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garita, por descubrirme el mundo de la lógica que hasta entonces desconoćıa
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Introduction

Groups acting on regular rooted trees have been widely studied since the

1980’s, as Grigorchuk discovered the importance of these groups. The first

Grigorchuk was introduced by Rostislav Grigorchuk in [26]. This group,

known as the first Grigorchuk group, was constructed as a simple counterex-

ample to the General Burnside Problem. The General Burnside Problem

asks whether a finitely generated periodic group must be finite. The answer

was already known to be negative by an example provided in 1964 by Golod

and Shafarevich.

Even if the group was constructed for this purpose, it turned out that this

group in particular has very interesting and exotic properties: it has interme-

diate word growth, it is amenable but not elementary amenable, residually

finite and just-infinite, it is not finitely presentable... In fact, it was the

first known example of a group of intermediate word growth (see [21]). The

problem is known as the Milnor problem. There were already well known

examples of groups of polynomial and exponential growth, and Milnor asked

in 1968 [32] whether there was something in between, and the first exam-

ple giving a positive answer to the Milnor problem was the first Grigorchuk

group.

After the first Grigorchuk group, many generalisations of it and many dif-

ferent examples of groups acting on regular rooted trees arised. For instance,
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INTRODUCTION

in 1983, Gupta and Sidki defined a family of p-groups for each odd prime p,

which are also a counterexample to the Generalised Burnside Problem, [28].

In another direction, Bartholdi and Sunic defined a family generalising the

first Grigorchuk group, all of them being also of intermediate growth (see

[6]).

Throughout this thesis, we will present different problems related to

groups acting on regular rooted trees and solve them for different examples.

In order to do this, Chapter 1 is devoted to giving basic definitions and

properties about groups acting on regular rooted trees. More precisely, we

present different ways of describing automorphisms of a regular rooted tree,

we define what self-similar groups are, what branch groups are and give tools

to prove if a given group is self-similar or branch, for instance.

Later on, the problems that will be discussed in the rest of the chapters are

presented. More concretely, we describe the congruence subgroup problem,

regarding completions of groups with respect to different topologies; and also

the portrait growth, which asks, roughly speaking, how grows the size of some

pictures describing the automorphisms of the group.

The last section of this chapter collects the definitions of the groups ap-

pearing throughout the thesis. Not only the definitions but also the facts

that are easy to prove or already well known about these groups are also

presented in this section.

Chapter 2 deals with some basic notions that have given rise to some

confusion in the literature. Groups acting on regular rooted trees are called

self-similar when, somehow, the action that one can see in any vertex of the

tree can already be seen at the root. Then, the question is if at every vertex

we recover the whole action of the group or we just recover it partially. This

notion, formally defined, splits in three cases: fractal, strongly fractal and
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INTRODUCTION

super strongly fractal, each of them stronger than the previous one. In the

literature sometimes these notions were claimed to be equivalent. In the

second chapter, we show by giving explicit examples that these definitions

are not equivalent.

Theorem. There exist groups acting on regular rooted trees which are fractal

but not strongly fractal, and there are also strongly fractal groups which are

not super strongly fractal.

This work has led to the paper [37].

The rest of the chapters are devoted to solving the problems described

in Chapter 1, each of them for some of the examples presented also in that

preliminary chapter.

Chapter 3 is devoted to solving the congruence subgroup problem for

the family of multi-GGS-groups. The GGS-groups, named after Grigorchuk,

Gupta and Sidki, are a family of groups generalising the Gupta-Sidki family

and the so-called second Grigorchuk group. For each odd prime p, a vector in

Fp−1
p defines a GGS-group. Indeed, every GGS-group is two generated, and

only the definition of one of the generators depends on that vector. Then

a multi-GGS-group is a generalisation of the GGS-groups, by adding more

generators defined by different defining vectors.

The congruence subgroup problem deals with some special normal sub-

groups of finite index (which are called congruence subgroups) and asks

whether there are many more subgroups of finite index, or if these special

ones are all of them. The problem was originally introduced in the context

of algebraic groups. More concretely, the problem was firstly studied for the

groups SLn(Z) for n ≥ 2. In this context the congruence subgroups are the

subgroups containing kerπm where πm : SLn(Z) −→ SLn(Z/mZ) for some

m ∈ N (this is the reason for the name ‘congruence’). Thus, if every sub-
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INTRODUCTION

group of finite index is a congruence subgroup we say that the group has

the congruence subgroup property. It was shown by Fricke and Klein in the

19th century that for n = 2 the group SLn(Z) does not have the congruence

subgroup property. However, for n ≥ 3 it does have the congruence sub-

group property, and it was shown by Bass, Lazard and Serre (see [7]); and

independently by Mennicke (see [30]), in 1964.

In the context of groups acting on regular rooted trees, we say that a

subgroup is a congruence subgroup if it contains some level stabilizer. Thus,

as for SLn(Z), we say that a group has the congruence subgroup property if

every subgroup of finite index is a congruence subgroup. The main result of

these chapter are the following.

Theorem. All the multi-GGS-groups apart from G have the congruence sub-

group property and are just infinite.

Where G denotes the GGS-group defined by the constant vector, which

has a very different behaviour.

Theorem. The GGS-group G with constant defining vector has an infinite

congruence kernel.

The first result provides us a way to answer a question made by Barnea

about the existence of groups which are finitely generated, non-torsion (or

even torsion-free), residually finite and such that their profinite completion

is a pro-p group, for p a prime. We show that some of the GGS-groups are

such examples providing the answer for both cases. These results have given

rise to the papers [14] and [17].

In Chapter 4, we generalise the congruence subgroup problem. In fact,

the congruence subgroup problem can be seen from a topological point of

view. Given a group, a family of normal subgroups of finite index (under

4



INTRODUCTION

some conditions) forms a system of neighbourhoods of the identity for a

topology in the group. Then, the congruence subgroup problem mentioned

before, asks whether the topology given by the congruence subgroups and

the one given by all finite index subgroups coincide or not. Or, from the

point of view of topological completions, if the natural epimorphism from

one completion to the other one is an isomorphism or not.

As mentioned above, there are examples of groups not having the congru-

ence subgroup property, for instance, the GGS-group defined by a constant

vector. The reason why this happens is because it virtually maps onto Z,

and since the congruence completion is a pro-p group, this prevents the group

from having the congruence subgroup property. Then, a natural question is

whether the appropriate topology to compare with the congruence topology

is the pro-p topology in this case, instead of the profinite one. That is, the

topology defined by all normal subgroups of p-power index. We prove that,

in fact, this is the case for the GGS-group defined by a constant vector. We

also prove that the same happens for the Basilica group.

Theorem. For the GGS-group G defined by the constant vector and for the

Basilica group, the pro-p completion (for p odd and p = 2, respectively)

coincides with the congruence completion.

Indeed, we define a more general problem, which we call the C-congruence

subgroup problem, where C denotes a variety of finite groups. We give a suf-

ficient condition for a weakly regular branch group to have the C-congruence

subgroup property (C-CSP for short), and using this condition we prove the

two examples mentioned before. This condition is the main result of this

chapter.

Theorem. Let G ≤ AutT be a weakly regular branch group over a subgroup

R. Suppose that there exists H � G such that R ≥ H ≥ R′ ≥ L where
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L := ψ−1(H× d. . .×H). If G has the C-CSP modulo H and H has the C-CSP

modulo L, then G has the C-CSP.

These results are collected in [16].

In the last chapter we work with a completely different problem. The

problem is about counting the number of elements that have a portrait of

size smaller than a given n ∈ N.

In a group acting on a regular rooted tree, each element of the group can

be fully described by decorating a tree. It is enough to decorate each vertex

with a permutation, and this describes the action of the element. However,

these are infinite trees, and thus, in practise they would not be useful in order

to describe elements. In the case of self-similar groups, since the elements act

on the subtrees hanging from each vertex as elements of the group again, we

can stop decorating the tree by labelling some vertices with the elements in

the group. This kind of picture also describes the full action of the element

in the tree.

The problem, in the second type of decoration, is how to decide when

to stop, and this is why contracting groups are important in this setting. A

group is said to be contracting if there exists a finite set of elements in the

group, such that for any element in the group, when one starts decorating

the tree as described before, at some level all the elements in the portrait

belong to this finite set. Such a minimal set is called the nucleus, and thus,

one starts decorating the tree with permutations until one finds an element

that belongs to the nucleus.

Then one can look at the depth of the portrait of each element, and ask

how many are of each depth. Whenever the group is finitely generated, this

number will be finite, and thus it makes sense to ask about the growth of

this function.
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Grigorchuk, in a paper about solved and unsolved problems around the

first Grigorchuk group (see Problem 3.5 [18]) asked about growth functions

for the portraits of the first Grigorchuk group. In this chapter we answer

this question.

Theorem. There exist positive constants α, β, and γ such that the portrait

growth sequence {an}∞n=0 of the first Grigorchuk group Γ satisfies the inequal-

ities

αeγ
2n ≤ an ≤ βeγ

2n

,

for all n ≥ 0. Moreover, γ ≈ 0.71.

Actually, we give a way of finding recursive equations for the portrait

growth of any contracting regular branch group. We compute also the por-

trait growth for the GGS-groups defined by a non-symmetric vector and for

the Apollonian group.

Theorem. Let G be a GGS-group defined by a non-symmetric vector e ∈

Fp−1
p . The portrait growth sequence {an}∞n=0 of G is given by

a0 = 1 + 2(p− 1)

an = p(x1 + (p− 1)y1)p
n−1

,

where x1 and y1 are the number of solutions in Fpp of

(n0, . . . , np−1)C(e, 0)� (n1, n2, . . . , np−1, n0) = (0, . . . , 0),

with n0 + · · ·+np−1 = 0 and n0 + · · ·+np−1 = 1, respectively; where � denotes

the product by coordinates.

Theorem. The portrait growth sequence {an}∞n=0 of the Apollonian group is
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given by:

an = 3
3n−1

2 73n .

These results led to the paper [35].
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Chapter 1

Preliminaries

1.1 Automorphisms of a regular rooted tree

1.1.1 Definition and general facts

A regular rooted tree is constructed as follows. Given an alphabet X of d

letters, consider as the set of vertices X∗, the set of all finite words over the

alphabet X. Two vertices u, v ∈ X∗ are joined if u = vx or v = ux for some

x ∈ X. The empty word, denoted by ∅, is called the root of the tree. We

will denote by T such a tree, and we will say that T is a d-adic tree when

|X| = d. For example, this is how the 3-adic tree looks like.

9



CHAPTER 1. PRELIMINARIES

∅

...
...

...

An automorphism of a regular rooted tree is a bijection between vertices

that preserves incidence. We denote by AutT the set of all automorphisms

of the regular rooted tree T , which has a group structure under composition.

We write fg for g ◦ f . Observe that since the automorphisms must preserve

incidence, the root of the tree is always fixed. This follows from the fact that

it is the unique vertex that has d adjacent vertices. This also implies that

any path starting at the root is moved to another path starting at the root,

that a vertex of a fixed length is moved to a vertex of the same length, and

that if an automorphism fixes some vertex, it must also fix all the vertices

belonging to the path going from the root to the fixed vertex.

We denote by Ln the n-th level of the tree, or in other words, the set of

vertices representing words of length n over X. Considering only the vertices

of length smaller than or equal to a given n ∈ N, we obtain a finite subtree

Tn of T . Then the group of automorphisms AutTn of this finite tree is a

quotient of the whole group AutT . More precisely, we have for each n ∈ N

the natural projection πn : AutT −→ AutTn whose kernel is the set of all

automorphisms fixing the first nth levels. In other words, the stabilizer of

the nth level, denoted by st(n). More precisely,

st(n) = {g ∈ AutT | ∀u ∈ Ln, g(u) = u}.

10
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Thus AutTn ∼= AutT/ st(n) for each n ∈ N. Obviously, for each m ≥ n we

also have the projetions πm,n : AutTm −→ AutTn, and they form an inverse

system. Thus, considering each AutTn with the discrete topology, the whole

group AutT is the inverse limite of them,

AutT = lim←−
n∈N

AutTn ∼= lim←−
n∈N

AutT/ st(n).

As a consequence, we get that AutT is a profinite group.

Observe that each level stabilizer is the intersection of the stabilizers of

all vertices in that level. Thus denoting by st(u) = {g ∈ AutT | g(u) = u}

we can write st(n) = ∩u∈Ln st(u).

A way to describe an automorphism g of T is by assigning to each vertex

of the tree a permutation of the set X. Then the permutation of SX assigned

to the vertex u describes how g permutes the vertices hanging from g(u).

This is called the label of g at the vertex u ∈ T and we denote it by g(u).

Thus, the label of g at u is formally defined by

g(ux) = g(u)g(u)(x) for each x ∈ X.

The tree decorated by the labels of an automorphism at each vertex is the

portrait of the automorphism.

On the other hand, observe that if we denote by Tu the tree hanging from

a vertex u ∈ T , we have that Tu is isomorphic to the whole tree T . Then

AutT ∼= AutTu for each vertex u, and we can describe g ∈ AutT by saying

how g acts in the subtree hanging from g(u) for each u ∈ T . This is called

the section of g at the vertex u, denoted by gu, and it is formally defined by

∀v ∈ T, g(uv) = g(u)gu(v).

11
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From the equality in the definition, we get, for instance

fg(uv) = fg(u)(fg)u(v)

= g(f(uv)) = g(f(u)fu(v)) = g(f(u))gf(u)(fu(v)) = fg(u)fugf(u)(v).

In this way we get that (fg)u = fugf(u). Arguing in a similar way, we get

the following useful collection of formulas:

(fg)u = fugf(u),

(f−1)u = (ff−1(u))
−1, (1.1)

fuv = (fu)v,

and,

(f g)u = (gg−1(u))
−1fg−1(u)gg−1f(u). (1.2)

The formulas above are written for sections, but observe that they are also

satisfied for labels.

Taking into account the description given by sections, it turns out that

for each n ∈ N we can define the following homomorphism

ψn : st(n) −→ AutT × dn· · · × AutT

which sends g ∈ st(n) to the dn-tuple of its sections (gu1 , · · · , gudn ), with

ui ∈ Ln. Notice that in this case the sections are nothing but the restrictions.

For simplicity, we write ψ for ψ1. Observe also that ψ0 is nothing but the

identity map on AutT . Note that in fact these maps are isomorphisms, which

means that st(n) ∼= AutT × dn· · · × AutT for every n ∈ N. In the same way,

12
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for the stabilizer st(u) of the vertex u, we have a homomorphism denoted by

ψu which sends g ∈ st(u) to gu ∈ AutT .

Lemma 1.1.1. Let G ≤ AutT , then we have

(i) ψ(stG(n)) = (stG(n− 1)× d. . .× stG(n− 1)) ∩ ψ(stG(1)) for n ≥ 2,

(ii) stG(n) = ψ−1(stG(n− 1)× d. . .× stG(n− 1)) for n ≥ 2,

(iii) stG(n+m) = ψ−1
n (stG(m)× dn. . .× stG(m)) for m,n ∈ N.

Proof. For (i) there is nothing to prove. In order to see (ii) it suffices to

apply ψ−1 to (i). By injectivity of ψ and since stG(1) ≥ stG(n) for any n ∈ N

we obtain the result. Finally, (iii) follows by applying induction to (ii).

Sometimes it is useful to think of AutT as a semidirect product.

Proposition 1.1.2. Let T be the d-adic tree and let us consider the following

subgroup for each n ∈ N:

Hn = {h ∈ AutT | hu = 1 ∀u ∈ Ln}.

Then we have

AutT = Hn n st(n).

Proof. It is clear that st(n)∩Hn = {1} and st(n)�AutT , since it is the kernel

of the epimorphism πn for each n ∈ N. Let us see that AutT = 〈st(n), Hn〉.

Let f ∈ AutT and define h by taking h(u) = f(u) for all u ∈ Lk, k < n,

and h(u) = 1 otherwise; and g by g(u) = f(u) for u ∈ Lk for all k ≥ n and

g(u) = 1 otherwise. Clearly h ∈ Hn and g ∈ st(n). Now we want to see that

f = gh, or which is equivalent, that they have the same portrait, i.e. that

for every u ∈ Ln with n ∈ N

f(u) = (gh)(u) = g(u)h(g(u)).

13
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If k < n then for u ∈ Lk, h(u) = f(u) and g(u) = 1. Also we have g(u) = u,

since g ∈ st(n). Then, g(u)h(g(u)) = h(u) = f(u).

And if k ≥ n then h(u) = 1 and g(u) = f(u) for each u ∈ Lk. So, since

g(u) ∈ Lk, g(u)h(g(u)) = g(u) = f(u).

This gives another way of describing any automorphism combining both

labels and sections. Indeed if X = {x1, . . . , xd} for any g ∈ AutT we can

write

g = (gx1 , . . . , gxd)α, (1.3)

where gxi is the section of g at the vertex xi for every i = 1, . . . , d and α = g(∅)

is the label of g at the root.

Observe that for f ∈ st(n) and g = hg′ ∈ AutT , with h ∈ Hn and

g′ ∈ st(n), by (1.2) we have

(f g)u = (fg−1(u))
gg−1(u) = (fh−1(u))

gh−1(u) = (fh−1(u))
g′u for all u ∈ Ln. (1.4)

An automorphism is called rooted automorphism, if the only non-

trivial label of the automorphism is at the root. According to the above

notation this is equivalent to g ∈ H1.

The semidirect group structure together with the fact that st(n) ∼= AutT×
dn· · · ×AutT for every n ∈ N, means that AutT may also be seen as the iter-

ated permutational wreath product

AutT ∼= (. . . (SX o (SX o SX)) . . .).

The expresion of the right hand side is the invers limit lim←−n∈NWn, where

W1 = SX and Wn = SX oWn−1 for each n ≥ 2, and where the connecting

maps are the natural projections πn,n−1 : Wn −→ Wn−1 whose kernel is the

14
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base group (Sx × d. . . × SX) for each n ∈ N. Indeed AutTn ∼= Wn for each

n ∈ N.

1.1.2 Self-similarity and branching in subgroups of

AutT

Let us now consider a subgroup G of the whole group AutT . One can

define the restrictions of the previous homomorphisms ψn and ψu to stG(n) =

st(n) ∩G and stG(u) = st(u) ∩G respectively for each n ∈ N and u ∈ T .

Definition 1.1.3. Let G ≤ AutT . We say that G is self-similar if gu ∈ G

for every g ∈ G and u ∈ T .

In particular, for a self-similar group G the images under ψu and ψn

belong to G and G× dn. . .×G respectively.

Lemma 1.1.4. A group G = 〈S〉 ≤ AutT is self-similar if and only if sx ∈ G

for each s ∈ S and x ∈ X.

Proof. We proof the “if part” by induction on the length of the vertices. The

base case follows from writing each element as a product of elements in S,

the hypothesis and from using formulas (1.1). Let now u ∈ T be a vertex of

length n with n > 1, and let as assume that the statement is true for every

m < n. Let us write u = vx where v ∈ Ln−1 and x ∈ X. For each g ∈ G we

know by the inductive assumption that gv ∈ G, and then since we already

know it for the case of vertices of length one, we get gu = (gv)x ∈ G.

First of all, it is worth mentioning that even if in the case of AutT these

homomorphisms ψu and ψn are always surjective homomorphisms, this will

not be the case in general. We will discuss these notions later on in detail in

Chapter 2, but let us just introduce some definitions related to this question.
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Definition 1.1.5. Let G ≤ AutT be a self-similar group.

(i) We say that G is fractal if ψu(stG(u)) = G for each vertex u ∈ T .

(ii) We say that G is strongly fractal if ψx(stG(1)) = G for each x ∈ X.

(iii) We say that G is super strongly fractal if ψu(stG(n)) = G for each

u ∈ Ln and each n ∈ N.

Moreover, observe that even if in the case of AutT we have ψn(st(n)) =

AutT × dn. . .×AutT , for a general self-similar group G, the maps ψn need not

be surjective onto G× dn. . .×G. In fact, the image of stG(n) under ψn may not

be a natural direct product inside AutT , where with natural direct product

we mean that there is some Hi ≤ AutT for each i ∈ {1, . . . , dn} such that

ψn(stG(n)) = H1 × · · · ×Hdn .

For a self-similar group G, we define the nth rigid stabilizer rstG(n), to

be the largest subgroup of stG(n) such that ψn(rstG(n)) is a natural direct

product in G × dn. . . × G. Defining the rigid stabilizer of a vertex rstG(u) as

the elements g ∈ G that have trivial labels outside the subtree Tu hanging

from u, that is, rstG(u) = {g ∈ G | g(v) = 1, v /∈ Tu}, we get

rstG(n) = 〈rstG(u) | u ∈ Ln〉 =
∏
u∈Ln

rstG(u).

Here we point out some easy but useful facts about the images of rigid

stabilizers under ψ. We omit the proof because it only consists in checking

both inclusions.

Lemma 1.1.6. Let G ≤ AutT , then we have

(i) ψn(rstG(n)) =
∏

u∈Ln
ψu(rstG(u)),

(ii) ψ(rstG(n)) = (rstG(n− 1)× · · · × rstG(n− 1)) ∩ ψ(rstG(1)) for n ≥ 2.
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Definition 1.1.7. A group G ≤ AutT is said to be level transitive or we

say that it acts spherically transitively, if it is transitive on each level Ln.

Now we can define what a (regular) branch group is. This notion is very

helpful in order to be able to work with groups acting on regular rooted trees

as we will see in many cases throughout this thesis.

Definition 1.1.8. Let G ≤ AutT be self-similar and level transitive. Then

(i) G is weakly branch if rstG(n) is non-trivial for each n ∈ N,

(ii) G is branch if rstG(n) is of finite index in G for each n ∈ N,

(iii) G is weakly regular branch if there is some non-trivial normal subgroup

K ≤ stG(1) such that ψ(K) ≥ K × . . .×K,

(iv) G is regular branch if there is a finite index subgroup normal subgroup

K ≤ stG(1) such that ψ(K) ≥ K × . . .×K.

Observe that if G is weakly regular branch over a subgroup K we auto-

matically get that ψn(rstG(n)) ≥ K× dn. . .×K. This follows by induction since

for n = 1 we already have that ψ(rstG(1)) ≥ K × d. . . ×K. Then assuming

that the result is true for n− 1, with n ≥ 1, since G is weakly branch we get

ψn(rstG(n−1)) ≥ K× dn. . .×K. Given that rstG(n) is the largest subgroup con-

taining such a direct subgroup we conclude that ψn(rstG(n)) ≥ K × d2. . .×K,

and so on.

Proposition 1.1.9. If G ≤ AutT is (weakly) regular branch then it is

(weakly) branch.

Proof. Since we have K × dn· · · ×K ≤ ψn(rstG(n)) with K 6= 1 the “weakly”
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case follows. For the other case, observe that,

|G : rstG(n)| = |G : stG(n)| | stG(n) : rstG(n)|

= |G : stG(n)| |ψn(stG(n)) : ψn(rstG(n))|

≤ |G : stG(n)| |G× . . .×G : K × . . .×K|

= |G : stG(n)| |G : K|dn .

This index is finite provided that |G : K| <∞.

The following proposition from [15] is very useful in order to prove that

a group is (weakly) regular branch. Even if in the paper the result is writ-

ten just for the GGS-groups, one easily checks that the statement is true

whenever the group is strongly fractal and level transitive.

Proposition 1.1.10. [15, Proposition 2.18] Let G be a self-similar strongly

fractal group acting transitively on each level, and L and N two normal

subgroups of G. If L = 〈X〉G for some set X and (x, 1, . . . , 1) ∈ ψ(stN(1))

for all x ∈ X, then

L× · · · × L ≤ ψ(stN(1)).

Recall that we use the notation 〈X〉G for the normal closure in the group

G of the subgroup generated by X.

Since we will be interested in analysing the normal subgroups of a given

group acting on a regular rooted tree, we state here a very useful lemma that

follows from the proof of Theorem 4 in [22].

Lemma 1.1.11. Let G ≤ AutT be a group acting level transitively. Then

for every non-trivial normal subgroup N there is some n ∈ N such that

N ≥ rstG(n)′.
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Proof. Let g be any non-trivial element of N . Since g is non-trivial there is

some n ∈ N for which g ∈ stG(n− 1)r stG(n). Then we get that gu /∈ stG(1)

for some u ∈ Ln−1, so that there is some x ∈ X such that gu(x) = y 6= x. Now

for every ξ ∈ ψux(rstG(ux)) we know that there exists some f ∈ stG(n − 1)

such that ψn−1(f) = (1, . . . , 1, fu, 1, . . . , 1) and ψ(fu) = (1, . . . , 1, ξ, 1, . . . , 1),

where ξ is at position x. Thus, we obtain that

ψn−1([g, f ]) = (1, . . . , 1, [gu, fu], 1, . . . , 1),

and by formulas (1.4) we get

[gu, fu]x = (f−1
uy )guyfux = ξ,

[gu, fu]y = (f−1
ux )guxfuy = (ξ−1)gux ,

[gu, fu]z = (fug−1
u (z))

g
ug−1

u (z)fuz = 1 for z 6= x, y.

