to defects in crystalline structure and also take part in efficiency 

loss due to high recombination (low lifetime). The amount of inactive phosphorus in term of 

surface concentration and depth junction can be improved by converting electrically inactive 

phosphorus into electrically active phosphorus by introducing a wet oxidation with drive in 

step after diffusion. When the extent of dead layer (electrically inactive) decrease emitter 

recombination probabilities also decrease which improves open circuit voltage (Voc), short 

circuit current density (Jsc) and efficiency of solar cell. [29-32]. In this work, we have 

performed several experiments in order to study the effect phosphorus diffusion on emitters 

under different temperature (800, 820,840 and 875 0C) with different conditions of wet 

oxidation and drive-in to get shallow and deep n+ emitters. The emitter saturation current 

which limits the open circuit voltage depends on active phosphorus concentration and 

junction depth. Concentration profile of phosphorus is determined by alkaline etching at 600C 

by using low conc. of NaOH (2%) to find the junction depth and doping concentration is 

determined by PCID simulation by using sheet resistance data.  

     The sheet resistance data is given in figure 4.18, 4.19 and 4.20 as well as in table 4.5. 

Sheet resistance data shows a non-uniformity of the P distribution at low temperature. It is 

observed that with increase of pre-deposition temperature increases the surface 

concentration (NS) and makes the P distribution more uniform. But at high temperature, due 

to over solubility limit, P appears as in the form of dead layer, an electrically inactive layer of 

P. This electrically inactive P also introduces defects in the crystalline lattice of silicon, as a 

result Shockley Read Hall (SRH) recombination appears due to defects in crystalline 

structure. High concentration of soluble P in Si increases the Auger recombination. These 

two types of recombination increases saturation current density, as a result cell Voc and Jsc 

decrease due to high recombination rate. At low temperature p diffusion, around 90% P is 

electrically active but at high temperature around 60% P is electrically active. The 

percentage of active P is calculated By Tsai Model [6]. Our results show that with increase of 

temperature, active P concentration decrease and vice versa. However we have introduced 

a wet oxidation step with drive in. it converts electrically inactive P into active P and 

decrease the recombination and improve surface quality for passivation. We have found a 

very thin surface region in which the surface concentration N may reach nearly 1020 atom/cc. 

However, this region is no more than 100 nm deep. Moreover PN junction depth can be 

control by drive in time but it also depends on pre-deposition condition (temperature, dopant 

and oxygen ratio). To get high efficiency and improve Voc, it is necessary to minimize the 

electrically inactive P in emitters. Our approach is removal of oxides grown during P pre-

deposition by HF treatment. Next step is wet oxidation with drive-in which forces the 

precipitated P to diffuse into silicon and converts electrically inactive P into electrically active 

P.  
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    By using PC1D simulation, we have simulated doping concentration of phosphorus 

diffusion data to predict efficiency of silicon solar cell. Results which are shown in graphs of 

figure 4.33 and 4.34 represent that moderate or low doped emitters give high efficiency. Due 

to this reason, we have planned to investigate low temperature diffusion for softly or 

moderate doped and deep emitters for silicon solar cell fabrication process to gain high 

efficiency. The result which we have obtained at 800 ºC is not uniform in out furnace system 

as compare to 820 ºC, we planned to proceed P diffusion at 820 ºC as standard process. In 

addition to this, doping concentration of P at 820 ºC is 95% electrically active as compare to 

high temperature diffusion. Due to this reason, there is lower probability to have 

recombination centers due to electrically inactive phosphorus.  

     The main goal of this investigation was to make a single step diffusion process in a 

furnace. We have conducted some experiments in order to achieve single step diffusion 

process for industrial solar cell fabrication. Prior to these experiments, we have investigated 

the effect of dry oxidation and HF free process to compare with wet oxidation. Process was 

started from pre-deposition step at 820 ºC followed by 20 minutes of oxidation with 70 

minutes of drive-in at 950 ºC. Intermediate oxidation is water vapor free process. It has been 

observed that charges trapped in the oxide are very few, but the junction is deeper. Soft 

emitters have less chance of recombination in emitter region. Results of these emitters 

profiles are shown in figure 4.48 and summarized in table 4.10. Reliability of emitter is 

evaluated by the influence of passivation. For each emitter surface conditions, some surface 

recombination velocities have been simulated by PC1D. Results corresponding to a 

conventional 0.2 and the current 0.7 µm junction depths are plotted in graph. The influence 

of a good surface passivation for softly doped and deep emitters with moderate sheet 

resistances, is ranging from 58 to 130 fA/cm2. Emitters obtained by a single thermal step 

have concentration in range of 7-8 x1019 cm-3 with sheet resistance ~60 Ω/□ and junction 

depth 0.71 µm and saturation current of emitter is 130 fA/cm2. In addition to passivation, 

gettering effect in this single step diffusion process (Proposed process) is much higher than 

conventional process. Getterging effect is evaluated by liftime measuremts. In case of 

metalligical grade silicon wafers, by our proposed process (single step diffusion) 

improvement in lifetime is more than 3 times higher than conventional process. In case of P-

type material, we have measured lifetime around 200 µs at high resistivity (5.4Ω.cm) wafers 

and on N-type low resistivity (0.8 Ω.cm) wafers around 505 µs by PCD technique. 

Improvement in lifetime is higher than conventional gettering processes. 
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5  Passivation and Selective 

Emitter Formation 
 

5.1 Silicon passivation 
           Solar cell efficiency is limited by the recombination of electron hole pairs generated by 

photon. This recombination process occurs at the surface as well as at the interfaces. 

Lowering of recombination at the surface is accomplished by reducing the number of 

dangling bonds at the surface by deposition of passivating layer on surface. Solar cell 

industry usually replies on thermally grown silicon dioxide to passivate the dangling bonds. 

There are two ways to grow oxide layers either by thermal oxidation or by non-thermal 

oxidation (chemical vapor deposition). The presence of silicon dioxide helps to adjust the 

lattice constant of silicon and decrease density of voids and density of dangling bonds. Since 

silicon dioxide offers low cost production and scalability to large area implementation. There 

are many amorphous silicon based compounds used for surface passivation, which are 

given below;  

Silicon dioxide (SiO2) 

Silicon nitride (Si3N4) 

Silicon carbide (SiC) 

 

Figure 5.1 (A): At silicon surface, silicon atoms are missing and unpaired valence electrons 
are forming electrically active interface traps. (B) After oxidation most interface states are 
saturated with oxygen bonds. (C) After annealing the surface with a hydrogen related 
species the amount of interface defects is further decreased. 

 

Figure 5.2. Silicon surface with unpassivated dangling bond and silicon surface atoms 

passivated with nitrogen and hydrogen atoms 
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    Deposition condition and stoichiometric variations strongly effect on the optical and 

electronic properties. Surface with high content of silicon show a strong optical absorption in 

visible-ultraviolet range, with low conductivity as compare to crystalline silicon. When content 

of silicon is low, light absorption and conductivity decrease and exhibit transparency and 

dielectric properties [1].The methods which are used for passivation normally based on 

decomposition of hydrogenated gases. High content of hydrogen gas ensure to improve the 

surface passivation by saturating dangling bonds as shown in figure 5.2. This hydrogen is 

also beneficial for passivation of the defects in bulk of low quality grade silicon material. 

Oxygen content also improves surface passivation by saturating the dangling bonds.  

 

Figure 5.3. (a) Direct-plasma reactor excited through a RF source and (b) Remote-plasma 

reactor using microwave excitation process used to deposit SiNx. Extracted from reference [2]  

 

5.2 Deposition Techniques: 
          Process of applying a thin film on a substrate is called deposition. There are many 

techniques which are used to deposit a thin film (layer) onto a substrate ranging from tenth 

of nanometer to micrometer scale. Deposition techniques are divided into two main 

categories:  

1. Physical deposition techniques 

2. Chemical deposition techniques  

          Deposition techniques are used in the fabrication of optics (reflective and antireflection 

layers) and electronics (as an insulating layer, semiconductor and conductors forms of 

integrated circuits as well as in solar cells fabrications). In physical deposition techniques, 

mechanical, electromechanical or thermodynamic means are used to produce a thin film. 

Commercially physical deposition system require a low pressure vapor environment that 

function properly, it is classified as physical vapor deposition (PVD). Electron beam 

evaporator is one of example, in which high energy beam is fired from electron gun to boil 

the material and deposited on the substrate after evaporation. Sputtering, molecular beam 

epitaxy, electro-spray and thermal evaporation are physical deposition techniques.  

 While in chemical deposition techniques, precursor reactants undergo a 

chemical change at substrate surface and leaving a solid layer. In chemical deposition 

technique, thin film produced from deposition tends to be conformal rather than directional 
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(deposition take place everywhere on the substrate). There are many techniques for 

chemical depositions Such as Hot wire chemical vapor deposition, spin coating, 

electroplating but in case of silicon solar cell, plasma enhanced chemical vapor deposition is 

considered as commercial techniques for fabrication.  

    There are some other techniques used for deposition of thin layer, such as 

sputtering and hot wire chemical vapor deposition (hotwire CVD). Sputtering is a physical 

deposition technique, which is based on bombardment of ions on solid silicon surface 

coming from plasma excited gases. This technique has advantages over PECVD, because 

no silane gas is used due to its explosive nature and also produces uniform film in 

composition and thickness in large area. While hotwire CVD is based on decomposition of 

gases by using high temperature (1600 ºC). No plasma and no voltage is applied inside the 

chamber, therefore is not chances of wafer damages due to ion bombardments. 

5.2.1 Plasma Enhanced Chemical Vapor Deposition (PECVD): 
            PECVD is a technique used to deposit thin films from gas state (vapors) to solid state 

on a substrate. Chemical reaction which takes place after creation of plasma of reacting 

gases (vapors). Plasma is generally created by RF (radiofrequency) or DC discharge 

between two electrodes and space is filled with reacting gases. In silicon solar cell 

fabrication, PECVD technique is used to deposit antireflection layer of silicon nitride (SixNy). 

Silicon nitride layer not only acts as antireflection layer but also use for passivation of 

dangling bond.  

   Plasma enhanced chemical vapor deposition (PECVD) forms a thin film from precursor 

gaseous mixture, whose molecules are broken by using electric field. The gaseous excitation 

is used to produce plasma between two electrodes of electric field. The instrument can be 

divided into two types of configurations, first type in which wafer is places in contact with 

plasma directly is called direct configuration and second in which wafers and plasma are 

place separately in different chambers is called remote configuration. A schematic of both 

configurations are shown in figure 5.3 [2]. In case of silicon nitride deposition, this material is 

formed by the decomposition of silane and ammonia gases. In case of direct configuration, 

both gases are excited together while in case of remote configuration silane is introduced 

directly in the deposition chamber, where it reacts with decomposed atoms of nitrogen and 

hydrogen also come from excitation chamber. The plasma excitation frequency has a strong 

influence on electronic properties of resulting film silicon interface.  

   Surface damage is also observed during deposition; it is due to high frequency (so call 

plasma frequency <4MHz) ions which also follow the plasma excitation frequency and 

produces a strong surface bombardment which cause the surface damage. The film 

deposition with low frequency direct PECVD provide an intermediate quality surface 

passivation. This problem can be solved by using frequency higher than 4MHz with shorter 

acceleration period, in this way ions do not absorb significant amount of energy which could 

cause surface damage. Hence film fabricated by direct PECVD at high frequency (6-13MHz) 

provides a better quality surface passivation than film fabricated at low frequency. In addition 

to this, introduction of a remote chamber further improves quality of the surface passivation, 

because in this process no ion bombardment is produce and wafer is prevented for further 

damage.  
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5.2.2 Silicon nitride (Si3N4): 
           Silicon nitride is the state of art in surface passivation for crystalline silicon solar cell. 

Silicon nitride has been extensively used in research since last two decades. Silicon nitride 

film provides excellent surface passivation, transparency, antireflective properties and 

stability under ultraviolet light exposure and high thermal treatment. There are huge number 

of articles published in scientific journals, explain surface passivation properties of silicon 

nitride [3-4]. Preliminary studies on silicon nitride indicated that quality of surface passivation 

improved as fraction of silicon in silicon nitride film increased. High fraction of silicon also led 

to higher refractive indexes and higher extinction coefficient, with some absorption of light 

within film that does not contribute to the photocurrent. The introduction of nitrogen gas in 

plasma enhanced chemical vapor deposition system (apart from silane and ammonia) 

produced a transparent layer (film) with record low values of surface recombination velocity. 

For low resistivity p-type silicon wafers, by using this passivation, scheme was able to 

achieve surface recombination velocity lower than 10 cm/s with conventional PECVD in 

direct configuration.  

      At laboratory scale, to improve the quality of silicon nitride, remote PECVD is used in 

order to avoid ion bombardment but it is old technique. Direct PECVD technique is 

commercially available technique used to deposit SiNx. Another strategy which improves the 

quality of silicon nitride is thermal oxidation before the Si3N4 deposition. SiO2 provides a low 

interface density and Si3N4 provides an extra field effect. Combination of such stacks of film 

provides effective recombination velocity lower than 3cm/s on p-type wafers with (1 Ω.cm) 

[5]. Hao et al also obtained similar results by using stacks of SiO2/Si3N4 grown by LPCVD 

(low pressure CVD) at 775 ºC [6]. But without of SiO2, silicon nitride deposited by LPCVD 

has given worse results due to serious irreversible bulk damage to silicon due to high 

temperature. Thin layer of SiO2 helped to reduce the damage while thick layer of SiO2 (about 

50nm) completed eliminated the effect of bulk damage. On P-type wafer with high resistivity 

(100Ω.cm) Seff value lower than 2 cm/s was achieved.  

   Passivation of silicon nitride with annealing after deposition of Si3N4 extensively has been 

studied in order to see the lifetime improvement. Effective lifetime verses annealing time 

curve usually reach a maximum point followed by decay and then saturate. With increase of 

process temperature, peak becomes narrower and located at shorter annealing time [3, 7]. It 

is useful for industrially screen printed solar cells, in which metal paste is printed on wafers 

to define the front and read contacts. After defining contacts, wafers are processed at high 

temperature 750-950 ºC for few seconds to 3 minutes. Since passivation layer (Si3N4) is 

deposited before Screen printing process and it is necessary to keep or enhance the 

properties after processing. Schmidt et al [8] has represented that layer with a reflective 

index =2.1 enhance the wafer effective lifetime after short treatment at 900 ºC. The reflective 

of index (silicon nitride) higher than 2.4 decreases the lifetime.   
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5.2.3 Instrumental description  

 
 

Figure 5.4 Description of PECVD machine used deposit SiNx layer 

1) Electrical connections control unit 

2) Power supply (Power switch) 

3) Computer (for process and deposition control) 

4) Process Chamber 

5) Loading chamber 

6) Source plasma and microwave generator 

7) Gases and water supply unit 

               Surface passivation is very important for silicon solar cells in order to reduce the 

recombination losses. In this work, we have investigated passivation properties of silicon 

nitride composition deposited by PECVD as well as passivation with silicon oxide. Varying 

composition of passivated layer of silicon nitride is studied by measuring lifetime and 

ellipsometric measurements.  

5.3 Surface passivation:  
           Recombination process in silicon solar cells occurs though a number of simultaneous 

processes depending on intrinsic or extrinsic nature of material. Intrinsic processes (radiative 

and Auger recombination) are unavoidable processes while extrinsic processes related 

impurities concentration, defects and imperfections within crystals (SRH 

recombination).There are two types of surface passivation process to reduce the Surface 

recombination velocity of silicon solar cell.  

 Chemical passivation 

 Field effect passivation 

  

   Chemical passivation reduces the SRH recombination rate by decreasing density of 

interface traps  𝐷𝑖𝑡 . It can be done by deposition of a passivating film (Si3N4 or SiO2) on the 

surface by saturating the dangling bonds. Chemical passivation, SiNx is obtained by 
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chemical reaction of silicon with nitrogen atoms. Passivated and unpassivated silicon 

dangling bond are shown in figure 5.2. For surface recombination, it is necessary to have 

electrons and holes on the surface. Surface recombination via defects as described by SRH 

theory, depends on the ratio of carriers concentration. Maximum recombination rate is 

observed when n=p. Recombination rate decreases rapidly when the concentrations of one 

type of carriers decrease. One way to decrease the carrier concentration is by introducing an 

electric field with fixed dielectric film which electrostatic repels one type of carriers. This 

method is used to decrease the SRV depending upon the polarity of film. This method is 

known as field effect passivation which is shown in figure 5.5. 

 

Figure 5.5 Field effect passivation by SiNx:H with fixed positive charges on n-type silicon 

substrate. Accumulation of electrons creates an electric field and repels the holes 

 

5.4 The Lifetime Measurements 
            The effective lifetime is measured experimentally which sums of all recombination 

processes occur in silicon wafer. Lifetime is usually described by a single values parameters, 

it is complex concept and varies according to material quality, doping level, illumination level 

and injection of carries. The Lifetime of minority carriers is of particular interest is solar cells 

due to its effect on efficiency.  

       The decay of excess minority carriers due to recombination is called recombination 

lifetime and term lifetime is referred to the recombination lifetime of excessive minority 

carriers. As it is mentioned early in chapter 2, there are three recombination processes, 

which occur in silicon wafer, i.e. radiative recombination (band to band), Auger 

recombination Shockley-Read-Hall recombination (via traps within energy gap) in bulk and at 

the surface of wafer. Therefore effective lifetime is describes below in equation 5.1 and 5.2: 

1

𝜏𝑒𝑓𝑓
=

1

𝜏𝑟𝑎𝑑
+

1

𝜏𝑆𝑅𝐻
+

1

𝜏𝑎𝑢𝑔𝑒𝑟
+

1

𝜏𝑠
 

Radiative, Shockley-Read-Hall and Auger recombination are referred as 

bulk recombination. Thus effective lifetime is described as sum of lifetime 

in bulk and at surface. 

(5.1) 

1

𝜏𝑒𝑓𝑓
=

1

𝜏𝑏
+

1

𝜏𝑠
 

(5.2) 

Auger lifetime can be calculated by using theoretical model by J. Schmidt et al [9]. 
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𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 effective 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 =  
∆𝑛

(𝐺 − (
𝑑∆𝑛
𝑑𝑡

))

 
(5.3) 

 

      G is photo generation within wafer at time t, excessive carrier concentration ∆𝑛 is 

calculated from photo conductance signal. However SRH lifetime depends on defects level 

in crystal lattice, it is more complicated to calculate theoretically. Bulk lifetime of extrinsic 

silicon can be calculated by using semi empirical models based on lifetime measurement of 

float zone silicon with low defect levels. The lifetime depends on the excess carriers and 

doping concentration, it is represented by M.J. Kerr et al [10] and more recent model is 

developed by A. Richter et al [11]. 

    This equation describes general relationship for the lifetime of a wafer under any 

illumination. It depends on average carriers density and external generation. Equation 5.3 

exist in the facts that all lifetime measurements methods are based on excessive carrier’s 

density ∆𝑛. There are 3 different states of thermodynamics equilibrium, in which transient 

state (with no external generation) and quasi steady state (with almost constant generation) 

techniques are used to measure lifetime of silicon solar cells [10-11] 

 

5.4.1 QSSPC technique 
           It is most common technique to measure passivation of this film deposited on 

crystalline silicon. In crystalline silicon solar cells both bulk and surface recombination 

mechanisms are involved. Bulk recombination is related to the quality of crystalline silicon 

material while surface recombination is determined by the passivation quality at the 

interfaces in the device. Any recombination U can be associated with characteristic lifetime. 

