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By far cosmology is one of the most exciting subject to study, even more so with the current bulk
of observations we have at hand. These observations might indicate different kinds of doomsdays, if
dark energy follows certain patterns. Two of these doomsdays are the Little Rip (LR) and Little Sibling
of the Big Rip (LSBR). In this work, aside from proving the unavoidability of the LR and LSBR in the
Eddington-inspired-Born-Infeld (EiBI) scenario, we carry out a quantum analysis of the EiBI theory with

a matter field, which, from a classical point of view would inevitably lead to a universe that ends with
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seems to be avoidable.

either LR or LSBR. Based on a modified Wheeler-DeWitt equation, we demonstrate that such fatal endings

© 2017 Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The scrutiny of extensions on General Relativity (GR) is a well
motivated topic in cosmology. Some phenomena, such as the cur-
rent red accelerating expansion of the universe or gravitational
singularities like the big bang, would presage extensions of GR in
the infra-red as well as in the ultra-violet limits. Among these ex-
tensions, the EiBI theory [1], which is constructed on a Palatini
formalism, is an appealing model in the sense that it is inspired
by the Born-Infeld electrodynamics [2]| and the big bang singularity
can be removed through a regular stage with a finite physical cur-
vature [1]. Various important issues of the EiBI theory have been
addressed such as cosmological solutions [3-9], compact objects
[10-15], cosmological perturbations [16-18], parameter constraints
[19-21], and the quantization of the theory [22,23]. However, some
possible drawbacks of the theory were discovered in Ref. [24]. Fi-
nally, some interesting generalizations of the theory were proposed
in Refs. [25-28].
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As is known, the cause of the late time accelerating expansion
of the universe can be resorted to phantom dark energy, which vi-
olates the null energy condition (at least from a phenomenological
point of view) while remains consistent with observations so far.
Nonetheless, the phantom energy may induce more cosmological
singularities in GR (curvature singularities). In particular there are
three kinds of behaviors intrinsic to phantom models, which can
be characterized by the behaviors of the scale factor a, the Hubble
rate H = a/a, and its cosmic derivatives H near the singular points:
(a) The big rip singularity (BR) happens at a finite cosmic time t
when a — 00, H — 00, and H — oo [29-38], (b) the LR happens at
t — oo when a — 0o, H — 0o and H — oo [39-47], (c) the LSBR
happens at t — co when a — oo, H — oo, while H — constant
[48-50]. All these three scenarios would lead to the universe to
rip itself as all the structures in the universe would be destroyed
no matter what kind of binding energy is involved.

Interestingly, even though the EiBI theory can cure the big bang,
in Refs. [5,6] it was found that the BR and LR are unavoidable in
the EiBI setup, hinting that the EiBI theory is still not complete and
some quantum treatments near these singular events may be nec-
essary. In this paper, we will extend the investigations in Ref. [22]
where we showed that the BR in the EiBI phantom model is ex-
pected to be cured in the context of quantum geometrodynamics.
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We will carry an analysis to encompass the rest of truly phantom
dark energy abrupt events; i.e. the LR and LSBR.

2. The EiBIl model: the LR and LSBR

The EiBI action proposed in [1] is (from now on, we assume
8nG=c=1)

2
Seinr == [ @ /lgm + KRl =2V + Su(®. (1)

where |g,» +KRy,| is the determinant of the tensor g ,, +KkRy.
The parameter k, which characterizes the theory, is assumed to
be positive to avoid the imaginary effective sound speed instabil-
ities usually associated with a negative « [20] and A is related to
the effective cosmological constant. S, is the matter Lagrangian.
The field equations are obtained by varying (1) with respect to
guv and the connection T'. In a flat, homogeneous and isotropic
(FLRW) universe filled with a perfect fluid whose energy density
and pressure are p and p, respectively, the Friedmann equations
of the physical metric g, and of the auxiliary metric compatible
with ™ are [6]

KH2=§[,5+3;3—2+2 1+pa —13)3]

(1+m,0 - p)?

X = e
[(1=p)4+p—=3p)+37;(1+p)(p+D)]
and
1db\2 1 p+3p—2
H2=k(=-2Z) == , 3
! K(bdf) 3 6/0+p0-p)° ®

where p=kp and p=«p.! On the above equations a and b are
the scale factor of the physical and auxiliary metrics, respectively.
t is a rescaled time such that the auxiliary metric can be written
in a FLRW form.

