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Abstract--ln this paper, we study a new approach in a posteriovi error estimation, in which 
the numerical error of finite element approximations is estimated in terms of quantities of interest 
rather than the classical energy norm. These so-called quantities of interest are characterized by 
linear functionals on the space of functions to where the solution belongs. We present here the theory 
with respect to a class of elliptic boundary-value problems, and in particular, show how to obtain 
accurate estimates as well as upper and lower bounds on the error. We also study the new concept 
of goal-oriented adaptivity, which embodies mesh adaptation procedures designed to control error 
in specific quantities. Numerical experiments confirm that such procedures greatly accelerate the 
attainment of local features of the solution to preset accuracies as compared to traditional adaptive 
schemes based on energy norm error estimates. (~) 2001 Elsevier Science Ltd. All rights reserved. 

Keywords - -Goa l -o r i en ted  error estimation, Quantities of interest, Error control, Mesh adaptivity, 
Upper and lower bounds. 

1. I N T R O D U C T I O N  

In recent years, a new approach to a posteriori error estimation has emerged for which the 
numerical error is est imated and controlled in terms of so-called quantities of interest. We shall 
refer to this approach as goal-oriented error estimation as the error is now measured with respect 
to a specific goal of the analysis instead of in the classical energy norm. Several methodologies 
have been advanced in [1-7]. This paper  is a continuation of our earlier work [8] in which 
we presented the general theory as well as numerical experiments for the case of a two-point 
boundary  value problem. In particular, we s tudy here the quality of these error est imates for 
two-dimensional applications. 

The quantities o f  interest represent physical quantities of the solution such as averages, flow 
rates, velocities, or shear stress at a point. Mathematically, these are characterized by linear 
functionals on the space of functions to which the solution belongs. The  objective in goal- 
oriented error estimation is to relate the residual, the source of error, to the error in the quanti ty 
of interest. This involves the computat ion of an influence function, with respect to the linear 
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functional, given as the solution of the adjoint of the primal problem. The role played by the 
influence function is to indicate how the information is propagated from the residual to the error 

for the specific measure. 
One attractive feature of the methodology is that  the error estimates are given in terms of 

classical energy norm estimates of the errors in the numerical solution and numerical influence 
function. Reliable and accurate techniques have been developed to date to estimate the er- 
ror in the global energy norm, using either residual methods (see [9-14]) or recovery methods 
(see [15,16]). We also describe how to estimate lower and upper bounds of the error in the goal. 
A natural adjunct to this new error estimation approach is goal-oriented adaptivity, where mesh 
adaptat ion is designed to accelerate the rate of convergence of the solution with respect to the 

quantity of interest. 
Following the introduction, we present in Section 2 a model problem and relevant notations. 

The presentation of the theory of goal-oriented error estimation follows in detail in Section 3. We 
briefly describe, in Section 4, the methodology to derive lower and upper bounds on the error 
in the energy norm needed for our goal-oriented error estimates. We propose, in Section 5, an 
adaptation strategy to control the error in the quantity of interest. Finally, the method is applied 
to a two-dimensional boundary value problem with the numerical results recounted in Section 6, 

followed by a summary of our major conclusions. 

2 .  M O D E L  P R O B L E M  A N D  N O T A T I O N  

Let ft be an open bounded domain of R d with Lipschitz boundary 0~t. We consider the model 
boundary value problem which consists of finding the solution u of 

subject to the boundary conditions 

and 

- A u  + cu = f ,  in ~ (2.1) 

OU 
On g' on Fn (2.2) 

u = 0, on Fd. (2.3) 

The prescribed data  is assumed to be smooth, in particular f E L 2, c is a nonnegative constant, 
g 6 L2(Fn). The boundaries Fd and Fn are such that  Fd n I~n ---- 0, ~d U r d  = 0~'~, and we assume 

here that  meas I~d ~> 0. 
The corresponding variational form of this problem is to find u E V such that  

where V is the Hilbert space 

and where 

B(u ,v )  = F(v),  Vv E V, (2.4) 

V = { v E H 1 ;  v = 0 ,  onFd}  (2.5) 

B(u, v) = / n  (Vu" Vv + cuv) dx, (2.6) 

F(v) = f Sv x + [ gvds. (2.7) 
J~ JF,~ 

The bilinear form B(., .) is symmetric positive-definite on V × V, and therefore, defines an inner 
product  on V. It is associated with the energy norm 

II ll  = BvZS- ,v) • (2 .3 )  

From the Lax-Milgram Theorem, we know that  problem (2.4) admits a unique solution u E V. 
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In order to approximate the solution u, one may construct a fmite element space Vhlp c V of 
hierarchical piecewise polynomial functions, where h and p refer to the size and maximal degree 
of the shape functions for each element, respectively (see, e.g., [17]). The mesh, formed by the 
union of all elements, is assumed to coincide exactly with R. Using the classical Galerkin method, 
the finite element approximation u+, E Vh~* is the solution of 

B(Uh,p, v> = fYv), vv E vh,p. (2.9) 

The numerical error in the approximation uh,p of u is naturally defined as the function e E V 
such that 

e = u - ~h,~. (2.10) 

Replacing u by (Uh,p + e) in (2.4), the error is shown to be governed by the equation 

We, v> = %,Jv), vv E v, (2.11) 

where R;1,, denotes the residual 

%&d = F(v) - +‘h,p, v), v E v. (2.12) 

The residual is a linear functional of the dual space V’ which depends on the data and the finite 
element solution ‘1Lh,p. It can be interpreted as the source of error as it is simply the source term 

in (2.11). 
We immediately notice from (2.9) and (2.12) that the residual R;t,P(v) vanishes for all v E Vh+, 

i.e., 

%Jv) = 9, vv E VhlP. (2.13) 

Using (2.11), this yields the well-known orthogonal@ property (with respect to the inner product 

B(., .)), 
B(e,v) = 0, vv E vh,p. (2.14) 

The principal goal in a posterior+ error estimation is to postprocess the residual in order to derive, 
in an inexpensive manner, relevant measures of the error. 

