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La tesis está organizada en 4 secciones principales: alcance y objetivos, introducción, resultados 

y discusión (la cual está dividida a su vez en 4 capítulos), y conclusiones generales. El objetivo 

principal de este trabajo de tesis es el de evaluar la tecnología de ablación mediante láser 

pulsado de picosegundos como método de fabricación de componentes poliméricos micro-

estructurados para su aplicación como soportes (scaffolds) en el campo de la regeneración de 

tejidos, y más concretamente, en la estrategia de la ingeniería de tejidos. Además, el estudio 

llevado a cabo en este trabajo permitirá determinar el efecto de la topografía superficial en el 

comportamiento de distintos tipos celulares, en ausencia de una funcionalización bioquímica del 

substrato. De esta manera, los resultados obtenidos en este trabajo abren la puerta al diseño y 

fabricación directa de topografías superficiales ad hoc, que cumplan con las especificaciones o 

requerimientos marcados por distintas aplicaciones en la ingeniería de tejidos.  

En la introducción, se recoge una breve revisión del estado del arte referente a la fabricación de 

soportes para su utilización en la ingeniería de tejidos, incluyendo materiales típicos, técnicas de 

micro- y nano-fabricación, y conceptos básicos sobre la interacción entre células y superficies. 

La ingeniería de tejidos consiste en fabricar un repuesto tisular para su implantación en una zona 

dañada del cuerpo y reforzar la capacidad del cuerpo para curar la lesión por sí mismo, reparando 

la función de las células presentes en la zona dañada para que actúen sobre la misma. Esta 

estrategia de regeneración necesita conocer y controlar el comportamiento de las células del 

tejido que se necesita reparar, y un soporte o andamio para sostener y promover el crecimiento 

de las células en la zona de lesión durante el proceso de regeneración del tejido. El soporte debe 

estar compuesto por un material biocompatible (biomaterial) de forma que no se produzcan 

reacciones adversas en el cuerpo, y debe de cumplir una serie de requerimientos, en cuanto a 

propiedades, según la función y características del tejido que remplazará. En muchos casos es 

deseable además que el soporte se disuelva y sea absorbido por el cuerpo una vez finalizado el 

proceso de regeneración del nuevo tejido. La degradación del material debe ser progresiva y dar 

lugar a productos no tóxicos que puedan ser metabolizados por el cuerpo. De entre el amplio 

rango de biomateriales que se usan e investigan para la fabricación de soportes, los polímeros 

tienen una presencia destacada debida a la variedad de propiedades, tanto mecánicas como 

químicas, con las que pueden ser sintetizados, y su flexibilidad en términos de procesado y 

fabricación.  En concreto, el ácido poliláctico (PLA) ha despertado un gran interés, ya que además 
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se degrada dentro del cuerpo humano sin dar lugar a productos dañinos, y la velocidad de 

degradación puede ser controlada. Además del material que formará el soporte, la geometría y 

las características superficiales del mismo juegan un papel fundamental en la biocompatibilidad 

del implante y su funcionalidad para reparar el tejido. El soporte debe tener una estructura que 

permita la adhesión de células y la conexión entre las mismas, así como la transferencia de 

nutrientes a través del mismo y la formación de vasos sanguíneos para mantener vivo el tejido. 

Este tipo de estructuras se consiguen generalmente por medio de soportes porosos creados por 

distintas técnicas. Sin embargo, la interacción de las células con el material ocurre a través de la 

superficie del mismo, lo que supone que las propiedades superficiales del biomaterial tengan una 

gran influencia en el comportamiento de las células adherentes. Las propiedades físicas y 

químicas de la superficie determinan varios aspectos del comportamiento celular como son la 

adhesión, la proliferación, la migración e incluso la función o fenotipo celular. Por lo tanto, para 

poder inducir un determinado comportamiento de las células sobre el soporte, de forma que 

promueva la regeneración del tejido, es necesario controlar las propiedades superficiales del 

mismo. Estas propiedades están altamente relacionadas con la topografía superficial, y esta se 

puede modificar con estructuras en el rango de las dimensiones celulares mediante técnicas de 

nano- y microfabricación. Las técnicas de nano-fabricación son la tendencia actual para la 

generación de superficies biocompatibles, ya sea con patrones físicos o químicos, debido a su 

demostrada influencia en el comportamiento celular por medio de la creación de motivos con una 

alta precisión, sin embargo, se caracterizan por costes elevados, se encuentran limitadas a un 

número restrictivo de biomateriales y no son válidas para el tratamiento de superficies no planas 

o amplias con formas complejas. Las técnicas de microfabricación, sin embargo, a pesar de 

alcanzar una menor precisión en las dimensiones de los motivos generados, presentan un 

potencial mucho mayor para la fabricación de componentes tridimensionales con superficies 

extensas y no planas, que las convierte en la herramienta idónea para su adaptación al 

tratamiento de cualquier tipo de implante. En este aspecto, consideramos de gran importancia la 

realización de una investigación extensa sobre los efectos de los micropatrones en el 

comportamiento celular, aplicando para su fabricación tecnologías capaces de procesar el amplio 

rango de biomateriales considerados para su utilización como soportes en la ingeniería de tejidos 
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y que puedan ser integradas en procesos de fabricación de componentes 3D sin restricciones en 

la forma o área de la superficie a tratar.  

La tecnología de ablación láser es una herramienta bien establecida para la modificación 

superficial de materiales de distinta naturaleza (metales, polímeros, cerámicas, vidrio…). La 

ablación de material mediante láseres de pulso ultracorto (menor que 10 picosegundos) es capaz 

de generar motivos topográficos micrométricos con una alta precisión debido a un proceso de 

ablación “frío” minimizando los efectos térmicos en el material sin producir cambios químicos en 

el mismo. Es por tanto una tecnología versátil para la fabricación de superficies 

microestructuradas en un proceso directo y sin contacto y aplicable a una gran variedad de 

materiales para generar motivos con distintas geometrías sobre superficies no planas. En este 

trabajo de tesis se aplica la tecnología de ablación mediante láser pulsado de picosegundos para 

la creación de micro-patrones topográficos en planchas de ácido poli-L-láctico (PLLA), para 

investigar el mecanismo de ablación del mismo y el efecto de los micro-patrones en el 

comportamiento de varios tipos de células mediante ensayos in vitro, con el objetivo final de 

elucidar el alcance de la influencia de estos micro-patrones en el comportamiento celular y 

evaluar la tecnología como método de fabricación rápido y versátil de soportes para su utilización 

en la ingeniería de tejidos.  

En el primer capítulo de resultados de la tesis, se investiga la respuesta del PLLA a la irradiación 

láser. Para ello, se analiza el fenómeno de ablación mediante láser pulsado de picosegundos en 

films de PLLA con distinto grado de cristalinidad, en función de la energía depositada por el láser 

en el material. Se analizan los parámetros de la ablación y la modificación superficial generada 

para distintas condiciones de irradiación aplicando dos longitudes de onda distintas (ultravioleta 

y visible). En el caso del PLLA amorfo, tanto el valor de energía umbral necesario para causar 

ablación en el material como la topografía varían considerablemente para las dos longitudes de 

onda aplicadas. Se observa que la energía umbral de ablación por láser disminuye a medida que 

el grado de cristalinidad del PLLA aumenta. Esto está relacionado probablemente con los efectos 

fotomecánicos que se producen en el material durante la ablación láser con pulso ultracorto, y la 

baja acomodación de tensiones que presentan los polímeros semicristalinos: un mayor grado de 

cristalinidad restringe y obstaculiza los movimientos cooperativos de cadenas, lo que reduce la 

disipación de energía en el material y da lugar a un comportamiento mecánico más frágil. Los 
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resultados experimentales obtenidos en cuanto a la tasa de ablación alcanzada en función de la 

energía depositada por el láser permiten deducir que la ablación láser con longitud de onda 

ultravioleta sobre PLLA semicristalino es más eficiente que la correspondiente a la longitud de 

onda visible: esto es, la longitud de onda ultravioleta presenta mayores tasas de ablación para 

un amplio rango de energías por pulso. Estos resultados se pueden interpretar en términos de 

los mecanismos de ablación fototérmica y fotoquímica por los que se produce la ablación de 

polímeros en función de la microestructura superficial generada y la longitud de onda incidente. 

En el PLLA amorfo, se generaron además una serie de micro-canales con alta calidad superficial, 

en los que se observa, a su vez, una alta densidad de poros que podrían ofrecer ventajas en la 

integración del mismo en las aplicaciones de regeneración de tejidos consideradas. De esta 

manera, en este capítulo se pone de manifiesto el potencial de la técnica de procesado con 

láseres de pulso ultracorto para la fabricación de micropatrones en polímeros biocompatibles y 

biodegradables para su aplicación en el campo biomédico.  

En el segundo capítulo, se aborda la aplicación de la tecnología láser de pulso ultracorto para el 

micromecanizado de sustratos de PLLA y posterior uso de los mismos como soportes para el 

cultivo de células in vitro, y de esta forma estudiar el efecto de los micropatrones creados en el 

comportamiento celular. Para este estudio se consideraron células de cáncer de mama, 

analizando el efecto de la topografía en el crecimiento y morfología de las mismas. El estudio se 

extendió al tratamiento de superficies de poliestireno (PS), siendo este material uno de los más 

empleados (junto con el vidrio) en material de cultivo celular. Los micropatrones generados 

incluyen líneas o canales paralelos de anchura similar al tamaño de una célula (que en el caso 

de las células consideradas es aproximadamente de 20 micrómetros), así como compartimentos 

cuadrados con área mucho mayor al tamaño de la célula (250000 µm2). Los ensayos in vitro 

realizados muestran que a pesar de que la irradiación láser altera y aumenta la rugosidad 

superficial, esta no afecta de forma notable a la adhesión y el crecimiento de las células de cáncer 

de mama sobre los micropatrones. Sin embargo, la dirección de los patrones basados en canales 

afecta de forma directa al crecimiento celular, guiando a los grupos celulares (clusters) que 

forman este tipo de células a crecer preferentemente en la dirección de los canales. Por otro 

lado, los compartimentos cuadrados fabricados en la superficie del PS, permiten confinar las 

células dentro de los mismos por un periodo de hasta 11 días en cultivo. Estos resultados 
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demuestran el potencial del micromecanizado con tecnología láser como método directo para 

modificar el microentorno celular y de esta forma inducir un comportamiento celular concreto, 

pudiendo facilitar el estudio del efecto del microentorno físico en el crecimiento celular.  

El tercer capítulo se centra en el ámbito de la regeneración de tejidos, y para ello se estudió el 

efecto de la topografía del sustrato en el comportamiento de células madre mesenquimales 

(MSCs), antes y después de inducir la co-diferenciación de las mismas a células de grasa 

(adipocitos) y células de hueso (osteoblastos). Se aplica de nuevo el micromecanizado láser para 

generar distintos micropatrones, basados en microcanales y microcavidades con distintas 

formas, en planchas de PLLA e investigar el crecimiento, la forma y la diferenciación de las MSCs 

sobre los mismos. En los microcanales, y bajo ciertas condiciones topográficas, se observa que 

las células modifican su forma para anclarse a aquellos puntos más prominentes de los canales. 

Tras la diferenciación, los adipocitos son capaces de responder a los cambios de profundidad y 

altura de los patrones, adaptando la distribución intracelular de vacuolas lipídicas a las 

restricciones físicas impuestas por el patrón. Estos resultados muestran de nuevo la aplicabilidad 

de la tecnología de micromecanizado láser para la fabricación de estructuras tridimensionales 

con capacidad de guiar la forma y el crecimiento celular y la morfología de los adipocitos sin 

necesidad de aplicar una funcionalización bioquímica específica.  

A partir de los resultados obtenidos en los capítulos anteriores y dirigiendo la investigación hacia 

una aplicación concreta, el cuarto y último capítulo de resultados de la tesis, se centra en el 

desarrollo del micromecanizado láser como tecnología de fabricación óptima en la obtención de 

superficies que mejoren la funcionalidad regenerativa de implantes vasculares bio-absorbibles 

(stents microvasculares). Para ello, se considera un sustrato de PLLA modificado con 

polietilenglicol (PEG), desarrollado exclusivamente para adaptar la velocidad de degradación del 

material a los requerimientos establecidos para la aplicación mencionada. El objetivo de los 

micropatrones generados es el de promover y acelerar la adhesión y el crecimiento de las células 

endoteliales que forman la monocapa que cubre la pared de las venas y arterias tras la 

implantación del stent. Este proceso de regeneración se conoce como endotelialización. Los 

micropatrones generados se basan en canales con distinta geometría y densidad, pudiendo 

alcanzar un criterio en la determinación de la configuración más adecuada para promover la 

endotelialización en la superficie. Los micropatrones se realizan variando la anchura y 
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profundidad de los mismos, así como la distancia entre canales. En análisis in vitro se inicia con 

un estudio de citocompatibilidad usando una línea celular de fibroblastos (L929). Después se 

analiza la adhesión y el crecimiento de células endoteliales microvasculares cardíacas 

(HCMECs), y por último se aplican ensayos de hemocompatibilidad con sangre humana. Los 

resultados obtenidos de este estudio in vitro muestran que todas las superficies evaluadas (con 

y sin patrón) son citocompatibles y no tóxicas. Los patrones generados por láser mejoran 

notablemente la adhesión y viabilidad de las células endoteliales con respecto al sustrato sin 

patrón, así como su crecimiento orientado, lo cual se relaciona con una aceleración del proceso 

de endotelialización. Los ensayos de hemocompatibilidad muestran, sin embargo, que los 

patrones también favorecen la adhesión de plaquetas y la activación de leucocitos en la 

superficie. En este aspecto, se necesita una investigación más extensa para elucidar la adhesión 

de células endoteliales y plaquetas sobre los patrones cuando ambas se encuentran en el medio 

y sometidas a flujo sanguíneo, ya que la adhesión de las primeras evita el de las segundas.  

El conjunto de resultados obtenido en cuanto a la ablación láser del polímero considerado, y el 

efecto de las microestructuras o micropatrones creados con el láser sobre el crecimiento de 

distintos tipos de células, permiten concluir que la técnica de micromecanizado láser con fuente 

pulsada de picosegundos es un método de fabricación adecuado y con gran versatilidad y 

potencial para el desarrollo de soportes en la ingeniería de tejidos, caracterizados por una 

topografía superficial ad-hoc que cumpla con los requerimientos marcados por dicha aplicación. 

Esta conclusión se apoya, en primer lugar, en la calidad superficial alcanzada en el 

microestructurado de un polímero transparente, biocompatible, y biodegradable, sin afectación 

significativa de las propiedades químicas y estructurales del mismo. En segundo lugar, en la 

notable influencia ejercida por los micropatrones creados con el láser sobre distintos aspectos 

del comportamiento de varios tipos de células, muy diferentes entre ellas, tales como: a) 

elongación y confinamiento de células de cáncer de mama, tanto de perfil invasivo bajo como 

alto; b) organización y adhesión de células madre mesenquimales; c) organización de las 

vacuolas lipídicas en los adipocitos y adaptación morfológica de las mismas a la topografía 

superficial; d) elongación y adhesión de células endoteliales. Es importante destacar que el 

control demostrado por los micropatrones sobre el comportamiento celular es debido 
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exclusivamente a los cambios topográficos generados por el láser en la superficie, sin considerar 

el empleo de una funcionalización superficial en términos bioquímicos. 

El trabajo desarrollado durante esta tesis ha dado lugar a publicaciones en revistas científicas y 

participaciones en congresos internacionales mediante presentaciones orales, las cuáles se 

detallan a continuación. 
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The fundamental aim of this work, which arises from the collaboration between the University of 

the Basque Country (UPV/EHU), and the technological research centre IK4-TEKNIKER, is the 

evaluation of the picosecond pulsed laser ablation technology as a reliable fabrication method for 

manufacturing polymeric scaffolds containing 2D and 3D surface microstructures, which 

geometry can be easily tuned to modulate cell response. This work also pursues the analysis of 

the effect of surface patterns and topological cues on cell behaviour without the interplay of 

chemical factors, which will allow us to isolate the effect of the surface physical constraints on the 

mechanobiology of cell adhesion, growth and differentiation.  

For this purpose, it is necessary to achieve the next partial objectives:  

▪ Selection and characterization of a synthetic biocompatible and biodegradable polymer 

suitable for scaffold fabrication. The selected polymer should be synthesised with tuned 

mechanical properties and degradation rates, so it can be adapted for manufacturing of 

scaffolds for different tissue engineering applications.  

▪ Preparation of polymeric films and sheets with controlled crystallinity by casting from 

solution and application of thermal treatments, and thermoplastic processing.  

▪ Characterization and optimization of the laser ablation process by picosecond pulses on 

the polymeric films to create surface microfeatures. Surface quality and precision of the 

generated microstructures should be good enough to not affect the material bulk 

properties.  

▪ Analysis of cell behaviour on laser-ablated microstructures for different pattern and 

feature designs, as well as cell types and tissue engineering applications. In this respect, 

the surface quality and precision of the generated microstructures should be good enough 

to not avoid or reduce cell proliferation and adhesion on the surface, and influence cell 

response for three different cell types: breast cancer cells (cancer therapies), human 

mesenchymal stem cells (regeneration therapies), and endothelial cells (vascular 

diseases therapies). This activity required the collaboration with other centres with a wide 

experience on biomaterials and biomedical applications: the Centre for cooperative 

research in biomaterials (CICbiomaGUNE, San Sebastián), the University of natural 

resources and life sciences of Vienna (BOKU, Vienna), the Centre for cooperative 
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research in biosciences (CICbioGUNE, Derio) and the Zentrum für klinische Forschung 

(Ruhr-Universität Bochum, Bochum) and Universitätsklinikum Knappschaftskrakenhaus 

(Bochum).  

 

Figure 1. Diagram of the partial objectives that must be accomplished to achieve the main goal 

of this thesis. 
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1. Background 

1.1. Regenerative medicine and tissue engineering  

The aim of the regenerative medicine is not only repairing a certain lesion in the body, but in 

addition to this, the actual aim is that the body may be able to heal the wounded tissue or area by 

itself. The body can be able to treat a certain lesion by itself if the function of the surrounding cells 

to the damaged area is repaired or stimulated to act on the wound. There are three different 

strategies to achieve this objective: cell therapy, genetic therapy, and tissue engineering. In the 

cell therapy a cluster of cells is directly injected in the damaged area without any manipulation of 

them (treatment of peripheral arterial disease, for example [1]). In the genetic therapy, the cluster 

of cells that is injected in the wound is previously manipulated in vitro to develop any type of tissue 

or a DNA implant is done (treatment of Leber’s congenital amaurosis, for example [2]). The tissue 

engineering strategy is different to the cell and genetic therapy: in this case, a tissue replacement 

is created by implantation of cells and materials in the damaged area in order to restore the tissue 

function. Tissue reconstruction is needed when tissue dysfunctions occur by congenital defects 

or when the tissue is not able to total repair itself after a lesion (myocardial infarction, for example 

[3]); since, in this regard, autologous transplantation or autografts are limited. Out of the 

regenerative medicine, permanent implants are applied with high success to replace tissue 

function, but they involve also a lot of problems derivate from the immune response of the body 

to the implant [4], bacterial colonization [5], or the need of a second surgery to remove the implant 

from the body when it fails by occurrence of any of these phenomena [6].  

