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Abstract

Performance of direct solvers strongly depends upon the employed discretization method. In
particular, it is possible to improve the performance of solving Isogeometric Analysis (IGA)
discretizations by introducing multiple C0-continuity hyperplanes that act as separators during
LU factorization [8]. In here, we further explore this venue by introducing separators of arbitrary
continuity. Moreover, we develop an efficient method to obtain optimal discretizations in the
sense that they minimize the time employed by the direct solver of linear equations. The search
space consists of all possible discretizations obtained by enriching a given IGA mesh. Thus,
the best approximation error is always reduced with respect to its IGA counterpart, while the
solution time is decreased by up to a factor of 60.

Keywords: solver-based discretization, continuity-aware optimal dissection, direct solvers, multi-frontal

solvers, refined IsoGeometric Analysis (rIGA)

1 Introduction

When modeling physical and/or engineering processes, computational issues are crucial
[9, 5, 3, 11, 7]. Consider, for example, simulations of turbulent flows around wind turbines
[13] or simulations of tectonic activities on a large scale of tens of kilometres with required
accuracy within several centimetres. To simulate these complex processes with sufficient accu-
racy, typically by using Finite Elements (FE) or IsoGeometric Analysis (IGA), requires a large
number of unknowns.

Direct solvers are a popular option to solve linear systems arising from FE or IGA dis-
cretizations. While FE systems employ a large number of unknowns compared to IGA, the
latter method exhibits a suboptimal behavior in terms of computational time per solved un-
known (see [4]).
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It was recently shown in [8] that an IGA discretization enriched with properly designed C0

continuity hyperplanes (that act as separators in terms of the direct solver) offers a superior
alternative than both FEM and IGA in terms of computational time required by the direct
solver for a given fixed mesh topology. This strategy was denoted as refined Isogeometric
Analysis (rIGA).

While rIGA is based on the enrichment of a highly continuous Cp−1 discretization (with p
being the polynomial degree) via C0 hyperplanes, in here we further expand this search to the
more general case of Cq hyperplanes (with 0 ≤ q ≤ p−1). We denote the resulting discretization
as Optimally refined Isogeometric Analysis (OrIGA).

The rest of the paper is organized as follows. Section 2 formulates the problem to be solved.
Section 3 introduces the concept of rIGA in 2D with the focus on separators of arbitrary
continuities. Section 4 discusses connections between rIGA and OrIGA and proposes a fast
algorithm to compute OrIGA discretizations. The numerical results are shown in Section 5.
Finally, the paper is concluded in Section 6.

2 Model Problem and Notation

In this work, for simplicity we assume a discretization of a square 2D mesh M consisting of
m2 = 2s × 2s elements, s being the number of subdivision levels. We define a bivariate tensor
product spline space over M and denote by px and py the degrees of the univariate splines in
x and y directions, respectively. Cq hyperplanes preserve the tensor product structure (that is,
we do not consider, e.g., T -junctions).

We aim to minimize an estimate of the LU factorization cost. We assume the mesh is
repeatedly bisected using separators across the y and then the x direction, see Fig. 1. While
conceptually it would be possible to seek also for the optimal positions of the separators, in
this work we focus only on finding the optimal continuities. These separators dictate the order
of LU factorization (by following an LU elimination ordering inverse to that of the introduced
separators).

ky2
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Figure 1: Left: two subdivision levels of a 2D mesh. We seek those continuities (kx1 , k
x
2 , k

y
1 , k

y
2)

of the separators that minimize the total cost of LU factorization. Right: the number of basis
functions of one horizontal separator in the first subdivision level (green) is dimx

1(1 + ky1).
Decreasing the continuity ky1 of the green separator increases the dimension of the orthogonal
spline space (red) by py − (1 + ky1).

For simplicity, we assume that the continuities of all separators at the same subdivision level
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Figure 1: Left: two subdivision levels of a 2D mesh. We seek those continuities (kx1 , k
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of the separators that minimize the total cost of LU factorization. Right: the number of basis
functions of one horizontal separator in the first subdivision level (green) is dimx

1(1 + ky1).
Decreasing the continuity ky1 of the green separator increases the dimension of the orthogonal
spline space (red) by py − (1 + ky1).

For simplicity, we assume that the continuities of all separators at the same subdivision level
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are equal. That is, let {kx1 , . . . , kxs } and {ky1 , . . . , kys} be the unknown continuities up to the s-th
subdivision level in x and y directions, respectively. We write

k = (kx,ky) = (kx1 , . . . , k
x
s , k

y
1 , . . . , k

y
s ), (1)

see Fig. 1. In contrast to [8], in here we consider separators of any possible continuity.

