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Abstract: Manufacturing techniques that are applied to turbomachinery components represent
a challenge in the aeronautic sector. These components require high resistant super-alloys in order
to satisfy the extreme working conditions they have to support during their useful life. Besides,
in the particular case of Integrally Bladed Rotors (IBR), usually present complex geometries that need
to be roughed and finished by milling and grinding processes, respectively. In order to improve
their manufacturing processes, Super Abrasive Machining (SAM) is presented as a solution because
it combines the advantages of the use of grinding tools with milling feed rates. However, this
innovative technique usually needed high tool rotary speed and pure cutting oils cooling. These
issues implied that SAM technique was not feasible in conventional machining centers. In this work,
these matters were tackled and the possibility of using SAM in these five-axis centers with emulsion
coolants was achieved. To verify this approach, Inconel 718 single blades with non-ruled surfaces
were manufactured with Flank-SAM technique and conventional milling process, analyzing cutting
forces, surface roughness, and dimension accuracy in both cases. The results show that SAM implies
a suitable, controllable, and predictable process to improve the manufacture of aeronautical critical
components, such as IBR.
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1. Introduction

Aeronautical industry is on the path to steady growth, is one of the most strategic sectors in the
worldwide economy. In fact, TEDAE association (Spatial, aeronautical, and defense technology Spanish
association) states that the turnover of this industry is about 7600 million euros, from which 9.5% is
aimed at R & D [1]. This economic investment stems from the need of facing global competitiveness.
This is being reflected in high requirements that are related not only to mechanical properties required
through all the life-cycle of these components, but also on the optimization of manufacturing process.

This is especially relevant for critical aeronautical turbomachinery components where their
reliability directly affects to aeronautical jet engines security. Among them, noteworthy components
are axial compressors and turbines in civil aviation. In particular, this work deals with manufacturing
processes of Bladed Disks (Blisk) and Integrally Bladed Rotors (IBR). The main difference between
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them is the junction of the blades to the disk. As it is shown in Figure 1, Blisk components have their
blades separated from the disk, assembled through fir-trees. IBR, however, are integrated components,
which are manufactured from the same blank, what avoids unions’ issues [2].
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inconvenience of this technology is based on low material removal rates, what means elevated 
manufacturing time. For this reason, some studies look for innovative technologies to cover this 
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been realized [16,17], as it is shown in Figure 2, due to the fact that the use of this technique increases 
efficiency significantly. 
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It should be noted that during its entire lifetime, these components are usually subjected to
extreme working conditions, what requires high heat resistant alloys, such as titanium or nickel-based
alloys. These materials are characterized for combining hardness with low thermal conduction and
good ductility [3,4]. However, these alloys are known as difficult-to-cut materials, implying premature
tool wear and high cutting forces [5–7]. Additionally, in the particular case of Blisk, difficulties
are not only presented in blade manufacturing processes, but also as an extra challenge consists of
fir-trees junctions manufacturing. This is due to the fact that these geometries are crucial for the
functionality of the parts, and they possess complex geometry, together with very tight dimensional
and finishing tolerances [8]. On the other hand, fir-trees have been traditionally manufactured by
Electro Discharge Machining (EDM). This non-conventional manufacturing technology stands out
for facilitating complex geometrical cavities of high hardness materials with dimensional accuracy
and excellent finishing surface [9–11]. Notwithstanding, the main inconvenience of this technology is
based on low material removal rates, what means elevated manufacturing time. For this reason, some
studies look for innovative technologies to cover this deficiency. Among these technologies, Super
Abrasive Machining (SAM) was presented in [12] as a solution to increase machining efficiency during
the production of blades and turbine disks.

In particular, SAM is characterized by using grinding technology with machining rates. Therefore,
this technology provides the precision of grinding process with similar feeds and costs to the use of
single point machining. Moreover, SAM is more versatile than other grinding techniques. For example,
if it is compared with creep fatigue grinding (the closest rival), the use of SAM achieves higher speeds,
higher material removal rates—up to 1000 mm3/s—with lower workpiece loads, and more accurate
dimensional tolerances [12,13] is what makes this technology a suitable and efficient alternative
to manufacture IBRs nickel-based super alloys [14,15]. Its application to blisk fir-trees has been
realized [16,17], as it is shown in Figure 2, due to the fact that the use of this technique increases
efficiency significantly.

