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High conductance values in p-folded
molecular junctions
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Folding processes play a crucial role in the development of function in biomacromolecules.

Recreating this feature on synthetic systems would not only allow understanding and

reproducing biological functions but also developing new functions. This has inspired the

development of conformationally ordered synthetic oligomers known as foldamers. Herein,

a new family of foldamers, consisting of an increasing number of anthracene units that adopt

a folded sigmoidal conformation by a combination of intramolecular hydrogen bonds and

aromatic interactions, is reported. Such folding process opens up an efficient through-space

charge transport channel across the interacting anthracene moieties. In fact, single-molecule

conductance measurements carried out on this series of foldamers, using the scanning

tunnelling microscopy-based break-junction technique, reveal exceptionally high conductance

values in the order of 10� 1 G0 and a low length decay constant of 0.02 Å� 1 that exceed the

values observed in molecular junctions that make use of through-space charge transport

pathways.
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T
he high level of performance of proteins and nucleic
acids in terms of function is not only the result of their
chemical (primary) structure but also of the implicit

non-covalent intramolecular interactions between specific units
in their sequence that promote folding into a well-defined
(secondary and tertiary) three-dimensional structure. Recreating
this feature on synthetic systems would not only allow
reproducing biological functions but also developing new
functions that align with our technological needs. This has
inspired the development of conformationally ordered synthetic
oligomers known as foldamers1–8, which are able to adopt folded
conformations through non-covalent intramolecular interactions
encoded in their primary structure. In the last years, there have
been remarkable advances in the design of foldamers that
self-assemble into well-defined structural motifs1–8, such as
helices, pillars and sheets, among others. Many foldamers have
been explored in diverse fields including protein mimicking9–15,
molecular recognition16–18, self-assembly19–21, and photoinduced
electron and energy transfer22–25, with very promising results.

Charge transport in single molecules is of utmost importance
in the development of molecular-scale electronic components.
Among these, molecular wires26–31 show a prominent position
since they allow interconnecting different elements giving rise
to complex molecular circuitry and to the transduction of
biochemical events. A lot of effort26–31 has been devoted to
understanding through-bond charge transport across molecular
wires with different lengths and conjugation to quantify their
charge transport capabilities and to establish the charge transport
mechanism. However, in higher-order systems, such as biological
systems and organic solids, long-range electron transport
does not only depend on the inherent properties of the
individual molecules imposed by their chemical structure and
p-conjugation but also on the spatial organization of such
molecules32,33. In fact, a strong electronic coupling between the
frontier orbitals of adjacent molecules, which is often associated
with an excellent spatial overlap between their p-systems, is
necessary to ensure efficient charge transport. This has motivated
the study of synthetic molecular wires that impose through-space
charge transport schemes either by a combined though-bond/
through-space channel34–38 or by a through-space channel39–42,
and also of DNA43–49 in which base pairs are stacked at virtually
the graphitic interlayer distance.

Herein, we report a new family of foldamers consisting of
an increasing number of anthracene units, which fold by
a combination of intramolecular hydrogen bonds and aromatic
interactions. Such folding process opens up an efficient through-
space charge transport channel across the interacting anthracene
moieties (Fig. 1). As a matter of fact, single-molecule conductance
measurements carried out on this series of foldamers, using the
scanning tunnelling microscopy-based break junction (STM-BJ)
technique50,51, reveal exceptionally high conductance values (G)
in the order of 10� 1 G0 and a low length decay constant (�) of
0.02 Å� 1. These values exceed the G and � values observed in
molecular junctions that make use of through-space charge
transport pathways34,37,42 (G¼ 10� 4 to 10� 2 G0, �¼ 0.21 to
1.16 Å� 1), including DNA43,44,48 (G¼ 10� 4 to 10� 2 G0,
�¼ 0.18 to 0.43 Å� 1).

Results
Design and synthesis. As our foldamers, we have designed
and synthesized a series of oligomeric structures that
combine 9,10-dimethyleneanthracene units stitched together by
2,6-pyridinedicarboxamides (Fig. 2). The series shows an increasing
number of anthracene moieties: dimer-NH2; trimer-NH2; tetramer-
NH2; and pentamer-NH2. Anthracenes have been selected among

other acenes because of their well-balanced properties in terms of
charge transport, stability and solubility52. The presence of the
2,6-pyridinedicarboxamides53 promotes a sigmoidal conformation
because of the favourable intramolecular hydrogen-bonding
interactions. This folded conformation is reinforced by aromatic
interactions between the anthracene units, which are also favoured
by the optimal parallel arrangement and the flexibility provided by
the methylene groups that connect the amide and the anthracene
moieties. Triisopropylsilyl (TIPS) groups have been introduced
in the pyridine units to ensure the solubility of the oligomers.
Terminal amine groups have been selected as they have proven to
be effective anchoring groups for attaining single-molecule
junctions54.

