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Abstract The cosmological redshift drift could lead to the
next step in high-precision cosmic geometric observations,
becoming a direct and irrefutable test for cosmic accelera-
tion. In order to test the viability and possible properties of
this effect, also called Sandage–Loeb (SL) test, we generate
a model-independent mock data set in order to compare its
constraining power with that of the future mock data sets of
Type Ia Supernovae (SNe) and Baryon Acoustic Oscillations
(BAO). The performance of those data sets is analyzed by
testing several cosmological models with the Markov chain
Monte Carlo (MCMC) method, both independently as well
as combining all data sets. Final results show that, in general,
SL data sets allow for remarkable constraints on the matter
density parameter today Ωm on every tested model, show-
ing also a great complementarity with SNe and BAO data
regarding dark energy parameters.

1 Introduction

Within the general relativity (GR) framework no reliable
explanation to the current acceleration of the universe exists
which is simpler than a Λ-term or cosmological constant [1].
It behaves as a fluid with negative pressure [2], thus driving
gravitational repulsion. This is of course also the kind of
behavior displayed by the plethora of other possible fluids so
far proposed to try to accommodate data better than a cosmo-
logical constant. In broad terms, these settings, causing the
universe to accelerate, are usually included in the so-called
dark energy theories (for reviews, see [3–7]). There are other
theoretical routes with different levels of complexity (not
necessarily unrelated [8]) which venture to modify GR.

The background expansion of the universe can be mea-
sured with a lot of different probes: luminosity distances from
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Type Ia Supernovae (SNe) [9–12]; the acoustic peaks in the
Cosmic Microwave Background (CMB) [13,14]; their coun-
terpart imprinted in clustered matter, i.e. Baryon Acoustic
Oscillations (BAO) [15–19]; through the matter power spec-
trum obtained from weak lensing [20,21]. Usually a time
integral along redshift connects those data with the expan-
sion rate/history of the universe, the Hubble parameter H(z).
It is enough to constrain the geometry and energy content of
the universe quite satisfactorily.

On the other hand it is expected that the expansion of
the universe will make the redshift of a given astrophysical
object exhibit a drift over time, which should in principle be
amenable to giving an accurate description of that very same
expansion once an underlying model is chosen. While look-
ing for a possible temporal variation of the redshift of extra-
galactic sources, Sandage came in 1962 [22] to the conclusion
that it should indeed occur. However, the limited technologi-
cal resources on deck at that epoch lead to the inference that
a measurement time interval of the order of 107 years would
be required for a signal detection. When new spectroscopic
techniques became available to astrophysicists, Loeb consid-
ered the concept [23] anew in 1998, he concluded that the
new technology would allow a reduction in the observation
time interval of a few decades. This cosmological redshift
drift measurement, also called the Sandage–Loeb (SL) test,
would then provide a direct proof of the accelerated expan-
sion of the universe. In fact, this temporal variation is directly
related to the expansion rate at the source redshift, being thus
a direct measurement for the Hubble function.

The last results of the Planck survey [13] have made us
enter an ultra high-precision cosmology era. Other future
surveys are scheduled which should further improve the
accuracy of cosmological measurements, for exampleEuclid
[24], Wide-Field Infrared Survey Telescope (W-First) [25] or
Square Kilometer Array (SKA) [26].

Thus, in the near future available resources will allow
us to start thinking about the next level of cosmological
observational data to which the cosmological redshift drift
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will contribute, complementing the previously cited surveys.
However, even with future precision radio telescopes, the
measurement of the SL effect represents a difficult enter-
prise [27] as it demands several years of observation (usu-
ally some decades) to register enough signal-to-noise ratio
so as to yield a possible reliable detection of the cosmologi-
cal redshift drift signal. Best candidate objects for a feasible
detection of this faint signal are good Hubble flow tracers as
far as possible [28]. As put forward by Loeb [23], an aus-
picious target would be the Lyman-α forest measurements
of distant quasars (QSO). With the spectroscopic techniques
that are operational in the near future, like the CODEX (COs-
mic Dynamics and EXo-earth experiment) experiment [29]
proposed for the European-Extremely Large Telescope (E-
ELT) or radio telescopes as SKA [30], these observations will
grant access to direct measurements of the Hubble parameter
up to redshifts ∼ 5, a so far not yet observed redshift range.
Thus, the SL test will open a new “cosmological window”.

Due to near future possibilities to measure the cosmologi-
cal redshift drift, this type of observations recently has drawn
some attention. The reconstruction of the theoretical SL sig-
nal that different cosmological models would produce has
been explored quite extensively [31,32]. It turns out that the
range and variety of the different cosmological redshift drift
signals created by various models is remarkable: from those
created by different proposals for dark energy’s equation of
state or modified gravity [33,34] to the ones created by back-
reaction in an inhomogeneous universe without the presence
of dark energy [35]; from the peculiar signals for Lemaître–
Tolman–Bondi models [36,37] to even a null signal [38] for
the Rh = ct Universe, or other several exotic scenarios [39–
44]. SL signals have been used as a hypothetical geomet-
ric cosmic discriminant [45–47] to show the corresponding
improvement in the constraints that can be achieved due to
the degeneracy breaking (around 20% of improvements for
dark energy parameters and even 65% for matter density).
SL mock data sets have been applied with similar results
as cosmic observational discriminators to test other various
models, like interactive dark energy models [48,49], mod-
ified gravity [50,51] and other exotic cosmologies [52,53].
Their power to differentiate models has been exploited also
in the context of the model-independent approach of cos-
mography [54,55]. Besides, some new approaches [56] can
lead to ambitious ideas, such as real-time cosmology [57].