3. GOAL-ORIENTED ERROR ESTIMATION 

The object of goal-oriented error estimation is to assess the accuracy of finite element solutions 
in measures other than the classical energy norm. In the following, we review the general approach 
assuming the measure can be characterized as a linear functional on the solution space. We then 
propose several examples of functionals of potential interest. 

3.1. General Approach 

Let L denote a bounded linear functional in V’ and let us suppose that the goal of the compu- 
tations is the evaluation of the quantity L(u). Then, the accuracy of L(u~,~) is assessed in terms 
of the error EL E W, which reads, due to the linearity of L, 

EL = L(u) - L(uh,p) = L(U - uh,p) = L(e). (3.1) 

One possible way to evaluate EL would be to approximate the error e using (2.11) and then to 
compute EL = L(e). However, problem (2.11) for the error is, of course, generally too expensive 
to solve numerically. The alternative approach is to relate L(e) to the residual 7Z;,p without 
having to compute the error e. Such an approach is justified since the residual contains all the 
information which drives the numerical error. 
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Hence, the start ing point is to find the relationship between the quanti ty L(e)  and the source 
of error 7£ u • namely, we would like to find a linear functional w, if one exists, such tha t  h,p' 

L(e)  = w (T~,p) . (3.2) 

We shall refer to w as the influence funct ion  with respect to L, as it indicates the influence of 
the residual on L(e).  At this stage, we recognize that  w is an element of the bidual of V, and 
since V was assumed a Hilbert space, and a for t io r i  a reflexive space, (3.2) becomes 

L(e)  = 7~,p(W), (3.3) 

where w is now identified with an element of V. 
We now show how to derive the influence function. Using (2.11) and (3.3), we immediately 

obtain 
L(e)  = B ( e , w ) .  (3.4) 

The equality above is necessarily verified when w 6 V is the solution of 

B ( v , w )  = L(v) ,  V v  6 V. (3.5) 

This problem has often been referred to as the adjoint or dual problem (see, e.g., [18]) of the primal 
problem (2.4). The Lax-Milgram Theorem allows us to conclude the existence and uniqueness 

of w in V. 

LEMMA 3.1. Let  Ogh, p E V h'p be a ~ni te  e lement  approximat ion O f T  such that  

B ( v ,  Wh,p) = L(v) ,  V v  6 V h'p. (3.6) 

Then 
n(e)  = B(e ,  e), 

where e 6 V denotes  the numerical  error in O2h,p, name ly  ~ = w -- O2h, p. 

PROOF. From the orthogonality property (2.14), we have 

B ( e ,   h,p) = = O. 

(3.7) 

(3.8) 

And combining (3.4) and (3.8), we get 

L(e)  = B ( e , w )  - B(e ,  wh,p) = B ( e , w  -O2h,p) = B(e ,¢ ) ,  (3.9) 

as asserted. We remark from (3.8) that  the approximation O2h, p fails to provide any valuable 

information on L(e).  | 

For the model problem considered here, the bilinear form B(., .) defines an inner product  on 
V x V with associated norm I1" lie. A new relationship for L(e)  has been suggested by Babugl~ [7] 

as the following. 

THEOREM 3.1. Under the foregoing definitions and assumptions,  

1 L(e) = B(e ,¢ )  = ~112. (3.10) 

PROOF. We note tha t  

lie + ~112 = B ( e  4- e, e 4- ~) = B(e ,  e) + 2B(e ,  ~) 4- B(~,  ~), 

lie - oil 2 = B ( e  - e, e - ¢) = S ( e ,  e) - 2 S ( e ,  e) 4- S ( e ,  e). 

(3.11) 

(3.12) 
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Combining these two results, we have 

He + ell 2 - lie - e{[e 2 = 4B(e,  ~), (3.13) 

which provides, wi th  L e m m a  3.1, the  relation to  be proved. | 

We propose a modified version of  (3.10) using a scaling factor s E R, 

L(e) = U ( e , e ) =  B Se, s = ~ + - -~  s e - -  . (3.14) 
8 

T h e  value of s is chosen so tha t  the  quanti t ies Ilse]l~ and lie~sHe have same ampli tudes,  i.e., 
Ilselle = I]s /sl[~, which implies tha t  

s = V ~[-~H~" (3.15) 

Such a choice of s is justified because it minimizes the quanti t ies  ]lse + E/sll 2 and Ilse - ~/sll 2. 
Moreover,  the  scaler s ensures the  scalability of relationship (3.14). If  we mul t ip ly  the  load F 
in the  original problem by a factor a, the  te rm on the  r ight-hand side of (3.14) just  needs to  be 
mult ipl ied by a to  obta in  the new error L(e). This  result is not  t rue  in the  case of (3.10). 

3 . 2 .  A p p r o x i m a t i o n s  a n d  B o u n d s  for  t h e  E r r o r  Q u a n t i t y  L(e) 

Equa t ion  (3.14) establishes the  relation between the error quant i ty  L(e)  and energy norms of 

+ + - and denote  global es t imates  (we linear combinat ions  of e and 6. Let  "low,/]upp, "low, /]upp error  
show in Section 4 how they  are derived) such tha t  

+ se /]low -<~ "~ <~-- /]u-Fp p, (3.16) 
e 

"~ow ~-- 8e -- ~s e <~ "upp" (3.17) 

It is then  s t ra ightforward to derive the following est imates of L(e):  

1 + 2 1 _ 2 
L(e) ~/]eLl = ~ ("low) -- ~ (/]low) , (3.18) 

1 + 2 1 
L(e) ~ .eLu = ~ (.upp) -- ~ ( .~pp)2,  (3.19) 

as well as the  averaged es t imate  

n(e) L 1 "eea = ~ (yeLl + "Leeu) • (3.20) 

