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Supervised Quantum Learning 
without Measurements
Unai Alvarez-Rodriguez1, Lucas Lamata   1, Pablo Escandell-Montero   2, José D. Martín-
Guerrero   2 & Enrique Solano1,3

We propose a quantum machine learning algorithm for efficiently solving a class of problems encoded in 
quantum controlled unitary operations. The central physical mechanism of the protocol is the iteration 
of a quantum time-delayed equation that introduces feedback in the dynamics and eliminates the 
necessity of intermediate measurements. The performance of the quantum algorithm is analyzed by 
comparing the results obtained in numerical simulations with the outcome of classical machine learning 
methods for the same problem. The use of time-delayed equations enhances the toolbox of the field of 
quantum machine learning, which may enable unprecedented applications in quantum technologies.

One of the main consequences of the revolution in computation sciences, started by Alan Turing, Konrad Zuse 
and John Von Neumann, among others1,2, is that computers are capable of substituting us and improving our per-
formance in an increasing number of tasks. This is due to the advances in the development of complex algorithms 
and the technological refinement allowing for faster processing and larger storage. One of the goals in this area, in 
the frame of bio-inspired technologies, is the design of algorithms that provide computers human-like capacities 
such as image and speech recognition, as well as preliminary steps in some aspects related to creativity. These 
achievements would enable us to interact with computers in a more efficient manner. This research, together with 
other similar projects, is carried out in the field of artificial intelligence3. In particular, researchers in the area of 
machine learning (ML) inside artificial intelligence are devoted to the design of algorithms responsible of training 
the machine with data, such that it is able to find a given optimal relation according to specified criteria4. More 
precisely, ML is divided in three main lines depending on the nature of the protocol. In supervised learning, the 
goal is to teach the machine a known function without explicitly introducing it in its code. In unsupervised learn-
ing, the goal is that the machine develops the ability to classify data by grouping it in different subsets depending 
on its characteristics. In reinforcement learning, the goal is that the machine selects a sequence of actions depend-
ing on its interaction with an environment for an optimal transition from the initial to the final state.

The previous ML techniques have also been studied in the quantum regime in a field called quantum machine 
learning5–12 with two main motivations. The first one is to exploit the promised speedup of quantum protocols 
for improving the already existing classical ones. The second one is to develop unique quantum machine learning 
protocols for combining them with other quantum computational tasks. Apart from quantum machine learning, 
fields like quantum neural networks, or the more general quantum artificial intelligence, have also addressed 
similar problems13–17.

Here, we introduce a quantum machine learning algorithm for finding the optimal control state of a multitask 
controlled unitary operation. It is based on a sequentially-applied time-delayed equation that allows one to imple-
ment feedback-driven dynamics without the need of intermediate measurements. The purely quantum encoding 
permits to speedup the training process by evaluating all possible choices in parallel. Finally, we analyze the per-
formance of the algorithm comparing the ideal solution with the one obtained by the algorithm.

Results
Quantum Machine Learning Algorithm.  The first step in the description of the algorithm is the defini-
tion of the concept of multitask controlled unitary operations. In essence, these do not differ from ordinary con-
trolled operations, but the multitask label is selected to emphasize that more than two operations are in principle 
possible. U acts on ψ , being ψ ∈ ⊗ d d, a quantum state belonging to the tensor product of the control, 

c
d ⊂ , and target,  ⊂t

d, Hilbert spaces. The dimension of both subspaces is the same, d, and depends on 
the particular problem to address. Mathematically, we define U as
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where ci  denotes the control state, and si is the reduced or effective unitary operation that U performs on the 
target subspace when the control is on ci .

