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Abstract 

Slewing bearings are large sized rolling bearings used for orientation 

purposes. Due to their working conditions, these components are designed to 

support axial and radial loads and a tilting moment. They are employed in a 

wide variety of applications like tower cranes, radio telescopes or solar 

trackers. Furthermore, slewing bearings are used for yaw and pitch rotations 

in wind turbine generators. Wind Energy has been experiencing a constant 

growth in importance over recent years, and nowadays is the second largest 

form of power generation capacity in Europe after Natural Gas. The current 

tendency in wind turbines is to increase the dimensions in order to obtain the 

maximum possible energy. This involves more demanding working 

conditions, and therefore a better understanding of the components is 

required in order to conceive new reliable and competitive designs. For that 

reason, the renewable energy industry is demanding a deeper knowledge on 

slewing bearings. 

This Doctoral Thesis is focused on four-point contact slewing bearings. In 

this context, state of the art models for their mechanical characterization have 

several limitations. For instance, manufacturing errors have been 

demonstrated to have a significant effect on the load distribution among the 

balls, but no analytical approach has been developed yet to consider this fact. 

Moreover, including ring flexibility always requires computationally expensive 

Finite Element simulations. As regards friction torque, simple linear formulas 

are usually employed, while the latest analytical models make assumptions that 

may have important limitations when calculating friction forces and shear 

stresses at the contact. 

In this Doctoral Thesis, new approaches are proposed to deal with such 

limitations. Firstly, a novel analytical model is presented to solve the load 

distribution problem considering manufacturing errors. In this model, ring 

flexibility can be easily implemented though a simple Finite Element model. A 
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practical engineering formulation was also reached to account for ring 

elasticity in the analytical approach for the calculation of the stiffness curves. 

To study the friction forces while the bearing is rotating, a different analytical 

model was developed. This model, contrary to state of the art analytical 

approaches for ball bearings, considers the stick regions in the ball-raceway 

contact. Several Finite Element models are presented as well, which were used 

for a first approach or for validation purposes. Additionally, some preliminary 

tests were performed and compared with analytical simulations. 

Apart from developing and validating the mentioned new models, they were 

employed to perform different calculations, from which several conclusions 

can be drawn. Both manufacturing errors and ring deformability were 

demonstrated to have a significant effect on the load distribution and idling 

friction torque. Therefore, not considering them will lead to inaccurate results. 

Moreover, ring flexibility was evinced to have a great effect on the global 

stiffness of the bearing as well. It was also proved that global displacements 

due to contact deformations and those coming from the flexibility of the rings 

can be considered separately. In addition, the stick regions were found to have 

an important effect on the shear stresses of the contact area, but not on the 

resulting friction torque. 

It is worth pointing out that, although the research work developed in this 

Doctoral Thesis is focused on four-point contact slewing bearings, the 

proposed approaches and procedures can be adapted or reproduced for other 

types of slewing bearings, such as eight-point contact bearings or crossed 

roller bearings. Moreover, further work can be done either to improve the 

proposed models or to simplify them to obtain more practical engineering 

approaches. 
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Resumen 

Este resumen sintetiza el contenido de la presente tesis doctoral y su 

objetivo es el de ofrecer una visión general de la misma para aquellos lectores 

que no hablen inglés. A lo largo de las siguientes líneas se explican brevemente 

el objeto de la tesis, los trabajos realizados y las conclusiones derivadas de los 

mismos. El contenido de este resumen no coincide con el del Abstract 

(resumen en inglés), en el cual se exponen las líneas principales de la tesis de 

manera más superflua. 

Los rodamientos de vuelco (slewing bearings en inglés) son elementos de 

máquina enfocados a aplicaciones de orientación. Estos componentes se 

emplean en máquinas de muy diferente naturaleza, como grúas, brazos 

robóticos, centros de mecanizado, tuneladoras, tomógrafos computarizados, 

radiotelescopios o seguidores solares. Además de en las máquinas 

mencionadas, los rodamientos de vuelco también cumplen un papel 

fundamental en los aerogeneradores. En este último caso, se requiere de 

cuatro rodamientos de este tipo: uno para la orientación de la góndola y tres 

para permitir el giro de las palas. La función del primero es la de encarar la 

turbina contra el viento, mientras que los otros tres son responsables del 

ángulo de paso de las palas, y por lo tanto de la energía a extraer del viento. 

Así pues, han de soportar cargas importantes y de distinta naturaleza debidas 

fundamentalmente al peso propio de los componentes, el empuje del viento y 

las fuerzas centrífugas. 

Los rodamientos de vuelco son, por lo tanto, elementos de grandes 

dimensiones que han de soportar combinaciones de cargas axiales y radiales 

junto con un importante momento de vuelco. Asimismo, su modo de trabajo 

implica rotaciones oscilatorias a bajas velocidades en torno a una posición, 

como contraste al giro continuo y de altas revoluciones común en los 

rodamientos convencionales. Debido a su naturaleza, son componentes cuya 

sección transversal tiene dimensiones muy inferiores a las dimensiones 
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globales. Se trata por ende de un componente de gran esbeltez, donde la 

flexibilidad de los anillos adquiere una relevancia especial. Otra diferencia 

respecto a los rodamientos convencionales es que no van montados sobre un 

eje, sino que se ensamblan a las estructuras adyacentes mediante uniones 

atornilladas. 

Los aerogeneradores constituyen una fuente de energía limpia y renovable 

que viene experimentando un crecimiento constante durante los últimos años. 

Su presencia en el mix energético ha adquirido tal relevancia que, de acuerdo 

con los últimos informes de WindEurope, a finales de 2016 se alcanzó una 

capacidad total instalada de 153.7GW en Europa. Esto sitúa a la energía eólica 

como la segunda fuente de electricidad del continente, sólo por detrás del Gas 

Natural. La relevancia del sector eólico implica una gran demanda de 

rodamientos de vuelco, que se ve reflejada en la cantidad de multinacionales 

dedicadas a su manufactura, como la sueca SKF; las alemanas Rothe Erde, 

Schaefler, e IMO; las americanas Kaydon y Timken; la francesa Rollix; o la 

japonesa NSK. Este sector también está presente en el País Vasco, donde las 

empresas Iraundi S.A. y Laulagun Bearings S.L. tienen su sede principal. Dada 

la competencia en el sector y las condiciones de trabajo cada vez más 

exigentes a las que se ven sometidos los rodamientos de vuelco, debidas 

principalmente al aumento de las dimensiones de los aerogeneradores y a su 

emplazamiento en entornos hostiles, existe una demanda para el mejor 

conocimiento del comportamiento de estos. 

Existen normas enfocadas al diseño de rodamientos que ofrecen métodos y 

formulaciones simples para garantizar su integridad estructural frente a cargas 

estáticas y dinámicas. No obstante, estas normas están enfocadas a 

rodamientos convencionales, y no contemplan las particularidades de los 

rodamientos de vuelco, cuya geometría y condiciones de trabajo son 

notablemente diferentes. Para cubrir el hueco de estas normas, la NREL 

(National Renewable Energy Laboratory) publicó una guía de diseño enfocada 

a rodamientos de vuelco para aerogeneradores, que es ampliamente 

reconocida y utilizada por los fabricantes no sólo para aplicaciones eólicas. No 

obstante, esta guía no contempla aspectos tan relevantes como la flexibilidad 

de los anillos o la precarga. Asimismo, el par de fricción se plantea como una 

función lineal de las fuerzas aplicadas, formulación ampliamente utilizada pero 

que demuestra tener importantes limitaciones. 

Debido a la demanda de conocimiento en el área y las limitaciones 

previamente mencionadas, actualmente existe un gran interés por parte de los 
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investigadores por avanzar en la capacidad predictiva del comportamiento de 

estos rodamientos, interés que se ve reflejado en la gran cantidad de 

publicaciones relacionadas. Estas publicaciones van más allá de la norma o la 

guía de diseño de la NREL y estudian aspectos como la influencia del 

templado por inducción en el fallo estático o desarrollan nuevos métodos para 

el cálculo a fatiga. No obstante, todavía existen importantes lagunas en la 

caracterización y simulación de los rodamientos de vuelco. 

Esta tesis se centra en los rodamientos de vuelco de cuatro puntos de 

contacto. Estos son rodamientos de bolas que, a diferencia de los rodamientos 

convencionales, contactan con cada anillo en dos puntos en lugar de en uno 

sólo. Este tipo de rodamientos es el más comúnmente utilizado por su 

versatilidad y bajo coste. A pesar de que los desarrollos presentados en este 

documento están enfocados a este tipo concreto de rodamientos, estos 

pueden ser adaptados o reproducidos para otros tipos como los de rodillos 

cruzados o los de dos hileras de bolas (o de 8 puntos de contacto), 

ampliamente utilizados estos últimos en los aerogeneradores de mayores 

dimensiones. 

En lo referente a los rodamientos de cuatro puntos de contacto, existen 

trabajos recientes que demuestran la relevancia que los errores de fabricación 

pueden tener en la distribución de carga. No obstante, dichos trabajos están 

basados en modelos de Elementos Finitos e introducen variaciones aleatorias 

en la geometría, de manera que no existe un planteamiento analítico para la 

simulación de estos errores ni una estimación real de su influencia. En esta 

tesis se plantea un modelo analítico para tal fin, que requiere como dato la 

geometría real del rodamiento. Además, se desarrolla un sencillo modelo 

paramétrico de Elementos Finitos para el cálculo de las matrices de rigidez de 

los anillos, que pueden ser implementadas de manera directa en el 

planteamiento analítico. Iraundi S.A. cedió un rodamiento y prestó sus 

instalaciones para medir las pistas mediante una máquina de medir por 

coordenadas. Utilizando estos datos, se demuestra que los errores de 

fabricación existentes en un rodamiento real pueden ser del mismo orden de 

magnitud que la propia precarga de las bolas, de manera que no considerarlos 

puede incurrir en resultados poco fiables o imprecisos. 

El par de fricción también es un parámetro indispensable, dado que su valor 

es necesario para el dimensionamiento del sistema de actuación 

correspondiente. A este respecto, existen formulaciones más precisas que las 

planteadas por la NREL. No obstante, los modelos más avanzados para 
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rodamientos de cuatro puntos de contacto consideran que existe 

deslizamiento puro entre la bola y la pista. En esta tesis, se presentan 

diferentes modelos de Elementos Finitos para la caracterización del contacto 

cuando el rodamiento está girando, así como el cálculo del par de fricción. 

Estos modelos demuestran que, para condiciones de funcionamiento 

normales, existen importantes regiones en adhesión en la elipse de contacto, 

lo que conlleva tensiones tangenciales menores que las predichas por los 

modelos analíticos existentes en dichas regiones, lo cual puede afectar al par 

de fricción. Dichos modelos son también utilizados junto con el modelo 

analítico previamente mencionado para realizar una serie de simulaciones de 

las que se concluye que tanto los errores de fabricación como la flexibilidad de 

los anillos afectan de manera importante al par en vacío. Adicionalmente, se 

demuestra que la influencia del número de bolas en el par en vacío es 

logarítmica. 

Con el fin de incluir el efecto de las regiones en adhesión en un 

planteamiento analítico y poder eludir así las costosas simulaciones de 

Elementos Finitos, se desarrolla un nuevo modelo. Dicho modelo parte del 

planteamiento cinemático de los modelos que asumen deslizamiento puro, 

pero implementa una formulación más compleja para la caracterización del 

problema tangencial. Tras identificar los factores que influyen en la extensión 

de la región en adhesión, se realizan simulaciones para diferentes casos bajo 

cargas típicas de funcionamiento mediante el modelo analítico propuesto, el 

modelo que asume deslizamiento puro y modelos de Elementos Finitos de 

diferente precisión. Como resultado, se concluye que el nuevo modelo es 

capaz de determinar qué zonas de la elipse de contacto están en adhesión, lo 

que demuestra influir de manera importante en el mapa de tensiones, mientras 

que el par de fricción a penas se ve afectado. En comparación con el modelo 

de Elementos Finitos, el planteamiento analítico muestra una serie de ventajas, 

como el ínfimo coste computacional o la menor dependencia de la 

discretización. A pesar de la limitada ventaja que aporta el nuevo 

planteamiento respecto al cálculo del par de fricción, una precisa estimación 

del campo de tensiones en la huella puede ayudar a desarrollar procedimientos 

de cálculo enfocados a la fatiga o relacionados con modos de desgaste típicos 

que actualmente carecen de un método adecuado para su predicción. 

Finalmente, se aborda el problema del cálculo de la rigidez del rodamiento. 

En este caso, las formulaciones analíticas existentes únicamente consideran las 

deformaciones locales del contacto bola-pista, suponiendo por lo tanto anillos 
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infinitamente rígidos. Como ya se ha señalado anteriormente, esta hipótesis no 

es asumible en el caso de los rodamientos de vuelco debido a su esbeltez, que 

da lugar a grandes deformaciones en los anillos. La implementación de la 

flexibilidad de estos últimos en los procedimientos existentes conlleva 

siempre, de un modo u otro, costosas simulaciones de Elementos Finitos. En 

esta tesis, y por medio también de un preciso modelo de Elementos Finitos, se 

realizan una serie de simulaciones considerando diferentes valores de las 

variables principales que definen el rodamiento. Como resultado, se obtiene 

una formulación ingenieril que permite calcular las curvas de rigidez axial, 

radial y de frente al momento de vuelco, formulación que permite un cálculo 

directo y rápido prescindiendo de simulaciones de Elementos Finitos. Se 

demuestra que esta nueva formulación reproduce de manera adecuada los 

efectos no sólo de las variables principales, sino también de los parámetros de 

contacto. 

Adicionalmente, se presentan los resultados de unos ensayos preliminares 

realizados para la medición experimental del par de fricción. De la 

comparación de los resultados obtenidos con simulaciones realizadas 

mediante los modelos analíticos planteados en esta tesis, se concluye que 

existe una buena correlación para cargas altas, pero es necesario medir las 

pistas de los rodamientos ensayados para obtener conclusiones más sólidas 

para cargas bajas. 

Esta tesis deja la puerta abierta a futuros desarrollos. Así, aprovechándose 

de los bajos costes computacionales que ofrecen los nuevos modelos 

analíticos, pueden realizarse numerosas simulaciones que puedan permitir 

obtener una fórmula sencilla pero más completa y precisa que la planteada por 

la NREL para el cálculo del par de fricción. Asimismo, se puede ir más allá en 

el estudio del contacto, analizando las tensiones subsuperficiales existentes 

mientras el rodamiento gira y evaluar el efecto de la capa templada. Además, el 

procedimiento desarrollado para el cálculo de la rigidez en rodamientos de 

cuatro puntos de contacto puede replicarse para otros tipos de rodamiento de 

vuelco. Igualmente, se pueden realizar simulaciones adicionales mediante 

Elementos Finitos de uniones reales de pala-buje o torre-góndola para evaluar 

las ventajas y limitaciones de sustituir los rodamientos de vuelco por matrices 

de rigidez calculadas mediante la formulación simplificada propuesta. 

Finalmente, queda realizar más ensayos experimentales con diferentes 

precargas y grasas para una validación definitiva de los modelos. Del mismo 

modo, falta por comprobar la relevancia de otros fenómenos como la 
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viscosidad de la grasa, la interacción entre bolas o entre bolas y espaciadores, 

o la contribución de los retenes al par de fricción. 
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1 Introduction 

1.1 Context and motivation 

Slewing bearings are large rolling bearings used for orientation purposes. 

This type of bearing is designed to support large tilting moments and loads in 

any axial or radial direction. Because of their orientation focused application, 

they rotate in an oscillatory way and work at slow speeds. Figure 1.1 shows a 

drawing of a conventional four-point contact slewing bearing and the 

involved loads in these components. 

Slewing bearings are employed in a wide variety of applications. They are 

used in tower cranes, vertical lathe tables, precision robots, tunnelling 

machines, TC scanners, radio telescopes, solar trackers, sewage treatment 

plants and palletizers, among others (Figure 1.2). Besides, these components 

are employed in yaw and pitch systems in wind turbines. In these machines, 

four slewing bearings are required: three blade bearings for pitch rotations, 

and one for the orientation of the nacelle. The latter is used to face the turbine 

towards the wind, while the other three allow the regulation of the amount of 

energy to be taken from it. The loads to be supported by the bearings mainly 

come from the weight of the components, the thrust of the wind and the 

centrifugal forces. The combination of them results in the bearings being 

subjected to variable axial and radial forces and a large tilting moment. 

According to the latest reports of WindEurope, wind energy is experiencing 

significant constant growth on the continent. The statistics for 2015 [1] and 

2016 [2] show that 12.8GW and 12.5GW of gross additional wind capacity 

was installed in these years respectively. At the end of 2016, the total installed 

capacity in Europe was 153.7GW, which means that wind energy now 

overtakes coal as the second largest form of power generation capacity (see 

Figure 1.3). This growing rate has led the wind energy industry to demand a 

deeper knowledge of their machines, where slewing bearings constitute a very 

important component. As is known, the current tendency in this sector is to 
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increase the dimensions in order to obtain the maximum possible energy, 

which increases the involved loads as well. The more demanding work 

conditions, combined with the need to optimize the machines to make them 

competitive in the energy market, constitute a demand for a better 

understanding of the involved components. 

The high demand for slewing bearings is also reflected in the number of 

multinationals that manufacture this product. Among the most well known 

are the Swedish SKF; the German Rothe Erde, Schaefler, and IMO; the 

American Kaydon and Timken; the French Rollix; and the Japanese NSK. 

This sector is also present in the Basque Country, where the slewing bearing 

manufacturers Iraundi S.A. and Laulagun Bearings S.L. have their 

headquarters. 

Due to the importance of slewing bearings in wind energy generation and 

the demand for research in the field, the ADM group of the University of the 

Basque Country started a research line in this topic several years ago. Since the 

group published its first analytical approach for the static characterization of 

slewing bearings in 2010 [3], it has made important contributions regarding 

the mechanical modelling of slewing bearings. The group also has a close 

relationship with Iraundi S.A., with which it participates in different projects. 

This relationship means the ADM group is aware of the current interests of 

the industry. The research work presented in this Doctoral Thesis stems from 

the latest advances of the ADM group in the field. 

 

Figure 1.1. Four-point contact slewing bearing and acting loads. 
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Figure 1.2. Slewing bearing applications. 
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Figure 1.3. Cumulative power capacity in the European Union 2005-2016 [2]. 

1.2 Slewing bearing description 

Before addressing more advanced aspects of the slewing bearings, a general 

description of these components is made in this section. In the first place, the 

different parts that most slewing bearings are composed of are going to be 

detailed (see Figure 1.4 and Figure 1.5): 

 Rings: in slewing bearings, the mean diameter (   , see Figure 1.5) is 

much greater than the diameter of the rolling element (  ). Therefore, the 

rings are very slender in comparison with typical rolling bearings. This 

makes the rings more flexible, conditioning the structural behaviour of the 

bearing. Besides, the raceways are induction hardened (Figure 1.6), 

obtaining a contact surface with good wear properties. The material 

typically used for rings is mild carbon steel. 

 Rolling elements: they can be balls or rollers. In the case of balls, the 

contact with the raceway takes place at a point (point contact) at a certain 

angle (  , see Figure 1.5). The relationship between the curvatures of the 

ball and the raceway (  , see Figure 1.5) is known as the osculation ratio 

(          ). Conversely, the contact between a roller and the 

raceway takes place in a line (line contact). In any case, oversized rolling 

elements are used in most cases, introducing a preload to the bearing. This 

preload avoids clearances between rolling elements and raceways, 

eliminating vibrations [4], and thus favouring the life behaviour due to the 
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more regular working conditions. The preload also favours the accuracy 

and increases the stiffness of the bearing. As a drawback, it increases the 

friction at the contact, leading to higher friction torques and wear rates. A 

material typically used for rolling elements is hardened chrome alloy steel. 

 Spacers: in most cases, spacers are used in order to avoid contact between 

rolling elements, so they fulfil the function the cage has in conventional 

rolling bearings. Spacers are usually made of a plastic material and 

therefore minimize the friction between rolling elements. In certain 

applications, no spacers are used, while in others smaller balls are 

employed instead (spacer balls). 

 Mounting holes: unlike conventional rolling bearings, slewing bearings are 

not mounted on a shaft. Contrarily, they are linked to the surrounding 

structures by bolted joints. For this purpose, mounting holes are required 

in the rings. These holes can be through (outer ring in Figure 1.4) or 

threaded (inner ring in Figure 1.4). 

 Gear: usually, the actuation system is driven by one or a series of electric 

gear motors. In this case, the driven ring must have a gear in order to make 

the transmission possible. Depending on the design of the machine, the 

driven ring can be the inner one or the outer one. Of course, the gear is 

not mandatory, since it can be manufactured in the adjacent structures, or 

different actuation systems can be employed. 

 Load plug: the assembly in slewing bearings is typically done by 

introducing the rolling elements through a hole drilled radially in the non-

geared ring. Once the assembly is complete, this hole is filled with a plug. 

This plug is then retained by a pin, which also ensures the correct 

alignment of the plug. Nonetheless, some bearings do not use a filler hole, 

so they need one of the rings be split to allow the assembly. 

 Grease fitting: a small hole (or holes) is radially drilled in the non-geared 

ring for lubrication purposes. There are automated lubrication systems, 

which periodically provide lubricant inside the bearing, compensating 

possible leakages.  

 Seals: seals are required to minimize lubricant leakage and prevent 

unwanted particles from entering the bearing. Wind turbines, for example, 

are installed in the most adverse environments, as offshore platforms and 

deserts. In such extreme environments, the role of the seals is highly 

relevant. 
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Figure 1.4. Parts of a four-point contact slewing bearing. 

 

Figure 1.5. Contact parameters in four-point contact bearings. 

 

Figure 1.6. Hardened pattern for: (a) ball raceway; (b) roller raceway [5]. 

Outer ring

Inner ring
Seal

Rolling element

GearMounting hole

(a) (b) 
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Based on the description of the different parts, it seems convenient to 

classify the slewing bearings according to the employed rolling element. 

Nevertheless, such a classification falls very short considering the number of 

existing slewing bearing types. Generally, the most common ones are the 

following two: 

 Four-point contact slewing bearing: they are the most used due to their 

versatility, low friction torques and low costs in comparison with the other 

types. Bearings in Figure 1.1, Figure 1.4 and Figure 1.5 are of this type. 

 Crossed roller slewing bearings: Figure 1.7a shows the configuration of 

these type of bearings. They offer a higher stiffness and load capacity, but 

involve larger friction torques and usually higher manufacturing costs. 

Furthermore, there are a number of additional aspects to take into account, 

like the number of rows. More than one row of rolling elements can be used 

in order to increase the capacity of the bearing. In the case of rollers, the 

three-row roller slewing bearing is extensively used in applications where 

especially high loads are involved, for example. In this configuration (Figure 

1.7b), two rows of horizontal rollers withstand axial and tilting loads, and a 

third row of vertical rollers supports radial loads. In the case of balls, two 

rows can be used with two contacts on each (Figure 1.8a), while the eight-

point contact design (Figure 1.8b) is the most typical option employed for yaw 

and pitch systems in the latest wind turbines. 

When the design specifications are more restrictive regarding the weight of 

the component and do not demand high stiffness values, the light series (also 

known as profile bearings) are more suitable (Figure 1.9). There exist several 

alternative solutions for slewing bearings, like double-row tapered roller 

bearings, four-row roller bearings or the less conventional combination 

bearings (Figure 1.10a). Nevertheless, since the objective of the current 

research work is to study the most conventional four-point contact slewing 

bearings, it is not pertinent to further extend the description of every slewing 

bearing type. 

However, it is worth mentioning a particular solution for applications where 

important weight savings are required: the wire bearing. In these bearings, the 

rolling element runs over steel wires, which are fixed to the rings (Figure 

1.10b and Figure 1.10c). This way, rings can be made of lighter materials like 

aluminium alloys, for example. 
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Figure 1.7. Roller slewing bearings: (a) crossed roller; (b) three-row roller [6]. 

 

Figure 1.8. Double row ball slewing bearings: (a) 4-point contact; (b) 8-point contact [6]. 

 

Figure 1.9. Light series four-point contact slewing bearings: (a) with an external gear; (b) 
with an internal gear; (c) without gear [7]. 

 

Figure 1.10. Non-conventional slewing bearings: (a) combined roller-ball bearing; (b) 
four-point wire race bearing; (c) crossed roller wire race bearing [7]. 

(a) (b) 

(a) (b) 

(a) (b) (c) 

(a) (b) (c) 
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1.3 Slewing bearing selection criteria 

When designing or selecting a slewing bearing, different aspects must be 

taken into consideration. In this section, these aspects and the corresponding 

criteria are succinctly described. The applicable standards are also presented. 

1.3.1 Static capacity 

The first dimensioning of the slewing bearing is made according the static 

loads to be supported by the component. According to the ISO standards for 

static load ratings in rolling bearings [8,9], “Experience shows that a total permanent 

deformation of 0.0001 of the rolling element diameter, at the centre of the most heavily 

loaded rolling element/raceway contact, can be tolerated in most bearing applications without 

the subsequent bearing operation being impaired.” Therefore, it will be considered 

that static failure does not happen as long as this deformation is not reached 

in any ball for any load condition. The standard also establishes that, 

according to different tests, this deformation takes place when the maximum 

contact pressure at the contact is equal to the following values: 

 4600MPa for self-aligning ball bearings 

 4200MPa for all other ball bearings 

 4000MPa for all roller bearings 

Consequently, the maximum allowable contact pressure in the case of four-

point contact ball bearings in order to avoid static failure will be 4200MPa. 

Thus, the static load capacity is the applied load that causes this pressure in 

the most loaded ball. The ISO standard proposes a formulation to calculate 

the axial static capacity (   ), and also allows the consideration of radial 

forces, but does not propose any approach to consider the tilting moment. 

Moreover, the proposed formulation assumes that the initial contact angle 

does not change with the applied load and does not take into account the 

flexibility of the rings or the surrounding structures. In the literature review, 

different approaches are presented that address these limitations. 

The criterion proposed in the ISO standard for the static capacity is thought 

to avoid indentation in conventional bearings, where the rings are thorough 

hardened. Nevertheless, this kind of hardening is not possible in slewing 

bearing rings due to the large dimensions. Therefore, only the raceways are 

treated by means of induction hardening. This fact leads to another possible 

static failure: core crushing. The difference in the material properties between 
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the hardened layer and the softer core underneath favours sub-superficial 

crack nucleation. This can affect the hardened layer, causing cracks on it. This 

phenomena was studied by Lai et al. for the ball-raceway contact [10] and 

Göncz et al. for the case of roller-raceway contact [11]. According to Lai et al., 

core crushing happens before indentation for thin hardened layers, while the 

latter is dominant from a certain hardened depth in advance (see Figure 1.11). 

Apart from core crushing and indentation, there is a third possible way of 

static failure in ball bearings. Axial forces and tilting moments increase the 

contact angle, so the contact area approaches the edge of the raceways. For a 

large enough contact ellipse and angle, the contact area can reach this edge, 

causing the truncation of the ellipse. This truncation involves a great 

increment in the contact pressure (Figure 1.12), leading to unacceptable 

stresses. Thus, ellipse truncature is a phenomenon to be avoided. To evaluate 

if truncation happens for certain applied loads, analytical or Finite Element 

(FE) models like the ones presented in the literature review or the new 

approach proposed in Chapter 2 can be employed. 

 

Figure 1.11. Core crushing (red line) and indentation (blue line) criteria for different 
hardened depths in ball bearings [10]. 

1.3.2 Stiffness 

There is not a general criterion for the selection of the appropriate stiffness 

of the bearing for a general purpose. This parameter conditions the global 

deformations of the machine in which the bearing is installed, so high values 

of the stiffness are typically preferred in order to avoid excessive deformations 

that can lead to undesired conflicts between different parts. Thus, the stiffness 
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is subjected to a functional criterion, which will be different depending on the 

application. 

When calculating the stiffness of slewing bearings, considering ring 

deformations is mandatory in order to obtain reliable results. Thus, not doing 

so can lead to underestimated deformations, resulting in unsafe designs. 

Nonetheless, state of the art models involve assuming rigid rings or 

performing FE calculations. The stiffness of slewing bearings considering ring 

flexibility can be approached in a simple and direct way by the formulation 

proposed in Chapter 5, where the ring flexibility is taken into account.  

 

Figure 1.12. Contact pressure in a case with truncated ellipse [12]. 

1.3.3 Friction torque 

The friction torque is the moment required by the bearing to rotate one of 

the rings with respect to the other. A low friction torque means smaller and 

cheaper actuation systems. Moreover, it also involves lower loads in the 

kinematic chain, resulting in more durable systems. Therefore, a low friction 

torque is typically preferred. However, the preload increases the friction 

torque, although it involves other positive effects on the structural behaviour 

of the bearing. Consequently, equilibrium is always sought between the 

advantages due to the preload and the desired friction torque. Moreover, an 

accurate estimation of the friction torque is not only valuable when designing 

the actuation system, but also to allow a better control of the rotation. 

To deal with this issue, very simple formulations are usually recommended 

by manufacturers in their catalogues, which have many limitations. In the 

literature review, the most relevant research works in this field are presented. 

Furthermore, in Chapter 3 and Chapter 4, different innovative approaches are 
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proposed for the friction torque calculation, which deal with the limitations of 

state of the art models. 

1.3.4 Dynamic capacity and fatigue 

Of course, the capacity of bearings to withstand variable load conditions 

and the fatigue life must be studied. For this purpose, the ISO standard 

proposes a simplified procedure [13–16]. This procedure considers several 

parameters, such as the static load capacity, the geometry, the lubrication 

conditions, the surface finish, the variability of the loads and the 

environmental conditions. As in previous cases, the main limitation of the 

standard lies in the fact that it is focused on conventional bearings, so it is not 

directly applicable to slewing bearings. For example, in conventional bearings, 

hydrodynamic lubrication conditions are always sought to favour the fatigue 

behaviour, while this regime can rarely be reached in slewing bearings due to 

the slow speeds. Moreover, slewing bearings still lack a criterion which 

considers their particular characteristics and working conditions. For this 

reason, a lot of research is currently being done in this field, as is shown in the 

next section. Although dynamic and fatigue life calculations are beyond the 

scope of this Doctoral Thesis, the analytical model presented in Chapter 4 

could be of great help to further research on this topic, since it allows an 

accurate estimation of the stresses at the contact. 

1.4 Literature review 

When describing the different selection criteria, the applicable ISO 

standards were mentioned [8,9,13–16]. Nevertheless, there exists more 

extensive literature of general acceptance for the design of slewing bearings. 

In this regard, the most recognised and commonly referenced work is by 

Harris and Kotzalas [17,18], where they deal with aspects not mentioned in 

the standards. Nevertheless, this work is still focused on conventional 

bearings, so it lacks specific approaches for the study of slewing bearings. For 

this reason, the National Renewable Energy Laboratory of the U.S. 

Department of Energy (NREL) published a guideline for the design of wind 

turbine yaw and pitch rolling bearings, written by Harris, Rumbarger and 

Butterfield [19]. Although the work was focused on wind turbines, the 

guideline is valid and usually employed for the design of slewing bearings that 

work in similar conditions. This report deals with some of the limitations of 
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the previously mentioned standards or books for such bearings. However, it 

still has several limitations. Among others, the most relevant ones are: 

 Ring flexibility: ring deformation is not considered in any way. Moreover, 

this aspect is not even mentioned in the whole document. 

 Tilting moment: this load is taken into account in the guideline, which is 

not in the standards. Nonetheless, it is considered in a simplified way, 

which has limitations for the static load capacity and friction torque 

estimation. 

 Contact preloads and clearances: the ball preload or the possible contact 

clearances due to manufacturing errors are not considered. These 

parameters are common in the design of slewing bearings, and have a 

significant effect on the operation of the component. 

In addition, manufacturers only provide the features and properties of their 

own products in the catalogues or web pages [5–7,20–26]. Companies do not 

offer general application methodologies or formulations, and they are very 

wary of sharing their know-how. The limitations of the standards and the 

literature of general acceptance and the lack of information about the design 

procedures of the main manufacturers by the academic environment 

encourage the researchers to study in this field. 

