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Since the pioneering work by Julius Adler in the 1960’s, bacterial chemotaxis has been predominantly studied as
metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies
have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the
simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of
concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also
reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about
alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption
provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better
understand unexplored and poorly understood aspects of bacterial chemotaxis.
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Introduction

Bacterial chemotaxis is one of the best known examples of
adaptive unicellular motility. In particular, the mechanisms
underlying chemotaxis in Escherichia coli have been studied in
detail for the last 40 years (for recent, comprehensive reviews see
e.g., [1-3]). Since the work of pioneers such as Adler [4,5], Berg
[6], Macnab [7], and Spudich [8], considerable advances continue
to be made concerning the molecular structure of motors [9,10],
the structure of transmembrane receptors and their collective
dynamics [11,12] and the details of a two component signal
transduction system [13] that mediates between sensors and
motors [14]. Computer simulations of the underlying biochemical
processes have helped to support and clarify the current model of
chemotaxis mechanisms [15,16].

In this paper we explore, by means of minimal simulation
models, the widespread assumption that the mechanisms of
bacterial chemotaxis operate independently of metabolism [4].
In this prevailing ‘metabolism-independent’ view, the behavior
generating mechanisms such as sensors, transduction pathways,
flagella, etc., are the product of metabolism, but their ongoing,
short-term activity is not subsequently influenced by metabolism.
In other words, in the short term, behavior is not sensitive to
changes in the metabolism.

In contrast to this view is metabolism-dependent chemotaxis,
where the metabolism has an ongoing influence upon behavior.
The concept dates back at least as far as 1953 [17], but fell out of
favour when Adler demonstrated that in E. colz, metabolism of a
reactant is neither necessary nor sufficient for taxis [4]. Interest
was rekindled in a 1983 review of the role of the proton motive
force in taxis mechanisms [18] and there is growing evidence for
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metabolism-sensitive chemotaxis in Azospirillum brasilense [19], E.
coli [20], and other bacteria [21], suggesting that metabolism-
dependent chemotaxis might be more prevalent that previously
assumed (see [22] for a recent review of metabolism-dependent
‘energy taxis’).

In this paper, we clarify the distinction between the different
relationships between metabolism, chemotaxis and its generative
mechanisms and we demonstrate how a metabolism-based
chemotaxis mechanism is capable of generating several phenom-
ena observed in bacteria. Our model demonstrates the substantial
adaptability provided by the simple metabolism-based mechanism
in the form of an ongoing, contextualized and integrative
evaluation of the environment. We conclude by discussing this
adaptability, the possibility of fumarate playing a role in
metabolism-based chemotaxis in bacteria, and some consequences
of relaxing the metabolism-independent assumption.

To avoid misunderstanding, we shall clarify two different usages
of the term “adaptive” or “adaptation” in this paper. The first
usage is that of “organismic or physiological adaptation”, meaning
the capacity of an organism to homeostatically maintain essential
variables (e.g., temperature, pH level, etc.) within viability
boundaries, or to maximize or minimize their value (e.g.,
maximize the amount of available food or minimize exposure to
a toxin). Regulated motility is a widespread means for achieving
this type of adaptation. For instance, an organism can maintain a
stable level of sucrose by moving to sucrose rich environments or
moving away from them, or maximize the amount of light by
moving to brighter areas, etc. This meaning of adaptivity is well
established in biology and complex systems, (see e.g., [23]). The
second sense of adaptation is that of “sensory adaptation”, used
specifically by the bacterial chemotaxis research community to
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Author Summary

Traditionally, bacterial chemotaxis has been treated as
metabolism-independent. Under this assumption, dedicat-
ed chemotaxis signalling pathways operate independently
of metabolic processes. There is however, in various strains
of bacteria, growing evidence of metabolism-dependent
chemotaxis where metabolism modulates behavior. In this
vein, we present the first model of metabolism-based
chemotaxis that accomplishes chemotaxis without trans-
membrane receptors or signal transduction proteins,
through the direct modulation of flagellar rotation by
metabolite concentrations. The minimal model recreates
chemotactic patterns found in bacteria, including: 1)
chemotaxis towards metabolic resources and 2) away
from metabolic inhibitors, 3) inhibition of chemotaxis in
the presence of abundant resources, 4) cessation of
chemotaxis to a resource due to inhibition of the
metabolism of that resource, 5) sensitivity to metabolic
and behavioral history and 6) integration of simultaneous
complex environmental “stimuli”. The model demon-
strates the substantial adaptability provided by the simple
metabolism-based mechanism in the form of an ongoing,
contextualized and integrative evaluation of the environ-
ment. Fumarate is identified as possibly playing a role in
metabolism-based chemotaxis in bacteria, and some
consequences of relaxing the metabolism-independent
assumption are considered, causing us to reconsider the
categorization of environmental compounds into “attrac-
tants” or “repellents” based solely on their binding
properties.

mean the capacity of transmembrane receptors to maintain the
same degree of sensory sensitivity in an extremely wide range of
base-stimulus levels [24]. Bacterial chemotaxis can be adaptive (in
the first, physiological / organismic meaning of adaptation)
without any sensory adaptation (second meaning) taking place,
provided that mechanisms other than sensory adaptation are
capable of guiding behavior efficiently. So, what matters for a
behavior to be adaptive or conducive to the stability (or
maximization of a given variable) is not the type of behavior
generating mechanisms (e.g., transmembrane signal transduction
proteins), nor the dynamics of subcomponents of such mecha-
nisms, but just the global resulting pattern of behavior. Unless
stated otherwise, in this paper the word adaptation is used in the
first, organismic sense.

We wish to include one additional terminological clarification:
we consider a behavior to be chemotactic if there is, in general, an
effective overall behavior that results in approach towards specific
chemical environments, irrespective of the mechanism that
generates the behavior.

Chemotaxis through running and tumbling

Behavioral analysis of chemotaxis in E. coli has shown that up-
gradient or down-gradient directional movement is achieved
through the combination of two basic types of movements,
tumbling and running (see Figure 1). These two behaviors are both
achieved through the rotation of flagella. Rotating the flagella in
one direction (counter-clockwise) results in a directed motion of
the bacterium called ‘running’ while brief periods of rotation in the
other direction cause ‘tumbling’, the production of a more-or-less
random new orientation. Many swimming bacteria make use of
similar patterns, alternating between a straight motion mode and a
random change of direction [25]. Bacteria combine these
movements in such a way as to produce a stochastic chemotactic
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behavior. How do they accomplish this? In some species this is
relatively well understood. For instance, in E. col, a two
component signal transduction system [13] compares current
and past concentrations of attractants and causes the bacterium to
run if the concentration of an attractant is increasing and tumble
otherwise (see e.g. [14]). This general strategy is sometimes known
as ‘adaptive gradient climbing’ because it is capable of adapting to
a wide range of concentrations, climbing gradients whether the
local concentration is very low or very high.