Furthermore, SAM was tested with other more complex geometries, such as the blades from IBRs
or impellers. The main advantages are higher material removal rates at high speed [18] and a near
shape surface. In fact, Rolls-Royce claims, under the correct performance, that the process is capable
of stock removal at a rate of 80 cubic millimeters per second per millimeter of wheel width. That is,
eight times the achievable rate using plated CBN wheel technology for super abrasive machining of
nickel alloys on a conventional grinding machine. The process can also achieve higher removal higher
rates for fishing grinding operations than alternative methods [19]. Additionally, it is noteworthy that
using these kinds of tools, due to process temperature and extreme cutting conditions, cutting fluids
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are required, particularly cutting oil [20–22]. Regarding cutting conditions, in line with [23], they can
be optimized with the aim of developing the exact windows parameters. Moreover, another restrictive
requirement is having appropriate equipment with high speed spindles (60,000–90,000 rpm) [17], what
makes this process unachievable to the most part of the current machining centers whose spindles
rotary speed capacity are below 24,000 rpm.Metals 2018, 8, 24 3 of 11 
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In this line, the novelty of this work stems from the idea of using SAM technology instead of
conventional milling technology for roughing and finishing IBR blades geometry with non-ruled
surfaces, (a) using conventional machining centers with a spindle, which does not reach the high rotary
speeds needed, and (b) combined with oil emulsions instead of mineral cutting oils. For this, cutting
forces, surface finishing, and dimension accuracy using SAM technology were analyzed and compared
with conventional milling process.

2. Experimental Setup and Tests Performance

Experimental tests were carried out in a five-axis machining center, Ibarmia ZV-25/U600 model
(IBARMIA INNOVATEK, S.L.U., Guipuzkoa, Spain). This machine consists of five-axis divided
into three linear axes (X, Y, Z), two rotary axes (A, C), and a spindle speed capacity of 18,000 rpm,
18 KW. Regarding machining processes, in order to compare the two different techniques (SAM
and conventional milling), roughing and finishing operations with both techniques were carried out.
During machining process, cutting forces were recorded with tri-axial force transducer piezoelectric
dynamometer, Kistler 9255 and OROS® OR35 analyzer (OROS, Inovallee, France), with a sampling
frequency of 16,384 samples per second. Figure 3 shows the experimental setup used to perform
this test.

Due to aggressive conditions at which IBRs are exposed, such as high temperatures and aggressive
chemical environments, they are manufactured using nickel-base superalloys [24]. In particular Inconel
718 was chosen. This material is a heat-resistant Ni-Fe alloy, which is hardened by precipitation of
secondary phases into the metal matrix [25], achieving in this case an average value of hardness
42 HRC, with strain hardening affected areas on several surface points due to the initial saw cuts.
The chemical composition, mechanical, and physical properties of tested materials are shown in
Table 1.



Metals 2018, 8, 24 4 of 11

Metals 2018, 8, 24 4 of 11 

 

 
Figure 3. Experimental Setup on Ibarmia machining center, showing the IN718 circular sector. 

Due to aggressive conditions at which IBRs are exposed, such as high temperatures and 
aggressive chemical environments, they are manufactured using nickel-base superalloys [24]. In 
particular Inconel 718 was chosen. This material is a heat-resistant Ni-Fe alloy, which is hardened by 
precipitation of secondary phases into the metal matrix [25], achieving in this case an average value 
of hardness 42 HRC, with strain hardening affected areas on several surface points due to the initial 
saw cuts. The chemical composition, mechanical, and physical properties of tested materials are 
shown in Table 1. 

Table 1. Inconel 718 chemical composition (%), mechanical and physical properties [26,27]. 

Ni Cr Co Fe Nb Mo Ti Al B C Mn Si Others 

52.5 19 1 17 5 3 1 0.6 0.01 0.08 0.35 0.35 1.79 

Hardness 
Young’s 
Modulus 

Tensile 
Strength  

Density 
Specific 

Heat 
Melting 
Temp. 

Thermal 
Conduct 

42 HRc 206 GPa 1.73 GPa 8470 kg/m3 461 J/(kg·K) 1550 K 15 W/(m·K) 

The alloy offers good resistance to fatigue and creep combined with high corrosion resistance 
under high temperatures [28]. Nevertheless, these properties involve high cutting forces during 
machining, low material removal rates, adhesions, and other issues, which enhance premature tool 
wear [28–33]. In the light of these concerns, selecting this material for experimental case of study 
implies aggressive machining conditions and becomes suitable in order to test SAM behavior and 
establish a comparison with conventional milling process.  