We stress again the fact that the measurement of the cos-
mological redshift drift is not an easy pursuit. It requires a
lot of planning due to the large observation time interval of
the survey. Thus, foreseeing the contribution and behavior of
this type of measurements is important we precisely carry out
a quite thorough forecast analysis of cosmological redshift
drift constraints on various cosmological models. The analy-
sis includes a comparison between the proposed SL data with
other future planned surveys, generating mock data based on

the given specifications. Furthermore, unlike previous work,
all mock data sets are generated in a fully model-independent
way, without choosing a fiducial cosmological model to gen-
erate the points. In Sect. 2 the mathematical formalism of the
cosmological redshift drift is introduced and the details of the
mock data sets we use for our predictions are given. We find it
convenient to produce a SL data set but also use auxiliary SNe
and BAO data. In Sect. 3, we explain our MCMC procedure
which will eventually constrain the cosmological models we
have chosen as reference. Finally, in Sect. 4, the outcomes of
the statistical analysis are presented and discussed. Then the
main conclusions are summarized.

2 Cosmological redshift drift

A preliminary straightforward calculation introduces the
main observable quantity we are going to focus on, i.e. the
cosmological redshift drift, (see for example [29] or [33]). In
a homogeneous and isotropic universe with a Friedmann–
Robertson–Walker metric a source at rest emitting elec-
tromagnetic waves isotropically, without any (significant)
peculiar velocity, is considered. Thus, the comoving dis-
tance between the source and an observer can be considered
fixed. If the source emits electromagnetic waves during time
(te, te + δte) and these are detected by the observer in the
interval (to, to + δto), where te is the emission time and to
is the time they reach the observer, the following relation is
satisfied

∫ to

te

dt

a(t)
=

∫ to+δto

te+δte

dt

a(t)
, (1)

provided the universe through which the waves travel is a
spatially flat Friedmann–Robertson–Walker spacetime. If the
time intervals are small (δte, δto � te, to) the above expres-
sion leads to the well-known redshift relation between the
emitted and the observed radiation

δte
a(te)

= δto
a(to)

⇒ λo

λe
= a(to)

a(te)
= 1 + ze(to), (2)

where ze(t) is the redshift of the source as measured at a
certain observation time to. Other waves can be emitted by
the source δte time later, specifically at time te+δte. They will
be observed at to + δto. Concerning these waves Eq. (2) has
to be modified regarding the new time periods and redshift.
Thus, the observer can measure the difference between the
redshifts observed at to and to + δo:

Δze = ze(to + δto) − ze(to) = a(to + δto)

a(te + δte)
− a(to)

a(te)
. (3)
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Within the δt/t � 1 approximation, the first ratio can be
expanded to linear order

a(to + δto)

a(te + δte)
� a(to)

a(te)
+ ȧ(to)δto

a(te)
− a(to)ȧ(te)δte

a(te)2 . (4)

Inserting Eq. 2 into the first order expansion in Eq. 4 an
approximated expression for the redshift variation can be
obtained,

Δze �
[
ȧ(to) − ȧ(te)

a(te)

]
δto. (5)

Under the assumption that the observation time is today, we
normalize by letting the corresponding scale factor satisfy
a(to) = 1. Then, using both the Friedmann equation and
the known redshift equation Eq. (2), the above expression
can be rewritten in terms of the Hubble parameter H(z) =
ȧ(z)/a(z)

Δze = δto [H0(1 + ze) − H(ze)] , (6)

with H0 = H(z0) being the Hubble constant today. This
redshift variation can be expressed as a spectroscopic velocity
shift Δv ≡ cΔze/(1 + ze). Using the dimensionless Hubble
parameter E(z) = H(z)/H0, the final expression can be
found:

Δv = cH0δto

[
1 − E(ze)

1 + ze

]
. (7)

2.1 Sandage–Loeb mock data set

In order to generate our SL observational mock data set in a
fully model-independent manner, we try to derive a Hubble
function from a phenomenological distance modulus, in a
fashion similar to [58]. We propose this observable because
it is well measured by Type Ia Supernovae (SNe) and can
be extended to high redshifts, even if with lower precision,
by Gamma Ray Bursts (GRBs, Mayflower sample) [59]. We
model this phenomenological distance modulus thus:

μfit(z) = a + 5 log10 [Ffit(z; b, c, d, e)] , (8)

where Ffit is an ad hoc proposed function (among many)
mimicking the luminosity distance. This phenomenological
function is then fitted using the SNe data set Union 2.1 [11]
for the low-redshift regime and the GRBs sample calibrated
by the Padé method [59] for the high-redshift one. Once μfit

is fitted, other observational quantities relevant to our work
can easily be obtained. For instance, the Hubble function can
be derived recalling the relation

μ(z) = 5 log10 dL(z) + μ0, (9)

where, in the spatially flat universe we are considering, the
dimensionless luminosity distance dL is defined as

dL(z) = (1 + z)
∫ z

0

dz′

E(z′)
, (10)

and μ0 stores all the information related to the constants
involved, such as the speed of light c, the Hubble constant H0

and the SNe absolute magnitude. By comparing both distance
moduli, μ from Eq. (9) and μfit from Eq. (8), one realizes that
the dimensionless luminosity distance dL(z) is equivalent to
the function Ffit. Thus, the dimensionless Hubble function is

Efit(z) =
(

d

dz

Ffit(z; b, c, d, e)

(1 + z)

)−1

. (11)

