
REFINED ISOGEOMETRIC ANALYSIS:
A SOLVER-BASED DISCRETIZATION

METHOD

Daniel Garcia

Supervised by David Pardo and Victor M. Calo

April 24, 2018

(c)2018 DANIEL ALFONSO GARCIA LOZANO

REFINED ISOGEOMETRIC ANALYSIS:
A SOLVER-BASED DISCRETIZATION

METHOD

Daniel Garcia

Supervised by David Pardo and Victor M. Calo

April 24, 2018

This dissertation have been possible with the support of the Project of the Spanish Ministry
of Economy and Competitiveness with reference MTM2016-76329-R (AEI/FEDER, EU), and
MTM2016-81697-ERC/AEI, the BCAM “Severo Ochoa” accreditation of excellence SEV-2013-
0323, and the Basque Government through the BERC 2014-2017 program and the Consolidated
Research Group Grant IT649-13 on “Mathematical Modeling, Simulation, and Industrial Appli-
cations (M2SI)”; the European Union’s Horizon 2020 research and innovation program under
the Marie Sklodowska-Curie grant agreement No 644602, and the Texas Advanced Computing
Center (TACC) at The University of Texas at Austin which provides the HPC resources that
contributed to the research results reported within this Dissertation.

i

Acknowledgements

Above all, I am eternally grateful to Professor David Pardo for all the support that he gave me,
even before I initiated my Ph.D. I greatly appreciate the unequaled advices that he has given to
me during my Ph.D., which have allowed me to grow both personally and professionally. I am
confident to say that Professor David Pardo is an admirable advisor and that his guidance was
what made possible the development of this high-quality scientific work.

I also thank Professor Victor Calo for his supervision during the development of this Disserta-
tion and for the friendly invitations to visit him in Saudi Arabia, and later in Australia. I enjoyed
working with him as well as sharing with his family and members of the research group the
Argentinian barbecue times. I am very grateful to him for his help and advice that allowed me
to begin with the doctoral studies.

I would like to give special thanks to Lisandro Dalcin, researcher scientist at King Abdullah
University of Science & Technology (KAUST) in Saudi Arabia, who has given me his uncondi-
tional support throughout the development of the scientific work presented in this document. His
experience and intuition in codding topics have helped me in the development of my research
implementation as well as improving my coding struggles.

I wish to thank all the colleagues from the Mathematical Modeling, Simulation, and Industrial
Applications (M2SI) group for their friendship, support, and help. In particular, Dr. Théophile
Chaumont-Frelet for the constructive discussions of many details of this scientific work and his
useful advice, as well as Dr. Vincent Darrigrand for the debates and teachings on LATEX that
allowed me to create high-quality documents for scientific distribution. To both of them, I am
also grateful for their effort in helping me to expand my knowledge in modern languages, “Merci
beaucoup”. Besides, I thank Adel Sarmiento, former Ph.D. student at KAUST, who helped me
with the main pillars to apply my research to the study of incompressible fluid flows.

I would like to thank my parents and brother. They have given me their unconditional support
throughout all my journey, and they deserve more than a mere expression of appreciation.

ii

Abstract

Isogeometric Analysis (IGA) is a computational approach frequently employed nowadays to
study problems governed by Partial Differential Equations (PDEs). This approach defines the
geometry using conventional Computer Aided Design (CAD) functions and, in particular, Non-
uniform Rational Basis Splines (NURBS). These functions represent complex geometries com-
monly found in engineering design and are capable of preserving exactly the geometry descrip-
tion under refinement as required in the analysis. Moreover, the use of NURBS as basis functions
is compatible with the isoparametric concept, allowing to build algebraic systems directly from
the computational domain representation based on spline functions, which arise from CAD.
Therefore, it avoids to define a second space for the numerical analysis resulting in huge reduc-
tions in the total analysis time.

To perform the numerical analysis, we can use either direct or iterative solvers. Direct solvers
are preferred to study stiff linear problems that are not solvable with iterative solvers, as well as
another type of problems, e.g., problems with multiple Right Hand Side (RHS). Moreover, when
the problem size and the FLoating Point Operations (FLOPs) required to solve the problem are
enormous, and the direct solvers become excessively expensive, the iterative solver turns into a
more suitable alternative.

For the case of direct solvers, the performance strongly depends upon the employed dis-
cretization method. In particular, on IGA, the continuity of the solution spaces plays a signifi-
cant role in their performance. High continuous spaces degrade the direct solver’s performance,
increasing the solution times by a factor up to Opp3q with respect to traditional Finite Element
Analysis (FEA) per unknown, being p the polynomial order.

In this work, we propose a solver-based discretization that employs highly continuous finite
element spaces interconnected with low continuity hyperplanes to maximize the performance
of direct solvers. Starting from a highly continuous IGA discretization, we introduce C0 hy-
perplanes, which act as separators for the direct solver, to reduce the interconnection between
Degrees of Freedom (DoF) in the mesh. By doing so, both the solution time and best approxi-
mation errors are simultaneously improved. We call the resulting method “refined Isogeometric
Analysis (rIGA)”.

While this method can be applied to a variety of problems, in this Dissertation we focus on
analyzing the impact of the continuity reduction when solving a Laplace problem with structured
meshes and uniform polynomial orders in both 2D and 3D. Numerical results indicate that rIGA
delivers speed-up factors proportional to p2. For instance, in a 2D mesh with four million
elements and p “ 5, the linear system resulting from rIGA is solved 22 times faster than the one
from highly continuous IGA. In a 3D mesh with one million elements and p “ 3, the linear
rIGA system is solved 15 times faster than the IGA one.

We then develop a version of the rIGA strategy that introduces hyperplanes of arbitrary conti-
nuity (Ck hyperplanes with 0 ď k ď p´1). This strategy, called Optimally refined Isogeometric

iii

Abstract

Analysis (OrIGA), leads to more efficient discretization than those obtained with the original
version of rIGA. By using separators of arbitrary continuity degree, we achieve a performance
boost of up to 25% in the direct solvers with respect to rIGA. Thus, the savings with respect to
IGA are larger than in rIGA.

We have also designed and implemented a similar rIGA strategy for iterative solvers. This
strategy splits the mesh into subdomains using C0-hyperplanes and constructs the Schur com-
plements of the subdomains (macro-elements) using a direct solver. We then assemble those
Schur complements into a global skeleton system, which is only composed of the DoF located
along the boundaries of all the subdomains. Subsequently, we solve this system iteratively using
Conjugate Gradients (CG) with an Incomplete LU (ILU) preconditioner. Lastly, a backward
substitution is performed to recover the eliminated DoF and obtain the solution of the origi-
nal system. Thus, rIGA for iterative solvers is a hybrid solver strategy that combines a direct
solver (static condensation step) to eliminate the internal macro-elements DoF, with an iterative
method to solve the skeleton system.

The hybrid solver strategy achieves moderate savings with respect to IGA when solving a 2D
Poisson problem with a structured mesh and a uniform polynomial degree of approximation. For
instance, for a mesh with four million elements and polynomial degree p “ 3, the iterative solver
is approximately 2.6 times faster (in time) when applied to the rIGA system than to the IGA one.
These savings occur because the skeleton rIGA system contains fewer non-zero entries than the
IGA one. The opposite situation occurs for 3D problems, and as a result, 3D rIGA discretizations
provide no gains with respect to their IGA counterparts.

In this work, we also apply rIGA to solve incompressible fluid flow problems on an enclosed
domain. To satisfy the inf-sup stability condition and guarantee divergence-free discrete solu-
tions, the implemented rIGA employs a combination of C0 and C1 hyperplanes to reduce the
continuity on the solution spaces. Numerical results show that the L2 norm of the discretization
error improves as we reduce the continuity. Therefore, rIGA delivers smaller errors than Cp´1

IGA discretizations. In terms of the computational savings, rIGA provides a reduction in the
computational cost of the direct solvers by a factor of Opp2q in both 2D and 3D.

iv

Resumen

En la actualidad, diferentes áreas de la ingenierı́a se centran en el estudio de procesos fı́sicos
gobernados por Ecuaciones en Derivadas Parciales (EDPs). Algunos de estos procesos son la
mecánica de sólidos, la dinámica de fluidos, la termodinámica y el electromagnetismo. Las
aplicaciones prácticas de estos procesos fı́sicos producen complejos sistemas matemáticos, lo
que dificulta o incluso imposibilita el encontrar una solución analı́tica (exacta). Sin embargo, es
posible aproximar la solución empleando métodos numéricos.

A lo largo de las últimas décadas se han desarrollado una gran variedad de técnicas numéricas,
incluidas las diferencias finitas, los volúmenes finitos y los elementos finitos. La mayorı́a de los
métodos numéricos se pueden utilizar para resolver cualquiera de estos problemas. No obstante,
para aproximar la solución de un problema particular es habitual utilizar el método que mejor
se ajuste al mismo. El método de los elementos finitos (MEF), por ejemplo, es una excelente
herramienta para estudiar una amplia variedad de problemas en diferentes áreas de la ingenierı́a
y es frecuentemente usado para realizar análisis estructurales ya que es altamente flexible para
analizar diseños de ingenierı́a en diferentes entornos [78, 124, 125, 50, 2, 1, 72, 37, 63, 126].

En esta tesis, nos centraremos en los métodos de Galerkin, entre los que se encuentra el
MEF. Para resolver numéricamente un problema gobernado por EDPs que cuenta con condi-
ciones de borde especı́ficas usando los métodos de Galerkin, se requiere primero proporcionar
una representación geométrica del dominio del problema. El diseño asistido por ordenador
(CAD, Computer Aided Design por sus siglas en inglés) es una técnica estándar utilizada hoy
en dı́a para representar computacionalmente estas geometrı́as. Actualmente, las herramientas
basadas en CAD utilizan varios tipos de funciones, por ejemplo B-splines y/o NURBS, lo que
permite realizar representaciones geométricas de alta calidad de los dominios fı́sicos. Después
de construir la representación computacional, se procede a generar la representación discreta
del dominio computacional, conocida como malla. Por medio de dicha malla y usando una
formulación variacional de las EDPs que consiste en utilizar funciones de base definidas en el
espacio de discretización, construimos el sistema de ecuaciones algebraicas que corresponde a
la representación discreta del problema numérico. En el MEF tradicional, las funciones de base
restringidas a un elemento (denominadas funciones de forma) se definen en un elemento de ref-
erencia, y se emplea una biyección entre el elemento de referencia y el elemento en el dominio
fı́sico [78].

En algunos casos, la generación de la malla require más recursos computacionales que la
posterior construcción del sistema algebraico y solución del mismo. Los requerimientos com-
putacionales para generar la representación discreta del dominio aumentan con el tamaño y
la complejidad del mismo. Además, mallas finas y bien estructuradas son necesarias para re-
ducir el error de discretización resultante de la incapacidad de las mallas de elementos finitos
para capturar imperfecciones en la geometrı́a. Varias aplicaciones en sectores industriales como
el sector biomédico, automotriz y aeronáutico han mostrado que el análisis numérico dedica

v

Resumen

aproximadamente el 80 % del tiempo computacional total para construir las mallas (discretizar
el dominio) [79].

El análisis Isogeométrico (IGA, isogeometric analysis por sus siglas en inglés) es un método
de Galerkin desarrollado para resolver problemas gobernados por EDPs. Este método fue intro-
ducido por primera vez en el año 2005 por Hughes et al. [79] (véase también [43]). En IGA, la
representación geométrica se construye usando funciones CAD convencionales (que en general
son funciones NURBS o B-Splines). Estas funciones permiten representar geometrı́as complejas
comúnmente encontradas en problemas de ingenierı́a. Asimismo, estas funciones son capaces
de preservar exactamente la descripción de la geometrı́a bajo refinamiento como se requiere en
el análisis de problemas. Además, el uso de NURBS como funciones base es compatible con
el concepto isoparamétrico, es decir, el mismo conjunto de funciones de base se puede utilizar
para la representación computacional de la geometrı́a y el análisis del problema. A pesar de las
limitaciones que existen en softwares actuales, la capacidad de usar directamente las funciones
CAD para definir el espacio de IGA evita la necesidad de definir un segundo conjunto de fun-
ciones (ası́ como las proyecciones correspondientes) para realizar el análisis numérico [79]. En
última instancia, IGA permite genera el sistema algebraico directamente desde la representación
del dominio. Por lo tanto, este enfoque no sólo logra una reducción importante del coste total
del tiempo de análisis, sino que también elimina las imprecisiones debidas a las imperfecciones
de la reproducción de la geometrı́a en la malla.

IGA ha sido empleado en muchos campos de ingenierı́a desde que fue concebido en [79]. Este
método ha mostrado algunas ventajas sobre los enfoques tradicionales. Las discretizaciones con-
struidas con IGA usan funciones CAD altamente continuas. Estos tipos de funciones presentan
ciertas ventajas en el análisis de la dinámica de fluidos [14, 19, 71, 29, 34, 3, 12, 60, 95, 97,
114, 18, 123] ası́ como en el análisis de interacción fluido-estructura [16, 15, 82]. Además, IGA
permite construir fácilmente discretizaciones de alto orden de continuidad, lo que lo convierte
en un método atractivo para resolver problemas que requieren derivadas de alto orden, como
por ejemplo, fenómenos de transición de fase (gobernados por la ecuación de Cahn-Hilliard),
gradientes de deformación (elasticidad) [61], y problemas de difusión de fracturas [115].

Adicionalmente, IGA ha mostrado ciertas ventajas con respecto a los métodos tradicionales
para problemas en cáscaras y placas [20, 6, 85, 21, 47, 22, 88]. En particular, las funciones CAD
de alta continuidad permiten construir representaciones exactas de la placa y de las cáscaras.
Con IGA es posible construir exitosamente formulaciones para resolver problemas con grandes
deformaciones y libres de rotaciones. Además, la alta continuidad en IGA permite predecir
mejor la deformación de objetos delgados donde las mallas de elementos finitos presentan ele-
mentos altamente deformados y donde el MEF tiene problemas para predecir la cinemática de
deformación [20].

En problemas de elasticidad en régimen lineal, vibración estructural, y propagación de ondas,
las funciones de alta continuidad usadas en IGA proporcionan robustez y precisión [79, 45, 7,
87]. Para los problemas de vibración estructural, el método de refinamiento en k, un concepto
de refinamiento único de IGA, entrega espectros de frecuencia más precisos que cuando se
usan elementos finitos de alto orden (refinamiento en p). En particular, a altas frecuencias IGA
aproxima mejor los autovalores del sistema que con los métodos tradicionales de elementos
finitos.

vi

Resumen

IGA también se ha utilizado para resolver problemas de optimización [120, 91, 106, 105] y
mecánica de sólidos [44, 45, 7, 87, 26], al igual que para estudiar problemas en los campos
de las ciencias médicas [123, 17, 77, 32] y electromagnetismo [30]. En esos casos, IGA ha
mostrado que puede proporcionar discretizaciones que alcanzan el mismo nivel de error que un
MEF tradicional pero con un número menor de grados de libertad [79, 44, 13].

Los sistemas algebraicos obtenidos al implementar cualquiera de los métodos de discretización
mencionados anteriormente pueden resolverse usando tanto métodos directos como iterativos.
Los métodos directos se usan a menudo para resolver problemas con sistemas lineales rı́gidos,
los cuales no pueden ser resueltos usando métodos iterativos debido a que estos no convergen
o los resultados no son confiables. Otros escenarios en los que los resolvedores directos son
convenientes incluyen problemas con sistemas que cuentan con múltiples lados de la derecha,
por ejemplo, aquellos asociados a problemas inversos. Además, los resolvedores directos son el
bloque principal de muchos resolvedores iterativos [41]. En la tesis, nos centraremos primero en
un resolvedor directo multifrontal, el cual es un resolvedor directo de vanguardia. Este resolve-
dor directo fue propuesto originalmente en [53].

Los resolvedores directos basados en el método de particionamiento de grafos, como el re-
solvedor directo multifrontal, dividen recursivamente el grafo de conectividad de la malla del
sistema en pares de subdominios interconectados por pequeños subconjuntos de incógnitas lla-
mados separadores. El orden de eliminación de las incógnitas es establecido por la estructura
recursiva del grafo particionado, eliminando primero los grados de libertad asociados a los sub-
dominios, y luego se prosigue eliminando aquellos que se encuentran asociados a los separadores
que conectan los subdominios.

El costo de resolver un sistema algebraico de ecuaciones, y en especı́fico, el costo de fac-
torizar la matriz usando el método de factorización LU, depende del método de discretización
usado. Los estudios presentados en [38, 33] muestran que en IGA, la continuidad de las fun-
ciones de base juega un papel fundamental en la degradación del rendimiento del resolvedor
directo por incógnita. En particular, con una discretización de IGA donde la continuidad es
máxima (Cp´1), el resolvedor directo es Opp3q veces más costoso por incógnita que si usamos
un MEF tradicional, siendo p el grado polinomial del sistema. En estos análisis se asumió una
continuidad uniforme y un número total de incógnitas fijo en el sistema.

El rendimiento de los resolvedores directos por grado de libertad mejora cuando reducimos
la continuidad en la interfaz entre algunos de los elementos que conforman la malla para un
problema Cp´1 dado. Sin embargo, si en una malla con un número de elementos fijo reducimos
la continuidad global hasta C0, el costo total de la solución del sistema puede llegar a ser mayor
que el del sistema original Cp´1. El crecimiento en el costo se debe al aumento en el número de
incógnitas que conlleva la reducción de la continuidad.

En este trabajo, nosotros proponemos un método de discretización basado en el resolvedor
directo. Este método emplea espacios de elementos finitos altamente continuos interconectados
por medio de hiperplanos de baja continuidad para maximizar el rendimiento de los resolvedores
directos. Sobre una discretización altamente continua (Cp´1) introducimos hiperplanos C0, que
actúan como separadores para el resolvedor directo. Estos hiperplanos reducen la interconexión
entre las funciones base en la malla, lo que resulta en una reducción del tiempo de solución y
una mejora en el error de aproximación. Esto último ocurre debido a que la reducción local de

vii

Resumen

la continuidad enriquece el espacio de elementos finitos. Llamamos al método de discretización
resultante, análisis isogeométrico refinado (rIGA, refined IsoGeometric Analysis por sus siglas
en inglés).

Si bien este método puede aplicarse a una variedad de problemas, en esta tesis doctoral nos
centramos en analizar el impacto de la reducción de la continuidad en el rendimiento del resolve-
dor directo cuando solucionamos un problema de Laplace con mallas estructuradas y órdenes
polinomiales uniformes tanto en 2D como en 3D. Las estimaciones teóricas del número de opera-
ciones de coma flotante (FLOPs, FLOating Point operations por sus siglas en inglés) demues-
tran que nuestro método puede reducir el tiempo computacional total en un factor de entre p2 y
p3. Los resultados numéricos avalan que rIGA proporciona factores de reducción proporcionales
a p2. Por ejemplo, en una malla bidimensional (2D) con cuatro millones de elementos y p “ 5,
resolvemos el sistema lineal obtenido con rIGA 22 veces más rápido que el obtenido usando
IGA con funciones de base de alta continuidad (Cp´1). Además, en una malla tridimensional
(3D) con un millón de elementos y p “ 3, el sistema lineal obtenido con rIGA se resuelve 15
veces más rápido que cuando usamos IGA con funciones base de máxima continuidad (Cp´1).

Asimismo, hemos desarrollado una versión de rIGA que permite usar hiperplanos de con-
tinuidad arbitraria (hiperplanos Ck con 0 ď k ď p ´ 1). Esta versión optimizada de rIGA
conduce a una discretización más eficiente que la obtenida con la versión original. Utilizando
separadores con grado de continuidad arbitrario, alcanzamos un aumento del rendimiento del
resolvedor directo de hasta un 25 % con respecto a rIGA. Por lo tanto, los ahorros en costos
computacionales con respecto a IGA son mayores que en el caso de rIGA.

Los resolvedores directos se vuelven extremadamente caros e incluso imposibles de usar
cuando intentamos resolver EDPs usando grandes sistemas dispersos de ecuaciones lineales
con millones de incógnitas. Para resolver problemas de este tipo se requiere una cantidad con-
siderable de memoria fı́sica y un enorme número de FLOPs. Una alternativa para resolver este
tipo de problemas consiste en usar métodos iterativos. Este tipo de resolvedores requieren una
cantidad de memoria de OpNq, siendo N el número de incógnitas, permitiendo resolver proble-
mas enormes. Los métodos iterativos resuelven los sistemas algebraicos (en su forma matricial
Ax “ b) mejorando secuencialmente una estimación o conjetura inicial de la solución del prob-
lema (x “ x0). Estos métodos realizan una secuencia de productos matriz-vector (A ¨ x) hasta
que se satisface un criterio de parada, que tı́picamente consiste en alcanzar un valor de error (o
residuo) que está por debajo de cierta tolerancia tol, es decir, ||Ax´ b|| ď tol.

El costo de solucionar sistemas dispersos cuando se usan resolvedores iterativos depende
del número de operaciones requeridas por el método iterativo (básicamente productos matriz-
vector) y del costo de construcción y aplicación del precondicionador [99]. En trabajos ante-
riores se muestra que el coste de los resolvedores iterativos por incógnita aumenta cuando se
usan discretizaciones de Galerkin con funciones de base altamente continuas como es el caso de
IGA [39]. En particular, un producto matriz-vector es Opp2q veces más costoso cuando usamos
una discretización con continuidad máxima (Cp´1) que para el caso del MEF tradicional con
condensación estática. Asimismo, el coste de construcción y aplicación del precondicionador
depende del método de discretización. Por ejemplo, la técnica de precondicionamiento elemento
por elemento [80] muestra un factor de incremento de Opp3q en el costo cuando se usa IGA con
funciones base de alta continuidad (Cp´1) en lugar de un MEF. Una de las opciones más baratas

viii

Resumen

para precondicionar el sistema cuando utilizamos IGA como método de discretización consiste
en una factorización LU incompleta [99].

En esta tesis doctoral, también hemos diseñado e implementado un método basado en rIGA
para resolvedores iterativos. Este método divide la malla en subdominios usando hiperplanos
que reducen la continuidad hasta C0 y calcula los complementos de Schur de los subdominios
(macro-elementos) usando un resolvedor directo. A continuación, ensambla los complementos
de Schur en un sistema reducido global, también denominado sistema del esqueleto. Este sis-
tema se compone de las incógnitas situadas a lo largo de las interfaces entre los subdominios.
Posteriormente, se resuelve el sistema reducido de forma iterativa utilizando el método del gra-
diente conjugado (GC) con un precondicionador basado en la factorización LU incompleta. Por
último, se realiza una sustitución hacia atrás para recuperar las incógnitas eliminadas y obtener
la solución del sistema original. Por lo tanto, la discretización basada en rIGA para métodos
iterativos es un resolvedor hı́brido que combina un método directo (condensación estática) para
eliminar las incógnitas interiores en los macro-elementos, con un método iterativo para resolver
el sistema reducido.

El resolvedor hı́brido ha mostrado ser más económico que el resolvedor iterativo basado en
GC y precondicionado con el método de factorización LU incompleta para resolver el problema
de Poisson en 2D con una malla estructurada y un orden polinomial de aproximación uniforme.
Para una malla con cuatro millones de elementos y un grado polinomial p “ 3, la discretización
obtenida con rIGA se resuelve 2.6 veces más rápido usando el resolvedor hı́brido que para la
obtenida con IGA. El ahorro en costos computacionales se produce porque el sistema reducido
obtenido con rIGA contiene menos entradas no nulas que la matriz original obtenida con IGA.
La situación opuesta ocurre para problemas en 3D, y como resultado, las discretizaciones en 3D
obtenidas con rIGA no proporcionan ganancias con respecto a sus contrapartes IGA y MEF.

Por último, hemos aplicado el método de discretización rIGA para resolver problemas de
mecánica de fluidos considerando un fluido incompresible en un dominio cerrado. Para sat-
isfacer la condición de estabilidad inf-sup y garantizar soluciones discretas del campo de ve-
locidades con divergencia cero puntual, la discretización obtenida con rIGA emplea una com-
binación de hiperplanos C0 y C1 para reducir la continuidad de las funciones de base. Los
resultados numéricos muestran que la norma L2 del error de discretización mejora a medida que
se reduce la continuidad. Por lo tanto, rIGA entrega soluciones con errores más pequeños que
los obtenidos con IGA y máxima continuidad (Cp´1). En términos de ahorro computacional,
rIGA proporciona una reducción en el costo de los resolvedores directos en un factor de
Opp2q tanto en 2D como en 3D.

ix

Contents

Acknowledgements ii

Abstract iii

Resumen v

Contents x

List of Figures xiii

Acronyms xix

1. Introduction 1
1.1. Motivation . 1
1.2. Main contribution . 5
1.3. Outline . 6

2. Isogeometric Analysis 7
2.1. B-Splines . 7

2.1.1. B-spline geometric entities . 12
2.2. NURBS . 13
2.3. IGA discretization . 13

3. Numerical Solvers 15
3.1. Direct Solver . 15

3.1.1. Multifrontal factorization method . 16
3.2. Iterative solver . 19

3.2.1. Preconditioned Conjugate Gradient method 20
3.2.2. Incomplete LU preconditioning technique 21

4. refined Isogeometric Analysis 22
4.1. refined Isogeometric Analysis for direct solvers 22

4.1.1. Computational complexity for direct solvers 24
4.1.1.1. Cost estimates for finite element and isogeometric analysis . 25
4.1.1.2. Cost estimate for rIGA . 27

4.2. Optimally refined Isogeometric Analysis for direct solvers 28
4.2.1. Search space and its reduction . 32

x

CONTENTS

4.2.2. OrIGA implementation . 34
4.3. Refined Isogeometric Analysis for iterative solvers 36

4.3.1. Computational complexity for iterative solvers 39
4.3.1.1. Cost of static condensation (macro-elements interior DoF elim-

ination) . 39
4.3.1.2. Cost of preconditioning using ILU factorization technique . . 42
4.3.1.3. Cost of the CG iterative solver 44

5. Numerical results 46
5.1. rIGA for direct solvers . 47

5.1.1. Model problem . 47
5.1.2. Implementation details . 47
5.1.3. Fit of estimates . 48
5.1.4. Numerical results . 48

5.1.4.1. FLOPs . 48
5.1.4.2. Computational times . 51
5.1.4.3. Memory requirements . 53

5.2. OrIGA for direct solvers . 59
5.2.1. Numerical results . 59

5.2.1.1. Continuity vectors . 59
5.2.1.2. FLOPs . 59

5.3. rIGA for iterative solvers . 62
5.3.1. Model problem . 63
5.3.2. Implementation details . 63
5.3.3. Fit of estimates . 64
5.3.4. 2D numerical results . 65

5.3.4.1. Cost of static condensation 65
5.3.4.2. Cost of preconditioner set-up 67
5.3.4.3. Cost of solving the skeleton system 69
5.3.4.4. Total cost of the hybrid solver strategy 71

5.3.5. 3D numerical results . 75

6. Numerical Applications 77
6.1. Fluid flow model problem . 77
6.2. IGA discretization . 78

6.2.1. Boundary condition imposition . 79
6.2.2. Computational complexity for direct solvers 80

6.2.2.1. Bi-dimensional case . 80
6.2.2.2. d-dimensional case . 82

6.3. rIGA discretization . 82
6.3.1. Computational complexity for direct solvers 83

6.3.1.1. Bidimensional case . 84
6.3.1.2. d-dimensional case . 86

6.4. Problem implementation . 86

xi

CONTENTS

6.5. Numerical results . 87
6.5.1. 2D Example with exact solution . 87
6.5.2. Lid-driven cavity problem (Stokes flow) 88

7. Conclusions and Future work 94
7.1. Conclusions . 94

7.1.1. rIGA . 94
7.1.2. OrIGA . 95
7.1.3. Hybrid solver strategy with rIGA . 95
7.1.4. Applications . 96

7.2. Future work . 96

8. Main achievements 98
8.1. Peer reviewed publications . 98
8.2. Conferences talks . 98
8.3. Seminars & Workshops . 98

Appendix A. Memory estimates for rIGA with direct solvers 100

Bibliography 102

xii

List of Figures

1.1. Geometry, Mesh and stress contour (structural analysis) of a propeller. This
structural analysis was developed in [96] by M. A. Scott et al. 2

1.2. Illustration of Galerkin discretizations of a 2D system composed of 6 ˆ 6 ele-
ments with polynomial basis functions of order p “ 3. Red circles represent
the nodal degrees of freedom in the system, while black lines denote the mesh
skeleton. Bold lines represent lower continuity. 4
a. No continuity reduction (Cp´1 IGA). 4
b. Partial continuity reduction. 4
c. Full continuity reduction (C0 FEA). 4

2.1. Illustration of a open knot vector with 12 basis functions and polynomial degree
p “ 2. 8

2.2. Sets of B-spline basis functions associated to a one dimensional knot vector. . . 8
a. Polynomial order p “ 1 . 8
b. Polynomial order p “ 2 . 8
c. Polynomial order p “ 3 . 8

2.3. Illustration of some important properties of B-spline basis functions. 10
a. Basis function support . 10
b. Partition of unity . 10
c. Repeated knots . 10
d. Interpolatory basis functions . 10

2.4. Ways of refining the parametric spaces spanned by the B-splines basis functions. 11
a. Original knot vector with quadratic basis functions 11
b. Knot insertion. 11
c. Polynomial degree elevation . 11
d. pk-elevation . 11
e. k-refinement . 11

2.5. Illustration of a 2D B-spline entity used to analyze a scalar problem (e.g., tem-
perature) throught a Galerkin approximation. In here, ui.j are the DoF. 14

3.1. LU decomposition of a sparse matrix. 15
3.2. Subdomains resulting from the first recursive partition of a 2D problem. For sim-

plicity, we sketch a finite element discretization using a polynomial order p “ 2
and C0 continuity. Red circles represent the nodal degrees of freedom in the
system, while black lines denote the mesh skeleton (indicating lower continuity). 16

3.3. First four recursive partitions of a 2D mesh. 16

xiii

LIST OF FIGURES

3.4. Factorization procedure for a 2D system recursively partitioned into four subdo-
mains. 17

3.5. Illustration of a separator that interconnects two 1D subdomains (using p “
3 basis functions). Higher continuous discretizations (Cp´1 system) involve
wider separators and more dof to connect the subdomains. Traditional FEA (C0

system) benefits from narrow separators. 18
a. Traditional FEA (C0): weak connection alignement 18
b. Highly continuous IGA (Cp´1): strengthened connection 18

3.6. Illustration of the procedure of Gaussian elimination for a single row of the
original matrix A. a refers to the operations over the matrix diagonal (aik “
aik{akk), and a are the operations over the entries to the left of the diagonal
(aij “ aij ´ aik ¨ akj). 21

4.1. Illustration of a separator that interconnects two 1D subdomains (using p “ 3
basis functions). rIGA discretization involves narrower separators than IGA but
it increases the number of the total system dof. 23
a. Highly continuous IGA (Cp´1): strengthened connection 23
b. rIGA (Cp´1 ` C0|separator): weaker connection 23

4.2. Illustration of the width reduction and the increment in the number of unknowns
of a separator used to interconnect two subdomains that result from partitioning
a 2D system with 6ˆ 6 elements and polynomial order p “ 3. In this example,
rIGA introduces two C0-separators. 23
a. Separator used to partition a Cp´1 IGA system 23
b. Separator used to partition an rIGA system 23

4.3. Illustration of the rIGA implementation structure for a 2D system. In here, red
circles represent the nodal degrees of freedom in the system, while gray lines
denote the mesh skeleton. Bold black lines represent lower continuity. 24
a. Cp´1 IGA discretization . 24
b. Mesh partitoning . 24
c. Continuity reduction . 24
d. Enriched rIGA discretization . 24

4.4. Illustration of the elimination of unknowns of a 2D system partitioned into four
subdomains. The cost of factorization is the sum of all partial decompositions
4Opq3q ` 2Opq3q `Opq3q. 26
a. Subsets of unknowns of a 2D system 26
b. Partial matrix decomposition order . 26
c. Factorization cost . 26

4.5. Illustration of Cp´1 subsystems (macro-elements) and C0-separators (skeleton)
that result from partitioning a 2D system. 27

4.6. Ilustration of the continuity degree on a 2D rIGA discretization. 29
a. Hyperplanes and subdomains . 29
b. Continuity histogram . 29

4.7. Ilustration of the continuity degree on a 2D OrIGA discretization. 30

xiv

LIST OF FIGURES

a. Hyperplanes and subdomains . 30
b. Continuity histogram . 30

4.8. Ilustration of the separators used to interconnects the subdomains on a 1D sys-
tem using p “ 3 basis functions. 30

4.9. The number of DoF of one vertical separator in the second subdivision level
(blue) is qysep|2 “ dimy

2pkx1 ` 1q. By decreasing the continuity kx2 , the number
of DoF increases in the perpendicular direction, which results in larger (green)
separators. 31
a. Two subdivision levels of a 2D mesh 31
b. Separator size qysep|2 . 31

4.10. Continuity histograms of the separators used to partition (a) a rIGA mesh and (b)
a OrIGA mesh with ` “ 11 subdivision levels. The discretizations use a poly-
nomial degree (p “ 7). While rIGA considers separators of only minimum p0q
and maximum pp ´ 1q continuities, OrIGA explores all admissible continuities
t0, 1, . . . , p´ 1u in every subdivision level. 33
a. rIGA . 33
b. OrIGA . 33

4.11. Search space reduction. (a) While the space of all possible continuity vectors
grows exponentially with the number of subdivision levels `, (b) the reduced
search space considers only

`
p``
`

˘
non-decreasing continuity vectors 34

a. k that cannot minimize . 34
b. Admissible k . 34

4.12. The r-neighborhood of the rIGA solution (red) is shown for r “ 3. The 2r
affected continuities of the separators at levels i´ r` 1, . . . , i` r are being op-
timized to minimize Equation 4.16. The optimal solution must be non-decreasing. 35

