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Abstract 

From a theoretical perspective, most discussions of statistical learning (SL) have focused 

on the possible “statistical” properties which are the object of learning. Much less 

attention has been given to defining what “learning” is in the context of “statistical 

learning”. One major difficulty is that SL research has been monitoring participants’ 

performance in laboratory settings with a strikingly narrow set of tasks, where learning is 

typically assessed offline, through a set of 2-alternative-forced-choice questions, which 

follow a brief visual or auditory familiarization stream. Is that all there is to 

characterizing SL abilities? Here we adopt a novel perspective for investigating the 

processing of regularities in the visual modality. By tracking online performance in a 

self-paced SL paradigm, we focus on the trajectory of learning. In a set of three 

experiments we show that this paradigm provides a reliable and valid signature of SL 

performance, and offers important insights for understanding how statistical regularities 

are perceived and assimilated in the visual modality. This demonstrates the promise of 

integrating different operational measures to our theory of statistical learning. 

 

Keywords: Statistical learning; Online measures; Learning dynamics; Individual 

differences. 

 

   

  



 3 

           In the last two decades, statistical learning (SL) has become a major theoretical 

construct in cognitive science. Since the seminal demonstration of Saffran and her 

colleagues (1996) that infants display remarkable sensitivity to transitional probabilities 

of syllabic segments, a large and constantly growing number of studies have focused on 

documenting the human ability of exploiting statistical cues to discover regularities in 

their environment (see Frost, Armstrong, Siegelman, & Christiansen, 2015, for review). 

Following this work, SL has been commonly defined as the ability to extract the 

statistical properties of sensory input in time and space (e.g., Frost et al., 2015; Romberg 

& Saffran, 2010; Schapiro & Turk-Browne, 2015). Unsurprisingly, therefore, most 

experimental manipulations and theoretical discussions of SL have focused on the 

possible “statistical” properties which are the object of perception and assimilation (e.g., 

Fiser & Aslin, 2001; Newport & Aslin, 2004; Thiessen, Kronstein, & Hufnagle, 2013). 

Most studies have thus differed in the type of statistical contingencies embedded in their 

input, aiming to chart whether or not, or to what extent these contingencies affect human 

performance. Interestingly, much less attention has been given to defining what 

“learning” is in the context of “statistical learning”. The present paper aims to address 

this gap. 

As in any exploration in the cognitive or psychological sciences, a critical step in 

theory development is the operationalization of the theoretical construct of interest. The 

goal of successful operationalization is to minimize the distance between the theoretical 

definition of a construct and its corresponding operational proxy. Ideally, the operational 

measure does not leave out critical aspects of the theoretical construct, but also does not 

extend to cover unrelated ones. This is important, because with time, the theoretical and 
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operational definitions are typically taken to be the two sides of the same coin, and are 

often even used interchangeably. As we will argue, in the context of SL, narrowing the 

gap between the “Statistical Learning ability” and its operational definition is far from 

being trivial.  

One major difficulty is that SL research has been monitoring participants’ 

performance in laboratory settings with a strikingly narrow set of tasks (see Armstrong, 

Frost, & Christiansen, 2017, for discussion). Typically, the to-be-learned regularities (i.e., 

co-occurrence of elements, their transitional probabilities, etc.) are embedded in a sensory 

input for a relatively brief familiarization phase, and their “learning” is assessed in a 

subsequent test phase (typically a series of two-alternative-forced-choice (2-AFC) 

questions). By this approach, there is evidence for learning if the mean performance of a 

sample of participants is significantly above chance. From an individual differences 

perspective, “good” statistical learners are those who obtain a high score in the test, and 

“bad” statistical learners are those who perform at chance or close to it. Here we ask: is 

there all there is to characterizing statistical learning ability? Note that this question is not 

confined just to characterizing “good” or “poor” individual learners. It permeates to 

understanding SL as an ongoing process of assimilating various types of distributional 

properties. For if two learning conditions result in similar score in the post-familiarization 

test-score, they are implicitly taken to be equal in terms of the complexity they impose on 

participants, with all resulting theoretical implication (e.g., Arciuli, von Koss Torkildsen, 

Stevens, & Simpson, 2014). In contrast, if they result in different test scores, the 

magnitude of the test-score difference is taken to represent the difference in complexity 



 5 

between condition possibly suggesting different mechanisms (e.g., Bogaerts, Siegelman, 

& Frost, 2016) . Are these implicit assumptions necessarily true?  

The main aim of the present research is to expand the theoretical scope of 

“learning” in SL, by exploring other operational definitions for it. We start by reviewing 

the commonly used two-alternative-forced-choice (2-AFC) task as a proxy for SL, 

highlighting both its merits and shortcomings in terms of the theoretical coverage it 

offers. We then consider alternative operational measures of learning discussing their 

possible contribution to SL theory. Subsequently, we employ novel measures to 

investigate the processing of regularities in the visual modality. We show that critical 

insight for understanding visual SL can be gained once novel “learning” perspectives are 

integrated into our theory of assimilating statistical regularities. Specifically, our 

investigation focuses on one important aspect in SL behavior – the trajectory of learning 

– which was mostly overlooked due to the commonly used SL tasks.     

 

Insights from observing offline test performance 

Most SL studies have been using the same experimental procedure that was 

originally employed by Saffran and her colleagues
1
. The typical SL task comprises two 

parts: First, a familiarization phase, in which participants are exposed to a stream of 

stimuli in the auditory or visual modality. Unbeknownst to participants the stream 

consists of several repeated patterns (typically, pairs or triplets of syllables or shapes), 

which co-occur frequently, so that the first elements in the patterns reliably predict the 

                                                           
1
 As the original research by Saffran and colleagues was conducted with infants, no explicit decisions were 

of course involved in the offline test, rather it was based on a comparison of looking time at targets and 
foils. We refer here to the parallel design used extensively with adult populations (e.g., Saffran et al., 
1997). 
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other elements. The patterns appear for a pre-defined number of repetitions (a parameter 

that varies widely between studies, from 12 repetitions of each pattern, e.g., Sell & 

Kaschak, 2009, to as many as 300 repetitions, Saffran, Newport, Aslin, Tunick, & 

Barrueco, 1997). Importantly, during familiarization, participants are typically asked to 

just passively attend to the sensory stream (e.g., Saffran, Johnson, Aslin, & Newport, 

1999), or they perform an unrelated cover task (e.g., Arciuli & Simpson, 2012), so that no 

information regarding the actual learning of the statistical properties is collected during 

the familiarization phase itself.  

 At a second step, a test phase begins. Participants’ sensitivity to the statistical 

properties of the stream is assessed, typically via a 2-AFC recognition test. In each trial, a 

configuration of stimuli that appeared together in the familiarization phase (i.e., a pattern 

with high TPs between elements) is paired with a ‘foil’ – a configuration of stimuli that 

either did not appear together at all during familiarization (i.e., TPs=0), or that co-

occurred less frequently than the target (i.e., a foil of relatively low TPs). Participants are 

required to decide which pattern of stimuli they are more familiar with, and a score based 

on the number of correct identifications of targets upon foils, is taken to reflect their SL 

ability.  

 In the following we label this common measure of SL an offline measure. We 

define offline measures as proxies of learning performance which do not tap participants’ 

accumulated knowledge throughout the presumed learning process itself (i.e., the 

familiarization phase, in which participants actually pick up the statistical properties of 

the stream), but monitor it in a later stage, once the learning process itself is already over. 

Note that the 2-AFC procedure described above constitutes but one example of possible 
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offline measures. Other offline measures focus on familiarity ratings (e.g., Jonaitis & 

Saffran, 2009), or on speed of identification of targets vs. foils (e.g., Barakat, Seitz, & 

Shams, 2013; Bertels, Franco, & Destrebecqz, 2012), but they all assess performance 

once learning is over.  

The reliance on offline measures, and specifically on the common 2-AFC tasks, 

reflects a common goal of most SL research: to demonstrate that humans can detect and 

extract statistical regularities embedded in a range of sensory inputs, whether in the 

auditory (Endress & Mehler, 2009), or visual (Kirkham, Slemmer, & Johnson, 2002) 

modality, over verbal (Pelucchi, Hay, & Saffran, 2009) or nonverbal (Gebhart, Newport, 

& Aslin, 2009) material, across time or space (Fiser & Aslin, 2002), and when 

contingencies are either adjacent or non-adjacent (Gómez, 2002; Newport & Aslin, 

2004). For that purpose, offline measures such as the number of 2-AFC correct responses 

are in fact optimal. If a sampled group of participants scores significantly above the 50% 

chance-level on a series of 2-AFC trials, then the population from which the group has 

been sampled is taken to possess the ability to extract, at least to some extent, the relevant 

statistical properties embedded in the input. In other words, such offline measures are 

useful for assessing whether learning has occurred or not in a given sample under certain 

experimental conditions, and if learning has indeed occurred, offline measures can also 

quantify the overall extent of learning for the sample (i.e. how much better than chance 

performance was). Previous research has indeed successfully used offline measures to 

compare the extent of SL between different populations (e.g., dyslexics vs. controls, 

Gabay, Thiessen, & Holt, 2015, children in different age groups, Arciuli & Simpson, 

2011, etc.), and between different learning conditions (e.g., incidental vs. intentional 
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learning conditions, Arciuli, von Koss Torkildsen, Stevens, & Simpson, 2014, under 

different presentation parameters, Emberson, Conway, & Christiansen, 2011, etc.). 