Once such a phenomenological dimensionless Hubble param-
eter Efit(z) is obtained, we can “mimick” all the cosmological
probes we need for our analysis as they are all related to it.
In this way cosmological-model-independent mock data sets
can be created where the only intrinsic information that is
used for Efit is that it has to be able to fit present data (in
this case, SNe and GRBs). Of course, some arbitrariness lies
behind the choice of the phenomenological function Ffit; we
have tried to use the most general type of functions possible
and we have selected the best one based on a simple best-
fitting (minimum χ2) criterion. The best performing function
we have found is

Ffit(z; b, c, d, e) = z(1 + b log[1 + z]d)
(1 + c log[1 + z]e) , (12)

where the values for the parameters are shown in Table 1. It
can be seen in Fig. 1, in the top left panel, that this function
fits the distance modulus points of the Union 2.1 [11] and
Mayflower [59] data sets as much satisfactorily as a ΛCDM
with Planck values, Ωm = 0.3121 (sixth column of Table 4
in [13]). In the top right panel, we also compare the expansion
rate function H which can be derived from Eq. (12) with the
same Planck ΛCDM and with data from cosmic chronome-
ters [60]. In the bottom left panel, the comparison between
angular diameter distance derived from Eq. (12) and the same
Planck ΛCDM is done, with the data coming as comoving
angular diameter distance from galaxy clustering (BAO+FS
column of Table 7 in [61]) and physical angular diameter
distance coming from quasar cross-correlation (Eq. (21) in
[18]). Finally, in the bottom right panel, it can be seen that
the difference between our model and the Planck ΛCDM is
minimal for the case of the distance modulus (∼ 0.1%) and
small for both the Hubble function (∼ 2.5%) and the angu-
lar diameter distance (∼ 2%), all over the redshift range we
cover with our mock data in our analysis.

Once we have our Efit(z), we only need to specify a fidu-
cial value for the Hubble constant to insert in Eq. (7), whose
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Table 1 Parameter values of
Ffit

Estimate Standard error

a 43.2025 0.146659

b 2.29876 1.60875

c 0.92048 0.969826

d 1.05317 0.62311

e 0.814751 0.922533

effect is only the rescaling of the velocity shift value. We
fix the value of H0 = 67.51 km/s/Mpc from the TT, TE,
EE + lowP + lensing baseline model of Planck [13]. Then,
concerning the SL data, the points lie in the redshift range
2 < z < 5, randomly distributed within the following bins:
2 < z < 3 (13 points), 3 < z < 3.5 (7 points), 3.5 < z < 4
(4 points), 4 < z < 4.5 (3 points) and 4.5 < z < 5 (3 points).
In this way we try to mimic the reduction of the number of
data points while increasing the redshift as in [62].

According to Monte Carlo simulations carried out to even-
tually mimic results from CODEX [29,63], the standard devi-
ation on the measured spectroscopic velocity shift Δv can be
estimated

σΔv = 1.35
2370

S/N

√
30

NQSO

(
5

1 + zQSO

)x

cm s−1, (13)

where x is 1.7 for z ≤ 4, and 0.9 beyond that redshift, S/N is
the spectral signal-to-noise ratio of Ly-α, NQSO is the num-
ber of observed quasars and zQSO their redshift. The error for
the mock data is given by assuming a fixed number of inte-
gration time hours which yields a value of S/N = 3000 for
the signal-to-noise ratio and NQSO = 30 for the number of
quasars observed [28]. We also introduce some noise to dis-
perse the data points around the fiducial value derived from
Efit, using a Gaussian distribution centered on such values,
and with a standard deviation corresponding to the expected
error on the SL observation, σΔv , obtained by error prop-
agation from the fitted parameters of the selected function
Eq. (12).

Note that the magnitude of the observed cosmological red-
shift drift is proportional to the observation period although
the error does not depend on it. Thus, once a data set for some
given observational time ΔtA is created, any new mock data
set with different observation period ΔtB can easily be cal-
culated by

Fig. 1 Top left panel: Comparison between the selected phenomeno-
logical function Ffit(z; b, c, d, e) given in Eq. (12) (solid red) with the
Planck ΛCDM (dashed blue) described in the text. Gray dots and bars
are distance modulus values and related errors for SNe Union and
Mayflower GRBs samples and black ones are for our generated SNe
mock data. Top right panel: comparison between the H(z) function
derived from Eq. (12) (solid red) with that corresponding to the Planck
ΛCDM (dashed blue) described in the text. Gray dots and bars are
expansion rate values and related errors from cosmic chronometers and

black ones our generated mock data. Bottom left panel: comparison of
the DA(z) function derived from Eq. (12) (solid red) with that corre-
sponding to the Planck ΛCDM (dashed blue) case described in the text.
Gray dots and bars are angular diameter distances values and related
errors from BOSS and SDSS and black ones our generated mock data.
Bottom right panel: relative residuals between our model and thePlanck
ΛCDM for the Hubble function (dashed blue), the distance modulus
(solid black) and the angular diameter distance (dotted red)
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Fig. 2 Datasets for SL test based on Ffit(z; b, c, d, e) for different observation periods: blue (circle and dashed line) for 24 years, red (triangle and
dotted line) for 28 years and green (square and solid line) for 32 years

ΔvB = ΔtB
ΔtA

ΔvA. (14)

We use the three observation periods of 24, 28 and 32 years,
which are the most illustrative among the data sets tested.
The resulting data sets for SL test can be seen on Fig. 2.

2.2 Auxiliary mock datasets

Additional future mock data sets are included alongside the
cosmological redshift drift data set in order to better constrain
models. Basically, the reason why we introduce in the picture
these other probes is our interest in studying and quantifying
the relative performance of SL with respect to more stan-
dard and used probes and our aim of finding out whether the
cosmological redshift drift data have some degree of com-
plementarity with them, thus providing eventual tighter con-
straints. These auxiliary mock data sets are created from the
same model-independent function of Eq. (8).