𝜏 =
∆𝑛

𝑈
 

(5.4) 

      While ∆𝑛 = 𝑛 − 𝑛0 in the excess of minority carrier density (𝑛0 is carrier density under 

thermodynamics equilibrium). In the bulk of crystalline silicon wafers, lifetime is given by the 

effect of three main recombination processes; those are radiative, Auger and Shockley read 

Hall recombination: 

𝑈 = 𝑈𝑅𝑎𝑑 + 𝑈𝐴𝑢𝑔 + 𝑈𝑆𝑅𝐻 =
∆𝑛

𝜏𝑟𝑎𝑑
+

∆𝑛

𝜏𝐴𝑢𝑔𝑒𝑟
+

∆𝑛

𝜏𝑆𝑅𝐻
=

∆𝑛

𝜏𝑏
 

(5.5) 

       In radiative recombination an electron of conduction band neutralized by hole in a 

valence band emitting a photon with energy which corresponding to semiconductor band 

gap. Since silicon is indirect band gap material, this process is almost negligible compared to 

other one. In Auger recombination excess of band to band recombination is given to third 

carrier, either hole or electron. This mechanism is important at high injection level or in highly 

doped wafers. While in Shockley read Hall recombination take place through a defect in the 

band gap and excessive energy is released in the form of phonons. Recombination via 

defects is not intrinsic to the semiconductor. It can be minimized by perfect crystal growing 

process. In Photovoltaics low quality crystalline silicon material is used, therefore 

recombination via defects is dominant process in commercial crystalline silicon solar cells. 
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Figure 5.6 Fundamental recombination mechanism in the bulk of a silicon p-type wafer with at 

300 K (𝒏𝒊 = 1010 cm-3, NA = 1 ohm.cm, 𝝉𝒏𝟎 = 200μs, 𝝉𝒑𝟎= 6 ms). 

     It is clear that total recombination rate is sum of all recombination rates. In figure 5.6 

effective lifetime of bulk, is given by the inverse sum of all lifetime processes. Figure 5.6 

shows an example of recombination for p-type wafer with relatively low SRH lifetime.  

5.4.2 QSSPC and surface recombination 
            At the surface of wafer, a high density is expected at the semiconductor surface due 

to loss of crystalline network. Defect density is mainly due to dangling bonds. In addition to 

this some defects are also appeared due to fabrication process. Unit of surface 

recombination is cm-2/sec but it is usually expressed by surface recombination velocity with 

unit cm/s. The effective surface recombination velocity 𝑆𝑒𝑓𝑓 can as (reference) 

𝑈𝑠 = 𝑆𝑒𝑓𝑓 . ∆𝑛 (5.6) 

 

∆𝑛 is the excess minority carrier density at the limit of the space charge region created at the 

crystalline surface. 

5.4.2.1 Measurement setup 

 The QSSPC technique was design and implemented first time by R.A Sinton and A. Cuevas 

in 1996 [12-14]. This technique allows the contactless characterization of silicon solar cell 

precursors. This technique is based on the RF (radio-frequency) bridge with an inductive coil 

that generates electromagnetic field within the wafer. Variation in conductivity of wafer 

modifies these fields leading to a variation in effective inductive values, which change the 

output voltage of the bridge. Block diagram is shown in the figure 5.7. Measuring system 

consists of a calibrated solar cell which is called reference solar cell along with silicon wafer 

(to be measured). This calibrated solar cell is used to measure light intensity, a digital 

oscilloscope (Tektronix TDS 220) and a flash lamp (quantum Q-flash Model X2) with filters. 

Two magnitudes are measured by this system.  
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Figure 5.7 Block diagram for effective lifetime measurement (QSSPC) 

       Photo-conductance of sample ∆𝜎 is a voltage signal proportional to the magnitude which 

is measured at CH1 in the oscilloscope. From photoconductance, ∆𝑛𝑎𝑣𝑔 can be estimated by 

using following equation 5.7:  

∆𝜎 = 𝑤. 𝑞(𝜇𝑛 + 𝜇𝑝)∆𝑛𝑎𝑣𝑔 (5.7) 

Where w is the thickness of wafer, q is the elementary charge 𝜇𝑛 𝑎𝑛𝑑 𝜇𝑝 is mobility of 

electrons and hole. This magnitude is measured in Siemens (S), it is unit of electrical 

conductance (reciprocal of resistance).  

The intensity of light which is voltage signal proportional to the short circuit current of the 

calibrated solar cell placed next to the crystalline silicon wafer measured at CH2. From this 

magnitude, electron hole pair generated (photo-generation) within the wafer 𝐺𝑒𝑥𝑡(𝑡)  can be 

estimated. For accurate estimation it is necessary to consider the effect of optical 

transmission factor. (fopt) which consider the losses due to reflection.  

. When these magnitudes are known, the effective lifetime (𝜏𝑒𝑓𝑓) can be calculated with 

following equation.  

𝜏𝑒𝑓𝑓 =
𝑤∆𝑛𝑎𝑣(𝑡)

𝐺𝑒𝑥𝑡(𝑡)
 

(5.8) 

        In case of symmetric structure, both surfaces are similar (both sides have same 

structure), we can calculate effective surface recombination velocity 𝑆𝑒𝑓𝑓 applying following 

equation: 

1

𝜏𝑒𝑓𝑓
=

1

𝜏𝑏𝑢𝑙𝑘
+

2𝑆𝑒𝑓𝑓

𝑤
       →→→→   𝑆𝑒𝑓𝑓 ≤

𝑤

2𝜏𝑒𝑓𝑓
  

(5.9) 

While 𝜏𝑏𝑢𝑙𝑘 is recombination lifetime of the bulk. 

 A typical 𝜏𝑒𝑓𝑓 vs ∆𝑛𝑎𝑣 curve measured by QSSPC is shown in figure.5.9 One advantage of 

this technique as compare to other techniques is the wide irradiance range from 
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(1013𝑡𝑜 1017 𝑐𝑚−3 ) that can be characterized only by changing the filter in the flash lamp. If 

high quality crystalline silicon substrate (FZ wafers) is used, the effective lifetime is actually 

limited by surface recombination (𝜏𝑏𝑢𝑙𝑘 ≫ 𝜏𝑒𝑓𝑓). In this case usually we obtain a good 

approximation of effective surface recombination velocity.  

 Furthermore this technique allows us to estimate the implicit open circuit voltage (implicit-

Voc) of solar cell, typical example of measurement is shown in figure 5.8 [17-19]. 

𝑉𝑂𝐶 =
𝑘𝑇

𝑞
ln [

∆𝑛(𝑁𝐴 + ∆𝑝)

𝑛𝑖
2 + 1] 

(5.10) 

     For high level injection, (∆𝑝 = ∆𝑛), the excess carrier densities can be considered equal 

to average excess carrier density measured by QSSPC. 

 

 

Figure 5.8 Estimation of implicit open circuit voltage (Voc) by QSSPC [17] 

       The error in the calculation of 𝜏𝑒𝑓𝑓 can be consider lower than 15% taking into account 

non linearity between photoconductance and output signal by this technique due to 

maladjustment of optical factor ( fopt ) or variation in flash spectrum.  
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Figure 5.9 Minority carrier lifetime verses average excessive carrier density. 

 

5.4.3 Transient photo conductance 
 In Transient lifetime measurements, lifetime depends on the decay of carriers over 

time, Carriers are generated by short pulse of light and decay of carrier’s density with time is 

measured. Longer the minority carrier lifetime slower will be carriers decay. It is an 

alternative technique to determine excess carriers’ lifetime which is based on the analysis of 

decaying of photo conductance transient after excess carriers have been created by a short 

light of pulse. [20]. Transient photo conductance is measured by using same hardware setup 

as for QSS-PC measurement technique. For transient photo conductance (TR-PC) 

measurement the excess photo conductance is measured by using an inductively coupled 

coil with a radio frequency (RT) circuit.  

5.4.3.1 Measurement setup 

             For measuring the effective excess carrier lifetime, same hardware and setup is 

used as in QSSPC technique, although additional monitor cell can be omitted for the case of 

a transient photo conductance (TRPC) measurement. The main difference is the flash 

duration, flash duration is changed to a very short time constants, and it is presented in 

figure 5.10 where measurement signals for a typical TRPC measurement is shown. Due to 

fact that sample has to be in pure transient mode which means that excess carrier lifetime 

has to be small as compared to time constant of the flash lamp. Only sample with a high 

carrier lifetime can be reliable measured with this transient technique.  
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 Figure 5.10 Typical measurement signal of a TRPC measurement. The time constant of the 

short flash pulse (blue) has to be small compared to the effective excess carrier lifetime of the 

sample in order to get reliable results. 

          Objective of this work was to improve quality of emitters through passivation. In 

previous batches we had observed very low lifetime due to bad passivation of emitters. In 

work, we have focused on passivation via oxidation process as well as with silicon nitride 

deposition or SiO2/SiNx stack structure.  

 

5.5 Passivation through oxidation Process 
           In this batch three different processes were designed with different degree of 

cleanliness. Additional cleaning was carried out by an ultra-clean process in addition to 

normal chemical polishing with CPX with RCA 1&2 cleaning process on-type float zone (FZ) 

wafers of resistivity 16.Ω.cm. For ultra-cleaning process, we have applied an efficient way 

which consists of phosphorus diffusion into silicon surface layers in which the gettered 

impurities have been trapped at high temperature. As we have expected, after removing the 

phosphorus-rich layer, the electrical properties of silicon wafers can be significantly 

improved. Gettering was performed, which cleaned bulk of silicon wafers by removing 

contaminations or defects from bulk and surface. After gettering, wafers were etched again 

with CPX and cleaned with RCA1 & 2 cleaning. We have also used test wafers in order to 

evaluate of our cleaning and etching process, we used our standard process (TiM process) 

for etching of wafers with NaOH. This wafer is used to compare the results with clean and 

ultra-clean process. These three processes only differ in degree of cleanliness prior to 

entering for oxidation stages for surface passivation. These three processes are given in 

scheme 1, 2 and 3. 

Scheme 1: TiM Recipe used for fabrication of solar cell, (see figure 5.12b) 

Scheme 2: Clean process via CPX etching (see figure 5.12a) 

Scheme 3: Ultra-clean process through gettering via CPX etching, (see figure 5.11) 
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Scheme 3 

 
Figure 5.11 Fabrication process for silicon passivation through oxidation (Scheme 3) 

Scheme 2 Scheme 1(TiM recipe) 

  
(a) (b) 

Figure 5.12 Fabrication process for silicon passivation through oxidation (Scheme a & b). 
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5.5.1 Results and characterization passivated surface 
           Dry oxidation was carried out under same conditions for all three scheme at 950 ºC 

for 20 minutes. According to previous experiments, a layer about 15nm of SiO2 were 

produced on both side of wafer due dry oxidation. After this a thin layer about 50nm of Al 

was deposited on both side of wafers by EBM. SiO2 and aluminum annealing (alnealing) at 

high temperature is used for surface passivation. Alneal was carried out on both side of 

oxidized wafers. For this purposed, wafers with caped layer of Al were annealed at 450 ºC 

for 30 minutes in forming gas. Finally Al layers were etched in H3PO4 at 90 ºC. During 

etching, a large amount of atomic hydrogen is generated due to reaction of Al with 

phosphoric acid. Atomic hydrogen which is generated within oxide layer passivate the 

dangling bonds at Si/SiO2 interface. It is also found that Alnealing do not have effects on 

SiNx passivated surface [4, 21-23]. After cleaning with deionized water, wafers were dried.  

    After processing, these wafers were evaluated through lifetime measurements by PCD 

and QSSPC techniques. The results of lifetime measurements these 3 different processing 

schemes are given in figure 5.13. From these results it is clear that our recipe (TiM recipe) is 

destroying lifetimes of minority’s carriers. In our opinion NaOH destroyed the lifetime by 

introducing impurities, possibly due to metallic etching bath. From ultra-clean process 

(scheme 3), It is clear lifetime is improved of ultra-clean process through gettering via P 

diffusion. We have performed same experiments which have applied for ultra-clean scheme 

excepting chemical etching process. CPX etching has given good result of passivation 

(lifetime measurement) but NaOH etching destroyed the lifetime of wafers. 

 

Figure 5.13 Lifetime measurement of different schemes (clean and ultra-clean process) 

   Although this process has given good results to improve passivation quality of silicon 

wafers and to decrease the surface recombination velocity but it is not compatible with 

industrial solar cell fabrication. Due to this reasons, we have concentrated to improve the 

passivation by using SiNx layer, by applying new recipes.  
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5.6 Passivation with stoichiometric SiNx Deposition (N-type wafer) 

5.6.1 Objective: 
            In silicon solar cell fabrication different material has been used for antireflection 

coating as well as for passivation. Recently SiNx has found excellent material due to its dual 

properties of passivation as well ARC for high efficiency solar cells. On typical solar cell a 

layer of silicon nitride is deposited by PECVD and it also produces a positive charges at the 

interface of SiNx/Si, which helps the surface passivation.  

     Optical properties of Silicon nitride layer can be adjusted by controlling the composition of 

silicon nitride film. High concentration of silicon, non-stoichiometric film has high refractive 

index (>2.4) which has high absorption loss and low refractive index (<1.9) has low 

absorption loss. Typically on textured silicon wafer, a 75nm thick layer of SiNx is deposited 

for good results. An important issues for used of silicon nitride (SiNx) is its ability to 

passivate the impurities which kill the lifetime of minorities carriers, are present in silicon 

surface, It introduces H into surface layer and remove the damages.  

   The objective of this work is to find a good point (optimum point) for passivation by using 

silicon nitride as passivating layer on n-type Cz wafers of different thickness (Recipe for 

passivation). In order to find an optimal point for passivation, we have changed stoichiometry 

of silicon nitride. When we have optimized point, we have applied on selective emitter’s 

passivation both n-type and p-type wafers. When the first objective is achieved, when 

optimal point for passivation by SiNx is found, we have applied these recipes for emitter’s 

passivation.  

      There are number of ways, by which recombination process occurs in silicon solar cells 

and other semiconductors devices. These processes are intrinsic and extrinsic in nature. 

Intrinsic processes are unavoidable properties of material including radiative and Auger 

recombination. While extrinsic processes related to the defects of a materials like impurities 

and crystallographic defects within the material or at the surface of material including SRH 

bulk and surface recombination. All defects and extrinsic recombination processes can be 

reduced to minimum level. High recombination rates in silicon material decrease the lifetime 

of minority carriers. Extent of lifetime which can be achieved depends on quality of wafers 

and subsequent processing. Efficiency of silicon solar cells is limited by recombination 

lifetime of minority carriers. During fabrication process, devices undergo thermal step and 

minority carriers achieve high lifetime, thermal degradation and possible contamination must 

be avoid for high efficiency process. The objective of this work is get optimal point for 

passivation by using following recipe of SiNx by changing the gaseous flow in as given in 

table 5.1 (Recipe SiNx). 

5.6.2 Experimental procedure:  
           Process is started from chemical etching process by using CPX mixture (acidic 

etching). N-type monocrystalline Cz-silicon wafers (ρ=0.8 Ω·cm; thickness = 200µm) have 

been taken for etching process. Wafers and etching mixture were taken in a Teflon tray and 

etching was carried out by shaking manually as shown in figure 5.15. Etching time varies 

from 10 to 20 minutes, in order to get to different wafers thicknesses. Thin wafers are in 

range of 135- 150µm and thick wafers are in range of 150-170 µm. After etching, RCA1&2 

cleaning were performed to remove the all kind of impurities (inorganic and organics) and 
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treated with hydrofluoric acid before SiNx deposition. Description of process is given in figure 

5.14.  

 

Figure 5.14Schematic representation of process to get optimum point for passivation. 

 

Figure 5.15 CPX manually etching process for silicon wafer. 

5.6.3 Recipe of silicon nitride (SiNx) deposition 
Table 5.1 Recipe of SiNx deposition 

 SiH4 

(sccm) 

NH3 

(sccm) 

N2 

(sccm) 

Ar 

(sccm) 

Time Temp. 

(0C ) 

MW Rf Pressure 

Start (Heat)      30 min 

 

400   0.2 mb 

Stabilization  60  40  90sec 

 

400   0.2 mb 

Pre Plasma  60   40 30 sec 400  300W 

150V 

0.2 mb 

Cleaning    100  10 sec 

 

400   0.2 mb 

stabilization 

SiNx 

5 60 55 40 30 sec 400   0.2 mb 

Plasma 5 60 55  4 min 400 MW 

2200 

300W,  

150V 

0.2 mb 

*Yellow color parameters are variables (we have to change these variables to get good 

passivation). SiH4 and N2 flow during stabilization of SiNx and SiH4 with N2 change with time during 

plasma deposition. 
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      Experiments which we have performed to deposit SiNx by using above mentioned 

parameters (concentration) and their flow is given in table 5.2 under different temperature 

ranging from 300-400 ºC. We must keep in mind that we are looking for passivation with 

silicon nitride, at this moment, variation in thickness of SiNx layer is not important but we will 

try to have more or less in range of 80-90nm by changing the time of plasma deposition to 

get Blue color of SiNx layer. In this work, we have used CZ n-type with low resistivity wafers 

and SiNx deposition experiments were conducted in following orders as gaseous flow 

(concentration) is given in the table 5.2. 

Table 2.2 Scheme for concentration of gaseous flow for SiNx deposition 

N FL 3 4.5 6 9 10 11 12 

3 C3 3 C3 4.5 C3 6 C3 9 C 10 C311 C3 12 

3.5 C3.5 3 C3.5 4.5 C3.5 6 C3.5 9 C3.5 10 C3.5 11 C3.5 12 

4 C4 3 C4 4.5 C4 6 C4 9 C410 C4 11 C4 12 

4.5 C4.5 3 C4.5 4.5 C4.5 9 C4.5 9 C4.5 10 C4.5 11 C4.5 12 

4.9 C4.9 3 C4.9 4.5 C4.9 9 C4.9 9 C4.9 10 C4.9 11 C4.9 12 

 

There are some values which are not possible due to minimum flow limit of SiNx deposition 

machine. E.g. FL (flow of silane) 3 is not possible to process due to low limit of silane flow. 

Total flow rate is given C = (N × 60) − FL. Ratio of nitrogen/silane is given in table 5.3. 

Table 5.3 Nitrogen/silane ratio for SiNx deposition scheme 

N FL 3 4.5 6 9 10 11 12 

3 59 39 29 19 17 15.3 14 

3.5 69 45.6 34 22.3 20 18.1 16.5 

4 79 52.3 39 25.6 23 20.8 19 

4.5 89 59 44 29 26 23.5 21.5 

4.9 97 64.3 48 31.6 28.4 25.7 23.5 

5 99 65.6 49 32.3 29 26.2 24 

 

As it is mention early, objective of this process is find an optimum point for passivation by 

SiNx deposition on CZ wafers. After achieving optimal point, we have applied these optimal 

points for emitter’s passivation which we have planned for emitter passivation. Structure of 

n-type Cz wafer is shown in figure 5.16 after deposition of SiNx on both side of wafer. 
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Figure 5.16 Structure of silicon wafers after silicon nitride deposition 

Lifetime of SiNx layer deposited under different gaseous flow and variable time are given in 

figure 5.17. . In figure 5.17 graph, for plots we have used lifetime values which we have 

obtained by TPCD technique. 

 

Figure 5.17 Lifetime measurements of different layer of SiNx deposited under different 
gaseous flow and variable time 
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Values of surface recombination velocities, which are calculated from lifetime measurements 

(TPCD) are given in the table 5.4. 

