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Abstract: This work presents the implementation of a Model Predictive Control (MPC) scheme used to
study the improvement of the thermal quality in aged residential buildings without any rehabilitation.
The controller manages the heating system of an experimentally characterized model of a residential
dwelling in a social block built during the decade of the 1960s located in the neighborhood of
Otxarkoaga (Bilbao, Spain), so as to obtain an optimal energy efficiency performance. Due to the
characteristics of the construction in those days, this kind of buildings suffer problems related to the
use of awkward building materials and inefficient heating systems. A comparison with traditionally
used ON-OFF hysteresis control is presented in order to demonstrate the energetic improvement
provided by the MPC scheme. Besides, the variation of different parameters of the MPC is also
studied to determine its influence over the energy consumption and comfort conditions.

Keywords: energy-saving policies; energy efficiency; RC-thermal model; model predictive control;
system characterization; thermal comfort

1. Introduction

The European Union should reduce its dependence on foreign sources of energy, whereby more
than half of the consumed energy is imported [1,2]. European Union should also mitigate the global
warming situation produced by the emission of greenhouse gases. Buildings, are known to be one of
the most relevant sectors in energy consumption, together with transport and industry. The activity
of this sector in Europe accounts for approximately 40% of the total energy consumption and 36%
of CO; emissions [3], which is one of the more important agents of the global warming [4]. In this
context, great efforts are currently carried out in the building sector to develop energetic efficiency
policies in order to comply with the objectives proposed by the European Energy Performance of
Buildings Directive [5], which will be applicable to a new construction building. Despite this, there
is an important existing building stock, which is far from meeting the objectives laid down in the
directive due to its aging structures and outdated materials.

Adequate insulation and building materials or enhanced windows can be considered passive
improvements of new buildings or in the rehabilitation of the old ones. The development of a control
to improve the energy efficiency in the use of the climate control systems within the required comfort
parameters can be considered an active improvement. The Model Predictive Control (MPC) supposes
an excellent control option [6-11] since it does not only consider the information related to the system

Energies 2016, 9, 251; doi:10.3390/en9040251 www.mdpi.com/journal/energies


http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/journal/energies

Energies 2016, 9, 251 2 of 20

at an operation instant, but it also takes into account the predicted future information related to the
weather or building use so as to obtain an optimal control action.

Given the model of the thermal behavior of an aged building without any rehabilitation, which
has been obtained in an experimental study, a simulation of the impact of an MPC in its heating
system has been evaluated against the classical ON-OFF thermostatic control. The results aim to give
an approximation of the possible energy savings that the use of this control may represent in this
kind of aged buildings, which is even more relevant considering its large stock and that most of the
bibliography deals with new design buildings with improved materials and climate systems.

This novel MPC implementation has been successfully applied considering a reduced model
that has been obtained experimentally. However, the reader may be interested in more complex
MPC models such as those given in [12,13] where the reference tracking for the heating system is
ensured or [14] where MPC is applied over a low energy building with a long prediction horizon of
two days. Other kind of advanced control policies can be deployed in building climate systems as
those presented in [15] where the thermostat control is improved by a learning policy [16,17], where
neuro-fuzzy control is used as the control of an indoor temperature: The Artificial Neural Network
(ANN) provides a forecasted indoor temperature to be used by a dynamic Fuzzy Logic Control (FLC),
which in this case is a clear enhancement over other multi-criteria control strategies as the Ruled Based
Controls (RBC). Finally [18] presents another predictive control based on neuro-fuzzy controls.

The main aim of this paper is to show the benefits that the use of an MPC can suppose in the
control of buildings designed with poor construction material and systems. Using the model of a
dwelling of these characteristics that has been developed in an experimental way, the predictive
characteristics of the MPC are used to simulate the behavior of the dwelling and evaluate the energy
saves in the heating system.

2. System Description

The public organization Bilbao Municipal Housing has defined different building typologies in
its housing stock in order to study their energetic behaviour and to take adequate actions to ensure
a better thermal response and to minimize the energy consumption. The study was mainly focused
on the improvement of the construction materials, adding insulating materials or replacing the low
thermal resistance windows with improved new ones. This paper studies the improvement associated
with the energy consumption using MPC control method on the aforementioned dwelling.

The dwelling selected for the study is part of a social housing block, with east-west orientation
and located in the neighbourhood of Otxarkoaga, in Bilbao (43°15.5'N, 2°54'W, Figure 1), which is
a representative building of the social housing buildings built during the industrial city growth of
the sixties. It has a concrete structure, airbrick envelope with air chamber but with no other kind of
insulation either in the envelope or in the windows. There is an individual heating system for the
dwelling with no cooling or ventilation system. With 50 m? of floor area it is a typical social building
of the late fifties, sixties and early seventies, not only in this region but also in most of the industrial
regions around Europe. The sheer amount of buildings of these characteristics is a reason in of itself
for the thermal study and the simulation of the MPC implementation.

