
Spoken Dialogue Systems:
Architectures and Applications

Doctoral Thesis

Advisor

María Inés Torres Barañano

Leioa 2017

Javier Mikel Olaso Fernandez

(cc)2017 JAVIER MIKEL OLANO
FERNANDEZ (cc by-nc 4.0)

Contents
List of Figures . v

List of Tables . vii

List of Symbols . ix

1 Introduction . 1

2 Spoken Dialogue Systems . 5
1 Overview . 5
2 Components of a Spoken Dialogue System 6

2.1 Automatic Speech Recognition 7
2.2 Natural Language Understanding 8
2.3 Natural Language Generation 9
2.4 Text-To-Speech Synthesis 9
2.5 Dialogue Management 10

2.5.1 State-Based . 10
2.5.1.1 Finite State-Based 11
2.5.1.2 Frame-Based 12

2.5.2 Agent-Based 13
2.5.3 Information State-Based 14
2.5.4 Statistical . 14

2.5.4.1 MDP and POMDP 15
2.5.4.2 Stochastic Finite State Bi-Automata . 18
2.5.4.3 Neural Networks 22

2.6 Other Components . 22
3 Examples of Spoken Dialogue Systems 23

3 Frameworks and Toolkits . 25
1 PC under Windows OS . 25
2 PC under Unix-like OS . 28
3 PC under Windows or Unix-like OS 28
4 Other Platforms . 31

4 Preliminary Systems . 35
1 Introduction . 35
2 INMA . 35

2.1 Architecture . 36
2.2 Configuring and Launching the System 38
2.3 Modules Implementation Details 40

2.3.1 Automatic Speech Recognition and Text to
Speech . 40

2.3.2 User Interface 41
2.3.3 Data Backend 42

ii Contents

2.3.4 Comprehension 44
3 RTMIVA . 45

3.1 Architecture Definition 46
3.2 Installing and Configuring the Architecture 46

3.2.1 Installing Asterisk PBX 47
3.2.2 Installing no-ip 49
3.2.3 Installing PHPAGI 51
3.2.4 Installing TTS 51
3.2.5 Installing ASR 52
3.2.6 Configuring Asterisk PBX 53

3.2.6.1 Creating Users 53
3.2.6.2 Configuring Extensions 59

3.2.7 Applications Interface 60
3.2.8 Installing and Configuring the Clients 62

3.2.8.1 Clients Using SIP and IAX Protocols 62
3.2.8.2 Clients Using H.323 Protocol 63

3.3 Weather Forecast Retrieval Application 63
3.3.1 Application File Definition 64
3.3.2 Integrating the Application into Asterisk . . . 69

4 Concluding Remarks . 69

5 Bus Information System Based on EDECAN Framework 71
1 Introduction . 71
2 RavenClaw Dialogue Manager 72
3 Data Analysis . 74
4 Bus Information System Based on Olympus 75

4.1 Architecture . 76
4.1.1 Automatic Speech Recongition 76
4.1.2 Natural Language Understanding 77

4.1.2.1 Parser Grammar Definition 78
4.1.3 Dialogue Manager 80
4.1.4 Data Backend 81
4.1.5 Natural Language Generation 83

4.1.5.1 Templates Definition 83
4.1.6 Speech Synthesis 84
4.1.7 Telephone Interface 85

5 Bus Information System Based on EDECAN 85
5.1 Architecture . 85
5.2 Configuring and Launching the System 88

5.2.1 Audio interface configuration 88
5.2.2 Configuring and Launching EDECAN Services 89
5.2.3 Configuring and Launching Olympus Services . 90

5.3 Modules Implementation Details 91
5.3.1 Automatic Speech Recognition 91
5.3.2 Semantic Parser 93
5.3.3 Natural Language Generator 93
5.3.4 Text to Speech 94

Contents iii

5.3.5 Phone Interface 94
5.3.6 Dialogue Manager 94
5.3.7 Dialogue Manager Interface and Data Backend 94
5.3.8 Controller . 97
5.3.9 DateTime . 98

5.4 Experimental Evaluation 98
5.4.1 System Performance 99
5.4.2 Usability . 100
5.4.3 Speech Assessment 101
5.4.4 Attractiveness 103

6 Concluding Remarks . 106

6 Systems Based on ActiveMQ . 107
1 Introduction . 107
2 vAssist . 107

2.1 Architecture . 108
2.1.1 Speech Recognition 108
2.1.2 Semantic Parsing 109
2.1.3 Natural Language Generation 109
2.1.4 Text to Speech 109
2.1.5 Semantic Unification and Resolution 110
2.1.6 Dialogue Act Mapping 110
2.1.7 Dialogue Management 110

2.2 Adding Languages and RavenClaw DM Integration . . . 111
2.2.1 Adding Languages 111
2.2.2 RavenClaw DM Integration 112

2.3 Experimental Evaluation 112
2.3.1 Task and Experimental Scenarios 112
2.3.2 Experimental Evaluation 113

2.3.2.1 System Performance 114
2.3.2.2 Disco-LFF and RavenClaw DM Com-

parison 114
3 Personal Assistant Robot Dialogue System 115

3.1 Architecture . 116
3.2 Configuring and Launching the System 117

3.2.1 Configuring and Launching ActiveMQ Services 117
3.2.2 Configuring and Launching Olympus Services . 118

3.3 Modules Implementation Details 119
3.3.1 ActiveMQ Services Programming 119
3.3.2 Automatic Speech Recognition 120
3.3.3 Semantic Parser 121
3.3.4 Natural Language Generator 121
3.3.5 Output . 121
3.3.6 Face recognition 121
3.3.7 Dialogue Manager Interface 122
3.3.8 Controller . 122
3.3.9 RavenClaw Dialogue Manager 123

iv Contents

3.4 Demonstrator . 125

7 Conclusions . 127

A EDECAN Architecture Specification 129
1 Introduction . 129
2 Communication Protocol and Routing Modes 130

2.1 Communication Protocol 130
2.2 Routing Modes . 131

3 System Configuration . 132
3.1 Communication Manager 132
3.2 Server . 133
3.3 Service . 134

4 Controller Commands . 135

B Systems Based on EDECAN: Configuration Files 139
1 Campus SDS System . 139
2 INMA . 145

C RTMIVA Applications Configuration Files 151
0.1 Applications Interface Code 151
0.2 TTS: text2audio source code 155
0.3 Weather Information Retrieval XML File 156

D Usability Questionnaires . 159
1 System Usability Scale . 159
2 Subjective Assessment Speech System Interfaces 161
3 AttrakDiff 2 . 163

Bibliography . 165

List of Figures
2.1 SDS basic architecture. 6
2.2 ASR basic architecture. 7
2.3 DM components example. 11
2.4 Finite State Based dialogue manager example. 11
2.5 Finite State Based dialogue manager example. 12
2.6 Frame Based dialogue manager example. 13
2.7 Block diagram of a Spoken Dialogue System proposed in [1]. . . . 15

4.1 INMA: Final system. 36
4.2 Architecture of the INMA SDS System. 37
4.3 INMA: User Interface. 42
4.4 RTMIVA system architecture. 47
4.5 Structure of the dialogues for the meteorological information re-

trieval system with RTMIVA architecture. 64
4.6 Language Model for the Weather Forecast retrieval application in

RTMIVA. 65

5.1 RavenClaw dialogue tree example. 72
5.2 Let’s Go Spanish Port: System architecture, based on architecture

proposed in [2]. 77
5.3 Basic task specification for the Campus SDS system. 81
5.4 Task Tree for the Bus Information System implemented with Raven-

claw. 82
5.5 Architecture of the Campus SDS System. 86
5.6 SASSI. Mean values and standard errors. 103
5.7 AttrakDiff 2. Mean values and standard errors. 106

6.1 vAssist: System architecture. 109
6.2 Roberta: System architecture. 116
6.3 Roberta: Architecture implementation with ActiveMQ. 117
6.4 Roberta SDS System: Dialogue structure. 125
6.6 Roberta: Screenshot of the Roberta SDS demonstrator. 125
6.5 Roberta SDS System: Dialogue structure for when users ask ques-

tions. 126

A.1 EDECAN architecture block diagram. 129

List of Tables
3.1 Summary of SDS frameworks and toolkits. 33

4.1 Set of commands (and arguments) for the different modules in
INMA SDS. 37

4.2 RT-MIVA dialplan. 60

5.1 User goals detected in the 010 Corpus. Sub-functions observed in
the Let’s Go grammar are marked with (*). 75

5.2 Set of commands (and arguments) for the different modules in the
Campus SDS System. 87

5.3 Description of the main characteristics and profiles of the set of
users taking part in the experiments 99

5.4 Task Completion and Average Dialogue Length of the user-system
interaction metrics measured during the User Experience evalua-
tion for the Campus SDS System. 99

5.5 Results for a subset of the SUS questionnaire. 101
5.6 SASSI questionnaire results: Habitability subset. 102
5.7 SASSI questionnaire results: Speed subset. 102
5.8 Attrakdiff 2 (Pragmatic Quality) results. 104
5.9 Attrakdiff 2 (Hedonic Quality-Identity) results. 105

6.1 TC and ADL of the vAssist system using the Disco-LFF DM. . . . 114
6.2 Comparing the Disco-LFF and RavenClaw DMs. 115

D.1 SUS questionnaire. 160
D.2 SASSI questionnaire. 162
D.3 ATTRAKDIFF 2 questionnaire. 164

List of Symbols
ADL Average Dialogue Length 98, 99, 114, 115

AGI Asterisk Gateway Interface . 51

ASR Automatic Speech Recognition 5–8, 14, 19, 20, 25, 26,
29, 30, 36, 38, 40, 44, 46, 51, 52, 67, 68, 85, 87, 88, 94, 97, 98, 100, 108,
109, 117, 120–122, 128

CMU Carnegie Mellon University . 25

DA Dialogue Act . 110

DHCP Dynamic Host Configuration Protocol 50

DM Dialogue Manager . 2, 6, 7, 10–15, 17, 19–21, 25–27, 29–31, 36, 44, 46,
60, 71, 72, 74, 76, 83, 85, 86, 88, 94, 95, 97, 98, 106–108, 110, 116, 117,
121–124, 128

DME Dialogue Move Engine . 30, 31

DNS Domain Name Server . 50

DSP Digital Signal Processing . 10

FXO Foreign eXchange Office . 47

FXS Foreign eXchange Subscriber . 47

GPL GNU General Public License 26, 30

HMM Hidden Markov Models . 8, 10

IAX InterAsterisk eXchange protocol 47, 56

IETF Internet Engineering Task Force 53

IP Internet Protocol . 47, 49, 50

ISDN Integrated Services Digital Network 47

LFF Linked Form Filling . 108, 110, 111

LM Language Model 52, 53, 61, 62, 64, 67, 68

LSTM Long Short Term Memory . 22

MDP Markov Decision Process . 14–18

x List of Symbols

NAT Network Address Translation 55, 56

NLG Natural Language Generation . 6, 7, 9, 25, 29, 30, 36, 83, 85, 93, 108,
111, 121

NLP Natural Language Processing . 9, 10

NLU Natural Language Understanding . . 5, 6, 8, 9, 14, 25, 26, 29, 85, 108

OAA Open Agent Architecture . 30

PBX Private Branch Exchange 46, 47, 49–51, 54, 55, 59, 60

POMDP Partially Observable Markov Decision Process . . . 14, 15, 18, 22

RAD Rapid Application Developer . 27

RTMIVA Real-Time Multimedia Interactive Voice Architecture . 45, 63, 66

RTN Recursive Transition Network 78, 80

RTP Real-time Transport Protocol 53, 55, 56

SASSI Subjective Assessment of Speech System Interfaces 99, 101

SDK Software Development Kit . 32

SDP Session Description Protocol . 53

SDS Spoken Dialogue System 1–3, 5, 6, 10, 14, 15, 18, 19, 22, 23, 25, 27–29,
35, 36, 45, 46, 69, 72, 76, 85, 106–108, 127, 128

SF Semantic Frame . 109, 110

SIP Session Initial Protocol 47, 53–55, 94

SP Semantic Parser 36, 44, 93, 100, 109, 111, 112, 117, 121, 122

SUS System Usability Scale . 99, 100

TC Task Completion . 98–100, 114, 115

TTS Text To Speech 6, 7, 9, 25, 26, 29, 30, 36, 38, 41, 44, 46, 51, 52, 85, 88,
94, 97, 108, 121

UA User Agent . 54

UAC User Agent Client . 54

UAS User Agent Server . 54

UDP User Datagram Protocol . 55, 56

VAD Voice Activity Detector . 92

List of Symbols xi

VoIP Voice over IP . 46, 47, 53, 56, 62

WOZ Wizard of Oz . 76, 123

1
Introduction

In a world in which technology and technological devices have become habit-
ual and omnipresent, humans need to learn to communicate with all kind of
devices. Until recently, and in the face of this need for communication with
the different devices, humans needed to learn how the devices express them-
selves to communicate with them, which often, may not be intuitive enough.
But in recent times the tendency has become to make communication with
these devices in more intuitive ways. An obvious example of this trend is the
great success obtained with the use of touch screens available in all kinds of
devices.

Taking intuitiveness into consideration, the ideal way to communicate with
devices would be the natural way of communication between humans, the
speech. In this context, humans have long been investigating and designing
systems that use this type of communication, giving rise to the so-called Spoken
Dialogue Systems (SDSs).

In the beginning, SDSs were relatively simple systems designed to carry out
simple tasks such as the provision of air travel or bus schedule information,
or even simpler systems based on speech commands recognition for execut-
ing some associated actions. Nowadays, and although it’s still a technology
that has much to develop, there are more complex systems used for performing
more complex tasks. Examples of these current systems, which prove the great
future that the SDSs have, are systems for Intelligent Environments, commu-
nication systems with intelligent robots or the increasingly popular virtual
assistants such as Apple’s Siri or Microsoft’s Cortana.

In the described context, based on different contacts carried out with the en-
terprise world, the research group to which the author of this thesis is assigned
detected a need for such dialogue systems, which awoke in the group and the
author of this thesis the interest for this type of systems.

Initially, the research team undertook an academic course focused on build-
ing systems based on statistical methods for dialogue management, mainly
POMDPs and neural networks. However, it was seen that this approach,
nowadays, is not able to solve the implementation needs required by compa-
nies. There is a significant difference between the technologies employed by
enterprises and those used in the academic environment, being the first ones,
in general, simpler and focused on functionality and reliability. This fact en-

2 1. Introduction

tailed a course change for the research group focused on engineering and in
building functional and reliable systems. With this in mind, the primary goal
of this thesis is to show how these systems were implemented, and by exten-
sion how SDSs can be built. Also, to show how the difficulties encountered can
be solved. This thesis additionally serves as a review of the state-of-the-art
regarding architectures and toolkits focused on the development of SDSs. Fi-
nally, this document is intended to serve future system developers as a guide
for their construction. Therefore, details are given both for the installation
and for the configuration of the different required components.

In this context, on the one hand, an analysis about what SDSs consist of and
the elements that compose them has been carried out. On the other hand, we
have built several of these systems to learn how to do it and to analyse the
existing problems.

For first testing works, we have explored the implementation of systems un-
der the EDECAN framework, a framework designed for the development of
distributed applications and focused on the development of SDSs, through an
application to get meteorological forecasts and news from digital newspapers.
We have also developed a new architecture for the implementation of SDSs
focused on the interaction through mobile devices on which we have built a
system aimed to get meteorological forecasts.

The dialogue management task of these systems is distributed between several
components. With our experience, we have seen the need for its centralisation
in a unique part. This need for a centralisation of the dialogue management
task led us to the idea of integrating a Dialogue Manager (DM) into the systems
and investigate the Olympus framework and its RavenClaw DM. During this
investigation, an adaptation of the Let’s Go system to the Spanish language has
been carried out. That has allowed us an in-depth knowledge of the RavenClaw
DM. Then, we have decided to integrate this DM into the EDECAN framework
and a new system has been developed, consisting of a telephone information
system for obtaining bus schedules.

In addition, and with the knowledge acquired about the RavenClaw DM, two
additional works have been carried out. One consists in the development of
an SDS prototype for the creation of an assistant robot for the elderly and the
other in the integration of the RavenClaw DM in a pre-existing system, with
the purpose of comparing its performance with the system’s own DM.

Several contributions have been made during the development of these sys-
tems:

• A revision of the frameworks and toolkits available to develop SDSs.
• Development of several components to build SDSs under EDECAN frame-

work.
• Make possible to use the RavenClaw DM in other frameworks apart from

its native one, Olympus.
• Development of a new framework to implement SDSs focused on inter-

3

action through mobile devices.
• Development of a set of SDSs aimed to deal with a variety of applica-

tions, e.g. weather forecast retrieval, bus schedules information retrieval,
personal and elderly assistance, under a variety of frameworks, namely,
EDECAN, Olympus, RTMIVA and ActiveMQ.

• Evaluation of the user’s experience in handling with a bus information
telephone system.

The rest of the thesis is structured as follows:

• Chapter 2 describes what SDSs are and the components of which they
consist of, analysing the main components, their characteristics and ways
of implementation.

• Chapter 3 gives a review of the various existing toolkits for the imple-
mentation of SDSs.

• Chapters from 4 to 6 are devoted to the description of the systems that
have been implemented during the development of this thesis.

• Finally, in Chapter 7 some conclusions obtained during the elaboration
of the thesis are given.

2
Spoken Dialogue Systems

1 Overview

SDSs can be defined as informatics systems that allow humans to interact
with such systems using natural language. In a general way, it can be said
that SDSs are systems that get spoken utterances as input from the user and
generate spoken utterances as output. The primary purpose of such systems
is to facilitate natural interaction between humans and computerised systems
when trying to perform some task.

SDSs are complex systems that require the interaction of several components to
recognise the user’s speech input utterance, extract the relevant information
from the speech transcriptions, retrieve information from backend services,
decide the next step in the dialogue, generate system responses and synthesise
them, etc.

Ideally, an SDS system is desired to have the following capabilities:

• Being able to recognise any speech, that is, spontaneous speech, not
being dependent on speaker or gender, etc.

• Being able to understand sentences in any domain without content re-
strictions.

• Giving well-formed answers, that is, meaningful, grammatically well-
formed and pragmatically suitable.

• Having an entirely natural voice.

But given the limitations of the different technologies involved in the develop-
ment of such systems, it’s not possible to get these capabilities, among others,
the following reasons:

• There are limitations in the Automatic Speech Recognition (ASR) tech-
nology. Nowadays, technology doesn’t allow to recognise speech entirely,
i.e., there are problems to recognise spontaneous speech, problems with
phonetic pronunciation differences between speakers, problems with en-
vironmental interferences, etc.

• The Natural Language Understanding (NLU), the component responsi-
ble for analysing the output from the ASR, is limited to restricted do-
mains, i.e., getting train schedule information, buying aeroplane tickets,
etc.

6 2. Spoken Dialogue Systems

• Natural Language Generation (NLG) technology isn’t capable of emu-
lating the mechanisms humans use to generate sentences in any kind of
situation.
• Human dialogues are characterised for being natural and coherent and

by the fact of not needing confirmation to every question. To emulate
such dialogues, non-existent complex DMs are required.
• Text To Speech (TTS) technology still doesn’t allow to create synthe-

sised voices that can be confused with that of a person. Neither allows
simulating the prosodic realisation of natural voice sentences as humans
do.

Nevertheless, despite the limitations, the development of such systems is pro-
liferating.

2 Components of a Spoken Dialogue System

An SDS needs to deal with several tasks to emulate human’s dialogues. For a
simplified and primary SDS the following tasks are necessary:

• Recognition of users’ utterances.
• Linguistic analysis of users’ utterances.
• Dialogue management.
• Generation of sentences.
• Text to speech conversion.

Usually, SDSs are built in a modular way in which each of the modules is
responsible for performing each of the mentioned tasks, interacting together
to carry out the dialogue.

Text
To

Speech

Natural
Language
Generator

Natural
Language

Understanding

Automatic
Speech

Recognition

Dialog
Manager

Backend

Figure 2.1: SDS basic architecture.

Figure 2.1 shows the architecture of such a primary system. It consists of
an ASR module responsible for transforming the speech signal into a suitable
representation, usually a text string. From that representation, the NLU ex-
tracts a semantic representation. Once the semantic representation has been
obtained, it’s sent to the DM to decide the next step in the dialogue. The DM,
using the semantic representation of the speech signal and, in case of being
necessary, information retrieved from a data backend server, decides the next

2. Components of a Spoken Dialogue System 7

step in the dialogue, which mainly consists in giving some information to the
user. For that, the DM sends the required information to the NLG module.
The NLG module builds a sentence with the received information and sends it
to the TTS module to be synthesised and given the information to the user.

Following sections will briefly describe each of the modules mentioned.

2.1 Automatic Speech Recognition

The ASR module is responsible for converting users’ speech utterances into
sequences of words.

Figure 2.2 shows the basic architecture of an ASR system. To convert speech
into a sequence of words, it uses phonetic, lexical and language models.

Front End Decoder

Acoustic
Model

Lexicon

Language
Model

Word StringSpeech

Figure 2.2: ASR basic architecture.

Depending on several criteria ASR modules can be classified into several cat-
egories:

• Style and type of speech: Depending on the style and type of speech it
can recognise ASRs can be classified as isolated words, continuous speech
or spontaneous speech recognisers. Isolated word recognisers are the sim-
plest ones and are characterised for recognising words only. On the other
hand, continuous and spontaneous speech recognisers are distinguished
for recognising full sentences with the difference that continuous ones
recognise well-spoken sentences only, and spontaneous ones can recog-
nise sentences including repetitions, interjections, pitch, etc.

• Speaker dependence: An ASR can be classified as speaker dependent or
speaker independent. Speaker dependent recognisers are designed to work
optimally with a small group of users and, on the other hand, speaker
independent recognisers are designed with the goal of having similar
performance whoever the user.

• Channel type: Speech recognisers can get their input from microphones
or telephones, in which the audio signal has differences in quality.

• The dimension of the vocabulary : Depending on the number of different
words a recogniser can deal with, it can be classified as sort vocabulary
or large vocabulary speech recogniser. Usually, the number of words

8 2. Spoken Dialogue Systems

limits the quality of a dialogue due to non-existent words in the lexicon,
anyway, this issue can be minimised using specific language models for
each topic in the application and loading them depending on the state
of the dialogue.
• Language: Some recognisers are designed to recognise one language only,

and others are designed to recognise multiple languages.

Some of the most known toolkits to develop ASR systems are:

• HTK [3], a toolkit for building and manipulating hidden Markov models.
Although it’s primarily used for speech recognition research, it has been
used for other applications such as speech synthesis, character recogni-
tion or DNA sequencing. It provides a set of tools for speech analy-
sis, Hidden Markov Models (HMM) training, testing and analysis. It
supports HMMs using both continuous density mixture Gaussians and
discrete distributions and can be used to build complex HMM systems.
• CMU Sphinx [4], is a set of tools that include several ASR decoders,

an acoustic model trainer (SphinxTrain), a Language model compila-
tion tool and a public domain pronunciation dictionary (cmudict). The
different decoders are targeted for different situations such as real-time
recognition, high-accuracy with non-real-time recognition or recognition
within embedded systems.
• Kaldi [5], a toolkit that provides a speech recognition system based on

finite-state transducers. It also provides a set of scripts for building com-
plete recognition systems and supports modelling of arbitrary phonetic-
context sizes, acoustic modelling with subspace Gaussian mixture models
(SGMM) as well as standard Gaussian mixture models, together with all
commonly used linear and affine transforms.

2.2 Natural Language Understanding

The goal of the NLU module is to interpret an input given as a text string,
usually obtained from the ASR module, and translate it to an abstract seman-
tic representation understood by the system. Roughly speaking there are two
implementation approaches: knowledge-based and statistical.

First NLU systems were knowledge-based ones. Based on the representation
schemes and reasoning mechanisms used can be classified as follows:

• Procedural semantics based: Knowledge is represented as an executable
program in a computer language. Systems using this approach can be
found in [6] and [7].
• Semantic Networks based: Meaning of words and sentences is represented

as a set of nodes linked in a graph. An example of a system using this
approach is the MARGIE system [8].
• Frames based: Knowledge is represented as data structures called frames.

CMU’s Phoenix [9] is an example of a system using this approach.

2. Components of a Spoken Dialogue System 9

As an alternative to knowledge-based systems, statistical ones were developed.
Statistical NLUs can be understood as a pattern recognition problem and for-
mulated as such [10]. Examples of systems using this approach are systems
that use Hidden Understanding Models [11], Fertility Models [12] or Hidden
Vector State (HVS) Models [13]. Almost all statistical NLU systems use the
pattern recognition approach although it’s possible to use different methods.
As an example, [14] shows a system where the grammar is induced semiauto-
matically based on statistical clustering techniques.

2.3 Natural Language Generation

NLG is the process of getting computer programs to generate readable text in
an ordinary language from non-linguistic inputs. Several techniques exist for
NLG development, some of them are:

• Canned text: It’s the simplest way of generating natural language. A
database of text sentences is created in the development step and then
used during the dialogue execution. This approach is trivial to imple-
ment but has the disadvantage of being very inflexible. This approach
is usually used in systems to give error or warning messages.

• Template-based: The next level of sophistication can be achieved us-
ing template based systems. Such systems use pre-defined templates or
schemas with slots that can be filled by looking up the relevant infor-
mation in a table. This approach is used mainly for applications whose
texts are regular in structure. Some systems using this approach are
TG/2 [15], D2S [16] and YAG [17].

• Phrase-based: This technique uses a first phrasal pattern to match the
top level of the input. In a second step, the parts of this pattern are ex-
panded recursively into more specific phrasal patterns matching subpor-
tions of the input. In [18] is presented a system that uses this approach.

• Feature-based: In this framework, sentences are associated with a unique
set of features. Features used usually are of the type positive/negative,
interrogative/declarative, past/present, etc. A system using this ap-
proach is shown in [19].

• Other techniques: More sophisticated techniques include synchronous
parsing [20] or methods based on statistical planning, adaptive and in-
cremental at the turn level, that optimises NLG actions with respect to
a data-driven objective function [21][22].

2.4 Text-To-Speech Synthesis

The TTS module is responsible for converting the sentence generated by the
NLG module in an audio signal to be presented back to the user.

TTS can be seen as a two-stage process, Natural Language Processing (NLP)

10 2. Spoken Dialogue Systems

and Digital Signal Processing (DSP). The NLP stage comprises a first pre-
processing step, usually called text normalisation, in which the raw text is
processed to convert non-word symbols, like numbers or abbreviations, into
words. On a second stage, usually called text-to-phoneme or grapheme-to-
phoneme conversion, phonetic transcriptions and prosodic units are assigned
to the text.

Once the NLP stage has finished, the DSP stage is responsible for generating
an audio signal from the data provided by the NLP stage. To this end, usually,
one of two methods is used. The simplest one, called concatenative synthe-
sis, consists in concatenating pieces of prerecorded speech that are stored in a
database. Usually, the speech is created from phones or diphones concatena-
tion, but also can be found systems that concatenate entire words or sentences.
This kind of systems has the advantage of being easy to implement but lacks
human’s speech naturalness.

Alternatively, formant synthesis is widely used. In this case, the speech ob-
tained is purely synthetic and is obtained using additive synthesis and an
acoustic model of the vocal tract. The main disadvantage of this method is
that it generates robotic artificial voices, but on the other hand, has the ad-
vantage of being highly intelligible, and being able of avoiding the acoustic
glitches, one of the main disadvantages of concatenative synthesis.

Although concatenative and formant synthesis are two of the most used tech-
niques others like articulatory synthesis [23], based on models of the human
vocal tract and the articulation processes occurring there, or techniques based
on the use of HMM [24] have been used improving the quality of the generated
voices.

2.5 Dialogue Management

The DM is a fundamental component of an SDS. Its primary task is to con-
trol the dialogue flow. Taking into account the state of the conversation is
responsible for selecting the appropriate actions to be taken by the system.

According to the implementation approach taken, the DMs can be classified
as State-Based, Agent-Based, Information State-Based and Statistical.

2.5.1 State-Based

Formally, a State-Based DM can be defined using three concepts: dialogue
state, dialogue state transition and dialogue policy.

A dialogue state represents the state of the dialogue in every moment. To
maintain such state, the DM keeps an internal copy of the full dialogue history,
the context and the entire sequence of input observations for the dialogue.
The dialogue state depends on a dialogue state transition function that is

2. Components of a Spoken Dialogue System 11

responsible for updating the dialogue state taking into account the user and
system acts. Finally, the dialogue policy is in charge of deciding the behaviour
in each state, or in other words, deciding which transition function apply to
a state between a group of transition functions. Figure 2.3 shows the DM
definition graphically.

State 0

State 1

State 2

State 3

policy

transition 1

transition 2

transition 3

Figure 2.3: DM components example.

There are two main implementation approaches for State-Based DMs: Finite
State-Based and Frame-Based.

2.5.1.1 Finite State-Based

The Finite State-Based architecture is one of the simplest methods. Dialogue
states are represented by nodes in a graph and dialogue state transition func-
tions are represented by the edges in the graph. As to dialogue policy, it
depends entirely on the user acts, depending on them one transition function
or another will be chosen. Figure 2.4 shows an example of a Finite State-Based
DM.

Get Des-
tination

Verify
Destination

Get Date

Verify Date

Bilbao

Sunday

Y es

No

No

Y es

S: What is the destination?
U: Bilbao
S: Do you want to go to Bilbao?
U: Yes
S: What day?
U: On Sunday
S: Do you want to go on Sunday?
U: Yes

Figure 2.4: Finite State Based dialogue manager example.

This type of architecture has the advantage of being relatively easy to imple-
ment. Another advantage is that the grammars and vocabularies for each of
the states are foreknown. But there are some disadvantages. One of these
disadvantages is that neither over-informative nor unexpected answers are al-
lowed. In case of receiving an over-informative input, the information not

12 2. Spoken Dialogue Systems

associated with the current state will be discarded. In case of receiving an un-
expected input, the behaviour of the system will depend on the error handling
strategies implemented. As an example let’s take into account the dialogue in
Figure 2.5 and let’s suppose ”Get Destination” is the current state. In such
situation, the DM is expecting to receive ”Bilbao” or ”Madrid” as input. In
case of receiving an over-informative input, for example, ”Bilbao on Sunday”,
the DM will only be able to interpret ”Bilbao” and will discard ”Sunday”,
asking for ”Date” when ”Get Date” is the current state. On the other hand, if
the DM receives ”Barcelona” as input, in this particular example, the dialogue
will remain in the current state and will ask for ”Destination” again.

Other disadvantages are, on the one hand, that the user ability to ask questions
and taking the initiative is discarded, and on the other hand, that the kind of
dialogues obtained are not very natural.

Get Des-
tination

Verify
Destination

Get Date

Verify Date

Bilbao/Madrid

Saturday/Sunday

Y es

No

No

Y es

′′Other′′

′′Other′′

′′Other′′

′′Other′′

Figure 2.5: Finite State Based dialogue manager example.

2.5.1.2 Frame-Based

An alternative to the Finite State-Based DM is the Frame-Based DM, also
known as Form-Filling dialogue managers [25]. In its basic form, this kind of
DM uses the concept of frames. A frame is a data structure consisting of a set
of slots, concepts the user can talk about, which can take on predefined values.
The DM asks the user for values for the slots by using predefined actions for
each set of known slots. Figure 2.6 shows a dialogue example using frames.

An issue with Frame-Based DM is that dialogues, often, are composed of
smaller sub-dialogues, and frames cannot model the flow of the dialogue eas-
ily. To face this issue, it’s usual to use extended versions of the basic frames
concept using additional data structures. As examples, in [26][27] are pre-
sented systems that use an additional control table to decide the operations
to perform based on the content of the frame and in [28][29] systems that use

2. Components of a Spoken Dialogue System 13

three different data structures. Some other implementations can be found in
[30][31][32].

Speaking regarding states, transfer functions and policies, it can be considered
that the DMs state is represented by the frame and the transfer function by
the updating process of the frame, that is, the filling of the slots. Regarding
the policy it can be implemented in several ways, in fact, almost each imple-
mentation of a DM has its policy. As an example, in [25] is shown a DM
whose policy assigns priorities to the slots and the system asks the user for
information based on these priorities.

With this implementation approach, more natural dialogues are achieved be-
cause over-informative user inputs are allowed and, on the other hand, for the
possibility the user has for speaking about any slot at any moment, giving
more freedom to the user. As a disadvantage, it can be said that given the
freedom the user has, grammars become harder to develop.

Destination: NULL
Day: NULL
Time: NULL

S: What is the destination?

U: Bilbao

Destination: Bilbao
Day: NULL
Time: NULL

S: What day do you want to travel?

U: Monday, around 10 in the morning.

Destination: Bilbao
Day: Monday
Time: 10 a.m.

S: The available connections are . . .

Figure 2.6: Frame Based dialogue manager example.

2.5.2 Agent-Based

In this kind of DM, also known as plan-based dialogue managers [33], the dia-
logue is viewed as an interaction between intelligent agents capable of reason-
ing. Each of the agents has a plan (a goal) and tries to achieve it interacting
with the other agents when necessary. To define this class of models in an
easier way let’s take a look at an intuitive description taken from [34]:

A has a goal to acquire some information; he creates a plan
that involves asking B a question whose answer will provide the
information. A then executes his plan, asking B the question. B
receives the question and attempts to infer A’s plan. In this plan,
there may be goals that A cannot achieve without assistance. These
are the obstacles in A’s plan. B can accept some of these obstacles

14 2. Spoken Dialogue Systems

as his own goals and create a plan to achieve them. B’s response
is generated when he executes this plan.

The main advantages of this type of DM is that is suitable for the development
of SDS in complex domains and also allows the user the use of a relatively
unconstrained natural language. On the other hand, these type of systems are
usually hard to build, and the agents themselves are very complex. Examples
of this kind of DM are CMU’s RavenClaw [35] and DISCO [36].

2.5.3 Information State-Based

The Information State-Based DM [37] is intended to combine the strengths
of both State-Based and Agent-Based DMs. It models the dialogue with the
following components:

• An Information State consisting of data structures representing the dia-
logue components.
• A set of dialogue moves that trigger the update of the Information State.
• A set of update rules responsible for updating the Information State.
• An updating strategy responsible for selecting which update rule(s) to

use.

The central idea of information state based DM is that dialogue acts corre-
spond to dialogue moves and are used to update the information state. The
information state represents the history of everything happened in the dia-
logue, and the DM uses it to choose the next dialogue step based on an update
strategy. Several methods for the update strategy can be used. As an example
in [38] one based on logic programming is presented.

2.5.4 Statistical

The Statistical Dialogue Managers tend to be the state-of-the-art for SDSs.
Statistical DMs were initially based on the Markov Decision Process (MDP)
[39]. MDPs came into the Partially Observable Markov Decision Process
(POMDP) [40] where unknown user goals are modelled by an unknown prob-
abilistic distribution over user states that encodes the uncertainty about both
the ASR and the NLU. This approach is up-to-now considered as the state-
of-the-art in SDSs [41][42] even if the global optimisation shows significant
computational problems that have to be addressed when dealing with real
users.

End-to-end learning for task-oriented dialogue systems was also proposed in
[43] under an interactive pattern recognition approach that allowed dialogue
generation based on stochastic bi-automata generative models. Recently other
machine learning methods have been proposed to get optimal dialogue strate-
gies from data such as deep neural networks and reinforcement learning [44]
or hierarchical recurrent neural networks to generate open domain dialogues

2. Components of a Spoken Dialogue System 15

[45] and build end-to-end SDSs.

2.5.4.1 MDP and POMDP

Within the MDP and POMDP framework an SDS can be defined as follows:

An SDS is controlled by a DM [1] which generates a sequence of actions at
dependent upon the system state st. The goal of the DM is to change the
system from some initial uninformed state to a sufficiently informed state so
that the user’s information need can be satisfied [1]. The actions are primarily
questions to the user although they can also result in accesses to a database.
Questions to the user result in acoustic responses yt which are corrupted by
noise nt before being input to the Speech Understanding System (SUS). The
concepts ct output from the SUS cause the system memory to be updated leading
to a new dialogue state st+1. The relationship between the dialogue state and
the concepts output by the SUS is determined by the particular task. Also, each
step taken by the DM results in the generation of a reward rt+1.

User SUS
Task

Model

nt

st+1

Dialogue
Manager

rt+1

stat

ctyt

Figure 2.7: Block diagram of a Spoken Dialogue System proposed in [1].

The rewards generated at each dialogue step represent the system design ob-
jectives and the overall goal of the system design process is to maximise the
total reward R =

∑T
t=1 rt. Thus, the Dialogue Design is defined as an optimi-

sation problem [46]. Typically, each user interaction will incur a small negative
reward and successfully meeting the user’s information need will generate a
large positive reward [46]. The complete sequence of user interactions leading
from the initial state to the final state is called a dialogue transaction and the
primary goal is to satisfy the user’s requirements while minimizing the trans-
action time and possible additional design criteria to be incorporated into the
reward function. Within this framework, the joint distribution for the state,
action, speech and concept sequence can be decomposed as:

P (st+1, at,yt, ct|st,nt) = P (st+1|ct, st)P (at|st)P (yt|at, st)P (ct|yt, at, st,nt)
(2.1)

where

• P (st+1|ct, st) is the Task Model.

16 2. Spoken Dialogue Systems

• P (at|st) (DM) represents the dialogue control strategy: at each state of
the dialogue, what is the best action to take next?
• P (yt|at, st) (User) represents the response of each user to receiving a

specific query action in a given state. A model of the typical user or the
statistics of a real user population.

• P (ct|yt, at, st,nt) (SUS) represents the speech recognition and under-
standing processes. The interpretation of a user input yt can depend on
the query action, the dialogue state and the ambient noise conditions.