In GR, the LR and LSBR can be driven (separately) by two phan-
tom energy models as follows [44,48]

PLR = —PLR — ALR/PLR -

where A[g and A;spr are positive constants. Therefore,

PLSBR = —pPLSBR — ALSBR,

POLR 3ALR 2
= 1 1
o (2\/_ n(a/ap) + ) ,
pLser =3Arsgr In(a/ag) + po, (4)

where we take prgr = prspr = Po when a=aq [44,48]. The abrupt
events happen at an infinite future where a and p diverge. In-
serting these phantom energy contents into the EiBI model, i.e.,
Egs. (2) and (3), and considering the large a limit (for p given in
Eqgs. (4)), we have

KkH%~ KHg ~

. (5)

— 00,

w|
W =

and

! Notice that we are dealing with Palatini type of models which are also known
as affine models. On these types of theories (cf. the action (1)) there is a metric
guv and a connection I" which does not correspond to the Christoffel symbols of
the metric. However, it is always possible to define a metric compatible with that
connection [51] and this is the metric that we are referring to as the auxiliary met-
ric. The same applies to the action (7) where we denote the auxiliary metric as
quv and the physical metric g ,v. This is the standard and usual nomenclature in
Palatini/affine theories.

AR
. — VPR, LR
H~ A (6)
LSBR LSBR

for these two phantom energy models. Therefore, the LR and LSBR
of the physical metric are unavoidable within the EiBI model while
the auxiliary metric behaves as a de-Sitter phase at late time.

3. The EiBI quantum geometrodynamics: the LR and LSBR
minisuperspace model

The deduction of the WDW equation of the EiBI model is based
on the construction of a classical Hamiltonian that is promoted
to a quantum operator. As shown in [22], this can be achieved
more straightforwardly by considering an alternative action which
is dynamically equivalent to the EiBI action (1):

So=t [axvmaR@ = 2+ (s - 2/2)]+ snie).
(7)

In Ref. [8] it has been shown that the field equations obtained by
varying the action (7) with respect to g, and the auxiliary metric
quv are the same to those derived from the action (1). Starting
from action (7) and inserting the FLRW ansatz, the Lagrangian of
this model in which matter field is described by a perfect fluid can
be written as (see Ref. [22])

62 2% 1
T ;(x2+3yz—2xy3)] —2oMb3XY3,
(8)

where X = N/M and Y =a/b. N and M are the lapse functions
of guv and gy, respectively. Note that p is a function of g, ie,
p =p(bY) and it is given in Eqgs. (4).

c:uvztﬁ[—

3.1. The classical analysis of the Hamiltonian system

The system described by the Lagrangian £ is a constrained sys-
tem. The conjugate momenta can be obtained as follows:

_ 9L 12abb ©)
bp = 8b = M
aL
=_—— =0, 10
Px =23 (10)
aL
=— =0, 11
Py=o3 (11)
aL
=— =0. 12
pu = (12)
Therefore, the system has three primary constraints [52,53]:
px ~0, (13)
py ~0, (14)
pm ~0, (15)

where ~ denotes the weak equality, i.e., equality on the constraint
surface. The total Hamiltonian of the system can be defined by
[52,53]

Hy =bpp — L+ Axpx + Ay Py +AmDu, (16)

where Ax, Ay, and A are Lagrangian multipliers associated
with each primary constraint. According to the consistent condi-
tions of each primary constraint, i.e., their conservation in time:
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[px,H1]~0, [py,H1]~0,and [pm,Hr1]~ 0, one further obtains
three secondary constraints® [52,53]:

Cx =AX—-Y3 (A +kp)~0, (17)
Cy =31 —3XY(A4kp) — XY ?bkp' ~0, (18)
2 2
Py 22D k5.5 3k.3. -
Cu=—t — P x4+ =Py
M 24\:b K +K + K
2XY3p3
—T(A+Kp)~0. (19)

The prime denotes the derivative with respect to a = bY. Further-
more, it can be shown that the total Hamiltonian is a constraint of
the system:

Hr =—MCpy +Axpx +Aypy + Anpm ~ 0. (20)

Because the Poisson brackets of the total Hamiltonian with all
the constraints should vanish weakly by definition, H 1 is a first
class constraint and we will use it to construct the modified WDW
equation.

This system has six independent constraints: p x, py, pm, Cx,
Cy, and Cy. After calculating their Poisson brackets with each
other, we find that except for p p;, which is a first class constraint,
the other five constraints are second class [52,53]. The existence
of the first class constraint p p; implies a gauge degree of freedom
in the system and one can add a gauge fixing condition into the
system to make the constraint second class. An appropriate choice
of the gauge fixing condition is M = constant and after fixing the
gauge, the conservation in time of this gauge fixing condition, i.e.,
[M,H1]=0, implies Ap; =0.

