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Abstract—In this paper, we study a new approach in a posteriori error estimation, in which
the numerical error of finite element approximations is estimated in terms of quantities of interest
rather than the classical energy norm. These so-called quantities of interest are characterized by
linear functionals on the space of functions to where the solution belongs. We present here the theory
with respect to a class of elliptic boundary-value problems, and in particular, show how to obtain
accurate estimates as well as upper and lower bounds on the error. We also study the new concept
of goal-oriented adaptivity, which embodies mesh adaptation procedures designed to control error
in specific quantities. Numerical experiments confirm that such procedures greatly accelerate the
attainment of local features of the solution to preset accuracies as compared to traditional adaptive
schemes based on energy norm error estimates. © 2001 Elsevier Science Ltd. All rights reserved.

KeywordS—Goal-oriented error estimation, Quantities of interest, Error control, Mesh adaptivity,
Upper and lower bounds.

1. INTRODUCTION

In recent years, a new approach to a posteriori error estimation has emerged for which the
numerical error is estimated and controlled in terms of so-called quantities of interest. We shall
refer to this approach as goal-oriented error estimation as the error is now measured with respect
to a specific goal of the analysis instead of in the classical energy norm. Several methodologies
have been advanced in [1-7]. This paper is a continuation of our earlier work [8] in which
we presented the general theory as well as numerical experiments for the case of a two-point
boundary value problem. In particular, we study here the quality of these error estimates for
two-dimensional applications.

The quantities of interest represent physical quantities of the solution such as averages, flow
rates, velocities, or shear stress at a point. Mathematically, these are characterized by linear
functionals on the space of functions to which the solution belongs. The objective in goal-
oriented error estimation is to relate the residual, the source of error, to the error in the quantity
of interest. This involves the computation of an influence function, with respect to the linear
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functional, given as the solution of the adjoint of the primal problem. The role played by the
influence function is to indicate how the information is propagated from the residual to the error
for the specific measure.

One attractive feature of the methodology is that the error estimates are given in terms of
classical energy norm estimates of the errors in the numerical solution and numerical influence
function. Reliable and accurate techniques have been developed to date to estimate the er-
ror in the global energy norm, using either residual methods (see [9-14]) or recovery methods
(see [15,16]). We also describe how to estimate lower and upper bounds of the error in the goal.
A natural adjunct to this new error estimation approach is goal-oriented adaptivity, where mesh
adaptation is designed to accelerate the rate of convergence of the solution with respect to the
quantity of interest.

Following the introduction, we present in Section 2 a model problem and relevant notations.
The presentation of the theory of goal-oriented error estimation follows in detail in Section 3. We
briefly describe, in Section 4, the methodology to derive lower and upper bounds on the error
in the energy norm needed for our goal-oriented error estimates. We propose, in Section 5, an
adaptation strategy to control the error in the quantity of interest. Finally, the method is applied
to a two-dimensional boundary value problem with the numerical results recounted in Section 6,
followed by a summary of our major conclusions.

2. MODEL PROBLEM AND NOTATION

Let © be an open bounded domain of R¢ with Lipschitz boundary 8. We consider the model
boundary value problem which consists of finding the solution u of

—Au+cu = f, in Q (2.1)
subject to the boundary conditions
0
—a—% =g, only, (2.2)
and
u =0, on ['y. (2.3)

The prescribed data is assumed to be smooth, in particular f € L2, ¢ is a nonnegative constant,
g € L*(T',). The boundaries I'g and 'y, are such that TqN Ty = 0, T4uTy = 69, and we assume
here that measT'y > 0.

The corresponding variational form of this problem is to find u € V such that

B(u,v) = F(v), YoeV, (2.4)
where V is the Hilbert space
V={veH1; v =0, oan} (2.5)
and where .
B(u,v) = / (Vu - Vv + cuv) dz, (2.6)
Q
F(v) = / fudx +/ guds. (2.7)
Q T

The bilinear form B(-, ) is symmetric positive-definite on V x V, and therefore, defines an inner
product on V. It is associated with the energy norm

llvll, = v/ B(v,v). (2.8)

From the Lax-Milgram Theorem, we know that problem (2.4) admits a unique solution u € V.
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In order to approximate the solution u, one may construct a finite element space V*? C V of
hierarchical piecewise polynomial functions, where h and p refer to the size and maximal degree
of the shape functions for each element, respectively (see, e.g., [17]). The mesh, formed by the
union of all elements, is assumed to coincide exactly with €. Using the classical Galerkin method,
the finite element approximation us, € VP is the solution of

B(up,p,v) = F(v), You e Vhe, (2.9)

The numerical error in the approximation up , of v is naturally defined as the function e € V
such that
e=1u—Upp. (2.10)

Replacing u by (up,p + €) in (2.4), the error is shown to be governed by the equation
B(e,v) = R}, ,(v), YveV, (2.11)
where R}, , denotes the residual
h,p(V) = F(v) = b(un,p,v), veV. (2.12)

The residual is a linear functional of the dual space V' which depends on the data and the finite
element solution up p. It can be interpreted as the source of error as it is simply the source term
in (2.11).
We immediately notice from (2.9) and (2.12) that the residual R}, (v) vanishes for all v € vhe,
ie.,
yo(v)=0, VveVh?, (2.13)

Using (2.11), this yields the well-known orthogonality property (with respect to the inner product
B ('v ))7
B(e,v) =0, VwveVh?, (2.14)

The principal goal in a posterior: error estimation is to postprocess the residual in order to derive,
in an inexpensive manner, relevant measures of the error.