From a theoretical perspective, however, this form of operationalization is not 

optimal. First and foremost, its coverage of the full scope of “learning” as a theoretical 

construct is relatively thin. It only assesses the extent of behavioral changes at a single, 

arbitrary pre-defined time point following exposure to the input. SL, in contrast, is taken 

to be a process of continuously assimilating the regularities in the environment, where 

behavior changes incrementally over time. Second, offline measures inevitably extend to 

cover cognitive processes unrelated to SL. Because in the testing phase participants are 

required to explicitly recall and decide which patterns have occurred during 

familiarization and which have not, offline measures cannot disentangle SL abilities per-

se from encoding and memory capacities, and decision-making biases. To complicate 

things further, the 2-AFC testing procedure often involves methodological confounds 

related to the recurrent repetitions of targets and foils during the test phase (see 

Siegelman, Bogaerts, Christiansen, & Frost, 2017, for extended discussion). Note that 

these problems are particularly relevant to the recent interest in individual-differences in 

SL as predictors of linguistic functions (e.g., Arciuli & Simpson, 2012; Conway, 

Bauernschmidt, Huang, & Pisoni, 2010; Frost, Siegelman, Narkiss, & Afek, 2013), and as 

a window on SL mechanisms (Frost et al., 2015; Siegelman & Frost, 2015). Since 

learning is a continuous process, a critical characterization of it for individuals as well as 

for specific populations, is the manner by which it dynamically unfolds. Offline measures 

are by definition blind to this.  
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As a simple demonstration, Fig. 1 shows how a similar offline learning score can 

result from very different learning trajectories, which diverge in the shape of the function 

(linear, logarithmic, or a step-function), as well as in the speed of learning. From a 

theoretical perspective, knowing what statistical information is picked-up at a given point 

in time point and at what rate is an important step towards a mechanistic understanding of 

SL. In a nutshell, we view the learning dynamics as an integral part of the definition of 

SL as a theoretical construct. Thus, if similar offline performance following 

familiarization is consistently achieved through different learning trajectories, then this 

must tell us something important about the mechanisms of learning statistical regularities 

(see also Adini, Bonneh, Komm, Deutsch, & Israeli, 2015, for discussion in the context 

of procedural learning). In the same vein, if two populations with similar success rate in 

an offline task have different learning trajectories building up to this overall performance, 

then these two populations should not be considered as having identical SL abilities. 

Importantly, this holds not only for group-level research, but also for the study of 

individual differences. Individuals may differ from one another not only in their overall 

learning magnitude, but also in their speed of learning--- fast vs. slow learners, and these 

two operational measures may have distinct predictive power (Siegelman et al., 2017). 
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Figure 1. A schematic depiction of different theoretically possible learning trajectories (from left to right: 

linear, logarithmic, step-function), all resulting in the same end performance. Light green lines represent a 

fast learning trajectory, dark green lines a slower one. Note that if one were to measure learning 

performance halfway, the offline learning score would be quite different depending of the shape of the 

function and the speed of learning. 

 

Offering a novel operationalization to learning implicates not just theoretical 

considerations but also methodological ones. If the dynamic of learning is argued to be an 

essential part of our learning theory, one has to show first that its operational measures 

are reasonably reliable, and adequately valid. For if not, they cannot serve as proxy of 

SL. The present paper does exactly that. In Experiment 1, we consider an online measure 

that tracks the dynamics of learning regularities in the visual modality. We then explicitly 

test its reliability and validity. These findings serve as a springboard for putting to the test 

our main theoretical claim, that such online measures reveal invaluable information about 

the mechanisms of learning visual regularities which the typical offline measures are 

blind to. In Experiment 2 we focused on the extent of predictability in the stream and 

how different TPs impact learning. In Experiment 3 we targeted learning of more 

complex situations, where two streams of regularities are consecutively presented within 

a single experiment. Together, our findings reveal novel insights how regularities in a 

visual input are perceived and learned. 

   

Experiment 1 

 As noted above, we define online measures of performance as measures that 

assess performance throughout the learning process. They typically tap participants’ 

responses to a large number of stimuli throughout familiarization. The behavioral 

measure which is the focus of the present investigation considers the difference in RTs 
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between stimuli given their predictability. According to SL theory, predictable elements 

should result in faster responses compared with unpredictable stimuli. This effect has 

been well documented in related paradigms in the field of implicit learning (such as the 

Serial Reaction Time task, SRT, e.g., Cleeremans & McClelland, 1991; Schvaneveldt & 

Gomez, 1998, or Contextual Cueing, e.g., Chun & Jiang, 1998).  

Some recent studies have applied this simple experimental strategy to the domain 

of SL. For example, Misyak and colleagues employed an Artificial Grammar Learning 

(AGL) task in which participants heard sequences comprising of nonwords, and were 

simultaneously asked to click on corresponding written nonwords presented on the 

screen. RTs recorded for these mouse clicks showed that nonwords in predictable 

locations within sequences were recognized faster than nonwords in non-predictable 

locations (Misyak, Christiansen, & Tomblin, 2010b). In the same vein, Gomez and 

colleagues (2011) used a click-detection task, in which clicks were super-imposed on a 

speech stream comprising of tri-syllabic words. As learning proceeded, clicks in word 

boundaries were recognized faster than clicks within-words, and importantly, the RT 

difference between the two conditions increased throughout the familiarization phase 

(Gómez, Bion, & Mehler, 2011). Another recent example of an online measure is a self-

paced Artificial Grammar Learning task (Karuza, Farmer, Fine, Smith, & Jaeger, 2014). 

Much like in the classic self-paced reading paradigm (Just, Carpenter, & Woolley, 1982), 

participants were asked to advance the elements in the sequences during familiarization at 

their own pace, by pressing the spacebar each time to advance to the next element in the 

stream. As predicted, presses for predictable stimuli were faster than those for 

unpredictable stimuli, with an increase in this RT difference over the course of 
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familiarization (see also Amato & MacDonald, 2010 for a related self-paced reading 

paradigm in an Artificial Language Learning study). Another online measure of SL was 

offered by Dale and his colleagues in a paradigm similar to a SRT task, which 

continuously registered the mouse coordinates, measuring the extent to which 

participants anticipate the next stimulus in the sequence. Again, when stimuli in the 

stream were more predictable, participants tended to move the mouse in the direction of 

the stimulus already before it appeared, and this anticipatory behavior increased over the 

course of familiarization (Dale, Duran, & Morehead, 2012). 

 These findings raise a set of important methodological and theoretical questions. 

First, as we outlined above, an operational variable that is offered as proxy for a 

theoretical construct, should be proven to be 1) reliable – i.e., providing a stable and 

consistent measurement, and 2) valid – i.e., corresponds to the actual theoretical construct 

it presumably taps. Applying these criteria to the study of SL, a first critical question is 

whether the gain in RTs for predictable stimuli in the familiarization phase is a stable and 

reliable signature of each individual. The question of validity is somehow more complex. 

Theoretically, the online gain in RTs for predictable (vs. unpredictable stimuli) as 

learning proceeds seems evident. However, whether this speeding of response indeed 

reflects stabilized learning is an open question. Interestingly, there is little empirical 

evidence that the reported speeding to predictable stimuli indeed correlates with SL 

performance measured subsequent to familiarization. In fact, some recent studies have 

shown that the obtained RTs differences do not correlate with the standard offline 

measures (Franco, Gaillard, Cleeremans, & Destrebecqz, 2015; Misyak et al., 2010b; but 

see Dale et al., 2012; Karuza et al., 2014). These reports lead to a problematic state of 
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affairs where the current online measures of SL remain invalidated, requiring additional 

scrutiny. Possibly, this lack of correlation is theoretically interesting showing that online 

and offline measures perhaps tap different sub-components of SL (see Misyak, 

Christiansen, & Tomblin, 2010a). Alternatively, it could be due to some peripheral 

methodological factors. First, gains in RTs are not independent of the overall speed of 

response. Fast responders would show then smaller gains regardless of their SL abilities. 

