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Resumen

La ecuaciéon de Dirac es una ecuacion de la mecénica cuantica relativista para
particulas de espin 1/2, formulada por el fisico Paul Dirac en el anio 1928. Ha tenido
un papel fundamental en varias areas de la fisica y de las mateméticas modernas. Su
expresion es

iﬁﬂ#(@ 'T) = Hlﬂ(@ .’17),

donde H es el operador de Dirac libre en el espacio tridimensionales definido como:
H :=—ia-V+mp,

conm >0y a=(ag,a,as),

i 0 0j - . ]12 0
a]—(gj 0) para 7 =1,2,3, 6-(0 —112)’

(01 (0 —i /1 0
Y a={10) 271 i o) 27 \o <1

es la familia de las matrices de Pauls.

En mecéanica cuantica, la propiedad de un operador de ser autoadjunto es fun-
damental, porque describe los objetos observables. Del operador H sabemos que es
esencialmente autoadjunto sobre C°(R?)* y autoadjunto sobre D(H) := H'(R?)%.

Otra caracteristica es que su espectro es puramente esencial y que cumple que
0(H) = 0ess(H) = (—00, —m| U [m, +00).

Gracias a esta propiedad del espectro, utilizando herramientas del calculo funcional,
es posible construir dos subespacios Hypes ¥ Hneg de tal manera que L*(R*)* se pueda
descomponer en suma directa, es decir, L*(R?®)* = Hps & Hyey- Ademas, para todas

las funciones ¥pos € Hpos ¥ Vneg € Hneg, S€ cumple que:

<wposa pros>L2 > 07 <1/}neg7 Hwneg>L2 < 0.

Por esta razon, Hpyos ¥ Hmin son llamados respectivamente subespacio de energia

positiva y subespacio de energia negativa.
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La clave para describir las interacciones es perturbar el hamiltoniano libre H.
Queremos estudiar la evoluciéon de una particula cuando es perturbada por un cam-
po vectorial. En la realidad, este tipo de perturbaciones consisten en la suma de las
interacciones con el campo y con los generadores de dicho campo. Nosotros solo consi-
deraremos campos externos, es decir, asumiremos que la interaccién entre la particula
y los generadores es tan pequena que puede ser eliminada y que el movimiento de la

particula se ve influenciado solo por la presencia de un campo exterior.

El objetivo de esta tesis es investigar las propiedades del operador H + V donde
V es un potencial singular. En particular, en esta tesis, hemos investigado dos tipos

de potenciales singulares:

e Las perturbaciones de tipo d-shell: V es una distribucion con soporte ¥, siendo

esta una hipersuperficie regular de R?;

e Las perturbaciones de tipo Coulomb: V es una matriz 4 X 4 de funciones que

verifica V; j(x) ~ o7 bara lz] > 0yi,j=1,...,4.
A continuacién, describimos ambas perturbaciones.

Perturbacion de tipo J-shell

En mecanica cuantica, es usual estudiar operadores construidos acoplando ha-
miltonianos con potenciales singulares con soportes contenidos en subconjuntos de
dimensién inferior respecto al espacio ambiente. Desde el punto de vista de las ma-
tematicas, este tipo de operadores han sido muy atractivos en los ultimos anos. Esto
es debido a que, utilizando condiciones de borde o de transmision a través de la

superficie, es posible probar que dicho operador es autoadjunto.

El tipo de problema que trata el operador de Shrodinger, esta descrito en el libro
[1] para una cantidad numerable de interacciones de tipo d-point y en [24] para po-
tenciales singulares con soporte en hipersuperficies. En el caso del operador de Dirac,
el problema de autoadjuncion esté tratado en varios articulos. El primer trabajo es
[20] de Dittirch, Exner y Seba. En este articulo, los autores han construido el dominio
sobre el cual el operador de Dirac acoplado con un potencial singular con soporte en
la esfera, sea autoadjunto. Utilizando la particular simetria del problema y las coorde-
nadas polares, el problema se puede reducir a considerar un operador unidimensional.
En el caso de una superficie general 3, en la serie de articulos [7-9], Arrizabalaga,

Mas y Vega han caracterizado el dominio de la interaccién d-shell con constante



de acoplamiento A\ # +2, midiendo la interacciéon entre funciones u € H'(R3)* y
g € L*(X)*. Comparando este resultado con el trabajo mas general en [50], se po-
dria pensar que este tipo de interaccion pueda implicar que g esté en H'/2(X)*. Mas
aun, en [49] Oumiéres-Bonafos y Vega han demostrado que esta conjetura es cierta.
Ademas, han definido el dominio por la d-shell para el caso A = +2. Finalmente,
en [11, 13|, Behrndt y Holzmann han enfocado el problema utilizando la teoria de

boundary triples.

De todas formas, aunque sea mas facil entender matematicamente este tipo de
modelo, porque su analisis puede ser reducido a un problema algebraico, hay que
tener presente que estos ejemplos no pueden ser reproducidos en la realidad. Por esta
razon, es interesante aproximar este tipo de operadores con otros més regulares. Por
ejemplo, denotando con dy la medida de Dirac en el origen, si V € C°(R), entonces

en el sentido de las distribuciones, resulta que
Ve(t) =1V (4 = (V)& con e — 0.

En [1] han probado que, cuando € — 0, A+V, — A+ ([ V)dp en norma del resolvente
y en [12] este resultado esta generalizado a dimensiones mayores por perturbaciones

singulares soportadas en hipersuperficies lisas.

Sin embargo, este tipo de resultado no es valido para el operador de Dirac. De
hecho, en [59], Seba ha demostrado que, en el caso unidimensional, aunque hay conver-
gencia en norma del resolvente , la constante de acoplamiento depende del potencial
V' de manera no lineal. Este fenémeno no lineal es llamado paradoja de Klein y tiene
que ver con el hecho de que, en la ecuaciéon de Dirac, existen estados cuénticos con
energia positiva y estados cuénticos con energia negativa. De hecho, cuando un elec-
tron se acerca a una barrera, su funcion de onda puede ser dividida en dos partes: la
parte refleja y la parte trasmitida. En una situaciéon no relativista, es un hecho cono-
cido que la funcién de onda trasmitida decae exponencialmente al crecer el tamano
de la barrera. En el contexto de la ecuaciéon de Dirac ha sido observado que la parte
trasmitida de la funciéon de onda depende débilmente de la barrera que se hace casi

trasparente cuando su tamano es muy grande.

La presente tesis persigue varios objetivos. Por un lado, investigamos si en el caso
tridimensional se continta obteniendo el mismo resultado que en el caso unidimen-
sional. Nuestro desarrollo prueba el mismo fenémeno no lineal por la constante de
acoplamiento pero solo podemos demostrar convergencia fuerte del resolvente. Por
otro lado, en el caso que de que X sea la esfera, contestamos a una pregunta abierta

formulada en [8], y demostramos que los dominios dados en [20] por Dittirch, Seba y
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Exner, y en |7], por Arrizabalaga, Mas y Vega, coinciden. Por esta razon, la conjetura
que aparece comparando con [50] es cierta. Ademas, observando las relaciones espec-
trales relativas a la interaccion de tipo d-shell y su aproximacion regular, obtenemos
analogias con el fenémeno no lineal ya descrito y mejorias en las aproximaciones de

los espectros.

Perturbaciones de tipo Coulomb

Una de las principales caracteristicas de la ecuaciéon de Dirac es que permite
describir la interaccion de un electrén con el campo generado por un niicleo atémico,
de forma coherente con las medidas experimentales. La energia electrostatica de un

electron en el campo generado por un nicleo atémico esta descrita por el potencial

de Coulomb

con v = e*Z/h donde Z es el nimero atémico, e la carga del electron y & la constante
de Plank.

El problema de estudiar si el operador H + V¢ es autoadjunto, ha sido enfrentado
por muchos matematicos. El primer trabajo relevante ha sido realizado por Kato,
en [33], y estd basado en la desigualdad de Hardy y el teorema de Kato-Rellich.

Kato pudo demostrar que por |v| € [0, %), el operador H 4+ V¢ es esencialmente

autoadjunto sobre C°(R3)* y autoadjunto D(H) = H'(R3)*. El enfoque de Kato no
depende de la simetria esférica del potencial, ya que es posible considerar potenciales
V que sean matrices hermiticas 4 x 4 de funciones reales y que verifiquen

Vis(@)] <+

conb € Rya<1/2 véase [36, Theorem V 5.10]. Los potenciales de tipo Coulomb

son aquellos que verifican este tipo de desigualdades.

De todas formas, esto no cubre la gama de todos los v admisibles para que el
operador sea esencialmente autoadjunto. Hay una serie de trabajos independientes,
[29, 53, 55, 57, 65], en los cuales los distintos autores, utilizando técnicas diferentes,
prueban que el operador H + V¢ es esencialmente autoadjunto sobre C2°(R?)* para
lv| < +/3/2. Dicho rango de v es optimal, dado que, si |v| > v/3/2, el operador H+ V¢
no es esencialmente autoadjunto y admite infinitas extensiones autoadjuntas. Por lo
tanto, es importante estudiar cual, de entre todas, es la extension autoadjunta mas
significativa desde un punto de vista fisico: la extension denominada distinguida.

Para |v| < 1, se conoce como caso sub-critico, aunque varios autores han definido la



extension distinguida de manera distinta, véase [47, 56, 66|, Klaus y Wiist, en [38],

demostraron que se trataba de definiciones equivalentes.

En [4], Arai ha considerado potenciales de la forma

V(Jl:):i<y114—|-,uﬂ—(iowi ))\), para x # 0,

] ]

demostrando que una condicién necesaria y suficiente para que el operador H +V
sea esencialmente autoadjunto, es que una cierta cantidad 9, dependiente de V, sea
mayor que 1/4. Sus argumentos son vélidos para demostrar que, para § > 0, H +V

admite infinitas extensiones autoadjuntas.

En el caso de que V sea una matriz hermitica 4 x4 de funciones reales que verifique
la propiedad
v
Vij(2)] < —, parax#0yi,j=1,...,4,

= el
Kato en [35] y Arrizabalaga, Duoandikoetxea y Vega en [6] pudieron definir el dominio
de la extension distinguida del operador H +V, utilizando una particular desigualdad

llamada de Kato-Nenciu.

En [23|, Esteban y Loss utilizando desigualdades de tipo Hardy con pesos, han
construido un dominio adecuado para que el operador H 4 V¢ sea autodajunto. En el
caso sub-critico, es decir 0 < v < 1, la extension que describen es la extension distin-
guida explicada anteriormente. En el caso critico, es decir v = 1, pueden describir el
dominio para que el operador H + V¢ sea autoadjunto, prolongando por continuidad

el caso sub-critico y, por lo tanto, afirman que tal extension es la distinguida.

En esta tesis analizamos el problema de la autoadjuncion del operador H + 'V con

V(z)=— (1/]14 + up — (z’a . |:;—|6> )\) , parax # 0.

Esta particular clase de potenciales, ya considerada por Arai en [4], es la clase més
amplia de potenciales tales que la accion de H +V se pueda descomponer utilizando
las coordenadas polares. Dependiendo de la misma cantidad ¢ utilizada por Arai,
distinguimos tres casos: sub-critico, critico y sobra-critico. Contrariamente a lo hecho
por Arai, no imponemos ninguna restriccién sobre §. Finalmente, nos hemos enfo-
cado en la definicion de la extension distinguida: en el caso sub-critico damos una
mejor condicion de regularidad que podemos extender por continuidad al caso critico

obteniendo analogias con 23] de Esteban y Loss.
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Estructura de la Tesis

Esta tesis se compone de 4 capitulos y dos apéndices.

En la Introduccion, Capitulo 1, introducimos la ecuaciéon de Dirac y el corres-
pondiente hamiltoniano, el llamado operador de Dirac, y discutimos en detalle los
contenidos de la tesis. Por un lado, a través de un anélisis historico y bibliogréfico
relativo al problema de las perturbaciones singulares del operador de Dirac, mostra-
mos la relacion entre los nuevos resultados presentes en esta tesis y las contribuciones
ya conocidas. Por otro lado, describimos las técnicas desarrolladas para afrontar este

tipo de problemas.

En el Capitulo 2, nos enfocamos en el problema de la aproximacion de la interac-
cion de tipo d-shell por una interaccién méas regular. En la Seccién 2.1 introducimos las
herramientas necesarias para enunciar el Teorema 2.1.2. En la Seccién 2.2 definimos
la interaccion de tipo d—shell y damos algunas propiedades espectrales. La Seccion
2.3 analiza las interacciones regulares. En la Seccion 2.3.1, damos algunas propieda-
des espectrales y en la Seccidon 2.3.2 presentamos el primer paso para demostrar el
Teorema 2.1.2: una descomposicién del operador resolvente de la interacciéon aproxi-
marte en tres operadores concretos: Ac(a), Be(a) y Cc(a). De estos tres operadores,
en la Seccién 2.3.2, damos algin resultado auxiliar que demostramos sucesivamente
en las Secciones 2.3.3, 2.3.4 and 2.3.5. Con estos ingredientes, en la Seccién 2.3.6,

demostramos el Teorema 2.1.2.

El Capitulo 3 tiene por objetivo detallar las propiedades de la interaccion d-shell
en el caso esférico. En la Seccion 3.1, utilizando coordenadas polares, deducimos
més informacion probando que el dominio dado por [20] y el dominio dado por |7]
coinciden. Por otro lado, en la Seccion 3.2, investigamos la relaciéon espectral entre
la interaccion d-shell y su aproximacion por el acoplamiento del operador de Dirac
con un potencial regular que depende de un cierto parametro ¢ de tal manera que, si

e — 0, se reduce al borde del dominio.

En el Capitulo 4, nos enfocamos en el problema relativo a la autoadjuncién de
la interaccion de tipo Coulomb. En la Seccion 4.1, introducimos el operador minimal
y el operador mazximal. En la Seccion 4.2 formulamos la clasificacion completa de
todas las extensiones audoadjuntas. En este contexto, aparece de manera natural,
la dependencia sobre un cierto pardmetro 6. Las herramientas que utilizamos son
desigualdades de tipo Hardy con pesos, en la Seccion 4.3.1, y la caracterizacion del
dominio del operador maximal, en la Seccion 4.3.2. Finalmente, la Secciéon 4.4, cubre

el estudio de la extension distinguida.



La presente tesis esta complementada por dos apéndices: El Apéndice A describe
algunas propiedades geométricas y de teoria de la medida, y el Apéndice B analiza

el contexto de la simetria esférica.
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Introduction

1.1 The free Dirac equation

According to the special theory of relativity, the relation between the energy E

and the momentum p for a free particle is
E = \/c*p? + m2c, (1.1.1)

where m is the mass of the particle and c is the speed of light. We can obtain an

operator in position-space for the relativistic kinetic energy by applying the usual
substitution rule in the non-relativistic theory:

0

B~ ih—,

O

Applying (1.1.2) to the classical relativistic energy-momentum relation (1.1.1), we

p ~» —ihV, (h = Plank constant). (1.1.2)

obtain the square-root Klein-Gordon equation

ih%w(t, z) = V—c2h2A + m2ctyp(t,x), teR, x€R? (1.1.3)

where A is the Laplace operator. Due to the asymmetry of space and time derivatives,
there is no easy way to modify this equation to incorporate electromagnetic fields in
a way that is compatible with the special theory of relativity. Moreover the square
root of a differential operator is a non-local operator. Hence, according to (1.1.3), the
time derivative of 1 at a point x is related to the values of ¥ (¢, y) at all points y € R3.
And finally, the solutions of the square-root Klein-Gordon equation are scalar wave
functions. Real electrons have spin, and in position space they should be described

by a matrix-wave equation.

In 1928, Paul Dirac had the great intuition, described in the well known paper

[19], of reconsidering the energy-momentum relation (1.1.1). Before translating it to



1. Introduction

quantum mechanics, with the help of (1.1.2), the energy can be linearised by writing

3
E:cZaipi—l—ﬂch = co - p+ mc?B, (1.1.4)
i=1
where a = (aq, az,a3) and 8 have to be determined by (1.1.1). Indeed, (1.1.2) can
be satisfied assuming that o and [ are anti-commuting quantities which are most
naturally represented by n x n matrices. Comparing E?, according to equations
(1.1.1) and (1.1.4) the following relations must hold:

ajop + ooy =206y, 7,k =1,2,3;
a;f+ Ba; =0, j=1,2,3; (1.1.5)
g =1,
where 0, denotes the Kronecker symbol. The n x n matrices o and S should be
Hermitian so that (1.1.4) can lead to a self-adjoint expression, which is a necessary
tool for a quantum mechanical interpretation. Although there are more possibilities,

a set of matrices satisfying the relation (1.1.5) is given by

. 0 0j - . ]IQ 0
aj_(aj O) for j =1,2,3, B—(O _]12),

01:((1)(1)), agz(? _0") 03:((1)_01) (1.1.6)

is the family of Pauli’s matrices. Setting for convenience h = ¢ = 1, he got that

and

Y(t,x) is the wave-function that represents the state of a free particle in R® if and
only if ¢(t,-) € L*(R3,C*) and it satisfies the free Dirac equation

’Laﬂ/J(t, CB) = H¢(t7 ZIJ),
where H is the free-particle Dirac operator in three space dimension defined as follows:
H :=—ia-V +mp, (1.1.7)

with m > 0 and o = (aq, az, az).

1.1.1 Properties of the free Dirac operator

For various reasons the property of being self-adjoint is a fundamental property
in quantum mechanics. In order to apply the methods and techniques of quantum
theory, we need to define a Hilbert space for the Dirac equation. To match the dimen-

sion of the Dirac matrices, a suitable state space must consist of square-integrable
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spinors with four components, that is
x)

Y1 (
Y(z) = Zzg% . ;e LAR?) for i =1,2,3,4.

u()
For this reason, to simplify the notation for any S C R3 and for any function space
V we set
V(S)*:=V(S,CH).
We want to determine a dense subset D(H) C L*(R®)* such that the operator
H : D(H) — L*(R®)" is self-adjoint. With the help of the Fourier transform
F : L*(R3,dx)* — L?*(R3,dp)* (we use this notation to distinguish between the

variables), for each p € R we can write

hp) = (FHF ") (p) = (mﬂ? "'p> | (1.1.8)

o-p —mls
Hence, the matrix-differential operator H and the matrix-multiplication operator h

are unitarily equivalent. The matrix h(p) can be diagonalized with the unitary matrix

u(p) == ay (p)Is + a_(p)Ba - |ﬂ|

where ax(p) := %\/lj:m/)\( ) and A(p) = /|p|?> + m2. Then

U(p)h(p)U(p)‘ = BA(p). (1.1.9)
Combining (1.1.8) and (1.1.9), setting W := uF, we get that
WHW™(p) = BA(p), (1.1.10)

that is H is unitarly equivalent to the multiplication operator SA(-). Hence it is

self-adjoint on
D(H) =W 'D(BA()) = F 'u ' D(BA()) = F'D(A(-)Ly), (1.1.11)

where we used the fact that both u(-)~! and 8 are multiplication by unitary matrices

that do not change the domain of the multiplication operator A(-). Since
D(A()) = {f € L*(R®,dp) : (m® +[p]*)'/f € L(R®,dp)}, (1.1.12)
combining (1.1.11) and (1.1.12), we can conclude that
D(H) = H'(R*)™.
Moreover, the matrix £ has eigenvalues £1, hence the eigenvalues of h(p) are £A(p).
From (1.1.10) we have that the spectrum of the differential operator H is equal to

the spectrum of the multiplication operator SA(p) which is purely essential and its

given by the range of the function +A(p), that is
0(H) = 0ess(H) = (—00, —m| U [m, +00).
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1.1.2 Positive and negative energies

In the Hilbert space WL?(R3)* where the Dirac operator is diagonal, see (1.1.10),
the upper two components of wave-functions belong to positive energies, while the

lower components correspond to negative energies. Indeed, setting

1 1 H
Prosjneg = W5 (L BV = 5 <1 * _) )

2 | H
and
Hpos/neg ‘= Ipos/neg LQ(R3)47

the following decomposition holds:
L2(R3)4 = Hpos P Hneg-
For 1) = o5 + thneg € L*(R3)*, setting ¢y = 3(1 + S)W, from (1.1.11) we have

<wposa pr08>L2 = <W_1¢+>W_1)‘(')¢+>L2 = <¢+7 A(')¢+>L2 > 0.

Analogously
<wneg7Hwneg>L2 = _<¢—, A(')¢7>L2 < 0.

For these reasons the space H,,s is called positive energy subspace and H,., is called

negative energy subspace.

1.2 Contents of the thesis

The key to describe interactions is the perturbation of the free Hamiltonian H:
we want to study the evolution of a particle when it is perturbed by a vector-field.
In reality, these kind of perturbation consists of the sum of interactions with the field
and with the field generators. In this thesis we will consider external fields: we are
assuming that the interaction between the particle and the generators is so small that
it can be removed and and that the motions of the particle is only influenced by the

presence of the external field.

In other words, we are interested in the analysis of the operator H 4V, with V a
4 x 4 matrix-valued potential. The objective of this thesis is to analyse two different

classes of singular potentials V:

e The §-shell interaction: V is a distribution supported on a hyper-surface of R3;
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v

e The Coulomb-type interaction: V is a 4 x 4 matrix of functions and V, ;(x) ~ Tl

for [z] = 0and 7,5 =1,...,4.

We will explain accurately in each section the physical interpretation of these phe-

nomena and why they are considered singular.

We give now a preliminary survey of the contents of each chapter, introducing

more details about the model we considered:

1.2.1 Chapter 2: Klein’s Paradox and the Relativistic J-shell
Interaction

The idea of coupling Hamiltonians with singular potentials supported on subsets
of lower dimension with respect to the ambient space (commonly called singular
perturbations) is quite classic in quantum mechanics. It started with the pioneering
works [54] by Rellich, and [33, 34| by Kato. A major development in the subject was
brought by Stummle in [60]. Regarding the Dirac operator, several researchers studied
different singular perturbations, see [17, 32]. One important physical example is the
model of a particle in a 1-dimensional lattice that analyses the evolution of an electron
on a straight line perturbed by a potential caused by ions in the periodic structure
of the crystal that create an electromagnetic field. In 1931, Kronig and Penney [40]
idealized this system: in their model the electron is free to move in regions of the
whole space separated by some periodical barriers which are zero everywhere except
at a single point, where they take infinite value. In modern language, this corresponds

to a d-point potential.

For the Schrodinger operator, this problem is described in the manuscript [1] and
[2] for countable §-point interactions and in [24] for singular potentials supported on
hypersurfaces. The reader may look at [7-9, 11, 13, 20, 49] for the case of the Dirac

operator, and to [50] for a much more general scenario.

Nevertheless, one has to keep in mind that, even if this kind of model is more
easily mathematically understood, since the analysis can be reduced to an algebraic
problem, it is an ideal model that cannot be physically reproduced. This is the reason
why it is interesting to approximate these kinds of operators by more regular ones.

For instance, in one dimension, if V'€ C*°(R) then
V(t) =1V (Y = (S V)b whene— 0

in the sense of distributions, where d§y denotes the Dirac measure at the origin. In
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[1] it is proved that A + V. — A+ ([ V)dp in the norm resolvent sense when € — 0,
and in [12] this result is generalized to higher dimensions for singular perturbations

on general smooth hyper-surfaces.

These kinds of results do not hold for the Dirac operator. In fact, in [59] it is
proved that, in the 1-dimensional case, the convergence holds in the norm resolvent
sense but the coupling constant does depend non-linearly on the potential V', unlike
in the case of Schrodinger operators. This non-linear happening, which may also
occur in higher dimensions, is a consequence of the physical phenomenon known as

Klein’s Paradozx.

As we have already explained in Section 1.1.2 in the Dirac equation a fundamental
role is played by positive energy states and negative energy states. Klein’s Paradox is
a counter-intuitive relativistic phenomenon related to the scattering theory for high-
barrier (or equivalently low-well) potentials for the Dirac equation. When an electron
is approaching a barrier, its wave function can be split in two parts: the reflected
one and the transmitted one. In a non-relativistic situation, it is well known that
the transmitted wave-function decays exponentially depending on the height of the
potential, see [62] and the references therein. For the Dirac equation, in [39] for the
first time it has been observed that the transmitted wave-function depends weakly on
the power of the barrier, and it becomes almost transparent for very high barriers, see
[61, Section 4.5| for more details. Recently, Klein’s paradox has been revived with the
study of graphene, see [37]. This problem also appears when approximating the Dirac
operator coupled with a d-shell potential by the corresponding operator using local
potentials with shrinking support. In fact, the free Dirac operator is critical with
respect to the set where the d-shell interaction is performed, unlike the Laplacian
(the Dirac/Laplace operator is a first /second order differential operator, respectively,
and the set where the interaction is performed has co-dimension 1 with respect to

the ambient space).

In this chapter we will study the 3-dimensional case. We will investigate if it is
possible to obtain the same results as in one dimension. For d-shell interactions on
bounded smooth hyper-surfaces, we will get the same non-linear phenomenon on the
coupling constant but we are only able to show convergence in the strong resolvent

sense.

Regarding the structure of the Chapter, Section 2.1 is devoted to the necessary
preliminaries to state Theorem 2.1.2. We will refer to basic rudiments with a geo-

metric measure theory flavour that will be explained in Appendix A. In Section 2.2
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we will introduce the d—shell interactions and we will give some spectral properties.
Section 2.3 is devoted to the short-range interaction. We will give some spectral prop-
erties in Section 2.3.1. In Section 2.3.2 we will present the first main step to proving
Theorem 2.1.2: a decomposition of the resolvent of the approximating interaction
into three concrete operators A.(a), B.(a) and C.(a). This type of decomposition,
which is made through a scaling operator, already appears in [12, 59|. Section 2.3.2
also contains some auxiliary results concerning these three operators, whose proofs
are carried out later on in Section 2.3.3, Section 2.3.4 and Section 2.3.5. With these

ingredients, in Section 2.3.6, Theorem 2.1.2 will be proved.

The results of this Chapter are contained in the research article [44].

1.2.2 Chapter 3: The relativistic spherical /-shell interaction:
spectrum and approximation

It is very natural thing in quantum mechanics to study Hamiltonians coupled with
singular potential supported on hyper-surfaces (as we explained in Section 1.2.1).
This chapter revolves on the free Dirac operator in R?® and its -shell interactions

with singular electrostatic potentials supported on a sphere.

For the Schrodinger operator, this problem is described in the monograph [1] for
countable d-point interactions and in [24] for singular potentials supported on hyper-
surfaces. Regarding the Dirac operator, in the 1-dimensional case the problem is
well-understood. Thanks to [1, 28, 43] we get the description of the domain, some

properties of the spectrum, and a resolvent formula.

In three dimensions the first result is [20]. By using the decomposition into par-
tial wave subspaces, Dittrich, Exner, and Seba could reduce their analysis to a 1-
dimensional question and they constructed the domain of the Dirac operator coupled
with a singular potential supported on the sphere. In the case of a general surface X2,
the first work is 7] by Arrizabalaga, Mas, and Vega. In this work, the authors char-
acterized the domain of the d-shell Dirac operator with coupling constant \ # +2, by
the interactions between certain functions v € H'(R3)* and g € L?(X)*. Comparing
this work with the general abstract theory given in [50], one could suppose that this
kind of interaction is forcing g to be in H'/2(X)*. Indeed, recently, in [49] the authors
proved that this conjecture is true. Moreover they also defined the domain of d-shell
Dirac operator when the coupling constant A = +2. Finally, in [11, 13| the authors
could define the domain of the d-shell Dirac operator by using the abstract theory of
boundary triples.
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In this chapter, on one hand, we will answer an open question posed in [8] which
provides eigenstates of those couplings by finding sharp constants and minimizers of
some precise inequalities related to an uncertainty principle (see Question 3.1.7, The-
orem 3.1.9 and Corollary 3.1.8). On the other hand, we will prove that the domains
given in [20] and [7] coincide in the spherical case and that the conjecture that comes
from the comparison to [50] holds (see Theorem 3.1.2 and Remark 3.1.3). Moreover,
we will explore the spectral relation between the electrostatic d-shell interaction and
its approximation by the coupling of the free Dirac operator with shrinking short
range potentials. We will get analogies with Chapter 2 and, thanks to Theorem

3.2.2, we will improve the spectral relation explained in Remark 2.1.4.