The study performed to evaluate and to model the thermal behaviour of the dwelling [19] was
developed during the winter season in 2012. In order to obtain a thermal model for the building, the
behaviour of one dwelling in the building was measured over time. With the dwelling empty, the air
temperatures of the different rooms were obtained over time as well as the wall surfaces temperatures
and the heat flux through the fagade to evaluate the losses through it. Weather conditions, temperature
and solar irradiation were measured too. Measured data were collected every minute and an average
value was stored for each parameter with a time step of 10 min.

In order to improve the analysis of the dynamic response of the dwelling, some heating power pulses
were developed in a pseudorandom way by the heating system of the dwelling. The characterization
of these Randomly Ordered Logarithmically distributed Binary Sequence or ROLBS [20], is used to
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decouple the internal and external influences that appear in the system and get adequate information for
the recognition of the parameters in the process of creating a grey box RC-model that can be implemented
in the MPC. Other pulse patterns such as Pseudo-Random Binary Signal or PRBS [21] may also be used
in this kind of parameter recognition proceses as proposed in [22].
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Figure 1. The building in Bilbao 43°15'30”N, 2°54'00”W.

Statistical software used to determine the values of the thermal resistances and capacitances that
characterize the dynamical thermal behaviour of the dwelling were obtained using the Continuous
Time Stochastic Modelling package for R (CTSM-R). The package has been programmed at the Technical
University of Denmark (DTU) [23] and adds some stochastic terms to the deterministic system in the
parameter recognition process, as it will be seen in the next point. Other software programs that can be
used for parameter recognition are LOgical R-Determination (LORD) [24] or GreyBox toolbox [25].

During the data acquisition, the maximum outdoor temperature was 20 °C and the minimum
—0.3 °C and in order to achieve the comfort specifications for the inhabitants, the values of the indoor
temperature inside of the house are set to 20 °C by day and 17 °C at night, which are maintained by a
5 kW heating boiler.

Building simulation software like TRNSYS [26] or EnergyPlus [27] can be used to represent the
dynamic behaviour of a building using more detailed models, which apply the information associated
with the constructions characteristics of the building such as thermal specifications of the utilized
materials [28-30], climate control systems [31] and volume distribution. These programs are not
adequate to develop a MPC-like control due to the lack of a mathematical model that can be developed
over time, so they are usually used for simulation and certification. It must be mentioned that the
IDEAS [32] library for modelica [33], allows the development of component based models to simulate
systems associated to buildings but also to get a mathematical linear time invariant (LTI) model of
the building in state space, so as to enable the application of MPC-like controls. In this case, and due
to the large number of states that usually define the buildings when the model is developed from
constructive parameters, its dimension should be reduced using known space reduction techniques
like [34,35] or directly using resources such as the ones provided in MATLAB-like software, which will
drop the computational requirements.

The parameters of the model that will be presented in the next section have been obtained from
measuring from the real building; the model of the building will be reduced to a 4th order system,
getting the average value of all the room temperatures for the internal temperature, as well as for the
structure, envelope and heating system.3. RC-Model

To define the model, Figure 2, over which the MPC will be implemented, the dwelling is
defined as a unique space that represents its entire volume in which no local variations of the
temperature are considered. The different elements of the dwelling are represented in a RC-model by
heat sources, thermal resistances and capacitances, which model the heating system apart from the
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structural elements and opaque and semitransparent-windows-envelope. The values of the outdoor
temperature [35] and the solar radiation over the opaque and semitransparent envelope provide the
external conditions that determine the evolution of the indoor temperature.
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Figure 2. RC-model of the dwelling.

The model is defined as a state space system that will characterize the dynamics of the dwelling
and where the different states in a continuous mode for the state 0; are defined by:
. 0, —0;
Cio; = >, ]R~ -+ Py @
1] k

j

where C; is the thermal capacitance associated to the 0; state, R;; the thermal resistance between the
states i and j and Pj are the heating fluxes applied over the 6; state.

The temperatures of the elements of the building —-indoor, structure, envelope and heating
system- are grouped together in the state vector: 0 = (Oi, Ostr Oeny 01)" which defines the situation of
the system in each moment. Equation (2) represents the dynamic evolution of the system in state space
form. Thus, in the case under study, besides the state vector, 6, the power supplied to the dwelling is
defined by u = (Py,), what is calculated by the control. The influence of other factors such as outdoor
temperature, Oy, or solar radiation, G, that is designed by the measured or predicted disturbances
is defined by v = (Oout Awin* Gh Aenv- G, being Gp,- Ayin and Gy- Aeny the solar influence over the
windows and envelope with Ay, and Aeny their respective effective area. The output of the system,
indoor temperature, is denoted y = (6y):

