

Personalizing the Web: A Tool for
Empowering End-Users to Customize the
Web through Browser-Side Modification

Dissertation
presented to

the Department of Computer Languages and Systems of

the University of the Basque Country in

Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy
(“international” mention)

Iñigo Aldalur Ceberio

Supervisors:

Prof. Dr. Oscar Díaz García

Donostia-San Sebastián, Spain, 2017

(cc)2017 IÑIGO ALDALUR CEBERIO (cc by-nc-nd 4.0)

This work was hosted by the University of the Basque Country (Faculty

of Computer Sciences). The author enjoyed a doctoral grant under de
FPI (Formación de Personal Investigador) from the Spanish Ministry of

Science & Education during the years 2012 to 2016. The work was co-
supported by the Spanish Ministry of Education, and the European Social

Fund under contract Scriptongue (TIN2011-23839).

Summary

Web applications delegate to the browser the final rendering of their
pages. This permits browser-based transcoding (a.k.a. Web Augmentation)
that can be ultimately singularized for each browser installation. This
creates an opportunity for Web consumers to customize their Web
experiences. This vision requires provisioning adequate tooling that makes
Web Augmentation affordable to laymen. We consider this a special
class of End-User Development, integrating Web Augmentation paradigms.
The dominant paradigm in End-User Development is scripting languages
through visual languages.

This thesis advocates for a Google Chrome browser extension for
Web Augmentation. This is carried out through WebMakeup, a visual
DSL programming tool for end-users to customize their own websites.
WebMakeup removes, moves and adds web nodes from different web pages
in order to avoid tab switching, scrolling, the number of clicks and cutting
and pasting. Moreover, Web Augmentation extensions has difficulties in
finding web elements after a website updating. As a consequence, browser
extensions give up working and users might stop using these extensions.
This is why two different locators have been implemented with the aim of
improving web locator robustness.

v

Contents

1 Introduction 1
1.1 Context . 1

1.2 Problem Statement . 2

1.3 This Dissertation . 7

1.4 Research approach . 8

1.5 Outline . 10

1.6 Conclusion . 12

2 Related work 13
2.1 Introduction . 13

2.2 Web Augmentation and End-User Development 15

2.3 End-User Development tools for the Web 17

2.3.1 Architecture . 20

2.3.2 Subject of adaptation 22

2.3.3 Web site integration 23

2.3.4 Collaborative features 24

2.3.5 Programming paradigm 26

2.4 User and usage challenges with WA tools 29

2.5 Conclusions . 31

3 Web Page End-User Personalization 33
3.1 Introduction . 33

3.2 Characterizing Web Modding 35

3.3 Ascertaining The Right Concerns 37

vii

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

3.3.1 Hosting . 39

3.3.2 Widgetization . 39

3.3.3 Animation . 42

3.3.4 Rendering . 46

3.4 Finding Appropriate Constructs 46

3.5 An Editor For DIY Mods 48

3.6 Sharing . 52

3.7 Facing dynamic web content 52

3.7.1 RIA-aware widgets 53

3.7.2 RIA widgets . 53

3.8 Efficiency . 55

3.8.1 Guideline: Reduce memory consumption the
Number of Active Event Listeners 55

3.8.2 Guideline: Make Efficient Rendering of the
Augmentation . 57

3.8.3 Optimization. Experiment design 57

3.9 Evaluation . 58

3.9.1 Research Method 60

3.9.2 Subjects . 61

3.9.3 Instrument . 63

3.9.4 Data analysis . 63

3.9.5 Results . 64

3.9.6 Effectiveness . 64

3.9.7 Productivity . 64

3.9.8 Satisfaction . 67

3.10 Conclusions . 67

4 Generating Robust Locators 69
4.1 Introduction . 69

4.2 Locators: theme & variations 71

4.3 Locator robustness . 76

4.4 Improving coordinate-based locators 79

viii

CONTENTS

4.5 Kidney locators . 80
4.5.1 Validation . 83

4.6 Regenerative locators . 85
4.6.1 Validation . 90

4.7 Conclusions . 91

5 Conclusions 95
5.1 Overview . 95
5.2 Results . 95
5.3 Publications . 97
5.4 Research Stage . 98
5.5 Assessment and Future Research 98
5.6 Conclusions . 100

A Evaluation test 101
A.1 General Information . 113
A.2 Time needed to fulfil the tasks 115

A.2.1 First task . 115
A.2.2 Second task . 115
A.2.3 Third task . 116
A.2.4 Fourth task . 116

A.3 Efficacy . 116
A.4 Usefulness . 116
A.5 Usability . 117

B WebMakeup examples 121

Bibliography 137

ix

List of Figures

1.1 DSR methodology process model 9

1.2 Chapter map of the dissertation. 11

2.1 Features of End-User Development tools for Web
applications . 18

2.2 Contributions presenting tools: Mashup versus WA
technology . 20

2.3 Distribution over the years of tools and what part of the
Web architectures they were exploiting 22

2.4 Mapping WA tools and Mashups across “Collaboration
features” and “Subject of adaptation” 26

2.5 “Programming paradigm” in research contributions over
the years . 29

3.1 Number of users of WebMakeup 35

3.2 www.tvguia.es website before and after 36

3.3 Feature diagram for DIY Web Modding. 38

3.4 Facing website updgrades: redundant addressing for the
filmAffinity widget . 43

3.5 Setting patterns . 45

3.6 A DSL for Web Modding: abstract syntax. 47

3.7 WebMakeup: mod initialization. 48

3.8 WebMakeup: mod filling up 49

3.9 WebMakeup: defining blinks. 50

xi

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

3.10 Left: Gender; Right: Users that have installed a plug-in . . 62

3.11 Left: Users with programming skills; Right: Users that
have used editing programmes 62

3.12 Left: Time surfing on the Internet in their free time; Right:
Time surfing on the Internet in their job 63

3.13 WebMakeup End-User Development features 68

4.1 Finding expression that singles out the book’s title 72

4.2 Rate of locators successfully recovering DOM nodes upon
website upgrades (Structure locators) 78

4.3 Rate of locators successfully recovering DOM nodes upon
website upgrades (Kidney locator) 84

4.4 Time to recover locators 84

4.5 The Boston Globe website screenshots on March 2015 and
March 2016 . 86

4.6 The regenerative algorithm at work 88

4.7 Structure-based locators versus Regenerative locators . . . 91

A.1 donostia.eus website after the first task 103

A.2 donostia.eus website after the second task 104

A.3 Creating a widget in “Pesa” bus company website 106

A.4 Pesa timetable in the tvguia.es website 107

A.5 Creating a widget in a weather web page 108

A.6 Creating a widget in filmAffinity website 109

A.7 FilmAffinity and weather widgets in tvguia website 110

B.1 WebMakeup example spectrum table 121

B.2 DBLP . 122

B.3 DBLP after Google Scholar addition 123

B.4 Ecobolsa . 124

B.5 Ecobolsa after Bolsa Madrid addition 125

B.6 EHU . 126

B.7 EHU after Pesa addition 127

xii

LIST OF FIGURES

B.8 Linguee . 128
B.9 Linguee after Wordreference addition 129
B.10 EasyChair . 130
B.11 EasyChair after EHU link addition 130
B.12 New York Times . 131
B.13 New York Times after weather addition 132
B.14 Open Science Framework 133
B.15 Open Science Framework after element position change . . 134

xiii

List of Tables

2.1 Classification of End-User Development tools for the Web 19

3.1 Optimization experiment results 58
3.2 Evaluation questions and end-users answers (usefulness) . 65
3.3 Evaluation questions and end-users answers (usability) . . 66

4.1 Comparison of Locator Realization Techniques 73
4.2 Website sample representatives arranged along two

dimensions: attribute usage & structure complexity. 76
4.3 Robustness among locator approaches 78
4.4 Comparison of different possible orders for the Kidney

algorithm . 83
4.5 XPath regeneration results 92

xv

Chapter 1

Introduction

1.1 Context

Web Personalization refers to making a web site more responsive to the
unique and individual needs of each user [CDA00a]. To achieve this
goal, the web application is adapted to the user needs; the web master
designs a website where its content/layout/navigation changes depending
on the user. The increasing volume of content and actions available on
the Web, combined with the growing number of mature digital natives,
anticipate a growing desire of controlling the Web experience. Often, in
order to perform activities conducted through the Web, various websites
are needed [KLN05] which all “live in their own world”. This leaves
the users themselves in charge of integrating the resources and services

required in carrying out their inter-site activities. Here, the approach is to
empower end-users for them to develop such functionality by themselves.

End-User Development can be defined as a set of methods, techniques,
and tools that allow users of software systems, who are acting as non-
professional software developers, at some point to create, modify or
extend a software artefact [LPW06]. End-users are able to start with

1

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

simple adaptation mechanisms and gradually advance to more powerful
adaptation mechanisms without facing insuperable barriers [SDW08]. This

work looks into Web Augmentation as a mechanisms to adapt Web pages

by end-users.
Web Augmentation is to the web what Augmented Reality is to

the physical world: layering relevant content/layout/navigation over
the existing web to customize the user experience [DAA13]. Web

augmentation techniques have been proposed as a way for extending
Web sites features without affecting the server-side code [Bou99] what
is more, augmentations are not made by the creator but by the user of the
web application. Unfortunately, Web Augmentation incurs in important
drawbacks. Augmentations are vulnerable to page changes. According to
[Fil06], “augmentations must often rely on pattern expressions, but pattern
matching can be an easily disrupted technique” and “web page formats
evolve”, therefore if a web page changes, the augmentation may stop
working.

1.2 Problem Statement

Problem statement

• Personalization techniques can not always cater for/foresee
individual practices

This problem is provoked by some causes and it has some consequences,
which are listed below:

Causes

• No cost effective: software companies are not interested in
developing personal software due to the more clients you have, the
more versions you will implement. The cost of producing these
personal products would be unacceptable for companies owing to
the expensive cost.

2

Chapter 1. Introduction

• No ease to foresee: No design can provide information for every
situation, and no designer can include personalized information
for every user [Rho00]. That is why users yearn to customize
websites. Despite the existence of applications to automate and
personalize web interactions, these are insufficient to guarantee the
accomplishment of user goals when changes in relevant context
cannot be fully anticipated at design time [CVM14].

• Significant user effort: End-users do not have programming
knowledge and the effort they need to carry out web modification
with programming languages is colossal. Reducing the user’s efforts
and, therefore, the gulf of execution and the evaluation gulf is the
aim of end-user augmentation tools [WCB+15].

Consequences

• Scrolling: Some studies claim that users scroll a lot [AGJ+16]. The
outcome is that people used the scrollbar on 76% of the pages, with
22% being scrolled all the way to the bottom regardless of the length
of the page. Despite these facts, designers “are inundated with
requests to cram as much information above the fold as possible,
which complicates the information design” [Scra]. As for the former,
different studies confirm that users will scroll to find information and
items below the fold. Chartbeat, a data analytics provider, analysed
data from 2 billion visits and found that “66% of attention on a
normal media page is spent below the fold [Scrc]. Jared Spool’s
usability tests tell us that, even though people say they don’t like to
scroll, they are willing to do so. Moreover, longer and scrollable
pages even worked better for users [Scrb]. Nonetheless, scrolling
up and down a page without reading the content may be a signal of
frustration and lack of confidence [AKG10].

• Tab switching: We now use the Web to multi-task the activities
we do every day, to the extent that it is not unusual to see users

3

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

with a dozen applications and browser instances open at a time;
e.g., sharing pictures, listening to music, or shopping, just to name
a few [DB10]. [HW10] found that users switch tabs at least
57.4% of the time, but user activity, measured in page views, is
split among tabs rather than increasing overall activity. [AN15]
studied that Multiple windows and tabs have significant flaws that
hinder users’ performance. 70% of participants achieved a 21.37%
decrease in the time required to complete a comparison task with our
prototype. In addition, they found further advantages in flexibility
of movement, learning time, and reduced memory load. Another
study showed that navigations using the back button or opening
new tabs, which result from considering a user dynamic interaction
with the provided contents, clearly allow users to achieve their goals
in less time, so increasing productivity. Experimental results have
shown that parallel tab browsing behaviour noticeably increases the
user’s productivity (measured in number of finished sessions) up
to 200% with respect to browsing the website in a sequential way
[PGSP15]. Finally, [RPR17] defined a browser session as a sequence
of request-responses serviced by the browser application pivoting on
a single browser window containing exactly one browser tab. When
multiple sessions are involved it becomes necessary to understand
and represent the information contained in each session, which is
essential to differentiate them.

• A large number of clicks: it is suggested to be an indicator of
problems [AKG10]. The more clicks the user does, the worse
interaction is. Some exploratory studies notice that in three
exploratory tasks involve a higher number of clicks than the lookup
tasks and this is caused by users trend to do unnecessary clicks
[AGJ+16]. More to the point, often times we found that users
click backwards [SPWL14] to assure themselves they clicked on
the right link by reading again its content. It has been documented

4

Chapter 1. Introduction

as a revisitation strategy [ATD08] and also as way to have a quick
preview of a page [KS08].

• Cut and paste: [SER09] saw that end users are certainly creatures
of habit and perform the majority of their copy and paste tasks
within just a few applications. [SER09] also saw that repeating copy
paste sequences between the same two windows, and distributing
data from one source to multiple destination windows, are the most
popular behaviours. One possible solution to cut and paste are
hyperlinks which are essential for several reasons because from a
human–computer interface perspective, they allow users to explore
the available information in a natural way by effortlessly following
pointers to references [WPL15].

Scrolling, tab switching or a large number of clicks are the symptoms
of a "sickness": websites do not fully match user profiles. To face this
issue, this thesis explores the combined used of Web Augmentation and
End-User Development. Specifically, the solution has been to develop
a browser extension that allows end-users to customize web pages. A
browser extension is a plug-in that extends the functionality of a web
browser [Bro]. Websites are not static, sooner or later the owner of the
website will change the content, the structure or the style. The more
updates a website has, the more possibilities a browser extension will fail.
Web extensions for Web Augmentation have a significant problem when a
web page is updated due to the fact that they might not find the relevant
node to carry out the augmentation. Should the extension fail, the user
might stop using this extension. It is of the utmost importance to realise
that End-User Development tools for Web Augmentation generates their
own locators (a mechanism for uniquely identifying an element on the
web page [RLS+13]) automatically because end-users do not know how
to create locators. That is why, with a shadow of a doubt, it is highly
important to develop the most robust locator system.

5

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Problem statement

• Web extensions stop working

The causes and consequences of this problem are:

Causes

• Locator fragility: Different articles compare the robustness of each
type of locator [LCRT14, BMM12, LSRT16] and their fragility to
face web site upgrades [FB11b, DBS09].

• Frequent website upgrades: Web pages are frequently updated
because they were not able to meet users’ needs [LCRT13].
Structural changes are quite important, since web site re-styling,
a frequently occurring activity, tends to affect the DOM structure,
leaving the application logic unaffected [LSRT14].

• Web extensions are not often developed by website owners: this
prevents developers from noticing when a website has evolve and
hence, [KKA06] shortcomings of the proposed approach is that
extensions had to be explicitly prepared by website owners.

Consequences

• Failures might make users forsake the extension: Locator
fragility impacts on maintenance. If augmentations no longer
recover the right DOM node, augmentations need to be redone and
meanwhile, if the extension does not work, the user may think that
the extension is dreadful and he will not continue using it.

• Maintenance cost: Frequently modifications applied on a web
application lead to have one or more locators broken and repairing
the Web extension is a time-consuming and expensive task
[LCRS13].

6

Chapter 1. Introduction

1.3 This Dissertation

In this dissertation the following three issues are tackled:

Review about End-User Development features for Web Augmentation
and Mashups

• Problem statement: Different studies have been carried out related
with End-User Development tools for different aspects. Nonetheless,
there are not studies based on End-User Development tools for Web

Augmentation.

• Solution: A survey on End-User Development for Web

Augmentation has been accomplished taking into account the
most important conferences in End-User Development.

Empowering people to customize web content

• Problem statement: End-users desire to reorganize a website
for better information extraction. End-users yearn for web
customization to delete unnecessary information, add information
from different websites to complete the target site, move content
to avoid scrolling or better information extraction, to avoid opening
new tabs, cutting and pasting, URL typing and also to decrease the
number of clicks. As a consequence, the users will be able to better
concentrate on their task.

• Solution: An End-User Development tool has been developed to
facilitate web customization by end-users. The aim is to abstract
technical details into a visual Domain Specific Language that
facilitates end-user implication. To accomplish this objective, a
Google Chrome browser extension called WebMakeup has been
developed.

7

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Enhancing web locator robustness

• Problem statement: After websites upgrades, previously desired web
nodes will no longer be found by standard locators. How can I
enhance locator robustness in order for them to be able to find the
desired nodes for a longer time even after website changes?

• Solution: Two different algorithms have been proposed, Kidney

locator and Regenerative locator. Kidney locators are based
on redundancy that utilizes different locator techniques to find a
web node and regenerates the information needed in those locator
techniques that have not been able to find the desired node.
Regenerative locators employ all attribute information about the
target node and all its ancestors to try to regenerate a valid XPath
that permits the correct node location after web upgrades.

1.4 Research approach

Design science is the scientific study and creation of artefacts as they
are developed and used by people with the goal of solving practical
problems of general interest [JP14]. Thus, design science is one approach
to investigating artefacts. Design science takes a problem solving stance,
starting from problems experienced by people in practices and then tries to
solve them. It does so by creating, positioning, and repurposing artefacts
that can function as solutions to the problems. Design science is viewed
mainly from an IT and information systems perspective. However, the
principles underlying design science are applicable to many other areas
[JP14].

There are some variations depending on the author of the Design
Science Research (DSR) proposal. Paul Johannesson and Erik Perjons
summarised DSR [JP14] proposals and illustrated a methodology fulfilling
all previous authors’ requirements in figure 1.1.

8

Chapter 1. Introduction

Figure 1.1: DSR methodology process model [JP14]

• Explicate Problem. The goal of this activity is to investigate
and analyse a practical problem. The problem must be precisely
formulated and justified by showing that it is relevant. The problem
has to be of general interest and remarking causes to the problem it
might be identified and analysed.

• Define Requirements. The Define Requirements activity outlines a
solution to the explicated problem in the form of an artefact and
elicits requirements, which can be seen as a transformation of the
problem into demands on the proposed artefact.

• Design and Develop Artefact. The Design and Develop Artefact
activity creates an artefact that addresses the explicated problem
and fulfils the defined requirements. Designing an artefact includes
determining its functionality as well as its structure.

• Demonstrate Artefact. The Demonstrate Artefact activity uses the
developed artefact in an illustrative or real-life case, sometimes
called a “proof of concept”, thereby proving the feasibility of the
artefact. The demonstration will show that the artefact actually can
solve an instance of the problem.

9

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

• Evaluate Artefact. The Evaluate Artefact activity determines how
well the artefact fulfils the requirements and to what extent it can
solve, or alleviate, the practical problem that motivated the research.

As indicated by [JP14], these tasks do not follow strictly in sequence.
Rather, research is commonly iterative, moving back and forth between
all the activities of problem explication, requirements definition,
development, and evaluation. The arrows in Figure 1.1 should not be
interpreted as temporal orderings but as input–output relationships. In
other words, the activities should not be seen as temporally ordered but
instead as logically related through input–output relationships.

This dissertation has been developed along DSR hallmarks. First, the
problem was detected and an investigation and analysis was conducted to
define the problem properly. Next, we decided what were the objectives
and how they will be solved. Once the objectives were clear, WebMakeup

(3) was designed and implemented. This design and implementation was
updated several times after evaluations. First evaluations were carried out
with degree and master students. In the last evaluation, end-users evaluate
WebMakeup with a satisfactory result. The evaluation in chapter 4 was
accomplished at the beginning with different websites and examples of
WebMakeup and finally with other browser extensions.

1.5 Outline

The content of each chapter is summarized in this section. Figure 1.2
contains a map that illustrates the relationships between the chapters of
this dissertation.

Chapter 2
This chapter presents a study of End-User Development tools for the

Web using techniques of Web Augmentation. This study sets the bases for
the rest of this thesis.

Chapter 3

10

Chapter 1. Introduction

Figure 1.2: Chapter map of the dissertation.

This chapter describes an approach for end-user client-based
augmentation of websites. To this end, a visual programming tool
is presented, WebMakeup. WebMakeup permits end-users to generate
components of their interest from different websites with the intention
of customizing their favourite web pages. End-users are able to add
these components, called widgets, remove elements from the customized
websites and even move them to different locations.

Chapter 4

This chapter shows different techniques to locate DOM nodes.
Moreover, it proposes two different techniques to enhance locator

11

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

robustness based on redundancy, Kidney locator and Regenerative locator.
Chapter 5
This chapter concludes the dissertation by remarking the main results,

listing publications of the author’s thesis, enumerating the limitations of
the current solutions and proposing future work.

Appendix A
This appendix presents the exercise made by end-users to evaluate

WebMakeup and it presents the questionnaire created for the experiment.
Appendix B
This appendix shows some examples that check the spectrum of

possibilities that WebMakeup proposes.

1.6 Conclusion

In this chapter, the definition and concepts of Web Augmentation for
web customization are introduced as the main topic of this dissertation.
For such topic, three contributions are identified: First, a study of
Web Augmentation tools for End-User Development. Second, a visual
programming browser extension for Web Augmentation. Finally, an
approach to enhance web node location for web extensions. The next
chapter provides the necessary background to understand the rest of the
chapters.

12

Chapter 2

Related work

2.1 Introduction

Nowadays, many applications which, formerly, would have been designed
for the desktop such as calendars, travel reservation systems, purchasing
systems, library card catalogs, maps viewers or even games have made the
transition to the Web, largely successfully. Many Web sites are created
every day to help users to find information and/or to provide services
they need. However, there are cases where rather than a new Web site,
what users need is to combine information or services that are already
available but scattered on the WWW. Some examples follow: (1) users
who want to have additional links on a Web page to improve the navigation
(for example to create a personalized menu that gathers in one location
multiple personal interests), (2) users who need to integrate contents from
diverse Web sites (for example to include a Google’s map into a Web
page that originally only shows addresses as flat text) in order to improve
their performance in identifying distance from their personal location or
(3) simply to remove content from Web pages (such as contact details
they consider irrelevant) to improve reading and selection performance as

13

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

identified by Hick’s law [Hic52]. Because these needs might be perceived
as idiosyncratic, volatile (being short-lived or occasional) or dissenting
with the interests of the Web site, they might well not be considered (or
even not known) by Web developers [FURS16]. This is because Web sites
are, by definition, designed for the masses and that at design time only few
users are available.

Previous work on End-User Development [IAD14, LPW06] has
demonstrated that, if appropriate tools are provided, end-users might be
able to create what they need (or at least define more precisely part of
what they need). DENIM is a pioneer example that illustrates how tools
can be used for involving users into the design of the Web sites to be
developed [NLHL03]. A more demanding scenario is when the target is
not in-home Web sites but Web pages that have already been created by
third parties. The options are here, either to redevelop what has already
been done by the third party or to try to convince the third party to tune
its development to fit a particular user need. This deeply collides with the
principle of Web development that target the masses and not the individual.
The term Web Augmentation is used to describe tools that can be used
to improve (hence the word “augment”) existing Web pages (found for
instance whilst browsing the Web) to create better fit user’s needs and
activities. Some of the most popular Web Augmentation tools work by
extending the functionalities of the Web browser used by the user via plug-
ins that can run client-side scripts to manipulate the structure of Web pages
loaded in the browser. In that case the augmentation will be applied to
all the visited Web page featuring specific characteristics. The potential
of Web Augmentation techniques can be illustrated by some advanced
applications such as lightweight integration of information extracted from
the Web, context-sensitive navigation across diverse Web site, context-
dependent multimodal adaptation [GMPP14] or refactoring Web sites for
accessibility [FWRG11b]. Another example is a spellchecking plug-in
that would automatically check the text entered by the user on any Web
page. The degree of expertise required for using Web Augmentation tools

14

Chapter 2. Related work

varies dramatically [HT10]. For example, some tools only require basic
knowledge of how to install plug-ins in the Web browsers while others
may require integrating sophisticated scripting code created by the user.

In this chapter, we examine the potential of Web Augmentation

technology for supporting End-User Development for the Web. In section
2.2, we discuss the relationship between Web Augmentation and End-User

Development. Section 2.3, proposes a classification of Web Augmentation

technologies, positions existing tools with respect to this classification and
provides a study of research contributions for each main category of the
classification. In section 2.4, we explain some of the users and usage
difficulties specific to the adaptation of Web applications. Finally, section
2.5 concludes the chapter.

2.2 Web Augmentation and End-User
Development

Web Augmentation (WA) is not End-User Development (EUD) for the Web
but some of the features provided by WA tools can be used for that purpose.
To highlight similarities and differences, we revisit their definitions.

