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Introduction

The main goal of the work is to study some basic properties of free groups,
by using group theory and topology. For this, graphs play a main role, since
we will prove that the fundamental group of a connected graph is a free
group.

The matter is, as far as possible, self-contained, although the reader
must have an elementary background on topology and group theory. Since
an introduction to algebraic topology is not given until the last year and the
course is optional, a brief summary of the fundamental group is given in the
Appendix B. However, even if one uses the topological theory of coverings
some results for graphs, such as those presented in Section 4.3, could be
obtained more directly, we have tried to make the proofs using exclusively
the theory developed in the dissertation. When this has not been possible,
as in Proposition 4.3.5, a reference of the topological proof has been given.

The first three chapters are drawn mainly from [6]. With the aim of
completing the theory and facilitating the understanding, the books [9], [8]
and [2] have also been used. The last chapter, however, is based on [10].
Even so, all the examples of the last chapter, some examples of the previous
chapters, some proofs of Section 2.2, Section 4.3 and Section 4.4, and the
details of some proofs that are briefly given have been carried out by the
author.

In the beginning, it may seem that the chapters have no relation. The
reason is that Ampliación de Topoloǵıa is taught during the second term,
so I began to study the subject from [6] at the beginning of the academic
year. When I started to write the work, in order not to exceed in length, I
removed some chapters. Thus, in the first three chapters I have only written
what it is not studied in the degree.

In Chapter 1 we give the definitions and some famous examples of graphs,
simplicial complexes and cell complexes, which are three different ways of
constructing topological spaces.

Chapter 2 talks about free groups and their most basic properties. It
is also proved that the fundamental group of a connected graph is a free
group, which is one of the main results of the work.

In Chapter 3, by using free groups, we will recall group presentations. In
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the ending, in Section 3.4, some useful applications of the famous Seifert-Van
Kampen Theorem are given by means of group presentations.

The solved exercises of the first three chapters have been presented in
Appendix A. The exercises of the last chapter, however, are put as examples
with the theory, in order to make it lighter.

The second part of the work is developed in the last chapter.
Section 4.1 is dedicated to the category of graphs, with special emphasis

in pushouts and pullbacks, due to their later importance.
Section 4.2, Section 4.3 and Section 4.4 are mainly focused on defining

and giving the properties of the type of maps that will be essential when rep-
resenting subgroups of free groups. Throughout those sections, Algorithm 1
stands out because of its numerous applications later on. Theorem 4.3.8
and Theorem 4.4.6 are also of great importance, because they show a way
of representing the join and the intersection of free groups.

Section 4.5 is exclusively about Marshall Hall’s Theorem.
Finally, the last section is only introduced in order to close Algorithm 1,

and we will discuss whether a finitely generated subgroup of a free group is
of finite index.

Before starting with the dissertation, it would be interesting to mention
some of the properties of free groups which make them interesting, due to
the fact that they do not always hold when working with other groups.

Firstly, we will prove that any subgroup of a finitely generated free group
is free. When working with direct products, for example, we cannot state
that any subgroup of a direct product is a direct product, as this example
illustrates.

Secondly, after introducing group presentations, it will be trivial that a
finitely generated subgroup of a free group is finitely presented. Here is an
example of a group where such property does not hold.

Thirdly, as Howson’s Theorem states, the intersection of finitely gener-
ated subgroups of a free group is again finitely generated. Nevertheless, if
we do not work with free groups, we find counterexamples.

Finally, by using that the fundamental group of a connected graph is a
free group, we will be able to find easily a free basis of any finitely generated
subgroup of a free group. However, in well-known groups, such as the direct
product of two free groups of rank 2, there are finately generated subgroups
with unknown structure.

https://math.stackexchange.com/questions/529023/is-any-subgroup-of-a-direct-product-isomorphic-to-a-direct-product-of-subgroups
https://groupprops.subwiki.org/wiki/Wreath_product_of_group_of_integers_with_group_of_integers
https://math.stackexchange.com/questions/89881/example-of-finitely-generated-subgroups-whose-intersection-is-not-finitely-gener


Notation

In general, if we talk about a topological space, since the endowed topology
is going to be the natural one, it is not going to be mentioned. There-
fore, instead of talking about a topological space (X, τX), we will only talk
about the topological space X. Furthermore, since we are going to work
always with topological spaces, sometimes the notion topological space will
be replaced simply by space.

In relation to this, we will assume that the unit interval [0, 1] is endowed
with the usual topology.

In addition, Γ, ∆ and Θ will always denote a graph. Moreover, V and E
are going to be used for the vertex set and the edge set of a graph. However,
if such graph has to be emphasized, VΓ and EΓ may also be used, if we are
working with the graph Γ.

vii





Chapter 1

Constructing spaces

The main purpose of the chapter is to give three different ways of building
topological spaces, by using only simple building blocks.

Firstly, we will describe graphs, where the building blocks are vertices
and edges. Although we will start defining them combinatorially, we will
finish giving them a topological structure. We will also introduce Cayley
graphs, which are a way of constructing graphs by using groups. Secondly,
we will generalise this notion and we will introduce simplicial complexes,
where the building blocks are simplices. Finally, due to the fact that sim-
plicial complexes are often unwieldy, we will present cell complexes, which
are often a much more efficient way of building a topological space.

1.1 Graphs

We are going to start with the definition of a graph. Intuitively, this is
a countable collection of points, known as vertices, joined by a countable
collection of arcs, known as edges. The formal definition is as follows.

Definition 1.1.1. A graph Γ consists of two sets E and V , where V and E
are countable, and two maps : E −→ E and ι : E −→ V . Moreover, two
rules must be satisfied for all e ∈ E:

¯̄e = e and ē 6= e.

An e ∈ E is a directed edge of Γ, and ē ∈ E is the reverse of e. As told
before, the elements of V are called vertices of Γ, and ι(e) and τ(e) := ι(ē)
are the initial vertex and terminal vertex of e, respectively.

An orientation of Γ consists of a choice of exactly one edge in each pair
{e, ē}. Alternatively, defining φ : Z2 × E −→ E,

φ(g, e) =

{
e, if g = 0̄,

ē, if g = 1̄,
g ∈ Z2, e ∈ E,

1



2 1.1. Graphs

it is routine that the group (Z2,+) acts freely on E, and an orientation is a
choice of a representative in each orbit.

In practice, a graph is often represented by a diagram, using the following
convention: a point marked on the diagram corresponds to a vertex of the
graph, and a line joining two marked points corresponds to a set of edges of
the form {e, ē}.
For example, a graph having two vertices v1 and v2 and two edges e and ē
with ι(e) = v1 and τ(e) = v2 can be represented in these two ways:

v1

{e, ē}

v2 v1

e

v2

Let Γ be a graph and let V and E be the vertex and edge set, respectively.
We form the topological space T which is the disjoint union of E× [0, 1] and
V , where V and E are provided with the discrete topology. Let ∼ be the
finest equivalence relation on T for which

(e, t) ∼ (ē, 1− t), (e, 0) ∼ ι(e) and (e, 1) ∼ τ(e),

for e ∈ E and t ∈ [0, 1].
The quotient space T/ ∼ is called the realisation of the graph Γ. From now
on, graphs will also refer to the respective topological realisation.

Example 1.1.1. Let us consider the previous graph, where the vertex set
is V = {v1, v2}, the edge set is E = {e, ē} and ι(e) = v1, τ(e) = v2. Then,
∼ is the finest equivalence relation on T = V ∪ E × [0, 1] such that

v1 ∼ (e, 0), v2 ∼ (e, 1) and (ē, t) ∼ (e, 1− t), for all t ∈ [0, 1].

Hence, T/ ∼=
{

[x] | x ∈ V ∪ E × [0, 1]
}

=
{

[(e, t)] | t ∈ [0, 1]
}

, which is
homeomorphic to the unit interval, via the homeomorphism that sends each
element [(e, t)] to t.

Let us introduce a tool that describes many properties of a group in a
topological way.

Definition 1.1.2. Let G be a group and let S be a set of generators for
G. The associated Cayley graph is a graph with vertex set G and edge set
G×S, such that the initial and terminal vertices of a general edge (g, s) are
respectively g and gs.

Remark 1.1.1. Notice that the Cayley graph of a group depends on the
choice of the generators.
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−1 0 1 2

Figure 1.1: Cayley graph of Z with respect to {1}.

−1 0 1 2

Figure 1.2: Cayley graph of Z with respect to {2, 3}.

If S is a generating set of G, each element g can be written as sε11 · · · sεnn ,
where si is an element of S and εi ∈ {1,−1}, for all i ∈ {1, . . . , n}, n ∈
N ∪ {0}. This specifies a path, starting at the identity vertex, and running
in an olderly way along the edges labelled (sε11 · · · s

εi−1

i−1 , si) in the forwards
direction if εi = 1, backwards if εi = −1, for i ∈ {1, . . . , n}. Conversely, if we
pick any path from the identity vertex to the vertex g, then this specifies a
way of expressing g as a product of the chosen generators and their inverses.
Therefore, we conclude that the equality sε11 · · · sεnn = e holds in the group
G if and only if the corresponding path starting at the identity vertex is a
closed path.

1.2 Simplicial complexes

Firstly, we are going to define simplices, which are the standard pieces to
build simplicial complexes.

Definition 1.2.1. The standard n-simplex is the set

∆n =
{

(x0, . . . , xn) ∈ Rn+1 | xi ≥ 0, ∀i ∈ {0, . . . , n} and
n∑
i=0

xi = 1
}
.

Its vertices, denoted by V (∆n), are those points (x0, . . . , xn) in ∆n where
xi = 1 for some i (and hence xj = 0 for the other j 6= i).
For each non-empty subset A of {1, . . . , n} there is a corresponding face of
∆n, which is {

(x0, . . . , xn) ∈ ∆n | xi = 0,∀i /∈ A
}
.

To finish with the definitions, the interior of ∆n is

int (∆n) =
{

(x0, . . . , xn) ∈ ∆n | xi > 0,∀i ∈ {0, . . . , n}
}
.

Note that V (∆n) determines a basis of the vector space Rn+1. Hence,
any map f : V (∆n) −→ Rm extends to a unique linear map Rn+1 −→ Rm.
The restriction of this map to ∆n is termed the affine extension of f .



4 1.2. Simplicial complexes

(a) ∆0 (b) ∆1 (c) ∆2

Figure 1.3: Standard simplicial complexes.

Definition 1.2.2. A face inclusion of a standard m-simplex into a standard
n-simplex (where m < n) is the affine extension of an injection from V (∆m)
to V (∆n).

At this stage, we are able to start constructing our new spaces.

Definition 1.2.3. An abstract simplicial complex is a pair (V,Σ) where V
is a set, whose elements are called vertices, and Σ is a finite set of non-empty
finite subsets of V , called simplices, such that

(i) for each v ∈ V , {v} is in Σ,

(ii) if σ is an element of Σ, so is any non-empty subset of σ.

(V,Σ) is said to be finite if V is a finite set.

Definition 1.2.4. The topological realisation |K| of an abstract simplicial
complex K = (V,Σ) is the space obtained by the following procedure:

(i) For each σ ∈ Σ, take a copy of the standard n-simplex, where n+1 is the
number of elements of σ. Denote this simplex by ∆σ and label its vertices
with the elements of σ.

(ii) Whenever σ is contained in τ ∈ Σ, identify ∆σ with a subset of ∆τ ,
via the face inclusion which sends the elements of σ to the corresponding
elements of τ .

Example 1.2.1. Let us take the abstract simplicial complex K = (V,Σ),
where V = {a, b, c, d, e}, and

Σ =
{
{a}, {b}, {c}, {d}, {e},
{a, b}, {a, c}, {b, c}, {b, d}, {c, d}, {c, e}, {d, e}, {a, b, c}, {c, d, e}

}
.

If we take the elements {a} and {a, b} of Σ, we first have to take a copy of a
standard 0-simplex, named ∆{a}, and a copy of a standard 1-simplex, ∆{a,b},
and secondly, we must identify ∆{a} with a subset of ∆{a,b}. Performing this
operation with all the possible cases, we obtain

a c

b d

e
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Note that |K| is the union of the interiors of the simplices. In addition,
clearly the interiors of any two simplices are disjoint. Thus, any element
x ∈ |K| is expressed as

x =
n∑
i=0

λivi,

for a unique simplex with vertices {v0, . . . , vn} and unique positive real num-
bers λ0, . . . , λn which sum to one.

The formal definition of a triangulation of a space, which we have used
plenty of times, is based on this notion.