The SUS term can be expanded as:

P (c|y, a, s,n) ≈ maxwP (c|w, a, s)P (w|y, a, s,n) (2.2)

Term P (w|y, a, s,n) defines the conventional speech recognition problem which,
ignoring the noise term, can be written as:

P (w|y, a, s) =
P (y|w)P (w|a, s)

P (y|a, s)
(2.3)

where P (y|w) is the acoustic likelihood of the observed speech given the word
sequence w and P (w|a, s) is the prior probability of the word sequence w
given the action and dialogue state. The interesting aspect is the dependence
of P (w) of action a and state s. This is the crucial feature that makes complex
interactive SDS feasible. The language model used at each question/answer
step can be highly context dependent. For example, it can be tightly con-
strained to a specific set of possible input utterances or it can be a stochastic
context dependent n-gram.

The mapping of words to concepts as represented by P (c|y, a, s,n) is typically
done by mapping phrases to semantic tags or predicates. This mapping can be
done manually using explicit grammars or using n-grams. These approaches
can also be combined. Most current approaches identify the salient phrases to
extract and map manually. However, if the task is simple enough and there is
a large body of data to learn from, it’s possible to identify the salient phrases
automatically.

MDP

A MDP is a 4-tuple (S,A, T,R) where

• S is a finite set of states.
• A is a finite set of actions (alternatively As is the finite set of actions

available from state s).
• T is a transition function, i.e., is a description of each action’s effects in

each state. Deterministic actions: for each state and action we specify
a new state, T : S × A → S. Stochastic actions: for each state and
action we specify a probability distribution over next states, P (s′|s, a)
represents the distribution; T (s′, a, s) = P (st+1 = s′|at = a, st = s).

2. Components of a Spoken Dialogue System 17

• R is the reward (expected) received after transition to state s′ from state
s with transition probability P (s′|s, a). R : S × A → R. R(s′, a, s) =
E(rt+1|st+1 = s′, at = a, st = s)

From the point of view of the DM the components within the dotted box in
Figure 2.7 can be regarded as a single system driven by the input actions at
[1]. Two assumptions are necessary [46] to describe a dialogue system as a
MDP for which techniques exist for finding the optimal strategy.

• First assumption. It concerns assigning a probabilistic model to state
transitions. When an action at is taken at time t while in state st, the
MDP state changes to st+1 according to transition probabilities with the
following Markovian property:

P (st+1|st, st−1, . . . , s0, at, at−1, . . . , a0) = PT (st+1|st, at) (2.4)

• Second assumption. It concerns stochastic modelling rewards. If we
define the session reward as a sum of all the rewards experienced by the
system during a dialogue session (a path in the state space starting in
the initial state, and ending in the final state), the objective function for
MDP is the expected session reward:

R =

T∑
t=1

R(st+1, at, st) (2.5)

And the goal is usually to find a strategy (policy) which maximises this
function. For the infinite time horizon the expected cumulative reward∑∞

t=0 γ
tRat

(st, st+1) can include a discount factor γ that satisfies 0 ≤
γ ≤ 1 (typically close to 1). Discount γ ensures that rewards accrued
later are counted less than those accrued earlier. The discount factor
can be used to model processes that can be terminate at any time with
probability 1− γ.

The assumption underlying this model is that the user always complies with
the system, i.e. always provides, as a response, only the information he was
asked for, and his answer does not depend on any other information but the
one described by the current state and action pair (the Markovian property)
[46].

The core problem of MDP is to find an optimal strategy, i.e. policy, for the
decision maker: a function π that specifies the action π(s) that the decision
maker will choose when in state s. A policy is a mapping between states and
actions. Thus, in MDP and in order to decide which is the optimal action to
take in a given state, there is no need to consider other information except
that included in the state itself, e.g. no need to consider past states and
actions. Note that once a Markov decision process is combined with a policy
in this way, this fixes the action for each state and the resulting combination
behaves like a Markov chain. The policy matrix π(s, a) = P (at = a|st = s)
represents the dialogue management strategy and the reward represents the

18 2. Spoken Dialogue Systems

objective function. The goal is to choose a policy that will maximize the
reward. Because of the Markov property, the optimal policy for this particular
problem can indeed be written as a function of s only, as assumed above.

POMDP

A POMDP is defined as a tuple {S,A, T,R,O,Z, λ, b0} where:

• S is a set of states describing the agent’s world
• A is a set of actions that an agent may take
• T defines a transition probability P (s′|s, a)
• R defines the expected reward r(s, a)
• O is a set of observations the agent can receive about the world
• Z defines an observation probability P (o′|s′, a)
• λ is a geometric discount factor 0 ≤ λ ≤ 1
• b0 is an initial belief state b0(s)

Thus a POMDP is a MDP {S,A, T,R} plus {O,Z, λ, b0}. The POMDP oper-
ates as follows. At each time-step, the world is in some unobserved state s ∈ S.
Since s is not known exactly, a distribution over states is maintained called
”a belief state”, b, with initial belief state b0. We write b(s) to indicate the
probability of being in a particular state s. Based on b, the machine selects an
action a ∈ A, receives a reward r(s, a), and transitions to unobserved state s′,
where s′ depends only on s and a. The machine then receives and observation
o′ ∈ O which is dependent on s′ and a. At each time-step, the belief state
distribution b is updated as follows:

b′(s′) = kp(o′|s′, a)
∑
s∈S

p(s′|a, s)b(s) (2.6)

This equation consists of the observation function Z, transition matrix T and
current belief state b(s). At each time-step the agent receives reward rt. The
cumulative, infinite-horizon, discounted reward is called the return:

Θ =

∞∑
t=0

λtrt (2.7)

where λ is the geometric discount factor 0 ≤ λ ≤ 1. The goal of the machine
is to choose actions in such a way as to maximize the expected return E [Θ]
to construct a plan called policy which indicates which actions to take at each
turn (we assume the planner has a model of system dynamics, T , R and Z are
known or can be estimated from training data, i.e. model-based learning). A
policy can be viewed as a mapping from belief state to action π(s) ∈ A and an
optimal policy π∗(b) ∈ A is one which maximizes E [Θ].

2.5.4.2 Stochastic Finite State Bi-Automata

A SDS can be considered as an interactive pattern recognition system [47] in
which the system derives an hypothesis from some input stimulus, according
to some previously obtained model.

2. Components of a Spoken Dialogue System 19

In this framework, let h be the hypothesis derived by the DM of a SDS and
f the input stimulus, i.e. user’s feedback. The hypotheses of the dialogue
manager are usually called actions. These actions typically consist of machine
turns that include queries to a database to get the information required by the
user, questions to the user to complete the data the system needs to fulfill user
goals, strategies to recover recognition or understanding errors, turns providing
information to the user as well as greeting turns.

To simplify, we can ignore the user feedback except for the last hypothesis
h. Assuming the classical minimum-error criterion, the Baye’s decision rule
is simplified to maximize the posterior P (h|h′, f), and a best hypothesis ĥ is
obtained as follows:

ĥ = arg max
h∈H

P (h|h′, f) (2.8)

This maximisation procedure defines the way the dialogue manager of an SDS
chooses the best hypothesis in the space of hypotheses H, i.e. the best action
at each interaction step, given the previous hypothesis h and the user feedback
f .

In a SDS, the interpretation of the user feedback f can not be considered a
deterministic process. In fact the space of decoded feedbacks D is the output of
an ASR system. Thus a best hypothesis can be obtained as follows [47][48]:

ĥ = arg max
h∈H

∑
d∈D

P (h, d|h′, f) ' arg max
h∈H

max
d∈D

P (h|d, h′)P (f |d)P (d|h′) (2.9)

where f is the user turn, d is the decoding of the user turn, h is the hypothesis
or the output produced by the system and h′ is the history of the dialogue.
A suboptimal approach can be considered through a two step decoding: find
first an optimal user feedback d̂ and then, use d̂ to decode system hypothesis
ĥ as follows:

d̂ = arg max
d∈D

P (f |d)P (d|h′) (2.10)

ĥ ' arg max
h∈H

P (h|d̂, h′) (2.11)

On the other hand, the development of a complete SDS requires an online
learning to train the DM strategy. Therefore, a large amount of dialogues
is needed together with real users with different goals, expectations and be-
haviours. Thus, statical DMs are usually trained by simulated users [46].

A simulated user must provide the feedback f to the system at each interac-
tion step. The user feedback f depends on its previous feedback f ′ according
to some unknown distribution P (f |f ′, h), which represents the user response

20 2. Spoken Dialogue Systems

to the history of system hypotheses and user feedbacks. This distribution con-
siders the user behaviour and stands for the user model MU and can also be
defined considering now the user point of view. However, feedback f ′ produced
by the user in the previous interaction is not corrupted by any noisy channel,
such as an ASR system, before arriving to the user again. Thus, a determin-
istic decoding d : F → D maps each user turn signal into its corresponding
unique decoding d′ = d(f ′) before arriving to the user model. Consequently

the best decoded user feedback d̂ is the one that maximizes the posterior
PMU (d|d′, h),

d̂ = arg max
d∈D

P (d|d′, h) ' arg max
d∈D

PMU (d|d′, h) (2.12)

where d̂ is estimated using only the hypothesis produced by the system and
the feedback produced by the user in the previous interaction step according
to its user model. Equation 2.12 represents the way the user model decides
the feedback to be produced at each interaction step.

Both the DM hypothesis probability distribution P (h|d, h′) and the user feed-
back probability distribution P (d|h, d′) can be modelled with Stochastic Finite
State Bi-Automata.

Model Definition

We first summarise the basic definitions of bi-string and stochastic regular
bi-language provided in [49].

Definition 1. A bi-language is a set of strings over an extended
alphabet Γ, i.e., a set of strings of the form b = b1...bk such that
bi ∈ Γ for 0 ≤ i ≤ k. A string over an extended alphabet Γ will be
called bi-string.

Definition 2. Given two finite alphabets Σ and ∆, a stochastic bi-
language B is a probability distribution over Γ∗ where Γ ⊆ (Σ≤m×
∆≤n),m, n ≥ 0. Let z = z1...z|z| be a bi-string such that zi ∈ Γ
for 1 ≤ i ≤ |z|. If PrB(z) denotes the probability of the bi-string z
under the distribution B then

∑
z∈Γ∗ PrB(z) = 1.

Let Σ be the finite alphabet of semantic symbols provided by some speech
understanding system. Thus, d̃i = d1...d|d̃i| ∈ Σ≤m represents the decoding
of a user feedback f . Let now ∆ be the finite alphabet of dialogue acts that
compose each of the hypotheses h̃i = h1...h|h̃i| ∈ ∆≤n provided by the dialogue

manager. Let z be a bi-string over the extended alphabet Γ ⊆ Σ≤m × ∆≤n

such as z : z = z1...z|z|, zi = (d̃i, h̃i) where d̃i = d1...d|d̃i| ∈ Σ≤m and h̃i =

h1...h|h̃i| ∈ ∆≤n. Extended symbols (d̃i, h̃i) ∈ Γ have been obtained through

some alignment between Σ≤m and ∆≤n, i.e. between pairs of user feedbacks
decoding provided at a user turn and dialogue manager hypotheses provided
at the next machine turn.

2. Components of a Spoken Dialogue System 21

Let us now define a Dialogue Model DM as a Deterministic and Probabilistic
Finite-State BiAutomaton [49] DM = (Σ,∆,Γ, Q, δ, q0, Pf , P) where

• Σ and ∆ are two finite alphabets representing semantic symbols provided
by the user and dialogue acts provided by the DM respectively, Γ is an
extended alphabet such that Γ ⊆ (Σ ≤ m × ∆ ≤ n),m, n ≥ 0. ε
represents the empty symbol for both alphabets, i.e., ε ∈ Σ, ε ∈ ∆ and
(ε̃, ε̃ ∈ Γ). To simplify let ε̃ be ε.

• Q = QM ∪QU is a finite set of states labelled by bi-strings (d̃ : h̃) ∈ Γ.
The set QM includes machine states before a machine turn providing
an hypothesis and the set QU includes user states before providing a
feedback.

• δ ⊆ Q × Γ × Q is the union of two sets of transitions δ = δM ∪ δU as
follows:

– δM ⊆ QM×Γ×QU is a set of transitions of the form (q, (ε : ĥi), q
′)

where q ∈ QM, q′ ∈ QU and (ε : ĥi) ∈ Γ.

– δU ⊆ QU ×Γ×QM is a set of transitions of the form (q, (d̂i : ε), q′)

where q ∈ QU , q′ ∈ QM and (d̂i : ε) ∈ Γ.

• q0 ∈ QM is the unique initial state and it’s labelled as (ε : ε).
• Pf : Q→ [0, 1] is the final-state probability distribution.
• P : δ → [0, 1] defines transition probability distributions (P (q, b, q′) ≡
Pr(q′, b|q)) for b ∈ Γ and q, q′ ∈ Q) such that:

Pf (q) +
∑

b∈Γ,q′∈Q

P (q, b, q′) = 1 ∀q ∈ Q (2.13)

where a transition (q, b, q′) is completely defined by q and b. Thus,
∀q ∈ Q,∀b ∈ Γ, |q′ : (q, b, q′)| ≤ 1.

Let z be a bi-string over the extended alphabet Γ ⊆ Σ≤m × ∆≤n such as
z : z = z1...z|z| = (d̂i : ĥi). z represents a dialogue when zi is of the form

zi = (ε : hi) for machine turns mi and zi = (d̂i : ε) for user turns ui. Both,
user and machine turns can also be null bi-strings of the form (ε : ε). Let now
θ = q0, z1, q

′
1, z2, q2, ..., q

′
|z|−1, z|z|, q|z|, qi ∈ QM, q

′
i ∈ QU , be a path for z in

DM. The probability of generating θ is:

PrDM(θ) =

(|z|∏
j=1

P (qj−1, zj , q
′
j)

)
· Pf (q|z|) (2.14)

DM is unambiguous. Then, a given bi-string z can only be generated by DM
through a unique valid path θ(z). Thus, the probability of generating z with
DM is PrDM(z) = PrDM(θ(z)).

22 2. Spoken Dialogue Systems

2.5.4.3 Neural Networks

Initially the neural networks were used together with the POMDP in an ap-
proach in which the neural networks were used to track the dialogue state
represented by the Markov process. A far more ambitious approach is the
end2end approach, in which a neural network is in charge of processing the
input (in text) produced by the user to generate the output, i.e. the response
phrase (also in text) of the system.

The architecture of these end2end systems is based on the seq2seq machine
translation network proposed by Google [50]. This network was designed to
improve the Google Translate service, and allows to produce a variable length
output sequence from a variable length input sequence. Its structure consists
of an encoder and a decoder. Both the encoder and the decoder are recurrent
neural networks, usually formed from Long Short Term Memory (LSTM) cells.
The encoder provides the abstraction of the input sequence, which the encoder
takes as input to produce the output sequence.

Several versions have been created from the original seq2seq architecture, be-
ing one of the most commonly used the seq2seq architecture with attention
mechanisms [51], which is inspired by how humans perceive the environment.
The general idea is to pay attention only to the most informative or relevant
parts of the input sequence.

The training process of these seq2seq networks usually consists of two phases.
The usual thing is to start with a supervised classification phase from a di-
alogue corpus [52], where the network is trained so that, given a turn in the
corpus, it generates the next turn in the dialogue. In a second phase an-
other training is usually carried out through reinforcement learning, where the
behaviour of the network is adapted to improve, for example, semantic coher-
ence in sentences or the introduction of new information with respect to the
previous turns.

End2end architectures have demonstrated a great capacity for abstraction and
understanding of dialogue. Even so, the challenge of adapting these systems
to dialogue problems with user-oriented objectives remains difficult to ad-
dress. There are approximations such as [53][54], which proposes a learning
adaptation by reinforcement that allows interaction learning to address this
challenge.

2.6 Other Components

The task of building and emulating dialogues with persons is a very complex
task. So far we have seen the essential components that are part of a pri-
mary SDS. But systems tend to be increasingly complex and to emulate more
precisely the interaction with users. That is achieved by adding new func-
tionalities to the systems and, therefore, new components to manage these
functionalities. Examples of these components could be: Users’ gesture de-

3. Examples of Spoken Dialogue Systems 23

tectors [55], Emotion Classifiers [56] or Topic Classifiers for Customer Service
Dialogue Systems [57].

3 Examples of Spoken Dialogue Systems

Following is a summary of several existing SDSs and speech-based applica-
tions:

• Let’s Go! a project working in the domain of bus information, provid-
ing information such as schedules and route information for the city of
Pittsburgh’s Port Authority Transit (PAT) buses [58].

• SimSensei Kiosk, a virtual human dialogue system that conducts in-
terviews related to psychological distress conditions such as depression,
anxiety, and post-traumatic stress disorder (PTSD) [59].

• JUPITER [26] was one of the first SDS released to the public. It’s a
conversational interface that allows users to obtain worldwide weather
forecast information over the telephone using spoken dialogue.

• The Philips automatic train timetable information system [60], a system
for train schedules information over the phone that provides actual con-
nections between 1200 German cities in which the caller can talk to it in
free, natural, and fluent speech.

• Speak&Eat, San Francisco. Is a conversational application to have a
natural conversation to find restaurants in San Francisco, developed by
the European FP7 project “Parlance” [61][62].

• The Alex Public Transit Information System is an experimental Czech
spoken dialogue system providing information about all kinds of public
transit in the Czech Republic [63].

• CMU Communicator [28] acts as a travel planning agent and can arrange
multi-leg itineraries and make hotel and car reservations.

• TOOT [64] gives spoken access to train schedules.
• Presenter [65] provides a continuous listening command and control in-

terface to PowerPoint presentations.
• WITAS [66] provides a spoken language interface to an autonomous

robotic helicopter.
• AdApt [67] provides real-estate information in the Stockholm area.
• TRIPS [68] is a spoken-language enabled planning assistant.
• Hound [69], Siri [70], Cortana [71] , Alexa [72] and Google Now [73]

are applications for general information retrieval such as looking up the
weather, placing phone calls, sending text messages, finding hotel reser-
vations, navigating to an address, etc.

3
Frameworks and Toolkits
This chapter summarises a set of existing frameworks for the development of
SDSs. That is an important task because depending on the specifications of
the system we want to develop we can opt for the use of one framework or
another. Among these specifications to take into account the platform and
Operating System (OS) on which the framework works or the set of compo-
nents it provides. Following sections summarise the main features of each of
the frameworks. In Table 3.1 is shown a summary of them.

1 PC under Windows OS

Olympus

Olympus [74] is a complete framework for building SDS developed at Carnegie
Mellon University (CMU) based on works by Alex Rudnicky, leading investi-
gator at CMU and director of the Carnegie Mellon Speech Consortium, devel-
oped during late 2000. It incorporates all the necessary modules for building
SDSs:

• The DM is called RavenClaw [75] and is based on AGENDA [29] that
supports mixed-initiative dialogues. The dialogues are represented by
a tree which nodes represent the hierarchical structure of the dialogue,
and its depth levels encapsulate dialogue actions (questions, answers,
databases access, etc.) and by an Agenda consisting of a list of agents
that via a dispatcher operates on the dialogue tree. It can be seen as a
plan based architecture.

• For ASR, CMU SPHINX speech recogniser [76] is used.
• NLU is achieved by Phoenix a semantic parser based on Context Free

Grammars (CFG).
• Responsible of NLG is Rosetta a template based system written in Perl.

Language generation is specified by a form, a sub-form and attribute
values that are substituted into the templates.

• TTS module is called Kalliope and can use Festival, SAPI, CMU’s Flite
and CEPSTRAL Swift speech synthesisers.

• Communication between modules is done via Galaxy Communicator ar-
chitecture [77].

26 3. Frameworks and Toolkits

Anyway, it’s possible to develop custom modules using the libraries provided
by the distribution. The primary programming language is C/C++, but it’s
also possible to develop modules using Java or scripting languages like Perl.
It’s under modified BSD Open Source license. Last stable version is 2.6.1,
dated 05/2015 and is still maintained.

Flipper MMDS

Flipper Multi-Modal Dialogue System (FlipperMMDS) [78] is a framework
that makes it easier to develop fully featured Dialogue Systems. It’s an ad-
dition to the Flipper DM. It has been drawn up by Siewart van Wingerden
and Jelte van Waterschoot at the Humand Media Interaction group at the
University of Twente. Flipper is an Information State DM originally devel-
oped by Mark ter Maat. Using XML-templates, the preconditions, effects
and behaviours of dialogue rules can be described. FlipperMMDS last up-
dated version is from 10/08/2016 and Flipper last updated version is from
27/10/2016.

IrisTK

IrisTK [79] is a Java-based framework for developing multi-modal dialogue
systems.

According to developers website it provides:

• A framework for defining event-based dialogue systems with modules
running asynchronously.
• A statechart-based XML formalism for representing the dialogue flow

(similar to SCXML).
• Generic interfaces for speech recognition (ASR) and speech synthesis

(TTS) for easy deployment of these in dialogue systems.
• A set of modules for Windows ASR & TTS, Microsoft Kinect, Nuance

Recognizer 9, Nuance NDEV Cloud-based ASR (Dragon), Facial anima-
tion, The Furhat robot head.
• Support for distributed systems (over processes and/or machines).
• Tentative support for incremental processing.
• Logging of events and audio.

IrisTK is released as open source under GNU General Public License (GPL)
license. Last version update is from 18/09/2015.

CSLU Toolkit

CSLU toolkit [80] was developed at Center for Spoken Language Understand-
ing (CSLU) OGI Campus at Oregon Health & Science University (OGI/OHSU)
by John-Paul Hosom. It provides a framework and tools for interactive lan-
guage systems development. These systems can incorporate ASR, NLU, TTS
and facial animation technologies.

1. PC under Windows OS 27

The core of the toolkit is written in C, but it offers a Tcl-based environment to
develop spoken language systems and tools to perform related tasks (extracting
acoustic features, training acoustic models, etc.). It also incorporates a tool
called Rapid Application Developer (RAD) that graphically enables system
development.

The DM uses a finite state dialogue management approach. To develop a
system the developer needs to define a set of states and the set of words or
sentences to trigger each state transition. On the other hand, the system pro-
vides a set of templates to handle events not reflected in the dialogue graph.

The license is limited to non-commercial use, where noncommercial use relates
only to educational, research, personal or evaluation purposes. Last version
update is from 14/02/2007 and, although it’s possible to download it, seems
to be unattended.

AT&T Statistical Dialogue Toolkit

AT&T Statistical Dialogue Toolkit (ASDT) [81] is a statistical toolkit for build-
ing SDS. It maintains a distribution over multiple dialogue states. The core is
a belief update engine that keeps a distribution over application-specific ob-
jects. To develop an application it’s necessary to create these objects through
the implementation of a set of methods for each object which the engine calls
to update the distribution. The objects represent a partition of user goals.
The updating method used by the engine is described in [82].

The distribution of ASDT provides an extensive set of examples and an end-
to-end system. It’s possible to use any speech recognition and text-to-speech
engines, or use the provided by the AT&T Speech Mash-ups platform. The
toolkit is written in Python. The license is limited to non-commercial use.
Last version update is from 01/2010.

Ariadne

Ariadne is an SDS developed by Dr Matthias Denecke at the Interactive Sys-
tem Laboratories at Carnegie Mellon University in USA and University of
Karlsruhe in Germany.

The Ariadne distribution contains all the required components for developing
a full SDS in Windows with SAPI 5.1. It requires Visual Studio C++ 6 for
compilation and execution.

The architecture is a layered microkernel that allows replacing almost every
component other than the main dialogue processing component. Last version
update is from 06/09/2004. It’s unattended and is not possible to download
it from developer’s site.

28 3. Frameworks and Toolkits

2 PC under Unix-like OS

vAssist (ActiveMQ based)

In [83] is presented an open source framework, vAssist, for the implementation
of SDSs providing a set of modules and tools. Modules communication is done
via ActiveMQ [84], a message queuing protocol available for Java, C and other
programming languages and which architecture is built around a broker whose
task is to connect the registered clients, collect messages and distribute them
to receivers of topics and queues. Development of new modules is possible
just using the ActiveMQ API and the internal framework messaging protocol.
Last version update is from 02/2015.

Systems using the vAssist framework and the ActiveMQ message queuing
protocol are presented in Chapter 6.

Alex Dialogue Systems Framework

Alex Dialogue Systems Framework [85] is a framework developed by the dia-
logue systems group at UFAL, the Institute of Formal and Applied Linguistics,
Faculty of Mathematics and Physics, Charles University in Prague, the Czech
Republic, with the purpose of to facilitate research into and development of
SDSs.

It has the following features implemented:

• VOIP using PJSIP 2.1 with some modifications.
• ASR using GoogleASR or KALDI.
• VAD using Gaussian Mixture Models or Feed-Forward Neural Networks.
• NLU using a set of logistic regression classifiers for detecting dialogue

acts.
• DM using probabilistic discriminative dialogue state tracking and hand-

crafted policies.
• NLG using template based generation possibly with efficient inflexion

into the correct surface form for morphologically rich languages.
• TTS using Flite, VoiceRSS and SpeechTech.

It uses Python as the programming language. Last version update is from
23/06/2016.

3 PC under Windows or Unix-like OS

EDECAN

EDECAN [86] is a communication interface for development of distributed
applications, based on TCP/IP protocols and XML messages interchange. It
has been developed by the Communication Technologies Group (GTC group)
of the University of Zaragoza. EDECAN architecture aims to provide the

3. PC under Windows or Unix-like OS 29

developer with a multiplatform and easy to use interface. It’s possible to add
any service just developing a dynamic library and providing its configuration
files. Although it’s feasible to develop any distributed application, it was
initially drawn up with SDSs implementation in mind.

It’s written in C programming language. The technical specifications of the
EDECAN framework can be found in Appendix A. Chapters 4 and 5 present
some systems built using this framework.

OpenDial

OpenDial [87] is a toolkit for developing domain-independent spoken dialogue
systems written in Java. It combines logical and statistical approaches to
model dialogues. The domain models are represented by probabilistic rules,
and unknown parameters can be estimated using reinforcement learning tech-
niques. The architecture is designed as a blackboard in which all modules are
connected to a central information hub which represents the dialogue state.

The toolkit provides a set of plugins for integrating ASR, NLU, TTS and other
components. Other custom modules also can be implemented. Last version
update is from 05/04/2016.

Trindikit

Trindikit [88] is a toolkit for building and experimenting with DMs based on
information states. It was developed at Dialogue Technology Lab at the Cen-
tre for Language Technology at the University of Gothenburg by D. Traum
and S. Larsson for TRINDI [89] and SIRIDUS [90] projects and then updated
for TALK [91] project. TRINDI (Task Oriented Instructional Dialogue) is an
European project developed by the Dialogue Technology Lab at the Centre for
Language Technology at the University of Gothenburg, the Human Communi-
cation Research Centre (at the University of Edinburgh), the Computational
Linguistics Department at the Universität des Sarrlandes, SRI international
in Cambridge and by Xerox Research Centre Europe. Trindikit is focused
on dialogues between humans and machines that enable the human to make
choices in the performance of a certain task, i.e. task-oriented instructional di-
alogues. SIRIDUS (Specification, Interaction and Reconfiguration in Dialogue
Understanding Systems) is an FP5 project aimed at developing computational
tools to support the development of robust, functional and user-friendly dia-
logue systems. It was developed by the Department of Linguistics at Goteborg
University, Telefónica I&D, Department of Computer Linguistics at the Uni-
versity of Saarland and the Department of English Language at the University
of Sevilla.

Although it’s possible to develop custom modules the toolkit provides some
useful ones like ASR, TTS, NLU, NLG and DM.

Main components of a system are:

• The Total Information State (TIS): consisting of the Information State

30 3. Frameworks and Toolkits

(IS) variable, the module interface variables and the resource interface
variables.
• Modules with their behaviour defined by module algorithms.
• The Dialogue Move Engine (DME) which is responsible for updating the

IS and selecting actions to be performed by the system.
• A controller responsible of intercommunicating the rest of the modules.
• External resources, such as databases, etc.

The IS is an object which type is defined by the developer, with its variables
and properties, and determines the conditions and operations that can be
performed on it. It can be acceded and updated by all the modules in the
system.

When implementing a system, the developer must define the IS, modules with
their respective TIS update rules and algorithms and a controller with its
control algorithm.

Trindikit is under GPL but requires the use of SICStus Prolog that is un-
der proprietary license. Last updated version is from 03/10/2007 but is still
maintained nowadays.

DIPPER

DIPPER (Dialogue Prototyping Equipment & Resources) is an initiative of
the Language Technology Group at The University of Edinburgh and CSLI
Stanford [92]. It’s an architecture to develop dialogue systems based on infor-
mation states and plan dialogue management approaches and integrated into
an Open Agent Architecture (OAA). It takes some of the core ideas of Trindikit
but simplifying them. On the other hand, uses Java as programming language
and is more close-fitting to OAA than Trindikit. DIPPER is not a dialogue
system itself but provides interfaces to ASR (Nuance), TTS (Festival), NLG
and automated reasoning.

Because of using an interpreted language is OS independent. It’s under GPL
license, and last updated version is from 2004.

Midiki

Midiki [93] is a toolkit developed by MITRE Corporation, a not-for-profit
company that operates multiple federally funded research and development
centres (FFRDCs) [94]. As Trindikit it’s based on information states, in fact,
Midiki is based on Trindikit but with the main difference of being written in
Java and therefore there’s no need for specialised languages for writing rules.

Midiki is just a DM and external components must be developed to create
dialogue systems. Some modules are supplied in the distribution but are just
test modules, anyway, it’s possible to develop modules using Galaxy Commu-
nicator [77] and OAA.

The dialogue management algorithm is rule-based. Each rule evaluates the

4. Other Platforms 31

information state and if all conditions are satisfied associated actions are exe-
cuted and information state and environment updated. The algorithm resides
in a process called DME that operates using two different algorithms, the first
that updates the information state with information provided by users and a
second one that selects the actions to be performed by the system.

It’s OS independent because of using an interpreted language and is under
an Open Source license. Last updated version is from 18/08/2005 and is not
maintained anymore.

Jaspis

Jaspis [95] is a framework for user and environment adaptive dialogue systems
developed at the University of Tampere in Finland by Markku Turunen. It’s
designed with multilingual applications in mind. The architecture is based
on the use of agents which shares the dialogue information, these agents are
informed of information changes via triggers. It seems to be outdated and is
not possible to download it.

Daisie

Daisie (Diaspace’s Adaptative Information State Interaction Executive) [96] is
a dialogue management framework based on the use of agents and information
states. It has the characteristic of not having a DM as a main module. Instead,
the logic of the DM is coded as a library of functions that can be invoked from
the application.

4 Other Platforms

Houndify Developer Platform

Houndify [97], developed by SoundHound Inc., is a platform for developing
speech-based applications.

According to developer’s website:

• Understands text and voice input.
• Provides large-scale, fast and accurate speech recognition.
• Speech recognition and natural language understanding are performed

simultaneously in real time, achieving very high speeds and accuracy.
• Understands queries with compound criteria and uses context to enable

conversational interactions.
• Understands complex and compound queries.

It’s possible to program in Android, iOS, C++, Web, Python, Java, C Sharp
programming languages and runs on iOS, Android, Windows, Unix, Raspberry
Pi, and others.

32 3. Frameworks and Toolkits

ATOM Spoken Dialogue SDK

Atom SDK is a Software Development Kit (SDK) for interactive spoken dia-
logue systems development developed by Agilingua, LLC [98] and it’s a pro-
prietary system.

According to developer’s website, the system has next features:

• Opened to any speech recogniser and TTS that provides APIs.
• The dialogue engine can communicate with external software compo-

nents of various applications, virtually any application.
• Works with most major operating systems, including Windows Vista,

7 and 8, Windows Phone, Mac OS X, iOS, Android, Windows Mobile,
Windows CE and QNX.
• Infrastructure is flexible, open and scalable, making it easy to develop,

extend, update and maintain.
• Can be deployed embedded or in the cloud.

Alexa Skills Kit

Alexa Skills Kit [99], is a toolkit for providing Alexa, the Amazon’s speech
interface, with new skills. It consists of a collection of self-service APIs, tools,
documentation and code samples that make fast and easy adding skills to
Alexa.

According to developer’s website, for adding new skills to Alexa, it’s neces-
sary:

• An account on the developer portal to create a configuration for the new
ability that includes the information the Alexa service needs to route
requests to your service.
• The ability to develop and deploy a cloud-based service to an Internet-

accessible endpoint. The service processes user intents and returns re-
sponses to the user.
• A development environment appropriate for the language to use. Possi-

ble languages are Node.js, Java or any language suitable for web services.

4. Other Platforms 33

P
ro

g
ra

m
m

in
g

L
a
n

g
u

a
g
e

O
S

D
M

A
p

p
ro

a
ch

L
ic

e
n

se
O

ly
m

p
u

s
C

+
+

W
in

d
ow

s
A

ge
n
ts

O
p

en
S

ou
rc

e
F

li
p

p
er

M
M

D
S

J
av

a
W

in
d

ow
s

In
fo

rm
at

io
n

S
ta

te
s

Ir
is

T
K

J
av

a
W

in
d

ow
s

F
in

it
e

S
ta

te
O

p
en

S
ou

rc
e

C
S

L
U

T
o
ol

k
it

T
C

L
/
T

K
,

C
W

in
d

ow
s

F
in

it
e

S
ta

te
N

o
n

C
om

m
er

ci
a
l

A
T

&
T

S
D

T
P

y
th

o
n

W
in

d
ow

s
S

ta
ti

st
ic

a
l

N
on

C
o
m

m
er

ti
al

A
ri

ad
n

e
C

+
+

,
J
av

a
W

in
d

ow
s

A
ge

n
ts

O
p

en
S

ou
rc

e
v
A

ss
is

t
(A

ct
iv

eM
Q

B
a
se

d
)

J
av

a
,

C
U

N
IX

-l
ik

e
A

ge
n
ts

O
p

en
S

ou
rc

e
A

le
x

D
ia

lo
gu

e
S

y
st

em
s

F
ra

m
ew

or
k

P
y
th

o
n

U
N

IX
-l

ik
e

S
ta

ti
st

ic
a
l

O
p

en
S

ou
rc

e
E

D
E

C
A

N
C

P
C

M
u

lt
iO

S
O

p
en

D
ia

l
J
av

a
P

C
M

u
lt

iO
S

S
ta

ti
st

ic
a
l

a
n

d
L

og
ic

al
O

p
en

S
ou

rc
e

T
ri

n
d

ik
it

P
ro

lo
g,

P
y
th

o
n

P
C

M
u

lt
iO

S
In

fo
rm

at
io

n
S

ta
te

s
O

p
en

S
ou

rc
e

D
IP

P
E

R
C

+
+

,
J
av

a,
P

ro
lo

g
P

C
M

u
lt

iO
S

In
fo

rm
at

io
n

S
ta

te
s

O
p

en
S

ou
rc

e
M

id
ik

i
J
av

a
P

C
M

u
lt

iO
S

In
fo

rm
at

io
n

S
ta

te
s

O
p

en
S

ou
rc

e
J
a
sp

is
J
av

a
P

C
M

u
lt

iO
S

A
ge

n
ts

O
p

en
S

ou
rc

e
D

a
is

ie
J
av

a
P

C
M

u
lt

iO
S

A
g
en

ts
a
n

d
In

fo
rm

a
ti

o
n

S
ta

te
s

O
p

en
S

ou
rc

e
H

o
u

n
d

if
y

A
n

d
ro

id
,

iO
S

,
C

+
+

,
W

eb
,

P
y
th

on
,

J
av

a
,

C
S

h
a
rp

M
u

lt
iO

S
A

T
O

M
S

p
ok

en
D

ia
lo

g
S

D
K

M
u

lt
iO

S
P

ro
p

ri
et

ar
y

A
le

x
a

S
k
il

ls
K

it
J
av

aS
cr

ip
t,

J
av

a,
O

th
er

s
(W

eb
S

er
v
ic

es
F

ri
en

d
ly

)
M

u
lt

iO
S

O
p

en
S

ou
rc

e

T
a
b
le

3
.1
:

S
u
m

m
a
ry

o
f

S
D

S
fr

a
m

ew
o
rk

s
a
n
d

to
o
lk

it
s.

4
Preliminary Systems

1 Introduction

This chapter shows the first systems developed by the author of this thesis.
Section 2 presents a system aimed to give weather forecast information and
news obtained from several digital publications. It was developed in collab-
oration with a company with the goal of having a prototype for a functional
dialogue system that would serve as a sample of what these systems are capa-
ble of doing. Just the prototype was needed, and so no formal evaluation was
carried out. The system was built under EDECAN framework [86], and the
required components developed from scratch.

In Section 3 is presented an architecture the author developed with the idea
of having a framework in which SDSs can be implemented easily. The archi-
tecture is focused on the development of applications in which users interact
through portable devices such as smartphones and tablets. The section also
presents a weather forecast retrieval application developed using this architec-
ture. As in the previous system, no formal evaluation was carried out as it
was just an initial approach for building a full framework for SDSs and, as will
be shown, some aspects had to be improved.

As has already been said, one of the objectives of this thesis is that it serves
as a guide to other developers for the implementation of dialogue systems.
Therefore, details about installation and configuration of the different compo-
nents involved in the systems are given. The non-interested reader can ignore
them.

2 INMA

The INMA (Conversational interface for e-administration) system consists of
a stand that allows getting current and past news published on the Internet by
several newspapers and sites, and also to get information about the weather,
initially of Spanish cities, although it can be easily extended to other cities
around the world. The final goal is to provide with valuable information
and entertainment to people queuing or just passing around. The system
was developed along with the University of Zaragoza, under contract for the

36 4. Preliminary Systems

Softec Ibermática enterprise and was funded by the Basque Government and
GAITEK. Figure 4.1 shows an image of the system.

Figure 4.1: INMA: Final system.

This section describes the system architecture, detailing its configuration and
giving development details for the different components that are part of the
SDS.