This is not the only way that these basic-movements can be
modulated to produce chemotaxis. What we have called the
selective-stopping strategy (also called ‘inverted response’ elsewhere
[26]) consists of a combination of running and tumbling to
perform a random walk until the relevant concentrations are high
at which point the tumbling motion dominates and the bacterium
more or less tumbles in-place.

Metabolism-independent chemotaxis

Regardless of which chemotactic strategy is employed, it is
important to identify its sensitivity—what is it responding f? The
commonly accepted view is that chemotaxis mechanisms are only
responsive to the concentration of attractant chemicals in the local
environment of the bacterium and are not influenced by the
current state of the bacterium’s metabolism. This view is known as
metabolism-independent chemotaxis, for while the metabolism
produces the mechanisms of sensitivity, transduction and response,
the behavior of the bacterium is not influenced by the ongoing
dynamics of the metabolism (see Figure 2 top). In metabolism-
independent chemotaxis, it is not the effect of the attractant upon
the metabolism that causes it to move towards it, it is simply the
way the attractant excites the sensors. Adler, in his seminal 1969
paper, showed seemingly compelling evidence for this view of
bacterial chemotaxis, providing evidence in support of the
following (taken from [4]).

1. Some chemicals that are extensively metabolized fail to attract
bacteria.

2. Non-metabolizable chemicals act as attractants.

3. Chemicals attract bacteria even in the presence of a
metabolizable chemical.

4. Compounds that are closely related in structure compete with
each other as attractants but not with structurally unrelated
compounds.

5. There are mutants which fail to carry out chemotaxis to certain
attractants but are still able to metabolize them.

“[R]esults show” Adler concluded “that extensive metabolism
of the attractants is not required, or sufficient, for chemotaxis” [4,
p-1596]. After this evidence was presented the metabolism-
independent nature of FE. coli chemotaxis became a generally
accepted fact. As Alexandre and Zhulin note: “From that time on,
research focused on the metabolism-independent information flow
from membrane receptors to flagellar motors.” [21, p.4681]. But
this assumption has recently been challenged and the consequenc-
es for the study of chemotaxis are yet to be fully disclosed.

Evidence for metabolism-dependent chemotaxis

Despite the predominance of metabolism-independent re-
search on bacterial chemotaxis, there is evidence of different
types of metabolism mediated chemotaxis. Metabolism-dependent
chemotaxis involves an ongoing influence of the metabolism
upon the chemotaxis mechanism (see Figure 2 middle). This
introduces the potential for a sensitivity to the effects of
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Figure 1. Tumbling and running modes associated with Escherichia coliand Salmonella typhimurium. CW rotation results in a random re-
orientation for the bacterium, but CCW rotation of flagellar motors produces an approximately straight-line motion.

doi:10.1371/journal.pcbi.1001004.g001

environmental phenomena upon the metabolism. In 4. brasilense,
metabolism-dependent chemotaxis has been systematically stud-
ied and is considered as the dominant behavioral strategy
[19,21]. The following behavioral phenomena have been well-

established [21]:

1. nonmetabolizable analogues of metabolizable attractants are
not attractants,

2. inhibition of the metabolism of a chemical attractant
completely abolishes chemotaxis to and only to this attractant,
and

3. the presence of another metabolizable chemical (exogenous or
endogenous) prevents chemotaxis to all attractants studied (in
A. brasilense, there is a direct correlation between the efficiency
of a chemical as a growth substrate and as a chemoeffector).

Similar metabolism-dependent chemotactic phenomena have
also been found in other bacteria species like Pseudomonas putida
[27] and Rhodobacter sphaeroides [28,29].

Evidence of metabolism-dependent chemotaxis has also been
found in the same species that was studied by Adler, E. colz [20].
Adler found that although glycerol is extensively metabolized by E.
coli, 1t 1s not found to act as an attractant. As such, the case of
glycerol seemed to provide supporting evidence in favor of
metabolism-independent chemotaxis, and so argued Adler.
Interestingly, in apparent contradiction to Adler’s findings, Zhulin
and collaborators observed chemotaxis towards similar levels of
glycerol as studied by Adler [30, p.3199].

Evidence of metabolism-dependent chemotaxis in E. coli has
also been found for proline and succinate metabolic substrates
[21]. In addition, chemotaxis to oxygen (aerotaxis) in E. coli [20]
has been shown to depend on metabolism (i.e., reduction of
oxygen is required for aerotaxis) together with redox gradient
climbing [31]. These type of taxis has been termed “energy taxis”
meaning that bacterial movement is sensitive to the energy
production (generally by the electron transport system having
modulatory effects over CheA phosphorilation, but other mech-
anisms have also been proposed) (for recent reviews of energy
taxis, see e.g., [22,32]).
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The results described in this section all suggest that metabolism-
dependent chemotaxis might be more widespread than previously
thought.

Simulation models of bacterial chemotaxis

The biochemical organization of bacteria is astonishingly
complex and difficult to model. One approach is to assume some
sort of functional decomposition and to study sub-systems
separately. Dennis Bray and his group have achieved some
mmpressive results along these lines [15,16,33]. Their model of E.
col’s chemotactic behavior includes molecular level details of the
membranes, signal transducers, Brownian motion of molecules
within the cytoplasm and a number of genetic details. Their
approach has achieved unprecedented levels of predictability and
empirical accuracy. However, despite the promising results, some
aspects of £. coli chemotaxis remain elusive. For instance, how is it
possible for a small number of types of sensor (5) to cause an
appropriate response to a large number of attractants and
repellents (~50)? It is possible that the elusiveness of these and
other aspects of bacterial chemotaxis may not be a question of lack
of mechanistic detail in the simulations themselves but may relate
to the long-standing assumption that chemotaxis is fundamentally
a metabolism-independent phenomenon.