0= Ac-0 +Bc,-u + Beyv

2
y=C0+Dy u +Dyv @

where Ac, Bey, Bey, C, D, and D, are the matrices associated with the continuous system. The
complete matrix system is developed in [36].
In order to use the model with the measured data of the dwelling, the system has to be discretized.
The large time constant associated with buildings like systems denotes that its dynamics are slow
enough to discretize the system with the used time step, T, of ten minutes or even greater. In the
present case, the discretization was performed using zero order hold (zoh) method and the discrete
system is defined by:
Okr1 = A O + By up + Byog

3
yk:C~6k+Du~uk + Dy ( )

where the k subscript indicates the evaluated moment and the A, B, and B, are the discrete matrices
obtained using the zoh discretization with Ts sample time.

As described in the previous section, the parameters that define the RC-model, capacitances
and resistances, were obtained by applying the CTSM-R package over the values obtained in the
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experimental measurements. For that, the dwelling was modelled so the measurements obtained are
the ones represented in the model of the Figure 3. In that way, the thermal behaviour of the envelope
(env) is evaluated measuring the temperatures of its internal and external surface in different points and
then calculating its average; it is represented by a two resistances, one capacitance model. The structure
and the internal walls of the dwelling (str) are considered in a similar manner. The interior temperature
of the air is the average of the different rooms, the difference of temperature between different rooms
at the moment of the data acquisition was never higher than one degree Celsius. No capacitance is
associated to the windows (win) that are considered just like a resistance.
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Figure 3. RC model for parameter recognition.

g w

Ry, is the thermal resistance between the heating system and the indoor air, Reny 2 and Reny 3
are the resistances of the envelope, and Reny 1 and Reny 4 are the ones associated to the thermal
conductivity between the surface and the air. Similar notation is given for the structure: Rq; » and
Rstr 3 with Ry, 1 being the resistance between the inner surface and the air. Ry, is the thermal
resistance associated to the window. Cy, Ci, Ceny and Cgyr are the capacitances associated to the
respective elements. All these parameter values are estimated by the software given the experimental
values for the temperatures 0, 6in, Oout, Tenv_ins Tenv out and Ty in, the solar radiation through the
windows Ayin- G, and over the envelope Aeny- Gy, as well as the power of the heating system, Py,.

The package uses stochastic terms to improve the accuracy of the parameters obtained, these
terms that give an idea about the possible disturbances in the measurement of the parameter are
considered in the state space system that is defined by:

0=A0+Bu +odw

4
y=C0+D-u+oe @)

where 0 is the state vector that defines the temperatures, A, B, C, D are the matrices that define the
system, the u vector is defined in this case by the measured values that are used to determine the
parameters of the system: Outside temperature, Toyt, solar irradiance, Gy, temperature of the surface
of the envelope or structure, Teny in, Tenv_out, Tstr_in, temperature of the heating system, Ty, power
issued by the heating system, Py,. The value w represents a standard Weiner process and e a white
noise process.

The necessary information about the mathematical model used by CTSM-R can be found
in [37-39], were the statistical instruments to acquire and check the values of the parameters that
describe the system are explained. The values obtained in the parameterization process can be found
in [19] and have been added to the article in table of the Appendix A. Once the values are determined,
the system can be rewritten to take the shape of the one described in Equation (2) and in Figure 2.
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Due to the simplicity of the dwelling structure and of the installed heating system, the model
may be described by a linear system. In the study of more complex buildings and climate control
systems [36,40-42], nonlinearities may arise due to the relations that can appear between the control
variables (1) and some of the states (0) or measured or predicted disturbances (v), such as the ones that
appear between the outdoor temperature and an air heating system or between a blind system and the
solar radiation. In such cases, the system evolution is defined by:

ny
Or+1 = AOr + Byug + Byog + Z (Buo,iVk + B, ik ) Uk )
i=1

where B,,,, B,y are the set of matrices associated with the nonlinear relations.

Besides the linearization around the operation point, different methodologies are proposed to treat
the problems associated with the nonlinearities [42]. The work developed in [43] can be considered
especially interesting due to its development level and implementation characteristics.

Comfort Conditions for Comfort Requirements

In order to implement a control for the climate system of a building, office or dwelling, it is
necessary to determine the parameters to be controlled and the range in which the control has to
maintain them. In particular, the comfort conditions have to be set. At this moment, there is not a
European norm for these conditions and therefore local regulations will be considered. The Technical
Code for Edification (DB-HE) [44] determines the local normative that defines these comfort parameters
in Bilbao for the residential buildings. In the case of the dwelling under study, due to its characteristics,
the unique parameter to be controlled is the indoor temperature. The temperature is defined in the
aforementioned Technical Code to be 20 °C (from 08:00 a.m. to 23:00 p.m. hours) by day and a
minimum value of 17 °C by night (23:00 p.m. to 08:00 a.m.). A comfort band of 2 °C by day and of 1 °C
by night is defined over these reference values. The use of this band allows some more flexible control
strategies that will mean a decrement in the power consumption, as will be seen latter. The variation of
the reference temperature from day to night is determined by the normal use of the residential building.