Second, it is possible that the mere presence of a secondary task employed during 

familiarization hinders learning due to its taxation on attentional resources (see Franco et 

al., 2014 for such direct evidence in the click detection SL task). This again poses a 

serious challenge for assessing the theoretical contribution of online measures. Impaired 

performance may hurt both the task’s reliability (Siegelman, Bogaerts, & Frost, 2016) 

and its validity (the online task perhaps measures SL, but may confound it with the ability 

to successfully divide attention between the primary and secondary tasks, Franco et al., 

2014). 

The goal of Experiment 1 was to address these challenges. First, we aimed to 

offer an online measure that tracks the dynamics of SL and provides information about 

the trajectory of learning in terms of time-course. Second, we endeavored to examine 

whether such measure withstands the psychometric requirement of test-retest reliability, 

so that it can be taken as a stable signature of the individual. Third, we sought to provide 

evidence for its validity in assessing SL ability.  

We chose to focus on visual SL, where participants are expected to learn the 

transitional probabilities of visual shapes. Following a recent work by Karuza and her 

colleagues (Karuza et al., 2014), instead of asking participants to passively watch the 
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stream of shapes, we asked them to actively advance the shapes in their own pace. In 

Experiment 1a we show that this simple procedure results in an online SL measure where 

RTs in advancing predictable shapes are faster than RTs in advancing non-predictable 

ones as learning proceeds. More importantly, in Experiment 1b, we show that this RT 

gain is a reliable signature of an individual. Experiments 1a and 1b also provide critical 

information regarding the validity of the measure (its correlation with the well-

established offline learning score), and novel insight regarding the time course of 

learning in the group level.  

 

Experiment 1a 

Experiments 1a and 1b employed the typical design of visual SL experiments, 

where shapes are presented sequentially, and follow each other given a pre-determined 

set of transitional probabilities (e.g., Kirkham et al., 2002; Turk-Browne, Junge, & 

Scholl, 2005; Siegelman & Frost, 2015). This experimental paradigm has been used and 

validated extensively, and our only modification was to set the presentation of shapes to 

be participant determined, rather than at a fixed rate. On the group level this provided us 

with reliable information when learning occurs during the experimental session. On the 

individual level, it provided for each participant a new measure of learning that reflected 

his/her sensitivity to the statistical regularities embedded in the input stream.  

 

Method 
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Participants. Seventy students of the Hebrew University (17 males) participated 

in the study for payment or for course credit. Participants had a mean age of 22.96 (range: 

18-32), and had no reported history of reading disabilities, ADD or ADHD. 

Design, Materials, and Procedure. Similar to a typical SL paradigm, our task 

consisted of a familiarization phase, followed by a test phase. The latent structure of the 

visual input stream presented during familiarization was also similar to that of multiple 

previously employed SL tasks (e.g., Frost, Siegelman, Narkiss, & Afek, 2013; Glicksohn 

& Cohen, 2013; Turk-Browne, Junge, & Scholl, 2005): the task included 24 complex 

visual shapes (see Appendix A), which were randomly organized for each participant to 

create eight triplets, with a TP of 1 between shapes within triplets. The familiarization 

stream consisted of 24 blocks, with all eight triplets appearing once (in a random order) 

in each block. Before familiarization, participants were told that they would be shown a 

sequence of shapes, appearing on the screen one after the other. Participants were 

instructed that some of the shapes tend to follow each other and that their task is to try 

and notice these co-occurrences
2
. Importantly, in contrast to standard SL tasks, 

participants did not have to watch the stimuli appearing in a fixed presentation rate but 

were asked to advance the stream of shapes at the own pace, by pressing the space bar 

each time they wanted to advance to the next shape. There was no Inter Stimulus Interval 

(ISI) between shapes in familiarization. RTs for each press were recorded and served as 

the basis for the online measure of learning (see below).  

                                                           
2
 In SL paradigms participants are typically not told that the input contains patterns. However, there are 

contrasting reports regarding whether intentional/incidental instructions affect performance in SL tasks 
(see Arciuli et al., 2014, for review and discussion, and see Siegelman & Frost, 2015, for a discussion of the 
impact of multiple testing of SL and participants’ awareness of the manipulation on performance). In the 
current investigation, we opted to tell participants about the patterns in the input before the beginning of 
the familiarization phase in order to ensure that all subjects are similarly engaged in the task. 



 16 

Following familiarization, participants took a 2-AFC offline test, consisting of 32 

trials. In each trial, participants were sequentially presented with two three-item 

sequences of shapes: (1) a target – three shapes that formed a triplet during the 

familiarization phase (TP=1), and (2) a "foil" – three shapes that never appeared together 

in the familiarization phase (TP=0). Foils were constructed without violating the position 

of the shapes within the original triplets (e.g., for the three triplets ABC, DEF and GHI, a 

possible foil could be AEI, but not BID). During test, shapes appeared in a fixed 

presentation rate of 800ms, with an ISI of 200ms between shapes within triplets, and a 

blank of 1000ms between triplets. Each of the eight familiarization triplets (i.e., targets) 

appeared four times throughout the test, with four different foils (each foil also appearing 

four times throughout the test, with different triplets). Before the test phase, participants 

were instructed that in each trial they would see two groups of shapes and that their task 

would be to choose the group that they are more familiar with as a whole. The offline test 

score ranged from 0 to 32, according to the number of correct identifications of targets 

over foils. Given the 2-AFC format, chance performance corresponds to a score of 16/32. 

 

Results and Discussion 

For each participant, RTs outside the range of 2 SD from the participant’s mean 

were trimmed to the cutoff value to minimize the effect of outliers. Note also that, to 

account for variance in baseline RTs, all analyses were conducted on log-transformed 

RTs (rather than raw RTs).  

Table 1 presents the mean RTs and standard deviations of key presses for shapes 

in the first, second, and third positions within triplets. A one-way repeated measures 
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ANOVA confirmed the effect of position on log-transformed RTs (F(2, 138) = 18.79, p < 

0.001). Subsequent paired t-tests revealed a difference between shapes in the first versus 

second position within-triplets (t(69) = 4.32, p < 0.001) and between shapes in first 

versus third position (t(69) = 4.84, p < 0.001), but provided no evidence for a difference 

between shapes in second and third position (t(69) = 1.53, p = 0.13). Fig. 2 presents the 

response latencies for shapes in the first, second and third positions over familiarization 

blocks, and shows the divergence between shapes in first position, to those appearing in 

second and third positions. 

 

Table 1: Means and SDs for RTs and log-transformed RTs for shapes in first, second, and third positions. 

 1
st
 position 2

nd
 position 3

rd
 position 

Raw RT (SD) 834.5 (377) 798.8 (340) 790.6 (339) 

Log-transformed RT (SD) 6.43 (0.44) 6.39 (0.42) 6.38 (0.42) 
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Figure 2. Response latencies to shapes in first, second, and third position over familiarization blocks. 

Dashed lines represent the best logarithmic fit. Zoom-in area presents blocks 7-24. 

   

 

In light of these results, we next calculated the online measure of SL performance. 

This measure, formulated in (1) below, quantifies learning as the difference in log-

transformed RTs between shapes in the unpredictable position (the first position within 

triplets) to the mean RTs for predictable shapes (in the second and third positions within 

triplets). A score of zero in this online measure reflects no learning of the statistical 

properties of the input (i.e., no difference between predictable and unpredictable stimuli), 

whereas positive values reflect learning (i.e., faster responses to predictable compared to 

unpredictable stimuli).  

(1) 𝑶𝒏𝒍𝒊𝒏𝒆 𝑴𝒆𝒂𝒔𝒖𝒓𝒆 𝒐𝒇 𝑺𝑳 =  𝑙𝑜𝑔. 𝑅𝑇(1𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) − 𝑚𝑒𝑎𝑛. 𝑙𝑜𝑔. 𝑅𝑇(2𝑛𝑑 +  3𝑟𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 

Fig. 3 shows the time-course of SL during familiarization, as reflected by the 

change in the online measure across the 24 blocks in the familiarization stream. Overall, 

the trajectory of the online measure seems to be best fitted by a logarithmic function – 

with relatively fast increase in SL until block 7 (i.e., after 7 repetitions), a point from 

which learning does not increase, with only random fluctuations around a fixed value. 

Indeed, a logarithmic curve better fitted the data compared to a linear function (R
2
 = 0.29 

vs. R
2
 = 0.23). Relatedly, one-sample t-tests revealed that participants learned the 

underlying statistical structure of the input already relatively early in the familiarization – 

as reflected by a significantly bigger than zero mean RT difference already in blocks 3 

and 4, in block 7, and throughout the rest of familiarization (pone-tailed < 0.05).  
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Figure 3. Learning trajectory as reflected by the change in the online measure throughout familiarization 

blocks. Error bars represent standard errors. The dashed line represents the best logarithmic fit. 