Using a different approach, Goldstein and Soyer artificially
evolved metabolism-independent chemotactic pathways (abstract-
ing away the sensory and motor details) [26]. Chemical pathways
partially reproducing a gradient climbing response could only
evolve under special conditions and for a limited range of basal
levels of stimuli. Contrarily, they found that the selective-stopping
strategy (tumble in place if resources are high, otherwise perform a
random walk) was comparatively easy to evolve. The resulting
selective-stopping strategy is simpler, yet robust and efficient. This
strategy is also found in different types of bacteria particularly in
those performing metabolism-dependent chemotaxis—Ilike that of
Rhodobacter  sphaeroides  [34]—and in E. c¢oli when ‘normal”
transduction pathways are knocked down [35]. Goldstein and
Soyer found very simple chemical pathways capable of generating
such response patterns. They speculate that ‘“non-adaptive
dynamics [i.e. the selective-stopping strategy] could even be
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Figure 2. Differences between metabolism-dependent, metabolism-independent and metabolism-based chemotaxis. Arrows indicate

only short-term dynamical influence between processes.
doi:10.1371/journal.pcbi.1001004.9002

achieved without any signaling proteins; a small molecule, that is a
by-product of metabolism or is taken into the cell via a transporter,
could directly regulate tumbling probability of the cell”, [26, p.5].
In order to further develop this hypothesis, we start from an
idealized minimal metabolism and make it support and generate
chemotactic behavior. Our model provides a proof of concept of
how a minimal metabolism could already support experimentally
observed metabolism-dependent chemotactic patterns. The model
displays the response patterns shown by Goldstein and Soyer and,
in addition, it reproduces some of the metabolism-dependent
phenomena described by Alexander and Zhulin (2001) [21].

Summary of key concepts

To summarize, metabolism-independent chemotaxis refers to types
of chemotaxis where the chemotaxis generating mechanisms
operate rather independently from metabolism. Flagellar rotation
is only influenced by chemical pathways that are independent
from the metabolic network and only modulated by transmem-
brane receptor activity (see Figure 2 top). In metabolism-dependent
chemotaxis, the chemical pathway that mediates transmembrane
receptors and flagellar rotation is influenced by or coupled with
metabolic pathways and processes (like the electron transport
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system) with the result of a metabolism-sensitive behavior (see
Figure 2 middle). A third possibility is metabolism-based chemotaxis,
in which metabolism itself directly modulates behavior. In this
case, there are neither specialized sensors (like transmembrane
proteins) nor specialized and dynamically decoupled chemical
pathways (see Figure 2 bottom).

Most of the available simulation models of chemotaxis are of
metabolism-independent  scenarios, there are no models of
metabolism-dependent or metabolism-based chemotaxis. In the
next section, we introduce a first model of metabolism-based
chemotaxis to study its chemotactic potential and some theoretical
implications (the likelihood of the specific mechanisms in play and
experimental support remain out of the scope of this paper).

Methods

A minimal model of metabolism-based behavior

The first step to create a minimal metabolism-based chemotac-
tic agent is to distill and justify what counts as a minimal model of
metabolism. We do not pretend to settle this issue here but we
provide a general context that justifies the assumptions built into
the model.
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It is generally accepted that life depends upon energetic and
material resources in its ongoing self-(re)-production, self-mainte-
nance and growth. Energy and matter flow through living systems,
maintaining their biophysical and chemo-dynamic organization.
These two flows are coupled: energy is used to transform materials
into structures that harness energy to perform further material
transformations [36-38]. In concrete terms, the energetic flow
through the system depends upon the existence of catalysts which
in turn depends upon the flow of energy through the system. This
autocatalytic closure of chemical reactions has long been argued to
constitute the core or essence of living organization, exemplified in
metabolism [38—41]—see [42,43] for recent reviews and, more
generally, see [44,45] for the central role played by metabolism in
grounding biological agency and adaptivity. This metabolic
organization stands far from thermodynamic equilibrium. Energy
and matter are lost as heat and waste, requiring the continued
acquisition of new resources.

Abstracting away from the particularities of different metabolic
networks, the following three key features remain essential to
characterize metabolism:

1. A flow of matter through the system.
2. A flow of energy through the system.

3. A dissipative (or degrading) organization that in the prolonged
absence of sufficient resources (energetic or material) ceases to
exist.

One of the simplest systems that has these features consists of
the following autocatalytic reaction.

M+ESC+w

where M and E represent material and energetic resources
respectively, C is a constituent or catalyst molecule and W is low-
energy waste. The C above the arrow represents catalysis of this
reaction by C. This system is illustrated in Figure 3, which also
indicates the relative free energies of the reactants on the vertical
axis. One can conceive of this reaction, according to the free-
energies, as an exergonic reaction (in which energy is released as
E— W) that is coupled to (and drives) the endergonic reaction of
M —C. Real metabolisms, of course, have many intermediate
steps in the production of enzymes which complicate the system.
We assume that such intermediate steps can be justifiably
abstracted away to illustrate a minimal instance of metabolism-
based chemotaxis, taking the equation above to represent the
higher order ch((;mical dynamics of a whole metabolic network.

The M+ E - C+ W autocatalysis and modulation of flagellar
rotation by the concentration of C is indeed a simple mechanism.
In theory, this simplicity could be taken even further. For instance,
the energetic and material resources could come from a single
molecule, R - C+ W. We chose to keep these resources separate
so that we could investigate issues related to integration and to
explore more complex environments (see Experiments 2-6). For
those experiments where M and E are distributed in the same
spatial distribcution, the reaction M+ E — C+ W and the simpler
reaction R— C+ W play qualitatively equivalent roles and
behavioral results are identical (results not shown). We chose to
maintain the same core reaction of M +E — C+ W throughout
this paper for simplicity and parsimony.

The waste particle W also does not play a critical role in the
dynamics that we have observed. And in fact, the autocatalysis is
not strictly necessary to produce chemotactic behavior (although it
has dynamic consequences). A chemical reaction as simple as
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free energy

Figure 3. Conceptualization of a minimal metabolism. An
exergonic reaction (E— W) is coupled to an endergonic material
transforming reaction (M —C) such that system components are
produced (C) that catalyze those reactions.
doi:10.1371/journal.pcbi.1001004.g003

R—C could have captured a large portion of the behavioral
dynamics we have described here. However, we set out with the
motivation of exploring metabolism-based chemotaxis. As we
described earlier in this section, a metabolism requires the
channeling of energy by enzymes into reactions that produce
more of those enzymes. We have tried to capture that essential
relationship in the minimal reaction M +E — C+ W.