Regarding tools used during the tests, three types of tools were chosen. In the case of roughing 
by milling, four teeth carbide tool coated with AlTiN of 16 mm of diameter and 40 mm of cutting 
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Table 1. Inconel 718 chemical composition (%), mechanical and physical properties [26,27].

Ni Cr Co Fe Nb Mo Ti Al B C Mn Si Others

52.5 19 1 17 5 3 1 0.6 0.01 0.08 0.35 0.35 1.79

Hardness Young’s
Modulus

Tensile
Strength Density Specific

Heat
Melting
Temp.

Thermal
Conduct

42 HRc 206 GPa 1.73 GPa 8470 kg/m3 461 J/(kg·K) 1550 K 15 W/(m·K)

The alloy offers good resistance to fatigue and creep combined with high corrosion resistance
under high temperatures [28]. Nevertheless, these properties involve high cutting forces during
machining, low material removal rates, adhesions, and other issues, which enhance premature tool
wear [28–33]. In the light of these concerns, selecting this material for experimental case of study
implies aggressive machining conditions and becomes suitable in order to test SAM behavior and
establish a comparison with conventional milling process.

Regarding tools used during the tests, three types of tools were chosen. In the case of roughing
by milling, four teeth carbide tool coated with AlTiN of 16 mm of diameter and 40 mm of cutting
length was used. On the other hand, for the finishing operations the tool diameter used was of 6 mm
with six teeth, 26 mm of cutting length and coated with TiN/TiAlN. In the case of the first tool, AlTiN
coating was chosen because presents higher surface hardness than TiAlN coating and the high presence
of aluminum offers better resistance to oxidation in comparison with other coatings [34]. However,
the finishing mill was chosen with TiN/TiAlN multi-layer coating with the aim of obtaining a balance
between surface roughness and cutting temperature resistance [34]. Nevertheless, it must be taken into
account that recently other PVD coatings based on nc-AlCrN/a-Si3N4, AlTiCrN with a nanocomposite
top layer, TiAlCrN or AlTiCrSiYN/AlTiCrN with 55% of Al in the Si + Y layers were successfully
tested for nickel based alloys machining [35–38].

In the case of SAM, the same tool was used in both operations; a PCBN grinding tool of 16 mm
of diameter and 20 mm of cutting edge was used. On the other hand, concerning cutting conditions,
in order to allow for using SAM technology in this type of machining centers, they were adapted to the
spindle capacities. Finally, the cutting fluid chosen to be able to use the grinding tool was a synthetic
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emulsion with a concentration of 20%. Tools characteristics, cutting conditions, and operation times
are summarized in Table 2.

Table 2. Tools and cutting conditions.

OPERATION ROUGHING ROUGHING FINISHING FINISHING
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In relation to machining strategies, in the case of roughing with milling tools several passes were
used to avoid tool break failure. However, with SAM technology it is possible to perform this operation
in one only pass/step. On the other hand, in order to carry out finishing strategies, a mathematical
algorithm developed in 2016 by Pengbo Bo et al. [39] was used. The use of this algorithm is needed
to obtain the surface dimensional requirements in this type of parts where it not allowed any section
break/jump between different tool paths along blade surface. These applications occur frequently and
this algorithm offers a full solution to perform the machining operations just with one tool path.

This algorithm focuses on approximation of free form surfaces by envelopes of motions of surfaces
of revolution (milling tools). This algorithm is perfectly suited for flank milling purposes. However,
their approach optimized both the shape of the milling and its trajectory. In this set up, the shape of
the (virtual) milling tool was fixed according to the existing (physical) counterpart. The equations
that control this algorithm are shown in Equations (1)–(5). In particular, taking “a” and “b” as the
two boundary curves and “d” as the unknown distance, Equation (1) represents the whole objective
function to obtain this approximation where µ1 = 1, µ2 = µ4 = 0.1, and µ3 = 0.001; Equations (2) and (4)
correspond to the two components of the objective function that represent the point-surface proximity.
Equation (5) controls the rigidity and Equation (3) is the fairness of the two boundary curves to achieve
a fair motion.