Many authors have tried to define precisely the term end-user
programming [BS11, LPW06]. In this chapter, we adhere to the definition
provided by Ko et al. [KAB+11] who state that “end-user programming

is programming to achieve the result of program primarily for personal,

rather than public use”. That definition has many implications. First,
it is important to note the absence of any reference to an application
domain and/or technology highlighting the large scope for the use of EUD
tools. Next, the term “programming” refers to a general activity, which
might encompass the development of software from scratch and/or making
modification to an existing software. Finally, the term “end-user” does not
refer to the user’s skills in so for as a professional developer is engaged in
end-user programming when writing code to fulfill a personal need, such

15

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

as visualize the data structure to help diagnose a bug. Moreover, even if
the definition implies a particular intention behind the development of the
program, it does not exclude the possibility of sharing the program with
other users.

There are fewer attempts to define precisely the term Web

Augmentation. This term was originally coined by Bouvin in 1999 [Bou99]
to describe a tool that “through integration with a Web browser, a HTTP

proxy or a Web server adds content or controls not contained within the

Web pages themselves to the effect of allowing structure to be added to

the Web page directly or indirectly, or to navigate such structure. The

purpose of such a tool is help users organize, associate, or structure

information found on the Web. This activity may be done by a single

user or in collaboration with others”. More recently, Díaz [DA15]
said that “WA is to the Web what Augmented Reality is to the physical

world: layering relevant content/layout/navigation over the existing Web

to customize the user experience”. These definitions highlight WA as a
non-intrusive approach: augmentations are “layers” on top of an existing
content. These augmentation layers might be needed to cater for situational
and idiosyncratic needs, difficult for designers to foresee. Technically,
augmentations do not need the participation of the Web sites used for the
augmentation since the augmentation occurs on the Web browser. Web

augmentation technology only acts on the user interaction and does not
change the original Web page stored on the Web server. It is interesting to
note that whilst Bouvin does not assign any particular intention for the use
of WA tools, Díaz explicitly mentions that augmentation layers might aim
at improving the user experience with the Web page.

For our purposes, WA describes tools that allow people to modify
Web pages to improve user performance and satisfaction. This definition
connects WA to EUD as EUD “is programming to achieve the result of

program primarily for personal, rather than public use”. Indeed, WA
realizes this vision in the web sphere as far as it helps to support users’
needs that have not been originally been identified or taken into account

16

Chapter 2. Related work

during the design of the Web site.

2.3 End-User Development tools for the Web

The evolution of Web technology is changing the way users interact with
Web sites. At first, users could only consume contents provided by Web
sites. Later, users could actively contribute with content by using tools
such as CMS (Content Management Systems) and wikis. More recently,
WA tools empower people in different ways making these tools real EUD
tools: (1) to create their own web sites, (2) to combine information from
diverse Web sites into a single hub (using mashups), and even (3) to modify
Web pages created by others (using WA tools e.g. MADCOW [BCL+04]
and DiLAS [AAF+05]). This highlights the broad range of approaches
that Web-centered EUD tools explore. Figure 2.1 introduces a set of
dimensions to classify these tools while the positioning of existing tools
with respect to this classification is shown in Table 2.1.

Mashup technology is an interesting alternative for final users to
combine existing resources and services in a new Web application [AP11].
Mashups are often very specialized and only operate with specific types of
contents (quite often structured data sources). For example, FaceMashup
[MS15] is a EUD tool for mashup that allows users to manipulate social
network APIs to combine data and sharing them with other users through
the social networks. It is interesting to notice that some WA tools such as
CSN Framework [FWRG11b] borrow from mashups the ability to integrate
contents but they are even more flexible allowing to compose any kind of
DOM element from a Web page.

Tool wise, Figure 2.2 highlights how mashups (66%) have received
more attention throughout w.r.t. WA tools (34%). This seems to suggest
that integrating different data sources is being considered more important
than customizing existing Web sites. Though this might be true in a general
sense, when it comes to empowering end-users, data integration might be
more costly and hence, more difficult to end users to achieve. By contrast,

17

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Figure
2.1:Features

ofE
nd-U

ser
D

evelopm
enttools

forW
eb

applications

18

Chapter 2. Related work

Table 2.1: Classification of End-User Development tools for the Web

19

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Figure 2.2: Contributions presenting tools: Mashup versus WA technology

WA is not so demanding, and hence more affordable to end-users. This
makes WA tools more likely to be adopted by end users.

The rest of this section explains the classification presented in Figure
2.1 and provides examples of the corresponding Web technology.

2.3.1 Architecture

Tools might rest on the client side, the server side or both. Client-
side tools are executed as Web browsers’ extensions (or plug-ins) and
processing happens on the user’s local computer. Common programming
languages used to implement client-side applications include HTML, CSS,
and Javascript. Conversely, server side technology runs on a remote
machine, and only the outcome of the execution returns to the user’s local
computer. Common programming languages include Ruby, Python, PHP,
C#... Server side technologies can store persistent data. However, data can

20

Chapter 2. Related work

only be accessed than through HTTP requests for a particular URL.

Miján et al. [MGF16] and WebCrystal [CM12] illustrate the client-side
approach. WebCrystal is a Firefox plug-in that allows the inspection of
code corresponding to visual objects. WebCrystal provides users feedback
using a textual description and a customized code snippet that can be
copied-and-pasted to rebuild the user-selected properties. Additionally,
Miján et al. resort to a set of personalization rules to be applied in
the client-side with minimum alterations defined without requiring either
advanced programming skills or advanced configuration.

Whilst Web browsers can store data in the local cache, server-
side technology is used by many tools such as DireWolf [KRNK13],
FaceMashup [MS15], Ardito et al. [ACD+14, ACD+15] and MultiMasher
[HNPN14] as a means to support data persistence. DireWolf provides
several extensible components for adapting Web sites and it implements
a service for data persistence such as user device profiles and shared
application states.

As for client-server tools, most requests a kept in the client with
sporadic calls to the server. For example, DashMash [CDM+11, CMP+11]
has a client-side module for mashup creation and a server module
responsible for integrating and storing data from different types of services.
In the mobile world, IVO [RDR11] follows a similar architecture. For
mashups, MashupEditor [GPS11, GPSP16] allows for adaptations to be
created on the client (using a dedicated editor). Next, a proxy server store
those adaptations that can be later reused during the creation of the mashup.

From the accumulated results in Figure 2.3, it is clear that the client-
side approach is the most popular architecture (49%). The Client-server
option (21%) boosted in 2011, presumably due to the popularity of the Web
2.0 and the focus on sharing and the need to have common repositories.
The server-side option (28%) rose from 2013 onwards, arguably on the
search for a business model for mashup platforms.

21

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Figure 2.3: Distribution over the years of tools and what part of the Web
architectures they were exploiting

2.3.2 Subject of adaptation

Web sites might be adapted in different ways: including brand-new
content, changing the behavior associated to DOM elements or altering
the appearance (style and layout). Most tools provide functions to
add/remove/replace contents. Adding content from other sources is often
used as a means for making information readily available whilst removing
content is useful to improve focus, preventing users from distraction.
Mixer [GTZ+11] resorts to WA to improve the organization of Web pages
simply by letting users to move contents around and include/exclude
contents needed. Mashups are also used to add content from different
websites. SmartComposition [KWG14] is another content-based approach
that is primarily used to build mashups but it also features unique
functions that allow to reorganize contents to fit into different screen sizes.
Chudnoskyy et al. [CNG+12] take a step forward by assisting users with

22

Chapter 2. Related work

recommendations and automatic composition.

Whilst modifying CSS code (color, font, etc.) is relatively simple, few
tools account for this kind of adaptation. RUMU [Pol10] is a web-based
WYSIWYG editor that resorts to a semantic language to change the page
style and simplifying web design. OpenHTML [PSJ+13] is also a web
editor to introduce laymen into HTML and CSS.

Finally, changing the behavior of Web sites is far from trivial. It
often requires adding some Javascript code to DOM elements like show
or hide web nodes, click on certain button, change the content of an
element, etc. Changing the behavior of web sites might be necessary,
for example, for automating repetitive tasks. Inter-Widget Communication
(IWC) [NK15] is a semi-automatic, end-user friendly approach to extend
widgets employing the programming-by-demonstration paradigm. IWC is
built by composing interactive widgets. IWC leaves users with the tedious
task of manual wiring widgets to create mashups. SOA4All [WNM11]
is a visual development environment that addresses adaptation of Web
applications through the connection of different service components into
an assembly line.

2.3.3 Web site integration

This dimension tells if users work with one (singleton) or more
(combination of) Web sites in a single project. Whilst many EUD tools
are designed to augment a particular type of singleton Web site (e.g.
OpenHTML), some tools allow to mix content from diverse Web sites.

Mashups tools like Baya [CRDC12, DRC+12], Deep [GHT10],
MamSaas [WW15] and Marmite [WH07] are typical examples of tools
that allow to extract data from different Web sites and recombine them in a
form that better fulfill user’s needs. Nonetheless, other strategies combine
Web sites that don’t necessarily involve structured data sets. For example,
Ardito et al. [ABC+13] is a platform for end-users to compose personal
information spaces by assembling pieces of information from different

23

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

sources. Such personal information spaces can be enacted in different
devices and shared with other users. MamSaas [WW15] is a layered
architecture to deploy and identify mashup components as well as link and
execute mashups for quick application development. MOWA [CFB+13] is
another EUD tool for WA that enables end-users to create a custom guided
tour of a city based on contents collected from diverse Web sites. Its aim is
to augment existing Web applications with mobile features. Using MOWA
end-users can pinpoint in a map content from a different Web site and then
generate a custom script. This mobile Web application prompts the users
add points of their interests while they move around the city.

Finally, CrowdDesign [NLN12] can also be classified as a EUD tool
in so far as it supports mashup based on the integration of scripts coming
from diverse sources. CrowdDesign works as a storage for scripts and user
interface components shared by a community of developers. CrowdDesign
also features a visual authoring environment that allows users to combine
contents and scripts available at the platform to create a more personal
version of Web sites.

2.3.4 Collaborative features

Whilst a WA strategy can be adopted only for personal purposes, sharing
is an important aspect of End-User Development [LPW06, RAR+11]. We
distinguish between sharing and collaborative development.

Sharing. Some tools focus on personal use, i.e. results cannot be
reused and/or shared with other users. Tayeh et al. [TS14, TS15] is
a case in point. These authors provide a tool for the linking and the
integration of arbitrary documents and multimedia content dynamically.
Rana et al. [RMS13] and EasyApp [ZCW+16] are also tools for personal
use. Both tools provide a systematic way of designing, developing and
deploying personalized apps. Reform [TDD+09] is a Firefox extension
that contributes with architecture for web enhancement that allows end-
users to integrate existing enhancements with new websites. Despite

24

Chapter 2. Related work

the fact that it allows end-users to communicate with developers for
requesting new features, they do not allow sharing developments. CapView
[RBM13] is a mashup platform that provides instant feedback for user
development actions. CapView helps non-programmers form components
with recommendations provided by the system and it manipulates a
mashup through visually composing component features.

Moving away for the personal realm, Social Overlays [DANP13] and
the CSN framework [FWRG11b] illustrate the use of repositories for script
sharing. Social Overlays focuses on repairing either the behavior or the
appearance of Web sites. Updates made by individuals are visible to
the community which use a voting mechanism to decide if the updates
are relevant and if so, be incorporated as part of the Web site offerings.
CSN features a plug-in that allows users to adapt Web pages by triggering
different types of scripts. It has different features depending on the user
profile: developer or end-user. Developers can write new augmentation
scripts to extend the set of original sets of scripts available in the
framework. Such scripts can then be obtained by other users who on their
turn can execute them to adapt the Web sites. Finally, it is interesting to
notice that a few tools allow to publish the code in social networks (e.g.
Sticklet [DA15, AD13]) whilst others allow to export files for personal use
on an individual basis (e.g. WebMakeup).

Collaborative development. CrowdMock [FFRA14] does not provide
a voting mechanism but it permits to amend/complete augmentation
script by people other than the author. CoScripter [LHML08] resorts
to programming by demonstration to enable users to record all the
information related to user interaction to edit a Website. The outcome
is a script macro that can be automatically stored in a Web server from
where they can be delivered to other users and they can use a collaborative
scripting environment for recording, automating, and sharing web-based
processes.

Figure 2.4 helps to apprehend differences and similitudes between WA
and mashups as for “collaboration features” and “subject of adaptation”

25

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Figure 2.4: Mapping WA tools and Mashups across “Collaboration
features” and “Subject of adaptation”

support. As for the former, both scenarios (i.e. WA and mashups) pay
attention to the idiosyncratic scenario (“Personal use”), while the potential
of reuse (i.e. sharing) is felt to be more intensive for mashups than for WA
developments. Also, mashups and WA coincide in their interest in handling
content (31 vs. 15) while WA underscores in addressing presentation
concerns (2 vs. 6). This is according to expectations since WA adapts
existing web sites whose presentation might need to be tuned to better
meet users’ needs. By contrast, behavior modification has received more
attention in the mashup realm.

2.3.5 Programming paradigm

EUD tools resort to diverse programming paradigm: visual languages,
spreadsheets, programming by demonstration, domain specific languages
(DSL) and model-based automation [AP11].

Visual programming is mainly found in mashup tools that allow drag-
and-drop to connect components to create a mashup. Examples include
VisPro [BMM+11], ResEval Mash [ISK+12], MobiMash [CMP13],
SemanticWeb Pipes [PPH+09] and WebMakeup [DAA+14]. VisPro

26

Chapter 2. Related work

creates mashups by dragging and dropping widgets from a library. ResEval
Mash is a domain-specific mashup tool that explores dedicated mashuping,
in this case in the domain of research evaluation. MobiMash resorts
to visual notations to create mobile mashups. The particularity of
SemanticWeb Pipes is to blend mashups and the Semantic Web. Here,
ontologies are used for better matching widgets parameters that build up
the mashup. WebMakeup is an editor that delivers Chrome plugs-in for
augmentation purposes. A DSL is defined that sets the expressiveness of
the augmentation. WebMakeup helps construct DSL expressions on top of
the page being augmented. Once constructed, WebMakeup generates and
installs the corresponding Chrome extension.

Programming by demonstration is most popular for data extraction
and visualization, where service composition and orchestration play
an ancillary role. NaturalMash [AP14], WOA [FBR+16], Margmash
[DPP07] and MAIDL [CPT11] illustrate this approach. NaturalMash is a
WYSIWYG mashup tool. NaturalMash stands out for its formative support
where the tool is able to collect user feedback. WOA enables users to
create/extract Web contents in the form of objects that they can manipulate
to create Personal Web experiences. Margmash creates augmentations out
of personalized information, which are gathered from diverse Web sites.
Margmash behaves as a lightweight wrapper that guides end-users on both
data gathering and data recombination. MAIDL permits the rapid creation
of mobile mashup out of components.

Model-based Automation is concerned with the automatic creation
of mashups out of knowledge about the user and the context of use.
This technique’s weakness is the risk of generating irrelevant mashups
w.r.t. the given requirements. Ontocompo [BDRR11] and Atomate
[KMK+10] illustrate this approach. Ontocompo makes use of an ontology
to generate new applications based on existing ones. Atomate is a personal
information assistant engine that automatically carries out tasks for the
user. Atomate combine RSS/ATOM feeds from social networking into a
simple RDF model representing people, places and things.

27

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

DSLs strive to abstract from general-purpose programming language.
The challenge here is to find a compromise between expressiveness and
learnability. DSLs in the augmentation realm can be illustrated by
Cowpath [DSAT12] and Sticklet [AD13, DAA13]. Cowpath focuses on
“Web trails”, i.e. recurring navigation paths across distinct Web sites.
Rather than switching between tabs and typing once and again the same
URLs, Cowpath augments the affected websites with additional hyperlinks
that “pave the way” of these Web trails. On the other hand, Sticklet
explores the use of a dedicated assistant that help users to come with
Sticklet expressions to augment Web sites.

Spreadsheets-like programming are often considered ease-of-use,
intuitive and with enough expressive power to represent and manage
complex data. When it comes to mashups, Mashroom [WYH09] and
MashSheet [HPB10, HPD11] explore this approach. Mashroom builds
Web applications by combining content coming from different Web sites.
To this end, it resorts to an expressive data structure and a set of
defined mashup operators. The data structure allows users to express
complex data objects while mashup operators are visualized in the formula
bar. MashSheet extends conventional spreadsheet paradigms to facilitate
Web services “mashup” in a spreadsheet environment. MashSheet
is a collection of operators that supports orchestrating Web services,
manipulating and visualizing data created by the services.

Figure 2.5 depicts the distribution of research contributions with
respect to the “programming paradigm” feature over the years. Visual
programming is by far the most popular approach (53%), where the other
approaches fall behind: programming by demonstration (30%), Model-
based (9%), DSL (4%) and spreadsheets (4%). Worth mentioning, the
boost of programming-by-demonstration in 2011 although it faded over
the years.

28

Chapter 2. Related work

Figure 2.5: “Programming paradigm” in research contributions over the
years

2.4 User and usage challenges with WA tools

Each tool cited in this chapter has its own idiosyncrasies and their use will
reveal very specific challenges. But beyond the use of a particular tool,
WA challenges users to revise what they know about the web and how to
program applications. When it comes to WA, users should be aware of a
number of aspects, namely:

• WA is mainly a browser-based technology. Regardless of the
technology employed to store and run the augmentation scripts, the
adaptation only affects how a web site is displayed in the user’s
personal machine. Users must understand that their adaptation is
personal and that will not be visible by other visitors of the same
web site.

• WA is mainly a single browse technology. Changes performed by the

29

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

user will only occur on the browser where the augmentation has been
performed. The same user performing the same actions on another
computer will not see the augmentation. It thus requires replication
of the augmentation multiple times if the users are using multiple
execution platforms (e.g. desktop computers, smartphones).

• Similar to other EUD technologies, WA require the adaption of the
code produced by someone else. This has multiple implications for
assessing the code of Web pages before to adapt them [GPSP16,
GYK11].

• WA is constricted within the DOM hierarchy. Users should be
aware of manipulation of DOM elements imposes a certain order
of access to contents. For instance, elements might appear visually
together but be arranged in separated DOM nodes. This might imply
having different ancestors. This, in turn, prevents these “alongside
elements” from being selected as a single DOM element. This
constrain is imposed by the DOM element hierarchy [BFR+16].
Notice that the DOM hierarchy itself does not need to be made
visible but manipulated through metaphors and witty interactive
tools. But no matter the tool, it is constricted within the DOM
hierarchy.

• WA is fragile upon Web-site upgrades. Web sites evolve overtime
and with the evolution of a web site some elements resulting from the
augmentations may disappear and/or be replaced by other elements
that directly affect the way WA scripts operate. Thus, whilst some
scripts will be resilient to maintenance of web sites, other scripts will
stop working once a Web site is upgraded. This makes the use of WA
a more suitable technique when user’s needs are volatile [FURS16].

• WA does not create brand-new applications but enhances existing
ones. The inclusion of contents from other web sites raises some
pragmatic questions about the type of relationship created between

30

Chapter 2. Related work

web sites [FFR+15]. The simplest approach is the clone&own of
elements. This implies that changes in the source element will not
propagate to its clones. Alternatively, it is also possible to keep
a dynamic binding with the source element so that changes in the
source ripple throughout its clones.

2.5 Conclusions

This chapter has presented the principles behind Web Augmentation and
highlighted how this technology shares multiple similar objectives as
End-User Development. Indeed, as it allows users to recycle, reuse and
exploit material that can be obtained from other web sites it supports
the construction (by the end-users themselves) of more usable and more
adapted web application. One of the biggest challenges is how treat
dynamic states of Web applications, which means contents that evolves
over time. Whilst this remains an unsolved issue that should be addressed
by future research, it is possible to envisage various copy and paste
strategies to address the problem.

In the study of WA tools, it has been observed a prominence of tools
that run exclusively on the client side. This is not surprising as one of
the advantages of using a client-side approach is the faster execution that
has a huge impact on the user performance while interacting with the web
application making it possible to provide immediate feedback to the users.
Moreover, users do not need to understand sever side functioning and to
deal with complex installations on a remote web server (for which they,
most of the time, have no access rights). Whilst client-side approach is
not a panacea, we suggest that this is still a suitable strategy for giving
end-users more autonomy on the scripts they want to develop.

WA techniques has huge potential for end-user programming in
particular for allowing users to recycle and reuse material that can be
obtained from other web sites. One of the biggest challenges is how treat
dynamic states of Web applications, which means contents that evolve over

31

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

time.
In the next chapter WebMakeup is going to be more deeply explained.

WebMakeup is classified as a client-side visual programming tool that
can integrate different websites or augment a single one enabling content,
behaviour and presentation modification. Additionally, all augmentations
can be shared with other users.

32

Chapter 3

Web Page End-User
Personalization

3.1 Introduction

Modding is a slang expression that is derived from the verb “modify”.
Modding refers to the act of modifying hardware, software, or virtually
anything else, to perform a function not originally conceived or intended
by the designer [Wik]. Web Modding sits within the field of Web

Augmentation [Bou99]. The rationales for modding should be sought in
the aspiration of users to contextualize to their own situation the artefact
at hand. This ambition is not limited to video games, cars or computer
hardware. The need also arises for the Web. As an example, consider
a TV-guide website (e.g. www.tvguia.es). For a given user, favourite
channels might be scattered throughout the channel grid, hence, forcing
frequent scrolling. In addition, users might move to other websites
(e.g. www.filmaffinity.com) to get more information about the scheduled
movies. If tvguia is recurrently visited, this results in a poor user
experience. Traditionally, this is addressed through Web Personalization,

33

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

i.e. a set of techniques for making websites more responsive to the
unique and individual needs of each user [CDA00b]. Similar to other
software efforts, traditional personalization scenarios prioritize the most
demanded requirements while minority requests are put aside. However, as
a significant portion of our social and working interactions are migrated to
the Web, we can expect an increase in “long-tail” personalization petitions.
These idiosyncratic petitions might be difficult to foresee or too residual to
be worth the effort. “Web modding” moves the power to the users. Web
modding (hereafter, just modding) aims at Web content being consumed
in ways other than those foregone by Web masters. Rather, users are
empowered to rearrange Web content “after manufacture”, e.g. removing
content of no interest (leading to less cluttered pages while reducing
scrolling) or placing new content obtained from somewhere else (reducing
moving back and forth between sites so that a single viewing context is
provided). The research question is how to achieve this empowerment.

This question admits different answers depending on the target
audience. We frame our work along three main requirements: available
time (30’), available expertise (no programming experience), and sparking
motivation (improving the Web experience). This rules out fine-grained,
absorbing programmatic approaches, and demands more declarative and
abstract means. This is what Domain-Specific Languages (DSLs) are
good for. DSLs are full-fledged languages tailored to specific application
domains by using domain-specific terms. Domain abstractions are closer
to how users conceive the problem, facilitating engagement, production
and promptness. First, this work characterizes Web modding (Section
3.2). This work’s contribution rests on the three pillars of DSLs applied
to Web modding, i.e. ascertaining the right concerns (Section 3.3),
finding appropriate DSL constructs to capture those concerns (Section 3.4),
and finally, developing suitable editors that ease the production of DSL
expressions (Section 3.5). Section 3.6 shows how to share web mods
and section 3.7 explains how to solve mod problems with dynamic wen
content. Finally, section 3.8 shows how create efficient web mods and

34

Chapter 3. Web Page End-User Personalization

Figure 3.1: Number of users of WebMakeup

section 3.9 evaluates the proposed solution.

The later is realized through WebMakeup, a Google Chrome extension
that turns this browser into an editor for defining Web mods. WebMakeup is
available at the Chrome Web Store: https://chrome.google.com/
webstore/detail/alnhegodephpjnaghlcemlnpdknhbhjj

and a demo video is available at https://vimeo.com/204338864.
Figure 3.1 shows the evolution of the number of users WebMakeup

has had from May 2017 to July 2017 with an average of 68 users.
Mods are exported as Google Chrome extensions that once installed,
will transparently customize the page next time is visited. We start by
characterizing Web Modding.

3.2 Characterizing Web Modding

Web Modding sits in between Web Personalization [RSG01] and Web
Mashup [YBCD08]. As a personalization technique, modding aims at
improving the user experience by customizing Web content. There are
also important differences. In Web Personalization, the website master
(the “who”) decides the personalization rules (the “how”), normally at the
inception of the website (the “when”), preferentially using a server-centric
approach (the “where”). By contrast, modding aims at empowering end-
users (the “who”) to rearrange Web content once in operation (the “when”)
by acting on the DOM tree (runtime realization of HTML pages) (the

35

https:// chrome.google.com/webstore/detail/alnhegodephpjnaghlcemlnpdknhbhjj
https:// chrome.google.com/webstore/detail/alnhegodephpjnaghlcemlnpdknhbhjj
https://vimeo.com/204338864

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Figure 3.2: www.tvguia.es before (left) and after (right) being modded:
channel “La 1” is removed & filmaffinity ratings are introduced.

“how”) at the client side (the “where”). Nevertheless, modding also shares
similitudes with mashups: both tap into external resources. However, and
unlike mashups, modding does not create a bright new website. Rather, it
sticks with the modded website. Just like modding a car does not build a
new car, modding a website does not create a new website but just operates
on the browser side to change its DOM tree.