4.13. Continuity vectors resulting from the global exhaustive search of the optimal
continuity space for a 2D mesh consisting of 10242 elements, polynomial degree
p “ 7 and ` “ 10 subdivision levels. The continuity vector of OrIGA in the
(horizontal) x-direction, kx, is identical to the rIGA solution, while ky differs
from rIGA by only two coordinates. 36
a. rIGA: Horizontal separators . 36
b. rIGA: Vertical separators . 36
c. OrIGA: Horizontal separators . 36
d. OrIGA: Vertical separators . 36

4.14. Partition of a 2D mesh into four subdomains (macro-elements). 37
4.15. Static condensation procedure for a 2D system recursively partitioned into four

subdomains. 38
4.16. Illustration of a 2D mesh partitioned into four subdomains. The total number of

elements is Nelem “ ndelem, while the number of elements in each subdomains is
sd, being d “ 2 the spatial dimension. 39

4.17. Illustration of the static condensation of the interior degrees of freedom (DoF)
for a single macro-element. 40
a. Small macro-element (nearly dense matrices) 40

xv

LIST OF FIGURES

b. Large macro-element (sparse matrices) 40
4.18. Illustration of both FEA and rIGA discretizations of a 2D system. The rIGA

discretization composes of 2 ˆ 2 subdomains, 6 ˆ 6 elements and polynomial
basis functions of order p “ 3, while the FEA discretization consists of 2 ˆ 2
elements and polynomial degree p̂ “ 5. Blue circles represent the nodal degrees
of freedom in the system, while black lines denote the mesh skeleton. Bold lines
represent C0 continuity. 42

4.19. Illustration of the nodes locations over a single element in both 2D and 3D after
static condensation. 43
a. 2D . 43
b. 3D . 43

5.1. Model problem domain. 47
a. Domain Ω “ p0, 1q2 . 47
b. Domain Ω “ p0, 1q3. 47

5.2. Number of FLOPs required to eliminate the DoF in the 2D model problem (when
using the multifrontal direct solver). The dashed lines with rounded markers
() correspond to the numerical results and the solid lines () represent the
theoretical estimates. 50
a. Polynomial degree p “ 2 . 50
b. Polynomial degree p “ 3 . 50
c. Polynomial degree p “ 4 . 50
d. Polynomial degree p “ 5 . 50

5.3. Number of FLOPs required to eliminate the DoF in the 2D model problem dis-
cretized with Nelem “ 20482 elements and p “ 9. The problem is solved with
MUMPS () and PARDISO () solvers. The dashed lines with rounded
markers () correspond to the numerical results and the solid lines () rep-
resent the theoretical estimates. 51

5.4. Number of FLOPs required to eliminate the degrees of freedom in the 3D model
problem (when using the multifrontal direct solver). The dashed lines with
rounded markers () correspond to the numerical results and the solid lines
() represent the theoretical estimates. 52
a. Polynomial order p “ 2 . 52
b. Polynomial order p “ 3 . 52
c. Polynomial order p “ 4 . 52
d. Polynomial order p “ 5 . 52

5.5. Computational time (in seconds) to factorize the 2D model problem (when using
the multifrontal direct solver). 54
a. Polynomial order p “ 2 . 54
b. Polynomial order p “ 3 . 54
c. Polynomial order p “ 4 . 54
d. Polynomial order p “ 5 . 54

xvi

LIST OF FIGURES

5.6. Computational time (in seconds) to factorize the 2D model problem discretized
with Nelem “ 20482 elements and p “ 9. The problem is solved with MUMPS
() and PARDISO () solvers. 55

5.7. Computational time (in seconds) for the 3D model problem (when using the
multifrontal direct solver). 56
a. Polynomial order p “ 2 . 56
b. Polynomial order p “ 3 . 56
c. Polynomial order p “ 4 . 56
d. Polynomial order p “ 5 . 56

5.8. Memory requirements for the factorization of the 2D model problem (when us-
ing the multifrontal direct solver). The dashed lines with rounded markers ()
correspond to the numerical results and the solid lines () represent the theo-
retical estimates. 57
a. Polynomial order p “ 2 . 57
b. Polynomial order p “ 3 . 57
c. Polynomial order p “ 4 . 57
d. Polynomial order p “ 5 . 57

5.9. Memory requirements for the factorization of the 3D model problem (when us-
ing the multifrontal direct solver). The dashed lines with rounded markers ()
correspond to the numerical results and the solid lines () represent the theo-
retical estimates. 58
a. Polynomial order p “ 2 . 58
b. Polynomial order p “ 3 . 58
c. Polynomial order p “ 4 . 58
d. Polynomial order p “ 5 . 58

5.10. Poisson model problem domain
`
Ω “ p0, 1q2˘. 63

5.11. Number of FLOPs required to eliminate the interior DoF in a single macro-
element. The dashed lines with rounded markers () correspond to the nu-
merical results and the solid lines () represent the theoretical estimates. . . 65

5.12. Computational time required to eliminate the interior DoF in a single macro-
element. 66

5.13. Number of FLOPs required to eliminate the interior DoF in all macro-elements
for a problem with a mesh size ofNelem “ 20482. The dashed lines with rounded
markers () correspond to the numerical results and the solid lines () rep-
resent the theoretical estimates. 66

5.14. Computational time required to eliminate the interior DoF in all macro-elements
for a problem with a mesh size of Nelem “ 20482. 67

5.15. Number of FLOPs required to build the preconditioner matrix P for the skele-
ton system when solving the 2D Poisson model problem with a mesh size of
Nelem “ 20482. The dashed lines with rounded markers () correspond to the
numerical results and the solid lines () represent the theoretical estimates. . 68

xvii

LIST OF FIGURES

5.16. Computational time required to build the preconditioner matrix P for the skele-
ton system when solving the 2D Poisson model problem with a mesh size of
Nelem “ 20482. 68

6.1. Example of the smooth Raviart-Thomas spaces for the velocity and the pressure
fields. In this case, we show the spaces for a 2D discretization with a mesh size
of 6ˆ 6 elements, polynomial order p “ 2 and continuity degree k “ 1. 79

6.2. Illustration of the size of the vertical separator that splits a mesh of 6ˆ6 elements
into two symmetric subdomains. The NURBS spaces have a polynomial order
p “ 2 and a continuity degree k “ 1. 81

6.3. Velocity and pressure spaces after partitioning a 2D mesh composed of 6 ˆ 6
elements into four macro-elements of 3 ˆ 3 elements. The polynomial degree
is p “ 2. vs and hs refer to the vertical and horizontal separators, respectively.
The partition level reduces the continuity of the velocity and pressure spaces by
one degree along the inter-subdomains boundaries. 83

6.4. Lid-driven cavity fluid flow test problem. 89
a. Domain Ω “ p0, 1q2 . 89
b. Domain Ω “ p0, 1q3. 89

6.5. Magnitude of the velocity (u) of the 2D Stokes problem. Problem solution ap-
proximated over a mesh size of 10242 elements and a polynomial degree p “ 4. 90
a. Case with the top boundary condition of u|BΩT “ r1, 0s. 90
b. Case with the top boundary condition defined by Equation 6.29. 90

6.6. Horizontal velocity ux along the vertical centerline. Comparison between using
a top boundary condition of u|BΩT “ r1, 0s and u|BΩT defined by Equation 6.29. 90
a. IGA . 90
b. rIGA . 90

6.7. Comparison of the horizontal velocity ux along the vertical centerline for IGA
and the optimal case of rIGA. 91
a. 2D: Mesh size of 10242 elements and p “ 4 91
b. 3D: Mesh size of 322 elements and p “ 4 91

6.8. Number of FLOPs required to solve the 2D Stokes problem with the multifrontal
direct solver. The dashed lines with rounded markers () correspond to the
numerical results and the solid lines () represent the theoretical estimates. . 91
a. Mesh size of 5122 elements . 91
b. Mesh size of 10242 elements . 91

6.9. Number of FLOPs required to solve the 3D Stokes problem with the multifrontal
direct solver. The dashed lines with rounded markers () correspond to the
numerical results and the solid lines () represent the theoretical estimates. . 92
a. Mesh size of 163 elements . 92
b. Mesh size of 323 elements . 92

xviii

Acronyms

PDEs Partial Differential Equations

CAD Computer Aided Design

FDM Finite Difference Methods

FVM Finite Volume Methods

FEA Finite Element Analysis

IGA Isogeometric Analysis

rIGA refined Isogeometric Analysis

OrIGA Optimally refined Isogeometric Analysis

BCs Boundary conditions

DoF Degrees of Freedom

NZ NonZero

RHS Right Hand Side

FLOPs FLoating Point Operations

NURBS Non-uniform Rational Basis Splines

ILU Incomplete LU

EBE Element-by-Element

CG Conjugate Gradients

GMRES Generalized Minimal RESiduals

BiCG Biconjugate Gradients

BiCGSTAB Biconjugate Gradients stabilized

NKS Newton-Krylov-Schwarz

JNFK Jacobian-free Newton-Krylov

BDDC Balancing Domain Decomposition by Constraints

FSI Fluid Structure Interaction

xix

1. Introduction

1.1. Motivation

Nowadays, many engineering fields focus on studying physical processes governed by Partial
Differential Equations (PDEs). For instance, those governed by solid mechanics, fluid dynam-
ics, thermodynamics, electromagnetics and so on. The practical applications of those processes
involve complex PDEs systems making difficult or even impossible to find an analytic (exact)
solution. A suitable alternative consists of approximating the solution of those problems by em-
ploying numerical methods. A large variety of numerical techniques has been developed during
the last decades such as Finite Difference Methods (FDM), Finite Volume Methods (FVM), and
Finite Element Analysis (FEA). In practice, most of the numerical methods are suitable for
solving any class of multiphysics problem. However, we use the method that better fits the re-
quirements of a problem to approximate its solution. For instance, a numerical method as FEA,
which is an excellent tool to study a broad variety of engineering problems in different fields, is
often used for solving structural analysis due to its flexibility in analyzing an engineering design
(domain) in almost any possible environment [78, 124, 125, 50, 2, 1, 72, 37, 63, 126]. In this
thesis, we will focus on FEA.

To solve numerically a problem governed by PDEs and specific Boundary conditions (BCs)
using FEA, we first provide a geometrical representation of the problem domain. Computer
Aided Design (CAD) is a standard technique used nowadays to build these computational repre-
sentations. Moreover, CAD tools currently use B-Splines type functions which allow performing
high-quality representations of the physical domains. After constructing the computational rep-
resentation with CAD, we generate a discrete representation of the computational domain known
as mesh. Based on this mesh and using a variational formulation of the governing PDEs with
trial and test functions defined by their respective FEA basis functions, we construct the system
of algebraic equations which corresponds to the discrete representation of the numerical prob-
lem. In traditional FEA, the basis functions are defined on a reference element, and a mapping
to the physical element is employed [78]. Figure 1.1 sketches the computational domain repre-
sentation and mesh used to perform a structural analysis (stress analysis) of a propeller using a
discretization approach based on FEA.

It is sometimes the case that the mesh generation requires more computational resources than
the subsequent construction and solution of the algebraic system. The computational require-
ment for the mesh generation enlarges as the size and complexity of the domain increases. This
occurs because a finer and better-structured mesh is needed to lessen the discretization error
resulting from the inability of FEA mesh to capture some geometry imperfections. In many
applications in industrial sectors such as biomedicine, automotive and aeronautics, they show
that the numerical analysis dedicates approximately 80 percent of the total computational time

1

1. Introduction

Geometry
(CAD)

Mesh Analysis
(FEA)

Figure 1.1.: Geometry, Mesh and stress contour (structural analysis) of a propeller. This struc-
tural analysis was developed in [96] by M. A. Scott et al.

to build the meshes (discretize the CAD domain) [79].
Isogeometric Analysis (IGA) is a well-established computational approach to solve problems

governed by PDEs. The concept of IGA was first introduced in 2005 by Hughes et al. [79],
see also [43]. IGA defines the geometry using conventional CAD functions and, in particular,
Non-uniform Rational Basis Splines (NURBS). These functions represent complex geometries
commonly found in engineering design and are capable of preserving exactly the geometry de-
scription under refinement as required in the analysis. Moreover, the use of NURBS as basis
functions is compatible with the isoparametric concept, that is, the same set of basis functions
can be used for both geometry representation and analysis. Although many obstacles remain in
the present-day CAD software, this feature avoids the need to define a second set of functions
(and the corresponding transfer operators) for the numerical analysis [79]. Ultimately, IGA al-
lows to generate the algebraic system directly from the CAD representation of the domain. Thus,
this approach not only achieves a huge reduction of the total analysis time cost but also removes
the inaccuracies due to mesh imperfections. Chapter 2 explains the fundaments of IGA that are
relevant to the thesis.

Since the main idea was established in [79], IGA has been employed in many engineering
fields in which it has shown some advantages over traditional approaches. IGA discrete repre-
sentations use highly continuous CAD basis functions (e.g., NURBS). The smoothness of those
basis functions often benefits the analysis of fluid dynamics [14, 19, 71, 29, 34, 3, 12, 60, 95,
97, 114, 18, 123] and fluid-structure iteration problems [16, 15, 82]. Moreover, IGA permits to
easily construct high order discretizations becoming attractive for solving problems that require
high order derivatives of the variable of study. For instance, to approximate the solution of phase
transition phenomena (based on Cahn-Hilliard equation) [70, 119, 116, 118, 117], gradient elas-
ticiy [61] and diffuse fracture processes [115] problems.

IGA has also shown benefits over traditional approaches for solving problems on shells and
plates [20, 6, 85, 21, 47, 22, 88]. In particular, the smooth basis functions allow to construct
exact representations of plate and shells. Moreover, IGA has great success in constructing large
deformation and rotation-free formulations. Additionally, IGA discretizations exhibit much less
shear-locking compared with FEA [20].

In the case of linear elasticity, structural vibration, and wave propagation, the smooth IGA

2

1. Introduction

basis functions provide additional robustness and accuracy [79, 45, 7, 87]. For structural vibra-
tion problems, the k-method, a refinement concept unique from IGA, provides more accurate
frequency spectra than when using high order Finite Elements p-refinements. In particular, IGA
discretizations eliminate the optical branches, which are the cause of severe accurate degradation
in higher modes when using high order p-refinements on FEA.

IGA has also been used in the context of optimisation problems [120, 91, 106, 105], solid
mechanics [44, 45, 7, 87, 26], medical applications [123, 17, 77, 32] and electromagnetics [30].
In those, IGA shows that it can provide discretizations with a lower number of Degrees of
Freedom (DoF) than those delivered by traditional FEA and achieves the same error level [79,
44, 13].

Either direct or iterative solvers can be used to compute the solution of the algebraic systems
resulting from the methods mentioned above. Direct solvers are often used to solve stiff linear
problems where iterative solvers do not converge or are unreliable. Other scenarios in which
direct solvers are convenient include problems with multiple right-hand sides (e.g., when solving
inverse problems). Moreover, direct solvers are the main building blocks of many iterative
solvers [41]. In the thesis, we will focus on a multifrontal solver, which is the state-of-the-art
direct solver and was originally proposed in [53].

Direct solvers based on graph partitioning, as the multifrontal direct solver, recursively split
the system’s connectivity graph into pairs of subdomains interconnected by small subsets of
DoF called separators. The order of elimination of the DoF is set by the recursive structure of
the partitioned graph, eliminating first the DoF associated with the subdomains, and then those
associated to the separators that connect the subdomains. A detailed explanation is provided in
Chapter 3.

The cost to solve an algebraic system of equations, specifically the cost to perform the LU fac-
torization of the matrix, is determined by the discretization method. Previous works presented
in [38, 33] show that in IGA, the continuity plays a significant part in the degradation of the
direct solver’s performance on a per DoF. In particular, a maximal continuity IGA discretization
is Opp3q times more expensive than traditional FEA per unknown, with p being the polynomial
order. This analysis assumes uniform continuity and a fixed total number of DoF in the sys-
tem. Table 1.1 illustrates the computational cost resulting from using highly continuous basis
functions (IGA) as well as traditional FEA.

System continuity
FLOPS

Skeleton Static condensation

Traditional FEA
`
C0

˘
O
´`
N pd´1q{d˘3

¯
O
`
Np2d

˘

Maximal continuity IGA
`
Cp´1

˘
O
´`
N pd´1q{dp

˘3
¯

Op1q
N “ degrees of freedom, p “ polynomial order, d “ dimension (2 or 3)

Table 1.1.: Summary of Floating Point Operations (FLOPs) estimates derived in [38, 33].

The performance of direct solvers per unknown improves when reducing the inter-element

3

1. Introduction

continuity for a given Cp´1 problem (see Table 1.1). However, if the number of elements is
kept fixed and the global continuity is turned to be C0, then the total solution cost of the system
may become larger than that of the original Cp´1 system. That growth in the cost is due to the
increased number of DoF (N) that the reduction of continuity carries (see Figure 1.2).

(a) No continuity reduction
(Cp´1 IGA).

(b) Partial continuity
reduction.

(c) Full continuity reduction
(C0 FEA).

Figure 1.2.: Illustration of Galerkin discretizations of a 2D system composed of 6ˆ 6 elements
with polynomial basis functions of order p “ 3. Red circles represent the nodal
degrees of freedom in the system, while black lines denote the mesh skeleton. Bold
lines represent lower continuity.

Direct solvers become prohibitively expensive or even impossible to use when the computa-
tion of the solution of the PDEs involves large sparse systems (of the order of millions). In those
cases, a considerable amount of memory and a large number of FLOPs are required to solve the
problems. Iterative solvers are a more suitable alternative in these situations. These methods re-
quire an amount of memory of OpNq, allowing to solve huge problems. Iterative methods solve
the algebraic system (in its matrix form Ax “ b) by sequentially improving an initial guess
of the problem solution x “ x0. Essentially, the method performs a sequence of matrix-vector
products (A ¨x) until a stopping criterion is satisfied, which typically corresponds when reaching
an error (or residual) value that is below a certain tolerance tol, i.e., ||Ax´ b|| ď tol.

The cost to solve sparse systems when using iterative solvers depends on the number of oper-
ations required by the iterative method (basically matrix-vector products) and the cost of setup
and applying the preconditioner [99]. Previous works presented in [39] show that the cost of it-
erative solvers increases when using Galerkin-based discretizations with highly continuous basis
functions as IGA. In particular, a matrix-vector product operation is Opp2q times more expen-
sive for maximal continuity IGA discretization than for traditional FEA. This cost reduces to
approximately a factor of eight when static condensation is not employed. Moreover, the cost
of setup and application of the preconditioner also depends on the discretization approach. For
instance, the Element-by-Element (EBE) preconditioning technique shows an increment by a
factor of Opp3q in the cost when using on Cp´1 IGA rather than on C0 FEA, or the Incomplete
LU (ILU) factorization preconditioning method that becomes up to a constant more expensive
in same circumstances. Ultimately, ILU factorization technique is one of the cheapest precondi-
tioning options when using smooth basis functions [99].

4

1. Introduction

1.2. Main contribution

In this work, we analyze the impact of various continuity patterns in the computational cost
of both direct and iterative solvers for a fixed mesh topology and polynomial order p. The
strategy we propose introduces some hyperplanes that partition the domain into subdomains,
besides reducing the continuity along the hyperplanes location. As the continuity is reduced, the
interconnection among the subdomains weakens, and the number of degrees of freedom in the
system grows. This is equivalent to discretizing the system using a variation of the traditional
FEA that employsCp´1 subsystems (subdomains) as elements (macro-elements). In the limiting
case of reducing continuity along all the separators, the resulting system becomes a traditional
C0 FEA. Alternatively, the method can also be interpreted as a high continuity IGA with certain
refinements over specific hyperplanes that locally reduce the continuity. Figure 1.2 illustrates the
cases with no reduction of continuity (Cp´1 IGA) and full reduction of continuity (C0 FEA), in
addition to a third case (center) with partial reduction of continuity that consists of a C0 skeleton
and four macro-elements (Cp´1 subsystems).

The main contribution of this dissertation is to present an approach that delivers a class of
discretizations which have minimal solution cost. We call the approach refined Isogeometric
Analysis (rIGA). The corresponding discretization spaces obtained with rIGA are finer than
standard maximal continuity IGA spaces and are faster to solve for than both traditional FEA and
IGA for meshes with a fixed number of elements. Moreover, the enrichment of the discrete space
results in an increment of the accuracy of the best approximation error with respect to the Cp´1

IGA discretization. This not always imply a direct improvement of the results. For example,
stability problems in the solution may lead to a worse result even if the best approximation error
is reduced.

In the dissertation, we combine the results from our publications [67, 65, 66]. In [67], we
described the impact of continuity reduction in the solution cost when solving a Laplace example
with a direct solver. We assumed that the inter-subdomains continuity is C0, while the inter-
element continuity inside the subdomains is Cp´1. By doing so, the cost of the LU factorization
dramatically decreases. For instance, by reducing the continuity over certain hyperplanes on
a third order 3D IGA discretization with two million elements, we reduce the solution time to
approximately one hour, while the IGA discretization requires 15 hours to be computed (despite
being coarser), and the corresponding FEA discretization needs over 100 hours.

In [65], we extended the approach allowing to reduce the continuity to arbitrary degrees. In
this case, the inter-subdomain continuity is Ck, being 0 ď k ă p. This variation leads to
discretizations that can be more efficiently solved via direct solvers than the ones in the previous
implementation. By allowing the use of arbitrary continuity degrees, it is possible to reduce the
total computational time by a factor of approximately 60 when compared to IGA and FEA. This
corresponds to a boost of 25% in the direct solver performance with respect to the case studied
in [67].

Finally, in [66], we extended the analysis of continuity reduction to the case of iterative solvers
and analyzed its main features and limitations. This extension involves an iterative solver that
consists of four steps. First, the solver partitions the domain problem into subdomains. We refer
to these as blocks or macro-elements. The mesh partitioning uses hyperplanes that reduce the

5

1. Introduction

continuity over the inter-subdomain boundaries. Then, the solver performs a static condensa-
tion of the macro-elements internal DoF. This reduces the system size to just the DoF located
along the macro-elements boundaries (mesh skeleton). Third, the iterative solver computes the
solution of the reduced system. Finally, a backward substitution using the factors obtained when
performing the static condensation allows us to recover the solution of the original system. Thus,
our hybrid solver combines a direct solver to build the Schur complements of the macro-elements
with an iterative solver to solve the skeleton system. This approach showed a moderate reduction
in computational cost for 2D implementations, while in 3D no gains are observed.

1.3. Outline

The remainder of the dissertation is organized as follows: Chapter 2 recalls the key aspects of
IGA, particularly the ones that are relevant to the scope of the thesis. Chapter 3 describes the
numerical solvers used to analyze the impact of local continuity reduction on the computational
cost. Chapter 4 formulates the new discretization strategy employed with direct and iterative
solvers. Chapter 5 describes extensive numerical experimentations for a Laplace problem in 2D
and 3D computed with a direct solver, and a Poisson problem in 2D and 3D solved iteratively.
Chapter 6 analyses the numerical results of two fluid flow test problem when imposing continuity
reduction on the discretization and are solved with a direct solver. The main conclusions and
future works are stated in Chapter 7 and the main achievements in Chapter 8. This dissertation
also contains an appendix A describing a formulation to estimate the memory required to solve
a problem with a direct solver using rIGA.

6

2. Isogeometric Analysis

Isogeometric Analysis (IGA) employs Computer Aided Design (CAD) functions and, in par-
ticular, Non-uniform Rational Basis Splines (NURBS) as basis functions [79, 44, 43]. These
functions represent complex geometries commonly found in engineering design and are capa-
ble of preserving exactly the geometry description under refinement as required in the analysis.
Moreover, the use of NURBS as basis functions is compatible with the isoparametric concept,
that is, the same set of basis functions can be used for both geometry representation and analysis.
Also, highly continuous NURBS often provide better approximation properties than traditional
Finite Element Analysis (FEA) on a per degree of freedom basis [96, 57].

In this chapter, we recall the fundamentals of IGA that are relevant for the scope of this
thesis. We first introduce the B-splines basis functions. Next, we introduce the NURBS basis
functions [103]. Lastly, we expose the IGA discretization.

2.1. B-Splines

The B-spline parametric space in IGA is the set of all possible combinations of one-dimensional
coordinates arranged on knot vectors. These knot vectors are defined as

Ξ “ pξ1, ..., ξnbf`p`1q @ ξi P R, (2.1)

where ξi is the i-th knot, nbf is the number of basis functions, and p is the polynomial order.
The number of basis function is nbf “ nelem`p, being nelem “ d

?
Nelem the number of elements

in one spatial dimension. The knot vector is uniform when the knots are equidistant to the
surrounded knots, that is, when the intervals between two consecutive knots (knot spans) are
equal. In case that at least one knot is not equally-spaced respect to a surrounding knot, the
knot vector is non-uniform. Moreover, the knot vectors may involve knots located at the same
coordinates (empty knot span), these are called repeated knots. An open knot vector is the knot
vector that has p`1 repeated knots at both the first and the last coordinate. The open knot vector
is the standard knot vector used in CAD (Figure 2.1).

The B-spline basis functions with support on the knot vector are defined by the Cox-de Boor
recursion formula [46, 49]. The piecewise basis functions (p “ 0) are defined by

Ni,0pξq “
#

1 forξi ď ξ ă ξi`1,

0 else,
(2.2)

while for linear (p “ 1), cuadratic (p “ 2), cubic (p “ 3), and so on, the B-spline basis functions
are defined as

Ni,ppξq “ ξ ´ ξi
ξi`p ´ ξiNi,p´1pξq ` ξi`p`1 ´ ξ

ξi`p`1 ´ ξi`1
Ni`1,p´1pξq. (2.3)

7

2. Isogeometric Analysis

Knot spanKnot

Ξ “ p0, 0, 0, 1
10 ,

2
10 ,

3
10 ,

4
10 ,

5
10 ,

6
10 ,

7
10 ,

8
10 ,

9
10 , 1, 1, 1q

Figure 2.1.: Illustration of a open knot vector with 12 basis functions and polynomial degree
p “ 2.

The resulting basis functions for polynomial degree p “ 0 and p “ 1 are the same as the
traditional piecewise constant and linear finite element basis functions, respectively (Figure 2.2a
and 2.2b). But the B-spline basis functions with higher polynomial degree (p ą 1) are different
from their FEA counterpart (Figure 2.2c). The shape of these functions depends on the location
along the knot vector. In particular, the support of the basis functions is equal to the knot spans
of p ` 1 knots. For instance, the basis functions at the edges of an open knot vector have a
support equal to rξ0, ξp`1s and rξnbf , ξnbf`p`1s, that results only in the knot spans rξp, ξp`1s and
rξnbf , ξnbf`1s since the remaining knots involve empty knot spans. The internal basis functions
involve a support equal to rξi, ξi`p`1s which is the sum of the knot spans between the p ` 1
knots (see Figure 2.3a).

x2 x2

(a) Polynomial order p “ 1

x3 x3

(b) Polynomial order p “ 2

x4 x4

(c) Polynomial order p “ 3

Figure 2.2.: Sets of B-spline basis functions associated to a one dimensional knot vector.

Moreover, the derivatives of the B-splines basis functions with respect to the spatial coordi-

8

2. Isogeometric Analysis

nates are given by
Bm
BmξNi,ppξq “ p!

pp´mq!
mÿ

j“0

βm,jNi`j,p´mpξq, (2.4)

with

β0,0 “ 1,

βm,0 “ βm´1,0

ξi`p´m`1 ´ ξi ,

βm,j “ βm´1,j ´ βm´1,j´1

ξi`p`j´m`1 ´ ξi`j j “ 1, ...,m´ 1,

βm,m “ ´βm´1,m´1

ξi`p`1 ´ ξi`m .

Some important properties of the B-spline basis functions are:

• The support of each basis function is contained in p` 1 knot spans (Figure 2.3a),

Support: Ni,p “ rξi, ξi`p`1s.

• The basis functions form a partition of unity @ ξi (Figure 2.3b),

nbfÿ

i“1

Ni,ppξq “ 1.

• The basis functions are piecewise polynomials of degree p and continuity Cp´1, except
in the presence of repeated knots where the continuity reduces according to the number
of knot repetitions. For instances if the knot is repeated r times, the continuity of the
B-splines basis function that crosses this knot is Cp´r (Figure 2.3c).

• The first and the last basis functions on an open knot vector are interpolatory, while the
remaining basis functions are zero at this location (edges of the knot vector). This also
occurs on spatial coordinates with p repeated knots (where C0 continuity is imposed)
(Figure 2.3d).

• The basis functions are non-negative over the entire knot vector (Figure 2.3),

Ni,ppξq ě 0 @i “ 1, ..., nbf ` p` 1.

There are three ways of refining the parametric spaces spanned by the B-splines basis func-
tions. These refining options consist of modifying the knot vector by knot insertion, degree
elevation or k-refinement [44, 79, 43, 103]. The knot insertion is an analog of the h-refinement
in traditional FEA. In this case, we enrich the knot vector by inserting knots at different loca-
tions from the original knots contained by the knot vector. Therefore, the inserted knot involve

9

2. Isogeometric Analysis

N5,4

support N5,4 “ rξ6, ξ11s
ˆ5 ˆ5

(a) Basis function support

ř10
i“7Ni,4pξ12q “ 1

N7,4 N8,4 N9,4 N10,4

ˆ5 ˆ5

(b) Partition of unity

C0C1C2 C3

ˆ5 ˆ5ˆ3 ˆ4ˆ2

(c) Repeated knots

N0,4 N22,4N15,4

Interpolatory basis function

ˆ5 ˆ5

(d) Interpolatory basis functions

Figure 2.3.: Illustration of some important properties of B-spline basis functions.

non-empty knot spans. Figure 2.4b illustrates an example of knot insertion in which we insert
five knots on the knot vector presented in Figure 2.4a. This reduces the knot spans size in half
and increments the number of basis functions from 7 to 12.

10

2. Isogeometric Analysis

Ξ “ p0, 0, 0, 2
10 ,

4
10 ,

6
10 ,

8
10 , 1, 1, 1q

(a) Original knot vector with quadratic basis functions

Ξ “ p0, 0, 0, 1
10 ,

2
10 ,

3
10 ,

4
10 ,

5
10 ,

6
10 ,

7
10 ,

8
10 ,

9
10 , 1, 1, 1q

(b) Knot insertion.

Ξ “ p0, 0, 0, 0, 2
10 ,

2
10 ,

4
10 ,

4
10 ,

6
10 ,

6
10 ,

8
10 ,

8
10 , 1, 1, 1, 1q

(c) Polynomial degree elevation

Ξ “ p0, 0, 0, 0, 2
10 ,

4
10 ,

6
10 ,

8
10 , 1, 1, 1, 1q

(d) pk-elevation

Ξ “ p0, 0, 0, 2
10 ,

4
10 ,

6
10 ,

6
10 ,

8
10 , 1, 1, 1q

(e) k-refinement

Figure 2.4.: Ways of refining the parametric spaces spanned by the B-splines basis functions.

The second refining option is degree elevation. This refinement increases the polynomial
degree of the B-spline basis functions, and at the same time increases the number of knot rep-
etitions to preserve the continuity at the knots locations. This refinement concept is the analog
of p-refinement for traditional FEA. Figure 2.4c illustrates a p-refinement for the knot vector
presented in Figure 2.4a. In the example, we increase the polynomial degree from p “ 2 to
p “ 3 while keeping the original continuity all along the knot vector. Thus, we increase the
repetitions of all knots, which results in an increment of the number of basis functions from 7 to

11

2. Isogeometric Analysis

12.
The third refinement concept was introduced with the name of k-refinement by Hughes et al.

in [79]. However, we prefer to call this refinement pk-elevation since this consists of increasing
both the polynomial degree and the smoothness (continuity) of the B-spline basis functions.
To increase the continuity of the basis functions, we only need to keep the same number of
repetitions of the original knots. The pk-elevation delivers spaces that contain r more basis
functions, being r the number of degree elevation. For instance, the number of basis functions
on a knot vector increases by one when the polynomial degree goes from p “ 2 to p “ 3
(Figure 2.4d). The pk-elevation is performed by increasing the number of repetition of the knots
at the beginning and the end of the knot vector. This refinement concept does not have an
analogous for FEA.

In this work, we denote k-refinement to the process that performs continuity reduction of the
B-splines basis functions. This k-refinement concept enriches the spaces by inserting knots at
the same original knot coordinates of the knot vector. Thus, increasing the number of knots
repetitions. Figure 2.4e illustrates an example of k-refinement, in which we increase the repe-
tition of one knot in the knot vector. This results in a reduction of the continuity degree at the
knot location, increasing the number of basis functions from 7 to 8. In this work, we refer to our
concept of k-refinement as k-reduction to avoid confusion, since the k-refinement title is already
widely accepted in IGA to refer to pk-elevation.

2.1.1. B-spline geometric entities

We construct curves, surfaces, and solids in R by using sets of B-spline basis functions contained
in knot vectors. The curves are composed of a linear combination of the B-splines basis functions
on a single knot vector. The coefficients accompanying the basis functions are known as control
points and correspond to the node values in traditional FEA. A curve constructed with a set of
B-splines is given by

Cpξq “
nbfÿ

i“1

Ni,ppξqBi, (2.5)

where Bi P Rd is the i-th control point that corresponds to the coefficient of Ni,p basis function.
The surfaces are constructed by tensor product of two sets of B-splines basis functions. Then,

given two knot vectors Ξ “ pξi, ..., ξnbf`p`1q and H “ pψi, ..., ψmbf`ρ`1q, as well as a set of
control points arranged in a matrix form Bi,j , the surface is defined as

Spξ, ψqp,ρ “
nbfÿ

i“1

mbfÿ

j“1

Ni,ppξqMj,ρpψqBi,j , (2.6)

where Ni,pΞ and Ni,pH are B-splines basis functions. Moreover, nbf and mbf are the number
of basis function on Ξ and H knot vectors, respectively. p and ρ are the polynomial degrees
imposed on each knot vector.