Definition 1.2.5. A triangulation of a space X is a simplicial complex K
together with a homeomorphism |K| −→ X.

Example 1.2.2. Let us take a square with a diagonal line and identify
opposite sides of the square.

0 0

0 0

Note that this is not a triangulation of the torus, because we are identifying
two vertices of the same 1-simplex, so the corresponding face inclusion is
not well-defined; we are not working with a simplicial complex.

Example 1.2.3. A possible triangulation of the sphere is as follows. Let
K = (V,Σ) be an abstract simplicial complex such that V = {1, 2, 3, 4}, and

Σ =
{
{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3},
{3, 4}, {2, 4}, {1, 2, 3}, {1, 3, 4}, {1, 2, 4}, {2, 3, 4}

}
.

Thus, its topological realisation is homeomorphic to the sphere:

1

2

3

4

Example 1.2.4. The torus has a triangulation using nine vertices.



6 1.3. Cell complexes
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Definition 1.2.6. A subcomplex of a simplicial complex (V,Σ) is a simplicial
complex (V ′,Σ′) such that V ′ ⊆ V and Σ′ ⊆ Σ.

Definition 1.2.7. A simplicial map between abstract simplicial complexes
(V1,Σ1) and (V2,Σ2) is a map f : V1 −→ V2 such that for all σ1 ∈ Σ1,
f(σ1) ∈ Σ2.

Example 1.2.5. Let V1 = V2 = {1, 2, 3} and Σ1 = Σ2 = {∅, {1}, {2}, {3},
{1, 2}, {1, 3}, {2, 3}}. Then, any f : V1 −→ V2 is a simplicial map, whereas
the same is not true for Σ1 = Σ2 = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}}.

A simplicial map f between abstract simplicial complexes K1 and K2

induces a map |f | using the unique affine extension, with the following prop-
erties:

(i) |f | is defined in V (|K1|) according to f ,

(ii) if σ is a simplex of K1 with vertices v0, . . . , vn, then f(v0), . . . , f(vn)
span a simplex of K2,

(iii) if x =
∑n

i=0 λivi for unique positive numbers λ0, . . . , λn which sum
to one and for a unique simplex with vertices v0, . . . , vn, then |f |(x) =∑n

i=0 λif(vi).

Remark 1.2.1. |K| can be seen as a quotient space, as well as a subspace
of Rn. However, the topology in both cases is the same (see [8]).

1.3 Cell complexes

In this final section, we introduce a useful generalisation of simplicial com-
plexes, which are more efficient when building topological spaces.

Definition 1.3.1. Let X be a space, and let f : Sn−1 −→ X be a map.
Then, the space obtained by attaching an n-cell to X along f is defined to
be the quotient of the disjoint union X∪Dn, such that for each point x ∈ X,
f−1(x) and x are identified to a point. The space is denoted by X ∪f Dn.
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Definition 1.3.2. A finite cell complex is a space X descomposed as

K0 ⊂ K1 ⊂ · · · ⊂ Kn = X,

where

(i) K0 is a finite set of points,

(ii) Ki is obtained from Ki−1 by attaching a finite collection of i-cells.

Example 1.3.1. Any simplicial complex is a finite cell complex by letting
each n-simplex to be an n-cell.

Example 1.3.2. If we take a vertex and we attach the unit interval iden-
tifying the endpoints and that vertex (that is, we obtain a loop), we do
not obtain a simplicial complex. The reason is that we are identifying the
0-simplex with a subset of the 1-simplex via the face inclusion; but if we
identify it with two points, we will not obtain a well-defined map.

However, it is clearly a cell complex.

Nevertheless, we can always subdivide a loop to get a simplicial complex
by adding other two vertices.

'

Remark 1.3.1. It can be proved that the realisation of a graph is a cell
complex formed with 0 and 1-cells (see [9]). Therefore, by Example 1.3.2,
topologically it can be seen as a simplicial complex.

Example 1.3.3. The construction of the torus by identifying opposite sides
of the square may be viewed as a 2-dimensional cell structure with one 0-cell
(the vertex 0), two 1-cells (the edges a and b) and one 2-cell (the square).

0 0

0 0

a a

b

b

(a) Construction of the torus. (b) Cell structure of the torus.





Chapter 2

Free groups

In this chapter, we will talk about free groups: for any set S, we will define a
group, known as the free group on S. Their importance in this dissertation
derives from the fact that the fundamental group of a connected graph is a
free group. In order to prove it, we will present not only some properties of
free groups, but also some terminology and basic results from graph theory.
Finally, the chapter will end up with such proof and some easy examples.

2.1 Main definitions and properties

Informally speaking, we should view S as an alphabet, and the elements
in F (S) as words in this alphabet. The group operation is concatenation;
in order to compose two words in F (S), we simply write one down and
then follow it by the other. For example, if S = {a, b}, then ab and ba are
elements in F (S), and their concatenation is abba. However, groups have
inverses, so whenever a is an element of S, a−1 may also appear in a word.
But then, aa−1b and b should represent the same element in the group, so
instead of working with words, we will define an equivalence relation on the
set of words on the alphabet S.

Let S be a set, known as the alphabet. From this set, we create a new set S−1

which is a copy of S, but for x ∈ S, we denote the corresponding element of
S−1 by x−1. Moreover, S ∩ S−1 = ∅ and if x−1 ∈ S−1, then (x−1)−1 = x.
The elements of S ∪ S−1 are the letters of the alphabet.

Definition 2.1.1. A word w on the alphabet S is a finite sequence x1 · · ·xm
where m ∈ N ∪ {0} and xi ∈ S ∪ S−1 for i ∈ {1, . . . ,m}. Note that the
empty sequence, where m = 0, is allowed as a word, and we denote it by ∅.

Definition 2.1.2. The concatenation of the words x1 · · ·xm and y1 · · · yn
where xi, yj ∈ S ∪ S−1, for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, is the word
x1 · · ·xmy1 · · · yn.

9



10 2.1. Main definitions and properties

Definition 2.1.3. A word w′ is an elementary contraction of a word w,
written w ↘ w′, if w = y1xx

−1y2 and w′ = y1y2, for words y1 and y2, and
some x ∈ S ∪ S−1. We also say that w is an elementary expansion of w′,
written w′ ↗ w.

For example, if S = {a, b}, then aa−1b is an elementary expansion of b, and
b is an elementary contraction of aa−1b.

Definition 2.1.4. Two words w′ and w on the alphabet S are equivalent,
written w ∼ w′, if there are words w1, . . . , wn such that w = w1 and w′ = wn,
and for each i ∈ {1, . . . , n− 1}, wi ↗ wi+1 or wi ↘ wi+1.
This is, in fact, an equivalence relation defined on the set of words on the
alphabet S.

With the previous tools, we are now in condition to define free groups.

Definition 2.1.5. The free group on the set S, denoted by F (S), is the set
of equivalence classes of words on the alphabet S.

Theorem 2.1.1. Free groups are, in fact, groups, where the operation is
defined as follows: if w and w′ are words on S, then [w] · [w′] = [ww′]. The
identity element is [∅] and the inverse of [x1 · · ·xn] is [x−1

n · · ·x−1
1 ].

Definition 2.1.6. If a group G is isomorphic to F (S), for some set S, the
copy of S in G is known as a free generating set.

The next step is to analyse each equivalence class and to determine
particular representatives.

Definition 2.1.7. A word is reduced if it does not admit an elementary
contraction.

Lemma 2.1.2. Let w1, w2 and w3 be words on the alphabet S such that
w1 ↗ w2 ↘ w3. Then, either there is a word w′2 such that w1 ↘ w′2 ↗ w3

or w1 = w3.

Proof. Since w1 ↗ w2, it follows that w1 = ab and w2 = axx−1b, for some
x ∈ S ∪ S−1 and some words a and b on S. Similarly, w2 ↘ w3, so w3 is
obtained from w2 by deleting yy−1, for some y ∈ S ∪ S−1.
Let us consider three cases:

(i) If y 6= x and y 6= x−1, it is possible to remove yy−1 from w1 before
inserting xx−1. Hence, if we denote by w′2 the word obtained by removing
yy−1 from w1, we are in the first case: w1 ↘ w′2 ↗ w3.

(ii) If y = x, all we have done is to insert and remove a pair of letters, so
w1 = w3.

(iii) If y = x−1, then either w2 = ãx−1xx−1b = ãyy−1yb (where a = ãy) or
w2 = axx−1xb̃ = ay−1yy−1b̃ (where b = y−1b̃). In the first case, w1 = ab =
ay−1b̃ = w3 and in the second case, w1 = ab = ãyb = w3.
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Proposition 2.1.3. Any element in the free group F (S) is represented by
a unique reduced word.

Proof. Let us define the length of a word as the number of letters of such
word. Note that an elementary contraction reduces the length by two.
Hence, a shortest representative for an element in F (S) must be reduced.
Then, we only have to check that this shortest representative is unique.
Suppose that, on the contrary, there are distinct reduced words w and
w′ that are equivalent. Thus, there are words w1, . . . , wn where w = w1,
w′ = wn and for each i ∈ {1, . . . , n− 1}, wi ↗ wi+1 or wi ↘ wi+1. Consider
a sequence of this type where wi 6= wj , for any i 6= j (if wi did equal wj ,
we could miss out all the words in the sequence between them, creating a
shorter sequence of words joining w and w′).
Now, if, at some point, wi ↗ wi+1 ↘ wi+2, then by Lemma 2.1.2, there
is another word w′i+1 such that wi ↘ w′i+1 ↗ wi+2. In this way, we may
perform all elementary contractions before the elementary expansions.
Therefore, the sequence starts with w = w1 ↘ w2 or ends with wn−1 ↗
wn = w′, but this is a contradiction because w and w′ were reduced words
of the equivalence class.

One of the main characteristics of free groups is that they satisfy the
following universal property:

Theorem 2.1.4. Given any set S, any group G and any map f : S −→ G,
there is a unique homomorphism φ : F (S) −→ G such that the following
diagram commutes:

S F (S)

G

ι

f
φ

where ι : S −→ F (S) denotes the canonical inclusion sending each element
of S to the corresponding generator in F (S).

Proof. We first show the existence of φ.
Consider a word w = xε11 · · ·xεnn where xi ∈ S and εi ∈ {1,−1}, for i ∈
{1, . . . , n}. We define

φ(w) = f(x1)ε1 · · · f(xn)εn .

In order to check that φ does not depend on the selected representative, it
suffices to prove it when w′ is an elementary contraction of w; that is, when
w = w1xx

−1w2 or w = w1x
−1xw2 and w′ = w1w2 for words w1 and w2 on S

and x ∈ S. In the first case,

φ(w) = φ(w1)f(x)f(x)−1φ(w2) = φ(w1)φ(w2) = φ(w′).
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The other case is analogous. Therefore, φ is well-defined and it is clearly a
homomorphism.
Finally, we have to check that φ is the unique homomorphism for which the
diagram commutes, but this is routine because a homomorphism of groups
is determined by what it does to a set of generators.

2.2 The fundamental group of a graph

Our goal in this section is to prove that the fundamental group of a connected
graph is a free group.
In order to obtain that result, we need some terminology and basic results
from graph theory.

Definition 2.2.1. Let Γ be a graph with vertex set V , edge set E and
maps : E → E and ι : E → V . A subgraph of Γ is a graph with vertex set
V ′ ⊆ V , edge set E′ ⊆ E and the maps being the restrictions of the previous
ones. For this to be defined, e′ and ι(e′) must be in E′ and V ′, respectively,
for each e′ ∈ E′. Observe that under such conditions, τ(e′) will also be an
element of V ′, for each e′ ∈ E′.

Definition 2.2.2. A path p in Γ of length |p| = n with initial vertex u and
terminal vertex v is an n-tuple of edges of Γ, p = e1 · · · en, such that for
i ∈ {1, . . . , n− 1} we have τ(ei) = ι(ei+1), u = ι(e1) and v = τ(en).
For n = 0, given any vertex v, there is a unique path Av of length 0 whose
initial and terminal vertices coincide and are equal to v.
A path p is called a circuit if its initial and terminal vertices coincide.

If p and q are paths in Γ and the terminal vertex of p equals the initial
vertex of q, then they may be concatenated to form a path pq such that
|pq| = |p| + |q|, and whose initial vertex is that of p and whose terminal
vertex is that of q.

Definition 2.2.3. A round-trip is a path of the form eē.