3 Minimization Problem

OrIGA discretization is defined as the one that minimizes the number of floating point oper-
ations (FLOPs) used by the LU factorization for a fixed mesh topology and order of approx-
imation p. More precisely, it is given as the solution argument of the following minimization
problem

argmin
k∈S

F (k), (2)

where F (k) is the cost functional, and S is the search space. In subsection 3.1 we define F (k),
while subsection 3.2 is devoted to describe S.

3.1 Minimization functional

Following [8, 4], we realize that the cost of the LU factorization is dominated by the cost of
eliminating the top dense matrices at each level. Thus, neglecting the remaining contributions,
the cost of the factorization grows in a cubic fashion with the number of degrees of freedom
(multivariate spline basis functions) of each separator. Approximating the number of FLOPs
of all the factorizations during the mesh dissection, the minimization functional reads as

F (k) =

s∑
i=1

#cutsyi (dim
y
i (1 + kxi ))

3 +#cutsxi (dim
x
i (1 + kyi ))

3 (3)

where #cutsyi is the number of cuts in the y-direction inserted in the i-th subdivision level, we
sum over all the separators in both directions, and the summands are cubes of dimensions of
the tensor product spline spaces associated to the separators. That is, dimx

i and dimy
i are the

dimensions of the univariate spline spaces in the direction of the separator.
Note that for s subdivision levels, we have 2s−1 separators in every direction. This generates

22s sub-meshes, and the number of boundary spline spaces that separate them grows also
exponentially. Assuming the first separator is vertical (associated with an unknown continuity
kx1 ), the number of boundary cuts in the i-th subdivision level is

#cutsyi = 4i−1,

#cutsxi = 2 · 4i−1.
(4)

The dimensions of univariate spline spaces associated to the cuts in the i-th level are

dimy
i =

m

2i−1
+ py +

s−i+1∑
j=1

2j−1(py − (kyi+j−1 + 1)),

dimx
i =

m

2i
+ px

︸ ︷︷ ︸
+

s−i∑
j=1

2j−1(px − (kxi+j + 1))

︸ ︷︷ ︸
,

(i) (ii)

(5)

3
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where the first term (i) corresponds to the dimension of the spline space if there were no
separators, and (ii) is the number of degrees of freedom that were added to the space by all the
complementary (orthogonal) separators that intersect the space under consideration, see Fig.1
b).

For example for s = 2, i = 1, the dimension of the spline space associated to the first vertical
cut (red in Fig. 1) becomes

dimy
1 = m+ 4py − kx1 − 2kx2 − 3, (6)

since all horizontal separators intersect it.
For general s, by substituting (4) and (5) into (3), we obtain

F (k) =
s∑

i=1

4i−1


 m

2i−1
+ py2s−i+1 −

s−i+1∑
j=1

2j−1(kyi+j−1 + 1)




3

(1 + kxi )
3

+ 2 · 4i−1


m

2i
+ px2s−i −

s−i∑
j=1

2j−1(kxi+j + 1)




3

(1 + kyi )
3.

(7)

We see that F contains (sixtic) terms of the form (kxi · kyj )3 with both positive and negative
factors. Therefore, the minimizer of F is non-trivial and cannot be in general computed ana-
lytically. The objective function (7) is a generalization of (1) in [8], where now the continuities
of the separators may be different from zero.

The cost functional F is completed by adding the cost that comes from static condensation
[12], namely:

FSC = 22s
((m

2s
+ px − 1

)(m
2s

+ py − 1
))3

, (8)

and it does not depend on k. The complete functional cost is expressed as

FT (k) = FSC + F (k) (9)

3.2 Search space and its reduction

Our search space S is defined as a discrete set of possible continuities of separators in all
subdivision levels, that is,

S = {k, kzi = 0, . . . , pz − 1, z = x, y, i = 1, . . . , s}. (10)

This space is a generalization of the space of admissible continuities in rIGA, see Fig. 2.
We seek a minimizer that lies in N2s. Thus, our search space is finite. Unfortunately, the

number of combinations grows exponentially with the number of subdivision levels s. Namely,
we have

#combinations = (pxpy)s. (11)

Therefore an exhaustive search is not possible even for a moderate value of s. It is necessary
to restrict the search space. First, we notice that kx1 = 0 since it appears in (7) only once and
with positive sign. Additionally, the sequence of optimal continuities in both directions has to
be non-decreasing, which is formalized in the following lemma.