The goal of our algorithm is to explore the control subspace c and find the control state that maximizes the 
implementation of a known → s s, : t t, which is given in terms of the in  and out  states as =s in out . 
Therefore, our algorithm is appropriate when U is experimentally implementable but its internal structure, the 
relation between ci  and si, is unknown. In other words, our algorithm enables the training of the control subspace 
c by providing data about the target subspace t , in order to achieve that the complete system implements the 
desired s operation in the target subspace t . Our inspirations for the model of controlled unitary operations are 
supervised learning protocols, in which the goal is that the system is able to learn a given known function. Here, 
the control subspace plays the role of the memory of the system. This control, or memory, is the mechanism by 
which the system is able to store the information about the operation that it has to implement. The idea of our 
algorithm is that the user transmits the information of the operation the system has to make. Therefore, the goal 
is not to perform a given gate, but to save this information in the system.

The protocol consists in sequentially reapplying the same dynamics in such a way that the initial state in the 
target subspace is always in , while the initial state in the control subspace is the output of the previous cycle. The 
equation modeling the dynamics is

ψ θ θ κ ψ κ ψ ψ δ= − 
 − − + − − 

.
d
dt

t i t t t t H t H t t( ) ( ) ( ) ( ) ( ( ) ( ) ) (2)i f 1 1 2 2

In this equation θ is the Heaviside function, H1 is the Hamiltonian giving rise to U with = κ− −U e i H t t( )f i1 1 , and 
H2 is the Hamiltonian connecting the input and output states, with κ1 and 2κ  the coupling constants of each 
Hamiltonian. We point out that this evolution cannot be realized with ordinary unitary or dissipative techniques. 
Nevertheless, recent studies in time delayed equations provide all the ingredients for the implementation of this 
kind of processes18–21. Up to future experimental analyses involving the scalability of the presented examples, the 
inclusion of time delayed terms in the evolution equation is a realistic approach in the technological framework 
provided by current quantum platforms. Another important feature of Eq. (2), which is related with the delayed 
term, is that it only acquires physical meaning once the output is normalized.

Regarding the behavior of the equation, each term has a specific role in the learning algorithm. The mecha-
nism is inspired in the most intuitive classical technique for solving this problem, which is the comparison 
between the input and output states together with the correspondent modification of the control state. Here, the 
first Hamiltonian produces U while the second Hamiltonian produces the reward by populating the control states 
responsible of the desired modification of the target subspace. The structure of H2 guarantees that only the popu-
lation in the control ci  associated with the optimal si is increased,

= ⊗ − + .H i i1 ( in out out in ) (3)2

Notice that while this Hamiltonian does not contain explicit information about ci , the solution of the prob-
lem, its multiplication with the feedback term, ψ ψ δ− −t t( ) ( ) , is responsible for introducing the reward as 
an intrinsic part of the dynamics. This is a convenient approach because it eliminates the measurements required 
during the training phase. In this case where we employ a single pair of ⟩ ⟩{ in , out }| | , target states, H2 is fixed and 
time independent. However, this could change in a more complex situation of p pairs of ⟩ ⟩{ in , out }| |  target states, 
such that s out inj

p
j j= ∑ ⊗ , where H2 would also be time independent but different in each episode. Even if 

this generalization is not included in this article, it points out a promising direction for enhancing the protocol.
We would also like to remark the similarity existing between the effect of the delay term in our quantum evo-

lution and gradient ascent techniques in algorithms for optimization problems3. A possible strategy to perform 
the learning protocol would be to feed the system with random control states, measure each result, and combine 
them to obtain the final solution. However, we have discovered that it suffices to initialize the control subspace 
in a superposition of the elements of the basis. We would like to remark that this purely quantum feature reduces 
significantly the required resources, because a single initial state replaces a set of random states large enough to 
cover all possible solutions.