2.2.1 W-First SNe

The first mock data set we produce is a SNe catalog based on
theW-First forecast [25] which includes 2725 SNe randomly
picked in redshift bins of δz = 0.1 spread through a redshift
range of 0.1 < z < 1.5 according to the distribution given
by [25].

Given that in the SNe case one measures the distance mod-
ulus, direct use can be made of the fitted function Eq. (8) to
generate the mock data points. As in the SL case some Gaus-
sian noise is introduced to disperse the data points around
the mean value.

To create the error bars for this catalog and the disper-
sion for the Gaussian noise the information given in [25] is
used. The statistical errors they account for are the following:
the photometric measurement error, σmeas = 0.8; the intrin-
sic luminosity dispersion σint = 0.08; and the gravitational
lensing magnification σlens = 0.07. Besides, they assume a
systematic error σsys = 0.01(1 + z)/1.8. Thus the total error

per SNe is

σtot =
√

σ 2
stat + NSNσ 2

sys, (15)

where σstat =
√

σ 2
meas + σ 2

int + σ 2
lens and NSN is the number

of SNe in the bin. The data set generated for the W-First SNe
survey is shown on Fig. 1.

2.2.2 Euclid BAO

The second data set considered is BAO. We choose the future
Euclid survey [24] as the experiment to reproduce. The two
quantities considered are the angular diameter distance

DA(z) = c

1 + z

∫ z

0

dz′

H(z′)
, (16)

normalized by the sound horizon DA(z)/rs , and the Hubble
parameter times the sound horizon, H(z) rs , where the value
of rs = 144.71 Mpc, consistent with the previous H0, is used
[13].

Both the angular diameter distance and the Hubble param-
eter are reconstructed, again using Eq. (8). It is already
discussed that the Hubble parameter can be inferred as in
Eq. (11), once a value for H0 is decided upon. Instead, in
order to derive the angular diameter distance from Eq. (8),
its definition and its relation with the luminosity distance
(1 + z)2DA = DL are used, thus leading to

DA(z) = c

H0

Ffit(z; b, c, d, e)

(1 + z)2 . (17)

The redshift values of the data set are taken from [64]. They
specifically are the central redshifts of 15 bins with δz = 0.1
width, spread from z = 0.5 to z = 2.1. The error in each
redshift value for both DA and H0 is build from the percent-
age error also given in [64]. Finally, some Gaussian noise is
introduced using the error from each bin as dispersion when
generating the points DA(z)/rs and H(z) rs . The resulting
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data sets can be seen in Fig. 1 before normalizing the observ-
ables by the comoving sound horizon rs .

3 Testing models

Within the Bayesian framework, we aim to find how SL
constrains the probability distribution function of some cos-
mological parameters. For that purpose the posterior distri-
bution is needed, or equivalently the likelihood, which can
be straightforwardly computed with MCMC sampling while
minimizing the χ2 function. The knowledge of the posterior
probability gives a better and more complete information as
regards the parameters, including the full correlation among
them.

Thus, once we have the mock data sets, we build the χ2

function for each observable and, once all contributions are
summed, we minimize the total χ2 in order to perform our
statistical analysis. The χ2 contribution for the spectroscopic
velocity shift is simply

χ2
SL =

∑
i

(
Δvtheoi − Δvmock

i

σΔvi

)2

, (18)

where Δvtheoi = Δv(zi ) follows from Eq. (7). The errors
σΔvi are given by Eq. (13). The errors are arranged into a
diagonal covariance matrix. Depending on whether the SL
surveys will use overlapping redshift bins or not, the error
could be more realistically given by a non-diagonal covari-
ance matrix. As we lack such information, we adopt the opti-
mistic diagonal covariance matrix assumption, always keep-
ing in mind that it could lead to a general underestimation of
the global errors on the cosmological parameters. The period
of observation Δto as specified above changes depending on
the mock SL survey tested. In the case of the χ2 contribution
of SNe χ2 we have

χ2
SN =

∑
i

(
μ(zi ) − μmock

i

)2

σ 2
μi

, (19)

where the error is given by Eq. (15). We can marginalize χ2

over the parameter μ0 by expanding the χ2 in Eq. (19) with
respect to μ0 as

χ2
SN = A − 2μ0B + μ2

0C , (20)

where

A =
∑
i

(
μ̃(zi ) − μmock

i

)2

σ 2
μi

,

B =
∑
i

μ̃(zi ) − μmock
i

σ 2
μi

,

C =
∑
i

1

σ 2
μi

. (21)

Then, integrating μ0 out of the likelihood L = e− χ2
SN
2 we

can retrieve

χ̃2
SN = A − B2

C
+ ln

C

2π
, (22)

where χ̃2
SN has now no dependence on the μ0 parameter. We

have to point out that also in this case we are using a diagonal
covariance matrix because it is not possible to forecast out-
of-diagonal terms. This may lead to underestimated errors
on the cosmological parameters. With BAO we have two
correlated measurements to contribute to the total χ2; these
are H(z) rs and DA(z)/rs . With the Hubble parameter from
our phenomenological fit and the angular diameter defined
in the previous section, the comoving sound horizon rs reads

rs(z∗) = 1

H0

∫ ∞

z∗
dz′ cs

E(z′)
= 1

H0

∫ a∗

0

da′

a′2
cs

E(a′)
(23)

where the sound speed is cs = c/
√

3(1 + Rba), with
Rb = 31500Ωbh2(TCMB/2.7K )−4 and TCMB = 2.725
[65]. The comoving sound horizon rs(z∗) is evaluated at
photon-decoupling epoch redshift given by the fitting for-
mula [66]

z∗ = 1048
[
1 + 0.00124(Ωbh

2)−0.738
]