Lemma 1. The vector of continuities k of Eq. (1) that minimizes Eq. (7) satisfies

kzi ≤ kzi+1 for all z = x, y and i = 1, . . . , s− 1. (12)

4
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Therefore an exhaustive search is not possible even for a moderate value of s. It is necessary
to restrict the search space. First, we notice that kx1 = 0 since it appears in (7) only once and
with positive sign. Additionally, the sequence of optimal continuities in both directions has to
be non-decreasing, which is formalized in the following lemma.

Lemma 1. The vector of continuities k of Eq. (1) that minimizes Eq. (7) satisfies
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Figure 2: Continuity histograms of the separators for (a) rIGA and (b) OrIGA for s = 11
subdivision levels for a septic (p = 7) spline space. While rIGA considers separators of only
minimum (0) and maximum (p − 1) continuities, OrIGA explores all admissible continuities
{0, 1, . . . , p− 1} in every subdivision level.

Proof. By contradiction. Let e.g. kxi > kxi+1 for some i. We show that there exists k̃ such that

F (k) > F (k̃). Define

k̃ = (kx1 , . . . , k
x
i−1, k

x
i+1, k

x
i , k

x
i+2, . . . , k

x
s , k

y
1 , . . . , k

y
s ) (13)

There are two kinds of summands in (7) that are affected by the switch of kxi and kxi+1. The
first type of summand is of the form

c1(c2 − c3k
x
i − 2c3k

x
i+1), c1, c2, c3 ∈ N. (14)

Note that these numbers depend on i, s, px and py. However, all these summands decrease
when flipping kxi with kxi+1, that is,

kxi + 2kxi+1 < kxi+1 + 2kxi (15)

which is equivalent to kxi > kxi+1.
The other types of summands are the two containing terms (kxi + 1)3 and (kxi+1 + 1)3,

respectively. The sum of these two summands reads as

4i−1(kxi + 1)3(2L− c1)
3 + 4i(kxi+1 + 1)3L3 c1, L ∈ N. (16)

which again decreases with the change of kxi and kxi+1 under the assumption that kxi > kxi+1.

Therefore F (k) > F (k̃) which contradicts that k is the minimizer.

Lemma 1 introduces a significant reduction of the continuity search space. Observe that
while there are ps possible continuity vectors in one variable, the number of non-decreasing
continuity vectors is equal to the number of non-decreasing paths in a rectangular p × s grid,
which is only

(
p+s
s

)
, see Fig. 3. For example, for p = 5 and s = 10, the cardinality of the

reduced 1D space is only 3 003 while in the case of the whole search space is 9 765 625. For the
2D case, the reduced space size is 3 0032.

4 Optimally refined Isogeometric Analysis (OrIGA)

Our search for the continuity-aware optimal IGA starts with the rIGA solution. We employ
an heuristic approach that uses the following observation from our numerical experiments:
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Figure 3: Search space reduction. (a) While the space of all possible continuity vectors grows
exponentially in the number of subdivision levels s, see (11), Lemma 1 reduces the search space
to only non-decreasing continuity vectors (b).

rIGA and OrIGA solutions are strongly related. Thus, we use rIGA discretization (represented
by the continuity vector krIGA) to initialize OrIGA and explore exhaustively only a certain
neighborhood of krIGA. Let i be the number of subdivision levels where rIGA is enriched
by C0-continuous separators (the “jump” of the rIGA continuity vector). We define the r-
neighborhood of krIGA as the number of subdivision levels that occurred r subdivisions prior i,
(and r subdivisions after i+ 1), see Fig. 4. In the r-neighborhood, we consider all continuities
that satisfy Lemma 1. Among them, we quickly the find minimizer of (7). If not stated
differently, we set r = 2 in all our experiments.

Remark 1. The computation of the rIGA discretization (continuity vector) comes at a neg-
ligible cost. Observe that rIGA considers only C0 and Cp−1-continuous separators that are
identical in x and y directions, and therefore the computation requires only s evaluations of
(7). We denote by krIGA the rIGA solution.

krIGA
i
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i+r
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p− 1

r

r
︸ ︷︷ ︸
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Figure 4: The r-neighborhood of the rIGA solution (red) is shown for r = 3. The 2r affected
continuities of the separators at levels i− r + 1, . . . , i+ r are being optimized to minimize (7).
The optimal solution must be non-decreasing according to Lemma 1.