Table 5.4 Comparison of Surface recombination velocities obtained after deposition SiNx by different 

ratio N2/SiH4 

FL 4 6 7.5 9 10 12 

N 
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     We have used the optimal points, those have given the low values of surface 
recombination velocity or high lifetime of minority’s carriers are applied to deposit the same 
recipes at low temperature. Lifetime measurements as well as surface recombination 
velocities of different Nitrogen/silane flow under different temperatures are given in figure 
5.18 and 5.19. 
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Figure 5.18 Lifetime measurements under different gaseous flow of N2/SiH4 at different 

temperature during SiNx layer deposition. 
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Figure 5.19 Surface recombination velocity calculations under different gaseous flow of 

N2/SiH4 at different temperature during SiNx layer deposition. 
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5.7 Passivation of emitters (N-type wafers) 
          Systemic fabrication process for passivation of emitters is shown in flow sheet 

diagram in figure 5.20(a). Process is started from chemical etching of wafers. N-type 

monocrystalline Cz-Silicon wafers (ρ = 0.8 Ω·cm; thickness = 150µm) with size 10x10 cm2 

has been taken for etching process, which was carried out by CPX solution, an etching 

solution used to etch silicon in acidic medium. RCA1&2 cleaning was performed to remove 

the all kind of impurities (inorganic and organics) and treated with hydrofluoric acid prior the 

wafer processing. “P” pre-deposition is carried out at 820 0C by using POCl3 as a source of 

phosphorus and nitrogen as a carrier gas in tube furnace under standard conditions. A dry 

oxidation was performed for 30 minutes with drive-in process. Drive in process was carried 

in oxidation furnace at 9500C for 1 hour in nitrogen ambient. In addition to this experiment, a 

control experiments was performed in order to know the quality of passivation on silicon 

surface (without emitters). For this purpose, P diffusion was carried out at 820 0C by using 

POCl3 as a source of phosphorus and nitrogen as a carrier gas in tube furnace under 

standard conditions to perform gettering. Gettering process is used to remove impurities 

from bulk as well as from surface. After gettering, wafers were etched again with CPX to 

remove emitters as well as dead layer. Systematic fabrication process for emitter passivation 

is shown in figure 5.20(a). In figure 5.20(b), during CPX etching, wafers were divided into 

two thicknesses, half wafers were etched just for 5 minutes and half were etched for 10 

minutes in order to get two thickness. 

 

 a  b 

 

Figure 5.20 Fabrication process for passivation of emitters on n-type substrate (a), fabrication 

process for control experiment (b) 

Both wafers were cleaned with HF in order to remove oxide layer, prior to SiNX deposition. A 

layer of silicon nitride is deposited on both sides of wafer by plasma enhanced chemical 

vapor deposition (PECVD). We have used nitrogen/silane ratio, which has given the best 

results in SiNx optimization point for passivation. Structures of silicon wafers after 

processing are shown in figure 5.21. 
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a b 

Figure 5.21 (a) Structure of of n-type wafer used for emitter passivation, (b) test wafer after 

SiNx deposition 

      After silicon nitride deposition (SiNx), lifetime of each wafers were measured at room 

temperature (17-20 ºC) for minority carrier’s injection level in range of 10E13-E17/cm3. Both 

quasi steady state (QSSPC) and transient photo conductance (TPCD) techniques were used 

to measure the lifetime of wafers. Lifetime measurement results are given in graph of figure 

5.22 at different N2/SiH4 ratio which has given the best result for passivation. In figure 5.22, 

we have used lifetime values which we have obtained by TPCD technique for plots. 
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Figure 5.22 Effect of gaseous flow on lifetime of emitters and etched silicon wafers after SiNx 

deposition 

A graph between SRV values and gaseous flow is given in figure 5.23, which is used to 

passivate emitters as well as ultra-clean silicon. 
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Figure 5.23 Effect of gaseous flow on surface recombination velocity of emitters and CPX 

etched emitters and silicon wafers after SiNx deposition. 

          From these results, we concluded that there is not much difference in lifetime or SRV 

values after changing the gaseous flow of N2/SiH4 in above experiments. We have chosen 

above gaseous flow on the basis of our experimental data on passivation of N- type wafers, 

after depositing a SiNx layer by changing gaseous flow. These values of gaseous flow were 

selected after series of experiments which we have conducted on n-type wafers in order to 

find optimal flow of gases for passivation (to get high lifetime). 

5.7.1 Passivation of softly doped and high doped emitters (N-type substrate) 

            Systemic fabrication process of softly doped and highly dope emitters and their 

passivation scheme is shown in flow sheet diagram in figure 5.24. Process is started from 

chemical etching process of wafers. N-type monocrystalline Cz-Silicon wafers (ρ = 0.8 Ω·cm; 

thickness = 150µm) with size 10x10 cm2 have been taken for etching process, which was 

carried out by CPX solution, an etching solution used to etch silicon wafers in acidic medium. 

RCA1&2 cleaning was carried out to remove the all kind of impurities (inorganic and 

organics) and cleaned with hydrofluoric acid (HF) prior to P diffusion. “P” pre-deposition is 

carried out at 820 0C by using POCl3 as a source of phosphorus and nitrogen as a carrier 

gas in tube furnace under standard conditions. A dry oxidation was performed for 30 minutes 

prior to drive-in process. Drive-in process was carried in oxidation furnace at 9500C for 1 

hour in nitrogen ambient. Wafers obtained after this process, have sheet resistance around 

30-40 Ω/sq. Same process is repeated with high temperature P pre-deposition at 875 ºC for 

30 minutes in order to get highly doped emitters. After P pre-deposition some wafers 

cleaned with HF in order to remove oxide layer prior to SiNx deposition as shown in figure 

5.24(a). Rest of wafers were further processed. A dry oxidation was performed for 30 

minutes prior to drive-in process except process which is shown in figure 5.24(b). Drive-in 

process was carried in oxidation furnace at 9500C for 1 hour in nitrogen ambient. Wafers 

obtained after this process, have sheet resistance around 14-19 Ω/sq. 
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     After dry oxidation with drive-in process, a layer of silicon nitride is deposited on both 

sides of wafer by plasma enhanced chemical vapor deposition (PECVD). We have used 

nitrogen/silane ratio, which has given the best results in SiNx optimization point for 

passivation Fabrication process which is shown in figure 5.24 (c) for lowly doped emitter’s 

passivation is similar as it already mentioned in figure 5.21(a) but this process is HF free. 

Process which is shown in figure 5.24 (d), we have tried to convert high doped emitters into 

lowly doped emitters prior to passivation by chemical etching. During chemical etching, up to 

50-100nm thick surface layer is removed in order to decrease the doping concentration. 

Wafers were cleaned with RCA1&2 and HF in order to remove oxide layer, prior to SiNX 

deposition. A layer of silicon nitride is deposited on both sides of wafer by plasma enhanced 

chemical vapor deposition (PECVD).  

  
a b 

 c 
d 

Figure 5.24 (a), Fabrication process for passivation of highly doped emitters on n-type 

substrate, (b) Fabrication process for passivation of highly doped emitters with drive-in on n-

type substrate, (c) Fabrication process for passivation of lowly doped emitters on n-type 

substrate, HF free process (d) Fabrication process for passivation of highly doped emitters to 

lowly doped emitter on n-type substrate via NaOH etching. 
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     After Silicon nitride deposition (SiNx), lifetime of each wafers were measured at room 

temperature (17-20ºC) for minority carriers injection level in range of 10E13-E17/cm3. Both 

quasi steady state (QSSPC) and transient photo conductance (TPCD) techniques were 

used. Lifetime was measured after diffusion, after dry oxidation with drive-in and after SiNx 

deposition. Lifetime measurement results are given in graph in figure 5.25 and graph of SRV 

values is given in figure 5.25 for fabrication process of figure 5.24 (c). 

 

Figure 5.25 Lifetime measurement of fabrication process used for passivation of softly doped 

emitters on n-type substrate and HF free process  

 

Figure 5.26 Surface recombination velocity of fabrication process used for passivation of 

softly doped emitters on n-type substrate and HF free process 

         Lifetime measurement results are given in graph of figure 5.27 and SRV values are 

given in graph figure 5.28 for fabrication process of figure 5.24(b).  In both cases, 820 ºC P 

diffusion and 875 ºC P diffusion, passivation of wafers improved by dry oxidation. 

Passivation quality of surface of emitters is improved due to silicon oxide. Improvement of 

lifetime values due to dry oxidation is shown in figure 5.27 and SRV is given in figure 5.28 for 

875 ºC P diffusion. These results show the compatibility of our recipe with oxide layer for 

high efficiency process. After Silicon nitride deposition (SiNx), lifetime of each wafers were 

measured at room temperature (17-20ºC) for minority carriers injection level in range of 

10E13-E17/cm3. Both quasi steady state (QSSPC) and transient photo conductance (TPCD) 

techniques were used. Lifetimes were measured after diffusion, after dry oxidation with 

drive-in and after SiNx deposition. Deposition of SiNx layer further improved the lifetime. It is 

clear that SiO2/SiNx stack structure further improve the lifetime values of wafers. 
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Figure 5.27 Lifetime measurement of fabrication process used for passivation of high doped 

emitters on n-type substrate and HF free process 

 

Figure 5.28 Surface recombination velocity of fabrication process used for passivation of 

softly doped emitters on n-type substrate and HF free process 

       For process 5.24(a), Lifetime was measured after diffusion, after HF treatment and after 

SiNx deposition. In this process, we have deposited SiNx layer by changing gaseous flow of 

nitrogen/silane (C4.59, C4.510, C4.910 and C4.99 see table 1 for detail of this chapter), in 

order to see the effect of nitrogen/silane concentration on lifetime measurement, Results are 

given in graph in figure 5.29 of fabrication process of figure 5.24(a). Prior to SiNx layer 

deposition on wafers with n+ emitter were cleaned by HF to remove the oxide layer on 

emitters. For process 5.24(a), it is also repeated by measuring the lifetime after each step, 

diffusion, dry oxidation, HF treatment and SiNx layer deposition. Results of lifetime 

measurements are given in figure 5.30. Flow of silane and nitrogen (in sccm) is given below 

for deposition of SiNx layer, C4.59 (SiH4=9, N2=261) SiNx (a), C4.510 (SiH4=10, N2=260) SiNx (b), 

C4.99 (SiH4=9, N2=285) SiNx(c) and C4.910 (SiH4=9, N2=285) SiNx (d).  See table 5.2 for detail of 

gaseous flow and temperature. 
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Figure 5.29 Lifetime measurement of fabrication process used for passivation of high doped 

emitters on n-type substrate, Lifetime is measured after phosphorus diffusion and after HF 

treatment, after deposition of SiNx by using different flow of N2/SiH4. 

 

 

 

Figure 5.30 Lifetime measurement of fabrication process used for passivation of high doped 

emitters on n-type substrate, Lifetime is measured after phosphorus diffusion, after dry 

oxidation, after HF treatment, after deposition of SiNx layer. 

     Fabrication process which is shown in figure 5.24(d), we have tried to convert high doped 

emitters into lowly doped emitters prior to passivation by chemical etching. During chemical 

etching, up to 50-100nm thick surface layer is removed in order to decrease the doping 

concentration and to remove the dead layer. Wafers cleaned with RCA1&2 and HF in order 

to remove oxide layer, prior to SiNX deposition. A layer of silicon nitride is deposited on both 

sides of wafer by plasma enhanced chemical vapor deposition (PECVD). We have used 

nitrogen/silane ratio, which has given the best results in SiNx optimization point for 

passivation. After Silicon nitride deposition (SiNx) on high doped emitters, lifetime of each 

wafers were measured at room temperature (17-20ºC) for minority carriers at injection level 

in range of 10E13-E17/cm3. Both quasi steady state (QSSPC) and transient photo 
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conductance (TPCD) techniques were used. Lifetime was measured after diffusion, after HF 

treatment and after SiNx deposition. In this process, we have deposited SiNx layer by 

changing gaseous flow of nitrogen/silane (C4.59, C4.510, C4.910 and C4.99 see table 5.2 

for detail), in order to see the effect of nitrogen/silane concentration on lifetime 

measurement, Results are given in graph in figure 5.31 of fabrication process of figure 5.24 

(d). Flow of silane and nitrogen is in sccm (cubic centimeter/minute). C4.59 (SiH4=9, N2=261) 

SiNx (a), C4.510 (SiH4=10, N2=260) SiNx (b) and C4.99 (SiH4=9, N2=285) SiNx(c).  See table 5.2 for 

detail of gaseous flow and temperature. 

 

 

Figure 5.31 Lifetime measurement of fabrication process used for passivation of high doped to 

lowly emitters on n-type substrate, Lifetime is measured after phosphorus diffusion, after dry 

oxidation with drive-in, after etching by NaOH and cleaning, and after deposition of SiNx by 

using different flow of N2/SiH4 ratio. 

 

5.8 Passivation of Softly doped emitters on P-type substrate 

       Process is started from chemical etching process of wafers. P-type monocrystalline Cz-

Silicon wafers (ρ = 5.7 Ω·cm; thickness = 150µm) with size 10x10 cm2 has been taken for 

etching process, which was carried out by CPX solution, an etching solution used to etch 

silicon in acidic medium. RCA1&2 cleaning was performed to remove the all kind of 

impurities (inorganic and organics) and treated with hydrofluoric acid prior to P diffusion. “P” 

pre-deposition is carried out at 820 0C by using POCl3 as a source of phosphorus and 

nitrogen as a carrier gas in tube furnace under standard conditions. A dry oxidation was 

carried out for 30 minutes with drive-in process. Drive in process was carried out in oxidation 

furnace at 9500C for 1 hour in nitrogen ambient. A layer of silicon nitride is deposited on both 

sides of wafer by plasma enhanced chemical vapor deposition (PECVD). We have used 

nitrogen/silane ratio, which has given the best results in SiNx optimization point for 

passivation. After Silicon nitride deposition (SiNx), lifetime of each wafers were measured at 

room temperature (17-20ºC) for minority carriers injection level in range of 10E13-E17/cm3. 

Both quasi steady state (QSSPC) and transient photo conductance (TPCD) techniques were 

used. Lifetime was measured after diffusion with dry oxidation and drive-in and after SiNx 

deposition. Fabrication scheme for passivation of n+ emitter is same as it is mentioned early 
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in figure 5.24(c) except p-type high resistivity wafers are used in this process. [23]. Structure 

of silicon wafers after emitter’s formation and deposition of SiNx layer is shown in figure 

5.32. 

 

 

Figure 5.32 Structure of p-type wafer after n+ emitter formation and SiNx deposition  

       The effective lifetime of each cells were measured at 20 ºC with minority carrier injection 

level was in range of 1E13 to 1E17/cm3. Both quasi-steady state (QSSPC) and transient 

photoconductance (PCD) techniques were used to measure effective lifetime. It is useful to 

use both techniques to determine the effective lifetime because both QSSPC and t-PCD are 

complementary to each other depending on system of calibration constants. Although 

measured lifetime by QSSPC is always higher than t-PCD but accuracy is low in case 

QSSPC. Lifetime measurement results of fabrication process used to passivate lowly doped 

n+ emitters on P-type substrate are given in figure 5.33 and effective recombination velocity 

obtained due to passivation is shown in figure 5.34.  

 

 

Figure 5.33 Lifetime measurement of fabrication process used for passivation of lowly doped 

n+ emitters on P-type substrate and HF free process 
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Figure 5.34 Surface recombination velocity of fabrication process used for passivation of lowly 

n+ doped emitters on P--type substrate 

5.9 Selective emitters 

          In silicon solar cell fabrication, efficiency has been crossed over 19% by 

homogeneous full area emitter on p-type Cz wafers. Emitters’ formation is basic step in 

fabrication of silicon solar cells and conversion efficiency of silicon solar cells depends on 

type and quality of emitters. There are two kinds of emitters which are currently used in 

fabrication process in both laboratory as well as industrial scale. Conventional homogeneous 

emitters are formed over full area of silicon wafer by using POCl3 as a source of phosphorus 

at 800-875 ºC and nitrogen as a carrier gas in tube furnace under standard conditions. [24-

27]. Second type of emitter is doped selectively with P either by using a tube furnace or 

other means such as laser, inkjet which are called selective emitters. 

         In case of p-type wafers, n+ type homogenous emitters are formed by phosphorus 

diffusion. Highly doped emitters (sheet resistance 30-60Ω/𝑠𝑞) enabled to decrease contact 

resistivity between emitters and front metals contacts, but highly doped emitter increase the 

losses due to low short wavelength response, inactive phosphorus appears in the form of 

dead layer, which creates recombination centers, This electrically inactive P also introduces 

defects in the crystalline lattice of silicon, as a result Shockley Read Hall (SRH) 

recombination appears due to defects in crystalline structure. High concentration of soluble 

P in Si increases the Auger recombination, as a result efficiency is seriously affected. In 

case of lowly doped emitters (sheet resistance 100-200 Ω/𝑠𝑞), it is difficult to make contacts 

between front metal (Ag) and lowly doped emitters, as a result contact resistivity increased 

which affects negatively on efficiency of solar cell [28]. For optimization of homogeneous 

emitters for industrial fabrication, there is one option to develop a new paste which can 

contact with lowly doped emitters (high sheet resistance emitters). Today in industrial 

fabrication, there is a compromise between emitters doping concentration and performance 

(moderate sheet resistance 50-80 Ω/𝑠𝑞) which has sufficiently low contact resistance in 

order to get good efficiency [29]. This comprise can be overcome by fabrication of selective 

emitters. Selective emitter have high doping concentration under metal contacts grid and low 

doping concentration under illumination area (area between the metal contacts). Selective 

emitter fabrication process helps to reduce contacts resistance as well as lower Auger and 

SRH recombination and improve the open circuit voltage.  
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   There are many techniques which are mentioned in literature for fabrication of selective 

emitters. Röder et al, developed a process in which laser has been used to increase the 

doping concentration underneath the metal contacts from phosphorus glass silicate as a 

source of phosphorus. [29]. Lauermann et al, [30] used an etching resist (commercial 

available material) which is deposited by inkjet technique, with this mask, it is possible to 

etch back emitters between fingers area by chemical etching. Prior to this step, high doping 

was carried out to get highly doped emitters. In this process, extra steps of cleaning are 

necessary to remove the etch resist [30-32]. Fraunhofer ISE has developed an approach, 

which is based on simultaneous ablation of SiNx layer by laser and emitter layer underneath 

the ablated region by using a liquid (as P-source) laser beam is used for chemical 

processing (LCP) for selective emitter formation [33]. Similar was carried out by University of 

New South Wales (UNSW), they have deposited phosphoric acid as doping source on the 

wafer prior to laser doping. Roth & Rau are working on commercialization of this technique 

[34].  

       Institute of Physical Electronics (IPE), University of Stuttgart discover a process for 

industrial fabrication of selective emitters by using a pulsed Nd:YAG laser λ=532nm, 20kHz 

pulse repetition rate, and 65 nanosecond pulse duration having a Gaussian beam shape 

which melts the wafer surface locally and enables the fast incorporation of P atoms from the 

PSG-layer [35-37 and 30]. This process is patented, no more information is available. Up to 

800nm deep selective emitter can obtained by using a pulse of long duration of few hundred 

nanoseconds. On cooling Si recrystallize epitxially and form a highly doped n+ selective 

emitters without any defect or damage. 

         Centrotherm (German solar cells company) also presented a selective emitter 

formation technology which is based on masked P diffusion by using a silicon oxide layer as 

a mask, which slows down P diffusion from surface into bulk underneath SiO2. For selective 

diffusion, structure of SiO2 was ablated by using a laser where the metals are formed 

afterward. A wet chemical etching step is used to remove the laser damages. After diffusion, 

heavily doped region results in 45Ω/sq sheet resistance while masked area in 110Ω/sq. This 

technology offers a certain degree of freedom in selective emitter formation and uses 

technologies already established in PV [38-39]. One of the objective of our work is also to 

get selective emitters for P/Al structure. 

5.9.1 Fabrication of selective emitters 
          Fabrication process for selective emitter’s formation is shown in figure 5.35. For P-

type wafers, n+ emitters are formed by phosphorus diffusion. Process is started from 

chemical etching and cleaning prior to P diffusion. For homogenous emitter’s formation, P 

diffusion was carried at 820 ºC for 30 minutes. We have selected low temperature P 

diffusion for fabrication of selective emitters. Because highly doped emitter increase the 

losses due to low short wavelength response, inactive phosphorus appeared in the form of 

dead layer, which creates recombination centers, as a result Shockley-read-Hall 

recombination increased and efficiency is seriously affected. Although it is difficult to make 

contact with between front metal grids and lowly doped emitters but it can be overcome by 

introducing a second diffusion which increases the doping only underneath the metal grids 

[28]. In industrial fabrication, there is a compromised between emitters doping concentration 

and performance (moderate sheet resistance 50-80 Ω/𝑠𝑞) which has sufficiently low contact 

resistance in order to get good efficiency [29]. This compromise can be overcome by 

fabrication of selective emitters. Selective emitters have high doping concentration under 
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metal contacts grid and low doping concentration under illumination area (area between the 

metal contacts). Selective emitter fabrication process helps to reduce contacts resistance as 

well as lower Auger and SRH recombination and improve the open circuit voltage. 