We construct the solids by a tensor product of three sets of B-splines basis functions. Dis-
posing of Ξ “ pξi, ..., ξnbf`p`1q, H “ pψi, ..., ψmbf`ρ`1q and L “ pϕi, ..., ϕlbf`%`1q knot

12

2. Isogeometric Analysis

vectors, and the controls points ordered in tensor Bi,j,k, the solid is defined as

Spξ, ψ, ϕqp,ρ,% “
nbfÿ

i“1

mbfÿ

j“1

lbfÿ

k“1

Ni,ppξqMj,ρpψqLj,%pϕqBi,j,k, (2.7)

where Ni,pΞ , Ni,pH and Li,pL are the B-splines basis functions associated to each knot vectors,
nbf , mbf and lbf are the number of basis function on each knot vector, and p, ρ and % are the
polynomial degrees of each knot vector.

2.2. NURBS

The B-splines allow to represent a great variety of shapes in R accurately. However, in particular
cases such as circles and ellipses, these functions deliver poor approximations. The non-uniform
rational B-splines are a general version of the B-splines functions that permit the exact represen-
tation of different geometric entities including those resulting from conic sections (circles and
ellipses). The NURBS basis functions in one dimension are defined as

Rp
i pξq “

Ni,ppξqwiřnbf

î“1
Nî,ppξqwî

, (2.8)

where wi is a positive weight of the Ni,p basis function. The NURBS basis functions in 2D and
3D are given by

Rp,ρ
i,j pξ, ψq “ Ni,ppξqMj,ρpψqwi,jřnbf

î“1

řmbf

ĵ“1
Nî,ppξqMĵ,ρpψqwî,ĵ

, (2.9)

Rp,ρ,%
i,j,k pξ, ψ, ϕq “ Ni,ppξqMj,ρpψqLj,%pϕqwi,j,křnbf

î“1

řmbf

ĵ“1

řlbf

k̂“1
Nî,ppξqMĵ,ρpψq Lk̂,%pϕqwî,ĵ,k̂

, (2.10)

respectively. The curves, surfaces and solids constructed with NURBS basis functions are de-
fined the same as for B-splines. In particular, the basis functions in 1D pNi,pq, 2D pNi,p ˆMj,ρq
and 3D pNi,p ˆMj,ρ ˆ Lj,%q in Equations 2.5, 2.6 and 2.7 are replaced by Rp

i , Rp,ρ
i,j and Rp,ρ,%

i,j,k ,
respectively.

2.3. IGA discretization

From the perspective of numerical analysis, the B-spline (NURBS) entities correspond to meshes
where the non-empty knot span rξi, ξi`1sd are analogous to the mesh elements, and the control
points associated with the basis functions define the shape of the domain. When considering the
isoparametric principle, the field in question (e.g., displacement, temperature) is represented us-
ing the same basis functions as the geometry, and the coefficients of the basis functions (control
variables) correspond to the Degrees of Freedom (DoF).

The construction of the matrix systems proceeds as for traditional FEA. Figure 2.5 illustrates
a 2D B-spline entity used to analyze a scalar problem. In this example, the B-splines functions
are of second order (p “ 2) and the mesh has ten elements per spatial dimension. For additional
information on using B-spline families for numerical analysis, we refer to [103, 43].

13

2. Isogeometric Analysis

Knot vectors
pΞpξq ˆH pψq q

Basis functions
`
Rp,ρ
i,j

˘

knot

Control
point

Element Mesh

Field Spξ, ψq
u “ řnbf ,mbf

i,j“1 ui,jRp,ρ
i,j

Scalar field

Figure 2.5.: Illustration of a 2D B-spline entity used to analyze a scalar problem (e.g., tempera-
ture) throught a Galerkin approximation. In here, ui.j are the DoF.

14

3. Numerical Solvers

In this chapter, we describe the direct and the iterative solvers we employ to study the impact
of continuity reduction on the computational cost. First, we describe the multifrontal direct
solver, which is the state-of-the-art method for the direct solution of linear algebraic systems.
Second, we introduce the Krylov (sub)space iterative solvers. These are one of the ten numerical
methods most influential on science and engineering in the 20th century [52, 56]. In order to
better expose the impact of the continuity reduction on the iterative solvers, we focus only on
the preconditioned Conjugate Gradients (CG) iterative solver, which is briefly described at the
end of the section. Nevertheless, much of the analysis performed for CG solver can be easily
generalized to the case of other iterative solvers.

3.1. Direct Solver

There exist several types of direct solvers, such as those based on LU and QR factorizations. The
idea behind these solvers is to perform a proper decomposition of the original matrix in terms of
the multiplication of two auxiliary matrices leading to two linear systems of equations that can
be easily solved. The fastest direct solvers are based on LU factorization (Cholesky factorization
in the case of symmetric positive definite systems). These solvers decompose the matrix into a
lower-triangular matrix (L) and an upper-triangular one (U) and solve the respective triangular
systems sequentially in order to obtain the solution of the original problem.

L

U

Matrix system Reordered matrix Factors L U

Figure 3.1.: LU decomposition of a sparse matrix.

For sparse systems (which arise in Finite Element Analysis (FEA) due to the local support
of the basis functions), a reordering of rows and columns of the matrix is performed before
proceeding with the factorization. This minimizes the subsequent fill-in in the L and U factors,
thus improving the performance of the solver (Figure 3.1). The matrix is commonly reordered

15

3. Numerical Solvers

according to a nested dissection technique [69], since this ordering algorithm is optimal for
minimizing the fill-in of the L and U factors for the case of structured grids with an equal
number of elements in each spatial direction, and it is quasi-optimal for many other cases.

3.1.1. Multifrontal factorization method

The state-of-the-art implementation is based on the multifrontal solver, a method of solution of
sparse linear systems proposed in [53]. This solver is a generalization of the frontal direct solver
presented in [81]. The multifrontal solver performs a recursive partitioning of the mesh into
pairs of disconnected pieces (subdomains) that are interconnected by small subsets of degrees
of freedom called separators (Figure 3.2). Figure 3.3 illustrates an example where a 2D mesh is
recursively partitioned four times.

Mesh

Subdomains

Separator

Figure 3.2.: Subdomains resulting from the first recursive partition of a 2D problem. For sim-
plicity, we sketch a finite element discretization using a polynomial order p “ 2 and
C0 continuity. Red circles represent the nodal degrees of freedom in the system,
while black lines denote the mesh skeleton (indicating lower continuity).

Mesh First and second partition Four partitions levels

Figure 3.3.: First four recursive partitions of a 2D mesh.

In the factorization process, the elimination of the Degrees of Freedom (DoF) follows the
recursive structure of the mesh partition. The unknowns associated to the subdomains are elim-

16

3. Numerical Solvers

Solution

Recursive
partition

Subdomain
matrix

assembling

Internal DoF
elimination

Merge
subdomain

contribution

Separators
DoF

elimination

Merge
separators

contribution

Last separator
DoF elimination

Backward
subtitution

Solution of fully
assembled DoF
subset
(first separator)

Figure 3.4.: Factorization procedure for a 2D system recursively partitioned into four subdo-
mains.

17

3. Numerical Solvers

inated first. Then, the remaining unknowns are eliminated at every separator once they can be
fully expressed in terms of the separator DoF. Once all separators are processed, a single subset
of fully assembled degrees of freedom (first separator) is solved, and a backward substitution
is executed following the structure of the system partition in order to recover the eliminated
DoF and solve the problem. An illustration of the factorization procedure and solution of a 2D
problem recursively partitioned into two subdomains is presented in Figure 3.4. For additional
details on the factorization process, we refer to [81, 53, 33, 100].

The selected discretization heavily influences the performance of the recursive elimination of
the system. For traditional FEA, the interconnection between subdomains is weak due to the
minimal inter-element continuity. Subdomains are connected by narrow separators (Figure 3.2).
In Isogeometric Analysis (IGA), the high inter-element continuity strengthens the interconnec-
tion between subdomains, since the growth of the basis function support increments the number
of DoF shared between elements. Therefore, wider separators are required to interconnect the
subdomains. For instance, in a Cp´1 IGA system, the separators are p times wider (Figure 3.5).

(a) Traditional FEA (C0): weak connection
alignement

(b) Highly continuous IGA (Cp´1):
strengthened connection

Figure 3.5.: Illustration of a separator that interconnects two 1D subdomains (using p “ 3 basis
functions). Higher continuous discretizations (Cp´1 system) involve wider separa-
tors and more dof to connect the subdomains. Traditional FEA (C0 system) benefits
from narrow separators.

Hence, highly continuous discretizations degrade the performance of the direct solver per un-
known (DoF), increasing time and memory requirements. Indeed, highly continuous IGA is p3

times more expensive than traditional FEA per unknown, as indicated in Table 1.1 on Chapter 1.
Ultimately, the increment in the cost occurs because the size of the separators increases, which

18

3. Numerical Solvers

results in more expensive matrix factorizations [41].

3.2. Iterative solver

Nowadays, the most competitive iterative techniques used to solve large-scale linear systems
belongs to the Krylov (sub)space methods [108, 52, 56, 75, 73, 93]. Some of the iterative
solvers included in this class are the Conjugate Gradient (CG) method presented by Hestenes
and Stiefel in [76], the Generalized Minimal RESiduals (GMRES) method developed by Saad
and Schultz [109] and the Biconjugate Gradients (BiCG) technique first presented in [86] by
Lanczos, which can be interpreted as a variant of the CG [62] for nonsymmetric systems.

The area of Krylov (sub)space methods is in continuous development, and many advances
have been performed during the last decades [113]. In general, the advances in this field fo-
cus on developing methods to solve particular situations. For instance, the block Krylov itera-
tive methods to solve problems with multiple Right Hand Side (RHS) [74], the Jacobian-free
Newton-Krylov (JNFK) methods to deal with non-linear problems and the Newton-Krylov-
Schwarz (NKS) methods developed to better approximate compressible potential flows [31]
and chemically reacting flows [92]. Moreover, some variants of traditional Krylov methods
have been developed to improve particular aspects of those iterative approaches, for example,
Biconjugate Gradients stabilized (BiCGSTAB) method was designed to improve the conver-
gence stability of BiCG resulting in a faster method with smoother convergence.

An essential element that makes Krylov (sub)space methods competitive is the use of precon-
ditioners. The idea of preconditioning consists of replacing the original system with an equiv-
alent one that is more suitable for approximating a problem solution with the chosen Krylov
space method. In particular, the condition number of the matrix of the preconditioning system
is smaller than the original matrix one. This usually results in a speed-up of the convergence of
the iterative solvers (reducing the number of iterations).

In practice, the better the preconditioner is speeding up the solver convergence, the more
expensive its construction and application becomes. Then, a good preconditioner technique is
the one that better balance performance and cost in order to reduce the total solution time. For
instance, in a problem where the preconditioner is not reusable, a technique with an economical
preconditioner construction cost is more appropriate, considering that the iterative solver must
rebuild the preconditioner in each iteration.

There are several types of preconditioners, starting with the matrix splitting techniques used
in classic iterative solvers, e.g., Jacobi and successive overrelaxation (SOR) [108]. Additional
preconditioners types include the approximate inverse techniques [24, 36], and the multilevel
techniques [8, 35]. Most of these preconditioning methods are universally applicable and even
if they are not optimal for all kind of problems, they deliver an efficiency improvement of the
iterative solvers’ performance. A preconditioner rather simple and inexpensive to implement
consists on an Incomplete LU (ILU) factorization [108, 23]. This preconditioner belongs to the
splitting techniques and has several variants due to its success in speeding up the convergence of
many iterative solvers. For additional details on preconditioning techniques, we refer to [23, 35].

In the remaining part of this section, we briefly describe the CG method preconditioned with
the ILU technique, which is the approach we will use to expose the impact of continuity reduc-

19

3. Numerical Solvers

tion on the iterative solvers. We focus on a single iterative solver considering the complexity
required to analyze the impact of the continuity reduction in all the iterative solvers simultane-
ously. Nevertheless, the analysis performed here can be easily generalized to the case of other
preconditioned iterative solvers.

3.2.1. Preconditioned Conjugate Gradient method

The preconditioned Conjugate Gradient (CG) iterative solver is one of the best alternatives to
solve boundary value problems that involve symmetric positive definite systems of the form
Ax “ b [108, 75]. Here A is the system matrix, and b is a given RHS vector. The algorithm for
this method is presented below

Algorithm 1: Preconditioned Conjugate Gradient (CG)
Input: b, x0, A, P´1

Compute r0 :“ b´Ax0, z0 :“ P´1r0, and d0 :“ z0

for j “ 0, 1, ¨ ¨ ¨ ,until convergence do
αj :“ prj , zjq{pAdj ,djq // Step length
xj`1 :“ xj ` αjdj // Approximate solution
rj`1 :“ rj ´ αjAdj // Residual
zj`1 :“ P´1rj`1 // Preconditioning
βj :“ prj`1, zj`1q{prj , zjq // Gram-Schmidt constant
dj`1 :“ zj`1 ` βjdj . // Search direction

In each iteration, the CG method computes a residual rj`1 and a search direction dj`1. The
algorithm uses constant αj to make the new residual orthogonal with respect to the residu-
als and the search directions in previous steps. Besides, by using the Gram-Schmidt constant
βj , the new search direction becomes A-orthogonal with respect to all previous residuals and
search directions. The approach continues iterating until satisfying the convergence criteria
which usually is when the Frobenius norm of the residual is smaller than the desired tolerance
tol p||rj`1|| ď tolq. Then, xj`1 can be considered a sufficiently accurate approximation of the
problem solution.

The number of sparse matrix-vector products on Krylov spaces methods depends of the num-
ber of NonZero (NZ) entries in matrix A. In general, the discretization approach influences
the sparsity of system matrix A. A highly continuous IGA discretization delivers a matrix with
more NZ entries (denser matrix) than a FEA one with the same number of unknowns. Therefore,
when using highly continuous discretizations, the iterative solver becomes more expensive. In-
deed, the matrix-vector multiplication is at most eight times more expensive when using a highly
continuous IGA discretization instead of a FEA one. This cost becomes Opp2q more expensive
when comparing the highly continuous IGA discretization with a FEA one that includes static
condensation of the internal element DoF [40].

20

3. Numerical Solvers

3.2.2. Incomplete LU preconditioning technique

We consider a preconditioner based on an ILU factorization with zero fill-ins. This approach
performs a truncated Gaussian elimination that generates a preconditioner matrix P with the
same NZ pattern as that of the system matrix A. This technique is based on the IKJ version of
Gaussian elimination [108]. The ILU algorithm (algorithm 2) performs the elimination only on
the NZ entries, when aij P P , being aij the matrix entry at the i-th row and j-th column and P
the NZ pattern of matrix A.

Algorithm 2: IKJ version of Gaussian elimination
Input: A, N
for i “ 2, ¨ ¨ ¨ , N do

for k “ 1, ¨ ¨ ¨ , i´ 1 do
if aik P P then

aik “ aik{akk
for j “ k ` 1, ¨ ¨ ¨ , N do

if aij P P then
aij “ aij ´ aik ¨ akj

The ILU algorithm travels across the matrix by rows (first loop), and at each row, it performs
a series of operations (green and blue commands on the algorithm) to construct the LU factors.
Figure 3.6 illustrates the procedure of Gaussian elimination conducted on a single row.

Third loop

Se
co

nd
lo

op

...

i-th row

Gaussian elimination at the i-th row:

k-th iteration

Figure 3.6.: Illustration of the procedure of Gaussian elimination for a single row of the original
matrix A. a refers to the operations over the matrix diagonal (aik “ aik{akk), and
a are the operations over the entries to the left of the diagonal (aij “ aij´aik ¨akj).

The discretization continuity affects the performance of the ILU preconditioner technique.
The cost of the preconditioner construction is up to 48 times more expensive when using a highly
continuous IGA discretization rather than a FEA one. Moreover, the cost of preconditioning
application is up to eight times more expensive [40].

21

4. refined Isogeometric Analysis

In this section, we propose a discretization strategy that we call refined Isogeometric Analysis
(rIGA). This approach seeks the Galerkin discretization that delivers the fastest solution time for
a given mesh with a fixed polynomial order. First, we describe the implementation of this method
with direct solvers, in particular, with the state-of-the-art multifrontal solver [67, 65]. Second,
we detail its variation employed with iterative solvers. In this case, we focus on the Conjugate
Gradients (CG) iterative solver preconditioned with the Incomplete LU (ILU) technique [66].

4.1. refined Isogeometric Analysis for direct solvers

The rIGA method intends to decrease the overall cost to solve problems governed by Partial
Differential Equations (PDEs) through reducing the continuity degree along the inter-element
boundaries while controlling the total number of Degrees of Freedom (DoF) added to the system.
More precisely, the method reduces the continuity along the boundaries of the subdomains that
result from the recursive partitioning of the mesh performed by the ordering algorithm on the
direct solver. The continuity reduction is performed in such a way that it becomes zero in
between the subdomains, so the interconnection is weakened (Figure 4.1). Then, rIGA method
can be interpreted as a variation of traditional Finite Element Analysis (FEA) that uses Cp´1

subdomains as elements (macro-elements).
The reduction of continuity narrows the separators that interconnect the subdomains. For in-

stance, in a 2D system with polynomial degree p “ 3, the separators becomes three times thinner
when reducing the continuity degree until zero (Figure 4.2). Thus, the cost of the separators DoF
elimination (partial matrix factorization) decreases. Moreover, the reduction of continuity also
increases the total number of DoF in the system. The resulting growth in DoF could cause an
increment in the total LU factorization cost. Due to this, the reduction of continuity needs to be
closely monitored.

To control the overhead paid due to the higher number of DoF, we perform localized re-
ductions of continuity. The optimal continuity reduction decreases the total cost of perform-
ing the LU factorization while keeping the total number of DoF under control. In the first
instance, we focus on searching for the optimal discretizations (in terms of minimizing the num-
ber of FLoating Point Operations (FLOPs) needed to perform the factorization) by using Cp´1

Isogeometric Analysis (IGA) discretizations enriched by an arbitrary number of C0-separators.
Since the tensor product structure used in Non-uniform Rational Basis Splines (NURBS)-

based IGA discretizations limits the continuity reduction over local mesh zones, we adopt a sim-
ple implementation that consists of reducing the continuity over hyperplanes that cross the entire
mesh in a single direction. The hyperplanes correspond to certain subdomains boundaries (sep-
arators). This rIGA implementation starts by building a Cp´1 IGA discretization (Figure 4.3a).

22

4. refined Isogeometric Analysis

(a) Highly continuous IGA (Cp´1):
strengthened connection

(b) rIGA (Cp´1 ` C0|separator):
weaker connection

Figure 4.1.: Illustration of a separator that interconnects two 1D subdomains (using p “ 3 ba-
sis functions). rIGA discretization involves narrower separators than IGA but it
increases the number of the total system dof.

(a) Separator used to partition a Cp´1 IGA
system

(b) Separator used to partition an rIGA
system

Figure 4.2.: Illustration of the width reduction and the increment in the number of unknowns of
a separator used to interconnect two subdomains that result from partitioning a 2D
system with 6 ˆ 6 elements and polynomial order p “ 3. In this example, rIGA
introduces two C0-separators.

Next, the ordering algorithm partitions the mesh into submeshes (macro-elements) intercon-
nected by separators (Figure 4.3b). Lastly, we reduce the continuity to zero across the interface

23

4. refined Isogeometric Analysis

between the subdomains (Figure 4.3c), obtaining an enriched rIGA discretization (Figure 4.3d).

Inter-element boundary

Degrees of freedom (DoF)
Mesh skeleton
C0 boundaries

Inter-element boundary

Degrees of freedom (DoF)
Mesh skeleton
C0 boundaries

(a) Cp´1 IGA discretization

SeparatorSubdomain

Partitions
1st vertical 1st horizontal
2nd vertical 2nd horizontal

(b) Mesh partitoning

C0-hyperplane

(c) Continuity reduction

align

(d) Enriched rIGA discretization

Figure 4.3.: Illustration of the rIGA implementation structure for a 2D system. In here, red
circles represent the nodal degrees of freedom in the system, while gray lines denote
the mesh skeleton. Bold black lines represent lower continuity.

4.1.1. Computational complexity for direct solvers

The computational complexity is a measure of the number of FLOPs required to solve a partic-
ular problem. In here, we provide theoretical estimates of the computational complexity for a
rIGA system solved with direct solvers. This measure explains why rIGA can be several times
faster than both IGA and FEA when applied to a fixed mesh size with p greater than one. To

24

4. refined Isogeometric Analysis

simplify the derivation of the theoretical estimates, we assume that the discretization has the
same number of elements in each spatial dimension. Moreover, we consider that the system is
solved via a multifrontal direct solver using a nested-dissection technique as ordering method.
We briefly introduce the computational complexity for the cases of FEA and IGA since the cost
estimates for rIGA are based on those. Then, we provide the cost estimate for rIGA.

4.1.1.1. Cost estimates for finite element and isogeometric analysis

The cost to solve the system of linear equations resulting from discretizing elliptic problems
has been previously analyzed in [41, 38, 33]. Those studies used a multifrontal direct solver
to compute the solution of the linear systems. This cost consists of three parts. The first part
considers the matrix reordering cost, while the remaining two parts are the costs to perform the
matrix factorization and backward substitution. We derive the theoretical estimates assuming
that the matrix reordering and backward substitution costs are negligible, which is always the
case for moderate to large size systems of equations.

In the multifrontal direct solver, the matrix decomposition procedure consists of the partial
elimination of the subsets of DoF, either subdomains or separators. The cost to perform a partial
LU (Cholesky) factorization of a dense matrix is Opq3q, with q being the size of the eliminated
DoF. The total cost of the matrix decomposition is obtained by adding the contribution of all
partial factorizations (Figure 4.4).

The size of the separators (number of unknowns) is

qsep “ O
´
N pd´1q{dpk ` 1q

¯
,

where N is the total number of DoF, d is the dimension, and k is the inter-elemental continuity.
We denote the separator continuity k. Thus, pk ` 1q stands for the separator width, which is
1 in traditional FEA and p for IGA. The size of the minimal subdomains (leaves of the tree,
see [100]) is equal to the number of bubble basis functions that every subdomain contains. For
traditional FEA, the subsystem size is qsub “ pp ´ 1qd, since each subdomain corresponds
to one element. In highly continuous IGA, the minimal subdomain size is qsub « 1 since for
collections of p ` 1 elements in each dimension, only one basis function can be eliminated.
See [41] for a detailed description of the process.

The cost of matrix factorization is then given by

Cost “
ÿ

ηsep

O
´
pqsepq3

¯
` ηsub ¨O

´
pqsubq3

¯

“
ÿ

ηsep

O
ˆ´

N pd´1q{dpk ` 1q
¯3
˙
` ηsub ¨O

´
pqsubq3

¯

“ O
ˆ´

N pd´1q{dpk ` 1q
¯3
˙

looooooooooooooomooooooooooooooon
Skeleton

` ηsub ¨O
´
pqsubq3

¯
looooooooomooooooooon

Interior dof

, rFLOPss

(4.1)

where ηsep is the number of separators used to partition the system, and ηsub is the number
of subdomains. The first term corresponds to the skeleton cost, that is, the cost to eliminate

25

4. refined Isogeometric Analysis

(a) Subsets of unknowns of a 2D system (b) Partial matrix decomposition order

` `
4 2 1

Gaussian elimination

(c) Factorization cost

Figure 4.4.: Illustration of the elimination of unknowns of a 2D system partitioned into four
subdomains. The cost of factorization is the sum of all partial decompositions
4Opq3q ` 2Opq3q `Opq3q.

the DoF of the separators while the last term is the cost of static condensation, i.e., the cost of
eliminating the interior subdomain DoF.

The cost estimates for traditional FEA and highly continuous IGA become:

FEA:

O
ˆ´

N pd´1q{d
¯3
˙
`Nelempp´ 1q3d

« O
´
N3pd´1q{d

¯
`O

´
Np2d

¯
,

rFLOPss (4.2)

IGA:

O
ˆ´

N pd´1q{dp
¯3
˙
`ηsubOp1q

« O
´
N3pd´1q{dp3

¯
,

rFLOPss (4.3)

26

4. refined Isogeometric Analysis

where Nelem is the number of elements, and the number of DoF in FEA is N “ OpNelem p
dq.

These cost estimates match with those derived in [38] and presented here in Table 1.1. Defining
nelem “ N

1{d
elem as the number of elements in each spatial direction, then, the number of DoF is

given by

FEA: N “ pnelem p` 1qd ,
IGA: N “ pnelem ` pqd ,

and the cost estimates to solve a problem with a mesh with a fixed number of elements and a
given polynomial order are

FEA: O
´
pnelem p` 1q3pd´1q¯`O

`
ndelem p

3d
˘
, rFLOPss (4.4)

IGA: O
´
pnelem ` pq3pd´1q p3

¯
. rFLOPss (4.5)

In 2D, the solution cost of both C0 FEA and Cp´1 IGA is similar to each other (up to lower
order terms), while in 3D, C0 FEA is Opp3q more expensive than Cp´1 IGA. Indeed, the elimi-
nation of the skeleton degrees of freedom in 3D requires a large number of FLOPs, specifically,
Opp3q times the number of FLOPs required to solve the corresponding Cp´1 IGA system.

4.1.1.2. Cost estimate for rIGA

To compute the cost to solve a rIGA system, we assume that the factorization is performed
in two steps (Figure 4.5). First, we eliminate the degrees of freedom contained in the Cp´1

subsystems (macro-elements). Then, we eliminate the remaining degrees of freedom associated
to the C0-separators.

`

Cp´1 subsystems (macro-elements) C0-separators (skeleton)

Figure 4.5.: Illustration of Cp´1 subsystems (macro-elements) and C0-separators (skeleton) that
result from partitioning a 2D system.

The total cost to factorize an rIGA system is given by Equation 4.1 and can be expressed as

27

4. refined Isogeometric Analysis

ηsub ¨O
´
pqasubq3

¯
looooooooomooooooooon
Cp´1 macro-elements

`O
´`
N pd´1q{dpk ` 1q˘3

¯
loooooooooooooomoooooooooooooon

C0 skeleton

, (4.6)

where the coefficient k in the skeleton term is zero due to the reduction of continuity. At the `-th
partition level, rIGA splits the original system into ηsub “ 2d` macro-elements of size N{2d`.
The cost of factorizing each of those macro-element is the same as for a Cp´1 IGA system with
size qsub “ pN{2d`qpd´1q{d p. Then, the total cost becomes

2d` ¨O
˜ˆ

N

2d`

˙3pd´1q{d
p3

¸

looooooooooooooooomooooooooooooooooon
Cp´1 macro-elements

`O
˜
N3pd´1q{d

¸

loooooooomoooooooon
C0 skeleton

. (4.7)

The continuity reduction enriches the resulting rIGA system. In particular, every cut that splits
the original system adds pp ´ 1q DoF in the direction perpendicular to the cut. For instance, in
Figure 4.5, the vertical cut (that corresponds to the vertical C0-separator) adds pp ´ 1q DoF in
the horizontal direction, increasing the system size to pnelem ` p ` pp ´ 1qqpnelem ` pq. The
horizontal cut adds pp ´ 1q new unknowns in the vertical direction, which increases the total
number of DoF in the system to pnelem ` p ` pp ´ 1qq2. Thus, the number of DoF for a given
mesh (nelem “ 2g : g P N`) partitioned into 2d` macro-elements is

N “ nd “ pnelem ` p` p2` ´ 1qpp´ 1qloooooooomoooooooon
Enrichment

qd

“ p2g ` p` p2` ´ 1qpp´ 1qqd,
(4.8)

where p2` ´ 1q is the number of cuts performed in each spatial dimension, and the total cost to
factorize an rIGA system is given by

θrIGA “ θmacro-element ` θC0-separatos

“ 2d` ¨O
ˆ´ n

2`

¯3pd´1q
p3

˙
`O

´
n3pd´1q

¯

“
ˆ

2p3´2dq` ¨O
´
n3pd´1qp3

¯
loooooooooooooomoooooooooooooon

Cp´1 macro-elements
contribution

`O
´
n3pd´1q

¯
loooooomoooooon
C0-separators
contribution

˙
. rFLOPss

(4.9)

4.2. Optimally refined Isogeometric Analysis for direct
solvers

In the previous subsection, we proposed a rIGA method that starts with a highly continuous
discretization of the classical IGA, and subsequently, when a mesh is being dissected, it in-
troduces hyperplanes that reduce the continuity at the minimum possible degree (C0) across

28

4. refined Isogeometric Analysis

certain inter-element boundaries. This approach delivers quasi-optimal discretizations in terms
of minimizing the number of FLOPs since it considers only two continuity degrees, Cp´1 into
the macro-elements and C0 across subdomains interfaces, as illustrated in Figure 4.6.

3

3

3

3

3

3

3

3

2

2

2

2

1

1

Subdivision levels

(a) Hyperplanes and subdomains

H
yp

er
pl

an
e

C
on

tin
ui

ty
de

gr
ee

C0

Cp´1

1 2 3 4 5
Subdivision levels

Subdomains

(b) Continuity histogram

Figure 4.6.: Ilustration of the continuity degree on a 2D rIGA discretization.

The Optimally refined Isogeometric Analysis (OrIGA) is a version of rIGA that explores all
possible continuity degrees on each dissection level (Figure 4.7). While conceptually it would
be possible to seek also for the optimal positions to perform the mesh partition, OrIGA focuses
only on determining the optimal continuities degrees. In particular, the approach introduces
hyperplanes that reduce the continuity to arbitrary degrees across the inter-element boundaries
in order to find an optimal discretization. Figure 4.8 illustrates an OrIGA discretization for a 1D
domain with polynomial degree p “ 3.

We assume that the mesh is repeatedly bisected using separators across each direction in
sequential order. For instance, in 2D, the method partitions the mesh across the vertical direction
and then the horizontal direction recursively. After that, we introduce Ck-hyperplanes (that
traverse the entire mesh in a single direction) to reduce the continuity until degree k across
certain subdomain boundaries. The continuities up to a `-th subdivision level in the horizontal
(x) and vertical (y) directions are tkx1 , . . . , kx` u and tky1 , . . . , ky` u, respectively. Thus,

k “ pkx,kyq “ pkx1 , . . . , kxs , ky1 , . . . , kys q. (4.10)

The OrIGA discretization for a fixed mesh topology and order of approximation p greater than
one is given as the solution of the following minimization problem

arg min
kPS θpkq, (4.11)

where θpkq is the computational complexity, and S is the search space. Following [67, 41], we
realize that the cost of the LU factorization is dominated by the cost of eliminating the separators
DoF at each partition level. This cost corresponds to the first term in Equation 4.1 that grows in

29

4. refined Isogeometric Analysis

3

3

3

3

3

3

3

3

2

2

2

2

1

1

Subdivision levels

(a) Hyperplanes and subdomains

H
yp

er
pl

an
e

co
nt

in
ui

ty
de

gr
ee

C0

Cp´1

1 2 3 4 5
Subdivision levels

Subdomains

(b) Continuity histogram

Figure 4.7.: Ilustration of the continuity degree on a 2D OrIGA discretization.

H
yp

er
pl

an
e

co
nt

in
ui

ty
de

gr
ee

0

1

2

C0

Cp´1

1 2 3 4 5
Subdivision levels

Figure 4.8.: Ilustration of the separators used to interconnects the subdomains on a 1D system
using p “ 3 basis functions.

30

4. refined Isogeometric Analysis

a cubic fashion with the number of DoF of each separator. For a 2D case, the cost in terms of
the partition levels reads as

θseppkq “
ÿ̀

i“1

ηysep|ipqyseppkq|iq3 ` ηxsep|ipqxseppkq|iq3 , (4.12)

where ηysep|i and qyseppkq|i are respectively the number and size of the separators in the y-direction
inserted at the i-th subdivision level. We sum over all the separators in both directions, and the
summands in the equation are cubes of dimensions equal to the separators size. Figure 4.9
illustrates the separators size of the second partition level in a 2D case.

ky2

ky1

ky2

kx2 kx1 kx2

(a) Two subdivision levels of a 2D mesh

dimy
2

p1` ky1q

(b) Separator size qysep|2

Figure 4.9.: The number of DoF of one vertical separator in the second subdivision level (blue)
is qysep|2 “ dimy

2pkx1 ` 1q. By decreasing the continuity kx2 , the number of DoF
increases in the perpendicular direction, which results in larger (green) separators.

Note that for ` subdivision levels, we have 2` ´ 1 cuts in every direction. This generates 2d`

submeshes, and the number of separators that split them also grows exponentially. Assuming
that the first cut is vertical (associated with an unknown continuity kx1), the number of separators
at the i-th subdivision level is

ηysep|i “ 4i´1,

ηxsep|i “ 2 ¨ 4i´1.
(4.13)

Moreover, dimx
i and dimy

i are equal to

dimy
i “

´nelem

2i´1
` py

¯
`

˜
`´i`1ÿ

j“1

2j´1ppy ´ pkyi`j´1 ` 1qq
¸
,

dimx
i “

˜
nelem

2i
` px

¸
`

¨
˝
`´iÿ

j“1

2j´1ppx ´ pkxi`j ` 1qq
˛
‚

looooooooooooooooomooooooooooooooooon
,

piiq

(4.14)

31

4. refined Isogeometric Analysis

where the second term piiq in both expressions is the number of DoF that were added to the
system by all the continuity reduction on the complementary (perpendicular) cuts that intersect
the separators under consideration, see Figure 4.9a. For example, for ` “ 2, i “ 1, the size of
dimy

1 associated to the separators at the first vertical cut (red in Figure 4.9a) becomes

dimy
1 “ nelem ` 4py ´ kx1 ´ 2kx2 ´ 3, (4.15)

since all horizontal separators intersect it.
For general `, by substituting (4.13) and (4.14) into Equation 4.12, we obtain

θseppkq “ ř̀
i“1

4i´1

¨
˝nelem

2i´1
` 2`´i`1 py ´

`´i`1ÿ

j“1

2j´1pkyi`j´1 ` 1q
˛
‚

3

pkxi ` 1q3

` 2 ¨ 4i´1

¨
˝nelem

2i
` 2`´i px ´

`´iÿ

j“1

2j´1pkxi`j ` 1q
˛
‚

3

pkyi ` 1q3.
(4.16)

We can see that θsep contains (sixtic) terms of the form pkxi ¨ kyj q3 with both positive and neg-
ative factors. Therefore, the minimizer of θsep is non-trivial and cannot be in general computed
analytically. The objective function (Equation 4.16) is a generalization of (1) in [67], where now
the continuities of the separators may be different from zero.