THEOREM 3.2. LOWER AND UPPER BOUNDS. Le t  the quantities L L /]low and "upp be defined as 

L 1 + 2 I 
"low ---- ~ (/]low) -- 4 (/]upp) 2 , (3.21) 

L 1 1 
- ( . , o w )  • ( 3 . 2 2 )  

Then, L ~low and .Lpp provide a lower and upper bound on L(e),  

, L  w <_ L(e) <_/]Lpp. (3.23) 

We note that  the average of  i /]low and  .uLpp gives L "eea as well. 
PROOF. Immedia te ly  follows from (3.14). | 
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REMARK 3 .1 .  QUALITY OF THE BOUNDS AND ESTIMATES. W e  e v a l u a t e  t h e  quality of t h e  

b o u n d s  L rho w and r/Lpp in terms of the effectivity indices of ~low,+ ~/upp,+ ~iow, and ~/upp. Let the 
effectivity indices be 

/~OW ?~upp 
,Xfow = llse - ~/sll0' ,x.~ = llse - ~/sL1~' 

4- + 
4- ~ T/low + _ ~upp 

A~°w lls~+~/sll~' Au~p lls~+~/sll~ 
Then, using (3.14) and assuming L(e) different from zero, we have 

, ) 7ho w 1 + 2 1 
L(e) L(e) 

- n ( e )  (Alow) se + - -~ ( A . p p )  - s e 

L(e) (Ai°w) + - 4 (A;pp)2 + s 

so the following effectivity index for the lower bound on L(e) is given by 

L L  ,ow 1 ( upp)2)llse+ /sll  
Ai°w = L(e) = (Aupp)2 + 4 - n(e) 

In the same manner, we have for the upper bound 

L 
,°0. = (  ow)2 1 ( (  ÷ 2 _ )2) IIse+ / ll  A,Lp L(e) + 4 Aupp) - (Al°w L(e) 

Therefore, the quality of the bounds directly depends on the ratio Ilse + ¢/s[12/L(e). This ratio 
can take on large values depending on the quantity of interest. Also, when adaptivity aims at 
controlling L(e) instead of Ilelle, this ratio may have a tendency to increase. As a consequence, 

L L close to one, the effectivity indices with in order to obtain effectivity indices Alo w and "~upp 
respect to the quantities in the energy norm should be excellent, i.e., very close to one, so that  

+ 2 (Alow) -- (Aupp) 2 and (A+pp) 2 - (A~ow) 2 are close to zero. Otherwise, we may expect AILw and 
A,Lpp to deteriorate when the ratio becomes very large. 

On the other hand, the effectivity index of the estimate ~}Lel is given by 

~L + 2 1 f [  _ 2 _ ,,2"~ Hse + ¢ l s l l  2 A~LI 
L(e) -4 ) )  L(e) 

This time, the difference + 2 (Alow) - (A~ow) 2 is very close to zero as we expect the global error 
+ estimator to provide similar effectivity indices Alo w and A~o W. Therefore, the quality of ~L l should 

not depend on the ratio I]se + ¢/sll2/L(e), however large it may be. The same remark holds for 
the estimates ~Leu and yLea. 

An alternative approach to derive bounds on the quantity L(e) follows from relation (3.7) 
employing the Cauchy-Schwartz inequality 

]L(e)l = IS(e,e)l < ~ ISK(e,¢)l <_ ~ IIelI~,KII~IIe,K, (3.24) 
K K 

where BK(., .) and I1 " L K  denote the restrictions of B(., .) and ]1 " Jl~ on a element ~K- Let ~/~ 
and ~}~ denote two global estimates of Helle and II~[[e. Since ~/~ and ~/~ can be decomposed into 
the contributions ~}~c and ~/~- for each element FtK, we define 

K 
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such that  

IL(e)l < ~ Ilelle,KIl~L,K ~ ~ .  (3.26) 
K 

This approach has been followed by Rannacher et al. [1-3] with the exception that  they use 
explicit-type and interpolation-type error estimators to evaluate the local contributions [le[[e,K 
and [le[]e,K, respectively, for which unknown constants are introduced. 

3.3. Examples  of  Bounded Linear Functionals 

We provide here some examples of quantities of interest and characterize them in terms of 
bounded linear functionals. In finite element applications, it appears suitable to express the 
quanti ty of interest, if possible, in the form of an integral over the domain f/, since integration is 
at the heart  of all finite element codes. Let us assume V = H 1(~) in what follows. 

A quanti ty of possible interest is the average of the solution u over a subdomain f~8 E ~. The 
corresponding linear functional is written as 

1/o L(u) = ~ - [  k(x) u(x) dx, (3.27) 

where k(x) is equal to one if x E f~8 and zero, otherwise, and where ]f~81 defines the area or 
volume of f~.  

PROPOSITION 3.1. Let u E H~ (~). Then, the linear functional L(u) = fn k u dx is bounded on 
H~(a). 
PROOF. Since u E H01(f~) and k E L2(f~), we obtain, using Minkowski's inequality, 

f 
L(u) = Jn k u d x  < Jlkll0tlull0 ~ Co lasi lull, 

where Co is the Poincar6 constant. 

(3.28) 

| 

When the solution is a vector-valued function in (H~(fl)) d, one may be interested in the flux 
through 0f~8 of f~8, in which case the functional reads 

L ( u ) = f o  u . n d s = ~  V . u d x = ~ n k ( x ) V . u ( x ) d x .  (3.29) 

This also defines a bounded linear functional. 

It may happen that  the goal is to evaluate nonlinear quantities N(u) of the solution u such as 

N(u) = ~n u2 dx" (3.30) 
s 

In that  case, the error quantity E L reads 

(3.31) 

Neglecting the higher-order term in e, we may consider the following linear functional, which is 
bounded: 

Lie) = 2 f ,  uh,pe x = 2 £ k(x/uh,,(x)e(x) dx (3.32/ 

and apply the goal-oriented error estimation methodology described above in order to obtain an 
estimate of gN ,.~ Lie). 