The results of this Chapter are contained in the research article [45].

1.2.3 Chapter 4: Self-adjoint extensions for the Dirac opera-
tor with Coulomb-type spherically symmetric potentials

One of the biggest achievements of Dirac equation is that the description of the
electrostatic interaction of an electron in the field of an atomic nucleus and experimen-
tal measurements are almost entirely coherent. It is well known that the electrostatic
energy of an electron in the field of an atomic nucleus is described by the Coulomb

potential
v
Vc<l’> = —H4,
|z

with v = €2Z/h, where Z is the atomic number, e is the charge of the electron and h
is the Plank constant (we set A = 1).

In quantum mechanics, observables correspond to self-adjoint operators. For this
reason, it is physically interesting to study of the self-adjointness of the operator
H + V. The first contribution was made by Case in [15]: in this work, the author
was the first to observe that some boundary conditions are required at zero. Anyway,
the first result of self-adjointness is due to Kato in [33] and it is based on Hardy’s

inequality

E/R ﬁd;ﬂg/ﬂ@ VP de, for e CO(RY), (1.2.1)

4 Jrs |z/|?
and the Kato-Rellich Theorem. He could prove that for |v| € [O, %), the operator
H + V¢ is essentially self-adjoint on C°(R?)* and self-adjoint on D(H) = H'(R3)%.
Kato’s approach could be used independently on the spherical symmetry of the po-

tential: it is possible to consider 4 x 4 Hermitian real-valued matrix potential V such



1.2 Contents of the thesis

that

1
Vi) < a— +0,
’ ]

with b € R and a < 1/2, see [36, Theorem V 5.10].

This does not cover the whole range of v on which the Dirac-Coulomb operator is
essentially self-adjoint. In fact several different approaches were developed in order to
expand the range of admissible v. In [55] by Rellich and in [65] by Weidmann, using
the partial wave decomposition and the Weyl-Stone theory for systems of ordinary
differential equations, the range |v| € [O, ‘/7§> was recovered. Moreover, generalizing
the Kato-Rellich Theorem and by means of the theory of Fredholm operators, Rejto
firstly recaptured the range v € [0, 2) in [53] and few years later |v| € [0, ‘/7§> in [29]
with Gustafson. Finally, in [57], Schmincke considered H+ Ve = (H+S5)+ (Ve —5),
being S a suitable intercalary operator. Then, he proved the self-adjointness of H+V
showing that H + S is self-adjoint and Vs — S is a small perturbation of H 4+ S, in
the sense of the Kato-Rellich Theorem.

This range of v such that the operator H 4+ V¢ is essentially self-adjoint on
C>°(R3)* is optimal, in fact for |v| > v/3/2 H + V¢ is not essentially self-adjoint and
several self-adjoint extensions can be constructed. The main interest was the study,

among all, of the most physically meaningful extension. The first work is [56] by
3
2
he proved that H + V¢ admits a unique self-adjoint extention Ts such that

Schmincke: for |v| € ( ,1) and by means of a multiplicative intercalary operator,

D(Ts) € D(r~Y%) = {y € L*R3)* : =72 € L*(R3)*}. (1.2.2)

Another explicit construction of a distinguished self-adjoint extension was made by
Wiist in [66]: using a cut-off procedure, he built a sequence of self-adjoint operators
that converges strongly in the operator graph topology to a self-adjoint extension of
H + V¢, whose domain is contained in D(r~'/2). Moreover in [47], Nenciu proved
the existence of a unique self-adjoint extension of H + V¢ whose domain is contained
in the Sobolev space H'/2(R®)*. Finally, Klaus and Wiist showed in [38] that these
self-adjoint extensions coincide. We also cite [14]: in this work, using the partial
wave decomposition and the Von Neumann theory, the authors could characterize
the distinguished self-adjoint extension by the fact that the energy of the ground

state is continuous in v.

In [4] Arai considered matrix-valued potentials of the form

V(z) = % (VH4 + uf — <ia : %ﬁ) >\) , forxz #0. (1.2.3)
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Defining
§:=(k+N? =12+ % foranykeZ)\ {0}, (1.2.4)

he proved that a necessary and sufficient condition for the essential self-adjointness
of H+Vis § > 1/4 for any k. This proved that, in the case of general matrix valued
potentials, the threshold 1/2 is optimal for the essential self-adjointness. For § > 0
for all k£, he proved that the operator admits infinitely many self-adjoint extensions.
Kato in [35] considered a general 4 x 4 matrix-valued measured function V such that
for any z # 0, |V, ;(z)] < |z|™!. Setting H(r) := H + kV, he constructed a unique
holomorphic family of self-adjoint operators for |k| < 1, which reduced to the self-
adjioint operator H +kV defined on H*(R3)* for |k| < 1/2. Moreover he proved that,
in the case of V = V¢ = ﬁh, this family coincides with the distinguished self-adjoint
extension defined by Wiist and Nenciu. With a similar idea, in [6] Arrizabalaga,
Duoandikoetxea and Vega were able to characterize the distinguished self-adjoint

extension by means of the Kato-Nenciu inequality

/ wd:lc < | [(—ia-V 4+mpB £ i)|*|z|de, forp € CF(R?)™

s || R3

The self-adjointness in the range of critical values |v| > 1 has been aim of several
recent works: in the case of the Coulomb potential and using the spherical symmetry
of the potential, with different approaches Xia in [67], Voronov in [64], Hogreve in
[31] could characterize via boundary conditions all the self-adjoint extensions. In [23],
Esteban and Loss could consider a general electrostatic potential, that is a function
V : R? — R such that that for some constant ¢(V') € (—1,1), T :=sup(V) < 1+¢(V)

and for every ¢ € C®(R3, C?),

/Rg (% +(1+e(V)+V) !solz) dz > 0. (1.2.5)

Setting V := V1, they proved that the operator H + V is self-adjoint on a suitable
domain. Although the free Dirac operator is not semi-bounded, they defined a reduced
operator acting only on the two first components of the wave function, for which
the Friedrichs extension can be defined thanks the inequality (1.2.5). Once this
is done, they extended the whole operator in a straightforward way. This allows
treating all the potentials of the form V(z) = — 1y for v e (0,1]. In the sub-critical
case, i. e. 0 < v < 1, the self-adjoint extension that they described coincides with
the distinguished self-adjoint extension given by Wiist and Nenciu; in the critical
case, i. e. v = 1, they stated that the distinguished the self-adjoint extension that
they are describing is the distinguished one since it can be covered by continuous

prolongation of the sub-critical case. Recently, in [22], Esteban, Lewin and Séré have
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given more properties of this domain: they showed that the self-adjoint extension
given by Esteban and Loss could be obtained as the limit of the cut-off procedure

and, in the Coulomb case, it is the only extension containing the ground states.

The aim of this chapter is to give a simple and unified approach to the problem
of the self-adjointness of H + V, with V as in (1.2.3). This particular choice of the
class of potentials is related to the fact that the action of H 4+ V leaves invariant the
partial wave subspaces. The strategy of the proof is considering the self-adjointness of
the reduction of H+V to the partial wave subspaces and, using weighted Hardy-type
inequalities and trace theorems, we will describe the domain of the maximal operator,
namely the set of functions ¢ € L? such that (H + V)i € L?. Then, we will describe
the domains of the self-adjoint extensions by means of boundary conditions at the

origin.

Despite this case is somehow simpler, still a complete description of the phenom-
ena was not available. In [4], Arai considered potentials as in (1.2.3) and he connected
the problem of self-adjointess to the quantity § defined in (1.2.4). But still, he could
only analyse the cases in which § > 0 for any k£ > 0: we will not add any restriction

on 9.

In this context the case d > 0 is sub-critical, while it is critical if § = 0 for some k
and supercritical if § < 0 for some k. This formulation of criticality is different from
the one in [5, 6, 35] but it appears to be suited to this problem, where a particular
structure of V is assumed. In fact, in the particular case that A = v = 0 and
V = [ for all u € R, the operator H + V is essentially self-adjoint on C2°(R%)*
and self-adjoint on D(H) = H'(R?)*, see Corollary 4.2.6.

Finally we will focus on the distinguished self-adjoint extension: we will give a
precise description of the domain of the distinguished self-adjoint extension for H+V
in the sub-critical and critical cases. In the sub-critical case our result will refine
the known theory: Schmincke’s condition (see 1.2.2) selects a self-adjoint extension
and we will prove that the functions in its domain fulfil an improved integrability
condition. Moreover, from the algebra of the problem we will select a suitable linear
combination of both components of the spinor: we will show that the distinguished
self-adjoint extension can be characterized by the fact that this linear combination
belongs to H! (see Proposition 4.4.2) and we will extend continuously this condition
to the critical case for (v, u) # 01in (1.2.3) (see Proposition 4.4.3). With this definition
and in the case of Coulomb potentials, we will show that distinguished self-adjoint

extension is the unique one that contains the ground state and so it coincides with

11
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the self-adjoint extension defined by Esteban and Loss in [23], see Remark 4.4.5.
In the critical case and for v = p = 0 we can not define the distinguished self-
adjoint extension: in this very particular case a coherent definition of distinguished

self-adjoint extension can not be given, see Remark 4.4.6.

Regarding the structure of the Chapter, in Section 4.1 we will introduce the
minimal operator and the mazimal operator. We will also introduce the partial wave
decomposition (see B for more details). In Section 4.2 we will formulate the complete
classification of the self-adjoint extensions namely Theorem 4.2.1, Theorem 4.2.2, and
Theorem 4.2.3. In this context it will appear the dependence on ¢ defined in (1.2.4).
We will prove these results by means of Hardy-type inequalities in Section 4.3.1 and
the characterization of the maximal operator in Section 4.3.2. Finally Section 4.4 is

devoted to the study of the distinguished self-adjoint extension.

The results of this Chapter are contained in the research article [16].



Klein’s Paradox and the Relativistic
d-shell Interaction

2.1 Introduction and main results

In this Chapter, Q C R? will denote a bounded C? domain and ¥ := 9 will
denote its boundary. By a C? domain we mean the following: for each point Q € ¥
there exist a ball B C R? centered at @), a C? function 7 : R> — R and a coordinate
system {(z,73) : * € R? 3 € R} such that, with respect to this coordinate system,

@ = (0,0) and
BN Q=Bn{(x,x3): x3 > (x)},
BNY =Bn{(z,z3): 3 =1¢(x)}.

By compactness, one can find a finite covering of > made of such coordinate systems,

thus the Lipschitz constant of those 1) can be taken to be uniformly bounded on X.

Set Q. := {x € R?: d(z,X2) < €} for € > 0. Following |12, Appendix B|, there
exists 7 > 0 small enough depending on ¥ such that for every 0 < ¢ < n one can

parametrize (). as
Qe={zs+trv(zg): zxg € X, t € (—€,¢)}, (2.1.1)

where v(zy) denotes the outward (with respect to €2) unit normal vector field on
> evaluated at xy. This parametrization is a bijective correspondence between (2,
and ¥ X (—e,€), it can be understood as tangential and normal coordinates. For
t € [—n,n|, we set

Y ={ry +trv(ry) : g € X} (2.1.2)

In particular, ¥, = 0Q, \ Qif t > 0, 3, = 0Q NQif t < 0 and ¥y = X. Let oy

13
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denote the surface measure on ¥; and, for simplicity of notation, we set o := 0y, the

surface measure on X.

Given V' € L*>*°(R) with suppV C [—7n,7n] and 0 < € < 7 define
t
Vi(t) =1 V(”_)
€
and, for x € R3,
V.(2) Ve(t) ifx € Qe, x =2y + tv(zx) for a unique (zx,t) € ¥ X (—¢,€),
(z) =
0 if z & Q..
(2.1.3)
Finally, set

u, = |V€|1/2, vV, = sign(V€)|V6]1/2,
(2.1.4)
u(t) == [nVnt)['2, (t) == sign(V (nt))u(t).

Notice that u,, v, € L=(R?) are supported in Q. and u,v € L>(R) are supported in
[—1,1].

Definition 2.1.1. Given 1, 6 > 0, we say that V' € L>*(R) is (d,n)-small if

suppV C [=n,n] and ||[V][zee(m) <

I | >

Observe that if V' is (d,7)-small then ||V||11®) < 26, this is the reason why we

call it a small potential.

In this chapter we study the asymptotic behaviour, in a strong resolvent sense, of
the couplings of the free Dirac operator with electrostatic and Lorentz scalar short-

range potentials of the forms
H+V, and H + BV, (2.1.5)

respectively, where V, is given by (2.1.3) for some (§,7n)-small V' with § and 7 small
enough only depending on ¥. By [61, Theorem 4.2], both couplings in (2.1.5) are
self-adjoint operators on H'(R?)*. Given 1 > 0 small enough so that (2.1.1) holds,
and given u and v as in (2.1.4) for some V' € L*(R) with suppV C [—n, 7], set

Kvf(t):= %/}Ru(t) sign(t — s)v(s)f(s)ds for f € L,.(R). (2.1.6)

The main result in this chapter reads as follows.
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Theorem 2.1.2. There exist 19, 6 > 0 small enough only depending on > such that,
for any 0 <n <mng and (§,n)-small V,

H+V,— H+ \ds in the strong resolvent sense when € — 0, (2.1.7)

H + V. — H 4+ \;80x in the strong resolvent sense when ¢ — 0, (2.1.8)
where

Ae 1= va(t) (1= K2)tu)(t) dt € R, (2.1.9)

As = Jpu() (L+K5) 'u)(t) dt € R, (2.1.10)

and H+MX.0s, and H+ X\, dx, are the electrostatic and Lorentz scalar shell interactions

given by (2.2.5) and (2.2.11), respectively.

Remark 2.1.3. To define A, in (2.1.9) and A, in (2.1.10), the invertibility of 1 +
K2 is required. However, since Ky is a Hilbert-Schmidt operator, we know that
| Kv || L2(r)— £2(R) is controlled by the norm of its kernel in L?(R x R), which is exactly
lull 2y [Vl L2y = |V ]| 21r) < 20 < 1, assuming that § < 1/2 and that V' is (6,7)-
small with n < ny. We must stress that the way to construct A and A is the same

as in the 1-dimensional case, see [59, Theorem 1.

Remark 2.1.4. From Theorem 2.1.2 we deduce that if a € o(H + A\.Jx), where o(+)
denotes the spectrum, then there exists a sequence {a.} such that a. € o(H +V,) and
a. — a when € — 0, but the vice-versa spectral implication may not hold. The same
happens for the Lorentz scalar case. We should highlight that the kind of instruments
we used to prove Theorem 2.1.2 suggests us that the norm resolvent convergence may
not hold in general. We will see that in Chapter 3 that if ¥ = S?, we have more

informations about the converse spectral implication.

Remark 2.1.5. The non-linear behaviour of the limiting coupling constant with respect
to the approximating potentials mentioned in 1.2.1 is depicted by (2.1.9) and (2.1.10);
we may compare this to the analogous result [12, Theorem 1.1] in the non-relativistic
scenario. However, unlike in [12, Theorem 1.1], in Theorem 2.1.2 we demand a
smallness assumption on the potential, the (9, n)-smallness from Definition 2.1.1. We
use this assumption in Corollary 2.3.8 below, where the strong convergence of some
inverse operators (1 + Bc.(a))™' when ¢ — 0 is shown. The proof of Theorem 2.1.2
follows the strategy of [12, Theorem 1.1|, but dealing with the Dirac operator instead
of the Laplacian makes a big difference at this point. In the non-relativistic scenario,
the fundamental solution of —A +a? in R? for @ > 0 has exponential decay at infinity
and behaves like 1/|z| near the origin, which is locally integrable in R?* and thus

its integral tends to zero as we integrate on shrinking balls in R? centered at the
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origin. These facts are used in [12] to show that their corresponding (1 + B.(a))™*
can be uniformly bounded in € just by taking a big enough. In our situation, the
fundamental solution of H — a in R? can still be taken with exponential decay at
infinity for a € C \ R, but it is not locally absolutely integrable in R?. Actually, its
most singular part behaves like z/|z|> near the origin, and thus it yields a singular
integral operator in R?. This means that the contribution near the origin cannot be
disregarded as in [12] just by shrinking the domain of integration and taking a € C\R
big enough, something else is required. We impose smallness on V' to obtain smallness
on B.(a) and ensure the uniform invertibility of 1 + B.(a) with respect to €; this is

the only point where the (¢, 7)-smallenss is used.

Remark 2.1.6. Let 19, 6 > 0 be as in Theorem 2.1.2. Take 0 < n < 19 and V =
ZX(=nny for some 7 € R such that 0 < |7 < 26. Then, arguing as in [59, Remark
1], one gets that

v(1—K&) tu = /UICQ"u:2tan<ﬂ).
Jva-k3) > [oxk g
Since V' is (d,n)—small, using (2.1.9) and (2.1.7) we obtain that

H+ V. — H +2tan(5!)dy  in the strong resolvent sense when ¢ — 0,

analogously to [59, Remark 1]. Similarly, one can check that [v (14 K}) tu =
2tanh(%!). Then, (2.1.10) and (2.1.8) yield

H + 3V, — H +2tanh(7!)3s in the strong resolvent sense when ¢ — 0.

2.2 The J-shell interaction

In this section we will introduce some useful instruments regarding the J-shell
interactions for the Dirac operator. We will refer to [7-9, 13, 49]. One could look at
[8, Section 2 and Section 5] for the details.

Let a € C. A fundamental solution of H — a is given by

¢(z) = & ro (a+m5+ <1—|—\/m2 - a2\x|) m-i) for z € R*\ {0}, (2.2.1)
I |2 B

where v/m? — a? is chosen with positive real part whenever a € (C\ R) U (—m,m).

To compute (2.2.1) it is enough to observe that for any a € C:

(H+a)(H —a) = (—A —m? +a?)l,.
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—z|z]

If we set £* := 4—H, the fundamental solution of —A — 22, then
|

¢ (x) = (H + ) EY™ % (2)L,.

To guarantee the exponential decay of ¢* at infinity, from now on we assume that
a € (C\R)U (—m,m).

Given G € L*(R*)* and g € L*(0)* we define
¥(Goo)a) = [ 0"(a—y) Gly)dy+ [ (a-plglw)daly) for z SRS, (222

Then, ®* : L2(R3*)* x L*(0)* — L*R?®)* is linear and bounded and ®%(G,0) €
H'(R3?)*. We also set
PUG = tre(PY(G,0)) € L*(0)*,

where tr, is the trace operator on . Finally, given z € ¥ we define

Ceg(r) == lim ¢*(x —y)g(y)do(y) and Cig(z):= lim &*(0,9)(y),
O Sn{|z—y|>€} Qiayﬂm
(2.2.3)

where (24 >y ™ 2 means that y tends to x non-tangentially from the interior /exterior
of Q, respectively, i.e. Q, :=Q and Q_ :=R*\ Q.

Lemma 2.2.1. Leta € (C\R)U (—m,m). Then

(1) C% and C% are linear and bounded in L*(o)*.

(13) The following Plemelj-Sokhotski jump formulae hold:
ce = :F%(oz )+ CO (2.2.4)

(i17) —4(C% a-v)? =1,.

(iv) If we set {C% a-v}=Cla-v+a-vC% then {C% a-v}: L*(0)* = H'(0)* is

bounded. Moreover {C%, « - v} is compact in L*(0)*.

Proof. If a € (—m,m) (i), (i7) and (ii7) have been proved in [8, Section 2| and
(iv) has been proved in [49, Section 2.5]. One could repeat the same proofs for
a € (C\ R) thanks to the fact that the fundamental solution of H — a has still

exponential decay. O
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Let A\. € R. Using ®°, we define the electrostatic d-shell interaction appearing in
Theorem 2.1.2 as
D(H + A\bs) = {®°(G,g) : G € L*(R*)*, g € L*(0)*, Ae@oG = —(1 + A\.C)g},

¥

(H + \bs)p == Hop + Ae% o for ¢ € D(H + \obs),

(2.2.5)

where Hyp in the right hand side of the second statement in (2.2.5) is understood
in the sense of distributions and ¢y denotes the boundary traces of ¢ when one
approaches ¥ from Q.. In particular, one has (H + A\.0x)p = G € L*(R3)?* for all
o = ®°(G,g) € D(H + A\.0x). We should mention that one recovers the free Dirac
operator in H'(R?*)* when A\, = 0.

For all A\, # +2, from [8, Section 3.1] we know that H + A.Jx is self-adjoint and
in [49, Section 4] is proved that

D(H + \.bx) = {90 € H'(RP\ )" : —ia-v(p — ) = %(w - 30)}-

We can now give some spectral properties of H + A\ 2.

Proposition 2.2.2. Let A\, # +2 . Then we get

(1) Oess(H 4+ Aelx) = 0ess(H) = (—00, —m| U [m, +00).

(17) Ifa € (C\R)U(—m,m), then a € o4(H + \e0x) if and only if —1 € 54(ACS).
Moreover, the multiplicity of a as an eigenvalue of H + A\.0x; coincides with the

multiplicity of —1 as an eigenvalue of \.Cg.

(i1i) If a € (C\R)U (—m,m), then a € p(H + A\:0x) if and only if —1 € p(A.C2).

Furthermore the following resolvent formula holds

(H+A\bs —a)'F = (H—a)"'F = \8"(0, (1 + \.C%) ™" ®LF). (2.2.6)
Proof. We will exclude the case A\, = 0 because it corresponds to the free Dirac
operator whose spectral properties are well-known.

The proof of (i) has already been done in |8, Proposition 3.1| and so we will omit
it.

Let us now focus on (iii). Let a € (C\ R) U (—m, m). We will firstly assume
that a € p(H + A\.dx). By construction @ € p(H + A\.0x). Thanks to (i7) we get that
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ker <AL + C’g) = {0}. Moreover, since we are taking the square root so that

\/mQ —q2 = \/m2 _ aQ’

following [7, Lemma 3.1] we see that (¢*)t(z) = ¢%(—x). Here, (¢*)" denotes the

transpose matrix of ¢*. Thus we conclude that
ran(1 + AC?) = ker(1 + A\C%)*+ = L*(R®)*.

It remains now to prove that ran(l + AC?) is a closed set in L?(R®)*. In fact, let
g € L*(0)* such that there exists {f,} C L*(0)* such that (% - C’g) fn — g in
L?*(0)*. Then

1 . . 1 a2 : L1 e
()\—6 - C’U) g= 1171Ln ()\—g —(C9) > fn= hrrln ()\—g 1 + CH{Cq, - 1/}) In
= lim(b+ K) f,.
Thanks to (iv) in Lemma 2.2.1 we get that K is compact. Since b= 55 — 1 # 0 we
get that ran(b — K) is closed, then there exists f € L?*(0)* such that f, — f and by
continuity we can conclude that (1 + A\.C2)f = g.

Let us now assume that —- € p(Cg). To prove that a € p(H + A.dx) we will
directly prove that (2.2.6) holds.

Let o = ®°(G, g) € D(H+\.0x) asin (2.2.5) and F = (H+ .0 —a)p € L*(R3)™.
Then,
F = (H+ \Jx —a)®°(G,g) = G —a®’ (G, g). (2.2.7)

If we apply H on both sides of (2.2.7) and we use that H®%(G,g9) = G + go in
the sense of distributions, we get HF = HG — a(G + ¢o0), that is, (H — a)G =
(H —a)F + aF 4 ago. Convolving with ¢* the left and right hand sides of this last
equation, we obtain G = F + a®*(F,0) + a®*(0, g), thus G — F' = a®*(F, g). This,
combined with (2.2.7), yields

(G, g) = *(F,g). (2.2.8)

Therefore, taking non-tangential boundary values on ¥ from inside/outside of 2 in
(2.2.8) we obtain
UG+ g = ®LF + C4g.

Since ®°(G, g) € D(H + A\.0s), thanks to (2.2.5) and (2.2.4) we conclude that

PIF = —(Ai +Ca)g (2.2.9)
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2. Klein’s Paradox and the Relativistic §-shell Interaction

Since we have just proven that )\ie + C¢ is invertible, by (2.2.9), we obtain

g= —(% + Cg>_1<1>‘;F. (2.2.10)

Thanks to (2.2.8) and (2.2.10), we finally get

(H+ \Os — a) "' F = p = (G, g) = D*(F, g) = @a(F, - (Ai + Cg) _1<I>§F)

= O°(F,0) — A (0, (1 + A.C2) " O2F).

Moreover, notice that from (2.2.6) we can deduce that

(H+A\SZ —a) ™' = (H—a)™ ) F = 3%(0, (1 + \C2) ™ BLF).

We can now prove (7). Since X is a bounded C? regular surface, then H'/?(¢) —
L?(0)*, see for instance [27, Section 2|. This means that ®*(0, (1 + AC9) ) is a
compact operator. Thanks to [51, Theorem XIII.14] we get that oess(H + A0X) =
0ess(H) that means that (i) is proved. O

In the same vein, given \; € R, we define the Lorentz scalar d-shell interaction as
D(H + \fds) == {®"(G.g) : G € L*(R*)", g € L*(0)", \®oG = —(B+ A.CF)g},

(H+\Bs)p = Hp + ASBW—_ZHP_ o for o € D(H + A5 bs).

(2.2.11)

From [8, Section 5.1] we know that H + ;5 0y is self-adjoint for all A\; € R. Addi-

tionally, reasoning as in Proposition 2.2.2, we can prove

Proposition 2.2.3. Let A\; € R . Then we get

<Z> 0688<H + )\5552) = O'ess(H) = (—OO, —m] U [m, +OO).

(17) ifa € (C\R)U(—m,m), then a € oq(H+\s50x) if and only if —1 € g4(A;BCT).
Moreover, the multiplicity of a as an eigenvalue of H 4+ \dx, coincides with the

multiplicity of —1 as an eigenvalue of \;BC¢.

(1ii) If a € (C\R)U(—m,m), then a € p(H + \;B0x) if and only if —1 € p(ALCT).

Furthermore the following resolvent formula holds

(H + \sB36s —a)'F = (H —a)"'F — \®°(0, (8 + \;C2) ' ®LF).  (2.2.12)
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2.3 Approximation by the free Dirac operator with short range potentials

2.3 Approximation by the free Dirac operator with
short range potentials

2.3.1 Spectral properties

Given V, as in (2.1.3), set
T°:=H+V, and T°:=H+pBV.

Recall that these operators are self-adjoint on H*(R?). In the following, we give the

resolvent formulae for 7° and 7.

Throughout this section we make an abuse of notation. Remember that, given
G € L*(R*)* and g € L*(0)%, in (2.2.2) we already defined ®*(G, g). However, now
we make the identification ®%(-) = ®“(-,0), that is, in this section we identify ®* with
an operator acting on L%(R3)* by always assuming that the second entrance in ®¢
vanishes. Additionally, in this section we use the symbol o(+) to denote the spectrum
of an operator and the symbol o,(-) to denote the discrete spectrum. The reader

should not confuse them with the symbol o for the surface measure on X.

