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Introduction

”And the end of all our exploring
Will be to arrive where we started
And know the place for the first time”
T. S. Eliot. Little Gidding.

The present dissertation aims to be an interesting summary about one
fundamental branch of the theory of commutative rings with identity. More
precisely, throughout this memory we are going to introduce the power series
rings by means of their properties. Moreover, some of the aforementioned
properties verified by the power series rings will turn out to be enough in
order to characterize the power series ring.

The starting point will be the analysis of the general properties. Indeed,
it is easy to see that the majority, but not all, of those properties are inher-
ited from the properties of the ring of coefficients. Furthermore, if a ring
verifies certain properties, it will be automatically isomorphic to the power
series ring. But which ones are those properties? As we are about to see
in our main theorem, they are four: being Noetherian, local, complete and
regular. Moreover, if one removes the regularity condition, a weaker result
will be obtained: although the ring may not be isomorphic to the power
series ring, it will be reasonably close to the structure of a power series ring.
This is briefly what is stated in the Cohen structure theorem.

This masterpiece, which in synthesis describes and sometimes classi-
fies Noetherian, local and complete rings, was first developed by the young
American algebraist Irvin Sol Cohen (1917-1955), who was the Ph. D. stu-
dent of the famous mathematician Oscar Zariski (1899-1986), in 1946. It
was published in the article On the structure and ideal theory of complete
local rings in the Journal of the American Mathematical Society, and since
then the result has been widely known as Cohen’s structure theorem.

Another of the issues which are going to be developed in these notes is the
problem of the essentially unique factorization in a ring. For decades, many
algebraists struggled in order to figure out the minimal conditions for a ring
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to be a unique factorization domain. A result related with the mentioned
problem, which here is going to be presented as an immediate consequence
of the main theorem, was solved in an alternative way by Masayoshi Na-
gata (1927-2006) in 1958 and by Maurice Auslander (1926-1994) and David
Alvin Buchsbaum (1929-) in 1959. Indeed, they proved that any Noetherian
regular local ring is a unique factorization domain.

In Chapter 1 three of our four main algebraic properties are analysed.
Two of them have been studied in the degree (namely: locality and being
Noetherian), reason why they are not going to be highlighted. Furthermore,
we are going to focus on completeness. In order to speak about Cauchy
sequences a metric space (or at least uniformity) is required. Therefore, the
main goal of the chapter will be to define a metric over a ring and to describe
its main features.

Chapter 2 will be a simple description of the algebraic properties of
power series rings. As we have mentioned beforehand, the majority of those
properties are inherited from the ring where the coefficients are taken. How-
ever, we are going to outline the power series whose coefficients lie in a field,
since they are the objects of study of Cohen’s structure theorem. Finally,
we will study the essentially unique factorization in power series rings. Un-
fortunately, such study is not simple, but the reader is expected to become
acquainted with useful results and techniques.

In Chapter 3 we are going to return to one of those essential properties
of Cohen’s structure theorem: regularity. In particular, it is related to the
dimension of a local ring and both of them are concepts which have never
been covered during the degree. Hence, both notions will be introduced in
this chapter. They are strongly related to the set of prime ideals of a local
ring. We are going to introduce a number of properties of the dimension, as
well as to analyse its behaviour with respect to the number of generators,
the quotients etc. Furthermore, regular rings shall be introduced, which,
as their name implies, are rings with some ”good” property involving the
dimension. Such property will be helpful in order to define a set, called the
system of parameters, which will describe the unique maximal ideal of a
local ring and will perform a determinant role in our last theorem.

Finally, Chapter 4 presents the fundamental result, the one giving its
name to the dissertation: the Cohen structure theorem. Unfortunately,
even though the general result will be stated, we are going to study an eas-
ier case by making an additional assumption. Due to this extra condition,
the coefficients of the series will turn out to lie in a field.

In short, the theorem has three parts. When regularity is left aside, the
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initial ring will not be isomorphic to a power series ring. However, we shall
obtain a partial result that asserts that the initial ring will be close to be a
power series ring, either by being a quotient of such a power series ring (in
the most general case); or by admitting a subring which is isomorphic to a
power series ring (whenever the ring is an integral domain). Furthermore,
if one additionally requires the regularity condition, we will obtain the ex-
pected theorem: the ring is isomorphic to a power series ring. Moreover, in
all cases the number of variables of the power series ring will be related to
the dimension of the ring.

The author of these notes hopes that the reader will get a global vision
of the power series rings, as well as to provide a strong and powerful result
of Commutative Algebra. And, of course I also hope that, above all, the
reader will enjoy what is written through these pages.
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Chapter 1

Topological rings

Before starting it is important to remark that during these notes all the
rings are considered to be commutative and with identity.

Throughout this dissertation, four basic ring properties will be analyzed:
locality, Noetherian condition, completeness and regularity. Nevertheless,
locality is a well-known property. This chapter deals with two of the re-
maining properties. Firstly, we will revise the concept of Noetherian ring.
Secondly, we will define the completeness in one ring. In order to achieve
that goal we are using algebraic structures such as the Jacobson radical and
essential results as Krull’s intersection theorem.

1.1 Noetherian and Artinian rings

One of the four fundamental ring properties that appear in Cohen’s structure
theorem is that a ring R is Noetherian. In this section, we will define what
a Noetherian ring is, and we will give some alternative characterizations.
Their name was taken in honor of the mathematician Emmy Noether.

Definition 1.1.1. Let R be a ring. Then R is said to be Noetherian when
it satisfies the following equivalent conditions:

(i) R satisfies the ascending chain condition (acc). That is, whenever

a0 ⊆ a1 ⊆ · · · ⊆ an ⊆ . . .

is a chain of ideals of R, then there exists n0 ∈ N such that an = an0

for all n ≥ n0;

(ii) every non-empty set of ideals of R has a maximal member with respect
to inclusion; and

(iii) every ideal a of R is finitely generated.

1



2 1.2. Krull’s intersection theorem

We ought to refresh one result concerning Noetherian rings.

Proposition 1.1.2 (Hilbert). Let R be a Noetherian ring, then the polyno-
mial ring R[X1, . . . , Xn] is a Noetherian ring.

Since a similar result will be proved for power series in Chapter 2, we
can skip this proof. Furthermore, in a similar way we can define what an
Artinian ring is. Those rings were named after Emil Artin.

Definition 1.1.3. Let R be a ring. Then R is said to be Artinian when it
satisfies the following equivalent conditions:

(i) R satisfies the descending chain condition (dcc). That is, whenever

a0 ⊇ a1 ⊇ · · · ⊇ an ⊇ . . .

is a chain of ideals of R, then there exists n0 ∈ N such that an = an0

for all n ≥ n0 and

(ii) every non-empty set of ideals of R has a minimal member with respect
to inclusion.

1.2 Krull’s intersection theorem

In order to speak about completeness, so of Cauchy sequences, we need a
metric in the ring R (or at least uniformity). This section presents Krull’s
intersection theorem, a necessary result in order to define the desired metric.
First of all, let us recall the definition of local ring.

Definition 1.2.1. Let R be a non-trivial ring, then R is a local ring if it
has a unique maximal ideal m.

Hereafter, we are writing (R,m) to denote a local ring R and its unique
maximal ideal m. Now we will introduce an ideal of an arbitrary ring named
after Nathan Jacobson.

Definition 1.2.2. Let R be a ring. The Jacobson radical of R, denoted by
JacR, is the intersection of all the maximal ideals of R.

Remark 1.2.3. If (R,m) is a local ring, then R has a unique maximal ideal,
and thus JacR = m.

When R is the trivial ring, the convention concerning the intersection
of an empty family of ideals means that JacR = R. Moreover, notice that
Zorn’s lemma ensures the existence of maximal ideals in any non-trivial ring,
so it is possible to intersect them. Thus, the Jacobson radical is well-defined.

Moreover, since the intersection of ideals is again an ideal, it is straight-
forward that JacR is an ideal of R and in particular it is not the empty set.
The following proposition characterizes the Jacobson radical of R.
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Proposition 1.2.4. Let R be a ring and let r ∈ R. Then r ∈ JacR if and
only if, for any a ∈ R, 1− ar is a unit of R.

Proof. ⇒) Take r ∈ JacR and suppose by contradiction that there exists
a ∈ R such that 1−ar is not a unit of R. Then there exists a maximal ideal
m containing 1 − ar. However, by the definition of JacR, r ∈ JacR ⊆ m
and so

1 = (1− ar) + ar ∈ m,

which is a contradiction.

⇐) Suppose that for any a ∈ R, we have that 1− ar is a unit in R. Let
m be any maximal ideal, we shall see that r ∈ m. Suppose by contradiction
that r /∈ m for a particular m, in this case we would have that

m ( (m, r) ⊆ R,

and by the maximality of m, (m, r) = R. Hence, there exist b ∈ m and
a ∈ R such that b + ar = 1, and so b = 1 − ar is a unit of R, which is a
contradiction. Indeed, a unit 1 − ar cannot be contained in the maximal
ideal m, because otherwise m = R. This shows that r ∈ m for each maximal
ideal and so r ∈ JacR.

Let us now introduce two important results related to the Jacobson rad-
ical of a ring.

Lemma 1.2.5 (Nakayama). Let R be a ring, let M be a finitely generated
R-module and let a be an ideal of R such that a ⊆ JacR. If M = aM , then
M = {0}.

Proof. Suppose that M 6= {0} and look for a contradiction. Consider a min-
imal generating set L = {g1, . . . , gn} of M . This means that M is generated
by L but not by any proper subset of L. Since M 6= {0} then L is not the
empty set.

On the one hand, g1 ∈ aM and so there exist some a1, a2, . . . , an ∈ a ⊆ R
such that g1 =

∑n
i=1 aigi. Therefore,

(1− a1)g1 =

n∑
i=2

aigi.

Finally, since a1 ∈ a ⊆ JacR and 1 ∈ R, according to Proposition 1.2.4,
then 1− a1 is a unit in R, with inverse u say. Then

g1 = u(1− a1)g1 =
n∑
i=2

uaigi.

Thus M is generated by {g2, . . . , gn}, a proper subset of L, which is a con-
tradiction. Therefore, M = {0}.
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Notice that in a Noetherian ring R, any ideal is finitely generated as an
R-module. Thus, the above lemma can be applied in Noetherian rings.

Theorem 1.2.6 (Krull’s intersection theorem). Let R be a Noetherian ring
and let a be an ideal. Then

∞⋂
n=1

an = {0}

under either of the following hypotheses:

• R is an integral domain and a is a proper ideal.

• a is contained in the Jacobson radical of R.

Proof. Since R is a Noetherian ring a is finitely generated so assume a =
(a1, . . . , ak) and consider any a ∈

⋂∞
n=1 a

n. For each n there exists a ho-
mogeneous polynomial of degree n, say Pn, such that a = Pn(a1, . . . , ak).
Indeed, since a ∈ an, then

a =
l∑

i=1

xi1 . . . xin =
l∑

i=1

P̃i(a1, . . . , ak) = Pn(a1, . . . , ak),

where each xij ∈ {a1, . . . , ak} and each P̃i is a monomial of total degree n,

so Pn =
∑l

i=1 P̃i is a homogeneous polynomial of total degree n.

In the Noetherian ring R[X1, . . . , Xk] we consider the ascending chain
of ideals defined by Pj = (P1, . . . , Pj) for each j ∈ N. Since this chain is
eventually stationary we know that Pm = Pm+1 for some m. We claim that
we can write

Pm+1 = QmP1 + · · ·+Q1Pm,

where every Qi is a homogeneous polynomial of degree i. Indeed, we know
that there exist some polynomials Ri such that

Pm+1 = RmP1 + · · ·+R1Pm.

But Pm+1 is a homogeneous polynomial of degree m + 1, so for each Ri
we can discard the monomials of degree different to i and obtain a linear
combination of homogeneous polynomials.

In fact, for each i we can write Ri = Qi+Fi where Qi is the homogeneous
polynomial part of degree i and Fi = Ri −Qi. Then

Pm+1 = RmP1 + · · ·+R1Pm

= (Qm + Fm)P1 + · · ·+ (Q1 + F1)Pm

= QmP1 + · · ·+Q1Pm + FmP1 + · · ·+ F1Pm.
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Now Pm+1 and all the products QmP1, . . . , Q1Pm are homogeneous poly-
nomials of degree m + 1 and it is clear that FiPm−i+1 has no monomial
component of degree m+ 1. Thus, clearly FmP1 + · · ·+ F1Pm = 0 and the
assertion follows.

Evaluating the polynomial Pm+1 in (a1, . . . , ak) we get:

Pm+1(a1, . . . , ak) =
m∑
i=1

Qi(a1, . . . , ak)Pm+1−i(a1, . . . , ak)

= a
m∑
i=1

Qi(a1, . . . , ak).

Say r =
∑m

i=1Qi(a1, . . . , ak) ∈ a, then

a = a · r ⇐⇒ (1− r) · a = 0.

In the case when a ⊆ JacR, according to Proposition 1.2.4, then 1− r is
a unit, so a = 0. And when a is a proper ideal of an integral domain, firstly
r 6= 1, because r ∈ a ( R. Secondly a · (1− r) = 0 and r 6= 1 implies a = 0.
In both cases a = 0 and so ∩∞n=1a

n = {0}.

After presenting this result the reader ought to ask himself if all the con-
ditions are really necessary. The following example will clarify that doubt.

Remark 1.2.7. Let K1 and K2 be two fields, and consider the ring R =
K1 ×K2. Since (1, 0) · (0, 1) = (0, 0), R is not an integral domain. On the
other hand, JacR = {0} × {0}. Indeed, it is well-known that the ideals of
a product ring are products of ideals of each factor ring. Hence, R has four
ideals: the total one, the trivial one and the two maximal ideals K1 × {0}
and {0} ×K2.

K1 ×K2

{0} ×K2 K1 × {0}

{(0, 0)}

Finally consider the ideal a = K1 × {0}, which does not satisfy either of
the two possible hypotheses and observe that

∞⋂
n=1

(K1 × {0})n = K1 × {0}.

Hence, if R is not an integral domain and a is not contained in JacR, the
result does not follow.
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In the particular case when R is a local ring and m is its unique maximal
ideal we have the following corollary.

Corollary 1.2.8. Let (R,m) be a Noetherian local ring. Then

∞⋂
n=1

mn = {0}.

Proof. It is straightforward from Theorem 1.2.6, once we notice that when
R is a local ring then JacR = m.

1.3 The a-adic topology

Now we are ready to define a metric in a Noetherian ring. Moreover, the
structure we are defining is more than a usual metric, it is an ultrametric.

Definition 1.3.1. Let X be a set and let d : X × X → [0,∞) be a map
with the following properties:
(i) Identity of indiscernibles:

d(x, y) = 0 if and only if x = y.

(ii) Symmetry:
d(x, y) = d(y, x), ∀x, y ∈ X.

(iii) Ultrametric triangle inequality:

d(x, z) ≤ max{d(x, y), d(y, z)}, ∀x, y, z ∈ X.

Then (X, d) is said to be an ultrametric space.

It is clear that the third condition implies the usual triangle inequality.
Indeed, for any x, y, z ∈ X, it follows that

d(x, z) ≤ max{d(x, y), d(y, z)} ≤ d(x, y) + d(y, z).

Thus any ultrametric space is a metric space. However, the converse im-
plication in general is not true. For example, R with the usual metric is a
metric space, but it is not an ultrametric space.

Theorem 1.3.2. Let R be a Noetherian ring and a ⊆ R an ideal satisfying
Krull’s intersection theorem, thas is, ∩∞n=1a

n = {0}. Define

d : R×R→ [0,∞)

as follows: d(x, x) = 0 and when x 6= y set d(x, y) = 2−t where t ∈ N∪{0} is
the greatest integer such that x−y ∈ at (by convention assume that a0 = R).
Then d is an ultrametric on R.
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Proof. Firstly, we shall see that d is well defined when x 6= y. It is a
straightforward consequence of Krull’s intersection theorem. Since

a ⊇ a2 ⊇ · · · ⊇ ai ⊇ . . .

is a descending chain t must be finite. Otherwise it would mean that
x− y ∈ ∩∞n=1a

n = {0}, and so x = y which is a contradiction.

Secondly, we shall check that the three conditions which define an ultra-
metric are satisfied.

(i) d(x, y) = 0 if and only if x = y.

The if and only if is clear by definition. Indeed, when x 6= y, then there
exists an integer t ∈ N ∪ {0} such that d(x, y) = 2−t > 0.

(ii) d(x, y) = d(y, x) ∀x, y ∈ R.

Notice that x−y ∈ at if and only if y−x ∈ at. So clearly d(x, y) = d(y, x).

(iii) d(x, z) ≤ max {d(x, y), d(y, z)}, ∀ x, y, z ∈ R.

If there is some equality between x, y or z it is clear. Thus, consider that
d(x, y) = 2−t1 and d(y, z) = 2−t2 and suppose without loss of generality that
t2 ≥ t1. Then since at1 ⊇ at2 we have that y − z, x− y ∈ at1 . Hence,

x− z = (x− y) + (y − z) ∈ at1 ,

and so

d(x, z) ≤ 2−t1 = max{2−t1 , 2−t2} = max{d(x, y), d(y, z)}.

Once we have defined a distance on R, we can consider R as a topological
space with the topology induced by the metric d. This topology is known
as a-adic topology.

Remark 1.3.3. Note that the number 2 has been chosen rather arbitrarily,
any other number strictly bigger than 1 will define an equivalent distance.∗.

∗Two distances d1 and d2 over a set X are equivalent when there exist two positive
constants α and β such that

αd1(x, y) ≤ d2(x, y) ≤ βd1(x, y) ∀x, y ∈ X.
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Corollary 1.3.4. Let (R,m) be a Noetherian local ring. Define

d : R×R→ [0,∞)

as follows: d(x, x) = 0 and when x 6= y set d(x, y) = 2−t where t ∈ N ∪ {0}
is the greatest integer such that x − y ∈ mt (by convention assume that
m0 = R). Then d is an ultrametric on R.

In particular, the above topology on R is called the m-adic topology.
More precisely, once we have a distance, the a-adic topology is defined by
considering the following collection of open sets:

τR = {U ⊆ R | ∀x ∈ U ∃ε > 0 such that B(x, ε) ⊆ U}.

Let us now look for some of the properties of the a-adic topology.

Proposition 1.3.5. Let R be a Noetherian ring and let a ⊆ R be an ideal of
R satisfying Krull’s intersection theorem. Then R with the a-adic topology
is Hausdorff.

Proof. Any metric space is Hausdorff.

Furthermore, open and closed balls can be easily characterized using
ideals.

Lemma 1.3.6. Let R be a Noetherian ring with the a-adic topology, for
some suitable ideal a ⊆ R. Then for every natural number n ∈ N and
x ∈ R, we have

B(x, 2−n) = x+ an.

Proof. ⊆) Set y ∈ B(x, 2−n), then d(y, x) ≤ 2−n and so y − x ∈ an. Thus,
y ∈ x+ an.
⊇) Set y ∈ x + an. Then y − x ∈ an and so d(y, x) ≤ 2−n. Hence, y ∈
B(x, 2−n).

Lemma 1.3.7. Let R be a Noetherian ring with the a-adic topology, for
some suitable ideal a ⊆ R. Then for every natural number n ∈ N and
x ∈ R, we have

B(x, 2−n) = x+ an+1.

Proof. ⊆) Set y ∈ B(x, 2−n), then d(y, x) < 2−n and so y− x ∈ an+1. Thus,
y ∈ x+ an+1.
⊇) Set y ∈ x + an+1. Then y − x ∈ an+1 and so d(y, x) < 2−n. Hence,
y ∈ B(x, 2−n).

Lemma 1.3.8. Let R be a Noetherian ring with the a-adic topology, for
some suitable ideal a ⊆ R. Then U ⊆ R is open if and only if for each
x ∈ U there exists a natural number n ∈ N such that x+ an ⊆ U.
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Proof. Firstly notice that for any ε > 0, there exists n ∈ N such that
2−(n−1) ≤ ε. Then we shall prove both implications.

⇒) By definition U ⊆ R is open if and only if there exists an ε > 0 such
that B(x, ε) ⊆ U. Hence, by the above remark and Lemma 1.3.7 there exists
n ∈ N such that

x+ an = B(x, 2−n+1) ⊆ B(x, ε) ⊆ U.

⇐) According to Lemma 1.3.7 and the initial hypothesis, B(x, 2−n+1) =
x+ an ⊆ U. Hence, it is enough to take ε = 2−(n−1) > 0.

Therefore using the notation of ideals, the a-adic topology can also be
defined as:

τR = {U ⊆ R | ∀x ∈ U ∃n ∈ N such that x+ an ⊆ U}.

Naturally, all these properties stated and proved for the a-adic topology,
hold for the m-adic topology over a Noetherian local ring (R,m).

1.4 Completeness

Finally, in this section the notion of completeness in a ring will be analyzed
once we have the a-adic topology defined over the ring. General topology
results (applicable in any metric space), as well as particular properties
of the ultrametrics will be explained in order to apply them to the a-adic
topology. We should begin refreshing some concepts.

Definition 1.4.1. Let (X, d) be a metric space and let (an)n∈N ⊆ X be a
sequence. Then we say that (an)n∈N is convergent to the point a ∈ X if

∀ε > 0 ∃n0 ∈ N such that ∀n ≥ n0 an ∈ B(a, ε) (i.e. d(an, a) < ε).

We denote it as limn→∞ an = a.

Clearly the above condition, the one which defines a convergent sequence,
is equivalent to say that

∀k ∈ N ∃n0 ∈ N such that ∀n ≥ n0 d(an, a) < 2−k.

Moreover, when the set X has ring structure with an addition and a
multiplication, then those operations are completely compatible with the
limit.

Proposition 1.4.2. Let R be a ring with the a-adic metric, for a suitable
ideal a, and let (an)n∈N and (bn)n∈N be two convergent sequences. Then
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(i) limn→∞(an + bn) = limn→∞ an + limn→∞ bn.

(ii) limn→∞(an − bn) = limn→∞ an − limn→∞ bn.

(iii) limn→∞(an · bn) = limn→∞ an · limn→∞ bn.

Proof. Since the three cases are alike, here only case (ii) will be done as an
example. Let limn→∞ an = a and limn→∞ bn = b. Then choose k ∈ N

∃ n1 ∈ N such that ∀n ≥ n1 then d(an, a) < 2−k+1 ⇐⇒ an − a ∈ ak and

∃ n2 ∈ N such that ∀n ≥ n2 then d(bn, b) < 2−k+1 ⇐⇒ bn − b ∈ ak.

Thus, when n ≥ max{n1, n2}, then

(an− bn)− (a− b) = (an−a)− (bn− b) ∈ ak ⇐⇒ d(an− bn, a− b) < 2−k+1.

Hence, limn→∞(an − bn) = a− b.

Definition 1.4.3. Let (X, d) be a metric space and let (an)n∈N ⊆ X be a
sequence. Then (an)n∈N is said to be a Cauchy sequence when

∀ε > 0 there exists n0 ∈ N such that ∀n,m ≥ n0 d(an, am) < ε.