The cost estimate θOrIGA is completed by adding the cost that comes from static condensation
[122, 41]. The static condensation eliminates all DoF interior to the subdomains using Gaussian
elimination. The cost of static condensation in 2D (d “ 2) is given by

θsub “ 2 d`
´´nelem

2`
` px ´ 1

¯´nelem

2`
` py ´ 1

¯¯3
, (4.17)

and it does not depend on k. The total cost to factorize an OrIGA system is expressed as

θOrIGApkq “ θsub ` θseppkq . rFLOPss (4.18)

4.2.1. Search space and its reduction

We define the search space S as a discrete set of possible continuities of the separators in all
subdivision levels, that is,

S “ tk, kzi “ 0, . . . , pz ´ 1, z “ x, y, i “ 1, . . . , `u, (4.19)

for 2D. This space is a generalization of the space of admissible continuities in rIGA, see Fig-
ure 4.10.

We aim to minimize θOrIGA over all possible combinations of continuities k. That is, to find a
minimizer that lies in Nd`, being d “ 2. This search space is finite, unfortunately, the number of
combinations grows exponentially with the number of subdivision levels `. More precisely, the
number of combinations is ppxpyq`. Therefore, an exhaustive search is not possible even for a
moderate value of `.

32

4. refined Isogeometric Analysis

kx “ p0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6q

Se
pa

ra
to

rs
co

nt
in

ui
ty

de
gr

ee

C0

Cp´1

Subdivision levels

(a) rIGA

kx “ p0, 0, 0, 0, 1, 1, 2, 4, 5, 6, 6q

Se
pa

ra
to

rs
co

nt
in

ui
ty

de
gr

ee

C0

Cp´1

Subdivision levels

(b) OrIGA

Figure 4.10.: Continuity histograms of the separators used to partition (a) a rIGA mesh and (b)
a OrIGA mesh with ` “ 11 subdivision levels. The discretizations use a poly-
nomial degree (p “ 7). While rIGA considers separators of only minimum p0q
and maximum pp ´ 1q continuities, OrIGA explores all admissible continuities
t0, 1, . . . , p´ 1u in every subdivision level.

It is necessary to restrict the search space. First, we realize that kx1 “ 0 since it appears
in Equation 4.16 only once and with positive sign. Additionally, the sequence of optimal con-
tinuities in both directions has to be non-decreasing. That is, the vector of continuities k of
Equation 4.10 that minimizes Equation 4.16 satisfies

kzi ď kzi`1 for all z “ x, y and i “ 1, . . . , s´ 1. (4.20)

To proof this assumption by contradiction, we first consider that kxi ą kxi`1 for some i. We
show that there exists k̂ such that θOrIGApkq ą θOrIGApk̂q. Define

k̂ “ pkx1 , . . . , kxi´1, k
x
i`1, k

x
i , k

x
i`2, . . . , k

x
s , k

y
1 , . . . , k

y
s q (4.21)

There are two kinds of summands in Equation 4.16 that are affected by the switch of kxi and
kxi`1. The first type of summand is of the form

c1pc2 ´ c3k
x
i ´ 2c3k

x
i`1q, c1, c2, c3 P N. (4.22)

Note that these numbers depend on i, s, px and py. However, all these summands decrease
when flipping kxi with kxi`1, that is,

kxi ` 2kxi`1 ă kxi`1 ` 2kxi (4.23)

which is equivalent to kxi ą kxi`1.The other types of summands are the two containing terms
pkxi ` 1q3 and pkxi`1 ` 1q3, respectively. The sum of these two summands is

4i´1pkxi ` 1q3p2L´ c1q3 ` 4ipkxi`1 ` 1q3L3 c1, L P N. (4.24)

which again decreases with the change of kxi and kxi`1 under the assumption that kxi ą kxi`1.
Therefore θOrIGApkq ą θOrIGApk̂q, which contradicts that k is the minimizer and prove that our
assumption is appropiate.

33

4. refined Isogeometric Analysis

By assuming that the continuity sequence in both directions has to be non-decreasing, we
introduce a significant reduction of the continuity search space. Observe that while there are p`

possible continuity vectors in one variable, the number of non-decreasing continuity vectors is
equal to the number of non-decreasing paths in a rectangular pˆ ` grid, which is only

`
p``
`

˘
, see

Figure 4.11. For instance, in a system with p “ 5 and ` “ 10, the cardinality of the reduced 1D
space is only 3 003 while in the case of the whole search space it is 9 765 625. For the 2D case,
the reduced space size is 3 0032.

Se
pa

ra
to

rs
co

nt
in

ui
ty

de
gr

ee

C0

Cp´1

Subdivision levels

(a) k that cannot minimize

Se
pa

ra
to

rs
co

nt
in

ui
ty

de
gr

ee

C0

Cp´1

Subdivision levels

(b) Admissible k

Figure 4.11.: Search space reduction. (a) While the space of all possible continuity vectors grows
exponentially with the number of subdivision levels `, (b) the reduced search space
considers only

`
p``
`

˘
non-decreasing continuity vectors .

4.2.2. OrIGA implementation

The search for the continuity-aware optimal IGA starts with the rIGA solution. We employ a
heuristic approach that uses the following observation from our numerical experiments: rIGA
and OrIGA solutions are strongly related. Thus, we use rIGA discretization (represented by
the continuity vector krIGA) to initialize OrIGA and explore exhaustively only a certain neigh-
borhood of krIGA. Let i be the number of subdivision levels where rIGA is enriched by C0-
continuous separators (the “jump” of the rIGA continuity vector). We define the r-neighborhood
of krIGA as the number of subdivision levels that occurred r subdivisions prior i, and r subdi-
visions after i ` 1, see Figure 4.12. In the r-neighborhood, we consider all continuities that
satisfy the non-decreasing continuity sequence assumption. Among them, we numerically find
the minimizer of Equation 4.16. If not stated differently, we set r “ 2 in all our experiments.

Remark 1. The computation of the rIGA discretization (continuity vector) comes at a negligible
cost. Observe that rIGA considers only C0 and Cp´1-continuous separators that are identical in
all directions, and therefore the computation requires only ` evaluations of Equation 4.16. We
denote by krIGA the rIGA solution.

Figure 4.13 illustrates the continuity vectors of both rIGA and OrIGA discretizations for a
system of Nelem “ 10242 elements and polynomial degree p “ 7. We searched exhaustively
the space S of all feasible continuity vectors, which requires

`
7`10

10

˘2 “ 194482 evaluations of
Equation 4.16. While the exhaustive search of S required 507 seconds on a laptop equipped with

34

4. refined Isogeometric Analysis

C0

Cp´1

r

r

Subdivision levels

krIGA
i´r`1

krIGA
i

krIGA
i`1 krIGA

i`r

Figure 4.12.: The r-neighborhood of the rIGA solution (red) is shown for r “ 3. The 2r affected
continuities of the separators at levels i ´ r ` 1, . . . , i ` r are being optimized to
minimize Equation 4.16. The optimal solution must be non-decreasing.

a 2.20GHz processor, the computation of rIGA discretization took few milliseconds p2.6´4q and
the search of its 2-neighborhood only 0.75 seconds.

The OrIGA solution (continuity vector) differs from rIGA only by a few coordinates. This
phenomenon applies to various degrees and mesh sizes as we show in Chapter 5. For the ana-
lyzed cases, the OrIGA and rIGA continuity vectors differ at most at two coordinates. Moreover,
this difference appears in the neighborhood of the continuity “jump” of the rIGA continuity vec-
tor. Therefore, we use the solution obtained by rIGA to initialize the refined exhaustive search.

The search for the optimal continuity discretization is summarized in Algorithm 3. Regarding
the approximation quality, highly continuous IGA discrete spaces are strictly contained in both
the rIGA and OrIGA spaces, so the best approximation error of OrIGA is smaller or equal than
that of IGA.

Algorithm 3: Optimally refined Isogeometric Analysis OrIGA implementation

Objective: find k “ pkx,kyq that minimizes Equation 4.16, i.e., arg min
kPS θpkq

Input: number of elements nelem, polynomial degree p, search neighborhood r,

Initialize k by rIGA solution krIGA

Fmin :“ F pkrIGAq
for i “ 1, ¨ ¨ ¨ , p`p`2r

p

˘q do
for j “ 1, ¨ ¨ ¨ , p`p`2r

p

˘q do
build non-decreasing kxi and kyj
if Fmin ą F pkxi ,kyj q then

k :“ pkxi ,kyj q
else

Fmin :“ F pkxi ,kyj q

Output: OrIGA continuity vector k.

35

4. refined Isogeometric Analysis

kx “ p0, 0, 0, 0, 0, 0, 0, 6, 6, 6q

C
on

tin
ui

ty
de

gr
ee

C0

Cp´1

Subdivision levels

(a) rIGA: Horizontal separators

ky “ p0, 0, 0, 0, 0, 0, 0, 6, 6, 6q

C
on

tin
ui

ty
de

gr
ee

C0

Cp´1

Subdivision levels

(b) rIGA: Vertical separators

kx “ p0, 0, 0, 0, 0, 0, 0, 6, 6, 6q

C
on

tin
ui

ty
de

gr
ee

C0

Cp´1

Subdivision levels

(c) OrIGA: Horizontal separators

ky “ p0, 0, 0, 0, 0, 1, 2, 6, 6, 6q
C

on
tin

ui
ty

de
gr

ee

C0

Cp´1

Subdivision levels

(d) OrIGA: Vertical separators

Figure 4.13.: Continuity vectors resulting from the global exhaustive search of the optimal conti-
nuity space for a 2D mesh consisting of 10242 elements, polynomial degree p “ 7
and ` “ 10 subdivision levels. The continuity vector of OrIGA in the (horizontal)
x-direction, kx, is identical to the rIGA solution, while ky differs from rIGA by
only two coordinates.

4.3. Refined Isogeometric Analysis for iterative solvers

In here, we propose the variation of the rIGA to use with iterative solvers, in particular, to
use with a CG method preconditioned with the ILU factorization technique that produces zero
fill-ins. The discretization method starts by partitioning the mesh of Cp´1 discretizations into
macro-elements using an arbitrary number of C0-hyperplanes. These hyperplanes involve a
reduction of continuity in such a way that it weakens the interconnection between the subdo-
mains (macro-elements), as illustrated before in Figure 4.1. Moreover, the use of exclusively
C0-hyperplanes makes the explanation of the method easily tractable. Figure 4.14 illustrates the
partitioning of a mesh into four subdomains.

After partitioning the mesh into submeshes, the method performs a static condensation in all
the macro-elements. This consists in a partial LU (Cholesky) factorization that eliminates the
DoF inside every macro-element and results in a reduced system which involves only the degrees

36

4. refined Isogeometric Analysis

Mesh (domain) Mesh partition

Subdomains C0-hyperplanes

AI AII

AIII AV I

Figure 4.14.: Partition of a 2D mesh into four subdomains (macro-elements).

of freedom at the macro-element boundaries. That is, we compute the Schur complement for all
the macro-elements and build the skeleton problem by assembling all these Schur complements.
Considering the system Aixi “ bi associated to the degrees of freedom of the i-th macro-
element, we perform a partial LU factorization Ai “ Li U i, which results in

ˆ
Aiint,int Aiint,bnd
Aibnd,int Aibnd,bnd

˙ˆ
xiint
xibnd

˙
“

ˆ
biint
bibnd

˙

ˆ
Liint,int 0

Libnd,int I

˙ˆ
U iint,int U iint,bnd

0 Si

˙ˆ
xiint
xibnd

˙
“

ˆ
biint
bibnd

˙
,

(4.25)

where the subscripts int and bnd refers to the DoF located in the interior and at the boundaries
of the macro-element, respectively. Si corresponds to the Schur complement of the Ai matrix,
which is defined as

Si “ Aibnd,bnd ´Aibnd,int
`
Aiint,int

˘´1
Aiint,bnd . (4.26)

The reduced right-hand side yibnd for the i-th macro-element is computed using Equation 4.27.
ˆ
Liint,int 0

Libnd,int I

˙ˆ
yiint
yibnd

˙
“

ˆ
biint
bibnd

˙
, (4.27)

and the reduced system for the i-th macro-element is

Sixibnd “ yibnd , (4.28)

where i “ 1, ...ηsub, being ηsub “ ηm-e the number of macro-elements. The reduced systems
are assembled all together obtaining the skeleton system Askl xskl “ yskl, which corresponds
to the degrees of freedom located along the macro-element boundaries (C0 skeleton mesh).
Figure 4.15 illustrates the static condensation step.

37

4. refined Isogeometric Analysis

Sparse
subdomain
matrix

Interior DoF

Boundary DoF

Subdomains
interior DoF
elimination

Save
resulting
L and U

factors

Assemble
Schur

complements

Schur
complements

Skeleton system
(sparse matrix)

Figure 4.15.: Static condensation procedure for a 2D system recursively partitioned into four
subdomains.

38

4. refined Isogeometric Analysis

We solve the skeleton system using the preconditioned CG iterative solver [76] (algorithm 1).
First, we compute the preconditioner matrix P using the ILU factorization technique [108] (al-
gorithm 2). Subsequently, we solve the preconditioned system. Lastly, we perform a backward
substitution to obtain the solution of the original system. The backward substitution employs
the factors obtained in the static condensation step. In summary, rIGA for iterative solvers can
be considered as a hybrid solver strategy that combines a direct solver (static condensation step)
to build the Schur complements of the macro-elements, with an iterative method to solve the
skeleton system.

4.3.1. Computational complexity for iterative solvers

The computational complexity (total number of FLOPs) of this hybrid solver strategy consists
of the sum of the computational costs corresponding to each step, namely, static condensation,
preconditioner matrix construction, and skeleton system solution. We separately analyze the
computational cost corresponding to each of these steps. Also, to simplify the analysis of the
cost, we assume that the mesh is fixed with the same number of elements in each spatial dimen-
sion and an order of approximation greater than one (p ą 1).

4.3.1.1. Cost of static condensation (macro-elements interior DoF elimination)

We partition the mesh into ηm-e macro-elements (Figure 4.14). Each macro-element corresponds
to aCp´1 IGA system of size equal toNelem “ ps`pqd, being d the dimension and sd the number
of elements into the macro-element (Figure 4.16).

s

s

nelem

nelem

Figure 4.16.: Illustration of a 2D mesh partitioned into four subdomains. The total number of
elements is Nelem “ ndelem, while the number of elements in each subdomains is
sd, being d “ 2 the spatial dimension.

Depending on the size of the macro-element, we use a different approach to estimate the
number of FLOPs required to compute the reduced system. For small macro-elements sizes that
involve nearly dense matrices, the cost is identical as that of performing the elimination of the

39

4. refined Isogeometric Analysis

interior degrees of freedom for a dense matrix problem. However, when the macro-elements are
large, the corresponding cost is similar as computing the Schur complement for a sparse matrix.

2D mesh

MatrixM

(a) Small macro-element
(nearly dense matrices)

2D mesh

Matrix

(b) Large macro-element
(sparse matrices)

Figure 4.17.: Illustration of the static condensation of the interior degrees of freedom (DoF) for
a single macro-element.

We realize that the macro-elements containing a number of elements sd ď pp ` 1qd, being
pp ` 1qd the support of the Cp´1 basis functions, involve matrices nearly dense (Figure 4.17a).
In those cases, the cost of static condensation is the same as that of performing a partial fac-
torization on a dense matrix of size N . The cost to perform the partial factorization on the i-th
macro-element is given by

ϕ i
SC “

N |oÿ

k“1

˜
Nÿ

i“k`1

˜
1`

Nÿ

j“k`1

2

¸¸

“ 2

3
pN |oq3 `

ˆ
1

2
´ 2N

˙
pN |oq2 `

ˆ
2 pNq2 ´N ´ 1

6

˙
N |o,

(4.29)

where N |o “ ps ` p ´ 2qd is the number of interior DoF. This expression counts the number
of operations (FLOPs) required to perform Gaussian elimination of the interior macro-elements
DoF [68].

Macro-elements of size greater than sd ą pp` 1qd involve sparse matrices (Figure 4.17b). In
those cases, the cost of static condensation as that of a multifrontal technique used to compute
the Schur complement. That is,

ψ i
SC «

ÿ̀

j“1

˜
dÿ

k“1

˜
2k´1 ¨2dpj´1q

Separator sizehkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj
˜

2´pj`k´2q
´
d
a
N |o ´ pp´ 1q

¯
loooooooooooooooooomoooooooooooooooooon

Length

¸3pd´1q́
p3
¯

loomoon
Thickness

¸¸
, (4.30)

40

4. refined Isogeometric Analysis

where ` is the number of partition levels. Term pp ´ 1q refers to the number of DoF belonging
to the separator that was removed by previous partition levels. For the case of 2D problems, the
equation simplifies to

ψ i
SC|2D «

ÿ̀

j“1

˜
22pj´1q

´
2´pj´1q

´a
N |o ´ pp´ 1q

¯¯3
p3

` 22pj´1q`1
´

2´pjq
´a

N |o ´ pp´ 1q
¯¯3

p3

¸
.

(4.31)

The first separator involves a cost of pN |oq3{2 p3 since we did not perform any prior partition.
Therefore, the total cost becomes

ψ i
SC|2D “ O

ˆ
pN |oq3{2 p3 ` 1

2

´
3´ 5 ¨ 2´`

¯´a
N |o ` pp´ 1q

¯3
p3

˙
. (4.32)

Finally, the estimate of number of FLOPs required by the static condensation of the i-th
macro-element in 2D is

θ iSC|2D “
#
ϕ i

SC|2D @ s ď p` 1

ψ i
SC|2D @ s ą p` 1,

that is

θ iSC “

$
’’’’’’’’’’’’’&
’’’’’’’’’’’’’%

2

3
pN |oq3 `

´1

2
´ 2N

¯
pN |oq2

`
ˆ

2 pNq2 ´N ´ 1

6

˙
N |o

@ s ď p` 1

O
˜
pN |oq3{2p3`

1

2

´
3´ 5 ¨ 2´`

¯´a
N |o ` pp´ 1q

¯3
p3

¸ @ s ą p` 1,

(4.33)

Ultimately, the cost of the static condensation step consists of the number of FLOPs required
to eliminate the interior DoF in all macro-elements. This cost is given by

θSC “
ηm-eÿ

i“1

θ iSC, rFLOPss (4.34)

where ηm-e “ pnelem{sqd, being ndelem the total number of elements of the original matrix. For a
fixed macro-element size, the above step scales linearly with respect to the total problem size.

We do not consider the number of operations required to compute the reduced right-hand-side
and assemble the skeleton system in θSC, since their cost is negligible in comparison to the total
cost of the hybrid solver strategy.

41

4. refined Isogeometric Analysis

4.3.1.2. Cost of preconditioning using ILU factorization technique

The number of FLOPs needed to set up the preconditioner depends of the number of NonZero
(NZ) entries of matrix Askl in the skeleton system. We realize that the number of NZ entries in
Askl corresponds to that of a statically condensed C0 FEA discretization with a matrix that has
the same number of DoF on each macro-element interface. Figure 4.18 illustrates both the full
and statically condensed C0 FEA (right) and the original and statically condensed rIGA (left)
discretizations for a 2D problem.

rIGA

rIGA

Statically condensed

FEA

FEA

Statically condensed

Same non-zero pattern

Figure 4.18.: Illustration of both FEA and rIGA discretizations of a 2D system. The rIGA dis-
cretization composes of 2 ˆ 2 subdomains, 6 ˆ 6 elements and polynomial basis
functions of order p “ 3, while the FEA discretization consists of 2 ˆ 2 elements
and polynomial degree p̂ “ 5. Blue circles represent the nodal degrees of freedom
in the system, while black lines denote the mesh skeleton. Bold lines represent C0

continuity.

42

4. refined Isogeometric Analysis

The polynomial degree of the C0 FEA system is p̂ and is given by

FEA element size “ rIGA subdomain size

pp̂´ 1qd “ ps` p´ 2qd
p̂´ 1 “ s` p´ 2

p̂ “ s` p´ 1,

while the number of elements is equal to the number of macro-elements (subdomains) in which
the original Cp´1 system was partitioned. The size of those FEA elements corresponds to the
number of interior degrees of freedom in a single macro-element.

The number of NZ entries in the j-th matrix row corresponds to the number of nodes (un-
knowns) with which the j-th node interacts. Depending on the location of this node, the number
of interactions nodes varies [99, 39]. Figure 4.19 illustrates the possible location of the nodes
over the elements of a statically condensed C0 FEA system. Moreover, Table 4.1 presents the
number of nodes at each location as well as the number of interactions per node.

x

y

(a) 2D

x
y

z

(b) 3D

Vertex Edge Face

Figure 4.19.: Illustration of the nodes locations over a single element in both 2D and 3D after
static condensation.

We consider an ILU with zero fill-ins preconditioner. This approach performs a truncated
Gaussian elimination that generates a preconditioner matrix with the same non-zero pattern as
that of the original one. We assume that the ILU is based on the IKJ version of Gaussian elimi-
nation shown in [108] and illustrated in Figure 3.6. This technique proceeds as in algorithm 2.

The number of FLOPs executed when performing a truncated Gaussian elimination in a j-th
row is given by

θAskl|j “
1

4

`
3 nnzpAskl|jq2 ´ 2 nnzpAskl|jq ´ 1

˘
, (4.35)

where nnzpAskl|jq refers to the number of NZ entries in the j-th row of matrix Askl. The number
of connectivities (interactions) associated to the domain interior nodes are summarized in Ta-
ble 4.1. We assume that the nodes in the interior of the domain are contained into pnelem{s´1qd

43

4. refined Isogeometric Analysis

Dimension Type # nodes # interactions pnnz pAskl|rowqq

2D
Vertex 1 p2p̂` 1q2 ´ 4pp̂´ 1q2
Edge 2pp̂´ 1q p2p̂` 1qpp̂` 1q ´ 2pp̂´ 1q2

3D
Vertex 1 p2p̂` 1q3 ´ 8pp̂´ 1q3
Edge 3pp̂´ 1q p2p̂` 1q2pp̂` 1q ´ 4pp̂´ 1q3
Face 3pp̂´ 1q2 p2p̂` 1qpp̂` 1q2 ´ 2pp̂´ 1q3

Data for a single element.

Table 4.1.: Summary table of the nodes interactions for both 2D and 3D statically condensed C0

FEA systems [39].

macro-elements and that the remaining nodes only contribute with lower order terms (L.O.T.)
to the total cost. Then, the number of FLOPs required to build the ILU preconditioner is given
by

θpre “

$
’’’&
’’’%

´nelem

s
´ 1

¯d ´
2pp̂´ 1q θAskl|Edge ` p1q θAskl|Vertex

¯
2D,

´nelem

s
´ 1

¯d
˜

3pp̂´ 1q2θAskl|Face ` 3pp̂´ 1qθAskl|Edge

` p1q θAskl|Vertex

¸
3D.

(4.36)

For a fixed macro-element size, the cost of building the ILU with zero fill-ins preconditioner
scales linearly with respect to the total problem size.

4.3.1.3. Cost of the CG iterative solver

The major cost when solving a system with an iterative solver comes from the matrix-vector
products. Each of those matrix-vector product consists of two operations, one sum and one mul-
tiplication, per NZ entry of the sparse matrix [39]. The total number of operations is proportional
to the number of NZ entries in both the system and the preconditioner matrix. Therefore, the
cost associated to solve the skeleton system is given by

θit “ O p2 pnnz pP q ` nnz pAsklqqq , (4.37)

where P is the preconditioner and Askl is the skeleton matrix. Both the skeleton and precondi-
tioner matrix have the same number of NZ entries, which allows to express the cost as

θit “ O p4 nnz pAsklqq , rFLOPss (4.38)

44

4. refined Isogeometric Analysis

The estimate of the number of NZ entries is computed based on Table 4.1, and given by

nnz pAsklq “

$
’’’’’’’’’&
’’’’’’’’’%

ηm-e
`
2pp̂´ 1q `p2p̂` 1qpp̂` 1q ´ 2pp̂´ 1q2˘

` p1q `p2p̂` 1q2 ´ 4pp̂´ 1q2˘˘ 2D

ηm-e
`
3pp̂´ 1q2 `p2p̂` 1qpp̂` 1q2 ´ 2pp̂´ 1q3˘

`3pp̂´ 1q `p2p̂` 1q2pp̂` 1q ´ 4pp̂´ 1q3˘

` p1q `p2p̂` 1q3 ´ 8pp̂´ 1q3˘˘ .
3D.

(4.39)

As it occured with the static condensation and the preconditioner matrix construction, the cost
of matrix-vector multiplication scales linearly with respect to the total problem size for a fixed
macro-element size.

45

5. Numerical results

In this chapter, we present the numerical results for the three types of refined Isogeometric
Analysis (rIGA) considered in this Dissertation: rIGA and Optimally refined Isogeometric Anal-
ysis (OrIGA) for direct solvers, and the rIGA hybrid solver strategy for iterative solvers. The
corresponding implementations use the library PetIGA, which is a high-performance software
platform for Isogeometric Analysis (IGA) [48] based on PETSc [11, 10]. PetIGA has been used
to model many engineering applications since its inception [48, 119, 116, 41, 38, 33, 39, 119,
116, 26, 42, 55, 25, 111, 110, 54]. For instance, the implementation of nonlinear hyperelas-
tic models for slightly compressible materials with IGA in [25], and the development of a new
phase-field model concept with IGA to study polycrystalline solidification as well as related
physical phenomena [119].

In the case of rIGA and OrIGA for direct solvers, we use the sequential version of the multi-
frontal solver MUMPS [4, 5] to solve the matrix system that results from the problem discretiza-
tion. We select the automatic choice of partitioning technique made by MUMPS, resulting in a
METIS [83] algorithm for all the cases.

For the hybrid solver strategy, we perform the static condensation of the internal macro-
elements Degrees of Freedom (DoF) with the sequential version of the solver MUMPS [4, 5]
with METIS [83, 84]. Afterwards, the reduced (skeleton) system resulting from static conden-
sation is solved using the PETSc version of Conjugate Gradients (CG) iterative solver precondi-
tioned with the Incomplete LU (ILU) technique that produces zero fill-ins.

The computational tests of rIGA for direct and iterative solvers are performed in sequential
on TACC Stampede system. We use the machine nodes outfitted with turbo boost 2.7 GHz
cores (up to peak 3.5 GHz in turbo mode) and 1TB of memory. For the case of OrIGA, all
computational tests were solved sequentially on TACC Lonestar5 system. In this case, we se-
lect the nodes equipped with 2.3 GHz cores and 512TB of memory. For additional details
on TACC machine, we refer to Texas Advanced Computing Center (TACC) home web page
(http://www.tacc.utexas.edu).

We perform all computations in sequential in order to report the global FLoating Point Op-
erations (FLOPs) and computational times (in seconds) for several variations in mesh size and
polynomial order. In the case of rIGA for direct solvers, we also show the memory requirements
(that correspond to the NonZero (NZ) entries in factors L and U expressed in Mbytes) to factor-
ize the matrix system. Moreover, we provide the number of NZ entries of the original matrix A
and the skeleton matrixAskl and estimates of the computational cost of the hybrid solver strategy
in 3D.

46

5. Numerical results

5.1. rIGA for direct solvers

5.1.1. Model problem

We use the Laplace equation in (5.1) as a model problem to exemplify the performance of rIGA
for direct solvers. Thus, our problem is given by:

$
’’’’’’&
’’’’’’%

Find u such that:

∇ ¨ p∇uq “ 0 in Ω

u “ 1 on BΩ1

u “ 0 on BΩ0

∇u ¨ n “ 0 on BΩw,

(5.1)

where Ω “ p0, 1qd, with d being the dimension, BΩwYBΩ0YBΩ1 “ BΩ, BΩwXBΩ0 “ ∅ and
BΩw X BΩ1 “ ∅. The problem domains for 2D and 3D are illustrated in Figure 5.1.

x

y

Ω “ p0, 1q2

BΩ1

BΩ0

u “ 1

u “ 0

(a) Domain Ω “ p0, 1q2

x

y

z

Ω “ p0, 1q3

BΩ1

BΩ0

u “ 1

u “ 0

(b) Domain Ω “ p0, 1q3.

Figure 5.1.: Model problem domain.

5.1.2. Implementation details

We use unmapped B-splines to build the model problem considering that the domain is unitary.
The tensor product of the unmapped B-splines defines the domain of the problem, obtaining a
regular and structured mesh. This resulting meshes incorporate the same number of elements
(nelem) in each spatial dimension in order to obtain a uniform structure when partitioning the
system. We implement mesh sizes of 5122, 10242 and 20482 elements to discretize the model
problem in 2D. In 3D, we use three mesh sizes of 323, 643 and 1283 elements. Moreover, we use
four polynomial degrees p ranging from 2 to 5 to perform the discretization. These polynomial
orders are kept constant in each problem.

47

5. Numerical results

For every mesh size, we consider a range of cases with particular number of partition levels
using C0-separators. The first case assumes no reduction of continuity, i.e., no level of parti-
tion uses C0-separators, which corresponds to the conventional tensor-product IGA. The last
case involves a reduction of the continuity along all the inter-elements boundaries, i.e., all levels
of partition employ C0-separators, which correspond to the conventional Finite Element Anal-
ysis (FEA). This allows us to analyze the impact of the local reduction of continuity in the
computational cost, besides finding the optimal continuity reduction for rIGA.

5.1.3. Fit of estimates

In order to fit the theoretical estimates (Equation 4.9) with the computed number of FLOPs
required to factor the systems, we introduce two constants, namely, A and B, as follows:

θrIGA “ A 2p3´2dq` `n3pd´1qp3
˘` B

`
n3pd´1q˘

2D: θrIGA “ `
A2´`p3 ` B

˘ `
nelem ` p` p2` ´ 1qpp´ 1q˘3 ` L.O.T. , rFLOPss

3D: θrIGA “ `
A2´3`p3 ` B

˘ `
nelem ` p` p2` ´ 1qpp´ 1q˘6 ` L.O.T. , rFLOPss

where L.O.T. stands for lower order terms. For each p, we estimate A and B by solving a
least square fitting problem for a large mesh size. Specific values of A and B are presented in
Table 5.1. Constants A and B are almost independent of the polynomial order, but depend on

Constants
Polynomial order p

2 3 4 5

2D
A 24.5 21.5 21.5 20.0
B 26.5 24.5 22.5 20.0

3D
A 6.6 6.3 6.0 5.7
B 7.8 7.2 7.2 7.2

Table 5.1.: Fitting constants computed for every polynomial order in 2D and 3D.

the problem dimension. Both the contribution of forming the Schur complements and the total
number of FLOPs performed by LAPACK to factorize the system [27] are included in these
constants.

5.1.4. Numerical results

5.1.4.1. FLOPs

We first analyze the FLOPs. Figures 5.2 and 5.4 show the number of FLOPs required to factor
the algebraic system for 2D and 3D, respectively. The number of FLOPs is plotted with respect
to the macro-element size (s “ nelem{2`), being ` the number of partition levels that splits the
mesh domain into ηm-e macro-elements. The size of the macro-elements diminishes as we add
C0-separators. Thus, the C0 FEA case corresponds to a macro-element size equal to one, while

48

5. Numerical results

the Cp´1 IGA case corresponds to the largest macro-element size. These numerical results
confirm the following:

a The theoretical estimates approximate well the numerical results.

b The optimal discretization (in terms of minimizing the number of FLOPs of the direct
solver) is in an intermediate stage between uniformly global continuity C0 and Cp´1.
Neither of the two extreme cases provides optimal discretizations.

c The reduction factor in the number of FLOPs by using an optimal discretization is approx-
imately pp` 1q2 for 2D and p2 for 3D.

In Figure 5.2, rIGA shows a maximum reduction factor of the number of FLOPs of 40 with
respect to Cp´1 IGA. This reduction factor is obtained when we solve the model problem with
Nelem “ 20482 elements and a polynomial order p “ 5. Further numerical results showed that
for a problem with Nelem “ 20482 elements and a polynomial order p “ 9, rIGA reduces the
number of FLOPs by a factor of at least 70 with respect to Cp´1 IGA, and 83 with respect to C0

FEA (Figure 5.3) when using solver MUMPS [4, 5].
The discrepancy between the numerical experiments and the theoretical estimates plots occurs

since the lower order terms that we exclude from the theoretical estimates are relevant for small
mesh sizes (pre-asymptotic regime). However, once we get close to the asymptotic regime, the
L.O.T. are negligible. Thus, the estimates fit better the numerical results as observed for the
largest mesh sizes in Figure 5.2.

For the problem in Figure 5.3, we should be able to provide results for rIGA cases with deeper
partition levels including C0-separators, e.g., cases with macro-element sizes of s “ 16 and s “
8. However, due to software limitations, it is not possible to compute those cases with PETSc
and MUMPS. The standard PETSc installation uses by default 32 bit indices. This configuration
stops working once the system matrix of the problem contains more than 231´1 (approximately
1.6e+9) NZ entries on a single process. This limit is independent of the available physical
memory of the machine. For the problem with Nelem “ 20482 elements and a polynomial order
p “ 9, the rIGA cases with s ď 16 exceed this PETSc limit.