3. GOAL-ORIENTED ERROR ESTIMATION

The object of goal-oriented error estimation is to assess the accuracy of finite element solutions
in measures other than the classical energy norm. In the following, we review the general approach
assuming the measure can be characterized as a linear functional on the solution space. We then
propose several examples of functionals of potential interest.

3.1. General Approach

Let L denote a bounded linear functional in V' and let us suppose that the goal of the compu-
tations is the evaluation of the quantity L(u). Then, the accuracy of L(usp) is assessed in terms
of the error £% € R, which reads, due to the linearity of L,

EL = L(u) — L(unp) = L(u — upp) = L(e). (3.1)

One possible way to evaluate £L would be to approximate the error e using (2.11) and then to
compute £L' = L(e). However, problem (2.11) for the error is, of course, generally too expensive
to solve numerically. The alternative approach is to relate L(e) to the residual Ry p without
having to compute the error e. Such an approach is justified since the residual contains all the
information which drives the numerical error.
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Hence, the starting point is to find the relationship between the quantity L(e) and the source
of error R}, ,; namely, we would like to find a linear functional w, if one exists, such that

Lie) =w (RY,) . (3.2)

We shall refer to w as the influence function with respect to L, as it indicates the influence of
the residual on L(e). At this stage, we recognize that w is an element of the bidual of V, and
since V was assumed a Hilbert space, and a fortiori a reflexive space, (3.2) becomes

L(e) = Ry p(w), (3.3)

where w is now identified with an element of V.
We now show how to derive the influence function. Using (2.11) and (3.3), we immediately

obtain
L(e) = B(e,w). (3.4)

The equality above is necessarily verified when w € V is the solution of
B(v,w) = L(v), YveV. (3.5)

This problem has often been referred to as the adjoint or dual problem (see, e.g., [18]) of the primal
problem (2.4). The Laz-Milgram Theorem allows us to conclude the existence and uniqueness
of winV.

LEMMA 3.1. Let wpp € VP be a finite element approximation of w such that
B(v,wnp) = L(v), VveVh? (3.6)

Then
L(e) = B(e,¢), (3.7)

where € € V denotes the numerical error in wp, p, namely € = w — wh p.

PRrRoOF. From the orthogonality property (2.14), we have
B(e,wnp) = Ry p(wh,p) = 0. (3.8)
And combining (3.4) and (3.8), we get
L(e) = B(e,w) — B(e,wnp) = Ble,w — whp) = Ble,¢), (3.9)

as asserted. We remark from (3.8) that the approximation wy, fails to provide any valuable
information on L(e). ]

For the model problem considered here, the bilinear form B(:,-) defines an inner product on
V x V with associated norm || - |le. A new relationship for L(e) has been suggested by Babuska (7]
as the following.

THEOREM 3.1. Under the foregoing definitions and assumptions,
1 21 2
L(e) = Ble,) = lle + &l — 5lle — el (3.10)

PROOF. We note that

lle + €|l = B(e + &,e + &) = B(e,e) + 2B(e, ) + B(e, €), (3.11)
e — |2 = B(e — €,e — €) = Ble,e) — 2B(e,€) + B(e, ). (3.12)
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Combining these two results, we have
le+ellZ ~ lle - ell2 = 4B(e,e), (3.13)

which provides, with Lemma 3.1, the relation to be proved. i

We propose a modified version of (3.10) using a scaling factor s € R,

2 2

(3.14)

2L -

L(e) = B(e,e) = (se, s) 4 H

[:4 e

The value of s is chosen so that the quantities ||se|. and |l¢/s||c have same amplitudes, i.e.,
|selle = |l&/sle, which implies that

llelle
llelle

(3.15)

Such a choice of s is justified because it minimizes the quantities |[se + £/s||? and ||se — ¢/s]|2.
Moreover, the scaler s ensures the scalability of relationship (3.14). If we multiply the load F
in the original problem by a factor a, the term on the right-hand side of (3.14) just needs to be
multiplied by a to obtain the new error L(e). This result is not true in the case of (3.10).

3.2. Approximations and Bounds for the Error Quantity L(e)

Equation (3.14) establishes the relation between the error quantity L(e) and energy norms of
linear combinations of e and . Let nl“;w, n‘fpp, Thow @nd 7, denote global error estimates (we
show in Section 4 how they are derived) such that

Tiow < s+ 5| < b (3.16)

nlow = HSC - _II < nupp (317)

It is then straightforward to derive the following estimates of L{e):

L(e) ~ nggy = i (i) — % (o) (3.18)
L(e) ~ Mgy = % (nupp) -2 (nupp)z’ (3.19)

as well as the averaged estimate
Le) = T = 5 (ks + 7). (3.20)

THEOREM 3.2. LOWER AND UPPER BOUNDS. Let the quantities nf,, and Nipp be defined as