Clearly the above condition is equivalent to

∀k ∈ N there exists n0 ∈ N such that ∀n,m ≥ n0 d(a,am) < 2−k.

Proposition 1.4.4. Let (X, d) be a metric space and let (an)n∈N ⊆ X be a
convergent sequence. Then (an)n∈N is a Cauchy sequence.

Proof. Let (an)n∈N be a convergent sequence such that limn→∞ an = a. Then
for any ε > 0 there exists n0 ∈ N such that for all l ≥ n0, d(a, al) < ε/2.
Thus, when n,m ≥ n0,

d(an, am) ≤ d(an, a) + d(a, am) < ε.

Therefore, (an)n∈N is a Cauchy sequence.

The converse of this theorem is not true. Consider the sequence (1/n)n∈N
with the usual metric. This sequence is convergent in R, and so it is a
Cauchy sequence. However, in the metric space (0, 1] it is a Cauchy sequence
(because the distance between the terms is the same) but it is not convergent.

Definition 1.4.5. Let (X, d) be a metric space. Then (X, d) is said to be
a complete metric space when any Cauchy sequence is convergent.
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Examples 1.4.6. (i) It is well-known that Rn is complete with the usual
metric.
(ii) The power series ring in n indeterminates over a fieldK, K[[X1, . . . , Xn]],
is complete with respect the (X1, . . . , Xn)-adic topology. (See Proposition
2.3.4.)
(iii) The field of rational numbers, Q, is not complete with the usual metric.
For example,

((
1 + 1

n

)n)
n∈N has not a rational limit.

(iv) On the other hand, (0, 1) with the usual metric is not complete. Indeed,

the sequence
(

1
n+1

)
n∈N

is a Cauchy sequence, but it is not convergent.

We have given the definition of a Cauchy sequence in any metric space.
However, there is an alternative definition in an ultrametric space.

Proposition 1.4.7. Let (X, d) be an ultrametric space and let (an)n∈N ⊆ X
be a sequence. Assume that

∀ε > 0 there exists n0 ∈ N such that ∀n ≥ n0 d(an, an+1) < ε.

Then (an)n∈N is a Cauchy sequence.

Proof. By hypothesis:

∀ε > 0 ∃n0 ∈ N such that ∀n ≥ n0 d(an, an+1) < ε.

Take any m,n ≥ n0 (m > n). Since d is an ultrametric distance, then

d(am, an) ≤ max{d(am, am−1), . . . , d(an+1, an)} = d(an1+1, an1),

for some n1 ≥ n0. Hence, d(an1+1, an1) < ε. And so,

∀ε > 0 ∃n0 ∈ N such that ∀m,n ≥ n0 d(am, an) ≤ d(an1+1, an1) < ε.

Therefore, (an)n∈N is a Cauchy sequence.

Obviously, the converse of this result is true in any metric space. Hence,
the above proposition gives another characterization for Cauchy sequences
in ultrametric spaces.

However, the result is false in general metric spaces. Consider R with
the usual distance (which is not an ultrametric distance). Then

∑∞
n=1

1
n is

divergent, so the sequence of partial sums, Sn, is not convergent and since
(R, du) is complete neither it is Cauchy. This sequence is given by

Sn =

n∑
k=1

1

k
.
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Nevertheless, the weaker property holds:

lim
n→∞

du(Sn+1, Sn) = lim
n→∞

1

n+ 1
= 0.

With the following result the reader can appreciate how useful it is work-
ing with ultrametric distances in a complete ring. In fact, a necessary con-
dition for series convergence will be a sufficient condition.

Proposition 1.4.8. Let R be a complete ring with respect to the a-adic
topology, for some suitable ideal a ⊆ R. Then the series

∑∞
n=1 an is conver-

gent if and only if the general term tends to zero.

Proof. ⇒) As
∑∞

n=1 an is convergent then the sequence of partial sums, Sn,
is also convergent. Let limn→∞ Sn = S. For all n ≥ 2, then an = Sn−Sn−1,
so

lim
n→∞

an = lim
n→∞

(Sn − Sn−1) = lim
n→∞

Sn − lim
n→∞

Sn−1 = S − S = 0.

⇐) On the one hand,

lim
n→∞

(Sn − Sn−1) = lim
n→∞

an = 0.

That is,

∀k ∈ N ∃n0 ∈ N such that ∀n ≥ n0 then Sn − Sn−1 = an ∈ ak.

Hence,

∀k ∈ N ∃n0 ∈ N such that ∀n ≥ n0 then d(Sn, Sn−1) ≤ 2−k.

Thus,
lim
n→∞

d(Sn, Sn−1) = 0.

According to Proposition 1.4.7 the sequence (Sn)n∈N is Cauchy. Finally,
as the space is complete (Sn)n∈N, which is Cauchy, is also convergent, so the
series is convergent.

We know that not all metric spaces are complete. However, one way of
avoiding this problem is to construct a bigger metric space containing the
initial one and which actually is complete.

Definition 1.4.9. Let (X, d) be a metric space. A completion of (X, d) is
a metric space (X̂, d̂) such that

(i) (X̂, d̂) is a complete metric space.

(ii) There exists a map ϕ : X → X̂ such that

d(x, y) = d̂(ϕ(x), ϕ(y)) ∀x, y ∈ X.
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(iii) ϕ(X) is dense in X̂.

Notice that (ii) means that the initial metric space X is isometric to
ϕ(X), which is a dense subset of X̂.

Remark 1.4.10. In several examples, (X̂, d̂) will be a metric space such
that X ⊆ X̂ and d̂|X = d. That is, the application ϕ is actually the inclusion
ι : X → X̂ and X is dense in X̂.

As we shall see now, given an abstract metric space we will always be
able to embed it in a unique (up to isometry) complete metric space which
contains it. Morever, the new space will not be very big compared with the
initial one. The proof is technical and long, and we will also need a technical
lemma in order to prove it.

Lemma 1.4.11. Let (X, d) be a metric space and (an)n∈N and (bn)n∈N two
convergent sequences in X. Then

d
(

lim
n→∞

an, lim
n→∞

bn

)
= lim

n→∞
d(an, bn)

Proof. It is a consequence of the triangle inequality. On the one hand, we
have

lim
n→∞

d(an, bn) ≤ lim
n→∞

[
d
(
an, lim

n→∞
an

)
+ d

(
lim
n→∞

an, lim
n→∞

bn

)
+ d

(
bn, lim

n→∞
bn

)]
= d

(
lim
n→∞

an, lim
n→∞

bn

)
.

In a similar way,

d
(

lim
n→∞

an, lim
n→∞

bn

)
= lim

n→∞
d
(

lim
n→∞

an, lim
n→∞

bn

)
≤ lim

n→∞

[
d
(
an, lim

n→∞
an

)
+ d(an, bn) + d

(
bn, lim

n→∞
bn

)]
= lim

n→∞
d(an, bn).

Hence, we obtain the other inequality and the lemma is proved.

Theorem 1.4.12 (Completion theorem for metric spaces). Let (X, d) be a
metric (ultrametric) space. Then there exists a metric (ultrametric) space
(X̂, d̂) that is the completion of (X, d). Moreover, the space (X̂, d̂) is unique
up to isometry.

Proof. We will divide the proof into several steps.

Step 1 (Construction of (X̂, d̂)). In the set of all Cauchy sequences formed
by elements of X, we define the following relation,

(an)n∈N ∼ (bn)n∈N ⇐⇒ lim
n→∞

d(an, bn) = 0.
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It can be easily checked that ∼ is an equivalence relation. Hence, we can
define the quotient set

X̂ = {[(an)n∈N] | (an)n∈N is Cauchy}.

Now we may define a new metric on the set X̂. Let A = [(an)n∈N] and
B = [(bn)n∈N] be two elements in X̂. We define

d̂(A,B) = lim
n→∞

d(an, bn).

We will show that d̂ is a metric defined on X̂. Firstly, we have to check that
it is well-defined, that is, d̂(A,B) < +∞ and that it does not depend on the
representatives chosen. First we see that limn→∞ d(an, bn) < +∞, i.e., that
the sequence of distances d(an, bn) is convergent in R. Since R is complete,
it suffices to check that it is Cauchy. Being Cauchy is clear using the triangle
inequality and taking into account that (an)n∈N and (bn)n∈N are Cauchy :

d(an, bn)− d(am, bm) ≤ d(an, am) + d(am, bm) + d(am, bn)− d(am, bm)

= d(an, am) + d(bm, bn).

We also have to prove that d̂ does not depend on the sequences (an)n∈N
and (bn)n∈N chosen as representatives of A and B, respectively. Assume
that A = [(an)n∈N] = [(a′n)]n∈N and B = [(bn)n∈N] = [(b′n)]n∈N. Our aim
is to show that limn→∞ d(an, bn) = limn→∞ d(a′n, b

′
n). Using the triangle

inequality we get

lim
n→∞

d(an, bn) ≤ lim
n→∞

[d(an, a
′
n) + d(a′n, b

′
n) + d(b′n, bn)] = lim

n→∞
d(a′n, b

′
n).

Notice that in the last equality limn→∞ d(an, a
′
n) = limn→∞ d(bn, b

′
n) = 0

because (an)n∈N ∼ (a′n)n∈N and (bn)n∈N ∼ (b′n)n∈N. Now, by symmetry we
obtain the opposite inequality and hence the desired equality.

It is straightforward to prove that d̂ satisfies the axioms of a metric:

1) Since d(an, bn) ≥ 0 it is clear that d̂(A,B) ≥ 0.

2) We have the following chain of equivalences:

d̂(A,B) = 0 ⇐⇒ lim
n→∞

d(an, bn) = 0

⇐⇒ (an)n∈N ∼ (bn)n∈N ⇐⇒ A = B.

3) It is clear that d̂(A,B) = d̂(B,A) because d also satisfies the symmetric
condition.
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4) Let A = [(an)n∈N], B = [(bn)n∈N] and C = [(cn)n∈N] be three ele-
ments in X̂. By the triangle inequality for d, for each n ∈ N we have
d(an, bn) ≤ d(an, cn) + d(cn, bn). Taking limits, we get

d̂(A,B) ≤ d̂(A,C) + d̂(C,B).

(When d is an ultrametric the ultrametric triangle inequality for d̂ is
satisfied by the ultrametric triangle inequality for d.)

Thus (X̂, d̂) is a metric space. Moreover, when d is an ultrametric (X̂, d̂) is
an ultrametric space. The following steps are devoted to proving that the
new metric space satisfies the required properties.

Step 2. (X is isometric to a subspace of X̂). Define the map

ϕ : X → X̂

x 7→ ϕ(x) = [(x)n∈N]

It is well-defined, that is ϕ(x) ∈ X̂, because a constant sequence is always
Cauchy. Now we prove that ϕ is injective:

ϕ(x) = ϕ(y) =⇒ [(x)n∈N] = [(y)n∈N] =⇒ (x)n∈N ∼ (y)n∈N

=⇒ lim
n→∞

d(x, y) = 0 =⇒ d(x, y) = 0 =⇒ x = y.

Hence, ϕ restricted to its image is a bijection. Let X1 = ϕ(X) ⊆ X̂. Notice
that X1 is the set of equivalence classes which admit a constant sequence as
a representative.

We will prove that ϕ : X → X1 is an isometry. We only have to prove
that distances are preserved:

d̂(ϕ(x), ϕ(y)) = d̂ ([(x)n∈N], [(y)n∈N]) = lim
n→∞

d(x, y) = d(x, y).

Hence ϕ : X → X1 is an isometry and X is isometric to a subset of X̂.

Step 3. (X1 is dense in X̂). We have to prove that X̂ = X1. Of course, it
suffices to prove that X̂ ⊆ X1. Let A = [(an)n∈N] ∈ X̂. We shall see that
A ∈ X1 by constructing a sequence of elements in X1 that converges to A.

For each k ∈ N take the constant sequence (ak)n∈N and the equivalence
class Ak = [(ak)n∈N] ∈ X1. Our goal is to prove that (Ak)k∈N → A, that is:

∀ε > 0 ∃k0 ∈ N such that ∀k ≥ k0, d̂(Ak, A) = lim
n→∞

d(ak, an) ≤ ε

Set ε > 0. Since (an)n∈N is Cauchy, there exists k0 ∈ N such that for all
k, n ≥ k0, d(ak, an) < ε. Now, taking limits in the last inequality as n goes
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to infinity, it follows that (Ak)k∈N → A, as we were required.

Step 4. (X̂ is complete). Let (An)n∈N ⊆ X̂ be a Cauchy sequence. Our goal
is to show that it converges in X̂. Now, for each k ∈ N, since Ak ∈ X̂ = X1,
we have that B

(
Ak,

1
k

)
∩X1 6= ∅. Pick Bk ∈ B

(
Ak,

1
k

)
∩X1. Since Bk ∈ X1,

choose a constant representative:

Bk = [(bk)n∈N].

Now we define a new element,

B = [(bn)n∈N].

We will show that our initial sequence (An)n∈N converges to B. We have to
prove that the element B ∈ X̂ is well-defined, i.e. that the sequence (bn)n∈N
is Cauchy. Using the triangular inequality,

d(bp, bq) = lim
n→∞

d(bp, bq) = d̂(Bp, Bq) ≤ d̂(Bp, Ap) + d̂(Ap, Aq) + d̂(Aq, Bq)

<
1

p
+

1

q
+ d̂(Ap, Aq).

Now, since the sequence (An)n∈N is Cauchy, it is clear that the expression
above is arbitrarily small when p and q are big enough; thus the sequence
(bn)n∈N is Cauchy.

Finally, we see that (An)n∈N → B. Indeed, we have

d̂(An, B) ≤ d̂(An, Bn) + d̂(Bn, B) <
1

n
+ lim
k→∞

d(bn, bk).

And since (bn)n∈N is Cauchy, it is clear that d̂(An, B) is arbitrarily small for
n big enough, that is, (An)n∈N → B and (X̂, d̂) is complete, as we wanted
to prove.

Step 5. (Uniqueness). Assume that (X ′, d′) is another completion of (X, d).
Then there exists a subset of X ′, say X2, such that X2 is isometric to X.
Since being isometric is a equivalence relation, we conclude that X1 and X2

are isometric. Call ψ the isometry between X1 and X2.

Now we may define an isometry between X̂ and X ′. To do so, let A ∈
X̂. Since X1 is dense, there exists a sequence (Ak)k∈N ⊆ X1 such that
(Ak)k∈N → A. Now, since (Ak)k∈N is convergent, it is Cauchy, and so
the sequence of images (ψ(Ak))k∈N is also Cauchy in X2 (because ψ is an
isometry).
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By completeness, (ψ(Ak))k∈N ⊆ X ′ is also convergent. Let A′ ∈ X ′ be
its limit. Then let

Φ: X̂ → X ′

A 7→ Φ(A) = A′

We claim that Φ is an isometry. We have to check that Φ is well-defined,
in the sense of A′ being independent of the sequence (Ak)k∈N. Assume
that we have two sequences (Ak)k∈N and (Ãk)k∈N converging to A. Let
A′ = limk→∞ ψ(Ak). Our goal is to see that A′ = limk→∞ ψ(Ãk), and this
follows from the triangle inequality:

lim
k→∞

d′(ψ(Ãk), A
′) ≤ lim

k→∞
[d′(ψ(Ãk), ψ(Ak)) + d′(ψ(Ak), A

′)]

= lim
k→∞

d′(ψ(Ãk), ψ(Ak)) = lim
k→∞

d̂(Ak, Ãk)

≤ lim
k→∞

[d̂(Ak, A) + d̂(A, Ãk)] = 0.

To show that Φ is bijective, it suffices if we build an inverse. Of course,
in the process of defining Φ we could have started from (X ′, d′) instead of
(X̂, d̂), obtaining Ψ, which is Φ−1. Hence Φ is bijective.

Using Lemma 1.4.11, it is clear that distances are preserved:

d′(Φ(A),Φ(B)) = d′(A′, B′) = d′
(

lim
k→∞

ψ(Ak), lim
k→∞

ψ(Bk)

)
= lim

k→∞
d′ (ψ(Ak), ψ(Bk)) = lim

k→∞
d̂(Ak, Bk)

= d̂

(
lim
k→∞

Ak, lim
k→∞

Bk

)
= d̂(A,B).

This shows that Φ is an isometry and hence the uniqueness is proved.

Examples 1.4.13. (i) The field of rational numbers, Q, is not complete
with the usual metric. However, its completion is the field of real
numbers R.

(ii) Since K[X] is an integral domain, we can define the (X)-adic metric
on it. One of the motivations in order to define the power series ring
R[[X]] is that this ring is the completion of R[X] with respect to the
(X)-adic metric. However, this fact is going to be studied at length in
Chapter 2.





Chapter 2

Power series rings

We all have the intuitive idea of what a power series in several variables
with coefficients in a ring is. Let X1, . . . , Xn be n indeterminates and let R
be a ring. Then we denote by R[[X1, . . . , Xn]] the power series ring over R,
whose elements are described as formal sums of the form

a(X1, . . . , Xn) =
∑

i1,...,in≥0
ai1,...,inX

i1
1 . . . Xin

n ,

where each i1, . . . , in is in N ∪ {0} and ai1,...,in is in R.

The purpose of this chapter is to formalize this idea and present the
main properties of that set which, as we will see, has got ring structure. In
addition, we will also focus on the particular case when the ring R is a field.

2.1 Power series ring

We start by giving the formal definition of the power series ring and seeing
that it really has ring structure.

Definition 2.1.1. Let X1, . . . , Xn be indeterminates. Then a monomial is
a product of indeterminates of the type Xi1

1 . . . Xin
n where each ij ∈ N∪{0}.

Notice that there is a bijection between the set of monomials and the set
(N ∪ {0})n, and so monomials can be interpreted as tuples of non-negative
integers.

Remark 2.1.2. Naturally we assume that X0
i = 1 ∈ R, for any i = 1 . . . , n.

Definition 2.1.3. Let X1, . . . , Xn be n indeterminates and let R be a ring.
Then a power series is a formal sum:

a(X1, . . . , Xn) =
∑

i1,...,in≥0
ai1,...,inX

i1
1 . . . Xin

n ,

where each i1, . . . , in is in N ∪ {0} and ai1,...,in is in R.

19
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Definition 2.1.4. Let a(X1, . . . , Xn) be a power series. Then the term
a0,...,0 is the constant term of a(X1, . . . , Xn).

Remark 2.1.5. Let R be a ring. By definition two power series in n in-
determinates and over R are the same element if and only if they have the
same coefficients. That is,∑

i1,...,in≥0
ai1,...,inX

i1
1 . . . Xin

n =
∑

i1,...,in≥0
bi1,...,inX

i1
1 . . . Xin

n

if and only if

ai1,...,in = bi1,...,in ∀i1, . . . , in ∈ N ∪ {0}.

In particular, a power series a = a(X1, . . . , Xn) is zero if and only if each
coefficient of a is zero. That is,

a =
∑

i1,...,in≥0
ai1,...,inX

i1
1 . . . Xin

n = 0 ⇐⇒ ai1,...,in = 0 ∀ij .

Moreover, R[[X1, . . . , Xn]] is the collection of all power series in n inde-
terminates and with coefficients in R and it is called the power series ring
over R in the indeterminates X1, . . . , Xn. We have called it ”ring”, but has
R[[X1, . . . , Xn]] got ring structure? Of course it has.

Let a = a(X1, . . . , Xn) and b = b(X1, . . . , Xn) be two power series, it is
easy to define the sum a+ b and the product a · b as follows.

• To add two power series we just add their coefficients;

(a+ b)(X1, . . . , Xn) =
∑

i1,...,in≥0
(ai1,...,in + bi1,...,in)Xi1

1 . . . Xin
n .

• To multiply two power series we proceed as follows;

(a · b)(X1, . . . , Xn) =
∑

i1,...,in≥0
ci1,...,inX

i1
1 . . . Xin

n ,

where

ci1,...,in =
∑

j1+k1=i1
···

jn+kn=in

aj1,...,jnbk1,...,kn .

Once we have defined those two operations in R[[X1, . . . , Xn]], we should
prove that (R[[X1, . . . , Xn]],+, ·) is a ring.

Proposition 2.1.6. A power series ring R[[X1, . . . , Xn]] in n variables over
R is a ring with the two operations described as preceding.
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Proof. The proof is straightforward using that R is a ring. Furthermore,
since R is a commutative ring, then R[[X1, . . . , Xn]] is also commutative.

Finally the identity 1 is a power series. Indeed, 1 is a monomial with
i1 = · · · = in = 0. Hence, R[[X1, . . . , Xn]] is a commutative ring with
identity.

Since R is a general ring we might not have a metric defined on it and so
we can not speak about convergence of power series. However, the definition
above is just a formal definition. Furthermore, notice that the power series
are just infinite ”linear combinations” of monomials with coefficients in R.

Moreover, evaluating a monomial in a tuple (a1, . . . , an) ∈ Rn is just an
map which maps Xi1

1 . . . Xin
n
∼= (i1, . . . , in) into ai11 . . . a

in
n ∈ R.

Furthermore, what is evaluating a power series? That question may not
have sense because firstly in order to speak about evaluations, i.e., conver-
gence of infinite sums we should define a metric. Moreover, once we have a
metric, to evaluate a power series at the tuple (a1, . . . , an) ∈ Rn is making
an infinite sum with the evaluated monomials. However, the preceding sum
may not converge with respect to our metric, so in this case we can not talk
about evaluating power series. When we have got a metric and the infinite
sum of evaluated monomials converges with respect to that metric, we can
speak about evaluating some power series.

Let a(X1, . . . , Xn) ∈ R[[X1, . . . , Xn]] be a power series, then its domain
of convergence is the subset of Rn where the power series a(X1, . . . , Xn) can
be evaluated. Anyway, this is not the main objective of this dissertation.

Let us provide some examples of power series.

Examples 2.1.7. (i) Any polynomial in R[X1, . . . , Xn] can be seen as a
power series in R[[X1, . . . , Xn]]. Indeed, for a polynomial of total degree d
consider that ai1,...,in = 0 when i1 + · · ·+ in > d. Hence, R[X1, . . . , Xn] will
be a subring of R[[X1, . . . , Xn]].
(ii) The elements of R[[X]] and C[[X]] are power series in one indeterminate,
which have been seen in real and complex analysis respectively.

2.2 Main properties of the power series ring

Let us see what the main properties of the ring of power series are or how
the properties of the initial ring R are inherited by the power series ring. In
many of the proofs in this section we will proceed in the same way. First
we will prove the property for a single indeterminate, and later we will
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generalize it to the case of n indeterminates. We start by describing the
units of the power series ring.

Lemma 2.2.1. Let R be a ring and let R[[X]] be a power series ring in one
indeterminate. Then the units of R[[X]] are exactly the power series whose
constant term is a unit in R. That is,

a(X) =

∞∑
i=0

aiX
i ∈ U(R[[X]]) ⇐⇒ a0 ∈ U(R).

