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Abstract. This paper is devoted to discuss certain aspects of passivity results in 
dynamic systems and the characterization of the regenerative systems counterparts. In 
particular, the various concepts of passivity as standard passivity, strict input passivity, 
strict output passivity and very strict passivity (i.e. joint strict input and output 
passivity) are given and related to the existence of a storage function and a dissipation 
function. Later on, the obtained results are related to external positivity of systems and 
positivity or strict positivity of the transfer matrices and transfer functions in the time- 
invariant case. On the other hand, it is discussed how to achieve or how   eventually to 
increase the passivity effects via linear feedback by the synthesis of the appropriate 
feed-forward or feedback controllers or, simply, by adding a positive parallel direct 
input-output matrix interconnection gain.   

1. Introduction 
This paper is devoted to discuss certain aspects of passivity results in dynamic systems and the 
characterization of the regenerative versus passive systems counterparts. In particular, the various 
concepts of passivity as standard passivity, strict input passivity, strict output passivity and very strict 
passivity (i.e. joint strict input and output passivity) are given and related to the existence of a storage 
function and a dissipation function. Basic previous background concepts on passivity are given in [1-
4] , [10-12] and some related references therein.  Later on, the obtained results are related to external 
positivity of systems and positivity or strict positivity of the transfer matrices and transfer functions in 
the time- invariant case. On the other hand, it is discussed and formalized how to achieve in case of 
passivity  failing  or how  eventually to increase the passivity  effects  via linear feedback by the 
synthesis of the appropriate feed-forward or feedback  controllers  or, simply,  by adding a positive 
parallel direct input-output matrix interconnection gain having a minimum positive lower-bounding 
threshold gain which is also an useful  idea for asymptotic hyperstability of parallel disposals of 
systems, [10] .  For the performed analysis, the concept of relative passivity index which is applicable 
for both passive and non-passive systems is addressed and modified to a lower number by the use of 
appropriate feedback or feed-forward compensators. Finally, the concept of passivity is discussed for 
switched systems which can have both passive and non-passive configurations which become active 
governed by switching functions. The passivity property is guaranteed by the switching law under a 
minimum residence time at passive active configurations provided that t he first active configuration 
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of the switched disposal is active and that there are no two consecutive active non-passive 
configurations in operation. 
 
Notation 
-  00   RR ,  where   0:  rr RR ,  p,....,,p 21 , 

- 0D  denotes that the real matrix D  is positive definite while 0D denotes that it is positive 
semidefinite,  
-  .min and  .max  denote, respectively, the minimum and maximum eigenvalues of the real 

symmetric  . -matrix, 

-  PRĜ denotes that the transfer matrix  sĜ  of a linear time-invariant system is positive real, i.e. 

  0sĜRe  for all 0sRe  and   SPRĜ  denotes that it is strictly positive real, i.e.   0sĜRe  for 

all 0sRe , 
- A dynamic system is positive (respectively, externally positive) if all the state components  
(respectively, if all the output components) are non-negative for all time 0t for any given non-
negative initial conditions and non-negative input , 

- 1i  is the complex unity,  
- mI  is the m -th identity matrix, 
- the superscript T stands for matrix transposition, 
- H is the Hardy space of all complex-valued functions  sF  of a complex variable s  which are 

analytic and bounded in the open right half-plane 0sRe  of norm 

     Ri   :0: FsupsResFsupF ( by the maximum modulus theorem) and RH is the 

sub set of real-rational functions of H . 
 
2. Passivity and positivity 

Consider a dynamic system eeG HH : with state nx R , input mu R  and output my R , where 

eH is the extended space of the Hilbert space H  endowed with the inner product  .,. from ee HH  to 

R  consisting of the truncated functions     uut   for  t,0  and   0tu ;    0Rt,t   and 
mu RR 0: . If eu H then  

                                                     duuduuu,uu,uu t
T
t

t T
tttt   00

2
2 ; 0t . 

Definitions [2]. The above dynamic system is:. 2L -stable if mLu 2  implies mLGu 2 . 

2. Nonexpansive if   and 0  s. t.  for all eu H  
      

                                                                duuduuG t Tt T
  0

2
0 ; 0t . 

3. Passive if 0  such that       duyt T
0  ; 0t . 

4. Strictly- input passive if 0 and  0 u  s. t.  

                                                                  duyduy t T
u

t T
  00 ; 0t . 

5.  Strictly- output passive if 0 and  0 y  s. t.  

                                                             dyyduy t T
y

t T
  00 ; 0t . 