Web modding pays off for websites frequently visited but
unsatisfactory Web experience. As an example, consider www.tvguia.es.
This website provides the channel grid plus the-movie-of-the-day
recommendation (see Figure 3.2 (left)). A user might just focus on some
few channels, hence a thorough channel grip becomes a nuisance. In
addition, content from other websites about the recommended movie might
be of interest. Figure 3.2 (right) depicts a modded version: channel
“La 1” is removed whereas additional content about the recommended
movie is obtained from www.filmaffinity.com. The fragment extracted from
filmaffinity is referred to as a widget, in this case, the filmAffinity widget.

The bottom line is that mod scenarios are characterized as being
idiosyncratic, situational, and, potentially, short-lived, aiming not so
much at synergistically combining third-party data (as mashups do) but

36

Chapter 3. Web Page End-User Personalization

improving the user experience of existing websites. Since these scenarios
are very dependent on Web consumption habits and user interests, modding
necessarily has to be do-it-yourself (DIY). This implies keeping the
modding effort on a scale within the time and the skills of end users. This
scale is a main driver in finding a balance between expressiveness (what
can be modded) and effort (the cost of developing the mod). Our target is
for Web Modding to be conducted by users with no programming skills in

around 30 minutes.

Implementation wise, modding implies browser-based programming.
Modding is already possible for skilful JavaScript programmers but
certainly outside the scope of end users [Pil05]. This rules out
fine-grained, absorbing programmatic approaches (e.g. Chickenfoot

[BWR+05], Co-Scripter [LHML08]), and calls for coarser grained, light-
weight component-based standpoints. Unfortunately, most works on Web
components (e.g. widgets) favours a programmer perspective, addressing
the definition [W3C], implementation [EBG+07, HT08] and cloning of
Web components [MSCC13, FWRG11a]. A higher-level of abstraction
is needed. DSLs come to the rescue. DSLs are full-fledged languages
tailored to specific application domains by using domain-specific terms
[Fow10]. To increase the chances for DSLs to be adopted, three main
landmarks stand out: ascertaining the right concerns, finding appropriate
constructs to capture those concerns, and finally, developing appropriate
editors that intuitively permit users to come up with DSL expressions. Next
sections address each of these landmarks for modding.

3.3 Ascertaining The Right Concerns

Web Modding sits within the field of Web Augmentation [Bou99], i.e.
conducting changes upon the runtime representation of HTML pages (i.e.
DOM trees) at the time the page is loaded into the browser. Those
changes can affect the content, rendering, layout or dynamics of the page.
Among the numerous uses of Web Augmentation, modding focuses on

37

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Figure 3.3: Feature diagram for DIY Web Modding.

performing a function not originally conceived or intended by the host
designer [DA15]. Finally, DIY modding addresses the empowerment of
end-users to mod by themselves. As in other areas of end-user design,
more (expressiveness) can be less (usage). Therefore, DIY modding is
necessarily going to be less expressive (i.e. more domain-specific) than
general modding. We focus on improving the user experience through
content rearrangement, i.e. content removal (leading to less cluttered
pages) and content cloning, i.e. taking content from somewhere else
(providing a single viewing context while cutting down moving back and
forth between browser tabs). This sets the domain.

Along DSL good practices [MHS05], concerns raised during DIY
modding are captured as a feature diagram [KCH+90]. A feature diagram
represents a hierarchical decomposition of the main concepts (i.e. features)
found in the domain. The diagram also captures whether features
are mandatory, alternative or optional. Figure 3.3 depicts the feature
diagram for the domain “DIY modding”. Issues include, hosting (i.e.
setting the ambit of the modding), widgetization (i.e. the definition of
widgets whose addition and removal shape the modding), animation (i.e.
defining possible dynamics among the widgets), and finally, the rendering

38

Chapter 3. Web Page End-User Personalization

directives for the mod. Next paragraphs delve into the details (bold font is
used for the features).

3.3.1 Hosting

A mod is a set of changes conducted upon the runtime representation of
an HTML page at the time the page is loaded. Therefore modding does
not happen in a vacuum but within the setting of an existing website,
i.e. the host. The host can be characterised by a URL expression or a
regular expression (e.g. www.amazon.com/*) so that all pages meeting the
expression are subject to the mod. The expressiveness much depends on
the target audience. For our purpose, we limit url regexp to those ending
by “*”. More complex expressions are not supported.

3.3.2 Widgetization

Modding is about customizing HTML content. HTML pages are conceived
as DOM documents. The granularity at which HTML customization
happens influences complexity. A finer-grained approach will certainly
improve expressiveness but at the cost of complexity and learnability.
Therefore, we opt for a coarser grained approach: widgets. For the purpose
of this work, a widget is a coarse-grained DOM node (a.k.a. fragment),
which accounts for a meaningful mod unit.

A widget can be defined from scratch through HTML and JavaScript.
This is not possible for non-programmers. Alternatively, 3rd parties
can help. But this also contradicts our setting that is characterized as
being idiosyncratic, situational, and, potentially, short-lived, hence, the
introduction of 3rd parties does not payoff. We are then forced to explore a
different approach: widget mining. That is, users do not create widgets on
their own but extract them from existing pages at the time the need arises.

We then do not talk about widget creation but widgetization of existing
code. To this end, we support tree variants: pinpoint, crop and clone.

39

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Pinpoint supports inside-the-host widgetization, i.e. the widget is
obtained from the host. In this case, extraction points hold the host’s URL
and a structure-based coordinate, i.e. an XPath expression that pinpoints
the DOM node to be turned into a widget (see later). Widget movie-of-the-

day is a case in point. It singularizes the DOM node that holds the content
for the recommended movie. However, outside-the-host widgetization is
more complex. A naive approach to extract existing functionality from a
web page is just copy&paste. However, since HTML, CSS, and JavaScript
are all “context-dependent”, moving fragments from their original scope is
rarely feasible. This moves us to the other two variants.

Clone is used for outside-the-host widgetization when the fragment to
be extracted is “static”, i.e. it holds content and style but not functionality
(no JS scripts associated). The aim is for the widget to look like the
raw content in the original page. Here, widgetization is achieved through
cloning. Since style needs to be replicated, cloning is not limited to the
selected DOM node but also its ancestors’ CSS styles are inherited1 (see
Figure 3.4). Since code is replicated, what if the original is upgraded?
How are changes propagated to the replica? To this end, we introduce
refreshTimer, a parameter that sets the refresh polling time to five possible
values: onload (i.e. the widget is calculated every time the host page is
loaded), onblink (i.e. the widget is calculated every time the user click on
the triggering widget), daily, onload, weekly or never.

So far, we assume widgets to be obtained from a single HTML
fragment (singleCloned). However, the content of interest might be spread
across different nodes. An interesting case is that of the Deep Web. Deep
Web sources store their content in searchable databases that only produce
results dynamically in response to a direct request. Here, the “meaningful
functional unit” (i.e. the node to be widgetized) includes two fragments
(complexCloned): the request fragment and the response fragment. The
filmAffinity widget illustrates this situation. The “functional unit” includes

1HTMLClipper (http://www.betterprogramming.com/htmlclipper.html) is used to
propagate replication from content to the associated CSS-like directives.

40

Chapter 3. Web Page End-User Personalization

not only the ranking table (i.e. the output) but also the search entry form to
type the movie title. Hence, creating filmAffinity implies two extractions:
one to collect the ranking table; another to obtain the entry form2. Last
but not least, so-created widgets are parameterized by the form entries.
This permits to fix some form entries (e.g. set “Gone with the wind”
as the movie title) or even better, bind the entry to some data which is
dynamically extracted from the hosting page at runtime (so called “binding
points”, see later).

Crop is used for outside-the-host widgetization when the fragment is
“dynamic”, i.e. it holds scripts. In this scenario, cloning does not work.
Functionality is difficult to extract in an automatic way (refer to [MSCC13]
for the difficulties on extracting JS code). Here, we resort to pixel-based
cropping. Using iframes, it is possible to load the source webpage on the
background. Next, the desired fragment can be addressed by referencing
the height and width w.r.t the cropping start coordinates.

Once DOM nodes are turned into widgets, they start exhibiting some
additional characteristics. Widgets can have parameters and a state (i.e.
visible or collapsed). But most importantly, widgets might hold reference
points, i.e. directives that refer to some location in terms of Web
coordinates. We distinguish tree kind of reference points:

• Location points, which indicate from where the widget was
obtained. They contain a Web coordinate plus the framing page.

• Anchoring points, which refer to the new setting where the widget
is to be rendered, i.e. the position (i.e. before or after) w.r.t. a given
Web coordinate.

• Binding points, which denote how widget parameters can be bound
to content from the host. It holds the name of the parameter and the
host’s Web coordinate. As an example, consider filmAffinity. This

2Labelling a newly created widget with an existing name, makes the extraction engine
glue them together and be offered as a unit (provided they come from the same page).

41

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

widget needs to be recalculated every time guiaTV’s movie-of-the-
day changes. To this end, filmAffinity holds the title parameter. This
parameter holds a binding point to the DOM node in guiaTV that
keeps the title of the recommended movie. At runtime, the movie-
of-the-day is recovered, and filmAffinity is dynamically computed
after the current title.

Previous paragraphs refer to Web coordinates. A Web coordinate is
a means to address content within a DOM tree. Traditional mechanisms
include structure, attribute, visual or coordinate-based references or
expressions [LCRT14]. Unfortunately, these mechanisms introduce a
coupling with the current DOM structure. This makes coordinates fragile,
i.e. they might no longer locate the expected fragment upon upgrades on
the website. Website upgrades are a likely scenario. To achieve robust
reattachment of mods, we introduce a redundant specification whereby all,
extraction points, anchoring points and binding points, are characterized
by distinct ways of locating the same fragment. More information about
this in chapter 4.

3.3.3 Animation

Modding is about rearranging content. But this rearrangement does not
need to happen in a single shot. Specifically, widgets can be in two states:
visible or collapsed. When visible, widgets have the capacity to respond
to events, such as keystrokes or mouse actions. When collapsed, widgets
leave no trace in the screen. A widget has an initial state, i.e. the state at
the time the hosting page is loaded (e.g. if visible, the widget is rendered
as soon as the page is loaded). This state might be amenable to be changed
by interacting with other widgets. A common approach for describing GUI
dynamics is through statecharts [DF13]. However, statecharts are far too
complex for our target audience. A simpler mechanism is needed.

Broadly, state changes can be described as event-condition-action
rules. First studies, however, demonstrate that rules were a too fine-

42

Chapter 3. Web Page End-User Personalization

Figure 3.4: Facing website updgrades: redundant addressing for the
filmAffinity widget

grained specification. Needed are higher abstractions that permit to capture
recurrent patterns as a single construct. Based on previous evaluations, we
noticed a recurrent animation pattern. Let’s illustrate it with two widgets:
movieOfTheDay and filmAffinity. Consider the later is to be made visible or
collapsed upon mouse in/mouse out movieOfTheDay. This can be captured
through a pair of rules:

ON mouse-in movieOfTheDay WHEN filmAffinity.state =
“collapsed” DO filmAffinity.state = “visible”

ON mouse-out movieOfTheDay WHEN filmAffinity.state
= “visible” DO filmAffinity.state = “collapsed”

We found this pattern so common that decided to introduce a DSL
primitive for it: the blink. A blink accounts for a directed relationship
between two widgets W1 and W2. We say “W1 blinks W2”, if acting upon
W1 (e.g. clicking) causes W2 to change its state (from visible to collapsed

43

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

or vice versa, depending on the W2 current state). Previous example can
now be expressed as “movieOfTheDay blinks filmAffinity on clicking”.

So far, we limit animation to blinks. Blink events are limited to mouse-

in (being mouse-out its blink counterpart), doubleclick (being doubleclick

also its blink counterpart) and click (being click also its blink counterpart).
Other events were considered but they add unnecessary complexity to end-
users and they were not included.

Additionally, WebMakeup provides the possibility of adding some
animation pattern:

• click2erase. This pattern involves only one widget. It accounts for
a single blink. On clicking on the widget, this is gone for the current
session.

• click2alternate. This pattern involves two widgets which are shown
alternatively. It accounts for two blinks in which initially only one
is visible. Clicking on the visible widget, one is substituted by the
other widget.

• conjunction. These patterns involve three widgets or more: the
triggering widgets, and two triggered widgets that are shown
simultaneously.

• disjunction. These patterns involve three widgets: the triggering
widgets, and two triggered widgets that are shown in alternation.

• incremental. This pattern involves “n” widgets which are gradually
presented as the user clicks. It accounts for “n-1” blinks.

• domino. It leverages the previous pattern so that clicking on the last
widget collapses all its predecessors except the triggering widget.

These patterns are available through the namesake tab. Pattern definition is
achieved using a similar approach to PowerPoint’s SmartArts (see Figure
3.5). Keeping the ALT key pressed down, select the involved widgets. As

44

Chapter 3. Web Page End-User Personalization

Figure 3.5: Setting patterns. Keeping the ALT key pressed down, select
first the widgets, and next, the blink pattern

widgets are being selected, the widget region is shadowed, highlighting the
order of the widget at hand. Once all the participating widgets are picked
out, and keeping the ALT key pressed down, choose the desired behavior
in the pattern tab. WebMakeup will automatically generate the blinks that
jointly account for the pattern at hand. These patterns have been included
owing to the fact that they help to define some of the most used widget
event sequences by end-users in the augmentation design.

45

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

3.3.4 Rendering

Inlaying new widgets into an existing DOM structure can make the
host’s layout be disrupted. Specifically, HTML introduces some attributes
to describe the rendering strategies for DOM nodes, namely: the
layout strategy (HTML’s “display” attribute) which can be arranging the
content horizontally (inline) or vertically (block); minimum and maximum
size intervals (HTML’s attributes minHeight, minWidth, maxHeight,
maxWidth); and the overflow strategy (HTML’s “overflow” attribute) that
indicates what to do in case the content exceeds the size intervals (i.e. make
container scrollable, show the overflowed content or hide the overflowed
content). Widget inlaying might disturb the page layout, causing one-
dimension distortion or even worse, two-dimension distortion. We decide
this concern to be hardwired within the DSL engine. Better said, the engine
supports contingency actions to alleviate this situation (e.g. if container is
80% full then, Web Augmentation overflow strategy is set to “warn”; if
container is 90% full and the widget fits inside then, Web Augmentation

overflow strategy = “resize”, etc.).

3.4 Finding Appropriate Constructs

Previous feature diagram captures main concerns to be solved during DIY
modding. Next, these abstractions are realized in a language by looking
into variabilities and commonalities in the feature diagram [MHS05].
Variable parts must be specified directly in or be derivable from DSL
expressions. In the first case, the variants become DSL constructs.
However, some alternatives can be hardwired into the DSL engine as
heuristics. Being heuristics, they might fail and hence, they are not as
reliable as if provided by the user. The upside is that they simplify the
user’s life, hence, improving learnability and development. We decided
rendering to be hardwired into the engine. That is, widget placement is
to be assisted by the DSL engine. The rest of features are set by the user

46

Chapter 3. Web Page End-User Personalization

Figure 3.6: A DSL for Web Modding: abstract syntax.

through the DSL. This section introduces the DSL metamodel.

Figure 3.6 provides the metamodel for mod description. A mod is a
set of changes conducted upon the runtime representation of an HTML
page (i.e. the host). These changes are described in terms of widgets.
Widgets are characterized by a locationPoint (i.e. how to obtain it),
an anchoringPoint (i.e. where to locate it), and, optionally, distinct
bindingPoints (i.e. how widget parameters can be obtained from the host’s
content). Each widget stands for a rearrangement operation as follows:

• If locationPoint exists without anchoringPoint, this accounts for
content removal (only for host-based widgets).

• If locationPoint differs from anchoringPoint, this accounts for
content displacement (only for host-based widgets).

• Otherwise, the widget captures content addition.

47

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Figure 3.7: WebMakeup: mod initialization.

But not all contents need to be added/removed at loading time. Blinks

permit to hand this decision over to the current user. This makes
content rearrangement dependent upon user interactions. For instance,
“movieOfTheDay blinks filmAffinity on clicking” permits to postpone
till runtime the decision of rendering filmAffinity. If you click, you
get filmAffinity. If complementary outside-the-host widgets exists (e.g.
filmIMDB extracts the ratings from the IMDB website), then this content
can be shown either simultaneously (e.g. “movieOfTheDay blinks

filmIMDB on clicking”) or in a cascade way (“filmAffinity blinks filmIMDB

on clicking”). But not only additions, also removals can be left
pending until interaction time: “movieOfTheDay blinks movieOfTheDay

on clicking” permits current users decide whether they want to delete (i.e.
collapse) movieOfTheDay by clicking on it. Next, we address how to make
mods affordable to end users.

3.5 An Editor For DIY Mods

DSL acceptance is heavily influenced by the existence of appropriate
editors, more to the point if targeting end users. This section outlines
WebMakeup, an editor for DIY mods. TVguia is used as an example. The
description goes along the creation of a mod, i.e. a model conforming to

48

Chapter 3. Web Page End-User Personalization

Figure 3.8: WebMakeup: mod filling up. The piggyBank tab is displayed.

the metamodel presented in the previous section.

Mod creation (Figure 3.7). WebMakeup is a plugin for Google Chrome

browser. Its installation is reflected by the WebMakeup button at the right
of the address bar. On clicking this button, a scrollable menu pops up.
By clicking “New makeup”, the user initializes the mod model (Figure 3.7
(bottom)). WebMakeup turns the current page into the editor canvas: the
pointer is turned into a camera, a grid-like structure is interspersed on top
of the current DOM tree, and the piggyBank tab pops up.

Mod populating (Figure 3.8). A widget is a DOM node but not all
DOM nodes are widgets. We need to singularize the selected DOM node

49

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Figure 3.9: WebMakeup: defining blinks.

that accounts for a meaningful HTML fragment. Meaningfulness is not
inferred by the tool but indicated by the user. To this end, and, as the
user moves the cursor around the screen, the DOM node under the current
cursor location is highlighted. By clicking, the user singularizes this node
as a meaningful HTML fragment, i.e. a widget. A nuisance is the handling
of “hidden nodes”. These nodes are those that do not have a graphical
counterpart and hence, they cannot be pinpointed through the cursor. For
instance, a table row (<tr>) is graphically hidden if its graphical space
is totally taken by its content. If the row does not explicitly have some
graphical counterpart (e.g. a border), then all the space is occupied by the

50

Chapter 3. Web Page End-User Personalization

row’s content so that the cursor will always select the row’s content rather
than the row element itself. To overcome this problem, we resort to the
keyboard. Keys “w”, “s”, “a” and “d” help to move up, down, left and
right along the DOM tree, respectively, w.r.t to the node being pinpointed
by the cursor.

No matter the selection mechanism (i.e. cursor vs. keyword), the
selected node is surrounded by a decorator. This decorator permits to set
the initial widget state by clicking on the “eye” icon (decorators’ upper
left-hand side corner): visible (open eyes) & collapsed (closed eyes).
The example contains two inside-the-host widgets (i.e. movieOfTheDay

and TVE1channel) and outside-the-host widget (i.e. filmAffinity). The
latter is dragged&dropped from piggyBank3. Click on this tab to expose
the widgets collected from other pages (see it in display in Figure 3.8).
Placement heuristics will warn or prevent from dropping widgets in certain
places. In all cases, WebMakeup works out the Web coordinates.

Mod enhancement (Figure 3.9). At any time during editing, widgets
can be:

• Deleted. Widget removal is achieved by clicking upon the X icon
on the widget decorator. In the example, we remove TVE1channel.
Model wise, this is reflected by deleting its anchoring point. An
important remark: banners cannot be removed. Though this is a
common desire among users, up to 84% of the top 100 websites
rely on advertising to generate revenue. Though adverts can be a
nuisance, they are the ones that pay the bill. So for the time being,
we take the decision of making WebMakeup ad-friendly.

• Rearranged. This is conducted through drag&drop once the widget

3Outside-the-host widgets can be obtained at any time. To this end, the right-click
contextual menu is extended with the widgetizeIT item. At any time, select it for a
grid-like structure to be interspersed on top of the page you are looking at. As the user
moves the cursor around the screen, the DOM node under the current cursor location
is highlighted. By clicking, the selected node is turned into a widget and kept in the
extension’s variable: piggyBank.

51

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

is selected. Model wise, this is reflected as an update on the
anchoring point.

• “Blinked”. Blinks are graphically represented through pipes. Widget
decorators have in their right-hand side a yellow circle. This circle
denotes a pipe start. Click and drag from this point to expand till
reaching another widget. This sets a blink from the triggering widget
(the pipe’s start) to the triggered widget (the pipe’s end). An entry
field on top of the pipe serves to indicate the blink’s event. Figure 3.9
illustrates the case “movieOfTheDay blinks filmAffinity on clicking”.

Once the edition finishes, the mod can be executed clicking on
“Deploy” in the WebMakeup menu button. The mod will be automatically
enacted next time the host page is loaded.

3.6 Sharing

WebMakeup scripts are stored locally in the Web browser. WebMakeup

does not support collaborative development. Nonetheless, users can export
scripts into a file and next share them through email or other means.
Consumers should have WebMakeup installed and use the “Import” option
(Figure 3.7). Drag and dropping the file into the browser, the mod
is installed redirecting the tab to the augmented website. Also in the
scrollable menu, the entry “CarryOn” permits consumers to tune imported
scripts to their own likes.

3.7 Facing dynamic web content

Dynamic content has an increasing presence among Web applications.
To make mods safely in dynamic web pages, we have to take care of
performing the two main steps of a mod: the identification/extraction of
the content and injection of content. In order to identify/extract data, it is

52

Chapter 3. Web Page End-User Personalization

needed to replay the circumstances when the data was extracted. The main
problem in dynamic pages is that content could not be on page load but
after some delay or user interaction. If this is the case, it is necessary to
track the DOM and wait for the availability of the data. Two issues: (Rich
Internet Applications) RIA-aware widgets and RIA widgets [MHBJ14]

3.7.1 RIA-aware widgets

RIA-aware widgets are those whose availability is conditioned to RIA-
generated content. Widget description is extended with a precondition.
For the widget to be enacted, the precondition needs to be meet. For RIA-
aware widgets the precondition can be the presence of a RIA-generated
fragment. Alternatively, we can describe preconditions in terms of user
events in the understanding that RIA-generated fragments are the cause of
user interaction. We then define preconditions in terms of user interactions
so this requires to be able to track RIA-generated fragments back to the
user interaction that caused them.

RIA-aware widgets is a characterization transparent to the user.
Designers define both in the very same way. It is the engine’s duty
to ascertain what are the RIA-aware widgets. Broadly, a RIA-aware
widgets keep some kind of relationship to a RIA-generated fragment. This
relationship can be due a either binding or blink association.

3.7.2 RIA widgets

RIA widgets are those that come from a RIA fragments in a website. RIA
widgets are cropped widgets. There are two different types:

When the user have to surf the website to reach the point in which the
widget is (example: VisualEconomy website4) When the widget itself has
all the information but the user must click on it to see the information he is
interested in (example: tutiempo website5).

4http://www.visualeconomy.com/
5https://www.tutiempo.net/donostia-san-sebastian.html

53

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Detecting whether an HTML fragments is RIA based

The mechanism to track DOM changes is the Mutation Observer. This
observer notifies each modification but many of them in one shot then
making it quick instead of notifying all the changes one by one. When
the observer detects a change in the website, WebMakeup tries to insert all
the widgets that have not been inserted before. If all widgets have been
inserted, it does not do anything but if one at least has not been inserted,
it tries to insert it according to its location. Observer detects changes do
to dynamic elements or user interactions and thank to them, new content
could have been inserted.

Some dynamic websites generate a dynamic ID for the web elements.
This means that every time a user visits this website, apparently it is the
same but the structure of the website could be different an automatically
generated. The ID of the elements is the most robust part to identify
a node [LCRT13] and most locator algorithms use it to locate nodes.
Unfortunatelly, if automatic ID generation happens, all this algorithms fail
trying to locate the node despite the fact that it is in the website. That
is why different node locations algorithms must be implemented. More
detailed information in section 4.4.

Extracting widgets from RIA-based fragments

A widget is characterized by a URL and a locator. This is fine for
readily-available fragments where URLs denote the page from where to
extract the fragment. In a RIA setting, this is not enough. RIA-based
fragments are not readily available, but some previous user interactions are
required. These user interactions need then to characterize the widget as
they describe the setting when the extraction took place.

The strategy is that first of all, mineIT operates as usual. Once, the user
selects the fragment to be extracted, WebMakeup figures out whether this
fragment stands for a RIA fragment (e.g. by computing whether there exist
the widget in the initial page and the current page). If so, the starting page

54

Chapter 3. Web Page End-User Personalization

is reloaded, and the user is prompted to replay the interaction sequence
that leads to the desired fragment. Meanwhile, WebMakeup records the
interaction untill it detects the desired fragment is available. When so, it
checks out with the user, and generates the RIA widget. When the widget
is inserted in the website, it automatically repeats all the click done by the
user and the widgets shows only the desired element.