Proof. ⇒) Suppose that a(X) ∈ R[[X]] is a unit, then there exists another
power series b(X) ∈ R[[X]] such that a(X) · b(X) = 1. By comparing con-
stant terms, we get a0b0 = 1 and so a0 is a unit in R.

⇐) Set a = a(X1, . . . , Xn) =
∑∞

i=0 aiX
i ∈ R[[X]] such that a0 ∈ U(R).

We shall construct the inverse of a, say b =
∑∞

i=0 biX
i ∈ R[[X]].

Since a0 is a unit in R set b0 = a−10 . Thus, if a · b =
∑∞

i=0 ciX
i, then

c0 = a0b0 = a0a
−1
0 = 1.

Moreover, define inductively

bn = −a−10

n∑
k=1

akbn−k ∀n ≥ 1.

Then

cn = a0bn + a1bn−1 + · · ·+ anb0

= −a0a−10 (a1bn−1 + · · ·+ anb0) + a1bn−1 + · · ·+ anb0

= −(a1bn−1 + · · ·+ anb0) + a1bn−1 + · · ·+ anb0 = 0 ∀n ≥ 1.

Therefore, a · b = 1 +
∑∞

i=1 0 ·Xi = 1 and so b is the inverse of a.

Corollary 2.2.2. Let R be a ring and let R[[X1, . . . , Xn]] be a power series
ring in n indeterminates. Then the units of R[[X1, . . . , Xn]] are the power
series whose constant term is a unit in R.

Proof. We proceed by induction on n. The case when n = 1 is proved
in Lemma 2.2.1. Suppose that the statement is true for n − 1. Denote
Rn−1 = R[[X1, . . . , Xn−1]] and consider

a = a(X1, . . . , Xn) ∈ R[[X1, . . . Xn]] ∼= R[[X1, . . . , Xn−1]][[Xn]] = Rn−1[[Xn]].

Then

a =
∑

i1,...,in≥0
ai1,...,inX

i1
1 . . . Xin

n =

∞∑
i=0

ai(X1, . . . , Xn−1)X
i
n,
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where ai(X1, . . . , Xn−1) ∈ Rn−1 for all i ≥ 0. Since the statement is true for
the case n = 1, then

a ∈ U(Rn−1[[Xn]]) ⇐⇒ a0(X1, . . . , Xn−1) ∈ U(Rn−1).

Therefore, by induction hypothesis a0(X1, . . . , Xn−1) ∈ U(Rn−1) if and only
if a0,...,0 ∈ U(R). Thus, a is a unit in R[[X1, . . . , Xn]] if and only if a0,...,0 is
a unit in R.

We can continue with the property of being an integral domain

Lemma 2.2.3. Let R be a ring and let R[[X]] be a power series ring in one
indeterminate. Then R[[X]] is an integral domain if and only if R is an
integral domain.

Proof. ⇒) Suppose that R[[X]] is an integral domain. Thus R ⊆ R[[X]] is
a subring of an integral domain, so R is an integral domain.
⇐) Suppose that R is an integral domain and consider two power series
a(X), b(X) which are not 0. Then call ai and bj to the smallest non-zero
terms of a(X) and b(X) respectively. Then

a(X) · b(X) = aibjX
i+j +

∞∑
k=i+j+1

ckX
k.

Since R is an integral domain then aibj 6= 0. Hence, a(X) · b(X) 6= 0.

Corollary 2.2.4. Let R be a ring. Then R[[X1, . . . , Xn]] is an integral
domain if and only if R is an integral domain.

Proof. The only if implication is clear. For the if implication we proceed by
induction on n. Lemma 2.2.3 proves the result for the case n = 1. Supposing
that it holds for n−1, then Rn−1 = R[[X1, . . . , Xn−1]] is an integral domain.
Therefore,

R[[X1, · · · , Xn]] ∼= R[[X1, . . . , Xn−1]][[Xn]] = Rn−1[[Xn]]

is an integral domain, applying again Lemma 2.2.3.

Being Noetherian is also inherited in a similar way.

Definition 2.2.5. Let R be a ring and let R[[X]] be a power series ring in
one variable. Let

a(X) =

∞∑
i=0

aiX
i ∈ R[[X]]

be a non-zero power series. Then the order of a is the lowest integer i ∈ N
such that ai 6= 0. Moreover, ai is called the starting term of a(X).
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Clearly all the non-zero power series in one variable have an order and
it is unique. Clearly, for a power series of order i then aj = 0 for any j < i.

Proposition 2.2.6. Let R be a Noetherian ring. Then a power series ring
R[[X]] in one variable is also a Noetherian ring.

Proof. This proof repeats the main ideas of the proof done by Hilbert for
polynomials. We shall prove that any ideal of R[[X]] can be generated by
a finite number of elements. Let A be an ideal of R[[X]] and define the
following sets

ai = {ai ∈ R | ai is the coefficient of Xi for some a ∈ A s.t. aj = 0 ∀j < i}.

It is easy to verify that ai is an ideal of R and ai ⊆ ai+1. Indeed, if a ∈ ai,
then there exists a power series

a(X) = aXi +

∞∑
j=i+1

ajX
j ∈ A.

Thus, since A is an ideal

Xa(X) = aXi+1 +
∞∑

j=i+2

ajX
j ∈ A,

and by definition a ∈ ai+1.

Since R is Noetherian the following ascending chain of ideals of R stops
for some n0 ∈ N,

a0 ⊆ a1 ⊆ · · · ⊆ an0−1 ⊆ an0 = an0+1 = . . .

Furthermore, for each ideal ai there exists a finite generating set Gi such
that ai = (Gi). Then for each element aij in Gi we take one series, gij ,
whose minimum coefficient is aij . Then we consider the collection of those
power series, call it Fi. Since |Fi| = |Gi| both sets are finite. Now we define
F =

⋃n0
i=0 Fi which is still finite. We shall prove that F generates A. For

notation simplicity say |F | = l and F = {g1 . . . , gl}.

Given any non-zero series f = f(X) ∈ A of order d ≤ n0 and starting
term ad, then ad ∈ ad = (Gd) and so ad = c1s1 + · · ·+ cmsm for some ci ∈ R
and for some si ∈ Gd. For each i = 1, . . . ,m choose a gi ∈ Fd ⊆ F such that
the starting term of gi is si. Then the order of

f − c1g1 − · · · − cmgm

is at least d+ 1. That is, there exist some c
(d)
i ∈ R such that the order of

f − c(d)1 g1 − · · · − c(d)l gl
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is at least d+ 1. Then proceeding inductively for each n = d+ 1, . . . , n0 we
can consider the combination

f −
n∑
j=d

c
(j)
1 g1 − · · · −

n∑
j=d

c
(j)
l gl,

which is zero or has order greater than n + 1. Hence we can assume that
d > n0. Then ad ∈ ad = an0 = (Gn0). Thus as before there exists a series

c
(d)
1 g1 + · · ·+ c

(d)
l gl of order n0 and starting term ad. Therefore, the order of

f −Xd−n0(c
(d)
1 g1 + · · ·+ c

(d)
l gl)

is greater than d + 1. Furthermore, let f be a non-zero power series of
order d. Then, for each i = 1, . . . , l, using the preceding coefficients and
proceeding by induction we define the power series

hi(X) =

n0∑
j=d

c
(j)
i +

∞∑
j=n0+1

c
(j)
i Xj−n0 . (2.1)

Then using 2.1 f can be expressed as combination of g1, . . . , gl as

f = h1g1 + · · ·+ hlgl.

Hence A is finitely generated and R[[X]] is Noetherian.

Corollary 2.2.7. Let R be a Noetherian ring. Then a power series ring
R[[X1, . . . , Xn]] in n indeterminates is also a Noetherian ring.

Proof. Proposition 2.2.6 gives the result for n = 1. Then suppose induc-
tively that the statement holds for n− 1, so Rn−1 = R[[X1, . . . , Xn−1]] is a
Noetherian ring. Thus, according to 2.2.6 R[[X1, . . . , Xn]] ∼= Rn−1[[Xn]] is
also a Noetherian ring.

When R is Noetherian any ideal of the power series ring can be generated
by a finite number of elements. However, stronger properties such as being a
principal ideal domain or being a Euclidean domain are not inherited in the
same way. Use the power series ring Z[[X]] as a counterexample. Although
Z is a Euclidean domain (and therefore a PID) Z[[X]] is not a PID (and
neither a ED). Indeed, the ideal (2, X) can not be generated with less than
two generators.

Suppose by contradiction that (2, X) can be generated with a unique
power series c(X) ∈ Z[[X]]. Then there exist a(X), b(X) ∈ Z[[X]] such that
2 = a(X)c(X) and X = b(X)c(X). Then considering the constant term of
the first product:

a0c0 = 2 =⇒ c0 6= 0,
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and considering the two first coefficients of the power series X:

b0c0 = 0 =⇒ b0 = 0,

b0c1 + b1c0 = b1c0 = 1 =⇒ c0 ∈ U(Z) = {±1}.

Furthermore, since c0 ∈ U(Z) according to Lemma 2.2.1 the power series
c(X) is a unit in Z[[X]] and so (2, X) = (c(X)) = Z[[X]]. Therefore, 1 ∈
(2, X). Then there exist two power series d(X), e(X) ∈ Z[[X]] such that

1 = 2d(X) +Xe(X) =⇒ 1 = 2d0 + 0e0 = 2d0 =⇒ d0 = 1/2.

However this is a contradiction, because d0 must be an integer.

2.3 Power series over a field

Within power series rings, those defined over a field K are particularly rel-
evant. Although some of its properties do not differ in excess of those seen
with whole generality, they do present interesting properties in terms of lo-
cality and completeness with respect to the a-adic topology, for a suitable
ideal a. Let us first state the properties that do not vary.

Lemma 2.3.1. Let K be a field. Then the units of the power series ring
K[[X1, . . . , Xn]] are the power series with non-zero constant term.

Proof. In any field U(K) = K \ {0}. Then the result is immediate from
Corollary 2.2.2.

Proposition 2.3.2. Let K be a field. Then

(i) K[[X1, . . . , Xn]] is an integral domain and

(ii) K[[X1, . . . , Xn]] is a Noetherian ring.

Proof. (i) Since any field is an integral domain, it is a straightforward
consequence of Corollary 2.2.4.

(ii) Since any field is Noetherian, it is a straightforward consequence of
Corollary 2.2.7.

Let us look at two interesting properties: locality and completeness.

Proposition 2.3.3. Let K be a field. Then K[[X1, . . . , Xn]] is a local ring
and its unique maximal ideal is (X1, . . . , Xn).
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Proof. We have divided the proof into two steps. Say Rn = K[[X1, . . . , Xn]]
and m = (X1, . . . , Xn).

First of all, we shall prove that m is a maximal ideal of Rn. However,
naturally the quotient Rn/m is isomorphic to K, which is a field (See Exer-
cise 2). Thus, m is a maximal ideal.

Finally we shall see that Rn \ m = U(R), and hence m is the unique
maximal ideal of Rn. Since

(X1, . . . , Xn) = {a ∈ Rn | a0,...,0 6= 0}

the assertion follows. Indeed, any element of Rn outside m has non-zero
constant term and so it is a unit according to Lemma 2.3.1.

Notice that in the ring of polynomials this property is not true. That is,
even when K is field, K[X] is not a local ring. Indeed, all the ideals of the
form (X − a) where a ∈ K are maximal ideals.

Let us examine the completeness of the power series ring.

Proposition 2.3.4. A power series ring K[[X1, . . . , Xn]] in n indetermi-
nates and over a field K is complete with the (X1, . . . , Xn)-adic topology.

Proof. For notation simplicity denote Rn = K[[X1, . . . , Xn]] and denote
m = (X1, . . . , Xn) its unique maximal ideal. Let (ak)k∈N ⊆ Rn be a Cauchy
sequence, we shall prove that the sequence is convergent. We have divided
the proof into two steps.

Step 1 We will construct the possible limit a ∈ Rn. Since (ak)k∈N is a
Cauchy sequence for each k ∈ N there exists an N(k) ∈ N such that, when
m ≥ N(k) then

am − aN(k) ∈ mk, (2.2)

which is equivalent to

d(am, aN(k)) < 2−k+1.

We can choose the numbers N(k) so that

N(1) ≤ N(2) ≤ · · · ≤ N(k) ≤ . . .

Now for each b ∈ Rn let Pk(b) be the homegeneous polynomial part of b
with total degree k, that is, the sum of the monomials of b such that their
total degree is exactly k. Then we set

a = P1(aN(1)) + P2(aN(2)) + · · ·+ Pk(aN(k)) + · · · ∈ Rn.
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Step 2. We shall see that the sequence (ak)k∈N converges to a in Rn. First
of all notice that for any m > 0, Pr(am − a) = Pr(am − aN(r)). Indeed,

Pr(am − a) = Pr(am)− Pr(a) = Pr(am)− Pr(aN(r)) = Pr(am − aN(r)).

Then for any k ∈ N, there exists k0 = N(k) ∈ N such that when m ≥ k0
then

Pr(am − a) = Pr(am − aN(r)) = 0 ∀1 ≤ r < k,

by using 2.2. Therefore, am − a ∈ mk and so d(am, a) < 2−k+1. Thus,
(ak)k∈N converges to a in Rn.

Therefore any Cauchy sequence is convergent in Rn, so Rn is a complete
space with the m-adic metric.

Lemma 2.3.5. Let K be a field, let d be the distance defined in a power se-
ries ring K[[X1, . . . , Xn]] with respect to the (X1, . . . , Xn)-adic topology and
let d be the distance defined in K[X1, . . . , Xn] with respect to the (X1, . . . , Xn)-
adic topology. Then for any p, q ∈ K[X1, . . . , Xn] it follows d(p, q) = d(p, q).

Proof. For notation simplicity from now on we denote: Tn = K[X1, . . . , Xn],
Rn = K[[X1, . . . , Xn]], m = (X1, . . . , Xn)Tn and m = (X1, . . . , Xn)Rn .

On the one hand, since m ⊆ m, then mk ⊆ mk. Thus, if d(p, q) = 2−k,
then p− q ∈ mk ⊆ mk and so d(p, q) ≤ 2−k = d(p, q).

On the other hand, suppose by contradiction that d(p, q) < 2−k, then
there exists a natural number l ∈ N such that k < l and p− q ∈ ml. That is,

p− q =
∑
i

aimi,

where ai ∈ Rn and each mi is a monomial of degree l in the indeterminates
X1, . . . , Xn. That is, Pr(mi) = 0 for any r 6= l and mi ∈ ml for any
i = 1, . . . , n. Since p − q ∈ K[X1, . . . , Xn] is a polynomial of total degree
say m, then Pr(p− q) = 0 for any r > m. Hence

p− q =
m∑
r=0

∑
i

Pr(aimi) +
∑
r>m

∑
i

Pr(aimi)

=
m∑
r=0

∑
i

Pr(aimi) =
m−l∑
r=0

∑
i

Pr(ai)mi.

Since Pr(ai) ∈ K[X1, . . . , Xn] and mi ∈ ml, then p − q ∈ ml. Therefore,
d(p, q) ≤ 2−l < 2−k, which is a contradiction with the initial assumption.
Hence, d(p, q) = 2−k = d(p, q).
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Proposition 2.3.6. Let K be a field. The completion of K[X1, . . . , Xn]
with respect to the (X1, . . . , Xn)-adic topology is K[[X1, . . . , Xn]].

Proof. For notation simplicity we denote as before: Tn = K[X1, . . . , Xn],
Rn = K[[X1, . . . , Xn]], m = (X1, . . . , Xn)Tn and m = (X1, . . . , Xn)Rn . The
proof is completed by showing the properties which characterize the com-
pletion:

1) The ring K[[X1, . . . , Xn]] is complete with respect to the m-adic topol-
ogy, as we have seen in Proposition 2.3.4.

2) There exists the inclusion map ι : K[X1, . . . , Xn] → K[[X1, . . . , Xn]]
where according to Lemma 2.3.5 d(p, q) = d(p, q) for any p, q ∈ Tn, (d is the
distance associated to the m-adic topology and d is the distance associated
to the m-adic topology).

3) The ring ι(K[X1, . . . , Xn]) = K[X1, . . . , Xn] is dense in the power
series ring K[[X1, . . . , Xn]]. Let a ∈ Rn, then for any k ∈ N there exists a
p ∈ K[X1, . . . Xn] such that d(a, p) < 2−k. Indeed, for a fixed k ∈ N consider
the polynomial

p = P1(a) + · · ·+ Pk(a) ∈ K[X1, . . . , Xn].

Then Pr(a − p) = Pr(a) − Pr(p) = 0 ∀1 ≤ r ≤ k, and so a − p ∈ mk+1.
Thus, d(a, p) ≤ 2−(k+1) < 2−k. Therefore Tn is dense in Rn.

An essential property of power series rings over a field is how easy it is
to define homomorphisms between the power series ring and any K-algebra,
just by giving the image of each indeterminate. We start by proving a
technical lemma.

Lemma 2.3.7. Let A and B be two K-algebras, let ϕ : A → B be a con-
tinuous K-algebra homomorphism and let

∑∞
k=0 ak be a convergent series.

Suppose that
∑∞

k=0 ϕ(ak) is a convergent series. Then

ϕ

( ∞∑
k=0

ak

)
=
∞∑
k=0

ϕ(ak).

Remark 2.3.8. In the above lemma the series convergence and the conti-
nuity of ϕ are considered with respect to the a-adic topology in A and with
respect to the b-adic topology in B, for two ideals a of A and b of B which
satisfy Krull’s intersection theorem.

Proof. Let Sn be the nth partial sum of the series
∑∞

k=0 ak. Since ϕ is linear,
then

ϕ(Sn) = ϕ

(
n∑
k=0

ak

)
=

n∑
k=0

ϕ(ak).
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Moroever, since the second series is convergent in the space (B, d) then

∀ε > 0 ∃n0 ∈ N s.t. when n ≥ n0 then d

(
n∑
k=0

ϕ(ak),
∞∑
k=0

ϕ(ak)

)
< ε.

Hence, for any n ≥ n0 by the triangle inequality

d

(
ϕ(Sn),

∞∑
k=0

ϕ(ak)

)
≤ d

(
ϕ(Sn),

n∑
k=0

ϕ(ak)

)
+ d

(
n∑
k=0

ϕ(ak),
∞∑
k=0

ϕ(ak)

)

≤ 0 + d

(
n∑
k=0

ϕ(ak),
∞∑
k=0

ϕ(ak

)
< ε.

Therefore, limn→∞ ϕ(Sn) =
∑∞

k=0 ϕ(ak). Finally since ϕ is continuous we
have that

∞∑
k=0

ϕ(ak) = lim
n→∞

ϕ(Sn) = ϕ
(

lim
n→∞

Sn

)
= ϕ

( ∞∑
k=0

ak

)
.

Proposition 2.3.9. Let K be field. Then K[[X1, . . . , Xn]] is a K-algebra.

Proof. It is straightforward from the definition of K-algebra.

Proposition 2.3.10 (Universal property of power series algebras). Let K
be a field and let B be a K-algebra, which is complete with the b-adic topol-
ogy, for some ideal b of B that satisfies the Krull’s intersection theorem.
Then if we choose b1, . . . , bn ∈ b, there exists a unique continuous K-algebra
homomorphism ϕ : K[[X1, . . . , Xn]] → B, such that ϕ(Xi) = bi for any
i = 1, . . . , n.

In particular, this is the image of a general power series by the homo-
morphism ϕ:∑

i1,...,in≥0
λi0,...,inX

i1
1 . . . Xin

n 7→ϕ
∑

i1,...,in≥0
λi0,...,inb

i1
1 . . . b

in
n ,

that is, in order to obtain the image it is enough to substitute bi for each
indeterminate Xi. We say that the map ϕ is an evaluation homomorphism.

Proof. First of all we shall see that ϕ is well-defined. On the one hand,
since the representation of one series a = a(X1, . . . , Xn) in K[[X1, . . . , Xn]]
is unique, there is no doubt what the image of a by ϕ is. On the other hand,
since B is complete with the b-adic topology, then the image of one series is
convergent in B with respect to the b-adic topology.
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Indeed, when i1 + · · ·+ in = m, then λi0,...,inb
ii
1 . . . b

in
n ∈ bm. Thus, using

Krull’s intersection theorem

lim
n→∞

λi0,...,inb
ii
1 . . . b

in
n = 0.

Finally according Lemma 1.4.8, since the b-adic topology is complete, then
the series is convergent.

Secondly, it is easy to verify that ϕ is a K-algebra homomorphism and
that ϕ(Xi) = bi for each i = 1, . . . , n.

In order to prove the uniqueness, consider another continuous homomor-
phism ψ : K[[X1, . . . , Xn]] → B such that ψ(Xi) = bi for any i = 1, . . . , n.
Thus, since ψ is a K-algebra homomorphism map and and a continuous
map, then by Lemma 2.3.7

ψ

 ∑
i1,...,in≥0

λi1,...,inX
i1
1 . . . Xin

n

 =
∑

i1,...,in≥0
ψ(λi1,...,inX

i1
1 . . . Xin

n )

=
∑

i1,...,in≥0
λi1,...,inψ(X1)

i1 . . . ψ(Xn)in

=
∑

i1,...,in≥0
λi1,...,inb

i1
1 . . . b

in
n

= ϕ

 ∑
i1,...,in≥0

λi1,...,inX
i1
1 . . . Xin

n

 .

Therefore, it follows that ϕ = ψ.

2.4 Factorization in power series rings

The goal of this section is to show that the power series ring K[[X1, . . . , Xn]]
in n variables and over a field K is a unique factorization domain. The poly-
nomial case is derived from the more general theorem that if R is a UFD
then so is the polynomial ring in one variable R[X]. Unfortunately, the anal-
ogous statement for power series is false (i.e. there are UFD’s R such that
R[[X]] is not a UFD). However to prove even the simplest example requires
hard work. Let R be the localization of K[X,Y, Z]/(X2 +Y 3 +Z7) with re-
spect to the ideal (X,Y , Z). This ring R is a UFD, but R[[X]] is not a UFD.∗

By simplicity during this section we will denote Rn = K[[X1, . . . , Xn]].
We will proceed by induction over n. Assuming that Rn−1 is a UFD, the

∗It can be read in [2].
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polynomial ring Rn−1[Xn] is a UFD and our strategy will consist on relating
the structure of Rn−1[Xn] with the structure of Rn−1[[Xn]], and derive that
Rn is a UFD. But we should prove two preliminary theorems in order to
achieve our goal.

Theorem 2.4.1 (Weierstrass division theorem). Let K be a field, let Rn be
a power series ring and let m = (X1, . . . , Xn−1) be the unique maximal ideal
of Rn−1. Suppose that f ∈ Rn is of the form f = uXs

n−w where s ≥ 0 is an
integer, u is a unit in Rn and w ∈ m[Xn] is a polynomial in Xn such that
degw < s. Then for any g ∈ Rn there exist a unique h ∈ Rn and a unique
r ∈ Rn−1[Xn] such that r is a polynomial in Xn of degree strictly less than
s and g = hf + r.

