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Resumen

La ecuación de Dirac es una ecuación de la mecánica cuántica relativista para
partículas de espín 1/2, formulada por el físico Paul Dirac en el año 1928. Ha tenido
un papel fundamental en varias áreas de la física y de las matemáticas modernas. Su
expresión es

i∂tψ(t, x) = Hψ(t, x),

donde H es el operador de Dirac libre en el espacio tridimensionales definido como:

H := −iα · ∇+mβ,

con m ≥ 0 y α = (α1, α2, α3),

αj =

(
0 σj
σj 0

)
para j = 1, 2, 3, β =

(
I2 0
0 −I2

)
,

y σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
es la familia de las matrices de Pauli.

En mecánica cuántica, la propiedad de un operador de ser autoadjunto es fun-
damental, porque describe los objetos observables. Del operador H sabemos que es
esencialmente autoadjunto sobre C∞c (R3)4 y autoadjunto sobre D(H) := H1(R3)4.
Otra característica es que su espectro es puramente esencial y que cumple que

σ(H) = σess(H) = (−∞,−m] ∪ [m,+∞).

Gracias a esta propiedad del espectro, utilizando herramientas del cálculo funcional,
es posible construir dos subespacios Hpos y Hneg de tal manera que L2(R3)4 se pueda
descomponer en suma directa, es decir, L2(R3)4 = Hpos ⊕Hneg. Además, para todas
las funciones ψpos ∈ Hpos y ψneg ∈ Hneg, se cumple que:

〈ψpos, Hψpos〉L2 > 0, 〈ψneg, Hψneg〉L2 < 0.

Por esta razón, Hpos y Hmin son llamados respectivamente subespacio de energía
positiva y subespacio de energía negativa.
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La clave para describir las interacciones es perturbar el hamiltoniano libre H.
Queremos estudiar la evolución de una partícula cuando es perturbada por un cam-
po vectorial. En la realidad, este tipo de perturbaciones consisten en la suma de las
interacciones con el campo y con los generadores de dicho campo. Nosotros solo consi-
deraremos campos externos, es decir, asumiremos que la interacción entre la partícula
y los generadores es tan pequeña que puede ser eliminada y que el movimiento de la
partícula se ve influenciado solo por la presencia de un campo exterior.

El objetivo de esta tesis es investigar las propiedades del operador H + V donde
V es un potencial singular. En particular, en esta tesis, hemos investigado dos tipos
de potenciales singulares:

• Las perturbaciones de tipo δ-shell : V es una distribución con soporte Σ, siendo
esta una hipersuperficie regular de R3;

• Las perturbaciones de tipo Coulomb: V es una matriz 4 × 4 de funciones que
verifica Vi,j(x) ∼ ν

|x| para |x| → 0 y i, j = 1, . . . , 4.

A continuación, describimos ambas perturbaciones.

Perturbación de tipo δ-shell

En mecánica cuántica, es usual estudiar operadores construidos acoplando ha-
miltonianos con potenciales singulares con soportes contenidos en subconjuntos de
dimensión inferior respecto al espacio ambiente. Desde el punto de vista de las ma-
temáticas, este tipo de operadores han sido muy atractivos en los últimos años. Esto
es debido a que, utilizando condiciones de borde o de transmisión a través de la
superficie, es posible probar que dicho operador es autoadjunto.

El tipo de problema que trata el operador de Shrödinger, está descrito en el libro
[1] para una cantidad numerable de interacciones de tipo δ-point y en [24] para po-
tenciales singulares con soporte en hipersuperficies. En el caso del operador de Dirac,
el problema de autoadjunción está tratado en varios artículos. El primer trabajo es
[20] de Dittirch, Exner y Šeba. En este artículo, los autores han construido el dominio
sobre el cual el operador de Dirac acoplado con un potencial singular con soporte en
la esfera, sea autoadjunto. Utilizando la particular simetría del problema y las coorde-
nadas polares, el problema se puede reducir a considerar un operador unidimensional.
En el caso de una superficie general Σ, en la serie de artículos [7–9], Arrizabalaga,
Mas y Vega han caracterizado el dominio de la interacción δ-shell con constante
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de acoplamiento λ 6= ±2, midiendo la interacción entre funciones u ∈ H1(R3)4 y
g ∈ L2(Σ)4. Comparando este resultado con el trabajo más general en [50], se po-
dría pensar que este tipo de interacción pueda implicar que g esté en H1/2(Σ)4. Más
aún, en [49] Oumières-Bonafos y Vega han demostrado que esta conjetura es cierta.
Además, han definido el dominio por la δ-shell para el caso λ = ±2. Finalmente,
en [11, 13], Behrndt y Holzmann han enfocado el problema utilizando la teoría de
boundary triples.

De todas formas, aunque sea más fácil entender matemáticamente este tipo de
modelo, porque su análisis puede ser reducido a un problema algebraico, hay que
tener presente que estos ejemplos no pueden ser reproducidos en la realidad. Por esta
razón, es interesante aproximar este tipo de operadores con otros más regulares. Por
ejemplo, denotando con δ0 la medida de Dirac en el origen, si V ∈ C∞c (R), entonces
en el sentido de las distribuciones, resulta que

Vε(t) := 1
ε
V
(
t
ε

)
→ (

∫
V )δ0 con ε→ 0.

En [1] han probado que, cuando ε→ 0, ∆+Vε → ∆+(
∫
V )δ0 en norma del resolvente

y en [12] este resultado está generalizado a dimensiones mayores por perturbaciones
singulares soportadas en hipersuperficies lisas.

Sin embargo, este tipo de resultado no es válido para el operador de Dirac. De
hecho, en [59], Šeba ha demostrado que, en el caso unidimensional, aunque hay conver-
gencia en norma del resolvente , la constante de acoplamiento depende del potencial
V de manera no lineal. Este fenómeno no lineal es llamado paradoja de Klein y tiene
que ver con el hecho de que, en la ecuación de Dirac, existen estados cuánticos con
energía positiva y estados cuánticos con energía negativa. De hecho, cuando un elec-
trón se acerca a una barrera, su función de onda puede ser dividida en dos partes: la
parte refleja y la parte trasmitida. En una situación no relativista, es un hecho cono-
cido que la función de onda trasmitida decae exponencialmente al crecer el tamaño
de la barrera. En el contexto de la ecuación de Dirac ha sido observado que la parte
trasmitida de la función de onda depende débilmente de la barrera que se hace casi
trasparente cuando su tamaño es muy grande.

La presente tesis persigue varios objetivos. Por un lado, investigamos si en el caso
tridimensional se continúa obteniendo el mismo resultado que en el caso unidimen-
sional. Nuestro desarrollo prueba el mismo fenómeno no lineal por la constante de
acoplamiento pero solo podemos demostrar convergencia fuerte del resolvente. Por
otro lado, en el caso que de que Σ sea la esfera, contestamos a una pregunta abierta
formulada en [8], y demostramos que los dominios dados en [20] por Dittirch, Šeba y

xi



Exner, y en [7], por Arrizabalaga, Mas y Vega, coinciden. Por esta razón, la conjetura
que aparece comparando con [50] es cierta. Además, observando las relaciones espec-
trales relativas a la interacción de tipo δ-shell y su aproximación regular, obtenemos
analogías con el fenómeno no lineal ya descrito y mejorías en las aproximaciones de
los espectros.

Perturbaciones de tipo Coulomb

Una de las principales características de la ecuación de Dirac es que permite
describir la interacción de un electrón con el campo generado por un núcleo atómico,
de forma coherente con las medidas experimentales. La energía electrostática de un
electrón en el campo generado por un núcleo atómico está descrita por el potencial
de Coulomb

VC :=
ν

|x|I4,

con ν = e2Z/~ donde Z es el número atómico, e la carga del electrón y ~ la constante
de Plank.

El problema de estudiar si el operador H+VC es autoadjunto, ha sido enfrentado
por muchos matemáticos. El primer trabajo relevante ha sido realizado por Kato,
en [33], y está basado en la desigualdad de Hardy y el teorema de Kato-Rellich.
Kato pudo demostrar que por |ν| ∈

[
0, 1

2

)
, el operador H + VC es esencialmente

autoadjunto sobre C∞c (R3)4 y autoadjunto D(H) = H1(R3)4. El enfoque de Kato no
depende de la simetría esférica del potencial, ya que es posible considerar potenciales
V que sean matrices hermíticas 4× 4 de funciones reales y que verifiquen

|Vi,j(x)| ≤ a
1

|x| + b,

con b ∈ R y a < 1/2, véase [36, Theorem V 5.10]. Los potenciales de tipo Coulomb
son aquellos que verifican este tipo de desigualdades.

De todas formas, esto no cubre la gama de todos los ν admisibles para que el
operador sea esencialmente autoadjunto. Hay una serie de trabajos independientes,
[29, 53, 55, 57, 65], en los cuales los distintos autores, utilizando técnicas diferentes,
prueban que el operador H + VC es esencialmente autoadjunto sobre C∞c (R3)4 para
|ν| ≤

√
3/2. Dicho rango de ν es optimal, dado que, si |ν| >

√
3/2, el operadorH+VC

no es esencialmente autoadjunto y admite infinitas extensiones autoadjuntas. Por lo
tanto, es importante estudiar cual, de entre todas, es la extensión autoadjunta más
significativa desde un punto de vista físico: la extensión denominada distinguida.
Para |ν| < 1, se conoce como caso sub-crítico, aunque varios autores han definido la
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extensión distinguida de manera distinta, véase [47, 56, 66], Klaus y Wüst, en [38],
demostraron que se trataba de definiciones equivalentes.

En [4], Arai ha considerado potenciales de la forma

V(x) =
1

|x|

(
νI4 + µβ −

(
iα · x|x|β

)
λ

)
, para x 6= 0,

demostrando que una condición necesaria y suficiente para que el operador H + V

sea esencialmente autoadjunto, es que una cierta cantidad δ, dependiente de V, sea
mayor que 1/4. Sus argumentos son válidos para demostrar que, para δ > 0, H + V

admite infinitas extensiones autoadjuntas.

En el caso de queV sea una matriz hermítica 4×4 de funciones reales que verifique
la propiedad

|Vi,j(x)| ≤ ν

|x| , para x 6= 0 y i, j = 1, . . . , 4,

Kato en [35] y Arrizabalaga, Duoandikoetxea y Vega en [6] pudieron definir el dominio
de la extensión distinguida del operador H+V, utilizando una particular desigualdad
llamada de Kato-Nenciu.

En [23], Esteban y Loss utilizando desigualdades de tipo Hardy con pesos, han
construido un dominio adecuado para que el operador H+VC sea autodajunto. En el
caso sub-crítico, es decir 0 < ν < 1, la extensión que describen es la extension distin-
guida explicada anteriormente. En el caso crítico, es decir ν = 1, pueden describir el
dominio para que el operador H+VC sea autoadjunto, prolongando por continuidad
el caso sub-crítico y, por lo tanto, afirman que tal extensión es la distinguida.

En esta tesis analizamos el problema de la autoadjunción del operador H+V con

V(x) =
1

|x|

(
νI4 + µβ −

(
iα · x|x|β

)
λ

)
, para x 6= 0.

Esta particular clase de potenciales, ya considerada por Arai en [4], es la clase más
amplia de potenciales tales que la acción de H +V se pueda descomponer utilizando
las coordenadas polares. Dependiendo de la misma cantidad δ utilizada por Arai,
distinguimos tres casos: sub-crítico, crítico y sobra-crítico. Contrariamente a lo hecho
por Arai, no imponemos ninguna restricción sobre δ. Finalmente, nos hemos enfo-
cado en la definición de la extensión distinguida: en el caso sub-crítico damos una
mejor condición de regularidad que podemos extender por continuidad al caso crítico
obteniendo analogías con [23] de Esteban y Loss.
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Estructura de la Tesis

Esta tesis se compone de 4 capítulos y dos apéndices.

En la Introducción, Capítulo 1, introducimos la ecuación de Dirac y el corres-
pondiente hamiltoniano, el llamado operador de Dirac, y discutimos en detalle los
contenidos de la tesis. Por un lado, a través de un análisis histórico y bibliográfico
relativo al problema de las perturbaciones singulares del operador de Dirac, mostra-
mos la relación entre los nuevos resultados presentes en esta tesis y las contribuciones
ya conocidas. Por otro lado, describimos las técnicas desarrolladas para afrontar este
tipo de problemas.

En el Capítulo 2, nos enfocamos en el problema de la aproximación de la interac-
ción de tipo δ-shell por una interacción más regular. En la Sección 2.1 introducimos las
herramientas necesarias para enunciar el Teorema 2.1.2. En la Sección 2.2 definimos
la interacción de tipo δ–shell y damos algunas propiedades espectrales. La Sección
2.3 analiza las interacciones regulares. En la Sección 2.3.1, damos algunas propieda-
des espectrales y en la Sección 2.3.2 presentamos el primer paso para demostrar el
Teorema 2.1.2: una descomposición del operador resolvente de la interacción aproxi-
marte en tres operadores concretos: Aε(a), Bε(a) y Cε(a). De estos tres operadores,
en la Sección 2.3.2, damos algún resultado auxiliar que demostramos sucesivamente
en las Secciones 2.3.3, 2.3.4 and 2.3.5. Con estos ingredientes, en la Sección 2.3.6,
demostramos el Teorema 2.1.2.

El Capítulo 3 tiene por objetivo detallar las propiedades de la interacción δ-shell
en el caso esférico. En la Sección 3.1, utilizando coordenadas polares, deducimos
más información probando que el dominio dado por [20] y el dominio dado por [7]
coinciden. Por otro lado, en la Sección 3.2, investigamos la relación espectral entre
la interacción δ-shell y su aproximación por el acoplamiento del operador de Dirac
con un potencial regular que depende de un cierto parámetro ε de tal manera que, si
ε→ 0, se reduce al borde del dominio.

En el Capítulo 4, nos enfocamos en el problema relativo a la autoadjunción de
la interacción de tipo Coulomb. En la Sección 4.1, introducimos el operador minimal
y el operador maximal. En la Sección 4.2 formulamos la clasificación completa de
todas las extensiones audoadjuntas. En este contexto, aparece de manera natural,
la dependencia sobre un cierto parámetro δ. Las herramientas que utilizamos son
desigualdades de tipo Hardy con pesos, en la Sección 4.3.1, y la caracterización del
dominio del operador maximal, en la Sección 4.3.2. Finalmente, la Sección 4.4, cubre
el estudio de la extensión distinguida.
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La presente tesis está complementada por dos apéndices: El Apéndice A describe
algunas propiedades geométricas y de teoría de la medida, y el Apéndice B analiza
el contexto de la simetría esférica.
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1Introduction

1.1 The free Dirac equation

According to the special theory of relativity, the relation between the energy E
and the momentum p for a free particle is

E =
√
c2p2 +m2c4, (1.1.1)

where m is the mass of the particle and c is the speed of light. We can obtain an
operator in position-space for the relativistic kinetic energy by applying the usual
substitution rule in the non-relativistic theory:

E  i~
∂

∂t
, p −i~∇, (~ = Plank constant). (1.1.2)

Applying (1.1.2) to the classical relativistic energy-momentum relation (1.1.1), we
obtain the square-root Klein-Gordon equation

i~
∂

∂t
ψ(t, x) =

√
−c2~2∆ +m2c4 ψ(t, x), t ∈ R, x ∈ R3, (1.1.3)

where ∆ is the Laplace operator. Due to the asymmetry of space and time derivatives,
there is no easy way to modify this equation to incorporate electromagnetic fields in
a way that is compatible with the special theory of relativity. Moreover the square
root of a differential operator is a non-local operator. Hence, according to (1.1.3), the
time derivative of ψ at a point x is related to the values of ψ(t, y) at all points y ∈ R3.
And finally, the solutions of the square-root Klein-Gordon equation are scalar wave
functions. Real electrons have spin, and in position space they should be described
by a matrix-wave equation.

In 1928, Paul Dirac had the great intuition, described in the well known paper
[19], of reconsidering the energy-momentum relation (1.1.1). Before translating it to
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1. Introduction

quantum mechanics, with the help of (1.1.2), the energy can be linearised by writing

E = c

3∑
i=1

αipi + βmc2 = cα · p+mc2β, (1.1.4)

where α = (α1, α2, α3) and β have to be determined by (1.1.1). Indeed, (1.1.2) can
be satisfied assuming that α and β are anti-commuting quantities which are most
naturally represented by n × n matrices. Comparing E2, according to equations
(1.1.1) and (1.1.4) the following relations must hold:

αjαk + αkαj = 2δj,kI4, j, k = 1, 2, 3;
αjβ + βαj = 0, j = 1, 2, 3;

β2 = 1,
(1.1.5)

where δj,k denotes the Kronecker symbol. The n × n matrices α and β should be
Hermitian so that (1.1.4) can lead to a self-adjoint expression, which is a necessary
tool for a quantum mechanical interpretation. Although there are more possibilities,
a set of matrices satisfying the relation (1.1.5) is given by

αj =

(
0 σj
σj 0

)
for j = 1, 2, 3, β =

(
I2 0
0 −I2

)
,

and
σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(1.1.6)

is the family of Pauli’s matrices. Setting for convenience ~ = c = 1, he got that
ψ(t, x) is the wave-function that represents the state of a free particle in R3 if and
only if ψ(t, ·) ∈ L2(R3,C4) and it satisfies the free Dirac equation

i∂tψ(t, x) = Hψ(t, x),

whereH is the free-particle Dirac operator in three space dimension defined as follows:

H := −iα · ∇+mβ, (1.1.7)

with m ≥ 0 and α = (α1, α2, α3).

1.1.1 Properties of the free Dirac operator

For various reasons the property of being self-adjoint is a fundamental property
in quantum mechanics. In order to apply the methods and techniques of quantum
theory, we need to define a Hilbert space for the Dirac equation. To match the dimen-
sion of the Dirac matrices, a suitable state space must consist of square-integrable
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1.1 The free Dirac equation

spinors with four components, that is

ψ(x) =


ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)

 , ψi ∈ L2(R3) for i = 1, 2, 3, 4.

For this reason, to simplify the notation for any S ⊂ R3 and for any function space
V we set

V(S)4 := V(S,C4).

We want to determine a dense subset D(H) ⊂ L2(R3)4 such that the operator
H : D(H) → L2(R3)4 is self-adjoint. With the help of the Fourier transform
F : L2(R3, dx)4 → L2(R3, dp)4 (we use this notation to distinguish between the
variables), for each p ∈ R3 we can write

h(p) := (FHF−1)(p) =

(
mI2 σ · p
σ · p −mI2

)
. (1.1.8)

Hence, the matrix-differential operator H and the matrix-multiplication operator h
are unitarily equivalent. The matrix h(p) can be diagonalized with the unitary matrix

u(p) := a+(p)I4 + a−(p)βα · p|p| ,

where a±(p) := 1√
2

√
1±m/λ(p) and λ(p) =

√
|p|2 +m2. Then

u(p)h(p)u(p)−1 = βλ(p). (1.1.9)

Combining (1.1.8) and (1.1.9), setting W := uF , we get that

WHW−1(p) = βλ(p), (1.1.10)

that is H is unitarly equivalent to the multiplication operator βλ(·). Hence it is
self-adjoint on

D(H) =W−1D(βλ(·)) = F−1u−1D(βλ(·)) = F−1D(λ(·)I4), (1.1.11)

where we used the fact that both u(·)−1 and β are multiplication by unitary matrices
that do not change the domain of the multiplication operator λ(·). Since

D(λ(·)) = {f ∈ L2(R3, dp) : (m2 + |p|2)1/2f ∈ L2(R3, dp)}, (1.1.12)

combining (1.1.11) and (1.1.12), we can conclude that

D(H) = H1(R3)4.

Moreover, the matrix β has eigenvalues ±1, hence the eigenvalues of h(p) are ±λ(p).
From (1.1.10) we have that the spectrum of the differential operator H is equal to
the spectrum of the multiplication operator βλ(p) which is purely essential and its
given by the range of the function ±λ(p), that is

σ(H) = σess(H) = (−∞,−m] ∪ [m,+∞).
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1. Introduction

1.1.2 Positive and negative energies

In the Hilbert spaceWL2(R3)4 where the Dirac operator is diagonal, see (1.1.10),
the upper two components of wave-functions belong to positive energies, while the
lower components correspond to negative energies. Indeed, setting

Ppos/neg :=W−1 1

2
(I4 ± β)W =

1

2

(
1± H

|H|

)
,

and
Hpos/neg := Ppos/neg L

2(R3)4,

the following decomposition holds:

L2(R3)4 = Hpos ⊕Hneg.

For ψ = ψpos + ψneg ∈ L2(R3)4, setting φ± = 1
2
(1± β)Wψ, from (1.1.11) we have

〈ψpos, Hψpos〉L2 = 〈W−1φ+,W−1λ(·)φ+〉L2 = 〈φ+, λ(·)φ+〉L2 > 0.

Analogously
〈ψneg, Hψneg〉L2 = −〈φ−, λ(·)φ−〉L2 < 0.

For these reasons the space Hpos is called positive energy subspace and Hneg is called
negative energy subspace.

1.2 Contents of the thesis

The key to describe interactions is the perturbation of the free Hamiltonian H:
we want to study the evolution of a particle when it is perturbed by a vector-field.
In reality, these kind of perturbation consists of the sum of interactions with the field
and with the field generators. In this thesis we will consider external fields : we are
assuming that the interaction between the particle and the generators is so small that
it can be removed and and that the motions of the particle is only influenced by the
presence of the external field.

In other words, we are interested in the analysis of the operator H +V, with V a
4× 4 matrix-valued potential. The objective of this thesis is to analyse two different
classes of singular potentials V:

• The δ-shell interaction: V is a distribution supported on a hyper-surface of R3;
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1.2 Contents of the thesis

• The Coulomb-type interaction: V is a 4×4 matrix of functions andVi,j(x) ∼ ν
|x|

for |x| → 0 and i, j = 1, . . . , 4.

We will explain accurately in each section the physical interpretation of these phe-
nomena and why they are considered singular.

We give now a preliminary survey of the contents of each chapter, introducing
more details about the model we considered:

1.2.1 Chapter 2: Klein’s Paradox and the Relativistic δ-shell
Interaction

The idea of coupling Hamiltonians with singular potentials supported on subsets
of lower dimension with respect to the ambient space (commonly called singular
perturbations) is quite classic in quantum mechanics. It started with the pioneering
works [54] by Rellich, and [33, 34] by Kato. A major development in the subject was
brought by Stummle in [60]. Regarding the Dirac operator, several researchers studied
different singular perturbations, see [17, 32]. One important physical example is the
model of a particle in a 1-dimensional lattice that analyses the evolution of an electron
on a straight line perturbed by a potential caused by ions in the periodic structure
of the crystal that create an electromagnetic field. In 1931, Kronig and Penney [40]
idealized this system: in their model the electron is free to move in regions of the
whole space separated by some periodical barriers which are zero everywhere except
at a single point, where they take infinite value. In modern language, this corresponds
to a δ-point potential.

For the Schrödinger operator, this problem is described in the manuscript [1] and
[2] for countable δ-point interactions and in [24] for singular potentials supported on
hypersurfaces. The reader may look at [7–9, 11, 13, 20, 49] for the case of the Dirac
operator, and to [50] for a much more general scenario.

Nevertheless, one has to keep in mind that, even if this kind of model is more
easily mathematically understood, since the analysis can be reduced to an algebraic
problem, it is an ideal model that cannot be physically reproduced. This is the reason
why it is interesting to approximate these kinds of operators by more regular ones.
For instance, in one dimension, if V ∈ C∞c (R) then

Vε(t) := 1
ε
V
(
t
ε

)
→ (

∫
V )δ0 when ε→ 0

in the sense of distributions, where δ0 denotes the Dirac measure at the origin. In
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1. Introduction

[1] it is proved that ∆ + Vε → ∆ + (
∫
V )δ0 in the norm resolvent sense when ε→ 0,

and in [12] this result is generalized to higher dimensions for singular perturbations
on general smooth hyper-surfaces.

These kinds of results do not hold for the Dirac operator. In fact, in [59] it is
proved that, in the 1-dimensional case, the convergence holds in the norm resolvent
sense but the coupling constant does depend non-linearly on the potential V , unlike
in the case of Schrödinger operators. This non-linear happening, which may also
occur in higher dimensions, is a consequence of the physical phenomenon known as
Klein’s Paradox.

As we have already explained in Section 1.1.2 in the Dirac equation a fundamental
role is played by positive energy states and negative energy states. Klein’s Paradox is
a counter-intuitive relativistic phenomenon related to the scattering theory for high-
barrier (or equivalently low-well) potentials for the Dirac equation. When an electron
is approaching a barrier, its wave function can be split in two parts: the reflected
one and the transmitted one. In a non-relativistic situation, it is well known that
the transmitted wave-function decays exponentially depending on the height of the
potential, see [62] and the references therein. For the Dirac equation, in [39] for the
first time it has been observed that the transmitted wave-function depends weakly on
the power of the barrier, and it becomes almost transparent for very high barriers, see
[61, Section 4.5] for more details. Recently, Klein’s paradox has been revived with the
study of graphene, see [37]. This problem also appears when approximating the Dirac
operator coupled with a δ-shell potential by the corresponding operator using local
potentials with shrinking support. In fact, the free Dirac operator is critical with
respect to the set where the δ-shell interaction is performed, unlike the Laplacian
(the Dirac/Laplace operator is a first/second order differential operator, respectively,
and the set where the interaction is performed has co-dimension 1 with respect to
the ambient space).

In this chapter we will study the 3-dimensional case. We will investigate if it is
possible to obtain the same results as in one dimension. For δ-shell interactions on
bounded smooth hyper-surfaces, we will get the same non-linear phenomenon on the
coupling constant but we are only able to show convergence in the strong resolvent
sense.

Regarding the structure of the Chapter, Section 2.1 is devoted to the necessary
preliminaries to state Theorem 2.1.2. We will refer to basic rudiments with a geo-
metric measure theory flavour that will be explained in Appendix A. In Section 2.2
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1.2 Contents of the thesis

we will introduce the δ–shell interactions and we will give some spectral properties.
Section 2.3 is devoted to the short-range interaction. We will give some spectral prop-
erties in Section 2.3.1. In Section 2.3.2 we will present the first main step to proving
Theorem 2.1.2: a decomposition of the resolvent of the approximating interaction
into three concrete operators Aε(a), Bε(a) and Cε(a). This type of decomposition,
which is made through a scaling operator, already appears in [12, 59]. Section 2.3.2
also contains some auxiliary results concerning these three operators, whose proofs
are carried out later on in Section 2.3.3, Section 2.3.4 and Section 2.3.5. With these
ingredients, in Section 2.3.6, Theorem 2.1.2 will be proved.

The results of this Chapter are contained in the research article [44].

1.2.2 Chapter 3: The relativistic spherical δ-shell interaction:
spectrum and approximation

It is very natural thing in quantum mechanics to study Hamiltonians coupled with
singular potential supported on hyper-surfaces (as we explained in Section 1.2.1).
This chapter revolves on the free Dirac operator in R3 and its δ-shell interactions
with singular electrostatic potentials supported on a sphere.

For the Schrödinger operator, this problem is described in the monograph [1] for
countable δ-point interactions and in [24] for singular potentials supported on hyper-
surfaces. Regarding the Dirac operator, in the 1-dimensional case the problem is
well-understood. Thanks to [1, 28, 43] we get the description of the domain, some
properties of the spectrum, and a resolvent formula.

In three dimensions the first result is [20]. By using the decomposition into par-
tial wave subspaces, Dittrich, Exner, and Šeba could reduce their analysis to a 1-
dimensional question and they constructed the domain of the Dirac operator coupled
with a singular potential supported on the sphere. In the case of a general surface Σ,
the first work is [7] by Arrizabalaga, Mas, and Vega. In this work, the authors char-
acterized the domain of the δ-shell Dirac operator with coupling constant λ 6= ±2, by
the interactions between certain functions u ∈ H1(R3)4 and g ∈ L2(Σ)4. Comparing
this work with the general abstract theory given in [50], one could suppose that this
kind of interaction is forcing g to be in H1/2(Σ)4. Indeed, recently, in [49] the authors
proved that this conjecture is true. Moreover they also defined the domain of δ-shell
Dirac operator when the coupling constant λ = ±2. Finally, in [11, 13] the authors
could define the domain of the δ-shell Dirac operator by using the abstract theory of
boundary triples.
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1. Introduction

In this chapter, on one hand, we will answer an open question posed in [8] which
provides eigenstates of those couplings by finding sharp constants and minimizers of
some precise inequalities related to an uncertainty principle (see Question 3.1.7, The-
orem 3.1.9 and Corollary 3.1.8). On the other hand, we will prove that the domains
given in [20] and [7] coincide in the spherical case and that the conjecture that comes
from the comparison to [50] holds (see Theorem 3.1.2 and Remark 3.1.3). Moreover,
we will explore the spectral relation between the electrostatic δ-shell interaction and
its approximation by the coupling of the free Dirac operator with shrinking short
range potentials. We will get analogies with Chapter 2 and, thanks to Theorem
3.2.2, we will improve the spectral relation explained in Remark 2.1.4.

The results of this Chapter are contained in the research article [45].

1.2.3 Chapter 4: Self-adjoint extensions for the Dirac opera-
tor with Coulomb-type spherically symmetric potentials

One of the biggest achievements of Dirac equation is that the description of the
electrostatic interaction of an electron in the field of an atomic nucleus and experimen-
tal measurements are almost entirely coherent. It is well known that the electrostatic
energy of an electron in the field of an atomic nucleus is described by the Coulomb
potential

VC(x) =
ν

|x|I4,

with ν = e2Z/~, where Z is the atomic number, e is the charge of the electron and ~
is the Plank constant (we set ~ = 1).

In quantum mechanics, observables correspond to self-adjoint operators. For this
reason, it is physically interesting to study of the self-adjointness of the operator
H + VC . The first contribution was made by Case in [15]: in this work, the author
was the first to observe that some boundary conditions are required at zero. Anyway,
the first result of self-adjointness is due to Kato in [33] and it is based on Hardy’s
inequality

1

4

∫
R3

|f |2
|x|2 dx ≤

∫
R3

|∇f |2 dx, for f ∈ C∞c (R3), (1.2.1)

and the Kato-Rellich Theorem. He could prove that for |ν| ∈
[
0, 1

2

)
, the operator

H + VC is essentially self-adjoint on C∞c (R3)4 and self-adjoint on D(H) = H1(R3)4.
Kato’s approach could be used independently on the spherical symmetry of the po-
tential: it is possible to consider 4×4 Hermitian real-valued matrix potential V such
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1.2 Contents of the thesis

that
|Vi,j(x)| ≤ a

1

|x| + b,

with b ∈ R and a < 1/2, see [36, Theorem V 5.10].

This does not cover the whole range of ν on which the Dirac-Coulomb operator is
essentially self-adjoint. In fact several different approaches were developed in order to
expand the range of admissible ν. In [55] by Rellich and in [65] by Weidmann, using
the partial wave decomposition and the Weyl-Stone theory for systems of ordinary
differential equations, the range |ν| ∈

[
0,
√

3
2

)
was recovered. Moreover, generalizing

the Kato-Rellich Theorem and by means of the theory of Fredholm operators, Rejtö
firstly recaptured the range ν ∈

[
0, 3

4

)
in [53] and few years later |ν| ∈

[
0,
√

3
2

)
in [29]

with Gustafson. Finally, in [57], Schmincke considered H+VC = (H+S)+(VC−S),
being S a suitable intercalary operator. Then, he proved the self-adjointness of H+V

showing that H + S is self-adjoint and VC − S is a small perturbation of H + S, in
the sense of the Kato-Rellich Theorem.

This range of ν such that the operator H + VC is essentially self-adjoint on
C∞c (R3)4 is optimal, in fact for |ν| >

√
3/2 H +VC is not essentially self-adjoint and

several self-adjoint extensions can be constructed. The main interest was the study,
among all, of the most physically meaningful extension. The first work is [56] by
Schmincke: for |ν| ∈

(√
3

2
, 1
)
and by means of a multiplicative intercalary operator,

he proved that H + VC admits a unique self-adjoint extention TS such that

D(TS) ⊂ D(r−1/2) = {ψ ∈ L2(R3)4 : |x|−1/2ψ ∈ L2(R3)4}. (1.2.2)

Another explicit construction of a distinguished self-adjoint extension was made by
Wüst in [66]: using a cut-off procedure, he built a sequence of self-adjoint operators
that converges strongly in the operator graph topology to a self-adjoint extension of
H + VC , whose domain is contained in D(r−1/2). Moreover in [47], Nenciu proved
the existence of a unique self-adjoint extension of H+VC whose domain is contained
in the Sobolev space H1/2(R3)4. Finally, Klaus and Wüst showed in [38] that these
self-adjoint extensions coincide. We also cite [14]: in this work, using the partial
wave decomposition and the Von Neumann theory, the authors could characterize
the distinguished self-adjoint extension by the fact that the energy of the ground
state is continuous in ν.

In [4] Arai considered matrix-valued potentials of the form

V(x) =
1

|x|

(
νI4 + µβ −

(
iα · x|x|β

)
λ

)
, for x 6= 0. (1.2.3)
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Defining
δ := (k + λ)2 − ν2 + µ2, for any k ∈ Z \ {0}, (1.2.4)

he proved that a necessary and sufficient condition for the essential self-adjointness
of H +V is δ ≥ 1/4 for any k. This proved that, in the case of general matrix valued
potentials, the threshold 1/2 is optimal for the essential self-adjointness. For δ > 0

for all k, he proved that the operator admits infinitely many self-adjoint extensions.
Kato in [35] considered a general 4× 4 matrix-valued measured function V such that
for any x 6= 0, |Vi,j(x)| ≤ |x|−1. Setting H(κ) := H + κV, he constructed a unique
holomorphic family of self-adjoint operators for |κ| < 1, which reduced to the self-
adjioint operator H+κV defined on H1(R3)4 for |κ| < 1/2. Moreover he proved that,
in the case ofV = VC = 1

|x|I4, this family coincides with the distinguished self-adjoint
extension defined by Wüst and Nenciu. With a similar idea, in [6] Arrizabalaga,
Duoandikoetxea and Vega were able to characterize the distinguished self-adjoint
extension by means of the Kato-Nenciu inequality∫

R3

|ψ|2
|x| dx ≤

∫
R3

|(−iα · ∇+mβ ± i)ψ|2|x| dx, for ψ ∈ C∞c (R3)4.