That is, we get

ψn([g, f ]) = (1, . . . , 1, (ξ−1)gux , 1, . . . , 1, ξ, 1, . . . , 1),

with (ξ−1)gux at position uy and ξ at position ux. Now for any η ∈ ψux(rstG(ux))

there is some h ∈ rstG(n) such that ψn(h) = (1, . . . , 1, η, 1, . . . , 1) and thus

we obtain that

ψn([g, f, h]) = (1, . . . , 1, [ξ, η], 1, . . . , 1).

From here we deduce that ψn(N∩stG(n)) ≥ {1}×· · ·×{1}×ψux(rstG(ux)′)×
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{1} × · · · × {1}, and by transitivity we obtain

ψn(N ∩ stG(n)) ≥
∏
v∈Ln

ψv(rstG(v)′) = ψn(rstG(n)′),

and the result follows because ψn is injective.

Observe that once we have this result, we can obtain much information

about the group if we have enough information about rstG(n)′ for each n ∈ N.

Definition 1.1.12. A group G is said to be just-infinite if every non-trivial

normal subgroup has finite index in G.

Corollary 1.1.13. Let G ≤ AutT be a regular branch over a subgroup K,

(i) if K ′ ≥ stG(m) for some m ∈ N, then every non-trivial normal subgroup

N contains some level stabilizer,

(ii) if K ′ is of finite index in G, then G is just-infinite.

Proof. By Lemma 1.1.11 we know that for every non-trivial normal subgroup

N , there is some n ∈ N such that N ≥ rstG(n)′. Then by the observation

before Proposition 1.1.9, since ψn(rstG(n)) ≥ K × dn. . . × K, we get that

ψn(N ∩ stG(n)) ≥ K ′ × dn. . .×K ′ ≥ stG(m)× dn. . .× stG(m).

By (iii) in Lemma 1.1.1 we obtain that

N ∩ stG(n) ≥ ψ−1
n (stG(m)× dn. . .× stG(m)) = stG(n+m).

Assertion (ii) follows because if K ′ has finite index in G then N also

has finite index in G by a similar argument as in the proof of Proposition

1.1.9.

Observe that if we are able to prove (i) of the corollary above, we auto-

matically will have that the group is just-infinite.
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1.2 Several problems related to groups of

automorphisms

1.2.1 Completions with respect to different topologies

A topological group is a group with a topology, with the condition that the

multiplication and the inversion maps must be continuous with respect to

this topology. In general, given a group G and anon-empty family N of

finite index subgroups such that

∀N1, N2 ∈ N ∃N ∈ N such that N ≤ N1 ∩N2,

we can always define a topology on G by considering N as a neighbourhood

system of the identity. For instance, the topology defined by considering as

N all the subgroups of finite index, is called the profinite topology on G.

Then, one can ask whether two topologies on the same group are the

same or not. This question was firstly formulated for the group SLn(Z)

with the congruence and the profinite topologies, giving name to the famous

Congruence Subgroup Problem. More precisely, the congruence topology is

given by considering as the fundamental system of neighbourhoods of the

identity the kernels of the following surjective homomorphisms:

πk : SLn(Z) −→ SLn(Z/kZ),

with k ∈ N. It is clear that these subgroups are of finite index, and then

the congruence topology is weaker than the profinite topology. Then, the

question is whether they are equal or not. In the 19th century Fricke and

Klein showed that the answer is negative for n = 2 and later in 1964, Bass,
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Lazard and Serre, and independently Mennicke proved that they are equal

for n ≥ 3.

One can also formulate the question in terms of completions with respect

to a given topology. If a group G has two topologies defined by N1 and N2

such that N1 ⊆ N2, and we denote by Ĝ1 and Ĝ2 the completions of G with

respect to these two topologies, we always have a surjective homomorphism

α : Ĝ2 −→ Ĝ1.

Then the congruence subgroup problem can be reformulated as finding out

what is the kernel of this homomorphism. Obviously, the case of these two

topologies being equal corresponds to the case of the kernel being trivial.

In the context of subgroups of AutT , a natural topology is given by

considering the level stabilizers as a system of neighbourhoods of the identity.

Observe that this system is given exactly by the kernels of the following

surjective homomorphisms:

πn : G −→ Gn, for n ∈ N

where Gn denotes the group of automorphisms induced by the action of G on

the finite tree Tn consisting of the first n levels. Thus, by analogy to the case

of SLn(Z), the level stabilizers are called principal congruence subgroups,

and every subgroup containing one of them is called a congruence subgroup.

It is clear that the level stabilizers are of finite index in G, and then this

topology is weaker than the profinite topology. Thus, we say that G has the

congruence subgroup property if these two topologies coincide, or which is

equivalent, if every subgroup of finite index is a congruence subgroup. Then,

in order to see that a group G has the congruence subgroup property, it will
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suffice to check whether every N ≤ G (or equivalently N E G) of finite index

contains some level stabilizer.

In several cases, one can also consider other different topologies. For

example, when the group is branch, the rigid stabilizers also give a topology

which is weaker than the profinite one and stronger than the congruence one.

Another possibility is to consider the pro-p topology for a certain prime p,

that is, the topology given by the normal subgroups having index a power of

p. This topology is always weaker than the profinite topology, but it is not

necessarily comparable to the other two topologies.

In Chapter 3 we will discuss the congruence subgroup problem for the

family of the multi-GGS-groups for the case of the profinite topology. Later

in Chapter 4 we will define the problem in a more general setting and see

some examples where even if the profinite topology does not coincide with

the congruence topology, the pro-p topology does coincide.

1.2.2 Portrait growth in contracting self-similar

groups

The notion of the word growth of a finitely generated group was first intro-

duced by A.S. Schwarz in [36] and independently by J. Milnor in [31] and

[32].

For any two functions f, g : N −→ N we write f � g if there is some

C ∈ N such that f(n) ≤ g(Cn) for every n ∈ N. Thus, we say that these

two functions are equivalent, and we write f ∼ g, if there are some constants

C1, C2 such that f(n) ≤ g(C1n) and g(n) ≤ f(C2n) for all n ∈ N. For

instance, here are some examples of growth types:

• functions of polynomial growth, f ∼ nd for some d ∈ N,
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• of exponential growth, f ∼ en,

• of intermediate growth, if f � en and nd � f for every d ∈ N.

Given a group G generated by a symmetric finite set S, where symmetric

means that S = S−1, one can define the length of an element g ∈ G: we

denote by ∂(g) the length of the shortest word in S∗ representing g, where

S∗ denotes the free monoid over the alphabet S. If we want to emphasize

the generating set S we will write ∂S(g). Then we define the word growth

function as γG(n) = |B(n)| where B(n) = {g ∈ G | ∂(g) ≤ n}. Then, the

word growth of the group is the growth type of the equivalence class of γG.

This can be shown not to be dependent on the generating set.

The most common example of a group having exponential growth is the

free group and the ones having polynomial growth are exactly the ones that

are virtually nilpotent. This last result was proved by Gromov in [27].

The question posed by John Milnor in 1969 about the existence of groups

of superpolynomial and subexponential word growth was known as the Mil-

nor Problem, and it was open until 1984. The first example of a group of

intermediate growth was the first Grigorchuk group, and this was proved by

Grigorchuk himself in [21].

In this direction, apart from the word growth, when a group is self-similar

and contracting one can also measure the size of the portraits.

Definition 1.2.1. Given a self-similar group G ≤ AutT , we say that G is

contracting if there exists a finite set F ⊆ G, such that for every g ∈ G there

is some n ∈ N in a way that gu ∈ F for every u ∈ Lm with m ≥ n.

Observe that for any two finite sets F1 and F2 satisfying the condition

of the above definition, F1 ∩ F2 also satisfies the condition. Thus, we can
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consider the intersection of all such sets, which will be the smallest one

satisfying the condition, and we call it the nucleus of G, denoted by N (G).

Note. Observe that this N here has nothing to do with the one defined

in the previous subsection.

In particular, if there exist some constants λ < 1 and C ≥ 0 such that

for every g ∈ G written as g = (g1, . . . , gd)α we have

∂S(gi) < λ∂S(g) + C, (1.5)

for every i = 1, . . . , d, then the group will be contracting. Here with ∂S we

denote the word length for some finite generating set S = S−1.

The reason why (1.5) implies that the group is contracting is because if

∂S(g) > C
1−λ , then by (1.5) we get that gi is strictly shorter than g for each

i = 1, . . . , d. Then the elements that possibly have no shortening in their

sections are the ones that belong to the finite set

F =

{
g ∈ G | ∂S(g) ≤ C

1− λ

}
.

Thus, if we start with any g ∈ G, if g ∈ F we will be done. Else each gi

will be shorter than g for i = 1, . . . , d. If all of them belong to F we will

finish, else we repeat the process. The sections of the ones already belonging

to F will be again in F by definition. For those that do not belong to F the

sections on the next level will have length reduction, and thus, after finitely

many steps we will get that gu ∈ F for every u ∈ Ln for some n ∈ N, as

desired.

That way, for any element g in a self-similar contracting group G, we can

decorate the tree according to the action of g. First of all, we decompose the
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element as in (1.3):

g = (g1, . . . , gd)α.

Then we start by decorating the root with α and we repeat the process for

each gi for i = 1, . . . , d, unless the element gi belongs to the nucleus. In that

case, we decorate this vertex with the element in the nucleus and we stop

there.

In this way, we get a finite decorated tree for each element which is called

the nucleus portrait. Although it is not the same as the usual portrait

(which is an infinite decorated tree) when there is no confusion, for simplicity,

we will just say portrait when working with nucleus portraits. A concrete

example of such a portrait will be given in Section 5.4.

Once we have a finite tree associated to each element in the group, it

makes sense to measure the depth of the portrait of each element. That is,

for each g ∈ G we say that the depth of g, denoted by d(g), is the length of

the longest path starting at the root in the portrait of g. Then one can count

the number of elements of depth less than or equal to n for each n ∈ N and

ask about its growth. We will refer to it as the portrait growth of a group.

1.3 Some important groups of

automorphisms

1.3.1 The first Grigorchuk group

The first group acting on a regular rooted tree, and one of the most important

and studied groups of this type, was introduced by R. Grigorchuk in the 80’s

[26]. This group is a counterexample to the general Burnside problem, since

it is three generated, periodic and infinite. The group is defined as follows.
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Definition 1.3.1. Let T be the 2-adic tree. The first Grigorchuk group Γ ≤

AutT is the group generated by the automorphisms {a, b, c, d} where a is the

rooted automorphism corresponding to (1 2), and b, c, d ∈ stΓ(1) are defined

recursively as follows

ψ(b) = (a, c),

ψ(c) = (a, d),

ψ(d) = (1, b).

It is already known that this group has the congruence subgroup property,

see Theorem 10 in [22], that is, any subgroup of finite index contains some

level stabilizer. So, as mentioned before, regarding the questions mentioned

in the previous section, there is an unsolved one, which is the question about

the portrait growth. In fact, Grigorchuk himself in a paper about problems

that are solved and unsolved around this group, mentions this problem (see

[18, Problem 3.5]).

In order to answer this question, we need some well known properties of

Γ. We collect here some significant properties about this group that will be

used later in the thesis. All the proofs can be found in [11].

First of all, observe that Γ is obviously self-similar by Lemma 1.1.4. Then

we have the following lemma.

Lemma 1.3.2. [11, Proposition 30, Exercise 81] Let K = 〈[a, b]〉Γ. Then we

have,

(i) the subgroup K is generated by {t = (ab)2, v = (bada)2, w = (abad)2},

(ii) |Γ : K| = 16,

(iii) ψ(K) ≥ K ×K,
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(iv) The preimage ψ−1(K×K) is generated by {v, vt−1
, vt, w, wt

−1
, wt}, and

it has index 4 in K.

Let us consider S = S−1 = {a, b, c, d} as a generating set and let us denote

by ∂S(g) the word length for g with respect to S. Then we have the following

lemma.

Lemma 1.3.3. [11, Lemma 46] For any g ∈ Γ we have

∂S(gi) ≤
1 + ∂S(g)

2
,

for i = 1, 2.

Observe that from this lemma we deduce that Γ is contracting by the

argument discussed after Definition 1.2.1, and that the nucleus is N (Γ) =

{1, a, b, c, d}.

1.3.2 The GGS-groups and generalizations

The GGS-groups, named after Grigorchuk, Gupta and Sidki, are a fam-

ily of groups generalizing the so called Gupta-Sidki groups and the Gupta-

Fabrikowski group. The Gupta-Sidki groups are a family of groups, each

of them acting on the p-adic tree for an odd prime p, generated by the

rooted automorphism a which has at the root the label (1 2 . . . p) and the

automorphism b ∈ stG(1) defined by ψ(b) = (a, a−1, 1, . . . , 1, b). The Gupta-

Fabrikowski group is the group acting on the 3-adic tree generated by the

same a but changing b by ψ(b) = (a, 1, b). The GGS-groups are a family

generalizing these groups in a very natural way.

Throughout this section let p be an odd prime and T the p-adic tree.
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Definition 1.3.4. Given a non-zero vector e = (e1, . . . , ep−1) ∈ Fp−1
p the

GGS-group G defined by e is the group generated by the rooted automorphism

a corresponding to the permutation (1 2 . . . p) and b ∈ stG(1) defined as

follows: ψ(b) = (ae1 , . . . , aep−1 , b).

These groups are known to be torsion groups if and only if
∑p−1

i=1 ei = 0

in Fp (see [38]). Thus some of them are non-torsion, and as we shall see

in Chapter 3, some are virtually torsion-free. For this family of groups the

answer to the three problems posed in Section 1.2 was unknown. We solve the

question about the congruence subgroup problem and partially the portrait

growth problem. It is worth to mention that the word problem is just solved

for the Gupta-Fabrikowski group, which has been shown to have intermediate

growth. The question remains open for the rest of them.

We collect here some results from [15] that will be used several times.

Proposition 1.3.5. [15, Theorem 3.2.1 and Corollary 3.2.5] Let G be a

GGS-group. Then

(i) stG(1) = 〈b〉G = 〈b, ba, . . . , bap−1〉;

(ii) stG(2) ≤ G′ ≤ stG(1);

(iii) |G : G′| = p2 and |G : γ3(G)| = p3;

(iv) stG(2) ≤ γ3(G).

Sometimes in order to simplify notation we will write bi = ba
i

for i ∈ Z.

Notice that it suffices to consider i = 0, . . . , p − 1 because bi = bj if i = j

(mod p). We say that e is symmetric if ei = ep−i for i = 1, . . . , p−1
2
.

Proposition 1.3.6. [15, Lemmas 3.3.1 and 3.3.3] Let G be a GGS-group
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with non-constant defining vector. Then

ψ(γ3(stG(1))) = γ3(G)×
p
· · · × γ3(G).

If the defining vector is also non-symmetric, then

ψ(stG(1)′) = G′ ×
p
· · · ×G′.

Let us consider as a generating set for any GGS-group the set S = S−1 =

{a, a2, . . . , ap−1, b, b2, . . . , bp−1} and denote the word length by ∂S.

Lemma 1.3.7. Let G be a GGS-group, then for every g ∈ G we have

∂S(gi) ≤
1 + ∂S(g)

2
,

for every i = 1, . . . , p.

Proof. Let g ∈ G and let w = ai1bj1 . . . aikbjkak+1 the shortest word over

S representing g, where the only exponents that are allowed to be zero are

i1, ik+1. Then the length of g is 2k − 1, 2k or 2k + 1. When we look at the

sections on the first level, the powers of a do not contribute anything. The

only ones contributing some length are the powers of b. Thus ∂S(gi) ≤ k ≤
∂S(g)+1

2
, for i = 1, . . . , p.

By the same discussion as after Lemma 1.3.3 we deduce that every GGS-

group is contracting with N (G) = {1, a, a2, . . . , ap−1, b, b2, . . . , bp−1}.

It is worth mentioning that since two proportional vectors define the same

group, in particular we may assume that that the group defined by a constant

vector is the one defined by the vector e = (1, . . . , 1). Since the GGS-group

with constant defining vector plays a very different role in this family of

groups, let us denote it by G from now on.

30



CHAPTER 1. PRELIMINARIES

The GGS-group defined by a constant vector has very different behaviour

from the rest. Many of the ingredients for our proofs later come from the

analysis of this group developed in [15, Section 4]. Following that paper, we

define y0 = ba−1 and yi = ya
i

0 for every integer i and note that ybi = yaa
−1b

i =

yy1i+1. An easy computation shows that yp−1yp−2 . . . y1y0 = 1.

We state the following two lemmas from [15], which will be used in Chap-

ter 3.

Lemma 1.3.8. [15, Lemma 4.2] If K = 〈y0〉G, then:

(i) |G : K| = p, and as a consequence, stG(n) ≤ K for every n ≥ 2.

(ii) K = 〈y0, . . . , yp−1〉.

(iii) K ′ ×
p
· · · ×K ′ ≤ ψ(K ′) ≤ ψ(G ′) ≤ K ×

p
· · · ×K. In particular, G is a

weakly regular branch group over K ′.

Lemma 1.3.9. [15, Lemmas 4.3 and 4.4] For every element g ∈ K we have

ggaga
2
. . . ga

p−1 ∈ K ′. Moreover, if h ∈ K ′ with ψ(h) = (h1, . . . , hp) then

hp . . . h1 ∈ K ′.

In [1] a generalization of the GGS-groups is given, by adding more gen-

erators of the type of the previous b, and they are called multi-GGS-groups.

Definition 1.3.10. Given a family of linearly independent vectors e1, . . . , er ∈

Fp−1
p the multi-GGS-group G defined by e1, . . . , er is the group generated

by the rooted automorphism a corresponding to the permutation (1 2 . . . p)

and bi ∈ stG(1) defined as follows: ψ(bi) = (aei,1 , . . . , aei,p−1 , bi) , where

ei = (ei,1, . . . , ei,p−1), for i = 1, . . . , r.

The following lemma is a collection of results from [1].
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Lemma 1.3.11. Let G = 〈a, b1, . . . , br〉 be a multi-GGS-group with defining

vectors e1, . . . , er ∈ Fp−1
p .

(i) There is a conjugate G̃ of G in AutT defined by ẽ1, . . . , ẽr such that

ẽi,1 = 1 for all ẽi with i = 1, . . . , r.

(ii) If G is not G then

ψ(γ3(stG(1))) = γ3(G)× p. . .× γ3(G).

(iii) G/G′ ∼= Cr+1
p .

We remark that the multi-GGS-groups are contained in the Sylow pro-p

subgroup of AutT consisting of all automorphisms for which the permutation

induced at every vertex of T is a power of σ, with σ = (1 . . . p). This

in particular implies that stG(1)/ stG(2) is abelian, since it is contained in

Cp × p. . .× Cp.

Observe also that we can replace each bi defined by ei by other element

defined by αei + βej for any α, β ∈ Fp with α 6= 0 and any j = 1, . . . , r

with j 6= i, and we will obtain the same multi-GGS-group. In other words,

instead of considering the defining vectors, each vector subspace of Fp−1
p

defines authomatically a multi-GGS-group. This means that if we consider

the matrix 
e1,1 e1,2 . . . e1,p−1

e2,1 . . . e2,p−1

...
. . .

...

er,1 er,2 . . . er,p−1

 ,

the row echelon form of the above matrix will define the same multi-GGS-

group.
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1.3.3 The Hanoi Towers group and the Apollonian

group

The Hanoi Towers group was introduced by Grigorchuk and Sunic in [19].

These groups are called in this way because they illustrate the well known

problem of the Hanoi Towers on three pegs. In the same paper one can find

a more general definition of the group simulating the play on d pegs.

Definition 1.3.12. Let d ≥ 3 and T the d-adic tree, where X = {x1, . . . , xd}.

For 1 ≤ i < j ≤ d, we define the element aij which has the permutation

(xi xj) at the root and for each vertex x on the first level:

(aij)x =

1 if x = i, j

aij else.

The Hanoi Towers group is H = 〈aij | 1 ≤ i < j ≤ d〉.

For instance the Hanoi Towers group on three pegs can be described using

(1.3) as the group H generated by a, b, c where

a = (1, 1, a)(1 2),

b = (1, b, 1)(1 3),

c = (c, 1, 1)(2 3).

The generators represent the movements we are allowed to do in order

to solve the game. The game consists on the following: having n disks on 3

pegs, in the initial situation all disks are in one peg, ordered by their size, the

biggest on the bottom and the smallest at the top. The aim of the game is
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to end up with the same configuration but in a different peg. The condition

is that one is never allowed to put a disk on top of a smaller one. Then

a sequence of n letters on {1, 2, 3} encodes a configuration by saying where

each disk is. For instance for n = 4, the sequence (1, 2, 1, 3) encodes that the

biggest disk is on peg 3, the next biggest one on peg 1, the third biggest one

on peg 2 and the smallest one on peg 1. Since the disks must be ordered by

their size, there is no confusion and the sequence encodes all the information.

Then the element a starts reading the sequence and it does nothing while

it reads 3 and at the first time it sees a 1 or a 2 it flips it to 2 or 1, and

then becomes the identity. This means that a does the only movement we

are allowed to do between pegs 1 and 2. Similar for b and c. Obviously, a, b

and c are automorphisms of order 2.

The Hanoi Towers group on three pegs has been shown to be regular

branch over its commutator H ′ which is of index 8 in H (see [19]). In the

same paper it is also proved that ψ−1(H ′×H ′×H ′) has index 12 in H ′. For

the rest of the family it is known that at least they are weakly branch.

The Apollonian group is a subgroup of the Hanoi Towers group on three

pegs, and it was introduced in [24] by Grigorchuk, Nekrashevych and Sunic.

Some of the following facts are claimed (without proof) in the same paper.

In order to define the Apollonian group as a self-similar group, it is con-

venient to work with an isomorphic version of the Hanoi Towers group.

Lemma 1.3.13. The group H is conjugate in AutT to the group generated

by

a′ = (1, 1, b′)(1 2),

b′ = (1, a′, 1)(1 3),

c′ = (c′, 1, 1)(2 3).

34



CHAPTER 1. PRELIMINARIES

Proof. Consider the element g = (h, h, h)(2 3) with h = (g, g, g). Then

ag = (1, ah, 1)(1 3),

bg = (1, 1, bh)(1 2),

cg = (ch, 1, 1)(2 3).

On the other hand, we have

ah = (1, 1, ag)(1 2),

bh = (1, bg, 1)(1 3),

ch = (cg, 1, 1)(2 3).

Observe that ag and bh have the same recursive definition, and the same for

bg and ah; and cg and ch. Thus renaming ag = bh by b′, bg = ah by a′ and

cg = ch by c′ we obtain the desired result.

From now on, when working with the Apollonian group, we will always

consider the group H to be generated by three automorphisms a, b and c as

a′, b′ and c′ in the previous lemma, that is:

a = (1, 1, b)(1 2),

b = (1, a, 1)(1 3),

c = (c, 1, 1)(2 3).

Observe that, being conjugate to the original generators of the Hanoi

Towers group, these automorphisms are all of order 2.

Definition 1.3.14. The Apollonian group A acting on the ternary tree is

the group generated by x = cab, y = abc, z = bca.

35



CHAPTER 1. PRELIMINARIES

We collect here some important facts about this group.

Theorem 1.3.15. Let A = 〈x, y, z〉 be the Apollonian group. Then

(i) A is a normal subgroup of index 4 in H,

(ii) A contains the commutator H ′,

(iii) A is regular branch over H ′,

(iv) the subgroup H ′ is of index 2 in A and corresponds to the words of even

length over S = {x, y, z, x−1, y−1, z−1}.

Proof. In order to prove (i) it suffices to check that

(cab)c = abc,

(cab)b = bca,

(cab)a = acaba = (acb)(bac)(cba),

and similar for the rest of generators of A. It is also easy to check that

H/A = 〈a, b〉 ∼= C2 × C2, since abab = abccab and c = ab.

Now, (ii) is clear since H/A is abelian, and since by Theorem 5.1 in [19]

we know that H is regular branch over H ′, so is A. In the same theorem

they proved that H/H ′ is of order 8, which automatically implies that A/H ′

is or order 2.

Finally, let us denote by E the subgroup of elements of even length over

the alphabet {x, y, z, x−1, y−1, z−1}. We claim that E = H ′. It is clear that

E is normal in A and that the index of E in A is 2. Let us see that the

commutators [a, b] = abab, [a, c] = acac, [b, c] = bcbc belong to E and we will
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be done. This follows from

abab = abccab,

acac = (bca)−1(cab)−1,

bcbc = bcaabc.