Numerical Simulations.  We have numerically tested our proposed algorithm in a selection of examples 
covering the cases with unique or multiple solutions, as well as higher-dimensional systems. We consider as a 
figure of merit the fidelity function given by the trace of the product between the control state obtained by the 
algorithm and the ideal control state. In order to recover the solution of the problem we need to trace out the tar-
get degrees of freedom, obtaining a density matrix. Therefore, the iteration of the protocol would require solving 
Eq. (2) written for density matrices. This turns out to be a nontrivial task given the non-local cross terms of the 
generalized master equation, that reads,

ψ ψ θ θ κ κ ψ ψ

κ ψ δ ψ ψ ψ δ

= − 
 − − + 



+ − − − .

d
dt

t t i t t t t H H t t

i H t t t t H

( ) ( ) ( ) ( ) , ( ) ( )

( ( ) ( ) ( ) ( ) ) (4)

i f 1 1 2 2

2 2 2
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To achieve the solution in the most efficient way, we have decomposed each density matrix in a convex sum 
of pure states and solved the vector equation in Eq. (2) for each of them separately, retrieving the total solution 
as a linear convex superposition of the individual ones. This method is consistent due to the linearity of Eq. (4).

Definition of the SWAP gate problem.  A first specific example we address in this manuscript is given by the 
excitation transport produced by the controlled SWAP gate. In this scenario, the complete system is an n-node 
network, where each node is composed by a control and a target qubit. Therefore, the control and target subspaces 
are defined as ⊂ ⊗( )c

n2  and  ⊂ ⊗( )c
n2 . The excitations in this system belong to the target subspace and are 

exchanged between two nodes, when both nodes are in a particular state of the control subspace. The control 
states are in a superposition of open and close, o  and c , while the target qubits are written in the standard 
{ 0 , 1 } basis denoting the absence or presence of excitations. We define U, the multitask controlled unitary 
operation, to implement the SWAP gate between connected nodes only if all the controls of the corresponding 
nodes are in the open state, o . See Fig. 1 for a graphical representation of the most simple cases, the two and three 
node line networks. The explicit formula for U2 is given by

U cc cc co co oc oc oo oo s( ) 1 (5)2 12= + + ⊗ + ⊗

where sij represents the SWAP gate between qubits i and j. Here, the first two qubits represent the control subspace 
and the last two represent the target subspace. Although we have employed unitary operations for illustration 
purposes, the equation requires the translation to Hamiltonians. In order to do so, we first select t t( )f i1κ −  to be 
π/2 and calculate the matrix logarithm, which yields the result for H1 in Eq. (2), H oo oo h( )1 12= ⊗ . Denoting 
with kσ  the Pauli matrices, hij for <i j reads

h 1
2

1 1 1 1
(6)

ij
k

i
k

j i
k

n j n

1

3
1 1∑ σ σ=






⊗ ⊗ ⊗ ⊗ −




.

=

⊗ − ⊗ − − ⊗ − ⊗

Unique solution of the quantum machine learning algorithm.  The first family of problems we address is n-node 
line networks, in which the nodes are located in a unidimensional array and are only connected with their closest 
neighbors. The goal is to find the control state that allows transmitting an excitation from the first to the last node 
of the network, which in this case requires that all intermediate connections are active. The pair of ⟩ ⟩{ in , out }| |  is 
determined by these constrains as = ⊗ −in 1 0 n 1 and out 0 1n 1= ⊗ − . Accordingly the problem has a 
unique solution, given by the control state with all the nodes open, o n⊗ . The parameters we have selected are 
δ = 1, 1001κ = , 102κ =  and =T 2, where T represents the total duration of each episode. In Fig. 2 we plot the 
results together with the required resources. These examples show how the algorithm is properly working for this 
family of problems independently of the natural basis of U. The H1 Hamiltonians employed in the simulations for 
n 2,3,4=  are given by

Figure 1.  Node line networks. We plot the graphical representation of every control state in the two, (a), and 
three, (b), node line networks. The circles around the nodes denote the control being in the open state. The 
effective operation that the control performs on the target subspace is the sij SWAP gate between nodes i and j.
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+ | 〉〈 | + | 〉〈 | ⊗
+| 〉〈 | ⊗ + | 〉〈 | ⊗ .