The oligomers were first synthesized as tert-butoxycarbonyl-
protected amines (-NHBoc), which were deprotected afterwards
in acidic media to make available the terminal amines (-NH2) as
anchoring groups. The structure of both protected and depro-
tected foldamer series has been confirmed by nuclear magnetic
resonance (NMR) and matrix-assisted laser desorption ionization
(coupled to a time-of-flight (TOF) analyser) mass spectrometry.
All details of the synthesis and characterization of the oligomers
are given in the supporting information (Supplementary Note 1).

Determination of the folded structure. A combination of
X-ray crystallography, NMR, ultraviolet–visible absorption
and photoluminescence (PL) spectroscopy, infrared ion dip
spectroscopy and theoretical calculations provide strong evidence
that the oligomers adopt a folded structure.

Crystals suitable for X-ray crystallography could be obtained
for trimer-NHBoc from dimethylsulfoxide (DMSO) solutions.
The X-ray diffraction analysis confirms a sigmoidal and folded
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Figure 1 | p-Folded molecular junctions. Schematic representation of the

folding and anchoring processes needed to obtain p-folded molecular

junctions from a representative member of the foldamer family studied in

this work.
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structure of trimer-NHBoc and also provides an insight into
the interactions between the anthracene moieties in the solid
state (Fig. 3a). Remarkably, even considering the interference of
DMSO with the folding process—the X-ray structure reveals the
presence of two DMSO molecules bound to the 2,6-pyridinedi-
carboxamides by hydrogen bonds—the high predisposition of the
anthracene moieties to interact between each other is evidenced.
In fact, the central anthracene adopts a CH–p conformation by
flipping over the DMSO molecules to stick to the two external
anthracene moieties.

To study the folding process in solution, we carry out all the
experiments with the NHBoc foldamer series as it represents
a closer model to the break-junction scenario, in which the free
amines are anchored to the gold tips. 1,1,2,2-Tetrachloroethane
(TCE) is selected as a solvent to carry out the studies because
the oligomers are highly soluble in it; it has a high boiling
point (146 �C) optimal for the break-junction studies; and it
has a low hydrogen bond basicity (SbH¼ 0.08)55, which favours
the formation of intramolecular hydrogen bonds that
hold together the 2,6-pyridinedicarboxamide backbone in
a sigmoidal configuration. The NMR anthracene aromatic
signals of dimer-NHBoc and trimer-NHBoc in TCE-d2 at 25 �C
appear shifted upfield and broadened in comparison to the
Boc-protected 9,10-bis(aminomethyl)anthracene (A-NHBoc) that
is used as a reference (Fig. 3b,c). This is consistent with the close
proximity between anthracene moieties, which results in the
observed shielded signals as an effect of anisotropy. Moreover,
a more substantial broadening is clearly observed in the
NMR spectra of tetramer-NHBoc and pentamer-NHBoc that
leads to an almost complete disappearance of the aromatic

signals. We first ascribed this effect to the aggregation of the
tetramer-NHBoc and pentamer-NHBoc in solution at NMR
concentrations (10� 3 to 10� 4 M). However, this contradicts
the high solubility of the whole NHBoc foldamer series in TCE.
Two-dimensional diffusion-ordered spectroscopy (DOSY) NMR
studies at 25 �C reveal that the broadening of the aromatic signals
is indeed not related to aggregation in solution, as the signals of
the oligomers diffuse at the same rate, which means that the
oligomers are monodisperse species in solution (Fig. 3d).
Therefore, the complex NMR observed for tetramer-NHBoc
and pentamer-NHBoc indicates the coexistence of multiple
conformers at room temperature in a complex dynamic
equilibrium. This is supported by variable temperature NMR
(VT-NMR) experiments carried out from –40 to 140 �C that
show how the complex fine structure of the pentamer-NHBoc
coalesces at increasing temperatures into a simpler NMR
spectrum that can be easily assigned to the structure (Fig. 3e),
as the high temperatures disrupt the intramolecular interactions,
unfolding the oligomers.