 

Figure 5.35 Fabrication process for selective emitters formation (p-type wafers) 

 

We have fabricated selective emitter in two steps. 

 Homogeneous emitter formation 

 Selective emitter formation. 

 

5.9.1.1 Homogeneous emitter formation 

              Homogeneous emitters are formed over full area of silicon wafer by using POCl3 at 

different temperature ranging from 800 ºC to 875 ºC by using POCl3 as a source of 

phosphorus and nitrogen as a carrier gas in tube furnace under standard conditions 

Fabrication process is started from chemical etching of both p-type monocrystalline silicon 

wafers obtained by Czochralski growth (Cz), a low quality wafers than float-zone wafers. 

Description of wafers are given below: 

P-type monocrystalline silicon wafers (Cz) 

Resistivity: 3-6 ohm.cm 

Thickness: 200±10 µm (prior to etching) 

Dopant: B 

Conductivity: P type 

                     We used CPX for etching of silicon wafers. Wafers about 200µm in thickness 

were taken for chemical etching CPX, (detail of CPX is given above) followed by RCA1 and 

RCA2 cleaning. For P diffusion p-type monocrystalline Cz-Silicon (𝜌 =  5.4 Ω ·
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𝑐𝑚; thickness=  150 ± 5µ𝑚) with base doping 𝑁𝑏𝑎𝑠𝑒 = 2.7E15 cm−3 and size 10 𝑐𝑚 ×  10 𝑐𝑚 

has been taken for processing after chemical etching and cleaning. P pre-deposition is 

carried out at 8200C by using POCl3 as a source of phosphorus and nitrogen as a carrier gas 

in tube furnace under following conditions as shown in table 5.5. It is common to perform 

phosphorus diffusion in two-steps, pre-deposition and drive-in in second step. In this work 

we have introduced a single step P diffusion, P pre-deposition together with drive-in. In 

between P-pre-deposition and drive-in step, dry oxidation was carried out in order to 

passivate the emitters for 30 minutes. The emitters obtained by above mention procedure 

are homogeneous and uniform on the wafer’s surface. They have almost similar sheet 

resistance values (doping concentration) on whole wafers surface. [27]. 

Table 5.5 

P Pre-deposition 

Steps Time in minutes (T in ºC) Gases flow 

wafers loading 5minutes at (7500C) N2 6 l/min +O2 0.1 l/min 

Stabilization 5-10 (8200C) N2 6l/min +O2 0.1 l/min 

 Bubbler temperature and 

flow rate. 20 0C 

 240 cc/min N2/POCl3 

 

Doping 30 minutes (8200C) N2 6 l/min +O2 0.1 l/min + 

 

Oxidation 5 minutes (8200C) O2 2 l/min 

Annealing 5 minutes (8200C) N2 2 l/min 

Exit (wafers unloading) 

Optional 

If we have to change the 

furnace 

N2 2 l/min 

Dry oxidation and Drive-in 

Dry Oxidation 30 minutes 

(950 0C) 

N2 2 l/min+ O2 2 l/min 

Drive-in 1h=60 minutes 

(950 0C) 

N2 2 l/min 

Exit (wafers unloading) 5 minutes (7500C) N2 2 l/min 

       

        Gaseous flow of the process is given in table 5.5. Detail about diffusion process is given 

in chapter 4.  

5.9.1.2 Silicon Nitride (SiNx) deposition on homogeneous emitters 

             After homogeneous emitter formation, SiNx layer was deposited by PECVD 

technique. Experiments which we have performed to deposit SiNx by using different 

parameters of PECVD technique are given below in table (recipe of SiNx) and gaseous flow 

of all gases used in deposition process are also given below in table. We have used 400 ºC 

temperature for SiNx deposition, due to previous results which we have obtained in 

passivation. We have found the best results at 400 ºC, instead of low temperature deposition 

(300 or 350 ºC). In this batch, we have used the recipe of SiNx which has given the best 

results in surface passivation of N-type wafers (table 5.6).  
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Table 5.6 Recipe of SiNx 

 SiH4 

(scc

m) 

NH3 

sccm

) 

N2 

(sccm

) 

Ar 

(sccm) 

Time Temp. 

(0C ) 

MW Rf Pressure 

Start (Heat)      30 min 400   0.2 mb 

Stabilization  60  40  1.3 

min= 

90sec 

400   0.2 mb 

Pre Plasma  60   40 30 sec 400  300W 

150V 

0.2 mb 

Cleaning    100  10 sec 400   0.2 mb 

stabilization 

SixNy 

10 60 260 40 30 sec 400   0.2 mb 

Plasma 10 60 260  3.15 

mins 

400 MW 

2200 

300W,  

150V 

0.2 mb 

 

     *Yellow color parameters are variables (we have to change these variables to get good 

passivation). SiH4 and N2 flow during stabilization of SiNx and SiH4 with N2 change with time 

during plasma. 

C4.59 (SiH4=9, N2=261) 

C4.510 (SiH4=10, N2=260) 

C4.99 (SiH4=9, N2=285) 

C4.910 (SiH4=9, N2=285) 

       After SiNx deposition, passivation properties were characterized by measuring lifetime 

of wafers by using PCD and QSSPC techniques. We have observed improvement lifetime 

after SiNx deposition. Values of lifetime also depends on oxide layer which is grown during 

dry oxidation process. 

5.9.1.3 Lifetime measurement of homogeneous emitters: 

              After homogeneous emitter’s formation, SiNx layer is deposited by PECVD 

technique by optimal point, which have got after SiNx layer optimization. Parameters of SiNx 

layer deposition is given above table. Passivation quality of these wafers were evaluated 

through lifetime measurements by PCD and QSSPC techniques before and after SiNx 

deposition is shown in figure 5.36. Surface recombination velocity is also calculated from 

lifetime measurements which plotted in figure 5.37. 
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Figure 5.36 Lifetime measurement before and after SiNx deposition on P-tpe wafers by PCD and QSSPC 

technique 

 

 

Figure 5.37 SRV of homogeneous emitters before and after SiNx deposition of P-Type wafers 

 

5.9.1.4 Laser scribed grooves: 

          Laser micromachining processes being used in monocrystalline and polycrystalline solar 

cells include laser edge isolation, laser micro via drilling, laser fired contacts, and laser surface 

structuring as well cutting of wafers and . All of the above mentioned machining technologies 

have a guarantee for high efficiency of the complete solar cell at a minimum of materials 

damage and least material’s loss. For selective emitter’s formation and high efficiency 

achievement, we have used laser as a tool to scribe on wafers in specified manner to draw 

superficial grooves till 2-5 µm in depth and 25-30 µm in width, on cell area of 4.2 × 3.2 𝑐𝑚2. 

Each silicon wafer of 10.2 × 10.2 𝑐𝑚2 area has 4 cells on it as shown in figure 5.38. These 

grooves not only used for selective emitter’s formation but also used to decrease emitter 

saturation current density to passivated emitters.  
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Figure 5.38. Laser scribed grooves on silicon wafer of 10.2X10.2cm2 area 

      For proper use of laser, we used an Ast06 software to draw a sketch, which is used to 

define the point where laser beam scribe or ablate the surface. For proper observation, we 

used a pointer, which is used to indicate the laser scribing area on wafer surface and camera 

to see the scribing point or area of the wafer. We can adjust the platform manually or moving 

laser up and down for proper laser application [41-48]. Grooves are scribed on specified area 

of cells according to size of the cell. Approximately 48 lines are scribed of 4cm length and each 

line has 15 vertical mark about 45-50 µm in length on each line as shown in figure 5.39(b) as 

well as in the sketch figure 5.39(a).  

     In our lab, we have two kind of laser, one is green laser, which works in visible region and 

other works in IR region. Green laser of visible region has a wavelength 515nm use for 

scribing, cutting and edges isolation. The laser-system which is used in our experiments 

consists of a Q-switched fiber laser, which generates pulses of 10 ns duration, Gaussian 

beam, working at two wavelengths (infrared, IR, λ1 = 1030 nm and green, GR, λ2 = 515 nm). 

    Silicon wafers are conventionally diced off by a thin diamond blade, currently green 

wavelength with milliseconds to nanosecond duration, low power pulsed fiber lasers and high 

beam quality continuous wave fiber lasers are being used to cut these materials. The cut 

quality is poor and micro cracking can occur due to excessive heat input, which can lead to 

failure of some components during process steps and associated reduction in yields. Due to 

this reason, post chemical treatment was carried out in order to remove laser induced 

damages [41-48].  

5.9.1.5 Laser Description: 

               Lasers machine and its description are already shown in figures 3.40 (chapter 3). For 

operation we used a computer program Ast06. For proper functioning we have to adjust 

scanning speed which is from 20 to 3000mm/sec and pulse repetition frequency 10-200 kHz 

and power is variable under different conditions.  

We have used following parameters for scribing groove on silicon wafer 

Laser frequency: 50 kHz 

Laser power: 34.2 A 

Scanning velocity: 500 mm/sec 

No of scan: 1 
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     Although laser is advance and fast technique for processing and cutting but it has some 

disadvantages, in some cases we observed that due to melting of silicon by laser, silicon starts 

depositing on the edges of cells which cause in shunt conductance.  

  
a b 

  
c d 

Figure 5.39 a: Image of sketch which is used to define the scribing point/area by laser. Figure 

5.41(b): Laser scribed grooves on silicon wafer surface. Figure 5.41(c&d): Microscopic images 

of grooves after laser processing 

5.9.2 Selective emitter formation 
           After laser scribed grooves, silicon wafers were treated with 25% NaOH solution at 60 

ºC in order to removed laser induced damages. NaOH not only removed the ablated material 

but also etch silicon to make the grooves deeper. In some cases backside were treated with 

HF in order to remove oxide layer. It is critical process, it was essential to protect the front 

AR coating (SiNx layer) from HF. HF not only etch the silicon oxide but also etch the silicon 

nitride.  

     For selective emitter’s formation, 2nd P diffusion was carried out at 875 ºC for 30 minutes. 

This P diffusion was carried out under same gaseous flow and time except temperature. In 

this step, wafers were placed in furnace in such way that backside of one wafer is attached 

to backside of other wafer. In the boat (wafers carrier), two wafers were placed like a single 

wafer, their backsides were completely overlapped and looked like a single wafer (back to 

back). In this way phosphorus only diffuse on front side (surface). This step we called it back 

to back diffusion. In this step back surface of each wafer is protected from doping impurities. 

In order to confirm this protecting step, we have measured the sheet resistance of backside 

of wafers and sheet resistance values confirmed it that no P was diffused on backside.  
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       In selective emitter formation, front surface is covered with silicon nitride. Silicon nitride 

layer acts as barrier for P diffusion. Phosphorus neither diffuse through silicon nitride inside 

nor outside. But in laser scribed grooves area, it is open to phosphorus diffusion and P can 

diffuse easily into silicon. During this 2nd diffusion step, doping concentration is increased 

only in grooves area. After phosphorus diffusion, we have evaluated surface of emitters 

through measuring the sheet resistance by removing SiNx layer of wafer. Sheet resistance 

values show that emitter under SiNx layer is not affected by 2nd diffusion. Low doping 

concentration of emitters is maintained underneath this silicon nitride layer. Now we have 

two areas on wafer surface with different doping concentrations. The process which is used 

to fabricate emitters with different concentrations are called selective emitters. Selective 

emitter have high doping concentration under metal contacts grid and low doping 

concentration under illumination area (area between the metal contacts). Selective emitter 

fabrication process helps to reduce contacts resistance as well as lower Auger and SRH 

recombination and improve the open circuit voltage [49]. 

5.9.2.1 Al-Deposition for Al-BSF 

After 2nd phosphorus diffusion (for selective emitter formation), Wafers were cut/break 

manually by pressing at corner of wafers to isolate the solar cells, which were already 

marked by laser for cutting in order to separate cells. In this way, we have isolated cells from 

wafer just pressing cells area manually on the wafer surface. A thick layer of aluminum was 

deposited on backside of cells by screen printing technique in order create back surface field 

as well as back contact. For this purpose we have used Al paste (Al-5540 a commercially 

available Al paste supplied by Ferro electronics material) which was dried at 350ºC and was 

fired at different temperature from 875 to 950 ºC and at different speed of belt of furnace 

from 60 to 90 inches/minute for 2 to 3 minutes.  

5.9.2.2 Sun-Voc Measurements and characterization (P-type wafers) 

         This measurement very similar to Voc measurement except Jsc, Suns-Voc uses a 

separate solar cell to monitor the illumination intensity of the solar cell instead of Jsc. Suns-

Voc curve allows us to characterize lifetime of minorities carriers and its analysis also 

provides detailed information on the internal components of recombination in the solar cell. 

Sun-Voc measurements provide information of IV curves without the effect of series 

resistance of diode. Fitting of Sun-Voc curve is easier than illuminated curve since there is 

no dark current or series resistance. [50-51]. Detail of measurement of Sun-Voc and 

characterization process is given in chapter 3.  

    From Sun-Voc measurement, it is also possible to extract lifetime of base of solar cells by 

fitting the curves obtained by Sun-Voc measurements. In order to find out the lifetime of 

base of cell, we have to fix the values of JOE and JOZ for given solar cell and we have to 

adjust the values the Tau of base by changing its values in order to fit the curve with 

experimental curve, which is obtained from sun-Voc measurements. Lifetime obtained by 

fitting IV curve of Sun-Voc measurements are given in table 5.7. 
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Table 5.7 Fitted lifetime of base of different cells processed at different temperatures with Sun-

Voc curve. 

Speed Rear surface 875 ºC 900 ºC 925 ºC 

60 inch/min 

Al-BSF with SiO2  40µs 

11µs 

10 µs 

20 µs 

13µs 

16 µs 

Al-BSF with Si 

(HF treatment) 

13µs 15µs 30µs 

20µs 

70 inch/min 

Al-BSF with SiO2  8µs 

10µs 

13µs 

17µs 

20µs 

13µs 

Al-BSF with Si 

(HF treatment) 

20µs 21µs 

11µs 

13µs 

      From Sun-Voc measurement, it is also possible to extract solar cells parameters by 

fitting the curves obtained by Sun-Voc measurement such as JOE and JOZ for given solar cell. 

Solar cell parameters which are obtained after fitting the sun-Voc curve and measured Sun-

Voc values for P-type wafers are given in the table 5.8: 

Table 5.8 Sun-Voc and solar cell parameters of P-type silicon wafers (High resistivity wafers) 

Cell ID Tau base 

(µs) 

Sun-Voc 

(mV) 

Gsh JOZ 

(A/cm2) 

JOE 

(A/cm2) 

Ob292560 
20µs 576 5.00E-3 1.6E-7 2.82E-12 

200µs 5.00E-3 1.6E-7 3.20E12 

Ob292560 

 

20µs 568 6.00E-3 1.59E-7 2.26E-12 

200µs  6.00E-3 1.76E-7 4.76E-12 

Ob187570 

 

20µs 547 1.60E-2 1.59E-7 6.77E-12 

200µs 1.6E-2 1.59E-7 8.50E-12 

Ob487570 
20µs 567 4.00E-3 1.59E-7 4.37E-12 

200µs 4.00E-3 1.59E-7 7.89E-12 

Ob287570sec 
20µs 568 4.00E-3 1.59E-7 1.97E-12 

200µs 4.00E-3 1.59E-7 5.64E-12 

Ob490070 
20µs 583 8.00E-3 1.40E-7 8.40E-13 

200µs 8.00E-3 1.40E-7 2.82E-12 

Ob490070 
20µs 555 6.6E-3 1.59E-7 1.97E-12 

200µs 6.6E-3 1.59E-7 5.64E-12 

Ob590070 
20µs 386 2.5E-2 1.07E-7 1.41E-12 

200µs 2.5E-2 1.06E-7 2.92 E-12 

Ob690070 
20µs 544 2.2E-2 2.64E-7 2.54E-12 

200µs 2.2E-2 2.64E-7 5.07E-12 

Ob492570 
20µs 559 1.90E-2 1.59E-7 4.23E-12 

200µs 1.90E-2 1.59E-7 7.05E-12 

Ob592570 
20µs 566 2.0E-2 1.59E-7 1.97E-12 

200µs 2.0E-2 1.59E-7 3.37E-12 

Ob192560 
20µs 595 8.5E-3 9.7E-10 1.83E-12 

200µs 8.5E-3 9.7E-10 2.63E-12 

Ob187560 
20µs 562 1.15E-2 2.64E-7 2.54E-12 

200µs 1.15E-2 2.64E-7 5.27E-12 
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Ob287560 
20µs 422 4.3E-2 1.59E-7 2.68E-13 

200µs 4.3E-2 1.59E-7 1.14E-12 

Ob587560 
20µs 569 6.7E-3 1.59E-7 2.31E-12 

200µs 6.7E-3 1.59E-7 5.07E-12 

Ob190060 
20µs 573 4.0E-3 1.59E-7 1.97E-12 

200µs 4.0E-3 1.59E-7 5.58E-12 

Ob290060 
20µs 583 6.00E-3 1.59E-7 1.30E-12 

200µs 4.0E-3 1.59E-7 1.97E-12 

 

    We have measured lifetime after laser damages removal by NaOH and high temperature 

P diffusion for selective emitter formation. Lifetime of the selective emitters is destroyed and 

emitter saturation current density is also increases which resulted low Sun-Voc values. 

Theoretically we were expecting Sun-Voc around 650mV, calculated from by using following 

equation. According to our opinion lifetime is destroyed either due to NaOH treatment or 2nd 

P diffusion for selective emitter formation. Another option was that NaOH bath has 

introduced impurities in laser scribed area and at high temperature, these impurities diffuse 

inside into base of silicon which destroyed the lifetime.  

 

𝑉𝑜𝑐 =
𝑘𝑇

𝑞
ln ⌊

𝑛𝑁𝐴

𝑛𝑖
2 ⌋ 

 
 
“n” is minority carriers concentration at junction edge, ni is intrinsic 
carrier concentration (9E9/cm3) at 25 ºC. NA is base doping of wafer and 
𝑘𝑇

𝑞
 is thermal voltage. 