If a path p contains two adjacent edges forming a round-trip, then by
deleting that round-trip we get a path p′ with the same initial and terminal
vertices as p, and |p′| = |p| − 2. In this case, we say that p′ is an elementary
reduction of p (and p an elementary expansion of p′) and we write p↘ p′.

Definition 2.2.4. A reduced path in a graph Γ is a path containing no
round-trip.

Definition 2.2.5. A graph is connected if any pair of vertices can be joined
by some path.

Definition 2.2.6. A graph is a forest if the only reduced circuits have
length 0, and if such graph is connected, it is called a tree.
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(a) It is not a tree. (b) It is a tree.

At this stage, it is pretty clear that there is a relationship between the
notions of free groups and those we have just defined from graph theory.
However, we still need to prove a few more properties.

Lemma 2.2.1. In a tree, there is a unique reduced path between any two
vertices.

Proof. By connectedness, any two vertices are connected by a path. The
shortest such path is reduced. Then, we only need to show that it is unique.
By contradiction, suppose that there exist two distinct reduced paths be-
tween distinct vertices,

p = e1 · · · en and p′ = e′1 · · · e′m.

Thus, e1 · · · ene′m · · · e′1 is a circuit, and since the graph is a forest, it must
have length 0. That is, en = e′m, en−1 = e′m−1 and so on. In this way, we
conclude that n = m and ei = e′i, for all i ∈ {1, . . . , n}.

Definition 2.2.7. A maximal tree in a connected graph Γ is a subgraph T
that is a tree, but where the addition of any edge of EΓ \ ET to T gives a
graph which is not a tree.

Lemma 2.2.2. Let Γ be a connected graph and let T be a subgraph that is
a tree. Then, the following are equivalent:

(i) VT = VΓ,

(ii) T is maximal.

Proof. (i) =⇒ (ii). Let e be an edge of EΓ \ ET . If the initial and terminal
vertices are the same, then adding e to T results in a subgraph that is not a
tree. On the other hand, if the endpoints of e are distinct, then by hypothesis
they lie in T and by Lemma 2.2.1, they are connected by a reduced path p
in T. Thus, pē is a reduced circuit, so it is not a tree.

(ii) =⇒ (i). Suppose that there is a vertex v of Γ which is not in VT . Pick
a shortest path from T to v. Note that the first edge of the path starts in
VT , but it cannot end in VT (otherwise, it would not be the shortest path),
so we can add it to T and create a larger tree.

We finish the main results of graph theory with the existence of maximal
trees.

Lemma 2.2.3. Any connected graph Γ contains a maximal tree.
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Proof. Since the vertex set of a graph is countable, we may pick a total
ordering on VΓ. Γ is connected, so we may assume that for each i ≥ 2, the
i-th vertex shares an edge with one of the earlier vertices.
Set T1 to be the first vertex and for i ≥ 2, let Ti be the subgraph such that
the vertices are the first i-th ones, and the edges are the ones of Ti−1 and
the edge joining the i-th vertex and one of the previous vertices. Then, Ti
is a tree, for all i ≥ 1.
In conclusion, T =

⋃
i≥1 Ti is also a tree, and since it contains all the vertices

of Γ, by Lemma 2.2.2, T is maximal.

Remark 2.2.1. The previous lemma guarantees the existence of maximal
trees. However, they may not be unique. For example, in the following
graph two different maximal trees are drawn in purple:

We are now in condition to prove the main theorem of this chapter.

Theorem 2.2.4. The fundamental group of a connected graph is a free
group.

Proof. Note that loops in graphs may be thought as circuits, and two circuits
are homotopic relative to {0, 1} if and only if one can be obtained from the
other one by a finite number of elementary reductions and expansions.
Let T be a maximal tree of Γ (Lemma 2.2.3) and b a vertex of Γ; in particular,
it is also a vertex of the maximal tree, by Lemma 2.2.2.
Firstly, if a loop based at b lies in T , it is homotopic relative to {0, 1} to the
trivial circuit. Therefore, we only have to take care of loops that do not lie
in T .
For any vertex v of Γ, let θ(v) be the unique reduced path (Lemma 2.2.1)
from b to v in T . Then, if p = e1 · · · en is a circuit which does not lie in T ,
p is homotopic relative to {0, 1} to a path

p′ = e′1 · · · e′n,

where e′i = θ(ι(ei))ei θ(τ(ei)), for all i ∈ {1, . . . , n}. Now, if we set

S =
{
θ(ι(e))eθ(τ(e))−1 | e ∈ EΓ \ ET

}
,

and we define f : S −→ π1(Γ, b) as follows

θ(ι(e))eθ(τ(e))−1 7−→
[
(ι(e))eθ(τ(e))−1

]
,

it is routine to prove that the homomorphism of Theorem 2.1.4 is an iso-
morphism.
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Example 2.2.1. Let Γ be the graph with a single vertex b and four edges.
Hence, a maximal tree T consists of just the vertex. Thus, π1(Γ, b) is the
free group on four generators.

b

Example 2.2.2. Let us consider the following graph.

v1

v2

v3

v4

v5

e1

e2

e3

e4
e5

e6

A maximal tree is drawn in purple. Then, if we take as basepoint the vertex
v1, the fundamental group of such graph is the free group on 2 generators,
where the generators are {

e4 e
−1
3 , e3 e5 e6 e

−1
5 e−1

3

}
.





Chapter 3

Group presentations

In this chapter, we are going to define group presentations, and free groups
will be the main tool for that.

3.1 Generators and relations

Let us start recalling some properties of normal subgroups.

Definition 3.1.1. Let B be a subset of a group G. The normal subgroup
generated by B is the intersection of all normal subgroups of G that contain
B, and we denote it by 〈〈B〉〉.

Remark 3.1.1. The intersection of a family of normal subgroups is again
a normal subgroup. Therefore, 〈〈B〉〉 is the smallest normal subgroup con-
taining B.

Proposition 3.1.1. Let G be a group and B ⊆ G. The subgroup 〈〈B〉〉
consists of all expressions of the form

n∏
i=1

gib
εi
i g
−1
i ,

where n ∈ N ∪ {0}, gi ∈ G, bi ∈ B and εi ∈ {1,−1}, for all i ∈ {1, . . . , n}.

We can now specify what it means to define a group via generators and
relations.

Definition 3.1.2. Let X be a set and let R be a collection of elements in
F (X). The group with presentation 〈X | R〉 is defined to be F (X)/〈〈R〉〉.

Example 3.1.1. The dihedral group D2n has the following presentation:

〈σ, τ | σn, τ2, τστσ〉.

That is, the alphabet of the free group is {σ, τ}, and the normal subgroup
is generated by R = {σn, τ2, τστσ}.

17
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The word τσnτ represents the identity element in D2n. To see this, note
that in F ({σ, τ})

τσnτ = (τσnτ−1)τ2,

which lies in 〈〈R〉〉 by Proposition 3.1.1.

Remark 3.1.2. Note that two words w and w′ on the alphabet X represent
the same element in 〈X | R〉 precisely when there is an element y in 〈〈R〉〉
such that w′ = wy, where the equality holds in the free group F (X).

An alternative way to decide whether w and w′ represent the same ele-
ment in 〈X | R〉 is the following.

Proposition 3.1.2. Let G = 〈X | R〉. Then, two words w and w′ on the
alphabet X represent the same element in G if and only if they differ by a
finite sequence of the following moves:

(i) perform an elementary contraction or expansion,

(ii) insert somewhere into the word one of the relations in R or its inverse.

Proof. The sufficient condition is trivial.
In order to prove the other implication, it suffices to show that if two words w
and w′ represent the same element in G, then they differ by a finite sequence
of moves (i) and (ii). By Remark 3.1.2, we know that in this case, w′ = wy
where y ∈ 〈〈R〉〉. So, by Proposition 3.1.1,

w′ = w
n∏
i=1

gir
εi
i g
−1
i ,

for n ∈ N ∪ {0}, gi ∈ F (X), ri ∈ R and εi ∈ {1,−1}, for all i ∈ {1, . . . , n}.
Thus, we can obtain wg1g

−1
1 from w by move (i), and then obtain wg1r

ε1
1 g
−1
1

from this by move (ii). Proceeding in this way, we obtain w′ using moves
(i) and (ii).

Example 3.1.2. By Example 3.1.1, the word τσnτ represents the identity
element in the dihedral group D2n. Let us use the previous proposition to
verify it.

τσnτ
(ii)−−→ τσnσ−nτ

(i)−→ τ2 (ii)−−→ τ2τ−2 (i)−→ e.

Remark 3.1.3. It is important to distinguish the product of the group and
the concatenation of the free group.
Let F (G) be the free group on the group G. Hence, if x1 and x2 are non-
trivial elements in G and x3 = x1x2 in G, x3 and x1x2 represent distinct
elements in F (G), because they are non-equivalent words on the alphabet
G.
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By Theorem 2.1.4, there is a canonical homomorphism sending each gen-
erator in F (G) to the corresponding element in G, which is clearly surjective.
Let R(G) be the kernel of this homomorphism; for example, in the previous
case, x3x

−1
2 x−1

1 lies in R(G). Then, G is isomorphic to F (G)/R(G), so G
has presentation 〈G | R(G)〉, and it is called the canonical presentation for
G.

Definition 3.1.3. A presentation 〈X | R〉 is finite if X and R are both finite
sets. Moreover, a group is finitely presented if it admits a finite presentation.

The following result allows us to check whether a map from a group
〈X | R〉 to another group is a homomorphism.

Lemma 3.1.3. Let 〈X | R〉 and G be groups. Let a map f : X −→ G in-
duce a homomorphism φ : F (X) −→ G. This descends to a homomorphism
ϕ : 〈X | R〉 −→ G if and only if φ(r) = e for all r ∈ R.

Proof. The condition φ(r) = e for each r ∈ R is necessary for ϕ to give a
well-defined homomorphism.
Conversely, by Proposition 3.1.1, any element w in 〈〈R〉〉 can be written as

n∏
i=1

wir
εi
i w
−1
i ,

where n ∈ N ∪ {0}, wi ∈ F (X), ri ∈ R and εi ∈ {1,−1}, for i ∈ {1, . . . , n}.
Since φ(r) = e for all r ∈ R, and taking into account that φ is a homomor-
phism, φ(w) = e. Hence,

ϕ : F (X)/〈〈R〉〉 −→ H

x〈〈R〉〉 7−→ φ(x)

is well-defined.

3.2 Tietze transformations

We have previously said that G has a presentation 〈X | R〉 if G is isomorphic
to F (X)/〈〈R〉〉. In this section, however, we are going to use an equivalent
definition: If G is isomorphic to F (X)/〈〈R〉〉, we can construct an epimor-
phism from F (X) to G, such that the kernel is 〈〈R〉〉. Thus, we obtain the
following definition.

Definition 3.2.1. The group G has presentation 〈X | R〉 if there exists
an epimorphism ϕ : F (X) −→ G such that kerϕ = 〈〈R〉〉. In this case we
denote it by 〈X | R〉ϕ.
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A group G can have many presentations. For instance, the trivial group
has presentation 〈x | x〉 and also 〈x, y | x, xy〉. We now look at how different
presentations of the same group compare with each other.

Let 〈X | R〉ϕ be a presentation of G. Then so is 〈X | R ∪ S〉ϕ for any set
S contained in 〈〈R〉〉. In this case, we say that 〈X | R ∪ S〉ϕ comes from
〈X | R〉ϕ by a general Tietze transformation of type I, and that 〈X | R〉ϕ
comes from 〈X | R ∪ S〉ϕ by a general Tietze transformation of type I ′. If
|S| = 1, we refer to simple Tietze transformations.

Let Y be a set such that X ∩ Y = ∅, and let uy be an element in F (X)
for each y ∈ Y . Then, let us check that 〈X ∪ Y | R ∪ {yu−1

y | y ∈ Y }〉ψ
also presents G, where ψ(x) = ϕ(x) for all x ∈ X and ψ(y) = ϕ(uy) for all
y ∈ Y .
Let N be the normal subgroup of F (X∪Y ) generated by R∪{yu−1

y | y ∈ Y }.
Since N ⊆ kerψ, ψ induces an epimorphism

π : F (X ∪ Y )/N −→ G.

