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Abstract

Background

The use of real-time feedback systems to guide rescuers during cardiopulmonary resuscita-

tion (CPR) significantly contributes to improve adherence to published resuscitation guide-

lines. Recently, we designed a novel method for computing depth and rate of chest

compressions relying solely on the spectral analysis of chest acceleration. That method was

extensively tested in a simulated manikin scenario. The purpose of this study is to report the

results of this method as tested in human out-of-hospital cardiac arrest (OHCA) cases.

Materials and methods

The algorithm was evaluated retrospectively with seventy five OHCA episodes recorded by

monitor-defibrillators equipped with a CPR feedback device. The acceleration signal and

the compression signal computed by the CPR feedback device were stored in each episode.

The algorithm was continuously applied to the acceleration signals. The depth and rate val-

ues estimated every 2-s from the acceleration data were compared to the reference values

obtained from the compression signal. The performance of the algorithm was assesed in

terms of the sensitivity and positive predictive value (PPV) for detecting compressions and

in terms of its accuracy through the analysis of measurement error.

Results

The algorithm reported a global sensitivity and PPV of 99.98% and 99.79%, respectively.

The median (P75) unsigned error in depth and rate was 0.9 (1.7) mm and 1.0 (1.7) cpm,

respectively. In 95% of the analyzed 2-s windows the error was below 3.5 mm and 3.1 cpm,

respectively.
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Conclusions

The CPR feedback algorithm proved to be reliable and accurate when tested retrospectively

with human OHCA episodes. A new CPR feedback device based on this algorithm could be

helpful in the resuscitation field.

Introduction

According to current resuscitation guidelines, high quality cardiopulmonary resuscitation

(CPR) is essential to increasing survival from out-of-hospital cardiac arrest (OHCA) [1, 2].

During CPR, the early and persistent application of chest compressions and ventilations to the

patient artificially maintains a minimal flow of oxygenated blood. This delays brain damage

and generates myocardial blood flow, essential to the restoration of a perfusing rhythm. Based

mainly on observational studies [3–5], published guidelines recommend compression depths

between 50 and 60 mm, at a rate between 100 and 120 compressions per minute (cpm), allow-

ing complete chest recoil between compressions and minimising interruptions.

Unfortunately, delivering adequate chest compressions is difficult both for laypeople [6] and

well trained rescuers [7, 8]. Pauses between compressions are very frequent, and compressions

are often too fast and/or too shallow. Consequently, monitoring CPR using feedback devices to

guide rescuers during resuscitation attempts has been increasingly investigated in recent years.

These devices measure in real-time core parameters such as compression depth and rate, help-

ing the rescuer to correct the technique if necessary. To date, there is strong evidence that feed-

back improves chest compression quality in training and in real practice [9–12].

Since the appearance of the first devices based on force sensors, technology has evolved

towards systems based on accelerometers, which sense the chest acceleration during compres-

sions and calculate the instantaneous chest displacement by double integration of the chest

acceleration. This computation is challenging due to cumulative integration errors which must

be compensated to obtain a reliable compression displacement [13–15]. For this purpose, com-

mercial accelerometer-based feedback systems include additional force/pressure sensors or

other reference signals to fix boundary conditions for the integration process [12, 13]. Gonza-

lez-Otero et al. recently published a novel algorithm for computing chest compression depth

and rate based exclusively on the spectral analysis of the acceleration [16]. This algorithm

required no additional sensor or reference signal, and proved to be accurate after extensive

testing in laboratory conditions using a sensorized resuscitation manikin.

Acceleration patterns observed when compressions are provided on a manikin in a con-

trolled scenario may strongly differ from those observed during real resuscitation episodes in

humans. First, a human chest has a non-linear stiffness (force-depth relationship) which varies

among individuals and changes during the resuscitation attempt [17]. This may result in dif-

ferent acceleration patterns compared to the simulated spring-based manikin model, which

mimics a perfectly elastic chest. Second, several rescuers are usually involved in each interven-

tion, and as a result different acceleration patterns are likely to be observed depending on the

technique used to apply and remove the force from the chest. Third, resuscitation attempts can

last more than 30-40 minutes [18], and rescuer fatigue can result in more irregular acceleration

patterns during compression series. This could be particularly apparent during the latter half

of the resuscitation effort. Additionally, a decline in chest compression quality has been

observed in the minutes prior to scene departures [19]. These differences suggest that perfor-

mance results derived from a simulated study may not be directly extrapolated to real practice.
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In this study, we present the proof of concept of the spectral analysis CPR feedback method

based on acceleration [16]. The method was applied retrospectively to the chest acceleration

data recorded during human OHCA episodes. We analyzed the reliability and accuracy of the

method in the computation of chest compression depth and rate.