×
[
1 + b1(Ωmh

2)b2
]

, (24)

with

b1 = 0.0783(Ωbh
2)−0.238

[
1 + 39.5(Ωbh

2)0.763
]−1

, (25)

b2 = 0.560
[
1 + 21.1(Ωbh

2)1.81
]−1

, (26)

where Ωb and Ωm are the baryon and matter content of the
universe and h = H0/100. The BAO contribution is inde-
pendently calculated for each redshift, χ2

BAO = ∑
i χ

2
BAOi

.
However, taking into account the correlation of the magni-
tudes, each term at each redshift has the form

χ2
BAOi

= 1

1 − r2

⎛
⎝ H̃2

i

σ 2
H̃i

+ D̃2
i

σ 2
D̃i

− 2r
H̃i

σH̃i

D̃i

σD̃i

⎞
⎠ , (27)

where H̃i and D̃i are the differences between the model pre-
dicted and the mock generated measurements,

H̃i = H(zi ) rs(z∗) − (H rs)
mock
i , (28)

D̃i = DA(zi )

rs(z∗)
−

(
DA

rs

)mock

i
. (29)
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The correlation between the two magnitudes H rs and DA/rs
in each redshift is fixed as r = 0.4 [67]. Since CMB data
are not used, SNe data are marginalized over the parameter
H0 and BAO data do not give information about it (because
DA/rs(z∗) and H rs(z∗) do not basically depend on it), the
parameters H0 and the combination Ωbh2 cannot be well
constrained. Thus, we also include a Gaussian prior for H0

and Ωbh2, with HPlanck
0 = 67.51±0.64 and for Ωbh2

Planck =
0.02226 ± 0.00016 both derived from Planck [13].

The minimization of the χ2 function was performed using
the MCMC method [68–70], with a Wolfram Mathematica
self-developed code based on the Metropolis–Hastings algo-
rithm. In order to see the contribution of each mock data
set to the total χ2 we also have run chains for each data set
separately. In this way, the cosmological redshift drift data
are compared with those from the other future surveys. Thus
it is found whether it will be useful and up to what extent.
Moreover, for a round analysis regarding the viability of the
Sandage–Loeb test and the performance of the future (mock)
surveys several dark energy scenarios are put to the test.

3.1 ΛCDM

The first model we test is the extremely well-known ΛCDM
model [71,72], which has no degree of freedom in the dark
energy equation of state and whose dimensionless Hubble
parameter is given by

E2
ΛCDM (a) = Ωma

−3 + Ωr a
−4 + ΩΛ , (30)

taking ΩΛ = 1 − Ωm − Ωr with [73]

Ωr = Ωm

[
1 + 2.5 × 104h2Ωm(TCMB/2.7)−4

]−1
(31)

and using TCMB = 2.7255 K [65]. We enforce 0 < Ωm < 1,
and 0 < Ωb < Ωm < 1 as physical priors. The same is done
for all the other models analyzed in this paper. The results of
the Bayesian analysis for the ΛCDM model can be seen in
Table 2 and Fig. 4.

3.2 Quiessence

The second model tested is quiessence [74,75] with a single
degree of freedom in the dark energy equation of state param-
eter (i.e. no redshift dependence). Its dimensionless Hubble
parameter is given by

E2
Q(a) = Ωma

−3 + Ωr a
−4 + ΩΛa

−3(1+w), (32)

where all the parameters except w are built like in the ΛCDM
model and have the same priors. The parameter w has the
prior −5 < w < 0. This range was chosen after having

verified that expanding it further has no influence on results.
Table 3 and Fig. 5 show the results for quintessence model.

3.3 Slow-roll dark energy

We consider another one-parameter dark energy model, com-
ing from the slow-roll dark energy scenario described in [76].
Its dimensionless Hubble parameter, taking into account a
radiation component [77,78], is given by

E2
SR(a) = Ωma

−3 + Ωr a
−4 +

+ΩΛ

(
a−3

Ωma−3 + Ωr a−4 + ΩΛ

)(δw/ΩΛ)

.

(33)

For δw we impose a prior of the same width as that of the
parameter w of quiessence. However, as δw is supposed to
have its mean value at δw = 0, its prior is designed accord-
ingly. Thus, we take −2.5 < δw < 2.5. The results for the
slow-roll dark energy model can be found in Table 4 and
Fig. 6.

3.4 CPL

We are also interested in testing models of dark energy whose
equation of state parameter w has more than one degree
of freedom. As our first two-parameter dark energy model
we take the CPL model [79,80], its dimensionless Hubble
parameter being

E2
CPL(a) = Ωma

−3 + Ωr a
−4

+ΩΛa
−3(1+w0+wa)e−3wa(1−a) , (34)

where all the terms except w0 and wa are built like in previous
models and with the same priors. The parameter w0 has the
same prior as w does in quiessence; and we take −5 < wa <

5 for the second parameter. We demand in this casewa+w0 <

0 in order to have an equation of state for the DE component
which is negative in the asymptotic past. Table 5 and Fig. 7
give the results of our Bayesian analysis for the CPL model.