Tissues are organized in three-dimensional structures [7]. According to this and in order to 

perform tissue engineering, in addition to the cluster of cells to be implanted, a support or scaffold 

is needed to promote cell growth and organization into a specific architecture. Biodegradable 

temporary scaffolds are those that remain in the body while the injured tissue is regenerating and 

are absorbed by the body once the injure is healed. These temporary scaffolds are generally 

made by natural or synthetic polymers due to their biodegradation capacity. Tissue engineering 

with bio-resorbable polymeric scaffolds would be an ideal solution to the problems shown by 

permanent implants since it would get to restore tissue function by the incorporation of live 

components and materials that can be integrated in the body and be resorbed. In order to choose 
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the appropriate support or scaffold for each application within the tissue engineering field, there 

are three main aspects to consider: first, material selection according to the functional 

requirements of the final scaffold for a certain application, in terms of mechanical properties and 

biodegradability, for example; second, the development of appropriate 2D and 3D micro-

fabrication technologies that enable the manufacturing of functional scaffolds with controlled 

surface properties that induce a specific response of the surrounding cells; the investigation of 

the interaction processes between cells and surfaces is essential to reach a greater 

understanding about the role of the cell microenvironment on the cellular processes. Therefore, 

collaborative efforts from multiple disciplines are needed to perform the tissue engineering 

strategy, such as material science, manufacturing issues at the micro- and nano-scale (size-scale 

characteristic of cells and biological entities), and cell biology [8] (Figure 0.1). The current trends 

in the scaffold fabrication field will be briefly described in the following sections. 

 

Figure 0.1. Disciplines involved in the development of tissue engineering strategies. 

 

1.2. Materials for scaffold fabrication 

Tissue engineering, initiated in the nineties, involves the manufacturing of a scaffold made of an 

artificial biomaterial, which is seeded by cells to colonize the component (this can be done in vitro 

or in vivo) and be implanted in the body to restore tissue function after a lesion. A widely-accepted 

definition of biomaterials was proposed by David F. Williams in 2009 [9] as “a substance that has 

been engineered to take a form which, alone or as a part of a complex system, is used to direct, 

by control of interactions with components of living systems, the course of any therapeutic or 

diagnostic procedure, in human or veterinary medicine”. Therefore, this definition includes classic 

implants made by natural (collagen, silk, cellulose, chitosan) and synthetic materials such as 

metals (stainless steel, cobalt-chromium alloys, titanium and their alloys with niobium and 
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tantalum), ceramics (zirconium, alumina, bioglasses, hydroxyapatite) and polymers both either 

non-biodegradable (polymethylmethacrylate, teflon, ultra-high molecular weight polyethylene) 

and biodegradable (polylactides PLAs, polyglycolides PGAs, polycaprolactones PCLs), which 

were the only existing medical devices until the nineties [10], but also new developed systems as 

composites (poly-L-lactic acid/apatite), biomineral components (calcium carbonate, calcium 

phosphate, bioglass [11]), self-assembled systems [12], nanoparticles [13], carbon-nanotubes 

[14], quantum dots and nanotechnology based imaging and diagnostic systems [15, 16], drug and 

gene delivery systems [17,18], or microelectronic devices [19].  

A biomaterial used as scaffold for tissue engineering must meet some requirements to be 

implanted in the body and show a good performance when the tissue engineering strategy is 

applied, such as biocompatibility (no inflammatory or toxic reactions in the body), corrosion 

resistance, mechanical and physical properties consistent with the specific function it will have in 

the body (ductility and durability), and biodegradability [20]. Biodegradability implies the control 

on the biodegradation time, the mechanical resistance of the material during this degradation and 

the nature of the degradation products that will be metabolized by the body.  

Metals show a great conformability, due to their high ductility and toughness, and suitable fracture 

strength to support the mechanical stresses sustained by the organic structures in the body. 

These characteristics make it imperative the use of metals in load-bearing implants. However, 

biocompatibility is always a challenge when using these materials because of the corrosion 

phenomena that metals may undergo in the body, leading to the delivery of electrons and ions to 

the environment. Although metal alloys can be passivated, corrosion phenomena produced by 

wearing (fretting corrosion) or cracking (crevice corrosion) still remain [21].  

Bioceramics show a good biocompatibility due to their low reactivity, and this biocompatibility is 

encouraged by their similar composition to biominerals, which gives them a great osteointegration 

capacity. However, bioceramics are stiff and brittle, and, consequently, their applications are 

reduced to scaffolds not subjected to high loads, such as filling of bone defects, or dental implants 

and metal joints coating [22].  

Polymers can be designed and synthesized with a big variety of mechanical and chemical 

properties by controlling the synthesis and processing [23]. Polymer mechanical properties can 
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be tuned by selecting appropriate monomer, chemical initiator, additives and process conditions. 

The biodegradability is certainly influenced by the polymer properties, but also by the environment 

(temperature, moisture, pH), and the existing microorganisms. Biodegradable polymers are used 

for manufacturing of temporary barriers (artificial skin, surgical sutures), drug delivery systems 

and temporary scaffolds (orthopaedic devices, vascular grafts) [24]. Synthetic polymers show a 

great potential for scaffold fabrication in the tissue engineering field: their thermoplastic behaviour 

enables an easy scaffold fabrication with tuned and reproducible properties by conventional hot 

melting processing techniques. These characteristics make them the ideal material to assist in 

the current investigation on biomaterial manufacturing with the aims of mimicking the properties 

of the existing natural materials and finding cheap but high biocompatible medical devices made 

by easy-to-process biomaterials, which improves the patient´s quality of life.  

 

1.3. Micro- and nano-fabrication techniques for polymeric scaffold fabrication. 

As mentioned before, biomaterials and temporary scaffolds must meet some requirements in 

order to be implanted in the body without producing inflammatory and toxic reactions and in order 

to properly perform the function of the replaced tissue. In addition to the biomaterial bulk 

properties (mechanical properties or biodegradation rate), surface properties have also a great 

influence on the acceptation of the scaffold by the organism and on the tissue regeneration 

process, since the first contact between the biomaterial and the host organism is produced via 

the biomaterial surface [25]. Surface physical and chemical properties can be tuned by modifying 

the surface topography without changing the bulk properties needed to fulfil the requirements of 

the application [26]. Micro- and nano-scaled surface patterns (either chemical and/or 

topographical) have a great influence on cell behaviour in terms of cell morphology, migration and 

proliferation, and on protein synthesis and gene expression [27-30]. In this regard, the 

investigation on micro and nano-fabrication and patterning technologies play a key role in the 

manufacturing of advanced polymeric scaffolds with surfaces able to control or influence cell 

behaviour to improve the implant performance. Many techniques are being investigated for the 

fabrication of micro- and nano-patterned surfaces or components with a double function: firstly, 

act as scaffold for cell attachment and growth, and secondly, be able to influence on cell 



21 
 

proliferation and function to control the cell behaviour. The main techniques that are being 

investigated for micro- and nano-structured/patterned polymeric scaffold fabrication can be 

classified in two groups: techniques to produce scaffolds or surfaces with random features or 

patterns with none or low control on their periodicity and dimensions; and techniques able to 

produce scaffolds or surfaces with features or patterns with controlled dimensions and periodicity. 

These techniques are described below.  

1.3.1. Fabrication of micro- or nano-structured scaffolds with random features.  

Porous scaffolds are needed to enable cell ingrowth, vascularization, and transport of nutrients 

and waste through the 3D structure. Porous scaffolds are typically produced by porogen leaching 

or gas foaming [31, 32] and by electrospinning [33]. In the first case, micropores are simply 

created by leaching out solid particles, such as salt, from the polymer matrix (melt or dissolved in 

a solvent) leaving pores of the same dimensions as the solid particles. Pore sizes can be highly 

controlled by means of a proper selection and preparation of the porogen, but their orientation is 

not easy to control in most cases. The porogen density must be that one to enable particle 

leaching and interconnectivity between the created pores, without significantly reducing the 

mechanical properties of the polymer. One of the major disadvantages of this technique is the 

possible presence of residual solvent in the scaffold. In the second case (gas foaming), instead 

of solid particles, liquid or gaseous phase are removed from the polymer matrix to create foams, 

emulsions and TIPS (thermally induced phase separation). This method enable to create 

scaffolds with very high porosities (>90%) but the control over the pore size and distribution is 

lower than in the case of the porogen leaching technique. Another major disadvantage of this 

technique is that requires an organic solvent, leading to possible toxicity of the scaffold. 

Electrospinning is a process in which a charged polymer jet, formed by applying an electrostatic 

charge to overcome the surface tension of a polymeric solution, is collected on a grounded 

collector to produce fibres. Rapidly rotating collectors result in aligned nanofibers, while stationary 

collectors result in randomly oriented fibre mesh. The quality of the created nanofibers is defined 

in terms of their alignment and morphology and it depends on the length, thickness, consistency 

and movement of the polymer jet. The characteristics of the jet can be optimized by adjusting the 

composition of the solution and the configuration of the electrospinning equipment, to control the 

alignment and morphology of the fibres being produced. Although this technique enables tuning 
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of the porosity and composition of the nanofibers, it offers a low versatility in terms of feature 

geometry.  

1.3.2. Fabrication of micro- or nano-structured/patterned scaffolds with control on feature shape 

and size. 

Photolithography-based methods [34], such as nanoimprint lithography (NIL), are based on 

transferring geometric patterns from a mask to a substrate coated by a photoresist (light sensitive 

organic polymers) by UV light, to use the substrate as a master for patterning a certain material. 

The photoresist is then lifted off to expose the remaining areas. Although these methods enable 

to obtain a wide range of pattern geometries with high accuracy in size (in the nano-scale), the 

process is expensive since several steps must be applied and clean room facilities are required. 

In addition, the chemicals used in these processes, such as resistant and developer solutions, 

can show biotoxicity. Another major disadvantage of this technique is that it cannot be applied for 

micro-and nano-structuring of 3D components. 

Soft-lithography-based methods, such as microcontact printing (µCP) [35], use elastomeric 

polymers (such as PDMS) as stamps for manufacturing of chemical nano- and micropatterns by 

embossing, moulding and printing methods. The µCP is widely used for patterning self-assembled 

monolayers, proteins, cells and DNA. These techniques are low-cost since once the polymeric 

mould is created under clean room conditions, the rest of the process can be done under regular 

lab conditions and the mould can be used repeatedly. However, the transfer efficiency of the 

patterns depends on energetic consideration of stamp and substrate, and, therefore, only a 

fraction of chemicals can presently be patterned by this technology. µCP also shows some 

limitations when producing complex geometries and 3D micro - structures. 

Rapid prototyping techniques (RP) are applied for the fabrication of 3D components by material 

deposition [36]. Most of these processes use a layered manufacturing approach whereby a 3-D 

CAD model is first decomposed into thin cross-sectional layer representations which are typically 

0.01 to 0.7 mm thick. Then, to build the physical shape, each layer is selectively added or 

deposited and fused to the previous layer. Some of these processes are frequently employed for 

the fabrication of complex shaped scaffolds for tissue engineering: Stereolithography (STL) and 

fused deposition modelling (FDM) can be used for printing of polymers, ceramics, composites, 
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hydrogels and even cells; Selective Laser Sintering (SLS) is applied for printing of polymers, 

ceramics and composites by powder sintering. The major advantage of these techniques is the 

high controlled scaffold manufacturing; however, these processes are time consuming and 

typically involve heat or toxic chemicals to remove the support structures and these chemicals 

would kill living cells. Photo-polymerisation-based techniques [37], such as STL (more 

conventional technology) and two-photon polymerization (2PP, more novel technology), apply 

laser irradiation to cure conventional photosensitive materials by solidification of liquid photo 

resins (due to high intensities focused on small volumes) and can create 3D microstructures with 

sizes ranging from less than 100 nm to hundreds of micrometres in a single step [38]. The major 

disadvantage of these techniques lies on the limited materials that can be processed 

(photosensitive polymers), since the solidification process depends on the solubility of a suitable 

photo initiator present in the polymer solution and the density of polymerizable vinyl groups. 

Direct laser ablation is well established as a universal tool for surface modification of polymers. 

Material ablation via ultrashort laser pulses enable to generate high precision 2D and 3D 

microstructural features, taking advantage of the “cold” ablation process, which turns solid into 

plasma, minimizing the thermal effects on the substrate and without changing the chemical 

properties of the material. This technology represents a very versatile method for direct micro-

structuring of non-flat substrates, covering a wide variety of materials and geometries, in a direct, 

contactless and single step process, and without the requirement of expensive vacuum 

equipment.  

In summary, technologies with nano-scaled precision provide high accuracy in the created feature 

sizes, but they are generally expensive, restricted to a short variety of materials and difficult to 

adapt for structuring or patterning non-flat and large 3D components. In the opposite, 

micromanufacturing technologies show lower accuracy in the feature scale, but higher potential 

for the fabrication of patterned/structured scaffolds with 3D complex shapes. Although 

nanopatterns are typically applied to influence on cell behaviour [39], cell sizes are in the 

micrometre range, and they also respond to micropatterns [40, 41]. In this regard, great efforts 

must be made in order to deeply investigate the effects of micropatterns on cell behaviour, 

applying technologies that can be used for processing the wide range of biomaterials investigated 
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for tissue engineering and can be scaled up for the fabrication of 3D components without 

restrictions in the patterned area or form.   

 

1.4. Cell-biomaterial interaction. 

1.4.1. Cell-surface interaction 

Cells interact with their environment via biorecognition processes, which occur between the 

receptors inside the cell membrane (integrins) and the biomaterial surface. Cells in vivo are 

attached to a collection of protein layers produced by the cells that are known as the extracellular 

matrix (ECM). This ECM acts as a mechanical support for the cells and constitutes a 

microenvironment for cell growth and development, since it contains growth factors that control 

the cell behaviour, and leads to deposition of extracellular signal molecules and adhesion 

proteins, such as fibronectin, vitronectin, laminin, and collagen. When considering cell cultured in 

vitro on a material surface, the first step before cell adhesion is the protein adsorption on the 

surface, and cell-material or cell-surface interaction occurs via this layer of adhered proteins. 

Among the surface properties of the biomaterial, mechanical properties, which act via the ECM, 

have a great influence on cell phenotype [42]. After a mechanical stimulation, cells become the 

mechanical signals in biochemical responses by means of a mechanism known as 

mechanotransduction. Animal cells do not grow isolated but in close contact with other cells or 

forming tissues, where they undergo stretching and compression forces during their growth 

process which will be transferred to tensional changes in their cytoskeleton and will affect their 

behaviour. Every type of tissue show certain elasticity or stiffness. These are represented by the 

Young elastic modulus, and different tissues grow under different Young modulus. The influence 

of external mechanical forces on the development of a tissue is essential when stem cells (SCs) 

are considered [43]. SCs have two key characteristics which become these cells into a useful tool 

for cell therapies, drugs and tissue engineering strategies: the capability to reproduce and renew 

themselves for long periods (self-replication) and the ability to differentiate into any type of 

specialized cells or tissues (potentiality). Kilian et al. [44] observed that SCs differentiate 

preferentially to osteoblasts (bone cells) when they were attached to a chemical pattern with a 

geometry that leads to cell contractility (a vital property of muscular fibre cells), as concave zones; 
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while they differentiated to adipocytes (fat cells) when they grow on chemical-patterned-

geometries that promotes cell extension, as convex zones. Spatial dimensions can play also a 

key role in cell differentiation. Most of the studies that investigate on stem cells differentiation are 

done in flat dishes coated with different types of biomaterials, but these conditions are different 

from those found during grow tissue in vivo (3D), and cell differentiation can be deficient. A 3D 

culture promotes cell interactions, enclose the ECM, keep cell spherical morphology and provide 

with a structural support for a high order tissue. Lee et al. [45] reported on 3D-culture of 

mammalian endothelial cells, which recapitulate the structural organization and the multicellular 

complexity of the mammalian epithelia. These models have proved to be physiological relevant 

and useful for studying some aspects of normal and tumour physiology of the mama [46].  

1.4.2. Biocompatibility 

Biocompatibility defines the degree of tolerance shown by the live tissue towards the material 

surface. The biomaterial and the physiological medium must co-exist without producing adverse 

effects. According to David F. Williams [47] “the biocompatibility of a long term implantable 

medical device refers to the ability of the device to perform its intended function, with the desired 

degree of incorporation in the host, without eliciting any undesirable local or systemic effects in 

that host”. This is applied to the biomaterial selection, but when we consider a scaffold for tissue 

engineering, “the biocompatibility refers to the ability to perform as a substrate that will support 

the appropriate cellular activity, including the facilitation of molecular and mechanical signalling 

systems, in order to optimize tissue regeneration, without eliciting any undesirable local or 

systemic responses in the eventual host”.  

The response and behaviour of the cells on a surface depends strongly on the surface properties 

of the material, which can improve or diminish the compatibility of the surface with respect to cell 

adhesion, proliferation, viability and differentiation. Basic biocompatibility essays via cell seeding 

in vitro involve the observation of some main cell aspects when cells are cultured on the material, 

such as cell proliferation, adhesion, morphology, migration and function. Cell proliferation and 

adhesion are typically measured by counting the number of cells that detach from the surface 

after applying trypsin, an enzyme to break protein connections.  Colorimetric methods, mostly 

based on testing cell metabolic viability (MTT assay), are generally applied to react with cells 



26 
 

producing coloured substances easy to monitor and quantify by optical absorption. One 

disadvantage of this method lay on the differences in the metabolic viability between cells, causing 

that the cell number is not necessarily proportional to the metabolic viability. Cell morphology, 

which is often related to cell function, is evaluated by fluorescence and confocal microscopy to 

observe cell shape and distribution on the material using dyes and fluorophores to stain different 

cells components (i.e. cytoplasm, nuclei, focal adhesions). A most advanced technique to observe 

cell morphology and function is the immunofluorescence, which enables to observe cell dynamic 

processes: this technique is based in the affinity between two molecules (i.e. an antibody and an 

antigen), so that a component that recognize a cell molecule binds to a fluorescent dye. Cell 

function can be determined evaluating the gene expression. The quantitative polymerase chain 

reaction (qPCR) is a laboratory technique for gene expression analysis, in which fluorescent dyes 

are used to label PCR products during a thermal cycling. More advanced biocompatibility essays 

will depend on the studied cell type and the intended function of the scaffold: in the case of 

vascular implants, for example, in vitro essays should involve investigation on blood contacting 

properties, platelet adhesion and activation, and competitive growth and adhesion between cells 

present in the environment of the tissue in vivo (i.e. endothelial cells, smooth muscle cells). The 

materials and devices classified as biocompatible by in vitro assays must be evaluated 

subsequently via in vivo assays.  

 

2. Synthetic biopolymers: Polylactides 

Biodegradable polymers, and among them polylactides (PLA), have generated a great interest in 

the tissue engineering field due to the wide variety of properties with which they can be 

synthesized, and their degradability capacity in natural conditions inside the human body without 

harmful products. The PLA is one of the most used biodegradable polymers, since, in addition to 

the aforementioned biodegradable properties, it can be obtained from renewable sources (from 

starch and sugar), and their mechanical properties can be suited to the application requests. 

Moreover, the thermoplastic nature of the PLA gives them other advantageous properties such 

as light weight, low processing temperature (respect to metal and glass), and easy to process 

[48].  
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PLA is an aliphatic polyester with lactic acid as the starting monomer. The lactic acid is composed 

of an asymmetric carbon with all their substituents different from each other, which gives chirality 

to the repetitive unities of the polymer structure. Both resulting isomers are enantiomers and most 

of their physical properties are identical (boiling temperature, melting temperature, density, 

dissolution, polarity…). The enantiomers are optically active, which means that they rotate the 

plane of polarization of the light that passes through them; both make this in the same magnitude 

but against each other: one of isomers rotate the plane of polarization to the left (levogyre) and 

the other one to the right (dextrogyre). Poly-L-lactide (PLLA) and poly-D-lactide (PDLA) are 

obtained from these monomers, respectively (Figure 0.2). Material properties will be different 

depending on the enantiomer proportion in the polymer. This enables to produce a wide spectrum 

of polylactides, both semicrystalline (PLLA) and amorphous (PDLLA), to meet the requirements 

for different applications.  