2 1, _ |2
(ow) ™ — 7 (Mapp) ™ (3.21)
1
4

(Tiow)” - (3.22)

L
Thow =

PN RN

2
Tupp = (anpp) -

Then, 1, and nk,, provide a lower and upper bound on L(e),

Thow < L(e€) < k. : (3.23)

We note that the average of n;, and nk,, gives nk, as well.
Proor. Immediately follows from (3.14). |
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REMARK 3.1. QUALITY OF THE BOUNDS AND ESTIMATES. We evaluate the quality of the
bounds n]{;w and n{;pp in terms of the effectivity indices of n;;w, 77:},;,7 Mow> and 75, Let the
effectivity indices be

- Mow ~ ___ "p

low ™ Jlse —¢/slle’ WP lse —g/sle”
+ +

+ _ _ Thow A\t = pp

v T Jlse+¢/slle” - TUPP T Jlse +¢/slle”

Then, using (3.14) and assuming L(e) different from zero, we have
Tox — - (5 15 = § )

= L_(le—) (% (A]‘zw)2 ”se + % ’
= e (3 0 e+ 5

so the following effectivity index for the lower bound on L(e) is given by

1 2
)+ 1 (O - )7 Lo 2L

- 2 £
(Aapw) " [Jse = =

1 2
i )

1

4

g ()\;pp)2 ”se + %“j + ()\;pp)z L(e)) ,

e

L
)\L — Tow — (’\\:pp

low L(e)

In the same manner, we have for the upper bound

L 1 s 2
My = T = () + 7 (On)? — ()7) Lol
Therefore, the quality of the bounds directly depends on the ratio ||se + ¢/s||?/L(e). This ratio
can take on large values depending on the quantity of interest. Also, when adaptivity aims at
controlling L(e) instead of ||e|le, this ratio may have a tendency to increase. As a consequence,
in order to obtain effectivity indices AL, and /\ﬂpp close to one, the effectivity indices with
respect to the quantities in the energy norm should be excellent, i.e., very close to one, so that
(52 = Ogpp)? and (Af,p)% — (Agg,,)? are close to zero. Otherwise, we may expect A, and

)\ﬂ‘pp to deteriorate when the ratio becomes very large.

On the other hand, the effectivity index of the estimate né‘el is given by

L 2
7 2 1 ~ 2 _ 2\ llse+¢e/s]|
Mo =7 = )+ 1 (i) - OR0)°) g

This time, the difference (Af,)? — (Ag,)? is very close to zero as we expect the global error
estimator to provide similar effectivity indices /\i';w and A, Therefore, the quality of nL, should
not depend on the ratio ||se + £/s||?/L(e), however large it may be. The same remark holds for
the estimates n%, and nZ,.

An alternative approach to derive bounds on the quantity L(e) follows from relation (3.7)

employing the Cauchy-Schwartz inequality
IL(e)l = [Ble,&)| < 3 1Br(e, )l < 3 lelle s llelle &, (3.24)
K K

where B (-,-) and | - ||,k denote the restrictions of B(-,-) and | - || on a element Q. Let n*
and 7* denote two global estimates of ||el|e and ||¢]le. Since n* and 7 can be decomposed into
the contributions 1}, and % for each element Q, we define

T =Y nni (3.25)
K
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such that
L)l <> llelle xllelle.x ~ n&. (3.26)
K

This approach has been followed by Rannacher et al. [1-3] with the exception that they use
explicit-type and interpolation-type error estimators to evaluate the local contributions ||e]e,x
and ||elle,x, respectively, for which unknown constants are introduced.

3.3. Examples of Bounded Linear Functionals

We provide here some examples of quantities of interest and characterize them in terms of
bounded linear functionals. In finite element applications, it appears suitable to express the
quantity of interest, if possible, in the form of an integral over the domain Q, since integration is
at the heart of all finite element codes. Let us assume V = H}(Q) in what follows.

A quantity of possible interest is the average of the solution u over a subdomain Q, € Q. The
corresponding linear functional is written as

L{u) = I_S%_I /Q k(%) u(x) da, (3.27)

where k(x) is equal to one if x € €2, and zero, otherwise, and where |Q,| defines the area or
volume of §1;.

PROPOSITION 3.1. Let u € Hg(Q). Then, the linear functional L(u) = [, kudz is bounded on
Hy(Q).
PROOF. Since u € H}(2) and k € L2(2), we obtain, using Minkowski’s inequality,

L(u) = /n kudz < [[Efollulle < Co Q] fulr, (3.28)

where Cj is the Poincaré constant. 1

When the solution is a vector-valued function in (H}(2))¢, one may be interested in the flux
through 09, of ,, in which case the functional reads

L(u)=/aQ u~nds=/Q V-udx:/nk(x)v'u(x)dm. (3.29)

This also defines a bounded linear functional.
It may happen that the goal is to evaluate nonlinear quantities N(u) of the solution u such as

N(u) = / u? dz. (3.30)
Qs
In that case, the error quantity £ reads

€N=N(u)—N(uh,p)=/ u2—uﬁypd:z:=2/

uh,peda:—i—/ e’ dz. (3.31)
Q, Q. Q,

Neglecting the higher-order term in e, we may consider the following linear functional, which is
bounded:

Lie) = 2/n uppeds = 2 /Q k(x)ﬁh,p(x)e(x)d:c (3.32)

and apply the goal-oriented error estimation methodology described above in order to obtain an
estimate of EN ~ L(e).