With the aim of reducing the energy consumption, a new trend called adaptive comfort is now
developed [30,45] and it is already introduced in the norms ASHRAE 55 [46], where is defined as an
optional way to determine the comfort, and ISO 7730 [47], where is defined as informative. The comfort
of the building it is not only determined by the indoor temperature but also by parameters such as
the operative temperature, the humidity of the air and its speed, the clothes the users wear and the
outside temperature. The operative temperature is a mix between the indoor air temperature and the
radiant one, to evaluate the heat loses by convection and radiation. Predicted Mean Vote (PMV) and
Percentage of People Dissatisfied (PPD) are proposed indices to determine the thermal comfort quality
in a building. Due to the typology of the dwelling under study where the only actuator available for
control is the heating system, the deviation of the indoor temperature from the comfort band has been
computed in hours: K, which is another usual unit [30]. It is necessary to note that the reference for
comfort in the aforementioned Technical Code is only the indoor temperature.

3. Model Predictive Control Scheme

The main objective of this paper is to study the effect that the use of an advanced control such as
an MPC has on the energy consumption of the heating system of a building of the described typology.

The MPC is a kind of advanced control that gets the optimal control action for a modelling
system over some weighted conditions and restrictions, taking into account the evolution of the system
over a defined period of time denoted predicted horizon, Np. In the case under study, the energy
consumption of the heating system of a dwelling, the control has to minimize the use of the energy
while the indoor temperature fulfils some comfort conditions: to be inside of the comfort band and try
to fit a reference temperature.
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Having an RC-model for the dwelling, such as the one of the Equation (3), it is possible to control
the system over the time if future factors like solar radiation, outside temperature, usage patterns
or applied heating power are known or can be predicted. Restrictions over the different parameters
of the system can also be defined. MPC fully exploits this knowledge to get an optimal control
response, heating power, that makes the indoor temperature of the dwelling be inside a comfort
band by minimizing a cost function over the desired period. A full control pattern is obtained for
the desired period after the minimization is done, which should be the best one under the proposed
weight relations and restrictions. The first control action of this pattern is implemented by the control
and, in order to get an adequate response, a new control action is calculated for the new time step.
This knowledge of the future conditions for the system allows anticipating the control actions before
the system arrive to those conditions. As an example the adaptation of the heating system before
weather changes, the “in advanced” action of the control to arrive to a reference change “on time” ...
can be mentioned.

In the case under study, the control action, u, is evaluated every ten minutes by minimizing the
cost function, [(6p), which is usually defined as a quadratic function for the control action and the
output. In order to trim the actions of the different parameter in the functions, these are weighted by
some symmetric matrices (Q, R) that will determine the control action for instant k:

Np—1
J(8) = min > ((w—y) Q(w—y)y +uiRu) (6)
k=0

where 0 is the state vector at the current moment, w is the reference value for the controlled variable,
y is the output vector of Equation 3 where 0, -indoor temperature-, is defined in, and (w — y) is the
deviation between the reference temperature, Tj, that is one of the components of the w vector, and
the indoor temperature, Oy, at k instant. 1y, is the vector that defines the control action and Ny, the limit
of the prediction horizon.
The definition of some constraints for the system will restrict the minimization of the cost function
J(8p). These are:
0 < u < MaxPower (7)

Tmin,k < ein,k < Tmax,k (83)

The first one determines the range of power of the heating system. The second one determines
the comfort band between Ty, and Tmax defined for the indoor temperature at the k moment, these
temperature constraints can be changed over time but cannot be violated.

In order to define the constraints of the comfort band in a more realistic way and to avoid some
possible problems in the resolution of the minimization, it is possible to soften the second constriction
allowing a small transient violation of the limit by penalizing the violation itself. In this case, the
constriction should take the form:

Tmin,k —& < ein,k < Tmax,k + €& (Sb)

where ¢ is the parameter that will allow the comfort band to be overridden but will be heavily weighted
in the J(8() cost function that will be redefined as:

Np—1
J(8) = min } ((w=y)g Q(w—y)y + uiRu +e;Sey) ©
NS0

where S is the weight of ¢, that should be much bigger than the other weights.

The minimization of the J(8y) function is the kernel of the MPCs. This is the reason why the
choice of a suitable solver is critical. To tackling a complex problem, with a large number of states
and restrictions that can vary over the time, the use of solvers like CPLEX [48] with an interpreter
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like YALMIP [49] could be a good option to accelerate the resolution process, to render it more stable
and to get an enhanced control over the parameters and them variation. With this kind of solvers it is
possible to minimize the integer-programming problems that sometimes appear solving minimizations
due to the restrictions involved in the system.