Notice that the group A as defined is not a self-similar group because

x = cab = (ca, b, 1)(1 2),

y = abc = (a, 1, bc)(1 3),

z = bca = (1, ab, c)(2 3).

However, as before, by conjugating with an element in AutT we can get

a self-similar group which is isomorphic to this one.

Lemma 1.3.16. The Apollonian group A is isomorphic to the group gener-

ated by the following three automorphisms

x′ = (1, y′, 1)(1 2),

y′ = (x′, 1, 1)(1 3),

z′ = (1, 1, z′)(2 3).
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Proof. Let us consider h = (ch, ah, bh). Then we get

xh = (1, yh, 1)(1 2),

yh = (xh, 1, 1)(1 3),

zh = (1, 1, zh)(2 3),

and renaming xh by x′, yh by y′ and zh by z′ we obtain the desired result.

From now on we will consider A to be generated by x, y, z as x′, y′, z′ in

the previous lemma, that is:

x = (1, y, 1)(1 2),

y = (x, 1, 1)(1 3),

z = (1, 1, z)(2 3).

Lemma 1.3.17. Let A be the Apollonian group. Considering as generating

set S = {x, y, z, x−1, y−1, z−1}, the group A is contracting with N (A) =

{1, x, y, z, x−1, y−1, z−1}.

Proof. Let us consider g ∈ A and let w be the shortest word over S repre-

senting g. We will prove by induction on the length of g that there is some

k ∈ N such that gu ∈ N (A) for every u ∈ Lm for m ≥ k.

For the elements of length 1 it is clear from the definition. Let us prove

also the case ∂S(g) = 2.
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Direct calculation shows

xy = (1, yx, 1)(1 2 3) xz = (1, y, z)(1 3 2)

xy−1 = (1, y, x−1)(1 2 3) xz−1 = (z−1, y, 1)(1 3 2)

yx = (x, y, 1)(1 3 2) yz = (xz, 1, 1)(1 2 3)

yx−1 = (x, 1, y−1)(1 3 2) yz−1 = (x, z−1, 1)(1 2 3)

zx = (1, 1, zy)(1 2 3) zy = (x, 1, z)(1 3 2)

zx−1 = (y−1, 1, z)(1 2 3) zy−1 = (1, x−1, z)(1 3 2).

This shows that for k = 2 any section of an element g of length 2 is of length

1, and then for every vertex u in Lm with m ≥ 2 we get gu ∈ N (A).

Let us now suppose that the statement is true for any elements of length

shorter than n and consider g such that w, the shortest word over S rep-

resenting g, has length n. Then w = w′s with s ∈ S. By the formulas for

sections (see 1.1) for every u ∈ T we have wu = w′usw′(u). Since w′ is of length

n − 1 we know that there is some k ∈ N such that w′u ∈ N (A), and since

s ∈ S we know that sw′(u) ∈ N (A). Thus wu is a word of length at most

2, and since for those we know that k is at most 2, we obtain that for any

v ∈ Lm with m ≥ k + 2 we will have gv ∈ N (A) as desired.

1.3.4 The Basilica group

This group was defined by R. Grigorchuk and A. Zuk in [25]. The name

came later on, because its Schreier graphs have the shape of the basilica

of San Marcos, in Venice. The Schreier graphs of groups acting on rooted

trees, even if we will not enter in detail with them, roughly speaking are the

39



CHAPTER 1. PRELIMINARIES

orbital graphs on each level. That is, considering a particular vertex u on

level n ∈ N, for each generator s of the group, we match with a labelled edge

u and s(u), and we keep doing this for s(u) and so on. This can be seen to

converge to a graph when n goes to infinity and that is the Schreier graph of

the group.

In the same paper they prove that this group is torsion-free and weakly

branch. We collect here the definition and some of these results.

Definition 1.3.18. Let T be the binary tree. The Basilica group G is gen-

erated by two automorphisms a and b defined recursively as follows:

a = (1, b)

b = (1, a)ε,

where ε denotes the swap at the root.

Lemma 1.3.19. Let G be the Basilica group. Then,

(i) G acts transitively on all levels of T ,

(ii) G is fractal; that is, ψu(stG(u)) = G for any u ∈ T ,

(iii) ψ(G′) ≥ G′ ×G′, so G is weakly branch over G′,

(iv) ψ(G′′) = γ3(G)× γ3(G),

(v) G′ = ψ−1(G′ ×G′)o 〈[a, b]〉,

(vi) γ3(G) = ψ−1(γ3(G)× γ3(G))o 〈[a, b, b]〉,

(vii) G/G′ = 〈aG′〉 × 〈bG′〉 ∼= Z× Z,

(viii) G is torsion-free.
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As we will see later on in Chapter 3, the fact that G maps onto two copies

of Z and the fact that when p = 2 the whole group AutT is a Sylow pro-2

subgroup, prevent G from having the congruence subgroup property. That

is, the topology given by level stabilizers cannot be the same as the profinite

topology. In Chapter 4 we will see that the congruence topology coincides

with the pro-2 topology.

Regarding the word growth, in the same paper, Grigorchuk and Zuk

proved that G has exponential word growth. The reason for that is that the

monoid generated by a and b is free.
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Chapter 2

On the concept of fractality for

groups of automorphisms of a

regular rooted tree

2.1 Introduction

Given a group G ≤ AutT the fractality properties of this group may be an

interesting tool in order to prove results using induction on the length of a

vertex or the length of a word with respect to a given generating set. There

are several terms that have been used in order to refer to this concept: self-

replicating, recurrent, fractal... There is also some confusion in the literature

about the definition and equivalences between concepts that are related to

this one, as we shall specify later on. The aim of this chapter is to clarify all

these notions.

If G is the whole group AutT , then the homomorphisms ψu and ψn are

surjective onto AutT and AutT × dn. . . × AutT , respectively. On the other
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hand, if G is self-similar then the images of ψu and ψn are contained in G

and G× dn. . .×G, and we will consider these sets to be the codomains of those

maps. It is natural to ask whether ψu and ψn are also onto in this case. For

many interesting groups, ψu is known to be onto, i.e. ψu(stG(u)) = G for each

u ∈ T , and the group G is then called fractal, recurrent or self-replicating

(see [8, 23]). However, in general it is too strong to ask ψn to be surjective,

and we content ourselves with the image of ψn being a subdirect product of

G× dn. . .×G, namely that ψu(stG(n)) = G for each u ∈ Ln.

In the case of the vertex stabilizers, once the condition is satisfied for the

vertices on the first level, the property is inherited by the rest of the vertices.

In some papers, the condition of the surjectivity of ψu for the whole level

stabilizer is only required for n = 1; however, as we shall see, it is not always

inherited by the rest of the levels. Thus it is necessary to make a distinction

between these two concepts. Following terminology from previous papers, G

is said to be strongly fractal or strongly self-replicating if ψu(stG(1)) = G

for all u ∈ L1. We say that G is super strongly fractal if ψu(stG(n)) = G

for each n ∈ N and u ∈ Ln.

Obviously, every super strongly fractal group is also strongly fractal, and

every strongly fractal group is fractal, but there is some confusion in the

literature about the converse. In several papers, fractal groups are claimed

to be the same as strongly fractal groups, or else fractal groups are simply

introduced by using the definition of strongly fractal groups (see [3, 8, 9, 10,

12]). In some other papers, a distinction is made between these two concepts

(see [4, 23]), but no examples can be found in the literature where a certain

fractal group is shown not to be strongly fractal. On the other hand, strongly

fractal and super strongly fractal groups have not been clearly distinguished

either, see for example the paragraph after Definition 3.6 in [23]. This would
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mean that being strongly fractal and super strongly fractal are equivalent,

but as mentioned before, this is not the case. In fact, it is said that the

first Grigorchuk group is an example of this fact. It is true that the first

Grigorchuk group is super strongly fractal, but it is not a direct consequence

of being strongly fractal, as we shall see at the end of this chapter.

Our aim in this chapter is to fill this gap, and thus we show the following

result.

Theorem. There exist groups acting on regular rooted trees which are fractal

but not strongly fractal, and there are also strongly fractal groups which are

not super strongly fractal.

On the one hand, for every d ≥ 3, we give explicit examples of groups

that are fractal but not strongly fractal. More specifically, we show that a

certain subgroup of the Hanoi Towers group is of this type. We remark that

the restriction to d ≥ 3 is necessary for these examples to exist, since one

can easily show that for d = 2 a fractal group is always strongly fractal. In

proving that those groups are not strongly fractal, we have obtained a couple

of results that allow us to estimate the image of a level stabilizer under ψu,

which may have some interest of their own. On the other hand, we also give

examples of groups which are strongly fractal but not super strongly fractal,

and examples of super strongly fractal groups.

2.2 Preliminaries

Let X be a set with d elements and T the d-adic tree. We briefly remember

the notions mentioned in the introduction that will play the main role in

this chapter. Given a group G ≤ AutT for each n ∈ N we have the homo-

morphism ψn : stG(n) −→ AutT × · · · × AutT and for each vertex u the
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homomorphism ψu : stG(u) −→ AutT . In the case of G being self-similar

these two families of homomorphisms take images in G × · · · × G and G

respectively. As mentioned, even if in the case of the whole group of auto-

morphisms AutT the homomorphisms ψn and ψu are surjective, in general

different situations arise. According to this we have the definitions given in

Definition 1.1.5.

Notice that the definition of being super strongly fractal does not imply

that ψn is surjective from stG(n) to G × dn. . . × G, but only that ψn(stG(n))

is a subdirect product in G× dn. . .×G. The same remark applies to strongly

fractal groups with n = 1.

There is a special case in which the first two definitions are equivalent.

Lemma 2.2.1. Let G ≤ AutT and consider a d-cycle σ ∈ SX . If for each

g ∈ G we have g(∅) = σk for some k ∈ N and G is fractal, then G is strongly

fractal.

Proof. Let g ∈ stG(x) for x ∈ X. Then σk(x) = x which only happens if

k ≡ 0 (mod d). This implies that g ∈ stG(1), so stG(x) = stG(1).

Observe that for d = 2 the label at the root must be 1 or (1 2), so according

to the previous lemma, in this case being fractal and being strongly fractal

are equivalent.

This can be generalised, to obtain another important corollary that fol-

lows from the previous lemma in the case d = p where p is a prime. If

we consider T to be the p-adic tree, AutT is a profinite group which has a

standard Sylow pro-p subgroup consisting of all automorphisms which have

powers of a fixed p-cycle as a label in every vertex. Then, the previous

lemma shows that for every subgroup of the Sylow pro-p subgroup being

fractal and strongly fractal are equivalent. For example, this happens for the
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GGS-groups.

One of our goals is to give examples of subgroups of AutT for d ≥ 3

which are fractal but are not strongly fractal. All the examples that we

present will be level transitive groups. Moreover, under the condition of

being level transitive it is easier to check if a group is fractal or not.

The following lemma shows that to be fractal and level transitive it is

enough if the condition of being fractal is satisfied for some vertex in the first

level and the condition of being level transitive holds in the first level.

Lemma 2.2.2. Let G ≤ AutT . We have

(i) if ψx(stG(x)) = G for every x ∈ X then G is fractal,

(ii) if G is transitive on the first level and ψx(stG(x)) = G for some x ∈ X,

then G is fractal and level transitive.

Proof. First of all, let us prove (i). We deal by induction on the length of

the vertices. Assumption already gives the case n = 1, so let us consider an

arbitrary vertex v ∈ Ln+1 and write v = xu with u ∈ Ln and x ∈ X. By

inductive assumption we know that for any g ∈ G there is some h ∈ stG(u)

such that ψu(h) = g. On the other hand, there is some f ∈ stG(x) with

ψx(f) = h. Then, f ∈ stG(v) and

ψv(f) = ψu(ψx(f)) = ψu(h) = g.

In order to see (ii), first of all let us see that ψy(stG(y)) = G for each

y ∈ X, and thus by (i) we will already prove that G is fractal. Since G is

transitive on the first level for each y ∈ X there is some g ∈ G such that

g(x) = y. Then stG(x)g = stG(y). The result follows because using formula

(1.2) we get

ψy(stG(x)g) = ψx(stG(x))gx = Ggx = G.
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It only remains to prove that G is level transitive. We also prove that

by induction on the length of the vertices. Again, the base case is just the

hypothesis. Consider u = vx and u′ = v′x′ with v, v′ ∈ Ln and x, x′ ∈ X. By

inductive assumption there is some g ∈ G such that g(v) = v′. On the other

hand, there is also some f ∈ G such that f(gv(x)) = x′. Since G is fractal,

there is h ∈ stG(v′) with hv′ = f . Thus

gh(vx) = h(g(vx)) = h(g(v)gv(x)) = h(v′)hv′(gv(x)) = v′x′.

Since we will want to prove that a group is not strongly fractal, we are

interested in identifying the first level stabilizer. We present a tool that we

have developed in order to do this in the following lemma. Let us denote by

ρ the homomorphism from G to Sd that sends each g ∈ G to the label of g

at the root, g(∅).

Lemma 2.2.3. Let G ≤ AutT and put J = ρ(G). Suppose that we have

a presentation J = 〈Y | R〉 and let θ : F −→ J be the epimorphism corre-

sponding to this presentation, where F is the free group generated by Y . If

there exists a surjective homomorphism φ : F −→ G making the following

diagram commutative,

F G

J

-
φ

@
@

@@R
θ

?

ρ (2.1)

then,

stG(1) = 〈φ(R)〉G.

Proof. We know that ker θ = 〈R〉F . On the other hand, since φ is surjective,

every g ∈ G can be written as g = φ(x) for some x ∈ F , and then g ∈ ker ρ
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if and only if x ∈ ker(ρ ◦ φ). Consequently,

stG(1) = ker ρ = φ(ker(ρ ◦ φ))

= φ(ker θ) = φ(〈R〉F )

= 〈φ(R)〉G.

Notice that the actual condition we are asking about φ is to be surjective,

because by the universal property of free groups we are always able to con-

struct some φ making the diagram (2.1) commutative. In other words, the

point is whether for each y ∈ Y we can choose an element gy ∈ ρ−1(θ(y)), in

such a way that {gy | y ∈ Y } generates the whole group G or not.

Now, in the following lemma we present another new result, which will

help us to prove that the image of a level stabilizer under ψu is strictly

contained in G.

Lemma 2.2.4. Let G ≤ AutT be a self-similar group. If K = 〈S〉G ⊆ stG(n)

for some n ∈ N and ψu(S) ⊆ N for each u ∈ Ln, where N E G, then

ψu(K) ⊆ N for each u ∈ Ln.

Proof. Consider k ∈ K and let us write k = (sε11 )g1 . . . (sεrr )gr where εi ∈

{−1, 1}, si ∈ S and gi ∈ G for each i = 1, . . . , r. Let u ∈ Ln. Since

K ≤ stG(n) we know that k ∈ stG(u) and we have

ψu(k) = ψu(s
g1
1 )ε1 . . . ψu(s

gr
r )εr .

Thus it is enough to see that ψu(s
g) ∈ N for each s ∈ S, g ∈ G. Since

G ≤ AutT and AutT = Hn n st(n) by Proposition 1.1.2, we write each
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g = ht where h ∈ Hn and t ∈ st(n). Now by (1.4) we have

ψu(s
g) = (sh−1(u))

gh−1(u)

for each u ∈ Ln, and since ψh−1(u)(S) ⊆ N and N is normal in G, it is

enough to check that gh−1(u) belongs to G. This follows from the fact that G

is self-similar and we are done.

Now, let us introduce a stronger version of the previous lemma that will

help us to check whether a strongly fractal group is super strongly fractal or

only strongly fractal.

Lemma 2.2.5. Let G be level transitive and super strongly fractal. If K =

〈S〉G ⊆ stG(n) for some n ∈ N, then ψu(K) = 〈ψv(S) | v ∈ Ln〉G for any

u ∈ Ln.

Proof. Let us denote N = 〈ψv(S) | v ∈ Ln〉G. Since ψu(S) ⊆ N for every

u ∈ Ln, which is a normal subgroup, the inclusion ψu(K) ⊆ N follows from

the previous lemma.

Now, let g = (ψu1(s1)ε1)g1 . . . (ψur(sr)
εr)gr ∈ N . Since G is level transitive

for every ui ∈ {u1, . . . , ur}, there is some fi ∈ G such that fi(ui) = u. Then,

by (1.4)

ψu(s
fi
i )((fi)ui )

−1

= ψui(si).

Then we can write g = (ψu(s
f1
1 )ε1)g

′
1 . . . (ψu(s

fr
r )εr)g

′
r , where g′i = ((fi)ui)

−1gi ∈

G. From the fact that G is super strongly fractal, we know that there are
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some hi ∈ stG(n) such that ψu(hi) = g′i for i = 1, . . . , r. We conclude because

g = (ψu(s
f1
1 )ε1)g

′
1 . . . (ψu(s

fr
r )εr)g

′
r

= (ψu(s
f1
1 )ε1)ψu(h1) . . . (ψu(s

fr
r )εr)ψu(hr)

= ψu((s
ε1
1 )f1h1 . . . (sεrr )frhr) ∈ ψu(K).

Observe that the result and the proof work in the same way if we replace

every n by n = 1. Thus we have the same result for strongly fractal groups.

Corollary 2.2.6. Let G be a strongly fractal group which acts transitively on

the first level. If K = 〈S〉G and K ⊆ stG(1) then ψx(K) = 〈ψy(S) | y ∈ X〉G

for any x ∈ X.

Finally let us introduce another lemma that will help us to prove that

a group is super strongly fractal. This lemma tells us that, in some cases,

it suffices to check whether in each level stabilizer there are elements whose

sections at vertices on this level generate the whole group.

Lemma 2.2.7. Let G ≤ AutT be a self-similar group such that there is a

rooted automorphism a ∈ G, with a(∅) a d-cycle. If for each n ∈ N we have

〈ψu(stG(n)) | u ∈ Ln〉 = G, then G is super strongly fractal.

Proof. The proof works by induction on the length of the vertices. Let x ∈ X

and g ∈ G. We know that there are some y1, . . . , yr ∈ X such that g =

ψy1(g1)ε1 . . . ψyr(gr)
εr , where gi ∈ stG(1) and εi ∈ {1,−1}. Then for each i =

1, . . . , r we have aji(yi) = x for some ji ∈ {0, . . . , d−1}. Then considering ga
ji

i

we get an element on the first level stabilizer such that (ga
ji

i )x = (gi)yi . Then

the element h = (ga
j1

1 )ε1 . . . (ga
jr

r )εr ∈ stG(1) satisfies hx = g, so ψx(stG(1)) =

G.
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Now let us suppose that we know the result for length n − 1 and let us

see it for n. Let v = x1 . . . xn and g ∈ G. By assumption we know that

g = ψw1(g1)ε1 . . . ψwr(gr)
εr where wi ∈ Ln, gi ∈ stG(n) and εi ∈ {1,−1} for

each i = 1, . . . , r. It suffices to show that for i = 1, . . . , r there is some

hi ∈ stG(n) such that (hi)v = (gi)wi
, because then h = hε11 . . . h

εr
r ∈ stG(n)

and hv = g, as desired.

Let w be an arbitrary vertex in Ln. Then w = y1 . . . yn with yi ∈ X. For

each k = 1, . . . , n there is some jk = 0, . . . , d− 1 such that ajk(yk) = xk. By

inductive assumption a ∈ ψu(stG(k)) for every u ∈ Lk, with k = 1, . . . , n− 1.

Thus, for each k = 1, . . . , n−1 there is some fk ∈ stG(k) such that (fk)y1...yk =

ajk+1 . Then if we consider the element f = aj1f1 . . . fn−1, which belongs to

Hn, we obtain that

f(w) = (aj1f1 . . . fn−1)(y1 . . . yn)

= fn−1(fn−2 . . . (f1(aj1(y1 . . . yn))) . . . )

= fn−1(fn−2 . . . (f1(x1y2 . . . yn))) . . . )

= fn−1(fn−2 . . . (f2(x1x2y3 . . . yn))) . . . )

...

= x1 . . . xn = v.

Thus, in particular for each i = 1, . . . , r there is some ti ∈ Hn such that

ti(wi) = v. Then hi = gtii ∈ stG(n) and by (1.4)

(hi)v = (gi)t−1
i (v) = (gi)wi

.

Remark 2.2.8. In particular, in the conditions of the previous lemma, it is
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enough for a group G to be super strongly fractal to have one vertex un ∈ Ln
such that ψun(stG(n)) = G for each n ∈ N.

2.3 Fractal groups which are not strongly

fractal

2.3.1 A subgroup of the Hanoi Towers group

In this section we present an example for each d ≥ 3 which is fractal but not

strongly fractal. Even more, that example is a group which is level transitive.

We denote by xi for i = 1, . . . , d the elements of X, or what it is the same,

the vertices of the first level.

The example that we consider is a subgroup of the Hanoi Towers group,

which is defined as follows for each d ≥ 3, as mentioned in Chapter 1.

For 1 ≤ i < j ≤ d, we define the element aij which has the permutation

(xi xj) at the root and for each vertex on the first level:

(aij)xk =

1 if k = i, j

aij else.

The Hanoi Towers group isH = 〈aij | 1 ≤ i < j ≤ d〉. AlthoughH is strongly

fractal (see [19, page 13]), we are going to show that it has a subgroup which

is fractal but not strongly fractal.

We consider the subgroup G = 〈ai,i+1 | i = 1, . . . , d−1〉 ≤ H. To simplify

the notation, we write bi = ai,i+1.

As a consequence of Lemma 1.1.4 it is clear that G is self-similar, because

(bj)xi ∈ G for each j = 1, . . . , d− 1 and i = 1, . . . , d.
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Let us see that G is fractal. Observe that since the element bd−1bd−2 . . . b1

has the label (x1x2...xd) at the root, G is transitive on the first level, so by

(ii) in Lemma 2.2.2 it is enough to show that ψx1(stG(x1)) = G.

It suffices to check that each bi ∈ ψx1(stG(x1)). Since bi ∈ stG(x1) for

i 6= 1 and in this case ψx1(bi) = bi, it only remains to check that b1 ∈

ψx1(stG(x1)). To show this, consider the element bb2b11 . First of all observe

that (bb2b11 )(∅) = (x1x2)(x1x2x3) = (x2x3), so bb2b11 belongs to stG(x1).

On the other hand, using (1.2) we have

(bb2b11 )x1 = ((b2b1)(b2b1)−1(x1))
−1(b1)(b2b1)−1(x1)(b2b1)(b2b1)−1b1(x1)

= ((b2b1)x3)
−1(b1)x3(b2b1)x3

= ((b2)x3(b1)x2)
−1b1(b2)x3(b1)x2

= b1.

We obtain that ψx1(b
b2b1
1 ) = b1. Thus, we conclude that ψx1(stG(x1)) = G as

desired.

Let us now calculate stG(1). We have ρ(G) = 〈ρ(bi) | i = 1, . . . , d −

1〉 = Sd. We know that a presentation of the group Sd can be obtained by

considering as generators {τi = (i i+ 1)}i=1,...,d−1 and the following relations:

τ 2
i = 1, i = 1, . . . , d− 1,

τiτj = τjτi, |i− j| > 1,

(τiτi+1)3 = 1, i = 1, . . . , d− 2.

In order to apply Lemma 2.2.3, let F be the free group generated by

{τ1, . . . , τd−1} and θ : F −→ Sd the epimorphism corresponding to the pre-

sentation above. Thus ker θ = 〈τ 2
i , [τi, τj], (τiτi+1)3 | i, j = 1, . . . , d−1, |i−j| >
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1〉F . For each i = 1, . . . , d − 1 we have bi ∈ ρ−1(θ(τi)) and the bi generate

the whole group G. We can define φ : F −→ G by sending τi to bi for

each i = 1, . . . , d− 1. Then φ is a surjective homomorphism that makes the

diagram commutative. Now, applying the lemma, if

S = {b2
i , (bibi+1)3, [bi, bj] | i, j = 1, . . . , d− 1, |i− j| > 1},

then we obtain that

stG(1) = 〈S〉G.

Let us see, to conclude, that ψxk(stG(1)) 6= G for some k = 1, . . . , d. In

fact we will see that this happens for any k ∈ {1, . . . , d}.

One can check that

(b2
i )xk =

b
2
i if k 6= i, i+ 1,

1 if k = i, i+ 1,

which indeed, shows that b2
i is the identity element.