Multiple solutions of the quantum machine learning algorithm.  We address now a set of more complicated net-
works which will allow us to clarify how the algorithm performs when solving problems with multiple solutions. 
These are the A network for three nodes and the B and C networks for four nodes, depicted in Fig. 3. The goal of 
the algorithm is the same as in the previous case, i.e., to find the control state able of sending an excitation from 
the first to the last node. The difference is that these networks accept two pure states and their superpositions as 
solutions, a feature that is reflected in the result obtained with the algorithm. The asymptotic state achieved under 
the feedback induced quantum learning equation is a quantum superposition of both solutions, see Fig. 4a for the 

Figure 2.  Learning curves for single solutions. (a) We plot the fidelity of the learning process as a function of 
the number of episodes for the first examples of n-node line networks. We have selected the open state, =o 1  
of the { 0 , 1 } basis. (b) We plot the fidelity for a different selection of o  in the =n 3 case. Here, we have 
rotated the control states with the goal of testing the algorithm for an arbitrary basis. The solution, ooo , is given 
by π π+ ⊗ ⊗ +[ 0 1 ] 1 [cos( /3) 0 sin( /3) 1 ]1

2
.

Figure 3.  Networks with two solutions. We schematize the A, B, and C networks in (a), (b) and (c), respectively. 
In each of them, we write the pair of solution control states that corresponds to the control performing the s13 
(a) and s14 (b,c) gates in the target subspace.
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numerical simulations. In this case, the previous definition of the fidelity is not valid. Therefore, we provide a new 
one in terms of the in and out  states of the target space and the Hamiltonian H1. The new fidelity corresponds 
to the trace of the product between the ideal output out , and the output obtained with the control state achieved 
by the algorithm after acting on in . Both ideal and real outputs belong to the target subspace. While the 
{ in , out } pair is the same as in the previous case, the H1 Hamiltonians change their definition to

⟩⟨ ⟩⟨ ⟩⟨ ⟩⟨

⟩⟨ ⟩⟨ ⟩⟨ ⟩⟨
⟩⟨ ⟩⟨ ⟩⟨

⟩⟨ ⟩⟨ ⟩⟨ ⟩⟨
⟩⟨ ⟩⟨ ⟩⟨ ⟩⟨ ⟩⟨

= | | + | | ⊗ + | | ⊗ + | | ⊗

= | | + | | ⊗ + | | ⊗ + | | ⊗

+| | ⊗ + | | ⊗ + | | ⊗

= | | ⊗ + | | ⊗ + | | + | | ⊗

+| | ⊗ + | | + | | ⊗ + | | + | | ⊗ . (8)
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For the cases studied, the complete set of solutions is obtained encoded in the outcome of the algorithm. This 
is convenient because it allows one to design a protocol to select a specific optimal solution according to given 
criteria. In the networks we are analyzing, one might want to obtain the most efficient solution, defining efficiency 
as achieving the transmission of the excitation while minimizing the number of open nodes. In order to accom-
plish this task a dissipative term has to be included in the evolution equation, in order to filter out the undesired 
solutions. We point out that a control-dependent dissipation affects the target subspace, modifying the protocol 
in the required manner. We explicitly write the Lindblad operators σi and dissipation constants iγ  for a two-node 
case, as follows

σ σ
σ σ
σ σ
γ γ γ γ γ γ γ

= + = +
= + = +
= + = +
= = = = = .

co co co co co co co co
oc oc oc oc oc oc oc oc
oo oo oo oo oo oo oo oo

01 11 00 10 , 00 01 10 11 ,
00 10 01 11 , 10 11 00 01 ,
00 10 01 11 , 00 01 10 11 ,

, 2 (9)

1 2

3 4

5 6

1 2 3 4 5 6 1

Instead of solving the master equation, we have employed the quantum jump formalism, which allows one to 
work with Eq. (2) instead of Eq. (4), with the consequent simplicity. The dissipation can be modeled with an addi-
tional term HD

i
i i i2

†γ σ σ= ∑
−  in the first part of the time delayed equation in the absence of a decay event. 