The ultraviolet–visible electronic spectra in TCE showed the
typical features of anthracene derivatives with four vibronic bands
on the main electronic absorption (Fig. 3f). An electronic
interaction between anthracene moieties is clearly observed, as
the absorption bands appear increasingly bathochromically
shifted with an increasing number of anthracene units in the
oligomers. When dimer-NHBoc was compared with reference
A-NHBoc, a bathochromic shift (Dl) of 1.0 nm was observed.
The electronic interactions between anthracenes become more
evident when increasing the number of anthracenes in the
oligomers as the bathochromic shifts become increasingly larger
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in trimer-NHBoc (Dl¼ 1.5 nm), tetramer-NHBoc (Dl¼ 2.0 nm)
and pentamer-NHBoc (Dl¼ 5.5 nm), when compared with
A-NHBoc, respectively. Almost invariable changes were observed
in the absorption spectra on dilution (from 10� 4 to 10� 6 M),
which is consistent with the intramolecular nature of the
interactions between anthracene units.

The intramolecular aromatic interactions between anthracenes
are also evidenced in the ultraviolet–visible PL studies. The PL
spectra of the -NHBoc foldamer series show the typical emission
features of anthracene derivatives with four vibronic bands
(Fig. 3g). Overall, the observed PL bands are bathochromically

shifted as the number of anthracene moieties in the oligomers
increases, in line with the absorption measurements. When
dimer-NHBoc was compared with A-NHBoc, using the
0-1 transition as a reference, a bathochromic shift (Dl¼ 1.0 nm)
is clearly observed. The bathochromic shifts become increa-
singly larger in trimer-NHBoc (Dl¼ 1.5 nm), tetramer-NHBoc
(Dl¼ 2 nm) and pentamer-NHBoc (Dl¼ 6.0 nm). These energy
changes are coupled to a change on the relative intensity of the
0-2 and 0-3 transitions that increase together with the number of
anthracene moieties in the oligomer. Such increase of the relative
intensity is due to an underlying transition that corresponds to
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the anthracene excimer (B500 nm)56. The presence of the
anthracene excimer in the PL spectra evidences the face-to-face
overlap between anthracenes in solution. Most importantly,
almost invariable changes were observed in the PL spectra
on dilution (from 10� 5 to 10� 7 M), which also supports the
intramolecular nature of the interactions between anthracenes.

To obtain a much clearer view of the folding process,
conformation-specific vibrational spectroscopic studies in the
gas phase were carried out as they allow elucidating the intrinsic
structures of moderately large molecules (typically o500–600 Da)
without the interferences of packing or solvation. Remarkably,
dimer-NHBoc (984.33 Da) and trimer-NHBoc (1,532.10 Da)
could be studied even if they roughly duplicate and triplicate,
respectively, the typical molecular weight for this kind of
measurements57,58. The full experimental description is given in
Supplementary Information. In brief, an infrared laser pulse
(1,064 nm) was used to transfer the intact foldamer molecules
from solid state to gas phase. Then, the target vapourized sample
was diluted and expanded in an argon jet and skimmed to
generate a cold collimated beam. In the extraction and
acceleration regions of the linear TOF, an ultraviolet dye laser
ionized the foldamers through a resonant two-photon ultraviolet
excitation (B34,000 cm� 1). Conformation-selective spectra
could be obtained from a third tunable optical parametric
oscillator/optical parametric amplifier infrared laser through
infrared ion dip spectroscopy. The conformationally specific
vibrational spectra could be interrogated in the C–H and
N–H stretch regions, which are extremely sensitive to the
local hydrogen-bonded conformational environment. The
infrared experimental spectra of dimer-NHBoc and trimer
NH-Boc are very similar (Fig. 3h,i) with a set of bands in the
2,850–3,100 cm� 1 region, which correspond to the C–H stretch
vibrational modes. With regard to N–H modes, the experimental
band about 3,430 cm� 1 corresponds to the symmetric and
antisymmetric coupled modes of the amide nitrogens. The
presence of a single red-shifted band points out that the amide
nitrogens are equivalent and that they are weakly hydrogen
bonded to the nitrogen atoms of pyridine rings. A second set of
N–H bands should be observed, which would correspond to the
carbamate nitrogens. However, these modes are not observed in
the experimental spectra. This is not strange since these atoms are
not forming hydrogen bonds and hence, these bands should
be weaker. The spectra of several minimized conformers of
dimer-NHBoc and trimer-NHBoc were calculated and compared
with the experimental spectra to assign the intrinsic folded
conformations. To ensure that the assignment is correct,
the spectra were calculated from the minimized structure
dimer-NHBoc and trimer-NHBoc exhibiting TIPS groups. The
good agreement between experimental and calculated spectra
(Fig. 3h,i) illustrates that the foldamers adopt a p–p conformation
between the anthracene moieties (see below). The simulated
spectrum for the alternative CH–p conformation for dimer-
NHBoc does not fit with the experimental data confirming
univocally that the observed conformation is p–p (Supplementary
Fig. 1). In the case of trimer-NHBoc the simulations of the
p–p and the CH–p conformers are similar and both could
account for the experimental spectrum (Supplementary Fig. 2).
However, the higher correlation of the simulated p–p conformer
with the experimental spectrum, the clear observation of the
p–p conformation for dimer-NHBoc and the larger stability
found for the p–p conformers from modelling (see below)
indicate a preferential p–p conformation for trimer-NHBoc,
as well.