By setting-up PETSc with 64 bit indices, the limit in the number of NZ entries grows. Never-
theless, since MUMPS does not support 64 bit indices, we can not use this package to perform
the matrix factorization. PARDISO [102, 101] is a sparse direct solver package that supports
64 bit indices. This package uses a combination of supernode techniques [112] to perform the
matrix factorizations. Assuming that the performance of PARDISO is approximately the same
as than of MUMPS, we use this package to provide the computational cost for the cases we
can not solve using PETSc+MUMPS. In Figure 5.3, the red dashed line with rounded markers
corresponds to the cases solved with MUMPS () while the dashed line in blue with circle
markers refers to the cases solved with PARDISO (). The number of FLOPs required to
solve the Cp´1 IGA case is approximately the same for both MUMPS and PARDISO, being
approximately 1.2e+14 FLOPs. We do not compute rIGA cases with s ă 8 since those cases do
not contain any relevant information.

In 3D, the maximum reduction factor of the number of FLOPs observed when using rIGA is
about 26 with respect to Cp´1 IGA, and even larger with respect to C0 FEA (Figure 5.4). This

49

5. Numerical results

100 101 102 103
109

1010

1011

1012

1013

5122

10242

20482

Macro-elements size (s)

FL
O

Ps

C0
Cp´1

(a) Polynomial degree p “ 2

100 101 102 103
109

1010

1011

1012

1013

5122

10242

20482

Macro-elements size (s)

FL
O

Ps

C0 Cp´1

(b) Polynomial degree p “ 3

100 101 102 103
1010

1011

1012

1013

1014

10242

20482

Macro-elements size (s)

FL
O

Ps

C0
Cp´1

(c) Polynomial degree p “ 4

100 101 102 103
1010

1011

1012

1013

1014

10242

20482

Macro-elements size (s)

FL
O

Ps

C0
Cp´1

(d) Polynomial degree p “ 5

Figure 5.2.: Number of FLOPs required to eliminate the DoF in the 2D model problem (when
using the multifrontal direct solver). The dashed lines with rounded markers ()
correspond to the numerical results and the solid lines () represent the theoretical
estimates.

reduction factor was analytically obtained because the Cp´1 IGA case cannot be computed due
to memory limitations.

50

5. Numerical results

100 101 102 103
1012

1013

1014

20482

MUMPSPARDISO

Macro-elements size (s)

FL
O

Ps

C0
Cp´1

Figure 5.3.: Number of FLOPs required to eliminate the DoF in the 2D model problem dis-
cretized with Nelem “ 20482 elements and p “ 9. The problem is solved with
MUMPS () and PARDISO () solvers. The dashed lines with rounded mark-
ers () correspond to the numerical results and the solid lines () represent the
theoretical estimates.

5.1.4.2. Computational times

Figures 5.5 and 5.7 provide the solution times for the model problem in 2D and 3D, respectively.
The plots present the solution time with respect to the macro-element size (s). Table 5.2 quan-
tifies the computational times for C0 FEA, Cp´1 IGA and the optimal case of rIGA for every
polynomial order in a fine mesh.

The computational time required to eliminate the DoF mostly consists of the time spent in
performing the FLOPs. Due to this, the solution times show a closer behavior to the number
of FLOPs. The rIGA optimal discretization involves a reduction factor in computational time
of approximately p2 with respect to Cp´1 IGA. For instance, when discretizing the 2D model
problem with Nelem “ 20482, a polynomial degree p “ 5 and macro-elements with size s “ 16,
the reduction is of a factor of approximately 22.

The system that results from discretizing the model problem with Ne “ 20482 and a polyno-
mial order p “ 9 (Figure 5.6) reports the maximum gain in solution time for 2D, corresponding
to a time factor of approximately 37.2 when using MUMPS. The rIGA optimal system requires
almost 3 minutes to be solved, while the system obtained from Cp´1 IGA is solved in ap-
proximately 2 hours. For this problem, the rIGA cases with macro-element sizes s ď 32 are
computed with PARDISO due to PETSc+MUMPS restrictions. PARDISO shows larger com-
putational costs than MUMPS. For instance, PARDISO spends 150 min to solve the Cp´1 IGA
case instead of the 110 min required by MUMPS.

In 3D, the system discretized with Nelem “ 1283 and polynomial order p “ 3 reports a
reduction factor of 13.69, Thus, the problem is solved in 1 hour with rIGA instead of the 15
hours required when using Cp´1 IGA. This is the maximum reproducible gain we obtained in

51

5. Numerical results

100 101 102
1010

1011

1012

1013

1014

1015

1016

323

643

1283

Macro-elements size (s)

FL
O

Ps

C0

Cp´1

(a) Polynomial order p “ 2

100 101 102
1010

1011

1012

1013

1014

1015

1016

1017

323

643

1283

Macro-elements size (s)

FL
O

Ps

C0

Cp´1

(b) Polynomial order p “ 3

100 101 102

1011

1013

1015

1017

323
643

1283

Macro-elements size (s)

FL
O

Ps

C0

Cp´1

(c) Polynomial order p “ 4

100 101 102

1011

1013

1015

1017

323

643

1283

Macro-elements size (s)

FL
O

Ps

C0

Cp´1

(d) Polynomial order p “ 5

Figure 5.4.: Number of FLOPs required to eliminate the degrees of freedom in the 3D model
problem (when using the multifrontal direct solver). The dashed lines with rounded
markers () correspond to the numerical results and the solid lines () represent
the theoretical estimates.

3D, since the Cp´1 cases solved with a mesh size Nelem “ 1283 and polynomial orders p “ 4
and p “ 5 could not be resolved due to memory limitations. Nonetheless, theoretical estimates
clearly indicate that gains associated to rIGA vastly increase as we increment p.

52

5. Numerical results

Mesh
size Method

Polynomial degree

2 3 4 5 9

10242

Cp´1 IGA 1.10e+2 3.20e+2 6.90e+2 1.30e+3 6.70e+3
C0 FEA 1.70e+2 4.20e+2 *** *** ***

rIGA (Optimal case) 3.20e+1 3.70e+1 4.60e+1 5.90e+1 1.80e+2

Gain 3.44 8.65 15 22.03 37.2

1283

Cp´1 IGA 1.40e+4 5.40e+4 2.1e+03 4.2e+03 ***
C0 FEA *** *** *** *** ***

rIGA (Optimal case) 3.40e+3 3.90e+03 1.9e+02 3.2e+02 ***

Gain 4.28 13.69 11.32 13.08 ***
Note: The asterisks (˚ ˚ ˚) reflect that the computation exceeds the maximum available physical

memory, thus the solution failed (out of memory).
Blue stands for a mesh size Nelem “ 643.

Table 5.2.: Computational time (in seconds) for the model problem discretized with the asymp-
totic mesh and maximum gain of the optimal case with respect to the Cp´1 IGA
discretization.

5.1.4.3. Memory requirements

Figures 5.8 and 5.9 show the memory requirements (in Mbytes) for 2D and 3D, respectively. We
display the memory usage reported by the multifrontal solver MUMPS along with the theoretical
estimation computed as

2D: χ “ O
ˆˆ

3

2
log2 pnelemq2 p2 ` 3

2
log2

`
2´i

˘˙
n2

˙
` L.O.T. , rMbytess

3D: χ “ O
ˆˆ

7

2

`
2´i

˘
p2 ` 7

2

`
1´ 2´i

˘˙
n4

˙
` L.O.T., rMbytess

which are derived in Appendix A.
In 2D, the maximum reduction in memory usage among those considered in Figure 5.8 cor-

responds to the case with Nelem “ 20482 and polynomial order p “ 5. The factor of memory
reduction is 4. In 3D, the system discretized using Nelem “ 1283 and polynomial orders p “ 5
reports the maximum reduction in memory requirements. In this case, the theoretical factor
is 2.9. Systems discretized with higher polynomial orders involve larger reduction of memory
usage.

The discrepancies observed in 3D, for high p and low n, between the theoretical estimates
and the recorded data for memory usage are due to the exclusion of lower order terms from the
theoretical estimates. Such lower order terms (in the 3D memory estimates) are only one power
of n smaller than the dominant cost, but they are multiplied by a larger power of p. Thus, they
become dominant on the pre-asymptotic regime (low n and large p). This situation does not

53

5. Numerical results

100 101 102 103
100

101

102

5122

10242

20482

Macro-elements size (s)

Ti
m

es
rss

C0

Cp´1

(a) Polynomial order p “ 2

100 101 102 103
100

101

102

5122

10242

20482

Macro-elements size (s)

Ti
m

es
rss

C0 Cp´1

(b) Polynomial order p “ 3

100 101 102 103

101

102

103

10242

20482

Macro-elements size (s)

Ti
m

es
rss C0

Cp´1

(c) Polynomial order p “ 4

100 101 102 103

101

102

103

10242

20482

Macro-elements size (s)

Ti
m

es
rss

C0

Cp´1

(d) Polynomial order p “ 5

Figure 5.5.: Computational time (in seconds) to factorize the 2D model problem (when using
the multifrontal direct solver).

occur in the FLOPs estimates, because for that case, the dominant cost is n3 times larger than
lower order terms, and thus, estimates rapidly arrive at the asymptotic regime.

54

5. Numerical results

100 101 102 103
102

103

104

20482

MUMPS
PARDISO

Macro-elements size (s)

Ti
m

es
rss

Cp´1

Figure 5.6.: Computational time (in seconds) to factorize the 2D model problem discretized with
Nelem “ 20482 elements and p “ 9. The problem is solved with MUMPS ()
and PARDISO () solvers.

55

5. Numerical results

100 101 102
100

101

102

103

104

105

323

643

1283

Macro-elements size (s)

Ti
m

es
rss

C0

Cp´1

(a) Polynomial order p “ 2

100 101 102

101

102

103

104

105

323

643

1283

Macro-elements size (s)

Ti
m

es
rss

C0

Cp´1

(b) Polynomial order p “ 3

100 101

101

102

103

104

323

643

Macro-elements size (s)

Ti
m

es
rss

C0 Cp´1

(c) Polynomial order p “ 4

100 101
101

102

103

104

323

643

Macro-elements size (s)

Ti
m

es
rss

C0

Cp´1

(d) Polynomial order p “ 5

Figure 5.7.: Computational time (in seconds) for the 3D model problem (when using the multi-
frontal direct solver).

56

5. Numerical results

100 101 102 103

103

104

5122

10242

20482

Macro-elements size (s)

M
em

or
y

rM
by
te
ss

C0 Cp´1

(a) Polynomial order p “ 2

100 101 102 103

103

104

5122

10242

20482

Macro-elements size (s)

M
em

or
y

rM
by
te
ss

C0

Cp´1

(b) Polynomial order p “ 3

100 101 102 103
103

104

105

10242

20482

Macro-elements size (s)

M
em

or
y

rM
by
te
ss

C0

Cp´1

(c) Polynomial order p “ 4

100 101 102 103
103

104

105

10242

20482

Macro-elements size (s)

M
em

or
y

rM
by
te
ss

C0

Cp´1

(d) Polynomial order p “ 5

Figure 5.8.: Memory requirements for the factorization of the 2D model problem (when using
the multifrontal direct solver). The dashed lines with rounded markers () cor-
respond to the numerical results and the solid lines () represent the theoretical
estimates.

57

5. Numerical results

100 101 102
102

103

104

105

106

323

643

1283

Macro-elements size (s)

M
em

or
y

rM
by
te
ss

C0

Cp´1

(a) Polynomial order p “ 2

100 101 102
102

103

104

105

106

323

643

1283

Macro-elements size (s)

M
em

or
y

rM
by
te
ss

C0

Cp´1

(b) Polynomial order p “ 3

100 101 102

103

104

105

106

107

323

643

1283

Macro-elements size (s)

M
em

or
y

rM
by
te
ss

C0

Cp´1

(c) Polynomial order p “ 4

100 101 102

103

104

105

106

107

323

643

1283

Macro-elements size (s)

M
em

or
y

rM
by
te
ss

C0

Cp´1

(d) Polynomial order p “ 5

Figure 5.9.: Memory requirements for the factorization of the 3D model problem (when using
the multifrontal direct solver). The dashed lines with rounded markers () cor-
respond to the numerical results and the solid lines () represent the theoretical
estimates.

58

5. Numerical results

5.2. OrIGA for direct solvers

We now consider the case of OrIGA. To analyze the performance of this approach, we use a
model problem based on the Laplace equation (5.1) on a 2D domain (Figure 5.1a). This model
problem is the same as the one presented in subsection 5.1.1. In our examples, we consider three
mesh sizes (Nelem “ 5122, 10242 and 20482) and three polynomial degrees (p “ 5, 7, and 9).

5.2.1. Numerical results

5.2.1.1. Continuity vectors

Table 5.3 provides the rIGA and OrIGA continuity vectors for various mesh sizes and polyno-
mial degrees. These vectors show that the optimal size of highly continuous macro-elements
is almost independent of the mesh size. Moreover, the optimal macro-element size is either 82

or 162 for both rIGA and OrIGA. In case of OrIGA, the macro-elements involve strong inter-
connection between some subdomains due to the use of hyperplanes with higher continuity than
C0.

Nelem p rIGA Continuity OrIGA Continuity

5122
5 r0.0.0.0.0.0.4.4.4.s r0.0.0.0.0.0.4.4.4.s|x r0.0.0.0.0.2.4.4.4.s|y
7 r0.0.0.0.0.0.6.6.6.s r0.0.0.0.0.0.6.6.6.s|x r0.0.0.0.0.2.6.6.6.s|y
9 r0.0.0.0.0.0.8.8.8.s r0.0.0.0.0.0.8.8.8.s|x r0.0.0.0.0.1.8.8.8.s|y

10242
5 r0.0.0.0.0.0.0.4.4.4.s r0.0.0.0.0.0.0.4.4.4.s|x r0.0.0.0.0.1.3.4.4.4.s|y
7 r0.0.0.0.0.0.0.6.6.6.s r0.0.0.0.0.0.0.6.6.6.s|x r0.0.0.0.0.1.2.6.6.6.s|y
9 r0.0.0.0.0.0.8.8.8.8.s r0.0.0.0.0.0.0.8.8.8.s|x r0.0.0.0.0.1.2.8.8.8.s|y

20482
5 r0.0.0.0.0.0.0.4.4.4.4.s r0.0.0.0.0.0.0.1.4.4.4.s|x r0.0.0.0.0.0.2.4.4.4.4.s|y
7 r0.0.0.0.0.0.0.0.6.6.6.s r0.0.0.0.0.0.0.1.6.6.6.s|x r0.0.0.0.0.0.1.4.6.6.6.s|y
9 r0.0.0.0.0.0.0.8.8.8.8.s r0.0.0.0.0.0.0.0.8.8.8.s|x r0.0.0.0.0.0.1.3.8.8.8.s|y

Table 5.3.: Continuity vectors of rIGA and OrIGA in 2D for various degrees and mesh sizes.
OrIGA continuity vectors vary from their corresponding rIGA counterparts, at most,
by two values (coordinates) and this variance appears nearby the discontinuity jump
of rIGA.

5.2.1.2. FLOPs

Table 5.4 shows the FLOPs estimates ofC0 FEA,Cp´1 IGA, rIGA, and OrIGA for various mesh
sizes. We see that both rIGA and OrIGA significantly outperform FEA and IGA. Moreover,
OrIGA shows the expected superior results.

Table 5.5 shows the actual number of FLOPs and computational times using MUMPS. The
FLOPs estimates shown in Table 5.4 agree qualitatively (up to a constant) with the numerical

59

5. Numerical results

Polynomial
degree Method Nelem “ 5122 Nelem “ 10242 Nelem “ 20482

5

C0 FEA 3.46e+11 2.73e+12 2.16e+13
Cp´1 IGA 3.75e+11 2.87e+12 2.23e+13

rIGA 1.33e+10 8.97e+10 6.27e+11
OrIGA 1.26e+10 7.88e+10 5.05e+11

7

C0 FEA 1.00e+12 7.69e+12 6.02e+13
Cp´1 IGA 1.09e+12 8.13e+12 6.23e+13

rIGA 3.07e+10 1.81e+11 1.18e+12
OrIGA 2.99e+10 1.67e+11 9.98e+11

9

C0 FEA 2.36e+12 1.73e+13 1.32e+14
Cp´1 IGA 2.32e+12 1.74e+13 1.33e+14

rIGA 7.03e+10 3.47e+11 1.68e+12
OrIGA 4.91e+10 2.69e+11 1.61e+12

Table 5.4.: Estimates of the number of FLOPs required by LU factorization (when using mul-
tifrontal direct solver). Values obtained with Equation (4.18), when applied to the
tested discretizations with various degrees and mesh sizes.

Polynomial
degree

Method
Nelem “ 5122 Nelem “ 10242 Nelem “ 20482

FLOPs time FLOPs time FLOPs time

5

C0 FEA 3.48e+11 36.2 2.94e+12 232.9 *** ***
Cp´1 IGA 3.01e+11 22.5 2.50e+12 162.5 2.21e+13 1310.9

rIGA 1.38e+10 2.8 1.01e+11 13.7 5.31e+11 56.5
OrIGA 1.36e+10 2.4 8.29e+10 12.5 5.59e+11 59.7

7

C0 FEA 9.71e+11 86.2 *** *** *** ***
Cp´1 IGA 8.31e+11 53.9 6.94e+12 405.9 5.81e+13 3204.3

rIGA 2.96e+10 5.9 1.91e+11 24.9 1.32e+12 129.7
OrIGA 2.88e+10 5.1 1.71e+11 21.7 1.06e+12 104.7

9

C0 FEA *** *** *** *** *** ***
Cp´1 IGA 1.65e+12 102.1 1.41e+13 820.1 1.19e+14 6657.8

rIGA 8.16e+10 10.1 3.81e+11 44.0 *** ***
OrIGA 6.99e+10 8.6 3.24e+11 36.7 *** ***

Note: The asterisks (˚ ˚ ˚) reflect that the computation was not accomplished due to
memory limitations (out of memory).

Table 5.5.: Computed number of FLOPs and computational times (in seconds) required by
MUMPS to factorize the 2D problem.

60

5. Numerical results

results. In addition, the numerical results confirm the superiority of OrIGA. For instance, for
p “ 7 and Nelem “ 20482, OrIGA requires 55 times less number of FLOPs than Cp´1 IGA.
Additionally, OrIGA is 25% cheaper than rIGA.

In the particular case of a problem discretized with a mesh size Nelem “ 20482 and p “ 5,
OrIGA becomes computationally more expensive than rIGA. This occurs because the continuity
vectors provided by the search algorithm to solve this case are not globally optimal, since esti-
mates used to find such global optima are only quasi-optimal. An improved search is necessary
in this case.

Summarizing, for direct solvers, rIGA delivers a reduction factor of the computational cost
for solving Laplace based problems of up to p2 (in terms of FLOPs) with respect to Cp´1 IGA,
being p the polynomial degree. We can solve other scalar problems with rIGA, e.g., Helmholtz
and diffusion advection reaction problems. To compute the solution of those problems, we use
Galerkin formulations that satisfy the required stability criterion, and discretizations that are
similar to those for the Laplace based problems. Due to this, we achieve the same gain factors
in computational cost than the ones observed for Laplace problems. Moreover, the reduction of
continuity enriches the space solutions, thereby improving the best approximation error.

For Multi-field problems (vectorial problems) discretized using H1 “ pH1qdf spaces (being
df the number of vector fields), rIGA delivers a similar computational cost reduction factor than
for the scalar Laplace model problems solved using a H1 space. In here, we denote H1 to the
space of functions in L2 whose first-order derivates belongs to L2. In those multi-field problems,
the cost of factorization for IGA and rIGA is given by

IGA: θH
1 “ O

´
d3
f pnelem ` pq3pd´1q p3

¯
, rFLOPss

rIGA: θH
1 “

ˆ
2p3´2dq` ¨O

´
d3
fn

3pd´1qp3
¯
` O

´
d3
fn

3pd´1q
¯˙

, rFLOPss

where n “ pnelem ` p ` p2` ´ 1qpp ´ 1qq. The factorization cost is approximately d3
f times

more expensive than for a scalar Laplace problem (see Equations 4.5 and 4.9). In addition, the
reduction factor (between rIGA and IGA) of the computational cost is of up to p2.

For multi-field problems solved using Hpdivq or Hpcurlq spaces, we may obtain slightly
smaller reduction factors than for cases using H1 spaces. Hpdivq and Hpcurlq spaces involve
different polynomial degrees per spatial direction. For instance, the Hpdivq and Hpcurlq spaces
in 3D

Hpdivq : Sp`1,p,p
k`1,k,k ˆ Sp,p`1,p

k,k`1,k ˆ Sp,p,p`1
k,k,k`1,

Hpcurlq : Sp,p`1,p`1
k,k,k`1 ˆ Sp`1,p,p`1

k`1,k,k`1 ˆ Sp`1,p`1,p
k`1,k`1,k,

where k is the continuity degree. By reducing the continuity in the same degree (not to the same
order), we obtain thicker separators at some partition levels than when using H1-discretizations.
Thus, the reduction in computational cost are expected to be slightly smaller (by a factor inde-
pendent of the discretization).

61

5. Numerical results

The cost estimate in term of FLOPs for Hpdivq and Hpcurlq discretizations in Cp´1 IGA are

θ
Hpdivq
IGA “ O

ˆ´
pnelem ` pqpd´1q pdp` 1q ` pd´ 1q pnelem ` pqpd´2q p

¯3
˙
,

θ
Hpcurlq
IGA “O

ˆ´
pnelem ` pqpd´1q pdpp` 1q ´ 1q

` pd´ 1q pnelem ` pqpd´2q ppd´ 1q pp` 1q ´ 1q
` p pd´ 2q

¯3
˙
.

This cost becomes

θ
Hpdivq
rIGA “

ˆ
2p3´2dq` ¨O

ˆ´
npd´1qpd p` 1q ` pd´ 1qnpd´2qp

¯3
˙
`

O
ˆ´

npd´1qpd` 1q ` pd´ 1qnpd´2q
¯3
˙˙

,

θ
Hpcurlq
rIGA “

˜
2p3´2dq`¨O

ˆ´
npd´1q pdpp` 1q ´ 1q

` pd´ 1qnpd´2q ppd´ 1q pp` 1q ´ 1q
` p pd´ 2q

¯3
˙

`O
ˆ´

npd´1q p2d´ 1q
` pd´ 1qnpd´2q p2 pd´ 1q ´ 1q

` pd´ 2q
¯3
˙¸

,

when reducing the continuity along all the separators on ` partition levels (rIGA). Lastly, the
reduction factor of the computational cost between rIGA and IGA is of Opp2q once we reach the
asymptotic regime. A detailed explanation of how to perform the continuity reduction on those
spaces is provided in Chapter 6.

5.3. rIGA for iterative solvers

To analyze the computational cost when using the hybrid solver strategy in 2D, we focus in
both, the static condensation of the macro-elements interior DoF and the solution of the skeleton
system using the preconditioned iterative solver. The remaining operations only contribute with
lower order terms (L.O.T.). We report the FLOPs and computational times (in seconds) with re-
spect to the one-dimensional size (s) of the macro-elements. In here, we only focus on the cases
which deliver the maximum reduction in solution time. Therefore, we present the numerical
results for C0 FEA, Cp´1 IGA and the optimal cases of rIGA.

62

5. Numerical results

After that, we present an analysis of the cost when using the hybrid solver strategy in 3D. For
this case, we compare the number of NZ entries of the matrixA in the global system with that of
the skeleton matrixAskl resulting after performing static condensation over the macro-elements.
In 3D, the total cost is ruled by the iterative solver. This occurs because the matricesAskl involve
a huge number of NZ entries. Therefore, the number of NZ entries becomes a suitable estimate
of the computational cost.

5.3.1. Model problem

We use the Poisson model problem presented in Equation (5.2) to analyze the performance of the
hybrid solver strategy. In particular, we study the impact of using refined Isogeometric Analysis
(rIGA) with a preconditioned CG iterative solver in the solution cost.

$
’&
’%

Find u such that:

∇ ¨ p∇uq “ fpαq in Ω

u “ 0 on BΩ,
(5.2)

where Ω “ p0, 1qd and fpαq “ dα2π2
śd
i“1 sinpαπxpiqq, being x “ px, y, zq and d the spatial

dimension. We use a different value of α for each polynomial degree to have approximately the
same ||eD|IGA||1 in all the examples. The problem domain for 2D is illustrated in Figure 5.10.

x

y

Ω “ r0, 1s2

BΩ
u “ 0

fpα “ 1q

fpα “ 2q

fpα “ 3q

Figure 5.10.: Poisson model problem domain
`
Ω “ p0, 1q2˘.

5.3.2. Implementation details

We build the model problem using unmapped B-splines and assuming a unitary domain. This
domain is defined by the tensor product of the unmapped B-splines resulting in a regular and

63

5. Numerical results

structured mesh. The same number of elements in all spatial dimensions results in uniform
macro-elements after performing the domain partitioning. We discretize the model problem
with a mesh of 20482 and 40962 elements, and polynomial degrees p “ 2, 3, 4, 5 and 6. The
polynomial degree is kept constant on the entire mesh.

For every mesh size, we consider several cases. Each case splits the mesh into a particular
number of macro-elements using C0-hyperplanes. The first one corresponds to traditional Cp´1

IGA with no reduction of continuity, while the last case involves a total reduction of continuity
which results in a traditional C0 FEA.

In this implementation, we set the stopping criteria of the CG iterative solver as:

||e||1 “ ||eI ` eD||1 ď ξ, (5.3)

where e is the total error consisting of the sum of the error of the iterative solver (eI) and the
discretization error (eD). We select ξ “ 2||eD|IGA||1, where ||eD|IGA||1 is the H1-norm of the
discretization error (eD) resulting from solving the model problem with Cp´1 IGA. We pick ξ
as two times the value of ||eD|IGA||1. This is small enough to allow the iterative solver to reach
a stable rate of convergence.

5.3.3. Fit of estimates

We fit the theoretical FLOPs estimates with the numerical results using three constants, namely
A, B and C. The theoretical estimate of the number of FLOPs required to solve the problem is
given by:

θrIGA|CG`ILU “ A θSCloooomoooon
Static Condensation

` B θprelooooomooooon
Preconditioning

` Nite pC θitq ,looooooomooooooon
Iterative solver

(5.4)

where Nite is the number of iterations that the solver requires to converge. Table 5.6 lists the
values of the constants A, B and C.

Constants
Polynomial degree p

2 3 4 5 6

A 28 22 18 16 16
B 0.68
C 1

Table 5.6.: Fitting constants computed for every polynomial degree in 2D.

Constant A captures the total number of FLOPs employed by MUMPS to reduce the sys-
tem matrices and to form the Schur complements of each macro-element [27]. In particular,
A accounts for the constant accompanying the leading term of the LU factorization cost per-
formed by LAPACK, and the contribution of the matrix-matrix and matrix-vector multiplication
and subtraction required to form the Schur matrices. For small p, the contribution of forming
those matrices is significant compared with the cost of LU factorization, influencing the value
of constant A. However, the contribution of those operations becomes smaller as the polynomial

64

5. Numerical results

degree grows (p " 1). Constant B corrects the overestimation in the number of operations of the
truncated Gaussian elimination that occurs at some non-zero entries of the skeleton mesh. This
overestimate is related to the fact that θpre estimates the cost of preconditioning by assuming
a periodic mesh. Thus, θpre counts additional operations at some non-zero entries. Finally, θit

exactly predicts the number of FLOPs required per iteration by the iterative solver to converge.
Therefore, constant C is one. We take Nite equal to the number of iterations that results from the
numerical experiments.

5.3.4. 2D numerical results

5.3.4.1. Cost of static condensation

Figures 5.11 and 5.12 illustrate the number of FLOPs as well as the average computational time
(in seconds) required to eliminate the internal DoF for various macro-element sizes.

100 101 102 103
103

105

107

109

1011

p “ 2

p “ 3

p “ 4

p “ 5

p “ 6

Macro-elements size (s)

FL
O

Ps

Figure 5.11.: Number of FLOPs required to eliminate the interior DoF in a single macro-
element. The dashed lines with rounded markers () correspond to the numeri-
cal results and the solid lines () represent the theoretical estimates.

When the macro-element size is large (s " 1), the computational time required to eliminate
the internal degrees of freedom mainly consists of the time spent in performing FLOPs. For
instance, when we increase the macro-element size from 642 to 1282, the computational time
(Figure 5.12) grows linearly with the number of FLOPs (Figure 5.11). However, when the
macro-element size becomes closer to one (sÑ 1), many other factors affect the computational
cost, e.g., the bandwidth limit of global memory access [51]. Indeed, the procedure of computing
LU factors for multiple small sparse systems becomes memory bound. Thus, in such limit,
the cost of memory access becomes dominant, increasing the factorization time as shown in
Figure 5.12.

The cost to build the skeleton system (perform the static condensation) is equal to the sum
of the cost of performing the partial factorization over all the macro-elements. Figure 5.13

65

5. Numerical results

100 101 102 103
10´4

10´3

10´2

10´1

100

101

102

p “ 2

p “ 3

p “ 4

p “ 5

p “ 6

Macro-elements size (s)

Ti
m

e
rss

Figure 5.12.: Computational time required to eliminate the interior DoF in a single macro-
element.

illustrates the number of FLOPs and Figure 5.14 the computational time required to perform the
static condensation in all the macro-elements.

100 101 102 103
109

1010

1011

1012

1013

p “ 2

p “ 3

p “ 4

p “ 5

p “ 6

Macro-elements size (s)

FL
O

Ps

Figure 5.13.: Number of FLOPs required to eliminate the interior DoF in all macro-elements for
a problem with a mesh size of Nelem “ 20482. The dashed lines with rounded
markers () correspond to the numerical results and the solid lines () repre-
sent the theoretical estimates.

The rate of change of the number of FLOPs required to eliminate the interior degrees of

66

5. Numerical results

100 101 102

101

102

p “ 2 p “ 3
p “ 4

p “ 5

p “ 6

Macro-elements size (s)

Ti
m

e
rss

Figure 5.14.: Computational time required to eliminate the interior DoF in all macro-elements
for a problem with a mesh size of Nelem “ 20482.

freedom in all macro-element with respect to those on the element interfaces is

O
ˆ pηm-e θSCq`
pηm-e θSCq``1

˙
„ O

˜ˆ pnelem{sq2`
pnelem{sq2``1

˙˜ pNd̋of qβ`
pNd̋of qβ``1

¸¸

„ O
˜ˆ

s2
``1

s2
`

˙˜
ps` p´ 2q2β`
ps` p´ 2q2β``1

¸¸
,

where ` refers to the `-th partition level. For macro-element sizes larger than the polyno-
mial degree (s " p), β “ 3{2 (sparse matrix), the rate of change becomes approximately
O ps`{s``1q. This explains the linear reduction of the number of FLOPs as the macro-elements
become smaller. Moreover, as soon as the macro-element size becomes of the same order of
the polynomial degree (s „ p), β becomes three (dense matrix) and the rate of change starts
to behaves approximately as O

`
s2
``1{s2

`

˘
. This explains the growth in the number of FLOPs

observed when the macro-element size is close to one (Figure 5.13).
In addition to the numerical factorization, the direct methods perform an analysis phase. This

phase involves the reordering of the matrix as well as additional operations to allocate memory.
Assuming that these operations can be computed once and then reused by all macro-elements,
we considered this cost as L.O.T. and we do not include it in the total computational cost.

5.3.4.2. Cost of preconditioner set-up

Before solving the skeleton system, we use the ILU factorization strategy with zero fill-ins to
build the preconditioner matrix. Figures 5.15 and 5.16 illustrates the number of FLOPs and
the computational time (in seconds) required to construct P , respectively. In those Figures, the
points on the right (located over the vertical dashed line) correspond to the number of FLOPs
and computational times required to build the preconditioner matrix for the IGA cases.

67

5. Numerical results

100 101 102 103
109

1010

1011

C0

Cp´1

p “ 2

p “ 3

p “ 4

p “ 5

p “ 6

Macro-elements size (s)

FL
O

Ps

Figure 5.15.: Number of FLOPs required to build the preconditioner matrix P for the skeleton
system when solving the 2D Poisson model problem with a mesh size of Nelem “
20482. The dashed lines with rounded markers () correspond to the numerical
results and the solid lines () represent the theoretical estimates.

100 101 102 103
100

101

C0

Cp´1p “ 2

p “ 3

p “ 4

p “ 5p “ 6

Macro-elements size (s)

Ti
m

e
rss

Figure 5.16.: Computational time required to build the preconditioner matrix P for the skeleton
system when solving the 2D Poisson model problem with a mesh size of Nelem “
20482.

The cost to compute the preconditioner matrix becomes almost independent of the order of
approximation p for cases with macro-element sizes larger than the polynomial degree (s " p).
For those cases, p̂ « s and therefore θpre mostly depends on s, given by Equation 4.36.

We observe a reduction in the cost to build the preconditioner only when using discretizations

68

5. Numerical results

with polynomial degrees higher than two (p ą 2). For instance, the case with 20482 elements
and p “ 2 involves no cost reduction, but the case with p “ 7 involves a reduction factor of
approximately 13 in both the number of FLOPs and computational time.

5.3.4.3. Cost of solving the skeleton system

The cost to solve the skeleton system depends on the number of NZ entries of matrix Askl, as
well as the number of iterations required to converge within the desired tolerance (Equation 5.3).
Table 5.7 illustrates the value of the H1-norm of the discretization error resulting from solving
the problem with Cp´1 IGA

`||eD|IGA||1
˘

for all polynomial degrees and a mesh size of 20482

elements.

nelem
Polynomial degree p

2 3 4 5 6

2048 1.95e-7 2.88e-8 1.59e-8 1.30e-8 1.08e-8

Table 5.7.: H1-norm of the discretization errors (eD) resulting from approximating the 2D Pois-
son problem solution with Cp´1 IGA, a mesh size of 20482 elements and several
polynomial degrees.