However, there exist numerous other quantities of interest, which cannot be characterized by 
a bounded linear functional. In particular, this is the case for the value of the solution at a given 
point of the domain. This issue is addressed in the next section. 
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3.4.  E x t e n s i o n  to  P o i n t w i s e  Error  E s t i m a t i o n  

Pointwise error estimation aims at assessing the accuracy of the solution or quant i ty  of the 
solution at a given point x0 E ~.  Unfortunately, for u E HI(KZ), f ~ C  R d, we know from the 
Sobolev Embedding Theorem tha t  u may not be defined at x0 when the geometrical dimension d 
is equal or greater  than two. In other words, the linear functional corresponding to the quant i ty  
of interest u(x0), 

L(u) = u(xo) (3.33) 

is not necessarily bounded. 
We appeal  here to the use of mollification (see [19, Chapter  2]) in order to circumvent this 

issue, which allows us to introduce the following functional: 

L(u) = (u)e(Xo) = fn  u(x) k , (x  - x0) dx, (3.34) 

where the mollifiers k~ form a family of infinitely smooth functions in ( - o o ,  co) d characterized by 
the parameter  e. The quanti ty (u),(x0) is viewed as the average of u over a small neighborhood 
of x0. The mollifiers k¢ are chosen here of the form 

(ixl  )-1 
k~(x) = C e x p  ~--~-  - 1 , 

O, 

if lxl < e, 

if Ix[ _> e, 

(3.35) 

where the constant C, which depends on d, e, and x0, is selected to satisfy 

/n k, (x  - x0) dx = 1. (3.36) 

As a remark,  we note that  it is not necessary to employ so smooth mollifiers to obtain a bounded 
linear functional on H I (~). 

Our motivation to use mollification procedure relies on the following properties. When u E 
L2(~)), the function x0 t * (u)e(Xo) converges to u when ~ tends to zero. Moreover, when u is 
constant or linear in the ball B(x0, ~) C ~, we have (u)E(x0) = u(x0) independently of the value 
of e. 

REMARK 3.2. NUMERICAL INTEGRATION. In order to compute L(u) in (3.34) and the constant  C 
in (3.36), it is necessary to perform a numerical integration of the mollifiers k,. These functions 
are very local in nature, and because integration is generally carried out using classical Gauss 
quadrature  rules, it appears  necessary to limit the size of the support  of k , (x  - x0), equal to 2e, 
with respect to the mesh size h of the element containing the point x0. Therefore, one requires 
tha t  

2~ 
_< -~, (3.37) 

where ~ is a given fractional number,  0 < ~ < 1. In order to a t ta in an acceptable accuracy for L 
while avoiding too many Gaussian points, we have suggested the value ~ = 1/4 in [8]. 

This approach also applies to estimate the pointwise error in directional derivatives of the 
solution. We then consider the bounded linear functional 

= (n-  XTu)~(x0) = f n .  Vu(x)  k~(x - Xo) dx, (3.38) L(u) 
J~ 

where n is the unit vector representing the direction of interest. 



Finite Element Method 743 

4. E R R O R  ESTIMATION IN E N E R G Y  N O R M  

In the present section, we briefly analyze the methodology to obtain global lower and upper  

bounds on the error in the energy norm to be utilized in goal-oriented error estimation. We recall 
tha t  the error e in the numerical solution Uh, p is governed by 

B(e ,  v) = ?~,p(V) = F ( v )  - B(Uh,p, v), V v • V, (4.1) 

whereas the error ¢ in the finite element approximation Ldh, p of the influence function satisfies 

B ( v ,  ~) = 7~,p(V) = L(v )  - B ( v ,  Wh,p), V v • V. (4.2) 

In what  follows, the error estimates are presented with respect to the error e only as the results 
straightforwardly apply to ¢. 

The  objective is to est imate the quanti ty t[e[[~ by the residual approach. Introducing the norm 
of the residual in the dual space V r as 

sup (4.3) 
.ev\{o} Ilvll~ 

the error can be related to the residual as follows. 

THEOREM 4.3. Let  e E V be the  error in the  approximat ion Uh, p O[ the exact  solution o f  prob- 
lem (2.4) and let  T~ u V '  h,v E denote  the  residual as defined in (4.1). Then  

[[e[]e - - [ [ ~ , p l ] .  • (4.4) 

PROOF. Replacing v by e in (4.1), we have 

Ilell~ = B(e, e) = n~,,p(e) _< IIn~JI,/leL, 
which shows that IleL _< IITC~,pll.. Next, we show that IITeL, II. _< Iletl.. From the definition of 
the norm of the residual, using equation (4.1) and the Cauchy-Schwartz inequality, we get 

Un~,,,, [ [ .= sup I n L ' ( v ) l -  sup [B(e,v)t< sup Ilellellvlle <l le l lo,  
.ev \ {o}  Ilvll. .mv\{o} Ilvlle - . e v \ { o }  Itvll~ - 

which completes the proof of the theorem. | 

Thus, the energy norm represents the optimal norm in which the error can be est imated using 
the information provided by the residual. Unfortunately, the norm of the residual is not readily 

computable.  In fact, using the Riesz  Representat ion Theorem, there exists a unique function 
E V which satisfies 

IIn ,pll, -II olle (4.5) 
and 

B(~o,v) = n~,p(v) ,  Vv • V. (4.6) 