Materials and methods

Data collection

Data were extracted from a large database of 623 OHCA episodes collected between 2006 and

2009 by Tualatin Valley Fire & Rescue (TVF&R), an advanced life support first response emer-

gency medical service system serving nine incorporated cities in Oregon, USA. Episodes were

recorded with Heartstart MRx monitor-defibrillators (Philips Medical Systems, Andover, MA,

USA) and collected as part of the Resuscitation Outcomes Consortium (ROC) Epidemiological

Cardiac Arrest Registry. The data collection for the ROC Epistry was approved by the Oregon

Health & Science University (OHSU) Institutional Review Board (ID: IRB00001736). No clini-

cal data was available for this study.

Defibrillators were equipped with real-time CPR feedback technology (Q-CPR, Laerdal

Medical, Norway), based on chest acceleration and compression force sensing. The accelera-

tion signal was acquired by the accelerometer fitted in the Q-CPR device with a sampling rate

of 250 Hz. The compression signal was calculated from the acceleration and the force signals

using a proprietary algorithm. Signals were stored in Matlab (Mathworks, MA, USA) format

with a sampling frequency of 250 Hz and a 16-bit resolution.

Data annotation

We included in our study those episodes containing concurrent chest acceleration and com-

pression signals with a minimum duration of 20 min, more than 1500 compressions and with

a minimum average depth of 30 mm. These criteria allowed the inclusion of episodes in which

Q-CPR was used during a significant part of the episode and that were long enough to present

representative variations of the acceleration patterns associated to out-of-hospital CPR.

We used a Matlab custom-made program for visually inspecting the episodes. We identified

the onset and offset of each chest compression series using the Q-CPR compression signal.

Thus, compression and no-compression intervals were annotated for reference and included

in the analysis. Fig 1(A) shows an example of the included intervals. Note that compression

signal is depicted with negative values meaning downward chest displacement.

We discarded intervals in which either the acceleration or the compression signals were not

reliable. Specifically, we excluded:

• Intervals with discontinuous recordings of acceleration and/or compression signals. Fig 1(B)

shows an example: compressions are being provided, as can be observed in the acceleration

signal (top). However, the compression signal (bottom) is a flat line, providing no reference

for this compression interval.

• Intervals with computing errors in the compression signal. In Fig 1(C), the compression sig-

nal enclosed between gray lines shows non-consistent positive values.

• Intervals with very noisy acceleration, as illustrated in Fig 1(D). Spiky or random accelera-

tion patterns, non-consistent with acceleration waveform during chest compressions, were

also discarded. All intervals of this type corresponded to hands-off periods, i.e. with no chest

compressions being administered to the patient. These were isolated moments in which the
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Q-CPR device was apparently removed from the patient chest, so the rescuer was not expect-

ing feedback.

Feedback method

The core algorithm for computing chest compression depth and rate exclusively from the spec-

tral analysis of the acceleration was described previously [16]. The principle of this algorithm

relies on the quasi-periodicity of the chest acceleration and displacement during short intervals

of chest compressions. For every 2-s acceleration interval, henceforth referred to as 2-s win-

dow, the algorithm provides a value of average depth and a value of average rate provided that

compression activity is detected.

The flow diagram of the feedback algorithm during continuous analysis of the acceleration

signal is depicted in Fig 2. In step 1, a new 2-s window is selected in the acceleration signal

(panel A). In step 2, presence or absence of chest compressions is tested. For this purpose, the

power P of the 2-s window is computed and if P exceeds a fixed threshold then the window is

classified as compression window. If this occurs, the algorithm continues to step 3. Otherwise,

Fig 1. Interval selection. Graphical examples showing selected and discarded intervals in the episodes. (A) Selected

intervals of compressions (C) and no-compressions (NC). (B) Q-CPR compression signal is not available in the

presence of chest compressions. (C) Interval with non-consistent computation of compression signal. (D) Noisy

acceleration during a compression pause.

https://doi.org/10.1371/journal.pone.0192810.g001
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the 2-s window is classified as no-compression window. In step 3, the Fast Fourier Transform

(FFT) of the 2-s window is computed, and the fundamental frequency and the first three har-

monics are estimated in the spectral domain. Fig 2, panel B, shows the modulus of the FFT,

where the fundamental frequency, fcc, and the harmonics are annotated with vertical lines.