Fmotion(a, b, d) = µ1Fplane(a, b, d) + µ2Ff air(a, b) + µ3Fpoint(a, b, d) + µ4Frigid(a, b) where, (1)

Fplane(a, b, d) =
1

mn

n

∑
j=1

m

∑
i=1

((pij − p⊥ij , nij)− dj)
2

(2)
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Ff air(a, b) =
1
m

m−1

∑
i=2

(a(ti−1)− 2a(ti) + a(ti+1))
2 +

1
m

m−1

∑
i=2

(b(ti−1)− 2b(ti) + b(ti+1))
2 (3)

Fpoint(a, b, d) =
1

mn

n

∑
j=1

m

∑
i=1
‖ pij −

(
p⊥ij , dijnij

)
‖2 (4)

Frigid(a, b) = 〈a(ti)− b(ti), a(ti)− b(ti)〉 − L2 = 0 (5)

In this way, the full length of tool cutting edge is constantly in contact with the non-ruled surface
designed and layers are confined to a single one if tool dimension covers all of the surface height.
The accuracy of the process is controlled by the error of the objective function (see Equation (1)).
Therefore, to take this into account, the surface height used for these tests was 20 mm, that is, the same
height dimension of the cutting tool edges.

Finally, after machining tests were conducted, in order to validate SAM technique from an
industrial point of view, the blades obtained were scanned with an ATOS GOM and compared with the
Computer-aided design (CAD) model. This equipment is based on the triangulation effect with two
cameras with a resolution of 17 µm and an accuracy of 35 µm. Afterwards, besides three-dimensional
(3D) surface topography of the walls were obtained using a Leica confocal microscope with a resolution
of 0.1 nm.

3. Results and Discussion

Each blade was made five times with both techniques in order to validate the results obtained,
and the test finishing criteria was taken the finalization of each blade. In Figure 4, the IBR blades
machined are shown during roughing and finishing operations with milling and SAM operations.
In this this section, the analysis of different results obtained during the experimental tests are set out.
In particular, cutting forces and surface roughness are compared between both operations. Afterwards,
based on these analyzed results, a scanned IBR blade obtained by SAM is compared to CAD model.
The aim of analyzing these parameters is to demonstrate that SAM process is not only a process in
which manufacturing time is reduced, but also is technologically a suitable option to be used in the
industry because it improves the current milling process.
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3.1. Cutting Forces

As it was exposed above, forces were registered during IBR blade machining through roughing
and finishing operations with milling and SAM techniques. Figure 5 shows total average and maximum
total force modulus obtained during the machining processes, as well as estimated errors, which are
between ≈2% and ≈7%. Due to the fact that obtained values are below 10%, they are considered
admissible [40].
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Figure 5. Average and maximum force modulus obtained during blades manufacturing.

As it can be appreciated on the plot, most significant differences between these techniques are
recorded during roughing process. It is due to the fact that cutting conditions are more aggressive
under these circumstances. SAM medium values overpass 1100 N with a maximum peak over 2500 N.
This implies an increase ≈40% and ≈100%, respectively, against traditional milling. This behavior is
a result of using one tool pass for Flank SAM when compared to conventional milling with several tool
passes; what can be translated into higher material removal rates during SAM and higher forces, but at
the same time, a decrease of machining time. In particular, the material removal rate achieved with
SAM was 240 mm3/s what supposes an increase of ≈375% in comparison with conventional milling.
These MRR values were calculated in the CAM stage taking into account the material to remove and
tool feed as the volume to remove in the operation time. In the non-distant future, it could be calculated
by the integral blade rotor weight reduction divided by production time. Nevertheless, finishing
process the difference between the two techniques was inverted, obtaining lower force values with
SAM than with milling. Concretely, this process presents medium forces around 600 N with a peak of
1200 N. Thus, in comparison with conventional milling, forces are reduced 20% and 15%, respectively.

3.2. Surface Roughness

Regarding surface roughness, the topography and data obtained with the confocal microscope
are shown in Figure 6.

Topography in both cases shows a typical surface milling and grinding pattern perfectly generated.
This implies stable and controllable cutting process in both cases. However, the differences between
both of the technologies are caused by the values obtained in the surface roughness. In the case of
milling, the blade surface presents an average roughness (Ra) of 4.85 µm. This value is drastically
reduced when SAM technique is used. In this case, the value obtained is 2.66 µm, that is, ≈45%
less average roughness in comparison with the milling operation. This behavior is preserved in the
mean values of five consecutive maximum heights between peak-valley (Rz). In particular, the values
obtained were 49.79 µm and 36.03 µm in the case of milling and SAM machining, respectively. This
represents a reduction of ≈28% when SAM is used as machining technology.