Proposition 2.3.1. Let u, and v, be as in (2.1.4). Then,

(1) Oess(TE) = Oess(H) = (—00, —m] U [m, +00).

(i1) Let a € (C\R)U (—=m,m). Then a € o4(T¢) if and only if —1 € o4(u PV,).
Moreover, the multiplicity of a as an eigenvalue of TS coincides with the multi-

plicity of —1 as an eigenvalue of u P*v,.

(7ii) Let a € (C\R)U (—m,m). Then a € p(TF) if and only if —1 € p(u.Pv,).

Furthermore, the following resolvent formula holds:

(T¢ —a)™! = &% — %, (1 4 u P%,) " u o (2.3.1)

Proof. (i) has already been proved in |61, Theorem 4.7|.

Let us focus on (i7). Let a € (C\R)U (—m,m). Thanks to (i), we get that either
a € p(T¢) or a € 04(TF). Moreover, by |58, Lemma 2|, u.®%v, is a compact operator
thus, by Fredholm’s Alternative Theorem, see for instance |25, Theorem 0.38], either
-1 € p(udv,) or —1 € o4(uP*v,). For this reason it is enough to prove that
ker(7¢) # {0} if and only if ker (1 4+ u.®%v,) # {0}.
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Let us assume there exists F' € L?(R3)* such that F # 0 and (H + V. —a)F = 0.
Then (H —a)F = —V.F. Since F' # 0 and (H — a) is invertible, we deduce that
V.F # 0. Since V, = vau,, by setting G = u.F' € L*(R3)* we get that G # 0 and

(H—a)F = —vaG. (2.3.2)

Since a & o(H) we get that (H —a)~! = ®* is a bounded operator on L*(R®)*. By
(2.3.2), F = —®%,.G. If we multiply both sides of this last equation by u, we obtain
G =uF = —-udV.G, so —1 € g4(u.P,) as desired.

On the contrary, assume now that there exists a nontrivial G € L?*(R3)* such that
u dv.G = —G. If we take F' = &G € L*(R3), we easily see that F' # 0 and

V.F = —(H — a)F, which means that a is an eigenvalue of T¥.

For what we said, the proof of (iii) is a combination of Fredholm’s Alternative
Theorem, (i) and (7).

Let us now prove (2.3.1). Writing V, = v.u, and using that (H — a)™! = &%, we

have

(TS —a) ((13“ — O (1+ uE<I>“VE)_1u€<I>“)
=1-v. (1+ u€<I>“V€)_1 u P + vou P! — v (=14 1+ uP,) (1 + u€<I>“v€)_1 u ¢
=1-v. (1+ u€<1>“v6)_1 u P + vou 0 + v, (1 + u€<1>“vﬁ)_1 u P — vou ot =1,

as desired. This completes the proof of the proposition. O

The following result can be proved in the same way.

Proposition 2.3.2. Let u, and v, be as in (2.1.4). Then,

(1) Oess(T?) = 0ess(H) = (—00, —m] U [m, +00).

(17) Let a € (C\R)U (—m,m). Then a € o4(T?) if and only if —1 € o4(fu.2V,).
Moreover, the multiplicity of a as an eigenvalue of T? coincides with the multi-

plicity of —1 as an eigenvalue of fu . P*v,.

(i1i) Let a € (C\R)U (—m,m). Then a € p(T?) if and only if —1 € p(fu.P*V,),

Furthermore, the following resolvent formula holds:

(T — a)™! = &% — D, (B + u DV,) " u b (2.3.3)
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2.3.2 The main decomposition of the resolvent operator: the
operators A.(a), B.(a) and C¢(a)

Following the ideas in [12, 59|, the first key step to proving Theorem 2.1.2 is
to decompose (T — a)~! and (T — a)~!, using a scaling operator, in terms of the
operators A.(a), Bc(a) and C¢(a) introduced below, see Lemma 2.3.3.

Let 1y > 0 be some constant small enough to be fixed later on. In particular, we
take 79 so that (2.1.1) holds for all 0 < € < ng. Given 0 < € < 1, define

T : L*(Z x (—e,e))* = L*(Q)* by (Z.f)(wg + tv(zy)) := flax,t),

Se: LAE x (=1, 1) = LAZ x (—e,))* by (S.9)(2s,t) = %9@2, Z)

Thanks to the regularity of ¥, Z. is well-defined, bounded and invertible for all

0 < e < np if ny is small enough. Note also that S, is a unitary and invertible

operator.

Let 0 < n < no, V € L>®(R) with suppV C [-n,7n] and u,v € L*(R) be the
functions with support in [—1, 1] introduced in (2.1.4), that is,

u(t) := [nV(nt)|¥? and  o(t) := sign(V (nt))u(t). (2.3.4)
Using the notation related to (A.3), for 0 < € < 1y we consider the integral operators
Aca) : (B x (=1, 1))" — LA(R®)",

B(a) : L*(Z x (—1,1))* = L*(3 x (—1,1))*, (2.3.5)
C.(a) : L*(R*)* —>L2(z x (—1,1))*

defined by
(A(a)g)(z) = / / (2 — s — esw(ys))o(s) det(1 — esW (ys))g(ys, 5) do(ys) ds,

B st)i=utt) [ 6as + etvtes) —ys - vl
x det(1 — esW(ys))g(ys, s) do(ys) ds,
(Cela)g)(ws, t) = u(t) | ¢"(vs + etv(rs) —y)g(y) dy.

R?)

(2.3.6)

Recall that, given F' € L*(R*)* and f € L*(0)%, in (2.2.2) we defined ®*(F, f).
However, in Section 2.3 we made the identification ®?(-) = ®%(-,0), which enabled us

to write (H —a)~! = ®%. Here, and in the sequel, we recover the initial definition for
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¢ given in (2.2.2) and we assume that a € C\ R; now we must write (H —a)™! =

®4(-,0), which is a bounded operator in L?(IR?)%.
Proceeding as in the proof of [12, Lemma 3.2|, one can show the following result.

Lemma 2.3.3. The following operator identities hold for all 0 < € < n:

Ac(a) = 9(-,0)v. Z. S,
B(a) = ST 'u, (-, 0)v. Z. S., (2.3.7)
C.(a) = 87T u, @%(-,0).

Moreover, the following resolvent formulae hold:

(T¢ —a)™' = (H —a)~' + A(a) (1 + B.(a)) "' C.(a), (2.3.8)
(T* —a)™" = (H —a)~" + A(a) (8 + B.(a)) " C.(a). (2.3.9)

In (2.3.7), Ac(a) = ®°(-,0)v. Z. Sc means that A.(a)g = ®*(v.Z.S. g,0) for all
g € L*Z x (—1,1))*, and similarly for B.(a) and C.(a). Since both Z. and S.
bounded and invertible operators, V' € L>*(R) is supported in [—n,7n] and ®(-,0)
is bounded by assumption, from (2.3.7) we deduce that A.(a), B.(a) and C.(a) are
well-defined and bounded, so (2.3.5) is fully justified. Once (2.3.7) is proved, the
resolvent formulae (2.3.8) and (2.3.9) follow from (2.3.1) and (2.3.1), respectively.
We stress that, in (2.3.1) and (2.3.3) there is the abuse of notation in the definition

of ®% commented on before.

Lemma 2.3.3 connects (T¢—a)~! and (T° —a)~! to A.(a), Bc(a) and C.(a). When
e — 0, the limit of the former ones is also connected to the limit of the latter ones.

We now introduce those limit operators for A.(a), B.(a) and C(a) when ¢ — 0.

Let

VXS x (-1,1)' = LX(2)* and U:L*(2)* — LA(Z x (—1,1))*

given by
Vfas)i= [ 0o) flas,)ds and Df(os,t) = ult) fas).
Let
Agla) : LA(Z x (=1,1))* = L*(R*)*,
Bo(a) : L*(X x (=1,1))* = L*(X x (=1,1))*, (2.3.10)

Co(a) : L*(R*)* — L*( x (—1,1))*
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be the bounded operators defined as follows:
Ao(a) :== ®40,)V,  Byla) :=UCV,  Cyla) := UL

Observe that, by Fubini’s Theorem, we get

(Ao(a /_1/¢a r —ys)v(s)g(ys, s) do(ys) ds,
(Bo(a)g)(zs,t) = limu(t /1/| | ¢ (zy — ys)v(s)g(ys, 8) do(ys) ds, (2.3.12)

e—0

(Cola)g)as,t) = u(t) [ o(as = pg(o) dy
Finally let
B L*(X x (=1,1))* = L*(Z x (~1,1))%,

be the bounded operator defined as follows:

1

(B'g)(zs,t) :== (a-v(zs)) %u(t) /_ sign(t — s)v(s)g(xs, s) ds. (2.3.13)

1

The next theorem corresponds to the core of this chapter:

Theorem 2.3.4. The following convergences of operators hold in the strong sense:

Ac(a) = Ap(a) when e — 0, (2.3.14)
B.(a) = Bo(a) + B when e — 0, (2.3.15)
C.(a) — Cy(a) when e — 0. (2.3.16)

We will split the proof of Theorem 2.3.4. We will prove (2.3.14) in Section 2.3.5,
(2.3.15) in Section 2.3.4 and (2.3.16) in Section 2.3.3.

2.3.3 The strong limit of C.(a) when ¢ — 0

Recall from (2.3.6) and (2.3.12) that C.(a) with 0 < € < 7y and Cy(a) are defined
by

(Cela)g) (s, t) =u(t) | ¢"(vs +etv(zs) —y)g(y) dy,

R3

(Co(a)g)(xs,t) = u(t) g ¢ (zs — y)g(y) dy.

Let us first show that C,(a) is bounded from L?*(R3)* to L*(X x (—1,1))* with a norm

uniformly bounded on 0 < e < 1. For this purpose, we write

(Ce(a)g)(xs,t) = u(t) (9" x g) (s + etv(zy)), (2.3.17)
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where ¢®* g denotes the convolution of the matrix-valued function ¢* with the vector-
valued function g € L*(R?)%. Since we are assuming that @ € C\ R and, in the
definition of ¢, we are taking v/m?2 — a2 with positive real part, the same arguments
as the ones in the proof of |7, Lemma 2.8| (essentially Plancherel’s theorem) show
that

16° * gl goys < Cllglliaays for all g € L2(RE), (2:3.18)

where C' > 0 only depends on a. Additionally, thanks to the C? regularity of X, if 1
is small enough it is not hard to show that the Sobolev trace inequality from H'(R?)*
to L?(X¢)* holds for all 0 < € < 1 and ¢ € [—1,1] with a constant only depending

on 7y and X, see Lemma A.6. Combining these two facts, we obtain that

16% % gll 2y < Cllgllr2@sys for all g € L*(R%)*, 0 < e <mg and t € [—1,1].
(2.3.19)

By Proposition A.2, if g is small enough there exists C' > 0 such that
C™t < det(l — etW(Pex)) <C forall0<e<mny,te€(—1,1) and z € X.

Therefore, an application of (2.3.17), (A.4), (2.3.18) and (2.3.19) finally yields
1
ICu@alme e = [ [ Ju(O)@" ¢ 9)as + etvlas))|dotes) di
1
<Nl [ [ |det(t = et (o)) 26 g) (o) o) de
-1 Eet

1
< Cllulfegey [ 16" * gl dt < el ol

That is, if ny is small enough there exists C; > 0 only depending on 7y and a such
that

||Ce(a)||L2(R3)4—>L2(Z><(—1,1))4 < ClHUHLoo(R) for all 0 < e < . (2.3.20)

In order to prove the strong convergence of C.(a) to Cp(a) when ¢ — 0, fix
g € L*(R3)*. We must show that, given § > 0, there exists €y > 0 such that

|Cec(@)g — Cola)g||r2(mx(—11)s <6 forall 0 < e < e. (2.3.21)
For every 0 < d < 1, using (2.3.20) we can estimate
|Ce(a)g—Co(a)gllL2(zx (1,1
< [1Ce(a)(x0,9) | L2mx (-1,1))2 + [[Coa) (Xeu9) | 22(mx (-1,1))2
+ [[(Ce(a) = Cola))(Xra\@u9) | L2(5x(-1,1))2

< 2C ||ul| Lo ) | X9l 2@sys + ([ (Ce(a) — Co(a)) (Xrs\Qu9) || L2 (2 x(=1,1))%-
(2.3.22)
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On one hand, since g € L?*(R3)* and £(y) < Csd (£ denotes the Lebesgue measure

in R%), we can take d > 0 small enough so that

4]

I 2.3.23
Ixu9llr2 @y < ACH ||ul| Lo () ( |

On the other hand, note that

d 1 1
c<5=5 dist(3,R? \ Q) < 5 les =l (2.3.24)

forall0 <e< ¥ te(-1,1), 2y € Sand y € R?\ Q.
As we said before, we are assuming that a« € C\ R and, in the definition of ¢%,
we are taking v/m? — a? with positive real part, so the components of ¢*(x) decay

exponentially as |r| — oo. In particular, there exist C,r > 0 only depending on a

such that
0 (z)| < Ce™l for all || > 1,
|06°(z)| < |z > (2.3.25)
0% (x)| < Clz|™ forall 0 < |z] < 1,

where by the left hand side in (2.3.25) we mean the absolute value of any derivative
of any component of the matrix ¢*(z). Therefore, by the mean value theorem there
exists ¢ € [0, 1] such that

0% (x5 + etv(zs) — y) — ¢ (zs — y)| < €|0d(zs + (1 — )etv(zs) —yl.  (2.3.26)
Then, by the triangular inequality and (2.3.24)
1
lzy + (1 — @)etv(zs) —y| > o —y| —e > 5\1’2 —yl. (2.3.27)
Combining (2.3.26), (2.3.25) and (2.3.27) we see that there exists C,4 > 0 only

depending on a and d such that

a t _ — ° — < I ——
|0 (w5 + etv(ws) —y) — (22 — y)| < Cua 2y —y[3’

forall 0 < e < %l, te(—1,1), zx € ¥ and y € R\ ;. Hence, we can easily estimate
|(Ce(a)=Co(a)) (Xrs\2,9) (25, 1)]

< iy [ 0%+ ctvtrs) =) = 9w =)o) dy

€
< Coalltll e / oWl

R3\Qy |~Tz - y|3
dy 1/2
< Coacllufl o) (/ —6) 91l 2 sy
R3\By(zx) |CUZ - yl

< Cacellull oo llgllL2@sys,
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where C7 ; > 0 only depends on a and d. Then,

1(Ce(a) = Cola)) (xenau9)llz2ex (101 < Cogellull e llglrzess, — (2.3.28)
for a possibly bigger constant C;, ; > 0.

With these ingredients, the proof of (2.3.21) is straightforward. Given § > 0, take
d > 0 small enough so that (2.3.23) holds. For this fixed d, take

. { 5 d}
€9 = min = b
20, allull el gl L2 rs)s 2

Then, (2.3.21) follows from (2.3.22), (2.3.23) and (2.3.28). In conclusion, we have

shown that

lim [[(Ce(a) — Co(a))gllL2x(-11)t =0 forall g € LQ(R?’)A‘,

e—0

which is (2.3.16).

2.3.4 The strong limit of B.(a) when ¢ — 0

Recall from (2.3.6), (2.3.12) and (2.3.13) that B(a) with 0 < € < 79, and By(a)
and B’ are defined by

(B.(a)g)(ws,1) = / [ 6o+ etvlas) =y = sviam))ols
x det(1 — esW(ys))g(ys, s) do(ys) ds,

(Bo(a)g) (. £) = lim u / /| O = pels)glos, o) dsdo),

e—0

(B'g)(zs,t) = (a-v(zg)) = 5 u(t) /_1 sign(t — s)v(s)g(xs, s) ds.

The first step to proving (2.3.15) is to decompose ¢ as in |8, Lemma 3.2|, that

e—\/mhc\
¢ (x) = —(a +mp + vVm? — a?ia - —)

Al & (2.3.29)
e~Vm?=a’lal _ 1 T 1 x “ a -

+ gy i PE +Eoz~w =: wi(z) + wi(z) + ws(z).

Then we can write
Be(a) = Be,wi‘ + Be,wg + BG,OJg)
(2.3.30)

By(a) = Bows + Bowg + Bows,
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where B a, Bewg and B, are defined as Bc(a) but replacing ¢* by w{, w§ and ws,

respectively, and analogously for the case of By(a).

For j = 1,2, we sce that |wf(z)| = O(|z|™") and |0w§(x)| = O(|z|~?) for |z| — 0,
with the understanding that |w$(z)| means the absolute value of any component of
the matrix wf(z) and |0wf(z)| means the absolute value of any first order derivative
of any component of wf(z). Therefore, the integrals defining BW? and Bo,w; are of
fractional type for j = 1,2 (recall Lemma A.5) and they are taken over bounded sets,
so the strong convergence follows by standard methods. However, one can also follow
the arguments in the proof of [12, Lemma 3.4| to show, for j = 1,2, the convergence

of Baw; to Bo,w; in the norm sense when € — 0, that is,
lim [ Bews — Bowellr2sx -1,y r2mx (-1 = 0 for j =1,2. (2.3.31)

A comment is in order. Since the integrals involved in (2.3.31) are taken over ¥ x
(—1,1), which is bounded, the exponential decay at infinity from [12, Proposition
A.1] is not necessary in the setting of (2.3.15), hence the local estimates of |w$ ()|
and |Ow§(z)| near the origin are enough to adapt the proof of Lemma 3.4 of the same
paper to get (2.3.31).

Thanks to (2.3.30) and (2.3.31), to prove (2.3.15) we only need to show that
Bews = Bows + B’ in the strong sense when e — 0. (2.3.32)

At this point we present a result that we will use in this section and in the next
one. It is a standard result in harmonic analysis about the existence of limit almost
everywhere for a sequence of operators acting on a fixed function and its convergence
in strong sense. General statements can be found in [21, Theorem 2.2 and the remark
below it] and [63, Proposition 6.2|, for example. For the sake of completeness, here

we present a concrete version with its proof.

Lemma 2.3.5. Let b € N and (X, ux) and (Y, puy) be two Borel measure spaces. Let
{W to<e<n, be a family of bounded linear operators from L*(ux)® to L?(uy ) such that

if we set
W.gly) :== sup |Weg(y)| forge L*(ux)’ andy €Y,

0<e<no
then
W, s L*(px)" — L*(py)

1s a bounded and sublinear operator. Let us assume that there exists S, a dense

subspace of L*(ux)?, such that for any g € S lim._,o W.g(y) exists for puy-a.e. y €Y.
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Then, for any g € L*(ux)®, we have that lim._o W.g(y) exists for uy-a.e. y € Y.

Moreover lim._,o W, defines a bounded linear operator from L*(ux)® to L*(uy)® and

lim || Weg — Tim Wigl| ., = 0. (2.3.33)

Proof. We start proving that, for any g € L?(ux)?, lim._,o W.g(y) exists for uy-a.e.
y € Y. Take {gr}, C S such that ||gr — g|lr2(u)» — 0 for k& — oo, and fix A > 0.
Since lim,_,o Wg(y) exists for uy-a.e. y € Y, the Chebyshev inequality yields

,uy<{y €Y :|limsup Weg(y) — lirgri)ionf Weg(y)‘ > )\})

e—0

< w({y €Y: ’thUP We(g - gk)(y)( + )liminf We(gre — g)(y)‘ > A})
e—0 =0
<py({y €Y : 2Wig—gr)(y) > A})
4 C
< 2 W9 = 922y < 3319 = 9kl L2unye-
Letting £ — oo we deduce that

,uy<{y €Y : [limsup Weg(y) — liiriiglf ng(y)‘ > /\}> =0.

e—0

Since this holds for all A > 0, we finally get that lim._,o W.g(y) exists py-a.e.

Note that [W.g(y) — Wog(y)| < 2W.g(y) and W,g € L*(uy). Thus, the bounded-
ness of Wy and (2.3.33) follow by the dominated convergence theorem. ]

Thanks to Lemma 2.3.5, the proof of (2.3.32) will be done in two main steps:

(i) In Section 2.3.4.A we will show that for g € L=(X x (—1,1))* such that there
exists C' > 0 (which may depend on g¢) such that

sup |g(zs,t) — g(ys, t)| < Clos —ys| for all zx, ys € X,

[t]<1

then:

lim Bew,g(x5,t) = By, g(as,t) + B'g(as,t) for a.e. (xs,t) € X x (—1,1).
(2.3.34)
Notice that this set of functions g is dense in L?(X x (—1,1))%.

(77) In Section 2.3.4.B we will prove that for 79 > 0 small enough and for g €
L3(Y x (=1,1))%, setting

Biwsg(xs,t) == sup |Beu,g(xs,t)| for (zg,t) €3 x (—1,1),
0<e<no

there exists C' > 0 only depending on 79 such that

| Bews 9l 225 (—1,1)) < Cllul| e @yl|v]| oo ®) | 9] L2(mx (= 1,1))- (2.3.35)
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We can now conclude the proof. Thanks to (2.3.34) and (2.3.35) we can apply
Lemma 2.3.5: for any g € L*(X x (—1,1))* lim._,¢ Be w,g(zx, t) exists for a. e. (z,t) €
Y x (—1,1). Moreover lim, o B, : L*(Xx (—1,1))* = L*(E x (—1,1))* is a bounded
operator and (2.3.33) holds. At this points we observe that By, + B’ is bounded
in L*(X x (—1,1))* and it coincides with lim,_,o B. ., on a dense subset of L*(3 X
(—1,1))*. For these reasons we can conclude that lim, o Bcos = Bow, + B in the

strong sense and so (2.3.32) holds.

2.3.4.A The point-wise limit of B.(a) when ¢ — 0 on a dense subspace of
LA(Z x (—=1,1))*

Observe that the function w in front of the definitions of B..,, Bow, and B’
does not affect the validity of the limit in (2.3.34), so we can assume without loss of

generality that u = 1in (—1,1).

We are going to prove (2.3.34) by showing the point-wise limit component by
component, that is, we are going to work in L>(X x (—1,1)) instead of L*>°(X x

(—1,1))* In order to do so, we need to introduce some definitions. Set

k(z) = —

=P for z € R*\ {0}. (2.3.36)

Givent € (—1,1) and 0 < € < 1y with 7y small enough and f € L>*(X x (—1,1)) such
that supy < |f(s,t) — f(ys, )| < Clog —ys| for all 7y, ys € X and some C' > 0, we
define

T fls) = /_ 1 /Z (s + et () — s — esv(ys)) f(ys, 5) det (1 — esW (ys)) do(ys) ds.

By (A.4),

T f(xs) = /_ 1 / E(Tet — Yes) f(PsYes, 8) dOes(yes) ds, (2.3.37)

where z := xx + €tv(zy), Yes := ys + €sv(ys) and Py is given by (A.1). We also set

Tif(xs) = (lsii% /_1/ . k(xs —ys)f(ys, s) do(ys) ds + @/_ sign(t — s) f(xyx, s) ds.

é 1

We are going to prove that

i 75 f (25) = Tif(25), (2.3.38)
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for almost all (zx,t) € ¥ x (—1,1). Once this is proved it is not hard to get (2.3.34).
Indeed, note that k = (ky, ko, k) with k;(x) :=

the vector kernel k(z). Thus, we can write

g | prpi being the scalar components of

Ty f(xs) = (T f (@)1, (T} f(2x))2, (TF f(235))s),

where each (T f(zy)); is defined as in (2.3.37) but replacing k by k;. Then, (2.3.38)
holds if and only if (T f(xx)); — (Tif(zx)); when € — 0 for j = 1,2, 3. From these
limits, if we let f(ys,s) in the definitions of 7Y f and T} f be the different componens
of v(s)g(ys, s), we deduce (2.3.34). Thus, we are reduced to prove (2.3.38).

The proof of (2.3.38) follows the strategy of the proof of [30, Proposition 3.30].
Set

1
E(z):=——— f R?
(x) = or x € \ {0},

the fundamental solution of the Laplace operator in R3. Note that VE = k =
(k1, ko, k3). In particular, if we set v = (v1, vy, v3) and x = (21, T2, x3), for € R? and
y € 3 with x # y we have the decomposition
kj(x —y) = 0o, E(x —y) = [v(y )IQ%E(JC - )
=Zvn )20,,E(x —y +ZV] E@—y) =) v (y)0s, E(x —y)

n

= 4(0) 20 B = y)aly +Z(vn 100, B ) = 13(4)02, Bz — ) ) valy)

= Vj(y)vu(y) xr — y + Z Vf/’g/) xr—y Vn(y)>

(2.3.39)
where we have taken
Vo E(x —y) Zun )0p, E(z —y) = Vo E(z — 1) - v(y),
(2.3.40)
VIn B —y) = vn(y)am]-E(x —y) = vj(y)0:, E(z — y).
For j, n € {1,2,3} we define
1
T35 t) o= [ Vit Bl = ) (o s) dow) ds.
e (2.3.41)
*TEa / / v,]jzz (Yes) xet - yes)f(szesa 5) do—es(yes) d87
-1 es
where v (yes) = v(ys) is a normal vector field to ¥.,. Additionally, the terms

Vs wes) B (Tt — Yes) and Vi’g(yes)E(xet —Yes) in (2.3.41) are defined as in (2.3.40) with

the obvious replacements.
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Given f € L>(¥ x (—1,1)) such that supy - [f(7s,t) — f(ys,t)| < Clrs — ys
for all zyx, ys € ¥ and some C' > 0, by (2.3.39) we see that

(T5 f(2s)); = Tohy(ws,t Z o5, 1), (2.3.42)

where h,(Psyes; 8) = (Ves(Yes))n f(PsYes, s) for n = 1,2,3. We are going to prove
that

lim 5y (s, ) = lim / / Vot B — yo)hy(ys, s) do(ys) ds  (2.3.43)
€ |z —ys|>6

6—0
1 1
+ —/ sign(t — s)h;(zx, s) ds,

2J
lin T, (. ) = lim / / Vit B — s s, o) dofyz) ds, (2344
Iy —Ys

for n = 1,2,3. Then, combining (2.3.42), (2.3.43) and (2.3.44), we obtain (2.3.38).
Therefore, it is enough to show (2.3.43) and (2.3.44).

We first deal with (2.3.43). Remember that VE = k so, given § > 0, from (2.3.40)
and (2.3.41) we can split T5h;(xx,t) as

1
Tuehj(an t) :/ / | f(met - yes) . Ves(yes) hj(szesa 8) do—es(?/es) ds
Tes—Yes|>

1
+/ / k(xet - yES) ) V€8<y65)
—1 |x55*yes|§5

X (hj(szesa S) - hj (PEIesa S)>d0-es(yes) dS

1
+ / hj (PE$687 3) / k<x5t - yes) : Ves(yés) dGes(yes) dS
—1 |$es—yes|S5
=5+ Bes+ C.p,
and we easily see that
lim T3 h;(ws, ) = lim lim (Hes + Bes+ Cs). (2.3.45)

We study the three terms on the right hand side of (2.3.45) separately.