These data are then used in step 4 to compute the Fourier series representation of the displace-

ment signal, a periodic signal which corresponds to the average compression signal in the

observed window (Fig 2, panel C). Feedback values are finally calculated from this signal (step

5): compression rate is the fundamental frequency of the acceleration measured in the FFT

expressed in cpm; compression depth is the peak-to-peak value of the average compression

signal in mm. For the example in Fig 2, computed rate and depth was 105.5 cpm and 40.6 mm,

respectively.

Our algorithm provides quasi real-time feedback, as it computes the average depth and rate

exerted by the rescuer in the last 2 seconds. Assuming non-overlapping analysis windows, the

feedback refreshing interval would be 2 s. This feedback timing provides a balance between

quickly detecting changes in CPR performance and not supplying excessive information that

Fig 2. Flow diagram of the feedback algorithm. Step 1: selection of the 2-s window. Step 2: detection of compression activity from the power P of

the 2-s window (A). Step 3: FFT computation for estimation of acceleration harmonics (B). Step 4: reconstruction of compression signal (C).

Reconstructed signal is depicted in red, and the reference signal in blue. Step 5: calculation of feedback rate and depth values.

https://doi.org/10.1371/journal.pone.0192810.g002
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could stress the rescuer. The algorithm is simple and has a low computational cost. In a proces-

sor typically used by monitor-defibrillators, the processing of the 2-s acceleration window and

the computation of feedback values require less than 0.1 s.

Data analysis and performance evaluation

The algorithm was applied to the acceleration signal of each episode, divided into non-overlap-

ping 2-s windows. The reliability of the compression detector was assessed in terms of sensitiv-

ity and positive predictive value (PPV) as figures of merit. Sensitivity was defined as the

proportion of correctly detected compression windows among all 2-s windows in which pres-

ence of chest compressions was annotated. PPV value was the proportion of correctly detected

compression windows among all the positive detections.

We evaluated the accuracy of the feedback algorithm as follows: for every 2-s window cor-

rectly detected as compression window, we compared the depth and rate feedback values pro-

vided by the algorithm with the gold standard (GS) values obtained from the chest

compression signal provided by the Q-CPR system.

GS depth was computed by averaging the depth of the compression events included in the

analyzed 2-s window. Similarly, GS rate was computed as the inverse of the averaged time

interval between consecutive compression events in the analyzed 2-s window. The figure of

merit for accuracy was the measurement error in depth and in rate, computed as the difference

between the estimate and the GS value.

As data did not pass the Lilliefors normality test, median and percentiles were reported. We

studied the measurement error globally (for the whole dataset) using histograms and com-

pared them to the gold standard using Bland-Altman plots. We also characterized the

unsigned measurement error globally and per episode.

Results

From the initial 623 OHCA episodes, only 75 fulfilled all the inclusion criteria. Concurrent

acceleration and chest compression signals were available in 558 episodes. From these, 262

had a duration superior to 20 minutes but only 79 had also more than 1500 compressions.

From these, 75 had a mean compression depth higher than 30 mm.

According to the annotation criteria, the total discarded time was 6.8%. A total of 57142 2-s

acceleration windows were analyzed, 41912 (73%) were annotated as compression window. The

median (P25-P75) number of annotated compression window and no-compression window per

record was 531 (461-640) and 175 (106-258), respectively.

Fig 3 shows the histograms of the GS values for depth (panel A) and rate (panel B). Com-

pressions were provided with a median depth of 41.6 (35.4-47.0) mm, in a range from 14.6 to

94.6 mm. Compression rate was 110.3 (101.9-120.2) cpm, in a range from 57.1 to 181.9 cpm.

Target depth and rate recommended by the 2005 American Heart Association guidelines (in

force during the period during which the episodes were gathered) were 38-50 mm and approx-

imately 100 cpm, respectively [20].

Table 1 presents the confusion matrix used for evaluating the compression detector (step 2

in the feedback algorithm). Global sensitivity and PPV were 99.98% and 99.79%, respectively.

Only ten of the 41912 compression windows (0.02%) were not detected (FN in the confusion

matrix). On the other hand, 90 of the 15230 non-compression windows (0.59%) resulted in FP

events.

Fig 4 depicts the distributions of the measurement error in depth (panel A) and in rate

(panel B). Fig 5 shows two Bland-Altman plots depicting the measurement error as a function

of the average of estimate and GS value. Panel A refers to compression depth measurement
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and panel B to compression rate. Mean and 95% limits of agreement, depicted with dashed

lines in the figure, were 0.18 (-3.16, 3.52) mm and 0.02 (-3.10, 3.14) cpm for depth and rate,

respectively.

Table 2 shows the median value and percentiles of the unsigned (absolute) measurement

error for the whole population. Median unsigned error in depth and rate was 0.9 mm and 1.0

cpm, respectively. In 95% of the analyzed 2-s windows the error was below 3.5 mm and 3.1

cpm, respectively.