The self-adjointness in the range of critical values |ν| ≥ 1 has been aim of several
recent works: in the case of the Coulomb potential and using the spherical symmetry
of the potential, with different approaches Xia in [67], Voronov in [64], Hogreve in
[31] could characterize via boundary conditions all the self-adjoint extensions. In [23],
Esteban and Loss could consider a general electrostatic potential, that is a function
V : R3 → R such that that for some constant c(V ) ∈ (−1, 1), Γ := sup(V ) < 1+c(V )

and for every ϕ ∈ C∞c (R3,C2),∫
R3

( |σ · ∇ϕ|2
1 + c(V )− V + (1 + c(V ) + V ) |ϕ|2

)
dx ≥ 0. (1.2.5)

Setting V := V I4, they proved that the operator H + V is self-adjoint on a suitable
domain. Although the free Dirac operator is not semi-bounded, they defined a reduced
operator acting only on the two first components of the wave function, for which
the Friedrichs extension can be defined thanks the inequality (1.2.5). Once this
is done, they extended the whole operator in a straightforward way. This allows
treating all the potentials of the form V (x) = − ν

|x| for ν ∈ (0, 1]. In the sub-critical
case, i. e. 0 < ν < 1, the self-adjoint extension that they described coincides with
the distinguished self-adjoint extension given by Wüst and Nenciu; in the critical
case, i. e. ν = 1, they stated that the distinguished the self-adjoint extension that
they are describing is the distinguished one since it can be covered by continuous
prolongation of the sub-critical case. Recently, in [22], Esteban, Lewin and Séré have
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1.2 Contents of the thesis

given more properties of this domain: they showed that the self-adjoint extension
given by Esteban and Loss could be obtained as the limit of the cut-off procedure
and, in the Coulomb case, it is the only extension containing the ground states.

The aim of this chapter is to give a simple and unified approach to the problem
of the self-adjointness of H + V, with V as in (1.2.3). This particular choice of the
class of potentials is related to the fact that the action of H +V leaves invariant the
partial wave subspaces. The strategy of the proof is considering the self-adjointness of
the reduction of H+V to the partial wave subspaces and, using weighted Hardy-type
inequalities and trace theorems, we will describe the domain of the maximal operator,
namely the set of functions ψ ∈ L2 such that (H +V)ψ ∈ L2. Then, we will describe
the domains of the self-adjoint extensions by means of boundary conditions at the
origin.

Despite this case is somehow simpler, still a complete description of the phenom-
ena was not available. In [4], Arai considered potentials as in (1.2.3) and he connected
the problem of self-adjointess to the quantity δ defined in (1.2.4). But still, he could
only analyse the cases in which δ > 0 for any k > 0: we will not add any restriction
on δ.

In this context the case δ > 0 is sub-critical, while it is critical if δ = 0 for some k
and supercritical if δ < 0 for some k. This formulation of criticality is different from
the one in [5, 6, 35] but it appears to be suited to this problem, where a particular
structure of V is assumed. In fact, in the particular case that λ = ν = 0 and
V = µ

|x|β for all µ ∈ R, the operator H + V is essentially self-adjoint on C∞c (R3)4

and self-adjoint on D(H) = H1(R3)4, see Corollary 4.2.6.

Finally we will focus on the distinguished self-adjoint extension: we will give a
precise description of the domain of the distinguished self-adjoint extension for H+V

in the sub-critical and critical cases. In the sub-critical case our result will refine
the known theory: Schmincke’s condition (see 1.2.2) selects a self-adjoint extension
and we will prove that the functions in its domain fulfil an improved integrability
condition. Moreover, from the algebra of the problem we will select a suitable linear
combination of both components of the spinor: we will show that the distinguished
self-adjoint extension can be characterized by the fact that this linear combination
belongs to H1 (see Proposition 4.4.2) and we will extend continuously this condition
to the critical case for (ν, µ) 6= 0 in (1.2.3) (see Proposition 4.4.3). With this definition
and in the case of Coulomb potentials, we will show that distinguished self-adjoint
extension is the unique one that contains the ground state and so it coincides with

11



1. Introduction

the self-adjoint extension defined by Esteban and Loss in [23], see Remark 4.4.5.
In the critical case and for ν = µ = 0 we can not define the distinguished self-
adjoint extension: in this very particular case a coherent definition of distinguished
self-adjoint extension can not be given, see Remark 4.4.6.

Regarding the structure of the Chapter, in Section 4.1 we will introduce the
minimal operator and the maximal operator. We will also introduce the partial wave
decomposition (see B for more details). In Section 4.2 we will formulate the complete
classification of the self-adjoint extensions namely Theorem 4.2.1, Theorem 4.2.2, and
Theorem 4.2.3. In this context it will appear the dependence on δ defined in (1.2.4).
We will prove these results by means of Hardy-type inequalities in Section 4.3.1 and
the characterization of the maximal operator in Section 4.3.2. Finally Section 4.4 is
devoted to the study of the distinguished self-adjoint extension.

The results of this Chapter are contained in the research article [16].
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2Klein’s Paradox and the Relativistic
δ-shell Interaction

2.1 Introduction and main results

In this Chapter, Ω ⊂ R3 will denote a bounded C2 domain and Σ := ∂Ω will
denote its boundary. By a C2 domain we mean the following: for each point Q ∈ Σ

there exist a ball B ⊂ R3 centered at Q, a C2 function ψ : R2 → R and a coordinate
system {(x, x3) : x ∈ R2, x3 ∈ R} such that, with respect to this coordinate system,
Q = (0, 0) and

B ∩ Ω = B ∩ {(x, x3) : x3 > ψ(x)},
B ∩ Σ = B ∩ {(x, x3) : x3 = ψ(x)}.

By compactness, one can find a finite covering of Σ made of such coordinate systems,
thus the Lipschitz constant of those ψ can be taken to be uniformly bounded on Σ.

Set Ωε := {x ∈ R3 : d(x,Σ) < ε} for ε > 0. Following [12, Appendix B], there
exists η > 0 small enough depending on Σ such that for every 0 < ε ≤ η one can
parametrize Ωε as

Ωε = {xΣ + tν(xΣ) : xΣ ∈ Σ, t ∈ (−ε, ε)}, (2.1.1)

where ν(xΣ) denotes the outward (with respect to Ω) unit normal vector field on
Σ evaluated at xΣ. This parametrization is a bijective correspondence between Ωε

and Σ × (−ε, ε), it can be understood as tangential and normal coordinates. For
t ∈ [−η, η], we set

Σt := {xΣ + tν(xΣ) : xΣ ∈ Σ}. (2.1.2)

In particular, Σt = ∂Ωt \ Ω if t > 0, Σt = ∂Ω|t| ∩ Ω if t < 0 and Σ0 = Σ. Let σt

13



2. Klein’s Paradox and the Relativistic δ-shell Interaction

denote the surface measure on Σt and, for simplicity of notation, we set σ := σ0, the
surface measure on Σ.

Given V ∈ L∞(R) with suppV ⊂ [−η, η] and 0 < ε ≤ η define

Vε(t) :=
η

ε
V
(ηt
ε

)
and, for x ∈ R3,

Vε(x) :=

{
Vε(t) if x ∈ Ωε, x = xΣ + tν(xΣ) for a unique (xΣ, t) ∈ Σ× (−ε, ε),
0 if x 6∈ Ωε.

(2.1.3)
Finally, set

uε := |Vε|1/2, vε := sign(Vε)|Vε|1/2,
u(t) := |ηV (ηt)|1/2, v(t) := sign(V (ηt))u(t).

(2.1.4)

Notice that uε,vε ∈ L∞(R3) are supported in Ωε and u, v ∈ L∞(R) are supported in
[−1, 1].

Definition 2.1.1. Given η, δ > 0, we say that V ∈ L∞(R) is (δ, η)-small if

suppV ⊂ [−η, η] and ‖V ‖L∞(R) ≤
δ

η
.

Observe that if V is (δ, η)-small then ‖V ‖L1(R) ≤ 2δ, this is the reason why we
call it a small potential.

In this chapter we study the asymptotic behaviour, in a strong resolvent sense, of
the couplings of the free Dirac operator with electrostatic and Lorentz scalar short-
range potentials of the forms

H + Vε and H + βVε, (2.1.5)

respectively, where Vε is given by (2.1.3) for some (δ, η)-small V with δ and η small
enough only depending on Σ. By [61, Theorem 4.2], both couplings in (2.1.5) are
self-adjoint operators on H1(R3)4. Given η > 0 small enough so that (2.1.1) holds,
and given u and v as in (2.1.4) for some V ∈ L∞(R) with suppV ⊂ [−η, η], set

KV f(t) :=
i

2

∫
R
u(t) sign(t− s)v(s)f(s) ds for f ∈ L1

loc(R). (2.1.6)

The main result in this chapter reads as follows.
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2.1 Introduction and main results

Theorem 2.1.2. There exist η0, δ > 0 small enough only depending on Σ such that,
for any 0 < η ≤ η0 and (δ, η)-small V ,

H + Vε → H + λeδΣ in the strong resolvent sense when ε→ 0, (2.1.7)

H + βVε → H + λsβ δΣ in the strong resolvent sense when ε→ 0, (2.1.8)

where

λe :=
∫
Rv(t) ((1−K2

V )−1u)(t) dt ∈ R, (2.1.9)

λs :=
∫
Rv(t) ((1 +K2

V )−1u)(t) dt ∈ R, (2.1.10)

and H+λeδΣ and H+λsβ δΣ are the electrostatic and Lorentz scalar shell interactions
given by (2.2.5) and (2.2.11), respectively.

Remark 2.1.3. To define λe in (2.1.9) and λs in (2.1.10), the invertibility of 1 ±
K2
V is required. However, since KV is a Hilbert-Schmidt operator, we know that
‖KV ‖L2(R)→L2(R) is controlled by the norm of its kernel in L2(R×R), which is exactly
‖u‖L2(R)‖v‖L2(R) = ‖V ‖L1(R) ≤ 2δ < 1, assuming that δ < 1/2 and that V is (δ, η)-
small with η ≤ η0. We must stress that the way to construct λe and λs is the same
as in the 1-dimensional case, see [59, Theorem 1].

Remark 2.1.4. From Theorem 2.1.2 we deduce that if a ∈ σ(H + λeδΣ), where σ(·)
denotes the spectrum, then there exists a sequence {aε} such that aε ∈ σ(H+Vε) and
aε → a when ε→ 0, but the vice-versa spectral implication may not hold. The same
happens for the Lorentz scalar case. We should highlight that the kind of instruments
we used to prove Theorem 2.1.2 suggests us that the norm resolvent convergence may
not hold in general. We will see that in Chapter 3 that if Σ = S2, we have more
informations about the converse spectral implication.

Remark 2.1.5. The non-linear behaviour of the limiting coupling constant with respect
to the approximating potentials mentioned in 1.2.1 is depicted by (2.1.9) and (2.1.10);
we may compare this to the analogous result [12, Theorem 1.1] in the non-relativistic
scenario. However, unlike in [12, Theorem 1.1], in Theorem 2.1.2 we demand a
smallness assumption on the potential, the (δ, η)-smallness from Definition 2.1.1. We
use this assumption in Corollary 2.3.8 below, where the strong convergence of some
inverse operators (1 + Bε(a))−1 when ε → 0 is shown. The proof of Theorem 2.1.2
follows the strategy of [12, Theorem 1.1], but dealing with the Dirac operator instead
of the Laplacian makes a big difference at this point. In the non-relativistic scenario,
the fundamental solution of −∆+a2 in R3 for a > 0 has exponential decay at infinity
and behaves like 1/|x| near the origin, which is locally integrable in R2 and thus
its integral tends to zero as we integrate on shrinking balls in R2 centered at the
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2. Klein’s Paradox and the Relativistic δ-shell Interaction

origin. These facts are used in [12] to show that their corresponding (1 + Bε(a))−1

can be uniformly bounded in ε just by taking a big enough. In our situation, the
fundamental solution of H − a in R3 can still be taken with exponential decay at
infinity for a ∈ C \ R, but it is not locally absolutely integrable in R2. Actually, its
most singular part behaves like x/|x|3 near the origin, and thus it yields a singular
integral operator in R2. This means that the contribution near the origin cannot be
disregarded as in [12] just by shrinking the domain of integration and taking a ∈ C\R
big enough, something else is required. We impose smallness on V to obtain smallness
on Bε(a) and ensure the uniform invertibility of 1 + Bε(a) with respect to ε; this is
the only point where the (δ, η)-smallenss is used.

Remark 2.1.6. Let η0, δ > 0 be as in Theorem 2.1.2. Take 0 < η ≤ η0 and V =
τ
2
χ(−η,η) for some τ ∈ R such that 0 < |τ |η ≤ 2δ. Then, arguing as in [59, Remark

1], one gets that ∫
R
v (1−K2

V )−1u =
∞∑
n=0

∫
R
vK2n

V u = 2 tan
(τη

2

)
.

Since V is (δ, η)−small, using (2.1.9) and (2.1.7) we obtain that

H + Vε → H + 2 tan( τη
2

)δΣ in the strong resolvent sense when ε→ 0,

analogously to [59, Remark 1]. Similarly, one can check that
∫
v (1 + K2

V )−1u =

2 tanh( τη
2

). Then, (2.1.10) and (2.1.8) yield

H + βVε → H + 2 tanh( τη
2

)βδΣ in the strong resolvent sense when ε→ 0.

2.2 The δ-shell interaction

In this section we will introduce some useful instruments regarding the δ-shell
interactions for the Dirac operator. We will refer to [7–9, 13, 49]. One could look at
[8, Section 2 and Section 5] for the details.

Let a ∈ C. A fundamental solution of H − a is given by

φa(x) =
e−
√
m2−a2|x|

4π|x|
(
a+mβ+

(
1+
√
m2 − a2|x|

)
iα· x|x|2

)
for x ∈ R3\{0}, (2.2.1)

where
√
m2 − a2 is chosen with positive real part whenever a ∈ (C \ R) ∪ (−m,m).

To compute (2.2.1) it is enough to observe that for any a ∈ C:

(H + a)(H − a) = (−∆−m2 + a2)I4.
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2.2 The δ-shell interaction

If we set Ez :=
e−z|x|

4π|x| , the fundamental solution of −∆− z2, then

φa(x) = (H + a)E
√
m2−a2

(x)I4.

To guarantee the exponential decay of φa at infinity, from now on we assume that
a ∈ (C \ R) ∪ (−m,m).

Given G ∈ L2(R3)4 and g ∈ L2(σ)4 we define

Φa(G, g)(x) :=

∫
R3

φa(x−y)G(y) dy+

∫
Σ

φa(x−y)g(y) dσ(y) for x ∈ R3\Σ. (2.2.2)

Then, Φa : L2(R3)4 × L2(σ)4 → L2(R3)4 is linear and bounded and Φa(G, 0) ∈
H1(R3)4. We also set

Φa
σG := trσ(Φa(G, 0)) ∈ L2(σ)4,

where trσ is the trace operator on Σ. Finally, given x ∈ Σ we define

Ca
σg(x) := lim

ε↘0

∫
Σ∩{|x−y|>ε}

φa(x− y)g(y) dσ(y) and Ca
±g(x) := lim

Ω±3y
nt→x

Φa(0, g)(y),

(2.2.3)
where Ω± 3 y nt→ xmeans that y tends to x non-tangentially from the interior/exterior
of Ω, respectively, i.e. Ω+ := Ω and Ω− := R3 \ Ω.

Lemma 2.2.1. Let a ∈ (C \ R) ∪ (−m,m). Then

(i) Ca
σ and Ca

± are linear and bounded in L2(σ)4.

(ii) The following Plemelj-Sokhotski jump formulae hold:

Ca
± = ∓ i

2
(α · ν) + Ca

σ . (2.2.4)

(iii) −4(Ca
σ α · ν)2 = I4.

(iv) If we set {Ca
σ , α · ν} = Ca

σα · ν + α · νCa
σ, then {Ca

σ , α · ν} : L2(σ)4 → H1(σ)4 is
bounded. Moreover {Ca

σ , α · ν} is compact in L2(σ)4.

Proof. If a ∈ (−m,m) (i), (ii) and (iii) have been proved in [8, Section 2] and
(iv) has been proved in [49, Section 2.5]. One could repeat the same proofs for
a ∈ (C \ R) thanks to the fact that the fundamental solution of H − a has still
exponential decay.
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2. Klein’s Paradox and the Relativistic δ-shell Interaction

Let λe ∈ R. Using Φa, we define the electrostatic δ-shell interaction appearing in
Theorem 2.1.2 as

D(H + λeδΣ) :=
{

Φ0(G, g) : G ∈ L2(R3)4, g ∈ L2(σ)4, λeΦ
0
σG = −(1 + λeC

0
σ)g
}
,

(H + λeδΣ)ϕ := Hϕ+ λe
ϕ+ + ϕ−

2
σ for ϕ ∈ D(H + λeδΣ),

(2.2.5)

where Hϕ in the right hand side of the second statement in (2.2.5) is understood
in the sense of distributions and ϕ± denotes the boundary traces of ϕ when one
approaches Σ from Ω±. In particular, one has (H + λeδΣ)ϕ = G ∈ L2(R3)4 for all
ϕ = Φ0(G, g) ∈ D(H + λeδΣ). We should mention that one recovers the free Dirac
operator in H1(R3)4 when λe = 0.

For all λe 6= ±2, from [8, Section 3.1] we know that H + λeδΣ is self-adjoint and
in [49, Section 4] is proved that

D(H + λeδΣ) =

{
ϕ ∈ H1(R3 \ Σ)4 : −iα · ν(ϕ+ − ϕ−) =

λ

2
(ϕ+ − ϕ−)

}
.

We can now give some spectral properties of H + λδeΣ.

Proposition 2.2.2. Let λe 6= ±2 . Then we get

(i) σess(H + λeδΣ) = σess(H) = (−∞,−m] ∪ [m,+∞).

(ii) If a ∈ (C \R)∪ (−m,m), then a ∈ σd(H + λeδΣ) if and only if −1 ∈ σd(λeCa
σ).

Moreover, the multiplicity of a as an eigenvalue of H + λeδΣ coincides with the
multiplicity of −1 as an eigenvalue of λeCa

σ.

(iii) If a ∈ (C \ R) ∪ (−m,m), then a ∈ ρ(H + λeδΣ) if and only if −1 ∈ ρ(λeC
a
σ).

Furthermore the following resolvent formula holds

(H + λeδΣ − a)−1F = (H − a)−1F − λeΦa
(
0, (1 + λeC

a
σ)−1 Φa

σF
)
. (2.2.6)

Proof. We will exclude the case λe = 0 because it corresponds to the free Dirac
operator whose spectral properties are well-known.

The proof of (ii) has already been done in [8, Proposition 3.1] and so we will omit
it.

Let us now focus on (iii). Let a ∈ (C \ R) ∪ (−m,m). We will firstly assume
that a ∈ ρ(H + λeδΣ). By construction a ∈ ρ(H + λeδΣ). Thanks to (ii) we get that
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2.2 The δ-shell interaction

ker
(

1
λe

+ Ca
σ

)
= {0}. Moreover, since we are taking the square root so that

√
m2 − a2 =

√
m2 − ā2,

following [7, Lemma 3.1] we see that (φa)t(x) = φā(−x). Here, (φa)t denotes the
transpose matrix of φa. Thus we conclude that

ran(1 + λCa
σ) = ker(1 + λC ā

σ)⊥ = L2(R3)4.

It remains now to prove that ran(1 + λCa
σ) is a closed set in L2(R3)4. In fact, let

g ∈ L2(σ)4 such that there exists {fn} ⊂ L2(σ)4 such that
(

1
λe

+ Ca
σ

)
fn → g in

L2(σ)4. Then(
1

λe
− Ca

σ

)
g = lim

n

(
1

λ2
e

− (Ca
σ)2

)
fn = lim

n

(
1

λ2
e

− 1

4
+ Ca

σ{Ca
σ , α · ν}

)
fn

= lim
n

(b+K)fn.

Thanks to (iv) in Lemma 2.2.1 we get that K is compact. Since b = 1
λ2
e
− 1

4
6= 0 we

get that ran(b−K) is closed, then there exists f ∈ L2(σ)4 such that fn → f and by
continuity we can conclude that (1 + λeC

a
σ)f = g.

Let us now assume that − 1
λe
∈ ρ(Ca

σ). To prove that a ∈ ρ(H + λeδΣ) we will
directly prove that (2.2.6) holds.

Let ϕ = Φ0(G, g) ∈ D(H+λeδΣ) as in (2.2.5) and F = (H+λeδΣ−a)ϕ ∈ L2(R3)4.
Then,

F = (H + λeδΣ − a)Φ0(G, g) = G− aΦ0(G, g). (2.2.7)

If we apply H on both sides of (2.2.7) and we use that HΦ0(G, g) = G + gσ in
the sense of distributions, we get HF = HG − a(G + gσ), that is, (H − a)G =

(H − a)F + aF + agσ. Convolving with φa the left and right hand sides of this last
equation, we obtain G = F + aΦa(F, 0) + aΦa(0, g), thus G − F = aΦa(F, g). This,
combined with (2.2.7), yields

Φ0(G, g) = Φa(F, g). (2.2.8)

Therefore, taking non-tangential boundary values on Σ from inside/outside of Ω in
(2.2.8) we obtain

Φ0
σG+ C0

±g = Φa
σF + Ca

±g.

Since Φ0(G, g) ∈ D(H + λeδΣ), thanks to (2.2.5) and (2.2.4) we conclude that

Φa
σF = −

( 1

λe
+ Ca

σ

)
g. (2.2.9)
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2. Klein’s Paradox and the Relativistic δ-shell Interaction

Since we have just proven that 1
λe

+ Ca
σ is invertible, by (2.2.9), we obtain

g = −
( 1

λe
+ Ca

σ

)−1

Φa
σF. (2.2.10)

Thanks to (2.2.8) and (2.2.10), we finally get

(H + λeδΣ − a)−1F = ϕ = Φ0(G, g) = Φa(F, g) = Φa
(
F,−

( 1

λe
+ Ca

σ

)−1

Φa
σF
)

= Φa(F, 0)− λeΦa
(
0, (1 + λeC

a
σ)−1 Φa

σF
)
.

Moreover, notice that from (2.2.6) we can deduce that(
(H + λeδΣ− a)−1 − (H − a)−1

)
F = Φa

(
0, (1 + λeC

a
σ)−1 Φa

σF
)
.

We can now prove (i). Since Σ is a bounded C2 regular surface, then H1/2(σ) ↪→
L2(σ)4, see for instance [27, Section 2]. This means that Φa

(
0, (1 + λeC

a
σ)−1 Φa

σ

)
is a

compact operator. Thanks to [51, Theorem XIII.14] we get that σess(H + λeδΣ) =

σess(H) that means that (i) is proved.

In the same vein, given λs ∈ R, we define the Lorentz scalar δ-shell interaction as

D(H + λsβ δΣ) := {Φ0(G, g) : G ∈ L2(R3)4, g ∈ L2(σ)4, λsΦ
0
σG = −(β + λsC

0
σ)g},

(H + λsβ δΣ)ϕ := Hϕ+ λsβ
ϕ+ + ϕ−

2
σ for ϕ ∈ D(H + λsβ δΣ).

(2.2.11)

From [8, Section 5.1] we know that H + λsβ δΣ is self-adjoint for all λs ∈ R. Addi-
tionally, reasoning as in Proposition 2.2.2, we can prove

Proposition 2.2.3. Let λs ∈ R . Then we get

(i) σess(H + λsβδΣ) = σess(H) = (−∞,−m] ∪ [m,+∞).

(ii) if a ∈ (C\R)∪(−m,m), then a ∈ σd(H+λsβδΣ) if and only if −1 ∈ σd(λsβCa
σ).

Moreover, the multiplicity of a as an eigenvalue of H + λsδΣ coincides with the
multiplicity of −1 as an eigenvalue of λsβCa

σ.

(iii) If a ∈ (C \R)∪ (−m,m), then a ∈ ρ(H +λsβδΣ) if and only if −1 ∈ ρ(λsβC
a
σ).

Furthermore the following resolvent formula holds

(H + λsβδΣ − a)−1F = (H − a)−1F − λeΦa
(
0, (β + λsC

a
σ)−1 Φa

σF
)
. (2.2.12)
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2.3 Approximation by the free Dirac operator with short range potentials

2.3 Approximation by the free Dirac operator with
short range potentials

2.3.1 Spectral properties

Given Vε as in (2.1.3), set

T eε := H + Vε and T sε := H + βVε.

Recall that these operators are self-adjoint on H1(R3)4. In the following, we give the
resolvent formulae for T eε and T sε .

Throughout this section we make an abuse of notation. Remember that, given
G ∈ L2(R3)4 and g ∈ L2(σ)4, in (2.2.2) we already defined Φa(G, g). However, now
we make the identification Φa(·) = Φa(·, 0), that is, in this section we identify Φa with
an operator acting on L2(R3)4 by always assuming that the second entrance in Φa

vanishes. Additionally, in this section we use the symbol σ(·) to denote the spectrum
of an operator and the symbol σd(·) to denote the discrete spectrum. The reader
should not confuse them with the symbol σ for the surface measure on Σ.

Proposition 2.3.1. Let uε and vε be as in (2.1.4). Then,

(i) σess(T
e
ε ) = σess(H) = (−∞,−m] ∪ [m,+∞).

(ii) Let a ∈ (C \ R) ∪ (−m,m). Then a ∈ σd(T eε ) if and only if −1 ∈ σd(uεΦavε).
Moreover, the multiplicity of a as an eigenvalue of T eε coincides with the multi-
plicity of −1 as an eigenvalue of uεΦavε.

(iii) Let a ∈ (C \ R) ∪ (−m,m). Then a ∈ ρ(T eε ) if and only if −1 ∈ ρ(uεΦ
avε).

Furthermore, the following resolvent formula holds:

(T eε − a)−1 = Φa − Φavε (1 + uεΦ
avε)

−1 uεΦ
a. (2.3.1)

Proof. (i) has already been proved in [61, Theorem 4.7].

Let us focus on (ii). Let a ∈ (C \R)∪ (−m,m). Thanks to (i), we get that either
a ∈ ρ(T eε ) or a ∈ σd(T eε ). Moreover, by [58, Lemma 2], uεΦavε is a compact operator
thus, by Fredholm’s Alternative Theorem, see for instance [25, Theorem 0.38], either
−1 ∈ ρ(uεΦ

avε) or −1 ∈ σd(uεΦ
avε). For this reason it is enough to prove that

ker(T eε ) 6= {0} if and only if ker (1 + uεΦ
avε) 6= {0}.
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2. Klein’s Paradox and the Relativistic δ-shell Interaction

Let us assume there exists F ∈ L2(R3)4 such that F 6= 0 and (H +Vε− a)F = 0.
Then (H − a)F = −VεF . Since F 6= 0 and (H − a) is invertible, we deduce that
VεF 6= 0. Since Vε = vεuε, by setting G = uεF ∈ L2(R3)4 we get that G 6= 0 and

(H − a)F = −vεG. (2.3.2)

Since a 6∈ σ(H) we get that (H − a)−1 = Φa is a bounded operator on L2(R3)4. By
(2.3.2), F = −ΦavεG. If we multiply both sides of this last equation by uε we obtain
G = uεF = −uεΦavεG, so −1 ∈ σd(uεΦavε) as desired.

On the contrary, assume now that there exists a nontrivial G ∈ L2(R3)4 such that
uεΦ

avεG = −G. If we take F = ΦavεG ∈ L2(R3), we easily see that F 6= 0 and
VεF = −(H − a)F , which means that a is an eigenvalue of T eε .

For what we said, the proof of (iii) is a combination of Fredholm’s Alternative
Theorem, (i) and (ii).

Let us now prove (2.3.1). Writing Vε = vεuε and using that (H − a)−1 = Φa, we
have

(T eε − a)
(
Φa − Φavε(1 + uεΦ

avε)
−1uεΦ

a
)

= 1− vε (1 + uεΦ
avε)

−1 uεΦ
a + vεuεΦ

a − vε(−1 + 1 + uεΦ
avε) (1 + uεΦ

avε)
−1 uεΦ

a

= 1− vε (1 + uεΦ
avε)

−1 uεΦ
a + vεuεΦ

a + vε (1 + uεΦ
avε)

−1 uεΦ
a − vεuεΦ

a = 1,

as desired. This completes the proof of the proposition.

The following result can be proved in the same way.

Proposition 2.3.2. Let uε and vε be as in (2.1.4). Then,

(i) σess(T
s
ε ) = σess(H) = (−∞,−m] ∪ [m,+∞).

(ii) Let a ∈ (C \ R) ∪ (−m,m). Then a ∈ σd(T sε ) if and only if −1 ∈ σd(βuεΦavε).
Moreover, the multiplicity of a as an eigenvalue of T sε coincides with the multi-
plicity of −1 as an eigenvalue of βuεΦavε.

(iii) Let a ∈ (C \ R) ∪ (−m,m). Then a ∈ ρ(T sε ) if and only if −1 ∈ ρ(βuεΦ
avε),

Furthermore, the following resolvent formula holds:

(T sε − a)−1 = Φa − Φavε (β + uεΦ
avε)

−1 uεΦ
a. (2.3.3)
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2.3 Approximation by the free Dirac operator with short range potentials

2.3.2 The main decomposition of the resolvent operator: the
operators Aε(a), Bε(a) and Cε(a)

Following the ideas in [12, 59], the first key step to proving Theorem 2.1.2 is
to decompose (T eε − a)−1 and (T sε − a)−1, using a scaling operator, in terms of the
operators Aε(a), Bε(a) and Cε(a) introduced below, see Lemma 2.3.3.

Let η0 > 0 be some constant small enough to be fixed later on. In particular, we
take η0 so that (2.1.1) holds for all 0 < ε ≤ η0. Given 0 < ε ≤ η0, define

Iε : L2(Σ× (−ε, ε))4 → L2(Ωε)
4 by (Iεf)(xΣ + tν(xΣ)) := f(xΣ, t),

Sε : L2(Σ× (−1, 1))4 → L2(Σ× (−ε, ε))4 by (Sεg)(xΣ, t) :=
1√
ε
g
(
xΣ,

t

ε

)
.

Thanks to the regularity of Σ, Iε is well-defined, bounded and invertible for all
0 < ε ≤ η0 if η0 is small enough. Note also that Sε is a unitary and invertible
operator.

Let 0 < η ≤ η0, V ∈ L∞(R) with suppV ⊂ [−η, η] and u, v ∈ L∞(R) be the
functions with support in [−1, 1] introduced in (2.1.4), that is,

u(t) := |ηV (ηt)|1/2 and v(t) := sign(V (ηt))u(t). (2.3.4)

Using the notation related to (A.3), for 0 < ε ≤ η0 we consider the integral operators

Aε(a) : L2(Σ× (−1, 1))4 → L2(R3)4,

Bε(a) : L2(Σ× (−1, 1))4 → L2(Σ× (−1, 1))4,

Cε(a) : L2(R3)4 → L2(Σ× (−1, 1))4

(2.3.5)

defined by

(Aε(a)g)(x) :=

∫ 1

−1

∫
Σ

φa(x− yΣ − εsν(yΣ))v(s) det(1− εsW (yΣ))g(yΣ, s) dσ(yΣ) ds,

(Bε(a)g)(xΣ, t) := u(t)

∫ 1

−1

∫
Σ

φa(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))v(s)

× det(1− εsW (yΣ))g(yΣ, s) dσ(yΣ) ds,

(Cε(a)g)(xΣ, t) := u(t)

∫
R3

φa(xΣ + εtν(xΣ)− y)g(y) dy.

(2.3.6)

Recall that, given F ∈ L2(R3)4 and f ∈ L2(σ)4, in (2.2.2) we defined Φa(F, f).
However, in Section 2.3 we made the identification Φa(·) = Φa(·, 0), which enabled us
to write (H − a)−1 = Φa. Here, and in the sequel, we recover the initial definition for
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2. Klein’s Paradox and the Relativistic δ-shell Interaction

Φa given in (2.2.2) and we assume that a ∈ C \ R; now we must write (H − a)−1 =

Φa(·, 0), which is a bounded operator in L2(R3)4.

Proceeding as in the proof of [12, Lemma 3.2], one can show the following result.

Lemma 2.3.3. The following operator identities hold for all 0 < ε ≤ η:

Aε(a) = Φa(·, 0)vε Iε Sε,
Bε(a) = S−1

ε I−1
ε uε Φa(·, 0)vε Iε Sε,

Cε(a) = S−1
ε I−1

ε uε Φa(·, 0).

(2.3.7)

Moreover, the following resolvent formulae hold:

(T eε − a)−1 = (H − a)−1 + Aε(a)
(
1 +Bε(a)

)−1
Cε(a), (2.3.8)

(T sε − a)−1 = (H − a)−1 + Aε(a)
(
β +Bε(a)

)−1
Cε(a). (2.3.9)

In (2.3.7), Aε(a) = Φa(·, 0)vε Iε Sε means that Aε(a)g = Φa(vε Iε Sε g, 0) for all
g ∈ L2(Σ × (−1, 1))4, and similarly for Bε(a) and Cε(a). Since both Iε and Sε
bounded and invertible operators, V ∈ L∞(R) is supported in [−η, η] and Φa(·, 0)

is bounded by assumption, from (2.3.7) we deduce that Aε(a), Bε(a) and Cε(a) are
well-defined and bounded, so (2.3.5) is fully justified. Once (2.3.7) is proved, the
resolvent formulae (2.3.8) and (2.3.9) follow from (2.3.1) and (2.3.1), respectively.
We stress that, in (2.3.1) and (2.3.3) there is the abuse of notation in the definition
of Φa commented on before.

Lemma 2.3.3 connects (T eε −a)−1 and (T sε −a)−1 to Aε(a), Bε(a) and Cε(a). When
ε → 0, the limit of the former ones is also connected to the limit of the latter ones.
We now introduce those limit operators for Aε(a), Bε(a) and Cε(a) when ε→ 0.

Let

V̂ : L2(Σ× (−1, 1))4 → L2(Σ)4 and Û : L2(Σ)4 → L2(Σ× (−1, 1))4

given by

V̂ f(xΣ) :=

∫ 1

−1

v(s) f(xΣ, s) ds and Ûf(xΣ, t) := u(t) f(xΣ).