However, there exist numerous other quantities of interest, which cannot be characterized by
a bounded linear functional. In particular, this is the case for the value of the solution at a given
point of the domain. This issue is addressed in the next section.
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3.4. Extension to Pointwise Error Estimation

Pointwise error estimation aims at assessing the accuracy of the solution or quantity of the
solution at a given point xo € §l. Unfortunately, for v € H*(Q2), @ C R, we know from the
Sobolev Embedding Theorem that v may not be defined at xp when the geometrical dimension d
is equal or greater than two. In other words, the linear functional corresponding to the quantity
of interest u(xg),

L{u) = u(xqa) (3.33)

is not necessarily bounded.
We appeal here to the use of mollification (see [19, Chapter 2]) in order to circumvent this
issue, which allows us to introduce the following functional:

LWF%%&@=LM$&&—MML (3.34)

where the mollifiers k. form a family of infinitely smooth functions in {—oc, 0c)? characterized by
the parameter €. The guantity {u).(Xo) is viewed as the average of u over a small neighborhoed
of xg. The mollifiers k. are chosen here of the form

Cex (]x|2 1)_1 if x| <
ke(x) = P\ & ’ © (3.35)
0, if x| = €,
where the constant C, which depends on d, ¢, and xq, is selected to satisfy
[ ke(x —xp) dz = 1. (3.36)
0

As a remark, we note that it is not necessary to employ so smooth mollifiers to obtain a bounded
linear functional on H'($2).

Our motivation to use mollification procedure relies on the following properties. When u €
L?*(2), the function x¢ +— {u)(Xo) converges to u when ¢ tends to zero. Moreover, when u is
constant or linear in the ball B{xg, €} C £2, we have {u) (xg) = u(%g) independently of the value
of e.

REMARK 3.2. NUMERICAL INTEGRATION. Inorder to compute L{u) in (3.34) and the constant C
in (3.36), it is necessary to perform a numerical integration of the mollifiers k.. These functions
are very local in nature, and because integration is generally carried out using classical Gauss
quadrature rules, it appears necessary to limit the size of the support of k.(x — xp), equal to 2,
with respect to the mesh size h of the element containing the point xg. Therefore, one requires
that

ks Z, (3.37)

where & is a given fractional number, 0 < k < 1. In order to attain an acceptable accuracy for L
while avoiding too many Gaussian points, we have suggested the value k = 1/4 in [8].

This approach also applies to estimate the pointwise error in directional derivatives of the
solution. We then consider the bounded linear functional

L(n) = {n - Vu)(xg) = Ln- Vu(x) ke(x — %) dz, (3.38)

where n is the unit vector representing the direction of interest.
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4. ERROR ESTIMATION IN ENERGY NORM

In the present section, we briefly analyze the methodology to obtain global lower and upper
bounds on the error in the energy norm to be utilized in goal-oriented error estimation. We recall
that the error e in the numerical solution uy, , is governed by

B(e,v) = R} ,(v) = F(v) — B(upp,v), Yvev, (4.1)
whereas the error ¢ in the finite element approximation wy, ;, of the influence function satisfies
B(v,e) = R} ,(v) = L(v) — B(v,whp), VveV. (4.2)

In what follows, the error estimates are presented with respect to the error e only as the results
straightforwardly apply to e.

The objective is to estimate the quantity |e||e by the residual approach. Introducing the norm
of the residual in the dual space V' as

Ry )

Ri |l = sup L—r>o—, 4.3
I3, ven\{oy vl (43)

the error can be related to the residual as follows.

THEOREM 4.3. Let e € V' be the error in the approximation uy, , of the exact solution of prob-
lem (2.4) and let R}, , € V' denote the residual as defined in (4.1). Then

lelle = {| R ,|l, - (4.4)
Proor. Replacing v by e in (4.1), we have
lell2 = B(e, ) = R} ,(e) < ||R¥ |, llelle,

which shows that |lelfe < [ R} ,|l«. Next, we show that R% ol < llefle- From the definition of
the norm of the residual, using equation (4.1) and the Cauchy-Schwartz inequality, we get

RY (v B
Re . = sup RO 1Bl el
P venvioy Ivlle wenvioy  Ule T wevvioy vl
which completes the proof of the theorem. [}

Thus, the energy norm represents the optimal norm in which the error can be estimated using
the information provided by the residual. Unfortunately, the norm of the residual is not readily
computable. In fact, using the Riesz Representation Theorem, there exists a unique function
¢ € V which satisfies

[R5 511, = llelle (4.5)

and
B(p,v) = R}, ,(v), YveV. (4.6)

Since problems (4.1) and (4.6) are identical and because their solutions are known to be unique,
we conclude that ¢ = e. We, nevertheless, retain the notation ¢ since the functions @ and e may
be different for problems which are not symmetric positive definite. Note that problem (4.6) is
infinite dimensional, which implies that only approximations of ¢ can be obtained. The objective
is then to postprocess the residual in a efficient manner in order to derive lower and upper bounds
on [le|le, i.e., IR} llx. This may be achieved by constructing two adequate spaces V_ and V,
V_CV CV,, so that