For the case of 4 5, note that k € C*(R®\ B;s(0))* and it has polynomial decay
at oo, so

|k(2)| + |0k(z)| < C < 400 for all z € R*\ B;(0), (2.3.46)

where C' > 0 only depends on ¢, and 0k denotes any first order derivative of any
component of k. Moreover, h; is bounded on ¥ x (—1,1) and X is bounded and of
class C%. Therefore, for a fixed § > 0, thanks to (A.3) we get

1
A= / / Ntloeemgeos) (U)K (e — Yes) - () By (s, 8) det(1 — esW () )do(ys:) ds.
—1J%
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Then, fixed (zx,t) € ¥ x (—1,1), for almost every (ys,s) € 3 x (—1,1), when € — 0:

X{|zes—yes| >0} (yE)k(xet_yes) ' V(?JE) h](yz, S) det(l — GSW(yz) (2 5 47>
= X{lan—ysl>s) (Us)k(2s — ys) - v(ys) hy(ys, s),

and thanks to Proposition A.2 and (2.3.46) we get

X {2es—yes 58} (U)K (Tt — Yes) - v(ys) hj(ys, s) det(1 — esW (ys)| < Clh;(ys, 5)],
(2.3.48)
with C' depending on ¥ and §. Combining (2.3.47) and (2.3.48), the dominate con-

vergence theorem yields

1
lim o7, 5 = / / k(zs, —ys) - v(ys) hi(ys, s) do(ys) ds. (2.3.49)
=0 -1 J|zs—ys|>6

Then, if we let 6 — 0, from (2.3.49) we get the first term on the right hand side of
(2.3.43).

Recall that the function h; appearing in %, s is constructed from the one in (2.3.34)
using v, see below (2.3.38), and v, see below (2.3.42)). Hence h; € L>(X x (—1,1)).
Then

|hj(PEy687 s) — hj(PExe& s)| :|(Ves(yes))j J(PsYes, 5) — (VGS(xeS))j (P, )|
<|(Ves(Yes))j (f(PeYess 8) — f(Pres, 5))]
+ ‘(Ves(mes))j (f(PEyesa S) - f(PEmem S))’

SCWE - y2|7
(2.3.50)

for all zy, ys € 3 and some C' > 0. In the last inequality in (2.3.50) we used that
Ps; is Lipschitz on €, .

Additionally, the regularity and boundedness of ¥ imply the existence of L > 0
such that
lv(zs) —v(ys)| < Llzs —ys| for all zx,ys € 3. (2.3.51)

Moreover:
elt—s| = dist(zn+etv(zy), Les) < |rntetv(rs)—yn—esv(ys))| = [T —Yes|- (2.3.52)
Thanks to the triangular inequality
Tet — Yes| = |75 + etv(zs) — ys — esv(ys)| > |Tes — Yes| — €]t — s]. (2.3.53)
Combining (2.3.53) and (2.3.52) we get

1
‘xet — Yes > §’xes - yes‘-
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Applying the triangular inequality and (2.3.51) we get

|Zes — Yes| = |ox + esv(xy) — ys — esv(ys)|
> |zs — ys| — €lv(zs) — v(ys)] (2.3.54)
1
> _
= 2’952 3/2|7

for0<6<770§ﬁ

Thus, if 9 and § are small enough, thanks to (2.3.50) and (2.3.54) we get that
there exists C' > 0 such that

1

‘k(met - yss) : Ves(yss)(hj(PEyesa 5) - hj(PZwssa S))| < C——
zs — ys

(2.3.55)

for all 0 < € < ng. Finally, combining and (2.3.54) and (2.3.55), we can conclude that

1
1
|Bes5| < C/ / ———det(1 — esW (yx))do(ys) ds. (2.3.56)
lzs—ys|<26 25 — s

From the local integrability of the right hand side of (2.3.56) with respect to o, see
Lemma A.5, by Proposition A.2 and by the absolute continuity of Lebesgue integral,
we deduce the existence of C5 > 0 such that supy< <, [%cs| < Cs and C5 — 0 when

0 — 0. Then, we can resume

<lim sup [Bs| <limCs = 0. (2.3.57)

lim lim &, 5
6—0 0<e<no

0—0e—0
Let us finally focus on %, . Since k = VE, from (2.3.40) we get

/ ‘ k(xet - yes> . Ves(yes) do—es(yes) = / vyes(yes)E(xet - yes> dGes<yes)~
Tes—Yes <o

|$es _yeslgg

Consider the set
B Q if t <
N A
Bs(xes) N Qe,s) if t > s,

where Q(e, s) denotes the bounded connected component of R?\ ¥, that contains
if s > 0 and that is included in 2 if s < 0.
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Dj(t, s) in the case t > s > 0, Dj(t, s) in the case s >t > 0.

Figure 2.1 The set Dj(t, s).

Set E,(y) := E(x —y) for z, y € R?* with = # y. Then AE,_, = 0 in D§(¢,s) and
VE,,(y) = =VE(z4 — y). If vape(ss) denotes the normal vector field on 0Dj(t, s)
pointing outside D§(t, s), by the divergence theorem,

0= [ ABdy== [ VE@—9) vangeo o) H )
D§(t,s) OD5(t,s)

= —sign(t — s) / vVes(yes)E('ret — Yes) A0es(Yes) (2.3.58)
|x55_yes|§6
— Tes
- / VE(ra —y) - 22 am2(y),
{y€eR3: |zes—y[=0}NAg ‘y - x68|

where
A =R\ Q(e,5) if t < s and A= Qe 5) if t > 5.

Remember also that H? denotes the 2-dimensional Hausdorff measure. Since VE = k,
from (2.3.58) and (2.3.40) we deduce that

/ k<xet - yes) * Ves (yes) do—es (yes)
I-Z’es_yes‘gé

. Les —
= sign(t — s) / k(re —y) - . dHZ(y)-
OBs(wes)NAS |Tes — Y

(2.3.59)

Note that z¢ & D5(t,s) by construction, see Figure 2.1. Moreover, by the regu-
larity of ¥, given ¢ > 0 small enough we can find ¢ > 0 so that |z, —y| > §/2 for
all 0 < e < e, s,t € [~1,1] and y € IBs(zs) N A7 . In particular,

|k(ze —y)| < C < 400 for all y € 0Bs(wes) N Aj (2.3.60)
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where C' only depends on 0 and €. Then,

—y
XoBs(vea)nas, (Y) K(Te — y) - |x — dH?(y)
Tt — Y -y
= Xomte, ) B oy 0 @361

X0Bs(xs)ND(t,s) ( ) 2
— d
Ar|zs — yf? ")

when € — 0,

where

D(t,s) :=R*\Qift <s and D(t,s):=Qift >s.

The limit in (2.3.61) refers to weak-* convergence of finite Borel measures in R? (act-
ing on the variable y). Using (2.3.61), the uniform estimate (2.3.60), the boundedness
of h; and the dominated convergence theorem, we see that

lim sign(t — s)h;(zs,s) / E(re —y) - LoV dH*(y) ds

—0J_, OB;(wes)NAS [zes =yl

1 9B;(ws)ND(t,s) 4T Ts — Y[?

! H2(0Bs(xs) N D(t,s))
= ign(t — s)h;(xyx, ds.
/_1 Slgn( 5) J(xE 5) HQ(E)B(;(xg)) s
By the regularity of > we get that
. H*(0Bs(zs) N D(t,s)) 1
fim H2(0Bs(vs)) 2 (2:362)

Then, by (2.3.62) and by the dominated convergence theorem once again, we get

1

limlim [ sign(t — s)h;(xs, s)/ k(xg —vy) - LY dH?*(y) ds

020620/ 4 9B (wes)NAS |$es yl
1 /1
= 5/ sign(t — s)h;(zs, s) ds.
-1
(2.3.63)
By (2.3.59), (2.3.63) and the definition of €, s before (2.3.45), we get

1 1
lim hm‘é 5= / sign(t — s)h;(zs, s)ds. (2.3.64)
5—0e—0 2 1

The proof of (2.3.43) is a straightforward combination of (2.3.45), (2.3.49), (2.3.57)
and (2.3.64).

To prove (2.3.44) we use the same approach as in (2.3.43), that is, we split
1% ha(7s, ) as
15 hn(ws,t) = o5 + Bes + Ces,

j7n

= /_l sign(t — s)h;(zs, s)/ S - dH*(y) ds
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like above (2.3.45). The first two terms can be treated analogously and one gets the
desired result. To estimate €. we use the notation introduced before. Recall that
E,,, is smooth in D5(¢, s) (assuming t # s) and k(zq—y) = VE(zq—y) = —~VE,_,(y).
So, by the divergence theorem,see also (2.3.40),

j’n . 2
/8D§<t,s>v”3Ds<ns><y>E (et —y) dH(y)
= / ((VaDS(t,s)(y))nazj E(ze —y) — (VaDg(t,s)(y))j@an(xet — y))dH2(y)
aDg(trs)

[ (000 0,0, B ) dy = .
D5 (t,s)
(2.3.65)

Since 0D§(t, s) = (Bs(wes) N Xes) U (0Bs(wes) N Af ), from (2.3.65) we have

V" E(tes—ye) Ao (1 :) / vin E(x—1) dH2(y)].
| /| Ve oo <[ [ Vi B

Observe that, when € — 0 we get that

XoBs(@enas () V2" B —y) dH2(y)

VoS (t,s) (Y

= XoBs(xe)nAs, () ((VaDg(t,s)(y))jﬁynExd(y) — (Vong(t,5) (Y))nOy,Eu,, (y)> dH?(y)

y—as); (y— xz)n3 =) (y —I‘z)jg) AH2(y)
ly —as|  drly — a5 ly —as|  Arly — 5|

— XO0Bs(zs)ND(t,s) (y) (

~0.
(2.3.66)

Therefore, arguing as in the proof of (2.3.43) but replacing (2.3.61) by (2.3.66), we
have that, now,

lim lim €. s = 0.

0—0e—0

This yields (2.3.44) and concludes the proof of (2.3.34).

2.3.4.B A point-wise estimate of |B.(a)| by maximal operators

We begin this section by setting

k(z) = 2

= e Pri=Ll2ses (21,2, 23) € R*\ {0}, (2.3.67)

In (2.3.36) we already introduced a kernel k& which, in fact, corresponds to the vectorial
version of the ones introduced in (2.3.67). So, by an abuse of notation, throughout

this section we mean by k(z) any of the components of the kernel given in (2.3.36).
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Note that k(—z) = —k(z) for all z € R?\ {0} and, besides, there exists C' > 0
such that

bz =)l € ———5

< B for all 2,y € R?® such that |z — y| > 0,
r—y

|2 — |

1
|k(z —y) —k(z—y)| <C for all z,y, 2 € R® with 0 < |z — 2| < §|x—y|.

(2.3.68)

lz —y[?

As in Section 2.3.4.A, we are going to work component-wise. More precisely, in
order to deal with the different components of B, g(zx,t) for g € L*(X x (—1,1))*,
we are going to study the following scalar version. Given 0 < € < 19, g € L*(Z x
(—1,1)) and (zx,t) € ¥ x (—1,1), define

Beg(xs,t) := u(t) /1 /2 k(xs + etv(zs) — ys — esv(ys))

x v(s)det(l —esW(ys))g(ys, s) do(ys) ds,
(2.3.69)

where u and v are as in (2.3.4) for some 0 < n < ny. It is clear that point-wise
estimates of |Beg(zs,t)| for a given g € L3(X x (—1,1)) directly transfer to point-
wise estimates of | B, ,h(zs,t)| for a given h € L*(X x (—1,1))%, so we are reduced
to estimate |Beg(zs, t)| for g € L2(X x (—1,1)).

A key ingredient to find those suitable point-wise estimates is to relate B. to the
Hardy-Littlewood maximal operator and some maximal singular integral operators

from Calderén-Zygmund theory. The Hardy-Littlewood maximal operator is given
by

M-f(@z) = sup o(B;(xz))

see [46, 2.19 Theorem| for a proof of the boundedness. The above mentioned maximal

/ |fldo, M, :L*(Z) — L*(X) bounded, (2.3.70)
Bs(zs)

singular integral operators are

T, f(rs) = sup
>0

/ M=) m) ol T £(D) 1) bowmded
o (2.3.71)

see [18, Proposition 4 bis| for a proof of the boundedness. We also introduce some

integral versions of these maximal operators to connect them to the space L*(¥ x
(—1,1)). Set

M.g(zs) = ([, M, : LA(Z x (=1,1)) — L*(S) bounded,
T.g(zs) = [, Tu(g(-, s))(zs) ds, T, : LA(S x (=1,1)) = L2(%) bounded.

(2.3.72)

=
—~
Q
—~
V)
~—
~—
—~
8
™
Va)
N——
—
~
[\
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Indeed, by Fubini’s theorem and (2.3.70),
. 1 1
IM.g122s :/E 1M*(9('78))($2)2d8d0(1?2) :/1 IM.(g(-, )| 72z ds
1

<C lg(-, 3)”%2(2) ds = C||9||%2(2x(—1,1))-
—1

By the Cauchy-Schwarz inequality, Fubini’s theorem and (2.3.71), we also see that
T. is bounded, so (2.3.72) is fully justified.

Let us focus for a moment on the boundedness of By(a) stated in (2.3.10). The
fact that, for g € L2(X x (=1, 1))*, the limit in the definition of (By(a)g)(zx,t) exists
for almost every (zx,t) € ¥ x (—1,1) is a consequence of the decomposition, see
(2.3.29),

P" = wi + wy + ws,
the integrals of fractional type on bounded sets in the case of w{ and w§ and, for ws,
that

lim k(xs —ys)f(ys)do(ys) exists for o-almost every xy € X (2.3.73)

=0 [Ty —ys|>e

if f € L*(X2), see [46, Theore 20.27], and that

/_ v(s)g(-,s)ds € L*(X)*.

1

Of course, (2.3.73) directly applies to By, see (2.3.30) for the definition. From
the boundedness of 7, and working component by component, we easily see that
By, is bounded in L*(X x (—1,1))*. By the comments regarding By e and By e
from the paragraph which contains (2.3.31), we also get that By(a) is bounded in
L*(X x (=1,1))*, which gives (2.3.10) in this case.

With the maximal operators at hand, we proceed to point-wise estimate |§€ g(xs, )]
for g € L*(X x (—1,1)). Set

9e(ys, s) == v(s) det(l — esW(ys))g(ys, S)- (2.3.74)

Then, since the eigenvalues of W are uniformly bounded by Proposition A.2; there

exists C' > 0 only depending on 7 such that

9e(ys, 9)| < Clv|lLem)|9(ys, s)| forall 0 < e <mnp, (ys,s) € X x (—1,1). (2.3.75)
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We make the following splitting of Eeg(a:g, t), see (2.3.69) for the definition):

1
Beg(xs,t)= u(t) / / k(xs + etv(zs) — ys — esv(ys))ge(ys, s) do(ys) ds
—1 J |z —ys|<4e|t—s|

+ult) /_ 1 /| s (ks + etues) — ys — esviu)
— k(s +esv(zs) — ys — ESV(yz)))ge(yz, s)do(ys) ds

wul) [ (R eslvtes) vl — )~ Ko —ae)
X ge(ys, s) do(ys) ds
+u<t>/—1/|xg—yz|>4e|t—s| k(rs — ys)gc(ys, s) do(ys) ds

=: §6,1g($2, t)+ Eezg(?fz, t)+ §e739($2, t) + §5,4g($2, t).
(2.3.76)

We are going to estimate the four terms on the right hand side of (2.3.76) separately.
Concerning B 1g(xs,t), note that for all (yg,s) € ¥ x (—1,1) we have
€|t — s| = dist(zs + etv(zy), Xes) < |zs + €tv(zs) — ys — esv(ys))|.
Thus, by (2.3.68), |k(zx + etv(zyg) — ys — esv(ys))| < m and then

1
o
9¢(ys, 8)| do(ys) ds
1 €2t =517 Jyag—ysi<aefi—s|

1 —
< COllullpe) /1 M (ge(+; s))(@s) ds < Cllul| Lo @] oo ) Mg (@),
(2.3.77)

Baagos ] < ol [

where we used the Cauchy-Schwarz inequality and (2.3.75) in the last inequality

above.

For the case of §6,2 g(xx,t), we split the integral over ¥ on dyadic annuli as follows.
Set

N = H log, (Cﬁ?—W) H T, (2.3.78)

for ¢ # s, where [ -] denotes the integer part. Then, 2Ve|t — s| > diam((2,,) and

1 N
| Be2g(ws, t)] < ||u||Loo(R>/ Z/ - do(ys)ds, (2.3.79)
—1 =9 J 2 Le|t—s|>|zs—ys|>2me|t—s]

where

= |k(zs +etv(zs) —ys —esv(ys)) — k(s +esv(zs) —ys — esv(ys))|lge(ys, s)]-
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By (2.3.51) and the triangular inequality

(1 =nol)|zs — ys| < |zs — ys| — nolv(zs) — v(ys)|
< lzry + esv(zy) — ys — esv(ys)|

<|vg —ys| +nolv(zs) —v(ys)] < (T +nol)|zs — ysl,

thus if we take ny < ﬁ we get

1
§|x2 —ys| < |axs +esv(es) — ys — esv(ys)| < 2|zs — ys|. (2.3.80)
Additionally, for 2" e[t — s| > |xs — ys| > 2%€|t — s/, using (2.3.80) we see that
|zs + etv(xs) — (zx + esv(xx))| = €|t — s| < 27" zy — ys|
< 27" as +esv(rs) —ys —esv(ys)l (2.3.81)
1
< 5]952 + esv(xy) — ys — esv(ys)],
for all n = 2,..., N. Therefore, combining (2.3.81), (2.3.68) and (2.3.80) we finally
get

|k(xs + etv(zs) — ys — esv(ys)) — k(rs + esv(xs) — ys — esy(yg))‘
< C|ZL‘2 + etv(zy) — (zx + esv(zy))| < Celt — s| C
T |z tesv(ax) —ys —esv(ys)]P T Jas —ys®? T 2%7€t — s|?

forall s,t € (=1,1),0 < e <mg,n=2,...,N and 2" e[t —s| > |zs—ys| > 2"¢|t —s|.
Plugging this estimate into (2.3.79) we obtain

1 N
-~ ge\Ys, S
|B.og(zs.t)| §C||u||Loo(R)/1Z/2 Lﬂzdg(yz)ds
Tt n=2

3n 2
ntlelt—s|>|rn—ys|>2"e|t—s| 2ome |t - 8|

N
< Ol [ 3o [ et dotys) ds
-1, -9 2 |z —ys|<27tle|t—s| (2 €|t - S|)

< Clluli Y55 [ Melots)(as)ds
n=2 -

< Ollul| ooy |0]| oo (r) Mg (%),
(2.3.82)

where we used the Cauchy-Schwarz inequality and (2.3.75) in the last inequality

above.

Let us deal now with Besg(zx,t). Since 0 < € < 1 and s € (—1,1), if we take

o < 5= as before, from (2.3.51) we see that

(w5 + esus) — vlys)) — x| = elsllv(os) — v(ys)| < glas — ys),
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and then, by (2.3.68),

[kl + es(vlas) — v(ys) — ys) — (s — ys)| < cDIER Vsl oG

(2.3.83)

Splitting the integral which defines §673g<3§2, t) into dyadic annuli as in (2.3.79), and
using (2.3.83), (2.3.75) and (2.3.78), we get

1 N
. s
Bglos. 0] < Clulliee [ e [ N9y 9 0 dis
-1 n:2 2n+1

_ 2
elt—s|>|zs—ys|>2me|t—s]| 75 — ys|

1 N
< Cllulimge [ €Y Malanl9)as)ds
- n=2

1

< Ol llolmge [«

-1

- ( (17?—528 ) ‘ M.(g(-, s))(xz()2d§.84)

Note that

€

di Q
log, (ﬁ)' < e(C+|logye] + oy |t — s|[) < C (1 + |logy |t — s|]).

€|t — s

for all 0 < € < ng, where C' > 0 only depends on 7. Hence, from (2.3.84) and the

Cauchy-Schwarz inequality, we obtain

1
|Besg(ws, t)] < Cllull o [|v]| oo @) /1 (1+ [logy [t — s[|) Mi(g(-, 5)) (zx) ds

1/2

1
N
< Clullimlelimge ([ (14 logs e =sl)*ds ) Hgfaos)
1

—~

< COllull e [[0] oo ) Mg (z5),
(2.3.85)

where, we also used that fjl (1+ |log, |t — sH)zds <C(1+ f02 | log, 7|? dr) < +o0
for t € (—-1,1) .

The term |§674g(x2, t)| can be estimated using the maximal operator T} as follows.
Let Ai(ys) and A2(yx) denote the eigenvalues of the Weingarten map W(ys). By

definition,

9e(ys, s) = v(s) det(1 — esW(yx))g(ys, s)
= v(s) (1 + €5’ M (ys) Aa(ys) — eshi(ys) — esha(ys)) g(ys, 5).

2y — ys |3 T es —ysr
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Therefore, the triangle inequality yields

1
Bag(os, 01 < i ol [

| (Blo ) @m) T BT Oadag (- 5)) )
+ 10T (A1g(+, 8))(@s) + noTe(Aag(-, S))(x2)> ds

< Clfull oo ) ||V ]| 2o vy (Teg (@) + Te(MAag) (@) + Tu(Mg)(ws) + Tu(Aag) ().
(2.3.86)

Combining (2.3.76), (2.3.77), (2.3.82), (2.3.85) and (2.3.86) and taking the supre-
mum on € we finally get that

Sup |Beg(as, )| < Cllul| oo myl|v]| oo ) (Mig(s) + Tig(as)
<e<no

+ Tu(Mdeg)(zs) + To(Mig) (s) + Tu(Aog)(2x)),
(2.3.87)

where C' > 0 only depends on 7. Define

B.g(zs,t) == sup |Beg(as,t)| for (zg,t) € T x (=1,1).
0<e<no

Then, from (2.3.87), the boundedness of M, and T, from L%(X x (—1,1)) to L%(X),
see (2.3.72), and the fact that || A1 pe~(x) and || Az||L=(x) are finite by Proposition A.2,
we easily conclude that there exists C' > 0 only depending on 7y such that

| Begllz2(mx(=1,1)) < Cllul| Loy |V oo @) |9 L2055 (—1,1) - (2.3.88)

2.3.5 The strong limit of A.(a) when ¢ — 0

Recall from (2.3.6) and (2.3.12) that A.(a) with 0 < € < 1y and Ag(a) are defined
by

(Ada)g)(x) = / 1 / (2 — s — esv(ys))o(s) det(1 — esW (ys))g(ys, 5) do(us) ds,

(Ao(a)g)() = / 1 / 6*(z — y)o(s)g(ys, 5) do(ys) ds.

We already know that A.(a) is bounded from L?(X x (—1,1))* to L?(R®)*. To show
the boundedness of Ag(a) (and conclude the proof of (2.3.10)) just note that, by

Fubini’s theorem, for every x € R?\ ¥ we have

Clalo) @) = [ =) ([ oot ) ds) dotu).
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and f_ll v(s)g(+,8)ds € LA (X)* if g € L*(X x (—1,1))% Since a € C\ R, |7, Lemma
2.1] shows that Ag(a) is bounded from L*(¥ x (—1,1))* to L?(R3)*.

We begin the proof of (2.3.14) by splitting

Ac(a)g = xrn\0,, Ac(@)g + Xa,, Ae(a)g. (2.3.89)

Let us treat first the case of xgs\o, Ac(a). As we said before, since a € C\ R, the
components of ¢*(x) decay exponentially when |z| — oo. In particular, there exist

C,r > 0 only depending on a and 79 such that
16°(2)], 100%(2)| < Ce™™=! for all || > % (2.3.90)

where the left hand side of (2.3.90) means the absolute value of any component of

the matrix ¢*(x) and of any first order derivative of it, respectively.

Note that 1y = dist(R? \ ,,,%). Hence, if z € R*\ Q,, yx € £, 0 < e <2 and
s € (—1,1) then, for any 0 < ¢ <1,

g(x —ys —esv(ys)) + (1 — @) (7 — ys)| = |z — ys — qesv(ys)]

I_
> Jo— g — gels| 2 o el - 2 > Vel T
(2.3.91)

Thus (2.3.90) applies to [z,ys], == ¢(x — ys — esv(ys)) + (1 — ¢)(x — yx), and a

combination of the mean value theorem and (2.3.91) gives

|0"(x — ys — esv(ys)) — ¢%(x —ys)| < € nax 100° ([, ys]y)| < Cee5lovel,
o (2.3.92)

Set ge(ys, s) := det(1—esW (yx))g(ys, s). On one hand, from (2.3.92), Proposition
A.2 and the Cauchy-Schwarz inequality, we get that

Xra\,, ()] (Ac(a)g) (x) — (Ao(a)ge) (x)]

1
§C|’U‘|LW(R)XR3\Qn0<x>/ /662xy2||§;(y2,$)|d0'<y2)d8
—1J%

- " 2
S CEHUHL"O(R)ngnLQ(ZX(1,1))4XR3\QWO(LE></ e rlr—ys dG(yz}))

N
< Ce|v|| @l gll 22 (25 (=1,19)26 (),
where .
—r|z—ys| d /
€ o(ys) .

£(x) = xr3\ay, (@(/

>
Since ¢ € L*(R?) because 0(X) < +o0o, we deduce that

Iy (Ac(@)g = Ao(@)G) sy < Cellollim@llglizmnray:  (2:3.99)
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On the other hand, by Proposition A.2 we have that

19c(ys, s) — g(ys, 5)] = |det(1 — esW (ys)) — 1] g(ys, s)| < Celg(ys, s)I.

This, together with the fact that Ag(a) is bounded from L*(X x (—1,1))* to L*(R?)*,
see above (2.3.89), implies that
X\, Ao(@)(Ge — )l r2wsys < Cllvl[Lemllge — gllL2(mx (-1,

(2.3.94)
< Cellvl| L@ |9l 2x (- 1,12

Using the triangle inequality, (2.3.93) and (2.3.94), we finally get that
xR\, (Ae(a) = Ao(a))gll2meys < Cel|v]| Lo |9l L2mx (-1,1))4

for all 0 < e <2, where C' > 0 only depends on a and 7. In particular, this implies
that

11_1}% HXRS\QnO (Ae(a) — Ao(a))||L2(EX(,171))4%L2(R3)4 =0. (2395)
Let us deal now with xq, Ac(a). Consider the decomposition of ¢* given by
(2.3.29). Then, as in (2.3.30), we write
Ae(a) = Ae,wf + Ae,wg + AE,W37
Ag(a) = Agwe + Aowg + Aows,

where Ao, Acwg and A, are defined as Ac(a) but replacing ¢¢ by w{, w§ and ws,
respectively, and analogously for the case of Ag(a). For j = 1,2, the arguments used

to show (2.3.31) in the case of Be’w; also apply to xaq,, Ae’w;, thus we now get
11_1;% ||XQ770 (Ae,w}l - AO,w;-l)||L2(E><(71,1))4HL2(R3)4 == 0 fOI' ] = 1, 2 (2396)
It only remains to show the strong convergence of xq, Aews. This case is treated
similarly to what we did in Sections 2.3.4.A and 2.3.4.B, as follows:
(i) In Section 2.3.5.A we will show that for any g € L*(X x (—1,1))*

li_I}% X6y Aews 9(5, 1) = X0, Aowsg(7x,1) for a.e. (wx,t) € ¥ x (=1,1).
(2.3.97)

(ii) In Section 2.3.5.B we will prove for 7y > 0 small enough and for g € L*(Z x (—1,1))%,

if we set

A*,wgg(x27t) = Osu<p |A5,wgg(x2at)g(x2at)| fOI‘ (ant) € 2 X (_17 1)7
<e<no

then there exists C' > 0 only depending on 7y such that

X, Acws Il L2mx(-1,1)) < Cllullzo@l|v]lLe@ gl x-1e- (2.3.98)
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Combining the (2.3.97) and 2.3.98, thanks to the boundedness of A, and by dom-

inated convergence Theorem we can conclude that
lii% Acws = Ao, 1n the strong sense.

This, (2.3.95) and (2.3.96) imply (2.3.14).