Let

A0(a) : L2(Σ× (−1, 1))4 → L2(R3)4,

B0(a) : L2(Σ× (−1, 1))4 → L2(Σ× (−1, 1))4,

C0(a) : L2(R3)4 → L2(Σ× (−1, 1))4

(2.3.10)
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2.3 Approximation by the free Dirac operator with short range potentials

be the bounded operators defined as follows:

A0(a) := Φa(0, ·)V̂ , B0(a) := ÛCa
σ V̂ , C0(a) := ÛΦa

σ. (2.3.11)

Observe that, by Fubini’s Theorem, we get

(A0(a)g)(x) =

∫ 1

−1

∫
Σ

φa(x− yΣ)v(s)g(yΣ, s) dσ(yΣ) ds,

(B0(a)g)(xΣ, t) = lim
ε→0

u(t)

∫ 1

−1

∫
|xΣ−yΣ|>ε

φa(xΣ − yΣ)v(s)g(yΣ, s) dσ(yΣ) ds,

(C0(a)g)(xΣ, t) = u(t)

∫
R3

φa(xΣ − y)g(y) dy.

(2.3.12)

Finally let
B′ : L2(Σ× (−1, 1))4 → L2(Σ× (−1, 1))4,

be the bounded operator defined as follows:

(B′g)(xΣ, t) := (α · ν(xΣ))
i

2
u(t)

∫ 1

−1

sign(t− s)v(s)g(xΣ, s) ds. (2.3.13)

The next theorem corresponds to the core of this chapter:

Theorem 2.3.4. The following convergences of operators hold in the strong sense:

Aε(a)→ A0(a) when ε→ 0, (2.3.14)

Bε(a)→ B0(a) +B′ when ε→ 0, (2.3.15)

Cε(a)→ C0(a) when ε→ 0. (2.3.16)

We will split the proof of Theorem 2.3.4. We will prove (2.3.14) in Section 2.3.5,
(2.3.15) in Section 2.3.4 and (2.3.16) in Section 2.3.3.

2.3.3 The strong limit of Cε(a) when ε→ 0

Recall from (2.3.6) and (2.3.12) that Cε(a) with 0 < ε ≤ η0 and C0(a) are defined
by

(Cε(a)g)(xΣ, t) = u(t)

∫
R3

φa(xΣ + εtν(xΣ)− y)g(y) dy,

(C0(a)g)(xΣ, t) = u(t)

∫
R3

φa(xΣ − y)g(y) dy.

Let us first show that Cε(a) is bounded from L2(R3)4 to L2(Σ×(−1, 1))4 with a norm
uniformly bounded on 0 ≤ ε ≤ η0. For this purpose, we write

(Cε(a)g)(xΣ, t) = u(t)(φa ∗ g)(xΣ + εtν(xΣ)), (2.3.17)
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2. Klein’s Paradox and the Relativistic δ-shell Interaction

where φa∗g denotes the convolution of the matrix-valued function φa with the vector-
valued function g ∈ L2(R3)4. Since we are assuming that a ∈ C \ R and, in the
definition of φa, we are taking

√
m2 − a2 with positive real part, the same arguments

as the ones in the proof of [7, Lemma 2.8] (essentially Plancherel’s theorem) show
that

‖φa ∗ g‖H1(R3)4 ≤ C‖g‖L2(R3)4 for all g ∈ L2(R3)4, (2.3.18)

where C > 0 only depends on a. Additionally, thanks to the C2 regularity of Σ, if η0

is small enough it is not hard to show that the Sobolev trace inequality from H1(R3)4

to L2(Σεt)
4 holds for all 0 ≤ ε ≤ η0 and t ∈ [−1, 1] with a constant only depending

on η0 and Σ, see Lemma A.6. Combining these two facts, we obtain that

‖φa ∗ g‖L2(Σεt)4 ≤ C‖g‖L2(R3)4 for all g ∈ L2(R3)4, 0 ≤ ε ≤ η0 and t ∈ [−1, 1].

(2.3.19)

By Proposition A.2, if η0 is small enough there exists C > 0 such that

C−1 ≤ det(1− εtW (PΣx)) ≤ C for all 0 < ε ≤ η0, t ∈ (−1, 1) and x ∈ Σεt.

Therefore, an application of (2.3.17), (A.4), (2.3.18) and (2.3.19) finally yields

‖Cε(a)g‖2
L2(Σ×(−1,1))4 =

∫ 1

−1

∫
Σ

∣∣u(t)(φa ∗ g)(xΣ + εtν(xΣ))
∣∣2dσ(xΣ) dt

≤ ‖u‖2
L∞(R)

∫ 1

−1

∫
Σεt

∣∣ det(1− εtW (PΣx))−1/2(φa ∗ g)(x)
∣∣2dσεt(x) dt

≤ C‖u‖2
L∞(R)

∫ 1

−1

‖φa ∗ g‖2
L2(Σεt)4 dt ≤ C‖u‖2

L∞(R)‖g‖2
L2(R3)4 .

That is, if η0 is small enough there exists C1 > 0 only depending on η0 and a such
that

‖Cε(a)‖L2(R3)4→L2(Σ×(−1,1))4 ≤ C1‖u‖L∞(R) for all 0 ≤ ε ≤ η0. (2.3.20)

In order to prove the strong convergence of Cε(a) to C0(a) when ε → 0, fix
g ∈ L2(R3)4. We must show that, given δ > 0, there exists ε0 > 0 such that

‖Cε(a)g − C0(a)g‖L2(Σ×(−1,1))4 ≤ δ for all 0 ≤ ε ≤ ε0. (2.3.21)

For every 0 < d ≤ η0, using (2.3.20) we can estimate

‖Cε(a)g−C0(a)g‖L2(Σ×(−1,1))4

≤ ‖Cε(a)(χΩdg)‖L2(Σ×(−1,1))4 + ‖C0(a)(χΩdg)‖L2(Σ×(−1,1))4

+ ‖(Cε(a)− C0(a))(χR3\Ωdg)‖L2(Σ×(−1,1))4

≤ 2C1‖u‖L∞(R)‖χΩdg‖L2(R3)4 + ‖(Cε(a)− C0(a))(χR3\Ωdg)‖L2(Σ×(−1,1))4 .

(2.3.22)
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2.3 Approximation by the free Dirac operator with short range potentials

On one hand, since g ∈ L2(R3)4 and L(Ωd) ≤ CΣd (L denotes the Lebesgue measure
in R3), we can take d > 0 small enough so that

‖χΩdg‖L2(R3)4 ≤ δ

4C1‖u‖L∞(R)

. (2.3.23)

On the other hand, note that

ε ≤ d

2
=

1

2
dist(Σ,R3 \ Ωd) ≤

1

2
|xΣ − y| (2.3.24)

for all 0 ≤ ε ≤ d
2
, t ∈ (−1, 1), xΣ ∈ Σ and y ∈ R3 \ Ωd.

As we said before, we are assuming that a ∈ C \ R and, in the definition of φa,
we are taking

√
m2 − a2 with positive real part, so the components of φa(x) decay

exponentially as |x| → ∞. In particular, there exist C, r > 0 only depending on a

such that

|∂φa(x)| ≤ Ce−r|x| for all |x| ≥ 1,

|∂φa(x)| ≤ C|x|−3 for all 0 < |x| < 1,
(2.3.25)

where by the left hand side in (2.3.25) we mean the absolute value of any derivative
of any component of the matrix φa(x). Therefore, by the mean value theorem there
exists q ∈ [0, 1] such that

|φa(xΣ + εtν(xΣ)− y)− φa(xΣ − y)
∣∣ ≤ ε|∂φ(xΣ + (1− q)εtν(xΣ)− y|. (2.3.26)

Then, by the triangular inequality and (2.3.24)

|xΣ + (1− q)εtν(xΣ)− y| ≥ |xΣ − y| − ε ≥
1

2
|xΣ − y|. (2.3.27)

Combining (2.3.26), (2.3.25) and (2.3.27) we see that there exists Ca,d > 0 only
depending on a and d such that

|φa(xΣ + εtν(xΣ)− y)− φa(xΣ − y)
∣∣ ≤ Ca,d

ε

|xΣ − y|3
,

for all 0 ≤ ε ≤ d
2
, t ∈ (−1, 1), xΣ ∈ Σ and y ∈ R3 \Ωd. Hence, we can easily estimate

|(Cε(a)−C0(a))(χR3\Ωdg)(xΣ, t)|

≤ ‖u‖L∞(R)

∫
R3\Ωd

∣∣φa(xΣ + εtν(xΣ)− y)− φa(xΣ − y)
∣∣|g(y)| dy

≤ Ca,d‖u‖L∞(R)

∫
R3\Ωd

ε|g(y)|
|xΣ − y|3

dy

≤ Ca,d ε‖u‖L∞(R)

(∫
R3\Bd(xΣ)

dy

|xΣ − y|6
)1/2

‖g‖L2(R3)4

≤ C ′a,d ε‖u‖L∞(R)‖g‖L2(R3)4 ,
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where C ′a,d > 0 only depends on a and d. Then,

‖(Cε(a)− C0(a))(χR3\Ωdg)‖L2(Σ×(−1,1))4 ≤ C ′a,d ε‖u‖L∞(R)‖g‖L2(R3)4 , (2.3.28)

for a possibly bigger constant C ′a,d > 0.

With these ingredients, the proof of (2.3.21) is straightforward. Given δ > 0, take
d > 0 small enough so that (2.3.23) holds. For this fixed d, take

ε0 = min

{
δ

2C ′a,d‖u‖L∞(R)‖g‖L2(R3)4

,
d

2

}
.

Then, (2.3.21) follows from (2.3.22), (2.3.23) and (2.3.28). In conclusion, we have
shown that

lim
ε→0
‖(Cε(a)− C0(a))g‖L2(Σ×(−1,1))4 = 0 for all g ∈ L2(R3)4,

which is (2.3.16).

2.3.4 The strong limit of Bε(a) when ε→ 0

Recall from (2.3.6), (2.3.12) and (2.3.13) that Bε(a) with 0 < ε ≤ η0, and B0(a)

and B′ are defined by

(Bε(a)g)(xΣ, t) = u(t)

∫ 1

−1

∫
Σ

φa(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))v(s)

× det(1− εsW (yΣ))g(yΣ, s) dσ(yΣ) ds,

(B0(a)g)(xΣ, t) = lim
ε→0

u(t)

∫ 1

−1

∫
|xΣ−yΣ|>ε

φa(xΣ − yΣ)v(s)g(yΣ, s) ds dσ(yΣ),

(B′g)(xΣ, t) = (α · ν(xΣ))
i

2
u(t)

∫ 1

−1

sign(t− s)v(s)g(xΣ, s) ds.

The first step to proving (2.3.15) is to decompose φa as in [8, Lemma 3.2], that
is,

φa(x) =
e−
√
m2−a2|x|

4π|x|
(
a+mβ +

√
m2 − a2 iα · x|x|

)
+
e−
√
m2−a2|x| − 1

4π
iα · x

|x|3 +
i

4π
α · x

|x|3 =: ωa1(x) + ωa2(x) + ω3(x).

(2.3.29)

Then we can write

Bε(a) = Bε,ωa1
+Bε,ωa2

+Bε,ω3 ,

B0(a) = B0,ωa1
+B0,ωa2

+B0,ω3 ,
(2.3.30)
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2.3 Approximation by the free Dirac operator with short range potentials

where Bε,ωa1
, Bε,ωa2

and Bε,ω3 are defined as Bε(a) but replacing φa by ωa1 , ωa2 and ω3,
respectively, and analogously for the case of B0(a).

For j = 1, 2, we see that |ωaj (x)| = O(|x|−1) and |∂ωaj (x)| = O(|x|−2) for |x| → 0,
with the understanding that |ωaj (x)| means the absolute value of any component of
the matrix ωaj (x) and |∂ωaj (x)| means the absolute value of any first order derivative
of any component of ωaj (x). Therefore, the integrals defining Bε,ωaj

and B0,ωaj
are of

fractional type for j = 1, 2 (recall Lemma A.5) and they are taken over bounded sets,
so the strong convergence follows by standard methods. However, one can also follow
the arguments in the proof of [12, Lemma 3.4] to show, for j = 1, 2, the convergence
of Bε,ωaj

to B0,ωaj
in the norm sense when ε→ 0, that is,

lim
ε→0
‖Bε,ωaj

−B0,ωaj
‖L2(Σ×(−1,1))4→L2(Σ×(−1,1))4 = 0 for j = 1, 2. (2.3.31)

A comment is in order. Since the integrals involved in (2.3.31) are taken over Σ ×
(−1, 1), which is bounded, the exponential decay at infinity from [12, Proposition
A.1] is not necessary in the setting of (2.3.15), hence the local estimates of |ωaj (x)|
and |∂ωaj (x)| near the origin are enough to adapt the proof of Lemma 3.4 of the same
paper to get (2.3.31).

Thanks to (2.3.30) and (2.3.31), to prove (2.3.15) we only need to show that

Bε,ω3 → B0,ω3 +B′ in the strong sense when ε→ 0. (2.3.32)

At this point we present a result that we will use in this section and in the next
one. It is a standard result in harmonic analysis about the existence of limit almost
everywhere for a sequence of operators acting on a fixed function and its convergence
in strong sense. General statements can be found in [21, Theorem 2.2 and the remark
below it] and [63, Proposition 6.2], for example. For the sake of completeness, here
we present a concrete version with its proof.

Lemma 2.3.5. Let b ∈ N and (X,µX) and (Y, µY ) be two Borel measure spaces. Let
{Wε}0<ε≤η0 be a family of bounded linear operators from L2(µX)b to L2(µY )b such that
if we set

W∗g(y) := sup
0<ε≤η0

|Wεg(y)| for g ∈ L2(µX)b and y ∈ Y,

then
W∗ : L2(µX)b → L2(µY )

is a bounded and sublinear operator. Let us assume that there exists S, a dense
subspace of L2(µX)b, such that for any g ∈ S limε→0Wεg(y) exists for µY -a.e. y ∈ Y .
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Then, for any g ∈ L2(µX)b, we have that limε→0Wεg(y) exists for µY -a.e. y ∈ Y .
Moreover limε→0Wε defines a bounded linear operator from L2(µX)b to L2(µY )b and

lim
ε→0

∥∥Wεg − lim
δ→0

Wδg
∥∥
L2(µY )b

= 0. (2.3.33)

Proof. We start proving that, for any g ∈ L2(µX)b, limε→0Wεg(y) exists for µY -a.e.
y ∈ Y . Take {gk}k ⊂ S such that ‖gk − g‖L2(µX)b → 0 for k → ∞, and fix λ > 0.
Since limε→0Wεgk(y) exists for µY -a.e. y ∈ Y , the Chebyshev inequality yields

µY

({
y ∈ Y :

∣∣∣ lim sup
ε→0

Wεg(y)− lim inf
ε→0

Wεg(y)
∣∣∣ > λ

})
≤ µY

({
y ∈ Y :

∣∣∣ lim sup
ε→0

Wε(g − gk)(y)
∣∣∣+
∣∣∣ lim inf

ε→0
Wε(gk − g)(y)

∣∣∣ > λ
})

≤ µY ({y ∈ Y : 2W∗(g − gk)(y) > λ})

≤ 4

λ2
‖W∗(g − gk)‖2

L2(µY ) ≤
C

λ2
‖g − gk‖2

L2(µX)b .

Letting k →∞ we deduce that

µY

({
y ∈ Y :

∣∣∣ lim sup
ε→0

Wεg(y)− lim inf
ε→0

Wεg(y)
∣∣∣ > λ

})
= 0.

Since this holds for all λ > 0, we finally get that limε→0Wεg(y) exists µY -a.e.

Note that |Wεg(y)−W0g(y)| ≤ 2W∗g(y) and W∗g ∈ L2(µY ). Thus, the bounded-
ness of W0 and (2.3.33) follow by the dominated convergence theorem.

Thanks to Lemma 2.3.5, the proof of (2.3.32) will be done in two main steps:

(i) In Section 2.3.4.A we will show that for g ∈ L∞(Σ× (−1, 1))4 such that there
exists C > 0 (which may depend on g) such that

sup
|t|<1

|g(xΣ, t)− g(yΣ, t)| ≤ C|xΣ − yΣ| for all xΣ, yΣ ∈ Σ,

then:

lim
ε→0

Bε,ω3g(xΣ, t) = B0,ω3g(xΣ, t) +B′g(xΣ, t) for a. e. (xΣ, t) ∈ Σ× (−1, 1).

(2.3.34)
Notice that this set of functions g is dense in L2(Σ× (−1, 1))4.

(ii) In Section 2.3.4.B we will prove that for η0 > 0 small enough and for g ∈
L2(Σ× (−1, 1))4, setting

B∗,ω3g(xΣ, t) := sup
0<ε≤η0

|Bε,ω3g(xΣ, t)| for (xΣ, t) ∈ Σ× (−1, 1),

there exists C > 0 only depending on η0 such that

‖B∗,ω3g‖L2(Σ×(−1,1)) ≤ C‖u‖L∞(R)‖v‖L∞(R)‖g‖L2(Σ×(−1,1))4 . (2.3.35)
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2.3 Approximation by the free Dirac operator with short range potentials

We can now conclude the proof. Thanks to (2.3.34) and (2.3.35) we can apply
Lemma 2.3.5: for any g ∈ L2(Σ× (−1, 1))4 limε→0Bε,ω3g(xΣ, t) exists for a. e. (x, t) ∈
Σ×(−1, 1). Moreover limε→0Bε,ω3 : L2(Σ×(−1, 1))4 → L2(Σ×(−1, 1))4 is a bounded
operator and (2.3.33) holds. At this points we observe that B0,ω3 + B′ is bounded
in L2(Σ × (−1, 1))4 and it coincides with limε→0Bε,ω3 on a dense subset of L2(Σ ×
(−1, 1))4. For these reasons we can conclude that limε→0Bε,ω3 = B0,ω3 + B in the
strong sense and so (2.3.32) holds.

2.3.4.A The point-wise limit of Bε(a) when ε→ 0 on a dense subspace of
L2(Σ× (−1, 1))4

Observe that the function u in front of the definitions of Bε,ω3 , B0,ω3 and B′

does not affect the validity of the limit in (2.3.34), so we can assume without loss of
generality that u = 1 in (−1, 1).

We are going to prove (2.3.34) by showing the point-wise limit component by
component, that is, we are going to work in L∞(Σ × (−1, 1)) instead of L∞(Σ ×
(−1, 1))4. In order to do so, we need to introduce some definitions. Set

k(x) :=
x

4π|x|3 for x ∈ R3 \ {0}. (2.3.36)

Given t ∈ (−1, 1) and 0 < ε ≤ η0 with η0 small enough and f ∈ L∞(Σ× (−1, 1)) such
that sup|t|<1 |f(xΣ, t)− f(yΣ, t)| ≤ C|xΣ− yΣ| for all xΣ, yΣ ∈ Σ and some C > 0, we
define

T εt f(xΣ) :=

∫ 1

−1

∫
Σ

k(xΣ +εtν(xΣ)−yΣ−εsν(yΣ))f(yΣ, s) det(1−εsW (yΣ)) dσ(yΣ) ds.

By (A.4),

T εt f(xΣ) =

∫ 1

−1

∫
Σεs

k(xεt − yεs)f(PΣyεs, s) dσεs(yεs) ds, (2.3.37)

where xεt := xΣ + εtν(xΣ), yεs := yΣ + εsν(yΣ) and PΣ is given by (A.1). We also set

Ttf(xΣ) := lim
δ→0

∫ 1

−1

∫
|xΣ−yΣ|>δ

k(xΣ − yΣ)f(yΣ, s) dσ(yΣ) ds+
ν(xΣ)

2

∫ 1

−1

sign(t− s)f(xΣ, s) ds.

We are going to prove that

lim
ε→0

T εt f(xΣ) = Ttf(xΣ), (2.3.38)
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for almost all (xΣ, t) ∈ Σ× (−1, 1). Once this is proved, it is not hard to get (2.3.34).
Indeed, note that k = (k1, k2, k3) with kj(x) :=

xj
4π|x|3 being the scalar components of

the vector kernel k(x). Thus, we can write

T εt f(xΣ) =
(
(T εt f(xΣ))1, (T

ε
t f(xΣ))2, (T

ε
t f(xΣ))3

)
,

where each (T εt f(xΣ))j is defined as in (2.3.37) but replacing k by kj. Then, (2.3.38)
holds if and only if (T εt f(xΣ))j → (Ttf(xΣ))j when ε → 0 for j = 1, 2, 3. From these
limits, if we let f(yΣ, s) in the definitions of T εt f and Ttf be the different componens
of v(s)g(yΣ, s), we deduce (2.3.34). Thus, we are reduced to prove (2.3.38).

The proof of (2.3.38) follows the strategy of the proof of [30, Proposition 3.30].
Set

E(x) := − 1

4π|x| for x ∈ R3 \ {0},

the fundamental solution of the Laplace operator in R3. Note that ∇E = k =

(k1, k2, k3). In particular, if we set ν = (ν1, ν2, ν3) and x = (x1, x2, x3), for x ∈ R3 and
y ∈ Σ with x 6= y we have the decomposition

kj(x− y) = ∂xjE(x− y) = |ν(y)|2 ∂xjE(x− y)

=
∑
n

νn(y)2∂xjE(x− y) +
∑
n

νj(y)νn(y)∂xnE(x− y)−
∑
n

νj(y)νn(y)∂xnE(x− y)

= νj(y)
∑
n

∂xnE(x− y)νn(y) +
∑
n

(
νn(y)∂xjE(x− y)− νj(y)∂xnE(x− y)

)
νn(y)

= νj(y)∇ν(y)E(x− y) +
∑
n

∇j,n
ν(y)E(x− y)νn(y),

(2.3.39)

where we have taken

∇ν(y)E(x− y) :=
∑
n

νn(y)∂xnE(x− y) = ∇xE(x− y) · ν(y),

∇j,n
ν(y)E(x− y) := νn(y)∂xjE(x− y)− νj(y)∂xnE(x− y).

(2.3.40)

For j, n ∈ {1, 2, 3} we define

T ενf(xΣ, t) :=

∫ 1

−1

∫
Σεs

∇νεs(yεs)E(xεt − yεs)f(PΣyεs, s) dσεs(yεs) ds,

T εj,nf(xΣ, t) :=

∫ 1

−1

∫
Σεs

∇j,n
νεs(yεs)

E(xεt − yεs)f(PΣyεs, s) dσεs(yεs) ds,

(2.3.41)

where νεs(yεs) := ν(yΣ) is a normal vector field to Σεs. Additionally, the terms
∇νεs(yεs)E(xεt−yεs) and ∇j,n

νεs(yεs)
E(xεt−yεs) in (2.3.41) are defined as in (2.3.40) with

the obvious replacements.
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2.3 Approximation by the free Dirac operator with short range potentials

Given f ∈ L∞(Σ × (−1, 1)) such that sup|t|<1 |f(xΣ, t) − f(yΣ, t)| ≤ C|xΣ − yΣ|
for all xΣ, yΣ ∈ Σ and some C > 0, by (2.3.39) we see that

(T εt f(xΣ))j = T ενhj(xΣ, t) +
∑
n

T εj,nhn(xΣ, t), (2.3.42)

where hn(PΣyεs, s) := (νεs(yεs))n f(PΣyεs, s) for n = 1, 2, 3. We are going to prove
that

lim
ε→0

T ενhj(xΣ, t) = lim
δ→0

∫ 1

−1

∫
|xΣ−yΣ|>δ

∇ν(yΣ)E(xΣ − yΣ)hj(yΣ, s) dσ(yΣ) ds (2.3.43)

+
1

2

∫ 1

−1

sign(t− s)hj(xΣ, s) ds,

lim
ε→0

T εj,nhn(xΣ, t) = lim
δ→0

∫ 1

−1

∫
|xΣ−yΣ|>δ

∇j,n
ν(yΣ)E(xΣ − yΣ)hn(yΣ, s) dσ(yΣ) ds, (2.3.44)

for n = 1, 2, 3. Then, combining (2.3.42), (2.3.43) and (2.3.44), we obtain (2.3.38).
Therefore, it is enough to show (2.3.43) and (2.3.44).

We first deal with (2.3.43). Remember that ∇E = k so, given δ > 0, from (2.3.40)
and (2.3.41) we can split T ενhj(xΣ, t) as

T ενhj(xΣ, t) =

∫ 1

−1

∫
|xεs−yεs|>δ

k(xεt − yεs) · νεs(yεs)hj(PΣyεs, s) dσεs(yεs) ds

+

∫ 1

−1

∫
|xεs−yεs|≤δ

k(xεt − yεs) · νεs(yεs)

×
(
hj(PΣyεs, s)− hj(PΣxεs, s)

)
dσεs(yεs) ds

+

∫ 1

−1

hj(PΣxεs, s)

∫
|xεs−yεs|≤δ

k(xεt − yεs) · νεs(yεs) dσεs(yεs) ds

= : Aε,δ + Bε,δ + Cε,δ,

and we easily see that

lim
ε→0

T ενhj(xΣ, t) = lim
δ→0

lim
ε→0

(
Aε,δ + Bε,δ + Cε,δ

)
. (2.3.45)

We study the three terms on the right hand side of (2.3.45) separately.

For the case of Aε,δ, note that k ∈ C∞(R3 \ Bδ(0))3 and it has polynomial decay
at ∞, so

|k(x)|+ |∂k(x)| ≤ C < +∞ for all x ∈ R3 \Bδ(0), (2.3.46)

where C > 0 only depends on δ, and ∂k denotes any first order derivative of any
component of k. Moreover, hj is bounded on Σ × (−1, 1) and Σ is bounded and of
class C2. Therefore, for a fixed δ > 0, thanks to (A.3) we get

Aε,δ :=

∫ 1

−1

∫
Σ

χ{|xεs−yεs|>δ}(yΣ)k(xεt − yεs) · ν(yΣ)hj(yΣ, s) det(1− εsW (yΣ))dσ(yΣ) ds.
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2. Klein’s Paradox and the Relativistic δ-shell Interaction

Then, fixed (xΣ, t) ∈ Σ× (−1, 1), for almost every (yΣ, s) ∈ Σ× (−1, 1), when ε→ 0:

χ{|xεs−yεs|>δ}(yΣ)k(xεt−yεs) · ν(yΣ)hj(yΣ, s) det(1− εsW (yΣ)

→ χ{|xΣ−yΣ|>δ}(yΣ)k(xΣ − yΣ) · ν(yΣ)hj(yΣ, s),
(2.3.47)

and thanks to Proposition A.2 and (2.3.46) we get∣∣χ{|xεs−yεs|>δ}(yΣ)k(xεt − yεs) · ν(yΣ)hj(yΣ, s) det(1− εsW (yΣ)
∣∣ ≤ C|hj(yΣ, s)|,

(2.3.48)
with C depending on Σ and δ. Combining (2.3.47) and (2.3.48), the dominate con-
vergence theorem yields

lim
ε→0

Aε,δ =

∫ 1

−1

∫
|xΣ−yΣ|>δ

k(xΣ − yΣ) · ν(yΣ)hj(yΣ, s) dσ(yΣ) ds. (2.3.49)

Then, if we let δ → 0, from (2.3.49) we get the first term on the right hand side of
(2.3.43).

Recall that the function hj appearing in Bε,δ is constructed from the one in (2.3.34)
using v, see below (2.3.38), and νεs, see below (2.3.42)). Hence hj ∈ L∞(Σ× (−1, 1)).
Then

|hj(PΣyεs, s)− hj(PΣxεs, s)| =|(νεs(yεs))j f(PΣyεs, s)− (νεs(xεs))j f(PΣxεs, s)|
≤ |(νεs(yεs))j (f(PΣyεs, s)− f(PΣxεs, s))|

+ |(νεs(xεs))j (f(PΣyεs, s)− f(PΣxεs, s))|
≤C|xΣ − yΣ|,

(2.3.50)

for all xΣ, yΣ ∈ Σ and some C > 0. In the last inequality in (2.3.50) we used that
PΣ is Lipschitz on Ωη0 .

Additionally, the regularity and boundedness of Σ imply the existence of L > 0

such that
|ν(xΣ)− ν(yΣ)| ≤ L|xΣ − yΣ| for all xΣ, yΣ ∈ Σ. (2.3.51)

Moreover:

ε|t−s| = dist(xΣ+εtν(xΣ),Σεs) ≤ |xΣ+εtν(xΣ)−yΣ−εsν(yΣ))| = |xεt−yεs|. (2.3.52)

Thanks to the triangular inequality

|xεt − yεs| = |xΣ + εtν(xΣ)− yΣ − εsν(yΣ)| ≥ |xεs − yεs| − ε|t− s|. (2.3.53)

Combining (2.3.53) and (2.3.52) we get

|xεt − yεs| ≥
1

2
|xεs − yεs|.
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2.3 Approximation by the free Dirac operator with short range potentials

Applying the triangular inequality and (2.3.51) we get

|xεs − yεs| = |xΣ + εsν(xΣ)− yΣ − εsν(yΣ)|
≥ |xΣ − yΣ| − ε|ν(xΣ)− ν(yΣ)|

≥ 1

2
|xΣ − yΣ|,

(2.3.54)

for 0 < ε < η0 ≤ 1
2L
.

Thus, if η0 and δ are small enough, thanks to (2.3.50) and (2.3.54) we get that
there exists C > 0 such that∣∣k(xεt − yεs) · νεs(yεs)(hj(PΣyεs, s)− hj(PΣxεs, s))

∣∣ ≤ C
1

|xΣ − yΣ|
, (2.3.55)

for all 0 ≤ ε ≤ η0. Finally, combining and (2.3.54) and (2.3.55), we can conclude that

|Bε,δ| ≤ C

∫ 1

−1

∫
|xΣ−yΣ|≤2δ

1

|xΣ − yΣ|
det(1− εsW (yΣ))dσ(yΣ) ds. (2.3.56)

From the local integrability of the right hand side of (2.3.56) with respect to σ, see
Lemma A.5, by Proposition A.2 and by the absolute continuity of Lebesgue integral,
we deduce the existence of Cδ > 0 such that sup0≤ε≤η0

|Bε,δ| ≤ Cδ and Cδ → 0 when
δ → 0. Then, we can resume∣∣∣ lim

δ→0
lim
ε→0

Bε,δ

∣∣∣ ≤ lim
δ→0

sup
0≤ε≤η0

|Bε,δ| ≤ lim
δ→0

Cδ = 0. (2.3.57)

Let us finally focus on Cε,δ. Since k = ∇E, from (2.3.40) we get∫
|xεs−yεs|≤δ

k(xεt − yεs) · νεs(yεs) dσεs(yεs) =

∫
|xεs−yεs|≤δ

∇νεs(yεs)E(xεt − yεs) dσεs(yεs).

Consider the set

Dε
δ(t, s) :=

{
Bδ(xεs) \ Ω(ε, s) if t ≤ s,

Bδ(xεs) ∩ Ω(ε, s) if t > s,

where Ω(ε, s) denotes the bounded connected component of R3 \Σεs that contains Ω

if s ≥ 0 and that is included in Ω if s < 0.
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xǫt
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δ yǫs
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∂Ω
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ΣǫtΩ

Dǫ
δ(t, s)

−νǫs(yǫs)

ν∂Dǫ
δ
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xǫt

xǫs

δ
yǫs

ν(xΣ)

Dε
δ(t, s) in the case s > t > 0.

Figure 2.1 The set Dε
δ(t, s).

Set Ex(y) := E(x− y) for x, y ∈ R3 with x 6= y. Then ∆Exεt = 0 in Dε
δ(t, s) and

∇Exεt(y) = −∇E(xεt − y). If ν∂Dεδ(t,s) denotes the normal vector field on ∂Dε
δ(t, s)

pointing outside Dε
δ(t, s), by the divergence theorem,

0 =

∫
Dεδ(t,s)

∆Exεt(y) dy = −
∫
∂Dεδ(t,s)

∇E(xεt − y) · ν∂Dεδ(t,s)(y) dH2(y)

= − sign(t− s)
∫
|xεs−yεs|≤δ

∇νεs(yεs)E(xεt − yεs) dσεs(yεs)

−
∫
{y∈R3: |xεs−y|=δ}∩Aεt,s

∇E(xεt − y) · y − xεs|y − xεs|
dH2(y),

(2.3.58)

where
Aεt,s := R3 \ Ω(ε, s) if t ≤ s and Aεt,s := Ω(ε, s) if t > s.

Remember also thatH2 denotes the 2-dimensional Hausdorff measure. Since∇E = k,
from (2.3.58) and (2.3.40) we deduce that∫

|xεs−yεs|≤δ
k(xεt − yεs) · νεs(yεs) dσεs(yεs)

= sign(t− s)
∫
∂Bδ(xεs)∩Aεt,s

k(xεt − y) · xεs − y|xεs − y|
dH2(y).

(2.3.59)

Note that xεt 6∈ Dε
δ(t, s) by construction, see Figure 2.1. Moreover, by the regu-

larity of Σ, given δ > 0 small enough we can find ε0 > 0 so that |xεt − y| ≥ δ/2 for
all 0 < ε ≤ ε0, s, t ∈ [−1, 1] and y ∈ ∂Bδ(xεs) ∩ Aεt,s. In particular,

|k(xεt − y)| ≤ C < +∞ for all y ∈ ∂Bδ(xεs) ∩ Aεt,s, (2.3.60)
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2.3 Approximation by the free Dirac operator with short range potentials

where C only depends on δ and ε0. Then,

χ∂Bδ(xεs)∩Aεt,s(y) k(xεt − y) · xεs − y|xεs − y|
dH2(y)

= χ∂Bδ(xεs)∩Aεt,s(y)
xεt − y

4π|xεt − y|3
· xεs − y|xεs − y|

dH2(y)

→ χ∂Bδ(xΣ)∩D(t,s)(y)

4π|xΣ − y|2
dH2(y) when ε→ 0,

(2.3.61)

where
D(t, s) := R3 \ Ω if t ≤ s and D(t, s) := Ω if t > s.

The limit in (2.3.61) refers to weak-∗ convergence of finite Borel measures in R3 (act-
ing on the variable y). Using (2.3.61), the uniform estimate (2.3.60), the boundedness
of hj and the dominated convergence theorem, we see that

lim
ε→0

∫ 1

−1

sign(t− s)hj(xΣ,s)

∫
∂Bδ(xεs)∩Aεt,s

k(xεt − y) · xεs − y|xεs − y|
dH2(y) ds

=

∫ 1

−1

sign(t− s)hj(xΣ, s)

∫
∂Bδ(xΣ)∩D(t,s)

1

4π|xΣ − y|2
dH2(y) ds

=

∫ 1

−1

sign(t− s)hj(xΣ, s)
H2
(
∂Bδ(xΣ) ∩D(t, s)

)
H2(∂Bδ(xΣ))

ds.

By the regularity of Σ we get that

lim
ε→0

H2
(
∂Bδ(xΣ) ∩D(t, s)

)
H2(∂Bδ(xΣ))

=
1

2
. (2.3.62)

Then, by (2.3.62) and by the dominated convergence theorem once again, we get

lim
δ→0

lim
ε→0

∫ 1

−1

sign(t− s)hj(xΣ, s)

∫
∂Bδ(xεs)∩Aεt,s

k(xεt − y) · xεs − y|xεs − y|
dH2(y) ds

=
1

2

∫ 1

−1

sign(t− s)hj(xΣ, s) ds.