Overall, from the combination of all different characterization
techniques, we can safely conclude that the foldamers adopt
a folded conformation in the solid state, in solution and in the

gas phase. X-ray crystallography of trimer-NHBoc shows
a folded structure in the solid state even in the presence of
two crystallization DMSO molecules that impose a CH–p
conformation (Fig. 3a). NMR, ultraviolet–visible absorption and
PL measurements in solution (Fig. 3c–g) show the close
proximity of the anthracene moieties (shielding of the NMR
anthracene signals) and an intramolecular electronic interaction
among them (batochromically shifted absorption and emission
features) that gives rise to a complex intramolecular dynamic
equilibrium between different p–p and CH–p conformers
(a single diffusing DOSY signal for the foldamers and
also denaturation of the foldamer at high temperature observed
in VT-NMR, with a preferential p–p conformation as the number
of anthracenes increases (anthracene excimer emission eviden-
cing a face-to-face overlap between anthracenes). Conformation-
specific vibrational spectroscopic studies confirm a more favour-
able p–p conformation for dimer-NHBoc and trimer-NHBoc in
the gas phase (Fig. 3h,i).

Theoretical calculations were carried out to provide a detailed
picture of the fundamental interactions determining the
energetics and structure of the folded molecules (Fig. 4a). The
TIPS groups have a marginal effect on the geometrical and
electronic structure and were omitted. The effect of the (implicit)
solvent was modelled and was found to have a negligible effect on
the geometries of dimer-NH2 and therefore was not used in

CH–TT
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b

LUMO

HOMO

TT–TT

Figure 4 | Computed structure of the foldamers. (a) Representative CH–p
and p–p structures for the different foldamers. (b) HOMO and LUMO

orbitals for CH–p and p–p conformers of pentamer-NH2.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15195 ARTICLE

NATURE COMMUNICATIONS | 8:15195 | DOI: 10.1038/ncomms15195 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


the geometry optimizations. On the basis of the spectroscopic
and X-ray data described above two different types of
folded conformations were explored: CH–p and p–p. On one
hand, the CH–p conformations were based on the crystal
structure of trimer-NHBoc using partial optimizations at the
B3LYP/6-31 g(d,p) level in which only the amines and hydrogens
were allowed to relax, as full optimizations lead to p–p structures.
Trimer-NHBoc crystallizes in a CH–p conformation yet,
when the co-crystallizing solvent molecules were removed
and the structure was optimized in vacuum, it changed into
a p–p structure, which indicates that interconversion between
CH–p and p–p folded structures is energetically feasible. On the
other hand, classical molecular dynamics simulations were run
followed by optimizations at the BLYP/def2-TZP-D3BJ level to
obtain the p–p conformers studied (see Supplementary
Information for full details). Overall, density functional theory
molecular mechanics and semi-empirical models are found to
favour compact p–p conformations, in line with our experimental
observations. The first CH–p stabilized structure of dimer-NH2,
which also shows the highest CH–p character of the whole
foldamer series, is predicted to be 2.1 kcal mol� 1 above the lowest
lying p–p conformer. The distance between stacked anthracenes
for the p–p dimer-NH2 is 3.26 Å. The structures of trimer-NH2,
tetramer-NH2 and pentamer-NH2 are substantially more
complex. As a matter of fact, the computed structures confirm
that the foldamers are held together by a continuous interplay
of aromatic interactions between anthracene units, consistent
with the VT-NMR and DOSY experiments that confirm
a complex conformational equilibrium.