2.3.5.A The point-wise limit of A.(a) when ¢ — 0

This case is much easier than the one in Section 2.3.4.A. For a fixed z € R?\ X,

we can always find d,, C; > 0 small enough such that
lz —ys —esv(ys)| > C, forall ys € ¥, s € (—1,1) and 0 < e < 4,.

In particular, for a fixed z € R*\ 3, we have |w3(z — ys — esv(ys))| < C uniformly on
ys €%, s € (—1,1) and 0 < e < §,, where C > 0 depends on z. By Proposition A.2

and the dominated convergence theorem, given g € L*(2 x (—1,1))%, we have
lir% Ay 9(7) = Agyg(x) for L-ae. x € R?,
e—

where £ denotes the Lebesgue measure in R3.

2.3.5.B A point-wise estimate of |A.(a)| by maximal operators

Given 0 < e < 2, we divide the study of xq, (7)Acw,9(z) into two different
cases, i.e. © € Q, \ Qq and z € Q. As we did in Section 2.3.4.B, we are going
to work componentwise, that is, we consider C-valued functions instead of C*-valued

functions. With this in mind, for g € L*(X x (—1,1)) we set

Ag(z) = / 1 / Bz — s — esv(ys))o(s) det(1 — esW (ys))g(ys, ) do(ys) ds,

where k is given by (2.3.67).

In what follows, we can always assume that z € R3\ ¥ because £(3) = 0. In
case that © € (., we can write x = xx + etv(zy) for some ¢ € (—4,4), and then
A.g(z) coincides with B.g(zs,t), see (2.3.69), except for the term u(t) that has to be
replaced with X(_44)(¢). Therefore, one can carry out all the arguments involved in
the estimate of B.g(zs,t) (that is, from (2.3.69) to (2.3.88)) with minor modifications
to get the following result: define

Acg(zs,t) == sup |Ag(zs +etv(zy))| for (zx,t) € ¥ x (—4,4).  (2.3.99)
0<e<no/4
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Then, if 7y is small enough, there exists C' > 0 only depending on 79 such that

sup A.g(-, 1)

B < Cllofle~@llgllrzx -1y for all g € L*(X x (—1,1)).
<4

L(%)

(2.3.100)

For the proof of (2.3.100), a remark is in order. The fact that in the present
situation ¢ € (—4,4) instead of t € (—1,1), as in the definition of B.g(xs,t) in
(2.3.69), only affects the arguments used to get (2.3.87) at the comment just below
(2.3.85). Now one should use that

5
/ | log, r|? dr < 400,
0

to prove the estimate analogous to (2.3.85) and to derive the counterpart of (2.3.87),
that is,

Ag(s, t) < Cllvfl e (1\7*9@2) + Tog(s) + Tu(Mideg) (23)

+ T.0ug)(ws) + T.0ug)(ws)).
for all (zx,t) € ¥ x (—4,4), where A\; and Ay are the eigenvalues of the Weingarten
map. Combining this estimate (whose right hand side is independent of ¢t € (—4,4)),

the boundedness of M, and 7, from L*(Y x (—1,1)) to L*(X), see (2.3.72), and
Proposition A.2, we get (2.3.100).

Finally, thanks to (2.3.99), (A.3), Proposition A.2 and (2.3.100), for n, small

enough we conclude

SUp Xy, ;169’ < |[sup A.g(Ps-,t)
0§€S770/4 L2 (R3) ‘t|<4 L2 (Q’V]())
< C||sup A,g(-, 1) < Ol @l gl L2(mx(=1.1))-
[t|<4 £2(x)

(2.3.101)

We now focus on XQWO\Q%IZL for 0 < e <™. Similarly to what we did in (2.3.76),

we set
9e(ys, s) == v(s)det(1 — esW (ys))g(ys, s), see (2.3.74),



2.3 Approximation by the free Dirac operator with short range potentials

and we split A.g(z) = Ac1g(x) + Acag(x) + Acsg(x) + Acag(a), where

elg /

ys — esv(ys)) — k(z — ys)) ge(ys, s) do(ys) ds,

AL
J

Acsg(x =/ k(r — ys)ge(ys, s) do(ys) ds,
ry—ys|<4dist(z,X)
Aosgla / / (k(z — ys) — k(ws — )9 (s, ) dolys) ds,
|y —ys|>4dist(z,X)
A ag(2) / / k(zs — ys)ge(ys, s) do(ys) ds.
|y —ys|>4dist(z,X)

From now on we assume x € €, \ (%4 and, as always, ys; € ¥. Note that
1 . 1
[(ys —esv(ys)) —ys| <e< Zdlst(ffaz) <7 |z — ys|,

so (2.3.68) gives |k(x — ys — esv(ys)) — k(z — ys)| < Ce|z — ys|™3. Furthermore, we
have that |z — ys| > Claxy — yg| for all yy € ¥ and some C' > 0 only depending on
1o. We can split the integral on ¥ which defines ge,1g(x) in dyadic annuli as we did
n (2.3.79), see also (2.3.82), to obtain

Aorgla |<C/ /x €lge(ys )Idc(yx)d

s—yz|<dist(z,X) dlSt( E)

1 o0
+C’/ Z/ —6’g6<y2,83‘ do(ys)ds
=1 ,—¢ ¥ 2ndist(z,% <|mg—yg|<2"+1dist(x 3) ’x - yE’

/ 95 5)|
s —yx|<2ndist(z,s) (27dist(z, X))?

<CHUHL°°(R)M*g(xZ —I—C/ dO'(yz;)dS

< Cllolim Meglas) + €Y o / M.(g())(@s) ds < Cllo] 1= Mag(as)
n=0 -1

(2.3.102)

Using that |k(z — ys)| < Clz — yg|? < Cdist(x, X)72 by (2.3.68), it is easy to
show that

|Acag(@)] < Clfvll @) Mag(s). (2.3.103)

Since dist(z, ¥) = |x — zx|, the same arguments as in (2.3.102) yield

|Acag(2)] < Cllv] ooy Mag (). (2.3.104)
Finally, the same arguments as in (2.3.86) show that

[Acag(2)] < Olv] 1) (Teg(as) + Tu(Mdeg) (zs) + Tu(hig)(zs) + Tu(Aog) ().
(2.3.105)
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Therefore, thanks to (2.3.102), (2.3.103), (2.3.104) and (2.3.105) we conclude that

S0 X\ (1) A ()] < Cllolioecey (Maglos) + Toglas) + T (hdag) ()

0<e<no/4

+T.0ug)(@s) + Tu(g) (@) ),

and then, similarly to what we did in (2.3.101), a combination of (2.3.72) and Propo-

sition A.2 gives

Ayl

< Ol lgllzzsx-1,1))- (2.3.106)
L2(R?)

SUP - X0 \Qae
0<e<no/4

Finally, combining (2.3.101) and (2.3.106) we get that, if ny > 0 is small enough,
then

< Clvllzomllgllzsx(-1.1))s
L2(R3)

SUP  Xaq,, | A
0<e<no/4

where C' > 0 only depends on 7.

2.3.6 Conclusion and proof of Theorem 2.1.2

We first prove an auxiliary result.

Lemma 2.3.6. Let a € C\R and ny > 0 be such that (2.1.1) holds for all 0 < € < 1.
If no is small enough, then for any 0 <n <mny and V € L>®(R) with suppV C [—n, 7]
we have that
| Ac(a) || L2(mx(—1,1))4 > L2 (R3)4,
| Be(a) || L2(2x(=1,1))1 5 L2 (2 x (= 1,1))4
|Ce(a)|| L2 m3ys— L2 (5% (—1,1))
are uniformly bounded for all 0 < e < ng, with bounds that only depend on a, ny and

V. Furthermore, if ng is small enough there exists 6 > 0 only depending on 1y such
that

—_

1Be(@)[2(mx (11122 (101 < 5 (2.3.107)
forall la] <1,0<e<mny, 0<n<mny and all (6,n)-small V.

Proof. The first statement in the Lemma is a simple combination of Theorem 2.3.4

and the Banach—Steinhaus Theorem. We should stress that these developments are
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valid for any V' € L*(R) with suppV C [—n,n|, where 0 < n < 79, hence the (0, 7)-
small assuption on V' in Theorem 2.1.2 is only required to prove the explicit bound

in the second part of the Lemma.

Recall the decomposition
Bi(a) = Bews + Bews + Bew, (2.3.108)

given by (2.3.30). Thanks to (2.3.35), there exists Cy > 0 only depending on 7y such
that

| Bewos [ 2mx (—1,1))2 s 22mx (—1,1))t < Collu|| oo @)||v]| ooy for all 0 < e < mp.
(2.3.109)

The comments in the paragraph which contains (2.3.31) and an inspection of the
proof of [12, Lemma 3.4] show that there also exists C; > 0 only depending on 7,
such that, for any |a| <1 and j = 1,2,

||Be,w;||L2(2x(—1,1))4—>L2(2x(—1,1))4 < Chllu|| peemy[[v]| Loomy  for all 0 < € < .
(2.3.110)

Note that the kernel defining B ¢ is given by

—vVm2—a?|z| _ 1 ’ 2 _ 2‘
u e . " m? —a
ws(x) = pp i - PR so |wi(z)| = O (T for |z| — 0.

Therefore, the kernel is of fractional type with respect to o, but the estimate blows
up as |a| — oco. This is the reason why we restrict ourselves to |a| < 1 in (2.3.110),
where we have a uniform bound with respect to a. However, to prove Theorem 2.1.2,

one fixed a € C\ R suffices, say a = 1.
From (2.3.108), (2.3.109) and (2.3.110), we derive that

||B€(a)||L2(2><(_1’1))4_>L2(2><(_1’1))4 S (C() + 201>||U||L00(R)||U||LOO(R) forall 0 < e S To-
(2.3.111)

If V' is (8,7n)-small, see Definition 2.1.1, then ||[V|| Lo (m) < %, so (2.1.4) yields

[l 2o @) [0l 2oy = NIV || Loy < 6.

Taking 6 > 0 small enough so that (Cy + 2C})d < %, from (2.3.111) we finally get
(2.3.107) for all 0 < € < . O

Combining Theorem 2.3.4, the Banach—Steinhaus Theorem and (2.3.107) we can

obtain the following:
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Corollary 2.3.7. Let a € C\ R, 9 > 0 and 6 > 0 be such that (2.3.107) holds for
all 0 < e <ny. Then

1
| Bo(a) + B'l| (s x (-1, 1)t = L2 (2x (~1,1))t < 5 (2.3.112)

Proposition 2.3.8. There exist ng, 0 > 0 small enough only depending on > such

that, for any a € C\ R with |a] < 1, 0 < n < ny and (§,n)-small V, see Defini-

tion 2.1.1, the following convergences of operators hold in the strong sense:
(H+V,—a)™' = (H—a)"" + Ag(a)(1 4 Byla) + B') ' Co(a) when e — 0,

(H+pBV.—a) = (H—a)"" + Ay(a)(B + Bo(a) + B’)flco(a) when € — 0.

In particular, (1 + By(a) + B’)_1 and (B + By(a) + B’)_1 are well-defined bounded
operators in L*(X x (—1,1))*.

Proof. We are going to prove the corollary for (H + V,—a)™!, the case of (H + SV, —
a)~! follows by the same arguments. Let 19, > 0 be as in Lemma 2.3.6 and take
a € C\ R with |a| < 1. From (2.3.112) we deduce that

(1 + Bo(a) + B)gllr2ex -1t > ll9llz2@x -1t = [(Bo(a) + B)gll 2(mx (1,1
1
> §||g||L2(E><(—1,1))4

for all g € L*(X x (—1,1))* Therefore, 1 + By(a) + B’ is invertible and

1(1+ Bo(a) + B) M2 mx(-1)isr2ex -1t < 2.

This justifies the last comment in the corollary. Similar considerations also apply to

1 + Bc(a), so in this case we deduce that
(1 + Be(a)) M z2ex-1)isr2mx it < 2, (2.3.113)
for all 0 < e < ng. Note also that

(14 Bc(a))™ — (1 + By(a) + B')™*

= (1+ Be(a)) " (By(a) + B' — Be(a))(1 + By(a) + B')™".
(2.3.114)

Given g € L*(X x (=1,1))* set f = (14 Bo(a) + B')'g € L*(X x (—1,1))%
Then, by (2.3.114) and (2.3.113), we see that
H ((1 + Bc(a))™' = (1+Bo(a) + B,)_I)QHLQ(Z‘X(—LI))‘l
= (1 + Be(a))™"(Bo(a) + B = Be(a)) fll2(mx (1,11

< 2|[(Bo(a) + B" = Be(a)) fllz2(mx(-1,1))3-
(2.3.115)
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By (2.3.15) in Theorem 2.3.4, the right hand side of (2.3.115) converges to zero when
¢ — 0. Therefore, we deduce that (1+B.(a)) ™! converges strongly to (1+Bgy(a)+B’)~*
when ¢ — 0. Since the composition of strongly convergent operators is strongly
convergent, using (2.3.8) and Theorem 2.3.4, we finally obtain the desired strong

convergence
(H+V,—a)™ = (H—a)" + Ag(a) (1 + By(a) + B') 'Cy(a) when e — 0.

Corollary 2.3.8 is finally proved. ]
We can now prove Theorem 2.1.2. Thanks to [52, Theorem VIII.19], to prove the

theorem it is enough to show that, for some a € C\ R, the following convergences of

operators hold in the strong sense:

(H+V.—a) = (H+M\Js —a)™' when e — 0, (2.3.116)
(H+ BV, —a)™' — (H+ \,B6x —a)”' when e — 0. (2.3.117)
Thus, from now on, we fix a € C\ R with |a| < 1.

We recall that
Ag(a) = 0%(0,-)V, By(a) =UCV, Cola) = UDY,

with
1

Vfas) = [ o) flas,5)ds and Ofas.) = ult) f(as).

1
Hence, from Proposition 2.3.8 and (2.3.11) we deduce that, in the strong sense, if

e—0
(H+V.—a)' = (H—a)"' +0%0,)\V(1+UCV + B) ' Ud" (2.3.118)
(H+ BV, —a)™ = (H—a)"" +0%0,)V(5+UCV + B) UL (23.119)

For convinience of notation, set
Kg(ws,t) = Kv(g(ws,))(t) for g € LS x (—1,1)),

where Ky is as in (2.1.6). Then, we get

, ~ I, (0 - )KL,
1+B =1 VKL = _ _
+ 1+ (- )KLy <(U )KL I, >

Here, 0 := (01, 09, 03), see (1.1.6), I; denotes the 4 x4 identity matrix and K1, denotes

the diagonal 4 x 4 operator matrix whose nontrivial entries are E, and analogously
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2. Klein’s Paradox and the Relativistic §-shell Interaction

for KI,. By construction | Kv||2m)y—r2@) < 26, then ||Ky||p2m)- 2@ < 200(X) < 1.
For this reason (1 — K?) is invertible. Moreover, since the operators that compose

the matrix 1 + B’ commute, if we set IC := IE]L;, we get
_ S I —(o - V)KI,
1 B/ 1 — 1 _ IC2 1 2 .
(1+B)" =( )7l e (—(a-u)lC]Ig L
=1-KH"'—(a-v)1-K)'K.

(2.3.120)

With this at hand, we can compute

-1

(1+0CV +B)" = (1 +(1+ B')—lﬁcgf/) (1+ B!
~ ~ ~ ~\ —1
- (1 (1= KD — (- v)(1— ICZ)*IICUCE;V)

0 ((1 KN (- v)(1— /c2)—1/c>.
(2.3.121)

Notice that
x7(1 Y (1= K)TCW — (a-v)(1— /c2)—licz703?)
— (1 YV - K00 — (a- )V (1 — /c2)—11a70;;>17,
which obviously yields
\7(1 41— K00 — (a-v)(1 - /c2)—1/cﬁcg?)_1

—~ —~ —~ ~ -1
— (1 YV K00 — (a- )V (1 — /cz)—%ch) V.
(2.3.122)

Additionally, by the definition of Ky in (2.1.6), we see that
V(- K0 = </v (1- ;@V)—lu)h =\,
R

V(1 - k2K = (/

R

(2.3.123)
v(l— IC%/)’llCVu>]I4 = 0.

Indeed, from (2.1.9) in Theorem 2.1.2, A, = [pv(1 — K}) 'u. Let us focus on
Jev (1 = K3)"'KCyu. Note that, for any n > 0,

\ 2n+1
/ wKEHy = (_%) / V(to)V(t1) - V(tans1)X
R (77]777)2n+2

sign(to — tl) cee sign(tgn — t2n+1) dtodtl . dt2n+1.

Set s; := ton41—; for 7 € {0,...,2n 4+ 1}. Then,

2n+1

sign(to — tl) s Sigl’l(tgn — t2n+1) = (—].) sign(so — 51) s Sigl’l(SQn — 82n+1),
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2.3 Approximation by the free Dirac operator with short range potentials

thus, by Fubini’s theorem, [, vA"*'u = 0. This implies that [pv (1 — K%)'Kyu =0

by a Neumann series argument, and therefore \A/(l — lCQ)*IIC(/]\ = 0.

Hence, combining (2.3.122) and (2.3.123) we have that
17(1 F(1-K)TCV — (a-v)(1— lc2)—licz70g17) T A0 (23.124)
Then, from (2.3.121), (2.3.124) and (2.3.123), we finally get
(0, )WV (1 +UCV + B)"LUD: = 00, )(1 + AC?) '\ .D2.
This last identity combined with (2.3.118) and (2.2.6) yields (2.3.116).
The proof of (2.3.117) follows the same lines. Similarly to (2.3.120),
B+B) ' =1+K)"8—(a-v)(1+K)"

One can then make the computations analogous to (2.3.121), (2.3.122), (2.3.123) and
(2.3.124). Since A\, = [pv (1 + K3 ) u, we now get

(0, \W(B+UCV + B) TP = 00, )(8 + AC?) ' A, D%

From this, (2.3.119) and (2.2.12) we obtain (2.1.8). This conclude the proof of The-

orem 2.1.2.
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The Relativistic Spherical 9-Shell
Interaction: Spectrum and
Approximation

3.1 The spherical 4-shell interaction

The aim of this section is to introduce the rappresentation of the Dirac operator
in case of spherically symmetric operator. In particular, in the case of the spherical
d-shell interaction, we will prove that the domains given by [7] and by [20] coincide.

Unless we say the contrary, from now on we restrict our study to the case
Q={reR’: |z| < 1}.
For clarity, let us denote By = Q4 and S? = 99).

The electrostatic d-shell interaction H + Ay, studied in [7] has already been in-

troduced in (2.2.5) as follow:

D(H + Mpa) = {u+ ®(g) : ue H' (R*?, g L*(00)*, Mroggu = —(1 + A\Cy)g},

¥

(H —+ /\(5@9)(,0 = HQD =+ /\()O—i_—;——_ o for Y e D(H + /\539),

(3.1.1)

where Hyp in the right hand side of the second statement in (3.1.1) is understood
in the sense of distributions and ¢ denotes the boundary traces of ¢ when one

approaches to €2 from €.

To justify (3.1.1), a remark is in order. In fact, given G € L*([R3)*, ®(G,0) €
H'(R3)*) with ® defined in (2.2.2). On the other hand, give u € H'(R3)?, if we set
G := Hu € L*(R®)* we get that ®(G,0) = u. Moreover, with abuse of notation,
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3. The Relativistic Spherical §-Shell Interaction

we set ®(-) = P(0,-). For these reasons (2.2.5) and (3.1.1) coincides. Finally, for
shortness sake, we set
T\ = H + \os.

We now review the approach from [20], where the authors construct self-adjoint
and rotationally invariant extensions of H|cs(rs\s2y4 by using the decomposition in

the classical spherical harmonics, see Appendix B for the details.

Fixed j,m; and k;, let us define

D(fmj ) C((0,1)U (1, +oo))2 C D(fmrkj), Z?mj’kj(p = fmjkj(p, for all p € D(fmj,kj).

For any A € R set

= (2 e

Notice that if A € R\ {42}, M; has null determinant. In [20] it is proved that the
operator t(A),,; x, defined by

DNy ) = { (5 17) € LH0,400) & By (7, 1) € LH0, +00)?

2

(f*,f7) e AC((0, ) U (1, OO)),

M; (ﬁgjg) Iy ( ) ) (3.1.2)
L
)

k)

(1~

(1~
Oy (FF S ) = i, (F-F) for all (4.7) € D),

1] ,—|—oo)) denotes the space of

S
is a self-adjoint extension of fm k;- Here, AC([ (1
absolutely continuous functions on the open set (0,1)U (1, +00). Furthermore, if one

TN+ 00)

+opy = 2
51(f 7f ) - f—<1+)+f—<1—>
2
then t(A)m; x, = fmj,kj + Ady on D(t(A)m, ;), with the understanding that here fmjkj

just means the differential operator given by the matrix on the right hand side of

sets

(B.8) acting in the sense of distributions. Let us finally introduce the subspaces

H(N)my by = 9= oy (1) ot g, (@) + Fo e, (1) 3 (2)) 5 fin 1, € DNy ) -
il ) |

The electrostatic -shell interaction with strength A studied in [20] is given by

(3.1.3)

=P B D W
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3.1 The spherical /-shell interaction

which is a self-adjoint operator.

In order to compare the notions of a d-shell interaction given by (3.1.1) in the

spherical case and (3.1.3), let us first prove an auxiliary result.

Lemma 3.1.1. Let Q C R3 be a bounded domain of class C*. Then

HY R\ 00)* = {u+ ®(g) : u € HY(R?*, g € H/*(0Q)*}.

Proof. If f = u+®(g) for some u € H'(R*)* and g € H'/2(092)*, by [43, Lemma 3.1]
we have that f € H'(R?\ 0Q)*.

Let us consider now f € H'(R3\ 0Q)%. Since f € H'(Q+)?, by the trace theorem
we also have fi € H'/2(9Q)*. Set

g:=ila-v)(fs— f-) € H/*(0Q)!

and u = f — ®(g). Once again, [43, Lemma 3.1| shows that v € H'(R?\ 9Q)%.
Moreover, by (2.2.4),

up —u-=fr — f-=Cig+Cg=fir — f-+i(a-v)g=0,

thus u, = u_ and u has a well defined boundary trace in H'/2(9Q)*. This implies
that actually u € H'(R?)*, and we are done since f = u + ®(g). O

Theorem 3.1.2. Assume that Q = {x € R® : |z| < 1}. For any A € R\ {£2},
the self-adjoint realizations Ty and T()\) defined by (3.1.1) and (3.1.3), respectively,

coincide.

Proof. Consider the operator

D(T)) = {u+ ®(g) : u e H'(R??, g e H/*(S*)*, Mrgzu = —(1 4+ AC,)g},

T\ = TA’D(TA)‘
Since H'/2(S2)* ¢ L2(S?)*, by construction we get Ty C Ty. We are going to prove
that
T(\) C Th. (3.1.4)
With this at hand, we deduce that T(\) C Ty C T and, since both T'(\) and T}
are self-adjoint operators for A # 42, we finally conclude that T(\) = T) and the

theorem follows. Let us focus on (3.1.4). Fixed m; and k; as in (3.1.3), for simplicity

of notation we set

FE0) = fin, (), @5(2) = @5, (2),  HO) = H( Ny ) = A )m, b,

]7m7
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Thus, any ¢ € H(A) can be written as
oo =+ (@) + me@) =1 (10)- (310).

.

In the last expresion above, “-” just means “scalar product”. As before, we denote by
¢+ the boundary values of ¢ when we approach S? from Q.. Let Mf\[ be the operator

defined on H(\) by the action of the matrix M} on the basis {®F, ®~}, that is, for

any i € S?,
s~ (5 (140 (2°8).
s = (s (1) (512)
So, in particular, we have that
Mg (2) + Mip (2) =0 forall €S> (3.1.5)

Moreover, since ¢ € H'(R?\ $?)*, using Lemma 3.1.1 we can write ¢ = u + ®(g) for
some u € H'(R3)* and g € L*(S*)*. Then, since v(z) = 7 for all # € S?, using (2.2.4)
we see that (3.1.5) is equivalent to
0= (M] 4+ M) trse u(i) + (MICy + M C)g(2)
- 1 _ A _ .
= (M + M) trsz u(z) + 3 (M =MD i(a- 2)g(2) + (M + M) Cog(E).
(3.1.6)

Since M;f + M5 = Ay, where I, denotes the 2 x 2 identity matrix, we get that, for
i€ S?

(M + M))u(z) = du(z), (3.1.7)
(M3 + M;)Csg(2) = ACog(). (3.1.8)
Note also that ) 0 .

that is the matrix that represent the operator —i(« - Z) on the basis {®, &~} (see
(B.7)). So

1 _ RN .
(M5 = M) G- 2)g(2) = 2 3.9
for & € S?. Combining (3.1.7), (3.1.8) and (3.1.9), (3.1.6) becomes

0= Arszu+ (1 4+ ACo)g.

In conclusion, we have seen that if ¢ € H(A) then ¢ € D(T)). Since these arguments
are valid for any m; and k;, (3.1.4) follows. O
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Remark 3.1.3. From the proof of Theorem 3.1.2 we also see that if A # 42 then
T\ = T\, which means that the condition Atrgz u = —(1 4+ AC,)g in (3.1.1) forces ¢
to belong to H'/2(S?)*, as proved in [49].

3.1.1 The spectrum of the spherical ¢-shell interaction

In this section we answer affirmatively a question posed in [8, Section 4.2.3]. As
commented there, this yields a relation between the eigenvalues in the gap (—m,m)
for the electrostatic spherical d-shell interaction and the minimizers of some precise
quadratic form inequality. Before going further, we must recall some rudiments from
[8, Section 4]. Throughout this section, {2 denotes the unit ball and 9Q = S2. Given
a € [—m,m], set

o~ VIT=aal P
—— I, and w%x)=
o and w®(x) pppE

k4 (z) = <1+\/mu|> io-x

47 |x|
for z € R\ {0}. Given f € L*(0)? and z € $?, set
Kef(x) = / k*(x—2)f(z)do(z) and W*f(x)=Ilim w*(x—2)f(z)do(z).
s2 N0 Sz 2> ens?
Then
ca_ (a+m)K* we
o we (CL _ m)Ka )
where C¢ is defined in (2.2.3). The following corresponds to |8, Lemma 4.3].
Lemma 3.1.4. Given a € (—m,m), there exist positive numbers dji1/o and purely

imaginary numbers pjiq/o for all j =1/2,3/2,5/2,..., and m; = —j,—j +1,...,7,
such that

(1) K° w;njgl/Q =dji1) w;ijyg and lim;_,o dj+1/2 = 0. Moreover,

1 — ¢—2vVm?—a?

2/mZ —a2

0<djs12 < dop=

(ZZ) Wwe ¢E1/2 = Dj+1/2 ¢]m:;1/2 and Pj+1/2 = _pj—1/2- MO’I"@OU@’/’,

. L ms—a —2vVm?—a
|pjﬁ:1/2|2 — Z _ (m2 B a2)dj+1/2 dj—1/2 > Z e WmZ—a? (2 e Qm) .
The following result allows us to construct eigenstates for 7T} from the eigenfunc-

tions of K% it corresponds to [8, Lemma 4.6]|.
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Lemma 3.1.5. Let Ty be as in (3.1.1). If A > 0 and a € (—m, m) satisfy

)\2

T ((m+ a)djz1/2 — (m — a)djs12) A =1 for some j, (3.1.10)

then, for any m;, %‘11/2 gives rise to an eigenfunction for Ty with eigenvalue a.