3.2. Quantization of the system

To construct the WDW equation, we impose the first class con-
straint Hr as a restriction on the Hilbert space where the wave
function of the universe |W¥) is defined, Hr |¥) = 0. The hat de-
notes the operator. The remaining constraints x; = {M, pm, Px,
py, Cx, Cy} are all second class and we need to consider the Dirac
brackets to construct the commutation relations and promote the
phase space functions to operators [53]. Note that C p; can be used
to construct the first class constraint H 7, i.e., Eq. (20), so it is ex-
cluded from the set x ;.

The Dirac bracket of two phase space functions F and G are
defined by [53]

[F,Glp=I[F, Gl —[F, xilAijlx;, Gl (21)
where Ajj is the matrix satisfying
Aij X Xkl = Sik- (22)

The existence of the matrix A;; is proven in Dirac’s lecture [53].

According to Ref. [53], the second class constraints can be
treated as zero operators after promoting them to quantum op-
erators as long as the Dirac brackets are used to construct the
commutation relations:

[F,G1=iR[F,Glp r_t c_¢) (23)

2 We remind that the Poisson bracket is defined as

JoF 9G dF 0G
[F.Cl= — — — ——.
dq; 9p;  dp; q;

where q; are the variables and p; their conjugate momenta. Notice that the repeat-
ing suffices denote the summation.

This is due to the fact that the Dirac brackets of the constraints x ;
with any phase space function vanish strongly (they vanish with-
out inserting any constraint). After some calculations, the Dirac
brackets between the fundamental variables take the forms

[b, pplp=1[b, ppl =1,

[b, X]p =0,

[b,Y]p=0,

[X,Y]p=0,
(X, pplo= f1(X,Y,b) = f1(b),
[Y,pplp = fa(X.Y,b) = fa(b), (24)

where f; and f, are two non-vanishing functions. Notice that f
and f> can be written as functions of b because it is legitimate to
insert the constraints Cx and Cy to replace X and Y with b when
calculating the Dirac brackets.

On the XYb basis, if we define

(XYDbb|W) =b(XYb|W),
(XYb|X|W) =X(XYb|W¥),
(XYb|Y|W) =Y (XYb|W),

(XYDb|Fp|W) = — ih%(XYbNJ)

d d
— figx (XYDIW) — f2 55 (XYDIW), (25)

it can be shown that the resulting commutation relations satisfy
Egs. (23) and (24). Furthermore, the momentum operator pj, can
be written as

. )
(S(blpbl\l’>=—lﬁ%<v§§bl‘lf), (26)

after an appropriate redefinition of the wave functions: (XYb| —
(E(X,Y,b),¢c(X,Y,b),b|. Therefpre, in the new &¢b basis, the
modified WDW equation (§¢b| Hy|W) = 0 can be written as

—1 By’ _
m(f(mTl‘I’)+V(b)($Cb|‘I’)—0, (27)

where the term containing ﬁbz is determined by Eq. (26) and its
explicit form depends on the factor orderings. Note that the eigen-
values X and Y can be written as functions of b according to the
constraints Cx and Cy, hence it leads to the potential V (b) as fol-
lows
220 A5 5 3h3,
+;b X(b)* — 7b Y (b)“. (28)

V(b) =

K

3.3. Wheeler-DeWitt equation: factor ordering 1

In order to prove that our results are independent of the
factor ordering, we make two choices of it. First, we consider
(E¢b|b3H1|W) = 0 and choose the following factor ordering:

a a d d
2= (05 )= () () 2
Py ab/\"a ax/\ax) (29)
where x = In(+/Ab). Near the LR singular event, the energy density
p behaves as p o« (Ina)?. On that regime, the dependence between
the auxiliary scale factor b and a is b «xalna. On the other hand,
near the LSBR event the energy density behaves as p «cIna and b

behaves as b oca+/Ina. For both cases, the WDW equation can be
written as
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2 48

— +—e" )V (x) =0, 30
(g2 + ™)@ (30)
when x and a go to infinity. Note that we have replaced the par-
tial derivatives with ordinary derivatives and W (x) = (§¢b|V). The
wave function reads [55]

W(x) = C1 Jo(A1e*) + C2 Yo (A1), (31)

and consequently when x — oo, its asymptotic behavior reads [55]

| 2 b
W (x) A —3x/2[c Aex_ T
(%) \f—m‘he 1cos( 1e 4)

; 3x _ z
+ G sin (Ale 4)] (32)
where
4
A= —. (33)
NET

Here J,(x) and Y, (x) are Bessel function of the first kind and
second kind, respectively. It can be seen that the wave function
vanishes when a and x go to infinity.