But, by Lemma 3.1.3, there is also a homomorphism

θ : G −→ F (X ∪ Y )/N,

with θ(ϕ(x)) = xN , that it is in fact an epimorphism because F (X ∪ Y )/N
is generated with words on the alphabet X. Note that π ◦ θ is the identity
map. Moreover, since θ(π(yN)) = θ(ψ(y)) = θ(ϕ(uy)) = uyN = yN , θ ◦ π
is also the identity.
We say that 〈X ∪ Y | R ∪ {yu−1

y | y ∈ Y }〉ψ comes from 〈X | R〉ϕ by
a general Tietze transformation of type II, and that 〈X | R〉ϕ comes from
〈X ∪ Y | R ∪ {yu−1

y | y ∈ Y }〉ψ by a general Tietze transformation of type
II ′. If |Y | = 1, we refer to simple Tietze transformations.

Theorem 3.2.1. Any two presentations of the same group can be obtained
from each other by a sequence of general Tietze transformations. If both pre-
sentations are finite, then each can be obtained from the other by a sequence
of simple Tietze transformations.

Proof. Let 〈X | R〉ϕ and 〈Y | S〉ψ both present a group G. Assume that
X ∩ Y = ∅. For each y ∈ Y choose uy ∈ F (X) with ψ(y) = ϕ(uy), and for
each x ∈ X choose vx ∈ F (Y ) with ϕ(x) = ψ(vx).
Defining θ by θ(x) = ϕ(x) and θ(y) = ϕ(uy), we get a presentation〈

X ∪ Y | R ∪ {yu−1
y | y ∈ Y }

〉θ
of G, obtained from the presentation 〈X | R〉ϕ by a general Tietze transfor-
mation of type II.
Now, θ(y) = ϕ(uy), and this equals ψ(y) by definition. It follows that
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θ(w) = ψ(w) for any w ∈ F (Y ). In particular, θ(s) = ψ(s) = 1 and
θ(vx) = ψ(vx) which, by definition, equals ϕ(x) = θ(x).
We find from this that the presentation〈

X ∪ Y | R ∪ S ∪ {yu−1
y | y ∈ Y } ∪ {xv−1

x | x ∈ X}
〉θ

comes from the previous presentation by a general Tietze transformation of
type I.
By simmetry, this presentation also comes from 〈Y | S〉ψ by a general Tietze
transformation of type II followed by one of type I.
Finally, if X, Y , R and S are all finite, each general Tietze transformation
used can be replaced by a finite sequence of simple Tietze transformations.

Example 3.2.1. Let 〈x, y | x3, y2, (xy)2〉 be a presentation of the symmetric
group of degree 3. Through Tietze transformations this presentation can be
converted to 〈y, z | (yz)3, y2, z2〉.

〈x, y | x3, y2, (xy)2〉 II−−→ 〈x, y, z | x3, y2, (xy)2, zy−1x−1〉
−→ 〈x, y, z | x3, y2, (xy)2, zyx−1〉
−→ 〈x, y, z | x3, y2, (xy)2, xy−1z−1〉
II′−−→ 〈y, z | (zy)3, y2, z2〉.

3.3 Push-outs

In this section, we use presentations to define a construction which is im-
portant in group theory and it will allow us to introduce the Seifert-Van
Kampen Theorem.

Definition 3.3.1. Let G0, G1 and G2 be groups, and let φ1 : G0 −→ G1

and φ2 : G0 −→ G2 be homomorphisms. Let 〈X1 | R1〉 and 〈X2 | R2〉 be
the canonical presentations of G1 and G2, where X1 ∩X2 = ∅. Then, the
push-out G1 ∗G0 G2 of

G1
φ1←− G0

φ2−→ G2

is the group 〈
X1 ∪X2 | R1 ∪R2 ∪ {φ1(g) = φ2(g) | g ∈ G0}

〉
.

Remark 3.3.1. It can be proved that one may substitute other presenta-
tions for G1 and G2 in the definition and obtain the same group.

Remark 3.3.2. The inclusions

Xi −→ 〈X1 ∪X2 | R1 ∪R2 ∪ {φ1(g) = φ2(g) | g ∈ G0}〉,
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for i ∈ {1, 2}, induce canonical homomorphisms α1 : G1 −→ G1 ∗G0 G2 and
α2 : G2 −→ G1 ∗G0 G2, by Lemma 3.1.3. Moreover, since φ1(g) = φ2(g)
holds in G1 ∗G0 G2 for each g ∈ G0, the following diagram commutes.

G0 G1

G2 G1 ∗G0 G2

φ1

φ2 α1

α2

Definition 3.3.2. When G0 is the trivial group, the push-out G1 ∗G0 G2

depends only on G1 and G2. It is known as the free product G1 ∗G2.

Definition 3.3.3. When φ1 : G0 −→ G1 and φ2 : G0 −→ G2 are injective,
the push-out G1 ∗G0G2 is known as the amalgamated free product of G1 and
G2 along G0.

Example 3.3.1. The free product Z ∗ Z is isomorphic to the free group
on two generators, because by Remark 3.3.1 we can take the presentations
〈x | ∅〉 and 〈y | ∅〉 for Z.

3.4 Topological applications of the Seifert-Van Kam-
pen Theorem

First of all, let us recall two different formulations of this theorem.

Theorem 3.4.1. Let K be a space, which is a union of two path-connected
open sets K1 and K2, where K1∩K2 is also path-connected. Let b be a point
in K1 ∩ K2, and let ι1 : K1 ∩ K2 −→ K1 and ι2 : K1 ∩ K2 −→ K2 be the
inclusion maps. Then, π1(K, b) is isomorphic to the push-out of

π1(K1, b)
ι1∗←− π1(K1 ∩K2, b)

ι2∗−→ π1(K2, b).

The second alternative formulation is as follows:

Theorem 3.4.2. Let K, K1, K2, ι1 and ι2 be as in the previous theorem.
Let 〈X1 | R1〉 and 〈X2 | R2〉 be the presentations for π1(K1, b) and π1(K2, b),
with X1 ∩X2 = ∅. Then, a presentation of π1(K, b) is given by〈

X1 ∪X2 | R1 ∪R2 ∪ {ι1∗(g) = ι2∗(g) | g ∈ π1(K1 ∩K2, b)}
〉
.

The Seifert-Van Kampen Theorem can be used in order to prove that
the fundamental group of a bouquet of n-circles is the free group on n gen-
erators.

Another important application is that it allows us to compute the fun-
damental group of cell complexes.
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Theorem 3.4.3. Let K be a path-connected cell complex, and let li : S
1 −→

K1 be the attaching maps of the 2-cells, where 1 ≤ i ≤ n. Let b be a
basepoint in K0. Let [l′i] be the conjugacy class of the loop li in π1(K1, b).
Then, π1(K, b) is isomorphic to π1(K1, b)/〈〈[l′1], . . . , [l′n]〉〉.

Remark 3.4.1. Note that a map from S1 to a topological space may be
seen as a loop in such topological space.

Remark 3.4.2. The loops li are not necessarily based on b, and hence they
do not give well-defined elements in π1(K1, b). However, they do give well-
defined conjugacy classes: let wi be a path from b to li(0) = li(1), and let l′i
be wi liw

−1
i . Then, [l′i] ∈ π1(K1, b).

Remark 3.4.3. Since a cell complex that consists of 0 and 1-cells can be
seen as a graph, π1(K1, b) is free.

Proof. We are only going to give an outline of the proof. We will describe
how the fundamental group behaves when an n-cell is attached to a space,
when n ≥ 2.

Let X be a path-connected space, and let f : Sn−1 −→ X be the attaching
map of an n-cell. Decompose Y = X∪fDn into the open and path-connected
sets

K1 =
{
z ∈ Dn | |z| < 2/3

}
/ ∼ and K2 =

{
z ∈ Dn | |z| > 1/3

}
∪X/ ∼ .

Then, K1 is homeomorphic to an open n-ball, K1 ∩ K2 is homeomorphic
to Sn−1 × (1/3, 2/3) (which is homotopy equivalent to Sn−1) and K2 is
homotopy equivalent to X.
Applying the Seifert-Van Kampen Theorem, when n > 2, π1(K1 ∩ K2)
and π1(K1) are both trivial, so attaching an n-cell has no effect on the
fundamental group. When n = 2, π1(K1 ∩ K2) is isomorphic to Z, so
attaching a 2-cell has the effect of adding a relation to π1(X).

Corollary 3.4.4. Any finitely presented group can be realised as the funda-
mental group of a finite connected cell complex.

Proof. Let 〈x1, . . . , xm | r1, . . . , rn〉 be a finite presentation of a group. Let
K0 be a single point, and let K1 be a bouquet of m-circles. Then, π1(K1) is
a free group on m generators, where each generator consists of a loop that
goes round one of the circles.
Now attach 2-cells along the words rj for j ∈ {1, . . . , n}. By Theorem 3.4.3,
the resulting space has the required fundamental group.





Chapter 4

Stallings’ foldings

4.1 The category of Graphs

One of the main goals of the chapter is to establish a relation between
operations in the category of graphs, namely the pullback and the pushout,
and group theoretic operations between subgroups of free groups, namely
the intersection and the join. Let us begin recalling some basics of graph
theory which were introduced in Chapter 1.
In this chapter we are going to consider only oriented and finite graphs.

Recall that a graph Γ consists of two sets E and V (as said before, in
this chapter they are finite), and two maps : E −→ E and ι : E −→ V such
that

¯̄e = e and e 6= e.

An orientation O of Γ consists of a choice of exactly one edge in each pair
{e, e}.
Finally, we can construct the realisation of the graph, which is in fact topo-
logically equivalent to a simplicial complex.

Definition 4.1.1. A map of graphs f : Γ −→ ∆ consists of a pair of maps
which brings edges to edges, vertices to vertices and preserves the structure;
that is,

f(ι(e)) = ι(f(e)), f(τ(e)) = τ(f(e)) and f(e) = f(e),

for all e ∈ E.

Thus, oriented graphs and maps of graphs form a category denoted by
Grph.
In addition, there are two functors, named edges and vertices from Grph
to Set defined trivially.

The next step is to analyse pullbacks and pushouts.

Let us check that pullbacks in the category of graphs always exist:

25
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Let f1 : Γ1 −→ ∆ and f2 : Γ2 −→ ∆ be maps of graphs. Define the graph
Γ3 to have vertex set

VΓ3 = {(u1, u2) | u1 is a vertex of Γ1, u2 is a vertex of Γ2 and f1(u1) = f2(u2)},

edge set

EΓ3 = {(e1, e2) | e1 is an edge of Γ1, e2 an edge of Γ2 and f1(e1) = f2(e2)},

and maps

ι : EΓ3 −→ VΓ3

(e1, e2) 7−→
(
ι1(e1), ι2(e2)

)
,

: EΓ3 −→ EΓ3

(e1, e2) 7−→
(
e1

1, e2
2
)
,

where ιi and i are the maps of the graph Γi, for i ∈ {1, 2}.
Define also p1 and p2 to be the projection maps from Γ3 to Γ1 and from Γ3

to Γ2, respectively. Then it is easy to check that:

(PB1) f1 ◦ p1 = f2 ◦ p2,

(PB2) If (Γ, q1, q2) is a further pair such that Γ is a graph and qi : Γ −→ Γi
(i ∈ {1, 2}) are maps of graphs with f1 ◦ q1 = f2 ◦ q2, then there exists
a unique map of graphs f : Γ −→ Γ3 satisfying the conditions qi = pi ◦ f
(i ∈ {1, 2}). Indeed, f is given by

f(u) = (q1(u), q2(u)) and f(e) = (q1(e), q2(e)),

for each u ∈ VΓ and e ∈ EΓ.
In conclusion, (Γ3, p1, p2) is the pullback of the maps of graphs f1 and f2.

Pushouts, however, do not always exist. Let us give an example.

Example 4.1.1. Let us consider the following diagram,

∆1

∆2Γ

∆

α1

α2

e3

e3

e1

e1

e2
e2

e4

e4
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where α1 : Γ −→ ∆1 and α2 : Γ −→ ∆2 are defined in the following way:

α1(e1) = α1(e2) = e3 and α2(e1) = e4, α2(e1) = e4.

If the given diagram were a pushout diagram, the images of e3 and e4 in ∆
should be equal, but also the images of e3 and e4. In particular, the images
of e4 and e4 should be the same, which is not possible if ∆ is a graph.

Even if in Chapter 2 we introduced paths, this time we are going to go
in depth with them.

Recall that a path p in Γ, of length n = |p|, with initial vertex u and
terminal vertex v, is an n-tuple of edges of Γ, p = e1 · · · en, such that for
i ∈ {1, . . . , n− 1}, we have

τ(ei) = ι(ei+1), u = ι(e1) and v = τ(en).