 

Figure 0.2. Chemical structure of L and D-lactic acid [49]. 

 

2.1. Polymerization 

The lactic acid can be obtained from fermentation of the carbohydrates, that produces the L-acid 

lactic, or by chemical synthesis, which produces D-lactic acid. The major proportion of the acid 

lactic production is obtained by fermentation. There are several techniques to obtain PLA of high 

molecular weight (over 100000 r.u.) such as condensation by dehydration, polymerization by 

direct condensation, polymerization from solid state, and polymerization via formation of the 

lactide dimer by ring opening polymerization (ROP) (Figure 0.3) [49, 50].  
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Figure 0.3. PLA polymerization [49,50]. 

In the case of polymerization by direct condensation, the lactic acid is polymerized in presence of 

a catalyst under reduced pressure conditions. The resulting polymer has a low molecular weight, 

since it is difficult to remove water from the high viscous reaction products. The PLA obtained by 

this technique shows low mechanical properties in comparison to the PLA synthetized by other 

manufacturing routes.  

In the case of polymerization by condensation with dehydration or azeotropic condensation, the 

challenge regarding water removing from the reaction products is solved manipulating the 

balance between the monomer and the polymer in an organic solvent, and the lactic acid is 

directly poly-condensed in a high molecular weight polymer.  

In the case of polymerization from solid state, a solid semi-crystalline prepolymer, with a relatively 

low molecular weight, in form of power, chips or fibre is heated up to a temperature below the 

melting point, while as the residual products are removed from the material surface by 

volatilization under reduced pressure conditions, or by a carrier (i.e. injecting an inert gas). This 

reaction occurs in the polymer amorphous fraction where the reactive terminal groups are located, 

therefore, it must be developed over the glass transition temperature. The PLA resulting from this 

polymerization process shows high molecular weight and good physical properties.  
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ROP from the dimmer lactide is the most used and studied PLA production method, since it 

enables to control in a precise way the chemistry of the reaction and, therefore, the resulting 

polymer properties, increasing the fields of application. This method is used to synthesize PLA of 

high molecular weight with a high degree of stereo-regularity. The PLLA used in this work has 

been synthetized by ROP.  

 

2.2. Structure and crystallinity 

The L-isomer constitutes the major fraction of the PLA obtained from renewable sources, since 

most of the lactic acid present in biological sources shows this form. The PLLA can exhibit three 

different types of crystalline structures: α, β, or γ. The most common PLLA crystallization form is 

the α-structure, since the PLLA crystallize sooner like α-homocrystals from melt material [51-53]. 

The crystallization kinetics of this isomer is low, enabling to vary the degree of crystallinity of the 

polymer by different thermal treatments. This parameter determines many of the material physical 

properties and can affect the compatibility of the polymer with biological components (i.e. cell 

cultures). The degree of crystallinity, which can be determined by differential scanning calorimetry 

(DSC), is evaluated by the next expression:  

𝑥𝐶(%) =  
∆𝐻𝑚−∆𝐻𝐶

∆𝐻𝑚
0 ∙ 100   (0.1) 

In this expression, ΔHm and ΔHC represents the enthalpy of the melting and crystallization 

processes, respectively. ∆𝐻𝑚
0  is the theoretical value of the enthalpy at the melting point for a fully 

crystallized polymer, and in the case of PLLA with α crystallization, this value is 106 J/g [53]. The 

maximum degree of crystallinity of the PLLA is typically about 60% [54].  

Depending on the heat treatment applied, the resulting polymer will have different degree of 

crystallization and different morphology. The PLLA crystallize from the melt forming birefringent 

spherical polycrystalline entities (spherulites) originated by chain folding. At high heating rates, a 

small material fraction is crystallized forming a big number of small spherulites, while as at low 

heating rates, most of the material crystallizes and, although there are a minor number of 

crystallization nucleus, the formed spherulites are bigger.  
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2.3. Thermal properties 

Semi-crystalline polymers are characterized by three characteristic temperatures which allow 

their identification. The glass transition temperature (Tg) involves a temperature range from which 

the material starts softening (weakening of the chain secondary bonds is produced and the 

movement capacity of the chains is increased) until the polymer shows and elastomeric behaviour 

first, and finally, with further heating, a viscous liquid appearance. The crystallization temperature 

(Tc) is the temperature at which energy is released as a consequence of a chain arrangement in 

the polymer. The melting temperature (Tm) corresponds to the polymer crystalline fraction. The 

characteristic temperatures of the PLLA are the following: Tg at 60-65 ˚C, Tc at around 110 ˚C, 

and Tm at about 170-190 ˚C [55, 56]. These values can vary depending on the degree of 

crystallinity of the material.  

 

2.4. Mechanical properties 

PLLA (semicrystalline) show a neater and compact structure than PDLLA (amorphous), and that 

is why their mechanical properties are better (in terms of stiffness) for a given molecular weight 

and its service life is longer. The stiffness of the PLLA can be further improved by increasing the 

degree of crystallinity via application of a certain thermal treatment [56]. However, semicrystalline 

systems with higher degree of crystallinity are characterized by a decrease in ductility. This means 

that you need to reach a compromise about the optimal value of the degree of crystallinity for 

obtaining certain technological properties.  

The PLLA shows the typical linear stress-strain curve at low strains with a Young’s modulus of 

3GPa (quite high), followed by a non-linear behaviour before reaching the breaking point, with a 

high tensile strength around 67 MPa for a high crystalline PLLA. The Young’s modulus increases 

with the degree of crystallinity. An increase in the polymer crystallinity is characterized by a 

reduction in the width of the size distribution relative to the material free volume (which can be 

evaluated by positron annihilation technique, for example). This reduction results in a decrease 

of the chain motility, and therefore it could be related to the increase of the stiffness. As mentioned 

above, a high increase in polymer crystallinity would lead to a decrease of its ductility. In PLLA, 



31 
 

the high tensile strength increases with the degree of crystallinity until reaching a maximum value, 

and then suffers a slight reduction at higher crystallinities.  

 

2.5. Dynamic properties 

Restrictions on polymer chain movements caused by entanglements or by crystallization affect 

the different secondary relaxations present in the polymer as well as its glass transition. In semi-

crystalline polymers, the macromolecules are bigger than the crystalline lamellae thickness and 

they can pass through the phase borders leading to formation of entanglements with different 

degree. If chain coupling is weak, non-crystalline chain segment dynamics shows a widening of 

the glass transition region, whereas if there is a strong chain coupling, the non-crystalline polymer 

portion can show the glass transition at higher temperature than the glass transition related to the 

amorphous phase, due to formation of a stiffer amorphous phase. The glass transition is related 

to the cooperative movements of chain segments, and the entanglement constraints this type of 

movements.  

There are several reports focused on the study of molecular dynamics of PLLA [55, 57] in different 

ranges of temperature. They are usually characterized by solid state nuclear magnetic resonance 

(NMR) and techniques based on neutron scattering. Nozirov et al. [58] have observed two main 

chain movements in PLLA: the first one is a rearrangement of the tri-fold formed by the methyl 

groups; and the second one is a rearrangement of the double-fold formed by the hydroxyl groups. 

Methyl group rotation predominates at low temperatures (90K) (similar to that observed in other 

polymers), whereas at temperatures over the glass transition temperature (323K) the main 

movement is the hydroxyl group rearrangement. At temperatures from 200 to 325 K both 

rearrangements are present, with a major influence of the methyl group rotation.  
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2.6. Degradation properties 

PLLA is a biodegradable polymer, so that the material is subjected to structural changes and loss 

of properties in a natural environment [59]. Polyesters degrade generally by water absorption, 

and loss of molecular weight, mass and mechanical properties. At the first stage of the 

degradation process, PLLA loses molecular weight to form oligomers. Opposite to the PLLA with 

high molecular weight, the oligomer is water-soluble. Water infiltrates into the polymeric matrix 

leading to ester group hydrolysis, weakening the chemical bonds in the amorphous phase, and 

converting the large polymer chains into short segments to obtain water-soluble oligomers and 

monomers. Degradation increases the number of carboxyl chain-ends that auto-catalyse ester 

hydrolysis. The nearest oligomers to the surface escape before the total polymer degradation 

occurs whereas the remained oligomers in the polymeric matrix continue contributing to the 

autocatalytic process. Polymer degradation depends on many factors such as molar mass, 

macromolecular conformation, stiffness, chemical structure, molecular weight, chain motility and 

crystallinity. In semicrystalline PLLA, crystalline regions are more resistant to degradation than 

amorphous regions, and the degradation rate decreases with an increase in the degree of 

crystallinity [60]. The biodegradation of the polymer depends also on the environment to which is 

exposed: in human or animal bodies, it is believed that PLAs degrade first by hydrolysis and the 

soluble oligomers formed are then metabolized by cells [61].  

 

3. Ultrashort-laser ablation of polymers 

3.1. Fundamentals of laser-material interaction: focus on polymers.  

Laser ablation is the removal of material from a solid surface by direct absorption of laser energy. 

The ablated volume is determined by the penetration depth (𝑙) and the spot diameter (Figure 0.4).  
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Figure 0.4. SEM and profilometry images of a crater generated by pulsed laser ablation on a 

polymeric film. 

The penetration depth at which a laser pulse interacts with a material is determined by the optical 

(𝑙𝛼) and thermal penetration (𝑙𝑡ℎ): 

thlll      (0.2) 

In the case of considering polymeric substrates, optical penetration depth dominates over the 

thermal one, and it is defined as the depth at which the intensity of the transmitted light drops to 

1/e of its initial value at the interface. The optical penetration depth is inversely proportional to the 

material’s absorption coefficient (𝛼) and this is heavily dependent on the incident wavelength. 

Considering a constant wavelength, the incident beam intensity at surface (𝐼0) decays 

exponentially with depth (𝑑) according to the Beer-Lambert law [62]:  

𝐼(𝑑) = 𝐼0𝑒−𝛼𝑑
  (0.3) 

The penetration depths are typically short relative to bulk material dimensions and the energy 

absorption is approximately confined within the penetration depth. Wavelengths with shorter 

penetration depths enable the local modification of the surface without affecting the material bulk 

properties. The absorption coefficient determines the absorption of the laser beam on the material 

but the specific mechanisms by which the absorption occurs will depend on the material. The 

absorption of the laser beam in insulators and semiconductors mainly occurs through resonant 

excitations, such as transitions of valence band electrons to the conduction band (interband 

transitions) or within bands (intersubband transitions). These excited electronic states can then 
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transfer energy to lattice phonons. Laser photons with energy high enough to overcome the 

material ionization potential or bandgap will be absorbed, and “single photon absorption” will be 

the main mechanism for excitation; On the contrary, if the material bandgap is higher than the 

laser photon energy, the “multiphoton absorption” mechanism will lead the excitation. Such 

energies typically correspond to laser beam frequencies below vacuum ultraviolet for insulators 

and below the visible to infrared spectrum for semiconductors. The time it takes for the excited 

electronic states to transfer the absorbed energy to phonons and thermalize depends on the 

material and the mechanism within the material. For non-metals, the absorption mechanism and 

the thermalization time (𝜏𝑡ℎ) can be quite different from one material to another, reaching values 

as long as 10-6 seconds [63]. Polymers are typically on the slower end of this range, since defects 

and quantum confined electronic states can play a significant role in slowing down this 

thermalization time. When the incident laser pulse is longer than the thermalization time, the 

absorbed laser energy is directly transformed into heat and leads to thermal bond breaking. These 

processes are known as photothermal and predominate when long laser pulses (typically longer 

than 10 picoseconds (ps)) are applied. On the contrary, when the laser pulse is shorter or in the 

order of the thermalization time, the excitation energies can be high enough to directly break 

bonds (photo-decomposition), which is known as ablation by photochemical processes.  

Photothermal processes (associated to laser pulse duration (𝝉𝒑) longer than 10 ps) involved 

material evaporation and sublimation at low fluences (energy per surface), and heterogeneous 

nucleation of vapor bubbles that leads to boiling. If material heating is sufficiently rapid to 

approach the material thermodynamic critical temperature, it is overheated and a phase explosion 

is produced (also known as explosive evaporation) leading to an inhomogeneous decomposition 

of the material in a mixture of liquid drops and molecules in gaseous phase. The laser energy is 

absorbed by a large volume of material which is heated and melted, and the ablation is 

accomplished through melt expulsion driven by the vapor pressure and the recoil of the beam 

pressure. This decomposition process leads to a fast material cooling that produces recast 

material around the ablation zone (Figure 0.5 (a)). In this scenario, the threshold ablation energy 

is defined as the critical energy density required to produce an overheating on the surface of the 

material beyond its thermodynamical stability.  
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Photochemical processes (associated to laser pulse duration (𝝉𝒑) shorter than 10 ps) are 

characterized by direct ionization and formation of dense electron-hole plasmas that can lead to 

athermal phase transformations, direct bond-breaking, and explosive disintegration of the lattice 

through electronic repulsion (Coulomb explosion). When pure photochemical ablation occurs, the 

temperature of the material remains relatively unchanged. In this scenario (ultrashort pulsed 

ablation) the deposited laser energy is limited in a small volume causing the material to past very 

quickly from the liquid phase to the vapor phase with high kinetic energy (way above the 

vaporization temperature). The material removal occurs by direct vaporization away from the 

surface (into vacuum or air) consuming a large amount of the absorbed laser energy. This 

reduced the heat diffusion on the material and, although this still occurs after the end of the laser 

pulse duration, the resulting melt thickness is small, because of the rapid cooling generated by 

the steep temperature gradient [64]. Hence, laser ablation by ultrashort pulses is known as “cold 

ablation”, due to the minimization of thermal effects on the substrate (Figure 0.5 (b)). In particular 

laser ablation of polymers with short wavelengths and ultrashort laser pulses has been considered 

as an example of a photochemical ablation process.  

Ultrashort laser pulses (from femtoseconds to 10 picoseconds) can enable photochemical 

processes even in metals and semiconductors, but it is important to remark that most of the 

materials (including polymers) exhibit both thermal and photo-chemical mechanisms during the 

laser ablation process [65]. When both thermal and non-thermal processes are involved, two 

independent channels of bond breaking or different bond breaking energies for ground-state and 

electronically excited-state chromophores (light absorbing functional groups of a molecule) are 

considered. This model is known as photo physical [66]. Additionally, for ultras-short pulses, the 

heating process induced by the laser irradiation occurs under constant volume conditions, and 

leads to the generation of a high thermoelastic pressure wave in the material. In this case, the 

onset of ablation occurs at lower laser energies than in the case of pure photothermal processes. 

This is attributed to photomechanical effects caused by the relaxation of the pressure wave 

induced by the laser in the material [67]. These phenomena cause that the laser-crated vapor 

ejected plume containing solid or liquid clusters of material is larger and faster in this case than 

those produced under the pure photothermal processes. At high intensities, a significant fraction 

of the species may become ionized, producing a high-absorbing plasma, which affects the ablated 
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surface due to scattering effects. These effects, which are known as nonlinear processes and 

involve avalanche and multiphoton ionization, increase with the energy density and the number 

of pulses and are more influent for times below 5 ps. Specially the multiphoton ionization process 

play a key role on laser ablation at ultrashort pulse durations and is behind the laser ablation 

phenomenon on transparent materials [64, 68]. 

The edges of the laser beam with an energy density below the threshold for material removal may 

have unwanted effects on the substrate surface, causing thermal damage around the ablated 

zone (known as heat affected zone: HAZ, Figure 0.5 (a)). In addition, recoil from the plume can 

generate shockwaves in the material and further expulsion of any remaining molten material. 

Because of all these effects, the burr observed at the edges of the ablated structures is produced 

by the accumulation of thin layers of melt material accelerated by vapor pressure to the structure 

sides. This acceleration can be reduced decreasing the fluence to values slightly above the 

ablation threshold, but this reduction must be compensated (in terms of ablated volume) by an 

increase of the laser pulses frequency. In general, for shorter pulse durations the energy is 

deposited faster into the material causing a faster material ejection. Since the volume of material 

excited by the laser has less time to transfer energy to the surrounding material the ablated 

volume is more precisely defined by the laser’s spatial profile and optical penetration depth, and 

there is less residual energy and, therefore, less HAZ.  

 

Figure 0.5. Typical phenomena occurred on materials under short (𝜏𝑝 > 𝜏𝑡ℎ) and ultrashort (𝜏𝑝 <

𝜏𝑡ℎ) pulsed laser ablation (image slightly modified from [69]).  
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Laser ablation of polymers was first reported by Srinivasan and Mayne-Banton [70], and, since 

then, numerous studies reporting laser ablation of a wide variety of polymers have considered 

different ablation mechanism and models, to elucidate the contribution between photothermal and 

photochemical processes in the ablation process [66, 71-80]. Regarding surface microstructuring 

of polymers, and in terms of surface quality and precision of the structuring, photochemical 

ablation is generally most desirable to occur due to two main characteristics of this ablation 

mechanism: the minimization of thermal damage into the adjacent zones, and the conversion of 

polymer into gaseous products, diminishing the deposition of ablation products (known as debris) 

on the structured surface (leading to clean microstructured surfaces with no need of post-

processing steps). The decomposition mechanisms of polymers under laser irradiation depend 

heavily on their synthesis method [65]: the polymers produced by radical polymerization from 

monomers, which contains double bonds, depolymerize generally into monomers; on the 

contrary, polymers obtained by reactions like polycondensation, such as PLA (Figure 0.3), 

decomposed into different fragments.  

 

3.2. Laser Micromachining: Key process parameters. 

The laser considered in this work is a pico-second pulse Nd: YVO4 laser (RAPID: Lumera Laser). 

The laser source delivers 10 ps pulses at 1064nm wavelength with a maximum average power 

of 12W and an energy of 18 µJ operating at a maximum repetition rate of 1 MHz. In addition to 

the fundamental mode, the laser emits at second and third harmonic wavelengths of 532 and 355 

nm with maximum energies of 2.5 and 1.5 µJ respectively at the same repetition rate (1 MHz). 

The laser frequency can be tuned from 4 to 1000 kHz. The laser beam was focused over the 

sample by focusing lens placed in air with a 100-mm focal length for 532 and 1064 nm 

wavelengths, and a 103mm focal length for the 355nm wavelength. Spot sizes (beam radius at 

1/e2) of 30 µm and 20.5 µm were obtained for wavelengths of 532 nm and 355 nm at energy of 

0.2 µJ by selecting optional fixed beam expanders.  

The average power emitted by the picosecond pulsed laser considered in this work is shown in 

Figure 0.6 for the range of wavelengths and frequencies available. The average power achieved 

at the surface of the work piece is compared to the average power emitted by the laser source 
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(measured out of the laser resonator). The first one is lower than the second one because of the 

losses caused by absorption or scattering of the beam through the optical components that guide 

the beam from the source to the work piece.  

 

Figure 0.6. Average power of the picosecond pulsed laser considered, measured out of the laser 

resonator (a) and at the work stage (b) for the range of wavelengths and frequencies available.  