In this section, the most relevant research works regarding slewing bearings 

are presented, especially on four-point contact slewing bearings. Moreover, 

the latest advances and trends are also introduced, as well as the limitations of 

state of the art models for their structural characterization. 

1.4.1 Load distribution model 

The load distribution problem seeks to find how the applied loads are 

distributed among the different rolling elements (see Figure 1.13). To do so, it 

is required to somehow simulate the normal behaviour of the contact between 

the rolling element and the raceway. The normal problem was first solved by 

Hertz [17,27,28], who considered the following assumptions: 

 The deformations are within the elastic limit and small in comparison with 

the curvature radii of contacting surfaces. 

 The dimensions of the contact area are very small in comparison with the 

dimensions of contacting bodies or the curvature radii of the surfaces. 

 Contacting surfaces are non-conformal and smooth (with no roughness). 
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 There is no friction, so only normal forces are present in the contact. 

The ball-raceway contact in slewing bearings contravenes some of the 

mentioned assumptions. This contact is not conformal in the circumferential 

direction, but can be pretty conformal in the radial plane (Figure 1.5). 

Therefore, the contact area is small in the circumferential direction, but it can 

be the order of the curvature radii in the other. Moreover, friction exists in the 

contact. Nevertheless, it was demonstrated by Pandiyarajan through FE 

calculations that the Hertz theory offers good results for large ball bearings 

[29]. Therefore, this formulation is commonly used to solve the normal 

problem in slewing bearings. Moreover, it is the basis of the load distribution 

analytical models presented in the following paragraph. Besides, Houpert 

proposed an engineering approach to the Hertz formulation [30], avoiding the 

elliptical integrals required by it. Later, Houpert also proposed a similar 

approach for non-hertzian contacts [31], although this formulation is not 

applied to slewing bearings. 

 

Figure 1.13. Simplified approach for the load distribution in a slewing bearing. 

The first steps regarding the load distribution problem in conventional ball 

bearings were given by Stribeck [32–34]. Later, Sjoväll proposed a method to 

calculate the load among the balls when the bearing is subjected to a 

combination of axial and radial loads [35]. Then, Rumbarger presented an 

Fa
Fr

Mt



Chapter 1. Introduction  15 

 

approach considering the case of an axial load combined with a tilting 

moment [36]. Finally, Jones proposed a model to consider any load 

combination [37]. This model consists of a highly non-linear equation system, 

which requires numerical methods to find a solution. Zupan and Prebil 

applied the formulation proposed by Jones to four-point contact slewing 

bearings and studied the effect of some geometrical parameters and the 

stiffness of the bearing and surrounding structures in the static load capacity 

[38]. To consider ring deformations, an FE model was used to calculate 

equivalent stiffness values in axial and radial directions, which were 

implemented in the analytical model. Later, the approach of Jones was 

adapted by Amasorrain et al. for four-point contact bearings [39]. Then, a 

procedure was proposed by Olave et al. to implement ring deformations [40] 

in the model of Amasorrain et al.. Up to this point, mentioned models do not 

consider any initial preload or possible clearances. In the same line but with a 

different focus, Aguirrebeitia et al. proposed a procedure for calculating the 

load combinations that result in static failure in four-point contact slewing 

bearings [3]. A similar approach was done for crossed roller bearings [41] and 

three-row roller bearings [42]. Later, the model for four-point contact slewing 

bearings was improved to consider the variation of the ball-raceway contact 

[43] and ball preload [44]. All these models are based on the geometrical 

interference in the contact (see Figure 1.14, where    is the ball-raceway 

interference). 

 

Figure 1.14. Angular-contact ball bearing under thrust load [17]. 
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Finally, recent studies carried out by Starvin and Manisekar [45] and Aithal 

et al. [46] demonstrated via FE calculations that manufacturing errors can 

significantly affect the load distribution in large diameter angular contact ball 

bearings. Nonetheless, an analytical approach to consider manufacturing 

errors does not exist as yet. 

1.4.2 Friction torque calculation 

The most extended and simple way for the estimation of the friction torque 

is the formula proposed by the NREL [19]. This formula assumes that each 

applied load has a linear effect on the friction torque. Additionally, it includes 

a term to consider the friction torque after the bearing assembly and with no 

applied loads. This formulation is the one proposed by manufacturers in their 

catalogues and can be expressed as follows: 

     
   

 
   

  

   
                (1.1) 

Where    is the tilting moment,    is the axial load,    is the radial load,   is 

a generic friction coefficient and     is the idling friction torque. Typical 

values of the coefficients  ,   and   are 4.4, 1 and 3.8 respectively according 

to manufacturers [6,21,23], although the NREL proposes a value of 2.2 for   

[19]. Despite this formulation being extended and commonly used, it does not 

consider many aspects, like ball preload or contact angle variation. Moreover, 

the contact area is a nonlinear function of the applied loads, and this will 

affect the friction torque. In the case of four-point contact bearings, this 

approximation will have more limitations. In this type of bearing and 

depending on applied loads, each ball can have only two contact points, or it 

can roll with respect to two points and slide with respect to the other two, or 

spinning can occur at the four points. This would imply having three different 

values of   and would require knowing which one should be used under 

certain applied loads. Therefore, a more advanced model is required in order 

to obtain more accurate results. 

In this way, Todd and Johnson proposed an approach for angular contact 

ball bearings, which takes into account contact nonlinearities and angle 

variations [47]. In his approach, Todd considered three components, which 

are calculated separately: the spin, the microslip due to the rolling and the 

hysteresis. Other interesting research works focused on two-point contact 

angular bearings, where the different components of the friction torque are 
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also calculated separately, were done by Houpert and Leenders [48] and 

Houpert [49,50]. In these works, simple and powerful formulas are proposed 

for the friction torque calculation. More recent publications based in 

Houpert’s formulation offer new models, such as the works of Olaru [51] and 

Bălan [52,53]. 

Furthermore, Jones proposed a different approach for the study of the 

friction in angular contact ball bearings [54]. In this approach, bearing 

kinematics are formulated and solved by imposing the equilibrium of the 

forces and moments acting on the ball. To do so, the relative velocities and 

the frictional behaviour in the contact areas are studied. For the contact 

simulation, it is assumed that full sliding occurs, so the friction forces are 

directly computed by multiplying normal forces by the friction coefficient. 

This approach was later adapted by Hamrock for three-point contact bearings 

[55] and by Leblanc and Nélias for four-point contact bearings [56,57]. Later, 

several methods were proposed by Lacroix et al. to account for the flexibility 

of the rings [58]. All these works included inertial effects. Nevertheless, in 

slewing bearings for orientation purposes, the operational velocities are 

usually low and thus inertial effects are negligible. Consequently, the load 

distribution problem and the kinematics can be decoupled and therefore 

solved separately, which simplifies the solution of the equation system. This 

was done by Joshi et al., who particularized the problem for slow speed 

applications and formulated the friction torque calculation [59]. 

As in Jones’ work, state of the art models for four-point contact bearings 

assume full sliding at the contact. However, in slewing bearings for wind 

turbines, there are only two points in contact in regular working conditions 

because of the large tilting moments, so balls roll in the same way as in a 

typical angular contact bearing, and consequently stick regions will exist in the 

contact area according to the Heathcote slip [60]. Due to the low velocities, 

the area of the stick regions can be significant in the contact ellipse, 

contravening the assumption of full sliding. Thus, it is expected that the 

described models may have certain limitations for the friction analysis in wind 

turbine slewing bearings. 

1.4.3 Rolling contact 

The rolling contact between two elastic bodies is a phenomenon that has 

been studied for a long time. The basis for the study of the friction forces at 

contacts was established by the Amontons-Coulomb laws of friction. Carter 
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[61] and Fromm [62] independently demonstrated that Amontons-Coulomb 

equations are not applicable when rolling exists. Most contact models for the 

study of the shear stresses in the rolling contact are based on the Hertz 

theory. When a contact can be solved by applying the Hertz theory, it is called 

a hertzian contact. Among the most relevant publications regarding hertzian 

contacts, there are the works from Carter [61], Johnson [63], Vermeulen and 

Johnson [64] and Kalker. The last developed the linear theory for the study of 

rolling contacts in full adhesion [65]. Kalker used this approach to develop the 

simplified theory [66], which was later computationally implemented through 

the FASTSIM algorithm [67]. For the non-hertzian contacts, Kalker 

developed the exact theory, which was implemented through the CONTACT 

algorithm [68]. The FASTSIM algorithm has been widely used for the study of 

the wheel-rail contact, and it is still a useful tool for dynamic simulations due 

to its low computational cost. On the other hand, the CONTACT algorithm 

is more rigorous and offers better results for non-hertzian contacts. In return, 

the CONTACT algorithm is around 1000 times slower than the FASTSIM 

[69]. Nevertheless, neither one nor the other has ever been used for the 

analysis of the contact in bearings. Allegedly, such formulations would 

provide more accurate and reliable results for the friction torque than the state 

of the art models for four-point contact slewing bearings, where full sliding is 

assumed. However, this remains to be demonstrated. 

Although Kalker’s theories are widely accepted and used, they continue 

publishing relevant works in the field. For example, Al-Bender and De 

Moerlooze [70] developed a new theory to study the transient behaviour of 

rolling contacts. More recently, Blanco-Lorenzo et al. studied the influence of 

the conformity on the wheel-rail contact using the exact theory of Kalker and 

FE calculations [71]. 

1.4.4 Stiffness 

As stated in the previous section, stiffness is a functional criterion for the 

selection of the appropriate slewing bearings for a particular application. 

However, unlike with the static capacity or the friction torque, no procedure 

or methodology can be found in the standards or in the NREL guideline [19]. 

In addition, manufacturers commonly provide stiffness curves, but they do 

not explain the calculation procedure. The lack of a standardized 

methodology to obtain stiffness curves means it is unfeasible to make direct 

comparisons between data provided by different manufacturers. 
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Several works studied the matter of the stiffness for two-point angular 

contact bearings. Houpert [72], Lim and Singh [73], Hernot et al. [74], Liew 

and Lim [75] and Noel [76] for example dealt with this issue, but always 

assuming rigid rings, thus considering only ball-raceway contact deformations. 

Guo and Parker [77] considered ring deformations through the FE analysis 

and proposed a numerical method to compute the stiffness matrix of any 

rolling element bearing. 

Some approaches were developed by Jones and Harris [78], Harris and 

Broschard [79] and Mignot et al. [80] regarding planetary gear-transmission 

bearings. In these approaches the stiffness of the structures is considered. 

Nevertheless, this type of bearing allows such approaches to be developed 

because they are always subjected to the same boundary conditions and load 

type. Contrarily, the conditions change from one application to another in 

slewing bearings. An analytical approach does not seem therefore so 

straightforward in this case. 

To obtain stiffness curves in four-point contact slewing bearings, the 

models for the load distribution calculation described in 1.4.1 can be used, like 

the analytical model in [39] for rigid rings, or the semi-analytical methodology 

in [40] to consider global deformations. For instance, Aguirrebeitia et al. 

studied the effect of the preload on the stiffness of four-point contact slewing 

bearings using their analytical model [44]. Nevertheless, these models require 

numerical methods to find a solution and are hard to implement. Moreover, 

they need FE calculations to consider ring flexibility. A simple engineering 

formulation for the calculation of the stiffness of four-point slewing bearings 

considering ring deformations is still to be developed. 

1.4.5 Finite Element models 

The Finite Element modelling of slewing bearings entails several difficulties. 

One of the main problems is the large amount of Degrees of Freedom (DoF) 

required by the model, which involves high computational costs. The large 

amount of required elements is due to two reasons: the slenderness of the 

rings and the need of refinement in the ball-raceway contact. Another main 

problem resides in the high nonlinearity of the simulation. There exist two 

sources of nonlinearities: frictional contacts and large displacements. 

Frictional contacts are required between balls and raceways and between rings 

and adjacent structures to simulate the sliding or opening of the bolted joint. 

Large displacements are to be considered in order to correctly reproduce the 
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variation of the contact angle. The most challenging aspect to reach the 

convergence of such simulations resides in the ball-raceway contacts because 

they take place in a small area and it changes during the simulation. This is the 

reason for the mesh refinement in this contact region. 

There exist simulation techniques based on substituting rolling elements by 

mechanisms composed of rigid elements and traction only springs. The 

responsibility for simulating the elastic behaviour of the ball-raceway contact 

and the angle variation corresponds to these mechanisms. Smolnicki and 

Rusin ski proposed such a mechanism in the first place [81,82]. Soon after, 

Daidié et al. developed and validated a similar method [83] (Figure 1.15a). 

Although the traction only spring mechanism is still nonlinear, it avoids the 

convergence problems due to rigid body motions in balls caused by the loss of 

contact. Moreover, such techniques avoid simulating solid balls and do not 

require a mesh refinement in the raceways, resulting in an important decrease 

of the total DoF of the model. These techniques are commonly used for the 

FE modelling of slewing bearings. For instance, Aguirrebeitia et al. used 

Daidié’s approach to validate their analytical model [84] (Figure 1.15b), and 

also proposed a method to consider ball preload by changing the length of the 

nonlinear spring [44]. These mechanisms were also used for two-row ball 

slewing bearings by Śpiewak [85] (Figure 1.15c). 

To tackle the issue of the flexibility of the rings, FE simulations are usually 

employed, although there also exist other approaches like the one proposed 

by Yao et al. [86]. As mentioned before, Zupan and Prebil [38] or Guo and 

Parker [77] used a FE model to calculate the stiffness values. On the other 

hand, Olave et al. employed FE model reduction techniques to calculate a 

more comprehensive stiffness matrix of the rings and the surrounding 

structures [40]. Model reduction techniques were also demonstrated as a cost 

effective tool that significantly reduces the computational cost with a 

negligible accuracy loss to solve the load distribution problem of a particular 

wind turbine generator by Plaza et al. [87]. 

As stated before, manufacturing errors were proved to significantly affect 

the load distribution in large diameter slewing bearings by Starvin and 

Manisekar [45] and Aithal et al. [46]. To do so, they propose approaches based 

on different FE modelling techniques. Finally, the growing relevance of wire 

race bearings is evinced by the recent work of Gunia and Smolnicki, where 

they offer a first approach to this type of bearings through FE calculations 

[88]. 
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Figure 1.15. Daidie’s mechanism: (a) graphical representation [83]; (b) application in one 
row ball bearing [84]; (c) application in two row ball bearing [85]. 

Despite the large amount of publications regarding FE modelling to 

compute the load distribution, study the normal contact problem or for the 

stiffness calculation, an FE model has not been developed for the friction 

torque calculation or the study of the tangential contact problem yet. 

1.4.6 Fatigue calculation 

The NREL [19] proposed a procedure for the fatigue life calculation for 

yaw and pitch wind turbine bearings. Nevertheless, the limitations of this 

guideline listed in the beginning of the literature review encourage researches 

to conceive novel and more accurate methodologies for the case of slewing 

bearings. In this sense, new calculation procedures involving analytical and FE 

calculations where proposed by Sawicki et al. for four-point contact slewing 

bearings [89] and Potočnik et al. for double row eight-point contact bearings 

[90]. The latter takes into account possible geometrical irregularities caused by 

manufacturing errors or the deformation of the rings. To consider the 

induction hardened layer in the raceways, Göncz and Glodež presented an FE 

(a) 

(b) (c) 
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based method for the assessment of the rolling contact fatigue life for roller 

bearings [91]. For the case of ball-raceway contact, Londhe et al. [92] studied 

the subsurface stress variation due to the raceway induction hardening and 

discussed its implications on bearing fatigue life. Nevertheless, an approach 

for the contact stress calculation when the bearing is rotating remains to be 

developed. 

Further, Žvokelj et al. proposed a method for predictive damage detection 

and diagnosis in slewing bearings [93]. From a more generalist point of view, 

Portugal et al. recently developed a fatigue model for multiaxial random 

loading cases [94]. This new approach was aimed at machine components 

which lack a specific procedure for fatigue life calculations due to their 

particular working conditions, like slewing bearings. Finally, Schwack et al. 

compared fatigue life results obtained by four different approaches applied to 

a blade bearing under individual pitch control [95]. 

However, from the literature review it is concluded that there is not a 

generally accepted procedure for the fatigue life calculation of slewing 

bearings yet. Moreover, phenomena like false brinelling or fretting corrosion 

require further research in order to obtain a reliable prediction of fatigue life 

in such components. 

1.4.7 Experimental testing 

There are plenty of research works involving experimental tests with 

conventional bearings. Previously mentioned manuscripts like the ones by 

Todd and Johnson [47] and Houpert [50] offer experimental results of the 

friction torque for angular contact ball bearings. For the case of four-point 

contact bearings, Joshi et al. [59] performed tests for two different preloads 

and two grease types under axial load and contrasted measured results with 

those from their analytical approach. More recently, Stammler et al. compared 

the results of torque from experimental measurements with those obtained 

using different calculation models [96]. In this case, a four-point contact pitch 

bearing was tested under an applied tilting moment in the blade bearing test 

stand from the Fraunhofer Institute for Wind Energy and Energy System 

Technology (IWES). This rig (Figure 1.16) was designed for the entire hub-

bearing-blade group testing of turbines up to 3MW. 
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Figure 1.16. Pitch bearing test rig at Fraunhofer IWES [96]. 

1.5 Objectives 

Considering the limitations of state of the art simulation methods and 

techniques for the structural characterization of four-point contact slewing 

bearings, the following objectives were defined for the research work 

presented in this Doctoral Thesis: 

 Load distribution analytical modelling: 

- Develop a methodology to consider the manufacturing errors. 

- Implement the deformability of the rings in the new methodology. 

 Friction torque and tangential contact problem modelling: 

- Develop an analytical model for the calculation of the friction torque 

and the analysis of the ball-raceway contact, considering the stick 

regions. 

- Study the effect of manufacturing errors and ring stiffness in the idling 

friction torque. 

 Stiffness calculation formulation: 

- Reach an engineering formulation for the calculation of the stiffness, 

considering ring flexibility. 
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 Finite Element modelling: 

- Develop a robust multiparametric FE model to simulate the rotation of 

the bearing and obtain reliable results of the torque, the kinematics and 

the contact results, especially the shear stress. 

- Obtain a robust multiparametric FE model for the calculation of the 

stiffness matrices for its implementation in the load distribution model. 

- Advance in the entire bearing modelling, obtaining a multiparametric 

robust FE model which includes the balls as solid elements. 

 Experimental validation: 

- Validate the analytical models through experimental testing. 

Except for the experimental validation, all the objectives were satisfactorily 

fulfilled. Regarding this last goal, some preliminary tests were performed, but 

a more intensive experimental campaign will be necessary in order to proceed 

to a proper empirical validation of the analytical models. 

1.6 General overview of the proposed methodology 

In this Doctoral Thesis, different novel approaches are developed and 

evaluated in order to meet all the objectives. This section provides a general 

overview of the research work to be presented in the following chapters. 

Given that the Doctoral Thesis covers different problems, each of which is 

studied by means of different approaches, it is important to give a first general 

view. The reader may feel it convenient to come back to this point during the 

reading of the document as a reminder of which problem is being addressed 

in each chapter. 

In Chapter 2, a new analytical model is presented for the calculation of the 

load distribution among the balls. Contrary to state of the art analytical 

approaches, this model envisages the possibility of considering manufacturing 

errors. To account for these errors, the model requires experimental 

measurements of the raceways. Additionally, it also allows a direct way for the 

implementation of the stiffness matrices of the rings. As explained in the 

chapter, these matrices can be easily calculated by an ad hoc developed 

parametric FE model. 

The basis of the different approaches presented in Chapter 3 and Chapter 4 

for the friction torque calculation and the ball-raceway contact analysis resides 

in the fact that the normal contact problem and the tangential contact 

problem can be decoupled and solved independently. This assumption is 
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adequate for slewing bearings mainly due to the slow rotation speeds involved 

in orientation applications. Therefore, a novel FE model is presented in 

Chapter 3, which offers detailed results of the contact while the bearing is 

rotating. The input of this model is the solution of the load distribution 

problem. By using the analytical model of Chapter 2 and the FE model of 

Chapter 3, different possibilities are explored and compared in order to find 

an accurate and cost effective way for solving the problem. Moreover, the 

effect of manufacturing errors, ring stiffness and ball number in the friction 

torque is studied in this chapter.  

In Chapter 4, an analytical alternative is presented to solve the friction 

problem. The objective of this analytical approach is to substitute the FE 

model in the calculation procedure. This new model offers a more robust 

calculation option with a much lower computational cost. The proposed 

approach stems from the formulation for the kinematics done by Leblanc and 

Nélias, but does not assume full sliding at the contact. Conversely, Kalker’s 

formulations are implemented in order to consider the stick regions of the 

contact area. At the end of the chapter, different cases for regular working 

conditions are studied by means of the new model, the model of Leblanc and 

Nélias and the FE model. The results are compared and the capabilities and 

limitations of each approach are discussed. 

In Figure 1.17 the different models used in Chapter 2 to Chapter 4 are 

schematically represented. This figure shows a global view of the proposed 

procedure for the friction torque calculation and the study of the ball-raceway 

contact. BIME and FRANC are the names of the new proposed analytical 

models to solve load distribution and friction problems, respectively. This 

schema may be of a great help while reading Chapter 3, where several 

calculation alternatives are explored. 

Chapter 5 deals with the calculation of the global stiffness of the bearing. 

Although this issue is related with the load distribution problem, it is focused 

from a different point of view. A parametric FE model is developed to 

calculate the stiffness curves of the bearing, and then a number of calculations 

are performed, varying the main parameters of the problem. The results are 

approximated by means of simple functions, finally leading to a practical 

engineering formulation. The resulting approach is then demonstrated to 

satisfactorily reproduce the influence of the main geometric variables and 

contact parameters in the stiffness curves. 
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In Chapter 6 some preliminary tests for the friction torque experimental 

measurement are presented. The objective of the tests is to assess the 

capabilities and limitations of developed analytical models. The experimental 

measurements of this chapter are a first step of a more extensive test 

campaign to be carried out in future works. Nevertheless, some interesting 

conclusions are drawn. 

Finally, in Chapter 7 the main conclusions that arise from the current work 

are presented and the future work to be done in the same line is suggested. 

 

Figure 1.17. Schematic representation of the procedure for the friction torque calculation 
and contact analysis. 
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2 Load distribution model 

2.1 Introduction 

In this chapter, a novel analytical model for the determination of the load 

distribution among the balls is presented. The novelty of the model resides in 

its capability to consider the effect of manufacturing errors. Manufacturing 

errors can significantly affect the load distribution in large diameter slewing 

bearings, as demonstrated by Starvin and Manisekar [45] and Aithal et al. [46] 

through FE calculations. Nevertheless, none of the analytical models 

mentioned in Chapter 1 [38,39,43,44,84] considered this issue.  

The errors to be considered are those due to the manufacturing process of 

the raceways, but not the balls. Of course, there also exist errors when balls 

are manufactured, but they can be measured very accurately later and 

classified according to their real dimension. Therefore, the uncertainty of the 

calculations comes only from the raceways. 

Manufacturing errors do not only affect the load distribution but also the 

friction torque, specially the idling friction torque. The idling friction torque is 

the moment required to rotate the bearing under no external loads. It is easily 

measurable and commonly used by bearing manufacturers as a 

straightforward way to adjust the preload level required for a particular 

application. Along with the starting and the running torque under external 

loads, the idling torque is usually demanded by the customers, and thus it is a 

very relevant parameter. With the model presented in this chapter, it will be 

possible to accurately calculate the required ball diameter to achieve the 

desired preload level. Moreover, the results from the load distribution after 

the assembly of the bearing, and before applying any external load, can be 

calculated through the proposed model. The resulting contact loads and 

angles can be later introduced in any of the models presented in the next 

chapter for the idling friction torque calculation. 
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In a first approach, the model is developed to calculate the ball-raceway 

interferences after the assembly and considering rigid rings. Later, the 

flexibility of the rings is implemented by means of stiffness matrices. The 

Guyan reduction method is applied to condense the stiffness matrix of a full 

FE model of the rings to certain points [97]. This procedure is similar to the 

one proposed by Olave et al. [40], but the selection of the condensation 

points and their corresponding degrees of freedom differs, which shows some 

advantages as is later explained. Finally, the model is extended to consider 

external loads. 

To sum up, the proposed model calculates ball-raceway interferences and 

contact forces and angles of every ball of the bearing after the assembly or 

under certain external loads, considering manufacturing errors and ring 

stiffness. Thus, it can be used to calculate the stiffness curve of a bearing and 

its static capacity, or to obtain the input data required by a model for the 

friction torque calculation. For future reference, the new model is called 

BIME due to its capability to consider manufacturing errors (Bearing 

Interferences due to Manufacturing Errors). 

The BIME model was applied to a particular bearing (see Figure 2.1) in 

order to evaluate the effect of manufacturing errors and ring stiffness on the 

load distribution, and later also on the friction torque (Chapter 3). The bearing 

was provided by Iraundi S.A., and its nominal dimensions are reported in 

Table 2.1. 

 

Figure 2.1. Measured bearing for initial results, courtesy of Iraundi S.A.. 
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2.2 Calculation of the interferences due to 

manufacturing errors. The BIME model 

In this section, the procedure for the determination of the interferences 

between balls and the raceways due to manufacturing errors is described. This 

procedure involves the need to accurately measure the raceways in a first step 

in order to know their real shape. Then, the BIME model is presented and 

applied to estimate the interferences. 

2.2.1 Measurement of the raceway 

A coordinate-measuring machine (CMM) is required for the measurement 

of the raceways due to the geometry and the required accuracy. Iraundi S.A. 

offered its measuring machine for this purpose (DEA Global Silver 12.15.10, 

see Figure 2.2), available in their facilities at Bergara, Spain. 

Bearing mean 
diameter (   ) 

Ball diameter 
(  ) 

Raceway radius 
(  ) 

Initial contact 
angle (  ) 

541.00 mm 25.00 mm 13.25 mm 45° 

Table 2.1. Nominal dimensions of the measured bearing. 

 

Figure 2.2. Coordinate-measuring machine and measured rings. 
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To determine the real shape of a raceway, a minimum set of three points is 

required per each circumferential position under study. This way, the 

circumference that defines the centre and the radius of the raceway can be 

calculated. For a double arched ring, at least 6 points are needed per each 

circumferential position (see Figure 2.3b). To obtain the general shape of a 

ring, these measurements must be taken in several circumferential positions. 

These measurements were taken for 32 positions and with the minimum 

points required, but for a higher accuracy and to consider hypothetical shape 

irregularities of each arc, more points are required. Nevertheless, the goal of 

these first measurements is to obtain the magnitude order of the phenomena 

and justify the relevance of manufacturing errors.  

Since the measurements are taken for each ring separately, the relative 

position between them once the bearing is assembled, i.e. when the balls are 

inserted, is unknown. The BIME model described in the next section aims to 

determine this position, from which the ball-raceway interferences will be 

calculated. 

As shown in Figure 2.3c, special attention must be taken when measuring 

surfaces that are neither flat nor normal to the approach direction of the 

sensor probe. For the particular case which this work concerns, the CMM was 

programmed to report point  , as shown in Figure 2c. From the reported 

coordinates, it is straightforward to place the location of the centre of the 

probe (point  ), from which the coordinates of each raceway centre can be 

obtained, as well as its radius. 

In order to check for repeatability, the measurements were taken twice for 

each ring. It was also checked that the different measurements from the same 

raceway were coherent between them. 

 

Figure 2.3. Experimental measurements: (a) coordinate-measuring machine; (b) measured 
points (c); graphical representation of the probe in contact with the raceway meter. 
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2.2.2 Analytical approach for the calculation of the interferences: 

the BIME model 

The next step in calculating the ball-raceway interferences is to assess the 

relative position between the inner and the outer ring once the balls are 

inserted and equilibrium is reached. In this regard, the final spatial 

configuration will be that with the minimum associated elastic deformation 

potential energy. Therefore, the key of the proposed method lies in the 

formulation and the minimization of the energy of the system. 

For this purpose, the ball-raceway contact model developed and validated 

by Daidié et al. [83] is used. Taking advantage of this technique, the centres of 

the raceways from the different rings are linked to each other by traction-only 

springs that simulate the stiffness of the contacts, as shown in Figure 2.4. 

Moreover, the centres from the same ring are rigidly connected, assuming 

rigid rings. This way, each pair of springs represents the four contacts of each 

ball of the bearing, so the elastic contact problem is simplified by means of 

the deformable mechanism represented in the figure. 

For the formulation of the potential energy, the outer ring is fixed, while the 

position of the inner ring will be a function of the relative displacements and 

rotations between both rings. Hence, points    and    of the mechanism are 

fixed, while the coordinates of points    and    are a function of the 

parameters   ,   ,   ,   and  , represented in Figure 2.5, which define the 

position of the inner ring with respect to the outer. 

As a first step, the coordinates of the centres of the raceways, obtained 

from the experimental measurements, are changed from the Cartesian 

coordinate system (   ) to a cylindrical system (     ). Following the 

nomenclature in Figure 2.5: 

 

Figure 2.4. Graphical representation of the mechanism of the analytical model. 
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The outer ring is fixed and thus the position of points    and    remain 

constant. Conversely, the final coordinates of points    and    will be given 

by the following expressions in Cartesian coordinates: 
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These expressions are changed into cylindrical coordinates: 
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(2.3) 

 
  
       

         

      
           

           
  

    

Note that all the displacements occur in the radial plane, so the angular 

coordinate ( ) will remain constant: 

   
       

  where         (2.4) 

 

Figure 2.5. Coordinate systems: (a) cartesian and cylindrical coordinates; (b) parameters 
for the relative position definition of the inner ring. 
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Since manufacturing errors are being considered, the natural lengths of the 

springs can be different from each other. For a given circumferential position, 

and according to the numbering used in Figure 2.4, the natural length of 

spring   is given by: 

 
  
    

    
      
   

    
       

        
where         (2.5) 

Where    is the diameter of the ball, equal to the nominal diameter   
    

plus the preload   , and   
  the radius of the raceway. On the other hand, the 

real length ( ) will be a function of the position of the inner ring: 

        
    

    
 
    

    
    

 
 where         (2.6) 

Having both natural and real lengths, the summation of the interferences 

corresponding to each contact pair linked by each spring will be calculated 

according to the following expression: 

     
               

  where         (2.7) 

In the ball-raceway hertzian-type contact, the relationship between the ball 

normal load ( ) and its deformation ( ) is formulated as follows [17]: 

         (2.8) 

This formula is valid for elastic deformations with no truncation of the 

contact ellipse. The exact solution of the formula above requires the use of 

elliptic integrals [17], but Houpert offers functional approximations for 

different ranges of the osculation ratio ( ) [30], which are a good approach for 

engineering applications. For osculation ratios in the range of        

    : 

                      
    

 
 

   

 
 

  
 
   

     (2.9) 

Where   and   are the Young’s modulus and Poisson’s ratio, assuming the 

same material in both ball and raceway. Particularizing for the case of steel 

and assuming typical values of            and      , the next 

expression is obtained: 
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By reordering the terms according to (2.8), the value of the coefficient   

can be formulated: 

     
        

   

            
      

       

  where         (2.11) 

Where          
    is the osculation ratio of the contact  . It is 

important to point out that, as the springs are traction-only, they do not offer 

any resistance for the      case, which represents a gap between the 

contacting bodies. From (2.7) and (2.8), the total stiffness of the spring   that 

links the raceway centres   and       is obtained: 

 
 

     
  

   
 

 

    
   

 
 

      
   

 where         (2.12) 

Finally, the expression for the potential energy can be obtained by 

integrating (2.8). For the entire system formed by   balls, the total potential 

energy will be given by: 

   
 

 
      

       
           

       
       

 

   

 (2.13) 

Inasmuch as the interferences depend on the five parameters that define the 

final position of the inner ring, so will the potential energy. The proposed 

formulation was implemented in Matlab® and the minimization of the 

potential energy was performed by means of a gradient based algorithm. No 

convergence problems were found because the potential energy function is 

continuous and derivable with no local minima; when the function is null (no 

interferences case), it is not derivable, but that point would directly be the 

solution. From the minimization, the relative position of one ring with respect 

to the other is obtained, and therefore the interferences distribution and final 

contact angles. From the interferences distribution and through equations 

(2.8) and (2.11), contact forces can be also obtained. 
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2.2.3 Results for a particular bearing 

For the particular case studied in this chapter (see Table 2.1), the calculated 

interferences are shown in Figure 2.6. For the calculations, 32 balls were 

considered, namely the number of measured circumferential positions. As 

rigid rings are being considered, the final relative position of the rings will not 

be affected by the number of balls, so neither will be the interferences 

distribution calculated with the analytical model. In the plots, the interferences 

for the nominal ball and for preloads of 10μm and 20μm are shown. For the 

nominal ball, maximum interferences of 10μm and minimum of -4μm (which 

represents a gap) are observed, with an average around 5μm. Since no 

deformations of the rings are allowed, a certain increment in the ball diameter 

supposes an equal increment in the interferences, as is shown for preloads of 

10μm (average interference of 15μm) and 20μm (average interference of 

25μm). Additionally, calculations for different relative circumferential 

positions were made (rotating one ring with respect to the other), achieving 

similar results. 