Let us now calculate what happens for ((bibi+1)3)xk . First of all, observe

that (bibi+1)xk = (bi)xk(bi+1)bi(xk), for k = 1, . . . , d, and since (bi)∅ = (xi xi+1)

if k 6= i, i + 1, i + 2 we get (bibi+1)xk = bibi+1, if k = i then (bibi+1)xk = 1, if

k = i+ 1 then (bibi+1)xk = bi+1 and if k = i+ 2 then (bibi+1)xk = bi. Finally

we have (bibi+1)∅ = (xi xi+1 xi+2). Thus since

(bibi+1)3
xk

= (bibi+1)xk(bibi+1)(bibi+1)(xk)(bibi+1)(bibi+1)2(xk)
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we obtain that

((bibi+1)3)xk =



(bibi+1)3 if k 6= i, i+ 1, i+ 2,

bibi+1 if k = i,

bi+1bi if k = i+ 1,

bibi+1 if k = i+ 2,

and, for |i− j| > 1,

([bi, bj])xk =

[bi, bj] if k 6= i, i+ 1, j, j + 1,

1 else.

To see the importance of the condition |i − j| > 1 in the last case, let us

calculate for example [bi, bj]xi .

[bi, bj]xi = (b−1
i b

bj
i )xi

= (b−1
i )xi(b

bj
i )xi+1

= ((bj)b−1
j (xi+1))

−1(bi)b−1
j (xi+1)(bj)b−1

j bi(xi+1)

= ((bj)xi+1
)−1(bi)xi+1

(bj)xi

= b−1
j bj = 1.

Here it is important that bj does not move xi and xi+1, which happens because

|i−j| > 1. On the other hand, observe that b2
i and [bi, bj] when |i−j| > 1 are

the identity automorphism, because they belong to the first level stabilizer

and the sections at the first level are just themselves or the identity.

Let σ : Sd −→ {1,−1} be the homomorphism sending each permutation

to its signature. One can check by calculations as in the previous example,
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that for any s ∈ S and k = 1, . . . , d we have σ(ψxk(s)(∅)) = 1 because

ψxk(s) is always a product of an even number of bi. Then, if we consider

N = 〈ψxk(S) | k = 1, . . . , d〉G we still have that σ(n(∅)) = 1 for any n ∈ N .

Now, we have stG(1) = 〈S〉G and ψxk(S) ⊆ N where N is normal in G,

so by Lemma 2.2.4 we conclude that ψxk(stG(1)) ⊆ N . But N cannot be the

whole group G because each n ∈ N has an even permutation at the root and

consequently bi /∈ N for each i = 1, . . . , d − 1. In other words, ρ(N) ⊆ Ad

while ρ(G) = Sd, so N 6= G.

2.3.2 Another example

In this section, we present a different example which is easier, bur based on

the same idea.

Let us consider the group G = 〈a1, . . . , ad−1〉 where each ai is defined in

the following way:

(ai)(∅) = (xi xi+1),

(a1)xj =

a2 for j = 1,

aj−1 for j = 2, . . . , d− 1,

and for i = 2, . . . , d− 1,

(ai)xj =

ai for j = 1,

aj−1 for j = 2, . . . , d− 1.

Let us see that G is fractal. Observe that since the element ad−1ad−2 . . . a1

has the label (x1 x2 . . . xd) at the root, G is transitive on the first level, so

by (ii) Lemma 2.2.2 it is enough to show that ψx1(stG(x1)) = G.

Let us see that ai ∈ ψx1(stG(x1)) for each i = 1, . . . , d − 1. Since
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a2, . . . , ad−1 ∈ stG(x1) we already have a2, a3, . . . , ad−1 ∈ ψx1(stG(x1)). We

only need to check that a1 ∈ ψx1(stG(x1)).

Observe that a2
1 ∈ stG(1) ⊆ stG(x1) and (a2

1)x1 = a2a1. Since we already

have a2 ∈ ψx1(stG(x1)) we obtain that a1 ∈ ψx1(stG(x1)). Thus, we conclude

that ψx1(stG(x1)) = G and then, by (ii) Lemma 2.2.2, G is fractal and level

transitive.

Let us now calculate stG(1). We have ρ(G) = 〈ρ(ai) | i = 1, . . . , d− 1〉 =

Sd. As in the previous example, we use the presentation of Sd over the

generators {τi = (i i+ 1)}i=1,...,d−1. Since ρ(ai) = τi and the ai-s generate the

whole group G we can apply Lemma 2.2.3. We conclude that

stG(1) = 〈a2
i , (aiai+1)3, [ai, aj] | i, j = 1, . . . , d− 1, |i− j| > 1〉G.

Let us see to conclude that ψxk(stG(1)) 6= G for some k = 1, . . . , d. In

fact we will see that it happens for any k ∈ {1, . . . , d}. Let

S = {a2
i , (aiai+1)3, [ai, aj] | i, j = 1, . . . , d− 1, |i− j| > 1}.

We use again σ : Sd −→ {1,−1}, the homomorphism sending each permu-

tation to its signature, observe that for any s ∈ S we have σ(ψxk(s)(∅)) = 1

because ψxk(s) is always a product of an even number of ai-s, and each

σ((ai)(∅)) = −1. Then, if we consider N = 〈ψxk(S)〉G we still have that

σ(n(∅)) = 1 for any n ∈ N .

The result follows by the same argument as in the last paragraph of the

previous example.

58



CHAPTER 2. ON THE CONCEPT OF FRACTALITY

2.4 Strongly fractal groups which are not

super strongly fractal

First of all, let us see that every GGS-group is strongly fractal.

Lemma 2.4.1. Let G be a GGS-group. Then G is strongly fractal.

Proof. Let us see that G is fractal. Since G is in the Sylow pro-p subgroup

of AutT corresponging to the cycle (1 . . . p), this is enough to show that G

is strongly fractal because of the discussion after Lemma 2.2.1. Since 〈a〉

acts transitively on the first level, according to (ii) in Lemma 2.2.2 it suffices

to show that ψx(stG(x)) = G for some x in the first level. Observe that

conjugating b by powers of a permutes the sections of b at the first level. In

other words,

ψ(bi) = (aep−i+1 , . . . , aep−1 , b, ae1 , . . . , aep−i),

where bi denotes ba
i

for i ∈ Z as mentioned in Chapter 1. Then, since e

is non-zero, there is some i = 1, . . . , p − 1 such that ep−i+1 6= 0 and since

b1, bi ∈ stG(x1) we obtain that ψx1(stG(x1)) ≥ 〈b, aep−i+1〉 = G. We conclude

that G is strongly fractal.

Let us consider the GGS-group G with constant defining vector.

Proposition 2.4.2. The group G is strongly fractal but not super strongly

fractal.

Proof. By the previous lemma it is enough to show that G is not super

strongly fractal. In [15, Theorem 2.4] it is shown that |G : stG(2)| = pt+1

where t is the rank of the circulant matrix which has as first row the vector
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(e, 0) = (1, . . . , 1, 0). In this case the rank is p. It is also proved in [15,

Theorem 2.14] that |G : stG(1)′| = pp+1.

Now since stG(1)/ stG(2) is abelian, as mentioned after Lemma 1.3.11,

we know that stG(1)′ ⊆ stG(2), so we conclude that stG(2) = stG(1)′. Since

stG(1) = 〈b0, . . . , bp−1〉, we have stG(1)′ = 〈[bi, bj] | i, j = 1, . . . , p〉G. Observe

that

ψ([bi, bj]) = (1, . . . , 1, [a, b]
j

, 1, . . . 1, [b, a]
i

, 1 . . . , 1).

By Corollary 2.2.6 we conclude that

ψx1(stG(2)) = ψx1(stG(1)′) = 〈[a, b], [b, a]〉G = G ′.

Now again, ψ([a, b]) = ψ(b−1
1 b) = (b−1a, 1, . . . , 1, a−1b). By the same argu-

ment as before, we have

ψx1(G ′) = ψx1(〈[a, b]〉G) = 〈b−1a〉G.

But then, for the vertex u = x1x1 ∈ L2 we have that ψu(stG(2)) = 〈b−1a〉G.

It is not hard to see that G/G ′ ∼= Cp × Cp (see [15, Theorem 2.1]). Since the

image of 〈ba−1〉G in G/G ′ is cyclic, we have 〈ba−1〉G 6= G, and G is not super

strongly fractal.

Observe that the same proof is true for p = 2, that is, if we consider

the group acting on the binary tree generated by the rooted automorphism

a according to (1 2) and by b ∈ st(1) such that ψ(b) = (a, b), which indeed,

is isomorphic to the infinite dihedral group. This happens because the facts

proved in [15] that are used are also satisfied in the case p = 2 and the

proof above also holds in this case. This in particular shows, that even if the

concepts of being fractal and strongly fractal coincide for the binary tree, the
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situation is different for the concepts of being strongly and super strongly

fractal.

2.5 Groups which are super strongly fractal

Let us now show that the rest of the family of the GGS-groups is super

strongly fractal. Before seeing this, let us prove a result which holds more

generally for all the multi-GGS groups different from G.

Lemma 2.5.1. Let G = 〈a, b1, . . . , br〉 be a multi-GGS-group different from

G. Then

ψx(G
′) = G for all x ∈ X.

Proof. Suppose without loss of generality that b1 is defined by a non-constant

vector, so there exists i ∈ {1, . . . , p−2} such that e1,i 6= e1,i+1. Then ψ([b1, a])

has ae1,ia−e1,i+1 6= 1 in the (i+ 1)st coordinate and therefore ψ([b1, a]a
1−i

) has

a non-trivial power of a in the first coordinate. So there exists an element

h ∈ G′ such that ψ(h) has a in the first coordinate. For any j ∈ {1, . . . , r} the

element ψ([bj, a]) has a−ej,1bj in the first coordinate and so the first coordinate

of ψ(hej,1 [bj, a]) is bj. Thus ψx1(G
′) = G. Conjugating by powers of a, we

obtain the result for the rest of the vertices.

Proposition 2.5.2. Let G be a GGS-group different from G. Then G is

super strongly fractal.

Proof. By [15, Lemma 3.3] we know that for n ≥ 3 we have ψ(stG(n)) =

stG(n− 1)× p. . .× stG(n− 1). This implies that if n ≥ 3 then ψx(stG(n)) =

stG(n−1) for every x ∈ X, and then for every v ∈ Ln−2 we have ψv(stG(n)) =

stG(2). Since we already know that ψx(stG(1)) = G for every x ∈ X, if we
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show that ψx(stG(2)) = stG(1) for each x ∈ X we will be done, because then

for every u = vxy ∈ Ln we have

ψvxy(stG(n)) = ψy(ψx(ψv(stG(n))))

= ψy(ψx(stG(2)))

= ψy(stG(1))

= G.

As mentioned after Lemma 1.3.11, since stG(1)/ stG(2) is abelian for every

multi-GGS-group, we know that stG(1)′ ≤ stG(2). Now as in the proof of

Proposition 2.4.2, we obtain that ψx(stG(1)′) = G′. Finally, by Lemma 2.5.1

we know that for any vertex xy ∈ L2 we have

G = ψy(G
′) = ψy(ψx(stG(1)′)) ≤ ψxy(stG(2)).

Since the other inclusion is always satisfied the result follows.

Even more, we are also able to show that all the multi-GGS-groups with

r ≥ 2 are also super strongly fractal. In order to prove this, we need an

auxiliary result that will also be helpful in Chapter 3. As mentioned in

Lemma 1.3.11, every multi-GGS-group apart from G is known to be regular

branch over γ3(G). We improve this result by showing that all of them are

regular branch over G′ for r ≥ 2.

Lemma 2.5.3. If the multi-GGS-group G is generated by r ≥ 2 directed

generators and the rooted automorphism a, then ψ(stG(1)′)) = G′× p. . .×G′.

In particular, G is regular branch over its commutator subgroup G′.

Proof. Since ψ(stG(1)) ≤ G × p. . . × G, we need only show the ‘≥’ inclusion

in the statement.
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Suppose that b1 has non-symmetric defining vector. Then H = 〈a, b1〉 ≤

G is a GGS-group defined by a non-symmetric vector, and thus we already

know that ψ(stH(1)′) = H ′ × · · · ×H ′. Thus we get that

([a, b1], 1, . . . , 1) ∈ ψ(stH(1)′) ≤ ψ(stG(1)′).

Now by Lemma 1.3.11 we can assume that e1,1 = 1, and thus for any

other directed generator bi we have,

ψ([b1, b
a
i ]) = ([a, bi], 1 . . . , 1, [b1, a

ei,p−1 ]).

Therefore, since H ′× · · ·×H ′ ∈ ψ(stG(1)′), we obtain that ([a, bi], 1 . . . , 1) ∈

ψ(stG(1)′). Thus (x, 1, . . . , 1) ∈ ψ(stG(1)′) for each normal generator x of G′

and by Proposition 1.1.10 we obtain that G′ × p. . .×G′ ≤ ψ(stG(1)′).

Now suppose that all bi-s are defined by symmetric vectors (ei,j = ei,p−j

for every i, j ∈ {1, . . . , p−1}). Again, by (i) in Lemma 1.3.11 we may assume

that ei,1 = 1 for i = 1, . . . , r. As pointed out after the same lemma, since we

can consider the row echelon form, we may assume that ei = (0, ∗, . . . , ∗, 0)

for i = 2, . . . , r. We thus obtain that

ψ([b1, b
a
i ]) = ([a, bi], 1, . . . , 1),

for i = 2, . . . , r.

Now let e2,j be the first non-trivial entry in e2 and α ∈ Fp such that

e2,jα = 1. As mentioned after Lemma 1.3.11, we can also replace e1 by
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e1 − ke2 where e1,j + ke2,j = 0 so that e1,j = 0.

ψ([ba
j

1 , (b2)α]) = (1, . . . , 1, [b1, a], 1, . . . , 1, [ae1,p−j , bα2 ])

= (1, . . . , 1, [b1, a], 1, . . . , 1, 1),

where the last equality follows because e1,p−j = e1,j = 0. Repeating the same

argument as in the previous case we obtain the result.

Now we can prove that all the multi-GGS-groups with r ≥ 2 are super

strongly fractal.

Proposition 2.5.4. Let G = 〈a, b1, . . . , br〉 be a multi-GGS group with r ≥ 2.

Then G is super strongly fractal.

Proof. Since G is strongly fractal, we already know that ψx(stG(1)) = G for

every x ∈ L1. Now let us see that ψu(stG(n)) = G for u ∈ Ln with n ≥ 2.

Since G is regular branch over G′ we can consider for each n ∈ N the

subgroup Kn = ψ−1
n (G′ × pn. . .×G′). Then we have

ψn(Kn) = G′× pn. . .×G′ ⊆ (stG(1)× pn. . .×stG(1))∩ψn(stG(n)) = ψn(stG(n+1)).

Thus Kn ⊆ stG(n + 1), and for each u ∈ Ln, one has G′ = ψu(Kn) ⊆

ψu(stG(n+ 1)). Finally for each x ∈ X we obtain

G = ψx(G
′) ⊆ ψux(stG(n+ 1)),

so that ψv(stG(n+ 1)) = G for each v ∈ Ln+1.

Finally, as mentioned in the introduction of this chapter, in [23, page 85]

it is said that first Grigorchuk group Γ is super strongly fractal. Let us see
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that, indeed, it is, even if it is not a direct consequence of being strongly

fractal. The proof of this fact is similar to the previous example.

Proposition 2.5.5. The group Γ is super strongly fractal.

Proof. In [3, Theorem 4.3] it is shown that ψ(stΓ(n)) = stΓ(n−1)×stΓ(n−1)

for n ≥ 4. Since a, the rooted automorphism corresponding to the permuta-

tion (1 2) is in Γ, by Lemma 2.2.7 it suffices to show that 〈ψun(stΓ(n)) | un ∈

Ln〉 = Γ when n = 1, 2, 3.

Observe that since bc = d, it is enough to check that a and two of the

three generators {b, c, d} are in the image of stΓ(n) for n = 1, 2, 3.

For n = 1 it follows from the definition of the elements b, c, d. Let us see

the cases n = 2 and n = 3.

It is easy to calculate and check that d, (ac)4 ∈ stΓ(2) and that

ψx2x1(d) = a,

ψx2x2(d) = c,

ψx2x2((ac)
4) = b.

To conclude, the element g = (ab)4(adabac)2 belongs to stΓ(3) and

ψx1x2x1(g) = d,

ψx2x2x1(g) = a,

ψx2x2x2(g) = c.

This proves that Γ is super strongly fractal.

65



66



Chapter 3

On the congruence subgroup

property for the

multi-GGS-groups

3.1 Introduction

As mentioned in the introduction of the thesis, the congruence subgroup

property for subgroups of AutT is defined by analogy with the same property

for linear algebraic groups [7]. More precisely, a subgroup G of AutT sat-

isfies the congruence subgroup property if each of its finite index subgroups

contains some level stabilizer stG(n) = G ∩ st(n). Taking the subgroups

{stG(n) | n ∈ N} as a neighbourhood basis for the identity gives a topology

on G, the congruence topology. The completion G of G with respect to this

topology, which is called the congruence completion of G, is a profinite group

which is isomorphic to the closure of G in AutT . On the other hand, G also

embeds in its profinite completion Ĝ, and Ĝ maps onto G. Now G satisfying
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the congruence subgroup property is tantamount to the map Ĝ → G being

an isomorphism. The congruence subgroup problem asks whether this is the

case and, if not, whether it is possible to determine the kernel of this map,

which is called the congruence kernel of G.

In [22, Examples 10.1 and 10.2], Grigorchuk showed that the GGS-group

corresponding to e = (1, 0, . . . , 0) is just infinite and satisfies the congruence

subgroup property for p ≥ 5, and that the same holds for all the GGS-groups

with ep−3 = ep−2 = ep−1 = 0, provided that p ≥ 7. Vovkivsky proved that

all torsion GGS-groups are just infinite [38, Theorem 4], and then Pervova

showed that torsion GGS-groups satisfy the congruence subgroup property

[33]. Observe that, according to [38, Theorem 1], a GGS-group with defining

vector e is torsion if and only if e1 + · · ·+ ep−1 = 0. As a consequence, many

vectors of Fp−1
p define non-torsion GGS-groups. Our first main result is the

generalization of Pervova’s theorem on the congruence subgroup property to

all the GGS-groups other than G.

Theorem 3.1.1. All the multi-GGS-groups apart from G have the congruence

subgroup property and are just infinite.

We prove this result first for the GGS-groups defined by a non-constant

vector. Our proof is based on a general criterion of Bartholdi and Grigorchuk

for a regular branch group to have the congruence subgroup property which,

in particular, also yields that the groups in Theorem 3.1.1 are just infinite.

Also, it does not rely on the results of Pervova for torsion GGS-groups.

In [2], Barnea asked about the existence of infinite finitely generated

residually finite non-torsion groups whose profinite completion is a pro-p

group, and also whether such groups may even be torsion-free. Observe that

Theorem 3.1.1 shows that the profinite completion of a GGS-group with

non-constant defining vector is the same as its congruence completion and,
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in particular, a pro-p group. We will prove that some of these GGS-groups

are virtually torsion-free, and then passing to a torsion-free subgroup will

allow us to answer Barnea’s questions in the positive.

The GGS-group with constant defining vector has a completely different

behaviour.

Theorem 3.1.2. The GGS-group G with constant defining vector has an

infinite congruence kernel.

We do not yet have a concrete description of this infinite kernel. Previous

work on the congruence subgroup problem for groups acting on rooted trees

was done by Bartholdi, Siegenthaler and Zalesskii [5], where they developed

tools to determine the congruence kernel of branch groups. However, these

tools are not available to us, as the GGS-group with constant defining vector

is not a branch group (although it is weakly branch). We also prove this fact,

which had been mentioned for the case p = 3 in [3, Proposition 7.3].

Theorem 3.1.3. The GGS-group G with constant defining vector is not a

branch group.

Finally, we prove that in the family of multi-GGS-groups, which gen-

eralises the family of the GGS-groups, the answer is still the same. That

is, all the multi-GGS-groups except the GGS-group defined by the constant

vector have the congruence subgroup property. This concludes the proof of

Theorem 3.1.1.

3.2 Congruence Subgroup Problem for AutT

Before we prove all the results mentioned in the introduction, in order to

motivate the chapter, let us see what happens with the congruence subgroup
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problem for the whole group AutT . Whereas the properties of being fractal,

strongly fractal and super strongly fractal are trivially satisfied in the whole

group AutT , this is not the case any more when we ask about the congruence

subgroup property, as we will see.

Proposition 3.2.1. Let G = H n N be any semidirect product. Then the

abelianization of G is

Gab ∼= Hab × Nab

[H,Nab]
.

Proof. First of all observe that [H,Nab] makes sense, since the action of H

in N induces an action on Nab defined by nh = nh, where n denotes nN ′.

Now we have [G,G] = [H,H][N,G] and it is clear that [N,G] is normal

in G′ and [N,G] ∩ [H,H] = {1}. Thus G′ = H ′ n [N,G]. Finally one

obtains that Gab ∼= Hab × N
[N,G]

. Since N ′ ≤ [N,G] there is a projection

π : Nab −→ N/[N,G]. If we show that the kernel is equal to [Nab, H] we

obtain the result. It is clear that π(n−1nh) = n−1nh = 1 (mod [N,G]). On

the other hand [n, g] = [n, hm] = [n, h][n,m]h = 1 (mod [H,Nab]) and the

result follows.

Corollary 3.2.2. Let G = C oX D where X is a finite set and D acts on X.

Then

Gab ∼= Dab × (Cab × |X/D|. . . × Cab),

where X/D denotes the D-orbits of X.

Proof. Since C oX D ∼= Dn (C × |X|. . .×C) by the previous proposition we get

Gab ∼= Dab × (Cab × |X|. . .× Cab)

[D, (Cab × · · · × Cab)]
.
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Thus it only remains to show that

(Cab × |X|. . .× Cab)

[D, (Cab × · · · × Cab)]
∼= (Cab × |X/D|. . . × Cab).

Let X1, . . . , Xk denote the different D-orbits of X. Now we have a sur-

jective homomorphism α : Cab × |X|. . . × Cab −→ Cab × |X/D|. . . × Cab which

sends each (c1, . . . , c|X|) to (
∏

ci∈X1
ci, . . . ,

∏
ci∈Xk

ci). Thus if we see that

kerα = [D, (Cab × |X|. . .× Cab)] we will be done. First of all for any generator

we have

α([(c1, . . . , c|X|), d]) = α((c−1
1 , . . . , c−1

|X|)(cd−1(1), . . . , cd−1(|X|)))

= (
∏
ci∈X1

c−1
i , . . . ,

∏
ci∈Xk

c−1
i )(

∏
ci∈X1

ci, . . . ,
∏
ci∈Xk

ci)

= (1, . . . , 1).

On the other hand, it is easy to check that any element of the kernel can be

written as an element in [D, (Cab × |X|. . .× Cab)] and hence the result follows.

We already know that AutTn ∼= (. . . ((Sd o Sd) o Sd) . . . ) o Sd. Then, by

the previous corollary we obtain that (Sd o Sd)ab ∼= C2 × C2. Applying this

iteratively we get that (AutTn)ab = AutT
(AutT )′ st(n)

∼= C2 × n. . .× C2.

On the one hand, observe that the number of open subgroups in AutT =

lim←−n∈N AutT/ st(n) is countable, because the open subgroups are the ones

that contain some level stabilizer. Since each quotient AutT/ st(n) is finite,

there is a finite number of such subgroups for each n ∈ N, thus a countable

number altogether.
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On the other hand, if we consider the two inverse systems

{AutT/ st(n), πn,m,N} and {AutT/(AutT )′ st(n), π′n,m,N},

with πn,m, π
′
n,m being the natural projections for n ≥ m, together with the

projections πn : AutT/ st(n) −→ AutT/(AutT )′ st(n) for each n ∈ N, we

get a continuous homomorphism

π̃ : AutT −→ lim←−
n∈N

AutT/(AutT )′ st(n) ∼= lim←−
n∈N

(C2 × n. . .× C2) ∼= CN2 ,

which is onto because each πn is so. Thus, AutT has at least as many

subgroups of finite index as CN2 . The group CN2 can be seen as a vector space

over F2. Thus, it has a basis, and the basis must be uncountable, because

otherwise CN2 would be countable. Removing one element of the basis we get

a subgroup of finite index of CN2 and thus, it has uncountably many subgroups

of finite index. This shows that with respect to the profinite topology AutT

has an uncountable number of open subgroups, and thus it cannot be the

same topology as the one given by the level stabilizers. This shows that

AutT does not have the congruence subgroup property.

Since for any infinitely generated pro-p group there are non-open sub-

groups of finite index, the same argument applies to any pro-p subgroup of

AutT .
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3.3 The GGS-groups with non-constant

defining vector

In this section we prove Theorem 3.1.1, i.e. that the GGS-groups with a

non-constant defining vector have the congruence subgroup property.

The results mentioned in Proposition 1.3.6 in the first chapter show that

all the GGS-groups with non-constant defining vector are regular branch over

γ3(G), and even over G′ when the defining vector is not symmetric. As a

consequence, they are branch groups.