Example 1. An example of rIGA and OrIGA solutions for a septic spline space p = 7 over
a mesh consisting of M = 10242 elements is shown in Fig. 5. We searched exhaustively the

space S of all feasible continuity vectors, which requires
(
7+10
10

)2
= 194482 evaluations of (7).

While the exhaustive search of S required 507s on a laptop equipped with a 2.20GHz processor,
the computation of rIGA discretization took few milliseconds (2.6−4s) and the search of its
2-neighborhood only 0.75 seconds.

Observe that the OrIGA solution (continuity vector) differs from rIGA only by a few coor-
dinates. This phenomenon applies to various degrees and mesh sizes (see Table 1), where all

6



 Daniel Garcia et al. / Procedia Computer Science 108C (2017) 808–817 813Optimally refined isogeometric analysis Garcia, Bartoň and Pardo
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= 194482 evaluations of (7).
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Figure 5: OrIGA: a result of the global exhaustive search in the space separator continuities
for a septic spline space (p = 7) over a 2D mesh consisting of 10242 elements (s = 10). The
global minimizer k = (kx,ky) of (7) is shown. (a) The continuity vector in the x-direction, kx,
is identical to the rIGA solution, while (b) ky differs from rIGA by only two coordinates.

Algorithm 1 { OrIGA }

1: OBJECTIVE: find k = (kx,ky) that minimizes (7), i.e., argmin
k∈S

F (k),

2: INPUT: number of elements in x and y directions m = 2s;
polynomial degrees px and py;
search neighborhood r;

3: Initialize k by rIGA solution krIGA;
4: Fmin := F (krIGA);
5: for i = 1 to (

(
p+2r

p

)
) do

6: for j = 1 to (
(
p+2r

p

)
) do

7: build non-decreasing kx
i and ky

j ;
8: if Fmin > F (kx

i ,k
y
j ) then

9: k := (kx
i ,k

y
j );

10: Fmin := F (kx
i ,k

y
j );

11: end if
12: end for
13: end for
14: OUTPUT: OrIGA continuity vector k.

OrIGA and rIGA continuity vectors differ at most at two coordinates. Moreover, this difference
appears in the neighborhood of the continuity “jump” of the rIGA continuity vector. Therefore,
we use the solution obtained by rIGA to initialize the refined exhaustive search.

Our search for the optimal continuity-aware discretization is summarized in Algorithm 1.
Regarding the approximation quality, highly continuous IGA discrete spaces are strictly con-
tained in both the rIGA and OrIGA spaces, so the best approximation error of OrIGA is smaller
or equal than that of IGA.

5 Numerical Results

We use Laplace equation as a model problem, see Fig. 6, in our examples. We consider three
mesh sizes (Ne = 5122, 10242 and 20482) and three polynomial degrees (p = 5, 7, and 9).
The implementation of our method is based on library PetIGA, a high-performance software
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Find u such that:

∇ · (∇u) = 0 in Ω

u = 1 on ∂Ω1

u = 0 on ∂Ω0

∇u · n = 0 on ∂Ωw.

(17)

Figure 6: Left: Illustration of the 2D model problem. Right: Laplace formulation over
parametric domain Ω = [0, 1]2, and ∂Ωw∪∂Ω0∪∂Ω1 = ∂Ω, ∂Ωw∩∂Ω0 = ∅ and ∂Ωw∩∂Ω1 = ∅.

platform for IGA [6]. We use the multifrontal solver MUMPS [1, 2], and METIS 5 [10] as
ordering technique.

The rIGA and OrGA continuity vectors are shown in Table 1. These vectors show that
the optimal size of highly continuous macro-elements is almost independent of the mesh size.
Namely, it is either 82 or 162, and then, low-continuity separators should be considered. Table 2
shows FLOPs estimates of FE, IGA, rIGA, and OrIGA for various mesh sizes. We see that
both rIGA and OrIGA significantly outperform FE and IGA, OrIGA having expected superior
results.

Ne p rIGA Continuity OrIGA Continuity

5122
5 [0.0.0.0.0.0.4.4.4.] [0.0.0.0.0.0.4.4.4.]|x [0.0.0.0.0.2.4.4.4.]|y
7 [0.0.0.0.0.0.6.6.6.] [0.0.0.0.0.0.6.6.6.]|x [0.0.0.0.0.2.6.6.6.]|y
9 [0.0.0.0.0.0.8.8.8.] [0.0.0.0.0.0.8.8.8.]|x [0.0.0.0.0.1.8.8.8.]|y