The peak power of a laser pulse is defined by the average power of the pulsed laser beam (𝑃𝑎𝑣), 

the pulse length (𝜏) and the frequency of pulse emission (𝑓) according to the next equation:  

𝑃𝑝𝑒𝑎𝑘 =  
𝑃𝑎𝑣

𝜏∙𝑓
   (0.5) 

According to this equation, high peak powers are reached when short pulse lengths and low 

frequencies are applied. However, the processing time increases for low frequencies; this means 

that to address the processing of a certain material, a commitment between the power required 

to ablate the material and the processing time should be reached to optimize the ablation process. 

The pulse energy can be calculated from the average power and the frequency. The energy per 

pulse, as in the case of the peak power, increases when low frequencies are applied.  

𝐸𝑝𝑢𝑙𝑠𝑒 =
𝑃𝑎𝑣

𝑓
    (0.6) 
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The peak fluence (𝐹𝑝𝑒𝑎𝑘) is defined by the energy per pulse and the radius of the laser beam in 

1/e2 of the maximum irradiance (𝜔0), which is the beam waist radius in focus:  

𝐹𝑝𝑒𝑎𝑘 =
2𝐸𝑝𝑢𝑙𝑠𝑒

𝜋𝜔0
2   (0.7) 

The theoretical beam waist is defined by the beam quality (𝑀2), the focal length of the lens (𝑓𝐿), 

and the collimated beam diameter (𝐷𝑏𝑒𝑎𝑚):  

𝜔0 =
4𝑀2𝑓𝐿𝜆

𝜋𝐷𝑏𝑒𝑎𝑚
   (0.8) 

The average beam fluence (𝐹𝑎𝑣) is defined by the following expression:  

𝐹𝑎𝑣 =  
𝐹𝑝𝑒𝑎𝑘

2
   (0.9) 

The onset of ablation occurs above a threshold energy or fluence, which depends, as mentioned 

before, on the absorption mechanism, material properties, microstructure, morphology, the 

presence of defects, and on laser parameters such as wavelength and pulse duration. Typical 

threshold fluences for organic materials are between 0.1 and 1 J/cm2 [73, 74, 78, 81]. If we define 

the ablation rate as the depth of the ablated crater after one pulse (𝑑) at a given energy, the 

effective absorption coefficient (𝛼𝑒𝑓𝑓) and the energy ablation threshold (𝐸𝑡ℎ) can be estimated 

by applying the Beer-Lambert law valid when single-photon absorption processes occur and 

considering sufficiently small energies above the ablation threshold [82]:  













theff E

E
d ln

1


  (0.10) 

Only in rare cases the beam radius measured at 1/e2 coincides coincidentally with the diameter 

of the ablated crater (𝐷), which in the case of a Gaussian beam is determined by the incident 

energy and the energy ablation threshold [83]: 













thE

E
D ln2 2

0

2    (0.11) 
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These equations imply that by measuring the dimensions of the craters (diameter and depth) 

generated by a laser beam with a certain incident wavelength on a material, and the incident laser 

energies applied to create these craters, the characteristic parameters of the laser-material 

interaction (energy ablation threshold and effective absorption coefficient) can be estimated.  

When considering material ablation by pulse overlapping, it must be considered that the energy 

deposited on the material also depends on the pulse distance (𝑑𝑝) (Figure 0.7), which is defined 

by the frequency of emission of the pulses and the speed of the scanner to move over the 

substrate (𝑣):   

𝑑𝑝 =
𝑣

𝑓
  (0.12) 

 

Figure 0.7. Drawing representing the pulse distance and overlapping.  

When shorter is the pulse distance, higher is the overlapping between two consecutive pulses, 

and, therefore, the energy deposited on the material and the ablation rate. The percentage of 

overlapping between pulses (𝑈𝑑) can be calculated by the next equation:  

𝑈𝑑 = (1 −
𝑣

(𝑓∙𝐷)
) ∙ 100%  (0.13) 

A high percentage of overlapping between pulses can be reached by diminishing the speed of 

the laser beam over the surface, or increasing the laser frequency (Figure 0.8). In order to 

maintain an optimal pulse overlap of 85%, low speed must be applied for working at low laser 

frequencies which show high pulse energies and high ablation rates; in this scenario, the process 

time increases due to the low speed. The process time can be shorter by applying a high speed, 

but the ablation rate is reduced, since higher frequencies must be applied to maintain the optimal 

pulse overlap and lower pulse energies are reached. A commitment between processing time and 
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ablation rates must be established to optimise the laser ablation process for each application 

case.  

 

Figure 0.8. Representation of the percentage of overlapping between laser pulses like a function 

of frequency and speed, considering a spot diameter of 20 micrometres.   

 

4. Structure and organization 

In the following chapters of this thesis we are going to consider the picosecond pulsed laser 

ablation technology for manufacturing of surface micropatterns on films and sheets of PLLA, to 

investigate the ablation mechanism on this polymer, and the effect of laser-created micropatterns 

on the response of several cell types via in vitro essays; this investigation is made with the overall 

goal  to elucidate the influence of these topological micropatterns on cell response and asses the 

laser technology as a method for scaffold manufacturing and surface functionalisation in the tissue 

engineering field.   

In the first chapter, the picosecond laser ablation of PLLA as a function of laser energy and degree 

of crystallinity is examined. The ablation parameters and the surface modifications are analysed 

under various irradiation conditions using laser wavelengths ranging from the ultraviolet through 

the visible. These results are interpreted in terms of photothermal and photochemical response 

of polymers as a function of material micro-structure and incident laser wavelength. In the second 

chapter, different micropatterns are laser-generated on polystyrene (PS) and PLLA and employed 
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to study cellular proliferation and morphology of breast cancer cells. The laser-induced 

microstructures included parallel lines of comparable width to that of a single cell and the 

fabrication of square-like compartments of a much larger area than a single cell. In the third 

chapter, the effect of the laser micropatterns on the behaviour of human mesenchymal stem cells 

(MSCs) before and after co-differentiation into adipocytes and osteoblasts is evaluated. Laser 

ablation is applied in this case to generate microgrooves and microcavities on PLLA, where 

orientation, cell shape and MSCs co-differentiation are investigated. In the fourth and last chapter, 

laser ablation technology is applied on modified PLLA to generate patterns with different geometry 

and density and find a pattern configuration able to promote endothelialisation on the surface. 

The patterns generated include parallel micro-grooves with different width, depth and inter-groove 

spacing. These patterns are evaluated by cytocompatibility tests using a L929 cell line, endothelial 

cell adhesion and hemocompatibility tests. Finally, the set of outcomes obtained from the 

aforementioned studies, about laser ablation of the considered polymer and effects of the laser-

generated micropatterns on the behaviour of three different cell types, are reviewed to reach a 

conclusion about the suitability of the laser technology considered for manufacturing and surface 

functionalisation of scaffolds for tissue engineering applications.  
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1.  Introduction 

In the past few years, significant advances have been made in the development of biocompatible 

and biodegradable polymers for biomedical applications like tissue engineering [1], cell therapy 

[2], or clinical diagnostic [3]. Polylactides (PLA) have attracted considerable interest in 

biomedicine owing to their biodegradable nature and their versatility in terms of specific 

mechanical and thermal properties performance. Particularly, poly–L–lactide (PLLA) with different 

degrees of crystallinity has been investigated as scaffolds for nerve, vascular and cartilage tissue 

engineering [4-8].  The bulk mechanical and degradation properties of these materials may 

influence biological response and can be tuned by a proper choice of heat treatment conditions, 

leading to a change in their crystallization behaviour [9-11].  

Several studies in cell biology reveal that most animal cells need to attach to a surface to survive, 

grow and proliferate [12].  In this context, specially designed biomaterials can act like temporal 

scaffolds inside the human body that mimic extracellular matrix structures and promote cell growth 

and organization into a specific architecture. Recent reports have shown that cell behaviour is 

strongly connected to the surface properties of the substrate material. This way, by changing the 

physicochemical properties of the substrate, it was possible to improve cell-material interactions 

such cell adhesion and proliferation. Moreover, these changes may affect the direction and 

accumulation of cells at a proper site or even may influence on cell phenotype [13-15]. This control 

over cells fate is especially important in case of stem cells, which research holds enormous 

potential for the treatment of human diseases. The design of biomaterials systems that mimic 

some aspects of natural cells microenvironments may be a powerful tool to better understand and 

manipulate cell function as a basis for future cell-based therapeutics. In this field, surface micro-

structuring and micromachining techniques play an important role in the fabrication of three-

dimensional scaffolds designed to mimic the in vivo microenvironment, such as cellular networks 

and structural organization that promotes tissue formation [16, 17].   

As mentioned in the previous section, surface micro- and nano-patterning of polymers can be 

achieved through different techniques by chemical or physical methods. The most common 

techniques used for surface micropatterning are lithography based fabrication technologies and 

micro-contact printing (µCP) [18-21]. Soft lithography technology is frequently used to create a 
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surface pattern on a silicon wafer that can be easily replicated onto a polymeric material surface 

to form regular physical topographies like ridges, grooves, pillars and dots, but the average height 

of these features usually does not exceed 10 microns. Moreover, the versatility of this technique 

in terms of materials to pattern and application on 3D components is still limited, being generally 

restricted to patterning of flat substrates and small areas.  

As mentioned before, pulsed laser ablation is well established as a universal tool for surface 

modification of polymers. Ultra-short laser pulses enable to obtain high precision 3-D 

microstructures, taking advantage of the “cold” ablation process. Ultrashort pulse laser irradiation 

can bring material into a highly non-equilibrium state and provides unique insights into material 

behaviour under extreme conditions that can hardly be achieved by any other method. This 

technology represents a very versatile method for 3D direct micro-structuring, covering a wide 

variety of substrates and geometries. Laser ablation is defined as the massive removal of material 

that results from photon absorption. This regime is characterised by the observation of large 

clusters of substrate in the plume, followed by crater formation. Melting mechanism depends on 

some other factors such as laser fluence and wavelength and this contribution does not 

completely vanish even at pulse duration lower than 10 ps [22, 23]. In the case of polymeric 

materials, the absorption of laser photon leads to electronic excitation, followed by intra- and 

intermolecular conversion of energy to heat and bond scission. Comparisons between 

experiments and molecular dynamics simulations suggest that this phenomenon occurs as a 

combination of two main mechanisms: photo-thermal and photo-chemical ablation [24, 25]. In the 

photo-thermal regime, the photon absorption is followed by rapid thermalisation, and ablation 

occurs due to explosive vaporisation of the substrate when a critical number of bonds are broken. 

In the photo-chemical ablation regime, however, energy deposition causes the electronic 

excitation leading to direct bond breaking. It is important to remark that high pressure/mechanical 

stresses may also play an important role on laser ablation, especially for pulse widths down to 15 

ps. Hence, mechanical properties and material microstructure may play an important role on the 

onset of ablation. Other significant factors that affect the ablation process are laser parameters 

(wavelength, pulse duration, pulse energy) and material properties such as optical absorption and 

surface microstructure. 
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During the last decade, ablation of different polymers by means of laser irradiation of different 

characteristics has been reported [26-29]. Studies made by Serafetinides et al. [27] showed that 

picosecond laser is more efficient for laser ablation of transparent polymers than femtosecond 

and nanosecond laser. Laser irradiation effects on biopolymers (polyethylene glycol diacrylate, 

polystyrene, PLLA) have been extensively studied by means of excimer and pulsed lasers (femto- 

and nanosecond pulse duration) [30-35]. However, these studies were specifically focused on 

polymer surface modification and photo-polymerisation by laser irradiation. To the best of our 

knowledge, no previous study has examined the impact of crystallisation on biopolymer response 

when irradiated with picosecond lasers. Additionally, it is worth to note that laser ablation and 

microstructuring of PLLA with picosecond pulses and high repetition rates has not been previously 

reported. 

The focus of the research reported in this chapter was on investigating the micromachining 

response of PLLA when performing structuring with ps pulsed laser operating at wavelength of 

355 nm and 532nm.  The effect of laser wavelength, pulse energy and material microstructure 

(crystallinity) were extensively analysed in order to identify the different factors affecting ablation 

efficiency and surface integrity. Single and multiple pulses ps – laser ablation was performed on 

PLLA with different degree of crystallinity. As in the case of other amorphous systems, it was 

expected a higher surface integrity to be achieved on the amorphous PLLA, because no 

crystalline structural features were present to facilitate the formation of micro – cracks during the 

laser ablation process. 

 

 2.  Materials and Methods 

2.1 Materials 

Poly-L-lactide (PLLA) was supplied by Purac Biochem [36] (The Netherlands). PLLA pellets were 

previously dried at 40˚C for 24 h. PLLA films (degree of crystallinity Xc = 4%) of 50 microns thick 

were prepared by casting PLLA solution in Chloroform at a concentration of 2 wt %.  After 

preparation, the films were dried at least 24h at 60˚C to ensure complete evaporation of the 

solvent. Crystalline PLLA films were obtained by annealing (1h at 120˚C) amorphous films. We 
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fabricated smooth, clear PLLA films of 33% and 49% degree of crystallinity. The characterisation 

of the films was done by Differential Scanning Calorimetry (Mettler Toledo DSC 1 Stare System). 

 

2.2 Laser ablation technique 

For surface modification of the polymer samples we used the ps-laser system described in the 

previous section, integrated in a micromachining workstation (microSTRUCTvario, 3D-Micromac 

AG, Germany). Sample position can be selected with lateral resolution in µm-range and a depth 

control of roughly 10 µm through a machining table with X/Y axes and Z positioning system.  

It is important to point out that Polylactides show high transparency in the UV and visible range 

[37]. Laser ablation experiments were carried out on PLLA by changing laser parameter, such as 

speed, frequency and pulse energy. Craters were produced by single pulses, considering a 

frequency of 10 KHz (highest pulse energy) and scanning speed of 1000 mm/s. Energy ablation 

threshold is specific for each type of polymer, and its value may be linked with their microstructure 

properties, such as cohesive energy, absorption coefficient, degree of crystallinity, etc. In this 

chapter, we studied the effect of laser wavelength and material crystallinity on laser ablation 

threshold and surface integrity of PLLA films. Additionally, ablation rate for micromachined 

grooves was analysed in terms of pulse energy. 

The material response on laser – machined regions was assessed using scanning electron 

microscopy SEM (Karl Zeiss XB1540), Focused Ion Beam processing (FIB, FEI Helios 600 

Nanolab dual beam focused ion beam system), X-ray photoelectron spectroscopy (XPS, 

hemispherical analyser PHOIBOS 150 SPECS with 2D-DLD detector), and Fourier transform 

infrared (FTIR) spectroscopy (Vertex 70 with Hyperion IR microscope, Bruker). The information 

depths of these techniques are 10 nanometres (XPS) and 1 micrometre (FTIR), respectively. The 

crater depths and diameters were measured by mechanical stylus profilometry (Dektak 8, Veeco) 

[38].    
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3. Results  

3.1. Laser ablation of amorphous PLLA. 

A first series of experiments were focused on the determination of amorphous PLLA energy 

ablation threshold at wavelength of 532 nm. Figure 1.1 shows SEM images of single pulse craters 

produced in the nearly amorphous (Xc = 4%) PLLA sample by varying the pulse energy of the 

laser. Crater formation is observed when pulse energy is close to 25 µJ. The circular rim around 

the ablation zone suggests the onset of surface swelling prior to material ablation. This behaviour 

has been observed in other polymeric systems during laser irradiation [27]. At low pulse energy, 

the formation of gas bubbles in the deeper layers of the material may push the outer layers leading 

to surface swelling. When the pulse energy gets the ablation threshold, the gas bubble collapses 

producing crater formation. 

 

Figure 1.1. SEM images corresponding to single-shot craters at a wavelength of 532 nm for quasi-

amorphous PLLA at different energies: 𝐸 = 26 µJ (a); 𝐸 = 51.6 µJ (b). 
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The diameter (𝐷) and depth (𝑑) of each crater was measured as a function of pulse energy (𝐸) 

by SEM and profilometric evaluation. By fitting the experimental data to the equation (0.11) [39]: 


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We can obtain the spot size 𝜔0 (beam radius measured at 1/e2), and the threshold energy 𝐸𝑡ℎ 

for crater formation. This energy is defined as the minimum energy where the onset of ablation 

can be observed.  

As mentioned in the previous section, PLLA is a highly transparent polymer to UV-visible light. 

However, due to the high laser intensities achieved by picosecond pulsed laser, the transparent 

material could absorb the energy by nonlinear processes, such as avalanches and multiphoton 

absorptions. These effects are properly considered through an effective absorption coefficient 

that for weak absorbers is generally larger than the linear absorption coefficient [40]. According 

to the studies carried out by G. H. Pettit et al. [41], the effective absorption coefficient for a single-

photon absorption process (𝛼𝑒𝑓𝑓) (at sufficiently small fluences) can be estimated from the 

equation (0.10): 
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However, this expression is not valid for multiphoton absorption processes. Thus, the 𝛼𝑒𝑓𝑓 values will 

give us information on the nature of the absorption mechanism of the polymer when picosecond pulsed 

with different wavelengths are considered.  

 Figure 1.2 (a) shows the 𝐷2 measurements obtained by profilometry. The experimental data can be 

well fitted by equation (0.11). The values of the fit parameters 𝜔0 and 𝐸𝑡ℎ are 18 µm and 23.6 µJ, 

respectively. This energy value is very similar to that required for crater formation as observed by the 

SEM images presented in figure 1.1 (25 µJ).  

Figure 1.2 (b) shows the profilometer measurements of the crater depth dependence on pulse energy. 

The experimental data can be well fitted by equation (0.10) in the energy range considered. Some 

deviations are observed at high energy values (𝐸 < 125 µJ), which have been observed by other 
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authors in different polymers [29-31, 42-45]. The value of the fit parameter 𝐸𝑡ℎ (≈ 3.5 µJ; 𝛼𝑒𝑓𝑓 = 0.42 

µm-1), is lower than the threshold observed by SEM characterisation and that obtained from the eq. 

(0.11) applied to the crater diameters.  

 

Figure 1.2. Data analysis of single pulse craters produce by 10 ps pulses at a wavelength of 532nm 

on amorphous PLLA. The graphs show the squared diameter of the craters measured by profilometry 

(a) and the etch depth per pulse (b) as a function of the pulse energy. Lines in figure 1.2 (a) and (b) 

indicate the fitting curves to equations (0.11) and (0.10), respectively.  

In order to analyse the effect of laser wavelength on material ablation, laser irradiation experiment 

was conducted using a 355nm beam. Figure 3 shows the SEM images of single pulse craters 

produced in amorphous PLLA by varying laser pulse energy. It is important to note that the 

ablation mechanism at ʎ = 355 nm is different than that observed at ʎ = 532 nm (Figure 1.1). 

Figure 1.3 shows that the onset of ablation is observed at energies over 40 µJ and a peak of 

molten material appeared at the centre of the crater. The results shown that single pulse laser 

ablation of amorphous PLLA at this wavelength did not lead to the formation of a well-defined 

crater and, hence, the determination of energy threshold for ablation with one pulse was not 

possible. 
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Figure 1.3. SEM images corresponding to single-shot craters at a wavelength of 355 nm for 

amorphous PLLA at different energies: (a) 𝐸 = 42.0 µJ; (b) 𝐸 = 66.7 µJ.  