Our proof that the GGS-groups with a non-constant defining vector have

the congruence subgroup property relies on (i) of Corollary 1.1.13. Indeed, by

the corollary, in order to show that G has the congruence subgroup property

it suffices to show that G′′ and γ3(G)′ contain some level stabilizer, depending

on whether the defining vector is symmetric or not.

In the rest of this section we will show that, if G is a GGS-group with

non-symmetric defining vector, then G′′ contains some level stabilizer of G,

and that the same property holds for non-constant symmetric defining vector,

with γ3(G)′ in the place of G′′. This will complete the proof of Theorem 3.1.1.

Lemma 3.3.1. If G is a GGS-group with non-constant defining vector, then

ψ(G′) is a subdirect product of G×
p
· · · ×G.

We omit the proof of this lemma because it is very similar to the proof

of Lemma 2.5.1.

Lemma 3.3.2. If G is a GGS-group with non-constant symmetric defining

vector, then ψ(γ3(G)) is a subdirect product of G×
p
· · · ×G.

Proof. First of all, observe that if p = 3 and the defining vector of G is
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symmetric, then it must be constant. Hence p ≥ 5. We have

ψ([b, a, a]) = (b−1ae1b−1aep−1 , ae2−2e1b, ae1−2e2+e3 , . . .

. . . , aep−3−2ep−2+ep−1 , a−ep−1baep−2−ep−1).

Since e is non-constant and symmetric, there exists i ∈ {1, . . . , (p − 3)/2}

such that ei 6= ei+1. Let us choose i as large as possible subject to that

condition. This choice, together with e(p−1)/2 = e(p+1)/2, yields that ei+1 =

ei+2. Consequently ei − 2ei+1 + ei+2 = ei − ei+1 6= 0, and the coordinate of

ψ([b, a, a]) in position i+2 is a generator of 〈a〉. Since we also have ae2−2e1b in

the second position of ψ([b, a, a]), the result follows as in the proof of Lemma

2.5.1.

We can now prove part of Theorem 3.1.1.

Theorem 3.3.3. Let G be a GGS-group with non-constant defining vector.

Then G has the congruence subgroup property and is just infinite.

Proof. By Corollary 1.1.13, it suffices to show that G′′ or γ3(G)′ contain

some level stabilizer, according as the defining vector e is non-symmetric or

non-constant symmetric.

Assume first that e is non-symmetric. We have γ3(G) = 〈[g, a], [g, b] | g ∈

G′〉G. By Proposition 1.3.6, for each g ∈ G′ there exists h ∈ stG(1)′ such

that ψ(h) = (g, 1, . . . , 1). On the other hand, by Lemma 3.3.1, there exist

x, y ∈ G′ such that ψ(x) = (a, ∗, . . . , ∗) and ψ(y) = (b, ∗, . . . , ∗), where each

∗ denotes an undetermined element of G. Then ψ([h, x]) = ([g, a], 1, . . . , 1)

and ψ([h, y]) = ([g, b], 1, . . . , 1) belong to ψ(G′′), and consequently, by Propo-

sition 1.1.10, ψ(G′′) ≥ γ3(G)× · · · × γ3(G). Since stG(2) ≤ γ3(G) by (iv) of
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Proposition 1.3.5, we conclude that

ψ(G′′) ≥ stG(2)× · · · × stG(2) = ψ(stG(3)),

and G′′ ≥ stG(3), as desired.

Now we assume that e is non-constant symmetric. Arguing as above,

by combining Proposition 1.3.6 and Lemma 3.3.2, we get that ψ(γ3(G)′) ≥

γ4(G) × · · · × γ4(G). If we show that stG(3) ≤ γ4(G) then stG(4) ≤ γ3(G)′,

and we are done. By (iii) of Proposition 1.3.5, we have | stG(1) : γ3(G)| = p2.

Hence stG(1)′ ≤ γ3(G) and γ3(stG(1)) ≤ γ4(G). Then

ψ(γ4(G)) ≥ ψ(γ3(stG(1))) = γ3(G)× · · · × γ3(G)

≥ stG(2)× · · · × stG(2) = ψ(stG(3)),

by using Proposition 1.3.6. Thus stG(3) ≤ γ4(G), which completes the proof.

3.4 Barnea’s questions on profinite groups

In [2], Barnea posed the following two questions:

(i) Is there an infinite finitely generated residually finite non-torsion group

such that its profinite completion is pro-p?

(ii) Is there an infinite finitely generated residually finite torsion-free group

such that its profinite completion is pro-p?

According to Theorem 3.1.1, the profinite completion of a GGS-group G

with non-constant defining vector is the same as its congruence completion.

Since G lies in a Sylow pro-p subgroup of AutT , the index |G : stG(n)| is
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a power of p for all n ≥ 1. Thus the profinite completion of G is a pro-p

group. By considering non-constant vectors e with coordinates satisfying

e1 + · · · + ep−1 6= 0, we get groups that answer in the positive Barnea’s

first question. Note that given a group G having the congruence subgroup

property, for any subgroup H of finite index in G, we know that every N ≤ H

of finite index is a subgroup of finite index inG and thusN ≥ stG(n) ≥ stH(n)

for some n ∈ N. That is, the congruence subgroup property is hereditary

for finite index subgroups. Thus, in order to answer the second question, we

consider the GGS-group with defining vector e = (1, . . . , 1, 0) and show that

it is virtually torsion-free. In the case p = 3, this GGS-group is known as

the Fabrykowski-Gupta group, and it was shown to be virtually torsion-free

in [3, Theorem 6.4].

To start with, we identify which finite index subgroup should be shown

to be torsion-free, using the following criterion.

Proposition 3.4.1. Let G be a regular branch group over a subgroup K and

suppose that G has the congruence subgroup property. If P is a property of

groups which is hereditary for subgroups then G virtually has P if and only

if K has P.

Proof. Since K has finite index in G, the ‘if’ direction is clear. To show

the ‘only if’ part, suppose that G virtually has P and has the congru-

ence subgroup property. Thus there exists some n such that stG(n) has

P and therefore rstG(n) has P . Since G is regular branch over K, we have

ψn(rstG(n)) ≥ K × · · · ×K and therefore K must have P .

As a consequence, a natural strategy in order to answer Barnea’s second

question in the affirmative is to consider a GGS-group G with non-symmetric

defining vector and examine whether G′ is torsion-free. We will show that
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this is the case for the group with defining vector e = (1, . . . , 1, 0) for every

odd prime p, although the proof is valid for other vectors too, as explained

at the end of the section.

We need the following two lemmas.

Lemma 3.4.2. Let G be a GGS-group and let h ∈ stG(1). Then the following

conditions are equivalent:

(i) h ∈ G′.

(ii) If ψ(h) = (h1, . . . , hp), then h1 . . . hp ∈ G′.

(iii) ψ((ha)p) ∈ G′ × · · · ×G′.

Proof. Let Φ : stG(1) −→ G/G′ be the homomorphism given by Φ(h) =

h1 . . . hpG
′, where ψ(h) = (h1, . . . , hp). Clearly, we have Φ(ha) = Φ(h) for all

h ∈ stG(1), and then Φ(bi) = Φ(b) for all i ∈ Z. If we write h ∈ stG(1) in the

form h = br1i1 . . . b
rk
ik

, with r1, . . . , rk ∈ Z, it follows that Φ(h) = Φ(b)r1+···+rk .

Since G/G′ is elementary abelian and Φ(b) is non-trivial, we have h1 . . . hp ∈

G′ if and only if r1 + · · · + rk = 0 in Fp. Now, by Theorem 2.11 in [15], the

latter condition is equivalent to h ∈ G′. This proves that (i) and (ii) are

equivalent.

Now we prove the equivalence between (ii) and (iii). Since

(ha)p = hha
p−1

ha
p−2

. . . ha,

the ith component of ψ((ha)p) is hihi+1 . . . hi+p−1, where the indices are to

be reduced modulo p to the interval [1, p], and the result follows.

Lemma 3.4.3. Let G be a GGS-group and let g ∈ G be such that gp = 1.

Then g ∈ 〈a〉G′ ∪ 〈b〉G′ ∪G′.
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Proof. Suppose for a contradiction that g = fbras, with f ∈ G′ and r, s 6≡ 0

(mod p). By considering a suitable power of g, we may assume that s = 1.

Since ψ(gp) = (1, . . . , 1), it follows from the previous lemma that fbr ∈ G′,

which is a contradiction.

Theorem 3.4.4. Let G be the GGS-group defined by the vector e = (1, . . . , 1, 0).

Then G′ is torsion-free.

Proof. The GGS-group G lies in a Sylow pro-p subgroup of AutT , and con-

sequently a torsion element must be of p-power order. Thus it suffices to

show that G′ has no elements of order p.

Let us consider an arbitrary element g ∈ G′. Assume first that g ∈

G′ r stG(1)′. By Theorems 2.11 and 2.14 in [15], the set

{bi11 . . . bipp | i1 + · · ·+ ip ≡ 0 (mod p)}

is a transversal of stG(1)′ in G′. Thus we can write g = bi11 . . . b
ip
p h with

h ∈ stG(1)′, (i1, . . . , ip) ∈ Fpp \ {(0, . . . , 0)} and i1 + · · ·+ ip = 0. By replacing

g with a suitable conjugate, we may assume that i1 6= 0. We have

ψ(g) = ψ(bi11 . . . b
ip
p )ψ(h) = (am1bi1k1f1, . . . , a

mpb
ip
kp
fp), (3.1)

for some kj ∈ Z and fj ∈ G′, and with

mj =
( p∑
r=1

ir

)
− ij − ij+1 = −(ij + ij+1) (3.2)

for every j ∈ {1, . . . , p} (where we put ip+1 = i1). We claim that mj and

ij are both non-zero for some j. To this end, let j be as large as possible

subject to the condition m1 = · · · = mj−1 = 0. Then by (3.2) we have
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ij = (−1)j−1i1 6= 0, and so if j ≤ p we are done. Otherwise, if m1, . . . ,mp

are all 0, we get the contradiction 2i1 = 0. This proves the claim.

It follows from Lemma 3.4.3 that the jth component of ψ(g) is not of

order p, and therefore neither is g.

Now we assume that g ∈ stG(1)′. Thus we can consider the largest integer

n ≥ 0 for which

ψn(g) ∈ stG(1)′ ×
pn

· · · × stG(1)′.

Then g ∈ stG(n + 1) and, since ψ(stG(1)′) = G′ ×
p
· · · × G′ by Proposition

1.3.6, the vector ψn+1(g) has a component in G′ r stG(1)′. By the previous

paragraph, g is not of order p also in this case.

Notice that in the above proof, equation (3.2) is equivalent to

(m1, . . . ,mp) = (i1, . . . , ip)C,

where C is the circulant matrix

C =


0 e1 · · · ep−1

ep−1 0 · · · ep−2

...
. . . . . .

...

e1 e2 · · · 0


whose ith row corresponds to the powers of a in bi with 1 ≤ i ≤ p for

a GGS-group with defining vector e. Thus the proof is valid not just for

the vector (1, . . . , 1, 0) but for any non-symmetric vector e such that the

following condition holds: for every non-zero (i1, . . . , ip) ∈ Fpp with
∑p

r=1 ir =

0, there exists j ∈ {1, . . . , p} such that mjij 6= 0. Indeed, the paragraph

below equation (3.2) is the proof that the vector (1, . . . , 1, 0) satisfies this

condition. A slight modification of the proof shows that, more generally, the
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vector e = (1, . . . , 1, λ) also satisfies the required condition, provided that

λ ∈ Fp r {1, 2}. This gives many more examples of virtually torsion-free

GGS-groups with non-symmetric defining vector.

3.5 The GGS-groups with constant defining

vector

In this section we prove that the GGS-group G with constant defining vector

is not a branch group and does not have the congruence subgroup property.

Recall the definition and facts about the subgroup K and of the elements

yi for i = 0, . . . , p − 1, mentioned in Lemma 1.3.8 and the comments just

before this lemma, respectively. We start by determining the structure of

the quotient G/K ′. We need the following lemma.

Lemma 3.5.1. The elements y0, . . . , yp−1 have infinite order.

Proof. It suffices to prove the claim for y0. If the order of y0 is finite, then it

must be a power of p, say pn, since G is contained in a Sylow pro-p subgroup

of AutT . Now,

yp0 = (ba−1)p = bba . . . ba
p−1 ∈ stG(1),

and

ψ(yp0) = (abap−2, a2bap−3, . . . , bap−1) = (yp−1, yp−2, . . . , y0).

Thus the last coordinate of ψ(yp
n

0 ) is yp
n−1

0 , which must be 1. This is a

contradiction.

Proposition 3.5.2. The quotient group G/K ′ is isomorphic to the semidirect

product

P = 〈d〉n 〈c0, . . . , cp−2〉 ∼= Cp n (C∞ × p−1. . . × C∞),
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where cdi = ci+1 for i = 0, . . . , p − 3 and cdp−2 = (c0 . . . cp−2)−1, and the iso-

morphism maps K/K ′ to the kernel of the semidirect product. In particular,

K/K ′ is torsion-free.

Proof. Taking into account that yai = yi+1 for all i and that yp−1 . . . y1y0 = 1,

the assignments ci 7→ yiK
′ and d 7→ aK ′ define a surjective homomorphism

α from P to G/K ′, by von Dyck’s Theorem. Thus we only need to show that

kerα = 1. By way of contradiction, assume that the kernel of α contains an

element w 6= 1.

Put C = 〈c0, . . . , cp−2〉, which is a free abelian group of rank p−1. If w ∈

P r C then P = 〈w〉C and α(P ) = α(C) = K/K ′, which is a contradiction.

Thus w ∈ C. If m is the order of the torsion subgroup of C/〈w〉 then C/〈w〉 ∼=

C∞ × p−2. . . × C∞ × F with |F | = m. Since α(〈w〉Cpm) = (K/K ′)p
m

, it follows

that |K/K ′ : (K/K ′)p
m| ≤ |C : 〈w〉Cpm| ≤ pm(p−2)m. Now, by [15, Theorem

4.6], the quotient G/K ′ stG(n) is a p-group of maximal class of order pn+1

for every n ≥ 1. Let us choose n = m(p − 1). Then the group K/K ′ stG(n)

is homocyclic of rank p − 1 and exponent pm (see [13, Theorem 4.9] or [29,

Corollary 3.3.4]). Thus |K/K ′ stG(n) : (K/K ′ stG(n))p
m| ≥ pn. But then

pn = pm(p−1) ≤ |K/K ′ stG(n) : (K/K ′ stG(n))p
m| ≤ |K/K ′ : (K/K ′)p

m | ≤

pm(p−2)m, which gives a contradiction because pm > m. Thus kerα = 1, as

desired.

We can now prove Theorem 3.1.2.

Proof of Theorem 3.1.2. Let Ĝ and G be the profinite and congruence com-

pletions of G, respectively, and let C be the congruence kernel of G, i.e. the

kernel of the natural homomorphism from Ĝ onto G.

Consider a prime q other than p. By Proposition 3.5.2, the factor group

G/K ′ is a semidirect product with kernel K/K ′ isomorphic to C∞× p−1. . .×C∞

81



CHAPTER 3. CSP FOR THE MULTI-GGS-GROUPS

and complement isomorphic to Cp. For every n ∈ N, let Kn be the normal

subgroup of G defined by the condition Kn/K
′ = (K/K ′)q

n
. Then |G : Kn| =

pqn(p−1).

A basic result in profinite group theory (see [34, Proposition 3.2.2]) states

that there is a one-to-one correspondence Φ between the subgroups of G which

are open in the profinite topology of G and the open subgroups of Ĝ. The

map Φ takes an open subgroup H ≤ G to the closure of H in Ĝ (having

identified G with its image in Ĝ). Moreover, Φ preserves the indices between

subgroups. Thus, if Un = Φ(Kn) then

pqn(p−1) = |G : Kn| = |Ĝ : Un| = |Ĝ : UnC| |UnC : Un|. (3.3)

Now, Ĝ/UnC is a finite quotient of

Ĝ/C ∼= G ∼= lim←−
n∈N
G/ stG(n),

which is a pro-p group. Consequently |Ĝ : UnC| is a power of p, and then by

(3.3),

qn(p−1) | |UnC : Un| = |C : Un ∩ C|

for all n ∈ N. We conclude that C is infinite, as desired.

Our next purpose is to prove Theorem 3.1.3, i.e. that G is not a branch

group. This means that the techniques developed so far (in [5]) for the

calculation of the congruence kernel of a subgroup of AutT are not available

in this case. We need the following easy lemma.

Lemma 3.5.3. Let G be a subgroup of AutT , and assume that |G : rstG(n)|

is finite for some n. If H is a finite index subgroup of G, then |H : rstH(n)|

is also finite.
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Proof. Let m be the index of H in G. Then

| rstG(n) : rstH(n)| =
∣∣∣ ∏
u∈Ln

rstG(u) :
∏
u∈Ln

rstH(u)
∣∣∣

=
∏
u∈Ln

| rstG(u) : rstG(u) ∩H| ≤ m|Ln|

is finite, and the result follows.

Proof of Theorem 3.1.3. Let L = ψ−1(K ′ × · · · × K ′). By Lemma 1.3.8,

we have L ⊆ rstG′(1). We claim that equality holds. To that purpose, we

consider an element g ∈ rstG′(x), with x ∈ X, and we prove that g ∈ L. By

definition of rigid stabilizer of a vertex, all coordinates of ψ(g) are equal to

1, except possibly the one corresponding to position x, say, h. Observe that

h ∈ K, since ψ(G ′) ⊆ K × · · · ×K by Lemma 1.3.8. If

g∗ = gga . . . ga
p−1

,

then g∗ ∈ K ′ by Lemma 1.3.9. Now ψ(g∗) = (h, . . . , h) and, by applying

the second part of Lemma 1.3.9, we get hp ∈ K ′. Since h ∈ K and K/K ′

is torsion-free by Proposition 3.5.2, it follows that h ∈ K ′. Thus ψ(g) ∈

K ′ × · · · ×K ′, and g ∈ L, as desired.

Now assume by way of contradiction that G is a branch group. Then

|G : rstG(1)| is finite, and by Lemma 3.5.3 and the previous paragraph, |G ′ : L|

is also finite. Now observe that L ≤ K ′ by Lemma 1.3.8. Therefore the

factor group G/K ′ is finite, which is a contradiction, according to Proposition

3.5.2.
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3.6 The multi-GGS-groups have the

congruence subgroup property

We will now prove that the result of Theorem 3.1.1 extends to the multi-

GGS-groups, that is, that all of them apart from the GGS-group defined by

the constant vector have the congruence subgroup property.

In Lemma 2.5.3 we have already proved that every multi-GGS-group dif-

ferent from G is regular branch over G′. Thus, as before, by Corollary 1.1.13,

it suffices to show that G′′ contains some level stabilizer. This will be shown

in Corollary 3.6.4.

Before proving this, we need some auxiliary results.

Lemma 3.6.1. Let G be any multi-GGS-group. Then stG(1)′ ≤ γ3(G).

Proof. Since stG(1) is normally generated by b1, . . . , br (hence, generated by

the conjugates of b1, . . . , br by powers of a), we have that stG(1)′ is normally

generated by commutators of the form [ba
m

i , ba
n

j ] with i, j ∈ {1, . . . , r} and

m,n ∈ Fp. Now notice that [ba
m

i , ba
n

j ] = [bi[bi, a
m], bj[bj, a

n]] which is congru-

ent modulo γ3(G) to [bi, bj] = 1. Thus all normal generators of stG(1)′ are

contained in γ3(G) E G, which proves our claim.

Lemma 3.6.2. Let G = 〈a, b1, . . . , br〉 be a multi-GGS-group with r ≥ 2.

Then

ψ2(G′′) ≥ G′ × p2. . .×G′.

Proof. By Lemma 2.5.1 we know that there exist x, yi ∈ G′ such that ψ(x) =

(a, ∗, . . . , ∗) and ψ(yi) = (bi, ∗, . . . , ∗) for each i ∈ {1, . . . , r} (where ∗ denotes

unknown, unimportant elements). On the other hand, by Lemma 2.5.3, for

each h ∈ G′ there is some g ∈ G′ such that ψ(g) = (h, 1, . . . , 1). Thus
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ψ([x, g]) = ([a, h], 1, . . . , 1) and ψ([yi, g]) = ([bi, h], 1, . . . , 1) for i = 1, . . . , r.

Now, [x, g], [yi, g] ∈ G′′ implies that

ψ(G′′) ≥ γ3(G)× p. . .× γ3(G).

Finally, Lemma 3.6.1 and another application of Lemma 2.5.3 yield the result.

Let us first establish some notation. Set

Gn =
G

stG(n)
, Gn =

Gn

G′n
, Ĝn =

Gn

stGn(1)′
.

Observe that in the same way in which ψ : stG(1) → G × p. . . × G holds, we

also have ψ(n) : stGn(1)→ Gn−1× p. . .×Gn−1. Denoting by πn the projection

from G to Gn, the following diagram commutes:

stG(1) G× p. . .×G

stGn(1) Gn−1 × p. . .×Gn−1

ψ

πn πn−1× p...×πn−1

ψ(n)

Moreover, since ψ : stG(1)′ −→ G′× p. . .×G′ is an isomorphism, the map

ψ̂(n) :
stGn(1)

stGn(1)′
−→ Gn−1 × p. . .×Gn−1

is well defined.

Proposition 3.6.3. Let G = 〈a, b1, . . . , br〉 be a multi-GGS-group. Then

G′ ≥ stG(r + 1).

Proof. We will prove by induction on n ∈ N that d(Gn) ≥ n for every

n = 2, . . . , r + 1. This implies in particular that Gr+1 is generated by r + 1
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elements, and then |Gr+1| = |G : G′|, which implies that G′ = G′ stG(r + 1)

and the result follows.

Observe that d(Gn) = d(Gn) = d(Ĝn), because Gp
n ≤ G′n and then

Φ(Gn) = G′n. Since G′n and stGn(1)′ are contained in Φ(Gn), the minimum

number of generators does not change.

The case n = 2 is obvious because if G2 is generated by one element,

since G2 = 〈a〉 n stG(1)/ stG(2) we necessarily have G2 = 〈a〉 and then

stG(1) = stG(2), which is a contradiction. Let us suppose the statement

holds true for n ≤ r, that is d(Gn) ≥ n. Since Gn is elementary abelian,

and it is generated by the projections of the generators of G, we can choose

a basis and we may assume that Gn = 〈a, b1, . . . , bn−1, . . . 〉 where the first n

generators are linearly independent in Gn. We want to prove the case n+ 1.

Suppose for a contradiction that Gn+1 can be generated by n elements. Then

since Gn is a quotient of Gn+1 and it is generated by 〈a, b1, . . . , bn−1, . . . 〉 the

first n being linearly independent, we get that Gn+1 = 〈a, b1, . . . , bn−1〉. Now

since Φ(Gn+1) ≤ G′n+1, we also get that Ĝn+1 = 〈â, b̂1, . . . , b̂n−1〉. Then

b̂n = b̂
i1,0
1 (̂bâ1)i1,1 . . . (̂bâ

p−1

1 )i1,p−1 . . . b̂
in−1,0

n−1 (̂bân−1)in−1,1 . . . (̂bâ
p−1

n−1 )in−1,p−1 (3.4)

with ij,k ∈ Fp. But then the images under ψ̂(n) of the element on the left

hand side and right hand side must be equal in Gn. On the one hand we

have

ψ̂(n)(̂bn) = (aen,1 , . . . , aen,p−1 , bn).

On the other hand, the image under ψ̂(n) of the right hand side in (3.4)

will have aαkb
i1,k
1 . . . b

in−1,k

n−1 at position k, for some αk. Since b1, . . . , bn−1 are

linearly independent, if both sides must be equal we are forced to have ij,k = 0

for k 6= 0. Now looking at the powers of a in each entry, this means that
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en = i1,0e1+· · ·+in−1,0en−1, which is impossible, because the defining vectors

are linearly independent. Thus, d(Gn+1) ≥ n+ 1 and the theorem follows by

induction.

Corollary 3.6.4. Let G be a multi-GGS-group different from G. Then G

has the congruence subgroup property and it is just infinite.

As remarked previously, it suffices to show, by Corollary 1.1.13 and

Lemma 2.5.3, thatG′′ contains some level stabilizer. Lemma 3.6.2 and Propo-

sition 3.6.3 yield that

ψ2(G′′) ≥ stG(r + 1)× p2. . .× stG(r + 1) ≥ ψ2(stG(r + 3)).

Thus G′′ ≥ stG(r + 3).