Therefore, in order to assure that the non-Hermitian Hamiltonian accounts for the real evolution of the system, 
one has to properly balance the relation between 1κ  and iγ .

d
dt

t i t t t t H H t H t t( ) ( ) ( )( ) ( ) ( ( ) ( ) ) (10)i f D1 1 2 2ψ θ θ κ ψ κ ψ ψ δ= − 
 − − + + − − 

.

A non-dissipative alternative consists in the modification of the coupling constant associated with each of the 
control-target pairs in the unitary operation. These two techniques allow us to find the shortest path between two 
nodes in a network once the natural basis of the unitary is known.

Figure 4.  Learning curves for two solutions and qutrit problems. (a) We depict the learning curve for the A, B, 
and C networks as a function of the number of episodes. Notice that the curves for the B and C networks are 
identical. (b) We depict the learning curve for the multitask controlled unitary operation acting on two qutrits 
as a function of the number of episodes. Here, in 0 out 2= = , and the solution is given by =c 12 , 
where the control states coincide with the basis of the qutrit space.
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Extension to qudits.  Another possible aspect to study is the extension of the algorithm to higher-dimensional 
building blocks. We provide an example in which the optimal control state for a multitask controlled unitary 
operation acting on qutrits is obtained. This operation U is defined in terms of the control states ci  as

U c c c c c c1
0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0 (11)

1 1 2 2 3 3= ⊗ + ⊗











+ ⊗












.

where the first qutrit belongs to the control subspace and the second one belongs to the target subspace. Although 
no network is defined in this case, the goal of the algorithm is to find the control state that realizes the in out−  
transition in the target subspace. In this problem, the system consists of a single control qutrit and a single target 
qutrit. See Fig. 4b for a numerical simulation of the learning process in this particular case.

Extension to phase gates.  All examples discussed until this point consisted on s gates whose effect can be under-
stood as a permutation of the basis elements. Let us consider now a different scenario in which the operations in 
the target subspace are phase gates, s i i1 2i = − | 〉〈 |, therefore, the complete unitary operation reads 
U i i i i(1 2 )= ∑| 〉〈 | ⊗ − | 〉〈 |  with ∈i n[1, ]. If we choose the reference target states to be,

n nin 1
2

( 1 ), out 1
2

( 1 ),
(12)

= + = −

we know a priori that the only solution is given by s n n1 2= − | 〉〈 | associated to control = | 〉〈 |c n n . We perform 
a numerical experiment to analyze how the initial equally weighted control state, ∑ i

n
1 , converges to the solu-

tion under the action of H i i i i21 = − ∑ ⊗  depending on the dimension of the system. See Fig. 5 for the 
simulations. The results show that our algorithm is particularly efficient for this selection of Hamiltonians, given 
that the solution is reached in O n( ) for all the cases studied.

Efficiency of the Quantum Machine Learning Algorithm.  It is important to mention that the simu-
lations and techniques we provide here constitute an analysis of our quantum machine learning algorithm, but 
our aim in this work is not to demonstrate scalability or quantum speedup. It would be convenient to analytically 
solve Eq. (2) in order to rigorously analyze the scope of the algorithm and be able to obtain information about its 
scalability for general problems. Since we have not solved the dynamics analytically, we evaluate the performance 
by comparing our results with the ones obtained via different methods. In particular, we follow two different strat-
egies to determine the structure of the controlled unitary operation, measure it and analyze it by using machine 
learning techniques. Here, the resources are quantified by the number of times the unitary operation has to be 
applied and the output measured in order to be able to determine its structure.

Machine Learning.  Here, we employ state-of-the-art classical machine learning algorithms to compare with our 
quantum protocol. We show the results achieved for three different networks, the two-node line, and two different 
instances of the three-node line, all of them previously studied with our algorithm in Fig. 2. The numerical exper-
iment is designed for determining the optimal control state by evaluating the action of U on the tensor product of 

Figure 5.  Learning curves for phase gates. (a) We plot the fidelity of the learning process as a function of the 
number of episodes for the problem of finding the appropriate phase gate.
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a random control state and the fixed in . The data consists of a recompilation of random control states, which 
cover the whole control subspace, with their correspondent fidelity for a fixed { in , out } pair.