2.1 Architecture

The system was implemented under the EDECAN [86] framework. The archi-
tecture of the system is shown in Figure 4.2. As can be seen, it does not follow
the usual architecture of the SDSs, that is, having TTS, ASR, Semantic Parser
(SP), NLG and DM as independent modules. In this case, we have the TTS
and ASR as independent modules, but the SP, NLG and DM are integrated
into a single module which has been called Comprehension. Additionally, the
system has a Data Backend module and a User Interface module. The Data
Backend module is responsible for getting the information required by the user
from the internet. On the other hand, the User Interface is responsible for
showing the obtained information to the user. Additionally, this last module
is responsible for detecting users’ presence to init a dialogue. That is done via
a face recogniser integrated on it.

The input and output commands (messages) for each of the modules are the
ones shown in Table 4.1. The flow of these messages during the execution of
the system is as follows:

When the User Interface detects the presence of a user via the face recogniser,
it generates a tts run message with a welcome sentence embedded directed to
the TTS. The TTS synthesises the sentence and sends an asr run message
to activate the ASR. Once the ASR has got the recognition hypothesis from
user’s audio input sends it to the Comprehension module with an asr end
message.

The Comprehension module analyses the received recognition hypothesis, and

2. INMA 37

EDECAN
Communication

Manager

ASR

User
Interface

Comprehension

TTS

Data
Backend

Figure 4.2: Architecture of the INMA SDS System.

INPUT OUTPUT

ASR asr run
activate voice signal

deactivate voice signal
asr end (utterance)

TTS tts run (text)
asr run

set avatar speak
set avatar no speak

Data Backend
action news (newspaperID)

action meteo (cityID)
view news (html data)
view meteo (html data)

Comprehension asr end (utterance)

reinit
action news (newspaperID)

action meteo (cityID)
asr run

tts run (text)

User Interface

view news (html data)
view meteo (html data)

activate voice signal
deactivate voice signal

reinit
set avatar speak

set avatar no speak

tts run (text)

Table 4.1: Set of commands (and arguments) for the different modules in INMA
SDS.

38 4. Preliminary Systems

if it determines that all the necessary information for a request is present
(taking into account both the actual hypothesis and the dialogue history), it
sends either an action news or an action meteo message to the Data Backend
to obtain the requested information. Once the information has been obtained,
the Data Backend module sends either a view news or a view meteo message
that the User Interface receives to show the information to the user. Once the
information has been showed to the user, the User Interface sends a tts run
message to the TTS to ask the user if a new request is required, repeating
the TTS, ASR and Comprehension path. At this point, if the user decides to
finish the dialogue the Comprehension module will send a reinit message to
the User Interface module to reinit all the components. In the other case, it
will send an asr run to retrieve the new user’s request.

On the other hand, at the point of the Comprehension module determining if
all the necessary information for the user’s request is available, if it determines
that it isn’t, a tts run message is sent to the TTS to ask the user for the missing
information, repeating again the TTS, ASR and Comprehension path.

Finally, in addition, both the ASR and the TTS send other messages to the
User Interface to modify the information presented to the user. The ASR
sends activate voice signal and deactivate voice signal messages that are used
to inform the user when the ASR is active. On the other hand, the TTS sends
set avatar speak and set avatar no speak messages to activate or deactivate
the motion of the avatar present in the user interface. An image of the user
interface is shown in Figure 4.3.

2.2 Configuring and Launching the System

In order to make the system work it will be necessary, on the one hand, run
the services corresponding to the different modules of the system, and on the
other hand, run the communication manager. Here’s how to do it.

Services

Running the system services is done via the super server with the following
command:

super server ini increment end

where the parameters specify the listening ports range as follows:

• ini: Initial port
• increment: Port increment
• end: Final port

For our system only one listening port has been used:

super server 6611 1 6611

2. INMA 39

The super server is responsible for launching the services. It reads the config
files/ services/ services.xml file in which the configuration files corresponding
to each of the services are listed, for our system the one shown in Listing
4.1. These files specify, on the one hand, the dynamic library containing
the corresponding service implementation, and on the other hand, the input
commands each service reacts to. An example of such a file is shown in Listing
4.2. Once the super server has read these files, it launches an instance of each
of the services listed. Appendix B shows the configuration files for all the
modules of the system.

Once the services have been launched the super server keeps waiting for con-
nection requests from the communications manager. Once the connection
between the communication manager and the super server is established, the
message exchange can begin.

<?xml version=”1.0”?>
<services>

<tts>config files/services/tts.xml</tts>
<asr>config files/services/asr.xml</asr>
<ui>config files/services/ui.xml</ui>
<comprehension>config files/services/comprehension.xml</comprehension>
<databackend>config files/services/databackend.xml</databackend>

</services>

Listing 4.1: INMA services configuration file.

<?xml version=”1.0”?>
<service name=”asr”>

<so>libASR.so</so>
<command name=”conexion”>

<function>entrada</function>
</command>
<command name=”desconexion”>

<function>salida</function>
</command>
<command name=”desconexion caidagestor”>

<function>salida caidagestor</function>
</command>
<command name=”asr run”>

<function>asr run</function>
</command>

</service>

Listing 4.2: INMA ASR EDECAN module configuration file.

Communication Manager

The communication manager is launched with the following command:

comm manager controller port DNS port DNS ip config file

The only parameter we are interested in is the last one that corresponds to a
configuration file that will have to be provided to the communication manager.

40 4. Preliminary Systems

For the rest of parameters, we will put any value since they correspond with
elements of the EDECAN framework that we will not use.

So, for our system:

comm manager 6633 6644 localhost config files/router/manager.xml

Regarding the configuration file, it details such things as the different services
that make up the system, its location, initialisation parameters to provide
them when the connection is established or a table indicating possible message
routing between services. Appendix B details the complete file used in the
system, and Listing 4.3 shows a reduced version of this one on which the main
components are explained.

As can be seen, this file consists of two main sections, a <services> section
and a <routing table> section. The <services> section specifies the different
services that make up the system together with some configuration parameters.
From these parameters, port and address are used to specify the location of
the corresponding service and configuration is used to include parameters that
will be provided to the corresponding service when establishing a connection
with it.

On the other hand, the routing table section is used to specify the possible
paths for the messages. Looking, for example, at the controller section we
see that it’s composed of the name of the different services within the system
which have associated a one or a zero. A one means that the controller can
send messages to the corresponding module and a zero that can not. The
EDECAN framework allows dynamic routing to be used, including the name
of the destination service in the message structure, although in this system
it has been chosen to use only static routing, which just will use the routing
scheme defined in the configuration file.

2.3 Modules Implementation Details

2.3.1 Automatic Speech Recognition and Text to Speech

For the ASR, the speech recogniser developed by the group Pattern Recognition
and Speech Technology of the Department of Electricity and Electronics of the
Faculty of Science and Technology of the University of the Basque Country
was used. It’s based on the Viterbi algorithm for decoding and HMM for
acoustic modelling. It was ported as an EDECAN module.

In addition to an asr end output command emitted when the speech recogni-
tion process has finished, two output commands were added, activate voice sig-
nal and deactivate voice signal. The activate voice command is emitted just
before the ASR starts the audio capture, and the deactivate voice signal just
after the audio capture has finished. These commands are directed to the User
Interface and are used to make the user know when to speak via an indicator
included in the user interface.

2. INMA 41

<?xml version=”1.0”?>
<manager>

<services>
<service name=”asr”>

<port>6611</port>
<address>localhost</address>
<location>LAB</location>
<configuration>NONE</configuration>
<service type>asr</service type>

</service>

<service name=”tts”>
<port>6611</port>
<address>localhost</address>
<location>LAB</location>
<configuration>NONE</configuration>
<service type>tts</service type>

</service>

<routing table>
<tts>

<tts>0</tts>
<asr>1</asr>

</tts>

<asr>
<tts>0</tts>
<asr>0</asr>

</asr>
</routing table>

</manager>

Listing 4.3: Reduced configuration file for the communication manager in the
INMA SDS System.

As for the TTS, Nuance’s Loquendo TTS [100] was used. It’s a multi-lingual
TTS with a broad set of voices that also allows the creation of custom ones.
The integration into the architecture was done using the API provided by the
Loquendo software.

2.3.2 User Interface

The User Interface module is the responsible for showing the information re-
quested to the user. Additionally, it also shows some extra information to
make the system more user-friendly. Figure 4.3 shows a picture of the User
Interface.

This extra information includes an animation to indicate to the user when the
system is capturing audio and an avatar that is animated when the system is
speaking.

Additionally, this module has a face recognition system. This feature is used

42 4. Preliminary Systems

Figure 4.3: INMA: User Interface.

to detect users’ presence so that once a user has been detected the interaction
starts.

2.3.3 Data Backend

The purpose of this module is, once a user request has finished, retrieve the
required data from the internet. It receives action meteo and action news
messages depending on the type of the user’s request.

For the case of receiving an action meteo message, the module will download
the data from The Weather Channel web site. For that, it will extract the
name of the city of which the user wants to know the weather from the received
message, and with the city name will perform an HTTP GET request to
obtain the identifying code needed for retrieving the data. Listing 4.4 shows
and example of this request. This request returns, as a result, an XML file
with all the possible matching cities and taking into account that the system
was developed for Spanish cities, the module extracts the code for the city
containing ”Spain”.

Once the city code has been obtained, the next step is to obtain the weather
data. For that, again, an HTTP GET request is done. An example is shown
in Listing 4.5. This request returns an XML file with the corresponding data.
This file is then transformed by the module to an HTML text string using an
XSLT template. Finally, the data are sent to the User Interface to be shown
to the user via a view meteo message.

For the case of receiving an action news message, the module will extract the
name of the newspaper required by the user from the message, and from a

2. INMA 43

REQUEST:
GET /weather/search/search?where=Madrid HTTP/1.1
Host: xoap.weather.com

RESPONSE:
HTTP/1.1 200 OK
Content−Type: text/xml; charset=utf−8
Content−Length: length

<search ver=”3.0”>
<loc id=”SPXX0050” type=”1”>Madrid, M, Spain</loc>
<loc id=”USIA0518” type=”1”>Madrid, IA</loc>
<loc id=”USNE0299” type=”1”>Madrid, NE</loc>
<loc id=”USNY0847” type=”1”>Madrid, NY</loc>
<loc id=”CASK0766” type=”1”>Madrid, SK, Canada</loc>
<loc id=”RPXX0729” type=”1”>Madrid, SUR, Philippines</loc>
<loc id=”COXX8921” type=”1”>Madrid, CUN, Colombia</loc>
<loc id=”DRXX1034” type=”1”>Madrid, 06, Dominican Republic</loc>
<loc id=”EKXX1013” type=”1”>Madrid, LI, Equatorial Guinea</loc>
<loc id=”SWOT0583” type=”1”>Madrid, E, Sweden</loc>

</search>

Listing 4.4: INMA SDS: HTTP GET request for obtaining city codes.

REQUEST:
GET weather/local/SPXX0050?cc=∗&unit=m HTTP/1.1
Host: xoap.weather.com

RESPONSE:
HTTP/1.1 200 OK
Content−Type: text/xml; charset=utf−8
Content−Length: length

XML DATA

Listing 4.5: INMA SDS: HTTP GET request for obtaining weather data.

44 4. Preliminary Systems

REQUEST:
GET /rss/elpais/portada.xml HTTP/1.1
Host: ep01.epimg.net

RESPONSE:
HTTP/1.1 200 OK
Content−Type: text/xml; charset=utf−8
Content−Length: length

XML DATA

Listing 4.6: INMA SDS: HTTP GET request for obtaining newspaper data.

database will retrieve the URL where the news are stored for that newspaper
on the Internet. Such database is a simple plain text file containing newspaper-
url pairs, one per line. The URLs correspond with RSS feeds provided by the
different newspapers.

Once the URL has been extracted, an HTTP GET request is used to get the
data (example in Listing 4.6). These data, as in the previous case, are obtained
as an XML file, so they are transformed into an HTML text string using an
XSLT template. Finally, the HTML data are sent to the User Interface via a
view news message.

2.3.4 Comprehension

The primary purpose of this module is to extract the information from the
user’s input and act accordingly to it. It works, in some sense, as an SP and
a DM at the same time.

The semantic parsing part is done by storing the information in frames. A
frame consists of a type entry and a param entry. Listing 4.7 shows the struc-
ture of a frame and the possible values each field can take.

The module maintains two of these frames, one for the dialogue history and
another for storing the last user interaction. When the module receives an
input text from the ASR, it extracts the relevant information and fills the
last user interaction frame. If this frame type is different to TYPE YES and
TYPE NO the dialogue history frame is updated with the new information.
At this point, if the history frame has all the necessary information to perform
a request, the module will send a message to the TTS to request the user for
confirmation of the data. On the other hand, in case not all the necessary
information is present the module will send a message to the TTS to request
the user the missing information.

When the last user interaction frame is of type TYPE YES a message is sent
to the Data Backend module to obtain the data requested by the user, since

3. RTMIVA 45

FRAME:
type
param

POSSIBLE TYPES:
TYPE NEWS
TYPE METEO
TYPE YES
TYPE NO

POSSIBLE PARAMS:
PARAM NEWSPAPER
PARAM CITY

Listing 4.7: INMA SDS: Comprehension module semantic parsing frame.

by the construction of the system this situation implies that the history frame
is already complete. On the other hand, when the last user interaction frame
is of type TYPE NO a reinit message is sent to the User Interface module to
reinitialise the system for a next user. By the construction of the system this
situation only occurs when some information has been shown to the user.

3 RTMIVA

This section defines the Real-Time Multimedia Interactive Voice Architecture
(RTMIVA), an architecture designed with the idea of having a framework in
which SDSs, and applications based on speech technologies in general, can be
implemented easily.

The architecture is focused on the development of applications in which users
interact through portable devices such as smartphones and tablets through
VoIP protocol, although it could be possible to interact through any device
provided that they have the appropriate client software installed.

The idea of the architecture is to simplify the process of creating new applica-
tions. So it has been designed in a way that the use of the different elements
that make up an SDS is simplified and the development of the applications is
done based on the utilization of a reduced set of commands and their respective
parameters.

The rest of the section will focus on describing the architecture, explaining the
required steps for its correct installation and developing a weather forecast
retrieval application (similar to the one developed in Section 2) that in turn
will serve as an example for the development of other applications.

46 4. Preliminary Systems

3.1 Architecture Definition

The server side consists of an Asterisk [101] open source Private Branch Ex-
change (PBX) under the Linux operating system. This PBX will be configured
so that on the one hand it accepts the calls of the different types of user, and
on the other hand, allows the execution of various applications.

The applications have a call extension associated with each and are imple-
mented using a simple language based on the use of XML tags. Each time the
Asterisk server receives a call directed to an application gives up the control to
an applications interface that will search for the corresponding XML for that
application. If it does not exist it will be informed to the user, and the call
will finish. In case such XML exists, the applications interface will interpret
the commands included in it to execute the corresponding application. On the
other hand, the applications interface, to provide the capabilities required by
an SDS is connected to:

• TTS: To synthesise the answers that are given to the user.
• ASR: To recognise the spoken interactions of the users.

and plays the role of a DM maintaining the state of the dialogue with the user
and managing the state changes.

Clients wishing to connect to the applications provided by the platform may
make Voice over IP (VoIP) calls to the server using any software or hard-
ware that allows making VoIP calls based on any of the following protocols:
SIP, IAX and H.323. There are many softphones (IP phones implemented
by software), so no software of this type will be developed, and it will only
be explained how to configure these softphones to interact with the platform.
These softphones exist for a multitude of platforms like smartphones, PCs or
PDAs so that through IP calls can interact with the platform any user who
has a device of these with Internet connectivity. This connectivity can be any
network that has an Internet connection, a Wi-Fi hotspot and even 3G.

For a better understanding of the architecture, everything mentioned is out-
lined in Figure 4.4.

3.2 Installing and Configuring the Architecture

This section explains the steps for the installation and configuration of all the
required components for the correct operation of the architecture. In addition,
when it’s necessary, explanations on some concepts, whether they are technical
or related to the operation of the architecture or some of its components, are
given.

3. RTMIVA 47

APPLICATIONS
INTERFACE

3G ROUTER
ROUTER

INTERNET

WIRELESS
ROUTER

ASR TTS

Asterisk PBX

XML

XML

XML

Figure 4.4: RTMIVA system architecture.

3.2.1 Installing Asterisk PBX

Asterisk is a free software application that provides PBX functionality. Like
any PBX, it accepts connections from a certain number of devices to make
calls between them and even connections from VoIP providers and Integrated
Services Digital Networks (ISDNs). Asterisk includes many features previously
only available in expensive proprietary PBX systems such as voicemail, con-
ferencing, automatic call distribution, and much more. Developers can create
new features by writing a dialplan in the Asterisk scripting language, or in
other languages by adding the corresponding modules. To connect analogue
standard phones, Foreign eXchange Subscriber (FXS) or Foreign eXchange Of-
fice (FXO) telephone cards are necessary, since a simple modem is not enough
to connect the server to an external line. An interesting aspect of Asterisk is
that it supports many VoIP protocols such as Session Initial Protocol (SIP),
InterAsterisk eXchange protocol (IAX) and H.323. Asterisk can interoperate
with Internet Protocol (IP) terminals acting as a registrar and as a gateway
between them.

Before installing the Asterisk software, some libraries and kernel updates must
be installed, to avoid having problems installing the required components, as
follows:

apt−get install −qy bison flex libncurses5−dev zlib1g−dev libssl−dev libnewt−dev sox

Now we proceed to install all the required components.

Installing Asterisk

To install Asterisk we will run the following commands:

48 4. Preliminary Systems

cd /usr/src
wget http://downloads.digium.com/pub/asterisk/releases/asterisk−1.4.17.tar.gz
tar xvfz asterisk−1.4.17.tar.gz
cd asterisk−1.4.17
./configure
make
make install
make samples

Installing Asterisk Addons

Asterisk Addons is a package providing extra functionalities to Asterisk, such
as:

• The possibility of having a call log in a MySQL database.
• Using MP3 files for music on hold.
• Adding the H.323 protocol.

To install it:

cd /usr/src
wget http://downloads.digium.com/pub/asterisk/releases/asterisk−addons−1.4.5.tar.gz
tar xvfz asterisk−addons−1.4.5.tar.gz
cd asterisk−addons−1.4.5
./configure
make
make install
make samples

Installing Voices to Asterisk

This project was focused on Spanish Castillian speaking users, so we proceed
to install Spanish Castillian voices to Asterisk. Asterisk’s unofficial Castillian
voices, licensed by Alberto Sagredo Castro and obtained using professional
speakers, will be installed.

In the first place, the necessary voices will be downloaded, they will be down-
loaded with u-law format since they are of high quality:

cd /usr/src
mkdir voices
cd /voices
wget http://www.voipnovatos.es/voices/voipnovatos−core−sounds−es−ulaw−1.4.tar.gz
wget http://www.voipnovatos.es/voices/voipnovatos−extra−sounds−es−ulaw−1.4.tar.gz

Two voice packs have been downloaded that complement each other. It’s
necessary to have both so that everything is played in Spanish Castillian. In
case there is no voice file when playing a piece of the dialplan in Asterisk, the
corresponding English voice will be used.

Once the packages have been downloaded we decompress them:

3. RTMIVA 49

tar zxvf voipnovatos−core−sounds−es−ulaw−1.4.tar.gz
tar zxvf voipnovatos−extra−sounds−es−ulaw−1.4.tar.gz

When decompressing these files the structure of the created directories is of
type /<directory>/es, which does not correspond to the predefined structure
in Asterisk 1.4, which is /es/<directory>. Therefore we must execute the
following commands:

mkdir /var/lib/asterisk/sounds/es/dictate
mkdir /var/lib/asterisk/sounds/es/letters
mkdir /var/lib/asterisk/sounds/es/silence
mkdir /var/lib/asterisk/sounds/es/followme
mkdir /var/lib/asterisk/sounds/es/phonetic
mkdir /var/lib/asterisk/sounds/es/digits

cd /usr/src

mv voices/es/∗ /var/lib/asterisk/sounds/es
mv voices/digits/es/∗ /var/lib/asterisk/sounds/es/digits
mv voices/dictate/es/∗ /var/lib/asterisk/sounds/es/dictate
mv voices/letters/es/∗ /var/lib/asterisk/sounds/es/letters
mv voices/silence/es/∗ /var/lib/asterisk/sounds/es/silence
mv voices/followme/es/∗ /var/lib/asterisk/sounds/es/followme
mv voices/phonetic/es/∗ /var/lib/asterisk/sounds/es/phonetic

Now the voices are in the right place, just need to tell Asterisk to use them.
As will be seen later, it’s done using a language=es label in the Asterisk user’s
configuration file.

Launching Asterisk at Boot Time

If we want Asterisk to start every time the computer is turned on we need to
execute the following commands:

cd /etc/init.d
cp /usr/src/asterisk−1.4.17/contrib./init.d/rc.debian.asterisk asterisk
update−rc d asterisk defaults

3.2.2 Installing no-ip

To establish the connection between a client device and the Asterisk PBX, the
client configuration must specify the IP address where the server is located. In
the case that both the client device and the server are on the same network,
there will not be any problem since the server can be configured so that it has
a static IP address and this way always have the same IP address. So, once the
clients have been configured, they would not have to be reconfigured again.

The problem arises when the client devices want to access from outside the
network in which the server with the Asterisk PBX is located, that is, when the

50 4. Preliminary Systems

clients making the IP calls and the server are not on the same local network.
Nowadays, Internet providers allocate the majority of public IP addresses by
Dynamic Host Configuration Protocol (DHCP), so these addresses are dynamic
and change over time. Therefore it’s not comfortable to configure the clients
with the public IP address of the server since this will change from time to
time and would have to reconfigure the clients with the new IP address.

To solve the problem, we will register a Domain Name Server (DNS) name.
This way each time a client tries to connect to the registered DNS name will
be redirected to the machine we will indicate, that is, the one with the Asterisk
PBX.

Registering a DNS Name

To register a DNS name in the first place will access the web page http://
www.noip.com and proceed to register as a user. In addition to the usual
registration data (user, password and e-mail address), the DNS name we wish
to register must be provided at the time of registration. Once the registration
has finished, the DNS name will be available to use. In our case and as an
example we have chosen the DNS name rtmiva.hopto.org , so that every time
a client tries to connect to this hostname will be redirected to the PC that we
indicate. The way to do the last is explained below.

Installing no-ip Software

Once the DNS name has been registered, we must install the no-ip software
in the server we want to be located using the resgistered DNS name. This
software will be responsible for updating the IP address associated with the
DNS name. While this software is running on the server, each client that wants
to connect through the DNS name will be redirected to it. In case this software
is not running the DNS name will probably not be translated to the current
IP address of the server since a possible change in the public IP address will
not be updated.

Therefore, for the server with the Asterisk PBX to be accessible from an
external network using the DNS name, the no-ip software must be installed. To
do this we download and install the software with the following commands:

cd /usr/src
wget https://www.noip.com/client/linux/noip−duc−linux.tar.gz
tar xvfz noip−duc−linux.tar.gz
cd noip−2.1.9−1
make
make install

During the installation process, the username and password with which the
DNS name was registered are prompted, we introduce them and proceed with
the installation.

As mentioned above, this software is responsible for updating the value of the

3. RTMIVA 51

IP address associated with the registered DNS name. Therefore the next step
will be to specify, in minutes, the IP address updating interval. In our system,
it has been selected a 5 minutes updating interval so that if an IP change
occurs, the server, at most, will be inaccessible for five minutes

Next, we must specify which of the registered machines we want to update the
DNS record. In this case, we only have one, so the required field will be left
empty as the default option is to update all the registered machines.

Once the installation is complete, the updating process will start automatically
and the server machine with the Asterisk PBX will be accessible via the DNS
name.

To verify that it works correctly, from another machine we could execute a ping
command and see how, effectively, the packages arrive at their destination.

3.2.3 Installing PHPAGI

Asterisk Gateway Interface (AGI) [102] is an extension of Asterisk that allows
the execution of programs and scripts external to the own Asterisk platform
and its integration within the dialplan of Asterisk. It supports external pro-
grams written in various programming languages such as: Java, Perl, PHP,
Python, Ruby, C, .NET, Haskell, . . .

For our architecture, it has been decided to use the PHP programming lan-
guage to develop some of the modules. This way, thanks to the features of
PHP, we can use the AGI as an interface between Asterisk and the Linux sys-
tem command line, and thus obtain the interoperation between Asterisk and
the external modules necessary to make the architecture work (ASR, TTS,
. . .).

For the installation, we execute the following commands:

cd /usr/src
wget http://sourceforge.net/projects/phpagi/files/latest/ −O phpagi.tgz
tar xvfz phpagi.tgz
mkdir /var/lib/asterisk/agi−bin/phpagi
cp −r /usr/src/phpagi−<version>/∗ /var/lib/asterisk/agi−bin/phpagi/

3.2.4 Installing TTS

For the TTS, Loquendo TTS has been used, although it could be possible to
use any other as long as it’s integrated into the platform appropriately. This
section will explain the installation and configuration process of the Loquendo
TTS, although following similar steps any other could be integrated.

The first step is the installation of the software itself. The Loquendo software
is composed of the synthesis engine plus a set of voices. In this system, Jorge’s

52 4. Preliminary Systems

voice was used. For the installation of both the engine and the voices, the
following commands must be executed:

cd Loquendo/Loquendo TTS 6.5−SDK Distribution 6.5.4/Linux
chmod +x install.sh
./install.sh

cd Loquendo/Loquendo TTS 6.5−Jorge 6.5.4/Linux
chmod +x install.sh
./install.sh

If nothing is specified during the installation process, the software will be
installed in the /opt/Loquendo/LTTS directory.

Once the software has been installed, it will be necessary to activate the license.
The license file will be placed in the /opt/Loquendo/LTTS directory, and the
default.session file edited to add the following line in case it doesn’t exist:

’’LicenseFile’’=/opt/Loquendo/LTTS/TTSLicense.txt

On the other hand, to integrate the TTS in the platform, a small application
has been developed that is in charge of making the synthesis itself, and that
will be invoked when necessary. The code for this application can be found in
the C appendix. This application will receive three parameters:

• The name of the voice to use. In this system, Jorge.
• The path where the synthesised audio will be stored.
• The text to synthesise.

3.2.5 Installing ASR

For the ASR, the speech recogniser developed by the group Pattern Recognition
and Speech Technology of the Department of Electricity and Electronics of the
Faculty of Science and Technology of the University of the Basque Country has
been used. However, as in the case of the TTS, any other may be employed
provided that it’s properly integrated.

The integration of the ASR into the platform consists of two parts. On the
one hand, a Language Model (LM) generator that will be used to generate
LMs needed by the decoder, which will be generated on the fly and will be
dependent on the state in which the dialogue between the system and the user
is. And on the other hand the decoder.

Language Model Generator

As has been said depending on the state in which the dialogue between the
system and the user is, a LM or other will be used. To generate these LMs
on the fly, a software has been developed that will be invoked before the
recognition process. This software receives as parameters a text file with the

3. RTMIVA 53

different training phrases and a directory where the file will be saved with the
created LM.

./create lexicon lexicon tmp.txt lexicon.txt

The training phrases file will consist of one sentence without spaces per line,
instead of spaces the character ” ” is used.

As an example for greetings LM the file would look like:

Hello
Good morning
Good evening
Good night

Decoder

The installation of the decoder has been divided into two parts. On the one
hand the parametrisation of the audio and on the other hand the decoding.

In the process of voice recognition once the audio has been obtained it’s
parametrised to obtain the relevant information and this parametrisation is
then sent to the decoder, which together with the LM previously generated
will give a recognised sentence. To integrate these two steps, parametrisation
and decoding, two applications were previously available which were integrated
into the platform. To run them is done as follows:

./param08 audio.wav params.bin

./recogniser params.bin

It must be taken into account that for the parametrisation models for audio
sampled at 8KHz have been used.

3.2.6 Configuring Asterisk PBX

3.2.6.1 Creating Users

This section shows how to set up the user accounts that will be used by the
users of the system. Users can connect via several protocols that implement
VoIP technology, here are instructions for the most common.

SIP Protocol

SIP protocol was developed by Internet Engineering Task Force (IETF), with
the idea of creating a signalling and control architecture for VoIP. The primary
goal is to communicate multimedia devices and this communication is made
using Real-time Transport Protocol (RTP) and Session Description Protocol
(SDP) protocols. RTP protocol is used for voice data transmission in real time
and SDP protocol for signalling.

54 4. Preliminary Systems

SIP is an end-to-end signalling protocol that implies that all logic is stored in
the end devices (except for routing SIP messages). In a SIP architecture there
are two fundamental elements:

• User Agent (UA): Divided into User Agent Client (UAC) and User Agent
Server (UAS). Both are found in all UA, thus allowing communication
between different UA through client-server type communications.

– UAC: Is a logical entity that generates SIP requests and receives
responses to its requests.

– UAS: Logical entity that generates responses to the SIP requests
received.

• SIP Server: There are three types of servers:

– Proxy Server: Retransmits requests and decides to which other
servers forward, altering the fields of the request if necessary. It’s
an intermediate entity that acts as client and server for the purpose
of establishing calls between users.

– Registrar Server: Accepts user registration requests and saves the
information of these requests to provide an address localisation and
translation service in the controlling domain.

– Redirection Server: Generates redirection responses to the requests
it receives. This server forwards the requests to the next server.

On the Asterisk PBX, the sip.conf file is used to configure everything related
to the SIP protocol and to add new users or connect to SIP providers. In this
file, below the [general] tag, default settings for all users and peers are defined.
Default values should be edited so they will be left as follows:

[general]
context=default
port=5060 ; UDP port for Asterisk responses
bindaddr=0.0.0.0 ; Specifies an Asterisk IP (eg, a computer has 3 IPs), 0.0.0.0 is valid for

anyone
srvlookup=yes ; Enables DNS SRV server for calls outside the network
localnet=192.168.1.0/255.255.255.0 ; Specifies local IP. Required for NAT
externhost=rtmiva.hopto.org ; DNS address of the network where the PBX server is

located. Required for NAT. If configuring the system for a local net only, not
necessary.

On the other hand, for each new user to be added, its configuration will be
included in the file with the following format:

3. RTMIVA 55

[USERNAME] ; User’s Nickname
language=es ; Language to be used by the system
type=friend ; Used for authentication purposes
secret=123456 ; Password used for user’s authentication
nat=yes ; Forces Asterisk to ignore the contact information field and uses the address

from which packets come
canreinvite=no ; Forces Asterisk to be in the middle, not allowing endpoints to exchange

RTP messages directly
qualify=yes; Every 30 sec sends a ping to the calling user
context=contextname ; Name of a context (defined in extensions.conf file)
host=dynamic ; IP address of user’s device. ”dynamic” allows all addresses

In the case of making the SIP calls between users of the same local network,
where the Asterisk PBX is connected, no extra configuration is required.

But, on the other hand, if the calls are intended to be made from outside
the network there will be problems with Network Address Translation (NAT)
since SIP was not designed with that protocol in mind. NAT is a mechanism
used by IP routers to exchange packets between two networks that mutually
assign incompatible addresses (private addresses). It consists in converting in
real time the addresses used in the transported packages. There are private
address ranges that can be freely allocated to devices on a private network.
This way all devices with different private addresses can go to the Internet
with a single public address or a reduced set of them.

As already said, SIP was not designed to be used with NAT routers, by default
SIP just sends signalling information, and audio transmission is done via RTP
protocol. Signalling usually uses User Datagram Protocol (UDP) port 5060,
and RTP uses random UDP ports for audio input and output which makes it
necessary to have two additional UDP ports, one for audio input and another
for audio output.

One of the problems that arises with NAT routers is that it’s not known to
which device in the internal network redirect incoming SIP calls (signalling
information). To solve the problem on the NAT router, it will be necessary to
specify that the SIP traffic received is redirected to the desired device. As an
example, let’s suppose that the IP address of the NAT router is 192.168.1.0/24,
and that the IP address of the server hosting the Asterisk PBX is 192.168.1.38.
In this case, it must be specified that all traffic of SIP calls arriving at the
NAT device (traffic arriving at UDP port 5060) is redirected to the address
192.168.1.38. Also, it will be necessary to verify that the SIP users included
in the sip.conf file of Asterisk have the options nat=yes and qualify=yes.

The other problem has to do with audio routing. Most NAT routers are
unable to associate signalling protocol packets with audio packets and are
often unable to determine where to send audio. At this point when a call is
made, everything seems to be normal, the call is set, but the audio does not
flow in either direction. As discussed earlier, in addition to using UDP port
5060 for signalling, two additional UDP ports per call are required for RTP

56 4. Preliminary Systems

audio transmission. So, we must specify these ports.

In Asterisk the range of UDP ports to use for RTP are defined in the rtp.conf
file. By default, this range is defined as UDP ports from 10000 to 20000. This
range allows 5000 simultaneous calls to be made. Although this range can
be changed we decided to left it as is. On the other hand, once the range of
ports has been decided it will be necessary to configure the NAT router to
redirect all incoming traffic from UDP ports 10000-20000 to the server with
192.168.1.38 IP address.

Finally, clients wishing to connect to the system from outside the network
should make similar configurations in their NAT routers, opening the same
ports for both signalling and audio transmission.

IAX Protocol

IAX protocol was designed as a VoIP connection protocol between Asterisk
servers, although nowadays is also used in other servers apart from Asterisk.
The version currently used is IAX2 as the first version has become obsolete.
It’s a protocol designed and intended for use in VoIP although it can support
other types of connections such as video.

The primary objectives of the IAX protocol are:

• Minimize the bandwidth used in VoIP transmissions. IAX protocol is a
binary protocol instead of text protocol (such as SIP) for messages to
occupy less bandwidth.
• Avoid NAT problems (avoiding problems such as SIP protocol). IAX

protocol transmits signalling and audio through a single port, UDP port
4569.
• Add support to transmit dialplans.

For the creation of users intended to use the IAX protocol, it will be done
similarly to SIP clients but in this case in the iax.conf file.

For each new user some lines must be added to the file with the following
format:

[USERNAME] ; User’s nickname
language=es ; Language to be used by the system
type=friend ; Used for authentication purposes
secret=123456 ; Password used for user’s authentication
context=contextname ; Name of a context (defined in extensions.conf file)
host=dynamic ; IP address of user’s device. ”dynamic” allows all addresses

To carry out IAX calls without problems from outside the network if the PBX
is behind a device that implements NAT, UDP port 4569 will have to be
opened. This will require accessing the router and in the NAT tables specify
that the information that arrives at UDP port 4569 will be redirected to the
same port but to the server machine where Asterisk PBX is.

3. RTMIVA 57

At the other end, the calling client does not need to open any ports.

H.323 Protocol

H.323 was designed to provide users with teleconferences that have voice, video
and data capabilities over packet switching networks. The standard was de-
signed with the following objectives:

• Rely on existing standards, including H.320, RTP and Q931.
• Incorporate some of the advantages that packet switching networks offer

to transport data in real-time.
• To solve the problems that pose the sending of data in real-time on

packet switching networks.

The H.323 designers defined this protocol in such a way that the companies
that manufactured the equipment could add their specifications to the protocol
and could define other structures that would allow the devices to acquire new
characteristics or capabilities. H.323 sets the standards for audio and video
compression and decompression, ensuring that devices from different manu-
facturers are intercommunicated. Also, the signalling procedures of the logical
channels contained in the H.245 standard are used, which allow the content
of each channel to be defined when it’s opened. As the capabilities of the
systems are determined, data transmission is not allowed if the receiver can
not manage the call.

To use the H.323 protocol in the Asterisk PBX, at first, the following com-
mands must be executed to install some dependencies:

apt−get install flex bison
touch /usr/include/linux/compiler.h

On the other hand, to configure the H.323 protocol next libraries must be
installed:

• PWLIB
• OPENH323
• Chan h323.so for Asterisk.

To install PWLIB:

cd /usr/src
wget https://sourceforge.net/projects/openh323/files/pwlib/1.10.3/pwlib−v1 10 3−src−

tar.gz
tar zxvf pwlib−v1 10 3−src−tar.gz
cd pwlib v1 10 3/
./configure
make
make install
make opt
PWLIBDIR=/usr/src/pwlib v1 10 3
export PWLIBDIR

58 4. Preliminary Systems

To install OPENH323:

cd /usr/src
wget https://sourceforge.net/projects/openh323/files/openh323/1.18.0/openh323−

v1 18 0−src−tar.gz
tar zxvf openh323−v1 18 0−src−tar.gz
cd openh323 v1 18 0/
./configure
make && make opt && make install
OPENH323DIR=/usr/src/openh323 v1 18 0/
export OPENH323DIR

Finally, to install chan h323.so:

cd /usr/src/asterisk−1.4.17
./configure
cd channels/h323/
make
make opt
cd /usr/src/asterisk1−4−17
./configure
make
make install
echo ”/usr/local/lib” >> /etc/ld.so.conf
ldconfig

To configure the users the h323.conf file, located in /opt/asterisk directory,
must be edited. The first step is to define the general characteristics of the
protocol:

[general]
port=1720 ; Working port
bindaddr=0.0.0.0 ; Incoming calls from any IP
allow=all ; Allow the use of all CODECs
gatekeeper=DISABLE ; Gatekeeper not used

For each new user to be added, its configuration will be included in the file
with the following format:

[USERNAME]
type=friend ; Can make and receive calls
language=es ; Language for messages
host=192.168.1.34 ; IP address of user’s device
context=contextname ; Name of a context (defined in extensions.conf file)

It must be said that for H.323 protocol the only authentication credential is
the user’s device IP address, so that devices must always have the same IP
address, so they belong to the same user.