Regarding the statistics per episode, the median unsigned error per episode in depth and

rate varied from 0.5 to 1.9 mm, and from 0.8 to 1.4 cpm, respectively. Similarly, the 75th per-

centile per episode varied from 0.9 mm to 3.3 mm, and from 1.3 cpm to 2.5 cpm.

Performance examples

Fig 6 shows two examples of algorithm performance. Example (A) depicts an isolated false

negative event in an interval with low compression depth (below 20 mm). In the 2-s window

marked as FN, the power of the acceleration was below the fixed threshold, so it was classified

as no-compression window. The algorithm provided no feedback, and the reconstructed com-

pression signal was a flat line (depicted in red in the bottom panel, with the reference over-

lapped in blue). Note that the four compression events in the analyzed window had a depth of

around 10 mm. This very low depth was rarely found in the episodes. Example (B) shows an

Fig 3. Distribution of the GS values. Distribution of the GS compression values for depth (left) and rate (right) in the

analyzed 2-s windows.

https://doi.org/10.1371/journal.pone.0192810.g003

Table 1. Confusion matrix for the compression detector.

Comp. window No comp. window Total

Comp. detected TP: 41902 FP: 90 41992

No comp. detected FN: 10 TN: 15140 15150

TP (True Positive), FP (False Positive), FN (False Negative), TN (True Negative).

https://doi.org/10.1371/journal.pone.0192810.t001
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Fig 4. Distributions of the measurement error. Distribution of the error values for depth (left) and rate (right) in the

analyzed 2-s windows.

https://doi.org/10.1371/journal.pone.0192810.g004

Fig 5. Measurement error against average of estimate and GS value. Compression depth (A), compression rate (B).

Mean and 95% levels of agreement are depicted with dashed lines.

https://doi.org/10.1371/journal.pone.0192810.g005
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Table 2. Unsigned error in the estimation of compression depth and rate.

Unsigned error

Parameter Median P75 P90 P95 P99 Range

Depth (mm) 0.9 1.7 2.7 3.5 5.6 0-11.5

Rate (cpm) 1.0 1.7 2.5 3.1 4.8 0-12.3

https://doi.org/10.1371/journal.pone.0192810.t002

Fig 6. Examples of algorithm performance. (A) Isolated false negative. Central 2-s window shows a weak acceleration

and compressions were not detected. Q-CPR compression signal (blue) indicated a very low depth in this interval.

Computed compression signal (red) was reconstructed as a flat line. (B) Isolated false positive. Noisy acceleration

during a hands-off interval, resulting in false detection of compression activity.

https://doi.org/10.1371/journal.pone.0192810.g006
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isolated false positive event. The acceleration was very noisy and compression activity was

detected in the 2-s window marked as FP. In that interval, no chest compressions were deliv-

ered, so the rescuer was not expecting feedback.

Fig 7 shows four examples of algorithm accuracy. For each example, the acceleration signal

is depicted above the estimated compression signal (in red, overlapped to the reference signal

in blue). Example (A) shows a very regular compression displacement whereas in example (B)

reference compression signal varies along the 2-s interval. Examples (C) and (D) show impor-

tant computation errors caused by non-periodic acceleration waveforms. This might be

expected during the latter half of a resuscitation effort as rescuers fatigue may complicate a

rhythmic compression pattern.

In addition to real-time feedback, the algorithm allows the complete reconstruction of the

compression depth signal for the entire episode by the concatenation of the consecutive 2-s

Fig 7. Examples of algorithm accuracy. Good accuracy: (A) Depth error was 0.5 mm and rate error was -0.7 cpm. (B)

Depth error was -0.1 mm and rate error was 0.2 cpm. Poor accuracy due to lack of acceleration periodicity: (C) Depth

error was 6.9 mm and rate error was 1.9 cpm. (D) Depth error was -3.9 mm and rate error was 6.5 cpm.

https://doi.org/10.1371/journal.pone.0192810.g007
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periodic compression segments. This provides a reliable estimate of the chest displacement

along the entire episode, and properly accounts for its local variations. This is shown in Fig 8,

which depicts the computed compression signal (in red) and the reference signal (in blue).

Availability of the entire compression signal per episode is useful for debriefing process by the

emergency crews.

Discussion

Monitoring CPR performance by rescuers at the scene of cardiac arrest has become essential

in the science of resuscitation. Development of accurate and widely available CPR feedback

devices is a key component to improve performance. Feedback relying solely on accelerometry

sensing could be simple to implement in defibrillators. In particular, incorporating the real-

time feedback functionality in automated external defibrillators could contribute to enhancing

bystander chest compressions quality.