(2.3.63)

By (2.3.59), (2.3.63) and the definition of Cε,δ before (2.3.45), we get

lim
δ→0

lim
ε→0

Cε,δ =
1

2

∫ 1

−1

sign(t− s)hj(xΣ, s) ds. (2.3.64)

The proof of (2.3.43) is a straightforward combination of (2.3.45), (2.3.49), (2.3.57)
and (2.3.64).

To prove (2.3.44) we use the same approach as in (2.3.43), that is, we split
T εj,nhn(xΣ, t) as

T εj,nhn(xΣ, t) =: Aε,δ + Bε,δ + Cε,δ,
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2. Klein’s Paradox and the Relativistic δ-shell Interaction

like above (2.3.45). The first two terms can be treated analogously and one gets the
desired result. To estimate Cε,δ we use the notation introduced before. Recall that
Exεt is smooth inDε

δ(t, s) (assuming t 6= s) and k(xεt−y) = ∇E(xεt−y) = −∇Exεt(y).
So, by the divergence theorem,see also (2.3.40),∫
∂Dεδ(t,s)

∇j,n
ν∂Dε

δ
(t,s)(y)E(xεt − y) dH2(y)

=

∫
∂Dεδ(t,s)

(
(ν∂Dεδ(t,s)(y))n∂xjE(xεt − y)− (ν∂Dεδ(t,s)(y))j∂xnE(xεt − y)

)
dH2(y)

=

∫
Dεδ(t,s)

(
∂yj∂ynExεt − ∂yn∂yjExεt

)
(y) dy = 0.

(2.3.65)

Since ∂Dε
δ(t, s) = (Bδ(xεs) ∩ Σεs) ∪ (∂Bδ(xεs) ∩ Aεt,s), from (2.3.65) we have∣∣∣ ∫

|xεs−yεs|≤δ
∇j,n
νεs(yεs)

E(xεst−yεs) dσεs(yεs)
∣∣∣ =

∣∣∣ ∫
∂Bδ(xεs)∩Aεt,s

∇j,n
ν∂Dε

δ
(t,s)(y)E(xεt−y) dH2(y)

∣∣∣.
Observe that, when ε→ 0 we get that

χ∂Bδ(xεs)∩Aεt,s(y)∇j,n
ν∂Dε

δ
(t,s)(y)E(xεt − y) dH2(y)

= χ∂Bδ(xεs)∩Aεt,s(y)
(

(ν∂Dεδ(t,s)(y))j∂ynExεt(y)− (ν∂Dεδ(t,s)(y))n∂yjExεt(y)
)
dH2(y)

→ χ∂Bδ(xΣ)∩D(t,s)(y)

(
(y − xΣ)j
|y − xΣ|

· (y − xΣ)n
4π|y − xΣ|3

− (y − xΣ)n
|y − xΣ|

· (y − xΣ)j
4π|y − xΣ|3

)
dH2(y)

= 0.

(2.3.66)

Therefore, arguing as in the proof of (2.3.43) but replacing (2.3.61) by (2.3.66), we
have that, now,

lim
δ→0

lim
ε→0

Cε,δ = 0.

This yields (2.3.44) and concludes the proof of (2.3.34).

2.3.4.B A point-wise estimate of |Bε(a)| by maximal operators

We begin this section by setting

k(x) :=
xj

4π|x|3 for j = 1, 2, 3, x = (x1, x2, x3) ∈ R3 \ {0}. (2.3.67)

In (2.3.36) we already introduced a kernel k which, in fact, corresponds to the vectorial
version of the ones introduced in (2.3.67). So, by an abuse of notation, throughout
this section we mean by k(x) any of the components of the kernel given in (2.3.36).
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2.3 Approximation by the free Dirac operator with short range potentials

Note that k(−x) = −k(x) for all x ∈ R3 \ {0} and, besides, there exists C > 0

such that

|k(x− y)| ≤ C

|x− y|2 for all x, y ∈ R3 such that |x− y| > 0,

|k(z − y)− k(x− y)| ≤ C
|z − x|
|x− y|3 for all x, y, z ∈ R3 with 0 < |z − x| ≤ 1

2
|x− y|.
(2.3.68)

As in Section 2.3.4.A, we are going to work component-wise. More precisely, in
order to deal with the different components of Bε,ω3g(xΣ, t) for g ∈ L2(Σ× (−1, 1))4,
we are going to study the following scalar version. Given 0 < ε ≤ η0, g ∈ L2(Σ ×
(−1, 1)) and (xΣ, t) ∈ Σ× (−1, 1), define

B̃εg(xΣ, t) := u(t)

∫ 1

−1

∫
Σ

k(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))

× v(s) det(1− εsW (yΣ))g(yΣ, s) dσ(yΣ) ds,

(2.3.69)

where u and v are as in (2.3.4) for some 0 < η ≤ η0. It is clear that point-wise
estimates of |B̃εg(xΣ, t)| for a given g ∈ L2(Σ × (−1, 1)) directly transfer to point-
wise estimates of |Bε,ω3h(xΣ, t)| for a given h ∈ L2(Σ × (−1, 1))4, so we are reduced
to estimate |B̃εg(xΣ, t)| for g ∈ L2(Σ× (−1, 1)).

A key ingredient to find those suitable point-wise estimates is to relate B̃ε to the
Hardy-Littlewood maximal operator and some maximal singular integral operators
from Calderón-Zygmund theory. The Hardy-Littlewood maximal operator is given
by

M∗f(xΣ) := sup
δ>0

1

σ(Bδ(xΣ))

∫
Bδ(xΣ)

|f | dσ, M∗ : L2(Σ)→ L2(Σ) bounded, (2.3.70)

see [46, 2.19 Theorem] for a proof of the boundedness. The above mentioned maximal
singular integral operators are

T∗f(xΣ) := sup
δ>0

∣∣∣ ∫
|xΣ−yΣ|>δ

k(xΣ − yΣ)f(yΣ) dσ(yΣ)
∣∣∣, T∗ : L2(Σ)→ L2(Σ) bounded,

(2.3.71)
see [18, Proposition 4 bis] for a proof of the boundedness. We also introduce some
integral versions of these maximal operators to connect them to the space L2(Σ ×
(−1, 1)). Set

M̃∗g(xΣ) :=
(∫ 1

−1
M∗(g(·, s))(xΣ) ds

)1/2

M̃∗ : L2(Σ× (−1, 1))→ L2(Σ) bounded,

T̃∗g(xΣ) :=
∫ 1

−1
T∗(g(·, s))(xΣ) ds, T̃∗ : L2(Σ× (−1, 1))→ L2(Σ) bounded.

(2.3.72)
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Indeed, by Fubini’s theorem and (2.3.70),

‖M̃∗g‖2
L2(Σ) =

∫
Σ

∫ 1

−1

M∗(g(·, s))(xΣ)2 ds dσ(xΣ) =

∫ 1

−1

‖M∗(g(·, s))‖2
L2(Σ) ds

≤ C

∫ 1

−1

‖g(·, s)‖2
L2(Σ) ds = C‖g‖2

L2(Σ×(−1,1)).

By the Cauchy-Schwarz inequality, Fubini’s theorem and (2.3.71), we also see that
T̃∗ is bounded, so (2.3.72) is fully justified.

Let us focus for a moment on the boundedness of B0(a) stated in (2.3.10). The
fact that, for g ∈ L2(Σ× (−1, 1))4, the limit in the definition of (B0(a)g)(xΣ, t) exists
for almost every (xΣ, t) ∈ Σ × (−1, 1) is a consequence of the decomposition, see
(2.3.29),

φa = ωa1 + ωa2 + ω3,

the integrals of fractional type on bounded sets in the case of ωa1 and ωa2 and, for ω3,
that

lim
ε→0

∫
|xΣ−yΣ|>ε

k(xΣ − yΣ)f(yΣ) dσ(yΣ) exists for σ-almost every xΣ ∈ Σ (2.3.73)

if f ∈ L2(Σ), see [46, Theore 20.27], and that∫ 1

−1

v(s)g(·, s) ds ∈ L2(Σ)4.

Of course, (2.3.73) directly applies to B0,ω3 , see (2.3.30) for the definition. From
the boundedness of T̃∗ and working component by component, we easily see that
B0,ω3 is bounded in L2(Σ × (−1, 1))4. By the comments regarding B0,ωa1

and B0,ωa2

from the paragraph which contains (2.3.31), we also get that B0(a) is bounded in
L2(Σ× (−1, 1))4, which gives (2.3.10) in this case.

With the maximal operators at hand, we proceed to point-wise estimate |B̃εg(xΣ, t)|
for g ∈ L2(Σ× (−1, 1)). Set

gε(yΣ, s) := v(s) det(1− εsW (yΣ))g(yΣ, s). (2.3.74)

Then, since the eigenvalues of W are uniformly bounded by Proposition A.2, there
exists C > 0 only depending on η0 such that

|gε(yΣ, s)| ≤ C‖v‖L∞(R)|g(yΣ, s)| for all 0 < ε ≤ η0, (yΣ, s) ∈ Σ× (−1, 1). (2.3.75)
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We make the following splitting of B̃εg(xΣ, t), see (2.3.69) for the definition):

B̃εg(xΣ, t)= u(t)

∫ 1

−1

∫
|xΣ−yΣ|≤4ε|t−s|

k(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))gε(yΣ, s) dσ(yΣ) ds

+ u(t)

∫ 1

−1

∫
|xΣ−yΣ|>4ε|t−s|

(
k(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))

− k(xΣ + εsν(xΣ)− yΣ − εsν(yΣ))
)
gε(yΣ, s) dσ(yΣ) ds

+ u(t)

∫ 1

−1

∫
|xΣ−yΣ|>4ε|t−s|

(
k(xΣ + εs(ν(xΣ)− ν(yΣ))− yΣ)− k(xΣ − yΣ)

)
× gε(yΣ, s) dσ(yΣ) ds

+ u(t)

∫ 1

−1

∫
|xΣ−yΣ|>4ε|t−s|

k(xΣ − yΣ)gε(yΣ, s) dσ(yΣ) ds

=: B̃ε,1g(xΣ, t) + B̃ε,2g(xΣ, t) + B̃ε,3g(xΣ, t) + B̃ε,4g(xΣ, t).

(2.3.76)

We are going to estimate the four terms on the right hand side of (2.3.76) separately.

Concerning B̃ε,1g(xΣ, t), note that for all (yΣ, s) ∈ Σ× (−1, 1) we have

ε|t− s| = dist(xΣ + εtν(xΣ),Σεs) ≤ |xΣ + εtν(xΣ)− yΣ − εsν(yΣ))|.

Thus, by (2.3.68), |k(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))| ≤ 1
ε2|t−s|2 and then

|B̃ε,1g(xΣ, t)| ≤ ‖u‖L∞(R)

∫ 1

−1

1

ε2|t− s|2
∫
|xΣ−yΣ|≤4ε|t−s|

|gε(yΣ, s)| dσ(yΣ) ds

≤ C‖u‖L∞(R)

∫ 1

−1

M∗(gε(·, s))(xΣ) ds ≤ C‖u‖L∞(R)‖v‖L∞(R)M̃∗g(xΣ),

(2.3.77)

where we used the Cauchy-Schwarz inequality and (2.3.75) in the last inequality
above.

For the case of B̃ε,2g(xΣ, t), we split the integral over Σ on dyadic annuli as follows.
Set

N :=
[∣∣∣ log2

(diam(Ωη0)

ε|t− s|
)∣∣∣]+ 1, (2.3.78)

for t 6= s, where [ · ] denotes the integer part. Then, 2Nε|t− s| > diam(Ωη0) and

|B̃ε,2g(xΣ, t)| ≤ ‖u‖L∞(R)

∫ 1

−1

N∑
n=2

∫
2n+1ε|t−s|≥|xΣ−yΣ|>2nε|t−s|

· · · dσ(yΣ) ds, (2.3.79)

where

“ · · ·′′ =
∣∣k(xΣ + εtν(xΣ)− yΣ− εsν(yΣ))− k(xΣ + εsν(xΣ)− yΣ− εsν(yΣ))

∣∣|gε(yΣ, s)|.
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By (2.3.51) and the triangular inequality

(1− η0L)|xΣ − yΣ| ≤ |xΣ − yΣ| − η0|ν(xΣ)− ν(yΣ)|
≤ |xΣ + εsν(xΣ)− yΣ − εsν(yΣ)|
≤ |xΣ − yΣ|+ η0|ν(xΣ)− ν(yΣ)| ≤ (1 + η0L)|xΣ − yΣ|,

thus if we take η0 ≤ 1
2L

we get

1

2
|xΣ − yΣ| ≤ |xΣ + εsν(xΣ)− yΣ − εsν(yΣ)| ≤ 2|xΣ − yΣ|. (2.3.80)

Additionally, for 2n+1ε|t− s| ≥ |xΣ − yΣ| > 2nε|t− s|, using (2.3.80) we see that

|xΣ + εtν(xΣ)− (xΣ + εsν(xΣ))| = ε|t− s| < 2−n|xΣ − yΣ|
≤ 2−n+1|xΣ + εsν(xΣ)− yΣ − εsν(yΣ)|

≤ 1

2
|xΣ + εsν(xΣ)− yΣ − εsν(yΣ)|,

(2.3.81)

for all n = 2, . . . , N . Therefore, combining (2.3.81), (2.3.68) and (2.3.80) we finally
get

|k(xΣ + εtν(xΣ)− yΣ − εsν(yΣ))− k(xΣ + εsν(xΣ)− yΣ − εsν(yΣ))
∣∣

≤ C
|xΣ + εtν(xΣ)− (xΣ + εsν(xΣ))|
|xΣ + εsν(xΣ)− yΣ − εsν(yΣ)|3 ≤

Cε|t− s|
|xΣ − yΣ|3

<
C

23nε2|t− s|2 ,

for all s, t ∈ (−1, 1), 0 < ε ≤ η0, n = 2, . . . , N and 2n+1ε|t−s| ≥ |xΣ−yΣ| > 2nε|t−s|.
Plugging this estimate into (2.3.79) we obtain

|B̃ε,2g(xΣ,t)| ≤ C‖u‖L∞(R)

∫ 1

−1

N∑
n=2

∫
2n+1ε|t−s|≥|xΣ−yΣ|>2nε|t−s|

|gε(yΣ, s)|
23nε2|t− s|2 dσ(yΣ) ds

≤ C‖u‖L∞(R)

∫ 1

−1

N∑
n=2

1

2n

∫
|xΣ−yΣ|≤2n+1ε|t−s|

|gε(yΣ, s)|
(2n+1ε|t− s|)2

dσ(yΣ) ds

≤ C‖u‖L∞(R)

∞∑
n=2

1

2n

∫ 1

−1

M∗(gε(·, s))(xΣ) ds

≤ C‖u‖L∞(R)‖v‖L∞(R)M̃∗g(xΣ),

(2.3.82)

where we used the Cauchy-Schwarz inequality and (2.3.75) in the last inequality
above.

Let us deal now with B̃ε,3g(xΣ, t). Since 0 < ε ≤ η0 and s ∈ (−1, 1), if we take
η0 ≤ 1

2L
as before, from (2.3.51) we see that∣∣(xΣ + εs(ν(xΣ)− ν(yΣ))

)
− xΣ

∣∣ = ε|s||ν(xΣ)− ν(yΣ)| ≤ 1

2
|xΣ − yΣ|,
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2.3 Approximation by the free Dirac operator with short range potentials

and then, by (2.3.68),

∣∣k(xΣ + εs(ν(xΣ)− ν(yΣ))− yΣ)− k(xΣ − yΣ)
∣∣ ≤ C

ε|s||ν(xΣ)− ν(yΣ)|
|xΣ − yΣ|3

≤ Cε

|xΣ − yΣ|2
.

(2.3.83)

Splitting the integral which defines B̃ε,3g(xΣ, t) into dyadic annuli as in (2.3.79), and
using (2.3.83), (2.3.75) and (2.3.78), we get

|B̃ε,3g(xΣ, t)| ≤ C‖u‖L∞(R)

∫ 1

−1

N∑
n=2

ε

∫
2n+1ε|t−s|≥|xΣ−yΣ|>2nε|t−s|

|gε(yΣ, s)|
|xΣ − yΣ|2

dσ(yΣ) ds

≤ C‖u‖L∞(R)

∫ 1

−1

ε

N∑
n=2

M∗(gε(·, s))(xΣ) ds

≤ C‖u‖L∞(R)‖v‖L∞(R)

∫ 1

−1

ε

∣∣∣∣log2

(
diam(Ωη0)

ε|t− s|

)∣∣∣∣M∗(g(·, s))(xΣ) ds.

(2.3.84)

Note that

ε

∣∣∣∣log2

(
diam(Ωη0)

ε|t− s|

)∣∣∣∣ ≤ ε (C + | log2 ε|+ | log2 |t− s||) ≤ C (1 + | log2 |t− s||) ,

for all 0 < ε ≤ η0, where C > 0 only depends on η0. Hence, from (2.3.84) and the
Cauchy-Schwarz inequality, we obtain

|B̃ε,3g(xΣ, t)| ≤ C‖u‖L∞(R)‖v‖L∞(R)

∫ 1

−1

(
1 + | log2 |t− s||

)
M∗(g(·, s))(xΣ) ds

≤ C‖u‖L∞(R)‖v‖L∞(R)

(∫ 1

−1

(
1 + | log2 |t− s||

)2
ds

)1/2

M̃∗g(xΣ)

≤ C‖u‖L∞(R)‖v‖L∞(R)M̃∗g(xΣ),

(2.3.85)

where, we also used that
∫ 1

−1

(
1 + | log2 |t − s||

)2
ds ≤ C

(
1 +

∫ 2

0
| log2 r|2 dr

)
< +∞

for t ∈ (−1, 1) .

The term |B̃ε,4g(xΣ, t)| can be estimated using the maximal operator T̃∗ as follows.
Let λ1(yΣ) and λ2(yΣ) denote the eigenvalues of the Weingarten map W (yΣ). By
definition,

gε(yΣ, s) = v(s) det(1− εsW (yΣ))g(yΣ, s)

= v(s)
(
1 + ε2s2λ1(yΣ)λ2(yΣ)− εsλ1(yΣ)− εsλ2(yΣ)

)
g(yΣ, s).
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Therefore, the triangle inequality yields

|B̃ε,4g(xΣ, t)| ≤ ‖u‖L∞(R)‖v‖L∞(R)

∫ 1

−1

(
T∗(g(·, s))(xΣ) + η2

0T∗(λ1λ2g(·, s))(xΣ)

+ η0T∗(λ1g(·, s))(xΣ) + η0T∗(λ2g(·, s))(xΣ)
)
ds

≤ C‖u‖L∞(R)‖v‖L∞(R)

(
T̃∗g(xΣ) + T̃∗(λ1λ2g)(xΣ) + T̃∗(λ1g)(xΣ) + T̃∗(λ2g)(xΣ)

)
.

(2.3.86)

Combining (2.3.76), (2.3.77), (2.3.82), (2.3.85) and (2.3.86) and taking the supre-
mum on ε we finally get that

sup
0<ε≤η0

|B̃εg(xΣ, t)| ≤ C‖u‖L∞(R)‖v‖L∞(R)

(
M̃∗g(xΣ) + T̃∗g(xΣ)

+ T̃∗(λ1λ2g)(xΣ) + T̃∗(λ1g)(xΣ) + T̃∗(λ2g)(xΣ)
)
,

(2.3.87)

where C > 0 only depends on η0. Define

B̃∗g(xΣ, t) := sup
0<ε≤η0

|B̃εg(xΣ, t)| for (xΣ, t) ∈ Σ× (−1, 1).

Then, from (2.3.87), the boundedness of M̃∗ and T̃∗ from L2(Σ × (−1, 1)) to L2(Σ),
see (2.3.72), and the fact that ‖λ1‖L∞(Σ) and ‖λ2‖L∞(Σ) are finite by Proposition A.2,
we easily conclude that there exists C > 0 only depending on η0 such that

‖B̃∗g‖L2(Σ×(−1,1)) ≤ C‖u‖L∞(R)‖v‖L∞(R)‖g‖L2(Σ×(−1,1)). (2.3.88)

2.3.5 The strong limit of Aε(a) when ε→ 0

Recall from (2.3.6) and (2.3.12) that Aε(a) with 0 < ε ≤ η0 and A0(a) are defined
by

(Aε(a)g)(x) =

∫ 1

−1

∫
Σ

φa(x− yΣ − εsν(yΣ))v(s) det(1− εsW (yΣ))g(yΣ, s) dσ(yΣ) ds,

(A0(a)g)(x) =

∫ 1

−1

∫
Σ

φa(x− yΣ)v(s)g(yΣ, s) dσ(yΣ) ds.

We already know that Aε(a) is bounded from L2(Σ× (−1, 1))4 to L2(R3)4. To show
the boundedness of A0(a) (and conclude the proof of (2.3.10)) just note that, by
Fubini’s theorem, for every x ∈ R3 \ Σ we have

(A0(a)g)(x) =

∫
Σ

φa(x− yΣ)

(∫ 1

−1

v(s)g(yΣ, s) ds

)
dσ(yΣ),
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and
∫ 1

−1
v(s)g(·, s) ds ∈ L2(Σ)4 if g ∈ L2(Σ × (−1, 1))4. Since a ∈ C \ R, [7, Lemma

2.1] shows that A0(a) is bounded from L2(Σ× (−1, 1))4 to L2(R3)4.

We begin the proof of (2.3.14) by splitting

Aε(a)g = χR3\Ωη0Aε(a)g + χΩη0
Aε(a)g. (2.3.89)

Let us treat first the case of χR3\Ωη0Aε(a). As we said before, since a ∈ C \R, the
components of φa(x) decay exponentially when |x| → ∞. In particular, there exist
C, r > 0 only depending on a and η0 such that

|φa(x)|, |∂φa(x)| ≤ Ce−r|x| for all |x| ≥ η0

2
, (2.3.90)

where the left hand side of (2.3.90) means the absolute value of any component of
the matrix φa(x) and of any first order derivative of it, respectively.

Note that η0 = dist(R3 \ Ωη0 ,Σ). Hence, if x ∈ R3 \ Ωη0 , yΣ ∈ Σ, 0 ≤ ε ≤ η0

2
and

s ∈ (−1, 1) then, for any 0 ≤ q ≤ 1,

|q(x− yΣ − εsν(yΣ)) + (1− q)(x− yΣ)| = |x− yΣ − qεsν(yΣ)|

≥ |x− yΣ| − qε|s| ≥ |x− yΣ| −
η0

2
≥ |x− yΣ|

2
≥ η0

2
.

(2.3.91)

Thus (2.3.90) applies to [x, yΣ]q := q(x − yΣ − εsν(yΣ)) + (1 − q)(x − yΣ), and a
combination of the mean value theorem and (2.3.91) gives

|φa(x− yΣ − εsν(yΣ))− φa(x− yΣ)| ≤ ε max
0≤q≤1

|∂φa([x, yΣ]q)| ≤ Cεe−
r
2
|x−yΣ|.

(2.3.92)

Set g̃ε(yΣ, s) := det(1−εsW (yΣ))g(yΣ, s). On one hand, from (2.3.92), Proposition
A.2 and the Cauchy-Schwarz inequality, we get that

χR3\Ωη0 (x)|(Aε(a)g)(x)− (A0(a)gε)(x)|

≤ C‖v‖L∞(R)χR3\Ωη0 (x)

∫ 1

−1

∫
Σ

εe−
r
2
|x−yΣ||g̃ε(yΣ, s)| dσ(yΣ) ds

≤ Cε‖v‖L∞(R)‖g̃ε‖L2(Σ×(−1,1))4χR3\Ωη0 (x)
(∫

Σ

e−r|x−yΣ| dσ(yΣ)
)1/2

≤ Cε‖v‖L∞(R)‖g‖L2(Σ×(−1,1))4ξ(x),

where
ξ(x) := χR3\Ωη0 (x)

(∫
Σ

e−r|x−yΣ| dσ(yΣ)
)1/2

.

Since ξ ∈ L2(R3) because σ(Σ) < +∞, we deduce that

‖χR3\Ωη0 (Aε(a)g − A0(a)g̃ε)‖L2(R3)4 ≤ Cε‖v‖L∞(R)‖g‖L2(Σ×(−1,1))4 . (2.3.93)
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On the other hand, by Proposition A.2 we have that

|g̃ε(yΣ, s)− g(yΣ, s)| =
∣∣det(1− εsW (yΣ))− 1

∣∣|g(yΣ, s)| ≤ Cε|g(yΣ, s)|.

This, together with the fact that A0(a) is bounded from L2(Σ× (−1, 1))4 to L2(R3)4,
see above (2.3.89), implies that

‖χR3\Ωη0A0(a)(g̃ε − g)‖L2(R3)4 ≤ C‖v‖L∞(R)‖g̃ε − g‖L2(Σ×(−1,1))4

≤ Cε‖v‖L∞(R)‖g‖L2(Σ×(−1,1))4 .
(2.3.94)

Using the triangle inequality, (2.3.93) and (2.3.94), we finally get that

‖χR3\Ωη0 (Aε(a)− A0(a))g‖L2(R3)4 ≤ Cε‖v‖L∞(R)‖g‖L2(Σ×(−1,1))4 ,

for all 0 ≤ ε ≤ η0

2
, where C > 0 only depends on a and η0. In particular, this implies

that
lim
ε→0
‖χR3\Ωη0 (Aε(a)− A0(a))‖L2(Σ×(−1,1))4→L2(R3)4 = 0. (2.3.95)

Let us deal now with χΩη0
Aε(a). Consider the decomposition of φa given by

(2.3.29). Then, as in (2.3.30), we write

Aε(a) = Aε,ωa1 + Aε,ωa2 + Aε,ω3 ,

A0(a) = A0,ωa1
+ A0,ωa2

+ A0,ω3 ,

where Aε,ωa1 , Aε,ωa2 and Aε,ω3 are defined as Aε(a) but replacing φa by ωa1 , ωa2 and ω3,
respectively, and analogously for the case of A0(a). For j = 1, 2, the arguments used
to show (2.3.31) in the case of Bε,ωaj

also apply to χΩη0
Aε,ωaj , thus we now get

lim
ε→0
‖χΩη0

(Aε,ωaj − A0,ωaj
)‖L2(Σ×(−1,1))4→L2(R3)4 = 0 for j = 1, 2. (2.3.96)

It only remains to show the strong convergence of χΩη0
Aε,ω3 . This case is treated

similarly to what we did in Sections 2.3.4.A and 2.3.4.B, as follows:

(i) In Section 2.3.5.A we will show that for any g ∈ L2(Σ× (−1, 1))4

lim
ε→0

χΩη0
Aε,ω3g(xΣ, t) = χΩη0

A0,ω3g(xΣ, t) for a. e. (xΣ, t) ∈ Σ× (−1, 1).

(2.3.97)

(ii) In Section 2.3.5.B we will prove for η0 > 0 small enough and for g ∈ L2(Σ× (−1, 1))4,
if we set

A∗,ω3g(xΣ, t) := sup
0<ε≤η0

|Aε,ω3g(xΣ, t)g(xΣ, t)| for (xΣ, t) ∈ Σ× (−1, 1),

then there exists C > 0 only depending on η0 such that

‖χΩη0
A∗,ω3g‖L2(Σ×(−1,1)) ≤ C‖u‖L∞(R)‖v‖L∞(R)‖g‖L2(Σ×(−1,1))4 . (2.3.98)
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Combining the (2.3.97) and 2.3.98, thanks to the boundedness of A0,ω3 and by dom-
inated convergence Theorem we can conclude that

lim
ε→0

Aε,ω3 = A0,ω3 in the strong sense.

This, (2.3.95) and (2.3.96) imply (2.3.14).

2.3.5.A The point-wise limit of Aε(a) when ε→ 0

This case is much easier than the one in Section 2.3.4.A. For a fixed x ∈ R3 \ Σ,
we can always find δx, Cx > 0 small enough such that

|x− yΣ − εsν(yΣ)| ≥ Cx for all yΣ ∈ Σ, s ∈ (−1, 1) and 0 ≤ ε ≤ δx.

In particular, for a fixed x ∈ R3 \Σ, we have |ω3(x−yΣ− εsν(yΣ))| ≤ C uniformly on
yΣ ∈ Σ, s ∈ (−1, 1) and 0 ≤ ε ≤ δx, where C > 0 depends on x. By Proposition A.2
and the dominated convergence theorem, given g ∈ L2(Σ× (−1, 1))4, we have

lim
ε→0

Aε,ω3g(x) = A0,ω3g(x) for L-a.e. x ∈ R3,

where L denotes the Lebesgue measure in R3.

2.3.5.B A point-wise estimate of |Aε(a)| by maximal operators

Given 0 ≤ ε ≤ η0

4
, we divide the study of χΩη0

(x)Aε,ω3g(x) into two different
cases, i.e. x ∈ Ωη0 \ Ω4ε and x ∈ Ω4ε. As we did in Section 2.3.4.B, we are going
to work componentwise, that is, we consider C-valued functions instead of C4-valued
functions. With this in mind, for g ∈ L2(Σ× (−1, 1)) we set

Ãεg(x) :=

∫ 1

−1

∫
Σ

k(x− yΣ − εsν(yΣ))v(s) det(1− εsW (yΣ))g(yΣ, s) dσ(yΣ) ds,

where k is given by (2.3.67).

In what follows, we can always assume that x ∈ R3 \ Σ because L(Σ) = 0. In
case that x ∈ Ω4ε, we can write x = xΣ + εtν(xΣ) for some t ∈ (−4, 4), and then
Ãεg(x) coincides with B̃εg(xΣ, t), see (2.3.69), except for the term u(t) that has to be
replaced with χ(−4,4)(t). Therefore, one can carry out all the arguments involved in
the estimate of B̃εg(xΣ, t) (that is, from (2.3.69) to (2.3.88)) with minor modifications
to get the following result: define

Ã∗g(xΣ, t) := sup
0<ε≤η0/4

∣∣∣Ãεg(xΣ + εtν(xΣ))
∣∣∣ for (xΣ, t) ∈ Σ× (−4, 4). (2.3.99)
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Then, if η0 is small enough, there exists C > 0 only depending on η0 such that∥∥∥∥∥sup
|t|<4

Ã∗g(·, t)
∥∥∥∥∥
L2(Σ)

≤ C‖v‖L∞(R)‖g‖L2(Σ×(−1,1)) for all g ∈ L2(Σ× (−1, 1)).

(2.3.100)

For the proof of (2.3.100), a remark is in order. The fact that in the present
situation t ∈ (−4, 4) instead of t ∈ (−1, 1), as in the definition of B̃εg(xΣ, t) in
(2.3.69), only affects the arguments used to get (2.3.87) at the comment just below
(2.3.85). Now one should use that∫ 5

0

| log2 r|2 dr < +∞,

to prove the estimate analogous to (2.3.85) and to derive the counterpart of (2.3.87),
that is,

Ã∗g(xΣ, t) ≤ C‖v‖L∞(R)

(
M̃∗g(xΣ) + T̃∗g(xΣ) + T̃∗(λ1λ2g)(xΣ)

+ T̃∗(λ1g)(xΣ) + T̃∗(λ2g)(xΣ)
)
,

for all (xΣ, t) ∈ Σ × (−4, 4), where λ1 and λ2 are the eigenvalues of the Weingarten
map. Combining this estimate (whose right hand side is independent of t ∈ (−4, 4)),
the boundedness of M̃∗ and T̃∗ from L2(Σ × (−1, 1)) to L2(Σ), see (2.3.72), and
Proposition A.2, we get (2.3.100).

Finally, thanks to (2.3.99), (A.3), Proposition A.2 and (2.3.100), for η0 small
enough we conclude∥∥∥∥∥ sup

0≤ε≤η0/4

χΩ4ε

∣∣∣Ãεg∣∣∣
∥∥∥∥∥
L2(R3)

≤
∥∥∥∥∥sup
|t|<4

Ã∗g(PΣ·, t)
∥∥∥∥∥
L2(Ωη0 )

≤ C

∥∥∥∥∥sup
|t|<4

Ã∗g(·, t)
∥∥∥∥∥
L2(Σ)

≤ C‖v‖L∞(R)‖g‖L2(Σ×(−1,1)).

(2.3.101)

We now focus on χΩη0\Ω4εÃε for 0 ≤ ε ≤ η0

4
. Similarly to what we did in (2.3.76),

we set
gε(yΣ, s) := v(s) det(1− εsW (yΣ))g(yΣ, s), see (2.3.74),
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and we split Ãεg(x) = Ãε,1g(x) + Ãε,2g(x) + Ãε,3g(x) + Ãε,4g(x), where

Ãε,1g(x) :=

∫ 1

−1

∫
Σ

(
k(x− yΣ − εsν(yΣ))− k(x− yΣ)

)
gε(yΣ, s) dσ(yΣ) ds,

Ãε,2g(x) :=

∫ 1

−1

∫
|xΣ−yΣ|≤4dist(x,Σ)

k(x− yΣ)gε(yΣ, s) dσ(yΣ) ds,

Ãε,3g(x) :=

∫ 1

−1

∫
|xΣ−yΣ|>4dist(x,Σ)

(
k(x− yΣ)− k(xΣ − yΣ)

)
gε(yΣ, s) dσ(yΣ) ds,

Ãε,4g(x) :=

∫ 1

−1

∫
|xΣ−yΣ|>4dist(x,Σ)

k(xΣ − yΣ)gε(yΣ, s) dσ(yΣ) ds.

From now on we assume x ∈ Ωη0 \ Ω4ε and, as always, yΣ ∈ Σ. Note that

|(yΣ − εsν(yΣ))− yΣ| ≤ ε ≤ 1

4
dist(x,Σ) ≤ 1

4
|x− yΣ|,

so (2.3.68) gives |k(x− yΣ − εsν(yΣ))− k(x− yΣ)| ≤ Cε|x− yΣ|−3. Furthermore, we
have that |x − yΣ| ≥ C|xΣ − yΣ| for all yΣ ∈ Σ and some C > 0 only depending on
η0. We can split the integral on Σ which defines Ãε,1g(x) in dyadic annuli as we did
in (2.3.79), see also (2.3.82), to obtain

|Ãε,1g(x)| ≤ C

∫ 1

−1

∫
|xΣ−yΣ|<dist(x,Σ)

ε|gε(yΣ, s)|
dist(x,Σ)3

dσ(yΣ) ds

+ C

∫ 1

−1

∞∑
n=0

∫
2ndist(x,Σ)<|xΣ−yΣ|≤2n+1dist(x,Σ)

ε|gε(yΣ, s)|
|x− yΣ|3

dσ(yΣ) ds

≤ C‖v‖L∞(R)M̃∗g(xΣ) + C

∫ 1

−1

∞∑
n=0

1

2n

∫
|xΣ−yΣ|≤2n+1dist(x,Σ)

|gε(yΣ, s)|
(2ndist(x,Σ))2

dσ(yΣ) ds

≤ C‖v‖L∞(R)M̃∗g(xΣ) + C

∞∑
n=0

1

2n

∫ 1

−1

M∗(gε(·, s))(xΣ) ds ≤ C‖v‖L∞(R)M̃∗g(xΣ).