Finally, once the Asterisk is started, the module must be loaded as follows:

asterisk −rvvvv
module load chan h323.so

3. RTMIVA 59

3.2.6.2 Configuring Extensions

The extensions.conf file located in /etc/asterisk directory is one of the most
important in Asterisk since it defines the dialplan or numbering plan that will
be followed by the PBX for each context. In this file will be defined for each
context which resources can be accessed and by which numbering.

A dialplan can be understood as the treatment a call receives. Each phone
extension of the PBX has a dialplan associated. Using a dialplan, each time a
user makes a call to an extension, the associated actions are executed (making
a call to another user, redirecting to a voicemail, . . .).

The file extensions.conf is composed of contexts between brackets ”[]”. On
the one hand, we have the [general] and [globals] contexts, which are always
present.

In the [general] context the following options are configured:

[general]
static=yes ; In case a command ”save dialplan” is executed in console, it will execute.
writeprotect=no ; If writeprotect=no and static=yes the ”save dialplan” command can

be executed in console.
autofallthrough=yes ; If an extension runs out of things to do, it will terminate the call

with BUSY, CONGESTION o HANGUP.
clearglobalvars=no ; Global variables are not freed when extensions are reloaded or

Asterisk is restarted.

The [globals] context is used to define global variables that can be used in all
other contexts. The default setting will be left.

Once the common contexts have been configured we must configure a particular
context for our platform, as an example, we call it [contextname]. When
creating the users in section 3.2.6.1, context=contextname was defined in the
configuration, meaning that those users can only execute the dialplan defined
for this context. For this context, we will define the dialplan shown in Table
4.2 so that when a user makes a call to the desired extension, the associated
action will be executed.

To create the dialplan in Table 4.2 the following configuration will be added
in extensions.conf :

[contextname]

exten => 600,1,Playback(demo−echotest)
exten => 600,2,Echo
exten => 600,3,Playback(demo−echodone)
exten => 600,4,Hangup

exten => 601,1,Playback(Apologize)
exten => 601,2,Hangup

;SIP Calls
exten => 1001,1,Dial(SIP/USERNAME)
exten => 1001,2,Hangup

60 4. Preliminary Systems

;IAX Calls
exten => 2001,1,Dial(IAX2/USERNAME)
exten => 2001,2,Hangup

;H.323 Calls
exten => 3001,1,Dial(H323/USERNAME)
exten => 3001,2,Hangup

Extension Action

600 Latency and echo check.

601

One of the internal recordings is
played, to verify that it is lis-
tened correctly. To test whether
users behind a NAT device can
hear the audio from the PBX. If
they do not hear it, they should
proceed to open the appropriate
ports.

1001 SIP call to USERNAME.

2001 IAX call to USERNAME.

3001 H.323 call to USERNAME.

Table 4.2: RT-MIVA dialplan.

We have used as an example a user called USERNAME, when adding new
users it should be done in the same way but substituting USERNAME with
the desired usernames.

3.2.7 Applications Interface

The applications interface is a fundamental part of the system since it’s the
one that will be in charge of reading the application files and execute the
instructions contained in them, besides it’s the one in charge of interconnecting
the different components of the system, that is, the Asterisk PBX, ASR and
TTS. On the other hand, it also acts as a DM since it’s the one that stores
the state of execution of the application and manages the state changes. It
consists of a file written in PHP language that interacts with Asterisk using
the previously installed PHP AGI. This file should be located in /var/ lib/
asterisk/ agi-bin/ Central.php.

To have an in-depth knowledge of how the applications interface works, it’s
recommended to look at the code in Appendix C. This section will give an
overview of its operation. Broadly speaking the operation of the applications
interface is as follows. When the Asterisk PBX receives a call, the call is redi-
rected towards the applications interface which will check if the corresponding
XML exists for the application associated with the call extension. If it does
not exist, the user will be informed of the non-existence of the application,

3. RTMIVA 61

and the call will be finished. That is done with the following instructions:

$agi−>answer();
...
...
$utt=”Hello $argv[2], extension $argv[1] does not have an associated application. Try

again with a different extension number.”;
exec(”sudo /opt/Loquendo/LTTS/./txt2audio Jorge /var/lib/asterisk/sounds/es/temp.

wav $utt”,$output);
$agi−>stream file(’temp’);
...
...
$agi−>hangup();

If it exists, the applications interface will load the XML file associated with the
application and begin to interpret the commands included in the file. There
are three predefined commands in the system:

• Synthesise
• Recognize
• Check

If the loaded command is the synthesise command, the audio of the text passed
as a parameter will be synthesised and sent to the client:

$utt=”$text”;
exec(”sudo /opt/Loquendo/LTTS/./txt2audio Jorge /var/lib/asterisk/sounds/es/temp.

wav $utt”,$output);
$agi−>stream file(’temp’);

If the command to execute is recognise, first an audio will be recorded with
the client’s request, which then will be parametrised.

$time=””.(((int)$command[seg])∗1000);
$nofich=”$year$month$day$hour$min$sec”;
$agi−>record file(’temp/$nofich’,’wav’,’#’,$time,’0’,0,’2’);
exec(”../bin/param08 /var/lib/asterisk/sounds/es/temp/$nofich.wav ../temp/param/

$nofich.xml”,$output);

Then, if there is no LM associated with the state in which the dialogue is
located within the system cache, one is generated. Once the parametrised
audio and the LM are available, the recognition result is obtained.

$fi=explode(”.”,$xml);
If(!file exists(”../temp/lexicon/”.$fi[0].”.txt”))
{

exec(”php ../bin/xmllexicon.php $xml”);
exec(”php ../bin/create lexicon ../temp/lexicon/”.$fi[0].” tmp.txt”);
exec(”rm ../temp/lexicon/”.$fi[0].” tmp.txt”);
}
copy(”../temp/lexicon/”.$fi[0].”.txt ../data/lexicon.txt”);
exec(”../bin/recogniser temp/params/$nofich.xml”,$output);

62 4. Preliminary Systems

If the command is check, the behaviour is very similar to the command recog-
nise. The audio with the client’s request will be recorded in the same way
but, in this case, a predefined LM of checking sentences will be used. Then,
the recognised text will be used to decide whether the result of the check has
been positive or negative.

On the other hand, it’s also possible to define custom commands for use in the
applications. As an example, we can define synthesiseweb, which synthesises a
text contained in a URL. In this case, the synthesis will be carried out in the
same way as for the command synthesise, but the text to be synthesised will
be in a URL that is passed as a parameter to the command.

$utt=file get contents(”$url”);
exec(”sudo /opt/Loquendo/LTTS/./txt2audio Jorge /var/lib/asterisk/sounds/es/temp.

wav $utt”,$output);
$agi−>stream file(’temp’);

Using these commands, the applications interface will execute all instructions
included in the application definition XML file until the end, at which point
the application will be terminated and the call finished.

3.2.8 Installing and Configuring the Clients

Once all the necessary components to run the server have been installed and
configured it will be necessary to configure the clients that will then connect
to it. For this, it will be necessary to install a VoIP client software on them
and later configure it. There are plenty of software of this type for all types
of platforms. Examples include Ekiga and Empathy for desktop computers
or LinPhone and 3CXPhone for smartphones. We will not give detailed in-
structions to configure each of them, but some general instructions on how to
configure them depending on the type of protocol that is intended to be used
will be given.

3.2.8.1 Clients Using SIP and IAX Protocols

Clients that want to connect to the platform using SIP and IAX protocols
must create an account of the type of the chosen protocol and configure it
accordingly.

To configure the account, it’s necessary to assign a username and password.
These must match those that were specified in the sip.conf file of the Asterisk
PBX. As an example, and to be consistent with the configuration previously
used these will be, USERNAME and xxxxxx respectively.

In addition to these data, the IP address or DNS name of the domain where the
server with Asterisk PBK is installed must be specified. In case the Asterisk
server and the client are on the same local network, the local address of the
Asterisk server will be used. If they were on a different network, the previously

3. RTMIVA 63

registered DNS name would be used. In case the software requires us to enter
a port number for the connection to the server, UDP port 5060 will be entered
for the SIP protocol and UDP 4569 for the IAX protocol.

Another interesting configuration to do is to choose the audio CODEC to
use. To select an appropriate CODEC, it’s necessary to take into account the
bandwidth that each one occupies against the quality that it offers. Asterisk
supports the following audio compression CODECS, so one of these must be
chosen:

• G.711 u-law (used in USA) – (64kbps)
• G.711 a-law (used in Europe and Brazil) – (64kbps)
• G.723.1 – Pass-through Mode
• G.726 – 16/24/32/40kbps
• G.729 – Requires license – (8kbps)
• GSM – (12-13kbps)
• iLBC – (15kbps)
• LPC10 – (2,5kbps)
• Speex – (2,15-44,2kbps)

3.2.8.2 Clients Using H.323 Protocol

In the case of using the H.323 protocol first an account of this type will be
created. Then, for the IP address of the server to which we want to connect,
we will use, as in the previous case, the local address of the Asterisk server in
case both the server and the client are on the same network, or the previously
registered DNS name in case of being in different networks.

No additional settings are required. Remember that H.323 protocol authenti-
cates the client based on its IP address.

3.3 Weather Forecast Retrieval Application

Up to this point, the installation and configuration of the platform to support
the different applications has been explained. In this section, we proceed to
develop an example application that consists of an application to obtain the
weather forecast for Spanish cities. The development will also serve as a guide
for the creation of other types of applications.

To develop the applications, a language based on XML tags has been created.
The RTMIVA platform will run the applications interpreting the correspond-
ing XML file. Each time a call is made to the extension associated with an
application, the applications interface will execute the instructions in the XML
file associated to run the application. This section describes how to write these
XML files.

64 4. Preliminary Systems

3.3.1 Application File Definition

To write an application, the first thing to do is to define its operation. Ap-
plications are defined based on a set of states that have commands associated
with them. These states and their corresponding commands are: recognise,
synthesise, check and synthesiseweb. Later on, we will see their functionality
and mode of use. Using these states for this example application, we have
designed the operation shown in Figure 4.5.

synthesize
welcome

synthesize
ask city

recognize
synthesize

confirm city
check

synthesizeweb
result

′′IncorrectCity′′

′′IncorrectCity′′

Figure 4.5: Structure of the dialogues for the meteorological information retrieval
system with RTMIVA architecture.

On the other hand, since this is a system of interaction through voice, we will
have to define the type of sentences the system can recognise, this is, a LM.
Each of the states in which the recognise command is involved has an associated
LM. In this case, only a state of this type is used, and so only one LM has been
defined. That is shown in Figure 4.6. In case of creating applications with
more recognise states, you will have to define their corresponding LMs. Later
we will see how these LMs are created. In addition to the recognise states,
check states also have an associated LM, these states are used to ask the user
if what the system has been understanding is correct and use a predefined LM
consisting of the following words:

Eso es
En efecto
De acuerdo
Adelante
Si
Claro
Vale
Perfecto
No
Te repito
Has reconocido mal
Has entendido mal
Empieza otra vez

Once we have defined the application’s behaviour and its LM we proceed to
explain how to write the application’s XML file. The final XML file is given
in Appendix C.

3. RTMIVA 65

h
ol

a

b
u
en

as

b
u
en

os
d́
ıa

s

ta
rd

es

n
o
ch

es

q
u
is

ie
ra

q
u
ie

ro

m
e

d
as

d
ic

es

p
o
d́
ıa

s

p
u
ed

es

p
o
d
ŕı

as

d
a
r

d
ec

ir

el
ti

em
p

o
q
u
e

d
e

h
ar

á

h
a
ce

h
ay

te
n
em

o
s

te
n
d
re

m
o
s

en
C

IT
Y

p
or

fa
vo

r
E

N
D

E
N

D

IN
I

IN
I

IN
I

IN
I

IN
I

IN
I

F
ig
u
re

4
.6
:

L
a
n
g
u
a
g
e

M
o
d
el

fo
r

th
e

W
ea

th
er

F
o
re

ca
st

re
tr

ie
va

l
a
p
p
li
ca

ti
o
n

in
R

T
M

IV
A

.

66 4. Preliminary Systems

The template for the definition of the application is as shown below:

<rtmiva>
<name>Weather Forecast</name>
<description>Application to retrieve weather forecast.</description>
<extension>1</extension>
<application>

...

...

...
</application>

</rtmiva>

where:

• name: The name of the application. For this example Weather Forecast.
• description: A short description of the application.
• extension: Application’s extension number. Every time a user dials this

extension number, the application will be executed.
• application: Between these tags will go all the necessary commands that

compose the application.

Once the general data of the application have been specified, the next step is to
write the commands that make up the application, between the <application>
tags. These commands follow the format shown below:

<command num=”NUM” type=”TYPE”></command>

with:

• num: Specifies the execution order inside the list of commands.
• type: The command to be executed.

The RTMIVA architecture has three commands predefined although it’s also
possible to define new ones. For this application, a synthesiseweb command
has been defined. Following is shown how to use these commands:

Synthesise

This command synthesises the phrase that is specified between the command
tags. The insertion of variables is allowed as long as they have been defined
and initialised, for example having executed previously a recognise command
that has loaded the variable with one of the possible values.

<command num=”1” type=”synthesise”>Welcome to weather forecast system.</
command>

3. RTMIVA 67

Recognise

This command is responsible for recording the user’s speech for a number of
seconds specified by a seg parameter. Then it sends the audio obtained to the
ASR.

For each ASR recognition request, it’s necessary to generate a LM so that it’s
necessary to specify the LM between the tags of the command. For this, the
lexicon tag is available, which is used to determine the words that form the LM
and their interconnection. Each word is included with a lexicon tag and the
interconnection is specified with the parameters of the tag. These parameters
are:

• num: The identifier of the word.
• pre: Identifiers of preceding words. If there are no preceding words this

parameter will be ”0”. When there are several preceding words these are
separated with a comma.

• suc: Identifiers of successor words. If there are no successor words this
parameter will be ”End”. When there are several successor words these
are separated with a comma.

In addition, it’s also possible to use variables using the ”%” character. These
variables will be used to generate more complex LMs using them as containers
of multiple values. The possible values that these variables can take must be
defined. For this, a variable tag is available which has two parameters: nom
that is used to specify the name of the variable for which we are defining the
possible values and numtotal that defines the number of possible values that
the variable can take. Between the starting and ending labels of variable tag
the possible values are defined via a value tag.

In the next listing can be seen how the command would look like.

<command num=”1” type=”recognise” seg=”6”>
<lexicon num=”1” pre=”0” suc=”2,3,5,6,7”>Hello</lexicon>

...

...

...
<lexicon num=”24” pre=”17,23” suc=”25,End”>\%city</lexicon>
<lexicon num=”25” pre=”24” suc=”End”>please</lexicon>
<variable numtotal=”10” nom=”city”>

<value num=”1”>Bilbao</value>
...
...
...
<value num=”10”>Oviedo</value>

</variable>
</command>

Check

This command is used as a verification method that the user’s speech input
has been correctly understood by the system. It’s similar to the recognise

68 4. Preliminary Systems

command in the sense that it records the user’s speech and sends it to the
ASR to be recognised, although in this case, it’s not necessary to specify a
LM since it uses a prefixed one in the system. In addition, this command has
an iffalse parameter that indicates a command number to jump to in case the
user indicates to the system that what has been recognised is not correct.

Usually, this command must be preceded by a synthesise command to make
clear to the user that the system is looking for confirmation. An example of
using this command is shown below.

<application>
...
...
...
<command num=”4” type=”synthesise”>Would you like to know the weather forecast

for \%city?</command>
<command num=”5” type=”check” iffalse=”2”><command/>

</application>

SynthesiseWeb

This command synthesises the phrase obtained from a URL passed to it as a
parameter. The prototype of the command is as follows:

<command num=”6” type=”synthesiseweb”>http://localhost/rtmiva/weather.php?city
=\%city</command>

For the implementation of the weather forecast application, a weather.php file
has been developed and inserted in a web server. This file receives the name
of a city via an HTTP GET request (given in the synthesiseweb command)
and gets from Yahoo Weather the identification code of the city. For that a
request with the following format is made:

http://xoap.weather.com/weather/search/search?where=CITY NAME

As an example, to know the identification code of Zaragoza a query to the
following URL will be done:

http:// xoap.weather.com/ weather/ search/ search?where=Zaragoza

which will return the following result:

<search ver=”3.0”>
<loc id=”MXSP1937” type=”1”>Zaragoza, Mexico</loc>
<loc id=”MXVZ2292” type=”1”>Zaragoza, Mexico</loc>
<loc id=”SPXX0086” type=”1”>Zaragoza, Spain</loc>
<loc id=”MXCA0368” type=”1”>Ignacio Zaragoza, Mexico</loc>
<loc id=”MXNL1054” type=”1”>General Zaragoza, Mexico</loc>
<loc id=”MXCA0397” type=”1”>Valle De Zaragoza, Mexico</loc>
<loc id=”MXMO0770” type=”1”>Atizapan De Zaragoza, Mexico</loc>
<loc id=”MXOA1123” type=”1”>Juchitan De Zaragoza, Mexico</loc>

</search>

4. Concluding Remarks 69

As can be seen in the XML that is received, there are many cities with the
same name so, taking into account that the application we have developed
is intended for Spanish cities, the code of the city containing Spain will be
extracted. This code is given by the id parameter of the loc tag.

Once the code of the city has been extracted, we proceeded to request the
weather to Yahoo Weather through the following url:

http://weather.yahooapis.com/forecastrss?p=SPXX0086&u=c

Sending the city code in the p parameter of the HTTP GET request and
indicating that we want the temperatures of the response in Celsius degrees
via the u parameter.

When making this request, an XML is obtained with the weather forecast
which is then transformed into an appropriate format to be synthesised to the
user.

3.3.2 Integrating the Application into Asterisk

For the integration of the application in the platform, on the one hand, the
created file must be located in /var/ www/ applications/ xml directory. On
the other hand, we will have to add its corresponding extension in the exten-
sions.conf file. In this example we used ”1” as the extension, so we add this
value:

Exten => 1,1,Answer()
Exten => 1,2,AGI(central.php,{$EXTEN},{$CALLERID(name)})
Exten => 1,3,Hangup()

4 Concluding Remarks

This chapter has shown, on the one hand, a system aimed to give weather
forecast information and news obtained from several digital publications. On
the other hand, an architecture the author developed with the idea of having
a framework in which SDSs can be implemented easily. The first system let us
meet the needs imposed by the company. On the other hand, we got a fully
functional architecture that allowed easy development of dialogue systems.

In any case, there was a limitation as far as the dialogue management is
concerned. Being systems in which the dialogue management is carried out by
the interoperation of different components, the adaptation to new tasks (for the
first system) or the creation of more complex tasks become complicated and not
flexible. Therefore, we saw the necessity to separate the dialogue management
task into a single component to solve these problems. This strategy is the one
followed in the systems shown in the following chapters.

5
Bus Information System

Based on EDECAN
Framework

1 Introduction

As has been said, one of the author’s objectives is to learn how to build dia-
logue systems. In the previous chapter, a system was implemented using the
EDECAN framework. It was also showed the development of a new architec-
ture for building dialogue systems. It was concluded that although the systems
were fully functional, it’s convenient to isolate the dialogue management task
in successive systems.

On the other hand, given the interest in dialogue systems, the author is also
interested in having a system that can serve as a basis for the subsequent
adaptation to new tasks. Additionally, such a system will serve for the acqui-
sition of dialogue data with real users that can then be used for the study of
statistical dialogue managers. Thus, the system presented in this chapter was
developed.

The system consists of a Phone Bus Information System in Spanish under
EDECAN [86] framework. Regarding the DM, after an analysis of the differ-
ent frameworks and toolkits found, it was concluded that the CMU RavenClaw
DM was the most appropriate one because of being a well-tested and already
used in real systems DM [58]. Section 2 describes the main characteristics of
the RavenClaw DM. Section 3 describes the analysis performed on a corpus of
telephone calls to an information system of bus schedules in Spanish. Through
this analysis, the relevant information was extracted for later integration into
the RavenClaw dialogue strategy. On the other hand, before the implementa-
tion of the system, the RavenClaw DM operation and programming was tested
using its framework via a port of the CMU Let’s Go system [58] to Spanish.
That system was also used to develop and test the language dependent com-
ponents that later were used in the final system. This is detailed in Section 4.
Finally, Section 5 describes the developed system and the experiments carried
out with real users.

72 5. Bus Information System Based on EDECAN Framework

ROOT

Login GetQuery
Execute

GetResults
Inform

GiveResults
Inform

Welcome

Request
Registered

Request
Name

Inform
GreetUser

Request
Origin

Request
Destination

Request
Date

c: registered c: name

c: origin

c: des-
tination

c: date

c: results

Figure 5.1: RavenClaw dialogue tree example.

2 RavenClaw Dialogue Manager

RavenClaw [75] is the DM used in the CMU’s Olympus SDS development
framework. It provides an advanced management structure with distributed
software agents; i.e. dialogue flow can be modelled by software agents rea-
soning about their state and the next action. RavenClaw enforces a clear
separation between the domain-dependent and the domain-independent as-
pects of the dialogue control logic. The domain-specific aspects are defined
by a dialogue task specification, and a domain-independent dialogue engine
executes the given dialogue task to manage the dialogue.

The dialogue task specification consists of a tree of dialogue agents. The tree
is traversed recursively from left to right and from top to bottom. The execu-
tion of the dialogue task ends when the bottom-right node has been reached.
During this process, preconditions, triggers and success/failure criteria may
be added to the nodes to alter the normal exploration of the tree, allowing the
definition of more complex dialogue structures. Figure 5.1 shows a dialogue
tree example.

The dialogue agents can be classified into two categories:

• Fundamental dialogue agents (square nodes in Figure 5.1): Located at
terminal positions in the tree. There are four types:

– Inform: Generates an output.
– Request: Request some information from the user.
– Expect: Expects some information from the user without explicitly

requesting it.
– Execute: Performs some operation such as a database access.

• Dialogue-agencies (ellipse nodes in Figure 5.1): Located at non-terminal
positions in the tree. Control the execution of the children nodes and
encapsulate the higher level structure of the dialogue task.

On the other hand, the data that the system manipulates during the dialogue

2. RavenClaw Dialogue Manager 73

is encapsulated in concepts. Concepts can be associated with various agents
in the dialogue task tree, e.g. registered and name in Figure 5.1, can be
accessed and manipulated by any agent in the tree. There are several basic
concept types predefined in the RavenClaw dialogue management framework
(Boolean, string, integer and float) although more complex developer-defined
concept types can be defined, such as structures and arrays.

Regarding the domain-independent dialogue engine, to execute the dialogue
task tree, it uses two data structures: a dialogue stack to capture the discourse
structure at runtime, and an expectation agenda to capture what the system
expects to hear from the user in any given turn.

To control the dialogue, the dialogue engine interleaves Execution and Input
Phases. During the execution phases, dialogue agents from the task tree are
placed on and executed from the dialogue stack, generating in the process the
system behaviour. During the input phases, the system uses the expectation
agenda to transfer information from the current user input into the concepts
defined in the dialogue task tree.

During execution phases, first, the dialogue engine invokes the agent on top
of the dialogue stack. When it has finished its task, the control is returned
to the dialogue engine which tests the completion conditions for all the agents
on the dialogue stack eliminating completed agents from the dialogue stack.
Finally, the dialogue engine inspects the trigger (focus claims) conditions for
all the agents in the dialogue task tree. If an agent in the task tree request
focus, it’s pushed on top of the dialogue stack.

On the other hand, during input phases (when executing Request agents), first,
the system assembles the expectation agenda, a data structure organised into
multiple levels each corresponding to one of the agents on the dialogue stack.
The dialogue engine traverses the stack, from top to bottom, and constructs
the corresponding levels in the expectation agenda. After the expectation
agenda has been assembled, the dialogue engine waits for a user input. Finally,
once an input arrives, the dialogue engine starts a concept binding stage in
which the information available in the input is used to update system concepts.
For that, The dialogue engine performs a top-down traversal of the agenda,
looking for matching grammar slots in the user input. Wherever a match is
found, the corresponding concept is updated accordingly. Once the input phase
completes, the dialogue engine continues with another execution phase.

The second defining structure, the agenda, is an ordered list of agents used
to dispatch inputs to appropriate agents in the task tree. It’s recomputed
for every turn, and the current agent is placed on top of the stack. Inputs
are matched to successive items on the agenda. When a match occurs the
corresponding agent is activated with the matching concepts as inputs of the
dialogue. An agent may not consume all input concepts and thus remain-
ing concepts are passed further down the agenda until agents can consume
them.

74 5. Bus Information System Based on EDECAN Framework

3 Data Analysis

Given the choice of RavenClaw as DM for our system, we based our work on
the implementation of the Let’s Go system. Taking this into account and that
the needs of the users of both systems do not have to be the same, an analysis
of a corpus of customer service for bus schedules in Spanish for the city of
Bilbao (Corpus 010) was done. We analysed, on the one hand, the necessary
modifications in the dialogue strategy of the DM and, on the other hand, the
necessary changes in other components of the Let’s Go system (mainly the SP
and NLG, which were also integrated in our system since it’s closely linked to
the RavenClaw DM).

The Bilbao city council has a telephone line to provide information about
the city, including information about public transit. We were provided with
such bus schedule information by the Bilbao city council. This information
consisted of 353 dialogues of which 25 were in Basque and the remainder (328)
in Spanish. 277 of these dialogues were held with female subjects and the
remainder with male subjects. There were a total of 3976 user turns in the
corpus.

To evaluate the user goals, the type of answers, the bus stops requested and
other relevant data, the dialogues were analysed one by one. During the anal-
ysis the focus was especially on the first user turn following the idea that if we
have an open question in the beginning of the dialogue (e.g.: How can I help
you?), if the system is able to correctly understand the first user utterance, it
would be able to conveniently drive the dialogue from that point on. The user
goals in the 010 corpus were compared to those covered by the original Let’s
Go grammar distributed for the Spoken Dialogue Challenge [103]. Some of
these goals were not present in the Let’s Go grammar and were added to the
grammar definition. This grammar was compiled and used to parse the user
turns in the 010 corpus with an off-line version of the Phoenix parser [104],
similar to the one used by the live system.

The result of the off-line parsing are presented in Table 5.1 and an example
of a dialogue extracted from the 010 corpus is shown in Listing 5.1. The
parsing results show that many parsing functions are not covered in the Let’s
Go grammar, and thus this requires modifications in the Let’s Go dialogue
strategy. The Let’s Go grammar was not prepared to deal with frequency, last
or first bus requests. Also, since the phone number used in Let’s Go is the Port
Authority number, the telephone requests were not necessary for the original
system. Instead, for our case, the city council number is different from the
bus company, and there were dialogues where users wanted the current bus
company direct phone number.

These new goals required modifications in many dialogue modules that will be
described in detail in the following sections.

4. Bus Information System Based on Olympus 75

Operator: Good morning 010 you are speaking to Ana
User: Hello, good morning
O: Tell me
U: Yes. Please, could you tell me at what time does the bus number 76 leaves from

Recalde?
O: Yes, We look at it right now, just a moment. 76
U: Six
O: From Artazu Salvador at 8, 8:40, 9, 9:20, 9:40, 10, 10:20
U: So, at o’clock, at twenties and at forties
O: At forties, yes
U: OK
O: Good
U: So, it has the same that, uhm, the same minutes that from Federico Moyua upwards,

that’s it?
O: That is both back and forth
U: Back
O: It is the same time
U: OK, good, thank you very much
O: OK. Thank you for your call. Bye
U: Bye, bye

Listing 5.1: Example of a dialogue in the 010 corpus.

Function Turns Sub-functions Sub-function turns

Time Information 992

Bus Frequency 33
Last Bus 16
First Bus 33

Next Bus (*) 4
Previous Bus (*) 5

Time (*) 775
Time Relative (*) 48

Line Information 71
Bus Number (*) 20
Bus Direction (*) 51

Disambiguation 43
Departure (*) 29

Arrival (*) 13

Generic 1814

Phone 3
Suspend (*) 1

Quit (*) 242
Yes (*) 1023

Good Enough (*) 1
No (*) 563

Don’t Know (*) 61

Table 5.1: User goals detected in the 010 Corpus. Sub-functions observed in the
Let’s Go grammar are marked with (*).

4 Bus Information System Based on Olympus

The final goal of the author is to implement the system presented in this
chapter on a Unix system, although some tests were initially performed with

76 5. Bus Information System Based on EDECAN Framework

the Let’s Go system. On the one hand, this system was used as a platform
to test the programming and operation of the RavenClaw dialogue manager.
On the other hand, it was also used as an initial platform on which make the
necessary changes in the language-dependent components for their adaptation
to the Spanish language.

Although the final system will be described in the next section, this section
details the components that make up the Let’s Go system. That could be
of interest to the reader interested in building dialogue systems. Also, for the
case of language-dependent components (mainly SP and NLG) the information
provided is directly related to the final system since these components are the
same in both systems.

4.1 Architecture

The Let’s Go bus information system is built with the Olympus open-source
framework for SDSs [74]. This framework has all the modules that compose
an SDS: Speech Recognition (PocketSphinx [105]), Natural Language Under-
standing (Phoenix and Helios [106]), Dialogue Management (RavenClaw [75]),
template-based Natural Language Generation (Rosetta [106]) and Synthesis
Engine (Kalliope [74]). These modules communicate with socket-based proto-
cols via a central HUB which was developed to follow the Galaxy-II protocol
[32]. The Interaction Manager [107] will coordinate the modules. There are
other modules such as the DateTime Parser and the Back-end Server that are
also distributed with Olympus. The first one converts text dates into numer-
ical dates, whereas the Back-end implements the communication between the
DM and the database that the system might need to access.

Many of these modules are either language or application dependent. The steps
that were taken to have a fully-working system in Spanish will be described in
the following subsections. The details will be given module by module. The
final architecture is shown in Figure 5.2.

4.1.1 Automatic Speech Recongition

Olympus distribution comes with PocketSphinx [105], an open source large
vocabulary, speaker-independent, continuous speech recognition engine devel-
oped by CMU.

It was decided to use the speech recogniser developed by the group Pattern
recognition and speech technology of the Department of Electricity and Elec-
tronics of the Faculty of Science and Technology of the UPV/EHU. Taking
into account the socket communication protocol implemented for Sphinx, this
recogniser was integrated into the Olympus architecture.

We used acoustic models trained with the Dihana corpus [108], a corpus col-
lected using the Wizard of Oz (WOZ) paradigm and consisting of a set of

4. Bus Information System Based on Olympus 77

Figure 5.2: Let’s Go Spanish Port: System architecture, based on architecture pro-
posed in [2].

900 dialogues in Spanish which task is about railway information for timeta-
bles, fares and services for long-distance trains in the Spanish territory. It was
recorded at 8 KHz.

On the other hand, a language model had to be trained. For that, a script
used to train the PocketSphinx language models, that automatically generates
a corpus from the Phoenix grammar specification, was adapted. The generated
corpus was then converted into a format that can be used by the tools that
are used to generate new language models for the EHU recogniser. A few
changes were introduced in the generation process to respect the gender and
number agreements in Spanish. Five different language models were trained:
Default, Place, Confirmation, Time and Next Query. Default was the one
loaded at the beginning of the dialogue. It was trained with 300k sentences
for all the contexts. Context-dependent models such as Place, Confirmation,
Time and Next Query, are loaded at the corresponding dialogue state. Unlike
the Default corpus, the corpora created to train these language models, only
contains sentences from those states, that is, the Place model was trained with
sentences typically used to ask for a Place information. They were trained with
200k, 5k, 300k and 50k sentences respectively. The number of words in the
lexicon is 421 for Default, 360 for Place, 63 for Confirmation 311 for Time and
117 for Next Query.

4.1.2 Natural Language Understanding

In Let’s Go the Natural Language Understanding task is performed by two
modules: Phoenix does the semantic parsing, and Helios performs confidence

78 5. Bus Information System Based on EDECAN Framework

FRAME: <frame name>
NETS:

[<slot name>]
[<slot name>]

;

Listing 5.2: Phoenix Semantic Parser frames file syntax.

annotation. The parsing is done using recursive transition networks that are
compiled from the grammar definition. To have a network for the system
in Spanish, a new grammar definition was created, according to the needs
identified from the 010 Corpus. Needed steps to create this grammar are
detailed below.

On the other hand, the DateTime module for parsing dates had to be modified.
This module was translated to Spanish. Also, since the system deals with
new time requests: frequency, first and last bus. The DateTime module was
modified to parse these requests correctly.

Finally, for confidence annotation, the model distributed with Let’s Go was
used, although once enough data (around 500 dialogues) is collected from live
users, an adapted model to the system in Spanish should be trained.

4.1.2.1 Parser Grammar Definition

The Phoenix parser maps input word strings onto a sequence of semantic
frames. A frame is a named set of slots, where the slots represent related
pieces of information. Each slot has an associated Context-Free Grammar
that specifies word string patterns that match the slot. The grammars are
compiled into Recursive Transition Networks (RTNs). When filled in by the
parser, each slot contains a semantic parse tree for the string of words it spans.
The root of the parse tree is the slot name. For each application we want to
develop, it’s necessary to define the frames, slots and associated grammars.
This is done by means of defining two files, a frames file and a grammar file.

Frames File

This file specifies the frames that are going to be used by the parser. A frame
represents some basic type of action or object for the application. Slots in
a frame represent information that is relevant to the action or object. Each
slot name has an associated set of grammar rules (defined in the grammars
file we will see below). The slot name will be the root of the corresponding
semantic parse tree. For defining a frame, we must follow the syntax shown in
Listing 5.2. An example of how it would look like, extracted from our system,
is shown in Listing 5.3. In this example, the TimeInformation frame is used
to parse information related to times and dates and PlaceInformation to parse
information related to the places users can speak about.

4. Bus Information System Based on Olympus 79

FRAME: TimeInformation
NETS:

[4 DepartureTime]
[4 ArrivalTime]
[4 DateTime]

;

FRAME: PlaceInformation
NETS:

[1 SinglePlace]
[2 DeparturePlace]
[3 ArrivalPlace]
[4 ComboPlace]
[AnyStop]

;

Listing 5.3: Phoenix Semantic Parser frames file example.

[token name]
(<pattern a>)
(<pattern b>)

MACRO1
(<pattern c>)

MACRO2
(<pattern d>)

;

Listing 5.4: Phoenix Semantic Parser grammar file syntax.

Grammars File

The grammar file contains the grammar rules. The grammars are context-
free rules that specify the word patterns corresponding to the token (network
name). The syntax for a grammar for a token is shown in Listing 5.4.

The notation used in pattern specification is as follows:

• Lower case strings are terminals.
• Upper case strings are macros.
• Names enclosed in [] are non-terminals (calls to other token rules).
• Regular Expressions:

– *item indicates 0 or 1 repetitions of the item
– + indicates 1 or more repetitions
– +* indicates 0 or more repetitions

• #include <filename> reads file at that point.

An example extracted from our system is shown in Listing 5.5.

80 5. Bus Information System Based on EDECAN Framework

[1 SinglePlace]
([stop name])

;

[2 DeparturePlace]
(estoy en [stop name])
(de [stop name])
(desde [stop name])
(∗el NEXT ∗BUS ∗DE [stop name])

NEXT
(próximo)
(siguiente)

BUS
(bus)
(autobús)

DE
(de)
(desde)

;

[stop name]
(san mamés)
(abando)
(universidad)

;

Listing 5.5: Phoenix Semantic Parser grammar file example.

Compiling the Grammar

Once the frames and grammar files have been written, it’s necessary to compile
the grammars. This is done with an application distributed by CMU. The
compilation of the files produces another set of files: forms, base.dic, and
Grammar.net.

The forms file includes the definition of the defined frames and has the same
content than the frames file. The Grammar.net includes the definition of the
RTN grammars and the base.dic includes a list of all the words appearing in
the grammars.

4.1.3 Dialogue Manager

The analysis of the 010 Corpus made in Section 3 showed that user goals
might be different from those originally found in Let’s Go. Thus, the dialogue
strategy had to be modified to deal with them.

For the new Time Information intentions (Frequency, First and Last bus), new
strategies were implemented. This required changes in the backend as well.
For frequency requests, first it was needed to collect all the results for a specific

4. Bus Information System Based on Olympus 81

route within the day of the request. Second, the difference between the first two
departure schedules was computed and the frequency value was set. Third, the
difference between two successive departures was successively computed until
the value was different from the frequency set. Finally, the difference and the
departing time of the previous trip will be returned. For first bus queries, the
query was similar to a normal bus query. However the query returns the first
time posterior to a time value indicating the bus functioning hours. For last
bus, the same idea was followed, but in this case the query returns the last
time prior to this time value. The value used to the time value indicating
the functioning hours was 4:30 am. This time value represents the change of
day time from the bus lines point of view that doesn’t match with the normal
change of day time, that is 12:00 am.

The Phone requests happen since the 010 line is the city council help service
and sometimes they want to talk directly with the bus company. Whenever
the system detects that the bus company phone number has been requested,
the dialogue will immediately jump to a state where the phone number is
provided. Once the number is given, the system goes to the next query state,
where it asks if the user wants to make a bus request or leave the system.

To summarise, the dialogue strategy is shown schematically in Figure 5.3 and
the RavenClaw task tree is shown in Figure 5.4.

NewQuery

Origin
Destination
Time/Date

Next
Bus

Previous
Bus

Phone
Number

Figure 5.3: Basic task specification for the Campus SDS system.

4.1.4 Data Backend

The backend of this system is the bus schedule database. The database used
in Let’s Go uses the postgres format. Whenever a schedule modification takes
place, the local authority generates the new schedules in the Google Transit
Format Specification (GTFS). The schedules in this format are then converted
into a postgres database to keep the compatibility with the previous backend
architecture.