We computed the electronic structure of CH–p and p–p
conformations at the B3LYP/6-311þ g(2d,p) level surrounded by
implicit solvent (Fig. 4b). The electronic structure of the frontier
orbitals for the four foldamers is qualitatively similar for the p–p
and the CH–p series. The HOMO orbitals for all foldamers have
consistently large densities on anthracene moieties, while the
LUMO orbitals have often, but not exclusively, larger densities on
the pyridine-2,6-dicarboxamide residues (Fig. 4b and Supple-
mentary Figs 3–6). In addition, in all studied cases, the terminal
amines are electronically coupled to the terminal anthracenes in
the HOMO orbitals. In the case of the CH–p conformers, the
anthracene units are electronically decoupled at the HOMO level.
In contrast, the p–p conformers, due to the stacking conforma-
tions, show HOMO orbitals with densities that spread over more
than one anthracene moiety. Furthermore, in all foldamers, the
CH–p and p–p conformations show nearly degenerate occupied
orbitals for each anthracene unit with energies from � 5.3 to
� 5.6 eV (Supplementary Table 1). In particular, the HOMO
degeneracy of the p–p conformers extends to the HOMO–1
(dimer-NH2, trimer-NH2, tetramer-NH2 and pentamer-NH2),
HOMO–2 (trimer-NH2, tetramer-NH2 and pentamer-NH2),
HOMO–3 (tetramer-NH2 and pentamer-NH2) and HOMO–4
(pentamer-NH2 only), and in most cases with densities that
spread over more than one anthracene moiety (Supplementary
Figs 5–7). All foldamers also share very similar ionization
potentials ranging from –5.3 to –5.4 eV. A comparison of the
HOMO and HOMO–1 for the CH–p and p–p conformers in the
simplest foldamer, dimer-NH2, illustrates the differences between
conformers (Supplementary Fig. 7). For the p–p conformer, there
is an electronic density path linking the terminal amines and both
anthracene moieties in the HOMO and HOMO–1. Furthermore,
for this conformer both molecular orbitals present very similar
electron densities and energies (110 meV). In contrast, for the
CH–p conformer, the HOMO and the HOMO–1 orbitals show
localized electron densities on different anthracenes and a slightly
larger energy difference (190 meV). Overall, the p–p and CH–p
conformers for the whole foldamer series exhibit degenerate

occupied frontier orbitals with large electron density on the
anthracene moieties and with ionization potentials which are
closely aligned to the Fermi energy of gold (� 5.5 eV). This
provides a viable pathway for charge transport across the
molecule through the anthracene moieties.

Single-molecule charge transport studies. Single-molecule
charge transport characterization of each oligomer was carried
out in single-molecule junctions using the STM-BJ technique50,51.
The experiments were conducted in TCE at very low
concentrations (o10� 9 M) to ensure an efficient anchoring of
individual molecules between the electrodes and to avoid any
aggregation in solution. Briefly, the STM-BJ is based on driving a
Au STM tip in and out of contact to/from a Au(111) substrate
functionalized with the target foldamer. During the contact
process, individual oligomers can spontaneously bridge between
both biased (few mV) electrodes via the two -NH2 terminal
groups (Fig. 1, bottom). The current is then recorded for each
pulling stage in the form of current versus time/displacement
(Fig. 5a), and the traces displaying molecular plateau features
below the quantum conductance (G0¼ 2e2h� 1) were used to
build the conductance histograms (Fig. 5b). The observed
maxima in the histograms represent the most probable
conductance values for the formed single-molecule contact (see
Supplementary Information for details). The most intense (higher
counting) conductance peak, which corresponds to the most
probable molecular junction configuration, shows very large
conductance values in the range of 10� 1 G0 for all foldamers:
0.215 G0 for dimer-NH2; 0.195 G0 for trimer-NH2; 0.178 G0 for
tetramer-NH2; and 0.168 G0 for pentamer-NH2. Such high
conductance values decrease exponentially with an increasing
number of anthracenes in the molecular backbone. By fitting the
conductance data to a simple tunnelling transport regime,
G¼Ae� �L, and using the distance between p-stacked
anthracenes estimated from the simulations (3.26 Å), a very low
length decay constant �¼ 0.02 Å� 1 is obtained (Fig. 4c).