 

 

 Validation: In order to validate the novel online measure of SL we examined its 

correlation with the standard 2-AFC offline test score (which presented above-chance 

mean performance of 22.57/32 (70.5%) trials, t(69) = 8.59, p < 0.001). For each 

individual, we calculated the overall extent of SL based on the online measure, by 

averaging the difference in log-transformed RTs between predictable and unpredictable 

shapes (formula (1) above) in blocks 7 to 24. We chose to focus on these blocks as these 

were the blocks in which stable significant learning was observed for the group as a 

whole, and since these included a large enough number of blocks to reduce measurement 

error. A strong correlation of r = 0.56 (p < 0.001, 95% CI: [0.37, 0.7]) was found 

between the individual gain in RTs for predictable shapes and his/her offline test 

performance (see Fig. 4)
3
. This result suggests that the online measure we proposed 

indeed taps into SL ability, validating it. Participants who score higher in the offline test 

are, on the average, faster with predictable vs. unpredictable stimuli. 

                                                           
3
 Note that the online-offline correlation remains strong even when the online measure is calculated 

across all familiarization blocks (1-24): r = 0.52 (95% CI: [0.33, 0.67]), p < 0.001. 
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Figure 4. Scatter plot of the correlation between the online measure of SL and performance in the 2-AFC 

offline test. This correlation might seem to be over-estimated due to a few extreme observations (3 on top 

right corner, 2 on bottom left). However, it remains strong even when removing these data points: r = 0.46, 

p < 0.001. 

 

Taken together, the results of Experiment 1a reveal the promise of an online 

measure in investigating visual SL. By merely asking participants to advance the shapes 

at their own pace rather than watching the visual input stream passively, we obtained 

novel information regarding the dynamics of learning. We found that learning proceeds 

was best fitted by a logarithmic fashion, and that significant learning of structure is 

present already after a small number of exposures to the repeated patterns. At least within 

our experimental parameters (eight triplets, TPs of 1.0) and dependent measure (log 

transformed RT gain), the data suggest that seven or eight repetitions of the triplets are 

sufficient to reach significant learning. Experiment 1a also showed that for a given 

individual, the gain in RT to predictable vs. unpredictable shapes is highly correlated 

with his/her standard (2-AFC) offline measure of performance. This demonstrates that the 

online measure is indeed a valid proxy of SL. What remains to be shown, however, is that 

the gain in RTs for predictable stimuli withstands the psychometric requirement of 

reliability, providing a signature of individual SL performance that is stable over time. 
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Experiment 1b was set, therefore, to assess the test-retest reliability of this online 

measure.  

 

Experiment 1b 

In Experiment 1b we recalled our original sample, and retested participants with 

the same task, using different triplets. Again, we measured their individual gain in 

response time to predictable vs. unpredictable shapes, aiming to correlate their RT gain in 

the two experimental sessions.  

 

 

Method 

 All subjects of Experiment 1a were contacted after their participation and were 

invited to return to the lab for a follow-up study in return for course credit or payment. 

Forty-seven participants (11 males; mean age 23.1, range: 18-32) replied positively, and 

were re-tested on the self-paced visual SL task. The task was identical to the one 

described in Experiment 1a. Note that while the stimuli used in Experiment 1b were the 

same as those in Experiment 1a, the triplets during familiarization were re-randomized 

for each participant so that the repeated patterns were not the same in the initial test and 

retest. The mean interval between the initial testing session (Experiment 1a) and retest 

(Experiment 1b) was 90.8 days (SD = 54 days). 

 

Results 
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 Table 2 presents the means and standard deviations of RTs and log-transformed 

RTs for shapes in first, second, and third positions. As in Experiment 1a, there was a 

significant effect of position (1
st
, 2

nd
, or 3

rd
) on response latencies (F(2, 92) = 7.46, p = 

0.001), stemming from a difference between first to second position (t(46) = 2.46, p = 

0.009), and first to third position (t(46) = 2.95, p = 0.005). The online measure of SL was 

again calculated according to the formula in (1) above. Fig. 5 represents the learning 

dynamics across blocks, replicating the logarithmic function from Experiment 1a. In 

order to examine the correlation between the offline and online measures of performance 

in the retest data, the individual online measure score for each individual were again 

computed. As in Experiment 1a, this was done by averaging the difference in log-

transformed RT in blocks 7 to 24.  

In line with the results of Experiment 1a, a significant correlation between the 

online measure and success in the offline test was again observed (r = 0.4, p < 0.01, 95% 

CI: [0.13, 0.62]).    

 

Table 2: Means and SDs for RTs and log-transformed RTs for shapes in first, second, and third positions, 

for the retest data. 

 1
st
 position 2

nd
 position 3

rd
 position 

Raw RT (SD) 793.5 (368) 754.2 (346) 747.6 (339) 

Log-transformed RT (SD) 6.40 (0.49) 6.36 (0.46) 6.35 (0.47) 
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Figure 5. Learning trajectory as reflected by the change in the online measure throughout familiarization 

blocks, for the retest data. Error bars represent standard errors. The dashed line represents the best 

logarithmic fit. 

  

However, we were mainly concerned with the test-retest reliability of the gain in 

RTs for predictable stimuli. Fig. 6A shows the test-retest scatter plot, indicating an 

impressive test-retest reliability of r = 0.64 (95% CI: [0.43, 0.78]). This result suggests 

that the extent of gain in RTs for predictable shapes is indeed a reliable signature of the 

individual. Offline test scores were also stable over time, with a test-retest reliability of r 

= 0.63 (95% CI: [0.42, 0.78]), roughly similar to a previous reliability estimation of the 

same task (Siegelman & Frost, 2015). Fig. 6B shows the test-retest reliability of a 

composite score taking together the online and offline measures of SL. For both test and 

retest, this composite measure was calculated by averaging the Z-score of the offline and 

online measures. The composite score had an even higher test-retest reliability of r = 0.77 

(95% CI: [0.62, 0.86]). We return to this important point in the discussion below.  
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Figure 6. Panel A shows the test-retest reliability of the online measure. Panel B presents the test-retest 

reliability of the offline-online composite score. Note that both coefficients might be over-estimated due to 

two observations (top right corner in both graphs). The test-retest coefficients, however, remained high 

even when removing these data points: r = 0.45, and r = 0.72, for online and composite scores, 

respectively. 

 

Discussion 

Taken together, the results of Experiment 1a and 1b point to a clear conclusion: 

The online measure of learning in the self-paced visual SL paradigm provides a 

promising way of assessing SL performance. In both experiments, a clear signature of 

learning was observed, as reflected by faster RTs for shapes in predictable relatively to 

unpredictable positions within triplets. Moreover, this gain in RTs was found to be a valid 

proxy of SL performance – as reflected by its correlation with the standard offline SL 

test. Importantly, our data also suggest that it is a stable characteristic of the individual. 

To our knowledge, this is the first study to directly examine the psychometric properties 

of such online measure, showing that it can indeed provide a reliable and valid 

assessment of SL performance.  

In terms of the stability of the measurement across time, it is important to note 

that the highest test-retest reliability coefficient was found for the composite measure, 

which averages both offline and online standardized scores. From a psychometric 
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perspective, this result is not surprising – the composite score accumulates all available 

information regarding each individual’s SL performance throughout the whole testing 

session, thus minimizing measurement error. As such, the composite measure provides a 

simple and promising way of achieving maximal reliability for the assessment of SL 

individual abilities. It may prove particularly useful for future studies examining the 

predictive power of SL, where high reliability is a requisite for observing a correlation 

between SL and some outcome measure.  

The validation of the online measure presents what might seem a challenge of 

circularity. On the one hand, we aim to show that it taps into SL performance, by 

examining its correlation with a standard offline test. On the other hand, we aim to offer 

it as an alternative operational proxy of SL ability, and to highlight the unique 

information it provides regarding SL processes. Note, however, that to validate the online 

measure of SL, we examined its individual-level correlation with the offline measure, 

averaging across many blocks in familiarization. This learning score was found to 

correlate with the offline test performance, presumably because both scores tap the 

overall extent of learning. Once this validation procedure has been successful, the online 

measure can be used as a unique method to track learning across the experimental 

session, providing new information regarding the dynamics of learning – that is, the 

changes in the extent of learning across time. This is done by averaging online 

performance across subjects, in each block of familiarization.  