This study is the proof-of-concept of a novel chest compression feedback algorithm capable

of providing real-time help to the rescuers during CPR using only accelerometers. The algo-

rithm detects the presence of chest compressions in the acceleration and, when they are pres-

ent, measures the mean depth and rate of the compressions given by the rescuer every 2-s. The

algorithm can perform in real-time (feedback on the compression quality in the last 2-s) and

also allows the reconstruction of the entire displacement signal per episode, useful for debrief-

ing purposes.

Results proved the good reliability of the feedback algorithm in the detection of chest com-

pressions. Only 0.02% of the 2-s windows with chest compressions were not detected. This

represents a negligible time when the rescuer would receive no feedback during chest com-

pressions. In general, this corresponded to isolated intervals with very shallow chest compres-

sions rarely found in advanced life support CPR. During the basic life support sequence of 2

min 30:2 CPR, the defibrillator could advise the rescuer to compress according to guidelines if

no compressions are detected. On the other hand, in only 0.59% of the windows, compressions

were falsely detected. This would have no negative impact on CPR, as the rescuer is not actu-

ally delivering chest compressions.

The algorithm also performed very accurately, globally and per episode, according to the

analysis of the measurement error. Irregular non-periodic acceleration intervals clearly affect-

ing the accuracy of depth and rate were mainly observed in the latter half of the resuscitation

Fig 8. Reconstructed compression signal. Computed compression signal is depicted in red with the overlapped GS

compression signal computed by the Q-CPR technology (in blue).

https://doi.org/10.1371/journal.pone.0192810.g008
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effort, and might be attributable to fatigue or patient movement during chest compressions

prior to transportation.

Our method uses exclusively the chest acceleration signal to provide feedback on compres-

sion depth and rate and makes the continuous compression depth signal available during the

entire episode. In contrast, Q-CPR and most commercial accelerometer-based devices require

an additional sensor (force/pressure sensor) or other reference signal for an accurate computa-

tion of the compression depth signal. This increases processing complexity. Protection of

force/pressure sensors makes device rigid and bulkier, and after prolonged CPR this could

result in damage to the patient and cause rescuer’s discomfort [12, 21]. In contrast, accelerom-

eters could be inbuilt in a flexible encasement. This may lead to simpler, cheaper and flexible

devices with a low computational cost, but with a comparable measurement accuracy.

The major drawback of using acceleration only is the impossibility to detect chest recoil

between compressions. This limitation was discussed in our previous publications [14, 16].

Q-CPR technology relies on the force (additional sensor) for detecting rescuer’s leaning. How-

ever, human chest stiffness is non-linear, varies strongly among patients and with time along

the resuscitation episode. Consequently, measuring leaning with force gives no accurate infor-

mation about the recoil value (that is, how many millimeters is the chest being still compressed

when it should be completely released). In consequence, force can only be used as an indirect

binary indicator of leaning.

Another limitation of CPR feedback devices based on a single accelerometer is that they

overestimate chest compression depth when the patient is laying on a soft surface, such as a

mattress [22, 23]. The accelerometer senses chest displacement, which in this case corresponds

to the sum of chest compression and mattress compression. A possible solution to this prob-

lem would be to use two accelerometers. We explored the accuracy of our algorithm when

using two accelerometers to compensate for mattress displacement elsewhere [24]. The data

analyzed in this study were collected when CPR was provided with the patient laying on the

floor, so this limitation does not affect the results.

Current CPR guidelines are dated 2015, and compression depth and rate standards have

changed since 2005. Compression depth target has increased from 38-50 mm to 50-60 mm,

based on observational data which suggested improved outcomes in association with deeper

compressions [25]. Consequently, OHCA episodes used in our study showed a lower median

compression depth (41.6 mm) compared with current recommendation. Compression rate

target has also slightly changed from approximately 100 cpm to 100-120 cpm. Despite that,

median compression rate in our episodes was 110.3 cpm, consistent with current rate target.

The main limitation of this study is the absence of a true gold standard to test the reliability

and accuracy of our novel feedback algorithm. We relied on the compression and rate values

estimated by the commercial Q-CPR device. Despite this limitation, we think it is a reasonable

surrogate measure for performance comparison using real OHCA episodes.

Conclusion

The feedback algorithm discussed here proved to be reliable and accurate when tested retro-

spectively with human cardiac arrest episodes. Consequently, a new CPR feedback device

based on this algorithm could be helpful in the resuscitation field, both in training and in clini-

cal scenarios.
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