Theorem 3.3.3 and Corollary 3.6.4 together give rise to Theorem 3.1.1.
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Chapter 4

C-congruence subgroup

property for weakly branch

groups

4.1 Introduction

As mentioned in the introduction of the thesis the topology given by the level

stabilizers may be compared to other topologies. The classical congruence

subgroup property is the special case when we compare the congruence topol-

ogy with the profinite topology. However, as we have seen in the previous

section, they do not always coincide.

The aim of this chapter is to introduce a more general notion of the

congruence subgroup property, which will be called C-congruence subgroup

property, or C-CSP for short, where C denotes a variety of finite groups (see

Section 4.2 for the definition of variety). Given such a variety, one can define

a topology on G by considering as a neighbourhood system of the identity
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the normal subgroups of G such that the quotients by them belongs to C.

This topology is called the pro-C topology on G. Then the C-congruence

subgroup problem asks whether the topology given by the level stabilizers

coincides with the pro-C topology given by a variety C of finite groups or not.

In the previous chapter, we have already seen a particular case, the group

G, where the topology given by the level stabilizers does not coincide with the

profinite one. The reason of the group not having the congruence subgroup

property was having finite quotients which were not p-groups, while every

quotient by an stabilizer was a p-group. Thus in this case, it makes sense to

ask whether the appropriate topology to compare the congruence topology

with is the pro-p topology, which is given by the variety of all finite p-groups.

Thus, in this chapter, we give a sufficient condition for a weakly branch

group to have the C-CSP. After this, we prove that the group G has the C-

CSP for the variety of finite p-groups with p ≥ 3 and that the same happens

for the Basilica group, with p = 2.

It is worth mentioning that there are examples of branch groups for which

every G/ stG(n) belongs to the variety of p-groups and G does not possess

the p-CSP. For instance, a similar proof of the fact of the whole group AutT

not having the congruence subgroup property given in Section 3.2 works in

the same way for the Sylow pro-p subgroup of AutT in which all the GGS-

groups lie. Another example comes from the EGS-groups defined in [33] by

E. Pervova. These groups are regular branch over the commutator subgroup

(which is of p-power index), but G′ does not contain any level stabilizers.

On the other hand, we should point out that although the concrete cases

discussed here are all p-CSP cases, the sufficient condition is given in the

general setting. Therefore, it may be helpful to compare the topology of a

weakly regular branch group given by the level stabilizers with topologies
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given by other kind of varieties of finite groups, such as those of nilpotent

groups or solvable groups.

4.2 Varieties of finite groups and natural

direct products

Before we start proving our main result, let us introduce some basic defini-

tions and useful lemmas related to varieties that will help us later on. We

follow the definitions given in [34].

Definition 4.2.1. Let C be a non-empty class of finite groups. We say that

C is a variety of finite groups if the following properties are satisfied:

(C1) it is closed under taking subgroups, that is, if G ∈ C and H ≤ G then

H ∈ C,

(C2) it is closed under quotients, that is, if G ∈ C and N�G then G/N ∈ C,

(C3) it is closed under taking finite direct products, that is, if G1, . . . , Gk ∈ C

then
∏k

i=1Gi ∈ C.

Our aim is to endow a group G with a topology given by a collection

of normal subgroups of finite index. Observe that for any family C of finite

groups, one can always consider the set NC = {N �G | G/N ∈ C}. In order

to simplify notation, we will denote by N �C G the fact that N � G and

G/N ∈ C.

Lemma 4.2.2. Let G be a group and C a variety of finite groups. Then

(i) if N1, N2 �C G then N1 ∩N2 �C G,

(ii) if N �C G and N ≤ K �G then K �C G,
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(iii) if N �C G and N ≤ K ≤ G then N ∩K �C K,

(iv) if α : G1 −→ G2 is a homomorphism and N1�CG1 then α(N1)�Cα(G1).

Proof. We start by proving (i). Let M = N1 ∩ N2. Observe that G/N1 ×

G/N2 ∈ C because of (C3). On the other hand the map sending the element

gM ∈ G/M to (gN1, gN2) ∈ G/N1 × G/N2 is an injective homomorphism

and thus G/M is isomorphic to a subgroup of G/N1 ×G/N2, which belongs

to C by (C1).

Observe that (ii) follows from (C2) because G/K ∼= G/N
K/N

.

In order to prove (iii) observe that since KN/N is a subgroup of G/N it

belongs to C. And by the second isomorphism theorem we get that K/(N ∩

K) ∈ C.

Finally, let us prove (iv). First of all, notice that α(N1) is normal in

α(G1). Let us consider the natural projection π from α(G1) to the quotient

α(G1)/α(N1). Then the kernel of the composition π ◦α is α−1(α(N1)) which

is normal in G1 and contains N1. Then by (ii) α−1(α(N1)) �C G1, and since

π ◦α is surjective, we get that G1/α
−1(α(N1)) ∼= α(G1)/α(N1) and the result

follows.

As mentioned in Section 1.2, for a family N of normal subgroups in G

to define a neighbourhood system of the identity for some topology in G, it

suffices to satisfy the following condition:

for every N1, N2 ∈ N there is some M ∈ N such that N1 ∩N2 ≥M.

Observe that (i) in the above lemma shows that a variety of finite groups

defines a topology in a group considering NC as a neighbourhood system of

the identity.
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Finally, we introduce a key lemma relating varieties of finite groups and

natural direct products. Recall that given a group H = H1 × · · · × Hm,

we say that a subgroup of H is a natural direct product if it is of the form

J1 × · · · × Jm with Ji ≤ Hi for i = 1, . . . ,m.

Lemma 4.2.3. Let G = G1 × · · · ×Gm and H ≤ G. Then

(i) The largest natural direct product contained in H is

J = (H ∩G1)× · · · × (H ∩Gm),

where we identify Gi with {1} × · · · × {1} × Gi × {1} × · · · × {1} for

i = 1, . . . ,m.

(ii) If H E G then J E G and if moreover |G : H| <∞ then |G : J | <∞.

(iii) If H �C G, for some variety of finite groups C, then J �C G.

Proof. For (i) observe that it is clear that J is a natural direct product

contained in H. Moreover, if there were a larger one, then J ′ = J1×· · ·×Jm
with some Ji strictly containing H ∩Gi, this automatically would imply that

J ′ is not contained in H, which is a contradiction.

Since the elements of G are m-tuples and H is normal in G it is clear

that J is also normal in G. Now if |G : H| <∞, in order to see that J is of

finite index in G it suffices to check that each H ∩Gi is of finite index in Gi

for i = 1, . . . ,m. By the second isomorphism theorem, we have

Gi

Gi ∩H
∼=
GiH

H
,

and since H is of finite index in G we obtain the desired result.
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Finally, (iii) also follows by the same argument. Provided that C is closed

under direct products it suffices to prove that H ∩ Gi �C Gi. Again, by the

second isomorphism theorem we get that

Gi

Gi ∩H
∼=
GiH

H
,

and since H�C G and C is closed under subgroups, H�C GiH and the result

follows.

4.3 A sufficient condition for a weakly

regular branch group to have the C-CSP

Let G ≤ AutT and let C be a variety of finite groups.

Standing Assumption. Throughout these section we assume that G/ stG(n) ∈

C for every n ∈ N.

Definition 4.3.1. A group G ≤ AutT has the C-congruence subgroup prop-

erty (abbreviated to C-CSP) if every normal subgroup N in G such that

G/N ∈ C contains some level stabilizer in G.

Also we say that G has the C-CSP modulo M�G if every normal subgroup

N such that G/N ∈ C and containing M also contains some level stabilizer

in G.

For instance, in the case of the GGS-groups, and in particular for the one

defined by the constant vector denoted by G, we know that G/ stG(n) belongs

to the varieties of finite p-groups, finite nilpotent groups and finite solvable

groups. Since we will focus on the case of the variety of finite p-groups, we

introduce the specific definitions for this particular case.
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Let A be a Sylow pro-p subgroup of AutT , where T is the p-adic tree.

Definition 4.3.2. A group G ≤ A has the p-congruence subgroup property

(abbreviated to p-CSP) if every normal subgroup of index a power of p in G

contains some level stabilizer in G.

Also we say that G has the p-CSP modulo M�G if every normal subgroup

of p-power index in G and containing M also contains some level stabilizer

in G.

We start with a simple but very useful proposition that will be used

repeatedly.

Lemma 4.3.3. Let G ≤ AutT and N �M �G. If G has the C-CSP modulo

M and M has the C-CSP modulo N then G has the C-CSP modulo N .

Proof. First of all, observe that it makes sense to consider the C-CSP for M ,

because by (iii) in Lemma 4.2.2 we have stG(n)∩M = stM(n)�CM for every

n ∈ N.

Now let H�CG be such that H ≥ N . We have to prove that H ≥ stG(n)

for some n ∈ N. Since M has the C-CSP modulo N and since again by (iii)

in Lemma 4.2.2 H ∩M �C M , there is some m ∈ N such that stM(m) ≤

H ∩M . Now since H, stG(m) �C G, by (i) in Lemma 4.2.2 we know that

stG(m) ∩ H �C G, and by (ii) in the same lemma (stG(m) ∩ H)M �C G.

Thus there is some l ∈ N such that stG(l) ≤ (stG(m) ∩ H)M . Taking

n := max{m, l}, we have

stG(n) = stG(l) ∩ stG(m) ≤ (stG(m) ∩H)M ∩ stG(m)

= (stG(m) ∩H)(M ∩ stG(m))

≤ (stG(m) ∩H)(H ∩M) ≤ H,

where the second equality follows by the modular law.
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Recall that if a group G ≤ AutT is weakly regular branch over a normal

subgroup R then ψ(R) ≥ R× d. . .×R with R 6= 1. In particular, ψ(rstG(1)) ≥

R × d. . . × R and, by induction, ψn(rstG(n)) ≥ R × dn. . . × R for all n ∈ N, as

mentioned after Definition 1.1.8.

Theorem 4.3.4. Let G ≤ AutT be a weakly regular branch group over a

subgroup R. Suppose that there exists H � G such that R ≥ H ≥ R′ ≥ L

where L := ψ−1(H × d. . .×H). If G has the C-CSP modulo H and H has the

C-CSP modulo L, then G has the C-CSP.

Proof. Put L0 := H, L1 := L = ψ−1(H × d. . .×H) ≤ R′ and

Ln := ψ−1
n (H × dn. . .×H) ≤ ψ−1

n−1(R′ ×
dn−1

· · · ×R′) ≤ rstG(n− 1)′

for n ∈ N, n ≥ 2.

We will show by induction on n that G has the C-CSP modulo Ln for each

n ∈ N. Then, as G is weakly regular branch, it is in particular transitive on

all levels of T , so by Lemma 1.1.11, for each non-trivial N � G there exists

n ∈ N such that N ≥ rstG(n)′ ≥ Ln+1, whence the result follows.

There is nothing to show for the base case as we have assumed that G has

the C-CSP modulo H. It will suffice to show that Ln has the C-CSP modulo

Ln+1 for all n ∈ N and then inductively apply Lemma 4.3.3.

Fix n ∈ N and let Ln+1 ≤ N �C Ln. Then by (iv) in Lemma 4.2.2,

L× dn. . .× L ≤ ψn(N) �C H × dn. . .×H.

By Lemma 4.2.3 we know that J = J1 × · · · × . . . Jdn where Ji = ψn(N)∩H

for i = 1, . . . , dn is such that L× · · · × L ≤ J ≤ ψn(N) ≤ H × · · · ×H with

J�CH×· · ·×H. Since each H/Ji ∼= {1}×· · ·×{1}×H/Ji×{1}×· · ·×{1} ≤
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H/J1 × · · · × H/Jdn . ∈ C and C is closed under subgroups, we get that

H/Ji ∈ C for i = 1, . . . , dn. Thus L ≤ Ji �C H and since H has the C-

CSP modulo L, there is some mi ∈ N such that stH(mi) ≤ Ji. Taking the

maximum, m, of the mi, we obtain

stH(m)× dn. . .× stH(m) ≤ ψn(N).

Thus

stLn(m+ n) = ψ−1
n (stH(m)× dn. . .× stH(m)) ≤ N

as required.

4.4 Example 1: the GGS-groups with

constant defining vector.

Let p be an odd prime and let G ≤ AutT be the GGS-group defined by the

constant vector, and let again K = 〈ba−1〉G. We have shown in the previous

chapter that G does not have the CSP, because it virtually maps onto Z and

therefore has many finite quotients that are not p-groups (this is also the

general strategy used in the context of arithmetic groups). However, as we

next see, it does have the p-CSP.

This automatically gives us the answers for the cases of varieties of solv-

able and nilpotent groups. Observe that for the family Cs of finite solvable

groups, G will not have the Cs-CSP. The reason is similar to the case of the

usual CSP. Since G/K ′ ∼= Cp n (C∞ × p−1. . . × C∞) by Proposition 3.5.2, the

group has quotients that are solvable but not of p-power index, and since all

level stabilizers are of p-power index the topologies cannot coincide.

On the other hand, if we consider Cn the family of finite nilpotent groups,
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the answer will be positive, that is, G has the Cn-CSP. Suppose N � G is

such that G/N is nilpotent. Then N ≥ γi(G) for some i ∈ N. Since G/G ′ is

of exponent p, by (iii) in Lemma 1.3.5, each quotient γi(G)/γi+1(G) is also of

exponent p, and since they are finitely generated, they will be finite. Thus,

each γi(G) is of finite index in G and moreover of index a power of p. Once

we prove that G has the p-CSP we will be proving, in particular, that each

γi(G) contains some level stabilizer, and thus G has the Cn-CSP.

We know from [15] that G is weakly regular branch over K ′.

Proposition 4.4.1. For each n ∈ N, the nth rigid stabilizer satisfies

ψn(rstG(n)) = K ′ × pn. . .×K ′.

Proof. Observe that by the discussion after Proposition 1.1.9 we already

know that ψn(rstG(n)) ≥ K ′ × pn. . . × K ′. Now if we prove the statement

for n = 1, since ψ(rstG(2)) ≤ rstG(1) × · · · × rstG(1) we get ψ2(rstG(2)) ≤

K ′ × p2. . . × K ′ and inductively the same for the rest of the levels. Thus, it

suffices to show the claim for n = 1.

By the proof of Theorem 3.1.3, we have ψ(rstG′(1)) = K ′ × p. . . × K ′.

Thus we only need to prove that K ≥ rstG(1), since then rstG(1) = rstK(1) =

rstG′(1), where the latter equality holds because G ′ = st(1) ∩K. We will in

fact show the stronger statement stG(1)′ ≥ rstG(x) for some x ∈ L1, (and

therefore for all x ∈ L1, as stG(1) is normal in G, which acts transitively on

L1) from which the claim follows as K ≥ G ′ ≥ stG(1)′. Suppose that there is

some g such that ψ(g) = (h, 1, . . . , 1) ∈ rstG(x) \ stG(1)′. Then we can write

g = bi0bi11 . . . b
ip−1

p−1 t where t ∈ stG(1)′ and ij ∈ Fp for j = 0, . . . , p− 1. Now

ψ(g) = (a∗bi1a∗t1, . . . , a
∗bi0a∗tn) = (h, 1, . . . , 1),
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where ti ∈ G′ for i = 1, . . . , p and the ∗ denote unimportant exponents.

Then, necessarily, ij = 0 for j 6= 1, and consequently

ψ(g) = (bi1t1, a
i1t2, . . . , a

i1tp−1) = (h, 1, . . . , 1),

implies that also i1 = 0. Thus g ∈ stG(1)′, as required.

Proposition 4.4.2 (See Proposition 3.5.2 and [29] Example 7.4.14, Section

8.2 ). The quotient G/K ′ is isomorphic to the integral uniserial space group

Cp n Z[θ] where θ is a primitive pth root of unity and the generator of Cp

acts by multiplication by θ. In particular, each normal subgroup of p-power

index in G/K ′ is precisely γi(G)K ′/K ′ for some i ∈ N.

Corollary 4.4.3. The group G has the p-CSP modulo K ′.

Proof. In [15, Theorem 4.6] it is proved that G/K ′ stG(n) is of maximal class

and order pn+1 for every n ∈ N. Then we get that stG(n)K ′ = γn(G)K ′ for

every n ∈ N and by Proposition 4.4.2 the result follows.

Lemma 4.4.4. The subgroup K has the p-CSP modulo K ′.

Proof. Let us consider N �p K such that N ≥ K ′. We want to see that

N ≥ stK(m) for some m ∈ N. Since K is of finite index in G the normal core

of N in G will be the intersection of a finite number of conjugates of N , say

NG = N1 ∩N2 ∩ · · · ∩Nk, where Ni = N gi for some gi ∈ G, i = 1, . . . , k. Now

|K : NG| = |K : N1||N1 : N1 ∩N2| . . . |N1 ∩ · · · ∩Nk−1 : N1 ∩ . . . Nk|.

But each N1∩ · · ·∩Nj−1/N1∩ · · ·∩Nj
∼= (N1∩ · · ·∩Nj−1)Nj/Nj. Since each

Ni has the same index as N in K, all these indices are powers of p, and thus

NG �p G. Moreover since K ′ is normal in G we also have K ′ ≤ NG. Then by
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the previous corollary NG ≥ stG(m) for some m and since NG ≤ K we have

N ≥ NG ≥ stK(m).

Define K1 := K ′, K2 := ψ−1(K ′ × p. . .×K ′) = rstG(1).

Let us consider the following maps:

S : stG(1) → G/K1 × p−2. . . × G/K1

g = (g1, . . . , gp) 7→ (g1K1, . . . , gp−2K1)
,

and for n ≥ 3,

πn : K/K1 × p−2. . . ×K/K1 → K/ stG(n)K1 × p−2. . . ×K/ stG(n)K1

(g1K1, . . . , gp−2K1) 7→ (g1 stG(n)K1, . . . , gp−2 stG(n)K1)
,

Observe that ker πn = stG(n)K1/K1 × p−2. . . × stG(n)K1/K1. Then we have

the following properties.

Lemma 4.4.5. [15, Theorem 4.5] With the above notation, we have

(i) the map S restricted to K1 has kernel K2 and image K/K1×p−2. . .×K/K1,

(ii) the kernel of the composition πn ◦ S is (stG(n+ 1) ∩K1)K2.

Let us write Sn = πn ◦ S.

Proposition 4.4.6. The group K1 has the p-CSP modulo K2.

Proof. Let N be a subgroup such that K2 ≤ N �p K1. Then by (iv) of

Lemma 4.2.2 and by (i) of Lemma 4.4.5

S(N) �p K/K1 × p−2. . . ×K/K1.

For i = 1, . . . , p − 2, the intersection of S(N) with the ith direct factor

(K/K1)i in S(K1) is of p-power index in K, by (iii) of Lemma 4.2.2. By
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Lemma 4.4.4, it contains (stG(ni)K1/K1)i for some ni ∈ N. Taking n =

max{ni | i = 1, . . . , p− 2} yields S(N) ≥ stG(n)K1/K1× p−2. . .× stG(n)K1/K1.

In other words, S(N) ≥ kerπn, and thus N ≥ S−1(kerπn) = kerSn =

(stG(n+ 1) ∩K1)K2.

We must now separate the proof into two cases: p = 3 and p ≥ 5. This

happens because we would like to apply Theorem 4.3.4 to G with H = R =

K1. The only remaining hypothesis to check is that K ′1 ≥ K2. However, this

only holds when p ≥ 5, which is implicit in the proof of [15, Lemma 4.2 (iii)].

In fact, by (ii) in Lemma 4.4.5, K1/K2
∼= K/K1 × p−2. . . ×K/K1 and hence it

is abelian, so that K ′1 = K2. In particular, this and Proposition 4.4.1 imply

that rstG(n)′ = rstG(n+ 1) for each n ≥ 1.

Corollary 4.4.7. For every prime p ≥ 5, the GGS-group G ≤ AutT with

constant vector has the p-CSP, but not the CSP.

Let us now prove the remaining case, so that from now on p = 3. The

following result can be found in [3, Proposition 7.2].

Lemma 4.4.8. Let G and K be as before, then we have

ψ(G ′′) = K ′ ×K ′ ×K ′.

Proof. One inclusion is clear because ψ(G ′) ≤ K ×K ×K by (iii) in Lemma

1.3.8. For the other one, observe that we have ψ([b, a]) = (y1, 1, y
−1
1 ) and

ψ([b−1, a]a) = (y0, y
−1
0 , 1). Thus ψ([[b, a], [b−1, a]a]) = ([y0, y1], 1, 1) and, since

K ′ = 〈[y0, y1]〉G, the result follows by Proposition 1.1.10.

In order to apply Theorem 4.3.4 with R = K1 = K ′ and H = K2 = G ′′

we must check that K ′′ ≥ ψ−1(G ′′ × G ′′ × G ′′).
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Proposition 4.4.9. Let G and K as before. We have

G ′′ ≤ γ3(K).

Proof. Since G ′ = 〈[a, b]〉G, we have

G ′′ = 〈[[a, b], [a, b]g] | g ∈ G〉G.

Observe that γ3(K) is a normal subgroup in G; hence it suffices to prove that

[[a, b], [a, b]g] ∈ γ3(K) for every g ∈ G. We already know that G/K ∼= C3 and

we can take as coset representatives {1, a, a2}. Then let us write g = kai

with i ∈ F3 and k ∈ K. If i = 0 there is nothing to prove, because

[[a, b], [a, b]g] = [[a, b], [a, b][a, b, g]]

= [[a, b], [a, b, g]],

and since G ′ ≤ K, it is clear that the element belongs to γ3(K).

Let us suppose that g = kai with i = 1, 2 and k ∈ K. Now we have

[[a, b], [a, b, kai]] = [[a, b], [a, b, ai][a, b, k]a
i

]

= [[a, b], [a, b, k]a
i

][[a, b], [a, b, ai]][a,b,k]a
i

.

It is clear that the first factor is in γ3(K). On the other hand we have

ψ([a, b]) = (b−1a, 1, a−1b),

ψ([a, b, a]) = ((a−1b)2, b−1a, b−1a),

ψ([a, b, a2] = (a−1b, a−1b, (b−1a)2),
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and this shows that the second factor is trivial for i = 1, 2.

Proposition 4.4.10. Let G and K as before. We have ψ(K ′′) ≥ G ′′×G ′′×G ′′.

Proof. By Proposition 4.4.9, it suffices to prove the following containment

ψ(K ′′) ≥ γ3(K)× γ3(K)× γ3(K).

Since G is weakly regular branch over K ′, we know that for every k1 ∈ K ′

there is some g1 ∈ K ′ such that ψ(g1) = (k1, 1, 1). On the other hand, since

ψ([y0, y1]) = (y2, y0, y1) we get that K ′ is subdirect in K ×K ×K. Thus, for

every k2 ∈ K there is some g2 ∈ K ′ such that ψ(g2) = (k2, ∗, ∗). Finally, we

obtain

ψ([g1, g2]) = ([k1, k2], 1, 1),

and by Proposition 1.1.10, the result follows.

Now we will apply Theorem 4.3.4 with R = K ′ = K1 and H = G ′′ = K2.

By Proposition 4.4.6 we only need to prove that K2 = G ′′ has the p-CSP

modulo ψ−1(G ′′ × G ′′ × G ′′). Now by Lemma 4.4.8 we get that G ′′/ψ−1(G ′′ ×

G ′′×G ′′) ∼= K1/K2×K1/K2×K1/K2, and then using again Proposition 4.4.6

the result follows.
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4.5 Example 2: the Basilica group

Let us consider the Basilica group, defined in the first chapter of the thesis,

so that G = 〈a, b〉 with

a = (1, b),

b = (1, a)ε,

where ε denotes the permutation at the root (1 2).

Observe that since G/G′ ∼= Z× Z (see Lemma 1.3.19) the same proof as

for the constant vector GGS-group shows that the Basilica group does not

have the congruence subgroup property. However, as we will see, it has the

2-CSP.

Lemma 4.5.1. Let A := 〈a〉G and B := 〈b〉G. Then G′ = A ∩B.

Proof. Since G′ = 〈[a, b]〉G and [a, b] ∈ A ∩ B, it is clear that G′ ≤ A ∩ B.

Moreover, A ∩ B ⊆ 〈aG′〉 ∩ 〈bG′〉 = G′, where the last equality comes from

(vii) in Lemma 1.3.19.

Lemma 4.5.2. With A and B as above we have

(i) rstG(1) = A with ψ(A) = B ×B,

(ii) ψn−1(rstG(n)) = G′ × 2n−1
. . . ×G′.

Proof. The first item is Lemma 3 of [25].

For the rest of the levels, we already know by Lemma 1.1.6 that

ψ(rstG(n)) = (rstG(n− 1)× rstG(n− 1)) ∩ ψ(rstG(1)).
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Then ψ(rstG(2)) = (A×A)∩ (B×B) = G′×G′, and the rest follows because

ψ(G′) ≥ G′ ×G′.