For each network, three data sets were used (small, medium, large) with a different number of instances. It 
must be emphasized that all results are referred to test sets, i.e., obtained with data not used to train the models. 
Therefore, they must be taken as a good estimation of the prediction capability of the models for new unseen data. 
Cross-validation was implemented by means of a k-fold approach4, where k = 10 for all data sets, except for the 
small data set of the two-line network whose value was k = 5 due to the very limited number of instances.

All results were achieved by using Support Vector Regressors (SVRs)22, whose characteristics make them 
especially adequate when dealing with sparse data sets (few instances and high dimension). SVRs work by cre-
ating a transformed data space in which the problem is more easily solvable (ideally the problem is transformed 
into a linear one). That transformation between spaces is carried out by the so-called kernels (Gaussian and 
polynomial kernels have been used in this experimentation). The data used for training the models has been ran-
domly selected from a set of multiple pairs of control state and fidelity. Although other ML approaches, such as 
Reinforcement Learning (RL), might seem appropriate to solve this problem, note that the goal of the problem is 
actually a prediction of the efficiency of the solution rather than the optimal sequence of steps that link the input 
state with the output state, thus not matching the RL paradigm.

Tables 1, 2 and 3 report the results achieved by the SVR in the three analyzed networks. These correspond to 
the two and three node lines analyzed in Fig. 2. In the case of n 3= , the topology of networks A and B is the same, 
the one depicted in Fig. 1., but they are defined in a different control basis. For each case, the state with the best 
fidelity is shown, together with the Mean Error (ME) and the Root Mean Square Error (RMSE). ME is a measure 
of bias that represents the difference between the real and the predicted efficiencies, i.e., gives information about 
whether the model tends to make overestimations (negative values) or underestimations (positive values). On the 
other hand, RMSE is a well-known robust measure of accuracy.

Measurement of the Unitary Operation.  An alternative method for solving the learning task would be to measure 
the input-output relation of the controlled unitary operation when strategically, and not randomly, exploring the 
control subspace. Let us denote by ci  the natural basis of the control subspace in U, and by bi  our guess for this 
basis in a Hilbert space of dimension n. The measurement protocol consists in applying the unitary operation to 

⊗b ini , projecting this result on out out  and tracing out the target subspace achieving ρi for each bi. In the 
worst case, this operation has to be repeated for all bi to guarantee that the populations of the solutions, and not 
the internal phases, are found. Afterwards, one has to find the appropriate basis ci  as a linear combination of the 
proposed one bi . Another approach is to determine each component of the unitary operation and change to a 
basis in which the unitary is expressed as a direct sum of the si operations. This particular strategy highlights the 
relation between our algorithm and the field of quantum process tomography.

 Number of 
Instances Small (10)  Medium (75)  Large (500)

 ME 0.0029 −1.3 ×10−4 −8.6 ×10−5

 RMSE 0.0493 0.0012 0.0026

 Best Fidelity 0.874 0.962 0.987

Table 1.  Two-node line. The optimal control state for this network is  ⊗1 1 , while the best result obtained 
with this analysis is (0 0535 0 0 9986 1 ) (0 0786 0 0 9969 1 ). + . ⊗ . + . .

 Number of 
Instances  Small (50) Medium (200) Large (1000)

 ME 7.2 ×10−4 2.4 ×10−5 3.2 ×10−4

 RMSE 0.0054 0.0017 0.0039

 Best Fidelity 0.6840 0.8836 0.8872

Table 2.  Three-node line A. The optimal control state for this network is ⊗ ⊗1 1 1 , while the best solution that the 
machine learning protocol provides is (0 1785 0 0 9839 1 ). + .   . + .(0 2063 0 0 9785 1 ) (0 1754 0 0 9845 1 ). + . .