From these plots, a significant conclusion arises. The interferences due to 

manufacturing errors are demonstrated to be of the order of the preloads, so 

they are as relevant to the calculations as the preloads themselves. 

2.3 Interference calculation with deformable rings 

The flexibility of the rings has a large influence in the load distribution of 

slewing bearings, as demonstrated both by Aguirrebeitia et al. [43,44,84] and 

Olave et al. [40]. For this reason, it must be somehow considered in order to 

achieve accurate results. In this section, the FE model used for the calculation 

of the stiffness matrices of the rings is described, and then the formulation for 

their implementation in the BIME model is presented. Finally, the effect the 

ring flexibility has on the interferences is studied for the case of the measured 

bearing. 

2.3.1 Finite Element models for ring stiffness matrix calculation 

For the calculation of the stiffness matrices of the rings, the FE static 

condensation method is used. This technique was firstly developed by Guyan 

for static analysis [97], and it allows the condensation of the stiffness matrix of 

a component to selected Degrees of Freedom (DoF). Of course, the selected 

DoF are those subjected to boundary conditions or those where loads are 
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applied, thus avoiding unloaded DoF. The resulting condensed matrix can be 

then used to perform faster simulations. When a component (or a set of 

components) is condensed by means of this technique, it is usually called a 

superelement in its reduced form. The nodes that contain the selected DoF 

are called master nodes. 

 

Figure 2.6. Interferences in the measured bearing with different ball preloads: (a) nominal 
ball; (b) +10μm; (c) +20μm. 

In order to obtain the stiffness matrix of any ring, a fully parametric FE 

model was built in ANSYS®. Although the model is framed in the Workbench 

environment, the calculation of the superelements requires APDL commands 

because condensation methods have not been implemented in this interface 

yet. Nevertheless, Workbench allows the introduction of APDL scripts. The 

(a) 

(c) 

(b) 
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geometry is entirely modelled in Design Modeller (the geometry module of 

the Workbench environment) and assumes no gear or holes, since they have 

little effect on the ring stiffness. As can be seen in Figure 2.7, the geometry is 

divided into different bodies to improve the meshing process. Then, the 

model is imported into the mechanical module and a highly regular mesh 

formed entirely by second order hexahedrons (SOLID186 in ANSYS®) is 

built. The mesh size is also parameterized as a function of ball diameter (see 

Figure 2.8). 

 

Figure 2.7. Geometry of the outer ring for the FE model. 

The key of the condensation procedure lies in the selection of the master 

nodes and their DoF. In this regard, Olave et al. [40] selected the ball-raceway 

contact points as master nodes. The main drawback of this procedure is that a 

fixed contact point is assumed, as happens with Smolnicki’s mechanism [81], 

so the contact angle variation is not appropriately simulated. On the other 

hand, Plaza et al. [87] used Daidié’s mechanism [83], which is more suitable to 

catch the effect of the contact angle change. Daidié links, via rigid beams, the 

centre of each raceway to a rigid shell with the dimensions of the contact 

ellipse, simplified to a curved rectangle, as shown in Figure 2.8. Plaza reduced 

the stiffness of the rings to the nodes of these shells, so the mechanism can be 

later attached to the superelement. In this procedure, a different approach is 

proposed. Instead of selecting the nodes from the contact surface, raceway 

centres are directly chosen as the master nodes (see Figure 2.8). The rigid 

shells and beams of Daidié’s mechanism are added to the rings through a 

parameterized APDL script before the model reduction, and they are taken as 

part of the ring itself when calculating the superelement. Moreover, since balls 

do not transmit circumferential forces to the raceways in static load 

conditions, only axial and radial DoF are considered. This way, a more 

compact stiffness matrix is obtained in comparison with those proposed by 

Olave or Plaza, with the same capabilities of Daidié’s mechanism. 
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Furthermore, and as later explained, the proposed model solves the 

mechanism misalignment when radial loads are applied because the 

circumferential DoF is not considered. Note that selected master nodes are 

points   ,   ,    and    from figure Figure 2.4, so the obtained stiffness 

matrices could be implemented in a direct way in the BIME model. 

FE analysis involving superelements usually requires the next three steps: 

 Generation pass: the superelement is created. 

 Use pass: the superelement is introduced in the FE model substituting the 

original component and the analysis is performed. 

 Expansion pass: the results are expanded to the entire component from 

the results at the master nodes. 

In our case, only the generation pass is carried out in ANSYS®, since the use 

pass is derived to Matlab®, where the BIME is programmed. To export the 

condensed stiffness matrices, they are written in a text file, which can be later 

read in Matlab®. No expansion pass is required since only the forces at master 

nodes are wanted to be known, that is, contact forces. 

 

Figure 2.8. Daidie’s mechanism in the FE model.. 

If the stiffness matrices are condensed only to the centres of the raceways, 

the rings will displace and deform freely. Additional master nodes can be 

therefore selected if boundary conditions or loads are wanted to be imposed. 

These additional nodes can also be used to link rings to the supports, which 

could be superelements or not. Moreover, superelements composed of 

different components can be calculated. For example, for wind turbine 

Master

nodes
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generators, a superelement can be made with the upper part of the tower 

joined to the inner ring, and the nacelle can be included in a second 

superelement together with the outer ring. Nevertheless, it must be pointed 

out that the calculated matrix is constant, so nonlinearities can not be 

considered inside a superelement. 

In the next sections, no additional components are considered, and 

raceways centres are selected as the unique master nodes. Nevertheless, it 

must be made clear that this is not a limitation of the model, since as many 

additional master nodes as wanted can be selected for whatever application, or 

more components considered in each superelement. Figure 2.9 shows the 

model for the sector corresponding to one ball. This figure shows how the 

span angle for each ball changes with the number of balls. 

 

Figure 2.9. Sector of the FE model of the measured rings corresponding to each ball: (a) 
for 32 balls; (b) for 67 balls. 

2.3.2 Implementation of the ring stiffness in the BIME model 

Once the stiffness matrices of the rings are obtained, they must be 

implemented in the BIME model. For each ball there are two nodes per ring 

(see Figure 2.8), and each node has two degrees of freedom, the displacements 

in the axial ( ) and radial ( ) directions. Thus, for a bearing with   balls, the 

dimensions of the stiffness matrix of each ring will be        . The 

structure of these matrices is shown below, where        
       is the component 

(a) (b) 
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that relates the degree of freedom    (  or  ) of the raceway centre of the 

contact point    (1 or 4 for the outer ring and 2 or 3 for the inner ring) and 

the ball   , with the degree of freedom    of the raceway centre of the contact 

point    and the ball   . Thus, the stiffness matrix for the outer ring is defined 

as follows: 

        

 
 
 
 
 
 
 
 
 
 
 
    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

 

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

   
    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

 

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

    
 
 
 
 
 
 
 
 
 
 

 (2.14) 

Analogously, the structure of the inner ring stiffness matrix will be: 

       

 
 
 
 
 
 
 
 
 
 
 
    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

 

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

   
    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

 

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

   

    
       

    
 
 
 
 
 
 
 
 
 
 

 (2.15) 

According to these matrices, the deformation vectors are defined as follows: 

                                             
(2.16) 

                                            

Since now the rings can deform, the coordinates of points    and    are no 

longer fixed. Therefore, the final location of these points will be obtained by 

adding the corresponding elastic deformation to the initial coordinates. So, the 

final coordinates of each ball are expressed as follows:  

   
       

      
where         (2.17) 

   
       

      

Similarly, the location of points    and    of the inner ring are not only a 

function of rigid body motion displacements (  ,   ,   ,   and  , see Figure 
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2.5), but they must consider the corresponding elastic deformations too. Thus, 

adding these components to formula (2.3): 
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(2.18) 

 
  
       

         

      
           

           
  

        

Finally, the elastic potential energy must be also reformulated. By adding the 

potential energy gained due to the elastic deformation of the rings (2.13), the 

next formula is obtained. 

 
  

 

 
      

       
           

       
       

 

   

 
 

 
       

                   
             

(2.19) 

Note there are far more variables in the problem than in formula (2.13) for 

rigid rings. For the case of flexible rings, 5+8  variables are unknown for the 

minimization (5 for solid body motion plus 8  for the elastic deformations of 

the rings), so computational costs rise from seconds to minutes. Nevertheless, 

and as happens for rigid rings, no convergence problems were found. 

2.3.3 Effect of the ring stiffness on the interferences 

To evaluate the effect of ring stiffness on the interferences, the calculations 

done for the case of the rigid rings are repeated. The results for the three 

different preloads are shown in Figure 2.10, which can be directly compared 

with those previously obtained for rigid rings in Figure 2.6. From the 

comparison, it is clear that ring flexibility has a large effect, even when no 

external loads are applied. For the nominal ball, the average interference 

decreases from 5μm for rigid rings to 3μm for deformable rings. Moreover, 

the difference between the maximum and the minimum interferences also 

decreases, from 14μm for rigid rings to 12μm for deformable rings. Thus, by 

considering ring flexibility lower interferences are obtained, and the 

distribution is also smoother. This happens because the rings are deformed 

due to ball-raceway contact loads. 



42  Iker Heras 

 

 

When the ball preload increases, the effect is more noticeable. Thus, for the 

preload of +20μm, the average interference decreases from 25μm for rigid 

rings to 14μm for deformable rings. With deformable rings, an increment in 

the preload does not mean an equal increment in the interferences, as happens 

with rigid rings, because the higher the preload is, the higher the contact loads 

are, and therefore the more the rings are deformed. Moreover, with higher 

preloads the interferences distribution becomes even smoother. 

Up to this point, interferences have been calculated by considering 32 balls. 

For the case of rigid rings, the interferences distribution after the assembly 

does not depend sensibly on the number of balls. Nonetheless, more balls 

imply more loads, and if ring flexibility is considered, also larger ring 

deformations, resulting in smaller interferences. This can be seen in Figure 

2.11, where the interferences were calculated for a preload of +20μm and 67 

balls, which is the maximum number of balls for this bearing. This 

interference distribution showed values 2μm smaller than those for 32 balls in 

Figure 2.10c, supporting previous reasoning. Moreover, the pattern is mostly 

the same, which is also consistent. 

2.4 External load application 

Calculating interferences and load distribution after the assembly of the 

bearing is required to accurately select the desired preload level or calculate 

the idling friction torque. These two parameters are very important in four-

point contact slewing bearings. Nevertheless, bearings are designed to support 

external loads. For this reason, and in order to bring the model to completion, 

external loads are to be included in the BIME model. 

Slewing bearings can bear axial and radial loads and a tilting moment (  ,    

and    respectively). These loads produce certain displacements in one ring 

with respect to the other (  ,   , and   ), taking the equilibrium position after 

the assembly of the bearing as the initial position. The axial displacement    is 

in the   axis, while the radial displacement takes place in the    plane for a 

certain    (see Figure 2.12). The rotation axis for    is perpendicular to the 

radial displacement. Of course, the final position of the raceway centres of the 

mobile ring (the inner one) will be a function of these displacements, affecting 

contact interferences and loads. Thus, adding these new parameters to 

equation (2.18) the next expression is obtained: 
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Figure 2.10. Interferences in the measured bearing with different ball preloads, 
considering deformable rings with 32 balls: (a) nominal ball; (b) +10μm; (c) +20μm. 

 

Figure 2.11. Interferences in the measured bearing with a ball preload of +20μm, 
considering deformable rings with 67 balls. 

(a) 

(c) 

(b) 
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Figure 2.12. Applied external loads. 
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Where the rotations    and    will be a function of   : 
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To avoid such long expressions, small displacements can be assumed. This 

way, formulas (2.20) can be simplified as follows: 
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The potential energy of the system will now be reformulated for cases with 

external loads. It is known that the change in the potential energy of a system 
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due to an applied conservative load is equal to the negative of the work done 

by it. For a load   applied along a displacement  : 

    
  

  
                                    (2.23) 

Thus, the total potential energy of our system when external loads are 

applied can be calculated by deducting the work done by these loads to 

expression (2.19): 

 

  
 

 
      

       
           

       
       

 

   

 
 

 
       

                   
            

                

(2.24) 

The final state of the system after the application of the loads will be 

determined, one more time, by the configuration that minimizes the potential 

energy. For a certain given   ,   , and    load combination, displacements   , 

  , and    can be calculated by minimizing equation (2.24). The inverse 

procedure will also be possible. Note that, in any case, there are only three 

more unknowns than in (2.19), so the computational cost is very similar. 

For the case of rigid rings, the problem can be simplified. When 

displacements   ,   , and    are the input data, the minimization of equation 

(2.24) is not needed. Once equilibrium is reached by minimizing equation 

(2.13) for the assembled bearing, and because the rings will not be deformed 

whatever the load is, the inner ring can be directly displaced from the 

equilibrium position, and the corresponding loads calculated from the reaction 

forces at the springs. Contrarily, if the inputs are the applied loads, a 

minimization will be required for each load combination, as it is for the case 

of deformable rings. Of course, since for rigid rings the deformations are null, 

equation (2.24) is simplified as follows: 

   
 

 
      

       
           

       
       

 

   

                (2.25) 

In this Doctoral Thesis, the rigid rings case is mainly used for comparison 

purposes in order to assess the effect of ring flexibility. 
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2.5 Final results and additional remarks 

In this section, the final results for the load distribution in the measured 

bearing are presented and discussed. Then, some additional comments are 

made to finish with the chapter. 

2.5.1 Load distribution results and discussion 

Once the equilibrium is reached for a particular load case, not only the 

interferences but also normal forces and contact angles distributions among 

balls is obtained from the BIME model. This data can be then used as the 

input for the tangential problem, as illustrated in Figure 1.17. Therefore, the 

load distribution was obtained for the measured bearing with 67 balls, without 

preload and considering ring flexibility. Figure 2.13 shows the normal forces 

and contact angles among the balls for the unloaded case, supporting once 

more time the relevance of the manufacturing errors. Although the normal 

forces are clearly affected, in this case the contact angle is practically constant 

and equal to the initial value. Figure 2.14, Figure 2.15 and Figure 2.16 show 

the results for the cases with an axial load, a radial load and a tilting moment 

respectively. The applied loads are one half the static capacity of the bearing. 

From these plots, it can be concluded that under external loads, the effect of 

manufacturing errors on the load distribution is residual for every load case. 

2.5.2 Additional comments 

Apart from the fact that the BIME model considers manufacturing errors 

and ring flexibility, it offers another important advantage. When the stiffness 

of the ball-raceway contact is simplified by means of a beam-spring 

mechanism in FE calculations, as done by Smolnicki [81] or Daidié [83], the 

simulation of the balls is avoided, which means a big advantage in terms of 

computational costs. Nevertheless, this simplification has one main drawback. 

The simplified mechanism is thought to be in the radial plane of the bearing, 

but when a radial load is applied, the mechanism leaves this plane, as 

represented in Figure 2.17. When this happens, an unreal (and therefore not 

desired) radial stiffness appears due to the misalignment of the springs. Since 

the circumferential degree of freedom is not considered in the proposed semi-

analytical procedure, as explained in the FE model description, the BIME 

model avoids this problem, thus offering more reliable results for load cases 

which involve radial displacements (Figure 2.15). Moreover, once the stiffness 

matrices have been calculated, the BIME model is much faster than a FE 
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model with any simplified mechanism. The BIME model only requires FE 

analysis for the calculation of the stiffness matrices, and then any load case 

can be solved quickly, while regular FE models require one calculation (or 

load step) for each load case. 

Despite all the mentioned advantages of the BIME model, it has a 

drawback. This model needs the stiffness matrices of the rings themselves or 

the rings with whatever adjacent structure that is wanted to be considered. 

These matrices are calculated by means of FE static condensation techniques. 

To apply such techniques, a linear model is required. In the machines where 

slewing bearings are used, large bolted joints are involved, which can be a 

non-linearity source due to the sliding or the opening of the joint. 

Nonetheless, works that use FE condensation techniques for the 

simplification of the structures in joints involving slewing bearings [40,87] 

demonstrated that assuming a linear behaviour for bolted joints does not 

affect significantly the load distribution. 

 

Figure 2.13. Load distribution in the measured bearing without preload and no applied 
loads: (a) normal forces; (b) contact angles. 

(a) 

(b) 
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Figure 2.14. Load distribution in the measured bearing without preload and for an axial 
load: (a) normal forces; (b) contact angles. 

 

Figure 2.15. Load distribution in the measured bearing without preload and for a radial 
load: (a) normal forces; (b) contact angles. 

(a) 

(b) 

(a) 

(b) 
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Figure 2.16. Load distribution in the measured bearing without preload and for a tilting 
moment: (a) normal forces; (b) contact angles. 

 

Figure 2.17. Schematic representation of the misalignment of Daidié’s mechanism when a 
radial load is applied. 
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Finally, and to end this chapter, stiffness curves of the studied bearing are 

presented to obtain some additional conclusions about manufacturing errors 

and ring stiffness. Nevertheless, the bearing stiffness is thoroughly discussed 

in Chapter 5. Once more, the measured bearing is employed for the 

calculations, with 67 balls and no preload. Three load cases are considered: 

pure axial load, pure radial load and pure tilting moment. The curves were 

obtained with the BIME model and considering both rigid rings and 

deformable rings. From these calculations, it was demonstrated that 

manufacturing errors do not have a significant effect on the stiffness curves. 

This means that, as demonstrated before, the effect of the manufacturing 

errors lessens with external loads, although they are important for the idling 

case. Therefore, the graphs in Figure 2.18 represent the stiffness curves for 

the nominal geometry. The curve for rigid rings was obtained for validation 

purposes, and it was proven that the results are the same as the ones obtained 

with the analytical model proposed by Aguirrebeitia et al. [44]. With flexible 

rings, displacements increase drastically, making clear that ring deformations 

do not only affect the load distribution, but also the global stiffness of the 

bearing. 
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Figure 2.18. Stiffness curves for the measured bearing with 67 balls and no preload, 
calculated with the BIME model for rigid rings and flexible rings. 
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3 Study of the friction torque 

through the Finite Element 

Method 

3.1 Introduction 

Once ball-raceway contact loads and angles are known, the friction torque 

can be calculated. Friction torque is the moment that is needed to rotate one 

ring with respect to the other. In the machines where slewing bearings are 

used, an actuation system is required to apply this torque. The actuation 

system usually consists of one or a series of electric gear motors, but hydraulic 

systems are also used for high friction torques. To design and determine the 

size and capacity of such systems, the friction torque of the bearing is a 

mandatory parameter. An accurate calculation of the friction torque in the 

design stage allows the required capacity of the system to be determined, thus 

avoiding oversized actuators and resulting in cost effective machines. 

Therefore, a reliable methodology for the friction torque calculation would be 

a powerful tool to obtain efficient orientation systems. 

The origin of the friction torque is in the friction forces in ball-raceway 

contacts. Thus, the behaviour of the contact must be somehow characterized 

for the friction torque calculation. State of the art models for four-point 

contact bearings assume that full sliding occurs at the contact [56,57,59], 

assumption that is also considered in angular contact bearings [54]. In these 

models, the kinematics are formulated and solved by imposing the equilibrium 

of the involved forces. As full sliding is assumed at the contact, shear stresses 

are directly computed as the contact pressure multiplied by the friction 

coefficient. Nevertheless, this assumption can have certain limitations. In 

four-point contact slewing bearings, there are usually only two points in 

contact in regular working conditions because of the large tilting moments 

(Figure 3.1), so balls roll in the same way as in a typical angular contact 
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bearing. When the ball rolls, a no-slip band exists in the contact ellipse 

according to the Heathcote slip [60], which divides the contact area into three 

different regions: the one in the centre is known as the backward slip region, 

whereas the other two, at both sides, are the forward slip regions. In the 

backward region, the ball´s relative velocities with respect to the raceway are 

in the opposite direction to the ball´s rigid body relative displacement, so 

shear stresses due to contact friction have the same direction as the relative 

movement. On the contrary, in the forward regions, friction forces act against 

this relative movement. Considering elastic micro-deformations at the contact 

surface, a no-slip region rather than a no-slip band will exist. Furthermore, 

and as later demonstrated in this chapter, the stick region is not only located 

between the backward and forward regions, but also along the leading edge of 

the contact ellipse, as illustrated in Figure 3.2. The presence of this stick 

region contravenes the full sliding assumption made by the state of the art 

analytical models. Obviously, in the stick region, shear stress will be equal or 

lower than the product of the pressure and the friction coefficient. 

Nevertheless, full sliding hypothesis does not necessarily involve an 

overestimation of friction torque: depending on the extension and the 

location (backward or forward zone) of the stick region, the value of the 

friction torque can be higher or lower than that calculated under a full sliding 

assumption, so no clear tendency can be deducted without a more thorough 

study.  

Whatever the effect of stick regions on the friction torque is, it is clear that 

they will affect the shear stress field. Shear stresses are responsible for the 

wear of the contacting elements, and are therefore involved in damage and 

failure types like fretting or false brinelling (Figure 3.3), commonly present in 

bearings [98,99]. A model capable of accurately calculating shear stresses 

could be used to predict such failures. Moreover, it also would be useful for 

fatigue calculations. 

In this chapter, different approaches are proposed for the friction torque 

calculation and the ball-raceway contact study through FE analysis, the results 

of which are presented and compared. These FE models need contact 

interferences and angles as input, which will be provided by the BIME model 

(Chapter 2) for our procedure. The objective of the proposed models is to 

predict the stick region of the contact ellipse and evaluate the effect it has 

both on the shear stress field and on the friction torque. 
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Figure 3.1. Deformed shape of a four-point contact slewing bearing under applied loads. 

 

Figure 3.2. Contact ellipse regions in a ball rolling on a grooved track. 

 

Figure 3.3. Microscopy of a false brinelling damaged bearing raceway (courtesy of    
Fabian Schwack). 
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In a first approach, an FE model was used to evaluate the extent of the stick 

region and its effect in the shear stress field. This first model (Rigid-FEM) 

assumed rigid rings, which means that they could not globally deform, but the 

local deformations of the contacts were considered. Later, an FE model 

capable of considering ring flexibility was developed (Flexible-FEM). These 

models were fed with contact forces and angles calculated with the BIME 

model for the measured bearing (Chapter 2), and the effect of manufacturing 

errors and ring stiffness on the friction torque was studied. Additionally, the 

effect of the number of balls was also analysed. For this study, rigid rings were 

assumed in the BIME model (Rigid-BIME). The obtained contact loads and 

angles where then introduced in the FE model for rigid rings on the one hand 

(1st way, see Table 3.1), and for flexible rings on the other hand (2nd way). 

Thus, the 1st way does not consider ring deformations, while the 2nd one does 

through the FE model. Later, an alternative method was developed to 

consider ring deformations. This method consists of calculating the 

interferences for deformable rings (Flexible-BIME), and then assuming rigid 

rings in the FE model (3rd way). The 2nd and 3rd ways must provide the same 

results, which is demonstrated, while the 3rd offers a number of advantages. 

In addition to the two mentioned FE models, a submodel was also 

developed for the detailed study of the contact. This submodel is based on the 

previous mentioned models, and an extremely fine mesh is used, so the 

contact can be studied in more detail. The FE models, as well as mentioned 

developments, are explained more extensively in the following sections. For 

clarification purposes, Figure 3.4 represents schematically all the models used 

in this Doctoral Thesis. 

The final goal of the study is to develop an analytical model capable of 

calculating the friction torque and the shear stress field at the contact, 

considering the stick regions (4th way, see Table 3.1). This model is presented 

in Chapter 4. 

ID Load distribution Contact simulation 

1 Rigid-BIME Rigid-FEM 

2 Rigid-BIME Flexible-FEM 

3 Flexible-BIME Rigid-FEM 

4 Flexible-BIME New analytical model 

Table 3.1. Different approaches for the friction torque calculation. 



Chapter 3. Study of the friction torque through the FEM 57 

 

 

Figure 3.4. Schematic representation of the developed models. 

3.2 Finite Element models for the friction torque 

calculation 

The simulation of the friction torque through FE calculations is a very 

sensitive matter. In spite of being a quasi-static problem, the analysis is highly 

nonlinear due to the required large displacements and the sensitivity of the 

ball-raceway contact, which takes place in a small area and changes with the 

rotation of the bearing. Nonetheless, these inconveniences have been 

addressed and overcome successfully. 

In this section, the developed FE models for friction torque calculation and 

contact analysis are described. Three different models have been used for this 

purpose: one with rigid rings, another with deformable rings, and a third that 
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used for the FE modelling, while Matlab® was also useful for better graphical 

representation of some results. 
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3.2.1 Finite Element model with rigid rings 

For the friction torque calculation, only the sector corresponding to one ball 

is considered, since the contribution of each ball to the total friction torque 

can be calculated separately. This simplification supposes a great advantage 

over a full model, not only in terms of computational cost, but also to ensure 

the convergence. The inputs of the model will be contact interferences and 

angles, which can be calculated through the BIME model, and the outputs will 

be the friction torque, contact results (pressure, shear stress and contact 

status) and ball kinematics. To obtain these results, one of the rings must be 

rotated with respect to the other, which involves large displacements. During 

the simulation, the ball also undergoes large displacements and rotations, so it 

must be modelled as a solid body. Simplifications like the ones proposed by 

Smolniki and Rusiński [81] or Daidié et al. [83], although very practical for 

load distribution analysis, they are not applicable in this case. 

In this first model, rigid rings will be considered, as they are in most 

analytical models for the load distribution [38,39,44]. Considering rigid rings 

involves not allowing them to have global deformations, but they must have 

the capability to deform within the contact vicinity. For this reason, only the 

parameters that affect the geometry of the ball-raceway contact will have an 

impact on the results. These parameters are bearing mean diameter (   ), ball 

diameter (  ), osculation ratio ( ) and initial contact angle (  ), and are called 

contact parameters (see Figure 3.5). The rest of the parameters will not affect 

the results, as long as the distance from the raceways to the outer faces of the 

rings, where boundary conditions are imposed, is large enough so contact 

deformations are not influenced. These parameters are the inner diameter 

(  ), the outer diameter (  ), the clearance between rings ( ), the ring height 

( ) and the span angle for the sector ( ), and are called secondary parameters. 

Their values have been set as a function of the contact parameters: 

            

(3.1) 
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Of course, the raceway radius (  ) affects the geometry of the contact, but 

it is also a derived parameter, that is a function of the ball diameter (  ) and 

the osculation ratio ( ), as explained in the previous chapter. Furthermore, the 

angular span of the section ( ) fixes the total DoF of the FE model. Thus, 

the minimum angle capable of covering the contact patch area and its 

trajectory along the raceways is sought. It must be also taken into account that 

results can be affected by boundary conditions if the contact area reaches the 

vicinity of the limits of the raceway. In this sense, the value adopted in (3.1) 

for   has proven to be the most cost-effective, avoiding any side effect due to 

imposed boundary conditions. As a result, the geometry shown in Figure 3.6 

is obtained. Note that it is divided into several bodies, so different mesh sizes 

can be defined, with an appropriate transition. 

Rings and ball are simulated as deformable bodies in order to suitably 

replicate contact deformations. To assume rigid rings, boundary conditions 

are employed, which are specified later. The material used for the simulations 

is steel, with an elastic modulus of 200GPa and a Poisson coefficient of 0.3. A 

small spherical region of the centre of the ball is simulated as rigid (Figure 

3.6), so ball kinematics can be directly obtained. This rigid sphere is far from 

the contact areas on the surface, so it does not affect the behaviour of the 

system. Figure 3.6 shows 3 regions, where different mesh types are employed: 

 ESIZE-1: this region is the most important, since it is the region where the 

contact happens (marked in black in Figure 3.6). Therefore, it is meshed 

with very regular elements, composed exclusively by SOLID186 second 

order hexahedrons (20 nodes) with a high aspect ratio. There are two 

layers of these elements on the contact surface. The element size is 0.02 

times the diameter of the ball. 

 ESIZE-2: this region is the transition between ESIZE-1 and ESIZE-3 

regions. SOLID187 second order tetrahedrons (10 nodes) are employed 

for their adaptability, although some SOLID186 pyramids (13 nodes) are 

required for the elements in contact with the hexahedrons. The element 

size is three times that employed in ESIZE-1. 

 ESIZE-3: this is the farthest region from the contact and the same 

elements of ESIZE-2 are used, but with a size four times greater. Since 

this region is far from the contact, it could have been considered as rigid. 

Nonetheless, the nodes in this region represent a small part of the total. 

Moreover, meshing this region makes easier switching from the rigid rings 

assumption to deformable rings. 
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Figure 3.5. Geometrical parameters of the FE model. 

 

Figure 3.6. Geometry of the FE model. 

Figure 3.7 and Figure 3.8a show the resulting mesh. Of course, a sensitivity 

analysis was performed before defining the described mesh, which studied the 

effect of the mesh size on the results. The computational cost is also a limiting 

factor, so this mesh offers a good (accuracy)/(computation cost) ratio for the 

friction torque calculation when many analyses are required. Nevertheless, for 

a detailed study of the contact, a more refined mesh is used. Figure 3.8b 

shows this mesh, where the element size for the contact (ESIZE-1) is 0.01 

times the ball diameter. The first described mesh (Figure 3.8a) has a total of 

nearly 106 DoF, while the refined one (Figure 3.8b) has over 3.5·106 DoF. 

Later in this section, results are analysed for these two different mesh sizes for 

a particular bearing. 
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Figure 3.7. FE mesh. 

 

Figure 3.8. Different mesh refinements: (a) friction torque calculation; (b) detailed contact 
analysis. 

This model requires two contact types. Defining contacts involve new 

elements, which are CONTA174 and TARGE170 in ANSYS®. The contacts 

are defined below: 

 Ball-raceway contact: the study of this contact, and the friction torque 

derived from the shear stresses on it, is the objective of this model, so it is 

of crucial importance. Of course, it is a frictional contact, defined by a 

constant frictional coefficient. In order to make the post-process easier, 

each of the ball-raceway contacts is defined separately. As the surface of 

the ball is convex and the raceway is concave, and because the mesh size is 

the same in both bodies, the former is set as the contact (where new 

CONTA174 surface elements will be created) and the latter is the target 

(TARGE170 elements). It is important to set a penetration tolerance value 

in order to avoid mesh interferences between the ball and the raceway. A 
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value of 1μm is imposed, since maximum penetrations of 0.1μm are 

observed after the analysis, which is well below the magnitude order of the 

interferences due to ball preloads or manufacturing errors (as seen in 

Chapter 2). The normal stiffness of the contact is regulated by the criterion 

of the program, although better convergence behaviour is observed if the 

update of the stiffness is allowed for each iteration. Regarding contact 

formulation, Augmented Lagrange is proven to give good results, while 

Normal Lagrange gives the same results but with higher computational 

cost, so the first one is employed. 

 Rigid ball - deformable ball contact: a contact is defined between the small 

rigid sphere in the centre of the ball and the ball itself. A typical bonded 

contact is defined, with pure penalty formulation. Note that, although the 

rigid body is not deformed, the surface must be meshed (through 

TARGE170 elements) for the contact definition. 

To simulate rigid rings, no deformations of their outer faces are allowed. 

These faces are marked in black in Figure 3.9. On the one hand, the faces of 

the outer ring are fixed, while on the other hand, the faces of the inner ring 

are displaced, but not deformed. To apply the displacements, these faces are 

rigidly linked to a remote point, placed in the centre of the bearing. The rigid 

connection between the remote point and the faces is defined through 

constraint equations, so no additional elements are required (the lines in 

Figure 3.9 are only for representation purposes). 