3.4. Wheeler-DeWitt equation: factor ordering 2

From the WDW equation (27), we can as well derive a quantum
Hamiltonian by choosing another factor ordering

A2
P_b:_hz(iﬂ)(ii)_ (34)
b Jbdb/\/p db
Before proceeding further, we highlight that this quantization is
based on the Laplace-Beltrami operator which is the Laplacian op-
erator in minisuperspace [54]. This operator depends on the num-
ber of degrees of freedom involved. For the case of a single degree
of freedom, it can be written as in Eq. (34).

Under this factor ordering and after introducing a new variable
y = (+/*b)3/2,in both cases (LR and LSBR) the WDW equation can
be written as

d? 64
— Y(y)=0, 35
(dy2 +3any ) 2] (35)

when a and y approach infinity. The solution of the previous equa-
tion reads [55]

W(y) = C1/VJ1/a(A1y?) + C2/TY1/a(A1Y?), (36)

and when y — oo, therefore, [55]
8

V(y)~ 2
Y N‘/m‘hy
(37)

Consequently, the wave functions approach zero when a goes to in-
finity. According to the DeWitt criterium for singularity avoidance
[56], the LR and LSBR is expected to be avoided independently of
the factor orderings considered in this work.

[C1 cos (A1y2 - 3%) +Cy sin (A1 y? — 3—”)]

3.5. Expected values

We have shown that the DeWitt criterium of singularity avoid-
ance is fulfilled hinting that the universe would escape the LR and
LSBR in the EiBI model once the quantum effects are important.
We next estimate the expected value of the scale factor of the
universe a by estimating the expected value of b. The reason we

have to resort to the expected value of b rather than a is that in
the classical theory [8] that we have quantized the dynamics is
only endowed to the scale factor b. We remind at this regad that
when approaching the LR and LSBR, b «xalna and b cca +/Ina, re-
spectively, at least within the classical framework. Therefore if the
expected value of b, which we will denote as b, is finite, then we
expect that the expected value of ag; i.e. a would be finite as well.
Therefore, none of the cosmological and geometrical divergences
present at the LR and LSBR would take place.

We next present a rough estimation for an upper limit of b for
the two quantization procedures presented on the previous sub-
section.

e Factor ordering I:
The expected value of b at late-time can be estimated as fol-
lows:

Wi

where x; is large enough to ensure the validity of the ap-
proximated potential in (30), i.e., § — 0. In this limit, we can
use the asymptotic behavior for the wave function cf. Eq. (32).
Then, it can be shown that the approximated value of b is

bzf\y*(x)e—;\y(x)dx, (38)

bounded as
o0
X C 2 C 2
fxp* @ xydx < G2 2 (39)
NAY TAIV A

X1

Therefore, we can conclude that b has an upper finite limit.
Consequently, the LR and LSBR are avoided.

Factor ordering II:

In this case the expected value of b can be written as

e}

2
* y3
b=| v LA/ dy, 40
f (y)ﬁ W f W dy (40)

y1
where y; is large enough to ensure the validity of the approxi-
mated potential in (35), i.e., » — 0. In addition, we have intro-
duced a phenomenological weight f (y) such that the norm
of the wave function is well defined and finite for large y
[57-59]. In fact, we could as well choose f (y) =y~* with
2/3 < «. After some simple algebra, we obtain

o0

2(IC1 2 +1C21?) _1
= 7 . 41
b < AT /y3f(y) (41)

Y1
Consequently, we get
2(1GP+1GP) 2«
TAVA@—2/3)" "

Once again, we reach the conclusion that b is finite. Therefore,
the LR and LSBR are avoided.

b < (42)

4. Conclusions

Singularities seem inevitable in most theories of gravity. It is
therefore natural to ask whether by including quantum effects
would the singularities be removed. In the case of the EiBI sce-
nario, while the big bang singularity can be removed, the intrinsic
phantom dark energy doomsday remains inevitable [6]. We solved
the modified Wheeler-DeWitt equation of the EiBI model for a



818 I. Albarran et al. / Physics Letters B 772 (2017) 814-818

homogeneous and isotropic universe whose matter content corre-
sponds to two kinds of perfect fluid. Those fluids within a classi-
cal universe would unavoidably induce LR or LSBR. We show that
within the quantum approach we invoked, the DeWitt criterion is
fulfilled and it leads toward the potential avoidance of the LR and
LSBR. Our conclusion appears unaffected by the choice of factor
ordering.
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