Proof. Note that for any g ∈ Rn, it can be written in a unique way as
g = α(g)Xs

n + β(g), where β(g) ∈ Rn−1[Xn] is a polynomial in Xn of degree
strictly less than s. Both α and β are K-linear functions and thus we define
the operator

T : Rn → Rn such that T (g) = α(g)u−1f + β(g).

Clearly, since it is a linear combination of K-linear maps, then T is also a
K-linear map. We shall see that it is an isomorphism by finding its inverse.
The idea is to give sense to the usual formal identity

T−1 = (I − (I − T ))−1 =
∞∑
i=0

(I − T )i.

Firstly, we define the K-linear map S such that

S(g) = g − T (g) = α(g)Xs
n + β(g)− α(g)u−1f − β(g)

= α(g)(Xs
n − u−1f) = α(g)u−1w.

Thus, for any g ∈ Rn and for any j ∈ N, then Sj(g) ⊆ mj [[Xn]]. Indeed, it
can be proved by induction over j. The case j = 1 is clear, since w ∈ m[[Xn]]
and m is an ideal, then S(g) = α(g)u−1w ∈ m[[Xn]]. Furthermore, if g ∈
mk[[Xn]], then clearly α(g) ∈ mk[[Xn]], so S(g) = α(g)u−1w ∈ mk+1[[Xn]]
(because m is an ideal and w ∈ m[[Xn]]). Then suppose that the statement
holds for j − 1, i.e., Sj−1(g) ∈ mj−1[[Xn]], then by the above argument

Sj(g) = S(Sj−1(g)) ∈ mj−1+1[[Xn]] = mj [[Xn]].

On the other hand, let hi ∈ Rn be a sequence such that hi ∈ mi[[Xn]],
then the power series

∑∞
i=0 hi is a well defined element of Rn. Indeed, since

only monomials of degree more or equal than i can appear in each hi, then
each monomial in the X1, . . . , Xn can appear only a finite number of times
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in the previous sum. Thus, for any g ∈ Rn the series
∑∞

j=0 S
j(g) is well

defined and it is now straightforward to verify that T−1 =
∑∞

j=0 S
j . Indeed,

(I − S) ◦ (I + S + S2 + . . . ) = I + S − S + S2 − S2 + · · · = I.

In a similar way (I + S + . . . ) ◦ (I − S) = I, so (I − S)−1 =
∑∞

i=0 S
i. Thus,

T−1 = (I − (I − T ))−1 = (I − S)−1 =

∞∑
i=0

Si

Hence, by finding the inverse of T we have proved that T is an isomorphism.

Finally, since T is an isomorphism in particular it is surjective. Thus,
there exists l ∈ Rn such that g = T (l) = α(l)u−1f + β(l). Now, we can
define h = α(l)u−1 ∈ Rn and r = β(l) ∈ Rn−1[Xn], such that g = hf+r and
r = β(l) has degree in Xn strictly lower than s. Moreover, the uniqueness of
h and r follows from the fact that T is an isomorphism and so l is unique.

Definition 2.4.2. Let K be a field and let f ∈ Rn be a power series. Then if
f satisfies the assumptions of the preceding theorem, f is said to be a regular
power series of order s at Xn. That is, f can be written as f = uXs

n − w,
where u ∈ U(Rn) and w ∈ m[Xn] such that r has degree strictly smaller
than s.

The assumption of f is regular at Xn is not very restrictive. If K is a
field then any f becomes regular after a suitable change of variables (See
Exercise 3). That is, there exists an automorphism of Rn such that the
image of f is regular. But be careful, we can assume that one power series
f is regular, not that any power series f in Rn is regular.

Another equivalent condition says that f is regular of order s at Xn if
and only if f(0, . . . , 0, Xn) is a non-zero power series in Xn and Xs

n is the
lowest power of Xn which appears in f(0, . . . , 0, Xn) with non-zero coeffi-
cient. From this characterization it follows that when f = gh is regular,
then both g and h are regular at Xn as well, but with smaller order. Indeed,
after the evaluation both of them are non-zero power series in Xn, because
otherwise their product would be zero.

Before formulating our next auxiliary result, we need one more definition.

Definition 2.4.3. A polynomial in Rn−1[Xn] is called a Weierstrass polyno-
mial of degree s if it is a monic polynomial of degree s and all its coefficientes
(except the leading one) are in (X1, . . . , Xn−1).

Lemma 2.4.4. Let f ∈ Rn−1[Xn] be a Weierstrass polynomial. Then f is
a unit in Rn if and only if it has degree 0.
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Proof. ⇒) Suppose that f is a Weierstrass polynomial of degree s > 0. Then
f(0, . . . , 0) = 0s = 0 and so its constant term is zero. Hence f is not a unit.
⇐) Suppose that f has degree zero. Then f(0, . . . , 0, Xn) = X0

n = 1. In
particular, the constant term of f is 1, and so f is a unit in Rn.

Notice that the product of two Weierstrass polynomials is a Weierstrass
polynomial as well.

Theorem 2.4.5 (Weierstrass preparation theorem). Let f ∈ Rn be regular
of order s at Xn. Then there exists a unique Weierstrass polynomial of
degree s, say p, such that f = vp for some unit v ∈ Rn−1.

Proof. This result is a direct consequence of Weierstrass division theorem.
According to that theorem there exist a unique h ∈ Rn and a unique r ∈
Rn−1[Xn] of degree strictly less than s, such that Xs

n = hf + r. We shall
prove that h is a unit and that r ∈ m[Xn]. Since f is regular of order s,
f = uXs

n − w where w ∈ m[Xn], and so w(0, . . . , 0, Xn) = 0. Therefore,
evaluating the series at (0, . . . , 0, Xn),

Xs
n = h(0, . . . , 0, Xn)f(0, . . . , 0, Xn) + r(0, . . . , 0, Xn)

= h(0, . . . , Xn)u(0, . . . , Xn)Xs
n − h(0, . . . , Xn)w(0, . . . , Xn) + r(0, . . . , Xn)

= h(0, . . . , 0, Xn)u(0, . . . , 0, Xn)Xs
n + r(0, . . . , 0, Xn).

Therefore, r(0, . . . , 0, Xn) = 0 and so all the coefficients of r are in m.
Moreover, h(0, . . . , 0, Xn)u(0, . . . , 0, Xn) = 1, then h(0, . . . , 0, Xn) is a unit.
Thus, by Lemma 2.3.1 the constant term of h(0, . . . , 0, Xn) ∈ K[[Xn]] is not
zero, so the constant term of h (which is the same as before) is not zero and
so h is a unit.

Now define p = Xs
n − r, which clearly is a Weierstrass polynomial and

v = h−1 which is a unit. Then

Xs
n = hf + r =⇒ f = h−1(Xs

n − r) = vp,

and the uniqueness of v and p follows from the uniqueness of h and r.

Now note that any Weierstrass polynomial of degree s is regular at Xn of
order s. Indeed, that polynomial is of the form 1·Xs

n−w for some w ∈ m[Xn]
with degree stricly less than s.

Corollary 2.4.6. Let f, g ∈ Rn be Weierstrass polynomials. Suppose that
f = gh for some h ∈ Rn. Then h is a Weierstrass polynomial.

Proof. Since f is regular at Xn so it is h. Thus, by the Weierstrass prepara-
tion theorem h = uq for some Weierstrass polynomial q and a unit u. Since
the product of Weierstrass polynomials is another Weierstrass polynomial
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gq is a Weierstrass polynomial of degree m. We shall see that m = s, where
s = deg f . Firstly, f = ugq and evaluating it in the tuple (0, . . . , 0, Xn)

f(0, . . . , 0, Xn) = u(0, . . . , 0, Xn)(gq)(0, . . . , 0, Xn),

i.e.,

Xs
n = (a0 +

∞∑
i=1

aiX
i
n)Xm

n =
∞∑
i=0

aiX
i+m
n ,

where a0 6= 0. By the uniqueness of the coefficients of a power series it fol-
lows that ai 6= 0 if and only if i+m = s. In particular, a0 6= 0 and so m = s.

Then we have 1f = f = u(gq) (i.e. two decompositions of f as a
product of a unit and a Weierstrass polynomial with its same degree). The
uniqueness of the Weierstrass preparation theorem implies that u = 1, and
so h = q is a Weierstrass polynomial.

Corollary 2.4.7. Let f be a Weierstrass polynomial of degree s. Suppose
that f = gh for some g, h ∈ Rn−1[Xn]. Then there is an invertible element
u ∈ Rn such that both ug and u−1h are Weierstrass polynomials.

Proof. Since f is a Weierstrass polynomial it is a regular power series at Xn.
Then both g and f are regular at Xn. Thus, by Theorem 2.4.5 there exist a
unit u and a Weierstras polynomial p, such that h = up. Hence, u−1h = p
is a Weierstrass polynomial. Furthermore, since f = (ug)(u−1h) = gh and
u−1h are both Weierstrass polynomials, according to Corollary 2.4.6 ug is a
Weierstrass polynomial.

Lemma 2.4.8. A Weierstrass polynomial f of degree s > 0 is irreducible in
Rn if and only if it is irreducible in Rn−1[Xn]. Furthermore, every Weier-
strass polynomial degree s > 0 is a product of irreducible Weierstrass poly-
nomials.

Proof. Since deg f > 0, then f 6= 0. Moreover, f is not a unit in Rn−1[Xn]
and neither in Rn.

⇐) Suppose by contradiction that f is reducible over Rn. Consequently,
f = gh in Rn being both g and h non-units. Then by Corollary 2.4.7 there
exists a unit u ∈ Rn such that f = (ug)(u−1h) being both ug and u−1h
Weierstrass polynomials, whose degree is the order of g and h respectively.
Since g and h are not units, then the degree of p and q is strictly greater than
zero, so they are not units is Rn−1[Xn]. Thus, f is reducible over Rn−1[Xn],
which is a contradiction.

⇒) Suppose by contradiction that f = gh is reducible over Rn−1[Xn].
Since f is monic the leading coefficients of g and h are invertible, so we can
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assume that those polynomials are monic polynomials of degree i and s− i
respectively. Since f is a monic polynomials of degree s, then

Xs
n = f(0, . . . , 0, Xn) = g(0, . . . , 0, Xn)h(0, . . . , 0, Xn).

Since g and h are monic polynomials of degree i and s− i, then we have that
g(0, . . . , 0, Xn) = Xi and h(0, . . . , 0, Xn) = Xs−i. Then both g and h are
monic polynomials, such that all their coefficients (except the leading one)
are in m, so by definition both are Weierstrass polynomials. Moreover, nei-
ther of them is a unit in Rn. Indeed, neither of them is a unit in Rn−1[Xn],
so they are not Weierstrass polynomials of degree 0. Thus, f is reducible in
Rn, which is a contradiction.

This implication shows also the fact that any Weierstrass polynomial,
which is not a unit in Rn, can be factorized into irreducible Weierstrass
polynomials. Suppose by contradiction that there exists a Weierstrass poly-
nomial f which is not factorized as product of irreducible Weierstrass poly-
nomials, moreover suppose without loss of generality that f is the Weier-
strass polynomial of lowest degree with that property. In particular, f is not
irreducible over Rn, because otherwise it would be a product of irreducible
Weierstrass polynomials with one factor.

Thus, f is reducible over Rn−1[Xn], and so there exist two Weierstrass
polynomials of lower degree, which are not units, such that f = gh. Since g
and h have lower degree than f they can be written as product of irreducible
Weierstrass polynomials as follows: g =

∏t
i=1 gi and h =

∏s
i=1 hi. Hence, f

is also a product of irreducible Weierstrass polynomials

f = gh =

t∏
i=1

gi

s∏
i=1

hi,

which is a contradiction.

Now we can state and prove our main goal. As we have said before being
a regular power series is not a hard condition. Indeed, fixed a series f , there
exists (See Exercise 3) an isomorphism ϕ : Rn → Rn such that ϕ(f) is regular
of some order at Xn. Since the decomposition as product of irreducibles,
being prime and being irreducible remain invariant by isomorphism, during
the following proof we can suppose without loss of generality the regularity
of certain power series.

Theorem 2.4.9. Let K be field. Then the power series ring in n indeter-
minates Rn = K[[X1, . . . , Xn]] is a unique factorization domain.

Proof. We proceed by induction over n. When n = 0, then K is a field, so it
is a UFD. Suppose inductively that Rn−1 is a UFD. Then so it is the poly-
nomial ring Rn−1[Xn]. In order to show that Rn is a UFD, we shall prove
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that any non-zero and non-unit element factors as product of irreducible
elements; and that each irreducible element is prime.

On the one hand, if f is an arbitrary series, we may assume that f is
regular. Since f is not zero or a unit, then it is regular at some order s > 0.
By the Weierstrass preparation theorem f = up where u is a unit and p
is a Weierstrass polynomial of order s > 0. According to Lemma 2.4.8 p
factors as a product of irreducible Weierstrass polynomials. Moreover, each
of those polynomials is irreducible in Rn, so we get a factorization of f into
irreducible elements.

On the other hand, let f be an irreducible power series and suppose that
f |gh. First, we can assume that f is regular, so both g and h are regular
power series. Then by the Weierstrass preparation theorem there exist some
units u, v, w ∈ Rn and some Weierstrass polynomials p, q, r ∈ Rn−1[Xn] such
that f = up, g = vq and h = wr. Since f is irreducible in Rn, p is irreducible
in Rn and so it is irreducible in Rn−1[Xn] (by Lemma 2.4.8). Moreover, since
f |gh and the divisibility does not depend on units, then p|qr. Now, since
p is irreducible in Rn−1[Xn], which is a UFD, then p is prime. Thus, there
are two options p|q and so f |g or in the other case p|r and so f |h. In any
case, f is prime. Hence, any irreducible element is a prime element.





Chapter 3

Regular rings

The last property that remains to be analyzed, and which plays a funda-
mental role in this theory, is regularity. The aim of this chapter is to define
regularity and present the results and basic features that have to do with it.

However, before explaining this concept, talking about the dimension of
a ring is needed. This idea is strictly linked to the set of prime ideals of a
ring and to the number of inclusions that can be done with them.

3.1 Dimension theory

3.1.1 Main definitions

Definition 3.1.1. Let a be a proper ideal of the ring R. A minimal prime
ideal of a is an ideal p which is minimal among the ideals containing a. That
is, for any prime ideal q of R,

a ⊆ q ⊆ p =⇒ q = p.

It can be seen, as a consequence of the uniqueness of the primary de-
composition of ideals, that any proper ideal has only finitely many minimal
prime ideals. Although this fact is not proved here, it can read in [8].

Definition 3.1.2. Let a be a proper ideal of the ring R. Then, a is a
minimal prime ideal if it is a minimal prime ideal of the ideal {0}.

Definition 3.1.3. Let R be a non-trivial ring, a chain of prime ideals of R
is chain of ideals

p0 ( p1 ( · · · ( pn,

in which p0, p1, . . . , pn are prime ideals of R.

Consider a chain of prime ideals, the length of the chain is the number
of inclusions in it, that is, one less than the number of prime ideals present.

39
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We say that the chain is saturated when we can not introduce any prime
ideals between the given ideals, that is, we can not find a chain of prime
ideals with longer length but containing all the initial ideals.

Definition 3.1.4. Let R be a non-trivial ring. The dimension of R, dimR,
is the number

sup{n | there exists a chain of prime ideals of R of length n}.

Examples 3.1.5.

(i) If R is an integral domain {0} will be a prime ideal, so it is contained
in any saturated chain of prime ideals. Therefore, if dimR = 0 then {0} is
the unique prime ideal of R, so {0} is a maximal ideal and so R is a field.
Conversely, if R is a field its unique prime ideal is {0} and so dimR = 0.
Hence we have a characterization for fields: an integral domain R is a field
if and only if dimR = 0.

(ii) If K is a field K[[X1, . . . , Xn]] has dimension n. (See Exercise 5.)

(iii) Let us compute the dimension of Z. On the one hand, {0} ( (2) is a
saturated chain of prime ideals. Thus, dimZ ≥ 1.
On the other hand, in Z any non-zero prime ideal is maximal. Thus, there
is not any chain of prime ideals of length 2, because the middle term of such
a chain (which can not be the zero ideal) would be prime but not maximal,
which is impossible. Hence, dimZ = 1.

(iv) In the same way as above, if R is a PID which is not a field, then
dimR = 1.

(v) If S ⊆ R is an integral ring extension, then dimS = dimR (see Exercise
6). In particular, for any square-free integer d the extension Z ⊆ Z[

√
d] is

integral, so the rings Z[
√
d] have dimension one.

By definition the dimension of a ring is related to its prime ideals. More-
over, the following concept will be useful in order to measure the size of a
prime ideal.

Definition 3.1.6. Let R be a non-trivial ring and let p be a prime ideal.
The height of p, denoted by ht p or htR p if we want to emphasize the ring
R, is defined to be the maximum of the lengths of the saturated chains of
prime ideals

p0 ( p1 ( · · · ( pn,

such that pn = p if that maximum exists and infinity otherwise.

For example any minimal prime ideal has height 0, because it is impossi-
ble to find a prime ideal which is strictly contained in a minimal prime ideal.

In local rings the dimension and the height are closely related.
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Proposition 3.1.7. Let (R,m) be a local ring. Then the dimension of R is
the height of m. That is,

dimR = htm.

Proof. Firstly, notice that any maximal ideal is a prime ideal. Thus, htm
is well defined. Let the following be a longest possible saturated chain of
prime ideals of R:

p0 ( p1 ( · · · ( pn.

Then pn cannot be contained in a bigger prime ideal, so pn is a maximal
ideal. Moreover R has a unique maximal ideal, so pn = m. Hence by
definition htm ≥ dimR. On the other hand, let

p0 ( p1 ( · · · ( pm = m

be one of the longest possible chains of prime ideals finishing with m. Since
it is a chain of prime ideals of R then dimR ≥ m = htm. Finally, since we
have both inequalities htm = dimR.

3.1.2 Krull’s ideal theorems

It would be interesting to relate the generators of a prime ideal, or at least
the minimum amount of elements that are necessary to generate such an
ideal to its height and, subsequently, to the dimension of a ring. That
is exactly what is achieved from Krull’s ideal theorems, first for principal
ideals, and then for ideals generated by a finite number of elements. We
should present two new concepts before

Definition 3.1.8. Let R be a ring and let a be an ideal of R. Then the
radical of a, denoted by Rad a, is the set

Rad a = {r ∈ R | ∃n ∈ N such that rn ∈ a}.

This set, which has got ideal structure, has been studied during the
degree. However, its main properties are shown in Exercise 4.

Definition 3.1.9. Let R be a ring and let a be a proper ideal of R such
that whenever ab ∈ a and a /∈ a then there exists an n ∈ N such that bn ∈ a,
(i.e. b ∈ Rad a). Then a is said to be a p-primary ideal where p = Rad a.

It is clear that any prime ideal p is a p-primary ideal. Moreover, for a
maximal ideal m and for any n ∈ N then mn is an m-primary ideal. (See
Exercise 4.)

We also need an auxiliary result relating Noetherian and Artinian rings.

Lemma 3.1.10. Let R be a Noetherian ring with a unique prime ideal, then
R is an Artinian ring.
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Theorem 3.1.11 (Krull’s principal ideal theorem). Let R be a non-trivial
Noetherian ring and let a be a non-unit (that is (a) 6= R). If p is a minimal
prime ideal of (a), then ht p ≤ 1.

Proof. First of all we will see that certain assumptions do not interfere in
the proof, but they will simplify our work. Consider the minimal prime ideal
(a) ⊆ p. After a localization consider the local ring Rp and its unique max-
imal ideal pRp, all the relevant data are preserved. Hence, we can assume
without loss of generality that (R,m) is a local Noetherian ring and m is a
minimal prime ideal of (a).

Consider the chain of prime ideals q1 ⊆ q2 ( m. Now we proceed to work
in the quotient ring R/q1 which is a domain, because q1 is a prime ideal.
Then R/q1 is a local Noetherian domain such that {0} ⊆ q2/q1 ( m/q1
and (a) ⊆ m/q1. Hence, we can also suppose without loss of generality that
(R,m) is a local Noetherian domain, {0} ⊆ q ( m is a chain of prime ideals
and m is a minimal prime ideal of (a). Under those assumptions, if we prove
that q = {0} we are done.

Since m is the unique minimal prime ideal of (a) then m/(a) is the unique
prime ideal of R/(a). Since R/(a) is Noetherian then by Lemma 3.1.10
R/(a) is an Artinian ring. Now let consider the ideals pi = (q(i), a)/(a),
where q(i) = qiRq ∩R. In Exercise 4 it is seen that q(i) is a q-primary ideal.
Then

(q(1), a)/(a) ⊇ (q(2), a)/(a) ⊇ · · · ⊇ (q(i), a)/(a) ⊇ . . .

is a descending chain of ideals. Since R/(a) is Artinian there exists some
n0 ∈ N such that pi+1 = pi for all i ≥ n0. Then by the correspondence
theorem (q(i), a) = (q(i+1), a) for all i ≥ n0. Hence, for any v ∈ q(i), there
exist r ∈ R and w ∈ q(i+1) such that v = w + ar and so ar = v − w ∈ q(i).
However, since m is the minimal prime ideal of (a) and q ( m then a /∈ q.
Since Rad q(i) = q and a /∈ q by the definition of a q-primary ideal, then
r ∈ q(i). Therefore, q(i) ⊆ q(i+1) + aq(i). The reverse inclusion is clear so

q(i)

q(i+1)
= a

q(i)

q(i+1)
.

Now (R,m) is a local Noetherian ring and a ∈ m = JacR, so applying
Nakayama’s lemma q(i)/q(i+1) = {0}. Thus, q(i) = q(i+1) = q(n0) for all
i ≥ n0. Moreover, Rq is a local ring and qRq = JacRq. By the Krull’s
intersection theorem

qn0 ⊆ q(n0) =
∞⋂
i=0

q(i) ⊆
∞⋂
i=0

qiRq =
∞⋂
i=0

(qRq)
i = {0}.
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Therefore, q = {0}. Indeed, suppose that there exists a non-zero element
a ∈ q, then an0 ∈ qn0 = {0}. Hence a 6= 0 is a zero divisor, but it is a
contradiction because R is an integral domain.

Lemma 3.1.12. Let (R,m) be a local Noetherian ring and a an ideal of R.
Then the following statements are equivalent:

i) Rad a = m.

ii) a is m-primary.

iii) m is the minimal prime ideal of a.

Proof. See Exercise 4.

Theorem 3.1.13 (Krull’s generalized ideal theorem). Let R be a non-trivial
Noetherian ring and let a be a proper ideal which can be generated by n
elements. Then ht p ≤ n for any minimal prime ideal p of a.

Proof. We proceed by induction on n. When n = 0, then a = (∅) = {0}
and p is a minimal prime ideal, so ht p = 0 ≤ 0. When n = 1 the statement
holds by Theorem 3.1.11.