 

Figure 3.9. Loads and boundary conditions. 
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Before applying the rotation to the inner ring, loads from different sources 

can be applied. In the next points, the different load steps are described, while 

not all of them must be present in an analysis: 

 1st step: Contact interferences 

The defined ball-raceway contact allows initial interferences between 

contacting surfaces to be imposed. They can be the interferences 

calculated with the BIME model. These interferences are introduced 

gradually through a ramped function. 

 2nd step: Ball preload (  ) 

Considering an oversized ball is not a straightforward task in an FE 

simulation. If the real geometry is considered, initial geometrical 

interferences will exist between ball and raceways. This is proved to cause 

convergence problems in many cases, so a more robust alternative is 

required. Thus, the nominal ball is considered in the geometry, and in a 

second step, a thermal jump is introduced to the ball, according to the 

following formula: 

                     
       

    
 

     
 

 (3.2) 

Where    is the linear thermal expansion coefficient (not to be confused 

with the contact angle), the value of which is around 1.2·10-5K-1 for 

stainless steel. In this case, the real value of the coefficient does not matter, 

since the thermal expansion is a mere simulation ruse. Through the 

thermal expansion, the preload is gradually introduced, so the convergence 

is ensured. 

 3rd step: External displacements 

As a result of combined axial, radial and tilting loads, the bearing segment 

corresponding to each ball experiences certain axial and radial 

displacements. These external axial or radial displacements can be applied 

to the inner ring through the remote node. 

 4th step: Rotation 

Finally, the rotation is applied to the inner ring. As done with external axial 

and radial displacements, the rotation is applied through the remote node 

to the ring. When the rotation starts, the contact experiences a change and 

undergoes a transitory stage until it is stabilized (see Figure 3.10). 

Therefore, several substeps are required in order to appropriately simulate 

this phenomenon. Since very large displacements are involved during the 
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rotation, a high number of substeps will also help in achieving the 

convergence. After trying a different number of substeps, 50 was proved 

to be the lowest value that provides good convergence and reliable results. 

In the research framework of this Doctoral Thesis, the 3rd step was only 

used for some preliminary tests. In most cases, only the 1st and 4th steps were 

used, since the interferences calculated by the BIME model, which are 

introduced in the 1st step, already consider the ball preload and the external 

loads or displacements. Nevertheless, the 2nd and 4th steps were applied for 

some analysis. In any case, the 4th step is of course mandatory, and some kind 

of load must be applied before, so at least there must be two steps. 

According to Kalker [68], the ball needs to be displaced at least one time an 

entire contact ellipse in order to achieve the stabilization of the friction 

torque. Therefore, we have to displace the inner ring at least 4 times the minor 

semiaxis of the ellipse ( ) (see Figure 3.11). Just to ensure the stabilization and 

being conservative, the inner ring is displaced 1.5 times the minimum 

required: 

 

Figure 3.10. Evolution of the contact status in the contact ellipse. 

t1 t2 t3 

t4 t5 t6 
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Figure 3.11. Minimum required displacement for the stabilization of the contact. 

       
  

     
   

 

   
 (3.3) 

To calculate major and minor semiaxes, the approximation of Houpert [30] 

of the exact solution [17] for osculation ratios in the range of             

is used (as done in Chapter 2 for the contact stiffness): 

                      
    

 
  

  
 
 
   

     

(3.4) 

                     
    

 
  

  
 
 
   

     

Which can be particularized for the case of steel (assuming typical values of 

           and      ): 

                        
        

(3.5) 
                       

        

The external faces of the rings are rigid, according to the imposed boundary 

conditions. These conditions can affect the results when the contact region is 

near the external faces, so this is an undesirable effect to be avoided. It is 

demonstrated that the results are never affected by imposing the next limit to 

the applied rotation, whatever the load or the geometry is: 

   
    

     
     

 
  
   

 (3.6) 

On the other hand, the size of the elements at contact surfaces is also 

determining. It is observed that friction torque results provided by FE 
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calculations have an oscillatory nature (as later illustrated for a particular 

bearing), and each oscillation corresponds to the transition of the contact 

from one element to the contiguous one during the rolling of the ball over the 

raceway. As a criterion, a minimum of 4 oscillations is established in order to 

obtain reliable results. Thus, the inner ring is required to displace at least 8 

times the element size at ESIZE-1: 

   
    

        
     

 
        
     

     
  
   

 (3.7) 

If    does not reach this minimum, it means that the mesh is not fine 

enough for the small size of the contact area. According to the established 

limits, the rotation must be ensured to be within the following limits, so the 

results will be reliable: 

        
   

  
   (3.8) 

The model was done in ANSYS® Workbench, including the geometry, for 

which ANSYS® DesignModeler was used. Nevertheless, an APDL script was 

developed to apply the loads as defined, since Workbench shows certain 

parameterization limitations. 

As discussed at the beginning of the section, the model is highly nonlinear 

due to the large displacements involved and the punctual and variable nature 

of the contacts. Nevertheless, a parametric and robust model has been 

achieved, which reports reliable results and does not show convergence 

problems for any geometry or load case. This is due to the employed mesh, 

contact formulation and progressive application of the loads. For the 

reference mesh (Figure 3.7 and Figure 3.8a), the computational time is 

between 2 and 8 hours, depending on the magnitude of the loads and the 

number of contacting points (2 or 4). For the refined model (Figure 3.8b), the 

computational cost is between 10 and 40 hours. These times have been 

obtained in a high performance work station, with an Intel® Xeon® E5-2697 

v3 @ 2.6GHz processor with 14 physical cores (28 logical) and a RAM of 

128GB. For the optimization of the computing time, only 4 processors were 

used per each calculation, allowing the parallelization of different analyses. 

Considering all this, the reference mesh is suitable to perform series of 

calculations to obtain the friction torque for a large number of geometrical 
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configurations under different load conditions, while the refined model is only 

affordable to study the contact in detail for a limited number of cases. 

To show the results that the model provides and explain how they are post-

processed, a particular case is going to be studied. The values of the 

parameters are shown in Table 3.2. In the analysis, an interference 

corresponding to 50% of the static capacity is introduced on one of the 

diagonals (  ), while the other remains unloaded so the ball will roll. 

Figure 3.12 shows friction torque results for the model with the reference 

element size and for the refined one. In the figure, the aforementioned 

oscillatory nature is clearly appreciated. It can be observed how the period of 

the oscillations for the reference mesh is twice that of the refined mesh. Since 

the element size in the refined model is half the size of the reference, this is 

consistent with what was explained before. In any case, these fluctuations 

must be filtered, whatever the mesh is. For this purpose, the next functional 

approximation is used: 

Parameter Value 

Bearing mean diameter (   ) 1000.00 mm 

Ball diameter (  ) 30.00 mm 

Osculation ratio ( ) 0.95 

Friction coefficient ( ) 0.10 

Contact angle (  ) 45° 

Contact interference (  ) 50% 

Table 3.2. Values of the parameters of the studied case. 

 

Figure 3.12. Friction torque results for different mesh sizes. 
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 (3.9) 

Where       is the instantaneous friction torque,    is the stationary 

friction torque (the sought value) and   and   are coefficients to be 

determined. The values of the coefficients will be those which minimize the 

quadratic error between the functional approximation and the instantaneous 

friction torque. According to this approximation, the stationary value of the 

friction torque is 16.2N·m for the reference model, and 16.9N·m for the 

refined one. Analyses were performed for different geometries and loads, and 

in every case higher values were reported for the refined model. Since the 

effect of the mesh size is consistent, both models are equally valid to 

qualitatively study the effect that different parameters can have on the friction 

torque. However, the fluctuations and the strong dependency of the final 

result on the mesh size show that the accuracy of the model is limited to a 

certain extent for the friction torque calculation. 

Ball kinematics can be directly obtained from the model and show no 

fluctuations or dependence on the mesh size. For the particular case that is 

being studied, the results are represented in Figure 3.13. This plot has been 

directly obtained from the program, so no further post-process is required. 

To obtain normal contact forces and angles, the process is not so 

straightforward. ANSYS® Workbench gives the forces for each contact (   

and    in Figure 3.14), but does not distinguish between normal and tangential 

forces (  and   ). Thus, some calculations must be done. According to Figure 

3.14, the contact angle can be calculated as follows: 

        
  
  
       

  
 
  (3.10) 

 

Figure 3.13. Results for ball kinematics. 
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Figure 3.14. Forces in the contact. 

   and    are the components of the total force  , which are known, and    

is the tangential component of the resulting force, which is unknown. To 

calculate this component, the moment it generates with respect to the centre 

of the ball (point  , see Figure 3.14) is formulated, which will be equal to the 

summation of the moments generated by the contact force at each node: 

                   

 

 
 

 
     (3.11) 

Where    and    are the coordinates of the node   from the centre of the 

ball (considering displacements and deformations) and     and     are the 

components of the contact force. Therefore, the final contact angle can be 

calculated by the following expression, which is obtained from combining 

(3.10) and (3.11): 

        
  
  
        

                

   
  (3.12) 

Note that calculations for contact forces and angles are done before rotating 

the inner ring, so the contact ellipse is centred in the    plane. 

Contact pressure can be obtained in a direct way from the Workbench 

environment. The results can be compared with the pressure distribution 
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from the Hertz theory, confirming its suitability for these kinds of contacts. 

Figure 3.15 shows pressure results along the major semiaxis for the studied 

case. This plot shows that FE results are slightly higher than the values from 

the Hertz theory, as demonstrated by Pandiyarajan [29], but they are still very 

close. Once more, Houpert’s approximation can used as well for analytical 

calculations [30], obtaining the next expression for the maximum pressure 

(    ) for steel and high osculation ratios: 

                     
    

  
   

 (3.13) 

The most challenging post-processing task is to obtain shear stresses. The 

module can be easily plotted, but there is no option to plot the directions, 

neither in Workbench nor in the Classic environment. Through APDL 

commands, the components of the shear stress can be obtained, but in the 

element local coordinates. Thus, to obtain shear stresses in the same 

coordinate system, the following steps are carried out by a parametric APDL 

script for every contact element: 

 Obtain shear stress components in the local coordinate system for each 

node (    and    ). 

 Compute the element average value of each component (   and   ). 

 Obtain the coordinates of the three nodes that define the local coordinate 

system, in the global coordinate system. 

 From the global coordinates of the nodes, calculate the components of the 

normalized vectors that define the local coordinate system, in the global 

coordinate system. 

 

Figure 3.15. Contact pressure along the major semiaxis. 
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 Project each of the shear stress components in the local coordinate system 

(   and   ), in the global coordinate system (   ,    ,    ,    ,    , and 

   ). 

 Compute the total value of the shear stress components in the global 

coordinate system (  ,    and   ). 

Once the shear stresses are obtained in the global coordinate system, they 

can be plotted in the Classic environment. Figure 3.16 shows the results for 

the resulting plots, which are not easily interpretable for the case of the vector 

field. For this reason, and to later compare the results in a more direct way 

with those obtained with the analytical model, shear stresses are exported to 

Matlab®. Ball kinematics are also exported to Matlab® so the shear stress field 

can be plotted as shown in Figure 3.17 after making the corresponding 

coordinate changes. The plots show the results in the contact ellipse projected 

in a plane (the ellipse is projected, not the value of the shear stress). 

Together with the shear stress field, pressure and contact status are reported 

in Figure 3.17. Contact pressure is also exported to Matlab® for better 

representation of the results. The contact status can be directly obtained from 

the FE model and provide information about the extent to which full sliding 

friction is being contravened. Figure 3.17c shows an important stick region (in 

black), which is clearly affecting the shear stress field. From comparing shear 

stresses with contact pressure, it is evinced that the former are under the value 

that would be obtained by assuming full sliding. Therefore, further research in 

this topic is justified. 

 

Figure 3.16. Shear stress plots in ANSYS®: (a) modulus; (b) vector field (raceway 
reactions). 

(a) 

(b) 
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Figure 3.17. Contact results for the refined model: (a) pressure; (b) shear stress (ball 
reactions); (c) status. 

3.2.2 Finite Element model with deformable rings 

In order to allow rings deformations, two aspects of the previous model 

must be reconsidered: boundary conditions and geometry. On the one hand, 

for the case of rigid rings, no deformations were allowed to their external 

surfaces (thick lines in Figure 3.18a). On the other hand, with deformable 

rings, only the displacements in the normal direction of the lateral faces of the 

sector are restricted, allowing free sliding movement so that the rings can 

deform in the radial and axial directions (see Figure 3.18b). With these 

boundary conditions, an additional constraint must be imposed in order to 

avoid rigid body motion. For this purpose, the deformations of the nodes in 

the middle plane of the outer ring (parallel to the    plane, see Figure 3.5) are 

restricted to this plane. Such constraints imply that rings can deform freely, 

replicating the conditions of an experimental idling friction torque 

measurement, for example. This measurement is done before assembling the 

bearing in the machine, so ring deformations are not restricted. Figure 3.19a 

shows how rings are deformed considering the described boundary 

conditions. 

As the deformation of the system will depend on the deformability of the 

rings, their real geometry must be considered. Therefore, the so called 

(a) 

(b) 

(c) 
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secondary parameters, namely inner diameter (  ), outer diameter (  ), 

clearance between rings ( ), ring height ( ) and span angle for the sector ( ) 

(Figure 3.5), will affect the results, and thus the real values must be adopted. 

Note that the sweep angle ( ) will be a function of the number of balls. 

Rolling bearings can be mounted with or without spacers, and the dimensions 

of these can be variable, so the number of balls can change, and consequently 

the value of the sweep angle. As will be demonstrated, this fact has a relevant 

effect on the behaviour of the bearing. 

Slewing bearings require holes for the bolted joints, and usually have a gear 

either on the inner or outer ring. Nonetheless, they are demonstrated to have 

little effect on the ring stiffness, so they are neglected, as is done in the FE 

model for the calculation of the stiffness matrix (explained in the previous 

chapter). Figure 3.19b shows the FE model for the measured bearing, 

considering 32 balls. This bearing can harbour up to 67 balls without spacers, 

so the considered span angle is 2.1 times that in (3.1). Considering the real 

geometry of the rings, and especially increasing the span angle, involves a 

significant increment of the DoF, resulting in higher computational cost. The 

model in Figure 3.19b, for example, consists of nearly 2·106 DoF, twice the 

DoF of the reference model with rigid rings. 

 

Figure 3.18. Boundary conditions of the FE model: (a) rigid rings; (b) flexible rings. 

(a) (b) 
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Figure 3.19. FE model for deformable rings: (a) deformed shape; (b) measured bearing. 

3.2.3 Submodeling 

The submodeling technique allows a detailed study of a localized region of a 

previously analyzed FE model [97]. This technique consists of taking the 

localized region to be studied apart, so it can be modelled with a finer mesh, 

and thus obtain more detailed and accurate results. This technique is based on 

Saint-Venant’s Principle, which states that “[...] the difference between the 

effects of two different but statically equivalent loads becomes very small at 

sufficiently large distances from load” [100]. This implies that the 

displacements calculated in the original (or global) model can be imposed to 

the cut boundary of the submodel, where the cut boundary is formed by the 

areas through which the global model has been cut to obtain the geometry of 

the submodel. As long as the cut boundary is far enough from the studied 

region, the Saint-Venant’s Principle will be applicable. Note that, since the 

mesh is not the same in the cut boundary for the global model and the 

submodel, the displacements from the global model must be interpolated to 

the nodes of the submodel. 

In the sector model of the bearing, the submodeling technique is useful to 

study the contact region in more detail, so more accurate results can be 

obtained for the shear stress field and the contact status because the mesh of 

the submodel will be much finer. For the submodel, the superficial layer of 

the ball and the raceway corresponding to one contact are considered. Taking 

(a) (b) 
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advantage of the partitions of the geometry for the definition of the mesh, the 

ESIZE-1 region (Figure 3.6) corresponding to one contact is considered for 

the submodel. The ESIZE-1 is divided into different parts as well, so only 

those corresponding to one contact are selected. In Figure 3.20 the geometry 

and the cut boundary of the submodel (marked in black) is represented. 

Figure 3.21 shows the mesh of the submodel, where a progressive element 

size is used, thus achieving elements three times smaller than in the refined 

sector model in the vicinity of the contact region. The submodel has 4·106 

DoF, and the computing time is around 30h. 

 

Figure 3.20. Cut boundary of the submodel. 

 

Figure 3.21. FE mesh of the submodel. 
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Shear stress and contact status results from the submodel are compared 

with those obtained from the refined model in Figure 3.22. Due to the finer 

discretization, the results from the submodel are more accurate than those 

from the global model. However, it can be used to analyse only particular 

cases because of its high computational cost. The submodel shows a more 

localized stick region, so the shear stress is affected to a lesser extent. 

Nevertheless, the stick region still represents an important area of the contact 

ellipse. 

3.3 Effect of manufacturing errors, ring stiffness 

and ball number on the friction torque 

The Rigid-BIME model was used in combination with the Rigid-FEM (1st 

way, according to Table 3.1) and the Flexible-FEM (2nd way) to evaluate the 

effect of manufacturing errors, ring stiffness and ball number on the idling 

friction torque (i.e. with no external loads). For this purpose, the bearing used 

in Chapter 2 to illustrate the relevance of manufacturing errors was employed. 

Because of the high number of simulations required, the FE model with the 

reference mesh was used. 

 

Figure 3.22. Shear stress and contact status: (a) global model; (b) submodel. 

(a) 

(b) 
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3.3.1 Functional approximation for the friction torque calculation 

In order to calculate the friction torque for the whole bearing, as many 

calculations as balls inside the bearing are needed, introducing to each one its 

corresponding interference values. Since no external loads are considered, 

these interferences will be due to the manufacturing errors and the ball 

preload. For simplification purposes and to avoid high computational costs, a 

Design Of Experiments (DOE) was planned considering the three parameters 

related to the tolerances: the interferences in each contact pair (   and   ) and 

the osculation ratio ( ). Note that, since manufacturing errors are being 

considered, the osculation ratio can change. Taking peak and valley values for 

the three parameters, a full factorial DOE was performed. For the osculation 

ratio, three levels were considered, 0.93, 0.94 and 0.95, based on the raceway 

radius obtained from the measurements. For the interferences, four levels 

were considered, with values up to 65μm. Based on Hertz’s theory [17] and 

Houpert’s formulation [30], the following functional approximation is 

proposed for the friction torque: 

     

     
    

            
 

      
         

          

  (3.14) 

The values for the coefficients are different if the ball is spinning on all 

contacts or if it is rolling with respect to two points and sliding with respect to 

the other two. To better identify the point at which this transition happens, 

some extra calculations were required for intermediate values of the 

inferences. In the cases under study, only preload (and no external load) is 

considered, so no case will exist with a big interference in one contact 

diagonal and no contact in the other. Consequently, if contact exists only at 

two points (       ), the interference will be the order of few microns, and 

the friction torque will be therefore negligible. To know if a ball is spinning or 

rolling, the interference ratio (  ) is defined, which relates both interferences 

in each ball: 

    
           

           
 (3.15) 

If this ratio is lower than the transition value (  
  ), the ball will be spinning; 

if not, the ball will be rolling. The values for   
   were determined based on the 

results from the FE calculations. Table 3.3 compiles the values for the 
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coefficients from equation (3.14), which were obtained by the least squares 

fitting with the points from the DOE. Using the values of Table 3.3 and 

introducing   in [mm] in (3.14),    is obtained in [N·m]. For the model with 

deformable rings, 32 balls were considered; this aspect is important because 

the sweep angle ( ) affects the response of the sector, as previously 

mentioned. Note that this approximation is only valid for the idling friction 

torque calculation of the particular bearing that is being analysed, for 

interferences up to 65μm and osculation ratios between 0.93 and 0.95. 

Ring behaviour   
   

4 points spinning 2 points rolling + 2 sliding 

                    

Rigid rings 7.5 2.09 0.85 531 28.2 2.09 0.85 -1344 1376 

Flexible (32 balls) 3.5 1.81 0.75 291 -84 8.93 1.87 0 3.08·107 

Table 3.3. Values for the functional approximation (3.14) for the friction torque 
calculation. 

Figure 3.23 compares the results from the 52 FE calculations of the DOE 

(markers) with the functional approximation (3.14) for the case with 

deformable rings (lines), illustrating the excellent correlation between them 

(similar correlation appears for the rigid ring case). Several detailed views of 

two regions of the plot are also shown for clarity. The jump discontinuity in 

the curves represents the transition related to the kinematic of the ball, from 

rolling (     
  ) to spinning (     

  ). 

Finally, the proposed formula (3.14) was used to calculate the friction 

torque due to each ball, so the total torque can be calculated as the sum of all 

the balls in the bearing.  The results are shown in the next section. 

3.3.2 Effect of manufacturing errors and ring stiffness 

The Rigid-BIME was used to obtain the interference values for the case of 

nominal ball (Figure 2.6a) and balls with 10 different preloads, ranging from -

15μm to +30μm. The latter represents 13% of the static load capacity, which 

is a high preload value. By feeding (3.14) the interference values from the 

Rigid-BIME and using the coefficients in Table 3.3, the contribution of each 

ball to the friction torque was obtained for both rigid rings (1st way in Table 

2.1) and deformable rings (2nd way). 
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Figure 3.23. Friction torque results for the DOE (markers) and calculated functional 
approximation (lines) for deformable rings. 

For the sake of completeness of the work, two additional aspects were 

considered when calculating the interferences: the relative angular position 

between the rings, i.e. the rotation of the inner ring in the   axis, and the 

manufacturing tolerances of the balls (not to be confused with the 

manufacturing errors of the raceways). The ball quality used in this bearing 

was grade 40, which implied a variation of 2μm in the ball diameter from the 

same lot [101] (this information was provided by the ball manufacturer). The 
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results for the total torque of the bearing, with the scatter due to these two 

factors, are given in Figure 3.24 for rigid and deformable rings. It is worth 

pointing out that the influence of the relative angular position between the 

rings was demonstrated residual, and consequently ball tolerances are 

responsible for the dispersion observed in the plots. 

In order to evaluate the effect of manufacturing errors in the friction 

torque, FE calculations were also performed with the nominal geometry, i.e. 

with no manufacturing errors, for every preload case; these results are also 

shown in Figure 3.24. It can be observed that the effect of manufacturing 

errors has a great influence on the friction torque, ergo they must be 

considered when accurate results are required. Moreover, the high relevance 

of the deformability of the rings on the friction torque is also evinced. To 

quantify these effects, the results are compared in Table 3.4 for three preload 

levels. Looking at the influence of manufacturing errors, the differences are 

proportionally very big for small preloads, while the total discrepancy grows 

with the preload. Therefore, establishing a unique value to quantify the effect 

is not possible, although it is clear that they can largely influence the idling 

friction torque. The table also shows that the effect is proportionally very 

similar for rigid and flexible rings. On the other hand, the results for rigid and 

flexible rings are compared, using the values obtained for the nominal 

geometry (with no manufacturing errors). In this comparison, not only the 

total but also the relative discrepancy  grows with the preload level. For the 

preload of 25μm (11% of the static capacity), the results for rigid rings are 

more than twice those for the flexible rings. 

   

Effect on the idling friction torque (   ) 

Manufacturing errors 
Ring stiffness 

Rigid rings Flexible rings 

[μm] [%]* [N·m] [%] [N·m] [%] [N·m] [%] 

5 2% 20.95 340% 13.60 321% 1.93 46% 

15 7% 44.09 67% 22.93 62% 29.10 79% 

25 11% 61.63 32% 28.76 30% 99.23 105% 

* Percentage over the static load capacity. 

Table 3.4. Effect of manufacturing errors and ring stiffness in the idling friction torque of 
the measured bearing. 
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Figure 3.24. Friction torque VS Ball preload with (band) and without (dotted line) the 
effect of manufacturing errors: (a) rigid rings; (b) deformable rings. 

3.3.3 Effect of ball number 

Additionally, the effect of the number of balls on the friction torque was 

studied. For this purpose, and without taking into account manufacturing 

errors, FE calculations with deformable rings were performed, varying ball 

number (4 levels) and preload (5 levels). It was found that the effect of the 

number of balls is logarithmical, and the next functional expression proved to 

properly fit FE results: 

       
     

 

  
    (3.16) 

Where    is the preload,   is the number of balls and  ,   and    are 

coefficients to be determined for each bearing. For this particular case, the 

values of the coefficients that best fit the FE calculations are 1.84, 0.15 and 8 

respectively, so    will be obtained in [N·m] if    is introduced in [μm]. Thus, 

for the measured bearing the formula will be: 

(a) 

(b) 
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    (3.17) 

Figure 3.25 shows the results from the FE calculations (markers) and the 

functional approximation in (3.17) (solid lines). Furthermore, the results for 

rigid rings are shown for one preload case (25μm, dotted line), illustrating that 

if the elasticity of the rings is not considered, the influence of the ball number 

is linear. 

 

Figure 3.25. Influence of the number of balls on the friction torque. 

3.4 Improvement of the BIME-FEM methodology 

In the previous section, the Rigid-BIME model has been used to feed both 

Rigid-FEM and Flexible-FEM models, which represent the proposed 1st and 

2nd ways to calculate the friction torque, according to Table 3.1. In this 

section, an alternative procedure to the 2nd way is presented, which also allows 

ring flexibility to be considered. This procedure, which is called the 3rd way, 

offers important advantages both in terms of accuracy and computational 

cost. The basis of this procedure lies in considering the ring elasticity in the 

BIME model instead of in the FE model. As will be reasoned and 

demonstrated in this section, the 2nd and 3rd ways are equivalent. However, the 

lower computational cost of the 3rd way allows using a much finer mesh in the 

FE models, which leads to more accurate results. 

Apart from the advantages of the 3rd way over the 2nd, demonstrating that 

they offer the same results (when the same mesh is used in the FE models) 

allows the validation of the Flexible-BIME. This validation is required in 

order to later develop the 4th way. The 4th way substitutes the FE model by an 

analytical model, but this analytical model requires real contact forces and 

angles, having considered ring deformations for their calculation. This means 
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that the Flexible-BIME is required for the 4th way. Therefore, the validation of 

the Flexible-BIME is necessary to ensure that the analytical model for the 

friction torque calculation will be fed by reliable contact forces and angles. 

3.4.1 An alternative model for the friction torque calculation 

First of all, let us go over the 2nd way. The ball-raceway interferences 

calculated by the Rigid-BIME model are the interferences that would exist if 

the rings were infinitely rigid. Therefore, these interferences are the 

geometrical interferences, which are larger than the real ones. Up to this point, 

no ring flexibility is considered. Then, these geometrical interferences are 

introduced in the Flexible-FEM in a first load step, where the rings are 

deformed and the real interferences are reached. Then, once the real 

interferences are achieved, the inner ring is rotated in a second step to 

calculate the friction torque. 

Let us now consider the inverse procedure. If the Flexible-BIME model is 

used in the first place, the calculated interferences will be directly the real 

ones, smaller than the geometrical interferences. These interferences must be 

the same as those obtained in the 2nd way after applying the fist load step to 

the FE model. Thus, these interferences can be introduced in the Rigid-FEM 

in the first step of the analysis. As ring deformations are not allowed in this 

FE model, the interferences after the first load step will be the same as those 

calculated with the Flexible-BIME, and therefore the same as those obtained 

in the 2nd way after ring deformations. Consequently, the interferences in the 

2nd and 3rd ways will be the same before rotating the inner ring. In the second 

step, the rotation is applied, and since the interferences are the same, so will 

the friction torque. 

In order to obtain the same results as in the previous section, the same 

mesh must be used. In the FE model for the friction torque calculation, the 

mesh that determines ring global deformations is the one at ESIZE-3 (Figure 

3.6). Therefore, the mesh from ESIZE-3 is replicated in the FE model for the 

calculation of stiffness matrices of the rings. Figure 3.26 compares the mesh 

of the FE model for the friction torque calculation (Figure 3.26a) with that of 

the FE model for the stiffness matrices calculation (Figure 3.26b). Apart from 

the refinement at the raceways, which should not affect global deformations, 

the mesh is very similar. 
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Figure 3.26. Ring mesh in different models: (a) for the friction torque calculation; (b) for 
the stiffness matrix calculation (only a sector is represented). 

Another relevant aspect to be considered is boundary conditions. The 

conditions imposed on the Flexible-FEM imply assuming that every ball in 

the bearing is experiencing the same interferences. In other words, imposed 

boundary conditions simulate cyclic symmetry, so the calculated friction 

torque is the contribution of one ball to the total friction torque in a bearing 

where every ball is under the same interferences. This fact is addressed later in 

section 3.4.3 and demonstrated to have no effect. 

The calculations for the stiffness matrices required for the 3rd way were 

therefore performed using the mesh in Figure 3.26b, and the results are 

shown in Figure 3.27. In the figure, the results from the 2nd way are also 

presented, so a direct comparison is allowed. Through this comparison, it is 

demonstrated that both ways offer very similar results. Moreover, the little 

differences can be due to the mesh, which is not exactly the same in both 

cases. As demonstrated in the following section, the mesh has a great effect 

on the results, so the little discrepancies of the results from both ways are 

justified. 

3.4.2 Improvement in the accuracy 

The first advantage of the 3rd way over the 2nd is that it allows a finer mesh 

for the simulation of the flexibility of the rings. The FE model for the friction 

torque calculation requires a very fine mesh at the contact, so a coarse mesh is 

used in the rest of the model in order to achieve reasonable computational 

costs. Moreover, several simulations are needed with the Flexible-FEM model 

for each bearing in order to obtain the coefficients of the formula (3.14). On 

the other hand, only one analysis is required to obtain the stiffness matrices 

for each bearing in the 3rd way, and no mesh refinement is needed. 

(a) (b) 



Chapter 3. Study of the friction torque through the FEM 85 

 

 

Figure 3.27. Friction torque VS Ball preload for deformable rings: comparison between 
the 2nd and the 3rd ways. 

A sensitivity analysis was performed to evaluate the influence of the mesh 

size on the results. The resulting mesh is shown in Figure 3.28, the results of 

which are shown in Figure 3.29 and contrasted with those from the 2nd way. 

From the comparison, the effect of the mesh size is demonstrated to be very 

large. Therefore, the effect of the ring stiffness on the idling friction torque is 

even greater than that observed with 3.3.2. 

3.4.3 Improvement in the computer time 

The other advantage of the 3rd way is the computational cost savings. For 

reference, Table 3.5 shows the computational cost of one calculation for each 

model used for the performed analyses in the 2nd and 3rd ways (they can 

change for a different bearing). On the one hand, the 2nd way requires a new 

DOE when any parameter is changed. This DOE, performed with the 

Flexible-FEM, will last around a month (without parallelizing calculations) for 

a bearing like the one that is being studied. On the other hand, the 3rd way 

only requires a new DOE when contact parameters change. For example, the 

coefficients of Table 3.3 for rigid rings are valid for any bearing with a 25mm 

ball, a mean diameter of 541mm, an initial contact angle of 45º and osculation 

ratios between 0.93 and 0.95. Therefore, they are still valid for different values 

of inner or outer diameters or ring heights, for example. Contrarily, the 

coefficients for flexible rings are valid only for the specific geometry of this 

bearing. Moreover, the Rigid-FEM has lower computational cost, so a DOE 

will last around 10 days, which is three times less than the time required for 

flexible rings. In return, the Flexible-BIME requires more time than the Rigid-

BIME. Nonetheless, the additional computational cost is widely compensated 

by the cost saving of the FE model. 
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Figure 3.28. Final model for the stiffness matrix calculation: (a) global view; (b) sector 
corresponding to one ball (32 balls). 

 

Figure 3.29. Friction torque VS Ball preload for deformable rings: comparison between 
the 2nd way and the 3rd way with the final mesh. 

Model Rings behaviour Global/Sector Computational cost 

BIME 

Rigid Global 10s 

Flexible Global 
10min with sparse matrix 

2min with band matrix 

FE-Torque 

Reference mesh 

Rigid Sector 2-8h 

Flexible Sector 5-20h 

FE-Superelement 

Coarse mesh 

Flexible Global 20min 

Flexible Sector 10s 

FE-Superelement 

Final mesh 

Flexible Global 17h 

Flexible Sector 5min 

Table 3.5. Computational costs of the analyses for the different models required in the 
BIME-FEM procedure. 