 

 
= 650 mV 

             We have measured lifetime of wafers having laser scribed grooves with selective 

emitters and wafers with homogeneous emitters, we have found the lifetime is maintained 

surface which contain homogeneous emitters but lifetime is destroyed of wafer having 

selective emitters. The lifetime measurements area of wafer is shown in figure 5.41. The 

average values of Joe of selective emitters was high ranging from 1E-12 to 9E-12A/cm2 in 

this batch. In addition to this shunt conductance was also high, we have obtained value of 

Sun-Voc around 583mV. In our opinion, lifetime is destroyed either by 2nd phosphorus 

diffusion or chemical treatments step which is used to remove laser damages. There is 

another option Al deposition and diffusion was not uniform and it is not creating BSF effect 

properly. We have also observed non-uniform surface of Al under microscope. 
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Figure 5.40 Characterization of wafer having area with selective emitters and are with 

homogeneous emitters 

 

 

Figure 5.41 Lifetime measurement of wafers with selective emitters after different fabrication 

steps) 

 

5.9.3 Selective emitter’s formation on n-type wafers  
           Above mention process for selective emitter fabrication is repeated with N-type wafers 

of following characteristics (𝜌 =  0.8 Ω · 𝑐𝑚 𝑤𝑖𝑡ℎ thickness= 150 ± 5µ𝑚) with base doping 

𝑁𝑏𝑎𝑠𝑒= 2.4E15 cm−3 and size10 𝑐𝑚 × 10 𝑐𝑚 . Both n-type and p-type wafers were 
processed separately to get n+ emitters on both substrate. Systematic fabrication of 
selective emitters is given below in figure 5.42. 
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Figure 5.42 Fabrication process for selective emitter’s formation (n-type wafers) 

 

5.9.3.1 Lifetime Measurement of Homogeneous emitters (n-type wafers): 

         After homogeneous emitter’s formation, SiNx layer is deposited by PECVD technique 

by optimal point, which have got after SiNx layer optimization. Parameters of SiNx layer 

deposition is given above table. Passivation quality of these wafers were evaluated through 

lifetime measurements by PCD and QSSPC techniques before and after SiNx deposition is 

shown in figure 5.43. In this batch, we have obtained passivated emitters with maximum 

lifetimes after dry oxidation as well as SiNx deposition. SRV was lower than 5 cm/s by 

QSSPC technique and lower than 18 cm/s by PCD technique which are given in figure 5.44.  
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Figure 5.43 Lifetime measurement before and after SiNx deposition on n-type wafers by PCD 

and QSSPC technique 

 

 

Figure 5.44 SRV measurements of homogeneous emitters before and after SiNx deposition on 

n-Type wafers 

 

5.9.3.2 Sun-Voc Measurement of N-Type wafers 

              From Sun-Voc measurement, it is also possible to extract solar cells and diode 

parameters such as JOE and JOZ. These parameters which are obtained after fitting the sun-

Voc curves and measured Sun-Voc values for N-type wafers are given in the table 5.9. N-

Type Wafers have lifetime of base around (Tau base) 200µs. 
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Table 5.9 Sun-Voc and solar cell parameters of N-type silicon wafers 

Cell ID Sun-Voc  

(mV) 

Gsh 

 (ohm.cm2) 

JOZ 

(A/cm2) 

JOE 

(A/cm2) 

Ob2087560 273 1.00E-1 1.59E-6 1.3E-12 

Ob2287570 313 1.00E-1 1.96E-7 7.53E-13 

Ob2187570 511 4.8E-2 1.96E-7 5.13E-13 

Ob2090070 558 4.88E-4 1.96E-7 5.13E-13 

Ob2190070 614 2.00E-2 1.96E-7 5.13E-13 

Ob2292570 564 4.20E-2 1.96E-7 6.84E-13 

Ob2392570sec 272 1.30E-1 1.96E-7 6.84E-13 

Ob2392570 266 1.30E-1 1.96E-7 6.84E-13 

Ob2087560 458 5.2E-2 1.96E-7 6.84E-13 

Ob2187560  516 3.3E-2 1.96E-7 1.03E-12 

Ob2387560 485 4.50E-2 2.94E-8 1.20E-12 

Ob2090060 602 2.5E-2 2.94E-8 6.84E-13 

Ob2290060 626 3.00E-2 2.94E-8 5.13E-13 

Ob2292560 618 4.00E-2 6.86E-10 6.84E-13 

Ob2392560 493 7.60E-2 9.79E-10 6.84E-13 

         

     We have found the lifetime is maintained on wafer`s surface which contain homogeneous 

emitters but lifetime is destroyed of wafer having selective emitters.  The average values of 

Joe of selective emitters was high ranging from 5.0 E-13 to 1.0E-12A/cm2. Although shunt 

conductance is high, but still we have obtained a good value of Sun-Voc, the maximum was 

around 626 mV.  

 

5.10 Selective emitter’s formation (P-type wafers)  
         Above mention process for selective emitter fabrication is repeated with P-type wafers 

of following characteristics (𝜌 =  5.7 Ω. 𝑐𝑚 witthickness= 150 ± 5µ𝑚) with base doping 

𝑁𝑏𝑎𝑠𝑒= 2.7E15 cm−3 and size 10 𝑐𝑚 × 10 𝑐𝑚 with little bit modification in rear surface of 

wafer. P-type wafers were processed to get n+ emitters in similar way as mentioned early in 

this chapter. Objective of this batch was to improve the quality of selective emitters which 

were destroyed in previous batch after 2nd P diffusion. Systematic fabrication process of 

selective emitters is given below in figure 5.45. 

 

 

 

 

 



Passivation and Selective Emitters                    Improvements in P/Al High Efficiency Technology, AlSi 

 

  242 

 

Chemical etching 
and cleaning 

 

 

 

 
Soft P diffusion 

 

 

 

 
SiNx deposition 

𝜏1 

 

 

 

Laser scribed 
groove  

 

 

 

Laser damages 
removal 

 

 

 

Second P diffusion 
𝜏2 

 

 

 

    Metallization 

Figure 5.45 Fabrication process for selective emitters formation (p-type wafers) 

       

As we had observd in previous batch, lifetime was destroyed, after NaOH treatment with 2nd 

Phosphorus diffusion. In order to confirm, process was repreated with NaOH as well as KOH 

treatment in order to remove the laser induced damages. In this batch we have used tefflon 

bath for NaOH and KOH treatment of wafers for laser damages removal for extra care of 

process. We have measured lifetime of wafers before and after NaOH treatment, detail of 

process and results is given in table 5.10. In addition to this, some wafers were also 

processed without NaOH treatment or without 2nd P diffusion in order to compare the results. 

Average lifetime of cells prior to laser processing was around 140 µs. 

Table 5.10 Lifetime measurement of laser ablated wafers 

Process Lifetime Result 

Lifetime after Laser grooves, NaOH is used to 
remove damages + diffusion (875 ºC) 

90.5µs 
42.9 µs 
72 µs 

Lifetime decreased  

Lifetime after Laser grooves + Diffusion (875 ºC) 139.5 µs 
127.5 µs 

Lifetime maintained 

Lifetime after Laser groove (one line only) with 
NaOH to remove laser damages +diffusion(875ºC) 

97.5 Lifetime is affected 

Lifetime after Laser groove (one line only) + 
diffusion (875 ºC) 

117 µs Lifetime is affected 
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 Lifetime is measured by transient technique.  

           From these measurements, it is clear lifetime is affected by NaOH, as a result emitter 

saturation current density is increased and open circuit voltage is decreased. After lifetime 

measurements and metallization, we also measured Sun-Voc of above cells, result of Sun-

Voc is given in table 5.11.  

Table 5.11 Sun-Voc measurements after 2nd Phosphorus diffusion, laser damages were 
removed by NaOH treatment 

Belt speed Rear structure Sun-Voc values  

Al-deposition 925 ºC 

 (No laser) 

925 ºC (laser1) 925 ºC (laser 2) 

 

60 inches/min 

Al-BSF with SiO2 

(a) 

578 mV 613 mV 

619 mV 

614 mV 

584 mV 

(b) 605 mV 578 mV 

600 mV 

600 mV 

607 mV 

70 inches/min Al-BSF with SiO2 

(a) 

591 mV 622mV 

598 mV 

608 mV 

613 mV 

(b) 

 

575 mV 598 mV 

579 mV 

613 mV 

600 mV 

 Laser 1 has more number of laser scribed grooves than laser 2. 

      As we had observd in previous batch, lifetime was destroyed, after NaOH treatment with 

2nd Phosphorus diffusion. In this batch we have treated cells with KOH in order to remove 

the laser induced damages. We have measured lifetime of wafers before and after KOH 

treatment, detail of process and results is given in table 5.12. In addition to this some wafers 

were also processed without KOH treatment or without 2nd P diffusion in order to compare 

the results. Average lifetime of cells prior to laser processing was around 140 µs. In this 

batch we have used tefflon bath for KOH treatment of wafers for laser damages removal for 

extra care of process.  

Table 5.12 Lifetime measurement of laser ablated wafers 

Process Lifetime Result 

Lifetime after laser grooves with KOH to 
remove damages + diffusion (875 ºC) 

93.5µs 
83.9 µs 
77 µs 

Lifetime is affected 
 

Lifetime after laser grooves with KOH to 
remove damages (No diffusion) 

109 µs Lifetime decreased 

Lifetime after laser + Diffusion (875 ºC) 139.5 µs 
127.5 µs 

Lifetime maintained 

Lifetime after laser (one line only) with KOH 
to remove damages + diffusion (875 ºC) 

133 µs 
125.1 µs 

Lifetime is maintained 

Lifetime after laser (one line only) + 
diffusion (875 ºC) 

118 µs Lifetime little bit 
decreased 

 Lifetime is measured by transient technique. 

    Although lifetime is also affected by KOH as we observed by using NaOH but loss of 

lifetime is not as high as we observed by using NaOH. In addition to this, high temperature 

diffusion is also affecting on lifetime but this loss is in few microseconds due deposition of 

solid inactive phosphorus. Sun-Voc measurement results of above cells after metallization 

are given in table 5.13.  
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Table 5.13 Sun-Voc measurements after 2nd Phosphorus diffusion, laser damages were 
removed by KOH treatment 

Belt speed  Sun-Voc values  

Al-deposition 925 ºC (No laser) 925 ºC (laser 1) 925 ºC (laser 2) 

80 
inches/min 

Al-BSF with 
SiO2 

 

614 mV 599 mV 
601 mV 

620 mV 
609 mV 

610 mV 613 mV  

 
70 

inches/min 

Al-BSF with 
SiO2 

 

614 mV 624 mV 612 mV 

623 mV 
623 mV 

620 mV 
585 mV 

610 mV 

 

      In our opinion, it is better to use KOH instead of NaOH to remove the laser induced 

damages in solar cells. For high efficiency process, we have to avoid NaOH based 

processes. According to simulations and theoretical calculation, it is important to maintain 

emitter saturation current density as low as possible for high efficiency process. Emitter 

saturation current densities and shunt conductance of solar cell are given in table 5.14 and 

table 5.15. Aluminum was deposited by screen printing technique which was dried at 350ºC 

and was fired at 925 ºC and at different speed of belt of furnace from 60 to 80 inches/minute. 
 

Table 5.14 Solar cell parameters of P-type silicon wafers extracted by Sun-Voc measurements 
after metallization 

Cell ID Sun-Voc 

 (mV) 

Gsh 

(ohm.cm2) 

JOZ 

 (A/cm2) 

JOE 

(A/cm2) 

Ob1NaOH L170 622 mV 1.5E-3 4.58E-8 7.52E-13 

Ob1NaOH L270 6.8mV 5.0E-3 7.58E-8 1.02E-12 

Ob2NaOH L170 598 mV 2.0E-3 1.38E-8 1.6E-12 

Ob2NaOH L270 613 mV 7.1E-4 5.38E-8 1.1E-12 

Ob4 L170 598 mV 2.0E-4 1.38E-7 1.07E-12 

Ob4 L270 613 mV 3.0E-4 7.6E-8 1.07E-12 

Ob5 L170 579 mV 5.0E-4 1.52E-7 4.07E-12 

Ob5 L270 600 mV 6.0E-4 1.3E-7 1.9E-12 

Ob12 a70 592 mV 5.0E-4 1.52E-7 6.2E-12 

Ob12 Line b70 576 mV 5.0E-4 1.53E-7 6.4E-12 

Ob1NaOH L160 613 mV 6.5E-4 7.58E-8 9.62E-13 

Ob1NaOH L260 6 14 mV 2.0E-3 9.08E-8 8.52E-13 

Ob2NaOH L160 578 mV 9.5E-3 1.58E-7 1.92E-12 

Ob2NaOH L260 600 mV 1.5E-3 1.58E-7 1.42E-12 

Ob11 NaOH Line a60 578 mV 1.5E-3 1.58E-7 3.42E-12 

Ob11 NaOH Line b60 605 mV 1.5E-3 7.58E-7 1.72E-12 

Ob4 L160 600mV 4.5E-4 1.58E-7 1.72E-12 

Ob4 L260 607 mV 1.0E-3 4.58E-7 1.52E-12 

Ob5 L160 619 mV 1.3E-3 7.58E-8 6.42E-13 

Ob5 L260 607 mV 1.8E-4 2.28E-7 2.02E-12 

  L1: laser 1, L2 laser 2. (Laser 1 has more number of laser scribed grooves than laser 2). 

      After laser scribed grooves, prior to 2nd P diffusion, wafers were treated with KOH to 

remove the laser damages. Aluminum was deposited by screen printing technique which 

was dried at 350ºC and was fired at 925 ºC and at different speed of belt of furnace from 60 

to 80 inches/minute for 2.45 minutes. Emitter saturation current densities and shunt 

conductance of solar cells are given in table 5.15. 
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Table 5.15 Solar cell parameters of P-type silicon wafers extracted by Sun-Voc measurements 
after metallization 

Cell ID Sun-Voc  
(mV) 

Gsh 
(ohm.cm2) 

JOZ  

(A/cm2) 
JOE 

(A/cm2) 

Ob6KOH L1 70 623.4 mV 5.8E-4 9.28E-8 6.42E-13 

Ob7KOH L1 70 620 mV 9.08E-4 1.12E-7 7.2E-13 

Ob 8KOH L1 70 581 mV 1.8E-3 3.08E-7 1.9E-12 

Ob6KOH L2 70 613 mV 9.08E-4 9.08E-8 8.6E-13 

Ob7KOH L2 70 609 mV 2.08E-3 7.68E-8 1.02E-12 

Ob 8KOH L2 70 585 mV 2.08E-3 1.28E-7 3.6E-12 

Ob13 KOH Line a 70 615 mV 5.08E-4 1.28E-8 9.6E-13 

Ob13KOH Lin b70 622 mV 9.18E-4 8.08E-8 6.7 E-13 

Ob14 KOH line a 70 624 mV 2.08E-4 7.68E-8 7.5E-13 

Ob14 KOH line b 70 616 mV 3.08E-4 7.08E-8 7.5E-13 

Ob6KOH L1 80 599 mV 4.08E-3 2.28E-7 1.03E-12 

Ob6KOH L2 80 613mV 1.08E-3 7.68E-8 9.65E-13 

Ob7KOH L1 80 593 mV 1.58E-3 7.68E-8 3.15E-12 

Ob7KOH L2 80 621 mV 1.5E-3 4.68E-8 7.5E-13 

Ob 8KOH L1 80 601 mV 1.5E-3 9.18E-8 1.45E-12 

Ob 8KOH L2 80 608mV 3.5E-4 9.88E-8 1.01E-12 

Ob13 KOH Line a 80 614 mV 1.08E-3 6.28E-8 1.03 E-12 

Ob13KOH line b 80 575 mV 4.18E-3 1.08E-7 6.07 E-12 

Ob14 KOH line a 80 602 mV 4.08E-3 7.68E-7 1.45E-12 

Ob14 KOH line b 80 610 mV 3.08E-3 7.68E-8 1.05E-12 

  L1: laser 1, L2 laser 2. (Laser 1 has more number of laser scribed grooves than laser 2). 

       After metallization, cells were evaluated by measuring Sun-Voc, in order to extract diode 

and electrical parameters of solar cells (Joe, Joz and Gsh) as well as open circuit voltage. 

From these measured we have found that after Al-deposition, emitter saturation current 

density (Joe) increased and we have Joe values ranging  6.7E-13 to 3.1E-12A/cm2 and 

shunt conductance which were ranging from 2E-4 to 3.5E-3 ohm.cm2 for p-type wafers. We 

have measured maximum Sun-Voc around 624 mV for p-type high resistivity wafers. It was 

theoretically expected 645mV from Joe 6.4 E-13 A/cm2. Although emitter quality of selective 

emitters is affected by chemical treatment, which we have observed after lifetime 

measurements of selective emitters, we have found reduction in lifetime, what we had 

measured after SiNx layer deposition but lifetime is maintained under homogenous softly 

doped area. Destruction of lifetime is reduced when we have used teflon bath for chemical 

treatment. NaOH or KOH is used to remove laser damages prior to second P diffusion. By 

using KOH, reduction in lifetime is minor than NaOH. 
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Figure 5.46 Effect of selective emitters on Joe before and after selective emitter formation 

 

                Emitter’s saturation current density (Joe) which we have obtained after aluminum 

deposition is highly increased, it limits the open circuit voltage. This Joe value is due to Al-

BSF (rear emitters). We have to optimize metallization process in order to measure real Joe 

of P/Al solar cells. 

5.11 Aluminum optimization and Al-BSF 
          The purpose of Al-optimization is to optimize the temperature and speed of belt 

furnace to develop Al-BSF for fabrication of industrial thin films solar cells.  

     After 2nd phosphorus diffusion (for selective emitter formation), a layer aluminum was 

deposited on few wafers by EBM (by evaporation) in order to provide a uniform area on 

backside of the wafer by Al-deposition. After this process, we have 2 kind of wafers, some 

wafers have Al-layer on backside and some wafers do not have Al on backside prior to 

deposition of Al paste by screen printing. Wafers were cut manually by pressing at corner of 

wafers, which was already marked by laser for cutting in order to separate cells. In this way, 

we have isolated cells from wafer just pressing cells area manually on the wafer surface. It is 

not a recommend technique to isolate cells from processed wafers. A thick layer of 

aluminum was deposited on backside of cells by screen printing technique in order create 

back surface field as well as back contact. For this purpose we have used Al paste (Al-5540 

a commercially available Al paste supplied by Ferro electronics material) which was dried at 

350ºC and was fired at different temperature from 875 to 950 ºC and at different speed of 

belt of furnace from 60 to 90 inches/minute.  

   Screen printed alumiunum deposition on backside to create a Al-BSF is common 

technique used for back surface passivation as well as to create back contacts. Formation of 

Al-BSF by screen printing technique is two steps process, first deposition of Al-paste on 

back surface by screen printing, second a short time drying and annealing above the Al-Si 

eutectic temperature. Drying of A-paste is usually carried out at 300ºC to 350ºC and firing is 

performed at rapid thermal annealling temperature from 875ºC to 950ºC for short period of 

time (2.45 minutes). At high temperature Si is dissolve into Al-Si alloy melt. At cooling, silicon 

is rejected from melt and regrow on surface as an Al-doped or p+ BSF layer. Detail of this 
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step is also explained in chapter 3. In thin film solar cell when thickness of wafers decreases, 

back surface field (BSF) becomes more important in order to decrease the back surface 

recombination velocity and to increase the collection efficiency [52-58]. 

   In order to optimize Al deposition for industrial solar cell fabrications, we have taken three 

different kind of wafers. All the wafers were processed till second P diffusion, as shown in 

figures (scheme for fabrication of selective emitters for P-type wafers and N-type wafers). In 

first process, oxide layer of rear n+ emitters was removed by HF treatment, and it is carried 

out manually as shown in figure 5.47.  

 
 

Figure 5.47 Selective manual process used to remove rear oxide (by protecting the front 

surface). 

     In second process, both silicon oxide as well as rear emitters were removed by selecting 

etching (HF treatment on rear side and NaOH etching) process prior to Al-deposition. SiNx 

layer on front side protects the emitters from NaOH etching. And in third process, Al layer 

was deposited on rear side of wafer containing silicon oxides layer and n+ emitter 

underneath Al-layer, this is deposited by EBM (evaporation). Aluminum paste which was 

deposited on backside of all cells, were dried at 350ºC at 72 inches/minutes for 1.5 minutes 

but firing was carried at different temperature ranging from 875ºC to 925ºC for 2.15 to 3 

minutes. [52-58]. For Al-optimization we have used both P-type (high resistivity) and N-type 

(low resistivity). Structure of wafers which is shown in figure 5.48, represents wafers are 

ready for Al-deposition. 

1 
 

2 3 
structure for 1st process structure for 2nd process structure for 3rd process 

Figure 5.48 Different rear structures of solar cells used for Al-optimization process. 

       Characterization of Al-optimization was carried out by measuring Sun-Voc, Matrix has 

been made in order to see the the effect of temperature, speed of belt furnace and quality of 

back surface field on open circuit voltage and cell performance. Thickness of BSF is 
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measured by microscopic studies by focussing at top of surface as well as base of surface. 

From Sun-Voc we can extract all solar cell parameters Joe, Joz Gsh and series resistance 

even lifetime of bulk, which are used to characterize the performance of solar cell. 