(2.3.102)

Using that |k(x − yΣ)| ≤ C|x − yΣ|−2 ≤ Cdist(x,Σ)−2 by (2.3.68), it is easy to
show that

|Ãε,2g(x)| ≤ C‖v‖L∞(R)M̃∗g(xΣ). (2.3.103)

Since dist(x,Σ) = |x− xΣ|, the same arguments as in (2.3.102) yield

|Ãε,3g(x)| ≤ C‖v‖L∞(R)M̃∗g(xΣ). (2.3.104)

Finally, the same arguments as in (2.3.86) show that

|Ãε,4g(x)| ≤ C‖v‖L∞(R)

(
T̃∗g(xΣ) + T̃∗(λ1λ2g)(xΣ) + T̃∗(λ1g)(xΣ) + T̃∗(λ2g)(xΣ)

)
.

(2.3.105)
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Therefore, thanks to (2.3.102), (2.3.103), (2.3.104) and (2.3.105) we conclude that

sup
0≤ε≤η0/4

χΩη0\Ω4ε(x)|Ãεg(x)| ≤ C‖v‖L∞(R)

(
M̃∗g(xΣ) + T̃∗g(xΣ) + T̃∗(λ1λ2g)(xΣ)

+ T̃∗(λ1g)(xΣ) + T̃∗(λ2g)(xΣ)
)
,

and then, similarly to what we did in (2.3.101), a combination of (2.3.72) and Propo-
sition A.2 gives∥∥∥∥∥ sup

0≤ε≤η0/4

χΩη0\Ω4ε |Ãεg|
∥∥∥∥∥
L2(R3)

≤ C‖v‖L∞(R)‖g‖L2(Σ×(−1,1)). (2.3.106)

Finally, combining (2.3.101) and (2.3.106) we get that, if η0 > 0 is small enough,
then ∥∥∥∥∥ sup

0≤ε≤η0/4

χΩη0
|Ãεg|

∥∥∥∥∥
L2(R3)

≤ C‖v‖L∞(R)‖g‖L2(Σ×(−1,1)),

where C > 0 only depends on η0.

2.3.6 Conclusion and proof of Theorem 2.1.2

We first prove an auxiliary result.

Lemma 2.3.6. Let a ∈ C\R and η0 > 0 be such that (2.1.1) holds for all 0 < ε ≤ η0.
If η0 is small enough, then for any 0 < η ≤ η0 and V ∈ L∞(R) with suppV ⊂ [−η, η]

we have that

‖Aε(a)‖L2(Σ×(−1,1))4→L2(R3)4 ,

‖Bε(a)‖L2(Σ×(−1,1))4→L2(Σ×(−1,1))4 ,

‖Cε(a)‖L2(R3)4→L2(Σ×(−1,1))4

are uniformly bounded for all 0 ≤ ε ≤ η0, with bounds that only depend on a, η0 and
V . Furthermore, if η0 is small enough there exists δ > 0 only depending on η0 such
that

‖Bε(a)‖L2(Σ×(−1,1))4→L2(Σ×(−1,1))4 ≤ 1

2
(2.3.107)

for all |a| ≤ 1, 0 ≤ ε ≤ η0, 0 < η ≤ η0 and all (δ, η)-small V .

Proof. The first statement in the Lemma is a simple combination of Theorem 2.3.4
and the Banach–Steinhaus Theorem. We should stress that these developments are
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2.3 Approximation by the free Dirac operator with short range potentials

valid for any V ∈ L∞(R) with suppV ⊂ [−η, η], where 0 < η ≤ η0, hence the (δ, η)-
small assuption on V in Theorem 2.1.2 is only required to prove the explicit bound
in the second part of the Lemma.

Recall the decomposition

Bε(a) = Bε,ωa1
+Bε,ωa2

+Bε,ω3 (2.3.108)

given by (2.3.30). Thanks to (2.3.35), there exists C0 > 0 only depending on η0 such
that

‖Bε,ω3‖L2(Σ×(−1,1))4→L2(Σ×(−1,1))4 ≤ C0‖u‖L∞(R)‖v‖L∞(R) for all 0 < ε ≤ η0.
(2.3.109)

The comments in the paragraph which contains (2.3.31) and an inspection of the
proof of [12, Lemma 3.4] show that there also exists C1 > 0 only depending on η0

such that, for any |a| ≤ 1 and j = 1, 2,

‖Bε,ωaj
‖L2(Σ×(−1,1))4→L2(Σ×(−1,1))4 ≤ C1‖u‖L∞(R)‖v‖L∞(R) for all 0 < ε ≤ η0.

(2.3.110)

Note that the kernel defining Bε,ωa2
is given by

ωa2(x) =
e−
√
m2−a2|x| − 1

4π
iα · x

|x|3 , so |ωa2(x)| = O

(√
|m2 − a2|
|x|

)
for |x| → 0.

Therefore, the kernel is of fractional type with respect to σ, but the estimate blows
up as |a| → ∞. This is the reason why we restrict ourselves to |a| ≤ 1 in (2.3.110),
where we have a uniform bound with respect to a. However, to prove Theorem 2.1.2,
one fixed a ∈ C \ R suffices, say a = i.

From (2.3.108), (2.3.109) and (2.3.110), we derive that

‖Bε(a)‖L2(Σ×(−1,1))4→L2(Σ×(−1,1))4 ≤ (C0 + 2C1)‖u‖L∞(R)‖v‖L∞(R) for all 0 < ε ≤ η0.
(2.3.111)

If V is (δ, η)-small, see Definition 2.1.1, then ‖V ‖L∞(R) ≤ δ
η
, so (2.1.4) yields

‖u‖L∞(R)‖v‖L∞(R) = η‖V ‖L∞(R) ≤ δ.

Taking δ > 0 small enough so that (C0 + 2C1)δ ≤ 1
3
, from (2.3.111) we finally get

(2.3.107) for all 0 < ε ≤ η0.

Combining Theorem 2.3.4, the Banach–Steinhaus Theorem and (2.3.107) we can
obtain the following:
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2. Klein’s Paradox and the Relativistic δ-shell Interaction

Corollary 2.3.7. Let a ∈ C \ R, η0 > 0 and δ > 0 be such that (2.3.107) holds for
all 0 < ε ≤ η0. Then

‖B0(a) +B′‖L2(Σ×(−1,1))4→L2(Σ×(−1,1))4 ≤ 1

2
. (2.3.112)

Proposition 2.3.8. There exist η0, δ > 0 small enough only depending on Σ such
that, for any a ∈ C \ R with |a| ≤ 1, 0 < η ≤ η0 and (δ, η)-small V , see Defini-
tion 2.1.1, the following convergences of operators hold in the strong sense:

(H + Vε − a)−1 → (H − a)−1 + A0(a)
(
1 +B0(a) +B′

)−1
C0(a) when ε→ 0,

(H + βVε − a)−1 → (H − a)−1 + A0(a)
(
β +B0(a) +B′

)−1
C0(a) when ε→ 0.

In particular, (1 + B0(a) + B′
)−1 and (β + B0(a) + B′

)−1 are well-defined bounded
operators in L2(Σ× (−1, 1))4.

Proof. We are going to prove the corollary for (H+Vε−a)−1, the case of (H+βVε−
a)−1 follows by the same arguments. Let η0, δ > 0 be as in Lemma 2.3.6 and take
a ∈ C \ R with |a| ≤ 1. From (2.3.112) we deduce that

‖(1 +B0(a) +B′)g‖L2(Σ×(−1,1))4 ≥ ‖g‖L2(Σ×(−1,1))4 − ‖(B0(a) +B′)g‖L2(Σ×(−1,1))4

≥ 1

2
‖g‖L2(Σ×(−1,1))4

for all g ∈ L2(Σ× (−1, 1))4. Therefore, 1 +B0(a) +B′ is invertible and

‖(1 +B0(a) +B′)−1‖L2(Σ×(−1,1))4→L2(Σ×(−1,1))4 ≤ 2.

This justifies the last comment in the corollary. Similar considerations also apply to
1 +Bε(a), so in this case we deduce that

‖(1 +Bε(a))−1‖L2(Σ×(−1,1))4→L2(Σ×(−1,1))4 ≤ 2, (2.3.113)

for all 0 < ε ≤ η0. Note also that

(1 +Bε(a))−1 − (1 +B0(a) +B′)−1

= (1 +Bε(a))−1(B0(a) +B′ −Bε(a))(1 +B0(a) +B′)−1.

(2.3.114)

Given g ∈ L2(Σ × (−1, 1))4, set f = (1 + B0(a) + B′)−1g ∈ L2(Σ × (−1, 1))4.
Then, by (2.3.114) and (2.3.113), we see that∥∥((1 +Bε(a))−1 − (1+B0(a) +B′)−1

)
g
∥∥
L2(Σ×(−1,1))4

= ‖(1 +Bε(a))−1(B0(a) +B′ −Bε(a))f‖L2(Σ×(−1,1))4

≤ 2 ‖(B0(a) +B′ −Bε(a))f‖L2(Σ×(−1,1))4 .

(2.3.115)
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By (2.3.15) in Theorem 2.3.4, the right hand side of (2.3.115) converges to zero when
ε→ 0. Therefore, we deduce that (1+Bε(a))−1 converges strongly to (1+B0(a)+B′)−1

when ε → 0. Since the composition of strongly convergent operators is strongly
convergent, using (2.3.8) and Theorem 2.3.4, we finally obtain the desired strong
convergence

(H + Vε − a)−1 → (H − a)−1 + A0(a)
(
1 +B0(a) +B′

)−1
C0(a) when ε→ 0.

Corollary 2.3.8 is finally proved.

We can now prove Theorem 2.1.2. Thanks to [52, Theorem VIII.19], to prove the
theorem it is enough to show that, for some a ∈ C \R, the following convergences of
operators hold in the strong sense:

(H + Vε − a)−1 → (H + λeδΣ − a)−1 when ε→ 0, (2.3.116)

(H + βVε − a)−1 → (H + λsβδΣ − a)−1 when ε→ 0. (2.3.117)

Thus, from now on, we fix a ∈ C \ R with |a| ≤ 1.

We recall that

A0(a) = Φa(0, ·)V̂ , B0(a) = ÛCa
σ V̂ , C0(a) = ÛΦa

σ,

with

V̂ f(xΣ) :=

∫ 1

−1

v(s) f(xΣ, s) ds and Ûf(xΣ, t) := u(t) f(xΣ).

Hence, from Proposition 2.3.8 and (2.3.11) we deduce that, in the strong sense, if
ε→ 0

(H + Vε − a)−1 → (H − a)−1 + Φa(0, ·)V̂
(
1 + ÛCa

σ V̂ +B′
)−1

ÛΦa
σ (2.3.118)

(H + βVε − a)−1 → (H − a)−1 + Φa(0, ·)V̂
(
β + ÛCa

σ V̂ +B′
)−1

ÛΦa
σ. (2.3.119)

For convinience of notation, set

K̃g(xΣ, t) := KV (g(xΣ, ·))(t) for g ∈ L2(Σ× (−1, 1)),

where KV is as in (2.1.6). Then, we get

1 +B′ = I4 + (α · ν)K̃I4 =

(
I2 (σ · ν)K̃I2

(σ · ν)K̃I2 I2

)
.

Here, σ := (σ1, σ2, σ3), see (1.1.6), I4 denotes the 4×4 identity matrix and K̃I4 denotes
the diagonal 4 × 4 operator matrix whose nontrivial entries are K̃, and analogously
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for K̃I2. By construction ||KV ||L2(R)→L2(R) ≤ 2δ, then ||KV ||L2(R)→L2(R) ≤ 2δσ(Σ) < 1.
For this reason (1 − K̃2) is invertible. Moreover, since the operators that compose
the matrix 1 +B′ commute, if we set K := K̃I4, we get

(1 +B′)−1 = (1− K̃2)−1 ⊗
(

I2 −(σ · ν)K̃I2

−(σ · ν)K̃I2 I2

)
= (1−K2)−1 − (α · ν)(1−K2)−1K.

(2.3.120)

With this at hand, we can compute

(1 + ÛCa
σ V̂ +B′)−1 =

(
1 + (1 +B′)−1ÛCa

σ V̂
)−1

(1 +B′)−1

=
(

1 + (1−K2)−1ÛCa
σ V̂ − (α · ν)(1−K2)−1KÛCa

σ V̂
)−1

◦
(

(1−K2)−1 − (α · ν)(1−K2)−1K
)
.

(2.3.121)

Notice that

V̂
(

1 + (1−K2)−1ÛCa
σ V̂ − (α · ν)(1−K2)−1KÛCa

σ V̂
)

=
(

1 + V̂ (1−K2)−1ÛCa
σ − (α · ν)V̂ (1−K2)−1KÛCa

σ

)
V̂ ,

which obviously yields

V̂
(

1 + (1−K2)−1ÛCa
σ V̂ − (α · ν)(1−K2)−1KÛCa

σ V̂
)−1

=
(

1 + V̂ (1−K2)−1ÛCa
σ − (α · ν)V̂ (1−K2)−1KÛCa

σ

)−1

V̂ .

(2.3.122)

Additionally, by the definition of KV in (2.1.6), we see that

V̂ (1−K2)−1Û =
(∫

R
v (1−K2

V )−1u
)
I4 = λeI4,

V̂ (1−K2)−1KÛ =
(∫

R
v (1−K2

V )−1KV u
)
I4 = 0.

(2.3.123)

Indeed, from (2.1.9) in Theorem 2.1.2, λe =
∫
Rv (1 − K2

V )−1u. Let us focus on∫
Rv (1−K2

V )−1KV u. Note that, for any n ≥ 0,∫
R
vK2n+1

V u =

(
− i

2

)2n+1 ∫
(−η,η)2n+2

V (t0)V (t1) · · ·V (t2n+1)×

sign(t0 − t1) · · · sign(t2n − t2n+1) dt0dt1 . . . dt2n+1.

Set sj := t2n+1−j for j ∈ {0, . . . , 2n+ 1}. Then,

sign(t0 − t1) · · · sign(t2n − t2n+1) = (−1)2n+1 sign(s0 − s1) · · · sign(s2n − s2n+1),
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thus, by Fubini’s theorem,
∫
R vK2n+1

V u = 0. This implies that
∫
Rv (1−K2

V )−1KV u = 0

by a Neumann series argument, and therefore V̂ (1−K2)−1KÛ = 0.

Hence, combining (2.3.122) and (2.3.123) we have that

V̂
(

1 + (1−K2)−1ÛCa
σ V̂ − (α · ν)(1−K2)−1KÛCa

σ V̂
)−1

= (1 + λeC
a
σ)−1V̂ . (2.3.124)

Then, from (2.3.121), (2.3.124) and (2.3.123), we finally get

Φa(0, ·)V̂ (1 + ÛCa
σ V̂ +B′)−1ÛΦa

σ = Φa(0, ·)(1 + λeC
a
σ)−1λeΦ

a
σ.

This last identity combined with (2.3.118) and (2.2.6) yields (2.3.116).

The proof of (2.3.117) follows the same lines. Similarly to (2.3.120),

(β +B′)−1 = (1 +K2)−1β − (α · ν)(1 +K2)−1.

One can then make the computations analogous to (2.3.121), (2.3.122), (2.3.123) and
(2.3.124). Since λs =

∫
Rv (1 +K2

V )−1u, we now get

Φa(0, ·)V̂ (β + ÛCa
σ V̂ +B′)−1ÛΦa

σ = Φa(0, ·)(β + λsC
a
σ)−1λsΦ

a
σ.

From this, (2.3.119) and (2.2.12) we obtain (2.1.8). This conclude the proof of The-
orem 2.1.2.
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3The Relativistic Spherical δ-Shell
Interaction: Spectrum and

Approximation

3.1 The spherical δ-shell interaction

The aim of this section is to introduce the rappresentation of the Dirac operator
in case of spherically symmetric operator. In particular, in the case of the spherical
δ-shell interaction, we will prove that the domains given by [7] and by [20] coincide.
Unless we say the contrary, from now on we restrict our study to the case

Ω = {x ∈ R3 : |x| < 1}.

For clarity, let us denote B± = Ω± and S2 = ∂Ω.

The electrostatic δ-shell interaction H + λδΣ studied in [7] has already been in-
troduced in (2.2.5) as follow:

D(H + λδ∂Ω) = {u+ Φ(g) : u ∈ H1(R3)4, g ∈ L2(∂Ω)4, λ tr∂Ω u = −(1 + λCσ)g},

(H + λδ∂Ω)ϕ = Hϕ+ λ
ϕ+ + ϕ−

2
σ for ϕ ∈ D(H + λδ∂Ω),

(3.1.1)

where Hϕ in the right hand side of the second statement in (3.1.1) is understood
in the sense of distributions and ϕ± denotes the boundary traces of ϕ when one
approaches to ∂Ω from Ω±.

To justify (3.1.1), a remark is in order. In fact, given G ∈ L2(R3)4, Φ(G, 0) ∈
H1(R3)4, with Φ defined in (2.2.2). On the other hand, give u ∈ H1(R3)4, if we set
G := Hu ∈ L2(R3)4 we get that Φ(G, 0) = u. Moreover, with abuse of notation,
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3. The Relativistic Spherical δ-Shell Interaction

we set Φ(·) = Φ(0, ·). For these reasons (2.2.5) and (3.1.1) coincides. Finally, for
shortness sake, we set

Tλ = H + λδΣ.

We now review the approach from [20], where the authors construct self-adjoint
and rotationally invariant extensions of H|C∞c (R3\S2)4 by using the decomposition in
the classical spherical harmonics, see Appendix B for the details.

Fixed j,mj and kj, let us define

D(t̂mj ,kj) = C∞c ((0, 1) ∪ (1,+∞))2 ⊂ D(̊tmj ,kj), t̂mj ,kjϕ := t̊mj ,kjϕ, for all ϕ ∈ D(t̂mj ,kj).

For any λ ∈ R set

M±
λ =

(
λ/2 ±1
∓1 λ/2

)
.

Notice that if λ ∈ R \ {±2}, M±
λ has null determinant. In [20] it is proved that the

operator t(λ)mj ,kj defined by

D(t(λ)mj ,kj) =
{

(f+, f−) ∈ L2(0,+∞)2 : hmj ,kj(f
+, f−) ∈ L2(0,+∞)2,

(f+, f−) ∈ AC
(
(0, 1) ∪ (1,+∞)

)2
,

M−
λ

(
f+(1+)
f+(1+)

)
+M+

λ

(
f+(1−)
f+(1−)

)
= 0
}
,

t(λ)mj ,kj(f
+.f−) = hmj ,kj(f

+.f−) for all (f+.f−) ∈ D(h(λ)mj ,kj)

(3.1.2)

is a self-adjoint extension of t̂mj ,kj . Here, AC
(
[0, 1] ∪ (1,+∞)

)
denotes the space of

absolutely continuous functions on the open set (0, 1)∪ (1,+∞). Furthermore, if one
sets

δ1(f+, f−) =

f
+(1+) + f+(1−)

2
f−(1+) + f−(1−)

2


then t(λ)mj ,kj = t̊mj ,kj + λδ1 on D(t(λ)mj ,kj), with the understanding that here t̊mj ,kj
just means the differential operator given by the matrix on the right hand side of
(B.8) acting in the sense of distributions. Let us finally introduce the subspaces

H(λ)mj ,kj =

{
1

r

(
f+
mj ,kj

(r)Φ+
mj ,kj

(x̂) + f−mj ,kj(r)Φ
−
mj ,kj

(x̂)
)

: f±mj ,kj∈ D(h(λ)mj ,kj)

}
.

The electrostatic δ-shell interaction with strength λ studied in [20] is given by

D(T̂ (λ)) =
∞⊕

j= 1
2
, 3
2
,...

j⊕
mj=−j

⊕
kj=±(j+1/2)

H(λ)mj ,kj ,

T̂ (λ) ∼=
∞⊕

j= 1
2
, 3
2
,...

j⊕
mj=−j

⊕
kj=±(j+1/2)

t(λ)mj ,kj ,

(3.1.3)
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3.1 The spherical δ-shell interaction

which is a self-adjoint operator.

In order to compare the notions of a δ-shell interaction given by (3.1.1) in the
spherical case and (3.1.3), let us first prove an auxiliary result.

Lemma 3.1.1. Let Ω ⊂ R3 be a bounded domain of class C2. Then

H1(R3 \ ∂Ω)4 = {u+ Φ(g) : u ∈ H1(R3)4, g ∈ H1/2(∂Ω)4}.

Proof. If f = u+ Φ(g) for some u ∈ H1(R3)4 and g ∈ H1/2(∂Ω)4, by [43, Lemma 3.1]
we have that f ∈ H1(R3 \ ∂Ω)4.

Let us consider now f ∈ H1(R3 \ ∂Ω)4. Since f ∈ H1(Ω±)4, by the trace theorem
we also have f± ∈ H1/2(∂Ω)4. Set

g := i (α · ν)(f+ − f−) ∈ H1/2(∂Ω)4

and u = f − Φ(g). Once again, [43, Lemma 3.1] shows that u ∈ H1(R3 \ ∂Ω)4.
Moreover, by (2.2.4),

u+ − u− = f+ − f− − C+g + C−g = f+ − f− + i (α · ν)g = 0,

thus u+ = u− and u has a well defined boundary trace in H1/2(∂Ω)4. This implies
that actually u ∈ H1(R3)4, and we are done since f = u+ Φ(g).

Theorem 3.1.2. Assume that Ω = {x ∈ R3 : |x| < 1}. For any λ ∈ R \ {±2},
the self-adjoint realizations Tλ and T̂ (λ) defined by (3.1.1) and (3.1.3), respectively,
coincide.

Proof. Consider the operator

D(T̃λ) = {u+ Φ(g) : u ∈ H1(R3)4, g ∈ H1/2(S2)4, λ trS2 u = −(1 + λCσ)g},
T̃λ = Tλ|D(T̃λ).

Since H1/2(S2)4 ⊂ L2(S2)4, by construction we get T̃λ ⊂ Tλ. We are going to prove
that

T̂ (λ) ⊂ T̃λ. (3.1.4)

With this at hand, we deduce that T̂ (λ) ⊂ T̃λ ⊂ Tλ and, since both T̂ (λ) and Tλ

are self-adjoint operators for λ 6= ±2, we finally conclude that T̂ (λ) = Tλ and the
theorem follows. Let us focus on (3.1.4). Fixed mj and kj as in (3.1.3), for simplicity
of notation we set

f±(r) = f±j,mj(r), Φ±(x̂) = Φ±j,mj(x̂), H(λ) = H(λ)mj ,kj , t(λ) = t(λ)mj ,kj .
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3. The Relativistic Spherical δ-Shell Interaction

Thus, any ϕ ∈ H(λ) can be written as

ϕ(x) =
1

r

(
f+(r)Φ+(x̂) + f−(r)Φ−(x̂)

)
=

1

r

(
f+(r)
f−(r)

)
·
(

Φ+(x̂)
Φ−(x̂)

)
.

In the last expresion above, “·” just means “scalar product”. As before, we denote by
ϕ± the boundary values of ϕ when we approach S2 from Ω±. LetM±

λ be the operator
defined on H(λ) by the action of the matrix M±

λ on the basis {Φ+,Φ−}, that is, for
any x̂ ∈ S2,

M+
λϕ+(x̂) =

(
M+

λ

(
f+(1+)
f−(1+)

))
·
(

Φ+(x̂)
Φ−(x̂)

)
,

M−
λϕ−(x̂) =

(
M−

λ

(
f+(1−)
f−(1−)

))
·
(

Φ+(x̂)
Φ−(x̂)

)
.

So, in particular, we have that

M+
λϕ−(x̂) +M−

λϕ+(x̂) = 0 for all x̂ ∈ S2. (3.1.5)

Moreover, since ϕ ∈ H1(R3 \ S2)4, using Lemma 3.1.1 we can write ϕ = u+ Φ(g) for
some u ∈ H1(R3)4 and g ∈ L2(S2)4. Then, since ν(x̂) = x̂ for all x̂ ∈ S2, using (2.2.4)
we see that (3.1.5) is equivalent to

0 = (M+
λ +M−

λ ) trS2 u(x̂) +
(
M+

λC+ +M−
λC−

)
g(x̂)

= (M+
λ +M−

λ ) trS2 u(x̂) +
1

2

(
M−

λ −M+
λ

)
i(α · x̂)g(x̂) + (M+

λ +M−
λ )Cσg(x̂).

(3.1.6)

Since M+
λ + M−

λ = λI2, where I2 denotes the 2 × 2 identity matrix, we get that, for
x̂ ∈ S2,

(M+
λ +M−

λ )u(x̂) = λu(x̂), (3.1.7)

(M+
λ +M−

λ )Cσg(x̂) = λCσg(x̂). (3.1.8)

Note also that
1

2

(
M−

λ −M+
λ

)
=

(
0 −1
1 0

)
,

that is the matrix that represent the operator −i(α · x̂) on the basis {Φ+,Φ−} (see
(B.7)). So

1

2

(
M−

λ −M+
λ

)
(iα · x̂)g(x̂) = g(x̂) (3.1.9)

for x̂ ∈ S2. Combining (3.1.7), (3.1.8) and (3.1.9), (3.1.6) becomes

0 = λ trS2 u+ (1 + λCσ)g.

In conclusion, we have seen that if ϕ ∈ H(λ) then ϕ ∈ D(Tλ). Since these arguments
are valid for any mj and kj, (3.1.4) follows.

60



3.1 The spherical δ-shell interaction

Remark 3.1.3. From the proof of Theorem 3.1.2 we also see that if λ 6= ±2 then
T̃λ = Tλ, which means that the condition λ trS2 u = −(1 + λCσ)g in (3.1.1) forces g
to belong to H1/2(S2)4, as proved in [49].

3.1.1 The spectrum of the spherical δ-shell interaction

In this section we answer affirmatively a question posed in [8, Section 4.2.3]. As
commented there, this yields a relation between the eigenvalues in the gap (−m,m)

for the electrostatic spherical δ-shell interaction and the minimizers of some precise
quadratic form inequality. Before going further, we must recall some rudiments from
[8, Section 4]. Throughout this section, Ω denotes the unit ball and ∂Ω = S2. Given
a ∈ [−m,m], set

ka(x) =
e−
√
m2−a2|x|

4π|x| I2 and wa(x) =
e−
√
m2−a2|x|

4π|x|3
(

1 +
√
m2 − a2|x|

)
i σ · x

for x ∈ R3 \ {0}. Given f ∈ L2(σ)2 and x ∈ S2, set

Kaf(x) =

∫
S2

ka(x−z)f(z) dσ(z) and W af(x) = lim
ε↘0

∫
{|x−z|>ε}∩S2

wa(x−z)f(z) dσ(z).

Then
Ca

σ =

(
(a+m)Ka W a

W a (a−m)Ka

)
,

where Ca
σ is defined in (2.2.3). The following corresponds to [8, Lemma 4.3].

Lemma 3.1.4. Given a ∈ (−m,m), there exist positive numbers dj±1/2 and purely
imaginary numbers pj±1/2 for all j = 1/2, 3/2, 5/2, . . . , and mj = −j,−j + 1, . . . , j,
such that

(i) Ka ψ
mj
j±1/2 = dj±1/2 ψ

mj
j±1/2 and limj→∞ dj±1/2 = 0. Moreover,

0 ≤ dj±1/2 ≤ d0 =
1− e−2

√
m2−a2

2
√
m2 − a2

.

(ii) W a ψ
mj
j±1/2 = pj±1/2 ψ

mj
j∓1/2 and pj+1/2 = −pj−1/2. Moreover,

|pj±1/2|2 =
1

4
− (m2 − a2)dj+1/2 dj−1/2 ≥

1

4
e−2
√
m2−a2

(
2− e−2

√
m2−a2

)
.

The following result allows us to construct eigenstates for Tλ from the eigenfunc-
tions of Ka; it corresponds to [8, Lemma 4.6].
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3. The Relativistic Spherical δ-Shell Interaction

Lemma 3.1.5. Let Tλ be as in (3.1.1). If λ > 0 and a ∈ (−m,m) satisfy

λ2

4
−
(
(m+ a)dj∓1/2 − (m− a)dj±1/2

)
λ = 1 for some j, (3.1.10)

then, for any mj, ψ
mj
j±1/2 gives rise to an eigenfunction for Tλ with eigenvalue a.

Remark 3.1.6. In Lemma 3.1.5, the expression “gives rise to an eigenfunction” means
that, if one defines

g =

(
f
h

)
∈ L2(S2)4, where h = ψ

mj
j±1/2 and f = −

(
1/λ+ (a+m)Ka

)−1
W a h,

setting ϕ = φ ∗ (aΦa(g)) + Φ(g) one gets that Tλϕ = aϕ. Here, Φa is defined as Φ in
(2.2.2) replacing φ by φa.

In [8, Question 4.7], the following question was raised:

Question 3.1.7. Let dj±1/2 be the coefficients given by Lemma 3.1.4. Is it true that
dj+1/2dj−1/2 < d1d0 for all j = 3/2, 5/2, 7/2 . . .?

Theorem 3.1.9 answers it in the affirmative and, as commented at the end of [8,
Section 4.2.3], it yields the following result related to Lemma 3.1.5. We first recall
the values of d0 and d1 from Lemma 3.1.4 (computed in [8]) and a precise constant
d∗ that will appear below, see [8, equations (4.31), (4.32) and (4.39), respectively]:

d0 =
1− e−2

√
m2−a2

2
√
m2 − a2

,

d1 =
1

2
√
m2 − a2

(
1− 1

m2 − a2
+

(
1 +

1√
m2 − a2

)2

e−2
√
m2−a2

)
,

d∗ =
1

2
√
m2 − a2

− 1

2

(
1 +

1√
m2 − a2

)
e−2
√
m2−a2

.

Corollary 3.1.8. Let a ∈ (−m,m) and λ > 0. Then, for any f ∈ L2(σ)2,∫
S2

|f |2 dσ ≤ 1/λ+ (m+ a)d0

2d2
∗

∫
S2

(
1/λ+ (m+ a)Ka

)−1
W af ·W af dσ

+
1

2(1/λ+ (m+ a)d0)

∫
S2

(
1/λ+ (m+ a)Ka

)
(σ · ν)f · (σ · ν)f dσ.

(3.1.11)

The equality in (3.1.11) is only attained at linear combinations of ψl1 for l ∈ {−1/2, 1/2}.
If

λ2

4
−
(
(m+ a)d0 − (m− a)d1

)
λ = 1 (3.1.12)
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3.1 The spherical δ-shell interaction

then the minimizers of (3.1.11) give rise to eigenfunctions of Tλ. Besides, these
conclusions also hold if we exchange the roles of d0 and d1 in (3.1.11) and (3.1.12)

and we replace ψl1 by ψl0 (that is, we exchange the roles of j + 1/2 and j − 1/2 for
j = 1/2).

Theorem 3.1.9. Let dj±1/2 be the coefficients given by Lemma 3.1.4. Then,

dj±1/2 = I(j+1/2)±1/2

(√
m2 − a2

)
K(j+1/2)±1/2

(√
m2 − a2

)
, (3.1.13)

where I and K denote the standard second order Bessel’s functions. Moreover,

dj+1/2dj−1/2 < d0d1 for all j = 3/2, 5/2, 7/2 . . .. (3.1.14)

Proof. Let us first compute dj±1/2 in terms of Bessel’s functions. Fixed mj and kj,
due to [61, Lemma 4.15] and Theorem 3.1.2 it is enough to find some a ∈ (−m,m)

which is an eigenvalue for the operator t(λ)mj ,kj . We want to find some(
f+

f−

)
∈ D(t(λ)mj ,kj)

verifying the following system of differential equations:{
(m− a)f+ + (−∂r +

kj
r

)f− = 0,

(∂r +
kj
r

)f+ − (m+ a)f− = 0.
(3.1.15)

Set M =
√
m2 − a2. Since kj = ±(j + 1/2), we set

f+(r) =

{
A
√
r I(j+1/2)±1/2(Mr) if r < 1

B
√
rK(j+1/2)±1/2(Mr) if r > 1

f−(r) =

{
AM
m+a

√
r I(j+1/2)∓1/2(Mr) if r < 1

− BM
m+a

√
rK(j+1/2)∓1/2(Mr) if r > 1

,

(3.1.16)

for some (A,B) 6= (0, 0). Setting

ϕ =

(
f+

f−

)
,

then ϕ ∈ L2(0,+∞)2, hmj ,kjϕ ∈ L2(0,+∞)2, ϕ ∈ AC
(
(0, 1) ∪ (1,+∞)

)2 and ϕ

satisfies (3.1.15). Thus, to get that ϕ is an eigenvector for the operator h(λ)mj ,kj it
remains to prove that ϕ ∈ D(h(λ)mj ,kj), that is we have to show that M−

λ ϕ(1+) +

M+
λ ϕ(1−) = 0. In other words, the following linear system must hold:

A
(

M
a+m

I(j+1/2)∓1/2(M) + λ
2
I(j+1/2)±1/2(M)

)
+B

(
M
a+m

K(j+1/2)∓1/2(M) + λ
2
K(j+1/2)±1/2(M)

)
= 0,

A
(

λM
2(a+m)

I(j+1/2)∓1/2(M)− I(j+1/2)±1/2(M)
)

+B
(
K(j+1/2)±1/2(M)− λM

2(a+m)
K(j+1/2)∓1/2(M)

)
= 0.
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3. The Relativistic Spherical δ-Shell Interaction

Since this is a 2 × 2 homogeneous linear system on A and B and we are supposing
that (A,B) 6= (0, 0), we deduce that the associated matrix has null determinant. This
means that

0 = − λ2M

4(a+m)

(
I(j+1/2)±1/2(M)K(j+1/2)∓1/2(M) + I(j+1/2)∓1/2(M)K(j+1/2)±1/2(M)

)
+

λ

m+ a

(
(m+ a)I(j+1/2)±1/2(M)K(j+1/2)±1/2(M)

− (m− a)I(j+1/2)∓1/2(M)K(j+1/2)∓1/2(M)
)

+
M

m+ a

(
I(j+1/2)±1/2(M)K(j+1/2)∓1/2(M) + I(j+1/2)∓1/2(M)K(j+1/2)±1/2(M)

)
.