 

3.2. Laser ablation of PLLA with high degree of crystallinity 

The effect of material microstructure on laser ablation behaviour was analysed considering two 

PLLA films with different crystallinity degrees (Xc = 33% and Xc = 49%). Figure 1.4 shows the 

SEM images of single pulse craters in both samples by varying the pulse energy of the laser at 

ʎ= 532 nm. In these cases, energy ablation threshold is smaller than that observed for amorphous 

PLLA. At energies of 20 µJ we do not observe any change in surface topography of amorphous 

PLLA, while this value leads to a crater formation in the case of crystalline samples. For PLLA of 

high degree of crystallinity (49%), ablation is observed at energies lower than 10 µJ. These results 

indicate that the energy at which crater formation is observed decreases with increasing the 

degree of crystallinity for semi-crystalline PLLA films.  
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Figure 1.4. SEM images corresponding to single-shot craters at a wavelength of 532 nm for PLLA films 

of 33% (a, b) and 49% (c, d) crystallinity degree at different pulse energies: (a) 𝐸 = 19.1 µJ, (b) 𝐸 = 

83.3 µJ, (c) 𝐸 = 9 µJ, (d) 𝐸 = 93.5 µJ. 

The effect of laser wavelength on surface integrity was also analysed in the case of PLLA of high 

crystallinity degree (Xc = 49%). Figure 1.5 shows the SEM images of single pulse craters in this 

material at ʎ = 355 nm and two different energy values. Contrary to that observed in the case of 

amorphous PLLA, figure 1.5 shows no evidence of such a peak of molten material inside the crater. 

This fact allows one to measure craters diameters and depths, being able to obtain laser ablation 

threshold and effective absorption coefficient by fitting the experimental results to equations (0.11) and 

(0.10). According to the results presented in figure 1.6, for ʎ = 532 nm, lineal regime can be fitted to 

the data in the low (𝐸 < 59 µJ) energy region (Figure 1.6 (a)). In the case of ʎ = 355 nm, this low energy 

region is defined by the energy value 𝐸 < 49 µJ (Figure 1.6 (b)). The fit parameter 𝐸𝑡ℎ is approximately 

9 µJ for ʎ = 532 nm and 7 µJ for ʎ = 355 nm. It is important to note that, in the case of ʎ = 532 nm, this 

value is comparable to that obtained by fitting equation (0.10) to experimental data concerning to 

energy dependence of the crater depth d (𝐸𝑡ℎ = 11 µJ, 𝛼𝑒𝑓𝑓 = 0.3 µm-1: Figure 1.7). From this figure, 

it is clear that the fitting equation (0.10) encloses the experimental data generally well over the whole 

range of energies considered and, in the case of high crystalline PLLA, UV irradiation results in a 
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higher etch rate (open triangles in Figure 1.7). However, for this wavelength, the experimental data 

cannot be satisfactorily fitting using equation (0.10). From figures 1.4 to 1.7, it is clear that the values 

obtained by fitting the experimental data to equations (0.11) and (0.10) are in good agreement with 

the energies at which we observed surface modifications by SEM. 

 

Figure 1.5. SEM images corresponding to single-shot craters at a wavelength of 355 nm for high 

crystalline PLLA at different energies: (a) 𝐸 = 8.4 J; (b) 𝐸 = 24.1 µJ. 
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Figure 1.6. Crater square diameter as a function of the incident laser energy and wavelength (ʎ = 532 

nm and 355 nm) for PLLA of high crystallinity degree (Xc = 49%). The solid lines represent the best 

fits according to equation (0.11).  

 

Figure 1.7: Ablation depth 𝑑 as a function of the incident laser energy and wavelength for PLLA of high 

crystallinity degree (open triangles: ʎ= 355nm, closed squares: ʎ = 532nm). The solid line represents 

the best fit for the experimental data according to equation (0.10) (for ʎ = 532 nm).  
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3.3. Effects of pulses overlapping 

In the process of groove micromachining, the sample is exposed to multiple pulses while being 

continuously translated at feed rate 𝑣. The effect of pulse energy and overlapping is analysed in terms 

of line dimensions and surface integrity by SEM analysis. Figure 1.8 shows a SEM image 

corresponding to grooves machined in amorphous PLLA by laser pulses at a wavelength of 355 nm 

and different pulse energy. Due to pulse overlapping, groove formation was observed at pulse energies 

(𝐸 = 2J) lower than those determined from the images showed in Figure 1.3. At higher pulse energies, 

the depth and width of the grooves became larger, improving inner surface quality (Figure 1.8 (b)). 

The bottom surface of the grooves is covered by micro-pores.  

 

Figure 1.8. SEM images corresponding to grooves machined by laser pulse overlapping (𝜎0 = 10 µm, 

f = 250 kHz, 𝑣 = 600 mm/s) in PLLA at different pulse energy: (a) 𝐸 = 6.04 µJ, (b) 𝐸 = 14.44 µJ.  

Figure 1.9 shows the effect of laser energy on dimensions of the groove in amorphous PLLA. It is 

important to note that saturation phenomena are observed at high energy values. This implies that 

energy values higher than a critical value (𝐸 = 7 µJ for recast layers, and 𝐸 = 12 µJ for depth) do not 

lead to an increase in grooves depth and in the height of the recast layers. 
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Figure 1.9. (a) Topographic profiles corresponding to the laser grooves (𝜎0 = 10 µm, f = 250 kHz, 𝑣 = 

600 mm/s) at a wavelength of 355 nm and two different pulse energies (solid line: 𝐸 = 7.2 µJ, dashed 

line: 𝐸 = 12.2 µJ. The dotted line represents the level plane).  (b) Evolution of line depth (squares), 

width (circles) and height of the recast layers (triangles) with increasing pulse energy.  

 

3.4. Effect of laser irradiation on surface chemistry 

As mentioned before, grooves machining by laser implies the overlapping of the laser pulses, 

increasing the energy deposited on the material, and, therefore, the material affectation. Grooves 17 

micrometres wide and 4 micrometres deep (𝐸 = 6.5 µJ, Figure 1.9 (b)) were machined on amorphous 

PLLA with a period of 25 micrometres, filling an area of 40 mm x 3 mm. In these conditions the inter-

groove spacing (s) was 8 micrometres. XPS is applied to obtain the carbon (C1s) and oxygen (O1s) 

spectra on the grooved area (Figure 1.10), considering a field of view of 1 mm x 20 mm, and analyse 

the effect of laser micromachining on the surface. Therefore, the XPS signal have the contributions 

from two different areas: grooves and not machined inter-groove spacing. Although this 8 µm-spacing 

was not under direct laser irradiation, it is otherwise modified because of the formation of recast 

material at grooves sides (Figure 1.9). In these conditions, the C:O ratio in the pristine (not machined) 

area (1.9) is higher than the stoichiometric ratio for PLLA (1.5), while the obtained C:O ratio on the 

grooved area is very similar to the expected value (1.56)(Table 1.1). The relative intensity of the C1s 

and O1s peaks, which correspond to the bonding energies of the C-O, C=O and O-C-=O functional 
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groups, underwent a minor but reproducible change on the grooved area respect to the pristine area 

(Figure 1.10). Atomic concentrations of carbon in the C-O and O-C=O functional groups are lower in 

the grooves, respect to the pristine area, while the atomic concentration of carbon in the C=O functional 

group is increased. These observed differences between pristine and grooved areas are not detected 

by FTIR measurements (Figure 1.11). FTIR spectra of both grooved and pristine areas show a sharp 

peak arising at 1748 cm-1 in the regime of carbonyl stretching. The appearance of this peak at lower 

wavenumber region than crystalline structure, and the weak shoulders arising next to the intense 

signals at 1177 cm-1 and 1085 cm-1, assigned as asymmetric vibrations of C-CO-O and O-C-CO, 

respectively, [46] indicate that PLLA exists mainly as amorphous.  

Table 1.1. C:O ratios (At%) in the pristine and grooved PLLA surfaces measured by XPS.  

 

 

Figure 1.10. C1s and O1s spectra obtained by XPS on grooved and pristine areas of amorphous PLLA. 
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Figure 1.11. Infrared spectra of grooved and pristine areas of an amorphous PLLA film. Black and red 

lines represent spectra of grooved and pristine PLLA areas respectively.  

3.5. Effect of laser irradiation on material structure.  

In addition to surface chemistry, structural properties could be also affected as a consequence of 

the energy absorbed by the material under laser ablation, which, in the case of occurring via 

thermal effects (photothermal ablation), could produce crystallization, not only in the ablated area, 

but also in the surrounding material. In order to evaluate these eventual structural changes 

occurred on the laser ablated regions, single pulse craters produced in amorphous PLLA using 

the UV wavelength were considered. It is important to recall that the ablation mechanism via UV 

wavelength on amorphous PLLA is different than that observed at visible wavelength, showing a 

strong thermal behaviour characterized by a peak of molten material at the centre of the ablated 

crater (Figure 1.1 and 1.3). Cross-sections of non-ablated surface (pristine area) and craters were 

obtained by FIB and analysed by SEM (Figure 1.12). The material response to FIB is similar when 

considering pristine and crater areas, and not signs of crystallization (for instance, spherulite 

apparition) were observed on the material close to the ablated zone (Figure 1.12b-c). This is 

confirmed by the cross sections obtained on semi-crystalline PLLA (Figure 1.12d), where it is 

shown that the material response to FIB is different to that observed on amorphous PLLA.  
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Figure 1.12. SEM images of craters produced by UV wavelength on amorphous PLLA (a), and 

cross sections obtained by FIB on the non-ablated area (pristine, (b)) and craters (c). These 

images are compared to the cross section obtained on pristine semi-crystalline PLLA film (d).  

 

4. Discussion 

As it is shown in Figure 1.2 (b), laser ablation of PLLA with 532 nm picosecond pulses is characterised 

by a logarithmic dependence of the etch depth per pulse on laser energy, satisfying the Lambert – 

Beer Law for single photon absorptions in the energy range considered. The effective absorption 

coefficient obtained by fitting the data to equation (0.11) is 𝛼𝑒𝑓𝑓 = 0.42 µm-1. This value is significantly 

higher than the linear absorption coefficient obtained by means of UV – VIS spectroscopy (PLLA 

shows high transparency in the UV and visible range [37]) and lower than 1 µm-1.  According to the 

results presented by G. H. Pettit et al. [41] concerning to pulsed ultraviolet laser ablation of organic 

materials, values of the 𝛼𝑒𝑓𝑓 ≥ 1 µm-1 indicate significant single – photon absorption. The absorption 
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of laser photon leads to electronic excitation of the chromophore (C=O for PLLA), followed by intra- 

and intermolecular conversion to heat or bond scission. It is worth to note that single photon energy is 

insufficient for bond breaking (Ebond ≈ 8 eV for C=O) in the case of UV and visible radiation of PLLA. 

Thus, our results suggest that multiphoton effects play an important role in laser ablation of this 

polymer at both wavelengths. This result has been confirmed by theoretical models and experimental 

studies on ultrafast laser ablation of transparent polymers, connecting photochemical ablation by 

multiphoton absorption with the onset of nonlinear processes associated to the high energies achieved 

in the material [41, 45, 47-50]. These studies conclude that either multiphoton absorption and plume 

attenuation will increase the effective absorption coefficient, leading to the material ablation by a 

complex combination of photochemical and photothermal processes. From the experimental results 

presented in Figures 1.1 and 1.2, it is difficult to distinguish between photochemical and photothermal 

ablation mechanisms and the interplay among these processes as a function of the incident pulse 

energy.  In general, it has been established that photothermal ablation causes high temperature, 

thermal degradation, melting and sublimation of the polymer, coupled with massive material ejection. 

The photochemical ablation process, however, is characterised by a clean cut, negligible thermal 

damage and ejection of gaseous fragments. Figure 1.1 and 1.3 show high – quality ablation craters 

for laser irradiation of amorphous PLLA with 532 nm pulses. Additionally, minimal spread of the ejected 

material from the crater is observed at this wavelength compared to the results obtained at ʎ = 355 nm 

(Figure 1.3). These results suggest that the laser ablation mechanisms of crater formation on PLLA 

irradiated by 355 nm and 532 nm pulses are different. These observed differences in the ablation 

mechanisms at two wavelengths would be related to changes in the absorption coefficient of the 

material and wavelength dependence of the photon energy. Figure 1.3 shows that UV single pulsed 

laser ablation of amorphous PLLA is characterised by a broad peak located at the centre of the crater. 

Various authors have observed a similar behaviour in metals and semiconductors exposed to 

nanosecond (ns) laser pulses [51, 52]. They correlated the final topography of the ablation crater with 

the hydrodynamic motion of molten material due to thermal and surface tension gradients or vapor 

pressure. According to molecular dynamics simulation (MDS) studies, photothermal mechanisms 

involved in laser ablation of polymer systems exhibit higher ablation threshold and surface temperature 

than that observed for photochemical (and photomechanical) processes [25]. As shown in Figure 1.1 

and 1.3, the pulse energy required for UV – laser ablation of amorphous PLLA is higher than the 
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threshold at 532nm. These results would suggest that thermal mechanisms dominate in UV ablation 

of amorphous PLLA with ultrashort laser pulses. Unfortunately, for ʎ = 355 nm, determination of energy 

threshold for ablation and 𝛼𝑒𝑓𝑓 of PLLA with one pulse (and, hence, the photon density onto the target 

material) was not possible. Therefore, based on the results presented in Figures 1.1 and 1.3, it is 

difficult to elucidate the ablation mechanisms responsible for the differences observed between 

irradiation of PLLA with UV and visible laser pulses. 

The analysis of the results presented in Figure 1.2 (a) indicates that the threshold energy and spot 

size values obtained from the fitting to the equation (0.11) (𝐸𝑡ℎ= 24.2 µJ and 𝜎0 = 18 µm) were 

significantly higher than the energy value obtained using the Lambert – Beer law (𝐸𝑡ℎ = 3.5 µJ) and 

the focal spot size at a certain pulse energy (𝜎0 = 15 µm at 𝐸 = 0.2 µJ). The reason for these differences 

in not completely understood. In previous laser ablation studies of polymers [27, 33, 53], Lambert Beer 

law equation was used for accurate determination of the energy threshold in the low energy regime, 

leading to lower energy threshold values than those required for crater formation. This result correlates 

well with our experimental data presented in Figures 1.1 and 1.3. The big dispersion shown by the 

crater depth values at low energies must be also affecting the energy threshold value obtained from 

the data shown in Figure 1.2 (b).  Additionally, it is worth to note that the focal spot size depends on 

the incident pulse energy and, hence, it is difficult to establish a direct relationship between 𝜔0 and 

𝜎0. A close inspection of Figure 1.2 (b) shows small deviations from the Lambert-Beer law of the etch 

depth per pulse at high energy values. These deviations have been already observed by other authors 

in a wide variety of polymer systems [29, 32, 42, 43]. Theoretical studies of UV ablation of organic 

materials attribute these deviations at high fluences to nonlinear effects such as chromophore 

saturation and multiphoton absorption processes [41]. Additionally, changes in material properties and 

pressure induced by material overheating at high laser fluences can preferably improve the etching 

rate [42].  

Figures 1.1 and 1.4 show that laser irradiation with visible and UV wavelengths leads to a reduction in 

the pulse energy required to observe crater formation as the degree of crystallinity increases. 

According to the research carried out over the last few years in the field of MDS, ablation produced by 

ultrashort laser pulses (t<15ps) occurs in a stress confinement regime [24]. In this regime, 

photomechanical effects (tensile stresses) play an important role on the material removal process and 
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ablation is mainly produced by relaxation of a high thermoelastic pressure wave induced by laser 

irradiation. In this stress confinement irradiation regime, material ablation can be directly related to 

mechanical fractures that take place when stress exceeds the dynamic tensile strength of the material 

[24, 54]. In amorphous polymers, the packing heterogeneity characteristic of these systems, in terms 

of material microstructure, would lead to a broader distribution of the activation energy associated to 

their molecular dynamics [55]. Additionally, the cooperative nature of atomic motions leads to viscous 

flow behaviour of the system at high temperatures. These characteristics of amorphous polymers 

provide a better stress accommodation, and laser energy dissipation. In semi-crystalline polymers, 

however, cooperativity of chain motions is impeded by the higher degree of crystallinity. According to 

Sarasua et al. [9] the elongation at break behaviour and ductility of PLLA decreases with crystallinity. 

Consequently, as it is evident in Figure 1.1 and 1.4, the pulse energy required for material ejection in 

crystalline PLLA is lower than in the case of the amorphous one. Similar results were obtained for 

polymers with crystalline nanostructures and other amorphous systems such as metallic glasses  [56-

57]. In this scenario, photomechanical regime could be significantly higher than photothermal effects 

and, as it is shown in Figures 1.4 and 1.5, this regime may contribute to the material removal without 

forming a molten peak at the centre of the ablation crater. Although it is worth to note that the threshold 

energy value obtained from the fit to the Lambert – Beer Law is higher in the case of crystalline PLLA 

than that obtained for the amorphous one, it must be considered the big dispersion shown by the crater 

depth values at low energies, and it is influence on the energy threshold obtained from these data in 

the amorphous PLLA. This result indicates that the interplay between the mechanical and thermal 

properties of polycrystalline PLLA plays an important role in determination of the energy threshold 

value and crater morphology. 

To our knowledge, only a few studies have analysed the wavelength dependence of the ablation 

threshold in polymers. Dumont et al. [29] observed a clear dependence of the ablation rate on the laser 

irradiation wavelength (from 193 to 308 nm), showing higher ablation rates for high absorption 

coefficients. However, the authors did not find any clear relationship between ablation threshold and 

absorption coefficient of the polymers studied. In addition, Raciukaitis et al. [44] found that the ablation 

threshold decreases gradually with increasing the effective absorption coefficient of a wide variety of 

polymers irradiated with picosecond pulses at two different laser wavelengths: 266 and 355 nm. They 

related this finding primarily to the less volume involved in the process when polymers with high 
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absorption coefficient are considered. Again, these results do not highlight any relationship between 

ablation threshold and laser wavelength. Serafetinides et al. [27] performed an experimental study 

focused on the ps – laser ablation process (τ = 100 ps) in three different transparent polymers 

subjected to radiation of wavelengths ranging from the visible to the infrared. The results of this study 

showed an increase in the etch rate for decreased laser wavelengths. On the other hand, several MDS 

studies predict an enhancement in the ablation yield when lower energy photons are used [25]. 

Therefore, for longer laser wavelength, a greater number of lower energy photons are absorbed and 

more photochemistry and material decomposition occur, which would result in a larger yield at low 

energy values. Although these results seem contradictory, it is important to note that the MD 

simulations considered a similar absorption coefficient and incident pulse energy values for both laser 

wavelengths, which are not the conditions under study in the Serafetinides report. Figure 1.7 shows 

that, when studying ablation of crystalline PLLA, as we decrease the laser wavelength from 532nm to 

355 nm, the etch rate values increase over a wide range of pulse energy conditions. These results 

agree well with those presented by Serafetinedes et al. in different polymers. However, as already 

stressed above, the effective absorption coefficient of high crystalline PLLA at 355 nm is unknown. In 

such a situation, it becomes difficult to check the validity of the findings obtained by MDS concerning 

to the wavelength dependence of the etch rate in different organic materials. 