Remark 3.1.6. In Lemma 3.1.5, the expression “gives rise to an eigenfunction” means

that, if one defines

g= (£> € L*(S*)*, where h = w;njflﬂ and f=—(1/A+ (a+m)K“)_1W“ h,

setting ¢ = ¢ * (a®*(g)) + ®(g) one gets that Th¢ = ap. Here, ® is defined as ® in
(2.2.2) replacing ¢ by ¢

In [8, Question 4.7|, the following question was raised:

Question 3.1.7. Let dj1y2 be the coefficients given by Lemma 3.1.4. Is it true that
dj+1/2dj_1/2 < dld[) fOT’ all] = 3/2, 5/2, 7/2 L2

Theorem 3.1.9 answers it in the affirmative and, as commented at the end of [8,
Section 4.2.3|, it yields the following result related to Lemma 3.1.5. We first recall
the values of dy and d; from Lemma 3.1.4 (computed in [8]) and a precise constant
d, that will appear below, see [8, equations (4.31), (4.32) and (4.39), respectively|:

1 — 6—2\/7712—a2

ovm?2 — a2’

1 1 1 2 —
dy = 1— 1+ —— | ¢2Vm’a
1 2 /—mQ—a2< m2_a2+( + m2_a2) e )7

d*:;_1(1+;)6_2"m2_a2'
2vm2 —a?2 2 m? — a?

d():

Corollary 3.1.8. Let a € (—m,m) and X\ > 0. Then, for any f € L*(0)?,

[ 1o < PEGEDD [ (s i) s W o

1 a
ST ) Ju A K)o do
(3.1.11)

The equality in (3.1.11) is only attained at linear combinations of ¢ forl € {—1/2,1/2}.
If

)\2

T (m+a)dy — (m —a)di) A =1 (3.1.12)
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then the minimizers of (3.1.11) give rise to eigenfunctions of Tx. DBesides, these
conclusions also hold if we exchange the roles of dy and dy in (3.1.11) and (3.1.12)
and we replace ! by o} (that is, we exchange the roles of j+ 1/2 and j — 1/2 for

Jj=1/2).
Theorem 3.1.9. Let dji1/2 be the coefficients given by Lemma 3.1.4. Then,
djz1y2 = Laajoa1/o (Vim? — a?) Kimyere (Vm? — a?), (3.1.13)
where 1 and K denote the standard second order Bessel’s functions. Moreover,
djy1/odi_1/2 < dody  for all j =3/2,5/2,7/2.... (3.1.14)
Proof. Let us first compute dj1/2 in terms of Bessel’s functions. Fixed m; and k;,

due to [61, Lemma 4.15] and Theorem 3.1.2 it is enough to find some a € (—m, m)

which is an eigenvalue for the operator ¢(A),, ;- We want to find some

(J:) € D(t(AN)m, k;)

verifying the following system of differential equations:

—a)ft 4+ (= Eiye— —
RS
Set M = +/m? — a2. Since k; = £(j + 1/2), we set
FHr) = {A\/FI(J'Jrl/?)il/Z(MT) ?f r<l1
B\ Kp12)e12(Mr) if r>1 (3.1.16)

F(r) = %ﬁl(j+l/2)$l/2(Mr) ifr<l1
Bﬁ\/FK(jH/z)n/z(Mr) ifr>1’

(7
¥ = (f—)a

then ¢ € L*(0,400)2, hm, 1,9 € L*(0,400)?, ¢ € AC((0,1) U (1,—1—00))2 and ¢
satisfies (3.1.15). Thus, to get that ¢ is an eigenvector for the operator A(\),, k, it
remains to prove that ¢ € D(h(A)m,x,;), that is we have to show that M ¢(1") +
M p(17) = 0. In other words, the following linear system must hold:

for some (A, B) # (0,0). Setting

(
A (a%zl(jﬂ/?)ﬂm(M) + %I(j+1/2)i1/2(M))
+B (iK(j+1/2)ﬂF1/2(M) + %K(j+1/2):t1/2<M)) =0,

a+m

A <—2(2fm)1(j+1/2)¢1/2(M) - I(j+1/2)ﬂ:1/2(M)>
+B <K(j+1/2)i1/2(M) - %K(ﬂl/zm/z(M)) = 0.

\
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Since this is a 2 x 2 homogeneous linear system on A and B and we are supposing
that (A, B) # (0,0), we deduce that the associated matrix has null determinant. This
means that
N2 M
0= = (Igr12e12(M)Kaynr12(M) + sz 2 (MK a/2(M))
4(a +m)
A

m-+a

((m + a)l1/2)41/2(M)K(j41/2)41/2(M)
= (m = a)ly2z1/2(M)K12)51/2(M ))

M
(Tgs1/2)21/2(M)K G 1/2)51/2(M) + Leayayzr2(M)K 12212 (M)) -
1

m -+ a

By [48, Equation 10.20.2| we get that

1
Lgr1/212(M)Kr1y2z12(M) + Lz 2(M)KGajpep(M) = 37 (3.1.18)

Finally, combining (3.1.17) and (3.1.18) we see that the following must hold:

A2 (
— — ((m~+ a)Ir1/99412(M)K(j11/2)41/2(M)
4 (§+1/2)£1/ (j+1/2)%1/ <3.1.19>
= (m = @)l 1212 (M)K(pry2)512(M ))A —1=0.
In conclusion, if we define
)\2
D, A= ( I, MK, M
i+1/2(a, A) 1 (m 4 a)lj11/2)41/2(M)K(j1/2)11/2(M) (3.1.20)

= (m = @)l 11/2)71/2(M)K 41 2)51/2(M )) A—1,
f+
f_
for t(\)m, x, With eigenvalue a if and only if D;4,/5(a, A) = 0. In this case the function

1 " _ . "
V(@) =~ (£ 4 (@) + )05, 4 (@)
is an eigenfunction for T with eigenvalue a. For this reason, a comparison of (3.1.19)
and (3.1.10) yields (3.1.13), as desired.

and we take p = ) with f* and f~ given by (3.1.16), then ¢ is an eigenfunction

Let us finally prove (3.1.14). We set n = j + 1/2 € N. Since 7 > 1/2, we have
n > 1. Then (3.1.14) is equivalent to

dndn—l < dgdl, for all n > 2. (3121)

We are going to show (3.1.21) by induction. For n = 2, we have to check that
dydy < dydy, which is equivalent to dy(dy — dy) < 0. Since d,, > 0 for all n > 1, it is
enough to show that dy — dy < 0. But, from (3.1.13) we easily get that

3 (M3 +2M? + 3M + 3) sinh(M) — 3M (M? + 3M + 3) cosh(M)

dy — dy = oM )\ [5

< 0.
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Let us now suppose that (3.1.21) holds for n — 1. Then, we can split
dn—ldn - dOdl == dn—l(dn - dn—2) + dn—ldn—Q - dOdl'

On one hand, d,,_1d,,_2 — dody < 0 by (3.1.21). On the other hand, d,, — d,,_5 < 0 by
[10, Theorem 2| and d,,_; > 0. Thus (3.1.21) holds for all n > 2. O

3.2 Approximation by spherical short-range poten-
tials

In this section we investigate the spectral relation between the electrostatic o-
shell interaction on the boundary of a smooth domain and its approximation by
the coupling of the Dirac operator with a short-range potential which depends on
a parameter € > 0 in such a way that it shrinks to the boundary of the domain as
e — 0; see the definition of 7}, . below. From Theorem 2.1.2 we know that if a € o(T}),
where here o(-) denotes the spectrum, then there exists a sequence {a.} such that
a. € 0(T,e) and a. — a for € — 0, where A = 2tan (g) However, the reciprocal
spectral implication may not hold in general. In this section we are going to show that
the reverse does hold in the spherical case, that is, if ac — a with a. € o(7),.), then
a € o(Ty) (see Theorem 3.2.2 below). In particular this means that, when passing
to the limit, we don’t lose any element of the spectrum for electrostatic interactions

with potentials shrinking on S2.

Given € > 0 and = € R3, we define

1
‘/E(m) = 2_€X(175,1+e)(|x|) and VE = ‘/6]147

where I, denotes the 4 x 4 identity matrix. For u € R, we also introduce the operators

D(T,) = C*R** and T,.=H + uV.,,

D(T,.) = H'(R*)* and T,.=H+ uV..

Since |V, | < 2%7 fM is essentially self-adjoint and T}, . is self-adjoint by [61, Theorem
4.2|. Moreover ess(T),c) = Oess(H) = 0(H) = (—00, —m| U [m, +00). For this reason

we are looking for some a € (—m,m) eigenvalue of T), ..

Our aim is to find a precise relation between a, u and €, say Rc(a, pt), which must
hold in order to get an eigenfunction for H + V. with eigenvector a. Then, we will
take the limit of R.(a, u) for ¢ — 0 and we will compare the result to (3.1.10). To do

so, we use the same approach developed in Section 3.1.1.
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Clearly, if 4 = 0 we get that T, = H, i.e. we are not perturbing the free
Hamiltonian H, thus we can exclude this case in our study. Assuming that p # 0,
we note that if a is an eigenvalue of 7}, . with eigenfunction ¢ = zi then —a is an

—X

eigenvalue of T, . with eigenfunction )= ( é

). For this reason, from now on, we

will further assume that g > 0.

Observe that 7T ue leaves the partial wave subspace H,,; i, invariant. Its action on

each subspace is represented with respect to the basis {®7 } by the operator

mj,k;o ka

D(to(ru’a €>mj,kj> = Ct?o(Oa +OO)27

j Y Z [ mt fxa—aite —0, +% I (3.2.1)
h(/”’? e)mj,kj — — k. _ .
f ar + TJ —m + ﬁX(l €,1+¢€) f

Since T), . is self-adjoint we get that the operator

D (Ut myay) = { (7 57) € L0, +00) 5 6t Yy, (S, f7) € L30, +00)°,
(F*,/7) € AC(0, +o0)*}
(3.2.2)

is self-adjoint. The action of ¢(f, €), x; on its domain of definition is formally given
by the right hand side of the second equation in (3.2.1). Moreover, a € (—m,m) is an
eigenvalue for 7}, if and only if a is an eigenvalue for (s, €)p,, &, for some {m;, k;}.

For this reason, we want to solve

(m—a)ft + (=0, +%)f~ =0
(0 + é) (m+a)f =0
(m
(O

-

(?) € D (t(k, €)my ;) -

Since k; = £(j + 1/2), a non-trivial solution is given by

if0<r<l—eorr>1+e,

fl—e<r<l+e

A\/?I(ﬁ%) %(Mr) r<l-—e
frr)y =4 Biyr J( +%)i%(L7")+BQ\/FY(j+7) %(Lr) l—e<r<e+1
\ C\/?K(j+%>i%(Mr) r>1+e
( a+m\/_I(]+ );1/2(M7") 0<r<1-—e,
f(r)= A\/;m (Bl J(j 1)1 1 (Lr) + Bs Y<j+%> %(Lr)> l—e<r<l1+e,
L a+m\/_K(g+ ));1/2(M"”) r>1+e¢,

(3.2.4)
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where J and Y denote the first order Bessel’s functions and I and K the second order

Bessel’s functions,

2

M = vm? — a?, L:\/<2ﬂ—a> —m?2
€
and (A, By, By, (') # 0 are some constants. Note that M € R by the assumptions on
a, but L could be complex. Note also that fT, f~ € Hl((O, +00)\ {1 —¢,1+¢€}, rdr).
To ensure that they belong to D(t(u, e)mj’k) we have to verify that both f* and f~
are continuous in 1 — € and 1+ ¢, which means that the following linear system must
hold:

(0 = AVT =€ Ljpayper2(M(1 =€) = Biv/T— € Jgpa/2)12(L(1 — €))
—Bg\/ 1 — € Y(j+1/2)i1/2(L(1 — 6)),

_qY 1—e M Ijii/oz172(M(1—€)) — B, 2eLv/1 — € J(ir1/2)7172(L(1 — €))
a+m 2a€ — p+ 2me

26.[/\/ 1—c¢ Y(j+1/2):,:1/2<[/(1 - 6))
2a€ — p + 2me

0

By

Y

0 = Bl\/ 1+4+¢ J(j+1/2):|:1/2(L(1 + 6)) + BQ\/ 1+4+¢€ Y(j+1/2):|:1/2(L<1 + 6))
—C+v1+e€ K(j+1/2)i1/2(M(1 + 6)),

2L/ 1+ € Jjy1/2)5172(L(1 +€)) 2L/ 1+ € Y(jy1/2)71/2(L(1 +€))
2

0 =B B
! 2a€ — 1+ 2me * 2a€ — 1+ 2me
LoVt e M Kjiyamp(M(1+6))
\ a+m '

(3.2.5)

Since this is a 4 x 4 homogeneous linear system on A, By, By and C and we are
assuming that (A, By, B2, C) # 0, we deduce that the associated matrix has null
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determinant. So, if we set

D§i1/2(aaﬂ) =
2(@ + m) K(j+1/2)i1/2(\/ m2 — (12(1 + 6))
€(—2ae + p — 2me)?

x {—2Le(a +m) T jzpe1s2 (Vm? — a2(1 — €))
x [ Jga/2zre(L1+6) Yirazz(L(1 =€)
— Jgyn51/2(L(L =€) Yuyogi/2(L(1 +€))]
— Vm? — a?(2ae — p1 + 2me) L1 /op51/2 (VM2 — a2(1 —¢))
X [ Jgri/2a1/2(L(1 =€) Yzz1/2(L(1 +¢))
= Jgryps1/2(L(L + €) Y(ayzzr2(L(1 - €))] } (3.2.6)
\/ — a? K(ﬁl/g)ﬂ/z(\/mQ —a?(1+ e))

€2L(2ae — p + 2me)
x {=2Le(a+m) s (Vi = a(1 - €))
X | Jgy2e12(L(L+€) Yia/mz/a(L(L —¢))
— Jgr1y2g1/2(L(1 =€) Yiirryzm2(L(1 + ))}
+ \/H(%e — o+ 2me) L1 2)51/2 (\/ﬂ(l — e))
X [ JGy2e12(L(L+€) Y oe/o(L(1 —¢))
= Jgg1/221/2(L(L = €)Y (g1/2)21/2(L(1 + €))] }

then gfj—;ng; 1 /Q(a, i) is the determinant of the matrix associated to the linear

system (3.2.5). It vanishes if and only if

D%, pya, 1) = 0. (3.2.7)

We can conclude that, if (f*, f7) are defined as in (3.2.4), (f*, f7) is an eigenfunction
for (g, €)m, k; with eigenvalue a if and only if DS, »(a, p) = 0. This means that the

function
D) = = (FH)R] 4 @)+ F ()2 4 ()

is an eigenfunction for 7T}, . with eigenvalue a.

In order to compare (3.2.6) and (3.1.19), let us draw some pictures of these rela-
tions for some concrete values of the underlying parameters, say m = 1, £ = 1 and
e = 2719 Figures 3.1 and 3.2 describe the set of (a,\) € (—1,1) x (0,10) that verify
(3.2.7) and (3.1.19), respectively.
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— /

I I I Loa I I I L g
-1.0 -0.5 0.5 1.0 -1.0 -0.5 0.5 1.0

Figure 3.1 The set of points (a, ) sat- Figure 3.2 The set of points (a, \) sat-
isfying (3.2.7). isfying (3.1.19).

Looking at Figures 3.1 and 3.2 we note that there is no apparent relation between

(3.2.7) and (3.1.19). However, the next result proves that there is indeed a precise

connection between both equations when one takes the limit e — 0 in D, /2(a, 1).

Lemma 3.2.1. Let j = 1/2,3/2,... and D5, and Djy1> be defined by (3.2.6)
and (3.1.20), respectively. Then, for any p > 0,

4(a+m)
LT (1 + tan (§)2>

lig% Diiypp(a,p) = Dji12 (a,2tan (£))  uniformly on a € (—m,m).

Proof. Note that L — +oo uniformly in a € (—m,m) when ¢ — 0, thus we can use

the asymptotics

2 S
Ju(z) = — (cos (z — dnm — im) + e"y(z”o(l)) for |z] = 400,

[ 2 &
Yn(z) = — (sin (z — snm — im) + e'”(z”o(l)) for |z| = 400,

see [48, Equation 10.7.8]. Inserting these two relations in (3.2.6) and taking ¢ — 0,

we get that, uniformly on a € (—m, m),

lii%D§:t1/2(aa )

4
=— {M Lt1/2)71/2(M)

s
X ((a+m)cos(p) K(jp12pe1/2(M) — M sin(p) K(ji1/2)51/2(M))
+ (a+m) Lji1/2)41/2(M)
x ((a+m)sin(u) Ky o(M) + M cos(p) K(jr1/271/2(M)) }
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2
Setting ¢ = 2tan (&), we know that sin(p) = 1_:t2 and cos(p) = Hg. Using (3.1.18),
T T
hence

e 16(a +m) /t?
11_{% Dji1/2(av 1) = m <Z - ((m + a) I(j+1/2)ﬂ:1/2(M) K(j+1/2)i1/2(M)

— (m —a) Ljt12)71/2(M) K(j+1/2)¢1/2(M)>t - 1)’

which coincides with (3.1.20) if one replaces A by ¢ = 2tan (4) in there. O

The following result resumes what we have proven so far with the aid of Lemma
3.2.1.

Theorem 3.2.2. Let p € R\ {0} and
A = 2tan (H> .
2

Let h(AN)m, x; be as in (3.1.2) and, for € > 0, let h(i, €)m,;k, be as in (3.2.2). If

ae € 0p(h(pt; €)m; k;) andlime o ac = a for some a € (—m,m), then a € op(h(A)m; k,)-



Self-Adjoint Extensions for the Dirac
Operator with Coulomb-Type
Spherically Symmetric Potentials

4.1 Introduction: the minimal operator and the max-
imal operator

In this chapter we are interested in the self-adjoint realizations of the differential
operator T':= H +V, where H is the free Dirac operator in R? defined in (1.1.7) and
1
V(z) ::—’ (uh—i—/ﬁﬂ%—)\(—z’a-i )) , fora #0, (4.1.1)

|z |

where v, A and p are real numbers, and [, is the 4 x 4 identity matrix.

In relativistic quantum mechanics, the Dirac operator 1" describes relativistic
spinf% particles in an external field, and it is hence important to determine if it is
self-adjoint on an appropriate domain. In detail, setting

. T
V = Vel + Vsc + Vam = Uel(x)ﬂll + Usc<m)6 + Uam(m) (_ZO-/ : m ) 5
for real valued v, Vs, Vam, the potentials V;, V., V. are said respectively an elec-
tric, scalar, and anomalous magnetic potential. In particular, for vy (x) := v/|z|,
the potential V. = vyl is called Coulomb potential, since it describes the Coulomb

electrostatic interaction.

The aim of this chapter is to give a simple and unified approach to the problem

of the self-adjointness of T

In order to state our results, we need to introduce some notations and well known

results. It is well-known that the free Dirac operator H is self-adjoint on D(H) :=
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H'(R3)?, see 1.1.1. We define the mazimal operator Ty,q, as follows:

D(Tnae) = {¢ € L(R*)* : Ty € LR}, Thpauth := T for ¢ € D(Tnas),
(4.1.2)
where T € L*(R3)* has to be read in the distributional sense: the linear form £, :
p € CX(R)* = [, ¥ Tp da admits a unique extension £, defined on L2(R?)* and by
Riesz theorem there exists a unique Thapth := 1 € L2(R?)*, such that £y(-) = (1, -) 2.
From (1.2.1) it follows that
D(H) C D(Tae)- (4.1.3)

We define the minimal operator T,,;, as follows:
D(Tpnin) = CX(R?),  Tpinth :=Tp, for 1 € D(Tinin)- (4.1.4)

It is easy to see that T,;, is symmetric and (Ty,,)* = Tnee- Finally, we define T

as follows:

o

D(Tmm) = CEO(RS \ {O}), jl‘mm'lvb = Tmm'lvD; fOl" ¢ € D(Tmm)

The operator Tmm is symmetric and, for all ¢ € D(Tmm), Tmml/) is evaluated in the

classical sense. We remark that Thm = Tin (see [4, Remark 1.1]): in particular
(Tmzn)* = (Tmm)* = Tma:c-

In this chapter we describe self-adjoint extensions T" of the minimal operator 7},,.
We remark that T is consequently a restriction of the maximal operator, i.e.

Tmin g T=T" g Tma:p-

In fact the main focus of this chapter is studying in detail the restrictions of the
maximal operator T},,,. Following this program, we understand the behaviour of T’
on the so called partial wave subspaces associated to the Dirac equation: such spaces
are left invariant by H and potentials V in the class considered in (4.1.1). We sketch
here this topic, referring to Appendix B for further details.

We know that that the operators H, T, min and T}, can be decomposed as direct

sum of the partial wave operators, that is

H= ‘ @ @ @ Femj e
fmin = @ @ @ Emj,kja
Tinaa = @ @ @ t:ljvkj’



4.2 Main results

o

tm, k; and

1722

where “=” means that the operators are unitarily equivalent and hy,; x
tr,, ; are respectively defined in (B.10), (B.8) and (B.9).
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In this framework the operator 1" can be decomposed as

T;@ ED Bt

We will characterize all the self-adjoint operators T' such that every t,, s, is sef-

adjoint: this property is linked to the quantity

6 =004, kj,mj, A\, v) == (kj + N)? + p® — 2 (4.1.5)

4.2 Main results

We can now state the main results of this chapter. We fix j € {1/2,3/2,...},m; €

Theorem 4.2.1 (Case 6 > 1/4). Let i)mykj and ty, . be defined respectively as in

(B.8) and (B.9) for v,u,A € R, and 6 € R as in (4.1.5). Assume § > 1 and set
v := /0. The following hold:

(i) If v > % then tomjvkj is essentially self-adjoint on C°(0,+00)? and
D (i’mj,kj> = D(hm, 1,)-
(it) If v = 5 then fmwkj is essentially self-adjoint on C°(0,+00)? and

D(hin; ;) C Dl i,)-

Theorem 4.2.2 (Case 0 < § < 1/4). Under the same assumptions of Theorem 4.2.1,
assume 0 < 6 < }l and set v := /6. The following hold:

(i) If 0 <~ < 1/2 theore is a one (real) parameter family {t(@)mjykj}%[o’ﬂ) of self-
adjoint extensions tm g, C U0)mn; =), 5, C bk, - Moreover(f:;j’kj, Fosny) €

D (t(8)m, k) if and only if there exists (AT, A7) € C* such that
Atsinf + A cosf =0,
T N p (AT | e (4.2.1)
oy, () Ar? ’

lim
r—0
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where D € R?**2 s invertible and

Atk — -
! <+’ oo ) if Ak =y #0,

2v(A k=) | _ N+ k. —
1 nw—v Y .
2 )\ + k - — O.
o ( 2y —(V+—uJ> Ak

Conversely, any self-adjoint extension t,,, 1, of z(f)mjﬁkj verifies tm; k; = t(0)m; k;

for some 6 € [0, 7).

(it) If v = O there is a one (real) parameter family {t(0)m, r; }ocpo.n) Of self-adjoint
) €

extensions tm, g, C t(0)m,n, = L)k, C Uy, Moreover (f;;j’kj,frgj,kj

D (t(0)m, k) if and only if there exist (AT, A~) € C? such that
At sinf + A" cos = 0,
Fonsot; () AN L (4.2.3)
(f;]k(r) — (Mlogr + 1) a- ) =0,

J

lim
r—0

with M € R?*2, M? =0 to be

L —(]{]—F)\) —I/‘|‘,U
mﬁ_( ol ) (4.2.4)

Conversely, any self-adjoint extension t,,, 1, of fmi’kj verifies ty, k; = t(0)m, k;

for some 0 € [0, 7).

Theorem 4.2.3 (Case 0 < 0). Under the same assumptions of Theorem J.2.1, as-
sume § < 0 and set~y := \/|0]. There is a one (real) parameter family {¢(6)m, 1, }06[0 ”

)€

of self-adjoint extensions fmj,k]. C t(0)m, x, ’

J

D (t(G)mj,kj) if and only if there exists A € C such that

N Aei@,rm
frﬁjvk]' (T’) - D vtp ,—i6 . —i
fmj,k]- (7“) A Ee r-v

where D € C**2 is invertible and equals

o 1 )\—i‘k—Z’y ]/—Iu
EQW@+k—M)<4V+m —M+k—m0' (4.2.5)

lim r1/2 — 0,
r—0

Conversely, any self-adjoint extension t,,, x;, of fmﬁkj verifies ty; x;, = t(0)m,x, for

some 6 € [0, ).

Remark 4.2.4. The quantity ¢ in (4.1.5) was already considered in [4]: in Theorem
2.7 Arai studies properties of self-adjointness for the restriction of T" on the partial
wave subspaces for 6 > 0, by means of the Von Neumann deficiency indexes theory.
We can treat the general case § € R, and our approach has the value of giving more

informations on the domain of self-adjointness.



4.3 Classification of the self-adjoint extensions

Remark 4.2.5. In the proof of Theorems 4.2.1, 4.2.2 and 4.2.3 we rely on the properties
of V

K, V(2)]
[0, |2V (2)]

0, (4.2.6)
0, (4.2.7)

where K is the spin-orbit operator defined in (B.4). Indeed from (4.2.6) we have that
V leaves the partial wave subspaces H,,, x; invariant and from (4.2.7) we have that
V is critical with respect to the scaling associated to the gradient. This is why we are
considering potentials as in (4.1.1) in our results. This rigidity is not essential, since
the self-adjointness is stable under L> perturbations: for potentials W (z) such that
W -V € L®(R3 C**), H+ W(x) is self-adjoint whenever H + V() is self-adjoint.
In detail, if W(z) = w(x)/|z|, this amounts to require that for almost all z € R3

‘w(:v) - (V]I4 + pp —ida - ’i—‘)‘ < Clz|,

for some A\, pu, v € R and C' > 0. More general perturbation results are possible, for
example exploting the Kato-Rellich perturbation Theory, and they will be matter of

future investigation.

Corollary 4.2.6 (Lorentz-scalar Potential). Let V, T, and T, be defined as in
(4.1.1), (4.1.2), (4.1.4) respectively, with A = v = 0. Then then for all p € R, Ty
is essentially self-adjoint on C°(R3\ {0})*, and D(Trnin) = D(Trnaz) = H (R3)?.

4.3 Classification of the self-adjoint extensions

4.3.1 Trace theorems and Hardy-type inequalities

This section is devoted to Hardy-type inequalities.
For sake of clarity we prove the following and well-known result:

Lemma 4.3.1. Let f be a distribution on (a,b) C R such that f' is an integrable
function on (a,b). Then f € AC]a,b] and

ft)—f(s)= /t f'(r)y dr  for any s,t € [a,b]. (4.3.1)

Proof. For any t € [a,b] we set

o0)= [ 10 .
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Thanks to the integrability of f’ we get that ¢ € AC[a,b] and so g is differentiable

almost everywhere on [a, b]. Then for almost every ¢ € [a, ]

() = tim SUFER =90 1 / Fr)dr = 1), (4.3.2)

h—0 h—0 h

where in the last equality we used Lebesgue differentiation Theorem. Thanks to
(4.3.2) there exists ¢ € C such that f = g+ ¢ in the sense of distributions, that gives
f € ACla,b] and (4.3.1). O

Proposition 4.3.2. Let f be a distribution on (0,400). Let us assume that there
exist a € R such that

/+OO |f'(r)|r** dr < oco. (4.3.3)
0

Then f € AC[e, M] for any 0 < e < M < +o0o and the following hold:

(i) If a < 3, then f € AC|0,1] and

lim | f(t) — f(0)[t~(z7%) = 0. (4.3.4)

t—0

(it) If a > 3, there exists f(+o0) € C such that

Jim [ £(2) = f(oo)|t 2 = 0. (4.3.5)
(iti) If a =% for any R >0
lim LW =SB (4.3.6)

t—R log (%)

Remark 4.3.3. The function r € (0, +00) — 7% is C*°(0, +00), then the distribution
f'r® is well defined. Equation (4.3.3) has to be understood in the sense of distri-
butions, i.e. we will assume that there exists C' > 0 such that for any test function
€ C2(0,400)

[(f'r, )] < CllgllLe. (4.3.7)

Thanks to (4.3.7) and the density of C°(0,+00) in L?(0,+00) we get that there
exists a unique linear and bounded functional T : L?*(0, +oc) — C that extends the
linear functional f'r®. By Riesz theorem, there exists a unique g € L?*(0, +00) such
that T = (-, g)z2. In particular, for any test function ¢ we get that (f'r* ¢) = [ ¢,
that is f'r® = g, which gives f' = gr=* € L}, .(0,00) and (4.3.3).