The following subsections describe the details of the modeling
environment, how the above core reaction (and some variations)
are implemented to model a minimal metabolism and how a
simple coupling of this metabolism to an abstraction of the flagellar
machinery generates chemotactic behavior.

Model

The model consists of a two-dimensional environment,
containing resource gradients and simulated bacteria. Each
bacterium has a position, orientation and velocity as well as a
metabolism, which is represented by a set of chemical concentra-
tions. The concentrations of these chemicals are updated each
iteration through numerical integration of the differential
equations that represent ongoing chemical reactions in the
metabolism as well as degradation of metabolites and transport
of ‘resource’ molecules from the immediate environment of the
simulated bacteria into their interior.

Each bacterium is always either ‘running’ (moving in a straight
line) or ‘tumbling’ (changing its orientation randomly). The
probability of tumbling is directly proportional to the concentra-
tion of C, the autocatalytic product of the metabolism. This
metabolism-based behavioral mechanism causes the bacterium to
remain still when the metabolic rate is sufficiently high and to run
when its metabolism is not operating above a threshold rate. The
simulated environment is 200 units square. Bacteria trying to
move out of this area are prevented from doing so as if running
into a wall. Details of the reactions, the behavioral mechanisms
and the environment are given below.

Chemical reactions

The autocatalytic reaction that constitutes metabolism is more
explicitly described by the following reaction equations that
include the intermediate stage where the catalyst, C, is bound to
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one of its substrates, M, forming MC.
M+ C=MC (1)
MCH+E=22C+W (2)

Two other processes influence the concentration of the metabolic
reactants. The first is the degradation of reactants W and C into non-
reactive products. These chemicals are removed from the simulation
at rates specified in Table 1. The second is the influence of the local
environmental chemical concentrations upon the concentration of
reactants within the simulated bacteria (described below).

The metabolism dynamics are simulated by numerical integra-
tion of the differential equations in Table 2 (we used an Euler
timestep of 0.01 and typical chemical concentrations ranged
between 0 and 2.0). These equations include some reactants that
are only used in certain experimental scenarios and are explained
later in the text. The rate constants (kf, and kb)) in the differential
equations were determined by assigning free-energies to each reactant
and activation-energies for each reaction such that the system adhered
to the constraints given in our definition of a minimal metabolism.
Given chemical free-energies and reaction activation-energies,
reaction rates can be calculated by applying the following equations

Table 1. Constants.

Free energies

EF = 200
MN = 40
C = 48
MC,NC = 91
w = 10
S,SE = 100
Reaction activation energies
M+ C=MC = 1.0 (Reaction 1)
MC+E=2C+W = 0.5 (Reaction 2)
N+C=NC = 1.0 (Reaction 3)
NC+F=2C+ W = 0.5 (Reaction 4)
S+ E=SE = 0.01 (Reaction 5)
C—f = 4.0
W—0 = 3.0
Reaction rate constants
Kfrkfs = 0.0183156
kb, kb = 0.367879
kfakfa = 0.606531
kby,kby ~ 0.0
kfs = 0.9905
kbs ~ 0.0
Degradation rate constants
kaegc = 0.0183156
Kdegw = 0.0497871

Constant parameters used in the model. Reaction and degradation rate-
constants are determined according to formulas applied to the free-energies
and activation energies which are hand-designed to adhere to the constraints
inherent in our definition of a minimal metabolism and to display the
phenomena of interest.

doi:10.1371/journal.pcbi.1001004.t001
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which indicate the reaction rate for a forward (exergonic) reactions
and backward (endergonic) reactions respectively.

kr=exp(A)
ky=exp(A+R—P)

Figure 4 indicates why the forward and backward equations are
different. This method of determining reaction rates allows the
exploration of abstract chemistry while remaining congruent with
the 2" law of thermodynamics.

The environment of a bacterium can affect the concentration of
certain chemicals within it, specifically: E, M, F, N, and S. For
simplicity, we assume that these resources are actively transported
into the bacteria at a rate independent of the concentration of the
chemicals inside the membrane. The internal resource levels are
increased by continuous transport from the environment into the
bacterium according to the following function:

% =D;,[K]

where [k] is the concentration of the relevant chemical inside the
bacterium, D;, =0.2 is the rate of transport across the membrane
and [K] is the concentration of relevant chemical in the
environment of the bacterium. This influence of the environment
is included in the differential equations in Table 2 as the last terms
of those equations that update chemicals that are affected by the
environment (chemicals E, M, F, N, and S).

Implementation of movement

The above chemical reactions are simulated as enclosed within a
membrane, comprising a simulated bacterium. Although minimal
metabolisms have been the subject of simulation models, there have
been very few attempts (see e.g., [46]) to study the dynamics of
metabolism coupled to some form of movement generation
mechanism. In this model, inspired by the motion mechanism of
E. coli and other species, the simulated bacteria are capable of
moving in either a directed, ‘running’ motion or by randomly
changing their orientation (‘tumbling’). Bacteria are, by default, in a
‘running’ mode. Each iteration, however, a bacterium has a chance
of tumbling that is proportional to the concentration of the product
of the metabolism, C: pumple =1 x 107>+ ([C] % 0.01). Running
bacteria move in a straight line in the direction of their orientation

d. d .
(00), % =0.05-cos(a), % =0.05-sin(e). Tumbling bacteria remain
at the same location, with o changed to a random value selected
from a flat distribution between 0 and 27.
A full schematic diagram of the minimal metabolism and its
coupling to behavioral mechanisms can be seen in Figure 5.