(a) (b) 
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The cost of the stiffness matrices calculation must be also considered. The 

Flexible-BIME requires these matrices, which involve one extra calculation 

per ring for each new bearing. The cost of these analyses using the mesh in 

Figure 3.1 is 17h for each ring. Although this cost is still widely compensated 

by the cost saving of the friction torque simulations, a much faster model is 

proposed for the stiffness matrices calculation. Instead of considering the 

whole ring for the FE condensation, only the sector corresponding to one ball 

can be considered instead. By imposing the same boundary conditions as 

those in the Flexible-FEM, it is demonstrated that contact interferences and 

friction torque results are the same. By using the sector model for the stiffness 

matrices calculation, the computational cost for each ring dropped from 17h 

to 5 minutes, which is a negligible cost in comparison with the time required 

by each FE analysis for the torque calculation. By the way, this demonstrates 

that the boundary conditions used in the Flexible-FEM model are not a cause 

of error. 

The stiffness matrices obtained from the sector model must be expanded 

for the entire bearing. As a result, band matrices are obtained. The 

calculations with the Flexible-BIME model using the band matrices are 5 

times faster than with the sparse matrices obtained from the global model, as 

reflected in the table. 

As a conclusion, the 3rd way requires much less computer time than the 2nd 

way and reports more accurate results due to the possibility to use a much 

finer mesh in the FE simulations. Depending on the number of calculations 

and the parameters to be considered, the cost savings will be higher or lower. 

Nevertheless, as it is always faster and more accurate, the 3rd way will be 

always preferred over the 2nd. In the following chapter, the analytical model 

for the tangential problem solution is presented, which finally leads to the 4th 

way. 
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4 Friction analysis model 

4.1 Introduction 

The FE models developed in Chapter 3 have been proved as a useful tool 

to adequately simulate the contact behaviour and calculate the friction torque. 

Nonetheless, these models show two main drawbacks: the high computational 

cost and the dependency of the results on the mesh size. The high 

computational cost limits the number of calculations that can be performed, 

which is a shortcoming for the design process. Optimization procedures 

usually require a large number of calculations, so a computationally expensive 

model means large calculation times or performing fewer analyses than 

required. 

On the other hand, the dependency of the results on the mesh size 

compromises the accuracy of the results. FE models have been proved useful 

for comparative purposes. By using the same model, the effect of different 

parameters or conditions on the results can be evaluated. Nevertheless, the 

accuracy of the results for each particular case has certain limitations. 

Moreover, the shape of the mesh can also affect the results. Thus, models 

built by different analysts can offer certain discrepancies in the results. This 

makes unfeasible the comparison between results obtained from different FE 

models. 

In this chapter, an analytical approach is proposed for the study of the 

contact and the calculation of the friction torque. The main goal of this 

analytical model is to address the above mentioned limitations. An analytical 

approach will undoubtedly entail a drastic decrease of the computational cost. 

Moreover, such a formulation would allow the same results to be obtained 

whoever performs the calculations, making them comparable with each other. 

For future reference, the model proposed in this section is called FRANC 

(FRiction ANalysis of the Contact) due to its capability to simulate the 

frictional behaviour of the contact. 
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As in the FE models, the inputs of the FRANC model will be contact 

forces (or interferences) and angles. Therefore, the FRANC model can 

directly substitute the FE model in the previously proposed BIME-FEM 

procedure (1st, 2nd and 3rd ways in Table 3.1), leading to the BIME-FRANC 

procedure (the 4th way), based exclusively on analytical approaches. The 

outputs of the new model will be the friction torque, contact results (pressure, 

shear stress and contact status) and ball kinematics, as in the FE models. 

As explained in Chapter 1, Leblanc and Nelias proposed an analytical model 

to solve the internal kinematics in four-point contact ball bearings [56,57], a 

formulation which was simplified by Joshi et al. for slow speed applications 

[59]. Joshi et al. take advantage of the model to formulate the friction torque 

once the solution is found. Nonetheless, this analytical approach assumes that 

full sliding occurs in the ball-raceway contact. As demonstrated through the 

FE model, important stick regions appear when the ball is rolling at low 

speed, contravening this assumption. Therefore, further research is justified in 

order to study the limitations of this formulation and eventually propose a 

new approach, the FRANC model, which will be capable of considering stick 

regions. 

The proposed analytical approach is based on the formulation of the 

kinematics done by Leblanc and Nelias [56,57]. Then, for the shear stress 

calculation, Kalker’s formulations are implemented [68]. Kalker’s 

developments are focused on the wheel-rail contact, where they have been 

widely used up to date. Nevertheless, they have not been applied to the study 

of the contacts in bearings. In this chapter, the suitability of Kalker’s 

formulations for their application at the ball-raceway contact is studied, and 

the results are compared with those from the state of the art analytical models 

and FE calculations. By this comparison, the capabilities and limitations of 

both analytical approaches are determined. Finally, a procedure is proposed 

for the friction torque calculation, which takes advantage of the developed 

analytical models. 

4.2 Analytical model for the friction analysis. The 

FRANC model 

In this section, the FRANC model is presented. In a first step the 

kinematics are formulated. This approach is analogous to the one proposed by 

Leblanc and Nélias, since the kinematics formulation will be the same 
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whatever the assumption for the contact behaviour is. Then, a simplified 

approach is proposed for the kinematics, which will be useful to favour the 

convergence of the solution. After that, Kalker’s simplified theory of contact 

is briefly presented and implemented in the FRANC model. This theory is 

what allows the new approach considering stick regions. Finally, the resulting 

forces are calculated and the equilibrium conditions are imposed, allowing the 

solution of the problem and the computation of the friction torque. For the 

latter, a different formulation to that used by Joshi et al. [59] is proposed. 

4.2.1 Kinematics 

For the analytical approach to the problem, the first step is to formulate the 

kinematics. The formulation presented is similar to the one developed by 

Leblanc and Nélias in [56], although a slightly different nomenclature is used. 

The global coordinate system used for the current formulas is the one used 

for the BIME (see Figure 2.5a), which also differs from the one adopted by 

Leblanc and Nélias. For the kinematical approach, only normal deformations 

are considered, while tangential micro-deformations are ignored. According to 

Kalker, and as later explained, the velocity field formulated in this way is 

called local rigid slip. 

The approach is outlined for the contact point    (see Figure 2.4), and then 

the formulation is given for the other points. According to Hertz theory [17], 

the contact radius after deformation is given by: 

    
  

  
    

 (4.1) 

Where    is the ball diameter and    the osculation ratio of the contact 

point   . Figure 4.1 shows the geometry of the deformed contact. In this 

figure, the      local coordinate system is defined, normal to the contact 

force. The    axis is coincident with the major semiaxis, so the    axis is 

coincident with the minor semiaxis. According to Figure 4.1, the distance 

normal to this plane from a general        point of the contact ellipse to the 

centre of the ball can be calculated by the following formula: 

             
      

       
      

    
  
 
 
 

   
  (4.2) 
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In Figure 4.2, the involved velocities are represented, which are the angular 

velocity of the ball (  ) and the angular velocity of the outer ring (  ). The 

direction of    is defined by the   angle, which is inside the plane    because 

slow speeds are being considered. For the approach, the centre of the ball is 

assumed fixed. This way, the velocity in the    direction of the outer ring ( ) 

and the ball ( ) in a general         point of the contact area can be calculated 

as follows: 

    
        

   

      
                      

(4.3) 

    
                                               

And for the    direction: 

    
                 

(4.4) 
    

                           

 

Figure 4.1. Geometry of the deformed contact. 
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Therefore, the relative velocity at any point of the contact ellipse will be: 

 

           
     

 

  
     

 
                             
                             

(4.5) 

            
     

                               

If we separate rolling and spinning components as follows: 

            
          

  
(4.6) 

            
      

  

And considering the following equations (see Figure 4.2): 

           
(4.7) 

           

 

Figure 4.2. Angular velocities. 
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The rolling relative velocity (   
 ) and spinning relative angular velocity (  

 ) 

from equations (4.6) are determined by the following formulas: 

    
       

     

 
                                      

(4.8) 

   
                                   

Note that, since the rolling occurs in the   direction,    
  will be 0. 

Generalizing formula (4.6) for any   point: 

            
          

  
(4.9) 

              
  

And proceeding analogously for the other contact points, the rolling relative 

velocity (   
 ) and spinning relative angular velocity (  

 ) from equations (4.9) 

can be obtained for each case. Figure 4.3 defines the local coordinate system 

of each contact point. Accordingly, the following expressions are obtained for 

contact point   : 

 

Figure 4.3. Local coordinate system for each contact. 
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(4.10) 

   
                                   

Where    is the angular velocity of the inner ring. For contact point   : 

    
       

     

 
                                      

(4.11) 

   
                                   

And for contact point   : 

    
       

     

 
                                      

(4.12) 

   
                                   

Equations (4.8) to (4.12) define the relative velocity field at the four 

contacts. In these equations, there are four unknowns:   ,   ,    and  . 

Since the approach is thought for slow speeds, no inertial or centrifugal forces 

are involved. Therefore, contact forces and stresses are not affected by the 

rotation speed of the bearing, and so neither will the friction torque be. Since 

the purpose of the approach is to calculate the friction torque and study the 

contact status and shear stresses, the formulation can be normalized with 

respect to one of the unknowns. The angular velocity of the inner ring (  ) is 

used for this purpose, but for the sake of clarity in the formulation, an 

arbitrary value of 1rad/s is established instead of normalizing with respect to 

this parameter. Thus, this leaves only three unknowns:   ,    and  . 

4.2.2 Approximated kinematical approach 

The next step is to calculate the resulting forces at the contacts and 

formulate equilibrium conditions to solve the problem and find the values of 

the three mentioned unknowns. Nevertheless, finding a solution requires a 

first estimation for the unknowns. In this regard, the better the estimation is, 

the faster the solver will find the solution. Moreover, not providing a good 

first shot can make the solution not converge. For this reason, an 

approximated approach is proposed in order to estimate the kinematics in a 

direct and simple way. 
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For the approximation, two cases are distinguished: four contact point case 

and two contact point case. The four contact point case is addressed in the 

first place. For this approach, it is assumed that the contact takes place at a 

point instead of in an area, and that no sliding occurs at this punctual contact. 

It is known that the latter assumption only can be fulfilled for certain contact 

angles, but it is assumed anyway for a first approximation in the following 

formulation. Thus, the velocity of    is formulated for the outer ring ( ) and 

the ball ( ): 

    
    

   

 
 
  
 
         

(4.13) 

    
   

  
 
    

 

 
          

  
 
            

 As no sliding is assumed, these velocities are the same. Equating both 

formulas, the following expression is obtained: 

 
   

   
  

      

         
   

(4.14) 

In the same way, the velocity of contact point    is formulated for the ring 

( ) and the ball ( ): 

    
    

   

 
 
  
 
         

(4.15) 

    
  

  
 
    

 

 
         

  
 
            

And then both formulas are equated, obtaining the following expression: 

 
    

   
  

      

         
   

(4.16) 

The same can be done for point   : 

    
    

   

 
 
  
 
         

(4.17) 

    
  

  
 
    

 

 
         

  
 
            

Equating the formulas: 
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(4.18) 

And finally, for point   : 

    
    

   

 
 
  
 
         

(4.19) 

    
   

  
 
    

 

 
          

  
 
            

And equating: 

 
   

   
  

      

         
   

(4.20) 

The slow speed assumption implies that       and      , so equations 

(4.18) and (4.20) can be rewritten as follows: 

 
    

   
  

      

         
   

(4.21) 

 
   

   
  

      

         
   

(4.22) 

According to this approach four equations have been defined, (4.14), (4.16), 

(4.21) and (4.22), where only three parameters are unknown, namely   ,    

and  , since    is known. By equating equations (4.14) and (4.22), unknowns 

   and    disappear and the following formula is obtained, where the only 

unknown is the   angle: 

  
   

  
                  

   

  
                 (4.23) 

Doing the same with equations (4.16) and (4.21), unknowns    and    

disappear and a similar expression is achieved: 

  
   

  
                  

   

  
                 (4.24) 

For the case of      , both (4.23) and (4.24) are fulfilled for    . If 

     , then (4.23) and (4.24) are fulfilled for different values of  , which 
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means that sliding must occur at the contacting points. Nevertheless, it is 

demonstrated that, for different values of    and   , the   values that fulfil 

(4.23) and (4.24) are very near to each other. Moreover, the average of both 

values is equal to the following value: 

     
     

 
 (4.25) 

This   value coincides with the bisector of the angle formed by contact 

diagonal 1 (          ) and 2 (          ), as illustrated in Figure 4.4. Taking this value 

means assuming that the sliding is equally divided among the contacts of the 

inner and the outer ring, which will be close to the real solution for slewing 

bearings, where       . 

To obtain the expression for the outer ring angular velocity as a function of 

the angular velocity of the inner ring, formulas (4.14) and (4.21) are equated 

and the following expression is obtained: 

     

   
  

      

   
  

      

   (4.26) 

Doing the same with equations (4.16) and (4.22): 

 

Figure 4.4. Approximated direction of the β angle for four contact point case. 
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   (4.27) 

As happened with the   angle, equations (4.26) and (4.27) will only be equal 

for      . For the case of      , the following expression is adopted in 

order to achieve an approximated result: 

     

   
  

     
     

 
 

   
  

     
     

 
 

   (4.28) 

Note that this expression is not the average of (4.26) and (4.27). Of course, 

   has the contrary sign to    (opposite direction) and it has a slightly lower 

value (bigger diameter). 

Finally, the expression of    as a function of    will be obtained. For this 

purpose, equations (4.16) and (4.21) will be used. Considering the adopted 

value for the   angle in (4.25), the following can be written: 

                 
     

 
          

     
 

  (4.29) 

                 
     

 
          

     
 

  (4.30) 

Substituting (4.29) in (4.21): 

    

   
  

      

    
     

 
 
   (4.31) 

And substituting (4.30) in (4.16): 

    

   
  

      

    
     

 
 
   (4.32) 

Once again, equations (4.31) and (4.32) will only provide the same results 

for      . Similarly to what has been done for   , the following expression 

is adopted: 
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   (4.33) 

Thus, equations (4.25), (4.28) and (4.33) offer an initial estimation for the 

kinematics in the case of four contact points. 

For the case of two contact points, only two equations can be defined. 

Suppose points    and    are in contact, while no forces exist at    and   . 

Thus, equations (4.14) and (4.21) will continue to be fulfilled according to the 

proposed assumptions, but not (4.16) and (4.22). From these equations, 

expression (4.26) is obtained for the   , but an additional assumption is 

required in order to calculate    and   as a function of   . For this purpose, 

relative angular velocities will be analysed. Being     the relative angular 

velocity of the ball with respect to the outer raceway, and     the relative 

angular velocity of the ball with respect to the inner raceway, the following 

relationships are satisfied: 

                    
(4.34) 

                    

 

Figure 4.5. Relative angular velocities in the ball. 
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These vectors are schematically represented in Figure 4.5. In this figure, 

angle    is defined as the supplementary angle of  : 

        (4.35) 

To define the    angle (and therefore  ), an assumption about the spinning 

of the ball must be adopted. Taking into account that the osculation ratio in 

the circumferential direction (in   according to Figure 2.5) is bigger for the 

outer ring than for the inner , the inner raceway will offer less opposition to 

the spinning. Thus, assuming that pure rolling exists in the outer ring (point 

  ),     will be parallel to   , which means that      , so      , and 

therefore       . On the other hand, if it is assumed that pure rolling 

occurs,     will be parallel to   , which means that      , so      , and 

therefore       . In slewing bearings, where       , the differences 

in the osculation ratio of inner and outer rings are far less important than in 

small bearings, and spinning will be at both points. Moreover, it will happen 

that       and      , so      . Consequently, the next value can be 

assumed, which will provide a quite accurate approximation: 

        (4.36) 

Substituting this expression in (4.21): 

     
   

  
          (4.37) 

Therefore, equations (4.26), (4.36) and (4.37) provide an initial estimation 

for the kinematics when contact exists at points    and   . If the contact 

exists at points    and    instead of at points    and   , and proceeding in the 

same way, the   angle will be defined as follows: 

        (4.38) 

Which can be substituted in expression (4.16): 

     
   

  
          (4.39) 

So equations (4.27), (4.38) and (4.39) offer an initial estimation for the 

kinematics when contact exists at points    and   . The formulation for the 

three cases can be summarized by the following formulas: 
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(4.40) 
     

   
  

     
  
    

 

 
 

   
  

     
  
    

 

 
 

   

    

   
  

     
  
    

 

 
 

     
  
    

 

 
 

   

The values of   
 ,   

  and   are different for each case and are given in Table 

4.1. Although in this approximated approach only three cases are considered, 

intermediate kinematical situations can take place. In those cases where there 

are four contact points but the normal load in one of the diagonals is much 

greater than in the other, it is not possible to establish beforehand if the ball is 

spinning with respect to the four points (K3) or if it is rolling with respect to 

the most loaded points (K1 or K2). For this reason an iterative algorithm is 

required, which is defined later in section 4.2.5. Nevertheless, from the FE 

calculations performed in Chapter 3, it is known that the transition between 

K1 or K2 to K3 is abrupt, so there is little room for intermediate cases. 

Kinematical case Contact points Contact diagonal   
    

    

K1    and    1         

K2    and    2         

K3   ,   ,    and    1 and 2         

Table 4.1. Values of the parameters for the generalized formulation of the approximated 
kinematical approach. 

4.2.3 Tangential problem 

Before calculating the forces acting on the ball, it must be determined how 

the tangential problem is going to be addressed. State of the art analytical 

models for four-point contact slewing bearings assume that full sliding occurs 

between the ball and the raceway [56,57,59]. This assumption leads to the 

simplest approach possible for the contact simulation. This way, the normal 

problem is solved through Hertz theory, and then the shear stresses can be 

directly computed as the pressure multiplied by the friction coefficient. As 

demonstrated through FE calculations (Figure 3.10, Figure 3.17 and Figure 
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3.22), important stick regions can exist in the contact ellipse, affecting the 

shear stress field. Therefore, the full sliding assumption will provide 

overestimated shear stresses in the stick regions, which can affect the friction 

torque. 

There exist a number of different ways to solve the contact problem. The 

approach proposed in this research work is based on the one developed by 

Kalker for his FASTSIM algorithm. Kalker developed a simplified theory for 

the solution of the tangential problem [66], which was later implemented in 

the mentioned algorithm [67]. This algorithm offers a simple and powerful 

tool for the solution of the tangential problem, allowing fast simulations. The 

FASTSIM has been, and still is, broadly used for the analysis of the rail-wheel 

contact, and has been demonstrated to give reliable results for this application 

with very low computational costs. For these reasons, this formulation has 

been adopted for the ball-raceway contact. Nevertheless, the ball-raceway 

contact differs significantly from the rail-wheel contact, so the suitability of 

Kalker’s formulation for this type of contact is to be demonstrated. 

To apply Kalker’s simplified theory, the following hypotheses are assumed: 

 Quasi-static movement: no effects forces are taken into account. 

 Steady state rolling: as shown in Figure 3.10, the contact status undergoes a 

transient state before stabilising. This transient state is not considered, so 

the studied contact is assumed invariant with time. 

 Non-conformal contact: like Hertz theory, Kalker’s simplified theory 

assumes non-conformal contact. This allows it to be considered that 

contacting bodies behave like half spaces. 

 Thin elastic layer: each contacting surface is assumed to have a thin elastic 

layer underneath, attached over a flat rigid base. The layer is loaded in a 

region which is large with respect to its thickness. 

 Same material in both contacting bodies: contacting bodies are assumed to 

have the same elastic properties. 

These hypotheses considerably simplify the stress-deformation relationship 

at the contact, allowing normal and tangential problems to be decoupled. It is 

expected that the assumption of non-conformal contact can lead to a certain 

lack of accuracy in the results. Although the contact is non-conformal in the 

circumferential direction, it is conformal in the radial plane. Nevertheless, 

Hertz theory also assumes non-conformal contact, and it is typically used for 

the simulation of ball-raceway contacts, offering reliable results [29]. The goal 
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of implementing Kalker’s formulation in the analytical approach of the ball-

raceway contact is to obtain more accurate results than with the full sliding 

assumption and to test its suitability for these type of contact. 

Assuming the above hypotheses and considering a body rolling with a   

velocity in the    direction according to Figure 4.6a, the relationship between 

the velocity field and contact deformations is given by [68]: 

                  
        

   
 (4.41) 

 

Figure 4.6. Contact coordinate systems: (a) for rail-wheel contact; (b) for the current 
approach. 

Where    is the relative velocity of the point    of the contact area 

considering elastic deformations at the contact, or local slip according to 

Kalker’s nomenclature;      is the relative velocity considering rigid bodies, or 

local rigid slip; and     is the elastic deformation. Note that the coordinate 

system defined in Figure 4.6a is mobile, so it is displaced with the contact. In 

the case of the ball, and for considered local coordinate system (Figure 4.6b), 

the movement takes place in the   direction, and the rolling velocity is the 

velocity of the centre of the ball (point  ): 

                     
         

  
 (4.42) 

Dividing this expression by   : 

                     
         

  
 (4.43) 

Kinematics in section 4.2.1 were formulated ignoring tangential 

deformations. Therefore, the obtained velocity field is the local rigid slip (    ). 
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Expressions (4.8) to (4.12) formulate the relative velocity of the raceways with 

respect to the ball. Therefore, the local rigid slip for the ball is equal but with 

the opposite direction. From (4.9): 

             
 

  
 
     

     
  

 

  
 
   

        

   
  (4.44) 

Using the creepage parameters defined by Kalker: 

       
  
    

  
 

(4.45) 

    
  

  
 

The local rigid slip is defined as: 

              
      
   

  (4.46) 

Where   is the longitudinal creepage and   is the spin. The lateral creepage 

  is 0 in the studied case. Note that if this expression is compared with the 

one at [68], the terms for the spinning in (4.46) have the contrary sign. This is 

because the   axis of the coordinate system of this approach has the opposite 

direction to that of the    axis of the coordinate system used by Kalker, as 

represented in Figure 4.6. 

For the formulation of the deformations, Kalker proposed a simplified 

theory [66], which is based on the thin elastic layer theory. According to the 

simplified theory, the deformations at a point of the contact ellipse can be 

formulated as a function of the shear stresses at the same point through the 

flexibility parameter  : 

                   (4.47) 

The FASTSIM algorithm developed by Kalker for the rolling contact 

simulation [67] is based on this simplification. Substituting (4.47) in (4.43): 

                      
        

  
 (4.48) 

In the stick region of the contact, the local slip (  ) will be 0: 

                                       (4.49) 
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Assuming that the leading edge will be in adhesion, the previous formula 

can be integrated from this edge (  ) to any  : 

          
 

 
  

       
   

   
 

  

 
 

 
 
       

 
 

 
       

        (4.50) 

Where: 

          
 

 
 
 

 (4.51) 

Of course, the shear stress is 0 at the limits of the contact ellipse, so 

           . To obtain the value of the flexibility parameter ( ), the linear 

theory is used. The linear theory was developed by Kalker before the 

simplified theory [65], and it solved the problem for the case of full adhesion 

contact. The full adhesion takes place when the local rigid slip is very small. 

Particularizing the simplified theory for the full adhesion case and equating 

with the results from the linear theory, it is demonstrated that different 

flexibility parameters are required to match the results [68]: 

          

 
 
 

 
     

  
 
  

  

 
       

    
 
 

 
 

       (4.52) 

The flexibility parameter    is for the lateral creepage ( ), which is 0 in the 

studied case. Putting components separately and substituting (4.45) in (4.52): 

   
       

 

  
 
  
    

  
 
   

  
        

(4.53) 

   
        

  

     
   

      

The flexibility parameters are a function of the creepage coefficients    : 

    
  

     
 

(4.54) 
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Figure 4.7. Approximated functions for creepage coefficients for ν = 0.3. 

The values of the creepage coefficients for the exact theory can be found in 

[65] or in [68]. These values are tabulated for different     ratios and Poisson 

coefficients ( ) of 0, 0.25 and 0.5. As the material typically used in slewing 

bearings is steel, the values for    0.3 were obtained by linear interpolation, 

and calculated values were approximated by the following formulas, which are 

represented in Figure 4.7: 

              
 

 
 
   

 
(4.55) 

              
 

 
 

The creepage coefficients (   ) were approximated instead of directly 

approximating flexibility parameters (  ) because they were found more 

suitable to fit through simple functional forms like those in (4.55). 

The value of the    velocity is still to be formulated. This is the velocity of 

the centre of the ball with respect to the contact, so it will be different for 

each one. Equations (4.13), (4.15), (4.17) and (4.19) calculate the velocities of 

the contacting points considering the centre of the ball is fixed. Therefore, the 

velocity of the ball with respect to the contacting points, considering the 

corresponding raceway fixed in each case, will be the same but with the 

contrary sign: 
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(4.56) 

      
   

 
 
  
 
         

      
   

 
 
  
 
         

      
   

 
 
  
 
         

Equations (4.53) calculate the shear stress in the stick regions. On the other 

hand, if a certain point of the contact ellipse is slipping, the shear stress will be 

calculated as follows, according to the Amontons-Coulomb laws of dry 

friction: 

                 (4.57) 

Where   is the friction coefficient. According to Hertz theory [17], the 

contact pressure is calculated by: 

        
  

    
   

  

  
 
  

  
 (4.58) 

Defining   according to the formulation of Jones [54] and Leblanc and 

Nélias [56] (see Figure 4.8) and formulating each component of the shear 

stress separately: 

   
                

  
 

 
(4.59) 

   
                 

  
 

 

Where   is the modulus of the local rigid slip: 

           
    

  (4.60) 

Unlike in [54,56], in the proposed approach, both    and    are defined 

according the same local coordinate system as the velocities (in [54,56],    is 

considered positive in the    direction). Note that the shear stresses in the 

ball ( ) have the same direction as the relative velocities of the raceways with 

respect to the ball ( ) in the slip region, as represented in Figure 4.8. 
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Figure 4.8. Velocities and tangential forces in the slip region. 

Summarizing, equations (4.53) and (4.59) calculate shear stresses in stick and 

slip regions, respectively. To know if a point from the contact ellipse is in the 

stick or the slip region, the moduli of the stresses according to each 

assumption are calculated: 

             
            

         

(4.61) 

             
            

         

Then, the lowest value determines the contact status, as represented in 

Figure 4.9. In this way: 

            
      

          
      

  if                 

(4.62) 

            
      

          
      

  if                 

It must be pointed out that the proposed approach differs slightly from the 

one proposed by Kalker. For the calculation of the components of the shear 

stresses in the slip region, Kalker proposes the next formulation, which is not 

the same as the one stated in (4.59): 
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Figure 4.9. Stick and slip regions in the contact. 

   
         

  
 

  
   

  
 

 
(4.63) 

   
         

  
 

  
   

  
 

 

With this formulation, Kalker assumes that the direction of the shear stress 

is defined by    , whatever the studied point is in the stick or the slip region. 

On the other hand, in (4.59) it is assumed that the direction of the shear 

stresses in the slip region are determined by the local rigid slip (   ), as done by 

Jones [54] and Leblanc and Nélias [56]. It is difficult to establish which of the 

assumptions is more correct beforehand. For this reason, in the next section 

results from both assumptions are compared. From the comparison, it is 

concluded that although the results are very similar, (4.59) offers a slightly 

better match with FE results. 

4.2.4 Force equilibrium 

Once the shear stresses have been formulated, tangential forces and 

moments can be calculated. In a differential area        , these forces and 

moments can be expressed as follows: 

                 

(4.64) 
                 

                               

                             

Where: 

        
  
  
  (4.65) 
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So: 

 

  

 
 
 

 
      

  
 

  
        

  
  
 

     
  
 

  
        

  
  
 

  

if                 

(4.66) 

 if                 

To compute total forces and moments, equations (4.64) are integrated in the 

contact ellipse: 

                 

 
 
      

 
 
 
      

 

  

 

(4.67) 

                 

 
 
      

 
 
 
      

 

  

 

                               

 
 
      

 
 
 
      

 

  

 

                     

 
 
      

 
 
 
      

 

  

 

To simplify these expressions, the next coordinate change is used: 

          
(4.68) 

          

This coordinate change allows a discretization of the contact ellipse that is 

adjusted to its boundaries. This way, formulas (4.67) are rewritten as follows: 

                    
 

 

  

 

 

(4.69) 
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If the kinematics are known, these expressions allow the calculation of 

forces and moments at the four contact points (see Figure 4.10). Nevertheless, 

the problem has three unknowns, which are   ,    and   (see section 3.5.1). 

To solve the problem, forces and moments equilibrium is formulated: 

                    

(4.70) 
 

                                    
                                    =0 

 

 
                                    
                                    =0 

 

The kinematics that fulfil the equilibrium as stated in (4.70) will be the 

solution of the problem. 

 

Figure 4.10. Forces and moments acting on the ball. 
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4.2.5 Solution of the problem 

To solve equation (4.70), the proposed formulation was implemented in 

Matlab®. The trust-region-dogleg algorithm was demonstrated to be effective 

in finding a solution for this problem as well as cost efficient, being faster 

than the trust-region-reflective algorithm and showing a better convergence 

behaviour than the Levenberg-Marquardt method. These are the algorithms 

that are available in Matlab®. However, in some cases there may exist 

convergence problems, which can be tackled as explained in the following 

lines. 

The input of the program is the solution of the load distribution problem, 

that is, contact forces ( ) and angles ( ). Nevertheless, some additional 

parameters are defined, which are described below:  

 To automatically calculate the starting point for the solver:  ,    and   
   . 

In section 4.2.2, an approximated kinematical approach was proposed in 

order to provide a starting point to the solver. This approach distinguishes 

between three different kinematical cases (K1, K2 and K3 in Table 4.1). In 

order to set the kinematical case, the   parameter is used, which will adopt 

values from 1 to 3. To automatically set the value of  , parameter    is 

defined as the ratio between contact forces in diagonals 1 and 2. If the 

value of    is above a defined limit   
    (     

   ), it will be considered 

that the ball is rolling with respect to contact points    and    (   ). 

Contrarily, if the inverse of    is above this limit (       
   ), it will be 

assumed that the ball is rolling with respect to contact points    and    

(   ). If none of these conditions is fulfilled, it means that    
     

     
   , and therefore it will be considered that the ball is spinning with 

respect to the four contact points (   ). An approximated value of 

  
       is adopted based in the results obtained for different cases, 

although there is not a unique value which is valid for every geometry. 

Therefore, an iterative procedure is required to find the appropriate value 

of  , because the model does not to converge if the provided initial point 

is not close enough to the solution. This iterative procedure is 

programmed through the Soubroutine-1 (see Figure 4.11), which is later 

explained. 

 To set a different starting point:     and     . 

The model is programmed in such a way that a different initial point can 

be provided to the solver. The parameter     sets if a manual entry is 
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wanted (      for manual entry,       for automatic calculation), and 

     sets the values for the initial point (used if      ). This way, if the 

kinematics have been solved beforehand using a different approach (the 

model of Leblanc and Nélias or FE calculations, for example), they can be 

directly introduced as an input. 

 To consider stick regions or assume full sliding:   . 

It has been estimated appropriate to include the option to consider the full 

sliding hypothesis. Thus, for     , full sliding will be assumed, while 

stick regions will be considered for     . For the simulation assuming 

full sliding, the program sets very low values for the flexibility parameters. 

Note that, since formulas (4.59) are used for the slip region instead of 

(4.63), considering full sliding will provide the same results as the model of 

Leblanc and Nélias. This fact allows easy and direct comparisons between 

the results provided by this model and the one proposed in the current 

Doctoral Thesis. 

Therefore, the inputs for the basic program are: contact forces ( ) and 

angles ( ),  ,    ,      and   . This basic program can be used to analyse 

particular cases, but the next two subroutines are proposed for automation 

purposes. These subroutines avoid manually selecting parameters  ,     and 

     and also solve possible convergence problems: 

 Soubroutine-1: 

Figure 4.11 shows the flux diagram of the Subroutine-1. As can be seen,   

is not among the input parameters. In the first place, this subroutine 

selects the appropriate initial value for this parameter according to the 

defined   
   . The problem is solved for this   value, and the convergence 

is evaluated through parameter     , which is greater than 0 for converged 

solutions. If the solution does not converge, the subroutine will try solving 

the problem for different values of  . If rolling is supposed in the first 

iteration (    or    ) and the solution does not converge, only one 

additional calculation is performed assuming spinning (   ). Contrarily, 

if spinning movement is supposed in the first iteration (   ) and the 

solution does not converge, then two additional calculations can be done 

for     and    . 