Ry (v R} (v)
o PEO] <y (B

LI | 4.7
it A T ves ) T .1

provided that one can find a proper extension of ’R,g,p to the space V.
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4.1. Upper Bound for the Error in the Energy Norm

We present here the outlines of the methodology proposed by Ainsworth and Oden [10]. Let
P" denote a partition of Q into the elements Qx, K = 1,...,N,. It is convenient to consider the
local spaces Vi for each element Qx € P* as

Vi = {vk € H'(Qk); vk =0, on Ty N 0Qk } . (4.8)
Then, we introduce the broken space V(P") as
V (P") = {ve L*(Q);vk = vlx € Vi, Yk € P} (4.9)

It is important to observe that V C V(P").
We denote the restrictions of the forms B(:,-) and ’Rz,p(-) on an element Qx of the partition
by

Bi(uk,vk) = VugVug + cugvg dz, (4.10)
Qx ‘

Riupx(vk) = | flkvkdz — / Vunp|k VUK + cunpl kvi d. (4.11)
QK QK

Then, extensions of the residual R}, , to the whole space V(P") are given by

2850 = X [Ri (el +

9Kk dS} ; (4.12)
K

Qk

where the arbitrary functions gy must satisfy the condition
}:?{ gxv|kds =0, VYveV. (4.13)
7 Jonk

For example, the condition above holds if we choose gk = 0 on each element edge lying on 99
and if we choose gx + g5 = 0 for each interior edge common to two elements Qg and .

THEOREM 4.4. UPPER BOUND. For each element Qy € P*, let px € Vi denote the solution of
Bi(ox,vk) = R p k(vK) +%9 9KV ds, Yok € Vk. (4.14)
Qx

Then

lelle = [[REII. < \/Z loxl2 . = \/Z Br(ox, o). (4.15)
K K

PROOF. See [10,20]. ]

The dimension of the spaces Vi is infinite, so the local problems (4.14) are, at best, approxi-
mated in local finite element spaces. For instance, instead of (4.14), we solve for $x € V,’}”’ such
that

Bk (Pk,vK) = Rh 5k (vK) + 1{90 gxvr ds,  Vug € VP, (4.16)
K

where 17,';”’ is the discrete space V};’p augmented by the addition of polynomials of degree up to

p+q, ¢ > 0 (we shall use ¢ = 2 in the numerical experiments). The functions gx are determined by

the equilibrated flux splitting method, as described in [10]. They are constructed using piecewise

linear functions on each edge and by enforcing the equilibration condition

RE, k(1) + }{ gicds = 0. (4.17)
[5197%
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This condition is actually necessary when ¢ = 0 to ensure the solvability of the local prob-
lems (4.16).
We finally denote ), the error estimate in the energy norm

Moy = \[Z 12 = \/Z B, 65). (4.18)
K K

The quantity 7}, is not guaranteed to provide an upper bound on |iel due to the approxima-
tion @k of px. However, the numerical experiments will show that 77, is an upper bound when
h is sufficiently small.

4.2. Lower Bound for the Error in the Energy Norm

In order to obtain a lower bound, we have seen that it is necessary to determine a vector
space V_ C V. Let W be the finite element space, commonly called the space of perturbations,
constructed as

W#£{0}, WnvVhP={0}, WuVhrcV. (4.19)
THEOREM 4.5. LOWER BOUND. Let ¢ € W denote the solution of
B(,v) = R}, ,(v), YveW. (4.20)
Then
llelle = [|R% oI, = llle- (4.21)
PRrROOF. The proof immediately follows from the fact that y € W C V. ]

The choice of W is not unique. It is controlled by the trade-off between cost and accuracy. For
high accuracy, it is desirable that W contains many degrees of freedom, but this in turn would
result in a prohibitively expensive problem (4.20). Here, W is conveniently constructed from
layers of piecewise polynomial basis functions involving polynomials of degree between p+ 1 and
p+4q, g 2 1. These basis functions are commonly called the bubble functions. The distribution
of ¢ over the elements is usually chosen to be uniform, i.e., ¢ = 1 or 2, but we advocate an
adaptative search for g. In two-dimensional problems, for example, the space W can consist,
as a first guess, of “edge” bubbles of degree ¢ = 1. Then it can be successively enriched with
“interior” and “edge” bubbles of higher degree in the elements where we have large contributions
to the previous global estimates. Finally, in order to efficiently solve the global problem (4.20),
we propose to use the conjugate-gradient method performing only a few iterations. The quality
of this lower bound depends on the “richness” of W, that is on the value of q, and on the fact
that the spaces W and V" should be nearly orthogonal with respect to the inner product B(:, ),
in the sense that there is a constant v, 0 < v < 1 such that the strengthened Cauchy-Schwartz
inequality holds:

[B(v,w)] < vllvl, ||wlle, Voe VPP, Yuwe W (4.22)

Finally, the lower bound can be improved by a recycling process (its cost is negligible when
the finite element solution uy ;, is solved using a direct method) as follows.