Since problems (4.1) and (4.6) are identical and because their solutions are known to be unique, 
we conclude tha t  ~ = e. We, nevertheless, retain the notation ~¢ since the functions ~0 and e may 
be different for problems which are not symmetric  positive definite. Note tha t  problem (4.6) is 
infinite dimensional, which implies tha t  only approximations of ~o can be obtained. The  objective 
is then to postprocess the residual in a efficient manner in order to derive lower and upper  bounds 
on I[e[[e, i.e., [ITC~,pl[.. This may  be achieved by constructing two adequate spaces V_ and V+, 
V_ c_ V c V+, so tha t  

sup n ,p(v) < Ilu., ll, < sup (4.7) 
, ,~v_\ {o}  Ilvlle -- - - . ~ V . \ { 0 }  Ilvlle 

provided tha t  one can find a proper extension of 7~,p to the space V+. 
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4.1.  U p p e r  B o u n d  for t h e  Error  in t he  E n e r g y  N o r m  

We present here the outlines of the methodology proposed by Ainsworth and Oden [10]. Let 
Oh denote a partition of ~ into the elements ~ g ,  K -- 1 , . . . ,  Are. It is convenient to consider the 
local spaces VK for each element 12K E ~h as 

VK = {VK E HI(~2K); Vg = O, on Fd n 0~2K}. (4.8) 

Then, we introduce the broken space V(P h) as 

v (p") = {v e = e e V h } .  (4.9) 

It is important to observe that  V c v(ph). 
We denote the restrictions of the forms B(., .) and T~,p(.) on an element f i g  of the partition 

by 

BK(UK,VK) : f V U K V V K  -~- CUK~)K dx, (4.10) 
K 

~,p,g(VK) =/i f l g v g d x -  /i VUu,pIgVVK+CUh,,IKVKdX. (4,11) 
K J ~  K 

Then, extensions of the residual T~ u to the whole space V(7 ~h) are given by h,p 

~,p(V) = ~K [T~,p,K(V]K) + ~o~g gKV,K dS] , (4.12) 

where the arbitrary functions gg must satisfy the condition 

E Joi~K gKVlK ds = O, Vv E V. (4.13) 
K 

For example, the condition above holds if we choose gK = 0 on each element edge lying on 0~ 
and if we choose gg -b gg = 0 for each interior edge common to two elements ~'~g and ~g. 

THEOREM 4.4. UPPER BOUND. For each element ~g C 7 ~h, let ~N E VK denote the solution of 

BK(~K, VK) = T~,p,K(VK ) -~- ~ ggVg dsl VVK E VK. (4.14) 
Jo oK 

Then 

,[e,,. = [I.,,pH. <_ ~ K  I[.K"',K = I~K B K ( . K , . g  ). (4.15) 

PROOF. See [10,20]. | 

The dimension of the spaces VK is infinite, so the local problems (4.14) are, at best, approxi- 
mated in local finite element spaces. For instance, instead of (4.14), we solve for # g  E ~h,p such 
that  

BK(~K,VK) : T~,p,K(VK) + ~ gKVK ds, VVK E ~h,p, (4.16) 
JO 

where ~h,p is the discrete space V h'p augmented by the addition of polynomials of degree up to 
p+q, q > 0 (we shall use q = 2 in the numerical experiments). The functions gg are determined by 
the equilibrated flux splitting method, as described in [10]. They are constructed using piecewise 
linear functions on each edge and by enforcing the equilibration condition 

+ ~ gg ds = O. (4.17) ~ , p , K  ( 1 ) 
J0 ~K 
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This condition is actually necessary when c = 0 to ensure the solvability of the local prob- 

lems (4.16). 
u the error estimate in the energy norm We finally denote ?~upp 

' / ]upp  : [ [ ~ K I I ~ , K  = BK(~K, ~K). (4.18) 

The quantity/]uUpp is not guaranteed to provide an upper bound on [[e[[e due to the approxima- 
tion ~ g  of ~K. However, the numerical experiments will show that  r/u~pp is an upper bound when 
h is sufficiently small. 

4.2. L o w e r  B o u n d  for  t h e  E r r o r  in t h e  E n e r g y  N o r m  

In order to obtain a lower bound, we have seen that  it is necessary to determine a vector 
space V_ c V. Let W be the finite element space, commonly called the space of perturbations,  
constructed as 

W ¢ {0}, W f3 V h'p = {0}, W U V h'" C V. (4.19) 

THEOREM 4.5. LOWER BOUND. Let ¢ E W denote the solution of 

B ( ¢ , v )  = T¢~,p(V), Vv  E W. (4.20) 

Then 

Ilell  = II¢ll - ( 4 .21 )  

PROOF. The proof immediately follows from the fact that  ¢ E W C V. | 

The choice of W is not unique. It is controlled by the trade-off between cost and accuracy. For 
high accuracy, it is desirable that  W contains many degrees of freedom, but  this in turn would 
result in a prohibitively expensive problem (4.20). Here, W is conveniently constructed from 
layers of piecewise polynomial basis functions involving polynomials of degree between p + 1 and 
p + q, q _> 1. These basis functions are commonly called the bubble functions. The distribution 
of q over the elements is usually chosen to be uniform, i.e., q = 1 or 2, but we advocate an 
adaptative search for q. In two-dimensional problems, for example ,  the space W can consist, 
as a first guess, of "edge" bubbles of degree q = 1. Then it can be successively enriched with 
"interior" and "edge" bubbles of higher degree in the elements where we have large contributions 
to the previous global estimates. Finally, in order to efficiently solve the global problem (4.20), 
we propose to use the conjugate-gradient method performing only a few iterations. The quality 
of this lower bound depends on the "richness" of W, that  is on the value of q, and on the fact 
tha t  the spaces W and V h,p should be nearly orthogonal with respect to the inner product  B(.,  .), 
in the sense that  there is a constant 3', 0 < 3' < 1 such that  the strengthened Cauchy-Schwartz 
inequality holds: 

[B(v,w)[<_7[[v][~[[w[[e, V v E V  h'p, V w E W .  (4.22) 

Finally, the lower bound can be improved by a recycling process (its cost is negligible when 
the finite element solution Uh,v is solved using a direct method) as follows. 