  



Chapter 4. Friction analysis model  115 

 

 Soubroutine-2: 

It may happen that, when stick regions are considered, a converged 

solution is not found (1st iteration). For these cases, Soubroutine-2 will 

solve the problem for full sliding in a first place (2nd iteration), and then the 

obtained kinematics will be used as an input for the program, considering 

now the stick regions (3rd iteration). This has been proved to be an 

effective procedure to solve convergence problems, since the model is 

more robust for the full sliding assumption. The flow diagram for this 

subroutine is shown in Figure 4.12, which only requires three inputs:  ,   

and   . Note that, according to the flow diagram, if full sliding is wanted 

to be assumed (     as input of the subroutine) and a converged 

solution is not reached, the program will make an extra attempt 

considering stick regions in order to obtain a good first shot for the 

kinematics. Nevertheless, since the full sliding assumption offers better 

convergence behaviour, if a solution is not reached for     , it will not 

be very likely that the problem will converge for     . 

To set the number of elements in which the contact ellipse is discretized for 

the calculations, a sensitivity analysis was performed. It was proved that the 

finer the mesh, the lower the value of the friction torque, similar to what 

happens with the FE model. Nevertheless, the analytical approach is much 

less sensitive to the discretization. Moreover, it allows a much larger amount 

of elements to be used. The value of the friction torque is stabilized for 18000 

elements. With this discretization, equation (4.70) can be evaluated 100 times 

per second. The solver used requires typically between 50 and 250 iterations 

to find a solution to the problem, while the algorithm does not converge if 

500 iterations are exceeded. Thus, a limit of 500 iterations is set for the solver, 

which means that the basic program requires a maximum of 5s to know if a 

solution can be found. According to the proposed calculation procedure, a 

maximum of 9 runs of the basic program could be required, which means a 

maximum of 45s. Therefore, the computational cost for one ball is between 

0.5s and 45s. It goes without saying that this value is nowhere near the 

computational costs required by FE simulations. 

 Additionally, calculations were performed for different speeds, setting 

different values for the inner ring angular velocity (  ). The results showed 

that, effectively, the model is insensitive to the rotation speed. 
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Figure 4.11. Flow diagram of Subroutine-1. 
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Figure 4.12. Flow diagram of Subroutine-2. 
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4.2.6 Friction torque calculation 

Once the kinematics are known, contact stresses and forces can be 

calculated, as well as the friction torque. For the calculation of the friction 

torque, a different approach from the one by Joshi et al. is proposed. While in 

[59] the friction torque was computed from the resultant forces and moments 

applied in the effective rolling radii, in the proposed model it is computed 

directly by integrating the circumferential component of the friction force (  ) 

multiplied by the corresponding distance to the centre of the bearing in the 

contact ellipse. Thus, the contribution of the friction force in a differential 

area to the torque is: 

                          (4.71) 

Where     is the distance from the axis of the bearing to the point where 

    is applied, which can be calculated as follows (see Figure 4.1): 

     
   

 
                      

 

 
   (4.72) 

The sign of the second term in equation (4.72) must be positive for the 

outer ring (   and   ), and negative for the inner ring (   and   ), while the 

sign inside the cosine will be positive for the contact diagonal 1(   and   ), 

and negative for the contact diagonal 2 (   and   ). Integrating (4.71) in the 

contact ellipse, the contribution of the contact   to the friction torque is 

obtained: 

            
  
           

 

 

  

 

 (4.73) 

Therefore, the total friction torque for the outer and the inner rings will be: 

             
(4.74) 

             

As the system is in equilibrium, these values are the same. 

4.3 Analytical model VS FE model 

In this section, the results of the proposed analytical model (the FRANC 

model) are presented for different cases. The FRANC model is compared 
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with the analytical approach proposed by Leblanc and Nélias and with FE 

results. The objective of this comparison is to study the applicability and 

limitations of each approach. 

As a first step, and before comparing analytical and FE models, a sensitivity 

analysis was performed with the FE model in order to evaluate the effect the 

different parameters of the problem have on the stick region of the contact 

ellipse. For this purpose, the refined model was used (Figure 3.8b), since 

detailed contact results are required. After this analysis, the cases to be studied 

are defined, the results of which are shown and compared for the different 

approaches. 

4.3.1 Sensitivity analysis 

The objective of this preliminary study is to set out the cases for the FE-

analytical comparison. The variables to be considered in the sensitivity analysis 

are the contact parameters, namely ball diameter (  ), bearing mean diameter 

(   ), contact angles ( ), osculation ratio ( ), friction coefficient ( ) and ball-

raceway interferences ( ). First, a nominal design point using typical values of 

the parameters was defined (see Table 4.2); afterwards, each of the parameters 

was independently varied so that their influence could be evaluated. The 

analyses were performed in an automated way taking advantage of the 

parameterization of the FE model. Table 4.2 summarizes the maximum and 

minimum values for each parameter, where the interferences are expressed as 

a percentage over the static load-carrying capacity of the bearing for each case. 

The capacity was calculated by formulas (4.58) and (2.10), knowing that the 

maximum allowable pressure is 4200MPa [8] (for a linear elastic calculation) 

and that it takes place in the centre of the contact ellipse. 

Case study 
                   

[mm] [mm] [deg] [-] [-] [%] [%] 

Nominal 30 1000 45 0.95 0.100 50% 0% 

Minimum 20 500 45 0.92 0.005 25% 0% 

Maximum 40 2500 45 0.98 0.300 75% 0% 

Table 4.2. Design space of the sensitivity analysis. 
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Figure 4.13. Stick region for studied cases.  
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Stick regions only exist when the ball rolls, so the parametric study was 

carried out for the case of two contact points, i.e. one of the diagonals is 

unloaded in every case (    ). The contact angle will affect the location of 

the contact ellipse (and thus the kinematics of the ball and the friction torque) 

but not the contact regions themselves. Consequently, a typical value of 45º 

was taken, as pointed out in Table 4.2, ensuring that no truncation of the 

ellipse will take place in any case. Although the truncation can be simulated 

through FE calculations [12], this effect is not considered in the analytical 

model; therefore, it has been avoided to allow a direct comparison between 

the models. Figure 4.13 shows the FE results of the contact status for all of 

the design points of the sensitivity analysis, where stick regions are 

represented in black. From these results, the next conclusions arise: 

 Ball diameter (  ) and mean bearing diameter (   ) have no effect on the 

stick region in the studied design space. Thus, in slewing bearings, where 

the dimensions of the section are significantly smaller than the mean 

diameter (      ), none of these parameters will affect the stick region. 

 The lower the osculation ratio ( ) is, the more relevant the stick region will 

be. This effect is justified, because the contact ellipse grows with the 

conformity, moving away from the ideal condition of point contact with 

null relative velocity, and therefore making ball-raceway adhesion more 

unlikely. 

 As was predictable, sliding increases as the friction coefficient ( ) 

decreases. 

 Similarly to what happens with the conformity, ball-raceway adhesion 

becomes more unlikely when the interference ( ) is increased due to the 

growth of the contact ellipse. 

From the conclusions of the sensitivity analysis, two different case studies 

are proposed for comparison: Case A, where the values selected for 

parameters  ,   and   favour sliding; and Case B, where the maximum area 

for the stick region is sought. For Case A, similar results are expected for the 

three approaches (Leblanc and Nélias [56], FRANC and FE). On the contrary, 

important discrepancies should be reported for Case B, since full sliding is 

assumed in the model of Leblanc and Nélias. 

In order to extend the conclusions of the study to every load condition, 

three different subcases have been considered for both cases A and B: the 

first with two contact points (allowing ball rolling) as in the sensitivity analysis; 
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the second for four equally loaded contact points, forcing ball spinning at all 

of the contacts; and finally the third, which will be an intermediate case where 

four contact points will exist but one contact diagonal will be predominant 

over the other. Table 4.3 summarizes the parameters used for each analysis. 

Note that peak and valley values for conformity and friction coefficient do 

not match those in Table 4.2. This is because the values in Table 4.3 

correspond to typical values found in catalogues or obtained from 

experimental measurements [59,102], while in the sensitivity analysis of Table 

4.2, the design space was extended to evince the effect of each parameter. 

Case study 
Kinematical 

case 

                   

[mm] [mm] [deg] [-] [-] [%] [%] 

Nominal K1 30 1000 45 0.95 0.10 50% 0% 

Case A 

Sliding 
favoured 

A1 K1 30 1000 45 0.96 0.09 75% 0% 

A2 K3 30 1000 45 0.96 0.09 75% 75% 

A3 K1 or K3 30 1000 45 0.96 0.09 75% 5% 

Case B 

Sticking 
favoured 

B1 K1 30 1000 45 0.94 0.13 25% 0% 

B2 K3 30 1000 45 0.94 0.13 25% 75% 

B3 K1 or K3 30 1000 45 0.94 0.13 25% 5% 

Table 4.3. Studied cases for contact results comparison. 

4.3.2 Results comparison 

First, the cases in Table 4.3 were analyzed through the FE refined model. 

Then, contact forces and angles were obtained from this model as explained 

in section 3.2.1 and introduced as input in the analytical models. This way, the 

capability of each model for the simulation of the tangential problem can be 

evaluated through a direct comparison of the results, avoiding possible 

differences due to the load distribution calculation. 

The objective of the comparison between the different approaches is to 

highlight the capabilities and limitations of each one. On the one hand, the 

model of Leblanc and Nélias is thought for applications where full sliding can 

be assumed at the ball-raceway contact. Therefore, it will have some 

limitations when computing shear stresses at the contact when the ball is 

rolling, which happens for two contact point cases (load case 1). The error will 

presumably be slight for limited stick regions (case A1), while a greater error is 
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expected when the stick region prevails in the contact ellipse (case B1). 

Contrarily, in those cases where spinning occurs at the contacts (cases A2 and 

B2), the model of Leblanc and Nélias is predicted to provide accurate results. 

On the other hand, the FE model considers stick regions, so it will allow the 

limitations to be assessed of the Leblanc and Nélias model. Nevertheless, it 

should be recalled that the FE model’s accuracy is very dependent on the 

mesh size at the contact region. Consequently, the FE model is useful for a 

qualitative comparison, while numerical results must be carefully interpreted. 

Finally, the FRANC model is expected to report more accurate contact results 

than the model of Leblanc and Nélias when the ball is rolling. As regards 

friction torque, it is not possible to foresee if the results of the FRANC model 

will be higher or lower than assuming full sliding. As explained in the 

introduction of Chapter 3 (see Figure 3.2), this will depend on how the stick 

region affects the forward or the backward region. 

In the following lines, the results for the kinematics (Table 4.4 and Table 

4.5), friction torque (Table 4.6 and Table 4.7) and contact behaviour (Figure 

4.14 to Figure 4.25) are compared. Succinctly, the differences are very slight 

for the kinematics, while important disagreements are detected in the shear 

stresses when the ball is rolling, which affects the friction torque but to a 

lesser extent. Contrarily, when the ball is spinning with respect to the four 

contact points, a good match is observed between the different models. 

Case study 
Kinematical 

case 

Approx. 
Leblanc 
&Nélias 

FRANC FE 
FRANC 

VS     
FE 

[rad/s] [rad/s] [rad/s] [rad/s] [%] 

Nominal K1 32.63 32.96 32.97 32.83 0.4% 

Case A 

Sliding 
favoured 

A1 K1 32.63 33.27 33.27 33.12 0.4% 

A2 K3 46.30 43.39 43.39 42.79 1.4% 

A3 K1 32.63 33.27 33.26 33.10 0.5% 

Case B 

Sticking 
favoured 

B1 K1 32.63 32.76 32.77 32.63 0.4% 

B2 K3 46.16 45.50 45.50 45.06 1.0% 

B3 K3 46.15 43.91 43.91 42.80 2.6% 

Table 4.4. Results for the angular velocity of the ball (ωB). 
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Case study 
Kinematical 

case 

Approx. 
Leblanc 
&Nélias 

FRANC FE 
FRANC 

VS     
FE 

[deg] [deg] [deg] [deg] [deg] 

Nominal K1 134.9 134.9 134.9 133.8 1.1 

Case A 

Sliding 
favoured 

A1 K1 134.8 134.8 134.8 133.9 0.9 

A2 K3 180.0 180.0 180.0 180 0.0 

A3 K1 134.8 136.3 136.0 135.9 0.1 

Case B 

Sticking 
favoured 

B1 K1 135.0 135.0 135.0 133.8 1.2 

B2 K3 180.0 180.0 180.0 180 0.0 

B3 K3 180.0 176.9 176.9 175.8 1.1 

Table 4.5. Results for the angle of the angular velocity of the ball (β). 

The kinematics are going to be studied first. Table 4.4 shows the results for 

the angular velocity of the ball (  ) for an angular velocity of 1rad/s for the 

inner ring (  ), while Table 4.5 compiles the values of the   angle. The tables 

show that the kinematics are almost the same for both analytical models in 

any case. FE results are also very close, with a maximum relative error of 2.6% 

for    and 1.1º for  . In both tables, it is demonstrated that the approximated 

approach proposed in the subsection 4.2.2 provides a good estimation for the 

kinematics (Approx. in Table 4.4 and Table 4.5). Regarding the intermediate 

cases A3 and B3, it was found that the ball rolls with respect to diagonal 1 

(points    and   ) and slides on diagonal 2 (points    and   ) in A3 (K1 case), 

while spinning occurs at the four points in B3 (K3 case). For the sake of 

clarity, the kinematical case (Table 4.1) is also given in the results tables. 

Let us now compare friction torque results in Table 4.6. In those cases 

where spinning occurs (K3 case), both analytical models achieve exactly the 

same results, since no stick regions exist at the contacts. Contrarily, when 

rolling occurs (K1 case), FRANC offers slightly smaller values. The 

discrepancy is scant in the A1 and A3 cases, while a difference of 8% takes 

place in the B1 case. This makes sense, since the sliding is favoured in the A 

cases and sticking in the B cases, and the model of Leblanc and Nélias does 

not consider stick regions. Moreover, the friction torque calculated by the 

FRANC model is always smaller, which means that both forward and 

backward regions are being equally affected by the stick region. Looking at the 

FE results, they are close to the analytical models when spinning occurs, with 
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a maximum difference of 5%, and always give slightly greater values. 

Contrarily, when rolling occurs, important differences are detected. In cases 

A1 and A3, the results from the FRANC model are 12-13% lower than those 

provided by the FE model, while in case B1 it is 59% higher. However, in the 

nominal case the results are practically the same. To better understand these 

facts, shear stresses must be analysed. 

Case study 
Kinematical 

case 

Leblanc 
&Nélias 

FRANC FE 
L&N 

VS 
FRANC 

FRANC 
VS     
FE 

[N·m] [N·m] [N·m] [%] [%] 

Nominal K1 17.1 16.8 16.9 2% 0% 

Case A 

Sliding 
favoured 

A1 K1 64.7 64.2 73.4 1% -12% 

A2 K3 1165.4 1165.4 1228.9 0% -5% 

A3 K1 138.9 138.4 158.3 0% -13% 

Case B 

Sticking 
favoured 

B1 K1 2.9 2.7 1.7 8% 59% 

B2 K3 117.2 117.2 121.0 0% -3% 

B3 K3 57.5 57.5 59.4 0% -3% 

Table 4.6. Friction torque results comparison. 

Before looking at the stresses, the friction torque results will be studied in 

more detail. For this purpose, the friction torque is divided into two 

components: the friction torque due to the forces in the forward region, 

opposed to the rotation, and the friction torque due to the forces in the 

backward region, in the contrary direction. The total torque is the subtraction 

of both components. These components were obtained for the different 

studied cases using the FRANC model, and they are listed in Table 4.7. This 

table shows that forward and backward components are of the same order of 

the total friction torque when spinning occurs, but they are 1 or 2 magnitude 

orders higher when rolling. This means that the problem is very sensitive in 

the latter case. To illustrate this fact, the nominal case is used. In this case, the 

forward component is 674.6N·m, and the backward 657.8N·m, so the total 

friction torque is 16.8N·m. As demonstrated before, the kinematics are almost 

the same for both analytical models. Nevertheless, if the kinematics obtained 

from the model of Leblanc and Nélias are introduced in the FRANC model, 

changing    from 32.9650rad/s to 32.9609rad/s (-0.01%), the total friction 

torque is largely affected. This small change in the kinematics very slightly 
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affects each component, incrementing the forward by 0.7% and decreasing 

the backward by 0.9%. Nonetheless, this small effect on each component has 

a great impact on the subtraction of both values, achieving a total friction 

torque 61.9% greater. This means that, to obtain accurate results, a very 

restrictive convergence criterion is required.  

Case study 
Kinematical 

case 

Forward Backward Total 

[N·m] [N·m] [N·m] 

Nominal K1 674.6 657.8 16.8 

Nominal with kinematics from 
the model of Leblanc and Nélias 

K1 
679.0 

(+0.7%) 
651.8         

(-0.9%) 
27.2 

(+61.9%) 

Case A 

Sliding favoured 

A1 K1 1346.3 1282.0 64.2 

A2 K3 3284.6 2119.2 1165.4 

A3 K1 1419.4 1281.0 138.4 

Case B 

Sticking favoured 

B1 K1 241.7 239.0 2.7 

B2 K3 634.8 517.6 117.2 

B3 K3 339.7 282.2 57.5 

Table 4.7. Detailed friction torque results for FRANC model. 

Contact results are going to be studied now. Figure 4.14 to Figure 4.19 

shows shear stresses and contact status for the cases where the ball is rolling. 

Since stick regions exist in these cases, one of the contacts (  ) was studied in 

more detail through the submodel, in order to obtain more accurate FE 

results. Therefore, these figures show contact results for both analytical 

approaches and both FE models, allowing a direct comparison. Looking at 

the contact status, the dependency of the FE model on the element size is 

once more evinced. Moreover, the stick region is always smaller in the 

submodel, obtaining results very similar to the ones offered by the FRANC 

model. In other words, the more accurate the FE results, the more similar 

they are to the results from the FRANC model. Looking at the shear stresses, 

it can be seen how they are evidently affected by the stick regions. 

Nevertheless, the FRANC model shows a high gradient in the stick regions, 

which is not reproduced in the FE model. This is because in the latter, the 

shear stresses are computed for each element, and there are not enough 

elements in the adhesion band to show these kinds of stress gradients. 
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As expected, the stick region in cases A1 (Figure 4.15) and A2 (Figure 4.16 

to Figure 4.18) is less significant than in the nominal case (Figure 4.14). Note 

how the adhesion bands in A2 are displaced in the    direction with respect 

to A1, both in the FRANC model and FE models. Looking at the vector field 

superposed on the module plot, it can be noticed how in A2, the spinning 

component is more noticeable at point    (Figure 4.17) than at point    

(Figure 4.16) according to both analytical models. This is consistent with the 

fact that the contact is less conformal in the circumferential direction in the 

inner ring, thus offering less opposition to the spinning movement. As the 

ball is rolling in A2 but there are four points in contact, the ball slides with 

respect to the raceway in the less loaded diagonal (see Figure 4.18). 

On the other hand, the stick region in B1 is very relevant (Figure 4.19). In 

this case, the global model shows a contact that is in adhesion in almost the 

entire ellipse (Figure 4.19c). Therefore, shear stresses are largely affected both 

in the backward region and in the forward region, so the difference is also 

very small. This is why this model offers such a low value for the friction 

torque in B1 in Table 4.6 for the FE model. In the submodel, the stick region 

is more restricted and tends to the results provided by the FRANC model. 

Note that, as the element size in the FE submodel is the same for every case, 

and since the contact area is very small in B1, this contact is represented by 

fewer elements than in the other cases. This is why the submodel differs more 

from the FRANC model than in other cases, although the tendency is clearly 

convergent towards the analytical approach. This case is the one that 

represents more clearly the limitations of the FE models and the approach of 

Leblanc and Nélias in comparison with the FRANC model. 

Looking at the vector plots, two vortexes can be noticed on the rear edge of 

the contact ellipse in FE calculations when the ball rolls. In the FRANC 

model, one of the vertexes is also placed on the rear edge, but the other one is 

near the leading edge. Although FE results can lack accuracy, qualitatively they 

are expected to represent better contact deformations, so this fact represents a 

limitation of the analytical approach. This leaves the door open for future 

research and improvement of the FRANC model. 

Figure 4.20 to Figure 4.23 show the results for those cases where the ball is 

spinning at the contacts. In this case, the results are the same for both 

analytical models, and show a good match with FE calculations. The stick 

regions according to FE analyses are located in the vortexes of the vector 

field, where the relative velocity is null. In the B2 and B3 cases, a small stick 
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region is obtained on the leading edge (Figure 4.21 and Figure 4.22), but it 

must be noted that in these cases the contact has not enough elements in 

order to adequately represent the stick regions (as in Figure 4.19c). 

 

Figure 4.14. Shear stress and contact status for point P1 of the nominal case: (a) Leblanc 
and Nélias’ model; (b) FRANC model; (c) FE global model; (d) FE submodel. 

 

Figure 4.15. Shear stress and contact status for point P1 of the A1 case: (a) Leblanc and 
Nélias’ model; (b) FRANC model; (c) FE global model; (d) FE submodel. 

(b) (a) 

(d) (c) 

(b) (a) 

(d) (c) 
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Figure 4.16. Shear stress and contact status for point P1 of the A3 case: (a) Leblanc and 
Nélias’ model; (b) FRANC model; (c) FE global model; (d) FE submodel. 

 

Figure 4.17. Shear stress and contact status for point P3 of the A3 case: (a) Leblanc and 
Nélias’ model; (b) FRANC model; (c) FE global model. 

 

Figure 4.18. Shear stress and contact status for point P2 of the A3 case: (a) analytical 
models (Leblanc and Nélias’ model or FRANC model); (b) FE global model. 

(b) (a) 

(d) (c) 

(b) (a) 

(c) 

(b) (a) 
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Figure 4.19. Shear stress and contact status for point P1 of the B1 case: (a) Leblanc and 
Nélias’ model; (b) FRANC model; (c) FE global model; (d) FE submodel. 

Finally, Figure 4.24 and Figure 4.25 show the results for the nominal case 

(rolling) and B2 case (spinning) considering that the shear stresses in the slip 

region are given by equation (4.63) instead of (4.59). This means that the 

directions of the shear stresses in the slip region are calculated from the 

components   
  and   

  instead of   
  and   

  , as proposed by Kalker for the 

plane contact. By this assumption, the friction torque does not vary for the 

nominal case, and decreases from 117.2N·m to 105.9N·m for B2. Looking at 

the shear stress vector field, it is very similar when rolling, but it changes 

slightly when the ball is spinning. In the latter case, the FRANC model is 

more similar to the FE results, except for the location of the vortex of the 

vector field. Figure 4.25b shows how, assuming (4.63), this vortex is displaced 

towards the rear edge, which is consistent with what is observed in the FE 

model. Therefore, further research can be done to find the values of the 

flexibility parameters ( ) that, assuming Kalker’s formulation for the 

directions of the shear stresses in the slip regions, would fit the directions 

observed in the FE results. 

(b) (a) 

(d) (c) 
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Figure 4.20. Shear stress and contact status for point P1 of the A2 case: (a) analytical 
models (Leblanc and Nélias’ model or FRANC model); (b) FE global model. 

 

Figure 4.21. Shear stress and contact status for point P1 of the B2 case: (a) analytical 
models (Leblanc and Nélias’ model or FRANC model); (b) FE global model. 

 

Figure 4.22. Shear stress and contact status for point P1 of the B3 case: (a) analytical 
models (Leblanc and Nélias’ model or FRANC model); (b) FE global model. 

 

Figure 4.23. Shear stress and contact status for point P2 of the B3 case: (a) analytical 
models (Leblanc and Nélias’ model or FRANC model); (b) FE global model.  

(b) (a) 

(b) (a) 

(b) (a) 

(b) (a) 
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Figure 4.24. Shear stress and contact status for point P1 of the nominal case: (a) FRANC 
model; (b) Kalker’s formulation; (c) FE submodel. 

 

Figure 4.25. Shear stress and contact status for point P1 of the B2 case: (a) FRANC 
model; (b) Kalker’s formulation; (c) FE global model.  

(b) (a) 

(c) 

(b) (a) 

(c) 
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As a conclusion, the FRANC model was proved to give more realistic 

results for shear stresses than the approach of Leblanc and Nélias when the 

ball rolls. Taking into account that in slewing bearings balls mainly work with 

two contact points because of the large tilting moments, the FRANC model is 

more suitable to estimate the shear stress field in such components. 

Nonetheless, the model of Leblanc and Nélias has been demonstrated to give 

good results when the ball is spinning. It is also appropriate to predict 

kinematics and for friction torque calculations in any load condition. 

In comparison with the FE models, the FRANC model offers two main 

advantages. On the one hand, the FE model requires a very fine mesh to 

reproduce results similar to the ones obtained with the FRANC model. This 

involves very high computational costs, while the FRANC model only 

requires a few seconds. On the other hand, and due to the sensitivity of the 

problem when the ball is rolling, a very restrictive criterion is required for the 

convergence of the calculations. In this aspect, the FRANC model can be 

easily controlled by imposing small tolerances on the kinematical variables and 

the imposed equilibrium equations in the solver. Contrarily, the convergence 

criterion of the FE model is only based on the reaction forces. This criterion 

is usually automatically controlled by the FE program, and fixing a different 

one would require further research. Moreover, FE results depend strongly on 

other aspects like the discretization or the contact formulation. Therefore, the 

results obtained by different analysts can vary, making  direct comparisons 

difficult between results obtained from different models. 

4.4 Friction torque calculation procedure 

The FRANC model was linked to the BIME model in Matlab®, forming a 

unique program capable of calculating load distribution, friction torque and 

contact stresses, considering manufacturing errors, ring stiffness and stick 

regions at the contact. This program constitutes a new and powerful tool for 

the design of four-point contact slewing bearings, which allows accurate 

simulations with a low computational cost to be performed. The models were 

programmed to offer the option to perform calculations for the nominal 

geometry (with no manufacturing errors), considering rigid rings or assuming 

full sliding at the contact. This way, comparisons can be made quickly, and the 

effect of each assumption evaluated. 
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At least, the program requires the following inputs: bearing mean diameter 

(   ), ball diameter (  ), osculation ratio ( ), initial contact angle (  ), 

number of balls ( ), ball preload (  ) and applied forces (  ,    and   ) or 

displacements (  ,    and   ). To take advantage of all the capabilities of the 

BIME and FRANC models, it also requires raceway measurements and the 

ring’s stiffness matrices. Having all this information, calculating the friction 

torque for any bearing and load case is straightforward and will require some 

seconds or minutes, depending on the number of balls. 

Nevertheless, measuring the raceways is a time consuming task and requires 

having a coordinate measuring machine. For this reason, an alternative 

procedure to calculate the friction torque calculation is proposed in Chapter 6. 

According to this procedure, the idling friction torque is required to be 

experimentally obtained instead of raceways geometry. With this information, 

the friction torque can be calculated for any applied load, and manufacturing 

errors estimated. 
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5 Bearing global stiffness 

5.1 Introduction 

The global stiffness tells us how much a bearing is deformed when a certain 

load is applied. While the stiffness matrix calculated for the load distribution 

in Chapter 2 establishes the structural relationship between the different 

points of the bearing, the global stiffness is a more extensive parameter that is 

used to determine how the bearing behaves in a machine with respect to the 

other components. In this sense, this parameter allows the designers to 

calculate global deformations, and consequently predict possible interferences 

between adjacent components or unacceptably large displacements. For this 

reason, the global stiffness is not only a parameter to be known in the design 

process when bearings are used in a machine, but it can also be subjected to 

certain specifications or criteria, since high values of the stiffness are required 

to minimise large displacements. 

But the global stiffness is not only useful for such rough calculations. 

Moreover, it allows detailed simulations to be performed that predict the static 

or dynamic behaviour of the entire machine. As was explained in Chapter 1, 

slewing bearings are used in many machines. These machines constitute 

complex multibody systems, and the behaviour of their components must be 

somehow characterized for numerical simulations. For this purpose, the FE 

Method is a very useful tool. Nevertheless, an FE model for the simulation of 

a machine composed of several components, including rolling bearings, will 

be computationally unapproachable if they are not simplified by some means. 

A typical way to simplify the modelling of rolling bearings is to substitute 

them with the global stiffness matrix, and also with the corresponding mass 

matrix in the case of a dynamic simulation. This way, the global stiffness 

allows these calculations to be carried out with affordable computational 

costs. 
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Being such an important parameter, it is usually required by bearing 

customers in order to perform their calculations before selecting the most 

suitable bearing for their particular application (Figure 5.1). This information, 

although it rarely appears in catalogues, is usually provided by manufacturers 

to their clients. Nevertheless, the way they calculate it is undisclosed, for it is 

part of their know-how. Therefore, a simple and direct way of calculating it 

would be a very powerful tool for buyers. Such a tool would allow designers 

to select the appropriate bearing by themselves, and then make direct 

comparisons between the solutions offered by different bearing 

manufacturers. 

 

Figure 5.1. Axial stiffness plots from SKF [103]: (a) for different preloads; (b) for different 
contact angles. 

Apart from the restricted information given by the manufacturers, neither 

was a methodology found in the literature for a direct calculation of the global 

stiffness. In Chapter 1, many load distribution models were presented, from 

which load-deformation curves can be built. On the one hand we have the 

analytical models that consider rigid rings [38,39,44], which are very practical 

but inaccurate, since in slewing bearings the ring flexibility is highly important 

(as demonstrated in [44] and also later in this chapter). On the other hand, 

there are both semi-analytical [40] and numerical [77,81,83] models that can 

(b) 

(a) 
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deal with the ring flexibility issue, but they need FE calculations, either for the 

stiffness matrix calculation or to directly perform the load distribution 

simulation. In any case, they can calculate the stiffness considering the ring 

flexibility, but only for one particular design and through complex and 

computationally expensive FE models. Neither is any formulation nor 

methodology for the stiffness estimation in any bearing standard [8,9] or 

recognized design guideline like NREL [19]. 

What it is proposed in this chapter is to obtain a direct and simple way of 

calculating the global stiffness in four-point contact slewing bearings, 

considering ring flexibility. For this purpose a methodology is proposed, 

which is developed in the following sections, and which can be later replicated 

for other types of slewing bearings (crossed roller, three row roller, etc). As a 

result, a simple formulation is obtained, which is demonstrated to replicate the 

effect of main geometrical parameters and contact variables. 

The proposed methodology to achieve the desired formulation is based on 

the fact that slewing bearings fulfill certain geometrical relationships. In this 

sense, and as later demonstrated, the geometry of four-point slewing bearings 

is mainly defined by the bearing mean diameter (   ), which gives the global 

size, and the ball diameter (  ), which determines the dimensions of the radial 

section. These parameters are called main parameters. The first step is to 

study the design space, namely, to ascertain the typical values of the main 

parameters, and so delimit the scope of the study. Then, the standard design 

must be defined. The standard design is defined only by the main parameters, 

and fulfills the geometrical relationships mentioned before. For these two first 

steps, the catalogues of the main slewing bearing manufacturers 

[6,7,20,25,104] were used, to ensure that the standard design is representative 

for every commercial bearing. 

Once the standard design is defined, a Design Of Experiments (DOE) is 

proposed; in other words, a series of calculations are planned, covering the 

delimited design space by considering different values of the main parameters. 

As a result of the DOE, the load-deformation curves are obtained for each 

Design Point (DP) of the DOE and each load case, namely, axial and radial 

forces and tilting moment. The calculations to obtain these curves must be as 

accurate as possible, taking into consideration not only the ring-flexibility, but 

also other phenomena like flange-ring contact nonlinearities or bolt preload. 

Therefore, semi-analytical models like the one proposed in Chapter 2 do not 

fulfill the desired accuracy, despite the fact that they consider ring flexibility. 
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For this reason, the FE method is used. Although FE calculations are highly 

time consuming, the goal of the methodology is not to have to use them again 

in the future for the stiffness calculation. Finally, the results are analyzed and a 

formulation proposed. The aim of the results analysis is to reach a formula for 

each load case, which will be a function of the main parameters, capable of 

reproducing the load-deformation curves obtained from all FE calculations. 