3.8 Efficiency

The more widgets end-users insert in an augmentation, the more resources
the computer will need to carry out the augmentation. That is why
WebMakeup engine optimizes the memory consumption and the efficiency
in order not to overload unnecessarily computer resources.

3.8.1 Guideline: Reduce memory consumption the
Number of Active Event Listeners

Augmenters perceive Web Content than through listeners. Hence,
augmenters make extensive use of listeners. Broadly, a listener is a
triplet <node,eventType,handler> where handler is a function to
be enacted when an occurrence of eventType occurs upon node. Worth
noticing, the circumstances that make the listener logic apply might not
be exclusively described by the an-event-happens-on-a-node. Within the
handler, flags might need to be checked to ensure certain circumstances
apply. This happens for Web Content that might act in two different
modes. Here, besides the triggering of the event occurrence itself, handlers
might need to check whether this occurrence happens when in the right
mode. Augmenters might also exhibit this behavior where some mods
might depend on some configuration parameters being set or not.

A naïve approach can fix the set of listeners (i.e. the binding between
these three elements) at page loading time, attached them to the root node,
and hide flag conditions into the handler code. This certainly works. The

55

<node,eventType,handler>

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

DOM event model ensures that no matter where the event occurrence
happens it will bubble up to the root node, hence, enacting the handlers.
In addition, the handler would account for both the required flags and the
events being risen in the appropriate nodes. Fair enough. The issue is
that all the JavaScript objects referenced by the handler are retained while
a listener is registered. This costs might be affordable when listeners are
sparsely used. Unfortunately, augmenters are listener intensive, and the
lack of a strategy for listener de-registration might end up in memory
depletion. Reducing the number of listeners registered, reduce the number
of handlers and the JS objects they refer to.

Therefore, augmenters should strive to minimize their burden. This
guidelines aligns with the suggestion given by Mozilla6. We conceived
listeners as <node,eventType,handler> bindings. Listener
overhead might be reduced through the technique dynamic binding. It
aims at reducing the number of active listeners at a given moment by
dynamically managing <node,eventType,handler> triplets. Flag
conditions are moved from handlers to a listener manager which regulates
the creation and destruction of those bindings as the circumstance arises.
If browsing is in mode One then, create listeners that apply to model One.
If browsing is in mode Two then, delete mode-One listeners and create
those for mode Two. In this way, we prevent the happening of spurious
event payloads which will cause the triggering of handlers whose logic is
posteriorly called off as flags do not apply. This technique makes listener
management a bit more complex. Nonetheless, this effort pays off in
terms of reducing the number of spurious events and the number of active
listeners, reducing the needs for memory and CPU.

6https://developer.mozilla.org/en-US/Add-ons/Performance_best_practices_in_extensions

56

<node,eventType,handler>
<node,eventType,handler>

Chapter 3. Web Page End-User Personalization

3.8.2 Guideline: Make Efficient Rendering of the
Augmentation

Causes for sluggish Web interaction include reflows and repaints7. Repaint
is what happens whenever something is made visible when it was not
previously visible, or vice versa, without altering the layout of the
document (e.g. adding an outline to an element, changing the background
color). Repaint is expensive because the browser must verify the visibility
of all other nodes in the DOM tree. A bigger penalty is incurred by
reflows where the layout is affected. This happens whenever the browser
window size is changed, whenever a style is changed that affects the layout,
whenever the className property of an element is changed, or whenever
the DOM tree is manipulated. Augmenters tend to involve extensive DOM
manipulation. Therefore, augmenters might cause frequent reflows and
repaints, hence, impacting GUI responsiveness.

Keep the number of repaints/reflows to a minimum is a good option to
avoid unnecessary repaints and finally, time consumption. The strategies
on node modification, the one-shot strategy, rather than conducting
changes in a piece-meal fashion, this strategy advices to aggregate
all changes in a single step (if possible) hence, involving a single
repaint/reflow.

3.8.3 Optimization. Experiment design

Blinks are by large the main feature that impact both performance and
storage.

For the performance, blinks involve the switching between visible and
invisible states. Each stage transition causes a rendering and a painting.
Painting is also conducted from scratch and hence it is almost independent
on the number of blinks. In our experiment from 2 to 30 blinking widgets,
painting overhead ranged between 61 and 65 ms independently the number

7https://dev.opera.com/articles/efficient-javascript/?page=3#reflow

57

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

#widgets Time(ms)
0 Rendering 69,430ms Painting 56,918ms Total 862,570ms
2 Rendering 74,443ms Painting 62,274ms Total 998,959ms
3 Rendering 75,418ms Painting 61,991ms Total 1049,743ms
5 Rendering 75,969ms Painting 63, 001ms Total 1090,814ms

10 Rendering 76, 566ms Painting 64,473ms Total 1180,365ms
15 Rendering 76,991ms Painting 62,459ms Total 1192,369ms
20 Rendering 78,166ms Painting 65,329ms Total 1231,127ms
30 Rendering 84,796ms Painting 64,716ms Total 1232,167ms

Table 3.1: Optimization experiment results

of widgets. By contrast, rendering is conducted in a single-widget bases.
Hence, there exists a direct relationship between the number of blinks and
the rendering overhead. Table 3.1 depicts the results of our experiment
with 2, 3, 5, 10, 15, 20 and 30 blinking widgets. To limit the impact of the
browsing context, each point stands for the average time of ten execution
for the number of widgets at hand. The rendering time increases with
the number of widgets, the more widgets the mod has, the more it needs.
Rendering and painting are clearly lower when there is no mods in the
website.

For the storage, blinks also impact storage as for the number of listeners
required. Each blink accounts for a number of listeners between 10 and 14
listeners. Hence, 30 blinks might involve up to 420 listeners. However,
thanks to the efficient algorithm implemented in WebMakeup, the number
of listeners is always lower due to the fact that unnecessary listeners have
been deactivated.

3.9 Evaluation

The main objective of WebMakeup is to make Web modding accessible
to end-users. In this regard, the matter is mostly about affordance, that
is, making Web modding accessible to an ample audience, the most
possible. In this backdrop, the quality of use becomes predominant that

58

Chapter 3. Web Page End-User Personalization

is “the user’s view of the quality of a system containing software, and
is measured in terms of the result of using the software, rather than
properties of the software itself” [ISO]. ISO-25010 provides a framework
to evaluate quality in use. This section provides a preliminary evaluation
of WebMakeup along the ISO-25010’s quality-in-use dimensions: (i)
effectiveness (i.e., the capability of the software product to enable users to
achieve specified goals with accuracy and completeness), (ii) productivity
(i.e., the capability of the software product to enable users to expend
appropriate amounts of resources in relation to the effectiveness), (iii)
safety (i.e., the capability of the software product to achieve acceptable
levels of risk), and (iv) satisfaction (i.e., the capability of the software
product to satisfy users). Effectiveness and productivity can be measured
objectively: number of completed tasks and minutes to complete them,
respectively. On the other hand, while safety is an objective measure, our
target population (i.e., people with no previous knowledge of JavaScript,
HTML and CSS) may not have the means to perform such evaluation.
Thus, we decided to evaluate trustworthiness, that is, how trustworthy
participants perceived WebMakeup to be. Both trustworthiness and
satisfaction were assessed through specifically designed questionnaires.

At the time of this writing, WebMakeup has been available as a Chrome

extension for more than three year. According to the Chrome extension
information, WebMakeup has 68 average weekly users. WebMakeup design
has been driven by the aim to afford end-users to develop their own mods.

A group of end-users with no technical qualification was sought
to evaluate WebMakeup. The call to participate in the study was
issued among citizens of San Sebastian with no programming
knowledge. The evaluation included questions about background
in related technologies (e.g., JavaScript, XPath, etc.) to discard
members of the group with technical knowledge. Evaluation results
are available at https://docs.google.com/spreadsheets/

d/19Jvtlw1KFY_04NwpeZTMRIenmftFpOKut-9F4fSZqTc/

edit?usp=sharing.

59

https://docs.google.com/spreadsheets/d/19Jvtlw1KFY_04NwpeZTMRIenmftFpOKut-9F4fSZqTc/edit?usp=sharing
https://docs.google.com/spreadsheets/d/19Jvtlw1KFY_04NwpeZTMRIenmftFpOKut-9F4fSZqTc/edit?usp=sharing
https://docs.google.com/spreadsheets/d/19Jvtlw1KFY_04NwpeZTMRIenmftFpOKut-9F4fSZqTc/edit?usp=sharing

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

3.9.1 Research Method

The study was conducted in a laboratory of the Computer Science Faculty
of San Sebastian. All participants used computers with the same features
(i.e., Intel Core 2 Duo 2.40GHz, 4GB RAM and Windows 7) and a clean
installation of Chrome.

Procedure. All participants were handed out a sheet with instructions
for each task (e.g., what Web to access, when to take note of the time, etc.).
The study was divided in two tasks. The first part consisted on watching a
video8 about WebMakeup which describes all they need to the tasks of the
second part. The second part consisted on four different tasks end-users
must complete. The first task was the easiest and it was getting more and
more laborious at the end.

Once the participants had watched the video they had to install
WebMakeup in their computers. Afterwards, they started with the
second part of the study, four different exercises to evaluate the different
possibilities WebMakeup offers.

• First task: delete and move. The mail goal of the first task was that
users were able to delete and move different elements of the website.
With the objective of doing this task, participants have to visit the
city council website and delete theoretically useless elements and
move an important element from the bottom of the website to the
top of it.

• Second task: insert a link and modify the content of an element of
the website. The aim of this task was to evaluate the ability of users
to insert new elements in the website (default elements). Moreover,
this task intended to appraise what ease was to modify the content of
any element of the website.

• Third task: creating and inserting widgets (cropped) from a different
website and blinking it. The participants had to surf to “Pesa”, a

8https://vimeo.com/204338864

60

Chapter 3. Web Page End-User Personalization

Basque bus company and search the timetable. Afterwards, users
had to clone the timetable through the right button of the mouse
and selecting “MineIT”. Additionally, participants had to insert a
button (default widget) and blink this button with the widget inserted
before. The idea was that this widget appeared when the users
clicked on the button and search the timetable of all the buses of
the company when the user desires.

• Fourth task: creating and inserting widgets (simple and complex
widgets) from different websites, updating simple widgets, binding
complex widgets and creating a blink pattern. This task was the
most sophisticated and complete. First of all, the user had to create a
weather widget of the city where he lived. After that, he had to create
a complex widget with the valuation of the film in filmAffinity web
page. Once the user creates both widgets he had to insert them in
“tvguia”, a Spanish TV guide. To complete the task the participant
had to bind filmAffinity widget and the film of the day that the
website recommend and update the weather widget to be updated
everyday because the weather widget changes it content everyday.
Finally, the participant had to create a “conjunction” pattern with
the film recommended by the website, the filmAffinity and weather
widgets to show the last two widgets when the user clicks on website
recommendation.

3.9.2 Subjects

Twenty-six people participated in the evaluation of WebMakeup. The
majority were male (57,7%) (see image 3.10 left) and the age of all of them
was between 20 and 35 years. Concerning browsing behaviour, in the last
year 10 participants have never installed a plug-in in their browser (see
image 3.10 right). We also gathered information about their background
on programming skills and 23 of participants have never programme or
they have not had programming classes (see image 3.11 left). Despite this,

61

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Figure 3.10: Left: Gender; Right: Users that have installed a plug-in

Figure 3.11: Left: Users with programming skills; Right: Users that have
used editing programmes

17 participants have used editing programmes like Photoshop (see image
3.11 right). 10 participants surf the net more than an hour everyday in their
free time (see image 3.12 left) and 18 of the participants cannot surf the net
more than an hour in their job or university (see image 3.12 right). Most
of the participants had visited the city council website (20) although 21
participant had not visited “tvguia” website before.

62

Chapter 3. Web Page End-User Personalization

Figure 3.12: Left: Time surfing on the Internet in their free time; Right:
Time surfing on the Internet in their job

3.9.3 Instrument

An online questionnaire have been used to know users’ opinion about
WebMakeup. The questionnaire consisted of five parts: background,
effectiveness, usefulness, satisfaction and the time needed to finish each
task. With the intention of evaluating effectiveness, the questionnaire
contained the proposed tasks so every participant could indicate if they had
performed them, whereas productivity was measured using the minutes
taken in such tasks.

3.9.4 Data analysis

Descriptive statistics were used to characterize the sample and to evaluate
the participants’ experience using WebMakeup. Moreover, test analyses
were performed to assess differences among groups of users. PASW
Statistics 18 for Windows[SPS] was employed to perform the different
analyses.

63

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

3.9.5 Results

The four tasks were successfully completed by all participants with the
only help of the previously provided explanation. In the last part of the
exercise, the fourth task, some participant had problems to remember how
they had to use the pattern. We had to remember them that “alt” key must
be pushed to define a pattern.

Besides the questionnaires an open question was included. From the
26 participants, 13 commented. The opinions about WebMakeup were
positive. One participant suggests that all the buttons have the option to
show a comment explaining what they do. Another participant says that
delete button should ask the user if he agrees with that action. A participant
suggest including a help option or an user manual. The rest of participants
have made comment about Webmakeup standing out that they consider
WebMakeup useful for them and recommendable for all their acquaintance.

Table 3.2 shows the valuation of users regarding the usefulness of
WebMakeup and table 3.3 shows their opinion about the usability.

3.9.6 Effectiveness

All the participants were able to finish all the tasks during the evaluation.
This shows that WebMakeup is easy to use for end-users despite some
of them had some doubts because the video was long and they do not
remember exactly how to do a certain part.

3.9.7 Productivity

Productivity is measured as the number of minutes required for each task:
first task took in average 5,46 minutes. The faster participant needed 2
minutes to finish the task and the slowest one 24 minutes. This participant
needed more time to do this task than the others when nobody else needed
more time to do the first task than in the others. In the second task
participants needed in average 7,54 minutes and between 3 and 14 minutes

64

Chapter 3. Web Page End-User Personalization

Questions User Deviation
valuation

Removing content from websites
improves my Web experience 4,577 0,6433
Moving content from websites
improves my Web experience 4,423 0,8086

Collecting content into a single
website improves my Web experience 4,500 0,7071
Inserting my own links into a single

website improves my Web experience 4,423 0,8566
Showing and hiding elements
improves my Web experience 3,962 0,9157
Parameterizing content from

websites improves my Web experience 4,192 0,7494
Reducing the need for going back and forth

between browser tabs improves my Web experience 4,231 0,9511
I plan to use WebMakeup in the future 4,346 0,8458

I find WebMakeup interesting
enough to tell to my friends 4,462 0,7060

To scroll a website is awkward 3,808 1,0206
When I visit a website frequently I have to

scroll to find the content I want on the screen 4,192 0,6939
When I use a browser I have to

change the tab frequently 4,192 0,7494
Tabs-switching is awkward 3,885 0,9089

Collecting content into a single
website improves my Web experience 4,385 0,6972

Table 3.2: Evaluation questions and end-users answers (usefulness)

65

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Questions User Deviation
valuation

It was easy for me to widgetize
fragments out of the donostia.eus page 3,962 0,7736

It was easy for me to delete
elements of the donostia.eus page 4,423 0,5778

It was easy for me to move
elements of the donostia.eus page 4,231 0,6516
It was easy for me to insert link or
buttons in the donostia.eus page 3,846 0,7845

It was easy for me to change/add a new value
to a existing element in the donostia.eus page 3,808 0,8010
It was easy for me to drag&drop widgets from

the piggy-bank tab to the desired position in the webpage 4,038 0,8237
It was easy for me to create widgets
out of existing pages (filmAffinity) 3,615 1,0983
It was easy for me to create widgets
out of existing pages (eltiempo.es) 4,154 0,7317

It was easy for me to create widgets
out of existing pages (Pesa) 3,769 1,1066

It was easy for me to set a simple-blink
among selected widgets 3,192 1,1321

It was easy for me to bind widgets together (i.e. feeding
widgets parameters from data in the TVguia page) 3,192 1,0961

It was easy for me to set a blink
pattern among selected widgets 3,192 1,0206

It was easy for me to create a new makeup design 3,885 0,7656
It was easy for me to deploy a makeup design 4,385 0,6972

It was easy for me to restore an existing makeup design 3,923 0,7442
During the use of WebMakeup, I have always

known how to do the things I was required to do 3,154 1,1204
There have been NO errors during

the use of WebMakeup 3,615 0,8521
WebMakeup is fast enough 4,308 0,7884

In general, I am satisfied with the
things that I have made with WebMakeup 4,115 0,7114

Table 3.3: Evaluation questions and end-users answers (usability)

66

Chapter 3. Web Page End-User Personalization

de faster participant and the slowest one. For the third task they needed
8,23 minutes in average and between 3 and 17 minutes to finish the task.
Finally, the last task was longer and they needed in average 13,65 minutes.
In spite of the fastest participant needed 5 minutes to finish, the slowest
one needed 31 minutes.

3.9.8 Satisfaction

Satisfaction is the capability of the software product to satisfy its users
[ISO]. In this case, the product is the WebMakeup engine, and its ability to
develop a working WebMakeup.

We found no statistically significant differences in many aspects
evaluated in the evaluation but there some significant differences between
people who install plug-ins. There is a significant difference with the idea
that tab switching is irritating (p=0,01) and with the concept of scrolling
that is tedious (p=0,023). There is also a compelling difference between
people who use the net more or less than an hour in their job in the third
task of the evaluation (p=0,016). Finally, another important differencecan
be found between people who knew “tvguia” website and not in the second
task (p=0,023).

3.10 Conclusions

Webies 2.0 no longer take the Web as it is but imagine fancy ways of
customizing it for their own purposes. This work presents our vision
for DIY modding along three main requirements: available time (30’),
available expertise (no programming experience), and spark motivation
(improving the Web experience). These requirements ground a coarse-
grained, light-weight approach to DIY modding that is so far limited to
content rearrangement. A fully-working editor, WebMakeup, demonstrates
the feasibility of this vision. Evaluation is encouraging about the
potentiality of Web Modding to improve the Web experience.

67

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Figure 3.13: WebMakeup End-User Development features

WebMakeup does not require users to write a single line of code to
modify Web pages. All programming is achieved through selecting DOM
elements and interacting with widget decorators. Figure 3.13 highlights
End-User Development features of WebMakeup.

68

Chapter 4

Generating Robust Locators

4.1 Introduction

Browser extensions are plugs-in that extend the functionality of a web
browser in some way [Bro]. Here, we focus on those extensions that
target the Web Content, i.e. the Web Content is transcoded to change its
appearance, layout or data. These downloads are accounted for hundreds
of thousands. This kind of browser extensions (hereafter referred to as
just “extensions”) fall within the general category of code transcoding,
that is, transforming content or a program on the fly to other formats.
This normally implies locating the content to be transformed using Web

locators, i.e. mechanisms for uniquely identifying an element on the
Web Content [RLS+13]. Unfortunately, locators are fragile upon Web
Content upgrades, i.e. changes in the layout, appearance of content of
the Web page can make locators stop working. For instance, XPath
expressions are a popular way to realize locators. These expressions
might rely on the content and structure of the Web Content to pinpoint the
target element. However, if the Web Content structure changes, the XPath
expression might fail to select the appropriate target element, jeopardizing

69

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

the extension. In other words, adaptive maintenance (i.e. the one due to
changes in the environment) is a main headache for extension developers.

Extensions maintenance introduces two specifics worth mentioning:

• extensions are often not developed by website owners themselves
but third parties who might or might not have the resources to keep
the pace with the upgrades of the underlying website,

• failures might make users give up using the extension. A large
proportion of extensions aim at improving the Web Experience
in terms of shortcuts and content additions. Hence, they are not
essential in the sense of users not being able to accomplish their
tasks, but they just save users some clicks. Here, the effort of
communicating the error and re-installing the extension might dilute
the benefits of the extension.

This makes robustness a key non-functional feature for browser extensions.
Since locators tend to be “the weak link”, locator robustness becomes
a main must to preserve the enhanced Web Experiences that extensions
bring. This sustains our tenant that investing in robust locators will payoff
during maintenance. This work then addresses the following problem-
based research question.

How can we enhance Web locator robustness despite their fragility

upon Web Content upgrades?

Web Augmentation tools have a serious problem with locators and
hence, WebMakeup. Web modifications designed with Web Augmentation

tools are varied from static websites that are modified once a year to
newspaper websites that are updated every moment. Additionally, some
websites structures are updated frequently and locator robustness decrease
significantly. That is why efforts have been done to enhance robustness.

Robustness is the ability of a computer system to cope with errors
during execution [Rob]. Different techniques are proposed based
on different aspects of the underlying Web page, namely content,
attributes, structure, coordinate or visual appearance (Section 4.2) and their

70

Chapter 4. Generating Robust Locators

robustness is compared in Section 4.3. Section 4.4 shows an improvement
of common coordinate-based locators. If we start from the fact that website
upgrades are a frequent event, extensions will sooner than later fail. Failure
can be faced using preventive or curative approaches [Dro03]. In a
preventive approach, we engineer-in robust properties that will anticipate
and prevent the occurrence of defects in the first place. Redundancy is
a common approach to address robustness. The human body has two
kidneys: if one fails, the other will continue working, and the person will
live. Here, we investigate two approaches to redundancy. First, Kidney

locators (Section 4.5). Here, alternative code is provided that possess
equivalent functionality (i.e. retrieve the same element), so that if a locator
is broken, another returning the same DOM element can replace it. Second
approach is based on adding contingency data, i.e. information about the
nodes’ ancestors so that this data can be used to regenerate the broken
locator (Section 4.6).

No matter the redundancy approach, designers should be vigilant
to two main drawbacks: the additional development effort and the
eventual impact on performance. For Web testing, locator robustness
might be a matter of maintenance whose gains should be balanced
against development overheads. For browser extensions however, locator
robustness could become a question of survival since developers might
not enjoy maintenance allowance. Here, the aim becomes keeping
the extension up and running for as long as possible, no matter the
development effort. This chapter focuses on the second drawback:
performance. Therefore, the introduced algorithms are judged in terms
of effectiveness (i.e. locator robustness improvement) and efficacy (i.e.
performance penalty).

4.2 Locators: theme & variations

A Web locator (hereafter just “locators”) is a mechanism for uniquely

71

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Figure 4.1: Running example: find expression that singles out the book’s
title in a Goodreads page.

identifying an element on the Web Content i.e. in the Document Object
Model (DOM) [RLS+13]. Locators are used in a broad range of scenarios,
namely, Web testing [CP08, Lad10, MBH10], Web harvesting (a.k.a web
data extraction) [FMFB14], Web annotation [UCI+06], Web automation
[MPR+09] or Web augmentation [DA15]. This ample usage of locators
might well explain the different proposed techniques, namely, structure-
based, coordinate-based, visual-based, attribute-based, and content-based.
This section outlines these techniques along four main criteria: robustness
(i.e. fragility upon DOM changes), evaluation performance (i.e. speed in
identifying DOM elements), storage requirements (i.e. data to be stored)
and expressiveness (i.e. ways to single out the DOM element). As a
running example, we consider the Web Content in Figure 4.1. Specifically,
we are interested in locating the title of the book in this Goodreads page.
Table 4.1 outlines the comparison between different techniques to locate
the title. The aim is not to be exhaustive but just to provide a glimpse of
locators’ diverse approaches.

72

Chapter 4. Generating Robust Locators

Creation Evaluation Storage Expressiveness
time (ms) time (ms) (Bytes) (visibility & structure)

Coordinate 1 1 16 Visible & Leaf
Structure 3-4 1 30 Visible/Hidden & Any

Visual 6 8 6200 Visible & Any
Attribute 0-1 0-1 10 Visible/Hidden &

Any with attribute node
Content 1 1 40 Visible/ Hidden &

Text Node

Table 4.1: Comparison of Locator Realization Techniques. Evaluation
and creation time is being measured based on the following mechanisms:
jsDom for structured-based [jsD], jsDom for attribute-based, Hypothesis
for content-based [Hypa], dom-to-image [dom] and Resemble [Res]
for visual-based and finally, WebMakeup for coordinate-based [Web].
Expressiveness is described in terms of the kind of node that can be located.
Specifically, whether the node needs to be visible or not, and the node
structure (a leaf node, a node with attributes, a text node).

Structure-based. This approach relies on the DOM structure, i.e. the
locator is expressed as an XPath expression [SLRT14]. For the sample
case, this expression is

//*[@id="bookTitle"]

This approach is fragile upon changes in the DOM structure, though the
use of relative paths reduces considerably this risk. Expressiveness wise,
the target node does not need to be visible. Different studies indicate
the robustness of structure-based locators [LCRT13, LSRT14, LCRS13,
LSRT15, LCRT14]. On the downside, they are one of the least performing
approaches.

This locator is mainly used for Web Augmentation [DAA13, Web10,
DSAT12, FWRG11b], web testing and web automation [LCRS13,
MPR+09]. The automation means that either the method can generate the
process model automatically, or the method can locate the correct services
if an abstract process model is given [RS04]. Structure-based locator and

73

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

attribute locators can be used in web annotation and web extraction when
all the text of a node is wanted [FB11c, FB11a, GSCJ14].