      Suns-Voc curve allows us to characterize lifetime of minority’s carriers and its analysis 

also provides detailed information on the internal components of recombination in the solar 

cell. Sun-Voc measurements provide information of IV curves without the effect of series 

resistance of diode. Fitting of Sun-Voc curve is easier than illuminated curve since there is 

no dark current or series resistance. [50-51]. Detail of measurement of Sun-Voc and 

characterization process is given in chapter 3. Solar cells parameters which are extracted 

from Sun-Voc curves are given above. Sun-Voc values which are obtained after 

metallization are given in table 5.15 

  Table 5.16 Matrix for Al optimization (Al-BSF) (P-type wafers) 

Belt speed Rear structure of   

S. emtters 

Sun-Voc  (mV) 

875 ºC 900 ºC 925 ºC 

 

60 

inches/min. 

Al-BSF with SiO2 

(HF free) 

422 

569 

573 

583 

568 

584 

Al-BSF with Si 

(HF treatment) 

562 567 595 

576 

 

70 

inches/min. 

Al-BSF with SiO2 

(HF free) 

 

568 

568 

544 

559 

566 

Al-BSF with Si 

(HF treatment) 

547 

567 

583 

555 

565 

80 
inches/min. 

Al-BSF with SiO2 

 
 601  614  

60 
inches/min 

Al-BSF with Si  580  
574 

584  

Al-BSF with Si 
(double layer of Al) 

  575  

Al-BSF with SiO2 

(Double layer of Al) 
 590   

Al-BSF with Si  564  568  

Al-BSF with Si 
(double layer of Al) 

 558  558 

80 
inches/min. 

Al-BSF with SiO2 

 
 614 623 

601  

Al-BSF with SiO2 

 
614  624  

 In this both case, SiO2 and Si have rear n+ emitters prior to Al-deposition. 

       After second P diffusion, a layer aluminum was deposited on few wafers by EBM (by 

evaporation) in order to provide a uniform area on backside of the wafer by Al-deposition. we 

have 2 kind of wafers, some wafers have Al-layer on backside and some wafers do not have 

Al on backside prior to deposition of Al paste by screen printing. In case of SiO2, rear surface 

has oxide layer with n+ emitters on rear surface, prior to Al-deposition. In case of Si, surface 

has base doping (rear n+ emitter was removed). In case of double layer, first layer is 

deposited by EBM and second layer is deposited by screen printing technique.  
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    From these results, it is concluded that maximum Sun-Voc can be obtained by depositing 

Al-layer on silicon oxide surface (Al- BSF with SiO2) for high resistivity p-type wafers. 

However there is not a big difference in sun-voc values obtained from Al-BSF having oxide 

free surface or surface with base doping. Variation in emitter saturation current density is not 

very high for n-type wafers. Although we have low sun-Voc values due high shunt 

conductance, theoretically we have calculated around 650 mV from emitter saturation 

current density 0.67 E-12 A/cm2, which we have obtained after Al-optimization. 

𝑉𝑜𝑐 =
𝑘𝑇

𝑞
ln ⌊

𝑛𝑁𝐴

𝑛𝑖
2 ⌋ 

“n” is minority carriers concentration at junction edge, ni is intrinsic carrier 

concentration (9E9/cm3) at 25 ºC. NA is base doping of wafer and 
𝑘𝑇

𝑞
 is 

thermal voltage. 

= 650 mV 

𝐽𝑆𝐶 = 𝐽0 exp ⌊
𝑞𝑉𝑂𝐶

𝑚𝑘𝑇
⌋ 

JSC is short circuit current. 

= 40mA 

          Optimal temperature for Al-deposition firing is 925 ºC at 60inches/min belt furnace 

speed for good firing and p+ BSF formation. In addition to this rear structure with SiO2 

surface (structure of figure 5.48(1)) of selective emitters have given the maximum voltage 

and good emitters saturation current density values than selective emitters with rear P 

emitter free surface. Emitter’s saturation current density (Joe) which we have obtained after 

aluminum deposition is highly increased, it limits the open circuit voltage. This Joe value is 

due to Al-BSF (rear emitters). We have to optimize metallization process in order to measure 

real Joe of P/Al solar cells. 

 

5.12 Conclusion:       
           In this work, we have developed a new recipe for passivation of emitters. A large of 

number of experiments were performed in order to find the optimal points for passivation by 

changing flow of nitrogen and silane under different condition of time and temperature. SiNx 

deposition was carried out by PECVD technique on CPX etched n-type low resistivity (0.5-

2Ω.cm) wafers in order to find the optimal point for passivation.   

    Optimization experiments which we have performed to deposit SiNx layer by changing 

nitrogen to silane (N2/SiH4) ratio were ranging from 16 to 99 for stoichiometric layer at 

temperature 300-400 ºC under variable time 3 to 24 minutes. At this moment, variation in 

thickness of SiNx layer was not important but we tried to have more or less 80-90nm by 

changing the time of plasma deposition to get Blue color of SiNx layer. The bulk lifetime of n-

type wafers were determined by using thickness variation methods as described by Eades, 

which was about 200 µs. The best values of lifetime measurements which we have found on 

145 µm thick n-type wafer was around 22 µs by PCD technique which corresponding to 

310cm/s effective surface recombination velocity (SRV). The gaseous flows which gave the 

best results are from 29(N2=261, SiH4=9) to 31.6(N2=285, SiH4=9) ratio of N2/SiH4 at 400 ºC. 

This optimal point of new recipe was applied for emitter’s passivation through SiNx 

deposition on both n-type and p-type silicon wafers. This recipe does not give good results of 

passivation, if emitter’s surface is free from oxide layer (wafers were cleaned with HF prior to 
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SiNx deposition), however the best results were obtained on stack structure SiO2/SiNx and 

SiNx deposition time was 3.15minutes on emitter surface with silicon oxide layer. 

   The maximum lifetime which we measured on stack structure SiO2/SiNx for passivated 

emitter was 334 µs by PCD technique and 780 µs by QSSPC technique of high resistivity (3 

- 5.4Ω.cm) p-type wafers which corresponds to an effective SRV10 cm/s for QSSPC 

technique and 24cm/s by PCD technique for p-type wafers. In case of N-type wafers, the 

maximum lifetime on stack structure SiO2/SiNx for passivated emitter was 1263µs by PCD 

technique and 2209 µs by QSSPC technique on low resistivity (0.8-3Ω.cm) wafers which 

corresponds to an effective SRV 3.8 cm/s for QSSPC technique and 15cm/s by PCD 

technique. Average lifetime of stack structure SiO2/SiNx on n-type low resistivity wafers were 

around 530-702 µs by PCD technique and 850-1250 µs by QSSPC technique, when SiNx 

was deposited only on front surface. Emitter’s saturation current density (Joe) further 

decrease due to passivation effect of SiNx, which were around 5E-14 to 2.3E-14 for p-types 

wafers. 

   In case of softly(lowly) doped emitters (sheet resistance 90-150 Ω/𝑠𝑞), it is difficult to make 

contacts between front metal and softly doped emitters, as a result contact resistivity 

increases which affects negatively on efficiency of solar cell. Today in industrial fabrication, 

there is a compromise between doping concentration of emitters and performance 

(moderate sheet resistance 50-80 Ω/𝑠𝑞) which has sufficiently low contact resistance in 

order to get good efficiency [29]. This compromise can be overcome by fabrication of 

selective emitter. Selective emitters have high doping concentration under metal contacts 

grid and low doping concentration under illumination area. Selective emitter fabrication helps 

to reduce contacts resistance as well as lower Auger and SRH recombination and improve 

the open circuit voltage. After passivation of homogeneous emitters, for selective emitter’s 

formation we have used laser as a tool to scribe on wafers in specified manner to draw 

superficial grooves till 2-5 µm in depth and 25-30 µm in width, on cell area of 4.2 × 3.2 𝑐𝑚2. 

Damages of laser were removed by alkaline selective etching, by protecting backside as well 

as emitters under SiNx layer. Second P diffusion was carried out at 875 ºC for 30 minutes 

under same gaseous flow as for standard process. After this diffusion, we have two areas on 

front surface with different doping concentrations, the process which is used to fabricate 

emitters with different concentrations are called selective emitters formation. 

     After Isolation of cells from wafer, a thick layer of aluminum was deposited on backside of 

cells by screen printing technique in order create back surface field (BSF) as well as back 

contact. During this step, optimization of Al deposition for industrial solar cell fabrication was 

carried out on three different of kind of rear surface structures(rear emitters free surface 

(surface with base doping), emitters with oxidize layer and oxide layer free rear emitter) 

having similar front surfaces. Aluminum paste which was deposited on backside of all cells, 

were dried at 350ºC at 70 inches/minutes for 2.5 minutes but firing was carried at different 

temperature ranging from 875ºC to 925ºC for 2.15 to 3 minutes. Optimal temperature for Al-

deposition is 925 ºC at 60inches/min belt furnace speed for good firing and p+ BSF effect 

formation with rear emitter with silicon oxide (SiO2) has low emitters saturation current 

density was observed after Al deposition and firing. Although Joe (emitter saturation current 

density) it was high values what we had after homogenous emitter’s formation. The best 

values which we had obtained on n-type wafers around 6.8E-13 A/cm2 and 6.4 E-13 A/cm2 

for p-type wafers. 

         After back contacts formation, we have measured Sun-Voc of cells to get electrical 

parameters of solar cells, we have found that emitter saturation current density (Joe) of cells 

increased which were in range from 6.45E-13 to 3.1E-12A/cm2 and shunt conductance was 
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in range from 2E-4 to 3.5E-3 ohm.cm2. This Joe is due to rear emitters (Al-BSF), we have to 

optimize some parameters for appropriate metallization such as metallization paste in order 

to measure the real low Joe of the cells. Quality of selective emitters is affected by chemical 

treatment, this phenomena was observed after lifetime measurements of selective emitters, 

we have found reduction in lifetime, what we had measured after SiNx layer deposition but 

lifetime is maintained under homogenous softly doped area. Destruction of lifetime is 

reduced when we have used teflon bath for chemical treatment. NaOH or KOH is used to 

remove laser damages prior to 2nd P diffusion. By using KOH, reduction in lifetime is minor 

than NaOH. 

      We have measured maximum Sun-Voc around 624 mV for p-type high resistivity wafers 

and 626mV for low resistivity n-type wafers. Final behavior of P/Al solar cell is due to Al-

BSF, it can be further improved and theoretically expected Sun-Voc is around 650 mV. 

Process which is used to fabricate selective emitter is feasible to apply for industrial 

fabrication of P/Al silicon solar cells with selective emitters with expected efficiency around 

20%. 
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6  Conclusion and future 

plan 
 

6.1 Conclusion: 
           The objective of this research work was to increase competitiveness of photovoltaics 

by improving the technology for high efficiency process and to decrease cost.  

       High efficiency P/Al technology was developed in the mid of 1980s by theoretical and 

experimental studies of A. Cuevas and M. Balbuena at IES-UPM. They have concluded that 

it is possible to obtain high efficiency with softly doped deep phosphorus emitters and 

aluminum back surface field, P/Al (P emitters- Al BSF). They have obtained efficiency above 

19% by using high quality FZ monocrystalline silicon wafers. In fact when P/Al technology 

was described at that time, efficiency achievement was remarkable and among the best 

silicon solar efficiency reported in the world. The main objective of this work was to improve 

high efficiency P/Al technology by using low grade silicon thin wafers for solar cells for 

industrial application.  

         Fabrication process is started from chemical etching and texturing of P-type 

monocrystalline (Cz) wafers with resistivity 0.5-2 Ω.cm and thickness 160µm. Phosphorus 

pre-deposition was carried out at 825 0C by using POCl3 as a source of phosphorus and 

nitrogen as a carrier gas in tube furnace. 1µm thick layer of Al is deposited on backside of 

wafers by electron beam machine (EBM), diffused in quartz furnace simultaneously with 

phosphorus for 3 hours at 1050ºC in nitrogen ambient. Diffusion profile of P has been made 

to get doping concentration which is around 1 × 𝐸19 𝑐𝑚−3 with junction depth 1.05µm. 

Doping profile of Al is made, which represents the doping concentration of Al in Si is around 

1 × 𝐸19 𝑐𝑚−3 with junction depth around 3.5 µm on rear side of wafers. Simultaneous drive-

in of P and Al in P/Al technology resulted a 𝑛+𝑝𝑝+ structure. Silicon nitride layer is deposited 

by PECVD on front side of wafers in order to achieve passivation, this layer also acts as an 

antireflection layer. Fronts contacts are defined by evaporation of metals (Ti/Pd/Ag) by EBM 

by using photolithographic technique and for back contacts, layers of Al/Ag are also 

deposited by using EMB100/150nm thick respectively on backside of wafer. Final structure 

of P/Al technology (𝑛+𝑝𝑝+) was annealed at low temperature in a forming gas atmosphere in 

order to produce a good alloy between different metals which reduces series resistance and 

recover the damages produced by EBM. By applying P/Al technology, we have fabricated 2 

different batches of 𝑛+𝑝 𝑝+ (P/Al) solar cells, their characterization were carried out by Sun-

Voc and lifetime measurements during fabrication steps and IV characteristics were 

measured under dark and illumination at the end of fabrication process.  

    The best results which we have obtained in batch 1 has efficiency around 14.75% with 

open circuit voltage around 603mV, short circuit current 37mA/cm2. Although shunt 

conductance is high but still we have a good efficiency. In this batch emitters are poorly 

passivated, we have observed high emitter saturation current density which limit the open 

circuit voltage and efficiency of solar cell. While in second batch, the maximum efficiency 

which we have obtained was around 16.5% with open circuit voltage 600mV and Sun-Voc 
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around 605mV with short circuit current 39mA/cm2. Fill factor is low due to series resistance 

which is around 70. IV curves data of all batches are further processed by using Multiv fitting 

program in order to extract all information of diodes and electrical parameters of solar cell 

(Joe, Joz Gsh and Rs). Sun-Voc measurements also provided information of diode 

parameters of solar cell (Joe, Joz and Gsh) without the effect of series resistance. From 

PC1D simulations, it is clear that it is possible to get efficiency around 19% by P/Al 

technology. Simulations results are given in chapter 3 (PC1D simulations). 

      In fabrication process of P/Al silicon solar cells we have obtained emitter saturation 

current density for worse emitters are in range of 1E-11A/cm2 and good emitters is around 

5E-13 A/cm2. The quality of emitters play important role in the performance of silicon solar 

cells. Passivation quality of emitters depends on diffusion temperature with flow of gases 

and doping time. At high temperature, concentration of phosphorus (P) exceed the solubility 

in Si (1021/cm3) which form a dead layer which is electrically inactive and has effect on 

surface P concentration and junction depth. Moreover high surface P concentration reduced 

the passivation effect which lowers the open circuit voltage (Voc) and overall solar cell 

efficiency. It is observed that at high temperature, phosphorus is precipitated in the form of 

dead layer due over solid solubility limit. Due to over solubility limit, P appears as in the form 

of dead layer, an electrically inactive layer of P. This electrically inactive P also introduces 

defects in the crystalline lattice of silicon, as a result Shockley Read Hall (SRH) 

recombination appears due to defects in crystalline structure. High concentration of soluble 

P in Si increases the Auger recombination.  These two types of recombination increase 

saturation current density (Joe), as a result cell Voc and Jsc decrease due to high 

recombination rate.  

         There are some technological steps, involve in fabrication process which are source of 

impurities are almost inevitable. Those are identified as transitions metals which are 

common source of contaminating impurities. These contaminating impurities have negative 

impact on the lifetime of minority’s carries which supposed to degrade the performance or 

efficiency of solar cells. There are two strategies which are pursued in complementary form 

to alleviate effect of contaminations. On one hand high cleanliness of process including 

wafer cleaning after etching and texturing process by RCA1&2 cleaning and second cleaning 

by integrating gettering process by P or Al during diffusion process. These two processes 

are used to reduce the concentration of contaminating impurities of active area of the device.  

        There are various techniques which are used to characterize the impurities, some of 

them are used to measure the concentration of impurities and some of them are used to 

measure its effects. In particular lifetime measurement techniques by photoconductivity 

decay which in term of surface passivation is used to measure impact of impurities on 

surface and in the bulk are reliable measurement techniques. We have measured lifetime of 

P/Al solar cell structure after each thermal step. Due to high temperature and impurities, 

lifetime was destroyed. After diffusion and P/Al drive-in process, we tried to measure lifetime 

but it was difficult to measure due to low values. After SixNy deposited by PECVD, which is 

used to passivate the surface, we had measured lifetime of solar cells around 20µs by PCD 

(transient photo-conductance decay) and 40 µs By QSSPC technique (quasi steady state 

photo-conductance decay). In this P/Al fabrication process, we did not observe improvement 

in of lifetime after Al-gettering step during drive-in. Although some researchers have 

observed improvement in lifetime after gettering by P/Al but they have used FZ wafers in 

fabrication process. In some cases improvement in lifetime was observed, when they used 
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phosphorus pre-gettering or pre-oxidation step prior to fabrication on Cz or multicrystalline 

material. According to theoretical knowledge, lifetime of the silicon wafers should be 

improved due to gettering step by aluminum. The gettering effect is due to solubility of 

metallic impurities, which is higher in liquid aluminum silicon (Al-Si) due to high temperature 

as compare to solid silicon. This may be because most of the impurities present in the 

substrate are trapped in crystal defects (dislocations and grain boundaries) or to occupy 

substitutional positions within the network, which makes difficult its removal by aluminum.  

       Low quality emitters produce the recombination centers due poor passivation which 

decrease the lifetime of the solar cell, as a result effective surface recombination velocity 

increased. In P/Al silicon solar cell fabrication process we have calculated effective surface 

recombination velocity around 500cm/s. PC1D simulation showed that efficiency of silicon 

solar cells is higher at low surface recombination rate. Higher surface recombination velocity 

decrease the efficiency. Efficiency of P/Al structure will be around 19%, if we will have 

passivated emitters as shown by PC1D simulations.  

     Due to low solar cell efficiency than expected, poor quality of emitter’s passivation, we 

have planned to investigate P diffusion deeply in order to get softly doped and deep emitters 

along with passivation by deposition of plasma layer (SiNx) in detail in order to get fully 

passivated emitters.  

   The quality of the emitter plays an important role for solar cell efficiency due to formation of 

P-N junction, which is the core of the crystalline silicon (c-Si) solar cell. If the P surface 

concentration is high and exceeds the intrinsic charge-carrier concentration, have certain 

special features on electrical properties and conductivity. The quality of emitters depends on 

diffusion temperature with flow of gases and doping time. At high temperature, concentration 

of phosphorus (P) exceed the solubility in Si (1021/cm3) which form a dead layer, which is 

electrically inactive and has effect on surface P concentration and junction depth. Due to 

over solubility limit, P appears as in the form of dead layer, an electrically inactive layer of P. 

This electrically inactive P also introduces defects in the crystalline lattice of silicon, as a 

result Shockley Read Hall (SRH) recombination appears due to defects in crystalline 

structure. High concentration of soluble P in Si increases the Auger recombination, which 

limits the lifetime and lowers the open circuit voltage (Voc) with overall solar cell efficiency. 

Due to high P doping concentration, bandgap narrowing effect arises, which cause the 

absorption of photons in emitters region near the front surface. In addition to this, electrically 

inactive P also introduces defects in the crystalline lattice of silicon, Shockley Read Hall 

(SRH) recombination appears due to defects in crystalline structure and also take part in 

efficiency loss due to high recombination (low lifetime). The amount of inactive phosphorus 

in term of surface concentration and depth junction can be improved by converting 

electrically inactive phosphorus into electrically active phosphorus by introducing a wet 

oxidation with drive in step after diffusion. When the extent of dead layer (electrically 

inactive) decrease emitter recombination probabilities also decrease which improves open 

circuit voltage (Voc), short circuit current density (Jsc) and efficiency of solar cell. In this 

work, during P diffusion, we have performed several experiments in order to study the effect 

of phosphorus diffusion on quality of emitters at different temperature (800, 820,840 and 

875 0C) with different conditions of wet oxidation and drive-in to get shallow and deep n+ 

emitters. Profile of P diffusion for different temperature is shown in figure 6.1. Concentration 

profile of phosphorus is determined by alkaline etching at 600C by using low conc. of NaOH 

(2%) to find the junction depth and doping concentration is determined by PCID simulation 

by using sheet resistance data.  
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Figure 6.1 Phosphorus Diffusion profiles at different temperature. 