In view of the fact that ψ(γ3(G)) ≥ ψ(G′′) = γ3(G) × γ3(G) (recall

Lemma 1.3.19), we will take R = G′ and H = γ3(G) to apply Theorem

4.3.4. Note that we even have Ln ≤ rstG(n)′ for all n ∈ N, in the notation

of that theorem. It only remains to show that G and γ3(G) have the 2-CSP

modulo γ3(G) and ψ−1(γ3(G)× γ3(G)), respectively. The rest of this section

is devoted to proving this.

Proposition 4.5.3. The quotient G′/γ3(G) is infinite cyclic.

Proof. To prove the statement, it suffices to show that [a, b], whose image

generates G′/γ3(G), has infinite order modulo γ3(G). Suppose for a contra-

diction that it has finite order n ∈ N. Then, we know that ψ([a, b]n) =

((bn)a, b−n) ∈ ψ(γ3(G)). Now by (vi) in Lemma 1.3.19, we know that

ψ(γ3(G)) = 〈ψ([a, b, b])〉o(γ3(G)×γ3(G)), and since ψ([a, b, b]) = ((b−2)a, bba)

we get that

ψ([a, b]n) = ((bn)a, b−n) = (h1, h2)((b−2t)a, (bba)t),

with hi ∈ γ3(G) for i = 1, 2 and t ∈ Z. In particular, (bn)a ≡ (b−2t)a

(mod G′) implies that n = −2t. But then b−2t(bba)t is in γ3(G) and modulo

γ3(G) we get the following equalities

b−2t(bba)t = b−2t(b2[b, a])t = b−2tb2t[b, a]t = [a, b]−t = 1,

implying that [a, b]−t ∈ γ3(G) and contradicting the minimality of n.

As a consequence, we get a description for G/γ3(G).

105



CHAPTER 4. C-CSP FOR WEAKLY BRANCH GROUPS

Definition 4.5.4. The integral Heinseberg group is the group

H =




1 a c

0 1 b

0 0 1

 | a, b, c ∈ Z
 .

It is well known that H = 〈x, y, z | [x, z] = [y, z] = 1, [x, y] = z〉 ∼=

〈x〉n 〈y, z〉 ∼= Z n (Z× Z), where

x =


1 1 0

0 1 0

0 0 1

 , y =


1 0 0

0 1 1

0 0 1

 , z =


1 0 1

0 1 0

0 0 1

 .

Proposition 4.5.5. The quotient G/γ3(G) is isomorphic to the integral

Heisenberg group.

Proof. We already know that G/B = 〈aB〉 ∼= Z. Then, by the projective

property of free groups, we know that G/γ3(G) splits over B/γ3(G). Let

us see that B/γ3(G) ∼= Z × Z. We already know that B/G′ = 〈bG′〉 ∼=
B/γ3(G)
G′/γ3(G)

∼= Z is cyclic. On the other hand since G/γ3(G) is of nilpotency

class 2 we know that G′/γ3(G) is in the center and by Proposition 4.5.3

G′/γ3(G) = 〈[a, b]G′〉 ∼= Z. Thus, we conclude that B/γ3(G) is abelian and

isomorphic to Z× Z. Hence

G/γ3(G) = 〈aγ3(G)〉nB/γ3(G),

= 〈aγ3(G)〉n (〈bγ3(G)〉 × 〈[a, b]γ3(G)〉),

∼= Z n (Z× Z).

Since it is clear that G/γ3(G) satisfies the relations of the presentation above,
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the groups are isomorphic.

Lemma 4.5.6. If g ∈ G′ is such that ψ(g) = (g1, g2) then g2g1 ∈ G′. Simi-

larly if g ∈ G′ stG(n) then g2g1 ∈ G′ stG(n− 1).

Proof. Let us define ϕ : G×G −→ G/G′ by sending each (g1, g2) to g2g1G
′.

Then we want to prove that G′ ≤ ker(ϕ ◦ψ). It is clear that ψ−1(G′×G′) is

contained in the kernel, and since G′ ≥ ψ−1(G′×G′) it suffices to check that

the image is in the kernel for the generators of G′ modulo ψ−1(G′×G′), that

is, for [a, b]. The result follows because ψ([a, b]) = (ba, b−1).

Proposition 4.5.7. The group G has the 2-CSP modulo γ3(G).

Proof. It suffices to prove that G, A, and G′ have the 2-CSP modulo A, G′

and γ3(G), respectively, and apply Lemma 4.3.3 twice. Since G/A ∼= A/G′ ∼=

G′/γ3(G) ∼= Z, it is enough to show that |G : A stG(n)|, |A : G′ stA(n)| and

|G′ : γ3(G) stG′(n)| tend to infinity with n. Indeed, since in Z the subgroups

of index a power of 2 are totally ordered, this will imply that any normal

subgroup N of index a power of 2 in, for instance, A ≤ N ≤ G will satisfy

that N ≥ stG(n)A for some n ∈ N as desired.

We first prove by induction that b2n /∈ A stG(2n + 1). The base step,

b /∈ A stG(1) = stG(1), is clear. Now assume that b2n−1
/∈ A stG(2n − 1) and

suppose for a contradiction that b2n ∈ A stG(2n + 1) = 〈a〉G′ stG(2n + 1).

By Lemma 1.3.19 (v), we can write A stG(2n + 1) = 〈a〉〈[a, b]〉ψ−1(G′ ×

G′) stG(2n+ 1). So there are i, j ∈ Z such that

ψ([a, b]jaib2n) = ((ba)ja2n−1

, bi−ja2n−1

) ∈ G′ stG(2n)×G′ stG(2n).

Consider bi−ja2n−1 ∈ G′ stG(2n). Lemma 4.5.6 implies that ai−jb2n−1 ∈

G′ stG(2n − 1) ≤ A stG(2n − 1). This implies that b2n−1 ∈ A stG(2n − 1),

which is a contradiction. The claim follows by induction.
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This easily implies that a2n /∈ G′ stA(2n + 2) for each n ∈ N. For, a2n =

(1, b2n) and, since b2n /∈ G′ stA(2n + 1), Lemma 4.5.6 yields that a2n cannot

be in G′ stA(2n+ 2).

Finally, let us prove that |G′ : γ3(G) stG′(n)| tends to infinity. Suppose

that it does not. Then there is some n ∈ N and mn ∈ N such that [a, b]2
n ∈

γ3(G) stG′(m) for every m ≥ mn. Let n be the smallest natural number with

this property. Then, we get that

ψ([a, b]2
n

) = ((b2n)a, b−2n),

belongs to ψ(〈[a, b, b]〉)(γ3(G) stG(m− 1)× γ3(G) stG(m− 1)), for every m ≥

mn. Now since ψ([a, b, b]) = ((b−2)a, bba), we get that for some k ∈ Z

ψ([a, b]2
n

) = ((b2n)a(b−2k)a, b−2n(bba)k)

= ((b2n−2k)a, b−2n+2k[b, a]k),

belongs to (γ3(G) stG(m− 1)× γ3(G) stG(m− 1))for every m ≥ mn.

Since b2n /∈ G′ stG(2n+1), we know that the order of b in G/G′ stG(2n+1)

is at least 2n+1. Now if b2n−2k ∈ γ3(G) stG(m− 1) ≤ G′ stG(m− 1) for every

m ≥ mn we necessarily must have 2n+1|(2n − 2k). But then, if ν2 denotes

the 2-adic valuation, we get that n + 1 = ν2(2n+1) ≤ ν2(2n − 2k). Now if

ν2(2n) 6= ν2(−2k), we get that ν2(2n − 2k) = min{ν2(2n), ν2(2k)} ≤ n which

is a contradiction. Thus we necessarily have ν2(−2k) = n which means that

k = 2n−1α with α odd.

Now since G/γ3(G) stG(m − 1) is a 2-group, looking at the second com-

ponent we get [b, a]2
n−1 ∈ γ3(G) stG′(m − 1) for m ≥ mn contradicting the

minimality of n.

Proposition 4.5.8. The group γ3(G) has the 2-CSP modulo ψ−1(γ3(G) ×
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γ3(G)).

Proof. This is proved like the previous result. Since γ3(G) = ψ−1(γ3(G) ×

γ3(G))o 〈[a, b, b]〉 by Lemma 1.3.19, we need only show that

|γ3(G) : ψ−1(γ3(G)× γ3(G)) stγ3(G)(n)|

tends to infinity with n as in the previous proposition. Writing d := [a, b, b],

as before, we have ψ(d) = (a−1b−2a, ba−1ba).

Suppose that d2n ∈ ψ−1(γ3(G) × γ3(G)) stG(2n + 4). Then ψ(d2n) =

((b−2n+1
)a, (bba)2n) ∈ γ3(G) stG(2n + 3) × γ3(G) stG(2n + 3) implies that

b2n+1 ∈ G′ stG(2n + 3) which is a contradiction by the proof of the previ-

ous proposition.
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Chapter 5

Portrait growth in contracting

regular branch groups

5.1 Introduction

As mentioned in the first chapter of the thesis, groups acting on regular rooted

trees have had an important role regarding the word growth problem as the

first examples of intermediate word growth was of this nature. Similarly to

the word growth, in the case of self-similar contracting groups one can also

ask about the portrait growth.

In this chapter we will work on the portrait growth. Indeed, we give

a constructive way of finding recursive equations for the sequence of the

portrait growth for any regular branch contracting group. Then we calculate

these equations explicitly for some of them and conclude that all have doubly

exponential portrait growth. We conjecture that this will happen whenever

the group is regular branch and contracting, but we do not have a general

proof yet.
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In particular, we show this for the first Grigorchuk group, answering a

question posed by Grigorchuk in Problem 3.5 of [18].

Theorem 5.1.1. There exist positive constants α, β, and γ such that the

portrait growth sequence {an}∞n=0 of the first Grigorchuk group Γ satisfies the

inequalities

αeγ
2n ≤ an ≤ βeγ

2n

,

for all n ≥ 0. Moreover, γ ≈ 0.71.

We also study the portrait growth for the non-symmetric GGS-groups

and for the Apollonian group, which have a closed formula for the portrait

growth sequence.

Theorem 5.1.2. Let G be a GGS-group defined by a non-symmetric vector

e ∈ Fp−1
p . The portrait growth sequence {an}∞n=0 of G is given by

a0 = 1 + 2(p− 1)

an = p(x1 + (p− 1)y1)p
n−1

,

where x1 and y1 are the number of solutions in Fpp of

(n0, . . . , np−1)C(e, 0)� (n1, n2, . . . , np−1, n0) = (0, . . . , 0),

with n0 + · · ·+np−1 = 0 and n0 + · · ·+np−1 = 1, respectively; where � denotes

the product by coordinates.

The definition of C(e, 0) is given at the begining of Section 5.5. For

instance, for the Gupta-Sidki 3-group, which corresponds to the GGS-group

defined by e = (1,−1) with p = 3, one can check that the sequence is exactly

an = 3 · 93n−1
.
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Finally we also present the portrait growth of the Apollonian group.

Theorem 5.1.3. The portrait growth sequence {an}∞n=0 of the Apollonian

group is given by:

an = 3
3n−1

2 73n .

5.2 Portrait growth sequence on a regular

branch contracting group

As mentioned in Subsection 1.2.2, given a self-similar contracting group one

can describe any element by a finite tree. Then, the longest path in this finite

tree starting at the root is called the depth of the element.

For a contracting group G let us denote by d(g) the depth of any g ∈ G.

One can consider for each n ∈ N the set

{g ∈ G | d(g) ≤ n},

which is finite, and ask about the growth function of G with respect to this

depth. This is what is called the portrait growth of a group.

We now focus on regular branch groups, since their structure gives us a

way to describe the portrait growth function in a recursive way.

Let G ≤ AutT , where T is the d-adic tree, be a contracting regular

branch group over a subgroup K. We consider a transversal S = {s1, . . . , sk}

of K in G and denote by pn(si) = |{g ∈ siK | d(g) ≤ n}| and by pn = |{g ∈

G | d(g) ≤ n}|, the sizes of the sets consisting of the elements of depth less

than or equal to n, in each coset and the whole group G, respectively. Then

we have pn =
∑k

i=1 pn(si).
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Now, if we consider a transversal for ψ−1(K × · · · ×K) in K, denoted by

R = {r1, . . . , rl}, we know that for each i = 1, . . . , k and j = 1, . . . , l we have

sirj = (g1, . . . , gd)α ≡ (sij1, . . . , sijd)α (mod K × · · · ×K),

with sijm ∈ S for m = 1, . . . , d, where α denotes the permutation at the root

according to (1.3). Thus pn(si) =
∑l

j=1 pn−1(sij1) . . . pn−1(sijd), and

pn =
k∑
i=1

l∑
j=1

pn−1(sij1) . . . pn−1(sijd).

From a theoretical point of view, this can be applied to any contracting

regular branch group in order to obtain a recursive formula for the sequence

pn.

The following lemma is a small observation that will be helpful later on.

Lemma 5.2.1. Let G be a regular branch contracting group which is branch

over a subgroup K, and let S be a transversal of K in G. If a is a rooted

automorphism of G then for any s ∈ S we have

pn(s) = pn(as) = pn(sa) = pn(sa) for n ≥ 1.

Proof. Observe that for any g ∈ sK and u ∈ Ln for n ≥ 1 we have

(ag)u = auga(u) = ga(u),

(ga)u = guag(u) = gu,

(ga)u = g(a−1(u).

Thus there is a bijection between elements of depth n in sK, asK, saK and

saK, which implies the statement.
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Observe that in the previous lemma it is important that a is rooted,

not for pn(sa), but for pn(as) and pn(sa) since it contributes to the sections

trivially.

5.3 Growth functions and sequences of

doubly exponential growth

First of all let us introduce the definition of doubly exponential growth.

Definition 5.3.1. Given a sequence of positive real numbers {an}n∈N we say

that it grows doubly exponentially if there exist some positive constants α, β

and some γ, d > 1 such that

αeγd
n ≤ an ≤ βeγd

n

,

for every n ∈ N.

In order to determine that the sequences obtained for our groups below

are doubly exponential we need an auxiliary result for doubly exponential

sequences.

Lemma 5.3.2. Let {an}∞n=0 be a sequence of positive real numbers and d a

constant with d > 1. The following are equivalent.

(i) There exist positive constants A and B such that, for all n ≥ 0,

Aadn ≤ an+1 ≤ Badn.

(ii) There exist positive constants α, β, and γ such that, for all n ≥ 0,

αeγd
n ≤ an ≤ βeγd

n

.
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Moreover, if (i) holds, the sequence
{

ln an
dn

}∞
n=0

is convergent, the series∑∞
n=0

1
dn+1 ln an+1

adn
is convergent,

γ = lim
n→∞

ln an
nd

= ln a0 +
∞∑
n=0

1

dn+1
ln
an+1

adn
,

and α and β can be chosen to be e−M and eM , respectively, where

M =
1

d− 1
max{| lnA|, | lnB|}.

Proof. (ii) implies (i). We have, for all n,

α

βd
adn ≤

α

βd
(
βeγd

n)d
= αeγd

n+1 ≤ an+1 ≤ βeγd
n+1

=
β

αd
(
αeγd

n)d ≤ β

αd
adn,

so it suffices to consider A = α
βd and B = β

αd . (i) implies (ii). Let bn = ln an,

for all n. Since an+1 = adn
an+1

adn
we have, for all n,

bn+1 = dbn + ln
an+1

adn
,

and therefore

bn = dn

(
b0 +

n−1∑
i=0

1

di+1
ln
ai+1

adi

)
.

For all i, we have lnA ≤ ln ai+1

adi
≤ lnB, and therefore

∣∣∣∣ln ai+1

adi

∣∣∣∣ ≤ max{| lnA|, | lnB|} = (d− 1)M,

which implies that, for every n, the series
∑∞

i=n
1

di+1 ln ai+1

adi
is absolutely con-

vergent (by comparison to
∑∞

i=n
1

di+1 (d− 1)M = M
dn

).

Let γ = b0 +
∑∞

i=0
1

di+1 ln ai+1

adi
and rn =

∑∞
i=n

1
di+1 ln ai+1

adi
, for all n. Then,
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for all n, bn = dn(γ − rn) and

an = eγd
n

e−d
nrn .

Since |rn| ≤ M
dn

, we obtain that, for all n,

e−Meγd
n ≤ an ≤ eMeγd

n

.

The last inequalities imply that the sequence
{

ln an
dn

}∞
n=0

converges to γ.

Notice that the lemma also provides a way of calculating γ once a given

sequence satisfies (i).

Finally let us point out an observation that will be useful later on.

Lemma 5.3.3. Let G be a contracting regular branch group acting on the

d-adic tree and {an}n≥0 its portrait growth sequence. Then we have

an+1 ≤ |G : stG(1)|adn, for n ≥ 0.

Proof. The proof of this fact is just a combinatorial observation. Since any

element of depth n + 1 must have sections at the first level of depth n, the

posibilities are at most adn. On the other hand, since at the root an element

may have |G : stG(1)| different labels, we get the inequality.

5.4 Portrait growth in the first Grigorchuk

group

Denote by Γ the first Grigorchuk group and let us recall the definition given

in Chapter 1.
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Definition 5.4.1. Let T be the binary tree. The first Grigorchuk group Γ

is the group generated by the rooted automorphism a, and by b, c, d ∈ stΓ(1),

where b, c and d are defined recursively as follows:

ψ(b) = (a, c),

ψ(c) = (a, d),

ψ(d) = (1, b).

By Lemma 1.3.3 we already know that Γ is contracting with nucleus

N (Γ) = {a, b, c, d, 1}.

For instance, this would be the portrait of the element bacadb in Γ.

1

1

b 1 (1 2) d

c a

(1 2)

Figure 5.1: Portrait of the element bacadb

On the other hand, remember that by Lemma 1.3.2 we know that the

group Γ is regular branch over the subgroup K = 〈[a, b]〉Γ and that |Γ : K| =

16.

Theorem 5.4.2. The portrait growth sequence {an}∞n=0 of the first Grig-
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orchuk group Γ is given by

a0 = 5

an = 2xn + 4yn + 2zn + 2Xn + 4Yn + 2Zn, for n ≥ 1,

where xn, yn, zn, Xn, Yn, and Zn, for n ≥ 1, satisfy the system of recursive

relations

xn+1 = x2
n + 2y2

n + z2
n,

yn+1 = xnYn + Ynzn +Xnyn + ynZn,

zn+1 = X2
n + 2Y 2

n + Z2
n,

Xn+1 = 2xnyn + 2ynzn,

Yn+1 = xnXn + 2ynYn + znZn,

Zn+1 = 2XnYn + 2YnZn,

with initial conditions

x1 = y1 = z1 = Y1 = 1,

X1 = 2,

Z1 = 0.

Proof. As mentioned above, it is known that Γ is a regular branch group

over K = 〈[a, b]〉Γ and |Γ : K| = 16. We set B = 〈b〉Γ. In Chapter VIII,

Proposition 25 of [11] it is shown that Γ/B = 〈a, d〉, which is isomorphic to

the dihedral group of 8 elements. Then a transversal of B in Γ is given by

{1, d, ada, dada, a, ad, da, dad}. On the other hand, in Proposition 30 (ii) of

the same book and chapter it is shown that B/K has order 2 and hence, a
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transversal of K in B is given by {1, b}. In this way, we get that a transversal

for K in Γ is given by

T = { 1, d, ada, dada, a, ad, da, dad, b, c, aca, cada, ba, ac, ca, cad }.

Denote by pn(t) the number of portraits of depth no greater than n in Γ

representing elements in the coset tK.

On the other hand, from Lemma 1.3.2 we know that K/ψ−1(K ×K) is

generated by the image of abab and that it is of order 4. Thus we get that a

transversal of ψ−1(K ×K) in K is given by

S = {1, abab, (abab)2, baba}.

By Lemma 5.2.1, observe that we have t ∈ T ∩ stG(1) we will have

pn+1(t) = pn+1(at) = pn+1(ta) = pn+1(ta), for n ≥ 0, t ∈ T. (5.1)

Thus we only need to calculate the equations for the representatives in

{1, c, dada, b, d, cada}. We have

120



CHAPTER 5. PORTRAIT GROWTH

ψ(1) = (1, 1) ψ(abab) = (ca, ac)

ψ((abab)2) = (dada, dada) ψ(baba) = (ac, ca)

ψ(c) = (a, d) ψ(cabab) = (aca, cad)

ψ(c(abab)2) = (dad, ada) ψ(cbaba) = (c, ba)

ψ(dada) = (b, b) ψ(dadaabab) = (da, ad)

ψ(dada(abab)2) = (cada, cada) ψ(dadababa) = (ad, da)

ψ(b) = (a, c) ψ(babab) = (aca, dad)

ψ(b(abab)2) = (dad, aca) ψ(bbaba) = (c, a)

ψ(d) = (1, b) ψ(dabab) = (ca, ad)

ψ(d(abab)2) = (dada, cada) ψ(dbaba) = (ac, da)

ψ(cada) = (ba, d) ψ(cadaabab) = (ada, cad)

ψ(cada(abab)2) = (cad, ada) ψ(cadababa) = (d, ba),

where the sections are already written modulo K as representatives in T .

Thus we obtain, for n ≥ 0,

pn+1(1) = pn(1)2 + 2pn(ac)pn(ca) + pn(dada)2,

pn+1(c) = pn(a)pn(d) + pn(dad)pn(ada) + pn(c)pn(ba) + pn(aca)pn(cad),

pn+1(dada) = pn(b)2 + 2pn(ad)pn(da) + pn(cada)2

pn+1(b) = 2pn(a)pn(c) + 2pn(dad)pn(aca), (5.2)

pn+1(d) = pn(1)pn(b) + pn(ac)pn(da) + pn(ca)pn(ad) + pn(dada)pn(cada),

pn+1(cada) = 2pn(d)pn(ba) + 2pn(ada)pn(cad),

121



CHAPTER 5. PORTRAIT GROWTH

with initial conditions

p0(1) = p0(a) = p0(b) = p0(c) = p0(d) = 1,

p0(t) = 0, for t ∈ T \ {1, a, b, c, d}.

Direct calculations, based on (5.2), give

p1(b) = 2

p1(cada) = 0

p1(t) = 1, for t ∈ {1, c, d, dada}.

Now if we denote, for n ≥ 1,

xn = pn(1) = pn(a),

yn = pn(c) = pn(ac) = pn(aca) = pn(ca),

zn = pn(dada) = pn(dad),

Xn = pn(b) = pn(ba),

Yn = pn(d) = pn(ad) = pn(ada) = pn(da),

Zn = pn(cada) = pn(cad)

we obtain, for n ≥ 1,

an = 2xn + 4yn + 2zn + 2Xn + 4Yn + 2Zn,

where xn, yn, zn, Xn, Yn, and Zn satisfy the recursive relations and initial

conditions as claimed, which follows from (5.2).

Now we can proof the main theorem.
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Proof of Theorem 5.1.1. By Lemma 5.3.2, it suffices to show that there exist

some positive constants A,B such that for each n ∈ N we have

Aa2
n ≤ an+1 ≤ Ba2

n.

By Lemma 5.3.3 considering B = 2 the inequality on the right hand side is

satisfied.

For the other one, we want a constant A such that

an+1 − Aa2
n ≥ 0.

Using the expressions obtained for an for n ≥ 1 this can be written in terms

of xn, yn, zn, Xn, Yn, Zn and choosing A = 1
4

we obtain that

an+1 − Aa2
n = (xn − zn +Xn − Zn)2 ≥ 0.

Finally, the approximation of γ may be calculated using the observation after

Proposition 5.3.2.

5.5 Portrait growth in non-symmetric

GGS-groups

Let us now consider the GGS-groups defined by a non-symmetric defining

vector.

Recall that by Lemma 1.3.7 we know that for

S = S−1 = {a, a2, . . . , ap−1, b, . . . , bp−1},
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G is contracting and that N (G) = S ∪ {1}.

We denote by

C(e, 0) =


e1 e2 . . . ep−1 0

0 e1 . . . ep−2 ep−1

...
...

...
. . .

...

e2 . . . ep−1 0 e1


the circulant matrix of the vector (e1, . . . , ep−1, 0).

Proof of Theorem 5.1.2. By Lemma 1.3.6 we know that a GGS-group defined

by a non-symmetric vector is regular branch over G′. Moreover, we know that

G′ of index p2 in G, and a transversal of G′ in G is given by

S = {aibj | i, j = 0, . . . , p− 1}.

For each pair (i, j) ∈ {0, . . . , p − 1}2 denote by pn(i, j) the number of

portraits of depth no greater than n in G representing elements of the coset

aibjG′.