10242
5 [0.0.0.0.0.0.0.4.4.4.] [0.0.0.0.0.0.0.4.4.4.]|x [0.0.0.0.0.1.3.4.4.4.]|y
7 [0.0.0.0.0.0.0.6.6.6.] [0.0.0.0.0.0.0.6.6.6.]|x [0.0.0.0.0.1.2.6.6.6.]|y
9 [0.0.0.0.0.0.8.8.8.8.] [0.0.0.0.0.0.0.8.8.8.]|x [0.0.0.0.0.1.2.8.8.8.]|y

20482
5 [0.0.0.0.0.0.0.4.4.4.4.] [0.0.0.0.0.0.0.1.4.4.4.]|x [0.0.0.0.0.0.2.4.4.4.4.]|y
7 [0.0.0.0.0.0.0.0.6.6.6.] [0.0.0.0.0.0.0.1.6.6.6.]|x [0.0.0.0.0.0.1.4.6.6.6.]|y
9 [0.0.0.0.0.0.0.8.8.8.8.] [0.0.0.0.0.0.0.0.8.8.8.]|x [0.0.0.0.0.0.1.3.8.8.8.]|y

Table 1: Continuity vectors of rIGA and OrIGA in 2D for various degrees and mesh sizes.
OrIGA continuity vectors vary from their corresponding rIGA counterparts, at most, by two
values (coordinates) and this variance appears nearby the discontinuity jump of rIGA.

Table 3 shows the actual FLOP counts and computational times using MUMPS. All com-
putational tests were solved sequentially on TACC Lonestar5 system with 2.3 GHz cores and
512TB of memory (URL: http://www.tacc.utexas.edu). Observe that in all cases, except for
p = 5, Ne = 20482, OrIGA offers the best discretization.

6 Conclusion and Future Work

We introduce a new discretization method, called OrIGA, that leads to systems of linear equa-
tions that can be more efficiently solved via direct solvers. We extend the recently introduced
refined isogeometric analysis (rIGA) by considering separators of arbitrary continuities. Our
numerical results show that OrIGA, when compared to rIGA, reduces the total computational
cost needed by the direct solver by up to 25%, while the computation of the optimal discretiza-
tion takes only a few seconds. When compared to IGA and FE, we obtain a time boost by
factor of up to 60. As a future research direction, we aim to further apply this methodology to
non-tensor product meshes.
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The rIGA and OrGA continuity vectors are shown in Table 1. These vectors show that
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Ne = 5122 Ne = 10242 Ne = 20482

p = 5

FEA 3.46E+11 2.73E+12 2.16E+13

IGA 3.75E+11 2.87E+12 2.23E+13

rIGA 1.33E+10 8.97E+10 6.27E+11

OrIGA 1.26E+10 7.88E+10 5.05E+11

p = 7

FEA 1.00E+12 7.69E+12 6.02E+13

IGA 1.09E+12 8.13E+12 6.23E+13

rIGA 3.07E+10 1.81E+11 1.18E+12

OrIGA 2.99E+10 1.67E+11 9.98E+11

p = 9

FEA 2.36E+12 1.73E+13 1.32E+14

IGA 2.32E+12 1.74E+13 1.33E+14

rIGA 7.03E+10 3.47E+11 1.68E+12

OrIGA 4.91E+10 2.69E+11 1.61E+12

Table 2: Estimates of the number of FLOPs required by LU factorization. Values obtained
with (7), when applied to the tested discretizations with various degrees and mesh sizes.

Ne = 5122 Ne = 10242 Ne = 20482

FLOPS time FLOPS time FLOPS time

p = 5

FEA 3.479E11 36.2 2.937E12 232.9 ∗ ∗ ∗ ∗ ∗ ∗
IGA 3.012E11 22.5 2.499E12 162.5 2.214E13 1310.9

rIGA 1.384E10 2.8 1.012E11 13.7 5.311E11 56.5

OrIGA 1.362E10 2.4 8.287E10 12.5 5.586E11 59.7

p = 7

FEA 9.713E11 86.2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
IGA 8.309E11 53.9 6.945E12 405.9 5.812E13 3204.3

rIGA 2.960E10 5.9 1.914E11 24.9 1.323E12 129.7
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rIGA 8.163E10 10.1 3.806E11 44.0 ∗ ∗ ∗ ∗ ∗ ∗
OrIGA 6.990E10 8.6 3.244E11 36.7 ∗ ∗ ∗ ∗ ∗ ∗

Table 3: The actual number of FLOPs and computational times required by MUMPS to fac-
torize the 2D problem. The asterisks reflect that the computation was not accomplished due
to the lack of memory.
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