Another parameter may be defined for the MPC: the control horizon, N, which will indicate the
number of actions of the control variables to be optimized in a k control interval and fulfil the 1 < N,
< Np condition. If its value is too small, the result for the control action will not be satisfactory due
to the few control actions computed each step. Too large value of N, can delay the solution of the
minimization without bringing any significant contribution into the control action.

An unconstrained MPC can be solved in the following way: for each iteration, the values of the
state variables, control values and predicted influences:

0= (6061...6NP)T u= (upu... uNC)T v = (vo Uy... va)T (10)

are computed according to Equation (3). 6;, u; and v; are the state vector, control actuation and the
values of predicted variables for i-th steep. N, control horizon, is the number of steps in which the
controller action will be computed.

The set of state vectors, 6, is defined by:

0 = FOy + dyu + dyv (11)
where:
I 0 0 0
A By 0 0
F— A? D, = AB, B. ... 0 )
ANp ANe—1B, ANp2B, ... ANTNeB,
0 0 ... 0 0
By 0 ... 0 0
oy = ABy By ... 0 0 (12)
AN—1B, ANe—2B, ... B, 0

The number of row and columns of the matrices is determined block-wise by Np, and N¢, being F,
@, and P, designed to create 0, so as to satisfy the cost function. The action of the control horizon can
be clearly observed in the ®,, matrix:

J (80) = min ((w —0)TQ(w—0)+ uT’Ru) (13)

where w = (wy wq ... wNp)T is the vector that provides the temperature references over the time and
the weigh matrices are:

Q ... 0 R ... 0
Q=1 ... . . |R=| ... - .| (14)
0 ... Q 0 ... R

The minimization of u in the equation set specified in Equation (13) gives the control action set for
the heating system at each given time step.
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4. Experimental Studies

A study is performed to evaluate the plausible improvement in the energetic efficiency
associated with the implementation of an MPC over the RC-model of a representative low thermal
quality dwelling.

In the first part of the study, the implementation of the MPC over the model of the dwelling will
be studied. The second part will compare the results obtained with the MPC with the ones obtained
using an ON-OFF hysteresis control that is the usual thermal regulation system in dwellings. The last
part of the work will study the way the different parameters of the MPC have influence on the accuracy
of the control and in the energy consumption.

4.1. MPC Implementation

In Figure 4 the effect of the implementation of the MPC over the model of the dwelling can
be observed. Environmental parameters appear in the Outdoor Temperature and Solar Radiation
diagrams. The global heating power for the dwelling is 5 kW, it is necessary to indicate that in the
experimental measurements, the maximum temperature difference between the rooms has never
arrived at 1 °C, so a good heat distribution can be considered. After some initial simulations, it has
been observed that a moderate prediction horizon, from 8 to 20 h, can be selected for the control due to
the small capacitance and thermal resistance of the structure and envelope that defines a low thermal
inertia building.

Indoor

Temp (°C)
3 S
) T T

"lﬂwe‘xr(kw)‘g
=
?(7

=
=
e

Outdoor
Temp (°C)

Solar Rad
(W)
T
- 10
i 1L
1 |

0 5d ‘10d‘ ‘ ‘15d‘ ‘ ‘ ‘ ‘ZDd‘ ‘ ' ‘ ‘ZSd‘
Time (days)

Figure 4. Model Predictive Control (MPC) applied to the dwelling model, heat system consumption,

outdoor temperature and solar radiation. Black line represents the temperature reference changes

between 20 and 17 °C.

In order to observe the accuracy of the control, the cost function J(8) that appears in Equation (9)
has been designed so that the deviation of the indoor temperature with respect to the referenced one:
w — y is penalised heavier than the energy consumption, u. This means that the control fits the indoor
temperature to the reference in a mostly perfect way during the day. The lack of a cooling system
supposes that the night reference has to be reached by natural cooling and it will not be possible to
reach the control reference as quick as it is predicted to be required by the reference change. This aspect
does not really matter since the night comfort has not been exceeded by its low limit, it is more, if the
reference condition is relaxed or even deleted at night, the control will minimize the consumed energy
maintaining the temperature inside the comfort band for a non-critical period of the day.
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In A section of Figure 4, the predicted effect of the control can be observed, due to the predicted
influence of solar radiation and outside temperature, the indoor temperature should exceed the
reference, to avoid this, the heat supply from the heat system is stopped and solar radiation becomes
the source of the heat for the system.