Now suppose that the result is true for smaller values than n and consider
the proper ideal a = (x1, . . . , xn) and its minimal prime ideal p. We can
assume that R is a local ring with p as maximal ideal (otherwise it is enough
to localize it at p). Hence by Lemma 3.1.12 then Rad a = p . Let

p0 ( · · · ( pm−1 ( p

be one of the longest saturated chains of prime ideals which finish in p.
Choose the prime ideal q = pm−1. Then q ( p is saturated and ht p = ht q+1.
We are reduced to proving that q is a minimal prime ideal of an ideal gen-
erated by n− 1 elements.

Clearly q cannot contain all xi, so assume that x1 /∈ q. Moreover, p is a
minimal prime ideal of (q, x1) and it is maximal, so by Lemma 3.1.12 then
Rad (q, x1) = p. Therefore, for each i ≥ 2 then xi ∈ p, so there exist ri ∈ R,
yi ∈ q and ni ∈ N such that xni

i = yi + rix1.

It follows that (x1, y2, . . . , yn) will be contained in a prime ideal if and
only if (x1, x2, . . . , xn) is contained in that prime ideal. Hence using Exercise
4 (iv) then

Rad (x1, y2, . . . , yn) = Rad (x1, x2, . . . , xn) = p.

Furthermore, by Lemma 3.1.12 and the correspondence theorem we have
that p/(y2, . . . , yn) is a minimal prime ideal of the principal ideal (x1) =
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(x1, y2, . . . , yn)/(y2, . . . , yn). Now by the Krull principal ideal theorem the
height of p/(y2, . . . , yn) is at most 1. Since q/(y2, . . . , yn) ( p/(y2, . . . , yn)
then q/(y2, . . . , yn) is a minimal prime ideal in the quotient ring. Finally,
lifting back to R, q is a minimal prime ideal of (y2, . . . , yn), an ideal generated
by n − 1 elements, so we are done. Indeed, using the induction hypothesis
ht p = ht q + 1 ≤ n− 1 + 1 = n.

Let us analyze the behavior of the height in finite-dimensional rings.
Being a local Noetherian ring is a sufficient condition in order to have a
finite-dimensional ring, so we can restrict ourselves to that condition.

Corollary 3.1.14. Let R be a non-trivial Noetherian ring and let p and q
be two prime ideals of R.

(i) The ideal p has finite height. In particular, a local Noetherian ring has
finite dimension.

(ii) If p ⊆ q. Then ht p ≤ ht q. Moreover, when the inclusion is strict then
ht p < ht q.

(iii) Suppose p ⊆ q. Then ht p = ht q if and only if p = q.

Proof. (i) Let p be a prime ideal of R. Since R is a Noetherian ring it is
finitely generated by n elements, say. Then by Theorem 3.1.13 ht p ≤ n,
that is, p has finite height. On the other hand, since R is a local ring its
dimension is the height of its unique maximal ideal, which is a finite number.

(ii) Set ht p = n, then there exists a chain of prime ideals of R

p0 ( p1 ( · · · ( pn,

such that pn = p. Moreover, by hypothesis p ⊆ q. Then we consider the
chain of prime ideals

p0 ( p1 ( · · · ( pn = p ⊆ q.

Therefore, ht p ≤ ht q. Furthermore, when the inclusion is strict it is straight-
forward that ht p < ht q.

(iii) The if implication is obvious. On the other hand, the only if im-
plication follows immediately from (ii).

3.1.3 Height and systems of parameters

In Noetherian rings we are allowed to extend the concept of height to any
ideal, prime or not. Furthermore, after extending that concept we will get
also some results, which are by the way the reverses of the Krull’s ideal
theorems.
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Definition 3.1.15. Let R be a non-trivial Noetherian ring and let a be a
proper ideal of R. Clearly there exists a prime ideal containing a. Then the
height of a, denoted by ht a, is

ht a = min{ht p | p is prime and a ⊆ p}.

When we want to emphasize the ring R, we can write htR a. Clearly the
height of any proper ideal, is the minimun among the height of its minimal
prime ideals. This definition is completely compatible with the one given
for prime ideals some lines above.

Lemma 3.1.16. Let R be a non-trivial Noetherian ring and let a and p be
two ideals such that a ⊆ p, p is prime and ht a = ht p. Then p is a minimal
prime ideal of a.

Proof. Suppose by contradiction that p is not a minimal prime ideal of
a. Then there exists a prime ideal, say q, such that a ⊆ q ( p, and so
ht a ≤ ht q < ht p = ht a, which is a contradiction.

We also have the following similar result.

Theorem 3.1.17. Let R be a non-trivial Noetherian ring and let p be a
prime ideal such that ht p = n. Then there exists an ideal a generated by n
elements, such that ht a = n and a ⊆ p.

Proof. We proceed by induction on n. In the case when n = 0 consider
a = {0} which is an ideal with the stated properties.

Suppose inductively that the statement holds for smaller values than n.
Since ht p = n consider a saturated chain of prime ideals

p0 ( p1 ( · · · ( pn,

such that p = pn. Then, ht pn−1 = n − 1. Indeed, ht pn−1 ≥ n − 1 as
shows the above chain, while ht pn−1 < ht pn = n. Hence, there exists an
ideal b ⊆ pn−1 of height n−1, generated by n−1 elements, say x1, . . . , xn−1.

According to Lemma 3.1.16, pn−1 is a minimal prime ideal of b. How-
ever, since b is proper there are finitely many minimal prime ideals of b,
call them pn−1 and q1, . . . , qs. Observe that all of them have height n − 1.
Indeed, by Krull’s generalized ideal theorem and since ht b = n − 1 then
n− 1 = ht b ≤ ht qi ≤ n− 1 for any i = 1, . . . , s.

Now we have that

p 6⊆ pn−1 ∪ q1 ∪ · · · ∪ qs,
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because otherwise applying the prime avoidance theorem (Exercise 1) we
would have p ⊆ pn−1 or p ⊆ qi for some i = 1, . . . , s. None of these posibili-
ties can occur because ht p = n, while

ht p ≤ ht pn−1 = ht qi = n− 1.

Thus, there exists an element xn in p but not in any minimal prime ideal
of b = (x1, . . . , xn−1). Finally, set a = (x1, . . . , xn−1, xn). This ideal is gener-
ated by n elements and a ⊆ p. If we prove that ht a = n the assertion follows.

Since b ⊆ a ⊆ p we have n − 1 = ht b ≤ ht a ≤ ht p = n. Suppose by
contradiction that ht a = n − 1, then there exists a minimal prime ideal p′

of a such that ht p′ = n − 1. However, now we have that b ⊆ a ⊆ p′ and
ht p′ = n − 1 = ht b, it follows from Lemma 3.1.16 that p′ is one of the
minimal prime ideals of b. But this is a contradiction, because xn ∈ a ⊆ p′

whereas xn belongs to no minimal prime ideal of b. Thus the statement is
proved.

After all this work, a new definition of the dimension of a local Noethe-
rian ring can be formulated, which is indeed related to the height concept.

Proposition 3.1.18. Let (R,m) be a local Noetherian ring. Then,

dimR = min {n | ∃ x1, . . . , xn ∈ R such that (x1, . . . , xn) is m-primary}.

That is, the dimension of R is the least number of elements of R needed to
generate an m-primary ideal.

Proof. Let us denote by d the right hand side of the equality. First of all,
since m is an m-primary ideal the set is not empty, so the minimum is well
defined. On the one hand, dimR = htm ≤ d. Indeed, by Lemma 3.1.12
the minimal prime ideal of any m-primary ideal is m. In particular m is the
minimal prime ideal of the one which can be generated with d elements and
the inequality follows from Theorem 3.1.13.

On the other hand, by Theorem 3.1.17 there exists an ideal q which can
be generated by dimR = htm elements and whose minimal prime ideal is
m, i.e., an m-primary ideal. Hence, d ≤ dimR and we are done.

This particular set with dimR elements which generates an m-primary
ideal is useful in order to characterize the ring R. It motivates the following
definition.

Definition 3.1.19. Let (R,m) be a local Noetherian ring of dimension d.
Then a system of parameters of the ring R is a set of R with d elements
which generates an m-primary ideal. Moreover, we say that a1, . . . , ad form
a system of parameters of R when {a1, . . . , ad} is a system of parameters of
R.
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It follows from Proposition 3.1.18 that any local Noetherian ring does
indeed possess a system of parameters.

3.1.4 Dimension in quotient rings

Intuitively, the dimension of a quotient ring will be lower than the dimension
of the initial ring. More precisely, these numbers are related with the number
of elements needed to generate the ideal that factored with.

Lemma 3.1.20. Let R be a non-trivial Noetherian ring, let a be a proper
ideal of R which can be generated by n elements, and let p be a prime ideal
such that a ⊆ p. Then

htR/a p/a ≤ htR p ≤ htR/a p/a + n.

Proof. Firstly, notice that the ideal p/a is prime in R/a = R. On the one
hand, it is immediate from the correspondence theorem that

htR p/a ≤ htR p.

Indeed, any prime ideal of R contained in p/a corresponds to a prime ideal
of R which contains a and which is contained in p. Thus there are more (or
the same number) of prime ideals in any chain of prime ideals of R finishing
with p than in any chain of prime ideals of R finishing with p/a. Then, the
inequality follows from the definition of height.

On the other hand, let b1, . . . , bn generate a. Moreover, say t = htR p/a,
by Theorem 3.1.17 and Lemma 3.1.16 there exist a1, . . . , at ∈ R such that the
ideal p/a is a minimal prime ideal of (a1, . . . , at). Hence, by the correspon-
dence theorem p is a minimal prime ideal of the ideal (a1, . . . , at, b1, . . . , bn),
a proper ideal of R that can be generated by n+ t elements. Thus, it follows
from Theorem 3.1.13 that

htR p ≤ t+ n = htR p/a + n.

Hence we are done.

Proposition 3.1.21. Let (R,m) be a Noetherian local ring and let x1, . . . , xt
in R. Then

dimR− t ≤ dimR/(x1, . . . , xt) ≤ dimR.

Moreover, dimR − t = dimR/(x1, . . . , xt) if and only if {x1, . . . , xt} is a
subset of a system of parameters of R.

Proof. For notation simplicity denote n = dimR, m = m/(x1, . . . , xt) and
R = R/(x1, . . . , xt). According to Proposition 3.1.7, since both R and R are
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local rings, then dimR = htm and dimR = htm.

By Lemma 3.1.20 we have that

htRm ≤ htRm ≤ htRm + t.

That is,

dimR/(x1, . . . , xt) ≤ dimR ≤ dimR/(x1, . . . , xt) + t.

Hence,
dimR− t ≤ dimR/(x1, . . . , xt) ≤ dimR.

Now, we shall prove the second part of the statement.

⇒) Suppose that dimR = n − t ≥ 0. Then t ≤ n and by Proposition
3.1.18 there exist xt+1, . . . , xn ∈ m such that {xt+1, . . . , xn} is a system of pa-
rameters for R. Then (x1 . . . , xt, xt+1, . . . , xn)/(x1, . . . , xt) is an m-primary
ideal of R. Thus, (x1, . . . , xn) is an m-primary ideal of R. Hence, by Propo-
sition 3.1.18 the set {x1, . . . , xn} is a system of parameters of R.

⇐) Suppose that there exist some elements xt+1, . . . , xn ∈ m such that
{x1, . . . , xt, xt+1, . . . , xn} is a system of parameters forR. Hence, (x1, . . . , xn)
is an m-primary ideal of R, and so (x1, . . . , xn) = (xt+1, . . . , xn) is an m-
primary ideal of R. Now according to Proposition 3.1.18 it follows that
dimR ≤ n− t, but we have from the first part that dimR ≥ n− t. Hence,
dimR = dimR− t.

3.2 Regular rings

When we work in a local ring R whose unique maximal ideal is m, we can
consider the ideals of R as vector subspaces over the natural field R/m.
Thus we have two distinct visions of the dimension, the one we have just
introduced for rings in the previous section and the natural concept of the
dimension of a vector space, that is, the number of elements that make up
any basis. In this section we will try to link these two notions and introduce
another property of local rings: regularity.

3.2.1 Definition and examples

Firstly, we ought to make sure that m/m2 has R/m-vector space structure.
There is no doubt about the sum of elements of m/m2, so we are devoted to
define de scalar product in order to get a vector space. We define the scalar
product as follows · : R/m×m/m2 → m/m2 where

(r + m) · (m+ m2) = (r + m2)(m+ m2) = (rm+ m2).
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Since the definition depends on the representatives in R/m we shall prove
that it is well defined, and it is straightforward because m/m2 is annihilated
by m. Hence for any m+ m2 ∈ m/m2,

r1 + m = r2 + m ⇐⇒ r1 − r2 ∈ m =⇒ (r1 − r2)m ∈ m2.

Therefore r1m + m2 = r2m + m2. Now we can relate the two notions of
dimension mentioned above.

Proposition 3.2.1. Let (R,m) be a Noetherian local ring. Then

dimR ≤ dimm/m2.

Proof. Notice that since R is Noetherian m is finitely generated. Firstly, we
shall see that m = (a1, . . . , an) if and only if

m/m2 = 〈a1 + m2, . . . , an + m2〉

(of course as R/m-vector space). The only if implication is clear. For the if
implication define a = (a1, . . . , an) ⊆ m. Suppose by contradiction that for
some i we have ai /∈ m. Then ai will be a unit in R and so m/m2 = R/m2

which is a contradiction.

Now for any a ∈ m by initial hypothesis there exist r1, . . . , rn ∈ R such
that

a+ m2 = (r1 + m)(a1 + m2) + · · ·+ (rn + m)(an + m2)

= r1a1 + m2 + · · ·+ rnan + m2 =
n∑
i=1

riai + m2.

Then a −
∑n

i=1 riai ∈ m2 and so m ⊆ a + m2. The other inclusion is clear,
i.e. m2 + a ⊆ m. Then we have the equality. Therefore,

m
m

a
=

a + m2

a
=

m

a
.

Finally, since JacR = m and all the above ideals are finitely generated R-
modules applying Nakayama’s lemma m/a = {0}, so m = a = (a1, . . . , an).

Hence, we have that dimm/m2 is the number of elements in each min-
imal generating set of m. As m itself is an m-primary ideal it follows from
Proposition 3.1.18 that dimR ≤ dimm/m2.

Remark 3.2.2. In the right hand side expression we refer to the dimension
as a vector space over the quotient field R/m.

Definition 3.2.3. Let (R,m) be a local ring. Then R is said to be regular
when dimR = dimm/m2.
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Furthermore, when R is a Noetherian local ring, following the idea of
the proof of Proposition 3.2.1 dimm/m2 is the number of elements of any
minimal generating set of m and according to Proposition 3.2.1 this number
is at least dimR. In particular, R is regular if and only if m can be generated
exactly by dimR elements.

Example 3.2.4. Let K be a field. Then its dimension is zero, dimK = 0.
Moreover, the unique maximal ideal of K is {0}. Thus {0}/{0}2 ∼= {0},
which can be generated by the empty set, i.e., by zero elements. Therefore
any field is a regular ring of dimension 0.

Finally, we should state one result concerning the power series rings,
which is the main topic of these notes.

Proposition 3.2.5. A power series ring K[[X1, . . . , Xn]] in n variables over
a field K is a regular ring.

Proof. K[[X1, . . . , Xn]] is a Noetherian local ring of dimension n (see Ex-
ercise 5). Moreover its maximal ideal (X1, . . . , Xn) can be generated by n
elements, so K[[X1, . . . , Xn]] is a regular ring.

3.2.2 Auslander-Buchsbaum’s theorem

There is a very important theorem about regular rings, the Auslander-
Buchsbaum theorem. Nevertheless, we are going to state some preliminary
lemmas before approaching it.

Lemma 3.2.6. Let (R,m) be a local ring and let c ∈ m \ m2. Denote
R = R/(c) and m = m/(c), the unique maximal ideal of the local ring R.
Then,

dimm/m2 = dimm/m2 + 1. (3.1)

Proof. Call n to the dimension of m/m2. Consider a1, . . . , an ∈ m such
that their cosets form a basis of the vector space m/m2. That is, the set
{a1 + m2, . . . , an + m2} is a basis of the vector space m/m2.

Thus, m = (a1, . . . , an,m
2) and by the correspondence theorem we have

that m = (a1, . . . , an, c,m
2). Hence,

{a1 + m2, . . . , an + m2, c+ m2} (3.2)

is a spanning set of the vector space m/m2. We shall now see that (3.2) is
linearly independent over the field R/m. In order to see that consider the
linear combination

n∑
i=1

(ri + m)(ai + m2) + (b+ m)(c+ m2) = 0 + m2 where ri, b ∈ R.
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That is,
∑n

i=1 riai + bc ∈ m2 and so in the quotient ring R we have that∑n
i=1 riai ∈ m2. However, by hypothesis this family is linearly independent

over R/m. Thus, ri ∈ m and so ri ∈ m for any i = 1, . . . , n. Indeed, for each
i there exist some mi ∈ m and some si ∈ R such that ri = mi + sic ∈ m.
Thus, ri + m = 0 + m in R/m for any i = 1, . . . , n.

Finally, bc ∈ m2. Suppose by contradiction that b /∈ m. Since R is local
b ∈ U(R) and so c = b−1bc ∈ m2, which is a contradiction with the initial
hypothesis. Thus, b ∈ m and so b + m = 0 + m. Hence (3.2) is a linearly
independent family. Therefore,

dimm/m2 = n+ 1 = dimm/m2 + 1,

as we were required.

Lemma 3.2.7. Let (R,m) be a Noetherian regular ring and let c ∈ m \m2.
Then R/(c) is a Noetherian regular ring and dimR/(c) = dimR− 1.

Proof. Firstly, we shall make sure that the formulas make sense. Since there
exists c ∈ m \ m2, then dimm/m2 ≥ 1. Moreover, since R is a regular ring
then dimR = dimm/m2 ≥ 1, so dimR− 1 is a non-negative integer.

Denote as before R = R/(c) and m = m/(c), the unique maximal ideal of
the local ring R. Since any ideal of R can be generated by a finite number
of elements, then any ideal of R can be generated by a finite number of
elements, so R is Noetherian. Moreover, by Lemma 3.1.20 it follows that
htm ≥ htm− 1, so

dimm/m2 ≥ dimR = htm ≥ htm− 1 = dimR− 1. (3.3)

However, on the other hand, from the regularity of R and using the identity
(3.1) we have that

dimR− 1 = dimm/m2 − 1 = dimm/m2. (3.4)

Therefore combining (3.3) and (3.4) we have that

dimm/m2 ≥ dimR ≥ dimR− 1 = dimm/m2 (3.5)

Finally, it follows directly from (3.5) that R/(c) is a regular ring such that
dimR/(c) = dimR− 1.

Lemma 3.2.8. Let (R,m) be a Noetherian local ring that is not an integral
domain, and let p be a principal prime ideal. Then ht p = 0.
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Proof. Suppose by contradiction that ht p > 0. Then there exists a proper
prime ideal q such that q ( p = (p). Of course, p /∈ q because otherwise
p = (p) ⊆ q, which is impossible.

The procedure is to show that q ⊆ pn for any n and then apply the Krull
intersection theorem (it can be done because R is local and so p ⊆ m =
JacR). We proceed by induction on n. Since the case when n = 1 is clear,
assume inductively q ⊆ pn for some n.

Consider any a ∈ q ⊆ pn = (pn). Since pn is principal a = bpn for some
b ∈ R. Hence a = bpn ∈ q and q is a prime ideal which does not contain p,
so b ∈ q ⊆ p and so a ∈ pn+1. Finally, applying Krull’s intersection theorem
q ⊆ ∩∞i=1p

i = {0} and so q = {0}, which is a contradiction. Indeed, since R
is not an integral domain {0} is not a prime ideal.

Now we are able to present the main theorem.

Theorem 3.2.9 (Auslander-Buchsbaum). Any Noetherian regular ring is
an integral domain.

Proof. We proceed by induction on the dimension of R, denoted by n. In
the case when n = 0 the ring R is a field and so it is an integral do-
main. Indeed, let (R,m) be a regular ring of dimension 0, then by regularity
dimm/m2 = 0, so m = m2. Now, since R is a local ring then JacR = m.
Thus by Nakayama’s lemma m = {0}. Therefore, since any proper ideal is
contained in m = {0}, the unique ideals of R are the trivial one and the
total one. Thus R is a field.

Assume the statement holds for n − 1, we will prove it for n. Suppose
by contradiction that R is not a domain. Since dimm/m2 > 0 we have that
m \m2 6= ∅, so choose c ∈ m \m2.

Since R/(c) is a Noetherian regular ring of dimension n−1 (Proposition
3.2.7), by induction hypothesis R/(c) is an integral domain and so (c) is
prime. Since R is not an integral domain, according to Lemma 3.2.8 we
have that ht (c) = 0. Then (c) is a minimal prime ideal of {0}, but there are
finitely many minimal prime ideals of {0}, say {p1, . . . , ps}. Thus, we have
seen that

m \m2 ⊆
s⋃
i=1

pi =⇒ m ⊆ m2 ∪ p1 ∪ · · · ∪ ps.

Finally by the prime avoidance theorem either m ⊆ m2 which is a contradic-
tion (we have said that the reverse inclusion is strict); or m ⊆ pi0 for some
i0. But then

n = dimR = htm ≤ ht pi0 = 0,
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which is again a contradiction. Thus R is an integral domain.

3.2.3 Regular system of parameters

We have seen that the dimension of a Noetherian local ring (R,m) is the min-
imum number of elements that are needed to generate an m-primary ideal.
However, when R is regular m itself can be generated with exactly dimR
elements. Therefore, we can adapt the definition of system of parameters to
the regular case.

Definition 3.2.10. Let (R,m) be a Noetherian regular ring of dimension d.
Then a regular system of parameters of R is a set of d elements of R which
generate m, that is, a system of parameters which generate m.

Example 3.2.11. Let K be a field. Then the unique maximal ideal of
the regular ring K[[X1, . . . , Xn]] is (X1, . . . , Xn) and K[[X1, . . . , Xn]] has
dimension n. Then {X1, . . . , Xn} is a regular system of parameters for
K[[X1, . . . , Xn]].

3.2.4 Regular rings of dimension one

Finally, we will try to characterize the regular rings of low dimension. More-
over, we can see that the analysis of domains of dimension one is quite
simple.

Theorem 3.2.12. Let (R,m) be a Noetherian local integral domain of di-
mension one. Then the following statements are equivalent:

(i) R is regular,

(ii) every non-zero ideal of R is a power of m,

(iii) there exists a ∈ R such that each non-zero ideal of R has the form (ah)
for some h ∈ N ∪ {0},

(iv) R is a principal ideal domain.

Proof. We shall prove the equivalence chain.

(i) =⇒ (ii). Firstly since R is regular dimm/m2 = dimR = 1. Hence,
the minimal generating set of m has one element. In particular, m is a prin-
cipal ideal.