To experimentally confirm that charge transport takes place
preferentially through the interacting anthracene moieties, a
truncated trimer (#-trimer-NH2) was synthesized, in which the
central anthracene ring has been substituted by a non-aromatic
cyclohexane ring (Fig. 5d,e). Conductance histograms for
#-trimer-NH2 showed that the highest conductance peak
(0.017 G0) is one order of magnitude smaller than the
corresponding conductance observed for the homologous
trimer-NH2 (0.195 G0). This substantial conductance drop can
be ascribed to the interrupted conduction channel because of the
lack of an anthracene moiety in #-trimer-NH2 that interferes with
charge transport. Consequently, the high conductance values
observed are undoubtedly owed to the presence of a charge
transport channel across the interacting anthracene units.

To validate the above proposed tunnelling charge transport
mechanism in the studied single-molecule junctions, we have
measured temperature-dependent single-molecule conductance
for the longer pentamer-NH2 moiety (Fig. 5f,g). To avoid
any possible unfolding, we covered a temperature range
below room temperature from 6 to 25 �C. The invariance of the
single-molecule conductance versus temperature around the
working room temperature for the longer backbone (Fig. 5g)
supports a tunnelling transport regime throughout all the
conductance series in Fig. 5b,d. It is worth noticing in Fig. 5g
that while the conductance dispersion (represented as error bars)
is fairly similar within the studied temperature range, the
single-molecule experimental yield (defined as the percentage of
current traces displaying single-molecule events or plateaus over
the total collected traces) drops down by a factor of four from the
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lowest to the highest working temperature, which results in the
observed counts decrease in Fig. 5f histogram peaks from top
to bottom. This behaviour has been observed before in single-
molecule transport studies59 and is ascribed to thermal
instabilities at the molecule/electrode contact as the temperature
is raised.

Overall, the conductance measurements carried out
point towards a coherent tunnelling charge transport process
across the anthracene units as supported by the presence of
a charge transport channel across the interacting anthracene
units—this is consistent with the calculated electronic structure
and evidenced by the conductance drop observed when

comparing trimer-NH2 and #-trimer-NH2 (Fig. 5b,d)—and by
the invariance of the single-molecule conductance versus
temperature (Fig. 5g), which supports a tunnelling transport
regime.

The molecule–electrodes electronic coupling strength (G) has
been estimated from a single-channel resonant tunnelling
model60,61 yielding values between 50 and 60 meV from
pentamer-NH2 to dimer-NH2 (Supplementary Note 2). Even
if such values support the observed coherent tunnelling
behaviour60, they cannot be used to confirm whether
charge transport is resonant, but nevertheless, they point out
to a high coupling scenario62.
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Figure 5 | Single-molecule conductance measurements. (a) Individual pulling traces and (b) conductance histograms of the different foldamers. All

conductance values were extracted from Gaussian fits. (c) Calculated � value for the p–p foldamers. Error bars capture the variability in peak position.

(d) Conductance histograms for #-trimer-NH2. (e) Structure of #-trimer-NH2. (f) Conductance histograms for the pentamer-NH2 at variable temperatures.

(g) Arrhenius plot of the single-molecule conductance for the pentamer-NH2. Error bars represent the s.d. of the experimental conductance values

extracted from the full width at half maximum of the Gaussian fits. Applied voltage bias were 5 mV for the trimer-NH2–pentamer-NH2 series and 50 mV for

dimer-NH2.
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Discussion
We have reported a series of synthetic oligomers consisting of
an increasing number of anthracene moieties that fold by
a combination of hydrogen bonds and aromatic interactions as
demonstrated by a series of studies in the solid, liquid and gas
phases, and by theoretical calculations. Remarkably, such folding
process opens up an efficient through-space charge transport
channel across the interacting anthracene moieties that has been
confirmed both theoretically and experimentally. First, the
computed electronic structure of the frontier orbitals of the
foldamer series illustrates the degeneracy of anthracene occupied
frontier orbitals, which provides a viable pathway for charge
transport across the anthracene moieties. Second, charge trans-
port studies at the single-molecule level show exceptionally high
conductance values in the range of 10� 1 G0 for all foldamers
and a low length decay constant of 0.02 Å� 1. Third, comparative
conductance studies carried out with #-trimer-NH2, in which the
central anthracene ring has been substituted by a non-aromatic
cyclohexane ring, reveal conductance values one order of
magnitude smaller than the homologous trimer-NH2, confirming
that charge transport takes place preferentially through the
channel constituted by the interacting anthracene moieties. While
a complete picture of the transport mechanism at play is still to be
determined, the invariance of the single-molecule conductance
versus temperature supports a tunnelling transport regime.
Overall, this work illustrates that carefully designed foldamers
provide a new and efficient means for charge transport at
the single-molecule level and also new application perspectives
for foldamers.