For development purposes the Bilbao Metro schedule from July 2011 in the
GTFS format was obtained from GTFS data exchange [109]. This data was

82 5. Bus Information System Based on EDECAN Framework

B
IZ

K
A

IB
U

S
S

D
S

G
ive

In
tro

d
u

ctio
n

In
fo

rm
W

elco
m

e
In

form
R

ep
ea

tIn
tro

In
form

G
o
o
d

b
ye

In
form

H
an

gU
p

-
T

im
eou

t

In
form

H
an

gU
p

E
x
ecu

te
H

an
gU

p

P
erform
T

a
sk

P
ro

cess
Q

u
ery

In
fo

rm
F

irstP
ro

-
cessin

g

In
fo

rm
S

u
b

seq
u

en
t-

P
ro

cessin
g

E
x
ecu

te
P

re-
p

ro
cessin

g
E

x
ecu

te
B

a
ck

en
d

C
a
ll

G
ive

R
esu

lts

In
fo

rm
P

h
o
-

n
eN

u
m

b
er

In
fo

rm
S

u
ccess

In
fo

rm
E

rro
r

R
eq

u
est

N
ex

tQ
u

ery

In
form

S
tart-

in
gN

ew
-

Q
u

eryE
x
p

ect
G

o
o
d

b
ye

R
ep

eat
R

esu
lt

R
eq

u
est

N
ex

t-
Q

u
ery

E
rror

In
form

R
e-

p
eatS

u
ccess

In
form

R
ep

eatE
rror

G
et

Q
u

ery
S

p
ecs

R
eq

u
est

H
ow

-
IM

ay
H

elp

G
et

R
o
u

te

G
et

D
ep

a
r-

tu
re

P
la

ce

R
etrieve

D
ep

a
rtu

re
S

to
p

s

E
x
p

ect
C

ov
-

ered
R

o
u

te

E
x
p

ect
U

n
covere-

d
R

ou
te

In
fo

rm
U

n
covere-

d
R

ou
te

E
x
p

ect
D

isco
n
tin

-
u

ed
R

o
u

te

In
fo

rm
D

isco
n
tin

-
u

ed
R

o
u

te

R
eq

u
est

D
e-

p
artu

reP
la

ce

E
x
ecu

te
Q

u
ery

D
ep

a
r-

tu
reS

to
p

s

In
fo

rm
N

oD
ep

a
r-

tu
reS

top
s-

M
atch

in
g

In
fo

rm
T

o
oM

a
n
y

S
to

p
s-

M
a
tch

in
g

G
et

O
rig

-
in

P
la

ce
N

eig
h

-
b

o
rh

o
o
d

In
fo

rm
N

eigh
-

b
o
rh

o
o
d

-
S

tra
tegy

R
eq

u
est

D
ep

a
r-

tu
reN

eig
h

-
b

o
rh

o
o
d

R
eq

u
est

D
e-

p
a
rtu

reS
to

p
-

N
eig

h
-

b
orh

o
o
d

E
x
p

ect
D

o
n
t

K
n

ow

In
fo

rm
U

sin
g

D
efau

ltS
to

p

R
eq

u
est

A
rriva

l
P

lace

G
et

A
rriva

l
P

lace

G
et

D
ep

ar-
tu

reA
rriva

l
D

isam
-

b
igu

atio
n

G
et

T
ravel

T
im

e

R
etrieve

A
rrival

S
to

p
s

R
eq

u
est

D
ep

artu
re-

A
rriva

lD
is-

a
m

b
ig

u
a
tio

n

E
x
ecu

te
Q

u
ery

D
e-

p
a
rtu

reS
to

p

In
fo

rm
N

oD
ep

a
r-

tu
reS

to
p

In
fo

rm
T

o
o
M

an
y

S
top

s

R
eq

u
estT

im
e

R
eq

u
est

E
x
a
ctT

rav
-

elT
im

e

R
eq

u
est

E
x
a
ctD

a
te

E
x
p

ect
S

ea
so

n
S

p
ec

H
a
n

d
le

U
n

-
covered

P
la

ce

E
x
p

ect
U

n
-

covered
P

lace

In
fo

rm
U

n
-

covered
P

lace

E
x
p

ect
P

h
o
n

eN
u

m
-

b
erR

eq
u

est

F
ig
u
re

5
.4
:

T
a
sk

T
ree

fo
r

th
e

B
u
s

In
fo

rm
a
tio

n
S
y
stem

im
p
lem

en
ted

w
ith

R
av

en
claw

.

4. Bus Information System Based on Olympus 83

converted into a postgres database.

Minor changes in the backend processing were introduced to accommodate
the new request types and other peculiarities of the Metro Bilbao schedule.
Concerning the requests for first and last bus requests, the hour from when it
starts searching for buses was adjusted to the change of day. The Bilbao Metro
change of day is also different from day-to-day. Fridays it usually runs until
2 am (Saturday) and it does not stop from Saturday morning until Sunday
11 pm. This has to be taken into account whenever querying for first or last
buses.

4.1.5 Natural Language Generation

Rosetta is the Olympus module for language generation. It’s a template-
based NLG system in which generation of sentences is specified by a form,
a sub-form, and attribute values that are used to fill a template. Also, it
can generate variations based on input and context values. It separates the
generic processing, that is, the interface with the dialogue system, from the
domain-specific template processing.

The templates are composed of handwritten entries, which can also be pro-
grammatic functions (to deal with missing slots in the template), and are used
to convert the semantic representation generated by the DM into a sentence in
natural language that can be synthesised. The templates were adapted from
the Let’s Go original templates into Spanish. When converting them, gender
and number variations were taken into account which increased the complexity
of the templates. New sentences for the new types of requests supported by
the system were also added to the templates.

4.1.5.1 Templates Definition

As has been said, Rosetta separates the generic processing from the domain-
specific template processing, and so it’s necessary to write the domain-specific
templates for the system. For writing these templates it’s necessary to generate
as many as request types from the DM which in this system are, inform and
request. The inform request type is used when the DM just wants to give some
information to the user and the request one to ask for some information to the
user. We will have to write two files, Inform.pm and Request.pm. We will
explain the procedure of writing the templates with an example of an inform
request.

When the DM requests for a sentence to be generated it sends a message with
the type of request and some additional information necessary for the NLG.
An example of a such a message, and a template that will generate a sentence
with it, is shown in Listing 5.6.

The NLG extracts the value of the act tag, act calls to the corresponding
template, Inform.pm in this example, providing the rest of the information

84 5. Bus Information System Based on EDECAN Framework

start
{

act inform
object too many stops
place {

name LAS ARENAS
type neighborhood
}

}
end

$Rosetta::NLG::act{”inform”} = {

”too many stops” => sub{
my %args = @ ;
my $place name = getPlaceName(%args);
return ”Sorry, $place name isn’t specific enough.”,
},

}

Listing 5.6: Rosetta Natural Language Generator: Input message and template
example.

$Rosetta::NLG::act{”inform”} = {

”welcome” => ”Welcome to the bus information system”,

”bye” => [”Bye bye.”,
”Good bye.”,
”See you.”

],

”too many stops” => sub{
my %args = @ ;
my $place name = getPlaceName(%args);
return ”Sorry, $place name isn’t specific enough.”,
},

}

Listing 5.7: Rosetta Natural Language Generator: Template example.

on the message as arguments. The invoked template will use the object tag
to generate the required sentence. In the example, this means calling to the
subroutine associated with too many stops to which the place structure will
be passed as an argument. The sentence generated in this example will be:
Sorry, Las Arenas isn’t specific enough.

Listing 5.7 shows another example, as can be seen not only subroutines are
used for sentences generation. Also individual sentences or sets of sentences
from which one will be randomly chosen are used.

4.1.6 Speech Synthesis

On the other hand, for speech synthesis, Olympus uses the Kalliope synthesis
manager. Kalliope can be configured to use four different types of synthesisers:
Festival [110], Flite [111], SAPI [112] and Cepstral Swift [113]. For the system,
it was decided to use Loquendo TTS [100]. Loquendo provides good quality
Spanish voices and support the SAPI interface.

5. Bus Information System Based on EDECAN 85

4.1.7 Telephone Interface

The original Let’s Go telephone interface uses an analogue PBX to send the
calls to the system. That solution relies on hardware that is nowadays obsolete
and is not available in the market.

There is another solution for Olympus based on the PJSIP open source project
[114] that allows the system to connect to a digital PBX using the SIP protocol.
This system had to be configured to connect to the telephony services of the
University of the Basque Country. On the other hand, to route the audio
streams to the PBX, two virtual sound cards had to be emulated using Virtual
Audio Cable 2 [115].

5 Bus Information System Based on EDECAN

The primary goal of this chapter is to create a Phone Bus Information SDS in
Spanish similar to Let’s Go [58].

The Olympus framework could be a good framework to get our goal, but taking
into account that our main goal was to have a fully working system in an Unix-
like system it was unreachable. The Olympus distribution is distributed as a
Windows-only software and although some parts have been ported to Unix-
like systems it was impossible to get a fully working system. So we decided to
build the system under the EDECAN framework [86].

The developed system is providing bus schedules through the telephone to
real users from the University of the Basque Country community that study
or work in the Campus of Leioa, in the north of Spain. This section details
the architecture of the system, its configuration, detailed information about
how each of the system modules was implemented and finally the results of
some experiments carried out related to the user experience and usability of
the system.

5.1 Architecture

The architecture of the system is shown in Figure 5.5. As can be seen, it
consists of the usual elements found in SDSs: ASR, TTS, NLG, NLU and DM.
On the other hand, also has a Phone Interface that is in charge of receiving
phone calls from users. A controller module has also been added. This module
has a double functionality, on the one hand, has the task of distributing the
messages that are exchanged within the system receiving the messages sent by
the other modules and redirecting them to the corresponding module, on the
other hand, acts as an error detection module detecting possible anomalies in
the operation of the system and acting accordingly. EDECAN architecture,
by its construction, is capable of carrying out the first of the functions of the
controller, but it has been decided to add the controller, on the one hand,

86 5. Bus Information System Based on EDECAN Framework

to simplify the development process and, on the other hand, to integrate the
error handling function.

Also, a DM Interface module is available. The proposed system has been
developed under the Linux operating system. At the time of integrating the
DM there was not a version of the RavenClaw DM that could be ported and
integrated natively in the EDECAN framework so it was decided to use the
existing version for the Windows operating system and look for a solution. To
do so, it was decided to use the DM running on its framework, Olympus, and
to develop a module that would serve as a connection between this framework
and the EDECAN framework. This module acts as a client of both frameworks
at the same time transforming the format of the messages of one architecture
to the other and vice versa. Also, this module has been used to perform the
functions of backend server for access to the database of the application.

Finally, a DateTime module is available, responsible for transforming the dates
and times provided by users, in text format obtained after the ASR process,
to the dates format used internally by the DM.

EDECAN
Communication

Manager

Automatic
Speech

Recognition

Natural
Language

Understanding

Natural
Language
Generator

Text
To

Speech

Phone
Interface

Controller

DM
Interface

&
Backend

Olympus
HUB

RavenClaw
Dialogue
Manager

DateTime

Figure 5.5: Architecture of the Campus SDS System.

On the other hand, the communication between the different modules is done
by the exchange of messages that represent commands to be executed by the
different modules. Table 5.2 shows the input and output commands for each of
the modules that make up the system together with their arguments between
parentheses.

The flow of these messages during the execution of the system would be as
follows, remember that all messages go through the controller: Initially, when
receiving a call from a user, the Phone Interface generates a dm init session
message directed to the DM requesting to start a new dialogue.

5. Bus Information System Based on EDECAN 87

INPUT OUTPUT

ASR asr run asr end (text)
SP sp run (text) sp end (text, parsed text)

NLG nlg run (frame) nlg end (text)
TTS tts run (text) tts end (text)

DM
Interface

dm init session
dm hangout

dm nonunderstanding startover
dm nonunderstanding giveup

sp end (text, parsed text)
tts end

asr run
nlg run (frame, Count)

dm end session

Phone
Interface

" " " " "
dm init session

dm hangout

CONTROLLER

dm init session
dm hangout

dm end session
nlg run (frame, Count)

nlg end (text)
asr run

asr end (text)
tts end (text)

sp end (text, parsed text)

dm init session
dm hangout

dm nonunderstanding startover
dm nonunderstanding giveup

nlg run (frame)
sp run (text)

asr run
tts run (text)

Table 5.2: Set of commands (and arguments) for the different modules in the Cam-
pus SDS System.

The DM can respond with two types of messages, inform or request, indicating
that either it wants the system to generate a sentence to inform the user or
wants the ASR to be activated to obtain information from the user. Both
messages imply the synthesis of some information destined to the user but
they have associated a parameter that is used to know if after the synthesis it’s
necessary to activate the ASR or not. These messages arrive at the controller
which generates an nlg run message destined to the NLG to generate the
sentence that will later be synthesised and played to the user. The NLG, after
generating the requested sentence, will send an nlg end message directed to
the TTS which after synthesizing and playing the sentence generates a tts end
message directed to the DM to inform that the audio synthesis has finished.

At this point depending on the value of the mentioned parameter the system
will act in one way or another. In case the parameter indicates the activation of
the ASR, the controller will generate an asr run message to activate the ASR.
The ASR after receiving the message will begin to capture the intervention of
the user to later carry out the recognition process. Once the recognition pro-
cess has finished the ASR generates an asr end message with the recognition
hypotheses directed to the SP which will extract the information and send it
using an sp end message to the DM.

From here, whether the parameter indicates to activate the ASR or not, the
DM will generate a new message (inform or request) and the same messages

88 5. Bus Information System Based on EDECAN Framework

flow will start again until either the end of the dialogue arrives, in which case
a dm end session message will be generated, or the user terminates the call,
in which case a dm hangout message will be generated. Both messages are
intended to restart the system and put it on hold for a new call.

On the other hand, sometimes could occur that the controller detects that
there are problems with the system to understand the users’ interactions and
in such cases the controller will send dm nounderstandig startover or dm -
nounderstanding giveup messages to the DM to inform of such situation and
for the DM to act accordingly.

5.2 Configuring and Launching the System

5.2.1 Audio interface configuration

Audio interchange between the phone interface module with ASR and TTS
respectively is carried out in a different way from that of message interchanging
through the communication manager and controller module.

The surrounding idea of how they communicate is that the different modules
read and write the audio signal from and to the audio interface and therefore
having a module reading from the audio interface what another has written.
The main problem with this approach is that the operating systems don’t allow
having an audio interface opened in both read and write modes at the same
time. To solve this problem the concept of loopback audio device was used and
specifically for the Linux operating system the ALSA Loopback audio device.
An ALSA Loopback audio device is a virtual audio device created once snd-
aloop, an ALSA kernel module, is loaded and that sends back the output signal
back to itself. By default, a Loopback audio device consists of 2 devices, each
composed of 8 subdevices, although the number of subdevices can be changed
with a pcm substreams kernel module option.

In a formal way, this virtual sound card consists of 2 devices:

hw:Loopback,0
hw:Loopback,1

If an application writes its output audio signal to one of the subdevices, let’s
say hw:Loopback,0,0, the audio will be available as input in the corresponding
subdevice hw:Loopback,1,0.

So, the generic principle is that an output signal to subdevice hw:Loopback,i,n
becomes an input signal from hw:Loopback,j,n with

i = [0 .. 1]
j = i (meaning if i = 0, j = 1 and vice-versa)
n = [0 .. (s-1)] with s = number of subdevices

5. Bus Information System Based on EDECAN 89

alias snd−card−0 snd−aloop

options snd−aloop enable=1 index=0 pcm substreams=2

Listing 5.8: /etc/modprobe.d/sound.conf file for the campus SDS system.

ALSA Loopback configuration

For the system under consideration a loopback audio device with two devices
and two subdevices each is needed, one device for the PHONE-ASR audio
interchange and another for the PHONE-TTS interchange.

The first step is to make sure that the snd-aloop kernel module is loaded and
therefore the following command must be executed:

modprobe snd-aloop

or, alternatively, added to the /etc/rc.local file in order for the module to be
loaded at boottime.

As a second step, and to specify the number of devices and subdevices, the
/etc/modprobe.d/sound.conf file must be edited. Listing 5.8 shows the cor-
responding file used for the system. The first line specifies the creation of
a Loopback device, consisting of two devices and the second line establishes
some options for the Loopback device. The enable option indicates that the
Loopback device is active and the pcm substreams indicates the number of
subdevices for each of the devices conforming the Loopback device. On the
other hand, the index option associates an index to the Loopback device. This
is useful to differentiate the Loopback device between other possibly present
audio devices in the system, both virtual and physical, and is also necessary
to specify to an audio software which device to use.

Finally, as the last step and so that the applications that use the ALSA API
have knowledge of the Loopback device and can access it a new file, .asoundrc,
must be created, with the content shown in Listing 5.9. This file must be
located in the user’s home directory or renamed to asound.conf and located in
the /etc directory.

5.2.2 Configuring and Launching EDECAN Services

To make the components belonging to the EDECAN framework work the
procedure is similar to that described in Section 2.2 of Chapter 4. On the one
hand, we must run the services that make the system, and on the other hand,
the communication manager.

For running the services we can do:

90 5. Bus Information System Based on EDECAN Framework

pcm.loop000 {
type plug
slave.pcm ”hw:0,0,0”

}

pcm.loop010 {
type plug
slave.pcm ”hw:0,1,0”

}

pcm.loop001 {
type plug
slave.pcm ”hw:0,0,1”

}

pcm.loop011 {
type plug
slave.pcm ”hw:0,1,1”

}

Listing 5.9: .asoundrc file for the Campus SDS system.

super server 6611 1 6611

In the same way the config files/ services/ services.xml file that lists the con-
figuration files corresponding to each of the services to be launched, and such
services configuration files must be previously defined. These files are included
in Appendix B.

For running the communication manager:

comm manager 6633 6644 localhost config files/router/manager.xml

The corresponding configuration file is given in Appendix B.

5.2.3 Configuring and Launching Olympus Services

Olympus framework is similar to EDECAN framework in the sense that it
consists of a central node that connects with different services and acts as a
message router between them. Similarly, the communication manager (called
HUB) must be run on the one hand, and services on the other hand.

To run the HUB:

CMU HUB -pgm file hubcfg.pgm

Listing 5.10 shows the hubcfg.pgm configuration file. This file specifies the
services that will be connected to the HUB by specifying its ports and ips,
and also specifies the commands that can be sent to the respective services.
On the other hand, it also specifies some rules to execute depending on the type
of messages that the HUB receives. As an example, and looking at the listing,

5. Bus Information System Based on EDECAN 91

SERVICE TYPE: dm interface
SERVICE PROVIDER: dm interface
PROVIDER ID: [dm interface]
OPERATIONS: reinitialize systemutterance be launch query close session
LOCATION: localhost:18000

SERVICE TYPE: DialogManager
SERVICE PROVIDER: DialogManager
PROVIDER ID: [RavenClaw]
OPERATIONS: reinitialize begin session handle event start inactivity timeout

cancel inactivity timeout end session
LOCATION: localhost:17000

SERVICE TYPE: datetime
SERVICE PROVIDER: datetime
PROVIDER ID: [datetime]
OPERATIONS: reinitialize fr ParseDateTime fr ParseTimeRange fr ParseInt SetRefDate

CompactDate GetDateTime ParseDateTime ParseInt begin session
LOCATION: localhost:15000

SERVER: Builtin
OPERATIONS: new session end session increment utterance nop
MODE: singlethread

RULE: :startutt −−> Builtin.increment utterance

RULE: :close session −−> dm interface.close session

RULE: :action type == ”system utterance” −−> dm interface.systemutterance
IN: :properties

Listing 5.10: Campus SDS System Olympus HUB configuration file.

when the HUB receives a message with the :close session field, a close session
command will be sent to the dm interface service.

Finally and to have the system completely functional, it will be necessary to
launch the DialogManager and DateTime services. To do this, we execute the
following commands:

wine DM.exe

and

CMU DateTime

5.3 Modules Implementation Details

5.3.1 Automatic Speech Recognition

This module is responsible for acquiring the user’s audio signal and once it’s
obtained sending it to the speech recognizer and retrieving the recognition

92 5. Bus Information System Based on EDECAN Framework

POST /speech−api/v2/recognize?lang=LANG&key=KEY HTTP/1.1
Host: www.google.com
Content−Type: audio/x−flac; rate=16000
Content−Length: LENGTH

AUDIO DATA

Listing 5.11: HTTP POST request example for the Google Speech API.

hypothesis. When it receives an asr run message it starts recording the user’s
audio signal, capturing it directly from the audio device provided in the service
configuration file, that is connected to the phone interface as explained in
section 5.2.1. A Voice Activity Detector (VAD) detects when the user has
stopped speaking and, at this point, the module sends the audio signal to
Google’s servers and gets the recognition hypotheses. Finally it sends a asr -
end message with the recognition hypothesis embedded in it.

The VAD is based on a states machine in which an energy threshold and a
silence tail can be tuned to adjust the performance. On the other hand, the
audio acquisition was implemented using the Linux ALSA API [116] and for
the recognition hypotheses retrieval, the Google Speech API was used.

Google’s servers accept HTTP POST requests with the audio signal embedded
in the body of the request message and return a text string in JSON format
with the recognition hypotheses. In Listing 5.11 is shown the format of the
HTTP POST request required to use the API. It consists of a call to an URL
to which some parameters are added and a message consisting of a header
specifying the format of the audio signal to be sent and a body in which the
audio signal is embedded. As for the parameters, two of them must be supplied,
on the one hand, a lang parameter specifying the language in which the audio
signal is recorded which can be any valid locale (es-ES, fr-FR, en-US, . . .), and
on the other hand a key parameter, consisting of a key provided by Google and
that can be obtained via Google Developer Console [117]. These parameters
are provided to the module in the corresponding service configuration file.
Regarding the audio format, the Google Speech API accepts several ones but
in the system a 16000 kHz sample rate, 1 channel and 16 bit precision FLAC
audio format was used.

On the other hand Listing 5.12 shows an example of a response provided by the
Google Speech API. It consists of a set of recognition hypotheses labelled with a
confidence score. The module is responsible for extracting the best hypothesis
and once it’s obtained sending it to the system’s controller module.

5. Bus Information System Based on EDECAN 93

{
”result”:[
{

”alternative”:[
{

”transcript”:”hello”,
”confidence”:0.9717918
},
{

”transcript”:”LOL”
”confidence”:0.95454544
}

],
”final”:true
}

],
”result index”:0
}

Listing 5.12: Google Speech API JSON response example.

5.3.2 Semantic Parser

For the SP, CMU’s Phoenix [9] was used. It was ported to the EDECAN frame-
work directly from the code provided by CMU. Just the necessary changes to
integrate it as a module of EDECAN were made.

When the module receives a sp run message it extracts from it the text utter-
ance to parse, extracts the relevant information and sends a sp end message
with the extracted information embedded in it.

As mentioned above the purpose of the system is to provide bus schedules to
the Leioa Campus at the University of the Basque Country in Spain. The
service includes 23 different routes connecting the campus to 46 municipalities
in the region and includes a total of 452 stops. Some semantic grammars were
defined to guarantee coverage of all municipalities, routes and stops. Moreover
a large variety of spontaneous and time/dates expressions were also included
in Phoenix grammars.

5.3.3 Natural Language Generator

We used CMU’s Rosetta [118] for NLG. It’s distributed as a set of Perl language
scripts. For integrating it in the EDECAN architecture a wrapper was written
to run these scripts. Following the steps detailed in Section 4.1.5 the required
templates were created.

When the module receives a nlg run, it extracts the information necessary to
generate a sentence from the message, and when it has been generated sends
a nlg end message with the generated sentence embedded on it.

94 5. Bus Information System Based on EDECAN Framework

5.3.4 Text to Speech

For the TTS module Nuance’s Loquendo TTS [100] was used. The module de-
veloped for the INMA system was reused with a slight modification consisting
in changing the name of the asr run output command to tts end.

When the module receives a tts run it extracts the sentence to be synthesised
from the message and synthesises it. When the synthesis has finished the
module sends a tts end message. The synthesised audio is written to the audio
device indicated in the parameters provided in the service configuration file
and, taking into account that this device is connected to the device from which
the phone interface is reading audio, as explained in Section 5.2.1, played to
the user.

5.3.5 Phone Interface

This module was developed porting PJSUA, a command line SIP User Agent
(UA) written with PJSIP [114] Open source SIP stack, to the EDECAN frame-
work. It’s connected as a client to an Asterisk server provided by the University
of the Basque Country that allows receiving analogue calls.

The phone interface is waiting for client’s calls and when one of them arrives
it sends a dm init session message directed to the DM to start the dialogue.

To configure it as a client the parameters in Listing 5.13 were used. From these
parameters the most important ones are the first set of them which specify the
address of the server to connect to and the username and password to use as a
client. Other important parameters are –capture-dev and –playback-dev which
specify the audio devices to use for audio capture and playback respectively.
The capture device will be the one that is connected to the device from which
the ASR captures the audio and the playback device will be the one that is
connected to the device in which the TTS writes the audio.

5.3.6 Dialogue Manager

As for the DM CMU’s RavenClaw was used. For this module no extra work
was necessary taking into account that it was already developed when testing
it in the Olympus framework (Section 4.1.3). It just was necessary to take the
DM executable file and run it.

5.3.7 Dialogue Manager Interface and Data Backend

As has been said, the DM used in the system was CMU’s RavenClaw [75].
RavenClaw is only distributed as a Windows operating system application.
The portability of this DM to a Unix-based development environment was
unachievable. Thus it was not possible to port the DM to the EDECAN
framework. As a consequence we decided to keep the RavenClaw DM in the

5. Bus Information System Based on EDECAN 95

−−registrar=sip:10.0.14.102
−−realm=softphone@ehu
−−id=sip:34946017481@10.0.14.102
−−username=123456
−−password=123456

−−reg−timeout=3600

−−log−file=pjsua.log
−−app−log−level=5

−−capture−dev=6
−−playback−dev=8

−−snd−clock−rate=8000
−−clock−rate=8000
−−no−vad
−−ec−tail=0
−−quality=10

−−max−calls=1
−−auto−answer=200

Listing 5.13: SIP client configuration file for the Campus SDS System.

Olympus framework, running through the Wine [119] Linux Windows emula-
tor, although it could be running in any windows based machine or windows
virtual machine.

To communicate the DM with the rest of the system this module was de-
veloped to extract the relevant information from the Olympus messages and
translate them into the format used by EDECAN, and vice versa. For reading
and writing the Olympus messages we used the API provided with the Linux
Olympus distribution.

Listing 5.14 shows an example of how a message transformed from the Olympus
framework format to the EDECAN framework format looks.

Data Backend

This module was also used for retrieving data from the backend database
providing the bus lines information. This database is accessed when the DM
wants to confirm the existence of the stop names requested by the user and
when the DM wants to obtain the schedules of the routes requested by the
user. The backend database differs from the one used in Section 4.1.4.

The database requests are as follows: As for the case of looking for confirmation
of the existence of a stop the query to the database reduces to look for the
stop name in a static local database. This database consists of plain text files
containing the routes, stops and timetables that are provided to the module

96 5. Bus Information System Based on EDECAN Framework

{c systemutterance
:session id ”Default”
:properties { c properties

:dialog act ”inform”
:dialog state ”turn number = 0

notify prompts =
dialog state = /LetsGoPublic
nonu threshold = 49467.3203
stack = {

/LetsGoPublic
}
input line config = {

set dtmf len = 1,
set lm = first query
}”

:dialog state index ”0”
:final floor status ”free”
:id ”DialogManager−0:000”
:inframe ”start
{

act inform
object how to get help
repeat counter 0

Count = 0
}
end
”

:utt count ”0”
}

}

<package>
<command>nlg run</command>
<frame>

start
{

act request
object how may i help you directed
repeat counter 0

Count 0
}
end

</frame>
<Count>0</Count>

</package>

Listing 5.14: Example of a message in Olympus framework format (up) and of a
message in EDECAN framework format (down) for the Campus SDS
System.

in its service configuration file.

On the other hand, when requesting for the bus schedules, when an immediate
date is required by the user the module makes a call to a Web Server provided

5. Bus Information System Based on EDECAN 97

by the company responsible for the bus lines. This Web Server accepts HTTP
GET or POST requests and provides the remaining time for a bus to pass
through the origin place provided by the user and which destination is the
one provided by the user. Listing 5.15 shows an example of the HTTP GET
and POST format to use. Finally, when a non-immediate date is required the
information is retrieved from the static local database.

REQUEST:
GET /apps/danok/tqws/tq.

asmx/GetPasoParada?
strLinea=string&
strParada=string HTTP
/1.1

Host: apli.bizkaia.net

RESPONSE:
HTTP/1.1 200 OK
Content−Type: text/xml;

charset=utf−8
Content−Length: length

<?xml version=”1.0”
encoding=”utf−8”?>

<string xmlns=”http://
tempuri.org/
LANTIK TQWS/TQ”>

string
</string>

REQUEST:
POST /apps/danok/tqws/tq.asmx/GetPasoParada

HTTP/1.1
Host: apli.bizkaia.net
Content−Type: application/x−www−form−

urlencoded
Content−Length: length

strLinea=string&strParada=string

RESPONSE:
HTTP/1.1 200 OK
Content−Type: text/xml; charset=utf−8
Content−Length: length

<?xml version=”1.0” encoding=”utf−8”?>
<string xmlns=”http://tempuri.org/LANTIK TQWS

/TQ”>
string

</string>

Listing 5.15: Campus SDS System: Data Backend HTTP GET and POST exam-
ple.

5.3.8 Controller

The main task of the controller is to control the flow of messages within the
system receiving the output messages from all other modules and redirecting
them to the appropriate module. As an example, when it receives a tts -
end message from the TTS module it redirects it to the DM interface to be
sent to the DM to follow the dialogue flow. This module was developed from
scratch.

The controller is also responsible for avoiding infinite dialogue loops caused
by errors in the ASR process. In the messages received from the DM there is
a parameter that indicates the number of consecutive executions of an action
(for example a request for some information). Depending on the value of this
parameter the controller will act as follows: If the value of this parameter
is equal to a predefined number (three in our system) it will send a dm -
nonunderstanding startover message to the DM to make it know there have
been too many recognition errors. The DM will react by asking the user to
restart the dialogue or continue with it. On the other hand, in case of this

98 5. Bus Information System Based on EDECAN Framework

parameter being another predefined value higher than the previous one (six in
our system) the controller will send a dm nonunderstanding giveup message.
In this case the DM will react by finishing the dialogue established with the
user after having informed the user of such a situation.

On the other hand, as has been said, the DM sends inform and request mes-
sages which are both associated with an audio synthesis to be played to the
user. In both cases the DM is informed about the end of the synthesis, but in
the case of the request message after the synthesis the ASR must be activated.
This situation is managed by the controller by maintaining a variable with the
value of the last message from the DM. In the case of this value being request
the controller after sending a tts end message to the DM will send an asr run
message to the ASR module, while the DM will be waiting for a sp end mes-
sage. Instead, in the case of the value being inform the controller will send the
tts end message to the DM which will continue with the next dialogue step.

5.3.9 DateTime

DateTime interprets temporal expressions in user input and resolves them to
absolute dates and times used internally by the DM. The module operates on
fragments of the input parse and makes use of context information, such as
the current time and date, to resolve relative expressions such as ”tomorrow”.
The module also maps numeric expressions.

This module was developed by CMU and covers expressions in English, thus to
integrate it into the system it was necessary to translate all language dependant
strings to Spanish.

5.4 Experimental Evaluation

The primary goal of the experimental evaluation was to evaluate the perfor-
mance, user experience and usability of the system. To this end, 30 users were
selected to take part in the experiments. Users were not given any specific
instructions on how to use the system; they were only informed that the Uni-
versity has a new automatic telephone service providing bus schedules of the
lines connecting the Campus. On average each user made 3.37 calls. Table 5.3
shows the data related to the users when it comes to gender, age, the frequency
of use of the bus lines from which the system offers information as well as the
frequency of use of automatic and computer systems in general.

We first provide a preliminary evaluation of the system regarding the per-
formance (Section 5.4.1) achieved by these users when interacting with the
system. To this end we used the Task Completion (TC) and Average Dialogue
Length (ADL) metrics. TC evaluates the success rate of the system in pro-
viding the user with the requested information, based on the total number of
dialogues carried out and the number of successful dialogues achieved. ADL

5. Bus Information System Based on EDECAN 99

Gender Age User of buses

Male 60% 18-25 26.7% Regular 40%
Female 40% 25-35 13.3% Occasional 23.3%

35-50 43.3% Not user 36.7%
50-65 13.3%
65+ 3.3%

Computer system user

Regular 60%
Occasional 30%
Not user 10%

Table 5.3: Description of the main characteristics and profiles of the set of users
taking part in the experiments

is the average number of turns in a successful task understanding turn as an
intervention of either the system or the user.

Then the main User Experience evaluation is provided. The user experience
was measured via a set of standardised questionnaires. To this end the Sys-
tem Usability Scale (SUS) [120] (Section 5.4.2), the Subjective Assessment of
Speech System Interfaces (SASSI) [121] (Section 5.4.3) and the AttrakDiff 2
[122] (Section 5.4.4) questionnaires were used. A description of these ques-
tionnaires and their evaluation method can be found in Appendix D.

5.4.1 System Performance

Table 5.4 shows the system performance evaluation in terms of TC and ADL
values, Full Queries referring to the queries in which the user has to provide
an origin, a destination and a time/date and Previous-Next Queries referring
to the queries of the user asking for information relative to the previous query,
according to the task description in Section 4.1.3. Listing 5.16 shows examples
of both types of dialogues.

TC ADL

Full Queries 85.71% 12.52
Previous-Next Queries 100% 2.78

Total Queries 87.42% NAN

Table 5.4: Task Completion and Average Dialogue Length of the user-system inter-
action metrics measured during the User Experience evaluation for the
Campus SDS System.

100 5. Bus Information System Based on EDECAN Framework

Although Table 5.4 reveals good TC rates they could be improved mainly by
improving the ASR and the SP. For the ASR, Google allow modifying neither
acoustic nor language models so the only solution could be to use another
ASR system that allows the customisation of these models, i.e. Kaldi [123],
and train better models. Regarding the SP one possible improvement could
be to add common recognition errors as valid parsing values. A clear example
could be the word ”UPV”, that usually is recognised by the ASR as ”ITV”.
It could be possible to add ”ITV” as a synonymous for ”UPV”.

FULL QUERY DIALOGUE:
S: Welcome to the Bizkaibus line information system. Tell me where you are or where you

want to go.
U: I’m at the university.
S: What is your destination?
U: I would like to go to Termibus.
S: What time?
U: As soon as possible, please.
S: One moment, please. There is an A2318 that leaves the university at 15:00. For more

information on buses related to this trip you can say, when is the next bus or, when
is the previous bus. To ask for a different trip, you can say, start a new search.
When you are done, you can say goodbye.

PREVIOUS NEXT QUERY DIALOGUE:
U: What time is next?
S: Just a moment. The next bus that leaves from the university towards Termibus is at

15:30.

Listing 5.16: Dialogue example for the Campus SDS System.

5.4.2 Usability

To get insights regarding the Quality of Experience of the system, i.e. the
perception of the system on a general level, selected aspects of the taxonomy
by Wechsung [124] were investigated. In detail, the usability, learnability,
and intuitivity were measured with the SUS questionnaire. The questionnaire
consists of a set of ten statements which users must grade their agreement on
a scale from 1 to 5, being 5 the user to strongly agree with the sentence and
1 to strongly disagree.

From the answers to these questions the SUS score is obtained. SUS scores
fall between 0 and 100, the higher the score the better the overall usability.
Scores below 50 are typically considered as not acceptable [125]. Table 5.5
shows results obtained for a subset of the questionnaire. The SUS score was
67.75 (sd = 17.56). Hence, even though the perceived ease of use of the system
is rather good, the overall usability may be improved.

5. Bus Information System Based on EDECAN 101

I thought the system was easy to use
I thought there was too much
inconsistency in this system

1 2 3 4 5
0

3

6

9

12

1 2 3 4 5
0

3

6

I think that I would like to use
this system frequently

I would imagine that most people
would learn to use this system very quickly

1 2 3 4 5
0

3

6

9

1 2 3 4 5
0

3

6

9

12

Table 5.5: Results for a subset of the SUS questionnaire.

5.4.3 Speech Assessment

The SASSI questionnaire, developed to measure users’ subjective experiences
with speech recognition systems, was employed to examine the interaction
quality. Users are given a series of statements, which they grade according
to their agreement with them on a scale from 1 to 6. The analysis of the
questionnaires provides developers with an assessment of the system along
several axes such as easiness, friendliness, speed, etc. Scores are summarised
in Figure 5.6, Tables 5.6 and 5.7 shows results obtained for ”Habitability” and
”Speed” respectively. The higher the value on a subscale the more participants
agreed that the system performance was good. Results indicate that ”Response
Accuracy” (3.62), ”Annoyance” (3.33) and ”Habitability” (3.7) were judged
as neutral, ”Likeability” (4.02) as fair and ”Cognitive Demand” (4.68) and
”Speed” (4.47) good.

102 5. Bus Information System Based on EDECAN Framework

I sometimes wondered if I was using
the right word

I always knew what to say to the system

1 2 3 4 5 6
0

3

6

9

12

1 2 3 4 5 6
0

3

6

9

I was not always sure what the system was
doing quickly

It is easy to lose track of where
you are in an interaction with the system

1 2 3 4 5 6
0

3

6

1 2 3 4 5 6
0

3

6

9

Table 5.6: SASSI questionnaire results: Habitability subset.

The interaction with the system is fast The system responds too slowly

1 2 3 4 5 6
0

3

6

9

2 3 4 5 6
0

3

6

9

Table 5.7: SASSI questionnaire results: Speed subset.

5. Bus Information System Based on EDECAN 103

Response
Accuracy

Likeability Cognitive
Demand

Annoyance Habitability Speed
1

2

3

4

5

6

Figure 5.6: SASSI. Mean values and standard errors.