THEOREM 4.6. IMPROVED LOWER BOUND. Let 1 € W be the solution of (4.20) and let ¢ € V?
be the function which satisfies

B(¢,v) = —B(%,v), VYveVhe, (4.23)

Then
lelle = |R% 51l = VIIWIZ + ]2 (4.24)
PROOF. See [8,20]. ]

We denote by n{,, the error estimate in the energy norm

Tow = VI¥IZ + 18112, (4.25)

which provides a guaranteed lower bound on |e]|..
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4.3. Bounds for the Goal-Oriented Error Estimation

We now construct the global bounds 7y5.,, 75,0, n]tw, and nj'pp introduced in Section 3.2.
These are actually computed using the estimates ¢, ¢¢, and @$ with respect to the error e,
solving (4.20), (4.23), and (4.16), respectively, and the estimates ¥°, ¢¢, and @% with respect
to €, solving the same problems as before but using the residual R}’ , instead of R}, ,. Observing
that these problems are all linear, we then have the global lower bounds

WE 2 c ([2
Tow = A[||8¥E ——| +]s¢*——| > (4.26)
s s
€ 4
T - 112
Miw = A/ |[s9e+ =] +|sec+ =] , (4.27)
s |, s .
and the global upper bounds
. . -
Tupp = Z $ Pk — ‘f‘ ; (4.28)
N K e, K
& |”
Taop = 4| 2 ||5 % + p : (4.29)
\% o

Moreover, the scaling factor s in the expressions above is obtained by using either estimates of
the global energy norms |le|| and |l¢|..

5. ADAPTIVE CONTROL OF THE ERROR L(e)

The simplest strategy to control the approximation error consists in an iterative process whose
steps are described below. This strategy is very general as it does not require any information
about the type of problem. The algorithm is described in Figure 1.

. Construct an initial coarse mesh in .

1

2. Compute the finite element solution up 5.

3. Compute an estimate of the error in a quantity of interest.

4. Check whether the relative error is smaller than a given preset tolerance C*°L.
The iterative procedure terminates if the tolerance is reached.

5. If the tolerance is not achieved, adapt the finite element mesh in order to
reduce the effects of the sources of errors, either by h-refinement or

p-enrichment.

6. Go to Step 2.

Figure 1. Algorithm for error control.

We have seen in Section 3 an approach to estimate the error with respect to a bounded linear
functional. In this case, the relative error is given by

€rel = ‘i(i)l (51)

\L(w)|

Since both the exact solution and error are unknown, we use the available approximations instead.
Then, the mesh needs to be adapted whenever

lnL| t.ol
I (] 2 &2

€rel &
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where 7~ denotes an error estimate for L(e). We note however that the relative error needs to
be used with caution as the contributions to the quantity L{u) may cancel out for nonzero u.

The objective in mesh adaptation is to refine the elements which exhibit large sources of
error. In the present case, this simply means refining the elements which contribute the most
to the quantity L(e). This is made possible by decomposing the estimate n into elementwise
contributions. We may use, for example, equation (3.25) such that

nt =Y "nk = nkng. (5.3)
K K
Therefore, an element Qy of the mesh is refined if

——"’I-?—L > code, (5.4)
max (n%)

Here, C?9P ig a user-defined parameter ranging between 0 and 1.

In the numerical experiments presented in the next section,-meshes are made up of quadrilateral
elements. The refinement procedure consists here in dividing an element into four subquadrilat-
erals, allowing for “hanging nodes”, as shown in [17].

6. NUMERICAL EXAMPLE

We now illustrate the theory with examples. Numerical results were presented in (8] in the case
of a two-point boundary value problem. We study here the case of two-dimensional boundary
value problems.

In the following, we seek the solution of the Laplace equation on a square domain of unit size
Q =(0,1) x (0,1),

~-Ay = f, in Q, (6.1)

which satisfies the boundary conditions

%=0, onz=0, z=1, y=1,

u =0, ony=0.

The solution of this class of problems belongs to the space V = {v € H(Q);v = 0 on y = 0}
for sufficiently smooth f. Here, we consider the particular problem where the exact solution u is
given by the function

u(z,y) =522 (1 — z)? (ewa — 1) 2 (1 -y)? (610”2 - 1) , (6.2)

which is plotted in Figure 2. We observe that the solution possesses a symmetry with respect
to the line £ = y, but the problem itself is not symmetric because of the particular choice
of boundary conditions. As a consequence, the adapted meshes will not necessarily show this
symmetry.

In all experiments, the domain is initially discretized into a uniform mesh of 64 elements as
shown in Figure 3. The polynomial degree p for the approximation u is uniformly set to one in
all cases. Moreover, we select ¢ = 2 in all elements so that the bubble functions of W are the
basis functions of degree p = 2 and 3.

In the first series of experiments, we briefly study the global error estimators n;., and 7y,
As usual, we measure the quality of the estimators with the effectivity index ’

_
A= el (6:3)
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Figure 4. Adapted mesh based on the global error Figure 5. Relative error for global mesh adaptation.
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Figure 7. Influence function associated with the

Figure 6. Effectivity indices of lower and upper
average of u in Q.

bounds in energy norm.

where n* refers either to 7j.,, or to nj;,,. The error estimators are tested on a sequence of meshes
obtained by global adaptive refinement, the final mesh being shown in Figure 4 and containing
1261 elements. As expected and shown in Figure 5, the relative error in the asymptotic range
exhibits a first-order convergence rate (indeed, using the last two points in the graph of the
relative error, we obtain e = 1.O3O(N<}éf2 ) where Nyof denotes the total number of degrees of
freedom).