Results

We now describe five experimental scenarios where simulated
bacteria are placed in environments containing different distribu-
tions of different chemicals compounds. At the start of each
simulation, 100 simulated bacteria are distributed evenly around the
200 x 200 unit square environment in a 10 x 10 grid (indicated in
the left-most plot of e.g. Figure 6B). Each iteration, the metabolism
and position of each bacteria is updated according to the equations
described earlier. Bacteria are all initiated with a low (0.05)
concentration of their metabolites unless otherwise indicated.
Except for Experiment 5, all environmental resources have a peak
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Table 2. Differential equations.
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d[E]/dt =

d[M)/d =
d[MC)/d =

d[F)/dt =
d[N/dt =

d[NCl/dt =

d[C)/dr =

d[W)/dt =

d[S]/d =
d[SE]/dt =

—kfs[MCI[E]+kbs | C]*[W]/2+ Din [ E](x)
—kf5[S][E]+kfs[SE]

—kfi[M][C]+kbi [MC] + Dy [M](x)

— kb [MC]+kfi [M][C]

—kfs [E)[MC] +kbs [ CP*[W]/2
—Kfa[NC|[F)+kbs[CP'[W]/2+ Din[F](x)
—kf3[N][C]+kb3[NC] + Din[N](x)
—kb3[NC]+kf3[N][C]

— kfy[F][NC]+ kb4 [CP[W]/2
—kfi[M][C]+kbi [MC]
—2kby[CI[W]/2+ 2k [E][MC]
—kf3[N][C]+kbs[NC]
—2kby[CI*[W]/2+ 2kf4 [F]INC] —kaeac[C]
— kb [CP[W]/2+kf[E][MC)
—kba[CP[W]/2+ ki FI[NC) —kgegw [
—ks[S)[E] +ks[SE]

—ks[SE]+ks[S][E]

position x. Table 1 indicates the values of the constants.
doi:10.1371/journal.pcbi.1001004.t002

concentration of 1.0 and fall off with distance from their center
according to the following equation where ¢ is the concentration of
the relevant resources and d is distance from the center:

c=exp . Resources in the environment are always kept

2000
constant (1.c., there are no stigmergic effects — bacteria do not affect
the concentration or distribution of resources in the environment).

Experiment 1: Chemotaxis to metabolizable sources

In this first scenario, a source of E and M is centered at x = 100,y = 0.
Figure 6 shows the distribution of simulated bacteria at the start, middle
and end of a 2.5 x 10° iteration simulation. It can be seen how bacteria
perform chemotaxis to the area of high-concentration of £ and M
(which is indicated by the concentric circles).

When a bacterium has access to plenty of resources, it produces
significant quantities of C and W. The high concentration of C
causes the rate of tumbling to increase to the point where the

A A A
forward
«| (R=>P)
activation
§ f energy o
o [v'd
& Z
®
o backward
(P—>R)
activation
Y energy

Figure 4. Energy required for a reaction to take place.
doi:10.1371/journal.pcbi.1001004.9004
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Full list of the differential equations that influence the change in chemical concentrations. Includes all chemical pathways used in the experiments. Parameters kf, and
kb, represent the reaction rate constants for the nth reaction in the forward or backward direction. Those constants with ‘degK’ subscripts represent the rate of
degradation of chemical K and constants with ‘D;,[K](x)" subscripts represent the concentration of resource K diffusing into the system from the environment at

bacterium is more or less standing in place since the tumbling
frequency is so high that it never runs for a significant distance in
any direction. If, on the other hand, the bacterium has insufficient
available resources to maintain high levels of C, the probability of
tumbling will fall and the bacterium will perform a combination of
running and tumbling that results in a random walk. This random
walk will continue until it comes across a region where it can
produce sufficient C to push it “above threshold”. In this manner,
the simulated bacteria perform a simple form of “selective
stopping” chemotaxis whereby they move in a random manner
until they are in a resource rich area, at which point they tend to
remain where they are.

Statistically, the simulated bacteria show a correlation between
final location of the bacteria and high concentration of
metabolizable substrates in the environment, i.e., a “chemotactic”
movement towards high-concentration of attractants. The indi-
vidual behavior of the bacteria may not follow a direct
chemotactic path, but the probabilistically directed (i.e., corrected
or regulated) behavior clearly results in an up-gradient movement
tendency. Note that even in experimentally observed chemotaxis
in E. coli, with their more sophisticated gradient-climbing adaptive
strategy, the path followed by a single bacteria is difficult to
characterize as chemotactic, it is rather the global effect of a
population of bacteria that results in a clear chemotactic
distribution. This experiment demonstrates that a metabolism-
based control of flagellar rotation could potentially perform
chemotaxis without dedicated signal transduction pathways,
transmembrane receptor proteins nor sensory adaptation.

Experiment 2: Local presence of metabolizable resources

inhibits chemotaxis to other resources
Alexandre and Zhulin observed that “the presence of another
metabolizable chemical (exogenous or endogenous) prevents

December 2010 | Volume 6 | Issue 12 | e1001004
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Figure 5. Diagram indicating the minimal metabolic reaction and its coupling to tumbling and running modes of behavior.
doi:10.1371/journal.pcbi.1001004.g005
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Figure 6. Experiment 1: Chemotaxis towards a gradient of M and E. Plot A is a histogram that indicates the distance of bacteria from the
location of highest concentration of M and E (x=100,y =0) at the start and end of trials. Data are averaged from 10 runs of 100 bacteria each. Plot B
indicates the spatial distribution of the simulated bacteria as time progresses in a typical trial. The concentric circles indicate the center of the
Gaussian distribution of resources M and E.
doi:10.1371/journal.pcbi.1001004.9006
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chemotaxis to all attractants studied” [21, p.4682]. We tested our
simulated metabolism-based chemotactic bacteria to confirm that
they also undergo inhibition of chemotaxis due to the presence of
alternative metabolizable resources. To perform this test we used
the above chemotaxis scenario as a control. The new experimental
scenario is identical to the first except that two new resources, F'
and N, are included, uniformly distributed throughout the
environment at a concentration of 0.5.

For this experimental scenario (and subsequent ones) alternative
resource molecules and reactions were required. For the sake of
simplicity we created a duplicate metabolic pathway with identical
stoichiometry, reaction rates, etc., the only difference being the
chemicals involved (see Figure 7): resource F' (as analogous to E)
and material resource N (analogous to M).

N+C=NC 3)

NCH+F=2C+W (4)

The results can be seen qualitatively by comparing Figure 6 (the
control) and Figure 8. It is clear that chemotaxis has been
inhibited. The mean distance from the source (x=100,y=0) for
10 runs of 100 agents each was 56.03 (std. 36.33) for the control,
and 118.17 (std. 50.46) for the experimental abundance of
alternative resource condition.

The mechanism for this inhibition is simple. Resources F and N
are ubiquitous and sufficient to maintain the concentration of C at
the high value necessary to keep the bacteria tumbling. The
predominant tumbling keeps the agents stationary, preventing any
chemotaxis to the £+ M resource.