Laser ablation of PLLA induced pore formation (diameter Dpore=500 nm – 1 µm) inside the crater and 

along the ablated grooves (Figure 1.8). This behaviour has been already observed in different polymer 

materials such as PMMA [43, 58] and PS [59]. Although its origins are not well understood, one 

possible explanation involves gas bubbles formation (and explosion) attributed to the chemical 

decomposition of the polymer during laser ablation. MDS studies show that, in the stress confinement 

regime, laser ablation proceeds through the void nucleation and growth, attributed to photomechanical 

effects [24-26]. In the thermal confinement regime, however, a severe heating followed by fast cooling 

is produced, and ablation involves formation of gas phase molecules and liquid droplets that might 

return on holes observed in the ablated zone. As it is shown in Figure 1.8, these effects became even 

more pronounced when using multiple overlapping laser pulses, that increase the thermal load. Paun 

et al. [58] observed that the pore density in PMMA zones irradiated with a femtosecond pulsed laser 

increases with increasing laser fluence, however, Figure 1.8 shows that both pore density and 

distribution inside the grooves machined on PLLA remain constant over the whole energy range 
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considered. The cross sections obtained by FIB of the craters produced by UV on amorphous PLLA 

(Figure 1.11) confirmed that this porosity must be produced by the laser ablation process, since no 

pores were observed in the cross-section on the non-ablated area of the film.   

The C1s and O1s spectra obtained by XPS at grooves showed minor changes on the C:O ratio and 

the relative intensity of the C-O, O-C=O and C=O components respect to the not machined surface 

(Figure 1.10). The high C:O ratio measured on the not machined PLLA surface respect to the 

theoretical value has been already observed by other authors, which connect this finding to the 

sensitivity of obtained ratio to the take-off angle at which photoelectrons are recorded as well as the 

segregation of methyl groups at the surface [60,61]. The C:O ratio in the grooved area is very similar 

to the stochiometric ratio, indicating that no photo-oxidation occurred, as has been observed when 

femtosecond laser ablation is applied on PLA [62]. The minor changes found on the relative intensity 

of the above mentioned functional groups on the grooved area respect to the not modified area indicate 

a re-organization of these functional groups on the polymer surfaces. This could be a sign of 

photodecomposition, and therefore, of the photochemical nature of the ablation mechanism, at least 

in part. In addition, these surface changes were not observed by FTIR (Figure 1.11), indicating that 

only the topmost surface layer of the material (less than 10 nm) is affected by the laser and no bulk 

properties are modified. It is worth to note that no crystallization was detected neither by FTIR nor 

SEM analysis of FIB-obtained cross sections, and no structural changes were found on the material 

around the ablated area.  

5. Conclusions. 

In this chapter, we have reported experimental data corresponding to picosecond laser ablation of 

PLLA (surface morphology and ablation rate per pulse) as a function of laser fluence and degree of 

crystallinity. We conclude that multiphoton absorption mechanisms play an important role in UV and 

Visible laser ablation of amorphous and high crystalline PLLA: The etch depth dependence on the 

applied laser energy satisfied the Lambert – Beer Law with the effective absorption coefficient being 

less than 1 µm-1. The interplay between laser material removal mechanisms involved in PLLA ablation 

(photochemical and photothermal) reflects some significant differences when material is irradiated with 

355 and 532 nm pulses: While visible ablation leads to the formation of well-defined craters, single 
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pulsed UV laser ablation is characterised by a broad peak located at the centre of the crater. The 

hydrodynamic motion of molten material due to thermal and surface tension gradients could be 

correlated to this final topography of the ablation crater. Additionally, the onset of ablation is observed 

at pulse energies higher than those observed in the case of visible ablation. These results suggest 

that thermal mechanisms would dominate the UV-laser ablation of amorphous PLLA. The observed 

differences in the ablation mechanisms would be related to changes in the absorption coefficient of 

the material and wavelength dependence of the photon energy.  

Laser irradiation with visible and UV wavelengths shows a reduction in the energy required for crater 

formation as the degree of crystallinity increases. The packing heterogeneity and larger viscous flow 

behaviour of amorphous PLLA could explain this reduction when laser ablation occurs in a stress 

confinement regime. Laser irradiation of crystalline PLLA at 355 and 532 nm shows very similar 

behaviour in terms of energy threshold required for crater formation. However, the etch rate increases 

with decreasing laser wavelength over a wide range of pulse energy conditions. These results reveal 

the importance of material microstructure in the ablation mechanisms that govern ultrafast laser 

processing of polymers. Further investigations covering MDS and theoretical studies will need to be 

made to establish the ablation mechanisms (and their interplay) to be consistent with the experimental 

results presented in this work, but these studies are far of the objectives of the present work. 

In summary, the investigation shows that laser processing with picoseconds pulses is a promising 

technique for microstructuring biocompatible and biodegradable polymers. The machining of micro – 

scales features with high precision and minimal thermal impact (heat affected zone, recast layer) can 

be achieved on the material surface without affecting the bulk chemical or structural properties (as has 

been evidence by XPS and FTIR measurements), enabling high precision 3-D micromachining of 

scaffolds for biomedical applications.  
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surfaces microstructured by ps-laser ablation 

technology: effect of pattern geometry and 

topographical cues on breast cancer cell 

proliferation.  
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1. Introduction 

As mentioned in previous chapters, most animal cells are not viable in suspension and require to 

attach to a surface for surviving, growing and proliferating; in other words, they are anchorage-

dependent [1]. Recent reports have shown that cell behaviour is strongly dependent on the 

surface properties of the substrate material, such as the topology, the charge, the degree of 

hydrophobicity or hydrophilicity and other mechanical or chemical properties [2-7]. Thus, by 

changing the physicochemical properties of the substrate, cell-material interactions can be 

modified and hence influence cell adhesion, migration and proliferation. Among the biomaterial 

properties that affect cell behaviour, the substrate mechanics has a particular strong effect upon 

cell fate [8-10]. Cells in vivo are subjected to mechanical forces (i.e. tensile or compressive) 

through the extracellular matrix (ECM). Under these conditions, the cellular cytoskeleton suffers 

stress changes that affect cellular shape. These morphological changes may affect the direction 

and accumulation of cells at a proper site or even influence cell phenotype [11-13]. Some of the 

cellular processes that can be controlled by physical interactions between cells and their ECM or 

microenvironment (growth, differentiation, motility, apoptosis) are critical for cancer development 

[14-16]. Several researchers have observed that cancer epithelial cells revert to normal behaviour 

(healthy cells) when they are in contact with the ECM of an embryonic tissue [17-19]. In this 

context, surface microstructuring and micromanufacturing techniques can be a useful tool for the 

investigation of the influence of the cell microenvironment in the behaviour of cancer cells and 

tumour growth.  

As previously highlighted, surface modification by laser technologies is a promising technique for 

scaffold microstructuring. Liu et al. [20] applied for the first time the ultra-short pulsed laser 

technique for this purpose. They used a femtosecond pulsed laser to obtain microstructured 

collagen substrates (holes, grooves and grids), and analysed the growth, adhesion and viability 

of human fibroblast and mesenchymal stem cells from rat bone marrow on the patterns. Only five 

subsequent reports have applied laser ablation by femtosecond laser for the 3D microstructuring 

of biocompatible materials for cell seeding [21-25]. The purpose of the experiments performed in 

this chapter is to evaluate the picosecond pulsed laser ablation technology (much faster than 

femtosecond pulsed laser ablation technology) applied to the fabrication of three-dimensional 
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scaffolds aimed for cell engineering. To the best of our knowledge, no other reports exist on the 

application of picoseconds pulsed laser ablation in the study of the effect of topographical cues 

on cell proliferation. We examined the effect of the laser-created topography on cell behaviour by 

observing proliferation and adhesion of breast cancer cells on different laser structures on poly-

L-lactide (PLLA) [26,27] and polystyrene (PS, a biocompatible polymer frequently used in the 

fabrication of devices for cell culture applications) [28]. It is worth noting that PLLA has been 

investigated for many years as scaffold for tissue engineering [29-34] showing morphological, 

mechanical and degradation properties that make this material very suitable for such purpose. 

Likewise, we examined the influence of the topography in cell morphology when cells were 

cultured in confined environments.  

 

2. Materials and Methods 

2.1. Materials 

Poly-L-lactide (PLLA) was supplied by Purac Biochem (The Netherlands) [35]. PLLA pellets were 

dried at 40˚C for 24 h and dissolved in chloroform at a concentration of 2 wt%. PLLA films were 

prepared by casting the PLLA solution on glass Petri dishes. After preparation, the films were 

dried at least 24 h at 60˚C to ensure complete evaporation of the solvent. Under these conditions, 

films of 50 µm thickness were obtained. The degree of crystallinity of these films was 4% as 

measured by differential scanning calorimetry. Polystyrene (PS) Petri dishes for cell culture were 

manufactured by SARSTEDT (Germany).  

 

2.2. Surface microstructuring technique 

Surface microstructuring of polymer samples was carried out by means of a ps-laser system. A 

detailed description of the characteristics of this laser system can be found in previous section 

(Introduction and Chapter 1). By means of pulse overlapping different trenches can be fabricated. 

Trench width and depth were controlled by selecting an appropriate energy (𝐸), frequency (f) and 

pulse distance (𝑑𝑝). By using a galvanometric scanner and appropriate control strategies, any 
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desired topography and geometry can be generated on the workpiece. The optimization of the 

microstructuring process for PLLA was described in chapter 1. Flat PLLA substrates (Ra = 240 

nm, water contact angle of 70˚ ± 5˚) and PS Petri dishes (Ra = 20 nm, water contact angle of 80˚ 

± 5˚) were laser-irradiated by UV wavelength (355 nm) applying an energy of 0.9 μJ at a frequency 

of 100 kHz, and 5 µm of pulse distance. These laser parameters are different from those applied 

in Chapter 1 to obtain grooves on amorphous PLLA (Figures 1.8 and 1.9), since, in this case, the 

aim is to increase the surface roughness without generating well-defined grooves. Therefore, after 

the treatment, the average surface roughness (Ra) increased, leading to values of 700 nm and 

500 nm for PLLA and PS Petri dishes, respectively (Figure 2.1) and both material surfaces 

become slightly more hydrophobic (water contact angles of 90˚ ± 5˚). Microgrooves of different 

width (w) and depth (𝑑) were obtained on PS Petri dishes. Laser-micromachining of PS to 

generate well-defined microgrooves implied the application of pulse energies (from 1 µJ to 12 µJ) 

and pulse distance (𝑑𝑝= 2 µm) similar to those applied on PLLA, but at a frequency lower (f = 100 

kHz) than that applied on chapter 1. Microgrooves were also produced on PLLA by applying an 

energy of 6 µJ at a frequency of 250 kHz, and a pulse distance of 2.4 µm (Figure 1.9). Squared 

micro-compartments of 500 µm of width and 40 µm deep were fabricated by overlapping grooves 

with energy of 0.5 µJ, at a frequency of 250 kHz, and 2 µm of distance between grooves. 

Dimensions (w and 𝑑) of the different laser-generated topographies were measured by a 

mechanical stylus profilometer (Dektak 8, Veeco) [36]. According to DIN EN ISO 4288:1998, 

samples profiles of 4 mm length were considered in the measurement of the average surface 

roughness (Ra).  
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Figure 2.1. Surface profiles of PLLA substrates (a) and PS Petri dishes (b) before and after laser 

treatment. 

 

2.3. Cell culture  

For evaluation of the compatibility and the influence of laser microstructured materials on cell 

behaviour we used MCF-7 cells and MDA-MB-231 cells. The MCF-7 cell line is a model of 

estrogen receptor (ER)-positive breast cancer, which accounts for about 70% of breast tumours. 

MDA-MB-231 cells are ER-negative breast cancer cells. Both cell lines were genetically modified 

to express the fluorescent GFP protein (GFP MCF-7 [37]), and cultured in Dulbecco’s modified 

Eagle’s medium (DMEM, Sigma) supplemented with 9% Fetal Bovine Serum (Sigma-Aldrich Co. 

USA), 2% L-glutamine, and 0.5% penicillin/streptomycin (Gibco-RBL Life Technologies, Paisley, 

UK). Prior to cell culture, PLLA films were placed in Petri dishes, which were first disinfected with 

70% ethanol and then UV-sterilized for 30 minutes. Drops of cell suspension at a concentration 

of 150 cells/µL were deposited on the patterned substrates in cell culture medium by means of a 

micro-pipette. After cell seeding, the samples were kept in the cell incubator at 37˚C and 5% CO2 

and the media was changed three-times a week. Cell proliferation was observed as a function of 

time with an inverted fluorescence microscope equipped with a cell incubator (Carl Zeiss Cell Axio 

Observer, Germany [38]). The visualization of the stained cells on PS and PLLA substrates was 

impaired in some cases by the light scattered by the laser-treated regions due to the increase in 

surface roughness produced by this technology.  
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2.4. Statistics 

Fluorescence microscopy images were processed using ImageJ software to obtain the fraction of 

area covered with cells, and single cell or cell cluster sizes from at least three selected areas of 

1344 x1024 pixels. Cell counting was carried out on at least ten different areas of the substrate 

of 1280 x1024 pixels. All data were expressed as means ± standard deviation. Statistical analysis 

was carried out using the Student’s t-test and the values are considered significantly different 

when p<0.05. 

 

3. Results 

3.1 Effect of roughness on cell proliferation 

Surface microstructuring by laser irradiation modifies the initial surface roughness of the 

substrate. Therefore, we first analysed the effect of that surface roughness modification on cell 

adhesion and proliferation. Amorphous PLLA substrates and PS Petri dishes were laser-irradiated 

on half of their total area. Figure 2.2 shows MCF-7 cells cultured on laser-treated and non-treated 

PS (Figure 2.2a), and PLLA (Figure 2.2b-c), after two incubation days. The results did not show 

a significant preference for cells to adhere and proliferate on laser-treated areas compared to 

non-treated areas on both PS and PLLA. Figure 2.2d shows the percentage of area covered by 

cells for each type of substrate. This chart represents the average value of the fraction of area 

covered by cells, which was calculated from several images of different zones of the substrate for 

the same period. The values obtained on laser-treated and non-treated zones were very similar 

in the case of PLLA (approximately around (65 ± 10) % of area covered by cells). For PS, only 

slight differences were observed when non-treated and treated areas were considered ((70 ± 10) 

% on non-treated PS and (55 ± 10) % on treated PS). Therefore, laser irradiation did not 

significantly affect cell adhesion and proliferation of the cells (according to Student’s t-test).  
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Figure 2.2. Fluorescence microscopy images of MCF-7 cells proliferating on non-treated and 

treated PS Petri dishes (a) and films of PLLA (b, c) after two days of incubation. (d) Bar-chart of 

the fraction of area covered by cells on treated and non-treated zones of PS and PLLA substrates. 

According to the Student’s t-test there were no significant differences. Images were treated by 

ImageJ to highlight cell morphology (green colour). 

 

3.2. Effect of substrate topography on cell proliferation and orientation 

3.2.1. MFC-7 cells: low-invasive cells. 

In order to analyse the effect of a defined topography on cell proliferation and morphology, an 

array of parallel grooves of variable width, depth and inter-groove spacing (s) was patterned in 

both substrate materials. Figure 2.3a-e shows MCF-7 cell clusters growing on non-patterned and 

laser-patterned PS after twelve days of incubation. On non-patterned PS, cell clusters underwent 

isotropic growth, leading to circular-shaped clusters (Figure 2.3a). On patterned PS, however, cell 

clusters underwent a noticeable elongation along the groove direction and the growth was thus 
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anisotropic leading to elliptical-shaped clusters. The effect of pattern geometry and density over 

the cell cluster growth and orientation is shown in Figure 2.3b-e. The ratio of the major (parallel 

to groove direction, a) and minor (perpendicular to groove direction, b) axes of the elliptical-

shaped clusters is represented (Figure 2.3f) and it will be referred to as shape ratio (a/b) from 

now on (Figure 2.3g). The laser ablation technique applied for groove generation does not allow 

us to distinguish between the effects of groove width and depth separately, since an increase of 

the laser energy leads to the simultaneous increase of groove width and depth.  In these 

experiments, the w:𝑑 ratio of the grooves increased in a 40%, while w increased in more than 

200%: therefore, we considered w as the groove representative parameter and represented the 

cell cluster shape for a range of w:s ratios. This representation quantifies the cell cluster 

elongation along the grooves. On non-patterned PS the cell cluster shape was approximately 

round, thus the shape ratio approaches 1. On patterned PS, the shape ratio was larger, reaching 

a maximum for the 15 µm-wide grooves and 6 µm-spacing. When the values of the width and the 

spacing increase the cell cluster elongation is still evident. According to these results, the effect 

of surface topography on cell cluster elongation becomes more evident when pattern density 

increases, and parallel grooves with widths comparable to the cell size (20 ± 5) µm are 

considered. 
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Figure 2.3. Fluorescence microscopy images of MCF-7 cells proliferation on non-patterned PS 

(a) and patterned PS with grooves of variable w, s and 𝑑: (b) w = 15 µm, s = 6 µm, d = 3 µm; (c) 

w = 35 µm, s = 10 µm, d = 5 µm; (d) w = 40 µm, s = 20 µm, d = 6 µm; (e) w = 50 µm, s = 120 µm, 

d = 10 µm. (f) Representation of the shape ratio of the elliptical cell clusters growing over lines of 

different widths and spacing in comparison to the circular cell clusters growing in non-patterned 

PS. Images were treated by ImageJ to highlight cell morphology (green colour). 

Figure 2.4 shows the time evolution of cell proliferation on patterned PS substrates considering 

the pattern configuration that induces a maximum shape ratio in cell clusters (w = 15 µm, s = 6 

µm) with different directions. After three days, 87% of the cells that adhered to the substrate 

proliferated along the grooves. Figure 2.4a shows that some cells were more fluorescent than 

others, which could likely be due to changes on cell shape induced by the topography or it may 

represent cells at different stages of the cell cycle. We observed that cell clusters remained 

elongated along the grooves after 12 or even 14 days of incubation (Figure 2.4d-f). When cell 

population was very high, nearby cell clusters merged and the elongation effect was suppressed 

(Figure 2.4e). However, the shape ratio of the cell clusters remained approximately constant over 

the whole incubation period (Figure 2.4g). 
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Figure 2.4. Fluorescence microscopy images of MCF-7 cells proliferating over patterned PS for 3 

(a), 5 (b), and (c), 12 (d) and (e), and 14 (f) incubation days. (g) Shape ratio of the elliptical cell 

clusters growing for two weeks over grooves of different direction like a function of incubation 

time. According to the Student’s t-test there were no significant differences. Images were treated 

by ImageJ to highlight cell morphology (green colour) 

Time-lapse micrographs such as those represented in Figure 2.4a-f can be used to estimate the 

growth rate of cell clusters on patterned surfaces. As shown in Figure 2.4a, on non-treated PS, 

cell clusters grew almost isotropically. Growth speed of cell clusters was estimated by measuring 

the radial axis of circular cell clusters and the major and minor axes of elliptical cell clusters on 

non-patterned and patterned PS, respectively, for different time lapses. Measurement of circular-

cluster size on non-patterned PS revealed an average radial growth speed of (7 ± 0.7) µm h-1. On 

patterned PS, however, cell clusters grew at a rate of (2.5 ± 0.5) µm h-1 along the laser grooves, 

and at rate of (1 ± 0.4) µm h-1 along the perpendicular direction. Cell proliferation is hindered when 
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compared to the rate on non-patterned PS. Figure 2.5 shows a cell cluster over a non-patterned 

area of PS that has reached the patterned area after 2.5 incubation days. As highlighted before, 

when a cell cluster reaches the grooves, it tends to align along the groove direction, showing an 

elongated shape.   

 

Figure 2.5. Fluorescence microscopy image of a cell cluster on PS growing homogeneously and 

reaching the patterned area. Images were treated by ImageJ to highlight cell morphology (green 

colour). 