5.4.4 Attractiveness

AttrakDiff 2 is a questionnaire aimed at measuring the user experience based
on a model consisting of hedonic and pragmatic qualities of software prod-
ucts. Users are given a set of 28 questions which they grade on a scale
from 1 to 7. Each of the aspects attractiveness, pragmatic quality, hedo-
nic quality-stimulation, and hedonic quality-identity is represented by seven
items. Some examples are: unpleasant-pleasant or ugly-pretty (attractive-
ness), complicated-simple or confusing-clear (pragmatic quality), conventional-
original or conservative-innovative (hedonic quality-stimulation), lacking style-
stylish or poor quality-high quality (hedonic quality-identity).

An aspect to take into account about the AtrrakDiff 2 questionnaire is that
it was designed to evaluate the attractiveness of software products in which
graphical user interfaces are used. But given the aspects it measures (a de-
scription can be found in Appendix D), the author of this thesis understands
that these are also found in other types of systems not using graphical inter-
faces, as is the case of the system being evaluated. So the author proposes the
use of AttrakDiff 2 questionnaire to evaluate speech-based systems.

Figure 5.7 shows the mean scores for each of the four subscales. Tables 5.8
and 5.9 shows results for pragmatic quality and hedonic quality-identity re-
spectively. This test shows that the users find in general the system pleasant
an easy to use as expected. What surprises most of an automatic telephone
information system is that the user does not give it very low scores in he-
donic quality-stimulation and hedonic quality-identity subscales. This fact is
probably due to the lack of quality in the automatic information systems the
participants know and use (rerouting, ticketing, weather information, etc.)

104 5. Bus Information System Based on EDECAN Framework

Technical - Human Complicated - Simple

1 2 3 4 5 6 7
0

3

6

9

1 2 3 4 5 6 7
0

3

6

9

Impractical - Practical Cumbersome - Straightforward

1 2 3 4 5 6 7
0

3

6

9

12

1 2 3 4 5 6 7
0

3

6

9

Unpredictable - Predictable Confusing - Clearly Structured

1 2 3 4 5 6 7
0

3

6

1 2 3 4 5 6 7
0

3

6

Unruly - Manageable

1 2 3 4 5 6 7
0

3

6

Table 5.8: Attrakdiff 2 (Pragmatic Quality) results.

5. Bus Information System Based on EDECAN 105

Isolating - Connective Unprofessional - Professional

1 2 3 4 5 6 7
0

3

6

9

12

1 2 3 4 5 6 7
0

3

6

9

Tacky - Stylish Cheap - Premium

1 2 3 4 5 6 7
0

3

6

9

12

1 2 3 4 5 6 7
0

3

6

Alienating - Integrating Separates me from people - Brings close to people

1 2 3 4 5 6 7
0

3

6

9

12

1 2 3 4 5 6 7
0

3

6

9

12

Unpresentable - Presentable

1 2 3 4 5 6 7
0

3

6

9

Table 5.9: Attrakdiff 2 (Hedonic Quality-Identity) results.

106 5. Bus Information System Based on EDECAN Framework

Pragmatic
Quality

Hedonic
Identi-
fication

Hedonic
Stimulation

Attraction
1

2

3

4

5

6

Figure 5.7: AttrakDiff 2. Mean values and standard errors.

6 Concluding Remarks

We have created in this chapter a Phone Bus Information SDS in Spanish sim-
ilar to Let’s Go under the Unix-based EDECAN framework. To this end, we
have integrated the RavenClaw DM in EDECAN framework by a communica-
tion module that makes this DM available to work in the Unix environment.
The system provides schedules and stops information about some regional mu-
nicipalities connecting the Campus. A preliminary system performance eval-
uation involving a reduced set of initial users showed good task completion
rates. The user experience has been evaluated through a set of standardised
questionnaires including SUS, SASSI and AttrakDiff 2, resulting in a quite
good user experience regarding usability and good scores in some SASSI and
attractiveness aspects. Neutral scores will be improved with some work on
Language Understanding modules.

6
Systems Based on

ActiveMQ

1 Introduction

In the previous chapter it has been built a system that allows being adapted
to different tasks. In the system the RavenClaw DM has been used. From
the knowledge acquired about this DM, it was found to be adequate for its
adaptation to different tasks and at the same time for the implementation of
complex tasks. To confirm these two hypotheses two additional works includ-
ing said DM have been carried out. For them, the ActiveMQ [84] messaging
broker has been used. ActiveMQ is a messaging broker that allows the inter-
connection of different services and applications via a message interchanging
mechanism that consists of a set of queues in which the different services can
read from and write to. When a service wants to send a message to another
service, the first writes the message in a queue and the second reads it from
the same queue.

In Section 2 the RavenClaw DM has been tested within the vAssist SDS system
[126]. For that, the DISCO-based DM used in the vAssist system has been
replaced with the RavenClaw DM. Additionally, the vAssist system has been
translated to the Spanish language. To compare the performance of both
DMs an experimental evaluation has been carried out. Section 3 describes the
preliminary steps on the development of a personal assistant humanoid robot.
More precisely, the dialogue system design for an anthropomorphic assistant
robot, Roberta, in which the RavenClaw DM has been integrated.

2 vAssist

This section presents some works carried out with the vAssist SDS system, a
system developed under the vAssist project [127].

The project aims to provide voice-controlled Home Care and Communication
Services for seniors suffering from chronic diseases and persons suffering from
motor skills impairments. The primary goal is the development of simplified

108 6. Systems Based on ActiveMQ

and adapted interface variants for telemedical and communication applications
using multilingual natural speech and voice interaction. vAssist aims to en-
hance the perceived quality of healthcare services and to enable a reduction
in the costs related to their production and delivery by achieving channel in-
dependence in the delivery of vAssist services, so that existing hardware and
interfaces in the home of the users can be used such as PC, TV, mobile phone
or tablets.

The vAssist SDS system is based on an open and adaptive software architec-
ture that allows for an easy configuration of SDSs according to a given target
scenario, user requirements and context. It’s based on the Disco plan-based
DM [128] and the Linked Form Filling (LFF) task model. The works carried
out consisted in, on the one hand, extending the system to integrate the Span-
ish language (initially English, French, German and Italian languages were
supported), and, on the other hand, integrating an alternative DM (CMU’s
RavenClaw) for comparison purposes.

A multilingual lab evaluation of the final vAssist assistive home care and com-
munication service applications running on a smart-phone was carried out.
Such was carried out with real users in Austria, France and Spain. The evalu-
ation was carried out in terms of system performance. On the other hand the
experimental comparison of the Disco-LFF DM and the RavenClaw DM work-
ing within the same SDS architecture, dealing with the same task and language
(i.e. Spanish), and interacting with the same users, was carried out.

This section first will describe the vAssist SDS system architecture, then the
implementation details for the new language integration and DM replacement
will be given and finally the results of the experimental evaluation will be
given.

2.1 Architecture

The vAssist SDS extends the usual chained design (i.e. ASR + NLU + DM
+ NLG + TTS). Components were split into sub-modules and new processes
were integrated into a state-of-the-art workflow chain. Figure 6.1 shows the
resulting SDS architecture.

2.1.1 Speech Recognition

The system uses the Google Speech API where an HTTP POST request trans-
mits the signal segment to be recognised. The API returns the n-best hypothe-
ses, being n a parameter of the request, as well as the confidence score for the
best one. An empty result is returned when the segment cannot be recognised
with enough confidence, i.e. when it does not contain speech.

2. vAssist 109

Figure 6.1: vAssist: System architecture.

2.1.2 Semantic Parsing

The SP, which gets inputs from the ASR, associates semantic labels to text
utterances (or parts of them). The most commonly used parsing techniques
are based on context-free grammars or probabilistic context-free grammars,
which are either hand-coded, based on the analysis of collected dialogue data,
or designed by experts. It integrates the algorithm proposed by [129], which
is the application of the work from [130]. Instead of matching whole sentences
with parse structures, the algorithm looks for patterns in chunks of the text-
level utterance and the temporary (i.e. currently assigned) Semantic Frame
(SF). The module applies an ordered set of conditional rules, which is learned
from data.

2.1.3 Natural Language Generation

A simple but effective solution to produce natural language utterances con-
veying the DM’s messages was targeted. Input messages are SFs. The engine
is fed with a set of templates that consist of a title (identical to an SF’s goal)
associated with an utterance, and whose parts may be replaced by slot names
or slot name-value pairs. The result is a natural language utterance to be
synthesised or displayed on a screen.

2.1.4 Text to Speech

MaryTTS [131], an open-source speech synthesis framework maintained by
the Cluster of Excellence MMCI and the DFKI, is used for synthesis. It offers
pre-built voice models for different languages as well as tools to create and
manipulate them. The MaryTTS module is a client connected to a generating
server (hosted local or remote). A request containing the text to be synthesised
with additional prosodic information is sent to the central server, which returns

110 6. Systems Based on ActiveMQ

the speech stream. The text-to-speech module of the present platform is a basic
client program embedded into an ActiveMQ wrapper.

2.1.5 Semantic Unification and Resolution

The Semantic Unifier and Reference Resolver (SURR) holds a rather simplistic
forest of nodes which is used to mine the dialogue history, incorporate external
information sources and add local turn context. It’s the meeting point of the
user’s semantic frames, the external environment sensors and functions, the
dialogue history, and the links generated by the context catcher.

At its core the SURR embeds a forest structure. Trees consist of hierarchies
of fully or partially defined SFs (some nodes are calls to external systems or
services). When requested, the SURR may dynamically modify (remove/add)
branches of the forest. The top node of a hierarchy defines the root.

The SURR algorithm tries to find a unique path from an input SF, i.e. from
the parsed user input, to nodes of the forest, to a root node. Going up the
trees, the algorithm applies the optional operations held on branches.

Reaching a root node equals the user input being contextualized [132]. In
case the algorithm cannot find such a path, i.e. the SURR fails to produce a
suitable SF (given the current context and available knowledge), a “NoMap”
SF is generated to signal a ’non-understanding’ to consecutive components.

2.1.6 Dialogue Act Mapping

As a last stage of the NLU processing, the dialogue act mapping is performed.
Once an input has been parsed, external and local references have been re-
solved, and the semantic level has been unified, the ultimate step is to convert
the SF into a Dialogue Act (DA). Following an input, the mapper retrieves a
set of available DAs. Then it looks for a unique match between the SF and
the set of DAs.

2.1.7 Dialogue Management

The core of the implemented DM is based on Disco [133], an open-source dia-
logue management library, whose algorithm processes task hierarchy models.
A dialogue model is a constrained XML tree of tasks. The plan recogniser uses
the recipes defined in the dialogue models and this dialogue state to select the
best available plans for the tasks in the stack. Then the reasoning engine
selects the most appropriate next step.

In an attempt to overcome the hurdles inherent to the specification of task
models, the dialogue modelling paradigm was shifted to a LFF one. Form-
filling dialogues are based on structures containing sets of fields which the
user needs to provide a value for to trigger a terminal action. The order in

2. vAssist 111

which the DM asks for the values is not predefined. The user may define
multiple field values within a single utterance/turn.

The LFF language offers to combine these properties with the ability to trigger
actions at any point of the dialogue and the inclusion of subforms. Further-
more, fields and subforms can be optional, i.e. either be ignored when unset
or proposed to the user. Here, the unlimited depth of a task model to circle
tasks while keeping a sequencing order was used; i.e. the link between two
task nodes is a reference, hence a node can point to its ”parent” node.

The aim of the LFF language is to offer a somehow simpler design method
to a powerful standard dialogue modelling specification. Since it’s also an
XML based language we opted for XSLT to convert an LFF document into a
compliant dialogue model.

A number of rules were defined to create a well-formed LFF document. Doing
this, the relative reduction in terms of code size and task hierarchy depth was
76% and 77%, respectively.

2.2 Adding Languages and RavenClaw DM Integration

2.2.1 Adding Languages

The addition of a new language (Spanish in this case) consisted of two steps.
On the one hand, the creation of the NLG templates, and on the other hand
the creation of the SP rules.

NLG Templates

The creation of the NLG templates is very straightforward. The NLG gener-
ates the sentences from two parameters: A dialogue act and a topic associated
with such dialogue act. When the NLG receives a message it extracts these two
parameters and searches in the templates file for a sentence matching the two
parameters. If there are several sentences for the same parameters a random
one is chosen.

As an example, when receiving the following message:

Ask.What : slot = drug;

the NLG will search for a sentence matching the Ask.What dialogue act and
the drug topic generating the following sentence:

¿Cómo se llama el medicamento que desea añadir?
(What is the name of the drug you want to add?)

Listing 6.1 shows a reduced example of the final file.

112 6. Systems Based on ActiveMQ

Ask.What:Qué prescripción desea cambiar? [/slot=prescription id/]
Ask.What:Qué prescripción desea modificar? [/slot=prescription id/]
Ask.What:Desea suprimir? o modificar la prescripción [/slot=type/]
Ask.What:Cómo se llama el medicamento que desea añadir? [/slot=drug/]
Ask.What:A partir de cuándo debe tomar el medicamento? [/slot=from/]
Ask.What:Durante cuánto tiempo tiene que tomar el medicamento? [/slot=

prescription period/]
Ask.What:Qué periodo de análisis desea? [/slot=sleep analysis period/]
Ask.What:Quiere usted confirmar? [/slot=confirmation/]
Ask.What:Son correctos los datos? [/slot=confirmation/]
Ask.What:Qué información quiere cambiar? [/slot=field/]
Ask.What:Qué información quiere modificar? [/slot=field/]
NoMap:Lo siento, Le importaŕıa repetir?
NoMap:Entend́ı /reco/ pero no puedo relacionarlo con el contexto actual
NoMap:Entend́ı /reco/ pero esa acción no está disponible
NoMap2:Su petición no está disponible. Se puede decir nuevo medicamento o enviar un

mensaje. [/goal=undefined/]
NoMap2:Puede decir buenos d́ıas o presión sanguinea [/goal=undefined/]
Feedback:Su mensaje ha sido enviado [/dialog=message/]
Feedback:El mensaje ha sido enviado [/dialog=message/]
Feedback:Se ha enviado su mensaje [/dialog=message/]
Feedback:Su tensión ha sido registrada [/dialog=bloodpressure/]
Feedback:Se ha registrado su tensión [/dialog=bloodpressure/]

Listing 6.1: vAssist SDS: NLG template file example.

SP Rules

The process of creating the rules used by the SP consisted of the creation
of a database consisting of sentence/sp-label pairs. Subsequently, through an
automatic process, this database was analysed and, from the analysis, the rules
were extracted. Listing 6.2 shows a reduced example of the file used.

2.2.2 RavenClaw DM Integration

To integrate RavenClaw in the architecture shown in Figure 6.1, the original
Disco-LFF DM was substituted. As in the case of previous systems using
RavenClaw, it was used as a service of its native architecture, Olympus. A
module responsible for translating the message format defined by RavenClaw
to the message format defined by the Disco-based component and vice versa
was developed. On the other hand, the dialogue model trees used by the
Disco-LFF DM were replicated within RavenClaw.

2.3 Experimental Evaluation

2.3.1 Task and Experimental Scenarios

To empirically evaluate the operation of the developed voice-controlled ap-
plication running on a smartphone under standardised condition, several sce-

2. vAssist 113

3 meses <=> input(number=3,period=meses)
1 año <=> input(number=1,period=año)
desayuno en casa <=> input(intake time=desayuno)
comprimidos <=> input(dosage form=comprimidos)
a partir del 2 de noviembre <=> input(month name=noviembre,day number=2)
lunes 17 noviembre <=> input(month name=noviembre,day number=17,day=lunes)
martes 18 noviembre <=> input(month name=noviembre,day number=18,day=martes)
a las 9h 25 <=> input(wake up time=9h 25)
dos horas <=> input(hour=dos)
mañana <=> input(relative date=mañana)
dos pastillas <=> input(dosage form=pastillas)

Listing 6.2: vAssist SDS: SP training file example.

narios were defined and implemented. In detail, the following scenarios and
associated tasks were applied for the experimental study:

• The Prescription Management enables to monitor medical prescriptions
and individual intake times. To evaluate this scenario, participants were
asked to add a new predefined prescription to the application database
and to set a reminder for it (AP). The application requests information
regarding name of medication, quantity, dosage form, frequency, and
time of intake.

• The Health Report (HR) provides an overview of physiological data.
Participants filled in predefined glycaemia and blood pressure data.

• The Sleep Report (SR) monitors sleep quality. The following data was
provided by the users: the time he/she went to bed, the time he/she
fell asleep, and their wake-up times. Participants also reported awake
periods at night and the total number of hours slept. Finally, users
were asked to rate their well-being on a six-point scale. Furthermore,
the evaluation included setting a reminder to remember completing the
sleep report (SRR).

• Fitness Data Management consists in reporting daily activities (FD) and
setting reminders for the reports. Within the evaluation, participants
were asked to enter a new report including the duration of their fitness
activity.

• The Communication Services include sending messages (SM) and initi-
ating phone calls (PC). Participants were asked to test both functions.

2.3.2 Experimental Evaluation

Two series of experiments were carried out: We evaluated the vAssist sys-
tem including the Disco-LFF engine in three languages: French, German and
Spanish. Further, we compared the RavenClaw and Disco-LFF DMs built into
the vAssist system with Spanish users.

Sixteen users took part in the experiments in each of the trial sites. In France,

114 6. Systems Based on ActiveMQ

14 male and 2 female persons between 65 and 90 years (mn=77.0) participated
in the study. In Austria, 8 male and 8 female participants between 60 and 76
(Mn=68.0) years old took part. The Spanish trial site included 12 males and
4 females between 26 and 69 (Mn=39.6) years.

Users were first shown the smartphone application, followed by a short demon-
stration and usage advices. The experimental scenarios were then carried out
without any other introduction than the simple description of the goal. It was
up to the user to figure out how to perform each task.

The system’s performance was measured in terms of TC, i.e. success rate, and
ADL, i.e. efficiency. TC evaluates the success rate of the system in providing
the user with the requested information, based on the total number of dialogues
carried out and the number of successful dialogues achieved for a specific task.
ADL is the average number of turns in a successful task.

2.3.2.1 System Performance

The first series of experiments was carried out in France, Austria and Spain,
evaluating the vAssist system with the Disco-LFF DM. Table 6.1 shows the
system performance evaluation in terms of TC and ADL values.

French German Spanish
TC ADL TC ADL TC ADL

AP 93.33% 8.00 88.88% 8.18 84.00% 13.62
HR 100.00% 3.15 93.33% 3.78 100.00% 4.41
SR 91.66% 7.81 100.00% 7.25 100.00% 10.18

SRR 83.33% 3.40 100.00% 3.50 87.50% 5.78
FD 100.00% 3.00 66.66% 3.00 93.75% 4.53
SM 100.00% 3.86 100.00% 4.62 100.00% 6.21
PC 100.00% 1.92 100.00% 1.82 100.00% 2.00

Average 97.12% 4.44 95.18% 4.73 92.19% 6.21

Table 6.1: TC and ADL of the vAssist system using the Disco-LFF DM.

Table 6.1 reveals good TC rates, with the French version being the one generat-
ing the highest system performance and the Spanish version the one producing
the lowest. Surprisingly, the results show that the vAssist system performance
is not better for younger users (Spain: mn=39.6 years) than for older ones
(France: mn=77 years). Language dependent modules, i.e. the ASR and,
more importantly, the NLU, were more robust in French and German. Span-
ish results suffered from a less robust semantic parser and the missing mobile
UI, leading to a higher number of turns to achieve the task goals.

2.3.2.2 Disco-LFF and RavenClaw DM Comparison

The second series of experiments was carried out in Spanish only. Note that
both DMs were integrated in the same architecture (Figure 6.1), i.e. only
the task planning and the agent execution differed. Each user carried out the

3. Personal Assistant Robot Dialogue System 115

Disco-LFF DM RavenClaw DM
TC ADL TC ADL

AP 84.00% 13.62 94.40% 15.64
HR 100.00% 4.41 100.00% 4.90
SR 100.00% 10.18 83.30% 11.90

SRR 87.50% 5.78 75.00% 6.08
FD 93.75% 4.53 92.80% 4.30
SM 100.00% 6.21 100.00% 6.64
PC 100.00% 2.00 100.00% 2.42

Average 92.19% 6.21 89.90% 6.60

Table 6.2: Comparing the Disco-LFF and RavenClaw DMs.

scenarios defined in Section 2.3.1 with either of the DMs. Table 6.2 shows
the system performance achieved by both systems in terms of TC and ADL,
for each of the defined subscenarios. Both metrics show similar behaviour for
the Disco-LFF and the RavenClaw DM. A Z-test comparing the average TC
proportions and the ADL means showed no statistically significant difference
between the two DMs (p-value = 0.05). A detailed scenario-based analysis
showed, however, differences between TC values in the AP and the SR sce-
narios, which correspond to longer dialogues in terms of the ADL metric. A
previous series of experiments has furthermore highlighted a certain lack of ro-
bustness exhibited by the language dependent modules of the Spanish vAssist
version. This issue was more evident in longer dialogues (AP and SR).

3 Personal Assistant Robot Dialogue System

This section describes work on dialogue system design for personal assistant
humanoid robots. It was carried out during eNTERFACE’16 [134] workshop, a
workshop organized around several research projects dealing with multimodal
human-machine interfaces design. During the project, the dialogue system
design for an anthropomorphic assistant robot, Roberta, was developed. The
focus is on the first stage of LifeLine Dialogues, meaning conversational cre-
ation of stories about a user’s life. The goal of the project was to help the
elderly record semi-autobiographical narratives while combating the deteri-
oration of memory and speech abilities. Modelling of dialogue scenarios for
first-time users were completed. This allows Roberta to personalize future con-
versations based on each user’s place of origin, work and education history, and
hobbies, which are all information gathered during a user’s first conversation
with Roberta. This was accomplished through, on the one hand, an adapt-
able dialogue system with topic administration and multi-modal functionali-
ties, specifically face recognition, by extending RavenClaw-type management
framework, and on the other hand, the customization of user relationship with
Roberta by introducing contextual data, conversation history, and emotion

116 6. Systems Based on ActiveMQ

awareness.

The long-term plan is for both users and Roberta to initiate topics for conver-
sations, fight memory lapse and speech deterioration of users, and ultimately
for Roberta to become a companion, not solely an assistant. The initial focus
and the topic of this section is on creating a dialogue management system for
intuitive interaction possibilities with Roberta for first-time users. During the
first meeting, Roberta is able to set up a conversation history per user, ask
for critical information about the user’s life to begin a user’s LifeLine in a
conversational manner, and gather visual data from the environment, a face
to be precise, to detect the user after his/her first encounter.

3.1 Architecture

The system developed consists of an input perception layer, an understanding
module, an interaction module that includes the dialogue manager which also
manages a user blackboard, a dialogue history blackboard and an open domain
conversational agent that gets information from a digital repository and a final
output layer. Figure 6.2 shows the architecture of the system.

Figure 6.2: Roberta: System architecture.

As has been said, this architecture was implemented using ActiveMQ which
makes possible the interconnection of different services and applications via a
message interchanging mechanism that consists of a set of queues in which the
different services can read from and write to. Figure 6.3 shows a schematic of
the interconnection of the different modules.

As can be seen, besides having the different system modules interconnected via
ActiveMQ queues, for the DM Interface we have that it’s also connected to the
CMU Olympus HUB which at the same time is connected to the RavenClaw
DM. As for the case of the Bus Information System presented in Chapter 5, the

3. Personal Assistant Robot Dialogue System 117

wget http://www.apache.org/dyn/closer.cgi?filename=/activemq/5.14.5/apache−
activemq−5.14.5−bin.tar.gz

tar −xvvf apache−activemq−5.14.5−bin.tar.gz

./apache−activemq−5.14.5/bin/linux−x86−64/activemq

Listing 6.3: Installing and running ActiveMQ.

communication with the RavenClaw DM had to be done via its communication
manager, and so, it was necessary to have a DM Interface connected to both
ActiveMQ framework and Olympus framework at the same time acting as a
message translator between both frameworks.

Controller

ASR SP

Face
Recognition

NLGOutput

DM
Interface

Olympus
HUB

RavenClaw

Figure 6.3: Roberta: Architecture implementation with ActiveMQ.

On the other hand, it has been chosen to add a Controller module to act as a
message routing manager. It receives the output messages from all the other
modules and depending on the input message decides the order of execution of
the rest of the modules. As an example, when it receives an input message from
the ASR it extracts the content of the message (the recognition hypotheses)
and sends it to the SP.

3.2 Configuring and Launching the System

This section explains how to configure and launch all the system modules.
On the one hand, it will be necessary to launch the services connected to
the ActiveMQ broker, and on the other hand, the RavenClaw DM that is
connected to the Olympus framework.

3.2.1 Configuring and Launching ActiveMQ Services

Before launching the ActiveMQ services it will be necessary to install and run
the ActiveMQ broker itself. Listing 6.3 shows how to do that.

Once the ActiveMQ broker is installed and running, the next step is to run
the different modules. It’s done like shown in Listing 6.4. For each of the

118 6. Systems Based on ActiveMQ

java −jar DMINTERFACE.jar failover://tcp://localhost:61616 DMIN CONTROLIN
java −jar ASR.jar 16000 1 16 256 plughw:0,0 en−US GOOGLE SPEECH API KEY

failover://tcp://localhost:61616 ASRIN CONTROLIN
java −jar SP.jar data/Grammar roberta.net failover://tcp://localhost:61616 SPIN

CONTROLIN
java −jar NLG.jar data/rosetta/perl/main.pm failover://tcp://localhost:61616 NLGIN

CONTROLIN
java −jar jar/CONTROL.jar failover://tcp://localhost:61616 CONTROLIN
java −jar jar/FACERECOGNIZER.jar failover://tcp://localhost:61616 CONTROLIN

Listing 6.4: Roberta SDS: Commands to run the ActiveMQ modules.

{
”activemq queue in”: ”TTSIN”,
”activemq queue out”: ”CONTROLIN”,
”uri”: ”http://localhost:59125/process”,

}

Listing 6.5: Roberta SDS: Output module configuration file.

modules the last three arguments are, the URL where the ActiveMQ broker
is installed, the name of the queue from which the module reads the input
messages and the name of the queue to which the module writes the output
messages. Alternatively, other arguments are provided. For example, in the
case of the SP, it’s provided with the directory where the grammar files are
located and the name of the grammar net to use.

Of all the modules, the Output module is still not running. It’s started with
the following command:

./roberta

This executable file reads a JSON configuration file where the location of the
ActiveMQ broker, the input queue to read messages from and the output queue
to write messages to are specified. Listing 6.5 shows this file.

3.2.2 Configuring and Launching Olympus Services

Olympus framework consists of a communication manager (called HUB) that
connects with different services and acts as a message router between them.
To make all the components work, the communication manager on the one
hand, and the services on the other hand must be launched.

To run the communication manager:

CMU HUB -pgm file hubcfg.pgm

Listing 6.6 shows the hubcfg.pgm configuration file. This file specifies the
services that will be connected to the HUB by specifying its ports and IPs,

3. Personal Assistant Robot Dialogue System 119

SERVICE TYPE: DialogManager
SERVICE PROVIDER: DialogManager
PROVIDER ID: [RavenClaw]
OPERATIONS: reinitialize begin session handle event start inactivity timeout

cancel inactivity timeout end session
LOCATION: localhost:17000

SERVICE TYPE: VAssistRavenclawServer
SERVICE PROVIDER: VAssistRavenclawServer
PROVIDER ID: [VAssistRavenclawServer]
OPERATIONS: reinitialize systemutterance
LOCATION: localhost:1201

SERVER: Builtin
OPERATIONS: new session end session increment utterance nop
MODE: singlethread

RULE: :startutt −−> Builtin.increment utterance

RULE: :action type == ”system utterance” −−> VAssistRavenclawServer.
systemutterance

IN: :properties

Listing 6.6: Roberta SDS: Olympus HUB configuration file.

also specifies the commands that can be sent to the respective services. On the
other it also specifies some rules to execute depending on the type of messages
that the HUB receives.

On the other hand, for running the services (in this case, just the RavenClaw
DM):

wine DM.exe

3.3 Modules Implementation Details

3.3.1 ActiveMQ Services Programming

The system modules were written in Java language code. ActiveMQ provides
a Java API for programming the services. Listing 6.7 shows a template of
how an ActiveMQ client should be written. In the constructor class all the
initializations are done. Mainly, the input and output queues are created.

On the other hand, in the run() method is where all the logic of the service
occurs. It consists of a loop in which the service loads the input messages,
processes them, and generates the output messages.

120 6. Systems Based on ActiveMQ

3.3.2 Automatic Speech Recognition

For the ASR, again, Google ASR was used. An external application written in
C language code was written responsible for acquiring the user’s speech input,
sending it to Google’s servers, and retrieving the recognition hypotheses. This
application was included in the ActiveMQ service via a system call. Regarding
the procedure of sending the audio signal to Google servers and recognition
hypotheses retrieval, what was said in Section 5.3.1 of Chapter 5 is applicable
here as well.

public class EXAMPLECLASS implements Runnable {
static String URL, queue in, queue out;
static Session session;
static Destination destination in, destination out;
static MessageConsumer consumer;
static MessageProducer producer;
static ConnectionFactory connectionFactory;
static Connection connection;

EXAMPLECLASS(String[] args) throws JMSException {
URL = args[2];
queue in = args[3];
queue out = args[4];

connectionFactory = new ActiveMQConnectionFactory(URL);
connection = connectionFactory.createConnection();
connection.start();

session = connection.createSession(false, Session.AUTO ACKNOWLEDGE);

destination in = session.createQueue(queue in);
destination out = session.createQueue(queue out);

consumer = session.createConsumer(destination in);
producer = session.createProducer(destination out);
}

public void run() {
TextMessage out;

while (true) {
try {

Message message = consumer.receive();
String text = ((TextMessage) message).getText();

... DO SOMETHING ...

out = session.createTextMessage(output message);
producer.send(out);

}
} catch (Exception ioe) {
}
}

}

Listing 6.7: ActiveMQ service structure.

3. Personal Assistant Robot Dialogue System 121

3.3.3 Semantic Parser

As for the SP, CMU’s Phoenix was used. Again, like in the case of the ASR
an external application was developed and then integrated into the ActiveMQ
service via a system call. This external application was a slightly modified
version of the one distributed by CMU.

On the other hand, regarding the Phoenix grammars, a dataset of sentences
was collected, analised and transformed in grammar rules and concepts. This
dataset set was obtained from 15 participants and gave some initial constructs
and vocabulary to work with. Functions used in the parser are “name”,
“place”, “yes”, “no”, “age”, “ask feeling”, “ask age”, “ask name”, “ask place”,
“and you”, “ask occupation”, “occupation”, “occupation academic”, “no occu-
pation”, “work topic”, “work place”, “work passion love”, and “work passion
hate”.

3.3.4 Natural Language Generator

CMU’s Rosetta [118] was used for NLG. As already has been said it consists
of a set of Perl language files. Its integration into the service was, again, done
via a system call. On the other hand, the corresponding sentence generation
templates had to be written.

3.3.5 Output

The goal of this service is to provide an output consisting of a facial animation
in sync with the TTS. For the facial animation Unity game engine was used
and for the TTS Cerevoice [135] was used.

GRFL’s Base Liza 3D model with meshed viseme animations [136] were used.
This saved time since it included animation clips for facial expressions and pre-
generated viseme articulations. The phonemes served by the Cerevoice text-to-
speech instance are mapped to their matching visemes for the English language
and synchronized with the 3D animations and the synthesized audio.

3.3.6 Face recognition

The purpose of this module is to initialize a new dialogue each time it recog-
nizes a user is present. Additionally, it can recognize the identity of the user.
At the time of having detected a user it will send a message directed to the
DM to start a new dialogue. This message will include the user’s identity with
which the DM will start a different kind of dialogue. These dialogues can be
questions about the user’s life, work and hobbies in the case of being a new
user of the system, or, questions about these same data for a known user.

To identify the user, 2D face images were extracted from a video. To this end,
the SudFrog (Telecom SudParis Face Recognition Open-source using Gabor

122 6. Systems Based on ActiveMQ

Filters) software [137] was adapted and integrated into the system.

The scenario and data flow is the following: a set of known subjects were en-
rolled with their faces. The enrolment phase consists of face and landmarks
detection to calculate the eyes and mouth positions to create the biometric
template of the person. This will represent the subject for further compar-
isons, to perform the identification phase. Therefore, first a face detection al-
gorithm is running. When it detects a face, the module will extract an image
of the face, and next step is to perform the geometric and illumination nor-
malizations. From this normalized image, the Gabor features are extracted.
This features and next compared to the existing templates recorded during
previous enrolments, and the identifier of the most similar subject is passed
to the DM. The DM continues the process by asking if it’s the person or not.
Regarding the answer the DM will choose the dialogue strategy.

3.3.7 Dialogue Manager Interface

The DM used in the system was CMU’s RavenClaw [75]. As for the case of the
Bus Information System in Chapter 5 it was decided to integrate RavenClaw
running in its framework, Olympus, and thus it was necessary to implement a
module in order to extract the relevant information and to translate the format
of the messages used within the Olympus framework to the format used within
this system, and vice versa.

Listing 6.8 shows an example of how a message transformed from the Olympus
framework format to the format used within this system looks.

3.3.8 Controller

The purpose of this module is to receive the output messages from all the other
modules in the system and redistribute them to the appropriate module. As
an example, when it receives a message from the ASR with the recognition
hypotheses it will redirect this message to the SP.

On the other hand, as was explained in Chapter 5, the DM sends inform
and request messages which are both associated with an audio synthesis to be
played to the user. In both cases the DM is informed about the end of the
synthesis, but in the case of the request message after the synthesis the ASR
must be activated. This situation is managed by the controller by maintaining
a variable with the value of the last message from the DM. In the case of this
value being request the controller after receiving a message informing about
the end of the audio synthesis will send a message to the ASR to activate it.
Instead, in the case of the value being inform the controller will just send a
message to the DM, informing about the end of the audio synthesis, which will
continue with the next dialogue step.

3. Personal Assistant Robot Dialogue System 123

{c systemutterance
:session id ”Default”
:properties { c properties

:dialog act ”inform”
:dialog state ”turn number = 0

notify prompts =
dialog state = /LetsGoPublic
nonu threshold = 49467.3203
stack = {

/LetsGoPublic
}
input line config = {

set dtmf len = 1,
set lm = first query

}”
:dialog state index ”0”
:final floor status ”free”
:id ”DialogManager−0:000”
:inframe ”start
{

act inform
object how to get help
repeat counter 0

Count = 0
}
end
”

:utt count ”0”
}

}

inform#start
{

act request
object how may i help you directed
repeat counter 0

Count 0
}
end

Listing 6.8: Example of a message in Olympus framework format (up) and of a
message in ActiveMQ framework format (down) for the Roberta SDS
System.

3.3.9 RavenClaw Dialogue Manager

As for the DM CMU’s RavenClaw was used. The design of the dialogue
strategy to implement in RavenClaw was extracted from the analysis of a pre-
viously created dialogues corpus acquired via the WOZ technique. The WOZ
prototyping platform used can be found on 1, it’s specifically for designing
interactions based on natural language processing [138]. The data collection
method consisted of the wizard managing all dialogues. Beforehand, possible

1https://github.com/stephanschloegl/WebWOZ

124 6. Systems Based on ActiveMQ

utterances that the wizard can make the system say to a participant were cre-
ated. For unexpected participant responses, the wizard provided utterances ad
hoc, and these ad hoc instances were considered and incorporated as needed
in building the DM. Even though the greater goal for Roberta is to offer open
domain dialogues, the first stage of development was directed towards limited
scenarios that mimic initial conversations between two strangers. The corpus
was created with 15 participants to collect interaction data and user strategies
covering four initial preidentified topics i.e. (1) introduction, (2) professional
life, (3) hobbies, and (4) conversation closing. Below are two sample conver-
sations from our experiments:

Conversation 1
Roberta: Hi I am Roberta. Do you want to register and talk with me?
User: Yes I would like that.
R: What is your name?
U: John.
R: Where are you from?
U: Israel. And you?
R: I’m from Enschede. Do you know it?
U: Yes I do, but I still prefer Israel.
Conversation 2
R: What’s your job?
U: I’m now working on an airport security project.
R: What tasks do you do?
U: That’s very specific. Right now I am working on voice activation.
R: Tell me about your typical workday.
U: Well I wake up around eight and come to work.
R: Wonderful. What did you study?
U: I studied electrical engineering in France.

Figure 6.4 displays the dialogue structure extracted from the WOZ conver-
sations. An agency was defined for each topic based on the WOZ scenarios.
The interaction dialogues gathered served as a guide for designing the agen-
cies. The flexible dialogue structure relies on concepts that act as triggers that
control agency or subtree execution, which results in topic change as often as
needed. For example, if a user brings up a hobby, this triggers the system’s
interest in this hobby. It will search in the knowledge repository to check for
any relevant information about this hobby, or if the hobby is recognised in
the user blackboard or the dialogue blackboard history as an attribute value,
then the system can ask the user about his/her hobby via a request agent.
On the other hand, WOZ experiment participants expressed a tendency to
ask questions to the system. To accommodate this, an ”and-you” agency was
added, which used some expectation agents to make the dialogue more nat-
ural, and also information agents that give the system possible answers (cf.
Figure 6.5).

3. Personal Assistant Robot Dialogue System 125

Roberta

ProfessionalIntroAuthentication Hobbies Family End

want a joke?nice to talk tell joke say goodbye

want joke=yes

Figure 6.4: Roberta SDS System: Dialogue structure.

3.4 Demonstrator

At the end of the eNTERFACE workshop it was possible to test the dialogue
system developed via a system demonstrator. Figure 6.6 shows a screenshot
of such demonstrator.

Figure 6.6: Roberta: Screenshot of the Roberta SDS demonstrator.

126 6. Systems Based on ActiveMQ

R
ob

erta

P
ro

fessio
n
al

In
tro

A
u
th

en
tication

H
o
b
b
ies

A
n
d

yo
u
?