THEOREM 4.6. IMPROVED LOWER BOUND. Let ¢ E W be thesohition of(4.20) and let ¢ E V h'p 
be the function which satisfies 

Then 

B(¢ ,v )  = - B ( ¢ , v ) ,  Vv E V h'p. 

[lelle : v q l ¢ l l  2 + Il¢ll 2 

PROOF. See [8,20]. 

We denote by ~/~ow the error estimate in the energy norm 
u 

n, ow = x/llC[l  + I[¢lJ , 

which provides a guaranteed lower bound on ][erie. 

(4 .23)  

(4.24) 

1 

(4.25) 
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4 . 3 .  B o u n d s  f o r  t h e  G o a l - O r i e n t e d  E r r o r  E s t i m a t i o n  

We now construct the global bounds ~ w ,  ?~upp, ~+w' a n d  ?~u+pp introduced in Section 3.2. 
These are actually computed using the estimates ce,  Ce, and 95~ with respect to the error e, 
solving (4.20), (4.23), and (4.16), respectively, and the estimates ¢~, Ce, and 95~ with respect 
to e, solving the same problems as before but  using the residual RWh,p instead of 7~,p. Observing 
tha t  these problems are all linear, we then have the global lower bounds 

and the global upper bounds 

~°w Is~be ~ 2 =  - s ~+ s¢~ ¢~ i ' - - s  

'/"/low = -'l- a t- -{'- - -  
8 e S 

7]u+pp = ~ K ~ s@~( 2,_ @.__~K 12 
s fie,K" 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

Moreover, the scaling factor s in the expressions above is obtained by using either est imates of 

the global energy norms Ilelle and Ilelle. 

5. A D A P T I V E  C O N T R O L  O F  T H E  E R R O R  L(e) 
The simplest s t ra tegy to control the approximation error consists in an iterative process whose 

steps are described below. This strategy is very general as it does not require any information 
about  the type of problem. The algorithm is described in Figure 1. 

1. Construct an initial coarse mesh in fl. 

2. Compute the finite element solution Uh,p. 
3. Compute an estimate of the error in a quantity of interest. 

. 4. Check whether the relative error is smaller than a given preset tolerance C t°l. 
The iterative procedure terminates if the tolerance is reached. 

5. If the tolerance is not achieved, adapt the finite element mesh in order to 
reduce the effects of the sources of errors, either by h-refinement or 
p-enrichment. 

6. Go to Step 2. 

Figure 1. Algorithm for error control. 

We have seen in Section 3 an approach to estimate the error with respect to a bounded linear 
functional. In this case, the relative error is given by 

In(e)l (5.1) 
Crel = LL(u)]" 

Since both  the exact solution and error are unknown, we use the available approximations instead. 
Then,  the mesh needs to be adapted whenever 

I Lt 
> C ta, (5.2) erel ~ [L (Uh,p)[ 
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where ?~L denotes an error est imate for L(e). We note however tha t  the relative error needs to 

be used with caution as the contributions to the quantity L(u) may cancel out for nonzero u. 
The objective in mesh adaptat ion is to refine the elements which exhibit large sources of 

error. In the present case, this simply means refining the elements which contribute the most  
to the quanti ty L(e). This is made possible by decomposing the estimate ?~L into elementwise 

contributions. We may use, for example, equation (3.25) such tha t  

'7 L = Z'l  = 

K K 
(5.3) 

Therefore, an element ~'~K of the mesh is refined if 

' [  > c  (5.4) 
maxj0?L) -- 

Here, C adp is a user-defined parameter  ranging between 0 and 1. 
In the numerical experiments presented in the next section,.meshes are made up of quadrilateral 

elements. The refinement procedure consists here in dividing an element into four subquadrilat-  
erals, allowing for "hanging nodes", as shown in [17]. 

6.  N U M E R I C A L  E X A M P L E  

We now illustrate the theory with examples. Numerical results were presented in [8] in the case 
of a two-point boundary  value problem. We study here the case of two-dimensional boundary  

value problems. 
In the following, we seek the solution of the Laplace equation on a square domain of unit size 

= (0,1) × (0,1),  
- A u  ---- f ,  in fl, (6.1) 

which satisfies the boundary  conditions 

Ou 
On 0, o n x  0, x 1, y 1, 

u = 0, on y = 0. 

The  solution of this class of problems belongs to the space V = {v E H I ( ~ ) ;  v -- 0 on y -- 0} 
for sufficiently smooth f .  Here, we consider the particular problem where the exact solution u is 
given by the function 

(6.2) 

which is plotted in Figure 2. We observe tha t  the solution possesses a symmet ry  with respect 
to the line x --- y, but the problem itself is not symmetric  because of the particular choice 
of boundary  conditions. As a consequence, the adapted meshes will not necessarily show this 
symmetry.  

In all experiments,  the domain is initially discretized into a uniform mesh of 64 elements as 
shown in Figure 3. The  polynomial degree p for the approximation u is uniformly set to one in 
all cases. Moreover, we select q -- 2 in all elements so tha t  the bubble functions of W are the 
basis functions of degree p -- 2 and 3. 

In the first series of experiments, we briefly s tudy the global error est imators ~ow and ~u~pp. 
As usual, we measure the quality of the est imators with the effectivity index 

Ilelle' (6.3) 
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Figure 2. Exact solution. 
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Figure 5. Relative error for global mesh adaptation. 
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Figure 7. Influence function associated with the 
average of u in ~28. 

where ~ refers either to ~ow or to/]upp'U The error estimators are tested on a sequence of meshes 
obtained by global adaptive refinement, the final mesh being shown in Figure 4 and containing 
1261 elements. As expected and shown in Figure 5, the relative error in the asymptotic range 
exhibits a first-order convergence rate (indeed, using the last two points in the graph of the 

relative error, we obtain erel = 1.030(NJ/2) where Ndof denotes the total number of degrees of 
freedom). 