Indeed, tracking the dynamics of gain in RTs for predictable stimuli in 

Experiments 1a and 1b already provided us with some novel knowledge regarding how 

the learning of regularities in the visual modality proceeds. First, we found that the 
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group-level learning trajectory in the task is best described by a logarithmic function, 

with a relatively steep curve at the onset of learning. In addition, with the parameters 

employed in our design, significant learning was reached already after a relatively small 

number of repetitions. As most studies using identical parameters have employed 

familiarization phases with a much larger number of repetitions (typically 20-30, 

sometimes as many as 300 repetitions, e.g., Saffran et al., 1997), our findings suggest that 

these were perhaps redundant. Most importantly, this temporal information cannot be 

revealed by standard offline measures, exemplifying the improved sensitivity of online 

measures in comparison to offline tests. In Experiment 2, we further investigated the 

sensitivity of online measures to subtle manipulations of the extent of event 

predictability, and what they can reveal about learning dynamics. 

 

Experiment 2 

In Experiment 2, we harnessed our online measure to examine the trajectory of 

learning when patterns differ in extent of their predictability. Using the typical 2-AFC 

offline test, we have recently shown that extent of predictability, operationalized as 

within-pattern TPs, has a positive incremental impact on SL, with higher levels of 

predictability resulting in better SL performance (Bogaerts et al., 2016). The use of such 

offline measure, however, is inherently limited to reveal only the impact of predictability 

on the overall extent of SL, when exposure is completed. Our aims in Experiment 2 were, 

therefore, threefold. First, to test whether subtle manipulations of TPs impact the extent 

of gain in RTs to predictable vs. non-predictable stimuli. This speaks to the question of 

whether the online measure reveals sensitivity to quasi-regularities as the offline measure 
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does. Second, previous data regarding the impact of TPs on SL performance (Bogaerts et 

al., 2016) did not tell us anything about the dynamics of learning when events in the 

stream implicate a range of quasi-regularities. Here we examined whether different levels 

of predictability result in similar or rather in different learning trajectories. Finally, by 

comparing the information regarding SL performance collected through online measures 

to that collected in a 2-AFC test, we could ascertain whether these two different measures 

of learning provide similar or non-overlapping information.  

 

Method 

Participants. Seventy-two students (26 males) participated in the study for 

payment or for course credit. Participants’ age ranged from 18 to 39 (M = 23.7) and all 

subjects had no reported history of reading disabilities, ADD or ADHD. 

 Design, Materials, and Procedure. The procedure was similar to that of 

Experiment 1, with a self-paced familiarization phase followed by an offline 2-AFC test. 

The task included the same 24 visual shapes from Experiment 1 (see Appendix A). These 

were, however, randomly organized into 12 pairs (rather than triplets) for each 

participant. The familiarization stream consisted of 30 blocks, with all 12 pairs appearing 

once (in a random order) in each block. Importantly, the 12 pairs were divided into three 

TP conditions: Four pairs with a TP=1, four with TP=0.8, and four with TP=0.6. The 

manipulation of TPs was done by including random noise in the TP=0.6 and TP=0.8 

conditions: for example, for each pair AB during familiarization in the TPs=0.8 

condition, shape B appeared after shape A 80% of the time, while in 20% of the time 
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shape B was randomly replaced by another shape X, avoiding immediate repetitions of 

identical shapes (see also Bogaerts et al., 2016).  

 Following familiarization, participants took a 2-AFC test, consisting of 36 trials. 

In each trial, they were sequentially presented with two types of two-item sequences of 

shapes: (1) a target – two shapes that formed a pair during the familiarization phase (TP 

of 0.6, 0.8, or 1, according to TP condition), and (2) a "foil" – two shapes that never 

appeared together in the familiarization phase (TP=0; as in Experiment 1, without 

position violation of the shapes in the original pairs). During test, shapes appeared in a 

fixed presentation rate of 800ms, with an ISI of 200ms between shapes within pairs, and 

a blank of 1000ms between pairs. Each of the 12 familiarization pairs (i.e., targets) 

appeared 3 times throughout the test, with three different foils (each foil also appearing 

three times throughout the test, with three different triplets). Scores in the SL task ranged 

from 0 to 36, calculated as the number of correct identifications of target pairs during the 

test phase, and out of the overall 36 trials, there were 12 trials in each target TP condition 

– 12 trials with a target of TP=1, 12 with a target of TP=0.8, and 12 with a target of 

TP=0.6. 

 

Results  

As in the previous experiments, RTs outside the range of 2 SD from the 

participant’s mean were trimmed to the cutoff value to minimize the effect of outliers. 

Note that for the TP=0.6 and TP=0.8 conditions, all analyses reported below include only 

the occurrences of pairs during familiarization in which there were no exceptions to the 



 29 

repeated pairs (i.e., trials in which the two shapes forming the target pair appeared 

together).  

Table 3 presents the means and standard deviations of RTs and log-transformed 

RTs for shapes in the first and second positions within-pairs, in each of the three TP 

conditions. As before, all statistical analyses were performed on log-transformed RTs. A 

two-way repeated measures ANOVA with TP condition (0.6, 0.8 or 1) and position (1
st
 

vs. 2
nd

) as factors revealed a marginally significant effect for position (F(1,71) = 3.01, p = 

0.08), with no effects for TP or TP by position interaction (p > 0.1). Subsequent paired t-

tests revealed an overall significant position effect for pairs with TP=1 (t(71) = 2.03, pone-

tailed = 0.02), as well as TP=0.8 (t(71) = 1.77, pone-tailed = 0.04), but not for pairs in the 

TP=0.6 condition (t(71) = -0.29, p > 0.1). 

 
Table 3: Means and SDs for RTs and log-transformed RTs for shapes in first and second positions, for each 

of the three TP conditions.  

TP condition  1
st
 position 2

nd
 position 

TP = 1 
Raw RT (SD) 817.8 (435) 805.2 (413) 

Log-transformed RT (SD) 6.390 (0.48) 6.372 (0.47) 

TP = 0.8 
Raw RT (SD) 829.9 (453) 813.6 (419) 

Log-transformed RT (SD) 6.394 (0.49) 6.379 (0.47) 

TP = 0.6 
Raw RT (SD) 826.6 (449) 824.8 (416) 

Log-transformed RT (SD) 6.391 (0.49) 6.392 (0.47) 

 

 We next examined how the difference in log transformed RTs between shapes in 

the 1
st
 position (i.e., unpredictable stimuli) and those in 2

nd
 position (i.e., predictable 

stimuli) evolves over time. Fig. 7 presents the time course of learning for each of the TP 

conditions, as reflected by the change in the online measure across the 30 blocks of the 
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familiarization phase. The upper panel of the figure (7A) presents all TP conditions 

super-imposed, and the three lower panels present the three TP conditions separately. 

 
Figure 7. Learning trajectory as reflected by the change in the online measure throughout familiarization 

blocks, for each of the three TP conditions. Error bars represent standard errors. Dashed lines represent best 

logarithmic fit. 
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 It is clear that Fig. 7 presents a much noisier picture of the learning dynamics than 

the graphs of Experiments 1a and 1b (Figures 3 and 5 above), as reflected by larger 

standard errors as well as larger fluctuations in the online measure throughout 

familiarization. This is not surprising considering that each data point in Fig. 7 includes a 

much smaller number of trials in comparison to the figures of Experiment 1a and 1b; 

patterns in the present experiment were pairs and not triplets (there was therefore only 

one predictable shape per pattern, instead of two), and there were only four pairs in each 

TPs condition per block (compared to eight patterns in Experiment 1a and 1b). In order to 

reduce measurement error, we used a smoothing technique in which all observations from 

every five adjacent blocks were averaged into a single epoch, enabling a clearer picture 

of the learning dynamics in each TP condition. This smoothed learning trajectory for each 

of the three TP conditions is presented in Fig. 8. 

 

 

Figure 8. Smoothed learning trajectory: changes in the online measure of SL through epochs, for each of 

the three TP conditions. Each epoch corresponds to five blocks. Error bars represent standard errors. 
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 Overall, the learning trajectories of the TP = 0.8 and TP = 1 conditions display a 

nearly identical time-course. Both present a logarithmic trajectory, as reflected by better 

fit for a logarithmic curve compared to a linear function (TP = 1: R
2

logarthimic = 0.91 vs. 

R
2

linear = 0.81; TP = 0.8: R
2

logarthimic = 0.59 vs. R
2

linear = 0.53), similar to the one found in 

Experiment 1a and 1b where TPs were 1 for all patterns. Moreover, in both conditions the 

online learning measure reached a value of around 0.02 in epochs 2-3, and stayed more or 

less constant until the end of familiarization. In contrast, the TP = 0.6 condition displays 

a very different learning trajectory. First, it does not show a logarithmic learning curve, 

as reflected by a worse fit for a logarithmic compared to a linear trajectory (R
2

logarthimic = 

0.31 vs. R
2

linear = 0.5). Moreover, the TP=0.6 condition does not display any learning in 

epochs 1 to 5 (i.e., until the end of block 25), with a marginally significant learning only 

at epoch 6 (t(71) = 1.41, pone-tailed = 0.08).  