Matrix Askl has approximately 7ps ` pq NZ entries per column instead of the p2p ` 1q2 in
matrix A. This implies that, in most cases, matrix Askl is denser than matrix A. However, matrix
Askl is significantly smaller than A. This results in a lower total number of NZ entries as shown
in Table 5.8. In there we show that the number of NZ entries of matrix Askl (from the second to
the last row in the table) is lower than that of matrix A (first row in the table).

nelem s
Polynomial degree p

2 3 4 5 6

2048

2048 (IGA) 1.05e+8 2.06e+8 3.40e+8 5.09e+8 7.11e+8
64 6.06e+7 6.25e+7 6.44e+7 6.63e+7 6.38e+7
32 6.21e+7 6.59e+7 6.98e+7 7.39e+7 7.81e+7
16 6.52e+7 7.32e+7 8.16e+7 9.05e+7 9.99e+7
8 7.19e+7 8.91e+7 1.08e+8 1.29e+8 1.52e+8

Table 5.8.: Number of non-zero entries of the skeleton systems.

Table 5.9 shows the number of iterations that the CG iterative solver preconditioned with
ILU requires to converge to the desired tolerance. The hybrid strategy reduces the number
of iterations in most of the cases. This is a result of reducing the system by eliminating the
macro-elements internal DoF. In the skeleton problem, the macro-elements communicate only
to the neighboring macro-elements. Therefore, the number of iterations required to solve the
system is inversely proportional to the size of each macro-element. This explains the growth in
the number of iterations that we observe when the macro-element size reduces (the number of
macro-elements increases).

69

5. Numerical results

nelem s
Polynomial degree p

2 3 4 5 6

2048

2048 (IGA) 194 222 167 118 78
64 37 38 47 46 52
32 57 56 53 57 54
16 84 89 90 80 65
8 106 150 150 150 106

Table 5.9.: Number of iterations required by the preconditioned iterative solver CG+ILU(0) to
converge.

Tables 5.10 and 5.11 show, respectively, the number of FLOPs and the computational time
required to solve the reduced system using the preconditioned iterative solver CG+ILU. The
reduction in the cost observed when using the hybrid strategy is explained by both, the lower
number of NZ entries that the skeleton matrix Askl has, and the reduction in the number of
iterations due to performing static condensation at the level of the macro-elements.

nelem s
Polynomial degree p

2 3 4 5 6

2048

2048 (IGA) 8.98e+10 1.92e+11 2.35e+11 2.46e+11 2.26e+11
64 9.14e+09 9.67e+09 1.23e+10 1.24e+10 1.44e+10
32 1.44e+10 1.50e+10 1.51e+10 1.72e+10 1.72e+10
16 2.25e+10 2.67e+10 3.01e+10 2.97e+10 2.66e+10
8 3.18e+10 5.55e+10 6.72e+10 7.99e+10 6.64e+10

Table 5.10.: Number of FLOPs required to solve the skeleton system using the CG+ILU solver.

nelem s
Polynomial degree p

2 3 4 5 6

2048

2048 (IGA) 63.14 115.10 137.84 149.72 132.72
64 5.94 6.24 7.96 8.029 9.31
32 9.24 9.58 9.57 10.91 11.04
16 14.30 16.89 18.92 18.68 16.71
8 19.59 34.25 41.30 50.74 42.13

Table 5.11.: Computational time (in seconds) required to solve the skeleton system using the
CG+ILU solver.

70

5. Numerical results

5.3.4.4. Total cost of the hybrid solver strategy

The total cost required to solve the 2D Poisson model problem (Equation 5.2) comprehends
the costs of the static condensation, the preconditioner construction and the computation of the
skeleton system solution. Tables 5.12 and 5.13 show, respectively, the number of FLOPs (θ)
and the computational time (τ) required by each of the three steps, and the total cost required to
solve the 2D model problem.

nelem p s θSC θpre θit θ

2048

2

2048 (IGA) *** 1.26e+09 8.98e+010 9.11e+10
64 1.40e+11 1.32e+10 9.14e+009 1.62e+11
32 6.99e+10 7.12e+09 1.44e+010 9.14e+10
16 3.10e+10 3.97e+09 2.25e+010 5.75e+10
8 1.11e+10 2.39e+09 3.18e+010 4.53e+10

3

2048 (IGA) *** 4.93e+09 1.92e+11 1.97e+11
64 3.83e+11 1.38e+10 9.67e+09 4.07e+11
32 1.97e+11 7.79e+09 1.50e+10 2.19e+11
16 9.89e+10 4.71e+09 2.67e+10 1.30e+11
8 2.65e+10 3.27e+09 5.55e+10 8.52e+10

4

2048 (IGA) *** 1.36e+10 2.35e+11 2.49e+11
64 7.35e+11 1.45e+10 1.23e+10 7.62e+11
32 3.26e+11 8.49e+09 1.51e+10 3.50e+11
16 1.46e+11 5.54e+09 3.01e+10 1.81e+11
8 8.18e+10 4.35e+09 6.72e+10 1.53e+11

5

2048 (IGA) *** 3.04e+10 2.46e+11 2.76e+11
64 1.48e+12 1.51e+10 1.24e+10 1.50e+12
32 5.93e+11 9.24e+09 1.72e+10 6.19e+11
16 2.45e+11 6.45e+09 2.97e+10 2.81e+11
8 1.47e+11 5.65e+09 7.99e+10 2.33e+11

6

2048 (IGA) *** 5.95e+10 2.26e+11 2.86e+11
64 2.22e+12 1.58e+10 1.44e+10 2.25e+12
32 1.13e+12 1.00e+10 1.72e+10 1.16e+12
16 3.95e+11 7.47e+09 2.66e+10 4.29e+11
8 2.67e+11 7.17e+09 6.64e+10 3.40e+11

Table 5.12.: Number of FLOPs required to perform static condensation (θSC), construct the pre-
conditioner (θpre), compute the skeleton system solution (θit) and solve the 2D Pois-
son model problem (θ).

The total number of FLOPs (θ) shows a similar behavior than θSC when the macro-elements
sizes decrease. No increment in the value of θ is observed even with the growing contribution of
θit. This implies that the predominant factor contributing to the total cost is the static condensa-
tion step. This is best observed in cases with a large polynomial degree (Table 5.12). In addition,

71

5. Numerical results

nelem p s τSC τpre τit τ

2048

2

2048 (IGA) *** 2.45 63.13 65.58
64 27.18 6.45 5.94 39.57
32 19.86 4.06 9.24 33.18
16 18.40 2.64 14.30 35.34
8 23.33 2.23 19.59 45.15

3

2048 (IGA) *** 5.92 115.99 121.92
64 49.26 6.60 6.24 62.10
32 34.78 4.18 9.58 48.54
16 26.26 3.33 16.89 46.49
8 32.18 3.00 34.24 69.43

4

2048 (IGA) *** 12.36 137.84 150.20
64 80.49 6.92 7.96 95.37
32 49.79 4.47 9.57 63.84
16 35.88 3.64 18.92 58.45
8 41.46 3.63 41.30 86.39

5

2048 (IGA) *** 23.97 149.72 173.69
64 133.13 7.16 8.03 148.32
32 75.20 5.29 10.90 91.41
16 50.37 4.19 18.68 73.24
8 58.69 4.76 50.74 114.20

6

2048 (IGA) *** 44.21 132.72 176.94
64 188.05 7.54 9.31 204.89
32 117.35 5.32 11.04 133.71
16 70.50 4.51 16.71 91.73
8 79.05 5.54 42.13 126.72

Table 5.13.: Computational time (in seconds) required to perform static condensation (τSC), con-
struct the preconditioner (τpre), compute the skeleton system solution (τit) and solve
the 2D Poisson model problem (τ).

the numerical results show that by using the hybrid method, we slightly reduce the total number
of FLOPs (θ). Particularly, when using a polynomial degree p “ 3.

Regarding computational times, the static condensation is the factor that contributes most to
the total cost. In most cases, the discretization that delivers the lowest computational time is the
one that involves the minimum cost in the static condensation. Moreover, τit has a significant
contribution to the total time cost. This contribution is growing as the macro-elements sizes
decrease. Ultimately, the reduction of the computational time obtained by using the hybrid
solver is approximately a factor of two, independently of the polynomial degree.

When the problem size increases to 40962, both, the number of FLOPs and the total compu-
tational time show a similar behavior to the problem with a mesh size of 20482. In this case,
the reduction factor of the total computational time increases and becomes slightly above three.

72

5. Numerical results

This is a result of the decrease of the iterative solver computational time (Tables 5.14 and 5.15).
For sufficiently large problems, the reduction factor associated to the skeleton system solution
(iterative step) will determine the total reduction factor of rIGA with respect to IGA, since that
is the only term scaling non-linearly with respect to the problem size.

n p s θSC θpre θit θ

4096

2

4096 (IGA) *** 5.05e+09 7.04e+11 7.09e+11
128 1.15e+12 1.03e+11 4.08e+10 1.29e+12
64 5.58e+11 5.43e+10 6.76e+10 6.80e+11
32 2.80e+11 2.89e+10 1.11e+11 4.19e+11
16 1.24e+11 1.60e+10 1.62e+11 3.02e+11

3

4096 (IGA) *** 1.97e+10 1.30e+12 1.32e+12
128 3.00e+12 1.06e+11 3.85e+10 3.15e+12
64 1.53e+12 5.68e+10 5.76e+10 1.65e+12
32 7.86e+11 3.16e+10 1.04e+11 9.22e+11
16 3.95e+11 1.90e+10 1.95e+11 6.09e+11

Table 5.14.: Number of FLOPs required to perform static condensation (θSC), construct the pre-
conditioner (θpre), compute the skeleton system solution (θit) and solve the 2D Pois-
son model problem (θ).

n p s τSC τpre τit τ

4096

2

4096 (IGA) *** 9.77 492.65 502.42
128 154.79 45.58 26.20 226.55
64 108.09 25.74 43.42 177.25
32 78.55 15.45 70.84 164.84
16 73.67 11.13 103.46 188.26

3

4096 (IGA) *** 23.93 780.50 804.43
128 297.31 46.59 24.69 368.60
64 196.75 26.82 37.06 260.63
32 137.44 17.97 65.92 221.32
16 104.70 12.86 123.77 241.32

Table 5.15.: Computational time (in seconds) spent to perform static condensation (τSC), con-
struct the preconditioner (τpre), compute the skeleton system solution (τit) and solve
the 2D Poisson model problem (τ).

Having a reduction factor greater in computational time than in the number of FLOPs can be
an effect of the domain partitioning. The partitioning improves the performance of the transfer
of data. This benefits the cache and results in a speed-up of the computational time. Large
sparse systems degrade the access to memory and transfer data performance. In those cases,
the machine has more probabilities to fail in optimally filling the cache. This results in delay

73

5. Numerical results

operations until the required data is transferred. The division of the problem in sub-problems
(macro-elements) permits to improve the performance of the cache-based machines. In partic-
ular, the solution of all the small problems results in a smaller global system that better exploit
the data locality, and benefits the filling of the cache [51].

In the hybrid solver strategy, the cost of static condensation of the macro-elements (that cor-
responds to compute the Schur complement of IGA systems) depends on the number of internal
macro-elements DoF and the polynomial degree. Moreover, the preconditioner construction,
that consists of an incomplete factorization of all DoF at the macro-elements boundaries (DoF
of the skeleton system), involves a cost that depends on the NZ entries of the skeleton ma-
trix system. Likewise, the matrix-vector multiplications performed per iteration of the iterative
solver (used to compute the solution of the skeleton system) have a cost proportional to the num-
ber of NZ entries of the skeleton matrix system. Therefore, the cost of those operations (static
condensation, preconditioner construction, and matrix vector product) relies only on the prob-
lem discretization (mesh size, polynomial order, and continuity degree) and provide a similar
performance independently of the problem we are solving.

In well-conditioned problems (matrices with small condition numbers), the cost of static con-
densation governs the total cost, in particular for high polynomial degrees, and slight reductions
in the total cost are obtained, as observed in the numerical results. The hybrid solver strategy
delivers larger computational savings with respect to Cp´1 IGA when the problem is discretized
with huge mesh sizes or when solving more complex problems, e.g., Helmholtz. In those cases,
the performance of traditional iterative solvers degrades as the condition number of the system
matrix enlarges, resulting in slow convergence velocities. However, once we implement the
hybrid solver strategy, we obtain a skeleton (reduced) system that is not only smaller than the
original matrix, but it also involves a matrix with a lower number of NZ entries and a better
conditioning than the original one. Considering that the costs of static condensation, precondi-
tioning construction and matrix-vector product are independent of the problem, the hybrid solver
strategy will deliver larger computational savings than Cp´1 IGA.

74

5. Numerical results

5.3.5. 3D numerical results

The extension of the rIGA hybrid solver to 3D is straightforward, since no significant modifica-
tions in the implementation presented in section 4.3 are required to build the solver. Unfortu-
nately, in 3D, the number of NZ entries of matrix Askl increases with respect to those of A (see
Table 5.17), as opposed to what we encounter in the 2D case (see Tables 5.8 and 5.16).

p s
Matrix size (DoF) Number of NZ entries

A Askl A{Askl A Askl A{Askl

2

2048 (IGA) 4.20E+06 – – 1.05E+08 – –
512 – 2.05E+04 204.95 – 6.10E+07 1.72
128 – 6.99E+04 60.10 – 6.00E+07 1.75
32 – 2.70E+05 15.54 – 6.21E+07 1.69
8 – 1.12E+06 3.76 – 7.19E+07 1.46
2 – 5.25E+06 0.80 – 1.19E+08 0.88

6

2048 (IGA) 4.22E+06 – – 7.13E+08 – –
512 – 2.07E+04 204.16 – 6.20E+07 11.50
128 – 7.21E+04 58.52 – 6.38E+07 11.17
32 – 3.04E+05 13.89 – 7.81E+07 9.13
8 – 1.65E+06 2.56 – 1.52E+08 4.70
2 – 1.36E+07 0.31 – 6.89E+08 1.03

Table 5.16.: Comparison between the number of NZ entries of the original matrix A and that of
the skeleton matrix Askl in 2D. A mesh size of Nelem “ 20482 is assumed.

p s
Matrix size (DoF) Number of NZ entries

A Askl A{Askl A Askl A{Askl

2

2048 (IGA) 8.62E+09 – – 1.08E+12 – –
512 – 6.31E+07 136.600 – 1.50E+14 0.00720
128 – 2.16E+08 39.942 – 3.75E+13 0.02868
32 – 8.44E+08 10.206 – 1.02E+13 0.10594
8 – 3.66E+09 2.356 – 3.50E+12 0.30777
2 – 2.04E+10 0.422 – 2.59E+12 0.41518

6

2048 (IGA) 8.67E+09 – – 1.90E+13 – –
512 – 6.41E+07 135.28 – 1.54E+14 0.12
128 – 2.29E+08 37.79 – 4.24E+13 0.45
32 – 1.06E+09 8.14 – 1.61E+13 1.18
8 – 7.90E+09 1.10 – 1.54E+13 1.24
2 – 1.37E+11 0.06 – 8.11E+13 0.23

Table 5.17.: Comparison between the number of NZ entries of the original matrix A and that of
the skeleton matrix Askl in 3D. A mesh size of Nelem “ 20483 is assumed.

75

5. Numerical results

In 3D, the number of NZ entries per column of matrix Askl is approximately 11ps ` pq2.
This value is larger than the number of NZ entries per column of matrix A, that is p2p ` 1q3.
Moreover, for s ą p (the most important scenario), the number of NZ entries becomes gigantic.
For instance, in a problem discretized with 20483 elements and a polynomial degree p “ 2, using
macro-elements of size 323, we obtain in average 12085 NZ entries per column (unknown). This
is approximately two orders of magnitude larger than the 125 NZ entries per column observed
when using traditional IGA.

Large numbers of NZ entries imply that the cost of a single CG iteration to approximate the
solution of the skeleton system is more expensive than a single CG iteration to approximate
the solution of the full problem discretized with Cp´1 IGA without static condensation. There-
fore, the hybrid solver strategy combined with rIGA is unsuitable to solve 3D problems. An
alternative approach is needed.

76

6. Numerical Applications

In this chapter, we apply refined Isogeometric Analysis (rIGA) to simulate the flow of an incom-
pressible fluid on bounded domains. This is a multi-field problem since the model includes the
pressure and the vectorial velocity of the fluid. We describe the Isogeometric Analysis (IGA)
and rIGA discretizations used to solve the fluid flow problem, and we discuss how to perform
the continuity reduction to solve the multi-fields problem. Then, we provide an estimate of the
FLoating Point Operations (FLOPs) required to solve the incompressible fluid flow problem
with those discretizations. Lastly, we detail the model problem implementation, and we present
some numerical results.

6.1. Fluid flow model problem

The model problem consists of a linear system of Partial Differential Equations (PDEs) for the
conservation of linear momentum and mass. We assume that this boundary value problem is
steady state. Equation 6.1 provides the system used to model the incompresible fluid flow.

$
’’’&
’’’%

Find tu, peu , with u : Ω Ñ Rd, and pe : Ω Ñ R, such that:

βrecu´∇ ¨ σ pu, peq “ f in Ω,

∇ ¨ u “ 0 in Ω,

u “ g on BΩ,

(6.1)

where Ω “ p0, 1qd is the region occuped by the fluid, u is the fluid velocity field, pe is the pres-
sure field, f is the external volumetric forces acting over the fluid, and g is the Dirichlet boundary
condition that can be decomposed into the normal and tangential components, g “ gn`gt. Ad-
ditionally, σ pu, peq “ ´peI ` 2ν∇su is the Cauchy stress tensor for incompressible fluids,
where I refers to the identity matrix, ν is the kinematic viscosity, and ∇su is the symmetric part
of the velocity gradient (strain rate). βrec is a reaction coefficient that denotes the ratio of the
fluid viscocity to the fluid permeability. Table 6.1 shows the different incompressible fluid flow
problems we can solve using Equation 6.1.

The weak formulation of the system is
$
’&
’%

Find tu, peu , with u P Vg, and pe P Q0, such that:

p∇sw, 2ν∇suqΩ ` pw, βrecuqΩ ´ p∇ ¨w, peqΩ ` pqe,∇ ¨ uqΩ “ pw, fqΩ
for all w P V0, and qe P Q0,

(6.2)

where Vg “ tv P H1 pΩq : v “ g on BΩu and V0 “ tv P H1 pΩq : v “ 0 on BΩu are the trial
and test spaces for the velocity field, respectively. The trial and test space for the pressure field
is Q0 “ L2

0 pΩq Ă L2 pΩq that corresponds to a space with zero average on Ω. In here, p¨.¨qΩ
denotes the L2 inner product on Ω. The weak problem has a unique solution pu, peq P Vg ˆQ0.

77

6. Numerical Applications

Fluid flow problem Diffusion-reaction (βrec d ν)

Darcy problem βrec " ν

Brinkman problem βrec » ν

Stokes problem βrec ! ν

Table 6.1.: Incompressible fluid flow problems solved with Equation 6.1.

6.2. IGA discretization

In order to solve the problem in Equation 6.1 with IGA, we build the problem discretization of
the weak formulation (Equation 6.2) based on the discretization framework presented in previ-
ous works [29, 30, 110, 58, 59, 60]. In particular, we use a spline generalization of the Raviart-
Thomas Finite Element Analysis (FEA) spaces to approximate the velocity field. These are
globally continuous discrete spaces due to the high inter-element smoothness that the splines
provide. Therefore, the discretization framework is conforming. Moreover, the smooth Raviart-
Thomas spaces satisfy the inf-sup stability condition and guarantee divergence-free discrete so-
lutions [29]. The spaces for the velocity and the pressure in the parametric domain (Ω̂) are as
follows:

Velocity spaces: V̂hpΩ̂q “
$
&
%

Sp`1,p
k`1,k ˆ Sp,p`1

k,k`1 Surface (2D)

Sp`1,p,p
k`1,k,k ˆ Sp,p`1,p

k,k`1,k ˆ Sp,p,p`1
k,k,k`1 Solid (3D)

(6.3)

Pressure space: Q̂hpΩ̂q “
$
&
%

Sp,pk,k Surface (2D)

Sp,p,pk,k,k Solid (3D)
(6.4)

In Figure 6.1, we illustrate the smooth Raviart-Thomas spaces for the velocity and the pressure
fields using Non-uniform Rational Basis Splines (NURBS) of degree p “ 2 and continuity k “ 1
associated to a 2D mesh of size of 6 ˆ 6 elements. Considering that we focus on using highly
continuous discretizations (Cp´1 IGA) with local continuity reduction but keeping inter-element
regularity (Ck : k ě 0), then the discrete velocity field is H1-conforming, being H1 “ `

H1
˘df

and df is the velocity field dimension. Moreover, since the univariate B-splines have the stronger
relationship

Cpk ”
" B
Bξ v : v P Cp`1

k`1

*
,

then for any p ě 1 and 0 ě k ě p´ 1

!
∇ ¨ v̂ : v̂ P V̂hpΩ̂q

)
“ Q̂hpΩ̂q. (6.5)

Thus, the discretization using smooth Raviart-Thomas spaces provides a discrete divergence-
free velocity field.

78

6. Numerical Applications

uy Ñ S2,3
1,2 pξ, ψqux Ñ S3,2

2,1 pξ, ψq p Ñ S2,2
1,1 pξ, ψq

Velocity fields Pressure field

Figure 6.1.: Example of the smooth Raviart-Thomas spaces for the velocity and the pressure
fields. In this case, we show the spaces for a 2D discretization with a mesh size of
6ˆ 6 elements, polynomial order p “ 2 and continuity degree k “ 1.

We use the following mappings to define the discrete velocity and pressure spaces on the
physical domain

ιu “ detpDFqpDFq´1pv ˝ Fq v P Hpdiv; Ωq XH1pΩq,
ιpe “ detpDFqpqe ˝ Fq qe P L2

0pΩq,
where det and div refer to the determinant and the divergence, respectively. ιu is a divergence-
preserving map known as Piola transformation, and ιp is an integral-preserving transformation.
In here, F is the geometric mapping from the parametric domain to the physical domain, and
DF is the gradient of the mapping. Therefore, the discrete spaces in the physical domain are
denoted as

Vh :“
!
v P Hpdiv; Ωq XH1pΩq : ιupvq P V̂hpΩ̂q

)
,

Qh :“
!
qe P L2

0pΩq : ιpepqeq P Q̂hpΩ̂q
)
.

These discrete spaces inmediately satisfy the inf-sup condition, that is

ginf
qePQh,qe‰0

sup
vPVh

p∇ ¨ v, qeqΩ
||v||H1 ||qe||L2

ě Cis ą 0,

where Cis is a constant independent of the element size.

6.2.1. Boundary condition imposition

Since the discretization spaces used to perform the discretization are designed for Hpdivq prob-
lems (Raviart-Thomas [107]), we can easily set the normal component of the velocity to zero

79

6. Numerical Applications

(un) at the boundaries, by removing the corresponding Degrees of Freedom (DoF). The para-
metric spaces, in this case, read as

V̂0,h :“
!
v̂ P V̂hpΩ̂q : v̂ ¨ n̂ “ 0 on BΩ̂

)
,

Q̂0,h :“
!
q̂e P Q̂hpΩ̂q :

ş
Ω q̂e “ 0

)
.

It is hard to strongly impose the tangential component of the velocity (ut). Therefore, we
use Nitsche’s method to weakely set the tangential component of the Dirichlet boundary condi-
tion [98]. In Equation 6.6, we introduce the Galerkin formulation that use the weak imposition
of the tangential component of the velocity.

$
’’’’’’’’’’’&
’’’’’’’’’’’%

Find tu, peu , with u P V0,h, and pe P Q0,h, such that:

p∇sw, 2ν∇suqΩ ` pw, βrecuqΩ test
´p∇ ¨w, peqΩ ` pqe,∇ ¨ uqΩ

´pw, 2ν∇su ¨ nqΓ
`pw, 2νu αpqΓ

´pu, 2ν∇sw ¨ nqΓ

“
pw, fqΩ

`pw, 2νg αpqΓ
´pg, 2ν∇sw ¨ nqΓ

for all w P V0,h, and qe P Q0,h,

(6.6)

where Γ refers to the boundary in which the tangential condition is impossed, g is the boundary
condition that consists in a tangential value gt and a zero normal value gn “ 0, and αp “
Cpen{hf . Cpen “ 5pp`1q is the penalty parameter that depends of the polynomial degree of the
discretization, and hf is the wall normal mesh size [18]. In the Galerkin formulation, the term
in blue comes from the natural boundary condition (consistency), the penalization terms are in
red and the terms in green conform the adjoint consistency.

6.2.2. Computational complexity for direct solvers

We use the state-of-the-art multifrontal method to solve the weak formulation of the multi-
field problem. As we explain in section 3.1.1, the multifrontal solver partitions the domain into
macro-elements interconnected by the separators. The size of the macro-elements and separators
in a multi-field case is equal to the sum of unknowns that each of those subdomains contains in
each field. As an example, we show in Figure 6.2 the size of the separator at the first partition
level (vertical partition) used to split a 2D domain into two subdomains.

The cost of the LU factorization is dominanted by the cost of eliminating the DoF on the
separators [41, 38].

6.2.2.1. Bi-dimensional case

In 2D, the size of the separator (vertical separator) at the first partition (vertical cut) is given by

qsep|y “ quxsep|y ` quysep|y ` qpesep|y
“ O

`
nux |ypp` 1q ` nuy |yppq ` npe |yppq

˘
,

(6.7)

80

6. Numerical Applications

uy Ñ S2,3
1,2 pξ, ψqux Ñ S3,2

2,1 pξ, ψq p Ñ S2,2
1,1 pξ, ψq

Vertical separator

Subdomain

Velocity fields Pressure field

` `

Figure 6.2.: Illustration of the size of the vertical separator that splits a mesh of 6 ˆ 6 elements
into two symmetric subdomains. The NURBS spaces have a polynomial order p “ 2
and a continuity degree k “ 1.

where nux |y “ pnelem ` pq, nuy |y “ pnelem ` p` 1q and npe |y “ pnelem ` pq are the length of
the separator in each space. Then, replacing the above equalities into Equation 6.7, we obtain

qsep|y “ O
`
nux |ypp` 1q ` nuy |yppq ` npe |yppq

˘

“ O ppnelem ` pqpp` 1q ` pnelem ` p` 1qppq ` pnelem ` pqppqq
“ O ppnelem ` pqp3p` 1q ` pq .

(6.8)

The size of both (horizontal) separators at the second partition (horizontal cut) is given by

qsep|x “ quxsep|x ` quysep|x ` qpesep|x
“ O

`
nux |xppq ` nuy |xpp` 1q ` npe |xppq

˘
.

(6.9)

The length of these separators in each space is nux |x « 0.5pnelem ` p ` 1q, nux |y «

81

6. Numerical Applications

0.5pnelem ` p q and npe |x « 0.5pnelem ` pq, respectively. Therefore,

qsep|x “ O
`
nux |xppq ` nuy |xpp` 1q ` npe |xppq

˘

“ O p0.5pnelem ` p` 1qppq ` 0.5pnelem ` pqpp` 1q ` 0.5pnelem ` pqppqq
“ O p0.5pnelem ` pqp3p` 1q ` pq .

(6.10)

The size of the separators in all partition levels can be computed based on the previous mathe-
matical expressions (Equations 6.8 and 6.10) by following the recursive partition of the domain.
Then, the size of the separators at the i-th partition level is

qsep|y “ O
´

2´pi´1q ppnelem ` pqp3p` 1q ` pq
¯
, (6.11)

qsep|x “ O
´

2´i ppnelem ` pqp3p` 1q ` pq
¯
. (6.12)

Finally, the cost to solve the LU factorization in 2D is given by

θIGA|2D “
ÿ̀

i“1

22pi´1q
´

2´pi´1q ppnelem ` pqp3p` 1q ` pq
¯3

` 22pi´1q`1
´

2´piq ppnelem ` pqp3p` 1q ` pq
¯3
,

θIGA|2D “ 5

2

´
1´ 2´`

¯´
pnelem ` pqp3p` 1q ` p

¯3
,

θIGA|2D “ O
´`pnelem ` pqp3p` 1q ` p˘3

¯
.

(6.13)

6.2.2.2. d-dimensional case

Following the same procedure that we use to estimate the cost of LU factorization in 2D, we
build the estimate for 3D, that is

θIGA|3D “ O
´`pnelem ` pq2p4p` 1q ` 2pnelem ` pqp

˘3
¯
. (6.14)

Based on the cost estimates for 2D and 3D, we build an expresion that computes the estimate
of the LU factorization cost for a problem of dimension d ą 1. The expression is

θIGA “ O
ˆ´
pnelem ` pqpd´1qppd` 1qp` 1q ` pd´ 1qpnelem ` pqpd´2qp

¯3
˙
. (6.15)

6.3. rIGA discretization

rIGA reduces the continuity over specific inter-element boundaries that correspond with the
location of the separators at different partition levels. To guarantee that the resulting rIGA
discretization preserves the discrete divergence-free velocity field p∇ ¨ u, qeqΩ “ 0, we reduce

82

6. Numerical Applications

the continuity over the element interfaces in k degrees on all spaces. Therefore, in a rIGA
discretization, the discrete spaces are

V̂h :“
!
Sp`1,p
k`1´k|vs ,k´k|hs ˆ Sp,p`1

k´k|vs ,k`1´k|hs
)
,

Q̂h :“
!
Sp,pk´k|vs ,k´k|hs

)
,

where vs and hs refers to the vertical and horizontal separators that involve continuity reduction,
respectively. For instance, in the space of ux, that is

Sp`1,p
k`1´k|vs ,k´k|hs ,

rIGA employs C1-hyperplanes along the vertical macro-element interfaces, reducing the con-
tinuity degree to one, and uses C0-hyperplanes along the horizontal macro-element interfaces,
reducing the continuity until reaching zero degree.

Figure 6.3 illustrates the spaces of the velocity and pressure fields once we reduce the con-
tinuity at the first vertical and horizonal cuts that split a 2D mesh of 6 ˆ 6 elements into four
subdomains of 3ˆ 3 elements.

ux Ñ S2,3
1´1|vs,2´1|hspξ, ψquy Ñ S3,2

2´1|vs,1´1|hspξ, ψq p Ñ S2,2
1´1|vs,1´1|hspξ, ψq

Velocity fields Pressure field

Figure 6.3.: Velocity and pressure spaces after partitioning a 2D mesh composed of 6 ˆ 6 ele-
ments into four macro-elements of 3ˆ3 elements. The polynomial degree is p “ 2.
vs and hs refer to the vertical and horizontal separators, respectively. The partition
level reduces the continuity of the velocity and pressure spaces by one degree along
the inter-subdomains boundaries.

6.3.1. Computational complexity for direct solvers

In the case of rIGA, the computational cost of the LU factorization is equal to the cost of elimi-
nating the DoF on the separators and macro-elements [67, 65, 66].

83

6. Numerical Applications

6.3.1.1. Bidimensional case

The size of a separator is equal to the sum of the unknowns contained in each field. The reduction
of continuity modifies this size, reducing the thickness and increasing separators’ length. The
size of the separator at the first partition (vertical cut) is given by

qsep|y “ qux
sep|y ` quy

sep|y ` qpesep|y. (6.16)

This separator corresponds to a C1-hyperplane in ux, while in uy and pe, it corresponds to a
C0-hyperplane. Thus,

qsep|y “ O
`
nux |yp2q ` nuy |yp1q ` npe |yp1q

˘
. (6.17)

The length of the separator in each space is nux |y “ pnelem ` p ` p2i ´ 1qpp ´ 1qq, nuy |y “
pnelem ` p ` 1 ` p2i ´ 1qpp ´ 1qq and npe |y “ pnelem ` p ` p2i ´ 1qpp ´ 1qq, respectively.
The additional term (last term inside the parenthesis) in nux |y, nuy |y and npe |y corresponds to
the number of unknowns added to the separators length due to the reduction of the continuity at
i partition levels. The size of the vertical separator is then

qsep|y “ O
`pnelem ` p` p2i ´ 1qpp´ 1qqp4q ` p1q˘ . (6.18)

The size of the separators at the second partition (horizontal cut) is given by

qsep|x “ qux
sep|x ` quy

sep|x ` qpesep|x. (6.19)

In this case, the separators correspond to a C1-hyperplane in uy. In the remaining spaces, the
separatos correspond to a C0-hyperplane. Therefore,

qsep|x “ O
`
nux |xp1q ` nuy |xp2q ` npe |xp1q

˘
, (6.20)

where the separators length is

nux |x « 0.5pnelem ` p` 1` p2i ´ 1qpp´ 1qq
nuy |x « 0.5ppnelem ` p` p2i ´ 1qpp´ 1qq
npe |x « 0.5pnelem ` p` p2i ´ 1qpp´ 1qq.

Then, the separators size is given by

qsep|x “ O
`
0.5pnelem ` p` p2i ´ 1qpp´ 1qqp4q ` 0.5 p1q˘ . (6.21)

We derive a general formula to compute the size of the separators at all partition levels based
on Equations 6.18 and 6.21. Then, the size of the separators at the i-th partition level is

qsep|y “ O
´

2´pi´1q `pnelem ` p` p2i ´ 1qpp´ 1qqp4q ` 1
˘¯
, (6.22)

qsep|x “ O
´

2´piq
`pnelem ` p` p2i ´ 1qpp´ 1qqp4q ` 1

˘¯
, (6.23)

84

6. Numerical Applications

and the cost to eliminate the DoF on the separators is

θsep|2D “
ÿ̀

i“1

22pi´1q
´

2´pi´1q
´
pnelem ` p` p2i ´ 1qpp´ 1qqp4q ` 1

¯¯3

` 22pi´1q`1
´

2´i
`pnelem ` p` p2i ´ 1qpp´ 1qqp4q ` 1

˘ ¯3
,

θsep|2D “ 5

2

´
1´ 2´`

¯´
pnelem ` p` p2` ´ 1qpp´ 1qqp4q ` 1

¯3
,

θsep|2D “ O
´`pnelem ` p` p2` ´ 1qpp´ 1qqp4q ` 1

˘3
¯
.