The effectivity indices for the lower- and upper-bound estimates with respect to the number 
of degrees of freedom are shown in Figure 6. We observe that  both estimates provide effectivity 
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0.2 

' 1 

0 

F igure  8. Influence func t ion  associa ted  wi th  t he  average of  n V u  in ~ s .  

indices close to one, but  ~uppU fails to provide an upper bound to the exact error when the number 
of degrees of freedom is small. However, we notice that  rllowU is always smaller than ~upp'U 

6.1. G o a l - O r i e n t e d  E r r o r  E s t i m a t i o n :  A v e r a g e  o f  S o l u t i o n  

In this section, we study the performance of the error estimates with respect to the average of 
the solution in a subdomain of ~. We suppose here that  we are interested in the average of u 
over the subdomain ~s defined as 

~s = ~ A  {(x,y); 1.5 < x+y < 1.75}. (6.4) 

This subdomain corresponds to the strip in the right upper corner of the domain as shown in 
Figure 9. The linear functional L(u) for this example is defined as in (3.27). We show in Figure 7 
an accurate approximation of the influence function w obtained by adaptive mesh refinement 
based on the global error in w. We also show, in Figure 8, the influence function corresponding 
to the average of the directional derivative nVu  in ~s, where n = (v~ /2 ,  V~/2). 

Next, we test the adaptive strategy with respect to our quantity of interest. We show in 
Figure 9 an intermediate mesh (169 elements) and the final mesh (661 elements) for which the 
relative error 

IL(e)t 
ere, = IL(u)l (6.5) 

is less than 0.1 percent. We note that  the exact value L(u) is equal to 832.04, so that  the error 
in average on ~s has been reduced to less than one. We observe that  the final mesh has been 
refined in ~s, but  also in the upper corner where there exist large sources of error. Moreover, we 
infer from Figure 10, showing the evolution of the relative error ere] versus the number of degrees 
of freedom, that  the goal-oriented adaptive strategy does indeed improve the rate of convergence 
in relation to the global adaptive strategy. 
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F igure  9. A d a p t e d  meshes ,  in te rmedia te  and  final, to control  t h e  average  of u in ~ s .  
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W e  f i n a l l y  s t u d y  t h e  e r r o r  e s t i m a t e s  L L L L T~eel, ~eeu, a n d  a n d  b o u n d s  L /~eea /~low, ~upp,  and ~TLs i n  

r e l a t i o n  w i t h  t h e  q u a n t i t y  L(e). I n  t h i s  c a s e ,  t h e  e f f e c t i v i t y  i n d i c e s  r e a d  

L(e)' (6.6) 

where ~L refers to each of the estimates and bounds. In Figure 11, we show the effectivity 
indices of the est imates computed on a sequence of meshes obtained by goal-oriented refinement. 
All three estimates provide indices close to one whatever the level of refinement. Following 
Remark  3.1, we expect the results for the bounds ~lowL and ?~Lpp to be different whether we use 
global or goal-oriented refinements. Surprisingly, the effectivity of the lower and upper  bounds 
does not exceed - 1  and ÷3, respectively, in both cases. We also observe in Figure 12 tha t  the 
bound ~cLs is less accurate by a factor up to ten. 

6.2 .  G o a l - O r i e n t e d  E r r o r  E s t i m a t i o n :  P o i n t w i s e  V a l u e  

The next set of experiments is devoted to the s tudy of pointwise error est imation applying 
the methodology proposed in Section 3.4. The goal is then represented by the bounded linear 
functional L(u) defined in (3.34). We choose here two points, x0z and x02, in ~.  The  first is given 
by the coordinates x01 = (0.8, 0.65) and is situated in the lower part  of the "bump" featured by 
the solution as shown in Figure 2. The second is chosen away from the "bump" at the coordinates 
x02 -- (0.6, 0.4) in order to analyze the effect of "pollution" (i.e., the effect of far-field residuals). 

The  influence functions associated with the points x0z and Xo2 are shown in Figures 13 and 14, 
respectively. These were approximated by setting the parameter  e in the mollifying kernel k~ to 
e -- 0.001. We remark tha t  the influence functions would converge to the corresponding Green 
functions when e tends to zero. 
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Figure 14. 
pointwise solution at x02. 
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Figure 16. Adapted meshes, intermediate and final, based on pointwise error estimate 
a t  X02. 

Next, we test the adaptive strategy for the control of the pointwise error. Our first objective is 
to predict the solution u at x01 within the tolerance C t°l = 0.5 percent. The adapted meshes, one 

intermediate (271 elements) and the final one (472 elements), are shown in Figure 15. On the final 

mesh, we obtain L(uh,p) = 268.52, whereas the exact value is u(x01) = 268.18. The relative error 
is then about 0.13 percent. The second objective was to predict u(xo2) within C t°] -- 6 percent. 
We show an intermediate mesh (799 elements) and the final mesh (1351 elements) in Figure 16. 