H
ow

are
you

?
O

rigin
ally

from
A

ctu
ally

live

m
y

origin
k
n
ow

it
on

like
it

on
in

fo
o
rig

in
m

y
p
lace

k
n
ow

it
act

like
it

act
in

fo
actu

a
l

h
ow

are
you

origin
ally

fro
m

actu
ally

live

k
n
ow

it=
yes

k
n
ow

it=
n
o

k
n
ow

it=
yes

k
n
ow

it=
n
o

F
ig
u
re

6
.5
:

R
o
b

erta
S
D

S
S
y
stem

:
D

ia
lo

g
u
e

stru
ctu

re
fo

r
w

h
en

u
sers

a
sk

q
u
estio

n
s.

7
Conclusions

In a world in which technology and technological devices have become ha-
bitual and omnipresent, humans need to learn to communicate with all kind
of devices. Until recently, humans needed to learn how the devices express
themselves to communicate with them. But in recent times the tendency
has become to make communication with these devices in more intuitive ways.
Taking intuitiveness into consideration, the ideal way to communicate with de-
vices would be the natural way of communication between humans, the speech.
In this context, humans have long been investigating and designing systems
that use this type of communication, giving rise to the so-called SDSs.

In the described context, based on different contacts carried out with the en-
terprise world, the research group to which the author of this thesis is assigned
detected a need for such dialogue systems, which awoke in the group and the
author of this thesis the interest for this type of systems. The research group
focused on engineering and in building functional and reliable systems. Several
systems were built.

With the above in mind, the primary goal of this thesis has been to describe
the developed systems and to show how they were implemented. Also, to show
how the difficulties encountered were solved. Additionally, the thesis serves as
a review of the state-of-the-art regarding architectures and toolkits focused on
the development of SDSs. Finally, it has also been written in the hope that it
will serve future developers of SDSs as a guide for their construction.

During the development of the systems several conclusions and contributions
were obtained. They are summarised next.

• A review of frameworks for SDSs development has been carried out.
Along with the implementation of the different systems, has made it
possible to see that the choice of an appropriate framework is an im-
portant task. Depending on the specifications of the system we want to
develop we can choose one framework or another. Among these specifi-
cations the platform (operating system) on which the framework works
and the set of components it provides. Regarding the first, not all frame-
works are designed to be used on all platforms, and regarding the second,
depending on the set of components the framework provides we can save
more or less development time. It has also shown that it’s important to
choose a framework which allows as much modularity as possible, as this

128 7. Conclusions

will facilitate the future replacement of components.
• We have developed several components to implement SDSs under EDE-

CAN framework. It’s an important achievement as we provide a new set
of components to this framework that will facilitate the implementation
of future systems.
• We have made it possible to use the RavenClaw DM in other frameworks

apart from its native one, Olympus. This is of interest since RavenClaw
is a state-of-the-art DM and it’s interesting that it can be integrated into
other frameworks. Also, in the specific case of the EDECAN framework,
it’s of particular interest since this framework does not currently have
any dialogue management module.
• The development of a new framework to implement SDSs focused on

mobile devices has been carried out. This is interesting because nowadays
almost everyone has one of these devices and it’s useful to have some
platform that allows us the development of systems focused on them.
On the other hand, this platform is also attractive because it enables the
creation of SDSs and speech-based applications in a straightforward way
by reducing its implementation to the edition of a single XML-based file.
• We have developed a set of SDSs aimed to deal with a variety of applica-

tions, e.g. weather forecast retrieval, bus schedules information retrieval,
personal and elderly assistance, under a variety of frameworks, namely,
EDECAN, Olympus, RTMIVA and ActiveMQ. We think this task could
be useful because we contribute to the development and evolution of
the SDSs and, as well, because these systems will help future developers
learn how the SDSs can be built.
• We analysed the users’ experience in a telephone information system for

buses through a set of standardised questionnaires including SUS, SASSI
and AttrakDiff 2. These questionnaires are useful for studying the opera-
tion of systems. They give an idea of what users think about the systems
and we can analyse what aspects can be improved. The questionnaires
resulted in a quite good user’s experience regarding usability. Also, good
scores in some SASSI and attractiveness aspects were obtained. We have
seen that some aspects could be improved by improving mainly the lan-
guage dependent components of the system.

After all this work, we have verified that the implementation of SDSs is a
complex task due to the amount of components necessary for its operation.
One of the primary problems encountered when developing these systems has
to do with the technology underlying each of the different elements that in-
tegrate the systems. The current technology is not free of errors and makes
these components not to perform always optimally. A clear example of this
are the mistakes in the ASR modules, they not always are able to correctly
recognize what the users say. Therefore, methods to handle these errors have
to be designed.

Finally, this type of systems are evolving by leaps and bounds and very likely
will become a daily reality. Hence the interest of this thesis.

A
EDECAN Architecture

Specification

1 Introduction

EDECAN is a communication interface for development of distributed applica-
tions, based on TCP/IP protocols and XML messages interchange. It’s based
on the client-server paradigm and is built using three main components: a
communication manager, a set of servers and a set of services running inside
the servers. Additionally, it’s possible to have a controller connected to the
communication manager in order to manage a system. Figure A.1 shows such
an architecture.

Communication
Manager

Service 3

Service 2

Service 1

Service 4

Service 5

Service 7 Service 6

Controller

Server A

Server B

Server C

Figure A.1: EDECAN architecture block diagram.

Communication Manager

The communication manager is the central node of any system. It acts as a
set of clients of several servers and has three main purposes:

130 A. EDECAN Architecture Specification

• Routing messages from and to services in the servers. By default, it’s
done based on a static routing table defined by the developer although
it’s possible to do dynamic routing from information obtained from the
message itself.
• Making modifications on system services such as connecting, disconnect-

ing, subscribing or unsubscribing them.
• Acting as server, wait for a controller connection in order to initializing

a system or modifying an existing one.

Server

A server consists on an application that is waiting for incoming service requests
from a communication manager. When a service request arrives it launches
the requested service in a new system process and continue listening for new
requests. The responsibility of the subsequent interaction with the communi-
cation manager falls in the service created.

Service

A service is an application launched by a server under a communication man-
ager request. When a service request arrives to a server the associated message
has the information of the service requested, this information is passed to the
service created by the server and said service loads the configuration files for
the service requested and launch it.

2 Communication Protocol and Routing Modes

2.1 Communication Protocol

EDECAN architecture is built using SOCK STREAM sockets under TCP pro-
tocol. The communication between the services on a system is done via XML
messages over these sockets. The basic form of a message is shown in Listing
A.1.

<?xml version=”1.0”?>
<package>

<command>NAME</command>
<argument>VALUE</argument>
...
...

</package>

Listing A.1: EDECAN basic message example.

The communication manager and services are responsible of sending and re-
ceiving the messages. When a message arrives they parse it and obtain the

2. Communication Protocol and Routing Modes 131

values of the relevant fields. There are two possible behaviours depending on
which one is receiving a message.

Service

When a service receives a message there are two possibilities:

• First Reception: The first message received by a service is always a con-
nection package. In this case the content of the field ”comando” should
be ”conexion” and additionally there should be another field specifying
the service requested, for example ¡service¿TTS¡/service¿. Extra fields
are also allowed.

• General case: The content of the field ”comando” is extracted, the ser-
vice configuration file is acceded and the function associated with the
command called, passing to it the full XML package in order to parse
the function arguments if needed.

Communication Manager

In this case there are also two possibilities depending on the routing mode (see
Section 2.2).

2.2 Routing Modes

Forced Routing

When a service generates a message it’s possible to include ”from” and ”to”
attributes in the root of the message. In this case the communication manager
will route the message to service indicated in ”to” attribute in case it exists.
An example of such a message is shown in Listing A.2.

<?xml version=”1.0”?>
<package from=”service1” to=”service2”>

...

...
</package>

Listing A.2: EDECAN forced routing message example.

Static Routing

When a message doesn’t include ”from” and ”to” attributes will be routed
following the static routing table provided in the system configuration file (see
Section 3.1). An example of such a message is shown in Listing A.3.

132 A. EDECAN Architecture Specification

<?xml version=”1.0”?>
<package>

...

...
</package>

Listing A.3: EDECAN static routing message example.

3 System Configuration

3.1 Communication Manager

Launching Application

In order to launch a communication manager there are two options.

When using the first one, it must be invoked with three arguments like shown
below.

comm manager controller port DNS port DNS ip

On the other hand, when using the second one it must be invoked with four
arguments as follows:

comm manager controller port DNS port DNS ip config file

Configuration File

When invoking the communication manager with a configuration file, the sys-
tem is built reading this file. The configuration file specifies the services to
launch and the routing table between them. Listing A.4 shows an example of
a configuration file with two services.

It can be seen that the configuration file consist of two main sections. On
the one hand, a section defined in ”servicios” node that specifies the ser-
vices that will be part of the system. Each service is defined in a ”servicio”
node and it must specify ”puerto”, ”direccion” and ”tipo servicio” indicating
communication port and address, and service type respectively. Additionally
”configuracion” and ”configuracion file” can be added. This fields are used to
pass arguments to the service at launching time is needed. When using the
”configuration” field the arguments are specified inside the field and in case
of using ”configuration file” field it specifies the path of a file including the
arguments.

On the other hand, a section defined in ”tabla routing” note. This section
specifies the routing table between the services of the system.

3. System Configuration 133

<?xml version=”1.0”?>
<manager>

<services>
<service name=”Service1”>

<port>6611</port>
<address>localhost</address>
<location>LAB</location>
<configuration>

<arg1>VALUE<arg1>
<arg2>VALUE<arg2>

</configuration>
<service type>service1</service type>

</service>
<service name=”Service2”>

<port>6611</port>
<address>localhost</address>
<location>LAB</location>
<configuration file>PATH TO ARGS FILE</configuration file>
<service type>service2</service type>

</service>
</services>

<routing table>
<Service1>

<Service1>0</Service1>
<Service2>1</Service2>

</Service1>
<Service2>

<Service1>0</Service1>
<Service2>1</Service2>

</Service2>
</routing table>

</manager>

Listing A.4: EDECAN communication manager example configuration file

3.2 Server

Launching Application

In order to launch a server following command must be invoked:

server puerto ini incremento puerto fin

Configuration File

When a server is launched it loads a file defining the services available. An
example of such a file is shown in Listing A.5. It specifies the path of the files
defining the available services on the server.

134 A. EDECAN Architecture Specification

<?xml version=”1.0”?>
<services>

<service1>path to file/service1.xml</service1>
<service2>path to file/service2.xml</service2>
<service3>path to file/service3.xml</service3>
<service4>path to file/service4.xml</service4>
<service5>path to file/service5.xml</service5>

</services>

Listing A.5: EDECAN server example configuration file.

3.3 Service

Defining a Service

In order to define a service two elements are needed. On the one hand, a
dynamic library implementing the service’s functions and on the other hand
a XML configuration file specifying the commands the service responds to.
Listing A.6 shows an example of a service configuration file. This configuration
file must include the name of the service, the name of the dynamic library
associated with the service and the set of commands the service responds
to.

<?xml version=”1.0”?>
<service name=”NAME”>

<so>libNAME.so</so>
<dll>libNAME.dll</dll>
<command nombre=”conexion”>

<function>entrada</function>
</command>
<command nombre=”desconexion”>

<function>salida</function>
</command>
<command nombre=”desconexion caidagestor”>

<function>salida caidagestor</function>
</command>
<command nombre=”command1”>

<function>command1 associated function</function>
</command>
<command nombre=”command2”>

<function>command2 associated function</function>
</command>
<command nombre=”command3”>

<function>command3 associated function</function>
</command>

</service>

Listing A.6: EDECAN service example configuration file.

Regarding the dynamic library it must meet two requirements:

4. Controller Commands 135

• All functions associated with a command in the service’s configuration
file must be implemented in the dynamic library.

• These functions must have the following format:

int function name(char *xmlIN, char **xmlOUT, void **usr);

where xmlIN and xmlOUT parameters are used by the service to send
and receive data to the communication manager and usr parameter is
used as a pointer to a memory address in which the dynamic library can
allocate and free memory for data structures.

On the other hand, the dynamic library can implement functions not following
the EDECAN function format, but these functions can not be associated to
service command and can be only used as auxiliary functions in order for the
service to achieve its task.

4 Controller Commands

The controller can send system configuration orders to the communication
manager in order to be executed.

In general, the format of the commands sent is a text string with a determined
number of arguments space separated and being the first parameter the type
of order to execute, and the rest the auxiliary arguments.

Mount System

This order is aimed to mount a new system. The text string sent is as follows:

montar sistema config file

The first argument identifies the order as ”montar sistema” is a text string
containing a XML text string with the system configuration file. The config-
uration file must specify the services to be connected by the communication
manager, specified by IP, port number and service type, and also must contain
a static routing table. An example of a system configuration file is shown in
Listing A.4.

Umount System

The communication manager can handle only one system at a time. So, if a
new system is desired to be mounted without having to restart the communi-
cation manager, it’s possible to send an umount order that will disconnect all
the connected services and resources will be freed.

The text string sent is as follows:

desmontar sistema

136 A. EDECAN Architecture Specification

Add New Service

It is possible to add a new service to an already mounted system. The order
sent to the communication manager is as follows:

alta servicio config file

The second argument corresponds to a configuration file specifying service’s
data such as name, IP address, port, service type and routing table. An
example of a configuration file for adding a new service is shown in Listing
A.7.

<service name=”New Service”>
<port>6520</port>
<address>localhost</address>
<location>LAB</location>
<config file>NONE</config file>
<service type>New Service</service type>

<routing table send>
<Service1>0</Service1>
<Service2>1</Service2>
<Service3>1</Service3>

</routing table send>
<routing table rec>

<Service1>1</Service1>
<Service2>1</Service2>
<Service3>0</service3>

</routing table rec>
</service>

Listing A.7: EDECAN communication manager example add new service
configuration file

Remove Service

If desired to remove a service from a mounted system, it’s possible to do it
with an order as follows:

baja servicio service name

where service name is the name of the service to remove from the system.

Connect Service

It could be possible that a service is part of a system but it’s disconnected (it
has just been inserted in the system, it’s down because of a failure, ...) and
we want to connect it again. Such a situation can be solved sending an order
as follows:

conectar servicio service name

where service name is the name of the service to connect.

4. Controller Commands 137

Disconnect Service

If for any reason is desired to disconnect a service from the system without
unloading it, it can be done sending the order:

desconectar servicio service name

where service name is the name of the service to disconnect.

Modify System’s Routing Table

If it’s desired to modify the full routing table of a system it can be done with
the command:

config rutas sistema config file

The second argument of the command is a configuration file specifying the new
routing table. An example of a configuration file is shown in Listing A.8.

<routing table>
<Service1>

<Service1>0</Service1>
<Service2>1</Service2>

</Service1>
<Service2>

<Service1>0</Service1>
<Service2>1</Service2>

</Service2>
</routing table>

Listing A.8: EDECAN communication manager example routing table

Modify Service’s Routing Table

Instead of modifying the routing table of the entire system, it’s also possible
to modify the routing table of an unique service. The format of the order to
send to the communication manager is as follows:

config rutas servicio config file

where the first argument is the name of the command to be executed by
the communication manager and the second one is a XML configuration file
specifying the new routing table for the service. Listing A.9 shows an example
of a configuration file.

<Service1>
<Service1>0</Service1>
<Service2>1</Service2>
<Service3>1</Service3>

</Service1>

Listing A.9: EDECAN communication manager example service routing table

138 A. EDECAN Architecture Specification

Request System’s Services Information

It’s possible to obtain information for each of the services of a system such as
name, IP address, port, configuration file and connection state (that is, if a
service is connected or disconnected). It’s done via the string:

info sistema

When the communication manager receives the command replies with a text
string containing the information.

Request System’s Routing Table Information

For obtaining the routing table of a system the controller can send a command
as follows:

info sistema rutas

When the communication manager receives the command replies with a text
string containing the system’s routing table.

B
Systems Based on

EDECAN: Configuration
Files

1 Campus SDS System

<?xml version=”1.0”?>
<manager>

<services>
<service name=”controller”>

<port>6611</port>
<address>localhost</address>
<location>LAB</location>
<configuration>

<log dir>log dialogos</log dir>
</configuration>
<service type>controller</service type>

</service>

<service name=”dm”>
<port>6611</port>
<address>localhost</address>
<location>LAB</location>
<configuration>

<routes file>../data/backend/rutas.txt</routes file>
<stops file>../data/backend/paradas.txt</stops file>
<timetables file>../data/backend/horarios.txt</timetables file>

</configuration>
<service type>dm</service type>

</service>

<service name=”nlg”>
<port>6611</port>
<address>localhost</address>
<location>LAB</location>
<configuration>NONE</configuration>
<service type>nlg</service type>

</service>

<service name=”tts”>
<port>6611</port>

140 B. Systems Based on EDECAN: Configuration Files

<address>localhost</address>
<location>LAB</location>
<configuration>

<audiodevice>loop010</audiodevice>
<fsamp>8000</fsamp>
<voice>Jorge</voice>

</configuration>
<service type>tts</service type>

</service>

<service name=”VOIP”>
<port>6611</port>
<address>localhost</address>
<location>LAB</location>
<configuration>

<cfg file>../data/voip.cfg</cfg file>
</configuration>
<service type>VOIP</service type>

</service>

<service name=”asr”>
<port>6611</port>
<address>localhost</address>
<location>LAB</location>
<configuration>

<audiodevice>loop011</audiodevice>
<fsamp>16000</fsamp>
<channels>1</channels>
<bitsample>16</bitsample>
<nsamples frame>256</nsamples frame>
<language>es−ES</language>
<api key>XXXXXXXXXXXXXXXXXXXXXXXXXXXXX</api key>

</configuration>
<service type>asr</service type>

</service>

<service name=”sp”>
<port>6611</port>
<address>localhost</address>
<location>LAB</location>
<configuration>

<parser grammar dir>../data/phoenix/Grammar</parser grammar dir>
<parser grammar name>DigaTask.net</parser grammar name>

</configuration>
<service type>sp</service type>

</service>
</services>

<routing table>
<controller>

<controller>0</controller>
<VOIP>1</VOIP>
<dm>1</dm>
<nlg>1</nlg>
<tts>1</tts>
<asr>1</asr>
<sp>1</sp>

</controller>

1. Campus SDS System 141

<VOIP>
<controller>1</controller>
<VOIP>0</VOIP>
<dm>0</dm>
<nlg>0</nlg>
<tts>0</tts>
<asr>0</asr>
<sp>0</sp>

</VOIP>

<dm>
<controller>1</controller>
<VOIP>0</VOIP>
<dm>0</dm>
<nlg>0</nlg>
<tts>0</tts>
<asr>0</asr>
<sp>0</sp>

</dm>

<nlg>
<controller>1</controller>
<VOIP>0</VOIP>
<dm>0</dm>
<nlg>0</nlg>
<tts>0</tts>
<asr>0</asr>
<sp>0</sp>

</nlg>

<tts>
<controller>1</controller>
<VOIP>0</VOIP>
<dm>0</dm>
<nlg>0</nlg>
<tts>0</tts>
<asr>0</asr>
<sp>0</sp>

</tts>

<asr>
<controller>1</controller>
<VOIP>0</VOIP>
<dm>0</dm>
<nlg>0</nlg>
<tts>0</tts>
<asr>0</asr>
<sp>0</sp>

</asr>

<sp>
<controller>1</controller>
<VOIP>0</VOIP>
<dm>0</dm>
<nlg>0</nlg>
<tts>0</tts>
<asr>0</asr>
<sp>0</sp>

</sp>

142 B. Systems Based on EDECAN: Configuration Files

</routing table>
</manager>

Listing B.1: Campus SDS System communication manager configuration file.

<?xml version=”1.0”?>
<services>

<controller>config files/services/controller.xml</controller>
<VOIP>config files/services/VOIP.xml</VOIP>
<dm>config files/services/dm.xml</dm>
<nlg>config files/services/nlg.xml</nlg>
<tts>config files/services/tts.xml</tts>
<asr>config files/services/asr.xml</asr>
<sp>config files/services/sp.xml</sp>

</services>

Listing B.2: Campus SDS System services configuration file.

<?xml version=”1.0”?>
<service name=”asr”>

<so>libASR.so</so>
<command name=”conexion”>

<function>entrada</function>
</command>
<command name=”desconexion”>

<function>salida</function>
</command>
<command name=”desconexion caidagestor”>

<function>salida caidagestor</function>
</command>
<command name=”asr run”>

<function>asr run</function>
</command>
<command name=”asr stop”>

<function>asr stop</function>
</command>

</service>

Listing B.3: Campus SDS System ASR EDECAN module configuration file.

<?xml version=”1.0”?>
<service name=”sp”>

<so>libSP.so</so>
<command name=”conexion”>

<function>entrada</function>
</command>
<command name=”desconexion”>

<function>salida</function>
</command>
<command name=”desconexion caidagestor”>

<function>salida caidagestor</function>
</command>
<command name=”sp run”>

<function>sp run</function>
</command>

1. Campus SDS System 143

</service>

Listing B.4: Campus SDS System SP EDECAN module configuration file.

<?xml version=”1.0”?>
<service name=”nlg”>

<so>libNLG.so</so>
<command name=”conexion”>

<function>entrada</function>
</command>
<command name=”desconexion”>

<function>salida</function>
</command>
<command name=”desconexion caidagestor”>

<function>salida caidagestor</function>
</command>
<command name=”nlg run”>

<function>nlg run</function>
</command>

</service>

Listing B.5: Campus SDS System NLG EDECAN module configuration file.

<?xml version=”1.0”?>
<service name=”tts”>

<so>libTTS.so</so>
<command name=”conexion”>

<function>entrada</function>
</command>
<command name=”desconexion”>

<function>salida</function>
</command>
<command name=”desconexion caidagestor”>

<function>salida caidagestor</function>
</command>
<command name=”tts run”>

<function>tts run</function>
</command>
<command name=”tts stop”>

<function>tts stop</function>
</command>

</service>

Listing B.6: Campus SDS System TTS EDECAN module configuration file.

<?xml version=”1.0”?>
<service name=”dm”>

<so>libDM.so</so>
<command name=”conexion”>

<function>entrada</function>
</command>
<command name=”desconexion”>

<function>salida</function>
</command>
<command name=”desconexion caidagestor”>

144 B. Systems Based on EDECAN: Configuration Files

<function>salida caidagestor</function>
</command>
<command name=”dm init session”>

<function>dm init session</function>
</command>
<command name=”dm end session”>

<function>dm end session</function>
</command>
<command name=”dm nonunderstanding start over”>

<function>dm nonunderstanding start over</function>
</command>
<command name=”dm nonunderstanding giveup”>

<function>dm nonunderstanding giveup</function>
</command>
<command name=”sp end”>

<function>sp end</function>
</command>
<command name=”tts end”>

<function>tts end</function>
</command>
<command name=”dm hangout”>

<function>dm hangout</function>
</command>

</service>

Listing B.7: Campus SDS System DM EDECAN module configuration file.

<?xml version=”1.0”?>
<service name=”VOIP”>

<so>libVOIP.so</so>
<command name=”conexion”>

<function>entrada</function>
</command>
<command name=”desconexion”>

<function>salida</function>
</command>
<command name=”desconexion caidagestor”>

<function>salida caidagestor</function>
</command>

</service>

Listing B.8: Campus SDS System Phone Interface EDECAN module configuration
file.

<?xml version=”1.0”?>
<service name=”controller”>

<so>libcontroller.so</so>
<command name=”conexion”>

<function>entrada</function>
</command>
<command name=”desconexion”>

<function>salida</function>
</command>
<command name=”desconexion caidagestor”>

<function>salida caidagestor</function>
</command>

2. INMA 145

<command name=”dm init session”>
<function>dm init session</function>

</command>
<command name=”controller end session”>

<function>controller end session</function>
</command>
<command name=”controller hangout”>

<function>controller hangout</function>
</command>
<command name=”nlg run”>

<function>nlg run</function>
</command>
<command name=”nlg end”>

<function>nlg end</function>
</command>
<command name=”asr run”>

<function>asr run</function>
</command>
<command name=”asr end”>

<function>asr end</function>
</command>
<command name=”tts end”>

<function>tts end</function>
</command>
<command name=”sp end”>

<function>sp end</function>
</command>

</service>

Listing B.9: Campus SDS System EDECAN controller module configuration file.

2 INMA

<?xml version=”1.0”?>
<manager>

<services>
<service name=”asr”>

<port>6611</port>
<address>localhost</address>
<location>LAB</location>
<configuration>NONE</configuration>
<service type>asr</service type>

</service>

<service name=”comprehension”>
<port>6611</port>
<address>localhost</address>
<location>LAB</location>
<configuration>NONE</configuration>
<service type>comprehension</service type>

</service>

<service name=”tts”>
<port>6611</port>

146 B. Systems Based on EDECAN: Configuration Files

<address>localhost</address>
<location>LAB</location>
<configuration>NONE</configuration>
<service type>tts</service type>

</service>

<service name=”databackend”>
<port>6611</port>
<address>localhost</address>
<location>LAB</location>
<configuration>NONE</configuration>
<service type>databackend</service type>

</service>

<service name=”ui”>
<port>6611</port>
<address>localhost</address>
<location>LAB</location>
<configuration>NONE</configuration>
<service type>ui</service type>

</service>
</services>

<routing table>
<tts>

<tts>0</tts>
<asr>1</asr>
<comprehension>0</comprehension>
<databackend>0</databackend>
<ui>1</ui>

</tts>

<asr>
<tts>0</tts>
<asr>0</asr>
<comprehension>1</comprehension>
<databackend>0</databackend>
<ui>1</ui>

</asr>

<comprehension>
<tts>1</tts>
<asr>1</asr>
<comprehension>0</comprehension>
<databackend>1</databackend>
<ui>1</ui>

</comprehension>

<databackend>
<tts>0</tts>
<asr>0</asr>
<comprehension>0</comprehension>
<cliente>0</cliente>
<ui>1</ui>

</databackend>

<ui>
<tts>1</tts>
<asr>0</asr>

2. INMA 147

<comprehension>1</comprehension>
<databackend>0</databackend>
<ui>0</ui>

</ui>
</routing table>

</manager>

Listing B.10: INMA communication manager configuration file.

<?xml version=”1.0”?>
<services>

<tts>config files/services/tts.xml</tts>
<asr>config files/services/asr.xml</asr>
<ui>config files/services/ui.xml</ui>
<comprehension>config files/services/comprehension.xml</comprehension>
<databackend>config files/services/databackend.xml</databackend>

</services>

Listing B.11: INMA services configuration file.

<?xml version=”1.0”?>
<service name=”asr”>

<so>libASR.so</so>
<command name=”conexion”>

<function>entrada</function>
</command>
<command name=”desconexion”>

<function>salida</function>
</command>
<command name=”desconexion caidagestor”>

<function>salida caidagestor</function>
</command>
<command name=”asr run”>

<function>asr run</function>
</command>

</service>

Listing B.12: INMA ASR EDECAN module configuration file.

<?xml version=”1.0”?>
<service name=”tts”>

<so>libTTS.so</so>
<command name=”conexion”>

<function>entrada</function>
</command>
<command name=”desconexion”>

<function>salida</function>
</command>
<command name=”desconexion caidagestor”>

<function>salida caidagestor</function>
</command>
<command name=”tts run”>

<function>tts run</function>
</command>

</service>

148 B. Systems Based on EDECAN: Configuration Files

Listing B.13: INMA TTS EDECAN module configuration file.

<?xml version=”1.0”?>
<service name=”databackend”>

<so>libDATABACKEND.so</so>
<command name=”conexion”>

<function>entrada</function>
</command>
<command name=”desconexion”>

<function>salida</function>
</command>
<command name=”desconexion caidagestor”>

<function>salida caidagestor</function>
</command>
<command name=”action meteo”>

<function>action meteo</function>
</command>
<command name=”action news”>

<function>action news</function>
</command>

</service>

Listing B.14: INMA DataBackend EDECAN module configuration file.

<?xml version=”1.0”?>
<service name=”comprehension”>

<so>libCOMP.so</so>
<command name=”conexion”>

<function>entrada</function>
</command>
<command name=”desconexion”>

<function>salida</function>
</command>
<command name=”desconexion caidagestor”>

<function>salida caidagestor</function>
</command>
<command name=”comp run”>

<function>comp run</function>
</command>
<command name=”comp reinit”>

<function>comp reinit</function>
</command>

</service>

Listing B.15: INMA Comprehension EDECAN module configuration file.

<?xml version=”1.0”?>
<service name=”ui”>

<so>libUI.so</so>
<command name=”conexion”>

<function>entrada</function>
</command>
<command name=”desconexion”>

<function>salida</function>

2. INMA 149

</command>
<command name=”desconexion caidagestor”>

<function>salida caidagestor</function>
</command>
<command nombre=”view meteo”>

<function>view meteo</function>
</command>
<command nombre=”view news”>

<function>view news</function>
</command>
<command nombre=”activate voice”>

<function>activate voice</function>
</command>
<command nombre=”deactivate voice”>

<function>deactivate voice</function>
</command>
<command nombre=”show ini page”>

<function>show ini page</function>
</command>
<command nombre=”set avatar speak”>

<function>set avatar hablar</function>
</command>
<command nombre=”set avatar not speak”>

<function>set avatar no hablar</function>
</command>

</service>

Listing B.16: INMA User Interface EDECAN module configuration file.

C
RTMIVA Applications
Configuration Files

0.1 Applications Interface Code

#!/usr/bin/php5 −q
<?php

set time limit(30);
require(’phpagi/phpagi.php’);
error reporting(E ALL);

\$agi = new AGI();
\$agi−>answer();
\$ext=\$argv[1];
\$usu=\$argv[2];
\$bus=1;

\$directorio=opendir(”/var/www/aplicaciones/xml/”);
\$fich=””;
while ((\$archivo = readdir(\$directorio))&&(\$bus==1)){

if ((\$archivo!=”.”)&&(\$archivo!=”..”)){
if (\$ext==leerextensionxml(”/var/www/aplicaciones/xml/\$archivo”)){
\$fich=\$archivo;
\$bus=0;
}
}

}
closedir(\$directorio);
if (\$bus==0){

procesarPeticion(\$fich,\$agi,1);
} else {
\$frase=”Hola \$usu, la extension \$argv[1], a la que deseas llamar, no dispone de
ninguna aplicacion vinculada. Intentelo con otra extension.”;
exec(”sudo /opt/Loquendo/LTTS/./txt2audio Jorge /var/lib/asterisk/sounds/es/
temp.wav \$frase”,\$salida);
\$agi−>stream file(’temp’);

}

\$agi−>hangup();

function leerextensionxml(\$xml)
{
\$archivo=file get contents(\$xml);
\$objXML=simplexml load string(\$archivo);

152 C. RTMIVA Applications Configuration Files

return \$objXML−>extension;
}

function procesarpeticion(\$xml,\$agi,\$nume)
{
\$archivo=file get contents(”/var/www/aplicaciones/xml/\$xml”);
\$objXML=simplexml load string(\$archivo);
\$contador=1;
\$acabar=false;
foreach (\$objXML−>aplicacion[0]−>comando as \$comando){

if (((\$contador==\$nume)||(\$contador>\$nume))&&(\$acabar==false)){
if (\$comando[’tipo’]==”sintetizar”){

sintetizar(\$comando,\$vari,\$valorvari,\$agi);
} else if (\$comando[’tipo’]==”sintetizarif”){
\$numi=0;
for (\$ji=0;\$ji<count(\$vari);\$ji++){

if(\$valorvari[\$ji]!=”null”){
\$varcarg[\$numi]=\$vari[\$ji];
\$numi++;
}

}
foreach (\$comando−>iff as \$iff){

for (\$ji=0;\$ji<count(\$varcarg);\$ji++){
if((string)\$iff[’cond’]==(string)\$varcarg[\$j]){

sintetizar(\$iff,\$vari,\$valorvari,\$agi);
}
}

}
} else if (\$comando[’tipo’]==”reconocer”){
\$tiempo=””.(((int)\$comando[seg])∗1000);
\$n=0;
foreach(\$comando−>variable as \$variable){
\$vari[\$n]=\$variable[’nom’];

\$n++;
}
\$mes=date(”n”);
\$dia=date(”d”);
\$anio=date(”y”);
\$hora=date(”G”);
\$min=date(”i”);
\$seg=date(”s”);

\$nofich=”\$anio\$mes\$dia\$hora\$min\$seg”;
\$agi−>record file(”temp/\$nofich”,’wav’,’#’,\$tiempo,’0’,0,’2’);
exec(”../bin/param08 /var/lib/asterisk/sounds/temp/\$nofich.wav ../temp/

parametros/\$nofich.xml”,\$salida);
\$fi= explode(”.”,\$xml);
if (!file exists(”../temp/lexico/”.\$fi[0].”.txt”)){

exec(”php ../bin/xmllexico.php \$xml”,\$salida);
exec(”../bin/crear lexico ../temp/lexico/”.\$fi[0].” tmp.txt ../temp/lexico/”

.\$fi[0].”.txt”);
exec(”rm ../temp/lexico/”.\$fi[0].” tmp.txt”);

}
copy(”../temp/lexico/”.\$fi[0].”.txt”,”../data/lexico.txt”);
exec(”java −classpath .:commons−jxpath−1.2.jar crearBin ../temp/

parametros/\$nofich.xml”);
exec(”../bin/reconocedor ../temp/parametros/\$nofich.bin”,\$salida);
\$reconocido=””;
foreach(\$salida as \$line){

153

\$reconocido=\$line;
}

\$reconocido=str replace(’ ’,’ ’,\$reconocido);
\$reconocido=str replace(’”’,’’,\$reconocido);
\$reconocido=str replace(’ñ’,’ni’,\$reconocido);
\$reconocido=str replace(’á’,’a’,\$reconocido);
\$reconocido=str replace(’é’,’e’,\$reconocido);
\$reconocido=str replace(’́ı’,’i’,\$reconocido);
\$reconocido=str replace(’ó’,’o’,\$reconocido);
\$reconocido=str replace(’ú’,’u’,\$reconocido);

for (\$y=0;\$y<count(\$vari);\$y++){
\$valorvari[\$y]=getvariable(\$comando,\$vari[\$y],\$reconocido);
}

exec(”sudo rm /var/lib/asterisk/sounds/temp/\$nofich.wav”,\$salida);
exec(”sudo rm ../temp/parametros/\$nofich.xml”,\$salida);
exec(”sudo rm ../temp/parametros/\$nofich.bin”,\$salida);

} else if (\$comando[’tipo’]==”sintetizarweb”){
\$url=\$comando;
\$trozos=explode(’\%’,\$url);
for(\$ii=0;\$ii<count(\$trozos);\$ii++){

for(\$jj=0;\$jj<count(\$vari);\$jj++){
\$len=strlen(\$vari[\$jj]);
if (\$len>strlen(\$trozos[\$ii])){
\$len=strlen(\$trozos[\$ii]);
}

if(substr(\$trozos[\$ii],0,\$len)==\$vari[\$jj]){
\$url=str replace(’\%’.\$vari[\$jj],\$valorvari[\$jj],\$url);
}

}
}

\$data = file get contents(\$url);
exec(”sudo /opt/Loquendo/LTTS/./txt2audio Jorge /var/lib/asterisk/sounds

/es/temp.wav \$data”,\$salida);
\$agi−>stream file(’temp’);

} else if (\$comando[’tipo’]==”comprobar”){
\$mes=date(”n”);
\$dia=date(”d”);
\$anio=date(”y”);
\$hora=date(”G”);
\$min=date(”i”);
\$seg=date(”s”);

\$nofich=”\$anio\$mes\$dia\$hora\$min\$seg”;
\$agi−>record file(”temp/\$nofich”,’wav’,’#’,’2000’,’0’,0,’2’);
exec(”../bin/param08 /var/lib/asterisk/sounds/temp/\$nofich.wav ../temp/

parametros/\$nofich.xml”,\$salida);
\$agi−>stream file(”temp/\$nofich”);
copy(”../temp/lexico/comprobar.txt”,”../data/lexico.txt”);
exec(”java −classpath .:commons−jxpath−1.2.jar crearBin ../temp/

parametros/\$nofich.xml”);
exec(”../bin/reconocedor ../temp/parametros/\$nofich.bin”,\$salida);
\$recono=””;
foreach(\$salida as \$line){
\$recono=\$line;
}

154 C. RTMIVA Applications Configuration Files

\$recono=str replace(’ ’,’ ’,\$recono);

exec(”sudo rm /var/lib/asterisk/sounds/temp/\$nofich.wav”,\$salida);
exec(”sudo rm ../temp/parametros/\$nofich.xml”,\$salida);
exec(”sudo rm ../temp/parametros/\$nofich.bin”,\$salida);

if((\$recono==”No”)||(\$recono==”Te repito”)||(\$recono==”Has
reconocido mal”)){

procesarpeticion(\$xml,\$agi,(int)\$comando[’iffalse’]);
\$acabar=true;

}
exec(”sudo /opt/Loquendo/LTTS/./txt2audio Jorge /var/lib/asterisk/sounds/es/

temp.wav Comprobacion: \$recono.”,\$salida);
\$agi−>stream file(’temp’);
}

}
\$contador++;
}
}

function getvariable(\$comando,\$variable,\$reconocido)
{
\$resp=”null”;
foreach(\$comando−>variable as \$vari){

if (\$vari[’nom’]==\$variable){
foreach(\$vari−>valor as \$valor){

if ((strpos(\$reconocido,(string)\$valor))||(\$reconocido==(string)\$valor)){
return \$valor;

}
}

}
}
return \$resp;
}

function sintetizar(\$sin,\$vari,\$valorvari,\$agi)
{
\$trozos=explode(’\%’,\$sin);
for(\$ii=0;\$ii<count(\$trozos);\$ii++){

for (\$jj=0;\$jj<count(\$vari);\$jj++){
\$len=strlen(\$vari[\$jj]);
if (\$len>strlen(\$trozos[\$ii])){
\$len=strlen(\$trozos[\$ii]);
}

if(substr(\$trozos[\$ii],0,\$len)==\$vari[\$jj]){
\$sin=str replace(’\%’.\$vari[\$jj],\$valorvari[\$jj],\$sin);
}

}
}
exec(”sudo /opt/Loquendo/LTTS/./txt2audio Jorge /var/lib/asterisk/sounds/es/
temp.wav \$sin”,\$salida);
\$agi−>stream file(’temp’);
}

?>

Listing C.1: RT-MIVA: Weather forecast application XML file

155

0.2 TTS: text2audio source code

#include <stdio.h>
#include ”/opt/Loquendo/LTTS/include/loqtts.h” /∗ Loquendo TTS include file ∗/
#include <string.h>

#define CODING ”l” /∗ ”l” (linear), ”a” (A−law), ”u” (U−law) ∗/
#define SAMPLE RATE 8000 /∗ Use 8000 for A−law or U−law coding ∗/

int main(int argc, char ∗argv[])
{

ttsHandleType hInstance; /∗ Instance handle ∗/
ttsHandleType hVoice; /∗ Voice handle ∗/
ttsResultType err; /∗ Error code returned by TTS APIs ∗/

char∗ p = ”Jorge”;
char∗ fich = ”sample.wav”;
char frase[5000]=””;
int i;

fprintf (stderr,”Number: \%i \n”,argc);
if(argc > 3) {

p = argv[1];
fich= argv[2];
for(i=3;i<argc;i++)
{

strcat(frase,argv[i]);
strcat(frase,” ”);
}
fprintf (stderr,”Sentence: \%s\n”,frase);
fprintf (stderr,”File : \%s\n”,fich);

} else {
fprintf(stderr, ”Exec ’\%s <speaker> <file> <text> ’\n”, argv[0]);
return −1;

}
fprintf(stderr, ”Using voice \%s\n”, p);

/∗ Initializes the LoquendoTTS Instance ∗/
err = ttsNewInstance(&hInstance, NULL, NULL);
if (err != tts OK)
{

fprintf(stderr, ”\%s”, ttsGetError(NULL));
return err;

}

/∗ Sets the voice parameters ∗/
err = ttsNewVoice(&hVoice, hInstance, p, SAMPLE RATE, CODING);
if (err != tts OK)
{

fprintf(stderr, ”\%s”, ttsGetError(hInstance));
(void)ttsDeleteInstance(hInstance);
return err;

}

/∗ Sends samples directly to the audio board ∗/
err = ttsSetAudio(hInstance, ”LoqAudioFile”,argv[2], CODING, 0);

156 C. RTMIVA Applications Configuration Files

if (err != tts OK)
{ fprintf(stderr, ”\%s”, ttsGetError(hInstance));

(void)ttsDeleteInstance(hInstance);
return err;
}

/∗ Converts text to speech ∗/
err = ttsRead(

hInstance, /∗ Instance handle ∗/
frase, /∗ Input ∗/
TTSBUFFER, /∗ ”Input” is a text buffer ∗/
TTSANSI, /∗ Input text is in ANSI ∗/
TTSDEFAULT, /∗ Default ReadingMode ∗/
TTSBLOCKING); /∗ ttsRead keeps control until the end ∗/

if (err != tts OK)
{

fprintf(stderr, ”\%s”, ttsGetError(hInstance));
(void)ttsDeleteInstance(hInstance);
return err;
}

/∗ Closes the Loquendo TTS instance; the voice will be automatically closed ∗/
(void)ttsDeleteInstance(hInstance);
return 0;

}

Listing C.2: RT-MIVA: source code for the TTS interface.