(6.24)

where ` is the number of partition levels that involve continuity reduction.
Next, we estimate the cost to eliminate the DoF on the macro-elements. We assume that the

macro-elements are Cp´1 systems. The size of the macro-elements is nm-e “ nm-e|x ¨ nm-e|y,
being nm-e|x and nm-e|y the size of the macro-element in the horizontal and vertical spatial di-
rections, respectively. Table 6.2 provides the macro-elements sizes for the velocity and pressure
fields.

nm-e|x nm-e|y
ux 2´`

`
nelem ` pp` 1q ` p2` ´ 1qpp´ 1q˘ 2´`

`
nelem ` p` p2` ´ 1qpp´ 1q˘

uy 2´`
`
nelem ` p` p2` ´ 1qpp´ 1q˘ 2´`

`
nelem ` pp` 1q ` p2` ´ 1qpp´ 1q˘

pe 2´`
`
nelem ` p` p2` ´ 1qpp´ 1q˘ 2´`

`
nelem ` p` p2` ´ 1qpp´ 1q˘

Table 6.2.: Macro-element size in the velocity and pressure fields.

The cost to eliminate the DoF in a single macro-element is given by an adaptation of Equa-
tion 6.15 that includes the unknowns added to the discretization due to the reduction of the
continuity at the ` partition levels, and reads as

θm-e|2D “ 2´3`O
ˆ´
pnelem ` p` p2` ´ 1qpp´ 1qqp3p` 1q ` p

¯3
˙
. (6.25)

The cost of factorizing all the macro-elements is 22` ¨ θm-e, being 22` the number of macro-
elements. Finally, the total cost of the LU factorization when using rIGA to build the discretiza-
tion of the velocity and pressure fields is given by

θrIGA|2D “ θsep|2D ` 22` ¨ θm-e|2D,

θrIGA|2D “ 2´`O
ˆ´
pnelem ` p` p2` ´ 1qpp´ 1qqp3p` 1q ` p

¯3
˙

`O
ˆ´
pnelem ` p` p2` ´ 1qpp´ 1qqp4q ` 1

¯3
˙
.

(6.26)

85

6. Numerical Applications

6.3.1.2. d-dimensional case

We follow the same procedure that we use to estimate the cost of the LU factorization when
using rIGA in 2D in order to build a formula that estimates the LU factorizaton cost in 3D. The
resulting formula is

θrIGA|3D “ θsep|3D ` 23` ¨ θm-e|3D,

θrIGA|3D “2´3`O

¨
˝
˜
pnelem ` p` p2` ´ 1qpp´ 1qq2p4p` 1q

` 2pnelem ` p` p2` ´ 1qpp´ 1qqp

¸3
˛
‚

`O

¨
˝
˜
pnelem ` p` p2` ´ 1qpp´ 1qq2p5q

` 2pnelem ` p` p2` ´ 1qpp´ 1qq

¸3
˛
‚.

(6.27)

Based on the estimates for 2D and 3D, we derive a mathematical expresion to approximate
the LU factorization cost for problems of dimension d ą 1, and that is

θrIGA “ θsep ` 2d` ¨ θm-e,

θrIGA “ 2p3´2dq`O

¨
˝
˜
pnelem ` p` p2` ´ 1qpp´ 1qqpd´1qppd` 1qp` 1q

` pd´ 1qpnelem ` p` p2` ´ 1qpp´ 1qqpd´2qp

¸3
˛
‚

`O

¨
˝
˜
pnelem ` p` p2` ´ 1qpp´ 1qqpd´1qpd` 2q

` pd´ 1qpnelem ` p` p2` ´ 1qpp´ 1qqpd´2q

¸3
˛
‚.

(6.28)

6.4. Problem implementation

We implement the model problem using PetIGA-MF, a multi-field extension of PetIGA that we
present in [110]. This framework allows to use a different space for each field of interest. For
instance, we can use Hpdivq spaces to solve incompressible flows or Hpcurlq discretizations to
solve electromagnetism problems. PetIGA-MF is based on PETSc [11, 10] and uses the data
management libraries to pack the data of the multiple fields in a single object, thus simplifying
the discretization construction.

We solve the system that results from the discretization of the problem using the sequen-
tial version of the multifrontal solver MUMPS [4, 5] with the automatic choice of partitioning
technique, resulting in METIS [84] algorithm for all the cases.

We report the global FLOPs and computational times (in seconds). This allows us to analyze
the impact of the local reduction of continuity in the computational cost. For each of the mesh
sizes and polynomial degrees that we use to discretize the model problem, we consider a range
of cases with a particular number of partition levels that locally reduce the continuity.

All computational tests are solved sequentially on TACC Stampede system. Each node is out-
fitted with turbo boost 2.7 GHz cores (up to peak 3.5 GHz in turbo mode) and 1TB of memory.

86

6. Numerical Applications

6.5. Numerical results

6.5.1. 2D Example with exact solution

First, we compute the solution of the numerical experiment presented in [29]. It consists of a 2D
problem with a manufactured solution allowing to analyze the impact of the continuity reduction
on the total error. The problem is solved in a unitary domain Ω “ p0, 1q2 with a no-slip condition
imposed on its boundary (BΩ), and a value of the pressure pe “ 0 at the left-bottom corner. The
kinematic viscosity is assumed to be one (ν “ 1). Two types of flows are studied: a Stokes flow
(βrec “ 0) and a Darcy flow (βrec “ 1000). The external volumetric force is equal to

f “ βrecū´∇ ¨ p2ν∇sūq `∇p̄

with

ū “
«

2ex p´1` xq2 x2
`
y2 ´ y˘ p´1` 2yq

ex p´1` xqx p´2` x p3` xqq p´1` yq2 y2

ff
,

and

p̄ “ ´424` 156e` py2 ´ yqp´456` exp456` x2p228´ 5py2 ´ yqq
` 2xp´228` py2 ´ yqq ` 2x3p´36` py2 ´ yqq ` x4p12` py2 ´ yqqqq.

The domain discretization is defined by the tensor product of unmapped NURBS functions
since the domain is a unitary square. We use structured meshes with the same number of ele-
ments in each dimension (nelem) and sizes of 1282, 2562, 5122 and 10242 elements. We consider
polynomial degrees p in a range from 2 to 4. We analyze all rIGA cases starting with the one
that involves no continuity reduction at any partition level (that corresponds to traditional IGA),
until reaching the case with continuity reduction along all inter-element boundaries.

Table 6.3 shows the L2 norm of the approximation error of the velocity for the Stokes problem
(βrec “ 0) discretized with IGA and the optimal (in computational savings) case of rIGA. The
discretization error of the computed solution first improves as we enrich the solution spaces, by
enlarging the mesh sizes, increasing the polynomial order and/or reducing continuity. However,
due to several factors, such as the rounding errors in the numerical results of the multiple oper-
ations performed by the LU factorization, the conditioning error of the system and the machine
precision, the minimum error we can achieve for a computed solution is limited. The limit in
error is well observed for cases with large mesh sizes and high polynomial degrees.

The upper bound on the approximation error is Opκ εq, where κ is a coefficient proportional
to the condition number of the system matrix, and ε is the machine precision, that is, O(1e-16)
for double precision arithmetic. The condition number of systems matrices in discretizations
based on B-splines grows with respect to the mesh size, the polynomial order, and the continuity
degree [64]. Thus, the approximation error increases, as we observe in the numerical results
(Table 6.3).

To eliminate the conditioning errors from the analysis, we employ the iterative refinement
method [121, 94]. This approach allows to reach an upper bound on the approximation error

87

6. Numerical Applications

Polynomial
degree Method

Mesh size (Nelem)

1282 2562 5122 10242

2
IGA 8.66e-09 1.09e-09 1.36e-10 1.79e-11
rIGA 8.66e-09 1.09e-09 1.36e-10 1.73e-11

3
IGA 4.02e-11 2.52e-12 7.79e-13 7.27e-13
rIGA 3.82e-11 2.39e-12 1.48e-12 1.92e-12

4
IGA 1.37e-13 3.98e-14 3.53e-13 7.43e-13
rIGA 2.83e-13 1.61e-13 1.64e-12 4.46e-12

Table 6.3.: L2 norm of the approximation error of the velocity for the 2D Stokes problem
(βrec “ 0).

of Opεq, assuming no rounding errors in the direct solver. Table 6.4 shows the L2 norm of the
approximation error of the velocity for the Stokes problem (βrec “ 0) discretized with IGA and
the optimal case of rIGA.

Polynomial
degree Method

Mesh size (Nelem)

1282 2562 5122 10242

2
IGA 8.66e-09 1.09e-09 1.36e-10 1.70e-11
rIGA 8.66e-09 1.09e-09 1.36e-10 1.70e-11

3
IGA 4.02e-11 2.52e-12 1.58e-13 1.45e-14
rIGA 3.83e-11 2.46e-12 1.54e-13 1.36e-14

4
IGA 1.36e-13 4.76e-15 5.65e-15 2.27e-14
rIGA 1.33e-13 4.28e-15 5.86e-16 6.40e-15

Table 6.4.: L2 norm of the approximation error of the velocity for the 2D Stokes problem (βrec “
0). This error is obtained with an iterative refinement method that minimizes the
impact of round-off effects.

The numerical results show that rIGA involves an improvement in the discretization error.
For Darcy flow (β “ 1000), we obtain a similar error for the velocity than for the Stokes
flow (βrec “ 0). Assuming that the system matrix on both flows types involves a comparable
condition number, then, the upper bound on the error of the computed solution are close to each
other. Additionally, Darcy flow shows the same discretization error than for the Stokes flow,
when we use the iterative refinement method (Table 6.4).

6.5.2. Lid-driven cavity problem (Stokes flow)

We solve a lid-driven cavity problem over a unitary domain, assuming a Stokes flow (βrec “ 0).
We impose a tangential velocity at the top boundary of the domain (BΩT) equal to one, and in

88

6. Numerical Applications

the remaining boundaries (BΩr) we consider a no-slip condition. Moreover, no external forces
are considered (f “ 0). Figure 6.4 illustrates the structure of the lid-driven cavity test problem.

x

y

Ω “ p0, 1q2

u|BΩT
“ r1, 0s

u|BΩr “ r0, 0s
(a) Domain Ω “ p0, 1q2

x

y

z

Ω “ p0, 1q3
u|BΩT

“ r0, 1, 0s

u|BΩr “ r0, 0, 0s
(b) Domain Ω “ p0, 1q3.

Figure 6.4.: Lid-driven cavity fluid flow test problem.

The pressure and the stress fields, in this problem, involve corner singularities. Due to this,
the exact solution of the velocity lies in a Sobolev space W1,ppΩq, being 1 ă p ď 2, instead of
lying in Hpdiv; Ωq or H1pΩq. In [58], Evans et al. showed that the IGA discretization presented
in subsection 6.2 approximates well the smooth portions of the flow and properly resolve the
flow close to the corner singularities considering that the vorticity close to those corners slowly
converges to the highly accurate pseudospectral results presented in [28].

In addition to this classical Stokes benchmark problem, we consider a 2D case in which the
boundary condition at the top boundary of the domain consists of a continuous function

u|BΩT “

$
’&
’%

r10x, 0s, @ x ă 0.1

r1, 0s. @ 0.1 ď x ď 0.9

r10p1´ xq, 0s. @ 0.9 ď x ď 1

(6.29)

In this case, the problem does not experience corner singularities, and the exact solution of
the fluid flow problem is in the proper spaces.

These model problems are discretizedd by the tensor-product of unmapped NURBS functions
resulting in meshes with the same number of elements per side (nelem). We employ mesh sizes
of 5122 and 10242 elements in 2D, while in 3D, we use mesh sizes of 163 and 323 elements.
Moreover, we consider polynomial degrees p from 2 to 5. These polynomial orders are kept
constant for each problem. To analyze the impact of continuity reduction on the computational
time, we consider all range of cases with a particular number of partition levels that locally
reduce continuity.

Figure 6.5 illustrates the magnitude of the velocity for the Stokes problem solved using a mesh
size of 10242 elements, and polynomial degree p “ 4 in 2D. In Figure 6.6, we plot the horizontal

89

6. Numerical Applications

velocity along the vertical centerline when using the top boundary condition u|BΩT “ r1, 0s and
the one defined with Equation 6.29, and Figure 6.7 compares the horizontal velocity along the
vertical centerline for IGA and the optimal case of rIGA in both 2D and 3D with u|BΩT “ r1, 0s
(that corresponds to the classical Stokes benchmark problem). The smooth portion of the flow
inside the domain is accurately approximated, and the continuity reduction shows no notorious
impact on the solution, as expected.

x

y

(a) Case with the top boundary
condition of u|BΩT “ r1, 0s.

x

y

0

0.2

0.4

0.6

0.8

1

(b) Case with the top boundary con-
dition defined by Equation 6.29.

Figure 6.5.: Magnitude of the velocity (u) of the 2D Stokes problem. Problem solution approx-
imated over a mesh size of 10242 elements and a polynomial degree p “ 4.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

u|BΩT
“ r1, 0s

u|BΩT
“ Equation 6.29

y

u
x

(a) IGA

0 0.2 0.4 0.6 0.8 1

0

0.5

1

u|BΩT
“ r1, 0s

u|BΩT
“ Equation 6.29

y

u
x

(b) rIGA

Figure 6.6.: Horizontal velocity ux along the vertical centerline. Comparison between using a
top boundary condition of u|BΩT “ r1, 0s and u|BΩT defined by Equation 6.29.

Figures 6.8 and 6.9 display the number of FLOPs required to solve the Stokes problem in 2D
and 3D, respectively. The number of FLOPs is plotted with respect to the macro-elements size

90

6. Numerical Applications

0 0.2 0.4 0.6 0.8 1

0

0.5

1

IGA

rIGA

y

u
x

(a) 2D: Mesh size of 10242

elements and p “ 4

0 0.2 0.4 0.6 0.8 1

0

0.5

1

IGA

rIGA

y

u
x

(b) 3D: Mesh size of 322

elements and p “ 4

Figure 6.7.: Comparison of the horizontal velocity ux along the vertical centerline for IGA and
the optimal case of rIGA.

s “ nelem{2`, being ` the number of partition levels that perform continuity reduction.

100 101 102

1012

1013

p “ 2

p “ 3

p “ 4

p “ 5

Macro-elements size (s)

FL
O

PS

C0

Cp´1

(a) Mesh size of 5122 elements

100 101 102 103

1013

1014

p “ 2

p “ 3

p “ 4

p “ 5

Macro-elements size (s)

FL
O

PS

C0

Cp´1

(b) Mesh size of 10242 elements

Figure 6.8.: Number of FLOPs required to solve the 2D Stokes problem with the multifrontal
direct solver. The dashed lines with rounded markers () correspond to the nu-
merical results and the solid lines () represent the theoretical estimates.

For 2D, we use a constant factor close to 16 to fit the theoretical estimates provided in Equa-
tion 6.15 and 6.28 with the computed number of FLOPs. For 3D, the constant factor used to
fit the theoretical estimates with the numerical results is close to 7. These constants include the
contribution of forming the Schur complements and the total number of FLOPs that LAPACK

91

6. Numerical Applications

100 101

1011

1012

1013

1014

p “ 2

p “ 3

p “ 4

p “ 5

Macro-elements size (s)

FL
O

PS

C0

Cp´1

(a) Mesh size of 163 elements

100 101

1013

1014

1015

1016

p “ 2

p “ 3

p “ 4

p “ 5

Macro-elements size (s)
FL

O
PS

C0

Cp´1

(b) Mesh size of 323 elements

Figure 6.9.: Number of FLOPs required to solve the 3D Stokes problem with the multifrontal
direct solver. The dashed lines with rounded markers () correspond to the nu-
merical results and the solid lines () represent the theoretical estimates.

performs to factorize the system, and are slightly dependent on the polynomial degree.
Tables 6.5 and 6.6 provide the number of FLOPs and computational times (in seconds) for

the corresponding IGA and optimal rIGA discretizations in 2D and 3D, respectively.

Polynomial
degree Method

Mesh size (Nelem)

5122 10242

FLOPs Time rss FLOPs Time rss

2
IGA 1.78e+12 106.27 1.45e+13 794.28
rIGA 4.76e+11 34.51 3.68e+12 226.29

3
IGA 5.01e+12 277.83 4.19e+13 2191.69
rIGA 6.52e+11 46.24 4.92e+12 309.11

4
IGA 1.07e+13 583.97 9.73e+13 4975.04
rIGA 9.03e+11 62.67 6.85e+12 429.88

5
IGA 1.98e+13 1038.72 1.93e+14 12996.36
rIGA 1.24e+12 83.32 8.04e+12 645.24

Note: Results in blue were computed with Pardiso and PETSc using 64bit indices.

Table 6.5.: Number of FLOPs and computational times (in seconds) required to solve the 2D
Stokes problem with the multifrontal direct solver using two mesh sizes and four
polynomial degrees (p ranging from 2 to 5).

92

6. Numerical Applications

Polynomial
degree Method

Mesh size (Nelem)

163 323

FLOPs Time rss FLOPs Time rss

2
IGA 2.59e+11 15.36 1.32e+13 667.42
rIGA 1.34e+11 8.79 4.56e+12 242.99

3
IGA 9.63e+11 53.42 4.49e+13 2222.29
rIGA 3.72e+11 22.78 9.96e+12 530.63

4
IGA 2.63e+12 138.27 1.09e+14 5394.60
rIGA 1.24e+12 69.58 2.14e+13 1179.58

5
IGA 5.64e+12 285.07 2.26e+14 14674.84
rIGA 2.89e+12 165.49 4.50e+13 3019.07

Note: Results in blue were computed with Pardiso and PETSc using 64bit indices.

Table 6.6.: Number of FLOPs and computational times (in seconds) required to solve the 3D
Stokes problem with the multifrontal direct solver using two mesh sizes and four
polynomial degrees (p ranging from 2 to 5).

The theoretical estimates approximate well the numerical results. In particular, these estimates
predict the macro-element size that delivers the maximum cost reduction. The numerical results
show that rIGA decreases the number of FLOPs required for solving the Stokes problem by a
factor up to Opp2q in 2D. For instance, in the case that we solve the model problem using a mesh
size of 10242 elements and polynomial degree p “ 4, the optimal rIGA case reports a reduction
with respect to Cp´1 IGA of approximately 14 times in terms of the number of FLOPs. In
3D, the reduction factor of the number of FLOPs is approximately p. In 3D, the examples we
can solve are in the pre-asymptotic regime, and due to that, the maximum reduction factor of the
number of FLOPs we can observe is Oppq. As we reach the asymptotic regime (for a sufficiently
large grid), the reduction factor of the number of FLOPs becomes Opp2q. For example, when
using the FLOPs estimates of Equation 6.28 with p “ 5 and Nelem “ 2563 we obtain a saving
factor of 35.

In terms of computational times, rIGA reports a maximum reduction factor with respect to
Cp´1 IGA of almost 12 times when solving the Stokes problem in 2D, with a mesh size of 10242

elements and polynomial degree p “ 4. The problem discretized with the optimal rIGA case
requires approximately seven minutes to be solved, while in case of IGA, the model problem
requires 83 minutes (almost one and a half hours) to be solved. In 3D, the case solved with a
mesh size of 323 elements and polynomial degree p “ 4 reports the largest solvable problem
using sequential MUMPS. In this case, the factor is equal to 4.57: from 90 (with IGA) minutes
to 20 (with rIGA).

93

7. Conclusions and Future work

7.1. Conclusions

This dissertation proposes a refined Isogeometric Analysis (rIGA) method to solve problems
governed by Partial Differential Equations (PDEs). Starting from a highly continuous Isogeome-
tric Analysis (IGA) discretization, our strategy reduces the continuity over certain hyperplanes
that split the mesh into subdomains (or macro-elements). Considering that the hyperplanes act as
separators during the elimination of Degrees of Freedom (DoF) on direct solvers, we developed
a method that lowers the continuity until reaching a zero degree (C0) over selected hyperplanes
(rIGA), and an Optimally refined Isogeometric Analysis (OrIGA) that lowers the continuity until
arbitrary degrees (Ck).

Additionally, we also constructed a hybrid solver strategy that applies rIGA to iterative solvers.
This approach reduces the continuity until degree zero (C0) over the inter-subdomains bound-
aries, and then it performs a static condensation at the macro-elements level. The skeleton
system that results from assembling the Schur complement of all the macro-elements is solved
using an iterative strategy.

To illustrate the impact of the continuity reduction on the computational cost, we report the
FLoating Point Operations (FLOPs) and computational times to solve linear systems resulting
from the rIGA discretization with structured meshes and uniform polynomial orders. In par-
ticular, we analyze the computational cost for the cases of: (a) a Laplace problem in 2D and
3D solved with the original rIGA,(see Section 5.1), (b) a 2D Laplace problem solved using
OrIGA,(see Section 5.2), (c) a 2D Poisson problem with a forcing based on sines that is solved
with the hybrid solver strategy (see Section 5.3), and (d) a fluid mechanics application of incom-
pressible fluid flow in a bounded domain (see Section 6.5). Neither traditional Finite Element
Analysis (FEA) nor IGA provides the optimal number of FLOPs for solving those problems
with a fixed mesh size. The optimal is achieved by the rIGA methods we introduce herein.

7.1.1. rIGA

The original version of rIGA for direct solvers computes the solution of problems (with large
mesh sizes) approximately p2 times faster than Cp´1 IGA, and the gains with respect to FEA are
even larger, especially in 3D. Moreover, the memory requirements also decrease significantly,
as observed in section 5.1.4.3.

In 2D, the cases solved using macro-elements (subdomains) composed of 162 elements report
the lowest computational times in most of the tested configurations, while in 3D, a wider range
of macro-element size options is observed. For small mesh sizes (Nelem “ 323), optimal macro-
elements consist of 83 elements, while as the mesh size increases to Nelem “ 1283, the optimal
macro-element size tends to 163 elements.

94

7. Conclusions and Future work

The maximum polynomial order that we use to solve the model problem in 2D is p “ 9.
For this polynomial degree, we were not able to compute the optimal rIGA case that consists
of a discretization with macro-elements of size s “ 162 due to the limit on the number of
NonZero (NZ) entries that PETSc configured with MUMPS solver has. The best results we
obtain correspond to a discretization with macro-elements of size s “ 322. This case reports
a gain factor with respect to IGA (Cp´1) of almost 70 times in terms of FLOPs and more than
35 times in terms of time. For instance, in 2D, the problem that we solve in 2 hours with IGA,
requires approximately 3 minutes to be solved with rIGA. Theoretical estimates predict that
these savings will further increase as we consider larger problems with higher p.

In 3D, the maximum reproducible gain with respect to Cp´1 is 13.69, which corresponds to
the case with mesh size Nelem “ 1283 and polynomial order p “ 3. In this case, the problem
that we solve in one hour with rIGA requires approximately 15 hours to be solved with IGA,
and more than 100 hours if one employs FEA.

7.1.2. OrIGA

The extended version of rIGA, called OrIGA, leads to systems of linear equations that can be
more efficiently solved with direct solvers than those obtained with the original version of rIGA.
In 2D, OrIGA reduces the total computational cost needed by the direct solver to compute the
solution of the model problem by up to 25% (for large mesh sizes and polynomial degrees) when
compared to the original version of rIGA. When we compare to Cp´1 IGA and C0 FEA, OrIGA
reports a reduction in the number of FLOPs of a factor up to 55.

7.1.3. Hybrid solver strategy with rIGA

The hybrid solver strategy delivers moderate savings in terms of computational time when solv-
ing the 2D Poisson model problem. These savings are smaller than those obtained using rIGA
with direct solvers. For instance, in a mesh with 20482 elements and polynomial degree p “ 5,
the hybrid solver strategy solves the model problem approximately 2.37 times faster than with
Cp´1 IGA, while with direct solvers, the original version of rIGA reduces the computational
time by a factor of approximately 22 with respect to Cp´1 IGA [67] (see Section 5.1).

The cost of all operations in the hybrid solver strategy is linear with respect to the number of
elements, except for the case of the number of iterations, which grows as nαdelem, with α ą 1. For
the 2D case, the computational savings of rIGA increase as compared to IGA up to an asymptotic
limit. For instance, the model problem discretized with a mesh of size of Nelem “ 40962 and
polynomial degree p “ 3 delivers a reduction factor of approximately 3. This is larger than
when using a mesh size of Nelem “ 20482 elements with the same polynomial degree which
involves a reduction factor of approximately 2.

Comparing the performance of the iterative solver when applied to rIGA discretizations vs
when applied to Cp´1 IGA, we observe a larger reduction in terms of time than in terms of the
number of FLOPs. This may be a result of the domain partitioning, which simplifies the data
transfers with respect to the bandwidth limitations of the machine. Large sparse systems (as in
Cp´1 IGA) degrade the performance of the memory access and the data transmission. In those
cases, the machine often fails to optimally fill the cache memory resulting in a delay of some

95

7. Conclusions and Future work

operations until the required data is transferred. The division of the problem in subproblems
(macro-elements) improves the performance of the cache-based machines. The solution of the
subproblems delivers a smaller global system that not only better exploits the data locality but
also benefits in the filling of the cache [51].

However, when the macro-elements are small (s „ p), the cost to access the memory becomes
significant with respect to the cost to operate on the data (eliminate DoF) [51]. This memory
access impacts the scaling of the computational time of the static condensation (Figure 5.14).
Once the size of the macro-elements is large enough (s " p), data operations dominate the
timings. At this point, the reduction factor of computational time corresponds to that of the
number of FLOPs.

In 3D, the number of NZ entries of the rIGA skeleton matrix is larger than that of the Cp´1

IGA matrix. This results in a significant increment in the relative cost of matrix-vector mul-
tiplication. Thus, rIGA combined with the hybrid solver strategy delivers no savings in the
computational cost when solving 3D problems, and its use is not advised in this case.

7.1.4. Applications

The implementation of rIGA to solve incompressible fluid flow problems delivers a reduction in
the computational cost, and it provides better accuracy than Cp´1 IGA. In 2D, the numerical
results show a reduction factor in the computational cost up to p2. In 3D, the maximum repro-
ducible problems with sequential MUMPS are in the pre-asymptotic regime, and the maximum
gain factors are of Oppq. In multi-field problems, we require more time (larger grids than in
scalar problems) to arrive at the asymptotic limit and reach the full savings because the sys-
tem is bigger (more equations). For sufficiently large grids (asymptotic regime), the theoretical
estimates show that the gain factor becomes Opp2q.

The optimal discretizations obtained with rIGA consists of enriched/nested spaces with re-
spect toCp´1 IGA. Therefore, the best approximation error is improved by definition. Similarly,
the best approximation error of the corresponding C0 FEA discretization is smaller than that of
rIGA. The total numerical error for stable elliptic problems improves when going from IGA
to rIGA discretizations. However, for the case of hyperbolic and parabolic problems, stability
may play a crucial role on the total approximation error. Therefore, using rIGA not necessarily
implies a direct improvement of the results and it may even lead to a worse result even if rIGA
reduces the best approximation error.

7.2. Future work

In the near future, we plan to apply rIGA to solve hyperbolic and parabolic PDEs systems in
order to perform deeper analysis on the effect of the continuity reduction on the total numerical
error. In particular, we shall evaluate how significant is the impact of the continuity reduction on
the problems’ stability. As a remark, the first work in this topic has been just published this year.
In this work, the authors study the spectral approximation properties of rIGA and that show how
the local reduction of continuity impact on the error in the eigenvalues and eigenfunctions [104].

96

7. Conclusions and Future work

As another line of future research, we plan to implement non-tensor product rIGA discretiza-
tions by using T-splines. The savings for this strategy may vary depending upon the particular
discretization. The main idea is to employ C0 T-splines on the top level of a given macro-
element in order to separate the interior of the possibly locally-refined macro-element from the
rest of the computational domain.

We are also planning to work on a parallel implementation of the rIGA. The use of rIGA is
expected to be beneficial in terms of distributed memory parallel computations, since separators
diminish the amount of information that needs to be shared among neighboring processors, thus,
minimizing the communication cost and increasing its parallel scalability with respect to IGA.

Furthermore, we plan on using the hybrid solver method with the Conjugate Gradients (CG) it-
erative solver preconditioned with the Balancing Domain Decomposition by Constraints (BDDC)
strategy [89, 90, 9]. By using this preconditioner technique, it is possible to represent the skele-
ton system in a reduced form that has fewer NZ entries. This may result in larger computational
savings for 2D, and it will permit to use hybrid solver strategy in 3D, considering that the main
limitation in 3D is that the skeleton system involves a larger number of NZ entries than the
original IGA system.

97

8. Main achievements

8.1. Peer reviewed publications

2018 D. Garcia, D. Pardo, L. Dalcin, and V.M. Calo. Refined Isogeometric Analysis for a
Preconditioned Conjugate Gradient Solver. Computer Methods in Applied Mechanics
and Engineering (in press), 2018.
https://doi.org/10.1016/j.cma.2018.02.006.

2017 D. Garcia, M. Bartoň, and D. Pardo. Optimally refined isogeometric analysis. Procedia
Computer Science, 108:808 – 817, 2017.
https://doi.org/10.1016/j.procs.2017.05.283.

2017 D. Garcia, D. Pardo, L. Dalcin, M. Paszyński, N. Collier, and V.M. Calo. The value of
continuity: Refined isogeometric analysis and fast direct solvers. Computer Methods in
Applied Mechanics and Engineering, 316: 586 – 605, 2017.
https://doi.org/10.1016/j.cma.2016.08.017.

8.2. Conferences talks

2018 D. Garcia, D. Pardo, V.M. Calo and J. Muñoz-Matute. refined Isogeometric Analysis
(rIGA): A multi-field application on a fluid flow scenario. ICCS, Wuxi, China.

2017 D. Garcia, M. Bartoň, and D. Pardo. Optimally refined isogeometric analysis. ICCS,
Zurich, Switzerland.

2016 D. Garcia, D. Pardo, L. Dalcin, M. Paszyński, N. Collier, and V.M. Calo. Refined Isoge-
ometric Analysis: Improved Performance of Direct Solvers by Controlling Continuity.
WCCM XII & APCOM VI, Seoul, South Korea.

2016 D. Garcia, D. Pardo, L. Dalcin, M. Paszyński, N. Collier, and V.M. Calo. Refined Isoge-
ometric Analysis (rIGA) HOFEIM 2016, Jerusalem, Israel.

2016 M. Paszyński, G. Gurgul, D. Garcia, and D. Pardo. Efficient parallelization of direct
solvers for isogeometric analysis PMAA 2016, Bordeaux, France.

8.3. Seminars & Workshops

2018 D. Garcia, D. Pardo, and V.M. Calo. Refined Isogeometric Analysis (rIGA) with multi-
physics applications. Workshop: “Fifth International Congress On Multiphysics, Multi-
scale, and Optimization Problems”, BCAM, Bilbao, Spain.

98

https://doi.org/10.1016/j.cma.2018.02.006
https://doi.org/10.1016/j.procs.2017.05.283
https://doi.org/10.1016/j.cma.2016.08.017

8. Main achievements

2016 D. Garcia, D. Pardo, L. Dalcin, M. Paszyński, and V.M. Calo. Refined Isogeometric
Analysis: Improved Performance of Direct Solvers by Controlling Continuity. Work-
shop: “Fourth International Congress On Multiphysics, Multiscale, and Optimization
Problems”, BCAM, Bilbao, Spain.

2016 D. Garcia, D. Pardo, L. Dalcin, M. Paszyński, N. Collier, and V.M. Calo. Refined Iso-
geometric Analysis: Complexity Reduction of Direct Solvers by Controlled Continuity.
Seminar at Institute for computational Engineering and Sciences (ICES), The University
of Texas at Austin, USA.

2016 D. Garcia, D. Pardo, L. Dalcin, M. Paszyński, N. Collier, and V.M. Calo. Refined Iso-
geometric Analysis. Workshop: “The Sixth Valparaı́so’s Mathematics and Applications
Days” (V-MAD 6), Valparaiso, Chile.

2014 D. Garcia, V.M. Calo, and D. Pardo. k-Refinement on 1D Problems. Workshop: “Third
International Workshop On Multiphysics, Multiscale, and Optimization Problems”, BCAM,
Bilbao, Spain.

99

A. Memory estimates for refined
Isogeometric Analysis (rIGA) with
direct solvers

In order to estimate the memory requirements to solve a numerical problem with rIGA, we com-
pute the number of NonZero (NZ) entries in factors L and U based on the matrix decomposition
procedure performed by the multifrontal direct solver. The matrix decomposition eliminates the
Degrees of Freedom (DoF) in sets (either subsystems or separators). Each set consists of q fully
assembled DoF and its elimination results in O

`
q2
˘

NZ entries. Therefore, the total number of
NZ entries on the factors L and U is given by

O
´

Ψ|C0

`
qsep|C0

˘2
¯
` ηm-e

´
O
´

Ψ|Cp´1 pqm-eq2
¯¯

,

O
ˆ

Ψ|C0

´
N pd´1q{d

¯2
˙
` 2id O

¨
˝Ψ|Cp´1

˜ˆ
N

2id

˙pd´1q{d
p

¸2
˛
‚,

O
´

Ψ|C0 n2pd´1q
¯
` 2id

22ipd´1q O
´

Ψ|Cp´1 n2pd´1qp2
¯
` L.O.T.,

where 2id and N{2id are the number and size of the macro-elements after i partition levels.
Ψ|C0 and Ψ|Cp´1 variables include the contribution of all the separators to the total number of
NZ entries. We compute Ψ|C0 as

Ψ|C0 “
i´1ÿ

j“0

d´1ÿ

m“0

2dj`m
´

2´pjpd´1q`mq
¯2 “

$
&
%

3
2

`
log2

`
2i
˘˘
, 2D

7
2

`
1´ 2´i

˘
, 3D

where j refers to the j-th level of partition, and j `m is the number of partitions per level. In
2D, we perform the same number of partitions along the horizontal and vertical dimensions on
the mesh. We now assume that Ψ|Cp´1 behaves as

Ψ|Cp´1 “
$
&
%

3
2

`
log2

`
2ζ
˘˘2

, 2D

7
2

`
1´ 2´ζ

˘ « 7
2 , 3D

100

A. Memory estimates for rIGA with direct solvers

where ζ is the number of levels of the macro-elements partitioning. These levels correspond to
the ones involving Cp´1 separators. Finally, the total number of NZ entries for 2D and 3D are

2D: χ “ O
˜˜

3

2
log2

`
2´i

˘
loooooomoooooon
C0-separators
contribution

` 3

2
log2

´
2ζ
¯2
p2

looooooooomooooooooon
Cp´1 macro-elements

contribution

¸
n2

¸
` L.O.T. ,

3D: χ “ O
˜˜

7

2

`
1´ 2´i

˘
loooooomoooooon
C0-separators
contribution

` 7

2
2´i p2

loooooomoooooon
Cp´1 macro-elements

contribution

¸
n4

¸
` L.O.T.