Next, the effect of surface topography on cellular proliferation for PLLA substrates was examined 

(Figure 2.6) considering the same pattern configuration applied on PS to maximize the shape 

ratio of the elliptical cell clusters. Cells proliferating on grooves 15 µm wide showed a similar 

cluster elongation as that observed in PS substrates (Figure 2.6a-c). Most of the cells spread 

within the grooves, suggesting a strong effect of the topography on cell morphology. As in the 

case of PS, the shape ratio of the cell clusters remained approximately constant on PLLA (Figure 

2.6d). MCF-7 clusters showed anisotropic growth and thus, cell cluster elongation was also clearly 

noticeable on patterned PLLA.  
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Figure 2.6. Fluorescence microscopy images of MCF-7 cells proliferating after 5 incubation days 

on patterned PLLA (w = 15 µm, d = 3 µm, s = 6 µm) at different directions (a-c). Shape ratio of 

the elliptical cell clusters growing for 5 incubation days on lines of different direction like a function 

of groove direction (d). Images were treated by ImageJ to highlight cell morphology (green colour). 

3.2.2. MDA-MB-231 cells: high-invasive cells.  

Proliferation and orientation of MDA-MB-231 cells (more invasive than MCF-7 cells) on patterned PS 

petri dishes was also examined for comparison of ER-negative and ER-positive breast cancer (MCF-

7 cells) to determine whether patterns affect in the same way the growth of both breast cancer types. 

Figure 2.7a-b show that unlike the MCF-7 line, these cells did not proliferate in clusters and orientation 

along groove direction occurred in this case at cellular level. Figure 2.7c shows SEM images of MDA-

MB-231 cells fixed on non-patterned and patterned PS: on non-patterned PS, cells showed randomly 

spread over the surface, however, on patterned PS cells (white arrows) were elongated and confined 

inside grooves and in the inter-groove spacing, where the groove edges formed by the recast material 

act as a barrier for the cells. White particles, which were likely remains from the growth medium, were 

observed all over the surface. Approximately (81 ± 7) % of cells were elongated along the groove 

direction, both inside and outside grooves (Figure 2.7d).  
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Figure 2.7. Fluorescence microscopy images of GFP-MDA-MB-231 cells proliferating after 6 (a), 

and 9 (b) incubation days on patterned PS Petri dishes (w = 15 µm, d = 3 µm, s = 6 µm). SEM 

images of cells proliferating on non-patterned and patterned PS after 13 incubation days (c). 

Percentage of cells aligned on non-patterned and patterned PS after 9 incubation days (d) *** 

Significance level: p < 0.001 according to Student’s t-test. Images were treated by ImageJ to 

highlight cell morphology (green colour). 
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3.3. Effect of three-dimensional (3D) structures on cell proliferation and 

confinement 

In order to analyse the impact that confinement has on cancer cells proliferation, MCF-7 cells 

were cultured on PS with laser-machined microcompartments of area 500 µm2 and depth 40 µm 

linked by a channel 100 µm wide (Figure 2.8a). Cell proliferation was periodically monitored inside 

the compartments during two weeks (Figure 2.8b-f). In this time period, cells remained confined 

within the compartment for eleven days, until the compartment was completely filled (100% 

confluence). Between the eleventh and the thirteenth days of incubation individual cells could be 

observed around the compartment (Figure 2.8f, white arrows): since cells were only seeded in 

the compartments, the observed cells must have escaped from inside the compartment. 

 

Figure 2.8. Images obtained by fluorescence microscopy of MCF-7 cells adhered to the bottom 

of a square compartment (a) at 3 (b), 7 (c), 11 (d) and 13 (e, f) incubation days. The photograph 

(e) shows the bottom of the square compartment in focus, and photograph (f) shows cells outside 

the square (focus on the plane outside the square) (white arrows). Images (b-f) were treated by 

ImageJ to highlight cell morphology (green colour). 
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4. Discussion 

As reported in Section 3, the surface roughness modification induced by the laser treatment on 

PS and PLLA substrates did not show any alteration on cellular proliferation of breast cancer 

MCF-7 cells. Hence, picosecond pulsed laser machining can be used to produce different 

topographies for cell seeding without any apparent side effect over cell morphology and 

proliferation. According to these results, modification of the surface roughness by means of ultra-

short pulsed laser would not suppose a drawback in terms of cell culture applications. Contrary 

to these findings, Pfleging et al. [3] reported that in the case of L929 cells proliferating on PS, cell 

adhesion was affected by laser irradiation (Excimer laser, 193 nm), finding an optimal range of 

laser energies at which cell adhesion was improved by changing the surface chemical properties 

of the material. In our case, the wettability of the surface is similar before and after laser irradiation, 

and no further chemical changes seem to be induced by the laser on the surface.  

When growing on PS and PLLA patterned substrates by picosecond pulsed laser irradiation, 

MCF-7 cell proliferation on high density patterns of parallel grooves of single-cell width (15 µm 

wide, 3 µm deep) occurs preferentially along the grooves. Therefore, anisotropic expansion of 

cell clusters along the groove direction was directly related to changes on surface topography by 

laser machining. This phenomenon is called “contact guidance effect” when single cells are 

considered [39]. Our findings agree well with the orientation phenomena observed by many 

previous researchers for a variety of cell types and substrates [5, 12, 40-48], although cell 

response seems to be dependent on cell type. It is worth noting that the elongation effect 

observed in the present work for MCF-7 cells is linked to cell clusters (contact guidance effect 

occurred at supra-cellular scale), instead of single cells as it is observed for MDA-MB-231 cells. 

In addition, our experiments confirm that physical constraints play an important role in cell 

expansion: Cell clusters grow easier and faster along the grooves, where cells do not find physical 

barriers. Cells proliferating perpendicularly to the groove direction, however, must overcome 

edges of nearly 1 µm and depths of 3 µm (higher than the laser-induced roughness on treated 

surfaces), leading to a substantial slowdown of the cell replication rate along that direction. To the 

best of our knowledge, this is the first reported evidence of such phenomenon. But, certainly 

related, it is the work of Irimia et al. [49], who found that motility of human cancer cells (MDA-MB-
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231) is enhanced along microchannels with cross-sections comparable to the cell size. Hence, 

cell confinement not only favours motility of more invasive cancer cells (MDA-MB-231), but 

according to our findings it also promotes cell proliferation along microchannels of less invasive 

breast cancer cells (MCF-7). 

The effect of physical confinement on MCF-7 cell proliferation was explored in a square area of 

approximately 500 µm2 and depth of about 40 µm. We found that cell clusters on non-patterned 

PS grew at 7 µm h-1 in all directions. Assuming that the cell cluster inside the square grows at this 

velocity, it would reach the edge in two to three days. However, we found that the cell cluster 

stayed for eleven days inside the 40 µm deep box. The presence of cells outside the 

compartments after this period indicates that cell proliferation was not restricted by the edges. 

Hence, these cells could overcome the 40 µm barrier, suggesting a high adaptability to 

topographical features. According to this, other authors [50-52] have presented similar findings, 

reporting the ability of high invasive MDA-MB-231 breast cancer cells in adapting their shape to 

the sidewalls of physical micro-features regardless of their form (star or circular-shaped).  

 

5. Conclusions 

In this chapter, we have applied ultra-short laser technology to produce microstructured surfaces 

on PS and PLLA that influence on breast cancer cell elongation or confinement. Contact guidance 

effect on a supracellular scale is observed when MCF-7 cells proliferate on groove-patterned 

substrates, while contact guidance effect on a cellular scale is observed when MDA-MB-231 cells 

are considered. MCF-7 cell growth is slowed down both on patterns and in the squared 

compartments, in which time of cell confinement increases from 3 to 11 days compared to the 

unconstrained case (non-patterned substrate). These findings show that laser micromachining 

with ultra-short laser pulses is a very suitable tool to create different 3D microstructures and, thus, 

analyse the effect of the cell microenvironment on the behaviour of cancer cells and tumour 

growth in vitro. Furthermore, our observations confirm that further examination of the potential 

applications of microstructuring by laser technologies in biomedicine is warranted.  
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Chapter 3. In vitro analysis of laser-microstructured 

PLLA surfaces via seeding human mesenchymal 

stem cells: effect of topographical cues on cell 

differentiation.  
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1.  Introduction 

Adult stem cells are the main source for developing future new strategies in regenerative 

medicine, cell-based therapy, and tissue engineering [1-3]. Proliferation and differentiation of 

stem cells in vivo are regulated by their microenvironment, known as niche, which comprises both 

cellular components and interacting signals between them [4, 5, 6]. These niches, in addition to 

other functions, provide stem cells with physical anchors (by means of adhesion molecules) and 

regulate the molecular factors that control cell number and fate [5]. Some of these factors are 

influenced by cell shape, cytoskeletal tension and contractility [7, 8]. In this regard, the design of 

biomaterials with architectures that mimic natural cell microenvironments might be a powerful tool 

to better understand and manipulate cell function as a strategy for future cell-based therapies. 

Among the biomaterial properties that affect cell behaviour, surface topography has shown a great 

potential to control cell shape and location [9]. Several researchers have observed that microscale 

and nanoscale topographies in the form of pillars, grooves, pits or pores can induce the 

differentiation of human mesenchymal stem cells (MSCs) to a certain cell lineage [10, 11, 12]. In 

this context, surface microstructuring technologies play an important role in the manufacturing of 

functionalized 3D scaffolds, resembling the cellular three-dimensional networks and the structural 

organization of human tissues [13, 14]. 

As have been seen in chapter 2, pulsed-laser-based technology is a promising approach for the 

fabrication of scaffolds to guide the spatial distribution of living cells. In 2005 Liu and collaborators 

applied for the first time an ultra-short pulsed laser for this purpose [15], which reflects the novelty 

of this strategy. Last years have witnessed the application of the femtosecond-pulsed laser 

technology to create 3D microstructures on biocompatible materials for cell culture [16-21]. In 

these studies, channels were created to control different aspects of cell behaviour on biopolymers. 

Lee et al [17] observed that channels fabricated inside electro spun scaffolds made of 

polycaprolactone favour the formation of vascular walls in that they promote the adhesion of 

smooth muscle cells on the channel walls. Other authors employed a similar strategy to increase 

the infiltration of cells and nutrients [18]. Channels carved on a biopolymer film have also been 

employed to induce cell alignment and promote myogenic differentiation of MSCs [19] although 

the authors did not obtain conclusive results at this respect. In spite of the high-quality structures 
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that a femtosecond pulsed laser is able to generate, it has though technical limitations, such as 

the low processing speed and the low ablation rate that makes it difficult to implement in industry, 

where both power scaling and versatility are required. In contrast, picosecond pulsed lasers are 

easier to implement in industrial processes due to their better cost-effectiveness, versatility and 

reliability. Consequently, the presence of these lasers has noticeably increased in the industrial 

market during the last years. Surprisingly it has been scarcely used for scaffold fabrication [22, 

23]: previous to our work only Schlie and collaborators have applied the picosecond laser 

micromachining technology (PLM) on silicon substrates to test cell compatibility [22], while we 

employed this technology on biocompatible polymers to create microstructures that modulate the 

morphology and proliferation of breast cancer cells (chapter 2) [23]. In this chapter, we examined 

the effects that carved micropatterns created by PLM on substrates made on Poly-L-Lactide 

(PLLA) may have on human MSCs and their differentiation into adipocytes and osteoblasts.  

 

2.  Materials and Methods 

2.1 Materials 

PLLA was supplied by Biomer (Biomer Krailling, Germany). PLLA sheets of approximately 300 

µm in thickness and a degree of crystallinity of 4% (measured by differential scanning calorimetry) 

were obtained by thermoforming. Under these conditions, the PLLA film is hydrophobic (contact 

angle = 70° ± 5°) with a surface free energy of 38.18 mJ/m2 in air at 23ºC [24]. Cell culture dishes 

were fabricated by sealing Nylon rings onto PLLA sheets with a biocompatible silicone (Picodent 

Twinsil, Picodent GmbH, Germany) (Figure 3.1).  
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Figure 3.1. A typical PLLA-bottom Petri dish used in this study. The thermoformed PLLA sheet 

(approximately 300 µm thick) is sealed to a Nylon ring to create a PLLA-bottomed container 

appropriate for 2D tissue culture.  

 

2.2 Surface microstructuring technique 

Surface microstructuring of the PLLA films was carried out with a picosecond-pulse laser system. 

A detailed description of the experimental set-up and the optimization of the microstructuring 

process for PLLA was described in previous chapters [25]. To analyse the effect of surface 

roughness on cell activity, flat PLLA substrates (FLAT PLLA) of Ra = 240 nm (Ra, average surface 

roughness) were laser-irradiated with the same parameters applied in Chapter 2 (ʎ = 355 nm, 𝐸 

= 0.9 μJ, f = 100 kHz,  𝑑𝑝 = 5 µm). After this treatment, Ra increased to 700 nm (ROUGH PLLA, 

Figure 3.2a). To evaluate the effect of surface patterning on the cellular behaviour, parallel 

grooves (w = 10 μm, 𝑑 = 4 μm) (figure 3.2b) were obtained by applying same parameters than 

those applied in Chapter 2 for groove generation (ʎ = 355 nm, f = 250 kHz,  𝑑𝑝 = 2.4 µm). In this 

case, considering thermal-formed sheets (obtained from PLLA supplied by BIOMER) instead of 

films obtained by casting from solution (obtained from PLLA supplied by Purac), the application 

of a low pulse energy (𝐸 = 2.3 μJ) allowed us to produced narrow grooves on the PLLA substrates, 

which reflects the laser ablation dependence on the material properties and processing. These 

groove dimensions matched to human mesenchymal stem cell size (10-12 µm in diameter). The 

inter-groove spacing was set to 15 µm (GROOVES 1) and 25 µm (GROOVES 2). In order to 

analyse the effect of geometry on stem cell differentiation, 3D microcavities were fabricated in 
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different geometrical shapes, such as circles and rectangles (figures 3.2c-d), with same 

parameters (ʎ, f and 𝑑𝑝) and an energy of 1 µJ. The diameter or side of these geometries is about 

200 µm. To ensure cell confinement, the depth of these microcavities was set to 40 µm, 

approximately 8 times as high as a cell height. Width and depth of the microcavities and grooves 

were measured by a mechanical stylus profilometer (Dektak 8, Veeco, USA). Ra was calculated 

from 4 mm long surface profiles, according to DIN EN ISO 4288:1998. 

 

Figure 3.2. SEM images of PLM-treated PLLA: laser-irradiated (“rough”) PLLA (a); grooves with 

w = 10 μm, 𝑑 = 4 μm, and s = 15 μm (b); circular (c) and rectangular (d) microcavities. 

 

2.3 Cell culture 

Human MSCs from bone marrow were provided by Promocell (Germany). Prior to cell culture, all 

PLLA surfaces were cleaned gentle with 70% ethanol and UV-sterilized for 30 minutes. Cells were 

cultured on the surfaces in growth medium (Promocell) and were maintained at 37˚C and 5% 

CO2.  
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Cell proliferation was measured on all the PLLA surfaces (FLAT PLLA, ROUGH PLLA, 

GROOVES 1, GROOVES 2) by means of a MTT assay at 4 different cultivation times: 1, 4, 7 and 

14 days. The plated cell density was 20000 cells/cm2. These experiments were done in triplicate 

on 3 surfaces of each type. Glass coverslips were used as control.  

Cell morphology was examined on all the PLLA surfaces by means of immunofluorescence 

microscopy applying two different staining methods: in one hand, cells were stained with 

NeuroDio, a green-fluorescent cytoplasmic membrane stain (Promokine, Germany) before 

seeding. On the other hand, cells were fixed and stained for DAPI (cell nuclei, blue), phalloidin 

(cell cytoplasm, red), and vinculin (focal adhesions, green). Cell density was 1000 cells/cm2 for 

both staining methods. These experiments were performed in triplicate for every type of surface. 

Cell morphology was observed at three different cultivation times.  

In order to study cell differentiation, MSCs were seeded on PLLA dishes at higher densities, 

30000 cells/cm2, to attain 100% confluence after 24 hours in culture. The growth medium was 

then replaced with a differentiation-induction medium, which contained a 1:1 mix of adipogenic 

and osteogenic induction media (Promocell). Cells were incubated in this medium for 2 weeks. 

The induction medium was changed every three days. After two weeks, cells were fixed in 4% 

formaldehyde for 5 minutes at room temperature and stained immediately after with Fast Blue RR 

Salt/Napthol solution (Sigma-Aldrich, Germany) and Oil Red O solution (Sigma-Aldrich, Germany) 

according to the manufacturer´s instructions. The first staining agent tags alkaline phosphatase 

activity (AP staining), an early indicator of cells that undergo osteogenesis, while the second tags 

the deposits of fat or lipid vacuoles characteristic of adipogenesis. Cells were visualized with an 

inverted microscope in bright field and fluorescence modes (Nikon Eclipse TE-2000-S, 6V30W 

halogen lamp, Bright field (BF) and GFP filter, Japan).  

 

2.4. Data analysis 

Optical micrographs were analysed with the image analysis freeware Image J 

(http://imagej.nih.gov/ij/). Image brightness and contrast were adjusted to optimize the 

visualization of single cells from a strongly light-scattering background. In order to quantify cell 

alignment on grooves, in terms of cell cytoplasm, cells oriented along groove direction were 

http://imagej.nih.gov/ij/
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counted out of 11-23 images of as many different sample locations taken after a specific number 

of days in culture. Round cells or cells oriented perpendicularly to groove direction were counted 

as non-oriented. Alignment of cell nucleus was quantified by ImageJ, using images of 5 different 

areas for each type of substrate and incubation period. Each cell nucleus was marked and an 

ellipse was fitted to it to measure the orientation angle of each cell nucleus. The location and 

number of clusters of lipid vacuoles inside and outside of grooves were obtained from images 

such as those shown in the inset of the figure 12 taken after two weeks in culture and at 10 

different sample locations. All data were expressed as means ± standard deviation. Statistical 

analysis was carried out using the Student’s t-test and the values were considered significantly 

different when p<0.05.  

 

3. Results 

3.1. Effect of surface topography on undifferentiated MSCs 

As described in the material and methods section, cell proliferation was examined on 4 different 

types of surfaces: FLAT PLLA, ROUGH PLLA, and two different groove-configurations 

(GROOVES 1 and GROOVES 2) based on grooves with the same dimensions but different inter-

groove spacing. Figure 3.3 shows the relative cell growth on these surfaces as a function of the 

cultivation time compared to cell growth on glass coverslips (Figure 3.3.a) and FLAT PLLA (Figure 

3.3.b) at 1 day of incubation. As we observe in this figure, MSC growth is significantly slow on this 

material compared to glass coverslips, although there is a noticeable increase of cell growth in 

time, and there are no significant differences between the different surfaces.  
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Figure 3.3. hMSC proliferation on non-patterned PLLA (FLAT PLLA) compared to cell proliferation 

on glass coverslips (a); and on 3 different types of surfaces: PLLA treated by laser to increase 

the surface roughness (ROUGH PLLA), and PLLA patterned by grooves of w = 10 µm, 𝑑 = 4 µm 

and s = 15 µm (GROOVES 1) and 25 µm (GROOVES 2) compared to FLAT PLLA (b). 

The PLM fabrication of grooves on PLLA produces two major transformations on the material 

surface: depressions caused by material removal by the laser pulses and protrusions of recast 

material at the groove ends and edges (Figure 3.4). The depth of the depression and the pile of 

recast material are particularly prominent at the end of the trench as figures 3.4a and 3.4b show. 