Proof. Let 0 < ¢ < M < +o0. From (4.3.3) we get that f’ is integrable on (e, M).
Then (4.3.1) holds and so f € AC[e, M].



4.3 Classification of the self-adjoint extensions

(i) Let us assume a < % By the Holder inequality, we get that

[swiar< ([ rma) : ([romea) e sy

that is f' € L'(0,1). Then f € AC[0,1] and (4.3.1) holds for ¢,s € [0,1]. In
particular, combining (4.3.1) and (4.3.8) we get that for t € (0, 1]:

|F(8) = (|<(Jt‘“(/ () 2r Q“dr)

Thanks to (4.3.3) and by the absolute continuity of Lebesgue integral, (4.3.4) is

proved.

/2

(i1) We assume now that a > % By the Holder inequality, we get that

1/2

/1+Oo|f'<r>|drs(fooﬂadr)m ([ironma) <o s

that is f € L1(1,4+00). We will assume that f is real-valued: for a complex-valued
f the same reasoning can be repeated for its real part and its imaginary part. Let
us fix s € [1,+00). Since a > 3, thanks to (4.3.1) and reasoning as in (4.3.9) for any
t € (1,+00) we get

sl/2—a +00 1/2
() — f(s)] < \/ﬁ (/0 |f'(r)|*r?® d?") < +o0. (4.3.10)

Thanks to the triangular inequality we can conclude that f is bounded on [1,400).
We set

f-(400) := liminf f(r) > —o0, fi+(400) := limsup f(r) < +o0.

r—-+00 r—+00

Thanks to (4.3.10) we get that
Fi(+00) = f-(+00) < [f(H00) = f(8)| + | f-(+00) = f(t)] < Cs'27

Since a > %, if s — +oo in the previous expression, we get that f(4+o00) =

f-(400) =: f(+00). Finally (4.3.10) yields (4.3.5) too.

(77i) In the last case a =

N

, equation (4.3.6) is proved with the same approach
used to prove (4.3.4). O

In the following Proposition we gather some weighted Hardy-type inequalities.
Such results are very well known, but often in the literature there are not details
on the values of the function on the boundaries of the integration domain, a crucial
information for our analysis. This is why we give the proof anyway for the sake of

clarity. We refer to [41] and [42] for details and references.
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Proposition 4.3.4. Let f be a distribution on (0, +00) as in Proposition 4.5.2. Then
the following hold:

(i) if a < %, then

1 2 +o0o j‘ _'f 0 2 +00 / .
<a N 5) /0 % dr < /0 [f/(r)r* dr (4.3.11)
(ii) if a > % then

1 2 oo gf __‘f T 2 +o0 , .
(a — 5) /0 |F(r) r22(a )l dr < /0 |f'(r)|r? dr; (4.3.12)

(iti) if a = 5 then for any R >0
}/+°° 1f(r) — fF(R)?
4 /o rlog? (%)

Remark 4.3.5. The inequalities (4.3.11), (4.3.12) and (4.3.13) are sharp (in the sense
that the constants on the left hand side cannot be improved) but they do not admit

+o0
dr < / ()2 dr- (4.3.13)
0

no-trivial extremizers. In fact, for a # 1/2 we set f,(r) := rz=*. Then

lim (|fé(7“)|r2“ — ‘{EO;)CLP) dr = 0. (4.3.14)

e—0 e<|z|<1/e

Nevertheless f, does not verify (4.3.3), because |f.(r)|?r* = 1 that is integrable nei-
ther close to 0 nor to +co. This is the reason why we used the limiting formulation in
(4.3.14). If @ = 1/2 the same argument can be repeated for fi/2(r) := (log (%))71/2.

Proof. (i) Let us assume a < % Let 0 < e < M. With an explicit computation:

OS/EM f’(r)ru(a_l)w

2 rl—a

Z/EM |f/[Pr2® dr + (a — %) /EM W%—QJZ(W@’T (4.3.15)

+ (a— %) 2Re/ﬁM f/(r)%—f(o))dr.

We integrate by parts the last term at right hand side: since a < %, we can estimate

2
dr

from above neglecting the value on the boundary M, and we get that

o Nope [MTOUC) —FO) (1 U0 = FOP)
( 2) /6 pri-2a < )/e

2 T1—2a

(4.3.16)
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Thanks to (4.3.15) and (4.3.16), we get

1\* (M 1f(r) = fO)? N\ [f(e) = fOF _ [ "
(a=3) [ s (o) VO e
Passing to the limit for M — +o0 and € — 0, thanks to (4.3.4), (4.3.11) is proved.

(i1) We assume now that a > 1. Let 0 < e < M. With an explicit computation:

o< [M[rore s (a- 1) 1S,

2
:[ ue%w+( 2)/’””ﬁ$jﬁ|w e

(o D)oo [ LT TG,

We integrate by parts the last term at right hand side: since a > 5, we can estimate

from above neglecting the value on the boundary e, and we get that

(__)N{/‘f’ [GENE »d“:@‘2>1 W) = S0Py,

SQQI2)[rﬂ>ﬂSmwd+<a2)m )= foolf
(4.3.18)

Thanks to (4.3.17) and (4.3.18), we get

(W@)['ﬂ)ﬂgm”W—G Qu«aﬂgmﬂglﬂﬂWwﬁ

Passing to the limit for ¢ — 0 and M — oo, thanks to (4.3.5) we get that (4.3.12) is

proved.

(i1i) Let us finally consider the case a = 1. Let R > 0 and take 0 < ¢ < 1 < M,
such that R € [¢, M]. With explicit computations:
2
Lf(r) - f(R

OS[M -2 /rlog (B)

_ ™ 2 fr) =R, (/) = FR)P)
_/E £l d+4/€ rlog? (7) ar 2/E log(r) dr.

We integrate by parts and notice that the boundary contributions are negative, since

dr

M > 1 and € < 1. Consequently we get

P = SRR
it s [ e

Passing to the limit for € — 0 and M — oo, (4.3.13) is proved. O
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4.3.2 Characterization of the maximal operator

We fix j € {1/2,3/2,...}, m; € {—j,...,j} and k; € {j +1/2,—j —1/2}. In this

section, we will simplify the notations and denote

— +._ T + . £t — fo_ f ko g
ki=kj, 5= . fr= fmj’kj, ho=hompy,  Ci=tmk, =1y -
(4.3.19)
We remind that ¢ is symmetric and its adjoint on L?(0,400)? is t*. In the following

Proposition we give some details on the domain D(t*).
Proposition 4.3.6. Set § := (A + k)*> + p? — v* and v := \/|d|. Then the following
hold:

(i) If 6 > %, then D(t*) = D(h).

(i) If 6 = 1, then for all (f*, f~) € D(t*) we have

lifnn_)iglf ) f-(r)=0o. (4.3.20)

(i) If 0 < § < 1, let D € R*? be the invertible matriz

Atk —r v— [ .
S — Atk — 0,
b 2vy(A+k—7) <—(V—|—,LL) —(>\+k—’}/)> Zf 77&
. 1 4 2y .
A k—~v=0.
—42 ( 2y —(l/—l—#)) if 8

Then for all (f+, f~) € D(t*) there exist (AT, A~) € C?, such that

i (7407) -2 (317 =o s
too L fH(r) At \ [P o
/0 <f (r)) D (AT’Y) dr < +o0.
Moreover, for any (f+,f~) € D(t*) we have
tim |70 L0 ey A Al (4.3.22)
=) ) AT

() If 6 =0, let M € R**% M? =0 be defined as follows:

Mo (—(k+)\) —y+u)'

v E+ A
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Then for all (fT, f~) € D(t*) there exist (AT, A™) € C?, such that

(}HE:;) ~ (Mlogr + 1) (f)
/;OO% (ﬁg:;) — (Mlogr + ) (ﬁf)

Moreover, for any (f+, ]?_) € D(t*) we have we have

2 = 0,
9 (4.3.23)
dr < +o0.

lim
r—0

+ 1 + A+
| L= AT (4.3.24)
r—0 f— f_ A= A-
(v) If § <0, let D € C**? be the invertible matriz
. 1 Ak —ay v— [
T2y +k—iy) \—(vt+p) —A+k—iv))°
Then for all (fT, f~) € D(t*) there exist (AT, A~) € C? such that
+ +oi
lim fﬁ(r) D Af 7“;* P12 — ),
r—=0|\ f(r) A r=™
o o (4.3.25)
LN Zp (AT g <
o I\ Amrh J| ST
Moreover, for any (f*,f_) € D(t*) we get
+ f+ + VA
p [0 L)L AT (- wA (4.3.26)
O () ()| 20 =) AT (vt p) AT

Proof. We start noticing that for a general (f*, f~) € D(t*), from (B.9) we deduce

kA v=p +
(a’“_JLJ P w) G_E:D € L*(0, +00)*. (4.3.27)
Set
if 6 >0
Vo = Tone="
1y if 6 < 0.

We consider the matrices

_(k—f-)\—\/g) —v+pu —v—u _(k+)\+\/g)
( v+ k+)\—\/5>’ (—(k+/\+\/5) vt ) (4.3.28)

In the case § > 0 at least one matrix in (4.3.28) is invertible: let M be the first matrix
if this is invertible and the second otherwise. In the case § = 0 we can choose M to

be the first or the second one (in fact they are unitarily equivalent): we choose the
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first one. Finally, in the case 9 < 0 we can choose M to be the first or the second one

(in fact they are both invertible and unitarily equivalent): we choose the first one.

<ng> =M (;i) , (4.3.29)

we get with an easy computation

O — Ve 0 ot 0, + kA v—p £+
< 0 ' o, + ﬁ) ’ (@— =M- _ﬂ o, _’“@ Sk (4.3.30)
Moreover it is easy to observe that, for all a € C and f regular enough, we have

a —a
(0. + ;) Fr) = (8,2 ) 7. (4.3.31)
Since M is bounded on L?(0, +00)?, combining (4.3.27), (4.3.30) and (4.3.31) we have

Setting

+00 +oo
/ P30, (r Yt (r) |2 dr + / rV0,(rVo (PP dr < 400, (4.3.32)
0 0

We assume now ¢ > 0, that is Vo = ~. In this case M is a real matrix.

From (4.3.32) we deduce that
+00 +oo
/ 2700, (r " (7’))|2 dr + / 20, (17~ (r))|2 dr < +oo. (4.3.33)
0 0

We can immediately get informations on the function ¢ . Indeed, 17~ isin L}, (0, +00)N

L(0,1): choosing a = —y < 0 in (i) of Proposition 4.3.2 we get that ¢~ € C[0, +00)
and there exists a constant A~ € C, depending on ¢, such that

. SNSRI S
ll_I)I[l)|g0 (r)—A"r7r2=0. (4.3.34)
Moreover, thanks to (4.3.11), we get

+oo‘ — A= —]|2 400
o (r)— A r7| 4 / Ly 3 9
dr < — = 18, (7 dr < +00.
/0 72 b= 2y +1)2 J, e )l dr (£3.35)

In order to get properties on the function ¢, we need to distinguish various cases,

depending on the size of 7.

Case v > 1/2

Since y > 1/2, we have that r7¢* isin L}, (0, +00) N L*(1,+00): choosing a =

loc

in (i1) of Proposition 4.3.2, we get

lim | (r)lr=2 =0,

r——+00
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observing that under our assumptions ¢*(4+00) = 0. Thanks to (4.3.12) and from
(4.3.33) we have that

oo 2 0 [.— 2
et et
0 r2 - 0 r2—2v

4 too
= m/ P10, (r et (r) [P dr < oo,
0

observing that under our assumptions ¢ (+00) = 0.

(4.3.36)

Moreover, since o~ € L*(0, +00) behaves like A~r~7 next to the origin (i.e. (4.3.35)
holds), we have that

=

dr<2/ RG]k dr+2/ o~ (r) — A~r 7 dr

400 — A~ —v|2
gz/ o ()|d+2/ o (T)T " g < oo
0 0

2

Since v > 1/2, necessarily this implies A~ = 0 in (4.3.35). Combining (4.3.33),
(4.3.35) (for A~ =0) and (4.3.36) we can conclude, thanks to the invertibility of M,

/+°o—|f+< alips +/+OO ZOF 4, < 4o (4.3.37)

72

Thanks to (4.1.3), we get D(h°) C D(h*). From (4.3.37) and the by the definition of
D(h*) (see (B.9)) we get that (9, & £) f* € L*(0,+00) and so D(h*) = D(h°).

Case 7 =1/2

Reasoning as in the previous step, we get that (4.3.35) holds for A~ = 0. Thanks
to (iii) of Proposition 4.3.2 we have that o™ € C(0,+00) and by (4.3.13)

1/2 | + 2 1/2 ),.—1/2 2 400
" (r)| / [r=1 20" (1) / ~1/2,¢
—— _dr = — " dr <4 O, dr+R < 400,
/o 2 log? (%) " 0 r210g2( ) 0 |0 (r (r )>| "

for R > 0 a finite constant, that implies that

e ()

We can conclude (4.3.20) thanks to (4.3.34) (with A~ = 0) and (4.3.38), remarking
the property of the inferior limit:

liminf(f(z)g(z)) = <hminf f(x)) (hm g(a:)) ,

Tr—T0 T—T0 Tr—xQ

when lim,_,,, g(z) exists.
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Case 0 <y <1/2

In this case 77" is in L},.(0,+00) N L'(0,1). Choosing a = v in (i) of Proposi-
tion 4.3.2 we have that o™ € C[0,+00) and there exists a constant AT € C, depending
on ™', such that
lim |¢*(r) — A*W‘r*% =0, (4.3.39)

r—0

and moreover, by (4.3.11), we get

+oo| +(r) — A+,|? +00

r(r) — At / 2 g2

< v v . (4.3.4
/0 - i< s [ IO ) dr < o (4340

We set D := M~!. Thanks to (4.3.29), (4.3.34), (4.3.39) we get the first equation
in (4.3.21). Moreover thanks to (4.3.33), (4.3.35) and (4.3.40) we get the second
equation in (4.3.21). Finally

. B O i G 2 0 R ] AR = Y=o o
det(M) ) Tl o) F0 e (r)g=(r) — ¢~ (r)gt(r)
=" (r) (@ (r) = A=) = (¢~ (r) = A )FF(r)

+ (o (r) = AN AT = ATr T (GH(r) — Atr)
+ATA- — A AT
(4.3.41)
Thanks to (4.3.29), (4.3.34), (4.3.39), observing that the first four terms at right hand

side are infinitesimal for » — 0, we can conclude (4.3.22).

Case v =0

We recall that, in this case, the two possibilities we give for the matrix M in

(4.3.28) are unitarily equivalent. For this reason we will always choose the first one,

that is (ks
(kX —vtp
M'_< v+ p /<:+A)'

We remind that (4.3.27) now reads

(?) N % (f) € L*(0,00)%, (4.3.42)

Moreover, choosing a = 0 in (i) of Proposition 4.3.2 we get from (4.3.33) that
(o, ™) € C[0,4+00)? and there exist (BT, B~) € C?, such that

() @)oo

lim
r—0
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Moreover, by (4.3.11), we get
+oo g + + +oo
[ )@
0 r ¥ (T) B 0
In particular, this shows that
1 T Bt 2 2
- ((@_) - (B_>) L2(0, +00)2. (4.3.43)
Thanks to (4.3.42) and (4.3.43) we get that

(5) - (5 ] < 2020

Applying again (i) of Proposition 4.3.2 with a = 0 we get that f* — B¥logr €
C|0, +00) and there exist constants A* € C, such that

(‘J’ZfE:D - (gt) logr — (ﬁf) ‘7’1/2 =0, (4.3.44)

moreover, by (4.3.11), we get

[ G0) - () e - ()

Since M? = 0, from (4.3.29) and (4.3.43) we get

L (?) ~u ((zf) _ (?)) 12(0, +o0)?

that implies M (B™ B~)" = 0. As a consequence, from (4.3.45) we get that

()] () ()] v

Such a condition and (4.3.43) gives that

() = ().

that lets us conclude (4.3.23) thanks to (4.3.44).

2

lim
r—0

2
dr < +o0. (4.3.45)

In order to exploit the linearity of the determinant in the columns, in the following
we commit abuse of notation, denoting

() o)l

o (4.3.47)

ab‘
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We have that

Fre) fr(r)

f=(r) ()

N 10w At 0N _ o i
—
+ |(Mlogr + 1) (ﬁt) (;E:i) — (Mlogr +15) <ﬁ~+>

fr(r) At I+
+ <f_(r)> — (M logr + 1) <A_> (Mlogr+ 1) (Z—)

+

+ |(Mlogr + 1) (j_) (Mlogr + 1) (i{:) .

Since M? = 0 we get det(Iy + M logr) = 1. Thanks to the first equation in (4.3.23),
the first three terms at right hand side tend to 0 as r — 0, and we can conclude
(4.3.24).

Case § <0

We have v/ = iy. In this case M is an invertible complex matrix with inverse
D := M~! given by (4.2.5). Denoting with D the complex conjugate matrix of D we
have

1 — 1 0 V— [
D?* = I,, DD = —"—— . 4.3.48
o A=) s e 0") 0

Since |[r*7] = 1, from (4.3.32) we deduce

+00 +o00
/ [0 (r= "™ () dr +/ 0, (r7 ™ ()P dr < +oo.
0 0

Choosing a = 0 in (i) of Proposition 4.3.2 we get that r77p* € C[0, +00) and there

exist two constants A* € C, depending on ¢*, such that
lim [*(r) — A*rE |3 = 0, (4.3.49)
r—

Moreover, by (4.3.11), we get

+00 | o (1) — AEpEir|? +oo .
[T L < [Tt )P ar <o (350)
0 0

r2

We deduce (4.3.25) from (4.3.29), (4.3.49), (4.3.50). Finally, with the abuse of
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notations in (4.3.47), from (4.3.48) we get

(4.3.51)

We prove immediately (4.3.26) from (4.3.51), reasoning as in the proof of (4.3.41). O

4.3.3 Proof of Theorem 4.2.1, Theorem 4.2.2 and Theorem 4.2.3

We can now finally prove Theorems 4.2.1, 4.2.2, 4.2.3.

Proof of Theorem 4.2.1. (i) Thanks to (i) in Proposition 4.3.6, we already know
that

D(t) = D(h).

This gives immediately that ¢* is symmetric, that is ¢ is essentially self-adjoint on

C>(0, +00)?.

(1) We show that t* is symmetric on D(t*): this implies the essential self-
adjointness of t. Indeed for all (f*, f~) € D(h*) we have

/0 e )T T dr - /0 ) FOE

+00 +oo
—hm/ ) () dT—/ (f f7) -t (fF f)dr

fH(en) fH(en)
f(en) [ (€n)

for any {e,},, €, — 0. The limit in (4.3.52) exists for every choice of the sequence
{€n},, €n — 0, since (f*, f7) € D(t*). Moreover, taking the sequence associated
to the inferior limit, it vanishes thanks to (4.3.20). Finally, it is easy to show that
D(h) C D(t*). O

= —hm
n

: (4.3.52)

For the proof of Theorem 4.2.2 we will need the following Lemma.

Lemma 4.3.7. Let V be a complex proper subspace of C*. Then the following are

equivalent:
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At AF

. o4 . . At
(i) (A, A7) € V if and only if P

=0,

(i) (A*, A7) € V if and only if ATA~ € R,

(iii) V = {(0,0)} or V.=V, := {(AT,A—) € C?: ATsinf + A~ cosf = 0}, for
6 el0,m).

Proof. 1t is easy to prove that (i) is equivalent to (i) and that (i) implies (ii). Let
us prove that (i1) implies (777). Let V be as in (i1): V can not be the whole C?, so
V is a proper subspace of C?, i.e. it has dimension zero or one. In the first case
V = {(0,0)}. Let us suppose now that V has dimension one, that is V = ((Ag, 4y ))
for some (A, A7) # (0,0) with A7 A7 € R. Using polar coordinates we get AT = ue'®
and Ay = ve', then ATA; = uve™™") which implies that s = ¢ or s = t 4 , that
is equivalent to say that there are p,q € R, (p, q) # (0,0) such that pAs + qgA; = 0.
We can always suppose that p > 0 (otherwise we replace (p,q) with (—p, —¢)) and
Ip|> + |q|> = 1 (otherwise we replace (p,q) with (p?> + ¢*)"*/(p,q)). Then p = sinf
and ¢ = cosf for 6 € [0, ). O

Proof of Theorem 4.2.2. (i)

Let t be a self-adjoint extension of ¢, that is £ C t = t* C t*. Thanks to (7ii)
in Proposition 4.3.6, we have that for all (fT, f~) € D(t) there exist constants

(A%, A7) € C? such that
fr(r) AtTrY 1
(F0) -2 (5 =o

where D is the invertible real matrix defined in (4.2.2). Moreover, the map (f*, f7) €

D(t) — (AT, A7) € C? is a homomorphism of linear spaces, thus its image is a linear

lim
r—0

subspace of C2: we will denote it V.

Since t C t* C t*, for all (fT, f7) € D(t) then necessarily, as in the proof of (ii)
of Theorem 4.2.1, o
1) T
fr) f=(r)

The equations (4.3.53) and (4.3.22) imply that

= 0. (4.3.53)

r—0

At AT

Tl (AT A — + A-
- I 2iS(ATA) =0, forall (AT, A7)eV.

Thanks to Lemma 4.3.7, V = Vp := {(AT,A7) € C*: At sinf + A~ cosf = 0} for

some 6 € [0,7) or V = {0}. This last case can not happen, since t can not have
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proper symmetric extensions, being self-adjoint. In conclusion, all the self-adjoint

extensions of ¢ are of the form t() for # € [0, 7), and (4.2.1) holds.

Conversely, we prove that for all § € [0,7) the operators ¢(f) are self-adjoint. It

is easy to check that they are symmetric and that they extend . Let (fF,f”) €
D (t(h)*): by the definition there exists (fy", fo) € L*(0,+00)? such that

(SO e = (U £), (T F ),

for all (T, f7) € D(t(0)), and (fiF, fy) =t(0)*(f, f). Since t(6) C t(8)* C ¢,

) T e = O ) P e = (U fo)s (Fr f )
= (S5 O F N2 = () F))es

and this happens if and only if

AT A e e w50
AT AT TS f)
where
im fr(r) _ Atr? _ m fj+(r) B gﬂﬂ _
() -2 () -0 m(F) -2 (£ -

_ From (4.3.54), there exists (a,b) € C?, (a,b) # (0,0) such that a(A*, A7) +
b(A+, A=) = 0. In particular, we choose (A, A=) # (0,0) in order to guarantee

a # 0: we have that
a(A*sinf + A~ cos0) + b(z sind + A= cos 6) =0

that implies (AT, A7) € Vj, that is (f*, f7) € D (¢(9)).
(77) The proof of this case is analogous to the one of (i), for this reason we
will omit some details. Let t be a self-adjoint extension of {. Then, thanks to

(iv) of Proposition 4.3.6 we have that for all (f*, f~) € D(t) there exist constants

(AT, A7) € C? such that
. f+<7°) . At -1/2 _
llir(l) (f_(r) (Mlogr + 1) a- )T =0,
where M is the real matrix defined in (4.2.4). Let V be the linear subspace of C?
defined as the image of the homomorphism (T, f~) € D(t) — (AT, A7) € C?. Since

t is symmetric, we get that for (fT, f7) € D(%):

[y S0

) oY

lim
r—0
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and, thanks to (4.3.24), this happens if and only if

=0.

AT AF
Vo

Applying Lemma 4.3.7 we deduce that V =V, = {(A*, A7) € C*: ATsinf + A~ cosf = 0}

for some 6 € [0, 7), that is t = ¢(0).

Conversely, let us prove that any () is self-adjoint. It is clearly symmetric and
it extends t. Moreover, Let (f*, f~) € D(t()*): by the definition we get that for

any (f*,f7) € D(1(6))
O F e = (5 £ O T )ee (4.3.55)

Since t(#) extends i, using the same notation of (iv) of Proposition 4.3.6, we can

affirm that (4.3.55) holds if and only if

AT A+

A= A-

=0.

From this and thanks to the fact that (AT, A=) € Vj we deduce that (AT, A™) € Vj,
that is (f*, f7) € D(t(0)). O

For the proof of Theorem 4.2.3 we need the following Lemma.

Lemma 4.3.8. Let V be a complex proper subspace of C* and 7 > 0. Then the

following are equivalent:

(i) (AT, A7) €V if and only if |A| = 7| B|;

(ii) V =1{(0,0)} or V =V, := {(1e? 7)) with 0 € [0, 7).

Proof. We prove that (i) implies (ii), since the other implication is obvious. Let V'
be as in (i): V can not be the whole C? so V is a proper subspace of C?, i.e. it
has dimension zero or one. In the first case V' = {(0,0)}. Let us suppose now
that V' has dimension one, that is V = ((Ad, Ay)) for some (A, Ay) # (0,0) with
|A$| = 7|4y |. In radial coordinates we have Af = c1e', Ay = cpe® and ¢; = ¢y # 0.
Setting (A, A7) = ¢; e (A}, Ay) = (re, =), with 6 := (a — b)/2, we have
immediately the thesis, since (AT, A7)) = (4§, 4g))- O

Proof of Theorem 4.2.3. The proof of this Theorem is analogous to the one of (i) in

Theorem 4.2.2, but we need to use Lemma 4.3.8 in place of Lemma 4.3.7. O
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4.4 Distinguished self-adjoint extension

In the case 0 < § < 1/4, the distinguished self-adjoint extension is of particular
interest among the self-adjoint extensions given in Theorem 4.2.2. We need the

following notation: for a € R
D(r—*,R?) = {¢p € L*(R?) : |z| " € L*(R?)},
D(r=*,(0,4+00)) :={f € L2(0,+oo) L f € L*(0, +00)},

and, for

@)= 3 (F s VB0 () F Fo iy ()P 4 ()
Jkgmg

it is true that ¢ € D(r~* R?) if and only if fntj,kyfn_@j,kj € D(r=*,(0,400)) for all
4,mj, k;. In the following we will simply write D(r~'/2), since it will be clear from

the context to which set we are referring.

In the literature, the distinguished self-adjoint extension is defined as the unique
one whose domain is contained in D(r~'/2) (among other definitions, see [26]), but
this definition is no longer valid in the critical case, since no extension verifies such
a property. From a more physical perspective, such extension is characterized by
the fact that a space of regular functions is dense (in some sense) in its domain. In
this context, from the proof of Theorem 4.2.2, it appears in a very natural way (see
(4.3.33)) the following: let a € R\ {—1/2}. For any ¢, x € C°(0, +00) we set

+o0

(0, x) . = i O, (rp(r)) 0y (rox (r))r =" dr.