 Offline test performance: For each participant, we calculated his/hers overall 

score in the 2-AFC test (scores ranging from 0-36), as well as the score on trials of each 

of the TP conditions (score: 0-12). Mean overall test performance was 24.85/36 (69%), 

with the sample showing significant learning of the overall latent statistical structure 

(t(71) = 8.05, p < .001). As in Experiments 1a and 1b, a strong correlation of r = 0.49 

(95% CI: [0.29, 0.65]) was found between individuals’ offline test scores and their online 

measure of learning (averaged across epochs 2-6, i.e., blocks 6-30), again validating the 

online measure of SL. Interestingly, the offline test performance displayed a very 

different pattern of results in terms of the effect of predictability level on SL. As shown 

in Fig. 9, the effect of TP condition on offline test performance was virtually linear – with 

an increase of 2.9% between TP=0.6 and TP=0.8, and an increase of 3.3% between 
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TP=0.8 and TP=1. In addition, in each of the three TP levels, a significant learning effect 

was observed (p < 0.001). We return to these apparent differences between the offline 

and online measures of SL in the discussion below.  

 

 
Figure 9. Offline test performance for each of the three TP conditions. Error bars represent standard errors. 

 

 

Discussion 

 The results of Experiment 2 provide a replication of Experiment 1, showing that 

predictable stimuli are responded to faster compared to unpredictable stimuli, and that the 

gain in RTs correlates with the offline test scores. This again validates the self-paced 

VSL paradigm as a proxy for SL performance. However, more importantly, Experiment 2 

also shows a clear dissociation between the information provided by offline and online 

measures of performance.  Whereas the offline 2AFC test revealed a linear effect of TPs, 

the self-paced procedure revealed a qualitative difference in learning higher TPs (0.8, 1) 

vs. learning lower TPs (0.6). These divergent results suggest that, while both online and 

offline measures are indeed sensitive to extent of predictability, online measures provide 

additional information regarding the dynamics of the process, information that offline 
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measures are blind to. Specifically, our online tracking suggests that when TPs in the 

visual stream are as low as 0.6, learning is exceedingly slow, occurring only after 

extensive repetitions. 

Experiment 3 

 So far, we focused on the learning of a single set of regularities, where patterns 

were repeatedly presented from the beginning until the end of familiarization. Experiment 

3 further extends our investigation to more complex settings where multiple statistical 

structures have to be learned. In this line of research, participants are typically exposed 

for some time to a first set of patterns; then the patterns change into a different set 

without an explicit cue regarding the change (e.g., Gebhart, Aslin, & Newport, 2009; 

Karuza et al., 2016). From a theoretical perspective, this procedure targets SL 

mechanisms in more ecologically valid real-life situations, when the environment offers 

multiple statistical structures that need to be perceived and assimilated (Karuza et al., 

2016; see also Weiss, Gerfen, & Mitchel, 2009). 

 Although theoretically important, investigating the learning of more than one 

stream presents a real challenge to typical 2AFC offline tests, because the knowledge on 

both the first and second set of patterns has to be assessed at the end of all familiarization, 

after both sets of statistical regularities were presented. The typical finding in such 

experimental settings, at least in the auditory modality, is a primacy effect. That is, 

targets from the first stream seem to be recognized better than targets form the second 

stream, for which performance is often around chance level (Gebhart, Aslin, et al., 2009). 

This primacy effect was recently interpreted to reflect a non-unified sampling procedure, 

according to which humans decrease their sampling of regularities from the environment 
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over time due to neural efficiency considerations (see Karuza et al., 2016, for details). 

This conclusion, however, requires further scrutiny because, by definition, the 2-AFC test 

is always administered at the end of the full familiarization phase, after the presentation 

of the second set of regularities. Performance at this late phase could reflect memory 

constraints rather than SL mechanisms (see Siegelman et al., 2017 for discussion). 

Moreover, as exemplified above in Experiment 1 and 2, it is possible that while offline 

test performance on the second stream of regularities is lower in the pre-defined arbitrary 

time-point in which it is administered, the trajectory of learning building up to this point 

holds additional information to which the offline tests are blind.  

 In Experiment 3 we thus examined consecutive learning of multiple structures 

using the online measure of performance. Participants were presented, within a single 

session, with two consecutive streams of shapes. In one condition the two streams 

employed different set of shapes, whereas in another more complex condition, the two 

streams employed the same set of shapes but with different rules of co-occurrence. We 

tracked performance of participants in these two conditions with both online and offline 

measures. This allowed us to examine what these two measures can tell us about the 

learning of complex statistical structures in the visual modality.  

 

Methods 

Participants. Ninety-nine students (24 males; mean age: 23.8, range: 19-31) took 

part in the experiment for payment or course credit. They had no reported history of 

reading disabilities, ADD or ADHD. Participants were randomly assigned to one out of 
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two conditions: 50 students in the non-overlapping condition (henceforth Condition 1), 

and 49 students in the overlapping-condition (Condition 2). 

 Design, Materials, and Procedure. The procedure was similar to that of 

Experiment 1. It included a self-paced familiarization phase, followed by an offline 2-

AFC test. However, in contrast to Experiment 1 and 2, the familiarization phase was 

comprised of two sub-streams, presented one after the other. Importantly, the instructions 

given to the participants were the same as in the previous experiments. Participants were 

not informed about the existence of two different streams nor that there was a break or 

any other cue indicating the switch between the streams. The materials consisted of 36 

unique shapes. To get to this number we used an additional 12 visual shapes of a similar 

complexity as those in the set used in Experiments 1 and 2 (see Appendix B).  

In Condition 1, for each individual subject, the 36 shapes were randomly assigned 

to create 12 triplets, six constituted the first stream and the remaining six the second 

stream. Triplets had a TP=1. Condition 2 differed from 1 in the way the second stream 

was constructed. Specifically, the second stream consisted of the same 18 shapes that 

comprised the first stream. The shapes were however rearranged in different triplet 

patterns. Triplets were created with the constraint that no two or more shapes forming a 

triplet in the first stream would be grouped in a second stream triplet. Both conditions 

comprised 12 blocks in each stream, with two breaks, splitting the total familiarization 

phase into three segments of eight blocks. 

 The offline 2-AFC test included 36 trials. In each trial a target and a foil were 

presented. Trials including a target from the first stream were alternated with trials 

including a target from the second stream (the participants were not informed of this 
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structure). Note that since the shapes in the first and second sub-streams of Condition 2 

overlapped, we made sure that the foils never involved two or more shapes that appeared 

together in a triplet in one of the two streams (see Appendix C for full details).  

 

Results 

Two participants (both from Condition 2) were excluded for having abnormally 

slow response latencies across the experimental session (average RTs more than 3SD 

from the condition mean). As in the previous experiments, RTs outside the range of 2 SD 

from the participant’s mean were trimmed to the cutoff value to minimize the effect of 

outliers.  

Table 4 presents the means and standard deviations of RTs and log-transformed 

RTs for shapes in the first, second and third positions within-triplets, for the two sub-

streams in the two conditions. Interestingly, compared to the previous experiments our 

sample of participants presented a slower mean RT, with larger variance in their rate of 

response. This is the essence of self-paced performance, participants determine their own 

comfortable rate of advancing the shapes. Thus, whereas some participants were 

comfortable at a pace of 3 Hz, quite a few slow participants opted for a pace of 0.5 Hz. 

Log transforming RTs deals with these different baselines between samples and 

individuals. Importantly, despite this difference in participants’ baseline RTs, the results 

of Experiment 3 again show a clear effect of predictability: A one-way repeated measures 

ANOVAs revealed an effect of position (1
st
, 2

nd
, and 3

rd
) on log-transformed RTs in each 

of the four sub-streams across the two conditions (F(2, 98) = 19.58, p < 0.001 for 

Condition 1, first stream; F(2, 98) = 17.89, p < 0.001 for Condition 1, second stream; 
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F(2,92) = 36.1, p < 0.001 for Condition 2, first stream; and F(2,92) = 10.32, p < 0.001 for 

Condition 2, second stream). In line with Experiment 1, subsequent paired t-tests in all 

four sub-streams revealed a significant difference in response latencies between 1
st
 and 

2
nd

 position, and between 1
st
 and 3

rd
 position (all p’s < 0.01) but provided no evidence for 

a RT difference between shapes in 2
nd

 and 3
rd

 position (all p’s > 0.05).  

 

Table 4: Means and SDs for RTs and log-transformed RTs for shapes in first, second, and third 

positions, for the two sub-streams in the two conditions. 
 