0.3 Weather Information Retrieval XML File

<rtmiva>
<name>Weather Forecast</name>
<description>Aplicacion a la que se le puede solicitar el tiempo de una city y te

devuelve la prediccion de esta.</description>
<extension>1</extension>

<application>
<command num=”1” type=”synthesize”>Bienvenido al servicio de prediccion
meteorologico.</command>
<command num=”2” type=”synthesize”>Que puedo hacer por usted?</command>
<command num=”3” type=”recognize” seg=”6”>

<lexicon num=”1” pre=”0” suc=”2,3,5,6,7”>Hola</lexicon>
<lexicon num=”2” pre=”0,1” suc=”4,5,6,7”>buenas</lexicon>
<lexicon num=”3” pre=”0,1” suc=”5,6,7”>buenos dias</lexicon>
<lexicon num=”4” pre=”2” suc=”5,6,7”>tardes</lexicon>
<lexicon num=”5” pre=”0,1,2,3,4” suc=”15”>quisiera</lexicon>
<lexicon num=”6” pre=”0,1,2,3,4” suc=”15”>quiero</lexicon>
<lexicon num=”7” pre=”0,1,2,3,4” suc=”8,9,10,11,12”>me</lexicon>
<lexicon num=”8” pre=”7” suc=”13,14”>podias</lexicon>
<lexicon num=”9” pre=”7” suc=”13,14”>puedes</lexicon>
<lexicon num=”10” pre=”7” suc=”13,14”>podrias</lexicon>
<lexicon num=”11” pre=”7” suc=”15”>das</lexicon>
<lexicon num=”12” pre=”7” suc=”15”>dices</lexicon>

157

<lexicon num=”13” pre=”8,9,10” suc=”15”>dar</lexicon>
<lexicon num=”14” pre=”8,9,10” suc=”15”>decir</lexicon>
<lexicon num=”15” pre=”5,6,11,12,13,14” suc=”16,17”>el tiempo</lexicon>
<lexicon num=”16” pre=”15” suc=”18,19,20,21,22”>que</lexicon>
<lexicon num=”17” pre=”15” suc=”24”>de</lexicon>
<lexicon num=”18” pre=”16” suc=”23”>hara</lexicon>
<lexicon num=”19” pre=”16” suc=”23”>hace</lexicon>
<lexicon num=”20” pre=”16” suc=”23”>hay</lexicon>
<lexicon num=”21” pre=”16” suc=”23”>tenemos</lexicon>
<lexicon num=”22” pre=”16” suc=”23”>tendremos</lexicon>
<lexicon num=”23” pre=”18,19,20,21,22” suc=”24”>en</lexicon>
<lexicon num=”24” pre=”17,23” suc=”25,End”>\%city</lexicon>
<lexicon num=”25” pre=”24” suc=”End”>por favor</lexicon>

<variable numtotal=”10” nom=”city”>
<value num=”1”>Bilbao</value>
<value num=”2”>San Sebastian</value>
<value num=”3”>Barcelona</value>
<value num=”4”>Madrid</value>
<value num=”5”>Valencia</value>
<value num=”6”>Benidorm</value>
<value num=”7”>Santander</value>
<value num=”8”>Zaragoza</value>
<value num=”9”>Salamanca</value>
<value num=”10”>Oviedo</value>

</variable>
</command>
<command num=”4” type=”synthesize”>Desea saber la prediccion de \%city?</
command>
<command num=”5” type=”check” iffalse=”2” />
<command num=”6” type=”synthesizeweb”>http://localhost/rtmivap/tiempo.php?
city=\%city</command>

</application>
</rtmiva>

Listing C.3: RT-MIVA: Weather forecast application XML file

D
Usability Questionnaires

1 System Usability Scale

The System Usability Scale (SUS) provides a reliable tool for measuring the
usability, giving a global view of subjective assessments of usability. SUS
consists of a 10 item questionnaire (shown in Table D.1) with five response
options, from Strongly disagree (1) to Strongly agree (5). It allows to evaluate
a wide variety of products and services, including hardware, software, mobile
devices, websites and applications. It has become an industry standard. Some
benefits of using SUS include:

• Is a very easy scale to administer to system users.
• Can be used on small sample sizes with reliable results.
• Is valid, i.e. it can effectively differentiate between usable and unusable

systems.

Using SUS

SUS questionnaire is usually used after users have interacted with the system
being evaluated at least once, but before any discussion takes place. Users
should be asked to record an immediate response to each item, rather than
thinking about items for a long time. All items should be checked. If a user
feels that cannot respond to a particular item, he or she should mark the centre
point of the scale.

Scoring SUS

SUS yields a single number representing a composite measure of the overall
usability of the system being studied. Scores for individual items are not
meaningful on their own.

To calculate the SUS score:

• For odd items: subtract one from the user response.
• For even items: subtract the user responses from 5.
• Add up the converted responses for each user and multiply that total by

2.5.

SUS scores have a range of 0 to 100. Based on research [139], SUS scores above

160 D. Usability Questionnaires

68 would be considered above average and anything below 68, below average.
Also, scores below 50 are typically considered as not acceptable [125].

For the example questionnaire shown below:

• Total score = 22
• SUS Score = 22 * 2.5 = 55

1 2 3 4 5
I think that I would like touse this

system frequently
x 4

I found the system unnecessarily complex x 1
I thought the system was easy to use x 1
I think that I would need the support

of a technical person to be able to use this system
x 4

I found the various functions in this
system were well integrated

x 1

I thought there was too much inconsistency
in this system

x 2

I would imagine that most people would learn
to use this system very quickly

x 1

I found the system very cumbersome to use x 1
I felt very confident using the system x 4
I needed to learn a lot of things before

I could get going with this system
x 3

- I think that I would like to use this system frequently
- I found the system unnecessarily complex
- I thought the system was easy to use
- I think that I would need the support of a technical person to be able to
use this system
- I found the various functions in this system were well integrated
- I thought there was too much inconsistency in this system
- I would imagine that most people would learn to use this system very
quickly
- I found the system very cumbersome to use
- I felt very confident using the system
- I needed to learn a lot of things before I could get going with this system

Table D.1: SUS questionnaire.

2. Subjective Assessment Speech System Interfaces 161

2 Subjective Assessment Speech System Interfaces

The Subjective Assessment of Speech System Interfaces (SASSI) questionnaire
(Table D.2) is aimed to measure user satisfaction with speech systems. SASSI
consists of a set of statements (shown in Table D.1) with six response options,
from Strongly disagree (1) to Strongly agree (6). It measures several aspects:

• Response Accuracy: Related to whether the system recognises users in-
put correctly and hence does what the user intended and expected.

• Likeability: Related to opinion and feeling users have about the system.
• Cognitive Demand: Summarises both the perceived level of effort needed

to use the system and user feelings arising from this effort.
• Annoyance: Evaluates the feeling or state of being annoyed/frustrated

of users when using the system.
• Habitability: Related to whether the user knows what to say and knows

what the system is doing. A habitable system may be defined as one in
which there is a good match between the user’s conceptual model of the
system and the actual system.

• Speed: Evaluates the response speed of the system.

For each aspect, the score is obtained calculating the mean value and standard
deviation for the values of all the answers. A thing to take into account is
that for each aspect evaluated there are ”positive” and ”negative” statements.
It is necessary to invert the ”sign” of one of them by rescaling the scores
(preferably the ”negative” ones). As an example, the sub-questionnaire for
Cognitive Demand shown below has a score of 2.2 (sd = 0.98).

1 2 3 4 5 6
I felt confident using the system x
I felt tense using the system -x
I felt calm using the system x
A high level of concentration

is required when using the system
-x

The system is easy to use x

1 2 3 4 5 6
x
x

x

x
x

In general, the higher the score of an aspect the better is perceived such aspect
by the user.

162 D. Usability Questionnaires

Response Accuracy

The system is accurate
The system is unreliable
The interaction with the system is unpredictable
The system didn’t always do what I wanted
The system didn’t always do what I expected
The system is dependable
The system makes few errors
The interaction with the system is consistent
The interaction with the system is efficient

Likeability

The system is useful
The system is pleasant
The system is friendly
I was able to recover easily from errors
I enjoyed using the system
It is clear how to speak to the system
It is easy to learn to use the system
I would use this system
I felt in control of the interaction with the system

Cognitive Demand

I felt confident using the system
I felt tense using the system
I felt calm using the system
A high level of concentration is required when using the system
The system is easy to use

Annoyance

The interaction with the system is repetitive
The interaction with the system is boring
The interaction with the system is irritating
The interaction with the system is frustrating
The system is too inflexible

Habitability

I sometimes wondered if I was using the right word
I always knew what to say to the system
I was not always sure what the system was doing
It is easy to lose track of where you are in an interaction with the system

Speed

The interaction with the system is fast
The system responds too slowly

Table D.2: SASSI questionnaire.

3. AttrakDiff 2 163

3 AttrakDiff 2

AttrakDiff 2 questionnaire (Table D.3) is intended for measuring the attrac-
tiveness of interactive products. Using 28 pairs of opposite adjectives, users
evaluate their perception of the product being evaluated. Each pair of adjec-
tives is rated within a seven anchor scale.

The questionnaire evaluates the attractiveness of the product based on four
aspects:

• Pragmatic Quality (PQ): Describes the usability of a product and indi-
cates how successfully users are in achieving their goals using the prod-
uct.

• Hedonic Quality - Stimulation: Mankind has an inherent need to per-
sonal growth, i.e. wants to develop their skills and knowledge further.
The HQ-S aspect indicates to what extent the product can support those
needs.

• Hedonic Quality - Identity (HQ-I): Indicates to what extent the product
allows the user to identify with it.

• Attractiveness (ATT): Describes a global value of the product based on
the quality perception.

For each aspect, the score is obtained calculating the mean value and stan-
dard deviation for the values of all the answers. As an example, the sub-
questionnaire for PQ shown below has a score of 4.29 (sd = 0.88).

1 2 3 4 5 6 7
Technical x Human

Complicated x Simple
Impractical x Practical

Cumbersome x Straightforward
Unpredictable x Predictable

Confusing x Clearly Structured
Unruly x Manageable

In general, the higher the score of an aspect the better is perceived such aspect
by the user.

164 D. Usability Questionnaires

Pragmatic Quality

Technical - Human
Complicated - Simple
Impractical - Practical

Cumbersome - Straightforward
Unpredictable - Predictable

Confusing - Clearly Structured
Unruly - Manageable

Hedonic Quality - Identification

Isolating - Connective
Unprofessional - Professional

Tacky - Stylish
Cheap - Premium

Alienating - Integrating
Separates Me from People - Brings Close to People

Unpresentable - Presentable

Hedonic Quality - Stimulation

Conventional - Inventive
Unimaginative - Creative

Cautious - Bold
Conservative - Innovative

Dull - Captivating
Undemanding - Challenging

Ordinary - Novel

Attraction

Unpleasant - Pleasant
Ugly - Attractive

Disagreeable - Likeable
Rejecting - Inviting

Bad - Good
Repelling - Appealing

Discouraging - Motivating

Table D.3: ATTRAKDIFF 2 questionnaire.

Bibliography
[1] S. Young, “Probabilistic methods in spoken dialogue systems,” Philosophical Trans of

the Royal Society, vol. 1769(358), pp. 1389–1402, 2000.

[2] “RavenClaw/Olympus Web Page.” [Online]. Available: http://www.cs.cmu.edu/
∼dbohus/ravenclaw-olympus/what is olympus.html

[3] S. J. Young, “The htk hidden markov model toolkit: Design and philosophy,” vol. 2,
1994, pp. 2–44.

[4] K. F. Lee, H. W. Hon, and R. Reddy, “An overview of the SPHINX speech recognition
system,” in IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 38,
no. 1, 1990, pp. 35–45.

[5] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hannemann,
P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer, and K. Vesely, “The kaldi
speech recognition toolkit,” in IEEE 2011 Workshop on Automatic Speech Recognition
and Understanding, 2011.

[6] T. Winograd, “Procedures as a Representation for Data in a Computer Program for
Understanding Natural Language,” Cognitive Psychology, vol. 3, no. 1, 1972.

[7] W. A. Woods, R. M. Kaplan, and B. Nash-Webber, “The Lunar Sciences Natural
Language Information System: Final Report,” BBN Rep., no. 2378, 1972.

[8] R. Schank, N. Goldman, C. Rieger, and C. Riesbeck, “MARGIE: Memory Analysis,
Response Generation and Inference on English,” in 3IJCAI, 1973.

[9] W. Ward, “Understanding spontaneous speech: the phoenix system,” in ICASSP 91:
1991 International Conference on Acoustics, Speech, and Signal Processing, vol. 1,
Apr 1991, pp. 365–367.

[10] Y. Wang, L. Deng, and A. Acero, “Spoken language understanding - an introduction
to the statistical framework,” in IEEE Signal Processing Magazine, vol. 5, 2005, pp.
16–31.

[11] S. Miller, R. Bobrow, R. Ingria, and R. Schwartz, “Hidden understanding models of
natural language,” in Proceedings of the 32nd Annual Meeting of the Association for
Computational Linguistics, 1994, pp. 25–32.

[12] S. Della-Pietra, M. Epstein, S. Roukos, and T. Ward, “Fertility Models for Statistical
Natural Language Understanding,” in Proceedings of the Association for Computa-
tional Linguistics, 1997, pp. 168–173.

[13] Y. He and S. Young, “Semantic processing using the hidden vector state model,”
Computer Speech and Language, vol. 19, pp. 85–106, 2005.

[14] C. Wong and H. Meng, “Improvements on a semi-automatic grammar induction
framework,” in IEEE Workshop Automatic Speech Recognition and Understanding,
Madonna di Campiglio, Italy, 2001.

[15] S. Busemann and H. Horacek, “A flexible shallow approach to text generation,” in 9th
International Workshop on Natural Language Generation, 1998, pp. 238–247.

[16] K. van Deemter and J. Odijk, “Context modelling and the generation of spoken dis-
course,” in Speech Communication, vol. 21(1/2), 1997, pp. 101–121.

[17] S. C. McRoy, Susan W. and S. S. Ali, “An augmented template-based approach to
text realization,” in Natural Language Engineering, vol. 9(4), 2003, pp. 381–420.

[18] F. Mairesse, M. Gašić, F. Jurč́ıček, S. Keizer, B. Thomson, K. Yu, and S. Young,
“Phrase-based statistical language generation using graphical models and active learn-

166 D Bibliography

ing,” in Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, ser. ACL ’10, 2010, pp. 1552–1561.

[19] C. Gardent, B. Gottesman, and L. Perez-beltrachini, “Using regular tree grammars
to enhance sentence realisation,” Nat. Lang. Eng., vol. 17, no. 2, pp. 185–201, 2011.

[20] Y. W. Wong, “Learning for semantic parsing and natural language generation using
statistical machine translation techniques,” 2007.

[21] V. Rieser and O. Lemon, “Natural language generation as planning under uncertainty
for spoken dialogue systems,” in Proceedings of the 12th Conference of the European
Chapter of the ACL (EACL 2009), 2009, pp. 683–691.

[22] ——, “Reinforcement Learning for Adaptive Dialogue Systems: A Data-driven
Methodology for Dialogue Management and Natural Language Generation,” in Theory
and Applications of Natural Language Processing, 2011.

[23] I. K., G. L.M., W. D.H., T. M.K., and R. P.E., “CASY: The Haskins configurable ar-
ticulatory synthesizer.” in Proceedings of the 15th International Congress on Phonetic
Sciences, 2003, pp. 185–188.

[24] K. Yu, H. Zen, F. Mairesse, and S. Young, “Context adaptive training with factor-
ized decision trees for hmm-based statistical parametric speech synthesis,” in Speech
communication, vol. 53, 2011, pp. 914–923.

[25] D. Goddeau, H. Meng, J. Polifroni, S. Seneff, and S. Busayapongchai, “A form-based
dialogue manager for spoken language applications,” in ICSLP, 1996.

[26] V. Zue, S. Seneff, J. Glass, J. Polifroni, C. Pao, T. J. Hazen, and L. Hetherington,
“Jupiter: A telephone-based conversational interface for weather information,” vol. 8,
2000, pp. 85–96.

[27] S. Seneff and J. Polifroni, “Dialogue management in the mercury flight reservation
system,” in Proceedings of ANLP-NAACL Workshop on Conversational Systems,
2000, pp. 1–6.

[28] A. Rudnicky and W. Xu, “An agenda-based dialog management architecture for spo-
ken language systems,” in IEEE Automatic Speech Recognition and Understanding
Workshop, 1999.

[29] W. Xu and A. Rudnicky, “Task-based dialog management using an agenda,” in
ANLP/NAACL Workshop on Conversational Systems, 2000, pp. 42–47.

[30] H. Aust and O. Schroer, “An overview of the philips dialog system,” in Proceedings
of the DARPA Broadcast News Transcription and Understanding Workshop, 1998.

[31] H. Strik, A. Russel, H. van den Heuvel, L. Boves, and C. Cucchiarini, “A spoken
dialogue system for public transport information,” in Proceedings of the Department
of Language and Speech, vol. 19, 1996, pp. 129–142.

[32] S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and V. Zue, “Galaxy-ii: A reference
architecture for conversational system development,” in ICSLP, 1998, pp. 931–934.

[33] C. Rich and A. L. Sidner, “COLLAGEN: a collaboration manager for software interface
agents,” in User Model User-Adapt Interact, vol. 8, 1998, pp. 315–350.

[34] J. F. Allen and C. R. Perrault, “Analyzing intention in utterances,” in Artificial
Intelligence, vol. 15(3), 1980, pp. 143–178.

[35] “Olympus.” [Online]. Available: http://www.ravenclaw-olympus.org/

[36] “Disco - Collaborative Discourse Manager.” [Online]. Available: https://github.com/
charlesrich/Disco

[37] D. Traum, J. Bos, R. Cooper, S. Larsson, I.Lewin, C. Matheson, and M. Poesio, “A
model of dialogue moves and information state revision,” in Trindi deliverable D2.1,

D Bibliography 167

1999.

[38] P. Fodor and J. M. Huerta, “Planning and logic programming for dialog management,”
in Proceedings of SLT, 2006, pp. 214–217.

[39] S. Young, “Probabilistic Methods in Spoken Dialogue Systems,” Philosophical Trans-
actions of the Royal Society of London, 2000.

[40] J. D. Williams and S. Young, “Partially observable markov decision processes for
spoken dialog systems,” in Computer Speech & Language, vol. 21(2), 2007, pp. 393–
422.

[41] F. J. ci cek, B. Thomson, and S. Young, “Reinforcement learning for parameter es-
timation in statistical spoken dialogue systems,” Computer, Speech and Language,
vol. 26, no. 3, pp. 168–192, 2012.

[42] S. Young, M. Gašić, B. Thomson, and J. D. Williams, “POMDP-based Statistical
Spoken Dialog Systems: A review,” Proceedings of the IEEE, vol. 101, no. 5, pp.
1160–1179, 2013.

[43] M. I. Torres, “Stochastic Bi-Languages to model Dialogs,” in International Conference
on Finite State Methods and Natural Language Processing, 2013, pp. 9–17.

[44] P.-H. Su, D. Vandyke, M. Gasic, D. Kim, N. Mrksic, T.-H. Wen, and S. Young, “Learn-
ing from Real Users: Rating Dialogue Success with Neural Networks for Reinforcement
Learning in Spoken Dialogue Systems,” in InterSpeech, 2015, pp. 2007–2011.

[45] I. V. Serban, A. Sordoni, Y. Bengio, A. Courville, and J. Pineau, “Building End-
to-end Dialogue Systems Using Generative Hierarchical Neural Network Models,” in
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, ser. AAAI’16.
AAAI Press, 2016, pp. 3776–3783.

[46] R. P. E. Levin and W. Eckert, “A stochastic model of human-machine interaction for
learning dialog strategies,” in IEEE TSAP, vol. 8, no. 1, 2000, pp. 11–23.

[47] E. V. Alejandro H. Toselli and F. Casacuberta, “Multimodal Interactive Pattern
Recognition and Applications.” Springer, 2011.

[48] M. I. Torres, J. M. Bened́ı, R. Justo, and F. Ghigi, “Modeling spoken dialog systems
under the interactive pattern recognition framework,” in Lecture Notes on Computer
Science, 2012, pp. 519–528.

[49] M. I. Torres and F. Casacuberta, “Stochastic k-tss bi-languages for machine transla-
tion,” in 9th International Workshop on Finite State Models for Natural Language
Processing (FSMNLP), 2011, pp. 98–106.

[50] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural
Networks,” CoRR, vol. abs/1409.3215, 2014.

[51] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning
to align and translate,” CoRR, vol. abs/1409.0473, 2014.

[52] O. Vinyals and Q. V. Le, “A neural conversational model.” CoRR, vol. abs/1506.05869,
2015.

[53] J. D. Williams.

[54] J. D. Williams and G. Zweig, “End-to-end LSTM-based dialog control optimized with
supervised and reinforcement learning,” in abs/1606.01269v1, 2016.

[55] M. Rickert, M. E. Foster, M. Giuliani, T. By, G. Panin, and A. Knoll, Integrating
Language, Vision and Action for Human Robot Dialog Systems. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 987–995.

[56] D. Suendermann, J. Liscombe, J. Bloom, and R. Pieraccini, “Topic and Emotion
Classification of Customer Surveys.”

168 D Bibliography

[57] M. Serras, N. Perez, M. I. Torres, A. Del Pozo, and R. Justo, Topic Classifier for
Customer Service Dialog Systems. Springer International Publishing, 2015, pp. 140–
148.

[58] A. Raux, B. Langner, and D. Bohus, “Let’s Go Public! Taking a spoken dialog system
to the real world,” in InterSpeech, 2005.

[59] F. Morbini, D. DeVault, K. Georgila, R. Artstein, D. Traum, and L. Morency, “A
Demonstration of Dialogue Processing in SimSensei Kiosk,” in 15th Annual Meeting
of the Special Interest Group on Discourse and Dialogue, 2014, p. 254.

[60] H. Aust, M. Oerder, F. Seide, and V. Steinbiss, “The philips automatic train timetable
information system,” vol. 17, no. 3-4, 1995, pp. 249–262.

[61] “PARLANCE Project.” [Online]. Available: https://sites.google.com/site/
parlanceprojectofficial

[62] H. Hastie, M. Aufaure, P. Alexopoulos, H. Bouchard, H. Cuayahuitl, N. Dethlefs,
M. Gasic, J. Henderson, O. Lemon, X. Liu, P. Mika, N. B. Mustapha, T. Potter,
V. Rieser, B. Thomson, P. Tsiakoulis, Y. Vanrompay, B. Villazon-Terrazas, M. Yaz-
dani, S. Young, and Y. Yu, “The PARLANCE mobile app for interactive search in
english and mandarin,” in Proceedings of SIGDIAL 2014, 2014.

[63] O. Dušek, O. Plátek, L. Žilka, and F. Jurč́ıček, “Alex: Bootstrapping a spoken dialogue
system for a new domain by real users,” in Proceedings of the 15th Annual Meeting of
the Special Interest Group on Discourse and Dialogue (SIGDIAL), 2014, pp. 79–83.

[64] M. Swerts, D. Litman, and J. Hirschberg, 2000.

[65] T. Paek and E. Horvitz, “Conversation as action under uncertainty,” in Proceedings
of the 16th Conference on Uncertainty in Artificial Intelligence, ser. UAI ’00. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000, pp. 455–464.

[66] O. Lemon, A. Gruenstein, L. Cavedon, and S. Peters, “Multi-tasking and collaborative
activities in dialogue systems,” in Proceedings of SigDIAL’02, 2002.

[67] J. Gustafson, L. Bell, J. Beskow, J. Boye, R. Carlson, J. Edlund, B. Granstorm,
D. House, and M. Wiren, “Adapt - a multimodal conversational dialogue system in
an apartment domain,” in Proceedings of ICSLP’00, 2000.

[68] G. Ferguson and J. Allen, “Trips: an intelligent integrated problem-solving assistant,”
in Proceedings of AAAI’98, 1998.

[69] “Hound.” [Online]. Available: http://www.soundhound.com/hound

[70] “Siri.” [Online]. Available: http://www.apple.com/es/ios/siri

[71] “Cortana.” [Online]. Available: http://windows.microsoft.com/es-es/windows-10/
getstarted-what-is-cortana

[72] “Alexa.” [Online]. Available: https://developer.amazon.com/public/solutions/alexa

[73] “Google Now.” [Online]. Available: https://www.google.com/landing/now

[74] D. Bohus, A. Raux, T. K. Harris, M. Eskenazi, and A. Rudnicky, “Olympus: an open-
source framework for conversational spoken language interface research,” in Workshop
on Bridging the Gap: Academic and Industrial Research in Dialog Technologies, 2007,
pp. 32–39.

[75] D. Bohus and A. Rudnicky, “The RavenClaw dialog management framework: Archi-
tecture and systems,” in Computer Speech and Language, vol. 23, no. 3, 2009, pp.
332–361.

[76] “Sphinx: Open Source Speech Recognition Toolkit.” [Online]. Available: https:
//cmusphinx.github.io/wiki

D Bibliography 169

[77] “Galaxy Communicator.” [Online]. Available: http://communicator.sourceforge.net/
index.shtml

[78] “Flipper Multi Modal Dialogue System.” [Online]. Available: https://hmi-utwente.
github.io/FlipperMMDS

[79] G. Skantze and S. A. Moubayed, “IrisTK: a statechart-based toolkit for multi-party
face-to-face interaction,” in ICMI, 2013.

[80] “CSLU Toolkit.” [Online]. Available: http://www.cslu.ogi.edu/toolkit/

[81] “AT&T Statistical Dialog Toolkit.” [Online]. Available: http://www2.research.att.
com/sw/tools/asdt/

[82] J. D. Williams, “Incremental partition recombination for efficient tracking of multiple
dialog states,” in ICASSP, 2010.

[83] P. Milhorat, “An open-source framework for supporting the design and implementation
of natural-language spoken dialog systems,” Ph.D. dissertation, Télécom ParisTech,
12 2014.

[84] “ActiveMQ.” [Online]. Available: http://activemq.apache.org

[85] “Alex Dialogue Systems Framework.” [Online]. Available: https://github.com/
UFAL-DSG/alex

[86] J. E. Garćıa, A. Ortega, A. Miguel, and E. Lleida, “Arquitectura distribuida para el

desarrollo de sistemas de diálogo hablado, EDECÁN,” 2008.

[87] “OpenDial.” [Online]. Available: http://www.opendial-toolkit.net

[88] “TRINDIKIT.” [Online]. Available: http://www.ling.gu.se/projekt/trindi/trindikit/

[89] “TRINDI.” [Online]. Available: http://www.ling.gu.se/projekt/trindi/

[90] “SIRIDUS.” [Online]. Available: http://www.ling.gu.se/projekt/siridus/

[91] “TALK.” [Online]. Available: http://www.talk-project.org/

[92] J. Bos, E. Klein, O. Lemon, and T. Oka, “Dipper: description and formalisation of an
information-state update dialogue system architecture,” in Proceedings of SIGDIAL,
2003, pp. 115–124.

[93] “Midiki.” [Online]. Available: http://midiki.sourceforge.net/

[94] “Mitre.” [Online]. Available: http://www.mitre.org/

[95] M. Turunen and J. Hakulinen, “Jaspis - an architecture for supporting distributed
spoken dialogues,” in INTERSPEECH, 2003.

[96] R. J. Ross and J. Bateman, “Daisie: Information state dialogues for situated systems,”
in TSD2009. LNAI5729, pp. 379–386.

[97] “Houndify.” [Online]. Available: http://www.soundhound.com/houndify

[98] “Agilingua, LLC.” [Online]. Available: http://www.agilingua.com/en/index.html

[99] “Alexa Skills Kit.” [Online]. Available: https://developer.amazon.com/public/
solutions/alexa/alexa-skills-kit

[100] “Loquendo Text To Speech.” [Online]. Available: http://www.nuance.com/
for-business/text-to-speech/index.htm

[101] “Asterisk.” [Online]. Available: http://www.asterisk.org

[102] “PHPAGI.” [Online]. Available: http://phpagi.sourceforge.net

[103] A. W. Black, S. Burger, B. Langner, G. Parent, and M. Eskenazi, “Spoken dialog

170 D Bibliography

challenge 2010,” in SLT, 2010, pp. 448–453.

[104] W. Ward and S. Issar, “Recent improvements in the cmu spoken language understand-
ing system.” in Proceedings of the workshop on Human Language Technology, 1994,
pp. 213–216.

[105] D. Huggins-daines, M. Kumar, A. Chan, A. W. Black, M. Ravishankar, and A. I.
Rudnicky, “Pocketsphinx: A free, real-time continuous speech recognition system for
hand-held devices.” in Proceedings of ICASSP 2006, 2006.

[106] D. Bohus and A. Rudnicky, “Integrating multiple knowledge sources for utterance-
level confidence annotation in the cmu communicator spoken dialog system.” in 2nd
International Workshop on Community Networking., 2002.

[107] A. Raux and M. Eskenazi, “A multi-layer architecture for semi-synchronous event-
driven dialogue management,” in ASRU, 2007, pp. 514–519.

[108] J. M. Bened́ı, E. Lleida, A. Varona, M. J. Castro-Bleda, I. Galiano, R. Justo, I. L.
de Letona, and A. Miguel, “Design and acquisition of a telephone spontaneous speech
dialogue corpus in spanish: Dihana,” in Proceedings of the 5th International Confer-
ence on Language Resources and Evaluation (LREC 2006), Genoa (Italy), 2006, pp.
1636–1639.

[109] “GTFS Data Exchange.” [Online]. Available: http://www.gtfs-data-exchange.com

[110] A. Black, P. Taylor, and R. Caley, “The festival synthesis system.” December 2002.

[111] A. W. Black and K. A. Lenzo, “Flite: A small fast runtime synthesis engine.” in 4Th
ISCA Tutorial and Research workshop on Speech Synthesis, 2001, pp. 20–24.

[112] “Microsoft Speech API (SAPI),” 1996. [Online]. Available: https://msdn.microsoft.
com/en-us/library/ee125663(v=vs.85).aspx

[113] “Cepstral Swift,” 2005. [Online]. Available: http://www.cepstral.com/es/downloads

[114] “PJSIP Project.” [Online]. Available: http://www.pjsip.org/

[115] “Virtual Audio Cable.” [Online]. Available: http://www.ntonyx.com/vac.htm

[116] “ALSA Library API.” [Online]. Available: https://www.alsa-project.org/main/index.
php/ALSA Library API

[117] “Google Developer Console.” [Online]. Available: https://console.developers.google.
com

[118] “Rosetta Natural Language Generator.” [Online]. Available: http://wiki.speech.cs.
cmu.edu/olympus/index.php/Rosetta

[119] “WINE.” [Online]. Available: https://www.winehq.org

[120] J. Brooke, “SUS - A quick and dirty usability scale,” Usability evaluation in industry,
vol. 189, no. 194, pp. 4–7, 1996.

[121] K. S. Hone and R. Graham, “Towards a Tool for the Subjective Assessment of Speech
System Interfaces (SASSI),” Natural Language Engineering, vol. 6, no. 3-4, pp. 287–
303, 2000.

[122] “Attrakdiff 2.” [Online]. Available: http://attrakdiff.de/index-en.html

[123] “KALDI ASR.” [Online]. Available: http://kaldi-asr.org

[124] I. Wechsung, An Evaluation Framework for Multimodal Interaction: Determining
Quality Aspects and Modality Choice. Springer Publishing Company, Incorporated,
2014.

[125] S. Sauro, “L2 performance in text-chat and spoken discourse,” System, vol. 40, no. 3,
pp. 335–348, 2012.

D Bibliography 171

[126] P. Milhorat, S. Schlögl, G. Chollet, and J. Boudy, “Un système de dialogue vocal
pour les seniors: études et spécifications.” in JetSan 2013 : Journées d’étude sur la
TéléSanté, 2013.

[127] “vAssist: Voice Controlled Assistive Care and Communication Services for the Home.”
[Online]. Available: http://vassist.tech-experience.at/project overview/index.html

[128] G. Neumann, “Design principles of the disco system,” in Proceedings of the Twente
Workshop on Language Technology (TWLT 5). Natural Language Interfaces, June 3-
4, F. de Jong and A. Nijholt, Eds., University of Twente, Enschede, The Netherlands,
1993.

[129] F. Jurč́ıček, F. Mairesse, M. Gašić, S. Keizer, B. Thomson, K. Yu, and S. Young,
“Transformation-based Learning for semantic parsing,” in InterSpeech, 2009, pp. 2719–
2722.

[130] E. Brill, “Transformation-based error-driven learning and natural language processing:
A case study in part-of-speech tagging,” Computational linguistics, vol. 21, no. 4, pp.
543–565, 1995.

[131] M. Schröder and J. Trouvain, “The German text-to-speech synthesis system MARY:
A tool for research, development and teaching,” in International Journal of Speech
Technology, vol. 6, no. 4, 2003, pp. 365–377.

[132] P. Milhorat, “An open-source framework for supporting the design and implementation
of natural-language spoken dialog systems,” Ph.D. dissertation, Télécom ParisTech –
46, rue Barrault – 75013 Paris, 2015.

[133] C. Rich, “Building task-based user interfaces with ANSI/CEA-2018,” IEEE Com-
puter, no. 8, pp. 20–27, 2009.

[134] “eNTERFACE 2016.” [Online]. Available: http://hmi.ewi.utwente.nl/enterface16

[135] “Cerevoice Engine Text-to-Speech SDK.” [Online]. Available: https://www.cereproc.
com/en/products/sdk

[136] “Unity Asset Store.” [Online]. Available: https://www.assetstore.unity3d.com/en/
\#!/content/52234

[137] “Telecom SudParis Face Recognition Open-source using Gabor Filters.” [Online].
Available: http://share.int-evry.fr/svnview-eph

[138] S. Schögl, G. Doherty, and S. Luz, “Wizard of Oz experimentation for language tech-
nology applications: Challenges and tools.” in Interacting with Computers, vol. 6,
no. 27, 2015, pp. 592–615.

[139] “System Usability Scale (SUS).” [Online]. Available: https://www.usability.gov/
how-to-and-tools/methods/system-usability-scale.html