Methods
Synthesis and structural characterization. All commercially available reagents
and solvents were used without further purification. Anhydrous tetrahydrofuran
(THF) and toluene were dried through a SPS solvent purification system. All
reactions of the compounds were carried out under a nitrogen atmosphere and
oven-dried glassware. Column chromatography was carried out using Silica gel 60
(40–60 mm; 230–400 mesh) from VWR. Thin layer chromatography was performed
to follow the reaction process by using sheets (20� 20) of aluminium pre-coated
with Silica gel 60 F254 from Merck. Ultraviolet-active compounds were detected
with an ultraviolet lamp from CAMAG at wavelength l¼ 254 or 366 nm. 1H-NMR
and 13C-NMR spectra were recorded on Bruker Avance 400 or 500 spectrometer at
298 K using partially deuterated solvents as internal references. Chemical shifts are
reported in (d) parts per million and referred to the residual solvent peak. DOSY
and VT-NMR measurements were performed at the NMR General Services of the
University of the Basque Country by Dr José Ignacio Miranda. Matrix-assisted laser
desorption ionization (coupled to a TOF analyser) experiments were recorded on
Bruker REFLEX spectrometer at POLYMAT by Dr Antonio Veloso. X-ray
diffraction measurements were performed at the X-ray diffraction unit of the
General Services of the University of the Basque Country by Dr Leire San Felices.
Intensity data were collected on an Agilent Technologies Super-Nova
diffractometer, which was equipped with monochromated Cu ka radiation
(l¼ 1.54184 Å) and Atlas charge-coupled device detector. Measurement was
carried out at 150.00(10) K with the help of an Oxford Cryostream 700 PLUS
temperature device. Data frames were processed (united cell determination,
analytical absorption correction with face indexing, intensity data integration and
correction for Lorentz and polarization effects) using the Crysalis software package.
The structure was solved using Olex2 and refined by full-matrix least-squares with
SHELXL-97. Final geometrical calculations were carried out with Mercury and
PLATON as integrated in WinGX.

Foldamer handling. The -NHBoc and -NH2 foldamer series are sensitive to
oxygen and light and decompose in solution to the corresponding anthracene
endoperoxides in about 24 h. All anthracene-containing compounds were
characterized from fresh samples in a light-free environment. In the case the
experiments required more than 2 h they were carried out in a nitrogen- and
light-free environment (either under an nitrogen stream, using airtight glassware or
handled in a glovebox).

Optical characterization. Absorption and PL spectra were recorded on
a Perkin-Elmer Lambda 950 spectrometer and a LS55 Perkin-Elmer Fluorescence
spectrometer, respectively, at 298 K.

Infrared ion dip spectroscopy. Approximately 40 mg of foldamer (dimer-NHBoc
or trimer-NHBoc) were used in the experiments. The sample was mixed with
nanotubes and deposited on a graphite cylindrical rod (15 mm long and 4 mm
diameter). A stepper motor rotated and translated the sample. So, the infrared
pulses (1,064 nm, B8 ns) from a Q-switched Nd:YAG laser found fresh sample.
A full description of technique is described here63. The foldamers exhibit broad
absorption electronic spectra due to several chromophore anthracene groups. The
infrared spectra were recorded at 34,343 and 34,013 cm� 1 for dimer-NHBoc and
trimer-NHBoc, respectively. Finally, the experimental infrared spectra were
compared with theoretical spectra. The frequencies of the NH and CH stretch
modes, expressed in wavenumbers, were corrected for anharmonicity using the
multipliers, 0.995 and 0.98, respectively.