For n = 0, given any vertex v, there is a unique path Av of length 0 whose
initial and terminal vertices coincide and are equal to v. Another way of
defining paths is as follows: the standard arc of length n, An, can be de-
scribed as the interval [0, n] subdivided at the integer points; then, our path
p is a map of graphs p : An −→ Γ such that p(0) = u and p(n) = v. Finally,
paths are called circuits if the initial and terminal vertices coincide.
We also have an operation between compatible paths, the concatenation,
which consists of joining both paths.

Hence, we can construct the category P(Γ), where the objects are the
vertices of the graph Γ and the morphisms between two vertices are the
paths joining them. Finally, the composition of the morphisms is the con-
catenation of paths, where the identity morphisms are the paths of length 0
with the necessary initial and terminal vertices.
Moreover, a map of graphs f : Γ −→ ∆ induces a length-preserving functor
denoted by the same symbol, f : P (Γ) −→ P (∆).

Using that category, we can define the fundamental group from the point
of view of category theory.
Recall that a round-trip is a path of the form eē. If a path p contains two
adjacent edges forming a round-trip, then by deleting them we get a path
p′ with the same initial and terminal vertices as p, and with |p′| = |p| − 2.
In this case, p′ is an elementary reduction of p, and we write p↘ p′.
A reduced path is a path containing no round-trip.
The equivalence relation on P (Γ) generated by ↘ is denoted by ∼ and it
is called homotopy. Every path is clearly homotopic to a reduced path.
Concatenation of paths is compatible with homotopy, and thus the set of
∼-classes of P (Γ) forms a small category denoted by π(Γ).
Each element in π(Γ) has an inverse: If Av is a path of length 0, then
[Av]

−1 = Av. If p = e1 · · · en, then [p]−1 = [en · · · e1].
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To sum up, if we consider the set of elements in π(Γ) starting and ending
at a fixed vertex v, we obtain a group π1(Γ, v): the fundamental group of
Γ based at v. In this case too, given a map of graphs f : Γ −→ ∆ there is
a homomorphism denoted by the same symbol, f : π1(Γ, v) −→ π1(∆, f(v)),
such that

f([p]) = [f(p)].

4.2 Stars

The goal of this section is to introduce special maps between graphs, called
immersions and coverings, which are essential to study subgroups of a free
group.

Definition 4.2.1. If v is a vertex of the graph Γ, the star of v in Γ is the
set of edges of Γ:

St(v,Γ) = {e ∈ E | ι(e) = v}.

The cardinality of St(v,Γ) is called the valence of v in Γ.

Example 4.2.1. The valences of the vertices of the graph are written near
each vertex.

4

1

1

3

3

A map of graphs f : Γ −→ ∆, yields, for each vertex v of Γ, a map

fv : St(v,Γ) −→ St(f(v),∆)

e 7−→ f(e).

Definition 4.2.2. If, for each vertex v of Γ the map fv is injective, we call f
an immersion. If fv is surjective for all the vertices, we say that f is locally
surjective. Finally, if fv is bijective for each vertex, we call f a covering.

Example 4.2.2. A reduced path of length n in Γ is exactly the same as an
immersion from the standard arc of length n to Γ. However, it may not be
locally surjective.

f(v) e1

e2

e3

e4
e5

e6
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If we consider the path drawn in purple, e4 is an element of the star of f(v)
in the graph, but it is not the image of an edge of the standard arc of length
2.

Definition 4.2.3. A pair of edges (e1, e2) of Γ is said to be admissible if
ι(e1) = ι(e2) and e1 6= e2. In this case, we can identify τ(e1) to τ(e2), e1 to
e2 and e1 to e2 to obtain a graph denoted by Γ/[e1 = e2], which we call the
result of folding (e1, e2) in Γ.

Example 4.2.3. Let us present an easy example of this construction.

In general, folding (e1, e2) in Γ is a particularly simple instance of the
following pushout construction.

Γ

Γ/[e1 = e2]

Let f : Γ −→ ∆ be a map of graphs which is not an immersion. Then,
there exists a vertex v of Γ such that

fv : St(v,Γ) −→ St(f(v),∆)

e 7−→ f(e)

is not injective. Thus, there are two distinct edges e1, e2 of Γ with initial ver-
tex v and f(e1) = f(e2), so f folds the admissible pair (e1, e2) non-trivially
(note that if e2 = e1, then f(e1) = f(e1), which is not possible).

Thus, if f : Γ −→ ∆ is a map of graphs, we can find a finite sequence of
foldings: Γ = Γ0 −→ Γ1 −→ Γ2 −→ . . . −→ Γn and an immersion Γn −→ ∆,
so that the composition of the immersion and the sequence of foldings is
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equal to f .

As we mentioned before, coverings and immersions are used to represent
subgroups of free groups. Therefore, we will analyse them separately. Let
us start with coverings.

4.3 Coverings

The theory of coverings of graphs is a particular case of the topological
theory of covering spaces. Let us prove some properties.

Proposition 4.3.1 (Path-lifting). If f : Γ −→ ∆ is a covering, v a vertex
of Γ and p a path in ∆ with initial vertex f(v), then there exists a unique
path p̃ in Γ with initial vertex v such that f(p̃) = p.

Proof. Suppose that p is equal to e1 · · · en where ι(e1) = f(v) and ei is an
edge of ∆, for all i ∈ {1, . . . , n}. Since f is a covering, fv is bijective, so
there exists a unique edge ẽ1 of Γ with initial vertex v such that f(ẽ1) = e1.
If we denote τ(ẽ1) by w, then f(w) = τ(f(ẽ1)) = τ(e1) = ι(e2), and we can
continue as in the previous case until we obtain a path

p̃ = ẽ1 · · · ẽn,

where ẽi is an edge of Γ, for all i ∈ {1, . . . , n} and ι(ẽ1) = v.
Finally, those edges are unique, because f is a covering. Therefore, p̃ is
unique.

Proposition 4.3.2 (Homotopy-lifting). In the notation of Proposition 4.3.1,
if p is a round-trip, then p̃ is a round-trip. Hence, if p ∼ q, then p̃ ∼ q̃.

Proof. If p = eē for some edge e of ∆ and initial vertex f(v), following
the same procedure as above, there exists a unique edge ẽ of Γ such that
f(ẽ) = e and ι(ẽ) = v. Then, ē = f(ẽ) = f(¯̃e), so by uniqueness, p̃ = ẽ¯̃e.

Proposition 4.3.3 (General lifting). Let f : Γ −→ ∆ be a covering and
g : Θ −→ ∆ be a map of graphs with Θ connected. Further, let u and v be
vertices of Γ and Θ such that f(u) = g(v). Then, there exists g̃ : Θ −→ Γ
such that g̃(v) = u and f ◦ g̃ = g if and only if g(π1(Θ, v)) ⊆ f(π1(Γ, u)).
Moreover, if g̃ exists, it is unique.

Γ

Θ ∆

f
g̃

g
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Proof. The right implication is trivial. In order to prove the left implication,
first of all let us construct g̃.
We fix g̃(v) to be u. Now, let w be a vertex of Θ. Since Θ is connected, there
exists a path p in Θ with initial vertex v and terminal vertex w. Thus, g(p)
starts in g(v) = f(u) and finishes in g(w). By Proposition 4.3.1, there exists
a unique path p̃ in Γ with initial vertex u such that f(p̃) = g(p). Then, we
define g̃(w) to be the terminal vertex of p̃. We can define g̃ in the edges of
Θ in a similar way.
It remains to check that p̃ is well-defined; that is, that it does not depend
on the selected path. Suppose that there are two paths in Θ joining v and
w, p1 and p2. Thus, g(p1p2) ∈ f(π1(Γ, u)). This implies that

g(p1p2) ∼ f(p3),

for some circuit p3 in Γ based at u, and equivalently,

g(p1) ∼ f(p3)g(p2).

Finally, p̃1 and p3p̃2 are the unique paths in Γ with initial vertex u that
project by f into the previous paths, so by Proposition 4.3.2, p̃1 ∼ p3p̃2.
Therefore, both of them have the same final vertex.
The uniqueness of the paths of Proposition 4.3.1 imply the uniqueness of
g̃.

Proposition 4.3.4. If f : Γ −→ ∆ is a covering and u a vertex of Γ, then

f : π1(Γ, u) −→ π1(∆, f(u))

is injective.

Proof. Let [p1] and [p2] be elements in π1(Γ, u) such that f([p1]) = f([p2]);
that is, f(p1) ∼ f(p2). Thus, the uniqueness and Proposition 4.3.2 directly
imply that p1 ∼ p2.

Proposition 4.3.5 (Existence of coverings). If ∆ is connected, v a vertex
of ∆, and H ⊆ π1(∆, v) a subgroup, then there exists a covering f : Γ −→ ∆
where Γ is connected, with vertex u, such that f(u) = v and f(π1(Γ, u)) = H.
The index of H in π1(∆, v) is the cardinality of f−1(v).

Proof. It follows from the general theory of covering spaces. See, for in-
stance, [4].

There is an interesting consequence of the previous theorem, which is
called the Nielsen-Schreier Theorem.

Theorem 4.3.6 (Nielsen-Schreier). Any subgroup of a finitely generated
free group is free.
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Proof. Let F be a free group on n generators. Then, F ∼= π1(∆, v), where
∆ is the bouquet of n-circles and v is the central vertex.
Let H be any subgroup of F . By Proposition 4.3.5, there exists a covering
f : Γ −→ ∆, where Γ is connected, with vertex u, such that f(u) = v and
f(π1(Γ, u)) = H. Moreover, by Proposition 4.3.4, f is injective, so

H ∼= π1(Γ, u).

Finally, we know that π1(Γ, u) is a free group, so H is too.

Another way of constructing graphs is using actions of groups on sets.
Recall that a group G acts on a set M if for each g ∈ G and m ∈ M , an
element g ·m ∈M is defined such that g2 ·(g1 ·m) = (g2g1) ·m and 1 ·m = m
for all m ∈M , g1, g2 ∈ G.

Definition 4.3.1. A group G acts on a graph Γ if the actions of G on the
set of edges and vertices satisfy that

g · ι(e) = ι(g · e), g · ē = g · e and g · e 6= ē,

for all g ∈ G and all the edges of Γ.

Let a group G act on a graph Γ. For every edge and vertex x we denote
by O(x) the orbit of x with respect to this action,

O(x) = {g · x | g ∈ G}.

In this case, we can define the factor graph as the graph with vertices O(v),
for each vertex v of Γ, and edgesO(e), for each edge e of Γ, with the following
conditions:

(1) O(v) is the initial vertex of O(e) if there exists g ∈ G such that g · v is
the initial vertex of e (note that it does not depend on the representative of
the orbit),

(2) the inverse of the edge O(e) is the edge O(ē) (and so O(e) = O(e)).

Notice that the edges O(e) and O(ē) do not coincide since G acts on Γ
without inversion of edges (g · e 6= ē). Therefore, the factor graph, denoted
by Γ/G is in fact a graph, and the projection map,

p : Γ −→ Γ/G

x 7−→ O(x),

not only is a map of graphs, but it is also locally surjective.

Proof. Let v be a vertex of Γ and O(e) be an element of the star of O(v) in
Γ/G. By definition, g · v is the initial vertex of e, for some g ∈ G, so

ι(g−1 · e) = g−1 · (ι(e)) = g−1 · (g · v) = (g−1g) · v = v.
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Thus, g−1 · e is an element of the star of v in Γ which projects by pv on
O(g−1 · e) = O(e).

Example 4.3.1. Let us consider the following graph.

0 1

2

e1

e2

If we consider the group G = 〈(1, 2)〉 ≤ Σ3 and the actions on the vertex
and edge set

G× V −→ V
(σ, i) 7−→ σ(i),

G× E −→ E
(σ, ei) 7−→ eσ(i),

(σ, ei) 7−→ eσ(i),

we obtain the same graph as folding the pair (e1, e2).

O(0) O(1)

O(e1)

Proposition 4.3.7. If G acts freely on Γ, p is a covering.

Proof. We only need to check that p is an immersion.
Let v be a vertex of the graph and e1, e2 be edges of Γ with initial vertex v
such that O(e1) = O(e2). Hence, e2 = g · e1 for some g ∈ G, so v = ι(e2) =
g · ι(e1) = g · v. Thus, by hypothesis, g = 1.

At this stage, we have all the required tools to establish a relation be-
tween the pushout of graphs and the join of subgroups.