Thanks to (4.3.11) and (4.3.12) (-, -) 7, defines a scalar product on C'2°(0, +00). There-

fore, if || - || 7, is the norm induced by (-,-) 7., we get that J, := C(0, —|—oo)|H|j“ is a

Hilbert space.
Let ¢ € C°(0,400). Integrating by parts we get:

2 e a 2 % . oo / 2 ee |90(7")|2
ll7, = |0, (r"p(r))["r~=*dr = ¢ (r)["dr + a(a + 1) 5 dr
0 0 0
(4.4.1)

From (4.4.1) and thanks to (4.3.11) and (4.3.12) we deduce that

2a+12lell%, <llellZ, < lleli%, if a(a+1) <0,
lellZ, < el < Qa+1)?ell%, if a(a+1) > 0;

that means that J, = Jy =: J.

Lemma 4.4.1. Let J be defined as above. Then

J = {u € AC[0, M] for any M > 0:u' € L*(0,+o0) and % € L2(O,—|—oo)}.
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Proof. Set J := {u e AC[0, M] for any M > 0: v € L*(0,+00) and “ € L*(0,400)}.

Let us prove that J C J: let {u,}, C C>(0,400) be a Cauchy-sequence in
| - ]|7. Thanks to (4.3.11) we get that for any n,m € N

oo 1 oo m - Un ?
i =l = [ 0) = )P > g [ Dm0l g
0 4 Jo r

that means that {%2}  C C2°(0,+00) is a Cauchy-sequence in L?. Let u and @ be

such that “» — * in L? and u, — @ in L?>. Moreover, u, — «' in the sense of

distribution. By the uniqueness of the limit we deduce that v/ = @ and so u € J.

To prove that J C J we follow the strategy of [22, Section 4]. Let u € J
and firstly assume that its support is a compact subset of (0,400). Let {¢,}, be
a sequence of mollifier functions, and set u, := ¢, * u. By construction {un}n -
C>(0,+00) and u,, — u in J that gives u € J. Let us finally assume that the

support of u is not compact. We set

0 ifo<r<1, 1 if0<r<?2,
nr):=<r—1 if1<r<2, and ((r):==<-r+3 if2<r<3,
1 if2<r 0 if 3<r.

Finally, for any n € N, we set ,(r) := n(nr), ¢,(r) := ¢ (£) and w, = (9, + ) u.
For any n € N, u,, € J because its support is compact by construction and u,, € J.
Indeed u, € AC[0, M] for any M > 0 and “» € L? because the support of u, is
compact. Moreover u/, = (0, + (,)u’ + (7, + (,)'u € L? because, on the right-hand

side, both are L? functions on compact subsets of (0, +00).

Finally

400 +o00
llun — ull7 < 2/0 | (1) + Ga(r))u' (r) — o/ (r)|* dr + 2/0 | () + Ga(r)) u(r) [ dr
=: I;(n) + I1(n).

Regarding the first term we see that

—+00

2/n
Ii(n) < 2/ |u' (7)|? dr + 2/ [u' (r)|? dr — 0,
0 2

n

if n — 400, by the dominated convergence Theorem. About the second term we

notice

3/n ) 3n
I(n) = 2n2/2 |u(7“)|2 dr + ﬁ/g |u(7“)|2 dr

n

3/n 2 +o0 2
< 8/ w4 18/ w4, 0
0 2

2 2
T ™~ T
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if n — 400, by the dominated convergence Theorem. Then u, — u in J that gives
ue J. O

This motivates the following propositions, where we collect properties of the dis-

tinguished self-adjoint extension in the case 0 < § < 1/4.

Proposition 4.4.2 (Distinguished Self-Adjoint Extension for the subcritical case).
Let 0 <~ < 3 and {t(@)mjkj}ee[()m)
extensions considered in (i) of Theorem 4.2.2.

be the one (real) parameter family of self-adjoint

Then the following are equivalent:

(i) 6 =0;
(i) D (t(0)m, ;) € D(r—1/2)2;
(iii) D (E0)m, x,) € D(r~)? with a € [3,3+7);

(iv) for any (f;gj,kj,fn;j’kj) € D (t(0)m, ;) we have P, € J = C§°(0,+oo>'j7
with

oo ::{(V+N)f+k+(k FA =N, R HA=7#0,

4.4.2
_QVf:ﬂrj»kj—'—( VA 1) fons s ifkj +X—~v=0. ( )

Proof. We use the same notation in (4.3.19). We start proving that (i)=(7ii). Let
6 = 0. Then, for any (f*, f~) € D (¢(0)) there exists AT € C such that

Ao ()
/0 72 (f (r) Do
that tells us that

+00 | £+ () — BHy|? +00 | f= () _ B—y7|2
[T B OB
0 r 0 r

2

dr.

with =D . Since 0 < 7 < 1/2 we deduce that for a € [3,1+7),

B~ 0
+oo + :I: B:I: o +o00
/ ’fr( dr <2/ F7 [ dr —|—2|Bi\/ 27— 2“dr+/ |f=(r) ) dr
0 1

< +00.

It is trivial that (u7i) implies (7).

Let us now show that (i) implies (7). Let 6 € [0,7) and (f*, f7) € D (¢(f)), such
that (4.2.1) holds for A* € C and assume that f* € D(r~1/2).
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Let ¢~ be defined as in (4.3.29). Therefore ¢~ € D(r~'/?) and (4.3.35) holds.
Then

1) g2 1) — 2 1) -2
A r7 — A r7
/ud'r§2/ e 27" |d7’—|—2/ mdr<—i—oo.
0 r 0 r 0 r

Since 0 < v < 1/2, we conclude that A~ = 0. From the arbitrariness of (f*, f7) €
D (t(0)), we have 6 = 0.

To conclude the proof it remains to show that (iv) and (i) are equivalent. Let
(f*,f7) €D(t(h)) and (AT, A~) € C? such that (4.2.1) holds.

We notice that ¢, defined in (4.4.2) and ¢~ defined in (4.3.29) coincide. Then,
from (4.3.35), we deduce that ¢~ € J if and only if A~ = 0 that is equivalent to say
that 6 = 0 due to the arbitrariness of (f*, f~) € D(¢()). O

Following the strategy of 4.4.2 for the sub-critical case, we can give now the

following;:

Proposition 4.4.3 (Distinguished self-adjoint extension for the critical case). Let
v =0 and and assume that in (4.1.1) (v, ) # (0,0). Let {t(0)m, k; toepo.n) e the one

(real) parameter family of self-adjoint extensions considered in (ii) of Theorem j.2.2.

Then the following are equivalent:
(Z) fOT any (fr:j,k]w fT;j,kj) € D (t(e)mj,kj); Sett?’ng

. () f g+ (kg + N o if v+ #0,
mej,kj o { ot ’ 7 (4-4-3)

_Qan_zj,k]- ifv+p=0.

we have ¢, € J = C(0, +OO)J;

(ii) 0 = arccot(%j/j) if v+ p #0,
0 ifv+upu=0.

Proof. We use the same notation in (4.3.19). Let (f*, f7) € D(t(d)) and (AT, A7) €
C? such that (4.2.3) holds. In the case that v + p # 0 we notice that o defined
in (4.4.3) and ¢~ defined in (4.3.29) coincide. From (4.3.46), we deduce that ¢~ € J
if and only if (v + u)A" + (kK + X\)A~ = 0. Due to the arbitrariness of (fT, f7) it is

equivalent to say that 0 is as in (7i).

Let us assume v + 4 = 0. Then oy = —2vf~ € J if and only if A~ = 0 that
is equivalent to say 6 = 0 due to the arbitrariness of (fT, f7) € D(t(0)). O
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Remark 4.4.4. Under the assumptions of Proposition 4.4.3, from (4.2.3) we get that,
among all the self-adjoint extensions in the family {t(e)mjvkj}ﬁe[(),w) described by
Proposition 4.4.3, there is a unique one that has no logarithmic decay at the ori-
gin. Indeed, this is a consequence of the fact that the kernel of the matrix M defined
in (4.2.4) has complex dimension one. Thanks to (4.2.3) we deduce that the unique
self-adjoint extension that has no logarithmic decay at the origin is the distinguished

one described in Proposition 4.4.3.

Remark 4.4.5. For v € (0,1] and a := mv1 — 12 € [0,m), the function

e . (1
Ya(T) = W 1
1
is solution to the equation
. v
(—za-v+m5+ﬂ>¢:a¢,
x

i.e. ¢, is an eigenfunction for the Dirac-Coulomb operator of eigenvalue a. Remem-

bering that

@'0-:%-(1) i0~£-<0>
@ = ’ = :
351 41 0 ’ =5l 47 0
0 0
0 0
1 0 1 0
b, = — -, = —
o Var | 1| -3l ar | 0|’
0 1

it is easy to show that, for v € (v/3/2,1), v, € D(T(0,0,0,0)) where

7(0,0,0,0) = (t(o)%,l D t(o)—%,l D t(())%,—l N2 t(())—%,—l) © @ t;j,kj )
Jikjm;
|kj|>1

T

NE
N

) (1(3) a@t et )8 | D |-
e

Y

thanks to the explicit characterization of these domains given by Theorem 4.2.2.
Finally, this implies that these extensions are the ones considered in [22, Section 1.5]
in the case V(z) = v/|z|, for v € (0,1].
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Remark 4.4.6 (Distinguished self-adjoint extension for the critical anomalous mag-
netic potential). Assuming that (v,p) = (0,0) in (4.1.1) it is not possible to give
a coherent definition of distinguished self-adjoint extension in the critical case. In-
deed, under this hypothesis, v = |k; + A[; let v = 0 and let {¢(6)m, k; }ocor) De the
one-parameter family of self-adjoint extension described in (iv) in Theorem 4.2.2.
Then for any 6 € [0,7) and for any (f*, f7) € D (t(8)m,x,), defining Prn; 1y S D
(4.4.3), we get that ¢, = 0. In other words (i) of Proposition 4.4.3 is verified
for any 6 € [0,7). This is a consequence of the fact that the matrix M defined in
(4.2.4) vanishes. Thus, from (4.2.3) we deduce that for any 6 € [0, 7) all functions in
D (t(6)m, x;) do not admit logarithmic decay at zero differently from what happens
in the case (v, ) # (0,0), see also Remark 4.4.4.

This incongruence can be observed using a different approach: in the sub-critical
case, we find a spectral condition that characterizes the distinguished self-adjoint
extension and we realize that it is not possible to extend continuously this condition
to the critical case. Indeed, let 0 <y < 1/2 and assume that {£(0)m, x, tgcpo ) 15 the
one-parameter family of self-adjoint extension defined in Theorem 4.2.2. Let us find
eigenvalues for ¢(6),,, ,- The L?-solutions of the following equation for a € (—m,m):

m+a 0, +82 (f+>_0
o, + it —(m —a) =)

T

are

AVm —aTK, 1 (\/m2 —a? r) if k; + X <0,

) —AvVm+a\rK,_ i (\/m2 —a? r) if k; + X >0,
r) =
—AVmF arK i1 (Vm?—a?r) if kj+ X <0,

where K is the second-order modified Bessel function and A # 0. By [48, Equation
10.30.2], we get that as r — 0

() {fh/m—ar‘7 if kj + X >0,
Avm —ar?  if kj 4+ A <0,
() {—fl\/m +ar? itk +A>0,

) = {A = AP (Vi = @) ik A >0,

(4.4.4)

—fl\/m+ar_7 if k; + X <0.

We realize that for any a € (—m,m) there exists only one 6 € [0,7) such that
(f,f7) defined in (4.4.4) belongs to D (t(6)m,x,)- Such 6 is uniquely determined
by the condition

sinfy/m +a+costy/m—a=0 if k; + X >0,
sinfy/m —a+cosfym+a=0 if k; + X <0.
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Thus, the distinguished self-adjoint extension #(0),,, »; does not have any eigenvalue
a € (—m,m), but it is characterized by the fact that if k; + A > 0, it has m as a
resonance and if k£; +\ < 0, it has —m as a resonance. This spectral relation depends
on the sign of k; + A and so it does not have any continuous prolongation to the

critical case where k; + A = 0.
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(GGeometric and measure theoretic
considerations

In this appendix we recall some geometric and measure theoretic properties of X
and the domains presented in (2.1.1). At the end, we provide some growth estimates

of the measures associated to the layers.

The following definition and propositions correspond to Definition 2.2 and Propo-
sitions 2.4 and 2.6 in [12], respectively. The reader should look that paper for the
details.

Definition A.1 (Weingarten map). Let X be parametrized by the family {y;, U;, Vi }ier,

that is, I is a finite set, U; C R?, V; C R3, ¥ C Ui/ V; and ¢;(U;) = V; N'Y for all
1€ 1. For
r=p;(u)exny;

with w € U;, i € I, one defines the Weingarten map W (z) : T, — T, where T,
denotes the tangent space of 3 on z, as the linear operator acting on the basis vector
{0jpi(u)}j=12 of T, as

W(2)0;pi(u) := —=0;v(pi(u)).

Proposition A.2. The Weingarten map W (x) is symmetric with respect to the in-
ner product induced by the first fundamental form and its eigenvalues are uniformly
bounded for all x € 3.

Given 0 < ¢ < n and Q as in (2.1.1), let ic : ¥ X (—€,€) — Q. be the bijection
defined by

ie(ry,t) == oy + tv(zy).
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For future purposes, we also introduce the projection Py : (2. — X given by

Ps(zs + tv(zy)) == xs. (A.1)

For 1 < p < +o0, let LP(Q) and LP(X x (—1,1)) be the Banach spaces endowed

with the norms

1
sy o= [ APAE Wy = [ [ fPdode. (a2)

respectively, where £ denotes the Lebesgue measure in R3. The Banach spaces cor-
responding to the endpoint case p = +oco are defined, as usual, in terms of essential
suprema with respect to the measures associated to Q. and ¥ x (—1,1) in (A.2),

respectively.

Proposition A.3. Ifn > 0 s small enough, there exist 0 < c1,co < +00 such that

allfllerey S Nf oiclniex—an) < callfllzqy  for all f € LY (Q), 0 < e <.

Moreover, if W denotes the Weingarten map associated to ¥ from Definition A.1,

/Qf(x)dxz/e/Ef(xg—l—ty(xg))det(l—tW(xg))dG(xg)dt Jor all f € L(9.).
6 E (A.3)

The eigenvalues of the Weingarten map W (x) are the principal curvatures of ¥
on x € ¥, and they are independent of the parametrization of . Therefore, the term
det(1 —tW(xyx)) in (A.3) is also independent of the parametrization of .

Remark A.4. Let h: Q. — (—¢,€) be defined by h(xy + tv(zy)) :=t. Then |Vh| =1

in €, so the coarea formula, see for example [3, Remark 2.94], gives

/ (@) da = / f@)doy(z) dt for all f € L}(9,).
Qe —eJ ¢
In view of (A.3), one deduces that

fdoy = /Ef(l'g + tv(zy)) det(1 — tW(xyx)) do(zys) (A.4)

P

for all t € (—¢,¢€) and all f € L'(%,).

In the following lemma we give uniform growth estimates on the measures oy, for
t € [—n,n], that exhibit their 2-dimensional nature. These estimates will be used

many times in the sequel, mostly for the case of o.



Lemma A.5. If n > 0 is small enough, there exist cy,co > 0 such that

0y(B,(2)) < cir? forallx € R3 r >0, t € [—n,1, (A.5)
01(B. (7)) > cor*  for allx € ¥4, 0 < r < 2diam(Q,), t € [-n,n], (A.6)

where B,.(x) is the ball of radius r centred at x.

Proof. We first prove (A.5). Let ro > 0 be a constant small enough to be fixed later

on. If r > rg, then

0:(B,(z)) < max 0,(R*) < C = 51§ < Cor?,
te[—n,n] o
where Cy := C'/r > 0 only depends on 7 and 7. Therefore, we can assume that

r < ro. Let us see that we can also suppose that x € ;. In fact, if n and ry are
small enough and 0 < r < 7y, given x € R? one can always find Z € ¥, such that
0(B,(x)) < 204(B, (7)) (if x € Q, just take T = Pyx +tv(Psz)). Then if (A.5) holds
for , one gets oy(B,()) < 204(B,(%)) < Cr?, as desired.

Thus, it is enough to prove (A.5) for z € ¥; and r < ro. If rg and n are small
enough, covering 3; by local chards we can find an open and bounded set V;, C R?
and a C' diffeomorphism ¢; : R? — ¢;(R?) C R? such that (V) = ¥; N B,.(z).
By means of a rotation if necessary, we can further assume that ¢, is of the form
oi(y) = (v, Ti(y)), i.e. ¢ is the graph of a C' function T; : R?* — R, and that
maxse(—nq || V1|l < C (this follows from the regularuty of ¥). Then, if 2’ € V}, is
such that ¢;(2') = z, for any v’ € V;, we get

2 > pu(y') — (@) > |y — ',
which means that V;,, C {y/ € R? : |2/ —¢/| < r} = B’ C R% Denoting by H? the
2-dimensional Hausdorff measure, from [46, Theorem 7.5| we get
01(B:(2)) = H*(2u(Vi)) < H(2u(B)) < | V|3 HA(B') < Cr
for all t € [—n,n], so (A.5) is finally proved.

Let us now deal with (A.6). Given ry > 0, by the regularity and boundedness of
¥ it is clear that infyc_y ) zex, 0:(By(x)) > C > 0. As before, for any ro < r <
2diam(€2,,) we easily see that

¢ 5 4diam(Q,))* > Cr?,

O Br(2)) 2 01 Bry(2)) 2 €' = g3 s

where C; := C/4diam(,))* > 0 only depends on ry and 7. Hence (A.6) is proved for
all ro <r < 2diam(€2,)).
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The case 0 < r < rg is treated, as before, using the local parametrization of
around z by the graph of a function. Taking 1 and ry small enough, we may assume
the existence of V;, and ¢; as above, so let us set ¢.(z') = = for some 2’ € V;,. The
fact that ¢; is of the form ¢,(y') = (v, T:(y')) and that ¢;(V;,) = X, N B,(z) implies
B":={y € R?: |2/ —y/| < Cor} C V;, for some Cy > 0 small enough only depending
on maxye(—yy || V1| s, which is finite by assumption. Then, we easily see that

01(B,(x)) = 0u(pt (Vi) = 0u(e(B")) = /N V1+|VT(y) |2 dy > / dy = Cr?,

"

where C' > 0 only depends on Cj. [

Lemma A.6. Let f € HY(R?), Q C R? be an open bounded and C?-regular domain
and Xy be defined as in (2.1.2). Then there exist n > 0 small enough and Cs(n) > 0
such that for any |t| <n, f has a boundary trace on ¥, and

A2 < CoIf 1l @) (A7)

Proof. Let us firstly assume f € C°(R?). For any € > 0set . := {z € R : d(z,32) < €}.
Due to the regularity of €2, there exists n > 0 such that, for any 0 < € < 7, {2 can be
written as in (2.1.1). For t € [—ng, no] set

~  [ouq, ift>o,
le\Qy ift<o.

By construction Q, is an open set and 9, = ;. Moreover, let © € C*(R?) such
that Xy < © < X[-2n,279 and set

Fz) = v(zs)p(t) ifz = e +tv(rs) € Qy,
0 otherwise.

Since ¥ is bounded and regular, we have that F' € C*(R?) and || F'|| oo (r3)+|| VF|| oo (r3) <
Cs(n), for some Cx(n) > 0. Recalling the fact that for any (zx,t) € X X (—n,n):
v (xy + tr(zs)) = v(zs) and (t) = 1, by the Divergence Theorem we get

/\f\?dot: yfy2F.ytdot:/~ div(|f|*F) do
P 3t

Q¢

< Cs(n)’ ( [ pars [ |Vf12d:c) < ColnIIf 1B

of Q

By a density argument, (A.7) is finally proved. O
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Spherical Symmetry

For sake of completeness and following [61, Section 4.6], in this appendix we are
going to construct invariant subspaces for the Dirac operator with a potential having
a special symmetry. To this end we use the classical decomposition of the space
L*(R?)* in the direct sum of the partial wave subspaces, which are invariant for the

Dirac operator.
We will use the standard notation for polar coordinates for x = (1, 79, z3) € R3
r1 =rsinfcos¢; xo=rsinfsing; x3=rcosh.
with the unit vectors in the directions of the polar coordinate lines given by

e, := (sinf cos ¢, sinf sin ¢, cos 0) = ;
e := (cos b cos ¢, cos f sin ¢; — sin ) = Ope,;
ey = (—sin¢;cos ¢;0) = =2-04e,..

sin 6

Then we write for a function ¥ € L?(R3)%, we set

w(r7 07 gb) - T‘Ij (x(r7 07 ¢)7 y(r7 07 ¢)7 Z(T7 97 ¢)) :

Since the function ¢(r,-,-) of the angular variables is square integrable on the unit

sphere L*(S?), the mapping ¥ ~— v denotes a unitary isomorphism:

L*(R*)* ~ L ((0;1);dr) ® L*(S*)*.
The decomposition of the Hilbert space into radial and an angular part is useful
because the angular momentum operator L := z A (—iV) and the total angular
momentum operator J := L + S, where S := —1/4(a A «), act only on the angular
part L*(R3)* in a non-trivial way. Using the expression for V in polar coordinates

1 1
V:erﬁr—l—;(eg@9+e¢—0¢), (B.1)

sin @
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we obtain that .

L= ieg 9 8¢ - i€¢ 89, (BZ)

where the differentiation applies to each component of the wavefunction. The Dirac
operator can be written in polar coordinates as follows. Combining (B.1) and (B.2)
yelds

—ia-V=—i(a-e.)0 — %a (e, ANL). (B.3)

By using the basic properties of Dirac matrices:
(- A)(a-B)=A-B+2iS(ANB),
from (B.3) we can deduce that
—ia -V = —ia - e, (8T—%QS-L).
Finally, introducing the spin orbit operator
K=p5(1+2S L), (B.4)

we can say that the free Dirac operator H defined in (1.1.7) can be written as

1 1
H=—ia-e, (& + = — —BK) +mp. (B.5)
ror
The key step to construct the invariant spaces is the following:

Proposition B.1. For each choice of (j,m;, k;) with j = 1/2,3/2,5/2,..., m; =
—J,—j+1,...,7— 1,7 and k; = £(j + 1/2), there exist precisely two orthonormal
functions @ijvkj € C=(S*)* satisfying the following relations

JZ(I)mj,kj = j(] + 1>(I)mj,kj7

J3(I)m]-,k- = qu)mj k

J g

KO, ;= —Fj®m ;-

Moreover the family {@fnj’kj} forms a basis of L*(S*)*.

]7mj7kj

The functions q)ij K, Can be written explicitly using spherical harmonics

20+1 (1 —n)! .
Yﬁw,@z\/ N EH—Z;ema"(eose),

where [ =0,1,2,... and n = —[,—=l+1,...,l, and P are the Legendre polynomial

defined as 1) e
P'(z) = (1- 552)”/2W

i) (% — 1)L




It is well known that the the spherical harmonics form a complete orthonormal set
of L?(S?) and that they verifies the following

LY =11+ 1)y,
LsY" = mY;".

Now set

- mj—1/2
g 1 J+my Yj_iﬁ/?
Jj—1/ \/Z ] —m; Yy

j—1/2
- m;—1/2
wmj1/2 - x < srlom Y;+J1/<2kl/2 )
) VT2 T m Y,

Then {@b;”ﬁl /2} is a complete orthonormal set in L?(S?)? and

j7mj
(U ’ f)lﬂ;njm = w;njl/gv and (1 to- L)wz:jl/Q = i(.] + 1/2)1#;?1/2-

For k; = +(j + 1/2) we define

ixe _:(Z j:tl/Q) and @ }:( m; )
5ok 0 j+kj 77/}].:':1/2

Thus the set B = {(ID;Q e P } is a complete orthonormal base of L?(S?)* that
7] j,kj,mj

mg,k;
is: setting
O, by = {€* @ 1, (8) + €@y 4 (3): ¢ €T, (B.6)

then ‘

00 j

e D D B
j=%.3,... mi==7 k;=%(j+1/2)

where “>” means that the operators are unitarily equivalent.

Moreover the following holds:

ia- f)(bnizj,kj = TP5,

from which we deduce the following

Lemma B.2. The subspaces by, 1, are left-invariant by the operators B and —ic - T
With respect to the basis {(I)+

i (IJ;Lj’kj} the action of these operators is represented

by the 2 X 2 matrices:

g = ((1) _01> , i@ = ((1] _01) : (B.7)
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We now set
oty = 5 (P00, (0) + 17000, (@) € LR s £ € 120, 400) |

The decomposition shown in (B.6) implies that

= @ @ @ Hmwﬂ’

j=1,3, my=—i kj=(+1/2)

that is, for any ¢ € L*(R®)* for any (j,m;, k;) there exist ff;j’kj € L*(0,+o00) such
that

=) f%w )Py () + Lo g (1) (2)-

Jmg,k;
This decomposition and (B.5) allow us to easily calculate the action of the Dirac

operator (at least on differentiable states) even in the presence of a suitable potential

Theorem B.3. Let
V(@) := e (r)ls + ¢se(r)B + Gam(—ic - 25).
and assume that the operator
D(Tin) = CZ (R, Tin == H +V,

is well-defined. Then the operator Ty, leaves the partial wave subspace C2°(0, +00)®
Om, k; invariant. With respect to the basis {CID:;J_JC]_, q);zj,k]} its action of each subspace

1s represented by the operator

o . o _ + ¢el+¢sc 8 + J+¢am +
D(tmj ) C ( +OO)27 tm]-,kj (f+7 f ) = (a + kj +T¢am —m+ el —Psc ¢>sc ;_ .
(B.8)

The operator T, is unitarily equivalent to the direct sum of the “partial wave” Dirac

operators tmj7kj :

DD D e

J=%.3,.. Mi="J k;j=%(j+1/2)
Moreover, set Thaw = (Trmin)* and t,’;wj = (fmj,kj)*. Then the the operators Ta.
leaves the partial wave subspace D(Tpaz) NHon, k,; nvariant and its action with respect

to the basis {(I);: B

o 18 represented by t* and
goks? = mgk; P Y Y k;

Dty ) ={(f*, f7) € L2(0,+00)* 1 15, 4 (f*, f7) € L*(0,+00)},

o mee g, M £ (B.9)
mJ, (f+f) <8+k+)\ _m+y;p><f>7




where ty, (fT,f7) has to be read in the distributional sense. The operator Ty, is

unitarily equivalent to the direct sum of the “partial wave” Dirac operators ty,, i, :

J=4 G = k= (4L/2)

In particular, if V = 0, the following holds

Corollary B.4. The action of the free Dirac operator H defined in (1.1.7) on the

partial wave subspace C°(0,+00) ® by, 1, is represented by the operator

8T+% —m

k;
D(ilmj,kj) = C°(0, +OO)27 ;ij:kj <f+’f_) - ( " o T) - (;i_> ‘

Finally, setting Ny, x;, = lozmﬁkj, due to the essentially self-adjointness of H on
C>(R*)*, we get that the action of H on the partial wave subspace H'(R*)* N\ Hyp, 1,

is represented by N, . and

Dl i) ={ (7.7 € L2040 (02 2) 1= € 120.400)

o m o
g by (55 F7) = <8T+% —m )(f_)7

where ho, g, (f*, f7) has to be read in the distributional sense. The operator H is

(B.10)

unitarily equivalent to the direct sum of the “partial wave” Dirac operators Iy i,

H= @ @ @ P k-

j=1,8, my==j k=£(j+1/2)
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