3.5 Lazkoz–Sendra pivotal dark energy

Another model with two parameters for the equation of state
for DE [81] is considered which can be understood easily
as a perturbative departure from ΛCDM up to second order
in redshift. Even though it is a different parametrization as
compared to CPL it can be also expressed in terms of the
parameters w0 and wa with the same interpretation: w0 is
the value of equation of state of the dark energy at present,
whereas w0 + wa is its value in the asymptotic past. Specifi-
cally, the Lazkoz–Sendra pivotal dark energy parametrization
has the following dimensionless Hubble parameter:
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E2
LS(a) = Ωma

−3 + Ωr a
−4 + ΩΛX (a) ,

X (a) = a−3(1+w0+wa)e
3
4 (1−a)[1+w0−5wa+a(wa−w0−1)]

(35)

where all the relative densities Ωi are built like in the CPL
case, all parameters also having the same priors as in CPL,
including w0 and wa . In case of the Lazkoz–Sendra model
the results of the Bayesian analysis are shown in Table 6 and
Fig. 8.

4 Results and conclusions

In the summary tables for each model are found, the min-
imum value of χ2 is presented and the constraints for all
the free parameters and the reduced χ2

red. As explained in
previous section the χ2-minimization is done using differ-
ent combinations of data sets. In the tables we first show the
results from using BAO and SNe separately and those from
joining both. We then move on to present the results from SL
only. Finally, the results for the total SNe + BAO + SL com-
bination are presented. When using SL data, each data set
with different observation years is treated separately. In this
way the performance of the cosmological redshift drift data
sets can be clearly analyzed. For each model we also show
the confidence contours for the most interesting cosmolog-
ical parameters. Each MCMC round is tested for statistical
convergence using the method described in [82].

In the ΛCDM scenario we find that the cosmological red-
shift drift data provide remarkably good constraints on Ωm :
when those data are used alone we get standard deviations
on Ωm which are 2–3 times smaller than those from the
SNe+BAO combination. Considering the broad priors taken
for Ωm in all cases and the negligible correlation between
the Hubble constant h and Ωm ,1 we conclude that the result
for the matter density Ωm is not influenced by any prior and
is solely given by the data.

Indeed, the SL data sets always do better in constraining
Ωm than the SNe data and, depending on the model and on
the years of observation, even better than the BAO data set.
Once we combine the SL data set with the other two, the
cosmological redshift drift is still helpful, even though the
BAO + SNe data set already greatly improves the constraints
in the parameter space. In general, it is clear that the cosmo-
logical redshift drift data considerably helps to constrain the
parameter Ωm in all the models.

Regarding the dark energy parameters, it can be observed
that for most cases the 24 years of observation for SL is not
enough to properly constrain them. This can for example
clearly be seen from the contours of the parameters w0 and

1 As the major axis of the contours are typically aligned with the axes
of each parameters in the parameter space.

Fig. 3 Contours in the w0–wa plane for CPL; solid contours are for 1σ

regions and clear contours are for 2σ regions. Top panel: purple is for
the BAO data; green for SNe and gray for SNe + BAO. Bottom panel:
red is for 32 years SL data; gray for SNe + BAO; blue for SNe + BAO
+ SL

wa in Figs. 7 and 8. With 28 years SL data, the 1σ regions
improve noticeable and with 32 years of observation both 1σ

and 2σ regions are well constrained for all the DE param-
eters. The best example is seen in Fig. 8. However, similar
behavior can be appreciated in the rest of the models. Besides,
it is clear that increasing the observation years improves the
overall constraining ability of the cosmological redshift drift
data sets. It is worth to note that in all these cases the contours
of the SL data set are almost perpendicular to the contours
of the SNe and BAO data sets, thus showing a great com-
plementarity between SL and the rest of the data sets [83],
as for example in the Ωm–w plane for the quiessence model
Fig. 5 or for the dynamical dark energy models Figs. 6, 7
and 8. This is very important because it means that even the
cosmological redshift drift data set with the lowest observa-
tion period noticeably contributes to improved dark energy
insights when used as cosmological probe together with other
kind of observations.

However, if one focuses on the w0 and wa parameters
two things can be noted: first, that the best fit for the SNe
+ BAO case is completely different from the values derived
from the SNe and the BAO separate analysis (this is more
evident for wa than w0); second, the errors on the w0 and
wa parameters slightly increase when adding cosmological
redshift drift data to the SNe+BAO data. Both trends might
have an explanation. Concerning the first one, if we look
at the top panel of Fig. 3 (this is true for the CPL case but
also for the LS model), we can see how unsatisfactorily the
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SNe and BAO contours overlap: the borders of the 1σ con-
fidence levels show a small overlap in a region which is far
from the best fit expected for each of them when considered
separately. This reduces the constraints on the parameters in
a considerable way and shifts the best fit estimations (not
only in wa but also on Ωm). Note also that this behavior is
somehow expected and might be counter-productive in the
future, as explained in [84]. Anyway, we must also remem-
ber we are working with mock data and not real data. Thus
the potential future goodness of the joint use of SNe and
BAO at present and maybe in the near future is not put at
stake. Moreover, we have to remember that in order to gain
more insights into a dynamical dark energy model we need
to improve the number and the quality of data at high red-
shift; that is the reason behind pushing SNe observations to
higher redshifts [85] for example or employing BAO data at
z ∼ 2. But the strongest hints about the dynamical nature
of the dark energy might come from data like SL which are
able to cover a larger and deeper redshift range. The second
issue discussed above should be exactly connected to this: if
we check again the bottom panel of Fig. 3 we can see how
the SL data set alone, which should be more sensitive to a
dynamical dark energy, determines a consistent shift in the
parameter w0 with respect to the SNe + BAO case but with
smaller uncertainty with respect to both SNe and BAO data
separately, which eventually ends in a slightly large error for
this parameter for the total SNe + BAO + SL sample.