Experiment 3: Inhibition of metabolism to a resource
inhibits chemotaxis to and only to this resource

A second result was published by Alexandre and Zhulin in
support of energy-taxis as the primary mechanism of chemotaxis
in A. brasilense: “[The] inhibition of the metabolism of a chemical
attractant completely abolishes chemotaxis to and only to this
attractant” [21, p.4682].

To test this phenomenon in our simulation of metabolism-based
chemotaxis, simulated bacteria are placed in an environment with
two resource gradients. The first, consisting of equal parts of
resources I and N is highest in concentration in the upper-right
corner of the simulated environment. The second is equal parts of

A Minimal Model of Metabolism-Based Chemotaxis

E and M and is highest in concentration in the lower-right corner.
In the upper-right corner, resources F' and N are sufficient for a
healthy metabolism to continue to autocatalyze C and maintain its
concentration high enough for the bacteria to remain in this
corner. The same is the case for £ and M in the lower-right
corner. This can be seen in the central bottom plot of Figure 9.

Halfway through this scenario, we add a uniform concentration
of [S]=1.0 to the entire simulated environment. This chemical
inhibits the E/M metabolic pathway by exothermically and
rapidly bonding to metabolizable substrate E, transforming it into
a non-reactive chemical, SE (see Figure 10). This process is
described by the following reaction equation:

S+E=SE (5)

After S is added to the environment, the simulated bacteria
cease to remain in the area high in concentration of E and M, but
continue to be attracted to the high concentrations of ' and N, as
shown in the right-most plot of Figure 9 (bottom), demonstrating
inhibition of chemotaxis to a reactant by inhibition of metaboliza-
tion of that reactant.

Experiment 4: Metabolic inhibitors act as repellents

Specific metabolic inhibitors such as oxidized quinones or
specific electron transport inhibiting molecules such as myxothia-
zol have been shown to inhibit chemotaxis [47]. It has also been
shown that such metabolic inhibitors can act as repellents [19,48].
We tested to see if our model could also display metabolic
inhibitors (or toxins) acting as repellents.

A repulsion due to a metabolic toxin can be clearly seen in
Figure 11 which shows a scenario in which bacteria are evenly
distributed in an environment of uniform distributions of
[E],[M]=0.5. Halfway through the simulation, a gradient of
metabolic inhibitor S is added to environment (with a peak
concentration 5.0, centered at x=100,y=0) and the bacteria
move away from the higher concentrations of that toxin. Figure 12
indicates the reactions that occur in this scenario.

Experiment 5: Sensitivity to history

Experiments 1-4 have reproduced empirical observations made
by Alexandre and Zhulin. The following experiments explore
additional phenomena that could lead to some empirical

Figure 7. Diagram indicating metabolic reactions for Experiment 2.

doi:10.1371/journal.pcbi.1001004.9007
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Figure 8. Experiment 2: Abundance of sufficient resources inhibits chemotaxis to attractants. In this trial, agents were placed on the
same gradients as in Figure 6, but with an additional uniform distribution of alternative metabolizable sources [F],[N]=0.5. The presence of these

resources clearly inhibits chemotaxis to £ and M.
doi:10.1371/journal.pcbi.1001004.g008

predictions. This scenario is inspired by Alexandre and Zhulin’s
observation that bacteria demonstrate a sensitivity to their history
of exposure to different resources. Specifically, “[s]tronger
chemotaxis responses are observed when cells are grown on the
sugar under test as the growth substrate” [21, p.4682]. In this
experiment, there is no M in the environment except along a strip
defined by x < —90. Agents are initialized with no M. A gradient
of E is placed at the center of the right side of the environment.

Bacteria have no M, so the resource E is insufficient to produce
C. Only once they have encountered the region with M and
incorporated M into their metabolism does E act as an attractant.
This process can be seen through observation of Figure 13 where
agents are drawn with Xs if they have concentrations of M less
than 0.5 and as circles otherwise. Early in the simulation, agents
tend to run as none have access to resources sufficient to produce
and maintain significant quantities of C. As time passes, the
random motions of the bacteria cause some to encounter the M on
the left. More time passes, and these agents, now rich in M can
produce C while in areas rich in E. At this point, chemotaxis
towards high concentrations of E is observed.

@ PLoS Computational Biology | www.ploscompbiol.org
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The experiment shows how what becomes an attractant for
metabolism-based chemotactic bacteria is not an environmental
compound per se, but rather what, at a given point on the history
and internal state of the bacterium, is required for metabolism to
occur. Bacteria performing metabolism-based chemotaxis operate
according to their current metabolic needs.

Experiment 6: Integration of environmental phenomena

By basing chemotaxis in metabolism, the simulated bacteria
respond not to specific environmental phenomena, but to the
combined effects of all environmental features upon metabolism.
In Experiment 6, we demonstrate this ability to integrate
environmental phenomena by placing bacteria in a more
complicated environment than those of previous experiments.
The environment for Experiment 6 consists of perpendicular
linear gradients of resources M ([M]=0.5 % (y+100)/200) and E
([E]=0.5 * (x+100)/200) with a Gaussian distribution of toxin S,
with a peak concentration of 3.0 centered at (x=75,y="75).
Figure 14 indicates the final position of 5000 bacteria (the results of
50 trials, each with 100 evenly distributed bacteria as in the other

December 2010 | Volume 6 | Issue 12 | e1001004
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Figure 9. Experiment 3: Inhibition of a metabolic pathway inhibits chemotaxis only to the relevant resources. Placed in an
environment with two sets of metabolizable resources (M + E located in the lower-right and N+ F located in the upper-right), the simulated
bacteria move from an initial, even-distribution to the areas higher in concentration of either resource-pair. The insertion of S (a chemical that inhibits
the metabolism of M + E) causes the simulated bacteria to cease chemotaxis towards the no-longer metabolizable resources without influencing
chemotaxis to the other attractants. Histogram A illustrates average distance to the non-inhibited (N + F) source. Histogram B shows the distance
from the inhibited source (M + E). As before, data is taken from 10 trials of 100 bacteria each. Plot C illustrates the spatial distribution of simulated

bacteria in a typical trial.
doi:10.1371/journal.pcbi.1001004.g009

experiments). It can be clearly seen that the bacteria are neither
maximizing concentrations of M or E, nor the combination of
them, but are performing chemotaxis to the areas where the
combined effects of the environmental resources E, M, and S
allow the metabolism to operate sufficiently well. The overall
bacterial distribution appears correlated with the spatial distribu-
tion of the optimal combination of compounds.