Here, protrusions can be 226% higher than at any other location along the trench. This 

phenomenon is ever present in the laser manufacturing technology and it is a consequence of 

the first-pulse effect [26]. The highly intense first laser pulse that initiates the micromachining 

process produces a particularly strong effect on the material.  
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Figure 3.4. SEM image of grooves created by PLM (a); line profiles across the grooves; at the 

end of the trenches (continuous line) and at the trenches´ midpoint (dashed line) (b) 

To examine the cell behaviour of undifferentiated hMSCs on patterned PLLA, the centre of the 

PLLA-bottomed dish was divided into 2x2 micro sized squares, three of which were filled with 

parallel grooves each at different orientations (0°, 45°, and 90°). A fourth square was left 

unpatterned as control (FLAT PLLA). In each row, the patterned squares were separated by a 

200 µm-wide stripe of flat PLLA. Figure 3.5 shows MSCs on FLAT PLLA (Figure 3.5a-c) and on 

grooves of different orientation (Figure 3.5d-i) after 1, 8 and 22 days of culture and at low cell 

confluency. As occurred in the experiments reported in chapter 2, the visualization of the stained 

cells on the PLLA sheets was impaired in some cases by the translucent thick PLLA sheet and 

the light scattered by the laser-treated regions. Despite this fact, it was possible to observe that 

on FLAT PLLA and after one day in culture, MSCs adopt a variety of shapes, resulting in a mixed 

population of rounded and elongated cells, the latter oriented in non–specific directions. In 

contrast, on patterned PLLA MSCs with elongated shapes predominate already after 1 day in 

culture. The direction of these elongated cells matched the groove orientation as shown in Figure 

3.5g-i, which clearly shows the influence of substrate topography on the early alignment of cells.  
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Figure 3.5. Fluorescence microscopy images of MSCs cultured on patterned PLLA. MSCs on flat 

PLLA (a-c), and MSCs on vertical grooves as a function of time (d-f). Images (g-i) show cells on 

grooves oriented at different directions after one day in culture. The white lines at the lower left 

corner of the images depict the orientation of the grooves. 

Figure 3.6 represents the number of oriented cells (considering the cell cytoplasm) normalized to 

the total cell number (in percentage) as a function of the orientation angle and time in culture: The 

effect of cell patterning is clearly shown in this diagram when low cell confluence was considered. 

Polar graphs for 1 and 8 days in culture show that, on flat surfaces (circle-shaped dots), dots 

representing the number of oriented cells at a certain angle are inside the first circumferential 

division (cell number below 20%): this means that on flat surfaces there were few cells oriented 

at different angles. On PLLA grooves with different directions (square-, diamond- and triangle-

shaped dots), however, the number of oriented cells for a certain angle was clearly high (from 40 

to 80%) and only few cells were oriented at a different angle (cell number below 20%). The 

histogram show that, after 22 days, cell alignment on FLAT PLLA increased, but this effect was 



116 
 

produced by the high cell confluency found at higher incubation times: cells tend to align parallel 

to one another and form bundles in a random orientation, most likely to maximize cell-cell 

interactions. On PLLA grooves cell alignment was induced and controlled by the surface and 

remained constant at a value of 70 ± 10% even at high cell confluence.  

 

 

Figure 3.6. Polar diagrams showing the number of oriented cells (in terms of cytoplasm) as a 

function of the pattern orientation angle after 1 (a), 8 (b) and 22 (c) days in culture. Dot size 

indicates the error (about 5%). (d) Number of oriented cells normalized to the total number of cells 

as they appear in the fluorescence images as a function of time.  

Figure 3.7 shows representative images of cell morphology obtained by immunofluorescence 

confocal microscopy on 4 different PLLA surfaces (FLAT PLLA, ROUGH PLLA, GROOVES 1 and 

GROOVES 2) using cover slips as control. It is worth to note that Confocal microscopy allows to 
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avoid most of the light scattered by the laser-regions and therefore obtain good quality images of 

cells on patterns, although grooves are still appreciable. These images show that cell proliferation 

and adhesion was qualitatively lower in the PLLA surfaces compared to standard glass cover 

slips. A closer look at the cell morphology confirmed cell alignment along the groove-patterned 

surfaces.  

 

Figure 3.7. Representative images of MSCs obtained by immunofluorescence microscopy on the 

4 different PLLA surfaces compared to cover slips after 14 days in culture: (a) MSCs on cover 

slips; (b) MSCs on FLAT PLLA; (c) MSCs on ROUGH PLLA; (d) MSCs on GROOVES 1; (e) 

MSCs on GROOVES 2.   

The effect of substrate topography on cell nuclei orientation is shown in Figures 3.8 and 3.9. 

Figure 3.8 shows the polar graphs representing the angle at which each cell nuclei were oriented 

on every surface (measured by ImageJ) after 3 different cultivation times (1, 7 and 14 cultivation 

days). All these graphs show that the cell guidance effect clearly affected cell nuclei when groove-

patterned PLLA surfaces are considered compared to the flat and rough PLLA surfaces. The polar 

graphs show cell nuclei with a wide range of orientation angles when cells grew on flat and rough 

PLLA surfaces, while cells growing on the groove-patterned PLLA surfaces showed nuclei with a 

noticeable trend to orientate along a preferred direction.  
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Figure 3.8. Polar graphs showing the angle of orientation of the cell nuclei on the 4 different PLLA 

surfaces (FLAT PLLA, ROUGH PLLA, GROOVES 1 and GROOVES 2) after 1, 7 and 14 

cultivation days. Each spot represents one cell nucleus. The dashed line highlights the main trend 

found on the groove-patterned surfaces.  

Figure 3.9 shows the histograms representing how much the nuclei deviates from the main trend 

on GROOVES 1 and 2 surface at the same 3 different cultivation times. The histograms show 

that about 75% of the cell nuclei were oriented with a deviation angle minor of 20º on the groove-

patterned surface, when a groove configuration of 15 micrometres of inter-groove spacing was 

applied, and approximately 60% of the nuclei were oriented in the same range of deviation angle, 

when grooves of 25 micrometres of inter-groove spacing were considered. Moreover, cell nuclei 

on grooves with a minor inter-groove spacing (s = 15 µm) were all aligned inside the laser-created 

channels (approximately (85 ± 5)%) and few nuclei were observed to be in the spacing between 

them ((15 ± 5)%); however, when we increased the inter-groove spacing (s = 25 µm), cells showed 
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again aligned, but, in this case, many cell nuclei were found to attach at the spacing between 

grooves ((46 ± 5)%). 

 

Figure 3.9. Histograms representing the deviation angle of cell nuclei respect to the trend angle 

on the patterned-PLLA surfaces (GROOVES 1 and GROOVES 2) after 1, 7 and 14 cultivation 

days.  

As shown in figures 3.5-9, contact guidance of MSCs on grooves occurs within the patterned 

squares, however, in the regions between squares, and within the first 24 h in culture, cells spread 

across the gap, extending between groove endpoints of neighbouring squares, as shown in figure 

3.10a, or between endpoints and groove edges, as shown in figure 3.10b.  According to the 

images of figure 3.10, single cells develop filopodia-like extensions between topological 

protrusions that are at least 200 µm apart.  
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Figure 3.10. Human MSCs adhered on flat PLLA in between PLM-patterned squares after 24h in 

culture. Cells spreading from one groove endpoint to another of the second-nearest neighbour 

square (a) and from groove endpoints to groove edge of a first-nearest neighbour square (b). 

Images were treated by ImageJ to highlight cell morphology (green colour).  

 

3.2. Effect of surface topography on differentiated human MSCs 

In-vitro differentiation of MSCs is most efficient when it is induced at high cell confluency (i.e.90%) 

[27]. Under these conditions, it has been shown that cell-cell interactions may be more relevant 

than cell-substrate interactions to determine the shape and orientation of MSCs [27]. 

Nevertheless, the presence of topological barriers and cavities may alter the behaviour of 

differentiated MSCs (i.e., adipocytes and osteoblasts) as we will show in this section. 
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Adipocytes and osteoblasts descend from a MSC precursor. Adipocytes are round to allow 

maximal lipid storage in the adipose tissue, while osteoblasts tend to spread to facilitate matrix 

deposition activity. After 14 days of adipogenic differentiation, the distribution of lipid vacuoles 

cultured on FLAT and ROUGH PLLA was examined. In both cases, the clusters of lipid vacuoles 

are quasi globular and their distribution is not affected by substrate roughness (Figure 3.11a-b). 

Similarly, AP staining suggests that osteoblast distribution is unaffected. However, the lipid 

vacuoles appear to line the edge separating regions of different roughness (Figure 3.11c). A 

similar behaviour is observed on the edges of the microcavities, where cells confront a topological 

barrier of approximately 40 µm in height (Figures 3.11d-e). Lipid vacuoles close to the edge of 

these cavities line the borderline regardless of the shape and size of the microcavity, which in this 

case is much larger than a single cell. On grooved-patterned PLLA, the distribution of the lipid 

vacuoles on the surface differs (Figures 3.12a-c): Lipid vacuoles arrange in strings both inside 

and in between the grooves, however, they were more likely to be found inside the grooves (67 ± 

11 %) than outside (29 ± 13 %) (Figure 3.12d). In contrast, osteoblasts did not show any 

noticeable predefined orientation on the patterned surface. 
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Figure 3.11. Bright field (BF) images of MSCs differentiated into adipocytes (presence of lipid 

vacuoles in red) and osteoblasts (AP staining in blue) on FLAT PLLA (a), ROUGH PLLA (b,c), 

and in microcavities (d, e). In figures c-e strings of lipid vacuoles lining the walls of the 

microcavities are outlined.  
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Figure 3.12. BF images of MSCs differentiated into adipocytes (presence of lipid vacuoles in red) 

and osteoblasts (AP staining in blue) on GROOVES after 14 days in culture (a-c). (d) Ratio of 

clusters of lipid vacuoles confined in the grooves and on the inter-groove spacing (*significance 

level according to the Student t-Test: p<0.005).  
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4. Discussion 

In this research, we have examined the effects that PLLA substrates modified by picosecond 

pulsed laser ablation have on MSC shape, and differentiation into adipocytes and osteoblasts. 

MSCs cultured on patterned PLLA showed the characteristic contact guidance effect [27], both in 

terms of cell cytoplasm and cell nucleus, already after 24 h in culture and throughout a period of 

22 days. These results agree with previous reports on stem cell alignment along micro- and nano-

grooved-patterned substrates [28-31, 20]. Cell nuclei alignment is promoted on grooves with 

minor inter-groove spacing respect to the further apart grooves, with an increment of 

approximately 25%. A minor inter-groove spacing also increase the percentage of cell nuclei 

confined inside the grooves: 85% of cell nuclei were found attached to the inner surface of the 

grooves for s = 15 µm, while 54% of cell nuclei were attached in the spacings between grooves 

for s = 25 µm. One possible explanation for this behaviour could be in the slight change undergone 

by the topographical profile of the inter-groove spacing when increasing this (Figure 3.13): for an 

inter-groove spacing of 15 µm, the surface between grooves is formed by the merger of the recast 

material deposited at both sides of each groove, leading to a spacing surface approximately flat; 

however, for an inter-groove spacing of 25 µm, the groove ridges formed by the recast material 

at both sides if each groove distance from each other, leading to the formation of a shallow 

channel between the grooves, which is wide enough to have the same effect of the “proper” 

grooves and promote cell nuclei confinement. In addition, the protrusions generated by the laser 

ablation technique at grooves´ ends and grooves´ edges provides convenient anchorage points 

for MSC and can potentially control their adhesion and shape. Hamilton and collaborators 

observed a similar phenomenon in osteoblasts proliferating on boxes and pillars [32], which they 

called gap guidance, a type of contact guidance for cell alignment that is associated to 

discontinuous topographical edges. Our results on microgrooves show that these microstructures 

influence MSCs in two ways: on the one hand, grooves influence cell orientation, since cells 

adapted their shape to groove width (in terms of cell cytoplasm) and orientation (both cell 

cytoplasm and nucleus), and the maximal effect was observed at the first stages of MSCs 

proliferation; on the other hand, grooves´ edges promote cell adherence and provide guidance. 

These effects appear to resemble the influence of stem cell niches in vivo [5], which makes PLM 

a convenient technique to create in vivo-like cellular environments. 
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Figure 3.13. Topographical profile measured by profilometry of the laser-created grooves for an 

inter-groove spacing of 15 and 25 µm.  

In terms of MSCs differentiation, Figure 3.12 showed that adipocytes, in contrast to osteoblasts, 

are highly sensitive to topographical features. Lipid vacuoles in adipocytes cultured on patterned 

PLLA align in strings along the grooves. Similarly, the distribution of lipid vacuoles was affected 

by the presence of topological edges, such as the borderline between flat and rough PLLA, as 

well as the walls of microcavities. The images of adipocytes on non-modified substrates suggest 

that the adipocyte shape is defined by the distribution of the lipid vacuoles. According to this, it 

can be expected that when lipid vacuoles arrange in lines of beads alongside the grooves, the 

adipocyte bodies may as well be aligned with these grooves (Figure 3.14). To the best of our 

knowledge, this is the first observation of adipocyte compliance to exclusively topological cues in 

the micrometre scale.  Kim et al. [33] reported on preadipocyte alignment, in terms of cell 

cytoplasm, on nanometric-grooves fabricated on polyurethane acrylate surfaces treated by 

oxygen plasma (to make the surface hydrophilic) and coated by fibronectin to increase cell 

adhesions; however, they did not observe the confinement and alignment of the lipid vacuoles 

inside the grooves, and the shape of the adipocytes looked very similar on the nanogrooves 

respect to the control (non-patterned) surface (adipocytes showed circular distribution of lipid 

vacuoles around the cell nucleus). Our finding reveals that surface topography alone can control 

adipocyte morphology. Mature adipocytes release a big variety of factors that play a fundamental 

role in the regulation of many important functions of the body [34]. The expression of these factors 
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is, in many cases, controlled by adipocyte size and location [35, 36]. In this context, adipocytes 

should be able to change their morphology in order to store the optimum amount of fat and to 

perform properly their physiological functions [37]. Therefore, it is likely that, according to the 

results presented in our study, surface topography could also affect the expression of these 

factors as it influences adipocyte morphology. Hence, PLM of surfaces may greatly contribute to 

nano- and regenerative medicine, since surface topography could be tailored to treat diseases 

related to the dysfunctional expression of those factors. In addition, specially designed scaffolds 

can be employed to promote adipocyte adhesion and direct the formation of adipose tissue for 

repairing soft tissue defects [38], or for implantation of artificial organs that require fat tissue 

regeneration into a predefined geometry, such as ear or larynx [39, 40]. 

 

Figure 3.14.  Adipocytes on a flat substrate and on grooves according to the experimental 

observations.  

Several authors have reported on the effect of the pattern geometry on cell differentiation into a 

certain lineage based on biochemical cues, as it is the case of surfaces patterned with agents 

that induce or hinder cell adhesion [7, 41-44]. In these studies, chemical restrictions were imposed 

on stem cells, which induce mechanical force gradients at the pattern edges that lead to 

differentiation into a particular cell type. In our research, where cells were confined by purely 

physical means, no significant differences were found between the distribution of differentiated 

cells inside and outside the microcavities. In addition, according to our findings, cells did not 

differentiate into a particular cell type at the edges of microcavities, contrary to the reported results 

on chemically confined cells. Only the distribution and orientation of the lipid vacuoles were 

affected by these edges (as shown in Figure 3.6). 
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5. Conclusions 

Although further investigation is required to elucidate underlying molecular mechanisms, the 

present study shows that substrate topography at the micrometre scale affects the morphology 

and orientation of human mesenchymal stem cells and adipocytes without the interplay of 

biochemical factors. Laser-generated microstructures induce contact guidance of human 

mesenchymal stem cells, favouring cell organization and directing cell anchorage. In addition, in 

terms of MSCs induced differentiation, adipocytes, contrary to osteoblasts, are influenced by the 

substrate topography, in that the cellular distribution of lipid vacuoles aligns along topological 

edges and confining barriers. In view of these results, PLM represents a potential tool for providing 

3D microenvironments mimicking in vivo stem cell niches and promoting cell organization. 

Although both physical and chemical surface modifications are likely required to control cell 

differentiation and induce cell fate, this work shows the impact of surface topography on the 

biocompatibility and functionality of biomaterials that can be used as scaffolds in tissue 

engineering and/or in vitro studies about MSCs behavior under specific physical constraints.   
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Final remarks 

The investigation developed in this thesis work proves that laser processing with picosecond 

pulses is a more than promising technique for micro-structuring of biocompatible and 

biodegradable polymers for cell and tissue engineering applications. This conclusion is supported 

by the following findings:  

✓ Micromachining by picosecond laser pulses enabled to create micro-scale features with 

high precision (spot sizes around 10 µm) and minimal thermal impact (recast material 

and HAZ) by means of an effective ablation process on a transparent and biodegradable 

polymer (PLLA). Surface quality can be optimised by selecting the appropriate laser 

wavelength to tip the balance between the two main material removal mechanisms 

involved in PLLA ablation (photothermal and photochemical) in favour of that most 

desirable to occur, photochemical ablation, which transforms the polymer into gaseous 

products, diminishing the deposition of ablation products and leading to clean micro-

structured surfaces with no need of post-processing steps. Surface quality it is also 

influenced by the materials properties, specifically by material microstructure (degree of 

crystallinity): the interplay between photothermal and photochemical ablation 

mechanisms can be tuned by modifying the degree of crystallinity of the material, so that 

photochemical ablation plays a leading role in material removal and clean and precise 

microstructures are generated. Moreover, laser micromachining is applied on the material 

surface minimising the changes produced on the surface chemistry to a nanometric 

surface layer (less than 10 nm), and without affecting material microstructure. Therefore, 

bulk properties remain intact. Generally, picosecond lasers enable to reach high 

mechanizing speeds leading to faster processing than other microfabrication 

technologies, which make it highly convenient for processing and manufacturing of large 

and complex 3D plastic components, like those required for scaffold fabrication. Laser 

micro-processing offers many advantages compared to the other existing surface 

modification technologies, such as versatility in terms of materials to be processed 

(almost any material) and geometries to be generated, the fact of being a single-step and 

contactless method, the easy adaptation of the process for micropatterning of tubular or 
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more complex sample shapes, and an easy scaling up by means of micropatterning of 

metal moulds for manufacturing of plastic components series. 

✓ The micro-scale structures that can be tuned via ps-laser ablation technology had a 

significant influence on cell-material interactions that govern cellular behaviour. In 

particular, in this thesis work, the surface micro-structures proposed have demonstrated 

their ability to:  

o Modulate the proliferation of breast cancer cells, which could be a key issue in 

the study of tumour growth in vitro. 

o Modulate morphology and elongation of mesenchymal stem cells, and 

organization and confinement of lipid vacuoles inside the adipocytes, which 

shows a great potential for the design of polymeric scaffolds with a customized 

regenerative function.  

o Modulate elongation and improve adhesion of endothelial cells, which has a 

major impact on the acceleration of the endothelium regeneration in medical 

applications such as minimally invasive treatment of coronary artery disease via 

cardiovascular stents.  

In addition, it is worth highlighting that all these cellular behaviours were controlled only 

by physical/topological mechanisms at the micro-scale, without the interplay of chemical 

factors, and therefore, without modification of the chemical surface properties. This would 

enable to control independently both physical and chemical surface properties of 

scaffolds to get a versatile surface properties “palette” which could be customized to each 

biomedical application.  
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The findings of the study performed during this thesis have been disseminated through 

publications in scientific journals and participations in international conferences via lectures, 
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