In other words, the goal is to obtain simple mathematical expressions to 

calculate the stiffness of any bearing. Additionally, the formulation is extended 

to also consider contact parameters. 

It is worth pointing out that the load cases to be considered are axial and 

radial forces and tilting moment. Consequently, three formulas are obtained 

from the application of the described methodology. Each formula will give 

the stiffness curve for each load, but not the interactions between them. 

Slewing bearings are designed to face a combination of such loads, so 

simplifying their stiffness behavior by a diagonal matrix is an approximation. 

Nevertheless, it must not be forgotten the wide-range application field of the 

proposed approach, which also reproduces the nonlinearity of the load-

deformation curves. A non-zero out-of-diagonal terms matrix can be 

calculated by FE calculations for a specific bearing and certain load range, but 

to obtain such a matrix for a general purpose is beyond the scope of this 

research. Moreover, this data is commonly not offered by bearing 

manufacturers, since it is rarely required by customers. 

5.2 Standard design definition 

As explained in the introduction, the geometry of slewing bearings mainly 

depends on two parameters: the bearing mean diameter (   ) and the ball 

diameter (  ). These parameters are called main parameters, and the standard 

design is a bearing that is defined only by them. Therefore, the dimensions of 

the radial section of the bearing, the number of balls (  ), the number of 

holes (  ) and the bolt metric ( ) of the standard design will be a function of 

    and   . 

Conversely, there are other parameters that are not a function of the main 

parameters. These are contact parameters, namely conformity ratio ( ), initial 

contact angle ( ), filing ratio (     , which is defined later) and ball preload 

(  ), and bolt preload. Although the last two are not geometrical parameters, 

they must be defined, since they affect the structural behaviour of the bearing. 
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In this section, a standard design capable of representing every bearing in 

the catalogues of the main manufacturers is defined. Nonetheless, a prior 

study is presented, where the design space to be considered is defined. 

5.2.1 Study of the design space 

For the study of the design space, the catalogues from Iraundi [25], SKF [7], 

Rothe Erde [6], Schaefler [20] and Lyc [104] were studied. Some other 

manufacturers, like Rollix, do not include the dimensions of the ball in their 

catalogues [23], while others, like Laulagun, do not have a catalogue because 

they offer particular solutions for each application [26]. The values of the 

main parameters for every four-point contact slewing bearing were compiled 

and represented in the plot in Figure 5.2. In the plot, over 200 bearings are 

represented, including regular and light series (see Chapter 1). Based on this 

point-cloud, the design space is defined, which is delimited by the curves on 

the same plot, representing upper and lower limits. Therefore, the scope of 

the study covers every slewing bearing from the main manufacturers, 

embracing bearings with balls between 15mm and 55mm, and with a mean 

diameter up to 3500mm. 

 

Figure 5.2. Values of the main parameters for slewing bearings from the main 
manufacturers. 

It is remarkable the homogeneity in the dimensions noticed through the 

different catalogues. For the 20mm ball, for example, Iraundi, SKF, Rothe 
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Erde and Schaefler offer bearings with a mean diameter of 414mm, 544mm, 

644mm, 744mm, 844mm, 944mm and 1094mm, exactly the same values in all 

the catalogues. 

Based on the design space defined in Figure 5.2, the DOE in Figure 5.3 is 

proposed, which consists of 14 design points. In the figure, the number of 

each DP is shown for further referencing. Note that three FE calculations 

correspond to each design point, one for each load case, so a total of 42 

calculations are proposed. 

 

Figure 5.3. Proposed DOE for the design space study. 

5.2.2 Study of the parameters 

For the standard design definition, the bearings from the catalogues of 

Iraundi and SKF were used in a first approach. For this study, only standard 

series were considered with internal, external or no gear. Overall, the 

parameters of 90 bearings were considered. After defining the standard 

design, it was validated by contrasting it with bearings from the catalogues of 

the other mentioned manufacturers.  

For the standard design, the following considerations were assumed in 

order to simplify its definition and minimise the number of involved 

parameters. Such simplifications were demonstrated not to affect the results. 

 Anti-symmetric section: the radial section is assumed anti-symmetric. 

0

500

1000

1500

2000

2500

3000

3500

10 15 20 25 30 35 40 45 50 55

Dpw [mm]

Dw [mm]

DP1

DP2

DP5

DP4

DP3

DP8

DP7

DP6

DP11

DP10

DP9

DP12

DP13

DP14



Chapter 5. Bearing global stiffness  141 

 

 No geared rings: no gear is considered in the standard design. 

Nevertheless, the dimensions of the geared bearings in the catalogues were 

taken into account for the standard design dimensioning. In such cases, 

the primitive diameter was considered. 

 No threaded through holes: in real bearings, holes can be through or blind, 

threaded or not threaded. For simplifying purposes, no threaded through 

holes are considered. 

 Same number of holes: under a certain tilting moment, inner bolts are 

more stressed than outer ones. For this reason, sometimes more bolts are 

placed in the inner ring. However, the difference between inner and outer 

bolt numbers is small, especially for big diameters. For this reason, the 

same number of holes is considered in both inner and outer rings. 

Figure 5.4 shows the sketch of the section of the standard design. 

According to the mentioned assumptions, the section is defined by eight 

parameters apart from the main ones, five of which are a function of the ball 

diameter (  ) through   ,   ,    ,     and     ratios. The other three are the 

height    and contact parameters   and  . Non-contact parameters were 

addressed first. Thus, the values of the mentioned ratios and    were 

calculated and compiled for the 90 bearings. By analysing them, it was found 

that they were very similar for every case, so average values were adopted. 

Table 5.1 shows these values. 

 

Figure 5.4. Sketch of the standard section. 
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2.15 10mm 1.9 0.1 1.15 0.75 1 

Table 5.1. Dimensional values for the standard design. 

Table 5.1 also shows the value for another coefficient,    , which relates 

the number of holes (  ) with the main parameters through the following 

expression: 

       
   

  
 
   

  
 (5.1) 

Figure 5.5 compares the values of the dimensions of the bearings from the 

catalogues (dots) with the standard design for the adopted values. Subscripts   

and   correspond to outer and inner rings respectively, according to the 

nomenclature of Iraundi. On the other hand, Figure 5.6 shows the same 

comparison but only for the number of holes, which is a function of both 

main parameters. These plots make clear that the proposed standard design 

satisfactorily fits the commercial designs of Iraundi and SKF. Additionally, 

and for validation purposes, the standard design was compared with bearings 

in the catalogues from the other mentioned manufacturers, also achieving a 

good match (see Figure 5.7). Therefore, the standard design is demonstrated 

as a simple way to represent regular slewing bearings. Figure 5.8 shows two 

examples of the standard design for different configurations. 

There are still other variables to be set. For contact parameters   and  , 

typical values of 0.943 and 45° are assumed. It should be recalled that the ball 

number (  ) is a function of the main parameters and      , which represents 

the ball filling ratio: 

                       
   

  
   (5.2) 

According to information given by Iraundi, parameter       goes from 80% 

to 100%, where this last value corresponds to the case with no ball separators. 

For the first approach and before including contact parameters in the study, a 

value of 90% is assumed. As no contact parameters are to be included for the 

moment, no ball preload is considered. 
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Figure 5.5. Standard section (lines) VS Catalogues (dots). 

Finally, the bolted joint must be defined. Bolt preload is defined as a 

percentage of its elastic capacity, and in slewing bearings values from 70% to 

90% are commonly used. For the standard design, a typical value of 75% is 

adopted. For the bolt metric, the following formula is considered, which is 

consistent with the bolts used according to the catalogues. 

           
      

 
  (5.3) 
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Figure 5.6. Number of holes: Standard design (lines) VS Catalogues (dots). 

 

Figure 5.7. Comparison between the section of the standard design and bearings of the 
main slewing bearing manufacturers for Dw=25mm. 

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500

n [-]

Dpw [mm]

na ni Dpw/Dw·Rn

Dw = 20mm

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500

n [-]

Dpw [mm]

na ni Dpw/Dw·Rn

Dw = 25mm

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500

n [-]

Dpw [mm]

na ni Dpw/Dw·Rn

Dw = 40mm

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500

n [-]

Dpw [mm]

na ni Dpw/Dw·Rn

Dw = 50mm



Chapter 5. Bearing global stiffness  145 

 

 

Figure 5.8. Examples of the standard design for two different configurations (DP6 and 
DP14). 

It should be mentioned that the considered material for every component is 

steel, with an elastic modulus of 200GPa. 

5.3 Finite Element model 

The objective of the FE model is to simulate the stiffness behaviour of the 

bearing in the most realistic possible way. Moreover, a fully parametric and 

robust model is wanted in order to perform a series of calculations in an 

automated way, considering any geometry or load condition. For this purpose, 

the commercial software ANSYS® was used. Specifically, the ANSYS 

Workbench package was used for its parametrization capabilities, even though 

APDL scripts were required to address some limitations of the Workbench 

environment. 

The geometry was done in ANSYS Design Modeller. It is a 3D geometry, 

where all the components are considered except for the bolts, which are 

introduced into the model through an APDL script, as  explained later. Due 

to the symmetry of the geometry and the loads (see Chapter 1), only half the 

bearing is considered, which saves computational cost. The geometry is fully 

parametric, so any bearing can be obtained in a straightforward way. It is not 

only valid for the standard design, but any section (from regular or light 

series), type of hole (through or blind) or shape in general can be reproduced. 
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There exist simulation techniques for the simplification of the balls [81,83], 

which involve mechanisms formed by rigid beams and springs with the 

stiffness of the contacts. These techniques save computational cost and 

provide good results for axial load and tilting moment. Nevertheless, they 

have limitations for radial load. When a radial load is applied, the mentioned 

mechanisms are displaced in the circumferential direction and springs, which 

are thought to be in the radial plane, leave it and thus introduce an additional 

and unreal radial stiffness. As explained in Chapter 2, this residual radial 

stiffness can be eliminated by the proposed semi-analytical model for the load 

distribution calculation, but not in a FE model. For this reason, and to achieve 

the most accurate results possible, solid balls are used. 

Apart from the bearing itself, flanges are also considered in the model. They 

are part of the model to simulate the joint between the rings and the adjacent 

structures, which involves preloaded bolts and non-linear contacts. Flanges 

and bolts prevent rings from deforming freely, and therefore allow a more 

realistic simulation. Nevertheless, the stiffness of the adjacent structures is not 

considered in this study, since it can change considerably with the application. 

Moreover, what is wanted is to calculate the stiffness of the bearing, without 

introducing the effect of the surrounding components. For this reason, and to 

obtain a wide-range formulation applicable to any case, rigid flanges are 

considered. Therefore, the thickness of these components is not relevant. It is 

worth pointing out that assuming rigid rings is not a limitation of this work, 

since the deformability of the surrounding structures could be considered in 

further calculations, where the bearing would be simplified by means of the 

formulas derived from the current study. 

The FE simulation of a 3D bearing with solid balls involves a high 

computational cost. For this reason, special attention was paid to the meshing 

process. The geometry was divided into sweepeable bodies in order to make it 

easier for the mesher and achieve elements with high aspect ratios and avoid 

irregular residual elements. A fine mesh is only used in the contact zone, 

favouring the convergence of the analysis. Element size is also parametrized 

and it is a function of ball diameter. Figure 5.9 shows the mesh for a particular 

bearing from the catalogue of Iraundi, and the different colours represent 

different parts, so the mesh is not shared among them. In the figure, some 

bodies have been removed to show the internal mesh. The number of the 

degrees of freedom varies depending on the dimensions of the bearing, but 

for the standard design, it goes from around 2.6·105 for low        ratios to 
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3.6·106 for high        ratios. The mesh used in each part is detailed in the 

following points: 

 Rings: they are meshed with SOLID185 3D elements, with a linear 

displacement behaviour, mainly through hexahedrons (8 nodes), although 

some wedges (6 nodes) are also required in located areas. The element size 

is one-fourth the diameter of the ball.  

 Flanges: despite wanting to simulate these as rigid bodies, this formulation 

showed numerical singularities and convergence problems. For this reason, 

the same mesh for the rings is applied to the flanges, and the rigidity is 

imposed by means of boundary conditions (later explained). 

 Balls and contact region of the rings: due to the punctual and variable 

nature of the ball-raceway contact, a fine mesh of high order elements is 

required in the region. Consequently, SOLID186 elements are used in balls 

and in the rings within the raceways’ vicinity, mainly through hexahedrons 

(20 nodes), though some wedges (15 nodes), pyramids (13 nodes) and 

tetrahedrons (SOLID187, 10 nodes) are also occasionally used. In the 

rings, the mesh from the refined part does not share nodes with the rest in 

order to avoid elements with a poor aspect ratio in the transition (see 

Figure 5.9). This is later solved by means of contact formulations. 

 

Figure 5.9. FE mesh for the Iraundi POS214-8 bearing [25]. 

 Bolts: bolts are considered in the model to simulate the nonlinearity of the 

ring-flange joint and the preload in the structural behaviour of the bearing, 

but the objective of the analysis is not to study them. Therefore, a linear 

element based on the Timoshenko beam theory, such as BEAM188, is 

sufficiently accurate for the aim of the study. Additionally, PRETS179 

elements are used to apply the corresponding bolt preload. As mentioned 



148  Iker Heras 

 

 

before, these elements are directly inserted in the model through a 

parametric APDL script. 

To establish the relationship between the different parts of the model, 

contacts are defined. The definition of the contacts involves additional 

elements, but no extra nodes. These elements are CONTA174 and 

TARGE170, and MPC184 for bolt-housing contacts. In the following points 

each contact is described separately: 

 Ball-raceway: a frictional contact is required in this case. A typical friction 

coefficient of 0.1 is adopted [59,102], though it will have little effect on the 

stiffness. Note that, to ease the convergence in the first step, the nodes 

from balls and raceways have been matched on the contact point (matched 

but not merged). 

 Ring-flange: it is a frictional contact too, allowing the sliding or the 

opening of the joint. In this case, the friction coefficient is the typical one 

for a steel-steel contact, which is 0.3. 

 Raceway-ring: this contact is defined to join the refined part of the rings to 

them. A bonded contact is set, with a pure-penalty formulation. 

 Bolt-housing: bolts must be tied to rings and flanges. This union is made 

through the previously mentioned APDL script that creates the bolts, and 

is made through infinitely rigid MPC184 beams (see Figure 5.10). 

 

Figure 5.10. FE model details in the classic environment. 

To simulate the symmetry of the model, frictionless boundary conditions 

are imposed on the faces on the symmetry plane, involving rings, flanges, balls 

and bolts. The bearing is held by the outer flange, so its nodes are fixed; by 

fixing all the nodes, a rigid flange is being considered. The displacements are 
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applied to the inner flange through a remote node placed in the centre of the 

bearing and at the height of the interface between the flange and the ring. The 

remote node is connected by MPC184 rigid beams to every node of the inner 

flange, so it can not be deformed. The preload of the bolts is gradually applied 

in a first step, while the displacements of the inner ring are introduced in 10 

substeps in the second step in order to reproduce the load-deformation 

nonlinear behaviour. 

In the simulation, large displacements are involved and they must be taken 

into account, especially because the variation of the ball-raceway contact angle 

significantly affects the stiffness of the bearing. This fact, together with the 

ball-raceway and ring-flange frictional contacts, makes the model highly 

nonlinear. More specifically, the model shows important convergence 

problems due to the ball-raceway contacts, which are very sensitive in the first 

load steps. When the preload is applied, and also in the first substeps of the 

second step, some balls lose the contact and therefore they are unconstrained. 

This problem is especially notable when a pure radial load is applied, when 

half the balls lose the contact. This is a typical problem in ball bearing 

simulations, but no method was found in the literature to deal with it. 

Therefore, to avoid this problem and ensure the convergence of the model, 

many different tests were performed, but only the two most successful ones 

are going to be discussed. The first option was to tie balls through weak 

springs and introduce a slight preload, ensuring the contact between them and 

the inner ring. In other words, it was like making an elastic necklace with the 

balls. This option showed good convergence behaviour with some models; 

nonetheless, it requires high preloads in the springs in certain cases, while in 

others the convergence was not reached. Therefore, a second option was 

finally implemented, which involves a cage formed by thin beams like the one 

shown in Figure 5.10. This weak structure is more restrictive than the first one 

and ensures the convergence for every design and load case. It was checked 

that both options offer exactly the same results, so the additional stiffness due 

to the cage is proved to be negligible. Thus, this innovative method solves a 

typical problem of ball bearing FE simulations, ensuring the convergence for 

any calculation and offering reliable results. 

A robust fully parametric and realistic FE model is therefore achieved, 

capable of addressing any kind of load. The computational cost of each 

calculation varies from 1 hour for low        ratios to 1 day for high 

       ratios. For the calculations, a high performance work station was 
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used, with an Intel® Xeon® E5-2697 v3 @ 2.6GHz processor with 14 physical 

cores (28 logical) and a RAM of 128GB. 

5.4 Formulation for the main parameters 

5.4.1 Finite Element results 

In this section, the results from the FE model will be analyzed. 

Nevertheless, some issues should be addressed first. 

As we know from the Hertz theory [17], the ball-raceway contact obeyed 

the following relationship between the normal load ( ) and the local 

deformation ( ): 

         (5.4) 

Based on this expression, the following formulas can be proposed for a first 

approximation to the results given by the FE model, establishing a 

relationship between the applied loads (  ,    and   ) and the corresponding 

displacements (  ,    and   ): 

        
   

(5.5)         
   

        
   

Where subscript   is for axial,   for radial and   for tilting. In this case, the 

values of the exponentials will not have the same value as they had in the 

normal problem (1.5), not only because the flexibility of the rings is involved, 

but also due to the change of the contact angle with the load. For the axial 

load case, for example, the greater the axial load is, the larger the contact angle 

will be, and therefore the more aligned the normal load ( ) will be with the 

applied force (  ); due to this effect, the exponent (  ) is expected to be 

greater than 1.5, at least when only local contact deformations are assumed. 

An analogous reasoning is applicable to radial load or tilting moment. Besides, 

if we consider the deformations of the rings, the problem is more complex, 

and therefore the values of the exponentials are more difficult to predict. 
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Figure 5.11. FE results for displacements (red dots), stiffness (dashed blue curve) and 
their approximations (continuous curves) for DP7: (a) for axial load; (b) radial load; (b) 

tilting moment. 
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Having explained this, the obtained results will be analyzed. From this point 

on, only a particular case, the DP7 (see Figure 5.3), will be analyzed. 

Nevertheless, all comments and observations, as well as derived conclusions, 

are applicable to every case from the DOE. 

Hence Figure 5.11 shows, in red dots, the axial and radial forces, as well as 

the tilting moment, for the increasing values of the applied displacements for 

a particular case (DP7). In the same plots, the stiffness for each load step is 

plotted with dashed blue lines. These lines evince the discontinuity in the 

tendency of the resistant behaviour of the bearing. In each load case, a clear 

jump in the stiffness can be seen, pointing to the load from which this 

behaviour changes. Contrasting these curves with the deformations and the 

contact results (pressure and contact status) in the flange-ring joints, it is 

identified that this change in the tendency is due to the nonlinearity of these 

contacts. Figure 5.12 shows how flanges start either sliding (for axial or radial 

load) or opening (under tilting moment) after a certain applied displacement. 

The effect of this contact nonlinearity has been placed outside the scope of 

the study in order to achieve generally applicable conclusions and results. The 

point where the sliding or the opening starts will depend on the stiffness of 

the structures to which the rings are bolted and the bolt preload level. 

Although the latter is usually around the established value for the standard 

design (75%), the stiffness of the adjacent structures can vary considerably, 

depending on the application. Moreover, in the FE model, the flanges are 

infinitely rigid, favouring a premature opening. 

 

Figure 5.12. Nonlinear behaviour of the bolted joint (enlarged displacements): (a) with 
axial load; (b) radial load; (c) tilting moment. 

In order to neglect the effect of the flange-ring contact nonlinearity, the 

functional form proposed in (5.5) was used. The values of the coefficients   

and   were calculated for each DP considering only the points prior to the 

contact nonlinearity, and the resulting curves are shown in Figure 5.11 by 

continuous curves. These curves allow the large effect of the sliding or the 

opening of the joint to be observed, which makes the structural behaviour of 

(a) (c) (b) 
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the bearing quite unpredictable. The functional approximation shown in these 

plots was used only in this first post-processing of the results in order to catch 

the tendencies, evaluate the effect of the flange-ring contact nonlinearity and, 

in general, to make the analysis of the data easier, but it has nothing to do 

with the formulation presented in the following section. It is remarkable that 

the values of the exponential coefficient ( ) are quite stable for each load case, 

being between 1.5 and 1.6 for the axial load, between 1.3 and 1.4 for the radial 

load and between 1.2 and 1.4 for the tilting moment. 

To evaluate the effect of the flexibility of the rings on the stiffness, and 

therefore justify the current research, Figure 5.13 compares the results for the 

cases with rigid and deformable rings. The results for the case of rigid rings 

were obtained through the analytical model developed by Aguirrebeitia et al. 

[44]. Remember that, as explained in Chapter 2, this model provides the same 

results as the Rigid-BIME for the nominal geometry (with no manufacturing 

errors). From the figure, it can be concluded that not considering the 

deformability of the rings will largely overestimate the stiffness of the bearing. 

Of course, the effect is lower for smaller bearings and larger for bigger ones, 

but in every case the effect is highly significant. For the case of the 35mm ball, 

for example, the displacements due to ring flexibility account for 

approximately one third of the total (36%) for the smallest bearing (DP6), 

while they account for nearly one half the total displacements (47%) for the 

medium-sized bearing (DP7), and slightly more (52%) for the largest (DP8). 

It is worth mentioning that the stiffness curves from the analytical model 

(Figure 5.13) can also be approximated by (5.5). In this case, the exponential 

for every load case and DP is 1.6, which is greater than the value of 1.5 from 

formula (5.4), which is consistent with the reasoning at the beginning of the 

section. 

5.4.2 Functional approximation 

The proposed approach to the bearing global stiffness estimation 

considering the ring elasticity lies in separately calculating the displacements 

due to contact deformations and those due to the flexibility of the rings. Thus, 

the problem is decoupled so that each contribution can be calculated 

separately. Hence, the total displacements are formulated as follows: 

                   (5.6) 
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Figure 5.13. FE results (red dots), exponential approximation (red curve) and analytical 
model results (blue curve) for DP7: (a) for axial load; (b) radial load; (b) tilting moment. 
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Consequently,          can be calculated through the analytical model, and 

the challenge resides in finding a way to compute       . The aim of 

decoupling the problem is to consider separately the effect of the different 

parameters on the stiffness. By doing this, contact parameters such as preload 

or conformity ratio, will only affect          because the analytical model 

already has the capability to consider them. On the other hand,        is 

affected by the rest of the geometrical parameters, where the main ones are 

   and    . 

For the formulation of       , a functional approximation is proposed, 

based on the results from the DOE. The proposed formulation is, once again, 

the one at (5.5), but in this case the coefficient   will be a function of the 

main parameters (   and    ): 

          
                 

  (5.7) 

Where   represents the applied load in each case (being   ,    or   ) and   

the corresponding displacement (  ,    or   ). The idea is to find the 

          function that will fit all the results from the DOE. For this 

purpose, the results from the analytical model are deducted from the FE 

results, obtaining the curves for       . Then, the function (5.7) was 

approximated for each DP independently, obtaining the values of the 

coefficients   and   in each case. In this first approach, it was identified how 

the coefficient   is very similar for every DP (under the same load case). 

In a second step, the value of coefficient   was fixed and then every   

coefficient recalculated to fit the curve. The obtained values are plotted in 

Figure 5.14. From these plots it can be concluded that the effect of     in the 

coefficient   is exponential. However, no such clear tendency can be directly 

deducted for   . In Figure 5.14 it can be seen that the effect of     is 

dominant, so the same plots for    do not show such clear information. 

Before achieving the most suitable functional form for  , different options 

were tested, but finally the following was proved to provide the best fit, with 

the minimum possible number of coefficients: 

               
         

    (5.8) 
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Figure 5.14. Tendencies of K coefficients with bearing mean diameter. 

From (5.7) and (5.8), the expression for        is obtained: 
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The last step is to find the values of the 5 coefficients ( ,   ,   ,     and 

   ) that will fit the curves for every DP. To this end, the Mean Weighted 

Relative Square Error (     ) was defined: 

       
 

 
  

 

  

  
    

  
          

  
       

    
 

    
  
 
  

  

   

 

 

   

 (5.10) 

 Where   is the number of DPs (14 in our case) and    is the number of 

points from the FE results for DP   before the nonlinearity of the joint 

occurs. By minimizing this error through the Newton-Raphson method, the 

values of the coefficients were obtained. Although a quadratic error was used 

for the minimization to favour the convergence, the Weighted Absolute 

Relative Error (     ) gives a more intuitive idea of the error for each DP: 

       
 

  

  
   
  
          

  
       

   

   
  

 

  

   

 (5.11) 

Table 5.2 shows the final values of the coefficients for each load case 

together with the mean value of the       (     ). The units for    (and 

analogously for    ) are                for axial and radial loads, and 

             for tilting moment. As can be seen in the table, the error is 

less than the 5% in any case. 
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Axial load 1.6 0 1 3300 0.35 1.5% 

Radial load 1.0 45 1.2 0.15 1.3 3.5% 

Tilting moment 1.1 5.3·10-4 4.5 10-5 3.1 4.9% 

Table 5.2. Values for the coefficients of the functional approximation for δrings and the 
relative error (MWARE). 

Substituting the values from Table 5.2 in (5.8), the final formulas for the 

contribution of the rings to the total displacements are obtained: 

            
  

       
    

 

 
   

 

(5.12)            
  

    
           

   
 

            
  

    
       

   
    

 
   

 

Figure 5.15 compares FE results (red dots) with the curves for          

(from the analytical model),        (from the proposed formulation) and the 

summation of both for DP7 (for the other design points, see Appendix A). 

For this DP, the       is 0.36%, 2.29% and 4.44% for axial, radial and 

tilting cases respectively, so it is a representative DP considering the mean 

values of the errors in Table 5.2. 

5.5 Extension of the formulation for secondary 

parameters 

As explained in the previous section, the aim of separately considering the 

displacements due to the contact deformations and those due to the ring 

flexibility is to be able to reproduce the effects of the contact parameters in 

the global stiffness of the bearing without making any change in the proposed 

formulation. Contact parameters are supposed to influence only the 

deformations in the ball-raceway contacts, without affecting the ring stiffness. 

To prove this assumption, additional FE calculations were performed, and the 

results compared with the ones from the proposed formulation. 
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Figure 5.15. Analytical model results (blue curve), functional approximation for rings 
deformation (green curve), the summation of both curves (red curve) and FE results (red 

dots) for DP7: (a) for axial load; (b) radial load; (b) tilting moment. 
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The parameters related to the contact deformations are preload (  ), ball 

number (  ), conformity ratio ( ) and initial contact angle ( ). Although the 

ball number cannot be considered as a contact parameter, it affects the 

deformations of the contacts because the more balls there are, the more 

contacts there will be. Of course, all these parameters are considered in the 

analytical model. 

 To verify that the mentioned parameters only affect          but not       , 

different FE calculations were carried out varying their values. For the 

verification a reference bearing, the DP7, was adopted, and then the effect of 

each parameter was studied separately. 

For the case of the preload, four different values were considered up to 

10% of the static load capacity, which happens at 30μm. Figure 5.16 shows 

the results for the reference case and the three preloads. It can be seen that 

the curves from the proposed methodology are near FE results, although they 

have certain limitations for high loads. Nevertheless, the errors are near those 

for the nominal case (see Table 5.3). 

          

Axial load 1.7% 3.3% 6.8% 7.4% 

Radial load 3.2% 3.3% 5.6% 3.7% 

Tilting moment 5.5% 5.2% 7.5% 5.6% 

Table 5.3. Relative error (MWARE) for the different contact parameters. 

Regarding the ball number, the parameter considered is the filling ratio 

(     ) from formula (5.2). As explained before, the values for this ratio vary 

from 80% to 100%, so these two aditional cases were analysed. The results are 

shown in Figure 5.17 and the numerical errors are presented in Table 5.3. As 

with the preload, the proposed methodology lacks accuracy as the load 

increases, but the values of the errors are still satisfactory. 

For the conformity ratio, values from 0.92 to 0.96 were analysed. In this 

case, the formulation catches the tendency adequately (see Figure 5.18), but 

the errors are bigger than for the other parameters (Table 5.3). 

Finally, the effect of the contact angle was studied. For this purpose, angles 

from 35° to 55° were considered. If the proposed formulation is applied 

without introducing any correction (see dashed curves in Figure 5.19), the 
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curves are far from the FE results, even though the tendency is correct. 

Nevertheless, a correction can be easily made using the   factor. This factor 

comes from the unprojection of contact forces in the vertical for axial and 

tilting cases, and in the horizontal for the radial case: 

                    
  where  

     
    

      
        

   
    

      
        

  (5.13) 

The corrected curves are represented in Figure 4.17, showing a good 

correlation with FE results. 

To sum up, it can be concluded that the proposed formulation provides 

accurate results for every bearing. It was demonstrated that  not only does it 

fit FE results for every combination of the main parameters (  ,    ), but 

also correctly reproduces the effects of preload, ball number, conformity ratio 

and initial contact angle. Thus, the calculation procedure that involves both 

the analytical model and formulas (5.12) and (5.13) constitute a fast, reliable 

and powerful tool for bearing manufacturers and buyers. 
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Figure 5.16. Effect of the preload according to the proposed formulation (curves) and FE 
results (dots) for DP7: (a) under axial load; (b) radial load; (b) tilting moment. 
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Figure 5.17. Effect of the ball number according to the proposed formulation (curves) 
and FE results (dots) for DP7: (a) under axial load; (b) radial load; (b) tilting moment. 
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Figure 5.18. Effect of the conformity ratio according to the proposed formulation 
(curves) and FE results (dots) for DP7: (a) under axial load; (b) radial load; (b) tilting 

moment. 
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Figure 5.19. Effect of initial contact angle according to the proposed formulation without 
the correction (dashed curves), corrected (continuous curves) and FE results (dots) for 

DP7: (a) under axial load; (b) radial load; (b) tilting moment. 
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6 Experimental tests 

6.1 Introduction 

This chapter presents some preliminary tests performed to experimentally 

measure the friction torque. The objective of these tests is to assess the 

capabilities and limitations of the proposed analytical models (BIME and 

FRANC) for the friction torque calculation. 

Previously to this Doctoral Thesis, and as explained in Chapter 1, Joshi et 

al. not only particularized the model of Leblanc and Nélias [56,57] for slow 

speed applications, but also performed some experimental tests [59]. In these 

tests, Joshi et al. measured the friction torque of a four-point contact bearing 

under different magnitudes of axial load. The cases of two contact points and 

four contact points were studied separately by using two different ball sizes. 

The results from the tests showed a good correlation with the analytical 

approach. 

In preloaded bearings, there are four contact points for light loads, but the 

status switches to two contact points from certain load onwards. 

Nevertheless, this transition from four contact points to two contact points 

was not studied by Joshi et al. [59]. In the preliminary tests presented in this 

chapter, this issue is addressed. Moreover, Joshi et al. considered rigid rings 

for the load distribution [39,59]. This can be acceptable for bearings where the 

mean diameter (   ) is not much larger than the ball diameter (  ). In the 

case of the bearing tested by Joshi et al., the        ratio was 4, so rigid rings 

assumption is justified. Nonetheless, in slewing bearings the mean diameter is 

much larger than the ball diameter (      ), so this assumption can lead to 

inaccurate results. In the preliminary tests presented in this chapter three 

bearings were tested, where osculation ratios and contact angles are different. 

These bearings do not have large dimensions (          ), but they 

meet the geometrical proportions of standard slewing bearings (          

in tested bearings). Therefore, in the analytical calculations for the 
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experimental correlation presented in following sections, the Flexible-BIME 

was used. 