Let a be a non-zero ideal of R. If a = R then a = m0, so we restrict
ourselves to the case when a is a proper ideal. Since m is the unique maximal
ideal of R, then a ⊆ m. Furthermore, because of the following inclusion chain

R ⊇ m ⊇ m2 ⊇ · · · ⊇ mi ⊇ . . . (3.6)
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there exists n ∈ N ∪ {0} such that a ⊆ mn (this n is at least one) and
a * mn+1. We shall see that really a = mn. Consider one y ∈ a ⊆ mn

such that y /∈ mn+1. Since m is principal, then y = rmn for some r ∈ R
and for some m ∈ m such that m = (m). Moreover, since y /∈ mn+1, then
r /∈ (m) = m. Hence, since R is local then r ∈ U(R). Thus, mn = r−1y ∈ a
and so mn ⊆ a. Then the result follows.

(ii) =⇒ (iii). Since dimm/m2 ≥ dimR = 1, the inclusion m ⊇ m2

is strict. Consider a ∈ m \ m2, then by hypothesis (a) = mn for some
n ∈ N ∪ {0}. Since a ∈ m, then (a) ⊆ m ( R, and so n ≥ 1. Furthermore,
since a /∈ m2, then n ≤ 1 and so n = 1. Hence m = (a). Moreover, every
non-zero ideal of R is a power of m. Therefore, any non-zero ideal of R is of
the form (ah) for some h ∈ N ∪ {0}.

(iii) =⇒ (iv). R is an integral domain such that any proper ideal can
be generated by one element of the form ah for some a ∈ R and for some
h ∈ N ∪ {0}, thus they are principal ideals. Trivially R = (1) is a principal
ideal. Thus, R is a PID.

(iv) =⇒ (i). Since R is a PID m can be generated by one element.
Moreover, this is the minimum number of elements which generate m, i.e.,
dimm/m2 = 1. Indeed, that number cannot be 0, since otherwise m = {0}
and R would be a field, so dimR = 0, which is a contradiction. Therefore,
dimR = 1 = dimm/m2 and R is regular.

For example the ring of p-adic integers Zp is a local principal ideal domain
of dimension one. Indeed, it is an integral domain which is not a field. Hence
by the above theorem Zp is a regular ring.
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Cohen’s structure theorem

In this chapter the result that characterizes the power series rings will be
presented. Expressed differently, we will formulate and demonstrate the Co-
hen structure theorem.

Throughout all of this chapter we will be working with finite-dimensional
rings. Therefore, although it might not appear in the statements, the fact
that we are working with local Noetherian rings should be assumed.

4.1 Field of representatives

Definition 4.1.1. Let (R,m) be a local ring. Then the field R/m is called
the residue field of R.

The residue field is the field which is defined in the natural way in any
local ring (R,m), and now we should start with its analysis. In other words,
we will study the characteristic of the residue field and the existence of a
copy of that field contained in the ring R.

Definition 4.1.2. Let (R,m) be a local ring. Then, R is said to be equichar-
acteristic when R and the residue field R/m have the same characteristic.
Otherwise, it is said to have mixed characteristic.

Due to the complexity of the mixed characteristic case, on these notes
we will limit ourselves to the equicharacteristic case. Moreover, for any field
K its characteristic is either zero or a prime number, charK = 0 or p. Thus,
we can forget about the local rings whose characteristic is not of that form.

Examples 4.1.3. (i) The ring of p-adic integers Zp is a local ring of char-
acteristic 0, but its residue field, Zp/pZp, has characteristic p. Thus, Zp has
mixed characteristic.
(ii) Any field is an equicharacteristic ring. Indeed, {0} is the unique maxi-
mal ideal of K and so K and its residue field are isomorphic. Hence, clearly
both have the same characteristic.

55
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From now on we will mainly work with fields, so we shall prove the
following simple result concerning fields and injectivity.

Lemma 4.1.4. Let K be field, let R be a non-trivial ring and let ϕ : K → R
be a ring homomorphism. Then ϕ is a monomorphism.

Proof. For any ring homomorphism kerϕ is an ideal of K and K is a field,
so kerϕ = {0} or kerϕ = K. However, ϕ is a ring homomorphism, then
ϕ(1) = 1 6= 0 and so 1 /∈ kerϕ. Thus, kerϕ = {0} and so ϕ is injective.

Now we should ask ourselves what the relation is between a local ring R
and its residue field, say K. Furthermore, we are going to see that the best
situation will be that one in which we have an exact copy of K within R.
That is, there exists a subring of R which is isomorphic to K. This idea is
formalized in the next definition.

Definition 4.1.5. Let (R,m) be a local ring and let π : R → R/m be the
canonical epimorphism. Suppose that there exists a subring L of R such
that π(L) = R/m. Then L is said to be a field of representatives or a
representative field of R.

We conclude that the representative field ofR is isomorphic to the residue
field K = R/m. Indeed, the restriction π|L is surjective and since L is a field
by Lemma 4.1.4 then π|L is also injective. When there exists such a field L
within R, π(L) contains exactly one element of each residue class of R/m.
And this is the motivation of its name, because it is a field made up by
representatives of the quotient, one for each coset. In the following results
we will study under what conditions such a field exists. We will see that
completeness is an essential condition. Of course, in a Noetherian local ring
(R,m) completeness is considered respect to the m-adic topology.

First, we shall discuss the zero-equicharacteristic case, using the famous
Hensel’s lemma; and then we will study the general equicharacteristic case.
However, we ought to start by introducing some preliminary results and
concepts.

Lemma 4.1.6. Let (R,m) be a Noetherian complete local ring and let f be
a monic polynomial in R[X]. Suppose that there exist two coprime monic
polynomials G,H ∈ R/m[X] (of degree say r and n−r for some r ≥ 0) such
that f = GH. Then there exist two monic polynomials g, h ∈ R[X] such
that g = G, h = H and f = gh.

Notation. Of course, f denotes the polynomial f reduced modulo m. That
is, if f = Xn + an−1X

n−1 + · · ·+ a0, then f = Xn + an−1X
n−1 + · · ·+ a0,

where ai is the residue of ai modulo m.
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Proof. We have divided the proof into two steps and for notation simplicity
we will denote K = R/m.

Step 1. We shall construct a sequence of polynomials gi and hi ∈ R[X],
of degree r and n− r respectively, such that f ≡ gihi (mod mi[X]) for any
i ≥ 1, where gi = G and hi = H. And then we shall see that the polynomials
gi, hi are unique in the following way. If there exist some g′, h′ ∈ R[X], of
degree r and n−r respectively, such that f ≡ g′h′ (mod mi[X]), g′ = G and
h′ = H, then gi ≡ g′ and hi ≡ h′ (mod mi[X]). We will proceed inductively.

Given G and H choose representatives for the non-zero coefficients (make
sure to choose 1 for 1 +m). This defines two monic polynomials, say g1 and
h1 ∈ R[X], of degrees r and n− r respectively, where g1 = G and h1 = H.
Moreover, since f = GH = g1h1, then f ≡ g1h1 (mod m[X]).

Now suppose inductively that gk and hk have been constructed and they
are unique. We shall construct the polynomials gk+1 and hk+1 in R[X] and
show that they are unique.

Since G and H are coprime polynomials and K[X] is a PID they gen-
erate the total ideal K[X], i.e., (G,H) = K[X]. Hence, there exist two
polynomials α, β ∈ R[X] such that

1 ≡ αgk + βhk (mod m[X]). (4.1)

By induction hypothesis ζ = f − gkhk ∈ mk[X]. So multiplying (4.1) by ζ,
then

ζ ≡ ζαgk + ζβhk (mod mk+1[X]).

Now applying the division algorithm and dividing ζα with hk in R[X]
(it is monic so it makes sense), then there exist some γ, ε ∈ R[X] such that
ζα = γhk + ε and deg ε < n − r. Now since ζα ∈ mk[X], then 0 ≡ γhk + ε
(mod mk[X]). Since hk is monic then it has degree n − r in R/mk[X], so
γ, ε ∈ mk[X]. Then define δ = γgk + ζβ ∈ mk[X] (because γ and ζ ∈ mk[X])
and so by (4.1)

ζ ≡ ζαgk + ζβhk ≡ εgk +γgkhk + ζβhk = εgk + δhk (mod mk+1[X]) (4.2)

Since both ζ and εgk have degree strictly less than n (deg ε < n − r),
then so does δhk and so deg δ < r. Therefore, we can define the polynomials
hk+1 = hk + ε and gk+1 = gk + δ ∈ R[X], whose degrees are n − r and r
respectively. Furthermore, since δ, ε ∈ mk[X] then δε ∈ mk+1[X], so

gk+1hk+1 ≡ gkhk + εgk + δhk + δε ≡ gkhk + ζ + 0 ≡ f (mod mk+1[X]).

Moreover, since ε, δ ∈ mk[X], then gk+1 = gk + δ = gk = G and in a
similar way hk+1 = H. Finally, we shall prove the uniqueness. Suppose that
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there exist h′, g′ in R[X], of degree r and n−r respectively, such that f ≡ g′h′
(mod mk+1[X]), g′ = G and h′ = H. Then by inductive hypothesis gk and
hk are unique, so define δ′ = g′ − gk and ε′ = h′ − hk. Then δ′, ε′ ∈ mk[X]
and so δ′ε′ ≡ 0 (mod mk+1[X]). Now,

0 ≡ f − g′h′

≡ f − gkhk − ε′gk − δ′hk − δ′ε′

≡ ζ − (δ′hk + ε′gk) (mod mk+1[X]).

Hence subtracting this from (4.2) we obtain

0 ≡ (δ − δ′)gk + (ε− ε′)hk (mod mk+1[X]),

where δ−δ′ (call it µ) and ε′−ε (call it ν) have degree stricly less that r and
n−r respectively. Now using identity (4.1) then αgk+βhk−1 = m ∈ m[X].
Hence, since νhk ≡ µgk (mod mk+1[X])

µ = 1µ ≡ (βhk + αgk −m)µ

≡ βµhk + αµgk −mµ
≡ (βµ+ αν)hk −mµ (mod mk+1[X]).

However, mµ ∈ mk+1[X], so µ is a multiple of hk in R/mk+1[X]. But hk
has degree n− r and degµ < n− r, so µ ≡ 0 (mod mk+1[X]). Thus we have
that δ ≡ δ′ (mod mk+1[X]). In a similar way ε ≡ ε′ (mod mk+1[X]). Hence,
it follows that

h′ ≡ hk + ε′ ≡ hk + ε ≡ hk+1 (mod mk+1[X])

g′ ≡ gk + δ′ ≡ gk + δ ≡ gk+1 (mod mk+1[X]).

This completes the uniqueness.

Step 2. We shall find the desired polynomials g, h ∈ R[X]. Consider two
integers 1 ≤ i ≤ j, then f−gjhj ∈ mj [X] ⊆ mi[X]. So, f−gjhj ∈ mi[X] and
by the uniqueness gi ≡ gj (mod mi[X]). Thus, if gi = gi0 + gi1X + · · ·+Xr

then for each l = 0, . . . , r − 1 we have that gil − gjl ∈ mi, so the sequences
(gil)i∈N of coefficients of the gi’s are Cauchy sequences. In a similar way,
the sequences (hil)i∈N (l = 0, . . . , n − r − 1) of coefficientes of the hi’s are
Cauchy sequences. (There are r + n− r = n different sequences.)

Since R is a complete ring, then all the sequences are convergent to some
values a0, . . . , ar−1 (the sequences of the coefficients of the gi’s) and to some
b0, . . . , bn−r−1 (the sequences of the coefficients of the hi’s). Then define the
monic polynomials

g(X) = a0 + a1X + · · ·+ ar−1X
r−1 +Xr ∈ R[X] and



Chapter 4. Cohen’s structure theorem 59

h(X) = b0 + b1X + · · ·+ bn−r−1X
n−r−1 +Xn−r ∈ R[X].

Now, gk = G for any k ≥ 1. Indeed, π (the natural epimorphism R onto
R/m) is a continuous function and the coefficients are convergent. Hence for
each l = 0, . . . , r − 1 we have π(al) = π(limi→∞ gil) = limi→∞ π(gil) = Gl,
the lth coefficient of G. Therefore g = G and in the same way h = H.
Finally we shall see that f = gh.∗ Notice that for any 0 ≤ i ≤ n− 1, then

(gh)i − (gkhk)i =
i∑

j=0

(gjhi−j − (gk)j(hk)i−j)

=
i∑

j=0

(gj − (gk)j)hi−j +
i∑

j=0

(gk)j(hi−j − (hk)i−j).

When k tends to the infinity (gk)i → gi and (hk)i → hi, then by the
above identity we have that (gkhk)i → (gh)i. That is for any ε > 0, there
exists n1 ∈ N such that when k ≥ n1, then |(gh)i − (gkhk)i| < ε/2.

Moreover, by construction fi− (gkhk)i ∈ mk, so limk→∞ fi− (gkhk)i = 0
(by Krull’s intersection theorem). Thus, for any ε > 0, there exists some
n2 ∈ N such that when k ≥ n2, then |fi − (gkhk)i| < ε/2. Then if we choose
k ≥ max {n1, n2},

|fi − (gh)i| ≤ |fi − (gkhk)i|+ |(gkhk)i − (gh)i| < ε.

Therefore, fi = (gh)i for any i = 0, . . . , n− 1 and so f = gh.

Now it will be very easy to prove Hensel’s lemma.

Lemma 4.1.7 (Hensel). Let (R,m) be a Noetherian complete local ring and
let f ∈ R[X] be a monic polynomial. Suppose that there exists a simple root
α ∈ R/m of the reduced polynomial f . Then there exists an element a ∈ R,
such that α ≡ a (mod m) and f(a) = 0. Moreover, the root a of f(X) is
simple.

Proof. Since α ∈ R/m is a root, f(X) = (X − α)G(X) ∈ R/m[X] and since
the root is simple X −α and G are coprime polynomials. Then, by the pre-
ceding lemma there exist some polynomials X − a, g(X) ∈ R[X] such that
g = G, X − a = X − a = X − α and f(X) = (X − a)g(X). In particular,
a ≡ α (mod m).

Furthermore, since f(X) = (X−a)g(X), then f(a) = 0 and a is a root of
f in R[X]. Finally, suppose by contradiction that a is not a simple root, then
f(X) = (X − a)2g̃(X). Thus, going to the quotient f(X) = (X − α)2G̃(X)
and so α is not a simple root of f , which is a contradiction.

∗Denote by fi the ith coefficient of f .
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Hensel’s lemma is a very important result. One of its practical appli-
cations is the factorization of polynomials. Indeed, the search of roots is
simpler when we operate with reduced polynomials whose coefficients lie in
the field R/m.

Now we are going to present a new concept that is linked with the sepa-
rability of polynomials in field extensions, and which eventually will ensure
the existence of a field of representatives.

Definition 4.1.8. Let L : K be an algebraic field extension. Then the
extension is purely inseparable if for any α ∈ L\K, the minimal polynomial
of α is not a separable polynomial.

Remark 4.1.9. Let L : K be a field extension which is both separable
and purely inseparable at the same time. Then L = K. Clearly, suppose
by contradiction that L \K 6= ∅, then there exists an element in L whose
minimal polynomial over K is at the same time separable and non-separable,
which is impossible.

Corollary 4.1.10 (Corollary of Hensel’s lemma). Let R be a Noetherian
complete equicharacteristic local ring such that its characteristic is zero.
Then there exists a subfield L of R such that R/m is purely inseparable
over the image of L in R/m.

Proof. Firstly, we shall prove that R contains at least one field. Consider
the primary subring of R

Z[1] = {n · 1 | n ∈ Z},

where 1 is the identity of R. Since charR = 0, then Z[1] is isomorphic to
the ring of integers, Z[1] ∼= Z. Moreover, since charR/m = 0 we can assert
that for any integer n 6= 0, then n · 1 /∈ m. Indeed, suppose by contradiction
that there exists n ∈ Z such that n · 1 = 1 + · · · + 1 ≡ 0 mod m, then
charR/m = 0 divides n, which is a contradiction. Hence, n · 1 is a unit in
R, with inverse say (n · 1)−1. Thus, consider

E = {(n · 1)(m · 1)−1 | n ∈ Z and m ∈ Z \ {0}} ⊆ R,

which is a field and it is isomorphic to the field of rational numbers, E ∼= Q.

Now consider the set Φ of all subfields of R, which is not empty because
it contains E. This set is partially ordered with respect to inclusion. Hence
it admits by the Zorn lemma a maximal element say L.

Now consider the canonical epimorphism π : R→ R/m. We shall see that
R/m is purely inseparable over π(L).
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First, we discard that the extension R/m : π(L) is transcendental. If it
were true then we would have an element x ∈ R such that π(x) is transcen-
dental over π(L). Thus all the non-zero elements of L[x] would be outside
m and so they would be units. Indeed, consider a 6= 0 ∈ L[x] and suppose
by contradiction that a ∈ m. Since a 6= 0 ∈ L[x] then

a = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

for some ai ∈ L. Therefore, since a ∈ m

0 = π(a) = π(an)π(x)n + · · ·+ π(a1)π(x) + π(a0).

Thus π(x) is algebraic over π(L), which is a contradiction. Therefore, R
contains contains the field L[x], which is a contradiction with the maximal-
ity of L.

Thus, R/m is algebraic over π(L). Now, suppose by contradiction that
there exists an element λ which is separable over π(L). Let f(X) = Xn +
αn−1X

n−1 + · · · + α0 be the minimal polynomial of λ over π(L) and let
ai be a representative of each αi for i = 0, . . . , n − 1. The polynomial
f(X) = Xn + an−1X

n−1 + · · · + a0 ∈ L[X] is a monic polynomial such
that λ is a simple root of f . Hence, by Hensel’s lemma there exists a simple
root x ∈ R such that π(x) = λ and f(x) = 0.

Furthermore, π induces a field-isomorphism from L onto π(L), which
carries f to f , which is irreducible. Then, since isomorphisms keep irre-
ducibility f is irreducible over L[X].

R
π // R/m

L[x]
π // π(L)[λ]

L
π // π(L)

Finally, with the preceding isomorphism L[x] is isomorphic with π(L)[λ],
which is a field. Indeed, λ is an algebraic element, so π(L)[λ] = π(L)(λ).
Then, L[x] is a field and by the maximality of L we have that x ∈ L.
Therefore, π(x) = λ ∈ π(L). Thus, R/m is purely inseparable over π(L).

Remark 4.1.11. It is clear that Z may not be contained in R, so in the
proof of the preceding corollary n ·1 cannot be viewed as the product of two
elements inside R, but as the finite sums n · 1 = 1 + . . .n + 1 (when n > 0),
n · 1 = −(1 + . . .n + 1) (when n < 0) and 0 (when n = 0).
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Now after all this work we obtain the desired result in the zero equichar-
acteristic case.

Corollary 4.1.12 (Existence of a field of representatives for equicharacter-
istic zero). Let R be a Noetherian complete equicharacteristic local ring such
that its characteristic is zero. Then R admits a field of representatives.

Proof. By Corollary 4.1.10 there exists a subfield L of R such that the field
extension R/m : π(L) is purely inseparable. However, since the characteris-
tic of R/m is 0 the field extension is perfect and so the preceding extension
is separable. Now an extension E : K can be both purely inseparable and
separable if and only if E = K, so R/m = π(L). Therefore L is a field of
representatives.

Finally, we are going to generalize the preceding result to any equichar-
acteristic ring.

Theorem 4.1.13 (Existence of a field of representatives). Let R be a Noethe-
rian complete equicharacteristic local ring. Then R admits a field of repre-
sentatives.

Proof. The case when R and R/m have both characteristic 0 has been proved
in Corollary 4.1.12 as a consequence of Hensel’s lemma. Thus, we restrict
ourselves to the case when charR = charR/m = p (a prime number). We
shall divide the proof into two cases.

Case 1. We first turn to the case when mp = {0}. Let us consider

Rp = {xp | x ∈ R},

which is a subring of R, because charR = p. If xp 6= 0, then x /∈ m and
it is invertible, with inverse say y. Then xp has inverse yp in Rp and so
Rp is a subfield of R. Now consider the set of subfields of R which contain
Rp. That set is non-empty and partially ordered with respect to inclusion.
Thus Zorn’s lemma asserts the existence of a maximal subfield L among
those containing Rp. Secondly, consider the canonical epimorphism π from
R onto R/m and consider its restriction to L, π|L, which is a monomorphism.

We proceed to prove that π(L) = R/m. Suppose by contradiction that
there exists α ∈ R/m such that α /∈ π(L). Since αp ∈ π(Rp) ⊆ π(L) the
minimal polynomial of α over π(L) is Xp − αp.

Indeed, since p is a prime number we know that a polynomial of the
type Xp − b is irreducible or it has a root. Hence, the polynomial Xp − αp
is irreducible, otherwise since we have that Xp − αp = (X − α)p (in R/m)
then α ∈ π(L) which is a contradiction. We take the representative a ∈ R
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of α, that is π(a) = α, then a /∈ L, because otherwise α = π(a) ∈ π(L).
Now π|L : L→ π(L) is an isomorphism, and it induces another isomorphism
π̃ : L[X]→ π(L)[X]. Since isomorphisms preserve irreducibility and Xp−αp
is irreducible in π(L)[X], then Xp − ap is irreducible in L[X]. Therefore,

L[a] ∼=
L[X]

(Xp − ap)

is a field. Thus L[a] = L(a) is a subfield of R containing properly L and
thus Rp, in contradiction with the maximality of L. Hence, the restriction
of π is surjective and so it is an isomorphism. Therefore π(L) = R/m and
so R admits a field of representatives.

Case 2. For the general case, denote K = R/m and consider the local
ring R/m2 and its unique maximal ideal m = m/m2. It satisfies the condition
m2 = {0} and so mp = {0}. Hence R/m2 admits a field of representatives,
say K2. Furthermore the natural epimorphism π1 : R/m2 → R/m induces
an isomorphism π1 : K2 → K.

Let πn : R/mn+1 → R/mn be the canonical epimorphism defined by
πn(x+ mn+1) = x+ mn, with kernel kerπn = mn/mn+1.

We construct by induction on n, a representative field Kn of R/mn such
that the canonical epimorphism πn induces an isomorphism from Kn+1 into
Kn.

Suppose that Kn has already been constructed for n. Firstly, A =
π−1n (Kn) is a subring of R/mn+1 and

mn/mn+1 = kerπn = π−1(0) ⊆ π−1(Kn).

Secondly, for any β ∈ A such that β /∈ mn/mn+1 it is a unit in R/mn+1.
Indeed, β /∈ kerπn so 0 6= πn(β) = λ ∈ Kn and Kn is a field, so λ is a unit
in Kn. Therefore, λ is also a unit in the local ring R/mn, so λ /∈ m/mn.
Thus β = π−1(λ) /∈ m/mn+1. Suppose by contradiction that β ∈ m/mn+1.
Then β = m + mn+1 for some m ∈ m, so λ = πn(β) = πn(m + mn+1) =
m+mn ∈ m/mn+1, which is a contradiction. Thus, β /∈ m/mn+1 and so it is
a unit in R/mn+1 as we have stated previously. Let η be the inverse of β in
R/mn+1, that is, ηβ = 1 + mn+1. Then πn(ηβ) = πn(η)π(β) = 1 + mn and
so πn(η) = πn(β)−1 ∈ Kn. Since πn(η) ∈ Kn and A = π−1n (Kn) we have
that η ∈ A. Thus β is a unit in A and so mn/mn+1 is the unique maximal
ideal of A.