In the case of models with a single DE parameter whose
equation of state is fixed during time high-redshift SL data are
also helpful. In the extreme case when SL data are added to
the SNe+BAO data set, even the SL data with lowest obser-
vational period help constrain the single parameter of DE.
However, it is also remarkable how every data set separately
constrains the single DE parameter to a different value. Tak-
ing into account that the redshift range of each data set is quite
different, the fact that they separately have a different value
for the parameter could be evidence for a time evolution in the

equation of state of DE. This is a clear example of another
application for the SL observation, where its high-redshift
data could easily test the time evolution of the equation of
state of DE once compared to the results of other data sets
coming from different sources.

Much of what has been stated above can be easily inferred
upon closer examination of the various contours plots. How-
ever, these plots are more useful for analyzing the correlation
between different parameters. As stated previously, in most
of the contour plots a different correlation angle can be seen
for the cosmological redshift drift data compared to the other
data sets. Thus, it clearly emerges that SL data sets will be
of utmost importance in breaking degeneracies among cos-
mological parameters. Besides, considering the high-redshift
data that will be available thanks to cosmological redshift
drift we conclude that it can be a cosmic observable worthy
to consider.
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Appendix A: Results for the ΛCDM model

See Table 2 and Fig. 4.

Table 2 Parameter results of
the ΛCDM model

Data set h Ωm Ωb χ2
min χ2

red

BAO 0.689+0.002
−0.002 0.335+0.008

−0.008 0.0467+0.0004
−0.0004 9.47 0.861

SNe 0.675+0.006
−0.007 0.301+0.008

−0.008 1387.41 0.510

SNe + BAO 0.689+0.002
−0.002 0.324+0.006

−0.006 0.0472+0.0004
−0.0004 1402.07 0.513

SL (24 years) 0.674+0.006
−0.006 0.328+0.003

−0.003 0.0467+0.0004
−0.0004 14.51 0.538

SNe + BAO + SL (24 years) 0.689+0.002
−0.002 0.324+0.003

−0.002 1417.82 0.513

SL (28 years) 0.673+0.006
−0.006 0.328+0.003

−0.003 0.0467+0.0004
−0.0004 19.73 0.731

SNe + BAO + SL (28 years) 0.689+0.002
−0.002 0.325+0.002

−0.002 1423.49 0.515

SL (32 years) 0.673+0.006
−0.006 0.328+0.002

−0.002 0.0468+0.0004
−0.0004 25.75 0.954

SNe + BAO + SL (32 years) 0.689+0.002
−0.002 0.325+0.002

−0.002 1430.03 0.518
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Fig. 4 ΛCDM model; solid contours limit 1σ regions and clear contours 2σ region. Purple for the BAO, green for SNe and red for SL data set,
gray for SNe + BAO and blue SL + BAO + SNe. First set (left) for 24 years, second (middle) for 28 and third (right) for 32 years

Appendix B: Results for the Quiessence model

See Table 3 and Fig. 5.

Table 3 Parameter results of the quiessence model

Data set h Ωm Ωb w χ2
min χ2

red

BAO 0.677+0.006
−0.006 0.336+0.008

−0.008 0.0485+0.0010
−0.0009 −0.948+0.024

−0.025 5.10 0.510

SNe 0.675+0.006
−0.007 0.341+0.013

−0.015 −1.244+0.123
−0.122 1383.13 0.509

SNe + BAO 0.686+0.006
−0.006 0.323+0.006

−0.006 0.0472+0.0008
−0.0008 −0.987+0.022

−0.023 1401.74 0.513

SL (24 years) 0.674+0.006
−0.007 0.323+0.011

−0.011 0.0474+0.0008
−0.0008 −0.888+0.141

−0.660 12.73 0.490

SNe + BAO + SL (24 years) 0.685+0.005
−0.005 0.324+0.003

−0.002 −0.982+0.020
−0.021 1417.07 0.513

SL (28 years) 0.674+0.006
−0.007 0.321+0.009

−0.009 0.0475+0.0008
−0.0008 −0.845+0.102

−0.176 17.32 0.666

SNe + BAO + SL (28 years) 0.684+0.005
−0.005 0.325+0.002

−0.002 −0.979+0.020
−0.021 1422.49 0.515

SL (32 years) 0.674+0.007
−0.006 0.320+0.007

−0.008 0.0476+0.0008
−0.0008 −0.830+0.084

−0.119 22.62 0.870

SNe + BAO + SL (32 years) 0.684+0.005
−0.005 0.325+0.002

−0.002 −0.977+0.020
−0.020 1428.75 0.517

Fig. 5 Quiessence model; solid contours limit 1σ regions and clear contours 2σ region. Purple for the BAO, green for SNe and red for SL data
set, gray for SNe + BAO and blue SL + BAO + SNe. First set (left) for 24 years, second (middle) for 28 and third (right) for 32 years
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Appendix C: Results for the slow-roll model

See Table 4 and Fig. 6.