The effectivity indices for the lower- and upper-bound estimates with respect to the number
of degrees of freedom are shown in Figure 6. We observe that both estimates provide effectivity



Finite Element Method 749

Figure 8. Influence function associated with the average of nVu in Q,.

indices close to one, but 7y, fails to provide an upper bound to the exact error when the number
of degrees of freedom is small. However, we notice that nf  is always smaller than Nupp-

6.1. Goal-Oriented Error Estimation: Average of Solution

In this section, we study the performance of the error estimates with respect to the average of
the solution in a subdomain of 2. We suppose here that we are interested in the average of u
over the subdomain ), defined as

Q, =Qn{(z,y); 1.5 <z +y < 1.75}. (6.4)

This subdomain corresponds to the strip in the right upper corner of the domain as shown in
Figure 9. The linear functional L(u) for this example is defined as in (3.27). We show in Figure 7
an accurate approximation of the influence function w obtained by adaptive mesh refinement
based on the global error in w. We also show, in Figure 8, the influence function corresponding
to the average of the directional derivative nVu in Q,, where n = (v/2/2, v/2/2).

Next, we test the adaptive strategy with respect to our quantity of interest. We show in
Figure 9 an intermediate mesh (169 elements) and the final mesh (661 elements) for which the
relative error

|L(e)|

Erel Z(w)] (6.5)
is less than 0.1 percent. We note that the exact value L(u) is equal to 832.04, so that the error
in average on {2, has been reduced to less than one. We observe that the final mesh has been
refined in §2,, but also in the upper corner where there exist large sources of error. Moreover, we
infer from Figure 10, showing the evolution of the relative error e versus the number of degrees
of freedom, that the goal-oriented adaptive strategy does indeed improve the rate of convergence
in relation to the global adaptive strategy.

1.00 l 1.00 R, cccr: SRR, ;
- ! | e t miiste
NG : H E 5
i T
0.75 0.75
_.__{_
> 0.50 | > 0.50 N
| S —
025 025
ooglosl ol 4L u L, ooglonl b b
000 025 050 075 100 000 025 050 075 1.00
X X

Figure 9. Adapted meshes, intermediate and final, to control the average of u in Q,.
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Figure 12. Effectivity indices of n5,,, nk;,, and nZ for the average of u in Q, on a
sequence of meshes obtained by global (left) and goal-oriented (right) refinement.

We finally study the error estimates 7791;1, nk,, and nZ, and bounds nlf;w, n\{’pp, and 7k in
relation with the quantity L(e). In this case, the effectivity indices read

_ ot |
A= I (6.6)

where 1% refers to each of the estimates and bounds. In Figure 11, we show the effectivity
indices of the estimates computed on a sequence of meshes obtained by goal-oriented refinement.
All three estimates provide indices close to one whatever the level of refinement. Following
Remark 3.1, we expect the results for the bounds 7, and 92, to be different whether we use
global or goal-oriented refinements. Surprisingly, the effectivity of the lower and upper bounds
does not exceed —1 and +3, respectively, in both cases. We also observe in Figure 12 that the
bound 7 is less accurate by a factor up to ten.

6.2. Goal-Oriented Error Estimation: Pointwise Value

The next set of experiments is devoted to the study of pointwise error estimation applying
the methodology proposed in Section 3.4. The goal is then represented by the bounded linear
functional L(u) defined in (3.34). We choose here two points, xo; and xg2, in Q. The first is given
by the coordinates xg; = (0.8,0.65) and is situated in the lower part of the “bump” featured by
the solution as shown in Figure 2. The second is chosen away from the “bump” at the coordinates
%02 = (0.6,0.4) in order to analyze the effect of “pollution” (i.e., the effect of far-field residuals).

The influence functions associated with the points xp; and xgo are shown in Figures 13 and 14,
respectively. These were approximated by setting the parameter € in the mollifying kernel k. to
€ = 0.001. We remark that the influence functions would converge to the corresponding Green
functions when € tends to zero.
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Figure 15. Adapted meshes, intermediate and final, based on pointwise error estimate
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Figure 16. Adapted meshes, intermediate and final, based on pointwise error estimate
at xo2.

Next, we test the adaptive strategy for the control of the pointwise error. Our first objective is
to predict the solution u at xo; within the tolerance C*®! = 0.5 percent. The adapted meshes, one
intermediate (271 elements) and the final one (472 elements), are shown in Figure 15. On the final
mesh, we obtain L(un ) = 268.52, whereas the exact value is u(xg;) = 268.18. The relative error
is then about 0.13 percent. The second objective was to predict u(xg2) within C*! = 6 percent.
We show an intermediate mesh (799 elements) and the final mesh (1351 elements) in Figure 16.
Actually, the predicted value is L(upp) = 2.46, the exact value u(xp2) = 2.33, and the relative
error about 5.6 percent. We observe that the computation is more demanding for xg than for xg;.
This is due to the fact that u(xo2) < u(x01) < maxo(u) in this example. This implies that, the
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Figure 17. Comparison of the relative error e,e using the global and goal-oriented
adaptivity strategies for xo; (left) and xo2 (right).
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Figure 18. Effectivity indices of nﬁ;l, nfgu, and né‘ea for the pointwise error at xo1 on
a sequence of meshes obtained by global (left) and goal-oriented (right) refinement.