(3.1.17)

By [48, Equation 10.20.2] we get that

I(j+1/2)±1/2(M)K(j+1/2)∓1/2(M) + I(j+1/2)∓1/2(M)K(j+1/2)±1/2(M) =
1

M
. (3.1.18)

Finally, combining (3.1.17) and (3.1.18) we see that the following must hold:

λ2

4
−
(

(m+ a)I(j+1/2)±1/2(M)K(j+1/2)±1/2(M)

− (m− a)I(j+1/2)∓1/2(M)K(j+1/2)∓1/2(M)
)
λ− 1 = 0.

(3.1.19)

In conclusion, if we define

Dj±1/2(a, λ) =
λ2

4
−
(

(m+ a)I(j+1/2)±1/2(M)K(j+1/2)±1/2(M)

− (m− a)I(j+1/2)∓1/2(M)K(j+1/2)∓1/2(M)
)
λ− 1,

(3.1.20)

and we take ϕ =

(
f+

f−

)
with f+ and f− given by (3.1.16), then ϕ is an eigenfunction

for t(λ)mj ,kj with eigenvalue a if and only if Dj±1/2(a, λ) = 0. In this case the function

ψ(x) =
1

r

(
f+(r)Φ+

mj ,kj
(x̂) + f−(r)Φ−mj ,kj(x̂)

)
,

is an eigenfunction for Tλ with eigenvalue a. For this reason, a comparison of (3.1.19)
and (3.1.10) yields (3.1.13), as desired.

Let us finally prove (3.1.14). We set n = j + 1/2 ∈ N. Since j > 1/2, we have
n > 1. Then (3.1.14) is equivalent to

dndn−1 < d0d1, for all n ≥ 2. (3.1.21)

We are going to show (3.1.21) by induction. For n = 2, we have to check that
d1d2 < d1d0, which is equivalent to d1(d2 − d0) < 0. Since dn ≥ 0 for all n > 1, it is
enough to show that d2 − d0 < 0. But, from (3.1.13) we easily get that

d2 − d0 =
3 (M3 + 2M2 + 3M + 3) sinh(M)− 3M (M2 + 3M + 3) cosh(M)

eMM5
< 0.
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3.2 Approximation by spherical short-range potentials

Let us now suppose that (3.1.21) holds for n− 1. Then, we can split

dn−1dn − d0d1 = dn−1(dn − dn−2) + dn−1dn−2 − d0d1.

On one hand, dn−1dn−2 − d0d1 < 0 by (3.1.21). On the other hand, dn − dn−2 ≤ 0 by
[10, Theorem 2] and dn−1 ≥ 0. Thus (3.1.21) holds for all n ≥ 2.

3.2 Approximation by spherical short-range poten-
tials

In this section we investigate the spectral relation between the electrostatic δ-
shell interaction on the boundary of a smooth domain and its approximation by
the coupling of the Dirac operator with a short-range potential which depends on
a parameter ε > 0 in such a way that it shrinks to the boundary of the domain as
ε→ 0; see the definition of Tµ,ε below. From Theorem 2.1.2 we know that if a ∈ σ(Tλ),
where here σ(·) denotes the spectrum, then there exists a sequence {aε} such that
aε ∈ σ(Tµ,ε) and aε → a for ε → 0, where λ = 2 tan

(
µ
2

)
. However, the reciprocal

spectral implication may not hold in general. In this section we are going to show that
the reverse does hold in the spherical case, that is, if aε → a with aε ∈ σ(Tµ,ε), then
a ∈ σ(Tλ) (see Theorem 3.2.2 below). In particular this means that, when passing
to the limit, we don’t lose any element of the spectrum for electrostatic interactions
with potentials shrinking on S2.

Given ε > 0 and x ∈ R3, we define

Vε(x) =
1

2ε
χ(1−ε,1+ε)(|x|) and Vε = VεI4,

where I4 denotes the 4×4 identity matrix. For µ ∈ R, we also introduce the operators

D(T̊µ,ε) = C∞c (R3)4 and T̊µ,ε = H + µVε,

D(Tµ,ε) = H1(R3)4 and Tµ,ε = H + µVε.

Since |Vε| ≤ 1
2ε
, T̊µ,ε is essentially self-adjoint and Tµ,ε is self-adjoint by [61, Theorem

4.2]. Moreover σess(Tµ,ε) = σess(H) = σ(H) = (−∞,−m]∪ [m,+∞). For this reason
we are looking for some a ∈ (−m,m) eigenvalue of Tµ,ε.

Our aim is to find a precise relation between a, µ and ε, say Rε(a, µ), which must
hold in order to get an eigenfunction for H + µVε with eigenvector a. Then, we will
take the limit of Rε(a, µ) for ε→ 0 and we will compare the result to (3.1.10). To do
so, we use the same approach developed in Section 3.1.1.
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3. The Relativistic Spherical δ-Shell Interaction

Clearly, if µ = 0 we get that Tµ,ε = H, i.e. we are not perturbing the free
Hamiltonian H, thus we can exclude this case in our study. Assuming that µ 6= 0,

we note that if a is an eigenvalue of Tµ,ε with eigenfunction ψ =

(
φ
χ

)
then −a is an

eigenvalue of T−µ,ε with eigenfunction ψ̃ =

(
−χ
φ

)
. For this reason, from now on, we

will further assume that µ > 0.

Observe that T̊µ,ε leaves the partial wave subspace Hmj ,kj invariant. Its action on
each subspace is represented with respect to the basis {Φ+

mj ,kj
,Φ−mj ,kJ} by the operator

D(̊t(µ, ε)mj ,kj) = C∞c (0,+∞)2,

h̊(µ, ε)mj ,kj

(
f+

f−

)
=

(
m+ µ

2ε
χ(1−ε,1+ε) −∂r +

kj
r

∂r +
kj
r

−m+ µ
2ε
χ(1−ε,1+ε)

)(
f+

f−

)
.

(3.2.1)

Since Tµ,ε is self-adjoint we get that the operator

D
(
t(µ, ε)mj ,kj

)
=
{

(f+, f−) ∈ L2(0,+∞)2 : t(µ, ε)mj ,kj(f
+, f−) ∈ L2(0,+∞)2,

(f+, f−) ∈ AC(0,+∞)2
} ,

(3.2.2)

is self-adjoint. The action of t(µ, ε)mj ,kj on its domain of definition is formally given
by the right hand side of the second equation in (3.2.1). Moreover, a ∈ (−m,m) is an
eigenvalue for Tµ,ε if and only if a is an eigenvalue for t(µ, ε)mj ,kj for some {mj, kj}.
For this reason, we want to solve{

(m− a)f+ + (−∂r + k
r
)f− = 0

(∂r + k
r
)f+ − (m+ a)f− = 0

if 0 < r < 1− ε or r > 1 + ε,{
(m− a+ µ

2ε
)f+ + (−∂r + k

r
)f− = 0

(∂r + k
r
)f+ − (m+ a− µ

2ε
)f− = 0

if 1− ε < r < 1 + ε

for
(
f+

f−

)
∈ D

(
t(µ, ε)mj ,kj

)
.

Since kj = ±(j + 1/2), a non-trivial solution is given by

f+(r) =


A
√
r I(j+ 1

2)± 1
2
(Mr) r < 1− ε

B1

√
r J(j+ 1

2)± 1
2
(Lr) +B2

√
r Y(j+ 1

2)± 1
2
(Lr) 1− ε < r < ε+ 1

C
√
r K(j+ 1

2)± 1
2
(Mr) r > 1 + ε

f−(r) =


AM
a+m

√
r I(j+ 1

2)∓1/2(Mr) 0 < r < 1− ε,
L
√
r

a− µ
2ε

+m

(
B1 J(j+ 1

2)∓ 1
2
(Lr) +B2 Y(j+ 1

2)∓ 1
2
(Lr)

)
1− ε < r < 1 + ε,

− CM
a+m

√
r K(j+ 1

2))∓1/2(Mr) r > 1 + ε,

(3.2.4)
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3.2 Approximation by spherical short-range potentials

where J and Y denote the first order Bessel’s functions and I and K the second order
Bessel’s functions,

M =
√
m2 − a2, L =

√( µ
2ε
− a
)2

−m2

and (A,B1, B2, C) 6= 0 are some constants. Note that M ∈ R by the assumptions on
a, but L could be complex. Note also that f+, f− ∈ H1

(
(0,+∞)\{1−ε, 1+ε}, r dr

)
.

To ensure that they belong to D
(
t(µ, ε)mj ,k

)
we have to verify that both f+ and f−

are continuous in 1− ε and 1 + ε, which means that the following linear system must
hold:

0 = A
√

1− ε I(j+1/2)±1/2(M(1− ε))−B1

√
1− ε J(j+1/2)±1/2(L(1− ε))

−B2

√
1− ε Y(j+1/2)±1/2(L(1− ε)),

0 = A

√
1− ε M I(j+1/2)∓1/2(M(1− ε))

a+m
−B1

2εL
√

1− ε J(j+1/2)∓1/2(L(1− ε))
2aε− µ+ 2mε

−B2

2εL
√

1− ε Y(j+1/2)∓1/2(L(1− ε))
2aε− µ+ 2mε

,

0 = B1

√
1 + ε J(j+1/2)±1/2(L(1 + ε)) +B2

√
1 + ε Y(j+1/2)±1/2(L(1 + ε))

−C
√

1 + ε K(j+1/2)±1/2(M(1 + ε)),

0 = B1

2εL
√

1 + ε J(j+1/2)∓1/2(L(1 + ε))

2aε− µ+ 2mε
+B2

2εL
√

1 + ε Y(j+1/2)∓1/2(L(1 + ε))

2aε− µ+ 2mε

+C

√
1 + ε M K(j+1/2)∓1/2(M(1 + ε))

a+m
.

(3.2.5)
Since this is a 4 × 4 homogeneous linear system on A, B1, B2 and C and we are
assuming that (A,B1, B2, C) 6= 0, we deduce that the associated matrix has null
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3. The Relativistic Spherical δ-Shell Interaction

determinant. So, if we set

Dε
j±1/2(a, µ) :=

2(a+m) K(j+1/2)±1/2

(√
m2 − a2(1 + ε)

)
ε(−2aε+ µ− 2mε)2

×
{
−2Lε(a+m) I(j+1/2)±1/2

(√
m2 − a2(1− ε)

)
×
[
J(j+1/2)∓1/2(L(1 + ε)) Y(j+1/2)∓1/2(L(1− ε))
− J(j+1/2)∓1/2(L(1− ε)) Y(j+1/2)∓1/2(L(1 + ε))

]
−
√
m2 − a2(2aε− µ+ 2mε) I(j+1/2)∓1/2

(√
m2 − a2(1− ε)

)
×
[
J(j+1/2)±1/2(L(1− ε)) Y(j+1/2)∓1/2(L(1 + ε))

− J(j+1/2)∓1/2(L(1 + ε)) Y(j+1/2)±1/2(L(1− ε))
]}

+

√
m2 − a2 K(j+1/2)∓1/2

(√
m2 − a2(1 + ε)

)
ε2L(2aε− µ+ 2mε)

×
{
−2Lε(a+m) I(j+1/2)±1/2)

(√
m2 − a2(1− ε)

)
×
[
J(j+1/2)±1/2(L(1 + ε)) Y(j+1/2)∓1/2(L(1− ε))
− J(j+1/2)∓1/2(L(1− ε)) Y(j+1/2)±1/2(L(1 + ε))

]
+
√
m2 − a2(2aε− µ+ 2mε) I(j+1/2)∓1/2

(√
m2 − a2(1− ε)

)
×
[
J(j+1/2)±1/2(L(1 + ε)) Y(j+1/2)±1/2(L(1− ε))
− J(j+1/2)±1/2(L(1− ε))Y(j+1/2)±1/2(L(1 + ε))

]}
,

(3.2.6)

then ε(ε2−1)
(a+m)2D

ε
j±1/2(a, µ) is the determinant of the matrix associated to the linear

system (3.2.5). It vanishes if and only if

Dε
j±1/2(a, µ) = 0. (3.2.7)

We can conclude that, if (f+, f−) are defined as in (3.2.4), (f+, f−) is an eigenfunction
for h(µ, ε)mj ,kj with eigenvalue a if and only if Dε

j±1/2(a, µ) = 0. This means that the
function

ψ(x) =
1

r

(
f+(r)Φ+

mj ,kj
(x̂) + f−(r)Φ−mj ,kj(x̂)

)
is an eigenfunction for Tµ,ε with eigenvalue a.

In order to compare (3.2.6) and (3.1.19), let us draw some pictures of these rela-
tions for some concrete values of the underlying parameters, say m = 1, k = 1 and
ε = 2−10. Figures 3.1 and 3.2 describe the set of (a, λ) ∈ (−1, 1)× (0, 10) that verify
(3.2.7) and (3.1.19), respectively.
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Figure 3.1 The set of points (a, µ) sat-
isfying (3.2.7).
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Figure 3.2 The set of points (a, λ) sat-
isfying (3.1.19).

Looking at Figures 3.1 and 3.2 we note that there is no apparent relation between
(3.2.7) and (3.1.19). However, the next result proves that there is indeed a precise
connection between both equations when one takes the limit ε→ 0 in Dε

j±1/2(a, µ).

Lemma 3.2.1. Let j = 1/2, 3/2, . . . and Dε
j±1/2 and Dj±1/2 be defined by (3.2.6)

and (3.1.20), respectively. Then, for any µ > 0,

lim
ε→0

Dε
j±1/2(a, µ) =

4(a+m)

µπ
(

1 + tan
(
µ
2

)2
)Dj±1/2

(
a, 2 tan

(
µ
2

))
uniformly on a ∈ (−m,m).

Proof. Note that L → +∞ uniformly in a ∈ (−m,m) when ε → 0, thus we can use
the asymptotics

Jn(z) =

√
2

πz

(
cos
(
z − 1

2
nπ − 1

4
π
)

+ e|=(z)|o(1)
)

for |z| → +∞,

Yn(z) =

√
2

πz

(
sin
(
z − 1

2
nπ − 1

4
π
)

+ e|=(z)|o(1)
)

for |z| → +∞,

see [48, Equation 10.7.8]. Inserting these two relations in (3.2.6) and taking ε → 0,
we get that, uniformly on a ∈ (−m,m),

lim
ε→0

Dε
j±1/2(a, µ)

=
4

µπ

{
M I(j+1/2)∓1/2(M)

×
(
(a+m) cos(µ) K(j+1/2)±1/2(M)−M sin(µ) K(j+1/2)∓1/2(M)

)
+ (a+m) I(j+1/2)±1/2(M)

×
(
(a+m) sin(µ) K(j+1/2)±1/2(M) +M cos(µ) K(j+1/2)∓1/2(M)

)}
.
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3. The Relativistic Spherical δ-Shell Interaction

Setting t = 2 tan
(
µ
2

)
, we know that sin(µ) = t

1+ t2

4

and cos(µ) =
1− t

2

4

1+ t2

4

. Using (3.1.18),
hence

lim
ε→0

Dε
j±1/2(a, µ) =

16(a+m)

µπ(4 + t2)

(t2
4
−
(

(m+ a) I(j+1/2)±1/2(M) K(j+1/2)±1/2(M)

− (m− a) I(j+1/2)∓1/2(M) K(j+1/2)∓1/2(M)
)
t− 1

)
,

which coincides with (3.1.20) if one replaces λ by t = 2 tan
(
µ
2

)
in there.

The following result resumes what we have proven so far with the aid of Lemma
3.2.1.

Theorem 3.2.2. Let µ ∈ R \ {0} and

λ = 2 tan
(µ

2

)
.

Let h(λ)mj ,kj be as in (3.1.2) and, for ε > 0, let h(µ, ε)mj ,kj be as in (3.2.2). If
aε ∈ σp(h(µ, ε)mj ,kj) and limε→0 aε = a for some a ∈ (−m,m), then a ∈ σp(h(λ)mj ,kj).
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4Self-Adjoint Extensions for the Dirac
Operator with Coulomb-Type

Spherically Symmetric Potentials

4.1 Introduction: the minimal operator and the max-
imal operator

In this chapter we are interested in the self-adjoint realizations of the differential
operator T := H+V, where H is the free Dirac operator in R3 defined in (1.1.7) and

V(x) :=
1

|x|

(
νI4 + µβ + λ

(
−iα · x|x| β

))
, for x 6= 0, (4.1.1)

where ν, λ and µ are real numbers, and I4 is the 4× 4 identity matrix.

In relativistic quantum mechanics, the Dirac operator T describes relativistic
spin–1

2
particles in an external field, and it is hence important to determine if it is

self-adjoint on an appropriate domain. In detail, setting

V = Vel + Vsc + Vam := vel(x)I4 + vsc(x)β + vam(x)

(
−iα · x|x| β

)
,

for real valued vel, vsc, vam, the potentials Vel,Vsc,Vam are said respectively an elec-
tric, scalar, and anomalous magnetic potential. In particular, for vel(x) := ν/|x|,
the potential Vel = velI4 is called Coulomb potential, since it describes the Coulomb
electrostatic interaction.

The aim of this chapter is to give a simple and unified approach to the problem
of the self-adjointness of T .

In order to state our results, we need to introduce some notations and well known
results. It is well-known that the free Dirac operator H is self-adjoint on D(H) :=

71



4. The Dirac Operator with Coulomb-Type Spherically Potentials

H1(R3)4, see 1.1.1. We define the maximal operator Tmax as follows:

D(Tmax) := {ψ ∈ L2(R3)4 : Tψ ∈ L2(R3)4}, Tmaxψ := Tψ for ψ ∈ D(Tmax),

(4.1.2)
where Tψ ∈ L2(R3)4 has to be read in the distributional sense: the linear form `ψ :

ϕ ∈ C∞c (R3)4 7→
∫
R3 ψ Tϕdx admits a unique extension ˆ̀

ψ defined on L2(R3)4 and by
Riesz theorem there exists a unique Tmaxψ := η ∈ L2(R3)4, such that ˆ̀

ψ(·) = 〈η, ·〉L2 .
From (1.2.1) it follows that

D(H) ⊂ D(Tmax). (4.1.3)

We define the minimal operator Tmin as follows:

D(Tmin) := C∞c (R3), Tminψ := Tψ, for ψ ∈ D(Tmin). (4.1.4)

It is easy to see that Tmin is symmetric and (Tmin)∗ = Tmax. Finally, we define T̊min
as follows:

D(T̊min) := C∞c (R3 \ {0}), T̊minψ := Tminψ, for ψ ∈ D(T̊min).

The operator T̊min is symmetric and, for all ψ ∈ D(T̊min), T̊minψ is evaluated in the
classical sense. We remark that Tmin = T̊min (see [4, Remark 1.1]): in particular
(Tmin)∗ = (T̊min)∗ = Tmax.

In this chapter we describe self-adjoint extensions T of the minimal operator Tmin.
We remark that T is consequently a restriction of the maximal operator, i.e.

Tmin ⊆ T = T ∗ ⊆ Tmax.

In fact the main focus of this chapter is studying in detail the restrictions of the
maximal operator Tmax. Following this program, we understand the behaviour of T
on the so called partial wave subspaces associated to the Dirac equation: such spaces
are left invariant by H and potentials V in the class considered in (4.1.1). We sketch
here this topic, referring to Appendix B for further details.

We know that that the operators H, T̊min and Tmax can be decomposed as direct
sum of the partial wave operators, that is

H ∼=
∞⊕

j= 1
2
, 3
2
,...

j⊕
mj=−j

⊕
kj=±(j+1/2)

hmj ,kj ,

T̊min ∼=
∞⊕

j= 1
2
, 3
2
,...

j⊕
mj=−j

⊕
kj=±(j+1/2)

t̊mj ,kj ,

Tmax ∼=
∞⊕

j= 1
2
, 3
2
,...

j⊕
mj=−j

⊕
kj=±(j+1/2)

t∗mj ,kj ,
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4.2 Main results

where “∼=” means that the operators are unitarily equivalent and hmj ,kj , t̊mj ,kj and
t∗mj ,kj are respectively defined in (B.10), (B.8) and (B.9).

In this framework the operator T can be decomposed as

T ∼=
∞⊕

j= 1
2
, 3
2
,...

j⊕
mj=−j

⊕
kj=±(j+1/2)

tmj ,kj .

We will characterize all the self-adjoint operators T such that every tmj ,kj is sef-
adjoint: this property is linked to the quantity

δ = δ(j, kj,mj, λ, µ, ν) := (kj + λ)2 + µ2 − ν2. (4.1.5)

4.2 Main results

We can now state the main results of this chapter. We fix j ∈ {1/2, 3/2, . . .},mj ∈
{−j, . . . , j}, kj ∈ {j + 1/2,−j − 1/2}.

Theorem 4.2.1 (Case δ ≥ 1/4). Let t̊mj ,kj and t∗mj ,kj be defined respectively as in
(B.8) and (B.9) for ν, µ, λ ∈ R, and δ ∈ R as in (4.1.5). Assume δ ≥ 1

4
and set

γ :=
√
δ. The following hold:

(i) If γ > 1
2
then t̊mj ,kj is essentially self-adjoint on C∞c (0,+∞)2 and

D
(̊
tmj ,kj

)
= D(hmj ,kj).

(ii) If γ = 1
2
then t̊mj ,kj is essentially self-adjoint on C∞c (0,+∞)2 and

D(hmj ,kj) ⊂ D(̊tmj ,kj).

Theorem 4.2.2 (Case 0 ≤ δ < 1/4). Under the same assumptions of Theorem 4.2.1,
assume 0 ≤ δ < 1

4
and set γ :=

√
δ. The following hold:

(i) If 0 < γ < 1/2 there is a one (real) parameter family
{
t(θ)mj ,kj

}
θ∈[0,π)

of self-
adjoint extensions t̊mj ,kj ⊂ t(θ)mj ,kj = t(θ)∗mj ,kj ⊂ t∗mj ,kj . Moreover (f+

mj ,kj
, f−mj ,kj) ∈

D
(
t(θ)mj ,kj

)
if and only if there exists (A+, A−) ∈ C2 such that

A+ sin θ + A− cos θ = 0,

lim
r→0

∣∣∣∣∣
(
f+
mj ,kj

(r)

f−mj ,kj(r)

)
−D

(
A+rγ

A−r−γ

) ∣∣∣∣∣r−1/2 = 0,
(4.2.1)
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where D ∈ R2×2 is invertible and

D :=


1

2γ(λ+k−γ)

(
λ+ kj − γ ν − µ
−(ν + µ) −(λ+ kj − γ)

)
if λ+ kj − γ 6= 0,

1
−4γ2

(
µ− ν 2γ

2γ −(ν + µ)

)
if λ+ kj − γ = 0.

(4.2.2)

Conversely, any self-adjoint extension tmj ,kj of t̊mj ,kj verifies tmj ,kj = t(θ)mj ,kj
for some θ ∈ [0, π).

(ii) If γ = 0 there is a one (real) parameter family {t(θ)mj ,kj}θ∈[0,π) of self-adjoint
extensions t̊mj ,kj ⊂ t(θ)mj ,kj = t(θ)∗mj ,kj ⊂ t∗mj ,kj . Moreover (f+

mj ,kj
, f−mj ,kj) ∈

D
(
t(θ)mj ,kj

)
if and only if there exist (A+, A−) ∈ C2 such that

A+ sin θ + A− cos θ = 0,

lim
r→0

∣∣∣∣∣
(
f+
mj ,kj

(r)

f−mj ,kj(r)

)
− (M log r + I2)

(
A+

A−

) ∣∣∣∣∣r−1/2 = 0,
(4.2.3)

with M ∈ R2×2, M2 = 0 to be

M :=

(
−(kj + λ) −ν + µ
ν + µ kj + λ

)
. (4.2.4)

Conversely, any self-adjoint extension tmj ,kj of t̊mj ,kj verifies tmj ,kj = t(θ)mj ,kj
for some θ ∈ [0, π).

Theorem 4.2.3 (Case δ < 0). Under the same assumptions of Theorem 4.2.1, as-
sume δ < 0 and set γ :=

√
|δ|. There is a one (real) parameter family

{
t(θ)mj ,kj

}
θ∈[0,π)

of self-adjoint extensions t̊mj ,kj ⊂ t(θ)mj ,kj = t(θ)∗mj ,kj ⊂ t∗mj ,kj . Moreover (f+
mj ,kj

, f−mj ,kj) ∈
D
(
t(θ)mj ,kj

)
if and only if there exists A ∈ C such that

lim
r→0

∣∣∣∣∣
(
f+
mj ,kj

(r)

f−mj ,kj(r)

)
−D

(
Aeiθriγ

A
√

ν+µ
ν−µe

−iθr−iγ

)∣∣∣∣∣r−1/2 = 0,

where D ∈ C2×2 is invertible and equals

D :=
1

2iγ(λ+ k − iγ)

(
λ+ k − iγ ν − µ
−(ν + µ) −(λ+ k − iγ)

)
. (4.2.5)

Conversely, any self-adjoint extension tmj ,kj of t̊mj ,kj verifies tmj ,kj = t(θ)mj ,kj for
some θ ∈ [0, π).

Remark 4.2.4. The quantity δ in (4.1.5) was already considered in [4]: in Theorem
2.7 Arai studies properties of self-adjointness for the restriction of T on the partial
wave subspaces for δ > 0, by means of the Von Neumann deficiency indexes theory.
We can treat the general case δ ∈ R, and our approach has the value of giving more
informations on the domain of self-adjointness.
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4.3 Classification of the self-adjoint extensions

Remark 4.2.5. In the proof of Theorems 4.2.1, 4.2.2 and 4.2.3 we rely on the properties
of V

[K,V(x)] = 0, (4.2.6)

[∂r, |x|V(x)] = 0, (4.2.7)

where K is the spin-orbit operator defined in (B.4). Indeed from (4.2.6) we have that
V leaves the partial wave subspaces Hmj ,kj invariant and from (4.2.7) we have that
V is critical with respect to the scaling associated to the gradient. This is why we are
considering potentials as in (4.1.1) in our results. This rigidity is not essential, since
the self-adjointness is stable under L∞ perturbations: for potentials W(x) such that
W−V ∈ L∞(R3;C4×4), H +W(x) is self-adjoint whenever H +V(x) is self-adjoint.
In detail, if W(x) = w(x)/|x|, this amounts to require that for almost all x ∈ R3∣∣∣∣w(x)−

(
νI4 + µβ − iλα · x|x|

)∣∣∣∣ ≤ C|x|,

for some λ, µ, ν ∈ R and C > 0. More general perturbation results are possible, for
example exploting the Kato-Rellich perturbation Theory, and they will be matter of
future investigation.

Corollary 4.2.6 (Lorentz-scalar Potential). Let V, Tmax and Tmin be defined as in
(4.1.1), (4.1.2), (4.1.4) respectively, with λ = ν = 0. Then then for all µ ∈ R, Tmin
is essentially self-adjoint on C∞c (R3 \ {0})4, and D(Tmin) = D(Tmax) = H1(R3)4.

4.3 Classification of the self-adjoint extensions

4.3.1 Trace theorems and Hardy-type inequalities

This section is devoted to Hardy-type inequalities.

For sake of clarity we prove the following and well-known result:

Lemma 4.3.1. Let f be a distribution on (a, b) ⊂ R such that f ′ is an integrable
function on (a, b). Then f ∈ AC[a, b] and

f(t)− f(s) =

∫ t

s

f ′(r) dr for any s, t ∈ [a, b]. (4.3.1)

Proof. For any t ∈ [a, b] we set

g(t) :=

∫ t

a

f ′(r) dr.
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4. The Dirac Operator with Coulomb-Type Spherically Potentials

Thanks to the integrability of f ′ we get that g ∈ AC[a, b] and so g is differentiable
almost everywhere on [a, b]. Then for almost every t ∈ [a, b]

g′(t) = lim
h→0

g(t+ h)− g(t)

h
= lim

h→0

1

h

∫ t+h

t

f ′(r)dr = f ′(t), (4.3.2)

where in the last equality we used Lebesgue differentiation Theorem. Thanks to
(4.3.2) there exists c ∈ C such that f = g+ c in the sense of distributions, that gives
f ∈ AC[a, b] and (4.3.1).

Proposition 4.3.2. Let f be a distribution on (0,+∞). Let us assume that there
exist a ∈ R such that ∫ +∞

0

|f ′(r)|r2a dr <∞. (4.3.3)

Then f ∈ AC[ε,M ] for any 0 < ε < M < +∞ and the following hold:

(i) If a < 1
2
, then f ∈ AC[0, 1] and

lim
t→0
|f(t)− f(0)|t−( 1

2
−a) = 0. (4.3.4)

(ii) If a > 1
2
, there exists f(+∞) ∈ C such that

lim
t→+∞

|f(t)− f(+∞)|ta− 1
2 = 0. (4.3.5)

(iii) If a = 1
2
for any R > 0

lim
t→R

|f(t)− f(R)|
log
(
R
t

) = 0. (4.3.6)

Remark 4.3.3. The function r ∈ (0,+∞) 7→ ra is C∞(0,+∞), then the distribution
f ′ra is well defined. Equation (4.3.3) has to be understood in the sense of distri-
butions, i.e. we will assume that there exists C > 0 such that for any test function
ϕ ∈ C∞c (0,+∞)

|〈f ′ra, ϕ〉| ≤ C||ϕ||L2 . (4.3.7)

Thanks to (4.3.7) and the density of C∞c (0,+∞) in L2(0,+∞) we get that there
exists a unique linear and bounded functional T : L2(0,+∞) → C that extends the
linear functional f ′ra. By Riesz theorem, there exists a unique g ∈ L2(0,+∞) such
that T = 〈·, g〉L2 . In particular, for any test function ϕ we get that 〈f ′ra, ϕ〉 =

∫
gϕ,

that is f ′ra = g, which gives f ′ = gr−a ∈ L1
loc(0,∞) and (4.3.3).

Proof. Let 0 < ε < M < +∞. From (4.3.3) we get that f ′ is integrable on (ε,M).
Then (4.3.1) holds and so f ∈ AC[ε,M ].
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(i) Let us assume a < 1
2
. By the Hölder inequality, we get that∫ 1

0

|f ′(r)| dr ≤
(∫ 1

0

r−2a dr

)1/2(∫ ∞
0

|f ′(r)|2r2a dr

)1/2

<∞, (4.3.8)

that is f ′ ∈ L1(0, 1). Then f ∈ AC[0, 1] and (4.3.1) holds for t, s ∈ [0, 1]. In
particular, combining (4.3.1) and (4.3.8) we get that for t ∈ (0, 1]:

|f(t)− f(0)| ≤ Ct
1
2
−a
(∫ t

0

|f ′(r)|2r2a dr

)1/2

.

Thanks to (4.3.3) and by the absolute continuity of Lebesgue integral, (4.3.4) is
proved.

(ii) We assume now that a > 1
2
. By the Hölder inequality, we get that∫ +∞

1

|f ′(r)| dr ≤
(∫ +∞

1

r−2a dr

)1/2(∫ +∞

0

|f ′(r)|2r2a dr

)1/2

<∞, (4.3.9)

that is f ′ ∈ L1(1,+∞). We will assume that f is real-valued: for a complex-valued
f the same reasoning can be repeated for its real part and its imaginary part. Let
us fix s ∈ [1,+∞). Since a > 1

2
, thanks to (4.3.1) and reasoning as in (4.3.9) for any

t ∈ (1,+∞) we get

|f(t)− f(s)| ≤ s1/2−a
√

2a− 1

(∫ +∞

0

|f ′(r)|2r2a dr

)1/2

< +∞. (4.3.10)

Thanks to the triangular inequality we can conclude that f is bounded on [1,+∞).
We set

f−(+∞) := lim inf
r→+∞

f(r) > −∞, f+(+∞) := lim sup
r→+∞

f(r) < +∞.

Thanks to (4.3.10) we get that

f+(+∞)− f−(+∞) ≤ |f+(+∞)− f(s)|+ |f−(+∞)− f(t)| ≤ Cs1/2−a.

Since a > 1
2
, if s → +∞ in the previous expression, we get that f+(+∞) =

f−(+∞) =: f(+∞). Finally (4.3.10) yields (4.3.5) too.

(iii) In the last case a = 1
2
, equation (4.3.6) is proved with the same approach

used to prove (4.3.4).

In the following Proposition we gather some weighted Hardy-type inequalities.
Such results are very well known, but often in the literature there are not details
on the values of the function on the boundaries of the integration domain, a crucial
information for our analysis. This is why we give the proof anyway for the sake of
clarity. We refer to [41] and [42] for details and references.

77



4. The Dirac Operator with Coulomb-Type Spherically Potentials

Proposition 4.3.4. Let f be a distribution on (0,+∞) as in Proposition 4.3.2. Then
the following hold:

(i) if a < 1
2
, then(
a− 1

2

)2 ∫ +∞

0

|f(r)− f(0)|2
r2−2a

dr ≤
∫ +∞

0

|f ′(r)|2r2a dr; (4.3.11)

(ii) if a > 1
2
then(
a− 1

2

)2 ∫ +∞

0

|f(r)− f(+∞)|2
r2−2a

dr ≤
∫ +∞

0

|f ′(r)|2r2a dr; (4.3.12)

(iii) if a = 1
2
then for any R > 0

1

4

∫ +∞

0

|f(r)− f(R)|2
r log2

(
R
r

) dr ≤
∫ +∞

0

|f ′(r)|2r dr. (4.3.13)

Remark 4.3.5. The inequalities (4.3.11), (4.3.12) and (4.3.13) are sharp (in the sense
that the constants on the left hand side cannot be improved) but they do not admit
no-trivial extremizers. In fact, for a 6= 1/2 we set fa(r) := r

1
2
−a. Then

lim
ε→0

∫
ε<|x|<1/ε

(
|f ′a(r)|r2a − |fa(r)|

2

r2−2a

)
dr = 0. (4.3.14)

Nevertheless fa does not verify (4.3.3), because |f ′a(r)|2ra = 1
r
that is integrable nei-

ther close to 0 nor to +∞. This is the reason why we used the limiting formulation in
(4.3.14). If a = 1/2 the same argument can be repeated for f1/2(r) :=

(
log
(
R
r

))−1/2.