Now (mn/mn+1)2 = {0} and so (mn/mn+1)p = {0}. Indeed, m2n ⊆ mn+1

and the result follows. Then the proof runs as before and it shows the exis-
tence of a field of representatives Kn+1 of A. We shall prove that that the
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epimorphism πn induces an isomorphism and that Kn+1 is the representa-
tive field of R/mn+1. Denote p = mn/mn+1 the unique maximal ideal of A,
then A/p ≡ Kn+1. Furthermore, kerπn|A = mn/mn+1 = p, so by the first
isomorphism theorem Kn ≡ A/p. Therefore, πn induces an isomorphism
Kn+1 onto Kn.

Finally, for each n we have an epimorphism ψn R/m
n+1 onto R/m, which

is the composition of the canonical epimorphisms πi : R/m
i+1 → R/mi, i.e.,

ψn = π1 ◦ · · · ◦ πn. Moreover, Kn is the field of representatives of R/mn, so
ψn−1(Kn) = K, ψn−1 is an isomorphism (composition of isomorphisms) and
ψn−1 ◦ πn = ψn. Thus,

ψn(Kn+1) = ψn−1(πn(Kn+1)) = ψn−1(Kn) = K.

Hence Kn+1 is a field of representatives for R/mn+1.

We continue the proof stating one property of R. Let (αn + mn)n∈N be
a sequence† such that πn(αn+1 + mn+1) = αn + mn for any n ∈ N. Then
there exists a unique element a ∈ R such that

∀k ∈ N ∃n0 ∈ N s.t. ∀n ≥ n0 then a ≡ αn mod mk.

To see that, consider the sequence (αn)n∈N ⊆ R. Since πn(αn+1 + mn+1) =
αn +mn then αn+1 ≡ αn mod mn. Hence by Proposition 1.4.7 (αn)n∈N is a
Cauchy sequence in R. Since R is complete the sequence is convergent and
let us denote its limit by a. Then by the definition of convergence

∀k ∈ N ∃n0 ∈ N s.t. ∀n ≥ n0 then a ≡ αn mod mk.

Moreover the uniqueness of a is given by the Krull intersection theorem.
Indeed, suppose that there are two values a, b ∈ R satisfying the above
condition then for any k there exists some n big enough such that

a ≡ αn ≡ b mod mk =⇒ a− b ∈ mk.

Hence a − b ∈
⋂∞
n=0m

n = {0}, so a = b. This shows that the value a does
not depend on the choice of the associated sequence (αn)n∈N.

Now we define the map u : K → R given as follows: for any η ∈ K
consider the coherent sequence

(η1 = η, η2 = π1|−1K2
(η), . . . , ηn+1 = πn|−1Kn+1

(ηn), . . . )

and let u(η) be its limit. Each πn|Kn+1 is an isomorphism so for each η ∈ K
the above sequence exists and it is unique, so u is well-defined.

†This type of sequence is called coherent sequence.
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Furthermore, u is a ring homomorphism. Firstly the ring isomorphisms
π−1n and limits preserve sum and multiplication. Therefore we have that
u(η+η′) = u(η)+u(η′) and u(ηη′) = u(η)u(η′) for any η, η′ ∈ K. Moreover,
the uniqueness forces that u(1) = 1. Indeed, consider the coherent sequence

(1, π−11 (1) = 1 + m, . . . , π−1n (1) = 1 + mn+1, . . . ),

one of whose associated sequences in R is (1, 1, . . . , 1, . . . ), a sequence whose
limit is 1. Finally by the uniqueness of the limit u(1) = 1. Therefore
u : K → R is a ring homomorphism and u(K) ⊆ R is a subring.

Futhermore, any η 6= 0 in K is a unit and it has an inverse say η′. Then,
u(η)u(η′) = u(ηη′) = u(1) = 1 and the inverse of u(η) in u(K) is u(η′).
Thus, u(K) ⊆ R is a field. Therefore π : u(K) → K is a ring monomor-
phism.

We shall prove the surjectivity of the restricted π. Indeed, consider
x + m ∈ R/m. Then (x + m, . . . , x + mn, . . . ) is a coherent sequence and
(x, x, . . . , x, . . . ) is an associated sequence in R. Then the previous constant
sequence converges to x ∈ R. So u(x + m) = x ∈ u(K) and hence we have
π(x) = x+m ∈ π(u(K)). Since the reverse inclusion is clear then π(u(K)) =
K and so π is an isomorphism. Hence u(K) ⊆ R is the representative field
of R.

The chapter has started from the analysis of Noetherian local rings.
However, in order to ensure the existence of a field of representatives, it is
enough to impose a third condition to the ring: completeness; of course with
respect to the m-adic topology. Finally, let us analyze how to join in the
fourth property analyzed in this notes: regularity.

4.2 Non-regular case

Even though we have insisted repeatedly that regularity is a condition in the
Cohen structure theorem, firstly we can study what happens if we dispense
with that condition.

4.2.1 General case

When R is a Noetherian, local and complete ring, but not regular, it is
hardly the same as a power series ring. In fact, it is just the quotient of a
power series ring by a suitable ideal. Let us see it.

Lemma 4.2.1. Let be R a Noetherian complete equicharacteristic local ring,
let K be one of its field of representatives and let {a1, . . . , an} be a generator
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set for m ⊆ R. Then mi/mi+1 is a finitely generated K-vector space and

mi/mi+1 = 〈Q(a1, . . . , an) + mi+1| Q ∈ Qi〉K ,

where Qi = {Q ∈ K[X1, . . . , Xn] | Q is a monomial of degree i}.

Proof. Observe that we can ensure the existence of a finite generator set for
the ideal m, because R is a Noetherian ring. Moreover, it is easy to verify
that the quotient mi/mi+1 has K-vector space structure. Indeed, since m is
an ideal of R.

• (m1 + mi+1) + (m2 + mi+1) = (m1 +m2) + mi+1 ∈ mi/mi+1,
∀m1,m2 ∈ mi.

• Since am ∈ mi, for all a ∈ K ⊆ R and m ∈ mi, then

a(m+ mi+1) ∈ mi/mi+1, ∀a ∈ K, ∀m+ mi+1 ∈ mi/mi+1.

On the other hand, since m = (a1, . . . , an) then

mi = (x1 . . . xi | xk ∈ {a1, . . . , an}) ,

so

mi =


l∑

j=1

λjQj(a1, . . . , an) | λj ∈ K, Qj ∈ Qi, l ∈ N

 .

Therefore,

mi/mi+1 =


l∑

j=1

λjQj(a1, . . . , an) + mi+1 | λj ∈ K,Qj ∈ Qi, l ∈ N


and so

mi/mi+1 = 〈Q(a1, . . . , an) + mi+1 | Q ∈ Qi〉K .

Moreover, it is easy to see that the vector space is finitely generated,
and so it is finite dimensional. Indeed, the set of monomials Xi1

1 . . . Xin
n in

n variables and of total degree i (i.e. i1 + · · ·+ in = i) is a finite set.

Lemma 4.2.2. Let R be a Noetherian complete equicharacteristic local ring,
let K be a field of representatives of R and let {a1, . . . , ad} be a generator
set for m. Then, any element of R can be written as a power series in the
ai’s with coefficients in K.
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Proof. Take x ∈ R, then we can write it as x = x0 + y1 where x0 ∈ K
and y1 ∈ m. Now, repeating the process and according to Lemma 4.2.1
then y1 = x1 + y2, where x1 is a K-linear combination of the ai’s and
y2 ∈ m2. Thus, x = x0 + x1 + y2. Repeating this process n times, we get
x = x0 + x1 + · · · + xn + yn+1, where each xj is a K-linear combination of
monomials of degree j in the ai’s and yn+1 ∈ mn+1. Set un = x1 + · · ·+ xn.
Clearly, by construction (un)n∈N is a Cauchy sequence. Since R is complete
there exists limn→∞ un and then according to Krull’s intersection theorem

x− lim
n→∞

un = lim
n→∞

(x− un) = lim
n→∞

yn+1 = 0.

Therefore,

x = lim
n→∞

un =

∞∑
k=0

xk =

∞∑
k=0

λkQk(a1, . . . , ad),

where Qk ∈ K[X1, . . . , Xd] is a homogeneous polynomial of degree k and
λk ∈ K. Thus, x is a power series in the ai’s.

Theorem 4.2.3 (Cohen’s structure theorem I). Let R be a Noetherian com-
plete equicharacteristic local ring. Then R is isomorphic to the quotient of
a power series ring over the field of representatives with a suitable ideal I.
That is,

R ∼= K[[X1, . . . , Xn]]/I.

Proof. Let {a1, . . . , an} be a generator set for m and let K be a field of
representatives of R. Firstly, we consider the map ψ which is defined by the
universal property (R is complete with the m-adic topology), imposing the
following:

ψ : K[[X1, . . . , Xn]]→ R

X1 7→ a1

. . .

Xn 7→ an

And naturally ψ|K = 1K .

This is a well-defined evaluation homomorphism and following Lemma
4.2.2 then ψ is surjective. Indeed, any element of R can be written as a
power series in the ai’s with coefficients in K. Indeed, for any a ∈ R there
exists some polynomials Qj such that

a =

∞∑
j=0

λjQj(a1, . . . , an).
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Hence, if we consider

a(X1, . . . , Xn) =

∞∑
j=0

λjQj(X1, . . . , Xn) ∈ K[[X1, . . . , Xn]],

then

ψ(a(X1, . . . , Xn)) =
∞∑
j=0

λjQj(a1, . . . , an) = a.

Secondly, denote J = kerψ and according to the first isomorphism theorem
we get

R ∼= K[[X1, . . . , Xn]]/J.

Hence, we are done.

Note that since m is an m-primary ideal, then by Proposition 3.1.18
the above integer n satisfies n ≥ dimR. Moreover, we conclude that every
Noetherian complete equicharacteristic local ring is the homomorphic image
of a complete regular ring, i.e., a power series ring over a field.

4.2.2 Cohen’s structure theorem in integral domains

If we add the condition that R is an integral domain (which in a local ring
is less than being regular) to the above conditions, we are even closer to the
structure of power series rings. Indeed, R contains a copy of a power series
ring over a field. As usually we ought to start by proving some lemmas.

Lemma 4.2.4. Let (R,m) be a Noetherian complete local ring and let M be
an R-module such that mM satisfies Krull’s intersection theorem. If M/mM
is a finitely generated R-module. Then M is a finitely generated R-module.

Proof. We shall prove that whenever the residue classes of m1, . . . ,ms gen-
erate M/mM then the elements m1, . . . ,ms generate M .

We begin by defining A = {
∑s

i=1 rmi | r ∈ R} ⊆ M . Now in order to
prove the reverse inclusion, we consider any c ∈ M . By assumption there
are some elements αi1 ∈ R, (i = 1, . . . , s) for which c−

∑s
i=1 αi1mi ∈ mM .

Indeed, if c denotes the residue class modulo mM of c, then by hipothesis
c =

∑s
i=1 αi1mi, for some αi1 ∈ R.

Thus, we define a1 =
∑s

i=1 αi1mi. Consider k > 1 and suppose induc-
tively that we have defined elements a1, . . . , ak satisfying

• al =
∑s

i=1 αilmi, αil ∈ ml−1.

• c−
∑l

j=1 aj ∈ mlM.
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(notice that a1 satisfies both conditions). Then because of the second con-
dition

c−
k∑
j=1

aj =
∑
l∈L

αlbl, αl ∈ mk where and bl ∈M.

Now we can repeat the argument used in the case of k = 1 for each bl.
Hence, for each l ∈ L there exists dl ∈ A such that bl − dl ∈ mM . Now we
will consider ak+1 =

∑
l∈L αldl. Then both conditions are satisfied. On the

one hand, since αl ∈ mk, there exist some suitable αi,k+1 ∈ mk such that

ak+1 =
s∑
i=1

αi,k+1mi, αi,k+1 ∈ mkM.

On the other hand,

c−
k+1∑
j=1

aj =
∑
l∈L

αlbl −
∑
l∈L

αldl =
∑
l∈L

αl(bl − dl) ∈ mkmM = mk+1M.

Therefore, we have a sequence (ak)k∈N. Since R is complete, for each
i = 1, . . . , s according to Proposition 1.4.8 we are allowed to define the values
α∗i =

∑∞
j=1 αij ∈ R and a =

∑s
i=1 α

∗
imi ∈ A. Furthermore,

c− a = lim
k→∞

c− s∑
i=1

 k∑
j=1

αij

mi


= lim

k→∞

c− k∑
j=1

(
s∑
i=1

αijmi

)
= lim

k→∞

c− k∑
j=1

aj

 = 0.

Using the conditions over the coefficients ai and Krull’s intersection theorem
for the ideal mM . Thus, c = a ∈ A and so M = A. Hence, M is finitely
generated over R.

Lemma 4.2.5. Let A and B be R-modules. Suppose that there exists a
R-module epimorphism f : A → B and that A is finitely generated as an
R-module. Then B is a finitely generated R-module.

Proof. We shall see that if A is generated by {a1, . . . , as} as R-module, then
B is generated by {f(a1), . . . , f(as)} as R-module.

Consider b ∈ B, since f is surjective then there exists a ∈ A such that
f(a) = b. There exist some r1, . . . , rs such that a = r1a1 + · · ·+ rsas. Then
b = f(a) = f(r1a1 + · · · + rsas) = r1f(a1) + · · · + rsf(as). Hence we are
done.



70 4.2. Non-regular case

Lemma 4.2.6. Let (R,m) be a Noetherian complete equicharacteristic local
integral domain of dimension d, let K be one of its field of representatives,
let {a1, . . . , ad} be a system of parameters of R and consider the map

ϕ : K[[X1, . . . , Xd]]→ R,

defined by ϕ(Xi) = ai for all i = 1, . . . , d and ϕ|K = 1K . Then,

(i) R is a finitely generated ϕ(R)-module and

(ii) ϕ is a monomorphism.

Proof. Denote S = imϕ and notice that K ⊆ S. Firstly, notice that R is
complete with the m-adic topology and ai ∈ m, so ϕ is a well defined evalu-
ation homomorphism.

(i) Define the ideal n = (a1, . . . , ad) ⊆ R. Firstly S is complete with
the n-adic topology. Indeed, let (yn)n∈N be a Cauchy sequence in S. Since
S = imϕ for each yn there exists a Yn ∈ K[[X1, . . . , Xd]] such that ϕ(Yn) =
yn. Moreover, since yn ∈ nk we can choose Yn ∈ Mk. Hence by construc-
tion (Yn)n∈N is a Cauchy sequence in K[[X1, . . . , Xd]] with respect to the
M = (X1, . . . , Xd)-adic topology.

Moreover, K[[X1, . . . , Xd]] is complete with the M-adic topology. Thus,
(Yn)n∈N converges to some Y , that is,

∀k ∈ N ∃n0 ∈ N such that ∀n ≥ n0 Yn − Y ∈Mk.

Thus consider y = ϕ(Y ) ∈ S, then

∀k ∈ N ∃n0 ∈ N such that ∀n ≥ n0

yn − y = ϕ(Yn)− ϕ(Y ) = ϕ(Yn − Y ) ∈ ϕ(Mk) = nk.

Therefore, the sequence (yn)n∈N converges to y ∈ S, so S is complete
with the n-adic topology.

Furthermore, mk ⊆ n ⊆ m, for some k > 0. Indeed, n is an m-primary
ideal and m = (x1, . . . , xn) is finitely generated. Hence, Rad n = m and for
each i = 1, . . . , n there exists ki such that xkii ∈ n. Consider the integer
l = maxi=1,...,n ki, then for any x ∈ m we have that x(n−1)l+1 ∈ n. Indeed,
since x ∈ m, there exists i = 1, . . . , n such that x(n−1)l+1 = xliy ∈ n. Hence,
choose k = (n− 1)l + 1 such that mk ⊆ n.

Thus the exists a surjective map from R/mk onto R/n. Therefore, apply-
ing Lemma 4.2.5 in order to prove that R/n is a finitely generated S-module,
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it is enough to prove the same for R/mk. It can be done by induction on k.

When k = 1, then R/m ∼= K. Moreover, it is a finitely generated K-
module and K ⊆ S, so R/m is a finitely generated S-module. Suppose
inductively that the hypothesis is fulfilled for k. Then, mk/mk+1 is a finitely
generated K-vector space, by Lemma 4.2.1. In particular it is a finitely
generated S-module. Hence, since R/mk and mk/mk+1 are finitely generated
S-modules so is R/mk+1. Indeed, we know that both R/mk and mk/mk+1

are finitely generated S-modules and by the third isomorphism theorem

R/mk ∼= (R/mk+1)/(mk/mk+1).

Hence, R/mk+1 is also finitely generated as an S-module.

Therefore, according to Lemma 4.2.4 since R/n is a finitely generated
S-module, (S, n) is complete and nR satisfies the Krull intersection theorem,
then R is finitely generated as an S-module.

(ii) Since R is a finitely generated S-module then S ⊆ R is an integral
ring extension. By Exercise 6 dimS ≥ dimR. Furthermore, since R is an
integral domain then kerϕ is a prime ideal. Indeed, by the first isomorphism
theorem K[[X1, . . . , Xd]]/ kerϕ is isomorphic to S ⊆ R, which is an integral
domain (as a subring of the integral domain R) and so kerϕ is a prime ideal.

Now if kerϕ 6= {0}, then

dimK[[X1, . . . , Xd]]/ kerϕ < dimK[[X1, . . . , Xd]].

Indeed, say d′ = dimK[[X1, . . . , Xd]]/ kerϕ, then there exists a chain of
prime ideals

p̃0 ( p̃1 ( · · · ( p̃d′ .

Obviously p̃0 = {0}. Indeed, the quotient ring K[[X1, . . . , Xd]]/ kerϕ is an
integral domain. Hence, by the correspondence theorem there exist some
ideals pi of K[[X1, . . . , Xd]] such that kerϕ ⊆ pi and pi/ kerϕ = p̃i. There-
fore,

{0} ( kerϕ ( p1 ( · · · ( pd′

is a chain of prime ideals and so

dimK[[X1, . . . , Xd]] ≥ d′ + 1 > dimK[[X1, . . . , Xd]]/ kerϕ.

Finally, the result follows directly from the fact dimK[[X1, . . . , Xd]] = dimR.
Indeed, both have dimension d. Suppose by contradiction that kerϕ 6= {0},
then by the two previous remarks

dimR ≤ dimS = dimK[[X1, . . . , Xd]]/ kerϕ < dimK[[X1, . . . , Xd]],

which is a contradiction. Hence, kerϕ = {0} and ϕ is injective.
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Now proving the second version of Cohen’s structure theorem is straight-
forward.

Theorem 4.2.7 (Cohen’s structure theorem II). Let R be a Noetherian
complete equicharacteristic local integral domain of dimension d. Then there
exists a subring S ⊆ R such that the following holds:

(i) S is isomorphic to K[[X1, . . . , Xd]] where K is the field of representa-
tives.

(ii) Both R and S have the same residue field.

(iii) R is a finitely generated S-module.

Proof. Let {a1, . . . , ad} be a system of parameters of R and consider the
ring homomorphism ϕ : K[[X1, . . . , Xd]]→ R defined in Lemma 4.2.6. Then
S = ϕ(R) is a subring of R that satisfies the following:

(i) By Lemma 4.2.6, ϕ is injective, so according to the first isomorphism
theorem

S = imϕ ∼= K[[X1, . . . , Xd]]/ kerϕ ∼= K[[X1, . . . , Xd]].

(ii) Once we know that S ∼= K[[X1, . . . , Xd]] its residue field is K.

(iii) By Lemma 4.2.6, R is a finitely generated S-module.

Hence we are done.

4.3 Regular case

An ideal situation will be the one in which the above maps are bijective.
Well, regularity will provide us that result. In this theorem we can combine
the two previous results, taking into account that when R is regular, a sys-
tem of parameters of R at the same time generates m. Therefore, we have
the surjectivity and the injectivity together.

Before starting, remember that by definition regularity implies locality.

Theorem 4.3.1 (Cohen’s structure theorem III). Let R be a Noetherian
complete equicharacteristic regular ring of dimension d. Then R is isomor-
phic to the power series ring of d indeterminates over a field of representa-
tives:

R ∼= K[[X1, . . . , Xd]].
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Proof. Since R is a regular ring we have a system of parameters {a1, . . . ad}
which generates m. Now, if we define the ring homomorphism

ψ : K[[X1, . . . , Xd]]→ R

as in Theorem 4.2.3 or as in Lemma 4.2.6, then ψ is an isomorphism. Indeed,
since the system of parameters generates m, then ψ is surjective (Lemma
4.2.2). Moreover, since R is a Noetherian regular ring by Theorem 3.2.9 it
is an integral domain. Thus, according to Lemma 4.2.6 then ψ is injective.
Therefore,

R ∼= K[[X1, . . . , Xd]].

Corollary 4.3.2. Let R be a Noetherian complete equicharacteristic regular
ring. Then R is a unique factorization domain.

Proof. By the above theorem R is isomorphic to a power series ring over a
field. Since power series rings over a field are unique factorization domains
(Theorem 2.4.9), then R is also a unique factorization domain.

This corollary, which is a direct consequence of Cohen structure theo-
rem, was independently proved by Auslander, Buchsbaum and Nagata in
the 1950s.

Finally, it is important to highlight the fact that the Cohen’s structure
theorem is much more extensive, since it covers the non-equicharacteristic
case. Unfortunately, the development of this theory exceeds the limits of
this work both in difficulty and extension.

In the non-equicharacteristic case, R may not contain any subring iso-
morphic to the residue field. Nevertheless, it contains a special subring,
called Cohen-Macaulay subring, and the overall result could be expressed
as:

Theorem 4.3.3 (Cohen’s structure theorem IV). Let R be a Noetherian
complete local ring of dimension d. Then,

1) there exists a Cohen-Macaulay ring Λ such that

R ∼= Λ[[X1, . . . , Xn]]/I

for a suitable ideal I ⊆ Λ[[X1, . . . , Xn]] and a suitable integer n. Moreover,
in the equicharacteristic case Λ is a field of representatives.

2) In addition, when R is an integral domain, then there exists a subring
S ⊆ R such that the following holds:
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(i) S is isomorphic to Λ[[X1, . . . , Xd]] where Λ is a Cohen-Macaulay ring.
Moreover, in the equicharacteristic case Λ is a field of representatives.

(ii) Both R and S have the same residue field.

(iii) R is a finitely generated S-module.

3) In addition, when R is regular then R is isomorphic to Λ[[X1, . . . , Xd]]
where Λ is a Cohen-Macaulay ring. Moreover, in the equicharacteristic case
Λ is a field of representatives.