Theorem 4.3.8 (Pushout represents join). Suppose that

Γ ∆1

∆2 Θ

α1

α2 β1

β2

is a pushout diagram, where Γ, ∆1, ∆2 and Θ are connected graphs and
β1 is onto. Let z be a vertex of Γ; call the images of z in ∆1, ∆2 and Θ
respectively v1, v2 and w. Then,

π1(Θ, w) = β1(π1(∆1, v1)) ∨ β2(π1(∆2, v2)).
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Proof. If we denote by H the subgroup of the right hand side, taking into
account that Θ is connected and w is a vertex of the graph, by Proposi-
tion 4.3.5, there exists a covering f : Θ̃ −→ Θ where Θ̃ is connected, with
vertex u, such that f(u) = w and

f(π1(Θ̃, u)) = H.

Moreover, by Proposition 4.3.3, there exist

β̃1 : ∆1 −→ Θ̃ and β̃2 : ∆2 −→ Θ̃,

such that β̃1(v1) = β̃2(v2) = u, f(β̃1) = β1 and f(β̃2) = β2. Then, β̃1 ◦ α1

and β̃2◦α2 are liftings of β1◦α1 = β2◦α2, so by uniqueness, β̃1◦α1 = β̃2◦α2.

Γ ∆1

∆2 Θ

Θ̃

α1

α2 β1
β̃1

β2

β̃2

g

f

Using the fact that our diagram is a pushout diagram, there is a map of
graphs g : Θ −→ Θ̃ such that g(w) = g(β1(v1)) = β̃1(v1) = u. Let us show
that f is surjective.
If x is an element of the graph Θ, since β1 is surjective, there exists y1 in
∆1 such that β1(y1) = x. Hence, g(x) = β̃1(y1), and f(g(x)) = β1(y1) = x.
In conclusion, f ◦ g = id. Thus, considering

f : π1(Θ̃, u) −→ π1(Θ, w),

by Proposition 4.3.4 it is injective, and taking into account that f ◦ g = id,
it is routine to check that it is in fact an isomorphism. Hence, we achieve
the required equality.

Corollary 4.3.9. If (e1, e2) is an admissible pair of edges in a connected
graph Γ, then the folding map Γ −→ Γ/[e1 = e2] is surjective on fundamental
groups.

Proof. As we have mentioned before, folding (e1, e2) is a particular example



Chapter 4. Stallings’ foldings 35

of the pushout construction

Γ/[e1 = e2]

Γ

Since the hypothesis of the previous theorem hold and the lower left corner
has trivial fundamental group, we immediately obtain the conclusion.

4.4 Immersions

Immersions have some of the properties of coverings, and they do represent
subgroups more efficiently than do coverings. We now start with some basic
properties.

Proposition 4.4.1 (Preservation of reduced paths). If f : Γ −→ ∆ is an
immersion of graphs, and p is a reduced path in Γ, then f(p) is a reduced
path in ∆.

Proof. Let us prove, first of all, that the composition of two immersions is
again an immersion.
Let f : Γ −→ ∆ and g : ∆ −→ Θ be immersions and v be a vertex of Γ.

(g ◦ f)v : St(v,Γ) −→ St((g ◦ f)(v),Θ)

e 7−→ (g ◦ f)(e).

If e1 and e2 are edges of Γ with initial vertex v and g(f(e1)) = g(f(e2)),
since g is an immersion and f(e1) and f(e2) lie in the star of f(v) in ∆, then
f(e1) = f(e2). Finally, f is an immersion and e1 and e2 are elements of the
same star, so e1 = e2.
To sum up, since a reduced path in Γ is exactly the same as an immersion
from a standard arc to Γ, f(p) is an immersion in ∆.

Proposition 4.4.2 (Uniqueness of path-lifting). If f : Γ −→ ∆ is an immer-
sion, p and q are paths in Γ having the same initial vertex, and f(p)=f(q),
then p = q.

Proof. It is easy to prove it by induction on |p|.
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Proposition 4.4.3. If f : Γ −→ ∆ is an immersion, Θ a connected graph
and g1, g2 : Θ −→ Γ are maps of graphs such that f ◦ g1 = f ◦ g2 and
g1(v) = g2(v) for some vertex v of Θ, then g1 = g2.

Proof. We are going to show that g1(v) = g2(v) for all v ∈ VΘ. In the case
of the edges, the argument is similar.
Let w be a vertex of Θ. Since Θ is connected, there is a path from v to
w in Θ, p. Then, g1(p) is a path in Γ from g1(v) to g1(w) and g2(p) is a
path in Γ from g2(v) to g2(w). By hypothesis, f ◦ g1 = f ◦ g2, so (f ◦ g1)(p)
and (f ◦ g2)(p) are equal. Moreover, g1(v) = g2(v), so by Proposition 4.4.2,
g1(p) = g2(p). Thus, the terminal vertices must be the same.

Proposition 4.4.4. If p and q are reduced, homotopic paths in Γ, then
p = q.

Proof. It is a consequence of the fact that the fundamental group of a graph
is a free group, and in each equivalence class of a free group there is a unique
reduced word.

As in the case of coverings, we also have the following property.

Proposition 4.4.5 (Injectivity of π1). If f : Γ −→ ∆ is an immersion and
v is a vertex of Γ, then

f : π1(Γ, v) −→ π1(∆, f(v))

is injective.

Proof. Let α be a non-trivial element in π1(Γ, v). Then, α is represented
by a circuit p based at v with p reduced and |p| ≥ 1. By Proposition 4.4.1,
f(p) is reduced, and f is length-preserving, so |f(p)| ≥ 1. Thus, by Proposi-
tion 4.4.4 it is not homotopic to a path of length 0, so f ◦α is non-trivial.

We are now going to introduce a useful way of representing certain sub-
groups of free groups by immersions.

Algorithm 1. Given a finite set of elements {α1, . . . , αn} ⊆ π1(∆, u) there
is an algorithm that represents the subgroup H generated by {α1, . . . , αn}
by an immersion f : Γ −→ ∆, as follows:

Represent αi by a circuit pi based at u. Let Γ2 be a wedge of n-circles,
where the i-th circle is subdivided in |pi| pieces, and f2 : Γ2 −→ ∆ maps the
i-th circle to pi.
Then, f2(π1(Γ2, v)) = 〈α1, . . . , αn〉 = H, where v is the vertex of the wedge.
f2 can be factored through a series of folds and an immersion:

Γ2 −→ Γ3 −→ . . . −→ Γk
fk−→ ∆,



Chapter 4. Stallings’ foldings 37

where the last arrow is an immersion and the other ones are foldings. By
Corollary 4.3.9, each fold is surjective on π1, and so, letting w be the image
of v in Γk,

fk(π1(Γk, w)) = H.

Thus, fk is the desired immersion. Now, we know how to find a free basis
of π1(Γk, w), which by Proposition 4.4.5 yields a free basis of H.

Example 4.4.1. Let H be the subgroup 〈a2b3, a2b6, a2b−3a−2〉 of the free
group F ({a, b}). Let us find a basis of H using the previous algorithm.

We identify the free group of rank two with the bouquet of 2-circles,

v
ab

Firstly, we represent the subgroup by a wedge of 3 subdivided circles and
a map that sends each circle to the corresponding element. In the figure,
each section is drawn with its image under the map.

a2b3a2b−3a−2

a2b6

Secondly, note that we may fold all the edges of the above right circle
with some edges of the below circle.

Thirdly, we can fold two edges of the above left circle with two edges of
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the above right circle.

Fourthly, we fold the edges drawn in purple.

Fifthly, we fold the edges drawn in blue of the circle of the top with the
ones of the big circle (it is done in two steps).

and

Finally, we fold the circles which are drawn in blue.

In this way, we have obtained that {a2, b3} is a free basis of H.

We are now ready to establish the correspondence between pullbacks of
graphs and intersections of free groups. In this result, with the intention of
not confusing the notation of maps and paths, the projections defined when
constructing the pullback are named g1 and g2.
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Theorem 4.4.6 (Pullback of immersions represents intersection). Let

Γ3 Γ1

Γ2 ∆

g1

g2 f1

f2

be a pullback diagram of graphs. Suppose that f1 and f2 are immersions.
Let v1, v2 be vertices in Γ1, Γ2 such that f1(v1) = f2(v2) = w; let v3 be the
corresponding vertex of Γ3. Define f3 = f1 ◦ g1 = f2 ◦ g2 : Γ3 −→ ∆, and

Hi = fi(π1(Γi, vi)) for i ∈ {1, 2, 3}.

Then,
H3 = H1 ∩H2.

Proof. It is clear from f1 ◦ g1 = f2 ◦ g2 that H3 is contained in H1 ∩H2.
In order to show the reverse inclusion, let [α] ∈ H1 ∩ H2. Then, there are
reduced circuits p1 and p2 in Γ1 and Γ2 based at v1 and v2, respectively,
such that f1(p1) and f2(p2) belong to the homotopy class of α. By Propo-
sition 4.4.1, f1(p1) and f2(p2) are reduced equivalent paths, so by Proposi-
tion 4.4.4, f1(p1) = f2(p2). If we denote by n the length of both paths, we
are in the following conditions.

An

Γ3 Γ1

Γ2 ∆

p1

p2

p3

g1

g2
f3

f1

f2

By the pullback property, there exists a path p3 in Γ3 such that p1 = g1(p3)
and p2 = g2(p3). Having on mind the definitions of g1 and g2 and taking
into account that p1 and p2 are both circuits, we obtain that p3 is a circuit
based at v3. Thus, f3(p3) represents an element of H3, and it represents also
α.

Corollary 4.4.7 (Howson’s theorem). If H1 and H2 are finitely generated
subgroups of a free group F , then H1 ∩H2 is finitely generated (and a free
basis of H1 ∩H2 can be determined algorithmically).

Proof. Represent F as π1(∆), where ∆ is a graph with one vertex. Since
H1 and H2 are finitely generated subgroups of π1(∆), using Algorithm 1,
we can represent them by immersions

f1 : Γ1 −→ ∆ and f2 : Γ2 −→ ∆,
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where Γ1 and Γ2 are connected graphs, H1 = f1(π1(Γ1, v1)) and H2 =
f2(π1(Γ2, v2)).
Note that it is compulsory for f1(v1) and f2(v2) to be equal to v, so after
constructing the pullback Γ3, by Theorem 4.4.6,

H1 ∩H2 = f3(π1(Γ3, v3)),

where f3 = f1 ◦ g1 = f2 ◦ g2 and v3 is the corresponding vertex of Γ3.
Let us now check that f3 is an immersion. If w is a vertex of Γ3, it is equal
to (u, v), where u is a vertex of Γ1, v is a vertex of Γ2 and f1(u) = f2(v).

(f3)w : St(w,Γ3) −→ St(f3(w),∆)

(e1, e2) 7−→ f3((e1, e2)) = f1(e1) = f2(e2).

Since f1 and f2 are both immersions, (f3)w is injective.
Summarizing, by Proposition 4.4.5, H1 ∩ H2 is isomorphic to π1(Γ3, v3),
which is finitely generated. Moreover, f3 is an immersion, so applying f3

to a free generating set of π1(Γ3, v3), we achieve a free generating set of
H1 ∩H2.

4.5 Marshall Hall’s Theorem

The goal of this section is to prove Marshall Hall’s Theorem, which states
that for any non-trivial element of a free group, there exists a finite index
subgroup which does not contain it.

Theorem 4.5.1. Let f : Γ −→ ∆ be an immersion of graphs. Suppose that
∆ has only one vertex. Then there exists a graph Γ′ containing Γ, such that
Γ′ \ Γ consists only of edges, and there exists a map f ′ : Γ′ −→ ∆ extending
f , such that f ′ is a covering.

Proof. Let VΓ and EΓ be the sets of vertices and edges of Γ and O the
orientation of ∆. For each e ∈ O, define

Re :
{
ι(e1) | e1 ∈ EΓ and f(e1) = e

}
−→

{
τ(e1) | e1 ∈ EΓ and f(e1) = e

}
ι(e1) 7−→ τ(e1).

If we check that Re is well-defined, it is clear that Re is bijective.
Suppose that ι(e1) = ι(e2) where e1, e2 ∈ EΓ and f(e1) = f(e2) = e. Since
f is an immersion, we conclude that e1 = e2, so τ(e1) = τ(e2).

Since VΓ is finite, we may extend Re to all VΓ, for each e ∈ O:

Se : VΓ −→ VΓ.