Figure 5 displays a zoom of three days of Figure 4 that represents indoor temperature evolution,
the power consumption pattern and the difference of the indoor temperature in respect to the
temperature set point. The prediction effect of the MPC in respect to the reference signal and
meteorological factors is again clearly represented. The control action begins before the reference
change, which prepares the system to reach the day reference on time. When the temperature is
reaching the day-reference the control action decreases and the temperature value is attained without
the overshot that typically appears in other kinds of controls. Although this is not too important for the
comfort, it means a better control pattern and lower energy consumption. In a non-predictive control,
the control action should begin at the reference change point, which supposes that the dwelling should
not be hot enough at the beginning of the morning. In order to observe the response of the system, two
power systems are studied: 2.5 kW and 5 kW. Both systems fulfil the requested comfort conditions, but
although greater power means a faster response, it also supposes means a higher energy consumption
that can represent 5%. It may be mentioned that the 2.5 kW system power consumption apparently
goes close to the 5 kW one right before 08:00 a.m., when the reference change will be produced; this
is due to the MPC predictive behaviour, when the system maximum power used in anticipation so
as to achieve the required temperature on time. The same behaviour is observed in the 5 kW system
in a shorter time period. Predictive performance is also observed before 23:00 p.m., when the power
systems switch off in order to save energy maintaining the dwelling inside the comfort band.

Temperature (°C)
e
5]

3

o
°

Power (kW)
N
@

A Temp (°C)

Consumption (kW-h)

=)
[N}

Figure 5. Three days zoom: Indoor temperature, heat power pattern, energy consumption and
deviation respect the set point for heat system of 2.5 kW and 5.0 kW. Solid black line represents the
variation of the temperature of reference.

4.2. MPC vs. Histeresis Control

In Figure 6, a comparison between ON-OFF hysteresis control and MPC has been performed.
The most common automatic heating system is a thermostat working over a hysteresis band that
switches the heating power on or off when thermally defined limits are exceeded. Two hysteresis
controls will be compared with the MPC, the first one, which will be called hys_SOFT, determines its
hysteresis band over the limits of the comfort band, the second one, called hys HARD, will determine
its band over an extremely small deviation from the reference. This last control is not realistic, but
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is considered as a consumption reference. Values appear in Table 1. To adequate the temperature of
the dwelling by morning, the system moves the night-day reference forward, so it is possible for the
system to get the desired reference temperature by the morning. Something similar happens at the
day-night reference change. Some other controls with hysteresis bands have been simulated obtaining
similar energy consumptions.

Power (kW)

A Temp (°C)
°

n

i
@
8
=
=
]
o

°

Consumption (kWh)
8

hard ONOFF
) ) ) ) ) ) -~ soft ONOFF )
1d 2d 3d 4d 5d 1d 2d 3d ad 5d

Figure 6. Comparison between Model Predictive Control (MPC) and Hysteresis control. Indoor
temperature, power consumption pattern, consumed energy and deviation from the setup for a 5-day
period. Black line represents the temperature reference evolution.

Table 1. Hysteresis band definition for the ON-OFF controls.

Hysteresis Day Night

Upper Limit Lower Limit Upper Limit Lower Limit
hys_HARD Tres +0.1°C T — 0.1°C Tres +0.1°C T — 0.1°C
hys_SOFT Tref +2°C T —2°C Tref +1°C T —1°C

Tyef is 20 °C by day and 17 °C by night.

Two MPCs are defined to be compared with the hysteresis controls, both have the same parameter
but the relationship between the weights of the temperatures differs from the reference and the used
power. The first one, called MPC_HARD, will try to follow the reference value leaving the energy
consumption as a secondary objective. The second one, MPC_SOFT, knows which the temperature
reference is, but the energy saving will be a main objective, maintaining the system inside the comfort
band defined in the same way that the upper and lower limits of the hys_SOFT control. The values of
the weights assigned to the MPC appear in Table 2.

Table 2. Weight values used in the Model Predictive Controls (MPCs).

MPC Weight for (w — 6;,) Q (UK?) Weight for u R (1/W?)
MPC_HARD 10,000 1
MPC_SOFT 40 1

Q and R are the weights for the deviation from the reference temperature, (w — 6i,), and power use, u, applied
in the cost function, Equations (6) or (9), to characterize the control.
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Figure 6 gives the results of the simulation over a five day period. Some patterns appear when
the whole month is studied:

e  For the same kind of control, MPC or hysteresis, the energy consumption is greater when the
control tries to follow the reference in a hard way. The MPC_SOFT gets an improvement of 7% in
the energy consumption respect to the MPC_HARD as can be seen in Table 3.

e A clear improvement appears when MPC and hysteresis controls are compared; when HARD
models are compared the obtained improvement for the MPC is about 9.1%, when SOFT models
are compared the improvement rises to 14.9%.

Table 3. Energy consumption in February.

Control Energy Consumption (kW-h)
hys_HARD 700
hys_SOFT 692.125
MPC_HARD 639.070
MPC_SOFT 596.322

Finally, it can be said that the obtained results in the evaluated period for energy savings using
MPC are in agreement with those obtained in [14,50], where energy savings of 10% are obtained for
office buildings that use RBC.