To alleviate the curiosity of the reader, the demonstration of this theo-
rem can be read in [1].



Appendix A

Solved exercises

The prime avoidance theorem is a basic result of Commutative Algebra,
which is used several times in these notes. It will be proved here, as an
exercise.

Exercise 1 (Prime avoidance theorem). Let R be a commutative ring, let
{p1, . . . , ps} (s ≥ 2) be a set of ideals such that at most two of them (p1 and
p2) are not prime and let a be an ideal of R, such that

a ⊆
s⋃
i=1

pi.

Prove that a ⊆ pj for some j ∈ {1, . . . , s}.

Solution. We proceed by induction over s. When s = 2, suppose by con-
tradiction that a ⊆ p1 ∪ p2 but a * pi for all i = 1, 2. Then there ex-
ist two elements ai such that ai ∈ a \ pi, so a1 ∈ p2 and a2 ∈ p1. Then,
a1 + a2 ∈ a ⊆ p1 ∪ p2. Hence, a1 + a2 belongs either to p1 or to p2. In the
first case

a1 = (a1 + a2)− a2 ∈ p1,

which is a contradiction. In the second case (a1 + a2 ∈ p2), in a similar way
we get that a2 ∈ p2, which is also a contradiction. Thus, a ⊆ pj for some
j = 1, 2.

Now, suppose inductively that the result has been proved for s = k and
a ⊆

⋃k+1
i=1 pi. Then suppose by contradiction that for any j = 1, . . . , k + 1

a *
⋃
i 6=j

pi,

so for each j = 1, . . . , k + 1, there exists

aj ∈ a \
⋃
i 6=j

pi.
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Clearly, aj ∈ pj for each j and aj /∈ pi for any i 6= j. Now define b =
a1 . . . ak + ak+1. Then b /∈ pk+1, otherwise

a1 . . . ak = a1 . . . ak + ak+1 − ak+1 = b− ak+1 ∈ pk+1.

Since pk+1 is a prime ideal (indeed k + 1 ≥ 3), then there exists an element
aj ∈ pk+1 for some j = 1, . . . , k, which is impossible. On the other hand,
b /∈ pj for any j 6= k + 1. Otherwise,

ak+1 = b− a1 . . . ak ∈ pj ,

which is impossible. But since b ∈ a is not contained in
⋃k+1
i=1 pi, we have a

contradiction with the initial hypothesis. Hence, there exists j = 1, . . . , k+1
such that

a ⊆
⋃
i 6=j

pi.

Therefore, by induction hypothesis there exists l = 1, . . . k + 1 such that

a ⊆ pl.

This completes the inductive step and so the statement is proved.

Exercise 2. Let K be a field. Show that

K[[X1, . . . , Xn]]/(X1, . . . , Xn) ∼= K

and conclude that (X1, . . . , Xn) is a maximal ideal.

Solution. Denote Rn = K[[X1, . . . , Xn]]. Firstly we shall prove this identity

(X1, . . . , Xn) = {a ∈ Rn | a0,...,0 = 0}. (A.1)

⊆) Consider a ∈ (X1, . . . , Xn). Then there exist some bi(X1, . . . , Xn) ∈ Rn
(i = 1, . . . , n) such that

a(X1, . . . , Xn) = b1(X1, . . . , Xn)X1 + · · ·+ bn(X1, . . . , Xn)Xn,

so by comparing constant terms

a0,...,0 =
n∑
i=1

bi(0, . . . , 0)0 = 0.

⊇) Consider some a ∈ Rn such that a0,...0 = 0. Then we can separate the
powers in which X1 appears and those where it does not appear, that is,

a = a1(X1, . . . , Xn)X1 + ã2(X2, . . . , Xn).
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Repeating the process in ã2 for X2, then

a = a1(X1, . . . , Xn)X1 + a2(X2, . . . , Xn)X2 + ã3(X3, . . . , Xn).

Hence, in a finite number of steps, we obtain some a1, . . . , an ∈ Rn, such
that,

a = a1X1 + · · ·+ anXn =⇒ a ∈ (X1, . . . , Xn).

Now we are ready to prove the isomorphism. Since K is a field, it is com-
plete with respect to the {0}-adic topology, and so the following evaluation
homomorphism ϕ is well-defined by Proposition 2.3.10:

ϕ : K[[X1, . . . , Xd]]→ K

X1 7→ 0

. . .

Xn 7→ 0.

Moreover, this map is surjective. Indeed, set k ∈ K, and consider
k = k+

∑
i1,...in≥0 0Xi1

1 . . . Xin
n ∈ K[[X1, . . . , Xn]] such that ϕ(k) = k. Then

K ⊆ imϕ and so ϕ is an epimorphism.

On the other hand, kerϕ = (X1, . . . , Xn).

⊆) Consider a ∈ kerϕ, then

0 = ϕ(a) =
∑

i1,...,in≥0
ai1,...,in0i1 . . . 0in = a0,...,0,

so by (A.1) then a ∈ (X1, . . . , Xn).

⊇) Consider a ∈ (X1, . . . , Xn). Then, a = a1X1 + . . . anXn for some
ai ∈ Rn. Thus ϕ(a) = a10 + · · ·+ an0 = 0. Hence (X1, . . . , Xn) ⊆ kerϕ.

Finally according to the first isomorphism theorem,

K[[X1, . . . , Xn]]/(X1, . . . , Xn) ∼= K.

Now since the quotient is a field, it follows that (X1, . . . , Xn) is a maximal
ideal.

Exercise 3. Let K be a field and say Rn = K[[X1, . . . , Xn]]. The aim of this
exercise is to show that for any power series f there exists an automorphism
ϕ : Rn → Rn such that ϕ(f) is regular. Hence, this exercise is fundamental
in order to prove Theorem 2.4.9.
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(i) Show that the map ϕ : Rn → Rn sending Xi to Xi+Xmi
n for 1 ≤ i < n

and fixing Xn defines an automorphism of Rn (the mi ∈ N ∪ {0} are
fixed).

(ii) Fix f ∈ Rn, which is non-zero and which is not a unit. Show that one
can choose m1, . . . ,mn−1 such that f is mapped to a regular element.

Solution. (i) First of all notice that Rn is complete with the (X1, . . . , Xn)-
adic topology and for each i = 1, . . . , n− 1 then Xi +Xmi

n ∈ (X1, . . . , Xn).
Thus, according to Proposition 2.3.10 the preceding map ϕ is a well-defined
evaluation homomorphism.

Moreover, the evaluation homomorphism defined by ψ(Xi) = Xi −Xmi
n

for all i = 1, . . . , n− 1 and ψ(Xn) = Xn is the inverse of ϕ. Therefore, ϕ is
an automorphism of Rn.

(ii) Let f be a power series which is not zero or a unit. Now we shall
fix the values of mi for f̃ = ϕ(f) be a regular power series. We are going to
consider two cases.

Case 1. When f is a regular power series of order s, it is enough con-
sidering mi = 0 for all i = 1, . . . , n− 1 and ϕ = 1Rn .

Case 2. In this case f is not a regular power series. We have

f̃ = ϕ(f) = f(X1 +Xm1
n , . . . , Xn−1 +Xmn−1

n , Xn)

Hence,

f̃(0, . . . , 0, Xn) = f(Xm1
n , . . . , Xmn−1

n , Xn)

will be a power series inXn. Moreover, define I = {(i1 . . . , in) | ai1,...,in 6= 0},
then f̃ will be a regular power series of order s, where

s ≥ min {i1m1 + · · ·+ in−1mn−1 + in | (i1 . . . , in) ∈ I}. (A.2)

Well, f̃(0, . . . , 0, Xn) is a power series in Xn, but is it a non-zero power
series? Define

Aj = {ai1,...,in | i1m1 + · · ·+ in−1mn−1 + in = j}.

This is finite, because the natural number j is fixed. Then the coefficient of
Xj
n is

∑
a∈Aj

a. Hence, even though there are monomials of total degree j,

then their sum can be 0 and so f̃(0, . . . , 0, Xn) can be the zero power series.
However, we can find a combination of (m1, . . . ,mn−1) ∈ (N∪ {0})n−1 such
that f̃(0, . . . , 0, Xn) 6= 0.
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Indeed, we will define an order relation in the monomials such that
Xi1

1 . . . Xin
n < Xj1

1 . . . Xjn
n if and only if there exists k ∈ N such that il = jl

for l = 1, . . . , k−1 and ik < jk. Then let ad1,...,dn be the minimum (with the
above order) non-zero coefficient of f . Since f is not a unit, then a0,...,0 = 0
and so (d1, . . . , dn) 6= (0, . . . , 0).

Consider d = maxi=1,...,n di > 0 and choose mi = (nd)n−i. Then

the image of the monomial term ad1,...,dnX
d1
1 . . . Xdn

n by ϕ (evaluated in
(0, . . . , 0, Xn)) is

ad1,...,dnX
d1m1+···+dn−1mn−1+dn
n . (A.3)

We shall prove that this term is not cancelled with any other term. So
proving that for any (i1, . . . , in) ∈ (N ∪ {0})n

i1m1 + · · ·+ in−1mn−1 + in > d1m1 + · · ·+ dn−1mn−1 + dn (A.4)

is enough. By the election of the di’s there exists an l = 1, . . . , n such that
ij = dj , when j < l and il > dl. Then subtracting both expressions in (A.4),
since ij = dj when j < l, we get

(il − dl)ml +
n∑

j=l+1

(ij − dj)mj = (il − dl)ml +
n∑

j=l+1

ijmj −
n∑

j=l+1

djmj ,

where mn = 1. Since il > dl then (il − dl)ml ≥ ml, so we should take care
about the negative terms only.

n∑
j=l+1

djmj ≤ (n− 1)d max
j≥l+1

mj < ndml+1 = nd(nd)n−l−1 = (nd)n−l = ml.

Hence,

(il − dl)ml +
n∑

j=l+1

ijmj −
n∑

j=l+1

djmj > ml +
n∑

j=l+1

ijmj −ml ≥ 0.

Therefore, the term (A.3) is not cancelled. Then f̃(0, . . . , 0, Xn) is a non-zero
power series ring in Xn, so it is a regular power series in Xn.

Exercise 4. Let R be a ring and let a be an ideal of R. The goal of this
exercise is to describe the main properties of the radical of a defined as

Rad a = {r ∈ R | ∃n ∈ N such that rn ∈ a}.

Prove that:

(i) Rad a is an ideal.
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(ii) If a ⊆ b then Rad a ⊆ Rad b.

(iii) Rad a = R if and only if a = R.

(iv) Rad (a + b) = Rad (Rad a + Rad b).

(v) If a is a primary ideal then Rad a is prime.

(vi) The radical of a is the intersection of all the prime ideals containing a.

Rad a =
⋂

p prime s.t. a⊆p
p.

(vii) For any prime ideal p and any n ∈ N then Rad (pn) = p.

(viii) Let a be an ideal such that Rad a = m is a maximal ideal. Then a
is m-primary. In particular, if m is a maximal ideal then mn is an
m-primary ideal for any n ∈ N.

(ix) Let p be a prime ideal. Then conclude from (viii) that the ideal of R
defined as p(i) = piRp ∩R is a p-primary ideal.

(x) (Proof of Lemma 3.1.12) Let (R,m) be a local ring. Then the following
conditions are equivalent

(a) Rad a = m,

(b) m is a minimal prime ideal of a and

(c) a is an m-primary ideal.

Solution. (i) It is straightforward because the conditions that define an ideal
are satisfied:

• For any a ∈ a, then a1 ∈ a and so a ⊆ Rad a. In particular Rad a 6= ∅.

• Let a, b ∈ Rad a. Then there exist n,m ∈ N such that an, bm ∈ a.
Therefore using Newton’s binomial formula

(a+ b)n+m =
n+m∑
i=0

(
n+m

i

)
aibn+m−i

= bm
n∑
i=0

(
n+m

i

)
aibn−i

+ an
n+m∑
i=n+1

(
n+m

i

)
ai−nbn+m−i ∈ a.

Hence a+ b ∈ Rad a.
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• Let a ∈ Rad a and let r ∈ R. Then there exists n ∈ N such that
an ∈ a. Hence (ar)n = anrn ∈ a and so ar ∈ Rad a.

(ii) Let a ⊆ b be two ideals of R. Let a ∈ Rad a, then there exists n ∈ N
such that an ∈ a ⊆ b. By definition a ∈ Rad b and so Rad a ⊆ Rad b.

(iii) We shall prove both implications.
⇒) Suppose that Rad a = R. Then 1 ∈ Rad a, so there exists n ∈ N such
that 1n = 1 ∈ a, so a = R.
⇐) Suppose that a = R. Then R = a ⊆ Rad a, so Rad a = R.

(iv) We shall prove both inclusions.
⊆) Consider x ∈ Rad (a + b), then there exists n ∈ N such that

xn ∈ a + b ⊆ Rad a + Rad b.

Therefore x ∈ Rad (Rad a + Rad b).
⊇) Consider x ∈ Rad (Rad a + Rad b). Hence there exists n ∈ N such that
xn ∈ Rad a+Rad b. That is, xn = y1+y2, where there exist some n1, n2 ∈ N
such that yn1

1 ∈ a and yn2
2 ∈ b. Hence using the Newton binomial formula

xn(n1+n2) = (y1 + y2)
n1+n2 =

n1+n2∑
i=0

(
n1 + n2

i

)
yi1y

n1+n2−i
2

= yn2
2

n1∑
i=0

(
n1 + n2

i

)
yi1y

n1−i
2

+ yn1
1

n1+n2∑
i=n1+1

(
n1 + n2

i

)
yi−n1
1 yn1+n2−i

2 ∈ a + b.

Hence x ∈ Rad (a + b).

(v) Let a be a primary ideal. Since a is proper 1n = 1 /∈ a for any n ∈ N,
so 1 /∈ Rad a = p. Hence p is a proper ideal.

Let ab ∈ p but a /∈ p. Then there exists n ∈ N such that (ab)n = anbn ∈ a.
However a /∈ Rad a, so an /∈ a. Thus since a is p-primary, then there exists
m ∈ N such that (bn)m = bnm ∈ a. Hence, b ∈ p and so p is prime.

(vi) We shall prove both inclusions.
⊆) Consider a ∈ Rad a. Then there exists n ∈ N such that an ∈ a ⊆ p for
any prime ideal such that a ⊆ p. Since p is prime a ∈ p and

Rad a ⊆
⋂

p prime s.t. a⊆p
p.



82

⊇) Consider a in the above intersection and suppose by contradiction that
a /∈ Rad a. Then a ∩ S = ∅, where S is the multiplicatively closed subset
S = {an | n ∈ N}. Thus the set

Ψ = {b ideal of R | a ⊆ b and b ∩ S = ∅}

is a partially ordered non-empty set. Hence by the Zorn Lemma it admits a
maximal element, say p. Now we shall prove that p is a prime ideal. Consider
c, b ∈ R \ p, we shall prove that cb /∈ p. Since c /∈ p then p ( (p, c). Hence
by the maximality of p and since a ⊆ (p, c), we have that (p, c) ∩ S 6= ∅.
Hence, there exist some s1 ∈ S, r1 ∈ R and p1 ∈ p such that s1 = p1 + r1c.
In a similar way there exist some s2 ∈ S, r2 ∈ R and p2 ∈ p such that
s2 = p2 + r2b. Therefore, s1s2 = an1an2 = an1+n2 ∈ S and

s1s2 = (p1p2 + p1r2b+ p2r1c) + r1r2cb ∈ S.

Since p1p2 + r1p2c+ r2p1b ∈ p and S ∩ p = ∅, then cb /∈ p. Indeed, if cb ∈ p
then s1s2 ∈ S ∩ p. Thus p is a prime ideal such that a ⊆ p, so a ∈ p. Thus
a ∈ S ∩ p = ∅, which is a contradiction.

(vii) We shall prove both inclusions.
⊇) Let p ∈ p. Then pn ∈ pn and so p ⊆ Rad (pn).
⊆) Let a ∈ Rad (pn). Then there exists some m ∈ N such that am ∈ pn ⊆ p.
Now p is a prime ideal, so a ∈ p.

(viii) Since a ⊆ Rad a = m and m is a maximal ideal then a is a proper
ideal. Now let a, b ∈ R such that ab ∈ a and b /∈ Rad a = m. Then by the
maximality condition m + (b) = R. Since m + (b) ⊆ m + Rad (b) then

R = RadR = Rad (m + (b)) ⊆ Rad (m + Rad (b)),

so Rad (m + Rad (b)) = R. On the other hand,

Rad (a + (b)) = Rad (Rad a + Rad (b)) = Rad (m + Rad (b)) = R,

so by (iii) then a + (b) = R. Hence, there exist some c ∈ a and r ∈ R such
that 1 = c+ br. Therefore,

a = a · 1 = ac+ abc ∈ a,

because both c and ab are in a. Hence a is m-primary.

Furthermore, consider n ∈ N. When m is a maximal ideal by (v) then
Radmn = m which is a maximal ideal, so mn is an m-primary ideal.

(ix) Let p be a prime ideal, let i ∈ N and consider the ideal p(i) = piRp∩R
of R. Firstly, for any i the ideal p(i) is proper. Suppose by contradiction
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that for some i ∈ N, p(i) is not proper. Then 1 ∈ piRp ∩ R so there exists
x /∈ p such that x = 1x ∈ pi ⊆ p, which is clearly a contradiction. Thus, p(i)

must be a proper ideal.

On the one hand, since Rp is a local ring with pRp as unique maximal
ideal, then by (viii) piRp is a pRp-primary ideal. Consider a, b ∈ R such that
ab ∈ p(i) and a /∈ p(i). Then ab ∈ piRp and a /∈ piRp, because a ∈ R. Hence,
since piRp is a primary ideal then there exists n ∈ N such that bn ∈ piRp.
Therefore, bn ∈ piRp∩R and so p(i) is primary. If we prove that Rad p(i) = p,
we are done.

One inclusion is obvious. Consider p ∈ p, then pi = pi · 1 ∈ pi so
pi ∈ piRp ∩R. Thus p ∈ Rad p(i). On the other hand, consider x ∈ Rad p(i),
then there exists n ∈ N such that xn ∈ piRp ∩ R. In particular, x ∈
Rad piRp = pRp. Therefore, there exists some u /∈ p such that xu ∈ p.
Finally since p is a prime ideal, u /∈ p and xu ∈ p then x ∈ p and we are
done.

(x) We shall prove the equivalence chain.

(a) =⇒ (b). Firstly m is a prime ideal that contains a. By (vi) it
follows that

m = Rad a =
⋂

p prime s.t. a⊆p
p.

Then m is contained in any prime ideal which contains a. Let p be a minimal
prime ideal of a. Then m ⊆ p and since m is maximal in R then m = p.

(b) =⇒ (c). Suppose that m is a minimal prime ideal of a, then since
the ring is local m is the unique minimal prime ideal of a. Moreover it is the
unique prime ideal that contains a and so

Rad a =
⋂

p prime s.t. a⊆p
p = m.

Now since the radical of a is a maximal ideal then by (viii) a is an m-primary
ideal.

(c) =⇒ (a). It is straightforward. Since a is an m-primary ideal, then
Rad a = m.

Exercise 5. Let K be a field. Prove that dimK[[X1, . . . , Xn]] = n.

Solution. On the one hand, as in Exercise 2 it is easy to see that

K[[X1, . . . , Xn]]/(X1, . . . , Xi) ∼= K[[Xi+1, . . . Xn]].
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On the other hand, K is an integral domain. Thus K[[Xi+1, . . . , Xn]] is an
integral domain for all i = 0, . . . , n− 1. Hence K[[X1, . . . , Xn]]/(X1, . . . , Xi)
is an integral domain, and so (X1, . . . , Xi) is a prime ideal for any 1 ≤ i < n.
Moreover, by Exercise 2 (X1, . . . , Xn) is a maximal ideal, so it is a prime
ideal. Hence the following is a chain of prime ideals of lenght n.

{0} ( (X1) ( (X1, X2) ( · · · ( (X1, . . . , Xn)

(note that {0} is a prime ideal because K[[X1, . . . , Xn]] is an ID). Since all
the inclusions are strict dimK[[X1, . . . , Xn]] ≥ n.

Furthermore, K[[X1, . . . , Xn]] is a Noetherian ring and (X1, . . . , Xn) is a
proper ideal which can be generated by n elements. Therefore by Theorem
3.1.13 ht (X1, . . . , Xn) ≤ n. Finally since K[[X1, . . . , Xn]] is a local ring with
maximal ideal (X1, . . . , Xn), so dimK[[X1, . . . , Xn]] = ht (X1, . . . , Xn) ≤ n.
Hence dimK[[X1, . . . Xn]] = n.

Exercise 6. Let S ⊆ R be an integral ring extension. Prove that dimR ≤
dimS. Is it true when the extension S ⊆ R is not integral?

Solution. On the one hand, denote r = dimR and let

p0 ( p1 ( · · · ( pr

be a saturated chain of prime ideals of R. Then each qi = pi ∩ S is a prime
ideal of S, and

q0 ⊆ q1 ⊆ · · · ⊆ qr

is a chain of prime ideals of S. We shall prove that all the inclusions are
strict. Suppose by contradiction that qi+1 = qi for some i, then pi+1 = pi,
which is a contradiction. Consider a ∈ pi+1. Since R/pi is integral over S/qi
then there exist some coefficients si ∈ S such that

an + sn−1a
n−1 + · · ·+ s0 ≡ 0 mod pi,

and we can assume that n is the lowest possible degree of that polynomial
combination. Then s0 ∈ S and s0 ≡ −an − sn−1an−1 − · · · − s1a mod pi.
Moreover, a ∈ pi+1, and it is an ideal so −an − sn−1an−1 − · · · − s1a ∈ pi+1.
Therefore s0 ≡ −an − sn−1an−1 − · · · − s1a ≡ 0 mod pi+1. Hence,

s0 ∈ S ∩ pi+1 = qi+1 = qi = S ∩ pi,

so s0 ≡ 0 mod pi. Thus,

a(an−1 + sn−1a
n−2 + · · ·+ s1) ≡ 0 mod pi,

i.e., a(an−1 + sn−1an−2 + · · ·+ s1) = 0 in the integral domain R/pi. Now
by the minimality of the above polynomial combination, then a = 0 and so
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a ∈ pi. Hence, pi = pi+1.

Thus the preceding was a chain of prime ideals of S and dimS ≥ dimR.

If S ⊆ R is not an integral ring extension then the result may not be
true. Indeed, consider the ring extension Q ⊆ Q[X], which is not integral.
Then Q is a field so dimQ = 0 and Q[X] is a PID which is not a field, so
dimQ[X] = 1. Hence dimQ < dimQ[X].

Note. The result is more general. Indeed, when the extension S ⊆ R is
integral, then dimS = dimR. However, proving the reverse inequality is
much more difficult. Moreover, in order to prove that inequality we ought
to use the Going Up theorem, which has not been studied in these notes.
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