6. Strictly input/output passive (or very strictly passive) if 0 , 0 u and  0 y  s. t. 

                                                        dyyduyduy t T
y

t T
u

t T
  000  ; 0t . 
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The constants  , u  and y are respectively referred to as the passivity, input passivity and output 

passivity constants. 
 
The following two results are relevant to mutually relate the time and frequency domains descriptions 
concerned with the passivity and positivity properties: 
 
Theorem 1: Consider a linear time-invariant SISO (i.e. m=1) system whose transfer function 

 PRĜ . Then, the following properties hold: 

(i)     00   duyt and     0tuty ; 0t  and, furthermore, if 2Lu  then 2Ly . Then, the  system is 

passive. 

(ii) Assume, in addition, that  SPRĜ . Then         t
u

t duduy 0
2

0  for any   ,t 0  

and some  0R , .  

(iii) If, furthermore, the system is externally positive then     00   duyt ; 0t  for any given 

non-negative initial conditions and non-negative input. 

(iv) Define 
 
 

 
 





 i

i

i

i

R Ĝ

Ĝ
sup

Ĝ

Ĝ
RĜ 








 1

1

1

1

0

 as the relative passivity index of the transfer 

function    
   RH
sD̂

sN̂
sĜ (  sN̂  and  sD̂  being the numerator and denominator polynomials of 

 sĜ ). Then, the constraint 
   
    G

GG

GG
ĜG b

N̂D̂

N̂D̂
Ra 








ii

ii
is guaranteed for some 

   0RGGG ab,a if 

             
 

     ii GG

G

G N̂ReD̂Re
a

a 22

2

2

12

1






       ii GG

G

G N̂ReD̂Re
b

b 22

2

2

12

1





  ;  0R                          

If 1Gb (respectively, 1Gb ) then  PRĜ (respectively,  SPRĜ ).  
 
Note that positivity is a very important property in some dynamic systems related to biological or 
epidemic-type models . See, for instance, [5-9] and references therein The generalization of Theorem 
1 to the multi input multi-output (MIMO) case (i.e. 1m ) is direct by replacing the instantaneous 

power    tuty  by the scalar product    tutyT in the corresponding expressions. In particular, the 
subsequent two results discuss how the basic passivity property can become a stronger property as, for 
instance, strict-input passivity or very strict passivity, by incorporating to the input-output operator a 
suitable parallel static input-output interconnection structure. 
 
Theorem 2. Consider a class   DG  of dynamic systems   eeD,G HH : , defined as 

  DGD,G   0  for given R ,   0mmD R  and eeG HH :0 , such that     DGD,G    for 

any   ,0 . The following properties hold: 

 (i)  Assume that  D,G   is very strictly passive, 0D  and 
2






 



TDDmax

u


   , where u  is the  

input passivity constant for  D,G  .Then,  D,G   is very strictly passive for all   ,0 . If 
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2






 



TDDmax

u


   then  D,G   is very strictly passive for all   ,0  while 0G  is strictly-

output passive. 
 
(ii) If 0G  is passive (respectively, strictly output passive) then  D,G   is strictly-input passive 

(respectively, very strictly passive) if 0D for any  R . 
 
Assume that 0G is passive and non-expansive. Then:  

(iii) DGG   0 is 2L -stable and strictly-input passive if R ,   

(iv) 0G is 2L -stable if 
 






 





 




TDDTDD minmax 




2
002

 if   00 ,ID m , 

(v) 0G is 2L -stable if mID   for any given R .  
 
It turns out through simple mathematical derivations that Theorem 2  still holds with the replacement 

1GD  , where eeG HH :1 is passive with associated constant 01   for the properties to be 

extended from the case that 0D  and strictly-input passive for those extended from the case when 

0D . 
 
3. Control compensators 
It is now discussed how the passivity properties can be improved via feedback with respect to an 
external reference input signal. Consider the following linear time-invariant SISO cases: 
 
-   The controlled plant transfer function  sĜ , whose relative passivity index [Theorem 1 (iv)] is 

 
 


 i

i

R Ĝ

Ĝ
supRĜ 




 1

1

0

, is controlled by a feedback controller of transfer function  sK̂1  so that   

   
 

    
    11

11

1

1

1

1

1

1
1










sK̂sĜ

sK̂sĜ

sT̂

sT̂
sM̂  , where    

   sK̂sĜ

sĜ
sT̂

1
1

1
 is the resulting closed-loop transfer 

function. The closed-loop relative passivity index is 
 
 

 




i

i

i

RR
1

1

1

00
1 1

1
M̂sup

T̂

T̂
supRT̂

 





 . For any 

given  sT̂1  and associated  sM̂1 , the controller transfer function is: 