Attribute-based. These locators rely on attributes ’id’, ’class’ and the
like. For the sample case, these attributes include:

ID: “bookTitle”; Name: “bookTitle”; Attributes:

“itemprop:name”; Text: “Memoirs of a Geisha”

In stricto sensu, the attribute playing the locator role must be unique.
Combination of attributes is considered structure-based locators. High
robustness and performance (less than a millisecond) are the main
advantages of attribute-based locators. Main drawback is that these
attributes are not always available or they are not unique. Usage scenarios
are those of structure-based locators with which they are jointly used.

Coordinate-based. First generation locators were coordinate locators
[LCRT14, LSRT15]. This approach relies on node position, i.e. the
locator is expressed as a coordinate. This makes this approach fragile upon
screen resolution and font size when the element is caught. Moreover,
CSS attribute changes might modify the initial position of the element.
Moreover, this locator is only able to find the leaf nodes of the DOM due
to the fact that in certain point of the website the system only finds a leaf
node. In order to enhance this type of locator, we have implemented a new
method to find all type of nodes and not only leaf nodes (see subsection
4.4).

For the sample case, the locator is:

[(x:325, y:195), (x:780, y:223)]

Expressiveness wise, the approach is limited to leaf visible elements.
On the upside, this approach space performance and the algorithmic
complexity to find the node is low.

This approach can be mainly found in web testing and web automation
[LSRT15]. This technique is deprecated owing to its weak robustness
even with small changes. This worsen with AJAX websites where node

74

Chapter 4. Generating Robust Locators

attributes are automatically generated, putting locator robustness at stake
[BMM12].

Visual-based. This approach rests on image recognition [SLRT14].
They work as if web pages were photos, and next, they try to find the
position of the desired fragment within this photo. For the sample case,
this fragment would be:

Its robustness is similar to structure-based locators [LCRT14]. They
are good for stable websites, which explains their popularity among
web testing and web automation practitioners. Examples include Sikuli
[YCM09] for searching and automating GUI elements, and Lixto [BFG01]
for extracting web content. Moreover, some other studies [LSRT15] reveal
that visual locators have been used for web testing. Nonetheless, Web

Augmentation, web annotation and data extraction should not use visual
locator because website changes are frequent or the system wants a certain
node in similar websites of the same domain but with different content.
Main drawbacks include the need for the node to be visible, performance
and storage requirements.

Content-based. Here, Web Content is regarded as a string. Locators
are then expressed as a substring delimited through two other substrings.
For the sample case, this leads to the following triplet:

[“irs of a Geisha by Arthur Golden”, “Memoirs of a Geisha”

,“by Arthur Golden Memoirs of a Ge”]

No wonder this approach is very fragile upon changes on content.
Expressiveness wise, these locators are restricted to nodes that have
content, no matter whether they are visible or not. Buttons and the like
with no content might not be located this way. On the other hand, they are
the only ones that permit to pinpoint data within node content. This makes

75

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Attributes/Structure Simple Complex
Few BBC Goodreads

Many FOX Wikipedia

Table 4.2: Website sample representatives arranged along two dimensions:
attribute usage & structure complexity.

this approach very valuable for Web annotation where the content to be
annotated tends to be embedded as part of a node’s content [Hypb].

This locator is mainly used for web annotation and web harvesting
(is the process of automatically collecting information from the Web
[FMFB14]) thanks to the possibility it provides of selecting data within
text node content. Pankow [CHS04] uses a range of relatively rare, but
informative, syntactic patterns to mark-up candidate phrases.

4.3 Locator robustness

Web Content upgrades impact all locator approaches to a greater or
lesser extent. If Web Content is upgraded, locators might need to
be revised. But, which is the likelihood of Web upgrades to impact
browser extensions? In other words, should you be the developer of an
extension for a given website, how often would have been you forced to
maintain your extension as a result of this website’s upgrades? To get
a glimpse, we analyse the evolution of four websites which use browser
extensions: www.fox.com, www.wikipedia.org, www.goodreads.com, and
www.bbc.com. These websites are selected as website representatives
based on two dimensions: structure complexity and attribute usage (see
Table 4.2). The rationale is that these characteristics ground most of the
locator approaches. Using Wayback Machine1, we picked up the Web
Content for three-month intervals from January 2014 to March 2016. This
accounts for nine Web Content samples for each of the aforementioned

1https://archive.org/

76

https://archive.org/

Chapter 4. Generating Robust Locators

websites.

The experiment tested whether extensions working for the websites’
versions in January 2014 would have still been working two years later.
The likelihood of extensions to be broken is measured as the rate of
locators, which fail to recover the node. That is, an extension is broken
if any of its locators no longer pinpoints the right node. These locators
are obtained at sample Si, and checked at sample Si+1. Figure 4.2
depicts the outcome for attribute locators, coordinate locators and structure
locators, respectively2. The number of locators depends on the approach
expressiveness: structure locators can pinpoint any node, coordinate
locator cannot find hidden nodes, and attribute locators are limited to nodes
that hold ID-like attributes.

At the onset, around 10% of locators obtained at January 2014 fail to
recover the appropriate node in March 2014. This rate is reasonable since
we are considering the whole set of DOM nodes. For Wikipedia, this rate
keeps steady during the whole timeframe, meaning that this website did
not undergo big changes. However, websites like Fox or BBC conducted
main upgrades that cause a sharp decrease in the number of successful
locators. It is worth noticing how diagrams tend to be quite similar no
matter the locator approach being followed. This seems to imply that big
DOM disruptions affect all approaches alike. For the sample cases, it is
more likely that extensions on top of either the BBC website or the Fox
website would require some maintenance at the risk of stop working3.

This experiment confirms previous insights on locator robustness,
i.e. that attribute-based locators and structure-based locators outperform
coordinate locators as for robustness. This is aligned with previous
results. Table 4.3 summarizes previous findings as partial order
relationships between the different locator approaches. ID-based locators

2Content-based and visual locators are decidedly a bad option when confronted with
frequent website upgrades, as tend to be the norm rather than the exception.

3In some months, the number of successful locators is more than in the previous
month. This is as a result of small changes in the website that makes possible to find
an element that previously had been impossible due to website upgrades.

77

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Figure 4.2: Rate of locators successfully recovering DOM nodes upon
website upgrades. Outcome for the attribute-based approach (top-left), the
coordinate-based approach (top-right) and the structure-based approach
(bottom). Data available at http://tinyurl.com/hud5vxn

Findings Supporting Evidence Reference
structure locator < attribute locator

< ID-based locator [LCRT13, LSRT14]
structure locator < ID-based locator [LCRS13]
visual locator < DOM-Based locator [LCRT14]

coordinate locator < DOM-based [LSRT15]
coordinate locator < Visual locator [LSRT15]

Table 4.3: Robustness among locator approaches. “A1 < A2” indicates
that evidences exist that approach A1 is less robust than A2 for the case
studies presented at the companion reference.

78

Chapter 4. Generating Robust Locators

are certainly the most robust among attribute locators [LCRT13, LSRT14].
Unfortunately, IDs are not always available and other node attributes
should be used. Attribute-based locators are shown to be more robust than
structure-based locators [LCRS13]. These locators are in turn more robust
than visual locators for the cases studies in [LCRT14]. Finally, coordinate
locators are the least stable ones according to the findings in [LSRT15].
The bottom line is that ID-based locators bring together the best of both
worlds: easy definition and robustness. However, this technique is only
available if the target element has an ID. And this is frequently not the
case. Hence, fragility is inherent to Web locators. This work introduces
redundancy in locator definition as the means to improve locator resilience.

4.4 Improving coordinate-based locators

Nowadays coordinate-based locators are an out-dated type of locator.
Coordinate-based locator gets the node of a concrete pixel of the screen and
as a consequence the node is always a leaf node. With a minimum change
on the website, this node can be moved and it will extremely difficult to
find the element because the node will have been moved. Stocco et al.
[SLRT14] say that they were the first type of locator and now a second and
a third generation of locator are being used, structure-based locators and
visual-based locators. Furthermore, [SLRT14] says that coordinate-based
locators are obsolete because they are remarkably fragile. However there
are some scenarios in which coordinate-based locators are a good option
because of the DOM changes, for example Ajax web pages because the ID
can be generated automatically when the website is reloaded and structure
and attribute based locators cannot find the node.

With the idea of improving this type of algorithm and with the intention
of including it in the Kidney algorithm (section 4.5) we have developed
a coordinate-based locator. Thank to our algorithm coordinate-based
locators can locate any type of nodes if they are visible, they do not have to
be leaf nodes. Our approach consists on a union of traditional coordinate-

79

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

based locator with a structure-based locator.

When we are defining a coordinate-based locator, we have to save the
coordinates of middle point of the node in the screen an its domHash.
DomHash is a string based on all tagNames of the node. The domHash
string starts with the root tagName and continues with the tagName of its
first child and after that with the tagName of the second children of root
node. This process continues with all children of the root node. At the
end, if the first child of the root node has children, we repeat the same
process with all tagNames. All tagNames start with the “<” character and
end with the “>” to separate all tagNames and detect them unequivocally.
Additionally, we add “#” character to denote text in the node.

When we are executing the coordinate-based locator we extract the
node we have in the point saved before. If this node has the same domHash,
we have extracted the correct node. Otherwise we get the father of the node
and we check if this node has the same domHash. We repeat the process
until we get the correct node, we get the root of the webpage or until the
node domHash is longer than the domHash saved in the defining process
similarly [ESZ16] does. Continuing with the example of subsection 4.2,
the coordinate-based locator sample would be:

[(x:325, y:195), (x:780, y:223),“<H1>#</H1>”]

4.5 Kidney locators

Kidney locators single out DOM elements by combining three different
approaches: structure-based, attribute-based and coordinate-based. Hence,
Kidney locators hold three component locators. Kidney locator has been
implemented in WebMakeup [DAA+14]. If one component locator fails,
others can keep delivering the right element. In addition, Kidney locators

attempt to regenerate themselves so that the failed locator can be re-created
based on those components that still work.

Visual locators are not useful for Web Augmentation and for that

80

Chapter 4. Generating Robust Locators

Algorithm 4.1 Kidney Algorithm.

function kidney (KidneyLocator: locator[]):Node {
var strNode, attNode, coorNode = null;
strNode=KidneyLocator[’structure’];
if(strNode!=null){

KidneyLocator=updateLocators(strNode);
return strNode;

}
else{

attNode=KidneyLocator[’attribute’];
if(attNode!=null){

KidneyLocator=updateLocators(attNode);
return attNode;

}
else{

coorNode=KidneyLocator[’coordinate’];
if(coorNode!=null){
KidneyLocator=updateLocators(coorNode);

return coorNode;
}
else{

return null;
}

}
}
}

reason, Kidney locator has been implemented with this three approaches.
Moreover, dom-to-image [dom] and Resemble [Res] used to implement
visual locators, only the first iteration cost is extremely high to be used in a
web extension (more than 5.000 ms). Next iterations will be 8 ms (see table
4.1). Something similar happens with content-based locators, they are
fragile within text content changes. Web Augmentation can be used in web
pages with frequent content changes like newspapers, blogs, TV guides,
social networks, etc. and for that reason, content-based locator has not
been included in Kidney locators. It must be taken into consideration that

81

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

structure-based locator that Kidney locator uses does not include unique
attributes like ID because in this case, structure and attribute-based locator
would be the same.

Algorithm 4.1 outlines the code. The algorithm takes a Kidney locator

as input, and returns the desired node. Two main design decisions were
taken w.r.t. (1) the order in which component locator will be evaluated,
and (2), the moment when component locators are regenerated. Structure-
based locator will always be available. However, attribute-based locators
and coordinate locators depend on the target node having ID-like attributes
or nodes being visible, respectively. As for the former, the decision is
based on efficiency.

Regarding the efficiency, it is important to execute each algorithm in
the best order to avoid unnecessary executions and to reduce the time
needed for each node location. We have calculated (See Table 4.1) the
time needed for each locators to be created and to search the node on the
website. Attribute-Based locators execution varies depending on the type
of the locator the algorithm is using. For example ID locators are executed
in less than one millisecond but CSS locators need one millisecond. We
have thought in the worst case to calculate the necessary time to locate the
node.

As for second design decision, locator regeneration timing, there are
two different options: (1) when a locator succeed, update the others always
even if we do not know they succeed, (2) check all locators and update the
locators that have failed. We have calculated the time needed considering
what happens in all combination of locators when a locator works and the
others fail and it has been taken into account the time needed in each order
combination of execution of each locator. Based on this data and trying to
balance both criteria (robustness and efficiency), Table 4.4 shows that the
best order is SAP (S ↔ Structure-Based locator, A ↔ Attribute-Based

82

Chapter 4. Generating Robust Locators

Updating always Time (ms) Updating after a fail Time (ms)
APS 22 APS 18
ASP 18 ASP 18
PAS 21 PAS 18
PSA 18 PSA 18
SAP 15 SAP 18
SPA 16 SPA 18

Table 4.4: Comparison of different possible orders for the Kidney
algorithm

locator, P ↔ Pixel-Based locator) due to its lowest average time to be
executed and the second option of robustness (updating always all locators
after a success). Additionally, it needs the lowest time to be executed in
the most common options (the probability of failure with regard to the
robustness of each locator). The most common options are the cases when
Structure-Based locators and Attribute-Based locators work both or one of
them because these locators are the most robust.

4.5.1 Validation

Effectiveness. We analyse to what extent Kidney locators outperform
traditional structure locators. To this end, we conduct the very same
experiment that in Section 4.3 but now using Kidney locators. Figure 4.3
provides the output. The figures account for an approximate 10% increase
in the rate of success. Unfortunately, the combine usage of different locator
mechanisms was not able to survive a big disruption in the website design
(e.g. BBC and Fox).

Efficiency. Performance wise, Figure 4.4 compares structure-based
locators and Kidney locators. Kidney locator (discontinuous line) aprox.
doubles the time of structure locators (continuous line). Nevertheless, for
most extensions (having below 30 locators), Kidney locators only incur in

83

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Figure 4.3: Rate of locators successfully recovering DOM nodes upon
website upgrades. Structure locators (continuous line) versus Kidney
locators (dotted line) for the four website case studies. Data available at
http://tinyurl.com/hud5vxn

Figure 4.4: Time to recover locators. Kidney locator (discontinuous line)
aprox. doubles the time of structure locators (continuous line).

84

Chapter 4. Generating Robust Locators

a 20 ms performance plus. This penalty might be bearable if we get a 10%
robustness gain in return.

4.6 Regenerative locators

Lets imagine that despite the fact that Kidney locator improves locator
robustness, it fails and Web Augmentation extension stops working. This
is not acceptable and hence, a new algorithm has been developed in order
to avoid web extension failure, Regenerative locator.

A Regenerative locator is a structure-based locator supplemented with
contingency data about the target node (i.e. the node to be located) and
its ancestors. Contingency data includes: ID, Name, CSS, Position, Text,

TagName, etc. When a locator fails, this contingency data might help to
restore the broken locator.

Figure 4.5 (left) provides an example. This figure depicts the Boston

Globe headlines on 11 March 2015: “MIT officer’s death is described

during Tsarnaev trial”. A structure locator that singles out this node would
be

“.//div[@id=’main’] //div[1]/div/div/div[1]/div[1]/h2”.

One year later, the Boston Globe website has a similar appearance (Figure
4.5 (right)) but its underlying structure has changed as unveiled by the
DOM counterpart: an <a> element now appears on top of the <h2>

element. This breaks the headline locator. This is when regenerative
locators come into play. The headline locator can be regenerated by
resorting to its ancestors, whose information is kept as part of the locator
state (contingency data).

Regenerating means being able to single out the targeted node again.
This is achieved by departing from the target element type (e.g. <h2>)
and gradually enriching the expression with additional predicates till the
XPath expression returns a single node 4. Figure 4.6 shows a case example.

4This success criteria rules out locators that select multiple DOM elements. According

85

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Figure
4.5:The

B
oston

G
lobe

w
ebsite:screenshots

and
theirD

O
M

counterparts
forheadlines

on
M

arch
2015

(leftside)
and

M
arch

2016
(rightside).

N
otice

the
upgrade:

<
H

2>
m

oves
from

being
a

child
of

a
<

D
IV

>
elem

entto
becom

e
a

child
ofa

<
a>

elem
ent.

86

Chapter 4. Generating Robust Locators

The algorithm starts by adding attributes from the node itself. First
attempt: contains(@class, ’story-title’) that returns four nodes. Second
attempt: contains(@class, ‘hed-lead’) that returns five nodes. Third
attempt: contains(@class,’story-title’) & contains(@class, ‘hed-lead’) that
returns no node. Since the H2 attributes alone do not single out a
single node, the algorithm moves one level up: DIV. The algorithm
supplements the previous expressions by adding parent-level restrictions
(e.g. DIV[contains(@class,’story-title’)]) on the hope that this additional
restriction can reduce the number of possible outputs to just one. This
process continues till an expression returns a single node. For our case
study, this expression is the one highlighted at the bottom right-hand corner
of Figure 4.5 (right).

Algorithm 4.2 shows the code. First, attributes of the desired
node (ID, name, text, position. . .) are used to obtain a first XPath
expression (combineAttributes). After that, the AdaptiveXpath algorithm
links all previous XPath with the new combination of attributes using
the concatPredicateList function. The algorithm checks all different
combinations of attributes one by one through the apply function5. The
OneResultXpath algorithm returns the node with a unique XPath result.
Otherwise, if there is not XPath expression with a unique node as a result,
the deleteCombinationsWithoutResult function deletes all combinations
that have no result. That is, if an XPath expression has found no node, there
is no point in adding additional predicates to this expression. After deleting
those useless XPaths, the algorithm adds the different combinations of its
father’s attributes. The process iterates till either the XPath expression
delivers a unique result or all ancestors have been considered.

to [BPM15], this kind of locators account for 22% while the other 78% correspond to
locators used to select a single element.

5The first iteration does not consider the ID since this attribute already delivers a single
output.

87

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Figure
4.6:

T
he

regenerative
algorithm

atw
ork:

the
type

ofthe
targetnode

is
gradually

enriched
w

ith
contingency

data
tillthe

X
Path

expression
delivers

a
single

node.

88

Chapter 4. Generating Robust Locators
A

lg
or

ith
m

4.
2

T
he

re
ge

ne
ra

tiv
e

al
go

ri
th

m
:a

gu
es

s-
an

d-
ch

ec
k

al
go

ri
th

m
to

re
ge

ne
ra

te
st

ru
ct

ur
e-

ba
se

d
lo

ca
to

rs
ba

se
d

on
co

nt
in

ge
nc

y
da

ta
.

f
u
n
c
t
i
o
n
a
d
a
p
t
i
v
e
X
p
a
t
h
(
a
n
c
e
s
t
o
r
L
i
s
t
)
:
X
P
a
t
h
{

v
a
r
a
n
c
e
s
t
o
r
P
o
s
i
t
i
o
n
=
0
;

v
a
r
f
u
l
l
P
r
e
d
i
c
a
t
e
L
i
s
t
=

n
u
l
l
;

w
h
i
l
e
(
a
n
c
e
s
t
o
r
L
i
s
t
.
l
e
n
g
t
h
>
a
n
c
e
s
t
o
r
P
o
s
i
t
i
o
n
)
{

v
a
r
c
u
r
r
e
n
t
P
a
r
t
i
a
l
P
r
e
d
i
c
a
t
e
s
=

c
o
m
b
i
n
e
A
t
t
r
i
b
u
t
e
s
(
a
n
c
e
s
t
o
r
L
i
s
t
[
a
n
c
e
s
t
o
r
P
o
s
i
t
i
o
n
]
)
;

f
u
l
l
P
r
e
d
i
c
a
t
e
L
i
s
t
=

c
o
n
c
a
t
P
r
e
d
i
c
a
t
e
L
i
s
t
(
f
u
l
l
P
r
e
d
i
c
a
t
e
L
i
s
t
,

c
u
r
r
e
n
t
P
a
r
t
i
a
l
P
r
e
d
i
c
a
t
e
s
)
;

v
a
r
n
u
m
b
e
r
O
f
X
p
a
t
h
R
e
s
u
l
t
L
i
s
t
=
a
p
p
l
y
(
f
u
l
l
P
r
e
d
i
c
a
t
e
L
i
s
t
)
;

v
a
r
v
a
l
i
d
X
P
a
t
h
=
o
n
e
R
e
s
u
l
t
X
p
a
t
h
(
n
u
m
b
e
r
O
f
X
p
a
t
h
R
e
s
u
l
t
L
i
s
t
)
;

i
f
(
v
a
l
i
d
X
P
a
t
h
!
=
n
u
l
l
)
{

r
e
t
u
r
n

v
a
l
i
d
X
P
a
t
h
;

}
e
l
s
e
{

f
u
l
l
P
r
e
d
i
c
a
t
e
L
i
s
t
=
d
e
l
e
t
e
X
P
a
t
h
s
W
i
t
h
o
u
t
R
e
s
u
l
t
(
f
u
l
l
P
r
e
d
i
c
a
t
e
L
i
s
t
,

n
u
m
b
e
r
O
f
X
p
a
t
h
R
e
s
u
l
t
L
i
s
t
)
;

a
n
c
e
s
t
o
r
P
o
s
i
t
i
o
n
+
+
;

}
}

}

89

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

4.6.1 Validation

Effectiveness. We compare traditional structure-based locators (XPath
expression) and regenerative locators (XPath expression + contingency
data) w.r.t the experiment in Section 4.3. Figure 4.7 depicts the output.
Results are encouraging since the approach seems to recover even for
disruptive changes as those of the BBC website.

In addition, Table 4.5 provides specific examples as for the recall
and the precision metrics. Here, we selected eight websites that enjoyed
browser extensions, and took samples of the very same page every three
months based on Wayback Machine6. For each website, we took one of its
extension, and dug out its locators. Table 4.5 indicates the day the sampling
started together with the initial XPath. Samplings were taking every three
months till this XPath broke. This data was recorded together with the new
regenerated expression returned by the algorithm. This new XPath was put
to test for the successive samplings. The process repeats till last sampling.
The outcome: XPath expressions failed in 15 occasions though 13 of them
could be regenerated. This accounts for a 86,66% recall success. However,
recall is not enough. Table 4.5 also indicates that some the regenerated
XPath expressions were false positives, i.e. the XPath recovers a unique
element but not the target element (false positives are shown in bold). This
was the case for two XPaths. This reduces success to 73,33%.

Efficiency. The complexity of the regenerative algorithm is O(mn)

where “m” and “n” stand for the number of attributes and ancestors,
respectively. Function combineAttributes generates all combination of
attributes. In the best case, this function is executed once. However, in
the worst case, concatPredicateList will expand the quantity of XPath at
each iteration, specifically, the growth is the number of combinations of
attributes multiplied by previous attribute combination. This means that
for each iteration, we combine previous combination of attributes with the

6Obtaining the very same page was not always easy. Some websites were rather stable
(e.g. Wikipedia, Fox News) whereas others suffer more frequent updates (e.g. Amazon).
This limits the moment to which we could go back taking samples.

90

Chapter 4. Generating Robust Locators

Figure 4.7: Structure-based locators (continuous line) versus
Regenerative locators (dotted line): Regenerative locators outperform
traditional locators as for locator resilience. Data available at
http://tinyurl.com/hud5vxn

last iterated attributes. The ancestorList contains a list with all attributes of
all the ancestors that an element has. The list length determines the number
of times attributes will be combined. The larger the number of ancestors
the element has, the longer the time spent in combining attributes. This
leads to a complexity of O(mn).

Table 4.5 displays the times for the feasibility cases. The last column
holds the time it tooks to obtain the regenerated XPath expression. This
time depends on the number of nodes’ attributes as well as the number
of ancestors. The larger the number of attributes/ancestors, the longer the
regeneration time. For the sample cases, this value stayed below 100 ms.
Notice that this penalty is paid just in case the Kidney locator breaks.

4.7 Conclusions

Browser extensions make extensive use of Web locators for both anchoring
and scraping Web Content. Web locators are fragile upon Web Content
upgrades that can make extensions no longer pinpoint the right DOM
element. This is unfortunate since extension developers cannot always
afford a big maintenance investment. This makes robustness a main non-

91

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

W
ebPage

Initial
InitialX

Path
D

ay
X

Path
R

egenerated
X

Paths
Tim

e
day

Fails
(m

s)
A

m
azon

21/09/14
//td[@

id=
18/03/15

//SPA
N

[@
id=

10
’buyingPriceC

ontent’]
"buyingPriceC

ontent"]
05/07/15

//TA
B

L
E

[3]/T
B

O
D

Y
4426

/T
R

/T
D

/D
IV

/*/*
Youtube

21/02/13
//div[@

id="w
atch7-player"]

30/07/13
//div[@

id=’player-api’]
337

IM
D

B
18/02/13

//td[@
id="overview

27/03/16
//T

D
[2]/D

IV
47

-top"]/div[3]
Film

A
ffinity

27/07/13
//h1[@

id="m
ain-title"]/a

01/07/14
//h1[@

id="m
ain-title"]/span

3
09/11/14

.//a/span
7

18/01/15
//h1[@

id=’m
ain-title’]/span

8
W

ikipedia
10/1/13

//table[@
id="toc"]

01/08/13
//div[@

id=’toc’]
623

FoxN
ew

s
01/01/13

//div[@
id="section"]

01/07/15
//div[@

id=’big-top’]
7

/div[2]/div
B

B
C

01/01/13
//div[@

id="prom
o2"]

01/07/14
//div[@

id=’new
s’]

72
01/01/15

//div[@
id=’blq-m

ain’]
71

/div/div[2]/div[1]
01/01/16

–
31

N
YTim

es
01/01/13

//*[@
id=

01/07/13
//div[@

id=’m
ain’]/div[2]

88
"ledePackageR

egion"]
/div[2]/div/div[1]/div[1]

12/01/14
//div[@

id=’m
ain’]/div[2]

42
/div[3]/div/div[1]/div[1]

01/07/14
–

26

Table
4.5:X

Path
regeneration

results.B
old

is
used

forfalse
positives.