These equations are multiplied by 8 ¨ 10´6 to express the memory estimation in Mbytes.
Factor 8 accounts for computations performed in double precision.

101

Bibliography

[1] S. Adams and B. Cockburn. A Mixed Finite Element Method for Elasticity in Three
Dimensions. Journal of Scientific Computing, 25(3):515–521, 2005. (cited in page(s) v,
1)

[2] M. Ainsworth, P. Davies, D. Duncan, P. Martin, and B. Rynne. Topics in Computational
Wave Propagation: Direct and Inverse Problems. Lecture Notes in Computational Science
and Engineering. Springer Berlin Heidelberg, 2012. (cited in page(s) v, 1)

[3] I. Akkerman, Y. Bazilevs, V.M. Calo, TJR. Hughes, and S. Hulshoff. The role of con-
tinuity in residual-based variational multiscale modeling of turbulence. Computational
Mechanics, 41(3):371–378, 2008. (cited in page(s) vi, 2)

[4] P. R. Amestoy, I. S. Duff, J.-Y. LÉxcellent, and J. Koster. A Fully Asynchronous Multi-
frontal Solver Using Distributed Dynamic Scheduling. SIAM Journal on Matrix Analysis
and Applications, 23(1):15–41, 2001. (cited in page(s) 46, 49, 86)

[5] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid scheduling for
the parallel solution of linear systems. Parallel Computing, 32(2):136 – 156, 2006. (cited
in page(s) 46, 49, 86)

[6] H. R. Atri and S. Shojaee. Free Vibration Analysis of Thin-Shell Structures using Finite
Element based on Isogeometric Approach. Iranian Journal of Science and Technology,
Transactions of Civil Engineering, 40(2):85–96, 2016. (cited in page(s) vi, 2)

[7] F. Auricchio, L. B. da Veiga, A. Buffa, C. Lovadina, A. Reali, and G. Sangalli. A fully
“locking-free” isogeometric approach for plane linear elasticity problems: A stream func-
tion formulation. Computer Methods in Applied Mechanics and Engineering, 197(1-
4):160 – 172, 2007. (cited in page(s) vi, vii, 3)

[8] O. Axclsson and P. S. Vassilevski. Algebraic multilevel preconditioning methods. i.
Numerische Mathematik, 56(2):157–177, 1989. (cited in page(s) 19)

[9] S. Badia, A. F. Martı́n, and J. Principe. Implementation and Scalability Analysis of
Balancing Domain Decomposition Methods. Archives of Computational Methods in
Engineering, 20(3):239–262, 2013. (cited in page(s) 97)

[10] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,
V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F.
Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc users manual. Technical Report
ANL-95/11 - Revision 3.7, Argonne National Laboratory, 2016. (cited in page(s) 46, 86)

102

BIBLIOGRAPHY

[11] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,
V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F.
Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc Web page, 2016. (cited in page(s)
46, 86)

[12] Y. Bazilevs and I. Akkerman. Large eddy simulation of turbulent Taylor-Couette flow
using isogeometric analysis and the residual-based variational multiscale method. Journal
of Computational Physics, 229(9):3402 – 3414, 2010. (cited in page(s) vi, 2)

[13] Y. Bazilevs, L. Beirão da Veiga, J. A. Cottrell, TJR. Hughes, and G. Sangalli. Isoge-
ometric Analysis: Approximation, Stability and Error estimates for h-refined meshes.
Mathematical Models and Methods in Applied Sciences, 16(07):1031–1090, 2006. (cited
in page(s) vii, 3)

[14] Y. Bazilevs, V.M. Calo, J. A. Cottrell, TJR. Hughes, A. Reali, and G. Scovazzi. Variational
multiscale residual-based turbulence modeling for large eddy simulation of incompress-
ible flows. Computer Methods in Applied Mechanics and Engineering, 197(1-4):173 –
201, 2007. (cited in page(s) vi, 2)

[15] Y. Bazilevs, V.M. Calo, TJR. Hughes, and Y. Zhang. Isogeometric fluid-structure interac-
tion: theory, algorithms, and computations. Computational Mechanics, 43(1):3–37, 2008.
(cited in page(s) vi, 2)

[16] Y. Bazilevs, V.M. Calo, Y. Zhang, and TJR. Hughes. Isogeometric Fluid-structure In-
teraction Analysis with Applications to Arterial Blood Flow. Computational Mechanics,
38(4-5):310–322, 2006. (cited in page(s) vi, 2)

[17] Y. Bazilevs, J. Gohean, TJR. Hughes, R. Moser, and Y. Zhang. Patient-specific isogeomet-
ric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of
the Jarvik 2000 left ventricular assist device. Computer Methods in Applied Mechanics
and Engineering, 198(45-46):3534 – 3550, 2009. (cited in page(s) vii, 3)

[18] Y. Bazilevs, C. Michler, V.M. Calo, and TJR. Hughes. Weak Dirichlet boundary condi-
tions for wall-bounded turbulent flows. Computer Methods in Applied Mechanics and
Engineering, 196(49-52):4853–4862, 2007. (cited in page(s) vi, 2, 80)

[19] Y. Bazilevs, C. Michler, V.M. Calo, and TJR. Hughes. Isogeometric variational multiscale
modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on
unstretched meshes. Computer Methods in Applied Mechanics and Engineering, 199(13-
16):780 – 790, 2010. (cited in page(s) vi, 2)

[20] D. Benson, Y. Bazilevs, M.-C. Hsu, and TJR. Hughes. Isogeometric shell analysis:
the Reissner-Mindlin shell. Computer Methods in Applied Mechanics and Engineering,
199(5):276–289, 2010. (cited in page(s) vi, 2)

[21] D. Benson, Y. Bazilevs, M.-C. Hsu, and TJR. Hughes. A large deformation, rotation-
free, isogeometric shell. Computer Methods in Applied Mechanics and Engineering,
200(13):1367–1378, 2011. (cited in page(s) vi, 2)

103

BIBLIOGRAPHY

[22] D. Benson, S. Hartmann, Y. Bazilevs, M.-C. Hsu, and TJR. Hughes. Blended isogeo-
metric shells. Computer Methods in Applied Mechanics and Engineering, 255:133–146,
2013. (cited in page(s) vi, 2)

[23] M. Benzi. Preconditioning Techniques for Large Linear Systems: A Survey. J. Comput.
Phys., 182(2):418–477, 2002. (cited in page(s) 19)

[24] M. Benzi, C. D. Meyer, and M. Tůma. A Sparse Approximate Inverse Preconditioner for
the Conjugate Gradient Method. SIAM Journal on Scientific Computing, 17(5):1135–
1149, 1996. (cited in page(s) 19)

[25] L. Bernal, V.M. Calo, N. Collier, G. Espinosa, F. Fuentes, and J. Mahecha. Isogeometric
Analysis of Hyperelastic Materials Using PetIGA. Procedia Computer Science, 18:1604
– 1613, 2013. (cited in page(s) 46)

[26] L. M. Bernal, V.M. Calo, N. Collier, G. A. Espinosa, F. Fuentes, and J. C. Mahecha. Iso-
geometric Analysis of Hyperelastic Materials Using PetIGA. Procedia Computer Science,
18:1604 – 1613, 2013. (cited in page(s) vii, 3, 46)

[27] S. Blackford and J. Dongarra. LAPACK Working Note 41 ”Installation Guide for LA-
PACK”. Department of Computer Science, University of Tennessee, June 1999. (cited in
page(s) 48, 64)

[28] O. Botella and R. Peyret. Benchmark spectral results on the lid-driven cavity flow.
Computers & Fluids, 27(4):421–433, 1998. (cited in page(s) 89)

[29] A. Buffa, C. de Falco, and G. Sangalli. Isogeometric Analysis: Stable elements for the 2D
Stokes equation. International Journal for Numerical Methods in Fluids, 65(11-12):1407–
1422, 2011. (cited in page(s) vi, 2, 78, 87)

[30] A. Buffa, G. Sangalli, and R. Vázquez. Isogeometric analysis in electromagnetics:
B-splines approximation. Computer Methods in Applied Mechanics and Engineering,
199(17-20):1143 – 1152, 2010. (cited in page(s) vii, 3, 78)

[31] X.-C. Cai, W. D. Gropp, D. E. Keyes, R. G. Melvin, and D. P. Young. Parallel Newton-
Krylov-Schwarz algorithms for the transonic full potential equation. SIAM Journal on
Scientific Computing, 19(1):246–265, 1998. (cited in page(s) 19)

[32] V.M. Calo, N. F. Brasher, Y. Bazilevs, and TJR. Hughes. Multiphysics model for
blood flow and drug transport with application to patient-specific coronary artery flow.
Computational Mechanics, 43(1):161–177, 2008. (cited in page(s) vii, 3)

[33] V.M. Calo, N. O. Collier, D. Pardo, and M. R. Paszyński. Computational complexity and
memory usage for multi-frontal direct solvers used in p finite element analysis. Procedia
Computer Science, 4(0):1854 – 1861, 2011. (cited in page(s) vii, 3, 18, 25, 46)

[34] K. Chang, TJR. Hughes, and V.M. Calo. Isogeometric variational multiscale large-eddy
simulation of fully-developed turbulent flow over a wavy wall. Computers & Fluids,
68:94–104, 2012. (cited in page(s) vi, 2)

104

BIBLIOGRAPHY

[35] K. Chen. Matrix preconditioning techniques and applications, volume 19. Cambridge
University Press, 2005. (cited in page(s) 19)

[36] E. Chow and Y. Saad. Approximate Inverse Preconditioners via Sparse-Sparse Iterations.
SIAM Journal on Scientific Computing, 19(3):995–1023, 1998. (cited in page(s) 19)

[37] B. Cockburn and J. Gopalakrishnan. Incompressible Finite Elements via Hybridization.
Part I: The Stokes System in Two Space Dimensions. SIAM Journal on Numerical
Analysis, 43(4):1627–1650, 2005. (cited in page(s) v, 1)

[38] N. Collier, L. Dalcin, and V.M. Calo. On the computational efficiency of isogeomet-
ric methods for smooth elliptic problems using direct solvers. International Journal for
Numerical Methods in Engineering, 100(8):620–632, 2014. (cited in page(s) vii, 3, 25,
27, 46, 80)

[39] N. Collier, L. Dalcin, D. Pardo, and V.M. Calo. The cost of continuity: Performance of It-
erative Solvers on Isogeometric Finite Elements. SIAM Journal on Scientific Computing,
35(2):A767–A784, 2013. (cited in page(s) viii, 4, 43, 44, 46)

[40] N. Collier, L. Dalcin, D. Pardo, and V.M. Calo. The cost of continuity: Performance of
iterative solvers on isogeometric finite elements. SIAM Journal on Scientific Computing,
35(2):A767–A784, 2013. (cited in page(s) 20, 21)

[41] N. Collier, D. Pardo, L. Dalcin, M. Paszyński, and V.M. Calo. The cost of continuity: A
study of the performance of isogeometric finite elements using direct solvers. Computer
Methods in Applied Mechanics and Engineering, 213-216(0):353 – 361, 2012. (cited in
page(s) vii, 3, 19, 25, 29, 32, 46, 80)

[42] A. Côrtes, A. Coutinho, L. Dalcin, and V.M. Calo. Performance evaluation of block-
diagonal preconditioners for the divergence-conforming B-spline discretization of the
Stokes system. Journal of Computational Science, 11:123 – 136, 2015. (cited in page(s)
46)

[43] J. A. Cottrell, TJR. Hughes, and Y. Bazilevs. Isogeometric Analysis: Toward Integration
of CAD and FEA. John Wiley & Sons, Ltd, Singapore, Ma, 2009. (cited in page(s) vi, 2,
7, 9, 13)

[44] J. A. Cottrell, TJR. Hughes, and A. Reali. Studies of refinement and continuity in isoge-
ometric structural analysis. Computer Methods in Applied Mechanics and Engineering,
196(41–44):4160 – 4183, 2007. (cited in page(s) vii, 3, 7, 9)

[45] J. A. Cottrell, A. Reali, Y. Bazilevs, and TJR. Hughes. Isogeometric analysis of structural
vibrations. Computer Methods in Applied Mechanics and Engineering, 195(41-43):5257
– 5296, 2006. (cited in page(s) vi, vii, 3)

[46] M. G. Cox. The numerical evaluation of B-splines. IMA Journal of Applied Mathematics,
10(2):134–149, 1972. (cited in page(s) 7)

105

BIBLIOGRAPHY

[47] L. B. da Veiga, A. Buffa, C. Lovadina, M. Martinelli, and G. Sangalli. An isogeometric
method for the Reissner-Mindlin plate bending problem. Computer Methods in Applied
Mechanics and Engineering, 209:45–53, 2012. (cited in page(s) vi, 2)

[48] L. Dalcin, N. Collier, P. Vignal, A. Côrtes, and V.M. Calo. PetIGA: A framework for
high-performance isogeometric analysis. Computer Methods in Applied Mechanics and
Engineering, 308:151–181, 2016. (cited in page(s) 46)

[49] C. de Boor. On calculating with B-splines. Journal of Approximation Theory, 6(1):50 –
62, 1972. (cited in page(s) 7)

[50] L. Demkowicz. Finite Element Methods for Maxwell Equations. John Wiley & Sons,
Ltd, 2004. (cited in page(s) v, 1)

[51] J. Dongarra, V. Eijkhout, and H. Van der Vorst. An Iterative Solver Benchmark. Scientific
Programming, 9(4):223–231, 2001. (cited in page(s) 65, 74, 96)

[52] J. Dongarra and F. Sullivan. Guest Editors Introduction to the top 10 algorithms.
Computing in Science Engineering, 2(1):22–23, 2000. (cited in page(s) 15, 19)

[53] I. S. Duff and J. K. Reid. The Multifrontal Solution of Indefinite Sparse Symmetric
Linear. ACM Trans. Math. Softw., 9(3):302–325, 1983. (cited in page(s) vii, 3, 16, 18)

[54] L. F. R. Espath, A. F. Sarmiento, L. Dalcin, and V.M. Calo. On the thermodynamics of
the Swift-Hohenberg theory. Continuum Mechanics and Thermodynamics, pages 1–11,
2017. (cited in page(s) 46)

[55] L. F. R. Espath, A. F. Sarmiento, P. Vignal, B. O. N. Varga, A. M. A. Côrtes, L. Dalcin,
and V.M. Calo. Energy exchange analysis in droplet dynamics via the Navier-Stokes-
Cahn-Hilliard model. 797:389–430, 2016. (cited in page(s) 46)

[56] N. J. H. et al. (eds.). The Princeton Companion to Applied Mathematics. Princeton
University Press, 2015. (cited in page(s) 15, 19)

[57] J. A. Evans, Y. Bazilevs, I. Babuška, and TJR. Hughes. n-widths, sup–infs, and optimality
ratios for the k-version of the isogeometric finite element method. Computer Methods
in Applied Mechanics and Engineering, 198(21–26):1726 – 1741, 2009. Advances in
Simulation-Based Engineering Sciences – Honoring J. Tinsley Oden. (cited in page(s) 7)

[58] J. A. Evans and TJR. Hughes. Isogeometric divergence-conforming B-splines for the
Darcy-Stokes-Brinkman equations. Mathematical Models and Methods in Applied
Sciences, 23(04):671–741, 2013. (cited in page(s) 78, 89)

[59] J. A. Evans and TJR. Hughes. Isogeometric divergence-conforming B-splines for the
steady Navier-Stokes equations. Mathematical Models and Methods in Applied Sciences,
23(08):1421–1478, 2013. (cited in page(s) 78)

106

BIBLIOGRAPHY

[60] J. A. Evans and TJR. Hughes. Isogeometric divergence-conforming B-splines for the un-
steady Navier-Stokes equations. Journal of Computational Physics, 241:141–167, 2013.
(cited in page(s) vi, 2, 78)

[61] P. Fischer, M. Klassen, J. Mergheim, P. Steinmann, and R. Müller. Isogeometric analysis
of 2D gradient elasticity. Computational Mechanics, 47(3):325–334, 2011. (cited in
page(s) vi, 2)

[62] R. Fletcher. Conjugate gradient methods for indefinite systems, pages 73–89. Springer
Berlin Heidelberg, 1976. (cited in page(s) 19)

[63] L. P. Franca, S. L. Frey, and TJR. Hughes. Stabilized finite element methods: I. Appli-
cation to the advective-diffusive model. Computer Methods in Applied Mechanics and
Engineering, 95(2):253 – 276, 1992. (cited in page(s) v, 1)

[64] K. Gahalaut and S. Tomar. Condition number estimates for matrices arising in the isoge-
ometric discretizations. RICAM report, 23(2012):1–38, 2012. (cited in page(s) 87)

[65] D. Garcia, M. Bartoň, and D. Pardo. Optimally refined isogeometric analysis. Procedia
Computer Science, 108:808–817, 2017. International Conference on Computational Sci-
ence, {ICCS} 2017, 12-14 June 2017, Zurich, Switzerland. (cited in page(s) 5, 22, 83)

[66] D. Garcia, D. Pardo, L. Dalcin, and V.M. Calo. Refined Isogeometric Analysis for a
Preconditioned Conjugate Gradient Solver. Computer Methods in Applied Mechanics
and Engineering, 2018. (in press). (cited in page(s) 5, 22, 83)

[67] D. Garcia, D. Pardo, L. Dalcin, M. Paszyński, N. Collier, and V.M. Calo. The value of
continuity: Refined isogeometric analysis and fast direct solvers. Computer Methods in
Applied Mechanics and Engineering, 316:586–605, 2017. Special Issue on Isogeometric
Analysis: Progress and Challenges. (cited in page(s) 5, 22, 29, 32, 83, 95)

[68] J. E. Gentle. Iterative Methods for Sparse Linear Systems. Springer-Verlag, Berlin, Ge,
1998. (cited in page(s) 40)

[69] A. George. Nested Dissection of a Regular Finite Element Mesh. SIAM Journal on
Numerical Analysis, 10(2):345–363, 1973. (cited in page(s) 16)

[70] H. Gómez, V.M. Calo, Y. Bazilevs, and TJR. Hughes. Isogeometric analysis of the Cahn-
Hilliard phase-field model. Computer Methods in Applied Mechanics and Engineering,
197(49–50):4333 – 4352, 2008. (cited in page(s) 2)

[71] H. Gómez, TJR. Hughes, X. Nogueira, and V.M. Calo. Isogeometric analysis of the
isothermal Navier-Stokes-Korteweg equations. Computer Methods in Applied Mechanics
and Engineering, 199(25-28):1828 – 1840, 2010. (cited in page(s) vi, 2)

[72] J. Gopalakrishnan and J. Guzmán. Symmetric Nonconforming Mixed Finite Elements for
Linear Elasticity. SIAM Journal on Numerical Analysis, 49(4):1504–1520, 2011. (cited
in page(s) v, 1)

107

BIBLIOGRAPHY

[73] A. Greenbaum. Iterative Methods for Solving Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1997. (cited in page(s) 19)

[74] M. H. Gutknecht. Block Krylov space methods for linear systems with multiple right-
hand sides: an introduction. 2006. (cited in page(s) 19)

[75] M. H. Gutknecht. A Brief Introduction to Krylov Space Methods for Solving Linear
Systems, pages 53–62. Springer Berlin Heidelberg, 2007. (cited in page(s) 19, 20)

[76] M. R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for Solving Linear Sys-
tems. Journal of Research of the National Bureau of Standards, 49(6):409–436, 1952.
(cited in page(s) 19, 39)

[77] S. S. Hossain, S. F. A. Hossainy, Y. Bazilevs, V.M. Calo, and TJR. Hughes. Mathematical
modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific
coronary artery walls. Computational Mechanics, 49(2):213–242, 2011. (cited in page(s)
vii, 3)

[78] TJR. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element
Analysis. Dover Publications, New York, Mi, 2000. (cited in page(s) v, 1)

[79] TJR. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics
and Engineering, 194(39–41):4135 – 4195, 2005. (cited in page(s) vi, vii, 2, 3, 7, 9, 12)

[80] TJR. Hughes, I. Levit, and J. Winget. An element-by-element solution algorithm for
problems of structural and solid mechanics. Computer Methods in Applied Mechanics
and Engineering, 36(2):241–254, 1983. (cited in page(s) viii)

[81] B. M. Irons. A frontal solution program for finite element analysis. International Journal
for Numerical Methods in Engineering, 2:5–32, 1970. (cited in page(s) 16, 18)

[82] D. Kamensky, M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs, M. S.
Sacks, and TJR. Hughes. An immersogeometric variational framework for fluid-structure
interaction: Application to bioprosthetic heart valves. Computer Methods in Applied
Mechanics and Engineering, 284:1005 – 1053, 2015. (cited in page(s) vi, 2)

[83] G. Karypis and V. Kumar. A Fast and Highly Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1999. (cited
in page(s) 46)

[84] Karypis Laboratory. METIS, http://glaros.dtc.umn.edu/gkhome/metis/metis/overview,
2016. (cited in page(s) 46, 86)

[85] J. Kiendl, K.-U. Bletzinger, J. Linhard, and R. Wüchner. Isogeometric shell analysis with
Kirchhoff–Love elements. Computer Methods in Applied Mechanics and Engineering,
198(49):3902–3914, 2009. (cited in page(s) vi, 2)

108

BIBLIOGRAPHY

[86] C. Lanczos. Solution of systems of linear equations by minimized iterations. J. Res. Natl.
Bur. Stand, 49:33–53, 1952. (cited in page(s) 19)

[87] S. Lipton, J. A. Evans, Y. Bazilevs, T. Elguedj, and TJR. Hughes. Robustness of iso-
geometric structural discretizations under severe mesh distortion. Computer Methods in
Applied Mechanics and Engineering, 199(5-8):357 – 373, 2010. (cited in page(s) vi, vii,
3)

[88] J. Lu and X. Zhou. Cylindrical element: Isogeometric model of continuum rod. Computer
Methods in Applied Mechanics and Engineering, 200(1):233–241, 2011. (cited in page(s)
vi, 2)

[89] J. Mandel. Balancing domain decomposition. Communications in Numerical Methods in
Engineering, 9(3):233–241, 1993. (cited in page(s) 97)

[90] J. Mandel and C. R. Dohrmann. Convergence of a balancing domain decomposition
by constraints and energy minimization. Numerical Linear Algebra with Applications,
10(7):639–659, 2003. (cited in page(s) 97)

[91] N. D. Manh, A. Evgrafov, A. R. Gersborg, and J. Gravesen. Isogeometric shape optimiza-
tion of vibrating membranes. Computer Methods in Applied Mechanics and Engineering,
200(13):1343–1353, 2011. (cited in page(s) vii, 3)

[92] P. McHugh, D. Knoll, and D. Keyes. Application of Newton-Krylov-Schwarz algorithm
to low-mach-number compressible combustion (tn). AIAA journal, 36(2):290–292, 1998.
(cited in page(s) 19)

[93] G. A. Meurant. Computer Solution of Large Linear Systems, volume 28 of Studies in
Mathematics and Its Applications. North-Holland, Amsterdam, 1999. (cited in page(s)
19)

[94] C. B. Moler. Iterative Refinement in Floating Point. J. ACM, 14(2):316–321, 1967. (cited
in page(s) 87)

[95] Y. G. Motlagh, H. T. Ahn, TJR. Hughes, and V.M. Calo. Simulation of laminar and
turbulent concentric pipe flows with the isogeometric variational multiscale method.
Computers & Fluids, 71:146 – 155, 2013. (cited in page(s) vi, 2)

[96] V. P. Nguyen, C. Anitescu, S. P. Bordas, and T. Rabczuk. Isogeometric analysis:
An overview and computer implementation aspects. Mathematics and Computers in
Simulation, 117:89 – 116, 2015. (cited in page(s) xiii, 2, 7)

[97] P. N. Nielsen, A. R. Gersborg, J. Gravesen, and N. L. Pedersen. Discretizations in iso-
geometric analysis of Navier-Stokes flow. Computer Methods in Applied Mechanics and
Engineering, 200(45-46):3242 – 3253, 2011. (cited in page(s) vi, 2)

109

BIBLIOGRAPHY

[98] J. Nitsche. Über ein variationsprinzip zur lösung von dirichlet-problemen bei verwendung
von teilräumen, die keinen randbedingungen unterworfen sind. In Abhandlungen aus dem
mathematischen Seminar der Universität Hamburg, volume 36, pages 9–15. Springer,
1971. (cited in page(s) 80)

[99] D. Pardo, J. Álvarez Aramberri, M. Paszyński, L. Dalcin, and V.M. Calo. Impact
of element-level static condensation on iterative solver performance. Computers &
Mathematics with Applications, 70(10):2331 – 2341, 2015. (cited in page(s) viii, ix,
4, 43)

[100] M. Paszyński. Fast solvers for mesh based computations. Taylor & Francis, CRC Press,
2015. (cited in page(s) 18, 25)

[101] C. G. Petra, O. Schenk, and M. Anitescu. Real-time stochastic optimization of com-
plex energy systems on high-performance computers. IEEE Computing in Science &
Engineering, 16(5):32–42, 2014. (cited in page(s) 49)

[102] C. G. Petra, O. Schenk, M. Lubin, and K. Gärtner. An augmented incomplete factorization
approach for computing the schur complement in stochastic optimization. SIAM Journal
on Scientific Computing, 36(2):C139–C162, 2014. (cited in page(s) 49)

[103] L. Piegl and W. Tiller. The NURBS book. Springer Science & Business Media, 2012.
(cited in page(s) 7, 9, 13)

[104] V. Puzyrev, Q. Deng, and V.M. Calo. Spectral approximation properties of isogeomet-
ric analysis with variable continuity. Computer Methods in Applied Mechanics and
Engineering, 334:22–39, 2018. (cited in page(s) 96)

[105] X. Qian. Full analytical sensitivities in NURBS based isogeometric shape optimization.
Computer Methods in Applied Mechanics and Engineering, 199(29):2059–2071, 2010.
(cited in page(s) vii, 3)

[106] X. Qian and O. Sigmund. Isogeometric shape optimization of photonic crystals via coons
patches. Computer Methods in Applied Mechanics and Engineering, 200(25):2237–2255,
2011. (cited in page(s) vii, 3)

[107] P.-A. Raviart and J.-M. Thomas. A mixed finite element method for 2-nd order elliptic
problems. In Mathematical aspects of finite element methods, pages 292–315. Springer,
1977. (cited in page(s) 79)

[108] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2nd edition, 2003. (cited in page(s) 19, 20, 21, 39,
43)

[109] Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3):856–869, 1986. (cited in
page(s) 19)

110

BIBLIOGRAPHY

[110] A. Sarmiento, A. Côrtes, D. Garcia, L. Dalcin, N. Collier, and V.M. Calo. PetIGA-MF: A
multi-field high-performance toolbox for structure-preserving B-splines spaces. Journal
of Computational Science, 18:117–131, 2017. (cited in page(s) 46, 78, 86)

[111] A. Sarmiento, D. Garcia, L. Dalcin, N. Collier, and V. Calo. Micropolar Fluids Using
B-spline Divergence Conforming Spaces. Procedia Computer Science, 29:991 – 1001,
2014. (cited in page(s) 46)

[112] O. Schenk, K. Gärtner, and W. Fichtner. Efficient sparse lu factorization with left-
right looking strategy on shared memory multiprocessors. BIT Numerical Mathematics,
40(1):158–176, 2000. (cited in page(s) 49)

[113] V. Simoncini and D. B. Szyld. Recent computational developments in Krylov subspace
methods for linear systems. Numerical Linear Algebra with Applications, 14(1):1–59,
2007. (cited in page(s) 19)

[114] A. Tagliabue, L. Dedé, and A. Quarteroni. Isogeometric Analysis and error estimates for
high order partial differential equations in fluid dynamics. Computers & Fluids, 102:277
– 303, 2014. (cited in page(s) vi, 2)

[115] C. V. Verhoosel, M. A. Scott, TJR. Hughes, and R. De Borst. An isogeometric analysis
approach to gradient damage models. International Journal for Numerical Methods in
Engineering, 86(1):115–134, 2011. (cited in page(s) vi, 2)

[116] P. Vignal, L. Dalcin, D. L. Brown, N. Collier, and V.M. Calo. An energy-stable convex
splitting for the phase-field crystal equation. Computers & Structures, 158:355 – 368,
2015. (cited in page(s) 2, 46)

[117] P. Vignal, L. Dalcin, N. Collier, and V.M. Calo. Modeling Phase-transitions Using a High-
performance, Isogeometric Analysis Framework. Procedia Computer Science, 29:980 –
990, 2014. (cited in page(s) 2)

[118] P. Vignal, A. Sarmiento, A. M. Côrtes, L. Dalcin, and V.M. Calo. Coupling Navier-Stokes
and Cahn-Hilliard equations in a two-dimensional annular flow configuration. Procedia
Computer Science, 51:934 – 943, 2015. (cited in page(s) 2)

[119] P. A. Vignal, N. Collier, and V.M. Calo. Phase Field Modeling Using PetIGA. Procedia
Computer Science, 18:1614 – 1623, 2013. (cited in page(s) 2, 46)

[120] W. A. Wall, M. A. Frenzel, and C. Cyron. Isogeometric structural shape optimization.
Computer methods in applied mechanics and engineering, 197(33):2976–2988, 2008.
(cited in page(s) vii, 3)

[121] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Dover Publications, Incorpo-
rated, 1994. (cited in page(s) 87)

[122] E. L. Wilson. The static condensation algorithm. International Journal for Numerical
Methods in Engineering, 8(1):198–203, 1974. (cited in page(s) 32)

111

BIBLIOGRAPHY

[123] Y. Zhang, Y. Bazilevs, S. Goswami, C. L. Bajaj, and TJR. Hughes. Patient-specific vas-
cular NURBS modeling for isogeometric analysis of blood flow. Computer Methods in
Applied Mechanics and Engineering, 196(29-30):2943 – 2959, 2007. (cited in page(s) vi,
vii, 2, 3)

[124] O. Zienkiewicz and R. Taylor. The Finite Element Method for Solid and Structural
Mechanics. Elsevier Science, 2013. (cited in page(s) v, 1)

[125] O. Zienkiewicz, R. Taylor, and P. Nithiarasu. The Finite Element Method for Fluid
Dynamics. Elsevier Science, 2013. (cited in page(s) v, 1)

[126] S. Zlotnik, P. Dı́ez, M. Fernández, and J. Vergés. Numerical modelling of tectonic plates
subduction using X-FEM. Computer Methods in Applied Mechanics and Engineering,
196(41):4283 – 4293, 2007. (cited in page(s) v, 1)

112

	Acknowledgements
	Abstract
	Resumen
	Contents
	List of Figures
	Acronyms
	Introduction
	Motivation
	Main contribution
	Outline

	Isogeometric Analysis
	B-Splines
	B-spline geometric entities

	NURBS
	IGA discretization

	Numerical Solvers
	Direct Solver
	Multifrontal factorization method

	Iterative solver
	Preconditioned Conjugate Gradient method
	Incomplete LU preconditioning technique

	refined Isogeometric Analysis
	refined Isogeometric Analysis for direct solvers
	Computational complexity for direct solvers
	Cost estimates for finite element and isogeometric analysis
	Cost estimate for rIGA

	Optimally refined Isogeometric Analysis for direct solvers
	Search space and its reduction
	OrIGA implementation

	Refined Isogeometric Analysis for iterative solvers
	Computational complexity for iterative solvers
	Cost of static condensation (macro-elements interior DoF elimination)
	Cost of preconditioning using ILU factorization technique
	Cost of the CG iterative solver

	Numerical results
	rIGA for direct solvers
	Model problem
	Implementation details
	Fit of estimates
	Numerical results
	FLOPs
	Computational times
	Memory requirements

	OrIGA for direct solvers
	Numerical results
	Continuity vectors
	FLOPs

	rIGA for iterative solvers
	Model problem
	Implementation details
	Fit of estimates
	2D numerical results
	Cost of static condensation
	Cost of preconditioner set-up
	Cost of solving the skeleton system
	Total cost of the hybrid solver strategy

	3D numerical results

	Numerical Applications
	Fluid flow model problem
	IGA discretization
	Boundary condition imposition
	Computational complexity for direct solvers
	Bi-dimensional case
	d-dimensional case

	rIGA discretization
	Computational complexity for direct solvers
	Bidimensional case
	d-dimensional case

	Problem implementation
	Numerical results
	2D Example with exact solution
	Lid-driven cavity problem (Stokes flow)

	Conclusions and Future work
	Conclusions
	rIGA
	OrIGA
	Hybrid solver strategy with rIGA
	Applications

	Future work

	Main achievements
	Peer reviewed publications
	Conferences talks
	Seminars & Workshops

	Appendix Memory estimates for refined Isogeometric Analysis (rIGA) with direct solvers
	Bibliography