Proof. (i) Let us assume a < 1
2
. Let 0 < ε < M . With an explicit computation:

0 ≤
∫ M

ε

∣∣∣∣f ′(r) ra +

(
a− 1

2

)
f(r)− f(0)

r1−a

∣∣∣∣2 dr
=

∫ M

ε

|f ′|2r2a dr +

(
a− 1

2

)2 ∫ M

ε

|f(r)− f(0)|2
r2−2a

dr

+

(
a− 1

2

)
2 Re

∫ M

ε

f ′(r)(f(r)− f(0))

r1−2a
dr.

(4.3.15)

We integrate by parts the last term at right hand side: since a < 1
2
, we can estimate

from above neglecting the value on the boundary M , and we get that(
a− 1

2

)
2 Re

∫ M

ε

f ′(r)(f(r)− f(0))

r1−2a
dr =

(
a− 1

2

)∫ M

ε

(|f(r)− f(0)|2)
′

r1−2a
dr

≤ −2

(
a− 1

2

)2 ∫ M

ε

|f(r)− f(0)|2
r2−2a

dr −
(
a− 1

2

) |f(ε)− f(0)|2
ε1−2a

.

(4.3.16)
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Thanks to (4.3.15) and (4.3.16), we get(
a− 1

2

)2 ∫ M

ε

|f(r)− f(0)|2
r2−2a

dr +

(
a− 1

2

) |f(ε)− f(0)|2
ε1−2a

≤
∫ M

ε

|f ′|2r2a dr.

Passing to the limit for M → +∞ and ε→ 0, thanks to (4.3.4), (4.3.11) is proved.

(ii) We assume now that a > 1
2
. Let 0 < ε < M . With an explicit computation:

0 ≤
∫ M

ε

∣∣∣∣f ′(r) ra +

(
a− 1

2

)
f(r)− f(+∞)

r1−a

∣∣∣∣2 dr
=

∫ M

ε

|f ′|2r2a dr +

(
a− 1

2

)2 ∫ M

ε

|f(r)− f(+∞)|2
r2−2a

dr

+

(
a− 1

2

)
2 Re

∫ M

ε

f ′(r)f(r)− f(+∞)

r1−2a
dr.

(4.3.17)

We integrate by parts the last term at right hand side: since a > 1
2
, we can estimate

from above neglecting the value on the boundary ε, and we get that(
a− 1

2

)
2 Re

∫ M

ε

f ′(r)(f(r)− f(+∞))

r1−2a
dr =

(
a− 1

2

)∫ M

ε

(|f(r)− f(+∞)|2)
′

r1−2a
dr

≤ −2

(
a− 1

2

)2 ∫ M

ε

|f(r)− f(+∞)|2
r2−2a

dr +

(
a− 1

2

) |f(M)− f(+∞)|2
M1−2a

.

(4.3.18)

Thanks to (4.3.17) and (4.3.18), we get(
a− 1

2

)2 ∫ M

ε

|f(r)− f(+∞)|2
r2−2a

dr −
(
a− 1

2

) |f(M)− f(+∞)|2
M1−2a

≤
∫ M

ε

|f ′|2r2a dr.

Passing to the limit for ε→ 0 and M →∞, thanks to (4.3.5) we get that (4.3.12) is
proved.

(iii) Let us finally consider the case a = 1
2
. Let R > 0 and take 0 < ε < 1 < M ,

such that R ∈ [ε,M ]. With explicit computations:

0 ≤
∫ M

ε

∣∣∣∣∣f ′(r)√r − 1

2

f(r)− f(R)√
r log

(
R
r

) ∣∣∣∣∣
2

dr

=

∫ M

ε

|f ′(r)|2r dr +
1

4

∫ M

ε

|f(r)− f(R)|2
r log2

(
R
r

) dr − 1

2

∫ M

ε

(|f(r)− f(R)|2)′

log
(
R
r

) dr.

We integrate by parts and notice that the boundary contributions are negative, since
M > 1 and ε < 1. Consequently we get

1

4

∫ M

ε

|f(r)− f(R)|2
r log2

(
R
r

) dr ≤
∫ M

ε

|f ′(r)|2r dr.

Passing to the limit for ε→ 0 and M →∞, (4.3.13) is proved.
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4.3.2 Characterization of the maximal operator

We fix j ∈ {1/2, 3/2, . . .}, mj ∈ {−j, . . . , j} and kj ∈ {j+ 1/2,−j− 1/2}. In this
section, we will simplify the notations and denote

k := kj, Φ± := Φ±mj ,kj , f± := f±mj ,kj , h := hmj ,kj , t̊ := t̊mj ,kj , t∗ := t∗mj ,kj .

(4.3.19)
We remind that t̊ is symmetric and its adjoint on L2(0,+∞)2 is t∗. In the following
Proposition we give some details on the domain D(t∗).

Proposition 4.3.6. Set δ := (λ + k)2 + µ2 − ν2 and γ :=
√
|δ|. Then the following

hold:

(i) If δ > 1
4
, then D(t∗) = D(h).

(ii) If δ = 1
4
, then for all (f+, f−) ∈ D(t∗) we have

lim inf
r→0

f+(r)f−(r) = 0. (4.3.20)

(iii) If 0 < δ < 1
4
, let D ∈ R2×2 be the invertible matrix

D :=


1

2γ(λ+k−γ)

(
λ+ k − γ ν − µ
−(ν + µ) −(λ+ k − γ)

)
if λ+ k − γ 6= 0,

1
−4γ2

(
µ− ν 2γ

2γ −(ν + µ)

)
if λ+ k − γ = 0.

Then for all (f+, f−) ∈ D(t∗) there exist (A+, A−) ∈ C2, such that

lim
r→0

∣∣∣∣(f+(r)
f−(r)

)
−D

(
A+rγ

A−r−γ

)∣∣∣∣r−1/2 = 0,∫ +∞

0

1

r2

∣∣∣∣(f+(r)
f−(r)

)
−D

(
A+rγ

A−r−γ

)∣∣∣∣2 dr < +∞.
(4.3.21)

Moreover, for any (f̃+, f̃−) ∈ D(t∗) we have

lim
r→0

∣∣∣∣∣f+(r) f̃+(r)

f−(r) f̃−(r)

∣∣∣∣∣ = det(D) ·
∣∣∣∣∣A+ Ã+

A− Ã−

∣∣∣∣∣ . (4.3.22)

(iv) If δ = 0, let M ∈ R2×2, M2 = 0 be defined as follows:

M :=

(
−(k + λ) −ν + µ
ν + µ k + λ

)
.
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Then for all (f+, f−) ∈ D(t∗) there exist (A+, A−) ∈ C2, such that

lim
r→0

∣∣∣∣(f+(r)
f−(r)

)
− (M log r + I2)

(
A+

A−

)∣∣∣∣r−1/2 = 0,∫ +∞

0

1

r2

∣∣∣∣(f+(r)
f−(r)

)
− (M log r + I2)

(
A+

A−

)∣∣∣∣2 dr < +∞.
(4.3.23)

Moreover, for any (f̃+, f̃−) ∈ D(t∗) we have we have

lim
r→0

∣∣∣∣∣f+ f̃+

f− f̃−

∣∣∣∣∣ =

∣∣∣∣∣A+ Ã+

A− Ã−

∣∣∣∣∣ . (4.3.24)

(v) If δ < 0, let D ∈ C2×2 be the invertible matrix

D :=
1

2iγ(λ+ k − iγ)

(
λ+ k − iγ ν − µ
−(ν + µ) −(λ+ k − iγ)

)
.

Then for all (f+, f−) ∈ D(t∗) there exist (A+, A−) ∈ C2 such that

lim
r→0

∣∣∣∣(f+(r)
f−(r)

)
−D

(
A+riγ

A−r−iγ

)∣∣∣∣r−1/2 = 0,∫ +∞

0

1

r2

∣∣∣∣(f+(r)
f−(r)

)
−D

(
A+riγ

A−r−iγ

)∣∣∣∣2 dr < +∞.
(4.3.25)

Moreover, for any (f̃+, f̃−) ∈ D(t∗) we get

lim
r→0

∣∣∣∣∣f+(r) f̃+(r)

f−(r) f̃−(r)

∣∣∣∣∣ =
1

2iγ(µ2 − ν2)
·
∣∣∣∣∣A+ (ν − µ)Ã−

A− (ν + µ)Ã+

∣∣∣∣∣ . (4.3.26)

Proof. We start noticing that for a general (f+, f−) ∈ D(t∗), from (B.9) we deduce(
∂r + k+λ

r
ν−µ
r

−ν+µ
r

∂r − k+λ
r

)(
f+(r)
f−(r)

)
∈ L2(0,+∞)2. (4.3.27)

Set
√
δ :=

{
γ if δ ≥ 0,

iγ if δ < 0.

We consider the matrices(
−(k + λ−

√
δ) −ν + µ

ν + µ k + λ−
√
δ

)
,

(
−ν − µ −(k + λ+

√
δ)

−(k + λ+
√
δ) −ν + µ

)
. (4.3.28)

In the case δ > 0 at least one matrix in (4.3.28) is invertible: letM be the first matrix
if this is invertible and the second otherwise. In the case δ = 0 we can choose M to
be the first or the second one (in fact they are unitarily equivalent): we choose the
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first one. Finally, in the case δ < 0 we can choose M to be the first or the second one
(in fact they are both invertible and unitarily equivalent): we choose the first one.
Setting (

ϕ+

ϕ−

)
:= M

(
f+

f−

)
, (4.3.29)

we get with an easy computation(
∂r −

√
δ
r

0

0 ∂r +
√
δ
r

)
·
(
ϕ+

ϕ−

)
= M ·

(
∂r + k+λ

r
ν−µ
r

−ν+µ
r

∂r − k+λ
r

)(
f+

f−

)
. (4.3.30)

Moreover it is easy to observe that, for all a ∈ C and f regular enough, we have(
∂r +

a

r

)
f(r) = (∂r(r

af)) r−a. (4.3.31)

SinceM is bounded on L2(0,+∞)2, combining (4.3.27), (4.3.30) and (4.3.31) we have∫ +∞

0

|r
√
δ∂r(r

−
√
δϕ+(r))|2 dr +

∫ +∞

0

|r−
√
δ∂r(r

√
δϕ−(r))|2 dr < +∞. (4.3.32)

We assume now δ ≥ 0, that is
√
δ = γ. In this case M is a real matrix.

From (4.3.32) we deduce that∫ +∞

0

r2γ|∂r(r−γϕ+(r))|2 dr +

∫ +∞

0

r−2γ|∂r(rγϕ−(r))|2 dr < +∞. (4.3.33)

We can immediately get informations on the function ϕ−. Indeed, rγϕ− is in L1
loc(0,+∞)∩

L1(0, 1): choosing a = −γ ≤ 0 in (i) of Proposition 4.3.2 we get that ϕ− ∈ C[0,+∞)

and there exists a constant A− ∈ C, depending on ϕ−, such that

lim
r→0
|ϕ−(r)− A−r−γ|r− 1

2 = 0. (4.3.34)

Moreover, thanks to (4.3.11), we get∫ +∞

0

|ϕ−(r)− A−r−γ|2
r2

dr ≤ 4

(2γ + 1)2

∫ +∞

0

r−2γ|∂r(rγϕ−(r))|2 dr < +∞.
(4.3.35)

In order to get properties on the function ϕ+, we need to distinguish various cases,
depending on the size of γ.

Case γ > 1/2

Since γ > 1/2, we have that r−γϕ+ is in L1
loc(0,+∞)∩L1(1,+∞): choosing a = γ

in (ii) of Proposition 4.3.2, we get

lim
r→+∞

|ϕ+(r)|r− 1
2 = 0,
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observing that under our assumptions ϕ+(+∞) = 0. Thanks to (4.3.12) and from
(4.3.33) we have that∫ +∞

0

|ϕ+(r)|2
r2

dr =

∫ +∞

0

|r−γϕ+(r)|2
r2−2γ

dr

≤ 4

(2γ − 1)2

∫ +∞

0

r2γ|∂r(r−γϕ+(r))|2 dr < +∞,
(4.3.36)

observing that under our assumptions ϕ+(+∞) = 0.

Moreover, since ϕ− ∈ L2(0,+∞) behaves likeA−r−γ next to the origin (i.e. (4.3.35)
holds), we have that∫ 1

0

|A−|2
r2γ

dr ≤ 2

∫ 1

0

|ϕ−(r)|2 dr + 2

∫ 1

0

|ϕ−(r)− A−r−γ|2 dr

≤ 2

∫ +∞

0

|ϕ−(r)|2 dr + 2

∫ +∞

0

|ϕ−(r)− A−r−γ|2
r2

dr < +∞.

Since γ > 1/2, necessarily this implies A− = 0 in (4.3.35). Combining (4.3.33),
(4.3.35) (for A− = 0) and (4.3.36) we can conclude, thanks to the invertibility of M ,∫ +∞

0

|f+(r)|2
r2

dr +

∫ +∞

0

|f−(r)|2
r2

dr < +∞. (4.3.37)

Thanks to (4.1.3), we get D(h0) ⊂ D(h∗). From (4.3.37) and the by the definition of
D(h∗) (see (B.9)) we get that

(
∂r ± k

r

)
f± ∈ L2(0,+∞) and so D(h∗) = D(h0).

Case γ = 1/2

Reasoning as in the previous step, we get that (4.3.35) holds for A− = 0. Thanks
to (iii) of Proposition 4.3.2 we have that ϕ+ ∈ C(0,+∞) and by (4.3.13)∫ 1/2

0

|ϕ+(r)|2
r2 log2

(
1
r

) dr =

∫ 1/2

0

|r−1/2ϕ+(r)|2
r2 log2

(
1
r

) dr ≤ 4

∫ +∞

0

r|∂r(r−1/2ϕ+(r))|2 dr+R < +∞,

for R > 0 a finite constant, that implies that

lim inf
r→0

|ϕ+(r)|
r1/2 log(1/r)

= 0. (4.3.38)

We can conclude (4.3.20) thanks to (4.3.34) (with A− = 0) and (4.3.38), remarking
the property of the inferior limit:

lim inf
x→x0

(f(x)g(x)) =

(
lim inf
x→x0

f(x)

)(
lim
x→x0

g(x)

)
,

when limx→x0 g(x) exists.
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Case 0 < γ < 1/2

In this case r−γϕ+ is in L1
loc(0,+∞) ∩ L1(0, 1). Choosing a = γ in (i) of Proposi-

tion 4.3.2 we have that ϕ+ ∈ C[0,+∞) and there exists a constant A+ ∈ C, depending
on ϕ+, such that

lim
r→0

∣∣ϕ+(r)− A+rγ
∣∣r− 1

2 = 0, (4.3.39)

and moreover, by (4.3.11), we get∫ +∞

0

|ϕ+(r)− A+rγ|2
r2

dr ≤ 4

(2γ − 1)2

∫ +∞

0

r2γ|∂r(r−γϕ+(r))|2 dr < +∞. (4.3.40)

We set D := M−1. Thanks to (4.3.29), (4.3.34), (4.3.39) we get the first equation
in (4.3.21). Moreover thanks to (4.3.33), (4.3.35) and (4.3.40) we get the second
equation in (4.3.21). Finally

det(M) ·
∣∣∣∣∣f+(r) f̃+(r)

f−(r) f̃−(r)

∣∣∣∣∣ =

∣∣∣∣ϕ+(r) ϕ̃+(r)

ϕ−(r) ϕ̃−(r)

∣∣∣∣ = ϕ+(r)ϕ̃−(r)− ϕ−(r)ϕ̃+(r)

=ϕ+(r)(ϕ̃−(r)− Ã−r−γ)− (ϕ−(r)− A−r−γ)ϕ̃+(r)

+ (ϕ+(r)− A+rγ)Ã−r−γ − A−r−γ(ϕ̃+(r)− Ã+rγ)

+ A+Ã− − A−Ã+.

(4.3.41)

Thanks to (4.3.29), (4.3.34), (4.3.39), observing that the first four terms at right hand
side are infinitesimal for r → 0, we can conclude (4.3.22).

Case γ = 0

We recall that, in this case, the two possibilities we give for the matrix M in
(4.3.28) are unitarily equivalent. For this reason we will always choose the first one,
that is

M :=

(
−(k + λ) −ν + µ
ν + µ k + λ

)
.

We remind that (4.3.27) now reads(
f+

f−

)′
− 1

r

(
ϕ+

ϕ−

)
∈ L2(0,∞)2. (4.3.42)

Moreover, choosing a = 0 in (i) of Proposition 4.3.2 we get from (4.3.33) that
(ϕ+, ϕ−) ∈ C[0,+∞)2 and there exist (B+, B−) ∈ C2, such that

lim
r→0

∣∣∣∣(ϕ+(r)
ϕ−(r)

)
−
(
B+

B−

)∣∣∣∣r−1/2 = 0.
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Moreover, by (4.3.11), we get∫ +∞

0

1

r2

∣∣∣∣(ϕ+(r)
ϕ−(r)

)
−
(
B+

B−

)∣∣∣∣2 dr ≤4

∫ +∞

0

∣∣∣∣∂r (ϕ+(r)
ϕ−(r)

)∣∣∣∣2 < +∞.

In particular, this shows that

1

r

((
ϕ+

ϕ−

)
−
(
B+

B−

))
∈ L2(0,+∞)2. (4.3.43)

Thanks to (4.3.42) and (4.3.43) we get that[(
f+

f−

)
−
(
B+

B−

)
log r

]
∈ L2(0,+∞)2.

Applying again (i) of Proposition 4.3.2 with a = 0 we get that f± − B± log r ∈
C[0,+∞) and there exist constants A± ∈ C, such that

lim
r→0

∣∣∣∣(f+(r)
f−(r)

)
−
(
B+

B−

)
log r −

(
A+

A−

)∣∣∣∣r−1/2 = 0, (4.3.44)

moreover, by (4.3.11), we get∫ +∞

0

1

r2

∣∣∣∣(f+(r)
f−(r)

)
−
(
B+

B−

)
log r −

(
A+

A−

)∣∣∣∣2dr < +∞. (4.3.45)

Since M2 = 0, from (4.3.29) and (4.3.43) we get

− 1

r
M

(
B+

B−

)
=

1

r
M

((
ϕ+

ϕ−

)
−
(
B+

B−

))
∈ L2(0,+∞)2,

that implies M(B+B−)t = 0. As a consequence, from (4.3.45) we get that

1

r

[(
ϕ+

ϕ−

)
−M

(
A+

A−

)]
=

1

r

[
M

(
f+

f−

)
−M

(
A+

A−

)]
∈ L2(0,+∞)2. (4.3.46)

Such a condition and (4.3.43) gives that(
B+

B−

)
= M

(
A+

A−

)
,

that lets us conclude (4.3.23) thanks to (4.3.44).

In order to exploit the linearity of the determinant in the columns, in the following
we commit abuse of notation, denoting∣∣∣∣(ac

)(
b
d

)∣∣∣∣ :=

∣∣∣∣a b
c d

∣∣∣∣ . (4.3.47)
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We have that∣∣∣∣∣f+(r) f̃+(r)

f−(r) f̃−(r)

∣∣∣∣∣ =
∣∣∣∣∣∣
(
f+(r)
f−(r)

)
− (M log r + I2)

(
A+

A−

) (
f̃+(r)

f̃−(r)

)
− (M log r + I2)

(
Ã+

Ã−

)∣∣∣∣∣∣
+

∣∣∣∣∣∣(M log r + I2)
(
A+

A−

) (
f̃+(r)

f̃−(r)

)
− (M log r + I2)

(
Ã+

Ã−

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
(
f+(r)
f−(r)

)
− (M log r + I2)

(
A+

A−

)
(M log r + I2)

(
Ã+

Ã−

)∣∣∣∣∣∣
+

∣∣∣∣∣∣(M log r + I2)
(
A+

A−

)
(M log r + I2)

(
Ã+

Ã−

)∣∣∣∣∣∣.
Since M2 = 0 we get det(I2 +M log r) = 1. Thanks to the first equation in (4.3.23),
the first three terms at right hand side tend to 0 as r → 0, and we can conclude
(4.3.24).

Case δ < 0

We have
√
δ = iγ. In this case M is an invertible complex matrix with inverse

D := M−1 given by (4.2.5). Denoting with D the complex conjugate matrix of D we
have

D2 =
1

−2iγ(k + λ− iγ)
I2, DD =

1

2iγ(ν2 − µ2)

(
0 ν − µ

ν + µ 0

)
. (4.3.48)

Since |r±iγ| = 1, from (4.3.32) we deduce∫ +∞

0

|∂r(r−iγϕ+(r))|2 dr +

∫ +∞

0

|∂r(riγϕ−(r))|2 dr < +∞.

Choosing a = 0 in (i) of Proposition 4.3.2 we get that r∓iγϕ± ∈ C[0,+∞) and there
exist two constants A± ∈ C, depending on ϕ±, such that

lim
r→0
|ϕ±(r)− A±r±iγ|r− 1

2 = 0. (4.3.49)

Moreover, by (4.3.11), we get∫ +∞

0

|ϕ±(r)− A±r±iγ|2
r2

dr ≤ 4

∫ +∞

0

|∂r(r∓iγϕ±(r))|2 dr <∞. (4.3.50)

We deduce (4.3.25) from (4.3.29), (4.3.49), (4.3.50). Finally, with the abuse of
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notations in (4.3.47), from (4.3.48) we get∣∣∣∣∣f+(r) f̃+(r)

f−(r) f̃−(r)

∣∣∣∣∣ =

∣∣∣∣∣∣D
(
ϕ+(r)
ϕ−(r)

)
D

(
ϕ̃+(r)

ϕ̃−(r)

)∣∣∣∣∣∣ =
1

detD

∣∣∣∣∣D2

(
ϕ+(r)
ϕ−(r)

)
DD

(
ϕ̃+(r)

ϕ̃−(r)

)∣∣∣∣∣
=

1

2iγ(µ2 − ν2)

∣∣∣∣∣ϕ+(r) (ν − µ)ϕ̃−(r)

ϕ−(r) (ν + µ)ϕ̃+(r)

∣∣∣∣∣.
(4.3.51)

We prove immediately (4.3.26) from (4.3.51), reasoning as in the proof of (4.3.41).

4.3.3 Proof of Theorem 4.2.1, Theorem 4.2.2 and Theorem 4.2.3

We can now finally prove Theorems 4.2.1, 4.2.2, 4.2.3.

Proof of Theorem 4.2.1. (i) Thanks to (i) in Proposition 4.3.6, we already know
that

D(̊t) = D(h).

This gives immediately that t∗ is symmetric, that is t̊ is essentially self-adjoint on
C∞c (0,+∞)2.

(ii) We show that t∗ is symmetric on D(t∗): this implies the essential self-
adjointness of t̊. Indeed for all (f+, f−) ∈ D(h∗) we have∫ +∞

0

t∗(f+, f−)·(f+, f−) dr −
∫ +∞

0

(f+, f−) · t∗(f+, f−) dr

= lim
n

∫ +∞

εn

t∗(f+, f−) · (f+, f−) dr −
∫ +∞

εn

(f+, f−) · t∗(f+, f−) dr

= − lim
n

∣∣∣∣f+(εn) f+(εn)

f−(εn) f−(εn)

∣∣∣∣ , (4.3.52)

for any {εn}n, εn → 0. The limit in (4.3.52) exists for every choice of the sequence
{εn}n, εn → 0, since (f+, f−) ∈ D(t∗). Moreover, taking the sequence associated
to the inferior limit, it vanishes thanks to (4.3.20). Finally, it is easy to show that
D(h) ⊂ D(t∗).

For the proof of Theorem 4.2.2 we will need the following Lemma.

Lemma 4.3.7. Let V be a complex proper subspace of C2. Then the following are
equivalent:
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(i) (A+, A−) ∈ V if and only if
∣∣∣∣A+ A+

A− A−

∣∣∣∣ = 0,

(ii) (A+, A−) ∈ V if and only if A+A− ∈ R,

(iii) V = {(0, 0)} or V = Vθ := {(A+, A−) ∈ C2 : A+ sin θ + A− cos θ = 0}, for
θ ∈ [0, π).

Proof. It is easy to prove that (i) is equivalent to (ii) and that (iii) implies (ii). Let
us prove that (ii) implies (iii). Let V be as in (ii): V can not be the whole C2, so
V is a proper subspace of C2, i.e. it has dimension zero or one. In the first case
V = {(0, 0)}. Let us suppose now that V has dimension one, that is V = 〈(A+

0 , A
−
0 )〉

for some (A+
0 , A

−
0 ) 6= (0, 0) with A+

0 A
−
0 ∈ R. Using polar coordinates we get A+

0 = ueis

and A−0 = veit, then A+
0 A
−
0 = uvei(s−t) which implies that s = t or s = t + π, that

is equivalent to say that there are p, q ∈ R, (p, q) 6= (0, 0) such that pA+
0 + qA−0 = 0.

We can always suppose that p ≥ 0 (otherwise we replace (p, q) with (−p,−q)) and
|p|2 + |q|2 = 1 (otherwise we replace (p, q) with (p2 + q2)−1/2(p, q)). Then p = sin θ

and q = cos θ for θ ∈ [0, π).

Proof of Theorem 4.2.2. (i)

Let t be a self-adjoint extension of t̊, that is t̊ ⊆ t = t∗ ⊆ t∗. Thanks to (iii)
in Proposition 4.3.6, we have that for all (f+, f−) ∈ D(t) there exist constants
(A+, A−) ∈ C2 such that

lim
r→0

∣∣∣∣(f+(r)
f−(r)

)
−D

(
A+rγ

A−r−γ

)∣∣∣∣r−1/2 = 0,

where D is the invertible real matrix defined in (4.2.2). Moreover, the map (f+, f−) ∈
D(t) 7→ (A+, A−) ∈ C2 is a homomorphism of linear spaces, thus its image is a linear
subspace of C2: we will denote it V .

Since t ⊆ t∗ ⊆ t∗, for all (f+, f−) ∈ D(t) then necessarily, as in the proof of (ii)
ofTheorem 4.2.1,

lim
r→0

∣∣∣∣f+(r) f+(r)

f−(r) f−(r)

∣∣∣∣ = 0. (4.3.53)

The equations (4.3.53) and (4.3.22) imply that∣∣∣∣A+ A+

A− A−

∣∣∣∣ = 2i=(A+A−) = 0, for all (A+, A−) ∈ V.

Thanks to Lemma 4.3.7, V = Vθ := {(A+, A−) ∈ C2 : A+ sin θ + A− cos θ = 0} for
some θ ∈ [0, π) or V = {0}. This last case can not happen, since t can not have
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proper symmetric extensions, being self-adjoint. In conclusion, all the self-adjoint
extensions of t̊ are of the form t(θ) for θ ∈ [0, π), and (4.2.1) holds.

Conversely, we prove that for all θ ∈ [0, π) the operators t(θ) are self-adjoint. It
is easy to check that they are symmetric and that they extend t̊. Let (f+, f−) ∈
D (t(θ)∗): by the definition there exists (f+

0 , f
−
0 ) ∈ L2(0,+∞)2 such that

〈(f+, f−), t(θ)(f̃+, f̃−)〉L2 = 〈(f+
0 , f

−
0 ), (f̃+, f̃−)〉L2 ,

for all (f̃+, f̃−) ∈ D (t(θ)), and (f+
0 , f

−
0 ) = t(θ)∗(f+, f−). Since t(θ) ⊆ t(θ)∗ ⊆ t∗,

〈t∗(f+, f−), (f̃+, f̃−)〉L2 = 〈t(θ)∗(f+, f−), (f̃+, f̃−)〉L2 = 〈(f+
0 , f

−
0 ), (f̃+, f̃−)〉L2

= 〈(f+, f−), t(θ)(f̃+, f̃−)〉L2 = 〈(f+, f−), t∗(f̃+, f̃−)〉L2 ,

and this happens if and only if∣∣∣∣∣A+ Ã+

A− Ã−

∣∣∣∣∣ = lim
r→0

∣∣∣∣∣f+(r) f̃+(r)

f−(r) f̃−(r)

∣∣∣∣∣ = 0, (4.3.54)

where

lim
r→0

(
f+(r)
f−(r)

)
−D

(
A+rγ

A−r−γ

)
= 0, lim

r→0

(
f̃+(r)

f̃−(r)

)
−D

(
Ã+rγ

Ã−r−γ

)
= 0.

From (4.3.54), there exists (a, b) ∈ C2, (a, b) 6= (0, 0) such that a(A+, A−) +

b(Ã+, Ã−) = 0. In particular, we choose (Ã+, Ã−) 6= (0, 0) in order to guarantee
a 6= 0: we have that

a(A+ sin θ + A− cos θ) + b(Ã+ sin θ + Ã− cos θ) = 0

that implies (A+, A−) ∈ Vθ, that is (f+, f−) ∈ D (t(θ)).

(ii) The proof of this case is analogous to the one of (i), for this reason we
will omit some details. Let t be a self-adjoint extension of t̊. Then, thanks to
(iv) of Proposition 4.3.6 we have that for all (f+, f−) ∈ D(t) there exist constants
(A+, A−) ∈ C2 such that

lim
r→0

∣∣∣∣(f+(r)
f−(r)

)
− (M log r + I2)

(
A+

A−

)∣∣∣∣r−1/2 = 0,

where M is the real matrix defined in (4.2.4). Let V be the linear subspace of C2

defined as the image of the homomorphism (f+, f−) ∈ D(t) 7→ (A+, A−) ∈ C2. Since
t is symmetric, we get that for (f+, f−) ∈ D(t):

lim
r→0

∣∣∣∣f+(r) f+(r)

f−(r) f−(r)

∣∣∣∣ = 0,

89



4. The Dirac Operator with Coulomb-Type Spherically Potentials

and, thanks to (4.3.24), this happens if and only if∣∣∣∣A+ A+

A− A−

∣∣∣∣ = 0.

Applying Lemma 4.3.7 we deduce that V = Vθ = {(A+, A−) ∈ C2 : A+ sin θ + A− cos θ = 0}
for some θ ∈ [0, π), that is t = t(θ).

Conversely, let us prove that any t(θ) is self-adjoint. It is clearly symmetric and
it extends t̊. Moreover, Let (f+, f−) ∈ D (t(θ)∗): by the definition we get that for
any (f̃+, f̃−) ∈ D (t(θ))

〈t(θ)∗(f+, f−), (f̃+, f̃−)〉L2 = 〈(f+, f−), t(θ)(f̃+, f̃−)〉L2 . (4.3.55)

Since t(θ) extends t̊, using the same notation of (iv) of Proposition 4.3.6, we can
affirm that (4.3.55) holds if and only if∣∣∣∣∣A+ Ã+

A− Ã−

∣∣∣∣∣ = 0.

From this and thanks to the fact that (Ã+, Ã−) ∈ Vθ we deduce that (A+, A−) ∈ Vθ,
that is (f+, f−) ∈ D (t(θ)).

For the proof of Theorem 4.2.3 we need the following Lemma.

Lemma 4.3.8. Let V be a complex proper subspace of C2 and τ > 0. Then the
following are equivalent:

(i) (A+, A−) ∈ V if and only if |A| = τ |B|;

(ii) V = {(0, 0)} or V = Vθ := 〈(τeiθ, e−iθ)〉 with θ ∈ [0, π).

Proof. We prove that (i) implies (ii), since the other implication is obvious. Let V
be as in (i): V can not be the whole C2, so V is a proper subspace of C2, i.e. it
has dimension zero or one. In the first case V = {(0, 0)}. Let us suppose now
that V has dimension one, that is V = 〈(A+

0 , A
−
0 )〉 for some (A+

0 , A
−
0 ) 6= (0, 0) with

|A+
0 | = τ |A−0 |. In radial coordinates we have A+

0 = c1e
ia, A−0 = c2e

ib and c1 = τc2 6= 0.
Setting (A+, A−) := c−1

2 e−i
a+b

2 (A+
0 , A

−
0 ) = (τeiθ, e−iθ), with θ := (a − b)/2, we have

immediately the thesis, since 〈(A+, A−)〉 = 〈(A+
0 , A

−
0 )〉.

Proof of Theorem 4.2.3. The proof of this Theorem is analogous to the one of (i) in
Theorem 4.2.2, but we need to use Lemma 4.3.8 in place of Lemma 4.3.7.
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4.4 Distinguished self-adjoint extension

In the case 0 < δ < 1/4, the distinguished self-adjoint extension is of particular
interest among the self-adjoint extensions given in Theorem 4.2.2. We need the
following notation: for a ∈ R

D(r−a,R3) := {ψ ∈ L2(R3) : |x|−aψ ∈ L2(R3)},
D(r−a, (0,+∞)) := {f ∈ L2(0,+∞) : r−af ∈ L2(0,+∞)},

and, for

ψ(x) =
∑
j,kj ,mj

1

r

(
f+
mj ,kj

(r)Φ+
mj ,kj

(x̂) + f−mj ,kj(r)Φ
−
mj ,kj

(x̂)
)

it is true that ψ ∈ D(r−a,R3) if and only if f+
mj ,kj

, f−mj ,kj ∈ D(r−a, (0,+∞)) for all
j,mj, kj. In the following we will simply write D(r−1/2), since it will be clear from
the context to which set we are referring.

In the literature, the distinguished self-adjoint extension is defined as the unique
one whose domain is contained in D(r−1/2) (among other definitions, see [26]), but
this definition is no longer valid in the critical case, since no extension verifies such
a property. From a more physical perspective, such extension is characterized by
the fact that a space of regular functions is dense (in some sense) in its domain. In
this context, from the proof of Theorem 4.2.2, it appears in a very natural way (see
(4.3.33)) the following: let a ∈ R \ {−1/2}. For any ϕ, χ ∈ C∞c (0,+∞) we set

〈ϕ, χ〉Ja :=

∫ +∞

0

∂r(r
aϕ(r))∂r(raχ(r))r−2a dr.

Thanks to (4.3.11) and (4.3.12) 〈·, ·〉Ja defines a scalar product on C∞c (0,+∞). There-
fore, if || · ||Ja is the norm induced by 〈·, ·〉Ja , we get that Ja := C∞c (0,+∞)

||·||Ja is a
Hilbert space.

Let ϕ ∈ C∞c (0,+∞). Integrating by parts we get:

||ϕ||2Ja =

∫ +∞

0

|∂r(raϕ(r))|2r−2adr =

∫ +∞

0

|ϕ′(r)|2dr + a(a+ 1)

∫ +∞

0

|ϕ(r)|2
r2

dr.

(4.4.1)
From (4.4.1) and thanks to (4.3.11) and (4.3.12) we deduce that

(2a+ 1)2||ϕ||2J0
≤ ||ϕ||2Ja ≤ ||ϕ||2J0

if a(a+ 1) ≤ 0,
||ϕ||2J0

≤ ||ϕ||2Ja ≤ (2a+ 1)2||ϕ||2J0
if a(a+ 1) > 0;

that means that Ja = J0 =: J .