Actually, the predicted value is L(uh,p) = 2.46, the exact value u(xo2) = 2.33, and the relative 
error about 5.6 percent. We observe that  the computation is more demanding for 7,o2 than for x01. 
This is due to the fact that  u(x02) << u(x0z) < maxn(u) in this example. This implies t h a t t h e  
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Figure 19. Effectivity indices of  r/Leel , ?/Leeu, and r/Lea for the pointwise error at x02 on 
a sequence of meshes obtained by global (left) and goal-oriented (right) refinement. 

e r ror  a t  x02 is expec t ed  to  be  in f luenced  by  r e m o t e  sources  of  errors ,  a n d  indeed ,  t h e  f ina l  m e s h  

for t h e  p o i n t  x02 is ref ined in  a b r o a d e r  reg ion  t h a n  t h e  f inal  m e s h  for xot .  Here,  s ince  we a re  

i n t e r e s t e d  in  t he  po in twise  er ror  a n d  s ince t h e  exac t  va lue  u (xo )  is c o n t i n u o u s  a n d  n o n z e r o  a t  

Xo = Xot a n d  x02, we def ine  t h e  re la t ive  er ror  as 

] u ( x o )  - L(uh,p)[ ( 6 . 7 )  

= I ( o)I 

W e  c o m p a r e  in  F i g u r e  17 t h e  re la t ive  e r ror  erel w i t h  respec t  to  t h e  n u m b e r  of  degrees  of  f r eedom 

w h e n  we u t i l ize  t h e  a d a p t i v e  s t ra teg ies  based  on  e i the r  t he  g loba l  e s t i m a t o r  in  t h e  e n e r g y  n o r m  

or  t h e  e s t i m a t o r  in  t h e  goal  of in te res t .  We observe  t h a t  t h e  r a t e  of  conve rgence  w i t h  r e spec t  

to  o u r  goal ,  here  t h e  po in twise  value,  is d r a m a t i c a l l y  improved ,  b y  a b o u t  o n e  to  two o rde r s  of  

m a g n i t u d e ,  w h e n  u s i n g  t h e  l a t t e r  s t ra tegy .  We  also r e m a r k  t h a t  t h e  r a t e  of  conve rgence  is no t  

necessa r i ly  m o n o t o n i c .  
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We finally investigate the performance of the estimates L ~eel, Y~u, and yL a and bounds L ~ lo w ' 
~]uppL, a n d  ~/cLs . Here, the effectivity index is given with respect to the exact pointwise error at x0 
when it is nonzero 

A = ~}L 
e(xo)" (6.8) 

We compare the accuracy of the estimates on sequences of meshes obtained by global or goal- 
oriented adaptivity. The results are shown in Figure 18 for x0~ and in Figure 19 for Xo2. We 
observe that  in all cases, the effectivity indices of the three estimates are very close to one but 
tha t  none of them consistently provides better results than the others. 

We show in Figures 20 and 21 the effectivity indices of the bounds for xoz and x0~, respectively. 
This time, the effectivity indices of L ~o~ and ~uLpp vary between - 8  and 10 when the mesh is 
adapted with respect to the energy norm of the error. However, when the mesh is adapted 
according to the goal, the bounds take on much larger values and have the tendency to diverge 
as the number of degrees of freedom increase. This behavior was actually expected in view of 
Remark 3.1. On the other hand, the bound ~L s provides consistent results, but is not guaranteed 
to be better than ?~lowL o r  ?~Lpp. We remark that  the bound ~}cLs is computed here using Z}~o wu 
and r/lo w • 
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Figure 20. Effectivity indices of ~/iLow, ~uLpp, and ~/~ for the pointwise error at XO 1 on 
a sequence of meshes obtained by global (left) and goal-oriented (right) refinement. 
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Figure 21. Effectivity indices of ~/Lw, z/unpp, and ~7~ for the pointwise error at xo2 on 
a sequence of meshes obtained by global (left) and goal-oriented (right) refinement. 

6.3.  G o a l - O r i e n t e d  Error  E s t i m a t i o n :  P o i n t w i s e  D i r e c t i o n a l  D e r i v a t i v e  

We repeat the previous experiments for the pointwise derivative n • u  at the point x03 = 
(0.65, 0.65) in the direction n = ( v ~ / 2 ,  V~/2) .  In this case, the linear functional associated with 
this quantity of interest is given in (3.38). 

We show in Figure 22 the corresponding influence function and in Figure 23 examples of 
adapted meshes. The intermediate mesh contains 307 elements and the final one 748 elements. 
The relative error on the final mesh is about 0.7 percent whereas n V u ( X 0 3 )  ---- 90?.50. 
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Figure 22. Influence function a&qociated wi th  the  pointwise derivative n V u  at  x03 
in t he  direct ion n = (V~/2,  V~/2).  
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Figure 23. Adap ted  meshes, in termediate  and final, to control  the  pointwise direc- 
t ional  derivative a t  x03. 
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Figure 25. Effectivity indices of ~/L , L ee l  ~eeu~  and 
~Lee a for the  pointwise directional  derivative. 

We also show the evolution of the relative error in Figure 24 and the effectivity indices of ~/~l, 
~}ieu , and ~}Lea in the case of adapted meshes based on the goal-oriented strategy in Figure 25. 
Then we show the effectivity of the bounds in Figure 26. The bounds L L r/low and ~7upp are  not 
represented for the case of goal-oriented adapted meshes as their effectivity index becomes too 
large (greater than +103). 

7. C O N C L U S I O N S  

The numerical examples presented in this paper verify the goal-oriented error estimates and 
suggest that  goal-oriented mesh adaptivity can greatly accelerate the calculation of quantities 
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Figure 26. Effectivity indices of the bounds L L ~iow' ~upp, and yL s for the error in the 
pointwise directional derivative on a sequence of meshes obtained by global (left) or 
goal-oriented (right) refinement. 

of  in teres t  to  preset  levels of  accuracy. In par t icular ,  the  ra te  of convergence of  goal -or ien ted  

adap t ive  procedures  is g rea t ly  accelerated compared  to  t rad i t iona l  adap t ive  schemes based on 

global  energy  es t ima tes  for a class of  mode l  tes t  problems.  T h e  exper iments  also show t h a t  t he  

es t ima tes  for these  problems are excellent  as thei r  effect ivi ty indices are all close to  one. However,  

the  qua l i ty  of  t he  bounds  on the  error  are unde r s t andab ly  sensit ive to the  qua l i ty  of  the  error  

e s t ima tes  in the  energy  norm and on the  quan t i ty  of  interest  itself. T h e  rel iabi l i ty  of  these bounds  

could be  improved  by improv ing  the  effect ivi ty indices of  the  global  energy es t imates .  
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