We have

aibj ≡ aibn0(ba)n1(ba
2

)n2 . . . (ba
p−1

)np−1 (mod G′),

whenever j = n0 + · · ·+ np−1 in Fp. And then,

aibj ≡ ai(ai1bn1 , . . . , aip−1bnp−1 , ai0bn0) (mod G′ × · · · ×G′),
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where (i1, . . . , ip−1, i0) = (n0, . . . , np−1)C(e, 0). We obtain that

pn+1(i, j) =
∑

n0+···+np−1=j

p∏
r=1

pn(ir, nr).

First of all, observe that the decomposition of pn+1(i, j) does not depend

on i, so we can write

pn+1(j) =
∑

n0+···+np−1=j

p∏
r=1

pn(ir, nr), (5.3)

and then for n ≥ 1 we have an = p
∑p−1

j=0 pn(j), where we multiply by p

because we have to sum for each i = 0, . . . , p− 1.

On the other hand, the initial conditions are the following

p0(0, 0) = p0(i, 0) = p0(0, j) = 1 for i, j ∈ {1, . . . , p− 1},

p0(i, j) = 0 otherwise.

Then, the previous formula gives that p1(0) is the number of solutions in Fpp
of

(n0, . . . , np−1)C(e, 0)� (n1, n2, . . . , n0) = (i1n1, . . . , i0n0) = (0, . . . , 0),

with n0 + · · · + np−1 = 0, and that p1(j) is the number of solutions of the

same equation but with n0 + · · ·+ np−1 = j.

Now, let us prove by induction that pn(1) = pn(j) for n ≥ 1 and j 6= 0.

Observe that for n = 1 if (n0, . . . , np−1) is a solution for (n0, . . . , np−1)C(e, 0) =

(0, . . . , 0) with n0 + · · · + np−1 = 1, then (jn0, . . . , jnp−1) it is also a solu-

tion with n0 + · · · + np−1 = j. And the other way around, if we start with

a solution such that the sum is equal to j, multiplying by the inverse of j
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in Fp we get a solution that sums up 1. Thus, there is a bijection between

the soltutions and hence p1(1) = p1(j) for j 6= 0. Let us now assume that

pn(1) = pn(j) for n ≥ 1 and let us prove it for n + 1. By (5.3) and since for

n ≥ 1 we know that pn(i, j) = pn(j). Hence, we have

pn+1(j) =
∑

n0+···+np−1=j

p∏
r=1

pn(nr).

Now, as before, since each tuple (n0, . . . , np−1) with n0 + · · ·+ np−1 = j can

be obtained as a tuple summing up 1 and multiplied by j, we have

pn+1(j) =
∑

n0+···+np−1=1

p∏
r=1

pn(jnr).

Finally, by inductive assumption, since j 6= 0, we have pn(jnr) = pn(nr) for

each r = 0, . . . , p− 1, and hence

pn+1(j) =
∑

n0+···+np−1=1

p∏
r=1

pn(nr) = pn+1(1).

Let us denote xn = pn(0) and yn = pn(1), so that an = p(xn + (p− 1)yn)

for n ≥ 1.

Observe that by (5.3) we have

xn+1 =
∑

n0+···+np−1=0

∏
ni=0

xn
∏
ni 6=0

yn,

yn+1 =
∑

n0+···+np−1=1

∏
ni=0

xn
∏
ni 6=0

yn
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and then we get that

xn+1 =

p∑
l=0

xp−ln yln

(
p

l

)
zl

yn+1 =

p∑
l=0

xp−ln yln

(
p

l

)
z′l,

where zl is the number of non-zero solutions of n1 + · · · + nl = 0 and z′l the

number of non-zero solutions of n1 + · · ·+nl = 1, where by non-zero solution

we mean that none of the ni-s is zero for i = 1, . . . , l.

For zl and z′l one has the relations

zl+1 = (p− 1)z′l

z′l+1 = zl + (p− 2)z′l,

with initial conditions z1 = 0 and z′1 = 1. Solving this system we obtain that

zl =
1

p
((p− 1)l − (−1)l−1(p− 1)),

z′l =
1

p
((p− 1)l − (−1)l),

which gives us

xn+1 =
1

p
(xn + (p− 1)yn)p +

p− 1

p
(xn − yn)p,

yn+1 =
1

p
(xn + (p− 1)yn)p − 1

p
(xn − yn)p.

Finally, we get that

xn+1 + (p− 1)yn+1 = (xn + (p− 1)yn)p,
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and we conclude that

an = p(x1 + (p− 1)y1)p
n−1

.

5.6 Portrait growth in the Apollonian group

As mentioned in the first chapter, the Apollonian group is a subgroup of the

Hanoi Towers group and it was introduced by Grigorchuk, Nekrashevych and

Sunic in [24]. Let us recall the definition.

Definition 5.6.1. The Apollonian group A acting on the ternary tree is the

group generated by the following three automorphisms

x = (1, y, 1)(1 2),

y = (x, 1, 1)(1 3),

z = (1, 1, z)(2 3).

As proved in Lemma 1.3.17, considering the generating set S = {x, y, z},

the group is contracting and N (A) = {1, x, y, z, x−1, y−1, z−1}.

Proof of Theorem 5.1.3. As mentioned in the first chapter when we intro-

duced the Apollonian group, in [20] it is shown that the Hanoi Towers group

is regular branch over its commutator, which is of index 8 in the group, and

also that the index of the three copies of the commutator subgroup on the

commutator subgroup is 12.

In Theorem 1.3.15 we have already seen that A has index 4 in the Hanoi

Towers group. We also know that it is regular branch over E the subgroup
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(1, 1, 1) = 1 ≡ 1, (1, y, 1)(1 2) = x ≡ x,

(x, y, 1)(1 3 2) = yx ≡ 1, (y, yx, 1)(2 3) = xyx ≡ x,

(x, yx, y)(1 2 3) = (yx)2 ≡ 1, (yx, yx, y)(1 3) = x(yx)2 ≡ x,

(y, y, 1) = x2 ≡ 1, (y, y2, 1)(1 2) = x3 ≡ x,

(x, 1, x) = y2 ≡ 1, (1, yx, x)(1 2) = xy2 ≡ x,

(1, z, z) = z2 ≡ 1, (z, y, z)(1 2) = xz2 ≡ x,

(yx, y2, 1)(1 3 2) = x2yx ≡ 1, (y2, y2x, 1)(2 3) = x3yx ≡ x,

(x2, y, x)(1 3 2) = y3x ≡ 1, (y, yx2, x)(2, 3) = xy3x ≡ x,

(x, zy, z)(1 3 2) = z2yx ≡ 1, (zy, yx, z)(2 3) = xz2yx ≡ x,

(yx, y2x, y)(1 2 3) = x2(yx)2 ≡ 1, (y2x, y2x, y)(1 3) = x3(yx)2 ≡ x,

(x2, yx, xy)(1 2 3) = y2(yx)2 ≡ 1, (yx, yx2, xy)(1 3) = xy2(yx)2 ≡ x,

(x, zyx, zy)(1 2 3) = z2(yx)2 ≡ 1, (zyx, yx, zy)(1 3) = xz2(yx)2 ≡ x,

Table 5.1: The cosets of E × E × E decomposing the cosets of E

of A of index 2, which is the image of the commutator of the Hanoi Towers

group under an isomorphism given by a certain conjugation in AutT . Since

E consist of the elements that are represented by words of even length over

the alphabet {x, y, z}, a transversal for E in A is given by T = {1, x}. Let

us denote by Xn and Yn the number of portraits of depth at most n of the

cosets 1E and xE respectively.

We still have that the index of ψ−1(E×E×E) in E is 12, and a transversal

is given by

T ′ = {1, yx, (yx)2, x2, y2, z2, x2yx, y3x, z2yx, x2(yx)2, y2(yx)2, z2(yx)2}.

Then Table 5.1 shows the equations for the representatives {1, x} giving
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that

Xn+1 = 3X3
n + 9XnY

2
n ,

Yn+1 = 3Y 3
n + 9X2

nYn.

And then we obtain that

an+1 = Xn+1 + Yn+1 = 3(Xn + Yn)3 = 3a3
n.

Taking into account that a0 = 7 one can check by induction that the

result follows.
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Tesi honek zuhaitz errotu erregularren automorfismoen taldeen inguruko

problema batzuk ebaztea du helburu. Talde hauek, Grigorchuk-en lehen

taldea konkretuki, 80ko hamarkadan izan ziren lehenengoz definituak (ikus

[26]), eta geroztik luze eta zabal ikertu da beraien inguruan. Talde hauek

interesgarri izatearen arrazoi nagusia dauzkaten ezaugarri bitxiak direla esan

genezake. Esate baterako, Grigorchuk-en lehen taldea Burnsideren problema

orokorraren kontra adibide bat da, hau da, talde finituki sortua, periodikoa

eta infinitua. Ordurako ezagunak ziren jadanik beste adibide konplexuago

batzuk, baina talde hau definitzearen helburua hasiera batean Burnsideren

problema orokorrarentzat adibide sinple bat ematea izan zen. Gerora, ordea,

beste propietate berezi asko dauzkala frogatu ahal izan da. Horien artean

garrantzitsuena, Milnor-en problemari ([32]) erantzuna eman ziona. Jakina

zen ordurako bazirela taldeak hitzen hazkunde polinomiala eta exponentziala

zeukatenak, baina erdibideko hazkundea zeukan talderik ba ote zen galdetu

zuen Milnorrek. Erantzuna baiezkoa zen, eta Grigorchuk-en lehen taldea

izan zen lehen adibidea ([21]). Geroztik hainbat problema ikertu dira talde

hauekin erlazionatuta, eta hainbat orokorpen ezberdin eta talde berri definitu

dira alor honetan.

Zuhaitz errotu erregularrak, honela eraikitzen dira: Izan bedi X multzo

finitu bat, d elementu dauzkana. OrduanX∗, hau da, multzoa alfabeto bezala
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kontsideratuz osa daitezkeen hitz finituen multzoak osatzen du zuhaitzaren

erpinen multzoa. Bi erpin u, v ∈ X∗ ertz batez lotuta egongo dira baldin

eta u = vx edo v = ux bada x ∈ X baterako. Honela eraikitako zuhaitza T

bidez adieraziko dugu, eta d-adikoa dela esango dugu X-k d elementu baldin

badauzka.

Izan bedi T zuhaitz d-adikoa. Zuhaitzaren automorfismo bat, erpinen

arteko bijekzio bat da, zeinek ertzen loturak errespetatzen dituen. Automor-

fismo guztien multzoa AutT bezala adieraziko dugu, eta konposaketarekiko

talde bat osatzen du.

Tesiaren 1. kapituluan zuhaitzen automorfismoen inguruko definizio gar-

rantzitsuenak ematen dira. Adibidez, G ≤ AutT self-similar edo (weakly)

branch izatea zer den.

Ondoren, talde hauekin erlazionatutako problema ezberdinak azaltzen

dira. Batetik, congruence subgroup problem bezala ezagutzen dena. Prob-

lema honek talde infinituen indize finituko azpitaldeak hobeto ezagutzea du

helburu. Hasiera batean talde aljebraikoentzako planteatu zen, hain zuzen

ere SLn(Z) taldeentzako. Problemak, nolabait esateko, galdetzen du ea in-

dizie finituko azpitalde guztiak ezagutzeko nahikoa den azpitalde finituen fa-

milia konkretu bat ezagutzea. Edo beste era batera esanda, ea indize finituko

azpitalde guztiek eta familia konkretu horrek topologia bera definitzen duten

taldean. Lehen aipatutako SLn(Z) taldeen kasuan, familia hori {ker(πm :

SLn(Z)→ SLn(Z/mZ))}m∈N da, eta hortik datorkio ‘congruence’ izena. Be-

raz, bi topologiak berdinak diren kasuan, taldeak congruence subgroup prop-

erty duela esaten da.

Zuhaitzen automorfismoen taldeentzat problemaren analogoa planteatzer-

ako orduan, familia berezi bezala maila bakoitzeko estabilizatzaileak hartzen

ditugu kontuan; hau da, stG(n) da n luzerako erpinak finko uzten dituzten
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automorfismoek osatzen duten azpitaldea. Beraz, galdera litzateke ea G ≤

AutT -ren indize finituko azpitaldeek eta estabilizatzaileek topologia bera

definitzen duten G-n.

Planteatzen den bigarren problemak talde bateko elementuen deskrib-

apenarekin du zerikusia. Zuhaitz d-adiko baten automorfismo bakoitza erpin

bakoitzari permutazio bat esleituta deskriba daiteke, non permutazio hor-

rek adierazten duen nola mugitzen dituen automorfismoak erpin horretatik

zintzilik dauden d erpinak. Gainera, taldea self-similar den kasuetan, deko-

razio hori puntu batean amai daiteke, permutazio baten ordez talde bereko

automorfismo bat jarriz. Horrek adieraziko luke erpin horretatik behera ele-

mentuak egiten duen ekintza automorfismo horrek zuhaitz osoan egiten duen

ekintzarekin deskriba daitekeela. Kontua da era honetan ez dagoela garbi

noiz amaitu behar dugun dekorazioa eta noiz jarraitu. Horregatik, taldea

contracting deritzona izatea garrantzizkoa da. Izan ere, kasu horretan el-

ementu multzo finitu bat existitzen da, nukleo deritzona, non edozein ele-

menturen dekorazioan puntu batetik aurrera nukleo horretako elementuetan

erortzen garen. Orduan elementu bakoitza gisa horretan dekoratuta, hau da,

nukleoko elementu batekin topo egiterakoan gelditu ezkero, elementuaren

sakonerari (depth) buruz hitz egin dezakegu. Elementu baten sakonera litza-

teke elementuaren dekorazioan errotik hasita dagoen bide luzeenaren luzera.

Behin elementu bakoitzari sakonera bat esleituta, galdera naturala da zein

den sakoneraren hazkundea, portrait growth bezala ezagutzen dena. Galdera

hau Grigorchuk-ek egin zuen [18] artikuluan Grigorchuk-en lehen taldeari

buruz.

Lehen kapituluarekin bukatzeko tesian zehar agertuko diren talde ezberdi-

nen definizioa ematen da: Grigorchuk-en lehen taldea, GGS-taldeen familia,

Hanoi-ren dorreen taldea eta Apollonian taldea eta Basilica taldea. Talde
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bakoitzaren definizioaz gain ezagunak diren zenbait propietate garrantzitsu

aipatzen dira, baita gerora beharrezkoak izango diren batzuk enuntziatu eta

frogatu ere.

Bigarren kapituluan literaturan nahasmena sortu duen kontzeptu bat ar-

gitzen dugu. Zuhaitzen automorfismoen talde bat fractal dela esaten da

baldin eta erpin bakoitzean talde osoaren ekintza berreskura badaiteke, no-

labait esateko. Zenbait artikulutan esaten zen hori eta lehen mailako esta-

bilizatzailearen erpin bakoitzeko proiekzioa supraiektiboa izatea baliokideak

zirela. Egia da bigarrenak lehena inplikatzen duena, baina alderantzizkoa ez

da egia. Beste zenbait artikulutan bereizketa egina zegoen eta gogorragoa

den baldintza honi strongly fractal esaten zitzaion. Edozein kasutan, inon

ez zen adibiderik ematen fractal izan eta strongly fractal ez zenarena. Guk

bi adibide eraikitzen ditugu. Bestalde, talde bat fractal izan dadin, nahikoa

da lehen mailako erpinetan fractal izateko baldintza batetzen badu. Ar-

tikulu batean esaten zen strongly fractal-ekin ere gauza bera gertatzen zela.

Adibideak emanez ikusten dugu ez dela horrela, eta beraz hirugarren honi,

hau da, lehen mailan bakarrik ez, maila denetan strongly fractal izateko bald-

intza betetzeari super strongly fractal izena eman diogu. Adibideak emanez

erakusten dugu bi propietate hauek ere ez direla baliokideak. Emaitza hauek

[37] artikuluan publikatuak izan dira.

Hirugarren kapituluan aurrerago aipatutako congruence subgroup problem

aztertzen dugu GGS-taldeen familiarentzat. Talde hauek zuhaitz p-adikoaren

automorfismoen taldeak dira p zenbaki lehen bakoitia izanik. Bi elementuk

sortzen dituzte eta elementuetako bat bektore baten arabera definitzen da.

Honela, bektore bakoitzak talde bat definitzen du. Aldez aurretik jakina

zen ([33]), talde hauek periodikoak diren kasuan badaukatela congruence

subgroup property. Hau da, indize finituko azpitaldeek eta estabilizatzaileek
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topologia bera definitzen dutela taldean. Kontua da, talde hauek periodikoak

direla baldin eta soilik baldin definizio bektorearen osagaien batura zero bada

Fp-n (ikus [38]). Guk kasu guztietarako ematen dugu erantzuna. Hasteko,

frogatzen dugu G taldea bektore ez-konstante batek definituriko GGS-taldea

bada, orduan congruence subgroup property daukala.

Emaitza honi esker, Barnea-k egindako galdera bat erantzuteko gai izan

gara (ikus [2]). Izan ere, galdetzen zuen ea existitzen ziren finituki sortuak,

erresidualki finituak, ez periodikoak ziren talde infinituak zeintzuen konplezio

profinitua pro-p taldea zen. GGS-taldeetako asko ez direnez periodikoak eta

AutT -ren Sylow-en pro-p talde batean bizi direnez, Barnea-ren galderarako

adibideak direla frogatzen du aurreko emaitzak. Gainera, Barnea-k bigarren

galdera bat egiten du, ez periodiko beharrean tortsio-askeak (torsion-free)

izateko eskatuz. Talde hauetako batzuk birtualki tortsio-askeak direla fro-

gatzen dugu, eta beraz bigarren galderari ere erantzuna ematen diogu.

Bektore konstante bidez definituriko GGS-taldearen kasua (G bidez adier-

azi duguna tesi osoan zehar) erabat ezberdina da. Izan ere konplezio profini-

tutik estabilizatzaileekiko konpleziora dagoen epimorfismo naturalak isomor-

fismo izan behar luke congruence subgroup property izateko. Bestela esanda,

epimorfismo horren nukleoa, congruence kernel deiturikoa, tribiala izan be-

har da. Guk frogatzen dugu G-ren kasuan nukleo hau infinitua dela, eta

beraz, ez daukala congruence subgroup property.

Hau gertatzearen arrazoia da, G taldeak indize finituko azpitalde bat

duela zein Z-ra proiektatzen den. Beraz, G-n existitzen dira indizea p-ren

berretura ez duten indize finituko azpitaldeak. Nola estabilizatzaile denen

indizea p-ren berretura den, horrek zuzenean garamatza bi topologiak ezin

daitezkeela berdinak izan ondorioztatzera. Beraz, galdera naturala da, in-

dize finituko azpitalde guztiak hartu ordez, indizea p-ren berretura duten
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azpitalde normalak kontsideratuz gero, ea orduan bat datozen estabilizatza-

ileen topologia eta azken hau. Hori da hain zuzen ere laugarren kapituluaren

motibazioa. Aurretik aipatutako emaitzak, [14] artikuluan bilduta daude.

Bukatzeko, kapitulu berean, GGS-taldeen orokorpena diren multi-GGS

taldeentzako ere orokortzen ditugu aurreko bi emaitzak. Talde hauek, sortza-

ile berriak gehituz eraikitzen dira. Hala, sortzaile bakoitza bektore ezberdin

batek definitzen du. Kasu honetan beraz, emaitza da G ez den edozein multi-

GGS taldek baduela congruence subgroup property. Hemen aurki daiteke

aipatutako emaitza: [17].

Laugarren kapituluan congruence subgroup problem-aren orokorpen bat

planteatzen dugu. Aldez aurretik esan gisan, kasu batzuetan beste topolo-

gia batzuk egokiagoak izan daitezke estabilizatzaileenarekin konparatzerako

garaian.

Izan bedi C talde finituen pseudo-barietate bat. Hau da, talde finituen

multzo bat, itxia dena azpitaldeekiko, zatidurekiko eta biderketa kartesiar

finituekiko. Orduan, oro har G talde infinitu bat izanik, NC = {N E G |

G/N ∈ G}-k topologia bat definitzen du G-n, pro-C topologia deritzona.

Baldin eta G zuhaitz errotu erregular baten automorfismoen taldea bada,

eta G/ stG(n) ∈ C betetzen bada n ∈ N guztietarako, orduan estabilizatza-

ileen topologia konparagarria da pro-C topologiarekin. Bi topologiak bat da-

tozenean esango dugu G-k C-congruence subgroup property daukala (C-CSP

laburtuta).

Kapitulu berean, problema definitzeaz gain, weakly regular branch diren

zuhaitzen automorfismoen taldeentzako baldintza nahikoa den bat ematen

dugu C-CSP izan dezaten.

Baldintza hori baliatuz frogatzen dugu G-k baduela p-CSP, eta baita

Basilica taldeak 2-CSP duela ere bai. Nahiz eta gu p-talde finituen barieta-
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teekin baino ez garen aritzen, aipagarria da baldintzak orokorrean balio du-

ela, eta beraz, interesgarria litzateke adibideak topatzea zeintzuentzat talde

nilpotente finituen edo ebazgarri finituen pseudo-barietateentzako betetzen

den propietatea, adibidez. Emaitza hauek [16] artikuluan daude jasota.

Bukatzeko, bostgarren eta azken kapituluan lehenago aipatutako por-

trait growth-aren problemaz arduratzen gara. Hasteko, regular branch diren

taldeentzako bide bat ematen dugu ekuazio errekurtsibo batzuk eskuratu

ahal izateko. Horrela, n sakonera duten elementuen kopurua kalkulatzeko

gaitasuna izango dugu n− 1 sakonera dutenen kopurua ezagututa.

Ondoren Grigorchuk-en lehen taldea, bektore ez-simetrikoek definitutako

GGS-taldeak eta Apollonian taldearentzat kalkulatu egiten ditugu aipatu-

tako ekuazioak. Hiru kasuetan, teknika ezberdinak erabiliz, gai gara fro-

gatzeko hazkundea exponentzial bikoitza dela. Gure konjetura da gauza

bera beteko dela edozein regular branch eta contracting den taldetan, baina

momentuz ez gara frogatzeko gai izan. Emaitza hauek [35] artikuluan topa

daitezke.
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[6] L. Bartholdi and Z. Šuniḱ. On the word and period growth of some

groups of tree automorphisms. Comm. Algebra, 29(11):4923–4964, 2001.

[7] H. Bass, M. Lazard, and J.-P. Serre. Sous-groupes d’indice fini dans

SL(n, Z). Bull. Amer. Math. Soc., 70:385–392, 1964.

[8] A. M. Brunner and S. N. Sidki. Abelian state-closed subgroups of auto-

morphisms of m-ary trees. Groups Geom. Dyn., 4(3):455–472, 2010.

139

http://mathoverflow.net/q/179381
http://mathoverflow.net/q/179381


BIBLIOGRAPHY

[9] F. Dahmani. An example of non-contracting weakly branch automaton

group. In Geometric methods in group theory, volume 372 of Contemp.

Math., pages 219–224. Amer. Math. Soc., Providence, RI, 2005.

[10] D. D’Angeli and A. Donno. Self-similar groups and finite Gelfand pairs.

Algebra Discrete Math., (2):54–69, 2007.

[11] P. de la Harpe. Topics in geometric group theory. Chicago Lectures in

Mathematics. University of Chicago Press, Chicago, IL, 2000.

[12] A. Donno. Gelfand Pairs: from self-similar groups to Markov chains.
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Overwolfach Report, Vol. 19, pages 11–14, 2006.
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[26] R. I. Grigorčuk. On Burnside’s problem on periodic groups. Funktsional.

Anal. i Prilozhen., 14(1):53–54, 1980.

[27] M. Gromov. Groups of polynomial growth and expanding maps. Inst.

Hautes Études Sci. Publ. Math., (53):53–73, 1981.

[28] N. Gupta and S. N. Sidki. On the Burnside problem for periodic groups.

Math. Z., 182(3):385–388, 1983.

[29] C. R. Leedham-Green and S. McKay. The Structure of Groups of Prime

Power Order. London Mathematical Society Monographs New Series

27. Oxford University Press, Oxford, 2002.

[30] J. L. Mennicke. Finite factor groups of the unimodular group. Ann. of

Math. (2), 81:31–37, 1965.

[31] J. Milnor. A note on curvature and fundamental group. J. Differential

Geometry, 2:1–7, 1968.

[32] J. Milnor. Problem 5603. Amer. Math. Monthly, 75:685–686, 1968.

[33] E. L. Pervova. Profinite completions of some groups acting on trees. J.

Algebra, 310(2):858–879, 2007.

[34] L. Ribes and P. Zalesskii. Profinite groups. Ergebnisse der Math.(3) 40.

Springer-Verlag, Berlin, second edition, 2010.

[35] Z. Sunic and J. Uria-Albizuri. Portrait growth in contracting regular

branch groups. arXiv:1710.02902, submited to Journal of Algebra and

its Applications.
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