Tt i R ERER IR i IR R
@ : Est. "eeu’ . ° Est. "eeu® -+--
® 120 Fiiii Est. "eea! _ 8 1.20 | Est. “eea’ -5-- |
5 P - ol s
£ £
£ 100 | -- E- 1.00 |- =
0.80 [ 1 3 0.80 | -
1] » i
0.60 i S T 0.60 [-: SR
il i N | | N A
1e+02 16403 16402 16+03
Number of degrees of freedom Number of degrees of freedom

Figure 19. Effectivity indices of nL;, n&,, and n&, for the pointwise error at xo2 on
a sequence of meshes obtained by global (left) and goal-oriented (right) refinement.

error at Xgg is expected to be influenced by remote sources of errors, and indeed, the final mesh
for the point ¢ is refined in a broader region than the final mesh for xo;. Here, since we are
interested in the pointwise error and since the exact value u(xp) is continuous and nonzero at
X = X1 and Xgz, we define the relative error as

[u(x0) — L(unp)l
lu(x0)l
We compare in Figure 17 the relative error e;e with respect to the number of degrees of freedom
when we utilize the adaptive strategies based on either the global estimator in the energy norm
or the estimator in the goal of interest. We observe that the rate of convergence with respect
to our goal, here the pointwise value, is dramatically improved, by about one to two orders of
magnitude, when using the latter strategy. We also remark that the rate of convergence is not
necessarily monotonic.

(6.7)

Crel =
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We finally investigate the performance of the estimates neLel, nL,, and 5%, and bounds L
n{;pp, and n%. Here, the effectivity index is given with respect to the exact pointwise error at x
when it is nonzero _

L
A= e, (6.8)
e(xo)
We compare the accuracy of the estimates on sequences of meshes obtained by global or goal-
oriented adaptivity. The results are shown in Figure 18 for xo; and in Figure 19 for xo;. We
observe that in all cases, the effectivity indices of the three estimates are very close to one but
that none of them consistently provides better results than the others.

‘We show in Figures 20 and 21 the effectivity indices of the bounds for xg; and xg2, respectively.
This time, the effectivity indices of nllg,w and nf,‘pp vary between —8 and 10 when the mesh is
adapted with respect to the energy norm of the error. However, when the mesh is adapted
according to the goal, the bounds take on much larger values and have the tendency to diverge
as the number of degrees of freedom increase. This behavior was actually expected in view of
Remark 3.1. On the other hand, the bound nfs provides consistent results, but is not guaranteed
to be better than nt. or nfpp. We remark that the bound n% is computed here using Mow

and nj* ..
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Figure 20. Effectivity indices of r]lf;w, n‘f’pp, and n{.‘, for the pointwise error at xg; on
a sequence of meshes obtained by global (left) and goal-oriented (right) refinement.
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Figure 21. Effectivity indices of n{c‘,w, nll.'pp, and 1L for the pointwise error at xgz on
a sequence of meshes obtained by global (left) and goal-oriented (right) refinement.

6.3. Goal-Oriented Error Estimation: Pointwise Directional Derivative

We repeat the previous experiments for the pointwise derivative nVu at the point x¢3 =
(0.65,0.65) in the direction n = (v/2/2,v/2/2). In this case, the linear functional associated with
this quantity of interest is given in (3.38).

We show in Figure 22 the corresponding influence function and in Figure 23 examples of
adapted meshes. The intermediate mesh contains 307 elements and the final one 748 elements.
The relative error on the final mesh is about 0.7 percent whereas nVu(xo3) = 907.50.
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Figure 22. Influence function associated with the pointwise derivative nVu at xo3
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We also show the evolution of the relative error in Figure 24 and the effectivity indices of 7%,
nk,, and nZ, in the case of adapted meshes based on the goal-oriented strategy in Figure 25.
Then we show the effectivity of the bounds in Figure 26. The bounds n{;)w and n‘f‘pp are not
represented for the case of goal-oriented adapted meshes as their effectivity index becomes too

large (greater than +103).

7. CONCLUSIONS

The numerical examples presented in this paper verify the goal-oriented error estimates and
suggest that goal-oriented mesh adaptivity can greatly accelerate the calculation of quantities
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Figure 26. Effectivity indices of the bounds n{;w, nf;pp, and nc’g for the error in the
pointwise directional derivative on a sequence of meshes obtained by global (left) or
goal-oriented (right) refinement.

of interest to preset levels of accuracy. In particular, the rate of convergence of goal-oriented
adaptive procedures is greatly accelerated compared to traditional adaptive schemes based on
global energy estimates for a class of model test problems. The experiments also show that the
estimates for these problems are excellent as their effectivity indices are all close to one. However,
the quality of the bounds on the error are understandably sensitive to the quality of the error
estimates in the energy norm and on the quantity of interest itself. The reliability of these bounds
could be improved by improving the effectivity indices of the global energy estimates.
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