 Number of 
Instances Small (50) Medium (200) Large (1000)

 ME −9.3 ×10−4 −7.8 ×10−5 −9.6 ×10−5

 RMSE 0.0082 0.0018 0.0014

 Best Fidelity 0.9227 0.9188 0.9709

Table 3.  Three-node line B. The optimal control state for this network is +[ 0 1 ]1
2

 ⊗ 1   sin( /3) 1 ][cos( /3) 0 ππ + , 
while the result of the analysis is (0 7512 0 0 66 1 ). + .   . + .(0 1599 0 0 9871 1 ) (0 4936 0 0 8697 1 ). + . .
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Comparison.  In summary, the purely random approach analyzed with ML techniques requires in principle 
more resources than the quantum feedback algorithm with delayed equation. Nevertheless, the fact that ML tech-
niques are independent of the basis guarantees their success in any possible situation. The comparison is made 
between the episodes, the number of times that the time delayed equation has to be repeated, and the instances, 
the amount of data employed in the ML algorithm. Even if both methods are based on different training mecha-
nisms, the information fed to both of them is the same, a figure of merit for each control state. In the SVR the 
system is provided with pairs of control state and its correspondent fidelity, which requires the implicit knowledge 
of { in , out } and the ideal U operation. The connection with the quantum algorithm is that the delay term in 
Eq. 2 provides a distance that works in an analogue way as the fidelity in the SVR. Notice that in the quantum 
algorithm each episode only requires a pair of ⟩ ⟩| |{ in , out } states, therefore the number of episodes equals the 
number of instances. A more realistic analysis would take into account the duration of each process, but for the 
moment we cannot make a precise estimation about the time for implementing a time delayed equation.

With respect to the complete measurement approach, recent studies bound its scalability in the order of n2 
or even n, being the latter the dimension of the Hilbert space23–25. On the other hand, the measurement protocol 
does not provide the solution in a physical register, but it is the analysis of the unitary operation that provides the 
knowledge of it. Moreover, each implementation of the controlled unitary operation is associated with a measure-
ment, while in the quantum machine learning algorithm intermediate measurements are not required, because 
they are included as an intrinsic part of the dynamics, in contrast to the tomography approach. Additionally, 
when measuring, one needs to perform a search for the convenient basis along the Hilbert space to retrieve the 
correct structure of U.

Regarding the scalability of our algorithm, we have observed that the number of episodes for reaching the 
solution depends on the distance between both, the initial control state and the solution. A direct consequence 
is that the protocol will not properly work when the initial control state is orthogonal to the solution. This is 
important to consider because the way to notice the failure is to validate the result by measuring the outcome of 
the unitary operation. In the simulations carried out here, we have employed |+〉⊗n as the initial control state, but 
this choice is not unique. In some sense, our protocol can also be understood as a search algorithm. Therefore, a 
comparison with Grover’s result26 may be in order. Regarding the similarities, the conditional phase rotation in 
Grover’s search algorithm requires the use of an oracle, whose role is played in our formalism by the combination 
of a controlled unitary operation and the time-delayed terms. On the other hand, the main difference between 
both protocols is that on Grover’s algorithm the basis in which the states to optimize are described is known, 
while in ours, the search is performed without previous knowledge of the basis, in a similar spirit to the analog 
algorithm by Farhi and Gutmann27. A positive property of our protocol, in contrast with the previously men-
tioned quantum search algorithms, is that the solution is reached asymptotically, i.e., the fidelity always increases 
with the number of episodes.

Discussion
In conclusion, we have proposed a quantum machine learning algorithm in which the implementation of 
time-delayed dynamics allows one to avoid the intermediate measurements, and therefore provides a comple-
mentary strategy to conventional quantum machine learning algorithms28–31. Moreover, we have shown how 
the framework of multitask controlled unitary operations is flexible enough to address different problems such 
as efficient excitation transport in networks. This kind of protocol may be straightforwardly adapted to different 
quantum architectures, which is beyond the scope of this article. We believe our study represents the first proposal 
for exploiting feedback-induced effects of delayed-equation dynamics without intermediate measurements in 
quantum machine learning algorithms.
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