Lemma 4.4.1. Let J be defined as above. Then

J =
{
u ∈ AC[0,M ] for any M > 0 : u′ ∈ L2(0,+∞) and

u

r
∈ L2(0,+∞)

}
.
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Proof. Set J̃ :=
{
u ∈ AC[0,M ] for any M > 0 : u′ ∈ L2(0,+∞) and u

r
∈ L2(0,+∞)

}
.

Let us prove that J ⊂ J̃ : let {un}n ⊂ C∞c (0,+∞) be a Cauchy-sequence in
|| · ||J . Thanks to (4.3.11) we get that for any n,m ∈ N

||um − un||2J =

∫ +∞

0

|u′m(r)− u′n(r)|2 dr ≥ 1

4

∫ +∞

0

|um(r)− un(r)|2
r2

dr,

that means that {un
r
}n ⊂ C∞c (0,+∞) is a Cauchy-sequence in L2. Let u and ũ be

such that un
r
→ u

r
in L2 and u′n → ũ in L2. Moreover, u′n → u′ in the sense of

distribution. By the uniqueness of the limit we deduce that u′ = ũ and so u ∈ J̃ .

To prove that J̃ ⊂ J we follow the strategy of [22, Section 4]. Let u ∈ J̃
and firstly assume that its support is a compact subset of (0,+∞). Let {ϕn}n be
a sequence of mollifier functions, and set un := ϕn ∗ u. By construction {un}n ⊂
C∞c (0,+∞) and un → u in J that gives u ∈ J . Let us finally assume that the
support of u is not compact. We set

η(r) :=


0 if 0 ≤ r ≤ 1,

r − 1 if 1 ≤ r ≤ 2,

1 if 2 ≤ r,

and ζ(r) :=


1 if 0 ≤ r ≤ 2,

−r + 3 if 2 ≤ r ≤ 3,

0 if 3 ≤ r.

Finally, for any n ∈ N, we set ηn(r) := η(nr), ζn(r) := ζ
(
r
n

)
and un := (ηn + ζn)u.

For any n ∈ N, un ∈ J because its support is compact by construction and un ∈ J̃ .
Indeed un ∈ AC[0,M ] for any M > 0 and un

r
∈ L2 because the support of un is

compact. Moreover u′n = (ηn + ζn)u′ + (ηn + ζn)′u ∈ L2 because, on the right-hand
side, both are L2 functions on compact subsets of (0,+∞).

Finally

||un − u||2J ≤ 2

∫ +∞

0

|(ηn(r) + ζn(r))u′(r)− u′(r)|2 dr + 2

∫ +∞

0

|(ηn(r) + ζn(r))′u(r)|2 dr

=: I1(n) + I2(n).

Regarding the first term we see that

I1(n) ≤ 2

∫ 2/n

0

|u′(r)|2 dr + 2

∫ +∞

2n

|u′(r)|2 dr → 0,

if n → +∞, by the dominated convergence Theorem. About the second term we
notice

I2(n) = 2n2

∫ 3/n

2/n

|u(r)|2 dr +
2

n2

∫ 3n

2n

|u(r)|2 dr

≤ 8

∫ 3/n

0

|u(r)|2
r2

dr + 18

∫ +∞

2n

|u(r)|2
r2

dr → 0,
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4.4 Distinguished self-adjoint extension

if n → +∞, by the dominated convergence Theorem. Then un → u in J that gives
u ∈ J .

This motivates the following propositions, where we collect properties of the dis-
tinguished self-adjoint extension in the case 0 ≤ δ < 1/4.

Proposition 4.4.2 (Distinguished Self-Adjoint Extension for the subcritical case).
Let 0 < γ < 1

2
and

{
t(θ)mj ,kj

}
θ∈[0,π)

be the one (real) parameter family of self-adjoint
extensions considered in (i) of Theorem 4.2.2.

Then the following are equivalent:

(i) θ = 0;

(ii) D
(
t(θ)mj ,kj

)
⊆ D(r−1/2)2;

(iii) D
(
t(θ)mj ,kj

)
⊆ D(r−a)2 with a ∈

[
1
2
, 1

2
+ γ
)
;

(iv) for any (f+
mj ,kj

, f−mj ,kj) ∈ D
(
t(θ)mj ,kj

)
we have ϕ−mj ,kj ∈ J := C∞c (0,+∞)

J
,

with

ϕ−mj ,kj :=

{
(ν + µ)f+

mj ,kj
+ (kj + λ− γ)f−mj ,kj if kj + λ− γ 6= 0,

−2γf+
mj ,kj

+ (−ν + µ)f−mj ,kj if kj + λ− γ = 0.
(4.4.2)

Proof. We use the same notation in (4.3.19). We start proving that (i)⇒(iii). Let
θ = 0. Then, for any (f+, f−) ∈ D (t(0)) there exists A+ ∈ C such that∫ +∞

0

1

r2

∣∣∣∣(f+(r)
f−(r)

)
−D

(
A+rγ

0

)∣∣∣∣2 dr.
that tells us that∫ +∞

0

|f+(r)−B+rγ|2
r2

dr +

∫ +∞

0

|f−(r)−B−rγ|2
r2

dr < +∞

with
(
B+

B−

)
= D

(
A+

0

)
. Since 0 < γ < 1/2 we deduce that for a ∈

[
1
2
, 1

2
+ γ
)
,

∫ +∞

0

|f±(r)|2
r2a

dr ≤ 2

∫ 1

0

|f±(r)−B±rγ|2
r2

dr + 2|B±|
∫ 1

0

r2γ−2a dr +

∫ +∞

1

|f±(r)|2 dr

< +∞.

It is trivial that (iii) implies (ii).

Let us now show that (ii) implies (i). Let θ ∈ [0, π) and (f+, f−) ∈ D (t(θ)), such
that (4.2.1) holds for A± ∈ C and assume that f± ∈ D(r−1/2).
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4. The Dirac Operator with Coulomb-Type Spherically Potentials

Let ϕ− be defined as in (4.3.29). Therefore ϕ− ∈ D(r−1/2) and (4.3.35) holds.
Then ∫ 1

0

|A−r−γ|2
r

dr ≤2

∫ 1

0

|ϕ− − A−r−γ|2
r2

dr + 2

∫ 1

0

|ϕ−|2
r

dr < +∞.

Since 0 < γ < 1/2, we conclude that A− = 0. From the arbitrariness of (f+, f−) ∈
D (t(θ)), we have θ = 0.

To conclude the proof it remains to show that (iv) and (i) are equivalent. Let
(f+, f−) ∈ D (t(θ)) and (A+, A−) ∈ C2 such that (4.2.1) holds.

We notice that ϕ−mj ,kj defined in (4.4.2) and ϕ− defined in (4.3.29) coincide. Then,
from (4.3.35), we deduce that ϕ− ∈ J if and only if A− = 0 that is equivalent to say
that θ = 0 due to the arbitrariness of (f+, f−) ∈ D(t(θ)).

Following the strategy of 4.4.2 for the sub-critical case, we can give now the
following:

Proposition 4.4.3 (Distinguished self-adjoint extension for the critical case). Let
γ = 0 and and assume that in (4.1.1) (ν, µ) 6= (0, 0). Let {t(θ)mj ,kj}θ∈[0,π) be the one
(real) parameter family of self-adjoint extensions considered in (ii) of Theorem 4.2.2.

Then the following are equivalent:

(i) for any (f+
mj ,kj

, f−mj ,kj) ∈ D
(
t(θ)mj ,kj

)
, setting

ϕ−mj ,kj :=

{
(ν + µ)f+

mj ,kj
+ (kj + λ)f−mj ,kj if ν + µ 6= 0,

−2νf−mj ,kj if ν + µ = 0.
(4.4.3)

we have ϕ−mj ,kj ∈ J = C∞c (0,+∞)
J
;

(ii) θ =

{
arccot

(
kj+λ

ν+µ

)
if ν + µ 6= 0,

0 if ν + µ = 0.

Proof. We use the same notation in (4.3.19). Let (f+, f−) ∈ D (t(θ)) and (A+, A−) ∈
C2 such that (4.2.3) holds. In the case that ν + µ 6= 0 we notice that ϕ−mj ,kj defined
in (4.4.3) and ϕ− defined in (4.3.29) coincide. From (4.3.46), we deduce that ϕ− ∈ J
if and only if (ν + µ)A+ + (k + λ)A− = 0. Due to the arbitrariness of (f+, f−) it is
equivalent to say that θ is as in (ii).

Let us assume ν + µ = 0. Then ϕ−mj ,kj = −2νf− ∈ J if and only if A− = 0 that
is equivalent to say θ = 0 due to the arbitrariness of (f+, f−) ∈ D(t(θ)).
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4.4 Distinguished self-adjoint extension

Remark 4.4.4. Under the assumptions of Proposition 4.4.3, from (4.2.3) we get that,
among all the self-adjoint extensions in the family {t(θ)mj ,kj}θ∈[0,π) described by
Proposition 4.4.3, there is a unique one that has no logarithmic decay at the ori-
gin. Indeed, this is a consequence of the fact that the kernel of the matrix M defined
in (4.2.4) has complex dimension one. Thanks to (4.2.3) we deduce that the unique
self-adjoint extension that has no logarithmic decay at the origin is the distinguished
one described in Proposition 4.4.3.

Remark 4.4.5. For ν ∈ (0, 1] and a := m
√

1− ν2 ∈ [0,m), the function

ψa(x) =
e−
√
m2−a2|x|

|x|1−a/m

−i
√

m−a
m+a

σ · x̂ ·
(

1
1

)
1
1


is solution to the equation(

−iα · ∇+mβ +
ν

|x|

)
ψ = aψ,

i.e. ψa is an eigenfunction for the Dirac-Coulomb operator of eigenvalue a. Remem-
bering that

Φ+
1
2
,1

=
1√
4π

iσ · x̂ ·
(

1
0

)
0
0

 , Φ+
− 1

2
,1

=
1√
4π

iσ · x̂ ·
(

0
1

)
0
0



Φ−1
2
,1

=
1√
4π


0
0
1
0

 , Φ−− 1
2
,1

=
1√
4π


0
0
0
1

 ,

it is easy to show that, for ν ∈ (
√

3/2, 1), ψa ∈ D(T (0, 0, 0, 0)) where

T (0, 0, 0, 0) ∼=
(
t(0) 1

2
,1 ⊕ t(0)− 1

2
,1 ⊕ t(0) 1

2
,−1 ⊕ t(0)− 1

2
,−1

)
⊕

 ⊕
j,kj ,mj
|kj |>1

t∗mj ,kj

 ,

and, for ν = 1, ψ0 ∈ D
(
T
(
π
4
, π

4
, 3π

4
, 3π

4

))
with

T
(
π
4
, π

4
, 3π

4
, 3π

4

) ∼= (t (π4 ) 1
2
,1
⊕ t
(
π
4

)
− 1

2
,1
⊕ t
(

3π
4

)
1
2
,−1
⊕ t
(

3π
4

)
− 1

2
,−1

)
⊕

 ⊕
j,kj ,mj
|kj |>1

t∗mj ,kj

 ,

thanks to the explicit characterization of these domains given by Theorem 4.2.2.
Finally, this implies that these extensions are the ones considered in [22, Section 1.5]
in the case V(x) = ν/|x|, for ν ∈ (0, 1].
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4. The Dirac Operator with Coulomb-Type Spherically Potentials

Remark 4.4.6 (Distinguished self-adjoint extension for the critical anomalous mag-
netic potential). Assuming that (ν, µ) = (0, 0) in (4.1.1) it is not possible to give
a coherent definition of distinguished self-adjoint extension in the critical case. In-
deed, under this hypothesis, γ = |kj + λ|; let γ = 0 and let {t(θ)mj ,kj}θ∈[0,π) be the
one-parameter family of self-adjoint extension described in (iv) in Theorem 4.2.2.
Then for any θ ∈ [0, π) and for any (f+, f−) ∈ D

(
t(θ)mj ,kj

)
, defining ϕ−mj ,kj as in

(4.4.3), we get that ϕ−mj ,kj = 0. In other words (i) of Proposition 4.4.3 is verified
for any θ ∈ [0, π). This is a consequence of the fact that the matrix M defined in
(4.2.4) vanishes. Thus, from (4.2.3) we deduce that for any θ ∈ [0, π) all functions in
D
(
t(θ)mj ,kj

)
do not admit logarithmic decay at zero differently from what happens

in the case (ν, µ) 6= (0, 0), see also Remark 4.4.4.

This incongruence can be observed using a different approach: in the sub-critical
case, we find a spectral condition that characterizes the distinguished self-adjoint
extension and we realize that it is not possible to extend continuously this condition
to the critical case. Indeed, let 0 < γ < 1/2 and assume that {t(θ)mj ,kj}θ∈[0,π) is the
one-parameter family of self-adjoint extension defined in Theorem 4.2.2. Let us find
eigenvalues for t(θ)mj ,kj . The L2–solutions of the following equation for a ∈ (−m,m):(

m+ a −∂r +
kj+λ

r

∂r +
kj+λ

r
−(m− a)

)(
f+

f−

)
= 0.

are

f+(r) :=

{
A
√
m− a√rKγ+1/2

(√
m2 − a2 r

)
if kj + λ > 0,

A
√
m− a√rKγ−1/2

(√
m2 − a2 r

)
if kj + λ < 0,

f−(r) :=

{
−A√m+ a

√
rKγ−1/2

(√
m2 − a2 r

)
if kj + λ > 0,

−A√m+ a
√
rKγ+1/2

(√
m2 − a2 r

)
if kj + λ < 0,

(4.4.4)

where K is the second-order modified Bessel function and A 6= 0. By [48, Equation
10.30.2], we get that as r → 0

f+(r) ∼
{
Ã
√
m− a r−γ if kj + λ > 0,

Ã
√
m− a rγ if kj + λ < 0,

f−(r) ∼
{
−Ã√m+ a rγ if kj + λ > 0,

−Ã√m+ a r−γ if kj + λ < 0.

We realize that for any a ∈ (−m,m) there exists only one θ ∈ [0, π) such that
(f+, f−) defined in (4.4.4) belongs to D

(
t(θ)mj ,kk

)
. Such θ is uniquely determined

by the condition {
sin θ
√
m+ a+ cos θ

√
m− a = 0 if kj + λ > 0,

sin θ
√
m− a+ cos θ

√
m+ a = 0 if kj + λ < 0.
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4.4 Distinguished self-adjoint extension

Thus, the distinguished self-adjoint extension t(0)mj ,kj does not have any eigenvalue
a ∈ (−m,m), but it is characterized by the fact that if kj + λ > 0, it has m as a
resonance and if kj +λ < 0, it has −m as a resonance. This spectral relation depends
on the sign of kj + λ and so it does not have any continuous prolongation to the
critical case where kj + λ = 0.
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AGeometric and measure theoretic
considerations

In this appendix we recall some geometric and measure theoretic properties of Σ

and the domains presented in (2.1.1). At the end, we provide some growth estimates
of the measures associated to the layers.

The following definition and propositions correspond to Definition 2.2 and Propo-
sitions 2.4 and 2.6 in [12], respectively. The reader should look that paper for the
details.

Definition A.1 (Weingarten map). Let Σ be parametrized by the family {ϕi, Ui, Vi}i∈I ,
that is, I is a finite set, Ui ⊂ R2, Vi ⊂ R3, Σ ⊂ ∪i∈IVi and ϕi(Ui) = Vi ∩ Σ for all
i ∈ I. For

x = ϕi(u) ∈ Σ ∩ Vi
with u ∈ Ui, i ∈ I, one defines the Weingarten map W (x) : Tx → Tx, where Tx
denotes the tangent space of Σ on x, as the linear operator acting on the basis vector
{∂jϕi(u)}j=1,2 of Tx as

W (x)∂jϕi(u) := −∂jν(ϕi(u)).

Proposition A.2. The Weingarten map W (x) is symmetric with respect to the in-
ner product induced by the first fundamental form and its eigenvalues are uniformly
bounded for all x ∈ Σ.

Given 0 < ε ≤ η and Ωε as in (2.1.1), let iε : Σ × (−ε, ε) → Ωε be the bijection
defined by

iε(xΣ, t) := xΣ + tν(xΣ).
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A. Geometric and measure theoretic considerations

For future purposes, we also introduce the projection PΣ : Ωε → Σ given by

PΣ(xΣ + tν(xΣ)) := xΣ. (A.1)

For 1 ≤ p < +∞, let Lp(Ωε) and Lp(Σ× (−1, 1)) be the Banach spaces endowed
with the norms

‖f‖pLp(Ωε)
:=

∫
Ωε

|f |p dL, ‖f‖pLp(Σ×(−1,1)) :=

∫ 1

−1

∫
Σ

|f |p dσ dt, (A.2)

respectively, where L denotes the Lebesgue measure in R3. The Banach spaces cor-
responding to the endpoint case p = +∞ are defined, as usual, in terms of essential
suprema with respect to the measures associated to Ωε and Σ × (−1, 1) in (A.2),
respectively.

Proposition A.3. If η > 0 is small enough, there exist 0 < c1, c2 < +∞ such that

c1‖f‖L1(Ωε) ≤ ‖f ◦ iε‖L1(Σ×(−ε,ε)) ≤ c2‖f‖L1(Ωε) for all f ∈ L1(Ωε), 0 < ε ≤ η.

Moreover, if W denotes the Weingarten map associated to Σ from Definition A.1,∫
Ωε

f(x) dx =

∫ ε

−ε

∫
Σ

f(xΣ + tν(xΣ)) det(1− tW (xΣ)) dσ(xΣ) dt for all f ∈ L1(Ωε).

(A.3)

The eigenvalues of the Weingarten map W (x) are the principal curvatures of Σ

on x ∈ Σ, and they are independent of the parametrization of Σ. Therefore, the term
det(1− tW (xΣ)) in (A.3) is also independent of the parametrization of Σ.

Remark A.4. Let h : Ωε → (−ε, ε) be defined by h(xΣ + tν(xΣ)) := t. Then |∇h| = 1

in Ωε, so the coarea formula, see for example [3, Remark 2.94], gives∫
Ωε

f(x) dx =

∫ ε

−ε

∫
Σt

f(x) dσt(x) dt for all f ∈ L1(Ωε).

In view of (A.3), one deduces that∫
Σt

f dσt =

∫
Σ

f(xΣ + tν(xΣ)) det(1− tW (xΣ)) dσ(xΣ) (A.4)

for all t ∈ (−ε, ε) and all f ∈ L1(Σt).

In the following lemma we give uniform growth estimates on the measures σt, for
t ∈ [−η, η], that exhibit their 2-dimensional nature. These estimates will be used
many times in the sequel, mostly for the case of σ.
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Lemma A.5. If η > 0 is small enough, there exist c1, c2 > 0 such that

σt(Br(x)) ≤ c1r
2 for all x ∈ R3, r > 0, t ∈ [−η, η], (A.5)

σt(Br(x)) ≥ c2r
2 for all x ∈ Σt, 0 < r < 2diam(Ωη), t ∈ [−η, η], (A.6)

where Br(x) is the ball of radius r centred at x.

Proof. We first prove (A.5). Let r0 > 0 be a constant small enough to be fixed later
on. If r ≥ r0, then

σt(Br(x)) ≤ max
t∈[−η,η]

σt(R3) ≤ C =
C

r2
0

r2
0 ≤ C0r

2,

where C0 := C/r2
0 > 0 only depends on r0 and η. Therefore, we can assume that

r < r0. Let us see that we can also suppose that x ∈ Σt. In fact, if η and r0 are
small enough and 0 < r < r0, given x ∈ R3 one can always find x̃ ∈ Σt such that
σt(Br(x)) ≤ 2σt(Br(x̃)) (if x ∈ Ωη just take x̃ = PΣx+ tν(PΣx)). Then if (A.5) holds
for x̃, one gets σt(Br(x)) ≤ 2σt(Br(x̃)) ≤ Cr2, as desired.

Thus, it is enough to prove (A.5) for x ∈ Σt and r < r0. If r0 and η are small
enough, covering Σt by local chards we can find an open and bounded set Vt,r ⊂ R2

and a C1 diffeomorphism ϕt : R2 → ϕt(R2) ⊂ R3 such that ϕt(Vt,r) = Σt ∩ Br(x).
By means of a rotation if necessary, we can further assume that ϕt is of the form
ϕt(y

′) = (y′, Tt(y
′)), i.e. ϕt is the graph of a C1 function Tt : R2 → R, and that

maxt∈[−η,η] ‖∇Tt‖∞ ≤ C (this follows from the regularuty of Σ). Then, if x′ ∈ Vt,r is
such that ϕt(x′) = x, for any y′ ∈ Vt,r we get

r2 ≥ |ϕt(y′)− ϕt(x′)|2 ≥ |y′ − x′|2,

which means that Vt,r ⊂ {y′ ∈ R2 : |x′ − y′| < r} =: B′ ⊂ R2. Denoting by H2 the
2-dimensional Hausdorff measure, from [46, Theorem 7.5] we get

σt(Br(x)) = H2(ϕt(Vt,r)) ≤ H2(ϕt(B
′)) ≤ ‖∇ϕt‖2

∞H2(B′) ≤ Cr2

for all t ∈ [−η, η], so (A.5) is finally proved.

Let us now deal with (A.6). Given r0 > 0, by the regularity and boundedness of
Σ it is clear that inft∈[−η,η], x∈Σt σt(Br0(x)) ≥ C > 0. As before, for any r0 ≤ r <

2diam(Ωη) we easily see that

σt(Br(x)) ≥ σt(Br0(x)) ≥ C =
C

4diam(Ωη)2
4diam(Ωη)

2 ≥ C1r
2,

where C1 := C/4diam(Ωη)
2 > 0 only depends on r0 and η. Hence (A.6) is proved for

all r0 ≤ r < 2diam(Ωη).
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The case 0 < r < r0 is treated, as before, using the local parametrization of Σt

around x by the graph of a function. Taking η and r0 small enough, we may assume
the existence of Vt,r and ϕt as above, so let us set ϕt(x′) = x for some x′ ∈ Vt,r. The
fact that ϕt is of the form ϕt(y

′) = (y′, Tt(y
′)) and that ϕt(Vt,r) = Σt ∩Br(x) implies

B′′ := {y′ ∈ R2 : |x′−y′| < C2r} ⊂ Vt,r for some C2 > 0 small enough only depending
on maxt∈[−η,η] ‖∇Tt‖∞, which is finite by assumption. Then, we easily see that

σt(Br(x)) = σt(ϕt(Vt,r)) ≥ σt(ϕt(B
′′)) =

∫
B′′

√
1 + |∇Tt(y′)|2 dy′ ≥

∫
B′′
dy′ = Cr2,

where C > 0 only depends on C2.

Lemma A.6. Let f ∈ H1(R3), Ω ⊂ R3 be an open bounded and C2-regular domain
and Σt be defined as in (2.1.2). Then there exist η > 0 small enough and CΣ(η) > 0

such that for any |t| ≤ η, f has a boundary trace on Σt and

||f ||L2(Σt) ≤ CΣ(η)||f ||H1(R3). (A.7)

Proof. Let us firstly assume f ∈ C∞c (R3). For any ε > 0 set Ωε := {x ∈ R3 : d(x,Σ) < ε}.
Due to the regularity of Ω, there exists η > 0 such that, for any 0 < ε < η, Ωε can be
written as in (2.1.1). For t ∈ [−η0, η0] set

Ω̃t :=

{
Ω ∪ Ωt if t ≥ 0,

Ω \ Ω|t| if t < 0.

By construction Ω̃t is an open set and ∂Ω̃t = Σt. Moreover, let ϕ ∈ C∞c (R3) such
that χ[−η,η] ≤ ϕ ≤ χ[−2η,2η] and set

F (x) :=

{
ν(xΣ)ϕ(t) if x = xΣ + tν(xΣ) ∈ Ωη,

0 otherwise.

Since Σ is bounded and regular, we have that F ∈ C1(R3) and ||F ||L∞(R3)+||∇F ||L∞(R3) ≤
CΣ(η), for some CΣ(η) > 0. Recalling the fact that for any (xΣ, t) ∈ Σ × (−η, η):
νt (xΣ + tν(xΣ)) = ν(xΣ) and ϕ(t) = 1, by the Divergence Theorem we get∫

Σt

|f |2 dσt =

∫
Σt

|f |2F · νt dσt =

∫
Ω̃t

div(|f |2F ) dx

≤ CΣ(η)2

(∫
Ω̃t

|f |2 dx+

∫
Ω̃t

|∇f |2 dx
)
≤ CΣ(η)2||f ||2H1(R3).

By a density argument, (A.7) is finally proved.
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BSpherical Symmetry

For sake of completeness and following [61, Section 4.6], in this appendix we are
going to construct invariant subspaces for the Dirac operator with a potential having
a special symmetry. To this end we use the classical decomposition of the space
L2(R3)4 in the direct sum of the partial wave subspaces, which are invariant for the
Dirac operator.

We will use the standard notation for polar coordinates for x = (x1, x2, x3) ∈ R3

x1 = r sin θ cosφ; x2 = r sin θ sinφ; x3 = r cos θ.

with the unit vectors in the directions of the polar coordinate lines given by
er := (sin θ cosφ, sinθ sinφ, cos θ) = x̂;

eθ := (cos θ cosφ, cos θ sinφ;− sin θ) = ∂θer;

eφ := (− sinφ; cosφ; 0) = 1
sin θ

∂φer.

Then we write for a function Ψ ∈ L2(R3)4, we set

ψ(r, θ, φ) = rΨ (x(r, θ, φ), y(r, θ, φ), z(r, θ, φ)) .

Since the function ψ(r, ·, ·) of the angular variables is square integrable on the unit
sphere L2(S2), the mapping Ψ 7→ ψ denotes a unitary isomorphism:

L2(R3)4 ' L2 ((0; 1); dr)⊗ L2(S2)4.

The decomposition of the Hilbert space into radial and an angular part is useful
because the angular momentum operator L := x ∧ (−i∇) and the total angular
momentum operator J := L + S, where S := −1/4(α ∧ α), act only on the angular
part L2(R3)4 in a non-trivial way. Using the expression for ∇ in polar coordinates

∇ = er ∂r +
1

r

(
eθ ∂θ + eφ

1

sin θ
∂φ

)
, (B.1)
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we obtain that
L = ieθ

1

sin θ
∂φ − ieφ ∂θ, (B.2)

where the differentiation applies to each component of the wavefunction. The Dirac
operator can be written in polar coordinates as follows. Combining (B.1) and (B.2)
yelds

− iα · ∇ = −i(α · er)∂r −
1

r
α · (er ∧ L). (B.3)

By using the basic properties of Dirac matrices:

(α · A)(α ·B) = A ·B + 2iS(A ∧B),

from (B.3) we can deduce that

− iα · ∇ = −iα · er
(
∂r −

1

r
2S · L

)
.

Finally, introducing the spin orbit operator

K = β (1 + 2S · L) , (B.4)

we can say that the free Dirac operator H defined in (1.1.7) can be written as

H = −iα · er
(
∂r +

1

r
− 1

r
βK

)
+mβ. (B.5)

The key step to construct the invariant spaces is the following:

Proposition B.1. For each choice of (j,mj, kj) with j = 1/2, 3/2, 5/2, . . . , mj =

−j,−j + 1, . . . , j − 1, j and kj = ±(j + 1/2), there exist precisely two orthonormal
functions Φ±mj ,kj ∈ C∞c (S2)4 satisfying the following relations

J2Φmj ,kj = j(j + 1)Φmj ,kj ,

J3Φmj ,kj = mjΦmj ,kj ,

KΦmj ,kj = −kjΦmj ,kj .

Moreover the family
{

Φ±mj ,kj

}
j,mj ,kj

forms a basis of L2(S2)4.

The functions Φ±mj ,kj can be written explicitly using spherical harmonics

Y n
l (θ, φ) =

√
2l + 1

n

(l − n)!

(l + n)!
eimφP n

l (cos θ),

where l = 0, 1, 2, . . . and n = −l,−l + 1, . . . , l, and P n
l are the Legendre polynomial

defined as

P n
l (x) =

(−1)n

2ll!
(1− x2)n/2

dn+l

dxn+l
(x2 − 1)l.
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It is well known that the the spherical harmonics form a complete orthonormal set
of L2(S2) and that they verifies the following

L2Y n
l = l(l + 1)Y n

l ,

L3Y
n
l = mY n

l .

Now set

ψ
mj
j−1/2 =

1√
2j

( √
j +mj Y

mj−1/2

j−1/2√
j −mj Y

mj+1/2

j−1/2

)
,

ψ
mj
j+1/2 =

1√
2j + 2

( √
j + 1−mj Y

mj−1/2

j+1/2

−
√
j + 1 +mj Y

mj+1/2

j+1/2

)
.

Then
{
ψ
mj
j±1/2

}
j,mj

is a complete orthonormal set in L2(S2)2 and

(σ · x̂)ψ
mj
j±1/2 = ψ

mj
j∓1/2, and (1 + σ · L)ψ

mj
j±1/2 = ±(j + 1/2)ψ

mj
j±1/2.

For kj = ±(j + 1/2) we define

Φ+
mj ,kj

=

(
i ψ

mj
j±1/2

0

)
and Φ−mj ,kj =

(
0

ψ
mj
j∓1/2

)
.

Thus the set B =
{

Φ+
mj ,kj

,Φ−mj ,kj

}
j,kj ,mj

is a complete orthonormal base of L2(S2)4,that

is: setting

hmj ,kj =
{
c+Φ+

mj ,kj
(x̂) + c−Φ−mj ,kj(x̂) : c± ∈ C

}
, (B.6)

then

L2(S2)4 ∼=
∞⊕

j= 1
2
, 3
2
,...

j⊕
mj=−j

⊕
kj=±(j+1/2)

hmj ,kj ,

where “∼=” means that the operators are unitarily equivalent.

Moreover the following holds:

i(α · x̂)Φ±mj ,kj = ∓Φ∓mj ,kj .

from which we deduce the following

Lemma B.2. The subspaces hmj ,kj are left-invariant by the operators β and −iα · x̂.
With respect to the basis

{
Φ+
mj ,kj

,Φ−mj ,kj

}
the action of these operators is represented

by the 2× 2 matrices:

β =

(
1 0
0 −1

)
, −iα · x̂ =

(
0 −1
1 0

)
. (B.7)
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We now set

Hmj ,kj =

{
1

r

(
f+(r)Φ+

mj ,kj
(x̂) + f−(r)Φ−mj ,kj(x̂)

)
∈ L2(R3)4 : f± ∈ L2(0,+∞)

}
.

The decomposition shown in (B.6) implies that

L2(R3)4 ∼=
∞⊕

j= 1
2
, 3
2
,...

j⊕
mj=−j

⊕
kj=±(j+1/2)

Hmj ,kj ,

that is, for any ψ ∈ L2(R3)4 for any (j,mj, kj) there exist f±mj ,kj ∈ L2(0,+∞) such
that

ψ(x) =
∑
j,mj ,kj

f+
mj ,kj

(r)Φ+
mj ,kj

(x̂) + f−mj ,kj(r)Φ
−
mj ,kj

(x̂).

This decomposition and (B.5) allow us to easily calculate the action of the Dirac
operator (at least on differentiable states) even in the presence of a suitable potential

Theorem B.3. Let

V(x) := φel(r)I4 + φsc(r)β + φam(−iα · x̂β).

and assume that the operator

D(Tmin) = C∞c (R3)4, Tmin := H + V,

is well-defined. Then the operator Tmin leaves the partial wave subspace C∞c (0,+∞)⊗
hmj ,kj invariant. With respect to the basis

{
Φ+
mj ,kj

,Φ−mj ,kj

}
its action of each subspace

is represented by the operator

D(̊tmj ,kj) = C∞c (0,+∞)2, t̊mj ,kj(f
+, f−) =

(
m+ φel+φsc

r
−∂r +

kj+φam
r

∂r +
kj+φam

r
−m+ φel−φsc

r

)
·
(
f+

f−

)
.

(B.8)
The operator Tmin is unitarily equivalent to the direct sum of the “partial wave” Dirac
operators t̊mj ,kj :

Tmin ∼=
∞⊕

j= 1
2
, 3
2
,...

j⊕
mj=−j

⊕
kj=±(j+1/2)

t̊mj ,kj .

Moreover, set Tmax = (Tmin)∗ and t∗mj ,kj = (̊tmj ,kj)
∗. Then the the operators Tmax

leaves the partial wave subspace D(Tmax)∩Hmj ,kj invariant and its action with respect
to the basis

{
Φ+
mj ,kj

,Φ−mj ,kj

}
is represented by t∗mj ,kj and

D(t∗mj ,kj) = {(f+, f−) ∈ L2(0,+∞)2 : t∗mj ,kj(f
+, f−) ∈ L2(0,+∞)2},

t∗mj ,kj(f
+, f−) :=

(
m+ ν+µ

r
−∂r +

kj+λ

r

∂r +
kj+λ

r
−m+ ν−µ

r

)(
f+

f−

)
,

(B.9)
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where t∗mj ,kj(f
+, f−) has to be read in the distributional sense. The operator Tmax is

unitarily equivalent to the direct sum of the “partial wave” Dirac operators tmj ,kj :

Tmax ∼=
∞⊕

j= 1
2
, 3
2
,...

j⊕
mj=−j

⊕
kj=±(j+1/2)

t∗mj ,kj .

In particular, if V = 0, the following holds

Corollary B.4. The action of the free Dirac operator H defined in (1.1.7) on the
partial wave subspace C∞c (0,+∞)⊗ hmj ,kj is represented by the operator

D(̊hmj ,kj) = C∞c (0,+∞)2, h̊mj ,kj(f
+, f−) =

(
m −∂r +

kj
r

∂r +
kj
r

−m

)
·
(
f+

f−

)
.

Finally, setting hmj ,kj := h̊mj ,kj , due to the essentially self-adjointness of H on
C∞c (R3)4, we get that the action of H on the partial wave subspace H1(R3)4 ∩Hmj ,kj

is represented by hmj ,kj and

D(hmj ,kj) =

{
(f+, f−) ∈ L2(0,+∞)2 :

(
∂r ±

kj
r

)
f± ∈ L2(0,+∞)

}
,

hmj ,kj(f
+, f−) :=

(
m −∂r +

kj
r

∂r +
kj
r

−m

)(
f+

f−

)
,

(B.10)

where hmj ,kj(f+, f−) has to be read in the distributional sense. The operator H is
unitarily equivalent to the direct sum of the “partial wave” Dirac operators hmj ,kj

H ∼=
∞⊕

j= 1
2
, 3
2
,...

j⊕
mj=−j

⊕
kj=±(j+1/2)

hmj ,kj .
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