In this chapter, an alternative procedure for the friction torque calculation is 

presented in a first place. This procedure takes advantage of the analytical 

models developed in the previous chapters, but proposes a different way to 

estimate manufacturing errors and their effect in the friction torque without 

having to measure the raceways. Then, the friction coefficient is 

experimentally obtained for two different greases typically used in slewing 

bearings. The performed preliminary tests for the friction torque 

measurement are presented in the last section, from which some conclusions 

are obtained. In these tests, only one of the greases is used. Finally, the future 

work to be done regarding experimental testing is outlined. 

6.2 Alternative procedure for the friction torque 

calculation 

In this section, an alternative procedure is proposed to calculate the friction 

torque considering the effect of manufacturing errors, as well as to 

approximately estimate their magnitude, without measuring the raceways. In 

this procedure, the idling friction torque must be experimentally obtained, 

which is much easier and faster than measuring the raceways. If the idling 

friction torque is 0, it means that no interferences exist, and therefore it is not 

possible to obtain information on the manufacturing errors. In this case, the 

calculations would be performed by considering the nominal geometry. 

Nevertheless, a preload is always sought. Thus, if the idling friction torque is 

not 0, it means that certain interferences exist at the contact. As the real 

geometry is unknown, it is not possible to take advantage of the developed 

model to calculate the real interferences for each ball. Nevertheless, it is 

possible to perform calculations considering the nominal geometry, using the 

ball preload as variable in the model. This way, there will be a value of preload 

that will make the developed model fit the measured idling torque. This value 

will be named the effective ball preload (  ) and will be different from the real 

ball preload (  ), which must be known if the manufacturing errors are to be 

estimated. Using the effective preload in the analytical model, the resulting 

interferences will be an intermediate value of the real interferences. Thus, 

once the effective preload is known, the friction torque can be calculated for 

any load case, using this preload instead of the ball preload. 



Chapter 6. Experimental tests  167 

 

Of course, the effective preload will be different if it is calculated 

considering rigid rings or flexible rings. If the objective is to estimate the 

manufacturing errors, the effective preload must be calculated with the 

flexible rings. Thus, the average geometrical interferences due to these errors 

(   ) can be calculated as the difference between the effective preload and the 

ball preload: 

           (6.1) 

Contrarily, if the objective is to estimate the friction torque but no 

information about manufacturing errors is wanted, calculations could be done 

by assuming rigid rings, without significant errors. The example in Figure 6.1 

will be used to better explain the procedure. This figure represents the results 

of the friction torque for a bearing under different axial loads. The axial 

capacity of this bearing is 857.5kN, which corresponds to an interference of 

117.5μm. The solid line in Figure 6.1a was obtained for the nominal geometry, 

with no ball preload and assuming rigid rings. Suppose that the idling friction 

torque is experimentally measured for this bearing and a value of 52N·m is 

obtained for a ball preload (  ) of 4μm. Then, calculations are performed with 

the analytical model for different ball preloads and with no applied loads. As a 

result, it is obtained that a ball preload of 10μm is required to obtain a value 

of 52N·m for the idling friction torque. Therefore, the effective preload for 

rigid rings (  ) is 10μm, which means an interference of 10μm in the ball-

raceway contact. Then, using this effective preload in the model, the dotted 

line in Figure 6.1a is obtained. This line shows an initial part that differs from 

the case with no interferences because there are four points in contact. As the 

axial load increases, one of the contact diagonals becomes more loaded and 

the other less loaded. This way, there is a load from which the ball starts to 

roll, and then a transition happens from four contact points to two contact 

points. In this transition, the friction torque decreases drastically, and from 

50kN onwards, both curves are practically the same. 

If the effective preload is calculated considering flexible rings, it will be 

greater than the value of 10μm obtained for rigid rings. To obtain the 

measured idling friction torque, an interference of 10μm is required, and to 

reach such an interference, a larger ball preload is needed if the rings are 

deformed. Thus, the value of the effective preload is calculated for flexible 

rings and a value of 24μm is obtained. This means that if the raceways were 

perfect, this is the ball preload that would be needed in order to obtain an 



168  Iker Heras 

 

 

idling friction torque of 52N·m (i.e. the measured value). This value of the 

effective preload includes the geometrical interferences due to the actual ball 

preload and to the manufacturing errors. Note that these geometrical 

interferences are bigger than the interferences after ring deformations. 

Consequently, by subtracting the ball preload (i.e. 4μm in the example) from 

the effective preload calculated for flexible rings, the average value of the 

geometrical interferences due to the manufacturing errors is obtained, and 

thus it provides an estimation of these errors. For the example: 

                         (6.2) 

Then, if the entire   -   curve is obtained for flexible rings considering the 

effective preload of 24μm, it is demonstrated to be very close to that for rigid 

rings considering the effective preload of 10μm (see Figure 6.1b). For the 

same axial load, and considering the corresponding effective preload in each 

case, the load distribution among the balls will be very similar in both cases. 

For flexible rings, contact angles will be slightly higher, which means lower 

loads and therefore a lower friction torque, but very similar nevertheless. 

 

Figure 6.1. Friction torque VS axial load: (a) rigid rings with and without preload; (b) with 
preload for rigid and deformable rings. 
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To sum up, if no measurements of the raceways are available and the 

friction torque is wanted to be estimated for low loads, the proposed 

alternative procedure can be used considering rigid rings. Additionally, if an 

estimation of the manufacturing errors is desired, flexible rings must be 

considered to calculate the effective preload. 

6.3 Friction coefficient measurement 

The friction coefficient is a mandatory parameter for the analytical 

characterization of the contact. To obtain this parameter, experimental tests 

were performed. In these tests, two greases typically used in four-point 

contact bearings were studied (Grease-1 and Grease-2). In the next points, the 

followed experimental procedure is described. The results are then processed 

and a value is set for each grease. 

6.3.1 Test bench setup 

For the determination of the friction coefficient, the Linear Reciprocating 

Tribometer (LRT) in Figure 6.2 was employed. The experimental tests were 

performed in IK4-Tekniker research centre. These types of tests consist of 

holding a ball so that it can not move, and rubbing it against a test specimen 

that simulates the raceway. The rubbing movement is linear and reciprocating, 

so both static and dynamic friction coefficients can be measured. 

To reproduce slewing bearings working conditions, two material properties 

are of vital importance: surface appearance and hardness. For the surface 

appearance, the same machining procedure used for the raceways was 

employed for the specimen. However, the hardness was more difficult to 

reproduce, because the raceways are induction hardened, while the specimens 

have to be heat-treated in a furnace. 42CrMo4 steel had to be used for this 

purpose, which after hardening and tempering in the furnace, it achieved the 

hardness of 56-60HRc, typical in bearing raceways. Contrarily, the ball was 

made of 100CrMo4, commonly employed material for the rolling elements. 

Table 6.1 shows the details of the tests. four different loads were used to 

study its effect on the measurements. A maximum of 800N was applied 

according to the limitations of the LRT. The tests were performed twice for 

each load in order to check the repeatability. A low frequency was set to 

replicate the slow speed conditions in slewing bearings. 
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Figure 6.2. Linear Reciprocating Tribometer at IK4-Tekniker. 

Parameter Value 

Applied forces 1N, 10N, 100N, 800N 

Reciprocating movement amplitude 21mm 

Frequency 0.5Hz 

Test duration 2min 

Ball diameter 10mm 

Specimen thickness 5mm 

Initial grease layer 2mm 

Table 6.1. Friction coefficient measurement tests data. 
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6.3.2 Results 

As a result, the evolution of the friction torque with time was obtained from 

each test. Figure 6.3 shows the results of one of the tests performed for 

Grease-1 and a load of 800N. The figure evinced that the friction coefficient 

decrease with the time during the first seconds, but it rapidly stabilizes. This 

higher value in the beginning is due to the viscous effects of the grease layer. 

After a few cycles (around 5), the grease is moved away and only a thin layer 

remains. After several cycles (15 in the case of the figure), all the grease is 

removed from the contact path, and then dry friction takes place. In order to 

filter the initial viscous effects and the dry friction at the end of the tests, the 

next functional expression was used: 

          
       

   
 (6.3) 

 

Figure 6.3. Evolution of the friction coefficient with time. 

The final values of coefficients    ,     and   are those which minimize the 

quadratic error between the functional approximation and the measured 

instantaneous friction coefficient before dry friction occurs. More specifically, 

    is the value of the stabilized friction coefficient for each test. Figure 6.4 

represents all these     values for both greases and every test. From the 

graphics, it is concluded that the friction torque decreases with the load, but 

rapidly reaches a constant value, even for very low loads. Therefore, a similar 

expression to (6.3) is used in order to calculate a unique value for the friction 

coefficient for each grease: 

        
     

   
 (6.4) 
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Where    is the sought constant value. Table 6.2 compiles the average 

values of     for each load and grease, and gives the final    to be adopted in 

the calculations for each grease. 

      
    

Grease-1 Grease-2 

1 0.23 0.27 

10 0.19 0.18 

100 0.15 0.15 

800 0.12 0.14 

   0.12 0.14 

Table 6.2. Average friction coefficient for different loads and greases. 

 

Figure 6.4. Friction coefficient VS applied force: (a) for Grease-1; (b) for Grease-2. 
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6.4 Friction torque measurement 

In this section, the performed experimental tests for the friction torque 

measurement are described. Then, the results are compared with the analytical 

simulations carried out with the BIME and FRANC models, following the 

alternative calculation procedure proposed in section 6.2. 

6.4.1 Test bench setup 

For the experimental measurements of the friction torque, a test bench 

available in the facilities of the INSA-Lyon was used (Figure 6.5). The test 

bench is called Rhéos and is part of the equipment of the Laboratoire de 

Mécanique des Contacts et des Structures (LaMCoS) [105]. The Rhéos is 

designed to apply large compression loads and then rotate and measure the 

friction torque. For the data acquisition two load sensors are available, which 

measure both axial load and friction torque: the first one measures values up 

to 750kN and ±2000N·m (Sensor-1), while the second one bears maximum 

loads of 60kN and ±50N·m (Sensor-2). The axial load and the rotation are 

applied by a hydraulic cylinder and a brushless electric motor respectively. The 

first one is driven by a PID controller (Proportional Integral Derivative), 

which allows setting an objective applied load, but not a specific axial 

position. However, the position can be measured by a LVDT (Linear Variable 

Differential Transformer). The motor is controlled by a software which allows 

setting variables like rotation angle or speed. Considering that the current 

research is focused in low speed applications, an angular speed of 0.5rpm was 

set for the tests. In order to check possible misalignments of the bearings, two 

full rotations were applied to the bearings for each load case. 

It is important to point out that the distance between the columns of the 

test bench is 430mm (Figure 6.5), so there is no room for the bearing 

measured in Chapter 2. For this reason, Iraundi S.A. provided three smaller 

bearings with an outer diameter of 254mm (Figure 6.6). The bearings are 

equal to each other except for the osculation ratio and the initial contact angle. 

The main geometrical parameters are given in Table 2.1. In the table are also 

included the axial static load capacity and the axial load for which the ellipse 

truncature takes place. These values were calculated with the BIME model 

considering ring flexibility. In the assembly of the bearing, no spacers were 

used. Nevertheless, bearings were not completely filled with balls, letting a gap 

between them. This was done in order to avoid ball-spacer or ball-ball 
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interactions, which are not considered in the analytical model. These 

interactions are supposed to be negligible in comparison with the forces in the 

ball-raceway contacts, but for these preliminary tests they were avoided in 

order to obtain the best correlation possible with the analytical simulations. 

Besides, no seals were mounted. Therefore, possible effects of ball-spacer or 

ball-ball interactions or seal-ring contacts are beyond the scope of these 

preliminary tests. Moreover, only a thin layer of grease was manually applied 

(see Figure 6.6) instead of filling the cavity with grease. This way, possible 

viscous effects are minimized. 

To assembly the bearings in the test bench, two additional tools were 

designed and manufactured. These tools are two plates (upper and lower 

plates), which act as the interface between the test bench and the bearing to 

be tested. For the assembly, the first step is to place the new lower plate over 

the original lower plate of the test bench (Figure 6.7a and Figure 6.7b). The 

new plate is centred by means of an undercut machined in the new piece with 

the diameter of the original plate. The rotation is blocked by a key. Then, the 

bearing is placed over the new plate (Figure 6.7c), which is centred thanks to 

some pins (Figure 6.7b). Finally, the new upper plate is put over the bearing 

and is also centred by means of pins (detailed view of Figure 6.6). In the last 

case, spring pins were used, so they can not leave their holes in the upper disk. 

Once the tools and the bearing are assembled in the test bench, they are 

pushed upwards by the hydraulic cylinder until they meet the upper plate of 

the test bench (Figure 6.7d). The new plates were made large and rigid enough 

so they can be used in the future to test bearings with a mean diameter up to 

390mm. To place a new bearing, it would be enough with drilling new holes in 

the plates (Figure 6.7b) to place the pins for the centring. The planes of the 

new tools are presented in Appendix B. 

6.4.2 Results 

Bearing-1 was assembled with a ball preload of 4μm. Considering that the 

axial load capacity of Bearing-1 against ellipse truncature is 110kN, Sensor-1 

was used for the first tests. Nevertheless, a signal noise of 15-20N·m was 

observed for the measured friction torque while using this sensor, which is a 

high value considering that expected torques for this bearing do not exceed 

the value of 20N·m for loads below 100kN. Therefore, two tests were 

performed for high loads (Test-1 and Test-2), ranging from 70kN to 100kN, 

and then the sensor was changed, looking for a higher accuracy. With Sensor-
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2, the observed signal noise was less than 1N·m, which is a value much more 

appropriate for the ranges of the friction torque of tested bearings. two more 

tests were performed with this sensor (Test-3 and Test-4) with loads up to 

60kN (upper limit of Sensor-2), including the measurement of the idling 

friction torque, required for the calculation of the effective preload according 

to the alternative procedure described in section 6.2. 

 

Figure 6.5. Rhéos test bench at LaMCoS. 

Bearing 
ID 

Bearing 
mean 

diameter 
(   ) 

Ball 
diameter 

(  ) 

Raceway 
radius 
(  ) 

Initial 
contact 
angle 
(  ) 

Axial 
static 

capacity 
(   ) 

Truncation 
axial load 

(   ) 

1 222.00mm 
7.94mm 
(5/16”) 

4.21mm 
( =0.943) 

45° 200kN 110kN 

2 222.00mm 
7.94mm 
(5/16”) 

4.12mm 
( =0.963) 

45º 278kN 65kN 

3 222.00mm 
7.94mm 
(5/16”) 

4.12mm 
( =0.963) 

55º 284kN 40kN 

Table 6.3. Nominal dimensions and capacities of the tested bearings. 

Brushless motor

Hydraulic cylinder

New disks

Force/torque sensor
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Figure 6.6. Tested bearing. 

 

Figure 6.7. Test bench setup: (a) lower plate of the test bench; (b) new lower plate; (c) new 
lower plate with the bearing; (d) final setup with upper plates. 
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Figure 6.8 shows the results of Test-3, where vertical lines indicate where 

the rotation starts and ends. In this figure, significant fluctuations of the 

friction torque can be observed. It can be seen how the friction torque starts 

from a minimum, and then experiences two cycles, with two other minimums, 

one after each entire rotation (remember that two full rotations were applied 

for each axial load). This can be justified by the misalignment between the 

bearing and the test bench. This misalignment is possible due to the gaps 

between the centring pins on the plates and the holes in the rings. Therefore, 

the bearing is not forced initially when it is assembled in the test bench, but 

when the rotation starts, the moving ring is misaligned respect to the fixed 

one. Consequently, an undesired radial load appears, which has its maximum 

after half turn. This radial load introduces additional forces in the balls, which 

leads to higher friction torques. Accordingly, the friction torque 

corresponding to a pure axial load is the observed minimum value during the 

rotation, which takes place after each full turn. 

Figure 6.9 compares the results of Test-3 and Test-4. It is worth mentioning 

that the bearing was disassembled and assembled again in the test bench 

before performing each test. A good repeatability is observed and, although 

Test-4 shows higher maximums, the minimum values are very similar. 

Additionally, one more test was performed (Test-5) for low loads up to 10kN. 

The results from Test-1 to Test-5 are represented in Figure 6.10. Remember 

that measurements up to 60kN were obtained by Sensor-2, while Sensor-1 

was used for higher loads. In the figure, the results from the analytical 

simulations are also showed. All the calculations presented in the following 

graphs (Figure 6.10, Figure 6.11 and Figure 6.12) were obtained by the 

Flexible-BIME model. The dotted line is for the case with no preload, while 

the solid line was calculated by applying the alternative procedure described at 

the beginning of this chapter. The most significant conclusion that arises from 

a first comparison is that the higher the load is, the better correlation is 

observed. 

To better understand what happens with light loads, let us go back to Figure 

6.8. For the first two applied loads (8kN and 16kN), the amplitude of the 

friction torque fluctuations is similar. In next steps, this amplitude increases 

progressively with the axial load. This happens because in the equilibrium 

position, there are four contacting points for loads up to 16kN, while for 

higher loads, there are only two. Therefore, in this last case, when the bearing 

rotates and the radial load increases, the contact status of some balls changes 
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from two contact points to four contact points, which implies an important 

increase of the friction torque. Accordingly, these fluctuations help us to 

determine where the transition from four contact points to two contact points 

starts. In Figure 6.10, this point is marked with a vertical dotted line at 16kN. 

The experimental points before the transition starts show a growing tendency, 

but it differs from the exponential trend showed by the analytical model. After 

the transition, experimental results for loads above 40kN show a good 

correlation with analytical simulations. In the transition between 16kN and 

40kN, the experimental results get progressively closer to the analytical curve. 

 

Figure 6.8. Results from the friction torque measurement for one case. 

 

Figure 6.9. Measured friction torque comparison between two tests performed with the 
same bearing. 

It is observed that the experimental transition takes place later than in the 

analytical model. Moreover, this transition is smooth, while in analytical 

calculations is abrupt. This behaviour can be explained by two facts. On the 
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(effective preload) is being considered, assuming that all the balls are subjected 

to the same loads. However, for light loads and due to real manufacturing 

errors, there will be some balls with four contact points, but others with two. 

This fact will affect significantly the results, since the contribution to the 

friction torque of a ball with two contact points is far less than with four 

contact points. This also explains the difference in the tendency for the points 

before the transition. On the other hand, in the analytical model a ball 

drastically changes from having four contact points to two contact points. In 

practice, a thin grease layer exists. Therefore, when the ball-raceway contact is 

lost in a certain point, there will still be a ball-grease-raceway interaction 

before losing entirely the contact. This ball-grease-raceway interplay involves 

certain viscous effects that can be significant for light loads, but they are not 

considered in the analytical approach. 

 

Figure 6.10. Tests VS analytical simulations for Bearing-1. 

To study a case with no preload, Bearing-2 was assembled with an 

undersized ball (       ). Without knowing the real geometry of the 

raceways, this ball preload allegedly leaves a gap between balls and raceways. 

In this case, two tests were performed (Test-6 and Test-7) with Sensor-2. The 

results for the experimental tests and analytical simulations for this bearing are 

given in Figure 6.11. In this case, since no preload exists, two contact points 

take place for every load case. Nevertheless, a similar transition than the 

observed for Bearing-1 happens, so a discrepancy exists for light loads. For 

compression forces above 40kN, the trend of both experimental tests and 

analytical model show a similar behaviour. 

0

5

10

15

20

25

0 20 40 60 80 100

Mf [N·m]

Axial load [kN]

Tests ANALYTICAL MODEL



180  Iker Heras 

 

 

 

Figure 6.11. Tests VS analytical simulations for Bearing-2. 

Finally, Bearing-3 was assembled with a ball preload of 6μm, which is 

slightly higher than the one used in Bearing-1. In this case, loads up to 40kN 

where considered to avoid ellipse truncature (see Table 2.1). Like with other 

bearings, two tests were performed (Test-8 and Test-9), and the results are 

showed in Figure 6.12 together with analytical calculations. In this case, the 

transition starts for 20kN, but as it was not possible to consider high loads, 

neither was to establish where the transition finishes. Nevertheless, the results 

for loads above 20kN show a tendency towards the analytical curve. 

 

Figure 6.12. Tests VS analytical simulations for Bearing-3. 
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Table 6.4 compiles the values of the effective preload and the estimation of 

the manufacturing errors for the three bearings. Of course, since Bearing-2 

was assembled with no preload, it is not possible to estimate the 

manufacturing errors. For Bearing-1 and Bearing-3 this estimation is of 5.1μm 

and 3.1μm respectively, so once more it is demonstrated that these errors are 

the order of the ball preloads, and they must be therefore taken into account 

in order to calculate the desired real preload level. Further, it can be also 

concluded that the proposed alternative procedure has limitations for light 

loads, but satisfactory results of the friction torque can be achieved for high 

loads. Therefore, to obtain better results, the raceways must be measured. 

Moreover, in future works, more tests with different preloads and greases will 

be required to obtain further conclusions. Besides, it would be interesting to 

also study the relevance of phenomena like grease viscosity, ball-ball or ball-

spacer interactions or sealing. The preliminary tests presented in this chapter 

are only a first step of a further and more comprehensive test campaign, 

thought to improve and validate analytical models. 

Bearing 
ID 

Ball preload 
(  ) 

Effective 
preload (  ) 

Estimated 
manufacturing 

errors (  ) 

1 4μm 9.1μm 5.1μm 

2 -2μm 0μm - 

3 6μm 9.1μm 3.1μm 

Table 6.4. Estimation of manufacturing errors in tested bearings. 
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7 Conclusions and future work 

7.1 Conclusions 

In this section the main conclusions that arise from the research work 

developed throughout the Doctoral Thesis are presented. For a consistent 

exposition, these conclusions are listed according to the order followed in the 

previous chapters. 

 An innovative analytical approach was developed for the calculation of the 

load distribution among the balls, capable of considering manufacturing 

errors. To do so, this model requires experimental measurements of the 

raceways. The stiffness of the rings can also be implemented by their 

stiffness matrices. These matrices can be easily calculated by means of a 

parametric Finite Element model developed for such purpose. It was 

demonstrated that only a sector corresponding to one ball is required to be 

considered in this model. The analytical model provides as a result the 

normal contact forces or interferences and angles after the assembly of the 

bearing or for a particular external load combination in a fast way. 

Moreover, this approach solves the limitations of state of the art Finite 

Element simulation techniques to simplify the ball-raceway contact when 

radial displacements are involved.  

 A Finite Element model for the friction torque calculation and contact 

simulation was developed. This model provides consistent results, 

although it has certain limitations due to the discretization. The 

submodeling technique was probed to be an effective way to provide 

accurate contact results. The Finite Element model evinced the relevance 

of the stick regions in the contact ellipse when the ball is rolling. 

 The ball-raceway interferences due to manufacturing errors were found to 

be of the order of typical preloads, so they are a matter of concern as 

relevant as the preload itself. Consequently, manufacturing errors 

significantly affect the idling friction torque and must be therefore 
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considered in order to select the balls to be used to reach the sought 

preload level. 

 Ring flexibility was demonstrated to have a great effect on ball-raceway 

interferences after the bearing assembly. When interferences exist due to 

ball preloads or manufacturing errors, the rings are deformed, and these 

interferences are significantly reduced. Moreover, ring deformations were 

evinced to have a great effect on the global stiffness of the bearing as well. 

Consequently, ring flexibility has to be considered when estimating the 

stiffness of the bearing and the idling friction torque. 

 It was found that the effect of the number of balls on the idling friction 

torque is logarithmical, and not linear, when ring flexibility is considered. 

 A novel analytical approach was developed for the friction torque 

calculation and contact analysis. In comparison with the model by Leblanc 

and Nélias, this model gives more realistic results for shear stresses in the 

contact ellipse for slow speed applications. Nevertheless, both approaches 

offer very similar friction torque values, being the results of the new model 

slightly lower. As regards computational costs, both approaches are equally 

fast. On the other hand, compared with the Finite Element model, the 

proposed analytical formulation offers a number of advantages. Firstly, 

computational costs are evidently much lower, so the discretization is not a 

limitation. Moreover, progressive mesh refinements in the Finite Element 

model showed that shear stress results converged towards the results of 

the analytical model. Secondly, the convergence criteria can be easily 

controlled, which is critical considering the sensitivity of the frictional 

problem. And finally, the results do not depend on the analyst that 

performs the calculations. 

 It was proved that it is possible to consider separately the global 

displacements due to contact deformations and those due to the flexibility 

of the rings. Based on this fact, an engineering formulation was achieved 

to easily implement ring deformations in the analytical calculation of the 

stiffness curves. The procedure to reach such expressions can be applied 

to other slewing bearing types. Additionally, the Finite Element model 

developed for this procedure offers a practical solution to cope with 

typical convergence problems in such analysis. 

 The preliminary experimental tests showed a good correlation with 

analytical simulations for high loads. Nevertheless, raceways must be 

measured before drawing conclusions for light loads 
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7.2 Future work 

In the following points, possible future works derived from this Doctoral 

Thesis are proposed: 

 Develop an engineering formulation for the calculation of the friction 

torque in four-point contact slewing bearings. The objective would be to 

obtain a simple formula similar to that proposed by the NREL, but 

considering the effect of nonlinearities, preload, contact angle and ring 

stiffness, among others. 

 Apply the exact contact theory to solve the tangential contact problem and 

evaluate its suitability for slewing bearings in comparison with the 

approach proposed in this Doctoral Thesis. 

 Study the subsurface stress when the bearing is rotating and its 

implications for the fatigue life of the bearing.  

 Apply the procedure for the implementation of ring deformations in the 

analytical load distribution model for the calculation of the global stiffness 

to other slewing bearings, such as crossed roller bearings or two row ball 

bearings. Additionally, Finite Element calculations of real blade-hub or 

tower-nacelle assemblies can be performed to evaluate the capabilities and 

limitations of the simplification of the bearing by a nonlinear diagonal 

stiffness matrix. 

 Obtain an engineering formulation for the full calculation of the stiffness 

curves, avoiding the need for the load distribution analytical model. This 

would imply more complex mathematical expressions, including contact 

parameters. 

 Measure the raceways of the bearings used in the preliminary tests. 

Moreover, a more comprehensive test campaign would be needed 

considering different preloads and greases in order to obtain further 

conclusions. The relevance of other phenomena like grease viscosity, ball-

ball or ball-spacer interactions or sealing can also be studied. 
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7.3 Research work dissemination 

Part of the research work presented in this Doctoral Thesis was published 

in high impact factor scientific journals through the following manuscripts: 

 I. Heras, J. Aguirrebeitia, M. Abasolo, Friction torque in four contact point 

slewing bearings: Effect of manufacturing errors and ring stiffness, Mech. 

Mach. Theory. 112 (2017) 145–154. 

DOI: 10.1016/j.mechmachtheory.2017.02.009 

 I. Heras, J. Aguirrebeitia, M. Abasolo, J. Plaza, Friction torque in four-

point contact slewing bearings: Applicability and limitations of current 

analytical formulations, Tribol. Int. 115 (2017) 59–69. 

DOI: 10.1016/j.triboint.2017.05.011 

Furthermore, the different progresses made in the field of slewing-bearing 

structural characterization were presented in national and international 

congresses: 

 J. Aguirrebeitia, M. Abasolo, J. Plaza, I. Heras, FEM model for friction 

moment calculations in ball-raceway contacts for applications in four 

contact point slewing bearings, in: 14th World Congr. Mech. Mach. Sci. 

25-30 Oct., Taipei, Taiwan, 2015. 

DOI: 10.6567/IFToMM.14TH.WC.OS18.018 

 I. Heras, J. Aguirrebeitia, M. Abasolo, Calculation of the Ball Raceway 

Interferences Due to Manufacturing Errors and Their Influence on the 

Friction Moment in Four-Contact-Point Slewing Bearings, in: 6th Eur. 

Conf. Mech. Sci. 20-23 Sept., Nantes, France, 2016. 

Best student paper award. 

DOI: 10.1007/978-3-319-44156-6_1 

 I. Heras, J. Aguirrebeitia, M. Abasolo, Par de fricción en rodamientos de 

vuelco de cuatro puntos de contacto: estudio de las limitaciones de las 

formulaciones actuales mediante elementos finitos, in: XXI Congr. Nac. 

Ing. Mecánica. 9-11 Nov., Elche, Spain, 2016. 

 I. Heras, J. Aguirrebeitia, M. Abasolo, J. Albizuri, Simplification of four 

contact point slewing bearings for multibody simulations, in: 

EUROMECH Colloq. 578. Roll. Contact Mech. Multibody Syst. Dyn. 10-

13 April, Funchal, Madeira, 2017. 

 

https://doi.org/10.1016/j.mechmachtheory.2017.02.009
https://doi.org/10.1016/j.triboint.2017.05.011
http://www.iftomm2015.tw/IFToMM2015CD/PDF/OS18-018.pdf
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Appendix A: stiffness curves 

This appendix compiles the stiffness curves for the proposed formulation 

and the results from the FE model. Remember that the proposed functional 

approximation is given in formulas (5.12) and (5.13). In Chapter 4 only results 

for DP7 were presented through Figure 5.15, while in this appendix the 

results are shown for every studied DP. The dashed horizontal black curve 

delimits where the contact nonlinearity starts. 
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Figure A.1. Analytical model results (blue curve), functional approximation for rings 
deformation (green curve), the summation of both curves (red curve) and FE results (red 

dots) for DP1: (a) for axial load; (b) radial load; (b) tilting moment. 
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Figure A.2. Analytical model results (blue curve), functional approximation for rings 
deformation (green curve), the summation of both curves (red curve) and FE results (red 

dots) for DP2: (a) for axial load; (b) radial load; (b) tilting moment. 
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Figure A.3. Analytical model results (blue curve), functional approximation for rings 
deformation (green curve), the summation of both curves (red curve) and FE results (red 

dots) for DP3: (a) for axial load; (b) radial load; (b) tilting moment. 
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Figure A.4. Analytical model results (blue curve), functional approximation for rings 
deformation (green curve), the summation of both curves (red curve) and FE results (red 

dots) for DP4: (a) for axial load; (b) radial load; (b) tilting moment. 
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Figure A.5. Analytical model results (blue curve), functional approximation for rings 
deformation (green curve), the summation of both curves (red curve) and FE results (red 

dots) for DP5: (a) for axial load; (b) radial load; (b) tilting moment. 
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Figure A.6. Analytical model results (blue curve), functional approximation for rings 
deformation (green curve), the summation of both curves (red curve) and FE results (red 

dots) for DP6: (a) for axial load; (b) radial load; (b) tilting moment. 
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Figure A.7. Analytical model results (blue curve), functional approximation for rings 
deformation (green curve), the summation of both curves (red curve) and FE results (red 

dots) for DP8: (a) for axial load; (b) radial load; (b) tilting moment. 
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Figure A.8. Analytical model results (blue curve), functional approximation for rings 
deformation (green curve), the summation of both curves (red curve) and FE results (red 

dots) for DP9: (a) for axial load; (b) radial load; (b) tilting moment. 
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Figure A.9. Analytical model results (blue curve), functional approximation for rings 
deformation (green curve), the summation of both curves (red curve) and FE results (red 

dots) for DP10: (a) for axial load; (b) radial load; (b) tilting moment. 
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Figure A.10. Analytical model results (blue curve), functional approximation for rings 
deformation (green curve), the summation of both curves (red curve) and FE results (red 

dots) for DP11: (a) for axial load; (b) radial load; (b) tilting moment. 
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Figure A.11. Analytical model results (blue curve), functional approximation for rings 
deformation (green curve), the summation of both curves (red curve) and FE results (red 

dots) for DP12: (a) for axial load; (b) radial load; (b) tilting moment. 
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Figure A.12. Analytical model results (blue curve), functional approximation for rings 
deformation (green curve), the summation of both curves (red curve) and FE results (red 

dots) for DP13: (a) for axial load; (b) radial load; (b) tilting moment. 
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Figure A.13. Analytical model results (blue curve), functional approximation for rings 
deformation (green curve), the summation of both curves (red curve) and FE results (red 

dots) for DP14: (a) for axial load; (b) radial load; (b) tilting moment. 
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Appendix B: tools planes 

In this appendix, the planes of the tools designed and manufactured for the 

experimental tests are presented. The object of these tools is explained in 

Chapter 6 (Figure 6.5 and Figure 6.7). 