                                                        
   

      
    sM̂sĜ

sM̂sM̂sĜ

sT̂sĜ

sT̂sĜ
sK̂

1

11

1

1
1

1

1

2

112







  .                                                             

-  The controlled plant transfer function  sĜ  is controlled by a feed-forward controller of transfer 

function  sK̂2  so that     
     sK̂sĜsT̂

sT̂
sM̂

22

2
2

21

1

1

1







   ,where      
   sK̂sĜ

sK̂sĜ
sT̂

2

2
2

1
 is the resulting 

closed-loop transfer function. The closed-loop relative passivity index is 

 
 

 




i

i

i

RR
2

2

2

00
2 1

1
M̂sup

T̂

T̂
supRT̂

 





 . For any given  sT̂1  and associated  sM̂1 , the controller 

transfer function is: 
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                                                 
    

 
   sM̂sĜ

sM̂

sT̂sĜ

sT̂
sK̂

2

2

2

2
2

2

1

1





  .                                                                                 

The subsequent result is concerned with the fact that a positive real transfer function can be designed 
by using feedback or feed-forward control laws for the case when the plant transfer function is 
inversely stable even if it is not either positive real or stable. 
 
Theorem 3. Assume that  sĜ  is inversely stable with relative degree 0  or 1 while non-necessarily 

in PR (or even non-necessarily in RH ). Then, the following properties hold: 

(i) A non-unique (state-space) realizable closed-loop transfer function  RPT̂ 1 , or  

respectively  RSPT̂ 1 , may be designed via a stable feedback controller of transfer function  sK̂1  

Eq. (14) which is realizable if  sĜ  and  sT̂1  have respective zero relative degrees. In the above cases,  

 RPT̂ 1
1 , or respectively,  RSPT̂ 1

1 . 

(ii) A non-unique realizable closed-loop transfer function  RPT̂ 2 , or  RSPT̂ 2 , may be designed 

via a feed-forward controller of transfer function  sK̂2  via (16) which is realizable if the relative 

degree of the closed-loop transfer function  sT̂2  is non less than that of the plant  sĜ . In the above 

cases,   RPT̂ 1
2 , or respectively,  RSPT̂ 1

2 . 
 
4. Non-passive and  passive systems  
Note that passive systems are intrinsically stable and either consume or dissipate energy for all time. 
However unstable systems are always non-passive although some stable systems are also non-passive. 
Looking at Definition 3, we can give the next one: 
 
Definition 7. A dynamic system is Non-passive (or Active or, so-called, Regenerative) if 

    00  i
i

t
t T duy   for some unbounded sequences    0R

it
E  ,    0RitT  which satisfy the 

conditions: 
a)   iiii tt  110  ;  0Zi for some positive bounded sequence  i  , 
b) 

 ittti iii

~ 
110  ;  0Zi for some positive bounded sequence  i  , 

c) ii t, as i . 
 
The following result follows for a non-passive system: 
 

Theorem 4. If a dynamic system is non-passive then     


 duylim t T

t
0  

Proof: Define R
it

~ such that    
iii

i
ttt

t T ~duy  0 . Thus,  

                                
1111

1
0 

  iiii
i

ii
i

i
tttt

t T
tt

t
t

T ~~duy~duy   

                                    duy~duyduyduy t
t

T
tt

t
t

Tt Tt T
iiii

i  00  

                               duy~duyduyduy i
ii

ii t
t

T
tt

t
t

Tt Tt T  


 1
11

11
00  

 
Subtracting the two above ones:  

                                                 duy~~ i

iiiii

t
t

T
tttt  


1

11
 

                                                                 




    duy,duymax t

t
Tt

t
T

i
i 12    
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and 

                                   
iiiiii tttttt

~~~  
 11

     duy~ t
t

T
tt iii   

                                   
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since  

it
  is unbounded but its associated  incremental sequence  

it
~  is bounded ,   

1
2

ii tt  as 

it then       duyT
0  contradicts the above relations.                                                          □ 

 
Note that a non-passive system can reach an absolute infinity energy measure in finite time under 
certain atypical inputs as, for instance, a second-order impulsive Dirac input of appropriate component 
signs at some time instant 1t  with   0tu  for 1tt  . Then, 

         


 duylimduy t T

t

t T
00

1 .  

 
Theorem 5.  The following properties hold: 
(i) A passive system cannot be non-passive in any time sub-interval. A non-passive system in some 
time interval cannot be a passive system. 
(ii) A passive system is always stable and also dissipative (i.e. the dissipative energy function takes 
non-negative values for all time) including the conservative particular case implying identically zero 
dissipation through time. 
(ii) A non-passive system can be stable or unstable (so, stable systems are non- necessarily passive). 
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