One interesting aspect of this plot is the asymmetric distribution
of bacteria along the x and y axes, corresponding to the gradients
of E and M respectively. It appears that for our model bacteria, it
is more important to have a high concentration of M than of E.
This difference may be caused by a high concentration of M
transforming ‘free’ C into MC. MC, unlike C, does not degrade,
so a high concentration of M makes the metabolism less likely to
degrade than a high concentration of E. An alternative possibility
is that the bottleneck in the metabolism lies in the first reaction
(M + C— MQC) as this reaction has a slower rate constant than the
second reaction (MC+ E—2C+ W). High E has little influence
on this bottleneck, but a significant concentration of M can open
up the bottleneck, allowing for a more rapid production of C. We
confirmed that a third possibility, the asymmetric influence of .S
upon the reactions, is not responsible for the asymmetric
distribution of bacteria (results not shown).

It is interesting to note that in aerotaxis experiments with e.g. E. colt
and 4. brasilense, the aerotactic bands can form an asymmetric profile
as well (see e.g. [49, p.2238 Figure B, top]). The environmental
conditions at the different sides of these bands could be slightly
different with respect to the metabolism of the bacteria, and perhaps a
mechanism similar to that described here could explain the
asymmetric distribution of bacteria in these experiments.

Discussion

Research i bacterial chemotaxis has operated largely under the
assumption that the behavior is supported by transmembrane receptors
and dedicated signalling pathways and that such pathways are
metabolism-independent. Despite the growing body of evidence that

Figure 10. Diagram of the metabolic reactions for Experiment 3.
doi:10.1371/journal.pcbi.1001004.9g010
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in many species this might not always be the case (even for those largely
thought to be so, such as L. col) available simulation models of bacterial
chemotaxis assume metabolism-independence. Here we have present-
ed the first minimal model of metabolism-based chemotaxis. It
recreates phenomena observed in bacteria and allows us to explore
some potential consequences of metabolism-based behavior.

The behavioral strategy employed by the simulated bacteria in
our model is the “selective stopping strategy” in which bacteria
move around in a random walk until they reach a satisfactory area,
at which point they tumble in place. Recent artificial evolution of
simulated chemotaxis [26] has shown that this strategy (also
referred to as the “non-adaptive or inverted response”) is, under
certain ecological constraints, the most likely chemotactic strategy.
It has also been observed in some cases of metabolism-dependent
chemotaxis [34]. In order to address how metabolism could
directly produce such behavioral patterns, we have developed a
model of what we have called metabolism-based chemotaxis (a simpler
case than that of metabolism-dependent chemotaxis). We first
identified a minimal metabolic organization as that of an
autocatalytic reaction. We then assigned a probability of running
or tumbling to the concentration of the auto-catalyst. The resulting
system 1Is very simple, yet capable of instantiating four chemotactic
phenomena observed in bacteria.

Chemotaxis to metabolizable compounds. [Experiment 1]

® A local abundance of metabolic resources inhibits chemotaxis
to other resources. [Experiment 2]

® Inhibition of the metabolism of an attractant inhibits
chemotaxis to that attractant, and that attractant alone.
[Experiment 3]

® Metabolic inhibitors act as repellents [Experiment 4]

The observations of history dependence reported by Alexandre
and Zhulin led to the exploration of Experiment 5 where a
compound is incorporated into metabolism and results in a change
in chemotaxis pattern according to past experience.

December 2010 | Volume 6 | Issue 12 | e1001004
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Figure 11. Experiment 4: Metabolic inhibitors act as repellents. In a uniform distribution of resources, simulated bacteria move away from
high concentrations of the metabolic inhibitor S.
doi:10.1371/journal.pcbi.1001004.g011
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Figure 12. Diagram of the metabolic reactions for Experiment 4.
doi:10.1371/journal.pcbi.1001004.g012
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Figure 13. Experiment 5: Sensitivity to history. The metabolism of the bacteria changes when encountering M (located at the left side of the
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insufficient to support production of C, but for agents that have incorporated M into their metabolism, £ becomes an attractant. Bacteria with

[M]<0.5 are shown as x s rather than circles.
doi:10.1371/journal.pcbi.1001004.g013

Finally, Experiment 6 demonstrated the capacity of metabolism-
based chemotaxis to respond appropriately to combinations of a
variety of simultaneous environmental influences. This experiment
showed the potential of metabolism as a mechanism for effective
chemotactic integration.

The present simulation is not a model of the specific
mechanisms supporting metabolism-dependent chemotaxis in
bacteria. Yet, it serves as a proof of concept of how a very simple
abstraction of metabolism can support, without the addition of
specific signaling pathways and even without the need of
transmembrane receptors, a wide range of chemotactic phenom-
ena. As a conceptual model it can be further used to explore some
theoretical implications of relaxing the metabolism-independent
assumption.

Evidence has been found of metabolism-dependent chemotaxis
where metabolic processes such as the electron transport system
influence flagellar rotation indirectly, by way of the dedicated
chemotactic two-component signaling system. There is also
evidence for a mechanism through which metabolism directly
influences flagellar rotation, i.e., without an intermediate dedicat-
ed signaling system, in a manner more similar to the metabolism-
based chemotaxis modeled here. Specifically, it has been shown
that E. coli can perform chemotaxis even when stripped of most of

@ PLoS Computational Biology | www.ploscompbiol.org
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the signaling pathway typically associated with chemotaxis [35],
suggesting that there might be at least two different mechanisms
supporting chemotaxis in FE. coli [2, p.575]. Interestingly, the
concentration of fumarate, an intermediate in the citric acid cycle
that is part of the “universal metabolism” [50], has been shown to
influence the direction of flagellar rotation. A high concentration
of this metabolic product increases chance of clockwise, tumble
inducing, rotation; the same relationship of metabolic influence
upon flagellar rotation that is used in the selective-stopping
strategy. Fumarate operates directly upon the flagellar motor
switch [51] in a manner that is independent of the protein
signaling pathway typically associated with chemotaxis [52]. It
turns out that fumarate might be currently instantiating mecha-
nisms of metabolism-based chemotaxis; something that still
remains to be experimentally tested. This hypothesis was
anticipated by [26, p.5] and we have shown how fumarate-like
intermediate metabolites (C in our model) could not only produce
simple chemotaxis but could reproduce a wide spectrum of non-
trivial chemotactic phenomena. What is needed to achieve these
behavioral patterns is not a complex system of transmembrane
receptors influenced by metabolism in subtle ways but simply a
metabolite capable of influencing flagellar rotation in the right
manner.
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metabolism.