 

       Sheet resistance data shows a non-uniformity of the P distribution at low temperature. It 

is observed that increase of P pre-deposition temperature, increase the surface 

concentration (NS) and makes the P distribution more uniform. But at high temperature, 

phosphorus precipitated in the form of dead layer due to over solubility limit. Due to this layer 

recombination centers appear, as a result SRH recombination increase. These 

recombination centers increase emitter’s saturation current density, as a result Voc and Jsc 

decrease due to high recombination rate. At low temperature P diffusion, about 90-95% P is 

active but at high temperature around 60% P is electrically active. The percentage of active 

P is calculated By Tsai Model. Our results show that with increase of temperature, active P 

concentration decrease and vice versa. However we have introduced a wet oxidation step 

with drive in. it converts electrically inactive P into active P and decrease the recombination 

and improve surface quality for passivation. We have found a very thin surface region in 

which the surface concentration (N) may reach nearly 1020 atom/cc. However, this region is 

no more than 50-100 nm deep. Moreover PN junction depth can be control by drive in time 

but it also depends on pre-deposition condition (temperature, dopant and oxygen ratio). Low 

level of oxygen increases the junction depth in P pre-deposition. To get high efficiency and 

improve Voc, it is necessary to minimize the electrically inactive P in emitters. Our approach 

is removal of oxides grown during P pre-deposition by HF treatment, which remove the dead 

layer. Next step is wet oxidation with drive-in which forces the precipitated P to diffuse into 

silicon.  

      By using PC1D simulation, we have simulated doping concentration of phosphorus 

diffusion data to predict efficiency of silicon solar cell. Results shows that moderate or softy 

(lowly) doped emitters give high efficiency. Due to this reason, we have planned to 

investigate low temperature diffusion for softly or moderate doped and deep emitters for 

silicon solar cell fabrication process to gain high efficiency. The results which we have 

obtained at 800 ºC is not uniform as compare to 820 ºC, we preferred to proceed P diffusion 

at 820 ºC as a standard process. In addition to this, doping concentration of P at 820 ºC is 
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95% electrically active as compare to high temperature diffusion. Due to this reason, there is 

less probability to have recombination centers due to electrically inactive phosphorus.  

     One of our goal of this work was to make a single step diffusion process in a furnace. We 

have conducted some experiments in order to achieve single step diffusion process for 

industrial solar cell fabrication. Prior to this experiment, we have investigated the effect of dry 

oxidation and HF free process to compare with wet oxidation. Our single step diffusions 

process was started from pre-deposition step at 820 ºC followed by 20 minutes of dry 

oxidation with 70 minutes of drive-in at 950 ºC. It has been observed that charges trapped in 

the oxide are very few, but the junction is deeper. A deeper junction gives the chance of 

having less recombination centers in emitters. Reliability of emitter is evaluated by the 

influence of passivation. For each emitter surface conditions, surface recombination 

velocities have been simulated by PC1D. Results corresponding to a conventional 0.2 µm 

and current 0.7 µm shows that deep emitters junction depth give low values of emitter 

saturation current density (Joe) as compare to conventional junction depth. The influence of 

a good surface passivation for softly doped and deep emitters with moderate sheet 

resistances, is ranging from 58 to 130 fA/cm2. Emitters obtained by a single thermal step are 

in range of 7-8 x1019 cm-3 with sheet resistance ~60 Ω/□ and junction depth 0.71 µm and 

saturation current of emitter is 130 fA/cm2. In addition to passivation, gettering effect in this 

single step diffusion process (Proposed process) is much higher than conventional process.  

      We have applied our single step diffusion standard process for fabrication of emitters on 

both types of substrates (N-type and P-type wafers). In both cases wafers were etched by 

CPX (acidic etching) and cleaned by RCA1&2 prior to P diffusion and drive-in. After 

processing, we have measured lifetime by using PCD and QSSPC techniques. In case of P-

type material, we have measured lifetime around 201 µs by PCD technique and 282 µs by 

QSSPC technique of high resistivity (5.4Ω.cm) wafers. Process is repeated many times in 

order to check the reproducibility, average lifetime of this single step diffusion process on 

high resistivity p-type wafers were in range of 130 to150 µs by PCD technique and 200-300 

µs by QSSPC technique. In case of N-type wafers, we have measured maximum values 

around 509 µs by PCD technique and 2029 µs by QSSPC technique on low resistivity (0.8-

3Ω.cm) wafers. Average lifetime of this single step diffusion process on N-type low resistivity 

wafers were in range of 250-350 µs by PCD technique and 500-800 µs by QSSPC technique 

on planar structures. Emitter’s saturation current density of were around 9E-14 to 7E-14 for 

p-types wafers concluded by teffsim adjustments. In addition to passivation, gettering effect 

in this single step diffusion process is much higher than conventional process. Getterging 

effect is evaluated by liftime measuremts. In case of metalligical grade silicon wafers, by our 

proposed process (single step diffusion), improvement in lifetime is 3 times higher than 

conventional process. In case of P-type material, we have measured lifetime around 200 µs 

at high resistivity (5.4Ω.cm) wafers and on N-type low resistivity (0.8 Ω.cm) wafers around 

505 µs by PCD technique. Improvement in lifetime is much higher than conventional 

gettering processes. 

     Further passivation quality of emitters were improved by deposition of silicon nitride layer 

(SiNx). SiNx is an excellent material due to its dual properties of passivation as well as ARC 

(anti-reflection coating) for high efficiency solar cells. In this work, we have developed a new 

recipe for passivation of emitters. A large number of experiments were performed in order to 

find the optimal points of passivation by changing flow of nitrogen and silane under different 

condition of time and temperature. SiNx deposition was carried out by PECVD technique on 

CPX etched n-type low resistivity (0.5-2Ω.cm) wafers. Optimization experiments which we 

have performed to deposit SiNx layer by changing nitrogen to silane (N2/SiH4) ratio ranging 
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from 16 to 99 for stoichiometric layer at temperature 300-400 ºC. At this moment, variation in 

thickness of SiNx layer was not important but we tried to have more or less 80-90nm by 

changing the time of plasma deposition to get blue color of SiNx layer. The bulk lifetime of n-

type wafers were determined by using thickness variation methods as described by Eades, 

was around 200 µs. The best values of lifetime measurements which we have found on 145 

µm thick n-type wafer was around 22 µs which corresponding to 310cm/s effective surface 

recombination velocity (SRV). The gaseous flow which gave the best results is from 

29(N2=261, SiH4=9) to 31.6(N2=285, SiH4=9) ratio of N2/SiH4 at 400 ºC. This optimal point of 

new recipe was applied for emitter’s passivation through SiNx deposition on both n-type and 

p-type silicon wafers. This recipe does not give good results of passivation, if emitters 

surface is free from oxide layer (surface were treatment with HF prior to SiNx deposition), 

however the best results were obtained on stack structure SiO2/SiNx. 

   The maximum lifetime which we measured on stack structure SiO2/SiNx for passivated 

emitter was 334 µs by PCD technique and 780 µs by QSSPC technique of high resistivity 

(5.4Ω.cm) p-type wafers which corresponds to an effective SRV10 cm/s for QSSPC 

technique and 24cm/s by PCD technique for p-type wafers. In case of N-type wafers, the 

maximum lifetime on stack structure SiO2/SiNx for passivated emitter was 1263µs by PCD 

technique and 2209 µs by QSSPC technique on low resistivity (0.8-3Ω.cm) wafers which 

corresponds to an effective SRV 3.8 cm/s for QSSPC technique and 15cm/s by PCD. 

Average lifetime of stack structure SiO2/SiNx on n-type low resistivity wafers were around 

530-702 µs by PCD technique and 850-1250 µs by QSSPC technique and SiNx was 

deposited only on front surface. Emitter’s saturation current density (Joe) further decreased 

due to passivation effect of SiNx, which were around 5E-14 to 3.0E-14 for p-types wafers. 

    In case of softly(lowly) doped emitters (sheet resistance 90-150 Ω/𝑠𝑞), it is difficult to 

make  contacts between front metal and softly doped emitters, as a result contact resistivity 

increased which affect negatively on efficiency of solar cell. Today in industrial fabrication, 

there is a compromise between doping concentration of emitters and performance 

(moderate sheet resistance 50-80 Ω/𝑠𝑞) which has sufficiently low contact resistance in 

order to get good efficiency. This compromise can be overcome by fabrication of selective 

emitters. Selective emitter have high doping concentration under metal contacts grid and low 

doping concentration under illumination area. Selective emitter fabrication helps to reduce 

contacts resistance as well as lower Auger and SRH recombination and improve the open 

circuit voltage. For selective emitter’s formation, we have used laser as a tool to scribe on 

wafers in specified manner to draw superficial grooves till 2-5 µm in depth and 25-30 µm in 

width, on cell area of 4.2 × 3.2 𝑐𝑚2. Damages of laser were removed by alkaline selective 

etching, by protecting backside as well as emitters under SiNx layer. Second P diffusion was 

carried out at 875 ºC for 30 minutes under same gaseous flow as for standard process. We 

have two areas on front surface with different doping concentrations, the process which is 

used to fabricate emitters with different concentrations are called selective emitters 

formation. After Isolation of cells from wafer, a thick layer of aluminum was deposited on 

backside of cells by screen printing technique in order create back surface field (BSF) as 

well as back contact. During this step, optimization of Al for industrial solar cell fabrication 

was carried out on three different of kind of rear surface structures (rear emitters free surface 

(base doped)), emitters with oxidize layer and oxide layer free rear emitter) having similar 

front surface. Aluminum paste which was deposited on backside of all cells, were dried at 

350ºC at 72 inches/minutes for 2.5 minutes but firing was carried at different temperature 

ranging from 875ºC to 925ºC for 2.15 to 3 minutes. Optimal temperature for Al-deposition is 

925 ºC at 60inches/min belt furnace speed for good firing and p+ BSF effect formation In this 

process, Al- layer deposited at rear emitter with silicon oxide (SiO2) have the highest open 
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circuit voltage and lower emitter saturation current density in Al optimization process as 

compare to other rear structure.  

       After back contacts formation, we have measured Sun-Voc of cells to get electrical 

parameters of solar cells, we have found that emitter saturation current density (Joe) of cells 

increased which were in range from 6.45E-13 to 3.1E-12A/cm2 and shunt conductance was 

in range from 2E-4 to 3.5E-3 ohm.cm2. This Joe is due to rear emitters (Al-BSF), we have to 

optimize some parameters for appropriate metallization such as metallization paste in order 

to measure the real low Joe values of the cells. Quality of selective emitters is affected by 

chemical treatment, this phenomena was observed after lifetime measurements of selective 

emitters, we have found reduction in lifetime, what we had measured after SiNx layer 

deposition but lifetime is maintained under homogenous softly doped area. Destruction of 

lifetime is reduced when we have used teflon bath for chemical treatment. NaOH or KOH is 

used to remove laser damages prior to 2nd P diffusion. By using KOH, reduction in lifetime is 

minor than NaOH. 

      We have measured maximum Sun-Voc around 624 mV for p-type high resistivity wafers 

and 626mV for low resistivity n-type wafers. Final behavior of P/Al solar cell is due to Al-

BSF, it can be further improved and theoretically expected is around 650 mV. Process which 

is used to fabricate selective emitter is feasible to apply for industrial fabrication of P/Al 

silicon solar cells with selective emitters with expected high efficiency. 

 

6.2 Future Plan: 
           Up till now we have fabricated selective emitters via second P diffusion. In future we 

will focus on the passivation to get passivated selective emitters, prior to complete 

fabrication process of P/Al solar cells. We will further investigate passivation of selective 

emitters, in order to get high efficiency for industrial solar cells fabrication. There are two 

options to have passivated selective emitters. There is one option, we will try to maintain 

lifetime which we have obtained after homogeneous emitter formation, or we will try to 

passivate selective emitters after second phosphorus diffusion. When we will have 

passivated selective emitters, we will complete metallization process by screen printing. We 

will apply this P/Al technology for fabrication of industrial solar cells with selective emitters. 

Plan for fabrication is shown in flow sheet below: 

 
        

         The process which is mentioned above for selective emitter’s formation, we will 

continue this process to complete fabrication of P/Al solar cell structure with selective 

emitters. For metallization we will use screen printing technique to create front and back 

metal contacts. Proposed structure of P/Al silicon solar cell with selective emitter is shown in 

figure 6.2.  

Homongeneous 
emitter with SiNx 

layer on front

Passivated 
selective emitters

Metallization     

(Front and back 
contacts)
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Figure 6.2 Proposed structure of P/Al solar cell with selective emitters 

 

      Selective emitters have high doping concentration under metal contacts grid and low 

doping concentration under illumination area (area between the metal contacts). Selective 

emitter fabrication process helps to reduce contacts resistance as well as lower Auger and 

SRH recombination and improve the open circuit voltage. 

      During selective emitter’s formation, we have concluded that lifetime is affected seriously 

either due to chemical etching with high temperature second P diffusion for selective 

emitter’s formation. Emitter saturation current density (Joe) is highly increased during 

fabrication process to create selectivity in emitter’s area. In my opinion, there is one option to 

maintain passivation is by deposition of second layer of SiNx or to carry out a dry oxidation 

for 30 minutes at high temperature. As we are expecting to get passivated selective emitters 

after second phosphorus diffusion (process is shown in figure 5.35 in selective emitter 

formation). After passivated selective emitter’s achievement, we will continue to finish 

fabrication process by creating front and back contacts by using screen printing an industrial 

technique used to create contacts. 

       Emitter’s saturation current density (Joe) which we have obtained after aluminum 

deposition is highly increased, it limits the open circuit voltage. This Joe value is due to Al-

BSF (rear emitters). We have to optimize metallization process in order to measure real Joe 

of P/Al solar cells. 

       As it is mentioned early we have to maintain high doping concentration underneath the 

front metal contacts grids for selective emitters, there is another way to maintain high doping 

concentration underneath front contacts grids is by spraying of H3PO4/P2O5 poly-phosphoric 

acid in laser scribed groove areas with drive-in process, if the technique of selective emitter 

formation via second P diffusion will not give desirable results. Prior to front metallization, a 

layer of Al (Al-BSF) will be deposited in order to measure Sun-Voc to extract electrical 

parameters of solar cells to know performance of solar cell.  
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Appendix A: 

Etching characteristics of sodium hydroxide (NaOH) 

for silicon, silicon dioxide and silicon nitride with 

Arrhenius plots 
 

         Etching is micro-fabrication process which is used to remove layers from surface of a 

wafer by physically or chemically. The term etching is used to describe technique by which 

material can be uniformly removed from the surface of wafer as in case of polishing wafers 

or locally removed as in case of delineation of pattern for microcircuit. Every wafer under 

goes many etching steps before completion. In case of many steps etching, some parts of 

wafer surface are protected from etchant by “masking” materials which resists etching. In 

some cases, masking material is a photoresist, which has been pattern by using 

photolithography. Silicon nitride is also act as mask up to some extent in solar cell fabrication 

by using photolithographic technique [1]. Silicon wafer etching process is used in the 

fabrication of microelectronics devices or solar cells. The etching process occurs many times 

during wafer processing, so it is important to maintain accuracy in fabrication. The depth and 

shape of wafer surface can be monitored by etching time and choice of etching material.  

  There are two types of etching process. 

 Dry etching  

 Wet etching (chemical etching) 

 

Dry etching:  

        In dry etching, plasma or etchant gases remove the substrate material, the removal of 

substrate take place either by utilizing high energy beam particle or by chemical reaction. In 

physical dry etching high energy particle or beam (electron, ions or photons) knock out the 

atoms from substrate surface. In this case no chemical reaction take place and only 

unmasked material is removed.  

    In dry chemical etching, material or surface to be etched is exposed directly to 

bombardment of ions (plasma of reactive gases such as fluorocarbons, oxygen, chlorine, 

and boron trichloride with addition of nitrogen or argon or helium) which dislodge the portion 

of material from exposed surface. In this process, plasma generates volatile etch products at 

room temperature from chemical reactions between elements of material with reactive 

species of plasma. Sometime plasma modifies the physical propertied of target surface. 

Common type of dry etching is reactive ion etching. In this thesis, we have used only wet 

chemical etching process.  

Wet etching: 

    Wet etching process for reducing the thickness of silicon wafers have been gaining 

popularity over traditional methods of thinning wafers such as physical grinding or plasma 

etching. Wet chemical etching process for thinning of wafers is quick, instrument free, cost 

effective process and widely used in industrial fabrication of solar cell. The wet chemical 

etching process for any material usually consist of three steps: transport of reactant to 
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surface of wafer, reaction at the surface of wafer and movement of reaction products into the 

volume of etchant solution. An etching process which is limited by rate of surface reaction 

usually tend to enhance surface roughness and promote faceting. Since surface reactivity is 

function of localized defects and crystallographic orientation. On the hand etching can be 

limited by rate of diffusion of etchant through a stagnant layer at the surface. This changes 

polished wafer into rough surface with protuberances and facets will tend to become smooth 

in this process.  

     In wet chemical etching process, etch rate can be improved by rapid stirring in order to 

remove reaction product and gas bubbles or it can be increased by increasing the 

temperature of etching solution. Typically etching rate is doubled with every increase of 100C 

of temperature. So temperature dependent etching characteristics can be used to take 

advantage in situations where it is necessary to keep wafer surface free from contamination.  

     In case of single crystal silicon material, their etching process can be either isotropic or 

anisotropic in character. Isotropic etching is uniform process and removes the material in all 

direction at same rate both in vertical and horizontal direction. While in anisotropic etching 

remove the material in selective direction. Anisotropic etching uses chemical that remove 

crystalline materials at different rate depending on density and orientation. Figure A.1, shows 

the isotropic and anisotropic etching process, both have different selectivity properties on 

different materials which leads to different wet etching processes.  

 

 

 

 

Figure A.1 Isotropic and anisotropic etching 

 

       Etching chemistry relies on oxidation reaction, followed by the dissolution of oxides. This 

reaction represents the main process of chemical etching by which silicon material is 

oxidized and susceptible to dissolution. Typically wet etchants have an oxidizer to facilitate 

the chemical reaction, a solvent to dissolve the reaction products. Wet chemical etching is 

typically selective process in nature, which has advantages in processing and is simple to 

carry out than dry etching. The etchant can be mixed with other etching solvent or diluted 

with water to change the rate of the reaction, and hence the etch rate, but in most cases, wet 

etch processes are isotropic, removing material horizontally and vertically. Certain mixes of 

etchants can provide a degree of orientation of the etch direction based on the crystal 

orientation of the silicon that they react with. 

Isotropic etching  

Isotropic etching equally etching in all direction 

Anisotropic etching higher rate in vertical than horizontal direction 

 

Anisotropic etching  

Mask  

Silicon  
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There are two type of wet chemical etching: 

 Acidic etching 

 Alkaline etching 

                       In case of acidic etching a mixture of nitric acid, hydrofluoric acid and acetic 

acid is used. A water solution of above three acids is typically used as an isotropic etchant. 