4.3. Parameters of the MPC

In this section, some of the relations of the most important parameters of the MPC will be analyzed.
First, the relation between the weights of the cost function will be studied and then how the relation
between the prediction and control horizon affects the control action will be examined.

Before continuing with the study, it must be accentuate that one important characteristic for
a successful MPC is the relationship among the weights assigned to the different parameters that
appears in the cost function. These weights will be used to implement different control policies that,
together with the restrictions applied to the system can prioritize different actions in order to maintain
a constant temperature, optimize the system use to minimize the power usage [32], gas emissions
or monetary cost, as well as discriminate the system between different heating systems or different
time slots.

In the case under study, the main parameters of the cost function are the accuracy of the
temperature to the setpoint and the energy consumption. As it has been seen, variations in this
relation can induce an important deviation respect to the reference temperature, even when it is
maintained inside the comfort band, as well as significant savings. Simulations are performed with
the relations given in Table 4, were the relation between the weights, the energy consumption and the
hours of thermal discomfort that appear in the dwelling during the month of February are presented.
In Figure 7 the results of using five different controls over a five day period may be observed.

Table 4. Energy consumption in February for different weight relations.

Weight Relation Q:R Energy Consumption (kW- h) Hours of Thermal Discomfort (h- K)
10,000:1 636.681 0
1000:1 623.914 0
40:1 584.848 0
10:1 547.625 20.12
1:1 542.678 61.32

Q and R are the weights applied in the cost function, Equation (6) or (9), to the deviation between the reference
and the real temperature and the power consumption respectively.
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Figure 7. System response for different weight relation (AReference:Control). Black Line represents the

variations of the temperature of reference.

Table 4 indicates the energy consumption of the system for the control with different weights.
As it can be observed, the values obtained are different than the ones obtained in Table 3. Table 3
uses predictive horizon of 100 steps (~16.7 h) and control horizon of 40 steps (~6.7 h), meanwhile
the predictive and control horizons of Table 4 are 120 and 60 steps (20 and 10 h). A small variation
between the two tables—consumptions and savings—can be observed due to the different values
of the horizons. The chosen horizons are long enough to obtain a good control action with small
differences between their consumptions. Considering the energy savings between the energy saving
policy, 40:1 weight relation, and the reference tracking policy, 1000:1, it can be seen how the energy
savings are almost the same: 6.5% vs. 7% for Tables 3 and 4.

In Figure 7, it is possible to observe how for the 10,000:1 and 1000:1 cases, the control fits the
desired reference perfectly, with no representative difference. When the weight associated with
the energy consumption increases, 40:1, the control does not fully fit the indoor temperature to the
reference, but maintains it in the comfort band. The temperature exhibits some variation but no
thermal discomfort appears. For the next two models, 10:1, 1:1, the control does not maintain the
temperature inside the comfort band so, even when it is possible to get energy savings, this is at
the loss of thermal comfort. The hours of thermal discomfort associated with these controls in the
whole month of February have also been evaluated in Table 4. Thermal discomfort hour is defined
as the time the room temperature is out of the thermal comfort boundaries per the degrees it is out.
In order to understand the values of the weight it is necessary to remember that the deviation from
the reference temperature will be as much as a few degrees, while the value of the control action will
change between 0 and 5000 W.

In Figure 8, the consequence of the variation of the control horizon for a known prediction horizon
can be observed. As it has been mentioned in the previous point, while large values of the control
horizon do not improve the control action enough to compensate the required computational effort,
small control horizon values will provide an undesired control action. In this sense, control horizon
values between the prediction horizon and a quarter of its value provide an accurate response of the
system, while smaller control horizons will put the system out of the comfort band.
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4.4. Economic Impact

In order to complete this study, the economic impact of the use of the MPC has been evaluated
when a variable cost of the energy is considered. Given a TOU tariff of a local company, the comparison
with the already studied thermostatic ON-OFF does not improve the consumption in a significant way.
The MPC takes advantage of its predictive capacities before the tariff change and raises its consumption
inducing a power peak that is dissipated after the change. This consumption peak is most valuable in
buildings with large thermal inertia and it is fundamental for climate systems like Thermally Activated
Building Systems (TABS). The weights of the cost functions vary inside the prediction horizons, in
agreement with the tariff cost in that predicted moment of use. Besides, the reference temperature also
varies within the prediction horizon. In order to develop the MPC, the CPLEX solver has been used
with YALMIP so as to simulate the behavior of the dwelling under a Time of Use (TOU) tariff.