Computer modelling. We studied different conformers for the dimer-NH2 and
trimer-NH2 foldamers. The TIPS groups have a marginal effect on the geometric
and electronic structure of these systems and were omitted for computational
efficiency. To generate the starting structures, we first performed molecular
dynamics simulations at 298 K with the molecular mechanics MMFF94 force field
as implemented in the software Tinker. Collisions with solvent molecules were
considered implicitly through the use of stochastic dynamics with a friction
coefficient of 2 ps to improve conformational sampling. Simulations were run for
10 ns and snapshots of the trajectory were selected at 50 ps intervals yielding
200 different conformations, which were optimized at MMFF94 level and at the
PM6-D3H4 level64. The so-obtained geometries were filtered by an algorithm
explicitly considering topological symmetry with a root mean squared deviation
cut-off of 0.5 Å (ref. 65). The unique conformations were subsequently minimized
at the BLYP/def2-SVP-D3BJ (also used for infrared spectra simulations) and
BLYP/def2-TZVP-D3BJ (geometries and total energies) levels66 within the RI
approximation with the programme Orca 3.03 (ref. 67). The effect of the (implicit)
solvent was modelled with the programme Gaussian 09 (ref. 68) and found to have
a negligible effect on the geometries of the dimer-NH2 and was not used in the
geometry optimizations. The aforementioned procedure produces prevalently
conformers with p–p stacked anthracenes. The lowest energy minimum for the
dimer-NH2 and the minima presenting the largest contact between anthracene
moieties in the trimer were selected as representative for the p–p conformations.
The pentamer-NH2 p–p conformation was produced by fusing two trimer-NH2

molecules followed by optimization, while the p–p tetramer-NH2 was obtained
by cutting out one monomer from the pentamer-NH2 followed by optimization.
CH–p conformers were derived from the trimer-NHBoc crystalline structure by,
first, substituting the NHBoc groups by amine groups and, second, using partial
optimizations at the B3LYP/6-31g(d,p) levels where only the amines and hydrogen
atoms were allowed to relax. This was necessary as full optimizations favour p–p
stacked structures. The CH–p pentamer-NH2 was built by fusing two CH–p
trimer-NH2 molecules, but in this case only the central CH2–antracene–CH2 unit
was optimized. The CH–p tetramer-NH2 was obtained cutting out one monomer
from the pentamer. The electronic structure for neutral and charged foldamers was
computed at the B3LYP/6-311þ g(2d,p) level, as with this Hamiltonian HOMO
and LUMOs eigenvalues are similar to the adiabatic ionization potential and
electron affinity of conjugated molecules in low-polarity solvents69. The adiabatic
ionization potential and electron affinity were explicitly computed for all foldamers
and match the HOMO and LUMOs eigenvalues for these systems.

STM break junction. Foldamer-NH2 TFA salt was dissolved in MeOH (saturated)
and the free amine was precipitated by addition of triethylamine (TEA), the solid
was collected by centrifugation and was washed with MeOH/TEA 20:1 and twice
with MeOH and finally vacuum-dried until constant weight. All the conductance
measurements were carried out in the dark in anaerobic conditions with a
mechanically and electronically isolated PicoSPM I microscope head controlled by
a Picoscan 2500 electronics (all from Agilent) and using a homemade PTFE STM
cell. Data captures were acquired using a NI-DAQmx/BNC-2110 National Instru-
ments (LabVIEW data acquisition System) and analysed with LabVIEW code. The
procedure of a typical break-junction experiment is based on bringing the STM tip
to tunnelling distance over a flat clean Au (111) surface area as a first step. The
STM feedback is then turned off and the tip is driven into and out of contact with
the substrate at a speed of 1–2 V s� 1. These two-point feedback loop is used to
collect thousands of current decays (5,000–6,000). Single-molecule conductance
(G) was determined using the expression G¼ Istep/UBIAS, where I is the current and
U is the voltage difference between the two junction electrodes. The current decays
are accumulated to semi-logarithmic conductance histograms. The observed pla-
teaus in the individual current decays result in the observed peaks in the con-
ductance histograms and provide an averaged value of the single-molecule
conductance. Transient curves that are either noisy or that showed smooth
exponential decay because of the absence of molecular bridge formation were
rejected when building the histograms using an automatic selection procedure
driven by a code written in LabVIEW. The histograms were compiled by applying
the same automated selection criteria to each set of the recorded decay curves. The
selection procedure allows current traces showing counts exceeding a defined
threshold to be added to the conductance histogram. The percentage decay curves
that showed clear molecular steps were typically 8–15% and were all selected for
building the histograms. This selection process made peaks in the conductance
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histograms more prominent above the tunnelling background and also allowed a
quantitative measure of the yield of molecular junction formation.

Data availability. Full details on the synthesis and characterization of the
foldamers and additional details regarding infrared ion dip spectroscopy, computer
modelling and STM break junction are given in the Supplementary Information.
Crystallographic data for trimer-NHBoc are deposited with the Cambridge Crys-
tallographic Data Centre under reference number CCDC-1542042.
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