The next step is to construct the graph Γ′. In order to do it, we define the
set of vertices and the set of edges of Γ′ in the following way:

VΓ′ = VΓ,
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EΓ′ =
{

(u, v, e) | u, v ∈ VΓ, e edge of ∆; if e ∈ O, v = Se(u); if ē ∈ O, u = Sē(v)
}
.

For ε = (u, v, e) ∈ EΓ′ , if we define ε̄ to be (v, u, ē) and ι(ε) = u, it is routine
to prove that Γ′ is a graph.

We also have to construct a covering f ′ : Γ′ −→ ∆. Define it by taking each
vertex v to the unique vertex of ∆, and f ′(ε) = e, for each ε = (u, v, e) ∈ EΓ′ .
Now, let us show that it is, in fact, a covering.
Let w be a vertex of Γ′.

(f ′)w : St(w,Γ′) −→ St(f ′(w),∆)

(u, v, e) 7−→ e.

Suppose that there are elements (u1, v1, e1) and (u2, v2, e2) in the star of w
in Γ′ such that e1 = e2. Moreover, in order those elements to be in such
star, u1 = u2 = w. Then, if e1 = e2 ∈ O, v1 = Se(u1) = Se(w) and
v2 = Se(u2) = Se(w), but Se is a bijection, so v1 = v2. If e1 = e2 ∈ O, the
argument is similar. Thus, f ′ is an immersion.
In order to check that f ′ is locally surjective, for e ∈ St(f ′(w),∆) and e ∈ O,
taking (w, Se(w), e) ∈ St(w,Γ′) we are done, and if ē ∈ O, (w, S−1

e (w), e) ∈
St(w,Γ′).

Finally, embed Γ into Γ′ by a map a : Γ −→ Γ′ where for a vertex v ∈ VΓ,
a(v) = v and for an edge e ∈ EΓ, a(e) = (ι(e), τ(e), f(e)). It is injective
because f is an immersion, and f ′ ◦ a = f .

Corollary 4.5.2 (Marshall Hall’s Theorem). Let α1, . . . , αk, β1, . . . , βl be
elements in a free group F . Let H be the subgroup of F generated by
{α1, . . . , αk}. Suppose that βi /∈ H, for i ∈ {1, . . . , l}. Then there ex-
ists a subgroup H ′ of finite index in F , such that H ⊆ H ′, βi /∈ H ′ for
i ∈ {1, . . . , l}, and there exists a free basis of H ′ having a subset which is a
free basis of H.

Proof. Represent F as π1(∆), where ∆ has only a vertex.
Let Γ1 be a wedge of circles and arcs, subdivided appropriately, and f1 a
map from Γ1 to ∆, so that the circles in Γ1, under f1, represent αj and the
arcs in Γ1 represent βi. Thus, with appropriate basepoint v1,

f1(π1(Γ1, v1)) = H.

Since Γ1 is a finite connected graph, f1 can be factored through a series of
folds and an immersion f : Γ −→ ∆, and as we argued in Algorithm 1,

f(π1(Γ, v)) = H,

with appropriate vertex v. Since βi /∈ H, the image of the i-th arc of Γ1 in
Γ is not a circuit.
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Now apply Theorem 4.5.1 to f , extending it to a covering f ′ : Γ′ −→ ∆,
without adding new vertices. We define H ′ to be f ′(π1(Γ′, v)).
The index of H ′ in F is the number of vertices of Γ, by Proposition 4.3.5,
which is finite. Firstly, it is clear that H ⊆ H ′. Secondly, the paths in Γ
which represent βi (the images of the arcs of Γ1) are not circuits; therefore,
taking into account that since f ′ is a covering the induced homomorphism
is injective, βi /∈ H ′. Finally, a maximal tree T of Γ is also a maximal tree
of Γ′, by Lemma 2.2.2. Using this, we find a free basis of π1(Γ′, v) of which
a subset is a free basis of π1(Γ, v).

Example 4.5.1. Let F ({a, b}) be a free group of rank 2 and g = abaa ∈
F ({a, b}). We are going to find a subgroup H of finite index such that
g /∈ H.

Let us follow the steps of the previous proof.
We take H to be the trivial subgroup, Γ the standard arc of length 4,

0 1 2 3 4e1 e2 e3 e4

and ∆ the bouquet of 2-circles,

v
ab

Now, we have to construct the graph Γ′ and the covering f ′ of Theo-
rem 4.5.1.
We can choose the maps Sa and Sb in the following way:

Sa : {0, 1, 2, 3, 4} −→ {0, 1, 2, 3, 4}
0 7−→ 1,
1 7−→ 0,
2 7−→ 3,
3 7−→ 4,
4 7−→ 2,

Sb : {0, 1, 2, 3, 4} −→ {0, 1, 2, 3, 4}
0 7−→ 0,
1 7−→ 2,
2 7−→ 1,
3 7−→ 3,
4 7−→ 4.

Then, the vertex set of Γ′ is {0, 1, 2, 3, 4}, and the edge set, EΓ′ , is{
εi, εi | i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

}
,

such that

ε1 = (0, 1, a), ε2 = (2, 3, a), ε3 = (3, 4, a), ε4 = (1, 0, a), ε5 = (4, 2, a),

ε6 = (1, 2, b), ε7 = (2, 1, b), ε8 = (3, 3, b), ε9 = (4, 4, b), ε10 = (0, 0, b).
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The covering f ′ is defined triviarly in the vertex set, and in the edge set it
is defined in the following way:

f ′ : EΓ′ −→ E∆

εi 7−→ f ′(εi) =

{
a, if i ∈ {1, 2, 3, 4, 5},
b, if i ∈ {6, 7, 8, 9, 10}.

Finally, Γ′ can be drawn as follows.

0 1 2 3 4ε1 ε6 ε2 ε3

ε10 ε8 ε9

ε4 ε7 ε5

A maximal tree of such graph is drawn in purple. Therefore, its fundamental
group is the free group of rank 6, where the generating set is this:{

ε10, ε1ε4, ε1ε6ε7ε
−1
1 , ε1ε6ε2ε8ε

−1
2 ε−1

6 ε−1
1 ,

ε1ε6ε2ε3ε9ε
−1
3 ε−1

2 ε−1
6 ε−1

1 , ε1ε6ε2ε3ε5ε
−1
6 ε−1

1

}
.

To sum up, applying f ′, we obtain the free generating set of H ′,{
b, a2, ab2a−1, ababa−1b−1a−1, aba2ba−2b−1a−1, aba3b−1a−1

}
.

4.6 Core graphs

The goal of this section is to describe an algorithm that decides whether or
not a finitely generated subgroup of a free group is of finite index.

Definition 4.6.1. A cyclically reduced circuit in a graph Γ is a circuit,
p = e1e2 · · · en, which is reduced as a path, and for which e1 6= en.

Definition 4.6.2. A graph Γ is said to be a core-graph if Γ is connected, has
at least one edge, and every edge belongs to at least one cyclically reduced
circuit.

Remark 4.6.1. Every cyclic permutation of a cyclically reduced circuit is
again a cyclically reduced circuit. Thus, we may assume that if a graph is a
core-graph, each edge is the first element of a cyclically reduced circuit.
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(a) It is a core-graph. (b) It is not a core-graph.

If Γ is a connected graph with non-trivial fundamental group, an essential
edge of Γ is an edge belonging to some cyclically reduced circuit. Then, we
define the core of Γ as all essential edges of Γ and all initial vertices of
essential edges.
For example, in the previous case, the core-graph is drawn in purple.

Definition 4.6.3. If H is a subgroup of a group G, we say that H satisfies
the Burnside condition when, for every g ∈ G, there exists some positive
integer n such that gn ∈ H.

Lemma 4.6.1. If H satisfies the Burnside condition in G, then so does any
conjugate subgroup.

Proof. Suppose that H is a subgroup of G which satisfies the Burnside
condition and let Hh be a conjugate subgroup, with h ∈ G.
Let g ∈ G. Since Gh = G, g = gh1 for some g1 ∈ G. H satisfies the Burnside
condition, so there exists a positive integer m such that gm1 ∈ H. Thus,
(gh1 )m = (gm1 )h ∈ Hh.

Proposition 4.6.2. Let f : Γ −→ ∆ be a finite-sheeted covering of connected
graphs (that is, the cardinality of the fibres is finite) and v a vertex of Γ.
Then, f(π1(Γ, v)) ⊆ π1(∆, f(v)) satisfies the Burnside condition.

Proof. Let us prove a more general property: Subgroups of finite index
satisfy the Burnside condition.
Let H be a finite index subgroup of G and

G = g1H ∪̇ · · · ∪̇ gnH,

for some elements gi ∈ G, i ∈ {1, . . . , n}.
Let g ∈ G. Then, g ∈ giH, for some i ∈ {1, . . . , n}, so gH = giH. Similarly,
g2H = gjH, for some j ∈ {1, . . . , n}.
Finally, since {g1H, . . . , gnH} is finite, there exist n0, n1 ∈ N, n0 > n1 such
that

gn0H = gn1H,

so gn0−n1 ∈ H.
Returning again to our hypothesis, note that the index of f(π1(Γ, v)) in
π1(∆, f(v)) is the cardinality of f−1(f(v)), which is finite by hypothesis.
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Conversely:

Proposition 4.6.3. Let f : Γ −→ ∆ be an immersion of connected graphs.
Suppose that ∆ is a core-graph, v a vertex of Γ and f(π1(Γ, v)) ⊆ π1(∆, f(v))
satisfies the Burnside condition. Then, f is a covering.

Proof. We only need to show that f is locally surjective. Let w be a vertex
of Γ and e be an edge of ∆ such that ι(e) = f(w). f(π1(Γ, v)) satisfies the
Burnside condition, and f(π1(Γ, w)) is a conjugate subgroup of the previous
one (Γ is connected), so it also satisfies it (Lemma 4.6.1).
The graph ∆ is a core-graph, so by Remark 4.6.1 we may assume that
there is a cyclically reduced circuit p in ∆ whose first term is e. Therefore,
[p] ∈ π1(∆, f(w)). By the Burnside condition, there exists n ∈ N such that
the homotopy class of pn belongs to f(π1(Γ, w)). That is, there is a reduced
circuit q in Γ based at w such that f(q) ∼ pn.
But p is cyclically reduced, so pn is reduced. By Proposition 4.4.1, f(q) is
also reduced, so f(q) = pn (Proposition 4.4.4). Then, the first term of q is
an edge e1 of Γ with ι(e1) = w and f(e1) = e.

Remark 4.6.2. The previous proposition shows whether a given finitely
generated subgroup of a free group is of finite index.
By Algorithm 1, we can represent the subgroup by an immersion
f : Γ −→ ∆, where Γ is finite and ∆ is a one-vertex graph (therefore, a
core-graph); if f is a covering, by Proposition 4.3.5, the subgroup is of finite
index equal to the number of vertices of Γ. If f is not a covering, then
Proposition 4.6.3 shows that the subgroup does not satisfy the Burnside
condition, so it is of infinite index.





Appendix A

Solved exercises

Exercise 1. Give a triangulation of the 2-genus surface.

Solution. If we base on the triangulation of the torus that was given in
Example 1.2.4, we obtain the following triangulation of the 2-genus surface.

1 2 3

1

4
5 6

4

7
8 9

7

1 2 3 1

10 6

14
3

11
12 13

11

6 4 10 6

Exercise 2. Give a triangulation of the torus with 14 triangles and 7 ver-
tices.

47
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Solution. Let us draw such triangulation.

1 2 1

6 7

3 3

4 5

1 2 1

Exercise 3. Given a word w on the alphabet A = {a, b, c, d}, give an
algorithm that determines whether or not the word w is trivial in F (A).
Do the same in the case of a free abelian group on the alphabet A.

Solution. Let us give a code done in Mathematica in order to decide whether
a word is trivial or not in such free group. In the code, a−1, b−1, c−1 and
d−1 are denoted by e,f g and h. If the code returns a 1, the word is trivial;
if the answer is -1, it is not trivial.

First of all, let us summarise the idea behind the program:

(i) In order a word w to be trivial in F (A), the number of times a letter
a, b, c or d appears in the word must be equal to the number of times the
letter e, f , g or h appears, respectively. If this does not hold, the word is
not trivial.