Comparing with an MPC of the same characteristics but with an invariable energy tariff, economics
savings have been observed for different MPC configurations. Figure 9 shows the action of two MPCs
over the model of the dwelling during a day. Both of them have the same pattern for high-energy
savings. However, while the blue one uses a TOU tariff, the red one has no kind of cost discrimination
over time. The parameters of the electric rate that weigh the energy use in the cost function, Equation
(9), are defined in Table 5. It can be seen how in this particular example there is not significant energy
savings at the end of the day. Nevertheless, the consumption pattern is shifted over the time producing
significant economic savings due to the use of the promoted tariff period.

Table 5. Considered Time of Use (TOU) and no discriminative tariff for the economic study of the
Model Predictive Control (MPC).

TOU Tariff
Peak 12:00 a.m.—22:00 p.m. Valley 22:00 p.m.-12:00 a.m.
0.17977 €/kW-h 0.09572 €/kW-h 0.15207 €/kW-h

No Discriminative Tariff
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Figure 9. One-day comparison of two energy savings oriented Model Predictive Controls (MPCs).

Similar results may be observed from Figure 10 and Table 6 for different reference track weights.
It may be seen that, while the consumption of energy is similar in both MPCs, the predictive behavior
of the MPC allows a relevant economic savings using TOU tariffs. In order to decrease the effect of
the economic parameters of the tariffs of the Table 5 and to focus the comparison in the control effect,
the three column of Table 6 shows the answer of both controls under the economic effect of the TOU
tariff. Economics savings can be attached due to the control action while the control is able to adapt
the temperature inside the comfort band. Owing to the peak of consumption produced before the tariff
rate change, an improvement in the comfort can also be observed.
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Figure 10. One-day for a comparison between a Time of Use (TOU) tariffed (blue) and no time

discriminative (red) Model Predictive Control (MPC) for different weight relations. Indoor temperature

(°C), Power use pattern (kW), total consumption (kW-h) and economic cost (€) are represented

row wise.
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Table 6. Economic savings in February between Time of Use (TOU) and no discriminative tariff (Table 5)
for different weight relations between reference tracking and energy use.

Reference Economic Savings% (TOU Economic Savings% (TOU wvs.
Tracking Weight vs. No Discriminative) No Discriminative with TOU Tariff)
10,000 ~19% ~4.2%
100,000 ~18% ~4.25%
1.0 x 106 ~20% ~4.2%
1.0 x 108 ~19% ~0.5%

5. Conclusions

The development of a MPC over the experimentally obtained RC model of a real dwelling has been
performed in order to study its response and evaluate its possible implementation as a heating system
control that satisfies a power-saving policy. The model under consideration deals with a dwelling that
does not meet the European Energy Performance of Buildings Directive proposed standards due to its
outdated design and materials.

The results of this study can be considered to be a novelty, since most of the research and
implementation over MPC are developed in new construction emblematic buildings provided with
high quality climate systems and materials.

Comparing the results with the ones obtained for ON-OFF thermostatic controls, the achieved
energy savings vary between 10% and 15% of the consumption, which is similar to the ones reported
in the literature for better quality buildings.

Although the experimentally obtained model of the dwelling can be considered to be simple, this
characteristic can be used to understand the results of the study in a qualitative way more than in a
quantitative one and take them as a soft reference for buildings of similar characteristics.

Differences between diverse policies in the weights of the MPC can suppose savings of the 7.5%
of the use of energy, so defining a relaxed policy about the reference temperature but maintaining it
inside the comfort band can yield important savings.

The economic savings of MPC respect to hysteresis ON-OFF controls come from the energy
savings. A further economic study has been carried out when a TOU tariff is used. In this case, the
MPC shifts the usage of energy towards the low cost period.

As a future research work, the study can be expanded by the introduction of different parameters
of the thermal adaptive control and evaluate the thermal discomfort using PPD value as metric.
A deviation between the model of the building used to deploy the control and the model over which
the model acts can also be introduced adding a Kalman filter to the control.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network

ASHRAE American Society of Heating, Refrigerating and Air Conditioning Engineers
CTSM-R Continuous Time Stochastic Modelling package for R

ISO International Standards Organization

LTI Linear Time Invariant
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MPC Model Predictive Control

PPD Percentage of People Dissatisfied

PMV Predicted Mean Vote

PRSB Pseudo-Random Binary Signal

RBC Rule-Based Control

ROLBS Randomly Ordered Logarithmically distributed Binary Sequence
TABS Thermally Activated Building Systems

TOU Time of Use

Appendix A

RC parameters of the dwelling as detailed in [19]:

C (MJ/K) R (K/W)

Retr 1 1/820

Structure 29.411 Retr 2 1/1191 0.558
Rstr 3 1/1.8

Windows Rwin 1/305+1/255 0.007
Renvi 1/1259
RenVZ 1/338

Envelope 1.975 Rerys 1/338 0.007
Renva 1/1679

Heating System 0.001 Ry 1/155 0.06
Air 0.667

C is the thermal capacitance of the element and R its thermal resistance.
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