Therefore, combining the results obtained regarding cutting forces and surface roughness, SAM
technology is suitable for being used to machine IBR blades. With this technology, not only machining
times are improved, but also smaller cutting forces during finishing process and better surface
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roughness values are obtained. However, another parameter that has to be taken into account is
the strict accuracy needed to satisfy the requirements in this type of aeronautical components.
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Metals 2018, 8, 24 8 of 11 

 

surface roughness values are obtained. However, another parameter that has to be taken into 
account is the strict accuracy needed to satisfy the requirements in this type of aeronautical 
components. 

 
Figure 6. Surface roughness in both processes. 

3.3. Dimensional Deviation 

In Figure 7 results obtained of comparing the IBR blade manufactured by SAM technology with 
the CAD model are shown. 

 
Figure 7. Deviation from nominal geometry. 

The results registered present tiny differences, in terms of approximation quality, between the 
IBR blade obtained by SAM and the CAD model. It should be noted that the tolerances in this type of 
turbomachinery components need values below 50 µm [41]. In this case, deviations that are obtained 
are below this value. Nevertheless, overcut is shown in a small area located near the corner. This 
behavior was found due to the fact that it consists of a non-developable surface, which has to be 
dealt with a free-form tool to adequate the flank to the defined surface [42]. Thus, the process 
presented is able to satisfy the requirements in this type of turbomachinery components.  

Therefore, results obtained in these experiment show, from a technical point of view related 
with cutting forces, surface roughness, and dimensional accuracy, which SAM technology does not 
present a limitation for being used with conventional machines (similar to the one used for this case); 
as long as cutting conditions were adequately adapted to spindle rotary capacity. 

4. Conclusions 

In this work, Inconel 718 IBR blades were manufactured with the main objective of comparing 
milling and SAM techniques in conventional machining centers using oil emulsions instead of 
mineral cutting oils, reducing its use in ≈80%. For this, both techniques were compared from a 

Figure 7. Deviation from nominal geometry.

The results registered present tiny differences, in terms of approximation quality, between the
IBR blade obtained by SAM and the CAD model. It should be noted that the tolerances in this
type of turbomachinery components need values below 50 µm [41]. In this case, deviations that are
obtained are below this value. Nevertheless, overcut is shown in a small area located near the corner.
This behavior was found due to the fact that it consists of a non-developable surface, which has to
be dealt with a free-form tool to adequate the flank to the defined surface [42]. Thus, the process
presented is able to satisfy the requirements in this type of turbomachinery components.

Therefore, results obtained in these experiment show, from a technical point of view related with
cutting forces, surface roughness, and dimensional accuracy, which SAM technology does not present
a limitation for being used with conventional machines (similar to the one used for this case); as long
as cutting conditions were adequately adapted to spindle rotary capacity.
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4. Conclusions

In this work, Inconel 718 IBR blades were manufactured with the main objective of comparing
milling and SAM techniques in conventional machining centers using oil emulsions instead of mineral
cutting oils, reducing its use in ≈80%. For this, both techniques were compared from a technical point
of view. In particular, cutting forces, surface roughness and dimensional accuracy were analyzed.
The main conclusions obtained are listed below:

• Flank SAM technique applied to roughing operations presented higher material removal rates
when compared with conventional milling process, reaching 240 mm3/s. This means that the
process has been optimized through manufacturing time reduction.

• Conversely, this increase of material removal rates is governed by the increase of cutting forces
during SAM roughing in a≈40% and≈100% for medium and maximum force values, respectively.
Nonetheless, in respect to finishing tasks, where material removal rates are similar for both
techniques, SAM showed lower cutting forces. In particular, the values are reduced ≈20% and
≈15% for medium and maximum force values, respectively.

• Regarding surface roughness, the topography obtained with both techniques presents a regular
pattern that is associated to each technology. However, the surface roughness values present high
differences between them. Specifically, the use of SAM technique implies a reduction of ≈45%
and ≈28% in Ra and Rz, respectively.

• Concerning dimensional accuracy, the use of SAM generates deviations below the current
aeronautical requirements in this type of components.

Therefore, the use of SAM as machining technology implies better results than conventional
milling obtaining a suitable, controllable and predictable process to manufacture aeronautical
critical components in heat-resistant super alloys, such as Inconel 718, IBR blades presented in this
work. Moreover, with this work, the two main restrictions for using SAM as machining process in
conventional machining centers with oil emulsions has been avoided.
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