(ii) We have to check if there exists a pair of letters together such that one
is the inverse of the other one. If it happens, we can erase them and we
obtain an equivalent word. Proceeding in this way, if the word is trivial, at
some point we will obtain an equivalent word of length 0. If not, the word
is not trivial.

i s t r i v i a l f r e e g r o u p [ t ] :=
Module [{ char , l , num, i , l i s t , p1 , p2 , p3 , p4 , p5 , p6 ,

p7 , p8 , j , s o r t } ,
l i s t = {”a ” , ”b” , ”c ” , ”d” , ”e ” , ” f ” , ”g ” , ”h ”} ;
char = Characters [ t ] ;
s o r t = 0 ;
l = Length [ char ] ;
I f [Mod[ l , 2 ] == 0 ,
num = {} ;
p1 = 0 ;
p2 = 0 ;
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p3 = 0 ;
p4 = 0 ;
p5 = 0 ;
p6 = 0 ;
p7 = 0 ;
p8 = 0 ;
For [ i = 1 , i <= l , i ++,

I f [ char [ [ i ] ] == ”a ” , AppendTo [num, 1 ] ; p1 = p1 + 1 ; ] ;
I f [ char [ [ i ] ] == ”b” , AppendTo [num, 2 ] ; p2 = p2 + 1 ; ] ;
I f [ char [ [ i ] ] == ”c ” , AppendTo [num, 3 ] ; p3 = p3 + 1 ; ] ;
I f [ char [ [ i ] ] == ”d” , AppendTo [num, 4 ] ; p4 = p4 + 1 ; ] ;
I f [ char [ [ i ] ] == ”e ” , AppendTo [num, −1]; p5 = p5 + 1 ; ] ;
I f [ char [ [ i ] ] == ” f ” , AppendTo [num, −2]; p6 = p6 + 1 ; ] ;
I f [ char [ [ i ] ] == ”g ” , AppendTo [num, −3]; p7 = p7 + 1 ; ] ;
I f [ char [ [ i ] ] == ”h” , AppendTo [num, −4]; p8 = p8 + 1 ; ] ;
] ;

I f [ p1 == p5 && p2 == p6 && p3 == p7 && p4 == p8 ,
For [ j = 1 , j <= l /2 , j ++,

I f [ e r a s e [num ] [ [ 1 ] ] > 0 ,
num = era s e [num ] [ [ 2 ] ] ; ,
s o r t = −1; Break [ ] ;
] ;

] ; , s o r t = −1 ; ] ; , s o r t = −1];
s o r t
]

e r a s e [ num ] := Module [{ g , l , i , numb, s } ,
s = {} ;
numb = num;
g = 0 ;
l = Length [num ] ;
For [ i = 1 , i <= l − 1 , i ++,

I f [ numb [ [ i ] ] == −numb [ [ i + 1 ] ] ,
numb = Join [ numb [ [ 1 ; ; i − 1 ] ] , numb [ [ i + 2 ; ; l ] ] ] ;
g = g + 1 ;
Break [ ] ;
] ;

] ;
AppendTo [ s , g ] ;
AppendTo [ s , numb ] ;
s
]

In the case of the free abelian group on the alphabet A, we only need to
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verify whether the number of times each letter appears in the word is equal
to the number of times its inverse appears. Hence, we obtain the following
code.

i s t r i v i a l a b e l i a n [ t ] :=
Module [{ l i s t , char , l , sor t , p1 , p2 , p3 , p4 , p5 , p6 ,

p7 , p8 , i } ,
l i s t = {”a ” , ”b” , ”c ” , ”d” , ”e ” , ” f ” , ”g ” , ”h ”} ;
char = Characters [ t ] ;
l = Length [ char ] ;
I f [Mod[ l , 2 ] == 0 ,
p1 = 0 ;
p2 = 0 ;
p3 = 0 ;
p4 = 0 ;
p5 = 0 ;
p6 = 0 ;
p7 = 0 ;
p8 = 0 ;
For [ i = 1 , i <= l , i ++,

I f [ char [ [ i ] ] == ”a ” , p1 = p1 + 1 ; ] ;
I f [ char [ [ i ] ] == ”b” , p2 = p2 + 1 ; ] ;
I f [ char [ [ i ] ] == ”c ” , p3 = p3 + 1 ; ] ;
I f [ char [ [ i ] ] == ”d” , p4 = p4 + 1 ; ] ;
I f [ char [ [ i ] ] == ”e ” , p5 = p5 + 1 ; ] ;
I f [ char [ [ i ] ] == ” f ” , p6 = p6 + 1 ; ] ;
I f [ char [ [ i ] ] == ”g ” , p7 = p7 + 1 ; ] ;
I f [ char [ [ i ] ] == ”h” , p8 = p8 + 1 ; ] ;
] ;

I f [ p1 == p5 && p2 == p6 && p3 == p7 && p4 == p8 ,
s o r t = 0 , s o r t = −1] ; , s o r t = −1];

s o r t ]

Exercise 4. Recall that two elements g and g′ in a group G are conjugate if
there exists h in G such that g′ = gh = h−1gh. Explain when two elements
in a free group are conjugated.

Solution. Let F (X) be a free group on the alphabet X and w ∈ F (X).
Then, w = xi1 · · ·xin for xij ∈ X ∪X−1, j ∈ {1, . . . , n}. In addition, let us
suppose that w is a reduced word.

If xin = x−1
i1

,

x = x−1
in

(xi2 · · ·xin−1)xin .
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Similarly, if xi2 = x−1
in−1

,

x = (xin−1xin)−1(xi3 · · ·xin−2)(xin−1xin).

Proceeding in this way, we obtain that

w = w−1
1 (xj1 · · ·xjm)w1,

where w1 is a reduced word on the alphabet X and xj1 · · ·xjm is a cyclically
reduced word on X.

Let g, g′ ∈ F (X). Then,

g = w−1
1 w̄w1, g′ = w−1

2 w̃w2,

where w1, w2 are reduced words and w̄, w̃ are cyclically reduced words on
X.
If g and g′ are conjugate, then g = h−1g′h for some element h ∈ F (X), so

w̄ = (w1h
−1w−1

2 )w̃(w2hw
−1
1 ) = (w2hw

−1
1 )−1w̃(w2hw

−1
1 ).

Therefore, we claim that g and g′ are conjugate if and only if w̄ and w̃ are.

Proof. ⇒). We have already proved it.

⇐). If w̄ = k−1w̃k for some k ∈ F (X), then

g = w−1
1 w̄w1 = w−1

1 k−1w̃kw1 = (w−1
2 kw1)−1g′(w−1

2 kw1).

In conclusion, we only need to check when two cyclically reduced words w̄
and w̃ are conjugate.

Let us show that w̄ and w̃ are conjugate if and only if w̄ and w̃ are cyclic
permutations of each other.

Proof. ⇐). If w̃ = s1 · · · st and w̄ = sisi+1 · · · sts1 · · · si−1 for letters on the
alphabet X and i ∈ {2, . . . , t}, then

w̄ = (s1 · · · st)w̃(si · · · st)−1.

⇒). Take any conjugate h−1w̄h of w̄ which is cyclically reduced. Thus, the
first element of h must be either w̄1 or w̄n

−1, where w̄1 and w̄n are the first
and last letters of w̄, respectively. Hence,

h−1w̄h = v−1 ¯̄wv,

and the length of ¯̄w is smaller than the length of w̄.
Claim: ¯̄w is a cyclic permutation of w̄.
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Proof. If the first letter of h is w̄1, let us suppose that h = w̄1h2 · · ·hs. Then,

h−1w̄h = h−1
s · · ·h−1

2 w̄2 · · · w̄n w̄1h2 · · ·hs,

and ¯̄w = w2 · · ·wnw1.

If the first letter of h is w̄n
−1, the argument is analogous.

We have to continue with the same procedure until the length of v is
0.

Exercise 5. Does the following presentation define the trivial group?

G = 〈a, b, c | aba−1 = b2, bcb−1 = c2, cac−1 = a2〉.

Solution. If we show that a = b = c = 1, then we will have obtained that G
is the trivial group.

Using the first relation, b−2 = ab−1a−1, so b−1 = bab−1a−1 and

b−1a = bab−1.

By symmetry, c−1b = cbc−1. Firstly,

c2bc−2 = ccbc−1c−1 = cc−1bc−1 = bc−1 = c−2b,

so c−2bc2 = c2b.

Secondly,

bcac−1b−1 = c2bab−1c−2 = c2b−1ac−2 = c2b−1c−2c2ac−2 = b−1c2a4,

and in each equality we have used the following relations:

(i) In the first one, bc = c2b,

(ii) In the second one, bab−1 = b−1b,

(iii) In the fourth one, c2b−1c−2 = b−1c2 and c2ac−2 = ccac−1c−1 = ca2c−1 =
cac−1cac−1 = a4.

Thirdly,

ba2b−1 = bab−1bab−1 = b−1ab−1a = b−1b−2aa = b−3a2,

and in the third equality we have used that ab−1a−1 = b−2.

Fourthly,
b−1c2a4 = bcac−1b−1 = ba2b−1 = b−3a2,

so c2 = b−2a−2.



Appendix A. Solved exercises 53

Finally, we obtain that

c−2bc2 = a2b2bb−2a−2 = a2ba−2 = b4,

and the last equality is achieved because of the first relation.

In conclusion, c2b = b4, so c2 = b3. Therefore, bcb−1 = b3, so c = b3 = c2.
That is, c = 1. If we now return to the relations of G, we obtain that
a = b = c = 1.

Remark A.0.1. This group is known as the Higman’s group of rank 3.
Although this one is trivial, the Higman’s group of rank 4,

G = 〈a, b, c, d | aba−2 = b2, bcb−1 = c2, cdc−1 = d2, dad−1 = a2〉,

is an infinite group.
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The fundamental group

The goal of this appendix is to recall the definitions and the properties
related to homotopies and fundamental groups that are needed in order to
understand the dissertation. Therefore, all the proofs are avoided.

We will start with the definitions and basic properties corcerning to
homotopy theory.

Definition B.0.1. LetX and Y be topological spaces. A homotopy between
two continuous maps f, g : X −→ Y is a continuous map H : X×[0, 1] −→ Y
such that

H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X.

We then say that f and g are homotopic, and write f ' g.

Example B.0.1. Suppose that X is a topological space and Y is a convex
subset of Rn. Then, any two continuous maps f : X −→ Y and g : X −→ Y
are homotopic, via the homotopy

H : X × [0, 1] −→ Y

(x, t) 7−→ (1− t)f(x) + tg(x).

This is known as the straight-line homotopy.

Lemma B.0.1. For any two spaces X and Y , homotopy is an equivalence
relation defined on the set of continuous maps from X to Y .

Definition B.0.2. Two spaces X and Y are homotopy equivalent, written
X ' Y , if there exist maps f : X −→ Y and g : Y −→ X such that

g ◦ f ' idX and f ◦ g ' idY .

Lemma B.0.2. Homotopy equivalence is an equivalence relation defined on
the set of topological spaces.
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Definition B.0.3. A topological space X is contractible if it is homotopy
equivalent to a space with a unique point.

Definition B.0.4. Let X and Y be topological spaces and let A be a sub-
space of X. Then, two continuous maps f, g : X −→ Y are homotopic
relative to A if there exists a homotopy H such that

H(x, t) = f(x) = g(x) for all x ∈ A and t ∈ [0, 1].

At this stage, we can introduce the concept of fundamental group.

Definition B.0.5. Let X be a topological space and let u and v be paths
in X such that u(1) = v(0). The composite path u.v is given by

u.v : [0, 1] −→ X

t 7−→

{
u(2t), if 0 ≤ t ≤ 1/2,

v(2t− 1), if 1/2 ≤ t ≤ 1.

Definition B.0.6. A loop in the space X based at a point b ∈ X is a path
l such that l(0) = l(1) = b.

Definition B.0.7. The fundamental group of the space X and the basepoint
b is the set of homotopy classes relative to {0, 1} of loops in X based at b,
and it is denoted by π1(X, b).

Theorem B.0.3. If X is a topological space and b ∈ X, π1(X, b) is, in fact,
a group, where the operation is defined as follows: if l and l′ are loops in
X based at b, and [l] and [l′] are their homotopy classes relative to {0, 1},
then [l] · [l′] in the group is defined to be [l.l′]. Moreover, [cb] is the identity
element of the group, where cb sends all the elements of [0, 1] to b. Finally,
the inverse element of [l] is [l̄], where l̄(t) = l(1− t), for all t ∈ [0, 1].

Proposition B.0.4. Let X and Y be path-connected spaces such that X '
Y . Then, π1(X, b) ∼= π1(Y, b′), for all b ∈ X and b′ ∈ Y .



Bibliography

[1] O. Bogopolski, Introduction to Group Theory, European Math-
ematical Society, Zürich, 2008.
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