92

Chapter 4. Generating Robust Locators

functional requirement for browser extensions. This chapter explores
the use of redundancy as a means to improve locator robustness. By
introducing both alternative locators and additional contingency data, so
called Kidney locators seek to make locators more robust.

First evaluations indicate an increase in robustness effectiveness (10%),
though efficiency is penalized (almost double). That said, considering
that extensions hardly have over 30 locators and each locator accounts for
approximately 1ms, the efficiency penalty will generally be below 30ms.
Moreover, the regenerative addendum might improve robustness as drawn
from the case study with a 70% success in regenerating broken locators.
Our hope is that these insights will prolong the correct functioning of
browser extension, decreasing maintenance efforts.

93

Chapter 5

Conclusions

5.1 Overview

This dissertation addresses web personalization through End-User

Development for Web Augmentation thanks to a Chrome browser
extension. Furthermore, it provides a robust system to ensure that
augmentations designed by end-users will be executed correctly for long
in spite of website upgrades.

In this chapter the main results are reviewed, their limitations are stated
and new areas for future research are suggested.

5.2 Results

This dissertation defines a solution to end-users to personalize the Web.
Specifically:

• Chapter 2 revisits the concept of Web Augmentation and provides an
overview of the main features that characterize Web Augmentation

technologies. In this study, some of the most important End-User

Development and Web conferences were examined to conduct the

95

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

concept of Web Augmentation and provides an overview of the main
features that characterize Web Augmentation technologies. Despite
all their advantages, Web Augmentation technologies present some
limitations that might result in challenges on the user side. These
aspects are also presented and discussed highlighting directions for
future work in that domain.

• Chapter 3 advocates for empowering people to tune the Web for
their own purposes. We resort to a Visual Programming approach
to empower end-users to augment a website by removing, moving
and adding content from other sites to avoid scrolling, cut and
pasting, tab switching and clicks. No collaboration of the websites
is required. These ideas are borne out through the WebMakeup,
a client-side Chrome browser extension. Being an end-user tool,
evaluation is conducted through a set of usability experiments.

• Chapter 4 describes different web locators techniques that are used
to find web nodes. Moreover, two different locators (Kidney locator

and Regenerative locator) are described in order to enhance locator
robustness. Kidney locator employs different web locator techniques
until one of these techniques have a positive result and it updates
the information needed to retrieve a web element when one of
these techniques have failed. If Kidney locator fails, Regenerative

algorithm, a structure-based locator supplemented with contingency
data about the target node and its ancestors, reacts to help to
restore the broken structure-based locator. Furthermore, the aim
of coordinate-based locator improvement has been to use them to
find any type of web node and not only leaf nodes. All this reduce
browser extensions maintenance cost and avoid users give up using
extensions due to location failures.

96

Chapter 5. Conclusions

5.3 Publications

Part of the work presented in this thesis have been already presented and
discussed in distinct peer-reviewed forums. The author has contributed to
the following publications:

Selected Publications

• Oscar Díaz, Cristóbal Arellano, Iñigo Aldalur, Haritz Medina,
Sergio Firmenich. End-user browser-side modification of web
pages. In Web Information Systems Engineering – WISE 2014 –
15th International Conference, Thessaloniki, Greece, October 12-
14, 2014, Proceeding, Part I (2014), pp. 293-307. Related to chapter
3.

• Iñigo Aldalur, Marco Winckler, Oscar Díaz and Philippe Palanque.
Web Augmentation as a Promising Technology for End User
Development, In Fabio Paternò and Volker Wulf, ed., New
Perspectives in End-User Development (Springer, 2017). Related
to chapter 2.

• Iñigo Aldalur, Oscar Díaz. Buildng Robust Web Locators Through
Redundancy: A Case for Browser Extensions. In Proceedings
of the 9th ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, EICS 2017, Lisbon, Portugal, June 26-29.
Related to chapter 4.

International Conferences/Workshops

• Oscar Díaz, Iñigo Aldalur, Cristóbal Arellano, Haritz Medina,
Sergio Firmenich. Empowering Users to Mod Websites. Rapid
Mashup Development Tools – First International Rapid Mashup
Challenge, RMC 2015, Rotterdam, The Netherlands, June 23-26,
2015, Revised Selected Papers, pp. 82-97

97

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

• Oscar Díaz, Iñigo Aldalur, Cristóbal Arellano, Haritz Medina,
Sergio Firmenich. WebMakeup: An End-User Tool for Web Page
Customization. XIX Jornadas en Ingeniería del Software y Bases de
Datos (JISBD 2014), Cádiz, Spain, September 16-19, 2014

5.4 Research Stage

One of the outstanding benefits of performing a Ph.D. is the possibility of
working together with international and well-regarded professionals, and
above all, learning from them. The author visited the group ICS from
the University Toulouse III Paul Sabatier, in France, leaded by professor

Philippe Palanque. The author was under the supervision of Dr. Marco

Winckler from April to June of 2015. The benefits of the visit have been at
least two. On one hand, being with highly qualified people makes learning
about different topics, or realize about different perspectives of the topics
you are familiarized with. On the other hand, it makes learning about
different working habits, methodologies and ways to organize and interact.
During this research, the author acquired a deepen knowledge in online
communities which influenced the content of the Chapter 2.

5.5 Assessment and Future Research

In this dissertation, the author proposes three scenarios where End-

User Development for Web Augmentation has been conducted. During
the development of the solution some limitations were detected. Such
limitations mark the direction of future work.

Study about End-User Development features for Web Augmentation
and Mashups

• Including more references from different resources. In this study,
articles from some End-User Development and Web conferences

98

Chapter 5. Conclusions

were taken into account. Journal articles and other conferences
have not been considered in this study. Despite the fact that
main characteristics have been extracted, it might be interesting to
enhance the study including more references from different sources.

Empowering people to customize web content

• Enlarging WebMakeup expresiveness. Most websites have a huge
amount of information and users yearn to avoid unnecessary content.
This quantity of information complicates the possibility to find the
needed content and the user spends for a long time searching for it.
For that reason, if a user adds new content, WebMakeup would avoid
showing unnecessary information based on variable information
adding a condition to show only information when the widget has
more than certain value.

• End-users cannot modify the style of the widget and they are not
able to add functionality to widgets. That is why widgets with
advanced behaviour can be added to WebMakeup functionality in
order to solve the problem such as, filtering information based on
a criteria, creating cropped widgets that WebMakeup is not able to
create due to the fact that some functionalities cannot be maintained,
APIs supply with information that cannot be obtained from websites
and WebMakeup does not access to Web APIs and it is not supported
to update widgets from websites in which the user has to be logged.
These widgets might be developed by programmers and uploaded to
a web repository to be downloaded and just used by end-users.

Enhancing web locator robustness

• Evaluation of Kidney locator and Regenerative locator must be
improved due to the fact that they have not been tested with a
large number of websites and browser extensions. With regard to
Regenerative locator, browser extensions we used to check it were

99

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Web Augmentation extensions that utilize a single locator. It was
extremely difficult to find this type of extension and moreover, it
was more difficult to test them using The WayBack Machine website
because some websites are not saved in the The WayBack Machine.

• Regenerative locator sometimes generates false positive results. It
is important to research how these results can be detected and avoid
them.

• Improving locator generation. The study of GUI wizards (e.g.
Firepath [Fir], XPath Helper [Xpab], XPath Checker [Xpaa]) and
Programming by Demonstration techniques (e.g. LED [BPM15])
to facilitate the obtaining of Kidney locators, and hence alleviating
their development overhead.

5.6 Conclusions

End-User Development for Web Augmentation has proven to be an
adequate paradigm to improve the satisfaction of end-users. It is
impossible for webmasters to foresee, develop and maintain their websites
with content to satisfy everybody. End-User Development for Web

Augmentation alleviates this situation by allowing end-users to make their
own adaptations.

This dissertation presents three scenarios. The first scenario presents
a summary of Web Augmentation techniques for End-User Development.
The second scenario presents a Chrome browser extension for Web

Augmentation for end-users. In the third scenario different locator
mechanisms are mentioned and additionally, two different locators are
included to enhance locator’s robustness. Part of the content of this thesis
has already been presented in different venues. To conclude, the author
enumerated some limitations of the work, which can serve as future lines
of research.

100

Appendix A

Evaluation test

WebMakeup: your Web, your decision

This is an experiment to collect information about your WebMakeup tool
opinion which aim is to facilitate end-users to reorganize Web content. We
express our gratitude for your collaboration.

The experiment consist of two different parts:

• mandatory part (in the lab): watch a video, 4 tasks and a brief
questionnaire

• optional part (at home): 1 task and a brief questionnaire

Before anything:

• Watch this video: https://vimeo.com/146228732

• Install WebMakeup1: you can search in Google “Chrome store
webmakeup”

1https://chrome.google.com/webstore/detail/webmakeup/alnhegodephpjnaghlcemlnpdknhbhjj

101

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Mandatory part

First, you have to access to the questionnaire2

PLEASE, FILL IN SECTION 1 OF THE QUESTIONNAIRE
RELATED TO THE DEMOGRAPHIC DATA

Task 1

• Before starting, write the beginning time:

• In the browser, access next Web page: http://www.donostia.eus/

• Click on Webmakeup browser icon and select “New” in the menu

• The task should carry out next:

– Delete the upper element of the right column

– Move “Tramites destacados” from the lower part to underneath
notice section

• When you have it ready, you can see the result clicking on “Deploy”
in the WebMakeup browser menu

• You can see the result in the figure A.1

• Write down the time at the end of the task:

PLEASE, FILL IN TASK 1 DATA IN SECTION 2

2https://docs.google.com/forms/d/198R02VsR-E2E1Imbw-
AYeNO7yiYEaazAFnwXQpquPGk/viewform

102

Chapter A. Evaluation test

Figure A.1: donostia.eus website after the first task

Task 2

• Before starting, write the beginning time:

• You should continue in the same website: http://www.donostia.eus/

• Click on WebMakeup browser icon and select “CarryOn” in the
menu

• This task have to carry out next:

– Extend PiggyBank tab and insert a link

– Insert http://www.kursaal.eus/es/ URL in the link

– Insert “Kursaal” as a text of the link

– Widgetize the upper menu of the website

103

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Figure A.2: donostia.eus website after the second task

– Double click on it

– Add a new element inserting the
http://www.sansebastianturismo.com/es/ Web direction

– Insert “Turismo” as a text

– Double click on the widget and the element will be inserted in
the menu

• When you have it ready, you can see the result clicking on “Deploy”
in the WebMakeup browser menu

• You can see the result in the figure A.2

• Write down the time at the end of the task:

PLEASE, FILL IN TASK 2 DATA IN SECTION 2

104

Chapter A. Evaluation test

Task 3

• Before starting, write the beginning time:

• In the browser, access to http://www.pesa.net/pesa/es/horarios
website

– Select a date

– Select Arrasate as a origin city

– Select Donostia as a destination city

• We are going to create a widget in the Pesa website in order to
look up bus schedule information. Click with the right button of
the mouse and select “MineIt”. Select the timetable element like in
figure A.3 (use the keyboard if it is necessary) and give “Pesa” name
to the widget

• In the browser, access next Web page: http://www.tvguia.es/

• Click on Webmakeup browser icon and select “New” in the menu

• The task should carry out next:

– Extend PiggyBank tab and insert “Pesa” widget

– Extend PiggyBank tab and insert a button

– Hide “Pesa” widget

– Join both widget with a blink

• When you have it ready, you can see the result clicking on “Deploy”
in the WebMakeup browser menu

• You can see the result in the figure A.4

• Write down the time at the end of the task:

PLEASE, FILL IN TASK 3 DATA IN SECTION 2

105

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Figure A.3: Creating a widget in “Pesa” bus company website

Task 4

• Before starting, write the beginning time:

• Click on WebMakeup browser icon and select “CarryOn” in the
menu

• Open a new tab in the browser and access a weather website3

3http://www.eltiempo.es/donostia-san-sebastian.html

106

Chapter A. Evaluation test

Figure A.4: Pesa timetable in the tvguia.es website

– Create a widget with the time of tomorrow at 13:00 (see figure
A.5)

• Open a new tab and access to filmAffinity4 website

– Search whatever film

– Create a widget with the search bar and the scoring element of
the film (insert the same name to both widgets) (see figure A.6)

4www.filmaffinity.com

107

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Figure A.5: Creating a widget in a weather web page

• Click on www.tvguia.es tab

• The task should carry out next based on task 3:

– Delete the blink between the button and “Pesa” widget

– Delete the Button

– Extend PiggyBank tab and insert “filmAffinity” widget

– Double click on “filmAffinity” widget, copy the title of the film
in the main element of the website and paste it in the widget
input. In order to end the binding process, double click on the
widget

– Extend the PiggyBank tab and insert the “weather” widget

– Double click on “weather” widget

– Choose “Day” option in the “Poly frequency” menu

– Double click again in the “weather” widget

108

Chapter A. Evaluation test

Figure A.6: Creating a widget in filmAffinity website

– Widgetize “Esta noche destacamos. . . ” main element in the
upper part of the website (Recommendation widget)

– Establish a CONJUNCTION blink pattern between (1)
“recommendation” (2) “filmAffinity” (3) “weather” (4) “Pesa”
(keep click “ALT” keyboard button during the process and
select the widgets in the order mentioned)

– Delete “Pesa” widget (the widget and the blink will disappear)

• When you have it ready, you can see the result clicking on “Deploy”
in the WebMakeup browser menu

• You can see the result in the figure A.7

• Write down the time at the end of the task:

PLEASE, FILL IN TASK 4 DATA IN SECTION 2

109

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Figure A.7: FilmAffinity and weather widgets in tvguia website

PLEASE, FILL IN SECTION 3 AND SECTION 4

110

Chapter A. Evaluation test

Optional part

Now, it is your turn. Think about your Web routines. Are there any of
them that could be of benefit to WebMakeup modding? If it comes to your
mind, implement it and let us know your opinion about it answering a
questionnaire5.

We hope this experience has been interesting for you. We sincerely
thank you for your participation owing to without it, we would not know
if this tool is useful. We would be happy to answer any questions you
may have about WebMakeup. Do not hesitate to contact us. Our email is
inigo.aldalur@ehu.eus

5https://docs.google.com/forms/d/1D-ZPGALH6erP-
crwilSKwx9g4tqfFZcSLW76t73QLFo/viewform

111

WebMakeup evaluation
questionnaire

A.1 General Information

1. Gender.

(a) Female.

(b) Male.

2. Age

(a) Less than 20

(b) Between 20 and 39

(c) Between 40 and 59

(d) More than 60

3. Indicate how often you use edition programmes

(a) At least once every week

(b) At least once every month.

(c) At least once every year.

(d) Never.

4. Have you ever used a browser extension?

113

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

(a) Yes

(b) No

5. How many browser extensions have you installed during the last
year?

6. How many websites do you visit every day?

(a) 1-5

(b) 6-10

(c) 11-20

(d) More than 20

7. On average, how many tabs do you have opened simultaneously?

(a) 1

(b) 2-5

(c) 6-10

(d) More than 10

8. How much time do you spend surfing the Internet in your work?

(a) Less than 30 minutes

(b) Between 30 and 1 hour

(c) Between 1 hour and 2 hour

(d) More than 2 hour

9. How much time do you spend surfing the Internet in your free time?

(a) Less than 30 minutes

(b) Between 30 and 1 hour

(c) Between 1 hour and 2 hour

114

Chapter A. Evaluation test

(d) More than 2 hour

10. Have you ever studied any programming language?

(a) No, I have not got any programming experience

(b) Yes, for less than a year

(c) Yes, for more than a year

11. Have you ever visited www.tvguia.es website?

(a) Once a week

(b) Once a month

(c) Once a year

(d) Never

12. Have you ever visited www.donostia.eus website?

(a) Once a week

(b) Once a month

(c) Once a year

(d) Never

A.2 Time needed to fulfil the tasks

A.2.1 First task

1. What time did you started the task?

2. What time did you finished the task?

A.2.2 Second task

1. What time did you started the task?

2. What time did you finished the task?

115

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

A.2.3 Third task

1. What time did you started the task?

2. What time did you finished the task?

A.2.4 Fourth task

1. What time did you started the task?

2. What time did you finished the task?

A.3 Efficacy

1. Mark all the tasks you have finished with

(a) First task

(b) Second task

(c) Third task

(d) Fourth task

A.4 Usefulness

1. When I visit a website frequently I have to scroll to find the content
I want on the screen(1- Totally disagree, 5 - Totally agree).

2. To scroll a website is awkward(1- Totally disagree, 5 - Totally agree).

3. When I use a browser I have to change the tab frequently (1- Totally
disagree, 5 - Totally agree).

4. Tabs-switching is awkward (1- Totally disagree, 5 - Totally agree).

5. Removing content from websites improves my Web experience (1-
Totally disagree, 5 - Totally agree).

116

Chapter A. Evaluation test

6. Moving content from websites improves my Web experience (1-
Totally disagree, 5 - Totally agree).

7. Inserting my own links into a single website improves my Web
experience(1- Totally disagree, 5 - Totally agree).

8. Collecting content into a single website improves my Web
experience(1- Totally disagree, 5 - Totally agree).

9. Parameterizing content from websites improves my Web
experience(1- Totally disagree, 5 - Totally agree).

10. Showing and hiding elements improves my Web experience(1-
Totally disagree, 5 - Totally agree).

11. Collecting content into a single website improves my Web
experience(1- Totally disagree, 5 - Totally agree).

12. Reducing the need for going back and forth between browser tabs
improves my Web experience (1- Totally disagree, 5 - Totally agree).

13. I plan to use WebMakeup in the future(1- Totally disagree, 5 - Totally
agree).

14. I find WebMakeup interesting enough to tell to my friends(1- Totally
disagree, 5 - Totally agree).

A.5 Usability

1. It was easy for me to widgetize fragments out of the donostia.eus
web page(1- Totally disagree, 5 - Totally agree).

2. It was easy for me to delete elements of the donostia.eus web page(1-
Totally disagree, 5 - Totally agree).

3. It was easy for me to move elements of the donostia.eus web page(1-
Totally disagree, 5 - Totally agree).

117

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

4. It was easy for me to insert link or buttons in the donostia.eus web
page(1- Totally disagree, 5 - Totally agree).

5. It was easy for me to change/add a new value to a existing element
in the donostia.eus web page(1- Totally disagree, 5 - Totally agree).

6. It was easy for me to drag&drop widgets from the piggy-bank tab to
the desired position in the web page.(1- Totally disagree, 5 - Totally
agree).

7. It was easy for me to create widgets out of existing pages
(filmAffinity)(1- Totally disagree, 5 - Totally agree).

8. It was easy for me to create widgets out of existing pages
(eltiempo.es)(1- Totally disagree, 5 - Totally agree).

9. It was easy for me to create widgets out of existing pages (Pesa)(1-
Totally disagree, 5 - Totally agree).

10. It was easy for me to set a simple-blink among selected widgets(1-
Totally disagree, 5 - Totally agree).

11. It was easy for me to bind widgets together (i.e. feeding widgets
parameters from data in the TVguia web page).(1- Totally disagree,
5 - Totally agree).

12. It was easy for me to set a blink pattern among selected widgets(1-
Totally disagree, 5 - Totally agree).

13. It was easy for me to create a new makeup design(1- Totally disagree,
5 - Totally agree).

14. It was easy for me to deploy a makeup design(1- Totally disagree, 5
- Totally agree).

15. It was easy for me to restore an existing makeup design(1- Totally
disagree, 5 - Totally agree).

118

Chapter A. Evaluation test

16. During the use of WebMakeup, I have always known how to do the
things I was required to do(1- Totally disagree, 5 - Totally agree).

17. There have been NO errors during the use of WebMakeup(1- Totally
disagree, 5 - Totally agree).

18. WebMakeup is fast enough(1- Totally disagree, 5 - Totally agree).

19. In general, I am satisfied with the things that I have made with
WebMakeup(1- Totally disagree, 5 - Totally agree).

20. We appreciate any comments, suggestions, etc. that you wish to
include.

119

Appendix B

WebMakeup examples

Example spectrum

Table B.1 shows different examples that illustrate all the widgets and blinks
spectrum of possibilities WebMakeup offers.

Figure B.1: WebMakeup example spectrum table

121

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

DBLP-Scholar

This example uses a complex widget to show the information from Google
Scholar of the authors the user looks for in the DBLP website.

Figure B.2: DBLP

122

Chapter B. WebMakeup examples

Figure B.3: DBLP after Google Scholar addition

123

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Ecobolsa-Bolsa Madrid

This example employs a complex widgets to show more information from
the Spanish stock exchange that the host website does not provide.

Figure B.4: Ecobolsa

Additionally, it makes use of a blink to join the company (host based

124

Chapter B. WebMakeup examples

widget) with the complex widget to see the extra information only when
the user desires.

Figure B.5: Ecobolsa after Bolsa Madrid addition

125

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

EHU-Pesa

This example uses a cropped widget to display information Pesa (Basque
bus company) timetable in the University of the Basque Country website.

Figure B.6: EHU

Moreover, a button (pre-set widget) is added and blinked to Pesa widget

126

Chapter B. WebMakeup examples

to show the widget only when the user needs it.

Figure B.7: EHU after Pesa addition

127

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Linguee-WordReference

This example uses a complex widget to add more definitions to Linguee
website from Wordreference web page. A button is added and blinked to
show the information only when the user wants it.

Figure B.8: Linguee

128

Chapter B. WebMakeup examples

Figure B.9: Linguee after Wordreference addition

129

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

EasyChair

This example makes use of a link (pre-set widget) to join EasyChair
website with the URL to justify the absence in the university when the
users goes to a conference.

Figure B.10: EasyChair

Figure B.11: EasyChair after EHU link addition

130

Chapter B. WebMakeup examples

NYTimes-Weather

This example employs a simple widget to add weather information from
the New York city and it must be taken into account that this widget will
update its content every time the user visits the website.

Figure B.12: New York Times

131

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Figure B.13: New York Times after weather addition

132

Chapter B. WebMakeup examples

Open Science Framework

This example moves the ’Citation’ element from the top right column to
the left column widgetizing this element in order to have this element is a
more accessible place to the user.

Figure B.14: Open Science Framework

133

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Figure B.15: Open Science Framework after element position change

134

Chapter B. WebMakeup examples

135

Bibliography

[AAF+05] Maristella Agosti, Hanne Albrechtsen, Nicola Ferro, Ingo
Frommholz, Preben Hansen, Nicola Orio, Emanuele Panizzi,
Annelise Mark Pejtersen, and Ulrich Thiel. Dilas: a
digital library annotation service. In Proceedings of the

International Workshop on Annotation for Collaboration -

Methods, Tools and Practices, La Sorbonne, Paris, France,

2005, November 23-24, pages 91–101, 2005.

[ABC+13] Carmelo Ardito, Paolo Bottoni, Maria Francesca Costabile,
Giuseppe Desolda, Maristella Matera, Antonio Piccinno, and
Matteo Picozzi. Enabling end users to create, annotate
and share personal information spaces. In End-User

Development - 4th International Symposium, IS-EUD 2013,

Copenhagen, Denmark, June 10-13, 2013. Proceedings,
pages 40–55, 2013.

[ACD+14] Carmelo Ardito, Maria Francesca Costabile, Giuseppe
Desolda, Rosa Lanzilotti, Maristella Matera, Antonio
Piccinno, and Matteo Picozzi. User-driven visual
composition of service-based interactive spaces. J. Vis. Lang.

Comput., 25(4):278–296, 2014.

[ACD+15] Carmelo Ardito, Maria Francesca Costabile, Giuseppe
Desolda, Markus Latzina, and Maristella Matera. Hands-
on actionable mashups. In End-User Development - 5th

137

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

International Symposium, IS-EUD 2015, Madrid, Spain,

May 26-29, 2015. Proceedings, pages 295–298, 2015.

[AD13] Cristóbal Arellano and Oscar Díaz. Lightweight end-
user software sharing. In End-User Development -

4th International Symposium, IS-EUD 2013, Copenhagen,

Denmark, June 10-13, 2013. Proceedings, pages 241–246,
2013.