Table 4a: Condition 1 (no-overlap), 1

st
 sub-stream 

 1
st
 position 2

nd
 position 3

rd
 position 

Raw RT (SD) 1404.7 (733) 1125.5 (501) 1143.3 (513) 

Log-transformed RT (SD) 6.92 (0.53) 6.69 (0.44) 6.72 (0.45) 

 

Table 4b: Condition 1 (no-overlap), 2
nd

 sub-stream 

 1
st
 position 2

nd
 position 3

rd
 position 

Raw RT (SD) 1050.7 (577) 824.8 (324) 837.3 (342) 

Log-transformed RT (SD) 6.63 (0.54) 6.43 (0.41) 6.46 (0.42) 

 

Table 4c: Condition 2 (overlap), 1
st
 sub-stream 

 1
st
 position 2

nd
 position 3

rd
 position 

Raw RT (SD) 1364.9 (740) 1088.1 (505) 1077.7 (455) 

Log-transformed RT (SD) 6.86 (0.59) 6.63 (0.48) 6.63 (0.46) 

 

Table 4d: Condition 2 (overlap), 2
nd

 sub-stream 

 1
st
 position 2

nd
 position 3

rd
 position 

Raw RT (SD) 1003.7 (636) 870.4 (473) 888.0 (510) 

Log-transformed RT (SD) 6.55 (0.64) 6.44 (0.53) 6.45 (0.55) 
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We next turned to examine the dynamics of learning (i.e., the difference in log-

transposed RTs between shapes in 1
st
 position to the average of shapes in 2

nd
 and 3

rd
 

positions) across the two conditions and in both sub-streams. The learning dynamics are 

presented in Fig. 10. Overall, the learning trajectories of the 1
st
 sub-streams in the two 

Conditions present a nearly identical time-course, as can be seen in Fig. 10a: Thus, 

similar to Experiment 1a, 1b, and 2, a logarithmic trajectory was observed in both 

conditions (Condition 1: R
2

logarthimic = 0.9 vs. R
2

linear = 0.83; Condition 2: R
2

logarthimic = 

0.82 vs. R
2

linear = 0.67). In addition, in the first sub-stream in both conditions, the online 

measure reached a value significantly bigger than zero at a similar time point (in block 4, 

pone-tailed < 0.05), which remained significantly bigger than zero in all subsequent blocks, 

suggesting a very similar learning trajectory. In contrast, for the second sub-stream, the 

online measure revealed qualitative different learning dynamics in the two conditions 

(see Fig. 10b). While both trajectories were again best fitted by a logarithmic function 

(Condition 1: R
2

logarthimic = 0.52 vs. R
2

linear = 0.26; Condition 2: R
2

logarthimic = 0.72 vs. 

R
2

linear = 0.67), learning the second sub-stream of Condition 2 (the overlapping condition) 

was much slower. More specifically, while in the second sub-stream of Condition 1 

significant learning was observed already in Block 2 (and remained significantly bigger 

than zero throughout the session), in Condition 2 a stable learning effect was reached 

much later, only in Block 12.  
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Figure 10. Learning trajectory as reflected by the change in the online measure throughout familiarization 

blocks in the two conditions, for the first (Panel A) and second (Panel B) sub-streams. 

  

Offline measure performance: As in the previous experiments, we measured 

offline performance for each participant according to his/her number of correct 

identifications of triplets over foils in the 2-AFC test (score range: 0-36), as well as the 

average offline scores for the two sub-streams in the two conditions. As in Experiments 1 
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and 2, a strong correlation (r = 0.53, 95% CI: [0.37, 0.66]) was found between the offline 

score and the online measure of performance (averaged throughout the familiarization 

phase, and calculated across participants in both conditions), replicating the validation of 

the online measure of SL. Importantly, however, the offline test performance displayed 

again a different pattern of results compared to the online measure with regards to the 

experimental manipulation. For Condition 1, the two measures of learning converged, 

showing similar recognition of triplets from the first and the second sub-streams (84.33% 

vs. 85.33%, paired samples’ t(49) = -0.51, p = 0.62).  In contrast, for Condition 2, the 

online tracking and offline test-scores diverged. Whereas the online measure revealed a 

significant difficulty in learning the second sub-stream, the offline measure was 

practically insensitive to this, and performance on patterns from the first sub-stream did 

not differ from performance on patterns from the second sub-stream (72.7% vs. 74.35%, 

paired samples’ t(46) = -0.49, p = 0.64). Note that in all four sub-streams (across the two 

conditions) performance was significantly above chance-level (all p’s < 0.001). Also note 

that there was an overall difference in performance between Condition 1 and Condition 2 

across the two sub-streams (Condition 1: 84.8% vs. Condition 2: 73.52%, independent 

samples’ t(95) = 3.12, p = 0.002). We return to the dissociation between the online and 

offline measures in the Discussion below.   

 

Discussion 

 The results of Experiment 3 demonstrate again the validity of the online measure 

as a proxy of SL performance in the self-paced VSL paradigm: predictable stimuli 

incurred faster responses than unpredictable stimuli, and average RT gain correlated 
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strongly with 2AFC test performance. More importantly, and in line with Experiment 2, 

online and offline measures provided non-overlapping information regarding learning. 

Specifically, the online measure revealed a clear effect of the between-condition 

experimental manipulation (i.e., whether elements in the two streams overlapped or not) 

on the learning trajectory of the second stream, an effect the offline measure did not 

reflect.  

Taken together, the findings of Experiment 3 anew exemplify how online 

measures provide access to learning dynamics that cannot be observed when solely 

observing offline performance of SL. They provide important theoretical insights 

regarding how learning novel regularities (i.e., the second sub-stream) is affected by the 

statistics of previous input (i.e., the knowledge already assimilated from the first sub-

stream). This resembles findings from related bodies of research on language learning, 

such as the effect of prior linguistic experience on the acquisition of novel syntactic 

structures (e.g., Fine, Jaeger, Farmer, & Qian, 2013), and the effect of previous word-

level knowledge on the acquisition of grammatical gender (Arnon & Ramscar, 2012).  

 

General Discussion 

What exactly is “learning” in the context of “statistical learning”? How should we 

define it, and how should we measure it? If SL is taken to be the ability to extract the 

distributional properties of sensory input in time and space (e.g., Frost et al., 2015; 

Romberg & Saffran, 2010; Schapiro & Turk-Browne, 2015), what should be then a good 

operational measure of this ability? This question is not merely methodological, rather it 

is deeply theoretical. Consider a familiarization phase in which elements co-occur in 
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some repeating patterns. SL in such paradigm can result for example in: (1) A perfect 

post-hoc recognition of a limited number of patterns, (2) some above chance recognition 

of all patterns, (3) fast formation of online predictions of upcoming stimuli, based on the 

statistical properties of some patterns, (4) slow formation of online predictions based on 

the statistics of the entire input, etc. These possible behavioral signatures represent not 

only different measures of learning, but also different mechanistic accounts of the 

possible representational changes incurred by exposure to a given sensory input. The 

operational proxies used to assess learning should maximally cover these potential 

accounts, to reflect the full scope of SL as a theoretical construct. Nevertheless, most SL 

research to date is based on this one specific paradigm, with a main operational proxy: 2-

AFC performance following a familiarization stream (but see Batterink, Reber, Neville, 

& Paller, 2015; Bays, Turk-Browne, & Seitz, 2015; Bertels et al., 2012). This measure of 

SL does a good job in covering some of the possible theoretical definitions of SL, but 

fails to do so in others. 

Our aim in the present study was to consider an alternative to the traditional 2-

AFC measure, and expand the investigation of SL to track learning as it unfolds. We 

targeted in our set of experiments the ability to use the statistics in a visual input to make 

online predictions. Our study revealed important insights. First, all experiments produced 

an alternative measure of learning: participants formed online predictions during 

familiarization, as revealed by a significant RT gain to predictable compared to 

unpredictable stimuli. Interestingly, they did so already after a relatively small number of 

exposures. Learning, at least under the parameters in the current experiments, was well 

described by a logarithmic function. Most importantly, this RT gain was found to be a 
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stable characteristic of an individual, as reflected by high test-retest reliability 

(Experiment 1b). The extent of gain in RTs for predicted stimuli seems then to be a 

consistent “signature” of a given participant. Third, all three experiments demonstrate 

that this online measure is a valid proxy of SL, as it is correlated with the standard offline 

performance: participants who gained much from predictions in term of fast RTs for 

predicted stimuli, also scored better in the post-familiarization test. Critically, 

Experiments 2 and 3 revealed that the online and offline measures are correlated but not 

interchangeable. Thus, the RT gain for predictable stimuli does not simply mirror offline 

test performance, rather, it provides additional information regarding SL processes.  