Mixture of above acids produce nitrogen peroxide (NO2) and protons (holes) which react with 

silicon and produce silicon dioxide (SiO2) which is dissolved by hydrofluoric acid. Following 

series of chemical reaction take place which is given below: [1] 

𝐻2𝑂    ⇄     𝑂𝐻− + 𝐻+ 
 

𝐻𝑁𝑂3 + 𝐻2𝑂    →→→    𝑁𝑂3
− + 𝐻3𝑂

+   
  

𝑆𝑖 + 2𝐻+ →→→→ 𝑆𝑖2+ + 𝐻2 
 

2𝑆𝑖2+ + 4𝑂𝐻− →→  2𝑆𝑖(𝑂𝐻)2   →→  2𝑆𝑖𝑂2 + 2𝐻2 
 

 𝑆𝑖𝑂2 + 6𝐻𝐹 →→→→ 𝐻2𝑆𝑖𝐹6 + 2𝐻2𝑂   
 
Overall etching reaction 

 

𝐻𝑁𝑂3 + 𝑆𝑖 + 6𝐻𝐹 →→ 𝐻2𝑆𝑖𝐹6 + 𝐻2𝑂 + 𝐻𝑁𝑂2 +  𝐻2  
 

 

 

 

 

(A.1) 

   Etching rate of silicon depends on the concentration ratio of etchants and dilution of 

etchants, details of concentration ratios with dilution is given in the literature. [4-7].  

Etching of silicon (Anisotropic etching) 

       Although etch characteristics of silicon with wet etchants are well documents, but the 

best results for various micromachining structure are obtained by trial and error methods. [2-

3, 8-9].  Silicon is an element which belongs to metalloid family of periodic table. It is 

denoted by symbol Si which has atomic 14 and atomic weight 28.085. It is tetravalent 

element with electronic configuration 1s2, 2s2, 2p6, 3s2, 3p2. Electronic structure is shown in 

figure A.2.  

 

                      Figure A.2 Electronic structure of silicon 

      Silicon ingot which is obtained by Czochralski (CZ) crystal growth process can by pulled 

in a defined orientation (100). There is one big economic advantage of this process is that 

during solar cell process, we can use this crystallographic plane for homogeneous texturing 

with cost effective wet chemical etching process. During anisotropic etching, the surface 
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structure with random pyramids is built that enhance the absorption of incoming light 

effectively into solar cell. As a result, overall efficiency of silicon solar cell increases. 

Different crystallographic planes of silicon are shown in figures. A.3 

 

Figure A.3 Crystallographic planes of silicon 

    During Ingot cutting to get wafers, silicon wafers at the surface contain saw-damaged 

layer which is important to remove at the beginning of the process. Thickness of damage 

depends on techniques used for cutting of the ingot, usually 20-30 µm thickness from both 

sides of wafer is sufficient to get damaged free wafer. This damage is removed by chemical 

etching. There are many chemicals which are used for silicon etching, among them are tetra 

methyl ammonium hydroxide (TMAH), ethylene diamine in pyrocatechol solution, hydrazine 

(N2H4), and hydroxides of alkali metals (LiOH, NaOH, KOH, CsOH) solution. [2-3]. In 

chemical etching, alkaline etching is considered to be the best etching for saw-damaged 

wafers.  

    The etching rate of silicon depends on crystal planes and was determined as a function of 

temperature, crystal orientation and etchant concentration. A correlation was found between 

energy of activation and etching rate, it was observed that slowly etching crystal surface 

(plane) exhibiting higher energy of activation. It also observed that with increasing 

concentration of etchant solution, etching rate was also decreased till 40% of Alkali solution. 

But etching rate was decreased when concentration of alkali solution crossed the 44%.  

Anisotropic etching behavior of silicon by alkali solutions was described by an 

electrochemical model by Seidel et al. [2-3]. In oxidation step 4𝑂𝐻− ions react with silicon 

atoms at surface, which injects 4 electrons into conduction band, and stay there near crystal 

surface due to presence of space charge layer. This reaction is accompanied by the 

breaking of the back bonds by thermal excitation of respective surface state electrons into 

the conduction band. This step of reaction is rate limiting step. In next step, injected 

electrons react with water to form new hydroxides ions and hydrogen. According to Seidel et 

al, monosilicic acid Si(OH)4 is the first product of chemical reaction which is formed in all 

anisotropic silicon etchants. The chemical reaction and mechanism is shown in equation A.2.  

𝑆𝑖 + 4𝑂𝐻− →→ 𝑆𝑖(𝑂𝐻)4 + 4𝑒𝑐𝑜𝑛𝑑.
−  

 
2𝐻2𝑂 + 4𝑒𝑐𝑜𝑛𝑑.

− →→ 4𝑂𝐻− + 2𝐻2 

(A.2) 

 

The overall reaction of anisotropic silicon etching in given below in equation A.3 



Etching characteristics of NaOH                     Improvements in P/Al High Efficiency Technology, AlSi 

 

  273 

 

Table A.1 Etching rates at different concentration of potassium hydroxide concentration in 

(µm/min). [10]  

Crystallographic 
orientation 

 

Etching Rates at different Concentration of KOH in                    
(µm/min) 

30% 40% 50% 

(100) 0.797 0.599 0.539 

(110) 1.455 1.294 0.870 

(210) 1.561 1.23 0.959 

(111) 0.005 0.009 0.009 

  

         Anisotropic wet etching is an important technology for fabrication of microstructure onto 

single crystals silicon wafers. Many studies related to etching rate have been done to control 

to etched shape and to gain the desire thickness of wafers. Seidel et al, [2-3] investigated 

etching mechanism of crystalline silicon wafers and studied concentration and temperature 

dependence of etching rate at different oriented planes in alkali solutions. In this work, we 

have investigated influence of concentration and temperature of etchant and sodium 

hydroxide is used as an etchant.  

 

Sodium hydroxide (NaOH) solution preparation 

      NaOH solution was prepared by dissolving 1.08, 2.04, 3.00 Kg of sodium hydroxide (for 

9%, 17% and 25% NaOH solution approximately) in 12 liters of de-ionized water by 

continuously stirring with a glass rod. Etching experiments were carried at different 

temperatures (450C, 610C and 90 0C) for each concentration. The solution was heated to get 

the desire temperature and allowed to stand for 10 minutes in order to get homogeneous 

temperature inside etching bath. The temperature was precisely controlled by automatic 

system with ± 2 0C. All experiments were performed under fuming hood.  

Experimental Procedure: 

     In our experimental work, we have used polished single crystal silicon wafers with (100) 

orientation. We have taken p-type wafers with resistivity 1-1.5 ohm.cm and 102x102 mm in 

size and 200µm in thickness. In case of etching profile we have sodium hydroxide (Merck 

Germany) as an etchant. For this purpose we have prepared solution of sodium hydroxide 

with different concentrations (9%, 17% and 25%) and silicon etching experiments was 

carried at three different temperatures (450C, 610C and 90 0C). Before dipping the wafers in 

etching solution, thickness and weight of silicon wafers were noted. It was also made sure 

that wafers were clean and oxides free (native oxides was removed in HF solution followed 

by rinsing in de-ionized (DI) water). For better results and uniformity, wafers were places in 

vertically in etching bath.  

 

Appendix A1: Etching rate of silicon 
 

      Dependence of Si (100) etching rate for different NaOH concentration at different 

temperature is shown in figure A1.1. Maximum etching rate was observed in all case from 2-

𝑆𝑖 + 2𝑁𝑎𝑂𝐻 + 2𝐻2 𝑂 →→ 𝑁𝑎2𝑆𝑖𝑂2(𝑂𝐻)2 + 2𝐻2 (A.3) 
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3.5 µm/min at 90 0C at all concentration. Etch rate increased with increasing temperature. 

According to literature maximum etching rate was observed near the boiling point of solution 

(4.5µm/min was observed for Si (100) orientation at 100 0C). Operating at higher 

temperature helps to remove hydrogen bubbles rapidly, since the viscosity of the etchant 

decrease at higher temperature, which allows the bubbles to dislodge easily from surface 

and increase the etching rate. Decrease in thickness was measured by instrument and also 

estimated by decreased in weight of wafers. [10-21] 
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Figure A1.1 Si (100) etch rate in NaOH solution 

Activation Energy 

   We can determine the energy of activation and pre exponential factor (𝑅0) by using 

Arrhenius equation A1.1 

𝑅 = 𝑅0 𝐸𝑥𝑝(−
𝐸𝑎

𝑘𝑇
 ) 

Where T in temperature in Kelvin 

k is Boltzmann´s constant 

A1.1 

           Figure A1.2 shows the Arrhenius plot of etch rates of Si (100) in NaOH solution. We 

calculated energy of activation for pre exponential factor from Arrhenius plots. 
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Figure A1.2 Arrhenius plot of Si (100) etch rate in NaOH solution 

       Activation energy of Si (100) wafer is found in this range. 0.59-0.61eV whereas pre-

exponential factor is in range of 8.5 × 108 - 1 × 109 µm/min. This is almost similar which is 
already published in literature. [2-3]. Figure A1.3 & A1.4 shows the energy of activation and 
pre-exponential factor of silicon (100) calculated at different concentration of NaOH solution 
[10-15]. 
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Figure A1.3 Dependence of energy of activation on NaOH solution 
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Figure A1.4 Dependence of pre exponential factor on NaOH concentration 

   

 From above and plots, we have found that There are two main factors which effect on 

etching rate of single crystalline silicon, which are as follows: 

 Concentration 

 Temperature 

       Concentration Base dopant also affects the etching rate of silicon, it is found that etch 

rate of silicon decreases with the increase of base doping concentration. [2-3] 

 

Appendix A2: Etching rate of silicon dioxide 

                               Silicon dioxide is most important material in silicon technology than silicon 

itself. It has functions like a capacity dielectric and isolation material, in which oxides form a 

part of finished device. But sometime oxides are used intermittently in many cases during 

silicon processing as a masking material for diffusion or etching and as a cleaning method to 

reclaim perfect silicon surface. Silicon dioxide etching experiments, phosphorus doped (n-

type emitters) wafers, diffused under different temperature (800-8750C) were taken to grow 

oxides film by thermal Oxidation. Thermal oxidation was carried both in wet and dry 

environment for 10-25 minutes followed by the drive in of 1 hour at 9500C. The thickness of 

oxides which we have obtained experimentally are already is shown in graphs of figures 4.16 

and 4.17 (wet and dry oxidation in chapter 4). [22-23]. 

         Procedure for silicon dioxide etching is similar as we have already explained above for 

silicon etching. Etch rate for silicon dioxide was determined at same temperature and 

concentration. Dependence of SiO2 etching rate for different NaOH concentration at different 

temperature is shown in figure A2.1. Maximum etching rate was observed in all case 8-20 

nm/min at 90 0C for all concentration. [1-3] 
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Figure A2.1 SiO2 etch rate in NaOH solution 

Activation Energy 

   We can calculate the energy of activation and pre exponential factor (𝑅0) by using 

Arrhenius equation A1.1 for silicon dioxide. Figure A2.2 shows the Arrhenius plot of etch 

rates of SiO2 in NaOH solution. We have calculated energy of activation for pre exponential 

factor from Arrhenius plots for different concentration of NaOH. [1-3] 
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Figure A2.2 Arrhenius plot of SiO2 etch rate in NaOH solution 

 

Activation energy of SiO2 wafer is found in this range 0.40-0.80 eV, whereas pre-exponential 

factor is in range of 1 × 107 - 1 × 1012 nm/min. This is almost similar which is already 

published in literature. [2-3]. Figure A2.3 & A2.4 show the energy of activation and pre-

exponential factor of silicon dioxide calculated at different concentration of NaOH solution. 
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Figure A2.3 Dependence of energy of activation of SiO2 on NaOH solution 
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Figure A2.4 Dependence of pre exponential factor of SiO2 on NaOH concentration 

Appendix A3: Etching rate of silicon nitride 

For silicon nitride (Si3N4) etching, a layer of silicon nitride is deposited by plasma enhanced 

chemical vapor deposition (PECVD) [24]. Etching rate of silicon nitride in NaOH solution for 

all concentrations is less than 1 nm/5min (unable measure) as shown in figure A3.1. In our 

experiments, we could not measure etch rate for silicon nitride correctly by using 

ellipsometry or weight loss technique. For practical application silicon nitride can be used as 

perfect masking material [2]. 
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Figure A3.1 Etch rate of Silicon nitride in NaOH solution 

         In case of silicon nitride, we have doubt that we have observed weight loss during 

etching process is due to edges of wafers (which may not have silicon nitride layer). 

References:   

[1] S. K Ghandhi, VLSI Fabrication Principles, 2nd ed., John Wiley & Sons, 1994. 

 

[2] H Seidel, L Csepregi, A Heuberger, H Baumgartel, “Anisotropic etching of crystalline 

silicon in alkaline solution, Part I, Orientation dependence and behavior of passivation layer”, 

J Electrochem Soc 137:3612–3626, 1990. 

 

 [3] H Seidel, L Csepregi, A Heuberger, H Baumgartel, “Anisotropic etching of crystalline 

silicon in alkaline solution, Part II, Influence of dopants”, J Electrochem Soc 137, 3626–3632, 

1990. 

 

 [4] H. Robin and B. Schwartz, “Chemical etching of Silicon, I. “The system of HF, HNO3, and 

H2O”, J. Electrochem. Soc. 106, 505 1959. 

 

[5] H. Robin and B. Schwartz, “Chemical etching of Silicon, II, The system of HF, HNO3, and 

H2O”, J. Electrochem. Soc., 107, 108, 1960. 

 

[6] H. Robin and B. Schwartz, “Chemical etching of Silicon, III. A Temperature study in the 

acid System”, J. Electrochem. Soc. 106, 505, 1961. 

 

[7] H. Robin and B. Schwartz, “Chemical etching of Silicon, IV, Etching technology”, J. 

Electrochem. Soc. 123, 1903, 1976. 

 

[8] D. Lee, K Yu, U Krishnamoorthy, O Solgaard, “Vertical mirror fabrication combining KOH 

Etch and DRIE of (110) silicon”, IEEE J MEMS 18:217–227, 2009. 



Etching characteristics of NaOH                     Improvements in P/Al High Efficiency Technology, AlSi 

 

  280 

 

[9] Sato K, Shikida M, Yamashiro T, Tsunekawa M, Ito S, “Roughening of single-crystal 

silicon surface etched by KOH water solution”, Sens Actuators A 73:122–130 

 

[10] K. Sato, M. Shikida, Y.Matsushima, T.Yamashiro, K. Asaumi, Y. Iriye, M. Yamamoto, 

“Characterization of orientation-dependent etching properties of single-crystal silicon: effects 

of KOH concentration”, Sensors and Actuators A 64, 87-93, 1988. 

 

[11] O. J. Glembocki, E. D. Palik, G. R. de Guel and D. L. Kendall, “Hydration model for the 

molarity dependence of the etch rate of Si in aqueous alkali hydroxides”, J. Electrochem. 

Soc. 138, 1055–63, 1991. 

 

 [12] E. D. Palik, O. J. Glembocki, I. Heard Jr, P. S. Burno and L. Tenerz, “Etching 

roughness for (100) silicon surface in aqueous KOH”, J. Appl. Phys. 70 3291–300, 1991. 

 

 [13] L. D. Clark Jr and D. J. Edell, “KOH: H2O etching of (110) Si, (111) Si, SiO2, and Ta: an 

experimental study Proc.”, IEEE Micro-Robots and Teleoperators Workshop, (Hyannis, MA, 

USA, November) 1987. 

 

[14] H. Tanaka, S. Yamashita, Y. Abe, M. Shikida, K. Sato, “Fast etching of silicon with 

smooth surface in high temperature ranges near the boiling point of KOH solution”, Sens 

Actuators A 114, 516–520, 2004. 

 

[15] R. Bhandari, S. Segi, L. Rieth, F.Solzbacher, “A wafer scale etching technique for high 

aspect ratio implantable MEMS structure”, Sens. Actuators A, 162, 130-136, 2010.  

 

[16] P. M. M. C. Bressers, J. J. Kelly, J. G. E. Gardeniers and M. Elwenspoek, “Surface 

morphology of p-type (100) silicon etched in aqueous alkaline solution”, J. Electrochem. Soc. 

143, 1744–50, 1996. 

 

[17] T. Baum and D. J. Schiffrin, “AFM study of surface finish improvement by ultrasound in 

the anisotropic etching of Si (100) in KOH for micromachining applications”, J. Micromech. 

Microeng. 7, 338–42, 1997. 

 

[18] R. Divan, N. Moldovan and H. Camon, “Roughening and smoothing dynamics during 

KOH silicon etching”, Sensors Actuators A 74, 18–23, 1999. 

 

 [19] H. Tanaka, Y. Abe, T. Yoneyama, J. Ishikawa and O. Takenaka, “Effects of a small 

amount of impurities on etching of silicon in aqueous potassium hydroxide solutions Tech”, 

Digest of Transducers’99 (Sendai, Japan, June) pp 538–41, 1999. 

 

 [20] K. Sato, M. Shikida, T. Yamashiro, M. Tsunekawa and S Ito, “Roughening of single-

crystal silicon surface etched by KOH water solution”, Sensors Actuators A 73, 122–30, 

1999. 

 

[21] M. Shikida, K. Sato, M. Kato and D. Uchikawa, “Observation of facet growth on (110) 

plane during an anisotropic KOH etching Tech”, Digest of Transducers, 99 (Sendai, Japan, 

June) pp 1870, 1999. 



Etching characteristics of NaOH                     Improvements in P/Al High Efficiency Technology, AlSi 

 

  281 

 

[22] K. Taniguchi, K. Kurosawa and M. Kashiwagi, “Oxidation enhanced diffusion of boron 

and phosphorus in (100) silicon”, J. Electrochem. Soc., 127, 2243, 1980. 

 

[23] T. Markvart and L. Castafier, “Practical Handbook of Photovoltaics: Fundamentals and 

Applications”, Elsevier Ltd., 2003. 

 

[24] G. Aberle, “Overview on SiN Surface Passivation of Crystalline Silicon Solar Cells”, 

Jour. Of solar energy materials and solar cells, vol.65, pp239-248, 2001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Etching characteristics of NaOH                     Improvements in P/Al High Efficiency Technology, AlSi 

 

  282 

 

Appendix B 

Sun-Voc Measurement of the best wafer. 
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List of abbreviations used 

PV   Photovoltaics 

Si Silicon 

FZ Float-zone 

Cz Czochralski 

a-Si    Amorphous silicon 

L  Carrier diffusion length 

D   Carrier diffusivity 

µ Carrier mobility 

N
A 

 Acceptor concentration 

SRH  Shockley-read-hall 

𝜏 Minority carrier Lifetime 

𝜏eff Effective minority carrier lifetime 

𝜏Bulk Bulk minority carrier lifetime 

𝜏n0 Electron lifetime 

𝜏p0 Hole lifetime 

N
D  

 Donor concentration 

q  Electron charge 

V T Thermal voltage 

vth Thermal velocity 

I Current 

V Voltage 

JSC (ISC) Short-circuit current density 

VOC Open-circuit current density 

FF Fill factor 

Rs Series resistance 

R
Shunt

 Shunt resistance 

Vj Voltage across the diode as well as resistor RSH 

J Current density (Ampere/cm2) 

J0 Reverse current density (Ampere/cm2) 

JL Light generated current density (Ampere/cm2) 

rS Specific series resistance (Ω-cm2) 

rSH Specific shunt resistance (Ω-cm2) 

σ
N 

 Electron capture cross-section 

σ
P
 Hole capture cross-section 

N
T 

 Trap density 

S or SRV   Surface recombination velocity 

BSR Back surface reflector 

R
B
 Back surface reflectance 

J
0 
 Saturation current density  (A/cm2) 

J
0E

 Saturation current density on emitter side of depletion region 



Etching characteristics of NaOH                     Improvements in P/Al High Efficiency Technology, AlSi 

 

  284 

J
01

 Saturation current density of 1st diode in two diode model of a solar cell 

J
02 

 Saturation current density of 2nd diode in two diode model of a solar cell 

n1 Ideality factor of 1st diode in two diode model of a solar cell 

n2 Ideality factor of 2nd diode in two diode model of a solar cell 

n Ideality factor in single-diode model 

PECVD Plasma enhanced chemical vapor deposition 

SP   Screen Printed or Screen-Printing 

PL Photolithography 

SEM Scanning electron microscopy 

SIMS Secondary ion mass spectroscopy 
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