[AGJ+16] Kumaripaba Athukorala, Dorota Glowacka, Giulio Jacucci,
Antti Oulasvirta, and Jilles Vreeken. Is exploratory search
different? A comparison of information search behavior for
exploratory and lookup tasks. JASIST, 67(11):2635–2651,
2016.

[AKG10] Anne Aula, Rehan M. Khan, and Zhiwei Guan. How does
search behavior change as search becomes more difficult? In
Proceedings of the 28th International Conference on Human

Factors in Computing Systems, CHI 2010, Atlanta, Georgia,

USA, April 10-15, 2010, pages 35–44, 2010.

[AN15] Mohammed AlSada and Tatsuo Nakajima. Parallel web
browsing in tangible augmented reality environments. In
Proceedings of the 33rd Annual ACM Conference Extended

Abstracts on Human Factors in Computing Systems, Seoul,

CHI 2015 Extended Abstracts, Republic of Korea, April 18 -

23, 2015, pages 953–958, 2015.

[AP11] Saeed Aghaee and Cesare Pautasso. End-user programming
for web mashups - open research challenges. In
Current Trends in Web Engineering - Workshops, Doctoral

Symposium, and Tutorials, Held at ICWE 2011, Paphos,

Cyprus, June 20-21, 2011. Revised Selected Papers, pages
347–351, 2011.

138

BIBLIOGRAPHY

[AP14] Saeed Aghaee and Cesare Pautasso. End-user development
of mashups with naturalmash. J. Vis. Lang. Comput.,
25(4):414–432, 2014.

[ATD08] Eytan Adar, Jaime Teevan, and Susan T. Dumais. Large scale
analysis of web revisitation patterns. In Proceedings of the

2008 Conference on Human Factors in Computing Systems,

CHI 2008, 2008, Florence, Italy, April 5-10, 2008, pages
1197–1206, 2008.

[BCL+04] Paolo Bottoni, Roberta Civica, Stefano Levialdi, Laura Orso,
Emanuele Panizzi, and Rosa Trinchese. MADCOW: a
multimedia digital annotation system. In Proceedings of

the working conference on Advanced visual interfaces, AVI

2004, Gallipoli, Italy, May 25-28, 2004, pages 55–62, 2004.

[BDRR11] Christian Brel, Anne-Marie Dery-Pinna, Philippe Renevier-
Gonin, and Michel Riveill. Ontocompo: A tool to enhance
application composition. In Human-Computer Interaction

- INTERACT 2011 - 13th IFIP TC 13 International

Conference, Lisbon, Portugal, September 5-9, 2011,

Proceedings, Part IV, pages 588–591, 2011.

[BFG01] Robert Baumgartner, Sergio Flesca, and Georg Gottlob.
Visual web information extraction with lixto. In VLDB 2001,

Proceedings of 27th International Conference on Very Large

Data Bases, September 11-14, 2001, Roma, Italy, pages
119–128, 2001.

[BFR+16] Gabriela Bosetti, Sergio Firmenich, Gustavo Rossi, Marco
Winckler, and Tomas Barbieri. Web objects ambient: An
integrated platform supporting new kinds of personal web
experiences. In Web Engineering - 16th International

Conference, ICWE 2016, Lugano, Switzerland, June 6-9,

2016. Proceedings, pages 563–566, 2016.

139

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

[BMM+11] Antonio Bottaro, Enrico Marino, Franco Milicchio, Alberto
Paoluzzi, Maurizio Rosina, and Federico Spini. Visual
programming of location-based services. In Human

Interface and the Management of Information. Interacting

with Information - Symposium on Human Interface 2011,

Held as Part of HCI International 2011, Orlando, FL, USA,

July 9-14, 2011, Proceedings, Part I, pages 3–12, 2011.

[BMM12] Alberto Bartoli, Eric Medvet, and Marco Mauri. Recording
and replaying navigations on AJAX web sites. In
International Web Conference on Web Engineering - ICWE

2012, 12th International Conference, Berlin, Germany, July

23-27, 2012. Proceedings, pages 370–377, 2012.

[Bou99] Niels Olof Bouvin. Unifying strategies for web
augmentation. In HYPERTEXT ’99, Proceedings of the 10th

ACM Conference on Hypertext and Hypermedia: Returning

to Our Diverse Roots, February 21-25, 1999, Darmstadt,

Germany, pages 91–100, 1999.

[BPM15] Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah.
Synthesizing web element locators. In 30th IEEE/ACM

International Conference on Automated Software

Engineering, ASE 2015, Lincoln, NE, USA, November

9-13, 2015, pages 331–341, 2015.

[Bro] Browser extension. https://en.wikipedia.org/

wiki/Browser_extension. Accessed: 2017-01-15.

[BS11] Margaret M. Burnett and Scaffidi. End-user development.
http://www.interaction-design.org/

encyclopedia/end-user_development.html,
2011. In: Encyclopedia of Human-Computer Interaction.
Soegaard, Mads and Dam, Rikke Friis (eds.).

140

https://en.wikipedia.org/wiki/Browser_extension
https://en.wikipedia.org/wiki/Browser_extension
http://www.interaction-design.org/encyclopedia/end-user_development.html
http://www.interaction-design.org/encyclopedia/end-user_development.html

BIBLIOGRAPHY

[BWR+05] Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson,
and Robert C. Miller. Automation and customization of
rendered web pages. In Proceedings of the 18th Annual ACM

Symposium on User Interface Software and Technology,

Seattle, WA, USA, October 23-26, 2005, pages 163–172,
2005.

[CDA00a] I. Cingil, A. Dogac, and A. Azgin. A Broader Approach to
Personalization. Communications of the ACM, 43(8):136–
141, 2000.

[CDA00b] Ibrahim Cingil, Asuman Dogac, and Ayca Azgin. A broader
approach to personalization. Commun. ACM, 43(8):136–
141, 2000.

[CDM+11] Cinzia Cappiello, Florian Daniel, Maristella Matera,
Matteo Picozzi, and Michael Weiss. Enabling end user
development through mashups: Requirements, abstractions
and innovation toolkits. In End-User Development - Third

International Symposium, IS-EUD 2011, Torre Canne (BR),

Italy, June 7-10, 2011. Proceedings, pages 9–24, 2011.

[CFB+13] Cecilia Challiol, Sergio Firmenich, Gabriela Alejandra
Bosetti, Silvia E. Gordillo, and Gustavo Rossi.
Crowdsourcing mobile web applications. In Current

Trends in Web Engineering - ICWE 2013 International

Workshops ComposableWeb, QWE, MDWE, DMSSW,

EMotions, CSE, SSN, and PhD Symposium, Aalborg,

Denmark, July 8-12, 2013. Revised Selected Papers, pages
223–237, 2013.

[CHS04] Philipp Cimiano, Siegfried Handschuh, and Steffen Staab.
Towards the self-annotating web. In Proceedings of the 13th

international conference on World Wide Web, WWW 2004,

New York, NY, USA, May 17-20, 2004, pages 462–471, 2004.

141

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

[CM12] Kerry Shih-Ping Chang and Brad A. Myers. Webcrystal:
understanding and reusing examples in web authoring. In
CHI Conference on Human Factors in Computing Systems,

CHI ’12, Austin, TX, USA - May 05 - 10, 2012, pages 3205–
3214, 2012.

[CMP+11] Cinzia Cappiello, Maristella Matera, Matteo Picozzi,
Gabriele Sprega, Donato Barbagallo, and Chiara
Francalanci. Dashmash: A mashup environment for end
user development. In Web Engineering - 11th International

Conference, ICWE 2011, Paphos, Cyprus, June 20-24, 2011,
pages 152–166, 2011.

[CMP13] Cinzia Cappiello, Maristella Matera, and Matteo Picozzi.
End-user development of mobile mashups. In Design, User

Experience, and Usability. Web, Mobile, and Product Design

- Second International Conference, DUXU 2013, Held as

Part of HCI International 2013, Las Vegas, NV, USA, July

21-26, 2013, Proceedings, Part IV, pages 641–650, 2013.

[CNG+12] Olexiy Chudnovskyy, Tobias Nestler, Martin Gaedke,
Florian Daniel, José Ignacio Fernández-Villamor, Vadim I.
Chepegin, José Angel Fornas, Scott Wilson, Christoph
Kögler, and Heng Chang. End-user-oriented telco mashups:
the OMELETTE approach. In Proceedings of the 21st World

Wide Web Conference, WWW 2012, Lyon, France, April 16-

20, 2012 (Companion Volume), pages 235–238, 2012.

[CP08] Gerardo Canfora and Massimiliano Di Penta. Service-
oriented architectures testing: A survey. In Software

Engineering, International Summer Schools, ISSSE 2006-

2008, Salerno, Italy, Revised Tutorial Lectures, pages 78–
105, 2008.

142

BIBLIOGRAPHY

[CPT11] Prach Chaisatien, Korawit Prutsachainimmit, and Takehiro
Tokuda. Mobile mashup generator system for cooperative
applications of different mobile devices. In Web Engineering

- 11th International Conference, ICWE 2011, Paphos,

Cyprus, June 20-24, 2011, pages 182–197, 2011.

[CRDC12] Soudip Roy Chowdhury, Carlos Rodríguez, Florian Daniel,
and Fabio Casati. Baya: assisted mashup development as
a service. In Proceedings of the 21st World Wide Web

Conference, WWW 2012, Lyon, France, April 16-20, 2012

(Companion Volume), pages 409–412, 2012.

[CVM14] Lorena Castaneda, Norha M. Villegas, and Hausi A.
Müller. Self-adaptive applications: on the development
of personalized web-tasking systems. In 9th International

Symposium on Software Engineering for Adaptive and Self-

Managing Systems, SEAMS 2014, Proceedings, Hyderabad,

India, June 2-3, 2014, pages 49–54, 2014.

[DA15] Oscar Díaz and Cristóbal Arellano. The augmented web:
Rationales, opportunities, and challenges on browser-side
transcoding. TWEB, 9(2):8, 2015.

[DAA13] Oscar Díaz, Cristóbal Arellano, and Maider Azanza. A
language for end-user web augmentation: Caring for
producers and consumers alike. TWEB, 7(2):9, 2013.

[DAA+14] Oscar Díaz, Cristóbal Arellano, Iñigo Aldalur, Haritz
Medina, and Sergio Firmenich. End-user browser-side
modification of web pages. In Web Information Systems

Engineering - WISE 2014 - 15th International Conference,

Thessaloniki, Greece, October 12-14, 2014, Proceedings,

Part I, pages 293–307, 2014.

143

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

[DANP13] Tao Dong, Mark S. Ackerman, Mark W. Newman, and
Gaurav Paruthi. Social overlays: Collectively making
websites more usable. In Human-Computer Interaction

- INTERACT 2013 - 14th IFIP TC 13 International

Conference, Cape Town, South Africa, September 2-6, 2013,

Proceedings, Part IV, pages 280–297, 2013.

[DB10] Patrick Dubroy and Ravin Balakrishnan. A study of tabbed
browsing among mozilla firefox users. In Proceedings of

the 28th International Conference on Human Factors in

Computing Systems, CHI 2010, Atlanta, Georgia, USA, April

10-15, 2010, pages 673–682, 2010.

[DBS09] Nilesh N. Dalvi, Philip Bohannon, and Fei Sha. Robust
web extraction: an approach based on a probabilistic
tree-edit model. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, SIGMOD

2009, Providence, Rhode Island, USA, June 29 - July 2,

2009, pages 335–348, 2009.

[DF13] Florian Daniel and Andrea Furlan. The interactive API
(iapi). In Current Trends in Web Engineering - ICWE 2013

International Workshops ComposableWeb, QWE, MDWE,

DMSSW, EMotions, CSE, SSN, and PhD Symposium,

Aalborg, Denmark, July 8-12, 2013. Revised Selected

Papers, pages 3–15, 2013.

[dom] Github - don-to-image. https://github.com/

tsayen/dom-to-image). Accessed: 2016-11-09.

[DPP07] Oscar Díaz, Sandy Pérez, and Iñaki Paz. Providing
personalized mashups within the context of existing web
applications. In Web Information Systems Engineering

- WISE 2007, 8th International Conference on Web

144

https://github.com/tsayen/dom-to-image)
https://github.com/tsayen/dom-to-image)

BIBLIOGRAPHY

Information Systems Engineering, Nancy, France, December

3-7, 2007, Proceedings, pages 493–502, 2007.

[DRC+12] Florian Daniel, Carlos Rodríguez, Soudip Roy Chowdhury,
Hamid R. Motahari Nezhad, and Fabio Casati. Discovery
and reuse of composition knowledge for assisted mashup
development. In Proceedings of the 21st World Wide Web

Conference, WWW 2012, Lyon, France, April 16-20, 2012

(Companion Volume), pages 493–494, 2012.

[Dro03] R. Geoff Dromey. Software quality-prevention versus cure?
Software Quality Journal, 11(3):197–210, 2003.

[DSAT12] Oscar Díaz, Josune De Sosa, Cristóbal Arellano, and
Salvador Trujillo. Web-based tool integration: A
web augmentation approach. In International Web

Conference on Web Engineering - ICWE 2012, 12th

International Conference, Berlin, Germany, July 23-27,

2012. Proceedings, pages 431–434, 2012.

[EBG+07] Robert Ennals, Eric A. Brewer, Minos N. Garofalakis,
Michael Shadle, and Prashant Gandhi. Intel mash maker:
join the web. SIGMOD Record, 36(4):27–33, 2007.

[ESZ16] Philipp Eichmann, Hyunchang Song, and Emanuel
Zgraggen. cted: Advancing selection mechanisms in web
browsers. In Proceedings of the 2016 CHI Conference on

Human Factors in Computing Systems, San Jose, CA, USA,

May 7-12, 2016, Extended Abstracts, pages 3049–3055,
2016.

[FB11a] Emilio Ferrara and Robert Baumgartner. Design
of automatically adaptable web wrappers. CoRR,
abs/1103.1254, 2011.

145

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

[FB11b] Emilio Ferrara and Robert Baumgartner. Intelligent
self-repairable web wrappers. In AI*IA 2011: Artificial

Intelligence Around Man and Beyond - XIIth International

Conference of the Italian Association for Artificial

Intelligence, Palermo, Italy, September 15-17, 2011.

Proceedings, pages 274–285, 2011.

[FB11c] Emilio Ferrara and Robert Baumgartner. Intelligent self-
repairable web wrappers. CoRR, abs/1106.3967, 2011.

[FBR+16] Sergio Firmenich, Gabriela Alejandra Bosetti, Gustavo
Rossi, Marco Winckler, and Tomas Barbieri. Abstracting
and structuring web contents for supporting personal web
experiences. In Web Engineering - 16th International

Conference, ICWE 2016, Lugano, Switzerland, June 6-9,

2016. Proceedings, pages 77–95, 2016.

[FFR+15] Diego Firmenich, Sergio Firmenich, Gustavo Rossi, Marco
Winckler, and Damiano Distante. User interface adaptation
using web augmentation techniques: Towards a negotiated
approach. In Engineering the Web in the Big Data Era -

15th International Conference, ICWE 2015, Rotterdam, The

Netherlands, June 23-26, 2015, Proceedings, pages 147–
164, 2015.

[FFRA14] Diego Firmenich, Sergio Firmenich, José Matías Rivero,
and Leandro Antonelli. A platform for web augmentation
requirements specification. In Web Engineering, 14th

International Conference, ICWE 2014, Toulouse, France,

July 1-4, 2014. Proceedings, pages 1–20, 2014.

[Fil06] Robert E. Filman. From the editor in chief: Taking back the
web. IEEE Internet Computing, 10(1):3–5, 2006.

146

BIBLIOGRAPHY

[Fir] Firepath :: Add-ons for firefox. https://

addons.mozilla.org/en-us/firefox/addon/

firepath/. Accessed: 2016-12-12.

[FMFB14] Emilio Ferrara, Pasquale De Meo, Giacomo Fiumara, and
Robert Baumgartner. Web data extraction, applications and
techniques: A survey. Knowl.-Based Syst., 70:301–323,
2014.

[Fow10] M. Fowler. Domain-Specific Languages. Addison-Wesley
Professional, 2010.

[FURS16] Darian Frajberg, Matias Urbieta, Gustavo Rossi, and
Wieland Schwinger. Volatile functionality in action:
Methods, techniques and assessment. In Web Engineering

- 16th International Conference, ICWE 2016, Lugano,

Switzerland, June 6-9, 2016. Proceedings, pages 59–76,
2016.

[FWRG11a] Sergio Firmenich, Marco Winckler, Gustavo Rossi, and
Silvia E. Gordillo. A crowdsourced approach for concern-
sensitive integration of information across the web. J. Web

Eng., 10(4):289–315, 2011.

[FWRG11b] Sergio Firmenich, Marco Winckler, Gustavo Rossi, and
Silvia E. Gordillo. A framework for concern-sensitive,
client-side adaptation. In International Web Conference

on Web Engineering - ICWE 2011, 11th International

Conference, Paphos, Cyprus, June 20-24, 2011, pages 198–
213, 2011.

[GHT10] Junxia Guo, Hao Han, and Takehiro Tokuda. Towards
flexible mashup of web applications based on information
extraction and transfer. In Web Information Systems

Engineering - WISE 2010 - 11th International Conference,

147

https://addons.mozilla.org/en-us/firefox/addon/firepath/
https://addons.mozilla.org/en-us/firefox/addon/firepath/
https://addons.mozilla.org/en-us/firefox/addon/firepath/

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Hong Kong, China, December 12-14, 2010. Proceedings,
pages 602–615, 2010.

[GMPP14] Giuseppe Ghiani, Marco Manca, Fabio Paternò, and Claudio
Porta. Beyond responsive design: Context-dependent
multimodal augmentation of web applications. In Mobile

Web Information Systems - 11th International Conference,

MobiWIS 2014, Barcelona, Spain, August 27-29, 2014.

Proceedings, pages 71–85, 2014.

[GPS11] Giuseppe Ghiani, Fabio Paternò, and Lucio Davide Spano.
Creating mashups by direct manipulation of existing web
applications. In End-User Development - Third International

Symposium, IS-EUD 2011, Torre Canne (BR), Italy, June 7-

10, 2011. Proceedings, pages 42–52, 2011.

[GPSP16] Giuseppe Ghiani, Fabio Paternò, Lucio Davide Spano, and
Giuliano Pintori. An environment for end-user development
of web mashups. Int. J. Hum.-Comput. Stud., 87:38–64,
2016.

[GSCJ14] George Gkotsis, Karen Stepanyan, Alexandra I. Cristea, and
Mike Joy. Entropy-based automated wrapper generation for
weblog data extraction. World Wide Web, 17(4):827–846,
2014.

[GTZ+11] Steven Gardiner, Anthony Tomasic, John Zimmerman,
Rafae Aziz, and Kathryn Rivard. Mixer: Mixed-initiative
data retrieval and integration by example. In Human-

Computer Interaction - INTERACT 2011 - 13th IFIP TC 13

International Conference, Lisbon, Portugal, September 5-9,

2011, Proceedings, Part I, pages 426–443, 2011.

[GYK11] Paul A. Gross, Jennifer Yang, and Caitlin Kelleher. Dinah:
an interface to assist non-programmers with selecting

148

BIBLIOGRAPHY

program code causing graphical output. In Proceedings

of the International Conference on Human Factors in

Computing Systems, CHI 2011, Vancouver, BC, Canada,

May 7-12, 2011, pages 3397–3400, 2011.

[Hic52] W. E. Hick. On the rate of gain of information. Quarterly

Journal of Experimental Psychology, 4(1):11–26, 1952.

[HNPN14] Maria Husmann, Michael Nebeling, Stefano Pongelli, and
Moira C. Norrie. Multimasher: Providing architectural
support and visual tools for multi-device mashups. In
Web Information Systems Engineering - WISE 2014 - 15th

International Conference, Thessaloniki, Greece, October 12-

14, 2014, Proceedings, Part II, pages 199–214, 2014.

[HPB10] Dat Dac Hoang, Hye-young Paik, and Boualem Benatallah.
An analysis of spreadsheet-based services mashup. In
Database Technologies 2010, Twenty-First Australasian

Database Conference (ADC 2010), Brisbane, Australia, 18-

22 January, 2010, Proceedings, pages 141–150, 2010.

[HPD11] Dat Dac Hoang, Hye-Young Paik, and Wei Dong.
Mashsheet: Mashups in your spreadsheet. In Web

Information System Engineering - WISE 2011 - 12th

International Conference, Sydney, Australia, October 13-14,

2011. Proceedings, pages 332–333, 2011.

[HT08] Hao Han and Takehiro Tokuda. A method for integration
of web applications based on information extraction. In
Proceedings of the Eighth International Conference on

Web Engineering, ICWE 2008, 14-18 July 2008, Yorktown

Heights, New York, USA, pages 189–195, 2008.

149

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

[HT10] Hao Han and Takehiro Tokuda. Towards flexible and
lightweight integration of web applications by end-user
programming. IJWIS, 6(4):359–373, 2010.

[HW10] Jeff Huang and Ryen W. White. Parallel browsing
behavior on the web. In HT’10, Proceedings of the 21st

ACM Conference on Hypertext and Hypermedia, Toronto,

Ontario, Canada, June 13-16, 2010, pages 13–18, 2010.

[Hypa] Github - hypothesis. https://github.com/

hypothesis/browser-extension). Accessed:
2016-11-09.

[Hypb] Hypothesis. https://hypothes.is/). Accessed:
2017-01-17.

[IAD14] Jon Iturrioz, Iker Azpeitia, and Oscar Díaz. Generalizing
the "like" button: empowering websites with monitoring
capabilities. In Symposium on Applied Computing, SAC

2014, Gyeongju, Republic of Korea - March 24 - 28, 2014,
pages 743–750, 2014.

[ISK+12] Muhammad Imran, Stefano Soi, Felix Kling, Florian Daniel,
Fabio Casati, and Maurizio Marchese. On the systematic
development of domain-specific mashup tools for end users.
In Web Engineering - 12th International Conference, ICWE

2012, Berlin, Germany, July 23-27, 2012. Proceedings,
pages 291–298, 2012.

[ISO] Iso/iec25010:2011. http://www.iso.org/iso/

home/store/catalogue_ics/catalogue_

detail_ics.htm?csnumber=35733. Accessed:
2016-11-14.

[JP14] Paul Johannesson and Erik Perjons. An Introduction to

Design Science. Springer, 2014.

150

https://github.com/hypothesis/browser-extension)
https://github.com/hypothesis/browser-extension)
https://hypothes.is/)
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=35733
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=35733
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=35733

BIBLIOGRAPHY

[jsD] Github - jsdom. https://github.com/tmpvar/

jsdom). Accessed: 2016-11-09.

[KAB+11] Andrew J. Ko, Robin Abraham, Laura Beckwith, Alan F.
Blackwell, Margaret M. Burnett, Martin Erwig, Christopher
Scaffidi, Joseph Lawrance, Henry Lieberman, Brad A.
Myers, Mary Beth Rosson, Gregg Rothermel, Mary Shaw,
and Susan Wiedenbeck. The state of the art in end-user
software engineering. ACM Comput. Surv., 43(3):21:1–
21:44, 2011.

[KCH+90] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical report, Carnegie-
Mellon University, 1990.

[KKA06] Marek Kowalkiewicz, Tomasz Kaczmarek, and Witold
Abramowicz. myportal: Robust extraction and aggregation
of web content. In Proceedings of the 32nd International

Conference on Very Large Data Bases, Seoul, Korea,

September 12-15, 2006, pages 1219–1222, 2006.

[KLN05] Gabor Karsai, Andras Lang, and Sandeep Neema. Design
patterns for open tool integration. Software and System

Modeling, 4(2):157–170, 2005.

[KMK+10] Max Van Kleek, Brennan Moore, David R. Karger,
Paul André, and m. c. schraefel. Atomate it! end-
user context-sensitive automation using heterogeneous
information sources on the web. In Proceedings of the 19th

International Conference on World Wide Web, WWW 2010,

Raleigh, North Carolina, USA, April 26-30, 2010, pages
951–960, 2010.

151

https://github.com/tmpvar/jsdom)
https://github.com/tmpvar/jsdom)

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

[KRNK13] Dejan Kovachev, Dominik Renzel, Petru Nicolaescu, and
Ralf Klamma. Direwolf - distributing and migrating user
interfaces for widget-based web applications. In Web

Engineering - 13th International Conference, ICWE 2013,

Aalborg, Denmark, July 8-12, 2013. Proceedings, pages 99–
113, 2013.

[KS08] Bill Kules and Ben Shneiderman. Users can change
their web search tactics: Design guidelines for categorized
overviews. Inf. Process. Manage., 44(2):463–484, 2008.

[KWG14] Michael Krug, Fabian Wiedemann, and Martin Gaedke.
Smartcomposition: A component-based approach for
creating multi-screen mashups. In Web Engineering, 14th

International Conference, ICWE 2014, Toulouse, France,

July 1-4, 2014. Proceedings, pages 236–253, 2014.