Table 4 Parameter results of the slow-roll model

Data set h Ωm Ωb δw χ2
min χ2

red

BAO 0.678+0.006
−0.006 0.341+0.009

−0.008 0.0485+0.0010
−0.0009 0.074+0.036

−0.035 5.20 0.520

SNe 0.675+0.006
−0.006 0.330+0.010

−0.012 −0.260+0.128
−0.138 1383.10 0.509

SNe + BAO 0.688+0.005
−0.006 0.324+0.006

−0.006 0.0468+0.0008
−0.0008 0.005+0.030

−0.030 1402.05 0.513

SL (24 years) 0.674+0.006
−0.006 0.324+0.007

−0.007 0.0471+0.0008
−0.0008 0.231+0.252

−0.539 13.12 0.504

SNe + BAO + SL (24 years) 0.687+0.005
−0.005 0.325+0.002

−0.002 0.014+0.028
−0.029 1417.62 0.513

SL (28 years) 0.674+0.006
−0.006 0.323+0.006

−0.006 0.0472+0.0008
−0.0008 0.282+0.199

−0.330 17.85 0.686

SNe + BAO + SL (28 years) 0.686+0.005
−0.005 0.325+0.002

−0.002 0.017+0.028
−0.027 1423.21 0.515

SL (32 years) 0.674+0.006
−0.006 0.323+0.005

−0.005 0.0473+0.0008
−0.0007 0.306+0.171

−0.254 23.31 0.897

SNe + BAO + SL (32 years) 0.686+0.005
−0.005 0.325+0.002

−0.002 0.021+0.029
−0.029 1429.59 0.518

Fig. 6 Slow-roll model; solid contours limit 1σ regions and clear contours 2σ region. Purple for the BAO, green for SNe and red for SL data set,
gray for SNe + BAO and blue SL + BAO + SNe. First set (left) for 24 years, second (middle) for 28 and third (right) for 32 years

123



11 Page 12 of 14 Eur. Phys. J. C (2018) 78 :11

Appendix D: Results for the CPL model

See Table 5 and Fig. 7.

Appendix E: Results for the Lazkoz–Sendra pivotal Dark
Energy model

See Table 6 and Fig. 8.

Table 5 Parameter results of the CPL model

Data set h Ωm Ωb w0 wa χ2
min χ2

red

BAO 0.677+0.006
−0.007 0.395+0.035

−0.075 0.0486+0.0010
−0.0010 −0.558+0.311

−0.467 −1.722+2.035
−1.457 3.37 0.374

SNe 0.675+0.006
−0.006 0.356+0.030

−0.038 −1.165+0.203
−0.182 −0.555+1.232

−1.708 1383.07 0.509

SNe + BAO 0.678+0.006
−0.006 0.281+0.011

−0.011 0.0484+0.0010
−0.0009 −1.187+0.040

−0.032 1.022+0.119
−0.195 1386.45 0.508

SL (24 years) 0.674+0.007
−0.006 0.328+0.008

−0.017 0.0476+0.0009
−0.0008 −1.026+0.498

−1.518 −0.001+1.044
−1.584 12.19 0.488

SNe + BAO+SL (24 years) 0.684+0.006
−0.006 0.314+0.006

−0.008 −1.117+0.066
−0.066 0.602+0.286

−0.286 1412.27 0.512

SL (28 years) 0.674+0.006
−0.006 0.324+0.010

−0.017 0.0476+0.0009
−0.0008 −0.937+0.423

−0.627 −0.021+0.869
−1.541 16.56 0.662

SNe + BAO + SL (28 years) 0.683+0.006
−0.006 0.315+0.006

−0.008 −1.113+0.066
−0.068 0.590+0.293

−0.276 1417.52 0.513

SL (32 years) 0.674+0.006
−0.006 0.319+0.010

−0.019 0.0477+0.0009
−0.0008 −0.895+0.372

−0.256 0.240+0.637
−1.147 21.65 0.866

SNe + BAO + SL (32 years) 0.683+0.006
−0.006 0.315+0.006

−0.008 −1.120+0.066
−0.062 0.628+0.297

−0.278 1423.36 0.516

Fig. 7 CPL model; solid contours limit 1σ regions and clear contours 2σ region. Purple for the BAO, green for SNe and red for SL data set, gray
for SNe + BAO and blue SL + BAO + SNe. First set (left) for 24 years, second (middle) for 28 and third (right) for 32 years
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Table 6 Parameter results of the Lazkoz–Sendra pivotal model

Data set h Ωm Ωb w0 wa χ2
min χ2

red

BAO 0.677+0.006
−0.006 0.391+0.034

−0.065 0.0485+0.0009
−0.0009 −0.661+0.244

−0.333 −2.114+2.401
−1.820 3.33 0.370

SNe 0.675+0.006
−0.007 0.361+0.023

−0.031 −1.170+0.150
−0.143 −1.063+1.565

−2.004 1383.13 0.509

SNe + BAO 0.680+0.006
−0.006 0.295+0.009

−0.008 0.0481+0.0009
−0.0009 −1.093+0.028

−0.025 0.934+0.112
−0.196 1388.46 0.508

SL (24 years) 0.673+0.007
−0.006 0.331+0.005

−0.014 0.0477+0.0008
−0.0008 −1.056+0.510

−2.390 −0.616+1.416
−2.186 12.53 0.501

SNe + BAO + SL (24 years) 0.683+0.006
−0.006 0.311+0.006

−0.006 −1.088+0.037
−0.029 0.826+0.185

−0.278 1408.54 0.510

SL (28 years) 0.674+0.007
−0.007 0.325+0.009

−0.015 0.0477+0.0009
−0.0008 −0.884+0.349

−0.449 −0.173+0.917
−1.775 16.77 0.671

SNe + BAO + SL (28 years) 0.682+0.005
−0.006 0.312+0.006

−0.006 −1.089+0.037
−0.029 0.839+0.177

−0.279 1413.75 0.512

SL (32 years) 0.674+0.006
−0.006 0.322+0.009

−0.015 0.0479+0.0008
−0.0008 −0.848+0.335

−0.227 −0.080+0.815
−1.498 21.93 0.877

SNe + BAO + SL (32 years) 0.682+0.005
−0.005 0.312+0.005

−0.006 −1.087+0.038
−0.028 0.835+0.177

−0.274 1419.53 0.514

Fig. 8 Lazkoz–Sendra pivotal model; solid contours limit 1σ regions and clear contours 2σ region. Purple for the BAO, green for SNe and red
for SL data set, gray for SNe + BAO and blue SL + BAO + SNe. First set (left) for 24 years, second (middle) for 28 and third (right) for 32 years
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