doi:10.1371/journal.pcbi.1001004.g014

The present model also suggests that it might be time to re-
consider part of the terminology and the externalist approach to
chemotactic studies. For instance, it is generally assumed that
environmental compounds are invariably either attractants or
repellents for bacteria, as if bacteria were simply stimulus-driven
systems. The model of metabolism-based chemotaxis shows,
however, that environmental compounds are not attractants or
repellents purely on the basis of their binding properties and their
stereotypically elicited responses. Environmental compounds must
instead be categorized within the context of metabolism, which is
influenced by the history of the cell and its internal organization
(metabolic rates, active and non-active metabolic pathways, etc.).
In other words, the behavioral significance of chemical com-
pounds becomes a relational property that depends on the
metabolic dynamics of the cell (which cannot be abstracted away
in the study of behavior). As Experiment 3 shows, if a resource
ceases to be metabolized, it ceases to act as an attractant for
bacteria. Also, (as shown in Experiment 4) chemical compounds
that are toxic for the metabolism of the bacteria can act as
repellents without the need of any specific binding of it, or even
without the bacteria ever encountering that compound in its
evolutionary past. This capacity to be behaviorally sensitive to the
effects of environmental compounds on metabolism provides a
powerful means of behavioral evaluation and increased adaptive
response (at the organismic level). It is not clear how the same
adaptation could occur for a metabolism-independent mechanism
that requires binding with specific compounds to elicit specific
responses.

While advances have been made on the understanding of how
receptor complexes integrate sensory information [53,54] the
potential integrative role of metabolism remains under-explored. The
classic view 1is that integration in metabolism-independent
chemotaxis is accomplished in the group dynamics of the
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transmembrane sensors that all modulate CheA activity [55].
This metabolism-independent mechanism of integration relies
upon specific interactions between stimulus chemicals and
transmembrane sensors. We can compare this to metabolism-
based behavior, which responds not directly to environmental
phenomena but to the combined effects of environmental phenomena upon
the metabolism. This indirect sensitivity to the environment makes it
a good candidate for integrating different stimuli and producing
the appropriate response (move toward or away). Goldstein and
Soyer [26] acknowledge this issue but their model does not address
any integrative phenomena—their simulation results correspond
only to a single attractant gradient scenarios. Despite its simplicity,
the model presented here is able to effectively integrate
information from multiple gradients in a straightforward manner
(Experiment 6). By being sensitive to the production of C, it
integrates the effect of all environmental features upon metabolic
rate.

As an example of the potential integrative power of metabolism-
based chemotaxis, imagine two compounds, 71 and 75, each of
which acts as a metabolic toxin when encountered on its own. But,
when encountered together, they act as excellent metabolic
resources. Metabolism-based chemotaxis would respond appro-
priately (move towards 77+ 7> when encountered together and
away from 7T or 7> when either is encountered on its own), while
metabolism-independent chemotaxis would require the evolution
of considerable specific machinery to accomplish the same
appropriate behaviors.

A further development of the model presented here (see [56])
has allowed us to explore the potential of metabolism-based
mechanisms to produce gradient-climbing strategies, in particular
we have shown how a single new reactant could turn a network of
metabolic reactions that produces the selective-stopping behavior
into one that produces the more intricate gradient-climbing
behavior. We have also designed a scenario where a simulated
protocell incorporates a new attractant from the environment into
its metabolism and becomes chemotactic towards it. We have used
the above experiments to explore theoretically the potential of
metabolism-based chemotaxis, the feedback between metabolism
and behavior, to bootstrap and accelerate early evolutionary
processes [36].

Among the further extensions, a very interesting development
would be to study which situations are conducive to which
relationships  between metabolism and chemotaxis and how
transitions from one form to the other could occur. In particular,
artificial co-evolution of metabolic networks and behavioral
mechanisms could help address questions regarding a) the
likelihood of metabolism-dependent or metabolism-independent
chemotaxis under various environmental conditions, b) the
possibility of metabolism-independent chemotaxis arising from
metabolism-dependent precursors and c¢) how both types of
chemotaxis might co-exist with a varying degree of influence.

Despite the considerable advances that the segregated one-
compound-one-response approaches to chemotaxis have provided
so far, it is perhaps time to start integrating not only metabolism
into the picture but richer and varying environments where
metabolic modulation might be playing a more relevant
behavioral role. We hope to have shown that such an integrative
move does not necessarily require the inclusion of an overwhelm-
ing level of detail, but might instead be effectively dealt with by
metabolism-based forms of regulation. Many aspects of metabo-
lism can potentially be abstracted away to reproduce the higher
order dynamics of complex metabolic networks and then coupled
to a behavioral mechanism. Moving in this direction opens the
space for interactions between internal and environmental
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chemical dynamics that are not reducible to the influence of
environmental compounds upon transmembrane receptors.

From the reported experiments we can generalize that, despite
its simplicity, metabolism-based chemotaxis allows for an ongoing
evaluation of environmental conditions. This evaluation is indirect
in that behavior is not in response to the environment, but rather
to the influence of the environment upon the metabolism. The
ongoing and indirect nature of metabolism-based chemotaxis
makes possible an automatic and appropriate response to a variety
of encounters with environmental conditions that have never been
experienced by the bacterium, nor even by its evolutionary
ancestors, for it is not necessary to evolve trans-membrane sensors
that interact in specific ways with each environmental influence.
The evaluation of the environment is accomplished by the
influence of the metabolism.

These generalizations should be further examined both by
empirical studies and elaborations of the current model. We would
like to stress that the current model plays the role of a proof of
concept by allowing us to see the possibility of metabolism-based
chemotaxis at work and unveil some implications. As variations of
the model start to address more specific issues, they will have to
incorporate more realistic assumptions such as energetic require-
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ments for movement, biomechanics, differences in timescales
between behavior and metabolism, and potential interactions
between optimal behavioral control, metabolic dynamics and
stochasticity. Also required is a study of the parametrical
robustness of the phenomena reported here.
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