Tracking the dynamics of learning in Experiment 2 and 3 revealed important 

insights regarding the processing of regularities in the visual modality. In Experiment 2 

we examined how different levels of quasi-regularity in the visual stream affect learning, 

and in Experiments 3 we monitored the impact of changing the structural properties of 

the input while it unfolds. These manipulations are theoretically important because they 

extend the ecological validity of typical visual SL experiments. Co-occurrences of events 

in the environment are not necessarily characterized by fixed probabilities, and input 

streams often vary in their content and statistical structure. In Experiment 2, online 

performance revealed a qualitative difference between patterns with high predictability 

levels (TP = 1, 0.8) and those with lower levels of regularity (TP = 0.6). This suggests 

that the function relating the extent of quasi-regularity in the input to learning is complex, 

where low TPs require exceedingly high exposures. This pattern was not reflected in the 

offline test, which shows a simple linear impact of degree of predictability.  
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In Experiment 3, the online tracking of SL revealed that participants can learn 

complex sequences composed of two streams differing either in their constituent shapes 

or in their patterns of co-occurrence. Our findings show that once the structure of the 

sequence changes, a period of relearning is required, but participants do eventually 

assimilate the novel structural properties of the input. More importantly, we found that 

relearning is significantly slower if the constituent shapes remain unchanged, and only 

their rules of co-occurrence are altered. This finding is perhaps not surprising, since in 

this condition participants have to update their acquired knowledge regarding the 

statistical structure of the stream. What is striking, however, is that this information is 

absent when looking only at offline test performance.  

Taken together, the results of Experiment 2 and 3 exemplify the non-overlapping 

information provided by the different types of SL measures. Both online and offline 

measures are clearly sensitive to extent of predictability, but this sensitivity has different 

characteristics, reflecting perhaps different mechanisms. An important question is how 

are the online and offline measures mechanistically related. How come they reveal 

different information, so that the tracked performance as revealed by the online measure, 

ends up in a different end-state relatively to the offline measure?  

Our initial assumption is that during familiarization participants gradually form 

predictions regarding upcoming events in the stream. These predictions are continuously 

updated with repeated presentations of the stream’s constituents, and become 

increasingly precise with additional repetitions. The behavioral result of this gradual 

updating process is a continuous increase in speed of response time to the now well-

predicted stimuli. In this sense, the online tracking offers a continuous measure of 
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learning. This view is compatible with findings regarding the neurobiological 

underpinning of learning, where specific patterns of neural oscillations reflect predictions 

or surprise, while the power of this oscillatory activity is a continuous measure of the 

strength of the upcoming predictions (e.g., Batterink & Paller, 2017; Farthouat et al., 

2016; Roux & Uhlhaas, 2014).  

At the end of familiarization, (at least some) participants form stable 

representations of the extracted patterns. The offline test targets these representations, but 

in contrast to the online tracking it is blind to their dynamic formation. Our findings in 

Experiment 2 are then similar to the theoretical curves we have drawn in Figure 1. While 

online tracking shows that TPs of 0.6 are very difficult to learn, with enough repetitions 

they may end with relatively stable representations, not as stable as representations 

formed by TPs of 1 or 0.8, yet stable enough. However, the offline test which targets 

these representations, is based on a set of categorical yes/no decisions, which are coarse-

grained by definition. Moreover, the test repeats, again and again, sets of targets and 

foils, thereby potentially changing the stability of the originally learned representations 

during the test phase. Probabilistically, at a given time point performance with TP of 1 

will end up to be higher on the average than that of TPs of 0.8, and performance with TP 

of 0.8 will end up to be higher on the average than that of TP of 0.6. However, the 

measure is too coarse-grained, so that the nonlinearity observed with the online measure 

is lost.  

Our current results seem then to offer new and promising avenues for defining 

and assessing SL ability on both the group and individual level. This would shift the 

focus of research from the question of what can be learned, to the question of how 
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exactly are representations updated online given exposure to a continuous sensory input 

characterized by statistical regularities, and to the question of how individuals differ in 

such update process (see also Hunt & Aslin, 2001 for discussion of individual differences 

in a SRT task). Clearly, such research would require additional parallel online measures. 

An important limitation of our current measure is that it provides reliable information 

regarding speed of learning at the group-level (i.e., after averaging online performance 

across all subjects), but not at the individual level. Since RTs measures are inherently 

noisy, pinpointing exactly when learning was first observed for a given participant is not 

possible, at least not with the present experimental design. This is an interesting 

challenge, because assessing individual-level learning dynamics has the promise of 

revealing critical information regarding SL abilities. Individuals may differ not only in 

their overall extent of learning, but also in their speed of learning, with potentially non-

overlapping predictive power for the two measures (Siegelman et al., 2017). Given the 

shortcoming of RTs measures, combining behavioral paradigms with parallel 

neurobiological online measures of SL performance such as Event Related Potentials 

(e.g., Jost, Conway, Purdy, Walk, & Hendricks, 2015) or change in rhythmic activity 

(Cashdollar, Ruhnau, Weisz, & Hasson, 2016; Farthouat et al., 2016) as well as eye-

tracking procedures (e.g., Kidd, Piantadosi, & Aslin, 2012), could possibly offer avenues 

for future research. Note that in our present investigation tracking SL online revealed 

important constraints regarding the detection of regularities in the visual modality. This 

opens a new set of questions regarding auditory SL where simple online tracking through 

self-paced methods may not necessarily work, and neurobiological tracking would then 

be a possible solution. This requires extensive investigation, but such lines of research 
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have the promise of expanding the definition of SL as a theoretical construct, leading to a 

better understanding of its underlying mechanisms. 
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Appendix A - the 24 shapes used in Experiments 1 and 2. 
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Appendix B - the 36 shapes used in Experiment 3 
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Appendix C – structure of triplets and foils in Experiment 3. Each number (1-36) in the 

tables below represents a shape (assignment of shapes to numbers was randomized for 

each participant).  

 

Condition 1 (no-overlap) 

1
st
 sub-stream 2

nd
 sub-stream 

Triplets Foils Triplets Foils 

1 2 3 1 5 9 19 20 21 19 26 33 

4 5 6 4 8 12 22 23 24  22 29 36 

7 8 9 7 11 15 25 26 27 25 32 21 

10 11 12 10 14 18 28 29 30 28 35 24 

13 14 15 13 17 3 31 32 33 31 20 27 

16 17 18 16 2 6 34 35 36 34 23 30 

 

 

Condition 2 (overlap) 

1
st
 sub-stream 2

nd
 sub-stream 

Triplets Foils Triplets Foils 

1 2 3 1 5 9 2 9 13 2 15 17 

4 5 6 4 8 12 3 7 14 3 12 4 

7 8 9 7 11 15 8 15 1 8 10 13 

10 11 12 10 14 18 5 12 16 5 18 14 

13 14 15 13 17 3 6 10 17 6 9 1 

16 17 18 16 2 6 11 18 4 11 7 16 
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Figure captions 

Figure 1. A schematic depiction of different theoretically possible learning trajectories 

(from left to right: linear, logarithmic, step-function), all resulting in the same end 

performance. Light green lines represent a fast learning trajectory, dark green lines a 

slower one. Note that if one were to measure learning performance halfway, the offline 

learning score would be quite different depending of the shape of the function and the 

speed of learning. 

Figure 2. Response latencies to shapes in first, second, and third position over 

familiarization blocks. Dashed lines represent the best logarithmic fit. Zoom-in area 

presents blocks 7-24. 

Figure 3. Learning trajectory as reflected by the change in the online measure throughout 

familiarization blocks. Error bars represent standard errors. The dashed line represents 

the best logarithmic fit. 

Figure 4. Scatter plot of the correlation between the online measure of SL and 

performance in the 2-AFC offline test. This correlation might seem to be over-estimated 

due to a few extreme observations (3 on top right corner, 2 on bottom left). However, it 

remains strong even when removing these data points: r = 0.46, p < 0.001. 

Figure 5. Learning trajectory as reflected by the change in the online measure throughout 

familiarization blocks, for the retest data. Error bars represent standard errors. The dashed 

line represents the best logarithmic fit. 

Figure 6. Panel A shows the test-retest reliability of the online measure. Panel B presents 

the test-retest reliability of the offline-online composite score. Note that both coefficients 

might be over-estimated due to two observations (top right corner in both graphs). The 
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test-retest coefficients, however, remained high even when removing these data points: r 

= 0.45, and r = 0.72, for online and composite scores, respectively. 

Figure 7. Learning trajectory as reflected by the change in the online measure throughout 

familiarization blocks, for each of the three TP conditions. Error bars represent standard 

errors. Dashed lines represent best logarithmic fit. 

Figure 8. Smoothed learning trajectory: changes in the online measure of SL through 

epochs, for each of the three TP conditions. Each epoch corresponds to five blocks. Error 

bars represent standard errors. 

Figure 9. Offline test performance for each of the three TP conditions. Error bars 

represent standard errors. 

Figure 10. Learning trajectory as reflected by the change in the online measure 

throughout familiarization blocks in the two conditions, for the first (Panel A) and second 

(Panel B) sub-streams. 

 