[Lad10] Mohamad I. Ladan. Web services testing approaches:
A survey and a classification. In Networked Digital

Technologies - Second International Conference, NDT 2010,

Prague, Czech Republic, July 7-9, 2010. Proceedings, PartII,
pages 70–79, 2010.

[LCRS13] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and
Cristiano Spadaro. Comparing the maintainability of
selenium webdriver test suites employing different locators:
A case study. In Proceedings of the 2013 International

Workshop on Joining AcadeMiA and Industry Contributions

to Testing Automation, pages 53–58, 2013.

[LCRT13] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Paolo
Tonella. Capture-replay vs. programmable web testing: An
empirical assessment during test case evolution. In 20th

Working Conference on Reverse Engineering, WCRE 2013,

152

BIBLIOGRAPHY

Koblenz, Germany, October 14-17, 2013, pages 272–281,
2013.

[LCRT14] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Paolo
Tonella. Visual vs. dom-based web locators: An empirical
study. In Web Engineering, 14th International Conference,

ICWE 2014, Toulouse, France, July 1-4, 2014. Proceedings,
pages 322–340, 2014.

[LHML08] Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa A.
Lau. Coscripter: automating & sharing how-to knowledge
in the enterprise. In Proceedings of the 2008 Conference

on Human Factors in Computing Systems, CHI 2008, 2008,

Florence, Italy, April 5-10, 2008, pages 1719–1728, 2008.

[LPW06] Henry Lieberman, Fabio Paternò, and Volker Wulf, editors.
End User Development. Human-Computer Interaction
Series. Springer, 2006.

[LSRT14] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo
Tonella. Reducing web test cases aging by means of robust
xpath locators. In 25th IEEE International Symposium

on Software Reliability Engineering Workshops, ISSRE

Workshops, Naples, Italy, November 3-6, 2014, pages 449–
454, 2014.

[LSRT15] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo
Tonella. Automated generation of visual web tests from
dom-based web tests. In Proceedings of the 30th Annual

ACM Symposium on Applied Computing, Salamanca, Spain,

April 13-17, 2015, pages 775–782, 2015.

[LSRT16] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo
Tonella. Robula+: an algorithm for generating robust xpath

153

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

locators for web testing. Journal of Software: Evolution and

Process, 28(3):177–204, 2016.

[MBH10] Mark Harman Mustafa Bozkurt and Youssef Hassoun.
Testing web services: A survey. Technical report,
Department of Computer Science, King’s College London,
2010.

[MGF16] Jesús López Miján, Irene Garrigós, and Sergio Firmenich.
Supporting personalization in legacy web sites through
client-side adaptation. In Web Engineering - 16th

International Conference, ICWE 2016, Lugano, Switzerland,

June 6-9, 2016. Proceedings, pages 588–592, 2016.

[MHBJ14] Ali Moosavi, Salman Hooshmand, Sara Baghbanzadeh, and
Guy-Vincent Jourdan. Indexing rich internet applications
using components-based crawling. In Web Engineering, 14th

International Conference, ICWE 2014, Toulouse, France,

July 1-4, 2014. Proceedings, pages 200–217, 2014.

[MHS05] Marjan Mernik, Jan Heering, and Anthony M. Sloane.
When and how to develop domain-specific languages. ACM

Comput. Surv., 37(4):316–344, 2005.

[MPR+09] Paula Montoto, Alberto Pan, Juan Raposo, Fernando Bellas,
and Javier López. Automating navigation sequences in
AJAX websites. In International Web Conference on Web

Engineering - ICWE 2009, 9th International Conference,

San Sebastián, Spain, June 24-26, 2009, Proceedings, pages
166–180, 2009.

[MS15] Daniele Massa and Lucio Davide Spano. Facemashup:
Enabling end user development on social networks data. In
End-User Development - 5th International Symposium, IS-

154

BIBLIOGRAPHY

EUD 2015, Madrid, Spain, May 26-29, 2015. Proceedings,
pages 204–210, 2015.

[MSCC13] Josip Maras, Maja Stula, Jan Carlson, and Ivica Crnkovic.
Identifying code of individual features in client-side web
applications. IEEE Trans. Software Eng., 39(12):1680–1697,
2013.

[NK15] Petru Nicolaescu and Ralf Klamma. A methodology and tool
support for widget-based web application development. In
Engineering the Web in the Big Data Era - 15th International

Conference, ICWE 2015, Rotterdam, The Netherlands, June

23-26, 2015, Proceedings, pages 515–532, 2015.

[NLHL03] Mark W. Newman, James Lin, Jason I. Hong, and James A.
Landay. DENIM: an informal web site design tool inspired
by observations of practice. Human-Computer Interaction,
18(3):259–324, 2003.

[NLN12] Michael Nebeling, Stefania Leone, and Moira C. Norrie.
Crowdsourced web engineering and design. In Web

Engineering - 12th International Conference, ICWE 2012,

Berlin, Germany, July 23-27, 2012. Proceedings, pages 31–
45, 2012.

[PGSP15] Raúl Peña-Ortiz, José Antonio Gil, Julio Sahuquillo, and
Ana Pont. Surfing the web using browser interface
facilities: A performance evaluation approach. J. Web Eng.,
14(1&2):3–21, 2015.

[Pil05] Mark Pilgrim. Greasemonkey hacks - tips and tools for

remixing the web with Firefox. O’Reilly, 2005.

[Pol10] Eleanor Poley. RUMU editor: a non-wysiwyg web editor for
non-technical users. In Proceedings of the 28th International

155

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Conference on Human Factors in Computing Systems, CHI

2010, Extended Abstracts Volume, Atlanta, Georgia, USA,

April 10-15, 2010, pages 4357–4362, 2010.

[PPH+09] Danh Le Phuoc, Axel Polleres, Manfred Hauswirth,
Giovanni Tummarello, and Christian Morbidoni. Rapid
prototyping of semantic mash-ups through semantic web
pipes. In Proceedings of the 18th International Conference

on World Wide Web, WWW 2009, Madrid, Spain, April 20-

24, 2009, pages 581–590, 2009.

[PSJ+13] Thomas H. Park, Ankur Saxena, Swathi Jagannath, Susan
Wiedenbeck, and Andrea Forte. Openhtml: designing a
transitional web editor for novices. In 2013 ACM SIGCHI

Conference on Human Factors in Computing Systems, CHI

’13, Paris, France, April 27 - May 2, 2013, Extended

Abstracts, pages 1863–1868, 2013.

[RAR+11] Alexander Repenning, Navid Ahmadi, Nadia Repenning,
Andri Ioannidou, David C. Webb, and Krista Sekeres
Marshall. Collective programming: Making end-user
programming (more) social. In End-User Development -

Third International Symposium, IS-EUD 2011, Torre Canne

(BR), Italy, June 7-10, 2011. Proceedings, pages 325–330,
2011.

[RBM13] Carsten Radeck, Gregor Blichmann, and Klaus Meißner.
Capview - functionality-aware visual mashup development
for non-programmers. In Web Engineering - 13th

International Conference, ICWE 2013, Aalborg, Denmark,

July 8-12, 2013. Proceedings, pages 140–155, 2013.

[RDR11] Valentim Realinho, A. Eduardo Dias, and Teresa Romão.
Testing the usability of a platform for rapid development

156

BIBLIOGRAPHY

of mobile context-aware applications. In Human-Computer

Interaction - INTERACT 2011 - 13th IFIP TC 13

International Conference, Lisbon, Portugal, September 5-9,

2011, Proceedings, Part III, pages 521–536, 2011.

[Res] Github - resemble. https://github.com/Huddle/

Resemble.js). Accessed: 2016-11-09.

[Rho00] Bradley J. Rhodes. Margin notes: building a contextually
aware associative memory. In Proceedings of the 5th

International Conference on Intelligent User Interfaces, IUI

2000, New Orleans, LA, USA, January 9-12, 2000, pages
219–224, 2000.

[RLS+13] Filippo Ricca, Maurizio Leotta, Andrea Stocco, Diego
Clerissi, and Paolo Tonella. Web testware evolution. In 15th

IEEE International Symposium on Web Systems Evolution,

WSE 2013, Eindhoven, The Netherlands, September 27,

2013, pages 39–44, 2013.

[RMS13] Juwel Rana, Sarwar Morshed, and Kåre Synnes. End-
user creation of social apps by utilizing web-based social
components and visual app composition. In 22nd

International World Wide Web Conference, WWW ’13, Rio

de Janeiro, Brazil, May 13-17, 2013, Companion Volume,
pages 1205–1214, 2013.

[Rob] Robustness. https://en.wikipedia.org/wiki/

Robustness_(computer_science). Accessed:
2017-01-15.

[RPR17] Sriram Raghavan, Udaya Parampalli, and S. V. Raghavan.
Re-engineering simultaneous internet sessions process-
separated browsers. In Proceedings of the Australasian

Computer Science Week Multiconference, ACSW 2017,

157

https://github.com/Huddle/Resemble.js)
https://github.com/Huddle/Resemble.js)
https://en.wikipedia.org/wiki/Robustness_(computer_science)
https://en.wikipedia.org/wiki/Robustness_(computer_science)

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Geelong, Australia, January 31 - February 3, 2017, pages
70:1–70:10, 2017.

[RS04] Jinghai Rao and Xiaomeng Su. A survey of automated web
service composition methods. In Semantic Web Services and

Web Process Composition, First International Workshop,

SWSWPC 2004, San Diego, CA, USA, July 6, 2004, Revised

Selected Papers, pages 43–54, 2004.

[RSG01] Gustavo Rossi, Daniel Schwabe, and Robson Guimarães.
Designing personalized web applications. In Proceedings of

the Tenth International World Wide Web Conference, WWW

10, Hong Kong, China, May 1-5, 2001, pages 275–284,
2001.

[Scra] Blasting the myth of the fold.
http://boxesandarrows.com/

blasting-the-myth-of-the-fold/. Accessed:
2017-06-13.

[Scrb] People do not scroll. http://uxmyths.com/

post/654047943/myth-people-dont-scroll.
Accessed: 2017-06-13.

[Scrc] What you think you know about the web
is wrong. http://time.com/12933/

what-you-think-you-know-about-the-web-is-wrong/.
Accessed: 2017-06-13.

[SDW08] Michael Spahn, Christian Dörner, and Volker Wulf. End
user development: Approaches towards a flexible software
design. In 16th European Conference on Information

Systems, ECIS 2008, Galway, Ireland, 2008, pages 303–314,
2008.

158

http://boxesandarrows.com/blasting-the-myth-of-the-fold/
http://boxesandarrows.com/blasting-the-myth-of-the-fold/
http://uxmyths.com/post/654047943/myth-people-dont-scroll
http://uxmyths.com/post/654047943/myth-people-dont-scroll
http://time.com/12933/what-you-think-you-know-about-the-web-is-wrong/
http://time.com/12933/what-you-think-you-know-about-the-web-is-wrong/

BIBLIOGRAPHY

[SER09] Kathryn T. Stolee, Sebastian G. Elbaum, and Gregg
Rothermel. Revealing the copy and paste habits of end
users. In IEEE Symposium on Visual Languages and Human-

Centric Computing, VL/HCC 2009, Corvallis, OR, USA, 20-

24 September 2009, Proceedings, pages 59–66, 2009.

[SLRT14] Andrea Stocco, Maurizio Leotta, Filippo Ricca, and Paolo
Tonella. PESTO: A tool for migrating dom-based to visual
web tests. In 14th IEEE International Working Conference

on Source Code Analysis and Manipulation, SCAM 2014,

Victoria, BC, Canada, September 28-29, 2014, pages 65–70,
2014.

[SPS] Spss statistics. http://www.spss.com.hk/

statistics/. Accessed: 2016-11-14.

[SPWL14] Aju Thalappillil Scaria, Rose Marie Philip, Robert West,
and Jure Leskovec. The last click: why users give
up information network navigation. In Seventh ACM

International Conference on Web Search and Data Mining,

WSDM 2014, New York, NY, USA, February 24-28, 2014,
pages 213–222, 2014.

[TDD+09] Michael Toomim, Steven M. Drucker, Mira Dontcheva, Ali
Rahimi, Blake Thomson, and James A. Landay. Attaching
UI enhancements to websites with end users. In Proceedings

of the 27th International Conference on Human Factors in

Computing Systems, CHI 2009, Boston, MA, USA, April 4-9,

2009, pages 1859–1868, 2009.

[TS14] Ahmed A. O. Tayeh and Beat Signer. Open cross-document
linking and browsing based on a visual plug-in architecture.
In Web Information Systems Engineering - WISE 2014 - 15th

International Conference, Thessaloniki, Greece, October 12-

14, 2014, Proceedings, Part II, pages 231–245, 2014.

159

http://www.spss.com.hk/statistics/
http://www.spss.com.hk/statistics/

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

[TS15] Ahmed A. O. Tayeh and Beat Signer. A dynamically
extensible open cross-document link service. In Web

Information Systems Engineering - WISE 2015 - 16th

International Conference, Miami, FL, USA, November 1-3,

2015, Proceedings, Part I, pages 61–76, 2015.

[UCI+06] Victoria S. Uren, Philipp Cimiano, José Iria, Siegfried
Handschuh, Maria Vargas-Vera, Enrico Motta, and
Fabio Ciravegna. Semantic annotation for knowledge
management: Requirements and a survey of the state of the
art. J. Web Sem., 4(1):14–28, 2006.

[W3C] W3C. Requirement For Standardizing Widgets. http:

//dev.w3.org/2006/waf/widgets-reqs/.
Accessed: 2017-04-04.

[WCB+15] Marco Winckler, Ricardo Andrade Cava, Eric Barboni,
Philippe A. Palanque, and Carla M. D. S. Freitas. Usability
aspects of the inside-in approach for ancillary search tasks
on the web. In Human-Computer Interaction - INTERACT

2015 - 15th IFIP TC 13 International Conference, Bamberg,

Germany, September 14-18, 2015, Proceedings, Part II,
pages 211–230, 2015.

[Web] Webmakeup - chrome web store. https://chrome.

google.com/webstore/detail/webmakeup/

alnhegodephpjnaghlcemlnpdknhbhjj).
Accessed: 2017-01-11.

[Web10] Matthew J. Webber. A stateful web augmentation toolkit.
Technical report, Massachusetts Institute of Technology.
Dept. of Electrical Engineering and Computer Science,
2010.

160

http://dev.w3.org/2006/waf/widgets-reqs/
http://dev.w3.org/2006/waf/widgets-reqs/
https://chrome.google.com/webstore/detail/webmakeup/alnhegodephpjnaghlcemlnpdknhbhjj)
https://chrome.google.com/webstore/detail/webmakeup/alnhegodephpjnaghlcemlnpdknhbhjj)
https://chrome.google.com/webstore/detail/webmakeup/alnhegodephpjnaghlcemlnpdknhbhjj)

BIBLIOGRAPHY

[WH07] Jeffrey Wong and Jason I. Hong. Making mashups with
marmite: towards end-user programming for the web. In
Proceedings of the 2007 Conference on Human Factors in

Computing Systems, CHI 2007, San Jose, California, USA,

April 28 - May 3, 2007, pages 1435–1444, 2007.

[Wik] Wikipedia. Modding. Accessed: 2017-02-21.

[WNM11] Usman Wajid, Abdallah Namoun, and Nikolay Mehandjiev.
Alternative representations for end user composition of
service-based systems. In End-User Development - Third

International Symposium, IS-EUD 2011, Torre Canne (BR),

Italy, June 7-10, 2011. Proceedings, pages 53–66, 2011.

[WPL15] Robert West, Ashwin Paranjape, and Jure Leskovec. Mining
missing hyperlinks from human navigation traces: A case
study of wikipedia. In Proceedings of the 24th International

Conference on World Wide Web, WWW 2015, Florence, Italy,

May 18-22, 2015, pages 1242–1252, 2015.

[WW15] Sixuan Wang and Gabriel A. Wainer. A mashup architecture
with modeling and simulation as a service. In Web

Information Systems Engineering - WISE 2015 - 16th

International Conference, Miami, FL, USA, November 1-3,

2015, Proceedings, Part I, pages 247–261, 2015.

[WYH09] Guiling Wang, Shaohua Yang, and Yanbo Han. Mashroom:
end-user mashup programming using nested tables. In
Proceedings of the 18th International Conference on World

Wide Web, WWW 2009, Madrid, Spain, April 20-24, 2009,
pages 861–870, 2009.

[Xpaa] Xpath checker :: Add-ons for firefox. https:

//addons.mozilla.org/EN-us/firefox/

addon/xpath-checker/. Accessed: 2016-12-12.

161

https://addons.mozilla.org/EN-us/firefox/addon/xpath-checker/
https://addons.mozilla.org/EN-us/firefox/addon/xpath-checker/
https://addons.mozilla.org/EN-us/firefox/addon/xpath-checker/

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

[Xpab] Xpath helper - chrome web store. https://chrome.

google.com/webstore/detail/xpath-helper/

hgimnogjllphhhkhlmebbmlgjoejdpjl. Accessed:
2016-12-12.

[YBCD08] Jin Yu, Boualem Benatallah, Fabio Casati, and Florian
Daniel. Understanding mashup development. IEEE Internet

Computing, 12(5):44–52, 2008.

[YCM09] Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller.
Sikuli: using GUI screenshots for search and automation. In
Proceedings of the 22nd Annual ACM Symposium on User

Interface Software and Technology, Victoria, BC, Canada,

October 4-7, 2009, pages 183–192, 2009.

[ZCW+16] Zhongyi Zhai, Bo Cheng, Zhaoning Wang, Xuan Liu, Meng
Liu, and Junliang Chen. Design and implementation: the
end user development ecosystem for cross-platform mobile
applications. In Proceedings of the 25th International

Conference on World Wide Web, WWW 2016, Montreal,

Canada, April 11-15, 2016, Companion Volume, pages 143–
144, 2016.

162

https://chrome.google.com/webstore/detail/xpath-helper/hgimnogjllphhhkhlmebbmlgjoejdpjl
https://chrome.google.com/webstore/detail/xpath-helper/hgimnogjllphhhkhlmebbmlgjoejdpjl
https://chrome.google.com/webstore/detail/xpath-helper/hgimnogjllphhhkhlmebbmlgjoejdpjl

Acknowledgements

Five years and eight months is a long time; there were many ups and
downs along the way, and I was only able to cross the finish line thanks
to the assistance and support of many people. I would like to extend my
appreciation especially to the following.

First of all, I wish to express my most sincere gratitude to my
supervisors, Prof. Dr. Oscar Díaz. My sincere appreciation is because
I have learned from him and from his continuous help and support in all
stages of this dissertation. I would also like to thank him for being an open
person to ideas, and for encouraging and helping me. From the personal
viewpoint, he treated me superb.

Thanks to the Onekin Research Group I could see a group where
research is conducted. Thanks to all the colleagues that I have known
during these years: Itziar Otaduy, Maider Azanza, Arantza Irastorza,
Leticia Montalvillo, Jeremias Perez, Haritz Medina, Juanan Pereira, Iker
Azpeitia, Cristóbal Arellano, Jokin García, Gorka Puente, Josune de Sosa,
Jon Iturrioz and Felipe Ibañez for the innumerable assistance during the
development of this dissertation.

This thesis was economically supported by the Spanish Ministry of
Education and Science under the FPI Program. It has allowed me to be
independent from the economical point of view and has supported the
research stage at Toulouse (France).

To my colleagues from the ICS group at Paul Sabatier Toulouse III
University Philippe Palanque, the head of the ICS team, Célia Martinie,
David Navarre, Regina Bernhaupt, Eric Barboni, Camille Fayollas, Martin

163

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

Cronel, Racim Fahssi, Thiago Silva, Jean-Luc Hak, Guillaume Pottier,
Arnaud Hamon, Raphaël Guénon and François Manciet that made the
research stage easier. Finally I would like to express my sincere gratitude
to Marco Winckler because he welcomed and integrated me in his research
group.

I am deeply and forever indebted to my parents that let me choose my
way and put their resources that were essentials to reach to this point and
to my sister for her love, support and encouragement throughout my entire
life. I thank all of my family due to their support above all these years.
To my friends that unconditionally have been there and have understood
my occasional absences and to my basketball teams (DKS and “Rojillas”)
because they put up with my stress and they helped me to disconnect from
my work.

Last, but not least, I would like to express my gratitude to Oihana, her
parents and sister. I would like to thank Oihana for his understanding and
her love. We have gone hand in hand and she has helped me to grow not
only at the professional dimension but the personal one. She was always
there cheering me up and she stood by me through the good and bad times.

164

Glossary

• Browser extension is a plug-in that extends the functionality of a
web browser.

• Cascading Style Sheets (CSS) is a style sheet language used for
describing the presentation of a document written in a markup
language.

• Design Science Research is the scientific study and creation of
artefacts as they are developed and used by people with the goal
of solving practical problems of general interest [JP14].

• Do it yourself (DIY) is the method of building, modifying, or
repairing things without the direct aid of experts or professionals.

• Document Object Model (DOM) is a cross-platform and language-
independent application programming interface that treats an
HTML, XHTML, or XML document as a tree structure wherein each
node is an object representing a part of the document.

• Domain-Specific Language (DSL) is a computer language
specialized to a particular application domain.

• End-User Development can be defined as a set of methods,
techniques, and tools that allow users of software systems, who
are acting as non-professional software developers, at some point
to create, modify or extend a software artefact [LPW06].

165

Personalizing the Web: A Tool for Empowering End-Users To Customize
the Web through Browser-Side Modification

• Hypertext Markup Language (HTML) is the standard markup
language for creating web pages and web applications.

• Javascript (JS) is a high-level, dynamic, weakly typed, object-
based, multi-paradigm, and interpreted programming language.

• Locator is a mechanism for uniquely identifying an element on the
Web Content i.e. in the Document Object Model (DOM) [RLS+13].

• Mashup is a web page, or web application, that uses content from
more than one source to create a single new service displayed in a
single graphical interface.

• Modding is a slang expression that is derived from the verb
“modify”. Modding refers to the act of modifying hardware,
software, or virtually anything else, to perform a function not
originally conceived or intended by the designer [Wik].

• Rich Internet Application (RIA) is a Web application that has
many of the characteristics of desktop application software, typically
delivered by way of a site-specific browser, a browser plug-in,
an independent sandbox, extensive use of JavaScript, or a virtual
machine.

• Robustness is the ability of a computer system to cope with errors
during execution.

• Uniform Resource Locator (URL) is a reference to a web resource
that specifies its location on a computer network and a mechanism
for retrieving it.

• Web Augmentation is to the web what Augmented Reality is to the
physical world: layering relevant content/layout/navigation over the
existing web to customize the user experience [DAA13].

• Web Personalization refers to making a web site more responsive
to the unique and individual needs of each user [CDA00a].

166

BIBLIOGRAPHY

• Widget is an element of a graphical user interface (GUI) that
displays information or provides a specific way for a user to interact
with the operating system or an application.

167

	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.3 This Dissertation
	1.4 Research approach
	1.5 Outline
	1.6 Conclusion

	2 Related work
	2.1 Introduction
	2.2 Web Augmentation and End-User Development
	2.3 End-User Development tools for the Web
	2.3.1 Architecture
	2.3.2 Subject of adaptation
	2.3.3 Web site integration
	2.3.4 Collaborative features
	2.3.5 Programming paradigm

	2.4 User and usage challenges with WA tools
	2.5 Conclusions

	3 Web Page End-User Personalization
	3.1 Introduction
	3.2 Characterizing Web Modding
	3.3 Ascertaining The Right Concerns
	3.3.1 Hosting
	3.3.2 Widgetization
	3.3.3 Animation
	3.3.4 Rendering

	3.4 Finding Appropriate Constructs
	3.5 An Editor For DIY Mods
	3.6 Sharing
	3.7 Facing dynamic web content
	3.7.1 RIA-aware widgets
	3.7.2 RIA widgets

	3.8 Efficiency
	3.8.1 Guideline: Reduce memory consumption the Number of Active Event Listeners
	3.8.2 Guideline: Make Efficient Rendering of the Augmentation
	3.8.3 Optimization. Experiment design

	3.9 Evaluation
	3.9.1 Research Method
	3.9.2 Subjects
	3.9.3 Instrument
	3.9.4 Data analysis
	3.9.5 Results
	3.9.6 Effectiveness
	3.9.7 Productivity
	3.9.8 Satisfaction

	3.10 Conclusions

	4 Generating Robust Locators
	4.1 Introduction
	4.2 Locators: theme & variations
	4.3 Locator robustness
	4.4 Improving coordinate-based locators
	4.5 Kidney locators
	4.5.1 Validation

	4.6 Regenerative locators
	4.6.1 Validation

	4.7 Conclusions

	5 Conclusions
	5.1 Overview
	5.2 Results
	5.3 Publications
	5.4 Research Stage
	5.5 Assessment and Future Research
	5.6 Conclusions

	A Evaluation test
	A.1 General Information
	A.2 Time needed to fulfil the tasks
	A.2.1 First task
	A.2.2 Second task
	A.2.3 Third task
	A.2.4 Fourth task

	A.3 Efficacy
	A.4 Usefulness
	A.5 Usability

	B WebMakeup examples
	Bibliography

